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Prologue 

This book originated in a course at the Ecole Polytechnique which covered approxim-
ately the first third of it. The course was aimed at undergraduate students, some of 
whom were majoring in physics and some in mathematics. The problem we had to face 
was that, contrary to what happens in some other places, the education these two com-
munities had received was rather unbalanced towards each other. The physicists had a 
good training in an advanced mathematical formalism, but mathematics was perceived as 
a mere tool to obtain a precise description of physical phenomena. Similarly, the math-
ematicians had used physics only as a demonstration of mathematics' ability to have a 
contact with the real world. Our aim was to show the deep entanglement of physics and 
mathematics and how these two disciplines through their mutual interactions over the 
past hundred years have enriched themselves and both have shaped our understanding 
of the fundamental laws of nature. Today, modern theoretical physics interacts with the 
mainstream research in pure mathematics and this interaction has resulted in the de-
velopment of new concepts common to both. We chose an approach which attempts 
to reconcile the physicists' and the mathematicians', points of view. It is based, on two 
ingredients: the concept of field, as it appears primarily in Maxwells' equations, and 
that of the path integral, as formulated by Feynman. With these two ingredients we can 
make the connection between the classical and the relativistic quantum worlds. We can 
introduce the underlying symmetries, including those of general relativity, and show how 
some fundamental physical principles, such as relativistic invariance, locality of the inter-
actions, causality, and positivity of the energy, can form the basic elements of a modern 
physical theory. 

In this approach we were confronted with the fact that practically one can never dir-
ectly give a mathematical meaning to the path integrals. This, however, can be done 
indirectly by the axiomatic link between our relativistic space—time and the Euclidean 
universe in which, under certain physical conditions, the existence of path integrals 
can be shown. This provides the foundation of what follows. We develop the stand-
ard theory of the fundamental forces which is a perfect example of the connection 
between physics and mathematics. Based on some abstract concepts, such as group 
theory, gauge symmetries, and differential geometry, it gives a detailed model whose 
agreement with experiment has been spectacular. This line of approach, from first prin-
ciples, all the way to specific experimental predictions, has been the guiding line all along. 
As a consequence, we decided to leave out subjects, such as the attempts to obtain a 
quantum theory of gravity based on string theories, because, although they involve very 
beautiful modern mathematics, they have not yet been directly connected to concrete 
experimental results. 



1 

Introduction 

1.1 The Descriptive Layers of Physical Reality 

Figure 1.1 describes how the different degrees of approximation of the physical 'reality' 
fit into each other. This course aims to describe a possible progression from bottom 
to top. 

We assume that the reader is familiar with classical mechanics, classical electromag-
netic theory, and non-relativistic quantum mechanics. Although the students to whom 
the material of this book was first addressed had a good background in mathematics cov-
ering the standard fields such as analysis, geometry, and group theory, the techniques 
we shall use will not exceed what is usually taught in an advanced undergraduate course. 
We have added three appendices with some more specialised topics. 

We start with a very brief reminder of the basic principles of classical mechanics. 
This book will develop the theory of relativistic quantum fields, so we have devoted the 
second chapter to the properties of the Lorentz group and, in particular, its spinorial 
representations. In the third chapter we present the first successful classical field theory, 
namely Maxwell's theory of electromagnetism formulated as a Lagrangian field theory. 
It will serve as a model throughout this book. The purpose is not to review classical elec-
tromagnetism, but rather to extract some features which will be useful in the discussion 
of more general field theories. In the fourth chapter we give a very brief review of general 
relativity, the other 'Classical' field theory. It shares with electrodynamics the property 
of gauge invariance, but it goes further because of the non-linearity of the transforma-
tions. These two classical theories have guided our intuition for the understanding of the 
fundamental forces of nature. 

The main applications we have in mind will be in elementary particle physics, so in 
the fifth chapter we present the space of physical states as the Fock space built out of free 
particles. We use the invariance under the Poincare group and no knowledge of second 
quantisation is required. 

In the sixth chapter we present the simplest relativistic wave equations for fields of 
spin 0, 1/2, and 1. They are studied as classical differential equations and in the next 
chapter we attempt to construct out of them a relativistic version of quantum mechanics. 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 



2 Introduction 

Relativistic quantum field theory 

h —> 0 

Non-relativistic quantum mechanics Classical field theory 
Schrodinger's equation Relativistic classical particles 

h —> 0 c 

Classical hamiltonian mechanics 

Figure 1.1 The different approximations of the physical reality. h is 
the Planck constant, c is the speed of light and h = 11127 

We show that all such attempts point unmistakably to a system with an infinite number 
of degrees of freedom, a quantum field theory. 

This quantum theory is presented using the path integral approach which is gradually 
developed in the next chapters. Following Feynman's original presentation, we show 
how we can derive Schrodinger's equation in the non-relativistic case. The quantum 
mechanical harmonic oscillator is analysed and we establish the connection with the 
formalism of canonical quantisation. In order to establish a more concrete mathematical 
framework, we pass to the Euclidean version, in which some rigorous definitions can 
be given. A special chapter contains elements of the axiomatic formulation including 
the two basic theorems which form the foundations of relativistic quantum field theory, 
namely PCT and the connection between spin and statistics. Finally, we develop the 
asymptotic theory and the Feynman rules for scalar, spinor, and electromagnetic fields. 
The extension to Yang—Mills gauge theories is based on the invariance of the effective 
Lagrangian under BRST transformations which allow for a unified treatment of the 
Ward identities and the gauge independence of physical quantities. 

The theory of perturbative renormalisation is developed separately, including its re-
lation to the renormalisation group and the problem of anomalies. Several properties 
of the correlation functions in quantum field theory, such as the analyticity properties 
in the complex energy plane, the problem of the infrared divergences, and the classical 
limit through the use of the coherent state formalism, are presented in separate chapters. 
A special chapter summarises the rigorous results which show the existence of some 
simplified field theory models beyond the perturbation expansion. The last chapters 
show various applications to particle physics. We present the standard model of strong, 
electromagnetic, and weak interactions and the various attempts to go beyond. 

A word about references and bibliography. This book touches so many subjects, 
without exhausting any of them, that a list of references is not practical. We decided 
to follow a minimal line and we shall give very few references. The choice is, to a large 
extent, arbitrary and the criteria vary in each case. They include: (i) books or articles 



Units and Notations 3 

whose arguments we follow very closely, (ii) works which are not widely known, and 
(iii) works whose reading is essential for the understanding of the results presented in 
the book. 

1.2 Units and Notations 

The basis for dimensional analysis is given by the mass [M], the length [L], and the time 
[T]. The dimensions of other physical quantities can be expressed as a combination of 
these three basic ones. For example, 

The speed of light c: [c] = 

The Planck constant h: [h] — [m[V2  

The force F: [F] = [1",11  
[7 ]' 

The charge e: [e] 2  = [M] [1 ]3  
[T]2  

The fine-structure constant a = e2  
4 hc — th, which is dimensionless. 

We will use from now on 'God-given' units, where 

h = c = 1. (1.1) 

In this system [L] = [T], [M] = [L]-1  ,[F] = [L]-2, and [e2] = [1]. 
The only unit left is [L]. 
Spatial vectors will be denoted x or x. Their components will generally be noted with 

Roman indices x = (xl , x2, x3) = ( {xi} ). 
Four-vectors will be denoted x and their component indices will be Greek letters: 

x = (x°  , x l  , x2  ,x3) = ({x0 }). 
We shall adopt the Einstein convention for the summation over repeated indices. 
A word about complex conjugation: In physics books the notation is not uniform. We 

shall adopt the standard convention according to which z denotes the complex conjugate 
of the complex number z. For an operator A we shall write A* or Al' for its Hermitian 
conjugate. Since for a c-number function the operations of complex and Hermitian con-
jugation coincide, we shall occasionally write f* for the complex conjugate off, especially 
in cases in which the same symbol may denote an operator in the following sections. 
Unfortunately, this simple rule has an exception: In the physics literature it has been 
established to use the 'bar' notation also in a different context. If @ represents a spinor, 
IP is not just the complex conjugate of it. We shall give the precise definition in the ap-
propriate chapter and we shall make sure there is no confusion whenever the symbol 
is used. 
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1.3 Hamiltonian and Lagrangian Mechanics 

We will give in this section a brief review of rational mechanics. The high-level concep-
tualisation of classical mechanics has played, since the end of the nineteenth century, an 
essential part in the development of physical theories. 

1.3.1 Review of Variational Calculus 

Given q E R" and let y = {t,q I q = q(t),to  < t < t1} be a curve in W' x R such that 
q(to) = qo and q(ti) = qi, and let the Lagrangian L:118" xR" x R —> R be a sufficiently 
regular function of 2n + 1 variables. We have the following. 

Theorem 1. The curve y is extremal for the functional 0(y) = f:
0
1  L(q,q,t)dt in the space 

of the curves joining (to, qo) to (t1, q1 ) if and only if the Euler—Lagrange equations are 

verified along y. 

We recall that the Euler—Lagrange equations are 

d (a.L, al, _ 
0•  dt 34) 84  —  

(1.2) 

The principle of least action links the Newton equations to the Euler—Lagrange 
equations. 

Theorem 2 (Least Action Principle). The extrema of the functional 0(y) where L = 

T — U, the difference between kinetic energy and potential energy, are given by the 

solutions of the equations of motion. 

The proof is obvious for T = 1  m(q, q) and U = U (q). Introducing the generalised 

momentum p = a --aL'  we have the following. 
q 

a Theorem 3. The Lagrange system of equations j) = and p = L — is equivalent to the 
q a q 

Hamilton system of 2n first-order equations 

ax 
p = __ 

a q 

ail 
q = —, 

ap 

where H(p, q, t) = pii— L(q, 4,0 is the Legendre transform of the Lagrangian. 

Proof. The Legendre transform is used to pass from a function L of 4 and q to a 
function H of p and q. One can invert the equation describing the generalised 

(1.3) 

(1.4) 
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momentum p from the Lagrangian to express 4 as a function of p and q: 4 = 
4(p, q, t). Therefore, we have (we suppose for simplicity that L does not depend 
explicitly on time) 

dH = —
HI 

dp + —
al-1

dg 
0p 0g  
. a4 aLa4 04 aLa4 0L 

= (q + p— — —) dp + (p— — — — —) dq 
013 aq ap aq aq aq aq 

= qdp — —
az,

dq 
a q 

using Hamilton's equations. 

We deduce that a function f (p, q, t) varies with t like 

df of of (a1-1) = + {H , =  
dt at aq ap ap at  

where by definition, the Poisson bracket of two functions f and g is given, component-
wise, by 

of ag  of ag {f, g} = 
a.7  aqi _

apt 
(1.9) 

If f does not depend explicitly on time, saying that f is a constant of motion is equivalent 
to saying that its Poisson bracket with H vanishes. 

Hamilton's equations also result from a stationary principle. Indeed, consider the 
variation of the action 

I 
 = f

L(q, q)dt = f pdq— H(p, q)dt 
to to 

(1.10) 

with 4(t) = q(t) + q(t) and 13(0 = p(t) + 8p(t) under the condition that 8q(ti ) = 
8q(to) = 0. We find that SI is null at first order if Hamilton's equations are verified. 

We will now give a global formulation of a Lagrangian system in mechanics. 
Given M is a differentiable manifold, T (M) its tangent fibre space, and L : 

T (M) —> R a differentiable function, a trajectory of the Lagrangian system (M, L), 
of configuration space M and Lagrangian L, is an extremal curve of the functional 

tl 

(y) = f L()i)dt, 
to 
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where Y E Ty  (t) (M) is the velocity vector. The system of local coordinates q = 
(qi , , qm) for a point of y (t) subject to a Lagrangian system verifies the Euler— 
Lagrange equations, L(q,q) being the expression, in local coordinates, of the function 
L. 

If the manifold is Riemannian, the quadratic form on the tangent space T = 
1(v, v) , v E Tq(M), is the kinetic energy. The potential energy is a differentiable function 
U : M —> R. A Lagrangian system is natural if L = T — U. 

These few formulae make it possible to solve problems of mechanics with constraints, 
by using the Euler—Lagrange equations. 

1.3.2 Noether's Theorem 

We will now formulate an invariance theorem. For each one-parameter group of dif-
feomorphisms of the configuration manifold which preserves the Lagrangian there is a 
corresponding prime integral of the equations of motion, i.e. a conserved quantity. 

Given h : M —> M, a differentiable map, and T (h) : T(M) —> T(M), the induced 
map on speeds, a Lagrangian system (M, L) is invariant if Vv E T(M): 

L(T(h)v) = L(v) . (1.12) 

We then have the following. 

Theorem 4 (E. Noether). If the Lagrangian system (M, L) is invariant under the one-
parameter group of diffeomorphisms hs  : M —> M, s E R, then the system of the Euler—
Lagrange equations admits a prime integral I : T(M) —> R. 

In a local chart 

a  
I (q, q) — 

L dh 

a q
(q)

ds s=0 
(1.13) 

 

Proof. We only treat the case M = Rm. Letf : R —> M be such that q = f (t) is a solution 
of the Euler—Lagrange equations. As L is invariant by T(hs), T (hs) f : R —> M 
satisfies also the same equations for any s. Consider the map 0 : R x R —> 
given by q = 0 (s, t) = hs(f (t)). By hypothesis 

aL(o*  az, , az, ., 
o= = —a) +aq 

as aq  
(1.14) 

where the indicate the derivation with respect to s, the dots with respect to t, and 
where the derivatives are calculated at the points q = ch (s, t) and 4 = ch (s, t). By 
hypothesis, for all constant s, the mapping 

(1)  s=constant : R )gym (1.15) 
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verifies the Euler—Lagrange equations 

a _ aL(o,) 
at L ag 0g • 

By using this equality in (1.14), we have 

0  =  
,cit)q  04 ,cTq cT q at.  

(1.16) 

(1.17) 

1.3.3 Applications of Noether's Theorem 

Let us apply the theorem to the Lagrangian of N particles L = EN_' 1;121(q`)2  — 
U(q1  , • • • ,qN), qt E R3, i = 1, • • • ,N in the following two cases: 

1. The Lagrangian is invariant under translations 

: —> q`+ sa, a E R3, i= 1, • • • , N. 

2. The Lagrangian is invariant under rotations 

hs  : qt  —> (R(n, 9)q`), i = 1, • • • ,N, 

where R(n, 9) is a rotation of direction n and angle B. 

(1.18) 

(1.19) 

Setting q = (q1  , • • • ,qN), q E M = (R3)®N, we can define obviously in both cases an 
extension of hs  to M. 

Note that in both cases it is a property of the potential that is expressed, since the 
kinetic energy term is invariant under both translations and rotations. 

1.3.3.1 Invariance under Translations 

Given hs(q1) = qz + sa, therefore 

SO 

dhs(q1) 
 = a, 

ds 
(1.20) 

, _ 
aq g  z, E) — miq a _ a = pa (1.21) 
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and 

d/ dp a dp 
0 = — = = a — 

dt dt dt 
(1.22) 

since a is a constant. 
We thus see that the invariance under translation of the Lagrangian implies the 

conservation of the total momentum. 

1.3.3.2 Invariance under Rotations 

Let us fix the direction of the rotation and take as parameter s the angle of rotation. It is 
a one-parameter group of diffeomorphisms. Now with 

he(g1) = R(n,6)qz  = q`(9) (1.23) 

we have 

d d 
c li(9(q)  = c q (9)

(1.24) 

The conserved quantity is 

and since 

this shows that 

and therefore 

I = '41(9)  d9q1(19)1e=o,  

d
d9 qt 
 • 

(9) = 
sin9 (nq • qi  — qi) + cos9 n A qi  

i=1 

(1.26) 

(1.27) 

R(n,9)q = [cos91 + (1 — cos9)n n + sim9 nn]q , (1.25) 

N (N 

I = Em • (n A q1) = min • (qi  A ) = n • 
E 

q1 A Y=) . 

i=1 i=1 i=1 

As I is conserved for any n, what follows is the conservation of the total angular 
momentum: 

N 

L = (1.28) 
i= 



2 

Relativistic Invariance 

2.1 Introduction 

Until the beginning of the twentieth century, physicists postulated the existence of an 
absolute time, a Euclidean space, and `Galileo's Principle of Relativity', that is to say the 
invariance of the laws of physics by the Galilean group of transformations. The transform-
ations generating this group are space rotations, constant translations in space and time, 
and the passage from one reference frame to any other in uniform motion with regard to 
the first. Some reference frames, the reference frames of inertia, are privileged. They are 
such that the laws of physics are the same there as in absolute space. 

The principle of Galilean relativity and the idea of an absolute time are at the origin 
of the Principia, written by Newton in 1686. Newton justifies them by the predictive 
power of the physical theories that come from them. However, he perceives their limits 
by the following consequences: the unobservability of space by any experiment, the in-
stantaneous propagation of signals, and the interaction between corpuscules. He writes 
to Richard Bentley in 1687: 

`That one body may act upon another at a distance through a vacuum, without the me-
diation of something else, by and through which their action and force may be conveyed 
from one to another, is to me so great an absurdity, that I believe no man, who has in 
philosophical matters a competent faculty of thinking, can ever fall into it.' 

More than any other, with the range of mathematical knowledge of his time, New-
ton knew that he could not go any further in his analysis of space—time. Many of his 
writings state his faith in the future generations to deepen the understanding of natural 
phenomena, theoretically and experimentally. 

The theory of electrodynamics presented by Maxwell in 1864 and the Michelson ex-
periment mark the abandon of the Newtonian theory of space and time. The Maxwell 
equations predict that the speed of light in the vacuum is a universal constant c (equal, by 
definition, since 1983 to 299, 792, 458 m s-1). Because of the Newtonian law on composi-
tion of speeds, this prediction cannot be true in two frames in relative motion defined by a 
Galilean transformation. The existence of an ether serving as support to the propagation 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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of light has allowed for a certain time to admit that only the laws of mechanics obeyed 
the Galilean principle of relativity, the laws of electromagnetism being true only for some 
particular inertial frames, those at rest with respect to the ether. Faced by the failure of 
the experiments to measure the speed of motion of the earth in the ether, and partic-
ularly the Michelson experiment, the proposition from Poincare, Lorentz, and Einstein 
to replace the Galilean transformations with the Lorentz transformations led Einstein 
to introduce in 1905 a new mechanics in which electrodynamics and mechanics satisfy 
a unique principle, the principle of special relativity. This new principle postulates the 
invariance of the equations of physics by Lorentz transformations rather than by those 
of Galileo. One of the spectacular consequences of this new mechanics is the violation 
of the law of composition of velocities predicted by Newton's theory. The principle of 
equivalence of the forces of inertia and of gravitation, discovered by Einstein in 1916 
makes it possible to incorporate gravitation within the frame of a relativistic theory. This 
principle is the basis for the theory of general relativity. It is equivalent to the statement 
that no experiment confined to an infinitely small region of space—time could allow us to 
distinguish an inertial frame from another one. 

Today the hypothesis on space—time is as follows. It should be possible to write the 
laws of physics geometrically in a Riemannian manifold of four dimensions, locally equi-
valent to a Minkowskian space with a signature (+, —, —, —). The microscopic particles are 
described by local fields. If we introduce a system of local coordinates, the classical equa-
tions of motion are differential equations, deriving by a principle of least action from an 
action invariant under local Lorentz transformations. The quantum theory is founded 
using the formalism of functional integration, leading back within certain limits to the 
classical theory. 

Einstein's theory allows coherent classical descriptions of gravity and electrodynam-
ics. Although we will not study the quantum theory of gravitation in this book, it is 
still necessary to understand how the force of gravity is linked to the local proper-
ties of space—time. We shall give a brief summary of the classical theory of general 
relativity in Chapter 4; here we want only to point out that a simple consequence of 
Einstein's equations is that the gravitational attraction between corpuscules is linked to 
the curvature of space, itself induced by the corpuscules. Let us take the simplified case 
of a two-dimensional curved space, for example a sphere. Let two test particles exist in a 
neighbourhood considered as small compared to the curvature of the sphere. According 
to Einstein's principle, they must move at a constant speed on geodesics, that is to say 
on big circles. If we observe the particles for a sufficiently short time, their trajectories 
appear to be parallel and the Newtonian principles are respected. After a certain time, 
the observer will see the particles to converge. He will then be able to conclude that there 
exists an attractive force between the two particles. 

Einstein's analysis on the nature of space—time is confirmed by many experiments 
in classical physics. However, the quantum theory of gravitation still escapes our com-
prehension despite the common efforts of physicists and mathematicians. Moreover, 
because of the orders of magnitude of physical constants and perhaps because of our 
lack of imagination, there do not exist experiments putting into evidence a gravitational 
quantum effect. 
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In the following, unless stated otherwise, we will systematically neglect the action of 
gravity. We will try to give an insight of the techniques that have made it possible to give 
a sufficiently satisfactory description of microscopic physical interactions, other than 
gravity, between particles. 

In the approximation where we neglect gravitation, everything is as if space—time is 
not curved. We therefore postulate that the physical scene is the Minkowski space M4, 
that is R4, with the metric tensor gt,„dx11  0 doe = ds2, with components 

1 0 0 0 
0 —1 0 0 

G = {guy} = 0 0 —1 0) 

0 0 0 —1 

(2.1) 

where the indices it and v take the values 0, 1, 2, 3. 
The rest of this chapter is devoted to the study of the Lorentz transformations, i.e. to 

the group leaving the quadratic form gp,„xlixv invariant; it is the invariance group of the 
Maxwell equations. Since we intend to write later the Dirac equation, which generalises 
the Maxwell equations, to include particles of spin 1/2, we will introduce the notion of 
spinors, which is otherwise fundamental in rotation theory. We will consider the spinors 
firstly in the simplest case, that of the three-dimensional Euclidean space, then those 
linked to the four-dimensional relativistic space. 

2.2 The Three-Dimensional Rotation Group 

Let us consider the rotation group in the three-dimensional Euclidean space R3. The 
vectors x of this space form a representation space which is easy to visualise. The action 
of a rotation on the vectors is characterised by a rotation axis, which is a unitary vector 
n, and an angle 9 defined modulo 27. It is represented by a real 3 x 3 matrix R, such 
that the length of the transformed vector x' = Rx is equal to that of x. If G is the metric 
of R3  (in Cartesian coordinates, G11  = 3jj, the Kronecker symbol), we have the relation 

Rtr GR = G, (2.2) 

where R" is the transposed matrix. By taking the determinant of both sides of this equal-
ity we find det R = ±1. We deduce that the group of rotations 0(3) is made of two 
connected components: one containing the identity 1, the other —1. We go from one to 
the other by the action of the inversion operator, —1, which by definition changes the 
sign of every coordinate.1  Let us study, without loss of generality, SO(3), the connected 
component of 0(3)'s identity, defined by det R = 1. 

The elements of SO(3) are made of the elements of the group of 3 x 3 orthogonal 
matrices with determinant equal to 1. This group is connected but not simply connected. 

1  In physics we often call the operation of space inversion parity (P). 
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The points of intersection with the sphere, B and B', are identified. 

Figure 2.1 SO(3) is not simply connected. 

Simply connected means that if we have two elements of the group gi and g2  and two 
curves continuously joining these two elements, g(t) and g(t), 0 < t < 1 with g1  = g(0) = 
k-(3) and g2  = g(1) = k(1), there exists a continuous function g(t, s) on the group such 
that g(t,0) = g(t); g(t, 1) = g(t). 

To prove that the rotation group is not simply connected, we can proceed as follows: 
see Fig. 2.1. Any rotation is characterized by the direction n and the angle 0 of the 
rotation, 0 < 0 < 7. We represent a rotation by a vector, at the origin of coordinates, of 
direction n and length 0. The manifold of the group is then a ball of radius 7 such that 
2 antipodal points of the edge are identified (this means that a rotation around an axis 
n with an angle 7 + E is represented by a rotation of axis —n and angle 7 —E). We see in 
this representation of the group manifold that this group is compact (more precisely, it 
is the image of a compact set in the space of parameters). Moreover, given a rotation of 
angle 0, 9 # 2kn-  , there exist two types of laces (continuous families of one-parameter 
rotations) linked to this element that are not continuously deformable one into the other: 
the laces that stay inside the ball and those that cross two antipodal points of the edge. 

Let us study the group SO(3) without losing the general nature of the exposition. 
The theory of Lie groups enables us to write any element R E SO(3) as an exponential 
matrix: 

R(n,0) = R  = e—iOnj (2.3) 

with,/ = (11,12,13) and 

uk,gli = isklmyn. (2.4) 

The three matrices J are the three generators of the Lie algebra of the rotation group 
0(3) and we deduce from the fact that the elements of the group have a unit de-
terminant that the Lie algebra is made of Hermitian matrices with trace equal to 0. 
They define, with their commutation relations, a three-dimensional representation, the 
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vectorial representation of the Lie algebra, also called the associated representation. The 
commutation relations are by definition independent of the chosen representation. 

Let us find the expression of the generators in Cartesian coordinates. Consider first 
the case of a rotation R3 (0), of angle 9, around the third axis, the z axis. We have 

cos 9 - sin 9 0 
R3 (9) = sin0 cos 9 0 (2.5) 

0 01 

As R3 (0) = Cie-73  for all 9, we find J3  by comparing (2.5) to the derivative of Cie-73  with 
respect to 9, calculated at 0. Similarly, we can consider the rotations around x and y axes. 
We come up with the following expression of the three generators 

00 0 00 i 0-i 0 
11  = 00-1i); J2 = (o 0); J3 = i 00) . 

0 i 0 -i 0 0 0 00 
(2.6) 

Note that the matrix elements of the three generators ji  are identified with the 
structural coefficients isiik  of the group. The composition law of the rotations on the 
vectors is automatically taken into account by the formula expressing an element R as an 
exponential of matrices of the Lie algebra. 

Let us now consider a differentiable function f : R3  —> C and study its variation for 
an infinitesimal rotation of the argument. This variation is described by the derivative 

f (Cin  x)1 = ( in Jidx/ = in • (x,JV)f (x). 
d9  e=o

f (x) 
x, 

The three differential operators 

= -(x,J1V) = -xk i  

are the components of the angular momentum L. We can verify by using formula 
(2.6) that 

= = [r A NI (2.9) 

and therefore at the leading order in 9, for 9 small, 

f (e-in  *-16  x) f (x) - i0n • Lf (x). (2.10) 

Of course, the differential operators Li  verify the commutation relations (2.4) of the 
Lie algebra of the rotation group. 

(2.7) 

(2.8) 



14 Relativistic Invariance 

2.3 Three-Dimensional Spinors 

Experimentally, we know there exist in II geometric objects other than vectors. A deeper 
understanding of the action of the rotation group in three dimensions, and consequently 
of the Lorentz group, is obtained by the introduction of spinor representations.2  These 
representations are different from those that transform vectors and tensors. The spinors 
and their applications in relativistic physics have been revealed by detailed studies of 
rotations in the three-dimensional Euclidean space and in space—time. Already in the 
nineteenth century, mathematicians and theoretical physicists had foreseen some sub-
tleties of the rotation group that we cannot understand if we only consider the action 
of this group on vectors of the Euclidean R3  space. Their detailed motivations present 
only a historical interest today but, among them, a simple one is the following: it is well 
known that complex numbers are associated with rotations around an axis. This is due 
to the local isomorphy between the 0(2) and U(1) groups. The natural question is now 
`Are there "numbers" which are similarly associated with 0(3) rotations?' It seems that 
the answer was found by Sir William Rowan Hamilton in 1843.3  On October 16th of 
that year, after some years of thought, and during a walk with his wife along the Royal 
Canal at Dublin, Hamilton engraved with a knife on a stone of the Brougham Bridge the 
formula 

= = k2 = ijk  = (2.11) 

He had just discovered quaternions which today we represent using the Pauli matrices 

al = 
( 0 1 = 

1 0 )
ii a2 = = 

) 
Q3 

1 0 
3 
 = ) 

= ik. 
0 —1 

(2.12) 

We see that in order to find the 'numbers' sought by Hamilton, we must give up 
commutativity.4  Using quaternions, the rotation formula (2.3) becomes 

0 0 
R(n, 0) = cos — — i sin — n • o- 

2 2 

The law of composition of rotations is obtained by matrix multiplication: 

R(123, 03) = R(111, 01 )R (n23 02)• 

(2.13) 

(2.14) 

2  The terminology 'three-dimensional spinors' may cause confusion. More precisely it refers to the two-
dimensional representation of the Lie algebra of 0(3). In fact, a three-dimensional spinor has two components. 

3  As usual the actual history of the discovery is more complicated. Already Euler in the previous century 
had obtained the so-called 'four squares formula'. In 1840 the French banker and mathematician Benjamin 
Olinde Rodrigues applied this formula to describe rotations in three-space, but he did not write the algebraic 
properties of quaternions. It seems also that quaternions were known to Gauss as early as 1819, but his work 
remained unpublished until 1900. 

4  We can extend the argument and find octonions, but then we must also give up associativity. 
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The remarkable point is the dependence on 6/2, which shows the existence of geo-
metric objects needing a rotation around an axis of 47 rather than 27 to return to their 
original state. 

The law of transformation discovered by Rodrigues and Hamilton is that of a rotation 
acting on a new geometric object, a spinor, the properties of which we will study next.5  

We will introduce the spinors simply, beginning with the transformation laws under 
rotation of vectors belonging to R3. For each vector x E R3, represented by the triplet of 
numbers x1, we can associate the 2 x 2 matrix 

= crixi  = x • o-, (2.15) 

where the a, are the Pauli matrices. The x" values being real, the matrix x is Hermitian. 
Furthermore, it has a null trace because the Pauli matrices have a null trace. From the 
identity 

Criaj = aij jEijkak, (2.16) 

we easily show that 

xi  = 2 -1  Tr(ao-c) and det = - < x, x >_ _xer Gx  = _xixi  = _ixi23 (2.17) 

and there is a one-to-one correspondence between .k" and x. 
As we know the laws of transformation by rotations of the components of the vector 

x, we can calculate the manner in which the matrix x transforms. For any 3 x 3 matrix of 
rotation R, such that x' = Rx, we will associate a 2 x 2 matrix with complex coefficients 
A(R), noted A, such that 

= A.k.A* (2.18) 

This matrix is not unique, as we can see from the previous formula, because if A(R) 
satisfies it, so does aA(R), with a being a complex number with modulus 1. The trans-
formation is not linear but quadratic, and the form of the equation has been chosen 
in such a way as to preserve hermiticity. The conservation by rotation of the norm of 
a vector, < x', x' >=< x, x >, implies that I detAl = 1; we can, therefore, choose 
a = (detA)-1/2  and suppose, without loss of generality, that det A = 1. We will now de-
termine the A(R) with the condition that these matrices have a group structure. We will, 
in fact, show that A is an element of SU(2), the unimodular group, that is to say the group 
of 2 x 2 unitary matrices with unit determinant, and that there exists a homomorphism 
from the SU(2) group to the rotation group. 

The unitarity property results from the preservation of the property of nullity of the 
trace 

5  The modern theory of spinors was developed by Elie Cartan in 1910. In physics the spin of the electron 
was introduced by Samuel Goudsmit and George Uhlenbeck in 1925, following suggestions by Pauli, who also 
introduced the Pauli matrices in 1927. 
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Tr = TrA,"cA* = Tr,"cA* A = 0 Vx, (2.19) 

which means that A* A = al and the condition on the determinant forces the constant a 
to equal 1. This is proved by using the fact that the matrix A* A is Hermitian and that any 
Hermitian matrix is a linear combination with real coefficients of the three Pauli matrices 
and of the identity. 

The 2 x 2 identity matrix 1 is a natural neutral element for the group of matrices that 
we are looking for. It corresponds to the identity of the rotation group and its determin-
ant is 1. To calculate the explicit form of any matrix A, we will use the group structure. 
We will therefore consider transformations close to the identity, a general transformation 
being obtained by the composition of infinitesimal transformations. 

We can characterise an infinitesimal rotation by its three angles 860  and 

xi  = + sijk86ixk. (2.20) 

By continuity, the matrix A is infinitesimally different from the unit matrix and can be 
written A = 1+ M. As A has a unitary determinant, SA's trace is null, and we can express 
it using the Pauli matrices. Therefore, A = 1 + A • o, where the components XI, A2, X3 of 
X are infinitesimal. Thus we have 

= + (X • o- ).k + .k(i • o- ). (2.21) 

By comparison of the two equations giving x' and by using the multiplication law of the 
Pauli matrices, we find easily that the components of the vector A are pure imaginary 
numbers, with ),./ = —i807 /2. Finally, for an infinitesimal rotation, we have 

A= 1 — 
2
-80 • o- (2.22) 

As the matrices A form a group, this formula is integrable as an exponential. We find for 
a finite rotation, with angle 6 and direction n: 

A = exp {—iOn • (2.23) 

Remark: The correspondence which for R E SO(3) associates a matrix A with det A = 1 
is not bijective because the matrices A and —A give the same rotation as det(-1) = 
det 1 = 1. 

Comparing this formula to (2.3), we see that the matrices a/2 have played for A the 
same role as,/ for three-dimensional rotations. In fact, from the properties of the Pauli 
matrices, the commutation relation 

1 1 1 
[-2 Cri, —

2 
Crj] = ieijk —

2 
Crk (2.24) 

follows. 
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These matrices form a two-dimensional representation of the Lie algebra of the rota-
tion group. The fact that the groups SO(3) and SU(2) have the same Lie algebra shows 
that they are very close to each other. In fact, the group SU(2) is a simply connected 
Lie group; it is the covering group of the rotation group. Simple connectedness is ob-
tained by associating with each element of SO(3) two elements of SU(2): A and A. The 
preceding arguments yield the existence of a group homomorphism 

: SU(2) —> SO(3), (2.25) 

given by 0 (A(R)) = R and with kernel {-1, 1}. Using the exponential development of 
matrices and the properties of Pauli matrices, we can rewrite (2.23) as 

0 
A = cos — — i n • a sin — . 

2 2 
(2.26) 

Using the property 111111 = 1, it is easy to verify that det A = 1 and that the matrix A is 
unitary. 

It is possible to make the matrices A E SU(2) act as linear operators on the vectors 
of the C2-vectorial space and on the components r' as 

= AcW (2.27) 

The preceding transformation law defines as a three-dimensional spinor. What distin-
guishes a spinor from a vector is the dependence of the transformation matrix A to half 
the angle of rotation. 

In modern language, the set of matrices A E SU(2) and the vectorial space C2  con-
stitute the representation of spin 1—that we note D112—of the rotation group. This 
representation is not reducible (as we shall see in the next section). 

Later on, we will see that the physically interesting objects, the wave functions, solu-
tions of a spin-1 non-relativistic equation, and the Pauli equation,6  transform as the 
spinors of this representation. 

As in the case of vectors, we can easily define a scalar product invariant under the 
action of the rotations. For this, we introduce the spinor's metric tensor 

( 0 1\ 
""16  = 0 ) = la2.  

(2.28) 

The scalar product of two arbitrary spinors and 4  is then defined by the antisymmetric 
quadratic form 

01. 4.2 0241. (2.29) 

6  The Pauli equation is a generalization of the Schrodinger equation for the spin4 particles that we will 
study in Chapter 6. 
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The invariance of the scalar product under rotation results from the property det A = 1. 
We can observe that the scalar product of any spinor with itself is zero: 

< 0
. (2.30) 

We therefore cannot use the invariant scalar product < , > to define a norm for 
spinors. 

The introduction of the metric makes it possible nevertheless to define a tensor cal-
culus according to the usual rules of rising and lowering indices. Thus, the components 
e of a spinor are called contravariant and the components = WV5  are called covari- 
ant, and we have = —rfi. We can rewrite the scalar product of two spinors under the 
form 

< 0,4 >= -4).e = 4)", (2.31) 

The action of a rotation of matrix A on the covariant components is therefore 
expressed by the matrix '2.64--1, which is also unimodular. A simple calculation shows that 

/4-1  = = A, (2.32) 

and since E SU (2), the representations given by A or by A are equivalent. We recall 
that in these formulae 'bar' means complex conjugation. Furthermore, we can see that 
by rotation, the covariant components of a spinor transform in an identical manner 
as the complex conjugate components e of the contravariant components e. 

The preceding remark leads to the observation that the initial representation of the 
rotation group defined by vectors of R3  can be obtained from the tensor product D112  0 
D112  of two spin representations, a phenomenon described by the formula = AkA* , 
which is written in components 

= 21`;241: xYs. (2.33) 

As the matrices A are unitary, we can define, without using the scalar product defined 
earlier, the invariant norm of a spinor in the following manner: 

II 4'  11=  tr& = 1& 1 4.2& 2 . (2.34) 

In quantum mechanics, this bilinear and positively defined scalar form is used to define 
the probability density of the presence of non-relativistic particles of spin 1. 

The identity of the transformation laws by rotation of (&1, 2) and 2,- 1) is closely 
related to the symmetry with respect to the inversion of time. 

2.4 Three-Dimensional Spinorial Tensors 

The notion of spinors of higher rank is introduced according to the ordinary procedure 
of tensor formalism. Thus, the spinors which have been introduced earlier are called 
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rank 1 spinors. A contravariant spinor of rank 2 is a quantity made of four complex 
components IVO that transform by rotation as the products re of the contravariant 
components of two rank 1 spinors. By using the metric tensor W, we can consider the 
covariant (Pap or mixed (11 components, transforming as the products c,(1)13 or actip We 
have 

'Pap = = "pyW" • (2.35) 

= = —tp21
3

= W 2 = Ip22
, 

 Therefore, etc. We define similarly tensors 
of arbitrary rank, the rank of a tensor being the number of its indices. Spinor algebra, 
and particularly the operations of symmetrisation and anti-symmetrisation, is relatively 
simple to master, given that each index can take only two values. 

The quantities W form themselves an invariant antisymmetric tensor of rank 2. Be-
cause an index can only take 2 values, there exist only rank 2 antisymmetric tensors, 
and any antisymmetric tensor is the product of a scalar by the metric tensor W. We can 
easily verify that the product .'„i3eY is, as it should be, the 'unit spinor', that is to say, 
the rank 2 symmetric spinor Si = 62

2 = 1, 621 = Si = 0, with  

".:efie y  = 6)c: • (2.36) 

In spinor algebra, as in tensor algebra, we have two fundamental operations: the 
product of two spinorial tensors and the contraction of two indices of the same type 
(either upper or lower) by the metric tensor. The multiplication of two tensors of ranks 
n and m gives a tensor of rank n + m, and the contraction on two indices lowers the rank 
by two units. Therefore, the contraction of the rank 6 spinor VC" on the indices µ, and 
v gives the rank 4 spinor WAr; the contraction of the rank 2 spinor W, gives the scalar 
(or rank 0 spinor) (11, etc. Because of the antisymmetry of the metric tensor, it is clear 
that the contraction of a tensor on two symmetric indices gives the null tensor. 

Contraction being the only covariant operation that makes it possible to lower the rank 
of a tensor, we can deduce that spinors which are totally symmetric on all their indices 
form the spaces of the irreducible representations of the rotation group. Consider a 
spinor u of rank n, element of (C2) (E'in  , on which acts the tensor representation (D1/2)®n by 

(D1/2)On uai •••an Aal uth fin 
fit fin 

(2.37) 

If n > 1, the representation defined by (2.37) is not irreducible. To show this let us 
consider the contraction of two indices of u: 

vce3 •••cen  = •••ceSat a2 n cen -cen  = Ul2••• — u
21. ..an  (2.38) 

The space of the v's is an invariant sub-space of the representation defined by (2.37). 
This shows that only the completely symmetric tensor spaces do not have invariant sub-
spaces. 
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With a simple count, we find that the space of representations of totally symmetric 
spinors of rank n has dimension n + 1, as only the components having 0 times, 1 times, 
... or n times the index 1 are distinct. 

The decomposition of any rank n spinor 1/1"13 Y..• with respect to the space of irreducible 
representations (made of totally symmetric spinors) gives a set of symmetric tensors of 
rank n, n-2, n-4, etc. The algorithm of decomposition is the following: symmetrisation 
of (I/ "13Y ''' with respect to all its indices which gives a tensor of the same rank; then, con-
traction of the various pairs of indices of the initial spinor gives rank n— 2 tensors of the 
form 1/1,"'"' that, once symmetrised, give symmetric spinors of rank n— 2. Symmetrising 
the spinors obtained by contraction of two pairs of indices, we obtain symmetric spinors 
of rank n — 4, etc. Symbolically, we can write 

= tp{n} + {n-2} mp in-41 m.q., In-61 (2.39) 

As an example, for n = 2, Ili {2}  has for components 1(/14  + 0"), and IP i01  is a scalar 
whose value is 1(1/1"13  — ilifiagco. The space of representations of ({2}  is of dimension 
three. We can see that this spinor corresponds to the vector a whose components are 

1 
a1 = (Wu  — 11122), a2  = V 2 (Wu + W22), 

V2  
a3 = —iN/D/1.2. (2.40) 

From spinors, we can generate, in fact, all the tensors with integer spin that are usually 
obtained by tensor products of vectors. 

Let us end this section by pointing out that the components of the spinor the 
complex conjugates of (1/0..., transform as the components of a contravariant spinor 
Oafi..• and vice versa. The sum of the squares of the moduli of the components of any 
spinor is therefore an invariant. 

2.5 The Lorentz Group 

When we neglect the effects of gravitation, the Lorentz group is the fundamental group 
of invariance of any physical theory. Physically, it is clear that this group contains two 
subgroups, with six generators in total: the group of spatial rotations, already studied, 
with three generators corresponding to rotations in the planes xy, yz, and zx, and the 
group of pure Lorentz transformations, with three generators corresponding to changes, 
at constant speed, of the reference frame along the axes x,y, and z, transformations that 
we can represent formally as rotations of imaginary angles in the planes xt, yt, and zt. 

We, therefore, define the Lorentz group as the set of all real linear transformations that 
leave invariant the quadratic form (x,y) = gp,„x12yv  = = x pyi2  

The fact that these transformations form a group is obvious. The neutral element 
of this group is the identity 1. Let A be a Lorentz transformation: „xv; the 
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invariance of the quadratic form (x,y) = (Ax, Ay) leads to the equality 

g

to, 

 = AO 

0

A0. 

 v

g

e, 

 = (Atr)

12

0 Aa 

v

g

ea, (2.41) 

which in matrix notation can be written as 

11'G11 = G, (2.42) 

where G is given by (2.1). By taking the determinant of the two members of the previous 
equality, we find that 

det A' det G det A = det G(det A)2  = det G. (2.43) 

Therefore, det A = ±1. Taking the component (0, 0) of that equality we find that 

3 

(42  _E(A02 = 1, 
i=i 

(2.44) 

which implies that 141 > 1. We can deduce that the Lorentz group is formed out of 
four connected components corresponding to the different signs of det A and of Ag. 

These four connected components respectively contain the identity matrix 1, the in-
version of space Is  given by the matrix G, the inversion of time Is  given by —G, and the 
product Ish of the inversions of space and time, given by —1 (see Fig. 2.2). 

We will now focus on one subgroup of the Lorentz group, the restricted Lorentz group, 
LI, that is such that det A = 1, represented by the sign +, and A°0  > 1, represented 
by a time arrow axed up. This subgroup is the connected component of the identity. 
The benefit of its study is that the knowledge of an infinitesimal neighbourhood of the 
identity suffices to totally determine the subgroup. 
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Figure 2.2 The four connected components 
of the Lorentz group. 
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The other subgroups are the proper group L+  = LI U L+, the orthochronous group 
Lt = L_t, U Lt, and L_t, U LI. 

Two types of transformations are particularly important for physics: the pure Lorentz 
transformations of direction n, n • n = 1, and speed v = c tanh , 

(Ax)°  = x°  cosh 4' + x • nsinh 

Ax = x — (x • n)n + (x • n cosh + x°  sinh )n, (2.45) 

and the spatial rotations of angle 6 around an axis n, 

(A x)°  = x0  

Ax = x cos 0 + n(n • x)(1 — cos 9) +nAxsinO. (2.46) 

We can prove that any element of the restricted Lorentz group can be written as the 
product of a rotation and of a pure Lorentz transformation. 

The spatial rotations are given by 4 x 4 matrices of the form 

( 101  
Or ) ' (2.47) 

where r is a 3 x 3 rotation matrix of the underlying Euclidean space R3. We can easily 
check that these matrices verify the relation (2.42), that they contain the identity, and that 
this form is preserved by multiplication: therefore, that these matrices form a subgroup 
of the Lorentz group. 

We shall now recall some essential facts of relativistic geometry. 
The transformations (2.46) are usual rotations of the underlying three-dimensional 

space; we shall, therefore, focus strictly on pure Lorentz transformations. 
Let us consider two frames K and K, K in motion with constant speed v along an axis 

Ox1  with respect to K. Let us write, using the general formula (2.45), the coordinates of 
a point x of universe in a frame K in terms of its coordinates in K. We find that 

0 v 1 1 v 0 
X - -c X X - -c X - 0 . -1 - 2 2 -3 3 

X = 5 X =   ; X = X ; X = X 

Ill - Ill-  52  
C2  

(2.48) 

where we used the fact that cosh = 41 — 5 and sinh = —(v/c),11 — 5. 
Given a four-vector x, the sign of x2  = (x, x) splits the Minkowski space into three 

disjoint subsets: 

• The time-like vectors defined by x2  > 0 

• The light-like vectors defined by x2  = 0 

• The space-like vectors defined by x2  < 0. 
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Two events, characterised by two space—time points x and y, are in causal relation if x— y 
is time-or light-like. If x°  > y°, x is said to be in the future of y, or that y is in the past 
of x. We can check that for time-like vectors the notions of past or future are Lorentz 
invariant. 

Finally, it is useful to enlarge the Lorentz group by including the translations. Thus, 
we define the Poincare group, or the non-homogeneous Lorentz group as the group of 
transformations7  (a, A), a E M4, such that ((a, A)x)i' i--> Ai' v xv + aµ, satisfying the 
composition law 

(ai, il i )(a2, A2) = (a1  + A i a2, A i  A2). (2.49) 

Just as the Lorentz group, the Poincare group has four connected components that 
we can determine. The Poincare group is the group of invariance of the equations of 
relativistic physics. It is the most general real group leaving invariant the metric ds2. It 
will play an important role later. 

2.6 Generators and Lie Algebra of the Lorentz Group 

Each Lorentz transformation, pure or rotation, depends on three parameters: two for 
the direction n and one for the angle or the speed. We will focus on infinitesimal 
transformations. 

Let E be an angle or a speed and A (E) an associated Lorentz transformation (also 
depending on the direction n) that we normalise so that when E —> 0, the transformation 
A (E) —> 1. So, at first order in E, A (E) = 1 + EX, and 

ATr  GA = (1 + EX") G(1 + EX) = G; (2.50) 

that is, 

XTr  G + GX = O. (2.51) 

For the sake of simplicity, we will write all the matrices in covariant notation; we will be 
able, with the help of the metric tensor, to lower or raise the indices. Thus, in this nota-
tion, the preceding relation is written as A = —X vo; that is, X is antisymmetric. We have 

),.. = d — de A(e) 
E=0 

(2.52) 

  

Let us find a basis for the X' values. For this purpose, let us suppose that the pure 
Lorentz transformations are of the form8  

7  It is the semi-direct product of the Lorentz group and of the group of translations in Minkowski space. 
8  We can verify that for any A such that Air  G + GA = 0, and any real e, e€A  is a Lorentz transformation 

belonging to the restricted group. 
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e'n •N (2.53) 

and the pure rotations 

e-i6in (2.54) 

Note: The notation a • A, with a being a three-vector and A three matrices A1, A2, 
and A3, means that E;_i  a'4 and, if the three matrices 4 do not commute among 

each other, eia • A  is generally different from eialAl eia2A2  eia3A3, the exponential being 
defined by its series expansion. 

N and) are six antisymmetric (4 x 4) matrices (with mixed indices, i.e. as operators 
of M4  —> M4, they verify the relation (2.51) that all the generators of the Lorentz group 
must satisfy). 

By computing the derivatives around the identity of the Lorentz transformations and 
by comparing them to in • N for the pure Lorentz transformations and to -in •J for the 
rotations we find the relations 

[yk
,
Jl] = is  klmyn (2.55) 

[N12
, 
 Nil = _is  klMyn (2.56) 

Uk
, 
 Nil = is  121MNM (2.57) 

The six matricesf and N are the six generators of the Lie algebra of the Lorentz group, 
algebra defined by the preceding relations. The first of these relations is nothing else than 
the relation that must be satisfied by the generators of the rotation group. The generators 
N do not form a closed sub-algebra since their commutators are expressed in terms of 
the J' values. The structure of the Lie algebra of the Lorentz group can be understood 
in a better way by complexifying it: 

1 1 
Jl = -2 

(1 + iN) and J2  = 
2 
-U - iN). (2.58) 

One then finds that 

uce
k 

a
l = isklm qm with a = 1 or 2 

[113,121 = 0. (2.59) 

One has, thus, brought to the fore that the Lie algebra of the Lorentz group is 
generated by two copies of the Lie algebra of the spatial rotation group. 

One can form with Ji and J2  two quadratic invariant operators (the so-called 'Casimir 
op erators') : A and J22, where J2 = gigi /2,72 + q3 q3 These operators commute with 
J1  and J2, thus with all the elements of the algebra and with each element of the restric-
ted Lorentz group. In the case of an irreducible representation, they are, from Schur's 
lemma, proportional to the unit matrix 



= cr = 
xl + ix2  x° — x3  

( x°  + x3  x1  — ix2  
(2.61) 
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A = + 1)1 and =12(12 + 1)1, (2.60) 

II and j2  being integers or half-integers. 

2.7 The Group SL(2, (C) 

The Lorentz group is a Lie group which has properties close to those of the rota-
tion group that was previously studied. The theory of four-dimensional spinors had 
been worked out in the 1920s by Van der Waerden, Uhlenbeck, and Laporte, by a 
generalisation of the theory of three-dimensional spinors. 

To introduce the four-dimensional spinors, we will follow the same approach as for 
those of the three-dimensional rotations. We will start from the laws of transforma- 
tion (x0)2 of the four-vectors, obtained by asking for the invariance of x2  = x2, and 
show that they can be represented by the matrices of SL(2, C), that is the group of 
2 x 2 matrices with complex coefficients and with unit determinant. By generalising 
the three-dimensional spinors, the four-dimensional spinors will be introduced as the 
space of representations of minimal dimension of SL(2, C). An important difference 
between the three-dimensional and the four-dimensional cases is that in this last case, 
two representations, one being a complex conjugate of the other, are not equivalent. 

Let us denote by aµ = (a°, o) the quadruplet of the matrix 1 and of the a" values. 
Each 2 x 2 matrix with complex elements can be written as a linear combination with 

coefficients in C of the unit matrix ac, = 1 and of the three Pauli matrices. 
Each 2 x 2 Hermitian matrix can be written as a linear combination with real 

coefficients of these four matrices. 
To each vector x of M4, there corresponds a 2 x 2 matrix 

is Hermitian if and only if x is real. It can be checked that 

= 1 — Tr(cr
P' 

 .k) and det = (2.62) 

There exists a group homomorphism (i.e. respecting the group structure) of SL(2, C) 
on the restricted Lorentz group, the kernel of which is Z2. The mapping is given by 

A E S L(2, C) H A (A) (2.63) 

with 

A
1

(A)/2  = - Tr (cr
A 
 AavA*), 

v 2  
(2.64) 
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where A* is the conjugate transposed of A. If A = A*, that is A is Hermitian, then A(A) 
is symmetric.9  The action of an element of SL(2, C) is given by 

AkA* (2.65) 

As is right and proper, the dimension of SL(2, C) is identical to that of the restricted 
Lorentz group. An element of SL(2, C) is indeed parameterised by 8-2 = 6 independent 
parameters. 

Note that as far as the action on four-vectors is concerned, the matrices A, complex 
conjugate of A, and A do not correspond to the same Lorentz transformation. 

One sees also on the formula (2.64) that the kernel of the mapping is Z2 since ±A 
give the same A (A). 

The group SL(2, C) is the covering group of the Lorentz group. It is a simply 
connected group. 

One shows easily that A (A) is a rotation if and only if A is unitary. It is a pure Lorentz 
transformation if and only if A is Hermitian. 

We will now introduce two important automorphisms of SL(2, C) (a group auto-
morphism is a bijective and bicontinuous mapping of the group on itself): 

A H (ATr)-1 and A H A. (2.66) 

The first of these automorphisms is an internal automorphism1°  

(ATr)-1  = where -(0-1 = ( 0) • (2.67) 

The operation of complex conjugation on a matrix x is the same as changing the com-
ponent y to —y and is therefore identical to a symmetry /2  with respect to the hyperplane 
orthogonal to the two axes. 

The second automorphism is such that 

A(A) = /2A (A)/2. (2.68) 

Since /2  does not belong to the restricted Lorentz group, the second automorphism 
is not internal, and, consequently, we must distinguish between representations which 
are complex conjugate of one another (in contradistinction with the representations of 
three-dimensional rotations). 

9  We remind the reader that for a matrix A : 1R4  —> R4, of components iP „, we define its transposed and 
its Hermitian conjugate by A"' „ = A,' and A*"`„ = (A")µ „. 

1°  An internal automorphism is a conjugation by an element of the group. If G is a group, g c G, one defines 
an internal automorphism rg  by rg  : h H ghrl  , Vh c G. 



The Four-Dimensional Spinors 27 

2.8 The Four-Dimensional Spinors 

It follows from the preceding discussion that each element of the restricted Lorentz 
group can be represented by a 2 x 2 matrix with determinant 1 which we have denoted 
by A. The action of this element on a four-vector is quadratic in A. As a consequence, 
A and -A define the same transformation. We will now introduce objects, the spinors, 
which remove this degeneracy. 

By definition, a four-dimensional spinor is an object with two complex components 
4", a = 1, 2, which transform as 

—> A4. (2.69) 

This representation of SL(2, C) in C2  is denoted D1112'131 . This law of transformation 
defines the four-dimensional spinors as objects on which acts the lowest dimensional 
representation of SL(2, C). 

The matrix A, complex conjugate to the matrix A, and A are therefore not equivalent: 
there are no matrices U such that for all A, A = U-1  AU. One can thus introduce a second 

• space of representation, made also of two component complex vectors>)",   a = 1, 2, 
called pointed, or dotted, spinors. By definition, the law of transformation corresponding 
to the element A of SL(2, C) is 

One has, therefore, 

(2.70) 

(2.71) 

the symbol — meaning 'transforming' as. 
The manipulation of dotted and undotted indices is, as in three-dimensions, done by 

the tensor c,fi . Thus, by definition, 

4.2 = 

= • 

(2.72) 

(2.73) 

The tensor makes it possible also to define an invariant scalar product for undotted 
and dotted spinors. The reasoning is the same as for three-dimensional spinors and uses 
the unimodularity property of A and A. One gets 

4.5/>_ 
 = 4a = 4 1 (2.74) 

>= qTroir = Ve ri r
a 
 = 1,7/ _ 7?7,1/1 

• (2.75) 

For a three-dimensional spinor, the positive combination 

= 4.11 + 2&.2 (2.76) 
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is an invariant which can be interpreted, if 4' is a wave function, as a density of probability. 
In four dimensions, this is not an invariant, because the matrix of transformation A 
is unitary only in the case of spatial rotation. However, this is not a problem for the 
interpretation of Q. In relativistic theory, the density of probability need not be a scalar, 
but rather the time component of a four-vector. We will see when studying the Dirac 
equation how to construct a conserved probability current, precisely based on Q. 

Before studying the higher order representations, it is important to render explicit the 
form of a matrix A corresponding to an arbitrary Lorentz transformation. The method 
is similar to that followed in the three-dimensional case. It consists in identifying the 
Lorentz transformations in their usual form with the expression j'c' = Ake . Let us con-
sider first the spatial rotations. We have for an infinitesimal rotation of angle SO n, with 
II n11= 1 5 

t' = t 

x' = x + SOn A x, (2.77) 

where the symbol A means the external product of three-dimensional vectors. Writing 
A = 1+ SA, and expanding to first order il = ALA*, we find the equation 

SA(t + cr • x) + (t + o-  • x)SA* = 80(n A ,C) • o. (2.78) 

We deduce from this equality that SA + SA* = 0 and therefore that SA is an anti-
Hermitian matrix of null trace, that is of the form io-  • u, with finally u = —1.80n. 
Consequently, we find for a pure infinitesimal rotation that 

i 
A= 1--89 n • a. 

2 
(2.79) 

As for the rotations around an axis, the rotation angle is an additive parameter of the 
group. This formula is integrated as an exponential for finite angle transformation. One 
gets the unitary matrix 

i 9 0 
A = exp --

2
SO n • o-  = cos 

2
— — in • o-  sin 

2
— . (2.80) 

Of course, this formula is identical to the one we obtained for the three-dimensional 
spinors and we find again that the generators,/ are here represented by the matrices a/2. 

Let us now consider a pure infinitesimal Lorentz transformation, that is the law of 
transformation between two reference frames in uniform relative motion of speed v, 
with II v II << 1. If we proceed as for the space rotations, we are tempted to write that a 
four-vector xi' = (t, x) transforms in xio = (t', x'), with 

t' = t + v • x 

x' = x + vt, (2.81) 
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where we neglect the terms of order 1102. This is, however, not useful because, accord-
ing to formulae (2.45) and (2.46) giving the law of transformation of a four-vector by 
a pure Lorentz transformation, the components of the speed v cannot be considered as 
group parameters. This is simply the physical assertion according to which one must 
abandon the Galilean law of addition of speeds when the speeds are not negligible with 
respect to the speed of light. In reality, a pure Lorentz transformation acting on a four-
vector must be compared (because of the conservation of the pseudo-Euclidean norm) 
to a complex rotation, mixing space and time components, around the axis of the unit 
vector n = v/I Iv' I and of angle i4 such that tanh 4 = v/c, where v = 'Iv' I. For suc-
cessive Lorentz transformations along the same axis, one checks easily that the additive 
parameter of the group is 4. 

Since the idea is to generate the matrices A from their infinitesimal forms, it is natural 
to write the infinitesimal Lorentz transformations as 

t' = t + 84'n • x 

x = x + SOIL (2.82) 

Writing A = 1 + SA, and working at the lower order in I Iv'', one gets by comparison 
with iii = ALA*: 

8 A(t + o-  • x) + (t + o-  • x)S A* = 84' (n • x + to-  • n) . (2.83) 

The matrices 1 and o being a basis, one deduces that SA is a Hermitian matrix, SA* = 
SA and SA = 84'n • a/2. Consequently, for an infinitesimal pure Lorentz transformation, 

84' 
A= 1 + —n • a. 

2 
(2.84) 

This formula is integrated as an exponential for a finite transformation. Indeed, per-
forming a sequence of infinitesimal Lorentz transformations along n one finds the matrix 
A corresponding to the finite Lorentz transformation of axis n and parameter 4 to be 

A = exp 4.  — n • o-  = cos 4.  — + n • o-  sin 4.  — . 
2 2 2 

(2.85) 

One sees that A is a non-unitary Hermitian matrix. The appearance of the 1 factor, 
as for the formulae found in the three-dimensional spinor case, is related to the fact that 
the matrix A is quadratically linked to the matrix A. 

The fact that the restricted Lorentz group is locally isomorphic to SU(2) x SU(2) is 
obvious in the way we describe it. One can also check the commutation relations for the 
generators that we gave earlier. 

Higher order spinors are defined using tensor products of fundamental representa-
tions of undotted and dotted spinors, that is order-1 spinors. For a higher order spinor, 
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it is important to distinguish dotted indices from undotted indices. For example, there 
exist three order-2 spinors: 

(2.86) 

We have already seen the correspondence between four-vectors and order-2 
spinors of mixed indices rfi . More generally, the order of a spinor is given by a couple 
of numbers (k, 1) representing the number of dotted and undotted indices. The dotted 
and undotted indices cannot be mixed through a restricted Lorentz transformation; it 
is not, therefore, necessary to specify the order of the indices. To be covariant, any spinorial 
equality must have in its two sides the same number of dotted and undotted indices. 
This remark is the key point in the construction of the Dirac equation. It is evident that 
a complex conjugation means the reciprocal exchange of dotted and undotted indices. 
Thus, a relation like if fi = 4'afi is covariant. 

The contraction of spinors by the tensor is only meaningful on indices of the 
same species. It is indeed easy to check that the contraction of indices of different nature 
cannot be covariant. More generally, one gets a sequence of lower rank tensors starting 
from a given tensor and contracting pairs of its indices. We saw, when studying three-
dimensional spinors, that the contraction of a couple of symmetrical indices gives 0. This 
result is still valid for pairs of dotted or undotted indices. Consequently, the higher order 
irreducible representations of SL(2, C) are given by the spinors 

r,1 0,2-044142-41, (2.87) 

separately symmetrical on the k indices of a and the l indices of Indeed, it is impossible 
to pass by using linear combination of such tensors to non-vanishing tensors of strictly 
lower ranks. An irreducible representation is, thus, characterised by a pair of numbers 
(k, 1). 

Since each dotted or undotted index can take only two values, one easily finds that a 
completely symmetrical spinor of rank (k, 1) has only (k + 1) (1 + 1) independent com-
ponents; it is the dimension of the irreducible representation realised by this spinorial 
tensor. 

2.9 Space Inversion and Bispinors 

For three-dimensional spinors, space inversion is obvious because it commutes with the 
rotations. For four-dimensional spinors, the space inversion, which we shall denote by 
Is, is not so obvious because it does not commute with the pure Lorentz transforma-
tions. We will now see that this operation makes it possible to link complex conjugate 
representations and in particular to transform undotted spinors to dotted spinors. It also 
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makes it possible to introduce the bispinors which are necessary to the theory of massive 
half-integer spin particles, such as the electron or the nucleons. 

In the three-dimensional theory, one defines, without contradiction, the action of 
space inversion on a spinor by 

4 —> Is4 = 134 ", (2.88) 

where P is a constant coefficient. For a three-dimensional spinor, the operator Is  is thus 
diagonal. This is a consequence of Schur's lemma, since space inversion commutes with 
the rotations. 

The eigenvalue P is defined up to some degree of freedom. By two successive space 
inversions we go back to the initial state. However, such a way back can be interpreted 
in two different manners: as a rotation of angle 0 or as a rotation of angle 2n - . For a 
spinor, these two possibilities are not equivalent, since for a rotation of angle 2n-  the 
spinor changes sign. We, thus, have two possibilities for P. In one case 

P2 =1 P = ±1, (2.89) 

and in the other one 

p2 = -1 P = ±i. (2.90) 

We will choose, once and for all, the second possibility. Let us remark that the relative 
parity of two spinors, defined as the parity of the scalar formed by these two spinors 
< 4, ifr >, is independent of the convention taken for the parity of a spinor. 

Let us now consider the case of the Minkowski space. For a vector, the inversion law is 
(t, x) —> (t, -x). It is easy to see that the inversion Is  does not commute with the Lorentz 
transformations. Indeed, if we denote by Lo  the pure Lorentz transformation of speed v, 
it is easy to check that 

IsL, = L-vIs [Lv,  , Is] O. (2.91) 

It thus follows that the components of a four-dimensional spinor cannot be trans-
formed into themselves. If this property had been true, since space inversion must 
commute with all spatial rotations, that is with all matrices of the type cos 1 + in • o sin l, 
Schur's lemma would have implied that Is  has to be represented by a matrix propor-
tional to the identity matrix, as for three-dimensional spinors. But then, Is  will have to 
commute with the pure Lorentz transformations, which is not true. 

The inversion thus must transform the components of 4" into other quantities. We 
can guess the right answer by considering the action of Is  on the generators of the Lie 
algebra of the group. We see immediately that the generators for rotations, the compon-
ents of the angular momentum, are pseudovectors and do not change sign under space 
inversions: J —> J. On the contrary, the generators of pure Lorentz transformations are 
vectors and change sign: N —> -N. As a result Is  interchanges the generators fl  and f2  of 
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Eqs. (2.58) and (2.59). It follows that space inversion should interchange dotted and un-
dotted indices. Therefore, a possible choice is to identify the components of 4'" with the 
components of another dotted spinor na, which by definition do not coincide regarding 
their transformation laws with V". With our convention that the inversion applied twice 
gives minus the identity, we define the action of Is  in the following way: 

—f Ice —> • (2.92) 

One has also 

—> —> (2.93) 

thus, 1.52  = -1. 

Therefore, to combine in a coherent way, space inversion and the Lorentz group, one 
must consider spaces of representations in which there are simultaneously undotted and 
dotted spinors. At least we need to have in a minimal representation the set of all pairs 
( ", %), called bispinors of order 1. Starting from this minimal representation, it is then 
possible to construct by tensor products the irreducible representations of the extended 
Lorentz group. 

The scalar product of two bispinors can be defined in two different ways. Either 

rc +17074, (2.94) 

which gives a Lorentz scalar, or 

- (2.95) 

which gives a Lorentz pseudoscalar, that is a quantity changing its sign under space 
inversions. 

Let us give some examples of order-2 spinors. We have two possibilities for the laws 
of transformation. The first consists in writing 

-"14 r1-11  + Ea /714 , (2.96) 

and through space inversion - 9̀4  —> W. In this case, using the properties of the metric 
tensor, it is easy to check that the four-vector al' equivalent to such a rank 2 spinor is a 
true vector, that is transforming by inversion as (a°, a) —> (a°  , —a) . The other possibility 
is to impose the law of transformation 

1114  — EY. (2.97) 

In this case, the space inversion gives - 9̀4  —> and the corresponding four-vector 
is such that by inversion (a°, a) —> (—a°, a). Such a four-vector, a being axial, is called a 
four-pseudovector. 
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Let us now consider the order-2 symmetrical spinors 

— Efi +415
u«  

/1«1-1, + (2.98) 

The couple (4'13,1w) forms a bispinor of order 2. The number of its independent 
components is 3 + 3 = 6 and one can prove that this bispinor is equivalent to a rank 2 
antisymmetric four-tensor. 

2.10 Finite-Dimensional Representations of SU(2) and 
SL(2, (C) 

Let us recall from non-relativistic quantum mechanics the form of the irreducible repres-
entations of SU(2). They are indexed by a non-negative number, j, integer or half-odd 
integer. The representation, denoted DJ, is defined by its matrix elements Dm., in the 
basis formed by the homogeneous polynomials in 2 variables 41 , 42, of degree 2j; 41  
and 4'2  are the 2 components of a spinor E C2. The representation is of dimension 
2j + 1. 

If 

(:21 ) A  (::) 

then 

ii;m>,EDmi m,(A)1.7.;ni >, 

where m = -j,-j + 1, . . . ,j and 

I m >=  (4. 1  )i+m  (4' 2  )-i-m 

+ m)! (j - m)! 
(2.99) 

These representations are all the irreducible unitary representations of SU(2). 
The tensor product of two representations is in general reducible. Using the preceding 

formulae one gets 

lit +j2 
Di' ®Dj2  = E Di. 

