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Chapter 1

Differential geometry

1.1 Differentiable manifolds

More precisions in [1], chapter II (§1 and 2) and III. (§1, 2, 3 and 7); [2, 3] can also be useful.
An other source for this chapter is [4]. A systematic exposition of manifolds and such can be
found in [5].

1.1.1 Definition and examples

A n-dimensional differentiable manifold is a set M and a system of charts tpUα, ϕαquαPI
where each set Uα is open in Rn and the maps ϕα : Uα Ñ M are injective and satisfy the three
following conditions :

• every x PM is contained in at least one set ϕαpUαq,
• for any two charts ϕα : Uα ÑM and ϕβ : Uβ ÑM , the set

ϕ�1
α pϕαpUαq X ϕβpUβqq

is an open subset of Uα,

• the map pϕ�1
β � ϕαq : ϕ�1

α pϕαpUαq X ϕβpUβqq Ñ Uβ
is differentiable1 as map from Rn to Rn.

Each time we say “manifold“, we mean “differentiable manifold“. We will only consider
manifolds with Hausdorff topology (see later for the definition of a topology on a manifold). Any
open set of Rn is a differentiable manifold if we choose the identity map as chart system. Most
of surfaces z � fpx, yq in R3 are manifolds, depending on certain regularity conditions on f .

If M1 and M2 are two differentiable manifolds, a map f : M1 Ñ M2 is differentiable if f
is continuous and for each two coordinate systems ϕ1 : U1 Ñ M1 and ϕ2 : U2 Ñ M2, the map
ϕ�1

2 � f �ϕ1 is differentiable on its domain. One can show that if f : M1 ÑM2 and g : M2 ÑM3

are differentiable, then g � f : M1 ÑM3 is differentiable.

1In the sequel, by “differentiable” we always mean smooth. If this map is differentiable, Ck, analytic,. . . then
the manifold is said to be differentiable, Ck, analytic,. . .

9



10 CHAPTER 1. DIFFERENTIAL GEOMETRY

Example: the sphere

The sphere Sn is the set

Sn � tpx1, . . . , xn�1q P Rn�1 st }x} � 1u
for which we consider the following open set in Rn :

U � tpu1, . . . , unq P Rn st }u}   1u
and the charts ϕi : U Ñ S, and ϕ̃i : U Ñ S

ϕipu1, . . . , unq � pu1, . . . , ui�1,
a

1� }u}2, ui, . . . , unq (1.1a)

ϕ̃ipu1, . . . , unq � pu1, . . . , ui�1,�a1� }u}2, ui, . . . , unq. (1.1b)

These map are clearly injective. To see that ϕpUqY ϕ̃pUq � S, consider px1, . . . , xn�1q P S. Then
at least one of the xi is non zero. Let us suppose x1 � 0, thus x2

1 � 1� px2
2 � . . .� x2

n�1q and

x1 � �a1� p. . .q. (1.2)

If we put ui � xi�1, we have x � ϕpuq or x � ϕ̃puq following the sign in relation (1.2)-10. The
fact that ϕ�1 � ϕ̃ and ϕ̃�1 � ϕ are differentiable is a “first year in analysis exercise“.

Example: projective space

On Rn�1ztou, we consider the equivalence relation v � λw for all non zero λ P R, and we putRPn � �Rn�1ztou� { � .

This is the set of all the one dimensional subspaces of Rn�1. This is the real projective space

of dimension n. We set U � Rn and

ϕipu1, . . . , unq � Spantpu1, . . . , ui�1, 1, ui, . . . , unqu.
One can see that this gives a manifold structure to RPn. Moreover, the map

A : Sn Ñ RPn
v ÞÑ Span v

(1.3)

is differentiable.
Let us show how to identify RY t8u to RP 1, the set of directions in the plane R2. Indeed

consider any vertical line l (which does contain the origin). A non vertical vector subspace ofR2 intersects l in one and only one point, while the vertical vector subspace is associated with
the infinite point.

1.1.2 Topology on manifold and submanifold

A subset V �M is open if for every chart ϕ : U ÑM , the set ϕ�1pV X ϕpUqq is open in U .

Theorem 1.1.

This definition gives a topology on M which has the following properties :

(i) the charts maps are continuous,
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(ii) the sets ϕαpUαq are open.

Proof. First we prove that the open system defines a topology. For this, remark that ϕ�1
α is

injective (if not, there should be some multivalued points). Then ϕ�1pAXBq � ϕ�1pAqXϕ�1pBq.
If V1 and V2 are open in M , then

ϕ�1pV1 X V2 X ϕpUqq � ϕ�1pV1 X ϕpUqq X ϕ�1pV2 X ϕpUqq
which is open in Rn. The same property works for the unions.

Now we turn our attention to the continuity of ϕ : U ÑM ; for an open set V in M , we have
to show that ϕ�1pV q is open in U � Rn. But the definition of the topology on M , is precisely
the fact that ϕ�1pV X ϕpUqq is open.

If M is a differentiable manifold and N , a subset of M , we say that N is a submanifold of
dimension k if � p P N , there exists a chart ϕ : U ÑM around p such that

ϕ�1pϕpUq XNq � Rk X U :� tpx1, . . . , xk, 0 . . . , 0q P Uu.
In this case, N is itself a manifold of dimension k for which one can choose the ϕ of the

definition as charts.
Let us consider M and N , two differentiable manifolds, f : M Ñ N a C8 map and x PM . We

say that f is an immersion at x if dfx : TxM Ñ TfpxqN is injective and that f is a submersion

if dfx is surjective.
If M and M are two analytic manifolds, a map φ : M Ñ N is regular at p P M if it is

analytic at p and dφp : TpM Ñ TφppqN is injective.

Proposition 1.2.

Let M be a submanifold of the manifold N . If p P M , then there exists a coordinate systemtx1, . . . , xnu on a neighbourhood of p in N such that x1ppq � . . . � xnppq � 0 and such that the
set

U � tq P V st xjpqq � 0 �m� 1 ¤ j ¤ nu
gives a local chart of M containing p.

Proof. No proof.

The sense of this proposition is that one can put p at the center of a coordinate system on N
such that M is just a submanifold of N parametrised by the fact that its last m�n components
are zero.

Now we can give a characterization for a submanifold: N is a submanifold of M when N �M

(as set) and the identity ι : N ÑM is regular.

Proposition 1.3.

The own topology of a submanifold is finer than the induced one from the manifold.

Proof. Let M be a manifold of dimension n and N a submanifold2 of dimension k   n. We
consider V , an open subset of N for the induced topology, so V � N X O for a certain open
subset O of M . The aim is to show that V is an open subset in the topology of N .

Let us define P � ϕ�1pOq. The charts of N are the projection to Rk of the ones of M . We
have to consider W � ϕ�1pV q, since N is a submanifold, ϕ�1pOXNq � Rk XP . It is clear that

2In the whole proof, we should say “there exists a sub-neighbourhood such that. . . “
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W � Rk X P is an open subset of Rk because it is the projection on the k first coordinates of
an open subset of Rn.

The subset V of N will be open in the sense of the own topology of N if ϕ1�1pV Xϕ1pU 1qq is
open in Rk where ϕ1 is the restriction of ϕ to his k first coordinates: ϕ1paq � ϕpa, 0q and U 1 is
the projection of U .

Lemma 1.4.

Let V,M be two manifolds and ϕ : V Ñ M , a differentiable map. We suppose that ϕpV q is
contained in a submanifold S of M . If ϕ : V Ñ S is continuous, then it is differentiable.

Remark 1.5. The map ϕ is certainly continuous as map from V to M (this is in the assumptions).
But this don’t implies that it is continuous for the topology on S (which is the induced one from
M). So the continuity of ϕ : V Ñ S is a true assumption.

Proof. Let p P V . By proposition 1.2, we have a coordinate system tx1, . . . , xmu valid on a
neighbourhood N of ϕppq in M such that the settr P N st xjprq � 0 �s   j ¤ mu
with the restriction of px1, . . . xsq P NS form a local chart which contains ϕppq. From the
continuity of ϕ, there exists a chart pW,ψq around p such that ϕpW q � NS . The coordinates
xjpϕpqqq are differentiable functions of the coordinates of q in W . In particular, the coordinates
xjpϕpqqq for 1 ¤ j ¤ s are differentiable and ϕ : V Ñ S is differentiable because its expression in
a chart is differentiable.

A consequence of this lemma: if V and S are submanifolds of M with V � S, and if S has the
induced topology from M , then V is a submanifold of S. Indeed, we can consider the inclusion
ι : V Ñ S : it is differentiable from V to M and continuous from V to S then it is differentiable
from V to S by the lemma. Thus V � ι�1pSq is a submanifold of S (this is a classical result of
differential geometry).

Proposition 1.6.

A submanifold is open if and only if it has the same dimension as the main manifold.

Proof. Necessary condition. We consider some charts ϕi : Ui ÑM on some open subsets Ui ofRn. If N is open in M , then this can be written as

N �¤
i

Ui.

If we choose the charts on M in such a manner that ϕi : Ui XRk Ñ N are charts of N , we must
have ϕipUi XRkq � ϕipUiq. Then it is clear that k � n is necessary.
Sufficient condition. If N has same dimension as M , the charts ϕi : Ui Ñ M are trivially
restricted to N .

1.1.3 Tangent vector

As first attempt, we define a tangent vector of M at the point x P M as the “derivative” of a
path γ : p�ǫ, ǫq ÑM such that γp0q � x. It is denoted by

γ1p0q � d

dt
γptq����

t�0

.
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The question is to correctly define de derivative in the right hand side. Such a definition is
achieved as follows. A tangent vector to the manifold M is a linear map X : C8pMq Ñ R
which can be written under the form

Xf � pf �Xq1p0q � d

dt

�
fpXptqq�

t�0
(1.4)

for a certain path X : RÑM . Notice the abuse of notation between the tangent vector and the
path which defines it.

A more formal way to define a tangent vector is to say that it is an equivalent class of path
in the sense that two path are equivalent if and only if they induced maps by (1.4)-13 are equals.

Using the chain rule dpg � fqpaq � dgpfpaqq � dfpaq for the differentiation in Rn, one sees
that this equivalence notion doesn’t depend on the choice of ϕ. In other words, if ϕ and ϕ̃

are two charts for a neighbourhood of x, then pϕ�1 � γq1p0q � pϕ�1 � σq1p0q if and only ifpϕ̃�1 � γq1p0q � pϕ̃�1 � σq1p0q. The space of all tangent vectors at x is denoted by TxM . There
exists a bĳection rγs Ø pϕ�1 � γq1p0q between TxM and Rn, so TxM is endowed with a vector
space structure.

If pU , ϕq is a chart around Xp0q, we can express Xf using only well know objects by defining
the function f̃ � f � ϕ and X̃ � ϕ�1 �X

Xf � d

dt

�pf̃ � X̃qptq�
t�0

� Bf̃Bxα ����x�X̃p0q dX̃α

dt

����
t�0

.

In this sense, we write

X � dX̃α

dt

BBxα (1.5)

and we say that tB1, . . . , Bnu is a basis of TxM . As far as notations are concerned, from now
a tangent vector is written as X � XαBα where Xα is related to the path X : R Ñ M by
Xα � dX̃α{dt. We will no more mention the chart ϕ and write

Xf � d

dt

�
fpXptqq�

t�0
.

Correctness of this short notation is because the equivalence relation is independent of the choice
of chart. When we speak about a tangent vector to a given path Xptq without specification, we
think about X 1p0q.

All this construction gives back the notion of tangent vector when M � Rm. In order to
see it, think to a surface in R3. A tangent vector is precisely given by a derivative of a path: if
c : RÑ Rn is a path in the surface, a tangent vector to this curve is given by

lim
tÑ0

cpt0q � cpt0 � tq
t

which is a well know limit of a difference in Rn.
Let us precise how does a tangent vector acts on maps others than R-valued functions. If V

is a vector space and f : M Ñ V , we define

Xf � pXf iqei
where teiu is a basis of V and the functions f i : M Ñ R, the decomposition of f with respect
to this basis. If we consider a map ϕ : M Ñ N between two manifolds, the natural definition is
Xf :� dfX . More precisely, if we consider local coordinates xα and a function f : M Ñ R,pdϕXqf � d

dt

�pf � ϕ �Xqptq�
t�0

� BfBxα BϕαBxβ dXβ

dt
. (1.6)
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Now we are in a notational trouble: when we write X � XαBα, the “Xα“ is the derivative of the
“Xα“ which appears in the path Xptq � pX1ptq, . . . , Xnptqq which gives X by X � X 1p0q. So
equation (1.6)-13 gives

Xpϕq :� dϕX � XβpBβϕαqBα. (1.7)

1.1.4 Differential of a map

Let f : M1 Ñ M2 be a differentiable map, x P M1 and X P TxM1, i.e. X : R Ñ M1 with
Xp0q � x and X 1p0q � X . We can consider the path Y � f �X in M2. The tangent vector to
this path is written dfxX .

Proposition 1.7.

If f : M1 ÑM2 is a differentiable map between two differentiable manifolds, the map

dfx : TxM1 Ñ TfpxqM2

X 1p0q ÞÑ pf �Xq1p0q (1.8)

is linear.

Proof. We consider local coordinates x : Rn Ñ M1 and y : Rm Ñ M2. The maps f : M1 Ñ
M2 and y�1 � f � x : Rn Ñ Rm will sometimes be denoted by the same symbol f . We havepx�1�Xqptq � px1ptq, . . . , xnptqq and py�1�Y qptq � �

y1px1ptq, . . . , xnptq, . . . , ympx1ptq, . . . , xnptq�,
so that

Y 1p0q � �
ņ

i�1

By1Bxi x1ip0q, . . . , ņ

i�1

BymBxi x1ip0q� P Rm
which can be written in a more matricial way under the form

Y 1p0q � � ByiBxj x1jp0q
 .
So in the parametrisations x and y, the map dfx is given by the matrix Byi{Bxj which is well
defined from the only given of f .

Let x : U Ñ M and y : V Ñ M be two charts systems around p P M . Consider the path
cptq � xp0, . . . , t, . . . 0q where the t is at the position k. Then, with respect to these coordinates,

c1p0qf � d

dt

�
fpcptqq�

t�0
� BfBxi dcidt � BfBxk ,

so c1p0q � B{Bxk. Here, implicitly, we wrote ci � pxiq�1 � c where pxiq�1 is the ith component of
x�1 seen as element of Rn. We can make the same computation with the system y. With these
abuse of notation, BBxi �

j̧

ByjBxi BByj (1.9)

as it can be seen by applying it on any function f : M Ñ R. More precisely if x : U Ñ M and
y : U Ñ M are two charts (let U be the intersection of the domains of x and y), let f : M Ñ R
and f � f � x, f̃ � f � y. The action of the vector Bxi of the function f is given byBxif � BfBxi
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where the right hand side is a real number that can be computed with usual analysis on Rn.
This real defines the left hand side. Now, f � f̃ � y�1 � x, so thatBfBxi � Bpf̃ � y�1 � xqBxi � Bf̃Byj ByjBxi
where Bf̃Byj is precisely what we write now by Byjf and ByjBxi must be understood as the derivative
with respect to xi of the function py�1 � xq : Rn Ñ Rn.

Let f : M Ñ N and g : N Ñ R; the definitions givespdfxXqg � d

dt

�pg � fqpXptqq�
t�0

� BgByi Bf iBxα dXα

dt
.

This shows that BfiBxα dXαdt is pdfxXqi. But dXα{dt is what we should call Xα in the decompositon

X � XαBα then the matrix of df is given by BfiBxα . So we find back the old notion of differential.

Remark 1.8. If X P TxM and f is a vector valued function on M , then one can define Xf by
exactly the same expression. In this case,

dfX � d

dt

�
fpvptqq�

t�0
� Xf.

A map f : M1 Ñ M2 is an immersion at p P M1 if dfp : TpM1 Ñ TfppqM2 is injective. It is
a submersion if dfp is surjective.

1.1.5 Tangent and cotangent bundle

Tangent bundle

If M is a n dimensional manifold, as set the tangent bundle is the disjoint union of tangent
spaces

TM � ¤
xPM TxM.

Theorem 1.9.

The tangent bundle admits a 2n dimensional manifold structure for which the projection

π : TM ÑM

TpM ÞÑ p
(1.10)

is a submersion.

The structure is easy to guess. If ϕα : Uα ÑM is a coordinate system on M (with Uα � Rn),
we define ψα : Uα �Rn Ñ TM by

ψpx1, . . . xnloooomoooonPUα , a1, . . . anlooomooonPRn q �
i̧

ai
BBxi ����ϕpx1,...,xnq .

The map ψ�1
β � ψβ is differentiable becausepψ�1

β � ψβqpx, aq � pypxq,
i̧

ai
ByjBxi ����ypxqq

which is a composition of differentiable maps. The set TM endowed with this structure is called
the tangent bundle.
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Commutator of vector fields

If X , Y P XpMq, one can define the commutator rX,Y s in the following way. First remark
that, if f : M Ñ R, the object Xpfq is also a function from M to R by Xpfqpxq � Xxpfq, so we
can apply Y on Xpfq. The definition of rX,Y sx isrX,Y sxf � XxpY fq � YxpXfq. (1.11)

If X � X iBi and Y � Y jBj , then XY pfq � X iBipY jBjfq � X iBiY jBjf � X iY jB2
ijf . From

symmetry B2
ijf � B2

jif , the difference XY f � Y Xf is only X iBiY j � Y iBiXj, so thatrX,Y si � XY i � Y X i (1.12)

where X i and Y i are seen as functions from M to R.

Some Leibnitz formulas

See [1], chapter I, proposition 1.4.

Lemma 1.10.

If M and N are two manifolds, we have a canonical isomorphism

Tpp,qqpM �Nq � TpM � TqN.

Proof. A Z P Tpp,qqpM � Nq is the tangent vector to a curve pxptq, ypyqq in M � N . We can
consider X P TpM given by X � x1p0q and Y P TqN given by Y � y1p0q. The isomorphism
is the identification pX,Y q � Z. Indeed, let us define X P Tpp,qqpM � Nq, the tangent vector
to the curve pxptq, qq, and Y P Tpp,qqpM � Nq, the tangent vector to the curve pp, yptqq. Then
Z � X � Y because for any f : M �N Ñ R,

Zf � d

dt
fpxptq, yptqq����

t�0

� d

dt
fpxptq, yp0qq����

t�0

� d

dt
fpxp0q, yptqq����

t�0

� Xf � Y f. (1.13)

Proposition 1.11 (Leibnitz formula).
Let us consider M,N, V , three manifold; a map ϕ : M �N Ñ V and a vector Z P Tpp,qqpM �Nq
which corresponds (lemma 1.10) to pX,Y q P TpM � TqN .

If we define ϕ1 : M Ñ V and ϕ2 : N Ñ V by ϕ1pp1q � ϕpp1, qq and ϕ2pq1q � ϕpp, q1q, we have
the Leibnitz formula :

dϕpZq � dϕ1pXq � dϕ2pY q. (1.14)

Proof. Since Z � X � Y , we just have to remark that

dϕpXq � d

dt
ϕpxptq, qq����

t�0

� dϕ1pXq,
so dϕpZq � dϕpX � Y q � dϕ1pXq � dϕ2pY q.

One of the most important application of the Leibnitz rule is the corollary 1.32 on principal
bundles.
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Cotangent bundle

A form on a vector space V is a linear map α : V Ñ R. The set of all forms on V is denoted
by V � and is called the dual space of V . On each point of a manifold, one can consider the
tangent bundle which is a vector space. Then one can consider, for each x P M the dual space
T �xM :� pTxMq� which is called the cotangent bundle. A 1-differential form on M is a
smooth map ω : M Ñ T �M such that ωx :� ωpxq P T �xM . So, for each x PM , we have a 1-form
ωx : TxM Ñ R.

Here, the smoothness is the fact that for any smooth vector field X P XpMq, the map
x Ñ ωxpXxq is smooth as function on M . One often consider vector-valued forms. This is
exactly the same, but ωxXx belongs to a certain vector space instead of R. The set of V -valued
1-forms on M is denoted by ΩpM,V q and simply ΩpMq if V � R The cotangent space T �pM of
M at p is the dual space of TpM , i.e. the vector space of all the (real valued) linear3 1-forms
on TpM . In the coordinate system x : U ÑM , we naturally use, on T �pM , the dual basis of the
basis tB{Bxi, . . . B{Bxiu of TpM . This dual basis is denoted by tdx1, . . . , dxnu, the definition being
as usual :

dxipBjq � δ
j
i . (1.15)

The notation comes from the fact that equation (1.15)-17 describes the action of the differential
of the projection xi : U Ñ R on the vector Bj .

If pUα, ϕαq is a chart of M , then the maps

φα : Uα �Rn Ñ T �Mpx, aq ÞÑ aidxi|x (1.16)

give to T �M a 2n dimensional manifold structure such that the canonical projection π : T �M Ñ
M is an immersion.

When V is a finite-dimensional vector space, we denote by V � its dual4 and we often use
the identifications V � V � � TvV � TwV � T �v V where v and w are any elements of V . Note
however that there are no canonical isomorphism between these spaces, unless we consider some
basis.

Exterior algebra

Here are some recall without proof about forms on vector space. If V is a vector space, we denote
by ΛkV � the space of all the k-form on V . We define ^ : ΛkV � � ΛlV � Ñ Λk�lV � bypωk ^ ηlqpv1, . . . , vk�lq � 1

k!l!

¸
σPSk�l sgnpσqωpvσp1q, . . . , vσpkqqηpvσpk�1q , vσpk�1qq (1.17)

If te1, . . . , enu is a basis of V , the dual basis tσ1, . . . , σnu of V � is defined by σipejq � δij.
If I � t1 ¤ i1 ¤ . . . ik ¤ nu, we write σI � σi1 ^ . . . σik any k-form can be decomposed as

ω �
I̧

ωIσ
I .

The exterior algebra is provided with the interior product denoted by ι. It is defined by

ιpv0q : ΛkW Ñ Λk�1Wpιpv0qωqpv1, . . . , vk�1q � ωpv0, v1, . . . , vk�1q. (1.18)

3When we say a form, we will always mean a linear form.
4The vector space of all the linear map V Ñ R.
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Pull-back and push-forward

Let ϕ : M Ñ N be a smooth map, α a k-form on N , and Y a vector field on N . Consider the
map dϕ : TxM Ñ TϕpxqM . The aim is to extend it to a map from the tensor algebra of TxM to
the one of TϕpxqM . See [1] for precise definition of the tensor algebra.

The pull-back of ϕ on a k-form α is the map

ϕ� : ΩkpNq Ñ ΩkpMq
defined by pϕ�αqmpv1, . . . , vkq � αϕpmqpdϕmv1, . . . , dϕmvkq (1.19)

for all m PM and vi P XpMq.
Note the particular case k � 0. In this case, we take –instead of α– a function f : N Ñ R

and the definition (1.19)-18 gives ϕ�f : M Ñ R by

ϕ�f � f � ϕ.
The push-forward of ϕ on a k-form is the map

ϕ� : ΩkpMq Ñ ΩkpNq
defined by ϕ� � pϕ�1q�. For v P TnN , we explicitly have :pϕ�αqnpvq � αϕ�1pnqpdϕ�1

n vq.
Let now ϕ : M Ñ N be a diffeomorphism. The pull-back of ϕ on a vector field is the map

ϕ� : XpNq Ñ XpMq
defined by pϕ�Y qpmq � rpdϕ�1qm � Y � ϕspmq,
or pϕ�Y qϕ�1pnq � pdϕ�1qnYn,
for all n P N and m PM . Notice thatpdϕ�1qn : TnN Ñ Tϕ�1pnqM,

and that ϕ�1pnq is well defined because ϕ is an homeomorphism.
The push-forward is, as before, defined by ϕ� � pϕ�1q�. In order to show how to manipulate

these notations, let us prove the following equation :

f�ξ � pdfqξ.
For ϕ : M Ñ N and Y in XpNq, we just defined ϕ� : XpNq Ñ XpMq, bypϕ�Y qϕ�1pnq � pdϕ�1qnYn. (1.20)

Take f : M Ñ N ; we want to compute f� � pf�1q� with pf�1q� : XpMq Ñ XpNq. Replacing the
“�1“ on the right places, the definition (1.20)-18 gives us�pf�1q�X�

fpmq � pdfqmXm,

if X P XpMq, and m PM .
We can rewrite it without any indices: the coherence of the spaces automatically impose the

indices: pf�1q�X � pdfqX . It can also be rewritten as pf�1q� � df , and thus f� � df . From
there to f�ξ � pdfqξ, it is straightforward.
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Differential of k-forms

The differential of a k-form is defined by the following theorem.

Theorem 1.12.

Let M be a differentiable manifold. Then for each k P N, there exists an unique map

d : ΩkpMq Ñ Ωk�1pMq
such that

(i) d is linear,

(ii) for k � 0, we find back the d : C8pMq Ñ ΩpMq previously defined,

(iii) if f is a function and ωk a k-form, then

dpfωkq � df ^ ωk � fdωk, (1.21)

(iv) dpωk ^ ηlq � dωk ^ ηl � p�1qkωk ^ dηl,

(v) d � d � 0.

An explicit expression for dωk is actually given by

dωk �¸
dωI ^ dxI (1.22)

if ωk � °
ωIdx

I . An useful other way to write it is the following. If ω is a k-form and
X1, . . . , Xp�1 some vector fields,pk � 1qdωpX1, . . . , Xp�1q � p�1̧

i�1

p�1qi�1XiωpX1, . . . X̂i, . . . , Xp�1q�
i̧ jp�1qi�jωprXi, Xjs, X1, . . . , X̂i, X̂j, . . . , Xp�1q. (1.23)

Let us show it with p � 1. Let ω � ωidx
i and compute dωpX,Y q � Biωjpdxi ^ dxjqpX,Y q. For

this, we have to keep in mind that the Bi acts only on ωj while, in equation (1.23)-19, a term
XωpY q means –pointwise– the action of X on the function ωpY q : M Ñ R. So we have to use
Leibnitz formula : pBiωjqX iY j � pXωjqY j � XpωjY jq � ωjXY

j .

On the other hand, we know that rX,Y si � XY i � Y X i, so

dωpX,Y q � XωpY q � Y ωpXq � ωprX,Y sq. (1.24)

Hodge operator

Let us take a manifold M endowed with a metric g. We can define a map r : T �xM Ñ TxM by,
for α P T �xM , xrpαq, vy � αpvq.
for all v P TxM , where x�, �y stands for the product given by the metric g. If we have α, β P T �xM ,
we can define xα, βy � xrpαq, rpβqy.
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With this, we define an inner product on ΛppT �xMq :xα1 ^ . . . αp, β1 ^ . . . βpy � det
ij
xαi, βjy.

The Hodge operator is Æ : ΛppT �xMq Ñ Λn�ppT �xMq such that for any φ P ΛppT �xMq,
φ^ pÆψq � xφ, ψyΩ �a| detpgq|dx1 ^ . . .^ dxn. (1.25)

Volume form and orientation

Let M be a n dimensional smooth manifold. A volume form on M is a nowhere vanishing n-
form and the manifold itself is said to be orientable if such a volume form exists. Two volume
forms µ1 and µ2 are describe the same orientation if there exists a function f ¡ 0 such that5

µ1 � fµ2.

Proposition 1.13.

There exists only two orientations on a connected orientable manifold.

Problème et notes pour moi 1.

Vérifier l’énoncé du théorème et trouver une référence.

One says that the ordered basis pv1, � � � , vnq of TxM is positively oriented with respect to
the volume form µ is µxpv1, � � � , vnq ¡ 0.

1.1.6 Musical isomorphism

In some literature, we find the symbols v5 and α7. What does it mean ? For X P XpMq and
ω P Ω2pMq, the flat operation v5 P Ω1pMq is simply defined by the inner product :

v5 � ipvqω (1.26)

In the same way, we define the sharp operation by taking a 1-form α and defining α7 by

ipα7qω � α. (1.27)

An immediate property is, for all v P XpMq, v57 � v, and for all α P Ω1pMq, α75 � ω.

1.1.7 Lie derivative

Consider X P XpMq and α P ΩppMq. Let ϕt : M ÑM be the flow of X . The Lie derivative of
α is

LXα � lim
tÑ0

1
t
rpϕ�t αq � αs � d

dt
ϕ�t α����

t�0

. (1.28)

More explicitly, for x PM and v P TxM ,pLXαqxpvq � lim
tÑ0

1
t
rpϕ�t αqxpvq � αxpvqs

In the definition of the Lie derivative for a vector field, we need an extra minus sign :pLXY qx � d

dt
ϕ�t�Yϕtpxq����

t�0

. (1.29)

5Recall that the space of n-forms is one-dimensional.
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Why a minus sign ? Because Yϕtpxq P TϕtpxqM , but pdϕ�tqa : TaM Ñ Tϕ�tpaqM so that, if we
want, ϕ�t�Yϕtpxq to be a vector at x, we can’t use ϕt�.

These two definitions can be embedded in only one. Let X P XpMq and ϕt its integral
curve6. We know that ϕt� is an isomorphism ϕt� : Tϕ�1pxqM Ñ TxM . It can be extended to an
isomorphism of the tensor algebras at ϕ�1pxq and x. We note it ϕ̃t. For all tensor field K on
M , we define pLXKqx � lim

tÑ0
rKx � pϕ̃tKqxs.

On a Riemannian manifold pM, gq, a vector field X is a Killing vector field if LXg � 0.

Lemma 1.14.

Let f : p�ǫ, ǫq �M Ñ R be a differentiable map with fp0, pq � 0 for all p P U . Then there exists
g : p�ǫ, ǫq �M Ñ R, a differentiable map such that fpt, pq � tgpt, pq and

gp0, qq � Bfpt, qqBt ����
t�0

.

Proof. Take

gpt, qq � ˆ 1

0

Bfpts, pqBptsq ds,

and use the change of variable sÑ ts.

Lemma 1.15.

If ϕt is the integral curve of X, for all function f : M Ñ R, there exists a map g, gtppq � gpt, pq
such that f � ϕt � f � tgt and g0 � Xf .

Proof. Consider fpt, pq � fpϕtppqq � fppq, and apply the lemma :

f � ϕt � tgtppq � fppq.
Thus we have

Xf � lim
tÑ0

1
t
rfpϕtppqq � fppqs � lim

tÑ0
gtppq � g0ppq.

One of the main properties of the Lie derivative is the following :

Theorem 1.16.

Let X, Y P XpMq and ϕt be the integral curve of X. ThenrX,Y sp � lim
tÑ0

1
t
rY � dϕtY spϕtppqq,

or
LXY � rX,Y s.

Proof. Take f : M Ñ R and the function given by the lemma: gt : M Ñ R such that f � ϕt �
f � tgt and g0 � Xf . Then put pptq � ϕ�1

t ppq. The rest of the proof is a computation :pϕt�Y qpf � Y pf � ϕtqpptq � pY fqpptq � tpY gtqpptq,
6i.e. for all x PM , ϕ0pxq � x and d

dt
ϕu�tpxq���

t�0

� Xϕupxq.

http://en.wikipedia.org/wiki/Killing_vector_fields
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so

lim
tÑ0

1
t
rYp � pϕt�Y qpsf � lim

tÑ0

1
t
rpY fqp � pY fqpptqs � lim

tÑ0
pY gtqpptq� XppY fq � Ypg0� rX,Y spf. (1.30)

A second important property is

Theorem 1.17.

For any function f : M Ñ V ,
LXf � Xf.

Proof. If Xptq is the path which defines the vector X , it is obvious that at t � 0, Xptq is an
integral curve to X , so that we can take Xptq instead of ϕt in (1.28)-20. Therefore we have :

LXf � d

dt
ϕ�t f ����

t�0

� Xf (1.31)

by definition of the action of a vector on a function.

1.2 Example: Lie groups

A Lie group is a manifold G endowed with a group structure such that the inversion map
i : G Ñ G, ipxq � x�1 and the multiplication m : G � G Ñ G, mpx, yq � xy are differentiable.
The Lie algebra of the Lie group G is the tangent space of G at the identity: G � TeG.

It is immediate to see that g ÞÑ g�1 is a smooth homeomorphism and that, for any fixed
g0, g1, the maps

g ÞÑ g0g,

g ÞÑ gg0,

g ÞÑ g0gg1

are smooth homeomorphisms. When A � G, we define A�1 � tg�1 st g P Gu.
1.2.1 Connected component of Lie groups

Proposition 1.18.

If G is a connected Lie group and U , a neighbourhood of the identity e, then G is generated by
U in the sense that �g P G, there exists a finite number of gi P U such that

g � g1 . . . gn.

Notice that the number n is function of g in general.

Proof. Eventually passing to a subset, we can suppose that U is open. In this case, U�1 is open
because it is the image of U under the homeomorphism g ÞÑ g�1. Now we consider V � UXU�1.
The main property of this set is that V � V �1. LetrV s � tg1 . . . gn st gi P V u;
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we will prove that rV s � G by proving that it is closed and open in G (the fact that G is
connected the concludes).

We begin by openness of rV s. Let g0 � g1 � � � gn P rV s. We know that g0V is open because the
multiplication by g0 is an homeomorphism. It is clear that g0V � rV s and that g0 � g0e P g0V .
Hence g0 P g0V � rV s. It proves that rV s is open because g0V is a neighbourhood of g0 in rV s.

We now turn our attention to the closeness of rV s. Let h P rV s. The set hV is an open set
which contains h and hV X rV s � H because an open which contains an element of the closure
of a set intersects the set (it is almost the definition of the closure). Let g0 P hV X rV s. There
exists a h1 P V such that g0 � hh1. For this h1, we have hh1 � g0 � g1 � � � gn, and therefore

h � g1 � � � gnh�1
1 P rV s.

This proves that h P rV s because h�1
1 P V from the fact that V � V �1.

Remark that this proof emphasises the topological aspect of a Lie group: the differential
structure was only used to prove thinks like that A�1 is open when A is open.

Proposition 1.19.

Let G be a Lie group and G0, the identity component of G. We have the following :

(i) G0 is an open invariant subgroup of G,

(ii) G0 is a Lie group,

(iii) the connected components of G are lateral classes of G0. More specifically, if x belongs to
the connected component G1, then G1 � xG0 � G0x.

Proof. We know that when M1 is open in the manifold M , one can put on M1 a differential
structure of manifold of same dimension as M with the induced topology. Since G0 is open, it is
a smooth manifold. In order for G0 to be a Lie group, we have to prove that it is stable under
the inversion and that gh P G0 whenever g, h P G0.

First, G�1
0 is connected because it is homeomorphic to G0 in G. The element e belongs to the

intersection of G0 and G�1
0 , so G0 Y G�1

0 is connected as non-disjoint union of connected sets.
Hence G0 YG�1

0 � G0 and we conclude that G�1
0 � G0. The set G0G0 is connected because it

is the image of G0 �G0 under the multiplication map, but e P G0G0, so G0G0 � G0 and G0 is
thus closed for the multiplication. Hence G0 is a Lie group.

For all x P G, we have e � xex�1 P xG0x
�1, but xG0x

�1 is connected. Hence xG0x
�1 � G0,

which proves that G0 is an invariant subset of G.
Lateral classes xG0 are connected because the left multiplication is an homeomorphism.

They are moreover maximal connected subsets because, if xG0 � H (proper inclusion) with a
connected H , then G0 � x�1H (still proper inclusion). But the definition of G0 is that this
proper inclusion is impossible. Therefore, the sets of the form xG0 are maximally connected
sets. It is clear that YgPGgG0 � G.

Notice that the last point works with G0x too.

1.2.2 The Lie algebra of SUp2q
Let consider G � SUp2q; the elements are complexes 2 � 2 matrices U such that UU : � 1 and
detU � 1. An element of the Lie algebra is given by a path u : R Ñ G in the group with
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up0q � 1. Since for all t, uptquptq: � 1,

0 � d

dt

�
uptquptq:�

t�0� up0q d
dt

�
uptq:�

t�0
� d

dt

�
uptq�

t�0
up0q:� rdtuptqs: � rdtuptqs. (1.32)

So a general element of the Lie algebra sup2q is an anti-hermitian matrix. The same trick gives
the condition of vanishing trace.

1.2.3 What is g�1dg ?

The expression g�1dg is often written in the physical literature. In our framework, the way to
gives a sense to this expression is to consider it pointwise acting on a tangent vector. More
precisely, the scheme is the data of a manifold M , a Lie group G and a map g : M Ñ G.
Pointwise, we have to apply gpxq�1dgx to a tangent vector v P TxM .

Note that dgx : TxM Ñ Tgp0qG � TeG, so dgx R G. But the product gpxq�1dgxv is defined by

gpxq�1dgxv � d

dt

�
gpxq�1gpvptqq�

t�0
P G.

1.2.4 Exponential map

Lemma 1.20.

Let G, H be two Lie groups with algebras G and H. Let φ : GÑ H be a homomorphism differ-
entiable at e, the unit in G. Then for all X P G, the following formula holds:

φpexpXq � exppdφeXq.
It can be found in [6].

1.2.5 Invariant vector fields

As convention, the left invariant on G associated with X in the Lie algebra G at g P G is given
by the path

X̃gptq � getX (1.33)

while the right invariant is given by

Xr gptq � etXg (1.34)

The invariance means that pdLhqgX̃g � X̃hg and pdRhqgXr g � Xr gh. The invariant vector fields
are important because they carry the structure of the tangent space at identity (the Lie algebra).
More precisely we have the following result :

Theorem 1.21.

The map X Ñ Xe is a bĳection between the left invariant vector fields on a Lie group and its
Lie algebra TeG.

Invariant vector fields are also often used in order to transport a structure from the identity
of a Lie group to the whole group by AgpXgq � AepdLg�1Xgq where Ae is some structure and
Xg, a vector at g.
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1.2.6 Adjoint map

The ideas of this short note comes from [6]. A more traumatic definition of the adjoint group
can be found in [3], chapter II, §5. Let G be a Lie group, and G, its Lie algebra. We define the
adjoint map at the point x P G by

Adx : GÑ G

Adx y � xyx�1
(1.35)

Then we define

Adx :� pdAdxqe : G Ñ G;

the chain rule applied on Adxy � Adx �Ady leads to Adxy � Adx � Ady , and thus we can see
Ad as a group homomorphism Ad : GÑ GLpGq, Adpxq � Adx.

Definition 1.22.

This homomorphism is the adjoint representation of the group G in the vector space G.

Finally, we define

ad :� dpAdq1 : G Ñ LpG,Gq
where we identify T1GLpGq with LpG,Gq.
Lemma 1.23.

If f : GÑ G is an automorphism of G (i.e. : fpxyq � fpxqfpyq), then dfe is an automorphism
of G : df rX,Y s � rdfX, dfY s
Proof. First, remark that fpAdx yq � Adfpxq fpyq. Now, AdxX � pdAdxqeX , so that one can
compute :

dfpAdxXq � d

dt

�
fpAdxXptqq�

t�0� d

dt

�
Adfpxq fpXptqq�

t�0� pdAdfpxqqfpeqdfX� Adfpxq dfX. (1.36)

On the other hand, we need to understand how does the ad work.

adXY � d

dt

�
AdXptq �

t�0
Y � d

dt

�
AdXptq Y �

t�0

because AdXptq : G Ñ G is linear, so that Y can enter the derivation (for this, we identify G and
TXG). Since AdXptq Y is a path in G the true space ispadXqY � d

dt

�
AdXptq Y �

t�0
P TrX,Y sG � G.

For the same reason of linearity, df can get in the derivative in the expression df d
dt

�
AdXptq Y �

t�0
.
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Thus padXqY � d

dt

�
df
�

AdXptq Y ��
t�0� d

dt

�
AdfpXptqq dfY �

t�0� d

dt

�
AdfpXptqq �

t�0
dfY� adpdfXqdfY� rdfX, dfY s (1.37)

because fpXptqq is a path which gives dfX .

One can show that rX,Y s is tangent to the curve

cptq � e�?sXe�?sY e?sXe?sY . (1.38)

1.3 Fundamental vector field

If G is the Lie algebra of a Lie group G acting on a manifold M (the action of g on x being
denoted by x � g), the fundamental vector field associated with A P G is given by

A�x � d

dt

�
x � e�tA�

t�0
. (1.39)

We always suppose that the action is effective. If the action of G is transitive, the fundamental
vectors at point x PM form a basis of TxM . More precisely, we have the

Lemma 1.24.

For any v P TxM , there exists a A P G such that v � A�x, in other terms

SpantA�x st A P Gu � TxM.

Proof. The vector v is given by a path vptq in M . Since the action is transitive, one can write
vptq � x � cptq for a certain path c in G which fulfills cp0q � e. We have to show that v depends
only on c1p0q P G. We consider

R : G�M ÑM

Rpg, xq � x � g, (1.40)

so

v � d

dt

�
Rpcptq, xq�

t�0
� dRpe,xq�pdtcptq, xq � pcp0q, xq�. (1.41)

Lemma 1.25.

If A, B P G are such that A� � B�, then A � B.
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Proof. We consider once again the map (1.40)-26 and we look at

v � d

dt

�
Rpcptq, xq�

t�0
� pdRqpe,xq d

dt

�pcptq, xq�
t�0

,

keeping in mind that cptq � e�tA. In order to treat this expression, we define

R1 : GÑM, R1phq � Rph, xq, (1.42a)

R2 : M ÑM, R2pyq � Rpg, yq. (1.42b)

So
v � dR1pXq � dR2p0q � dR1c

1p0q
and the assumption A�x � B�

x becomes dR1A � dR1B. This makes, for small enough t,
R1petAe�tBq � x � etAe�tB � x; if the action is effective, it imposes A � B.

Lemma 1.26.

If we consider the action of a matrix group, Rg acts on the fundamental field by

dRgpA�ξ q � �
Adpg�1qA��

ξ�g.
Proof. Just notice that e�tAdpg�1qA � Adg�1pe�tAq � g�1e�tAg, thus�

Adpg�1qA��
ξ�g � d

dt

�
ξ � ge�tAdpg�1qA�

t�0
� dRgpA�ξ q. (1.43)

1.4 Vector bundle

Let M be a smooth manifold. A V -vector bundle of rank r on M is a smooth manifold F and
a smooth projection p : F ÑM such that

• for any x P M , the fiber Fx :� p�1pxq is a vector space of dimension r on the same field
that V (let’s say K � R or C).

• for any x P M , there exists an open neighbourhood U of x and a “chart diffeomorphism“
φ : p�1pUq Ñ U � V such that for any l P p�1pyq,

– φplq � py, φyplqq
– φy : Ey Ñ V is a vector space isomorphism.

The pair pU , φq is a local trivialization; M is the base space; F , the total space, p the projection
and r, the rank of the bundle. The denominations of total and base spaces will also be used in
the same way for principal bundles.

We will sometimes use charts diffeomorphism φ : U � V Ñ p�1pUq instead of φ : p�1pUq Ñ
U � V . Since they are diffeomorphism, this difference don’t affects anything.
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1.4.1 Transition functions

The trivializations will be denoted by Greek indices: Uα, φα,. . . The symbol Uαβ naturally denotes
Uα X Uβ. If we consider two local trivializations pUα, φαq and pUβ , φβq, we have to look at
φα � φ�1

β : Uαβ �Kr Ñ Uαβ �Kr. We define the transition functions gαβ : Uαβ Ñ GLpr,Kq
by

φα � φ�1
β px, vq � px, gαβpxqvq. (1.44)

These functions take their values in GLpr,Kq because φy : Ey Ñ V is a vector space isomorphism.
Since pφα � φβq�1 � φβ � φ�1

α , it is clear that gαβpxq � gαβpxq�1.
If x P Uαβγ � Uα X Uβ X Uγ , we have φα � φ�1

γ px, vq � px, gαγpxqvq, but also φα � φ�1
γ �

φα � φ�1
β φβ � φ�1

γ , thenpx, gαγpxqvq � pφα � φ�1
β qpx, gβγpxqvq � px, gαβpxqβγpxqvq. (1.45)

Thus gαγpxq � gαβpxqgβγpxq. So, as linear maps, we have

gαβ � gαγ � gγα � 1. (1.46)

1.4.2 Inverse construction

Let us consider a manifold M , an open covering tUα : α P Iu and some functions gαβ : Uαβ Ñ
GLpr,Kq which fulfill relations (1.46)-28. We will build a vector bundle E

pÝÑM whose transi-
tion functions are the gαβ ’s. Let Ẽ be the disjoint union

Ẽ � §
αPI Uα �Kr,

i.e. triples of the form px, v, αq P M � Kr � I with the condition that x P Uα. We define an
equivalence relation on Ẽ by px, v, αq � py, w, βq if and only if x � y and w � gαβpxqv. Next,
we define E � Ẽ{ � and ω : Ẽ Ñ E, the canonical projection. The projection p : E Ñ M is
naturally defined by pprx, v, αsq � x. The chart diffeomorphism is ϕα : Uα �Kr Ñ p�1pUαq,

ϕαpx, vq � ωpx, v, αq.
Now we have to prove that E endowed with the ϕα’s is a vector bundle.

