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Chapter 1

Differential geometry

1.1 Differentiable manifolds

More precisions in [1], chapter II (§1 and 2) and III. (§1, 2, 3 and 7); [2, 3] can also be useful.
An other source for this chapter is [4]. A systematic exposition of manifolds and such can be
found in [5].

1.1.1 Definition and examples

A n-dimensional differentiable manifold is a set M and a system of charts {(Uy, Pa)}acr
where each set U, is open in R™ and the maps ¢, : U, — M are injective and satisfy the three
following conditions :

e every x € M is contained in at least one set ¢ (Usy ),

o for any two charts ¢, : Uy, — M and pg: Ug — M, the set

0o (aUa) N 03Up))

is an open subset of U,,

e the map
(05" 0 ¢a)t a'(palUe) N pUs)) — Us

is differentiable! as map from R™ to R™.

Each time we say “manifold“, we mean “differentiable manifold“. We will only consider
manifolds with Hausdorff topology (see later for the definition of a topology on a manifold). Any
open set of R"™ is a differentiable manifold if we choose the identity map as chart system. Most
of surfaces z = f(x,y) in R3 are manifolds, depending on certain regularity conditions on f.

If My and M> are two differentiable manifolds, a map f: M; — M, is differentiable if f
is continuous and for each two coordinate systems ¢;: U; — M; and @o: Uy — Ms, the map
502_1 o f o is differentiable on its domain. One can show that if f: M; — Ms and g: My — M3
are differentiable, then g o f: M; — M3 is differentiable.

n the sequel, by “differentiable” we always mean smooth. If this map is differentiable, C'*, analytic,. ..then
the manifold is said to be differentiable, C*, analytic,. ..

9
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Example: the sphere
The sphere S™ is the set

8™ ={(21,...,Tns1) € R" st || = 1}
for which we consider the following open set in R™ :
U={(ur,...,up)eR" st |u| <1}
and the charts ¢;: Y — S, and §;: U — S
©i(ury . yun) = (g, .. uim1, /1 — Jul? w0 ug) (1.1a)
Gi(u, o tn) = (g, ..oy uim1, =/ 1 — |Ju? wiy .o un). (1.1b)

These map are clearly injective. To see that p(U) v @U) = S, consider (z1,...,Zn+1) € S. Then
at least one of the z; is non zero. Let us suppose z1 # 0, thus 23 =1 — (23 +... +22,,) and

x1 = 24/1—(...). (1.2)
If we put u; = z;4+1, we have x = p(u) or z = @(u) following the sign in relation (1.2)-10. The
fact that ¢~ o @ and ¢! o ¢ are differentiable is a “first year in analysis exercise®.
Example: projective space
On R"™*!\{o}, we consider the equivalence relation v ~ Aw for all non zero A € R, and we put
RP" = (IR”H\{O}) /~.

This is the set of all the one dimensional subspaces of R"*!. This is the real projective space
of dimension n. We set Y/ = R™ and

wi(u1, ... uy) = Span{(ut, ..., ui—1, 1w, ..., up) -
One can see that this gives a manifold structure to RP"™. Moreover, the map
A:S8"—>RP"
(1.3)
v — Spanwv

is differentiable.

Let us show how to identify R u {00} to RP!, the set of directions in the plane R?. Indeed
consider any vertical line { (which does contain the origin). A non vertical vector subspace of
R? intersects [ in one and only one point, while the vertical vector subspace is associated with
the infinite point.

1.1.2 Topology on manifold and submanifold
A subset V < M is open if for every chart ¢: U — M, the set o~ (V n p(U)) is open in U.

Theorem 1.1.
This definition gives a topology on M which has the following properties :

(i) the charts maps are continuous,
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(ii) the sets po(Uy) are open.

Proof. First we prove that the open system defines a topology. For this, remark that ¢_! is
injective (if not, there should be some multivalued points). Then ¢ 1(AnB) = o 1(A)np1(B).
If V1 and V5, are open in M, then

¢ (VinVanpU) = ¢ (Vi npU)) n o™ (Vo n o))

which is open in R". The same property works for the unions.

Now we turn our attention to the continuity of p: U — M; for an open set V' in M, we have
to show that o~ 1(V) is open in « < R™. But the definition of the topology on M, is precisely
the fact that o 1(V n p(U)) is open. O

If M is a differentiable manifold and N, a subset of M, we say that IV is a submanifold of
dimension k if Vp € N, there exists a chart p: &4 — M around p such that

o HeU) A"N)=R* nlUf := {(21,...,2%,0...,0) €U}.

In this case, IV is itself a manifold of dimension k for which one can choose the ¢ of the
definition as charts.

Let us consider M and N, two differentiable manifolds, f: M — N a C* map and z € M. We
say that f is an immersion at z if df,: T, M — Ty, N is injective and that f is a submersion
if df,, is surjective.

If M and M are two analytic manifolds, a map ¢: M — N is regular at p € M if it is
analytic at p and d¢p: T,M — Ty, N is injective.

Proposition 1.2.
Let M be a submanifold of the manifold N. If p € M, then there exists a coordinate system
{x1,...,2,} on a neighbourhood of p in N such that x1(p) = ... = x,(p) = 0 and such that the
set

U={qeV stzj(q) =0Ym+1<j<n}

gives a local chart of M containing p.

Proof. No proof. O

The sense of this proposition is that one can put p at the center of a coordinate system on N
such that M is just a submanifold of N parametrised by the fact that its last m —n components
are zero.

Now we can give a characterization for a submanifold: N is a submanifold of M when N ¢ M
(as set) and the identity ¢: N — M is regular.

Proposition 1.3.
The own topology of a submanifold is finer than the induced one from the manifold.

Proof. Let M be a manifold of dimension n and N a submanifold? of dimension k < n. We
consider V', an open subset of IV for the induced topology, so V.= N n O for a certain open
subset O of M. The aim is to show that V is an open subset in the topology of V.

Let us define P = ¢ 1(0). The charts of N are the projection to R* of the ones of M. We
have to consider W = ¢~1(V), since N is a submanifold, ¢~'(O n N) = R¥ nP. It is clear that

2In the whole proof, we should say “there exists a sub-neighbourhood such that. .. ¢
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W = RF n P is an open subset of R* because it is the projection on the k first coordinates of
an open subset of R™.

The subset V of N will be open in the sense of the own topology of N if ¢'~1(V n ¢'(UL)) is
open in R¥ where ¢’ is the restriction of ¢ to his k first coordinates: ¢'(a) = ¢(a,0) and U’ is
the projection of U. O

Lemma 1.4.
Let V,M be two manifolds and ¢: V. — M, a differentiable map. We suppose that (V') is
contained in a submanifold S of M. If p: V' — S is continuous, then it is differentiable.

Remark 1.5. The map ¢ is certainly continuous as map from V' to M (this is in the assumptions).
But this don’t implies that it is continuous for the topology on S (which is the induced one from
M). So the continuity of ¢: V — S is a true assumption.

Proof. Let p € V. By proposition 1.2, we have a coordinate system {z1,...,2,} valid on a
neighbourhood N of ¢(p) in M such that the set

{reNstaz;(r)=0¥s<j<m}

with the restriction of (z1,...xs) € Ng form a local chart which contains p(p). From the
continuity of ¢, there exists a chart (W,1) around p such that ¢(WW) € Ng. The coordinates
zj(¢(q)) are differentiable functions of the coordinates of ¢ in W. In particular, the coordinates
zj(p(q)) for 1 < j < s are differentiable and ¢: V' — S is differentiable because its expression in
a chart is differentiable. O

A consequence of this lemma: if V' and S are submanifolds of M with V < S, and if S has the
induced topology from M, then V is a submanifold of S. Indeed, we can consider the inclusion
t:'V — S it is differentiable from V to M and continuous from V to S then it is differentiable
from V to S by the lemma. Thus V = :~1(S) is a submanifold of S (this is a classical result of
differential geometry).

Proposition 1.6.
A submanifold is open if and only if it has the same dimension as the main manifold.

Proof. Necessary condition. We consider some charts ¢;: U; — M on some open subsets U; of
R™. If N is open in M, then this can be written as

N=Uw

If we choose the charts on M in such a manner that ;: U; N R¥ — N are charts of N, we must
have o;(U; n R¥) = ¢;(U;). Then it is clear that k = n is necessary.

Sufficient condition. If N has same dimension as M, the charts ¢;: U; — M are trivially
restricted to N. O

1.1.3 Tangent vector

As first attempt, we define a tangent vector of M at the point x € M as the “derivative” of a
path v: (—¢,e) = M such that v(0) = z. It is denoted by

70) = o)
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The question is to correctly define de derivative in the right hand side. Such a definition is
achieved as follows. A tangent vector to the manifold M is a linear map X: C*(M) - R
which can be written under the form

XF = (Fox)(0) = 2] rx)] (1.4)

t=0

for a certain path X : R — M. Notice the abuse of notation between the tangent vector and the
path which defines it.

A more formal way to define a tangent vector is to say that it is an equivalent class of path
in the sense that two path are equivalent if and only if they induced maps by (1.4)-13 are equals.

Using the chain rule d(g o f)(a) = dg(f(a)) o df(a) for the differentiation in R", one sees
that this equivalence notion doesn’t depend on the choice of ¢. In other words, if ¢ and ¢
are two charts for a neighbourhood of z, then (p~! o ~)(0) = (¢! 0 0)/(0) if and only if
(@=L o7)(0) = (¢~ 05)'(0). The space of all tangent vectors at = is denoted by T, M. There
exists a bijection [y] < (¢! 07)/(0) between T,,M and R", so T, M is endowed with a vector
space structure.

If (U, p) is a chart around X (0), we can express X f using only well know objects by defining
the function f = fopand X = ¢ 1o X

dr = = of dxe
Xf= —[ X)) ] -9 .
f dt (f ° )( ) t=0 axa $=X(O) dt +=0
In this sense, we write ~
dx* ¢

X=—— 1.5
dt ox® (15)
and we say that {01,...,0,} is a basis of T, M. As far as notations are concerned, from now

a tangent vector is written as X = X“d, where X is related to the path X: R — M by
X =dX“/dt. We will no more mention the chart ¢ and write

X = 2]

Correctness of this short notation is because the equivalence relation is independent of the choice
of chart. When we speak about a tangent vector to a given path X (¢) without specification, we
think about X’(0).

All this construction gives back the notion of tangent vector when M < R™. In order to
see it, think to a surface in R?. A tangent vector is precisely given by a derivative of a path: if
c: R — R” is a path in the surface, a tangent vector to this curve is given by

lim c(to) —clto +1)
t—0 t

t=0

which is a well know limit of a difference in R".
Let us precise how does a tangent vector acts on maps others than R-valued functions. If V
is a vector space and f: M — V', we define

Xf=(Xfe

where {e;} is a basis of V and the functions f*: M — R, the decomposition of f with respect
to this basis. If we consider a map ¢: M — N between two manifolds, the natural definition is
X f:=dfX. More precisely, if we consider local coordinates z“ and a function f: M — R,

Of 0p* dXP

(@eX)f = L[(Fopox)w)] _ = LI (1.6)
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Now we are in a notational trouble: when we write X = X0, the “X*“ is the derivative of the
“X*“ which appears in the path X (¢) = (X(¢),...,X"(¢)) which gives X by X = X’(0). So
equation (1.6)-13 gives

X(p) := dpX = X (959")0a- (1.7)

1.1.4 Differential of a map

Let f: My — Ms be a differentiable map, x € M; and X € T, M, i.e. X: R — M; with
X (0) =z and X'(0) = X. We can consider the path Y = f o X in M. The tangent vector to
this path is written df, X

Proposition 1.7.
If f: My — M> is a differentiable map between two differentiable manifolds, the map

dfy + TuMy — Ty Mo (1.8)
X'(0) = (f o X)'(0) '
is linear.

Proof. We consider local coordinates z: R®™ — M; and y: R™ — Ms. The maps f: M; —
M, and y ' o fox: R® — R™ will sometimes be denoted by the same symbol f. We have

(z71oX)(t) = (z1(t),. .., z,(t)) and (y~ oY) (t) = (yr(@1(t), ..., zn(t), ..., ym(@1(1), ..., zn(t)),

so that
<Z 2?9/61/ Z / > cR™

which can be written in a more matricial way under the form

Y'(0) = (ayi o, (0)) .

0.%']‘

So in the parametrisations z and y, the map df, is given by the matrix dy’/dz; which is well
defined from the only given of f. O

Let z: U/ - M and y: ¥V — M be two charts systems around p € M. Consider the path
c(t) = z(0,...,t,...0) where the ¢ is at the position k. Then, with respect to these coordinates,

d _of dct _of
E[f(c(t))]mo T oxt dt ok’

d0)f =

1

so ¢/(0) = 9/0x*. Here, implicitly, we wrote ¢! = (2*)~! o c where (2%)~! is the ith component of
1

x~ " seen as element of R"”. We can make the same computation with the system y. With these
abuse of notation,

0wy 0
oxt - ; oxt ayj (19)

as it can be seen by applying it on any function f: M — IR. More precisely if z: Y — M and
y: U — M are two charts (let U be the intersection of the domains of x and y), let f: M — R

and f = fox, f = f oy. The action of the vector d,: of the function f is given by

of

0 f = 35



1.1. DIFFERENTIABLE MANIFOLDS 15
where the right hand side is a real number that can be computed with usual analysis on R".
This real defines the left hand side. Now, f = foy~! oz, so that

0f o(foy~tox) of oy
ort oxt Oyl oxt

oy’

ozt

where ; yf] must be understood as the derivative

is precisely what we write now by d,; f and
with respect to z* of the function (y~! ox): R® — R"™.

Let f: M — N and g: N — R; the definitions gives

g 0 fidxe
t=0 Oy’ 0x® dt

(. X)g = (g0 Nx1)]

This shows that % g = X is (df, X)'. But dX° / dt is what we should call X in the decompositon
X = X%0, then the matrix of df is given by = (m“" So we find back the old notion of differential.
Remark 1.8. If X € T,M and f is a vector valued function on M, then one can define X f by
exactly the same expression. In this case,
d
dt

A map f: My — Ms is an immersion at p € M; if df,: T,My — Ty, Ma is injective. It is
a submersion if df, is surjective.

X = Z[few)] =Xf.

t=0

1.1.5 Tangent and cotangent bundle
Tangent bundle

If M is a n dimensional manifold, as set the tangent bundle is the disjoint union of tangent
spaces
TM = U T, M.
zeM

Theorem 1.9.
The tangent bundle admits a 2n dimensional manifold structure for which the projection

T:TM — M

(1.10)
TyM —p

is a submersion.

The structure is easy to guess. If ¢, : U, — M is a coordinate system on M (with U, = R"),
we define ¥, : Uy x R™ — TM by

(1, .. xnvalw-- Za 0—%

EUL e]R

4@(11, 7In)

The map 1/)5_1 o 1g is differentiable because

(1/;E1 oyg)(zr,a) = Zaz ayj

which is a composition of differentiable maps. The set T'M endowed with this structure is called
the tangent bundle.
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Commutator of vector fields

If X, Y € X(M), one can define the commutator [X,Y] in the following way. First remark
that, if f: M — R, the object X (f) is also a function from M to R by X (f)(x) = X.(f), so we
can apply Y on X (f). The definition of [X,Y], is

[XvY]mf=Xm(Yf)_Ym(Xf) (1'11)

If X = X'0; and Y = Y70, then XY (f) = X'0;(Y70;f) = X'0:;Y70;f + X'YI3},f. From
symmetry é’fjf = 932'if7 the difference XY f — Y X f is only X?0;Y7 — Y0, X7, so that

[X,Y] = XY -YX' (1.12)

where X% and Y are seen as functions from M to R.

Some Leibnitz formulas

See [1], chapter I, proposition 1.4.

Lemma 1.10.
If M and N are two manifolds, we have a canonical isomorphism

T(p,q) (M X N) ~T,M+T,N.

Proof. A Z € T(, (M x N) is the tangent vector to a curve (x(t),y(y)) in M x N. We can
consider X € T,M given by X = 2/(0) and Y € T;N given by Y = y'(0). The isomorphism
is the identification (X,Y’) ~ Z. Indeed, let us define X € T(, (M x N), the tangent vector
to the curve (z(t),q), and Y € Ty, 4 (M x N), the tangent vector to the curve (p,y(t)). Then
Z =X +Y because for any f: M x N — R,

2= L0 = Liaooo)| + Lieouo)| -Trevn )

t=0

O

Proposition 1.11 (Leibnitz formula).
Let us consider M, N, V', three manifold; a map p: M x N — 'V and a vector Z € T, (M x N)
which corresponds (lemma 1.10) to (X,Y) e T,M +T,N.
If we define p1: M —V and p2: N =V by p1(p) = ¢(p',q) and p2(q') = »(p,q’), we have
the Leibnitz formula :
dp(Z) = dp1(X) + dp2(Y). (1.14)

Proof. Since Z = X +Y, we just have to remark that

1p(X) = Gelalt).0)| = dpi(X),
s0 dp(Z) = dp(X +Y) = dp1(X) + dpa (V). O

One of the most important application of the Leibnitz rule is the corollary 1.32 on principal
bundles.
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Cotangent bundle

A form on a vector space V is a linear map a: V — R. The set of all forms on V is denoted
by V* and is called the dual space of V. On each point of a manifold, one can consider the
tangent bundle which is a vector space. Then one can consider, for each z € M the dual space
T*M := (T, M)* which is called the cotangent bundle. A 1-differential form on M is a
smooth map w: M — T*M such that w, := w(x) € T*M. So, for each z € M, we have a 1-form
we: T M — R.

Here, the smoothness is the fact that for any smooth vector field X € X(M), the map
x — wg(X,) is smooth as function on M. One often consider vector-valued forms. This is
exactly the same, but w, X, belongs to a certain vector space instead of R. The set of V-valued
I-forms on M is denoted by Q(M, V) and simply Q(M) if V' =R The cotangent space T,y M of
M at p is the dual space of T, M, i.e. the vector space of all the (real valued) linear® 1-forms
on T, M. In the coordinate system z: U — M, we naturally use, on T;M , the dual basis of the
basis {0/0yi,...0/0yi} of T,M. This dual basis is denoted by {dz1, ..., dz,}, the definition being
as usual :

dz;(07) = &7. (1.15)

The notation comes from the fact that equation (1.15)-17 describes the action of the differential
of the projection x;: & — IR on the vector ¢7.

If (U, pa) is a chart of M, then the maps
Ga : Uy x R" - T*M
. (1.16)
(x,a) — a'dx;|,

give to T*M a 2n dimensional manifold structure such that the canonical projection w: T*M —
M is an immersion.

When V is a finite-dimensional vector space, we denote by V* its dual* and we often use
the identifications V ~ V* ~ T,V ~ T,V ~ T*V where v and w are any elements of V. Note
however that there are no canonical isomorphism between these spaces, unless we consider some
basis.

Exterior algebra

Here are some recall without proof about forms on vector space. If V is a vector space, we denote
by AFV* the space of all the k-form on V. We define A: AFV* x A'V* — ARHY* by

1
(wk A nl)(vlv s ,’Uk+l) = W Z SgTL(O')W(’UU(l), CER va(k))n(va(k+1)7va(k+1)) (117)

UESk_H

If {e1,...,en} is a basis of V, the dual basis {o',...,0"} of V* is defined by o*(e;) = dj.
If I = {1 <iy <...ip <n}, we write 0! = 0" A ...0% any k-form can be decomposed as

w = Z wrol.
1
The exterior algebra is provided with the interior product denoted by ¢. It is defined by

t(vo): AFW — AP

(t(vo)w)(v1y ..y vp—1) = w(Vo, V1, - -+, Vk—1)- (1.18)

3When we say a form, we will always mean a linear form.
4The vector space of all the linear map V — R.
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Pull-back and push-forward

Let ¢: M — N be a smooth map, a a k-form on N, and Y a vector field on N. Consider the
map dyp: TyM — T,y M. The aim is to extend it to a map from the tensor algebra of T, M to
the one of T,y M. See [1] for precise definition of the tensor algebra.

The pull-back of ¢ on a k-form « is the map

p*: QF(N) - Q8 (M)
defined by
(QO*Q)M(UM s ,'Uk) = Qp(m) (dwmvla e ngm’Uk) (119)

for all m e M and v; € X(M).
Note the particular case k = 0. In this case, we take —instead of a— a function f: N - R
and the definition (1.19)-18 gives ¢*f: M — R by

p*f=feop
The push-forward of ¢ on a k-form is the map
i QF(M) — QF(N)
defined by o, = (p~1)*. For v € T,,N, we explicitly have :
(P20 (v) = apm1(n) (dgy ' 0).
Let now ¢: M — N be a diffeomorphism. The pull-back of ¢ on a vector field is the map
p*: X(N) - X(M)

defined by
(@*Y)(m) = [(dp™")m oY 0 p](m),
or
(QD*Y)cp*l(n) = (d(P_l)nYna
for all n € N and m € M. Notice that

(d(pil)n: T.N — Tcpfl(n)Ma

and that ¢ ~!(n) is well defined because ¢ is an homeomorphism.
The push-forward is, as before, defined by ¢, = (o 1)*. In order to show how to manipulate
these notations, let us prove the following equation :

fae = (df)e.-
For ¢o: M — N and Y in X(NN), we just defined ¢*: X(N) — X(M), by
(©*Y)g1(n) = (dp™)n Y. (1.20)

Take f: M — N; we want to compute fy = (f1)* with (f~1)*: X(M) — X(N). Replacing the
“~1¢ on the right places, the definition (1.20)-18 gives us
1y
(F7x], = X,

m)=

if X e X(M), and me M.

We can rewrite it without any indices: the coherence of the spaces automatically impose the
indices: (f1)*X = (df)X. It can also be rewritten as (f~!)* = df, and thus fy = df. From
there to fie = (df )¢, it is straightforward.
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Differential of k-forms

The differential of a k-form is defined by the following theorem.

Theorem 1.12.
Let M be a differentiable manifold. Then for each k € N, there exists an unique map

d: QF(M) — QM (M)
such that
(i) d is linear,
(ii) for k =0, we find back the d: C* (M) — QM) previously defined,
(iii) if f is a function and W* a k-form, then

d(fw®) = df A WF + fdw®, (1.21)

(iv) d(w* A n') = dw® Ant + (=1)F0F A dif,
(v) dod = 0.
An explicit expression for dw” is actually given by
dw® = ZdW] A da! (1.22)
if w¥ = Ywrdr!. An useful other way to write it is the following. If w is a k-form and
X1,...,Xpy1 some vector fields,

p+1
(k + Ddw(X1,..., Xps1) = D (D) Xiw(Xq,... Xy, Xpi)
' (1.23)

1=1
+ 3 (D) WX, X, X, X X X ).

i<j

Let us show it with p = 1. Let w = w;dz’ and compute dw(X,Y) = d;w;(dz"* A dz?)(X,Y). For
this, we have to keep in mind that the 0; acts only on w; while, in equation (1.23)-19, a term
Xw(Y) means —pointwise— the action of X on the function w(Y): M — R. So we have to use

Leibnitz formula : o _ _ _
(é’iwj)XzYJ = (XUJ]‘)Y] = X(ijj) — ijY].

On the other hand, we know that [X,Y]* = XY’ — Y X so

dw(X,Y) = Xw(Y) —Yw(X) —w([X,Y]). (1.24)
Hodge operator
Let us take a manifold M endowed with a metric g. We can define a map r: T,*M — T, M by,

for a e T)XM,
(r(a),v) = a(v).

for all v € T, M, where (-, -) stands for the product given by the metric g. If we have a, 8 € T, M,

we can define
(a, 3) =<r(a),r(B))-
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With this, we define an inner product on AP(T*M) :
<CY1 AL Oy, ﬁl AN ﬁp> = d;?t<a“ ﬁ]>
The Hodge operator is *: AP(T*M) — A" P(T.* M) such that for any ¢ € AP(T*M),

b A (%1h) = {p, Y = /| det(g)|dz' A ... A daz™. (1.25)

Volume form and orientation

Let M be a n dimensional smooth manifold. A volume form on M is a nowhere vanishing n-
form and the manifold itself is said to be orientable if such a volume form exists. Two volume
forms p; and ps are describe the same orientation if there exists a function f > 0 such that®

p1 = fua.

Proposition 1.13.
There exists only two orientations on a connected orientable manifold.

‘Probléme et notes pour moi‘ 1.
Vérifier I’énoncé du théoréme et trouver une référence.

One says that the ordered basis (vy,--- ,v,) of T,,M is positively oriented with respect to
the volume form p is pip(vy, -+ ,v,) > 0.

1.1.6 Musical isomorphism

In some literature, we find the symbols ©” and af. What does it mean ? For X € X(M) and
w e O2(M), the flat operation v” € Q' (M) is simply defined by the inner product :

v = i(v)w (1.26)
In the same way, we define the sharp operation by taking a 1-form « and defining of by
i(aw = a. (1.27)

An immediate property is, for all v € X(M), v** = v, and for all a € Q'(M), o = w.

1.1.7 Lie derivative

Consider X € X(M) and « € QP(M). Let pr: M — M be the flow of X. The Lie derivative of
«is

1 d
Lxo = lim ;[(@fa) —a] = E‘Pfa . (1.28)
More explicitly, for x € M and v e T, M,
o1
(Lxa)e(v) = Jim = [(£F)a(0) = g (0]
In the definition of the Lie derivative for a vector field, we need an extra minus sign :
d
¢ t=0

5Recall that the space of n-forms is one-dimensional.
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Why a minus sign 7 Because Yy, (z) € Ty, (o) M, but (dp_¢)a: TaM — T,
want, p_txY,,(z) t0 be a vector at x, we can’t use Q.

These two definitions can be embedded in only one. Let X € X(M) and ¢; its integral
curveS. We know that ¢, is an isomorphism ;. : To-1(yM — T, M. It can be extended to an

isomorphism of the tensor algebras at ¢ 1(x) and x. We note it @;. For all tensor field K on
M, we define

yM so that, if we

—_t(a

(LxK)p = Hm[K, — (GK).].

t—0
On a Riemannian manifold (M, g), a vector field X is a Killing vector field if Lxg = 0.
Lemma 1.14.

Let f: (—€,e) x M — R be a differentiable map with f(0,p) =0 for all p e U. Then there exists
g: (—¢,€) x M — R, a differentiable map such that f(t,p) = tg(t,p) and

0f(t q)
9(0,q) = o
t=0

Proof. Take

1

0f(ts,p)
g(ta q) = / 7d8,

o O(ts)
and use the change of variable s — ts. O
Lemma 1.15.

If @y is the integral curve of X, for all function f: M — R, there exists a map g, g:(p) = g(t,p)
such that fowy = f+tg: and go = X f.

Proof. Consider f(t,p) = f(:(p)) — f(p), and apply the lemma :
fope=tg(p)+ f(p)-
Thus we have 1
Xf = lim =~ [f(pe(p) = f(p)] = lim g:(p) = g0 (p)-
One of the main properties of the Lie derivative is the following :
Theorem 1.16.
Let X, Y € X(M) and @ be the integral curve of X. Then
o1
(X, Y], = lim <[V — do Y )(0u(0)),

or
LxY =[X,Y].

Proof. Take f: M — R and the function given by the lemma: g,: M — R such that f oy, =
f +tg; and go = X f. Then put p(t) = ¢; *(p). The rest of the proof is a computation :

(e Y )pf =Y (fot)pry = (Y pry + Y 9)pt)

. d
6i.e. for all z € M, po(x) = = and Eapu_;_t(z)‘tzo = Xy (2)-
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SO

1 1
lim —[Y, = (e Y)plf = lim —[(Y F)p = (Y f)p()] = M (Yge)pry

t—0 ¢t 0t
1.
= X,(Y ) = Y90 (1.30)
=[X,Y],f.
O
A second important property is
Theorem 1.17.
For any function f: M -V,
Lxf=Xf.

Proof. If X (t) is the path which defines the vector X, it is obvious that at ¢t = 0, X (¢) is an
integral curve to X, so that we can take X (¢) instead of ¢, in (1.28)-20. Therefore we have :

Lxf= Sotf| =X (1.31)
t=0

by definition of the action of a vector on a function.

1.2 Example: Lie groups

A Lie group is a manifold G endowed with a group structure such that the inversion map
i: G — G, i(r) = 27! and the multiplication m: G x G — G, m(z,y) = xy are differentiable.
The Lie algebra of the Lie group G is the tangent space of G at the identity: G = T.G.

It is immediate to see that g +— ¢! is a smooth homeomorphism and that, for any fixed
go, g1, the maps

g+ 909,
g — g49o,
g = gog9gi

are smooth homeomorphisms. When A ¢ G, we define A™! = {g~! st g € G}.

1.2.1 Connected component of Lie groups

Proposition 1.18.
If G is a connected Lie group and U, a neighbourhood of the identity e, then G is generated by
U in the sense that Yg € G, there exists a finite number of g; € U such that

g=gi-.. Gn.
Notice that the number n is function of g in general.

Proof. Eventually passing to a subset, we can suppose that I/ is open. In this case, i/~ is open
because it is the image of & under the homeomorphism g — ¢g~!. Now we consider V = U nU~".
The main property of this set is that V = V~!. Let

[V]={g1...gn st g € V};
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we will prove that [V] = G by proving that it is closed and open in G (the fact that G is
connected the concludes).

We begin by openness of [V]. Let gg = g1 - - - gn € [V]. We know that goV is open because the
multiplication by gg is an homeomorphism. It is clear that goV < [V] and that go = goe € goV'.
Hence gg € goV € [V]. It proves that [V] is open because goV is a neighbourhood of gy in [V].

We now turn our attention to the closeness of [V]. Let h € [V]. The set hV is an open set
which contains h and hV n [V] # & because an open which contains an element of the closure
of a set intersects the set (it is almost the definition of the closure). Let go € hV n [V]. There

exists a hy € V such that go = hhy. For this h1, we have hh1 = gg = g1 - - gn, and therefore
h=gy-gahi e [V].

This proves that h € [V] because h; ' € V' from the fact that V = V1. O

Remark that this proof emphasises the topological aspect of a Lie group: the differential
structure was only used to prove thinks like that A~! is open when A is open.

Proposition 1.19.
Let G be a Lie group and Gq, the identity component of G. We have the following :

(i) Go is an open invariant subgroup of G,
(ii) Go is a Lie group,

(iii) the connected components of G are lateral classes of Go. More specifically, if x belongs to
the connected component Gy, then G1 = xGy = Goz.

Proof. We know that when M is open in the manifold M, one can put on M; a differential
structure of manifold of same dimension as M with the induced topology. Since Gy is open, it is
a smooth manifold. In order for Gy to be a Lie group, we have to prove that it is stable under
the inversion and that gh € Gy whenever g, h € Gy.

First, Gy s connected because it is homeomorphic to G in G. The element e belongs to the
intersection of G and Gy 1 so Gy u Gy 1is connected as non-disjoint union of connected sets.
Hence Gog u Gal = Gy and we conclude that Gal C Gy. The set GoGy is connected because it
is the image of Gy x Gy under the multiplication map, but e € GoGy, so GoGy € Gy and G is
thus closed for the multiplication. Hence Gy is a Lie group.

For all z € G, we have e = zex~! € 2Gox ™!, but Gz ! is connected. Hence 2Gox ™' < Gy,
which proves that Gg is an invariant subset of G.

Lateral classes (G are connected because the left multiplication is an homeomorphism.
They are moreover mazimal connected subsets because, if xGy c H (proper inclusion) with a
connected H, then Gy c x~'H (still proper inclusion). But the definition of Gy is that this
proper inclusion is impossible. Therefore, the sets of the form xG(y are maximally connected
sets. It is clear that UgeqgGo = G.

Notice that the last point works with Ggx too. o

1.2.2 The Lie algebra of SU(2)

Let consider G = SU(2); the elements are complexes 2 x 2 matrices U such that UUT = 1 and
detU = 1. An element of the Lie algebra is given by a path u: R — G in the group with
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u(0) = 1. Since for all t, u(t)u(t)l = 1,

0= %[u(t)u(t)T]t:O
= U(O)% [u(t)T]tZO + %[U(t)]tzou(O)T (1.32)

= [du(®)]" + [deu(t)].

So a general element of the Lie algebra su(2) is an anti-hermitian matrix. The same trick gives
the condition of vanishing trace.

1.2.3 What is g~!dg ?

The expression ¢~ 'dg is often written in the physical literature. In our framework, the way to
gives a sense to this expression is to consider it pointwise acting on a tangent vector. More
precisely, the scheme is the data of a manifold M, a Lie group G and a map g: M — G.
Pointwise, we have to apply g(z)~'dg, to a tangent vector v € T, M.

Note that dg,: ToM — Ty)G # T.G, so dg, ¢ G. But the product g(z) 'dg,v is defined by

o) dgow = Lgl@) ow(e)] _ €6

t=0

1.2.4 Exponential map

Lemma 1.20.
Let G, H be two Lie groups with algebras G and H. Let ¢: G — H be a homomorphism differ-
entiable at e, the unit in G. Then for all X € G, the following formula holds:

P(exp X) = exp(dp. X ).

It can be found in [6].

1.2.5 Invariant vector fields

As convention, the left invariant on G associated with X in the Lie algebra G at g € G is given
by the path

bt

(1) = ge'* (1.33)
while the right invariant is given by
X,(t) = ¢¥g (1.34)

The invariance means that (dLp), X, = Xpn, and (dRp)y X, = X gn. The invariant vector fields
are important because they carry the structure of the tangent space at identity (the Lie algebra).
More precisely we have the following result :

Theorem 1.21.
The map X — X, is a bijection between the left invariant vector fields on a Lie group and its
Lie algebra T.G.

Invariant vector fields are also often used in order to transport a structure from the identity
of a Lie group to the whole group by A,(Xy) = Ac(dL,-1X,) where A, is some structure and
Xg4, a vector at g.
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1.2.6 Adjoint map

The ideas of this short note comes from [6]. A more traumatic definition of the adjoint group
can be found in [3], chapter II, §5. Let G be a Lie group, and G, its Lie algebra. We define the
adjoint map at the point z € G by

Ad,: G- G

B (1.35)
Ad,y = zyx

1

Then we define
Ad, = (dAd;)e: G — G;

the chain rule applied on Ad,, = Ad; o Ad, leads to Ad,, = Ad, o Ad,, and thus we can see
Ad as a group homomorphism Ad: G — GL(G), Ad(x) = Ad,.

Definition 1.22.
This homomorphism is the adjoint representation of the group G in the vector space G.

Finally, we define
ad := d(Ad):: G — L(G,G)

where we identify TYGL(G) with L(G, ).

Lemma 1.23.
If f: G — G is an automorphism of G (i.e. : f(xy) = f(x)f(y)), then df. is an automorphism
of G ¢ df[X,Y] = [df X, dfY]

Proof. First, remark that f(Ad,y) = Ady(,) f(y). Now, Ad, X = (d Ad;).X, so that one can

compute :

a(Ad, X) = S[F(ad, x(0)]

d
— = Ads) FX )] (136)
= (dAdy ) pe)df X
= Adj(a) df X.

On the other hand, we need to understand how does the ad work.

ad XY = %[Ad){(t) ]t:OY - %[Adx(t) Y]t:O

because Adx ;) : G — G is linear, so that Y can enter the derivation (for this, we identify G and

TxG). Since Adx () Y is a path in G the true space is

d
(ad X)Y = E[Adx(t) Y]tzo € Tix 10 ~ 6.

For the same reason of linearity, df can get in the derivative in the expression df % [Ad X(t) Y] .
t=0
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Thus

d
(ad )Y = Z|df (Adxy V)]
d
= =] Adjoxi Y| o
d (1.37)
- E[Adf X(t))] dfy
— ad(df X)dfY
= [df X, dfY]
because f(X(t)) is a path which gives df X.
o
One can show that [X,YT] is tangent to the curve
cot) = e7VIX VY Vs X VY (1.38)

1.3 Fundamental vector field

If G is the Lie algebra of a Lie group G acting on a manifold M (the action of g on x being
denoted by z - g), the fundamental vector field associated with A € G is given by

d
AY = — [x - e_tA] . 1.39

roodt t=0 ( )
We always suppose that the action is effective. If the action of G is transitive, the fundamental
vectors at point x € M form a basis of T, M. More precisely, we have the

Lemma 1.24.
For any v e T, M, there exists a A€ G such that v = A%

x, in other terms

Span{AX st Ae G} =T, M

Proof. The vector v is given by a path v(t) in M. Since the action is transitive, one can write
v(t) = x - ¢(t) for a certain path ¢ in G which fulfills ¢(0) = e. We have to show that v depends
only on ¢(0) € G. We consider

R:GxM-—->M

R(g,x)=x-g (1.40)
SO d
v = S[RE®,)] = R [([de(t), ) + (c(0), )] (1.41)
O
Lemma 1.25.

If A, B € @G are such that A* = B*, then A = B.
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Proof. We consider once again the map (1.40)-26 and we look at

_4d
T dt

v= 2 [Ret))] = (@R) e [ (c(0),2)]

)
t=0 t=0

keeping in mind that c¢(t) = e™*4. In order to treat this expression, we define

Ri: G—> M, Ryi(h)=R(h,z), (1.42a)
Ro: M — M, Rx(y) = R(g,y). (1.42b)

So
v =dR; (X) + dRQ(O) = dec'(O)

and the assumption A% = B¥ becomes dR1A = dR;B. This makes, for small enough ¢,
Ri(et4e™B) = g - et4e™tB = g; if the action is effective, it imposes A = B. O

Lemma 1.26.
If we consider the action of a matriz group, Ry acts on the fundamental field by

*

dRy(Af) = (Ad(g—l)A)g,g.

Proof. Just notice that e tAdlg™)A = Ad,-1(e ) = g le 4y, thus
Ad(g Ayt =4 SEAdTHAL R (A¥ 1.43
(Ad(g1)A);, = =[€-ge |, = dRra(a7). (1.43)

1.4 Vector bundle

Let M be a smooth manifold. A V-vector bundle of rank r on M is a smooth manifold F' and
a smooth projection p: F' — M such that

o for any z € M, the fiber F, := p~1(x) is a vector space of dimension r on the same field
that V (let’s say K = R or C).

e for any x € M, there exists an open neighbourhood U of z and a “chart diffeomorphism*
¢: p~H(U) — U x V such that for any [ € p~*(y),

= o(l) = (y, 0y (1))

— ¢y: By — V is a vector space isomorphism.

The pair (U, ¢) is a local trivialization; M is the base space; F, the total space, p the projection
and r, the rank of the bundle. The denominations of total and base spaces will also be used in
the same way for principal bundles.

We will sometimes use charts diffeomorphism ¢: U x V — p~1(U) instead of ¢: p~ 1 (U) —
U x V. Since they are diffeomorphism, this difference don’t affects anything.
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1.4.1 Transition functions

The trivializations will be denoted by Greek indices: Uy, @q,. . . The symbol U, g naturally denotes
Uo N Us. TIf we consider two local trivializations (U, ¢o) and (Ug, ¢g), we have to look at
Pq © qﬁgl: Unp x K" - Uy p x K. We define the transition functions g.g: Ung — GL(r,K)
by

Go © gbgl(z, v) = (z, gap(z)v). (1.44)

These functions take their values in GL(r, K) because ¢, : E, — V is a vector space isomorphism.
Since (¢o 0 dg) ! = ¢go¢yt, it is clear that gas(z) = gap(z) .
If £ € Unpy = Uo 0 Up 0 Uy, We have ¢ 0 ¢7(x,0) = (T, gary(x)v), but also ¢, 0 ¢7' =

$a © @5 ¢ 0 @1, then

(2, gar (2)0) = (Pa © 05 ") (@, 95 (2)0) = (2, gap (@) g (2)0). (1.45)
Thus gay () = gap()gsy(x). So, as linear maps, we have

daB © Jay © Gya = 1. (146)

1.4.2 Inverse construction

Let us consider a manifold M, an open covering {U, : o € I} and some functions gag: Uas —

G L(r,K) which fulfill relations (1.46)-28. We will build a vector bundle £ 5 M whose transi-
tion functions are the g,g’s. Let E be the disjoint union

E = |_|Z/la><]KT,

a€el

i.e. triples of the form (z,v,a) € M x K" x I with the condition that = € U,. We define an
equivalence relation on E by (z,v,a) ~ (y,w, () if and only if z = y and w = gap(x)v. Next,
we define E = E/ ~ and w: E — E, the canonical projection. The projection p: E — M is
naturally defined by p([z,v,a]) = 2. The chart diffeomorphism is ¢, : Uy x K™ — p~1(U,),

valz,v) =w(z, v, Q).