1=111-121 

(2.100) 

This is the well-known formula describing the quantum mechanical rule for the 
addition of two angular momenta. 
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In Eq. (2.59) we saw that the Lie algebra of the Lorentz group is generated by 
two copies of the algebra of SU(2). It follows that the finite-dimensional irreducible 
representations D[1142]  of SL(2, C) (in general non-unitary) are characterised by two 
non-negative numbers, ji  and j2, integers or half-odd integers. They are of dimen-
sion (211  + 1)(212  + 1) and given on a basis of the homogeneous polynomials of degree 
2ji + 212. 

If 

(:12 ) A  (:12 ) 14 J -> A  134 / 

then 

>—> Du 
m

hi2] 
l  yill , m2 2 

E  
m, (A)11.1.1.2; aim 2 > 

m' 1 2 

with mk  = + 1, • • • 5.ik, k = 1, 2 

1 ) +m
2)11-m1  3 ) j2 +m2 (4. 4 )j2-m2 

I1112; mi m2 >_  
+ - mi)!(j2 + m2)*2 - m2)! 

One deduces from the preceding formulae that 

DEi1,i21 (A) = Drihol (A) 0  goi21 (A).  

(2.101) 

Moreover, 

and the representations 

and 

D[134]  (A) = DU '°1  

D[041  (A) 

DU '0]  (A) 

are inequivalent. If A is unitary, A = (A" )-1, and the two representations are equivalent 
since one goes from A to A through an internal automorphism of the group. They are 
equivalent to the representation of SU(2) that we already built and we identify them 
with DJ. 
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One has 

D[o,o] (A)  = 1  

D[ 1'°]  (A) = A 

DP '1]  (A) = A 

D[ l'i ]  (A) = A A. 

Note: The multispinors aa1a2.-aA /2•••6 are the elements of C2(Di  C2®)  on which the 
tensor product of the representation (D[1/2,o] )o1 0  (D[o,i/2] ) acts through 

(DP/2,0)0i 0  (D[0,1/2])(Dj acei •••adji -13j —* Aai Aai
i
V1 •••yik •••3- 

YI vi 81 3." (2.102) 

For i + j > 1, these representations are not irreducible; the irreducible representations 
are always given by the same formula restricted to spinors symmetrised separately 
with respect to undotted and dotted indices. 

2.11 Problems 

Problem 2.1 Show that the matrix elements of the 0(3) generators are defined by 

yk = i
ckii. 

 

Problem 2.2 Prove Equ. (2.32). 

Problem 2.3 Prove that any Hermitian 2 x 2 matrix A can be written in a unique 
way as 

A=a+b• a, 

where a and b are real. 

Problem 2.4 Prove (formula (2.40)) that a with components 

i 1 
a1 = — W22), a2 = (VIII + V122), a3 = —iN/11/12 

transforms as a vector. 

Problem 2.5 Show that if A is unitary, then A (A) is a rotation, and if A is 
Hermitian, then A (A) is a pure Lorentz transformation. 
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Hint: A, Hermitian and of determinant 1, can be written as 

A= U ( e2 (21 ) U*, 
0 e-  2 

where U is some unitary matrix. 

Problem 2.6 Prove the following identities between Pauli matrices: 

ajai = Sii + icijko-k  

aiaicrk = aiajk -  ajaik + akati + iciik 

aiaicrkai = atiaki - aik8ji + haik + Eikm8jl + Eilmajkiam • 

Problem 2.7 Use formula (2.64) 

A(AY
1 

= -Tr(o-  Ao-„A*) 

to compute the matrix elements of A(A) as a function of 

A = + a • o-  E SL(2, C). 

Hint: Show that 

A°0  = 41212  
A k

o 

 A O

k iik 

 A i = 4 a0 ak 

Problem 2.8 The purpose of this exercise is to study the automorphisms of 
SL(2,C): 

Show that is in SL(2, C) and is a rotation. 
Show that A = 1113  where Il  and 13 are the symmetries with respect to the 

three-dimensional planes orthogonal to the 1st and the 3rd axis, respectively. 
Show that there are no elements U of SL(2, C) such that for A E SL(2, C): 

UAU-1  = A 

Problem 2.9 Show that any antisymmetric four-tensor, Ft,' = -Fvtl, v = 0, 1, 2, 3 
can be expressed in terms of the elements of a bispinor of order 2 ( fi ,n,v) as given 
by formula (2.98). 
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The Electromagnetic Field 

3.1 Introduction 

Maxwell's equations are among the most important discoveries of the nineteenth cen-
tury. They are at the origin of special relativity. Efforts to quantise Maxwell's theory have 
resulted in the relativistic quantum field theory with its numerous applications. 

Maxwell's theory and its quantum version can be conceived as the prototype of 
modern theories for the description of microscopic physics. They are based on three 
fundamental principles: locality of interactions, invariance under Poincare's transforma-
tions and its generalisation to curved space, and invariance under a gauge symmetry, i.e. 
a symmetry for which its parameters depend on the space—time point considered. 

The purpose of this chapter is not to present a complete current survey of the elec-
tromagnetic theory. It is rather to emphasise some of its properties within the modern 
formalism in order to help understand the generalisations to more complex theories, 
such as those unifying the weak, the electromagnetic, and the strong interactions. 

In classical Newtonian mechanics, particle interactions are depicted using the force 
field concept. The interaction between two particles is expressed by saying that one of 
the particles is in the other's force field. 

Such an analysis becomes meaningless in special relativity if we view particles as small 
rigid spheres. The notion of a particle itself conceived as an elementary object is ques-
tionable. Indeed, a particle cannot be an extended absolutely solid body, i.e. an object 
that retains its shape and size independently of the frame of reference. This kind of solid 
cannot exist due to the finite speed of propagation of the interactions. So, within the clas-
sical relativistic mechanical framework, an elementary particle is necessarily a point-like 
object. In terms of mathematics, this implies a description of the particles by distribu-
tions. Thus, a charge density e located at the centre of coordinates is written as e8(x). 

When dealing with interactions, due to the finite propagation speed, the forces act-
ing at a given moment on a particle rely on the other particles' states at the preceding 
moments. One can then describe the forces exerted by a set of particles on one particle 
located in a space—time point x by a field at this same point. 

The effect of the forces on the particle, the coupling, is local; i.e. it is expressed in 
terms of quantities evaluated at the same point. The notion of a point-like interaction 
of a particle with the resultant fields created by other particles replaces that of a force 
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exerted by particles on a test particle. The interaction is then instantaneous and local. 
This principle of locality of the interactions is one of the fundamental principles of the 
modern relativistic quantum field theory. 

A difficulty inherent in the notion of fields must be pointed out. The existence of a 
particle is translated into the existence of a field at each point of the entire space. This 
field can interact with the particle and one can end up with the paradox that an isolated 
particle can self-accelerate itself. This self-interaction has been the source of technical 
and conceptual difficulties that have been understood only during the past sixty years by 
the theory of renormalisation. The issue was that of a link between fields and particles, 
which only finds a relevant answer within the quantum framework. 

From a historical point of view, the field notion comes out from the study of elec-
tromagnetism. Ampere, Gauss, Weber, Faraday, and Maxwell were inspired by the 
non-instantaneousness of interactions, which was already underlying Newton's work. 
The contribution of Maxwell, who understood the unifying role of mathematics, is ex-
ceptional. After writing the equations bearing his name, he gave the interpretation of 
light as an electromagnetic phenomenon by comparing equations he obtained for the 
vector potential to those of a wave propagation in an elastic medium. Among the two 
theories of light proposed at this time (corpuscular and wave), Maxwell supported the 
wave theory. In contrast, a quarter of a century later, Planck and Einstein showed that 
in certain cases the corpuscular interpretation was necessary. It is within the synthesis of 
those two currents of thought that the modern relativistic quantum field theory arose. 

Four pages from Maxwell's Treatise on Electricity and Magnetism (written around 
1873) are given in Appendix E. They illustrate well the state of mind of the epoch 
concerning certain issues referred to in this book. 

3.2 Tensor Formulation of Maxwell's Equations 

Maxwell's equations were established through a long historical journey. At the end of the 
nineteenth century, it was commonly assumed that electric and magnetic fields were in-
dissociable. The equations of electromagnetism proposed by Maxwell are the following, 
using the units p,0  = co = 1, 

divB = 0 divE = 

rotE = 43 rotB =j+ k (3.1) 

E is the electric field vector, B is the magnetic field pseudovector, Q  is the scalar electric 
charge density, and j is the electric current density vector. These differential equations 
express the various possibilities that electric and magnetic fields transform into each 
other and their interaction with charged matter. 

A more symmetrical form of these equations is obtained if we assume the existence 
of a pseudo-scalar magnetic charge density Qmagn.,  with divB = pn,agn.. Such charges, the 
magnetic monopoles, are very interesting from the theoretical point of view because of 
their implication on the topology of the space and the quantisation of electric charge. 
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We shall study some of their properties in Chapter 26. On the other hand, there is 
no experimental evidence of their existence and nature seems to rule in favour of the 
dissymmetry by allowing only one kind of charge. 

After the discovery of the invariance of Maxwell's equations under Lorentz trans-
formations and the development of the tensor formalism, the E and B fields were 
quickly identified as components of an irreducible Lorentz group representation: the 
antisymmetric tensor of rank 2, with 

0 —El  —E2  —E3  
EI  0 —B3  B2  

{F"} = (E2 B3 0 —B1) 
E3  —B2  B1  0 

(3.2) 

The first index of F" is the row index. So we have Flo  = E. 
By convention, Latin indices i,j, k, . . . are used for space indices. We also use the con- 

vention that boldface vectors like x, E, B, j, etc., are the contravariant triplets (xl , x2, x3), 
(Ei E2, E3), (Bi B2, 5 B3,)etc. 

The assembly of the electric and magnetic fields into the F" entity explains their 
transformations through changes of reference frame. Maxwell's equations can be written 
in a compact form 

aa*F" = 0 = jv, (3.3) 

where *F" = v a Foa, = (Q,j), as  = 
a x , 

and 61-"Qa is the completely 
antisymmetric tensor in the four indices so that 60123  = 1. 

Using the tensor notation, it's easy to see that Maxwell's equations imply current 
conservation. Indeed, as F" = —Fvo, we have apa,,,FILP = 0 and hence 

avf = 0. (3.4) 

This equation can also be written as 

ap 
+ divj = 0, 

at 

which is the familiar current conservation equation. 
The first couple of Maxwell's equations ao*Fov = 0 is equivalent to the Bianchi iden-

tities satisfied by F", s"oa apF0, = 0. These equations are equivalent to the property 
that the electromagnetic field is obtained locally from a potential: 

Fo p = aoAv  —apAo. (3.6) 

So this expression of F in terms of A resolves the homogeneous sector of Maxwell's 
equations. 

(3.5) 
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The four-vector An  has the electrostatic potential Ao as time component and the 
vector potential A with Ai  as space components. In terms of these quantities, the 
electromagnetic fields are written as 

Ei  = P° = aiA° — a°Ai = —0 A° — aoAi B1  = —sijkFik; (3.7) 

hence, 

aA 
E = — vA° 

at 
B = rotA. (3.8) 

Equations (3.8) show how magnetic and electric fields are transformed by space 
inversion. B is a pseudo-vector, whereas E is a vector. 

The transformation laws of A°  and A under the action of the Lorentz group can be 
easily deduced from the definition of A,1  as a four-vector. Similarly, the transformation 
laws by Lorentz transformation of E and B can be deduced from the fact that Fon  is a 
rank 2 antisymmetric tensor. 

Let us now make explicit the modern formalism using the differential geometry. The 
main concern in doing this is not to introduce excessively heavy formalism, but, in fact, 
this somewhat abstract approach has applications in the quantisation of the theory. 

3.3 Maxwell's Equations and Differential Forms 

The rules of differential calculus are set forth briefly. There exists an intrinsic way of 
formulating what follows, i.e. without choosing local coordinates. One can find more 
details in Appendix B. 

Given a manifold Mn  of dimension n, we can locally define coordinates {xi'} = 
{x1  . xn}. We introduce the exterior derivatives in the tangent plane defined in every 
point of Mn. These objects are built on real or complex functions of points and 1-form 
basis {dx0  = (dxl, , dxn) on the manifold. The de form a real or complex vector 
space. They can be multiplied by exterior product, an operation symbolised by A, which 
permits the construction of a form of a higher degree. The rules of the exterior calculus 
are the following: 

(i) A de = —de A de. 

(ii) A p-form f is defined as 

f = P.—f 01...,ap(x)dx01 A ... A deP (3.9) 

The tensor 4,1 ... /21, is a non-singular object that takes real or complex values 
and is fully antisymmetric in its indices. A consequence of this definition is that 
any form of rank higher than or equal to n, n being the manifold's dimension, 
vanishes identically. 



Maxwell's Equations and Differential Forms 41 

(iii) The p-forms constitute a vector space (on R or C if they are real or complex). 
Given two p-forms f and g, of + bg, a and b in R or C, is a p-form: 

of + bg = I!  (afa
1 .• • Pp + A ... A del  • 

p 
(3.10) 

(iv) Given a p-form f and a q-form g, their exterior product is a (p + q)-form: 

del A ... A deP-Fq f A g = Apgitp+1.- Ap+q p!q! 

(v) Let £/11-41n  be the fully antisymmetric tensor with value 1 if p,i p,n  is an 
even substitution of 1 . . . n and —1 otherwise. The dual *f of a p-form f is an 
(n — p)-form defined as 

* f = 
1

f ppgviiii  • . g An  yP AP deP+1 ... den . 
p!(n — p)! vi 

 

The introduction of the dual necessitates the existence of a metric gni, to lower 
and raise the indices. 

(vi) The exterior derivative operator d is a differential operator with the following 
properties: d satisfies the graded Leibniz rule, with f a p-form and g a q-form 
d(fg) = (df)g f f dg, where the minus sign arises if p is odd. On the 0-forms and 
1-forms, we have df = de a pf and d(de) = 0. From these rules, one can show 
easily that the d operator raises the rank of the forms by one unit, and can be 
written as d = de a„. We have the property 

d2  = 0, (3.11) 

true for any form. Reciprocally, if a rank p-form satisfies df = 0, one can 
construct locally a form g, of rank p — 1, so that f = dg. 

(vii) The volume element dnx = —1! 111.-An  del A... Aden is invariant under change of n  
coordinates; it is usually written as dxl  ...A dxn. Given a 0-form f, the integration 
over a sub-manifold Mp  of Mn  is defined by i

mp 
 dPxf . An important property of 

the integration is the Stokes formula 

dco = f co, 
am 

(3.12) 

where a Al is the border of the manifold M, and co is a form whose rank is equal 
to the dimension of the border of M. A well-known example of application is the 
magnetic flux theorem, fr  A • dl = B • ds, where is the contour of the E 
surface. 

(viii) Given a vector field 4.14  there exists a differential operator 4, called contraction 
operator, which reduces the rank of a form by one unit. It satisfies the Leibniz 
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rule. It is sufficient to define it on the 0-forms and on the 1-forms. By definition, 
we have for f a function if = 0 and 4de = 

(ix) Once d and i are given, we may construct an algebra of operators acting on 
forms by successive commutations. Thus, the Lie derivative along a vector 
gives 

L = [4, = i d + did .  

Note the plus sign because both i and d are odd elements. We have the properties 
d] = 0, [Li, iv'] = 14,0, [iv, 4,] = 0. All this notation is explained in Appendix B. 

Let us show how the differential form formalism applies to electromagnetism. Given 
the electromagnetic tensor, we construct the 2-form 

1 
F = 

2 
—F

'iv de 
A dxv. 

So we have explicitly 

F = dt n dxi  Ei  + dxl  n dx2B3  + dx3  n dX1  B2 + dx2  A dX3B1 

(3.13) 

(3.14) 

A form being an invariant object, one can see from the preceding formula that the 
components of the electric field, i.e. Foi, form a space vector which is odd with respect 
to time reversal, whereas the components of the magnetic field, i.e. —F11, form a space 
pseudovector, even with respect to time reversal. 

Maxwell's equations are written under the form 

dF = 0 d*F = -*y. (3.15) 

By introducing the exterior coderivative S = *d* one can rewrite Eq. (3.15) as 

SF = y (3.16) 

using the fact that on a p-form ** = —1(-1)P(n-P)  and y = .42dxo. 
The equation dF = 0 indicates that the 2-form F is closed.' 
In Minkowski space, which is a star-shaped space (see Appendix B), one can deduce 

that the form is exact and that there exists a 1-form A so that 

F = dA. 

From A = Aode , one can deduce that 

(3.17) 

= —a0A,dxv  A d = dA = avAodxv  A de e 
1

.90,4 — ( v  
2 

- avAoe d A dxv, (3.18) 

1  The precise definitions for an exact and a closed form are given in Appendix B. 
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where 

F,„ = a,A„ — a,,A,. (3.19) 

Global properties correspond to the local versions (3.15) of the homogeneous and 
inhomogeneous Maxwell equations. 

From the Stokes theorem, dF = 0 is equivalent to in N73  F = 0, where N3  is any 

sub-manifold of dimension 3. So, if we take as N3  the ball N3  = { (t, E R4  I t = 
to E R, 1 x < R}, its surface is aN3, a sphere of radius R in the plane t = to and 
0 = ism  F = f i  xi =R  B.dS, which expresses the absence of magnetic charges. We also 

have f N2 F = fal\12 A, where N2  is a sub-manifold of dimension 2. 
The importance of the fact that the space in which we are solving the equation dF = 0 

by F = dA is star-shaped can be seen in the following example. Consider the field created 
by a magnetic charge µ, (a magnetic monopole), E = 0 and B =  

47  x 
3  . It follows 

11 
immediately that divB = µS(3) (x). As B is singular at the origin, F is defined only for 
M = { (t, x) E R4  I x 0} where it satisfies dF = 0, but there exists no globally defined 
vector potential from which F is obtained. This situation will be analysed in Chapter 26. 

As d2  = 0 we deduce from the inhomogeneous equation the conservation of the 
3-form *J: 

8,7 = 0 so d*J = O. (3.20) 

Note: 

- If N4  is a manifold of dimension 4 and if *J is a 3-form with a compact support 
over a N4, the Stokes theorem gives faN4  */ = 0. 

- Reciprocally, from the current conservation, we deduce the existence of a 2-
form, *F. 

- If N3  exists, a section t = 0 of the physical space that is compact and without 
frontier, then Q= N3 *I = fal\13 *F = 0, because aN3  = 0. A closed universe must 
have a total charge null. 

3.4 Choice of a Gauge 

An important consequence of F = dA is that the vector potential is not uniquely defined 
by F. Indeed, we can add any exact 1-form d4 to A since ddci) = 0. We express this 
non-uniqueness by saying that the theory, expressed in terms of the vector potential, is 
gauge invariant.2  

The transformation A —> A + d4 which is written in local coordinates A ,(x) —> 
A,,,(x)+ a,o(x) is called a gauge transformation, due to the fact that the scalar function 4 

2  The origin of this strange terminology goes back to the late twenties in the work of Hermann Weyl. Since 
the concept of gauge invariance plays a central role in the theory of all fundamental forces, we shall give in 
section 14.8 a brief historical account. 
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can vary depending on the point of space—time we are considering. An essential property 
of the theory, at the classical and quantum levels, is that the experimentally measured 
quantities, such as electric and magnetic fields or scattering cross sections in which the 
electromagnetic force intervenes, are left unchanged under a redefinition of the gauge of 
the vector potential. 

Let us write the inhomogeneous equations d*F = —*J in terms of the vector potential 

= a,a (PAy — a°  A"`) = (3.21) 

Introducing 

= — = 0, (3.22) 

we obtain 

DAv —av(aitAA)= f, (3.23) 

which is the usual form of Maxwell's inhomogeneous equations in terms of the vector 
potential. One can see easily that these expressions are gauge invariant; i.e. they remain 
unchanged under AN, —> A, + 0 transformations where 4  is an arbitrary 0-form, and 
they imply current conservation apjA = 0. 

If we express the components, we obtain 

p = —AAo — — 
at 
a divA 

a 
= DA+ v (—

at 
n 

 + divA) . 

(3.24) 

(3.25) 

The observable quantities, the magnetic and electric fields, are gauge invariant. It 
follows that the four-component At, field contains redundant degrees of freedom, since 
we can change them without changing the physical quantities. We shall see later that 
this has a deep physical origin, but, for the moment, we proceed by trying to lift this 
degeneracy, by imposing a condition on the vector potential. This operation is called a 
gauge choice. Some gauges are more or less adapted to the type of problem one wants 
to solve. Some examples are as follows. 

We call Lorenz gauge3  the choice of AN, which satisfies ait AIL = 0. This gauge is Lorentz 
covariant. The Coulomb gauge is the gauge for which divA = 0. This gauge breaks 
Lorentz invariance, but this will not be seen in the results of calculations of physical 
quantities. The axial gauge is a gauge in which the component Ao = 0. 

Hence, in the Coulomb gauge, Eq. (3.24) becomes 

— AA°  = 0. (3.26) 

3  This condition was introduced as early as 1867 by the Danish mathematical physicist Ludvig Lorenz. 
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It is straightforward to establish the relation 

1 
A —  473 (r — r') . 

I r — r' 1 

Using this equation we can obtain the solution of (3.26) as 

A°  (t, x) = 1 1  d3y  Q(t'Y)  
47 J ly—xl 

(3.27) 

(3.28) 

which shows that the time component of A is entirely determined by the external sources. 
In the Lorenz gauge, the inhomogeneous equations (3.25) are written as 

EIA'' = j''. (3.29) 

3.5 Invariance under Change of Coordinates 

To say that Fo„ is a tensor is equivalent to saying how it transforms under a change 
of coordinates (those coordinate changes are those that preserve the structure of the 
Minkowski space, i.e. Lorentz transformations). Using the fact that the electromagnetic 
tensor is a 2-form, we are going to make this transformation explicit. 

Let A : x i--> Tx = Ax be a Lorentz transformation. Then let us write that the intrinsic F 
object does not depend on a change of coordinates. We will denote by Fo„ the coefficients 
in the initial system and by Fµ„ those in the final one. So we obtain 

Fov (x)de A dxv  = Pe, (x)a° A dr 
= P,a (R)ne otla vde A dxv. 

Then we deduce for the components in matrix terms 

F  = A trEA.  

Using the identities AtrGA = G and give = 8v, we find that 

(3.30) 

F = GA-1  GP G(Atr)-1  G; (3.31) 

hence, 

GFG = AGFG A' . (3.32) 
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So, in terms of components, 

= (A-1 )
0
tr P (A-i )t

v
r a Fpa(x) (3.33) 

F"`° (z) = p  Av  Fr'a (x). (3.34) 

Thus we can see that the components of Foy transform like those of a twice 
contravariant tensor, 

Ptv  (x) ± /1°p  A v  a FPa  (A-1x). (3.35) 

Similarly, A is a 1-tensor and its components transform as 

(x) —> AP' vAv  (A-1  x). (3.36) 

We interpret the relation (3.36) by saying that the four-vector potential transforms as 
a four-dimensional representation of the Lorentz group. 

The four-vector potential is, for us, the prototype of what we will call later a classical 
or quantum field. In general, a field 4  will be indexed by a finite number of indices {a },,,/ 
and its components Oa  will transform according to 

(x) —> S (Are  Ofi (A-1  x), (3.37) 

where the square matrix with I components, S(A), is an 1/1-dimensional representa-
tion of the Lorentz group. 

Let us look for the invariants under the Lorentz group that we may construct from the 
electromagnetic tensor. They will be the coefficients of 4-forms, indeed after a Lorentz 
transformation, 

a° A al A a2  n cU3  = (det A)dx°  n dxl  n dx2  n dxa, 

and for an element A of the special group we have det A = 1. We can construct two 
gauge invariant 4-forms from F: on the one hand, F A *F, and on the other, F A F. The 
gauge invariance is evident since the 2-form F is gauge invariant itself. 

First, let us consider F A * F . We have 

and 

F A *  F = -
1 

F vdx" A dxv  A 
4 
-
1

E
Y 
6 g" g33Fy6dX°  A dxa 

2  

= 
4 
—
1 

F v P"sovoadx" A dxv  A dx° A dxa 

= FOv  F'Lv  dx°  A dX1  A dx2  A dxa  (3.38) 

FovFm' v  = 2(B2  - E2) . (3.39) 
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In a similar way 

F A F = 1 —F
'4 

vde A dxv  A 
1 
—FoadX°  A dxa 

1 
=

4 
F

14 
 ,F

'9 
a  Sti"a ovoacie A doe A dx° A dxa 
 

1 
=

2 
F

14
„* F" dx°  A dX1  A dx2  A dxa  

and 

(3.40) 

Fov*P" = —4E • B. (3.41) 

Under a particular Lorentz transformation, the space inversion I„ the tensor F" (t, x) 
transforms into 

Fi" (E, B) (t, x) = Fi" (—E, B) (t, —x), (3.42) 

i.e. 

E(t, x) —> —E(t,—x) (3.43) 

B(t, x) —> B(t,—x), (3.44) 

which expresses the fact that E is a vector and B is a pseudovector (or axial vector). 
Therefore, we can see that Fo„F" defines a scalar (i.e. a space parity invariant), 

whereas F,,,„* F" defines a pseudoscalar. 

3.6 Lagrangian Formulation 

The theory of electromagnetism is a theory based on the locality principle and satisfying 
at the classical level the least action principle. Thus, it is possible to construct a 
Lagrangian density whose equations of motion are Maxwell's equations. 

Only very few changes are necessary in order to adapt the variational calculus of 
mechanics to the case of a field theory. 

In classical mechanics, it is easy to associate with the equations of motion a Lag-
rangian depending on positions qt  (t) and on the time derivatives of the positions 4,(t). 
In relativistic field theories, the parameters t and i are replaced by a point x E M4. 
Thus, q becomes a field (/) and can have indices or be a tensor, as the electromagnetic 
field Ao. 

The models of statistical mechanics on lattice give interesting examples of field the-
ories. Let us consider, as an example, a system of spins a placed on the vertices of a 
cubic lattice in a three-dimensional space and suppose that we are interested in the time 
evolution of the system under the action of the interaction 
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= E (TAU., (t) + E ai (t)Bi (t), (3.45) 
1,1,11-J1=s 

being the lattice spacing. The spins are coupled with their nearest neighbours as well as 
with the third component of a time-dependent magnetic field Bi (t). Each spin depends 
on time and on its location on the lattice: cr, (t), where z E 3Z3. We can express this 
relation by saying that a depends on the parameters (t, z). If we imagine this lattice as 
a discretisation of R3, in the limit of vanishing lattice spacing, a becomes a function 
a (t, x), that is, a classical field, and the Hamiltonian becomes the integral over II of 
a Hamiltonian density, which is a function of a (t, x) and of the derivatives Do (t, x). 
We could have replaced the spin o, a scalar quantity, by a vector a and think about a 
coupling such as o- .B. 

The instantaneity of the interaction requires that the fields can only interact locally 
in order not to violate the causality principle. This is what happened in the particular 
case of the preceding spin model. More generally, a model of field theory is given by a 
Lagrangian density G ((pi  (x), a00,(x), x) = E(x), x E R4, where {4), (x)} i,/  is a family of 
fields indexed by I. 

3.6.1 The Euler-Lagrange Equations and Noether's Theorem 

Let us consider the action 

SP] = f r(x)d 4x, (3.46) 

where S2 is a regular region of space-time over which the Lagrangian density is being 
integrated (usually, it will be the whole space R4). Also for simplicity, we choose that the 
Lagrangian density G does not depend explicitly on x. 

The change induced in the Lagrangian by an infinitesimal shift, 80(x), of the fields 
cp(x) —> cp(x) + 34(x) gives4  

SE SE 
SG = 8 s a —

801
0 + , 8 

 (a 001) (/)1  

4  One defines the functional derivative 844 of a function F(0) of 4  by the limit, when it exists, as 

8F(i) 
- irn F(0 + 83x) - F(0)  

so (x) e 
l
—>0 8 

where Sx  is the Dirac measure at the point x. If F = f(cb (11))nd4y, then 

SF(0) - n(o(x)).-I. 
30(x) 

(3.47) 

(3.48) 
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SG ar SG 
= Ski + a, 302) a (  

84), (8  09,40 8(.9 450 
Ski 

ar ( 6,c 
 &pi  + a ( 

(. 9140)
ar  

30, ] (0  t4451) 84)1
) (3.49) 

The last term in (3.49) is a 4-divergence. When SG is integrated in Q, there is no 
contribution of this last term because of the vanishing on the boundary a Q of the fields 
and of their infinitesimal variations. 

We will now examine this result according to two different points of view: on the one 
hand, it can be used to describe the fields when the action is extremal under an arbitrary 
variation of the fields, and on the other, if this variation describes a symmetry of the 
theory, it can generate some consequences of this symmetry. 

3.6.1.1 The Principle of Stationary Action 

This principle is a generalisation of what we know in classical mechanics: the equations 
of motion for a classical field can be derived from a Lagrangian through the principle of 
stationary action. 

Theorem 5 (Euler—Lagrange's equations). Let (/)„ i E I, be a solution of the equations 
of motion. If we add to the solution an arbitrary infinitesimal function 30,, i E I, which 
vanishes on the boundary as2, then the variation of the action S is of second order: 

S[4 + 

From (3.49), we have that 

34)] — S[0] 8S[4] = 0. (3.50) 

f 
3S[0] = j 

f 2 

SE 

80 

( ar 6:C  60z  80i)]d4x 
0,001_1 

± _ 
( , ) 

f 60i 
[ ar  / 6r )]8(bid4x = 0. (3.51) 

3(a,a0i) J.s2 at' 

Since the last equality is true for any variation 34 satisfying the boundary condition, 
we deduce that5  

SG SG 

601(x) aµ3[0 (x)] = O. 

These are the Euler—Lagrange equations of motion of the classical field. 

5  There are numerous improper notations when using functional derivatives. For example, the Euler—
Lagrange equations are sometimes written as 

SG (x) 3 G (x) SG SG 
 a  — 0 or (x) — ai, (x) = 0. (3.52) 
Si6i (x) 4  6 [ 8A0i(x)] 60i 8 [a,.40,] 
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It must be noted that under the conditions we imposed for the derivation of the Euler—
Lagrange equations, the action is not related in a unique way to the Lagrangian density. 
We can, in fact, add to the Lagrangian any divergence (since, by Gauss theorem, its 
integral on the boundary of Q will give zero). 

3.6.1.2 Noether's Theorem for Classical Fields 

We saw in section 1.3.2 that any continuous transformation of the coordinates leaving 
invariant a Lagrangian generates a conserved quantity. We will now prove that any con-
tinuous change of the fields, leaving invariant the action SP], generates a conserved 
current. 

We start with some definitions. A symmetry is called internal if the transformations 
act on the fields without affecting the space—time point x. If the parameters of the trans-
formation are x-independent the symmetry will be called global. In the general case, in 
which the parameters of the transformation are arbitrary functions of x, the symmetry 
will be called local, or more often gauge symmetry. 

Suppose now that the infinitesimal change of the fields, 01(x) —> 41(x)  + 34),(x), 
i E I, leave the action S[0] invariant. The variation of the Lagrangian due to this change 
SL is still given by (3.49), but now the change 80 is not arbitrary. Since the action re-
mained unchanged, this means that the change of the Lagrangian density must be the 
4-divergence of some quantity, 

Sr = (3.53) 

and this is true for arbitrary configurations of the fields Oz . This is often called an off-shell 
equality because the fields do not need to satisfy the Euler—Lagrange equations. 

If now we suppose that the fields (/), satisfy the Euler—Lagrange equations, then 
comparing (3.53) and (3.49), we get that 

8r = ap,FIL = (  8r   840 , 

from which follows that 

= 3.0 
34),) — 

8 (.91t4b1) 

is conserved (it is an on-shell property): 

aiLyA = 0, 

with an associated conserved charge 

Q = f j0d3x.  

(3.54) 

(3.55) 
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This current, the Noether current, is conserved and is a consequence of the 
symmetries of the theory. 

Remark that there is some freedom in redefinition of the Noether current. We can add 
and multiply by any constant without changing the fact that its 4-divergence vanishes. 

3.6.2 Examples of Noether Currents 

3.6.2.1 Energy—Momentum Tensor 

In classical mechanics, invariance under spatial translations gives rise to the conservation 
of the momentum while invariance under time translation gives rise to conservation of 
energy. We will see something similar in field theories. We will show directly that the 
fact that the Lagrangian does not explicitly depend on x makes it possible to define, 
using the Euler—Lagrange equations, the existence of a conserved tensor. We choose 
Q to be the four-dimensional space—time (a domain of integration which is invariant 
under translations) and assume that the fields decrease fast enough at infinity to ignore 
all surface terms. 

Let us write in two different ways the derivative of G with respect to x: 

6r (x) 
 at,avoi(x) 

dr(x) _ S
G (x) A0i(x) navoi(x)] 

dxt' 64)1(x)
SG (x) 

atiavoi(x) 
SG (x) 

 Ali(x)
a[av(pi(x)1 — ay 8[avoi(x)] 

8r (x)  a
tioi  (x) ) J . = av  ( [avoi  (x)] 

(3.56) 

By equating the last equality to 

we find that 

where 

dr 
dxl' 

= = a„G, (3.57) 

av = 0, (3.58) 

(x) 
(x) =  (x) 

S[avOi(x)] 

is the energy—momentum tensor. 
We deduce from it that the four-vector PA given by 

(3.59) 

PP' = f d 3 (x, t) (3.60) 
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is time independent since 

= f d3  xao 'Po (x, = f .13  xaiTiA (x, = 0 (3.61) 

if the fields vanish fast enough at infinity as it was supposed. 
The fact that Po is a four-vector can be seen through the integrals defining it. In fact, 

the integration which is performed on the surface t = 0 can be made on any space—time 
surface, the integration element d3x being replaced by the associated covariant surface 
element directed according to the normal of the surface 

PP' = f da, (x, t). (3.62) 

For reasons which will become clear later on, it is useful to replace this energy—
momentum tensor by another tensor, symmetric with respect to the exchange of indices, 
and obtained from the first one by adding to it a divergence. In the following chapter 
we will show that the new energy—momentum tensor can be obtained as the result of 
a problem of variational calculus in which it is not the fields but the metric goy which 
varies. 

Remark that the conservation of the energy—momentum tensor can be obtained by 
applying directly Noether's theorem of section 3.6.1.2. The fact that the Lagrangian 
does not depend explicitly on x expresses the invariance under translations. 

Let us consider an infinitesimal translation of x: x —> x— E. 

This translation implies that 4)1(x) —> 4)1(x) + Eva,4), (x) and equivalently G (x) —> 
L(x) + Eva,r(x). Then from the definition (3.55) of the Noether current, we get, 
rewriting a„G as 3f,t a r, 

SG 
at)v = avo, — 3f,t r, 

30000 
(3.63) 

which is nothing else than the energy-momentum tensor 

3.6.2.2 Global Symmetries 

A global symmetry is a symmetry for which the parameters of the transformation are 
x-independent. 

Let us consider a global internal symmetry of the Lagrangian and suppose, as it is 
practically always the case, that it is given by a unitary transformation, 

(x) —> (elaa Ta  )0k (x), (3.64) 

where the aa's denote a set of parameters defining the transformation, for example, 
the rotation angles for a group of rotations. Infinitesimally, the transformation can be 
written as 

(Pi (x) —> (Pi (x) + iaa  T./90k  (x) (3.65) 
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From the definition of the Noether current 3.55, one gets 

8 r(x) 
/L =  

8 (a1,05(x))
60,(x) 

= tot a T kch(x) 
8 (a/401 (x)) -1  

thus showing the existence of a conserved current 

(x) = 1 TakOk  (x) 
8P/205(x)] 

(3.66) 

(3.67) 

where we made use of the previous remark that we can add or multiply a current by any 
constant. 

3.6.3 Application to Electromagnetism 

Let us apply these results to the electromagnetic field. We will write the Lagrangian 
density as a function of the field A, the vector potential. Using the hypothesis of locality, 
Lorentz invariance and the requirements that the equations of motion are linear, second-
order differential equations in A, the most general form of the electromagnetic part is the 
invariant quantity: 

Gem  = aAA + ba„Av a„AA + ca,.4,4v aP + d(ap,AIL) 2 (3.68) 

where a, b, c, d are constants to be fixed. If one now asks the Euler—Lagrange equations 
to be gauge invariant, one gets b + c + d = 0 and a = 0. The Lagrangian can then be 
written as 

2
„̀  Fl F + 2d a,a (Av a„AA) 

Therefore, neglecting the divergence term which will not contribute to the integrated 
form,6  and choosing the value of b which corresponds to an appropriate rescaling of the 
field A, the Lagrangian density becomes 

1 
Lem = —4F2, (3.69) 

where F2  = FA„P". The Euler—Lagrange equations of this density (in the absence of 
charged particles) are the Maxwell equations avFvA = 0. 

6  In most cases studied in this Book we shall assume that the fields vanish at infinity, so surface terms can 
be set to zero. Whenever this is not the case, see for example the discussion in section 25.4.5, we shall state it 
explicitly. 
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To get the Maxwell equations coupled to a current, it is enough to change the free 
action as 

1 
= --

4  F
2  —j • A = Lem + Ecou pl. (3.70) 

By construction F2  is gauge invariant. In contrast, a gauge transformation A„ —> 
A,+ 0,4) leads toj•A—> j•A+j•ao. It is only if the current four-vector is conserved that 
the last term can be written as a divergence ap,(jito), that is to say, a term which does not 
contribute to the action because of the conditions at infinity. Conversely, if the action is 
gauge invariant, the current must be conserved. 

In the language of forms, the Lagrangian density G is a 4-form. The Lagrangian for 
the electromagnetic field is 

= --
1 
 dA *dA —A A *y. (3.71) 

The equations of motion can be obtained easily. Let us consider indeed the variation 
of the action I on a manifold N4 of dimension 4, 

I = f r, 
N4 

obtained by varying A to A+ SA, SA vanishing on aN4. We get 

SI = f SE = 1 f dSA
1 

*dA — — f dA n*d3A — f SA A*,7 
Nq 2  I S 14 2  N4 N4 

=-J SA A*dA— f SA A(d*dA +*,7). 
a 1\14 N4 

(3.72) 

(3.73) 

Thus, from the boundary conditions, d *dA + *y = 0 if the action is stationary. We used 
MA= cISA et dA n *ScIA = SclA n *dA. 

Let us look for the form of the energy—momentum tensor. Using 8r em  = —P1')  , we a A v 
find that 

TI" = -F" 240  + F2  + j • A = tanvi  + tvu  . (3.74) 

Adding to T the divergence ao (FPRAv), we make the purely electromagnetic part 
symmetric and gauge invariant, 

TZ, (3.75) 
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where 

We can verify that 

1 .. 
Tro:' = —F"Fvo  + 

Ti
e F` (3.76) 

nmo =_FooF00 + 41F2=E2+ 2(B2_E2)= 2(E2 + B2) (3.77) 

= [E A B]i  = Si, (3.78) 

where Te°m°  is the energy density of the electromagnetic field and S = EAB is the Poynting 
vector. In the presence of charges, the energy—momentum tensor has a divergence which 
opposes the Lorentz force, —jaF", 

d T' = j F" (3.79) 

We can then deduce that 

— 
d—t 

f d3x 
ern 

= f EAB•do-  + f d3xj•E= 0, 
V 

(3.80) 

which expresses the conservation of the total four-momentum as a sum of two terms, 
one corresponding to the momentum carried by the electromagnetic field and a second 
one associated with the particles. 

Obviously, with charges, the energy—momentum tensor is not gauge invariant. We 
must add to the system what corresponds to the dynamics of these charges in such a 
way that the system is closed. 

A consequence of the symmetry of the energy—momentum tensor is that the third-
order tensor,7  

Ma y° = T'"x" — T"xv, (3.81) 

a natural generalisation of the angular momentum density, is conserved, 

= (0,7'1")x° + T"dox° — (a,T")xv — T"doxv  

= — T" = 0, (3.82) 

where we used the conservation of P". 

7  This conserved tensor is obtained, up to a divergence, by writing that the Lagrangian is rotation invariant. 
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3.7 Interaction with a Charged Particle 

Let us consider now the interaction with a charged particle that we assume to be point-
like. If v is the speed of the particle, its space-time trajectory is described by x"` (s), where 
s is the proper time. We recall that ds = .1dxodx,, = - v2dt with dt = dx°  (s). 

The relativistic current of the particle is given by 

de 
(t,y) = e—

dt
63 (y - x(s))1 t=x° (s) 

de A  
= e f ds d

s 
(y - x(s)). (3.83) 

-00 

This current is conserved, apio = 0. The trajectory of the particle e (s) is a time-like 
curve, that is causal, a fact which is defined by saying that at each point of the curve, the 
tangent vector uo = —dd: is a time-like vector. 

The Lagrangian Lpart.  of a particle of mass m is 

Lpart. = —m f ds. (3.84) 

The Lagrangian of the system is the sum of the electromagnetic Lagrangian, of the 
Lagrangian of the coupling of the particle with the field, and of the Lagrangian of the 
particle (the additivity of the Lagrangians is an empirical rule which is not justified by 
any principle other than the adequacy with the laws of nature): 

L = Lem + Lpart. + Lcoupl. • 

The coupling term can be rewritten as 

de 
f d4yr (y)A, (y) = e f d4yAo(y)( f ds 

c5 
 64(y- x(s))) 

= e f Ao(x(s))de 

We have 

(3.85) 

(3.86) 

L= f d4  x (x) - m f ds - e f A,(x(s)) 

= f d4  x rem (x) + f dt(-m 1 - v2  - eA°  + evA). (3.87) 

We will first consider the interaction of a point-like charge with an electromagnetic 
field fixed by external conditions, which means that in the Lagrangian we will ignore the 
pure electromagnetic contribution. Thus, 

L = -m f ds - e f A ode . (3.88) 



Then 

du„ 
81- = m f dsbx

„ 
 — —e f dsFA v  uv axA , 

ds 
(3.91) 
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Let us apply the least action principle in order to get the equations of motion. By a 
variation xo —> xo + dxo, 

and 

(Sde)dx 
&Is = 'a  = u &Iva it ds 

8(Aode) = (Mode + AoSde = 8vA08xvde + Aod8e 

= avAit sxyde —dA,Sxv  + d(Av Sxv) 

= (8„Ao -80A„)8xyde + d(A,Sxv). 

(3.89) 

(3.90) 

and therefore the equations of motion are 

m 
d
ds 

uo 
= eFovuv . (3.92) 

Going back to the usual coordinates, these equations are equivalent to (we used the 
fact that the covariant vector u can be written as (  ,  1    v  )) 

V✓1 — v25  N/1 — v2  

d my 

dt N/i _ v2 
= eE + ev AB (3.93) 

d m 

dt N/i _ v2 
= ev • E. (3.94) 

The first equation is the Lorentz force equation. The second equation expresses the 
time variation of the particle's kinetic energy; we see that it depends only on the electric 
field. 

It is useful to check this result from the Lagrangian expressed in terms of t and v: 
L= f dt(—m,./1— v2  —eA°  + ev • A). 

If we compute now the conjugate momentum p = a r , we find that 

and the Hamiltonian is 

my 
P = + eA, 

✓1 — v2  
(3.95) 

7-1 = v • p — r = [m2  + (p — eA)2] 1 + eA°  . (3.96) 
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We call minimal coupling the fact that under the action of an electromagnetic field the 
conjugate momentum p becomes p — eA. This terminology is related to the extremely 
simple form j • A of the coupling between the field and the current. 

3.8 Green Functions 

With the introduction of the vector potential, Maxwell's equations reduce to the study of 
a propagation equation with a source term. The typical equation is the equation of the 
vector potential in the Lorenz gauge. 

To avoid inessential complications due to the vectorial character of the initial equa-
tion, we will consider first a simpler version of this equation: the massive Klein—Gordon 
equation with a source term: 

(El+ m2)0(x) (3.97) 

In our usual system of units, the parameter m2  has dimensions of [mass] 2. We will see 
later that in the quantum theory it describes indeed the mass of a particle, but, for the 
classical differential equation we are studying here, it is just a parameter. We will show 
shortly that choosing m # 0 avoids a singular behaviour of the solution at infinity. 

The Klein—Gordon equation is the most general linear, second-order differential 
equation for a scalar function which is invariant under Lorentz transformations. It is 
an equation of hyperbolic type. As a second-order differential equation, its solutions are 
determined by the Cauchy data on a surface, called the Cauchy surface. We will now 
characterise the Cauchy surface of the Klein—Gordon equation. 

A sufficiently regular hypersurface N3  C R4  is space-like if its normal derivatives are 
time-like. It splits space into two half-spaces, the future and the past. We define the 
past area of influence of a space-like hypersurface N as the set of all points in the future 
which are at least on one time-like curve8  which crosses N: it is the closure of the interior 

(N) of the light cone open towards the future and sitting on N. We define similarly 
the future area of influence D-(N). The influence area of the Cauchy data restricted 
to N is D = U D. The hypersurface N of a manifold M is a Cauchy surface if 
D(N) = M: see Fig. 3.1. In practice every time we shall use local coordinates, we will 
take as a Cauchy surface, the hyperplane 1113  = { (t, x) E M4  t = 0) or its translations. 
By relativistic invariance, the quantities that we look at are independent of this particular 
choice. 

Thus, the current 3-form */ can be integrated on a space-like surface. On the 
particular surface we choose, 

ft
= f d3xJ0 

=0 t=0 

8  A curve is time-like or causal if at each of its points, the tangent is time-like. 

(3.98) 
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Figure 3.1 The Cauchy surface for the Klein—Gordon 
equation. 

Since it is an invariant, it can also be written on an arbitrary space-like 3-surface N3 

fN 3

(3.99) 

where dcr' is the euth component of the normal element of the 3-surface. 
In the case of electromagnetism, if N is a Cauchy surface, F is uniquely determined in 

D(N) by the data g, F N and *F N. We can be convinced that if these data determined 
F in points outside of D(N), we would have a speed of propagation larger than the speed 
of light. 

Let us go back to the Klein—Gordon equation. We obtain the solutions of this equation 
if we know the solutions of the equation 

(111 + m2) G(x, x') = 84  (x — x'). (3.100) 

In physics, these solutions are the so-called elementary solutions, or Green functions. 
Since we are interested only in the solutions which are translation invariant, we 

look for the Green functions which are translation invariant. A general solution will 
then be 

0(x) = 0o (x) + f c14  x G(x — x')j(x/), (3.101) 

where 4o  is a solution of the homogeneous equation (0+ m2) 40  = 0, which is fixed by 
the Cauchy data. 

3.8.1 The Green Functions of the Klein-Gordon Equation 

By Fourier transform, the equation for the elementary solution becomes 

p2 + m2) G(p) 1. (3.102) 
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In other words, the general Green function is given by the inverse of the differential 
operator on the left-hand side. This is very general and we shall use it often in what 
follows. Let us consider a linear, homogeneous differential equation of the form 

D@ (x) = 0, (3.103) 

where the function W (x) may be an n-component vector and the differential operator 
D an n x n matrix. The associated general Green function is given by [D]-1, where the 
inverse is understood both in the sense of the differential operator and that of the matrix. 

Coming back to the Klein-Gordon equation (3.102), we see that if p2  # m2, G(p) = 
(p2 + m2)-1. It follows that G is completely fixed up to a distribution whose support is 
on p2  = m2. We conclude that we can obtain several Green functions, depending on the 
choice of this distribution. We shall describe them in this section. 

In order to satisfy the causality principle, that is, such that the value of the solution at 
a point depends only on the values at points belonging to the past, we shall look at the 
so-called retarded Green function G„t (x - x'), whose support is in the past cone of x. 

Claim The retarded elementary solution Gret  of the Klein-Gordon equation is 
given by 

1 Cik(x-xj)  
Gr„(x - x') - lim f d4p  (27)4 6,0 (po  ± is) 2 _ p2 _ m2 (3.104) 

Proof. In what follows, the limit, E > 0, E going to 0, will be implicit. 
To prove this result, let us introduce w = w(p) = cop  = VP2  m2. Reordering 

the integrations, we get 

1 +oo (xo_xo,)  
Gret (x - x/) =  

(27

f  

)4 
f f 

dap 
eiP x I dp°  (po is)2 _ co2 

 

(3.105) 

 

Using the expression of the Heaviside 6-function, which can be easily proved 
using the Cauchy theorem, 

+00 

dp°  = -2in-  eiax°  9(x°), 
J-00 + is + a 

the expression in the brackets can be written as 

i7r 
0 (x°  - 

x0,)(e_iw(xo_xo,) 
- 

eiw(xo_xo,)) 

w(P) 

(3.106) 
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and finally 

Gret(x = 

i6 (x° 
— x°') d3P

e 
 (x_,e)  e_,w(x0-xo') — elw(x0-xo') 

(27)3  j 2w(P)
(3.107) 

Let V' = {x E R4  X°  > 0,x2  > 0} and V-  = —V' be the past and future half- 
cones. The function Gret  has its support in the variable x' in {x' E R4  x' E x+ . 
In fact, the Heaviside function limits its support to the x' values in the past cone of 
x and it is Lorentz invariant. 

Let us consider the integral giving Gret as a limit of Riemann discrete sums on a 
lattice defined on R3  with a lattice spacing 1/L, 

J 
d3p. 

 
L3 E (27)3 

p- 27{_e
,n

,z3 

Introducing plane waves 

e±ico(p) +ip • x 

 

±,p (X) = 3 
Lz N/2(.0(P) 

(3.108) 

we have that 

Gret (x — x') = lim i0 (x°  — x°')  E (0+,p (x) 4+,p   (X) —(1)—,p (X) C,p (X/  )) • 
L—).00 

This can be interpreted as contributions to the Green function of plane waves of 
positive and negative energy propagating towards the future (in the exponent —ip • x 
is written —ip°x°  + ip • x, where p° = po  is the energy, and one has either p° = w or 
p° = —w). 

It is straightforward to repeat this analysis and obtain the advanced Green function 
given by the expression 

1 CiP(x—xl)  
Gadv ()C = A f d4p  

e—>0 (1, 0  is)2 p2 m2 (3.109) 

which has support in the past light cone. Gadv  (X — Xj) propagates both positive and 
negative energy solutions towards the past. 
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These two Green functions are given by real distributions and they are the ones 
often used in the classical electromagnetic theory. 

Another elementary solution will play a fundamental role in relativistic quantum 
field theory, the Feynman Green function GF. It is a complex distribution given by 

1 1 
GF 4 -ip.x  

— (27)4  f d  Pe p2 — m2  + is 

It splits into two parts 

GF  (x — x) 

(3.110) 

=1
10 (x°  — xo,) E ,p (X)44* p(x) — X°  ) E (X)(1i4 (X/  )1 

and one sees from the above expression that the positive energy solutions propagate 
towards the future while the negative energy solutions propagate towards the past. 
These last ones will later be interpreted as the propagation of antiparticles. 

We can explicitly compute the case where m = 0. Since w(p) = IP I = p we 
have9  

Gret (x) = 
1 

(27)s  6(x°) f d3p 
sin px° p.x ei  

20 (x°) rdp sin  px°  sin p 
(27)2  0 I xl 

=
(x°) 

 f 
±- 

dp 
 1 

{elP(x°-1  xi) e-iP(x°-lx _ eiP(x°+ x _ eiP(x°  + x )1  
(27)2  ,3 2 'd 
0 (x°) 

(27)

2 
= 8 (x ). 

We thus see that in the massless case the function Gret  has its support on the 
boundary of the future light cone. 

Before closing this section, we want to notice that the three Green functions we in-
troduced, Gret, Gadv, and GF, all have a simple geometrical interpretation. We saw that 
they are boundary values of the same analytic function f = 1/(p2 — m2). Considered 
as a function of p°, f has two poles in the complex plane corresponding to the values 
p°  = ±w. In taking the Fourier transform we must integrate over p°  from —oo to +oo. 

9  We recall that for a function f (x) with a finite number of distinct zeros x, 

3(f (x)) - E (xi)I 3 (x - x0. 
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Figure 3.2 Two of the integration contours in the complex p° plane. For the 
retarded Green function, we can close the contour in the upper half plane and find 
that Gret  vanishes if x0  < 0. The opposite is true for Gadv. 

Since the singularities are on the real axis we must deform the contour, going above or 
below the singularities, the way it is shown in Figs. 3.2 and 3.3. It is clear that there exist 
four possible deformations, denoted in the Figures as CR, CA, and CF  together with its 
complex conjugate CF. It is easy to verify that they give rise to Gret, Gadv, G1,  and a F, 
respectively. 

3.8.2 The Green Functions of the Electromagnetic Field 

Let us apply this formalism to the case of the electromagnetic potential Alt (x). It satisfies 
the Maxwell equation which we can write as: 

[Illgo, — . 9 0.9,]A'a (x) = .1.  v (x) (3.112) 

According to our previous discussion, the Green functions should be given by the 
inverse of the differential operator Dµ„ = Illg 0„ — adv. However, as it is straightforward 
to verify, this operator has no inverse. The reason is that it has a zero eigenvalue which 
we can easily exhibit. Given any scalar function 0 (x) we get D ov all 0(x) = 0. This is the 
old problem of gauge invariance which we have faced already in a previous section. It is 
due to the fact that the vector potential contains redundant degrees of freedom and one 
should impose special constraints among the four components of A. . We have called 
this procedure choice of a gauge, or, in the usual jargon, gauge fixing. What constitutes a 
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Figure 3.3 The integration contour in the complex p°  plane 
which gives rise to the Feynman propagator. 

legitimate gauge fixing, i.e. one which does not affect the values of physically measurable 
quantities, will be the subject of a special chapter in this book, so here we present only a 
particular family of such gauges and we leave the proof of their legitimacy for later. We 
choose the family which is parametrised by a real parameter a and results in replacing 
the Maxwell equation (3.112) with 

[II'goy — (1 — ot-1) . 9 0.9 v]Ati (x) = iv(x)• (3.113) 

This equation can be viewed as coming from a gauge fixed Lagrangian density of the 
form 

1
2a 

1 
G = --

4  F
ovP" — —[.90A01 2  — 'LPL,. (3.114) 

The term k, [8µA"`] 2  breaks gauge invariance and it represents the gauge fixing term 
in the Lagrangian. The simplest choice is a = 1, in which case (3.113) reduces to (3.29). 
If A"` vanishes at infinity, a solution of this equation is given by 

1 
Ai-  '' (Tc) = (Gres *.1.11 )(C) = — f d4X 0 (C°  -.X13)8(cX - X) 2).11  (X) 

27 

47 
1

J 
1 

d3x Ix
1 
 x Jo (z° 

1
xi, x), 

 

—1 
(3.115) 
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where we used the fact that 

1 

° I 
6 oc°)6(x2) = 

2 x
.5 (x0- 1 X 1) • 

Because of the conservation of the current, this solution satisfies a 0A0  = 0. We see 
the retarded effects on the potential through the dependence on .0 - 131  - xl of the time 
variable of the current. Of course, if j is the current defined by the static charges, then 
j = (Q, 0) and we find again the Coulomb potential formula since Q does not depend on 
time. 

For an arbitrary value of a the Green functions of Eq. (3.113) are given, in 
momentum space, by 

6,,,„(k) = [15-110„ = 
i
i.  [g" - (1 -a) ki

i
4e] . (3.116) 

Compared with the corresponding expressions we found in the study of the Klein-
Gordon equation, we see that the singularity in the complex k2  plane has moved to 
k2  = 0. This was expected since Maxwell's equations do not contain any parameter 
with the dimensions of a mass. The i€ prescription remains the same. Depending on 
our choice, we can obtain the advanced, the retarded, or the Feynman Green functions, 
which have the same support properties as those we found in the case of the Klein-
Gordon equation. 

3.9 Applications 

3.9.1 The Lienard-Wiechert Potential 

We will now compute the electromagnetic field created by a pointlike charge, the so-
called radiation field. 

Carrying the definition of the current of a charged pointlike particle into for-
mula (3.115), we get 

e +00 
Alt (x) 

27 
) = f ds f d 4  x —

de 
84  (x - x(s))0 (R°  - x°).5(( - x)2) 

ds 

e 
= — f 

±`''' 
ds —

de
( 

27 ds 
9 (5c°  - x°  (s))8((5c - x(s)) 2). (3.117) 

Let g(s) be a function of s and let us compute 

+c,c) 

h dg f dsg(s)0 (5c°  - x°  (s))8 (( R - x(s)) 2). 
-00 
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Figure 3.4 The intersection of x(s) with the light cone. 

Since (c — x(s))2  is a quadratic function of x we can write, using formula (3.111), 

1 
8 ((FC — X(S)) 2) =  

.,0 _ x0 (s) ± ,i( _ x(s))26 
(c.0 _ xo (s)  _ 1/ (R. _ x(s))2 

1 +  
5co _ xo (s) — V _ x(s))2 

Moreover since the 0 function implies that .Tc°  > x°  (s), for generic values of x(s), 

+co 1 
/1  = dsg(s) 8 (5c°  — x°  (s) — 1  / (5c — x(s))2). (3.118) 

f 00 .R° — x° (s) + NAR — x(s))2  

Let us call f (s) the argument of the delta function Eq. (3.118). Since the curve x(s) 

is time-like, there exists a unique value s+  such that f (s+) = 0 (see Fig. 3.4). Thus, 
according to (3.111), 

12 
def 

f 
+c° 

= dsg(s) 8(f (s)) 
-00 5c

1 

° — x° (s) + 1(x — x(s))2  
+co 1 1 

= f dsg(s) 8 (s s +) 
5c° — x° (s) + 1 ( — x(s))2  If (s+)1 

Using the value off 

, df dx°  (s) dx (5c — x) 
f (s) = —  + 

ds ds ds 1(5c — x (s)) 2  
(3.119) 

Since de/ds is a time-like vector, f' (s) is negative, and we have for s = s+  

and x+  = x(s+) 

dx+  
(5c°  — x°  (s+) + 1 (R — x(s+))2) It (s +) I = 2  c (R—x+),  

(3.120) 
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Figure 3.5 The charge in motion. 

and thus 

I =  
g(s+) 

• dx 2 (5c — x +) 
(3.121) 

Applying this result to the case where g(s) = •Tcxi.'  , we get 

 

e d4 1 = e (de 1  

47 ds (1,+-s  • (.R — x +) 47 ds 2 • (5c — x) 

   

    

Al` (c) = 

 

ret 

(3.122) 

   

   

where the index 'ret' means that the expression instead of being evaluated at the proper 
time s, corresponding to the time t, is evaluated at a later time s±. Formula (3.122) 
is, in fact, at the origin of the discovery by Lorentz of the transformations which bear 
his name. Let us consider the four-vector potential created at a point .Tc = (t, r), with 
r = (x, y, z), by a charge at uniform velocity v, along the x-axis (see Fig. 3.5). The point 
of universe x(s) has for components (t, vt, 0, 0) = (1 — v2)-112  (s, vs, 0, 0). 

At time 0, the charge is at 0 of space coordinates (0, 0, 0); at time t, it is at the 
point with space coordinates (vt, 0, 0). Let r be the distance between the position 
of the charge at time t and the point of space where we will evaluate the poten-
tial. The calculus of the vector potential shows us that because of the finite speed of 
propagation of the interaction, it is the effect of the charge at time t+  = (1 — v2)-1124, 
defined by 

t — t+ = 1/(X — VLF  )2  +y2  +z2, (3.123) 

which counts. We thus introduce, the vector r+  between the retarded position of the 
charge and z, of components (x — vt+, y, z). Solving Eq. (3.123), we find that 

t t+  — r+  — 1 (x vt) + 1 
1 

v2v

1(x _ vo2 + (1 _ v2) 0,2 + z2).  
— 

v

v2 —  
(3.124) 
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Since dx°/dt = 1 ( because c= 1) and 

dx 

dx/dt = v, 

— .
(

x•  — x) dt 
= r+  — v • r+, 

ret 
(3.125) 

we finally get 

1
e 1 

A°  (t, x, y, z) = 
47  ,. /1—v2  x—vt )2 ± ± z2 y2 

I
I( 

A(t,x, y, z) = vA°. (3.126) 

Everything happens as if the solution of the problem is obtained by writing the usual 
formulae, giving the vector potential, in terms of the Coulomb potential. The common 
point is replaced by 

(x — vt) 
x —*  

./1 — v2  
Y —> Y 
Z —> Z. 

The factor 1/N/1 — v2  expresses the fact that A is a four-vector. More precisely, we get 
formulae (3.126) by computing the vector potential created by the charge in the frame 
where it is at rest and then applying a Lorentz transformation to return to the initial 
frame. 

The Lorentz transformations appear therefore naturally when we want to find the field 
created by a particle in motion. This observation, insignificant today since the modern 
idea is to obtain the Maxwell equations assuming Lorentz invariance, has marked the 
physics at the beginning of the previous century and the abandonment of the principle 
of Galilean invariance. 

We will now compute, at the lowest order in v, the electric and magnetic fields created 
by the charge in motion. For this purpose, we must take into account the condition 
which forces x(s) to be on the light cone of vertex z. It makes it possible to define s+  as 
a function of z. Indeed by taking the derivative of the relation 

o _ xo (s)  = 1 R. _ (s)i  

we deduce 

ds r v • r 
=  •-•• 1 + 

d.R° r — v • r r 
ds r _ r ( v • r) 
— = --1+ , dk r — v • r r r 

where all equations should be understood with s= s+,r = r+, etc. 

(3.127) 
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Starting from 

we find at the leading order in v 

e ( i) • r r . e ( r ry • r \ 
E_— v ) + v+3  

47 r r2 47r2  r r2  1 

e i) A r e 1 v A r 
B=—+ 

47 r2 47 r2  r 

therefore, 

(3.128) 

(3.129) 

r E 
B =  	 (3.130) 

r 

(As it turns out, this last relation is true to all orders in v: the magnetic field is at any 
point perpendicular to the electric field.) 

We see that the electric field is made of two parts: one depending on v which behaves 
at large distances as 1/r2  and a second one depending on the acceleration, which shows 
a 1/r behaviour. Every accelerated charge radiatesl°  and we are interested in the field of 
radiation 

dv)] e dv 
Erad = 4n-  r3 

[r A (v. A 
dt 
— Brad = 4n-  r2 r 

A — 
dt 

) 

 
(3.131) 

If we have several charges {et }, v is replaced in the preceding formula by Et eivi, 
which is nothing else than the derivative of the dipole moment. At this order of 
approximation, we say that we are in presence of a dipole radiation. 

3.9.2 The Larmor Formula 

Let us observe the radiation of an accelerated charge in a frame such that the velocity 
of the charge is negligible with respect to the velocity of light. The instantaneous flux of 
electromagnetic energy is given by the Poynting vector 

e dv 
S = Erad A Brad = r A — . 

r2 dt 

The power radiated per unit of solid angle is thus 

dP e2 dv e2  
 Ir A 1 2  =  

dv )2 
sin2  6, 

dS2 (47)2 r2 dt (4n-)2  ( dt ) 
sin2 (3.133) 

10  The charges in uniform motion do not radiate; in fact, we can choose a frame in which the charge is at 
rest and therefore it does not radiate. 
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where 6 is the angle between r and —,—v  . The total radiated power is given by the Larmor at 
formula, obtained by integrating the preceding expression over the solid angle: 

2  
P= = _e2  (Lv)

. 
 

3 4n-  dt 
(3.134) 

In order to derive Larmor formula we assumed that the velocity of the charge is 
small with respect to the velocity of light. Actually, the power, which is the derivative 
of the radiated energy with respect to time (dErad  = Pdt), is Lorentz invariant since the 
energy transforms as the fourth component of a four-vector under a Lorentz transform-
ation. To write the relativistic generalisation we have one four-vector at our disposal: 
the momentum four-vector p and the formula must be quadratic in p/m since the Lar-
mor formula is quadratic in v. It is, therefore, easy to write the most general Lorentz 
invariant expression using this four-vector which reduces to the Larmor formula for 
non-relativistic velocities. We get the following formula, valid whatever the speed may be, 

2 e2  
P — 3 47m2 

 (de Ids).(dpolds) = 2  e2   dP dP 
3 4n-  m2  ds ds ' 

(3.135) 

where p is the momentum four-vector, m is the mass of the particle, and s is the proper 
time. 

3.9.3 The Thomson Formula 

A charged particle hit by an electromagnetic wave is set in motion. This motion creates 
in turn a radiation. It is said that there is a diffusion of light by the charge. We will 
calculate this effect in the case of a monochromatic incident plane wave of low frequency 
arriving on a fixed charge and describe it by a diffusion cross section. The plane wave is 
characterised by an electric field 

E = Eocos(k.x — cot + 0), (3.136) 

with E.k = 0. 
We admit that the speed of oscillation of the particle is small compared to the speed of 

light, and thus to a good approximation the electromagnetic force acting on the particle 
is reduced to the electric field term. Moreover, this field is correctly represented by the 
field at the origin of the coordinates where the particle starts its motion. The equation of 
motion of the particle is therefore 

dv e 
= —E. 

dt m 
(3.137) 
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The diffusion cross section in the solid angle dS2 is given by 

da _ energy radiated per second and per unit of solid angle 
dS2 — energy density of the incident flux 

From the Larmor formula, the numerator is 

e2 ( dv )2  
sine n 0 

(4702  dt 

(3.138) 

(3.139) 

and the density of the incident flux, given by the modulus of the Poynting vector, is 
1S1 = E2. Thus 

da ( 
=

e2  )2  
- sine  0, 

dS2 47m 
(3.140) 

where 0 is the angle between the direction of diffusion and the direction of the incident 
electric field. We get the total cross section by integrating over the solid angle, and we 
obtain the Thomson formula 

87 ( e2  )2 
= 

87 2 
—atot = — — r , 

3 47 m 3 e' 

where we introduce the electromagnetic radius of the particle (reintroducing c) 

e2  
re  =  

47 mc2  

(3.141) 

This result supposes that the frequency w is small, i.e. w << mc2/h. Quantum and 
relativistic effects appear for larger frequencies or wavelengths smaller than the Compton 
wave length n4. 

3.9.4 The Limits of Classical Electromagnetism 

The system made of charged particles in an electromagnetic field shows the appearance 
of some difficulties. They are of two types: ultraviolet and infrared. 

The ultraviolet problems are related to short distance effects. They lead to infinities 
in some of the fundamental parameters characterising a particle, such as its mass or its 
charge. One can see this problem immediately by computing the electrostatic potential 
created by an ensemble of fixed charged particles. Because of the 1/r nature of the Cou-
lomb potential, we see that the hypothesis of pointlike structure of the particles leads to 
infinite contributions. We recover the usual formula if we forbid the self-interactions of 
particles. This is an example of what we shall call later renormalisation of the energy. 
Refining this argument, we could deduce that the mass of a charged particle receives an 
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infinite contribution of electromagnetic origin. These difficulties haunted the theory of 
charged particles during the first half of the twentieth century and were finally solved by 
the theory of renormalisation, which we shall present in Chapter 16. 