First we prove that ϕα is surjective. For this we remark that a general element in p�1pUαq
can be written under the form ωpx, v, αq with x P Uαβ . But

ϕαpx, gαβpxqwq � ωpx, gαβpxqw,αq� ωpx, gαβpxqgαβpxqw, βq� ωpx,wβq, (1.47)

then ϕα is surjective. Now we suppose ϕαpx, vq � ϕαpy, wq. Then ωpx, v, αq � ωpy, w, αq and
x � y, w � gααv which immediately gives v � w. Then ϕα is injective.

Finally, we havepϕα � ϕ�1
β qpωpx, v, αqq � ϕαpx, gαβpxqvq � ωpx, gαβpxqv, αq, (1.48)

which proves that the maps g are the transition functions of the vector bundle E.
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1.4.3 Equivalence of vector bundle

Let E
pÝÑM and F

p1ÝÑM be two vector bundles on M . They are equivalent if there exists a
smooth diffeomorphism f : E Ñ F such that

• p1 � f � p,

• f |Ex : Ex Ñ Fx is a vector space isomorphism.

Let E and F be two equivalent vector bundles, tUα st α P Iu, an open covering which
trivialize E and F in the same time and φEα , φFα the corresponding trivializations. A map
f : E Ñ F reads “in the trivialization” as φFα �f |p�1pµαq �φE�1

α : Uα�Kr Ñ Uα�Kr and defines
a map λα : Uα Ñ GLpr,Kq bypφFα � f |p�1pµαq � φE�1

α qpx, vq � px, λαpxqvq. (1.49)

If we denote by gE the transition functions for E (and gF for F ),

φFα � φFβ �1 � pφFα � f � φEα�1q � pφEα � φEβ �1q � pφEβ � f�1 � φEβ �1q,
so that

gFαβpxq � λαpxqgEαβpxqλpxq�1 . (1.50)

Once again we have an inverse construction. We consider a vector bundle E on M with
transition functions gE and some maps λα : Uα Ñ GLpr,Kq; then we define gFαβpxq by equation
(1.50)-29.

From subsection 1.4.2, one can construct a vector bundle F on M whose transition functions
are these gF . With the trivializations φF of F , one can define f : E Ñ F bypφFα � f � φEα�1qpx, vq � px, λαpxqvq.

When a basis space B is given, we denote by VectpBq the set of isomorphism classes of vector
bundles over B. In the complex case, we denote it by VectCpBq.
Proposition 1.27.

Any vector bundle over Rn is trivial.

Proof. Let p : F Ñ M be a vector bundle on M � Rn and tUαu be covering of Rn by local
trivializations. Now consider a partition of unity related to the covering Uα : a set of functions
fα : M Ñ R such that

• fα ¡ 0,

• �x PM , one can find a neighbourhood of x in which only a finite number of fα is non zero,

• �x PM ,
°
α fαpxq � 1.

• fα � 0 outside of Uα.

Using that partition of unity, we build the trivialization function f : F Ñ Rn � V by fplq �px,°α fαpxqφαxplqq.
The following two propositions have some importance in K-theory.
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Proposition 1.28.

Let π : E Ñ B be a complex vector bundle over a basis compact, Hausdorff, connected basis B.
Then there exists a vector bundle E1 such that E `E1 is trivial.

Proposition 1.29.

Let f : A Ñ B be a map between the topological spaces A and B, and consider a vector bundle
π : E Ñ B. Then there exists one and only one vector bundle π1 : E1 Ñ A and a map f 1 : E1 Ñ
E such that f 1|E1

x
: E1

x Ñ Efpxq is an isomorphism. The vector bundle E1 is unique up to
isomorphism.

Proofs can be found in [7]. Let us denote by f�pEq the function given by proposition 1.29.
It satisfies the following propertiespfgq�pEq � g��f�pEq�

id�pEq � E

f�pE1 `E2q � f�pE1q ` f�pE2q
f�pE1 bE2q � f�pE1q b f�pE2q. (1.51)

1.4.4 Sections of vector bundle

A section of the vector bundle p : E ÑM is a smooth map s : M Ñ E such that p � s � id |M .
The set of all the sections is denoted by Γ8pMq or simply ΓpEq.

If pUα, φαq is a local trivialization, one can describe the section s by a function sα : Uα Ñ V

defined by φαpspxqq � px, sαpxqq, or equivalently by

spxq � φ�1
α px, sαpxqq.

As usual when we define such a local quantity, we have to ask ourself how are related sα and sβ
on Uα X Uβ . The best is sα � sβ, but most of the time it is not. Here, we compute

φβ � φ�1
α � φαpspsqq � px, gαβpxqsαpxqq,

which is obviously also equal to px, sβpxqq. Then

sβpxq � gαβpxqsαpxq (1.52)

without summation.

1.5 Vector valued differential forms

Let E be a vector bundle over M . A E-valued p-form is a section

e P Γ
�
E b p©

T �M�
.

We denote by ΩpM,Eq � Γ
�
Eb�p

T �M�
the set of E-valued differential forms. An element of

Ω1pM,Eq � Γ
�
E b�

T �M�
always reads

°
i si b ωi for some sections si and usual differential

forms ωi.
A form of ΩppM,Eq can be seen as a fiber morphism TM b � � � b TMlooooooooomooooooooon

p times

Ñ E by associating

sb ωpX1, � � � , Xpq � spxqωpX1, � � � , Xpq P Ex
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to the element psb ωq P ΩppM,Eq. There exists a wedge product between vector-valued forms.
If e P ΩppM,E1q and f P ΩqpM,E2q, then we define e^ f P Ωp�qpM,E1 bE2q bype^ fqpv1, � � � , vp�qq � 1

p!q!

¸
πPSp�qp�1qπepvπp1q, � � � vπppqq b fpvπpp�1q, � � � , vπpp�qqq P E1 bE2.

(1.53)
where p�1qπ stands for the sign of the permutation π. For example when e, f P Ω1pM,Eq, we
have pe^ fqpX,Y q � epXq b fpY q � epY q b fpXq P E bE.

When M is a differentiable manifold, the fundamental 1-form is the element θ P ΩpM,TMq
such that

ιpXqθ � X

for every X P ΓpTMq.
1.6 Lie algebra valued differential forms

An important particular case of vector valued forms is given by Lie algebra valued forms. That
case appears for example in the connection theory over principal bundle7. If ω and η are elements
of Ω1pM,Gq for some Lie algebra G, we definepω ^ ηqpX,Y q � ωpXq b ηpY q � ωpY q b ηpXq.
Combining with the Lie bracket, we definerω ^ ηspX,Y q :� rωpXq, ηpY qs � rωpY q, ηpXqs. (1.54)

Using the proposition 4.21, we often implicitly transforms the tensor product into a product
(4.104b)-153 and put pω ^ ωqpX,Y q � rωpXq, ωpY qs. (1.55)

Let us point out the fact that that kind of formula only holds for a “wedge square”, but not for a
general product ω ^ η. Remark that for ω P Ω1pM,Gq and β P Ω2pM,Gq, a simple computation
of definition (1.53)-31 yieldspω ^ βqpX,Y, Zq � ωpXq b βpY, Zq � ωpY q b βpX,Zq � ωpZq b βpX,Y q, (1.56)

so that, using the same trick as for equation (1.55)-31, we findpω ^ β � β ^ ωqpX,Y, Zq � rωpXq, βpY, Zqs � rωpY q, βpX,Zqs � rωpZq, βpX,Y qs.
But that expression is exactly what we find by exchanging the tensor product by Lie bracket in
expression (1.56)-31. So we define rω ^ βs � ω ^ β � β ^ ω (1.57)

when ω P Ω1pM,Gq and β P Ω2pM,Gq. The reader should remark that this is what one would
expect from generalisation of definition (1.54)-31.

7So in Maxwell and other gauge field theories.
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1.7 Principal bundle

Let M be a manifold and G, a Lie group whose unit is denoted by e. A G-principal bundle

on M is a smooth manifold P , a smooth map π : P ÑM and a right action of G on P denoted
by ξ � g with g P G and ξ P P such that

• πpξ � gq � πpξq,
• �ξ P π�1pxq, π�1pxq � tξ � g st g P Gu � G,

• �x P M , there exists a neighbourhood Uα of x in M , a diffeomorphism φα : π�1pUαq Ñ
Uα �G and a diffeomorphism φαx : P Ñ G such that

– φαpξq � px, φαxpξqq,
– φαxpξ � gq � φαxpξq � g.

The group G is often called the structure group. We suppose that the action is effective. We
will sometimes use the notation P pG,Mq to precise that P is a principal bundle over M with
structure group G.

The whole construction is given in figure 1.1. All is not yet defined, but in the following, the
notations will follow this scheme.

P

M
Uα

ππ�1|Uα
Uα �G

φPα

E � P �ρ V
p

Uα � V
φEα

Figure 1.1: Some bundles

Lemma 1.30.

The map φ�1
α fulfills

φα�1px, hq � g � φ�1
α px, hgq.

Proof. From the definition of a principal bundle, any ξ P P can be written under the form
ξ � φ�1

α px, φαxpξqq with φx satisfying φxpξ � hq � φxpξqh for a certain function φx : P Ñ G. We
consider in particular ξ � φ�1

α px, hq�g. Then ξ �g�1 � φ�1
α px, hq. But ξ �g�1 � φ�1

α px, φαxpξqg�1q,
then h � φαxpξqg�1 and φαxpξq � hg. So we have

ξ � φ�1
α px, hq � g � φ�1

α px, φαxpξqq � φ�1
α px, hgq.
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Let
R � tpx, yq P P � P st x � y � g for a certain g P Gu.

Proposition 1.31.

The function u : RÑ G defined by the condition

p � upp, qq � q.

is differentiable.

Proof. Let U be an open subset of M and σ : U Ñ P , a section. We consider a differentiable
map ρ : π�1pUq Ñ G such that ρpξ � gq � ρpξq � g and ρpσpxqq � e. Such a map is given by

ρpξq � φxpσpxqq�1φxpξq
where x � πpξq. We naturally define RU � RX pπ�1pUq � π�1pUqq and we pick pξ, ηq P RU . Let
s P G be the one such that ξ � s � η, so that ρpξq � s � ρpηq. Then the restriction of u to RU is
given by upξ, ηq � ρpξq�1ρpηq which makes u|U differentiable. Since this reasoning can be made
on every chart open U , u is differentiable everywhere on P .

The following is a corollary of Leibnitz rule.

Corollary 1.32.

If P is a G-principal bundle and v, a are curve in P and G respectively, we can consider the
curve uptq � vptqaptq. We have :

d

dt
uptq����

t�0

� d

dt
vptqap0q����

t�0

� d

dt
vp0qaptq����

t�0

.

The proof is direct. This result is often written as9ut � 9vtat � vt 9at. (1.58)

A main application is
d

dt

�
r � hptq�

t�0
� d

dt

�
r � eth1p0q�

t�0
. (1.59)

1.7.1 Transition functions

Let pUα, φαq be a local trivialization of P . This induces transition functions gαβ : Uα X Uβ Ñ G

defined by
φα � φ�1

β : Uα X Uβ �GÑ Uα X Uβ �Gpx, aq ÞÑ px, gαβpxqaq. (1.60)

Clearly, gαα � e and gαβgαβ � e on Uα X Uβ. Then the triviality

φα � φ�1
β � φβ � φ�1

γ � φγ � φ�1
α � id

implies the compatibility conditions
gαβgβγgγα � e (1.61)

on Uα X Uβ X Uγ .
There is an inverse construction. Let tUα st α P Iu be an open covering of M and gαβ : UαX

Uβ Ñ G a family of functions such that gαα � e, gαβgαβ � e on Uα X Uβ and gαβgβγgγα � e

on Uα X Uβ X Uγ . Then the following construction gives a G-principal bundle whose transition
functions are the gαβ’s.
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• P̃ � �
αPI Uα �G (disjoint union),

• if px, aq P Uα � G and py, bq P Uβ � G, then px, aq � py, bq if and only if x � y and
b � gαβpxqa,

• π : P̃ ÑM is defined by πrpx, aqs � x where rpx, aqs is the class of px, aq for �,

• the action is defined by rpx, aqs � g � rpx, agqs.
Theorem 1.33.

Let G be a Lie group; M , a differentiable manifold; tUαuαPI , an open covering of M and some
functions ϕαβ : Uα X Uβ Ñ G such that ϕαβpxq � ϕαγpxqϕγβpxq. Then there exists a principal
bundle P whose transition functions are the ϕα’s for the covering tUαuαPI .
Proof. We consider the topological space

E � ¤
αPIpG� Uα � Iq (1.62)

where we put the discrete topology on I. EachG�Uα�tαu is a manifold. Thus E has a structure
of differentiable manifold induced from the one of G �M . We consider on E the equivalence
relation given by the following subset of E �E :

R �  �pg, x, αq, ph, y, βq� P E �E st y � x and h � ϕαβpxqg( .
We will show that P � E{R has a structure of principal bundle. We begin by defining an action
of G on P by rpg, x, αq � hs � rpgh, x, αqs.
In order to see that this definition is correct, let us consider rg1, x, βs � rg, x, αs. From the
definition of the equivalence class, g1 � ϕαβpxqg. Then rpg1, x, βqs � h � rpϕαβpgqgh, x, βqs, and
the form of R shows that this is well rpgh, x, αqs. Since the map pg, hq Ñ gh is differentiable on
G, the so defined action is a differentiable action of G on P and G is a transformation group on
P .

If rpg, x, αqs � rpgh, x, αqs, then gh � ϕααg � g and h � e. So the action is effective.
Now we consider the quotient P {G. A typical element isps, x, iq � trs, x, is � g st g P Gu.

The projection π : P Ñ M , rps, x, αqs Ñ x is well defined and we can consider ϕ : P {G Ñ M ,
ϕps, x, αq � x. It provides a bĳection between P {G and M . So we can identify P {G and M .
Now we are going to show that P endowed with the projection π : P Ñ X is a principal bundle.

We consider the map
hα : G� Uα Ñ Ppg, xq ÞÑ ωpg, x, αq (1.63)

where ω : E Ñ P � E{R is the canonical projection. Sincepπ � hαqpg, xq � pπ � ωqpg, x, αq � πrpg, x, αqs � x,

the map hα actually is hα : G�Uα Ñ π�1pUαq. In order to see that hα is surjective on π�1pUαq,
let us take a general element of π�1pUαq under the form ωpg, x, βq with x P Uα X Uβ . Thenpg, x, βq P rpϕαβpxqg, x, αqs and therefore ωpg, x, βq � hαpϕαβpxqg, xq. For the injectivity, remark
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that ωpg, x, βq � ωph, y, αq implies x � y and h � ϕββpxqg � g. In particular, hαpg, xq � hαph, yq
implies x � y and g � h.

Now we will prove that the inverse of hα is continuous. For this we consider an open set
Ω � G� Uα and we have to show that hαpΩq is open in π�1pUαq.

We recall the quotient topology : if A is a topological space with an equivalence relation� and the canonical projection ϕ : AÑ A{ �, then V � A{ � is open if and only if ϕ�1pV q � A

is open. So in our case, we have to check the openness of V � ω�1phαpΩqq in E. We consider
the open covering tG� Uα � tαuuαPI
of E and we will show that the intersection of V with any of these open set is open. We have
to show that ω�1

�
hαpΩq X pG � Uα � tβuq� is open for any β P I. For this, we define a map

α : G� pUα X Uβq � tβu Ñ G� Uα by

αβpg, x, βq � pϕαβpxqg, xq (1.64)

which is continuous. The set phα � αβq�1phαpΩqq � α�1
β pΩq is open because hα � αβ is the

restriction of ω to G�pUαXUβq�tβu. Then hα is an homeomorphism from G�Uα tp π�1pUαq.
Since it is build from differentiable functions, it is moreover a diffeomorphism.

So we have a chart system tphα,UαquαPI where hα fulfils the “good” properties with respect to
π. It remains to be proved that the ϕαβ ’s are the transition functions and that π�1pπpξqq � ξ �G
for every ξ P P . We begin by the latter. For ξ � rpg, x, αqs, πpξq � x and we have to study the
set

π�1pxq � trph, x, βqs st h P G, β P Iu.
Clearly, rph, x, βqs �G � π�1pxq. The fact that there is nothing else than rph, x, βqs �G in π�1pxq
is seen by rh, x, βs � rϕαβpxqg, x, αs P rph, x, αqs �G.

In order to check the change of charts, let us consider g1 � h�1
β,x � hα,xpgq where

hα,xpgq � hαpg, xq � ωpg, x, αq. (1.65)

The fact that hβpg1, xq � gαpg, xq concludes the proof. To see this fact, remark that hβ,xph�1
β,x �

hα,xpgqq � hα,xpgq, so that hαpg1, xq � hαpg, xq implies ωpg1, x, βq � ωpg, x, αq which proves that
g1 � ϕαβpgq.

The trivial bundle is simply P �M �G and πpx, gq � x with the action px, aq � g � px, agq.
1.7.2 Morphisms and such. . .

An homomorphism between P pG,Mq and P 1pG1,M 1q is a differentiable map h : P Ñ P 1 such
that �ξ P P, g P G,

hpξ � gq � hpξq � hGpgq (1.66)

where hG : GÑ G1 is a Lie group homomorphism. From the definition, h maps a fiber to only one
fiber, but it is not specially surjective on any fiber. So h induces a homomorphism hM : M ÑM 1
such that π1 � h � hM � π.

An isomorphism is a homomorphism g : P pG,Mq Ñ P 1pG1,M 1q such that

• hP is a diffeomorphism P Ñ P 1,
• hG is a Lie group homomorphism GÑ G1, and
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• hM is a diffeomorphism M ÑM 1.
A principal bundle is trivial if one can find an isomorphism h : G � M Ñ P such that

π � h � id � pr2, i.e. the following diagram commutes :

G�M

pr
2

��

h // P

π

��
M

id
// M

(1.67)

We say that P is locally trivial if for every x P M , there exists an open neighbourhood U in
M such that π�1pUq endowed with the induced structure of principal bundle is trivial.

1.7.3 Frame bundle: first

In the ideas, the building of a vector bundle is just to put a vector space on each point of the
base manifold. A principal bundle is to put something on which a group acts on each point. If
you have a vector bundle on a manifold, you can consider, on each point x P M , the set of all
the basis of the fiber Ex over x. The group GLpr,Kq naturally acts on this set which becomes
a candidate to be a GLpr,Kq-principal bundle.

More formally, we consider a vector bundle F
pÝÑM , and for each x, the set of the basis of

the vector space Fx � p�1pxq. We define

P � ¤
xPMpbasis of Fxq.

We naturally consider the projection π : P ÑM , πpbxq � x if bx is a basis of Fx.
Let φFα : p�1pUαq Ñ Uα � Kr be a local trivialization of F , and te1, . . . , eru, the canonical

basis of Kr. We naturally define

Sαipxq � φFα
�1px, eiq.

The set tSα1pxq, . . . , Sαrpxqu is a “reference” basis of Fx with respect to the trivialization φα.
If we choose another basis tv1, . . . vru of Fx, we can find a matrix A P GLpr,Kq such that
vk � AlkSαlpxq. This gives a bĳection

φPα : π�1pUαq Ñ Uα �GLpr,Kqpv1, . . . , vrq ÞÑ px,Aq. (1.68)

One can give to P a GLpr,Kq-principal bundle structure such that the φPα are diffeomorphism.
Let pUα, φFα q be a local trivialization of F and gFαβ : Uα X Uβ Ñ GLpr,Kq. In this case,pUα, φPα q is a trivialization of P whose transition function is gPαβ � gFαβ . Indeed

φPα � φPβ �1px,Aq � φPα ptv1, . . . , vruq
where vs � pφFβ q�1px,Alselq. In order to see it, recall that vs � AlsSαlpxq and that φFα

�1px, esq �
Sαspxq. Then

vs � pφFβ q�1px,Alselq � AlsSαspxq.
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On the other hand, from the definition of φPβ , the basis pφPβ q�1px,Aq is the one obtained by
applying A on S. With all this,

φPα � pφPβ q�1px,Aq � φPα tpφFβ q�1px,Alselqus�1,...r� φPα tpφFα q�1 � pφEα � φFβ �1qpx,Alselqus�1,...r� φPα tpφEα q�1px, gFαβpxqsiAlselqui�1,...r� px, gFαβpxqAq. (1.69)

The last product gFαβpxqA is a matricial product.

1.7.4 Frame bundle: second

Basis

If M is a m-dimensional manifold, a frame of TxM is an isomorphism b : Rm Ñ TxM . In our
purpose, we will always deal with (pseudo)Riemannian manifold. So, the tangents spaces TxM
comes with a metric, and we ask a frame to be isometric. In other words, we ask b to be an
isometry from pRm, �q to pTxM, gxq, where the dot denotes the (pseudo)euclidian product onRm. Such a frame is given by a base point x of M and a matrix S in SOpgxq :

bpvq � pSvqipBiqx, (1.70)

if the vector v is written as v � vi1i in the canonical orthogonal frame t1iu of Rm and SOpgxq
is the set of the m�m matrix A such that AtgxA � gx.

This frame intuitively corresponds to the basis of TxM (see as a “true” vector space) that we
would have written by tSeiux if ei � BBxi . In order to follow this idea, we will effectively denote
by tSeiux the map b : Rm Ñ TxM given by (1.70)-37.

We will often write the frame b as tbeiux, making no differences in notation between the b of
SOpMq and the b of SOpgxq which implement it.

Remark 1.34. One has to distinguish a frame and a basis : a basis is only a free and generator
set while a frame can be interpreted as an ordered basis.

Construction

We just saw how to build a frame bundle over a manifold. One can get another expression of
the frame bundle when we express a basis of TxM by means of an isomorphism between Rn and
TxM . If M is a n-dimensional manifold, a frame at x is an ordered basis

b � pb1, . . . ,bnq
of TxM . It is clear that any frame defines an isomorphism (linear bĳective map)

b̃ : Rn Ñ TxM

ei ÞÑ ei

(1.71)

where teiu is the canonical basis of Rn. It is also clear that any isomorphism gives rise to a
frame. Then we see a frame of M at x as an isomorphism b̃ : Rn Ñ TxM . Let BpMqx be the of
all the frames of M at x; we define

BpMq � ¤
xPM BpMqx.
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For all b P BpMqx, we define pBpbq � x and the action BpMq � GLpn,Rq Ñ BpMq by b � g �pb11, . . . ,b1nq where
b1j � big

j
i . (1.72)

It is easy to see that �b � g � b̃ � g : Rn Ñ TxM . So we can give to

GLpn,Rq ///o/o/o BpMq
pB

��
M

(1.73)

a structure of principal bundle8. If pUα, ϕαq is a local coordinate chart on M , we define

ϕ̃ : p�1
B pUαq Ñ ϕαpUαq �GLpn,Rq

b ÞÑ pϕαpxq, Apbqq (1.74)

where Apbq P GLpn,Rq is defined by the condition bj � A
i
j Bi|x. The matrix Apbq is the one

which transforms the canonical basis (in the trivialization ϕα) into b P BpMqx. That’s for the
principal bundle structure.

The manifold structure of BpMq is given by Φα : p�1
B pUαq Ñ Uα �GLpRq,

Φpbq � pϕ�1
α � id |GLpn,Rqq � ϕ̃pbq� px,Apbqq� ppBpbq, Apbqq. (1.75)

It fulfils Apb � gq � Apbq � g. A section s : Uα Ñ BpMq is sometimes called a moving frame over
Uα.

Frame bundle over R2 is given as example in page 123

1.7.5 Sections of principal bundle

A section of a G-principal bundle is a smooth map s : M Ñ P such that spxq P π�1pxq for any
x PM . A trivialization φPα P on Uα defines a section of P over Uα by

σαpxq � pφPα q�1px, eq
where e is the neutral of the group. In the inverse sense, we have the following :

Proposition 1.35.

If σα : Uα Ñ P is local section of P over Uα � M , then the definition φPα pξq � px, aq if ξ �
σαpxq � a is a local trivialization.

Proof. The function φPα is well defined because ξ P π�1pUαq implies the existence of a x P Uα
such that ξ P π�1pxq � tξ � gu � G. For this x, there exists a g P G such that ξ � σαpxq � g.

Now we prove that the couple px, aq is unique in the sense that sαpxq � a � σαpyq � b impliespx, aq � py, bq. The left hand side belongs to π�1pxq while the right one belongs to π�1pyq. Then
x � y. The condition π�1pxq � G imposes the unicity of the g making ξ � η � g for each couple,
ξ, η P π�1pxq.

8Much more details and proofs are given in [8].
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If σ and σ1 are two sections of the same principal bundle P , then there exists a differentiable
map f : M Ñ G such that σ1pxq � σpxq � fpxq. So all the sections can be deduced from only one
and multiplication by such a f .

Theorem 1.36.

If π : P pG,Mq ÑM is a principal bundle, then the four following propositions are equivalent :

(i) P is trivial,

(ii) P has a global section,

(iii) there exists a differentiable map γ : P Ñ G such that γpξ � gq � g�1γpξq for all ξ P P and
g P G,

(iv) there exists a differentiable map ρ : P Ñ G such that ρpξ � gq � ρpξqg.

Proof. (i)ñ (ii). The diagram (1.67)-36 commutes and

τ : M Ñ G�M

x ÞÑ pe, xq (1.76)

is a local section of G�M . From it we build the following global section of P :

σ : M Ñ P

x ÞÑ hpe, xq. (1.77)

This is injective because π�h � pr2 and differentiable because this is a composition of xÑ pe, xq
and pg, xq Ñ hpg, xq.
(ii)ñ (i). The principal bundle P admits a global section σ : M Ñ P . From it, we can build
the differentiable map

h : G�M Ñ Ppg, xq ÞÑ σpxq � g (1.78)

which satisfies hpgh, xq � hpg, xq � h and π � pg, xq � x. First we show that h is a fiber ho-
momorphism and an isomorphism between P and G �M so that P is trivial. For this remark
that

gpgh, xq � gpg, xq � h � σpxq � gh,
hence equation (1.66)-35 reduces to hppg, xq � hq � hpg, xq � hGphq which is true with hG � id.
Moreover h : G �M Ñ P is bĳective because σpπpξqq belongs to the fiber of ξ P P , therefore
there is one and only one γpξq � upξ, σpπpξqqq such that ξ � γpξq � pσ � πqξ. The inverse map is

θ : P Ñ G�M

ξ ÞÑ pγpξq, πpξqq (1.79)

which is differentiable because γ and π are. So far we see that h and h�1 are differentiable. Then
h is an isomorphism between P and G�M .
(ii)ñ (iii). Let σ be the global section and define

γ : P Ñ G

ξ ÞÑ upξ, pσ � πqξq (1.80)
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where u : R Ñ G is the map defined by the condition ξ � pξ, ηq � η. The map γ is differentiable
and we have to prove that γpξ � gq � g�1γpξq. Since ξ � γpξq � σ � πpξq,

γpξ � gq � upξ � g, pσ � πqpξ � gqq � upξ � g, pσ � πqpξqq.
But pξ � gqpg�1γpξqq � ξ � γpξq � x. So γpξ � gq � upξ � g, xq. Thus γpξ � gq � g�1γpξq.
(iii)ñ (ii). The given map γ fulfils ξ � gγpξ � gq � ξ � pξq, so

ϕ : P Ñ P

ξ ÞÑ ξ � pξq (1.81)

is just function of the class of ξ, thus we have a section σ1 : P {G Ñ P , but we know that P {G
and M are isomorphic.
(iii)ñ (iv). Let us define ρ : P Ñ G by ρ � J � γ with Jpgq � g�1, thus ρpξq � γpξq�1 and

ρpξ � gq � γpξ � gq�1 � pg�1γpξqq�1 � γpξq�1g � ρpξqg.
(iv)ñ (iii). The proof is just the same with ρ � J � ρ.

Definition 1.37.

A section ψ P ΓpP, TP q is G-equivariant when

dτgψpξq � ψpξ � gq.
Be careful: this does not define equivariant sections of the principal bundle.

1.7.6 Equivalence of principal bundle

Two principal bundles π : P Ñ M and π1 : P 1 Ñ M are equivalent if there exists a diffeomor-
phism ϕ : P Ñ P 1 such that

• π1 � ϕ � π

• ϕpξ � gq � ϕpξq � g.

If tUαuαPI is an open covering of M on which we have trivializations φα of P and ψα of P 1,
the diffeomorphism ϕ induces some functions λ : Uα Ñ G by settingpφα � ϕ�1 � ψ�1

α qpx, aq � px, λαpxqaq.
This definition works because from the definitions of principal bundle and equivalence, one sees
that pφα � ϕ�1 � ψ�1

α qpx, �q � px, �q.
Transition functions

We have some transition functions for P and P 1 given by equationspφα � φ�1
β qpx, gq � px, gαβpxqgqpψα � ψ�1
β qpx, gq � px, g1αβpxqgq.
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Now, we want to know what is g1αβ in function of gαβ . First remark that pψα � ϕ � φ�1
α qpx, aq �px, λαpxq�1qa, and next, computepx, gαβpxqaqa � pψα � ϕ � φ�1

β � φβ � ϕ�1 � ψ�1
β qpx, aq� pψα � ϕ � φ�1

β qpx, λβpxqaq� pψα � ϕ � φ�1
α � φα � φ�1

β qpx, λβpxqaq� px, λαpxq�1gαβpxqλβpxqaq. (1.82)

Then
gαβpxq � λαpxq�1gαβpxqλβ . (1.83)

One can show that if two principal bundle have transition functions whose fulfill this condition,
they are equivalent. A G-principal bundle is trivial if it is equivalent to the one given by
π1 : M �GÑM .

1.7.7 Reduction of the structural group

We say that a principal bundle P pG,Mq is reducible when there exists a principal bundle
P 1pH,Mq such that

• H is a subgroup of G,

• there exists an homeomorphism h : P 1 Ñ P such that hG : H Ñ G is an injective homo-
morphism.

In this case we say that G is reducible to H and that P 1 is a reduced principal bundle.

Theorem 1.38.

If P is a principal bundle over M , the structural group G is reducible to the Lie subgroup H if
and only if there exists an open covering tUiuiPI of M and transition functions ϕij taking their
values in H.

Proof. No proof.

The following comes from [9]. Let us consider the principal bundle

G ///o/o/o P

πP

��
M

(1.84)

and H , a closed subgroup of G. We denote by j : H Ñ G the inclusion map. The principal
bundle

H ///o/o/o Q

πQ

��
M

(1.85)

is a reduction of P to the group H if there exists a map u : QÑ P such that πP � u � πQ and
upξ � hq � upξq � jphq. In this case, u is an embedding 9 of Q in P and the image is a closed
submanifold of P .

9plongement
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Let M be a n-dimensional manifold and BpMq be its frame bundle. This is a GLpn,Rq-
principal bundle. If G is a closed subgroup10 of GLpn,Rq, a G-structure is a reduction of
BpMq to G.

1.7.8 Density

A density on a d-dimensional manifold M is a section of the principal bundle whose fiber Px
over x PM is the space of homogeneous non vanishing maps

ρ :
d©
TxM Ñ R�� (1.86)

such that ρpλvq � |λ|ρpvq for every λ P R and v P�d
TxM .

1.8 Associated bundle

Let π : P Ñ M be a G-principal bundle and ρ : G Ñ GLpV q, a representation of G on a vector
space V (on K � R or C) of dimension r.

The associated bundle E � P �ρ V pÝÑ M is defined as following. On P � V , we consider
the equivalence relation pξ, vq � pξ � g, ρpg�1qvq
for g P G, ξ P P and v P V . Then we define

• E � P �ρ V :� P � V { �,

• prpξ, vqs � πpξq
where rpξ, vqs is the class of pξ, vq in P � V .

If φPα pξq � pπpξq, apξqq is a trivialization of P on Uα, then

φErpξ, vqs � pπpξq, ρpaqvq (1.87)

is a trivialization of E.
In order to see that it is a good definition, let us consider pη, wq � pξ, vq. It immediately

gives the existence of a g P G such that η � ξ � g and w � ρpg�1qv. Then φErpξ � g, ρpg�1qvqs �pπpξ � gq, ρpbqρpg�1qvq. From the definition of φE , the vector b is given by φP pξ � gq � pπpξ � gq, bq,
and the definition of a principal bundle gives b � φπpξqpξ � gq � φπpξqpξq � g � ag. The fact that ρ
is a homomorphism makes ρpagqρpg�1q � ρpaqv and φE is well defined.

Let G be a Lie group, ρ a representation of G on V and M , a manifold. We consider
P �M �G

pr
1ÝÑ M , the trivial G-principal bundle on M . Then E � P �ρ V pÝÑM is trivial,

i.e. we can build a ϕ : P �ρ V ÑM � V such that pr1 �ϕ � p. It is rather easy: we define

ϕ
��px, gq, v�� � px, ρpgqvq.

It is easy to see that ppr1 �ϕqrpx, gq, vs � x and prpx, gq, vs � pr1px, gq � x.

10Typically SOpp, qq or SO0pp, qq.



1.8. ASSOCIATED BUNDLE 43

1.8.1 Transition functions

Proposition 1.39.

Let pUα, φPα q be a trivialization of P πÝÑ M whose transition functions are gαβ : Uα X Uβ Ñ G.
Then pUα, φEα q given by (1.87)-42 is a local trivialization of E

pÝÑM whose transition functions
gEαβ : Uα X Uβ Ñ GLpdim V,Kq are given by

gEαβpxq � ρpgPαβpxqq.
Proof. If we write a :� φE

βx
pπ�1pxqq, we have φPβ pπ�1pxqq � px, aq and φEα � pφEβ q�1px, vq �

φEα rpπ�1pxq, ρpaq�1vqs. So,

φEα rpπ�1pxq, ρpaq�1vqs � �
x, ρ

�
φαxpπ�1pxqq�ρ�φβxpπ�1pxqq��1

v
	� �

x, ρ
�
φαxpπ�1pxqqφβxpπ�1pxqq�	. (1.88)

Then
gEαβ � ρ

�
φαxpπ�1pxqqφβx�π�1pxq�	 � ρpgPαβpxqq. (1.89)

1.8.2 Sections on associated bundle

Equivariant functions

We consider a bundle E � P �ρ V pÝÑM associated with the principal bundle P πÝÑM and a
section ψ : M Ñ E.

P

πP ��@
@@

@@
@@

@
E � P �ρ V
πEyyssssssssss

M

A section of E is a map ψ : M Ñ E such that πE �ψ � idM . We define the function ψ̂ : P Ñ V

by
ψpπpξqq � rξ, ψ̂pξqs. (1.90)

Let us see the condition under which this equation well defines ψ̂. First, remark that a ψ defined
by this equation is a section because prξ, vs � πpξq, so that pp � ψqpπpξqq � πpξq. Now, consider
a η such that πpηq � πpξq. Then there exists a g P G for which η � g � ξ. For any g and for this
one in particular,

ψpπpηqq � rη, ψ̂pηqs � rη � g, ρpg�1qψ̂pηqs.
Then equation (1.90)-43 defines ψ̂ from ψ if and only if

ψ̂pξ � gq � ρpg�1qψ̂pξq. (1.91)

This condition is called the equivariance of ψ̂. Reciprocally, any equivariant function ψ̂ defines
a section of E � P �ρ V .

If η � ξ � g � χ � k, one define a sumrξ, vs � rχ,ws � rη, ρpgqv � ρpkqws. (1.92)

If ψ, η : M Ñ E are two sections defined by the equivariant functions ψ̂, η̂ : P Ñ V , then the
section ψ � η is defined by the equivariant function ψ̂ � η̂.
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For the endomorphism of sections of E

Let us now make a step backward, and take A in End ΓpEq. We will now see that A defines
(and is defined by) an equivariant function Â : P Ñ EndV . Let ψ : M Ñ E be in ΓpEq. If
ψpxq � rξ, vs, we define the new section Aψ bypAψqpxq � rξ, Âpξqvs � rξ, Âpξqψ̂pξqs.
In order for Aψ to be well defined, the function Â must satisfy

Âpξ � gq � ρpg�1qÂpξqρpgq (1.93)

for all g in G.

Local expressions

We consider a local trivialization φPα : π�1pUαq Ñ Uα � G of P on Uα and the corresponding
section σα : Uα Ñ P given by

σαpxq � pφPα q�1px, eq.
We saw at page 42 that a trivialization of P gives a trivialization of the associated bundle
E � P �ρ V ; the definition is

φEα rpξ, vqs � pπpξq, ρpaqvq (1.94)

if φPα pξq � pπpξq, aq. With ξ � σαpxq, we find

φEα rpσαpxq, vqs � pπpσαpxqq, ρpaqvq � px, vq. (1.95)

The section ψ can also be seen with respect to the “reference” sections σα by means of the
definition

ψpxq � rσαpxq, ψpαqpxqs (1.96)

for a function ψpαq : M Ñ V .

Lemma 1.40.

Let ψ : M Ñ E be a section and ψ̂ : P Ñ V , the corresponding equivariant function. Then

ψpαqpxq � ψ̂pσαpxqq.
Proof. By definition, ψpxq � ψpπpξqq � rξ, ψ̂pξqs. Thus if we consider in particular ξ � σαpxq,

φEα pψpxqq � φEα rξ, ψ̂pξqs � φEα rsαpxq, ψ̂pσαpxqqs � px, ψ̂pσαpxqqq. (1.97)

Let us anticipate. A spinor is a section of an associated bundle E � P �ρ V where P is
a Lorentz-principal bundle, V � C2 and ρ is the spinor representation of Lorentz on C2. So a
spinor ψ : M Ñ E is locally described by a function ψpαq : M Ñ C2. The latter is the one that
we are used to handle in physics. In this picture, the transformation law of ψ under a Lorentz
transformation comes naturally.

Let teiu be a basis of V; we consider some “reference” sections γαi of the associated bundle
E � P �ρ V defined by

γαipxq � rφ�1
α px, eq, eis. (1.98)
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A general section ψ : M Ñ E is defined by an equivariant function ψ̂ : P Ñ V which can be
written as ψ̂pξq � aipξqei. If η � φ�1

α px, eq and ξ � η � gpξq,
ψpxq � rξ, aieis � airη, ρpgqeis � aipξqρpgpξqq ji rη, ejs � cjpξqγαjpxq. (1.99)

Since the left hand side of this equation just depends on x, the functions cj must actually not
depend on the choice of ξ P π�1pxq. So we have cj : M Ñ R. Indeed, if we choose χ P π�1pxq,

ψpxq � cjpξqγαjpxq !� rξ, aipχqeis � . . . � cjpχqγαjpxq,
so that cjpξq � cjpχq. So any section ψ : M Ñ E can be decomposed (over the open set Uα) as

ψpxq � siαpxqγαipxq. (1.100)

1.8.3 Associated and vector bundle

General construction

We are going to see that a vector bundle is an associated bundle. For this, we consider a
vector bundle p : F Ñ M with a fiber Fx � V of dimension m. Let G � GLpV q, P be the
trivial principal bundle P � M � G and ρ be the definition representation of G on V . We set
E � P �ρ V . Our aim is to put a vector bundle structure on E which is equivalent to the one
of F . The bĳection b : F Ñ E will clearly be

bpφ�1px, vqq � rpx, eq, vs. (1.101)

We define the projection q : E ÑM by

qrpx, gq, ws � x

and we have to show that q�1pxq � trpx, gq, ws st g P G and w P V u is a vector space isomorphic
to V . The following definitions define a vector space structure:

• multiplication by a scalar: λrpx, gq, vs � rpx, gq, λvs,
• addition: rpx, gq, vs � rpx, hq, ws � rpx, eq, ρpgqv � ρphqws.

As local trivialization map, we consider

χ : q�1pUq Ñ U � Vrpx, gq, vs ÞÑ px, ρpgqvq. (1.102)

With this structure, the bĳection b is an equivalence because b|Fx is a vector space isomorphism
and q � b � p.

1.8.4 Equivariant functions for a vector field

In order to define in the same way an equivariant function for a vector field X P XpMq, we need
to see TM as an associated bundle.

Proposition 1.41.

If M is a n dimensional manifold, we have the following isomorphism:

SOpMq �ρM Rm � TM

where ρM : SOpmq �Rm Ñ Rm is defined by ρM pAqv � Av.
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Proof. Recall that an element b P SOpMqx is a map b : Rm Ñ TxM . The isomorphism is no
difficult. It is ψ : SOpMq �ρM Rm Ñ TM defined by

ψrb, vs � bpvq.
It prove no difficult to see that ψ is well defined, injective and surjective.

Now, let us consider X P XpMq. We can see it as an element of ΓpSOpMq �ρM Rmq, and
define an equivariant function X̂ : SOpMq Ñ Rm.

Let us make it more explicit. A vector field Y P XpMq is, for each x inM , the data of a tangent
vector Yx P TxM . Hence the formula bpvq � Yx defines an element rb, vs in SOpMq�ρM Rm, and
Y defines a section Ỹ pxq � rbpxq, vpxqs of SOpMq �ρM Rm. The associated equivariant function
is given by Ŷ pbq � v if bpvq � Yx. In other words, the equivariant function Ŷ : SOpMq Ñ Rm
associated with the vector field Y P XpMq is given by

Ŷ pbq � b�1pYxq, (1.103)

where x � πpbq.
1.8.5 Gauge transformations

A gauge transformation of the G-principal bundle π : P ÑM is a diffeomorphism ϕ : P Ñ P

such that

• π � ϕ � π,

• ϕpξ � gq � ϕpξq � g.

When we consider some local sections on σα : Uα Ñ P , we can describe a gauge transformation
with a function ϕ̃α : M Ñ G by requiring

ϕpσαpxqq � σαpxq � ϕ̃αpxq.
This formula defines ϕ from ϕ̃ as well as ϕ̃ from ϕ.

The group of gauge transformations has a natural action on the space of sections given bypϕ � ψqpxq � rϕpξq, vs. (1.104a)

if ψpxq � rξ, vs � rξ, ψ̂pξqs. This law can also be seen on the equivariant function ψ̂ which defines
ψ. The rule is zϕ � ψpξq � ψ̂pϕ�1pξqq. (1.104b)

Indeed, in the same way as before we find pϕ � ψqpxq � rξ,zϕ � ψpxqs !� rϕpξq, vs � rϕpξq, ψ̂pξqs.
Taking ξ Ñ ϕ�1pξq as representative, pϕ � ψqpxq � rξ, ψ̂ � ϕ�1pξqs.
1.9 Adjoint bundle

Let π : P ÑM be a G-principal bundle. The adjoint bundle is the associated bundle AdpP q �
P �Ad G. An element of that bundle is an equivalent class given byrξ,Xs � rξ � g,Adpg�1qXs
for every g P G. Here ξ P P and X P G.
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1.10 Connection on vector bundle: local description

A connection on the vector bundle p : E ÑM is a bilinear map

∇ : XpMq � ΓpEq Ñ ΓpEq,pX, sq ÞÑ ∇Xs (1.105)

such that

• ∇fXs � f∇Xs,

• ∇Xpfsq � pX � fqs� f∇Xs

for all X P XpMq, f P C8pMq and s P ΓpEq. The operation ∇ is often called a covariant

derivative.
An easy example is given on the trivial bundle E � pr1 : M � C Ñ M . For this bundle,

ΓpEq � C8pM,Cq and the common derivation is a covariant derivation: ∇Xs � pdsqX .

Proposition 1.42.

The value of p∇Xsqpxq depends only on Xx and s on a neighbourhood of x PM .

Proof. Let X , Y P XpMq such that Yz � fpzqXz with fpxq � 1 and fpzq � 1 everywhere else.
Then p∇Y sqpxq � p∇Xsqpxq � pfpxq � 1qp∇Xsqpxq � 0.

Since it is true for any function, the linearity makes that it cannot depend on Xz with z � x. If
we consider now two sections s and s1 which are equals on a neighbourhood of x, we can write
s1 � fs for a certain function f which is 1 on the neighbourhood. Thenp∇Xs1qpxq � p∇Xsqpxq � pfpxq � 1qp∇Xsqpxq � pXfqspxq
which zero because on a neighbourhood of x, f is the constant 1.

This proposition shows that it makes sense to consider only local descriptions of connections.
Let te1, . . . , eru be a basis of V and consider the local sections Sαi : Uα Ñ E,

Sαipxq � φ�1
α px, eiq.