Now we have to prove that E endowed with the ¢, ’s is a vector bundle.
First we prove that ¢, is surjective. For this we remark that a general element in p~!(l,)
can be written under the form w(z,v, @) with x € Uyg. But

Palr, gaﬁ(x)w) = w(z, gaﬁ(x)wa @)
= w(x,gag(x)gag(x)w, ﬁ) (147)
= w(z,wp),
then ¢, is surjective. Now we suppose @q(z,v) = @q(y, w). Then w(z,v,a) = w(y, w,a) and

T =Y, W= goaov which immediately gives v = w. Then ¢, is injective.
Finally, we have

(pao ;") (w(z,v,0)) = ¢a(, gap(2)v) = W(2, gap(2)v, @), (1.48)

which proves that the maps g are the transition functions of the vector bundle E.
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1.4.3 Equivalence of vector bundle

Let E 25 M and F 25 M be two vector bundles on M. They are equivalent if there exists a
smooth diffeomorphism f: E — F such that

« pof=p,
e flg,: E; — F, is a vector space isomorphism.

Let E and F be two equivalent vector bundles, {i, st « € I}, an open covering which
trivialize £ and F in the same time and ¢Z, ¢f the corresponding trivializations. A map
f: E — F reads “in the trivialization” as ¢£ 0 flp=1(ua) 0Pl Uy x K" — U, x K" and defines
amap Ay : Uy, > GL(r,K) by

(08 © flp-1(ua) © 975 ) (@, 0) = (2, Aa(2)0). (1.49)
If we denote by g¥ the transition functions for F (and g for F),
S 0dh = (gnofoda No(dnops )o(dfof T ods ),

so that
95p(x) = Aa(2)gls(x)A(@) " (1.50)

Once again we have an inverse construction. We consider a vector bundle E on M with
transition functions g¥ and some maps A, : U, — GL(r,KK); then we define ggﬁ (z) by equation
(1.50)-29.

From subsection 1.4.2, one can construct a vector bundle F' on M whose transition functions
are these gf'. With the trivializations ¢f" of F, one can define f: E — F by

(05 o f o by ) (x,v) = (2, Xa(2)v).

When a basis space B is given, we denote by Vect(B) the set of isomorphism classes of vector
bundles over B. In the complex case, we denote it by Vecte (B).

Proposition 1.27.
Any vector bundle over R"™ is trivial.

Proof. Let p: F — M be a vector bundle on M = R" and {U,} be covering of R™ by local
trivializations. Now consider a partition of unity related to the covering U,, : a set of functions
fa: M — IR such that

o fa>0,

e Yz € M, one can find a neighbourhood of z in which only a finite number of f, is non zero,
o« Yz eM, ) folx)=1

e fo =0 outside of U,.

Using that partition of unity, we build the trivialization function f: FF — R™ x V by f(l) =
(@, X fa(@)Paa(l))- O

The following two propositions have some importance in K-theory.
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Proposition 1.28.
Let m: E — B be a complex vector bundle over a basis compact, Hausdorff, connected basis B.
Then there exists a vector bundle E' such that E® E’ is trivial.

Proposition 1.29.

Let f: A — B be a map between the topological spaces A and B, and consider a vector bundle
m: E — B. Then there exists one and only one vector bundle n’': E' — A and a map f': E' —
E such that f'|g: E,, — FEj is an isomorphism. The vector bundle E' is unique up to
isomorphism.

Proofs can be found in [7]. Let us denote by f*(FE) the function given by proposition 1.29.
It satisfies the following properties

(f9)*(E) = g* (f*(E))
id*(E)=E (151)
f*(E1 @ Es) = f*(EB1) ® f*(E2) '
[*(E1®E) = f*(E1) ® f*(Es2)

1.4.4 Sections of vector bundle

A section of the vector bundle p: F — M is a smooth map s: M — FE such that pos =id| .
The set of all the sections is denoted by I'*(M) or simply I'(E).

If (U, de) is a local trivialization, one can describe the section s by a function s, : U, — V
defined by ¢, (s(z)) = (z, so(x)), or equivalently by

s(@) = 65" (50 (@)

As usual when we define such a local quantity, we have to ask ourself how are related s, and sg
on U, N Ug. The best is s, = sg, but most of the time it is not. Here, we compute

$p 0 Pa' © Pa(s(s)) = (2, gap(w)sa(2)),
which is obviously also equal to (z, sg(z)). Then
56(2) = gap(2)sa (@) (1.52)

without summation.

1.5 Vector valued differential forms

Let E be a vector bundle over M. A E-valued p-form is a section

p
eel(E® /\T*M).

We denote by Q(M, E) =T (E® A" T*M) the set of E-valued differential forms. An element of
Q' (M,E) =T(E® AT*M) always reads Y, s; @w; for some sections s; and usual differential
forms w;.

A form of QP(M, E) can be seen as a fiber morphism TM ® --- ® TM — E by associating

p times

sQuw(Xi, -, Xp) =s(@)w(Xy, -+, Xp) € By
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to the element (s @ w) € QP(M, E). There exists a wedge product between vector-valued forms.
If e € QP(M, Ey) and f € Q4(M, Es), then we define e A f € QPYI(M, E; ® E3) by
1
(6 A f)(vla T aU;D+q) = ? Z (_1)71—6(1)71'(1)) e 'Uw(p)) ® f(’UTr(;D+1)’ e aUTr(P+Q)) € E1 ® Es.

" mESptq
(1.53)
where (—1)7 stands for the sign of the permutation 7. For example when e, f € Q'(M, E), we
have

(A NXY)=e(X)@f(Y)—e(Y)Rf(X) e EQE.

When M is a differentiable manifold, the fundamental 1-form is the element § € Q(M, T M)
such that
uX)0 =X

for every X e T(T'M).

1.6 Lie algebra valued differential forms

An important particular case of vector valued forms is given by Lie algebra valued forms. That
case appears for example in the connection theory over principal bundle”. If w and 1 are elements
of Q' (M, G) for some Lie algebra G, we define

(wANX,Y) =w(X)@nY) —w(Y)®@n(X).
Combining with the Lie bracket, we define
[w A n](X,Y) = [w(X), n(Y)] = [w(Y), n(X)]. (1.54)

Using the proposition 4.21, we often implicitly transforms the tensor product into a product
(4.104b)-153 and put
(@ A)(X,Y) = [w(X).w(V)]. (1.55)

Let us point out the fact that that kind of formula only holds for a “wedge square”, but not for a
general product w A 7. Remark that for w € Q'(M,G) and 38 € Q2(M,G), a simple computation
of definition (1.53)-31 yields

(wWAB)XY,Z)=w(X)®B(Y,Z) —w(Y)®B(X,Z) +w(Z)®B(X,Y), (1.56)
so that, using the same trick as for equation (1.55)-31, we find
(WAB=Brw)X,Y,Z) = [wX),BY,2)] - [wY),B(X, Z2)] + [w(Z), B(X,Y)].

But that expression is exactly what we find by exchanging the tensor product by Lie bracket in
expression (1.56)-31. So we define

wAfBl=wAlB—-0FArw (1.57)

when w € QY(M,G) and 3 € Q%(M,G). The reader should remark that this is what one would
expect from generalisation of definition (1.54)-31.

7So in Maxwell and other gauge field theories.
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1.7 Principal bundle

Let M be a manifold and G, a Lie group whose unit is denoted by e. A G-principal bundle
on M is a smooth manifold P, a smooth map n: P — M and a right action of G on P denoted
by & - g with g € G and £ € P such that

77.(6 ' g) = W(E),
e Veem H(z), m(z) ={{ - gst ge G} ~ G,

e Yz € M, there exists a neighbourhood U,, of z in M, a diffeomorphism ¢, : 771 (U,) —
U, x G and a diffeomorphism ¢, : P — G such that

- ¢a(§) = (za¢az(§))a
- d’az(f ' g) = d’az(f) 9.
The group G is often called the structure group. We suppose that the action is effective. We
will sometimes use the notation P(G, M) to precise that P is a principal bundle over M with
structure group G.
The whole construction is given in figure 1.1. All is not yet defined, but in the following, the
notations will follow this scheme.

7T*1|u T

o p
U, xV
I W N

Figure 1.1: Some bundles

1
: E=Px,V
[
|

Lemma 1.30.
The map ¢b fulfills
(;Sa_l(x, h) g = (b;l(za hg)

Proof. From the definition of a principal bundle, any £ € P can be written under the form
&= o (T, P (§)) With ¢, satisfying ¢,.(€ - h) = ¢ (€)h for a certain function ¢,: P — G. We
consider in particular € = ¢ (x,h)-g. Then &-g71 = ¢ (2, h). But £:971 = ¢ (@, e (§)g™1),
then h = ¢a,(£)g™" and ¢a.(€) = hg. So we have

€=¢ (,h) g = ¢ (7, $au(§)) = 63" (2, hg).
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Let
R={(z,y)e P x Pstax=y-g for acertain g € G}.

Proposition 1.31.
The function u: R — G defined by the condition

p-u(p,q) = q.

is differentiable.

Proof. Let U be an open subset of M and o: U — P, a section. We consider a differentiable
map p: 7~ (U) — G such that p(¢ - g) = p(€) - g and p(o(x)) = e. Such a map is given by

p(8) = du(o(2)) ™ 6(8)

where = 7(£). We naturally define Ryy = Rn (7~ 1(U) x 71 (U)) and we pick (£,71) € Ry. Let
s € G be the one such that £ - s = n, so that p(€) - s = p(n). Then the restriction of u to Ry is
given by u(&,n) = p(€)~1p(n) which makes uly differentiable. Since this reasoning can be made
on every chart open U, u is differentiable everywhere on P. o

The following is a corollary of Leibnitz rule.

Corollary 1.32.
If P is a G-principal bundle and v, a are curve in P and G respectively, we can consider the
curve u(t) = v(t)a(t). We have :

d d d

—u(t = —o(t)a(0 —v(0)a(t .

0= e+ g0

The proof is direct. This result is often written as
’l.J/t = ’(.)tat + ’Utdt. (158)
A main application is

i[r : h(t)] - i[r : eth’<0>] . (1.59)
dt t=0 dt t=0

1.7.1 Transition functions

Let (Uy, ¢o) be a local trivialization of P. This induces transition functions gag: Uy, Uz = G
defined by
¢ao¢§1 U U X G > Uy nUg X G

(1.60)
(z,a) = (2, gap(x)a).
Clearly, gno = € and goggas = € on U, N Ug. Then the triviality
(baoqﬁgl oqﬁﬁoqﬁ;l oqﬁ,YO(b;l =id
implies the compatibility conditions
9aB9dByGya = € (1.61)

on Uy N Ug N U,.

There is an inverse construction. Let {{, st o € I'} be an open covering of M and gag: Us N
Up — G a family of functions such that gaa = €, gapgas = € on Ua N Uz and gapgpygra = €
on U, NnUg NU,. Then the following construction gives a G-principal bundle whose transition
functions are the gog’s.
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e P=|]|,; U x G (disjoint union),

o if (x,a) € Uy x G and (y,b) € Ug x G, then (z,a) ~ (y,b) if and only if 2 = y and
b = gap(z)a,

o m: P — M is defined by 7[(z,a)] = x where [(x,a)] is the class of (z,a) for ~,

o the action is defined by [(z,a)] - g = [(z,ag)].

Theorem 1.33.

Let G be a Lie group; M, a differentiable manifold; {Uys}aer, an open covering of M and some
functions @ag: Ua N Uz — G such that vas(x) = pay()pys(z). Then there exists a principal
bundle P whose transition functions are the v ’s for the covering {Uy}aer-

Proof. We consider the topological space

E=|J(GxUy xT) (1.62)

a€el

where we put the discrete topology on I. Each G xU, x {a} is a manifold. Thus F has a structure
of differentiable manifold induced from the one of G x M. We consider on FE the equivalence
relation given by the following subset of F x E :

R= {((g,z,a), (h,y,ﬂ)) EExEsty=xzand h = goag(:c)g}.

We will show that P = E/R has a structure of principal bundle. We begin by defining an action
of G on P by

[(g,:c,a) : h] = [(ghv'rva)]'

In order to see that this definition is correct, let us consider [¢’,z, 8] = [g,%,a]. From the
definition of the equivalence class, ¢’ = og(x)g. Then [(¢',x,0)] - h = [(vas(9)gh, z, 3)], and
the form of R shows that this is well [(gh, z, «)]. Since the map (g,h) — gh is differentiable on
G, the so defined action is a differentiable action of G on P and G is a transformation group on
P.

If [(g,2,a)] = [(gh, z,a)], then gh = vaag = g and h = e. So the action is effective.

Now we consider the quotient P/G. A typical element is

(s,xz,i) = {[s,x,i] - g st g€ G}.

The projection 7: P — M, [(s,z,a)] — z is well defined and we can counsider ¢: P/G — M,

©(s,x,a) = x. Tt provides a bijection between P/G and M. So we can identify P/G and M.

Now we are going to show that P endowed with the projection 7: P — X is a principal bundle.
We consider the map

ha : G XUy —> P

(1.63)
(9,2) = w(g,z,0q)

where w: E — P = E/R is the canonical projection. Since

(moha)(g,x) = (wow)(g, ,a) = w[(g,2,0)] =,

the map h, actually is hqo: G XU, — ﬂ_l(Ua). In order to see that h, is surjective on w—l(ua),
let us take a general element of 7~ 1(U,) under the form w(g,x,3) with z € U, N Uz. Then
(9,2, 0) € [(pas(x)g, x, )] and therefore w(g, z, ) = ho(paps(x)g,x). For the injectivity, remark
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that w(g, x, 8) = w(h,y, ) implies ¢ = y and h = gg(x)g = g. In particular, ho(g, ) = ha(h,y)
implies x = y and g = h.

Now we will prove that the inverse of h, is continuous. For this we consider an open set
Q c G x U, and we have to show that h,(Q) is open in 7~ (U,,).

We recall the quotient topology : if A is a topological space with an equivalence relation
~ and the canonical projection ¢: A — A/ ~, then V . A/ ~ is open if and only if o~ }(V) c A
is open. So in our case, we have to check the openness of V = w™1(hs(Q)) in E. We consider
the open covering

{G x Ua x {attaer

of E and we will show that the intersection of V' with any of these open set is open. We have
to show that w™ (ha(Q) N (G x Uy x {B})) is open for any 3 € I. For this, we define a map
a: G x (U nUg) x {f} = G x U, by

ag(g,7,8) = (¢ap(T)g, T) (1.64)

which is continuous. The set (hq o ag) t(ha(Q)) = aEl(Q) is open because h, o ag is the
restriction of w to G x (U NUz) x {B3}. Then h, is an homeomorphism from G x Uy, tp 71 (Usy).
Since it is build from differentiable functions, it is moreover a diffeomorphism.

So we have a chart system {(hq, Us)}aer Where h,, fulfils the “good” properties with respect to
7. It remains to be proved that the p,g5’s are the transition functions and that 7=1(7(¢)) = ¢ G
for every £ € P. We begin by the latter. For £ = [(g,z, )], 7(§) = x and we have to study the
set

7 x) = {[(h,z, )] st he G,B e I}.

Clearly, [(h,z,3)] -G € 7~ (x). The fact that there is nothing else than [(h,x,3)]- G in 7=1(x)
is seen by
[h, €L, ﬂ] = [@aﬁ(z)gv T, a] € [(ha €, a)] -G

In order to check the change of charts, let us consider ¢’ = h;lz 0 hq,(g) where

haw(9) = ha(g, ) = w(g,z, ). (1.65)

The fact that hg(g’,x) = ga(g, ) concludes the proof. To see this fact, remark that h@m(hE; o
ha,w(9)) = ha,z(g), so that ha(g', ) = ha(g, x) implies w(¢’, z, 8) = w(g, z, &) which proves that
9 = Pap(9)- O

The trivial bundle is simply P = M x G and 7(x, g) = x with the action (z,a)-g = (x, ag).

1.7.2 Morphisms and such...

An homomorphism between P(G, M) and P'(G’, M') is a differentiable map h: P — P’ such
that V€ e P, g € G,

h(&-g) = h(&) - halg) (1.66)

where hg: G — G’ is a Lie group homomorphism. From the definition, h maps a fiber to only one
fiber, but it is not specially surjective on any fiber. So h induces a homomorphism hp;: M — M’
such that 7’ o h = hy o .

An isomorphism is a homomorphism ¢g: P(G, M) — P'(G', M') such that

e hp is a diffeomorphism P — P’,

e hg is a Lie group homomorphism G — G’, and
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e hys is a diffeomorphism M — M'.

A principal bundle is trivial if one can find an isomorphism h: G x M — P such that
moh =idopr,, i.e. the following diagram commutes :

GxM-L—sp (1.67)

lprz lw

M—]mM

We say that P is locally trivial if for every z € M, there exists an open neighbourhood U in
M such that 771 (U) endowed with the induced structure of principal bundle is trivial.

1.7.3 Frame bundle: first

In the ideas, the building of a vector bundle is just to put a vector space on each point of the
base manifold. A principal bundle is to put something on which a group acts on each point. If
you have a vector bundle on a manifold, you can consider, on each point x € M, the set of all
the basis of the fiber E, over x. The group GL(r,IK) naturally acts on this set which becomes
a candidate to be a GL(r,K)-principal bundle.

More formally, we consider a vector bundle F > M, and for each z, the set of the basis of
the vector space F, = p~!(z). We define

P = U (basis of F).

zeM

We naturally consider the projection 7: P — M, m(b,) = x if b, is a basis of F.
Let ¢f: p 1 (Us) — U, x K" be a local trivialization of F, and {&1,...,&,}, the canonical
basis of IK". We naturally define

gai(‘m) = (bgil(xaéi)'

The set {Sa1(x),...,Sqr(x)} is a “reference” basis of F,, with respect to the trivialization ¢.
If we choose another basis {vy,...7,} of F,, we can find a matrix A € GL(r,K) such that

T = AﬁcSal(z). This gives a bijection

of - m YU, - Uy x GL(r, K)

[e3

(T1,...,0r) = (2, A). (1.68)

One can give to P a GL(r, K)-principal bundle structure such that the ¢ are diffeomorphism.
Let (Ua,dE) be a local trivialization of F and 95[3: Uy nUz — GL(r,K). In this case,
U, ¢L) is a trivialization of P whose transition function is ggﬁ = ggﬁ. Indeed

Pa 00 (2, A4) = oy ({U1,..., T, })

where T, = (¢f) ! (z, AL&). In order to see it, recall that T, = ALSq () and that ¢f —*(x,es) =
Sas(z). Then
Vs = (¢5)71($7Ai€l) = AlsSaS(x)-
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On the other hand, from the definition of (bg, the basis (gbg)*l(z,A) is the one obtained by
applying A on S. With all this,

o 0 (¢5) =z, A) = o5 {(8f) " (z, ALer) oo,
— GPUOE) o (68 0 65 V) (&, AL et
= 6P ((6E) (@, gEy (@) AL i, (1.69)

= (2, gap(2)A).

The last product g5;(x)A is a matricial product.

1.7.4 Frame bundle: second

Basis

If M is a m-dimensional manifold, a frame of T, M is an isomorphism b: R™ — T, M. In our
purpose, we will always deal with (pseudo)Riemannian manifold. So, the tangents spaces T, M
comes with a metric, and we ask a frame to be isometric. In other words, we ask b to be an
isometry from (R™,:) to (T»M,g.), where the dot denotes the (pseudo)euclidian product on
IR™. Such a frame is given by a base point z of M and a matrix S in SO(g,) :

b(v) = (Sv)"(0i)a, (1.70)

if the vector v is written as v = v'1; in the canonical orthogonal frame {1;} of R™ and SO(g.)
is the set of the m x m matrix A such that A%g, A = g,.

This frame intuitively corresponds to the basis of T, M (see as a “true” vector space) that we
would have written by {Se;}, if ¢; = 7. In order to follow this idea, we will effectively denote
by {Se;}, the map b: R™ — T, M given by (1.70)-37.

We will often write the frame b as {be;},, making no differences in notation between the b of
SO(M) and the b of SO(g,) which implement it.

Remark 1.34. One has to distinguish a frame and a basis : a basis is only a free and generator
set while a frame can be interpreted as an ordered basis.

Construction

We just saw how to build a frame bundle over a manifold. One can get another expression of
the frame bundle when we express a basis of T, M by means of an isomorphism between R™ and
T, M. If M is a n-dimensional manifold, a frame at x is an ordered basis

b= (by,...,by)
of T, M. Tt is clear that any frame defines an isomorphism (linear bijective map)

b: R™ - T, M

€ > €

(1.71)

where {e;} is the canonical basis of R". It is also clear that any isomorphism gives rise to a
frame. Then we see a frame of M at x as an isomorphism b: R™ — T, M. Let B(M), be the of
all the frames of M at x; we define

B(M) = | | B(M),.

xeM
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For all b € B(M),, we define pp(b) = x and the action B(M) x GL(n,R) - B(M) by b-g =
(b},...,bl) where

b’ = big,’. (1.72)

]=

It is easy to see that vag =bo g: R™ - T,M. So we can give to

GL(n,R) ~~ B(M) (1.73)

lpB

M
a structure of principal bundle®. If (Uy, @) is a local coordinate chart on M, we define

@ pl_gl(ua) = ¢a(Ua) x GL(n,R)
b (pa(z), A(D))

where A(b) € GL(n,R) is defined by the condition b; = Ajié’z-|z. The matrix A(b) is the one
which transforms the canonical basis (in the trivialization ¢, ) into b € B(M),. That’s for the
principal bundle structure.

The manifold structure of B(M) is given by ®,: p3' (Ua) — Us x GL(R),

(1.74)

B(b) = (g * id|ar(nr)) © #(D)
= (z, A(b)) (1.75)
= (p5(b), A(D)).

It fulfils A(b-g) = A(b) - g. A section s: U, — B(M) is sometimes called a moving frame over
Uy
Frame bundle over R? is given as example in page 123

1.7.5 Sections of principal bundle

A section of a G-principal bundle is a smooth map s: M — P such that s(z) € 7~ !(z) for any
x € M. A trivialization ¢f P on U, defines a section of P over U, by

ga() = (¢4) 7 (z,¢€)
where e is the neutral of the group. In the inverse sense, we have the following :

Proposition 1.35.
If 04: Uy — P is local section of P over U, = M, then the definition ¢L (&) = (v,a) if € =
ca() - a is a local trivialization.

Proof. The function ¢% is well defined because ¢ € 7 (U,) implies the existence of a z € U,
such that £ € 7~ 1(x) = {¢ - g} ~ G. For this x, there exists a g € G such that £ = o, (z) - g.
Now we prove that the couple (z,a) is unique in the sense that s, (z) - a = 04(y) - b implies
(z,a) = (y,b). The left hand side belongs to 7! (x) while the right one belongs to 7~ !(y). Then
x =y. The condition 77!(z) ~ G imposes the unicity of the ¢ making ¢ = 7 - g for each couple,
&neni(z). O

8Much more details and proofs are given in [].
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If 0 and ¢’ are two sections of the same principal bundle P, then there exists a differentiable
map f: M — G such that ¢’'(z) = o(z) - f(z). So all the sections can be deduced from only one
and multiplication by such a f.

Theorem 1.36.
If m: P(G,M) — M is a principal bundle, then the four following propositions are equivalent :

(i) P is trivial,
(i) P has a global section,

(iii) there exists a differentiable map v: P — G such that v(& - g) = g~ 1v(€) for all £ € P and
geaq,

(iv) there exists a differentiable map p: P — G such that p(§ - g) = p(&)g.

Proof. (i)= (ii). The diagram (1.67)-36 commutes and

T : M—->GxM

(1.76)
x e (e,x)
is a local section of G x M. From it we build the following global section of P:
c:M—>P
(1.77)

x — h(e, x).

This is injective because o h = pr, and differentiable because this is a composition of x — (e, x)
and (g,z) = h(g, ).

(ii)= (i). The principal bundle P admits a global section o: M — P. From it, we can build
the differentiable map

h:GxM-—>P
(9,7) > o(z)-g

which satisfies h(gh,z) = h(g,z) - h and 7o (g,2) = x. First we show that h is a fiber ho-
momorphism and an isomorphism between P and G x M so that P is trivial. For this remark
that

(1.78)

g(gh,x) = g(g,z) - h = o(x) - gh,

hence equation (1.66)-35 reduces to h((g,x) - h) = h(g,x) - hg(h) which is true with hg = id.
Moreover h: G x M — P is bijective because o(m(£)) belongs to the fiber of £ € P, therefore
there is one and only one (&) = u(&, o(w(£))) such that £ - y(£) = (6 o 7)€, The inverse map is

0: P—>GxM
§ (v(),m(£))

which is differentiable because v and 7 are. So far we see that h and h~! are differentiable. Then
h is an isomorphism between P and G x M.
(ii)= (iii). Let o be the global section and define

(1.79)

vy: P—>G

€ o (g, (0 7)) (1.80)
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where u: R — G is the map defined by the condition £ - (£§,17) = 1. The map ~ is differentiable
and we have to prove that (¢ - g) = g~ y(€). Since & - y(€) = o o 7(€),

(€-9) =u(§-g,(oom)(§-g)) =u(-g,(oom)(E)).

But (£ 9)(g7'(§)) =& -v(§) = 2. So (€ g) =u(§- g, 2). Thus v(§ - g) = g~ 7(§).
(iii)= (ii). The given map ~ fulfils £ - gy(¢-g) =& (€), so
p: P->P
£ 8- (8)

is just function of the class of &, thus we have a section ¢’: P/G — P, but we know that P/G
and M are isomorphic.
(iii)= (iv). Let us define p: P — G by p = J oy with J(g) = g™, thus p(¢) = v(¢)~! and

p(&-9) =& 9)7" = (g7 V)T =7 g = p(&)y.

(1.81)

(iv)= (#i). The proof is just the same with p = J o p. O

Definition 1.37.
A section ¢ € T'(P,TP) is G-equivariant when

drgp(€) = ¥(§ - 9)-

Be careful: this does not define equivariant sections of the principal bundle.

1.7.6 Equivalence of principal bundle

Two principal bundles 7: P — M and 7’: P’ — M are equivalent if there exists a diffeomor-
phism ¢: P — P’ such that

. 7'r'o<p=7'r
e p(§-g)=w(&)- g

If {Uy}aer is an open covering of M on which we have trivializations ¢, of P and v, of P’,
the diffeomorphism ¢ induces some functions \: U, — G by setting

(fa 0™t 0tz t)(z,a) = (2, Aa(2)a).
This definition works because from the definitions of principal bundle and equivalence, one sees
that (¢o 0 ™! 03 !)(z,) = (z,).
Transition functions
We have some transition functions for P and P’ given by equations

(a0 b5 )(,9) = (2, gap()9)
(Yo 051 (2, 9) = (2, 905(x)9)-
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Now, we want to know what is g/, ; in function of gog. First remark that (1 0 @ 0 ¢, ") (2,a) =
(x, Ao (z) " 1)a, and next, compute

(#, gap(r)a)a = (Yo 0 po d5t o gs ot oyzt)(z,a)
= (Ya O@Od)é ), Ap (2 _)tll) (1.82)
= (Ya 0 pod "t 0 da 0 @5 )(w, Ag(2)a)
= (2, (%) gap(2)As(2)a).
Then
9ap(t) = Xa(2) ™" gap(x)As. (1.83)

One can show that if two principal bundle have transition functions whose fulfill this condition,
they are equivalent. A G-principal bundle is trivial if it is equivalent to the one given by
m:MxG— M.

1.7.7 Reduction of the structural group

We say that a principal bundle P(G, M) is reducible when there exists a principal bundle
P'(H, M) such that

e H is a subgroup of G,

e there exists an homeomorphism h: P’ — P such that hg: H — G is an injective homo-
morphism.

In this case we say that G is reducible to H and that P’ is a reduced principal bundle.

Theorem 1.38.

If P is a principal bundle over M, the structural group G is reducible to the Lie subgroup H if
and only if there exists an open covering {U;}ier of M and transition functions ¢;; taking their
values in H.

Proof. No proof. O
The following comes from [9]. Let us consider the principal bundle
G ~~P (1.84)
lm
M

and H, a closed subgroup of G. We denote by j: H — G the inclusion map. The principal
bundle
H~—Q (1.85)

|-
M

is a reduction of P to the group H if there exists a map u: @ — P such that 7p ou = mg and
uw(€-h) = u(€) - j(h). In this case, u is an embedding ® of @ in P and the image is a closed
submanifold of P.

9plongement
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Let M be a n-dimensional manifold and B(M) be its frame bundle. This is a GL(n,R)-
principal bundle. If G is a closed subgroup'® of GL(n,R), a G-structure is a reduction of
B(M) to G.

1.7.8 Density

A density on a d-dimensional manifold M is a section of the principal bundle whose fiber P,
over € M is the space of homogeneous non vanishing maps

d
pr \T.M — R* (1.86)

such that p(Av) = [A|p(v) for every A € R and v e A*T, M.

1.8 Associated bundle

Let 7: P — M be a G-principal bundle and p: G — GL(V), a representation of G on a vector
space V (on K = IR or C) of dimension r.

The associated bundle £ = P x, V 5 M is defined as following. On P x V, we consider
the equivalence relation

(5,’0) ~ (é.gvp(gil)v)
for ge G, £ € P and v € V. Then we define

e« E=Px,V:=PxV/~,
* pl& )] =7(¢)

where [(£,v)] is the class of (§,v) in P x V.
If oL (€) = (7(£),a(€)) is a trivialization of P on U, then

¢7[(&v)] = (n(&), pla)v) (1.87)

is a trivialization of F.

In order to see that it is a good definition, let us consider (n,w) ~ (£,v). It immediately
gives the existence of a g € G such that n = £ - g and w = p(g~!)v. Then ¢Z[(€ - g, p(g~ )v)] =
(m(€-9), p(b)p(g~1)v). From the definition of ¢, the vector b is given by ¢*(¢-g) = (n(£-g),b),
and the definition of a principal bundle gives b = ¢(¢)(§ - g) = ¢r(e)(§) - g = ag. The fact that p
is a homomorphism makes p(ag)p(g~1) = p(a)v and ¢¥ is well defined.

Let G be a Lie group, p a representation of G on V and M, a manifold. We consider
P=MxG2, M, the trivial G-principal bundle on M. Then £ = P x,V L5 M is trivial,
i.e. we can build a ¢: P x, V — M x V such that pr; op = p. It is rather easy: we define

ol ((z,9),v)] = (x, p(g)v).

It is easy to see that (pry op)[(z,g),v] = x and p[(=, g),v] = pry(z,9) = .

10Typically SO(p,q) or SOo(p, q).
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1.8.1 Transition functions

Proposition 1.39.
Let (Un, L) be a trivialization of P —> M whose transition functions are gag: Us N Uz — G.

Then Uy, $F) given by (1.87)-42 is a local trivialization of E 2> M whose transition functions
9l Ua nUs — GL(dim V,K) are given by
Jas(@) = p(gap(x))-

Proof. If we write a := fz(ﬂfl(z)), we have (;55(7‘(71(56)) = (z,a) and ¢¥ o ((bg)’l(:c,v) =

¢&[(m 1 (), pla)~*v)]. So,
Gal(r™ (2), pla) )]

(. (s () (615 (@) ™)

(1.88)
= (@ p(Gas (7 (@) (' (@) ).
Then
955 = P(Gax (77 (2)) 03 (771 @) ) = pl9ns(a))- (1.89)
(]

1.8.2 Sections on associated bundle
Equivariant functions

We consider a bundle & = P x, V 2, M associated with the principal bundle P > M and a
section ¥: M — FE.
E=Px,V

P
7#'\4%
M

A section of E is a map ¢: M — E such that 7% o4 = idy;. We define the function ¢b: P — V
by

P(m () = [& L(&)]- (1.90)
Let us see the condition under which this equation well defines 7,/3 First, remark that a v defined
by this equation is a section because p[£,v] = 7(£), so that (p o ¥)(w(£)) = 7(£). Now, consider
a n such that m(n) = 7(£). Then there exists a g € G for which n - g = £. For any g and for this
one in particular,

Y(r(m) = [0, )] = [n- . plg™" ().
Then equation (1.90)-43 defines ¢ from ¢ if and only if

V(- g) = plg™ )P (9). (1.91)

This condition is called the equivariance of 1/3 Reciprocally, any equivariant function 7,/3 defines
a section of £ = P x, V.
If n=&-g=x-k, one define a sum

[€; 0] + [x; w] = [, p(g)v + p(k)w]. (1.92)

If ¥,n: M — E are two sections defined by the equivariant functions 1/3,77: P — V| then the
section 1 + 1 is defined by the equivariant function ¢ + 7.
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For the endomorphism of sections of F

Let us now make a step backward, and take A in EndT'(£). We will now see that A defines
(and is defined by) an equivariant function A: P — EndV. Let v: M — E be in I'(E). If
P(x) = [, v], we define the new section Ay by

(Ap)(z) = [€, A(§)v] = [¢, AP (9)]-

In order for At to be well defined, the function A must satisfy

A(€-g) = plg HA(E)p(g) (1.93)

for all ¢ in G.

Local expressions

We consider a local trivialization ¢f: 7=1(U,) — U, x G of P on U, and the corresponding
section o : U, — P given by

oa(@) = (¢5) ' (z,e).

We saw at page 42 that a trivialization of P gives a trivialization of the associated bundle
E = P x, V; the definition is

Pa (& 0)] = (n(€), pla)v) (1.94)
if pF(€) = (w(€),a). With ¢ = o,(x), we find
o5 [(0a(@),0)] = (1(0a (@), p(a)v) = (z,v). (1.95)

The section 1 can also be seen with respect to the “reference” sections o, by means of the
definition

(@) = [0a(2), Y (a)(2)] (1.96)
for a function ¢ 4): M — V.

Lemma 1.40.
Let y: M — E be a section and ¢: P — V, the corresponding equivariant function. Then

V(o) (@) = P(0a()).
Proof. By definition, ¢ (z) = ¥(7(£)) = [§, 1/3(5)] Thus if we consider in particular £ = o, (x),

S (V(@)) = S [E,D(E)] = ¢F[sa(2), (04 (2))] = (2,9(0a())). (1.97)
O

Let us anticipate. A spinor is a section of an associated bundle £ = P x, V where P is
a Lorentz-principal bundle, V = €2 and p is the spinor representation of Lorentz on C2. So a
spinor ¢: M — E' is locally described by a function 9 (q): M — ©2. The latter is the one that
we are used to handle in physics. In this picture, the transformation law of ¢ under a Lorentz
transformation comes naturally.

Let {e;} be a basis of V; we consider some “reference” sections 7,; of the associated bundle
E = P x,V defined by

Yai(®) = [dq ' (,€), €i]. (1.98)
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A general section ¢: M — E is defined by an equivariant function 1/3: P — V which can be
written as (&) = a’(§)e;. If n = ¢5" (x,e) and & = n- g(£),

Y(x) = [6a'e;] = a'[n, p(g)es] = a'()p(g())/ [1: ¢j] = & (€)7as (). (1.99)

Since the left hand side of this equation just depends on z, the functions ¢/ must actually not
depend on the choice of £ € 771 (x). So we have ¢/: M — R. Indeed, if we choose x € 771(x),

(@) = & (Erai(@) = [&a' (0] = ... = & (Dras (@),
so that ¢/ (&) = ¢/(x). So any section 1): M — E can be decomposed (over the open set U, ) as
U(x) = 55,(2)70i (). (1.100)

1.8.3 Associated and vector bundle

General construction

We are going to see that a vector bundle is an associated bundle. For this, we consider a
vector bundle p: F' — M with a fiber F, = V of dimension m. Let G = GL(V), P be the
trivial principal bundle P = M x G and p be the definition representation of G on V. We set
E = P x,V. Our aim is to put a vector bundle structure on F which is equivalent to the one
of F. The bijection b: F' — E will clearly be

b(¢™ (z,v)) = [(z,€),v]. (1.101)
We define the projection ¢: £ — M by
ql(z,9),w] =z

and we have to show that ¢~ (x) = {[(z,g),w] st g € G and w € V} is a vector space isomorphic
to V. The following definitions define a vector space structure:

o multiplication by a scalar: A\[(z, g),v] = [(z, g), ],
o addition: [(z,g),v] + [(x,h),w] = [(z,€), p(g)v + p(h)w].
As local trivialization map, we consider
x:q HU) > UXV (1.102)
[(z, 9),v] = (z, p(g)v).

With this structure, the bijection b is an equivalence because b|r, is a vector space isomorphism
and gob = p.
1.8.4 Equivariant functions for a vector field

In order to define in the same way an equivariant function for a vector field X € X(M), we need
to see T'M as an associated bundle.

Proposition 1.41.
If M is a n dimensional manifold, we have the following isomorphism:

SO(M) X pM R™~TM
where pM: SO(m) x R™ — R™ is defined by pM (A)v = Av.
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Proof. Recall that an element b € SO(M), is a map b: R™ — T,M. The isomorphism is no
difficult. Tt is ¢: SO(M) x ,u R™ — TM defined by

¥[b,v] = b(v).
It prove no difficult to see that 1 is well defined, injective and surjective. o

Now, let us consider X € X(M). We can see it as an element of I'(SO(M) x,» R™), and
define an equivariant function X : SO(M) — R™.

Let us make it more explicit. A vector field Y € X(M) is, for each z in M, the data of a tangent
vector Y, € T, M. Hence the formula b(v) = Y, defines an element [b,v] in SO(M) x ,» R™, and
Y defines a section Y'(x) = [b(x), v(x)] of SO(M) x ;i R™. The associated equivariant function
is given by Y (b) = v if b(v) = Y,. In other words, the equivariant function ¥': SO(M) — R™
associated with the vector field Y € X(M) is given by

Y(b) = b~ (Y,), (1.103)

where z = 7(b).

1.8.5 Gauge transformations

A gauge transformation of the G-principal bundle 7: P — M is a diffeomorphism ¢: P —» P
such that

¢ mop=m,

e p(§-g9)=w()- g

When we consider some local sections on o, : U, — P, we can describe a gauge transformation
with a function ¢, : M — G by requiring

p(0a(2)) = 0a(2) - Pa(z).

This formula defines ¢ from ¢ as well as ¢ from .
The group of gauge transformations has a natural action on the space of sections given by

(o -9)(x) = (), v]- (1.104a)

if(z) = [£,v] = [§, 1[)(5 )]- This law can also be seen on the equivariant function ) which defines
1. The rule is

o 0(E) = d(e™(€) (1.104D)
Indeed, in the same way as before we find (¢ - ¥)(z) = [€ m(x)] = [0(€),v] = [¢(£),9(€)]
Taking & — ¢~ 1(£) as representative, (¢ - ¥)(z) = [£, 0 1 (€)]

1.9 Adjoint bundle

Let m: P — M be a G-principal bundle. The adjoint bundle is the associated bundle Ad(P) =
P xaq G. An element of that bundle is an equivalent class given by

(€, X]=1[¢g,Ad(g7)X]
for every g € G. Here £ € P and X € G.
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1.10 Connection on vector bundle: local description
A connection on the vector bundle p: E — M is a bilinear map

V : X(M) xT(E) - I(E), (1.105)
(X,s) = Vxs -

such that
L] Vsz = fVXS,
. Vx(fS)Z(X-f)S—I-fVXS

for all X € X(M), f € C*(M) and s € I'(E). The operation V is often called a covariant
derivative.