Infrared problems are another type of challenge. They are related to the fact that light 
propagates at the speed of 'light' or in a more modern way that the associated quantum, 
the photon, is massless. The effects are related to large distances or equivalently to small 
frequencies. We have already encountered these problems in non-relativistic quantum 
mechanics when we studied the scattering of a charged particle from a Coulomb poten-
tial. They are due to the long range of the electromagnetic interactions which is manifest 
by the too slow decrease of the potential at large distances. As we shall see later, these 
difficulties can be controlled by a more refined analysis of the physical processes. 



4 

General Relativity: A Field Theory 
of Gravitation 

4.1 The Equivalence Principle 

4.1.1 Introduction 

In the last chapter we presented Maxwell's theory as a classical field theory of electro-
dynamics. In this chapter we shall present Einstein's general relativity as a classical field 
theory of gravitation. We warn the reader again that this chapter is not meant to replace 
a regular course on general relativity any more than Chapter 3 was meant to do that for 
electrodynamics. 

We have seen that a relativistic theory fundamentally relies on the invariance under 
the Lorentz transformations, namely changes of the reference frame from one inertial 
frame K to another one K'. The restriction to inertial frames is crucial. We also saw 
that the Lorentz symmetry is, in fact, a subgroup of the Poincare symmetry, which 
includes the space and time translations. Other internal symmetries may exist and, in 
the case of electrodynamics, we found a very special such symmetry, namely the trans-
formations which change the vector potential A, by adding to it the derivative of an 
arbitrary scalar function: Aµ  (x) —> A,(x) + 8,61 (x). What is special with this trans-
formation is that it depends on a parameter, 9, which is an arbitrary function of the 
space—time point x. We called this transformation gauge transformation and we saw that 
it plays an important role in electrodynamics. In this chapter we want to show that a 
similar principle of gauge invariance will allow us to construct a classical field theory of 
gravitation. 

The invariance under Lorentz transformations implies that one cannot define an ab-
solute reference frame as in the Newton paradigm. For instance, the observed time 
interval of a physical process, such as the periodicity of the pulses of an atomic clock, the 
lifetime of a radioactive particle or a living creature, varies depending on the reference 
frame of the observer. The most popular illustration of this property is the Langevin 
`twin paradox'. We showed that these phenomena are mathematically described by the 
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invariance under the Lorentz transformations of the Minkowski distance between two 
events, Pa  and Pb, with coordinates xi, y„ zi, t= i = a, b: 

(Pa — Pb) 2  = C2 (tb — ta) 2  (Xb Xa)2  (Yb — Ya)2  — (zb — za) 2  

= nit v (Pa — PO°  (Pa — PO')  • 

In fact, the Lorentz transformations leave invariant the flat Minkowski metric 

1 0 0 0 
_ ( 0 —1 0 0 
— 0 0 —1 0) 

0 0 0 —1 

In Chapter 2 we saw that the Lorentz invariance of a physical theory is enforced 
by postulating Lorentz covariant equations of motion. This, in turn, is achieved by ex-
pressing all physical quantities in terms of Lorentz tensors, i.e. quantities belonging to 
representation spaces of the Lorentz group. It is probably Einstein's greatest contribution 
to realise that in order to describe the effects of a gravitational field in a relativistic-
ally invariant framework, we must go beyond the requirement of Lorentz invariance. 
The theory of general relativity, which he invented in 1915, is a revolutionary step that 
changed profoundly our views of space and time. 

Right after having established the principles of special relativity, Einstein addressed 
the following problem: the Newton equations for (slowly moving) particles with 
trajectories X(t) and mass density p.,(X) are 

d2X 
yo (x) = (x) — 

dt2 
= —gradco(X), (4.3) 

where co is the gravitational potential they produce. These equations are not relativist-
ically invariant, exactly as those of pure electrostatics in the absence of magnetism. No 
`naive' attempt to make them invariant, such as interpreting the gravity potential as an 
element of a tensor, can be achieved without leading to theories in contradiction with 
experiment. 

4.1.2 The Principle 

In order to formulate a relativistically invariant gravity theory, Einstein raised to the level 
of a fundamental principle of nature a property which is true in Newtonian mechanics: 
he postulated that all fundamental interactions must be such that one can locally cancel 
the effects of gravitation by changing the reference system and choosing a non-Galilean 
coordinate frame with an opposite compensating acceleration. This principle is known 
as the equivalence principle. For instance, in a non-relativistic framework, if an observer is 
in a box in free fall within a gravitational field, he cannot possibly experimentally detect 
the presence of gravity; analogously, inside a spaceship which accelerates far away from 

(4.1) 

(4.2) 
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any gravitational fields, the effect of the propulsion simulates a gravity field, by pushing 
the passengers on their seats as if there was an equivalent gravity field, by making fall 
an object as if it were subject to the equivalent gravity, etc. So Einstein postulated that 
the coupling of gravity with all other interactions, whatever they are (today we would 
say electromagnetism, electroweak, strong interactions), must be such that their effects 
remain locally the same as if gravity were decoupled and locally replaced by an inertia 
force obtained by making all experiments and observations within an accelerated frame. 
He called this the principle of equivalence. 

The postulate of this principle has profound consequences. We see immediately that 
it establishes a relation between gravity and the geometric properties of space and time. 
As we shall show in the following sections, it allowed Einstein to conclude that the 
classical effects due to gravity can be viewed as consequences of a non-trivial geo-
metry, such as a non-zero curvature, of the manifold describing space—time. In this 
manifold the value of the non-uniform metric will replace the notion of a gravity po-
tential and the idea of complicated trajectories implied by the gravitational forces in 
non-relativistic Newtonian mechanics will be replaced by that of geodesics. In other 
words, Einstein showed that the gravity effects for a relativistic particle can only be 
described consistently in a curved manifold. For achieving a correct construction, 
some non-trivial mathematics must be gradually introduced, namely the principles 
of Riemannian geometry, which cannot be avoided if we want to describe curved 
spaces. 

The theory of general relativity relies on clear physical hypothesis. In particular, we 
admit the existence of identical universal clocks (atomic clocks are an example) that 
measure their proper time in the frame where they are at rest and where the system of 
coordinates has been chosen so that the metric is locally flat, as in Eq. (4.2). In this 
frame, everything works in such a way that the effects of gravity cannot be seen, and 
the clocks indicate to their local observers their proper time by markers, such as series 
of emitted regular beeps. By counting their number, an observer can measure what he 
calls the duration between two local events. Moreover, in this frame, all other possible 
interactions should respect the invariance under the residual Lorentz invariance of the 
frame, as if we were in a flat space with no gravity. In turn, universal clocks allow us 
to define rulers that measure space-like intervals, for instanced by sending signals that 
come back using mirrors suitably located, and measuring the time for the reflected signal 
to come back. Given two events P = (t, x, y, z) and P + dP = (t + dt, x + dx, y + dy, z + dz) 
in a small region where the gravity fields have been cancelled, the fundamental property 
is the Lorentz invariance of the distance: 

ds2  = IP, P + dPI 2  = de q ,„dxv  . (4.4) 

When we change the frame to recover gravity, the metric becomes coordinate de-
pendent, but ds2  remains the same, and physics just looks more complicated because we 
see the effects of gravity. 

Before going to the formal description of this theory, we want to present two 
important consequences which have been verified experimentally. 
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4.1.3 Deflection of Light by a Gravitational Field 

Consider a ray of light such as that of a laser beam that propagates through a constant 
gravitational field g. According to the principle of equivalence, its trajectory must be 
identical to that observed in a system with no gravity, but in which the observer is sitting 
in a spaceship accelerating with acceleration —g. For another observer sitting outside in 
an inertial frame, the light ray obviously goes along a straight line. For the observer 
sitting in the accelerating spaceship, its trajectory will be seen as a parabola, due to the 
uniformly accelerated trajectory of the spaceship. Experiments show indeed that a light 
ray is deviated accordingly in a gravitational field, and the postulates of special relativity 
alone cannot explain this phenomenon. Within the context of the quantum theory, we 
must admit that the massless photons that make the laser beam are attracted by gravity, as 
massive particles are. The attraction of light by gravity was predicted by Einstein in 1911 
and demonstrated by the famous experiment of Eddington in 1919. It was observed 
during a solar eclipse that the sun deviates the light coming from distant stars, slightly 
away from the straight line trajectory it has when measured far away from the sun. We 
shall see that the laws of general relativity do provide equations which accurately describe 
this phenomenon. 

4.1.4 Influence of Gravity on Clock Synchronisation 

In special relativity, the Lorentz contraction phenomenon implies that when one ob-
serves in a given frame two identical clocks moving one with respect to the other 
at a constant speed, they get desynchronised. We will show, using the equivalence 
principle, that two identical clocks which do not move with respect to each other, 
but are located at two distinct points where the gravity potential is different, get also 
desynchronised. 

Consider the following experiment: one puts two identical clocks in a uniform gravity 
field g at two locations A and B, with altitudes zA  and zB  such that z = zA  — zB  > 0. 
Suppose they are atomic clocks. The way they function is by emitting monochromatic 
waves and we count the number of emitted periods between two events located in the 
vicinity of the clock. For an observer located near the clock A, a unit to of proper time has 
passed when he counted a given number No of pulses emitted by the clock. The question 
is to find out if, when the clock located in A has emitted No  pulses towards B, the observer 
located at B sees these No pulses passing by for a time TO  measured on his own clock. If it 
is not the case, he concludes that the two steady clocks, structurally identical but located 
at positions with different values of the gravity potential, get desynchronised. 

To find out, we simulate once more the gravity field by putting both clocks in an 
accelerated spaceship in an empty space with no gravity. The experiment goes as follows. 
The observer in A sends a first light signal at t = 0 measured in universal time and 
another one at t = to. The first signal arrives at B at a moment T with 

z— 
2
-
1 
gT

2 
= cT. (4.5) 
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The second one arrives at T + ST with 

( 
z 
 + gr2 

) 2-  
— g(T + 8T)2  = c(T + ST —TO). 

2 ° 

These formula rely on the fact that the speed of propagation of light is c in the universal 
frame, and that the speed of the spaceship has increased for the time it takes the light to 
go from A to B, so that the second signal has less distance than the first signal to go and 
connect A to B. By combining the two equations, we find that 

gz 
ST — ro  (1. — 

c2
)

. 

In principle, to compare the universal time with the proper time in the spaceship with 
speed v, we should have taken in consideration the Lorentz dilatation factor, but it gives 

,..„ a negligible correction — 1 — 1 ve2
2 1  _ g2z2/2c4 of order 1/c2. 

ST is what measures the observer in B for both signals emitted by A with a time 
separation in A equal to To. Therefore, it looks as if the clock in B runs late as compared 
to that in A, although they are identical. We conclude that the principle of equivalence 
implies that clocks at rest with respect to each other but located at points with different 
gravity potential will be desynchronised. 

The first experiment proving this prediction was done in 1960 and is based on the 
Mossbauer effect, with two identical clocks located down and up in a Harvard University 
tower. Nowadays, this effect must be taken into account to ensure a correct behaviour of 
GPS and cell phones, due to the variations of the gravity field on earth and on satellites! 
In fact, the formula generalises to the following one, for a general gravity potential yo(z): 

yo(z) 
T(z)= To  (1 -1-

2 
) . (4.8) 

All these effects must be predicted by a theory that describes well the behaviour of 
light and matter in the presence of a gravitational field, whether or not the theory is 
classical or quantum. 

4.2 Curved Geometry 

4.2.1 Introduction 

The conclusion of the discussion in the previous section is that we must write the laws 
of physics in a manifold allowing for the metric to depend on the space—time point in 
order to accommodate the possibility of going to an accelerated frame where the gravity 
is cancelled. This way the laws of physics in the rest frames of objects will be the same 
as those we established from the principle of Lorentz invariance. The guideline is that 
we know the laws of physics in flat space where we can measure the invariant element 

(4.6) 

(4.7) 



78 General Relativity: A Field Theory of Gravitation 

ds2  = c2dt2 —dx2 —dy2 —dz2. If we find the way of writing the laws of physics in a manifold 
with arbitrary metric instead of a constant metric, we will be able to see the effects of 
gravity from the principle of equivalence. By doing so, we will find, by consistency of the 
formalism, that the energy—momentum of matter actually determines the metric of the 
universe, which in turns produces gravity. This will be a complete change of paradigm, 
since the notion of gravity force and gravity potential will be replaced by the notion of a 
curved space where objects basically follow geodesics. 

Mathematicians understood already during the nineteenth century that a manifold 
with a point-dependent metric is generally curved, the most simple examples being a 
sphere and a torus in the case of manifolds with dimension 2. In fact, for a manifold 
with coordinate-dependent metric, we find that, depending on the values of the second 
derivatives of its metric, it cannot always be represented globally as a flat space. It is only 
locally that we can reduce, by a suitable change of coordinates, a metric whose compon-
ents depend on the coordinates of the point, to a flat metric. This is easily understood in 
the theory of a 2-surface, where we can visualise the way the tangent space tilts when it 
runs over the points of the surface, if it has curvature. 

However, we cannot visualise the curvature of a manifold with dimension larger 
than 2, since it would mean looking at it by an embedding in a Euclidean flat space 
with dimension larger than 3 and we have no intuition to do so. For dimensions 
larger than 2, we must content ourselves to define the curvature mathematically, a work 
that was achieved by mathematicians following the work of Riemann. 

This section explains the needed material, which is actually necessary to describe 
Einstein's theory of gravity. 

4.2.2 Tensorial Calculus for the Reparametrisation Symmetry 

We suppose that phenomena are described by a local field theory, with fields defined 
over a 4-manifold with metric g ,,,(x), where x is a given system of coordinates. We must 
define a tensorial formalism for the symmetry under change of coordinates of all fields, 
and find the way to write Lagrangians that are invariant under this symmetry. For this 
purpose, we generalise the method we followed to obtain field theories in flat space that 
are Lorentz invariant. 

(1) We must be able to classify the fields as elements of representation spaces, which 
express all possible ways they can transform under change of coordinates. 

(2) We must find the way to write equations that take the same form, for any given 
choice of a coordinate system. 

This is called covariance under general changes of coordinates. Above each non-
singular point of a manifold with coordinates xi., there is a tangent plane: it is 
a vector space with the same dimension as the manifold, and is spanned by the 
differential 1-forms dxo. The dx12  can be interpreted as small variations of the coordin-
ates xli when the point moves to another point with coordinates xi' + dx0  within a small 
enough domain of the manifold. In other words, we can locally identify a small domain 
of the manifold around a point with its tangent space at this point. 
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We shall call a general coordinate transformation —> xiA = x'µ (x) a reparametrisa- 
tion. The transformation law for the differentials is accordingly 

axitt 
dx/P' = dxv. 

axv 

By definition of the metric the squared line element 

ds2  = gp,„dxAdxv (4.10) 

is invariant under changes of coordinates. Thus, to counter-back the transformations of 
the de, 42,)  must transform as 

, axP axa 
g," —> g v= gPa • ax'I' aX/v 

(4.11) 

If an observer measures the components of the metric as 4, in the system with 
coordinates he will measure it as g'iLv  in the system with coordinates xiA. 

Given the definition (4.11), the invariance of the line-element length ds2  is due to 

ax'P 
= 3/1. 

ax/P axv 
(4.12) 

We wish to classify all possible local fields by the way they change under reparamet-
risation. Later on, we will interpret the group of these transformation laws as a gauge 
symmetry. 

In other words, we want to organise the local fields as tensors with so-called world in-
dices IL, according to the way they transform with respect to the group of the coordinate 
transformations. Thus, if the fields are known in a given system of coordinates, they will 
be determined by well-defined transformations in any other system, as it is the case for 
the differentials de or 4,„. 

By definition, a contravariant vector AA and a covariant vector BA  are objects that 
transform as follows under change of coordinates, at the same point on the manifold: 

Aw a 
= —A- 

„ 

axv 

ax' 
= By. 

a 

(4.13) 

(4.14) 

More generally, a p, q-tensor TV' -,;Aq ' with p contravariant indices and q covariant 
indices is an object whose 4p x 4q components transform as 

Tv
Ai.•44p Triz 1•••µP = 

V' ,...v q 

axe 1 ax/µ'P axvi axv,  
T AI  " (4.15) 

axl'i axAP ax'vi 1 ".  q . 

A scalar is invariant. Examples of scalars are the length ds2  = gµvdedxv as well as the 
exterior derivative d = dxi-t axu • given a vector AA, the 1-form A = A,,,cle is a scalar, etc. 
The metric g, is a rank 2 symmetric covariant tensor. 

(4.9) 
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We have the following properties that are useful. 

- If a tensor vanishes in a given system of coordinates, it vanishes in all other systems. 

- The product of two tensors is a tensor. If the product of a tensor by an object with 
indices is a tensor, the object is a tensor. 

- The properties of symmetry and antisymmetry of the indices of tensor remain true 
by a change of coordinates. 

- If TV' v.i:P  is a (p, q) tensor, gA1t,2  Tv/Ail/2,2g  " is a (p — 2, q) tensor. If AA is a (1, 0) 
vector, then gAvAA is a (0, 1) vector. In fact, the knowledge of the metric gw, allows 
us to identify contravariant and covariant indices. 

- The inverse el)  of the metric is gp,„ and 

g"gpv = 8f (4.16) 

where Svo is the invariant unit tensor. So gov  is a (0, 2) tensor. 

- One defines the moving frame et,a over each point of the manifold, where a is a 
Lorentz index. As a 4 x 4 matrix, it has an inverse ebv  such that eat' evb  = 8v nab,  where 

ab ti is the flat Minkowski metric and is a eat, vb  evb riab = gto, or et,a eav  = g . e contravari-
ant four-vector which takes its values in the same Lorentz representation as eat,. The 
introduction of the moving frame eat, is necessary to express the transformation of 
half-integer spin fields. As we shall see later, the description of such fields in flat 
space requires the introduction of a set of numerical matrices called y matrices. 
The moving frame formalism will enable us to consistently describe y matrices in 
curved space. 

- In contrast to what happens in flat space, the antisymmetrisation symbol EI"Pa 
that equals 1 or —1 depending on the parity of the permutation of indices 
ityper , or zero if two indices are equal, is not a tensor, since we have gener- 
ally — det(g,,„) # 1. Rather, E 1-"Pa is a rank 4 antisymmetric tensor. In fact, 
dax = 

1
1
6

E  vpa dxp, A dxv A dXP A dxa is a scalar. It is the invariant 
measure for defining integrals over the manifold: if f is a scalar function, the in-
tegral f d4x,/7gf (x) is a number whose value is independent of the choice of the 
coordinate system. 

- Equations that are covariant with respect to changes of coordinates imply that they 
equate tensors of the same rank. 

We now show that the definition of the derivation must be improved in order to obtain 
an operation that is covariant. 

4.2.3 Affine Connection and Covariant Derivation 

Let f (x) be a scalar function and x + dx the coordinates of a point P + dP that differs 
slightly from that of the point P with coordinates x. By a change of coordinates x —> x , 
we have 

f (x' + dx') — f (x) = f (x + dx) — f (x) = df (x). (4.17) 
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By Taylor expansion, we get 

of _ ax' of 
axP — axe ax,' 

Thus, if f (x) is a scalar function, apf(x) is a vector. 
However, if we consider a vector Bp, we have at point P 

axv 
B' (x) = — By (x) 

ax/P 

(4.18) 

(4.19) 

If we compare this equation to the analogous one that holds at the neighbouring point 
P + dP with coordinates x + dx, where dx0  is infinitesimal, we have 

agA axP axa aB a2xp 
= + Bp  

ax, ax's` ax,  ax- axmax,  • 
(4.20) 

The last term indicates that 'aB  does not transform as a tensor, except if we restrict ax,' 
ourselves to affine transformations, i.e. when the x's are linear functions in x, so that 

a2x p 

ax,,,,,,, Fe  vanishes. 
Thus, we see that B,. (x + dx)—Bp (x) is not a tensor. This in fact is geometrically obvi-

ous. We cannot consistently interpret the difference BA (X-F dx) — B p  (x), since it amounts 
to comparing two vectors that live in different tangent planes, which are generally tilted 
due to the transport between the points with coordinates x and x + dx. To compare two 
objects over different points, we must transport one of them at the point over which the 
other is defined in such a way that the transported object transforms tensorially like the 
other one. The definition of this operation must be geometrical, that is, independent of 
the system of coordinates. 

This can be illustrated very simply in the case of vectors drawn in a plane. If we wish 
to compare two vectors in Cartesian coordinates, we can subtract their components. But 
if we use polar coordinates, it is geometrically absurd to subtract their angular and radial 
coordinates. More generally, saying that two vectors at different points are the same if 
they have equal coordinates cannot be generally true: when the metric depends on the 
point, this definition would imply that they have different lengths. 

We thus need to add a new object to the manifold called the affine connection, in such 
a way that the derivation can be generalised into a covariant operation. For the type of 
manifolds that one uses in physics, the affine connection can be computed as a function 
of the metric. 

We thus consider again two points with coordinates x and x + dx and a vector field AA . 
We have seen that AA (x) + avAP(x)dxv doesn't transform as a vector. The idea of parallel 
transport is to add a quantity BIIAA  to AA (x + dx) that is linear in dx12  and A°, such that 

AA (x + dx) + 811AA = AA (x) + avAP(x)dxv + 811AA (4.21) 
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transforms as a vector at x + dx. By hypothesis, we can express 811 i4p, as 

311Aµ = 1-11:0 dxv  AP . (4.22) 

Fi,7, is not a tensor and is called the affine connection. Its transformation law will be 
computed shortly. We also define 

F Avp = g ttr rvip (4.23) 

rvp = g FT VP. (4.24) 

The requirement that Aµ (x) + P (x);;pdxv AP (x) be a tensor at point x + dx implies that 

aeL 
+ dx') + (x');;pdx/vilfP (x) = (Aa (x + dx) + I;(x + dx) dx AP) (— . 

axa ) x+dx 

Using 

= (.9x1") +
dx

, 

axc  )x+dx axa  x axa axr  
(4.25) 

and 

ae axv 
Alt dxv  = — —A'adx/r 

a x'a a xr 
(4.26) 

we get 

ax/ A  ae axfi a 2xa a XI' 

Fv/  P = axa a X" a ,C/ P Fa fi ax/vax/P ae' 
(4.27) 

This transformation law defines the connection . The last term is non-homogeneous 
and shows that is not a tensor. On the other hand, the antisymmetric part in vp of rvi;; 
transforms as a tensor. It is called the torsion of the manifold. 

So, we invented the transformation laws of such that 

DvAA aa
v 

= + PAAP 
x 

(4.28) 

is a tensor. 
I is called the affine connection. If the manifold has no metric, must be given as a 

defining property of the manifold (this is an abstract possibility we do not consider). If 
the manifold has a metric, we will see that its components can be computed in terms of 
those of the metric. 

D = dxA DA  is called the exterior covariant differential and DvAA the covariant 
derivative of A. 

Once has been introduced, we can define the parallel transport along a curve for 
consistently comparing two tensors at different points. 
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Given two neighbouring points on a curve with coordinates x and x + dx, we say that 
A has been parallel transported from x to x + dx if its components satisfy 

(x + dx) = Aµ (x) + FAAv dxP , (4.29) 

that is, 

dxv  DvAA = 0. (4.30) 

Consider now an arc of a curve that is parametrised with a parameter A. Its tangent 
vector is 4•P = dA at every point. Saying that the vector A is parallel transported along 
this arc means that its covariant derivative satisfies everywhere on the arc 

4 • DAP' 4v D„Ati = 0. (4.31) 

When the coordinate system is such that the connection vanishes all along the curve, 
the parallel transport is done with no modification of components. We can always find a 
system of coordinates such that the connection vanishes along a given curve, a property 
that disappears as soon as we take a curve that differs from the initial one, even slightly, 
as an effect of the curvature of the manifold. 

4.2.4 Parallel Transport and Christoffel Coefficients 

When the manifold has a metric (which is always the case in physics), it requires that 
the parallel transport conserves the angles and the length; that is, it preserves the scalar 
product A • B gAvAA Bv = B„ for all A and B. This request determines rif,, as a 
function of gtiv. Indeed, given a curve with parametrisation A, it implies that 

This reads as 

(gP"A Bv)  = 
0. 

p,v dxP dAA dBv 

xP
Bv + gAv B-  gtIvAA  — = O. 

dA 

(4.32) 

(4.33) 

Since, for all vectors A and B, we have dAti/dX = —FigAvdxP/dX, and an analogous 
equation for B, it follows that 

agA, 
gay rpatt  gtta rvap = 0. axP 

(4.34) 

We can invert this equation, using some cyclic permutations of indices, and obtain 

(agpp  agpv  agt,„ r,„ = ga I) 

AV 2 axv axit axP ) 
(4.35) 
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The upper index a is tensorial. Thus, we can define 

= 1 (8 g tip g pv g 

PA  2 axv axe axP 
(4.36) 

F„,, is called the Christoffel symbol: 

tav = g " Fp (4.37) 

We have the following useful properties. Since the parallel transport preserves the 
length, we have 

0 = 3110A  B = 811(AA)BA + 30 A. (4.38) 

Thus, for any given covariant vector B, we have 

61IBA = —r„v„BvidxP (4.39) 

and its covariant derivative is 

Dv B,„ = axv  — Fi fvBp. (4.40) 

For a scalar, we have 

of 
Dom }

.  = 
axp,

. 

The concept of parallel transport applies to arbitrary tensors TA1A2.-  as 

ar iA2.•• 

Dv =  + TPA TP1112••• 

.9Xv
piv 

FA2 TA1P2••• 
p2v 

FP1 TP1A2••• 
viv 

— F P2 TiL1p2.•• _ 
v2v • • • 

(4.41) 

(4.42) 

Equation (4.34) means that the covariant derivative of the metric tensor vanishes 
identically 

Dpg„v  = 0. (4.43) 

We thus have 

g„„iDvr viv2.2.. ... = Dv[gt,It 1 viv2... 
TAit12••• = D v (4.44) 

Under this form, the tensorial character of the covariant derivative is explicit. 
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By using covariant derivatives instead of non-covariant partial derivatives, we get 
differential equations that are automatically covariant under change of coordinates. It is 
thus quite easy to generalise the classical laws of physics in curved space, and, similarly, 
to write them in flat space using a system of curved coordinates. 

4.2.5 Geodesics 

Let P and P' be two points in the manifold. There is a very special trajectory among all 
curves that connect P and P', namely the trajectory that minimises its invariant length. 

For a flat Euclidean space, such special curves are straight lines, for a 2-sphere they 
are pieces of grand-circles, etc. In special relativity, we have seen that a particle that 
satisfies its equations of motion between two points follows the trajectory that minimises 
the amount of proper time it needs to go from one point to the other. 

In fact, for a general curved manifold, the geometrical definition of a geodesic does 
not primarily refer to its length, and it is expressed only in terms of the connection F . 
The definition is that for any two points P and P', the geodesic that connects P and P' is 
such that its tangent vector 4 is parallel transported from P to P'. This property is easily 
checked to be true for a straight line in a Euclidean flat space. 

Consider therefore a geodesic and let us choose a parametrisation X, so that the co-
ordinates of the points of the geodesic are xi' (X). By definition, 4µ(J)  satisfies for all 
values of X 

d v 

+ = O. 
dX vP da p = 

We can chose the tangent vector as V' = dx12 /dX. But we have the freedom of local 
dilatations of this vector by a factor f (X). So we can write the geodesic equation as 

d dx12 \ dxv dxP 
V(x) riffP-  dX 1(A)-  dX = 0.  

(4.46) 

We can change the parametrisation X —> s = sec) such that dX/ds = f (X). We then obtain 
the geodesic equation in the so-called 'normal form': 

d2x0 dxv dx.P 
+ Fr"

„ 
 - - = 0. 

ds2 vP  ds ds 
(4.47) 

Affine transformations on s stand for redefinitions of length units. We will see that (i) 
ds can be identified with the square of the norm ds2  = de and (ii) that a geodesic 
between two points is the curve with extremal length connecting these two points. 

Consider therefore a manifold with a metric. Since by definition of a geodesic its tan-
gent vector is parallel transported, it keeps the same length all along the curve. Choosing 
4," = dxPlds as the tangent vector, we have on each point of the geodesic 

dxv dxP 
14'12 = gvp  — — = cte. 

ds ds 
(4.48) 
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It follows that ds2  = cte-lgu„de de and we verify that s is truly the parametrisation 
of the length measured on the curve, modulo the multiplication by a global constant. 

We can express as a function of the metric for the geodesic equation 

d2xa 1 -v  ,„ agiip  agp, ag,„) de dxv 
O.  

ds2 2
g

axv axo axP ds ds 
m =  

This is a second-order differential equation which looks exactly as an equation of 
motion. Given a point, there is only one geodesic that passes through it with a given 
direction for its tangent vector at this point. It follows that a manifold can be described by 
a series of geodesics. The latter cannot cross each other in a small enough domain, which 
generalises the definition of parallelism. The rate at which geodesics tend to separate 
themselves depends on the curvature. 

Going back to physics, we can better understand the Euler-Lagrange equations in 
non-relativistic mechanics as stemming from the minimisation of the proper time and a 
deformation of space by a point-dependent metric. Consider the manifold with coordin-
ates xi' = (ct, x1) where t is the Newtonian absolute time and x1  the Cartesian coordinates 
of space. We can use the universal Newton time t as the parameter of all trajectories, so 
ct = s. The Newton equations are 

d2xi  d V 
= 0 + 

ds2 dx1  
d2 t 

= 0. 
ds2  

They can be rewritten, modulo terms in 1/c4, as 

d2e , de dxP 
+ — 

ds2 vP  ds ds 

with 

pa = 1 ap  (.9gAp agp, 
P  v 2

g

axv axo axP 

and 

gij = Si/ 

goo  = 1 + —
v 

goi = 0. 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

If curved coordinates are used for the space, we replace Su  by the expression of 
the metric in the new system of coordinates. So, in general, Newton's equation can be 
rewritten as a geodesic equation (4.51). 

(4.49) 
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It shows that in non-relativistic mechanics, we cannot distinguish locally between an 
internal force obtained by an accelerated frame and an external force that derives from 
a potential. We also found this relation when we detailed the deviation of light by gravity 
by using the equivalence principle, replacing the gravity field by that of the acceleration 
of the frame. Here, we understand that the light follows a geodesic in a curved space, 
where the connection is determined by the gravity potential. 

We now show that it is equivalent to define a geodesic by the demand that its tangent 
vector moves by parallel transport and that its length is extremal. The length is defined 
as follows, when A < A < 

dxl/ dxv 
Af ] = f d4gp,v

dA • 
(4.54) 

The trajectory which extremises s is such that 

   

8 
 f 

 1L(xi,.3d9dX = 0 
Ai  

 

(4.55) 

with 

1 de dxv 
L(xl.  ,5cP) = g,„ 

2 dX dA • 
(4.56) 

We can solve this equation by making it more general, with 

8 
 f 

 F[L(x1',.ki'AdA = 0, 
Ai  

(4.57) 

where F[L] is an arbitrarily given function of L that is monotonous and differentiable. 
By using the methods of the calculus of variations, we have 

and thus 

d aF• _ aF 
clA axµ axe 

d (F, 
[L]giLvd

x
x
v = F,[L] a

a
g
xv,,

,, dxv d
d
x: 

(4.58) 

(4.59) 

We can choose as the arc length s on the curve, with ds2  = gN,v dx"`dxv, so that 
L(s) = Ig

Av 

 d

d

X

s

A  d

d
X: = (ds/ds)2  = and thus L is constant along the curve. For any 

given function F, F(L) and F' (L) are then fixed along the curve, independently of the 
value of s. 
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We end up therefore with the following expression of the Euler—Lagrange equation 
that expresses the condition of extremal length: 

d de 1 ag, de dx" 
(4.60) 

ds ds ds ) axP, 

This equation is nothing but the geometrical equation (4.49) for a geodesic, defined 
from the property that its tangent vectors are parallel transported along it. 

The variation principle gives the same equation for the geodesics, independently of 
the choice of the function F. If we choose F (L) = ,FL, we see that Eq. (4.49) for a 
geodesic is truly the constraint that its length, defined, in Eq. (4.54), is extremal. 

We have thus demonstrated the identification of geodesics as curves of extremal 
length between different points. Both definitions are useful. They offer different ways 
of visualising and drawing geodesics. 

The following equation for a geodesic 

f 
Sf 1 de de 

8 = 0 (4.61) 
sz  2 ds ds 

gives again a link between mechanics and geodesics. Indeed in a non-relativistic limit, 
when s ct, we find with goo  = 1, L = c2  — i42, that is the well-know Lagrange function 
for a free non-relativistic particle. 

4.2.6 The Curvature Tensor 

On a curved manifold, many 'obvious' properties of Euclidean geometry get modified. 
The sum of the angles of a triangle drawn with three geodesics (three grand circle arcs 
on a sphere) is not 27. A square made by drawing four geodesics starting from a point 
and, making three successive 90° angles, does not close; the ratio of the circumference 
of a circle divided by its radius measured on the surface is not 27; etc. 

These facts boil down to the property that if we consider points in a manifold and 
the closed path C obtained by connecting them in a given order by geodesics, and if 
we parallel transport a vector along this curve, the vector will not come back identical 
to itself after a cycle, because of the successive jumps of direction at each corner of the 
curve of the angles between the tangent vector and the geodesics. We get an angular 
deficit between the vector we started from and the vector it became at the end of the 
cycle, when it returns to the starting point. This angle is non-zero in general and makes 
it possible for us to define precisely the curvature as a tensor. 

We have seen that the equations of geodesics depend on the connection. We also 
suggested that the rate at which geodesics separate one from the other depends on the 
curvature. We now show the precise link between the connection and the curvature. 

Consider a vector At, which is parallel transported on a closed curve C. When it goes 
from the point x to the point x + dx on the curve, its coordinates change from At  to 

+ 81141,,  with 811Att = dxv . The 811 AA's are not the components of a vector at x, 
but the integrated quantity 

AcA,a  = — 17vA, dxv (4.62) 
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does express the components of a vector, since it is nothing but the difference at a given 
point (arbitrarily chosen on C) between Aµ  and the transformation of A„ after having 
been parallel transported once around the closed path F. If one changes the contour C, 
the values of AA, generally change. 

To define the curvature, the correct idea is to consider a small enough contour C and 
to use Eq. (4.62) to define a tensor that does not depend on the details of the contour 
and characterises the curvature of the manifold. 

So, by doing an expansion of AA, at the lowest order in the surface defined by EPa = 

dXP  A dxa that is delimited by the infinitesimal contour C, we will find a formula for the 
curvature tensor Roy  pa  such that 

1 
AAII  2 

= —Rv  A
v  E

ar  
ilar   

(4.63) 

AA„ and EaT being tensors, Rov p, is a tensor of rank 4. It is called the Riemann curvature 
tensor. 

To compute R we apply the Stokes theorem to the right-hand side of Eq. (4.62) for 
AA„, and we use the property that A is parallel transported to itself along the contour, 

aA

xv 
= FiLavA,. (4.64) 

a 

We get 

AA — 
1 (a(rTr Av) a(rovo.Av)) 

,   Ear.  
2 ax- ax- 

By comparison with (4.63), we find that R is 

ary ary 
RV —   ry — ry  F P  

14ar ax- axt Pa PT PT Pa  

(4.65) 

(4.66) 

The Riemann tensor is thus calculable in terms of the metric, using the expression of 
as a function of gav  . We see that the Riemann tensor depends on the second derivatives 

of the metric. We also have 

Rovp, = gor Rrypa. (4.67) 

We find analogous formulae for a contravariant vector B.  To do so, either we do a 
direct computation or we use the fact that A (AP' 30) = 0 since Al1B„ is a scalar. We get 
by both methods 

AP` = Cp rativir dxv  = —1R1-„to.,Bv Ear 
r 2 

(4.68) 
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The generalisation of these formulae for computing A T with T a tensor of arbitrary 
rank is obvious. 

The following formulae express the non-commutativity of the covariant derivatives in 
curved space. The result is proportional to the Riemann tensor: 

(Dar), — D,Da )B, = R „By (4.69) 

(Da  Dr  — Di  Da )Ail  = KriAv (4.70) 

(Dar), — DiDa )Biip  = RAv  „Bvp  + Rpv . (4.71) 

We can show that the definition of flat space is that its Riemann tensor globally vanishes. 
We have the following symmetries for its indices: 

R,vpo. = —Rviva  

Ravpa  = —RA„p  

Rp„, = RA„p . (4.72) 

Thus, the only rank 2 tensor we can extract from the Riemann tensor is by contracting 
its first and third indices. This gives the Ricci tensor. 

Rva = g"  RAvpa • (4.73) 

Then, the scalar curvature is 

R = g" Rya  . (4.74) 

The notion of a curvature explains well the twin Langevin paradox, taking correctly 
into account the effect of the accelerations on the trajectories of both twins. The twin 
who stays on Earth follows a given geodesic between the two moments when his brother 
takes off from Earth and comes back near him. The second one follows another geodesic, 
computed by using a metric expressing all the forces he is submitted to. Whatever the 
form of the geodesics, the one who remains on Earth will have aged more than the other 
one, who travelled along other geodesics, when the latter comes back. 

4.3 Reparametrization Gauge Symmetry and Einstein's 
General Relativity 

4.3.1 Reparametrisation Invariance as a Gauge Symmetry 

In the previous chapter on classical electrodynamics we showed that Maxwell's the-
ory can be obtained from an action which is invariant under the gauge transformation 
A, (x) —> A, (x) + 0,9(x). In this section we want to show that reparametrisation in-
variance can also be interpreted as a gauge symmetry acting on the fields at the same 
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point. This approach de-emphasises the geometrical idea of parallel transport, since the 
symmetry is expressed at a given point, but we get a unified description of gauge trans-
formations which will be used again later in the formulation of the Yang—Mills theory in 
flat space. 

The idea is to interpret the transformation laws of tensors under a change of co-
ordinates as a symmetry acting on the dynamical variables. Imagine that we have a 
theory whose dynamical variables are a set of fields which we denote collectively by 
co (x) . We assume that they transform as tensors under a change of coordinates. We build 
a Lagrangian density L(yo, D,a(p, g,„) as a polynomial in the fields and their covariant de-
rivatives. All indices in every monomial of L are supposed to be fully contracted using 
the metric g. It follows that the action given by 

I[yo,D,(p,g,„] = f d4x,,L(co,Doo,g,„) (4.75) 

is invariant under reparametrisations because both L and d4x,,,/ ,  are scalars. By min-
imising this action, we get Euler—Lagrange equations that are automatically covariant 
under changes of coordinates. We will show that the action I is determined by a gauge 
symmetry associated with the reparametrisation invariance. 

We consider the infinitesimal change of coordinates x —> x' with 

x''' = x'a — V'(x), (4.76) 

where all components of the vector VL are infinitesimal and depend on x. 
Let us start by considering a scalar function f. By change of coordinates, we have 

t (x') = f (x). (4.77) 

The idea is to identify the way f (x) transforms into f'(x') as a change Sf by a local 
transformation acting on f without changing its argument x. Sf is defined as 

4f (x) f' (x) — f (x) 

= f (x) — f (x — 0 = r a pi.  (x). (4.78) 

These transformations form an algebra, since given two transformations with para-
meters i  and 2, we have 

(hi 42 — 64•241) f = a 4•3f (4.79) 

with 

CL = Cai4f' — ai,CL. (4.80) 



92 General Relativity: A Field Theory of Gravitation 

This relation shows that the infinitesimal transformations 8 build a Lie algebra, at least 
when they act on scalars. 

As a second example, let us consider a vector Ao and proceed as for the scalar f. By 
change of coordinates, we have 

We thus define 

a x'11  
A'" (x) = 

8x° 
A' (x). (4.81) 

NAP' (x) A''' (x') — AP' (x'), (4.82) 

so that 

84.241' (x) = r a vie' -Ava,r. 

More generally, given a tensor T we can compute S T such that 

84. T (x) T' (x') — T (x) 

with x' = x — . 
Generally, at first order in 4, the result 64. T (x) can be written as 

(4.83) 

(4.84) 

4 T (x) = .C4. T (x). (4.85) 

The operation .0 acts on any kind of tensor. It is generically called the Lie derivative 
of T along the vector 4. The explicit expression of the action of .C4. is tedious to write, 
because its expression gets more and more lengthy when the rank of the tensor T in-
creases; however, we find that for all tensors, independently of the rank, we have the Lie 
algebra structure 

[CAE'] = r 1“'} (4.86) 

with 

{wo=v0,44L-cvaveL. (4.87) 

It will be useful to consider, as another example, the case of the metric g. We find that 

hgov = ratty = goPavV9  + gvPatr + VaPgov• (4.88) 

By using the chain rule and the definition of a determinant, we find that the density 
..,g,  transforms as 

4.,,/ ,  = ao(c-t.„). (4.89) 
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Thus, assuming that the Lagrangian density is a scalar, SQ L = V1a,L we have 

= ao(e)L + ,R-VaiL L = (4.90) 

The Lagrangian is invariant modulo a pure derivative. If all fields, as well as VL, 
vanish at the boundary, the action I = f d4xL is invariant under the action of the 
transformation 80  

f ,Rd4  xL = 0. (4.91) 

We say that the transformation defines a symmetry which is local, since its 
parameters depend on the coordinates. So reparametrisation acts as a gauge symmetry, 
in a way analogous to the one we found for electrodynamics. 

4.3.2 Reparametrisation Invariance and Energy-Momentum 
Tensor 

In flat space, we have shown that the conservation of energy—momentum follows from 
the translation invariance of the action 

I = f dxL(yo, 00(p). (4.92) 

We used the proof that combines 

SL SL 
aoL = + av apv  (4.93) —

Sco
0,2(p 

aavco 

and the Euler—Lagrange equations 

(4.94) 
Sip 

—av 80,4 . 

It gives 

a (

SL 
 — av cp = 0. (4.95) 

800cp 

The tensor 

Tov  =
SL 

—av(p— 6; L (4.96) 
Sao, 

is thus conserved modulo the equations of motion. This is a possible expression of the 
energy—momentum tensor. 
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Although this derivation is correct, the resulting expression for the energy—
momentum tensor is not the most convenient one. For example, depending on the 
field representations, it does not give a tensor which is automatically symmetric in the 
indices it and v. In fact, this expression must be often improved by the addition of terms 
with vanishing divergence in order to get a symmetric expression. Even worse, for elec-
tromagnetism with the Lagrangian L = 41 (0 AA, - 0,4,), we must modify Tay, not only 
to make it symmetrical, but also to make it gauge invariant at the same time. Further-
more, it is challenging to generalise this definition of Ta y in curved space, and get a 
covariant definition. 

The right thing to do is to use the invariance under reparametrisation of the action, 
which imposes that it depends on the metric (which we can always take to be constant at 
the end of the computation). In doing so we shall obtain a symmetric second-rank tensor 
which is covariantly conserved, as the natural candidate for the energy—momentum 
tensor. 

This is quite simple. Consider the action 

I = f dx., ,L((p,aAco, g„,), (4.97) 

which now depends on the metric. In this equation, the metric g A, is considered as an 
external field, so the variational principle only applies to the fields co and their derivat-
ives. We look for a covariantly conserved tensor, modulo the equations of motion. The 
action is reparametrisation invariant. When the equations of motion hold, the action is 
invariant under any given local variation of the fields, which include variations under 
reparametrisation as a particular case. Therefore, we have that, modulo the equations of 
motion, the reparametrisation invariance implies that 

f dx ((81' a
s
(8.‘ L)) raA,) = 0, 

0 o.g„, 
(4.98) 

where .CaA„ is the Lie derivative of g A, along the infinitesimal vector of an infinitesimal 
diffeomorphism. Let us define 

1 SQL 
I ,RTA, = . 

agt,v 
(4.99) 

Using the definition of ra,„ and performing partial integrations, Eq. (4.98) can be 
expressed as 

f
dx.,/ ,  r DA Tft  = 0. (4.100) 

Therefore, TA, is covariantly conserved and is the right definition for the energy—
momentum tensor. Just two examples: 
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For the action of a scalar field, we have 

1 
I = f dx(Ig"0,(pay(p) 

By derivation with respect to the metric, we obtain 

1 
Ta„ = 0,a(pav(p — 2govapOP(P. 

For the action of electromagnetism, 

f ( 4FPT,„) 

(4.101) 

(4.102) 

(4.103) 

(this Lagrangian is reparametrisation invariant since DoA„ — D„Ap, = apAp  — avA0, we 
find that 

rfi — 2  81- _ 1 aAs  

N/7g,  8 — Ttg FitvFiLv_F.F,5. (4.104) 

TO is both gauge invariant and symmetric. For a flat metric, we can check that T00  = 
E2  + B2  is the energy density and To, = (E A B), is the Poynting momentum—flux vector. 

4.3.3 The Einstein-Hilbert Equation 

We found the remarkable result that the energy—momentum tensor of a system with local 
fields satisfying their Euler—Lagrange field equations is the response of the action to a 
variation of the metric. 

Up to now the metric has been treated as an external field. We want to remind, how-
ever, that, in various static cases we have discussed, we have found relations between the 
metric and the gravitational field as consequences of the equivalence principle. We have 
given examples suggesting that the presence of a gravity field can be absorbed into a re-
definition of the metric of space—time. In this section we want to generalise these results 
and obtain an equation of motion expressing the reciprocal interactions between matter 
and gravity in a geometrical way. 

A mathematically simple way to do so is to add to the matter Lagrangian L(yo, g„,,v ) a 
Lagrangian for pure gravity T- --sravity, depending only on the metric goy and its derivatives, 
so that go y becomes a dynamical field. 

We thus consider the action 

f d4 (L(co, goy) + Lgravity (goy )) . (4.105) 

The simplest scalar invariant Lagrangian density that depends on go y and is of the lowest 
possible order on the derivatives of ga„ is the scalar curvature R, which we obtained in 
contracting in all possible ways the four indices of the Riemann tensor. 
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Lgravity = K -1  R = K -1  g AvR" (4.106) 

K is a dimensionful constant. It will be related to the Newton constant in the non-
relativistic limit of the theory. 

A rather simple computation shows that for a local variation of the metric Sgp,„ the 
variation of the action f d4xJLgravity  is 

f
1 v  

( RI" — . (4.107) 

When we vary the part of the action that depends on the matter fields, we find, by 
definition of the energy—momentum tensor of the matter TA„ that 

f (4.108) 

Thus, when we look for the metric configuration that extremises the action, the Euler—
Lagrange equations give the following relation between the curvature of the space and 
the energy—momentum tensor of matter: 

RIt 2 
v  — —

1
g „R = K TAv. (4.109) 

This equation expresses how the matter determines the space—time curvature through 
its energy—momentum tensor. It is called the Einstein—Hilbert equation. 

The matter dynamics is itself determined by the Euler—Lagrange equation of matter 
fields 

SL SL 

8yo 
—D  

P" SDA(p .
(4.110) 

The system of the two coupled non-linear differential equations (4.109) and (4.110) 
expresses the way gravity and matter classically interact. 

Contact with physics is simple when the observed matter is sufficiently dilute to leave 
unperturbed the background geometry given by a solution of the Einstein—Hilbert equa-
tion. This is the concept of test particles in a gravitational background. Then, the action 
of a pointlike particle with trajectory (r) is 

1 f dXA dXv 
i[X1 = 2 cirgl" dr dr • 

This value of the action is extremal when (r) satisfies its Euler—Lagrange equation 

d2XA dXP dXa 
dr2 

 +
Pa  dr dr = 0.

(4.112) 
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This is the equation for a geodesic. We thus recover in full generality the results we 
found on examples, using the equivalence principle. 

In the Newtonian approximation, ga, is a flat metric, and t is the universal time 

1 1 dx\ 2) 
= I[x, t] f di T) (4.113) 

We can expand all coefficients of the metric g,,„ in a Taylor expansion in 1/c2. At first 
non-trivial order in 1/c2, the general solution of the Einstein—Hilbert equation (4.109) is 
nothing but g11 = Sy, gio = 0, and 

2 V 
goo = 1 + z  . (4.114) 

For this parametrisation, the Einstein—Hilbert equation implies that V satisfies the 
Poisson equation, so that V can be identified with a Newton potential. The connection 
between the constant K and the Newton constant can be obtained by considering the 
Einstein—Hilbert equation for the static energy—momentum tensor of a massive particle 
localised at a point. 

We found earlier this approximate relation between the metric component goo  and 
the non-relativistic gravity potential by using the equivalence principle. The Einstein—
Hilbert equation explains this relation in full depth. 

The Einstein—Hilbert equation is the fundamental equation for gravity. It implies that 
gravity deforms the particle trajectories into curved trajectories, which, in the previ-
ous formulation, were interpreted in the non-relativistic approximation as coming from 
the existence of forces which deviate them from straight lines. In general relativity 
they simply follow the geodesics for the curved metric which describe the curvature 
of space—time through the Einstein—Hilbert equation. 

General relativity is thus a gauge theory for a spin-2 field, the metric gp,„ while elec-
tromagnetism is a gauge theory for a spin-1 field, the gauge potential A,. Both fields 
satisfy wave equations which, for the metric, is nothing but the Einstein equation. The 
two theories share some common features, but gravity also presents serious additional 
complications. 

The common part is that they are both gauge invariant. We saw in the case of the 
electromagnetic field that this invariance has two consequences which are related to each 
other: (i) all four components of AN, are not independent dynamical degrees of free-
dom, and (ii) in order to solve for the Green functions of the theory we must apply a 
procedure which we called 'gauge fixing'. Both features appear also in the equation for 
gravity: (i) the ten components of the rank 2 symmetric tensor gw, are not independent 
degrees of freedom. In fact, we shall show in the next chapter, that, as it is the case for 
the electromagnetic field, only two degrees of freedom are physical. The others can be 
eliminated by an appropriate choice of gauge. (ii) We need to proceed to a gauge fixing 
in order to solve for the Green functions. For example, the analogue of the Lorenz gauge 
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condition vA,,, = 0 for the electromagnetic field is the 'de Donder' gauge condition for 
the gravitational field: 

a0A0  = 0 PA,„ = 0. (4.115) 

The additional complications we alluded to stem, essentially, from two problems. 
(i) The Einstein equation is a non-linear equation, so simple methods of solutions based 
on Fourier transform do not apply. (ii) The weak field approximation, in which all 
components of the field can be considered infinitesimal, does not apply either, since 
the determinant of the metric cannot vanish. As a result, in general relativity non-
perturbative phenomena are the most interesting ones, and they have to do with the 
structure of space. On the other hand, some features are similar; for example, it is simple 
to reach the conclusion that planar gravitational waves can propagate in empty space. 
They are solutions of the linear approximation of the Einstein action and are expec-
ted to be produced by strongly accelerating massive bodies, such as strong gravitational 
bursts in the early Universe. We shall briefly mention them again in a later chapter. 

Exploring all classical consequences of the equations of gravitation we just derived is 
not a subject that we want to pursue as a main topic in this book. It is a fact that general 
relativity has passed all experimental tests that were possible to do for the past dec-
ades to check its specific predictions, such as the motion of stars in the post-Newtonian 
approximation, the formation, and the dynamics of Galaxies, but also the existence of 
black holes, the gravitational red shift, and many cosmological observations such as the 
spectrum of the microwave background radiation. 

However, this chapter makes us understand with no artifice how the relativistic 
quantum field theories we can construct in flat space can be generalised in the pres-
ence of classical gravity. We have seen that the mathematical recipe is just to change the 
Minkowski space into a curved manifold, as it is required for sustaining the principle of 
equivalence. All actions we may write in flat space can be easily written in a coordinate 
invariant way, and this defines the interaction between spin 0, , and 1 fields and the 
gravitational field g ov. 

In the subsequent chapters we shall present the methods to go from a classical to 
the corresponding quantum field theory. In principle, the method could be applied to 
general relativity and we shall sketch it briefly, after we have established and proved it 
for flat space gauge theories. It is indeed gratifying to realise that the method is universal 
and we shall understand why it fails to give calculable results for quantum gravity. 

4.4 The Limits of Our Perception of Space and Time 

A deep assumption of both classical and quantum physics is that space and time are 
described by a four-dimensional Riemannian (or pseudo-Riemannian) manifold. Going 
from non-relativistic mechanics to special relativity and, finally, to general relativity, im-
ply only different assumptions on the properties of the underlying metric. But the basic 
properties of the manifold, such as the number of dimensions or the property of being 
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continuous and differentiable, are not challenged. In this section we want to present the 
experimental evidence which supports this assumption, together with some speculations 
concerning possible deviations. 

4.4.1 Direct Measurements 

A first guess would be that the limits on possible defects1  are given by the resolution 
of our measuring instruments. They are clocks for time and microscopes for space 
measurements. 

Let us start with the time variable. We saw in this chapter that an observer sees that 
identical clocks (i.e. cloned perfect atomic clocks) get desynchronised in a well-defined 
way, when they are at rest in different frames with relative speeds and/or accelerations. 
This is the lesson of general relativity. This fact generalises to an analogous desyn-
chronisation for clocks relatively at rest but situated at different locations in a classical 
gravitational field. These counter-intuitive phenomena have been accurately verified ex-
perimentally. They have deep consequences in cosmology. At the experimental side we 
can observe nowadays phenomena with time-scales running over an enormous range, 
with impressive accuracy. State-of-the-art atomic clocks rely on the transition process 
between two states of a caesium atom, where the frequency of the emitted light is on 
the order of 10-13  seconds. The great precision of this transition makes it possible to 
measure reliably time intervals as short as 10-18  seconds, in periods on the order of a 
day. As a result we could claim that the hypothesis of a continuous real time is well sup-
ported experimentally for time periods as short as 10-18  seconds and probably as long 
as 1010  —1011  years, the age of the Universe. Note that even without any other measure-
ment, this result could be translated into a distance down to which space can be assumed 
to have a continuous structure: the distance covered by a light signal in 10-18  seconds. 
This is 3 x 10-8  cm, on the order of the typical size of an atom. 

For the space part direct measurements can do better. Light diffraction experiments 
can have a resolution better than 10-13  cm (the electromagnetic form factor of the proton 
was measured this way), and high energy accelerators can probe the structure of space at 
distances as short as 1 0-16 — 1 0-17  cm. The discovery of the composite nature of nucleons 
as bound states of quarks was the result of such scattering experiments, in the same spirit 
that Rutherford discovered the composite nature of atoms. An immediate conclusion 
could be that the same measurements show indirectly the absence of any space defects 
down to these distances, although, as we shall show presently, this conclusion is not as 
solid as it sounds. 

Before discussing the significance of these limits, let us remark that they are expressed 
in terms of space and time units, the centimetre and the second, which are related to 
our macroscopic environment. Let us first try to find a more abstract system. At the 
beginning of this book we introduced the notion of natural units, i.e. units related to 
fundamental physical constants. Let us complete this analysis here. 

1  Here by defect we mean any structure which is not described by the usual four-dimensional smooth 
metrics we have been considering. Some special examples will be given below. 
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The first 'fundamental constant' which was introduced in physics was Newton's con-
stant GN, which, in our earth-related units, equals 6.67384(80) x 10-11kg-lm3s-2. In 
the late nineteenth century the constant c was introduced through Maxwell's equations, 
c = 299792458 m s-1, which represents the speed of light in a vacuum. Finally, with 
quantum theory came the constant h = 1.054571726(47) x 10-34kg T11251. It seems that 
it was Planck himself who first realised that the set of these three independent physical 
constants offers a way to define a system of natural units, i.e. units which are dictated 
by the laws of nature and not by our earthly environment. It is the system in which 
c = h = GN  = 1 and we shall call them Planck units. Given the values of c, /1, and GN  we 
have just provided, we find that the Planck units of time Ip, distance /p, and mass Mp 
(we often use the unit of energy Ep) are 

1 rp = 1/ 
GNh  
— — 0.52 x 10-43s ; 1/p = 1/ — 1.6 x 10-35m 

C5 C3  
(4.116) 

1Mp = 
tic 
— — 2.12 x 10-8kg ; 1Ep — 1.2 x 1019GeV. 
GN 

(4.117) 

We see that our measurement capabilities for space and time are many orders of 
magnitude away from Planck units. Where do we fail? In our experiments, in particle 
physics, the typical velocities are on the order of the speed of light and we are in the 
quantum regime in which the typical action is on the order of h. So, setting c = h = 1 is 
normal, it describes phenomena for which quantum mechanics and special relativity are 
important. This is the system of units we presented in the Introduction and it is the one 
we adopt in this book. The point of failure is the relation GN = 1. Together with the other 
two, it describes conditions under which we have, in addition, strong gravitational forces. 
The second of the relations (4.117) shows that this is expected to happen at extremely 
high energies, beyond the reach of existing, or imaginable, accelerators. For comparison, 
the maximum energy of LHC is on the order of a few times 103  GeV. If whichever 
new structure of space and time exists appears only at Planck units, it may well remain 
undetectable for any foreseeable future. If our current ideas on the evolution of the 
Universe are correct, conditions such that c = h = GN  = 1 prevailed only during the first 
10-43s after the Big Bang. In order to describe physics under these conditions a classical 
theory is not sufficient and we need a fully quantised theory of gravity. Although such a 
complete theory is still missing, most speculations studied so far predict a breakdown of 
the usual assumptions corresponding to a smooth four-dimensional manifold of space 
and time. 

4.4.2 Possible Large Defects 

Let us now come back to the existing experimental evidence for the structure of 
space and time. In the previous section we presented the current precision of direct 
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measurements. We want here to argue that they do not necessarily guarantee the ab-
sence of any 'defect' down to the corresponding accuracy. The reason is obvious: our 
capability to detect any kind of defect in the structure of space depends on the interac-
tion this defect may have with the probes we are using, usually light, or other elementary 
particles such as electrons or protons. In the absence of such interactions a defect will 
remain invisible to scattering experiments. We want here to give an example. 

The example is inspired by the study of quantum string theories which offer the most 
promising candidate to obtain a quantum theory of gravity. They are formulated in a ten-
dimensional space (nine space and one time) and the usual assumption is that six space 
dimensions are compact. The natural size of compactification is given by the Planck 
length /p of (4.116). However, it is interesting to study an alternative possibility, namely 
the one of large extra dimensions. So, leaving any theoretical prejudice aside, let us assume 
that there exist 3 + d spatial dimensions with the d forming a compact space of size R. 
How large can R be without contradicting existing experiments? As we noted earlier, we 
expect the answer to depend on the specific assumptions concerning the relation of our 
probes with the extra dimensions. We shall consider two extreme cases. 

Let zm = (x,„yz) M = 0, 1, ..., 3 + d, µ = 0, 1, 2, 3 and i + 1, d denote a point in 
the (4 + d)-dimensional space. The metric tensor is written as gA/IN (Z). In the first case 
let us assume that a field, such as the electromagnetic field, depends on both x and y. 
Consider, for simplicity, that the compact space is a sphere of radius R. In this case the 
d y's can be chosen to be angular variables and we can take the field A to satisfy periodic 
boundary conditions. Expanding in a Fourier series, we obtain 

00 

A(z) = E An(x)eini, (4.118) 
n=—oo 

where we have suppressed the vector index for A and we wrote the formula for d = 1. 
We see that the field A in five dimensions is equivalent to an infinity of fields in four 
dimensions. The equation of motion (3.29) in the vacuum will be generalised to 

n2  
amamA(z) = 0 = 0,a'An  (x) = ITAn(x); (4.119) 

in other words, we obtain an infinite tower of modes, the so-called Kaluza—Klein modes, 
with equal spacing given by n/R. In this case light scattering experiments will detect these 
modes, if the resolution is better than R, and our previous assumption that the limiting 
size of the defect will be given by the resolution of our microscope will be correct. 

In the opposite extreme case, let us assume that the field A, as well as any other phys-
ical field with the exception of the metric tensor, is independent of y. This means that 
all our fields and particles other that the gravitational field live in the four-dimensional 
space. In this case only Ao survives and a diffraction experiment will see nothing. The 
compact space can only be detected by gravitational experiments. 
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In our four-dimensional space-time the gravitational potential of a mass M at a 
distance r is given by Newton's formula 

V (r) = 
GNM

, 
r 

(4.120) 

and, in the units we are using, GN (Ep)-2. In the (4 + d)-dimensional space and for 
r < R, the corresponding formula is 

KM 1 
V (r) = (E*)2-Fd 7.1+d' (4.121) 

where E*  is the new value of the 'Planck energy' in 4+d dimensions and K is a numerical 
factor which takes into account the fact that force lines spread over more dimensions: 
K 8n- /[(2 + d) ,r2 (2+d) ] . For r > R we must obtain back the four-dimensional potential 
(4.120), so by matching the two we obtain 

(Ep 1
d. 

 

E* ) K
(E 1‹) (4.122) 

R cannot be larger than 0.1 mm, because Newton's law has been tested to distances of 
that order. In our system of units (c = h = 1), E*R is dimensionless and the conversion 
factor with ordinary units is given by the approximate relation 10-13cm— (200 MeV)-1. 
We see that assuming, for example, d = 2, we can have a compact sphere at every point 
in space with radius as large as some fraction of a millimetre, provided E*  is on the order 
of a few TeV, in perfect agreement with all existing experiments. The reason why such 
a 'defect' could have escaped detection is that it interacts only gravitationally with our 
usual probes. Note also that in such a world gravitational interactions would become 
strong at an energy scale of a few TeV. An accelerator reaching this scale would discover 
entirely new and spectacular strong interaction phenomena associated with gravitation, 
such as multi-graviton radiation, mini black hole production, etc. All these phenomena 
become detectable at an energy of several TeV which corresponds to a space resolution 
smaller than 10-17  cm, although the compact sphere of extra dimensions has a size of 
0.1 mm. In this simple example we see that the limits in our perception of the properties 
of space are not necessarily identical with the resolution of our microscopes. 
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The Physical States 

5.1 Introduction 

In establishing the symmetry properties of a physical theory it is important to know 
which are the associated physical states. Indeed, all observable consequences of the 
theory are expressed in terms of relations among such states. 

Classical physics is formulated in terms of the dynamical variables qz (t) and pi (t), 
i = 1, ..., N, where N is the number of degrees of freedom of the system. For example, 
if the system consists of point particles, the q and the p values could be the positions 
and momenta of the particles. The physical states of such a system are just the possible 
values of these variables at a given time, so they do not require any special care in order 
to be specified. The situation does not change radically when we take the large N limit 
and consider the index i taking values in a continuum, for example, the points in the 
three-dimensional space. The theory becomes a classical field theory, such as the elec-
tromagnetic theory or the theory of general relativity, which we reviewed briefly in the 
previous chapters. The physical states are still determined by the values of the fields and 
their first-time derivatives at each point in space, which, for the electromagnetic field, 
correspond to a given configuration of the electric and magnetic fields. 

Although the subject of this book is the theory of quantum fields, we will see that the 
associated physical states we will use will be states of particles. This connection between 
fields and particles, already present under the form of wave—particle duality in the old 
quantum theory, will be fully developed in the next chapters. However, we know already 
that in quantum mechanics positions and momenta cannot be specified simultaneously 
and the states of a non-relativistic quantum mechanical particle are determined by the 
possible wave functions, i.e. vectors in a certain Hilbert space. Special relativity brings 
a further, very important, complication. Already in classical physics, special relativity 
establishes a connection between energy and mass with the famous relation E = mc2  . But 
it is in quantum physics that this relation reveals all its significance. We expect therefore 
that establishing a relativistic quantum formalism will not be a simple exercise. In fact, 
such a formalism must include in an essential way the non-conservation of the number 
of particles and, as we will see in this book, the fact that to each particle is associated 
an antiparticle. In the old books this is often called the formalism of second quantisation, 
although it is, in fact, the theory of quantum fields, the subject of this book. 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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From these remarks, we see that a necessary step for understanding relativistic 
quantum phenomena is a good knowledge of the states consisting of an arbitrary number 
of particles. In the following chapters we shall show that this is, in fact, the space of phys-
ical states appropriate to a quantum field theory. However, studying the most general 
n-particle state, with arbitrary n, will turn out to be an impossible task for any physically 
interesting theory. Fortunately, for most applications we are going to consider in this 
book, it will be enough to restrict ourselves to a particular class of n-particle states, the 
states of non-interacting particles. They can be viewed as the states of n particles lying far 
away one from the other and having only short-range interactions. If the distances among 
them are much larger than the interaction range, the particles can be considered as free. 
The interactions among them will be treated separately. Since the Poincare group is the 
invariance group of any physical system we are going to consider, a good description of 
these states will be provided by the irreducible representations of this group.1  

5.2 The Principles 

We note by 7-i the Hilbert space of the physical states of a system. The set of physical 
states describes the results of all the experiments done during the whole history of the 
system. A physical state is represented by a ray in this space and a ray is a vector IP E 7-i 
defined up to a multiplicative constant. 

We will only consider unit vectors, i.e. (I/ E 7-i such that (1P, (P) = 1. To simplify, 
we will assume that we deal only with a part of the space which is coherent, namely one 
in which the superposition principle can be applied: a linear combination of physically 
realisable states is a physically realisable state. In real life the Hilbert space of all physical 
states is not coherent. The linear superposition of two physical states, although it is a 
vector in the Hilbert space, does not always correspond to a physical state. For example, 
a state with one proton and a state with one electron are both physical states. The first 
has electric charge +1 and the second —1. A linear superposition of the two will not 
have a definite value of the electric charge, so it will not be an eigenstate of the charge 
operator. It is an empirical fact that there are operators such that all physical states are 
eigenstates of them with well-defined eigenvalues. We say that such an operator defines a 
superselection rule. These operators split the Hilbert space into sub-spaces corresponding 
to definite eigenvalues. We will restrict our discussion to one of these subspaces, which 
are said to be coherent and for which all the states are always physically realisable. In the 
example above, the electric charge operator Q defines a superselection rule: every phys-
ical state 10 > must be an eigenstate of Q; in other words, it must have a definite value of 
the electric charge. There are other operators with the same property. For example, the 
operator of baryon number B seems to be one of them. Let us consider the one proton 
state 1p > which satisfies 

QIP >= 1p > ; Blp >= IP > . (5.1) 

1  In this chapter, a large part of the content was inspired by the presentation given by A. S. Wightman in 
his lecture notes `L'invariance dans la mecanique quantique relativiste', in Relations de dispersion et particules 
elementaires, Les Houches (1960), Hermann, Paris. 
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Similarly, the one positron state le+  > satisfies 

Qle+  >= le+ > ; Ble+  >= 0, (5.2) 

because the positron has a baryon number equal to 0. A linear superposition of the 
form 1(1/ > = Cl  IP > +C21 e+  > would still be an eigenstate of Q with eigenvalue 
+1, but not an eigenstate of B. It has never been observed experimentally and this is 
interpreted as an indication of the existence of a superselection rule associated with 
the baryon number. A superselection rule is always associated with a conservation law 
but the inverse is not true. The z-component of angular momentum is an absolutely 
conserved quantity but all physical states are not necessarily eigenstates of it. Note 
also that if tomorrow we discover that baryon number is not absolutely conserved, 
for example if we discover that protons may decay, we will have to abandon the cor-
responding superselection rule. We will present the current experimental situation in 
Chapter 26. 