A local section sα : Uα Ñ V can be decomposed as sαpxq � siαpxqei with respect to this basis
(up to an isomorphism between the different V at each point). Then on Uα,

siαSαipxq � siαpxqφ�1
α px, eiq � φ�1

α px, siαeiq � φ�1
α px, sαpxqq � spxq. (1.106)

The first equality is the definition of the product R� F Ñ F .
So any s P ΓpEq can be (locally !) written under the form11 s � siαSαi; in particular ∇XpSαiq

can. We define the coefficients θ by

∇XpSαiq � pθαqji pXqSαj . (1.107)

where, for each i and j, pθαqji is a 1-form on Uα. We can consider θα as a matrix-valued 1-form
on Uα.

11be careful on the fact that the “coefficient” siα depends on x : the right way to express this equation is
spxq � siαpxqSαipxq.
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Proposition 1.43.

The formula p∇Xsqα � Xsα � θαpXqsα (1.108)

gives a local description of the connection.

Proof. For any s P ΓpEq, we have

∇Xs � ∇X�
j̧

sjαSαj
��

j̧

�pXsjαqSαj � sjα∇XSαj

	�
i̧

�pXsiαq � sjαpθαqijpXq�Sαi.
1.10.1 Connection and transition functions

A connection determines some local matrix-valued 1-forms θα on the trivialization Uα. Two nat-
ural questions raise. The first is the converse: does a matrix-valued 1-form defines a connection ?
The second is to know what is θα in function of θβ on Uα X Uβ ? The answer to the latter is
given by the following proposition :

Proposition 1.44.

The 1-form θα relative to the trivialization pUα, φαq is related to the 1-form θβ relative to the
trivialization pUβ , φβq by

θβ � g�1
αβdgαβ � g�1

αβθαgαβ . (1.109)

This equation looks like something you know ? If you think to equation (4.66)-145 or (4.74)-
146 or any physical equation of gauge transformation for the bosons, then you are almost right.

Proof. We can use equation (1.52)-30 pointwise on p∇Xsqα :p∇Xsqα � gαβp∇Xsqβ� gαβ
�
Xsβ � θβpXqsβ�� gαβ
�
Xpgαβsαq � θβpXqgαβsα�. (1.110)

We have to compare it with equation (1.108)-48. Note that gαβ and θαpXq are matrices, then
one cannot do

gαβθβpXqgαβ � gαβgαβθβpXq � θβpXq
by using gαβgαβ � 1. Taking carefully subscripts into account, one sees that the correct form
is pgαβqijθβpXqjkpgαβqkl . Applying Leibnitz formula (Xpfgq � fpXgq � pXfqg), and making the
simplification gαβgαβ � 1 in the first term, we find

θαpXqsα � gαβpXgαβqsα � g�1
αβθβpXqgαβsα.

The claim follows from the fact that Xgαβ � dgαβpXq.
Notice that formula (1.109)-48 shows in particular that θα takes its values in the Lie algebra

glpV q, see for example subsection 1.2.3.
The inverse is given in the
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Proposition 1.45.

If we choose a family of glpV q-valued 1-forms θα on Uα satisfying (1.109)-48,then the formulap∇Xsqα � Xsα � θαpXqsα
defines a connection on E.

Proof. Note that θ is C8pMq-linear, thusp∇fXsqα � pfXqsα � θαpfXqsα � f rXsα � θαpXqsαs � fp∇Xsqα. (1.111)

In expressions such that θαpXqpfsαq, the product is a matrix times vector product between
θαpXq and sα; the position of the f is not important. So we can check the second condition :p∇Xpfsqqα � Xpfsαq � θαpXqpfsαq� Xpfqsα � fpXsαq � fθαpXqsα� dfpXqsα � fp∇Xsqα. (1.112)

This concludes the proof.

1.10.2 Torsion and curvature

The map T∇ : XpXq � XpXq Ñ XpXq defined by

T∇pX,Y q � ∇XY �∇YX � rX,Y s (1.113)

is the torsion of the connection ∇. When T∇pX,Y q � 0 for every X and Y in XpXq, we say that
∇ is a torsion free connection. Let X , Y be in XpMq, and consider the map RpX,Y q : ΓpEq Ñ
ΓpEq defined by

RpX,Y q : ΓpEq Ñ ΓpEq
s ÞÑ ∇X∇Y s�∇Y∇Xs�∇rX,Y ss. (1.114)

For each x P M , R can be seen as a bilinear map R : TxM � TxM Ñ EndpExq. It is called
the curvature of the connection ∇. For every f P C8pMq, it satisfies

RpfX, Y qs � fRpX,Y qs � RpX,Y qfs.
In a trivialization pUα, φαq, we have p∇Xsqα � Xsα � θαpXqsα. In the expression ofpRpX,Y qsqα, the terms coming from the Xsα part of covariant derivative make

XY sα � Y Xsα � rX,Y ssα � 0.

The other terms are no more than matricial product, hence the formulapRpX,Y qsqα � ΩαpX,Y qsα (1.115)

defines a 2-form Ωα which takes values in GLpr,Kq. We can find an expression for Ω in terms
of θ :

ΩαpX,Y q � XθαpY q � Y θαpXq � θαprX,Y sq � θαpXqθαpY q � θαpY qθαpXq;
it is written as

Ωα � dθα � θα ^ θα � dθα � 1
2
rθα, θαs (1.116)
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which is a notational shortcut for

ΩαpX,Y q � dθαpX,Y q � rθαpXq, θαpY qs. (1.117)

These equations are called structure equations. Pointwise, the second term is a matrix com-
mutator; be careful on the fact that, when we will speak about principal bundle, the forms θ’s
will take their values in a Lie algebra. On Uα X Uβ , we have

ΩβpX,Y q � g�1
αβΩαpX,Y qgαβ .

The curvature and the connection fulfill the Bianchi identities :

Lemma 1.46.

dΩα � rθα ^ Ωαs � 0.

Proof. For each matricial entry, θα is a 1-form on Uα, then θαpXq is a function which to x PM
assign θαpxqpXxq P R. So we can apply d and Leibnitz on the product θαpXqθαpY q.

d
�
θαpXqθαpY q� � θαpXqdθαpY q � dθαpXqθαpY q.

Differentiating equation (1.116)-49, dΩα � dθα ^ θα � θα ^ dθα.

1.10.3 Divergence, gradient and Laplacian

We define the gradient of a function f P C8pMq, denoted by ∇f as the vector field such that

gp∇f,Xq � Xpfq. (1.118)

The divergence of a vector field X P ΓpTMq, is the function ∇ �X P C8pMq defined byp∇ �Xqpxq � Tr
�
v ÞÑ ∇vX�

(1.119)

where the trace is the one of v ÞÑ ∇vX seen as an operator on TxM . The Laplacian of the
function f is the function ∆f given by

∆f � ∇ � p∇fq. (1.120)

1.11 Connexion on vector bundle: algebraic view

A connection on the vector bundle π : E ÑM is a linear map

∇ : Γ8pEq Ñ Γ8pEq b Ω1pMq
which satisfies the Leibnitz rule

∇pσfq � p∇σqf � σ b df (1.121)

for any section σ : M Ñ E and function f : M Ñ C. If tσiu is a local basis of E, one can write
σ � σif

i and one defines the Christoffel symbols Γjiµ in this basis by

∇σ � ∇pσif iq � p∇σiqf i � σi b fpf iq � f iΓjiµσj b dxµ � σi b dpf iq. (1.122)
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The notations dσ � σi b dpf iq and Γσ � f iΓjiµσj b dxµ lead us to the compact usual form

∇σ � pd� Γqσ.
When E � TM over a (pseudo)Riemannian manifold M , we know the Levi-Civita connection

which is compatible with the metric:

gp∇X,Y q � gpX,∇Y q � d
�
gpX,Y q�. (1.123)

One can see g as acting on
�
XpMq b Ω1pMq�� XpMq with

g
�
riνBi b dxν , tjBj� :� riνj

jgpBi, Bjqdxν ,
which at each point is a form. From condition (1.123)-51, we see ∇ as a Levi-Civita connection
on the bundle E � T �M which values in

Γ8pT �Mq b Ω1pMq � Ω1pMq b Ω1pMq.
This is defined as follows. A 1-form ω can always be written under the for ω � X5 :� gpX, .q for
a certain X P XpMq. Then (1.123)-51 givesp∇Xq5Y � ωp∇Y q � dpωY q,
and we put ∇ω � p∇Xq5, i.e p∇ωqY � dpωY q � ωp∇Y q (1.124)

for all Y P XpMq. When ω � dxi and Y � Bj , we findp∇dxiqBj � dpdxiBjq � dxip∇Bjq � dpδijq � ΓljkBl b dxk � �Γljkδ
i
l b dxk � �Γijk dx

k. (1.125)

So we get the local formula
∇dxi � �Γijk dx

j b dxk. (1.126)

If the form writes locally ω � dxifi,

∇ω � ∇pdxiqfi � dxi b dfi � �fiΓijk dxj b dxk � dω � pd� Γ̃qω (1.127)

where we taken the notations dω � dxi b dfi and Γ̃ω � fiΓijkdx
j b dxk.

1.11.1 Exterior derivative

If E is a m-dimensional vector bundle over M and s : M Ñ E is a section, we say that a exterior

derivative is a map D : ΓpEq Ñ ΓpE b Ω1Mq such that for every f P C8pMq we have

Dpfsq � sb df � fpDsq.
An exterior derivative can be extended to D : ΓpE b ΩkMq Ñ ΓpE b Ωk�1Mq imposing the
condition

Dpω ^ αq � pDωq ^ α� p�1qkω ^ dα (1.128)

for every ω P ΓpE bΩkMq and α P ΓpE bΩlMq . The result is an element of ΓpE bΩk�l�1Mq.
Coordinatewise expressions are obtained when one choose a specific section peiq of the frame

bundle of E. In that case for each i, the derivative ei is an element of ΓpEbΩ1Mq and we define
ω
j
i P Ω1pMq by

Dei � ķ

j�1

ej b ω
j
i . (1.129)
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For each i and j, we have an element ωji P Ω1pMq, so that we say that ω P Ω1pM, glpmqq. Now
a section can be expressed as s � siei where si are functions, so we have

Dpsq � Dpsieiq � ei b dsi � siDpeiq � ei b dsi � siej b ω
j
i � ei b dsi � ei b sjωij . (1.130)

Expressed in component, we find Dpsqi � dsi � sjωij , so that we often write

D � d� ω. (1.131)

When a section e is given, we write s � sipeqei, indicating the dependence of the functions si in
the choice of the frame e :

Dpsq � ei b dsipeq � ei b sjpeqωpeqij .
When we apply both sides to a vector X P ΓpTMq, we find

DXpsq � ei b �
Xpsiq � sjωijpXq	. (1.132)

By convention we say that, when f P C8pMq, is a function, DX reduces to the action of the
vector field X :

DXpfq � Xpfq. (1.133)

Covariant exterior derivative

An important exterior derivative is the covariant exterior derivative. If the vector bundle E is en-
dowed by a covariant derivative ∇, we define the corresponding covariant exterior derivative

by the following :

1. for a section s : M Ñ E (i.e. a 0-form) we definepd∇sqpXq � ∇Xs, (1.134)

2. and on the 1-form
°
ipsi b ωi

� P ΓpE b T �Mq,
d∇

�
i̧

si b ωi
� �

i̧

pd∇siq ^ ωi �
i̧

si b dωi. (1.135)

The latter relation is the condition (1.128)-51 with k � 0.

Soldering form and torsion

Let us particularize to the case where E has the same dimension as the manifold. In that case,
we can introduce a soldering form, that is an element θ P Ω1pM,Eq such that for every x PM
the map θx : TxM Ñ Ex is a vector space isomorphism. When a soldering form θ is given, the
torsion is the exterior derivative D is

T � Dθ. (1.136)

Using a local frame e, we have forms θipeq P Ω1pMq such that

θpXq � θipXqei.
We see θ as an element of ΓpE b Ω1pMqq by identifying θ � ei b θi. Thus we have

Dθ � Dpei b θiq � Dei ^ θipeq � ei ^ dθipeq � pejbji q ^ θipeq � ei ^ dθipeq,
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or in coordinates : pDθqi � ωij ^ θjpeq � dθipeq. (1.137)

Notice that it provides the formula
T � dωθ (1.138)

for the torsion as exterior covariant derivative of the connection form.

Example : Levi-Civita

We consider the vector bundle E � TM and the local basis ei � Bi. An exterior derivative in
this case is a map D : ΓpTMq Ñ Γ

�
TMbΩ1M

	
. In that particular case, we denote by ∇XY the

vector field DpY qX , and it is computed by first writing DpXqx �°
i Z

i
x b ωix with Zi P ΓpTMq

and ωi P Ω1pMq. The we have

DpXqxYx � ω � xipYxqZix. (1.139)

A good choice of soldering form is θx � id for every x P M , or θpXq � X . In coordinates, that
soldering form is given by θipBjq � δij . The Christoffel symbols are defined by

∇BiBj � ΓkijBk, (1.140)

and the covariant derivative reads

∇XY � ∇XiBipY jBjq � X i
�pBiY jqBj � Y j∇BiBj	 � �

XpY kq �X iY jΓkij
	Bk. (1.141)

We can determine the Christoffel symbols in function of the connection form using the fact
that on the one hand, ∇BiBj � ΓkijBk, and on the other hand,

∇BiBj � DpBjqpBiq � Bk b ωkj pωiq,
so that

Γkij � ωkj pBiq (1.142)

Now we can get the same result as equation (1.141)-53 using the exterior derivative formalism.
First we have DY � Bi b dY i � Bi bXjωij , so thatpDY qX � Bi b dY ipXq � Bi bXjωijpXkBkq,
in which we use the relation ωijpXkBkq � XkωijpBkq � XkΓijk to getpDY qX � �

XpY iq �XjXkΓijk
�Bi.

Notice that the anti-symmetric part of Γ with respect to its two lower indices does not influence
the covariant derivative. Let us compute the torsion in terms of Γ. For that remark that dθi � 0
because pdθiqpX,Y q � XθipY q � Y θipXq � θi

�rX,Y s� � XpY iq � Y pX iq � rX,Y si � 0.

Thus we have pDθqpBk b Blq � �pDBiqBk�θipBlq � �pDBiqBl�θipBkq� δilΓ
j
ikBj � δikΓjilBj� pΓjlk � ΓjklqBj .

The connection ∇ is moreover compatible with the metric because

∇Z
�
gpX,Y q� � Z

�
ηpeX, eY q� � η

�
DZpeXqlooomooon�ep∇ZXq, eY �� η�eX,DZpeY q� � gp∇ZX,Y q � gpX,∇ZY q.
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1.12 Connection on principal bundle

1.12.1 First definition: 1-form

We consider a G-principal bundle
G ///o/o/o P

π

��
M

and G, the Lie algebra of G.

Definition 1.47.

A connection on P is a 1-form ω P ΩpP,Gq which fulfills

• ωξpA�ξ q � A,

• pR�
gωqξpΣq � Adpg�1qpωξpΣqq,

for all A P G, g P G, ξ P P and Σ P TξP
Here, Rg is the right action: Rgξ � ξ �g and A� stands for the fundamental field associated

with A for the action of G on P :

A�ξ � d

dt

�
ξ � e�tA�

t�0
, (1.143)

For each ξ P P , we have ωξ : TξP Ñ G. See section 1.3.
If α is a connection 1-form on P , we say that Σ is an horizontal vector field if αξpΣq � 0 for

all ξ P P . If Xx P TxM and ξ P π�1pxq, there exists an unique12 Σ in TξP which is horizontal
and such that π�pΣq � Xx. This Σ is called the horizontal lift of Xx. We can also pointwise
construct the horizontal lift of a vector field. The one of X is often denoted by X; it is an element
of XpP q.
1.12.2 Second definition: horizontal space

For each ξ P P , we define the vertical space VξP as the subspace of TξP whose vectors are
tangent to the fibers: each v P VξP fulfills dπv � 0. Any such vector is given by a path contained

in the fiber of ξ. So, v P VξP if and only if there exists a path gptq P G such that v � d
dt

�
ξ�gptq�

t�0
.

A connection Γ is a choice, for each ξ P P , of an horizontal space HξP such that

• TξP � VξP `HξP ,

• Hξ�g � pdRgqξHξ,

• HξP depends on ξ under a differentiable way.

The second condition means that the distribution ξ Ñ Hξ is invariant under G. Thanks to the
first one, for each X P TξP , there exists only one choice of Y P HξP and Z P VξP such that
X � Y �Z. These are denoted by vX and hX and are naturally named horizontal and vertical
components of X . The third condition means that if X is a differentiable vector field on P , then

12See [1], chapter II, proposition 1.2.
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vX and hX are also differentiable vector fields. We will often write Vξ and Hξ instead of VξP
and VξP .

The word connection probably comes from the fact that the horizontal space gives a way to
jump from a fiber to the next one. When we consider a connection Γ, we can define a G-valued
connection 1-form by

ωpXq�ξ � vXξ.

The existence is explained in section 1.3. It is clear that ωpXq � 0 if and only if X is horizontal.
The theorem which connects the two definitions is the following.

Theorem 1.48.

If Γ is a connection on a G-principal bundle, and ω is its 1-form, then

(i) for any A P G, we have ωpA�q � A,

(ii) pRgq�ω � Adpg�1qω, i.e. for any X P TξP , g P G and ξ PM ,

ωppdRgqξXq � Adpg�1qωξpXq
Conversely, if one has a G-valued 1-form on P which fulfills these two requirement, then one has
one and only one connection on P whose associated 1-form is ω.

Proof. (i) The definition of ω is ωpXq�ξ � vX . Then ωpA�q�ξ � vA�ξ � A�ξ because A� is vertical.
From lemma 1.25, ωpA�q � A.

(ii) Let X P XpP q. If X is horizontal, the definition of a connection makes dRdX also
horizontal, then the claim becomes 0 � 0 which is true. If X is vertical, there exists a A P G
such that X � A� and a lemma shows that dRgX is then the fundamental field of Adpg�1qA.
Using the properties of a connection,pR�

gωqξpXq � ωξ�gpdRgXq � Adpg�1qA � Adpg�1qωξpXq. (1.144)

Now we turn our attention to the inverse sense: we consider a 1-form which fulfills the two
conditions and we define

Hξ � tX P TξP st ωpXq � 0u. (1.145)

We are going to show that this prescription is a connection. First consider a X P Vξ, then
X � A� and ωpXq � A. So Hξ X Vξ � 0. Now we consider X P TξP and we decompose it as

X � A� � pX �A�q
where A� is the vertical component of X . If ωpdRgXq � 0 for all g P G, then ωpXq � 0, then
a vector X P Hξ fulfills at most dimG independent constraints ωpdRgXq � 0 and dimHξ is at
least dimP � dimG. On the other hand, dimVξ � dimG; then

dimVξ � dimHξ ¥ dimG� dimP � dimG.

Then the equality must holds and Vξ `Hξ � TξP .
We have now to prove that ω is the connection form of Hξ, i.e. that ωpXq is the unique A P G

such that A�ξ is the vertical component of X . Indeed if X P TξP , it can be decomposed as into
A� P Vξ and Y P Hξ and

ωpXq � ωpA� � Y q � ωpA�q � A.

It remains to be proved that the horizontal space Hξ of any connection Γ is related to the
corresponding 1-form ω by Hξ � tX P TξP st ωξpXq � 0u. From the connection Γ, the 1-form
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is defined by the requirement that ωpXq�ξ � vXξ. For X P Hξ, it is clear that vX � 0, so that
ωpXq� � 0. This implies ωpXq � 0 because we suppose that the action of G is effective.

The projection π : P Ñ M induces a linear map dπ : TξP Ñ TxM . We will see that, when a
connection is given, it is an isomorphism between Hξ and TxM (if x � πpξq). The horizontal

lift of X P XpMq is the unique horizontal vector field (i.e. it is pointwise horizontal) such that
dπpXξq � Xπpξq. The proposition which allows this definition is the following.

Proposition 1.49.

For a given connection on the G-principal bundle P and a vector field X on M , there exists an
unique horizontal lift of X. Moreover, for any g P G, the horizontal lift is invariant under dRg.

The inverse implication is also true: any horizontal field on P which is invariant under dRg
for all g is the horizontal lift of a vector field on M .

This proposition comes from [1], chapter II, proposition 1.2.

Proof. We consider the restriction dπ : Hξ Ñ TπpξqM . It is injective because dπpX�Y q vanishes
only when X � Y is vertical or zero. Then it is zero. It is cleat that dπ : TξP Ñ TπpξqM is
surjective. But dπX � 0 if X is vertical, then dπ is surjective from only Hξ.

So we have existence and unicity of an horizontal lift. Now we turn our attention to the
invariance. The vector dRgXξ is a vector at ξ � g. From the definition of a connection, dRgHξ �
Hξ�g, then dRgXξ is the unique horizontal vector at ξ � g which is sent to Xx by dπ. Thus it is
Xξ�g.

For the inverse sense, we consider X , an horizontal invariant vector field on P . If x PM , we
choose ξ P π�1pxq and we define Xx � dπpXξq. This construction is independent of the choice
of ξ because for ξ1 � ξ � g, we have

dπpXξ1q � πpdRgXξq � πpXξq.
An other way to see the invariance is the following formula:

Xξ�g � pdRgqξXξ.

By definition, Xξ�g is the unique vector of Tξ�gP which fulfils dπXξ�g � Xx if ξπ�1pxq, so the
following computation proves the formula:pdπqξ�gppdRgqξXξq � dpπ �RgqξXξ � dπξXξ � Xx. (1.146)

1.12.3 Curvature

The curvature of a vector or associated bundle satisfies Ωα � dθα � θα ^ θα. So we naturally
define the curvature of the connection ω on a principal bundle as the G-valued 2-form

Ω � dω � ω ^ ω. (1.147)

When we consider a local section σα : Uα Ñ P on Uα �M , we can express the curvature with a
2-form on M instead of P by the formula

F pαq � σ�αΩ,

or, more explicitly, by F pαqxpX,Y q � ΩσαpxqpdσαX, dσαY qq. Note that if G is abelian, Ω � dω

and dΩ � 0.
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1.13 Exterior covariant derivative and Bianchi identity

Let ω P Ω1pP,Gq be a connection 1-form on the G-principal bundle P . Using the operation r.^ .s
defined in section 1.6, we define the exterior covariant derivative by

dωα � dα� 1
2
rω ^ αs when α P Ω1pP,Gq, (1.148)

dωβ � dβ � rω ^ βs when β P Ω2pP,Gq, (1.149)

The curvature is the 2-form defined by

Ω � dωω � dω � ω ^ ω (1.150)

where dω is the exterior covariant derivative associated with the connection form ω, and the
wedge has to be understood as in equation (1.55)-31.

Proposition 1.50.

The curvature form satisfies the identity

dωΩ � 0 (1.151)

which is the Bianchi identity

Proof. taking the differential of Ω � dω � ω ^ ω, we find

dΩ � d2ω � dω ^ ω � ω ^ dω

in which d2ω � 0 and we replace dω by Ω� ω ^ ω, so that

dΩ � Ω^ ω � ω ^ Ω,

which becomes the Bianchi identity using the definition of dω and the notation (1.57)-31.

Remark that the Bianchi identity reads d2
ωω � 0, but that in general dω does not square to

zero.

1.14 Covariant derivative on associated bundle

Now we consider a general G-principal bundle π : P ÑM and an associated bundle E � P �ρ V .
We define a product R�E Ñ E by

λrξ, vs � rξ, λvs. (1.152)

It is clear that the equivariant function xλψ defines the section λψ. A covariant derivative is
a map

∇ : XpMq � ΓpM,Eq Ñ ΓpM,EqpX,ψq ÞÑ ∇Xψ (1.153)

such that

∇fXψ � f∇Xψ, (1.154a)

∇Xpfψq � pX � fqψ � f∇Xψ (1.154b)

where products have to be understood by formula (1.152)-57.



58 CHAPTER 1. DIFFERENTIAL GEOMETRY

Theorem 1.51.

A connection on a principal bundle gives rise to a covariant derivative on any associated bundle
by the formula z∇EXψpξq � Xξpψ̂q (1.155)

where ψ̂ : P Ñ V is the function associated with the section ψ : M Ñ E.

We have to prove that it is a good definition: the function z∇EXψ must define a section
∇RXψ : M Ñ E and the association ψ Ñ ∇EXψ must be a covariant derivative.

With the discussion of page 13 about the application of a tangent vector on a map between
manifolds, we have pdϕXqf � Xpf �ϕq. By using this equality in the case of X with ψ̂ and Rg,
we find pdRgXqpψ̂q � Xpψ̂ �Rgq and thus

Xξ�gpψ̂q � XξpdRgψ̂q.
We prove the theorem step by step.

Proposition 1.52.

The function z∇EXψ defines a section of P .

Proof. We have to see that z∇EXψ is an equivariant function. The equivariance of ψ̂ gives ψ̂�Rg �
ρpg�1qψ̂, thusz∇EXψpξ �gq � Xξ�gpψ̂q � �pdRgqξXξ

�pψ̂q � Xξpψ̂ �Rgq � Xξpρpg�1qψ̂q � ρpg�1qXξpψ̂q. (1.156)

The last equality comes from the fact that the product ρpg�1qψ̂ is a linear product “matrix times
vector” and that Xξ is linear.

Theorem 1.53.

The definition z∇EXψpξq � Xξpψ̂q
defines a covariant derivative.

Proof. We have to check the two conditions given on page 47.
First condition. By definition, {∇EfXψpξq � fXξpψ̂q. Now we prove that

fXξpψ̂q � pf � πqpξqXξpψ̂q. (1.157)

This formula is coherent because Xξpψ̂q P V and pf � πqpξq P R. By definition of the horizontal
lift, fXξ is the unique vector such that

• dπξpfXξq � pfXqx � fpxqdπXξ � pf � πqpξqdπX ξ,

• ωξpfXξq � 0.

We check that pf �πqpξqXξ also fulfills these two conditions because dπ and ω are C8pP q-linear.
Equation (1.157)-58 immediately gives{∇EfXψpξq � pf � πqpξqz∇EXψpξq. (1.158)
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Now we show that {f∇EXψ is the same. The section f∇EXψ : M Ñ E is given by pf∇EXψqpxq �
fpxqp∇EXψqpxq, and by definition of the associated equivariant function,

fpxqp∇EXψqpxq � rξ, fpxqz∇EXψpξqs.
Then {f∇EXψpξq � fpxqz∇EXψpξq � pf � πqpξqz∇EXψpξq. (1.159)

All this shows that ∇EfXψ � f∇EXψ.
Second condition. This is a computation using the Leibnitz rule:{∇EXpfψqpξq � Xξpxfψq paq� Xξppπ � fqψ̂qpbq� Xξpπ�fqψ̂pξq � pπ�fqpξqXξψ̂ � dpf � πqξXξψ̂pξq � f z∇EXψpxq� dfπpξqdπξXξψ̂pξq � f z∇EXψpxq � Xxpfqψ̂pξq � f z∇EXψpxq� {pXfqψpξq � {f∇EXψpξq (1.160)

where (a) is because xfψ � π�fψ̂, and (b) is an application of the Leibnitz rule.

Theorem 1.54.

Using the local coordinates related to the sections σα : Uα Ñ P , the covariant derivatives reads:p∇Xψqpαqpxq � Xxψpαq � ρ�pσ�αωxpXqqψpαqpxq (1.161)

where ρ� : G Ñ EndpV q is defined by

ρ�pAq � d

dt

�
ρpetAq�

t�0
(1.162)

Proof. The problem reduces to the search of X becausep∇Xψqpαqpxq � z∇Xψpσαpxqq � Xσαpxqpψ̂q.
We claim that Xσαpxq � dσαXx � ωpdσαXxq�. We have to check that dπX � X and ωpXq � 0.
The latter comes easily from the fact that ωpA�q � A. For the first one, remark that sα is a
section, then dpπ � sαq � id, and dπpdsαXxq � Xx, while

dπpA�ξ q � dπ
d

dt

�
ξ � e�tA�

t�0
� d

dt

�
πpξq�

t�0
� 0. (1.163)

Since the horizontal lift is unique, we deducep∇Xψqpαqpxq � �
dσαXx � ωpdσαXxq��ψ̂. (1.164)

From the definition of a fundamental vector field,

ωpdσαXxq�σαpxqψ̂ � d

dt

�
ψ̂
�
σαpxq � e�tωpdσαXxq��

t�0� d

dt

�
ρpetωpdσαXxqqψ̂pσαpxqq�

t�0
from (1.91)-43� pdρqepω � dσαqXxpψ̂ � σαqpxq� ρ��pσ�αωqpXxq�ψpαqpxq by (1.162)-59

(1.165)



60 CHAPTER 1. DIFFERENTIAL GEOMETRY

We can express the covariant derivative by means of some maps θα : XpMq �M Ñ EndpV q
given by

∇Xγαi � θαpXq ji γαj . (1.166)

where the γαi’s were given in equation (1.98)-44. By the definition (1.154b)-57,p∇Xψqpxq � pX � siαqxγαipxq � siαpxqp∇Xγαiqpxq� pX � siαqxγαipxq � siαpxqθαpXq ji γαjpxq.
On the othre hand with the notations of equation (1.96)-44, γαj � ei and Xxγαj � 0. Then
equation (1.161)-59 gives θαpXq � ρ�pσ�αωxpXqq, or

θα � ρ�pσ�αωxq. (1.167)

1.14.1 Curvature on associated bundle

From the definition (1.92)-43, it makes sense to define the curvature 2-form by

RpX,Y qψ � ∇X∇Y ψ �∇Y∇Xψ �∇rX,Y sψ.
It is also clear that ψpαq defines a section of the trivial vector bundle F � M � V by x Ñpx, ψpαqpxqq, so one can define ΩαpX,Y q : ΓpM,Eq Ñ ΓpM,Eq by�

RpX,Y qψ�pαq � ΩαpX,Y qψpαq
and take back all the work around Bianchi because of the relation (1.161)-59 which can be written
as p∇Xψqpαqpxq � Xxψpαq � θαpXqψpαqpxq and which is the same as in proposition 1.45.

1.14.2 Connection on frame bundle

General framework

The frame bundle was defined at page 36. Let F
pÝÑ M be a K-vector bundle with some local

trivialization pUα, φEα q and the corresponding transition functions gαβ : Uα X Uβ Ñ GLpr,Kq.
We consider π : P Ñ M , the frame bundle of F ; it is a GLpr,Kq-principal bundle. Let ∇ be a
covariant derivative on F and θα, the associated matrices 1-form. The frame bundle is

P � ¤
xPMpframe of Fxq.

A connection is a G-valued 1-form; in our case it is a map

ωαξ : Tξ
�
π�1pUαq�Ñ glpr,Kq.

We define our connection by, for g P GLpr,Kq, x P Uα, Xx P TxM and A P glpr,Kq,
ωαSαpxq�g�Rg�sαpxq�Xx �A�Sαpxq�g� :� A�Adpg�1qθαpXxq. (1.168)

where Sα : Uα Ñ P is the section defined by the trivialization φPα :

Sαpxq � tvα � φEα
�1px, eiqui�1,...,r.

Since θαpXxq P EndpKrq � glpr,Kq, the second term of (1.168)-60 makes sense. This formula is
a good definition of ω because of the following lemma:



1.14. COVARIANT DERIVATIVE ON ASSOCIATED BUNDLE 61

Lemma 1.55.

If ξ � Sαpxq � g and Σ P TξP , there exists a choice of A P G, and Xx P TxM such that

Σ � Rg�sαpXq�Xx �A�Sαpxq�g. (1.169)

Proof. If ξ P P is a basis of E at y, there exists only one choice of x P M and g P G such that
ξ � Sαpxq � g.

Let us consider a general path c : RÑ P under the form cptq � sαpxptqq � gptq where x and g
are path in M and GLpr,Kq. The frame cptq is the one of Fxptq obtained by the transformation
gptq from sαpxptqq. It is a set of r vectors, and each of them can be written as a combination of
the vectors of sαpxptqq, so we write

ciptq � sjαpxptqqgijptq (1.170)

where sjαpxptqq P Fxptq and gijptq P K. We compute Σ � c1p0q by using the Leibnitz rule and we
denote x1p0q � Xx, xp0q � x and gijp0q � gij (the matrix of g):

Σi � d

dt

�
sjαpxptqq�

t�0
gij � sjαpxq ddt�gijptq�t�0� pdsjαqxXxg

i
j � gij

1p0qsjαpxq. (1.171)

Going to more compact matrix form, it gives

Σ � pdsαqxXx � g � sαpxqg1p0q.
The second term, sjαpxqg1ij p0q, is a general vector tangent to a fiber. So it can be written as a
fundamental field A�ξ .

Lemma 1.56.

On Uα X Uβ, the form fulfills ωα � ωβ.

Proof. Let γ : RÑM be a path whose derivative is Xx. ThenpRgq�sαpxq�Xx � d

dt

�
sαpγtq � g�

t�0
� d

dt

�
sβpγtqgαβpγtq � g�

t�0� d

dt

�
sαpγtqgαβpxq � g�

t�0
� d

dt

�
sβpxq � gαβpγtq � g�

t�0
.

(1.172)

What is in the derivative of the first term is Rgαβpxqgpsβpγtqq. Taking the derivative, we find the
expected Rgαβpxqg�sβ�Xx.

For the second term, we note r :� sβpxq � gαβpgqg, and we have to compute the following,
using equation (1.59)-33,

d

dt

�
r � Adg�1pg�1

αβ pxqgαβpγtqq�
t�0� d

dt

�
r � exp t

�pdAdg�1qepg�1
αβ pxqpdgαβqxXxq��

t�0� d

dt

�
r � exp t

�
Adg�1 g�1

αβ pxqdgαβ�
t�0� �

Adg�1 g�1
αβ pxqdgαβXx

	�
r
.

(1.173)



62 CHAPTER 1. DIFFERENTIAL GEOMETRY

Using this, we can perform the computation:

ω
β

Sαpxq�g�Rg�sαpxq�Xx �A�Sαpxq�g� � ω
β

Sβpxq�gαβpxqg�Rgαβ pxqg�sβpxq�Xx� pAdg�1 g�1
αβ pxqdgαβXxq�r �A�	� Adpgαβpxqgq�1 θβpXxq�Adg�1 g�1

αβ pxqdgαβpXxq �A� Adg�1

�pg�1
αβθβgαβ � g�1

αβdgαβqpXxq��A� ωαSαpxqg�Rg�sαpxq�Xx �AASαpxq�g�. (1.174)

Proposition 1.57.

The ω defined by formula (1.168)-60 is a connection 1-form.

Proof. The first condition, ωpA�ξ q � A, is immediate from the definition. The lemma 1.26 gives
the second condition in the case Σ � A�ξ . It remains to be checked that ωpdRgΣq � Adpg�1qωpΣq
in the case Σ � dRhdsαXx. This is obtained using the fact that Ad is a homomorphism.

Levi-Civita connection

Let pM, gq be a Riemannian manifold. We look at a connection 1-form α P Ω1pSOpMq, sopRmqq
on SOpMq, and we define a covariant derivative ∇α : XpMq � T pMq Ñ T pMq, where T pMq is
the tensor bundle on M by (cf. theorem (1.53)-58)z∇αXs � Xŝ, (1.175)

for any s P T pMq. Our purpose now is to prove that an automatic property of this connection is
∇αg � 0. The unique such connection which is torsion-free is the Levi-Civita one.

The metric g is a section of the tensor bundle T �M b T �M . So we have, in order to find ĝ

and to use equation (1.175)-62, to see T �M b T �M as an associated bundle. As done in 1.8.4,
we see that

T �M b T �M � SOpMq �ρ pV � b V �q,
with the following definitions:

• The isomorphism is given by ψrb, αb βspX b Y q � αpb�1Xqβpb�1Y q,
• ρpAqα � α �A,

• b �A � b �A.

Here, V � Rm; b : V Ñ TxM ; α, β P V �; X , Y P TxM and A P SOpmq is seen as A : V Ñ V .
The following shows that ψ is well defined:

ψrb � A, ρpA�1qαb βspX b Y q � pα �AqpA�1 � b�1Xqpβ �AqpA�1 � b�1Y q� ψrb, αb βspX b Y q (1.176)

Proposition 1.58.

The function ĝ is given by

ĝpbqpv b wq � gxpbpvq b bpwqq � v � w.
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Proof. The second equality is just the fact that b : pRm, �q Ñ pTxM, gxq is isometric. On the
other hand, if ĝpbq � αb β, we have:

gxpX b Y q � ψrb, αb βspX b Y q � αpb�1Xqβpb�1Y q� αb βpb�1X b b�1Y q � ĝpbqpb�1X b b�1Y q. (1.177)

Since b is bĳective, X and Y can be written as bv and bw respectively for some v, w P V , so
that

gxpbv b bwq � ĝpbqv b w.

It is now easy to see that Xĝ � 0. As ĝ takes its values in V � b V �, Xĝ belongs to this
space and can be applied on v b w P V b V . Let Xptq be a path in SOpMq which defines X ; if
X P Tb SOpMq, Xp0q � b. We have

Xĝpv b wq � d

dt
ĝpXptqqv b w

����
t�0

� d

dt
v � w����

t�0

, (1.178)

which is obviously zero.

1.14.3 Holonomy

Let the principal bundle
G ///o/o/o P

π

��
M

(1.179)

and ω a connection on G. Let γ : r0, 1s ÑM , a closed curve piecewise smooth; γp0q � γp1q � x.
For each p P π�1pxq, there exists one and only one horizontal lift γ̃ : r0, 1s Ñ P such that γ̃p0q � p.
There exists of course an element g P G such that γ̃p1q � p � g.

We define the following equivariance relation on P : we say that p � q if and only if p and q

can be joined by a piecewise smooth path. The holonomy group at the point p is

Holppωq � tg P G st p � p � gu.
1.14.4 Connection and gauge transformation

Proposition 1.59.

If ω is a connection on a G-principal bundle and ϕ, a gauge transformation, the form β � ϕ�ω
is a connection 1-form too.

Proof. It is rather easy to see that ϕ�A�ξ � A�
ϕpxq:

ϕ�A�ξ � d

dt

�
ϕpξe�tAq�

t�0
� d

dt

�
ϕpξqe�tA�

t�0
� A�ϕpxq.

The same kind of reasoning leads to ϕ�Rg� � Rg�ϕ�. From here, it is easy to see thatpϕ�ωqξpA�ξ q � ωϕpξqpϕ�A�ξ q � A,

and �
R�
g pϕ�ωqξ�pΣq � pR�

gωqϕpξqpϕ�Ωq � Adpg�1q�pϕ�ωqξpΣq�.
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So, the “gauge transformed” of a connection is still a connection. It is hopeful in order to
define gauge invariants objects (Lagrangian) from connections (electromagnetic fields).

Local description

Let π : P ÑM be a G-principal bundle given with some trivializations φPα : π�1pUαq Ñ Uα �G

over Uα � M and sα : Uα Ñ π�1pUαq, a section. In front of that, we consider an associated
bundle p : E � P �ρ V Ñ M with a trivialization φEα : E Ñ Uα � V . One can choose a section
sα compatible with the trivialization in the sense that φPα psαpxq � gq � px, gq; the same can be
done with E by choosing φEα prsαpxq, vsq � px, vq. All this given in figure 1.1.

A section ψ : M Ñ E is described by a function ψα : Uα Ñ V defined by φEα pψpxqq �px, ψαpxqq. In the inverse sense, ψ is defined (on Uα) from ψα by ψpxq � rsαpxq, ψαpxqs. In
the same way, a gauge transformation ϕ : P Ñ P is described by functions ϕ̃α : Uα Ñ G,

ϕpsαpxqq � sαpxq � ϕ̃αpxq. (1.180)

The function ϕ̃α also fulfil pφPα � ϕ � φPα�1qpx, gq � px, ϕ̃pxq � gq (1.181)

because pφPα � ϕ � φPα�1qpx, gq � pφPα � ϕqpsαpxq � gq� φPα pϕpsαpxqq � gq� φPα psαpcq � ϕ̃αpxqgq� px, ϕ̃αpxqgq. (1.182)

We know that a connection on P is given by its 1-form ω. Moreover we have the following:

Proposition 1.60.

A connection on P is completely determined on π�1pUαq from the data of the G-valued 1-form
σ�αω on Uα.

Proof. We consider a 1-form ω which fulfils the two conditions of page 54. Our purpose is to
find back ωξpΣq, �ξ P P,Σ P TξP from the data of σ�αω alone. For any ξ, there exists a g such
that ξ � σαpxq � g. We have

Adg�1pωσαpxqΣq � pR�
gωqσαpxqpΣq � ωσαpxq�g�pdRgqσαpxqΣ�. (1.183)

If we know s�αω, then we know ω
�pdsαqxv� for any v P TxM . So

ωσαpxq�g�pdRgqσαpxqΣ�
is given from σ�αω for every Σ of the form Σ � pdσαqxv. From the form (1.169)-61 of a vector in
TξP , it just remains to express ωσαpxq�gpA�σαpxq�gq in terms of s�α. The definition of a connection
makes that it is simply A.
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Covariant derivative

If we have a connection on P , we can define a covariant derivative on the associated bundle E
by p∇Xψqpαqpxq � Xxpψαq � ρ�ps�αωxpXqqψpαqpxq,
the matricial 1-form being given by θα � ρ�σ�αω. The gauge transformation ϕ acts on the
connection ω by defining ωϕ :� ϕ�ω.

Proposition 1.61.

If β � ϕ�ω, then
s�αpβq � Adϕ̃αpxq�1 s�αpωq � ϕ̃αpxq�1dϕ̃α.

Proof. Let γ : R Ñ M be a path such that γp0q � x and γ1p0q � Xx. We have to compute the
following: ps�αβqpXxq � ps�αϕ�ωqpXxq � ωpϕ�sαqpxq�pϕ � sαq�Xx

�
. (1.184)

What lies in the derivative is:pϕ � sαq�pXxq � d

dt

�pϕ � sα � γqptq�
t�0� d

dt

�
sαpγptqq � ϕ̃αpγptqq�

t�0� d

dt

�
sαpγptqq � ϕ̃αpγp0qq�

t�0
� d

dt

�
sαpγp0qq � ϕ̃αpγptqq�

t�0� Rϕ̃αpxq�sα�Xx � d

dt

�
sαpxq � ϕ̃αpxqetϕ̃αpxq�1pdϕ̃αqxγ1p0q�

t�0
.

(1.185)

A justification of the remplacement ϕ̃αpγptqq Ñ ϕ̃αpxqetϕ̃αpxq�1pdϕ̃αqxγ1p0q is given in the corre-
sponding proof at page 145. If we put this expression into equation (1.184)-65, the first term
becomes

ωpϕ�sαqpxq�Rϕ̃αpxq�sα�Xx

� � pR�̃
ϕαpxqωqsαpxqpsα�Xxq� Adϕ̃αpxq�1

�
ωsαpxqpsα�Xxq�� Adϕ̃αpxq�1ps�αωqpXxq.

The second term is the case of a connection applied to a fundamental vector field.

1.15 Product of principal bundle

In this section, we build a G1 � G2-principal bundle from the data of a G1 and a G2-principal
bundle. The physical motivation is clear: as far as electromagnetism is concerned, particles are
sections of Up1q-principal bundle while the relativistic invariance must be expressed by means of
a SLp2,Cq-associated bundle. So the physical fields must be sections of something as the product
of the two bundles. See subsection 4.7.

1.15.1 Putting together principal bundle

Let us consider two principal bundle over the same base space

G1
///o/o/o P1

p1 // M,
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and

G2
///o/o/o P2

p2 // M.

First we define the set

P1 � P2 � tpξ1, ξ2q P P1 � P2 st p1pξ1q � p2pξ2qu (1.186)

which will be the total space of our new bundle. The projection p : P1 � P2 Ñ M is naturally
defined by

ppξ1, ξ2q � p1pξ1q � p2pξ2q,
while the right action of G1 �G2 on P1 � P2 is given bypξ1, ξ2q � pg1, g2q � pξ1 � g1, ξ2 � g2q
With all these definitions,

G1 �G2
///o/o/o P1 � P2

p

��
M

is a G1 �G2-principal bundle over M . We define the natural projections

πi : P1 � P2 Ñ Pipξ1, ξ2q ÞÑ ξi,
(1.187)

and if ei denotes the identity element of Gi, we can identify G1 to G1�te2u and G2 to G2�te1u;
in the same way, G1 � G1 � t0u � G1 � G2. So we get the following principal bundles :

G2
///o/o/o P1 � P2

π1 // P1

G1
///o/o/o P1 � P2

π2 // P2.

It is clear that the following diagram commutes :

P1

P1 ##GG
GG

GGG
GG

P1 � P2

π2 //π1oo

p

��

P2

p2

{{ww
ww

www
ww

M

1.15.2 Connections

Let ωi be a connection on the bundle pi : Pi ÑM . Using the identifications, π�1ω1 is a connection
on π2 : P1�P2 Ñ P2 (the same is true for 1 Ø 2), and π�1ω1`π�2ω2 is a connection on p : P1�P2 Ñ
M . Let us prove the first claim.