An easy example is given on the trivial bundle £ = pr;: M x C — M. For this bundle,
I'(E) = C* (M, C) and the common derivation is a covariant derivation: Vxs = (ds)X.

Proposition 1.42.
The value of (Vxs)(x) depends only on X, and s on a neighbourhood of x € M.

Proof. Let X, Y € X(M) such that Y, = f(2)X, with f(z) =1 and f(z) # 1 everywhere else.
Then

(Vys)(x) = (Vxs)(x) = (f(z) = 1)(Vxs)(z) = 0.

Since it is true for any function, the linearity makes that it cannot depend on X, with z # x. If
we consider now two sections s and s’ which are equals on a neighbourhood of x, we can write
s’ = fs for a certain function f which is 1 on the neighbourhood. Then

(Vxs')(z) = (Vxs)(@) = (f() — 1)(Vxs)(@) + (X f)s(x)
which zero because on a neighbourhood of x, f is the constant 1. O

This proposition shows that it makes sense to consider only local descriptions of connections.
Let {e1,...,e.} be a basis of V' and consider the local sections Su;: Uy — E,

Sai(®) = ¢, ().

A local section s, : U, — V can be decomposed as s, () = si (x)e; with respect to this basis
(up to an isomorphism between the different V' at each point). Then on U,,

SaSai(®) = 54(2)0a " (1,01) = ¢o (2, 5561) = Bo” (2, 5a(2)) = s(2). (1.106)

The first equality is the definition of the product R x F — F. B B
So any s € I'(E) can be (locally !) written under the form!'! s = s S;; in particular Vx (S,;)
can. We define the coefficients 6 by
Vx(Sai) = (0) (X)Sa;. (1.107)

where, for each ¢ and 7, (9(1){ is a 1-form on U,. We can consider 0, as a matrix-valued 1-form
on U,,.

pe careful on the fact that the “coeflicient” s, depends on x : the right way to express this equation is
s(xz) = %, (2)Sai().
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Proposition 1.43.
The formula
(Vxs)a = Xso +04(X)sa (1.108)

gives a local description of the connection.

Proof. For any s € I'(E), we have

Vxs = Vx(zsggaj)

J

= 3 ((X52)S0, + 4V xS0,
J

= 2[5 + 62020100 B

1.10.1 Connection and transition functions

A connection determines some local matrix-valued 1-forms 6, on the trivialization U,. Two nat-
ural questions raise. The first is the converse: does a matrix-valued 1-form defines a connection ?
The second is to know what is 6, in function of 63 on U, N Uz 7 The answer to the latter is
given by the following proposition :

Proposition 1.44.
The 1-form 0, relative to the trivialization (Ue, ¢o) is related to the 1-form g relative to the
trivialization (Us, ¢g) by
05 = 923905 + 95 30a9as- (1.109)
This equation looks like something you know ? If you think to equation (4.66)-145 or (4.74)-
146 or any physical equation of gauge transformation for the bosons, then you are almost right.

Proof. We can use equation (1.52)-30 pointwise on (Vxs)q :
(Vx$)a = gap(Vxs)s
= gap (X5 +05(X)sp) (1.110)
= Gap (X(gozﬁsa) + 95 (X)gaﬁsa)'

We have to compare it with equation (1.108)-48. Note that g, and 6,(X) are matrices, then
one cannot do

90p03(X)gop = gapgaptp(X) = 05(X)
by using gnggas = 1. Taking carefully subscripts into account, one sees that the correct form
is (gag);'-@ﬁ(X)i(gag)f. Applying Leibnitz formula (X (fg) = f(Xg) + (X f)g), and making the
simplification goggas = 1 in the first term, we find

00(X)Sa = gap(X gap)Sa + g;é@H(X)gagsa.
The claim follows from the fact that X go3 = dgag(X). O

Notice that formula (1.109)-48 shows in particular that 6, takes its values in the Lie algebra
gl(V), see for example subsection 1.2.3.
The inverse is given in the
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Proposition 1.45.
If we choose a family of gl(V')-valued 1-forms 0, on Uy, satisfying (1.109)-48,then the formula

(Vx58)a = X54 +0,(X)sa
defines a connection on F.

Proof. Note that 0 is C* (M)-linear, thus
(Vixs)a = (fX)sa +0a(fX)sa = [[Xsa +0a(X)sa] = f(Vx$)a- (1.111)

In expressions such that 6,(X)(fsa), the product is a matrix times vector product between
0. (X) and s,; the position of the f is not important. So we can check the second condition :

(Vx(fs))a = X(fsa) + 0a(X)(f50)
= X(f)sa + f(Xsq) + f0(X)sa (1.112)
=df(X)sa + f(Vx8)a-

This concludes the proof. o

1.10.2 Torsion and curvature

The map TV : X(X) x X(X) — X(X) defined by
TV(X,Y)=VxY - VyX — [X,Y] (1.113)

is the torsion of the connection V. When TV (X,Y) = 0 for every X and Y in X(X), we say that
V is a torsion free connection. Let X, Y be in X(M), and consider the map R(X,Y): I'(E) —
['(E) defined by

R(X,Y) : T'(E) » T'(E)

(1.114)
s> VxVys—VyVxs—Vxy]s.

For each x € M, R can be seen as a bilinear map R: T, M x T,M — End(E,). It is called
the curvature of the connection V. For every f e C* (M), it satisfies

R(fX,Y)s = fR(X,Y)s = R(X,Y)fs.

In a trivialization (Un,dn), we have (Vx$)a = XSo + 04(X)sa. In the expression of
(R(X,Y)$)a, the terms coming from the X s, part of covariant derivative make

XYsq —YXs, —[X,Y]sq =0.
The other terms are no more than matricial product, hence the formula
(R(X,Y)8)a = Qa(X,Y)sq (1.115)

defines a 2-form €2, which takes values in GL(r,IK). We can find an expression for € in terms
of 0 :
Qa(X7 Y) = Xea(y) - Y‘goz(X) - ea([Xv Y]) + ea(X)ea(Y) - Hoz(y)ea(X);

it is written as 1
Qo =di, +0, A0, =db, + 5[90”9,1] (1.116)
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which is a notational shortcut for
Qu(X,Y) = (X, Y) + [0a(X), 0u(V)]. (1117)

These equations are called structure equations. Pointwise, the second term is a matrix com-
mutator; be careful on the fact that, when we will speak about principal bundle, the forms 6’s
will take their values in a Lie algebra. On U, N Ug, we have

Q3(X,Y) = 959(X,Y)gas.
The curvature and the connection fulfill the Bianchi identities :
Lemma 1.46.
dQq + [0 A Qu] =0.

Proof. For each matricial entry, 6, is a 1-form on U,, then 6,(X) is a function which to x € M
assign 0, (z)(X;) € R. So we can apply d and Leibnitz on the product 6,(X)0,(Y).

d(0a(X)0a(Y)) = 0a(X)d0a(Y) + dba(X)04(Y).
Differentiating equation (1.116)-49, dQy = dfs A 04 — 0o A db,,. O
1.10.3 Divergence, gradient and Laplacian
We define the gradient of a function f € C* (M), denoted by Vf as the vector field such that
g(Vf, X)=X(f). (1.118)
The divergence of a vector field X € I'(T'M), is the function V - X € C* (M) defined by
(V- X)(z) =Tr (v V,X) (1.119)

where the trace is the one of v — V,X seen as an operator on T, M. The Laplacian of the
function f is the function Af given by

Af=V-(Vf). (1.120)

1.11 Connexion on vector bundle: algebraic view
A connection on the vector bundle 7: E — M is a linear map
V:T%(E) - T%(FE)® Q' (M)
which satisfies the Leibnitz rule
Viof)=(Vo)f +o®df (1.121)

for any section o: M — E and function f: M — C. If {0;} is a local basis of E/, one can write
o = 0;f* and one defines the Christoffel symbols Ffu in this basis by

Vo =V(oif') = (Vo) f' +0i ® f(f') = fT],0; @ da’ + 0 @ d(f"). (1.122)
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The notations do = o; @ d(f*) and ' = fil“{uoj ® dx* lead us to the compact usual form
Vo = (d+T)o.

When E = TM over a (pseudo)Riemannian manifold M, we know the Levi-Civita connection
which is compatible with the metric:

9(VX,Y) +9(X,VY) =d(9(X,Y)). (1.123)
One can see g as acting on (X(M)® Q' (M)) x X(M) with
g(rf,ﬁi ®dx"”, tjﬁj) =1l j9g(0;, 0j)dz",

which at each point is a form. From condition (1.123)-51, we see V as a Levi-Civita connection
on the bundle £ = T*M which values in

I*(T*M) @ QY (M) ~ QY (M) @ QY (M).

This is defined as follows. A 1-form w can always be written under the for w = X" := g(X,.) for
a certain X € X(M). Then (1.123)-51 gives

(VX)’Y 4+ w(VY) = dwY),

and we put Vw = (VX)?, i.e

(Vw)Y =d(wY) —w(VY) (1.124)
for all Y € X(M). When w = dz* and Y = 0;, we find

(Vda')o; = d(da'0;) — dz'(V;) = d(6}) — T%.0, @ da* = T8 @ da* = —T%, da®.  (1.125)

So we get the local formula . . ‘

Vdz' = T d2’/ @ da”. (1.126)
If the form writes locally w = da' f;,

Vw = V(da') fi + da' @ df; = — fil'%y, da’/ @ da* + dw = (d — I')w (1.127)

where we taken the notations dw = dz' ® df; and Tw = fil";kdxj ® dak.

1.11.1 Exterior derivative

If E is a m-dimensional vector bundle over M and s: M — FE is a section, we say that a exterior
derivative is a map D: I'(E) — I'(E ® Q' M) such that for every f € C*(M) we have

D(fs) =s®df + f(Ds).

An exterior derivative can be extended to D: I'(E ® Q*M) — T'(E ® Q*F'M) imposing the
condition
D(w A a) = (Dw) A a+ (=1)*w A da (1.128)

for every w e '(E®QFM) and a € I'(E®Q'M) . The result is an element of T'(E ® QF+H+107).
Coordinatewise expressions are obtained when one choose a specific section (e;) of the frame
bundle of E. In that case for each 4, the derivative e; is an element of I'(E®$! M) and we define
w! € QY (M) by
k
Dei= Y e;@u]. (1.129)

J=1
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For each i and j, we have an element w/ € Q'(M), so that we say that w € Q' (M, gl(m)). Now
a section can be expressed as s = s’e; where s are functions, so we have

D(s) = D(siei) =e¢, ®ds' + siD(ei) =¢; ®ds" + siej ®wzj =e¢;, @ds' +e; ®sjw§. (1.130)
Expressed in component, we find D(s)! = ds’ + sjw;, so that we often write
D=d+w. (1.131)

When a section e is given, we write s = s’(e)e;, indicating the dependence of the functions s* in
the choice of the frame e :

D(s) = e; ®ds'(e) +e;®@ s (e)w(e)é.

When we apply both sides to a vector X € T'(T'M), we find
Dx(s)=e;® (X(si) + sjw;i(X)). (1.132)

By convention we say that, when f € C*(M), is a function, Dx reduces to the action of the
vector field X:
Dx(f) = X(f). (1.133)
Covariant exterior derivative

An important exterior derivative is the covariant exterior derivative. If the vector bundle F is en-
dowed by a covariant derivative V, we define the corresponding covariant exterior derivative
by the following :

1. for a section s: M — E (i.e. a 0-form) we define

(de)(X) = VXS, (1.134)
2. and on the 1-form Y (s; ®w;) e N(E @ T*M),

dv(Zsi@)wi) =Z(dv8i) /\wi—i-Zsi@dwi. (1.135)

K2

The latter relation is the condition (1.128)-51 with k = 0.

Soldering form and torsion

Let us particularize to the case where F has the same dimension as the manifold. In that case,
we can introduce a soldering form, that is an element 0 € Q! (M, E) such that for every z € M
the map 0,: T, M — E, is a vector space isomorphism. When a soldering form 6 is given, the

torsion is the exterior derivative D is
T = D6. (1.136)

Using a local frame e, we have forms 0?(e) € Q!(M) such that

We see 0 as an element of I'(E ® Q(M)) by identifying 6 = e; ® §°. Thus we have

DO = D(e; ®6°) = De; A 0'(e) + e Adb(e) = (e;@]) A (e) + e; A db(e),
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or in coordinates : . . ‘ .
(DO)" = wj A0 (e) +db*(e). (1.137)
Notice that it provides the formula
T=d,0 (1.138)

for the torsion as exterior covariant derivative of the connection form.

Example : Levi-Civita

We consider the vector bundle E = T'M and the local basis e; = 0;. An exterior derivative in
this case is amap D: T'(TM) —» T (TM@QIM). In that particular case, we denote by VxY the

vector field D(Y)X, and it is computed by first writing D(X), = >}, Z: @ w’, with Z* € ['(T'M)
and w' € QY(M). The we have

D(X),Y, = w+ 2" (Y,)ZL. (1.139)

A good choice of soldering form is 6, = id for every € M, or §(X) = X. In coordinates, that
soldering form is given by 6°(d;) = 0%. The Christoffel symbols are defined by

Ve, 0; =T% 0k, (1.140)
and the covariant derivative reads
VxY = Vyip, (Y70;) = X' ((aiw’)aj + Yjv,«iaj) - (X(Yk) + Xiw'rfj)ak. (1.141)

We can determine the Christoffel symbols in function of the connection form using the fact
that on the one hand, V,0; = Fi—“jé’k, and on the other hand,

Ve, 05 = D(0;)(0;) = 0 ®wh(wy),
so that

IY = wh(0)) (1.142)

Now we can get the same result as equation (1.141)-53 using the exterior derivative formalism.
First we have DY =0, ®dY" 4+ 0; ® ij;-, so that

(DY)X =0; @dY (X) = 0; ® XIw}(X*0y),
in which we use the relation w! (XF0,) = ka;(é’k) = Xkl"j-k to get
(DY)X = (X (V) + X/ X*T%,)0;.

Notice that the anti-symmetric part of I' with respect to its two lower indices does not influence
the covariant derivative. Let us compute the torsion in terms of I'. For that remark that d§* =0
because

(d0")(X,Y) = X0'(Y)—-Y0'(X)— 0" ([X,Y]) = X(Y) - Y(X') - [X,Y]" =0.
Thus we have
(DO)(0x ® 01) = ((D0:)0k)0" (01) — ((D;)01) 6" (%)
= 0;13,0; — 0,.1%,0;
= (T}, = T)d;-
The connection V is moreover compatible with the metric because
Vz(9(X,Y)) = Z(n(eX,eY)) =n(Dz(eX),eY) +n(eX,Dz(eY)) = g(VzX,Y) + g(X,VzY).

=e(VZX)
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1.12 Connection on principal bundle

1.12.1 First definition: 1-form

We consider a G-principal bundle
G ~~P

M
and G, the Lie algebra of G.

Definition 1.47.
A connection on P is a 1-form w € Q(P,G) which fulfills

. we(Al) = 4,
o (Rjw)e(Y) = Ad(g™")(we(2)),
forallAe G, geG, € P and X e TP

Here, R, is the right action: Ro& = £-g and A* stands for the fundamental field associated
with A for the action of G on P:

* d —tA
4 =2 [5 e ]t:O, (1.143)
For each £ € P, we have wg: T¢ P — G. See section 1.3.

If « is a connection 1-form on P, we say that ¥ is an horizontal vector field if a¢(X) = 0 for
all ¢ e P. If X, € T, M and £ € n~!(x), there exists an unique'? ¥ in T¢ P which is horizontal
and such that 74 (X) = X,. This X is called the horizontal lift of X,. We can also pointwise
construct the horizontal lift of a vector field. The one of X is often denoted by X; it is an element

of X(P).

1.12.2 Second definition: horizontal space

For each { € P, we define the vertical space V¢ P as the subspace of TP whose vectors are
tangent to the fibers: each v € V¢ P fulfills dmv = 0. Any such vector is given by a path contained
in the fiber of €. So, v € V¢ P if and only if there exists a path g(¢) € G such that v = % [f-g(t)]

A connection I' is a choice, for each £ € P, of an horizontal space H¢P such that

t=0

o TeP=V:P®HP,
© Heg = (dRg)cHe,
e H¢P depends on ¢ under a differentiable way.

The second condition means that the distribution £ — H¢ is invariant under G. Thanks to the
first one, for each X € TP, there exists only one choice of Y € H¢P and Z € VP such that
X =Y + Z. These are denoted by vX and hX and are naturally named horizontal and vertical
components of X. The third condition means that if X is a differentiable vector field on P, then

128ee [1], chapter II, proposition 1.2.
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vX and hX are also differentiable vector fields. We will often write Ve and H instead of V¢ P
and V¢ P.

The word connection probably comes from the fact that the horizontal space gives a way to
jump from a fiber to the next one. When we consider a connection I'; we can define a G-valued

connection 1-form by
w(X)E = vXe.

The existence is explained in section 1.3. It is clear that w(X) = 0 if and only if X is horizontal.
The theorem which connects the two definitions is the following.

Theorem 1.48.
If T is a connection on a G-principal bundle, and w is its 1-form, then

(i) for any A€ G, we have w(A*) = A,
(i) (Ry)*w = Ad(g7")w, i.e. for any X e TeP, g€ G and £ € M,

W((dRy)eX) = Ad(g™")we(X)

Conversely, if one has a G-valued 1-form on P which fulfills these two requirement, then one has
one and only one connection on P whose associated 1-form is w.

Proof. (i) The definition of w is w(X)f = vX. Then w(A*)f = vAf = Af because A* is vertical.
From lemma 1.25, w(A*) = A.

(ii) Let X € X(P). If X is horizontal, the definition of a connection makes dR4X also
horizontal, then the claim becomes 0 = 0 which is true. If X is vertical, there exists a A € G
such that X = A* and a lemma shows that dR,X is then the fundamental field of Ad(g~!)A.
Using the properties of a connection,

(Riw)e(X) = we.,(dR,X) = Ad(g )A = Ad(g e (X). (1.144)

Now we turn our attention to the inverse sense: we consider a 1-form which fulfills the two
conditions and we define
He = {X € T¢P st w(X) = 0}. (1.145)

We are going to show that this prescription is a connection. First consider a X € Vg, then
X = A* and w(X) = A. So He n Ve = 0. Now we consider X € T¢ P and we decompose it as

X =A%+ (X — A%)

where A* is the vertical component of X. If w(dRyX) = 0 for all g € G, then w(X) = 0, then
a vector X € He fulfills at most dim G independent constraints w(dR,X) = 0 and dim H is at
least dim P — dim G. On the other hand, dim V¢ = dim G; then

dim Vg +dim H¢ > dim G + dim P — dim G.

Then the equality must holds and Ve @ He = T¢P.

We have now to prove that w is the connection form of Hg, i.e. that w(X) is the unique A € G
such that Ag‘ is the vertical component of X. Indeed if X € T¢P, it can be decomposed as into
A*eVeand Y € He and

w(X)=w(A*+Y) =w(dA*) = A.

It remains to be proved that the horizontal space H¢ of any connection I is related to the
corresponding 1-form w by He = {X € T¢P st we(X) = 0}. From the connection I', the 1-form
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is defined by the requirement that u}(X)gk =vX¢. For X € He, it is clear that v.X = 0, so that
w(X)* = 0. This implies w(X) = 0 because we suppose that the action of G is effective.
o

The projection 7: P — M induces a linear map dr: T¢ P — T, M. We will see that, when a
connection is given, it is an isomorphism between He and T, M (if = m(¢)). The horizontal
lift of X € X(M) is the unique horizontal vector field (i.e. it is pointwise horizontal) such that
dr(Xe) = Xr(e)- The proposition which allows this definition is the following.

Proposition 1.49.

For a given connection on the G-principal bundle P and a vector field X on M, there exists an

unique horizontal lift of X. Moreover, for any g € G, the horizontal lift is invariant under dR,.
The inverse implication is also true: any horizontal field on P which is invariant under dRR,

for all g is the horizontal lift of a vector field on M.

This proposition comes from [1], chapter II, proposition 1.2.

Proof. We consider the restriction dr: He — Tyr(¢)M. It is injective because dm(X —Y’) vanishes
only when X — Y is vertical or zero. Then it is zero. It is cleat that dm: TeP — T )M is
surjective. But dmX = 0 if X is vertical, then dr is surjective from only He.

So we have existence and unicity of an horizontal lift. Now we turn our attention to the
invariance. The vector ngY£ is a vector at - g. From the definition of a connection, dR,H, =
He.4, then ngY£ is the unique horizontal vector at £ - g which is sent to X, by dr. Thus it is

Xe.y.

For the inverse sense, we consider X, an horizontal invariant vector field on P. If z € M, we
choose £ € 77! (z) and we define X, = dr(X¢). This construction is independent of the choice
of & because for £ = £ - g, we have

dn(X¢) = m(dRyX¢) = m(X¢).

An other way to see the invariance is the following formula:
Xeg = (dRy)eXe.

By definition, X¢., is the unique vector of T¢.,P which fulfils dmX¢., = X, if é771(z), so the
following computation proves the formula:

(dm)e.g((dRy)eX¢) = d(m o Ry)e X¢ = dne Xe = Xy (1.146)

1.12.3 Curvature

The curvature of a vector or associated bundle satisfies 2, = df, + 0, A 0,. So we naturally
define the curvature of the connection w on a principal bundle as the G-valued 2-form

Q=dw+wAw. (1.147)

When we consider a local section o, : U, — P on U, < M, we can express the curvature with a
2-form on M instead of P by the formula

F(a) = O’EQ,

or, more explicitly, by F(q)(X,Y) = Q;_ (5)(doaX,do,Y)). Note that if G is abelian, = dw
and dS2 = 0.
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1.13 Exterior covariant derivative and Bianchi identity

Let w € QY(P,G) be a connection 1-form on the G-principal bundle P. Using the operation [. A .]
defined in section 1.6, we define the exterior covariant derivative by

dyo = da + %[w Al when a € QY(P, ), (1.148)
d,f =dp + [w A ] when (€ Q*(P,G), (1.149)

The curvature is the 2-form defined by
Q=dow=dv+wArw (1.150)

where d, is the exterior covariant derivative associated with the connection form w, and the
wedge has to be understood as in equation (1.55)-31.

Proposition 1.50.
The curvature form satisfies the identity

d,1=0 (1.151)
which is the Bianchi identity
Proof. taking the differential of Q = dw + w A w, we find
dQ = d*w +dw Aw—w A dw
in which d?w = 0 and we replace dw by Q —w A w, so that
dQ=QAw—wAq,
which becomes the Bianchi identity using the definition of d,, and the notation (1.57)-31. |

Remark that the Bianchi identity reads d>w = 0, but that in general d,, does not square to
Zero.

1.14 Covariant derivative on associated bundle

Now we consider a general G-principal bundle 7: P — M and an associated bundle £ = P x, V.
We define a product R x E — E by

AlE, v] = [€, Av]. (1.152)

It is clear that the equivariant function )Q\/) defines the section Ay. A covariant derivative is
a map

V : X(M) x (M, E) > T(M, E)

(X, ) > Vi (1.153)

such that
Vix¢ = fVxi, (1.154a)
Vx(fv) = (X- )+ fVx¢ (1.154b)

where products have to be understood by formula (1.152)-57.
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Theorem 1.51.
A connection on a principal bundle gives rise to a covariant derivative on any associated bundle
by the formula

VEG() = Xe() (1.155)
where z/AJ: P — V is the function associated with the section ¢: M — E.

We have to prove that it is a good definition: the function V£ must define a section
VEw: M — E and the association ¢ — V1 must be a covariant derivative.

With the discussion of page 13 about the application of a tangent vector on a map between
manifolds, we have (dpX)f = X(f o). By using this equality in the case of X with ¢) and Ry,
we find (dR,X)(1)) = X (¢) o R,) and thus

J— ~

Yﬁ-g(l/;) = X¢ (ngw)-
We prove the theorem step by step.

Proposition 1.52.
The function VE) defines a section of P.

Proof. We have to see that V£ is an equivariant function. The equivariance of 1& gives 1& oRy =
p(g~"), thus

VE(E-g) = Xeg(h) = (ARy)eXe) (1) = Xe($hoRy) = Xe(plg™)P) = plg™)Xe (). (1.156)

The last equality comes from the fact that the product p(g*1)1/3 is a linear product “matrix times
vector” and that X is linear. O

Theorem 1.53.
The definition

defines a covariant derivative.

Proof. We have to check the two conditions given on page 47.

—

First condition. By definition, V]I?Xz/)(f) = fXe (1[)) Now we prove that

TXe(W) = (f om)(€)Xe(¥). (1.157)

This formula is coherent because X¢ () € V and (f o7)(€) € R. By definition of the horizontal
lift, f X is the unique vector such that

. d”é(f_Xg) = (fX)s = f(x)dnX¢ = (fom)(§)drXe,
¢ Wf(f_Xg) = 0.

We check that (fom)(€)X¢ also fulfills these two conditions because dr and w are O (P)-linear.
Equation (1.157)-58 immediately gives

VE(E) = (f o 1) (©)VEU(E). (1.158)
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Now we show that fV 1 is the same. The section fVEZy: M — E is given by (fVEy)(z) =
f(@)(VEY)(x), and by definition of the associated equivariant function,

F@)(VER) (@) = [€, F@)VEG(E)].
Then - -
FYRB(E) = F2)VED(E) = (f o m)(E)VEB(E). (1.159)

All this shows that V = V&,
Second condition. ThlS is a computation using the Leibnitz rule:

VE(F)(€) = Xe(F9) @ Xe((m 0 )i)
X 1)) + (r* £ X e = d(f o 1) Xe (&) + FVEP(2)

o g R (1.160)
= dfw(g)dﬂngi/f(f) + FVEG(@) = Xo(£)D(E) + [VEG ()
= (X)%(©) + FVFu(E)
where (a) is because ﬁ/} = 1* f1), and (b) is an application of the Leibnitz rule. O

Theorem 1.54.
Using the local coordinates related to the sections oo: U, — P, the covariant derivatives reads:
(Vx¥) () () = Xat(a) — px(0qwa(X)) P (o) (2) (1.161)
where px: G — End(V) is defined by
d
) = = p(e)] 1.162
pald) = S0 M) (1162)

Proof. The problem reduces to the search of X because

(Vx)(a) (@) = Vxth(0a(2)) = X o (a) ().

We claim that X,_(,) = doa X, —w(doaX;)*. We have to check that drX = X and w(X) = 0.
The latter comes easily from the fact that w(A*) = A. For the first one, remark that s, is a
section, then d(m o s,) = id, and dn(ds,X;) = X, while

d
A*) = dr— —tA i = 0. 1.1
dr( E) dﬂ-dt [5 © ]t:O dt [ﬂ-(g)]mo 0 (1.163)
Since the horizontal lift is unique, we deduce
(VX)) (@) = (doo Xy — w(doa X)) (1.164)

From the definition of a fundamental vector field,

w(doaXx):a(mﬂ/) [7/;( alz) - e twldoa e ))]

t=0
[p(ew X)) (00 (x)] _ from (1.91)-43 (1.165)
( Pe(w o doa) Xz (4 0 04) ()
= 4 ((030)(X.)) () () by (1.162)-59



60 CHAPTER 1. DIFFERENTIAL GEOMETRY

We can express the covariant derivative by means of some maps 6,: X(M) x M — End(V)
given by ‘
VX'Yozi = Ga(X)iJ’)/aj- (1166)

where the 7,;’s were given in equation (1.98)-44. By the definition (1.154b)-57,
(Vx)() = (X - 53)a%ai (@) + 55,(2)(VxVai)(2)
= (X 50)2%ai(@) + 50,(2)0a(X)7a; (@).

On the othre hand with the notations of equation (1.96)-44, v,; = e; and X;7a; = 0. Then
equation (1.161)-59 gives 0,(X) = px(ctw, (X)), or

O = ps(ciw,). (1.167)

1.14.1 Curvature on associated bundle

From the definition (1.92)-43, it makes sense to define the curvature 2-form by
R(X, Y)Y = VxVyty = VyVx9 — Vx y1.

It is also clear that () defines a section of the trivial vector bundle F' = M x V by x —
(z,%(a)(x)), so one can define Q(X,Y): I'(M, E) — I'(M, E) by

(R(Xa Y)’L/J) (a) = Qq (X7 Y)’L/J(oz)
and take back all the work around Bianchi because of the relation (1.161)-59 which can be written
as (Vx¥)(a) (%) = Xo¥(a) + 0a(X)V(a)(x) and which is the same as in proposition 1.45.
1.14.2 Connection on frame bundle
General framework

The frame bundle was defined at page 36. Let F' ¥ M be a K-vector bundle with some local
trivialization (U, %) and the corresponding transition functions gns: Us N Uz — GL(r,K).
We consider w: P — M, the frame bundle of F; it is a GL(r, K)-principal bundle. Let V be a
covariant derivative on F' and 0, the associated matrices 1-form. The frame bundle is

P = U (frame of F,).
zeEM

A connection is a G-valued 1-form; in our case it is a map
we: Te (77 Ua)) — al(r, K).
We define our connection by, for g € GL(r,K), x € Uy, X, € T, M and A € gl(r, K),
WS, (2)-g (Ry,5a(2)s Xy + Ag, (I).g) = A+ Ad(g7H0.(X,). (1.168)
where S, : U, — P is the section defined by the trivialization ¢%:

Sa(.’L') = {Ea = ¢aE_1(xaei)}i=1,...,T-

Since 0, (X;) € End(K") c gl(r, K), the second term of (1.168)-60 makes sense. This formula is
a good definition of w because of the following lemma:
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Lemma 1.55.
If ¢ = So(x) - g and X € T¢ P, there exists a choice of A€ G, and X, € T, M such that

S =Ry, 5a(X),Xo + A%, (1.169)

g°

Proof. If € € P is a basis of E at y, there exists only one choice of x € M and g € G such that
§=5()-g.

Let us consider a general path ¢: R — P under the form c(t) = sqo(z(t)) - g(t) where z and g
are path in M and GL(r,K). The frame c(t) is the one of F, ;) obtained by the transformation
g(t) from s (x(t)). It is a set of r vectors, and each of them can be written as a combination of
the vectors of s, (z(t)), so we write

¢i(t) = s (w(t)) g} (1) (1.170)

where s/, (z(t)) € Fy) and gi(t) € K. We compute ¥ = ¢/(0) by using the Leibnitz rule and we
denote 2'(0) = X, 2(0) = 2 and g(0) = g} (the matrix of g):

5= Llsa @] g+ sh@) 5[5 0)]

) . " )
= (dsja)szg;' +g;' (0)s2, ().

t=0 (1.171)

Going to more compact matrix form, it gives
Y = (dsa)z Xz g + sa(x)g’(0).

The second term, s,(z)g}(0), is a general vector tangent to a fiber. So it can be written as a
fundamental field Af.

O
Lemma 1.56.
On Uy, nUg, the form fulfills w® = w?.
Proof. Let v: R — M be a path whose derivative is X,. Then
d d
R a Xz = 77| %« : = 70 « :
(By)ssa@)sXe = 2| sa(n) 9| _ = Z[s50mg0s(0) -9 __ )

= Slsa(0gas() 9]+ S50 gas0) ]

What is in the derivative of the first term is Ry_,(2)4(s5(7¢)). Taking the derivative, we find the
expected Rgaﬁ(l)g*sﬁ*Xz.

For the second term, we note r := sg(z) - gas(g9)g, and we have to compute the following,
using equation (1.59)-33,

d

=L Adyer (9740905 ()]

dt t=0

_ %[r cexpt((d Ady)e (9,4 (2) (dgap)e X)) |
= %[r . expt(Adg—l g;ﬁl (fc)dgaﬁ]

= (Ady-1 g, 3 (@)dgas X )

=0 (1.173)

t=0
*
r
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Using this, we can perform the computation:

wga (z)-g (Rg ()Xo + Ag, (I),g) = wgﬁ(z).gaﬁ(z)g (Rgaﬁ‘ (x)g,55(),Xao

T (Ady-s g, 3 (2)dgapX,) + A*)
= Ad(g,5(2)9)~1 Op(Xe) (1.174)
+ Adg-1 g5 (2)dgas(Xz) + A
= Adg1 (95595908 + 9554905)(X2)) + A
= WS ()9 (Rgy5a ()Xo + AL (1))

Proposition 1.57.
The w defined by formula (1.168)-60 is a connection 1-form.

Proof. The first condition, w(Ag‘) = A, is immediate from the definition. The lemma 1.26 gives
the second condition in the case ¥ = Af. It remains to be checked that w(dR,X) = Ad(g7Hw(D)
in the case ¥ = dRpds,X,. This is obtained using the fact that Ad is a homomorphism. O

Levi-Civita connection

Let (M, g) be a Riemannian manifold. We look at a connection 1-form o € Q' (SO(M), so(R™))
on SO(M), and we define a covariant derivative V*: X(M) x T(M) — T(M), where T(M) is
the tensor bundle on M by (cf. theorem (1.53)-58)

Vas = X3, (1.175)

for any s € T(M). Our purpose now is to prove that an automatic property of this connection is
V®g = 0. The unique such connection which is torsion-free is the Levi-Civita one.

The metric g is a section of the tensor bundle T*M ® T*M. So we have, in order to find §
and to use equation (1.175)-62, to see T*M ® T*M as an associated bundle. As done in 1.8.4,
we see that

T*MQT*M ~SO(M) x, (V*®V*),

with the following definitions:
o The isomorphism is given by #[b,a @ S](X ®Y) = a(b~'X)8(b'Y),
. p(A)a=aoA,
e« b-A=boA

Here, V=R™;b: V > T,M; o, V*, X, Y e T, M and A€ SO(m) isseen as A: V — V.
The following shows that 1 is well defined:
b+ A, p(A)a @ Fl(X ®Y) = (a0 A)(A™ 0 b X)(Bo A)YA L ab 1Y)

=[b,a®@Bl(X ®Y) (1.176)

Proposition 1.58.
The function § is given by

) (v @w) = g2(b(v) ®b(w)) = v - w.
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Proof. The second equality is just the fact that b: (R™,-) — (T, M, g,) is isometric. On the

other hand, if §(b) = o ® 3, we have:

1:(X®Y) = ¢[b,a® (X ®Y) = a(b~'X)B(7Y)
B B R B B (1.177)
=a®pBTIXRbY)=g0) ' X @b7Y).

Since b is bijective, X and Y can be written as bv and bw respectively for some v, w e V', so
that
gz (bv ® bw) = §(b)v ® w.
O
It is now easy to see that X§ = 0. As § takes its values in V* ® V*, X§ belongs to this

space and can be applied on v@w € V®V. Let X (t) be a path in SO(M) which defines X; if
X € T, SO(M), X(0) =b. We have

— d, — d
Xjv@w) = —g(X{t)r@w = —v-wl (1.178)
dt o dt =0
which is obviously zero.
1.14.3 Holonomy
Let the principal bundle
G ~~P (1.179)
M

and w a connection on G. Let v: [0,1] = M, a closed curve piecewise smooth; (0) = v(1) = «.
For each p € 7! (), there exists one and only one horizontal lift 4: [0,1] — P such that (0) = p.
There exists of course an element g € G such that ¥(1) =p-g.

We define the following equivariance relation on P: we say that p ~ ¢ if and only if p and ¢
can be joined by a piecewise smooth path. The holonomy group at the point p is

Hol,(w) ={ge Gstp~p-g}

1.14.4 Connection and gauge transformation

Proposition 1.59.
If w is a connection on a G-principal bundle and ¢, a gauge transformation, the form 3 = p*w
is a connection 1-form too.

Proof. Tt is rather easy to see that go*Az‘ = A:’;(I):

P Af = %[‘p(feim)]t:o B %[(‘D(g)eim]ho = Aoy

The same kind of reasoning leads to ¢ Ry, = Ry, ¢+. From here, it is easy to see that

(P w)e (A7) = wy(e) (P2 AS) = 4,
and
(R (0" w)e) () = (Ryw)p(e) (9+Q) = Ad(g7) ((¢*w)e (D))
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So, the “gauge transformed” of a connection is still a connection. It is hopeful in order to
define gauge invariants objects (Lagrangian) from connections (electromagnetic fields).

Local description

Let 7: P — M be a G-principal bundle given with some trivializations ¢% : 771 (U,) — Uy x G
over U, < M and s,: U, — w—l(ua), a section. In front of that, we consider an associated
bundle p: £ = P x, V — M with a trivialization ¢EF: E — U, x V. One can choose a section
5, compatible with the trivialization in the sense that ¢f (s.(x) - g) = (z,g); the same can be
done with E by choosing ¢Z([s4(x),v]) = (x,v). All this given in figure 1.1.

A section ¢: M — FE is described by a function t,: U, — V defined by ¢Z(y(x)) =
(,9¥a(x)). In the inverse sense, v is defined (on U,) from 9, by Y(x) = [sa(z), Ve (z)]. In
the same way, a gauge transformation ¢: P — P is described by functions ¢, : U, — G,

P(sa(2)) = 5a() - Pal). (1.180)

The function @, also fulfil

(@F 0o ¢l ) (x,9) = (2,5() - g) (1.181)
because
(@F 0 po ot ) (z,9) = (6 0 9)(salz) - 9)
= ¢§(<P(Sa(z ) . g) (1.182)
=¢§(Sa(c) @a(x)g)
= (:L', @a(z)g)

We know that a connection on P is given by its 1-form w. Moreover we have the following:

Proposition 1.60.
A connection on P is completely determined on w1 (U,) from the data of the G-valued 1-form
oEw on Uy.

Proof. We consider a 1-form w which fulfils the two conditions of page 54. Our purpose is to
find back we(X), V€ € P,X € TP from the data of c%w alone. For any &, there exists a g such
that £ = o4(x) - g. We have

Ady1 (Wo, (2)3) = (RyW)o, (2)(B) = W, (2)g (ARg) g (2) %) (1.183)
If we know s*w, then we know w((dsa)zv) for any v e T, M. So
Voo (@)9 (ARg)ou(@)%)
is given from o*w for every ¥ of the form ¥ = (doy),v. From the form (1.169)-61 of a vector in
T: P, it just remains to express Wy, (g).q(AX ) in terms of s*. The definition of a connection

oa(z)-g
makes that it is simply A.
O
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Covariant derivative

If we have a connection on P, we can define a covariant derivative on the associated bundle F
by

(Vx¥) () (@) = Xa(¥a) + px(sqwa (X)) (a) (@),
the matricial 1-form being given by 6, = piofw. The gauge transformation ¢ acts on the
connection w by defining w? := p*w.

Proposition 1.61.
If B = p*w, then
52(5) = Ad@a(x)fl S;(w) + (ﬁa(z)ildgﬁa.

Proof. Let v: R — M be a path such that v(0) = 2 and 7/(0) = X,. We have to compute the
following:

(s50)(X2) = (she*w)(Xe) = W(posy)(x) (£ 0 50) s Xz). (1.184)
What lies in the derivative is:
(90 50)s(Xe) = T[ (0050 0M®)]
d
= —|[sa(Y(t)) - Pa(v(t
Cf;[ () 2 ®)] _ d -
= Z[5a0r®) - 2]+ Z[52(1(0) - 2a®)]

= Ry 500 Xn + [ s0(2) - Gala)e!Pe(®) (12007 O]

dt t=0

A justification of the remplacement @q(y(t)) = @q(2)etPe (@ ([@2a)e7(0) is given in the corre-
sponding proof at page 145. If we put this expression into equation (1.184)-65, the first term
becomes
W(gosa)(@) (Rpa (@) wSaxXa) = (BE, (2)@)sa (@) (SaxXz)
= Adg, () (Wsu () (5w X))

= Ad@a (z)—1 (SZW)(XJ)

The second term is the case of a connection applied to a fundamental vector field.