5.2.1 Relativistic Invariance and Physical States 

The Poincare group, which is the invariance group of a relativistic physical theory, 
keeps invariant the 2-form gp,,,de 0 de (i.e. ds2). An element of the Poincare group 
P is a couple {a, A }, where a is a translation of vector a E R4  and A is a Lorentz 
transformation, acting on R4  by 

x E R4 -* x'= {a, AI x = Ax + a. (5.3) 

It obeys the multiplication law of the group 

{al, Ail {a2, A2} = {al + Ala2, A1112} (5.4) 

with the operations acting from right to left. The group identity is {0,1}. The Poincare 
group possesses two distinguished subgroups: the translation subgroup and the Lorentz 
subgroup whose elements are respectively {a, 1} and {0, A } . As for the Lorentz group, 
the Poincare group consists of four connected components and we will only consider the 
group built over the elements A of the restricted Lorentz group. 

We will now show that physics imposes to study the unitary representations of the 
Poincare group. In the study of these representations we will encounter a difficulty: the 
fact that apart from the trivial representation of dimension 1, there exist no unitary 
irreducible representations of finite dimension. 

Let us first consider the relativistic invariance properties. 
The relativistic invariance can be expressed in two different ways. 
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5.2.1.1 The Relativistic Symmetry 

This property expresses the fact that to each state W and to each Poincare transformation 
{a, A}, there corresponds a state Wia,A1  such that W{0,1}  = W and such that the transition 
probabilities are invariant: 

1 (C W) 1 2  = 1 ( (5.5) 

It results from eq. (5.5) that there exists a linear mapping U(a, A) on 7-1 which is 
unitary, 

(U(a, A)0 ,U (a, A)(P) = (0{a,11}, (Pla,A1) = (0, (P), (5.6) 

or antiunitary 

(U(a, A)0 ,U (a, A)(P) = (0, W). (5.7) 

If we are only interested in the restricted Poincare group, U (a, A) is unitary, unique 
up to a phase, and such that 

U(al, Ai)U(a2, A2) = ±U(ai + Aia2, AlA2)• (5.8) 

These are the so-called representations up to a phase. 
The representation of inversions can be unitary or antiunitary. In practice, to the 

space inversion L will correspond a unitary representation and to the time reflection It  
will correspond an antiunitary representation. A theorem by E. Wigner asserts that each 
unitary, continuous representation, up to a phase, of the restricted Poincare group arises 
from a unitary continuous representation of its covering group; this means that U(a, A) 
is indeed U (a , A) with A = A (A) . 

5.2.1.2 The Relativistic Equivalence 

Two unitary representations U1  and U2 are equivalent according to the relativistic point 
of view if there exists a unitary operator V acting on 7-i such that 

U2 (a, A) = VUi(a, A)V-1  . (5.9) 

This expresses the fact that if a state W1  transforms under the representation U1  
and if there is a corresponding state W2 given by W2  = ViPi, then W2 transforms un-
der U2. Moreover, if the operators or the observables which act on the states transform 
in the same way, i.e. to each operator 01, there corresponds an operator 02  such that 
02  = VO1  V-1; we will speak about physical equivalence. The relativistic equivalence is 
therefore expressed through the equivalence of the representations. 
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5.2.1.3 The Vacuum 

We define a particular state, the vacuum (1/0  or I Q >, which is the state with no particles. 
Since this state must be the same for all the observers 

U (a, A)(110 = Wo. (5.10) 

5.2.1.4 The Particle States 

We shall call an elementary system a system whose states transform according to an ir-
reducible representation {a, A} —> U (a, A) of the restricted Poincare group. A stable 
elementary particle is, at this level of discussion, assimilated to an elementary system 
as will be the case for an atom in its fundamental state. So we see that this notion of 
elementarity does not mean that the system is not a bound state of constituents, which 
may, or may not, be themselves elementary systems. A simple example is given by a 
stable nucleus, such as a deuteron. According to our definition it is an elementary sys-
tem. It is also a bound state of a proton and a neutron. Although we know that both of 
them are in fact composite from quarks and gluons, the proton is an elementary system, 
but the neutron, which in a free state is unstable under a-decay, is not. 

5.3 The Poincare Group 

5.3.1 The Irreducible Representations of the Poincare Group 

We present here some of the basic notions concerning the classification of useful repres-
entations of the restricted Poincare group (up to a unitary equivalence). We study these 
representations in the Hilbert space 7-i of the one-particle states, i.e. the space of square 
integrable functions with respect to some measure which will be defined later. 

Let us first consider a subgroup, the group of space—time translations. Since it is 
an Abelian group, its finite-dimensional irreducible representations are of dimension 1. 
Since they are unitary, they are like phase factors and 

U(a, 1) = ela  P, (5.11) 

where p is a real four-vector of components p, and a.p = cep,, . We then have the fol-
lowing theorem (which will be partially justified in the next section), which expresses the 
fact that unitary representations of the translation group are direct integrals of irreducible 
representations. 

Theorem 6. Any continuous unitary representation of the space—time translation group can 
be written as 

(U(a, 1)0)(p) = eika  (p), (5.12) 
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where 0 (p) E Hp is the space of the physical states of momentum p, the space 7-1 being a 
direct integral2  over the momentum space 

1-1 = f dpt(p)7-ip. (5.14) 

Since U(0, A) U (a ,1) U (0, A)-1  = U (A (A) a ,1) , U (a ,1) = U (A (A) a ,1) is a 
representation equivalent to U (a, 1) , it is natural to take an invariant measure dp,, 
d p , (A (A) (p)) = dµ(p) and to identify 7-(Ap  = 

The most general positive invariant measure can be written as 

= c84(p) + f dp+ (m)(9(po)dS2m(p) + f dP-(m)9 (—Po)dr2m(P) (5.15) 

where c is a constant, c > 0, and dS2n, is the invariant measure on the hyperboloid 
p2 = m2, with  P

o 

 > 0 for the second term and Po < 0 for the third term. For the positive 
energy branch it is given by 

d4  ds2.  = (27)8(p2 m2)9(po)  _ d 3  p 

(27 
p
)4 2(27)3 \42  + m2  

(5.16) 

dp+(m) and dp_(m) are positive measures on R+. Finally, p,_ is a positive measure, 
the support of which consists of space-like four-vectors p, which are of no interest since 
we will only consider light- or time-like four-vectors p (there is no physical meaning for 
states corresponding to a purely imaginary energy). 

It is easy to check that the measure dS2m  is Lorentz invariant. 
We then prove the following theorem. 

Theorem 7. Each continuous unitary representation of P is equivalent to a representation in 
7-1 of the form 

(U (a, A)0)(p) = Q(p,A)0 (A(A-1)p), (5.17) 

where Q(p,A) satisfies 

Q(P3A1)Q(A(A11 )P,A2) = Q(P3A1A2)• (5.18) 

2  It suffices to understand the definition for functions: let 71 be the Hilbert space of the functions of p which 
are square integrable with respect to the measure dpt; if 0 and W are two elements of 71, their scalar product 
is defined by 

(0,W) = f dict(P)0* (P)W(P) (5.13) 

and c (p) and W (p) are elements of 'H p  C. Here * means complex conjugation. 
If W p  has a dimension larger than 1 (this is the case for states corresponding to particles with non-zero spin) 

and P (p) or W (p) are vectors of lip, their product in the integral is replaced by the scalar product in this space. 
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Remark: U(0,1) is the identity on 7-i. 

Given the four-vectors p, which characterise the representation of the translation sub-
group, we see, following the previous formula, that the matrices A, such that A (A)p = p, 
play a special role. They form a subgroup Lp  of SL(2, C): the little group of p. We see that 
the mapping A E Q(p,A) is a representation of the little group of p. To classify 
these representations, it can be shown that two representations giving rise to equival-
ent representations of their translation subgroups are equivalent if and only if they have 
equivalent representations of their little groups. 

The little groups belong to four different classes corresponding to the various possible 
types of p: time-like, light-like, identically null, and space-like. 

We will only consider the first three classes since they are the only ones which have 
a physical meaning. If, in addition, we want to identify p with the energy-momentum 
four-vector, then we need only to consider the first two classes. 

Let us consider 

1. time-like p. 
One can choose a particular p since all the representations associated with this type 
of p are equivalent. Let us take p = (1, 0, 0, 0). Then3  p = 1 and AM* = AA* = 1, 
and the little group Lp is the special unimodular group SU(2, C). The unitary rep-
resentations of SU(2, C) are Ds, s integer or half-odd integer. The representations 
of the Poincare group of this type are therefore characterised by two numbers 
(m, s), where m = 1/F is the mass and s is the spin. Obviously, from the physical 
point of view, only representations corresponding to positive values of the energy 
(po  > 0) must be considered. We denote [m, s] as an irreducible representation of 
this type. It is possible to show in this case that we can take 

Q(p,A) = ((1,5)-1 A(A-1)p). (5.19) 

2. light-like p. 
We can choose p = (1,0, 0, 1). The elements of the little group are the A's of the 
form 

(m 0 
e2 e-'2z 

A(0, z) = 
0 

  

 

(5.20) 

  

where z = x1  + ix2. With this parametrisation 

A(01, zi )A (02, z2) = A(01 + 02, Zi ekkl  Z2), 

3  In the notation of Eq. (2.61), /3 = 0-0 . 
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where one recognises the law of composition of the Euclidean group of motion in 
the plane: translation of vector (xi, x2) and rotation of angle 0 around the axis 
x3  perpendicular to the plane. There exists an invariant Abelian subgroup, the 
translation subgroup given by A(0, z). Again we can do the same analysis as for 
the first case. We first seek the representations of the translation subgroup. They 
are of dimension 1 and characterised by two real numbers p = (pi , p2) . Thus, 
there are two cases: either p2  > 0 or p2  = 0. The first case is excluded since 
the representation is characterised by a continuous number p2  which must be an 
invariant associated with a particle; it could be a spin value but no continuous spin 
has been observed. The second case corresponds to pi  = p2  = 0. The little group 
consists of all the A(0, 0)'s. Since the A(0, 0)'s commute, their representations 
are of dimension 1 and, the A(0, 0)'s being unitary, are of the form e'Os. Since 
A(47, 0) = 1, this means s = 0, ± ±1, 4 .... The parameter s is called the 
helicity of the massless particle. We denote by [0, s] an irreducible representation 
of this type. 

3. p O. 
The corresponding representations are generally of infinite dimension. Their as-
sociated fields have an infinite number of components. For this reason, they 
are not considered, except for one of them which plays an important role in 
physics. This representation, the only one which has a finite dimension, is the 
trivial representation. It corresponds to U(a, A) = 1. It is used for the vacuum 
state. 

5.3.2 The Generators of the Poincare Group 

One of the aims of this section is to show how the study of the infinitesimal generators 
of the Poincare group makes it possible to recover some of the characteristics of its 
irreducible representations. Let U(a, A) be a unitary irreducible representation of the 
Poincare group. 

Let us first consider the space—time translation subgroup whose elements are U (a, 1). 
Since the translations along different axes of coordinates commute, it suffices to study 

the translations on R. Let T (a) be a translation of length a. Acting on a function f (x), it 
is defined by 

(T (a)f)(x) = f (x — a). (5.21) 

For a infinitesimal, f (x — a) = f (x) — a i:—Ix f (x) + 0(a2) and T (a) = 1 + aS T + 0(a2), 

ST being the infinitesimal generator of the transformation. In this case, we see that 

d 
ST = -- , 

dx 
(5.22) 
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and the global transformation is given formally by the exponential 

T (a) = e-a  dc.ix (5.23) 

which yields the Taylor expansion when the transformation is applied to infinitely differ-
entiable functions. Now if we consider the functions f as elements of the Hilbert space 
of square integrable functions with scalar product 

(f, g) = f dxf (x)g (x), (5.24) 

the representation is automatically unitary, i.e. such that (T (a)f,  , T (a)g) = (f, g) or equi-
valently T (a)* T (a) = 1. Indeed, writing the infinitesimal form, the consequence of this 
last identity is S T* + ST = 0, showing that ST is an anti-Hermitian operator. Since 
ST = --dx dx = i(i —d  ) this shows that i—ddx is Hermitian in this space as it can also be d  
checked directly. We will now show that the unitary operator T (a) is bounded and of 
norm 1 although its generator is an unbounded operator. To prove this assertion we use 
the Fourier transform 

(T (a)f)(x) = —
1 

2n- 2n- 
f (T (a)f)(p) = —

1 
f dp(T (a)e iPx)1 (p) (5.25) 

= 1 f dpciP(x-a)f(p), 
2n-  

the third equality resulting from the linearity of T and the last one being the definition 
of the translation. We deduce from it the action of T (a) on the functions 0 of p: 

(T(a)4)(p) = elaPO(P). (5.26) 

This shows that the representation of the group of translations on the space of square 
integrable functions is the direct integral of irreducible representations, each of them 
being characterised by a real vector p. 

In the case of the translations in R4, this gives 

U(a, 1) = e'P a, (5.27) 

where P = (Po, Pl , P2, P3), Pµ  = ia,„ are the four generators of the group. Moreover, 
using the fact that U is a continuous representation of the Abelian group of translations 
in R4  

U (a,l) = f el" dE(p), (5.28) 
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where E(p) is a spectral measure4  and 

P = f p dE(p). (5.32) 

Let us show that the operator PILP, = P2  is Lorentz invariant. To prove it, let us 
consider the relation 

U(0, A) U(a, l) U (0, A)-1  = U(Aa, 1), 

from which we deduce for a infinitesimal 

U(0, A)P,U (0, A)-1  = (Atrp),,,, (5.33) 

which proves the assertion by an obvious calculation. 
This shows also that the spectral measure E(p) is Lorentz invariant. 
Continuous bases are of common use in physics.5  In the momentum space, projectors 

on states of given momentum p are given by p > < pl from which we get a very simple 
expression of the spectral measure : 

dE(p) = dr 2 m(P) P > < 

Since, on the other hand, P2  commutes with translations, it commutes with all the 
transformations U (a, A) of the Poincare group and by Schur's lemma, P2  is proportional 
to the identity. Let us note m2  the coefficient of proportionality. On the spaces lip, the 
operators Pi., are proportional to the identity with coefficients pp, and p2  = m2. 

To an infinitesimal Lorentz transformation A = 1 + A, with components A = 8 + 
4t with Jc,„ = —A,,, corresponds, because of continuity, U(A) = 1 — iM,„),./1v (one 

4  A spectral measure {E(A) }, X c R, is a family of orthogonal projections such that 

1. E(A) < E(A') if X < X' 

2. the following strong limits exist: 

s— lim E(A) = 0 (5.29) 
A—.—oo 

s— lim E(A) = 1. (5.30) 

3. The family is right continuous: at each point —oo < X < +oo 

s— lim E(X + 8) = E(X) (5.31) 
E—> +0 

The integral is a Stieltjes integral. For more details see, for example, M. Reed and B. Simon, Methods of 
Mathematical Physics, vols I—IV, Academic Press (1972). 

5  See section 8.5.1.2. 
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has set U (A) U(0, A)). The operators MA, are a representation of the infinitesimal 
generators of the Lorentz group. 

Remark: For the representation of the Lorentz group in R4, we computed (see section 
2.6) the matrix representation of the infinitesimal generators, J and N. We can 
define, through these operators, a 2-tensor MA„, whose coefficients are matrices, 

04  23, .A4  31, .A412 oi , .A4  02, .A4  03‘)  . by setting J = ) and N = For pure Lorentz 
transformations of speed tanh4' in the direction n and rotations of angle 9 around 
n the values of the parameters are given by A°i  =ant and Xij = Osijk nk. 

This tensor satisfies the commutation relations 

[A/10a ] = 
(g.0,CA4 Q V + g.Q V A4 CIA ell A4 a V -got A4 eft 

). (5.34) 

The MA„'s, which are a representation of the MA„'s, satisfy obviously the same 
commutation relations. 

From the relation 

U(A)PA  U(A)-1  = A v  AP„ (5.35) 

we deduce that 

— X.ea [MQ,,, pa ] = Xv  APv  = gAd."Pa . (5.36) 

Thus, identifying the antisymmetric part of the coefficients of AQa, we find the 
commutation relations between the MA„'s and the PA's: 

[Mea, pa ] = i(ga — ge,,Pa). (5.37) 

These commutation relations show that the operator P,1  transforms like a four-vector 
under Lorentz transformations. It also explains why P2  was found to be an invariant. 

Let us now introduce a new operator which commutes with P 

= 1 _Ektivapvmoa. 
2 

(5.38) 

It is interesting to have such an operator since it is a multiple of the identity in any 
irreducible representation of the Poincare group. This operator can be written in terms 
of the generators of the group 

W° = ply ± p2
,
72 = pj W=Paf—PAN, (5.39) 

where (P A N)1  = szikPf Nk  
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One indeed finds that W2  = Wi1  Wa  commutes with PQ  and with Moa . For an 
irreducible representation characterised by [m, s], mass and spin (a non-zero mass 
representation), we have W2  = —m2s(s + 1)1. 

We have thus recovered as a function of the generators the characteristic parameters 
of the irreducible representations of interest for us. The operator-valued four-vector W'1  
has the meaning of a relativistic spin. 

In the case m # 0, we have seen that an irreducible representation is partially charac-
terised by p. To complete the characterisation, we choose for each eigenvalue pp, of Po, 
three four-vectors n(1), i = 1, 2, 3, orthogonal to p, of square —1 (since they are space-
like) and pairwise orthogonal. Introducing n(°)  = plm, the n(")'s form a basis and we can 
define S(a)  = —W .n(")1m. We have SM = (0, S) with S = (S(1), S(2) , SO)). The Se's 
are the three generators of the little group of p isomorphic to S03. In the representation 
[m, s], S2  = s(s + 1) and since W2  = —m2S2, we obtain the claimed value. 

Note that in the reference frame at rest for p, p = (m, 0), following (5.39), we have 
S = W/m =J. 

In the case m = 0, since W2  = p2  = W .p = 0, we find that WI' = ±spo, where s takes 
again integer or half-odd-integer positive values. We shall call s helicity and we see that 
for s # 0, all representations are two dimensional. We say often that massless particles 
with s # 0 have only two helicity states. 

5.4 The Space of the Physical States 

We described in the preceding section the action of the Poincare group on the one-
particle states. The aim of this section is to generalise this analysis and formulate a 
general description of many particle states, a framework which will be useful in the study 
of quantum field theories. 

5.4.1 The One-Particle States 

In the massive scalar case, a one-particle state (I/ is given by a complex valued function 
W (p) in a Hilbert space 1-/ (1)  equipped with the norm 

IIW II 2  = f (P)1 2dS2m(P) (5.40) 

and which transforms6  under the Poincare group as 

(U (a, A)W)(p) = ei"1/1 (A (A)-1p). (5.42) 

6  We can use the bra and ket formalism by introducing a continuous basis p >, p2  = m2, such that 
< q p >= 3 (q — p)p°  with W (p) =< >, the transformation law of 1p > being 

U (a, A)lp >= ei^" A-1  p > . (5.41) 



The Space of the Physical States 115 

For a particle with mass m and spin s, the state IP is described by a set of complex-valued 
functions depending on 2s spinorial indices: dal a2 (p). Their transformation laws are s 

given by 

2s 
(U (a, A)(P)a,... a2s (P)  = ei"  E (11Aai W ,52, (A ( al)-1 (5.43) 

/51.../32s i=11  

and the scalar product by 

2s 
(°,W) = f cli2m (P) -a2s (P) 11 ( 131  m)ai fii  Pt— P2s (P) • 

i=i 
(5.44) 

The massless case is more complicated. We saw that the representations correspond-
ing to p2  = 0 are characterised by the value of helicity which takes integer or half-integer 
values. For zero helicity the representation is one dimensional and for all other values 
it is two dimensional. However, since the corresponding particle moves always with the 
speed of light, we cannot assign square integrable wave functions to it. This is known 
as the infrared problem and has a simple physical origin. Let us take a one-photon state. 
Following what we said previously, it has a momentum p with p2  = 0. However, since 
every measurement has a finite resolution Op, there is no conceivable experiment which 
can distinguish this single-particle state from an infinity of others which will contain in 
addition an arbitrary number of photons, provided their total energy is smaller than Ap 
because, since the mass is zero, there is no lower limit to the energy of a photon and 
therefore no upper limit to the number of photons. We shall come back to this problem 
when we develop better tools to tackle it. For the moment we restrict ourselves to the 
description of a world containing only massive particles. 

5.4.2 The Two- or More Particle States without Interaction 
Let us consider a system made of two scalar particles without interaction, i.e. described 
by plane waves. Their state (I/ is given by a complex-valued function of two variables 
IP (pi, p2), such that /4 = mi, p2 = m3, p? > 0, and p? > 0. This function transforms 
according to 

(U (a, A)(P)(P1,P2) = eqpi +p2)•a 11, (A-1p1, A-11,2) (5.45) 

and is an element of the Hilbert space H(2)  with the scalar product 

(0, `P) = f f dOmi (Pi )dS2m2 (P2)0 (Pi P2)W (Pi, P2). (5.46) 

This shows that the transformation law of the state is the same as that for [mi, 0] 0 
[m2, 0]. If the two particles are identical, m1  = m2  = m, W is symmetrical with respect to 
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the exchange of the variables and transforms like ([m, 0] 0 [m, 0])s. The scalar product 
defined in Eq. (5.46) is invariant by the transformations of ([m, 0])®2. 

The states of two non-interacting particles are described by the mass M of the system 
they form, given by M2  = (pi  + p2)2, a number which varies from m1  + m2  to infinity, 
and by the angular momentum of the system, characterised by an integer L. In terms of 
our previous analysis of elementary systems, it is parameterised by [M, L] . Therefore, 
there exists a continuum of possible states. 

One can obviously do a similar analysis for a system of more than two7  particles with 
or without spin (in the case of identical particles, a rule of symmetrisation or antisym-
metrisation, depending on whether the spin is integer or half-odd integer, is understood). 
One represents the space of all these states as a Hilbert space, . F , the Fock space. 

5.4.3 The Fock Space 

The Fock space describes the states of an arbitrary number of non-interacting particles. 
To simplify the presentation we will assume that we have only one kind of particle: a 
scalar particle of mass m. 

The Fock space is built as a direct sum of spaces, each of which corresponds to a 
fixed number of particles 

1.  = ED n7-1(n)  , (5.47) 

where Ii(n)  is the Hilbert space of n-particle states. The elements of 7-i(n)  are the sym-
metric functions 0 (n> (pi, • • • , pn) and the scalar product, invariant under ([m, 0])®n, is 
given by 

(0(n) 
3
, p  (n) )  

= f • • • f dS2.(P1) • • • cipm (POO (n)  (Pi, • • • 'POW (n)  (Pi, • • • , PO . 

The space 7-1(°)  is the one-dimensional space of complex numbers. 
An element of F is a series 

0 = (0(0)
, 
 0(1)

3 
 0 (2)

, 
 ... ) 

and the scalar product is given by 

co 
( 03  ip ) = E(0(n) , (1, (n) );  

0 

(5.48) 

(5.49) 

thus, IP E 7-i if (W, (P) = 11W112  < oo. Fock spaces of more than one species of particles 
can be built in a similar way. 

7  If there are more than two particles, there exists not only one but an infinite number of states characterised 
by the values of the mass and the angular momentum. 
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In the case of particles with spin s, the elements of 7-0')  are the functions 
W (ain •.an ) (Pi, • • • 51)n), which are, according to the value of the spin, integer or half-odd 
integer, symmetric or antisymmetric in the exchanges of pairs (pi, at) and (pi, as). The 
scalar product is given by 

(0(n)  5W (n) = f • • • f dpm (Pi ) • • • dpm(Pn)0«ni)...«„ (Pi, • • • ,Pn) 

n 
11 D [s, 0] 

(Pj

im)  ai  j3;  , 
(Pi , • • • /3 5 Pn) 5 

1=1 

where a, and A represent groups of 2s undotted spinorial indices. 

5.4.4 Introducing Interactions 

(5.50) 

The construction of the Fock space can be extended to include interacting particles 
provided, as we discussed already, the interactions are short ranged and the particles are 
far apart from each other. For example, two initially well-separated particles will feel the 
effects of the interaction, i.e. diffusion, creation, or absorption of particles, only when 
they come close enough to each other. There are two possibilities: either they form a 
bound state (its mass is less than the sum of the masses, the difference being the binding 
energy) or they separate, forming a set of non-interacting particles moving away from 
each other. All these processes are realised in accordance with the fundamental laws 
of physics such as conservation of energy—momentum, of angular momentum, and of 
any quantum numbers preserved by the interaction. Bound states are new elementary 
systems generated by the interactions and must be included in the space of possible 
states. Moreover, by reversing the velocities of the particles, the initial and the final states 
can be interchanged, which means that they must be of the same nature. This analysis 
leads us to introducing the notion of the incoming (and outgoing) Fock space: the space 
of initial or incoming states Hu,. It consists of non-interacting states composed of wave 
packets well separated and evolving independently. Symmetrically, we introduce the 
Fock space of final or outgoing states Rout. It is identical to the previous one. Finally, we 
set that these two spaces are identical to the space of the physical states 7-i, i.e. 

xin = Hout = 7-t• (5.51) 

This is the hypothesis of asymptotic completeness. From our construction of Fock 
spaces as spaces on which the action of the Poincare group is well defined (by the action 
of U(a, A)), the last equality means that even during the collisions, states transform in a 
well-defined way under the actions of the Poincare group. This point of view reinforces 
the ideas on the principle of preservation of covariance we sketched out in Chapter 2. 

A central problem in this book will be the one we studied also in quantum mechanics, 
namely the computation of a transition probability between initial and final states. Let 
us consider an initial state Win; then the probability to obtain a final state 00,, is obtained 
from  (-out, tiim)• We introduce a unitary operator S such that 
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(bout, Win) = (Om, Stain) • (5.52) 

This operator, which for historical reasons is called the S-matrix (S for scattering), 
will become an important object of study all throughout this book. 

5.5 Problems 

Problem 5.1 The Bargmann—Michel—Telegdi equation. 
We like to give a relativistic generalisation of the spin. There are many math-

ematical quantities which can reduce at rest to the three-dimensional spin. We saw 
in this chapter and in the previous ones some of them. Bargmann, Michel, and 
Telegdi proposed a relativistic equation for the time evolution of the spin in an 
electromagnetic field. Their idea was to take the simplest relativistic generalisation 
of the spin at rest, i.e. a four-vector The description of a spinning pointwise 
particle is given in the rest frame of the particle by its angular momentum. The 
relativistic generalisation is to describe now the particle by two four-vectors, 
and sA, 

pµ=muµ=m  
de 
ds 

with p2 = m2
, 

 

with the condition s.p = 0 which expresses the fact that the spin is a space-like 
vector (no time component in the frame at rest). In the rest frame, the dimensional 
spin s (from s = (0, s)) is supposed to satisfy the classical equation (generalisation 
to a spin of the angular momentum time evolution): 

ds 
—
dt 

= g —
2m

s A B. 

Then they wrote the most general covariant equation, linear in s, one can build with 
at our disposal two four-vectors and one antisymmetric tensor, .5,, and Fw, 

ds12  
= aP"s, + b(t1"FA,,sv)tea  

ds 

The inputs are the Lorentz equation 

 

dmwa 
= ePti,uv  

and 

ds 

s.0 = 0. 
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Show that 

e g —2 e 
a = g— and b = (— 

2 
 )—. 

2m m 

(g — 2)/2 is known as the particle's magnetic moment anomaly. 
Problem 5.2 Properties of W. 

Prove the equalities 

WA PA  = 0 [WA , Pv] = 0 
[WA,  WI  = _iektvpa p

pwa 
 

[w it , mvp ]  = lel) w p -gig, 
 wv). 
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Relativistic Wave Equations 

6.1 Introduction 

Maxwell's equations were at the origin of the discovery of special relativity. They were 
the first relativistically invariant wave equations. In modern notation they describe the 
propagation of a vector field. In this chapter we want to introduce wave equations for 
fields of any spin. 

Historically, the Dirac equation was found as a response to a physical problem, the 
need to write a relativistic equation for the wave function of the electron. In doing so, 
Paul Adrien Maurice Dirac was the first to find in 1928, by trial and error, the spinorial 
representations of the Lorentz group. Today we do not have to follow this historical 
route. We can use our knowledge of group theory and write down directly the relativistic, 
lowest order, linear differential equations for fields belonging to various representations 
of the Lorentz group. 

To write a relativistic wave equation means, in particular, to write an equality between 
quantities of the same type: equality between scalars, between four-vectors, etc. On 
the other hand, the equation we would like to write, which is a differential equation, 
should be of the lowest possible order so as to restrict the number of initial data. In 
this chapter we apply this recipe to fields belonging to some among the low-dimensional 
representations of the Lorentz group. 

6.2 The Klein-Gordon Equation 

We start with the simplest case, the equation for a real, scalar field. In this case the 
elements which are at our disposal are the field itself 0 and the four-vector operator 
of derivation a,. It is clear that the lowest order, non-trivial, relativistically invariant 
equation which can be built with these quantities isl  

ap + m2)0 (x) = 0. (6.1) 

I  Strictly speaking, there exists a simpler one, of the form auo(x) = 0, but it is trivial. 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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It is the Klein—Gordon equation whose Green functions we studied in section 3.8.1. 
We remind the reader that m2  is a parameter which, in our usual system of units h = 
c = 1, has the dimensions of [mass] 2 . We shall often call this equation the massive Klein—
Gordon equation, although, at this stage, we have no real justification for this name. m2  is 
just a parameter which can take any real value. 

This equation can be derived from a variational principle applied to the quantity 

S[o] =  2 
f d4  x (a ,o (x)ev a ,, (x) - nt2  (x)2) = f d4  xr(x), 

where the local Lagrangian and Hamiltonian densities are given, respectively by 

r = -
2 

(a,o (x)g,- avo (x) - m2  (x)2) 

and 

= —
2 

[(a00(x))2  + (8,0 (x))2  + m20(x)2 ] . 

The action S is quadratic in the field 0 and gives rise to the linear equation (6.1). 
Using the diagonal form of the metric, and restoring the dependence on c and h, we get 

( a 2 a 2 2c2 

C2  \ a t ) 
— — — 

( 
m —) (1) (X) = O. 

a x 

) 

 

It is a linear equation which admits solutions of the plane wave type 

_ (Pot -p • x)  
e h 

with 

Po = ±c1P2  + m2 c2. 

Thus, in Fourier transform, the Klein—Gordon equation can be written as 

(14 - C2  p2  — 7/22C4) (po,p) = 0, (6.8) 

where 0 (po,p) is the Fourier transform of 0 (x). 
In the system of units where h = c = 1 

(p2 m2)4; (p) 0
. (6.9) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 
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The most general solution can be easily obtained by looking at (6.9) which gives 

(p) = F (p)8 (p2  — m2), (6.10) 

where F (p) is an arbitrary function of p provided it is sufficiently regular at p2  = m2. 
We see that the solution has as support the two branches of the hyperboloid p2  = m2. 
We have already introduced the invariant measure on the positive energy branch of the 
hyperboloid in Eq. (5.16), which we wrote as 

dr2,, = 
 d4p 

(27)3(p2  m2)t 9 (p°) = dap  
(27)4 (27)32E 

(6.11) 

   

with E = +/p2  + m2. Using this expression we can write the most general x-space 
solution of the Klein—Gordon equation as an expansion in plane waves 

0 (x) = f dr2. [a(p)e 1(a-p•x) + a* (p) ei (E t- p • x)] 
5 (6.12) 

where a* is the complex conjugate of a. This complex function a(p) is arbitrary and 
should be determined by the initial data. Indeed, since the Klein-Gordon equation is 
a second-order differential equation, the initial data at t = 0 involve the value of the 
function and its first-time derivative 0 (0, x) and 0 (0, x). Inverting the expression (6.12) 
we obtain 

a(p) = f d3  xe-i" [ET. (0, x) + i (0, x)] , (6.13) 

which shows that a depends only on p. 
The total Hamiltonian H, i.e. the space integral of the Hamiltonian density (6.4), has 

a very simple expression in terms of the function a(p): 

H = f dr2
1  

,,-
2

E [a(p)a* (p) + a* (p)a(p)] . (6.14) 

For later convenience we have kept the peculiar ordering aa* + a* a, although the two 
terms are equal for the classical theory we are discussing here. 

The Green functions we derived in Chapter 3 allow us to write the general form of 
the solution for the inhomogeneous Klein—Gordon equation (3.97). 

An obvious generalisation is to consider the equation for a multiplet of N scalar fields 
0, (x), i = 1, N. We can write an 0(N) invariant Lagrangian density as 

1 
G = (a,o,(x)attoi (x)-m2o,(x)o,(x)). 

1=1 

(6.15) 
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Of particular interest will turn out to be the case N = 2. Taking into account the fact 
that 0(2) is locally isomorphic to U(1), we can rewrite the two-component real scalar 
field as a complex field 0 = (01 + i02)1,./2 and the Lagrangian becomes 

= a,0 (x)01' 0* (x) - m20 (x)0* (x), (6.16) 

which is invariant under phase transformations of the field: 0 —> el°  0. We can compute 
the corresponding conserved current and we obtain 

jµ(x) = (x)a,o* (x) - o* (x)a,o (x). (6.17) 

Since 0 satisfies the Klein-Gordon equation, the current is conserved aA j,(x) = 0. 
We can still expand the complex field 0 in terms of plane waves, but now the coef-

ficients of the positive and negative frequency terms will not be complex conjugates of 
each other. To keep the notation as close as possible to the real field case, we shall write 
the solution as 

(X) = f dr 2 m[a(p)e-i(D-P•x) b* (p)ei(Et10. (6.18) 

and similarly, for 0* in terms of the coefficient functions a* and b. 
Naturally, this equation can be made more complicated by adding non-linear terms 

in the field 0 and its derivatives. In particular, since 0 is a scalar, any power of it will 
be a Lorentz scalar as well. Of course, for the non-linear cases, we lose the plane wave 
solutions and the power of the Fourier transform. 

Although we obtained the Klein-Gordon equation from purely group theory consid-
erations, we can think of possible physical applications. In classical physics this equation, 
or its non-linear generalisations, can be applied to problems of relativistic fluid dynam-
ics. Another application, which we shall encounter in this book, involves the addition of 
a cubic term in the field and it is known as the Landau-Ginzburg equation. It describes 
the order parameter in various problems of phase transitions. In the next chapters we 
shall study possible applications in the quantum physics of elementary particles. 

6.3 The Dirac Equation 

The scalar field belongs to the simplest, in fact trivial, representation of the Lorentz 
group. The next interesting case is the spinor representation. 

We will look for a wave equation, invariant under the action of the Lorentz group and 
the parity operation2  which, at Dirac's time, seemed to be one of the discrete symmetries 
leaving unchanged the laws of physics. 

2  As we announced in the Introduction, when studying the Dirac equation, people use a notation for the 
complex conjugation acting on a spinor field which is different from that used everywhere else: the complex 
conjugate of 0 is denoted 0* and the transposed conjugate Ot. It is unfortunate, but it is firmly established. 
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We saw that there exist two irreducible inequivalent representations of minimal di-
mension of the restricted Lorentz group, one of them corresponding to spinors with 
undotted indices and the other one corresponding to spinors i?" with dotted indices. 
These representations do not mix by the transformations of the restricted Lorentz group 
but transform into each other by space inversion, which, in particle physics jargon, is 
often called parity operation P. We introduced in a previous chapter bispinors, noted 
( " ,q(i), to build the minimal dimensional representation of the Lorentz group exten-
ded by parity. From the action of the spatial rotations on each of the components of a 
bispinor, we note that its spin is 1. 

Let us thus consider a field which is a bispinor W (", tie,). In the following, we will 
note W", a = 1, 2, 3, 4, the four independent components of W, and we will accept the 
possibility of combining these components through unitary transformations. According 

a 
to the rules of spinor calculus, to the four-momentum operator PA  = ih— = ihal, 

corresponds the operatorial spinor 

P=PacrA =P°+cr •p. (6.19) 

The o-i 's are the Pauli matrices, a • p = E 0-1Pi and P is a 2 x 2 matrix, the elements 
of which /-)" depend linearly on the components of PA. As in the scalar case, the re-
quirement of relativistic covariance dictates the most general form of the minimal degree 
wave equation which can be written for the bispinor (we will omit in the sequel the h and 
c dependences); 

t = (6.20) 

Pear = nn 1/3 

with m a constant with the dimensions of a mass. Multiplying the second equation by 
PY/3  and using the fact that POPPY = P28Y" we get 

(pa _ m2)r  = 0 (6.21) 
(132 m2),7  = 0.  

The two spinors satisfy separately the Klein—Gordon equation. 
The space parity, which corresponds to Pi4,„ —> Pe", —> in", and 714  —> ex- 

changes the two equations (6.20). For m # 0, we have thus introduced a parity invariant 
system of equations. 

Using the relation ),(, 4613"fi = Po, we can transcribe (6.20) as 

(Po +p•o)r1= m (6.22) 

(Po — P • cr) =m), 
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that is, with matrix notation: 

(Po —1,  • a P°0 a) =
(6.23) 

Introducing the 2 x 2 matrices whose elements are themselves 2 x 2 matrices (that is, 
altogether 4 x 4 matrices) 

yo 
 = (0 11 

0) 

0 —Qt 
Y t  = o ) 5  i = 1,2,3, (6.24) 

the matrix equation (6.23) is written in its usual form, the Dirac equation 

— = 0 (6.25) 

with 

tk = 
(/'/)

(6.26) 

and 

P=V"PiL=y.P= Y°  Po — y • P = iY° 
a 

+ ir • v (6.27) 

The matrices yiL = (y°, y) are called gamma (or Dirac) matrices. We can verify by 
explicit calculation that the set of matrices (6.24) satisfy the anticommutation relations 

{y

= yikyV y = (6.28) 

From now on, we will use indistinguishably p for the four-vector or for the four-
operator, whenever there is no risk of confusion. 

Before closing this section, let us make a few remarks which will be useful later. We 
see from Eq. (6.20) that for m = 0, the two equations decouple. So, the simplest re-
lativistically invariant equation for a spinor field is to consider one of the two spinorial 
representations, either (1, 0) or (0, and write an equation of the form Pafini4 = 0, 
or, similarly, for 4. As we shall see later, such a theory with no mass parameter could 
be adequate to describe particles with spin zand zero mass. These equations were first 
written by Hermann Weyl in 1929 and they were dismissed because, as we explained 
earlier, they were not invariant under parity (space inversion), which, at that time, was 
believed to be an exact symmetry of nature. So, in order to satisfy the requirements of 
invariance under parity and the appearance of a mass parameter, it seems that we are 
forced to use both a and an n spinor which transform into each other by parity. It is the 
choice which gave us the Dirac equation. However, as Ettore Majorana first observed, 
there exists a more economical solution: we remember that for the representations of the 
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Lorentz group, the operation of complex conjugation is not always an equivalence. In 
particular, a member of (Z, 0) is transformed by complex conjugation into a member 
of (0, 1). Therefore, we could choose in the system (6.20) ti C . The resulting sys- 
tem will contain half as many variables as that introduced by Dirac. We shall study the 
properties of both the Weyl and the Majorana spinors in a later section. 

6.3.1 The y Matrices 

We obtained the Dirac equation from our knowledge on spinors and the form we found is 
particular in the sense that it naturally exhibits the relativistic invariance. However, in the 
applications, it may be more useful to change the representation, that is to apply unitary 
linear transformations on the four components of the bispinor W, W —> = , where 
U is a 4 x 4 unitary matrix. From the Dirac equation we found that (y .p— m)W = 0; it is 
easy to see that the transformed equation is (y'.p— m) = 0, with y' = Uy Ut. Here Ut 
denotes the Hermitian conjugate of U and, since U is unitary, we have that Ut = 

The new y matrices satisfy again the relation (6.28): 

{ye µ, y'"} = 2rav  1. (6.29) 

Alternatively, we can also prove the opposite property, namely, given a set of four 
4 x 4 matrices satisfying (6.28), there exists a unitary, 4 x 4 matrix U, such that the 
transformed matrices y' = Uy Ut are equal to our first choice (6.24). It follows that any 
such set can be used to write the Lorentz invariant Dirac equation in a particular basis. 
In other words, (6.28) is equivalent to the property of Lorentz covariance. 

The algebra defined by the anticommutation relation (6.28) is called a Clifford algebra. 
It is the necessary and sufficient condition for a set of y matrices to give, through (6.25), 
a Lorentz covariant Dirac equation. It is also the necessary relation for the Dirac equa-
tion (y • p— m)W = 0 to give the Klein—Gordon equation by left (or right) multiplication 
by the operator y • p + m. 

The y matrices satisfy the hermiticity relations 

(yO)t = y0 and (yi)t = —y= i = 1,2,3. (6.30) 

It is easy to check that these relations are independent of the chosen representation. 
It will be useful to introduce a fifth 4 x 4 matrix, called y5, 

Y 5 
= y

5 

 = iyOy 1 y2.,
r

3 = 
41 Avea Y Y v  Y°  Y a (6.31) 

and 

(y5)2  = 1 1Y5,Y A I = 0 (6.32) 
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and the matrices 

a = 

2 
[y /2

5 

 y V1 (6.33) 

Finally, note that 

1 
4

ykty,„ = 1 tryA = 0 trl = 4 try5  = 0. (6.34) 

The following identities are often used with 4 = 

= a21 4 is+ is 4 = 2a • bl. (6.35) 

A useful exercise is the computation of the trace of a product of y matrices. Using the 
Clifford algebra anticommutation relations and the cyclic property of the trace, we can 
easily obtain the following results: if TA1.  •An is the trace of a product of n y matrices, we 
have 

TILIA2 = 4gµ1µ2 (6.36) 
TA I • • 4,2n+1 = 0 

= 4  x-2
k
n-1 )kokti Tkti • • 4,2n 
=1

122. • .11k-1 I-4+1. • .122n 

The last relation expresses the 2n-trace in terms of the 2n - 2 ones. With the help of 
these relations we can compute, by induction, the trace of the product of any number of 
y matrices. 

6.3.2 The Conjugate Equation 

Let us apply a complex conjugation on the two spinorial equations at the beginning of 
this chapter. Since pµ  = ia,„ p*A.  = 

(13  - m)W = 0  —> (13*  - m)W * = ((Y 0)tr  - (Y i)tr1)'; - m)qi*  = 0 (6.37) 

or opltr(_yopo  yip - m) = 0, the differential operators acting on the left. Here W* is 
the four-component spinor whose elements are the complex conjugates of the elements 
of W. Multiplying this equation by y°  and using y yo o = 1 and y°yly°  = -y1  we have 

(W*)tr Y°  (-Y°Po - Y 'Pt - m) = (13  + m) = 0, (6.38) 

where we have introduced the Dirac conjugate spinor 

= (W*) tryo (6.39) 
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Note, that, when referring to Dirac spinors, * means complex conjugation and 'bar' 
the Dirac conjugation. 

6.3.3 The Relativistic Invariance 

Although we know that, by construction, the Dirac equation transforms covariantly un-
der the extended Lorentz transformations, it is instructive to verify this property by 
explicit computation. Let us first look at how the equation transforms under space 
inversion Is  : x —> z = (x°, -x). We check that by parity 111(x) —> iy°11 1 () and 
W (x) —> -i111(R)y°, since y°  exchanges and rl. Therefore, 

a k a 0 0 k a 
(1y°  c,3  + iy a ,— m)iy°  'II (x) = iy°  (y + iy ,e — ni)W (50 = 0  • (6.40) 

Multiplying on the left by -iy°  we recover the Dirac equation (we knew that already 
by construction). 

The field W (a 1-bispinor) transforms under Di l'°1  ED Di°41, that is under a Lorentz 
transformation A(A) : x —> x' = Ax, 1(x) —> 111/  (x') = S (A(A))11 1 (x). A spinor V' 
transforms as A, a dotted spinor if transforms as A*, thus tie, transforms as -A* -1  = 
(At)-1; therefore,3  

0 
S(A(A)) = (ID

A  

(A1)-1). 

Once again, claiming that the equation is form invariant, one deduces that 

(6.41) 

S(A)yvS(A)-1  = (A-1) V  ,y/2. (6.42) 

We shall often need to consider expressions of the form W r gir rs.,-.5, where F is a 
general four-by-four matrix. A convenient basis of sixteen such matrices is given by: 
11, y 5, y„, y,y5, 1/2[y,, yp], ii, v = 0,1,2,3. It is an easy exercise to show that under 
Lorentz transformations, these expressions transform as 

WW : a scalar 
W y5 W : a pseudo-scalar 
W y, W : a vector 
W y,y5 W : a pseudo-vector 
W [y„, yv]ii/ : a tensor. 

3  This is not exactly the expression of S(A(A)) given at the end of Chapter 3. Indeed, the formula was 
written for upper dotted spinors nP and not for lower dotted spinors. 
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6.3.4 The Current 

Multiplying the Dirac equation on the left by W and the equation for the conjugate spinor 
on the right by W and adding the two quantities, we get 

0  = (13W) +(W 13)W = Y (1' AW) + (1) )Y"`W,  

that is, 

p,,(W y W) = 0, 

which shows that the current 

= 

(6.43) 

(6.44) 

(6.45) 

is conserved. It is the Noether current corresponding to the invariance of the Dirac 
equation under global phase transformations of W: W —> ei« I . 

The charge density? = W y°W = W*W is positive. 

6.3.5 The Hamiltonian 

The Dirac equation, which is linear in the time derivative, can be put in a Hamiltonian 
form. Multiplying the equation on the left by y°, gives (after the reintroduction of c 
and h) 

ilia ~Y HAY, (6.46) 

with 

H = ca • (—ihV) + ,6mc2  = ca • p +,6mc2 , (6.47) 

where 

—0-, ) p  = 
yo 

 = ( 1) 
= o 0-, 0 o) • 

6.3.6 The Standard Representation 

(6.48) 

The representation of the wave function as a bispinor g) is called the spinorial rep- 
resentation. It is the most natural one from the mathematical point of view and it is 
the one we found when we first constructed the equation using only group theory con-
siderations. We saw also that we can transform this representation by applying a unitary 
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transformation W —> UW . Depending on the physical application we have in mind, some 
particular forms of these transformed spinors will turn out to be useful. We shall present 
here those which are most commonly used. 

In order to discuss the non-relativistic limit we use the so-called standard, or Dirac, 
representation. It can be deduced from the spinorial representation by the following 
unitary transformation on and 

1 1 
= + 17) K = -17). (6.49) 

v2 v 2 

The corresponding y matrices have the form 

• = (0 ai 
—cri 0)  

0  _ (1 0 
Y —1) 

(6.50) 

and the matrices operating in the Hamiltonian are 

= yo
y
i = G

r
O 
i

CTi 
0 

fi  = 
yo 

 = (1 o 
21 —1) (6.51) 

In this representation, the parity transforms 4  and K into themselves, according to the 
formula 

The y5  matrix is given by 

->10 K -> -1K . 

5 (0 1) 

Y  — 1 0 r 

(6.52) 

(6.53) 

an expression to be compared with the corresponding one in the spinorial representation 
in which y5  is diagonal: 

Y
5 (1 0) 

— 0 —1) 

The Dirac equation implies the following equations for 4  and K,  

Poi — P • OK = 

POK — P • 0-0 = -MK; 

(6.54) 

(6.55) 
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thus, 

a a 
= —io- • - K 

at ax 
a a 

i—K = 16 •• -(I) - MK,  
at ax 

(6.56) 

The energy being positive, we see that in the reference frame p = 0, which we 
shall call the rest frame K = 0, and the four-dimensional spinor W reduces to the 
three-dimensional spinor 4,. In the non-relativistic approximation, we will see that the 
norm of K remains small compared to 4). For this reason, we call K the small com-
ponents of the four-dimensional spinor and 4  the large components. We will see that 
thanks to this representation the Dirac equation has a non-relativistic limit: the Pauli 
equation. 

6.3.7 The Spin 

We know already that, by construction, the Dirac equation is associated with the repres-
entations [m, 1] of the Poincare group, since the little group corresponds to M. Let us 2 
check it directly from the generators. 

According to the general analysis done in the first section of this chapter, under the 
action of the Poincare group, W transforms as a unitary representation of {a, Al —> 
U (a, A) which maps W into W' and as we saw 

111' (x) = S (AN/ (A-1  (x - a)). (6.57) 

Let us take a 0. Then an infinitesimal transformation A = 1+A induces infinitesimal 
transformations U(0, A) = 1 - iM„),./2P and S(A) = 1 - iT „Ai" . Let us find the 
value of Tµ„. We know explicitly S(A) in terms of A and we know that the A's are of 
two types, corresponding to either rotations and A = exp{-i96 • n} or pure Lorentz 
transformations and A = exp c÷ • n1. After some manipulations that we leave to be 
checked by the reader, we find that T = 

Therefore, at first order 

S (A)111 (A-1  x) = (1 - „ Ai") tP (x - Ax) (6.58) 

= (1- cr„Al")( 1 - XPA xprap)qi 

= ( 1 - - vA"" 
1  

+ ev(x
12  -xvaiL))W 

and by identification the angular momentum tensor (the generators of the Lorentz 
group) is given by 
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1 
M v = ttv + C (ia - xv  (ia 0). (6.59) 

The second term is identified with what we would call the orbital angular momentum. 
We see that a supplementary term has been added to it which, in the quantum version 
of the theory, will be interpreted as the intrinsic angular momentum of the particle, its 
spin. From the relativistic point of view it is a 2-tensor. 

In terms of the little group generators, we have 

= —61"eacrvo Pa, 
4 

because the contribution to the kinetic term is 0 by symmetry. 

(6.60) 

6.3.8 The Plane Wave Solutions 

We are looking for the plane wave solutions of the Dirac equation. The interest of plane 
waves lies in their simplicity; we can then write a general solution as a superposition of 
plane waves. 

We are interested in the plane waves of positive or negative energy. Let us note that 

'E+ 
(x) = e-ik.Xu(k) 

is a positive energy solution and 

tp- (x)  = eik.xv  (k)  

is a negative energy solution. u and v are 4-component spinors ur  and vr  (r = 1, ..., 4), 
and k°  is positive. 

These solutions satisfy the Klein—Gordon equation; thus, k2  = m2. Therefore, ko = 
w(k) '11z2  + m2. We will note in the sequel Ek the energy w(k). 

From ( — m)W I  = 0, we get 

( — m)u = 0 (6.61) 

( + m)v = 0. 

Let us choose the standard representation. In the rest reference frame k = (m, 0), the 
equations become 

(y° — 1)u(m,0) = 0 (6.62) 

(y°  + 1)v(m,0) = 0; 

thus, u2  = u3  = v1  = v2  = 0. A possible basis of the solutions is given by 
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1) 0) 0) 

(

0 

u(1)(m, 0) = °0 u(2)(m, 0) = 01 v(1)(m, 0) = ? v(2)(m, 0) = °0  . (6.63) 

0 0 0 1 

We have now to find the expressions of u(")  and v(fi)  in an arbitrary reference frame. 
Let us consider, for example, the spinor u. We remark that in order for u to satisfy 

( /— m)u = 0, since 

k2  — m2  = (V m)(/ + m) = 0, (6.64) 

it is enough to look for u(k) of the form u(k) = ( + m)f (k)u(m, 0) with f (k) —> 1.1,, 

when k —> (m, 0). A convenient choice resulting from the normalisation conditions we 
shall use4  is lif (k) = .,/(m + Ek). A similar analysis holds for v, so we find that 

 

VF m ,a, 
u(") (k) = u" (m, 0) 

./ (ni + Ek) 
,c,, 

v(") (k) =  — 
VF 

 m v" (m, 0) . 
•./ (ni + Ek) 

(6.65) 

we thus get 

 (

1 

u(1) (k) = V Ek  + m 
a 
 . : i i  

Ek  -F M 1:)) 

(6.66) 

  

0 

(a • k1  ) 
Ek  -F M 

(0  
11) 

u(2) (k) = V Ek  + m 

and similar expressions for the v(a) 's. They can be rewritten as 

(
Oa) 

(m, 

0) ) 
u(") (k) = V Ek -FM a•k  (a) (m,0) 

Ek + 112 1-  

(a • k  K  (a) on,  0)) 
v(") (k) = V Ek  -F M Ek + rn 

KM (M,0) 

(6.67) 

(6.68) 

4  The conventions regarding the normalisation of the spinor solutions are not standard and they are dictated 
by the physical applications we have in mind. In some treatments the choice f (k) —> 1/2m is used, which 
makes the non-relativistic limit simpler. In present high-energy physics experiments, however, the zero-mass 
limit is more often appropriate and our normalisation makes it simpler. Naturally, the final results of physically 
measurable quantities are independent of normalisation conventions. 



P + (k) = Fm  (6.73) 
2m 

— VFm 
P_(k) =  

2m 
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with an explicit use of the non-vanishing 2-component spinors OM and K(')  of, re-
spectively, u(") (m, 0) and v(")  (m, 0) . We get analogous expressions for the conjugate 
spinors 

+ m 
Ti(")  (k) = it(")  (m, 0)  

•./(in + Ek) 
— +m  

i(x)  (k) = '1.)(")  (m, 0)  
,./(m+ Ek)'  

(6.69) 

where 'bar' denotes the Dirac conjugate spinors introduced in Eq.(6.39). We have the 
orthogonality relations 

Ti(")  (k)u(13)  (k) = 2m3" TIM (k) v(15)  (k) = 0 (6.70) 

'DM (k)v(13)  (k) = —2m8"15 'DM (k) ti ( fi)  (k) = 0. 

Let us consider the 'three-vector' matrix E of components E = 1-16.. crik 2 k 

(cri 0
(6.71) 

We check easily that u(1) (m, 0) and v(1)  (m, 0) are eigenvectors of E 3  with eigenvalue 
+1, while u(2)  (m, 0) and v(2)  (m, 0) are eigenvectors with eigenvalue —1. More generally, 
we find that E • n = E i  ni  has eigenvectors on a basis generated by the ti(a)  (k)'s and 
the v(a) (k)'s only if the vector n is parallel to k. In this case E • k, where k = Trzk  

has for eigenvectors u(1)  (k) and v(1)  (k) with eigenvalue +1 and u(2)  (k) and v(2)  (k) with 
eigenvalue —1. The operator E • k is the helicity operator. The matrices 

1 
Q±(k) = — (1 ± I • iz) 

2 
(6.72) 

are the projectors on the two helicity states. 
To completely determine the eigenvectors we will build the projectors on the states of 

positive, respectively negative, energy. The matrices 

are the projectors respectively on u and v. We have 

P} (k) = P± (k) P+  + P_ = 1 trP±(k) = 2. (6.74) 
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Let us compute the charge density = j°  = W y°  W for a plane wave of positive energy 

Q = yo,p, = Tiy ou (6.75) 

= ii{Xy° }u = 2Ek. 

As expected, it is positive. 
As we did with the Klein-Gordon equation, we can expand an arbitrary solution of 

the Dirac equation on the basis of plane waves. In analogy with Eq. (6.18) for a complex 
scalar field, we write 

tp 
 3  - f dk 1 

j (27)3  2E
Laa  (k)u(a)  (k)e- ikx  b:(k)v(a)  (k)elkx ] 

a=1 

tr,  _
d3  k 1 

j (27)3  2Ek
[a:(k)it(a)  (k)elkx  ba (k)'1)(")  (k)e-thx ], 

a=1 

(6.76) 

(6.77) 

where as  and bcy, a = 1, 2, are two pairs of arbitrary complex functions and * means 
`complex conjugation'. With our normalisation conventions the integration measure in 
the expansions (6.76) and (6.77) is the invariant measure on the mass hyperboloid dr2m. 

6.3.9 The Coupling with the Electromagnetic Field 

The coupling with the electromagnetic field is the minimal coupling introduced in 
section 3.7. This leads us to replace 8„ by the covariant derivative 

D, = a, + ieA,. (6.78) 

The Dirac equation in the presence of an external electromagnetic field can therefore 
be rewritten as 

(i - e m)W (x) = 0. (6.79) 

It is invariant under the local gauge transformation (i.e. depending on the point x) 

W (x) —> W (x)ei'(x) (6.80) 

42 (x) —> a,a (x). 

The conjugate spinor transforms as 

(x) —> I (x)e-1'(x) (6.81) 
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The conserved current has, as it can be easily shown, the same form as in the absence 
of the electromagnetic field, since, as we have noticed earlier, it is the Noether current of 
the invariance under the global transformations with constant phase.5  

To obtain the Hamiltonian form, let us multiply the Dirac equation by the y°  matrix. 
This gives 

i
a

-W = [a • (—iV — eA) + p m + eAo]W (6.82) 

= [a . (p — eA) + pm — eAo]w (6.83) 
= p + p m)tli — e(a • A — Ac)W (6.84) 

= (Ho + Hmt)W, 

where Ho  is the non-interacting Hamiltonian, that is with e = 0. 
Let us conclude with the operator relation 

[D D„] = ieF (6.85) 

which will be generalised to more complicated gauge theories. 

6.3.10 The Constants of Motion 

Let us look for operators which commute with the Hamiltonian.6  To start with, let us 
consider the Dirac Hamiltonian in the absence of an electromagnetic field. 

Since 1/0  = ca • p + ,8mc2, p commutes with Ho  and is therefore a constant of the 
motion. 

Consider L = r A p, the angular momentum operator. It commutes with p and 

[Ho , L] = [ca • p, = —ica A p• (6.86) 

Consider then the operator E. We check easily that 

[Ho, I] = 2ica A P; (6.87) 

consequently, since p commutes with 1/0, the helicity E • p and the angular momentum 

1 
= L+ 

2
—E (6.88) 

are constants of motion. 

5  This justifies the terminology we used earlier when we called the parameter e which appears in the 
phase transformation charge. It is the parameter which determines the strength of the coupling with the 
electromagnetic field. 

6  The terminology we are using is slightly misleading. Up to this point, the Dirac equation is just a dif-
ferential equation for a classical spinor field. So, when we speak about operators which commute with the 
Hamiltonian, we really mean quantities whose Poisson brackets with the Hamiltonian vanish. For this we 
must consider the Dirac field as a canonical dynamical system. However, the notation, which we borrow from 
quantum mechanics, is more convenient and it will make the transition to the quantum system easier. 
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The study of the Dirac equation with an electromagnetic field will be useful for the 
sequel. In the case of a static, spherically symmetric field, we will have to consider the 
Hamiltonian Ho to which is added a potential V (r), that is H = Ho  + V (r). Since L 
and all the more so E, which does not depend on r, commute with V,J is still a con-
stant of the motion. The helicity is not conserved. Intuitively, we expect to be able to 
specify whether the spin of the electron is parallel or anti-parallel to the total angular mo-
mentum. By an explicit calculation, we can see that the quantity which commutes with 
H is 

We also check that 

K = p(E • L + h) = pz J-13- 
2 

(6.89) 

K] = 0. (6.90) 

The eigenstates of the Dirac Hamiltonian with a spherically symmetric potential can 
therefore be simultaneously the eigenstates of H,K,j2, and l. 

6.3.11 Lagrangian and Green Functions 

The Lagrangian density which corresponds to the free Dirac equation is 

ED = 2 OP —a„TylL ,p)—mTnp. (6.91) 

Indeed, we obtain the Dirac equation for W and W as a consequence of the stationarity 
of the action S = f rDc14  x under independent variation of W and W . Because of the linear 
dependence in W or W, the action has neither a minimum nor a maximum. Thus, the 
overall sign of the action can be chosen at will. Provided that the field vanishes at infinity, 
we can rewrite the action as 

S = fd 4x (W(i ?W) — mg/ W) . (6.92) 

We can easily extend the action (6.92) to describe the interaction between the com-
plex spinor and an electromagnetic field A,. As usual, we use the principle of minimal 
coupling, that is, the coupling deduced from gauge invariance. This yields the action 

S= fd4x(T ((i - e 4)W)- mtT/W) = fd4x ED +J d4  X Emt• (6.93) 

Here Lint  = —joA0  and jo = yµg. 
The previous action assumes that Ao  is an external fixed field. In order to describe the 

full interacting system of the spinor and the electromagnetic field, we must add to the 
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spinor Lagrangian the Maxwell Lagrangian. We thus obtain the combined Lagrangian 
density: 

S= f d 4  x (W ((i
1 

— e 4)W)— mg/ W) — 4F,„P" (6.94) 

By construction the whole action is gauge invariant and yields a system where both the 
spinor field and the electromagnetic field can exchange energy. 

The Green functions of the Dirac equation are obtained following the same steps we 
used for the Klein-Gordon theory. We must find the inverse of the differential operator 
in the quadratic part of the Lagrangian (6.91). Therefore, the general expression for the 
Green functions is S = (i A - m)-1, where the inverse is understood with respect to the 
differential operator, as well as the 4 x 4 matrix. 

As usual, the expression simplifies in momentum space. Taking into account the fact 
that (k+m)(k-m) = (k2-m2) we can write the general expression for the Green function as 

k+ m 
S =  

k2  — m2  
(6.95) 

Depending on which iE prescription we choose for the singularities in the complex k°  
plane, we will obtain the retarded, the advanced, or the Feynman Green function. 

As for the Klein-Gordon theory, in order to obtain the corresponding expressions 
in the configuration space, we must determine a convenient basis. For example, the 
retarded Green function can be written as 

S„t(x2 — xi) = 
1 

9,2 t1) 
(27)3 f2Ek 

[(# + m)e-'k  (x2-xi)  + ( - m)elk (x2-x1)]. 

Here k°  = Ek, and we have 

(6.96) 

(i — m)S„t(x—y) = i3 4  (X - y) • (6.97) 

6.4 Relativistic Equations for Vector Fields 

Up to now we have obtained relativistic wave equations for scalar and spinor fields. In 
addition we have written Maxwell's equations for the electromagnetic field. In this section 
we want to write the general relativistically invariant wave equation for fields belonging 
to the (1, 1) representation of the Lorentz group. 

Let A,, (x) denote a general vector field. In writing a differential equation we can use 
the differential operator 0,, which has also a vector index, and the field itself. So the most 
general Lorentz invariant, linear, second-order differential equation for A, is of the form 
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EL4,(x) — a o a„Av  (x) + m2  Ao (x) = 0. 
a 

(6.98) 

It involves two arbitrary parameters, m2, which has the dimensions of mass square, 
and a, which is dimensionless. Maxwell's equations in the vacuum are obtained for the 
particular choice m2  = 0 and a = 1. It is only for these values that the equation is gauge 
invariant. Indeed, the transformation A,, (x) —> A ,(x) + aoe (x) applied to (6.98) gives an 
extra term of the form [(1 — a-1) ❑ + m2]009, which, for arbitrary 9, vanishes only when 
m2  = 0 and a = 1. 

Equation (6.98) can be obtained from a Lagrangian density: 

1 1 
= — —

2
[a
'

A' ao A, — —
a

a 0AIL a„Av  — m2  AA Ao] . (6.99) 

It is straightforward to obtain the corresponding Green functions. They are given by 
the inverse of the differential operator and they satisfy the equation 

which gives 

[k2g,„ — —1  kµ  k„ 

1 

— m2gov] -6" = e,, 

kP 

(6.100) 

a" (k) 
[ op (6.101) k2  _ m2 ° b k2 (1 — a) + a m2  

with, always, the appropriate iE prescription. 
As expected, the limit of (6.101) for m2  = 0 and a = 1 does not exist. The reason 

is gauge invariance. As we have seen, for this choice of the values of the parameters 
the differential operator in the wave equation satisfies the condition ),„ = 0, which 
means that D has a zero mode and, consequently, it has no inverse. 

It is instructive to study the general equation (6.98) for particular values of the 
parameters: 

(i) For m2  = 0 we obtain the equation for the electromagnetic field in the family of 
gauges parametrised by a which we introduced in section 3.8.2. a —> oo gives 
the Feynman gauge, in which the Green function reduces to four independent 
components: GoP (k) = /k2. a = 0 gives the Landau gauge in which the Green 
function is transverse in four dimensions: koOILP (k) = 0. 

(ii) For m2  # 0 the equation describes a theory which, as we shall show later, is 
appropriate for describing the fields of massive particles with spin equal to 1. 
Of particular interest is the choice a = 1 for which the equation is known as the 
Proca equation. We shall use it extensively in this book: 

Ei,40 (x)— a o a„Av  (x) + m2  Ao  (x) = 0. (6.102) 
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By taking the partial derivative p of this equation we obtain 

m28"`A„ (x) = 0, (6.103) 

which, for m2  # 0, implies a condition among the four components of the vector field. 
Two remarks are in order here: first, for the Proca equation with the term proportional 
to m2, this condition is a consequence of the equation of motion, in contradistinction 
with what happens in the m = 0 case in which this, or any similar, condition had to be 
imposed by hand. Second, note that this condition remains valid even if we introduce a 
source term j,„ (x) on the right-hand side of Eq. (6.102), provided the source is a con-
served current. It follows that out of the four components of the field, only three are 
independent dynamical variables. We shall come back to these points in more detail in 
Chapter 12. 

Up to the i€ prescription, the Green function of the Proca equation takes the simple 
form 

a 11  P  (k) — 
1 [ ko kP 

k2  - M2 etP 
 m2 ] ' (6.104) 

As we did for the Dirac equation, we can find plane wave solutions which we can use 
as basis to expand any other solution. 

We start by defining four basic vectors E0(x)  (k), with A running from 0 to 3. We can 
use any system of linearly independent vectors and a particularly convenient choice is the 
following: we choose E0°)  (k) to be a unit vector in the time direction with E0°)  (k) E (0)I"` (k) = 

1 and €0" (k) > 0. Then we choose a three-vector k and choose the z-axis along its 
direction. For the m = 0 case the natural choice is the direction of propagation. € AO)  (k) 

will be a unit vector in this direction. The other two vectors € 1)  (k) and € IT (k) are chosen 
in the plane perpendicular to that formed by the other two and orthogonal to each other. 
In our particular reference frame they take the simple form 

(1) (0) (0) (0 

E 
(0) = 

0
E (1) = 

1
E (2) =

). 
0

€ 0)  = 0 
0 0 1 0 
0 0 0 1 

(6.105) 

The four E vectors are called polarisation vectors and, when k is chosen along the 
direction of propagation, we can call E (3)  longitudinal, E (1)  and E (2)  transverse, and E (0)  

scalar. In an arbitrary reference frame they satisfy the orthonormality relations 

L. 
\ -,3  E i(LX)  (k)E ,(,A)* (k) 

€(x)P (k)€,A.)*  (k) = gI"  x=o 

where, again, * means 'complex conjugation'. 