Let A P G1. We first have to prove that π�1ω1pA�q � A. For this, remark that A � pA, 0q P
G1 ` G2 and

A�ξ � d

dt

�
ξ � e�tpA,0q�

t�0
� d

dt

�pξ1, ξ2q � pe�tA, e2q�
t�0

� d

dt

�pξ1 � e�tA, ξ2q�
t�0

, (1.188)
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so dπ1A
� � d

dt

�
π1p. . .q�

t�0
� ω1pA�q � A. Let now Σ P Tpξ1,ξ2qpP1 � P2q be given by the pathpξ1ptq, ξ2ptqq. In this case we have�

R�pg,e2qπ�1 ω1

�pξ1,ξ2qΣ � pπ�1ω1qpdRpg,e2qΣq� ω1p d
dt

�
ξ1ptq � g�

t�0
q� ω1pdRg d

dt

�
ξ1ptq�

t�0
q� Adpg�1qπ�1ω1p d

dt

�pξ1ptq, ξ2ptqq�
t�0

q� Adpg�1qπ�1ω1Σ.

(1.189)

1.15.3 Representations

Let V be a vector space and ρi : Gi Ñ GLpV q be some representations such thatrρ1pg1q, ρ2pg2qs � 0 (1.190)

for all g1 P G1 and g2 P G2 (in the sense of commutators of matrices). In this case, one can
define the representation ρ1 � ρ2 : G1 �G2 Ñ GLpV q bypρ1 � ρ2qpg1, g2q � ρ1pg1q � ρ2pg2q � ρ2pg2q � ρ1pg1q. (1.191)

The relation (1.190)-67 is needed in order for ρ1� ρ2 to be a representation, as one can check by
writing down explicitly the requirementpρ1 � ρ2q�pg1, g2qpg11, g12q� � pρ1 � ρ2qpg1g

1
1, g2g

1
2q
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Chapter 2

Decompositions of Lie algebras

2.1 Root spaces

References for Lie algebras and their modules are [10–16].

2.1.1 Cartan subalgebra

Since the Killing form on the Cartan subalgebra h is nondegenerate, we can introduce, for each
linear function φ : h Ñ R, an element tφ of h such that

φphq � Bptφ, hq (2.1)

for every h P h.

Proposition 2.1.

We have rx, ys � Bpx, yqtα (2.2)

whenever x P gα and y P g�α.

Proof. For the proof, we show that the Killing for of rx, ys and Bpx, yqtα with any element h P h

are the same. Indeed, using the invariance of the Killing form,

B
�
h, rx, ys� � B

�rh, xs, y� � αphqBpx, yq � Bptα, hqBpx, yq � B
�
Bpx, yqtα, h�. (2.3)

Now, for each root α, we pick eα P gα and fα P g�α such that

Bpeα, fαq � 2
Bptα, tαq , (2.4)

and then we pose

hα � 2
Bptα, tαq tα. (2.5)

In that case, for each root, the set teα, fα, hαu generates an algebra isomorphic to slp2,Rq that
is denoted by slp2,Rqα.

The space h� is endowed with an inner product defined bypα, βq � Bptα, tβq. (2.6)

69
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2.1.2 Cartan-Weyl basis

Let us study the eigenvalue equation

adpAqX � ρX. (2.7)

The number of solutions with ρ � 0 depends on the choice of A P g.

Lemma 2.2.

If A is chosen in such a way that adpAqX � 0 has a maximal number of solutions, then the
number of solutions is equal to the rank of g and the eigenvalue α � 0 is the only degenerated
one in equation (2.7)-70.

We suppose A to be chosen in order to fulfill the lemma. Thus we have linearly independent
vectors Hi (i � 1, . . . l) such that rA,His � 0 (2.8)

where l is the rank of g. Since rA,As � 0, the vector A is a combination A � λiHi. Since adpAq
is diagonalisable, one can find vectors Eα withrA,Eαs � αEα, (2.9)

and such that tHi, Eαu is a basis of g. Using the fact that adpAq is a derivation, we findrA, rHi, Eαss � αrHi, Eαs, (2.10)

The eigenvalue α � 0 being the only one to be degenerated, one concludes that rHi, Eαs is a
multiple of Eα: rHi, Eαs � αiEα. (2.11)

Replacing A � λiHi, we have

αEα � rλiHi, Eαs � λiαiEα, (2.12)

thus α � λiαi (with a summation over i � 1, . . . , l).
Before to go further, notice that the space spanned by tHiui�1,...,l is a maximal abelian

subalgebra of g, so that it is a Cartan subalgebra that we, naturally denote by h�. Thus, what
we are doing here is the usual root space construction. In order to stick the notations, let us
associate the form σα P h� defined by σαpHiq � αi. In that case,

σαpAq � σαpλiHiq � λiαi � α (2.13)

and we have rA,Eαs � σαpAqEα. (2.14)

On the other hand, we have rHi, Eαs � αiEα � σαpHiqEα, so that the eigenvalue α is identified
to the root α, and we have Eα P gα.

Let us now express the vectors tα in the basis of the Hi. The definition property is Bptα, Hiq �
αpHiq � αi. If tα � ptαqiHi, we have

αi � Bptα, Hiq � Bklptαqk pHiqlloomoon�δl
i

� Bkiptαqk. (2.15)

If pBijq are the matrix elements of B�1, we haveplαql � αiB
il � αl (2.16)
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where αl is defined by the second equality. Using proposition 2.1, we haverEα, E�αs � BpEα, E�αqαlHl. (2.17)

Thus one can renormalise Eα in such a way to haverHi, Hjs � 0,rEα, E�αs � αiHirHi, Eαs � αiEα � αpHiqEαrEα, Eβs � NαβEα�β (2.18)

where the constant Nαβ are still undetermined. A basis tHi, Eαu of g which fulfill these require-
ments is a basis of Cartan-Weyl.

2.1.3 Cartan matrix

We follow [13]. We denote by Π the system of simple roots of g. All the positive roots have the
form

α̧PΠ

kαα (2.19)

with kα P N.

Theorem 2.3.

Let α and β be simple roots Thus

(i) α� β is not a simple root

(ii) we have
2pα, βqpα, αq � �p (2.20)

where p is a strictly positive integer.

Partial proof. We are going to prove that 2pα,βqpα,αq is an integer. Let α and γ be non vanishing
roots such that α� γ is not a root, and define

E1
γ�jα � adpE�αqkEγ P gγ�kα. (2.21)

Since there are a finite number of roots, there exists a minimal positive integer g such that
adpE�αqg�1Eγ � 0. We define the constants µk (which depend on γ and α) byrEα, E1

γ�kαs � µkE
1
γ�pk�1qα. (2.22)

Using the definition of E1
γ�kα and Jacobi, one founds

µkE
1
γ�pk�1qα � �

E1
α, rE�α, E1

γ�pk�1qαs� � αirHi, E
1
γ�pk�1qαs � µk�1E

1
γ�pk�aqα, (2.23)

so that µk � αiγi � pk � 1qαiαi � µk�1, and we have the induction formula

µk � pα, γq � pk � 1qpα, αq � µk�1 (2.24)
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for k ¥ 2. If we define µ0 � 0, that relation is even true for k � 1. The sum for k � 1 to k � j

is easy to compute and we get

µj � jpα, γq � jpj � 1q
2

pα, αq. (2.25)

Since µg�1 � 0, we have pα, γq � gpα, αq{2, (2.26)

and thus

µj � jpg � j � 1qpα, αq
2

. (2.27)

Let β be any root and look at the string β � jα. There exists a maximal j ¥ 0 for which β � jα
is a root while β � pj � 1qα is not a root. Now we consider γ � β � jα with that maximal j.
Putting γ � α� jβ in (2.26)-72, one findspα, βq � pg � 2jqpα, αq

2
, (2.28)

and finally,
2pα, βqpα, αq � g � 2j, (2.29)

which is obviously an integer.

From the inner product on h�, we deduce a notion of angle:

cospθα,βq � pα, βqapα, αqpβ, βq . (2.30)

The length of the root α is the number
apα, αq.

Lemma 2.4.

If α and β are roots, then
2pα, βqpα, αq P Z, (2.31)

and

β � 2pα, βqpα, αq (2.32)

is a root too.
If α and β are non vanishing, then the α-string which contains β contains at most 4 roots.

Finally, the ratio
2pα, βqpα, βq (2.33)

takes only the values 0, �1, �2 or �3.

Let Π � tα1, . . . , αlu be a system of simple roots. The Cartan matrix is the l � l matrix
with entries

Aij � 2pαi, αjqpαi, αiq . (2.34)

Notice that, in the literacy, one find also the convention Aij � 2pαiαjq{pαj , αjq, as in [15], for
example.
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2.1.4 Dynkin diagram

Proposition 2.5.

If α and β are simple roots, then the angle θα,β can only take the values 90�, 120�, 135� or 150�.
Proof. No proof.

In order to draw the Dynkin diagram of a Lie algebra, one draws a circle for each simple
root, and one joins the roots with 1, 2 or 3 lines, following that the value of the angle is 120�,
135� or 150�. If the roots are orthogonal (angle 90�), they are not connected. If the length of a
root is maximal, the circle is left empty. If not, it is filled.

One easily determines the number of lines between two roots by the following proposition.

Proposition 2.6.

If α and β are two simple roots with pα, αq ¤ pβ, βq, thenpα, αqpβ, βq �$'&'%1 if θα,β � 120�
2 if θα,β � 135�
3 if θα,β � 150�. (2.35)

Proof. No proof.

If M is a weight of a representation, its Dynkin coefficients are

Mi � 2pM,αiqpαi, αiq , (2.36)

and we can compute the Dynkin coefficients from one weight to another by the simple formulapM � αjqi �Mi �Aij . (2.37)

A weight is dominant if all its Dynkin coefficients are strictly positive.

2.1.5 Chevalley basis

It tαiu are the simple roots, we consider the following new basis for h:

Hαi � 2α�ipαi, αiq (2.38)

where α�i is the dual of αi. This is the element of H defined by αjpα�i q � δij . As usual in h, we
have rHαi , Hαj s � 0. (2.39)

Each root is a combination of the simple roots. If β � °l
i�1 kiαi, we generalise the definition of

Hαi to

Hβ � 2β�pβ, βq �
i̧

ki
pαi, αiqpβ, βq Hαi . (2.40)

The element Hβ is the co-weight associated with the weight β.
Using the inner product p., .q, we have the decomposition β � °

ipβ, αiqαi of the roots. An
immediate consequence is that

βpα�i q � pαi, βq. (2.41)
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If β is any root, we denote by βi the result of β on Hαi :

βi � βpHαiq � 2pαi, βqpαi, αiq .. (2.42)

Theorem 2.7 (Chevalley basis).
For each root β, one can found an eigenvector Eβ of adpHβq such thatrHβ, Hγs � 0rEβ , E�βs � HβrEβ , Eγs � #�pp� 1qEβ�γ if β � γ is a root

0 otherwiserHβ, Eγs � 2
pβ, γqpβ, βqEγ (2.43)

where p is the biggest integer j such that γ � jβ is a root. Moreover, if αi and αj are simple
roots, the latter becomes rHαi , E�αj s � �AijE�αj (2.44)

where A is the Cartan matrix.

An important point to notice is that, for each positive root α, the algebra generated bytHα, Eα, E�αu is slp2q. This is the reason why the representation theory of g reduces to the
representation theory of slp2q.
2.2 Representations

Since h is abelian, the operators Hαj (j � 1, . . . , l) are simultaneously diagonalisable. In that
basis of the representation space W , the basis vectors are denoted by |uΛy and have the property

Hαi |uΛy � ΛpHαiq|uΛy, (2.45)

and, as notation, we note Λi � ΛpHαiq. The root Λ is a weight of the vector |uΛy. The vector
Eβ |uΛy is of weight β � Λ, indeed,

HαiEβ |uΛy � �rHαi , Eβs �EβHαi

�|uΛy � �
2pαi, βqpαi, αiq � Λi



Eβ |uΛy. (2.46)

Thus the eigenvalue of Eβ |uΛy for Hαi is, according to the relation, (2.42)-74, βpHαi q�ΛpHαiq.
We suppose that the roots αi are given in increasing order:

α1 ¥ α2 ¥ . . . ¥ αl, (2.47)

and one says that a weight is positive if its first non vanishing component is positive. Then one
choose a basis of W |uΛp1qy, . . . , |uΛpNqy (2.48)

of weight vectors. One say that this basis is canonical if

Λp1q ¥ . . . ¥ ΛpNq. (2.49)
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Theorem 2.8.

A vector if weight Λ which is a combination of vectors of weight Λpkq all different of Λ vanishes.

Proof. No proof.

A consequence of that theorem is that, if W is a representation of dimension N of g, there are
at most N different weights. When several vectors have the same weight, the number of linearly
independent such vectors is the multiplicity of the weight. A weight who has only one weight
vector is simple.

Proposition 2.9.

The weights Λ and Λ� 2αpΛ, αq{pα, αq have the same multiplicity for every root α.

Theorem 2.10.

Two representation are equivalent when they have the same highest weight.

Proposition 2.11.

For any weight M and root α,
2pM,αqpα, αq P Z, (2.50)

and

M � 2pM,αqpα, αq α (2.51)

is a weight.

Notice, in particular, that for every weight M , the root �M is also a weight.

2.2.1 About group representations

Let π be a representation of a group G. The character of π is the function

χπ : GÑ C
g ÞÑ Tr

�
πpgq�. (2.52)

From the cyclic invariance of trace, it fulfils χπpgxg�1q � χπpxq, so that the character is a central
function.

Let G be a Lie group with Lie algebra g. We denote by Z� the subgroup of G generated by
n�. The Cartan subgroup D of G is the maximal abelian subgroup of G which has h as Lie
algebra.

A character of an abelian group is a representation of dimension one.
Let T be a representation of G on a complex vector space V . One say that ξ P V is a highest

weight if

• T pzqξ � ξ for every z P Z�,

• T pgqξ � αpgqξ for every g P D.

The function α : D Ñ C is the highest weight of the representation T .

Lemma 2.12.

The function α is a character of the group D.

Proof. The number αpgg1q is defined by T pgg1qξ � αpgg1qξ. Using the fact that T is a represen-
tation, one easily obtains T pgg1qξ � αpgqαpg1qξ.
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2.2.2 Weyl group

For each root α, we define
Sα : h� Ñ h�

Λ ÞÑ Λ� 2αpΛ, αqpα, αq .
(2.53)

This is an affine reflexion in h� around the direction of the root α because Sαpαq � �α and
Sαpβq � β when pα, βq. The Weyl reflexion group is the group generated by tSαiu (i � 1, . . . l)
and the identity.

Theorem 2.13.

There exists an irreducible representation of highest weight Λ if and only if

Λα � 2pΛ, αqpα, αq P N (2.54)

for every simple root α. Moreover, if ξ is a highest weight vector and if α is a simple root, then

Ek�αξ#� 0 if k ¤ Λα� 0 if k ¡ Λα.
(2.55)

Proof. No proof.

2.2.3 List of the weights of a representation

We consider a representation of highest weight Λ. For each weight M , we define

δpMq � 2
α̧iPΠ

Mαi (2.56)

where, as usual, Mα � 2pM,αq{pα, αq. For any root α, we define

γpαq � 1
2

�
δpΛq � δpαq�. (2.57)

Proposition 2.11 shows in particular that γpαq is an integer.

Proposition 2.14.

When M is a weight, γpMq is the number of simple roots that have to be subtracted from the
highest weight Λ in order to get M .

Proof. No proof.

Let us consider the sets
∆k
φ � tM st γpMq � ku. (2.58)

That set is the layer of order k. Of course, there exists a T pφq such that

∆φ � ∆0
φ Y∆1

φ Y . . .Y∆T pφq
φ . (2.59)

That T pφq is the height of the representation φ. If Λ is the highest weight and Λ1 is the lowest
weight, then we have γpΛq � 0 and γpΛ1q � T pφq.



2.2. REPRESENTATIONS 77

A corollary of proposition 2.14 is that, if M P ∆r
φ and if α is a simple root, then M�α P ∆r�1

φ ,
and M � α P ∆r�1

φ .
Let us denote by Skpφq the multiplicity of the layer of order k; we have

S0 � S1 � . . .� ST � N, (2.60)

where N is the dimension of the representation φ. The number

IIIpφq � maxSkpφq (2.61)

is the width of the representation.

Lemma 2.15.

If Λ is the highest weight and Λ1 is the lowest weight, then δpΛq � δpΛ1q � 0.

Proof. No proof.

From that lemma and the definition of γpMq, we deduce that δpΛq � δpΛ1q � 2γpΛ1q � T pφq,
so that δpΛq � T pφq and

δpMq � T pφq � 2γpMq. (2.62)

In particular, δpMq has a fixed parity for a given representation φ. It is the parity (even or odd)
of the representation.

Theorem 2.16.

If Λ is the highest weight of the irreducible representation φ, then

T pφq �
α̧iPΠ

rαiΛα (2.63)

where the coefficients rαi only depend on the algebra, and in particular not on the representation.

Proof. No proof.

The coefficients rαi are known for all the simple Lie algebra, see for example page 105 of [13].

Finding all the weights of a representation

The following can be found in [13, 15].

Theorem 2.17.

If ∆φ is the weight system of the irreducible representation φ, then

Sk � ST�k (2.64)

and
Sr ¥ Sr�1 ¥ . . . ¥ S2 ¥ S1 (2.65)

where r � T
2
� 1.

The theorem says that when T pφq is even (let us say T pφq � 2r), then IIIpφq � Srpφq and
when T pφq is odd (let us say T pφq � 2r � 1), then

IIIpφq � Srpφq � Sr�1pφq. (2.66)
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Let α be a root. The α-series trough the weight M is the sequence of weights

M � rα, . . . ,M � qα (2.67)

such that M � pr � 1qα and M � pq � 1qα do not belong to ∆φ.

Proposition 2.18.

Let M be a weight of the representation φ and α, any root of g. If the α-series trough M begins
at M � rα and ends at M � qα, then

2pM,αqpα, αq � r � q, (2.68)

or, more compactly, Mα � q � r.

Notice that, in that proposition, q and r are well defined functions of M and α.
We are now able to determine all the weights of the representation φ. Let us suppose that

we already know all the layers ∆0
φ, . . . ,∆

r�1
φ . We are going to determine the weights in the layer

∆r
φ.

An element of ∆r
φ has the form M � α with M P ∆r�1

φ and α, a root. Thus, in order to
determine ∆r

φ, we have to test if M � α is a weight for each choice of M P ∆r�1
φ and α P Π.

Using proposition 2.18, if 1

Mα � q ¥ 1, (2.69)

then M � α P ∆φ. The number Mα � qpM,αq is the lucky number of the root M � α. The
root is a weight if its lucky number is bigger or equal to 1. Notice that qpM,αq depends on the
representation we are looking at.

Since M � kα P ∆r�k
φ , the value of q is known when one knows the “lower” layers. We are

thus able to determine, by induction, all the layers from ∆0
φ which only contains the highest

weight. For this one, by definition, we always have q � 0.
The Dynkin coefficients of one weights can be more easily computed using the following

formula, which is a direct consequence of definition of the Cartan matrix:pM � αjqi �Mi �Aji. (2.70)

As example, let us determine the weights of the representation bc bc
1

of sup3q. The
algebra sup3q has two simple roots α and β whose inner products are pα, αq � pβ, βq � 1 andpα, βq � �1{2. The highest weight of φ � bc bc

1
is Λ � pα� 2βq{3.

We first test if Λ�α is a weight. Easy computations show that Λα � 0 wile q � 0; thus Λ�α
is not a weight. The same kind of computations show that Λβ � 1, so that Λβ � qpΛ, βq � 1.
That shows that ∆1

φ � tΛ� αu.
Let now M � Λ � β � pα � βq{3. Since M � α R ∆φ, we have qpM,αq � 0. On the other

hand, Mα � 1, so that M�α P ∆2
φ. The last one to have to be tested is M�β. Since M�β � Λ,

we have qpM,βq � 1, but Mβ � �1. Thus Mβ � qpM,βq � 0 and M � β is not a weight.
We can obviously continue in that way up to find ∆r

φ � 0, but there is an escape to be more
rapid. Indeed, using theorem 2.16 with coefficients rα that can be found in tables (for example
in [13]), we find

T pφq � 2Λα � 3Λβ � 2, (2.71)

1At page 104 of [13], that condition is (I think) wrongly written Mα � q ¥ 0; that mistake is repeated in the
example of page 106.
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thus we immediately know that ∆3
φ does not exist.

On the other hand, one knows the width IIIpφq � maxSkpφq because (since T pφq � 2r, with
r � 1), we have IIIpφq � S1pφq. Thus, once ∆1pφq is determined, we know that the next ones
will never have more elements.

In the example, when we know that M � α is a weight, we do not have to test M � β.

2.2.4 Tensor product of representations

Tensor and weight

Let φ and φ1 be representations of g on the vector spaces R and R1 of dimensions n and m. If
A P MnpRq and B P MmpR1q, the tensor product, also know as the Kronecker product of
A and B is the matrix AbB PMmnpRbR1q whose elements are given by

Cik,jl � AijBkl. (2.72)

The principal properties of that product arepA1A2q b pB1B2q � pA1 bB1qpA2 bB2q (2.73a)pAbBq�1 � A�1 bB�1 (2.73b)1R b 1R1 � 1RbR1 (2.73c)

If ϕ1 and ϕ2 are two representations of a group G, the tensor product is defined bypϕ1 b ϕ2qpgq � ϕ1pgq b ϕ2pgq. (2.74)

If φ and φ1 are two representations of a Lie algebra g, the tensor product representation is
defined by pφb φ1qpXqpv b v1q � �

φpXqv�b v1 � v b �
φ1pXqv1�. (2.75)

If tφku are the irreducible representations, a natural question that arise is to determine the
coefficients Γ which decompose φb φ1 into irreducible representations:

φb φ1 �
ķ

Γkpφ, φ1qφk (2.76)

Let W and W 1 be the representation spaces and consider the following decompositions in
weight spaces:

W � à
ΛP∆1

WΛ, W 1 � à
ΛP∆2

W 1
Λ. (2.77)

By definition, pW bW 1qα � tv b v1 st pφ b φ1qphqpv b v1q � αphqpv b v1qu. (2.78)

If
�
φphqv� b v1 � v b �

φ1phqv1� is a multiple of v b v1, one requires that

φphqv � α1phqv, (2.79a)

φ1phqv � α2phqv1 (2.79b)

for the weights α1 and α2 of φ and φ1. Thus we havepW bW 1qα1�α2
�Wα1

bWα2
. (2.80)
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We have in particular that the simple root system ∆φbφ1 of the representation φbφ1 is given
by

∆φbφ1 � ∆φ �∆φ1 . (2.81)

What we proved is 2

Proposition 2.19.

If φ is a representation of highest weight Λ and φ1 is a representation of highest weight Λ1, then
φb φ1 is a representation of height weight Λ� Λ1.

If, moreover, φ and φ1 are irreducible, then φb φ1 is irreducible.

An irreducible representation that cannot be written under the form of a tensor product of
irreducible representations is a basic representation.

Lemma 2.20.

A representation is basic if and only if its highest weight Λ is such that the Λαi are all zero but
one which is 1.

The basic representations of sop10q are given by the Dynkin diagrams of figure 2.1. All the
irreducible representations are obtained by tensor products of the basic ones. An elementary

is a basic representation which has his “1” on a terminal point of the Dynkin diagram.

bc bc bc

bc

bc

bc
1

(a)

bc bc bc

bc

bc

bc
1

(b)

bc bc bc

bc

bc

bc
1

(c)

bc bc bc

bc

bc

bc 1

(d)

bc bc bc

bc

bcbc 1

(e)

Figure 2.1: Basic representations of sop10q
Decomposition of tensor products of representations

Proposition 2.19 allows us to decompose a tensor product of representations into irreducible
representations. Let us do it on a simple example in sup3q. We consider the representations

φ � bc
1

bc and φ1 � bc bc
1

. The first representation has weights

∆φ � "
α� 2β

3
,
α� β

3
,
�p2α� βq

3

*
, (2.82)

and the second one has

∆φ1 � "
α� 2β

3
,
α� β

3
,
�p2α� βq

3

*
. (2.83)

2The second part is not proved.
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According to equation (2.81)-80, we have 9 weights in the representation φb φ1 (all the sums of
one element of ∆φ with a one of ∆φ1). The highest one is

2α� 4β
3

,

which is the double of the highest weight in bc bc
1

, so φ b φ1 contains the representation

bc bc
2

. Now, we remove from the list of weights of φ b φ1 the list of weight of bc bc
2

; the
result is

2α� β

3
,
�pα� βq

3
,
�pα� 2βq

3
, (2.84)

which are the weights of bc
1

bc . The conclusion is that

bc bc
1 b bc bc

1 � bc bc
2 ` bc

1
bc . (2.85)

That procedure of decomposition is quite long because it requires to compute the complete set
of weights for some intermediate representations.

Symmetrization and anti symmetrization

Let φ be a irreducible representation. We want to compute the symmetric and antisymmetric
parts of the representation φbk � φb . . .b φlooooomooooon

k times

. These symmetric and antisymmetric parts are

denoted by φbks and φbka respectively.

Proposition 2.21.

If tξ1, . . . , ξNu is a canonical basis of φ and if we denote by Λi the weight of the vector ξi, the
followings hold:

(i) the weight system of φbka is
Λi1 � Λi2 � . . .� Λik (2.86)

with ik ¡ . . . ¡ i2 ¡ i1, and the highest weight is

Λ1 � . . .� Λk. (2.87)

The dimension of the representation φbka is

N
�
φbka � � �

n

k



. (2.88)

(ii) The weight system of the representation φbks is

Λi1 � Λi2 � . . .� Λik (2.89)

with ik ¥ . . . ¥ i2 ¥ i1, and the highest weight is

kΛ1 (2.90)

The dimension of the representation φbks is

N
�
φbks � � �

n� k

k



. (2.91)
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Proof. No proof.

The representations φbka and φbks might be decomposable and we denote by φbks¡ and φbka¡
their highest weight parts.

Let α be a terminal point in a Dynkin diagram. The branch of α is the sequence of point of
the Dynkin diagram α � α1, α2, . . . , αk defined by the following properties.

• The point αi is connected with (and only with) the points αi�1 and αi�1,

• the connexion between αi and αi�1 is of one of the following forms

bc

αi
bc

αi�1

b

αi
b

αi�1

b

αi
bc

αi�1

(2.92)

• the sequence α1, . . . , αk is maximal in the sense that no αk�1 can be added without violating
one of the two first rules.

Proposition 2.22.

Let α be a terminal point in a Dynkin diagram and α1, . . . , αk be the corresponding branch. Then
we have

φαr � φbrα a¡ (2.93)

for every r � 1, 2, . . . , k.

2.3 Verma module

Let us give the definition of [17]. When g is a semisimple Lie algebra, we have the usual
decomposition

g � n� ` h` n�, (2.94)

where each of the three components are Lie algebras. In particular, the universal enveloping
algebra Upn�q makes sense. Let µ P h�. We build a representation πµ of g on Vµ � Upn�q in the
following way

• If Yα P n�, we define

πµpYαq1 � Yα (2.95a)

πµpYα1
. . . Yαnq � YαYα1

. . . Yαn , (2.95b)

• if H P h, we define

πµpHq1 � µpHq (2.96a)

πµpYα1
. . . Yαkq � �

µpHq � ķ

j�1

αjpHq�Yα1
. . . Yαk , (2.96b)
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• and if Xα P n�, we define

πµpXαq1 � 0 (2.97a)

πµpXαqYα1
. . . Yαk � Yα1

�
πµpXαqYα2

. . . Yαk
�

(2.97b)� δα,α1

ķ

j�1

αjpHαqYα1
. . . Yαk . (2.97c)

In the last one, we do an inductive definition.

Lemma 2.23.

The couple pπµ, Vµq is a representation of g on Vµ.

Proof. No proof.

That representation is one Verma module for g. If the algebra g is an algebra over the fieldK, the field K itself is part of Upnq�, so that the scalars are vectors of the representation. In
that context, the multiplicative unit 1 P K is denoted by v0.

Theorem 2.24.

The representation pπµ, Vµq of the semisimple Lie algebra g is a cyclic module of highest weight,
with highest weight µ and where v0 is a vector of weight µ.

Proof. No proof.

The Verma module is, a priori, infinite dimensional and non irreducible, thus one has to
perform quotients of the Verma module in order to build finite dimensional irreducible represen-
tations.

2.4 The group SOp3q and its Lie algebra

We follow [18] in which more proofs can be found.

Proposition 2.25.

An element of SOp3q has exactly one eigenvector with eigenvalue 1. That vector is the rotation

axis.

The generator of rotation around the axis n (unit vector) is given by the matrix�� 0 �n3 n2

n3 0 �n1�n2 n1 0

�. (2.98)

That form results form the requirement that Nr � n� r. If we denote by Rpn, θq the operator
of rotation in R3 by an angle θ around the axis n, one shows that

Rpb, θq � 1� sinpθqN � �
1� cospθq�N2. (2.99)
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2.4.1 Rotations of functions

Consider any function f : R3 Ñ C; we define the rotation operator Upn, θq by�
Upnθqf�prq � f

�
Rpn, θq�1r

�
. (2.100)

These operators form a group, and we have in particular that

Upn, θ1qUpn, θ2q � Upn, θ1 � θ2q.
We are interested in infinitesimal rotations, that is rotations of angle dθ for which pdθq2 ! dθ,
or in other words, we are interested in a development of equation (2.100)-84 restricted to linear
terms in θ. What one obtains is�

Upn, dθqf�prq � �p1� idθ n � lqf�prq (2.101)

where the operator l is defined by
l � �ir �∇. (2.102)

Its components li � �iǫijkrjBk satisfy commutation relationsrli, ljs � iǫijklk. (2.103)

The operator n � l is refereed as the generator of infinitesimal rotations. One can derive an
expression of Upn, θq in terms of n � l by the following:

Upn, θ � dθqf � Upn, θqUpn, dθqf � Upn, θqp1� idθ n � lqf,
so that we have the differential equation

dU

dθ
pn, θq � �iUpn, θqn � l (2.104)

with the initial condition Upn, 0q � 1. The solution is

Upn, θq � e�iθ n�l. (2.105)

2.4.2 Representations of SOp3q
The group SOp3q is strongly linked with SUp2q by the following property :

SOp3q � SUp2qZ2

. (2.106)

Lemma 2.26.

A representation ρj of SUp2q is a representation of SOp3q if and only if ρjpXq � id for any X
in the kernel of the homomorphism SUp2q Ñ SOp3q, namely: ρjp�1q � id.

Proof. We consider ρj : SUp2q Ñ EndVj and ψ : SUp2q Ñ SOp3q. The latter fulfils ψp1q �
ψp�1q � 1, which is an important equation because it ensures us that the rest of the expressions
are well defined with respect to the class representative.

If ρjp�1q � 1, we define dj : SOp3q Ñ EndV by djprxsq � ρjpxq (check that this is well
defined). With this,

djprxsqdjprysq � ρjpxqρjpyq � ρjpxyq � djprxysq.
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Now let us suppose that djprxsq � ρjpxq is a representation. Thus

ρjpxq � djprxsq � djpr�xsq � ρjp�xq � ρjp�1qρjpxq,
so ρjp�1q � idVj .

Moreover, any representation of SOp3q comes from a representation ρ̃ of SUp2q by setting
ρ̃p�1q � id and ρ̃pxq � ρprxsq.

Now, we research the representations of SUp2q for which the matrix �1 is represented by the
identity operator. These will be representations of SOp3q. The spin j representations of SUp2q
is given by

ρjpXqφpqpξq � φpqpX�1ξq.
With X � �1, this gives: φpqp�ξq � p�1qp�qφpqpξq. If we want it to be equal to φpqpξq, we
need p� q � 2j even. This is true if and only if j P N.

The conclusion is that the irreducible representations of SOp3q are the integer spin irreducible
representations of SUp2q. Note that the non relativistic mechanics has SOp3q as group of space
symmetry. Thus there are no hope to find any half integer spin in a non relativistic theory.

2.4.3 Representations of the algebra sup2q � sop3q
Determination of the representations

In the case of sop3q, the Cartan subalgebra is one dimensional, and one has only one simple root:
α � J�12. If Λ � aJ�12, one has pΛ, αq � a, and theorem 2.13 says that Λ is highest weight of an
irreducible representation if and only if a P N{2.

Ladder operators

We are now going to determine the irreducible representations in a more explicit way. From
the relation (2.106)-84, we know that the study of sup2q and sop3q are the same. The algebra

sup2q is the real algebra generated by the matrices of the form
�

α β�β� �α
 with α, β P C. A

convenient basis is given by

u1 � 1
2

�
i 0
0 �i
 , u2 � 1

2

�
0 1�1 0



, u3 � 1

2

�
0 i

i 0



. (2.107)

That algebra satisfies the commutation relationsrui, ujs � ǫijkuk. (2.108)

The trick to build finite dimensional representations of that algebra is common (see [19] for
example). The first step is to perform a change of basis Jk � iuk that brings the algebra under
the form (see section 2.4 to understand why)rJi, Jjs � iǫijkJk. (2.109)

We are going to construct all the finite dimensional irreducible representations of the algebra
(2.109)-85. The key point of that new basis is that one can define the ladder operators

J� � J1 � iJ2 (2.110)
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that have the property that rJ3, J�s � �J�. (2.111)

Notice that for every i, we have pJiq� � Ji, so that pL�q� � L	. An other important property
is that, defining J2 � J2

1 � J2
2 � J2

3 , we haverJi, J2s � 0, (2.112)

which show that J2 is a Casimir operator, and is thus by Schur’s lemma a multiple of identity.
Notice that we are using an abuse of notation between Ji as element of sup2q and Ji as the
operator that represent Ji. In the first case, products like JiJj make no sense3, but it makes
sense as operator composition.

The subalgebra tJ2, J3u being abelian, we can diagonalise J2 and J3 in the same time. Let|m,σy be an orthonormal basis of the eigenspace of J3 associated with the eigenvalue m. The
index σ is for a possible degenerateness to be studied later. We have

J3|m,σy � m|m,σy.
Using the commutation relations between J3 and the ladder operators, we have

J3J�|m,σy � �� J� � J�J3

�|m,σy � pm� 1qJ�|m,σy. (2.113)

Thus J�|m,σy is an eigenvector of J3 with the eigenvalue m�1, which means that J�|m,σy is a
linear combination of the vectors |m� 1, σy with different values of σ. This is the reason of the
name of the ladder operators: they raise and lower the eigenvalue of J3.

We can now prove that one has to drop the index σ because eigenvalues of J3 cannot be
degenerated. For, compute

J�J� � pJ1 � iJ2qpJ1 � iJ2q � J2 � J2
3 � irJ2, J1s � J2 � J2

3 � J3, (2.114)

so that
J�J�|m,σy � pα�m2 �mq|m,σy

where α is defined by J2 � α1. That proves that the space generated by |m,σy and the action
of J3, J� and J� is invariant under the representation, while one cannot obtain |m,σ1y by action
of J� on |m,σy. Since we are looking for irreducible representations, that space must actually be
all the representation space. That rules out the possibility to have two different vectors |m,σ1y
and |m,σ2y.

The explicit matrix form of J� are:

J� � �������0 0 0 0 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .
...

...
...

...
. . .

�ÆÆÆÆÆ, J� � �������0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

�ÆÆÆÆÆ, (2.115)

Since we are searching for finite dimensional representations, there exists a maximal eigenvalue
of J3. Let us denote by j that maximal eigenvalue and by |jy the corresponding eigenvector. The

3In fact, one has to understand these products as elements of the universal enveloping algebra. What we are
building is a reprensentation of that algebra, which, obviously, restricts to a representation of the algebra. When
we use the Schur’s lemma, in fact we invoke it in U

�
sop3q�
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relation (2.113)-86 shows that if J�|jy � 0, then J�|jy is an eigenvector for J3 with eigenvalue
j � 1, which contradicts maximality. Then we have J�|jy � 0.

Since we know the action of J3 and J� on |jy, it is convenient to write J2 in terms of these
two operators. This is done in the same way as probing equation (2.114)-86:

J2 � J2
3 � J3 � J�J�, (2.116)

so that
J2|jy � jpj � 1q|jy. (2.117)

We know that J2 � α1 and that α is a characteristic of the representation. What equation
(2.117)-87 tells us is that the maximal eigenvalue of J3 is related to α by jpj � 1q � α.

We are now able to determine the proportionality constant of relation J�|my9|m� 1y. SincepJ�q� � J�, we have }J�|my}2 � xm|J�J�|my � jpj � 1q �m2 �m. (2.118)

Then one has

J�|my �a
jpj � 1q �mpm� 1q|m� 1y, (2.119a)

J�|my �a
jpj � 1q �mpm� 1q|m� 1y. (2.119b)

As expected, J�| � jy � 0 and J�|jy � 0. Notice that we avoid the possibility J�|my ��?� � �|m� 1y by a simple redefinition |m� 1y Ñ �|m� 1y.
Equation (2.118)-87 shows that the norm of |my becomes negative for m   �j and m ¡ j�1.

We conclude that the minimal eigenvalue of J3 is �j. Since |jy has to be reached from | � jy by
action of J�, the difference j � p�jq must be an integer. Thus j P N{2. The number j is the
spin of the representation.

Let us give the explicit example with spin one half. When j � 1
2
, the vector space is generated

by the vectors |1{2y and | � 1{2y, and the operators are given by

J3 � 1
2

�
1 0
0 �1



, J� � �

0 0
1 0



, J� � �

0 1
0 0



, (2.120)

from which we deduce

J1 � 1
2

�
0 1
1 0



, J2 � �

0 �i
i 0



.

Notice that we have Ji � 1
2
σi with the Pauli matrices,

σ1 � �
0 1
1 0



, σ2 � �

0 �i
i 0



, σ3 � �

1 0
0 �1



. (2.121)

These matrices fulfil the relation
σiσj � δij � iǫijkσk. (2.122)

Weight vectors

The algebra sop3q does not contain abelian subalgebra of dimension bigger than one, so a Cartan
subalgebra is generated by J3. The unique (up to dilatation) element of H � is thus given by
αpJ3q � 1. The relation rJz, J�s provides the root spaces:

sop3q1 � tJ�u
sop3q�1 � tJ�u, (2.123)

thus n� is generated by J�.
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2.5 Thinks about sup3q
Using the Cartan matrix of sup3q and formula (2.70)-78, we will determine the Dynkin coefficients

of the representation bc
1

bc without even explicitly compute the weights. For that, we follow
the construction of [15]. The Cartan matrix is

A � �
2 �1�1 2



. (2.124)

The Dynkin coefficients of the highest weight is given by

Λi � �
1
0



. (2.125)

Since Λ is highest weight, we have qpΛ, αiq � 1, so that Λ1� qpΛ, α1q � 1 and Λ2� qpΛ, α2q � 0.
Thus the only weight of the first layer is M � Λ� α1. Using formula (2.70)-78, we findpΛ� α1qi � Λi �A1i � �

1
0


��
2�1


 � ��1
1



. (2.126)

We also have, by construction, ppM,α1q � 1 and ppM,α2q � 0, so that M1�ppM,α1q � �1�1 �
0 and M2 � ppM,α2q � 1. We conclude that M � α2 is a weight, and its Dynkin coefficients are
given by pM � α2qi � ��1

1


���1
2


 � �
0�1



. (2.127)



Chapter 3

From Clifford algebra to spin
manifold

Bibliography for Clifford algebras, spin group and related topics are [20–24]. More agebraic point
of view can be found in [25, 26]. More details about “square rooting” second order differential
operators are in [27]. For physical concerns, the reader should refer to [28–30].

3.1 Invitation : Clifford algebra in quantum field theory

3.1.1 Schrödinger, Klein-Gordon and Dirac

The origin of the Klein-Gordon equation is almost the same as the one of the Schrödinger: one
replace physical functions by operators. For a free particle, the correspondence are

energy E Ñ i~
BBt ,

momentum p Ñ �i~∇.
The Schrödinger equation (which is the non relativistic quantum wave equation) comes from
replacement in the non non relativistic expression of the Hamiltonian

E � p2

2m
ÝÑ �Bt � i~

2m
∇2



ψ � 0,

while the Klein-Gordon one (which is the relativistic quantum wave equation) comes from the
relativistic corresponding equation:

E2 � p2c2 �m2c4 ÝÑ �BµBµ � pmc
~
q2	ψ � 0.

This is a second order differential equation; there are however no “law of nature” which forbid
a first order equation. We try

i~
BψBt � �

~c

i
αkBk � βmc2



ψ � Ĥψ.

There are some physical constraints on the coefficients αk and β. We will study one of them:
we want the components of ψ to satisfy the Klein-Gordon equation, so that the plane waves
fulfill the fundamental relation E2 � p2c2 �m2c4.

89
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In order to see the implications of this constraint on the coefficients, we apply two times the
operator Ĥ , and we compare the result with the Klein-Gordon equation. We find:

αiαj � αjαi � 2δij1, (3.1a)

αiβ � βαi � 0, (3.1b)pαiq2 � β2 � 1. (3.1c)

If we define γ0 � β and γi � βαi, we find that the matrices γµ have to give a representation of
the Clifford algebra1:

γµγν � γνγµ � 2ηµν1. (3.2)

The Dirac equation reads ��iγµBµ � mc

~

	
ψ � 0.

If we want to perform some computation with the quantum field theory, we need an explicit form
for the γ’s; that’s the reason why we study representations of the Clifford algebra. The Dirac

operator D is the operator which lies in the Dirac equation:

D � 3̧

µ�0

γµ
BBxµ . (3.3)

3.1.2 Lorentz algebra

There is an other physical reason (which is in fact the same, but differently presented) justifying
the study of the Clifford algebra. The quantum field theory need representation of the Lorentz
algebra2 rJµν , Jρσs � ipηνρJµσ � ηµρJνσ � ηνσJµρ � ηµσJνρq.
A proof of these relations is given in lemma 3.1. Dirac had a trick to find such J matrices from
a representation of the Clifford algebra. If we have n� n matrices γµ such that

γµγν � γνγµ � 2ηµν1n�n,
a n-dimensional representation of the Lorenz algebra is obtained by

Sµν � i

4
rγµ, γνs .

Lemma 3.1.

The matrices of sopp, qq satisfy the definition relation

M tη � ηM � 0, (3.4)

and if Mab is the “rotation” in the place of directions a and b (i.e. a trigonometric or an
hyperbolic rotation following that a and b are of the same type or not), then the action on Rpp,qq
is given by px1qµ � pMabqµνxν with pMabqµν � ηaµδbν � ηbµδaν . (3.5)

1Don’t be afraid with the extra minus sign: the quantum field theory is most written with the metricp�,�,�,�q instead of p�,�,�,�q.
2When one think to real infinitesimal rotation matrices, the presence of i seems not natural, but one redefines

J Ñ iJ for formalism reasons.
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The commutation relations are given byrMab,M cds � �ηacM bd � ηadM bc � ηbcMad � ηbdMac. (3.6)

Notice that Mab � �M ba.

See section 12.5 of [31]. By a simple redefinition J � iM , one obtainsrJ, Js � iηJ (3.7)

instead of rM,M s � ηM , and the matrices J are Hermitian. Here η is the matrix η �
diagp�, . . . ,�looomooon

p times

,�, . . . ,�looomooon
q times

q. As convention, we say that a direction corresponding to a positive

entry in the metric is a time direction, while the spatial directions are negative.

3.2 Clifford algebra

3.2.1 Definition and universal problem

Definition 3.2.

Let V be a (finite dimensional) vector space and q, a bilinear quadratic form over V . The
Clifford algebra ClpV, qq is the unital associative algebra generated by V subject to the relation

v � v � qpvq (3.8)

for all v in ClpV, qq. Here the dot denotes the algebra product and qpvq means qpv, vq.
Theorem 3.4 proves unicity of such an algebra, so that it makes sense.

Remark 3.3. The relation (3.8)-91 is no more a restriction for the elements in ClpV, qq than a
restriction on the choice of the algebra product.

Theorem 3.4.

Let E be an unital associative algebra and j : V Ñ E a linear map such that

jpvq � jpvq � qpvq1. (3.9)

Then we have an unique extension of j to a homomorphism ̃ : ClpV, qq Ñ E. Moreover, ClpV, qq
is the unique associative algebra which have this property for all such E.

ClpV, qq
� _

i
��

j̃

##GG
GG

GG
GG

G

V
j

// D

This theorem can be seen as a definition of ClpV, qq.
Proof. The proof shall belongs two parts: the first one will show how to extend j and why it is
unique, and the second one will prove the unicity of ClpV, qq.