1.15 Product of principal bundle

In this section, we build a G; x Ga-principal bundle from the data of a G; and a Gs-principal
bundle. The physical motivation is clear: as far as electromagnetism is concerned, particles are
sections of U(1)-principal bundle while the relativistic invariance must be expressed by means of
a SL(2, ©)-associated bundle. So the physical fields must be sections of something as the product
of the two bundles. See subsection 4.7.

1.15.1 Putting together principal bundle
Let us consider two principal bundle over the same base space

Gy~ P 2> M,
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and

Gy~ Py —2

First we define the set

P1 o PQ = {(51752) € P1 X PQ st pl(&l) = pg(gg)} (1186)

which will be the total space of our new bundle. The projection p: P; o P, — M is naturally
defined by

p(€1,&2) = p1(&1) = pa(§2),
while the right action of G; X Gy on Pj o P, is given by
(£1,&2) - (91, 92) = (&1 - 91,& - 92)

With all these definitions,
G1 X G2 e d P1 ] P2

;

is a G x Gy-principal bundle over M. We define the natural projections
T - P1 X P2 - PZ
(§1,62) = &,

and if e; denotes the identity element of G;, we can identify G to G1 x {e2} and G2 to G2 x {e1};
in the same way, G1 = G1 x {0} € G1 X Ga. So we get the following principal bundles :

(1.187)

Gy ~>PoP, P

G1 ’V\-’\>P1 OPQLPQ.
It is clear that the following diagram commutes :

P1<LP10P2F2—>P2

N A

M

1.15.2 Connections

Let w; be a connection on the bundle p;: P; — M. Using the identifications, 7wy is a connection
onmg: PyoPy — P, (the same is true for 1 < 2), and 75w, @7 ws is a connection on p: PyoPy —
M. Let us prove the first claim.

Let A € G;. We first have to prove that nfw;(A*) = A. For this, remark that A = (4,0) €
G1 ® G2 and

ap=Seeran] = Ll@e) e =@ )] o ()

t=0

t=0
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so dm A* = 4 [m(. . )] = w1(A*) = A. Let now X € T¢, ¢,)(P1 o ) be given by the path
t=0
(&1(t),&2(t)). In this case we have

Y= (Wikwl)(dR(g,ez)E)

- a(Haw o] )

t=0
g%[&(t)]t ) (1.189)

= Mg et (@0 &),

= Ad(¢g HrFw X,

(Rzkg762)ﬂ';kUJ1 ) (&1,€2)

= w1 (dR

1.15.3 Representations
Let V be a vector space and p;: G; — GL(V') be some representations such that
[p1(g1), p2(g2)] = 0 (1.190)

for all g7 € G7 and g2 € G2 (in the sense of commutators of matrices). In this case, one can
define the representation p; x pa: G1 x Go — GL(V) by

(p1 x p2)(91,92) = p1(g1) © p2(g2) = p2(g2) © p1(g1)- (1.191)

The relation (1.190)-67 is needed in order for p; x p2 to be a representation, as one can check by
writing down explicitly the requirement

(p1 % p2)((91,92) (g1, 95)) = (p1 % p2) (9191, 9295)
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Chapter 2

Decompositions of Lie algebras

2.1 Root spaces
References for Lie algebras and their modules are [10-10].

2.1.1 Cartan subalgebra

Since the Killing form on the Cartan subalgebra b is nondegenerate, we can introduce, for each
linear function ¢: h — IR, an element ¢4 of h such that

¢(h) = B(ty, h) (2.1)
for every h € b.
Proposition 2.1.
We have

[z, y] = B(x,y)ta (2.2)

whenever x € go and Y € g—q.-

Proof. For the proof, we show that the Killing for of [z, y] and B(z,y)t, with any element h €
are the same. Indeed, using the invariance of the Killing form,

B(h,[z,9]) = B([h,],y) = a(h)B(z,y) = B(ta,h)B(z,y) = B(B(x,y)ta, h). (2-3)
O
Now, for each root «, we pick e, € g, and f, € g—, such that
2
Blea, fo) = 57— 2.4
(€a;, fa) Bt (2.4)
and then we pose
2
ho = =——ta. 2.5
B(ta,ta) (25)

In that case, for each root, the set {en, fa, ha} generates an algebra isomorphic to s[(2,R) that
is denoted by s[(2,R),.
The space h* is endowed with an inner product defined by

(@, B) = Blta,tp)- (2.6)

69
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2.1.2 Cartan-Weyl basis

Let us study the eigenvalue equation
ad(4)X = pX. (2.7)
The number of solutions with p = 0 depends on the choice of A € g.

Lemma 2.2.

If A is chosen in such a way that ad(A)X = 0 has a mazimal number of solutions, then the
number of solutions is equal to the rank of g and the eigenvalue o = 0 is the only degenerated
one in equation (2.7)-70.

We suppose A to be chosen in order to fulfill the lemma. Thus we have linearly independent
vectors H; (i =1,...1) such that
[4, H;] =0 (2.8)

where [ is the rank of g. Since [4, A] = 0, the vector A is a combination A = \*H;. Since ad(A)
is diagonalisable, one can find vectors E, with

[Aa Eoz] = aF,, (29)
and such that {H;, E,} is a basis of g. Using the fact that ad(A) is a derivation, we find
[Av [Hiv Ea]] = O‘[Hiv Ea]a (210)

The eigenvalue a = 0 being the only one to be degenerated, one concludes that [H;, E,] is a
multiple of Ey:

[Hi, Eo] = @iEa. (2.11)
Replacing A = \'H;, we have
aB, = [N'H;, E,] = Ny E,, (2.12)
thus a = Ma; (with a summation over i = 1,...,1).
Before to go further, notice that the space spanned by {Hi}izl,___J is a maximal abelian

subalgebra of g, so that it is a Cartan subalgebra that we, naturally denote by h*. Thus, what
we are doing here is the usual root space construction. In order to stick the notations, let us
associate the form o, € h* defined by 0, (H;) = «;. In that case,

0a(A) = 0o (N H;) = Moy = (2.13)

and we have
[A,E,] = 0u(A)E,. (2.14)

On the other hand, we have [H;, E,] = a;Eo = 04(H;)E,, so that the eigenvalue « is identified
to the root a, and we have F, € g,.

Let us now express the vectors t,, in the basis of the H;. The definition property is B(tq, H;) =
a(H;) = ;. If ty = (to) H;, we have

&; = B(ta, H;) = Bi(ta)" (H;)' = By;(ta)". (2.15)
——
=4t
If (B%) are the matrix elements of B~1, we have

(Io)! = a; B = o (2.16)
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where ! is defined by the second equality. Using proposition 2.1, we have
[Ee,F_o] = B(Ey, E_y ) H. (2.17)

Thus one can renormalise F, in such a way to have

[Hi’HJ] =0,

Eo, E_o] = iHi

[ I=a (2.18)
[Hi;Eoz] = aiEa = a(Hi)Ea
[Ea, Eg] = NapEass

where the constant N,z are still undetermined. A basis {H;, F,} of g which fulfill these require-
ments is a basis of Cartan-Weyl.

2.1.3 Cartan matrix

We follow [13]. We denote by II the system of simple roots of g. All the positive roots have the
form

> kac (2.19)

a€ell
with k, € N.
Theorem 2.3.
Let o and B be simple roots Thus
(i) a— B is not a simple root
(it) we have
2(ev, B)
= — 2.20
o) P (2.20)
where p is a strictly positive integer.
Partial proof. We are going to prove that 2(855)) is an integer. Let o and v be non vanishing

roots such that a + 7 is not a root, and define
E,_.,=ad(E- )*E, € gy—a- (2.21)

y—jo

Since there are a finite number of roots, there exists a minimal positive integer g such that
ad(E_,)9"1 E, = 0. We define the constants px (which depend on v and «) by

[Fas B ol = 167 o1y (2.22)
Using the definition of E,’Yika and Jacobi, one founds
PEEL _(k1ya = [B [B=as B _1yal] = @' [Hi B 1)a] + -1 B 1 ayas (2.23)
so that i = a'y; — (k — 1)atay + pr_1, and we have the induction formula

e = (@) = (k = 1)@, ) + iy (2.24)
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for k > 2. If we define py = 0, that relation is even true for £ = 1. The sum for k =1to k=5

is easy to compute and we get

5 a, Q).

pi = jlo,y

Since pg4+1 = 0, we have
(a,7) = g(e, @)/2,
and thus ) ,
jlg—j+ ()
5 .

Ky =

(2.25)

(2.26)

(2.27)

Let 8 be any root and look at the string 3 + ja. There exists a maximal j > 0 for which g+ ja
is a root while 5 + (j + 1)a is not a root. Now we consider v = 3 + ja with that maximal j.

Putting v = a + jf in (2.26)-72, one finds

(o, ) = @LQ)(MO
and finally,
200,y
a, a)

which is obviously an integer.

From the inner product on h*, we deduce a notion of angle:

(o, B)
Vi, e)(8,8)

The length of the root « is the number /(a, a).

cos(0q,8) =

Lemma 2.4.
If o and (8 are roots, then

and

is a root too.

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

If a and B are non vanishing, then the a-string which contains B contains at most 4 roots.

Finally, the ratio

2
(a, ) (2.33)
(a, B)
takes only the values 0, +1, £2 or +3.
Let II = {ay,...,q;} be a system of simple roots. The Cartan matrix is the [ x | matrix
with entries )
Aij = 2os05) (2.34)
(a, )
Notice that, in the literacy, one find also the convention A;; = 2(as5)/(j, ), as in [15], for

example.
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2.1.4 Dynkin diagram

Proposition 2.5.
If o and B are simple roots, then the angle 8, g can only take the values 90°, 120°, 135° or 150°.

Proof. No proof. O

In order to draw the Dynkin diagram of a Lie algebra, one draws a circle for each simple
root, and one joins the roots with 1, 2 or 3 lines, following that the value of the angle is 120°,
135° or 150°. If the roots are orthogonal (angle 90°), they are not connected. If the length of a
root is maximal, the circle is left empty. If not, it is filled.

One easily determines the number of lines between two roots by the following proposition.

Proposition 2.6.
If a and B are two simple roots with (o, o) < (B, 83), then

1 if O3 = 120°
=32 ifl,p=135° (2.35)
3 if 05 = 150°.

Proof. No proof. O
If M is a weight of a representation, its Dynkin coefficients are

v, = 2 )
(aia ai)

, (2.36)
and we can compute the Dynkin coefficients from one weight to another by the simple formula
(M —aj); = M; — Agj. (2.37)

A weight is dominant if all its Dynkin coefficients are strictly positive.

2.1.5 Chevalley basis

It {«;} are the simple roots, we consider the following new basis for b:

20
Ha, = (o ;.) (2.38)

where o is the dual of ;. This is the element of J# defined by o () = d;;. As usual in b, we

have
[Ho,, Haj] =0. (2.39)

Each root is a combination of the simple roots. If g = Zézl kic;, we generalise the definition of
H,, to

_o2pr (o, i)
Hs = (3.5 = 2" 5.y How (2.40)

The element Hpg is the co-weight associated with the weight 3.
Using the inner product (.,.), we have the decomposition 5 = > (5, a;)a; of the roots. An

immediate consequence is that

Blai’) = (ai, B). (2.41)
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If 3 is any root, we denote by [3; the result of 5 on Hy,,:

2(aia 6)
= [(Hy, ) = ————=.. 2.42
5= B(H,) = 2 (2.42)
Theorem 2.7 (Chevalley basis).
For each root 3, one can found an eigenvector Eg of ad(Hg) such that
[Hﬁa H’Y] =0
[Es, E-s] = Hp
[Es, E,] = +(p+1)Egyy if B +7 is a root (2.43)
0 otherwise
(8,7)
Hz E. ] =2 E
[ B8 ’Y] (Ba B) Y

where p is the biggest integer j such that v + jB is a root. Moreover, if o; and o are simple

roots, the latter becomes
[Ha,s Eta;] = TAijEya, (2.44)

where A is the Cartan matriz.

An important point to notice is that, for each positive root «, the algebra generated by
{Hu,Ey, E_4} is sl(2). This is the reason why the representation theory of g reduces to the
representation theory of s[(2).

2.2 Representations

Since b is abelian, the operators H,; (j = 1,...,1) are simultaneously diagonalisable. In that
basis of the representation space W, the basis vectors are denoted by |uay and have the property

Hai|u/\> = A(Ha )

i

UAD, (2.45)

and, as notation, we note A; = A(H,,). The root A is a weight of the vector |us). The vector
Eglupy is of weight 5 + A, indeed,

2(aia ﬁ)
(aiv az)

Thus the eigenvalue of Egl|uay for Hy, is, according to the relation, (2.42)-74, 3(Hqa,) + A(Hay,)-
We suppose that the roots a; are given in increasing order:

Ha,Eglupy = ([Ha,, Eg] + EgHa,) upny = ( + AZ-) Eglup). (2.46)

a1 =an = ... 2=, (2.47)

and one says that a weight is positive if its first non vanishing component is positive. Then one
choose a basis of W
|UA(1)>, ey |'LLA(N)> (2.48)

of weight vectors. One say that this basis is canonical if

AW > > A, (2.49)
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Theorem 2.8.
A wvector if weight A which is a combination of vectors of weight A% all different of A vanishes.

Proof. No proof. O

A consequence of that theorem is that, if W is a representation of dimension N of g, there are
at most NV different weights. When several vectors have the same weight, the number of linearly
independent such vectors is the multiplicity of the weight. A weight who has only one weight
vector is simple.

Proposition 2.9.
The weights A and A — 2a(A, «)/(a, ) have the same multiplicity for every root .

Theorem 2.10.
Two representation are equivalent when they have the same highest weight.

Proposition 2.11.
For any weight M and root o,

% €L, (2.50)
and
o 200) (2.51)
(a, @)
s a weight.

Notice, in particular, that for every weight M, the root —M is also a weight.

2.2.1 About group representations

Let 7 be a representation of a group G. The character of 7 is the function
Xr: G— C
g— Tr (ﬂ(g))

From the cyclic invariance of trace, it fulfils x.(grg~!) = xx(x), so that the character is a central
function.

Let G be a Lie group with Lie algebra g. We denote by Z4 the subgroup of G generated by
n®. The Cartan subgroup D of G is the maximal abelian subgroup of G which has h as Lie
algebra.

A character of an abelian group is a representation of dimension one.

Let T be a representation of G on a complex vector space V. One say that £ € V is a highest
weight if

(2.52)

o T(2)¢ =¢ forevery z€ Zy,
o T(9)¢ = a(g)¢ for every g € D.
The function a: D — C is the highest weight of the representation 7T'.

Lemma 2.12.
The function « is a character of the group D.

Proof. The number a(gg’) is defined by T'(gg")¢ = a(gg’)¢. Using the fact that T is a represen-
tation, one easily obtains T'(g¢’)¢ = a(g)a(g’)E. O
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2.2.2 Weyl group

For each root «, we define

Sa: b* - h*
2.53
A'_)A_2OZ(A,O[). ( )
(o, @)
This is an affine reflexion in h* around the direction of the root a because Su(a) = —a and

Sa(B) = 8 when («, 3). The Weyl reflexion group is the group generated by {S,,} (i = 1,...1)
and the identity.

Theorem 2.13.
There exists an irreducible representation of highest weight A if and only if

_ 2(A, @)

(a, )

Aq eN (2.54)

for every simple root a. Moreover, if £ is a highest weight vector and if « is a simple root, then

0 k<A,
Bred”0 Y (2.55)
=0 ifk>A,.
Proof. No proof. O
2.2.3 List of the weights of a representation
We consider a representation of highest weight A. For each weight M, we define
S(M) =2 > M,, (2.56)
a; eIl
where, as usual, M, = 2(M, a)/(«, ). For any root «, we define
1
v(@) = 5(6(4) = d(a)). (2.57)

Proposition 2.11 shows in particular that y(a) is an integer.

Proposition 2.14.
When M is a weight, v(M) is the number of simple roots that have to be subtracted from the
highest weight A in order to get M.

Proof. No proof. O

Let us consider the sets
Ak = (M st v(M) = k}. (2.58)

That set is the layer of order k. Of course, there exists a T'(¢) such that
T
Ap=A%uAabu.. uAl?, (2.59)

That T'(¢) is the height of the representation ¢. If A is the highest weight and A’ is the lowest
weight, then we have y(A) = 0 and v(A') = T'(¢).
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A corollary of proposition 2.14 is that, if M € A} and if o is a simple root, then M +a € A;_l,
and M —a € A;“.
Let us denote by Si(¢) the multiplicity of the layer of order k; we have

So+S1+...+5r =N, (2.60)
where N is the dimension of the representation ¢. The number
I111(¢) = max Sk(¢) (2.61)
is the width of the representation.

Lemma 2.15.
If A is the highest weight and A’ is the lowest weight, then 6(A) + 6(A") = 0.

Proof. No proof. O

From that lemma and the definition of v(M), we deduce that §(A) — §(A’) = 2vy(A') = T (o),
so that §(A) = T(¢) and
5(M) = T(9) — 24(M). (2.62)

In particular, §(M) has a fixed parity for a given representation ¢. It is the parity (even or odd)
of the representation.

Theorem 2.16.
If A is the highest weight of the irreducible representation ¢, then

T(¢) = Y ra,Aa (2.63)

a; eIl
where the coefficients rqo, only depend on the algebra, and in particular not on the representation.
Proof. No proof. O

The coefficients r,, are known for all the simple Lie algebra, see for example page 105 of [13].

Finding all the weights of a representation

The following can be found in [13, 15].

Theorem 2.17.
If Ay is the weight system of the irreducible representation ¢, then

Sk = St_k (2.64)
and

S, 28 _12..28>5 (2.65)

wherer=%+1.

The theorem says that when T'(¢) is even (let us say T'(¢) = 2r), then IT1(¢p) = S,(¢) and
when T'(¢) is odd (let us say T(¢) = 2r + 1), then

IT1(¢) = Sr(¢) = Sr41(9)- (2.66)
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Let a be a root. The a-series trough the weight M is the sequence of weights
M—ra,.... M+ q« (2.67)
such that M — (r + 1)a and M + (¢ + 1) do not belong to Ag.

Proposition 2.18.
Let M be a weight of the representation ¢ and «, any root of g. If the a-series trough M begins
at M —ra and ends at M + qo, then

=r—gq, (2.68)

or, more compactly, My +q =r.

Notice that, in that proposition, g and r are well defined functions of M and «.

We are now able to determine all the weights of the representation ¢. Let us suppose that
we already know all the layers Ag, U A;_l. We are going to determine the weights in the layer
AG.

An element of A} has the form M — « with M € A;_l and «, a root. Thus, in order to
determine A}, we have to test if M — «a is a weight for each choice of M € A:fl and « € II.
Using proposition 2.18, if !

My +q>1, (2.69)

then M —a € Ag. The number M, — ¢(M, a) is the lucky number of the root M — a. The
root is a weight if its lucky number is bigger or equal to 1. Notice that q(M, «) depends on the
representation we are looking at.

Since M + ka € A:;k, the value of ¢ is known when one knows the “lower” layers. We are
thus able to determine, by induction, all the layers from Ag which only contains the highest
weight. For this one, by definition, we always have ¢ = 0.

The Dynkin coefficients of one weights can be more easily computed using the following
formula, which is a direct consequence of definition of the Cartan matrix:

(M —aj); = M; — Aj;. (2.70)

1
As example, let us determine the weights of the representation c————o of su(3). The
algebra su(3) has two simple roots a and 3 whose inner products are (o, ) = (3,8) = 1 and

(a, B) = —1/2. The highest weight of ¢ = O—é is A= (a+20)/3.

We first test if A —« is a weight. Easy computations show that A, = 0 wile ¢ = 0; thus A —«
is not a weight. The same kind of computations show that Ag = 1, so that Ag = ¢(A,5) = 1.
That shows that Aé ={A —a}.

Let now M = A — 3 = (o — 3)/3. Since M + « ¢ A, we have ¢(M,«) = 0. On the other
hand, M, =1, so that M —« € Ai. The last one to have to be tested is M — 3. Since M + 5 = A,
we have ¢(M, 3) = 1, but Mg = —1. Thus Mg + q(M, ) =0 and M — 3 is not a weight.

We can obviously continue in that way up to find A’d") = 0, but there is an escape to be more
rapid. Indeed, using theorem 2.16 with coefficients r, that can be found in tables (for example
in [13]), we find

T(¢) = 20 + 3A5 = 2, (2.71)

LAt page 104 of [13], that condition is (I think) wrongly written Mq + g > 0; that mistake is repeated in the
example of page 106.
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thus we immediately know that Ai does not exist.

On the other hand, one knows the width I71(¢) = max S;(¢) because (since T'(¢) = 2r, with
r = 1), we have I11(¢) = Si(¢). Thus, once Al(¢) is determined, we know that the next ones
will never have more elements.

In the example, when we know that M — « is a weight, we do not have to test M — .

2.2.4 Tensor product of representations
Tensor and weight

Let ¢ and ¢’ be representations of g on the vector spaces R and R’ of dimensions n and m. If
A e M,(R) and B € M,,,(R’), the tensor product, also know as the Kronecker product of
A and B is the matrix A ® B € M,,,,,(R ® R’) whose elements are given by

Cik,ji = Aij Bl (2.72)

The principal properties of that product are

(A1A2) ® (B1B2) = (A1 ® B1)(A2 ® Bo) (2.73a)
(A®B) '=A"®B! (2.73b)
1r ® 1r = Lrer (2.73¢)

If 1 and @9 are two representations of a group G, the tensor product is defined by

(1 ®p2)(g) = »1(g9) ® p2(g) (2.74)

If  and ¢’ are two representations of a Lie algebra g, the tensor product representation is
defined by
(6 ®)X)(v®V) = (¢(X)v) @' +v® (¢ (X)) (2.75)

If {¢r} are the irreducible representations, a natural question that arise is to determine the
coefficients I which decompose ¢ ® ¢’ into irreducible representations:

$@¢ = > Ti(e,¢)bw (2.76)
k

Let W and W’ be the representation spaces and consider the following decompositions in
weight spaces:

W= @ Wa, W= P Wy. (2.77)
AeAy AeAs
By definition,
(WRW)a={v®V st (¢®@4)(h)(v®V) = alh)(v@v')}. (2.78)

If (¢(h)v) ® v + v @ (¢'(h)v') is a multiple of v ® v, one requires that

o(h)v = ag(h)v
&' (h)v = as(h)v

(2.79a)
(2.79D)

'~ -

for the weights a; and as of ¢ and ¢'. Thus we have

(W ® Wl)a1+a2 = Wal ® Waz- (280)
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We have in particular that the simple root system Aggg of the representation ¢ ® ¢’ is given
by
Appy = Ag + Ay (2.81)

What we proved is 2

Proposition 2.19.
If ¢ is a representation of highest weight A and ¢’ is a representation of highest weight A', then
o ® ¢ is a representation of height weight A + A’.

If, moreover, ¢ and ¢' are irreducible, then ¢ ® ¢’ is irreducible.

An irreducible representation that cannot be written under the form of a tensor product of
irreducible representations is a basic representation.

Lemma 2.20.
A representation is basic if and only if its highest weight A is such that the A, are all zero but
one which is 1.

The basic representations of s0(10) are given by the Dynkin diagrams of figure 2.1. All the
irreducible representations are obtained by tensor products of the basic ones. An elementary
is a basic representation which has his “1” on a terminal point of the Dynkin diagram.

(a) (b) (c) (d)

™~

(e)

Figure 2.1: Basic representations of s0(10)

Decomposition of tensor products of representations

Proposition 2.19 allows us to decompose a tensor product of representations into irreducible
representations. Let us do it on a simple example in su(3). We consider the representations

¢ = o——o and ¢/ = o———o. The first representation has weights

A¢:{a+26 a—p —(2a+6)}, 2.8

3 737 3

and the second one has

(2.83)

A _{a—l—Qﬁ a—pf —(2a+ﬁ)}
= 3 ' 3 3 '

2The second part is not proved.
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According to equation (2.81)-80, we have 9 weights in the representation ¢ ® ¢ (all the sums of
one element of Ay with a one of Ag). The highest one is

200 + 483
3 )

1
which is the double of the highest weight in o——— | so ¢ ® ¢’ contains the representation

2
o—— . Now, we remove from the list of weights of ¢ ® ¢’ the list of weight of o——o ; the

result is
3 7 3 ’ 3 ’ '
1
which are the weights of oc——o . The conclusion is that
1 1 2 1
o ® o = o @ (2.85)

That procedure of decomposition is quite long because it requires to compute the complete set
of weights for some intermediate representations.
Symmetrization and anti symmetrization

Let ¢ be a irreducible representation. We want to compute the symmetric and antisymmetric
parts of the representation ¢®* = ¢ ®...® ¢. These symmetric and antisymmetric parts are
[ SE——

k times

denoted by ¢®* and ¢®* respectively.

Proposition 2.21.
If {&1,... &N} is a canonical basis of ¢ and if we denote by A; the weight of the vector &;, the
followings hold:

(i) the weight system of ¢&F is
Nip + A, +.. A, (286)

with i, > ... > ia > 11, and the highest weight is
A+ .+ A (287)

The dimension of the representation ¢F is
®k "
N ((ba ) =) (2.88)

(ii) The weight system of the representation ¢¥F is
Ay + A+ 0+ A, (2.89)
with i, > ... = 12 = 11, and the highest weight is
kA, (2.90)

The dimension of the representation ¢F is

N (¢®F) = (" Z k) (2.91)
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Proof. No proof. O

The representations ¢2F and ¢®* might be decomposable and we denote by ¢&F and ¢2F
their highest weight parts.

Let a be a terminal point in a Dynkin diagram. The branch of « is the sequence of point of
the Dynkin diagram o = a1, aq, ..., ai defined by the following properties.

o The point «; is connected with (and only with) the points a;—1 and «;41,

¢ the connexion between «; and «;4; is of one of the following forms

o Q41
Oo—0
Qi Qi1 (2.92)
o Qg1
—
e the sequence o, . .., o is maximal in the sense that no a1 can be added without violating
one of the two first rules.
Proposition 2.22.
Let o be a terminal point in a Dynkin diagram and o, . .., ax be the corresponding branch. Then
we have
ba, = 60 (2.93)
for everyr =1,2,... k.
2.3 Verma module
Let us give the definition of [17]. When g is a semisimple Lie algebra, we have the usual
decomposition
g=n"®hdn", (2.94)

where each of the three components are Lie algebras. In particular, the universal enveloping
algebra U(n~) makes sense. Let p € h*. We build a representation 7, of gon V,, =U(n") in the
following way

o If Y, €n~, we define

mu(Ya)l = Y, (2.954)
Ty(Yoy o Ya,) =YaYa, ... Yo, (2.95b)
o if H € b, we define
mu(H)1 = p(H) (2.96a)
k
Tu Yoy -+ Ya) = (u(H) = >} a(H))Ya, ... Yoy, (2.96b)
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o and if X, € nt, we define

7Tu(Xa)l =0 (2.97a)
Tu(Xa)Yay - Yo, = Yo, (mu(Xa)Yay - - Ya,) (2.97b)
k
— Oa,a1 Z o (Ho)Yo, - Yo, (2.97¢)
j=1

In the last one, we do an inductive definition.

Lemma 2.23.
The couple (m,,V,) is a representation of g on V.

Proof. No proof. O

That representation is one Verma module for g. If the algebra g is an algebra over the field
KK, the field K itself is part of U(n)~, so that the scalars are vectors of the representation. In
that context, the multiplicative unit 1 € K is denoted by vy.

Theorem 2.24.
The representation (m,,V,,) of the semisimple Lie algebra g is a cyclic module of highest weight,
with highest weight p and where vy is a vector of weight p.

Proof. No proof. O

The Verma module is, a priori, infinite dimensional and non irreducible, thus one has to
perform quotients of the Verma module in order to build finite dimensional irreducible represen-
tations.

2.4 The group SO(3) and its Lie algebra

We follow [18] in which more proofs can be found.
Proposition 2.25.
An element of SO(3) has exactly one eigenvector with eigenvalue 1. That vector is the rotation

axis.

The generator of rotation around the axis n (unit vector) is given by the matrix

0 —ng N9
ns 0 —ni|. (298)
—T19 ni1 0

That form results form the requirement that Nr = n x r. If we denote by R(n, ) the operator
of rotation in R? by an angle @ around the axis n, one shows that

R(b,0) = 1 +sin(0)N + (1 — cos(0)) N> (2.99)
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2.4.1 Rotations of functions

Consider any function f: R3 — C; we define the rotation operator U(n, ) by
(UmO)f)(r) = f(R(n,0)'r). (2.100)
These operators form a group, and we have in particular that
U(n,01)U(n,0) = U(n,01 + 6).

We are interested in infinitesimal rotations, that is rotations of angle df for which (df)? « d#,
or in other words, we are interested in a development of equation (2.100)-84 restricted to linear
terms in #. What one obtains is

(U(n,dd)f)(r) = (1 —iddn-1)f)(r) (2.101)

where the operator [ is defined by

| =—ir x V. (2.102)
Its components I; = —ie;;,7; 0k satisfy commutation relations
[lis ;] = i€ijly. (2.103)

The operator n - [ is refereed as the generator of infinitesimal rotations. One can derive an
expression of U(n, #) in terms of n - I by the following:

Uln,0+do)f =U(n,0)U(n,dd)f =U(n,0)(1 —iddn-1)f,
so that we have the differential equation

%(n, 0) = —iU(n,0)n -1 (2.104)

with the initial condition U(n,0) = 1. The solution is

U(n,0) = et (2.105)

2.4.2 Representations of SO(3)
The group SO(3) is strongly linked with SU(2) by the following property :

_SU@)

50(3) = =

(2.106)

Lemma 2.26.
A representation p; of SU(2) is a representation of SO(3) if and only if p;(X) =id for any X
in the kernel of the homomorphism SU(2) — SO(3), namely: p;(+1) = id.

Proof. We consider p;: SU(2) — EndV; and 9: SU(2) — SO(3). The latter fulfils ¢(1) =
(—1) = 1, which is an important equation because it ensures us that the rest of the expressions
are well defined with respect to the class representative.

If pj(=1) = 1, we define d;: SO(3) — EndV by d;([z]) = p;(x) (check that this is well
defined). With this,

dj([2]))d;([y]) = pj(x)p;(y) = pj(xy) = d;([zy])-
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Now let us suppose that d;([z]) = p;(z) is a representation. Thus

pi(z) = d;([z]) = d;j([==]) = pj(=2) = p;(=1)p;(x),

so p;(—1) = idy;,.
O

Moreover, any representation of SO(3) comes from a representation p of SU(2) by setting
p(—1) =id and p(z) = p([=]).

Now, we research the representations of SU(2) for which the matrix —1 is represented by the
identity operator. These will be representations of SO(3). The spin j representations of SU(2)
is given by

Pj (X)¢pq(§) = Ppq (X_lg)-

With X = —1, this gives: ¢pq(—€) = (—1)PT%0pe(§). If we want it to be equal to ¢,q(&), we
need p + g = 2j even. This is true if and only if j € IN.

The conclusion is that the irreducible representations of SO(3) are the integer spin irreducible
representations of SU(2). Note that the non relativistic mechanics has SO(3) as group of space
symmetry. Thus there are no hope to find any half integer spin in a non relativistic theory.

2.4.3 Representations of the algebra su(2) = so(3)
Determination of the representations

In the case of s0(3), the Cartan subalgebra is one dimensional, and one has only one simple root:
a = Jf5 If A =alJf,, one has (A, a) = a, and theorem 2.13 says that A is highest weight of an
irreducible representation if and only if a € N/2.

Ladder operators

We are now going to determine the irreducible representations in a more explicit way. From
the relation (2.106)-84, we know that the study of su(2) and so(3) are the same. The algebra

su(2) is the real algebra generated by the matrices of the form (_%* _60) with a, B e C. A

convenient basis is given by

1/ 0 170 1 1/0 4
ul—§(0 —’L'), u2_§(—1 0), U3—§<i 0) (2107)

That algebra satisfies the commutation relations
[wi, uj] = €ijiup. (2.108)

The trick to build finite dimensional representations of that algebra is common (see [19] for
example). The first step is to perform a change of basis Ji = iuy that brings the algebra under
the form (see section 2.4 to understand why)

[Ji,Jj] = iEiijk. (2109)

We are going to construct all the finite dimensional irreducible representations of the algebra
(2.109)-85. The key point of that new basis is that one can define the ladder operators

Ji=Jy +idy (2.110)
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that have the property that
[J3,J+] = £J4. (2.111)

Notice that for every i, we have (J;)* = J;, so that (LT)* = L¥. An other important property
is that, defining J? = J? + J3 + J3, we have

[Ji, J?] = 0, (2.112)

which show that J2 is a Casimir operator, and is thus by Schur’s lemma a multiple of identity.
Notice that we are using an abuse of notation between J; as element of su(2) and J; as the
operator that represent J;. In the first case, products like J;J; make no sense®, but it makes
sense as operator composition.

The subalgebra {J?, J3} being abelian, we can diagonalise J? and J3 in the same time. Let
|m, o) be an orthonormal basis of the eigenspace of J3 associated with the eigenvalue m. The
index o is for a possible degenerateness to be studied later. We have

J3|m, o)y = m|m, o).
Using the commutation relations between Js and the ladder operators, we have
JsJi|m,o) = (+ Ji + JiJ3)|m, o) = (m + 1)J1|m, o). (2.113)

Thus J4 |m, o) is an eigenvector of J5 with the eigenvalue m + 1, which means that Jy|m, o) is a
linear combination of the vectors |m + 1,0) with different values of o. This is the reason of the
name of the ladder operators: they raise and lower the eigenvalue of Js.

We can now prove that one has to drop the index o because eigenvalues of J3 cannot be
degenerated. For, compute

Jod = (J1+ido)(J1 —ide) = J* — J2 +i[Ja, J1] = J* — J3 + Ja, (2.114)

so that
JiJ |m,o) = (a —m?* +m)|m, o)

where « is defined by J? = al. That proves that the space generated by |m, o) and the action
of Js, J; and J_ is invariant under the representation, while one cannot obtain |m, ¢") by action
of J4 on |m, o). Since we are looking for irreducible representations, that space must actually be
all the representation space. That rules out the possibility to have two different vectors |m, o1)
and |m, o2).

The explicit matrix form of J4 are:

0000 0100
1000 0010

J.=|0 100 7 7 —|loooo 7 (2.115)
0010 000 1

Since we are searching for finite dimensional representations, there exists a maximal eigenvalue
of J3. Let us denote by j that maximal eigenvalue and by |j) the corresponding eigenvector. The

3In fact, one has to understand these products as elements of the universal enveloping algebra. What we are
building is a reprensentation of that algebra, which, obviously, restricts to a representation of the algebra. When
we use the Schur’s lemma, in fact we invoke it in U ( s0(3))
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relation (2.113)-86 shows that if Ji|j) # 0, then J;|j) is an eigenvector for Js with eigenvalue
j + 1, which contradicts maximality. Then we have J|j) = 0.

Since we know the action of J3 and J on |j), it is convenient to write J? in terms of these
two operators. This is done in the same way as probing equation (2.114)-86:

J2=Ji+ Js + J_Jy, (2.116)

so that

T2y =3 + D) (2.117)
We know that J? = ol and that o is a characteristic of the representation. What equation
(2.117)-87 tells us is that the maximal eigenvalue of J3 is related to o by j(j + 1) = «a.

We are now able to determine the proportionality constant of relation Jy|myoc/m £ 1). Since
(J_)* = Jy, we have

[T-[m)|* = {m| Ty J-|m) = j(j + 1) —m?* +m. (2.118)

Then one has
J_|m)y=4/3( +1) —m(m — 1)|m — 1), (2.119a)
Jilm) =4/3(G + 1) —m(m + 1)|m + 1). (2.119b)

As expected, J_| —j) = 0 and J;|j) = 0. Notice that we avoid the possibility J_|m) =
—+/*"*|m — 1) by a simple redefinition |m — 1) — —|m — 1).

Equation (2.118)-87 shows that the norm of |m) becomes negative for m < —j and m > j+1.
We conclude that the minimal eigenvalue of Js is —j. Since |j) has to be reached from | — j) by
action of J,, the difference j — (—j) must be an integer. Thus j € N/2. The number j is the
spin of the representation.

Let us give the explicit example with spin one half. When j = %, the vector space is generated
by the vectors |1/2) and | — 1/2), and the operators are given by

1/1 0 0 0 0 1
Wb 0 (D (). e

from which we deduce

1/0 1 0 —i
J1=§<1 0)’ JQ:(i 0)'

Notice that we have J; = %O’i with the Pauli matrices,

01 0 —i 1 0
oy = (1 o)’ oy = (l OZ>, o3 = (o _1). (2.121)

These matrices fulfil the relation
00 = (Sij + ieijkok. (2.122)

Weight vectors

The algebra s0(3) does not contain abelian subalgebra of dimension bigger than one, so a Cartan
subalgebra is generated by Js. The unique (up to dilatation) element of J#* is thus given by
a(Js) = 1. The relation [J,, J1] provides the root spaces:

50(3)1 = {J4}

s0(3)_1 = {J_}, (2.123)

thus n* is generated by J.
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2.5 Thinks about su(3)

Using the Cartan matrix of su(3) and formula (2.70)-78, we will determine the Dynkin coefficients

of the representation o————o without even explicitly compute the weights. For that, we follow
the construction of [15]. The Cartan matrix is

2 -1
The Dynkin coefficients of the highest weight is given by
1
A; = NE (2.125)

Since A is highest weight, we have ¢(A, «;) = 1, so that Ay +¢q(A, 1) = 1 and As +g(A, az) = 0.
Thus the only weight of the first layer is M = A — «;. Using formula (2.70)-78, we find

(A—a1)i =Ai — Ay = (é) - (_21> = <_11> : (2.126)

We also have, by construction, p(M, a;) = 1 and p(M, as) = 0, so that My +p(M, 1) = =141 =
0 and My + p(M, as) = 1. We conclude that M — as is a weight, and its Dynkin coefficients are

given by
or-mn=()- () (%)



Chapter 3

From Clifford algebra to spin
manifold

Bibliography for Clifford algebras, spin group and related topics are [20-24]. More agebraic point
of view can be found in [25, 26]. More details about “square rooting” second order differential
operators are in [27]. For physical concerns, the reader should refer to [28-30].

3.1 Invitation : Clifford algebra in quantum field theory

3.1.1 Schrodinger, Klein-Gordon and Dirac

The origin of the Klein-Gordon equation is almost the same as the one of the Schrodinger: one
replace physical functions by operators. For a free particle, the correspondence are

0
energy E - iha,
momentum p — —thV.

The Schrodinger equation (which is the non relativistic quantum wave equation) comes from
replacement in the non non relativistic expression of the Hamiltonian
2 .
ih
E=2- — (at——v2>¢=0,

2m 2m
while the Klein-Gordon one (which is the relativistic quantum wave equation) comes from the
relativistic corresponding equation:

mc
E? =p?® + m?c* — (8“% + (?)2) Y =0.
This is a second order differential equation; there are however no “law of nature” which forbid
a first order equation. We try

0 h N
in% (M okoy v Bme? ) v = e
ot i

There are some physical constraints on the coefficients a* and 3. We will study one of them:
we want the components of ¥ to satisfy the Klein-Gordon equation, so that the plane waves
fulfill the fundamental relation E? = p?c? + m2ct.