E (A) P  (k) E (X'  )* (k) = gAA' , P (6.106) 
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With the help of these unit vectors, an arbitrary solution of the wave equation for a 
real vector field can be expanded in plane waves. For the simple case of m = 0 in a linear 
gauge, the expansion reads 

3  
A„ (x) = f 

(27,
) 

 3 k 
Z 
, co 
 E [a(A) 

(k)Ex) (k)e-ikx  a(A)* (k)E (x)* (k)eikx ] 
k A=0 

(6.107) 

with a(A) (k) four complex functions. Here wk  = k°. As we shall see in a later chapter, 
depending on the choice of gauge, the number of independent polarisation vectors can 
be reduced. Note the Minkowski metric guf  in the second of the relations (6.106), which 
is necessary to reproduce the correct transformation properties of the field A. 

We can obtain a similar expansion for the solutions of the Proca equation. The four-
dimensional transversality condition (6.103) can be used to eliminate the polarisation 
in the zero direction. For the general m # 0 equation, the expansion involves all four 
polarisation vectors. 

We can obtain relativistically invariant equations for fields belonging to higher 
representations of the Lorentz group, but we shall not use any of them in this book. 
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Towards a Relativistic Quantum 
Mechanics 

7.1 Introduction 

In the previous chapter we derived relativistically invariant wave equations for fields 
of low spin. Although the derivation was purely mathematical, these equations have 
important physical applications. The obvious case is Maxwell's equation which accur-
ately describes the dynamics of a classical electromagnetic field. In this chapter we will 
study the possibility of a particular application, namely that of a relativistic extension 
of Schrodinger's equation, the equation for the quantum mechanical wave function of 
a particle. Indeed, we may wonder why Schrodinger, who wrote his equation in 1926, 
twenty-one years after the discovery of special relativity, choose to write a non-relativistic 
equation for the electron. In fact, historically, it seems that he first tried to find a relativ-
istic equation and wrote the equivalent of the Klein—Gordon equation (the degrees of 
freedom associated with the spin of the electron were not used). In this chapter we want 
to see how far we can go in this direction using everything we know today about the 
representations of the Lorentz group. 

7.2 The Klein-Gordon Equation 

We start with the simplest wave equation, the Klein—Gordon equation. From our study of 
the Lorentz group, we know that it should correspond to the wave function of a spinless 
particle. The wave function in quantum mechanics is complex valued, so we write the 
equation for a complex field (6.16). 

Remember that the free Schrodinger equation can be obtained from the correspond- 
2 

ence principle by substituting to the non-relativistic relation Po  =,;11)  , the operator ih at 
for the energy Po, and the operator —ih —a for the momentum p. We see similarly that the a x 
Klein—Gordon equation, which was introduced from the relativistic invariance criterion, 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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can also be deduced by the same relativistic invariance criterion from the Einstein rela- 
tionpo2 = m2c4 + c2 •

p  2 .  In this derivation we see that m does correspond to the mass of 
the particle. 

In the non-relativistic limit, c —> +oo, the Klein—Gordon equation gives back the 
Schrodinger equation. To see this property, it is enough to extract the mass from the 
energy dependence of the field. This is obtained by parameterising 0: 

1• MC
2  

0 (t, X) = exp (-- h t) tii (t, x). 

The Klein—Gordon equation gives then 

(1 (_a \2 _ i
2m—

a _( a \ 2 
 w oc) 

 = 
0. 

 

C2 a t 1 h at axl ) 

In the non-relativistic approximation, c —> +oo, the first term can be neglected, and 
we recover the free Schrodinger equation: 

h2  
ih—

a 
w(x) =-- W (x). 

at 2m 

So, at first sight, the Klein—Gordon equation seems to have the right properties to give 
the relativistic generalisation of the Schrodinger equation. We suspect that this could not 
be right because, if it were that simple, Schrodinger would have written directly this 
more general relativistic equation. Let us show that, indeed, this interpretation does lead 
to physical incoherences. 

Without loss of generality we can assume that m is real. The field satisfies Eq. (6.1). 
The complex conjugate field 0* satisfies the complex conjugate equation. If 0 is to 
be considered as a wave function, there must exist a conserved probability current, as 
for the Schrodinger equation. In the previous chapter we have constructed this current. 
We saw that the two equations derive from a variational principle applied to the real 
action (6.16). The invariance of this action under phase transformations of 0 implies 
the conservation of the current (6.17). Let us separate the zero component and the three 
space components: 

_ ieh 
2m 

(04±
at

0
1 

_ (±0*
\
0
) 

° — t 1 
ieh 

j = —
2m

(0*(v0) — (V0*)0) . (7.4) 

We see that Q  satisfies the conservation equation which would make it possible to 
interpret it as a probability density. This interpretation is, however, impossible since 
the expression (7.4) is not positive definite. Indeed, the Klein—Gordon equation has 

ia 
solutions of the form e u(x) for all E2  > m2c4. It follows that whatever the sign of 

(7.1) 

(7.2) 

(7.3) 
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E, Q can be negative and therefore cannot be interpreted as a density. Technically, the 
problem arises from the fact that the energy dependence of the Klein—Gordon equation 
is quadratic. This is the clue that gave to Dirac the idea of his equation. 

A second problem, as fundamental as the first one and linked to the probabilistic 
interpretation of the wave function and independent from the fact that we consider a 
real field or a complex field, is that the energy spectrum Po  is not bounded from be-
low, since Po  = ±c1p2 + m2 c2 . Thus, it seems that the system is capable of furnishing 
spontaneously to the environment, under the effect of small perturbations, arbitrar-
ily large quantities of energy. We conclude that a complex field 0 (x), which satisfies 
the Klein—Gordon equation, cannot be interpreted as a wave function of a relativistic 
particle. 

7.3 The Dirac Equation 

Historically, the Dirac equation was derived as early as 1928, as a relativistic general-
isation of the Schrodinger equation for a spinning electron. It was a most remarkable 
achievement because, at that time, the spinorial representations of the Lorentz group 
were not known. Dirac looked for a first-order differential equation in order to avoid 
the problem of the non-positivity of the probability density which plagued the Klein—
Gordon equation. He wrote his famous equation with the aim of describing a relativistic 
electron, that is, a particle with mass m, electric charge e = —I el , and spin 2, which 
satisfies Pauli's exclusion principle. Seen with today's knowledge, almost a century later, 
his formulation of the problem was rather primitive. For instance, the Pauli principle 
was imposed by hand. Today we know that it is not 'a principle' but a consequence of a 
theorem that asserts that particles with half-integer spin must satisfy odd statistics, the 
so-called Fermi—Dirac statistics. This theorem relies on some basic physical principles, 
namely that the electron is described in the context of a local quantum theory which is 
Lorentz invariant and unitary. 

Dirac met his first objective: compared to the Klein—Gordon equation, his equation 
has an enormous advantage, namely it has a conserved current with positive-definite 
density. We have obtained this result in the previous chapter when we derived the con-
served current (6.45). Therefore, the first objection to the interpretation of the solution 
as a probability amplitude is no more valid and we could be tempted to consider the 
Dirac equation as a relativistic equation for the quantum mechanical wave function of a 
spin-2 particle. We shall see, however, that if we want to follow consistently this road, 
we will be led unambiguously to the formulation of a relativistic quantum field theory. 

7.3.1 The Non-relativistic Limit of the Dirac Equation 

The first step is to check that we obtain the correct non-relativistic limit. We can do it 
for the case of an electron interacting with an external electromagnetic field. 
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The energy of a relativistic particle of mass m includes its rest energy mc2; we can 
eliminate it by setting 

1r = W eime2 t  

which satisfies the equation (we have reintroduced the dependence on h and c) 

(:

e 
ih—

t c 
+ mc2) * = [ca • (-iV - - A) + pmc2  + eAdi k • 

(In the standard representation where >U= (/)), this equation can be written in terms 
K 

of the components 

((

ih —a  - eA°)4) = co-  • (p - -
e
A) K 

a t C 

lh —a  - eA°  + 2 m c2) K =Ca • (p - -
e 

A) 4 ) . 
0 t  

Let us consider the non-relativistic approximation where all the energies are small 
with respect to the rest energy. This means, for example, that in the second equation, 
the leading term on the left-hand side is 2mc2  and therefore that 

K= a 
 (p_ A\ 

0. 
 

2mc c 1 
(7.9) 

Substituting this quantity in the first equation gives 

(
i h —'9  - e A°) 4) = 

2m c 
 (o-  • (p - !A))2  4). 

t  

Using the fact that 

(7.10) 

o-  •ao-  •b=a•b+io-  •anb (7.11) 

we get 

(a • (p - :A))2  = (p - -e
c
A)2  + is • (p :A) A (p - !

c
24) 

and since p and A do not commute, the last term is non-zero and is equal to 

eh eh eh 
- —o-  (V AA+AA V)=--a • rotA=--a • B. 

C c c 

(7.12) 

(7.13) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 
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We thus obtain the Pauli equation 

a [1. h 
ih—cp = — (p- 

e  
-A)) + eAo -

2 e o
-  13] 0. 

at 2m c 2mc 
(7.14) 

This equation is different from the Schrodinger equation by the last term which 
is a term representing the coupling between the electromagnetic field and a magnetic 
moment it given by 

eh Thu BS  
= -2mca  = h 

where µB = 9.27 x 10-24J/T, S = is is the spin and g is the gyromagnetic ratio. 
The Dirac equation is therefore the theory of a massive particle of charge e and spin 

and predicts its gyromagnetic ratio 1  to be equal to 2. 
Let us consider for simplicity a stationary state of the initial equation of energy E. 

The next order of approximation, under the hypothesis in which the energy E is close to 
the rest energy (E - mc2)/mc2  << 1 and eA°  I << mc2  , can be obtained by writing that 

(E- eA0  +2mc2) K =c 6 • (p- -
e
44)4 )• 

At first order in 1/c this equation gave 

K = 1 o-  • p- 
e  
-44)4). 

2mc c 

To second order it gives 

1 E +  ez40)  
K=-1 6 • (p - -A) (/) 

2mc( 2mc2  

(7.15) 

(7.16) 

(7.17) 

We find at this order the appearance of a spin-orbit coupling term L.S, where L is the 
operator of orbital angular momentum. 

7.3.2 Charge Conjugation 

If, following Dirac, one interprets his equation as that giving the wave function of a 
free particle, the first task is to search for the spectrum of the Hamiltonian. It yields a 
continuous energy spectrum ±Ek, with 

1  We find experimentally that g = 2, 00233184. This value of the 'anomalous' magnetic moment g4 is 

known up to 10-7. The theoretical computations predict g = 2 [1 + ( 4'40 zn+...]. They come from corrections 
given by quantum electrodynamics (the quantum field version of the Dirac equation) and coincide with the 
same precision to this numerical value. 



The Dirac Equation 147 

(-oo, -mc2] U [mc2, +oo). 

This spectrum remains of the same type if one introduces in the Dirac equation a 
potential that vanishes at spatial infinity. Moreover, if one considers that this electron 
is bound to an atom, it must interact with the electromagnetic field of the nucleus. 
Whichever theory is used, the electron will be able to lower its energy by photon emis-
sion. Since its spectrum is not bounded from below, there is no limit for such a process, 
and we reach the conclusion that an atom cannot be stable. To bypass this contradiction, 
Dirac proposed in 1930 that under normal conditions all states with negative energy are 
occupied, which of course forbids the unbounded fall of the energy of the electron. In-
deed, because of the Pauli principle, no electron with positive energy can 'fall' in a state 
of negative energy, which is already occupied, and this explains the observed stability 
of all atoms. This hypothetical infinite set of negative energy electrons has been called 
the Dirac sea and determines the ground state of the Dirac theory. It can be interpreted 
as a Fermi gas with infinite density. All observables of the full system (energy, electric 
charge, etc.) must take into account all possible interactions between the Dirac sea and 
the electrons with positive energy. In Dirac's point of view, the energy of an electron must 
be computed as the energy of the system [one electron+Dirac sea] minus the energy of 
the system [zero electron+Dirac sea]. In the Dirac theory, when a photon with energy 
hw > 2mc2  is absorbed by an electron of the sea, this electron can become an electron 
with positive energy and a hole is created in the sea. The electron and the hole become an 
observable system. The energy of the hole is positive, its electric charge is opposite that 
of an electron, and its mass is identical to that of the electron. Dirac thought for a while 
that he could identify the holes with the protons, but it was quickly understood that, were 
it the case, the hydrogen atom would decay into two photons with an unrealistic lifetime 
of — 10-10  s. The great triumph of the Dirac theory, apart from predicting the value 
g = 2 for the electron gyromagnetic ratio, came with the experimental discovery of the 
positron by Anderson in 1932. This discovery was the cornerstone in the establishment 
of the existence of antiparticles. After that, instead of being a mathematical artefact, a 
hole was to be understood as a particle with a positive energy, and all puzzles could be 
resolved by understanding that the Dirac equation describes in a unified way either a 
positron or an electron, each of them having positive energy larger than the rest mass m. 
For instance, if we put together the spectrum of the electron and that of the positron, 
which run between m and oo, we formally get a bijection with the above-mentioned un-
physical spectrum that ranges from -oo and oo, with no states between -m and +m. In 
its early interpretation, Dirac was invoking the following mechanism for the absorption 
of a photon by a hole: 

eE«0 + y —* eE>0. (7.18) 

In the interpretation with particles and antiparticles, this process is naturally inter-
preted as a decay process of a photon in an electron-positron pair: 

Y —* ei>o + eE>o• (7.19) 
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Such a process can occur if we send a light ray in the Coulomb field of an atom or a 
molecule (it would be forbidden for an isolated photon because of energy-momentum 
conservation, which necessitates an external source that brings momentum). 

We see that although the Dirac theory was originally constructed for describing a 
single charged particle, in a straightforward generalisation of the Schodinger picture, a 
thorough analysis of this equation implies the introduction of another particle, called an 
antiparticle. Eventually, it implies a multi-particle interpretation, due to the possibility 
of creating pairs of electrons and positrons, provided there is energy and momentum 
conservation. This non-trivial generalisation of the idea of a wave equation came as a 
great shock. This new paradigm in which the number of particles is not conserved was 
originally called second quantisation. Nowadays, it is just called quantum field theory, 
and it became very clear with the introduction of the so-called path integral, which we 
will describe later on. Nevertheless, although the traditional one-particle interpretation 
of quantum mechanics is not consistent for a relativistic theory, the Dirac equation can 
still be used as an approximation in such a picture, provided the energies are low enough 
so that the effects of electron-positron pair creation can be neglected. 

The apparent asymmetry between electrons and holes completely disappears if we 
reinterpret all phenomena in terms of electrons and positrons. We will explain this 
by establishing the existence of a symmetry of the Dirac equation, called charge 
conjugation. 

To understand the multiparticle interpretation of the theory, we must couple the elec-
trons to the electromagnetic field A. In order that positrons play a role symmetric to that 
of electrons, the former should satisfy the same Dirac equation as the latter, but with an 
opposite electric charge, -e. Thus, we look for a transformation W —> WC such that 

(i -e - m)tk = 0 (7.20) 

(i + e 4- m)tke  = 0. 

In order to satisfy the basic principles of quantum mechanics, this transformation 
must be local and involutive, up to a phase. In this way, the norms of W and WC, which 
measure the probability of presence of the particle, will be the same. 

Assuming that the spinor W is a solution of the Dirac equation, its conjugate 
W (-i - e 4- m) = 0 satisfies 

kyityr (id eAtt ) - m) y°W* = 0. (7.21) 

Suppose now the existence of a matrix C such that 

Cy C-1  = -y11 . (7.22) 

Then 

oTitr (7.23) 
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is a solution of the Dirac equation with an opposite electric charge, —e. Using the standard 
representation, we get the following solution for C: 

C satisfies 

0 —* 
la2  C = iy2 y°  = 

—io-2  0 ) 
(7.24) 

— C = C-1  = Ctr  = C+. (7.25) 

Note that for the spinor field that represents an electron at rest, we have 

 

(0°) = 

0 

1 

1
0  
o
0  
) • 

 

W = (7.26) 

  

We see that what Dirac called an electron with negative energy and spin projection 
--1  is transformed by charge conjugation into an electron with positive energy, positive 2 

electric charge, and spin projection +1. This is identified to the positron. Note that the 
matrix C is anti-unitary. However, if we want to interpret C as an operator in the Hilbert 
space of one-particle states, electrons or positrons, it will be a unitary operator, because 
it involves also the operation of complex conjugation of the wave function. We will show 
this property explicitly in Chapter 12. 

7.3.3 PCT Symmetry 

We have seen that two symmetries exist for the Dirac equation, the spatial parity and the 
charge conjugation. We want to investigate here the consequences of time reversal It. We 
can easily check that y°y 5 We(hx), which is an anti-unitary operation, also satisfies the 
Dirac equation. 

Consider now the product of the three symmetries: 

P : W (x) —> iy°  W (Isx) 

C : W (x) —> W e  (x) = Cy°  W* (x) 

T : W (x) —> y°  y 5  W e(It x). (7.27) 

We find that the product PCT of the three operators taken in any order is an invariant 
of the theory 

PCTW (x) = iy°  (Cy°  (y°  Y 5  CY°  W*  Usitx»*) 

= iY°  (CY°  (Y°  Y 5  C-1  Y°  W (—x))) 
5 = iy W (—x). (7.28) 
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Let us ask the following question: given a wave function W (x) which satisfies the Dirac 
equation in an external electromagnetic field A,(x), can we find the equation satisfied by 
its PCT-transformed wave function iy 5 W (—x)? The answer is simple; 

0 = [i A, — e 41(x) — m] W (x) 

= iy5  [i A, — e 4(x) —m] W (x) 

= [—i fgx  + e 4(x) — m] iy5 W (x) 

= [i ill, + e 41(—x) — m] PCTW (x), (7.29) 

where, in order to obtain the last equation, we have performed a change of variable 
x -+ —x. 

This equation shows that the PCT-transformed wave function iy 5 W (—x) satisfies the 
same Dirac equation provided at the same time we replace the external electromagnetic 
field A,(x) by PCTA,(x) = —A,(—x). This is not surprising. We saw already that the 
operation of charge conjugation relates an electron to a positron whose coupling to the 
electromagnetic field has the opposite sign. 

At this level the invariance under PCT looks like a definition. It is the consequence 
of our assumption that the electromagnetic potential changes sign under this transform-
ation. We shall see in Chapter 12 that, in fact, this is much more general. It is possible 
to prove, using only general principles based on locality and Lorentz invariance, that 
every relativistically invariant quantum theory with local interactions is invariant under 
the product, taken at any order, of three appropriately defined operators: P for space 
inversion, T for time reversal, and C for particle-antiparticle conjugation. 

7.3.4 The Massless Case 

When the mass m vanishes, the equations for the dotted and undotted spinors in (6.20) 
are decoupled. The spinors and g independently satisfy the Dirac equation. This 
can be also directly shown at the level of the Dirac equation with 4-spinor notation, 
independently of the chosen gamma matrix representation. 

Indeed, by left multiplication of the equation Pk = 0 by y 5 y°, we get 

y 5  P°  tli = E • P W. (7.30) 

Thus, y5  and the helicity operator have the same eigenvectors. y 5  is suggestively 
called the chirality operator. Note that since y5  anticommutes with 14, if W satisfies the 
massless Dirac equation, so does y5 W. 

It is customary to introduce PL  = (1 — y5)/2 and PR  = (1 + y5)/2, the projectors on 
states of chirality +1 and —1. We also define 

'i, = PLC/ WR = PR W • (7.31) 
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Here, the indices L and R stand for 'left' and 'right'. The notation is borrowed from 
optics, where it denotes the two states of polarisation of light. 

The equation 14 —> th = 0 is nothing else but the first equation in (6.20), and the 
analogous equation involving WR  is the second one. 

Particles with spin equal to iand mass equal to 0 do not seem to exist in nature. 
However, there exist particles, the neutrinos, which have masses so tiny that, for them, 
the zero-mass approximation is very often adequate. The m —> 0 limit of the Dirac 
theory should apply to them. They should be described as Dirac spinors with four com-
ponents, provided their two possible states of polarisation exist, and we can pass from 
one polarisation to the other by a space parity. 

But in 1957, Maurice Goldhaber and co-workers showed in a very beautiful exper-
iment that the neutrinos produced in nuclear beta-decay, the only ones known at the 
time, were only left-polarised (helicity —1). Anti-neutrinos were right-polarised. 

The neutrino wave function must therefore be represented by a complex spinor th. 
In the spinor representation, only two components of th are non-zero. Then the Dirac 
equation of a neutrino can be reduced to a 2 x 2 matrix equation: 

oat  — io-  • V)W = 0. (7.32) 

This equation was originally written by Hermann Weyl as early as 1929. It was dis-
carded because it lacks parity invariance. Obviously, it was resurrected in 1957 after the 
great discovery of T. D. Lee and C. N. Yang (theory) and C. S. Wu (experiment) that 
the weak f3 decay, n —> p + e + 13, violates the conservation of parity (here 13 stands for 
an anti-neutrino). 

The description of the neutrino by a two-component spinor only makes sense if its 
mass is strictly zero. Otherwise, a Lorentz transformation would transform a state with 
positive helicity into a state with negative helicity. Thus, when one attempts to put exper-
imental limits on the smallness of the mass of a neutrino, we must use a four-component 
Dirac equation. 

The charge conjugation associates with the neutrino its antiparticle, called the anti-
neutrino. In the model for elementary particle physics which we shall present in Chapter 
25, known as the standard model, the antineutrinos are different particles from the neut-
rinos, although this may change radically in the near future. In contrast, the photon is 
its own anti-particle. Note that if neutrinos and anti-neutrinos turn out to be identical, 
we would have to use a different equation, the Majorana equation, to describe them. 
We shall present it briefly in the next section. The experimental situation will be briefly 
discussed in Chapter 25. In the standard model neutrinos and anti-neutrinos have op-
posite polarisations. The charge conjugation and the space-parity are not invariances of 
the Weyl equation, but the product CP is. As a consequence of the PCT theorem, the 
time reversal T is thus also a symmetry; this can be shown also directly by inspection of 
the Lagrangian or of its equations of motion. 

It is often convenient to use the projectors PL  and PR, even for massive spinors. In-
deed, this decomposition projects any given spinor W on eigenvectors of the chirality 
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operator which are interchanged by space parity. Using the relations 

17/L  = (13L tp)ty0  = tptpLy0 = WPR (7.33) 

and 

WR = WPL, (7.34) 

we get 

tT/ Y'W = W LY'VIL + '71  RY'lliR (7.35) 

WW = tTi LW R + IT RIP L; IT LW', = T1 RV/ R = 0. (7.36) 

We see that the vector current is the sum of two currents that separately correspond 
to states with distinct helicities. On the other hand, the term tii W couples states with 
different helicities. 

7.3.5 Weyl and Majorana Spinors 

In the spinorial representation a four-dimensional spinor is formed out of the two 
two-dimensional spinors and i. They transform according to the (0, 1) and (1, 0) 
representation of SU(2) x SU(2), respectively. Each one has two complex components, 
so a Dirac spinor depends on four complex variables. Note that if transforms as a 
member of (0, 1), its complex conjugate C transforms as a member of (1, 0). It was 
Ettore Majorana who first realised that one can use this property in order to build a 
four-component spinor with half as many variables as a Dirac spinor. It is sufficient to 
choose in the Dirac equation (6.20) n  - c. Equation (6.20) still contains a mass para-
meter but in the four-dimensional spinor (6.26) the two lower components are given by 
the complex conjugates of the two upper ones: 

(7.37) 

Therefore, we can find a unitary matrix UM  to make all four components of tiim real. 
WM is called a Majorana spinor and (7.37) shows that it is equivalent to a single Weyl 
spinor. Formally, a Majorana spinor still satisfies a Dirac-type equation, but it cannot 
be interpreted as the equation for the wave function of a particle since the components 
of WM  are real valued. In particular, there is no U(1) phase symmetry and, hence, no 
conserved current. It is easy to verify that the transformation of charge conjugation acts 
trivially on a Majorana spinor which implies that if a particle is described by such an 
equation, it must be identical with its own anti-particle. 
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As we shall see, Majorana spinors will turn out to be very useful later on, so we ask, 
as an exercise, to compute the unitary matrix Um, which relates a Majorana and a Weyl 
spinor, as well as the associated y matrices. 

7.3.6 Hydrogenoid Systems 

The extremely precise analysis of the hydrogen spectrum played an essential role in 
the development of quantum mechanics in the first half of the previous century. A 
major success of the Dirac equation was the accurate determination of the relativistic 
corrections to the Schrodinger theory. This came in two steps, first at the level of the 
one-particle approximation and, second, at that of the complete picture, where one takes 
into account the effects of particle-anti-particle creation and annihilation. 

7.3.6.1 Hydrogenoid Atoms in Non-relativistic Quantum Mechanics 

The states of an electron bound to a nucleus with Z protons are described by the 
Schrodinger equation 

where m is the reduced mass 

(

h2 
 A 

 _ Ze2  _ E) 
ifr (r) 

 = 
0, 

 
2m 47 rr 

memN 
m= '-= Me, 

Me + mN 

(7.38) 

(7.39) 

me  stands for the electron mass, and mN  is the nucleus mass. Using the rotational sym-
metry of the Coulomb potential, we can parameterise the solutions in terms of the 
eigenfunctions of the angular momentum operator Ifri,m(r) = Yin (9, CO (r). Then, the 
Schrodinger equation reads 

h2 Ze2  (
) lif tm r) = 0, 

" 
(7.40) (--s - — 

471-r -En'1 2m n 

where Ifrn,/,,n  satisfies 

L2i/fn,/,m = 1(1 + 1)1/in,t,m / = 0, 1, 2, ... 

Lzilin,/,m = mikn,/,m I ml < 1, (7.41) 

and the Laplacian is 

a2 2 a L2  - A = __ + _ 
a r2 r a r r2 

. 
 

(7.42) 



En  = 
2n2  

n = 1,2,••• . (7.47) 
mc2  (Za)2  
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The radial Schr6dinger equation is 

( h2 ( 2 2 a 1(1 
r2  
+ 1) (Ze)2  

2m ar2  r ar f
E) 0 = 0. 

) 
Or r  (7.43) 

Its normalisable solutions are 

, ,,E 
0 (r) = r`e-mr  P,,,  (r), (7.44) 

where Pn,  is a polynomial with degree n', 

E= 

and a is the fine structure constant 

(7.46) 

mc2 (za  )2 

 

(7.45) 
2(n' + 1 + 1)2' 

e2 1 
a = 

4n- hc — 137 .  

By defining the quantum number n = n' + 1 + 1 we now see that the solutions of the 
Schr6dinger equations are functions Ifr„,/,,,, that are the eigenfunctions of L2  and Lz  with 
eigenvalues 

n and I are such that n' = n - (1 + 1) cannot be negative. Formula (7.47) indicates that 
the energy levels that are independent of I are degenerate. For a given n, we have 

n-1 
E(2/ + 1) = n2 (7.48) 
t=o 

degenerate levels. 

7.3.6.2 Hydrogenoid Atoms in Relativistic Quantum Mechanics 

In order to conveniently solve the Dirac equation in the radial case, we multiply the 
left-hand side of 

(13-e41-m)* = 0 (7.49) 
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by j  — e 4  + m, which gives 

(p'—ezil+m)(13—ezil—m)* 

= [(1i-e41)2  - m2]* 
= [(i  — eA) 2  + [e, y v ][ia,2 —eAw iav —eA] — m2]* 

= [(is — eA) 2  — 
2 
 a" F — m2] , (7.50) 

Ze since A = 0 and Ao  = — , = —F10  = —a1A0  = E . We use the spinorial representation r 

2ia • E 0 
cri"Fo, = ( 0  

—2io-  • E 

a • I,  
2ia • E = —iZa , r2 

(7.51) 

(7.52) 

where 1,  is the unit vector along r. Since the other terms are diagonal, we naturally write 
the solution as 

(7.53) 

where .1/4 and 1/1_ stand for two-component spinors. The Dirac equation now reduces to 
a pair of spinorial equations for the stationary solutions with energy E 

a2 2 a 1 2ZaE 2 2 • ',au  + (L2  
r2 (E2  — m2)]*± = 0. (7.54) 

The idea is to compare this equation with that of the non-relativistic case by simply 
writing the second term in parentheses as an operator analogous to L2, the eigenvalues 
of which are parameterised as X(X + 1). Now we use the fact that,/ commutes with H, 
the Dirac Hamiltonian in the Coulomb field potential, as well as with L2. Thus at a given 
eigenvalue j, j = 2, ;, • • • , of J such that J2  = j(j + 1)/, the integer eigenvalues of L2, 
1(1 + 1), must be written as /±(/± + 1) and satisfy 

For each one of the equations in (7.54), we can expand the solutions on the two-
dimensional basis of solutions given by II+  > and IL >: 

L211, >= 4(4 + 1)14 > . (7.55) 
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L2  is a diagonal operator in this basis. The operator a • 1,  is Hermitian and traceless, 
and its square is the unit operator 1. Moreover, we have 

< 41a • 1'14 >= 0, 

since a.1,  is odd under space parity, r —> —r. Thus, 

a 
 . i. ( 0 "C 

r 0 )' 

(7.56) 

where r is a phase. We finally get that L2  — 22.12  T iZaa • 1,  can be represented in this 
basis by a 2 x 2 matrix 

(

L2 _ z2 012 Triza  
Tf  iza L2_ z2012),  

which gives on the (/ + ) basis 

(( +1)( + 1) — Z2a2  
TfiZot (+ 1/ V 2

\ _ 1
/ 
 _z2a2)• 

2  

TriZot 

This matrix has the eigenvalues 

1  
(i+ ) 

2 

-Z20/2  ± 

N 

(:+ 1)2 

i _z2a2.  (7.57) 
2 2

2 

They can be written under the form X(X + 1) provided that 

2 2 

A = :7+ 1 () _z2a2 and X = j+ () _ z2a2 - 1.  (7.58) 
N N 

We have, thus, reduced the problem to that of finding the eigenstates of 

h2  ( a2 2 a x(X + 1) 2ZaE 
+ 

( 
(E2

-M
2
)) 0 = O. (7.59) r2 ) r 2m are r ar 

This operator is formally the same as that of the non-relativistic case, (7.43) with the 
substitutions 



1(1+ 1) —> + 1) 
a E 

a—* 
m 
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E2  — m2  
E—* (7.60) 

2m 

Let us define a new orbital quantum number X by 

1 

where 

X= jf —) 2
—S., (7.61) 

1 
=i  2 (i 

2 
z2 2 Z2a2  

a 0(Z4a4). (7.62) 
 2 2j + 1 2 

In order to get the condition of normalisability of the solutions, we shift the energy 
quantum number n by Si, in such a way that (n — Si) — X — 1 is a non-negative integer. In 
turn, j < n— a  for X = j + a  —8.7  and j < n— a  for) = j + a  — Si  implies that fora given n, 

we have a double degeneracy of each level for j < n— i and no degeneracy for j = n—
The substitutions indicate immediately that the new energy levels are such that2  

E2  — M2 MZ2a 2  En2j 1 nj  (7.63) 
2m 2 m2  (n— Si)2  

This gives finally 

m mZ2a2 mZ2a2 3 MZ40/4
a4 Enj  =  m 

2n2 n3  (2j + 1) 
+ 

8 n4 
 + c ( ) (7.64) 

for n = 1, 2, • • • and j = • • • , n — 
The difference between the non-relativistic and the relativistic cases is the occurrence 

of a fine structure that lifts the degeneracy of the j dependent levels, for a given value of 
n. Using the atomic physics notations, and for Z = 1, we have 

2  Obviously, in discussing Eq. (7.62) we have assumed that Za < 1, which is true for all known stable 
atoms. It is, however, of some interest, even if only academic, to see what happens when Z becomes very 
large. Formally Eqs. (7.62) and (7.63) imply that, in this case, the energy of the state becomes complex. We 
know in the theory of non-relativistic scattering that considering complex values of the energy is a formal 
way to take into account the effects of unstable states such as resonances. Later, in section 20.4, we will 
study this phenomenon in quantum field theory. Here we only note that nuclei with very large Z tend to be 
unstable because of the Coulomb repulsion among protons, a phenomenon unrelated to the one we discuss 
here. However, there are speculations in nuclear physics regarding the possible existence of a new stability 
region for nuclei with very large Z and A. If such nuclei can be produced, it would be interesting to study the 
corresponding highly ionised atoms and see the possible effects of the instability given by Eq. (7.62). 

ZZa Z 
 1 + ( 

n-8 



E(2P3) - E(2P ) 
2 2 32 

= 4, 53 x 10-5  eV (7.65) 
MCY 

4 
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Figure 7.1 The spectrum of the hydrogen atom. 
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for n = 2, P —> 1= 1, and j = i or 2. 
We can refine the relativistic correction by including the effect of the interaction 

between the spin of the nucleus and the spin of the electron. This means adding to 
the Hamiltonian a term of the form 
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H = — o-  e.B. 
2m, 

(7.66) 

Since B is proportional to the magnetic moment of the proton ttp gp
..np

, we get 

an additional contribution which lifts further the degeneracy of the fundamental level, 

the 1S1: 
2 

6.E = —
4

mea4 eV. 
3 mp  

(7.67) 

This new effect is called the hyperfine structure. The new correction is proportional to 

the mass ratio Mp  , which makes it smaller by an order of magnitude than the previous 

effect. Figure 7.1 indicates the values of the correction. Figure 7.1 also indicates another 

correction, the Lamb shift, due to the quantum field effect, which cannot be computed 
within the framework of first quantisation (we left this computation as an exercise for 

the next chapters). 

7.4 Problems 

Problem 7.1 Show for bilinear forms the following equalities under a proper group 
transformation L, = U Ly, x'14  = 

scalar = *(x)*(x) 

= AA,* (x) Y' *(x) 

= ./1,,,A /3*(x)0*(x) 

= det A AA,* (x)y5 y v  (x) 

= det A V/ (x)y5*(x)  

vector 

antisymmetric tensor 

pseudovector 

pseudoscalar. 

(7.68) 

Problem 7.2 Compute the transformation properties of the bilinear expres-
sions of Problem 7.1 under the transformations of time reversal T and charge 
conjugation C. 

Problem 7.3 Prove that the infinitesimal generator of the representation of the 
Lorentz group acting on the Dirac equation is given by the formula 

1 
T — 

AP 
= 

2(11"
• 

 

Problem 7.4 Check that E .p and J = L + 1E are constants of motion of the free 
Dirac equation. 
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Compute [H,31 when H is the Dirac Hamiltonian with an electromagnetic field. 

Problem 7.5 The current. 
Consider a relativistic particle of charge e and mass m under the action of a mag-

netic field. Its dynamics is described by the Dirac equation. This problem has for 
purpose to compare in some case the Dirac equation to the Schrodinger equation. 

(1) Show that the current density jo(x) = eW (x)y14111(x) is conserved. 

(2) Show that jo = +.42̀), where 

2  e - 
(i)  = (a "` W (x)tP (x) — tP (x)ali tP (x)) — 

fl
241-̀  (x)W (x)W (x) (7.69) 

2m 2 
e - 

1(2)  = (x)cr tP (x)) . 

Assume that all the energies are small with respect to the rest energy of 
the particle. Give the non-relativistic limit of the two currents j(1)  and j(2) . 
Interpret the results (one can use the fact that, classically, a magnetic dipole 
M generates an effective density of current Jeff  = rot 

f 

 M). 

(4) Express the part of the electromagnetic coupling 1(2)  • A d4x in terms of 

the electromagnetic tensor Foy. Give the non-relativistic limit. 

Problem 7.6 The Zitterbewegung. 
We will set in the Heisenberg representation and therefore suppose that the op-

erators are time dependent. If Q is an operator in the Schrodinger representation, 
we remember that QH  = exp(itH) Q exp(—itH) and the Schrodinger representation 
is equivalent to the Heisenberg equations of motion; 

dQH  . QH = Qlli + , 
dt at 

the last term only exists if Q is explicitly time dependent. The operator H is the 
Dirac Hamiltonian. 

We will not in the following give an index H to the operators which are in the 
Heisenberg representation. 

(1) Let 70  = - ez414  the conjugate momentum. Show that 

(7.70) 

(3)  

do 

dt 
= e(E + a A 13). (7.71) 
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(2) Give an interpretation to a in the preceding equation. One can compute the 
mean value of this operator on the plane waves of positive energy: 

< a >= f (+)1. (x)a tP (+) (x)d3x. (7.72) 

(3) Compute 

dxk  
= 

dt
i[H , xk]. (7.73) 

Is it possible to simultaneously measure all the components of the speed? 
Let us suppose now that there is no electromagnetic field. 

(4) Write the evolution equation satisfied by a and show using the fact that p 
and H are constants of motion that 

a (t) = — + (0) — —P (7.74) 

is the solution of this equation. 

(5) Deduce from it that x(t) is made of two parts, one classical and the other 
rapidly oscillating. Comment? 

Problem 7.7 The Landau levels. 
Solve the Dirac equation for an electron moving in a space with a constant 

magnetic field B = (0, 0, Be). 

(1) Find the energy levels, the relativistic version of the Landau levels we 
studied in non-relativistic quantum mechanics. 

(2) Find the degree of degeneracy for each one and interpret this degeneracy in 
terms of the symmetries of the problem. 

(3) Show that the two components of the velocity of the electron v, and vy  do 
not commute. 

We can go one step further and show that a free electron in a space with non-
commutative geometry reproduces the Landau results. 

Hint: The method is similar to that we followed in solving the same problem 
using the Schrodinger equation. We choose a gauge in which the magnetic field is 
given by a vector potential of the form A = (0, Bzy, 0) and reformulate the problem 
in terms of an equation for a harmonic oscillator. 
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Functional Integrals and Probabilistic 
Amplitudes 

8.1 Introduction 

The functional integral is one of the most remarkable inventions of contemporary the-
oretical physics. The formal and practical simplifications that it has generated have had 
important consequences in many discoveries, particularly in the theory of elementary 
particles and in statistical physics. More recently, this tool was proven to be interesting 
in the reformulation of various problems encountered in pure mathematics. 

Historically, functional integrals, or path integrals, were introduced in the 1920s by N. 
Wiener to solve some diffusion and Brownian motion problems. They were rediscovered 
in the 1940s by R. Feynman in his approach to reformulate first quantum mechanics and 
then quantum electrodynamics. Today, the path integral is considered to be one of the 
rigorous methods possible from a classical theory expressed by a Lagrangian to define 
the corresponding quantum theory. 

In comparison with the standard method of operator quantisation, the functional 
integral quantisation shows many advantages, especially for constrained systems with 
an infinite number of degrees of freedom like field theories. It is also one of the most 
powerful tools for studying the preservation, after quantisation, of the symmetries of the 
classical Lagrangian. 

The main physical applications are related to the description of the interaction among 
elementary particles by means of quantum field theories as well as that of many problems 
in statistical physics such as superfluidity, superconductivity, and plasma physics. 

It is important to distinguish between the basic ideas of functional integration and the 
technical difficulties we may encounter in manipulating objects having an infinite num-
ber of degrees of freedom. Many among these technical difficulties are out of the scope 
of this book. The main problems related to the infinite number of degrees of freedom 
will be treated only in the special case of perturbation theory. For most physically in-
teresting theories a non-perturbative rigorous approach is still missing, since, in depth, 
there are unsolved technical problems. In this chapter and the next one we will estab-
lish the foundations of the formalism of the functional integral with an emphasis on 
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the applications to non-relativistic quantum mechanics. Then in a subsequent chapter 
we will show how we can extend the definition of the functional integral to relativistic 
theories and to include fermions. 

Before deriving the basic results, we will show how simple arguments based on the 
principles of quantum mechanics lead naturally to the idea of path integrals. We will 
mainly follow the original approach of R. P. Feynman.1  

8.2 Brief Historical Comments 

The idea of describing a physical phenomenon through the concept of summing over 
its possible past histories is quite old and, although it has been applied to various prob-
lems, its precise history has not yet been written. The correct mathematical tools were 
developed in probability theory during the first half of the twentieth century, but the less 
rigorous applications in physics are much older. In this short notice we do not pretend 
to cover the field and we shall only mention some of the essential steps which led to 
Feynman's path integral formulation of quantum mechanics. 

In this book we often derived Lagrange's equations by using the principle of least 
action. The calculus of variations was developed to solve problems of this kind and the 
ideas go back to the eighteenth century. A very instructive example is the connection 
between physical and geometrical optics. 

A simple model to illustrate Huygens' principle of physical optics is given by a 
generalisation of the massless Klein—Gordon equation with a variable index of refraction, 

n2 ,920 
v2,t, — 0

, 
 

e2 at2 (8.1) 

where c is the speed of light in a vacuum and n the index of refraction, i.e. the ratio of 
c to the speed of light in the medium. n may be a function of x and t. Equation (8.1) 
describes the propagation of wave fronts, thus exemplifying Huygens' principle. It is 
easy to show (see Problem 8.1) that in the eikonal approximation, i.e. the approxima-
tion in which the wave length of the propagated wave is short compared to the distance 
over which n changes appreciably, Eq. (8.1) is equivalent to the equation of geomet-
rical optics; in other words, Huygens' principle gives Fermat's principle in the eikonal 
approximation. The same result can be obtained by starting from the wave equations of 
classical electrodynamics. We can understand why the two pre-Maxwellian descriptions 
of light propagation, Newton's light particles and Huygens' waves, could both describe 
reflection and refraction phenomena. 

This connection was known already to Hamilton as far back as 1834. He real-
ised that the Hamilton—Jacobi formulation of classical mechanics could be considered 

1  The arguments presented in the first sections of this chapter follow very closely Feynman's original ap-
proach: R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948); see also R. P. Feynman and A. R. Hibbs, Quantum 
Mechanics and Path Integrals, (Mc Graw-Hill, New York, 1965). 
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as the eikonal approximation of some kind of wave mechanics. Today we know that 
Schrodinger's wave equation has precisely this property; see Problem 8.2. There is no 
evidence that Hamilton ever attempted to write this wave equation and, in fact, he had 
no reason to do so. In the early nineteenth century there was absolutely no indication that 
a wave propagation should be associated with the motion of a classical point particle. 

It seems that this kind of connection was first formulated by Peter Debye in discus-
sions he had with Arnold Sommerfeld in 1910. Although we do not know whether de 
Broglie was aware of the Debye—Sommerfeld discussion, his approach makes use of the 
analogy between Fermat's principle and Maupertuis' formulation of the least action prin-
ciple. Schrodinger was certainly aware of these developments and the story goes that he 
attempted to write the wave equation which bears his name trying to answer a question 
by Debye. The idea was to give a precise meaning to de Broglie's wave—particle duality 
conjecture. After struggling for a while with the problem of the negative energy solutions 
of a relativistic equation, presumably the Klein—Gordon equation, Schrodinger proposed 
his equation as its non-relativistic limit. The correct classical, or h —> 0, limit was an im-
portant consideration in his approach and, as we show in Problem 8.2, this is equivalent 
to the eikonal approximation. There is a beautiful paper, published by Schrodinger in 
1926, in which he summarises his approach to quantum mechanics.2  

In Heisenberg's matrix formulation of quantum mechanics the classical limit is 
obtained by replacing matrix commutators by Poisson brackets. The canonical trans-
formation which relates Schrodinger's with Heisenberg's pictures was found by Dirac 
at the end of 1926. He was the first to understand fully the classical limit, so it is not 
surprising that he was also the first to propose the path integral in order to exemplify 
the eikonal approximation. Dirac published a short paper (eight pages) on this subject 
in a Soviet journal in 19333  (he later called it 'the little paper'), in which he writes the 
expression we know today of the path integral and argues that summing over all paths is 
analogous to the quantum theory. In Dirac's formulation this was only an analogy, not a 
complete theory. A historical puzzle, not easy to solve given Dirac's rather introvert char-
acter,4  is why he stopped there and did not proceed to the next logical step, namely the 
complete formulation of the quantum theory as the sum over classical trajectories. This 
was done by Feynman in 1948 and it is the subject of this and the following chapters. 
Feynman relates a discussion he had with Dirac in 1946, before he had completed his 
own formulation, in which he tried to find out what Dirac meant with the term ana-
logous. Feynman suggested the correct term should be proportional. Dirac: 'Are they?' 
Feynman: 'Yes.' Dirac: 'This is very interesting.' End of the conversation! 

The difference is not trivial. As we shall see in this and the following chapters, it 
is only the ratio of two path integrals, with and without external sources, which can 
be defined, because the infinite constant of proportionality cancels.5  Coming back to 

2  E. Schrodinger, Physical Review 28, 1049 (1926). 
3  P.A.M. Dirac, Physicalische Zeitschrift der Sowjetunion 3, 64 (1933). 
4  For a recent Dirac biography see: Graham Farmello, The Strangest Man (Faber and Faber, 2009) 
5  According to Freeman Dyson, Feynman said later, 'I don't know what all the fuss is about. Dirac did it all 

before me'; see Graham Farmello, cited earlier. 
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Dirac, it is quite possible that he was discouraged by the difficulties encountered when 
one attempts to give a rigorous mathematical definition of the quantum mechanical path 
integral. Two points should be mentioned here: (i) in the early years the connection with 
the formulation in Euclidean space, which, as we show in Chapter 10, is mathematically 
better defined, had not been fully understood, and (ii) Dirac had always been reluctant 
to accept prescriptions, such as the theory of renormalisation, as valid ways to define a 
physical theory. It is conceivable that such considerations played a role in his final neg-
ative attitude towards quantum field theory in general and the path integral formulation 
in particular, subjects on whose formulation he played a fundamental role and which, to 
a large extent, were initiated by him. 

8.3 The Physical Approach 

The principles of non-relativistic quantum mechanics can be elucidated by the diffrac-
tion experiments of non-luminous bodies. We will describe an experiment which was 
initially a gedanken experiment, but which is now a real experiment thanks to the progress 
made on the control of sources of slow electrons and the ability to detect the impacts of 
isolated electrons. This experiment makes it possible to understand the physical origin 
of the description of the quantum reality in terms of functional integrals. 

Let us consider a source of slow, non-relativistic electrons emitting, inside a cone, 
wave packets spaced out in time with a nearly uniform angular distribution. The traject-
ory of each wave packet is assimilated to a straight line. The source is supposed to be 
`monochromatic'; i.e. the electron speeds are approximatively the same. 

If we put in front of the source a sensor plate, we will see after some time the appear-
ance of a disk-like uniform density of impacts. Let us pierce now the plate with two small 
holes and let us put behind them a second sensor plate. What will be seen on the second 
plate? 

Reasoning according to the principles of classical mechanics, the answer is obvious. 
Either an electron pulse is directed towards one of the holes, goes through it, and reaches 
the second plate or the electron pulse crashes into the first plate. After some time, two 
spots must appear on the second plate, concentrated around the intersection with the 
plate of the straight lines joining the source to the holes. If the rhythm of emission is 
sufficiently slow, it is in principle possible to imagine an experimental device able to 
identify for each impact the hole which the electron went through. If we close up one 
of the holes, after some time the figure drawn on the second plate is a unique spot. 
This reasoning is in principle independent of the size of the holes, provided we take into 
account the probability for an electron to be deflected by the border of the hole. For 
a hole of small but finite size, this probability is expected to be very small since it is a 
border effect. 

Reality is completely different from what was described earlier if the size of the hole 
is on the order of X = h/mec, the Compton wave length of the electrons. If we observe the 
plate, we see the slow appearance of impacts, apparently randomly and often far away 
from the position predicted by classical reasoning. If we wait long enough, we will see 
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Figure 8.1 The possible paths. 

the formation of an interference pattern, with fringes comparable to those of the Young 
interferences in optics. If we speed up the emission of electrons, the interference figure 
is obtained more rapidly. If we close up one of the holes, the result is a unique uniform 
spot. Repeating the experiment with the two holes and adding a detection apparatus 
capable of reporting which hole each electron went through, we see that the figure has no 
more fringes and we observe on the second plate the two spots predicted by the classical 
reasoning. Everything happens as if we were studying the emission of two incoherent 
sources. 

We can improve the device by adding a third plate pierced with two holes and then 
close up the holes in all possible ways. The figures obtained after some time will always 
be identical to the optical diffraction patterns created by a light source whose wavelength 
equals the Compton wavelength of the electrons. Obviously what is against intuition is 
the fact that these interference patterns were created in a progressive way by the particles 
emitted at relatively slow rhythm and that it is impossible, although the interference 
pattern is built by successive impacts, to identify through which hole each one of the 
electrons crossed. 

This experiment can be interpreted in the framework of ordinary quantum mechanics 
by allocating to each electron a wave function satisfying the Schrodinger equation and 
interpreted as the probability amplitude of presence of the electron. Of course, there is 
also some arbitrariness in the expression of the Schrodinger equation, obtained by the 
principle of correspondence and confirmed by its predictive capacity. We need also to 
set the traditional quantum mechanics postulates concerning the measurement process 
and the preparation of the wave packet. In that way, all the results of the experiment are 
perfectly interpretable. 

We will show now how the notion of path integral can be deduced from this experi-
ment. Let us forget about the Schrodinger equation, but keep in mind the idea that there 
exists a ket formalism to describe the physical states. Since in some configurations, we 
have interference fringes, this means that we must introduce the notion of the amplitude 
of probability A(b, a), of having, at time tb, at the point qb  of the plate an electron which 
has been emitted by the source, at time ta, at the point qa. This amplitude is a function of 
the trajectories of each electron. Piercing new holes, adding plates, and closing up holes 
are various manipulations whose aim is to modify the paths that the electrons may follow, 
making some of them possible and others impossible. From the experiments, we see that 
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A(b, a) is a function, in fact, a functional, of the possible trajectories, and in fact the elec-
trons can follow all possible paths qpos.  joining the source at qa  to the point of detection of 
the plate qb. Of course, a trajectory qpos.  is not necessarily a real trajectory, i.e. such that it 
corresponds to a solution of the classical equations of motion. The word 'possible' refers 
only to the part of space in which the electron can be localised. Hence, we expect that 
the amplitude A(b, a) is a sum over all possible paths of elementary amplitudes A[qpos]: 

A(b, a) = E A[qpos. ] (8.2) 
qpos. 

A[qpos.] is a functional of the path qpos, defined by a trajectory t —> qpos [t], with 
qpos.[ta] = qa  and gpos  [tb] = qb. The meaning of such a formula is well defined in the 
discrete approximation of space. The path integral is defined as its continuous limit; we 
will make this statement more rigorous later on in this chapter. In the following, we will 
omit to specify that only the possible trajectories, i.e. physically realisable trajectories, 
must be taken into account. 

The problem we face is to find the expression of the functional A[q] . Let us remark 
that the arbitrariness governing the choice of this functional is similar to that concerning 
the wave function in traditional quantisation. We postulate that 

A[q] e (8.3) 

The functional S[q] is the value of the classical action of the electron on the trajectory 
t —> q[t]. We thus have 

A(b, a) = E e S[q] (8.4) 
q 

Going back to the analysis of what happened in interposing new plates with holes 
between the source and the final plate, we can write for the amplitudes of probability 
a formula of summation over intermediate states. Let indeed tc  be an intermediate time 
between ta  and tb, each possible trajectory from qa  to qb  will cross at some point qc  a 
plate Pc  located between the source and the point where the impacts are observed. We 
can describe the set of all possible trajectories t —> q[t] , t E [ta, 4], linking qa  at time ta  
to qb  at time tb as the union, for all points qc  E Pc, of the possible trajectories t —> q[t], 
t E [ta, tb], such that g[ta ] = qa, q[tb] = qb, and g[tc ] = qc  for some time to  E [ta, 
Since the amplitudes are functionals of the trajectories and since the action is additive, 
S(b, a) = S(b, c) + S(c, a), the phase factors factorise and the total amplitude is obtained 
by summing independently on the paths from (qa, ta) to (qc, tc) and on the paths from 
(q„ tc) to (qb, tb), then finally on the position of the intermediate point qc. It is therefore 
reasonable to postulate the composition formula 

A(b, a) = f dq,A(b, c)A(c, a). (8.5) 
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We will see that from these two postulates follow all the results of quantum mechanics, 
the most spectacular being the proof of the Schrodinger equation. 

8.4 The Reconstruction of Quantum Mechanics 

To avoid unnecessary notational complications due to space dimensions, we suppose 
from now on that physics is one dimensional. 

To deduce a useful expression of the probability amplitude, we will make use of the 
composition formula (8.5). We can iterate this identity and rewrite A(b, a), introducing 
n- 1 intermediate times to = ta  < ti < t2  • • • < to  = tb and n- 1 intermediate points qi, 
i = 1, , n - 1. We find then that 

A(b, a) = f f . . . f dqi dqn_i A(b, n - 1)A(n - 1,n - 2) ... A(1, a), (8.6) 

where we used again the same notation, namely i stands for q = qi  at t = ti'. This 
last identity is interesting because it is of direct use. It implies indeed that the trajectory 
is specified more precisely since it must go through qi at time t1, , through qi  at 
time tz,. . . , through qa_i at time tn_i . Let us take a regular time spacing by dividing 
the time interval into n intervals of length E ne = tb - ta, corresponding to the n - 1 
intermediate times t1 , t2, , tn_i . Since the expression does not depend on the number 
of intermediate times, by taking n large enough, i.e. E sufficiently small, we can expect to 
extract the dominant contribution to the formula of the amplitudes A(j + 1,j). 

We remark first that we can approximate the value of the action between two neigh-
bouring points. Thus in the interval (ti+i, ti), we can write, assuming the Lagrangian 
sufficiently regular and setting qo = qa  and qn  = qb, 

f  ti+i  
dt L(q, q, t) EL 

(qi±i  - qi qi+1  + qi + ti) 

2 2 ti  

where :7 has been replaced by (qi+16-  qi) , q by (qi+1  + qi)/2, and t by (t1+1  + t1)/2. 
We can then set 

1
(is / +1 — qi qi 4+1 ti  \) 

L  
A(i + 1, i) —e h 2 2 

where 1/N is the number of trajectories satisfying the required boundary conditions. 
At first glance N depends on the Lagrangian and on the characteristics imposed to the 
trajectories, we will, however, see that it is enough to take N = N(E). 

In fact, we will see that there exists a suitable N(s), such that 

1 S(b a) 
lim  

E—>+0 N (On 41672  dqn-1 e  n  
(8.9) 

(8.7) 

(8.8) 
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exists with S(b, a) = S(b, n-1) + • • • + S(2, 1) + S(1, a), each of the actions satisfying the 
boundary conditions associated with the intervals. This limit will be noted 

f eh S(b,a) D(q(t)). 
ob)=qb  
q( a ),qa  

(8.10) 

8.4.1 The Quantum Mechanics of a Free Particle 

As an example we will quantise a free particle, a case for which the functional Integral 
can be explicitly computed. The Lagrangian is given by L = (1)m42. 

Let us first define what is a Gaussian oscillatory integral. If a is a complex number 
whose real part, Re a, is positive, 

2 n- 
dxe-a" = — a 

(8.11) 

the square root being defined as the usual square root for positive numbers and the 
origin as the branching point. 

By continuity, we define, for b > 0, that 

r • 2

1

/ in 
= = — 

J-00 b b 
(8.12) 

an expression which must be understood as lim3,±0  f  dx e(th-8)x2 . 
Let us compute the amplitude A(b, a) using formula (8.6). With n intermediate points 

for the approximation, we define A as 

n+1 
im 2 

(q1  qz—i)  
24(n)  (b, a) =   

N'1+1 
f f . . . f dqi dqne i=1  (8.13) 

   

where N = 27-c 'he  

Performing the integrations one after the other, starting from the integration over 
q1, then over q2, , up to the integration over qn, then making a repeated use of the 
following formula, for C > 0, 

1 +00 
dq se

ic 
 (")2  ±iC(*—q•i+ 1  )2  = e1 7  q°—qj +1  )2  

•Nri j C(j + 1) 
(8.14) 

we obtain with C = m/2hs 

   

    

A(n)  (a, b) = 
m

e  2he(n
im  

+1) (9o—qn) 2
. 

 
(8.15) 

27rihs(n + 1) 
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But (n + 1)s = tb — ta, thus finally 

A(n)  (b, a) — exp im(qb qa)2  
— 2n-ih(mtb — ta) 2h(tb — ta) 

(8.16) 

The resulting expression is independent of the number of intermediate points and is there-
fore equal to the limit value. This is a remarkable property which is due to the fact that 
the Lagrangian is quadratic in q. 

We thus prove that 

A(b, a) —  im(qb  qa)
2 

— 27rih(mtb — ta) 
exp 

 2h(tb — ta) 
(8.17) 

8.4.2 A Particle in a Potential 

The general case can be treated in the same way as the free particle case. For a general 
Lagrangian 

L(q, g,  t) = 
2 
1m42  - V (q) (8.18) 

we introduce an approximate expression of the amplitude 

A(n)  (b, a) = 
1 I f 

. . . dqi dq2  •• •• •• dqn_i e k"  = 1  ( (qikk_lk--11  )2 v(01„_,,  )) 

N(on 
(8.19) 

with the same N(s) as in the free case. 
If the limit of A(n)  (b, a) exists for n —> oo, we write it under the form (8.10). 
The existence of the limit is a difficult mathematical problem, strongly depending 

on the potential term. We can completely compute the integral when V is a quadratic 
function of q. 

We will consider in the following that (8.10) is the limit of (8.19) whether this limit 
exists or not. 

8.4.3 The Schrodinger Equation 

From the amplitude A(b, a) previously defined and which we will note in the sequel 
G (qb, tb; qa, ta) in order to make explicit the parameter dependence, we can define, for 
t > s, a wave function 

@ (q, t) = f G(q, t; y, s)0(y, s)dy, (8.20) 
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the function (/) being the initial function. Using the composition formula (8.5), this wave 
function satisfies 

+co 
@ (q, t) = f dq' G(q, t; , t')@ (q' , t') (8.21) 

-00 

for all times t', t > t' > s. This equation is the basic equation that we will take to 
define the wave function. It shows indeed that the wave function at a point (q, t) can be 
expressed as the action of the amplitude on a wave function defined at a previous time, 
this function summarising all the knowledge we have on the past of the system. 

In the case of a Lagrangian L = a;1242  -V (q, t), we will now derive a partial differential 
equation that is satisfied by the wave function. To do it let us compute the time derivative 
of W (q, t): 

a IP (q, t) = lim @ (q, t + 6) - @ (q, t) 

t E-> +0 
(8.22) 

Using formula (8.21), we compute @ (q, t + E)-@ (q, t) up to 0(6 2). Let us first rewrite 
the difference 

@ (q, t + E) - @ (q, t) = f dy ,  G(q, t + 8; y, (y, t) - @ (q, t) (8.23) 

= f dy( 1  e le (q-Y)2 e-IT= T'td- (y, t) - @ (q, t). 

We must compute Ak.)  f dye #8 (q-Y)2f (y). We find that6  

1 
N(E) 

dye 
f im 2 hE 

Th7.  "=" f (y) = f (q) - (q) + (82). 

Applying this formula to the function 

f (y) = e- ik 
v( 

 t+ ) w c
y, 

 

and keeping the terms of order at most E, we find that 

1 dy e  (q_y)2 
e-W v( ,t+ S) y  

NJ 

(8.24) 

(8.25) 

(8.26) 

ihs d2 
= @ (q, t) - i- V (q, t + 

2  
-)@ (q, t) + 

2m aq2
— w (q, t) 

6  This shows that lime,-o onverges as a distribution to 3(x).  
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Collecting all the result we find that 

a 
ih—@ (q, t) = HIP (q, t) 

at 
(8.27) 

with 

h2  .92  
H + V (q, t). (8.28) 

We proved the following. 

Theorem 8. The wave function @ (q, t), defined by Eq. (8.20), is a solution of the 
Schrodinger equation. 

This relatively intuitive approach could have been the starting point to define 
quantum mechanics, one postulate being replaced by another one. 

This formalism gives back all the properties of the Schrodinger equation. We can, for 
example, recover the property of conservation of probability. 

Let @ (q2, t2) = f dqi G(q2, t2; qi, ti)@(qi, ti); we must prove that 

f dq2@* (.72, t2) (q2, t2) = f 4011* (qi, ti) (8.29) 

which implies that 

f dq2G* (q2, t2; q, ti)G(q2, t2; qi, = 8(qi - ). (8.30) 

We can prove this relationship directly by infinitesimal steps using the law of 
composition of amplitudes. It is, thus, enough to show it for t2  = t1  + E. In this case 

f dq2 G*  (q2, t2; q/1, tl) G(q2, t2; ql, tl) 

• t,d-L) ,ti“)  dq2  eh 8 ' e 2 
2n-  he 

m 
— f dq2 e ihmeq2(qi-qi) +nel(qi-qi 2)e if) (V(

q2 +
2

q1   
41+  2 )-V(q2 +2 1 41± S» 

2n- he 

At order E 3  the integration over q2  gives 

dq2 
 eheq2(vi_qi) = 27h6 f 

which implies the stated result. 

m 8 (q1 -q/1), 
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8.5 The Feynman Formula 

We place ourselves in a non-relativistic framework. Let us consider a translation invariant 
system consisting of a scalar particle moving on a straight line under the action of a 
time-independent potential V(q). The classical dynamics is described by a Hamiltonian 
H = p2 /2m + V(q) or equivalently, after a Legendre transformation, by a Lagrangian 
L(q, q) = mq212 — V (q). 

The laws of classical mechanics are such that if this particle moves from the point qt at 
the initial time 4 to the point of  at a later time tf, its trajectory is given by a function 4(t), 
solution of the Euler—Lagrange equations. These equations are obtained by writing that 
the action of the system S(f, i) [q] = f7 dtL(q, q) is stationary and satisfies the boundary 
conditions: qt = 4(t1), of = q(tf). 

To obtain the quantum theory of the system, the usual starting point is to write a 
causal equation of the Schrodinger type defining the evolution of the wave function of 
the particle, this wave function being interpreted as the probability amplitude to find 
the particle at a particular point. The quantisation in terms of a path integral requires a 
reinterpretation of the corresponding physical quantities. 

8.5.1 The Representations of Quantum Mechanics 

The probability density for the presence of the particle at a point in space is given by 
the square of the modulus of the wave function. It follows that the overall phase of the 
latter is not an observable quantity. There exists therefore an equivalence between all 
the physical theories described by unitary equivalent wave functions. The action of a 
unitary transformation on a wave function is called a change of representation. We can 
construct infinitely many such representations, but, in this book, we shall consider two 
different classes: one related to the time dependence of states and the other related to the 
expression of quantised operators. 

8.5.1.1 The Different Time Dependences 

Three representations play a key role: the Schrodinger representation, the Heisenberg 
representation, and the interaction representation, depending on whether the emphasis 
is put on the time dependence of the states or of the operators.7  

• The Schrodinger representation: the states are time dependent and the operators 
are time independent. We note I IP (t) >s such states and the Hamiltonian in the 
Schrodinger representation is the usual Hamiltonian ills = H = Ho + fimt, which is 
written as the sum of a free and an interacting part. In this representation, the time 
evolution of the states is given by the Schrodinger equation 

ihat  I IP (t) >s= Hs @ (t) >s . (8.31) 

7  In what follows, we will adopt the rule according to which a hat above a quantity means that it is an 
operator. 
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• The Heisenberg representation: the states are time independent and the operat-
ors depend on time. We denote by QH (t) the operators and I @ >H the states. The 
time evolution is given by 

at I W >H= 0 and - ihQH(t) = [fix, QH(t)], (8.32) 

where HH  is the Hamiltonian in the Heisenberg representation. 

• The interaction representation: one splits the Hamiltonian into 1-1̂  = (Ho)/ + 
(14,0/, where Ho is the free part. The time evolution of the states I @ >1  and of 
the operators Q./  is given by 

ihat I  W >I=  (fiznt)II IP >I and - ihb/(t) = 6(01. (8.33) 

These different representations are linked by the fact that the expectation values of op-
erators between different states are physically measurable quantities and cannot depend 
on the choice of the representation: 

< @(t)1 > s=  < W1 (t) 1 0 >H=< (t)1 (t) IOW >I • (8.34) 

We link up the Schrodinger and the Heisenberg representations by setting 

(t) >H= W (0)  >H= I W (0)  >s 

Since 
. tHs 

@(t) >s=  'er @(0) >s (8.35) 

we find that 

e'er (t) >H= el-h-  @(t) >s (8.36) 

It follows that the correspondence between an operator Qs in the Schrodinger repres-
entation and its expression in the Heisenberg representation is given by (omitting from 
now on the index S for `Schrodinger representation' for H and for Ho) 

" tFf 
QH(t) = e -h-  Q_se -h- 

andthusH=Hs=HH,  
Similarly 

tko 
qi (t) >1= e"-  qi (t) >s, 

and we define operators in the interaction representation by 

ttio tFlo 

(t) = e'er Qs e -h- 

(8.37) 

(8.38) 

(8.39) 
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which leads to (Ho)/ = Ho. Let us write now the equation satisfied by I @/(t) >. 

ihat iwi(t) > = —floi@i(t) > Hitifi(t) > 

tfio tko 
= 1(0 > > Hinte l-h-1@/(t) > 

tfio di() 
= Hinte-l-h- (t) >_ (f/int)i (t) I 'PAO >, 

which leads to the definition 

tFlo tfio 
(Hint)/(t) = Hinte 17  . (8.40) 

It is easy to check that the equations of motion are equivalent in these representations. 
Remark that in the interaction representation, I @/(t) > coincides with I WI/  > in the 

case where there is no interaction. This property enables the interaction representation 
to play a key role in problems in which the weak coupling approximation is justified. 

8.5.1.2 The Different Operator Representations 

In quantum mechanics, the phase space coordinates p and q are replaced by operators 
and 1,, satisfying the commutation relations 

[4,1,] = 41) - 1,4 = ih. (8.41) 

In the space representation8  where the operator 4 is diagonal and acts as the multiplic- 
ation by q, 4 = ql, the momentum operator is the derivative with respect to q: p = -id 

q . 
To each function f (p, q), We associate an operator by replacing p and q with the cor-
responding operators. This method, known as canonical quantisation, is not without 
ambiguities. In fact since the operators "fi and 4 do not commute, to each ordering of p 
and q in a product corresponds a different operator. Such a problem is not manifest if 
there is an additive dependence in these variables. This is the case for the Hamiltonian 
H(p, q) = p2/2m + V (q) to which is associated in a unique way a unique Hamiltonian 
operator H. 