We begin by define the extension of j. First note that any linear map f : V Ñ E can be ex-
tended to an algebra homomorphism f : T pV q Ñ E in only one way. Indeed, the homomorphism
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condition require that fpvbwq � fpvq � fpwq. The whole map f is then well defined by the data
of f alone.

As far as the map j is concerned, we have the relation (3.9)-91 which says that jpIq � 0.
Indeed,

jpv b v � qpvq � p1qq � jpvq � jpvq � qpvqjp1q � jpvq � jpvq � qpvq1 � 0. (3.10)

Thus j : T pV q Ñ E is a class map for I, and we can descent j from T pV q to ClpV, qq, We define
̃ : ClpV, qq Ñ E by

̃rxs � jpxq (3.11)

where rxs is the class of x. That’s for the existence part.
The unicity is clear: f1 � f2 on V implies that f1 � f2 on T pV q. Thus f̃1 � f̃2 on ClpV, qq.
We turn now our attention to the unicity of ClpC, qq. Let D be an unital associative algebra

such that

(i) V � D,

(ii) For any unital associative algebra E and for any f : D Ñ E such that fpvq �fpvq � �qpvq1,
there exists only one homomorphic map f̃ : D Ñ E which extend f .

We should find a homomorphic map k̃ : D Ñ ClpV, qq. Let i be the canonical injection i : V Ñ D.
Clearly, we have a homomorphism V Ñ ipV q. Now, as a space E, we can take ClpV, qq; i can be
seen as a linear map i : V Ñ ClpV, qq such that ipvq � ipvq � qpvq1. The assumptions say that i
can be extended (in only one way) to a homomorphic map ĩ : D Ñ ClpV, qq.

The Clifford algebra is thus unique up to a homomorphism.

What we proved is the following: if for any E and for any j : V Ñ E such that jpvq � jpvq �
qpvq1, there exist an unique j̃ : D Ñ E which extend j, then D � ClpV, qq up to a homomorphism.
One ays that ClpV, qq solve an universal problem.

An explicit construction of ClpV, qq can be achieved in the following way. We consider the
tensor algebra T pV q � À

n¥0 pbnV q � C ` V ` pV b V q ` . . . over V the two-sided ideal I
generated by elements of the form v b v � qpvq1. The Clifford algebra for pV, qq is given by

Clpp, qq :� T pV q{I (3.12)

in which product of ClpV, qq is naturally defined by rasbrbs � rabbs if ras is the class of a P T pV q.
Let us now fix some notations more adapted to what we want to do. Let V � Rp,q the vector

space Rp�q endowed with a diagonal metric which contains p plus sign and q minus signs. For
v, w P V , the inner product with respect to the metric η of v by w will be denoted by ηpv, wq.
The norm on V will be defined by }v}2 � �ηpv, vq. It is neither positive defined, nor negative
defined. The explanation of the minus sign will come soon. The Clifford algebra is the quotient
Clpp, qq :� T pV q{I of the tensor algebra by the two-sided ideal I generated by elements of the
form pv b wq ` pw b vq ` 2ηpv, wq1
for v, w in V . Depending on the context, we will often use the notations Clpηq or ClpV q or
Clpp, qq. The algebra product is rxs � rys � rxb ys, x, y P T pV q. As long as z P V � Clpp, qq, the
expression ηpz, zq is meaningful. The definition of Cl is such that z � z � �ηpz, zq. This leads to
the somewhat surprising formula z2 � }z}2 � �ηpz, zq.
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3.2.2 First representation

Let pV, gq be a metric vector space and ClpV, gq its Clifford algebra. For each v P V , we define
the two following elements of EndRp�V q:

ǫpvq�u1 ^ � � � ^ uk
� � v ^ u1 ^ � � � ^ uk (3.13a)

ιpvq�u1 ^ � � � ^ uk
� � ķ

j�1

p�1qj�1gpu, ujqu1 ^ � � � ^ ûj ^ � � � ^ uj. (3.13b)

One has ǫpvq2 � 0 and ιpvq2 � 0 because v^v � 0. In order to understand the latter, we wonder
what are the terms with gpv, uiqgpv, ujq are in

ιpvq2�u1 ^ � � � ^ uk
� � ķ

l�1

p�1qj�1gpv, ujq k�1̧

l�1

p�1ql�1gpv, ulqu1 ^ ûl ^ ûj ^ � � � ^ uk.

Let’s suppose i   j. The first term comes when the first ιpvq acts on uj , its sign is given byp�1qj�1p�1qi�1. The second term has the same p�1qi�1, but in this term, uj is on the position
j � 1 because ui has disappeared.

Now we use cpvq � ǫpvq � ιpvq which fulfils for all u, v P V :

cpvq2 � gpv, v, q1
cpuqvpvq � cpvqcpuq � 2gpu, vq1.

Therefore c can be extended to a representation c : ClpV, gq Ñ Endp�V q. If te0, � � � enu is an
orthonormal basis of V (i.e. gpei, ejq � ηij); in this case the cpejq are anticommuting and a basis
of ClpV, gq is given by tcpek1

q � � � cpekr q st 1 ¤ k1   � � �   kr ¤ nu. (3.14)

3.2.3 Some consequences of the universal property

The map � id |V extends to α P Aut
�

ClpV q�,
αpv1 � � � vrq � p�1qrv1 � � � vr

(vi P V ) and provides a graduation

ClpV q � Cl0pV q ` Cl1pV q.
The map τ : ClpV q Ñ ClpV q extends id |V to an anti-homomorphism:

τpv1 � � � vrq � vr � � � v1. (3.15)

The complexification of ClpV, gq is

ClCpV, gq :� ClpV, gq bR C � ClpV C, gCq,
the isomorphism being a C-algebra isomorphism. The R-linear operator v ÞÑ v in V C of complex
conjugation extends to a R-linear automorphism a ÞÑ a. We define the adjoint by

a� � τpaq (3.16)
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3.2.4 Trace

Theorem 3.5.

There exists one an only one trace Tr: ClCpV q Ñ C such that

(i) Trp1q � 1,

(ii) Trpaq � 0 when a is odd.

Proof. Let te1, � � � , enu be an orthonormal basis of pV, gq and a P ClCpV q. When one decomposes
a into the basis of ei, one finds a lot of terms of each order. Since Tr is a trace, when the ki are
all different,

Trpek1
� � � ek2r

q � Trp�ek2
� � � ek2r

ek1
� Trp�ek1

� � � ek2r
q

So the trace of any even element is zero. We decompose a into

a �
Ķ

aK
¹
iPK ei

where the sum is taken on the subsets of t1, . . . , nu. A trace which fulfils the conditions must
vanishes on even (but non zero) elements as well as on odd elements, so the only possible form is

Tr a � aH.
Notice that in order to get this precise form, we used Trp1q � 1 and linearity. This proves unicity
and existence. Now we have to prove that this is a good definition in the sense that an other
choice of basis gives the same result. So we take a new orthonormal basis

e1j � ņ

k�1

Hjkek

with HtH � 1n�n. Now we have

a �
Ķ

aK
¹
iPK ei � Ķ

a1K ¹
iPK e1i,

and we will prove that aH � a1H. Let’s compute a lot:

e1ie1j �
ķ ļ

HikHjlekel�
ķ�lHikHjlekel �

ķ�lHikHjlekel�
ķ

HikHjk1�
ķ�lHikHjlekel� pHHtqij1�

ķ�lHikHjlekel.

The sense of this formula is that when i � j, the product e1ie1j has no term of order zero. In
other terms, as long as we only have terms of order zero, one and two, a change e Ñ e1 does
not change the term of order zero. We are now going to an induction proof: we want to prove
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that e1j1
. . . e1j2r

e1le1k has no scalar term assuming that no even combination has scalar terms up
to 2pr � 1q. It reads ¸

K even

aK
¹
iPK eie1le1k,

therefore we just have to look at terms of the form

ej1
. . . ej2r

�pHHqtkl1�
i̧�jCijkleiej	

where the ejl are all different. The first term cannot produce a scalar term. In order to find a
scalar term in e1j1

. . . e1j2r
ekel, we begin to look at terms whose decomposition of e1j1

. . . e1j2r
ends

by elek, i.e.

Hj2r�2lHj2r�1ke
1
j1
. . . e12r�3elekekel.

The induction assumption says that there are no scalar term in e12r�3elekekel.

One can prove that ClCpCq is a Hilbert space with the scalar productxa|by � Trpa�bq. (3.17)

Let v P V with gpv, vq � 1 (thus in ClpV q, we have v2 � 1); since v � v, we have

a�v � vv� � v2 � 1.

Lemma 3.6.

The maps a ÞÑ ua and a ÞÑ au are unitary if and only if uu� � u�u � 1.

Proof. We pick λ P Up1q and w � λv P V C which fulfils w�w � 1. This is the most general
element such that ww� � w�w � 1. Now for an arbitrary a, b P ClCpV q, we compute the two
followings: xwa|wby � Tr

�pwaq�wb� � Tr
�
a�w�wb� � Trpa�bq � xa|by,

and xaw|bwy � Tr
�
w�a�bw� � Trpww�a�bq � Trpa�bq � xa|by.

This proves that a ÞÑ wa and a ÞÑ aw are two unitary operators on the Hilbert space ClCpV q.
For the converse, we impose for all a, b P ClCpV q:xua|uby � Trpba�u�uq !� Trpba�q.

In particular with a�b � 1, Trpu�uq � Trp1q � 1, thus the scalar part of u�u is 1. So we write
u�u � 1� f where f is non scalar, and for any x P ClCpV q , we have

Trpxq � Trpxu�uq � Trpxq � Trpxfq.
We conclude that Trpxfq � 0, and therefore that f � 0.
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3.3 Spinor representation

For the spinor representation, we restrict ourself to the even case p� q � 2n.
The aim of this subsection is to find some faithful representations of the complex Clifford

algebra ClCpp, qq. In order to achieve this, we first consider V C, the complex vector space
of V with an orthonormal basis te1, � � � , ep�1, ep, � � � , equ. The metric is ηpek, ekq � 1 and
ηpep�k, ep�kq � �1 for k � 0, � � � , p� 1. We use the following basis:

fk � 1
2
pek � ep�kq, gk � 1

2
pek � ep�kq, (3.18)

fp�s � 1
2
pe2p�2s � ie2p�2s�1q, gp�s � 1

2
pe2p�2s � ie2p�2sq (3.19)

for k � 0, � � � , p � 1. We note that tf0, g0u spans a C2-space which is η-orthogonal to the one
which is spanned by tf1, g1u. The following two spaces will prove to be useful:

W � SpanCtf0, f1u � C2, (3.20a)

W � SpanCtg0, g1u � C2. (3.20b)

It is easy to compute the various products; among others we find

ηpf0, f0q � 0, ηpf1, f0q � 0, ηpf1, f1q � 0; (3.21)

so that for any w P W , we have xw,wy � 0; for this reason, we say that W is a completely

isotropic subspace of pV C, ηCq. The space W has the same property.

Proposition 3.7.

We have
W �W�, (3.22)

where W� is the dual space of W . By � we mean that there exists a linear bĳective map
ψ : W ÑW�.

Proof. For each w PW , we define ψpwq : W Ñ C by

ψpwqpwq � ηpw,wq.
We first show that the map ψ is injective. Let w P W be so that ψpwq � 0. Thus for all v PW ,
we have

ψpwqv � ηpw, vq � 0. (3.23)

By decomposing w � ag0� bg1 and taking successively v � f0 and v � f1, we see that a � b � 0.
The next step is to see that the map ψ is surjective. We know that dimCW � dimCW� � 2

and that ψpg0q � 0. Let’s prove that tψpg0q, ψpg1qu is a basis of W�. It is clear by linearity
that tψpag0q : a P Cu � Spantψpg0qu. The fact that ψ is injective imposes that ψpg1q doesn’t
belong to Spantψpg0qu. So tψpg0q, ψpg1qu is a two-dimensional free subset of W�, and therefore
is a basis of W�.

We turn our attention to the exterior algebra ΛW � C `W ` pW ^W q ` � � � ` ^p�qW of
W .
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Definition 3.8.

We define the homomorphism ρ̃ : V C Ñ EndpΛW q by

ρ̃pfiqα � fi ^ α,

ρ̃pgiqα � �ιpgiqα (3.24)

(v P V C, α P ΛW ) where ι denotes the interior product defined in page 17.

More explicitly, for all z P C and for all w,w1 PW , we have

ρ̃pfiqz � zfi, ρ̃pgiqz � 0, (3.25a)

ρ̃pfiqw � fi ^ w, ρ̃pgiqw � �ηpgi, wq1, (3.25b)

ρ̃pfiqpw ^ w1q � 0, ρ̃pgiqpw ^ w1q � �ηpgi, wqw1 � ηpgi, w1qw. (3.25c)

We will see that, via some manipulations, ρ̃ provides a faithful representation of the Clifford
algebra, the spinor representation.

Remark 3.9. By “endomorphism of ΛW”, we mean an endomorphism for the linear structure of
ΛW . We obviously not have ρ̃pxqpα ^ βq � ρ̃pxqα ^ ρ̃pxqβ.

Proposition 3.10.

The map ρ̃ is injective.

Proof. We have to show that ρ̃pvq � 0 (v in V C) implies v � 0. Any v P V C can be written as
v � aifi � bigi with a sum over i. We first have that

ρ̃paifi � bigiqz � zaifi � 0,

but the fi are independents and then ai � 0. We can also write

ρ̃pb0g0 � b1g1qf1 � �b0ηpg0, f1q � b1ηpg1, f1q � �b1

2
� 0,

then b1 � 0. The same with f0 proves that b0 � 0.

The homomorphism ρ̃ extends to the whole the tensor algebra of V C by the following defini-
tions:

ρ̃p1q � idΛW , (3.26a)

ρ̃pekq � ρ̃pekq, (3.26b)

ρ̃pek1
b . . .b ekr q � ρ̃pek1

q � . . . � ρ̃pekr q. (3.26c)

So we get ρ̃ : T pV Cq Ñ EndpΛW q. The following proposition will allow us to descent ρ̃ to a
representation of the Clifford algebra.

Proposition 3.11.

The homomorphism ρ̃ maps I to 0: ρ̃pIq � 0.

Problème et notes pour moi 2.

Il faut vérifier les signes dans cette démonstration. En effet, regarde la première lignes, et
remarque que le signe n’est pas celui utilisé pour définir l’algèbre de Clifford.

This proposition is wrong: there is a double covering.
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Proof. We have to check the following:

ρ̃pv b w ` w b v � 2ηpv, wq1q � 0

for any choice of v, w in te0, e1, e2, e3u. Here we will just check it explicitly for v � e0 and w � e1.
The computation uses the definition (3.26c)-97:

ρ̃pe0 b e1 ` e1 b e0 � 2ηpe0, e1q � ρ̃pe0q � ρ̃pe1q � ρ̃pe1q � ρ̃pe0q� 2
�
ρ̃pf0q2 � ρ̃pg0q2� . (3.27)

It is easy to see that ρ̃pf0q2 � 0:

ρ̃pf0q2 rz ` w ` w1 ^ w2s � ρ̃pf0qrzf0 ` f0 ^ ws � zf0 ^ f0,� 0. (3.28)

The proof that ρ̃pg0q2 � 0 is almost the same:

ρ̃pg0q2 rz ` w ` w1 ^ w2s � ρ̃pg0qr�ηpg0, wq1 `�ηpg0, w1qw2 ` ηpg0, w2qw1s.
We can now see ρ̃ as a map ρ̃ : ClCpp, qq Ñ EndpΛW q. By construction, it is a homomorphism

and, thus, is a representation of ClCpp, qq on ΛW . For compactness, we use the notation

γa :� ?
2ρ̃peaq. (3.29)

Lemma 3.12.

The γ’s operators satisfy the following relation:

γaγb � γbγa � �2ηab1. (3.30)

Proof. We have to check this equality on any element of ΛW . If we choose w1 � af0 � bf1 and
w2 � a1f0 � b1f1, we find w1 ^ w2 � pab1 � ba1qf0 ^ f1.

For example, we will explicitly check (3.30)-98 with a � b � 0, i.e. ρ̃pe0q � ρ̃pe0q � 1
2

id, which
proves that γ0 � γ0 � id.

ρ̃pe0q2rz ` w ` pab1 � ba1qf0 ^ f1s � ρ̃pf0 � g0q2rz ` w ` pab1 � ba1qf0 ^ f1s� ρ̃pf0 � g0q�zf0 ` f0 ^ w `�ηpg0, wq1� pab1 � ba1qηpg0, f0qf1� pab1 � ba1qηpg0, f1qf0

�� 1
2
pz ` w ` pab1 � ba1qf0 ^ f1q. (3.31)

Lemma 3.13.

For any sequence i0, . . . i3 of 0 and 1 (with at least one of them equals to 1), we have

Trpγi00 � � � γi2n�1

2n�1 q � 0. (3.32)

We take the convention that γ0
a � 1.
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Proof. If the number of nonzero ik is even (say 2m), we have:

Trpγa1
. . . γa2m

q � Trpγa2n
γa1

. . . γa2m�1
q

because the trace is invariant under cyclic permutations. But we can also permute γa2m
with the

2m � 1 other γ’s. Trpγa1
. . . γa2m

q � p�1q2n�1 Trpγa2m
γa1

. . . γa2m�1
q because each permutation

gives an extra minus sign (lemma 3.12). Then the trace is zero.
If the number of nonzero ik is odd (say 2m� 1). Let ia � 0 (we restrict ourself to the even

dimensional case). We have TrpAq � �ηaa TrpAγaγaq. Using once again the cyclic invariance of
the trace, Trpγa1

. . . γa2m�1
γaγaq � Trpγaγa1

. . . γa2m�1
γaq. But, if we permute the first γa with

the 2m� 1 first γ’s, we find Trpγa1
. . . γa2m�1

γaγaq � �Trpγaγa1
. . . γa2m�1

γaq , and the trace is
zero again.

Proposition 3.14.

The subset t1, γaγb pa   bq, γaγbγc pa   b   cq, � � � , γ0 � � � γ2nu
is free in EndpΛW q.
Proof. We consider a general linear combination of these operators:

E � λ1�
a̧

λaγa �
a̧ bλabγaγb � . . .� ¸

a b c dλabcdγaγbγcγd.
The claim is that if E � 0, then all the coefficients λp...q must be zero. First note that TrpEq �
0 � λ by lemma 3.13. It is also clear that TrpγiEq � 0 � λi. In order to see that λij � 0, we
compute TrpγjγiEq � 0 � λij . And so on.

How many operators does we have in this free system ? Any operators in this system can
be written as γi00 , � � � γi2n�1

2n�1 with ik equal to zero or one. Thus we have 22n operators. On the
other hand, we know that dimCΛW � 2p � 2, and then that dimC EndpΛW q � 42 � 16. The
result is that tγi00 , � � � γi2n�1

2n�1 st ik � 0 or 1u is a basis of EndpΛW q. In other words (if we suppose
a suitable ordering), the image by ρ̃ of

B � t1, ea, ea b eb, ea b eb b ec, ea b eb b ec b edu
is a basis of EndpΛW q.

If B is a basis of CCpp,qq, then ρ̃ is bĳective and thus isomorphic. Therefore, we expect
ρ̃ : CCpp,qq Ñ EndpΛW q to be a faithful representation. It is not difficult to see that B is indeed a
basis thanks to the equivalence relation.

3.3.1 Explicit representation

First, we choose a basis for ΛW :

1 � ����1
0
0
0

�ÆÆ, f0 � ����0
1
0
0

�ÆÆ, f1 � ����0
0
1
0

�ÆÆ, f0 ^ f1 � ����0
0
0
1

�ÆÆ. (3.33)
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Here is the explicit computation for the matrix γ0 in this basis. First remark that ρ̃pe0q1 � f0,
ρ̃pe0qf0 � 1

2
, ρ̃pe0qf1 � f0 ^ f1, ρ̃pe0qpf0 ^ f1q � 1

2
f1. Then

γ0

����1
0
0
0

�ÆÆ� ?
2

����0
1
0
0

�ÆÆ, γ0

����0
1
0
0

�ÆÆ� ?
2

���� 1
2

0
0
0

�ÆÆ,
γ0

����0
0
1
0

�ÆÆ� ?
2

����0
0
0
1

�ÆÆ, γ0

����1
0
0
0

�ÆÆ� ?
2

����0
0
1
2

0

�ÆÆ. (3.34)

This allows us to write down γ0; the same computation gives the other matrices.

γ0 � ?
2

����0 1
2

0 0
1 0 0 0
0 0 0 1

2

0 0 1 0

�ÆÆ, γ1 � ?
2

����0 � 1
2

0 0
1 0 0 0
0 0 0 � 1

2

0 0 1 0

�ÆÆ,
γ2 � ?

2

����0 0 � 1
2

0
0 0 0 1

2

1 0 0 0
0 �1 0 0

�ÆÆ, γ3 � ?
2

���� 0 0 � i
2

0
0 0 0 i

2�i 0 0 0
0 i 0 0

�ÆÆ. (3.35)

It is easy to check that these matrices satisfies (3.30)-98.
Notice that, up to a suitable change of basis in ΛW , these are the usual Dirac matrices.

Indeed we actually solved the physical problem to find a representation of the algebra (3.2)-
90. We understand by the way why do physicists work with 4-components spinors: the γ’s are
operators on the four-dimensional space ΛW ; hence the Dirac operator will naturally acts on
four-components objects.

The main result of this section is an explicit faithful representation of ClCpp, qq. This allows
us to write a Dirac operator which solve (see the invitation 3.1 and [27]) the problem to find a
“square root” of the d’Alembert operator: the differential operator D � γµBµ satisfies D2 � l.

3.3.2 A remark

Let us compare the two faithful representations

c : ClpV q Ñ EndRp^V q
ρ̃ : ClC Ñ EndRp^W q.

They obviously comes from the same ideas. One common point is that

cpe1qpe1 ^ e2q � 2ρ̃pe1qpe1 ^ e2q � e2,

but they are different:

ρ̃pe3qpe0 ^ e2q � 0

cpe3qpe0 ^ e2q � e3 ^ e0 ^ e1.
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3.3.3 General two dimensional Clifford algebra

The Clifford algebra for the metric

g � �
α δ

δ β



is realised by matrices

γ1 � ǫ

�?
α �?α
 , γ2 � ǫ

�
δ{?α β � δ2{|α|

1 �δ{?α 

where ǫ � �1 is chosen in such a way that ǫ|α| � α.

3.4 Spin group

We will not immediately go on with Dirac operators on Riemannian manifolds because we still
have to build some theory about the Clifford algebra itself. In particular, we have to define the
spin group which will play a central role in the definition of the Dirac operator. Almost all –and
(too ?) much more– the concepts we will introduce in this section can be found in [26]; a more
physical oriented but useful approach can be found in [32].

Let define the map χ : Γpp, qq Ñ GLpR1,3q by

χpxqy � αpxq � y � x�1. (3.36)

Let
Γpp, qq � tx P Clpp, qq st x is invertible and χpxqy P V for all y P V u.

It should be remarked that this definition comes back to the real Clifford algebra. The Clifford
algebra product gives this subset a group structure which is called the Clifford group. Any
x P V is invertible since x � x � �ηpx, xq1, the inverse of x is given by x�1 � x{}x}2.

The subset Clpp, qq� (resp. Clpp, qq�) of Clpp, qq is the image of even (resp. odd) tensors of
T pV q by the canonical projection T pV q Ñ Clpp, qq. With these definitions, we have a natural
grading of Cl:

Clpp, qq � Clpp, qq� ` Clpp, qq�, (3.37)

and the subgroups

Γpp, qq� � Γpp, qq X Clpp, qq�, Γpp, qq� � Γpp, qq X Clpp, qq�. (3.38)

For x1, . . . , xn P V , we have τpx1 � � �xnq � xn � � �x1. The spin group is

Spinpp, qq � tx P Γpp, qq�|τpxq � x�1u (3.39)

while the spin norm is the map N : Γpp, qq Ñ Γpp, qq defined by

Npxq � xτpαpxqq.
We will see in proposition 3.25 that N actually takes its values in R and is therefore a homo-
morphism N : Γpp, qq Ñ R
Remark 3.15. The elements of Spinpp, qq are spin-normed at 1. Indeed, take a s in Spinpp, qq.
We have Npsq � s � τpsq � 1 because αpsq � s and τpsq � s�1. In particular Spinpp, qqXR � Z2.
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3.4.1 Studying the group structure

Proposition 3.16.

The set Γpp, qq admits a Lie group structure.

Proof. During this proof, µ denotes the Clifford multiplication: µpx, yq � x � y. We know that
ClCpp, qq is isomorphic to EndpΛW q in which the multiplication is a continuous map. Thus µ is
continuous on ClCpp, qq. But Clpp, qq is a closed subset of ClCpp, qq, so µ is a continuous map in
Clpp, qq. This proves that χ seen as a map from Γpp, qq � V to V is a continuous map.

The space V is closed in Clpp, qq, thus σ�1pV q is also closed. But σ�1pV q � Γpp, qq�Clpp, qq.
So Γpp, qq is closed in Clpp, qq.

Now the result is just a consequence of theorems .26 and .27. Indeed, let us study the subset
I which appears in the definitions of the Clifford algebra. It makes no difficult to convince ourself
that it is a closed subgroup of T pV q. The theorem .27 thus makes Clpp, qq � T pV q{I a Lie group.
But we just say that Γpp, qq is closed in Clpp, qq, and the fact that Γpp, qq is a subgroup of Clpp, qq
is clear. By theorem .26 we conclude that there exists a Lie group structure on Γpp, qq.
Lemma 3.17.

The map χ is a homomorphism, in other words χ is a representation of Γpp, qq.
Proof. The following computation uses the fact that α is a homomorphism:

χpa � bqy � αpa � bq � y � pa � bq�1 � αpaq � αpbqy � b�1 � a�1� αpaq � χpbqy � a�1 � χpaqχpbqy.
Let y P Γpp, qq� and v P V . Where is y � v ? First note that py � vq�1 � v�1 � y�1, so that

αpy � vq � w � py � vq�1 � �αpyq � v � w � v�1 � y�1� �αpyq�2ηpv, wq � w � v� � v�1 � y�1� �2ηpv, wqαpyq � v�1 � y � αpyq � w � y�1

(3.40)

which belongs to V because y P Γpp, qq. This reasoning shows that (apart for 0), y � v P Γpp, qq�
if and only if y P Γpp, qq�.

Lemma 3.18.

If x P V is non-isotropic (i.e. ηpx, xq � 0), the automorphism χpxq is the orthogonal symmetry
with respect to xK.

We recall that
xK � ty P V st ηpx, yq � 0u.

We will denote by σx the orthogonal symmetry with respect to xK.

Proof. When the operator σx acts on y, it just change the sign of the “x-part” of y. So we can
write σxy � y � 2ηpx, yq1x, where 1x :� x{}x}. It should be checked if χpxqy � αpxq � y � x�1 is
equal to y � 2ηpx, yq1x or not. We know that x � x � ηpx, xq1 � �}x}. It follows that

x � y � y � x � 2ηpx, yqx � x}x} .
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If we multiply this at right by x�1, using the fact that αpxq � �x, we find�αpxq � y � x�1 � �y � 2ηpx, yq1x,
which is precisely the identity we wanted to check.

The following result will help us to identify subgroups of Clifford group as isometry groups.

Theorem 3.19 (Cartan-Dieudonné theorem).
Each σ in Op1, 3q can be written as σ � τ1 � . . . � τm, where the τ ’s are orthogonal symmetries
with respect to hyperplanes which are orthogonal to non-isotropic vectors.

Proposition 3.20.

χpΓpp, qqq � Opp, qq.
Proof. In order to show that χpΓpp, qqq � Opp, qq take z P V and x P Γpp, qq. Since αpxq � z � x�1

lies in V , we can write:

αpxq � z � x�1 � �α �αpxq � z � x�1
� � �x � αpzq � αpx�1q � x � z � αpx�1q.

In order to see that χpxq P Opp, qq, we have to prove that }χpxqy}2pp,qq � }y}2pp,qq. This is achieved
by the following computation:}χpxqy}2pp,qq � � �

αpxq � y � x�1
�2 � �

αpxq � y � x�1
� �
x � y � αpx�1q�� �αpxq � y2 � αpx�1q � }y}2pp,qq. (3.41)

The last step is simply the fact that y2 P R and therefore commutes with anything. We now
know that χpxq P Opp, qq for all x P Γpp, qq. Thus χpΓpp, qqq � Opp, qq.

For the second part, let σ be in Opp, qq. The Cartan-Dieudonné theorem(theorem 3.19) says
that σ � σx1 � . . .�σxr for some x1, . . . , xr in V . Thus σ � χpx1 � � �xrq, and Opp, qq � χpΓpp, qqq.
Proposition 3.21.

kerχ � R� (3.42)

where the right hand side is the set of invertible elements of R.

Proof. Before beginning the proof, we want to insist on the fact that x P kerχ does not mean that
χpxqy � 0 for all y in V . The “zero” of an algebra is the element e which satisfies e � y � y � e � y

for all y in the algebra. In other words, x is in the kernel of χ if and only if χpxq � id.
First we show that R0 � kerχ. If x P R, then αpxq � x. Therefore, when x � 0,

χpxqy � αpxq � y � x�1 � y,

because the algebra product � between an element of Clpp, qq and a real is commutative. Note
that this does not work with x � 0.

We are now going to show that kerχ � R. Let z P kerχ. We decompose (definitions (3.38)-
101) it into his odd and even part: z � z� � z�, with z� P Γpp, qq�. These two can be written
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as z� � ej1
� � � ej2r

and z� � ei1 � � � ei2r�1
with no two ik or jk equals. This is almost the general

form of elements in even and odd part of Γpp, qq: the only other possibility is z in R. Obviously
αpz�q � �z�. Multiplying the condition χpzqy � y at right by pz� � z�q, we findpz� � z�qy � ypz� � z�q.
Thanks to equation (3.37)-101, we can split this condition into even and odd parts:

z�y � yz�, z�y � �yz�. (3.43)

The first equation with y � ej1
gives ej1

� � � ej2r
� ej1

� ej1
ej1

� � � ej2r
. In the left hand side,

permute the last ej1
from last to second position. So we find the right hand side, with an extra

minus sign. This means that z� � 0. In the same way, the second equation gives z� � 0. We
are left with the last possibility: z P R.

Corollary 3.22.

For any s P Γpp, qq, there exists some non-isotropic vectors x1, . . . , xr, and c P R such that
s � cx1 � � �xr.
Proof. Let us take a s P Γpp, qq; we just saw (theorem 3.20) that χpsq is an element of Opp, qq.
It can be written χpsq � σ1 � . . . � σm. But we had shown that σi � χpxiq for any xi normal to
the hyperplane defining σi. We thus have

χpsq � χpx1 � � �xmq,
where s belongs to Γpp, qq and is therefore invertible. This leads us to write id � χps�1 �x1 � � �xmq.
But the kernel of χ is R (proposition 3.21); so one can find a r P R such that s�1 �x1 � � �xm � r.
The claim follows.

Lemma 3.23.

If v P V ,
detχpvq � �1. (3.44)

Proof. We already know that detχpvq � �1. To check that the right sign is plus, take the
following basis of V : tv, vKi u where tvKi u is a basis of vK. Calculating the action of χpvq on this
basis, we find:

χpvqv � �v � v � v�1 � �v,
χpvqvKi � �v � vKi � v�1 � vKi � v � v�1 � vKi . (3.45)

In this computation, we used the relation v �w � �w � v� 2xv, wy which is true for all v, w in V .
The action of χpvq on this basis is thus to let unchanged three vectors and to change the sign of
the fourth. This proves the claim.

Theorem 3.24.

χpΓpp, qq�q � SOpp, qq. (3.46)

Proof. From corollary 3.22, and definition 3.38, an element s P Γpp, qq� reads s � cv1 � � � v2r.
Thus

detχpsq � detχpv1 � � � v2rq � det rχpv1q . . . χpv2rqs . (3.47)
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But we know that, for all vi in V , detχpviq � �1. So detχpsq � 1 and χpΓpp, qq�q � SOpp, qq.
As set,

Γpp, qq � Γpp, qq� Y Γpp, qq�,
but the lemma shows that detχpΓpp, qq�q � �1 so, from theorem 3.20, χpΓpp, qq�q must be the
whole SOpp, qq.
Proposition 3.25.

The map N takes values in R and the formula

Npx � yq � NpxqNpyq, (3.48)

holds for all x, y P Γpp, qq.
Proof. We write as usual x P Γpp, qq as x � cv1 � � � vr. So,

Npxq � cv1 � � � vrτpαpcv1 � � � vrqq � p�1qrc2v1 � � � vr � vr � � � v1. (3.49)

The first equality comes from the fact that αpcv1 � � � vrq � p�1qrcv1 � � � vr. NowNpxq P R because
vi � vi � �xvi, viy P R for all i. Hence the following hold:

Npx � yq � v � y � τpαpv � yqq� v � y � τpαpyqq � τpαpvqq� v �Npyqτpαpvqq� NpyqNpxq. (3.50)

This is the claim.

Theorem 3.26.

We have the following isomorphism of groups

Spinpp, qq � SO0pp, qq.
provided by the map χ.

Problème et notes pour moi 3.

That result (and the proof) is wrong : there is a double covering. The next result is correct, and
I should merge the two proofs.

Proof. Let te1, � � � , ep, f1, � � � , fpu be a basis of Rp�q where the ei’s are time-like and the fj ’s
are space-like. We have

SOpp, qq � SO0pp, qq Y ξ SO0pp, qq
where ξ is defined as follows: ξe1 � �e1, ξf1 � �f1 and ξek � ek, ξfk � fk for k � 1. This
element can be implemented as ξ � χpgq for g � e1f1. It is easy to see that g�1 � �f1e1 and
that τpgq � f1e1, so that g R Spinpp, qq.

Is it possible to find another h P Γpp, qq such that χphq � ξ ? If χpaq � χpbq for a, b P Γpp, qq,
then a � rb for a certain r P R. So we find that h � g�1{r is the general form of an element
in Γpp, qq such that χphq � ξ. This is an element of Spinpp, qq if and only if τphq � h�1, or�e1f1{r � re1f1 which has no solutions. We conclude that no element of Spinpp, qq is send on ξ
by χ. So

χ
�

Spinpp, qq� � SO0pp, qq.
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Problème et notes pour moi 4.

Surjectivity of χ from Spinpp, qq to SOpp, qq is still to be proved.

Theorem 3.27.

χpSpinpp, qqq � SO0pp, qq (3.51)

where the index 0 means the identity component.

Proof. Proposition 3.21, theorem 3.24 and remark 3.15 show that the map χ : Spinpp, qq Ñ
SOpp, qq is a homomorphism with Z2 as kernel. We begin to prove that χ : Spinpp, qq Ñ SO0pp, qq
is surjective. On the one hand, elements of Spinpp, qq satisfy one more condition than the ones
of Γpp, qq�. Thus the algebra Spinpp, qq has codimension one in Γpp, qq�.

On the other hand, we know that SOpp, qq � SO0pp, qq Y h SO0pp, qq where h is the matrix
such that hei � �ei for i � 0, . . . , 3. Since Spinpp, qq has codimension one in Γpp, qq�, there is at
most one more generator in χpΓpp, qq�q than in χpSpinpp, qqq (because χ is a homomorphism).
In order to prove this theorem, we just need to show that elements of χpΓpp, qq�q which do not
belong to χpSpinpp, qqq is h.

Is is no difficult to see that χpe0 �e1 �e2 �e3qei � �ei for i � 0 . . . 3: just write χpe0 �e1 �e2 �e3qei �
e0 � e1 � e2 � e3 � ei � e�1

3 � e�1
2 � e�1

1 � e�1
0 and use the commutation relations. An easy computation

gives Npe0 � e1 � e2 � e3q � �1; then this is not in Spinpp, qq by remark 3.15.

We write it by the exact sequenceZ2
� � // Spinpp, qq χ // SO0pp, qq (3.52)

we say that the group Spinpp, qq is a double covering of SO0pp, qq.
Lemma 3.28.

If π : X̃ Ñ X is a covering which satisfies

(i) X is path connected,

(ii) �x P X, X̃x :� π�1pxq is path connected in X̃ i.e. for all a, b P X̃, there exist a path in X̃

which joins a and b,

then X̃ is path connected.

Proof. If x̃ and ỹ are in X̃ , we can suppose that πpx̃q � πpỹq (because if πpx̃q � πpỹq, the second
assumption gives the thesis). We define x and y as their projections: x � πpx̃q and y � πpỹq.
Let γ be a path such that γp0q � x and γp1q � y, and γ̃ be the lift of γ in X̃ which contains x̃:
γ̃p0q � x̃ and πpγ̃p1qq � γp1q � y. Then γ̃p1q lies in X̃y. Therefore, we can consider γ1 which
joins γ̃p1q and ỹ.

So, γ1 � γ̃ is a path which contains x̃ and ỹ.

Proposition 3.29.

The group Spinpp, qq is connected.

Proof. We will prove that the covering χ : Spinpp, qq Ñ SO0pp, qq fulfils lemma 3.28. We just have
to show that Spinpp, qq fulfills the second assumption of the lemma. First note that χpx̃q � χpỹq
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implies χpx̃ỹ�1q � e, and then x̃ � �ỹ because of proposition 3.21. Since the other case is trivial,
we can suppose x̃ � �ỹ.

It remains to prove that for every g P Spinpp, qq, there is a path in Spinpp, qq which joins g
and �g. The answer is given by the path t ÞÑ γptqg where

γptq � exppte1 � e2q � cosptqp�1q � sinptqe1 � e2

which satisfies γp0q � 1 and γpπq � �1.

Proposition 3.30.

The homomorphism ρ̃ restricts to a homomorphism ρ̃ : Spinpp, qq Ñ GLpΛ�W q.
Proof. An element in Spinpp, qq reads s � cv1 � � � v2r and its image by ρ̃ is

ρ̃psq � cρ̃pv1q � � � � � ρ̃pv2rq.
When one applies ρ̃pv1q to an element α P ΛkW , one obtains a linear combination of an element
of Λk�1W and one of Λk�1W . The element ρ̃psq being an even composition of such maps, its
transforms an element of Λ�W into an element of Λ�W .

Notice that an element of V —no V C— is represented on Λ�W by complex matrices. This
is not a problem. In the case of R1,3, we have dim Λ�W � 2 and thus

ρ̃
�

Spinp1, 3q� � GLp2,Cq.
The following is the lemma 8.5 (page 57) of [21].

Lemma 3.31.

Let ρ : Clpp, qq Ñ HomCpE,Eq be a representation of the Clifford algebra on a vector space E.
If p� q ¥ 2, then for all s P Spinpp� 1, qq � Clpp, qq,

detC�ρpsq� � �1.

Proof. No proof.

Theorem 3.32.

The representation ρ̃ provides a group isomorphism

Spinp1, 3q � SLp2,Cq
Proof. In the case p � 2, q � 3, the lemma assures us that for each s in the spin group,
det ρ̃psq � 1. Since Spinp1, 3q is connected and the determinant function is continuous, we
deduce that det ρ̃psq � 1. This proves that ρ̃

�
Spinp1, 3q� � SLp2,Cq. The proposition 1.18 thus

implies that

ρ̃
�

Spinp1, 3q� � SLp2,Cq,
but from Clp1, 3q, the representation ρ̃ is yet injective. A forciori, the representation ρ̃ is injective
from Spinp1, 3q. This finishes the proof.
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3.4.2 Redefinition of SpinpV q
As it, this new definition only holds when g is positive defined 3 . Let us take v, x P V with
gpv, vq � 1. We have�vxv�1 � �vxv � �2gpx, vqv � xv2 � x� 2gpx, vqv P V.
The effect was to reverse the v component of x; the map x ÞÑ �vxv�1 is σv. Now, when λ P Up1q
and w � λv, we also have that x ÞÑ �wxw�1 is σv. Now we look at χpaq : x ÞÑ αpaqxa�1 with
a � w1 . . . wr, a product of unitary vectors in V C. Explicitly,

χpaqx � p�1qrw1 . . . wrxw
�1
r . . . w�1

1 ,

a composition of reflexions in V . When r is even, it is a rotation. We conclude that when a is
an even product of unitary vectors in V C, then χpaq P SOpV q. Theorem 3.19 states that any
rotation of V is a composition of reflexions. So we define

SpincpV q � tw1 . . . w2k st wj P V C, w�j wj � 1u � ClC0pV q, (3.53)

and χ : SpincpV q Ñ SOpV q is a surjective group homomorphism. The inverse in SpincpV q is
given by pw1 . . . w2kq�1 � w�2k . . . w�1 � w2k . . . w1.

In the real case, proposition 3.21 says that kerχ � R�. In the complex case we get kerχ � C�
and, when we look at kerχ|SpincpV q, we find

kerχ � Up1q. (3.54)

Then we find the short exact sequence

1
id // Up1q id // SpincpV q χ // SOpV q id // 1. (3.55)

Let u � w1 . . . w2k P SpincpV q with wj � λjvj and λj P V , so τpuq � w2k . . . w1 and

τpuqu � w2k . . . w1w1 . . . w2k � λ2
1 . . . λ

2
2k P Up1q.

This proves that τpuqu is central in SpincpV q. We define the homomorphism

ν : SpincpV q Ñ Up1q
u ÞÑ τpuqu. (3.56)

This is a homomorphism because

νpu1u2q � τpu1u2qu1u2 � τpu2q τpu1qu1looomooon
central

u2 � τpu2qu2τpu1qu1� νpu2qνpu1q � νpu1qνpu2q.
The map ν naturally restricts to Up1q as

νpλq � λ2.

The combined map pχ, νq : SpincpV q Ñ SOpV q � Up1q has kernel t�1u. We define

SpinpV q � ker ν|SpincpV q. (3.57)

3I think that only the identity component of SOpp, qq is obtained when one works with a signature pp, qq.
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Lemma 3.33.

This group is the same as the one defined in equation (3.39)-101.

Proof. Let u P SpinpV q (in the sense of equation (3.57)-108). The fact for u to belongs to SpinpV q
implies the two following:

(i) u P SpincpV q ñ u�u � 1,

(ii) u P ker ν ñ τpuqu � 1.

The second point says that u�1 � τpuq, which is a first good point to fit the first definition of
SpinpV q. Now we have to prove that u P Γ�pV q: u must be invertible and χpuqx must belongs
to V for all x P V . These two points are contained in the definition of SpincpV q.

Let us see in the new definition how is χ : SpinpV q Ñ SOpV q. On SpincpV q, we have kerχ �
Up1q, but on SpinpV q we require moreover τpuqu � 1, thus an element of kerχ in SpinpV q fulfils
τpλqλ � 1, so that λ � t�1u. We conclude that kerχ|SpinpV q � t�1u, and then that SpinpV q is
a double covering of SOpV q.
3.4.3 A few about Lie algebra

Proposition 3.34.

We have an isomorphism
spinpp, qq � sopp, qq

between the Lie algebras of Spinpp, qq and SOpp, qq.
Proof. Using the second part of lemma .28, with the map χ : Spinpp, qq Ñ SOpp, qq, we find that
dχepspinpp, qqq � sopp, qq. Then we know (lemma .29) that

sopp, qq � spinpp, qq{ ker dχe.

On the other hand, the first part of the same lemma gives us that χ�1peq is a Lie subgroup of
Spinpp, qq whose Lie algebra is ker dχe. But χ�1peq � Z2, so ker dχe � t0u.

Let us now shortly speak about the Lie algebra of Γpp, qq�. A basis of Clpp, qq� ist1, γ0 � γ1, γ0 � γ1, γ0 � γ3, γ0 � γ1 � γ2 � γ3u.
Thanks to the anticommutation relations, we don’t need γ1 � γ2 in the basis.

Remember that Γpp, qq� is the set of the x P Cl�pp, qq such that x � v � αpx�1q lies in V for
all v P V . Let xptq be a path in Γpp, qq� such that xp0q � e and 9xp0q � X . Differentiating the
definition relation, we find9x � v � αpx�1q|0 � x � v � p�qαp 9xq|0 � X � v � v �X,
therefore

LiepΓpp, qq�q �  
X P Cl�pp, qq such that X � v � v �X P V, �v P V ( .

It is clear that C is a subset of LiepΓpp, qq�q, and that V is not. The following computation
shows that V � V is a subset LiepΓpp, qq�q:

a � b � v � v � a � b � 2ηpv, aqb� 2ηpv, bqa.
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We can also check that V � V � V � V X LiepΓpp, qq�q � H. A basis of LiepΓpp, qq�q ist1, eα � eβ st α   βu
We know that kerrχ : Γpp, qq� Ñ SOpp, qqs � R0. So the kernel of the restriction of dχe to

LiepΓpp, qq�q is the Lie algebra of R0 (see lemma .28), which is R. Therefore, a basis of spinpp, qq
is teα � eβ st α   βu.
3.4.4 Grading ΛW

We already know that ΛW � C`W ` Λ2W . This space can be written as

ΛW � ΛW� ` ΛW�,
with ΛW� �W and ΛW� � C`Λ2W . The interest of such a decomposition lies in the definition
of an action of Cl�pp, qq on ΛW . This action will be defined by  : Cl�pp, qq � ΛW Ñ ΛW ,

x  α � ρ̃pxqα
for any x in Cl�pp, qq and any α in ΛW (see definition 3.8).