89
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In order to see the implications of this constraint on the coefficients, we apply two times the
operator H, and we compare the result with the Klein-Gordon equation. We find:

a'ad +alat =261, (3.1a)
a'B+ Bat =0, (3.1b)
(@) =p=1. (3.1c)

If we define v° = 8 and v* = Ba’, we find that the matrices ¥* have to give a representation of
the Clifford algebra!:
Yy + Ayt = 2" (3.2)

The Dirac equation reads

(=i 0u+=5) v =0,

If we want to perform some computation with the quantum field theory, we need an explicit form
for the ~’s; that’s the reason why we study representations of the Clifford algebra. The Dirac
operator D is the operator which lies in the Dirac equation:

3
0
— I
’ HZ=:07 ozt (33)

3.1.2 Lorentz algebra

There is an other physical reason (which is in fact the same, but differently presented) justifying
the study of the Clifford algebra. The quantum field theory need representation of the Lorentz
algebra?

[JH JP7] = i(gPPJRT — P JVT — g% JHP 4 gho JVP).

A proof of these relations is given in lemma 3.1. Dirac had a trick to find such J matrices from
a representation of the Clifford algebra. If we have n x n matrices 7, such that

Y+ =20 L,
a n-dimensional representation of the Lorenz algebra is obtained by

i

g no v
S 7

Lemma 3.1.
The matrices of so(p, q) satisfy the definition relation

M'n +nM =0, (3.4)

and if M is the “rotation” in the place of directions a and b (i.e. a trigonometric or an
hyperbolic rotation following that a and b are of the same type or not), then the action on R 9
is given by (z')* = (M®)Ha? with

(M) = st — 55, (35)

1Don’t be afraid with the extra minus sign: the quantum field theory is most written with the metric
(+,—,—,—) instead of (—, +, +, +).

2When one think to real infinitesimal rotation matrices, the presence of i seems not natural, but one redefines
J — iJ for formalism reasons.
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The commutation relations are given by
[]\4(1177 Mcd] — _nachd + nadec + T]bCMad _ UbdMac. (36)

Notice that M = —)Mbe,

See section 12.5 of [31]. By a simple redefinition J = i M, one obtains
[J,J] =ind (3.7)
instead of [M,M] = nM, and the matrices J are Hermitian. Here 7 is the matrix n =
diag(+,...,+,—,...,—). As convention, we say that a direction corresponding to a positive
—_—
p times q times

entry in the metric is a time direction, while the spatial directions are negative.

3.2 Clifford algebra

3.2.1 Definition and universal problem

Definition 3.2.
Let V' be a (finite dimensional) vector space and g, a bilinear quadratic form over V. The
Clifford algebra C1(V,q) is the unital associative algebra generated by V subject to the relation

v-v = qv) (3.8)
for all v in CI(V,q). Here the dot denotes the algebra product and q(v) means q(v,v).

Theorem 3.4 proves unicity of such an algebra, so that it makes sense.

Remark 3.3. The relation (3.8)-91 is no more a restriction for the elements in CI(V,q) than a
restriction on the choice of the algebra product.

Theorem 3.4.
Let E be an unital associative algebra and j: V — E a linear map such that

j(v)-j(v) = q(v)1. (3.9)

Then we have an unique extension of j to a homomorphism j: CI(V,q) — E. Moreover, CI(V,q)
1s the unique associative algebra which have this property for all such E.

Cl(V,q)

1

V -
J

D

This theorem can be seen as a definition of CI(V q).

Proof. The proof shall belongs two parts: the first one will show how to extend j and why it is
unique, and the second one will prove the unicity of C1(V, q).

We begin by define the extension of j. First note that any linear map f: V — E can be ex-
tended to an algebra homomorphism f: T(V) — E in only one way. Indeed, the homomorphism
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condition require that f(v®w) = f(v)- f(w). The whole map f is then well defined by the data
of f alone.
As far as the map j is concerned, we have the relation (3.9)-91 which says that j(Z) = 0.
Indeed,
Jw®v—q(v) - (1)) =j(v) - j(v) = q()j(1) = j(v) - j(v) — q(v)1 = 0. (3.10)
Thus j: T(V) — E is a class map for Z, and we can descent j from T(V) to C1(V, q), We define
j: CI(V,q) —» E by

jla] = (=) (3.11)

where [z] is the class of z. That’s for the existence part.
The unicity is clear: fi; = fo on V implies that f; = fo on T(V). Thus f1 = f2 on CI(V,q).
We turn now our attention to the unicity of C1(C,q). Let D be an unital associative algebra
such that

(i) Ve D,

(ii) For any unital associative algebra £ and for any f: D — E such that f(v)- f(v) = —¢(v)1,
there exists only one homomorphic map f: D — E which extend f.

We should find a homomorphic map k: D — CI(V, q). Let i be the canonical injection i: V — D.
Clearly, we have a homomorphism V' — (V). Now, as a space E, we can take Cl(V,q); ¢ can be
seen as a linear map i: V' — Cl(V, ¢) such that i(v) - i(v) = ¢(v)1. The assumptions say that i
can be extended (in only one way) to a homomorphic map i: D — CI(V, q).
The Clifford algebra is thus unique up to a homomorphism.
O

What we proved is the following: if for any F and for any j: V — E such that j(v) - j(v) =
q(v)1, there exist an unique 7: D — E which extend j, then D = C1(V, ¢) up to a homomorphism.
One ays that Cl(V, q) solve an universal problem.

An explicit construction of CI(V,q) can be achieved in the following way. We consider the
tensor algebra T(V) = @,,5, (@"V) = COV @ (VRV)®... over V the two-sided ideal 7
generated by elements of the form v ® v — ¢(v)1. The Clifford algebra for (V,q) is given by

Cl(p,q) :=T(V)/T (3.12)

in which product of C1(V, q) is naturally defined by [¢]®[b] = [a®b] if [a] is the class of a € T'(V).

Let us now fix some notations more adapted to what we want to do. Let V' = IRP*? the vector
space RP*Y endowed with a diagonal metric which contains p plus sign and ¢ minus signs. For
v, w € V, the inner product with respect to the metric n of v by w will be denoted by n(v,w).
The norm on V will be defined by |v[|? = —n(v,v). It is neither positive defined, nor negative
defined. The explanation of the minus sign will come soon. The Clifford algebra is the quotient
Cl(p,q) := T(V)/Z of the tensor algebra by the two-sided ideal Z generated by elements of the
form

(v@w)® (w®v)®2n(v,w)l

for v,w in V. Depending on the context, we will often use the notations Cl(n) or CI(V) or
Cl(p, q). The algebra product is [z] - [y] = [t ®y], z, y € T(V). As long as z € V < Cl(p, q), the
expression 7(z, z) is meaningful. The definition of Cl is such that z - z = —n(z, z). This leads to
the somewhat surprising formula 22 = ||2||2 = —n(z, 2).
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3.2.2 First representation

Let (V, g) be a metric vector space and CI(V, g) its Clifford algebra. For each v € V, we define
the two following elements of Endg (/A V):

e()(ur A AuR) =UAUL A AU (3.13a)
k

L) (ur A Aug) = 2(—1)j_1g(U,Uj)U1 A AT A A (3.13b)
j=1

One has €(v)? = 0 and ¢(v)? = 0 because v Av = 0. In order to understand the latter, we wonder
what are the terms with g(v, u;)g(v,u;) are in

k k-1
1(v)? (u1 At A uk) = 2(—1)j_1g(v,uj) 2 (—1)l_lg(v,ul)u1 AT AT A A ug.
=1 1=1

Let’s suppose ¢ < j. The first term comes when the first ¢(v) acts on u;, its sign is given by
(=1)771(=1)""1. The second term has the same (—1)""!, but in this term, u; is on the position
j — 1 because u; has disappeared.

Now we use ¢(v) = €(v) + ¢(v) which fulfils for all u, v € V:

c(v)? = g(v,v,)1
c(u)v(v) + c(v)e(u) = 2g(u, v)1.

Therefore ¢ can be extended to a representation c: Cl(V,g) — End(A V). If {eg, - e,} is an
orthonormal basis of V' (i.e. g(e;, e;) = 1;;); in this case the c(e;) are anticommuting and a basis
of CI(V, g) is given by

{c(eg,) - -clex,.) st 1 <ky <+ <k, <n}. (3.14)

3.2.3 Some consequences of the universal property

The map —id |y extends to a € Aut (CI(V)),

alvy - vp) = (=1)"v1 - vy
(v; € V) and provides a graduation

CI(V) = C1I°(V) @ CI* (V).
The map 7: Cl(V) — Cl(V) extends id |y to an anti-homomorphism:

T(v1 - vp) = Vp 1. (3.15)
The complexification of CI(V, g) is
CI%(V,g) := CI(V, g) ®r C ~ CI(V®, g),

the isomorphism being a C-algebra isomorphism. The R-linear operator v +— ¥ in VC of complex
conjugation extends to a R-linear automorphism a — @. We define the adjoint by

a* =71(a) (3.16)
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3.2.4 Trace

Theorem 3.5.
There exists one an only one trace Tr: CIC(V) — C such that

(i) Te(1) = 1,
(i) Tr(a) = 0 when a is odd.

Proof. Let {e1, -+ ,en} be an orthonormal basis of (V, g) and a € C1% (V). When one decomposes
a into the basis of e;, one finds a lot of terms of each order. Since Tr is a trace, when the k; are
all different,

r‘[‘r(e/ﬁ T ekm) = T‘I‘(—@kZ ©r €k Cky = ’—‘[‘r(_ekl T ek27‘)
So the trace of any even element is zero. We decompose a into
o= Sax T
K ieK

where the sum is taken on the subsets of {1,...,n}. A trace which fulfils the conditions must
vanishes on even (but non zero) elements as well as on odd elements, so the only possible form is

Tra = ag.

Notice that in order to get this precise form, we used Tr(1) = 1 and linearity. This proves unicity
and existence. Now we have to prove that this is a good definition in the sense that an other
choice of basis gives the same result. So we take a new orthonormal basis

n

l

ej = Z ijek
k=1

with H'H = 1,,«,,. Now we have

and we will prove that ag = a'g. Let’s compute a lot:

[N
eiel = 2, 2, HinHjierer
k1

= Z HixHjiere; + Z HixHjierer
k=1 kAl
= ZHikijl + Z H;. Hjere
2 k£l
= (HHt)ijl + Z HikHjlekel.
k£l

The sense of this formula is that when ¢ # j, the product ege} has no term of order zero. In
other terms, as long as we only have terms of order zero, one and two, a change e — ¢’ does
not change the term of order zero. We are now going to an induction proof: we want to prove
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that e/ ...e" eje} has no scalar term assuming that no even combination has scalar terms up

C T Jor
r !
E aK | | €i€1€L,

to 2(r —1). It reads
K even €K

therefore we just have to look at terms of the form
e e (1 = Y Cllere; )
i£j

where the e;, are all different. The first term cannot produce a scalar term. In order to find a

scalar term in e’ ...e} exe;, we begin to look at terms whose decomposition of e’ ...e’ —ends

. BED Jor
by ejey, i.e.

! i
szT_lejzr_lkejl ... €5,._z€lELeKe].

The induction assumption says that there are no scalar term in e}, _sejepere;.

One can prove that C1” (C) is a Hilbert space with the scalar product
{alby = Tr(a™b). (3.17)
Let v € V with g(v,v) = 1 (thus in C1(V), we have v? = 1); since v = ¥, we have
a*v = vv* =v? = 1.

Lemma 3.6.

The maps a — ua and a — au are unitary if and only if uu™ = u*

u=1.

Proof. We pick A € U(1) and w = Av € V¥ which fulfils w*w = 1. This is the most general
element such that ww* = w*w = 1. Now for an arbitrary a, b € ClC(V), we compute the two
followings:

(walwby = Tr ((wa)*wb) = Tr (a*w*wb) = Tr(a*b) = {a|b),

and
(aw|bw) = Tr (w*a*bw) = Tr(ww*a*b) = Tr(a*b) = {a|b).

This proves that a — wa and a — aw are two unitary operators on the Hilbert space CIC(V).
For the converse, we impose for all a, b e ClC(V):

{ualuby = Tr(ba™u™u) L Tr(ba™).

In particular with a*b = 1, Tr(u*u) = Tr(1) = 1, thus the scalar part of u*u is 1. So we write
u*u =1+ f where f is non scalar, and for any x € ClC(V) , we have

Tr(z) = Tr(zu*u) = Tr(z) + Tr(zf).

We conclude that Tr(xzf) = 0, and therefore that f = 0. O
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3.3 Spinor representation

For the spinor representation, we restrict ourself to the even case p + g = 2n.

The aim of this subsection is to find some faithful representations of the complex Clifford
algebra v (p,q). In order to achieve this, we first consider V¥, the complex vector space
of V' with an orthonormal basis {e1,---,ep—1,€p,- - ,eq}. The metric is n(eg,ex) = 1 and
n(eptk,eprr) = —1 for k =0,--- ,p — 1. We use the following basis:

1 1
fe = 5(ex +epsn), gk = 5(ex = epsn), (3.18)
1 ) .
fp+s = 5(62p+2s + ’L€2p+25+1), Ip+s = 5(62p+25 - Z€2p+23) (319)

for k = 0,---,p— 1. We note that {fo, go} spans a C?-space which is n-orthogonal to the one
which is spanned by {f1,g1}. The following two spaces will prove to be useful:

W = Spanc{fo, f1} ~ C?, (3.20a)
W = Spang{go, g1} ~ €. (3.20b)

It is easy to compute the various products; among others we find

n(anfO) :07 n(flvfo) :07 n(flvfl) :0’ (321)

so that for any w € W, we have {w,w) = 0; for this reason, we say that W is a completely
isotropic subspace of (V¥ ,n*). The space W has the same property.

Proposition 3.7.
We have
W ~WH*, (3.22)

where W* s the dual space of W. By ~ we mean that there exists a linear bijective map

v W — W*,

Proof. For each w € W, we define ¢¥(w): W — C by

We first show that the map ¢ is injective. Let w € W be so that ¥(w) = 0. Thus for all v e W,
we have

Y(w)v = n(w,v) = 0. (3.23)

By decomposing w = agg + bgy and taking successively v = fy and v = f1, we see that a = b = 0.

The next step is to see that the map 1 is surjective. We know that dimcW = dimeW* = 2
and that 1(gg) # 0. Let’s prove that {¢(go),¥(g1)} is a basis of W*. It is clear by linearity
that {¢(ago) : a € C} = Span{y(go)}. The fact that ¢ is injective imposes that (g1) doesn’t
belong to Span{(go)}. So {¢(g0),¥(g1)} is a two-dimensional free subset of W*, and therefore
is a basis of W*. O

We turn our attention to the exterior algebra AW = COW @ (W A W)@ -+ @ APTIW of
w.



3.3. SPINOR REPRESENTATION 97

Definition 3.8.
We define the homomorphism p: VC — End(AW) by

plfi)a = fina,

~ (3.24)
plgi)or = —u(gi)ax
v E , E where v denotes the interior product defined in page 17.
ye AW ) wh d h duct defined 7
More explicitly, for all z € € and for all w,w’ € W, we have
p(fi)z = 2 fi, plgi)z =0, (3.25a)
plfi)w = fi nw, plgi)w = —n(gs, w)l, (3.25D)
p(fi)(w A w') =0, plgi)(w A w') = —n(gi, w)w' + n(gi, w')w. (3.25¢)

We will see that, via some manipulations, p provides a faithful representation of the Clifford
algebra, the spinor representation.

Remark 3.9. By “endomorphism of AW?”, we mean an endomorphism for the linear structure of
AW . We obviously not have p(z)(a A 8) = p(x)a A p(x)p.

Proposition 3.10.
The map p is injective.

Proof. We have to show that p(v) = 0 (v in V) implies v = 0. Any v € V¥ can be written as
v = a'f; + blg; with a sum over i. We first have that

pla’ fi +b'gi)z = za' fi = 0,
but the f; are independents and then a’ = 0. We can also write

~ bl
p(bogo +blgl)f1 = _bon(gOafl) - bln(glafl) = _5 = Oa

then b' = 0. The same with fy proves that 4 = 0. O

The homomorphism j extends to the whole the tensor algebra of V¥ by the following defini-
tions:

p(1) = idaw, (3.26a)
plex) = plex), (3.26h)
ﬁ(ekl ®...® ekr) = ﬁ(ekl) 0...0 pN(ekT). (326C)

So we get p: T(V®) — End(AW). The following proposition will allow us to descent p to a
representation of the Clifford algebra.

Proposition 3.11.
The homomorphism p maps I to 0: p(Z) = 0.

‘ Probléme et notes pour moi‘ 2.

1l faut vérifier les signes dans cette démonstration. En effet, regarde la premiére lignes, et
remarque que le signe n’est pas celui utilisé pour définir l’algebre de Clifford.
This proposition is wrong: there is a double covering.
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Proof. We have to check the following:
plr@uwdwv—2n(v,w)l) =0

for any choice of v, w in {eg, e1, €2, e3}. Here we will just check it explicitly for v = eg and w = e;.
The computation uses the definition (3.26¢)-97:

pleo ®@e1 @ er ®eq — 2n(eq, e1) = pleo) © pler) + pler) o pleo)
= 2[3(fo)? — plao)?]. 520
It is easy to see that p(fo)? = O:
p(f0)* [z ®@w @ wy A wa] = p(fo)[2fo ® fo A w] = zfo A fo,= 0. (3.28)
The proof that j(go)? = 0 is almost the same:
p(90)? [z @ w @ w1 A wa] = p(go)[~1(go, w)1 @ —n(go, wi)wa D 1(go, w2)wr]-
O

We can now see j as amap p: CI¥ (p,q) — End(AW). By construction, it is a homomorphism
and, thus, is a representation of C1® (p,q) on AW. For compactness, we use the notation

Ya i= V2p(eq). (3.29)

Lemma 3.12.
The «’s operators satisfy the following relation:

YaVo + 1 Ya = —2nap1. (3.30)

Proof. We have to check this equality on any element of AW. If we choose w; = afy + bf; and
wo = a’ fo + V' f1, we find wy A wy = (ab’ —ba’) fo A f1.

For example, we will explicitly check (3.30)-98 with a = b = 0, i.e. (o) o p(eg) = 3 id, which
proves that vy oy = id.

pleo)?[z @w @ (ab’ — ba') fo A f1] = p(fo + 90)*[z D w @ (ab’ — ba') fo A f1]
= p(fo + g0) [Zfo ® fo A w® —n(go, w)l
— (ab’ = ba")n(go, fo) fr (3.31)
+ (ab' = ba'ylgo. f1)fo |

= %(z Dwd (ab' —ba)fo A f1).

Lemma 3.13.
For any sequence iy, ...i3 of 0 and 1 (with at least one of them equals to 1), we have

Tr(vy -+ vo=t) = 0. (3.32)

We take the convention that 70 = 1.
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Proof. If the number of nonzero iy is even (say 2m), we have:

Tr(’yal st ’yan,) = ’—‘[‘r(,yaZn,yal A ,YQZWL—I)

because the trace is invariant under cyclic permutations. But we can also permute 7,,,, with the
2m — 1 other v’s. Tr(Ya, - - - Yas,,) = (=1)*" " Tr(Yay,, Yay - - - Yan,,_, ) because each permutation
gives an extra minus sign (lemma 3.12). Then the trace is zero.

If the number of nonzero iy is odd (say 2m — 1). Let i, = 0 (we restrict ourself to the even
dimensional case). We have Tr(A) = —ngq Tr(A7v,7,). Using once again the cyclic invariance of
the trace, Tr(Va, - - - Yagn, 1VaYa) = Tr(YaVay - - - Yagm_1Ya)- But, if we permute the first v, with
the 2m — 1 first v’s, we find Tr(Ya, - - - Yagm, 1 VaVa) = — Tr(YaVay - - - Yazm_1Va) » and the trace is
Zero again. o

Proposition 3.14.
The subset

{1, v (@ < D), YaVeve (@ <b<c),-= ;7 Yon}
is free in End(AW).

Proof. We consider a general linear combination of these operators:

E=XL+>XYat X AabVao+---F D, AabedVa WV Vd-

a<b a<b<c<d

The claim is that if £ = 0, then all the coefficients A ) must be zero. First note that Tr(E) =
0 = A by lemma 3.13. It is also clear that Tr(v,E) = 0 = A;. In order to see that \;; = 0, we
compute Tr(v;viE) =0 = A;j. And so on. O

How many operators does we have in this free system ? Any operators in this system can
be written as 7(’, - Yan 1 with ix equal to zero or one. Thus we have 22" operators. On the

other hand, we know that dimgAW = 2p + 2, and then that dimg End(AW) = 42 = 16. The

result is that {7, --- 752"~} st ix, = 0or1} is a basis of End(AW). In other words (if we suppose
a suitable ordering), the image by p of

B ={l,e4,6,®¢€p,, @€, Dec, e, @€, Dec@eq}

is a basis of End(AW).

If B is a basis of C’g a)’ then p is bijective and thus isomorphic. Therefore, we expect

p: Cg) 0 End(AW) to be a faithful representation. It is not difficult to see that B is indeed a
basis thanks to the equivalence relation.

3.3.1 Explicit representation

First, we choose a basis for AW:

fi ;o Jonfi= (3.33)

H
I
OO O =
=
I
o O = O
O =, OO
o O O
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Here is the explicit computation for the matrix ~o in this basis. First remark that p(eg)l = fo,
pleo) fo =%, pleo)fi = fo A f1, pleo)(fo A f1) = 5 f1. Then

1 0 0 3
0 1 1 0
Yo 0 :\/§ ol Yo 0 :\/i K
0 0 0 0
(3.34)
0 0 1 0
0 0 0 0
Y0 1 :\/5 ol’ Y0 0 :\/5 %
0 1 0 0
This allows us to write down ~p; the same computation gives the other matrices.
0100 0 -+ 0 o0
1 0 00 1 0 0 O
0 01 0 0 0 1 0
1 ; (3.35)
0 0 —5 0 0 0 -5 0
o0 o0 1% 0 0 0 3
- 2 — 2
2=VZIL g g G mEV2IL g o ¢
0 -1 0 0 0 «+ 0 O

It is easy to check that these matrices satisfies (3.30)-98.

Notice that, up to a suitable change of basis in AW, these are the usual Dirac matrices.
Indeed we actually solved the physical problem to find a representation of the algebra (3.2)-
90. We understand by the way why do physicists work with 4-components spinors: the 7’s are
operators on the four-dimensional space AW; hence the Dirac operator will naturally acts on
four-components objects.

The main result of this section is an explicit faithful representation of 1’ (p,q). This allows
us to write a Dirac operator which solve (see the invitation 3.1 and [27]) the problem to find a
“square root” of the d’Alembert operator: the differential operator D = y#3,, satisfies D? = [].

3.3.2 A remark

Let us compare the two faithful representations

c: Cl(V) —» Endgr(AV)
p: CI® - Endr(AW).

They obviously comes from the same ideas. One common point is that
cler)(er A ea) =2p(e1)(e1 A ea) = ea,
but they are different:

ples)(eo A ez) =0
c(es)(ep A ea) =e3 Aeg A ey.
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3.3.3 General two dimensional Clifford algebra
_fa 6
g = ) ﬁ
is realised by matrices

”HM —ﬁ)’ ”2=€(5/Ya ’ __5‘;3'5')

where ¢ = +1 is chosen in such a way that €|a| = a.

The Clifford algebra for the metric

3.4 Spin group

We will not immediately go on with Dirac operators on Riemannian manifolds because we still
have to build some theory about the Clifford algebra itself. In particular, we have to define the
spin group which will play a central role in the definition of the Dirac operator. Almost all —and
(too ?7) much more— the concepts we will introduce in this section can be found in [26]; a more
physical oriented but useful approach can be found in [32].

Let define the map x: I'(p, ¢) — GL(R'?) by

x(@)y =a(z) -y -z~ (3.36)

Let
I'(p,q) = {x € Cl(p, ¢) st x is invertible and x(z)y € V for all y € V'}.

It should be remarked that this definition comes back to the real Clifford algebra. The Clifford
algebra product gives this subset a group structure which is called the Clifford group. Any
x € V is invertible since x - x = —n(z, 7)1, the inverse of z is given by 71 = z/|z|?.

The subset Cl(p,q)* (resp. Cl(p,q)~) of Cl(p,q) is the image of even (resp. odd) tensors of
T(V) by the canonical projection T' (V) — Cl(p,q). With these definitions, we have a natural
grading of Cl:

Cl(p,q) = Cl(p,9)* ®Cl(p, )™, (3.37)
and the subgroups
I'(p,q)" =T(p,q) n Cl(p, )", I'(p,q)” =T(p,q) nCl(p,q) " (3.38)
For 1,...,2, € V, we have 7(x1 - - - ®,) = @, - - - 1. The spin group is
Spin(p, q) = {z € T(p, q) " |7(x) = 27"} (3.39)

while the spin norm is the map N: I'(p, ¢) — I'(p, q) defined by
N(z) = z7(a(x)).

We will see in proposition 3.25 that N actually takes its values in R and is therefore a homo-
morphism N: I'(p,q) - R

Remark 3.15. The elements of Spin(p, ¢) are spin-normed at 1. Indeed, take a s in Spin(p, q).
We have N(s) = s-7(s) = 1 because a(s) = s and 7(s) = s~ 1. In particular Spin(p, ¢) "R = Zs.
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3.4.1 Studying the group structure

Proposition 3.16.
The set T'(p, q) admits a Lie group structure.

Proof. During this proof, p denotes the Clifford multiplication: u(x,y) = x -y. We know that
C1%(p, q) is isomorphic to End(AW) in which the multiplication is a continuous map. Thus y is
continuous on C1%(p, ¢). But Cl(p, q) is a closed subset of C1%(p, ¢), so u is a continuous map in
Cl(p, ¢). This proves that y seen as a map from I'(p,q) x V to V is a continuous map.

The space V' is closed in Cl(p, q), thus o1 (V) is also closed. But o~ 1(V) = T'(p, q) x Cl(p, q).
So I'(p, q) is closed in Cl(p, q).

Now the result is just a consequence of theorems .26 and .27. Indeed, let us study the subset
7 which appears in the definitions of the Clifford algebra. It makes no difficult to convince ourself
that it is a closed subgroup of T'(V'). The theorem .27 thus makes Cl(p, q) = T'(V')/Z a Lie group.
But we just say that I'(p, q) is closed in Cl(p, ¢), and the fact that I'(p, ¢) is a subgroup of Cl(p, q)
is clear. By theorem .26 we conclude that there exists a Lie group structure on I'(p, q). O

Lemma 3.17.
The map x is a homomorphism, in other words x is a representation of T'(p,q).

Proof. The following computation uses the fact that « is a homomorphism:

(a-8)-y-(a-0)~" = afa)-a)y b~ -a”!

x(a-b)y =«
a(a) - x(b)y-a~" = x(a)x(b)y.

o
Let y € I'(p,q)~ and v € V. Where is y - v ? First note that (y-v)~' = v~ -y~! so that
ofy ) w- (g ) = —oly) vewv -y
= —a(y)(2n(v,w) —w-v) 07" y7! (3.40)

—2n(v,w)a(y) - vy +aly) - w-y!

which belongs to V' because y € I'(p, ¢). This reasoning shows that (apart for 0), y-v € I'(p,q)*
if and only if y € I'(p,q) .

Lemma 3.18.
If x € V is non-isotropic (i.e. n(x,x) # 0), the automorphism x(x) is the orthogonal symmetry

with respect to x .

We recall that
vt ={yeV stn(z,y) =0}

We will denote by ¢® the orthogonal symmetry with respect to .

Proof. When the operator ¢% acts on y, it just change the sign of the “z-part” of y. So we can
1

write 0%y =y — 2n(z,y)1,, where 1, := z/|z|. It should be checked if x(2)y = a(z) -y -z~ is
equal to y — 2n(x, y)1, or not. We know that x - & = n(x,x)1 = —||z||. It follows that

Xr- T
x-y+y-x=2n($,y)w-
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1

If we multiply this at right by =1, using the fact that a(x) = —z, we find

—o(z) y "t =—y+2n(z,y)l,,

which is precisely the identity we wanted to check. o
The following result will help us to identify subgroups of Clifford group as isometry groups.

Theorem 3.19 (Cartan-Dieudonné theorem).
Each o in O(1,3) can be written as 0 = 71 0 ...0 Ty, where the T’s are orthogonal symmetries
with respect to hyperplanes which are orthogonal to non-isotropic vectors.

Proposition 3.20.

x(I'(p,q)) = O(p, 9).

Proof. In order to show that x(I'(p,q)) € O(p,q) take z € V and x € I'(p, q). Since a(z) -z x7!

lies in V', we can write:

az) -z 27t =—a(a(@) 2z 27t) = -z alz) al@) =z 2 alzh).

2

(p:0)" This is achieved

In order to see that x(z) € O(p, q), we have to prove that ||x(x)yH?p7q) = |ly|
by the following computation:

IX@)yl?,q = = (@) y-2™) = (a(@) - y-27") (z-y - alz™))

3.41
=—a(z) y* alz™!) = ”yH%p,q)' o

The last step is simply the fact that y? € IR and therefore commutes with anything. We now

know that x(z) € O(p, q) for all z € T'(p, q). Thus x(T'(p,q)) = O(p,q).
For the second part, let o be in O(p, ¢). The Cartan-Dieudonné theorem(theorem 3.19) says
that 0 = 0% o...00" for some x1,...,2z, in V. Thus ¢ = x(z1---,), and O(p,q) < x(T'(p, q)).
O

Proposition 3.21.

ker y = R* (3.42)
where the right hand side is the set of invertible elements of R.

Proof. Before beginning the proof, we want to insist on the fact that « € ker x does not mean that
x(z)y = 0 for all y in V. The “zero” of an algebra is the element e which satisfiese-y =y-e=y
for all y in the algebra. In other words, x is in the kernel of x if and only if x(z) = id.

First we show that Rg c ker x. If z € R, then a(x) = x. Therefore, when x # 0,

X(@)y =a(z)-y-z " =y,

because the algebra product - between an element of Cl(p, ¢) and a real is commutative. Note
that this does not work with x = 0.

We are now going to show that ker y < R. Let z € ker x. We decompose (definitions (3.38)-
101) it into his odd and even part: z = z+ + 2, with 2% € I'(p, ¢)*. These two can be written
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as zt =ej, ---ej,, and 27 =e;, --- €4, , with no two iy or j, equals. This is almost the general
form of elements in even and odd part of I'(p, ¢): the only other possibility is z in R. Obviously
a(zt) = +2F. Multiplying the condition x(z)y = y at right by (2% + 27), we find

(2" =27 )y =ylz" +27).
Thanks to equation (3.37)-101, we can split this condition into even and odd parts:
2Ty =yzT, 2Ty = —yz~. (3.43)

The first equation with y = e;, gives e;, ---€;,. - €5, = €j,€j, ---€4, . In the left hand side,
permute the last e;, from last to second position. So we find the right hand side, with an extra
minus sign. This means that z* = 0. In the same way, the second equation gives 2~ = 0. We
are left with the last possibility: z € R. O

Corollary 3.22.
For any s € T'(p,q), there exists some mon-isotropic vectors xi,...,%., and ¢ € R such that
S=cry - Tp.

Proof. Let us take a s € I'(p, q); we just saw (theorem 3.20) that x(s) is an element of O(p, q).
It can be written x(s) = o1 0...00,,. But we had shown that o; = x(;) for any x; normal to
the hyperplane defining o;. We thus have

x(s) = x(@1 - 2m),

where s belongs to I'(p, q) and is therefore invertible. This leads us to write id = x(s 1 -z1 -+ - 2).
But the kernel of  is R (proposition 3.21); so one can find a r € R such that s~ 1 -+ -2, = r.

The claim follows. O
Lemma 3.23.
IfveV,

det x(v) = —1. (3.44)

Proof. We already know that dety(v) = 1. To check that the right sign is plus, take the
following basis of V: {v,v;"} where {vi} is a basis of v'. Calculating the action of x(v) on this
basis, we find:

X =—v-v-07 = —v,

X(U)’UiL = — - /Ul . -1 1 . . -1

(3.45)

In this computation, we used the relation v-w = —w - v — 2{v, w) which is true for all v, w in V.
The action of x(v) on this basis is thus to let unchanged three vectors and to change the sign of
the fourth. This proves the claim. O

Theorem 3.24.
x(T(p,q)") = SO(p, q). (3.46)

Proof. From corollary 3.22, and definition 3.38, an element s € I'(p,q)* reads s = cvy -« -+ vo,.
Thus

det x(s) = det x(v1 -~ - v2,) = det [x(v1) ... x(v2r)] - (3.47)
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But we know that, for all v; in V, detx(v;) = —1. So det x(s) = 1 and x(T'(p,q)") < SO(p, q).
As set,

L(p,q) =T(p,q)" vI(p,q)~,

but the lemma shows that det x(I'(p,q)~) = —1 so, from theorem 3.20, x(T'(p,¢)™) must be the
whole SO(p, q). O

Proposition 3.25.
The map N takes values in R and the formula

N(z-y) = N(z)N(y), (3.48)
holds for all z, y € T'(p, q).
Proof. We write as usual x € I'(p, q) as © = cvy - - - vp. So,
N(z) = cvy - vo7(a(cvy - vp)) = (=1)"CPoy - vy - vy - 01 (3.49)

The first equality comes from the fact that a(cvy -+ v,.) = (—=1)"cvy - - - v,.. Now N(z) € R because
v; - v; = —(v;,v;y € R for all i. Hence the following hold:

(3.50)

This is the claim. O

Theorem 3.26.
We have the following isomorphism of groups

Spin(p, ) = SOo(p, 9)-

provided by the map x.

‘ Probléme et notes pour moi‘ 3.

That result (and the proof) is wrong : there is a double covering. The next result is correct, and
I should merge the two proofs.

Proof. Let {e1,---,ep, f1,---, fp} be a basis of RP*9 where the e;’s are time-like and the f;’s
are space-like. We have

where ¢ is defined as follows: ey = —eq, £f1 = —f1 and e = ek, Efx = fr for k # 1. This
element can be implemented as & = x(g) for g = e1f1. It is easy to see that g7! = —fie; and
that 7(g) = fie1, so that g ¢ Spin(p, q).

Is it possible to find another h € T'(p, ¢) such that x(h) = £ ? If x(a) = x(b) for a, b € T'(p, q),
then a = rb for a certain r € R. So we find that h = g~!/r is the general form of an element
in I'(p,q) such that x(h) = £. This is an element of Spin(p, q) if and only if 7(h) = A1, or
—ey f1/r = re1 f1 which has no solutions. We conclude that no element of Spin(p, ¢) is send on &
by x. So

x(Spin(p,q)) < SOo(p, q).
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Probléme et notes pour moi‘ 4.

Surjectivity of x from Spin(p, q) to SO(p, q) is still to be proved.

Theorem 3.27.

x(Spin(p, q)) = SOo(p, q) (3.51)

where the index 0 means the identity component.

Proof. Proposition 3.21, theorem 3.24 and remark 3.15 show that the map y: Spin(p,q) —
SO(p, q) is a homomorphism with Zs as kernel. We begin to prove that x: Spin(p,q) — SOo(p, q)
is surjective. On the one hand, elements of Spin(p, ¢) satisfy one more condition than the ones
of T'(p, q)*. Thus the algebra Spin(p, ¢) has codimension one in I'(p, ¢) ™.

On the other hand, we know that SO(p,q) = SO¢(p, q) U hSO¢(p, ¢) where h is the matrix
such that he; = —e; fori = 0,...,3. Since Spin(p, ¢) has codimension one in I'(p, ¢) T, there is at
most one more generator in x(I'(p,q)*) than in x(Spin(p, q)) (because x is a homomorphism).
In order to prove this theorem, we just need to show that elements of x(I'(p,¢)™) which do not
belong to x(Spin(p, ¢)) is h.

Is is no difficult to see that x(eg-e1-ea-e3)e; = —e; fori = 0...3: just write x(eo-e1-€2-€3)e; =
eg-€1-€eg-€3€;-" egl ey 61_1 - eal and use the commutation relations. An easy computation
gives N(eg - e1 - ea - e3) = —1; then this is not in Spin(p, ¢) by remark 3.15. O

We write it by the exact sequence
7y Spin(p, ¢) ——= SOo(p, q) (3.52)

we say that the group Spin(p, ¢) is a double covering of SO¢(p, q).

Lemma 3.28.
If m: X — X s a covering which satisfies

(i) X is path connected,

(ii) Yr e X, X, := n'(x) is path connected in X i.e. for all a, be X, there exist a path in X
which joins a and b,

then X is path connected.

Proof. If # and § are in X, we can suppose that 7(Z) # 7(7) (because if 7(Z) = 7(§), the second
assumption gives the thesis). We define x and y as their projections: z = 7(Z) and y = 7(g).
Let v be a path such that v(0) = z and (1) = y, and 7 be the lift of v in X which contains 7:
7(0) = & and 7(%(1)) = (1) = y. Then 7(1) lies in X,. Therefore, we can consider 7" which
joins (1) and g.

So, 4" 04 is a path which contains & and 7. O

Proposition 3.29.
The group Spin(p, q) is connected.

Proof. We will prove that the covering x: Spin(p, q) — SOg(p, ¢) fulfils lemma 3.28. We just have
to show that Spin(p, ¢) fulfills the second assumption of the lemma. First note that x(Z) = x(9)
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implies x(Z§ ') = e, and then & = +7 because of proposition 3.21. Since the other case is trivial,
we can suppose T = —{.

It remains to prove that for every g € Spin(p, ¢), there is a path in Spin(p, ¢) which joins g
and —g. The answer is given by the path ¢ — ~(t)g where

~(t) = exp(te; - e3) = cos(t)(—1) + sin(t)e; - o
which satisfies v(0) = 1 and (7)) = —1. O

Proposition 3.30.
The homomorphism p restricts to a homomorphism p: Spin(p,q) — GL(ATW).

Proof. An element in Spin(p, ¢) reads s = cvy - - - vo, and its image by p is

ps) = cp(vr) o+ 0 plvar).

When one applies p(v1) to an element o € A¥TV, one obtains a linear combination of an element
of A*='W and one of A¥*'W. The element j(s) being an even composition of such maps, its
transforms an element of A*W into an element of AT, O

Notice that an element of V' —mno VT is represented on A*W by complex matrices. This
is not a problem. In the case of R!'3, we have dim A*W = 2 and thus

p(Spin(1,3)) « GL(2,C).
The following is the lemma 8.5 (page 57) of [21].

Lemma 3.31.
Let p: Cl(p,q) — Homg(E, E) be a representation of the Clifford algebra on a vector space E.
If p+q = 2, then for all s € Spin(p — 1, q) = Cl(p, q),

det ¢ (p(s)) = +1.

Proof. No proof. O

Theorem 3.32.
The representation p provides a group isomorphism

Spin(1, 3) ~ SL(2, C)

Proof. In the case p = 2, ¢ = 3, the lemma assures us that for each s in the spin group,
det p(s) = 1. Since Spin(1,3) is connected and the determinant function is continuous, we
deduce that det 5(s) = 1. This proves that 5( Spin(1,3)) < SL(2, C). The proposition 1.18 thus
implies that

p(Spin(1,3)) = SL(2,C),

but from CI(1, 3), the representation j is yet injective. A forciori, the representation p is injective
from Spin(1, 3). This finishes the proof. O
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3.4.2 Redefinition of Spin(V)

As it, this new definition only holds when g is positive defined 2 . Let us take v, x € V with
g(v,v) = 1. We have

—vav! = —vzv = —2¢(x,v)v + 20? = 2 — 2g(x,v)v € V.