It is useful to introduce continuous basis associated with each of these operators. They 
are often called the p-basis, for momentum, and the q-basis, for position, representations 
of quantum mechanics. They are particularly interesting for the description of quantum 
systems having a classical equivalent. 

The q-basis, noted I q >, is the basis formed by the eigenstates of the operator 4: 

4Iq >= qlq > • (8.42) 

It is formally orthonormal (this is an improper basis) 

< >= 8(q- (8.43) 

8  The name representation has here a meaning different from the preceding one. By the choice of a 
representation, we mean the choice of a particular functional space in which the operators j, andq act. 
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Moreover, it is supposed to be complete; i.e. the following closure relation is satisfied: 

1 = f dqlq >< ql. (8.44) 

Similarly, the eigenfunctions of the momentum operator P form an orthonormal basis 
(improper). We thus have 

1= f dPIP >< Pl. (8.45) 

The position ket basis is related to the momentum ket basis by the Fourier transform 

1 _iPg 
<pig>= <gip> = e —. (8.46) 

It will be useful to introduce, in addition, the time-dependent continuous basis9: 

I q, t > = eitk  lq > . (8.47) 

This basis is built using the eigenvectors of the position operator in the Heisenberg 
representation 

4(olq, t >= qlq, t > . (8.48) 

We have obviously a closure relation 

1= f dq1 q, t > < t I Vt. (8.49) 

To each state I@ > is associated a function of the position < ql@ >= @ (q) and 
a function of the momentum < pi@ >= @ (p). Obviously @ (q) and @ (p) are related 
by Fourier transforms. Moreover, if I@ > is a solution of the Schrodinger equation, 
its wave function @ (q) is also a solution of this equation, the operators P and 4 being, 
respectively, replaced by the operator of derivation with respect to q and by the operator 
of multiplication by q. 

8.5.2 The Feynman Formula for Systems with One Degree 
of Freedom 

Let us consider the Schrodinger representation. The description of a physical phe-
nomenon is made by computing the transition probability between an initial state I > 
and a final state 1@f  >, a probability which can be computed from the scalar product 
< @f10, >. To compute such a quantity, it is enough to know the Green function 

< I e—i(t/ I q > describing the evolution of the particle from its position q at time 
t to its position q' at time t'. Knowing in fact the Green function, we can express the 
solution of the Schrodinger equation at time t' in terms of the initial value at time t: 

9  Be careful: the kets Iq, t > are not the states Iq(t) >= Cidi  I q> of the Schrodinger representation. 
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31
,)  _ < (

t') > _ < oe-i(`'-t)H ilp(t)  > (8.50) 

= f 

+00 

_00 dq <
-t)111q > < qlq (t) > 

dq < > (q, t). (8.51) 

Comparing this formula to (8.21), We see that we can set 

< > = G(qi,  q, (8.52) 

We will give a deeper justification of this identification by showing, through an ana-
lysis similar to that made at the beginning of this chapter, that the Green functions 
have exactly the same formulation in terms of functional integrals as the amplitudes of 
probability. 

As before, we will first treat the free case. 
We must calculate < I e (?-t)14  I q > . Since fic, is a function of p, it is useful to choose 

the momentum representation and we have 

< 9 I e-f V- )̀111°  IR > 

=
f 

< VIP
>< Ple 

 (?-t)H° I q > dp = 
1

e
k pq,  < pi e-k (t-ofio  kJ, > dp  

h 
 i 1 (q' — q)2  

=
1 e ip(q1,1) (t,_t)  t

n
2 
 dp  =

m e  h 2m (t' — t) 
277 2i7h(e — t)

(8.53) 

We recognise in the last equality the expression of the functional integral in the free 
case. We have thus shown 

42(r) dt. 
< ale (-oflo

lq>= e  A P 2m D(R). (8.54) 
q(1)f ,q' 
q(t)=q 

The general case, with a potential V, can be treated in the same way. We divide the 
time interval into n intervals of size E and we write 

< q e h q > 

= f < I e- qn-i > dqn-1 ' • • < 
eH > dqi  < ckellI R  > . 

(8.55) 

We compute each of these terms at the leading approximation in E usingl°  

Cie11 
 =e 

 ei3oe  ev + 0(62), (8.58) 

10  We must be careful: if two operators A and B do not commute, then 

efell  #e ì+E. (8.56) 

If the commutator [A, is small, a good approximation is given by 

eAeB  = e:I+E (1 +0([A,A)). (8.57) 
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H0  being the free Hamiltonian. Thus, 

< qi+i 1 e-efi  1 qi > = < qi+1, ti+ 11 qi, ti > 

= dr < f 9i+11e'811°  r > < rle-k ef7 lqj  > 

and since 

(8.59) 

<r e qi > = e EV (v) 3(r  _ (8.60) 

it follows that 

   

<
- ell 

9/ > = e (qi+1-02-8v(qi» 1  2in- he 
(8.61) 

 

m  i (9141-9')2-617( qi+12"i  )) e h 28 + 0(83/2). 
2in- he 

 

The factor iin the error estimate comes from the fact that for V we have re-
placed qj by (q1+1  + q1)/2 and that q1+1  - q1  = 0(81/2) because of the oscillation factor 
ei(9i+1-9i)212e 

We can thus write 

('of/ 
<R  1e- 

 t-
19 > = lim < 9'1 - n-*oo 

where the approximation of order n is defined by 

(t'-t)H q >(n) (8.62) 

< (t'-t)H q >(n) 

=
i m  \ n f  

dqi • • • dqn_i e k eE7;1 ( "2' ( gili-1 )2 17( )) 

2in- h6) 

1
f d d LI (93li-1   )2 v(qi+p-1 ))  

= 
N (on

qi qn_i e  h := 1 ( 2  (8.63) 

We recognise in this last expression of Eq.(8.63) the formula (8.19). Thus, if the limit 
exists, we have shown that 

< q 1 e-  1 q >= D(q)eh ftt  r(9(1),4(7))cli 
• 

f(e)=f 
q(t)=q 

(8.64) 

This formula is called the Feynman formula. It shows the equivalence between 
an operator expression in terms of the Hamiltonian with a functional expression in 
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terms of the Lagrangian; the advantage of this last expression is the fact that it de-
pends only on the classical Lagrangian and is expressed only in terms of commuting 
variables. 

Note the dependence in h. We will see that in perturbation theory h is a natural 
parameter of expansion. 

Observe also the similarity between the probability amplitude, expressed by (8.64), 
and the partition functions in statistical mechanics. Thus, the probabilistic nature of 
quantum mechanics and that of statistical mechanics, very different in principle, give 
rise to very similar mathematical descriptions. 

It is possible to rewrite the approximate expression of the Green function in a 
form hiding the appearance of the singular normalisation factor N(s). Indeed, with the 
identity 

1
d e e 

(b z, n ) 2  1  
i n;.,2 

27rh
p h

hs  
(8.65) 

We can rewrite (8.62) as 

   

„2 
1 I' • q; -Fa; 

I
hex  I [P•(q.+  -q.)-6(-1-+V( ))] 

< qj+1 e qi > = 
27 h 

dpi eh I I 2m 2 (8.66) 

and thus 

   

<R a h (t' -t)fl  q > = G(qc ; q, t) = < , t'lq, t > = 

 

lim
dP1 dqi dPn-1dqn-1 

= 
n-*+oo f 27r 2n- 

liM
dP1 dqi dPn-1dqn-1 

=  
n-*+oo f 27r 2n- 

,2 

e [Pi (qi+j-qi)-8( vOl+12+qi »] 

e E71[Pi (qi+1-qi)-81-1(Pi' qi+12+qi)]  

f = D (p, q) e ): fi (1,4-11(P,q))ds 
, (8.67) 

the symbol D(p, q) being defined by the last equality. 
Taking into account the definition of the symbol f D(q) in (8.64), we have the 

convolution property 

D(q) exp -S(ti; tf ) 
fY=qi q(ti)=qi 

+00 
= 

co 
clq f D(q) exp -S(ti; t) f 

q(if)=qf  D(q)  exp -S(t; tf ) 
q(0=4 f q(ti)=qi 0)=4  

valid for any time t in the interval [t1, t f ]. 

(8.68) 
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If we are in a case where the action is large with respect to h for the majority of 
the trajectories linking qz  to of between times t1  and t f, all the trajectories except those 
minimising the action, i.e. the classical trajectories, give to G rapidly oscillating factors, 
and finally the main contribution comes from the classical trajectories. If the classical 
trajectory from qi  to of is unique, we thus get, in the limit h —> 0, 

< qfle—i(tf—ti)H 1 qi e iScias. (qi,t;qptf) (8.69) 

where Scias,  is the value of the action on the classical trajectory linking qz  to qf. Thus 
quantum mechanics appears as implying fluctuations around the classical trajectory. 
More precisely, we can assert that the classical action appears as the leading exponent in 
the weight of the trajectories implied in the functional integral. This domination appears 
more clearly in the Euclidean space formalism, a formalism obtained by time complexi-
fication, i.e. by changing t into -it. By this change of variables, the rapidly oscillating 
effect is replaced by an exponential decrease, much easier to analyse. 

8.6 The Harmonic Oscillator 

We will now compare, by a 2-point function calculation, the operator formalism of 
quantisation to the path integral formalism in the case of the harmonic oscillator. This 
case can be treated explicitly because the Hamiltonian is a quadratic function of p and q. 

Let us first recall the operator formalism associated with the one-dimensional 
harmonic oscillator. 

The Lagrangian Lo  and the Hamiltonian Ho  are given by 

M  • 
2 

2 MC°
2 

2 = q 
2 

—q P
2

MC°
2 

2 1-10=—+—q. 
2m 2 

(8.70) 

Let W E L2(R) be a solution of the Schrodinger equation 

atk h2 d2 mco2 
ih—

at 
= How = (-

2m dq22 q 2  ) 111  • (8.71) 

Since Ho does not depend on time, the time dependence of W can 
= e-thtmo with H00 = E0, 0 E L2 (R). 
We find that the possible eigenvalues are En  = hco(n + 1/2), n = 0, 1, 2 • • 

corresponding wave functions On, of unit norm, are given by 

be written as 

• and that the 

1 mw 1/4 

On (q) =  
hir ) e-11q2//n(91/n) (8.72) 



where the I-L,'s are Hermite polynomials given by 

Hn(x) = (-1)n  ex2  ( ± ) n  e— X2  . 
dx 

The generating function of the Hermite polynomials is 

+oo tn e-t2+2tx = E  Hn(x)  
n! 

n=0 
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(8.73) 

(8.74) 

By derivation with respect to t, we get the main properties of these polynomials, in 
particular the orthonormality property 

f Hn (x)H,n(x)e-x2  dx = ,Fr2nn!8,„n  , (8.75) 

from which results the orthonormality of the harmonic oscillator wave functions 

f n(q)0,n (q)dq = 8nm. (8.76) 

hco The energy of the fundamental state is E0  = —2 and its wave function is 00  = 
(Mco)114e—  q 2  

h 
  

Let us set q = V m x. As a function of x, H can be written as 

2  
Ho = h co 

2 axe 2 
+ lx2) . 

Let us introduce the following operators acting on functions of L2(R): 

d
x
) = /mw

%
h d 

a = X + 
d 
— 

V 2h 2no dq 

at  =
d /ma) h d 

x - — 
N/2 dx V 2h q 2mw dq .  

From the preceding expressions, we easily check that 

a00  = 0 

aOn  = N/TIO n-1 

atOn  = '‘,/11.0n+1. 

(8.77) 

(8.78) 

(8.79) 

(8.80) 
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Moreover, we have the commutation relations 

[a, a] = 0 [at, at] = 0 [a, at] = 1. (8.81) 

In the ket formalism, the fundamental state 00 is denoted 10 >, which is a vacuum 
state; the n-quantum state, or n particle state according to the usual terminology, given 
by the wave function On  is denoted In > and given by 

with 

(at)n  
In >= I0> 

,./W. 

1 1 X2 
(PIZ (X) = 71/4 221.  

 Hn(x) e—T = < x I n > . 
,./ 

(8.82) 

The operators a and at are respectively the annihilation and creation operators. The 
Hamiltonian 1/0  and the particle number operator N can be written as 

1 
1/0  = hco (N + 

2  
— 
) 

 
N = at a. (8.83) 

The kets In > are the eigenvectors of Ho  and N: 

1 
Nin >= nin > Hoin >= hw n + 2

— In > . 

They form a complete orthonormal basis of L2(R). This means that any element of 
L2(R) can be expanded over the kets 1 n >. In particular, we have the closure relation 

E 1 n > < 11 1 1' (8.84) 
n 

Remark: H000  = alioo.Too, which means that for an oscillator the energy of the fun-
damental state is different from 0. We call the value Ihw the zero-point energy . If we 
imagine a system made of a very large number of oscillators, the energy of the funda-
mental state will be very large or even infinite if we have an infinite number of oscillators. 
This behaviour is not acceptable because we would like the energy of the ground state 
to be 0, or at least finite. Such a difficulty is solved by modifying the Hamiltonian in 
such a way that its lower eigenvalue is 0, HrenPo = 0. The new Hamiltonian is, for one 
oscillator, II —ren = HO — 1/2hw. The change from 1/0  to H,„ is called a renormalisation. 
For a finite system it is just an additive constant. In the absence of gravitational inter-
actions, which couple to any kind of energy, only energy differences are important, so 
the modification is not physically observable. The important point is that the resulting 
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Hamiltonian is positive definite. As we shall see later, this kind of renormalisation pre-
scription will present some technical difficulties for systems which behave as if they have 
an infinite number of oscillators. 

To link the creator and annihilator formalism to the functional integral formalism, we 
must introduce the notion of chronological product or T-product. The natural frame-
work for this analysis is the interaction representation. We define for two operators of 
this representation (thus, time dependent) 01 (t1) and 02 (t2) 

T(01(ti)02(t2)) = 9(t1  - t2)01(h)02(t2) + 9 (t2 - ti)02(t2)01(t1). (8.85) 

Let us consider the simple case with 0 = 4, the position operator of the harmonic os-
cillator, and consider the vacuum expectation value of the T-product of two q at different 
times; this expectation value is called a propagator, 

< OIT(4(ti)4(t2))10 > . (8.86) 

We first need to compute the value of the operator 4(0 in terms of annihilators and 
creators. 

From q = h + at ) , we get 

ii(t)  = eitkoNcitkom 

it (it)2  •• 
= 9 + —h [14, 9] + 

2!h 
 [Ho, [Ho, 4]] + • • • 

h 
— 
2mw 

(ae-i  + ateitw), (8.87) 

where we used 

[Ho, a] = -hcoa [Ho, = hwat (8.88) 

We thus get 

< 014(ti)4(t2)10 >< 4(h)4(t2) >= 2mco
(8.89) 

Therefore, 

< T Cq(ti)9(t2)) > = 2mw 
kf9 (ti - t2) Ciw("2)  + 9 (t2  - t1) eiw(tl-t2)) 

ih e-iko  (ti-t2) 
= 

27rm 
 f 

k(2) co2 
 + 

is 
 dko 

= -iGF(tl, t2) • (8.90) 
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This is a Green function similar to that shown as being interesting in the study of 
the Klein—Gordon equation. The present case corresponds to the case11  of 0 space-
dimension and 1 time-dimension. It is called the Feynman propagator. 

We will link this expression to the path integrals. 
Up to now, we have defined the path integral by fixing the end points of the path 

over which we perform the integration, a condition which can be read directly on the 
Feynman formula (8.64). Suppose now that we consider an integral corresponding to 
paths going from q at time t to q' at time t'. 

Let us consider, formally, the eigenstates of the position operator 4: 419 >= R19 >.12 

Since the kets 1q > form a basis, we can define path integrals between any states; in 
particular, we can choose the vacuum states as the initial and final states. Using the fact 
that 

1+00 
LCO 

lq >< q10 > dq = 10 >, (8.91) 

We define 

f D(q)ei  ft
t, 4d

i = f dq'dq < OW' > f D(q)ei  ftt, 4th  < q10 >, (8.92) 
q(e)=q1  
q(t)=q 

where < q10 > is the wave function 00 (q) of the fundamental state of the harmonic 
oscillator. With this definition,13  from the Feynman formula it follows that 

f D(q)ei ff 4cir  =< O1e—i(t'—t)fi°11110 >= (8.93) 

where the last equality can be checked using the operator formalism. 
We now define 

f D(q)q(toq(t2)eill 4d, (8.94) 

11  Warning: by dimension we mean the dimension of the space of parameters. Quantum mechanics cor-
responds to a one-parameter theory: the time. The basic objects can be scalar functions q(t) for the quantum 
mechanics on the line or three functions q(t) = (q (t), q2  (t), q3  (t)) for the quantum mechanics in the usual 
three-dimensional space. 

12  In standard quantum mechanics the position operator has a continuous spectrum; therefore, the ei-
genstates are not square integrable functions. All formulae remain formally the same if what orthogonality 
conditions the Kronecker delta is replaced by the Dirac delta function and summations over indices are re-
placed by integrals. If we wish to give a precise meaning to the states I q > we must go through the lattice 
approximation. 

13  We omit to indicate the boundary conditions on the trajectories in the case it is given by the vacuum state. 
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for ti, t2  E [t, t']. Let us suppose that t1  > t2. Using the factorisation property of the 

probability amplitude (8.5), we interpret q(4) as the multiplication by q at time ti  and 

the preceding expression can be written as 

f dqi dq2 1 (f D(q)è
t2  

LOth) q2  

9(0=92 

(8.95) 

if il k- 

q(ti)=gi

r)(q)eifttiLocii)}, 

fq((ii21))::21

D(q)e `2 
Loc

qi 

namely, thanks to the Feynman formula 

dq'dq < 01 e-i(t'-ti )fl°1q > q < qle-i(t1-̀ 2)14 1q/  > q' < 9le-i(t2-t)14 10 > f 

= f dq'dq < Ole-i(t'-t1)114  qe-i(tl -t2)114 e-i(t2-̀ )f10 10 > 

=< Ole-itIN(ti)i(t2)eitHo 10 > 

= Cif (t'-t)  < 01q(tOR(t2)10 > . 

Doing this calculation again but now reversing the time ordering, we get 

• 
f D(q)q(h

f  
)q(t2)el t' "",i 

= (t'- )̀  (9(ti - t2) < 01q(tOR(t2)10 > -H9(t2  - t1) < 01q(t2)q(ti)10 >) 

= (1j-t)  < 01 T(q(ti)q(t2))10 > 

under the condition that t1  and t2  are between t' and t . 
We have therefore rigorously proved 

(8.96) 

(8.97) 

< 01 T(q(ti )q(t2))10 >= lim 
+00,t->-00 

f q(4)q(t2)el f1 4d7 D(q) 

f el  ft LodiD(q) 
(8.98) 

the limit being obvious since as soon as t < t1, t2  < t' the functional integral is 

independent of t and t'. 
In the next chapter, we will show more systematically how the path integral makes it 

possible to reformulate important properties of quantum mechanics. 
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8.7 The Bargmann Representation 

8.7.1 The Coherent States 

In this section, we will introduce another representation of quantum mechanics which 
will be useful in the sequel. 

We define, for any z E C, the coherent state lz > by14  

z > = e
zat O>1 • (8.99) 

The scalar product between two coherent states is given by 

< z11z2 >= el z2 . (8.100) 

To each vector E L2  (R) corresponds an antiholomorphic function 

Ifr(z) =< z I ik Z E C. (8.101) 

This is the so-called Bargmann representation. 
The scalar product between two vectors in the Bargmann representation is given by 

(*I X) = f CZ)X(Z)e-l z12dzdz  
2n-  i 

= f <Viz><zIX>elzl
2 dzdz 

2n-  i 

The last equality is nothing else than 

iz  >< = 

(8.102) 

(8.103) 

an identity that we now prove. 
dalz dxdy 

Writing z = x + iy, we have 
2n-  i 

From (8.82), we get 

z- n (at )n +oo 
z" 

> =   > = E In >, n! nt 
n=0 n=0 

14  The coherent states are introduced here as an alternative description of the quantum mechanical space 
of states. Because of their simple evolution law, they offer a convenient basis for formulating the path integral. 
In Chapter 22 we will come back to this definition and show that the coherent states have remarkable physical 
properties which make it possible to study the classical limit of a quantum mechanical system. 
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from which it follows, using (8.84), that 

lz > < z 1 e-l z12
al 

 = f 
+co +co 
EE  

dz .imzn z_ i 12 dxdy 

2n-  i 
n=0 m=0 N/ n! /1

In > < mle 
i—,.. 7r 

+c,c) +c,c)
f 

ezne
_ izi 2dxdy 

=EE mi In>< Jr 
n=0 m=0 

+co 
=EIn >< =1 (8.104) 

n=0 

since 

f +O°
27r 

e = 1 f + e—p2 
p (n+m+ dp z-mzne-I zI2 dxdy 

lse(')d0 = n!Snm. 
7  0 

Any function f E L2  (R) can be expanded over the orthonormal basis of the harmonic 
oscillator wave functions n  (x) =< x n >, 

where 

We can check that 

00 

f (x) = E fnOn(x), 
n=0 

fn  = f f (x)On  (X). 

+co 
f E L2  (R) < > Evni2 < +00. 

n=0 

(8.105) 

(8.106) 

To each function f E L2  (R), there corresponds a function f in the Bargmann space, 
its Bargmann transform, given by 

_0

7 ff .:, 
f = < z[f > = f B(z, x)f (x)dx = < zlx > < x[f > dx 

< zlx > f (x)dx; (8.107) 
foo 

thus, the kernel of the Bargmann transform is 

B(z, x) = < zlx > . 
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The function f is an entire antiholomorphic function (of type 1) of z. It has an 
expansion 

+co +co co 
1 

f (Z) = E < zln >< nLf >= E on(, )  < n[f >=  —fjn  , 
n=0 n=0 n=0 

where the functions 

z" 
n (i) = < z n > = 

(8.108) 

are the eigenfunctions of the Hamiltonian H0  and of the particle number operator N. 
In the Bargmann representation, the creation and annihilation operators, a and at, are, 

respectively, represented by z and 1. They obviously satisfy the commutation relations 
and are formally adjoint with respect to the scalar product we introduced in Eq. (8.102). 

In fact, 

a z >= z z at  I z > = —dz lz > • 

Thus, 

d 
< zlakfr >=< >= dz < 0  I e a  I > 

or 

d 
(ailr)() = —

dZ'
O• 

Similarly, We find that 

(at ,)(z) = ZAP' (,). 

The complete space of vectors on which at and a act is obtained as the closure of 
linear combinations of monomials with respect to the norm defined by the scalar product 
(8.102). 

We now look for the expression of linear operators on L2  (R) in the Bargmann 
representation. 

Let A be a linear operator on L2 (R). There will be two ways of representing operators 
in the Bargmann space. 

Let us first consider an expression related to the decomposition of the operator 
according to the eigenfunction basis. A can be written as 

A= In > Anm  < MI, 
n,m=0,1,2••• 
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which suggests to define a kernel for A in the Bargmann space 

,F zm 
A(i, z) = E A nm  

N17. '‘,/!. n,m 

The obvious action on an arbitrary function f (i) is given by 

(Af)() = f A(., Of (S)e-11244  
2n-  i 

and the product of two operators is given by 

(8.109) 

(8.110) 

(A1A2)(7z,z) = f Al (Z',  )A2(,z)e-112 c"  
2n-  i 

It is clear from these formulae that z and z have to be considered as two independent 
variables. 

Let us check that formula (8.110) is satisfied by our definition of the kernel of A given 
by formula (8.109). In fact 

(Af)() = < ziAlf >=E < zln >< nIAlm >< mlf > 
n,m 

= E 
n,m 

< zln > Anm  f < m14.  > < c f  > 
e_ 10 2 44 

2n-  i. 

= f E A nm  
n,m 

4',F1  Vn ,l e d d 
f()C15 

72I. 1/7721. 2n-  i 

= f A(,0i-(&)e-10244 
2n-  i ' 

Formula (8.111) follows immediately by iteration. 
We will now choose to privilege the algebraic structure built by the annihilation and 

creation operators. 
Let us expand A as 

A = E Anwatram. (8.112) 
n,m 

Any linear operator on L2(R) can be expanded as a power series in at and a. Since the 
creation and the annihilation operators do not commute, it is usual to write products in 
a and at in a special order, the normal order or normal product (it will be also called Wick 
order later on). The normal ordering is defined by the fact that in any monomial made 
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of creation and annihilation operators, the annihilation operators must be written to the 
right of the creation operators. The normal order of an expression is usually represented 
by writing the expression between two double-dots: 

Normal order of A (at , a) =: A (at , a) : 

In particular 

ant (at)m1 anN (at)mm  := (at)Eiti, ni. (8.113) 

The expression given by formula (8.112) is the normal ordered expansion of A. 

We define the normal kernel of A expressed as in (8.112) to be 

A(z, z) dg E A.()n Zm (8.114) 
n,m 

We claim that the link between the kernel of A(z, z) and its normal kernel AC z) is 
given by 

z) = ezz A(z z). (8.115) 

To prove this identity, it is enough to choose A to be a monomial in at and a: 

A = (at )k  al  . 

Thus, since for this operator Anm  = sn,kam,l  

z) = zkzi. (8.116) 

Let us now compute A(., z) using (8.80): 

Anm  = < n (at )k  al  m > 

= n(n— 1) • • • (n—k + 1)1m(m— 1) • • • (m — 1 + 1)0(n— k) 

.0(m-1) < > 

= n(n— 1) • • • (n— k + 1)1m(m— 1) • • • (m — 1 + 1)0(n— k) 

.0 (m — 1)3 n—k,m-1, (8.117) 

where the 9-functions ensure that it is only when n > k and m > 1 that the kernel is 
different from 0. 
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Therefore, 

z) = E Anm 
121. i721. 

Z(m-1) 
= Zi  E 0 (n - k)0 (m 1)  

.1(n - k)! .1(m - 1)!
311 km 

zPe = kzl E = ,kzle z = A(z,3 z)ezz.  
P! 

2n 2m   

n,m 

n,m 

(8.118) 

Remark that this result shows that, as expected, 

< zIAlz >=A(z3z) (8.119) 

since 

< z i(aly al z  > = zl zfi zl eZz < ZIAIZ > = l < Z Z > = 

= A(z, z)ezz  = z), 

where the last two equalities result from formulae (8.116) and (8.118). 
By linearity, this result proves formulae (8.115) and (8.119) in the general case. 

8.7.2 The Path Integral Formula in the Bargmann Space 
We want to prove in this section a path integral formula similar to the Feynman formula 
(8.64). 

Having in mind the harmonic oscillator model, we will take, for Hamiltonian function 
H, a normal ordered function of at and a. Therefore, 

H (at , a) =: H (at , a) : . 

Note that for the Hamiltonian of the harmonic oscillator normal ordering is just the 
renormalisation we introduced previously, namely : H := ren • 

From the previous discussion, we find, with s = .1‘[ = z and zo = 

(trtigg 1  > < z I e-i = < z I (e-isH) N  I > 
N- 

= I j=i

i=o 

n N-1  clijdzickil2  = 1 

H < zi+1 I Ci 8 II  I Zj > 
27 i 

N-1 
f IT 

N-1 
 clZ AZ j Hz  . 1 2 n  

e i < zi+1  I i -isH I zi  > 
27 i j=1 i=o 

N-1 tif 
 11

clZ:idzi clzil Nni  ez- izi-jeR(z'i+bz0 . 
27 i 

j=i i=o 
(8.120) 
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We can rewrite this last expression in a way suitable to take the limit when —> 0: 

N-1 
Tr cl iclzi _ 2 N-1 

e—>0 
lim 1 1 1 e  I 2.1 I 11 ek+lZi — 167-1(k+1, Zi) 

i=0 

= iim !hi  Li_,L=Lz• 
e
i pis, +z- zisi_i) el isii: 

1
1

[(k+i-k)zi-Fk(zi-i-zi)]  
N-1 

f e 1=0  27 i 6—> 0 
j=1 

def DzDz  e l ((tig-Fiz(tf»+iftti f ds[ 1 a(s)z(s)—(s)1(s))-1-((Z'(s),z(s))] 
(t.j)=.i' 

z(t1)=S  

(8.121) 

where the last integral is defined by the limit. In this definition of the path integral, .5(s) 
and z(s) are independent variables, .5(s) is not the complex conjugate of z(s), and the 
integral is defined as the sum over all the complex trajectories, 

S E [ti, tf] —> i(S) 

S E [ti, tf] —> z(s) 

with the boundary conditions .5(tf ) = .5 and z(ti ) = 
Remark that in the final formula, the term 

f tf 1 
2i 

(ks)z(s) —z(s)z(s)) — 1-1((s), z(s))ds (8.122) 
ti   

is nothing else than the action in terms of the complex coordinates. 
To conclude this section we will extend this analysis to some time-dependent Hamilto-

nians. More specifically, we will compute the functional integral for the harmonic 
oscillator in interaction with a time-dependent external source since, being Gaussian, 
it can be exactly solved. 

A good approximation of the functional integral will be given, as explained in section 
8.5, by the value of the integrand at the trajectories for which the action is stationary 
(there is an analogous oscillatory argument if we reintroduce the h dependence). 

Let us consider, following (8.122), a general action 

`.1 1 . 

c;  [ 2i
(.5(s)z(s) — z(s)z(s)) — 1-1(Z'(s), z(s); s)]ds. (8.123) 

f  

This action is extremal if the change of the action 

t./ 1 . 
3(J [—.(i(s)z(s) —z(s)z(s)) — (.•(s), z(s); s)] ds) = 0 

21 

under an infinitesimal change .5(s) —> .5(s) + Si (s) and z(s) —> z(s) + Sz(s) with the given 
boundary conditions, i.e. 8.5(tf ) = Sz(ti) = 0. This is the case if the paths i(s) and z(s) 
satisfy the equations for stationarity 



z(s) = i 
87-1 

az(s) 

z(s) = . 
az(s) 

(8.124) 
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If we now restrict our attention to the harmonic oscillator Hamiltonian with external 
time-dependent sources H = wa* a + (t)a + a* (t), these equations are now 

z(s) = ic.oi (s) + is (s) 

z(s) = —ic.oz (s) — is (s) (8.125) 

with the boundary conditions i(tf ) = i and z(ti) = They have unique solutions given 
by 

t  (t) = • w(t  f — ietwt f 
t 
 f  e-iws& (s)ds 

z(t) = cia(t-ti) — ie eiws (s)ds. 
ti 

(8.126) 

Expressing the exponent of the functional integral in (8.121) in terms of these 
solutions, we find 

ti 
f
t  

4 e-iw(tf-ti)  —i.• Cza ( t f-s)  4 (s)ds 
i  

c f.   ti $ 

—4"J e'w(s-ti)  4 (s)ds — f dsf Clw(s-u)  4' (s) (u)du 
. _ 

tf  = 4 e-iw(tf f e-iw(t f-s)  (s)ds — f
cf. 
 e-ja*-ti)& (s)ds 

ti ti  

1  f e (s) (u)duds . 
2 ti 

tf 
 ti 

(8.127) 

The value of the functional integral is in fact equal to the exponential of the above ex-
pression. This is a general feature that the path integral of the exponential of a quadratic 
form is given, up to some normalisation factor, by the exponential of this quadratic form 
computed on the stationary trajectories. 

Let us give a proof of this assertion in the discrete case. 
Let Q be the quadratic form 

z) = E z,iAijz;  Eakzk 44)• 

ti 
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Its critical or stationary points T4 and u are the solutions of the equations 

a _ a 
—az,i

Q(z,z) = —
azi

Q(,z) = 0 Vi. 

We find that 

ut  = _ (A-1)A (8.128) 

(8.129) 

and thus 

Q(it, u) = 261-1  AA-1  - 24-1  - 24-1  = 

= -E (8.130) 

We can prove that 

provided A + At > 0. 

N _ 

JcN 

dzidzi 
 = (detA)-l e-Q(Fi'u) 

i  
1=1 

(8.131) 

8.8 Problems 

Problem 8.1 The eikonal approximation of the generalised Klein-Gordon equa-
tion. 

Prove that Eq. (8.1) in the eikonal approximation describes the propagation 
according to geometrical optics, namely along rays perpendicular to wave fronts. 

Problem 8.2 Classical mechanics as the eikonal limit of Schrodinger's equation. 
Prove that for the Schrodinger equation the eikonal approximation is equivalent to 
the h —> 0 classical limit. 

Problem 8.3 Completeness of the set of eigenfunctions of the harmonic oscillator. 
Let f E L2  (R). Prove that if Vn E Z, (f10 n) = 0, then f 0. Deduce from this result 
that En  In > < ni = 1. 

Hint: Use the generating function of Hermite polynomials to show that the 
Fourier transform off is identically 0. 

Problem 8.4 Orthonormality of the Hermite polynomials. 
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Prove by using the generating function of Hermite polynomials that 

f Hn(x)Hm(x)dx = ../Tr (
dt -n  - 
d 

) ( 
d 

)
m e 

2„ 
I 

- s' ' t=s=° 

Problem 8.5 Bargmann transforms 
Prove that the Bargmann transform kernel B(z, x) is explicitly given by 

1 e- ix.- B(z, x) = 2 -v 2 

7 4 

Hint: Compute < zix >= En  < zin >< nix >. 
Give the explicit form of the inverse transform. 

Problem 8.6 Show that 

10 >< 01 =: cata. 

Hint: Show that al0 >< 01 = 10 >< Oiat = 0. 
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Functional Integrals and Quantum 
Mechanics: Formal Developments 

9.1 T-Products 

9.1.1 General Definition 

In the preceding chapter we introduced the notion of chronological product or T -product 
of two operators q(t) in order to establish the link between the creator-annihilator form-
alism and the functional integral. This notion can be generalised to any time-dependent 
operators and to an arbitrary number of them. For two time-dependent operators 01  (t1 ) 
and 02(t2), we defined 

T(01 (002(t2)) = 6(t1 — t2)01 (t1)02(t2) + 0(t2 — t1)02(t2)01(t1). (9.1) 

More generally, we define the T-product of n operators 01 (0, 02(t2), • • • , 0 n(tn), at 
distinct times, by 

T (0 1  (t1), 02 (t2)) C n(tn)) = Oa (1)(ta (1))0  (2)(tcr (2)) " • Oa (n)(ta(n)), (9.2) 

where a is a permutation of (1, 2, • • • , n) such that the times to.(1), j = 1, • • • , n, are 
ordered: 

ta  (1) > • " > ta(n). (9.3) 

It results obviously from this formula that the T-product is a symmetric function of 
the operators, i.e. such that for any permutation a 

T (0 (ti) 02 (t2)3 " ) 0  n(tn)) = (0, (i)(t, (1) )0 (2) (Io. (2) ) • • • 0_ (n)(t, (n))) . 

These products have been defined only for distinct times. It is possible, as in the 
case of the T-product of two operators, to rewrite the general definition by introducing 
Heaviside (or step) functions: 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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T(01  (t1), 02(t2), • • • , On(tn)) (9.4) 

= E 9 (tam  _ ta(2)  • • • (to  (n_i) — (n)) X 0 a (1)(t a (1))0  a (2) (ta (2)) " 0  a (n)(t a (n)) • 

The definition of Eq. (9.4) is the source of some of the infinite quantities which 
appear in field theories. T-products will have to be handled with care when applied 
to quantum fields because then we will have the difficulties which may appear when 
taking products of distributions: the Heaviside functions and quantum fields which 
are distribution-valued operators. In all the physically interesting cases, either these 
products of distributions exist and will be defined by continuity' from the values at 
non-coinciding times or there exists a difficulty at coinciding times, the expressions 
being ill-defined or infinite when some of the arguments coincide. Thus, T-products 
are a priori defined up to local terms, i.e. delta functions or derivatives of delta func-
tions whose arguments are the difference of coordinates of pairs of space—time points: 
finding these local terms is typically what is called a renormalisation problem. This 
problem will be solved by introducing more global physical constraints which complete 
the definition of T-products and determine without ambiguity the nature of the local 
terms. 

However, in this chapter we will limit ourselves to a formal definition where the time 
ordering is given explicitly by products of Heaviside 0 functions. Thus, for example, the 
T-product of three operators will be written as 

T(01  (ti  )02  (t2)03  (t3)) = 6 (t1 — t2)0 (t2 — t3)01 (t1)02(t2)03(t3) 
+ (9(t1 — t3)9(t3 — t2)01 (t1)03(t3)02(t2) + 9(t2 — t1)9(t1 — t3)02(t2)01 (t1)03(t3) 
+ (t2  — t3)9(t3  — )02  (t2)03  (t3)0 (t,)  + 9(t3  — )9 (ti  — t2)03  (t3)0 (ti ) 02  (t2) 

9(t3  — t2)9(t2 — t1)03(t3)02(t2)01(t1). (9.5) 

The vacuum expectation value of the T-product of n operators is usually called an n-
point function. 

9.1.2 Application to the Harmonic Oscillator 

We choose to apply these ideas to the one-dimensional harmonic oscillator defined in 
Chapter 8. Let us compute the vacuum expectation value of the T-product of an arbit-
rary number of operators q(t) using the formalism of creation and annihilation operators. 
Let us start with three q(t)'s. Suppose t1  > t2  > t3; then 

< 01 T(q(ti  )q(t2)q(t3))10 > 
= < 01q(t1)9(t2)9(t3)10  > 

1  In the case of quantum mechanics, where the space dimension is 0, we should have delta functions .5(t1—t1), 
but since the theory is very regular, there is no problem in defining T-products by the formal multiplication 
by B functions. 
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= )3/2  < 01(ae-i" + atel")(aCit2w + ateit2w)(ae-it3w + ate1t3w)10 > 
2mw 

= (—A  )3/2e-itlweit3w < 11(ae-it2w + ateit2w)11 >= 0. 
2mw 

In fact, from the orthogonality properties of n-quanta states 

< llall >=< llatIl >= 0, (9.7) 

from which follows that the vacuum expectation value (v.e.v.) of the T-product of three 
q(t)'s vanishes identically. This result can be generalised to an arbitrary odd number n of 
q(t)'s. In fact, expanding the product of q(t) in terms of creator and annihilator operators, 
we get a sum of homogeneous monomials of a and at. Using the commutation relations, 
let these monomials act on the ket 10 >; we then get a ket proportional to a state 1m >, 
m > 0, or 0. The only possibility for the scalar product with < 01 to be different from 
0 is that m = 0. This is only possible if the initial monomial had as many creation as 
annihilation operators, i.e. an even number of operators. 

Let us now treat the problem of the computation of the v.e.v. of the T-product of four 
operators: 

< 01 T (q(ti)q(t2)q(t3)q(t4))10 > . (9.8) 

There exist 4! possible time orderings and each corresponding term written in terms 
of creation and annihilation operators generates 16 monomials in a and at. Thus, if 
ti > t2  > t3  > t4 

2mw 

= )2e-iw(ti-t4) e-iw(t2-t3) (< (t3- 2̀)  < 1 latal 1 >) 
2mw

laat11 > +e-lw 

= 2( ),,, e-iw(ti-t4)e-iw(t2-t3) = ( A ),,, e-iw(ti-t4)e-iw(t3-t2) .  
2mw 2mw 

We note that the result is the value, for the given time ordering, of 

< 01T(q(ti)q(t2))10 >< 01 T(q(t3)9(4))10 > 

+ < 01 T(q(ti)9(t3))10 >< 01T(q(t2)q(t4))10 > 

+ < 01T(q(ti)9(4))10 >< 01T(q(t2)q(t3))10 > . 

(9.6) 

< 01 T (q(ti)q(t2)q(t3)q(t4))10 > 

= < 01q(ti)q(t2)q(t3)q(t4)10 > 

= Ciw(t4-̀ ' )12  < q(t2)q(t3)eit4111h  q10 > 
A 

Cia)(t4-t1)/2ei3w(t4- 1̀) /2  < 1 1 q(1.2)9(1.3)11 > 

(9.9) 
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Repeating the analysis for all possible time orderings, we have thus proved that 

01T(q(ti)q(t2)q(t3)q(t4))10 > 

= < 01T(q(ti)q(t2))10 >< 01T(q(t3)9(4))10 

+ < 01T(q(ti)q(t3))10 >< 01T(q(t2)9(4))10 > 

+ < 01T(q(ti)q(t4))10 >< 01T(q(t2)9(t3))10 > . 

More generally, seeing how tedious the proof would be, we have 

< OIT (q(ti)q(t2) • • • q(t2n))10 > 

= E < oi  T(q(Mq(42 ))10 > • • • < 01T(q(42n_1 )q(ti2n ))10 > 
pairs 

(9.10) 

(9.11) 

In this formula, the sum is carried out over the (2n — 1)(2n — 3) • • • = ff2 /11  distinct 
n! 2 

pairs of variables (ti , O. The preceding results, i.e. the formula (9.11) for an even num-
ber of q(t) and the vanishing for an odd number, express the fact that the operator q(t) 
is Gaussian. This is the consequence of the fact that its dynamics is described by a Lag-
rangian (or Hamiltonian) quadratic in q and :7 (or p). A characteristic of this Gaussian 
(or quadratic) nature is the result that the v.e.v. of the T-product of an arbitrary number 
of these operators can be solely expressed as a function of the v.e.v.'s of the T-products 
of two operators. 

Formula (8.98) of Chapter 8 is easily generalised 

< OI T  (q(ti)q(t2) • • • q(t2n))10  >= lim
f 9(0".  q(tn)ei  fit Lod, D (q)  

(9.12) 
+00,e,-00 f ei fit LO  dr D (q) 

The right-hand side is indeed independent of t and t' as soon as (t1 , • • • , tn) E [t, t']. 
Equation (9.12) expresses the fact that < 01 T (q(ti)q(t2) • • • q(t2n))10 > are the mo-

ments of the Gaussian measure2  

el  Li LodiD(q) 
dvo(q) =  

f el  Li' LodiD(q) 
(9.13) 

As a measure, this means that dvo (q) is a Gaussian measure of mean zero and of 
covariance (or propagator) 

< 01 T(q(ti)q(t2))10 >= — t2)• (9.14) 

The fact that the mean is 0, i.e. f q(t)dvo(q) = 0, indicates that it is even; therefore, 
all its odd moments are 0. This last property can be directly seen in the definition of 

2  It is a complex measure. 



and 

< OIT (q(ti)q(t2) • • • 9(tn))10  >= i-n  6  Zo[] • o,  
8.1.(t1) 8:1(tn) 

(9.16) 
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path integrals. Indeed, since the Lagrangian is even in q, we can directly see on the finite 
approximations that they are invariant by the change, for all s, of q(s) into -q(s). 

It is useful, whenever possible, to associate with a measure a generating func-
tional from which the moments with respect to this measure can be obtained through 
functional derivatives. We thus define 

zo [7]  = ei j20°0° j(s)q(s)dsdvo  (q) (9.15) 

or equivalently 

Z 0 [11 =< 01 T (ei j(s)q(s)ds)io  > (9.17) 

The fact that the odd moments vanish and that the other ones can be expressed in 
terms of Gp allows us to guess the possible form of Zo[j]: 

Zo 
[i]  = ev2(i,GFD (9.18) 

with 

+co +00 
(j, GFj) = f f (u) G F v).j (v)dudv. 

-00 -00 
(9.19) 

We can understand intuitively this formula by going back to the definition of the 
measure dvo(q). Indeed, 

d2  

J 
dt = f q(T){— dr 2 0)21 q(T) (AT  = /

2
; f 4LT) )2 co2

9 
er )2) 

dr 
 

f 
l 4(ko)I

2 
 (ko

2 
 - 

2

2 )dko = - (q, G-19), h  
(9.20) 

where it is expected that the functions q(r) have zero boundary values (or vanish at 
infinity) and where we have introduced the Fourier transform q of q. The quadratic 
form G-1  is formally the Fourier transform G-1(k0) = z (k2o  - w2). Thus, by the change 
of variables, q(r) - G * j(T) —> q(r), 

f e (q' G-l q)±i(qi) D(q) = e 1 (i'Gi) f e (9' G-19) D(q). (9.21) 
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We see that this expression is practically the one obtained by combining (9.15) and 
(9.18): 

eiff:o  /.0  dr +i ff:e  q(r)j(r)cliD(q)  = Z

o 

 f e f2:0 LO  di D (q) (9.22) 

the only difference coming from the fact that, in the formula we are looking for, G has 
been replaced by GF. We can explain this replacement by noting that in our intuitive 
vision, we did not care about convergence problems. But the replacement of G by GF  is 
equivalent to replace the Fourier transform G-1  by G-F1  = A(ko2-0,2+is). The small ima-
ginary part has the effect of replacing i f Lo by i f Lo — s f q2  and hence the convergence 
becoming exponential because of this last term. We intuitively note that the definition 
we choose for Green functions can be understood as to add what is necessary to make 
the functional integrals converge. 

A better justification of this choice will be given later on. A similar analysis can be also 
made for expectations of T-products on kets I q, t >, i.e. for path integrals with boundary 
conditions q(t) = q and q(t') = q'. 

In the next section, we will show that the S-matrix, an essential object for calculating 
transition probabilities, can be naturally expressed in terms of T-products. 

9.2 S-Matrix and T-Products 

A scattering process can be described by an operator, S, acting in the space of the phys-
ical states and transforming an initial state vector into a final state vector. Ideally, the 
initial state is given at time t = —oo and the final state at time t = +oo. The diffusion 
amplitude, or scattering amplitude, is the S-matrix element between these two states. 

Let us now define the S-matrix. 
Let I W (t) > be a state in the interaction representation and let U(t, to) be the Green 

function describing the evolution of an initial state I W (to) > towards I W (t) > : 

(t) >= (t, to) (to) > • 

It is the solution of the equation 

d 
dt

U(t, to) = Hint(t)U (t to) (9.23) 

with initial condition U(to, to) = 1. We have introduced (Hint)/ = Hint (/) with the 
definition 

Hint  (t) = eidio Hint e—itHo (9.24) 

a formula in which Hint  represents the interaction operator in the Schrodinger represent-
ation, i.e. in terms of time-independent q. If the Hamiltonian does not explicitly depend 
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on time, Hint  satisfies the equation 

— i—dt Hint (t) = [Ho, Hint (t)] • 

The conjugate transposed of U obeys 

— i—
d

Ut (t, to) = Ut(t, to) /int(t). 
dt 

Combining Eqs. (9.23) and (9.26), we get 

d 
— i—

dt [Ut(t, to) U(t, to)] = 0 

and therefore 

(9.25) 

(9.26) 

(9.27) 

Ut(t, to)U(t, to) = 1, (9.28) 

an equation which expresses the fact that U(t, to) is unitary. 
We call S-matrix the limit 

S = lim U(t, to). 
-'-o° 

(9.29) 

We can understand this expression in a more operatorial form. Indeed, let us 
introduce V(t, to) = e—itHo t U(t, to). From (9.23), 

eiHot (—Ho  v + iat  v) = Hint  U(t, to) = eill°tHint  V = t  (H — Ho) V; (9.30) 

thus, 

i—
dt 

V(t, to) = HV (t, to) (9.31) 

with initial condition V(to, to) = e—iHo to. This equation has for solution 

V (t, to) = e-iHteillto e-iHo to ; (9.32) 

thus, 

U t t = eiHo  te-iH(t-to) e-iHo  to  (, o) (9.33) 

We will now give the expression of U(t, to) in terms of T-products. To do this, let us 
integrate Eq. (9.23) 
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U(t, to) = 1 -i dti Hint(ti ) U(ti to). 
to 

By an indefinite iteration, we obtain 

t f 
U(t, to) = — f dtillint(t1) + (—i)2 f dt1 dtglint(t1glint(t2) " 

to to to 
to-1 

+ (—O n  f dt1 • • • f dtnHint (ti) • • • Hint (tn) + • • • • 
to to 

(9.34) 

(9.35) 

Each term can be rewritten in another way. Let us consider, for example, the third 
one. It can be rewritten as 

J
dti dt2Hint (ti )Hint (t2) 

tt  

fto

t

to 
t f t2 

dt2 citi Hint (t2)Hint (ti ) 
fto to 

t

J 

t2 
= (f t  dt1  f dt2Hint  (ti )Hint (t2) + f dt2 dtt Hint (t2)Hint (ti )) 2 to to to to 

= 1  (f tt  dt1 dt2 (0(t1 - t2)Hint (ti )Hint(t2) + 6(t2 - )Hint (t2)Hint (t1 ))) 2 to to 

I f t  dti  f dt2T(Hint(ti)Hint (t2)). 
2! to to 

(9.36) 

This expression in terms of T-products can be generalised to all orders and we get 

±cx) (

n1  n

t t 
U(t, t0) = Ef dti  f dt2•••f dtn T(Hint(ti )Hint (t2) • • • Hint (tn))• 

• to to to  
(9.37) 

This formula is often rewritten in a more symbolic form 

U(t, to) = T[exp (-i f dsHint (s))]. (9.38) 
to  

This result shows that the S-matrix can be formally written as 

+co 
S = lim T [exp (-i f dsHint  (s))1 = T[(exp(-if dsHint(s))1• t'-> +oo,e->-oo -oo 

Let us now give three examples. 

(9.39) 
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9.2.1 Three Examples 

We first give a direct application of formula (9.39). 
Let us consider the S-matrix element between two states, one of momentum p and 

the other of momentum p' (we deal with a one-dimensional case; the extension to three 
dimensions is straightforward): 

< >= lim < eillot'e-iH(t'-t) e-iliot p > (9.40) 
e,+00,t,-00 

Suppose H to be the Hamiltonian of a particle of mass m in the potential V: H = 
2 

P  2m + V (q). Introducing the kets of the position representation 

< >= lim ei(EP't-
Ept) dq'dq < 4 e-̀11 -t)  q > (9.41) 

q(e)-q' 
q(t)=q 

and using the Feynman formula, we obtain 

< P' I sIP > (9.42) 

lim el  (EP'"-
Ep t) dq'dq ei ft? LAID (q)

, 

 

t').  +004 -* o f q(e)=V 
q(t)=q 

where L is the associated Lagrangian. 
The second example is an application of Section 8.7. 
In this section, we have given a closed expression for the matrix element of the op-

erator e-"1/  in the Bargmann space. In this case, the Hamiltonian was quadratic and 
more precisely it represented a harmonic oscillator with external sources. We will show 
now how, from this expression, we get a simple form for the S-matrix element in the 
Bargmann space. 

The inputs are 

1/0  = coat a 

H = Ho +&' (t)a + 4' (t). 

With the notations of Section 8.7, we first compute < z I CitHo I >. It is given by 
the exponential of formula (8.127) with = = 0, i.e. 

Using the fact that 

< z I Citil°  I >= e4ei't 

f (Z) = etif(T)e-lui2cliidu 
2iri 

(9.43) 

(9.44) 
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which is nothing else than 

<zIf>=f<ziu><ulf>e 
Hui2diidu 

27ti 

we have that for any operator A 

< z 1 eit2 H0  Acititio I > 

= < z I eit211° I u > < u f lAlv><vie-it'll° 
27 i 27 i 

I > e-lui2_102 dildu &Ay 

= 
cluiz_ivi2ditdu &Ay 

ff <ulAlv> ezue..t2 
271 2ni 

= A (eiwt2, (9.45) 

We are now ready to compute the matrix element of the evolution operator 

< z I  U (t, to) I >=< z I eitik e- i(t-to)H e-itollo > 

=< ze-iwt I  e-i( -̀̀ °)Ii > 

= e
- fto o  t  eiws4' (s)ds - ft`  e-iws& (s)ds - (u)4' (s)duds, ftto fit o 

 

from which results a close expression for the S-matrix element in the Bargmann space 
in the case of a harmonic oscillator with external sources: 

< z I S >= = slim < z U(t, to) > (9.47) 
to —,-00 

= e Ef_00±°°eiws (s)ds - f_00  e-iws& (s)ds 

- ff (u) (s)duds. 

The third example is a direct computation of the S-matrix in the case of a free 
quantum mechanical particle in an external field j. If 

H = Ho + Hint (9.48) 

where Hint  = - f +°° j(s)q(s)ds, or equivalently 

L = Lo + Lint (9.49) 

with 

Lint = —Hint (9.50) 

then, according to formula (9.39), we have 

S = T(el j2-0°,3° j(s)q(s)ds). (9.51) 

(9.46) 
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9.3 Elements of Perturbation Theory 

The goal of this section is to show, using the evolution operator U, how the expecta-
tion values of quantities whose evolution is given by the complete Hamiltonian H, can 
be expressed with the help of quantities evolving in the free dynamics defined by the 
Hamiltonian Ho. The presentation is very general. Even if the notation is that of quantum 
mechanics, the final results can be transposed to field theories, by replacing q(t) by 0(x). 

Let us compute the vacuum-to-vacuum transition. We need first of all to calculate 
< 01 U(t', t)10 >. From the value of U given by (9.33), we get 

< 01 U(t', 010 > = < 01 eit'llo ci(e-e)icidio  10 >= ei(11-0E0  < Ole 0  > 

= ei(e-t)Eo f Dwell; t' I = el(t-t)Eo f D • wei f t' • t  Lint el f, Lo • • , t' 

f 130(q)ei f te  Lint ei Lo 

f D (q) el  fte  

where E0  is the energy of the ground state of Ho. 
Let us now, for t1  > t2, compute the quantity 

AV, t) =< 01 UV, ti)q(ti)U(ti, t2)q(t2)U(t2, 010 >, (9.53) 

where the q(t)'s are given in the interaction representation and 10 > is the ground state 
of the Hamiltonian Ho. Replacing the U's with their values (9.33), we can rewrite it as a 
functional integral 

A (t' , t) = eiV-̀)E0  < 01C1(`' -ti)H qe-i(ti-t2)H qe-i(t2-t)H 10 > 

= ei(i" E0  f dq' dq < -4)1  lq > q' 

x < > q < qle-i(t2-t) I  10 > 

= E0  f )(q)q(ti )q(t2)ei  ft? L  

f D(q)q(ti)q(t2)e` ftt  Lint f t  
= 

f D(q)e' Lo 

= < OIT[q(t1)g(t2)eifte lint] 10 > (9.54) 

since 

el(t'-̀ )E° = f D (q) el  fr (9.55) 

Using the group property of the evolution operator 

U(ti  t2)U(t2, t3) = U(t1 t3), (9.56) 

=< OIT[el il Lint]10 >, (9.52) 
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which results from formula (9.33), we can re-express A(t' , t) in another way3  

A(t' , t) = < 01U (t' , 0) U (0 , ti)q(ti)U (ti , 0)U (0, t2)q(t2)U (t2, 0)U (0, 010 > 

= < 01U (t/  , 0)qH (ti)qH  (t2)U (0, 010 > (9.57) 

using that 

U(0, t)q(t)U (t, 0) = eit1 1 qe-itH = 
qH

(t) (9.58) 

is the operator q(t) in the Heisenberg representation. We now consider the limits when 
t' —> +oo and t —> -oo of the various expressions of A. For this purpose, we introduce 
the ground state IQ >, of the complete Hamiltonian H. We suppose it is unique and 
normalised to 1. Let PQ  = IS? > < S21 be the projector on that state. Let us suppose that 
< S2I0 > 0. We assert that 

U(0, 010 > =  Po 10 > 
fim  

t,-00 < 01U(0, 010 > < 01/3010 > 
(9.59) 

It is beyond the scope of this book to give a rigorous proof of this statement, so we 
will present only a heuristic argument. 

We want to estimate the expression U(0, 010 > at the limit when t goes to -oo. We 
write 

eiHt 10 >= E edit lq >< q10 >, (9.60) 
q 

where the states Iq > are the eigenstates of the Hamiltonian H with eigenvalues Eq: 
H1 q > = Eq lq > . We assume that H has a unique ground state IQ > with eigenvalue ED, 
which is separated by a finite amount from the rest of the spectrum of H. So Eq. (9.60) 
can be written as 

eiHt 1 0 > = eigg t 1 s2 > < s2 10 > + E ' eiHt 1
,4
, > < gio >, (9.61) 

q 

where by E' we denote the sum over all other states of H except the state IQ >. Since 
EQ  is the lowest eigenvalue of H, we can isolate it by taking the limit t —> -oo with a 
small positive imaginary part. A justification of this procedure will be given in the next 
chapter. The contribution of all other states will go to 0 faster and we shall obtain the 
dominant contribution 

U(0, 01 0 > = elEg t /3010 > + • • • , (9.62) 

3  In the case of a non-Hermitian operator like U, the expression of the expectation 
< 0 'UK/ > must be understood as the scalar product between 10 > and 'DP >, that is, to say U is 
always understood as acting on its right. 



f D(q)q(t1)9(t2)elitt Linteif_: to 
< S21qx(tO9H(t2)1S2 >= 

f D(q)el fr Lint ei 
(9.67) 
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where the dots stand for terms which are sub-dominant when t —> —oo. Taking the 
matrix element < 01U(0, t)10 >, we can eliminate the exponential factor elE° t  and we 
obtain the result we announced in (9.59). 

We can take the limits in formulae (9.54) and (9.57). Starting from (9.57), we obtain 

A(+oo,—oo) (9.63) 

= < Q1U(0, ti)q(ti) U (t , 0) U (0 , t2)q(t2) U (t2, 0)10 > 
1 < 01U(0, —oo)10 > 12  

We can also look at 

< 01UV, 010 >=< 01U(t',O)U(0, 010 > (9.64) 

in the same limits and find that 

I < u(0,-00)10 > 1 2  
< 01U(+00,-00)10 >= 

1 < S210 > 12  
(9.65) 

Finally, thanks to (9.64) we can write that 

A(+oo,—oo) S219H(ti)9H(t2)1S2  >< 01U(+oo,—oo)10 > . (9.66) 

Comparing this expression to (9.54) and using (9.52) in the infinite limit, we finally 
show for t1  > t2  that 

• 
1 < s210 > 12  

and thus more generally that 

f D(q)q(ti)q(t2)ei  f-+: Lintel .1_+: 
< S2IT[Rx(ti)qx(t2)11S2 >= 

Lo 

f D(q)ei Lint eif2 Lo 
(9.68) 

Introducing the measure dvo  (q) that was defined in (9.13), with the index 0 to indicate 
that it comes from the free Lagrangian, we can rewrite Eq. (9.68) as 

f dvo(q)q(t1 )q(t2)eif-: Lint 

f dVo  (q)ei f-+: Lint 

= f q(ti )q(t2)dv(q) (9.69) 

with the measure 

dvo(q)ei-. Lint 
dv (q) =  

f dvo(q)ei f-: Lint 

This identity can be extended to an arbitrary number of q's. 

(9.70) 

< 01 T[qH(ti )qH(t2)11s2 > = 
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Formula (9.69) is very important because it gives a recipe for calculating the physical 
vacuum expectation values of operators as a function of quantities measured with respect 
to the free measure (that is to say, the measure generated by the quadratic part of the 
Lagrangian). 

Let us now consider an important application of the functional integral, namely the 
establishment of perturbation theory. In practice, most of the potentials taking place 
in physically relevant Lagrangians are such that the functional integral expressing the 
Green functions has no analytical expression. On the other hand, for the free theory, 
the calculation reduces to Gaussian integrals which can be explicitly computed. To be 
more explicit, we will suppose that the Hamiltonian splits into two parts: 1/0, at most 
quadratic, and Hint, small with respect to Ho. For example, Hint  can be a function of the 
`fields' times a dimensionless quantity, negligible with respect to 1 (we may think of the 
dimensionless constant a = 1/137 of electrodynamics). To the Hamiltonian corresponds 
a Lagrangian L that splits into two parts: Lo, generating in the functional formalism a 
Gaussian measure, and Lint  = —Hint  corresponding to the interaction. Since we have 
assumed that the interaction is small, we can expand the exponential in formula (9.69) 
in a power series. Let us add, for the sake of simplicity, in front of the interaction a 
parameter X that will be set equal to 1 at the end of the calculation. It will help us to keep 
track of the order of the various terms in the expansion. Writing 

r+oo E (iX)n 
e J-00 = f 

+00 n 

Lint) 
0 

we find formally (the question of convergence is not taken into consideration) 

s2I T[qH(ti)qH(t2) • • • qH(tn)11s2 > 

zr°  f dvocog(tog(t2)  • • • q(tn) -oo  Lint)P  

o f dvo(q)ff (f_+: 1-int) p  

(9.71) 

(9.72) 

The right-hand side is the ratio of two series in X. We can perform the quotient of the 
two series if the constant term in the denominator is different from 0 (it is the case here 
since the first term of the denominator is exactly equal to 1) and we find a formal series 
in X: 

< S2 IT[qH(ti )9H(t2) • • • RH(tn)] IQ > (9.73) 
= +co — xp 

< S2 I T[qH(tORH(t2) • • • RH(tn)] IQ >(P)
o   P! 

Remark that as in the free case, we 

/

can introduce a generating functional 

Z[i] = f-+:1(s)q(s)dsdv(q) (9.74) 
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and 

8 
< 01 71911(4)9H (t2) • • • Di (tn)liS2 > =

( 
Z[1.11 i-o' 

4) 6.i(tn) 
(9.75) 

The expression < S21 T[qH(ti)qH (t2) • • • RH (tn)11S2  >(1))  is called the pth order of the 
perturbation series. Since the coefficients of the numerator and denominator series in 
(9.72) are the expectation values of T-products in a vacuum of the free Hamiltonian, 
i.e. explicitly computable Gaussian expectation values, the pth order of perturbation is 
expressed in terms of such quantities. 

The expansion in Feynman diagrams is nothing other than the development of all 
these quantities in terms of 2-point functions. Of course, as it was said at the beginning 
of this chapter, some of the expressions which appear in the expansion can be, because 
of the T-products, ill-defined. Some kind of regularisation process is therefore necessary 
in order to have a better understanding of the nature of these singularities. This will be 
made more transparent after we perform a complex rotation of the time, as we will see 
in the next chapter. 

Before concluding this section, we want to introduce the notion of a truncated va-
cuum expectation value (t.v.e.v.). It is an operation which has the effect, when taking 
the vacuum expectation value of a product of qH(t), of eliminating all the factorisations 
due to the insertion of a vacuum state between any two qH(t)'s. We will also see later 
on that when expressing the vacuum expectation values as diagrams, then the t.v.e.v.s 
correspond to connected diagrams. 

More precisely, consider n observables q H  (ti) • qH(tn). For any subset 

I = {4,  63 .) ik}, 21< 6 < " • < ik 

of (1, 2, n), we define 

DKr) = RH(tii  )qH(42 ) • • • RH(tik ) (9.76) 

and the t.v.e.v. as 

S21qHMIS2  >T=< S21qH(t1)qH(t2) • • • qH(tn)IS2 >T 

III m 
= E -1)!fl < s21qH(L,)Is2 

m=1 v=1 

(9.77) 

where the subsets /„ v = 1, • • • , m, have no intersection with each other, their union is I, 
and the second summation is over all such partitions. III is the number of elements in I. 
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For example: 

< S21qH(t)IS2 >T=< S21qH(01S2 > 

< S21qH(t1)911(t2)1S2 >T (9.78) 
=< S21 ,7H(ti)9H(t2)10  > — < S21qH(ti)1S2 >< OIRH(t2)1S2  > 

< S21qH(tO9H(t2)qH(t3)1S2 > T  

=< plqH(t1)911(t2)qH(6)1S2  > - < plqH(t1)911(t2)1S2  >< plq11(t3)1S2 > 

- < plqH(t2)qH(t3)1S2  >< S2 1qH(t1)1S2  > - < plqH(t1)qH(t3)1S2  >< plqH(t2)1S2  > 

and so on. 
Conversely, we can express any vacuum expectation value as a sum of products of 

truncated expectation values: 

< S21qH(1)1S2 > = < S.21qH(tO9H(t2) • • • qH(tOIS? > 

III m 

= =1 < plqH(Iv)IS2  >T  • (9.79) 
m=1 {4,} v=1 

This definition is also valid for vacuum expectation values of T-products. 
Formally, if we have a generating functional Z[j] whose functional derivatives are 

vacuum expectation values, as for example the one given by formula (9.74), then the 
generating functional of their truncated values is given by 

GU] = log Z [i] • (9.80) 

9.4 Generalizations 

9.4.1 Three-Dimensional Quantum Mechanics 

The usual quantum mechanics is over a three-dimensional space. Consequently, q(t) 

must be replaced by q(t) = (qi(t), q2  (t), q3  (t)). Let us consider a system in the three-
dimensional Euclidean space given by the Lagrangian 

L(q, q) = 2 
1 

mq2  — V (q). (9.81) 

If V 0, we can repeat the analysis carried out in Chapter 8. Since the kinetic part 
is the sum of three independent parts and since the exponential of the action factorises 
into the product of three one-dimensional exponentials, we define the path integral as 
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the product of three path integrals. Given qa  and qb  at times to  and tb, we find that 

3 3 tb 1 
S (b, = E Si(b, a) = E f _

2 
m(402 (9.82) 

1=1 i=1 ta 

and 

3 
S(b,a) def S(b,a) 

G(qb, tb; qa, ta) = 11 e h z D(qi) = e h D(q). 
qicio=cqb)i J 4(tb)=4b 

i=1 qi(ta)=(qa)i q(ta)=qa  

(9.83) 

This expression generalises in an obvious way when V 0, but then the integral does 
not factorise into the product of three integrals: 

G(qb, tb;qa,ta) 

= e hi   ha  2 "
,,, 

3  , 
2 
( e fig I  m(42)2  

qi (tb)=(q01 9 (t)=(0  
qi (ta)=(9a)i 92 (ta)= (9a)2 

e  i fitab  1.  m(41)2 e  i v(qi ,q2,q3)z)(q1)) D(q2) D(q3)  
X ,13(tb)=(9b)3 

93 (ta)=(9a)3 

def S(b a) D(q). 
9(tb)=4b 
q(ta)=qa  

(9.84) 

Taking into account the analysis carried out in the previous sections, these last equal-
ities show that the path integral formalism is equivalent to ordinary quantum mechanics. 
(This is not exactly true since from the path integral formalism we can recover the 
Schrodinger equation, the reverse being not obvious!) Even more generally, it is possible 
to extend the path integral formalism to arbitrary dimensions. Two extensions will be 
particularly useful in the next sections: the first is that for which the potential is a local 
function of the positions, the second that describing an infinite number of degrees of 
freedom located at each point in space. These two extensions will correspond to the 
quantum theory of fields. 