Proposition 3.35.

This action preserves the grading of ΛW :

Cl�pp, qq  ΛW� � ΛW�
Cl�pp, qq  ΛW� � ΛW�. (3.58)

Proof. For x P C, theses equalities are obvious. We have to check it for x � ei � ej . Here, we will
just check that pe1 � e0q  pv ^ wq P ΛW�. This follows from a simple computation:

ρ̃pe1qρ̃pf0 � g0qpv ^ wq � ρ̃pf1 � g1q r�ηpg0, vqw � ηpg0, wqvs� �ηpg0, vqf1 ^ w � ηpg0, wqf1 ^ v� ηpg0, vqηpg1, wq � ηpg0, wqηpg1, vq. (3.59)

Since Spinpp, qq is a subgroup of Cl�pp, qq, we can construct two new representation of
Spinpp, qq. These are ρ� : Spinpp, qq � ΛW� Ñ ΛW�,

ρ�psqw� � ρ̃psqw�,
ρ�psqw� � ρ̃psqw�, (3.60)

for w� in ΛW�. This is no more than the fact that ρ̃ is reducible and that two invariant subspaces
are ΛW� and ΛW�.

3.4.5 Clifford algebra for V � R2

General definitions

The whole construction can also be applied to V � R2 with the Euclidean metric. This is our
business now. We take the complex vector space V C and an orthonormal basis te1, e2u. As
before, we define

f1 � 1
2
pe1 � ie2q, g1 � 1

2
pe1 � ie2q.
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There are no difficulties to see that Spanpf1q is a completely isotropic subspace of V C. Thus we
define W � Cf1, ΛW � C `W , ΛW� � C, and ΛW� � W . The homomorphism ρ̃ : V C Ñ
EndpΛW q in ΛW is defined by

ρ̃pf1qα � f1 ^ α,

ρ̃pg1qα � �ipg1qα, (3.61)

where α is any element of ΛW . In the basis 1 � �
1
0



and f1 � �

0
1



, we easily find that

ρ̃pe1q � �
0 � 1

2

1 0



, ρ̃pe2q � �

0 � i
2�i 0



.

For c P R we also have ρ̃pcqf1 � cf1 and ρ̃pcq1 � c, thus we assign the matrix
�
c 0
0 c



to the

number c.
As before, we define γi � ?

2ρ̃peiq. We immediately have γ1γ2 � γ2γ1 � 0 and γiγi � �21,
so that the γ’s satisfy the Clifford algebra for the euclidian metric.

For notational conveniences, it proves useful to make a change of basis so that we get

γ1 � �
0 �1
1 0



, γ2 � ��

0 i

i 0



. (3.62)

The algebra Clp2q is isomorphic to the algebra which is generated by direct sum Clp2q �R` γ1 ` γ2 `Rγ1γ2. A general element of Clp2q can be written as xγ1 � yγ2 �x1R� y1γ1γ2. In
the representation of ρ̃, a general element of Clp2q is therefore�

x1 � iy1 x� iy�x� iy x1 � iy1
 ,
so that we can write the Clifford algebra of R2 as

Clp2q � "�
α β�β α



: α, β P C* .

The following four matrices provide a basis:

1 � �
1 0
0 1



, i � ��i 0

0 i



, j � �

0 i

i 0



, k � �

0 1�1 0



. (3.63)

We can check that these matrices satisfies the quaternionic algebra :

i2 � j2 � k2 � �1

ij � �ji � k,

jk � �kj � i,

ki � �ik � j.

(3.64)

The algebra Clp2q � H is represented by ρ̃ on C2 by the Pauli matrices 1, i, j, k which are
given by (3.63)-111.
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The maps α and τ

What are the matrices which represent V ? These are ρ̃pe1q and ρ̃pe2q. Thus we can write
V � SpanRtγ1, γ2u � SpanRtj, ku, or

V � "�
0 ξ�ξ 0



: ξ P C* .

As before, α is the unique homomorphic extension to Clp2q of � id on V . From the definitions,
we get αpjq � �j, αpkq � �k. The extension present no difficult. For example: αpiq � αpjkq �
αpjqαpkq � jk � i, but αpjkq � αpiq; then αpiq � i. The same gives αp1q � 1.

The case of τ is treated in similar way. We find: τpjq � j, τpkq � k, τpiq � �i, τp1q � 1.
Now, we can find the group Γp2q. The condition for x P Clp2q to be in Γp2q is αpxqyx�1 to

belongs to V for all y P V . We put

x � �
α β�β α



, αpxq � �

α �β
β α



.

A typical y in V is

y � �
0 η�η 0



.

A few computation gives:

αpxqyx�1 � 1|α|2 � |β|2 �
αηβ � βηα ααη � ββη

ββη � ααη ηαβ � αηβ



.

If we impose it to be of the form
�

0 ξ�ξ 0



for all η P C, we get, for all η P C, Repαβηq � 0,

which implies αβ � 0. So we conclude:

Γp2q � "�
α 0
0 α



,

�
0 β�β 0



: α, β P C not both equals zero

*
.

Be careful on a point: Γp2q is the multiplicative group generated by these two matrices, not the
additive one.

The spin group

It present no difficult to find that

Γ�p2q � "�
α 0
0 α



: α � 0

*
. (3.65)

The spin group is made of elements of Γ�p2q which satisfy τpxq � x�1. We know that τ
�
α 0
0 α


 ��
α 0
0 α



and that

�
α 0
0 α


�1 � 1

αα

�
α 0
0 α



. Thus the condition τpxq � x�1 becomes |α|2 � 1.

The first conclusion is that
Spinp2q � Up1q. (3.66)

A typical s in Spinp2q is

s � eiθ � �
eiθ 0
0 e�iθ
 .
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The next point is to see the action of Spinp2q on V . The action of s P Spinp2q on a vector
v P V is still defined by s  v � χpsqv � αpsq � v � s�1. More explicitly:

χpsqv � �
eiθ 0
0 e�iθ
�

0 z�z 0


�
e�iθ 0

0 eiθ


 � �
0 e2iθz�e�2iθz 0



, (3.67)

where the matrix
�

0 z

z 0



denotes the representation of the vector v of V . This equality can be

written eiθ � v � e2iθv. If we note v � v1 � iv2 � �
v1

v2



, we get

e2iθ  v � �
cos 2θ � sin 2θ
sin 2θ cos 2θ


�
v1

v2



.

Therefore, we can write

χpeiθq � �
cos 2θ � sin 2θ
sin 2θ cos 2θ



.

So χ projects Up1q into SOp2q with a kernel Z2, for this reason, we say that Up1q is a double

covering of SOp2q. We note it Z2 Ñ Up1q χÑ SOp2q. (3.68)

3.5 Clifford modules

References: [23, 24].
Let M be a manifold. We denote by ClCpMq the bundle whose fibre at x PM is the complex

Clifford algebra of the metric gx : ClCpMqx � ClCpgxq. We define the important map

γ : ΓpM,ClCpMqq Ñ BpH q
γpdxµq ÞÑ γµpxq (3.69)

which can be extended to the whole Clifford algebra.
Let V be a vector space endowed with a bilinear symmetric form. We consider ClpV q, the

corresponding Clifford algebra. A Clifford module is a real vector space E with a Z2-graduation
and a morphism

ρE : ClpV q Ñ EndpEq
of Z2-graded vector spaces. It is defined by a linear map ρE : V Ñ EndpV q such that

ρEpvqρEpwq � ρEpwqρEpvq � Bpv, wq id (3.70)

for every v, w P E. The element ρEpxqv will often be denoted by x � v and the operation ρE is
the Clifford multiplication. The dual module E� is defined by ρE�pxq � ρEpxtq�, i.e.xρE�pxqψ, vy � p�1q|ψ||x|xψ, ρE�τpxq�vy (3.71)

for every ψ P E� and v P E. Here
Let A be a Z2-graded subalgebra of ClpV q and E1, a A-module. Then the space

E � IndClpV q
A

pE1q � ClpV q bA E1
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has a structure of Clifford module, the induced module. The tensor product bA is the usual
one modulo the subspace spanned by elements of the form

xb a � y � xab y

for every x, a P ClpV q and y P E1. In a similar way, if E is a complex vector space we have a
notion of ClCpV q-module.

Let x P ClpV q be such that x2 � 1. In that case the Clifford multiplication ρEpxq decomposes
E in eigenspaces

E� � 1
2

�
1� ρEpxq�E.

If V is a n-dimensional vector space with an oriented orthonormal basis te1, . . . , enu, the
algebra ClpV q has a volume element ω � e1e2 . . . en which does not depend on the choice of
the basis. The volume element squares to

ω2 � p�1qnpn�1q{2. (3.72)

In the complex case, we consider the complex vector space V C and the complex Clifford algebra
ClCpV q � ClpV q bR C, and the volume element is defined as

ωC � irpn�1q{2sω. (3.73)

where rxs is denotes the integer part of x. Performing a separate computation for n even or odd,
it is easy to see that in both case,

ω2C � 1. (3.74)

So in the complex case we always have an element in ClpV q which squares to 1, and a ClCpV q-
module W always accepts a decomposition as W� � 1

2
p1� ωCqW .

One says that a representation ρ of ClpV q on W is reducible if there exists a splitting
W �W1`W2 such that ρpClpV qqWi �Wi. If the representation is not reducible, it is said to be
irreducible. Two representations ρj : ClpV q Ñ EndpWjq are equivalent if there exists a linear
isomorphism F : W1 ÑW2 such that F � ρ1pxq � F�1 � ρ2pxq for every x P ClpV q.
Proposition 3.36.

The real Clifford algebra has #
2 if n� 1 � 0 mod 4
1 otherwise

inequivalent irreducible representations. The complex Clifford algebra ClCpV q has#
2 if n is odd
1 if n is even

inequivalent irreducible representations.

Proof. No proof.

If M is a manifold, we denote by ClpMq � ClpTMq the bundle whose fiber at x is the
Clifford algebras of TxM . We consider an orthonormal basis teiu and if Σ is a multi-indext1 ¤ σ1, . . . ,¤ σt ¤ mu, we pose eΣ � eσ1

. . . eσt P ClpMq. By convention, eH � 1. Since the
elements ei are ordered, they provide an orientation:

dVol � e1 ^ . . .^ em P m©pMq. (3.75)
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Since the map eσ1
^ . . .^ eσt ÞÑ eσ1...eσt

is an isomorphism between ClpMq and
�pMq, we say

that dVol P ClpMq. Now we define

κ � i�rpm�1q{2sdVol,

which is nothing else that the volume form normalised in such a way that κ2 � 1. If m is even,
it anti-commutes with TM , and if m is odd, it commutes with TM .

Let V be a m-dimensional real vector space, and ClCpV q, the corresponding complex Clifford
algebra.

Lemma 3.37.

Every ClCpV q-module accepts an unique decomposition as sum of irreducible representations as
follows

(i) if m � 2n, there exists one and only one irreducible ClCpV q-module ∆ and dimp∆q � 2n,

(ii) if m � 2n � 1, we have two inequivalent irreducible modules ∆� with γpκq � �1 on ∆�
and dimp∆�q � 2n.

Proof. No proof.

Let V be a vector bundle over M . A structure of ClpMq-module over V is a morphism of
unital algebra γ : ClpMq Ñ EndpV q. When one has a basis teiu of V , we pose γi � γpeiq. The
following lemma is the lemma 1.2 of [24].

Lemma 3.38.

Let V be a ClpV q-module and teiu, an orthonormal basis for TM on a contractible open set V .
Then there exists a local frame for V such that the matrices γpeiq are constant.

We also define γi � γpdxiq � gijγj . One easily proves that

γiγj � γjγi � �2gij (3.76)

where pgijq is the inverse matrix of pgijq. If the endomorphisms γi are constant in the basis teiu,
then the endomorphisms γi are constant in the basis tfi � gkieku.
3.6 Spin structure

We consider a (pseudo-)Riemannian manifold pM, gq with metric signature pp, qq, and SOpMq,
its frame bundle; it admits a SOpp, qq-principal fibre bundle structure which is well defined by
the metric g (see 1.7.4).

Definition 3.39.

We say that pM, gq is a spin manifold if there exists a Spinpp, qq-principal bundle P over M
and a principal bundle homomorphism ϕ : P Ñ SOpMq which induced covering for the structure
groups is χ, i.e. ϕpξ � sq � ϕpξq � χpsq. A choice of P and ϕ is a spin structure on M .

Spinpp, qq ///o/o/o P
ϕ //

π
��@

@@
@@

@@
@

SOpMq
p

{{ww
ww

ww
ww

w

SOpp, qqoo o/ o/ o/

M

The wavy arrows mean “structural group of”.
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Remark 3.40. When we will use the concept of spin structure in the physical oriented chapters, we
will naturally use SLp2,Cq as group instead of Spinpp, qq. The isomorphism SLp2,Cq � Spinp1, 3q
is proved in [21]. A physical motivation of such a structure is given at page 160.

3.6.1 Example: spin structure on the sphere S2

It is no difficult to see that SOpS2q � SOp3q. Indeed, each element of SOpS2q is described by
three orthonormal vectors: one which point to an element x of S2 and two which gives a basis
of TxS2. The action SOp3q � S2 Ñ S2 is transitive, and the stabilizer of any element is SOp2q.

We define α : SOp3q{ SOp2q Ñ S2 by αpg SOp2qq � g. One can show, using proposition 4.3
in [3] that α is a diffeomorphism. Then

S2 � SOp3q
SOp2q .

On the other hand, we know that

TeSUp2q � sup2q � "�
ix ξ�ξ �ix
 : ξ P C, x P R* . (3.77)

It is a classical result that sup2q � R3 not only as set but also as metric space with the identifi-
cation xX,Y y � �1

2
TrpXY q,

for all X , Y P sup2q. As we are in matrix groups, we know (see [6] to get more details) that
AdxY � xY x�1. In our case, this gives the formulaxAdpgqX,AdpgqY y � xX,Y y.
We can now state the result for S2.

Proposition 3.41.

The manifold S2 with the usual metric induced from R3 admits the following spin structure:

Spinp2q ///o/o/o SUp2q ϕ � Ad //

Up1q π ""FF
FF

FFF
F

SOp3q
SOp2qp

||yy
yy

yy
yy

S2

, (3.78)

where the arrow X
f

G
// Y means that G is the kernel of the map f : X Ñ Y .

Proof. First, let us precise the concept of frame bundle for S2, and how it is well described by
SOp3q. Let te1, e2, e3u be the canonical basis of R3. To A P SOp3q, we make correspond the basistAe2, Ae3u at the point Ae1 of S2. The projection p : SOp3q Ñ S2 is then defined by ppAq � Ae1.
It is clear that we will define the map π : SUp2q Ñ S2 in the same way: πpUq � ppAdpUqq.

For the rest of the demonstration, we will use the “sup2q description” ofR3 given by (3.77)-116
with ξ � y � iz.

Now, let us show that π : SUp2q Ñ S2 is a Spinp2q-principal bundle. Since we had already
shown that Spinp2q � Up1q, we define the right action of Spinp2q on SUp2q by right multiplication:
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U � s � Us with s � �
eiθ 0
0 e�iθ
. It is clear that πpUsq � πpUq:

AdpUsqe1 � pUsq��1
0
0

�s�1U�1 � Us

�
i 0
0 �i
 s�1U�1, (3.79)

because
�
i 0
0 �i
 is the vector e1 in the “sup2q description” of R3.

In order for π : SUp2q Ñ S2 to be a Spinp2q-principal bundle, we still need to show that for
all x P S2,

π�1pxq �  
ξ � g st g P Spinp2q �ξ P π�1pxq( .

Take A, B P π�1pxq, i.e. Ae1 � Be1 � x. We need to find a s P Spinp2q such that

A � B � s. (3.80)

The matrices A and B are such that

B�1A

�
i 0
0 �i
A�1B � �

i 0
0 �i
 . (3.81)

This implies that B�1A P Spinp2q. As Ad is surjective from SUp2q into SOp3q, a general C
in SOp3q which acts on e1 can be written Ue1U

�1 for U P SUp2q such that AdpUq � C. The
condition (3.81)-117 becomes�

α β�β α


�
i 0
0 �i
�

α �β
β α


 � �
i 0
0 �i
 ,

which implies α � eiθ, β � 0. Then B�1A belongs to Spinp2q, and s � B�1A fulfills the condition
(3.80)-117.

What about the induced covering for the structural groups ? The structural group of
π : SUp2q Ñ S2 is Spinp2q, while the one of p : SOp3q Ñ S2 is SOp2q. Indeed, for each x P S2,
SOp2q acts on TxS2, leaving x unchanged. We have the following associations:

U P SUp2q ϕÝÑ A P SOp3q,
the matrix A being defined by A �X � UXU�1. For s P Spinp2q we of course also have

Us P SUp2q ϕÝÑ As P SOp3q,
with As �X � UsXs�1U�1. As we act by Spinp2q on SUp2q, in the fibres of SOp3q, the action
of Spinp2q is –via ϕ– the composition with X Ñ sXs�1. But this is exactly χpsqX because
αpsq � s, since s P Spinp2q.
3.6.2 Spinor bundle

Let us take once again the spin structure on the (pseudo-)Riemannian manifold pM, gq:
Spinpp, qq ///o/o/o P

ϕ //

π
��@

@@
@@

@@
@

SOpMq
p

{{ww
ww

ww
ww

w

SOpp, qqoo o/ o/ o/

M
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with ϕpξ � gq � ϕpξq � χpgq.
Let us define S � ΛW , and S � P �ρ S. Take ρ : Spinpp, qq � S Ñ S, ρpg, sq � ρ̃pgqs,

where ρ̃ is the spinor representation of Spinpp, qq on S. We also have χ : Spinpp, qq Ñ SO0pp, qq,
χpgqv � αpgq � v � g�1, with αpgq � g for g P Spinpp, qq.

The spinor bundle is the associated bundle

S � P �ρ S ÑM (3.82)

A spinor field is an element of ΓpSq, the space of section of the spinor bundle.
On SOpMq, we look at a connection 1-form α P Ω1pSOpMq, sopRmqq, and, if T pMq is the

tensor bundle over M , we define a covariant derivative ∇α : XpMq � T pMq Ñ T pMq byz∇αXs � Xŝ,

for any s P T pMq. See theorem 1.53, and the fact that T pMq can be see as an associated bundle;
it is explicitly done for XpMq at page 45.

As seen in point 1.14.2, an automatic property of this connection is ∇αg � 0 if g is the
metric of M . The Levi-Civita connection is the unique4 such connection which is torsion-
free: T∇

α � 0.

Proposition 3.42.

The 1-form α̃ � ϕ�α P Ω1pP, sopRmqq defines a connection on P . See definition 1.47 and
theorem 1.53.

Proof. Let us denote by Rg the right action of g P Spinpp, qq on P (id est Rgξ � ξ � g), and by
R

SOpMq
u the right action of u P SOpp, qq on SOpMq. We have to check the usual two conditions

of a connection.
First condition. The first one is:pR�

g α̃qξpΣq � Adpg�1qpα̃ξpΣqq,
for all ξ P P , and Σ P TξP . In order to check this, we first remark that ϕ � Rg � R

SOpMq
χpgq � ϕ.

Indeed, for all ξ P P , definition 3.39 gives us ϕpRgξq � ϕpξ � gq � ϕpξq � χpgq. With this, we can
make the following computation:

R�
g α̃ � R�

gϕ
�α � pϕ �Rgq�α � pRSOpMq

χpgq � ϕq�α� ϕ�RSOpMq�
χpgq α � ϕ�pAdpχpgq�1q � αq. (3.83)

The last equality comes from the fact that α is a connection 1-form. As we are in matrix groups,
we have Adpgqx � gxg�1, sorAdpχpgqqxsv � rχpgqxχpgq�1sv � χpgqrxg�1vgs � gxg�1. (3.84)

In the first line, the product is the usual matrix product which can be seen as operator compo-
sition.

But pAdpgqxqv � gxg�1v. Then Adpgq � Adpχpgqq, if we identify spinpp, qq � sopp, qq by
proposition 3.34. Moreover, the action of Ad is linear, so it commutes with ϕ�. With these
remarks, we can continue the computation (3.83)-118:

ϕ�pAdpχpgq�1q � αq � ϕ�pAdpg�1q � αq � Adpg�1q � ϕ�α � Adpg�1q � α̃. (3.85)

4We will not prove unicity.
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This proves the first condition.
Second condition. The second one is α̃pA�ξ q � �A with the definition (1.143)-54. This is also a
computation. First remark

α̃ξpA�ξ q � pϕ�αqξpA�ξ q � αϕpξqpϕ�ξA�ξ q.
We compute ϕ�ξA� with lemma 1.20:

ϕ�ξA� � d

dt
ϕpξ � exp�tAq����

t�0

� d

dt
pRSOpMq

χpexp�tAq � ϕqpξq����
t�0� d

dt
ϕpξq � χpexp�tAq����

t�0

� d

dt
ϕpξq � expp�tdχeAq����

t�0

� pdχeAq�ϕpξq. (3.86)

But dχe � idsopp,qq, thus ϕ�ξA� � A�
ϕpξq. The whole makes that:

α̃ξpA�ξ q � αϕpξqpϕ�ξA�ξ q � αϕpξqpA�ϕpξqq � �A.
This completes the proof.

Definition 3.43.

This connection 1-form on P is called the spinor connection. It gives us a covariant derivative
on any associated bundle and in particular on the spinor bundle, r∇ : XpMq � ΓpSq Ñ ΓpSq.
Proposition 3.44.

If X, Y P XpMq are such that Xx � Yx, then for all s P ΓpSq,pr∇Xsqpxq � pr∇Y sqpxq.
Proof. We just have to show that for all vector field Z such that Zx � 0, pr∇Zsqpxq � 0. Such a
Z can be written as Z � fZ 1 for a function f on M which satisfies fpxq � 0. We have:r∇Zs � r∇fZ1s � f r∇Z1s,
which is obviously zero at x.

Let x P M and teαxu be an orthonormal basis of TxM . We can extend it to teαu, a local
basis field around x such that eα is a section of the frame bundle (in other words, we ask the
extension to be smooth). The claim of proposition 3.44 is that r∇eαpxq is an element of Sx which
doesn’t depend on the extension.

3.7 Dirac operator ©
3.7.1 Preliminary definition

Let M be a m-dimensional (pseudo)Riemannian manifold with its spin structure

Spinpp, qq ///o/o/o P
ϕ //

π
��@

@@
@@

@@
@

SOpMq
p

{{ww
ww

ww
ww

w

SOpp, qqoo o/ o/ o/

M
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where ϕ satisfies ϕpξ � gq � ϕpξq � χpgq.
Recall that for any vector space, one can see EndV � V �bV with the definition pv�bvqw �pv�wqv. This allows us to define an action of Spinpp, qq on EndS by defining an action of

Spinpp, qq on S and S� separately. We know the action

Spinpp, qq � S Ñ Spg, vq ÞÑ ρ̃pgqv, (3.87)

and as action on S�, we take the dual one

Spinpp, qq � S� Ñ S�
g � α � α � ρ̃pg�1q (3.88)

for all g P Spinpp, qq and α P S�.
Now we can make the following computation with g P Spinpp, qq, α P S� and v P S, using the

fact that ρ̃ is linear: rg � pαb vqsw � rpα � ρ̃pg�1qqwsρ̃pgqv� ρ̃
�rpα � ρ̃pg�1qqwsg� v� �
ρ̃pgq � pαb vq � ρ̃pg�1q�w. (3.89)

Then we write the action of Spinpp, qq on EndS by (A P EndS)

g � A � ρ̃pgq �A � ρ̃pg�1q. (3.90)

Notice that this definition is the one required in condition (1.93)-44.
The tangent bundle TxM is given with a metric gx. As usual, we build Sx � ΛWx, a

completely isotropic subspace of TxM with respect to the metric gx, and a representation

ρ̃x : TxM Ñ EndpΛWxq
The first step in the definition of γpXq is to build âX : P Ñ EndpΛW q setting5 âXppq � ρ̃pX̂ϕppqq.
Lemma 3.45.

The function â is equivariant, i.e. it satisfies

âXpp � gq � g�1 � âXppq (3.91)

for all g P Spinpp, qq.
Proof. It is no more than a simple computation using the equivariance of X̂. Indeed:

âXpp � gq � ρ̃pX̂ϕpp�gqq � ρ̃pX̂ϕppqχpgqq � ρ̃pχpg�1q � X̂ϕppqq� ρ̃pg�1 � X̂ϕppq � gq � ρ̃pg�1q � ρ̃pX̂ϕppqq � ρ̃pgq� g�1 � âXppq. (3.92)

In the fourth line, the dots mean the Clifford product, and the last equality comes from the
definition of the action (3.90)-120 of Spinpp, qq on EndS.

5See subsection 1.8.4 for the definition of X̂ .
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From the discussion of section 1.8.2, the function âX : P Ñ EndS defines a section aX : M Ñ
EndS. We define γ : XpMq Ñ End ΓpSq by

γpXq � aX . (3.93)

We immediately have zγpXqppq � ρ̃pX̂ϕppqq
for any p P P . If we define {γ � aXppq � zγpXqppq, (3.94)

the map γ can be seen as an action on the section of S. Indeed, yγ � sX is an equivariant function:

γ̂pp � gqpâXpp � gqq � ρpgq�1γ̂ppqρpgqρpg�1qâXppq� ρpgq�1γ̂ppqâXppq� ρpg�1q{γ � aXppq, (3.95)

so that {γ � aXppq � ρpg�1q{γ � aXppq.
The map {γ � aX : P Ñ End ΛW defined by (3.94)-121 is equivariant, and thus defines a section

γ � aX P ΓpSq, as seen in the section 1.8.2.

3.7.2 Definition of Dirac

If we consider a basis teαu of TM , i.e. m sections eα : M Ñ TM such that for all x in M , the
set teαxu is a basis of TxM , we note γα :� γpeαq P EndpSq.

For any s P ΓpSq, we consider the local6 section ψ of S given by

ψpxq �
α̧β

gxpeα, eβqγβx pr∇eαsqpxq.
For each x P M , take a Ax in7 SOpgxq, and consider the new basis e1α � A β

α eβ . As A is an
isometry, gxpe1α, e1βq � gxpeα, eβq; and since ρ̃ is linear, γ1αx � ρ̃xpe1αxq � A β

α ρ̃peβxq � A β
α γβx . In

the new basis, the section reads:

ψpxq �
α̧βησ

gxpeα, eβqA σ
β γσx pr∇A η

α eηsqpxq�
α̧βησ

pAtqηαgαβpxqA σ
β γσx pr∇eηsqpxq�

η̧σ

gxpeη, eσqγσx pr∇eηsqpxq, (3.96)

where we used the fact that AtgA � g and that all the A β
α are C8 functions on M , so thatr∇

A
β
α X

� A β
α

r∇X . This shows that ψpxq doesn’t depend on the choice of the basis, so it defines
a section from the data of s alone.

The Dirac operator D : ΓpSq Ñ ΓpSq acting on a spinor field is defined bypDsqpxq � gxpeα, eβqγβx pr∇eαsqpxq. (3.97)

6Extensions of eα do not always globally exist.
7By SOpgxq, we mean the set of all the matrix A such that AtgxA � g; Ax is an isometry of pTxM,gxq. In

other words, we consider A as a section of what we could call the “isometry bundle”.
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Proposition 3.46.

If the field of basis eα P XpMq is everywhere an orthonormal basis, the Dirac operator readspDsqpxq � gαβγ
αp∇̃eβsqpxq (3.98)

where γα is a constant numeric matrix acting on ΛW .

Proof. The building of the Dirac operator begins by considering the vector space TxM endowed
with the metric gx; then the spinor representation ρ̃x : TxM Ñ EndpΛWxq where ΛWx is build
from isotropic vectors of TxM is defined. If the vector fields eα P XpMq are everywhere orthonor-
mal for the metric g, then we have the matricial equality

ρ̃x
�peαqx�ij � ρ̃pvαqij (3.99)

where the left hand side describe the matrix component of a linear operator acting on ΛWx while
in the right hand side we have the matrix component of a linear operator acting on ΛW and vα
is a basis on Rn with respect to which the metric is the same as the metric gx in the basis peαqx.
Let ψ̂ : P Ñ ΛW be an equivariant function; from definition (3.93)-121 of γ we have�

γpeαψ̂q�pξq � paαψ̂qpξq
where aαpξq � ρ̃

�
ẽα
�
φpξq�	. In this expression, ẽα is the equivariant function associated with

the vector field eα P XpMq. It is defined in subsection 1.8.4 as

ẽα : SOpMq Ñ Rm
b ÞÑ b�1

�peαqπpbq�. (3.100)

So we have âα : P Ñ EndpΛW q defined by

âαpξq � ρ̃
�
ϕpξq�1eαpxq�

with x � πpξq. Now if ξ is any element of π�1pxq, we have�
γpeαqψ�pxq � paαψqpXq � �

ξ, âαpξqψ̂pξq� � �
ξ, ρ̃

�
ϕpξq�1eαpxq�ψ̂pξq�.

There exists a g P Spinpp, qq such that ϕpξ � gq � 1; taking this element and using equivariance
of the latter expression,�

γpeαqψ�pxq � �
ξ � g, ρ̃�eαpxq�ψ̂pξ � gq� � �

ξ � g, γαψ̂pξq� � rξ, γαψ̂pξqs. (3.101)

What we proved is that
�
γeαψ

�pxq � γαψpxq is the sense that{γpeαqψ � γαψ̂. (3.102)

Hence the Dirac operator reads pDsqpxq � gαβγ
α
�
∇̃eβs

�pxq
in the sense that xDs � gαβγ

αz̃
eβs∇. (3.103)
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An often more convenient way to write the Dirac operator is to consider an orthonormal basis
(so that the metric g and the matrices γ are constant) and to consider the equivariant functions:yDψ � gαβγ

α{∇eαψ.
This formulation is typically used when one search for Dirac operator on Lie groups. In this
case, we choose left invariant vector fields generated by an orthonormal basis of the Lie algebra.
The resulting field of basis is everywhere Killing-orthonormal.

Acting on a function f : M Ñ R, it is defined by D : C8pMq Ñ C8pMq,pDfqpxq � gxpeα, eβqγβx peαx � fq. (3.104)

With these definitions, one haspDpfsqqpxq � pfDsqpxq � pDfqpxq.
Indeed, pDpfsqqpxq � gαβγ

β
x pr∇eαfsqpsq� gαβ

�peα � fqspxq � fpxqpr∇eαsqpxq	� fpxqpDsqpxq � gαβγ
β
x peαx � fq� pfDsqpxq � pDfqpxq. (3.105)

With that definition, the Dirac operator becomes a derivation of the spinor bundle.

3.8 Example: Dirac operator on R2 with the euclidian met-
ric

Since the frame bundle BpMq is a principal bundle (see subsection 1.7.4), one can consider
some associated bundles on it. We are now going to see that the one given by the definition
representation ρ : GLpn,Rq Ñ GLpn,Rq on Rn is the tangent bundle. So we study BpMq�ρRn.
By choosing a basis on each point of M , we identify each TxM to Rn. An element of BpMq�Rn
is a pair pb, vq with b � pb1, . . . ,bnq and v � pv1, . . . , vnq. We can identify v to the element of
TxM given by v � vibi.

In order to build the associated bundle, we make the identificationspb, vq � g � pb � g, g�1vq.
Here, by gv we mean the vector whose components are given by pgvqi � vjg

i
j . The tangent

vector given by pb � g, g�1vq is pg�1vqipb � gqi � vjpg�1q ij g ki bk � vkbk So the identification map
ψ : BpMq �ρ Rn Ñ TM given by

ψprb, vsq � vibi

is well defined.
The following step is to consider the following spin structure:

Spinp2q ///o/o/o R2 � SOp2q ϕ // SOpR2q SOp2qoo o/ o/ o/
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Problème et notes pour moi 5.

Spinp2q is not Up1q because Up1q is SOp2q while Spin covers it two times.

We have to define the two actions and ϕ. One of the main result of section 3.4.5 is that
χ : Spinp2q � Up1q Ñ SOp2q is surjective. So, we can define the action of Spinp2q on P bypx, bq � s � px, χpsq�1bq.

On the other hand, an element A in SOpR2q can be written as A � taeiux where ei is the
canonical basis of TxR2, and a is a matrix of SOp2q. See subsection 1.7.4. For g P SOp2q, we
define

A � g � tg�1aeiux. (3.106)

and ϕ : R2 � SOp2q Ñ SOpR2q by
ϕpx, bq � tbeiux.

The following shows that these definitions give a spin structure:

ϕppx, bq � sq � ϕpx, χpsq�1bq � tχpsq�1beiux � tbeiux � χpsq � ϕpx, bq � χpsq. (3.107)

3.8.1 Connection on SOpR2q
We are searching for a torsion-free connection on the simplest metric space: the euclidian R2.
Thus we will try the simplest choice of horizontal space: we want an horizontal vector to be
tangent to a curve of the form Xptq � tbeiuxptq. For this reason, we want to define the connection
1-form by ωpXq � b1p0q. For technical reasons which will soon be apparent, we will not exactly
proceed in this manner. For Xptq � tbeiuxptq, we define

ωpXq � �pbptqbp0q�1q1p0q. (3.108)

We of course have ωpXq � 0 if and only if b1p0q � 0: this choice of ω follows our first idea. In
order for ω to be a connection form, we have to verify the two conditions of definition 1.47.

Proposition 3.47.

The 1-form defined by
ωpXq � �pbptqbp0q�1q1p0q

for X � d

dt
tbptqeiuxptq����

t�0

is a connection 1-form.

Proof. Let A P SOp2q. If u � tbeiux, equation (3.106)-124 gives:

A�u � d

dt
te�tAbeiux����

t�0

,

so that ωpA�uq � �pe�tAbb�1q1p0q � A. This checks the first condition. For the second, one
remarks that the path in SOpR2q which defines the vector Rg�X is pRg�Xqptq � tg�1bptqeiux.
It follows that

ωpRg�Xq � �pg�1bptqbp0q�1gq1p0q� � �
Adg�1pbptqbp0q�1q�1 p0q� �Adg�1pbptqbp0q�1q1p0q� Adg�1ωpXq. (3.109)
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Proposition 3.48.

The covariant derivative induced on M by this connection is

∇XY � XpY q. (3.110)

Proof. In this demonstration, we will use the equivariant functions defined in 1.8.4. In order to
compute p∇XY qx, we have to use the definition of theorem 1.53. We first have to compute the
horizontal lift of X . It is no difficult to see that Xtbeiux is given by the path

Xptq � tbeiuXptq
if the vector field X is given by the path Xptq in M . Indeed, it is trivial that ωpXq � 0, and

dπ�X � d

dt
πtbeiuXptq����

t�0

� d

dt
Xptq����

t�0

� X.

Now, we compute pXŝqpbq for b � tSeiux. We begin using the basic definitions and notations:pXŝqpbq � Xbŝ � d

dt
ŝpXbptqq����

t�0

� d

dt
ŝptSeiuXptqq����

t�0

.

We can rewrite it with Ŷ instead of ŝ. By construction (see (1.103)-46), if b � tSeiux, Ŷ pbq �
S�1pYxq. Thus pXŶ qpbq � d

dt
S�1pYXptqq����

t�0

,

where, if t1iu is a basis of Rm, then S is

S : Rm Ñ TXptqM
vi1i ÞÑ Sijv

jpBjqXptq (3.111)

So if we write Yx � Y ipxqBi, we have

S�1pYXptqq � pS�1qijY jpXptqq1i
and

d

dt
S�1pYXptqq����

t�0

� pS�1qij d

dt
Y jpXptqq����

t�0

1i � pS�1qijXpY jq1i.
Since b is an isomorphism, we can apply b on both side of X̂pbq � b�1pXxq, and take ∇XY
instead of X :p∇XY qpxq � b

�pS�1qijXpY jq1i� � Ski pS�1qijXpY jqpBkqx � XpY jqpBjqx � XpY qx. (3.112)

From this and definition 1.113, we immediately conclude that our connection is torsion-free.
In a certain manner, one can say that our covariant derivative is the usual one.
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3.8.2 Construction of γ

Now, we construct the map γ of subsection 3.7. The first step is to define âX : P Ñ End pΛW q
by

âXppq � ρ̃pX̂ϕppqq.
Here, ΛW is the completely isotropic subspace of pR2qC with euclidian metric; thus we can use
the result of section 3.4.5. In particular, we know the representation ρ̃.

To see it more explicitly, we need the expression of X̂. It is given in subsection 1.8.4: if b is
the basis tbeiux, Ŷ pbq � b�1pYxq. As ϕpb, xq � tbeiux, we have

âXpb, xq � ρ̃pb�1pXxqq.
The subsection 1.8.2 explains how to explicitly get γpXq with the definition γpXq � aX . If

ψ is a section of S and ψpxq � rξ, vs, the general definition gives us paXψqpxq � rξ, âXpξqvs and
in our particular case, if ξ � pb, xq, we get:pγpXqψqpxq � rξ, ρ̃pb�1pXxqqvs. (3.113)

3.8.3 Covariant derivative on ΓpSq
Remember the spin structure of SOpR2q: ϕpx, Sq � tSeiux. We now construct the connection on
P � R2�SOp2q. It is defined by the 1-form ω̃ � ϕ�ω. If v is a vector of P , it is described by a path
vptq � pxptq, bptqq, then the path of dϕpvq is tbptqeiuxptq and ω̃pvq � ωpdϕpvqq � �pbptqbp0q�1q1p0q.

The next step defining the Dirac operator is to find out an explicit form for the mapr∇ : XpMq � ΓpSq Ñ ΓpSq. A section s P ΓpSq is a map s : M Ñ S � pR2 � SOp2qq �ρ ΛW ; it
is defined by an equivariant function ŝ : P Ñ ΛW . In order to find the value of pr∇Xsqpxq for
X P XpMq, we use the definition zr

Xs∇pξq � Xξpŝq
where X is the horizontal lift in the sense of ω̃. For the same reason as in the proof of proposition
3.48, Xpb,xq is given by the path Xptq � pb,Xptqq where Xptq is the path which defines X . So
we have zr

Xs∇pξq � Xpb,xqpŝq � d

dt
ŝpb,Xptqq����

t�0

.

Remark that ΛW is a vector space; so for every α P ΛW , the identification TαΛW � ΛW is
correct.

Our first form of r∇ is pr∇Xsqpxq � �
ξ,

d

dt
ŝpb,Xptqq����

t�0

�
,

but we can modify this in order to get simpler expressions. Remark that we have an equivalence
class, so that we can always choose the element of the class such that ξ � p1, xq. We define
s : R2 Ñ ΛW , spvq � ŝp1, vq. Our second and final form for r∇ is:pr∇Xsqpxq � �p1, xq, d

dt
spXptqq����

t�0

�
(3.114a)� rp1, xq, Xpsqs, (3.114b)

where Xpsq is well defined because s is a map from R2 into a vector space (namely: ΛW ).
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3.8.4 Dirac operator on the euclidian R2

We continue to write explicitly the definition (3.97)-121. Putting together (3.113)-126 and
(3.114b)-126, one finds

γαx pr∇eβsqpxq � γpeαxqrξ, eβpsqs � rξ, ρ̃pb�1peαxqqeβpsqs. (3.115)

Here, eβ � Bβ and b � 1, then

γαx pr∇eβsqpxq � rp1, xq, ρ̃peαqBβss.
Now, the Dirac operator reads pDsqpxq � rp1, xq, γαBαss.

We can obtain a more compact expression by defining “Y s” and “As” when s P ΓpSq, Y P
XpR2q and A P End ΛW . The definitions arepY sqpxq � rp1, xq, pY sqpxqs,pAsqpxq � rp1, xq, Aspxqs.
With these conventions, one writes: pDsqpxq � γαpBαsqpxq.
This justifies the expression (3.3)-90: D � γαBα on flat spaces. With a good choice of basis of
ΛW , the matrices γα are given by (3.62)-111, and

γαBα � �
0 �1
1 0


 Bx ��
0 i

i 0


 By.
If we identify R2 with C we have the following definitions:Bz � 1

2
pBx � iByq, Bz � 1

2
pBx � iByq,

so that

D � �
0 �BzBz 0



.
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Chapter 4

Relativistic field theory

4.1 Mathematical framework of field theory

This is a short review; the aim is to see why the quantum theory of fields needs representations
of the Poincaré group. It will be mostly physics oriented. References dealing with field theory
including gauge theory and representations are [8, 18, 19, 28, 28, 32–35].

4.1.1 Axioms of the (quantum) relativistic field theory mechanics

The quantum mechanics is based on a few number of axioms:

(i) We have a Hilbert space H . A physical state is given by a ray in H , i.e. a set

R � tξψ : |ξ| � 1u
for a certain ψ P H with xψ|ψy � 1. In other words, the set of physical sates is the quotient
of the set of unital vectors in H by the relation ψ � ψ1 if and only if ψ � ξψ1 for some
unimodular complex number ξ. We denote by Ray H the set of all rays in H .

(ii) The observables are represented by hermitian linear operators on H . A state R has value
α for the observable A if AR � αR, where the action of A on the ray is obvious (and well
defined because A is linear).

(iii) If one has a system described by a state R, and if one want to measure if it is in one of the
state R1, . . . ,Rn (orthogonal rays), the answer will be Ri with probability

P pRÑ Riq � |xR|Riy|2.
If the Rn form a complete system, one has a theorem which states that

i̧

P pRÑ Riq � 1.

(iv) The rays of H furnish a representation of the (identity component of) Poincaré group.

This last point can look strange; we will see later (page 139) how it comes. It is the expression
of a relativistic theory. That axiom is the reason why one make intensive use of representation
theory in relativistic (quantum) field theory . . . or maybe the intensive use of representation
theory is the reason of that axiom.

129
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4.1.2 Symmetries and Wigner’s theorem

Consider the following situation: someone observes a system in a state R, and makes measures
P pR Ñ Riq. An other person observes the same system which is, for him, in a state R1 and
observes P pR1 Ñ R1iq.

If two observers are related by a transformation of the Hilbert state which induces R Ñ R1
and Ri Ñ R1i, there are said equivalent if

P pRÑ Riq � P pR1 Ñ R1iq. (4.1)

Let us say it more precisely from a mathematical point of view. A symmetry is an invertible
operator T : Ray H Ñ Ray H such that for any φi P Ri, φ1i P TRi and φ2i P T�1Ri,|xφ11|φ12y|2 � |xφ1|φ2y|2 � |xφ21|φ22y|2 (4.2)

Remark 4.1. Here, neither R nor R1 are measurable: the P ’s only are measurable.

The following can be found in [28] p.91, [33] p.354.

Theorem 4.2 (Wigner).
Any symmetry T is induced by an operator U on H such that ψ P R implies Uψ P R1. This
operator is either unitary and linear, either anti-unitary and antilinear.

So, the symmetry operator must satisfyxUψ|Uφy � xψ|φy (4.3a)

Upξψ � ηψq � ξUψ � ηUφ, (4.3b)

or xUψ|Uφy � xψ|φy� (4.4a)

Upξψ � ηψq � ξ�Uψ � η�Uφ. (4.4b)

In the anti-linear case operator, we do not define U : by xφ|U :ψy � xUφ|ψy because the left-hand
side should be anti-linear with respect to ψ while the right-had should be linear. In place, for
an antilinear operator A, we define A: byxφ|A:ψy � xAφ|ψy� � xψ|Aφy. (4.5)

In this way, the definitions of unitary and anti-unitary in term of dagger are the same: U : � U�1.
For any transformation T : Ray H Ñ Ray H , the Wigner’s theorem provides an operator

UpT q : H Ñ H which induces T on Ray. If the operator T depends on a parameter θ, the
operator UpT pθqq depends on θ. If T depends continuously on the parameter then the family
UpT pθqq only contains unitary/linear operators or only antiunitary/antilinear operators.

In physical cases, T pθq is mostly a Poincaré transformation: θ � pΛ, pq. But T p1, 0q is the
identity which is represented by Up1, 0q � 1. Then all the (connected to identity) Poincaré
transformations are represented by linear and unitary operators on H .

We will follow the proof given in [28]. An other form of the proof can be found in [33]. The
latter use a slightly different formalism in the axioms of the quantum mechanics; this is explained
in appendix .1. It is now time to prove the theorem.
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Proof of Wigner’s theorem. We consider an orthonormal basis tψku of H with ψk P Rk, and a
choice of ψ1k P TRk. From this and the assumptions, we have|xψ1k|ψ1ly|2 � |xψk|ψly|2 � δkl.