The effect was to reverse the v component of z; the map x + —vzv~! is . Now, when A € U(1)
and w = \v, we also have that z — —wzw™" is ¢¥. Now we look at x(a): # — a(a)ra™! with
a = wi ... w,, aproduct of unitary vectors in V. Explicitly,

x(a)x = (=1)"w; ... wezw, * .. wy
a composition of reflexions in V. When r is even, it is a rotation. We conclude that when « is
an even product of unitary vectors in V¥, then x(a) € SO(V). Theorem 3.19 states that any
rotation of V' is a composition of reflexions. So we define

Spin®(V) = {w; ... wa st wj € V, wiw; =1} < CICO(V), (3.53)

and x: Spin®(V) — SO(V) is a surjective group homomorphism. The inverse in Spin®(V) is
given by
(wy ... wa) "t =wi ... wf =W ... W1

In the real case, proposition 3.21 says that ker y = R*. In the complex case we get ker y = C*
and, when we look at ker X |spinc(v), we find

ker x = U(1). (3.54)
Then we find the short exact sequence

i 4 Spin®(V) —= SO(V) —%= 1. (3.55)

1 U(1)

Let u = wy ... wqk € Spin®(V) with w; = A\ju; and \; € V, s0 7(u) = way ... w1 and
T(u)u = way, ... w Wy ... wak = AT ... N3, € U(1).
This proves that 7(u)u is central in Spin®(V’). We define the homomorphism
v: Spin“(V) - U(1)

u — 7(u)u. (8:56)
This is a homomorphism because
v(ujug) = T(ugug)uius = 7(ug) MUQ = 7(ug)uaT(u1)ug
central
= v(ug)v(u1) = v(u1)v(ug).
The map v naturally restricts to U(1) as
v(\) = A2
The combined map (x,v): Spin®(V) — SO(V) x U(1) has kernel {+1}. We define
Spin(V') = ker v|gpine(v)- (3.57)

3] think that only the identity component of SO(p, q) is obtained when one works with a signature (p, q).
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Lemma 3.33.
This group is the same as the one defined in equation (3.39)-101.

Proof. Let u € Spin(V') (in the sense of equation (3.57)-108). The fact for u to belongs to Spin(V')
implies the two following:

(i) we Spin®(V) = u*u =1,
(i) uekerv = 7(u)u = 1.

The second point says that u~! = 7(u), which is a first good point to fit the first definition of
Spin(V). Now we have to prove that u € T't(V): u must be invertible and x(u)x must belongs
to V for all € V. These two points are contained in the definition of Spin®(V). O

Let us see in the new definition how is x: Spin(V) — SO(V). On Spin®(V'), we have ker x =
U(1), but on Spin(V') we require moreover 7(u)u = 1, thus an element of ker x in Spin(V") fulfils
T(M)A =1, so that A = {£1}. We conclude that ker x|spin(v) = {£1}, and then that Spin(V) is
a double covering of SO(V).

3.4.3 A few about Lie algebra

Proposition 3.34.
We have an isomorphism

spin(p, q) ~ so(p, q)
between the Lie algebras of Spin(p, q) and SO(p, q).

Proof. Using the second part of lemma .28, with the map x: Spin(p,q) — SO(p, q), we find that
dx.(spin(p, q)) = so(p, q). Then we know (lemma .29) that

s0(p, q) = spin(p, q)/ ker dye..

On the other hand, the first part of the same lemma gives us that x~*(e) is a Lie subgroup of
Spin(p, ¢) whose Lie algebra is ker dx.. But x~!(e) = Zs, so ker dx. = {0}. O

Let us now shortly speak about the Lie algebra of I'(p, q)*. A basis of Cl(p,q)™" is

{1,% - 71,7 - 71,70 - ¥3,%0 - Y1 - Y2 - Y3}

Thanks to the anticommutation relations, we don’t need ; - 2 in the basis.

Remember that I'(p, ¢)* is the set of the 2 € C17(p, q) such that x - v - a(z™!) lies in V for
all v e V. Let z(t) be a path in I'(p,q)" such that z(0) = e and #(0) = X. Differentiating the
definition relation, we find

dov-al Do+z-v- (Da(@)o=X v—v-X,

therefore
Lie(D(p,q)*) = {X € C1*(p,q) such that X -v —v-X eV, VoeV}.

It is clear that C is a subset of Lie(T'(p,¢)"), and that V is not. The following computation
shows that V -V is a subset Lie(I'(p,q)"):

a-b-v—v-a-b=2n(v,a)b—2n(v,b)a.
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We can also check that V-V -V -V n Lie(T'(p,q)") = &. A basis of Lie(T'(p,q)") is
{1,eq-ea st a < G}

We know that ker[y: T'(p,q)* — SO(p,q)] = Ro. So the kernel of the restriction of dy. to
Lie(T'(p, q) 1) is the Lie algebra of Ry (see lemma .28), which is R. Therefore, a basis of spin(p, q)
is

{eq - eg st a < ).

3.4.4 Grading AW
We already know that AW = C@® W @ A2W. This space can be written as
AW = AWT @AW ™,

with AW* = W and AW~ = C®A2W. The interest of such a decomposition lies in the definition
of an action of C17(p, q) on AW. This action will be defined by e: Cl*(p,q) x AW — AW,

zea=px)
for any z in C1*(p, q¢) and any o in AW (see definition 3.8).

Proposition 3.35.

This action preserves the grading of AW :
Clt(p,q) e AW = AW
(p,q) (3.58)
Cl*(p,q) e AW~ = AW .

Proof. For x € C, theses equalities are obvious. We have to check it for = e; - ¢;. Here, we will
just check that (e1 - eg) (v A w) € AW ™. This follows from a simple computation:
plen)p(fo + go)(v Aw) = p(f1 + g1) [=n(go, v)w + n(go, w)v]
= —1(g0,v) f1 A w +n(go,w)f1 Av (3.59)
+ (g0, v)1(g1, w) = 1(go, w)n(g1, v).
O
Since Spin(p, q) is a subgroup of ClT(p,q), we can construct two new representation of
Spin(p, ¢). These are p*: Spin(p, q) x AWT — AW+,
(s = s,

+

ot ()t = psyur, (3:60)

for w* in AW*. This is no more than the fact that p is reducible and that two invariant subspaces
are AW™ and AW ™.

3.4.5 Clifford algebra for V = R?

General definitions

The whole construction can also be applied to V' = IR? with the Euclidean metric. This is our
business now. We take the complex vector space V* and an orthonormal basis {e1,es}. As
before, we define

1 . 1 .
fi= 5(61 + ies), g1 = 5(61 —ieg).
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There are no difficulties to see that Span(fi) is a completely isotropic subspace of V. Thus we
define W = Cfy, AW = C@®W, AW* = C, and AW~ = W. The homomorphism p: V® —
End(AW) in AW is defined by

p(f1) fina,

plgr)a = —i(g1)a, (3.61)

where « is any element of AW. In the basis 1 = (é) and f1 = (?)’ we easily find that

pen=(7 ). o= (5 )

For ¢ € R we also have p(c)f1 = c¢f1 and p(c)l = ¢, thus we assign the matrix (g 2) to the

number c.

As before, we define v; = \/2p(e;). We immediately have 192 + 7271 = 0 and ;3 = —21,
so that the 7’s satisfy the Clifford algebra for the euclidian metric.

For notational conveniences, it proves useful to make a change of basis so that we get

1= ((1) _01> . Y2=-— (? 6) : (3.62)

The algebra C1(2) is isomorphic to the algebra which is generated by direct sum C1(2) ~
R®v1 ®v2 ®Ry1v2. A general element of C1(2) can be written as zy1 +yv2 + 'R+ y'v172. In
the representation of p, a general element of Cl(2) is therefore

4y x4y
—x+iy o —iay' )’
so that we can write the Clifford algebra of R? as

01(2)={<_O‘B g) : a,ﬂe@}.

The following four matrices provide a basis:

O N el B R S GO B

We can check that these matrices satisfies the quaternionic algebra :

,L'2=j2=k2=_1

ij = —ji =k,
o (3.64)
Jk = —kj =1,
ki = —ik = j.

The algebra C1(2) = H is represented by p on €? by the Pauli matrices 1,1, j, k which are
given by (3.63)-111.
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The maps a and 7

What are the matrices which represent V' ? These are p(e;) and p(ez). Thus we can write
V' = Spang {y1,72} = Spang {j, k}, or

{5 D) et

As before, « is the unique homomorphic extension to C1(2) of —id on V. From the definitions,
we get a(j) = —j, a(k) = —k. The extension present no difficult. For example: (i) = a(jk) =
a(j)a(k) = jk =1, but a(jk) = a(i); then a(i) = i. The same gives a(1) = 1.

The case of 7 is treated in similar way. We find: 7(j) = j, 7(k) =k, 7(i) = —i, 7(1) = 1.

Now, we can find the group I'(3). The condition for z € C1(2) to be in T'(s) is a(z)yz ™" to
belongs to V for all y € V. We put
_ (o B _(a =P
(5 e -0 7)
A typical y in V is
_ (0 n
- (—ﬁ 0) |
A few computation gives:
- L anf + pna aan — ﬁﬁﬁ)
1
a@)yx™ = —————— 55 I I
1™ = L (T o o+
. . 0 ¢ S
If we impose it to be of the form £ 0 for all n € C, we get, for all n € C, Re(apn) = 0,

which implies @8 = 0. So we conclude:

_ffa 0 0 B\ .
N {(0 a) , (_B 0) . a, B € € not both equals zero} .

Be careful on a point: I'(y) is the multiplicative group generated by these two matrices, not the
additive one.

The spin group
It present no difficult to find that

Dl = {(g‘ g) Lo o}. (3.65)

(*‘2) which satisfy 7(z) = 7. We know that 7 (a g) =

The spin group is made of elements of I' 0

-1
a 0 a 0 _ 1 a 0 eps -1 2 _
(0 a) and that (0 a) == (0 a)' Thus the condition 7(x) = 7! becomes |a|* = 1.

The first conclusion is that
Spin(2) = U(1). (3.66)

A typical s in Spin(2) is
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The next point is to see the action of Spin(2) on V. The action of s € Spin(2) on a vector
v eV is still defined by s e v = x(s)v = a(s) - v - s71. More explicitly:

e? 0 0 =z e 0 0 e2if 5
x(s)v = (0 e—iG) (—E 0) ( 0 eiG) = (_6—21'92 0 )a (3.67)

z

where the matrix (9
z 0

) denotes the representation of the vector v of V. This equality can be

written e - v = €2y, If we note v = vy + vy = <21>, we get
2
26 ,, _ (€08 20 —sin20\ [vq
¢ Y= \sin20 cos26 vy )"
(eie) _ [cos20 —sin20
X " \sin20 cos20 )

So x projects U(1) into SO(2) with a kernel Z, for this reason, we say that U(1) is a double
covering of SO(2). We note it

Therefore, we can write

Zy — U(1) 5 S0(2). (3.68)

3.5 Clifford modules

References: [23, 24].
Let M be a manifold. We denote by C1% (M) the bundle whose fibre at € M is the complex
Clifford algebra of the metric g, : C1%(M), = C1%(g,). We define the important map

v: T(M,CI(M)) — B()
y(dz") — v*(z)

which can be extended to the whole Clifford algebra.

Let V be a vector space endowed with a bilinear symmetric form. We consider CI(V'), the
corresponding Clifford algebra. A Clifford module is a real vector space E with a Zs-graduation
and a morphism

(3.69)

pe: Cl(V) - End(E)
of Zs-graded vector spaces. It is defined by a linear map pg: V — End(V') such that
pE(W)pe(w) + pr(w)pr(v) = B(v,w)id (3.70)

for every v, w € E. The element pg(z)v will often be denoted by x - v and the operation pg is
the Clifford multiplication. The dual module E* is defined by ppx(z) = pr(zt)*, ie.

(ppx (), vy = (=), pp (7(2)) v) (3.71)

for every 1) € E* and v € E. Here
Let 2 be a Zs-graded subalgebra of C1(V) and Ej, a 2-module. Then the space

E =nd$"")(Ey) = CI(V) @u Fr
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has a structure of Clifford module, the induced module. The tensor product ®g is the usual
one modulo the subspace spanned by elements of the form

TR®a-y—rxa®yY

for every x, a € CI(V) and y € Fy. In a similar way, if E is a complex vector space we have a
notion of C1%(V')-module.

Let z € CI(V) be such that 2 = 1. In that case the Clifford multiplication px(z) decomposes
FE in eigenspaces

E* = %(1 + pp(z))E.

If V is a n-dimensional vector space with an oriented orthonormal basis {ei,...,e,}, the
algebra CI(V) has a volume element w = ejes ... e, which does not depend on the choice of
the basis. The volume element squares to

w? = (=1)nn+D/2, (3.72)

In the complex case, we consider the complex vector space VT and the complex Clifford algebra
C1%(V) = CI(V) ®r €, and the volume element is defined as

we = D2, (3.73)

where [z] is denotes the integer part of z. Performing a separate computation for n even or odd,
it is easy to see that in both case,

wi =1. (3.74)
So in the complex case we always have an element in C1(V) which squares to 1, and a C1¥(V)-
module W always accepts a decomposition as W* = %(1 + we)W.

One says that a representation p of CI(V) on W is reducible if there exists a splitting
W = W1 @W> such that p(C1(V))W; c W;. If the representation is not reducible, it is said to be
irreducible. Two representations p;: Cl(V) — End(W;) are equivalent if there exists a linear
isomorphism F': Wi — Ws such that F o py(z) o F~! = py(z) for every x € C1(V).

Proposition 3.36.
The real Clifford algebra has

1 otherwise

{2 ifn+1=0 mod4

inequivalent irreducible representations. The complex Clifford algebra v (V) has
{2 if n is odd
1 ifn is even
inequivalent irreducible representations.
Proof. No proof. O

If M is a manifold, we denote by Cl(M) = Cl(T'M) the bundle whose fiber at x is the
Clifford algebras of T,M. We consider an orthonormal basis {e;} and if ¥ is a multi-index
{1 <o1,...,< 0, < m}, we pose ex; = €, ...€,, € CI(M). By convention, eg = 1. Since the
elements e; are ordered, they provide an orientation:

dVol=e1 A ... nepm e \(M). (3.75)
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Since the map €y, A ... A €, = €4,..c, is an isomorphism between CI(M) and A(M), we say

that d Vol € C1(M). Now we define

Tt

Kk =i+ D2 gy,

which is nothing else that the volume form normalised in such a way that x2 = 1. If m is even,
it anti-commutes with 7'M, and if m is odd, it commutes with T'M.

Let V be a m-dimensional real vector space, and C1© (V), the corresponding complex Clifford
algebra.

Lemma 3.37.
FEvery ClC(V)-module accepts an unique decomposition as sum of irreducible representations as
follows

(i) if m = 2n, there exists one and only one irreducible C1°(V)-module A and dim(A) = 2n,

(ii) if m = 2n + 1, we have two inequivalent irreducible modules Ay with v(k) = 1 on Ay
and dim(Ay) = 2™,

Proof. No proof. O

Let V be a vector bundle over M. A structure of Cl(M)-module over V is a morphism of
unital algebra v: Cl(M) — End(V). When one has a basis {e;} of V', we pose 7; = v(e;). The
following lemma is the lemma 1.2 of [24].

Lemma 3.38.
Let V be a CL(V)-module and {e;}, an orthonormal basis for TM on a contractible open set V.
Then there exists a local frame for V' such that the matrices y(e;) are constant.

We also define 7' = y(dz") = g“/~;. One easily proves that
YA+ = =27 (3.76)

where (g%) is the inverse matrix of (g;;). If the endomorphisms ; are constant in the basis {e;},
then the endomorphisms ¢ are constant in the basis {f; = griex}.

3.6 Spin structure

We consider a (pseudo-)Riemannian manifold (M, g) with metric signature (p, ¢), and SO(M),
its frame bundle; it admits a SO(p, ¢)-principal fibre bundle structure which is well defined by
the metric g (see 1.7.4).

Definition 3.39.

We say that (M, g) is a spin manifold if there exists a Spin(p, q)-principal bundle P over M
and a principal bundle homomorphism ¢: P — SO(M) which induced covering for the structure
groups is x, i.e. (€-8) = (&) x(s). A choice of P and ¢ is a spin structure on M.

Spin(p, q) ~~= P — Y SO(M) <~~~ SO(p, q)

\/

The wavy arrows mean “structural group of”.
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Remark 3.40. When we will use the concept of spin structure in the physical oriented chapters, we
will naturally use SL(2, C) as group instead of Spin(p, ¢). The isomorphism SL(2, C) ~ Spin(1, 3)
is proved in [21]. A physical motivation of such a structure is given at page 160.

3.6.1 Example: spin structure on the sphere S*

It is no difficult to see that SO(S?) ~ SO(3). Indeed, each element of SO(S?) is described by
three orthonormal vectors: one which point to an element x of S? and two which gives a basis
of T,,S%. The action SO(3) x S? — S? is transitive, and the stabilizer of any element is SO(2).

We define a: SO(3)/SO(2) — 5% by a(gSO(2)) = g. One can show, using proposition 4.3
in [3] that « is a diffecomorphism. Then

SO(2)
On the other hand, we know that
T,SU(2) = su(2) = {(f% _5m> céeCae IR} . (3.77)

It is a classical result that su(2) ~ R? not only as set but also as metric space with the identifi-
cation

(X,)Y) = —% Tr(XY),

for all X, Y € su(2). As we are in matrix groups, we know (see [0] to get more details) that
Ad,Y = 2Yz . In our case, this gives the formula

(Ad(g9)X, Ad(g9)Y) = (X, Y).
We can now state the result for S2.

Proposition 3.41.
The manifold S? with the usual metric induced from R® admits the following spin structure:

- Ad
Spin(2) ~~ SU(2) —2

SO(3) (3.78)
U(1) SO(2)
SQ

where the arrow X —£> Y means that G is the kernel of the map f: X - Y.

Proof. First, let us precise the concept of frame bundle for S2, and how it is well described by
SO(3). Let {e1, €2, e3} be the canonical basis of R?. To A € SO(3), we make correspond the basis
{Aes, Aes} at the point Ae; of S2. The projection p: SO(3) — S? is then defined by p(A) = Ae;.
It is clear that we will define the map 7: SU(2) — S? in the same way: 7(U) = p(Ad(U)).

For the rest of the demonstration, we will use the “su(2) description” of R? given by (3.77)-116
with € =y + 2.

Now, let us show that m: SU(2) — S? is a Spin(2)-principal bundle. Since we had already
shown that Spin(2) ~ U(1), we define the right action of Spin(2) on SU(2) by right multiplication:
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6
U-s=Us with s = (eo eOZ—e). It is clear that m(Us) = n(U):
L i 0
Ad(Us)ey = (Us) |0 |sT'U™ = Us (0 _Z.> sTuTt, (3.79)
0

0 —2
In order for w: SU(2) — S? to be a Spin(2)-principal bundle, we still need to show that for
all z € 52,

because (Z 0.) is the vector e; in the “su(2) description” of IR3.

7 (z) = {¢ g st geSpin(2) Ve (z)}.
Take A, B e m~1(x), i.e. Ae; = Be; = x. We need to find a s € Spin(2) such that

A=B-s. (3.80)

The matrices A and B are such that

B7'A (6 _OZ> AT'B = (6 _OZ> : (3.81)

This implies that B~*A € Spin(2). As Ad is surjective from SU(2) into SO(3), a general C
in SO(3) which acts on e; can be written Ue;U ! for U € SU(2) such that Ad(U) = C. The
condition (3.81)-117 becomes

a B\ (i O a -3\ _ (i 0
(526 26 -6 5
which implies a = €%, 3 = 0. Then B~ A belongs to Spin(2), and s = B! A fulfills the condition
(3.80)-117.
What about the induced covering for the structural groups ? The structural group of
7: SU(2) — S? is Spin(2), while the one of p: SO(3) — S? is SO(2). Indeed, for each z € S,
SO(2) acts on T,,52, leaving  unchanged. We have the following associations:

UeSU@2) 5 AeSO(3),
the matrix A being defined by A- X = UXU L. For s € Spin(2) we of course also have
Use SU(2) = As e SO(3),

with As- X = UsXs~'U™!. As we act by Spin(2) on SU(2), in the fibres of SO(3), the action
of Spin(2) is —via - the composition with X — sXs~!. But this is exactly x(s)X because
a(s) = s, since s € Spin(2). O

3.6.2 Spinor bundle

Let us take once again the spin structure on the (pseudo-)Riemannian manifold (M, g):

Spin(p, q¢) ~~= P —r SO(M) <~~~ SO(p, q)

\/
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with (¢ - g) = ©(¢) - x(9)-

Let us define S = AW, and S = P x, S. Take p: Spin(p,q) x S — S, p(g,s) = p(g)s,
where p is the spinor representation of Spin(p, ¢) on S. We also have x: Spin(p, q) — SO (p, q),
x(g)v = a(g) -v - g™, with a(g) = g for g € Spin(p, q).

The spinor bundle is the associated bundle

S=Px,5—>M (3.82)

A spinor field is an element of T'(S), the space of section of the spinor bundle.
On SO(M), we look at a connection 1-form o € Q*(SO(M), so(R™)), and, if T(M) is the
tensor bundle over M, we define a covariant derivative V®: X(M) x T (M) — T (M) by

Vs = X3,
for any s € T(M). See theorem 1.53, and the fact that T'(M) can be see as an associated bundle;
it is explicitly done for X(M) at page 45.
As seen in point 1.14.2) an automatic property of this connection is V¥g = 0 if g is the

metric of M. The Levi-Civita connection is the unique? such connection which is torsion-
free: TV = 0.

Proposition 3.42.
The 1-form & = ¢*a € QY (P, so(R™)) defines a connection on P. See definition 1.47 and
theorem 1.55.

Proof. Let us denote by R, the right action of g € Spin(p, ¢) on P (id est R,§ =& - g), and by

RSO the right action of u € SO(p, ¢) on SO(M). We have to check the usual two conditions
of a connection.
First condition. The first one is:

(Rga)e(D) = Ad(g~")(ae (%)),

for all £ € P, and ¥ € T¢P. In order to check this, we first remark that ¢ o Ry = Ri?g()M) o .

Indeed, for all € € P, definition 3.39 gives us (R,€) = (£ - g) = v(§) - x(g). With this, we can
make the following computation:

~ SO
R¥G = Rip*a = (po Ry)*a = (RY S 0 p)*a

= G R a = o* (Ad(x(g)7Y) 0 ).

(3.83)

The last equality comes from the fact that « is a connection 1-form. As we are in matrix groups,

we have Ad(g)r = grg—!, so

[Ad(x(9))z]v = [x(9)zx(9)"Tv = x(9)[xg~ vg] = gzg™". (3.84)

In the first line, the product is the usual matrix product which can be seen as operator compo-
sition.

But (Ad(g)x)v = grg~'v. Then Ad(g) = Ad(x(g)), if we identify spin(p,q) =~ so(p,q) by
proposition 3.34. Moreover, the action of Ad is linear, so it commutes with ¢*. With these
remarks, we can continue the computation (3.83)-118:

©*(Ad(x(9)™") o) = *(Ad(g™") o) = Ad(g™") o p*a = Ad(g™") 0 & (3.85)

4We will not prove unicity.
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This proves the first condition.
Second condition. The second one is &(Af) = —A with the definition (1.143)-54. This is also a
computation. First remark

ag(A7) = (9" a)e (A7) = ap(e) (Pre A7)

We compute @, A* with lemma 1.20:

d d
pacA® = o€ exp—td) = (BEED L) 00)(€)

3 dt x(exp —tA B
p t=0 p =0 (3.86)
— JE— . —_— — —_— - —_— *
= 9 - x(exp—t4) o 7 P(6) - exp(—tdxeA) . (dxeA) )
But dxe = idso(p,q), thus e A* = AZ(E)' The whole makes that:
Ge(AF) = ap(e) (Pre AE) = o) (Al ) = —A.
This completes the proof. o

Definition 3.43.
This connection 1-form on P is called the spinor connection. It gives us a covariant derivative
on any associated bundle and in particular on the spinor bundle, V: X(M) x T'(S) — I'(S).

Proposition 3.44.
If X, Y e X(M) are such that X, =Y, then for all s € T(S),

(Vxs)(@) = (Vys)(x).

Proof. We just have to show that for all vector field Z such that Z, = 0, (Vzs)(z) = 0. Such a
Z can be written as Z = fZ’ for a function f on M which satisfies f(x) = 0. We hav

%ZS = %les = f%zls,
which is obviously zero at x. |

Let x € M and {ey.} be an orthonormal basis of T, M. We can extend it to {e,}, a local
basis field around x such that e, is a section of the frame bundle (in other words, we ask the
extension to be smooth). The claim of proposition 3.44 is that V,_ () is an element of S, which
doesn’t depend on the extension.

3.7 Dirac operator ©

3.7.1 Preliminary definition

Let M be a m-dimensional (pseudo)Riemannian manifold with its spin structure

Spin(p, q¢) ~= P —r SO(M) <~~~ SO(p, q)

\/
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where ¢ satisfies (£ - g) = ¢(£) - x(9)-

Recall that for any vector space, one can see End V' = V*®V with the definition (v* ®v)w =
(v*w)v. This allows us to define an action of Spin(p,¢) on EndS by defining an action of
Spin(p, ¢) on S and S* separately. We know the action

Spin(p,q) x S — S

3.87
(9.9) = g, (357)
and as action on S*, we take the dual one

Spin(p, q) x S* — S*
pin(p, q) o (3.88)
gra=aopg™)

for all g € Spin(p, ¢) and « € S*.
Now we can make the following computation with g € Spin(p, ¢), @ € S* and v € S, using the
fact that p is linear:

[9- (a®v)]w = [(a o p(g~"))w]p(g)v
=p ([(aoplg~H)wlg) v (3.89)

Then we write the action of Spin(p, ¢) on End S by (A € End S)
g-A=plg)oAop(g™h). (3.90)

Notice that this definition is the one required in condition (1.93)-44.
The tangent bundle T, M is given with a metric g,. As usual, we build S, = AW,, a
completely isotropic subspace of T,, M with respect to the metric g,, and a representation

Pz ToM — End(AW,)
The first step in the definition of y(X) is to build ax : P — End(AW) setting® ax (p) = ﬁ()A(W(p)).

Lemma 3.45.
The function @ is equivariant, i.e. it satisfies

ax(p-g) =g~ " -ax(p) (3.91)

for all g € Spin(p, q).

Proof. 1t is no more than a simple computation using the equivariance of X. Indeed:

ax(p-g) = p(X ( 0) =P Xomn(a) = Px(g™) - Xogp)
g9) =

=g Koy 9) = Ao © AKXy © Al9) (3.92)
=g ax(p).
In the fourth line, the dots mean the Clifford product, and the last equality comes from the
definition of the action (3.90)-120 of Spin(p, ¢) on End S. O

5See subsection 1.8.4 for the definition of X.
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From the discussion of section 1.8.2, the function ax : P — End S defines a section ax: M —
EndS. We define v: X(M) — EndTI'(S) by

v(X) = ax. (3.93)

We immediately have

for any p € P. If we define
7-ax(p) = v(X)(p), (3.94)
the map 7 can be seen as an action on the section of S. Indeed, ¥ - sy is an equivariant function:

~

Alp-g)lax(p-9)) = p(9) " A(p)p(9)p(g™ ax (p)
(9) "4(p)ax (p) (3.95)

so that
7ax(p) = plg~ )7 ax(p).
The map ¥ - ax : P — End AW defined by (3.94)-121 is equivariant, and thus defines a section
v-ax € I'(S), as seen in the section 1.8.2.

3.7.2 Definition of Dirac

If we consider a basis {e,} of TM, i.e. m sections e,: M — TM such that for all x in M, the
set {eqs} is a basis of T, M, we note v := v(e,) € End(S).
For any s € I'(S), we consider the local® section ¢ of S given by

V(@) = D gulea e5)7s (Ve 8)(@).
o

For each x € M, take a A, in” SO(g,), and consider the new basis e/, = A,’eg. As A is an
isometry, gz (ey, €3) = gz(ea,ep); and since p is linear, v;* = pz(ey,) = Alp(eps) = APYE. In
the new basis, the section reads:

¥(x)

Z 9gu(€as eﬁ)Agg'Yg(%Aa"enS)(z)
afno

; (A", gap(2)A7vE (Ve, 5) (@) (3.96)

Z 9z (ena 60)7(17(%677 3)(1')’

no

where we used the fact that A‘gA = g and that all the A% are C* functions on M, so that

V,sy = Aaﬁ%x. This shows that ¢ (x) doesn’t depend on the choice of the basis, so it defines
a section from the data of s alone.
The Dirac operator D: I'(S) — I'(S) acting on a spinor field is defined by

(Ds)(®) = ga(ear ea)Vs (Ve, 5)(@). (3.97)

6Extensions of e, do not always globally exist.
"By SO(gz), we mean the set of all the matrix A such that Atg,A = g; Ay is an isometry of (Ty M, gs). In
other words, we consider A as a section of what we could call the “isometry bundle”.
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Proposition 3.46.
If the field of basis e, € X(M) is everywhere an orthonormal basis, the Dirac operator reads

(Ds)(@) = gap7*(Veys)(2) (3.98)
where v* is a constant numeric matriz acting on AW.

Proof. The building of the Dirac operator begins by considering the vector space T, M endowed
with the metric g,; then the spinor representation g, : T, M — End(AW,) where AW, is build
from isotropic vectors of T,, M is defined. If the vector fields e, € X(M) are everywhere orthonor-
mal for the metric g, then we have the matricial equality

ﬁx ((ea)x) = ﬁ(va)ij (399)

where the left hand side describe the matrix component of a linear operator acting on AW, while
in the right hand side we have the matrix component of a linear operator acting on AW and v,,
is a basis on R™ with respect to which the metric is the same as the metric g, in the basis (€4 )z-
Let 1): P — AW be an equivariant function; from definition (3.93)-121 of v we have

(7(%1/3)) (5) = (%1/3)(5)

ij

where a,(§) = ﬁ(éa (gb(f))) In this expression, &, is the equivariant function associated with

the vector field e, € X(M). It is defined in subsection 1.8.4 as
€a: SO(M) »> R™

4 (3.100)

b—b ((ea)ﬂ(b)).

So we have ao: P — End(AW) defined by

aa () = p((€) ' ea(@))

with x = 7(£). Now if £ is any element of 7 1(x), we have

(V(ea)¥) (2) = (@a¥)(X) = [€ aa(E)P(E)] = [& A(2(€) " ealx))¥(&)].

There exists a g € Spin(p, ¢) such that ¢(£ - g) = 1; taking this element and using equivariance
of the latter expression,

~

(v(ea)®) () = [€ - 9. plea(®))D(E - 9)] = [€- 9.7*V(E)] = [€.7*D(O)]. (3.101)

What we proved is that (veq1))(z) = v*1(z) is the sense that

v(ea)p =7 (3.102)

Hence the Dirac operator reads

in the sense that
DS = gaﬁ’ya egw- (3103)
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An often more convenient way to write the Dirac operator is to consider an orthonormal basis
(so that the metric g and the matrices 7 are constant) and to consider the equivariant functions:

Dy = gozﬁ'yaveaw-

This formulation is typically used when one search for Dirac operator on Lie groups. In this
case, we choose left invariant vector fields generated by an orthonormal basis of the Lie algebra.
The resulting field of basis is everywhere Killing-orthonormal.

Acting on a function f: M — R, it is defined by D: C*(M) —» C*(M),

(Df) () = gulea, €a)Vs (€ax - [)- (3.104)
With these definitions, one has
(D(fs))(x) = (fDs)(z) + (Df)().
Indeed,
(D(£9)(x) = gap s (Ve, f5)(5)
= gas ((ea - )s(@) + @) (Ve,5)(@))

= f(2)(Ds)(2) + 9o (€ - f)
= (fDs)(x) + (Df)(x).

With that definition, the Dirac operator becomes a derivation of the spinor bundle.

(3.105)

3.8 Example: Dirac operator on R? with the euclidian met-
ric

Since the frame bundle B(M) is a principal bundle (see subsection 1.7.4), one can consider
some associated bundles on it. We are now going to see that the one given by the definition
representation p: GL(n,R) - GL(n,R) on R" is the tangent bundle. So we study B(M) x,R".
By choosing a basis on each point of M, we identify each T,, M to R"™. An element of B(M) x R"
is a pair (b,v) with b = (by,...,b,) and v = (v!,...,v™). We can identify v to the element of
T, M given by v = v'b;.

In order to build the associated bundle, we make the identifications

(b,v)-g~ (b-g,97"v).

Here, by gv we mean the vector whose components are given by (gv)! = v7 gji. The tangent
vector given by (b-g,g9 ) is (g7 v)i(b- g); = v’ (g_l)jzgikbk = vFby, So the identification map
¢: B(M) x, R" — TM given by

b([b,v]) = v'b;
is well defined.

The following step is to consider the following spin structure:

Spin(2) ~~= R2 x SO(2) ——> SO(R2) <~~ SO(2)
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‘Probléme et notes pour moi‘ 5.
Spin(2) is not U(1) because U(1) is SO(2) while Spin covers it two times.

We have to define the two actions and ¢. One of the main result of section 3.4.5 is that
Xx: Spin(2) = U(1) — SO(2) is surjective. So, we can define the action of Spin(2) on P by

(,0) - 5 = (a,x(s)'D).

On the other hand, an element A in SO(IR?) can be written as A = {ae;}, where e; is the
canonical basis of T,R?, and a is a matrix of SO(2). See subsection 1.7.4. For g € SO(2), we
define

A-g={g tae;}s. (3.106)
and p: R? x SO(2) - SO(R?) by
o(x,b) = {be;}y.

The following shows that these definitions give a spin structure:

o((x,0) - 5) = plx, x(s)7'0) = {x(5)"bei}s = {bei}o - x(5) = (2,b) - x(5). (3.107)

3.8.1 Connection on SO(RR?)

We are searching for a torsion-free connection on the simplest metric space: the euclidian R2.
Thus we will try the simplest choice of horizontal space: we want an horizontal vector to be
tangent to a curve of the form X (t) = {be;},(;). For this reason, we want to define the connection
1-form by w(X) = v/(0). For technical reasons which will soon be apparent, we will not exactly
proceed in this manner. For X (t) = {be;}, ), we define

w(X) = —(b(t)b(0)~1)(0). (3.108)

We of course have w(X) = 0 if and only if &' (0) = 0: this choice of w follows our first idea. In
order for w to be a connection form, we have to verify the two conditions of definition 1.47.

Proposition 3.47.
The 1-form defined by
w(X) = —(b(t)b(0)71)'(0)

d
for X = —

g7 {o(t)eita(e) is a connection 1-form.
t=0

Proof. Let A € SO(2). If u = {be;}, equation (3.106)-124 gives:
d
A¥ = —{e e}
dt i—o

so that w(A*) = —(e~*4bb~1)'(0) = A. This checks the first condition. For the second, one
remarks that the path in SO(R?) which defines the vector Ry« X is (RgxX)(t) = {g 'b(t)e;}s.
It follows that

w(RgxX) = —(g7'b(t)b(0)~"9)'(0)

— (Ad,— (b()b(0) 1))’ (0)
— Ad g (b(£)b(0)~1)'(0)

= Adg—lw(X).

(3.109)
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Proposition 3.48.
The covariant derivative induced on M by this connection is

VxY = X(Y). (3.110)

Proof. In this demonstration, we will use the equivariant functions defined in 1.8.4. In order to
compute (VxY);, we have to use the definition of theorem 1.53. We first have to compute the
horizontal lift of X. It is no difficult to see that X ., is given by the path

X(t) = {bei}x )

if the vector field X is given by the path X (¢) in M. Indeed, it is trivial that w(X) = 0, and

d

= — = X.
dt

t=0

— d
dme X = Eﬂ'{bei}x(t) X (t)

t=0

Now, we compute (X 3)(b) for b = {Se;},. We begin using the basic definitions and notations:

(X8)(b) = X

VAN
>
e
o
—
~
=
=

= —S

d
7 = ES({Sez‘}X(t))

t=0

We can rewrite it with ¥ instead of 4. By construction (see (1.103)-46), if b = {Se;}., Y (b) =
S7Y(Y,). Thus

(XV)B) = 57 (Vx )

)

t=0

where, if {1;} is a basis of R™, then S is

SR Tl (3.111)
Ulli = S;UJ (é’j)X(t)
So if we write Y, = Y(z)d;, we have

57 (Yx() = (577 (X ()T,

and

d . i do o
77 'Yx)| =87Y; EYJ(X(t)) L= (ST X (Y1,
t=0 t=0

Since b is an isomorphism, we can apply b on both side of X(b) = b7}(X,), and take VxY
instead of X:

(VxY)(@) = b((S™);X (Y)T) = SES™X (V) (0)e = X(Y)(0))e = X(V),.  (3112)
O

From this and definition 1.113, we immediately conclude that our connection is torsion-free.
In a certain manner, one can say that our covariant derivative is the usual one.
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3.8.2 Construction of v

Now, we construct the map  of subsection 3.7. The first step is to define ax: P — End (AW)
by
flx(p) = ﬁ(Xt,a(p))
Here, AW is the completely isotropic subspace of (R?)” with euclidian metric; thus we can use
the result of section 3.4.5. In particular, we know the representation p.
To see it more explicitly, we need the expression of X. It is given in subsection 1.8.4: if b is
the basis {be;}z, Y (b) = b~ 1(Ys). As (b, z) = {be;}., we have

ax(b,2) = p(0~" (Xa)).

The subsection 1.8.2 explains how to explicitly get v(X) with the definition v(X) = ax. If
1 is a section of § and ¥(x) = [£,v], the general definition gives us (ax¥)(z) = [, ax(§)v] and
in our particular case, if £ = (b, x), we get:

(V(X)¥)(z) = [€ A0~ (X)) (3.113)

3.8.3 Covariant derivative on I'(S)

Remember the spin structure of SO(IR?): ¢(z,S) = {Se;},. We now construct the connection on
P =R2xS0(2). It is defined by the 1-form & = p*w. If v is a vector of P, it is described by a path
v(t) = (x(t),b(t)), then the path of dp(v) is {b(t)e;} () and ©(v) = w(dp(v)) = —(b(t)b(0) 1) (0).
_ The next step defining the Dirac operator is to find out an explicit form for the map
V:X(M) x I'(S) —» I'(S). A section s € ['(S) is amap s: M — S = (R? x SO(2)) x, AW; it
is defined by an equivariant function §: P — AW. In order to find the value of (Vxs)(z) for
X € X(M), we use the definition

—

TN = Xe(8)

Where_y is the horizontal lift in the sense of . For the same reason as in the proof of proposition
3.48, X (5,4 is given by the path X(t) = (b, X(t)) where X (t) is the path which defines X. So
we have

—

TR = X0(3) = 50, X(1)

t=0

Remark that AW is a vector space; so for every a € AW, the identification T,AW = AW is
correct. N
Our first form of V is
ol

(Fxs)(a) = [ 550, X(0)

but we can modify this in order to get simpler expressions. Remark that we have an equivalence
class, so that we can always choose the element of the class such that & = (1,x). We define

5: R2 —» AW, 5(v) = §(1,v). Our second and final form for V is:

(Vxs)(@) = | (1,2),

= [(1,z), X(5)], (3.114b)

] (3.114a)

where X (3) is well defined because 5 is a map from R? into a vector space (namely: AW).
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3.8.4 Dirac operator on the euclidian R?

We continue to write explicitly the definition (3.97)-121. Putting together (3.113)-126 and
(3.114b)-126, one finds

~

Ve (Ve ) (@) = v(eaa) €, e5(3)] = [€, 507 (€az))es ()] (3.115)

Here, eg = 03 and b = 1, then

~

Ve (Vegs)(x) = [(1,2), plea)dpss].