9.4.2 The Free Scalar Field 

Let us apply this analysis to the case of a field. For us, a field will be a natural 
generalisation of q(t). The original meaning of the quantity q(t) is that of a position 
at time t but, already in classical mechanics, it often has an abstract interpretation in 
which t is a parameter and q is a quantity which has a physical meaning. The field, in 
analogy with the potential four-vector, is parameterised by a space—time point x and 
represented by a function q (we rather note it 0) of these parameters. This function will 
have a meaning at the microscopic physical level. It will be possible to do with the field 
the same type of manipulations which were done with the q(t)'s of quantum mechanics. 
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This statement becomes more precise if we formulate the theory on a space lattice. The 
field 0.(x, t) becomes a set of functions (Pi  (t). For a lattice with a finite number of points 
N, we obtain quantum mechanics of N degrees of freedom. The limit N —> oo, with 
the lattice spacing going to 0, is expected to reproduce field theory. The time, as a para-
meter, will play a particular role4  as compared to the other parameters and it is at the 
level of the physical interpretation that the difference will be relevant. 

Let us thus consider a free massive scalar field 0.(x, t), x being the space variable, in a 
one-dimensional space. The Lagrangian density for such a field is 

Go(0) = 2  
1 acb(x

at
,t) 2 ( asb(x

ax
,t) )2  m2 (0(x,t))2) (9.85) 

of Lagrangian Lo  = f ro ((1)(x, t))dx . From this Lagrangian, we can define an amplitude 
' s G ((/) , ; , t) as the sum of e h over all paths, the paths having to coincide with the 

function 0(x) at time t' and with t  (x) at time t. 
To control such an expression, we approximate the Lagrangian by a Riemann sum 

where 

L., 8->0 s  ri(0), 

ri(o) — 1  (( kxj,  t) + (j)(x j_i, 
)2 

 
2 2 

(
0(xi, - t) )2 m2(0(xi, + (xi-1, t)  )2) 

2 

(9.86) 

(9.87) 

and, for example, xi = iS, i E Z. It is possible to argue as before and to speak for each 
xi of paths 0(xi, t) interpolating between 0.(xi) and *(xi). To each xi is associated a 
measure D (0 (xi, t)) and 

A(0, t'; iG, t) = !in(
i
) 
 f eP /if dtri D(0(xi, t)) (9.88) 

that we note, if the limit exists, 

f0(x,e).# (x) 
ek (x,t)=4,  (x) 

e f dtdxr0D(0).  (9.89) 

Remark: The approximation, with a fixed spacing 8, by Riemann sums, can be inter-
preted as a linear chain of atoms, x f  measuring the departure from equilibrium of 

4  The time direction plays a particular role in relativistic physics because of the causality principle. In 
Euclidean physics, all the parameters are on equal footing. 
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the jth atom, these atoms interacting through a potential depending only on their 
distance. At first approximation, we can suppose that it is different from 0 only 
between nearest neighbours and that at equilibrium, this potential is minimum; we 
can develop the potential around its equilibrium value and keep the lowest order, 
i.e. the quadratic term. 

The previous studies can be easily extended to the cases where the field is defined in 
a higher dimensional space. 

By analogy with formula (9.18), we can define the generating functional of T-
products of free fields,5  for regular enough functions f, by 

zo  [n = (9.90) 

where 

(f , Gf) = f f (x)GF (x —y)f (y)d4x d4y (9.91) 

with the Feynman propagator GF 

1 ciP.(x-Y)  
GF(x = (27)4 p2 m2 + is d4p. (9.92) 

As before, we identify the propagator with a 2-point function of the free field 

— iGF(x — y) =< OIT (ci)(x)0(y))10 > . (9.93) 

In analogy with what we have just shown in the harmonic oscillator case, we set 

and write 

f (xi) 8 f (xnf = 
< OIT (0(xi)(l)(x2) • • • (i)(xn))10 >= 

.5 8 
)

Zo[f] t1 (9.94) 

Zo[f] =< 01 T(e' f 4)(x)f(x)d4x)10 > (9.95) 

Remark that applying formula (9.80) to the functional Zo [f] = el V'GD, we get 

GU] = — (f, Gf); 
2 

thus, the only truncated expectation value of a T-product of a free field is 

< 01 T(0(x)0(y))10 >T=<  01T(0(x)(P(y))10 > = —iGF(x — y). 

5  Here, we give the definition for free scalar fields in four dimensions. 

(9.96) 
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The fact that the only t.v.e.v. of free fields is the 2-point function is characteristic of the 
free fields. For free fields, the n-point functions, for n > 2, split into a sum of products 
of 2-point functions, and therefore their truncated values are identically equal to 0. 

We must now justify these identifications. 
In the problem of the harmonic oscillator we proved that computing the functional 

integral reproduces the quantum mechanical amplitudes we would have obtained by 
writing q(t) in terms of creation and annihilation operators, satisfying the canonical com-
mutation relations (8.81). We just noted that a free scalar field is equivalent to an infinite 
number of harmonic oscillators, one at each point in space. Therefore, the computation 
of Feynman's path integral will be equivalent to imposing canonical commutation rela-
tions to the corresponding creation and annihilation operators. We remind that a free 
field 0(x, t) can be expanded as 

 

1  f 3 k 
(/)(t, x) = 

(27)3
—[a(k)e-th' x  + a* (k) eth' x ] 
2 
d

cok   
(9.97) 

   

with cok  = 1/1z2  + m2. 
We conclude that a(k) and a* (k) should be promoted to operators satisfying the 

canonical commutation relations 

[a(k), a(k')] = O[a* (k), a* (k')] = 0 

[a(k), a* (k')]= (2n- ) 3  2°483  (k - k'), (9.98) 

which generalise those written in Chapter 8 in the case of the harmonic oscillator. These 
relations express the connection we have often alluded to between a quantum field and a 
particle. It is straightforward to verify that the quanta created by the operators a* (k) have 
a minimum energy leo = m and represent a spinless particle of mass m. Similarly, we can 
write the expression for the Hamiltonian operator as a formal sum over the energies of 
an infinite number of harmonic oscillators. Using the renormalised expression H„„(k) 
we introduced previously for each oscillator, we find that 

1
d cok 2(27)3  

3  
Hren = (27)3

k 1 
Hren(k) = f d 3ka* (k)a(k), (9.99) 

2  

which is positive definite.6  
Naturally, these relations generalise to the case of N independent scalar fields Oz, 

i = 1, 2, ..., N. The commutation relations read 

[ai  (k), a*j (k')1 = (2n- ) 3  2°483  (k - k') (9.100) 

with all other commutators vanishing. 

6  Had we used the unrenormalised form of the Hamiltonian for each oscillator H (k) we would have obtained 
an expression which would differ from Hren  of (9.99) by an infinite constant, proportional to the volume of 
the mass hyperboloid. As we noted previously, this constant is unobservable in the absence of a gravitational 
field, but we will come back to this point when we discuss the quantisation of the electromagnetic field. 
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In particular, if we consider a complex scalar field with its real and imaginary part, as 
we did in section 6.2, we find the commutation relations 

[a(k), a* (k')] = [b(k), b* (k')] = (27)3  2cop8 3  (k — k') (9.101) 

with all other commutators vanishing. 
The free quantum fields (/), which as operators are linear combinations of creation and 

annihilation operators, are not commutative. From the canonical commutation relations, 
it follows that the commutator of two fields is not an operator but a number (in fact, a 
number times the identity operator) 

where 

[0.(x), Cy)] = it (x 

3k • 
A  '2" e

! 
CikA A (x) 

i d
th = 

(27)3 2cok (27)3  f 2.k f
rn2)6(ko)e-ikA. d4k3(k2  — 

(27)3  

(9.102) 

(9.103) 

The last identity shows that A is a Lorentz scalar. We check easily that if x°  = 0, the 
two terms contributing to A are equal and thus that 0(0, x) = 0. Since A is a Lorentz 
invariant, this means that A (x) = 0 for space-like four-vectors x, that is to say, such that 
x2  < 0. It follows that fields at different space-like separated points commute. This is the 
manifestation of causality for a quantum field theory. 

The way causality is expressed is in fact dependent on the nature of the fields. 
More precisely, we show that fields corresponding to integer spin, i.e. associated with 
to a representation [m, s] of the Poincare group with s an integer, commute for space-
like separated points of space—time. If s is a half-odd integer, causality is expressed 
by the fact that it is the anticommutator of the fields which vanishes. We will ac-
cept here without proof that there exists a link between the expression of causality 
and the spinor nature of the fields. This property is known under the name of spin-
statistics theorem: integer spin particles satisfy the Bose statistic and particles with 
half-odd integer spin satisfy the Fermi statistics. We shall come back to this point 
shortly. 

We have studied here the case of a Lagrangian of free fields, that is to say given by 
a quadratic form in the fields. It is possible to give a rigorous meaning to this case. It is 
also possible to write a formal similar expression in the case of a general Lagrangian. It 
is then more difficult to give a precise meaning to the expressions which appear and we 
will consider this problem only in the Euclidean framework. 

7  It is enough to note that the integrals depend only on 14 
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9.5 Problems 

Problem 9.1 Derive for free fields: 

T(0(x1)0(x2)) =: 0(x1)0(x2) : -iG(xi,x2) 

T(4)(x1)0(x2)0(x3)) 

=: (xi )4)(x2)(l)(x3) -i[0(xl)G(x2, x3) + (l)(x2)G(xi, x3) + (1)(x3)G(xi, x2)1 

T(0(xi )4)(x2)(l)(x3)(l) (x4)) 

=: (xi )(l)(x2)(l)(x3)(l) (x4) : (x1)0(x2) : G(x3, x4)+ : (xi )0(x3) G(x2, x4) 

+ : (x1)0(x4) : G(x2, x3)+ : 95 (x2)(1) (x3) : G(xl, x4)+ : Cx2)(1) (x4) : G(xl, x3) 

: (I) (X3)0 (X4) : G (X1 X2)1 [ G (X1 X2) G (X3 X4) + G (X1 X3) G (X2 X4) 

+G(xi , x4)G(x2, x3)] 

with xi  = (ti, xi). 
What is the general formula? 
Give a proof of formula (9.80) by using formula (9.11) which gives the 

expectation values of T-product of harmonic oscillators. 
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The Euclidean Functional Integrals 

10.1 Introduction 

One of the main difficulties in the Feynman approach to path integral lies in the fact that 
the expressions which appear are only conditionally convergent. Indeed, in the simplest 
cases, we must deal with imaginary quadratic exponential integrals which were only 
defined by introducing a 'regulator'. This regulator was defined by giving to the exponent 
a small imaginary part E and by taking the limit, the effect of it being to replace oscillating 
integrands by exponentially decreasing ones. The general case is even more complicated 
since in general we have no analytical expression of the result of the integration and a 
priori estimates that could help to control the convergence are very difficult to obtain. 

This difficulty is solved formally by a complex rotation by 90° of the time axis 
t -+ —it. This operation is called a Wick rotation. The effect of this rotation is to re-
place the Minkowski space M4  with the metric gp,„ by the Euclidean space R4  with 
the usual metric. An equivalence theorem makes it possible to link by analytic continu-
ation the quantum theories of relativistic fields to the quantum theory of Euclidean fields 
(more precisely, we can give axiomatic definitions to field theories in Minkowski and 
Euclidean space and this equivalence is a correspondence between axioms). To the in-
variance under Lorentz transformations corresponds in Euclidean space the invariance 
under four-dimensional rotations, that is to say the invariance under 04. The bene-
fit is a complete symmetry of the expressions, no direction playing a particular role.1  
If the universe of four-dimensional Euclidean theories has no obvious physical reality, 
it can be identified without difficulty with a generalised statistical mechanics. In con-
trast, three-dimensional Euclidean theories are a natural generalisation of usual statistical 
mechanics. 

Let us explain in more detail the technical advantage of the change to Euclidean 
space. In its operator version, the analysis made in the previous chapters has produced 
quantities such as e't1i, which can be continued into e—ti  . For t > 0, this operator is 
bounded if the Hamiltonian H corresponds to a realistic physical system. Indeed, in 

I  In fact, one of the axioms in the Euclidean space which makes it possible to return to Minkowski space 
expresses the fact that in the Euclidean theory, we can choose a particular direction, satisfying a condition that 
makes it possible to perform the analytic continuation. We will explain this point further in Chapter 24. 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 



and 

1 
iS = i f dtL —> — f dt (-

2
4-, + V (q)) I. (10.3) 
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this case, the spectrum of the Hamiltonian, i.e. the energy spectrum of the system, is 
bounded from below (there is always a finite minimal energy) but unbounded from 
above. 

Remark: If the Hamiltonian of a system is time independent, the change to imaginary 
time will not modify it. The Euclidean Hamiltonian is thus the same as the usual 
Hamiltonian. Theories in Minkowski space and Euclidean theories coincide at time 
t = 0. 

Let us consider how some of the Lagrangians we met in the preceding chapters are 
transformed. 

For the three-dimensional quantum mechanics 

becomes 

L(q, q) = 2 
1 

mq2  — V (q) 

2  
— 

1  
— q — V (q) 

(10.1) 

(10.2) 

Similarly, the Lagrangian density of the free scalar field (Klein—Gordon field) 

2 r (0)  = 1 ( ( 4(X, t))
2 
 ( 30(X, t)) 2  

M (CP(X, t))2) 
2 at i ax 

becomes 

r((k) =—((
2  

 2 2  a(k(a7 t) ) + ( a(P  a(x:; t) )  + M2 ((k(X' t))2) 

= - ((VO(X))2  + M2(0(X))2), 

(10.4) 

(10.5) 

where x, in the last term, is a point of R4  and the gradient is the usual gradient with 
respect to the four components. Thus e'9  becomes 

1 f cox(v 0 (x))2 + m2 (0 (x))2) 
e  2 , 

which is a quantity bounded by 1 and exponentially decreasing for large 0. 

(10.6) 



< 9 
le-itH iq >= f 

11 dq(t)e J-ti2dr[V1(1)
2 
+17(4(r»] 

_ rt12 ,  

1/V(q.,-t12;q' 42) _t12<r<t12 

(10.10) 
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The Euler—Lagrange equation related to this Lagrangian is 

(—A + m2)0 = 0. (10.7) 

This is thus an elliptic system instead of being a hyperbolic one as in Minkowski space. 
The price to be paid by this passage to the Euclidean framework is the disappearance 
of the notion of causality (related to the hyperbolicity of the equation of motion). By 
an analysis similar to that done in Chapter 3, we can seek elementary solutions of this 
equation. A natural boundary condition is that they vanish at infinity. We then find (the 
scalar products being with respect to the Euclidean metric) that 

1 CiP.(x-1))  
G (x — x') =  (27)4 fR4 crp p2 + m2 

where G is a solution of the equation 

(10.8) 

(—A + m2) G = 8. (10.9) 

This solution vanishes at infinity and is a function of x2, the square of the Euclidean 
length of x. 

10.1.1 The Wiener Measure 

The Feynman analysis can be repeated for systems in which time has been complexified. 
Let VV (q, t; q', t') be the set of continuous paths linking q at time t to q' at time t', we will 
define the kernel (or the associated amplitude) of the operator e tH, t > 0, by a formula 
similar to that we used in the case of real time. Formally, we have (we set m = 1 and we 
use the language of quantum mechanics) 

to which we will give a precise meaning. 
Let us first consider the case where V 0. In this case, the kernel of e-tHo, where 

1/0  = a p2, is the elementary solution of the heat equation 

a
,cfr 

at 
(q,

2 
t) = — (q, t) = —Ho* (q, t) 

and is given, for example in three dimensions, by 

< (lie a/01g  >= (227- 0-312e = 1C (q, ) (10.12) 

which is a well-defined expression. 
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JO? (q, q') is positive, normalised to 1 (its integration with respect to q or q' gives 1) 
and satisfies the composition law 

1C t°±,(q, q) = f d3 r1Ct°  (q, r)1C (r, q) . (10.13) 

These properties will allow us to define a probability measure, the conditioned Wiener 
measure (by the conditions imposed to the path ends). It is enough for this purpose to 
define it on some subsets of R3. We will take as subsets the products I of finite intervals 
of R (the correct notion is that of Borelian subsets). We thus define, for —t/2 < t1  • • • < 
to  < t/2, the measure of the set of continuous paths 

{q(r)1q(-02) = q; q(ti) E .11, • • • q(tn) E Ini .7(02) = (10.14) 

starting from q at time —t/2, going through / E R3  at time tj  and ending at q' at 
time t/2, by 

d3qi f d 3  qn1C 1+02 (q q1 )10
t2 —ti (vi, q 2) 1C(t )12—tn (qn' (1' ) • 

I1   
(10.15) 

A probability theorem shows then that this defines a conditional measure on the space 
of continuous paths. Its element of integration is d nq,. If we consider regular and 
bounded functions, At  (q), i = 1, 2, ... ,p, of q, we can, by taking small enough intervals 
/k, consider these functions as constant on these intervals and, by going through the 
limit, we can show the existence of 

P  I  Ai(q(ti))dWqt  (10.16) 

with the AZ (q)'s as multiplication operators in L2  (q, d3q). The interpretation in terms of 
kernels gives, for —t/2 < t1  • • • < to  < 

f  P 

Ai(q(ti))d Wqt q, 
i=1 

=<
e—(ti 02)110A

le
—(t2—ti)H0A2 ...Ane—(t/2—tn)Ho I q  > (10.17) 

In particular, we recover that if 1 then 

f d nq, = (q, ) (10.18) 

Remark: The support of this measure is something quite complicated. For example, the 
differentiable paths are of measure 0. 
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In the case where V # 0, we get the Feynman-Kac formula 

1Ct (q, q') = < q'Ie txlq > 
= f e-f 2  V(q(r))dr I wt 

" 
(10.19) 

This formula is proved like the Feynman formula; the basic input, which can be made 
rigorous for sufficiently regular operators (in fact, self-adjoint and bounded from below 
operators), is the Trotter formula 

e—t(1-10+V) = lim (e—tliolne—tVIn)n 
n—>oo 

(10.20) 

The limit is a strong limit, that is to say like the convergence of vectors obtained by 
applying the operator on any vector belonging to its domain of definition. 

In reality, this form of path integral is not, as in the Minkowskian case, the form 
that can be used for the calculation of quantities which appear in field theories. The 
conditioning to points q and q' has no physical meaning when the objects in question are 
fields since these points are replaced by the fields themselves. The procedure we follow 
will be the same as what was done at the end of Chapter 8. 

We take as unperturbed Hamiltonian 1/0, the harmonic oscillator Hamiltonian, 
renormalised in such a way that the ground state has energy zero. We thus take 

1 1 2  1 
1/0 = 2 A + 

2  
—q — 2, (10.21) 

which, by an analysis similar to what we already did, make it possible to define a meas- 
ure dUt  s„ the so-called Ornstein—Uhlenbeck measure, less singular than the Wiener q' 
measure. We obtain a Feynman—Kac formula 

ict(q,q,) < qt ie-tx > 

= f e- ftti A T rt 
q,q (10.22) 

which differs from the preceding ones by the definition of what we call V H — Ho. 
Finally, we show for this measure a formula similar to that which was obtained for the 

T-products. If —t/2 < t1  • • • < to  < t/2, 

f  P 

liAi(q(4))dtto =< 0lAie-(t2-t01-10A2  e-(t3-t2)1-10A3 ...An  10 >, (10.23) 
i=1 

where 10 > is the ground state of the harmonic oscillator, and dito is the measure 
defined by 



dp,o = f 0o(q)00(q/)dUqt  ,q 
Et3  XR3  
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(10.24) 

cP0  being the wave function of the ground state of the harmonic oscillator. This measure 
is the Euclidean analogue of 

e s, f Ldrp (q) 

dv = f (10.25) 
eif Ldrp(q) 

with L being the Lagrangian of the harmonic oscillator. 
The measure 0,0  is a Gaussian measure, i.e. it is completely fixed by (we write the 

formulae for the one-dimensional harmonic oscillator of frequency w = 0) 

f q(t)dµ0  =< 0  q10 >= 0 (10.26) 

and by the covariance 

f q(ti)q(t2)dito = < 0 1q(ti)q(t2)1 0  > 

= < 0 qe-Iti-t21140,71 0  >= < 0 1,721 0  > 

= 1e-It1-t21 
2 
1 +00 e-iko(ti-t2) 

2n- 
f dko  

le(2)  + 1 
(10.27) 

The first equality results from the preceding formula applied for t1  > t2  and then in 
the reverse case. The second and third equalities are consequences of our choice of Ho 
(the factor -) and of the expression of the different quantities in terms of creators and 2 
annihilators. The last one is important because it generalises and expresses the fact that 
the covariance is in fact the kernel2  of the operator (--ddt2  + 1)-1  between t1  et t2: this is the 
Euclidean propagator. 

2  The operator A = + 1, invariant under translations, acting on sufficiently regular functions f (t) can 

be written using the Fourier transform f: 

(Af)(t) = f A(t — s)f (s)ds = 
2
1 
7 

f (p-, 
 
+ 1)et f"-(p)dp. (10.28) 

We use the following terminology: A(t— s) is the kernel of A; this kernel has for Fourier transform p2  +1 and 
formally (for convergence reasons) 

A(t — s) = 
2 

f (P2  + 1)e`P( -̀5) dp. 
7r

(10.29) 
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The fundamental properties of a Gaussian measure of mean zero are 

J 
q(ti) . • • q(12n+i)dl.to = 0 

J 
q(ti) . q(t2n)dl•to = E f q(toq(ti2)d.... f n )dit0 

pairs 

(10.31) 

(10.32) 

with i1i  i2, • • . , i2n  a permutation of 1, 2, .. . , 2n, the sum running over the (2n — 1)!! 
pairings of 1, 2, ... , 2n. We recall that n!! = n(n — 2)(n — 4) ... 1. 

Formally, everything happens as if 

-  f q(r)(--d2 + +1)q(i)di dµ0 e d2 dq(s), (10.33) 

which is what we were expecting. 
The change to three dimensions, which corresponds to ordinary quantum mechanics, 

is simply done by considering q = (qi, q2, q3), and a measure product of the measures 
dµ0  (g1) with a measure for each component qi. 

10.2 The Gaussian Measures in Euclidean Field Theories 

We saw in the introduction of this chapter that a free massive Euclidean scalar field 
in four dimensions (i.e. 1 dimension of 'time' and 4 — 1 dimensions of space) has a 
Lagrangian density 

G(o) =--(VO(X,t))2  M2(cb(X, t))2), (10.34) 

where the gradient is a gradient in 4 dimensions, all directions playing the same role. We 
could have clearly defined such an object in an arbitrary d-dimensional space with d— 1 
space dimensions, the gradient becoming the gradient in d dimensions. 

We might then repeat the analysis of the preceding section concerning quantum 
mechanics, the time parameter being replaced by d parameters x and q being the field 
cP. Since the free Lagrangian is the sum of d squared gradients and of the mass term, 
the infinitesimal contributions to the measure over the paths factorise and add up in the 
exponential, d2/dt2  being replaced by A. 

We check easily that the inverse operator A-1  has for kernel 

1 f eIP( -̀s)  

A-1 
(t —s) = d p (10.30) 
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10.2.1 Definition 

We now define a Gaussian measure of mean zero and covariance the kernel of (—A + 
m2)-1. Its existence relies on the following theorem. 

Theorem 9 (Minlos' theorem). Let C be a bilinear, bicontinuous positive form on 
S(Rd) x S(Rd), where S(Rd) is the space of C' functions rapidly decreasing at in-
finity. Then there exists a unique normalised measure dp,c, of mean zero, such that 
Vf E S(Rd) 

S(f) = e'f'cf>12  = f eu14)ditc, (10.35) 

where 

< f ,Cg >= f dd  xdd  yf (x)C (x,y)g(y) (10.36) 

and 

= f dd  xq)(x)f (x). (10.37) 

We will not give the proof of this theorem but just make some comments about it. 
S(f) is a generating functional. Indeed, 

O(fl) • • • ( cn)ditc (10.38) 

is equal to 

n  d 
. . . S(, + • • • + Xitfn) clA 1 clAn  =•••=xn=o 

(10.39) 

  

Remark: We will often use the following form of the functional derivation: 

f 8  ~(xi)~(x2) • • • (1)(xn)dttc = i-  n 
8f (xi) 8f(xn) s(nlf,. 

We easily check the Gaussian properties of dttc: 

(10.40) 

1. f (1)(f)ditc,  = 0. (10.41) 

2.  

(PUDO(f2)dpc =< fl, cf2 > (10.42) 



with, in particular, 

f 4)(f)nclitc = (-i —d  )n  S(Xf) 

10 

(10.45) 
A=0 

n odd 
n even (n- 1)!! < f, Cf >n12  
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3.  

4.  

f ovi)...ochodit, = <fi„ > <fi2,„Cfi2n  > . 
pairs 

f (gfl ) • • • 4)  (2n+ 1 ) = 0, 

(10.43) 

(10.44) 

The support of the measure, that is to say the O's over which we are integrat-
ing, is the space of tempered distributions, i.e. the dual space of S. This is a very 
singular infinite-dimensional space. A measure in a space of infinite dimensions is 
defined by its compatibility with respect to restrictions. Suppose we are interested in a 
finite-dimensional subspace K and let us consider the measure di,t1 K  restricted to this 
subspace. If we take a subspace L of K , the restriction of dp,1 K  to L is equal to dp,I L. 

More precisely, suppose we want to integrate only functions 0(), j = 1, 2, ... , n, we 
then consider 

S(EAifi) = e-<Ej (10.46) 

= e iv = i -E• • 4 Cl> 1 

Applying Minlos' theorem to the last expression, since 

F (n4 =< f, cf;  > (10.47) 

is a positive matrix F (n) n x n, we see that there exists a measure dp,r(n)  which is the 
restriction of the measure dp,c to the finite-dimensional subspace formed by OW. If we 
set qi  = , the measure dp,r(n)  is given by 

dttr(n) = (det F (n)) 1 /2 (23.0-n/2e-i Eij 0,07.1 qj

dqi (10.48) 
i=1 

We could check the restriction property: suppose that fn  = 0. Minlos tells us that there 
exists a measure of covariance F (n - 1) such that dttr(n_i)  is the integral over qn  of the 
measure 4/, p (n). 

We can understand also the Gaussian measure in another way, a way not too far from 
the original Feynman idea that we developed in the preceding chapters. We can indeed 
approximate the action 



C(x- y) = 
1

dd p 1  ip•(x-y) 
(27)d p2 + m2 

(10.54) 
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1 1 
J [(V4)(x))2  + m2 (4)(x))2]cx = -

2 
 f ((4(x), (-A + m2)0(x))dd x (10.49) 

by approximating the integral by Riemann sums. Let us consider a d-dimensional cubic 
lattice with lattice spacing a. The action is approximated by 

a-d  E (4)  (ai) , (-A + m2)0(4)), (10.50) 
ijEzd 

where (-A + m2)y  = + m2811  and (-A),./  is a finite difference approximation of the 
Laplacian.3  If now we sum over finite space volumes A, we can consider the measure 

dp, (a, A) 
1 

exp -  a d  E( )(ai) , (-A + m2)0(4))) fl  dO(ak), N(a, A) 
1,1Ezdan kEzdnn 

(10.52) 

where N(a, A) is a normalisation factor such that the integral is of measure 1. This meas-
ure is of the same type as those we considered previously. We can easily understand that 

lim lim dp,(a, A) = ditc, 
a->0 A->Rd 

(10.53) 

since the finite difference operator converges to C-1. 
To conclude this section we give some properties of the covariance. 
The covariance that we considered is the inverse of -A + m2. The kernel of this 

covariance can be represented by 

where p2  is the Euclidean square of the d-vector p and p.(x - y) the scalar product 
between p and x - y. This is the Euclidean propagator of a free massive scalar field. It 
propagates from x to y or from y to x since it is a symmetric function of the argument. 
Graphically, it is represented by a segment joining the points x and y. We use often the 
momentum space description. In this case, it is said that the propagator, of momentum 
p, is given by 1/(p2 + m2).  

As a function, C(x-y) is positive for all values of x and y. We check without difficulty 
that when x = y, C(0) is infinite except if the dimension d is smaller than 2. On the other 
hand for large Euclidean distances, Ix-yl —> +oo, the kernel decreases as exp(-mix-y1); 

3  We can take, for example, 
(-Af)(ai) = a-2  [2df (ai) - E f (aj)], (10.51) 

Ii-j1=I 

where the sum on j c Zd  is over the 2d nearest neighbours of i. 
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this decrease expresses the fact that a particle of mass m influences its neighbourhood 
only over distances smaller than 1/m. It is the translation in field theory language of the 
well-known formula, giving the Yukawa potential created by the exchange of a particle 
of mass m. 

10.2.2 The Integration by Parts Formula 

In this section, we will prove an integration by parts formula with respect to the measure 
dttc. There is no hope to have an integration by parts formula with respect to the un-
derlying Lebesgue measures since the functional measure is the product of an infinity of 
such measures. 

Let us give the formula. 
Let F(0) be a function of the field (/). Then 

f (1)(X)F (0)ditC = f
Rd 

 dd  Yqx - .Y) f
s
(y)F (0)dlic • (10.55) 

We first prove this formula for the case where the measure is the restricted measure 
(10.48). Let us consider 

I = f qiF(q)dµr(n). (10.56) 

Since F (n) is positive, there exists an orthogonal matrix U such that Ut F (n)U = A 
with A diagonal, with eigenvalues 81. Let us set p = Ut q; thus, Ut C-1  U = 0-1  and 

E qi  q

j 

 = E 

 81,

1 (10.57) 

Let us make the change of variables q —> p, 

n  _sk 
f U=jpjF(Utp)e Pk2  fl dpi 

k 2n 

n  sk Eoi 
3-

k
1

Pk  
2 ri dpia;de-514 = _ _27 E F(Ut p)e-i 

Sk  E uii f 8i—
a

F(Utp)e-lEk fl dpi 
k 2n" Spi 

= f Uisi8jUki
Tk

F(q)dttr(n)  

= F (n),k—F(q)clitr(n), 
bk 

I= 

(10.58) 
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= U where we used the fact that sT  kJ sT,  and Uk1 = U. The replacement of two jk• 
fields, in the integration by parts formula, by the propagator linking their ends is called 
a contraction. 

This formula makes it possible to recover immediately the basic formulae of Gaussian 
integration: 

f (1)(xi)(1)(x2)clitc = f dd  yG (xi — f s (y) 4)(x2)dP c 

= f f C(xi — y)8(y — x2)dd  yditc 

= f C(xi  — x2)dttc = C(xi — x2)• (10.59) 

Similarly, 

f (xi)(1) (x2)0(x3)(1)(x4)dit c 

f C(xi  y) (y) (4)(x2)0(x3)(1) (x4))4 tcdd  y 

C (xi  — x2) f Cx3)0(x4)di(c + C (xi — x3) f Cx2)0(x4)4 c 

+ C(xi — x4) f Cx2)0(x3)ditc (10.60) 

= C(xi x2) C(x3  x4) + C(xi — x3) G(x2 — x4) + C(xi — x4) C(x2 — x3) • 

Remark: It is obvious that the result is independent of the choice of the field which has 
been taken to initiate the contractions. In the previous proof, it would have been 
possible to start with (x2) or 4(x3) or 4(x4). 

The integration by parts formula makes it possible to perform completely the 
functional integration of polynomial expressions. 

10.2.3 The Wick Ordering 

According to formula (10.59), f 0(x)2ditc,  = C(0) is infinite when the dimension of the 
underlying space is greater than or equal to 2. This implies that 0(x)2  is not a meas-
urable function with respect to the measure dttc. More generally, we can check that all 
powers of (x) are not measurable. We remedy this difficulty by introducing an algebraic 
combination, the Wick ordering, formally defined by4  

4  We can make these formulae rigorous by regularising the covariance C C, with 

J 
(P)  C (x y) — 

(27 )d p2 
 + 

 m2 dd  p, 



[n/2] 

;0 (X) n  : = 
(— 2j) !j!2,1 

—1)1  n!
•  C(0)-10 (X)n-2i 

(n 

 

0 

(10.61) 
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: cp(x) : = q)(x) 

: 0(,02  : = 0002  - c(o) 
: 000' : = 0()03  — MO (X) 

: CX)4  : = 4(X)4  - 6 C (X) 2  + 3 C (0)2  

Algebraically, the introduction of the Wick orderings  for field monomials at the same 
points means that these fields cannot contract between themselves. Moreover, Wick 
powers behave with respect to derivation as usual powers 

cficb
: On  := n: n-1 

It follows from the definition that 

f 0(x)n  

and 

f : ) (X)P (Y)q  : dµc = 

if p and q are positive integers such that p # q. 

Remark: We should remember that the Wick ordering is relative to a given covariance. 

10.3 Application to Interacting Fields 

We will apply the analysis of the preceding sections to the concrete case of a given 
theory and show how the integration by parts method, or the contraction, generates 
a perturbation expansion particularly easy to be described in terms of diagrams. 

where ri„ (p) is a cutoff function which is 0 if IA > K and such that lim„,„, ri„ (p) = 1. In this case CK  (0) is 
finite and the formulae must be understood as the limits of the formulae written in terms of the fields 4,, of 
covariance CK  . 

5  We had used previously the term Wick ordering to denote the normal ordering in the product of operators 
in which creation operators are placed on the left and annihilation operators on the right. The use of the same 
term here is not accidental. It is easy to prove that the two operations are related by the same analytic continu-
ation which relates Euclidean and Minkowski theories. For example, the infinite constant C(0) corresponds to 
the infinite subtraction we found in the previous chapter. 

Vn E Z+. (10.62) 

c = 0 (10.63) 

p! [C(x — y)]1' (10.64) 
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We consider the theory of a massive scalar field interacting with itself through a 
fourth-order interaction. Physically, this theory can represent the dynamics of meson 
fields, such as those corresponding to the neutral pions 7°. 

We fix the dimension d = 4 and consider the Lagrangian density 

1 
£(x) 

= 2 
— [(VO (x))2  + m20(x)2] + 45(x)4, 

where is the coupling constant (supposed to be small). 
The action can be written as 

(10.65) 

S 
 = f

r(x)d4x (10.66) 
R4 

and, in order to compute an n-point function, we apply the Euclidean version of formula 
(9.12). 

Let us give as examples the 2-point and the 4-point functions. 

10.3.1 The 2-Point Function 

By definition 

f 0(x)0(y)e-si)(0)  
< 0.(x)0(.3)) >=

f e-sD(o) 

To give a rigorous meaning to this expression, we write 

(10.67) 

.C(x) = Go(x) + Emt(x) (10.68) 

and thus 

S = So + Sint, (10.69) 

from which 

< 4(x)4(3)) > = 
f 4(x)cp  (y)e-sinte-soD(0) 

f e-sint e-so D(0) 

f (x)cp(y)e-sint ditc  

f e-Sint dit c 
(10.70) 

We take this last equality, in which the measure dp,c is perfectly defined (which is 
equivalent to formula (8.98) of Chapter 8), as the definition of the 2-point function in 
Euclidean space. In particular, we can, if necessary, regularise the expression by repla-
cing C by C, and by restricting the integration in Sint to a finite volume, i.e. by applying 
an ultraviolet and an infrared regularisation. 

We saw in Eq. (10.70) that the action which is expressed by using the fourth power 
of the field is not measurable with respect to the measure. We can try to remedy this 
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problem by replacing 04  by : :. This shows that our initial Lagrangian density (10.65) 
is not correct and must be replaced by 

£(x) = 
2 
— [(V0(x))2  + m20(x)2] + X : 0(x)4  : . (10.71) 

Indeed, using the properties of the Wick ordering given in Eqs. (10.61), we find that 
the 2-point function to first order in X is proportional to 

< (x)0(y) > f 4)(x)4)(y) : 4(z)4  : Gee z, (10.72) 

which vanishes. However, this will not solve all problems in higher orders. 
Since X is small, let us compute the 2-point function to second order in X. 
We start by an evaluation of the numerator. To do this we contract one of the fields, 

for example 0(x), 

f (/)(x)0(y)e sint dttc 

with Z given by 

= f 0000(y)e-f rint (x)d4xditc  

= C(x — )
60

6
0ci  )

(y)e-i rint(x)d4x) d4xi dit c 

x = f C(x—xi).54(xi —y)e-f rint (x)d4 d4xi ditc 

x — 4X f C(x—xi)6 4(xi —z) 4)(z)3  OCY)e rint (x)d4 d4zd4xi- 

= C(x —y) f e-f rint(x)d4xditc (10.73)

c  

—4 X f C(x — xi) : 0(xi )3  ky)e-irint(x)d4xda ditc 

= C(x — y)Z — 4A f C(x—xi) : 0(x1 )3  : )(y)C f rint (x)d4  x da ditc  

z = f rint (x)excittc. (10.74) 

Let us consider the second term of the preceding equality. Since we are interested in 
terms up to the second order only, it can be written to order 0(A3) as 

— 4X f C(x—xi) : 0(xi)3  OCY) (1 — f rint  (z)d4z)d4xi ditc 

= — 4X f C(x—xi) : 0(xi)3  : 0(y)d4xidptc 

+ 4X2  f C(x—xi ) : 0(x1)3 ICY) f (Z) d4zd4xi  dit c + 0(X3) 

= A + B + 0(X3). (10.75) 
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The term A vanishes because f : 43  : d,u,c = 0. Contracting 4(y) and using the 
symmetry C(x—y) = C(y—x), we obtain 

B = +4A2  f C(x— xi)C(x2 Y) scx2)  :4(x1)3 :f rint(z)d4z d4x2d4xi ditc 

= 12X2  f C(x ) C(x2 4(x1)2  8(xi — x2) f rmt (z)d4zd4x2d4xi c 

+16X2  f C(x xi)C(x2 — Y) 4(x1)3  4(z)3  : (x2  —z)d4zd4x2d4xiditc 

= Bt  + B2. (10.76) 

Again B1  is 0 and we have 

B2  = 16A2  f C(X—Xi)C(x2 — 4(xi)3  (I)(x2)3  : d4  x2d4 c 

=96X2  f C(x xi)C(xi — x2)3 C(x2 — Y)d4x2d4xi • (10.77) 

This last equality comes from 

f 0(x1)3  4(x2)3  dPc 

= 3 f C(xi  — u) : 4(x1 )2  4(x2)2  : 84(x1  — u)d4uditc 

= 3 f C(xi — x2) : 4(x1)2  4(x2)2  ditc 

= 3C(xi — x2) f 0(x1)2  4(x2)2  ditc 

= 6C(xi — x2)2  f 4(x1)0(x2)dPc 

= 6C(xi — x2)3. 

We have thus shown that 

(10.78) 

< 4(x)0(Y) > (10.79) 

= 1 — (x y)Z + 96X2  f xi)C(xi — x2) 3 C(x2—y)d4x2d4xi + O(X3)) 

= C(x— y) + 96X 2  f G(x— xi)G(xi x2)3  C(x2 —y)d4x2d4x1  + 0(X3), 

because Z = 1 + 0(X2). Indeed, expanding the exponential of the interaction, the first 
term is 1 and the second one is 
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< (r)(x)(p(y) >_ 

 

Figure 10.1 Expansion of the 2-point 
function. 

 

Figure 10.2 A 2-loop contribution to the 2-point function. 

f (f 0(z)4  : d4z) ditc = 0. (10.80) 

Diagrammatically, we represent the expansion of the 2-point function as shown in 
Fig. 10.1. 

Let us examine the 2-loop diagram (Fig. 10.2). 
As we said previously, a propagator C(xi — x2) going from x1  to x2  (or the other way 

around since C is symmetric) is represented by a segment joining the points x1  and x2. 
The end points are either starting points or are integrated. If they are integrated, and we 
call them internal, then they are part of a vertex which links four propagators. This last 
property is the trace of the fact that the interaction is 04. 

It is often useful to express the diagrams which have been drawn in Fig. 10.1 in terms 
of Fourier transforms. We have already seen that 

C (x — = 
1 f (X-Y) 

(27)4 j p2 + m2 COP. (10.81) 

A propagator is therefore represented by 1/(p2  m2). The second diagram corres- 
ponds to 

I = f C(x—xi)C(xi — x2)3 C(x2 — y)d4x2d4xi 

1 f e-ip.(x-xi) 
= 

 
dap (27)4 j p2 ± m2 

3 . „ 

x 
 1-1 

1 

 (  1 

1 i) 

e-lPis'xi-x2) 
d41

0 1 I e-ig.(x2-Y)   o ne xi d  a x2.  
(27)4  i + m2 ) (27)4 i q2 + m2 

c 
.2  

i=  

(10.82) 
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Integrating over x1  and x2, the exponential factors give (2n-)4S(4) (p — E3 pd and 
(2n- )48 (4)  (q — E 31  pi ) and since 

3 3 3 Ep  j.)8(4) (q  Ep (4) (1, Epj.)6 (4) (pq)  

1 1 1 

we get 

1 
(2 - )

vr  k-ev 

p2 + m2 I I + m2 n112 "\ 

3 
x  6  (4) (p  E  p  :)  

p2 + m
2 Ci P(X7Y) d4 pd4gd4 p p 2  d4 p 3  

3 
x s (4) - E p')  p2 -F M2 

e4P(x-Y)d4Pd4P 1 d4P2 d4P3 

(2n- )4 +  
f (x -y) 

(p2 
1 

m2)2 I12(P2)d4
P 

3 d4
p,  

I (4)  (P Pi) 11 + m2 

1
2 f 

1 1 1 

pl+.2  (p_pl_p2)2+ m2  p2 + m2  
d4

Pld4
P2. 

with 

1 

(2012
1   

 I  p2 + m2 11 + m2 

n2(p2) - (27)8 

(27)8  

(10.83) 

(10.84) 

It is easy, by an 0(4) invariance argument, to justify the fact that the right-hand side 
of (10.84) is a function of p2. 

The expression (10.84) is still quadratically divergent. We see that using the Wick 
ordering has not cured the divergences beyond the lowest order. We shall present the 
complete solution to all such problems order by order in perturbation theory in Chapter 
16. For the moment expressions such as that of Eq. (10.84) should be considered as 
formal. For example, we can assume that the propagator C(x — y) is replaced by the 
regularised one Ck.6  

6  If we had used the original 4,4  interaction instead of the Wick ordered one, we would have obtained an extra 
term in first order of perturbation theory corresponding to the diagram of Fig. 10.3. It is also quadratically 
divergent. In the jargon of particle physics such diagrams are called 'tadpoles'. 
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Figure 10.3 A 1-loop divergent diagram for the 2-poin function in 
the 04  theory which we obtain in the absence of Wick ordering. 

10.3.2 The 4-Point Function 

Following the same type of analysis as it was done for the 2-point function, the Euclidean 
4-point function is given by 

f 0(x1)0(x2)0(x3)0(x4)e-sintditc  
< 0(x1)0(x2)0(x3)0(x4) >— f e-smtdttc 

(10.85) 

We can compute this expression up to the third order in the coupling constant and get 

< Cx1)0(x2)0(x3)0(x4) > 

= —24A ffl c(x, —y)d4y 

+ C(xi —x2)C(x3 — x4) + C(xi x3)C(x2— x4) + C(xi — x4)C(x2 — x3) 

+ 96X2 C(xi x2) f C(x3 — Y)(C(Y — z))3 C(z — x4)d4yez 

+ 96X2 C(xi x3) f C(x2 — Y)(C(Y — z))3 C(z — x4)d4yez 

+ 96X2 C(xi x4) f C(x2 — Y)(C(Y — z))3 C(z — x3)d4yez 

+ 96X2 C(x2 — x3) f C(xi — Y)(C(Y — z))3 C(z — x4)d4yez 

+ 96X2 C(x2 — x4) f C(xi — Y)(C(Y — z))3 C(z — x3)d4yd4z (10.86) 

+ 96X2 C(x3  x4) f C(xi — Y)(C(Y — z))3 C(z — x2)d4yez 

+ 288A2  f C(xi —y)C(x2 Y)(C(Y — z))2C(z — x3) C(z — x4)d4yd4z 

+ 288A2  f C(xi —y)C(x3  Y)(C(Y — z))2C(z — x2) C(z — x4)d4yd4z 

+ 288A2  f C(xi —y)C(x4 (C(Y — z))2C(z — x2) C(z — x3)d4yd4z + OW) 

or diagrammatically as shown in Fig. 10.4. 
The first three diagrams represent the free contribution and we recover, as expected, 

the formula (10.61). The fourth term is the first manifestation of the fact that there is a 
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1 3  1- 3 1 3 
= 

23a4 4+ 2 1  
+ 

2 4 
+ x 

1 3 1 3 1 
+ A + x2 + x2 

2 4 2 4 2 

Figure 10.4 The 4-point function. 

+ 0(A)3  

local point-wise interaction of strength A which couples four fields. The fifth, sixth, and 
seventh terms express the first-order (in )c) correction to the coupling strength. 

The connected part, up to order 2, of the 4-point function is nothing else than the 
truncated expectation value of the 4-point function as given algebraically by formula 
(9.77). Diagrammatically, it corresponds to the last four diagrams of the expansion 
(Fig. 10.4). 

Introducing the Fourier transform of the propagator we get 

(27
1 , x( )3 pjxj -i.

pj 
[e 2 d .Pda

s(4, 
 (P1 + P2 + P3 + P4) )4   

[ 1 - 12A(G(pi  -F P2) + G(Pi + P3) + G(pi +P4)], 

where G(p) is given by 

1 f 1 1  
G (p) = 

(2n- )4 q2  + m2  (p — q)2  + m2 
d4q, 

(10.87) 

(10.88) 

which corresponds to the 1-loop 4-point function diagram shown in Fig. 10.5. 
The diagram in Fig. 10.5 has two vertices. Each vertex links four lines, because it is 

a 04-theory. Two of these lines are external; from them flows a momentum p which is 
the vectorial sum of the momenta carried by each line. This momentum is split inside 
the loop in two contributions q and p — q whose vectorial sum is again p because of the 
conservation of momenta at each vertex. Here q is the momentum of the loop and there 
is an integration over the whole space on this variable. 

The function G(p) represents the diagram of Fig. 10.5, i.e. a diagram with no 
contributions from the external lines. If we multiply G(p) by 

1 
]6(4)  (Pi + P2 + P3 + P4) 11 [e + m2 

we get the Fourier transform of one of the terms in (10.87). 

Figure 10.5 A 1-loop contribution to the 4-point function. 
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G(p) is not integrable for large Iqi. If we introduce a momentum cutoff A, it can be 
seen immediately that 

1  2 4 G(n)  (0) =  
(2n- )4  figi<A 

( 
q2  + m2

) d q 

behaves as log A since for large q it is like the integration 

d4q 
—
dq

log A. 
f<lql<A Iq14 fl<lql<A Iql 

(10.89) 

This type of analysis is a power-counting argument: we integrate in a d-dimensional 
space 2 propagators which are quadratic functions of the integration variable. More 
generally, an integral 

f<lql<A 
f (q)ddq, 

where f (q) I ql m, is finite for A —> oo if —m > d. It is thus natural to introduce an 
index, the superficial degree of divergence D, D = d + m, whose values measure the 
integrability at infinity of the integral. The value of the integral is finite if D < 0. The 
superficial degree of divergence of G(p) is D = d— 4 = 0 since d = 4; thus, this diagram 
is logarithmically divergent as can be seen from (10.89). 

A similar 1-loop contribution for a 04  theory in d-dimension 

1 1 1 
ddq (27)4 q2 + m2 (p 2 + m2 - (10.90) 

will have D = d— 4, i.e. will be convergent for any dimension d < 4. We will expand on 
this power-counting argument in Chapter 16. 

10.3.3 The General Feynman Rules 

From these two examples, it is possible to state the rules of computation of the 
(Euclidean) Feynman diagrams: 

an internal line 

an incoming line —*--M 

an outgoing line M-310— 

a vertex (27)48(4)  (Ei Pi). 

1 d4p  
(27)4 p2 + m2 

 d4p  
(27)4 p2 + m2 

 d4p  
(27)4 p2 + m2 (10.91) 
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Because of the delta function at each vertex, each internal loop carries one momentum 
which is integrated over the whole space. 

Thus, we obtain the following expression for the diagram of Fig. 10.2: 

1  
fe-iP(X-y) 

1 1 1 1

d4pd4pid4p2 
(27)12 (p2+ m2)2 /4 + m2 p3 ± m2 (1, -pi  _ p2)2 ± m2  

1 1 p_ip(x_y) =  
(27)4,1 (p2+  m2)2 n2(P). (10.92) 

pi  and p2  are the two internal momenta over which the integration is performed. Again 
if we multiply n2  (p) by 

1 
(p2+ m2)2' 

we get the Fourier transform of (10.83). 

10.4 Problems 

Problem 10.1 What can be said about the convergence or the divergence of the 
diagrams of a theory with interaction : O'n :, m = 2, 4, 6, and 8, in dimension d, d 
taking the values 2, 3, or 4? 
Problem 10.2 Suppose the interaction is (VO.V.0)2. What are the divergent 
diagrams of this theory in two, three, or four dimensions? 
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Fermions and Functional Formalism 

11.1 Introduction 

Let us summarise the results we obtained in the previous chapters. 
Consider a classical system of N degrees of freedom represented by the variables 

qi  (t), i = 1, 2, ..., N. We assume that the dynamics is described by a Lagrangian L(qz, 4,), 
or, equivalently, by a Hamiltonian H (qi, pi ), where pi (t) are the corresponding conjugate 
momenta. Starting from this classical system, we saw that we have at least two ways to 
obtain the corresponding quantum system. 

The first is to follow Heisenberg's recipe and postulate that the qz 's and the 
corresponding A's are operators satisfying canonical commutation relations 

[qi  , pi] = ; [qi = [Pt = 0. 

The classical theory is obtained at the limit h —> 0, i.e. when the variables become 
commuting classical functions. 

The second quantisation recipe is given by Feynman's path integral formalism: we 
consider the classical action S, which is a functional of the variables q1. Summing 
exp(iS/h) over all trajectories qz (t) joining an initial and a final configuration reproduces 
the quantum mechanical amplitude for the transition between the corresponding initial 
and final states. 

Formally, we can take the large N limit and obtain a system with an infinite number 
of degrees of freedom. At the classical level such a system may be a classical field theory 
in a d-dimensional space with variables (x, t) and conjugate momenta 7 (x, t). Either of 
the two recipes will give the corresponding quantum field theory. In a previous chapter 
we showed that a free real scalar field can be expanded in terms of an infinite set of 
creation and annihilation operators satisfying canonical commutation relations; see Eqs. 
(9.96) and (9.97). Two, seemingly unrelated properties follow from them. The first is 
that the corresponding Hamiltonian given by Eq. (9.99) is positive definite. The second 
is that a state which contains two excitations, one with momentum k1  and a second 
with momentum k2, is symmetric under the exchange of the two momenta. Indeed, the 
state is given by at (k1 ) at (k2) 10 > and the symmetry is a direct consequence of the fact 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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that the two creation operators commute. This symmetry property can be obviously 
generalised to an arbitrary number of excitations and reflects the property we have men-
tioned already, namely that scalar fields describe bosons. At the level of the path integral 
this is reflected in the fact that we integrate in a space of classical commuting functions. 

In this chapter we want to see how to extend these considerations when quantising a 
Dirac field Ili (x). We wrote the expansion in plane waves in section 6.3.8, Eqs. (6.76) and 
(6.77). Heisenberg's canonical quantisation recipe tells us that we should interpret the 
complex functions a and b as two pairs of creation and annihilation operators satisfying 
canonical commutation relations. At first sight the differences between the Dirac and 
the scalar field expansions seem to be unimportant. The fact that we have two pairs of 
creation and annihilation operators is just a consequence of the fact that the Dirac field 
is complex. But then we see immediately that we shall run into trouble. The first comes 
from the Hamiltonian. A straightforward calculation gives, for the normal ordered form, 

2 

: H := f dQmEk E [al(k)a,,(k) — bta (k)b,,(k)]. 
a=1 

(11.2) 

The trouble comes from the minus sign. No matter how we arrange an overall sign, 
this Hamiltonian will be unbounded from below. The two kinds of excitations, those 
created by the al' or the bt operator, have opposite energies. This is not a new problem. 
It is the one we have found in analysing the energy spectrum of the Hamiltonian when 
we were studying the Dirac equation as the wave equation for an electron. The solution 
we adopted there was to assume that electrons are fermions and obey the Pauli exclusion 
principle. We thus assumed, following Dirac, that all negative energy states are occupied. 
This was meant to be an ad hoc principle inspired by the phenomenology of atomic 
spectra. But here we do not have that choice. If the a and b operators satisfy canonical 
commutation relations, the same argument we developed for the scalar field shows that 
a two-excitation state is always symmetrical; in other words, the excitations are bosons. 

Can we modify the commutation relations in order to describe fermions? Let us 
consider a particular two-excitation state. We must have 

lki, a; k2, a >= (k1 )al(k2)10 >= —ata  (k2)ata (ki)10 > (11.3) 

This suggests that the at's must satisfy an anticommutation relation of the form 
(ki )a1:3 (k2) + of (k2)al (ki) = 0. The entire Heisenberg recipe should be rewritten 

with anticommutators replacing commutators. Note that this fixes also the energy crisis 
because in defining the normal ordering we get an extra minus sign: : be :=-eb. 

We have just shown an example of what we called earlier the spin-statistics theorem. 
Positivity of the energy requires that half-odd integer spin particles obey the Fermi 
statistics. 

Their quantisation requires the use of anticommutation relations instead of com-
mutation relations which are used for integer spin particles. This rule is not obvious 
either from the point of view of classical physics or from the elementary formalism 
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of quantum mechanics called the first quantisation. However, it appeared to become 
a necessity when Dirac discovered the equation describing spin-1 particles and tried to 
quantise it. 

Note that the use of anticommutation relations solves also another apparent contra-
diction, namely the fact that the vacuum expectation value of the commutator of two 
half-odd integer spin fields does not vanish for space-like separations. The difference 
between the two types of particles, namely the fermions with anticommutation rules 
and the bosons with commutation rules, is crucial for multiparticle systems. In quantum 
mechanics, it results in the Pauli principle which says that the wave functions of fermi-
ons are antisymmetric under the exchange of any two fermions while it is symmetric for 
bosons. Both the microscopic and the macroscopic consequences of this fact are spectac-
ular: Mendeleyev classification in chemistry, superconductivity, Bose condensation, etc. 

In every relativistic theory, the energy can be transformed into mass and, as a result, 
there is no conservation of the number of particles. We have, therefore, from the begin-
ning a multiparticle system and it is very important to have at one's disposal a formalism 
able to distinguish bosons from fermions. 

We will see that it is hopeless to use the same definition of functional integral for fer-
mions and for bosons, since, as we saw, the functional formalism reproduces in extenso 
the results of the canonical quantisation of bosons. This is not surprising. The func-
tional integral recipe states that one should integrate over all classical configurations. 
Here 'classical' means what we obtain at the limit h = 0. When we use commutators this 
is the space of c-number functions. However, when we use anticommutators the classical 
limit is a set of anticommuting objects. It is therefore necessary to find a generalisation 
which can take into account the fermionic nature of the fields. 

We conclude that the extension of the path integral quantisation method to fermions 
requires, at the price of some abstractions, to define a summation on paths by develop-
ing an integration formalism for anticommuting variables. This necessity to appeal to 
some abstract notions in the case of fermions is not totally unexpected: we have already 
seen that half-odd integer spin particles had some non-obvious properties such as their 
difference of behaviour with respect to rotations by 27 or 47. 

The change from quantum mechanics to quantum field theory is conceptually simple. 
It consists of passing from a system of several degrees of freedom to a system with 
infinitely many degrees of freedom. The functional integral formalism of quantum 
mechanics generalises directly. Thus, the action f dtr(t) is replaced by f dxdtr(x, t), 
and the measure D(q) by the measure D(0), which, formally, is nothing else than the 
product for each value of x of measures DO (x, .). We get an explicitly relativistic system 
and, apart from technical complications due to the introduction of an infinite num-
ber of degrees of freedom, there are no major differences with elementary quantum 
mechanics. 

In the case of fermions, there is the same phenomenon. Once the path integral is 
defined for the anticommuting variables of quantum mechanics, the way to field theory, 
for example spinorial electrodynamics, is conceptually straightforward. 
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11.2 The Grassmann Algebras 

We will develop in this section a differential and integral calculus on finite-dimensional 
algebras: the Grassmann algebras. 

A Grassmann algebra gn  with n generators is an algebra generated by n anticommut-
ing variables 01 , • • • , On  satisfying the relations 

O} =60+ 66= O i,j = 1, • • • ,n. (11.4) 

A basis of the vector space, of dimension 2n, underlying gn, is given by the monomials 

1, 01, • • • On, 0192, • • • 5 On-10n, • • • , 0102 • • • On (11.5) 

since from (11.4) 

6i6i = Vi. (11.6) 

Each element f of the algebra can thus be written as 

f (0)  = 40) 
fi

(
i
i) „

is
(2) 

d 1  47 di di + • • • + if .(n)  Oi • • • din  
2! 12 1 2 n! i••• n 1 (11.7) 

with the convention of summation over repeated indices. From the anticommutativity of 
the O's follows the fact that we can restrict the coefficients f (P), p > 1, to be completely 
antisymmetric under permutations of p indices; the function is entirely determined by 
the coefficients f (P), p > 0. It follows that every function is, in fact, a polynomial. 

We now define the main operations that can be done in the differential and integ-
ral calculus on Grassmann algebra. Unless stated otherwise, we will suppose that these 
operations are defined for the algebra gn • 

11.2.1 The Derivative 

Grassmann algebras being non-commutative algebras, we expect that derivation is also 
a non-commutative operation. In particular, we can define two types of derivatives, the 
left and the right derivatives. 

Let us consider first the left derivative. It is defined by its action on the monomials of 
the basis 

a 
ae ei'  • • • eiP  = Ski

1  O
isi • • Oi

P 
 — ni2 0,•1 06  • • • O

iP 
 + • • • + (-1)P-1  aniOi, • • • (94_1 , k  (11.8) 

which shows that -f (6) is an element of the algebra. We similarly define the right af9p 
derivative by 
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a 
eif  • • etp =

aek  
kip0ii• • • 04_1  - Skip_i 0ii• • • 0ip_204  + • • • + (-1)P-1  Ski,01.2. • • Oil,. (11.9) 

We can apply the usual rules of composition of derivatives. Let us introduce linear 
combinations of 0, i.e. new anticommuting variables 77: 

qk = Akp(S)Op. (11.10) 

Let us consider now a function f (7)) = g(0), then 

a a 
.1.07(69) = —go) = 

a

a

k
f (011 ,=,(9)Akp(s) aOp ae 1'1 

and 

—
d

f (0) = —
Ok 

—f (0). 
ds ds aOk 

It is, however, necessary to exercise caution because Leibniz rule is not valid and some 
among the usual rules are modified. Thus, 

a a a a 
— (— g(0)) = -- (—g(0)). (11.13) 
aep aeg ae ae q P 

Equation (11.13) shows that the derivatives are anticommuting operators: 

a a a a _ 
af9p aeq  aeg  aOp — 

11.2.2 The Integration 

To define integration, we introduce the differential symbols d01 , d92  • • • den, which satisfy 

{del, dOi} = {d91, 01} = 0. (11.15) 

Since, as we remarked previously, a Grassmann algebra gn  spans a finite-dimensional 
space, every function is a polynomial. Therefore, it is sufficient to define the integration 
for monomials. For a Grassmann algebra gn  the 'Table of Integrals' has only 2n  entries! 

Following F. A. Berezin,1  we remark that when we compute in bosonic theories, we 
usually encounter integrals from -oo to +oo for which the most useful property is transla-
tional invariance. So, taking the simple case of just one variable, we define the integration 
by imposing the property 

1  F A. Berezin, The Method of Second Quantization, trans. N. Mugibayashi and A. Jeffrey (Academic Press, 
New York, 1966). 
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f f (0)d0 = f f (0 + (11.16) 

with 77 being a constant element of the algebra. The most general function f (0) of one 
anticommuting variable is of the form f = co + c1 9, with the c's being two arbitrary 
complex numbers. Imposing (11.16) we find that 

(co  + c1 n) f d9 = 0, (11.17) 

while f OM remains arbitrary. The property (11.17) should be an identity, so we are led 
to the definitions 

f d01  = 0 

f Oid0i = 

We check easily that the integral of the function f E gn  given by (11.7) is equal to 

f f (9) an • • • clOi = f i(n)  • • • n. (11.20) 

The following integration by parts formula is also easy to prove. For all f, g E gn  

f f (0) (g(9)) d0„ • • • d0i = f V (0)  
ae

)g(0) d0, • • • d01  
a9 

g(9)) 

This formula extends to the cases when we integrate only over some of the variables 
of the Grassmann algebra. 

In particular, it shows that 

f aei f 
(0) d61  = 0. (11.22) 

Thus, splitting each function/ of the Grassmann algebra 

f (0) = f+( 9) MO), (11.23) 

where f+ (9) is a sum of even polynomials in the Oi 's and f_(0) a sum of odd polynomials, 
we get 

f f±(6 ) 
a g(

aei d91 a

0) f af±(

ei

0) 
— g(9) d0i. (11.24) 
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We define the 'Fourier transform' by 

1(0 = f  e(q'e) f (0) 11 d0z, (11.25) 

where (r7,0) = th0i, ri and 0 being the 2n generators of g2n, and 11, dB, = d61  • • • dOn, and 
the S function by 

(17) = f e( b(9) d91  = (—qi) (11.26) 

We prove that 

f(6) = f 8(6  — f (q), (11.27) 

where FE d17i  = dn1  • • • chin. 
It is also possible to define the scalar product of two functions f and g. To fit with the 

usual notation we consider these functions as functions of 0 

(g, f) = f e  Ese se:g(B)*f(9)d6nden  • • • d91 d61, (11.28) 

= 4o) + 42
26

,
126

,
11

- 
i
n) where g (6)* 1 in Oin  • • • 012 011 . We then check that the 

following formula holds: 

(f, = f o) 
k(()

o)  +40.)k1) 
+f(2)—(2) ~ it i1 i2 gi1 i2 '

▪  f (n) (11.29) 

Thus, 

(f,f)  = if 0 )12
U(1)  I2

ifi(
1
2
i
)2 12 + ▪  ifis(

i
n
i2
)
...in 1

2. (11.30) 

It remains to see how this integral calculus behaves under the change of the integration 
variables. 

Let U be a linear transformation of the variables 0 

From 

and 

Bk = Bk [01 = Ukp6p. 

el • • • 6n  = det U 01  • • • On 

d91  • • • den  = det U-1  d91  • • • dOn  

(11.32) 

(11.33) 
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we deduce that 

J f cOn • • • d91  = det U-1  ff (j[0]) an • • • clOi • (11.34) 

We remark that this formula is different from the usual formula of change of variables 
in the commutative case since it is the inverse of the determinant which appears. 

To close this section, we now apply the integration formula to the computation of 
Gaussian integrals. 

Let A be an n x n antisymmetric matrix. Let us consider the quadratic forme  (0,240) = 
01Au0). We want to prove the following. 

Theorem 10. Let A be an antisymmetric n x n matrix and (9,A6) the quadratic form 
defined by A on the Grassmann algebra G,, then 

Z(A) f el (e' 49)  dOn  • • • clOi = N/detA. (11.35) 

This theorem is characteristic of the difference of behaviour between commuting and 
anticommuting variables. We see indeed that the Gaussian integration in the anticom-
mutating case gives an inverse result of what we get in the commuting case (ordinary 
theory of integration). The result, Pf (A) of the gaussian integration over anticommuting 
variables of the antisymmetric matrix A is often called the Pfaffian of A and we have 
P f (A) 2  = det (A) . 

Proof. Let us suppose first that the matrix A is real. There exists an orthogonal 
transformation U such that UAU-1  is of the form 

Al 0 0 0 • • • 
—A1 0 0 0 0 • • • 
0 0 0 X2 0 • • • 

(

0 

. (11.36) 
0 0 —X2 0 0 • • • 

If we perform the change of variables 77= UO,Z(A) becomes 

Z(A) = f 172  + A2173174  + Amri2m—lri2m &It  

if n = 2m and 

(11.37) 

Z(A) = f eXi '71772 + A2q3q4 + • " + Amr12m-1 1.12m drii  (11.38) 

if n = 2m + 1. 

2  Since we are interested in the quadratic form on g„ defined by A, it is in full generality that we can take an 
antisymmetric A. Indeed, for an arbitrary A, the symmetric part of A will not contribute to the quadratic form. 
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From the integration rules, Z(A) 0 for odd n since the integrand is 
independent of the variable qn. 

Let us consider the case where n is even. Since the variables ti are anticom- 
muting, the variables t7 2z _F1 ti 2(i, and n ,2J+1 112(1 +1) commute for i # j. Thus the 
exponential of the sum in (11.37) can be written as the product of the exponential 
of each term and since te = 0, Vi, 

eAPn2P-' n 2P =  1  ± Xpq2p-1 772p (11.39) 

and according to the integration rules 

Z(A) = f X1 /71 )72X2 )73 /14 • • • X7072m-1/72m fl d tl1 = X1 X2 • • • Xm = detA. (11.40) 

This formula extends to the case where the matrix A is complex, the square root being 
defined as the determination given by taking the positive root for a positive determinant. 

We remark that 

- Gaussian integrals are different from 0 for algebras gn  with n even. 

- No convergence argument is necessary since each function on gn  including the 
exponential ones is in fact a polynomial. 

From the change of variable property and from the preceding theorem we get the 
following. 

Theorem 11. Let A be an n x n matrix with a non-zero determinant, 01 , • • • ,f9n,oi , • • • ,6n  
and in, • • • • • • ,Fin, two sets of Grassmannian variables, then 

f  e"e)+"+11.9 T-f  Adei  = (-1)n detA 
i=1 

where (6,A9) = Ei;  6iAije;  and 9.n = Ei  Ball, T7 .0 = Ei  

Proof. The proof is easy. We reduce the exponent to a quadratic form by performing 
the change of variables 9 —> B - A-1  I) and 0 —> 9 - A-1  i , which gives the quadratic 
form of the right-hand side. It remains to prove that 

f e(e'Ae) doidoi  = (-1)n  det A. (11.42) 

It is enough to compute this integral for a diagonalisable matrix A since the two 
sides are polynomials of the coefficients. The identity is then the consequence of 
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fXiBiei 11 dkdOi = flf = = (-1)n (11.43) 

This theorem will be used in the following. 

11.3 The Clifford Algebras 

We have already introduced this concept when studying the Dirac equation. Here we 
give some general properties. 

We call Clifford algebra3  an algebra F, with n generators yi, • • • , yn  satisfying the 
relations 

{Yi, = YiYj + YjYi = 281j i5i = 1, • • • , (11.44) 

To each Grassmann algebra G with n generators 01 , • • • , On, we can associate a Clifford 
algebra F2n. Let us, indeed, consider the operators 0„ the operator of multiplication by 
0„ and —a the left derivative with respect to 09 , acting on functions f (0). These operators ae, 
satisfy 

a 
10i,— ae 1= 6i j• 

We can then define new operators 

a 
Qi = — (ei + —) aei  

a 
Pi = — ei— —) 5 aei  

= 1, • • • ,n. 
We check easily that these operators satisfy the relations 

{Pi, Qi} = {Pi, Pi} = Qi} = 0. 