Then xψ1k|ψ1ky � 0 whenever k � l and, since xψ1k|ψ1ky is real and positive, xψ1k|ψ1ky � 1. Soxψ1k|ψ1ly � δkl.
The set ψ1k is also complete in H . Indeed suppose that we have a vector ψ1 P H such thatxψ1|ψ1ky � 0 for all k. If ψ1 P R, we consider a ψ2 P T�1R and we have|xψ2|ψky|2 � |xψ1|ψ1ky|2 � 0,

which contradicts the fact that the ψk’s form a complete set. Now we have to fix a phase
convention for the ψk. Since there are no canonical choice of phase, we fix with respect to an
arbitrary one of the ψk, say ψ1. We put

γk � 1?
2
pψ1 � ψkq P Ck (4.6)

for k � 1. Any γ1k P TCk can be written in the basis tψ1ku:
γ1k �

ļ

cklψ
1
l. (4.7)

From assumption (4.1)-130 and the fact that |ckl|2 � |xγ1k|ψ1ly|2, we find, for k, l � 1|ckl|2 � 1
2
δkl.

We can choose the phase of γ1k and ψ1k in order to get ckk � ck1 � 1{?2. For this, we begin to
fix γ1k in such a manner to get ck1 � 1{?2 (from |ck1| � |xγ1k|ψ11y|), and next we fix ψ1k for the
ckk. From now on, the so chosen γ1k and ψ1k are denoted by Uγk and Uψk.

What we did until now is to take a basis tψku of H and define γk � 1{?2pψ1 � ψkq. Next
we had chosen the phases of ψ1k P TRk and γ1k P TCk in order to have

ckk � ck1 � 1{?2 �k,
ckl � 0 if l � k and l � 1.

(4.8)

This allows us to check a certain linearity for the operator U :

U

�
1?
2
pψk � ψ1q
 � Uγk� γ1k� 1?

2
ψ11 � 1?

2
ψ1k from (4.7)-131 and (4.8)-131� 1?

2

�
Uψ1 � Uψk

�
.

(4.9)

Now we have to build U on a general vector ψ � °
k ψk P R. Any vector ψ1 P TR can be

decomposed with respect to the basis tψ1k � Uψku:
ψ1 �

ķ

C 1
kUψk. (4.10)
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From the conservation of probability |xψk|ψy|2 � |xUψk|ψ1y|2 and |xγk|ψy|2 � |xUγk|ψ1y|2, we
find |Ck|2 � |C 1

k|2, (4.11a)|Ck � C1|2 � |C 1
k � C 1

1|2. (4.11b)

If one writes Ck � ak � ibk, one finds RepCk{C1q � paka1� bkb1q{|C1|2. By doing the same with
C 1
k and using (4.11)-132,

RepCk{C1q � RepC 1
k{C 1

1q. (4.12)

Equation (4.11a)-132 also imposes |Ck{C1|2 � |C 1
k{C 1

1|2, (4.13)

while compatibility between (4.13)-132 and (4.12)-132 requires

ImpCk{C1q � � ImpC 1
k{C 1

1q. (4.14)

Equations (4.12)-132 and (4.14)-132 show that Ck and C 1
k must satisfy

Ck{C1 � C 1
k{C 1

1 (4.15a)

xor

Ck{C1 � pC 1
k{C 1

1q�. (4.15b)

For a given ψ we have to show that the choice must be the same for all the Ck1. Let l � k and
suppose that Ck{C1 � C 1

k{C 1
1 and Cl{C1 � pC 1

l{C 1
1q�; we will show that in this case, one of the

two ratios is real. So we can suppose k � 1 � l. We consider the vector Φ � 1?
3
pψ1 � ψk � ψlq,

Φ1 � α?
3

�
Uψ1 � Uψk � Uψl

�
where α P C satisfies |α| � 1. The conservation of probability |xΦ|ψy|2 � |xΦ1|ψ1y|2 gives|C1 �Ck �Cl|2 � |C 1

1 �C 1
k �C 1

l |2. Since |C1|2 � |C 1
1|2, we can divide the left hand side by |C1|2

and the right one by |C 1
1|2. We find����1� Ck

C1

� Cl

C1

����2 � ����1� C 1
k

C 1
1

� C 1
l

C 1
1

����2 .
Using the assumption Ck{C1 � C 1

k{C 1
1 and Cl{C1 � pC 1

l{C 1
1q�, we are in a case of an equation

of the form |u � v|2 � |u� v�|2 with u, v P C. If we write u � a � bi and v � x � iy, we find
b� y � �pb� yq, so that it leaves the choice y � 0 or b � 0 which corresponds to pCk{C1q P R
or pCl{C1q P R. So the coefficients C 1

k (k � 1) in the expansion (4.10)-131 must satisfy

Ck{C1 � C 1
k{C 1

1 �k (4.16a)

xor

Ck{C1 � pC 1
k{C 1

1q� �k. (4.16b)

1We will show later that for a given T , the choice must be the same for all the ψ.
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Note that the phase of C1 is not yet fixed. We naturally choice C1 � C 1
1 or C1 � C 1

1
� following

the case. We define U : H Ñ H by

U

�
ķ

Ckψk

� �
ķ

CkUψk if (4.16a)-132, (4.17a)

xor

U

�
ķ

Ckψk

� �
ķ

C�
kUψk if (4.16b)-132. (4.17b)

One can explicitly check that it preserves the probability because |xψ|ψky|2 � |Ck|2 while|xUψ|Uψky| is equal to |Ck|2 or |C�
k |2 (which are the same) following the case (4.17a)-133 or

(4.17b)-133.
Now we have to prove that the choice (4.17a)-133 or (4.17b)-133 is fixed by the data of T and

must be the same for all the ψ P H . For, let us consider two vectors φ �°
Akψk, ϕ �°

Bkψk
and suppose that

Uφ �
ķ

AkUψk but Uϕ �
ķ

B�
kUψk.

In order to see that it is impossible, looks at the conservation of probability |°k AkB
�
k |2 �|°k AkBk|2, then

ķl

�
B�
l BkAlA

�
k �B�

l BkA
�
l Ak

� �
ķl

B�
l Bk ImpAlA�kq � 0. (4.18)

Since AlA�l P R, we can regroup each term pk, lq with the corresponding term pl, kq. We get

0 �
ķl

ImpAlA�k qpB�
l Bk �B�

kBlq �
ķl

ImpA�kAlq ImpB�
kBlq. (4.19)

We can find a vector
°
k Ckψk such that

ķl

ImpC�
kClq ImpA�kAlq � 0 (4.20a)

and

ķl

ImpC�
kClq ImpB�

kBlq � 0. (4.20b)

In order to see how to find such a vector, let us show that there always exists a choice pi, jq
such that B�

i Bj is not real. Let us say B1 � x � iy and Bk � ak � bi. If y � 0, the condition
ImpB�

1Bkq � 0 gives Bk � bk
y
B1. It is always possible to find a sequence pbkq which gives 1 as

norm for
°
Bkψk; the problem is not there. The problem is that Bk{B1 P R, so that the choice

(4.17)-133 is not a true choice. For the same reason, all the B�
i Bk can’t be pure imaginary.

Now we can find the vector which satisfy (4.20)-133. There are several cases. If there is a pairpk, lq such that A�kAl and B�
kBl are both complex, we can take all Ci’s zero for k � i � l and

choose Ck and Cl in such a way that C�
kCl is not real. If there is a pair pk, lq with A�kAl complex

and B�
kBl real, we consider a pair pm,nq such that B�

mBn is complex. If A�mAn is complex, we
take all the Ci’s zero except Cm and Cn such that ImpC�

mCnq � 0. If A�mAn is real, we take
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all the Ci’s zero except Ck, Cl, Cm, Cn which we choose in such a way that ImpC�
mCnq � 0 and

ImpC�
kCkq � 0.

Equation (4.20a)-133 makes that the same choice must be made for
°
Akψk and

°
Ckψk (if

it was not the case, we would have an equation of the form of (4.19)-133). For the same reason,
the same choice must be made for

°
Bkψk and

°
Ckψk. So we conclude that the data of T fixes

the choice between (4.17a)-133 and (4.17b)-133 and that this choice must be the same for all the
vectors of H .

We have to show that the possibility (4.17a)-133 makes U linear and unitary while the
possibility (4.17b)-133 makes U antilinear and antiunitary. For we consider ψ � °

k Akψk and
φ � °

k Bkψk. If (4.17a)-133 works,

Upαψ � βφq � U
�

ķ

pαAk � βBkqψk	�
ķ

pαAk � βBkqUψk� αUψ � βUφ,

(4.21)

and xUψ|Uφy �
ķl

A�kBlxUψk|Uψly �
ķ

A�kBk, (4.22)

so that xUψ|Uφy � xψ|φy. Thus in this case U is linear and unitary. In the case where (4.17a)-133
works, the computations are almost the same:

Upαψ � βφq � U
�

ķ

pαAk � βBkqψk	�
ķ

pα�A�k � β�B�
k qUψk� α�Uψ � β�Uφ, (4.23)

and xUψ|Uφy �
ķl

AkB
�
l xUψk|Uψly �

ķ

AkB
�
k , (4.24)

so that xUψ|Uφy � xψ|φy�. In this case, U is antilinear and antiunitary.

4.1.3 Projective representations

If T1pRnq � R1n and ψn P Rn, then UpT1qψn P R1n. If T2pR1q � R2, then UpT2qUpT1qψn P R2n.
But UpT2T1qψn also belongs to R2n. Then there exists a φnpT2, T1q P R such that

UpT2qUpT1qψn � eiφnpT2,T1qUpT2T1qψn.
Note that for any ψ P H , there exists a λ P R such that }λψ} � 1. Since a real can be sent out
the UpT q’s, for any ψ P H , there exists a φ which only depends on ψ{}ψ} such that

UpT2qUpT1qψ � eiφpT2,T1qUpT2T1qψ (4.25)

Proposition 4.3.

The φ doesn’t depend at all on the ψ:

UpT2qUpT1q � eiφpT2,T1qUpT2T1q. (4.26)
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Proof. Let us consider a ψA and a ψB which are not proportional each other. One has a
φABpT2, T1q such that

eiφABpT2,T1qUpT2T1qpψA � ψBq � UpT2qUpT1qpψA � ψBq� eiφApT2,T1qUpT2T1qψA� eiφBpT2,T1qUpT2T1qψB. (4.27)

Now, we apply UpT2T1q�1 to both sides. If it is unitary, the eiφ get out without problems; else
is get out as e�iφ:

e�iφAB pψA � ψBq � e�iφAψA � e�iφBψB. (4.28)

Since ψA and ψB are linearly independent, the only solution is eiφAB � eiφA � eiφB .

Since the operators UpT q must only fulfil

UpT2qUpT1q � eiφpT2,T1qUpT2, T1q, (4.29)

these form a projective representation of the symmetry group on the physical Hilbert space
H .

Remark 4.4. In order to have some physical relevance, this demonstration supposes that a state
ψA�ψB exists in nature. If one can divide the particles in several “incompatibles” classes labeled
by a, b such that ψa � ψb doesn’t exist, then equation (4.29)-135 is false and one has to write

UpT2qUpT1qψa � eiφapT2,T1qUpT2T1qψa
because we can’t show that φa � φb from the simple fact that ψa � ψb doesn’t exist !

For example, physicists think that there are no superposition of state of integer and semi-
integer spin.

Remark 4.5. If the group satisfies some requirements, one can choose φ � 0. From now we
suppose that we are in this case: we work with “true” representations.

4.1.4 Representations and power expansions

Let G be an arc connected Lie group whose elements are denoted by T pθq with θ, a continuous
family of parameters (from a local chart). The multiplication law is given by a function f : Rn�Rn Ñ Rn:

T pθ1qT pθq � T
�
fpθ1, θq�. (4.30)

If θ � 0 is the coordinate of the identity,

fp0, θq � fpθ, 0q � θ. (4.31)

We suppose that G acts on the rays of a Hilbert space H , so that there are represented on
H by unitary operators U

�
T pθq�. We denote by W the group of transformations of H ; roughly

speaking,
W � UpGq.

Now, we are going to cheat a little. We know that there exists a normal neighbourhood of e in
W . In simple words, the map exp: W Ñ W is a diffeomorphism between the elements of W
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“close” to 0 and the ones of W close to e. By close to, we mean that the components of θ are
small enough. If titau is a basis of W , we define

UpT pθqq � eiθ
ata . (4.32)

In other words, one considers the exponential map for a neighbourhood of identity.
The cheat is the fact that UpT pθqq is actually defined by Wigner’s theorem from the data of

the group G. So equation (4.32)-136 should be seen as a requirement in the choice of the basisttau.
Remark 4.6. The i in the exponential in (4.32)-136 and in the definition of the basis titau is
a convention in order the ta’s to be hermitian. Indeed, the Lie algebra of a group of unitary
matrices is made of antihermitian matrices.

With all that,

UpT pθqq � 1� iθata � 1
2
θbθctbc � . . . (4.33)

where tbc is defined (among other requirements) to absorb the “intuitive” minus sign in the third
term.

Now we are going to explore some consequences of equation (4.30)-135. Equation (4.31)-135
makes the expansion of f as

fapθ1, θq � θa � θ1a � fabcθ
1bθc � . . . (4.34)

From expansions (4.34)-136 and (4.33)-136 of f and UpT pθqq, “group structure” equation (4.30)-
135 gives (at order two):

tbc � �tbtc � ifabcta (4.35)

and nothing for the first order. Then, providing that one knows the group structure (the f), one
knows the second order of the representation from the first one. From equation (4.32)-136, one
finds the value of tab:

eiθ
ata � 1� iθata � 1

2
piq2pθataqpθbtbq,

up to constant coefficients, one can choose tab to be symmetric with respect to a and b:

tab � 1
2
ptatb � tbtaq.

Taking this convention and computing tbc � tcb from (4.35)-136, we findrta, tbs � iCcabtc (4.36)

with Ccab � f cab � f cba.
On the other hand, one knows that if a group is abelian, its algebra is also abelian; we can

see it here by considering that if G is abelian, fpθ, θ1q � fpθ1, θq, then f cab is symmetric andrta, tbs � 0. We can say more about f Since the ta commute, equations (4.30)-135 and (4.32)-136
make that

eifpθ,θ1qata � eiθ
ataeiθ

1btb � eipθa�θ1aqta , (4.37)

so that
fpθ, θ1q � θ � θ1.
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4.2 The symmetry group of nature

4.2.1 Spin and double covering

Some of literature carry an ambiguity in the choice of the right space-time symmetry group in
the quantum field theory. A very good and deep discussion about the choice of the space-time
symmetry group of nature is given in the book [8] which will be used here. An other enlightening
review can be found in [36].

From a relativistic point of view, the group is the Poincaré group of all the maps R4 Ñ R4

which leaves invariant the quantity s2 � �t2 � x2 � y2 � z2. At this point we can already make
an important remark: the so defined quantity s is in fact not a relativistic invariant. Indeed if I
follow a (spatially) closed path, I will measure ∆t � 0 and ∆x � ∆y � ∆z � 0 because in my
frame, my displacement is zero. A guy who keeps at my starting point will measure (between
the beginning and the end of my travel) ∆1t � 0 and also ∆x � ∆y � ∆z � 0. If s � s1, then
∆t � ∆t1.

So the relativistic invariance is only local: ds2 � ds12, and as far as relativity is concerned,
one can work with infinitesimal transformations only. In this case, the distinction between the
groups LÒ� and SLp2,Cq is no relevant. Intuitively, we choose LÒ� to be the space-time symmetry
group. As we will see the difference will reveal to be crucial in relativistic field theory because
L
Ò� has no half-integer spin representations.

This group naturally splits into two parts: the translations and the rotations (and boost). As
far as I know, the translation part makes no difficulties. For the other one, there are some diffi-
culties to find the minimal group of symmetry. First, one often want to separate the space-time
inversions P and T from the remaining: the group then becomes the homogeneous orthochrone
Lorentz group LÒ�. An other often presented group is . . . SLp2,Cq. This is our choice here. The
physical reason of this choice is all but immediate. As we will see during the following pages, an
elementary particle is an irreducible representation of the symmetry group.

For massive particles, the relevant subgroup of SLp2,Cq reveals to be SUp2q. If we had
chosen the most intuitive LÒ�, we would have found SOp3q. There is an important difference
between SUp2q and SOp3q � SUp2q{Z2: the first one admits representations of any integer and
half-integer spin while the second only posses the integer spin representations (cf. page 85).

Let us now be more precise about the relation between LÒ� and SLp2,Cq. A know result is

L
Ò� � SLp2,CqZ2

.

Let Spin : SLp2,Cq Ñ L
Ò� be the surjective homomorphism with kernel �12�2 giving this rela-

tion. We will not give a complete proof, but we will explain how SLp2,Cq acts by isometries onR4. First, we remark that there exists a bĳection between R4 and the 2� 2 complex hermitian
matrices:

v � �
t� z x� iy

x� iy t� z


 � ����t

x

y

z

�ÆÆ. (4.38)

If λ P SLp2,Cq, the matrix λvλ: is also hermitian and }v}2 � det v. Thus

Λpλq : R4 Ñ R4

v ÞÑ λvλ: (4.39)
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is a Lorentz transformation if and only if | detλ| � 1. Moreover,

Λpλλ1q � ΛpλqΛpλ1q.
If λ1 � eφλ, then Λpλ1q � Λpλq, thus it is natural to impose det v � 1 and to consider SLp2,Cq
instead of Lp2,Cq to fit LÒ�. Now, Λpλq � Λp�λq, and we wish to consider SLp2,Cq{Z2.

I think the problem is the following: as far as the action of the “nature group” on the space-
time is concerned, it is sufficient to consider LÒ�. But the group which acts on the state space is
wider: it must be SLp2,Cq.

From now, when we say “Poincaré group”, we mean SLp2,Cq �R4 while “Lorentz” means
SLp2,Cq acting on R4 by Λpλqv � λvλ:.

Let us continue the discussion of page 84. A know result is the fact that the map Spin
restricts to a surjective homomorphism Spin : SUp2q Ñ SOp3q with kernel �1 giving the relation
SOp3q � SUp2q{Z2. If one considers a representation ρ : SOp3q Ñ GLpV q, then ρ̃ � ρ � Spin is
a representation of SUp2q on V . So every representation of SOp3q comes from a representation
of SUp2q.

As far as the transformation rule of a (quantum mechanical) wave function under a rotation
R P SOp3q is concerned, one can see (it is done in [8]) that the try�

ψ1

ψ2


Ñ T pRq�ψ1

ψ2



doesn’t works if T pRq is a representation of SOp3q on C2. If one allows T to be a representation
of SUp2q, then our choice —for an electron— should naturally be the spin one half representation
T � Dp1{2q. Let us do it. The remaining problem is the following. Let’s consider that in a certain
frame, an electron is described by the wave function

�
ψ1 ψ2

�
, the question is to know the wave

function observed by a guy which use another frame linked to the first frame by R P SOp3q. We
always have exactly two elements in SUp2q projected to R by Spin; namely Spinp�gq � R; so
how to choose between

Dp1{2qpgq�ψ1

ψ2



and Dp1{2qp�gq�ψ1

ψ2



?

The trick is to remark that a change of frame is not the mathematical process described by a
single element R of SOp3q, but a physical continuous process which begins at the identity and
stops at R. In other word, we have to ask ourself how to go from a frame to another ? Taking
as example the rotations around the x axis, we can look at two different path in SOp3q from 1
to 1 given by the same expression

R1ptq � R2ptq � ��1 0 0
0 cos t sin t
0 � sin t cos t

�,
but considering t : 0 Ñ 2π for R1 and t : 0 Ñ 4π for R2. The covering map Spin : SUp2q Ñ SOp3q
allows us to lift any path in SOp3q to a path in SUp2q in an unique way providing a starting
point. In other words, if Spinpgq � R,D! R̃ptq P SUp2q such that Spin �R̃ � R and R̃p0q � 1,D! R̃ptq P SUp2q such that Spin �R̃ � R and R̃p0q � �1.
The question is now: how to choose the right path among these two ? The answer comes from
the homotopy of SOp3q: the path R1 and R2 belongs to two different classes.
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Considering the “change of frame” as a continuous process, the initial point is naturally
chosen to be 1. With this choice, the lift of R1 and R2 are given by

g1ptq � g2ptq � �
cos t

2
�i sin t

2�i sin t
2

cos t
2



with t : 0 Ñ 2π for g1 and t : 0 Ñ 4π for g2. In SUp2q, the ending point of g1 is �1 while the
one of g2 is 1.

It is still possible to say a lot of interesting thinks about the space-time symmetry group of
nature; let’s just conclude saying that SUp2q is more adapted to the rotations of non zero spin
than SOp3q. (it is not intuitive !)

4.2.2 How to implement the Poincaré group

We are not making physics here, but differential geometry and group theory; so we will not discuss
the physical relevance of the Poincaré group from a “speed of light” point of view. We consider
the Poincaré group as the group of all the affine isometries of metric η � diagp�1, 1, 1, 1q and
the Lorentz group as the subgroup of rotations and boost.

A Poincaré transformation of R4 is given by pΛ, aq with Λ a 4 � 4 matrix and a P R4, a
translation vector. The composition of pΛ, aq with pΛ1, a1q is given by pΛ1Λ,Λ1a�a1q, the inverse
is pΛ�1,�Λ�1aq, the neutral is p1, 0q, and pdet Λq2 � 1.

The axiom (iv) at page 129 gives us a group of transformation of the rays in H parametrised
by pΛ, aq such that

T pΛ1, a1qT pΛ, aq � T pΛ1Λ,Λ1a� a1q, (4.40)

T pΛ, aq : Ray H Ñ Ray H . Then Wigner’s theorem defines a representation of the Poincaré
group on H by unitary matrices :

ψ Ñ UpΛ, aqψ.
Remark 4.7. Wigner only ensure existence of projective representations. Here we suppose that
our symmetry group (maybe slightly different that Poincaré) is such that any projective rep-
resentations can be turn into a classic representation. We will therefore use the composition
law

UpΛ1, a1qUpΛq � UpΛ1Λ,Λ1a� a1q (4.41)

instead of UpΛ1, a1qUpΛ, a1q � eiφpΛ,a,Λ1,a1qUpΛ1Λ,Λ1a� a1q.
By axiom, the (connected) Poincaré group acts on rays of H , and we have the representation

U which form a group acting on H . The Lie algebra acts also :

uψ � d

dt

�
Uptq�

t�0
ψ :� d

dt

�
Uptqψ�

t�0
. (4.42)

This definition is natural because H is a vector space: it can be identified with its tangent space:
Uptqψ is a path in H and its derivative at t � 0 is still a well defined element in H . Now recall
that the operators U are unitary, so that the corresponding operators u are hermitian (therefore
diagonalisable).

Let us consider an abelian subgroup A of Poincaré with Lie algebra a. One can find a basis
of H made of common eigenvectors of a basis of a. In other words, one can find a basis of H

which simultaneously diagonalises all a. If taiu is a basis of a, one can find a basis t|ψλyu (here
λ labels a basis of H : it might take continuous values) such that

ai|ψλy � λi|ψλy. (4.43)
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4.2.3 Momentum operator

Of course, there exists an abelian subgroup of Poincaré: the pure translations, A � tUp1, aqu.
A basis of the Lie algebra is given by four vectors labeled as Pµ and defined by

Pµ � d

dt

�
Up1, teµq�

t�0

where eµ is the unit vector following the direction µ (for µ � 0, e0 � p1, 0, 0, 0q). One can
consider a basis which diagonalises the Pµ’s:

Pµ|p, σy � pµ|p, σy (4.44)

where by definition,

Pµ|p, σy � d

dt

�
Up1, teµq|p, σy�

t�0
. (4.45)

Remark 4.8. Be careful on a point: we don’t say anything about the symbol “p” in the ket. The
only property is that it labels a Hilbert space H . But nothing is already imposed to H : it
must just carry a representation of the Poincaré group on its rays. In particular, it is a priori
false to say that p is a “momentum 4-vector” and that pµ is a component of p. Naturally, our
notations are adapted to think that ! Maybe it is a pedagogical mistake; I don’t know.

This remark can be disturbing: why is generally |p, σy called “a state of momentum p” ?
Since Up1, aq is unitary, Pµ is hermitian; the pµ are eigenvalues for an hermitian operator, so by
axiom (ii) (page 129) they are candidate to be physical values. But equation (4.45)-140 shows
that Pµ is what a physicist should call an “infinitesimal translation”, so that Noether suggests
us to interpret the eigenvalue as momentum. We are safe !

The parameters σ are not yet defined neither. It will come later. For the moment, we include
into the definition of a one particle state that σ takes discrete values.

Since Up1, aq � eaµP
µ

,
Up1, aq|p, σy � eiaµp

µ |p, σy.
Now we are interested in the determination of UpΛ, aq|p, σy.
Proposition 4.9.

The operators Pµ are subject to the “transformation law”

UpΛ, aqPµUpΛ, aq�1 � ΛµνP
ν . (4.46)

Proof. Since operators UpΛ, aq are linear, they can be putted in the derivative which defines Pµ.
Using the composition law (4.41)-139 we find :

UpΛ, aqPµUpΛ, aq�1 � d

dt

�
UpΛ, aqUp1, teµqUpΛ, aq�1

�
t�0� d

dt

�
Up1, tΛeµq�

t�0
.

(4.47)

The Λ can be putted out of derivative; let us see it for a sum of two terms (here it is four) :

d

dt

�
Up1, tpeµ � eνqq�

t�0
� d

dt

�
Up1, teµqUp1, teνq�

t�0� d

dt

�
Up1, teµqUp1, 0q�

t�0
� d

dt

�
Up1, 0qUp1, teνq�

t�0� Pµ � P ν .

(4.48)
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Thus
d

dt

�
Up1,Λµνeνq�

t�0
� Λµν

d

dt

�
Up1, teνq�

t�0
� ΛµνP

ν . (4.49)

4.2.4 Pure Lorentz transformation

Now we consider a pure Lorentz transformation UpΛq � UpΛ, 0q, and we want to look at
UpΛq|p, σy. In order to see its decomposition into others |k, σ1y, we apply a Pµ :

PµUpΛq|p, σy � UpΛq�UpΛq�1PµUpΛq	|p, σy� UpΛqpΛ�1qµνP ν |p, σy� pΛ�1qµνpνUpΛq|p, σy. (4.50)

Thus the vector UpΛq|p, σy P H has pΛ�1qµνpν as eigenvalue for Pµ. If the pµ’s are seen as
components of a 4-vector p, one can write

PµUpΛq|p, σy � pΛpqµUpΛq|p, σy;
thus we naturally write

UpΛq|p, σy �
σ̧1 Cσ1σpΛ, pq|Λp, σ1y. (4.51)

Note that we had not yet given anything about the nature of the p in the ket |p, σy so we can
define the product Λp by the fact that the ket |Λp, σy has eigenvalue pΛ�1qµνpν for the operator
Pµ. So it is one of the |p1, σ1y.
4.2.5 Rebuilding of a basis for H

From general considerations about the Lorentz group (many physicists had written very better
books than me about) anyone knows that the only functions of the pµ’s which are invariant under
all the Lorentz transformations are p2 � ηµnup

µpν and the sign of p0 when p2   0.
For any value of p2 and sign of p0, one consider a “standard vector” k. For example :

k � p1, 0, 0, 1q for p2 � 0, (4.52a)

k � p1, 0, 0, 0q for p2   0, p0 ¡ 0, (4.52b)

k � p�1, 0, 0, 0q for p2   0, p0   0. (4.52c)

With this convention, p can be written as p � Lppqk for a suitable Lorentz transformation Lppq.
The vector UpLppqq|k, σy has eigenvalue Lppqk for the operator P , thus it is a linear combination
of some |p, σ1y.

Now we will cheat and redefine our basis of the Hilbert space H . First, we consider a fixed
k; in other words, we build the state space for a given particle which has given momentum p.
The basis vectors must be eigenvectors for the fours operators Pµ. As far as we say no more,
any eigenvalue is possible. Thus our basis must be labelled by at least an element p of R4 with
only one constraint: the value of p2 (plus eventually the sign of p0). So we define the |k, σy to
be such that

Pµ|k, σy � kµ|k, σy.
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Since we know that with this definition of |k, σy, the eigenvalue of UpLppqq|k, σy for Pµ is pµ, we
define |p, σy as |p, σy � NppqUpLppqq|k, σy. (4.53)

where Nppq is a normalization to be discussed later. With this construction, we have an eigen-
vector for any possible eigenvalue for Pµ. We have to show that these vectors are linearly
independent.

The set of the |p, σy with different p is free in H because they are eigenvectors for different
eigenvalue of an hermitian operator 2 . There are no reason to think that the set of operators
Pµ is complete; in other words, it remains not clear that there exist only one way to diagonalise
the all the Pµ. The function of the extra label σ is to label different linearly independent vectors
with same eigenvalue for P .

From now, we are interested in |k, σy and Nppq.
4.2.6 Little group

We have :

UpΛq|p, σy � NppqUpΛLppqq|k, σy� NppqUpLpΛpqqU�LpΛpq�1ΛLppq�|k, σy, (4.54)

So we will try to understand the operation LpΛpq�1ΛLppq. First remark that

UpLpΛpq�1q|Λp, σy � NpΛpq|k, σy,
and then compute :

UpLpΛpq�1ΛLppqqNppq|k, 0y � UpLpΛpq�1Λq|p, σy� UpLpΛpq�1q
σ̧1 Cσ1σpΛ, pq|Λp, σ1y�

σ̧1 Cσ1σpΛ, pqNpΛpq|k, σ1y. (4.55)

The little group is the subgroup of the Lorentz transformations which leaves the chosen
standard vector k invariant: Wk � k. For any W in the little group,

UpW q|k, σy �
σ̧1 Dσ1σpW q|k, σ1y

With this definition, the D’s form a representation of the little group. Indeed for any V,W in
the little group,

σ̧1 Dσ1σpVW q|k, σ1y � UpVW q|k, σy� UpV q
σ̧2 Dσ2σpW q|k, σ2y�

σ̧1σ2Dσ1σ2pV qDσ2σpW q|k, σ1y. (4.56)

2I did not checked that it is sufficient
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Since we want the |p, σywith different p and σ to form a basis of H , they are linearly independent,
then we can get rid of the sum over the σ1 and keep the equation

Dσ1σpV W q �
σ̧2 Dσ1σ2pVW qDσ2σpVW q;

if we adopt a more “matricial” notation,

DpV W q � DpV qDpW q. (4.57)

We are now able to perform a step in the study of the vector UpΛq|p, σy. We naturally define
W pΛ, pq � LpΛpq�1ΛLppq. This belongs to the little group3. Then,

UpΛq|p, σy � NppqUpLpΛpqqUpW pΛ, pqq|k, σy� Nppq
σ̧1 Dσ1σpW qUpLpΛpqq|k, σ1y� Nppq

NpΛpq
σ̧1 Dσ1σpW pΛ, pqq|Λp, σ1y. (4.58)

But we have no constraint on the D’s: it must just form a representation of the little group.
Consequently, we are at a point in which our axioms are no more sufficient to continue the
building of quantum field theory: we will get as many theories as representations of the little
group.

The physical interpretation is the following : each type of particle has its own representation.
When we consider a Hilbert space on which UpΛq acts via one given representation of the little
group, we consider the Hilbert space which describes the corresponding particle. Note that the
little group depends on the choice of k, and therefore depends on the particle which is studied
(massive or not).

In this sense, a particle is a representation of the Poincaré group 4 . In particular, the nature
of the index σ can change from the one representation to the other.

Remark 4.10. As far as normalization is concerned, we will pose

Nppq �a
k0{p0.

There are some good reasons to take it; but it is irrelevant from our group point of view of the
theory.

4.2.7 Positive mass

This is the easy case. The choice of standard momentum is k � �
1 0 0 0

�
. One could believe

that the little group is SOp3q. It would be the case if we had chosen LÒ� instead of SLp2,Cq –see
point 4.2.1. In our hermitian representation of R4, k � 1. Then a matrix of SLp2,Cq which
leaves it invariant fulfills

λkλ: � λλ: � 1,
this is λ P SUp2q. By the way, note that SOp3q � SUp2q{Z2.

3Pay attention that Lppq depends implicitly on the choice of k.
4I think that the irreducibility of a representation is related to elementary particles.
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The celebrated “law of transformation” of a massive particle of spin j (integer or half integer)
under the Lorentz transformation Λ is

UpΛq|p, σy �d pΛpq0
p0

σ̧1 Dpjq
σ1σpW pΛ, pqq|Λp, σ1y (4.59)

where σ runs from �j to j by step of 1.

4.2.8 Null mass

In the case of a null mass, the standard vector is k � p1, 0, 0, 1q and an element of the little group
fulfils Wk � k. As the little group is part of the Lorentz group, this is an isometry, soxWt|Wky � xt|ky (4.60a)xWt|Wty � xt|ty, (4.60b)

for any t P R4. Taking in particular t � p1, 0, 0, 0q,pWtqµkµ � tµkµ � �1 (4.61a)pWtqµpWtqµ � tµtµ � �1. (4.61b)

If we write Wt � pa, b, c, dq, the first relation gives d � a� 1, so that Wt � p1� ξ, α, β, ξq, while
the second one gives ξ � pα2 � β2q{2. The conclusion is that W acts on t as a certain Lorentz
transformation Spα, βq :

Wt � ����1� ξ

α

β

ξ

�ÆÆ� ����1� ξ �ξ α β

α �α 1 0
β �β 0 1
ξ p1� ξq α β.

�ÆÆ����1
0
0
0

�ÆÆ. (4.62)

Be careful: it doesn’t means that W � S, but Wt � St. However it is an information:
Spα, βq�1W is a Lorentz transformation which leaves t invariant. Then it is a spatial rota-
tion. More precisely, since W and S conserve p1, 0, 0, 1q, it is a rotation around the z axis:
Spα, βq�1W � Rpθq, and

W pθ, α, βq � Spα, βqRpθq (4.63)

is the most general element of the non massive little group.
This chapter actually don’t deals with quantum field theory in the sense that our wave

functions aren’t operators which acting on a Fock space. So this is just relativistic field theory.

4.3 Connections

4.3.1 Gauge potentials

Let us consider a section σα of P over Uα. It is a map σα : Uα Ñ P such that π � σα � id. A
connection on P is a 1-form ω : TpP Ñ G P Ω1pP q which satisfies the following two conditions:

ωppY �
p q � Y, (4.64a)

ωpdRgξq � g�1ωpξqg. (4.64b)
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The gauge potential of ω with respect of the local section σα is the 1-form on Uα given by

Aαpxqpvq � pσ�αωqxpvq. (4.65)

We will not always explicitly write the dependence of Aα in x. Now we consider another section
σβ : Uβ Ñ P which is related on Uα XUβ to σα by σβpxq � σαpxq � gαβpxq for a well defined map
gαβ : Uα X Uβ Ñ G.

Proposition 4.11.

The gauge potentials Aα and Aβ are related by

Aβ � g�1Aαg � g�1dg. (4.66)

Proof. By definition, for v P TxUα,

Aβpvq � pσ�βωqxpvq � ωσαpxq�gαβpxq�pdσβqxpvq�.
We begin by computing dσβpvq. Let us take a path vptq in Uα such that vp0q � x and v1p0q � v.
We have : pdσβqxpvq � d

dt
σβpvptqq����

t�0� d

dt
σαpvptqq � gαβpvptqq����

t�0� d

dt

�
σαpvptqq � gαβpxq�

t�0
� d

dt

�
σαpxq � gαβpvptqq�

t�0� dRgαβpxqdσαpvq � d

dt

�
σαpxq � gαβpxqe�ts�

t�0� dRgαβpxqdσαpvq � s�σαpxq�gαβpxq (4.67)

where s is defined by the requirement that gαβpxq�1gαβpvptqq can be replaced in the derivative
by e�ts, so that we can replace gαβpvptqq by gαβpxqe�ts. As far as the derivatives are concerned,
e�ts � gαβpxq�1gαβpvptqq, then

s � � d

dt
gαβpxq�1gαβpvptqq����

t�0

� �gαβpxq�1dgαβpvq,
this equality being a notation. Now, properties (4.64a)-144 and (4.64b)-144 make that

Aβpvq � gαβpxq�1ωσαpxqpdσαpvqqgαβpxq � s.

The thesis is just the same, with “reduced” notations (see section 4.6.2). .

An explicit form for this transformation law is :

Aβpvq � d

dt

�
g�1etAαpvqg�

t�0
� d

dt

�
g�1gαβpvptqq�

t�0
, (4.68)

where g :� gαβpxq.



146 CHAPTER 4. RELATIVISTIC FIELD THEORY

4.3.2 Covariant derivative

When we have a connection on a principal bundle, we can define a covariant derivative on
any associated bundle. Let us quickly review it. An associated bundle is the semi-product
E � P �ρ V where V is a vector space on which acts the representation ρ of G. We denote
the canonical projection by πp : E Ñ M . The classes are taken with respect to the equivalence
relation pp, vq � pp � g, ρpg�1qvq.

A section of E is a map ψ : M Ñ E such that π � ψ � id. We denote by ΓpEq the set of all
the sections of E. A section of E defines (and is defined by) an equivariant function ψ̂ : P Ñ V

such that

ψpπpξqq � rξ, ψ̂pξqs, (4.69a)

ψ̂pξ � gq � ρpg�1qψ̂pξq. (4.69b)

For a section ψ P ΓpEq, we define ψpαq : Uα Ñ V by

ψpαqpxq � ψ̂pσpxqq.
We saw in (1.161)-59 that a covariant derivative on E is given bypDXψqpαqpxq � Xxψpαq � ρ��pσ�αωqxpXxq	ψpαqpxq. (4.70)

Since pdψqpXq � Xpψq, we can rewrite this formula in a simpler manner by forgetting the index
α and the mention of X :

Dψ � dψ � pρ�Aαqψ.
If we note pρ�Aαqψ by Aαψ, we have

Dψ � dψ �Aψ. (4.71)

One has to understand that equation as a “notational trick” for (4.70)-146. By the way, remark
that pρ�Aαq is the only “reasonable” way for A to act on ψ.

4.4 Gauge transformation

A gauge transformation of a G-principal bundle is a diffeomorphism ϕ : P Ñ P which satisfies

π � ϕ � π, (4.72a)

ϕpξ � gq � ϕpξq � g. (4.72b)

In local coordinates, it can be expressed in terms of a function ϕ̃α : Uα Ñ G by the requirement
that

ϕpσαpxqq � σαpxq � ϕ̃αpxq. (4.73)

We have shown in proposition 1.59 that, if ω is a connection 1-form on P , the form ϕ�ω :� ϕ�ω
is still a connection 1-form on P . Of course, with the same section σα than before, we can define
a gauge potential pϕ � Aqα for this new connection. We will see how it is related to Aα. The
reader can guess the result (it will be the same as proposition 4.11). We show it.

Proposition 4.12. pϕ � Aq � ϕ̃�1Aϕ̃� ϕ̃�1dϕ̃. (4.74)
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Proof. Let us consider x P Uα, and v P TxUα, the vector which is tangent to the curve vptq P Uα.
We compute

σ�αpϕ�ωqxpvq � ωpϕ�σαqpxqppdϕ � dσαqpvqq,
but equation (4.73)-146 makespdϕ � dσαqpvq � d

dt
ϕpσαpvptqqq����

t�0� d

dt
σαpvptqq � ϕ̃αpvptqq����

t�0

.

(4.75)

Now, we are in the same situation as in equation (4.67)-145.

If ψ : M Ñ E is a section of E, the gauge transformation ϕ : P Ñ P acts on ψ byzϕ � ψpξq � ψ̂pϕ�1pξqq. (4.76)

On the other hand, ϕ acts on the covariant derivative (and the potential) : ϕ �D is the covariant
derivative of the connection ϕ � ω. Of course, we definepϕ �Dqψ � dψ � pϕ �Aqψ. (4.77)

Lemma 4.13.

If ϕ : P Ñ P is a gauge transformation, then

(i) ϕ�1 is also a gauge transformation and p�ϕ�1qαpxq � ϕ̃αpxq�1,

(ii) pϕ � ψqpαqpxq � ρpϕ̃�1
x qψpαqpxq.

Proof. The first part is clear while the second is a computation :pϕ � ψqpαq � zϕ � ψpσαpxqq � ψ̂pϕ�1pσαpxqqq � ψ̂pσαpxq � ϕ̃αpxq�1q � ρpϕ̃αpxqqψpαqpxq. (4.78)

Now, we will proof the main theorem: the one which explains why the covariant derivative is
“covariant”.

Theorem 4.14.

The covariant derivative D fulfils a “covariant” transformation rule under gauge transformations:pϕ �Dqpϕ�1 � ψq � ϕ�1pDψq. (4.79)

Remark 4.15. Let us use more intuitive notations: we write (4.74)-146 under the form A1 �
g�1Ag � g�1dg. If we have two sections ψ and ψ1, they are necessarily related by a gauge
transformation: ψ1 � g�1ψ. Then, the theorem tells us that the equation Dψ � dψ � Aψ

becomes D1ψ1 � g�1Dψ “under a gauge transformation”. This is: Dψ transforms under a gauge
transformation as dψ transforms under a constant linear transformation. This is the reason why
D is a covariant derivative. The physicist way to write (4.79)-147 is

D1ψ1 � g�1Dψ (4.80)
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Proof of theorem 4.14. First, we look at pϕ �Aqψα. Using all the notational tricks used to give a
sens to Aψ, we write :rpϕ � AqXψspαqpxq � pϕ �AqXψpαqpxq � ρ�pϕ � ApXqqψpαqpxq.
But we know that ϕ � A � ϕ̃�1Aϕ̃� ϕ̃�1dϕ̃, thenpϕ � AqXψpαqpxq � ρ�pϕ̃�1ApXqϕ̃qψpαqpxq� ρ�pϕ̃�1dϕ̃pXqqψpαqpxq� d

dt

�
ρpϕ̃�1etApXqϕ̃qψpαqpxq�

t�0� d

dt

�
ρpϕ̃�1ϕ̃pXtqqψpαqpxq�

t�0

(4.81)

Now, we have to write this equation with ϕ�1 � ψ instead of ψ. Using lemma 4.13, we find :pϕ �AqXpϕ�1 � ψqpαqpxq � d

dt

�
ρpϕ̃�1etApXqϕ̃ϕ̃�1qψpαqpxq�

t�0� d

dt

�
ρpϕ̃�1ϕ̃pXtqϕ̃�1qψpαqpxq�

t�0

(4.82)

After simplification, the first term is a term of the thesis: ϕ̃pxq�1pAψqαpxq and we let the second
one as it is. Now, we turn our attention to the second term of (4.79)-147; the same argument
gives:

dpϕ�1ψpαqqxX � d

dt

�pϕ�1 � ψqpαqpXtq�
t�0� d

dt

�
ρpϕ̃pXtq�1qψpαqpXtq�

t�0� d

dt

�
ρpϕ̃pXtq�1qψpαqpxq�

t�0
� d

dt

�
ρpϕ̃�1qψpαqpXtq�

t�0
.

(4.83)

The second term is ϕ̃�1dψαpXq. In definitive, we need to prove that the two exceeding terms
cancel each other :

d

dt

�
ρpϕ̃�1ϕ̃pXtqϕ̃�1qψpαqpxq�

t�0
� d

dt

�
ρpϕ̃pXtq�1qψpαqpxq�

t�0
(4.84)

must be zero.
One can find a gptq P G such that ϕ̃pXtq � ϕ̃gptq, gp0q � e. Then, what we have in the ρ of

these two terms is respectively gptqϕ̃�1 and gptq�1ϕ̃�1. As far as the derivative are concerned,
gptq can be written as etZ for a certain Z P G. So we see that gptq�1 � e�tZ and the derivative
will come with the right sign to makes the sum zero.

Remark 4.16. If we naively make the computation with the notations of remark 4.15, we replace
ψ1 � g�1ψ and A1 � g�1Ag � g�1dg in

D1ψ1 � dψ1 �A1ψ1,
using some intuitive “Leibnitz formulas”, we find : D1ψ1 � dg�1ψ�g�1dψ�g�1Aψ�g�1dgg�1ψ.
It is exactly g�1dψ � g�1Aψ with two additional terms: dg�1ψ and g�1dgg�1ψ. One sees that
these are precisely the two terms of the expression (4.84)-148. We will give a sens to this “naive”
computation in section 4.6.2.
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4.5 A bite of physics

4.5.1 Example: electromagnetism

Let us consider the electromagnetism as the simplest example of a gauge invariant physical
theory. We first discuss the theory of free electromagnetic field (this is: without taking into
account the interactions with particles) from Maxwell’s equations, see [31, 37]. The electric field
E and the magnetic field B are subject to following relations :

∇ � E � ρ, (4.85a)

∇ �B � 0, (4.85b)

∇�E� BtB � 0, (4.85c)

∇�B� BtE � j. (4.85d)

Comparing (4.85a)-149 and (4.85b)-149, we see that Maxwell’s theory does not incorporate
magnetic monopoles. Suppose that we can use the Poincaré lemma. Equation (4.85b)-149 gives
a vector field A such that B � ∇ � A, so that (4.85c)-149 becomes ∇ � pE � BtAq � 0 which
gives a scalar field φ such that �∇ � φ � E� BtA.