Now, the Dirac operator reads
(Ds)(z) = [(1,2),7%043]-

We can obtain a more compact expression by defining “Y's” and “As” when s € I'(S), Y €
X(R?) and A € End AW. The definitions are

(Ys)(z) = [(1,2), (Y5)(2)],
(As)(x) = [(1, z), As(2)]-

With these conventions, one writes:

(Ds)(x) = 7 (0as)(2)-

This justifies the expression (3.3)-90: D = y*d,, on flat spaces. With a good choice of basis of
AW, the matrices v are given by (3.62)-111, and

wan _ (0 —1 0 i
70 = (1 O)az_@ O)ay.
If we identify R? with € we have the following definitions:
1 , 1 .
az = 5(63—’&01/), aE= 5(095 —Hay),

so that
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Chapter 4

Relativistic field theory

4.1 Mathematical framework of field theory

This is a short review; the aim is to see why the quantum theory of fields needs representations
of the Poincaré group. It will be mostly physics oriented. References dealing with field theory
including gauge theory and representations are [3, 18, 19, 28, 28, 32-35].

4.1.1 Axioms of the (quantum) relativistic field theory mechanics
The quantum mechanics is based on a few number of axioms:

(i) We have a Hilbert space .. A physical state is given by a ray in JZ, i.e. a set
R={&: ¢l =1}

for a certain ¢ € 7 with (¢p|1)) = 1. In other words, the set of physical sates is the quotient
of the set of unital vectors in J# by the relation ¢ ~ v if and only if ¢ = £y’ for some
unimodular complex number £&. We denote by Ray J# the set of all rays in 5.

(ii) The observables are represented by hermitian linear operators on . A state R has value
« for the observable A if AR = o/R, where the action of A on the ray is obvious (and well
defined because A is linear).

(iii) If one has a system described by a state R, and if one want to measure if it is in one of the
state R1, ..., R, (orthogonal rays), the answer will be R; with probability

P(R - R;) = KR|R)*.
If the R,, form a complete system, one has a theorem which states that

YMIP(R—>R;)=1.

(iv) The rays of S furnish a representation of the (identity component of) Poincaré group.

This last point can look strange; we will see later (page 139) how it comes. It is the expression
of a relativistic theory. That axiom is the reason why one make intensive use of representation
theory in relativistic (quantum) field theory ...or maybe the intensive use of representation
theory is the reason of that axiom.

129
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4.1.2 Symmetries and Wigner’s theorem

Consider the following situation: someone observes a system in a state R, and makes measures
P(R — R;). An other person observes the same system which is, for him, in a state R’ and
observes P(R' — R}).

If two observers are related by a transformation of the Hilbert state which induces R — R’
and R; — R!, there are said equivalent if

P(R - R;) = P(R' - R.). (4.1)

Let us say it more precisely from a mathematical point of view. A symmetry is an invertible
operator T': Ray 7 — Ray ¢ such that for any ¢; € R;, ¢} € TR; and ¢! € TR,

KN = Korlo)|* = Kot lgml? (4.2)

Remark 4.1. Here, neither R nor R’ are measurable: the P’s only are measurable.

The following can be found in [28] p.91, [33] p.354.

Theorem 4.2 (Wigner).
Any symmetry T is induced by an operator U on S such that ¥ € R implies Uy € R'. This
operator is either unitary and linear, either anti-unitary and antilinear.

So, the symmetry operator must satisfy

UPUy = (o) (4.3a)
Uy +my) = EUY +nU¢, (4.3b)
UplUg)y = (Y|)* (4.4a)
Uy +nyp) = EUY +n*Ug. (4.4b)

In the anti-linear case operator, we do not define UT by (¢|U ¢y = (U|)) because the left-hand
side should be anti-linear with respect to i while the right-had should be linear. In place, for
an antilinear operator A, we define A" by

(@l ATy = (Agly* = (W|Ag). (4.5)

In this way, the definitions of unitary and anti-unitary in term of dagger are the same: UT = U~
For any transformation T: Ray ¢ — Ray ¢, the Wigner’s theorem provides an operator
U(T): ## — 2 which induces T on Ray. If the operator T depends on a parameter 6, the
operator U(T(0)) depends on 6. If T depends continuously on the parameter then the family
U(T(0)) only contains unitary/linear operators or only antiunitary/antilinear operators.

In physical cases, T(0) is mostly a Poincaré transformation: § = (A,p). But T'(1,0) is the
identity which is represented by U(1,0) = 1. Then all the (connected to identity) Poincaré
transformations are represented by linear and unitary operators on 7.

We will follow the proof given in [28]. An other form of the proof can be found in [33]. The
latter use a slightly different formalism in the axioms of the quantum mechanics; this is explained
in appendix .1. It is now time to prove the theorem.
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Proof of Wigner’s theorem. We consider an orthonormal basis {1x} of 5 with ¢y € Ry, and a
choice of ¢}, € T'Ry. From this and the assumptions, we have

Kl = [<tw|)])? = O

Then {¢|1,.> = 0 whenever k # [ and, since (¥ |4}y is real and positive, {¢}|¢> = 1. So

WY1 = O
The set 9}, is also complete in J#. Indeed suppose that we have a vector ¢’ € € such that
@'y =0 for all k. If ¢/ € R, we consider a 1" € T~'R and we have

K" [r)]* = [/ [vdf* = 0,

which contradicts the fact that the vy’s form a complete set. Now we have to fix a phase
convention for the 1. Since there are no canonical choice of phase, we fix with respect to an
arbitrary one of the ¢y, say ¥;. We put

1
7k_$

for k # 1. Any ~y; € TCj, can be written in the basis {1} }:

Ve = Y cmt. (4.7)
p

(1 + k) € Ci (4.6)

From assumption (4.1)-130 and the fact that |cg|? = [{(v}|))|%, we find, for k,I # 1
1
|ew|? = 50t

We can choose the phase of ;, and v}, in order to get cxr = cp1 = 1/+/2. For this, we begin to
fix 7;, in such a manner to get cx1 = 1/4/2 (from |ex1| = (74 [¥1)]), and next we fix v, for the
ckk- From now on, the so chosen v}, and 1)}, are denoted by U~ and Uy,

What we did until now is to take a basis {11} of 2 and define v, = 1//2(11 + ¥x). Next
we had chosen the phases of ¥}, € TRy and 7}, € TCy, in order to have

ek = cp1 = 1/\/2 Yk,

} (4.8)
ce =0 ifl # k and [ # 1.
This allows us to check a certain linearity for the operator U:
1
U <—2(1/1k + 1/)1)> = Uk
=V
1 (4.9)

1
= ﬁwll + ﬁwg from (4.7)-131 and (4.8)-131

1

5 (U1/11 + ka)-

5

Now we have to build U on a general vector ¢ = >, ¥, € R. Any vector ¢ € TR can be
decomposed with respect to the basis {¢;, = Ut }:

Y =Y CLUy. (4.10)
k
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From the conservation of probability |[(¢x|t)|? = [(Uk|v'H]? and |[(ye|[v)? = KUk, we
find

Cxl* = |1 %, (4.11a)
|Crx 4+ C1|* = |C}, + CF 2. (4.11b)

If one writes Cj = ay, + ibg, one finds Re(Cy/C1) = (arai + bigb1)/|C1]?. By doing the same with
C}. and using (4.11)-132,
Re(Cy/C1) = Re(C}/CY). (4.12)

Equation (4.11a)-132 also imposes

|Cr/C1]* = |CL/CHI, (4.13)
while compatibility between (4.13)-132 and (4.12)-132 requires

Im(Cy,/C1) = +Im(CL/C}). (4.14)

Equations (4.12)-132 and (4.14)-132 show that Cj and C}, must satisfy

Ci/C1 = C},/C (4.15a)
xor

Cy/Cy = (C,/CY)* . (4.15b)

For a given 1) we have to show that the choice must be the same for all the Ci'. Let | # k and
suppose that Cr/Cy = C},/C] and C;/Cy = (C]/C7)*; we will show that in this case, one of the
two ratios is real. So we can suppose k # 1 # . We consider the vector ¢ = %(wl + i + ),

(0%

V3

where a € © satisfies || = 1. The conservation of probability [(®[y)]? = [('|)')|* gives
|C1 + Ck + Ci]? = |C] + C}, + C7|2. Since |C1|*> = |C|?, we can divide the left hand side by |Cy |?
and the right one by |C]|*>. We find

o’ (Uy + Uty + Uly)

2 2
c.

=1+ £+ L

‘ ¢ G

Cr. C
14 =254 2
‘+Cl+c1

Using the assumption C/C; = C},/C] and C;/Cy = (C]/C1)*, we are in a case of an equation
of the form |u + v|* = |u + v*|? with u, v € C. If we write u = a + bi and v = z + iy, we find
b+y = +(b—y), so that it leaves the choice y = 0 or b = 0 which corresponds to (Cx/C71) € R
or (C;/C1) € R. So the coefficients C}, (k # 1) in the expansion (4.10)-131 must satisfy

Cy/CL = C}JC, Yk (4.16a)
xXor

Cy/Cy = (C,/C))*  VEk. (4.16b)

I'We will show later that for a given T, the choice must be the same for all the 1.
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Note that the phase of C; is not yet fixed. We naturally choice C; = C or C; = C;* following
the case. We define U: 5 — 57 by

U (Z ckzpk) = CreU if (4.16a)-132, (4.17a)
k k

Xor

U (Z cwk) =Y. CrU if (4.16b)-132. (4.17D)
k k

One can explicitly check that it preserves the probability because [(¥|¢x)]? = |Ck|*> while
[KUP|Uyy| is equal to |Cy|* or |CF|? (which are the same) following the case (4.17a)-133 or
(4.17b)-133.

Now we have to prove that the choice (4.17a)-133 or (4.17b)-133 is fixed by the data of T and
must be the same for all the ¥ € 5. For, let us consider two vectors ¢ = > Axthg, o =, Bptbg
and suppose that

Ug = > AUty but Up = > BEUthy.
k k

In order to see that it is impossible, looks at the conservation of probability |Y,, AyB
| > AxBi|?, then

* |2
il

3 (Bf BrAiAf — BF By Af Ay) = Y B By Im(A,Af) = 0. (4.18)
kl kl

Since A;A*l € R, we can regroup each term (k,!) with the corresponding term (I, k). We get

0= Im(AA})(B} By, — BfB)) = Y Im(Af A;) Im(B} B)). (4.19)
kl kl

We can find a vector )., Cr such that

D Im(CCr) Im(AfAy) # 0 (4.20a)
kl

and

> Im(C#Cy) Im(Bf By) # 0. (4.20D)
kl

In order to see how to find such a vector, let us show that there always exists a choice (4, 7)
such that B} B; is not real. Let us say By = « + 4y and By = aj + bi. If y # 0, the condition
Im(B§By) = 0 gives By, = %’“Bl. It is always possible to find a sequence (by) which gives 1 as
norm for Y Brty; the problem is not there. The problem is that By/B; € R, so that the choice
(4.17)-133 is not a true choice. For the same reason, all the B B, can’t be pure imaginary.
Now we can find the vector which satisfy (4.20)-133. There are several cases. If there is a pair
(k,1) such that AfA; and B} B; are both complex, we can take all C;’s zero for k # i # [ and
choose Cj and C; in such a way that C}*C} is not real. If there is a pair (k,) with A} A; complex
and B} Bj real, we consider a pair (m,n) such that B} B,, is complex. If A% A, is complex, we
take all the C;’s zero except C,,, and C,, such that Im(C} C,,) # 0. If A% A, is real, we take
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all the C;’s zero except Cy, Cy, Cy,, Cp, which we choose in such a way that Im(C* C,,) # 0 and
Im(C ,:‘ Ck) #0.

Equation (4.20a)-133 makes that the same choice must be made for Y Axt, and Y, Cripy (if
it was not the case, we would have an equation of the form of (4.19)-133). For the same reason,
the same choice must be made for Y Brty, and > Crtb,. So we conclude that the data of T fixes
the choice between (4.17a)-133 and (4.17b)-133 and that this choice must be the same for all the
vectors of J2.

We have to show that the possibility (4.17a)-133 makes U linear and unitary while the
possibility (4.17b)-133 makes U antilinear and antiunitary. For we consider ¢ = Y, Ay, and
¢ = > Brtby. If (4.17a)-133 works,

Ulen +86) = U (X (@A + BBi))

k
= > (0 Ay + BBy) Uy (4.21)
k
=aUy + pU¢,
and
UP|UGy = > AR BIUYk| Uty = Y Af: By, (4.22)
kl k

so that {UY|U¢y = (1|¢y. Thus in this case U is linear and unitary. In the case where (4.17a)-133
works, the computations are almost the same:

Ulens + ) = U (D (adi + BBi))

k

= D (a*Af + B*BE) Uy (4.23)
k
=a*Uy + *U¢,
and
UP|UGy = > A B Ub|Uthry = . ApBf, (4.24)
kl k

so that {UY|Ud) = (P|é)*. In this case, U is antilinear and antiunitary.

4.1.3 Projective representations

If Ty(R,) = R, and ¥ € Ry, then U(T1)in € R,. If Ty(R') = R”, then U(T3)U (T} € R".
But U(TT})ty, also belongs to RY. Then there exists a ¢, (T2, 71) € R such that

U(To)U (T, = €T TOU (T Ty )b,

Note that for any 1 € 7, there exists a A € R such that |A| = 1. Since a real can be sent out
the U(T)’s, for any 1 € S, there exists a ¢ which only depends on /|4 such that

U(To)U (T = T U (TyTy Yo (4.25)

Proposition 4.3.
The ¢ doesn’t depend at all on the ¥:

U(Ty)U(Ty) = e T=T0U (TyTy). (4.26)



4.1. MATHEMATICAL FRAMEWORK OF FIELD THEORY 135

Proof. Let us consider a 94 and a 1p which are not proportional each other. One has a
¢ap(Ty,T1) such that

e 0ar eI (T T ) (Ya + i)

U(T2)U(Th)(Ya +¥B)
- ei¢A(T27T1)U(T2T1)1/JA (4.27)
+ e (2T (T Ty ).

Now, we apply U(T»T1)~! to both sides. If it is unitary, the e’ get out without problems; else
is get out as e~:

etidvan (’l/JA + Q/JB) _ eii(bA,L/]A + eii(bBwB_ (4.28)
Since ¢4 and vp are linearly independent, the only solution is e!?42 = /¢4 = ¢i¢5,
O
Since the operators U(T') must only fulfil
U(Ty)U(Ty) = P21 (Ty, Ty), (4.29)

these form a projective representation of the symmetry group on the physical Hilbert space

I .

Remark 4.4. In order to have some physical relevance, this demonstration supposes that a state
¥4+ p exists in nature. If one can divide the particles in several “incompatibles” classes labeled
by a,b such that v, + ¥, doesn’t exist, then equation (4.29)-135 is false and one has to write

U(To)U(Ty) g = %= T2 TOU (YT )b,

because we can’t show that ¢, = ¢ from the simple fact that ¥, + ¢, doesn’t exist !
For example, physicists think that there are no superposition of state of integer and semi-
integer spin.

Remark 4.5. If the group satisfies some requirements, one can choose ¢ = 0. From now we
suppose that we are in this case: we work with “true” representations.

4.1.4 Representations and power expansions

Let G be an arc connected Lie group whose elements are denoted by T'(0) with 6, a continuous
family of parameters (from a local chart). The multiplication law is given by a function f: R™ x
R™ - R™

TO)T(0) = T(f(@’, 9)) (4.30)

If 8 = 0 is the coordinate of the identity,
£(0,0) = £(6,0) = 6. (4.31)

We suppose that G acts on the rays of a Hilbert space J#, so that there are represented on
¢ by unitary operators U (T(G)) We denote by W the group of transformations of .5#’; roughly
speaking,

W =U(G).

Now, we are going to cheat a little. We know that there exists a normal neighbourhood of e in
W. In simple words, the map exp: W — W is a diffeomorphism between the elements of W



136 CHAPTER 4. RELATIVISTIC FIELD THEORY

“close” to 0 and the ones of W close to e. By close to, we mean that the components of 8 are
small enough. If {it,} is a basis of W, we define

U(T()) = e¥"te. (4.32)

In other words, one considers the exponential map for a neighbourhood of identity.
The cheat is the fact that U(T'(0)) is actually defined by Wigner’s theorem from the data of
the group G. So equation (4.32)-136 should be seen as a requirement in the choice of the basis

{ta}-
Remark 4.6. The i in the exponential in (4.32)-136 and in the definition of the basis {it,} is

a convention in order the t,’s to be hermitian. Indeed, the Lie algebra of a group of unitary
matrices is made of antihermitian matrices.

With all that,
1
U(T(0) =1 +i0%, + 59’)9%1,0 +... (4.33)

where tp. is defined (among other requirements) to absorb the “intuitive” minus sign in the third
term.

Now we are going to explore some consequences of equation (4.30)-135. Equation (4.31)-135
makes the expansion of f as

FO0,0) = 0%+ 0 + £000° + ... (4.34)

From expansions (4.34)-136 and (4.33)-136 of f and U(T'(¢)), “group structure” equation (4.30)-
135 gives (at order two):

the = —tpte —ifita (4.35)

and nothing for the first order. Then, providing that one knows the group structure (the f), one
knows the second order of the representation from the first one. From equation (4.32)-136, one
finds the value of t4:

Nna 1
e¥ta =1 4 i0%, + 5(@')2(9%,1)(9%,),
up to constant coefficients, one can choose t,;, to be symmetric with respect to a and b:

tab = (tatb + tbta)-

N =

Taking this convention and computing tp. — tep from (4.35)-136, we find
[ta,tp] = iCote (4.36)

with C¢, = S, — f&..

On the other hand, one knows that if a group is abelian, its algebra is also abelian; we can
see it here by considering that if G is abelian, f(6,60") = f(#',0), then fS, is symmetric and
[ta,ts] = 0. We can say more about f Since the ¢, commute, equations (4.30)-135 and (4.32)-136

make that
oiF(0,6)ta _ ei@“taeié'btb _ ei(@“-#—@’“)ta, (4.37)

so that
f0,0)=60+0"
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4.2 The symmetry group of nature

4.2.1 Spin and double covering

Some of literature carry an ambiguity in the choice of the right space-time symmetry group in
the quantum field theory. A very good and deep discussion about the choice of the space-time
symmetry group of nature is given in the book [3] which will be used here. An other enlightening
review can be found in [30].

From a relativistic point of view, the group is the Poincaré group of all the maps R* — R*
which leaves invariant the quantity s> = —t2 4+ 22 + 2 + 22. At this point we can already make
an important remark: the so defined quantity s is in fact not a relativistic invariant. Indeed if I
follow a (spatially) closed path, I will measure At # 0 and Az = Ay = Az = 0 because in my
frame, my displacement is zero. A guy who keeps at my starting point will measure (between
the beginning and the end of my travel) A’t # 0 and also Az = Ay = Az =0. If s = ¢, then
At = At

So the relativistic invariance is only local: ds? = ds’2, and as far as relativity is concerned,
one can work with infinitesimal transformations only. In this case, the distinction between the
groups Ll and SL(2, C) is no relevant. Intuitively, we choose LL to be the space-time symmetry
group. As we will see the difference will reveal to be crucial in relativistic field theory because
L1 has no half-integer spin representations.

This group naturally splits into two parts: the translations and the rotations (and boost). As
far as I know, the translation part makes no difficulties. For the other one, there are some diffi-
culties to find the minimal group of symmetry. First, one often want to separate the space-time
inversions P and T from the remaining: the group then becomes the homogeneous orthochrone
Lorentz group LT;—- An other often presented group is ...SL(2, C). This is our choice here. The
physical reason of this choice is all but immediate. As we will see during the following pages, an
elementary particle is an irreducible representation of the symmetry group.

For massive particles, the relevant subgroup of SL(2,C) reveals to be SU(2). If we had
chosen the most intuitive LEL, we would have found SO(3). There is an important difference
between SU(2) and SO(3) = SU(2)/Zs: the first one admits representations of any integer and
half-integer spin while the second only posses the integer spin representations (cf. page 85).

Let us now be more precise about the relation between Ll and SL(2, C). A know result is

SL(2,©)
=220
+ Z2

Let Spin: SL(2,C) — Ll be the surjective homomorphism with kernel +1545 giving this rela-
tion. We will not give a complete proof, but we will explain how SL(2, C) acts by isometries on
R*. First, we remark that there exists a bijection between R* and the 2 x 2 complex hermitian

matrices:
t
_ft+z T—ay\ |=
v_<x+iy t—z)_ y (4.38)
2
If X € SL(2, ©), the matrix AvAT is also hermitian and |v||? = detv. Thus
AQ): R - R
(4.39)

v At
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is a Lorentz transformation if and only if |det \| = 1. Moreover,
AN) = AN)AN).

If N =e?), then A(X) = A()), thus it is natural to impose detv = 1 and to consider SL(2, C)
instead of L(2, C) to fit Ll. Now, A(A\) = A(—=]), and we wish to consider SL(2, C)/Zs.

I think the problem is the following: as far as the action of the “nature group” on the space-
time is concerned, it is sufficient to consider LL. But the group which acts on the state space is
wider: it must be SL(2, C).

From now, when we say “Poincaré group”, we mean SL(2,C) x R* while “Lorentz” means
SL(2, C) acting on R* by A(A\)v = AvAT.

Let us continue the discussion of page 84. A know result is the fact that the map Spin
restricts to a surjective homomorphism Spin: SU(2) — SO(3) with kernel +1 giving the relation
SO(3) = SU(2)/Zs. If one considers a representation p: SO(3) — GL(V'), then p = p o Spin is
a representation of SU(2) on V. So every representation of SO(3) comes from a representation
of SU(2).

As far as the transformation rule of a (quantum mechanical) wave function under a rotation
R € SO(3) is concerned, one can see (it is done in [8]) that the try

(i)~ (1)

doesn’t works if T'(R) is a representation of SO(3) on ©?. If one allows T to be a representation
of SU(2), then our choice —for an electron— should naturally be the spin one half representation
T = DU/?), Let us do it. The remaining problem is the following. Let’s consider that in a certain
frame, an electron is described by the wave function (1/)1 1/)2), the question is to know the wave
function observed by a guy which use another frame linked to the first frame by R € SO(3). We
always have exactly two elements in SU(2) projected to R by Spin; namely Spin(+g) = R; so

how to choose between
D2 (g) Y1) d D2 (—g) ¥1Y 5
o Y

2

The trick is to remark that a change of frame is not the mathematical process described by a
single element R of SO(3), but a physical continuous process which begins at the identity and
stops at R. In other word, we have to ask ourself how to go from a frame to another 7 Taking
as example the rotations around the z axis, we can look at two different path in SO(3) from 1
to 1 given by the same expression

1 0 0
Ri(t) = Ra(t) = | 0 cost sint |,
0 —sint cost

but considering ¢: 0 — 27 for Ry and ¢t: 0 — 47 for Re. The covering map Spin: SU(2) — SO(3)
allows us to lift any path in SO(3) to a path in SU(2) in an unique way providing a starting
point. In other words, if Spin(g) = R,

31 R(t) € SU(2) such that SpinoR = R and R(0) = 1,
31 R(t) € SU(2) such that SpinoR = R and R(0) = —1.

The question is now: how to choose the right path among these two ? The answer comes from
the homotopy of SO(3): the path R; and Ry belongs to two different classes.
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Considering the “change of frame” as a continuous process, the initial point is naturally
chosen to be 1. With this choice, the lift of R; and Rs are given by

t . t
COS = —7 811 =
g1(t) = galt) = ( 3, )

—ising  cosg
with ¢: 0 — 27 for g1 and ¢t: 0 — 47 for go. In SU(2), the ending point of g; is —1 while the
one of go is 1.

It is still possible to say a lot of interesting thinks about the space-time symmetry group of
nature; let’s just conclude saying that SU(2) is more adapted to the rotations of non zero spin
than SO(3). (it is not intuitive !)

4.2.2 How to implement the Poincaré group

We are not making physics here, but differential geometry and group theory; so we will not discuss
the physical relevance of the Poincaré group from a “speed of light” point of view. We consider
the Poincaré group as the group of all the affine isometries of metric = diag(—1,1,1,1) and
the Lorentz group as the subgroup of rotations and boost.

A Poincaré transformation of R* is given by (A,a) with A a 4 x 4 matrix and a € R*, a
translation vector. The composition of (A, a) with (A, a’) is given by (A’A, A’a +a’), the inverse
is (A=, —A~'a), the neutral is (1,0), and (det A)? = 1.

The axiom (iv) at page 129 gives us a group of transformation of the rays in J# parametrised
by (A, a) such that

T(N,a"T(A,a) =T(A'A, Na+d), (4.40)

T(A,a): Ray s — Rays#. Then Wigner’s theorem defines a representation of the Poincaré
group on # by unitary matrices :

Y > U(A a).

Remark 4.7. Wigner only ensure existence of projective representations. Here we suppose that
our symmetry group (maybe slightly different that Poincaré) is such that any projective rep-
resentations can be turn into a classic representation. We will therefore use the composition
law

U(N,dYUAN) =UNANNa+a) (4.41)
instead of U(A, a')U (A, a') = e!¢aM a7 (AN N a + o).

By axiom, the (connected) Poincaré group acts on rays of J#, and we have the representation
U which form a group acting on 7. The Lie algebra acts also :

wp = So)] _w= U]

. (4.42)

t=0
This definition is natural because 4 is a vector space: it can be identified with its tangent space:
U(t)y is a path in 2 and its derivative at ¢ = 0 is still a well defined element in . Now recall
that the operators U are unitary, so that the corresponding operators u are hermitian (therefore
diagonalisable).

Let us consider an abelian subgroup A of Poincaré with Lie algebra a. One can find a basis
of  made of common eigenvectors of a basis of a. In other words, one can find a basis of 7#
which simultaneously diagonalises all a. If {a;} is a basis of a, one can find a basis {|ia)} (here
A labels a basis of .2 : it might take continuous values) such that

ai|1/1,\> = )\i|1/1/\>- (4.43)
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4.2.3 Momentum operator

Of course, there exists an abelian subgroup of Poincaré: the pure translations, A = {U(1,a)}.
A basis of the Lie algebra is given by four vectors labeled as P* and defined by
d

Pt = E[U(]L,te“)]

t=0

where e” is the unit vector following the direction pu (for p = 0, €® = (1,0,0,0)). One can
consider a basis which diagonalises the P*’s:

Pt|p,ay = p"|p, o) (4.44)
where by definition,
d
12 —— 122
Plp.0) = | U(Lte")p,od| _ . (4.45)

Remark 4.8. Be careful on a point: we don’t say anything about the symbol “p” in the ket. The
only property is that it labels a Hilbert space #. But nothing is already imposed to JZ : it
must just carry a representation of the Poincaré group on its rays. In particular, it is a priori
false to say that p is a “momentum 4-vector” and that p* is a component of p. Naturally, our
notations are adapted to think that ! Maybe it is a pedagogical mistake; I don’t know.

This remark can be disturbing: why is generally |p, o) called “a state of momentum p” ?
Since U(1, a) is unitary, P* is hermitian; the p* are eigenvalues for an hermitian operator, so by
axiom (ii) (page 129) they are candidate to be physical values. But equation (4.45)-140 shows
that P* is what a physicist should call an “infinitesimal translation”, so that Noether suggests
us to interpret the eigenvalue as momentum. We are safe !

The parameters o are not yet defined neither. It will come later. For the moment, we include
into the definition of a one particle state that o takes discrete values.

Since U(1,a) = e "

U(]la a) |pa U> = elo?" |p’ U>'

Now we are interested in the determination of U (A, a)|p, o).

Proposition 4.9.
The operators P* are subject to the “transformation law”

U(A,a)P*U(A,a)™! = A*P”. (4.46)

Proof. Since operators U(A, a) are linear, they can be putted in the derivative which defines P*.
Using the composition law (4.41)-139 we find :

U(A,a)PPU (A, a) ! = %[U(A,a)U(]l,te“)U(A,a)’l]

= %[U(]l,t/\e“)]

£=0 (4.47)
t=0

The A can be putted out of derivative; let us see it for a sum of two terms (here it is four) :

%[U(]l,t(e” re| = %[U(l,te“)U(l,te”)]tZo
d (4.48)

== [U(]l, te"U(1, O)]t=o + %[U(L 0)U(1, tel/)]

= P' 4 PV
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Thus p p
e ]lA*“’] =A“—[ ]lt"] — ARP. 44
Zlvaasen]  =arZ|u@een]  =a (4.49)
o
4.2.4 Pure Lorentz transformation
Now we consider a pure Lorentz transformation U(A) = U(A,0), and we want to look at

U(A)|p, o). In order to see its decomposition into others |k, "), we apply a P* :

PAU(M)Ip, oy = U(M)(U(A)PHUM)) p, o)
= U(A)(A™Y), P |p,0) (4.50)
= (A Y T (A)Ip, 0.

Thus the vector U(A)|p,o) € H# has (A~1)ip” as eigenvalue for PH. If the pt’s are seen as
components of a 4-vector p, one can write

PRU(A)|p, ) = (Ap)*U(A)|p, o);

thus we naturally write

UA)lp, o) = Y Coro(A,p)|Ap, o). (4.51)

Note that we had not yet given anything about the nature of the p in the ket |p, o) so we can
define the product Ap by the fact that the ket |Ap, o) has eigenvalue (A~1)“p” for the operator
P*#. So it is one of the |p/, o”).

4.2.5 Rebuilding of a basis for .77

From general considerations about the Lorentz group (many physicists had written very better
books than me about) anyone knows that the only functions of the p#’s which are invariant under
all the Lorentz transformations are p* = n,nup’p” and the sign of p° when p? < 0.

For any value of p? and sign of p°, one consider a “standard vector” k. For example :

k=(1,0,0,1) for p? = 0, (4.52a)
k= (1,0,0,0) for p*> <0, p® > 0, (4.52b)
k= (-1,0,0,0) for p? <0, p° <0. (4.52¢)

With this convention, p can be written as p = L(p)k for a suitable Lorentz transformation L(p).
The vector U(L(p))|k, o) has eigenvalue L(p)k for the operator P, thus it is a linear combination
of some |p, o).

Now we will cheat and redefine our basis of the Hilbert space J#. First, we consider a fixed
k; in other words, we build the state space for a given particle which has given momentum p.
The basis vectors must be eigenvectors for the fours operators P*. As far as we say no more,
any eigenvalue is possible. Thus our basis must be labelled by at least an element p of R* with
only one constraint: the value of p? (plus eventually the sign of p°). So we define the |k, o) to
be such that

Pk, o) = k"|k, o).
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Since we know that with this definition of |k, o), the eigenvalue of U(L(p))|k, o) for P is p#, we
define |p, o) as
I, o) = N(p)U(L(p)) |k, 0)- (4.53)

where N (p) is a normalization to be discussed later. With this construction, we have an eigen-
vector for any possible eigenvalue for P*. We have to show that these vectors are linearly
independent.

The set of the |p, o) with different p is free in J# because they are eigenvectors for different
eigenvalue of an hermitian operator > . There are no reason to think that the set of operators
P* is complete; in other words, it remains not clear that there exist only one way to diagonalise
the all the P*. The function of the extra label ¢ is to label different linearly independent vectors
with same eigenvalue for P.

From now, we are interested in |k, o) and N(p).

4.2.6 Little group

We have :

UWlp0) = NOUALG) kD) .

= N(p)U(L(Ap))U (L(Ap)~'AL(p)) |k, o),
So we will try to understand the operation L(Ap) 'AL(p). First remark that
U(L(Ap)~H)[Ap,0) = N(Ap)|k, o),
and then compute :
U(L(Ap)"AL(p))N (p)Ik, 0) = U(L(Ap) " A)lp, o)
=U(L(Ap)™) ; Coro (A, p)|Ap, 0" (4.55)

=3 Corg (A, p)N (Ap) |k, 0.

The little group is the subgroup of the Lorentz transformations which leaves the chosen
standard vector k invariant: Wk = k. For any W in the little group,

UW)|k,0) = > Doro(W)|k, 0"y

With this definition, the D’s form a representation of the little group. Indeed for any V, W in
the little group,

Z DU’U(VW)|k’ UI> = U(VW)|k’ 0>
= U(V) ) Dorg(W)lk, 0" (4.56)

B 2 Da’a’”(V)DU”U(W)|k’0J>‘

2] did not checked that it is sufficient
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Since we want the |p, o) with different p and o to form a basis of 5, they are linearly independent,
then we can get rid of the sum over the ¢’ and keep the equation

Dorg(VW) = > Drgn (VW) Do (VIV);

ol

if we adopt a more “matricial” notation,
D(VW) = D(V)D(W). (4.57)

We are now able to perform a step in the study of the vector U(A)|p, o). We naturally define
W (A,p) = L(Ap) 'AL(p). This belongs to the little group®. Then,

UA)|p, o) = N(p)U(L(Ap))U(W (A, p))|k, o)

= N(p) Y Do (W)U (L(Ap)) |, 0"
(4.58)

[oa

N(p) ,
N(Ap) ; Doro(W(A, p))|Ap, o”).

But we have no constraint on the D’s: it must just form a representation of the little group.
Consequently, we are at a point in which our axioms are no more sufficient to continue the
building of quantum field theory: we will get as many theories as representations of the little
group.

The physical interpretation is the following : each type of particle has its own representation.
When we consider a Hilbert space on which U(A) acts via one given representation of the little
group, we consider the Hilbert space which describes the corresponding particle. Note that the
little group depends on the choice of k, and therefore depends on the particle which is studied
(massive or not).

In this sense, a particle is a representation of the Poincaré group 4 . In particular, the nature
of the index o can change from the one representation to the other.

Remark 4.10. As far as normalization is concerned, we will pose

N(p) = VK /p°.

There are some good reasons to take it; but it is irrelevant from our group point of view of the
theory.

4.2.7 Positive mass

This is the easy case. The choice of standard momentum is k = (1 0 0 0). One could believe

that the little group is SO(3). It would be the case if we had chosen Ll instead of SL(2, C) —see
point 4.2.1. In our hermitian representation of R*, k& = 1. Then a matrix of SL(2, C) which
leaves it invariant fulfills

MeAT = D\ =1,
this is A € SU(2). By the way, note that SO(3) = SU(2)/Z,.

3Pay attention that L(p) depends implicitly on the choice of k.
41 think that the irreducibility of a representation is related to elementary particles.
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The celebrated “law of transformation” of a massive particle of spin j (integer or half integer)
under the Lorentz transformation A is

M, oy = «/ ZD“ W (A, p))|Ap, o’ (4.59)

where ¢ runs from —j to j by step of 1.

4.2.8 Null mass

In the case of a null mass, the standard vector is k = (1,0, 0, 1) and an element of the little group

fulfils Wk = k. As the little group is part of the Lorentz group, this is an isometry, so
WHWky = (t|k) (4.60a)
WE|Wty = (t|t), (4.60Db)

for any ¢ € R*. Taking in particular ¢ = (1,0, 0, 0),

(Wt)lk, = thk, = —1 (4.61a)
(Wor(Wt), =th't, = —1. (4.61Db)
If we write Wt = (a, b, ¢, d), the first relation gives d = a — 1, so that Wt = (1 + &, «, 3,&), while

the second one gives £ = (a? + 3?)/2. The conclusion is that W acts on t as a certain Lorentz
transformation S(«, f3) :

1+¢ 1+¢ —£ a f 1
« « — 1 0 0
we= S l=1%5 5 o 1llo (4.62)
3 & (148 a B.)\0
Be careful: it doesn’t means that W = S, but Wt = St. However it is an information:

S(a,3) W is a Lorentz transformation which leaves ¢ invariant. Then it is a spatial rota-
tion. More precisely, since W and S conserve (1,0,0,1), it is a rotation around the z axis:
S(a, B)"*W = R(0), and

W(0,a,8) = 5(, B)R(0) (4.63)

is the most general element of the non massive little group.
This chapter actually don’t deals with quantum field theory in the sense that our wave
functions aren’t operators which acting on a Fock space. So this is just relativistic field theory.

4.3 Connections

4.3.1 Gauge potentials

Let us consider a section o, of P over U,. It is a map o,: U, — P such that Too, =id. A
connection on P is a 1-form w: T,P — G € Q'(P) which satisfies the following two conditions:

wp(Y)) =Y, (4.64a)
w(dR4§) = g tw(&)g. (4.64Db)
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The gauge potential of w with respect of the local section o, is the 1-form on U, given by
An(2)(v) = (ckw)z(v). (4.65)

We will not always explicitly write the dependence of A, in . Now we consider another section
o3: Ug — P which is related on Uy, nUs to g4 by 0s(z) = 00 (2) - gas(z) for a well defined map
gap: Ua nUg = G.

Proposition 4.11.
The gauge potentials A, and Ag are related by

Ag =g ' Aug — g tdg. (4.66)

Proof. By definition, for v € T,U,,

Ap(v) = (05w)2(V) = Woy (2).gas () (dop)2(v)).

We begin by computing dog(v). Let us take a path v(t) in U, such that v(0) = 2 and v'(0) = v.
We have :

d
(dr5)a(0) = Gosw®)|
= o 00) - 9uso)]

= ato®) gu@)],_ + [0 gasto®))]

d —ts
=] oa(@) - gas(@)e™]
= ngaﬁ(I)dO'a(’U) + s*

oa(2) gas(@)

(4.67)

t=0

= ngag(x)dUa(U) + o

where s is defined by the requirement that g,s(z) tgas(v(t)) can be replaced in the derivative

by e~ '*, so that we can replace gos(v(t)) by gap(z)e . As far as the derivatives are concerned,
—ts

€% = Gap(x) " gap(v(t)), then

d

s=— —qgos(x) L gas(v =—ax71dav,
7 908(2) " gas( (lﬁ))t=O 9op ()" dgap(v)

this equality being a notation. Now, properties (4.64a)-144 and (4.64b)-144 make that
Ap(v) = gap(2) ™ W, () (A0 (v))gap(x) + 5.
The thesis is just the same, with “reduced” notations (see section 4.6.2). . O

An explicit form for this transformation law is :

~ o gaso] _ (168)

d — v
Ap(v) = E[g LetAal )g] -

t=0

where g := gap(x).
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4.3.2 Covariant derivative

When we have a connection on a principal bundle, we can define a covariant derivative on
any associated bundle. Let us quickly review it. An associated bundle is the semi-product
E = P x,V where V is a vector space on which acts the representation p of G. We denote
the canonical projection by m,: £ — M. The classes are taken with respect to the equivalence
relation (p,v) ~ (p- g,p(g~")v).

A section of F is a map ¢: M — F such that 7o = id. We denote by I'(E) the set of all
the sections of E. A section of E defines (and is defined by) an equivariant function VP>V
such that

¥(m(€)) = [& D), (4.69)
D(E - g) = plg™HP(©). (4.69D)
For a section v € I'(E), we define ¢ (o): Uy — V by
Yoy (@) = P(o(2)).
We saw in (1.161)-59 that a covariant derivative on F is given by
(Dx®)(@) () = Xath(a) = pu ((050)a (X)) (o) (). (4.70)

Since (dy)(X) = X (v), we can rewrite this formula in a simpler manner by forgetting the index
« and the mention of X :

Dy = dyp — (pxAa)tp.
If we note (psAa)Y by Ant), we have
D = diy — A (4.71)

One has to understand that equation as a “notational trick” for (4.70)-146. By the way, remark
that (pxAs) is the only “reasonable” way for A to act on ).

4.4 Gauge transformation
A gauge transformation of a G-principal bundle is a diffeomorphism ¢: P — P which satisfies

Top=m, (4.72a)
P& g) = (&) g (4.72D)

In local coordinates, it can be expressed in terms of a function @, : U, — G by the requirement
that
p(0a(z)) = 0a(r) - Palr). (4.73)
We have shown in proposition 1.59 that, if w is a connection 1-form on P, the form p-w := p*w
is still a connection 1-form on P. Of course, with the same section o, than before, we can define
a gauge potential (p - A), for this new connection. We will see how it is related to A,. The
reader can guess the result (it will be the same as proposition 4.11). We show it.

Proposition 4.12.

(p-A) =o' Ap— ¢ dg. (4.74)



4.4. GAUGE TRANSFORMATION 147

Proof. Let us consider x € U, and v € T,U,, the vector which is tangent to the curve v(t) € U,.
We compute

U;((p*w)l(v) = w(t,aOaa)(ac)((d(p © dO’a)(U)),
but equation (4.73)-146 makes

d
(dg 0doq)(v) = —¢(oa(v(t))
p =0 (4.75)
= a(v()) Palv(?)) .
Now, we are in the same situation as in equation (4.67)-145. |

If v: M — E is a section of E, the gauge transformation ¢: P — P acts on ¢ by

¢ -h(€) = P 1(€)). (4.76)

On the other hand, ¢ acts on the covariant derivative (and the potential) : ¢- D is the covariant
derivative of the connection ¢ - w. Of course, we define

(- D) =dip — (p- A (4.77)

Lemma 4.13.
If p: P — P is a gauge transformation, then

—_~—

(i) =1 is also a gauge transformation and (p=1)a(7) = Go(z)7L,

(ii) (¢ ) (o) (@) = p(&7 )Y () (@)

Proof. The first part is clear while the second is a computation :
(- ¥)) = ¢~ $(0a(2) = b7 (0a(@)) = V(0a(@) - a(@)™) = p(Ba(@)w (@). (4T8)
O

Now, we will proof the main theorem: the one which explains why the covariant derivative is
“covariant”.

Theorem 4.14.
The covariant derivative D fulfils a “covariant” transformation rule under gauge transformations:

(0-D)e™" - 9) = ¢ (DY). (4.79)

Remark 4.15. Let us use more intuitive notations: we write (4.74)-146 under the form A’ =
g 'Ag — g~ 'dg. If we have two sections 1 and ', they are necessarily related by a gauge
transformation: 1’ = g~'e. Then, the theorem tells us that the equation Dy = dip — Ay
becomes D'y’ = g~ 1D “under a gauge transformation”. This is: Dt transforms under a gauge
transformation as di transforms under a constant linear transformation. This is the reason why
D is a covariant derivative. The physicist way to write (4.79)-147 is

D'y =g~ 'Dy (4.80)
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Proof of theorem 4.14. First, we look at (¢ - A),. Using all the notational tricks used to give a
sens to Ay, we write :

[(¢ - A)xt](a) (@) = (¢ A)x1(a) (x) = px( - A(X))Y(a)(2).

But we know that ¢ - A = $71Ap — ¢~ 1dp, then

(- A)xt(ay (@) = ps (@ AX)B) (0 (2)

— pu(@THB(X))Y () (2)

= Ao AN ()] (481)

t=0
= A (X @]

t=0

Now, we have to write this equation with ¢! - % instead of ¢. Using lemma 4.13, we find :

(0 A)x (0™ W)y (@) = 2067 D)o oy ()]

o™ P(X0)E e (@)]

=0 (4.82)
t=0

After simplification, the first term is a term of the thesis: @(z) ' (A)s(z) and we let the second
one as it is. Now, we turn our attention to the second term of (4.79)-147; the same argument
gives:

d
—1 _ 91, 1
d(o™ V(@)X = — [(<P V) () (Xt)]tzo

d -1

= — 3 4.83
=X ()] (4.83)

— d P -1 d ~—1

= 2@ @)| _ + 2 ]pE e (XD

The second term is @ 'di,(X). In definitive, we need to prove that the two exceeding terms

cancel each other :

dr 1. ~—1 dr . -1
2 X . ] —[ X N ] 4.84
=P XD (@] + 2] pe(X) W @) (4.84)
must be zero.

One can find a g(t) € G such that ¢(X;) = @g(t), g(0) = e. Then, what we have in the p of
these two terms is respectively g(t)¢ ! and g(t) '@ !. As far as the derivative are concerned,
g(t) can be written as e!Z for a certain Z € G. So we see that g(t) ! = e *Z and the derivative

will come with the right sign to makes the sum zero. o

Remark 4.16. If we naively make the computation with the notations of remark 4.15, we replace
' =g and A’ = g7 1Ag — g~ 'dg in

Dl'l/)l — dwl _ Al’l/)l,
using some intuitive “Leibnitz formulas”, we find : D'y’ = dg~ " +g tdp+g A +g~ dgg— 1.
It is exactly g~ 'dy + g 'A%y with two additional terms: dg !¢ and g 'dgg '%. One sees that

these are precisely the two terms of the expression (4.84)-148. We will give a sens to this “naive”
computation in section 4.6.2.
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4.5 A bite of physics

4.5.1 Example: electromagnetism

Let us consider the electromagnetism as the simplest example of a gauge invariant physical
theory. We first discuss the theory of free electromagnetic field (this is: without taking into
account the interactions with particles) from Maxwell’s equations, see [31, 37]. The electric field
E and the magnetic field B are subject to following relations :

V-E=p, (4.85a)
V-B =0, (4.85D)
VxE+9B=0, (4.85¢)
V xB-4E=j. (4.85d)

Comparing (4.85a)-149 and (4.85b)-149, we see that Maxwell’s theory does not incorporate
magnetic monopoles. Suppose that we can use the Poincaré lemma. Equation (4.85b)-149 gives
a vector field A such that B =V x A so that (4.85¢)-149 becomes V x (E + 0,A) = 0 which
gives a scalar field ¢ such that —V - ¢ = E + 0 A.

Now the equations (4.85a)-149—(4.85d)-149 are equations for the potentials A and ¢, and we
find back the “physical” field by

B=VxA, (4.86a)
E = —V¢— A, (4.86b)

One can easily see that there are several choice of potentials which describe the same elec-
tromagnetic field. Indeed, if

A=A+ V) (4.87a)
¢ = ¢ — O\, (4.87b)

the electromagnetic field given (via (4.86)-149) by {¢’, A’} is the same as the one given by {¢, A}
The Maxwell’s equations can be written in a more “covariant” way by defining

0 —-E,/c —E,/c —E./c

0 —-B,
F= ] 0 B, | (4.88)
-B, . 0
F# = —FYF and
J = (Cp Je  Jy ]z) .
We also define x 8 = %eo‘m“FM. With all that, Maxwell’s equations read :
0, F"™ = o ",
4.89
O * F8 = 0. ( )
If we define
A=(2 —a, -4, -a.), (4.90)

the physical fields are given by
F. =0.,A,—0,A,.
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The gauge invariance of this theory is the fact that
F,’“, = 0,A], — GVAL =F, (4.91a)

when

A (z) = Au(z) +0.f(x) (4.91D)

for any scalar function f (to be compared with (4.87)-149).

This is: in the picture of the world in which we see the A as fundamental field of physics,
several (as much as you have functions in C*(R?*)) fields A, A’,... describe the same physical
situation because the fields E and B which acts on the particle are the same for A and A’.

Now, we turn our attentions to the interacting field theory of electromagnetism. As far as
we know, the electron makes interactions with the electromagnetic field via a term EAM/) in the
Lagrangian. The free Lagrangian for an electron is

L =P(y"0, +m)i. (4.92)

The easiest way to include a ¥ A term is to change 0, to 0, + A,. But we want to preserve
the powerful gauge invariance of classical electrodynamics, then we want the new Lagrangian to
keep unchanged if we do

A, — AL = A, —1i0,¢. (4.93)

In order to achieve it, we remark that the ¥ must be transformed simultaneously into

V() = @ (a). (4.94)

The conclusion is that if one want to write down a Lagrangian for QED, one must find a
Lagrangian which remains unchanged under certain transformation A — A’ and ¢ — ¢’. In
other words the set {1, A} of fields which describe the world of an electron in an electromagnetic
field is not well defined from data of the physical situation alone: it is defined up to a certain
invariance which is naturally called a gauge invariance.

Remark 4.17. In the physics books, the matter is presented in a slightly different way. We
observe that the Lagrangian (4.92)-150 is invariant under

U(2) = ¥'(2) = e Y(z) (4.95)

for any constant a.. One can see that the associated conserved current (Noether) is closely related
to the electric current. The idea (of Yang-Mills) is to develop this symmetry. Since the symmetry
(4.95)-150 depends only on a constant, we say it a global symmetry; we will simultaneously add
a new field A, and upgrade (4.95)-150 to a local symmetry:

() = P (z) = @y (). (4.96)

Then, we deduce the transformation law of 4,,.

Because of the form of (4.94)-150, we say that the electromagnetism is a U(1)-gauge theory.
The fact that this is an abelian group have a deep physical meaning and many consequences.

4.5.2 Little more general, slightly more formal

The aim of this text is to interpret the field A as a gauge potential for a connection. But equation
(4.93)-150 is not exactly the expected one which is (4.74)-146. The point is that equation (4.93)-
150 concerns a theory in which the gauge transformation of the field was a simple multiplication
by a scalar field, so that simplifications as e **(@) A4, (z)e’*(®) = A ,(x) are allowed.
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Now, we consider a vector space V', a manifold M and a function ¢): M — V which “equation
of motion” is

Lz(ﬁl + ml)’lb =0

Where we imply an unit matrix behind ¢ and m; the indices 4, j are the (local) coordinates in
M and a,b, the coordinates in V. Let G be a matrix group which acts on V. If ¥ is a solution,
A~ is also a solution as far as A is a constant —does not depend on = € M~ matrix of G. In
other words, L*(0; + m;)1, = 0 for all a implies L*(9; + m;)((A~1)24y) = 0.

The function, ¥’(z) = A(z)~1¢(z) is no more a solution. If we want it to be solution of the
same equation as v, we have to change the equation and consider

LZ((?Z + A; + mz)’l/) =0.
This equation is preserved under the simultaneous change
{ e, = (A7),
(AD)§ = (ATHE(ANI(AG) — (BAHFAG.

The second line show that the formalism in which A is a connection is the good one to write
down covariant equations. This has to be compared with (4.66)-145. Logically, a theory which
includes an invariance under transformations as (4.97)-151 is called a G-gauge theory.

(4.97)

4.5.3 A “final” formalism

Now, we work with fields which are sections of some fiber bundle build over M, the physical space.
More precisely, let G be a matrix group. We search for a theory which is “locally invariant under
G”. In order to achieve it, we consider a G-principal bundle P over M and the associated bundle
E = P x,V for a certain vector space V/, and a representation p of G on V. Typically, V is C
or the vector space on which the spinor representation acts.

The physical fields are sections ¢: M — E. If we choose some reference sections o,: M — P,
they can be expressed by 1 (q)(z) = U(0a(z)). We translate the idea of a local invariance under
G by requiring an invariance under

’l/)l(a)('r) = p(g(z))w(a) (:L')
for every g: M — G. By (ii) of lemma 4.13, we see that ¢/ 4)(z) = (7" - ¢)(a) (@), where
w: P — P is the gauge transformation given by

p(0a(2)) = 0a(z) - g(2).

We want 1) and v’ to “describe the same physics”. From a mathematical point of view, we
want ¢ and 1’ to satisfy the same equation. It is clear that equation diy) = 0 will not work.
The trick is to consider any connection w on P and the gauge potential A of w. In this case
the equation
(d=—A =0 or Dy =0 (4.98)

is preserved under
A—p-A,
P -7,

Theorem 4.14 powa, !
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In this sense, we say that equation (4.98)-151 is gauge invariant, and is thus taken by physicists
to build some theories when they need a “local G-covariance”. This gives rise to the famous Yang-
Mills theories.

In this picture the matter field ¢ and the bosonic field A are both defined from a U(1)-
principal bundle. The sense of “1) transforms as ...under a U(1) transformation” is the sense of
the transformation of a section of an associated bundle; the sense of “A transforms as ... under
a U(1) transformation” is the one of the transformation of the gauge potential of a connection
on a U(1)-principal bundle.

Remark 4.18. The mathematics of equation (4.98)-151 only requires a G-valued connection on
P. There are several physical constraints on the choice of the connection. These give rise to
interaction terms between the gauge bosons. We will not discuss it at all. This a matter of books
about quantum field theories.

The most used Yang-Mills groups in physics are U(1) for the QED, SU(2) for the weak
interactions and SU(3) for chromodynamic.

4.6 Curvature

4.6.1 Intuitive setting

From the G-valued connection 1-form w on P, we may define its curvature 2-form :
Q=dw+wAw. (4.99)

As before, we can see ) as a 2-form on M instead of P. For this, we just need some sections
Oo: U, — P and define
F, =okQ. (4.100)

This F is called the Yang-Mills field strength. The question is now to see how does it
transform under a change of chart 7 What is Fjg = 05 in terms of Fy, 7

Theorem 4.19.

Fs =g 'F.g. (4.101)

Naive proof. Let us accept Fjg = dAg+ Ag A Ag. With proposition 4.11, we can perform a simple
computation with all the intuitive “Leibnitz rules” :

dAg = —g7'dgg™" A Aag+ g7 dAag + 97 Ao Adg — g M dg g™t

A dg,
and
_ -1 —1 —1 —1 —1 —1 —1 —1
Ag ANAg =g "Aagng Aagt+g Aagng tdgtg tdgng TAag+g Tdg Agdg.

The sum is obviously the announced result. O

This proof seems too beautiful to be false®. We will now try to give a sense to this compu-
tation. A complete proof of the theorem is reported until page 156.

5More precisely, it is as beautiful as we want it to be true.
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First, note that we can’t try to find a relation like d(gw) = dg A w + gdw. Pose A, = g(x)w,:

Au(0) = Gt

t=0
Using

(do) (v, w) = v(a(w)) — w(a(v)) — o([v, w]),
we are led to write

d d

= o |atw)ete ]

— 4.102
du dt ( )

t=0 u=0

But at t = u = 0, the expression in the bracket is g(x), and not e. Then the whole expression is
not an element of G. In other words, the problem is that for g: M — G, we have dg,: T, M —
Tg(z)G # T.G.

Now, remark that in our matter, the problem will not arise because in the expressions Ag =

g 'Ang + g~ ldg, each term has a g and a g7!.

Lemma 4.20.
(g™ ")z (v) = —g(x) " dg(v)g(x)~". (4.103)

Proof. Let vy be a path which defines the vector v, and define Y € G such that as far as the
derivative are concerned, we have g(v;) = g(z)et¥. Then,

og @) = Zow ] =S o]
But on the other hand,
g™ = o) glg@) ] = S o]
thus d(g 1), (v) = —g(x) " tdg(v)g(xz) ™!, as we want. O

4.6.2 A digression: TyG and G
We define two product: G x G - TG and G x G — G. If ge G and X € G, we put

d
gX = EgetX L (4.104a)
and if X, Y €0,
_ d d tX _uY
XY = E@[e e ]U:O. (4.104b)

t=0
We naturally define the product of a G-valued 1-form A by an element g € G by (gA)v = gA(v).
Note that gX does not belong to G but to T,G. Fortunately, in the expressions which we will
meet, there will always be a g~ to save the situation.
Let us now see a great consequence of the second definition.
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Proposition 4.21.
The formula
XY -YX=[X,Y] (4.105)

links the formal product inside the Lie algebra and the Lie bracket.

In order to get a real proof (given from page 155) of this, we have to give some precisions
about derivatives as (4.104b)-153. We consider the expression

i i (t)
du \ at“"|,_,) .
d d

which will be more simply written as :
L o]
du, dt [C ®)

with ¢, (t) € G for all u,¢; ¢,(0) = e for all w and ¢;(0) =Y € G where the prime stands for the
derivative with respect of ¢. So %Cu(t”t:o € G for each u and (4.106)-154 belongs to Ty'G. But
we know that G is a vector space, then 7y G ~ G, the isomorphism being given by the following
idea: if {0;} is a basis of G and {e;} the corresponding basis of Ty G, we define the action of

Ale;e TyGon f: G — R by (Ale;)f := A0, f.

= (4.106)

Lemma 4.22.
Seen as an equality in G, for f: G - R we have :

4oy - a3l

¢
u=0
Proof. Let us consider X,, = X'9; = ¢/,(0) and Xo =Y. We naturally have

d

Xuf = Ef(cu(t))

d
d 2 X,
, an du

€Ty G. (4.108)
t=0 _

Now, we consider a function h: G — R and compute :

a0 = o] = Tgle]

u=0

If {0;} is a basis of G and {e;}, the corresponding one of Ty G, thus

d oh| d dry;

Six, | =2 Z%06@ . 4109

du [ ]u:O oeily dudt [C“( )]f;oo ( )
So, we can write

d ddry; 0

Llx,| =L80dwm] _ =,

du[ ]u:O du dt [c“( )]f;oo oeily

and, as element of G, we consider

i) 0] e
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Now, we can compute the action of d%Xu|u=0 on a function f: G —» R as
d d dr,; 0

aﬂ&hj=@aﬁﬂgm§

=ipi

dul ozt

LQi

dul dt

(&)

d .
— t
i

=0 ]uzo (4.110)

[

fleu(t))

t=0
O

Proof of proposition 4.21. From this, we can precise our definition of XY when X, Y € G. The
product XY actson f: G —» R by

(XV)f = ST (e o)

u=0"
t=0

We can get a more geometric interpretation of this. We know how to build a left invariant vector
field Y from any Y € G : for each g € G we just have to define

d

ADEFHOO]

s=0

First remark: 179 is precisely the object that previously named “gY”. In order to construct the
basis blocks of the formula XY —Y X = [X,Y], we turn our attention to X Y. It is clear that
Y (f) is a function from G to R, so we can apply X, on it. If X; is a path which gives the vector

X, (for example: X; = e'X), we have
- - dr~ d d d d
X =SV 0x] = gy @], = S2[fe¥em)] o @i

Thus we have: XY = X,V but it is clear that [)~(, Y]e = X,Y — Y.X. The claim reads now:
[X,Y]. = [X,Y]. We can actually take it as de definition of [X,Y]. It is done in [3]. The link
with the definition in terms of successive derivations of Ady(x) = gzg~" is not trivial but it can
be done. (|

Now, we can give a powerful definition of the wedge for two G-valued 1-forms. If A, B €
QYM,G) and v, w € X(M), we define

(A A B)(v,w) = A(v)B(w) — A(w)B(v). (4.112)
For A?, we find back the usual definition :
(A A A)(w,0) = AW)A(w) — A(w) A(v) = [A(v), A(w)].
One can see that for any section o, : U, — P, we have
oX(AANA)=(ckA) A (cXA). (4.113)

Lemma 4.23.
If A and B are two G-valued 1-forms, one can make “simplifications” as

(Ag) A (¢g7'B) = A A B. (4.114)
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Proof. We just have to prove that for A, B € G, (Ag)(g ' B) = AB with definitions (4.104a)-153

and (4.104b)-153. Remark that Ag = [eSAg] , 50
s=0

X d
et4e = exp(t $65Ag s=0) = exp( %esmg s=0) = etAg
Therefore
d d —1 d d
A 7lB =__[tAg ug B] =__[tA —1 uB] = AB.
(Ag)g " B) = o |e e w=0 " drdul® 99 lu=o
O
Lemma 4.24.
Fg = dAg + A3 (4.115)
Proof. This is a direct consequence of (4.113)-155 and [0, d] = 0. O

Now, we can prove the theorem.

Ultimate proof of theorem 4.19. First we compute d(g~!A,g). In order to do this, remark that
the 1-form g~1A,g is explicitly given on v € X(M) by

(57 Aa) ()2 = ¢ [g(x) 140 g(a)]

T dt t=0

For all z € M, this expression is an element of G; then we can say that (¢ 1A4,9)(v) is a map
(g7t Ang)(v): M — G. So it is unambiguous to write w((g 1 A.g)(v)) € G for w € T, M.
We will use the formula

(g™ Aag) (v, w) = v(g™" Aag)(w) —w(g™ Aag)(v) — (97" Aag)([v, w]).

As w((g_lAag)(’U)) = d((g_lAag)(v))w7 we have

_ d B _
w((g7 Aag)(v) = 2-(97" Aag) (V)u,
u=0
_ ii —1 _ tA(V)w
= o) e A g w >]t:0u=0
_dd 1 tA®)a
= G900 ] et @) o
+ ig(x)_li[ tA(v)wu] o(@) (4.116)
dt du u=0 t=0
d -1 tA(v)Ii
T @ e [g(w“)]u:o 1o
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On the other hand, one easily finds that
(97 Aag)([v,w]) = g(2) " A([, w])g(2).
Using lemma 4.20, we have

(g Ang)z (v, w) = —g(x) " dg(v)g(z) " A(w)eg(z) + g(z) " v(A(w))g(z)

We can regroup the terms two by two in order to form dA, and some wedge; with simpler
notations, we can write :

d(g ' Aag) = —(g7"dgg) A (Aag) — (g " A) A dg + (g~ 'dAg). (4.118)

We compute d(g~'dg) in the same way; the result is

(5 dg)(0)e = - [o(@) gt)] €6

Tt t=0
For v, w € X(M), we have :

w (g d9)(v) = (g dg) ().,

(4.119)

= —g tdg(w)g~dg(v) + g(z) w(dg(v))

where w,, is a path such that w{, = w, and v, (t) is, with respect of ¢, a path which gives the
vector v, . On the another hand, we have

(97" dg)([v,w]) = g~ dg([v, w]).

Remark that the term g(z) lw(dg(v)) of w((g~'dg)(v)) together with the same with v <> w
and (¢ 'dg)([v,w]) which comes from (g~ 'dg)([v,w]) will give g(z)~1(d?g)(v,w) = 0 when we
will compute d(g~1'dg). Finally,

d(g 'dg) = —(g 'dgg" A dg). (4.120)
The equations (4.118)-157 and (4.120)-157 allow us to write :

(dAg) = d(g " Aag) + d(g~dg)
=—(g7'dgg ") A (Aag) — (9" 4a) A dg (4.121)
+ (g7 dAng) — (9 dgg™") A dg.
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Notice that the term (¢~ 'dA,g) corresponds to the first one in Fz = g~ (dAg + Ag A Ag)g.
For anyone who had understood the whole computations up to here, it is clear that
d d
A A - __[ tAp(v) tAB(w)]
d d - (4.122)
_ea [etAﬁ (w) gt Ap <v>]
dt du

u=0"
t=0

so that

Ag A Ag =g Aag A g7 Ang + 97 Ang A g Mg

4.123
+9 'dgng tAag + g N dg A g dg. (4.123)
Lemma 4.23 allows us to write it under the form
Ag A Ag =g 'Aug A g tApg+ g tAug A g d
B B8=9 gng gryg gng g (4.124)

+97'dg A g7 Aag + g7 dg A g7 dg.

Here the term (g7 'A, A A,g) corresponds to the second one in Fg = g 1(dAz + Ag A Ag)g.
The sum of (4.121)-157 and (4.124)-158 is

Fg = g FLg.

4.6.3 The electromagnetic field F

Now, we are able to interpret the field F' introduced in equation (4.88)-149. We follow [32].
From now, we use the usual Minkowski metric g = diag(—, +, +, +). From the vector given by
(4.90)-149, we define a (local) potential 1-form

A= A,det = —¢dt + Apdx + Aydy + A.dz.
The field strength is F' = dA. We easily find that
F = (dt ndx)(0s¢ + 0rAz) + ...

4.125
+ (dz A dy)(—0,Az + 0 Ay) + ... ( )

But the fields B and E are defined from A and ¢ by (4.86)-149, so
F =—E,(dt ndzx) — Ey(dt A dy)— E.(dt A dz) (4.126)

+ By (dy A dz) + By(dz A dz) + B, (dz A dy).

We naturally have dF = d>A = 0. But conversely, dF' = 0 ensures the existence of a 1-form

A such that F' = dA. If we define® B =V x A and E = —V¢ — §;A, equations (4.85b)-149

and (4.85¢)-149 are obviously satisfied. So in the connection formalism, the equations “without
sources” are written by

dF = 0. (4.127)

In order to write the two others, we introduce the current 1-form :

J = judx" = —pdt + jpdz + j,dy + j.dz.

6i.e. we consider F' as the main physical field while E and B are “derived” fields.
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One sees that

OF :=xdx F = —dt(V - E)
+ dx(—0:Eg + (V x B)y)
+ dy(—0,Ey + (V x B),)
+dz(—0:E, + (V x B),),
so that equation §F = j gives equations (4.85a)-149 and (4.85d)-149. Now, the complete set of
Maxwell’s equations is :

(4.128)

dF =0 (4.129a)
5F =j (4.129b)
with
Jj = —pdt + jzdzx + jydy + j.dz, (4.130a)
B=VxA (4.130b)
E=-V¢—-0A (4.130c)

where A is a 1-form such that F' = dA whose existence is given by (4.129a)-159.

4.7 Inclusion of the Lorentz group

Up to now we had seen how to express the gauge invariance of a physical theory. In particle
physics, a really funny field theory must be invariant under the Lorentz group; it is rather clear
that, from the bundle point of view, this feature will be implemented by a Lorentz-principal
bundle and some associated bundles. A spinor will be a section of an associated bundle for
spin one half representation of the Lorentz group on ©*. In order to describe non-zero spin
particle interacting with an electromagnetic field (represented by a connection on a U(1)-principal
bundle), we have to build a correct SL(2, C) x U(1)-principal bundle. We are going to use the
ideas of 4.2.1.

A space-time is a differentiable pseudo-Riemannian 4-dimensional manifold. The pseudo-
Riemannian structure is a 2-form g € Q?(M) for which we can find at each point = € M a basis
b = (bg,...,bs) which fulfils

gx(bisbj) = mij.
When we use an adapted coordinates, the metric reads g = n;;dz’ ® da’.

One says that M is time orientable if one can find a vector field T' € X(M) such that
92 (T, Ty;) > 0 for all x € M. A time orientation is a choice of such a vector field. A vector
v € T, M is future directed if g,(T,,v) > 0.

The Lorentz group L acts on the orthogonal basis of each T,M, but you may note that L
don’t acts on M; it’s just when the metric is flat that one can identify the whole manifold with
a tangent space and consider that L is the space-times isometry group. In the case of a curved
metric, the Lorentz group have to be introduced pointwise and the building of a frame bundle is
natural.

Now, we are mainly interested in the frame related each other by a transformation of Ll.
An arising question is to know if one can make a choice of some basis of each T, M in such a
manner that

(i) pointwise, the chosen frames are related by a transformation of LL,
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(ii) the choice is globally well defined.

The first point is trivial to fulfil from the definition of a space-time. For the second, it turns out
that a good choice can be performed if and only if there exists a vector field V' € X(M) such that
92(V, Vi) > 0 for all x € M. We suppose that it is the case”.

So our first principal bundle attempt to describe the space-time symmetry is the Ll—principal
bundle of orthonormal oriented frame on M :

LY ~~— L(M) (4.131)

lm

M

The notion of “relativistic invariance” has to be understood in the sense of associated bundle
to this one. The next step is to recall ourself (see subsection 4.2.1) that the physical fields doesn’t

transform under representation of the group LL but rather under representations of SL(2, C).
So we build a SL(2, C)-principal bundle

SL(2, ©) ~~— S(M)

lps

M

In order this bundle to “fit” as close as possible the bundle (4.131)-160, we impose the existence
of a map A\: S(M) — L(M) such that

(1) pa(A(€)) = ps(€) for all € € S(M) and
(if) A(€-g) = A(&) - Spin(g) for all g € SL(2, C).

You can recognize the definition of a spin structure. Notice that the existence of a spin
structure on a given manifold is a non trivial issue.

Now a physical field is given by a section of the associated bundle E = S(M) x, V where p
is a representations of SL(2, C) on V. For an electron, it is V = €* and p = D(1/20) @ D(0:1/2),
That describes a free electron is the sense that it doesn’t interacts with a gauge field. So in
order to write down the formalism in which lives a non zero spin particle, we have to build a
U(1) x SL(2, C)-principal bundle. For this, we follow the procedure given in section 1.15

4.8 Interactions

4.8.1 Spin zero

The general framework is the following :

U(l)MP E=PXPV
|\
T

e
M <—U,

"That condition is rather restrictive because we cannot, for example, find an everywhere non zero vector field
on the sphere S™ with n even.
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a U(1)-principal bundle over a manifold M (as far as topological subtleties are concerned, we
suppose M = R?) and a section ¢ of an associated bundle for a representation p of U(1) on V.
We consider M with the Lorentzian metric but, since we are intended to treat with scalar (spin
zero) fields, we still don’t include the Lorentz (or SL(2, C)) group in the picture. We also consider
local sections o, : Uy — P, a connection w on P and (2 its curvature. We define A, = o}w.
Now we particularize ourself to the target space V = C on which we put the scalar product

1
(21, 22) = 5(21?2 + 2271), (4.132)
and the representation p,: U(1) - GL(C),

pn(9)z=9-2=g"2

where we identify U(1) to the unit circle in C in order to compute the product. A property of
the product (4.132)-161 is to make p,, an isometry: for all g € U(1), 21, 22 € C,

{on(9)z15 pu(9)z2) = (21, 22)-

Our first aim is to write the covariant derivative of ¢ with respect to the connection w. For this
we work on the section ¢ under the form ¢(,): M — V and we use formula (4.70)-146 :

(Dx) () (7) = Xot(a) = pa ((050) X2) B(a) (7). (4.133)

Let us study this formula. We know that (0%w), = Aa(x) : Tolla > Ty, ()P <> u(1). Thus
Aq(x) X, is given by a path in U(1); it is this path which is taken by p,. Therefore (we forget
some dependences in x)

P (Aa(@)X2) by (2) = = | (A0 X)(1) d1c0 ()]

(4.134)

Thus the covariant derivative is given by

(DX¢)(a) (x) = Xw(b(a) - nAa(x)(Xz)¢(a) (-T) (4135)

One can guess an electromagnetic coupling for a particle of electric charge n. If this reveals to
be physically relevant, it shows that the “electromagnetic identity card” of a particle is given by
a representation of U(1). This has to be seen in relation to the discussion on page 143 where the
“type of particle” was closely related to representations of the Lorentz group. It is a remarkable
piece of quantum field theory: the properties of a particle are encoded in representations of some
Symmetry groups.

Now we are going to prove that |D¢|? is a gauche invariant quantity. The first step is to
give a sense to this norm. We consider X; (i = 0,1,2,3), an orthonormal basis of T, M and we
naturally denote D; = Dx,, d; = X; and A,; = Ao(0;). Remark that

Ap(2)Xs = (05)2 X = w(dow Xa) = w% [r(X(0)] __ ulr), (4.136)
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so this is given by a path in U(1) which can be taken by p. Let ¢(¢) be this path, then

dr .
_Z ic(t)
Aadia)(@) = = |“ Do) @) _.
so that under the conjugation, Aqd(a)(¥) = —Aad(a)(x). Now our definition of |Dg|? is a
composition of the norm on V' and the one on T, M :
ID¢|* = n7{Did(a), Dijd(ayy (4.137)

Using the notation in which the upper indices are contractions with 1%, we have
IDI2 = (0160 (@) = nAait(a)(@)) (0B (&) + nALD(e) (1))

Gauge transformation law

A gauge transformation ¢ is given by an equivariant function @, : U, — U(1) which can be

written under the form
Qboz(x) _ ezA(z)

for a certain function A: U, — R. From the general formula (ii) of lemma 4.13,

(@ ) (@) = pue™ ) ga) () = e MV (o (). (4.138)

The transformation of the gauche field A is given by equation (4.74)-146. Let us see the meaning
of the term d@. For v € T,U,,

o= L5 _ daaeen] ;4 INwO) _ iA(z)
(da)ev = dt [(pa(v(t))]mo Cdt [e ]t:O ~ [A(U(t))]t=oe = i(dh)ve '
(4.139)
Thus ¢, (2)(dPa)x = i(dA),. Since U(1) is abelian, "1 Ap = A. Finally,
(p-A)a(z) = An(z) +i(dA),. (4.140)
Now we are able to prove the invariance of | D¢|?. First,
(¢ Aia(z) = (0 A)a(0i) = Ai, (z) +i(0:A)(2); (4.141)
second,
0; (e*mm)%) (x)) = —ni(BiA) (@) (o) () + €O (360 (). (4.142)
With these two results,
0i(p - ) (o) (@) + 1l - A~ D)oy () = €7 (nAi(2) + Did(a) (x))- (4.143)

The Yang-Mills field strength is given by F(,) = 0% (cf. page 56). Since U(1) is abelian,
dF (o) = 0, so that the second pair of Maxwell’s equations is complete without any Lagrangian
assumptions.

The full Yang-Mills action is written as

1 o1 1
S(w,¢) = / [_ZF(a)ijF(a) T+ 5\\D¢||2 + §m¢(a)¢(a) :
M
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The Euler-Lagrange equations are

(0; — inAa;i) (0" — inAL) o + M*pe =0 (4.144a)

0iF ()" = 0. (4.144Db)

So the Yang-Mills Lagrangian only gives the first pair of Maxwell’s equations while the second
one is given by the geometric nature of fields.

As explained in [38], the topology of the physical space has deep implications on the physics

of Yang-Mills equations. The absence of magnetic monopoles for example is ultimately linked

to the (simple) connectedness of R*. When one consider the U(1) Yang-Mills on a sphere, some
topological charges appear and magnetic monopoles naturally arise.

4.8.2 Non zero spin formalism

The formalism for a non zero spin particle in an electromagnetic field is described in section 1.15.
We consider the spinor bundle

SL(2, ©) ~~—> S(M)

lps

M

with the spinor connection on S(M), and p1, a representation of SL(2, C) on V. For an electron,
it is V = C* and p; = D29 @ D(:1/2) 5o for g; € SL(2, C),

z1 zZ1

g1
pilgr) | © | = P (4.145)
2 @)1 \z,

On the other hand, we consider the principal bundle
U(l) ~~P
lpU
M

with a connection we which describes the electromagnetic field. As representation py: U(1) —
GL(C*) we choose the multiplication coordinate by coordinate :

21 g221
p2(g2) |+ |=| ¢ | (4.146)

24 9274
The physical picture of the electron is now the principal bundle
SL(2,C) x U(1l) ~~S(M)o P
lp
M,

and the field is a section of the associated bundle (S(M) o P) x, C*.
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.1 Alternative formalism for the quantum mechanics

We can a little reformulate the axioms of the quantum mechanics. Since we are in a Hilbert
space ¢ we can speak about orthogonal projections; if ¢ € R, we can consider the projection
on the space spanned by ¢:

_ <¢a €k>

P, € =
¢ 161

¢

where {e;} is a basis of . It is pretty clear that

_ K. pl?

Tr(PyP,) = . (.147)
C T el
If 9 € R and ¢ € R’ are unimodular, then
P(R - R') = Te(P4 Py), (.148)

so we can express the axioms in terms of projections instead of rays. For notational convenience,
we put

S = e A st ] = 1), (149)

We denote by . the space of the projections into one dimensional subspaces of ¢ (in other
words . is the space of physical states) and for P, Q € ., the transition probability is P - Q =
Tr(PQ). Now a quantum symmetry is a map T: .¥ — ./ such that (TP) - (TQ) = P - Q.

One can prove the following :

Theorem .25.
IfT: % — & is a quantum symmetry, then there exists an operator U: S — ' such that

(Z) PU¢ = TP¢’
(ii) U(§ +n) =UE) +U(n),
(iir) CUEUny = k(& m))

where Py is the projection onto the one dimensional space spanned by v and r: © — C fulfils
K(A) =X or k(\) = X and

(i) UAE) = K(ME.

Here is why this implies Wigner’s theorem as given by theorem 4.2. Let us consider some
@; € A such that ;| =1 and P,,, the corresponding projections. Let

%7

A(Py, Py, P3) = {p1, 02 P2, £33, P1)-

It is clear that this expression doesn’t depend on the choice of y; in its ray. We have

A(TPy; TPy, TP3) = A(PU[P1 v Pug,, PUt,as)

= U1, Upa XUpa, Ups XUz, Upr)
KU1, Upa))k({Upa, Ups))k({Ups, Upr))
k(A(Py, Py, P3)).

(.150)
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We can see from this that the choice of x(\) = A or x()\) = X is determined by the data of T if
dim 57 > 2. In the case where dim s# = 1, A is always equals to 1 and the equality (.150)-164
don’t gives any informations. In the case dim 5 > 2, we can choice 1 and s such that {(p1, p2)
takes any value z € C with ||z|| < 1. Taking @3 = ¢1 + @2, we find

A(Pl,PQ,Pg) = Z(l +E)2.

which is easily non real for a suitable choice of z € C. Let us suppose that we have an operator
U which satisfies the theorem .25. If k() = A, then

Uz +2'¢) = U(z9p) + U(2'9) = 2U () + 2U(9) (.151)
and
U, Ugy = k({Y, d)) = ¥, ¢y, (.152)
so that U is linear. If k(\) = Z, then
U(zy) =zUvy (.153)
and L
U&Uny = k(& m) = <& n)- (-154)

.2 Statement of some results

This appendix is devoted to the statement of some results which are used in the text, but whose
demonstration should be out of our purpose.

Theorem .26.
Let G be a Lie group and H a subgroup (with no special other structures) of G. If H is a closed
subset of G then there exists an unique analytic structure on H such that H is a topological Lie
subgroup of G.

This comes from [3], chapter 2, theorem 2.3.

Theorem .27.

Let G be a Lie group, H a closed subgroup of G and G/H the space of left cosets [g] = {gh|h € H}
with the natural topology. Then G/H has an unique analytic structure with the property that G
is a Lie transformation group of G/H.

This comes from [3], chapter 2, theorem 4.2.

Lemma .28.
Let G be a connected Lie group with Lie algebra G and let ¢ be an analytic homomorphism of G
into a Lie group X with Lie algebra X. Then

(i) The kernel ¢=1(e) is a topological Lie subgroup of G. Its Lie algebra is the kernel of dy..

(i) The image o(G) is a Lie subgroup of X with Lie algebra dp(G) c X.

This comes from [3], chapter 2, lemma 5.1.
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Lemma .29.
Let G and H be two Lie group, whose Lie algebra are G and H. If 0: G — H is a surjective
map, then we have H ~ G/Ker df..

Theorem .30.
Let us consider Ad: SU(2) — GL(3), Ad(U)X = UXU~!. We have the following properties:

(i) Ad is a linear homomorphism,

(i) it takes his values in SO(3); then we can write Ad: SU(2) — SO(3),
(i) it is surjective,
(iv) Ker Ad = 7,

(v) all these properties show that

Corollary .31.
An useful formula:

Corollary .32.
Another useful corollary of lemma 1.20 is the particular case ¢ = Ad(eX):

Definition .33.
If (ar) is a sequence in R, its upper limit is the real number

lim sup a,, = hm sup{ak k>1}.
n—x0

Lemma .34.
If w is a k-form (not specially a symplectic one), and V a torsion free connection, one has

k
(dw)(Xo, ..., X Z UVx,w)(Xo, ..., Xiy ... Xp). (.155)

Remark .35. The link between d and V comes from the fact that in the left hand side of (.155)-166
appears some commutators [X;, X;], but since the connection is torsion-free,

[Xi, X;]=Vx, X, —Vx, X;
The main consequence of this lemma is that Vw = 0 implies dw = 0.

Proposition .36. -
Consider a function f: X x E — R and zg € FE such that

e for all z € E, the function x — (x, z) is integrable,
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e for (almost) all x € X, the function z — f(x,z) is continuous at zp,

e there exists a function g = 0 such that for all z € E, |f(x,2)| < g(z) almost everywhere in

X.

Then the function h: E — R defined by h(z) = fX f(x, z) is continuous at z.
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