Now the equations (4.85a)-149–(4.85d)-149 are equations for the potentials A and φ, and we
find back the “physical” field by

B � ∇�A, (4.86a)

E � �∇φ� BtA. (4.86b)

One can easily see that there are several choice of potentials which describe the same elec-
tromagnetic field. Indeed, if

A1 � A�∇λ, (4.87a)

φ1 � φ� Btλ, (4.87b)

the electromagnetic field given (via (4.86)-149) by tφ1,A1u is the same as the one given by tφ,Au
The Maxwell’s equations can be written in a more “covariant” way by defining

F � ����0 �Ex{c �Ey{c �Ez{c� 0 �Bz �� � 0 �Bx� �By � 0

�ÆÆ, (4.88)

Fµν � �F νµ and
J � �

cρ jx jy jz
�
.

We also define ÆFαβ � 1
2
eαβλµFλµ. With all that, Maxwell’s equations read :BµFµν � µ0J

ν ,Bα Æ Fαβ � 0.
(4.89)

If we define
A � �

φ
c �Ax �Ay �Az	 , (4.90)

the physical fields are given by
Fµν � BµAν � BνAµ.
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The gauge invariance of this theory is the fact that

F 1
µν � BµA1ν � BνA1µ � Fµν (4.91a)

when
A1µpxq � Aµpxq � Bµfpxq (4.91b)

for any scalar function f (to be compared with (4.87)-149).
This is: in the picture of the world in which we see the A as fundamental field of physics,

several (as much as you have functions in C8pR4q) fields A, A1,. . . describe the same physical
situation because the fields E and B which acts on the particle are the same for A and A1.

Now, we turn our attentions to the interacting field theory of electromagnetism. As far as
we know, the electron makes interactions with the electromagnetic field via a term ψAµψ in the
Lagrangian. The free Lagrangian for an electron is

L � ψpγµBµ �mqψ. (4.92)

The easiest way to include a ψAψ term is to change Bµ to Bµ � Aµ. But we want to preserve
the powerful gauge invariance of classical electrodynamics, then we want the new Lagrangian to
keep unchanged if we do

Aµ Ñ A1µ � Aµ � iBµφ. (4.93)

In order to achieve it, we remark that the ψ must be transformed simultaneously into

ψ1pxq � eiφpxqψpxq. (4.94)

The conclusion is that if one want to write down a Lagrangian for QED, one must find a
Lagrangian which remains unchanged under certain transformation A Ñ A1 and ψ Ñ ψ1. In
other words the set tψ,Au of fields which describe the world of an electron in an electromagnetic
field is not well defined from data of the physical situation alone: it is defined up to a certain
invariance which is naturally called a gauge invariance.

Remark 4.17. In the physics books, the matter is presented in a slightly different way. We
observe that the Lagrangian (4.92)-150 is invariant under

ψpxq Ñ ψ1pxq � eiαψpxq (4.95)

for any constant α. One can see that the associated conserved current (Noether) is closely related
to the electric current. The idea (of Yang-Mills) is to develop this symmetry. Since the symmetry
(4.95)-150 depends only on a constant, we say it a global symmetry; we will simultaneously add
a new field Aµ and upgrade (4.95)-150 to a local symmetry:

ψpxq Ñ ψ1pxq � eiφpxqψpxq. (4.96)

Then, we deduce the transformation law of Aµ.

Because of the form of (4.94)-150, we say that the electromagnetism is a Up1q-gauge theory.
The fact that this is an abelian group have a deep physical meaning and many consequences.

4.5.2 Little more general, slightly more formal

The aim of this text is to interpret the field A as a gauge potential for a connection. But equation
(4.93)-150 is not exactly the expected one which is (4.74)-146. The point is that equation (4.93)-
150 concerns a theory in which the gauge transformation of the field was a simple multiplication
by a scalar field, so that simplifications as e�iφpxqAµpxqeiφpxq � Aµpxq are allowed.
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Now, we consider a vector space V , a manifold M and a function ψ : M Ñ V which “equation
of motion” is

LipBi �miqψ � 0

Where we imply an unit matrix behind B and m; the indices i, j are the (local) coordinates in
M and a, b, the coordinates in V . Let G be a matrix group which acts on V . If ψ is a solution,
Λ�1ψ is also a solution as far as Λ is a constant –does not depend on x P M– matrix of G. In
other words, LipBi �miqψa � 0 for all a implies LipBi �miqppΛ�1qbaψbq � 0.

The function, ψ1pxq � Λpxq�1ψpxq is no more a solution. If we want it to be solution of the
same equation as ψ, we have to change the equation and consider

LipBi �Ai �miqψ � 0.

This equation is preserved under the simultaneous change#
ψ1a � pΛ�1qbaψbpA1iqab � pΛ�1qcbpAiqdcpΛadq � pBiΛ�1qdbΛad. (4.97)

The second line show that the formalism in which A is a connection is the good one to write
down covariant equations. This has to be compared with (4.66)-145. Logically, a theory which
includes an invariance under transformations as (4.97)-151 is called a G-gauge theory.

4.5.3 A “final” formalism

Now, we work with fields which are sections of some fiber bundle build overM , the physical space.
More precisely, let G be a matrix group. We search for a theory which is “locally invariant under
G”. In order to achieve it, we consider a G-principal bundle P over M and the associated bundle
E � P �ρ V for a certain vector space V , and a representation ρ of G on V . Typically, V is C
or the vector space on which the spinor representation acts.

The physical fields are sections ψ : M Ñ E. If we choose some reference sections σα : M Ñ P ,
they can be expressed by ψpαqpxq � ψ̂pσαpxqq. We translate the idea of a local invariance under
G by requiring an invariance under

ψ1pαqpxq � ρpgpxqqψpαqpxq
for every g : M Ñ G. By (ii) of lemma 4.13, we see that ψ1pαqpxq � pϕ�1 � ψqpαqpxq, where
ϕ : P Ñ P is the gauge transformation given by

ϕpσαpxqq � σαpxq � gpxq.
We want ψ and ψ1 to “describe the same physics”. From a mathematical point of view, we

want ψ and ψ1 to satisfy the same equation. It is clear that equation dψ � 0 will not work.
The trick is to consider any connection ω on P and the gauge potential A of ω. In this case

the equation pd�Aqψ � 0 or Dψ � 0 (4.98)

is preserved under

AÑ ϕ �A,
ψ Ñ ϕ�1 � ψ.

Theorem 4.14 powa !
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In this sense, we say that equation (4.98)-151 is gauge invariant, and is thus taken by physicists
to build some theories when they need a “local G-covariance”. This gives rise to the famous Yang-
Mills theories.

In this picture the matter field ψ and the bosonic field A are both defined from a Up1q-
principal bundle. The sense of “ψ transforms as . . . under a Up1q transformation” is the sense of
the transformation of a section of an associated bundle; the sense of “A transforms as . . . under
a Up1q transformation” is the one of the transformation of the gauge potential of a connection
on a Up1q-principal bundle.

Remark 4.18. The mathematics of equation (4.98)-151 only requires a G-valued connection on
P . There are several physical constraints on the choice of the connection. These give rise to
interaction terms between the gauge bosons. We will not discuss it at all. This a matter of books
about quantum field theories.

The most used Yang-Mills groups in physics are Up1q for the QED, SUp2q for the weak
interactions and SUp3q for chromodynamic.

4.6 Curvature

4.6.1 Intuitive setting

From the G-valued connection 1-form ω on P , we may define its curvature 2-form :

Ω � dω � ω ^ ω. (4.99)

As before, we can see Ω as a 2-form on M instead of P . For this, we just need some sections
σα : Uα Ñ P and define

Fα � σ�αΩ. (4.100)

This F is called the Yang-Mills field strength. The question is now to see how does it
transform under a change of chart ? What is Fβ � σ�βΩ in terms of Fα ?

Theorem 4.19.

Fβ � g�1Fαg. (4.101)

Naive proof. Let us accept Fβ � dAβ�Aβ^Aβ . With proposition 4.11, we can perform a simple
computation with all the intuitive “Leibnitz rules” :

dAβ � �g�1dg g�1 ^Aαg � g�1dAαg � g�1Aα ^ dg � g�1dg g�1 ^ dg,

and

Aβ ^Aβ � g�1Aαg ^ g�1Aαg � g�1Aαg ^ g�1dg � g�1dg ^ g�1Aαg � g�1dg ^ g�1dg.

The sum is obviously the announced result.

This proof seems too beautiful to be false5. We will now try to give a sense to this compu-
tation. A complete proof of the theorem is reported until page 156.

5More precisely, it is as beautiful as we want it to be true.
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First, note that we can’t try to find a relation like dpgωq � dg^ω� g dω. Pose Ax � gpxqωx:

Axpvq � d

dt
gpxqetωxpvq����

t�0

.

Using pdαqpv, wq � vpαpwqq � wpαpvqq � αprv, wsq,
we are led to write

wpApvqq � dpApvqqw � d

du
Awupvq����

u�0

� d

du

d

dt

�
gpwuqetωwu pvq�

t�0

����
u�0

. (4.102)

But at t � u � 0, the expression in the bracket is gpxq, and not e. Then the whole expression is
not an element of G. In other words, the problem is that for g : M Ñ G, we have dgx : TxM Ñ
TgpxqG � TeG.

Now, remark that in our matter, the problem will not arise because in the expressions Aβ �
g�1Aαg � g�1dg, each term has a g and a g�1.

Lemma 4.20.

dpg�1qxpvq � �gpxq�1dgpvqgpxq�1. (4.103)

Proof. Let vt be a path which defines the vector v, and define Y P G such that as far as the
derivative are concerned, we have gpvtq � gpxqetY . Then,

gpg�1qpvq � d

dt

�
gpvtq�1

�
t�0

� d

dt

�
e�tY gpxq�1

�
t�0

.

But on the other hand,

g�1dgpvqg�1 � d

dt

�
gpxq�1gpvtqgpxq�1

�
t�0

� d

dt

�
etY gpxq�1

�
t�0

,

thus dpg�1qxpvq � �gpxq�1dgpvqgpxq�1, as we want.

4.6.2 A digression: TY G and G

We define two product: G� G Ñ TG and G � G Ñ G. If g P G and X P G, we put

gX � d

dt
getX

����
t�0

, (4.104a)

and if X , Y P G,

XY � d

dt

d

du

�
etXeuY

�
u�0
t�0

. (4.104b)

We naturally define the product of a G-valued 1-form A by an element g P G by pgAqv � gApvq.
Note that gX does not belong to G but to TgG. Fortunately, in the expressions which we will

meet, there will always be a g�1 to save the situation.
Let us now see a great consequence of the second definition.



154 CHAPTER 4. RELATIVISTIC FIELD THEORY

Proposition 4.21.

The formula
XY � Y X � rX,Y s. (4.105)

links the formal product inside the Lie algebra and the Lie bracket.

In order to get a real proof (given from page 155) of this, we have to give some precisions
about derivatives as (4.104b)-153. We consider the expression

d

du

�
d

dt
cuptq����

t�0



u�0

,

which will be more simply written as :

d

du

d

dt

�
cuptq�t�0

u�0

(4.106)

with cuptq P G for all u, t; cup0q � e for all u and c10p0q � Y P G where the prime stands for the
derivative with respect of t. So d

dt
cuptq��t�0

P G for each u and (4.106)-154 belongs to TY G. But
we know that G is a vector space, then TY G � G, the isomorphism being given by the following
idea: if tBiu is a basis of G and teiu the corresponding basis of TY G, we define the action of
Aiei P TY G on f : GÑ R by pAieiqf :� AiBif .

Lemma 4.22.

Seen as an equality in G, for f : GÑ R we have :

d

du

d

dt

�
cuptq�t�0

u�0

f � d

du

d

dt

�
fpcuptqq�t�0

u�0

. (4.107)

Proof. Let us consider Xu � X i
uBi � c1up0q and X0 � Y . We naturally have

Xuf � d

dt
fpcuptqq����

t�0

, and
d

du
Xu

����
u�0

P TY G. (4.108)

Now, we consider a function h : G Ñ R and compute :

d

du

�
Xu

�
u�0

h � d

du

�
hpXuq�

u�0
� d

du
hp d
dt

�
cuptq�

t�0
q����
u�0

.

If tBiu is a basis of G and teiu, the corresponding one of TY G, thus

d

du

�
Xu

�
u�0

h � BhBei ����Y d

du

d

dt

�
ciuptq�t�0

u�0

. (4.109)

So, we can write
d

du

�
Xu

�
u�0

� d

du

d

dt

�
ciuptq�t�0

u�0

BBei ����Y ,
and, as element of G, we consider

d

du

�
Xu

�
u�0

� d

du

d

dt

�
ciuptq�t�0

u�0

Bi|e.
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Now, we can compute the action of d
du
Xu

��
u�0

on a function f : GÑ R as

d

du

�
Xu

�
u�0

f � d

du

d

dt

�
ciuptq�t�0

u�0

BfBxi ����e� d

du

� BfBxi ����e d

dt
ciuptq����

t�0

�
u�0� d

du

� d

dt
fpcuptqq����

t�0

�
u�0

.

(4.110)

Proof of proposition 4.21. From this, we can precise our definition of XY when X , Y P G. The
product XY acts on f : GÑ R bypXY qf � d

dt

d

du

�
fpetXeuY q�

u�0
t�0

.

We can get a more geometric interpretation of this. We know how to build a left invariant vector
field Ỹ from any Y P G : for each g P G we just have to define

Ỹgpfq � d

ds

�
fpgY psqq�

s�0
.

First remark: Ỹg is precisely the object that previously named “gY ”. In order to construct the
basis blocks of the formula XY � Y X � rX,Y s, we turn our attention to X̃eỸ . It is clear that
Ỹ pfq is a function from G to R, so we can apply X̃e on it. If Xt is a path which gives the vector
X̃e (for example: Xt � etX), we have

X̃epỸ pfqq � d

dt

�
Ỹ pfqXt�

t�0
� d

du

d

dt

�
fpXtY puqq�t�0

u�0

� d

du

d

dt

�
fpetXeuY q�

t�0
u�0

. (4.111)

Thus we have: XY � X̃eỸ , but it is clear that rX̃, Ỹ se � X̃eỸ � ỸeX̃. The claim reads now:rX̃, Ỹ se � rX,Y s. We can actually take it as de definition of rX,Y s. It is done in [3]. The link
with the definition in terms of successive derivations of Adgpxq � gxg�1 is not trivial but it can
be done.

Now, we can give a powerful definition of the wedge for two G-valued 1-forms. If A, B P
Ω1pM,Gq and v, w P XpMq, we definepA^Bqpv, wq � ApvqBpwq �ApwqBpvq. (4.112)

For A2, we find back the usual definition :pA^Aqpv, wq � ApvqApwq �ApwqApvq � rApvq, Apwqs.
One can see that for any section σα : Uα Ñ P , we have

σ�αpA^Aq � pσ�αAq ^ pσ�αAq. (4.113)

Lemma 4.23.

If A and B are two G-valued 1-forms, one can make “simplifications” aspAgq ^ pg�1Bq � A^B. (4.114)
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Proof. We just have to prove that for A, B P G, pAgqpg�1Bq � AB with definitions (4.104a)-153

and (4.104b)-153. Remark that Ag � d
ds

�
esAg

�
s�0

, so

etAg � exppt d

ds
esAg

����
s�0

q � expp d
ds
estAg

����
s�0

q � etAg.

Therefore pAgqpg�1Bq � d

dt

d

du

�
etAgeug

�1B
�
u�0
t�0

� d

dt

d

du

�
etAgg�1euB

�
u�0
t�0

� AB.

Lemma 4.24.

Fβ � dAβ �A2
β . (4.115)

Proof. This is a direct consequence of (4.113)-155 and rσ�β , ds � 0.

Now, we can prove the theorem.

Ultimate proof of theorem 4.19. First we compute dpg�1Aαgq. In order to do this, remark that
the 1-form g�1Aαg is explicitly given on v P XpMq bypg�1Aαgqpvqx � d

dt

�
gpxq�1etApvqxgpxq�

t�0
.

For all x P M , this expression is an element of G; then we can say that pg�1Aαgqpvq is a mappg�1Aαgqpvq : M Ñ G. So it is unambiguous to write wppg�1Aαgqpvqq P G for w P TxM .
We will use the formula

dpg�1Aαgqpv, wq � vpg�1Aαgqpwq � wpg�1Aαgqpvq � pg�1Aαgqprv, wsq.
As wppg�1Aαgqpvqq � dppg�1Aαgqpvqqw, we have

wppg�1Aαgqpvqq � d

du
pg�1Aαgqpvqwu ����

u�0� d

du

d

dt

�
gpwuq�1etApvqwu gpwuq�

t�0

����
u�0� d

dt

d

du

�
gpwuq�1

�
u�0

etApvqxgpxq����
t�0� d

dt
gpxq�1 d

du

�
etApvqwu�

u�0
gpxq����

t�0� d

dt
gpxq�1etApvqx d

du

�
gpwuq�

u�0

����
t�0� dpg�1qpwqApvqxgpxq� gpxq�1wxpApvqqgpxq� gpxq�1Apvqxdgpwq.

(4.116)
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On the other hand, one easily finds thatpg�1Aαgqprv, wsq � gpxq�1Aprv, wsqgpxq.
Using lemma 4.20, we have

dpg�1Aαgqxpv, wq � �gpxq�1dgpvqgpxq�1Apwqxgpxq � gpxq�1vpApwqqgpxq� gpxq�1Apwqxdgpvqx� gpxq�1dgpwqxgpxq�1Apvqxgpxq � gpxq�1wpApvqqgpxq� gpxq�1Apvqxdgpwq� gpxq�1Aprv, wsqgpxq. (4.117)

We can regroup the terms two by two in order to form dAα and some wedge; with simpler
notations, we can write :

dpg�1Aαgq � �pg�1dg gq ^ pAαgq � pg�1Aq ^ dg � pg�1dAgq. (4.118)

We compute dpg�1dgq in the same way; the result ispg�1dgqpvqx � d

dt

�
gpxq�1gpvtq�

t�0
P G.

For v, w P XpMq, we have :

w
�pg�1dgqpvq� � d

du
pg�1dgqpvqwu ����

u�0� d

du

d

dt

�
gpwuq�1gpvwuptqq�t�0

u�0� d

dt

d

du

�
gpwuq�1gpvtq�u�0

t�0

� d

dt

d

du

�
gpxq�1gpwuptqq�u�0

t�0� dpg�1qpwqdgpvq � d

du

�
gpxq�1dgpvwuq�

u�0� �g�1dgpwqg�1dgpvq � gpxq�1wpdgpvqq (4.119)

where wu is a path such that w10 � wx and vwuptq is, with respect of t, a path which gives the
vector vwu . On the another hand, we havepg�1dgqprv, wsq � g�1dgprv, wsq.

Remark that the term gpxq�1wpdgpvqq of wppg�1dgqpvqq together with the same with v Ø w

and pg�1dgqprv, wsq which comes from pg�1dgqprv, wsq will give gpxq�1pd2gqpv, wq � 0 when we
will compute dpg�1dgq. Finally,

dpg�1dgq � �pg�1dg g�1 ^ dgq. (4.120)

The equations (4.118)-157 and (4.120)-157 allow us to write :pdAβq � dpg�1Aαgq � dpg�1dgq� �pg�1dg g�1q ^ pAαgq � pg�1Aαq ^ dg� pg�1dAαgq � pg�1dg g�1q ^ dg.

(4.121)
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Notice that the term pg�1dAαgq corresponds to the first one in Fβ � g�1pdAβ �Aβ ^Aβqg.
For anyone who had understood the whole computations up to here, it is clear thatrAβpvq, Aβpwqs � d

dt

d

du

�
etAβpvqetAβpwq�

u�0
t�0� d

dt

d

du

�
etAβpwqetAβpvq�

u�0
t�0

,

(4.122)

so that

Aβ ^Aβ � g�1Aαg ^ g�1Aαg � g�1Aαg ^ g�1dg� g�1dg ^ g�1Aαg � g�1dg ^ g�1dg.
(4.123)

Lemma 4.23 allows us to write it under the form

Aβ ^Aβ � g�1Aαg ^ g�1Aαg � g�1Aαg ^ g�1dg� g�1dg ^ g�1Aαg � g�1dg ^ g�1dg.
(4.124)

Here the term pg�1Aα ^ Aαgq corresponds to the second one in Fβ � g�1pdAβ � Aβ ^ Aβqg.
The sum of (4.121)-157 and (4.124)-158 is

Fβ � g�1Fαg.

4.6.3 The electromagnetic field F

Now, we are able to interpret the field F introduced in equation (4.88)-149. We follow [32].
From now, we use the usual Minkowski metric g � diagp�,�,�,�q. From the vector given by
(4.90)-149, we define a (local) potential 1-form

A � Aµdx
µ � �φdt�Axdx �Aydy �Azdz.

The field strength is F � dA. We easily find that

F � pdt^ dxqpBxφ� BtAxq � . . .� pdx^ dyqp�BzAx � BxAyq � . . .
(4.125)

But the fields B and E are defined from A and φ by (4.86)-149, so

F � �Expdt^ dxq �Eypdt^ dyq �Ezpdt^ dzq�Bxpdy ^ dzq �Bypdz ^ dxq �Bzpdx^ dyq. (4.126)

We naturally have dF � d2A � 0. But conversely, dF � 0 ensures the existence of a 1-form
A such that F � dA. If we define6 B � ∇ � A and E � �∇φ � BtA, equations (4.85b)-149
and (4.85c)-149 are obviously satisfied. So in the connection formalism, the equations “without
sources” are written by

dF � 0. (4.127)

In order to write the two others, we introduce the current 1-form :

j � jµdx
µ � �ρdt� jxdx� jydy � jzdz.

6i.e. we consider F as the main physical field while E and B are “derived” fields.



4.7. INCLUSION OF THE LORENTZ GROUP 159

One sees that

δF :� Æd Æ F � �dtp∇ � Eq� dxp�BtEx � p∇�Bqxq� dyp�BtEy � p∇�Bqyq� dzp�BtEz � p∇�Bqzq, (4.128)

so that equation δF � j gives equations (4.85a)-149 and (4.85d)-149. Now, the complete set of
Maxwell’s equations is :

dF � 0 (4.129a)

δF � j (4.129b)

with

j � �ρdt� jxdx� jydy � jzdz, (4.130a)

B � ∇�A (4.130b)

E � �∇φ� BtA (4.130c)

where A is a 1-form such that F � dA whose existence is given by (4.129a)-159.

4.7 Inclusion of the Lorentz group

Up to now we had seen how to express the gauge invariance of a physical theory. In particle
physics, a really funny field theory must be invariant under the Lorentz group; it is rather clear
that, from the bundle point of view, this feature will be implemented by a Lorentz-principal
bundle and some associated bundles. A spinor will be a section of an associated bundle for
spin one half representation of the Lorentz group on C4. In order to describe non-zero spin
particle interacting with an electromagnetic field (represented by a connection on a Up1q-principal
bundle), we have to build a correct SLp2,Cq � Up1q-principal bundle. We are going to use the
ideas of 4.2.1.

A space-time is a differentiable pseudo-Riemannian 4-dimensional manifold. The pseudo-
Riemannian structure is a 2-form g P Ω2pMq for which we can find at each point x PM a basis
b � pb0, . . . ,b3q which fulfils

gxpbi,bjq � ηij .

When we use an adapted coordinates, the metric reads g � ηijdx
i b dxj .

One says that M is time orientable if one can find a vector field T P XpMq such that
gxpTx, Txq ¡ 0 for all x P M . A time orientation is a choice of such a vector field. A vector
v P TxM is future directed if gxpTx, vq ¡ 0.

The Lorentz group L acts on the orthogonal basis of each TxM , but you may note that L
don’t acts on M ; it’s just when the metric is flat that one can identify the whole manifold with
a tangent space and consider that L is the space-times isometry group. In the case of a curved
metric, the Lorentz group have to be introduced pointwise and the building of a frame bundle is
natural.

Now, we are mainly interested in the frame related each other by a transformation of LÒ�.
An arising question is to know if one can make a choice of some basis of each TxM in such a
manner that

(i) pointwise, the chosen frames are related by a transformation of LÒ�,
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(ii) the choice is globally well defined.

The first point is trivial to fulfil from the definition of a space-time. For the second, it turns out
that a good choice can be performed if and only if there exists a vector field V P XpMq such that
gxpVx, Vxq ¡ 0 for all x PM . We suppose that it is the case7.

So our first principal bundle attempt to describe the space-time symmetry is the LÒ�-principal
bundle of orthonormal oriented frame on M :

L
Ò� ///o/o/o LpMq

pL

��
M

(4.131)

The notion of “relativistic invariance” has to be understood in the sense of associated bundle
to this one. The next step is to recall ourself (see subsection 4.2.1) that the physical fields doesn’t
transform under representation of the group L

Ò� but rather under representations of SLp2,Cq.
So we build a SLp2,Cq-principal bundle

SLp2,Cq ///o/o/o SpMq
pS

��
M

In order this bundle to “fit” as close as possible the bundle (4.131)-160, we impose the existence
of a map λ : SpMq Ñ LpMq such that

(i) pBpλpξqq � pSpξq for all ξ P SpMq and

(ii) λpξ � gq � λpξq � Spinpgq for all g P SLp2,Cq.
You can recognize the definition of a spin structure. Notice that the existence of a spin
structure on a given manifold is a non trivial issue.

Now a physical field is given by a section of the associated bundle E � SpMq �ρ V where ρ
is a representations of SLp2,Cq on V . For an electron, it is V � C4 and ρ � Dp1{2,0q `Dp0,1{2q.
That describes a free electron is the sense that it doesn’t interacts with a gauge field. So in
order to write down the formalism in which lives a non zero spin particle, we have to build a
Up1q � SLp2,Cq-principal bundle. For this, we follow the procedure given in section 1.15

4.8 Interactions

4.8.1 Spin zero

The general framework is the following :

Up1q ///o/o/o P

π
��

E � P �ρ V
M Uα_?

oo
φ

99ssssssssss

σα
``AAAAAAAA

7That condition is rather restrictive because we cannot, for example, find an everywhere non zero vector field
on the sphere Sn with n even.



4.8. INTERACTIONS 161

a Up1q-principal bundle over a manifold M (as far as topological subtleties are concerned, we
suppose M � R4) and a section φ of an associated bundle for a representation ρ of Up1q on V .
We consider M with the Lorentzian metric but, since we are intended to treat with scalar (spin
zero) fields, we still don’t include the Lorentz (or SLp2,Cq) group in the picture. We also consider
local sections σα : Uα Ñ P , a connection ω on P and Ω its curvature. We define Aα � σ�αω.

Now we particularize ourself to the target space V � C on which we put the scalar productxz1, z2y � 1
2
pz1z2 � z2z1q, (4.132)

and the representation ρn : Up1q Ñ GLpCq,
ρnpgqz � g � z � gnz

where we identify Up1q to the unit circle in C in order to compute the product. A property of
the product (4.132)-161 is to make ρn an isometry: for all g P Up1q, z1, z2 P C,xρnpgqz1, ρnpgqz2y � xz1, z2y.
Our first aim is to write the covariant derivative of φ with respect to the connection ω. For this
we work on the section φ under the form φpαq : M Ñ V and we use formula (4.70)-146 :pDXφqpαqpxq � Xxφpαq � ρ��pσ�αωqxXx

�
φpαqpxq. (4.133)

Let us study this formula. We know that pσ�αωqx � Aαpxq : TxUα
σÑ TσαpxqP ωÑ up1q. Thus

AαpxqXx is given by a path in Up1q; it is this path which is taken by ρ�. Therefore (we forget
some dependences in x)

ρ��AαpxqXx

�
φpαqpxq � d

dt

�
ρn
�pAαXqptq�φpαqpxq�

t�0� d

dt

�pAαXqptqn�
t�0

φpαqpxq� n
d

dt

�pAαXqptq�
t�0

φpαqpxq� nAαpXqφpαqpxq. (4.134)

Thus the covariant derivative is given bypDXφqpαqpxq � Xxφpαq � nAαpxqpXxqφpαqpxq. (4.135)

One can guess an electromagnetic coupling for a particle of electric charge n. If this reveals to
be physically relevant, it shows that the “electromagnetic identity card” of a particle is given by
a representation of Up1q. This has to be seen in relation to the discussion on page 143 where the
“type of particle” was closely related to representations of the Lorentz group. It is a remarkable
piece of quantum field theory: the properties of a particle are encoded in representations of some
symmetry groups.

Now we are going to prove that }Dφ}2 is a gauche invariant quantity. The first step is to
give a sense to this norm. We consider Xi (i � 0, 1, 2, 3), an orthonormal basis of TxM and we
naturally denote Di � DXi , Bi � Xi and Aαi � AαpBiq. Remark that

AαpxqXx � pσ�αqxXx � ωpdσαXxq � ω
d

dt

�
σαpXptqq�

t�0
P up1q, (4.136)
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so this is given by a path in Up1q which can be taken by ρ. Let cptq be this path, then

Aαφpαqpxq � d

dt

�
eicptqφpαqpxq�

t�0
,

so that under the conjugation, Aαφpαqpxq � �Aαφpαqpxq. Now our definition of }Dφ}2 is a
composition of the norm on V and the one on TxM :}Dφ}2 � ηijxDiφpαq, Djφpαqy (4.137)

Using the notation in which the upper indices are contractions with ηij , we have}Dφ}2 � �pBiφpαqqpxq � nAαiφpαqpxq	�pBiφpαqqpxq � nAiαφpαqpxq	.
Gauge transformation law

A gauge transformation ϕ is given by an equivariant function ϕ̃α : Uα Ñ Up1q which can be
written under the form

ϕ̃αpxq � eiΛpxq
for a certain function Λ: Uα Ñ R. From the general formula (ii) of lemma 4.13,pϕ � φqpαqpxq � ρnpe�iΛpxqqφpαqpxq � e�niΛpxqφpαqpxq. (4.138)

The transformation of the gauche field A is given by equation (4.74)-146. Let us see the meaning
of the term dϕ̃. For v P TxUα,pdϕ̃αqxv � d

dt

�
ϕ̃αpvptqq�

t�0
� d

dt

�
eiΛpvptqq�

t�0
� i

d

dt

�
Λpvptqq�

t�0
eiΛpvp0qq � ipdΛqxveiΛpxq.

(4.139)
Thus ϕ̃�1

α pxqpdϕ̃αqx � ipdΛqx. Since Up1q is abelian, ϕ̃�1Aϕ̃ � A. Finally,pϕ �Aqαpxq � Aαpxq � ipdΛqx. (4.140)

Now we are able to prove the invariance of }Dφ}2. First,pϕ � Aqiαpxq � pϕ �AqαpBiq � Aiαpxq � ipBiΛqpxq; (4.141)

second, Bi �e�niΛpxqφpαqpxq	 � �nipBiΛqpxqφpαqpxq � e�inΛpxqpBiφpαqqpxq. (4.142)

With these two results,Bipϕ � φqpαqpxq � npϕ �Aqαipϕ � φqpαqpxq � e�inΛpxqpnAαipxq � Biφpαqpxqq. (4.143)

The Yang-Mills field strength is given by F pαq � σ�αΩ (cf. page 56). Since Up1q is abelian,
dF pαq � 0, so that the second pair of Maxwell’s equations is complete without any Lagrangian
assumptions.

The full Yang-Mills action is written as

Spω, φq � ˆ
M

��1
4
F pαqijF pαqij � 1

2
}Dφ}2 � 1

2
mφpαqφpαq� .
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The Euler-Lagrange equations arepBi � inAαiqpBi � inAiαqφα �m2φα � 0 (4.144a)BiF pαqij � 0. (4.144b)

So the Yang-Mills Lagrangian only gives the first pair of Maxwell’s equations while the second
one is given by the geometric nature of fields.

As explained in [38], the topology of the physical space has deep implications on the physics
of Yang-Mills equations. The absence of magnetic monopoles for example is ultimately linked
to the (simple) connectedness of R4. When one consider the Up1q Yang-Mills on a sphere, some
topological charges appear and magnetic monopoles naturally arise.

4.8.2 Non zero spin formalism

The formalism for a non zero spin particle in an electromagnetic field is described in section 1.15.
We consider the spinor bundle

SLp2,Cq ///o/o/o SpMq
pS

��
M

with the spinor connection on SpMq, and ρ1, a representation of SLp2,Cq on V . For an electron,
it is V � C4 and ρ1 � Dp1{2,0q `Dp0,1{2q, so for g1 P SLp2,Cq,

ρ1pg1q���z1

...
z4

�Æ� ��g1 pg1
tq�1

����z1

...
z4

�Æ. (4.145)

On the other hand, we consider the principal bundle

Up1q ///o/o/o P

pU

��
M

with a connection ω2 which describes the electromagnetic field. As representation ρ2 : Up1q Ñ
GLpC4q we choose the multiplication coordinate by coordinate :

ρ2pg2q���z1

...
z4

�Æ� ���g2z1

...
g2z4

�Æ. (4.146)

The physical picture of the electron is now the principal bundle

SLp2,Cq � Up1q ///o/o/o SpMq � P
p

��
M,

and the field is a section of the associated bundle pSpMq � P q �ρ C4.
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.1 Alternative formalism for the quantum mechanics

We can a little reformulate the axioms of the quantum mechanics. Since we are in a Hilbert
space H we can speak about orthogonal projections; if φ P R, we can consider the projection
on the space spanned by φ:

Pφek � xφ, eky}φ} φ

where teiu is a basis of H . It is pretty clear that

TrpPφPψq � |xψ, φy|2}ψ}}φ} . (.147)

If ψ P R and φ P R1 are unimodular, then

P pRÑ R1q � TrpPφPψq, (.148)

so we can express the axioms in terms of projections instead of rays. For notational convenience,
we put

H1 � tψ P H st }ψ} � 1u. (.149)

We denote by S the space of the projections into one dimensional subspaces of H (in other
words S is the space of physical states) and for P , Q P S , the transition probability is P �Q �
TrpPQq. Now a quantum symmetry is a map T : S Ñ S 1 such that pTP q � pTQq � P �Q.

One can prove the following :

Theorem .25.

If T : S Ñ S 1 is a quantum symmetry, then there exists an operator U : H Ñ H 1 such that

(i) PUφ � TPφ,

(ii) Upξ � ηq � Upξq � Upηq,
(iii) xUξ, Uηy � κpxξ, ηyq
where Pψ is the projection onto the one dimensional space spanned by ψ and κ : C Ñ C fulfils
κpλq � λ or κpλq � λ and

(iv) Upλξq � κpλqξ.
Here is why this implies Wigner’s theorem as given by theorem 4.2. Let us consider some

ϕi P H such that }ϕi} � 1 and Pϕi , the corresponding projections. Let

∆pP1, P2, P3q � xϕ1, ϕ2yxϕ2, ϕ3yxϕ3, ϕ1y.
It is clear that this expression doesn’t depend on the choice of ϕi in its ray. We have

∆pTP1;TP2, TP3q � ∆pPUϕ1
, PUϕ2

, PUϕ3
q� xUϕ1, Uϕ2yxUϕ2, Uϕ3yxUϕ3, Uϕ1y� κpxUϕ1, Uϕ2yqκpxUϕ2, Uϕ3yqκpxUϕ3, Uϕ1yq� κ

�
∆pP1, P2, P3q�. (.150)
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We can see from this that the choice of κpλq � λ or κpλq � λ is determined by the data of T if
dim H ¥ 2. In the case where dim H � 1, ∆ is always equals to 1 and the equality (.150)-164
don’t gives any informations. In the case dim H ¥ 2, we can choice ϕ1 and ϕ2 such that xϕ1, ϕ2y
takes any value z P C with }z} ¤ 1. Taking ϕ3 � ϕ1 � ϕ2, we find

∆pP1, P2, P3q � zp1� zq2.
which is easily non real for a suitable choice of z P C. Let us suppose that we have an operator
U which satisfies the theorem .25. If κpλq � λ, then

Upzψ � z1φq � Upzψq � Upz1φq � zUpψq � zUpφq (.151)

and xUψ,Uφy � κpxψ, φyq � xψ, φy, (.152)

so that U is linear. If κpλq � z, then

Upzψq � zUψ (.153)

and xUξ, Uηy � κpxξ, ηyq � xξ, ηy. (.154)

.2 Statement of some results

This appendix is devoted to the statement of some results which are used in the text, but whose
demonstration should be out of our purpose.

Theorem .26.

Let G be a Lie group and H a subgroup (with no special other structures) of G. If H is a closed
subset of G then there exists an unique analytic structure on H such that H is a topological Lie
subgroup of G.

This comes from [3], chapter 2, theorem 2.3.

Theorem .27.

Let G be a Lie group, H a closed subgroup of G and G{H the space of left cosets rgs � tgh|h P Hu
with the natural topology. Then G{H has an unique analytic structure with the property that G
is a Lie transformation group of G{H.

This comes from [3], chapter 2, theorem 4.2.

Lemma .28.

Let G be a connected Lie group with Lie algebra G and let ϕ be an analytic homomorphism of G
into a Lie group X with Lie algebra X . Then

(i) The kernel ϕ�1peq is a topological Lie subgroup of G. Its Lie algebra is the kernel of dϕe.

(ii) The image ϕpGq is a Lie subgroup of X with Lie algebra dϕpGq � X .

This comes from [3], chapter 2, lemma 5.1.
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Lemma .29.

Let G and H be two Lie group, whose Lie algebra are G and H. If θ : G Ñ H is a surjective
map, then we have H � G{Ker dθe.
Theorem .30.

Let us consider Ad : SUp2q Ñ GLp3q, AdpUqX � UXU�1. We have the following properties:

(i) Ad is a linear homomorphism,

(ii) it takes his values in SOp3q; then we can write Ad : SUp2q Ñ SOp3q,
(iii) it is surjective,

(iv) KerAd � Z2,

(v) all these properties show that

SOp3q � SUp2qZ2

.

Corollary .31.

An useful formula:
AdpeXq � eadX .

Corollary .32.

Another useful corollary of lemma 1.20 is the particular case φ � AdpeXq:
eXeY e�X � eAdpeY qX .

Definition .33.

If pakq is a sequence in R, its upper limit is the real number

lim sup
nÑ8 an � lim

lÑ8 suptak : k ¥ lu.
Lemma .34.

If ω is a k-form (not specially a symplectic one), and ∇ a torsion free connection, one haspdωqpX0, . . . , Xkq � ķ

i�0

p�1qip∇XiωqpX0, . . . , X̂i, . . . Xkq. (.155)

Remark .35. The link between d and∇ comes from the fact that in the left hand side of (.155)-166
appears some commutators rXi, Xjs, but since the connection is torsion-free,rXi, Xjs � ∇XiXj �∇XjXi

The main consequence of this lemma is that ∇ω � 0 implies dω � 0.

Proposition .36.

Consider a function f : X �E Ñ R and z0 P E such that

• for all z P E, the function xÑ px, zq is integrable,
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• for (almost) all x P X, the function z Ñ fpx, zq is continuous at z0,

• there exists a function g ¥ 0 such that for all z P E, |fpx, zq| ¤ gpxq almost everywhere in
X.

Then the function h : E Ñ R defined by hpzq � ´
X
fpx, zq is continuous at z0.
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A

pE1q Induced Clifford module, page 113

ΛW Space of spinor representation, page 96

ΛW� Spinor space, page 111
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ω
j
i Connection form, page 51
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Aα Gauge potentials, page 145

dω Exterior covariant derivative associated with the connection form ω, page 57
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on principal bundle, 56

Density, 42
Differentiable

manifold, 9
map, 9

Differential
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form, 17
vector-valued, 30

Dirac
matrices, 98, 100
operator, 90

on pM, gq, a spin manifold, 121
on R1,3, 100
on R2, 123, 127
on functions, 123

Divergence, 50
Dominant weight, 73
Double covering

of SOp2q, 113
of SO0pp, qq, 106
of SOpV q, 109

Dual
of a vector space, 17

Dual module, 113
Dynkin

coefficient, 73
Dynkin diagram, 73

Electromagnetism, 149
Elementary

representation, 80
Endomorphism

of ΛW , 97
Equivalence

of observer, 130
of principal bundle, 40
of vector bundle, 29
representation of Clifford, 114

Equivariant, 43
function, 146
vector field on principal bundle, 40

Exterior
covariant derivative, 57
derivative, 51

Field strength, 162
Flat, 20
Frame, 37

bundle, 60
moving, 38

Fundamental
1-form, 31
vector field, 26, 54

Future
directed vector, 159

Gauge
invariance, 150

of electromagnetism, 150
principal potential, 145
transformation, 146

local description, 64
of principal bundle, 46
of section of associated bundle, 46

Generator
of infinitesimal rotations, 84

Global symmetry, 150
Gradient, 50
Group

Lie, 22
Lorentz, 139

Height of a representation, 76
Highest weight, 75

for group representation, 75
Hodge operator, 20
Holonomy group, 63
Homomorphism

of principal bundle, 35
Horizontal, 54

lift, 54, 56
space, 54

Immersion, 11, 15
Induced

Clifford module, 114
Integral

curve, 21
Interior

product, 17
Invariant

vector field, 24
Isomorphism

of principal bundle, 35
Isotropic

subspace (completely), 96
subspace (in R2), 111

Killing
vector field, 21

Klein-Gordon equation, 89
Kronecker product, 79

Ladder operators, 85
Laplace operator, 50
Layer, 76
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Left invariant
vector field, 24

Leibnitz formula, 16
Length of a root, 72
Levi-Civita connection, 62
Lie

algebra, 22
derivative

of a p-form, 20
of a vector field, 20

group, 22
Lift

horizontal, 56
Little group, 142
Local symmetry (physics), 150
Locally

trivial
principal bundle, 36

Lorentz
algebra, 90
group, 139

Lucky number, 78

Manifold, 9
Maxwell, 149, 159
Moving frame, 38
Multiplicity of a weight, 75
Musical isomorphism, 20

Normal
neighbourhood, 135

Orientable manifold, 20

Parity
of a representation, 77

Partition of unity, 29
Pauli matrices, 87, 111
Poincaré

group, 139
Positive

orientation, 20
weight, 74

Potential, 149
Principal

bundle, 32
Projective

real space, 10
representation, 135

Pseudo-Riemannian, 159

Pull-back
of a k-form, 18
of a vector field, 18

Push-forward
of a k-form, 18
of a vector field, 18

QED, 150
Quantum field theory, 89
Quaternion algebra, 111

Rank of a Lie algebra, 70
Ray, 129
Reducible

principal bundle, 41
representation of Clifford, 114

Reduction of a principal bundle, 41
Regular, 11
Relativistic invariance, 160
Representation

adjoint, 25
of Γpp, qq, 102
of sup2q, 85
of Clifford algebra, 97, 99, 114

Right invariant
vector field, 24

Rotation
on functions, 84

Schrödinger equation, 89
Section, 144

local description, 64
of an associated bundle, 43
of associated bundle, 146
of principal bundle, 38
of vector bundle, 30

Series of weight, 78
Sharp, 20
Simple

weight, 75
Soldering form, 52
Space-time, 159
Sphere, 10
Spin

group
on R2, 112
on R1,3, 101

manifold, 115
norm, 101
of representation of sop3q, 87
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structure, 115, 160
on R2, 123

Spinor, 44
bundle, 118
connection, 119
field, 118
representation, 97

State
one particle, 140

Structure
equations, 50
group, 32

Submanifold, 11
Submersion, 11, 15
Symmetry

of quantum system, 130, 164

Tangent
bundle, 15
space, 15

Tensor product
of group representations, 79
of Lie algebra representations, 79
of matrices, 79

Theorem
Cartan-Dieudonné, 103

Time
orientable, 159
orientation, 159

Topology
on manifold, 10
on submanifold, 11
quotient, 35

Torsion
free, connection, 49
of a connection, 49
of exterior derivative, 52

Transition function, 28
Trivial

principal bundle, 35, 36, 41, 42

Universal
problem, 92

Upper limit, 166

Vector
bundle, 27

Vector-valued differential form, 30
Verma module, 83
Vertical space, 54

Volume
element, 114
form, 20

Weight
dominant, 73

Weight of a vector, 74
Weyl

reflexion group, 76
Width

of a representation, 77

Yang-Mills
field strength, 152, 158
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