(11.45) 

(11.46) 

(11.47) 

(11.48) 

The operators P, and Q, are representations of the generators of the Clifford algebra 
r2n, in the space of functions on gn• 

Looking at the expressions (11.46), we note a remarkable analogy between these 
operators and the position and momentum operators for the harmonic oscillator. 

3  The fact that the metric is Euclidian instead of Minkowskian is not important. This can be shown by 
setting for the Dirac matrices: j)0 = y°  and j%j = iy1  . 
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11.4 Fermions in Quantum Mechanics 

11.4.1 Quantum Mechanics and Fermionic Oscillators 

We saw that it was possible to express the usual quantum mechanics in terms of creators 
and annihilators by means of which we can construct the space of physical states. The 
commutation rules satisfied by these operators are the ones expected from quantities 
obeying Bose statistics. 

The characteristic properties of Fermi statistics, particularly the Pauli principle, 
are naturally expressed by introducing creation and annihilation operators satisfying 
anticommutation rules. 

Let us restrict our attention to the one-dimensional case (one mode) and let us 
introduce creation and annihilation operators a and at such that 

{a, at}= 1 (11.49) 

and 

{a, a} = , at } = 0 (11.50) 

or equivalently 

a2 = (at)2 = 0.  

If, by analogy with the bosonic case, we define the particle number operator 

N = at a (11.52) 

we see, thanks to the anticommutation relations, 

N2  = ataata = at(1 — at a) a = at a = N, (11.53) 

showing that the operator N has only for eigenvalues 0 and 1, which is in agreement with 
the Pauli principle. 

As in the bosonic case, we assume the existence of a state, 10 >, the vacuum state, 
such that 

al° >= O. (11.54) 

We then check that 

NatI0 >= al-10 > (11.55) 
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ef 
from which we may define the one-particle state as 11 >

d  
 = a 1 10 >. We then check that 

>= 0. (11.56) 

The space of physical states is therefore a two-dimensional space generated by 10 > 
and 11 >. The operators and the space of states we introduced are the elementary bricks 
allowing the quantum description of a spin-Z particle. 

We can generalise these expressions to systems with n modes by introducing for each 
mode creation and annihilation operators satisfying 

{ai, = (11.57) 

{at,a~ }= = 0. (11.58) 

With each of these modes are associated two states, the vacuum and one-particle 
states, the vacuum 10 > being characterised by ai  10 >= 0, Vi. We build in this way a 
space with 2n  states: 

10 >,410 >, • • • ,a1;i10 >,a1-2ai l0 >, • • • 

By analogy with the quantum mechanics of the harmonic oscillator, we can introduce 
a Hamiltonian 

H =coat a. (11.59) 

It follows from the anticommutation rules that the states In >, n = 0,1, are the 
eigenstates 

HIn >= main > . (11.60) 

We can 'represent' the operators a and at of the Clifford algebra F2 as operators on 
ci  with generator 9. Defining the representation of an operator 0 as functions of 9 by4  

< 0101n >= 0(0) < 01n > (11.61) 

we find that 

a a 
H(9) = to-0 = to—toO

T) 
 ae (11.62) 

and from now on we will omit to distinguish an operator from its representation in the 
space of functions on the algebra. 

4  We write the ket Oln > as a function of O. 
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The ground state fo(9) =< 010 > satisfies Hfo = 0 and, if we impose the condition 

(To, fo) = 1, we find that 

fo(9) = 0. (11.63) 

Equivalently, the eigenfunction fl (0) =< 011 >, with eigenvalue w, orthogonal to 
< 010 > and of norm 1, is given by 

(0) = 1. (11.64) 

If we set < 010 > = —1 and < 11 6  > = 9, then 

< min >= f < m10 > d0 < 01n >= Smn (11.65) 

so formally, 

f 1 0  > d0 < 01 = 1 (11.66) 

and we have the closure relation 

E qin >< >= —77 = s(ri —0). (11.67) 
n=0,1 

These results extend to the case of N generators. 
If the Hamiltonian is given by H = E coi 4 az, we have a representation of the states 

as functions on the Grassmann algebra g N  with generators 01 , • • • , ON. The ground state 
fo(9) is given by 

f0(0) =< 910 >= 002 • • • ON (11.68) 

and the n-particle states, n = (n1, n2, • • • , nN), are given by 

a 
eln >= (—)nN . . . (—)f 1  < 010 > . 

aeN aei  

To satisfy the relations 

f < mI9 > a < 01n > = amn 

(11.69) 

(11.70) 

we introduce the functions < n16 >= ±6 • • • 011 , where the sign is fixed by Eq. (11.70). 
As a consequence, we have the closure relation 
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E Oln > < nit9 >= —90 • • • S(ON — ON) = 11 6 (0i —0i)• 

11.4.2 The Free Fermion Fields 

If we are interested in the description of the states of a fermionic particle, these states 
are characterised by their three momenta and by the state of their spin. It is natural 
to introduce as many creation and annihilation operators as there are distinct possible 
states. We then introduce a continuous set of operators as(p) and as (p). At p and s 
given,5  the space of physical states reduces to the vacuum state 10 > and to the one-
particle states 4(p)10 >, of four-momentum (1/P2  m2, p), and helicity s. Relations 
(11.57) and (11.58) are written in the continuum case 

{as(p), ats,(p')} = (27)32wp8(P —p') ass' (11.72) 

{as(p), as,(p')} = {ds1- (p), als,(p')} = 0 (11.73) 

They automatically imply that fermions satisfy the Pauli principle since 

(P)at (P/)10  >= —ats, (i)/)4 (P)I0 > . (11.74) 

Moreover when p = p' and s = s', the vector (11.74) is zero, showing that the particles 
satisfy the Pauli exclusion principle. 

To conclude we give an expression of the field of a free particle with spin 1. It is 
necessary to introduce a second series of creation and annihilation operators, list (p) and 
bs (p), satisfying 

Ibs(p), bts,(p')} = (27)3 2(01,8(p — p') 8ss, (11.75) 

Ibs(P), (P/)} = {bI(P), bts,(P/)} = 0 (11.76) 

and anticommuting with a and at. The states aI(p)10 > and Fst(p)10 > repres-
ent, respectively, the one-electron state and the one-positron state with momentum 
(v/p2 + m2,  p) and helicity s. 

We can thus define a Dirac quantum field by 

(k)e-ik' x st (k)v(s)  (k) (11.77) (x) = fd.C2. E [as(k)u(s) 

s=±1/2 

1-k (X) = fdpm  E [al; (k)ii(s)  (k)eik'x bs(k)'1)(s)  (k)e—ik• xl, (11.78) 
s=±1/2 

5  Here, the helicity s represents the projection of the spin on the direction of propagation p. 
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where we have introduced the notation u(s)  with s = in order to make the eigenstates 
of the helicity to appear instead of the u(")  , a = 1 or 2, as they were defined in Chapter 6. 
Obviously, we have the same convention for the v's. 

We see from these expressions that the field * annihilates an electron and creates a 
positron while the field * creates an electron and annihilates a positron. We can check 
the causality condition by taking an anticommutator of Dirac fields. We find that 

(x), /r (y)} 

1 f d3k [(# _ m)e
J 

ik.(x—y) m)e—ik.(x—y) 
(2n- )3 2Wk

oe/3 

= (x - y), 

where A is the causal Green function introduced in formula (9.103). 

(11.79) 

11.5 The Path Integrals 

The formalism we developed in the previous section makes it possible to define for 
fermions a functional integral very similar to that developed for bosons. 

11.5.1 The Case of Quantum Mechanics 

Let us consider a system with N degrees of freedom given by the Hamiltonian 

H = E wafi a-,1-,a /3. (11.80) 

We first want to solve the Schrodinger equation 

a 
i—
at

1*(0 >=111*(0> . 

Equation (11.81) can be written in the representation on functions of a Grassmann 
algebra 

i  a
a 

ekfr(t)>=< ev-Pc fr(t)>= H < 01*(0 >=Eco, —0 < 01*(0 > . 
at 'ae, 

1.1 

(11.82) 

The second equality defines the action of H on * (t, 0) = < 01*(0 > . 
Using the closure relations, we can rewrite the solution of the Schrodinger equation 

< 9/1*(0 >= f < 0/ 1e-i(?-̀ )1110 > fl  dt9. < 91*(t) > . (11.83) 
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As in Chapter 6, we see that to solve this equation it is enough to know the Green 
function: 

G(t' , ; t,9) =< 9' Ie 10  > (11.84) 

It is this quantity that we will write as a path integral. The method we follow is to cut 
the time interval into n + 1 equal intervals E = — t)/(n + 1) with to = t, to  = t'. At 
each intermediate time tj, tj = t + Ej, we insert, with variables 9(j) = 0(0, the identity 
operator given by 

1= f 19(i) > dOi(i) < 0 0)1 (11.85) 

and we use 

e—i(t'—t)H = (e—ieH)n+1 . (11.86) 

We therefore must compute G(t1  + e, 9 0'+1); t, 9 0)). We will do this calculation at first 
order in 6: 

< 9(i+i)le—i61119(i) >=< (90+1)19(i) > —is < 0(j+1)1H100) > +0(62). (11.87) 

To make the mechanism clear, we will start with a simple, one-mode, case, i.e. such 
that H = wa*a. 

Let us compute 

< 
ot e—ieH > 

= E< 0' In > Ci8na' < nI0 > 

=< >< 010 > +Cie' < 9'11 > < 110 >; (11.88) 

therefore, at first order 

< e 6̀1110 > = —0' + e-iiew6) = + 0 — isca0 + O(E 2), 

which can be written as 

< 9'Iei8x19 >= f dK e(K  ' ((9' -(9))  (1 + 16COK 0) + 0 (6 2) . 

Thus, 

< 9'le-1a/1 9 > d9 = I dKd6e(K' (B'-(9))  (1 + isac0) + (82). 

(11.89) 

(11.90) 

The interesting aspect of this last form is that it commutes with the Grassmann 
variables. 
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This result extends to the case of many variables and we can prove that 

< 10 > flclOi = ffl dicidOie("' (°'-°))  (1 + iscoafitca0,3) + 0(82). (11.92) 

Let us write the result of this calculation in the form 

< 0 (i+i)le—is II  (j) > fld01(j) 

= f 11 do w do (i) e  (i), [ea (i+1)-ea WD+ie OBa0)&p0) p 

and insert it in 

(11.93) 

G(0' t'; 9, t) 

= f < 0' le-'1110 (n) > fld0(n) < (n)le-ie1110 (n — 1) > 

x fldo(n_o • • • < omie-ieH lo > . 

Performing a right multiplication on the Green function by fl  dO and using the com-
mutativity of the expressions giving the value of the Green function at first order in e, 

we get 

t';0, n de = f (Ode Wei' Ej (6")'(9" (i+1)-("))+waP (9°M)913  (7)]  . (11.94) 

Taking the limit E —> 0 and denoting the limit measure by DO 050, we show that 

(t/ ) = f D (6 9) ei L(6,  (s),( (s))ds (
t, 
 9) (11.95) 

with the Lagrangian and the Hamiltonian given by 

L(0 (s), 0 (s)) = —i0 (s) (s) + H (9 (s), 0 (s)) (11.96) 

H (0 (s), 0 (s)) = E wafiRy (s)0,3(s). (11.97) 
a,fi 

Remark the striking analogy between this path integral and that obtained in the 
bosonic case. As in this last case, we integrate the exponential of the Lagrangian by 
replacing the creation and annihilation operators a and a* with Grassmann integration 
variables 0 and 0. 
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11.5.2 The Case of Field Theory 

It is possible to extend the results of the preceding section to the case of free fermion 
fields, that is to say, to define a Gaussian Grassmannian measure for an infinite number 
of degrees of freedom. Proceeding as earlier, we replace the annihilators and creators 
with Grassmannian integration variables. The construction can be done by approx-
imating the integrals over the momenta by Riemann sums. For example, introducing 
Grassmann variables of even indices 621  for a* and of odd indices 021+1 for b, the integ-
ration is performed on pairs d96d06, the final integral being defined by taking the limit. 
However, since the fields * and * are the real variables and are linear combinations 
of creation and annihilation operators, thus Grassmann variables, we change the integ-
ration variables to integrate over the fields t and * themselves taken as independent 
variables. We are therefore led to introduce a generating functional 

f eif d4  xrD(1fr 4)(x)+i f TO)* (x)d4  x+f (x)n(x)d4  xp ik) 

ZO-1,17) =  (11.98) 
f elf d4xrn(*,*)(x)D(*) 

where E D  is the Lagrangian density of Dirac and Ti and ti are the anticommuting sources. 
Formally, the integration measure can be understood as 

D(0,3*)  = fl dik(x)dik(x). 

xER4 

The Lagrangian is a bilinear form in -tfr and * which can be written as 

f d4  xC D(*, tfr)(x) = f d4xd4y* (x)S-F1  (x — y)* (') (11.99) 

and by analogy with the bosonic case, the Gaussian measure is defined by the 2-point 
function. We set 

< 01 T(ifra  (x) (y)) 10 > = I *a (X) 1/f/3(y) elf d4x.cokok)(x)Do
k3

vi)  

f elf d4  xr(*,*)(s)D oh 0.)  

1 S 6 

i2  S 11 a (x) 81113(Y) 
Z (11, 11)1,71,1=o • (11.100) 

Since the variables 17 are anticommuting, by convention the functional derivatives with 
respect to ri act always in the given order to the left6  of Z, that is to say, from right to 
left, and the derivative with respect to ti acts always in the given order to the right of Z, 
that is to say, from the left to the right. 

6  Note that the integrand or the integration measure involving pairs of anticommuting variables commutes 
with the Grassmann variables. 
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An explicit computation from the definitions (11.79) shows that 

< 01 T (*a  (X)* /3 (y))10 >= iSF(x — y) 

and thus (since it is a Gaussian expression) 

e-i(n,sFq) = -if f ii(x)sF(x)y)11(y)d4 xd4y 

(11.101) 

(11.102) 

The last equality, which can be taken as a definition of the integration measure on the 
Dirac fields, gives back all the properties of the Gaussian measure. Thus, 

OIT (*al  (x 1)00)2  (x2)1  k V'1) 132 (Y2))10  > 

1 S 8 8 8 
Z(11, q) I ii=t1 =0 

14  8n«1  (xi) 8n«2  (x2) 81161  (Yi)  51162  (y2) 
8 8 

i(SF11)(x2)ce2ek=n=0 
811«1 (X1) S1161 (Y1) 8 /432 lY2) 

8 

8116t C 1) S 1'1)52 
 (Y2)i(SFq)(x2).2i(SF11)(xi).,ei@l'sF   1)1,1=o 

Y  
8 

{ iSF  (x2 — Yi)a2thi(SF11)(xi)c)i  
811)52 U2) 

+ i(SF1'1) (x2),y2iSF (x — Yi) c)i )51  ei(q'sF  '1)  lii=n-o 

= SF (X1 /31  SF (X2 — Y2)a2/32 SF (X2 Yl)ce2 /31  SF (X1 — Y2)«1  62 

(11.103) 

The final expression can be reinterpreted by saying that it is the sum over all possible 
contractions of a with a 'c/i with a factor —1 allocated to each circular permutation 
making them closest in the following order: first then each contraction generating 
a propagator iSF. 

Remark: 

• The equality between T-products and moments of a Gaussian Grassmannian 
measure is justified by the fact that the two expressions have the same rules 
of transformation with respect to permutations of the fields. 

• The convergence argument, valuable in bosonic field theories, justifying the 
choice of is for the propagator has no meaning here since the variables of 
integration are bounded. 

• The integral expressions in this chapter are limits of integrals over a finite 
number of variables, integrals which are reduced to the integration over poly-
nomials of Grassmann variables. They only express algebraic relations. They 
have, however, the interest, up to anticommutation problems, to behave as 
usual integrals by changes of coordinates, Jacobians and determinants being 
replaced by inverses of Jacobians and determinants. 
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• We can define, as in the bosonic case, the integration of arbitrary Lagrangi-
ans, including fermionic variables that are behaving like bosons (sums of 
monomials having an even number of fermion fields), by considering that 
the non-quadratic part is a perturbation of the quadratic part. 

• The choice of Dirac fields as integration variables can be understood by the 
fact that they satisfy equal time anticommutation relations. Using indeed the 
formula (11.79), we get 

(t, x), (t,Y)} = {ky(t, x), (t,Y)}4/3 

1 d3 k [(k_ m)y0e—ik.(x—y) 
(27)3  f 2.k 
+(k+  m) yo eik.(x—y)

iiaje 
 

= 8438(3)  (X —y). 

• Using the integration formula (11.41), we can show that 

f ei f (14 xrD")(x)D(1  fr,-(k) oc detSl  = e-Tr log SF 

(11.104) 

(11.105) 
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Relativistic Quantum Fields 

12.1 Introduction 

We studied interacting quantum fields in Euclidean space. This formalism is quite use-
ful because it allows for the manipulation of well-defined quantities. The connection 
between quantum Euclidean quantities and physically meaningful relativistic quantities 
can be established via a complicated operation of analytic continuation which can be 
synthesised into an equivalence between a set of axioms that Euclidean theories must 
satisfy and the basic axioms that any 'reasonable' relativistic theory seems to obey. 

We will show in this chapter how, starting from these general reasonable basic 
axioms, more or less independent from any specific theories, but which are admitted to 
be true by any theoretical physicist, we arrive to deep results shaping our understanding 
of physical reality.' 

In some, admittedly oversimplified, cases it has been shown during the recent years 
that some of the Euclidean theories exist, satisfy the Euclidean axioms, and obey certain 
resummation properties of their perturbative expansions (Euler resummation property 
linked to analyticity in the coupling constant). This last point gives a solid basis to the use 
of perturbation expansions (and Feynman diagram analysis) to extract predictions and 
numerical values from the general models of quantum field theories. A brief exposition 
of these results, as well as of the mathematical methods used to obtain them, is presented 
in Chapter 24. 

This makes it possible to assert that quantum relativistic theories have a real global 
mathematical existence, and therefore we can manipulate, with the usual precautions, 
interesting quantities such as vacuum expectation values of products of fields. 

12.2 Relativistic Field Theories 

We admit in what follows that the calculation of vacuum expectation values of the T-
product of a product of fields is achieved by the following set of correspondences: 

I  The first three sections will follow closely the route traced in: R. F Streater and A. S. Wightman PCT, 
Spin & Statistics, and All That (W. A. Benjamin, New York, 1964). 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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Relativistic quantities Euclidean quantities 

t —it 

0(t, OE (x) = (—it, x) 

r(0, au. 0) LE(0E3V0E) 

i f rd4 X f rEd4X 

IT((•••)(ei f "4x))10> <01(... LEd4x10>  
< S-21Te • • )IS? >— <0. < S-21(' • )IS-2  >= 

<01T(elf "4x)10> <01 C./. LEd4x10> 

However, to relate the vacuum expectations to physical quantities, it is necessary to 
define with more precision a certain number of basic properties of relativistic quantum 
fields. These properties have been grouped together in the form of axioms, the Wightman 
axioms, that any reasonable quantum field theory is supposed to satisfy. 

12.2.1 The Axiomatic Field Theory 

12.2.1.1 The Wightman Axioms 

We give a short survey of what these axioms are for a massive scalar field. 

• Axiom 0: The space of states 
The states of the theory are the unit rays of a Hilbert space 7-i on C. 

• Axiom 1: The regularised (or smeared) fields 
If f E S, the space of C°° rapidly decreasing functions, then 

4(f) = f 0(x)f(x) d4x (12.1) 

is an unbounded operator, defined on a dense subset D of 7-i and, for 0, W E D 

(0,00W) = (000,W), (12.2) 

which implies that (0,4(x)1P) is a tempered distribution. 
Moreover 4(f)D C D and the products of smeared fields is meaningful. 

• Axiom 2: The Lorentz invariance 
There exists a continuous unitary representation U (a, A) of the restricted Poincare 
group such that 

U (a, A)cp(f)U-1  (a, A) = 0(fia,n)), (12.3) 

where A„,A) (x) = f (A-1(x - a)); moreover U (a, A)D C D. 
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p = 0 Figure 12.1 The spectrum of P. 

• Axiom 3: Stability of the vacuum state and the energy—momentum spectrum 
Let P be the energy—momentum operator. Its spectrum is identical to that of a free 
scalar field of mass m (see Fig. 12.1), that is to say given bye = ol U }pip°  > 
0, p2  = m2} U 17,2m, where 17,2m = E V+  ip2  > 4m2}; this domain is Lorentz invari- 
ant. p = 0 is an isolated eigenvalue which corresponds to an eigenstate I Q >: the 
vacuum. Since this eigenvalue is invariant under transformations of the restricted 
Lorentz group, it follows that U (a, A)I S2 > = I Q > 

Since P is the generator of the translation subgroup, this means (in the notations 
of Chapter 5) that the support of E (p) is {p = 0} U {plpo  > 0, p2  = m2 } U 17,2m. 

• Axiom 4: The locality 
Let fi and f2  E S, with compact supports, such that the supports of fi and of f2  are 
space-like separated, then for all 0 E D 

[4' (fi (f2)110 >= 0. (12.4) 

• Axiom 5: The completeness hypothesis or the cyclicity of the vacuum state 
The set of vectors P(0)1S2 >, obtained by applying polynomials 0(f), f E S, on 
the vacuum, is dense in 7-i. We say that the vacuum is cyclic. 

This last axiom implies that the fields form a complete set of operators in the 
Hilbert space. 

Remark: The hypothesis according to which the vacuum state and the mass hyperbol-
oid p2  = m2  are isolated in the spectrum P (that is to say, the mass m # 0) is 
fundamental for the proof we will give on the existence of asymptotic states. This 
hypothesis is not satisfied for the electromagnetic field (its mass m is 0) for which 
the spectrum of P is in V. . 

These axioms, which were written for a massive scalar field, can be extended to 
the case of several fields and, in particular, to the case of massive spinor fields. The 
introduction of spin requires some simple modifications. Axioms 0, 1, and 5 are un-
changed. Axiom 2 is modified because of the presence of spinor indices. Indeed, U is 
a continuous unitary representation of the covering group of the Poincare group, i.e. 

2  We define V+  = {p E R4  IPO > O,p2 > O} and 1-7+  = {p c 1R4 ipo  > O,p2  > 
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of the inhomogeneous SL(2, C) group. Thus if cpj  are the components of an irreducible 
representation of SL(2, C) or of SL(2, C) and of some reflections, then 

U (a, A)Cf)U-1  (a, A) = E sik(Ari)ok(na,A,), (12.5) 

where A —> S(A-1) is a finite-dimensional irreducible representation of SL(2, C) of the 
form DE/1421 . This implies for the fields themselves the following. 

• Scalar field 

U (a, A)0(x)L1-1  (a, A) = 0(Ax + a) (12.6) 

• Dirac field 

• Vector field 

4 

U (a,A)-k(x)U-1  (a, A) = E s„, (A-1)* (Ax + a) 
p=i 

(12.7) 

U (a,A)A,(x)LI-1  (a, A) = A; (A-1)A,(Ax + a) (12.8) 

Axiom 4, axiom of locality, is replaced by the following: 
One or the other of the following commutation relations is satisfied: 

PiOci (Pk )] ±I 0  >= 0 (12.9) 

if the supports of fi and f2  are space-like separated, and 

[24,13]± = AB ± BA (12.10) 

The choice of the commutator for integer spin fields and of the anticommutator for 
half-odd integer spin fields is a consequence of the spin-statistics theorem which will be 
proven from these axioms. 

Most of the results in axiomatic field theories are proved starting from vacuum ex-
pectation values of products of fields. A theorem, due to A.Wightman, shows that there 
exists a complete equivalence between vacuum expectation values satisfying certain 
properties and the existence of fields satisfying the previous axioms. 

12.2.1.2 The Discrete Symmetries 

In a previous chapter we had introduced some important discrete transformations in 
the framework of the Dirac theory. Here we want to extend and generalise these no-
tions to the case of a quantum field theory. The symmetries we have in mind are the 
following: 
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• Space inversion Is, often called parity P. It is the transformation in which x —> -x. 
In classical physics all three-vectors, such as three-momenta, the electric field, etc., 
change sign under parity, while pseudo-vectors, such as the angular momentum, 
or the magnetic field, don't. 

• Time reversal h or, simply, T. It is the transformation which changes t —> -t and, 
thus, reverses the sign of velocities. 

• Charge conjugation C. This transformation has no analogue in classical physics. It 
changes particles to anti-particles but leaves the space-time point unaffected. 

Here we want to define these operators and study some of their properties in quantum 
field theory. In traditional quantum mechanics an operator is defined through its ac-
tion on the physical states. Therefore, the action of a symmetry transformation on an 
observable Q, Q —> Q, is supposed to be such that for all states 10 > 

< 0  I Io >=< I Q4' >, 

where 1' >= U10 >, which can be interpreted as a relation between the active and 
passive interpretations of the symmetries. This leads us to write that 

Q = U-1 QU (12.12) 

if 0 —> 0' is unitary, 

"Q = (U-1  QU)* (12.13) 

if 0 —> 0' is antiunitary. 
In quantum field theory we can prove that it is sufficient to define these transform-

ations through their action on the fundamental fields. Let us consider the example of 
space inversion Is  for a theory with a single scalar field 4(x).4 has no spinor indices, so 
we can write that 

U(IS)0(x) U-1(IS) = gpci) (Isx) = rip4)(x°, -x), (12.14) 

where we have allowed for a phase ljp. For boson fields we will adopt the convention that 
P2  =1, so tip = ± 1. Although the choice is, in principle, arbitrary, we will see that it is 
often dictated by physical considerations. We will call fields with tip = 1 scalars, while 
those with rip = -1 pseudo-scalars. 

From this definition we can infer the action of U(.4) on the transformations of the 
Poincare group as 

U (Is)U (a, A)LI-1  (Is) = U (Isa, I.1  AIR). (12.15) 
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For simplicity, let us assume the unicity of the vacuum state.3  So, up to a phase, we 
can write U(L)1 S2 > IQ > 

It is not difficult to prove that these definitions fully determine the parity operator 
U(Is). For that we use the fact that the vacuum state is the only state invariant under the 
action of the Poincare group and the fact that since the field is irreducible, the polyno-
mials of the field applied on the vacuum form a dense set in the Hilbert space. Thus, any 
operator which commutes with the field is a multiple of the identity. The compatibility 
with the Poincare group as it is expressed in (12.15) and the action on the vacuum 
determines the action on all states. For example, 1W > = (fi  ) • • • (fn) I Q > becomes 

U(Is) I tp > = u(L)4)(11)u-1  (I,) • • • u(Is)ovou-luougois2 > 
=-4,etb•-o(jois2>, (12.16) 

where :4 (x) = ff  (Lx). 
This discussion can be repeated for the other two discrete transformations, time re-

versal and charge conjugation. Staying always with the example of a scalar field, we write 
that 

U(I)p(x)U-1 (It) = (Itx) = (—x°, x) (12.17) 

U(C)cp(x) U-1  (C) = ricOt (x), (12.18) 

where we have introduced two new arbitrary phases, which we take as being equal to ±1. 
Note also that U(C) in (12.18) is assumed to be a linear unitary operator. For example, 
if the field 4  is a free complex field with creation and annihilation operators a, b, at, and 
bt, the action of charge conjugation is defined, up to a phase, as a 4--> b and at H bt, 
leaving complex numbers unchanged. In contrast, U(I) is assumed to be anti-unitary. 

We can similarly define the relations that U(It) and U(C) must satisfy with respect to 
the Poincare group: 

U (It )U (a, A)U-1  (It ) = U (Ita, 171  AIR) 

U (C)U (a, A)U-1  (C) = U (a, A). 

The action of these operators on the vacuum gives back the vacuum up to a phase. 
We usually fixed this phase to be equal to 1 and we write that 

U(Is)I Q > = U(It)IQ > = U(C) IQ >= IQ > . (12.19) 

The action on any state follows as was done for the parity operator. 
We thus see that the implementation of symmetries is linked to the definition of their ac- 

tion on the fields and this is independent of the fact that these symmetries are, or are not, 

3  We could relax this assumption and cover more general cases. 
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symmetries of the theory. It is therefore important to extend these definitions for fields 
with any spin. This can be done because our fields correspond to irreducible represent-
ations of the Lorentz group, so their components have well-defined spinor indices. Con-
sequently, we can use the results of section 2.9. In an obvious generalisation we write that 

= tiptp( + k)(-1)-1 0 • .. 0 ..' 17 (6)(,(3) 
U(Is) (a)(,e)  u(Is)-1  

u(Is)q(")(P)u(Is)-1  = qpip(j + k)(-1)k 0 • • • 0 (")(6)  (12.20) 

u(c) (a)(P)U(C)-1  = 0 • • • ® V")(13)*  

U(C) /7 (6)(13)  U(C)—i  = 0 • • • 0 (")(73)*  (12.21) 

U(itg (a)  (1)  U(It)—i  = t1T ® • • • 0 (a) (1j)  

U(It)t1(6)
(13) 

 U(It)—i = 1T ® • • • 0 ?1(6)(15)  (12.22) 

(12.23) 

where (a) represents a set of j undotted indices and (13) a set of k dotted indices: 
(a)(13)  = VY1 ii Pk and ti (")( fi)  = fik and tp(i k) equal i if j + k is odd and 1 if 

j + k is even. The notation 0 • • • 0 must be understood as the action of one on each 
of the indices. The ti's are again arbitrary phases which should be chosen for every field. 
We check on the previous expressions that the antiunitary operator 0 corresponding to 
the product PCT has for action 

wame-i = n iF(i+k)(_1)/ (Ce)(73) *  

et/ W(13) = n  iF (.1 + k) (_ok 17 (6)(13)* (12.24) 

where n equals the product of the three ti's and F(j + k) equals 0 if j + k is even and 1 
if j + k is odd. 

We deduce for the expectation values that if the action of the operator PCT is well 
defined, for example by the formulae (12.24), on fields of components Ow  4, • • • , 
where tt, p, • • • , v are sets of undotted and dotted indices, then 

(S2, 0,(xi) • • • kv(xn)S2) = (S2, ee-10„(xoe•••e-lik,(xoes2) 
= (s2,e(p,(-x1)• • • ifr:(—xn)S2) 

= (es2,0,(—x1)•••*:(—xn),Q) 

= (s2,4);,̀(—xi)••• -, fr(—xn)s2) 
= (s2,-0-,(—xo• • •4),(—xi)s2). (12.25) 

Conversely, if this identity is verified, we show that there exists an operator 0 sat-
isfying the relations (12.24). We have already mentioned the PCT theorem, which can 
be stated here by saying that for a Lorentz invariant quantum field theory with local in-
teractions, there exists always a choice for the phases n of the various fields, usually in 
more than one way, such that the product PCT, taken in any order, is a symmetry of 
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the theory. We shall present the precise conditions for the validity of this theorem in the 
next section. 

12.2.1.3 The Wightman Functions 

Most of the results in axiomatic field theories are proved starting from vacuum expecta-
tion values of products of fields. A theorem, due to A. Wightman, shows that there exists 
a complete equivalence between vacuum expectation values satisfying certain properties 
and the existence of fields satisfying the previous axioms. Numerous theorems follow 
directly from these axioms and, as a result, their validity is independent of the precise 
nature of the interaction. 

It is not in the scope of this book to give a systematic presentation of axiomatic field 
theory. However, in the sequel, we will give the proof of two important consequences of 
these axioms, the PCT theorem and the spin-statistics theorem, because they still play a 
fundamental role in our description of reality. 

Let us consider the vacuum expectation value 

< 0,0«, (xi) " • Ocen (X0S2  >= Wai,••• ,cen (Xl, • • ' xn), (12.26) 

where a, represents a set of spinor indices (dotted or undotted). VV (xi, • • • , xn) is called 
a Wightman function. Let us study some consequences of the Wightman axioms on the 
structure of the Wightman functions. 

We will list some of the main properties of the vacuum expectation values. 
From axiom I, we get that 

< s2, (Pi(i)02(2), • • • 4n(n)s2 > 

exists and is a separately continuous multilinear functional of the arguments fi ,f2,  . ,fn  
which are elements of S(R4). It follows from this fact (through the so called nuclear the-
orem) that this functional can be uniquely extended to be a tempered distribution of the 
four-vectors xi, x2, . , xn. This tempered distribution, element of S' man),  is the Wight-
man function Wai, ,an  (xi, • • • , xn) introduced in Eq. (12.26). Some difficulties may 
result from this abuse of notation since it is only < Q, 0„1  (fi) • • • Oan  (fn) S2 > which is 
meaningful. Particularly, this is what happens if some variables are taken to be identical, 
in which case the pointwise multiplication by functions which are not sufficiently regular 
(e.g. 6 functions) can result in quantities which are meaningless. 

This last difficulty is the source of renormalisation problems. 
We now state a theorem, without proof, which summarises all the properties of the 

Wightman functions resulting from the axioms. 

Theorem 12. 

(a) Relativistic transformation law 
Since the vacuum state is invariant under the action of the Poincare group and in 
particular of the translation group, we obtain 



268 Relativistic Quantum Fields 

Wcei  , • • • , xn) = < S2, U(a, 1)0cri  (xi) • • • (Pan (xn)U-1  (a, 1)D > 

= (< Q, U(a, 1)00,1 (x0U-1  (a, 1)U (a , 1) • • • U(a, 1)0%, (xn) 

U-1  (a, 1)S2 > 

= < S2, (Pal  (xi + a) " • (Pan (xn + a)S2 >= Wai,••• ,cen 

(xi + a, • • • , xn + a), (12.27) 

which shows that the Wightman functions depend only on the difference of the 

arguments. Setting j = xj+i , j = 1, • • • , n — 1, we define 

" 4.n-1) = W(xl,." Xn) • (12.28) 

Formula (12.27) can be rewritten by replacing the translation group by the Lorentz 

group. With A E SL(2, C), the Wightman functions transform according to 

,a„ (xi, • • • xn) = < D, U(0,A)Oce1  (xi) • • • Oan  (xn) U-1  (0 , A)S2 > 

= E sc1,61(A-1) ••• S an,fin  (A-1) < S2, 0131 (A (A)x i) • • • 
131,• • • fin 

(I)  Pn (A(A)xn)S2  > 

= E smth (A-i)••• S an  ,fin(A 1 ))/V ,fin (A (A)xi , • • • , 
fii,•••fin 

A (A)xn), (12.29) 

where S(A) is a finite-dimensional irreducible representation of SL(2, C). 

(b) Spectral condition 
Using the fact that 4)(x) = U(x, 1)0(0)U-1  (x, 1) = U(x, 1)0 (0)U (—x, 1) and the 

spectral representation of U, we obtain 

(4.13• • • 3 fl-i) (12.30) 

—< Q, U(xi, 1)0„1  (0)U(x2— xl , 1) • • • U(xn  xn_i, 1)(Pan (0)U(—xn, 1)D > 

=< (Pal  (0)U(-1, 1) • • • U(—n-1, 1)(/),,n  (0)S2 > 

= f f
< S23 Oat  (0)dE(Pi) • • • dE (Pn-i)Oan  (0) S2 > 

(P1, " Pn-1) di  P1 " Pn-1 • (27)4(n1) 

The Fourier transform W of W is also a tempered distribution. 

(c) Hermiticity condition 

1 f f 41• • •-iPn-l-xn-1 

< S2 , (xi)(1)2(x2) • • • , On(Xn)S2) = 2  (lYn'(Xn) • • • , (1);(X2), 4)i'  (xi) >. (12.31) 
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(d) Local commutativity 
Let 7 be a permutation of {1, 2, ... , n} —> {i1, i2, in }, then 

W(X13 X23 " Xn) = VV (Xio Xi2.5 " Xin)3 

where 

Wir (Xil 3 Xi2 3 • • • 3 Xin ) = (-1)m  < 2 (Pii (xi1 )0i2 (xi2) • • • Oin (xin )Q > 

if the differences xj — xk  are space-like for all indices j and k which are exchanged 
by the permutation and m is the number of exchanges of anti-commuting fields 
necessary to arrive to the new order. 

(e) Positive definiteness condition 
It is a set of formulas expressing in terms of the Wightman functions the fact that 
the norm of the vector 

> = foS2  > f 011(xi)fi(xi)d4x1S2  > 

f± 021 (X1)022 (X2)./2 (Xi , X2)d4Xi d4X2 Q > + • • • 

± f Oki (X1)(142(X2) • • • Okk(X0fk(X13 X23 • . . 3 X0d4 X1 • • • d4 Xler2 > 

is non-negative. 

These five statements make it possible to reconstruct, starting from the vacuum 
expectation values, a field theory satisfying the Wightman axioms. 

We need another result before going to the analytical properties of the Wightman 
functions. It is a consequence of the axioms, but it is not necessary for the reconstruction 
of the theory. 

This result expresses the fact that when two systems at point x and y become separated 
by a large space-like distance, then the interaction between them falls off to 0. This 
is what has been observed for interactions driven by massive particles, the clustering 

-mass x Distance . property being on the order of e A weaker result can be obtained, with 
more difficulties, when the particle describing the force is massless. This is, for example, 
the case for electromagnetism since the photons are massless. In that case, the clustering 
is no more exponential but power-like. 

Theorem 13 (Cluster Decomposition Property). 
Let a be a space-like vector. Then, as tempered distribution 

VV (x 1, • • • , xl.+1  + Xa, • • • , x, + Xa) 

—> VV (xi , • • • ,xj)VV(xj+i, • • • ,xn) 

as X —> oo. 

(12.32) 
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We will not give a complete proof of this theorem, only some plausibility arguments. 
We will also suppose that we are in the case described by the first axiom, i.e. a theory 
in which there are massive particles, therefore ensuring that in the energy-momentum 
spectrum, there is a mass gap. 

We note that since 4)(x + a) = U (a, 1)0 (x)U-1  (a) and the vacuum is invariant under 
the action of the Poincare group 

VV(oci , • • • , xi, xi+  + Aa, • • • , xn  + Aa) 

_< S20 (xi ) • • • (xj)U(Xa, 1)0 (xj+1 ) • • • 0(xn)S2 > . (12.33) 

Now the rest of the proof consists of showing that in some sense (in fact in a weak 
operator topology), the operator U (Aa, 1) tends, when —> oo, a being space-like, to 
the orthogonal projector on the vacuum state. 

This also can be seen using physical arguments. Let us introduce a partition of the 
identity as in Chapter 8, 

EIn><ni = 1, (12.34) 

where the sum (or the integral) runs over a set of orthonormal states spanning the Hilbert 
space of physical states (which includes the vacuum state). 

Then the left-hand side of (12.34) can be written as 

< 124(xi) • • • 4)(xj)U(Aa,1)0j+1 • • • 4(xn)S2 > 

= E< s24(x1)  • • • cx;) n > eiAa' P  < n1(I) j+1 • • • 00(xn)S2 > 

= < Coc ) • • • cx.d s2 >.< s201.+1 • • • cxos2 (12.35) 

E< s20(x1) • • • coo > eiAa'13  < n1(1) j+1 • • • 00(xn) >, 
n.12 

where P is the momentum operator. 
Now the end of the argument is that the second part of the right-hand side of (12.35) 

tends to 0 when —> oo by the Riemann-Lebesgue lemma. This uses the fact that in 
momentum space, all states I n > have a spectrum whose closure does not include p = 0. 

12.2.1.4 Analytical Properties of the Wightman Functions 

Our goal is the proof of the two main theorems PCT and spin-statistics. We will see that 
because of the conditions imposed on the vacuum expectation values by the axioms, the 
Wightman function have some analyticity properties that we will now explore. 

We remark that if E V+, the scalar product in the Minkowski space p.n is positive 
and the functions 

e-iPi • ( n-l-inn-i) (12.36) 
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are exponentially decreasing and in S(R4('1) ). We show easily that in the variables 
= - 

W(1, • • • = W(41 i171, • • ' /1-1 (12.37) 

is an analytic function of for -q:j  E V+, which is usually described by saying 
that the variables " 61-1 are in the tube Tn-i where Tn-i = R'1, • • • , E 
V+, i = 1, . . . ,n- 11. This result implies the following: 

• The Wightman functions are the boundary values (from the analyticity domain) 
of the analytic functions: 

ig/(1, • • • , /1-1) = lim IV(1 -iiii,... -ir/n-1)• 
111, ...,1ln-1 0  

E V+  

• The points = (-inj°, j) j = 1, • • • , n - 1, belong to the domain of analyticity of 
the Wightman functions. These points are the so called Euclidean points. 

This last result clears up partly the preceding remarks showing the existence of a 
relation between Euclidean theories and relativistic theories. It justifies in particular the 
replacement of t by -it as being the result of an analytic continuation. 

We restrict our discussion to the case of one scalar field, the extension to more than 
one field or to spinor fields being relatively easy. Formula (12.29) becomes then 

VV (xi, • • • , xn) = 14) (A)xi , • • • , (A)xn), (12.38) 

that is to say the Wightman functions are invariant under the action of the restricted 
Lorentz group or equivalently under the action of SL(2, C). This property is obviously 
also true for the W's. This result makes it possible to enlarge the domain of analyticity 
of the Wightman functions. 

We can indeed introduce the complex Lorentz transformations by replacing in the 
formula which links the restricted Lorentz group to SL(2, C) A by B an element of 
SL(2, C). We thus define x —> A (A, B)x for A, B E SL(2, C) by 

—> Ak" Btr (12.39) 

and therefore 

1 
11(A,

2  
= -Tr(crcr A„Btr). (12.40) 

We check that the group law defined by Eq. (12.40) corresponds to the following law 
of multiplication for the elements of the complex Lorentz group L+  (C) 
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01,B1)n(A2,B2) = A(A1,42,BIB2). (12.41) 

A multiplication law can be defined over pairs of elements {A, B} of SL(2, C) x 
SL(2, C) by 

{Ai,Bi} {A2,B2} = {zzl1A2,B1B2} (12.42) 

and the representations DM of Chapter 2 extend to L, (C) by 

,,:x2j,1*••/2k A):,1  1  " • A,,Y22j B 
)5
;51

1
.. .

132k'Yl3s• • ,),2jsls••2k
(12.43) 

The pairs {A, B} and {—A,—B} define the same element A (A, B) and they are the only 
ones. The interest of the introduction of L+(C) comes from the fact that two elements 
of the group {1, 1} and {1, —1} can be continuously related. Thus, the complex Lorentz 
group connects the two components LI and 141" 

Coming back to formula (12.38), this means that we can rewrite it as 

VV (xi, • • • , xn) = VV (A (A, B)xi, • • • , A(A, B)xn) • (12.44) 

The left-hand term having an analytic continuation into the tube Tn_i, the right-hand 
term is analytic for all the points A(A,B)x, with {xi — x2, • • • , xn_i — xn} E . We call 
extended tube the set 

(12.45) 

= {A(A, MO, • • • , A (A, B) (0, • • • , E Tn_iV A, B E SL(2,C)} • 

The Wightman functions are therefore analytic in the extended tube. Applying 
formula (12.44) for A = —1 and B = 1, which corresponds to A = —1, we find that 

= W (- 1,• • • ,- 11) • (12.46) 

The result extends to the spinor case. Using the fact that S(-1, 1) = (-0)1, j being 
the number of undotted spinors, we get the general formula 

(4'1, • • • , = (-1)-7 irc,1 ,...,c,n(-1, • • • (12.47) 

where J is the total number of undotted indices (here with our hypothesis: only one 
spinor field, J = nj). As we will see, this formula is one of the essential steps in the proof 
of the PCT theorem. 

The last property which must be exploited is the local commutativity. We have seen 
that the vacuum expectation value of a product of fields, in a given order, makes it 
possible to define a function analytic in an extended tube of which it is the boundary 
value. What is the relation between this analytic function and that which can be obtained 
from the vacuum expectation value of a product of these fields but in another order? 
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Let us show first that the extended tube contains real points of analyticity. To be 
convinced, it is enough to consider the case of a four-vector. Therefore, let us assume 
that E 77 and seek if there exist real "'s. By definition has the form = A( —iti) with 
rl 2 = jo2 = q2 E V+  ; therefore The reality of implies that = 0; 
thus, is space-like since rj is time-like; therefore, 2  < 0. It is easy to explicitly construct 
such points. For example, let us consider = 0, 0), 4.0 with c  -1 real and such that 

< ''1; thus, = A (a)z with z = ("° cos a —k"1  sin a, —k"°  sin a + cos a, 0, 0), where 

cosa i sin a 0 0 
A(a) = i sin a cosa 0 0 

0 0 10 
0 0 01 

(12.48) 

is an element of the extended tube since, if n-  > a > 0, then —z E V+. The real points 
of 7n 1 , which are called Jost points, form a space-like convex set.4  We show that an 
analytic function which vanishes at the Jost points is identically 0. This implies that if 
two analytic functions coincide on the Jost points (or an open subset of Jost points), then 
there exists a unique analytic function which coincides with each of them. 

This last result shows, using local commutativity, that all the analytic functions ob-
tained by the analytic continuation of vacuum expectation values of the product in any 
order of n fields are in fact the different pieces of a unique analytic function. We will 
prove this result. 

Let us consider spinor fields with components 4,, where, as before, a represents a set 
of dotted or undotted indices. The axiom of local commutativity implies the following 
equality between Wightman functions, 

Wai,••• ,cen " xn) — (-1)F  W „crin (xil , " xin)3 (12.49) 

if all the differences xi  — xj  are space-like, (i1 , • • • , in) being a permutation of (1, • • • n) 
and F being the number of half-integer spin fields which have been permuted. We would 
like to identify these two functions as boundary values of the same analytic function. 
This will be possible if they have in common an open set of Jost points. We will show 
that this is indeed the case in an elementary context, that is to say the permutation of 
two contiguous indices j and j + 1, since an arbitrary permutation is a sequence of local 
permutations, and thus the result extends to the general case. 

For simplicity, let us consider two Wightman functions of a scalar field, 
Fl = VV (xi, • • • xj, xj+  , • • • xn) and F2  = VV(Xi , • • • , XJ+1, XJ, • • • , Xn). 

4  More precisely a real point 6,• • • , is in 7,', if and only if the vectors of the form 

with Ai > 0, E Ai  > 0 
i=1 

are space-like. 
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Corresponding to them there are the functions W(1, • • • , • • • , 
W(&1," " with 

&k = 1 -k<j— 1 and j + 1 <k<n 

j-1 = + 41i 

4.j 

j+1 = j+1 • 

and 

(12.50) 

These two functions are the boundary values of functions analytic in the extended 
tubes and are therefore analytic in the respective Jost points. Let us show that they have 
common Jost points. For this purpose, let us take k  = (0, b, 0, 0) for k 11,1,1 + 1, 
41_1  = (a, b, 0, 0), j = (0, 0, c, 0) and = (—a, b, 0, 0) with 0 < dal < b. Then the 
vectors A = XJ-1 4:1-1  + + Xj+i i+ i are space-like vectors for all X > 0. It follows that 

+ Al 1  + = A + (A3_1 + Aj+i — DAi (12.51) 

is also space-like. Adding the other components k, we see that these particular Jost 
points are common to the two tubes and form an open set. Since these points are real 
points of analyticity and because of local commutativity F1  = F2 coincide on them, they 
are the continuation of a unique analytic function. 

12.2.1.5 The PCT and Spin-Statistics Theorems 

The proof of these two theorems, which we will only sketch, requires the use of nearly all 
the Wightman axioms. This means that they are deep results of general principles which 
form the foundations of contemporary physical theories. For example, in the case of the 
PCT theorem, the link between processes involving particles and those involving anti-
particles can only be understood using the large domain of analyticity in which physical 
quantities can be analytically continued. 

Let us consider a theory with spinor fields 4 , • • • , Ifr„, each index it, • • • , v repres-
enting a set of dotted or undotted indices (a)(,e), transforming according to irreducible 
representation of the restricted Lorentz group. We saw in the section about the discrete 
symmetries that this implies the existence of an antiunitary operator e such that 

= (12.52) 

where j is the number of undotted indices in it and F(4) is 0 if the spin of the field is 
an integer and 1 if it is a half-odd integer. We can therefore state the following theorem, 
originally due to W. Pauli. 

Theorem 14. The PCT theorem: consider a relativistic field theory with spinor fields 
Ow  • • • transforming according to irreducible representations of the Lorentz group 
and satisfying the usual commutation rules. Then the following identities are satisfied, 
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< ,cbit(X1) • • • *v(Xn)S2 >= iF  (-1)).  < 3 1k v(-Xn) • • • Ott(-X1)S2 (12.53) 

where F is the number of integer-spin fields and , the total number of undotted indices. 

A corollary of this theorem is the following. 

Corollary 1. If is a scalar field satisfying all the Wightman axioms, then the Wightman 
functions are invariant under the action of the operator PCT, appropriately defined.5  

The corollary results from the fact that for a scalar field F(0) = 0 and y = 0. 
Let us prove the theorem. 
Let 

VVA, ,v  (xi, • • • , xn) =< 52, (X 1) • • • 'cfr.  v (X n) > (12.54) 

and W , • • • , be the corresponding Wightman function. It transforms under 
SL(2,C) x SL(2, C) as 

SM
1 ' 
(A B) • • • S v(V (A, B)Wte (" 1 ,  • • • , n-1) P,P 

= ,v(A(A,Bgi, • • • 11(A,13gn-i) (12.55) 

for in the extended tube. It follows from (12.55) that if the total number of indices, 
dotted and undotted, is odd, the Wightman function vanishes. It is enough indeed to 
write this equation for (A, B) = (1, —1) and (A, B) = (-1, 1) and to remark that 

s ,(1,-1) • • • sv(*v,) (1, -1) = S p'„ • • • sv,„ (-0-7 AIA 
sm (-1,1) • • • sv(*v,) (-1, 1) = Su,w • • •gv v  (-1)K  (12.56) 

and thus the first term in (12.55) changes sign while, since A(1,-1) = A(-1, 1) = —1, 
the second term remains invariant. Thus, according to formulae (12.55), we deduce that 
for • • • , in the extended tube, 

W ,v("1, • • • = (-1)Y  Wit, ,vH-1, • • • ,-61-1) • (12.57) 

From local commutativity, for space-like points x1  , • • • , xn, 

< (xi ) ... Viv(xn)S2 >= iF  < I 2 , iffy (xn) • • • (Xi) 

the factor iF  coming from the equality 

,r2 > (12.58) 

F(F-1) 
= 1 , (12.59) (_1)P (-1) 2 (_1)(F-1)+(F-2)+ +1 = = 

5  As this was explained in the previous section, this assertion results from the fact that we can always choose 
the phases for the various fields such that the invariance holds. 
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where P is the number of commutations of half-integer spin fields to reverse the or-
der and F is the number of half-integer spin fields, the last equality being due to the 
preceding result which says that j + k is even and therefore that F is even. 

As we saw in the preceding section, the equality (12.58) extends to the extended tube6  

,v " = 
 • 

iF  Wv, " ) • (12.60) 

Combining this relation with (12.57) we get 

,v " = 
 • 

iF(-1) Wv, ,it (6x-13 " • (12.61) 

Going to the boundary values, —> with —`N*, E V+, we deduce the following 
equality for all the real points: 

S2, (xi) • • • Ifrv(x0s2 >= iF  < S2, 1kv(—xn) • • • 0/I(—xi )S2 > . (12.62) 

This identity is equivalent, according to (12.25), to the invariance of the theory under 
PCT. 

To prove the PCT theorem we have assumed that the fields satisfy the normal 
commutation relations. We will show that it is indeed the case. 

Let us consider formula (12.60). t;i , • • • , being in the extended tubes, so it is the 
the case for • • • We can therefore let the imaginary parts go to 0 and take the 
boundary values and obtain a relation between Wightman distributions valid for all real 
points. We restrict our interest to the case n = 2 with two fields (/) and 4* and we get, 
using (12.59), 

tvco = (-1)P+31:k/c-o, (12.63) 

and from 

lim W(x —y— = < ,4)(x)4)* (y)Q) > 
qE V+ ,n—>0 

lim ft(y — x — = < S2, 4*(y)0 (x)S2 > (12.64) 
qE V+,n—>0 

we get 

< ,0(x)4*(y)S2 >= (-1)P+3  < S2,4* (—y)0(—x)S2 >. (12.65) 

6  Be careful, (12.60) is not an equality on the real numbers but only at the Jost points! The equality which 
follows between analytic functions does not give an equality between vacuum expectation values by taking the 
boundary values since they are obtained as limit when N —> 0, —N.  c V+, and thus N is not in V' but 
in V. 
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We integrate both sides by f (x)f (y) and get with f (x) = f (—x) 

11 0*  (i)S2  >112  = (-1)P+1 Cf.) Q >112 (12.66) 

from which follows that (P + I) must be even or the norms must be 0. If the norms must 
be 0, i.e. the vectors, whatever is the test function f this implies that 4* = 4 = 0.7  

Now J  is the sum of dotted and undotted indices of 4,. J  is even for integer spin 
representations and odd for half-integer spin representations, and P counts the number 
of permutation of half-integer spin field to reverse the order. 

Then if we call a field 4  a Bose field if its commutator vanishes for space-like distance 
and a Fermi field it is its anticommutator which vanishes: 

Bose field [0(x), 4)* (v)] = 0  for (x —.31)2  < 0  (12.67) 

Fermi field [0(x), (1)* Cy)] = 0  for (x —.31)2  < O. (12.68) 

So for fields which anticommute at space-like distances P = —1 and for fields which 
commute at space-like distances P = 1. 

To conclude, we need to clear off a situation. Can a field O. have different commutation 
relations with another field * and its adjoint IP? The answer is given by a lemma due to 
Dell Antonio. 

Theorem 15. If in a field theory we have 

[4)(x), Ili (Y)1± = 0 for (x — y)2  < 0 (12.69) 

and the opposite 

[0(x),>G* (y)]1 = ° for (x — y) 2  < 0, (12.70) 

then either 4  or * vanishes. 

Let us give the proof. 
Take two test functions f and g, C°° with compact supports and such that these 

supports are space-like separated. Then 

< 52,4)(f)* ik (g)**(g)0(`)S2  > = Cg)0(f)S2  >II 2> 0. (12.71) 

With the condition on the support off and g and the commutation relations (12.69), 
the left-hand side of (12.71) is 

— < 52,* (g)*  (g)0(f)* 0(f)S2 > . (12.72) 

7  This results from axiom 5, 12.2.1, on the cyclicity of the vacuum. In fact, roughly speaking according to 
this axiom, if 0(fi)S2 > for arbitrary test functions f, must span the whole physical Hilbert space. 
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If we now let the support of g tend to infinity in a space-like direction, then (12.72), 
using the cluster decomposition property (13), approaches 

— < /2, *(g)*Cg)S2  >< (i) OcrO(f)S2  >= — II Cg)S2  >112 11 45 (i)S2  >112, (12.73) 

which is not positive. 
Therefore, there is a contradiction with (12.71) and the only possibility for the limit 

is that the right-hand side of (12.73) is 0. This means that either 4(g) S2 > or * (f) 12 > 
is 0. By the cyclicity of the vacuum, this means that either 4)(g) or' (f) vanish. If 4 
0, then there exists a test function g such that 0(g) 0. This means that for all test 
functions f with compact support, *(f) = 0, which implies (because the space of all 
test functions with compact support D is dense in S) that * = 0. Similarly, if * # 0, 
then 4 = 0. 

We can now state the theorem. 

Theorem 16. The spin-statistics theorem. Fields belonging to integer spin representations are 
Bose fields and fields belonging to half-odd integer representation are Fermi fields. Let 4 
be a scalar field. Let us assume that for x,y space-like, we have 

[0(x), 4)*(y)1+ = 0, (12.74) 

then 4(x)112 >= 4)*(x)1S2 >= 0. In a field theory where 4)  and 0* either commute or 
anticommute with all the other fields, this implies that 

0.= 4)*= O. (12.75) 

We only prove the first part of the theorem. The vanishing for space-like points of the 
vacuum expectation value of the commutator 

< , )(x)4)* (y) S2) + (S2 , cb* (y)4) (x) >= 0 (12.76) 

expresses a relation between the boundary values of two analytic functions W(0 and 
W(') given by 

< , (x)(b* (y) > = lim W (x — y — 
riE V+ ,n->0 

< ,0*(y)0(x)S2 > = lim CY/(y — x — 
riE V+,/,->0 

(12.77) 

These two functions are analytic in the extended tube 77. The relation (12.76), true 
for the space-like points which are the Jost points, extends to all points of analyticity 

w/(o+ fk/(-) = 0. (12.78) 
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But the invariance under the action of the complex group implies that 

it(0 = it(-0 (12.79) 

and combining this relation with (12.78), we get 

W(0 + it(0 = 0; (12.80) 

thus taking the boundary value, we have for all real points x and y 

< 52, (x)cp*(y)S2> + < ,4)* (—y)(/) (—x)S2 >= 0. (12.81) 

Multiplying this equality by f (x) and =f (y) and integrating over x and y, we get 

0  = (< 00*  (f)S2  > < /2, 0*  (1)0 (hr2  > 
= II o(f)*Is2 > 112  + II ochis2 > 112, (12.82) 

where f (x) = f (—x) and using (/)*(/) = p(f)*.  
We get 

(i) (Trip >= 00`)IS2  >= 0; (12.83) 

the last part of the theorem, which will not be proved, results from the fact that the 
vacuum state is cyclic. 

12.3 The Asymptotic States 

12.3.1 Introduction 

In 1909, Ernest Rutherford, along with Hans Geiger and Ernest Marsden, established 
experimentally the existence of the atomic nucleus. The prevailing conception of atomic 
structure at that time presented atoms as small balls full of 'matter', with no precise idea 
of the nature of the latter. Rutherford was inspired to investigate this question using a 
method which was, in principle, very simple: he sent a beam of a-particles to a thin foil 
of gold. Rutherford asked Geiger and Marsden to look at scattered a's at large deflection 
angles, something not expected from the theory of diffusion of particles from a soft me-
dium. To their surprise they found that such scattering events did occur. More precisely, 
the picture they obtained was the following: most a-particles were going through the foil 
unaffected, but occasionally, some were deflected at very large angles. Rutherford inter-
preted these results as meaning that the atom was mostly empty space containing some 
small hard grains. Starting from this idea he formulated the first realistic atomic model 
with a hard nucleus and electrons orbiting around it. He also became the father of a new 
method of studying the structure of matter through the use of scattering experiments. 
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Rutherford's a-particles had a space resolution on the order of 10-11  cm, enough to 
discover the structure of atoms of 10-8  cm, but much too large to study the details of 
a nucleus whose typical size is 10-13  cm. Today's accelerators reach distances as low 
as 10-17  cm and it is through their use that we have unravelled most of what we know 
about the microscopic structure of matter. In this section we-will introduce the physical 
concepts necessary for the formulation and interpretation of scattering experiments. 

A scattering experiment is ideally presented as follows: At time t = t1, two particles 
move one against the other with a relative speed v. At t = to  they collide and at a later time 
t = t2  we observe the results of the collision, typically particles moving away from each 
other. We want to compute the probability amplitude for observing such an event. In 
quantum mechanics this problem is easy to formulate: Let us represent the initial state at 
t = t, as I W (t = t1 ) >,n. Similarly, we represent the final state at t = t2  by 10 (t = t2) >f. If 
H is the Hamiltonian of the system, the initial state 1W > evolves with time according to. 

1W (t = t2) >= U(tl, t2)1W (t = t1) > ; U(t1, t2) = eill(11-12) (12.84) 

and the probability amplitude A(t1 , t2) we want to compute is given by the scalar product 

A(ti , t2) =< W (t = )1 U(t2, t1)10  (t = t2) >. (12.85) 

This is a typical problem in quantum mechanics and does not require any special 
formulation. In particular, the path integral formalism we presented in the previous 
chapters seems to be perfectly suitable for describing such a process. We should compute 
the Feynman integral over all paths joining the initial and the final states. The trouble is 
that, as we have noted already, we can have explicit results only with a Gaussian measure, 
which means that, in field theory, we can handle only theories which are quadratic in the 
field variables. We have called such theories 'free field theories' because they describe 
only non-interacting particles. For the interesting cases of interactions we must resort to 
perturbation theory. In this and the following sections we will present a formulation of 
scattering phenomena which will allow us to compute amplitudes of the form given in 
Eq. (12.85) order by order in the perturbation expansion. 

The first step is to construct the space of states which are eigenstates of the unper-
turbed Hamiltonian, i.e. 1/0, the Hamiltonian of non-interacting particles. We did that in 
Chapter 5 and in the next section we recall their properties. The physical justification for 
the use of this space in describing scattering experiments is based on the assumption that 
the interactions are short ranged. Let us give some orders of magnitude: experimentally, 
the range of the nuclear forces has been determined to be of order of one fermi, or 10-13  
cm. Weak interactions have an even shorter range. By comparison, the size of an atom 
is of order of 10-8  cm. In scattering experiments the smallest separation among particles 
we will ever have to consider, in either the initial or the final state, is much larger than 
interatomic distances, so it is safe to assume that these particles are free. 

This requirement of space separation can be translated into a similar requirement on 
the time interval t1  — t2  which separates the initial and the final states. Since in particle 
physics experiments the typical relative speed among particles is a sizable fraction of the 
speed of light, the characteristic time for a strong interaction collision is on the order of, 
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or smaller than, 10-22  sec. Compared to that, even the lifetime of an unstable particle like 
a charged 7-meson (— 10-8  sec) can be considered as infinite. This led John Archibald 
Wheeler in 1937, and later W. Heisenberg in the 1940s, to introduce and develop the 
concept of the S-matrix, formally defined as the double limit of the evolution operator 
U(-oo, +oo), see Eq. (5.52). We will study its properties in the following sections. 

Before closing this introduction we want to repeat an important limitation of the form-
alism we are going to develop. As we have already noted, the assumption of short-range 
forces fails for the electromagnetic interactions. We called the resulting difficulties 'the 
infrared problem' and we will study it in Chapter 21. 

12.3.2 The Fock Space 

We introduced in Chapter 5 the Hilbert space 7-i of the asymptotic states of scalar 
massive particles. This space of states, the Fock space, describes the possibilities of 
having no particles, of having one particle without interaction, two particles without 
interaction, etc. 

The space 7-i is the direct sum of spaces 7-00, Hilbert spaces of states with n particles, 
whose elements are functions 0 (n) (pi, , pn), symmetrical because we must deal with 
only one species of particles of boson type, and square integrable with respect to the 
measure ddS2,n (pi). We can define these elements as vectors in the Hilbert space 
built by the action of the creation operators on the vacuum state through 

(n) 1 0 (n)  > (12.86) 

= f( n  (  * (   * (1 idS2 
m1

).) P1 1n) aP1) •••aP n)I0 > 

This construction is similar to that obtained when studying the eigenstates of the 
harmonic oscillator. We start from the vacuum state 10 > and we build with the action 
of the creation operators the states of n particles of momenta pi  ...pn: 

1
a* (pi ) a*  (Pn)10  >= • • •Pn >. (12.87) 

We then check easily using the canonical commutation relations 

[a(p), a* (q)] = (27 )3  ao(p) 8(3) (p- q) (12.88) 

that 

< (n)  1 0 (m)  >= nm110(n)  11 2  • (12.89) 

With the notation 

fag = f aog - aofg (12.90) 



282 Relativistic Quantum Fields 

and the definition 

of (t) = fa,;0 d3x (12.91) 
xo =t 

we can express the creation and annihilation operators in terms of the free fields 
(solutions of the Klein—Gordon equation (0 + m2)0(x) = 0) 

a* (k) = d3x [e-lksxr00(x)] 
xo=t 

a(k) = i f d3x [elk  TO (x)] • 
xo= 

(12.92) 

Since both /(x) and eIlk'x  are solutions of the Klein—Gordon equation, we check that 
the derivative with respect to t of each of the integrals is null and therefore the left-hand 
sides which are the creation and annihilation operators are independent of time. 

We will be obliged in the sequel to use wave packets which correspond to states of the 
Fock space of the form 

IA • • 4,, >= ffl (dS2m (pi)f' (Pi)) IPi  • • • P n > (12.93) 

with 

f (x) = f dS2,n(p) e ip.xf  (p); (12.94) 

thus 

lfi ...fn>=a*(fi) ...a* (fn)10 >=(—OnOA•••Of„10 > (12.95) 

with 

a* (f) = f ds2,n(p)f (p)a* (p). (12.96) 

12.3.3 Existence of Asymptotic States 

In Chapter 5 the space of asymptotic states was introduced on physical grounds. It 
is possible to propose a general axiomatic framework for the relativistic quantum field 
theories incorporating this description and leading to a certain number of results such 
as the spin-statistics theorem, the PCT theorem, or the existence of asymptotic states 
that these theories must satisfy. The advantage of this approach is that it is independent 
of the specific nature of the theories under consideration. We will use this framework to 
prove the existence of asymptotic states. 
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Let us introduce the notion of regular solution of the Klein—Gordon equation. f is such 
a solution: (0 + m2)f (x) = 0, if it is of the form 

f (x) = (27)3 JR4  8  (P2  — m2)0 (Po) {e-iP'h+ (p) + eiP.xh_(p)} d4p 

= Ie-iP•xf± (P) + ell'Ar(P)}dr2m(P), (12.97) R3 
where h± are C' functions with compact support. 

Using formula (12.91), this notion of regular solution makes it possible to define, 
from any field 0(x), a regularised field 01(t). 

We check easily that if 0 is a free field, Of  does not depend on time. 
To construct the asymptotic fields, we need an auxiliary function h(p) whose support 

contains a neighbourhood of the mass hyperboloid p2  = m2  and which does not intersect 
{p = 0} U . Moreover, we suppose that h(p) = 1 for p E {plp2 = m2}. 

Finally, writing 0 (x) = U (0)U-1  (x), we suppose that 0(0)1 S2 > = ci > 
+cttk >, where 1.0•1  >E ?Ii and Ilk > belongs to the continuum. c and c1  are two com-
plex numbers to ensure the normalisation of the state and we assume that c1  # 0. This 
hypothesis guarantees us that the field 0 has a non-vanishing probability to create a 
one-particle state when applied to the vacuum state. 

Starting from the field 0, we define the auxiliary field 

B(x) = * h(x) = 
(27

1
04 

 I ell' cli(p)h(p) d4p (12.98) 

and its regularisation Bf (t). We check easily that B(x)I > is a solution of the Klein— 
Gordon equation. Indeed 

B(x)IQ > = f ri(x — y)(1)(Y)IS2  > d4y = f (x — y)e" dE(k)0(0)1S2 > d4y 

= f el"h(P)dE(P)0(0)1S2 >= f ell'o'h(p)dE(P)1fri IQ >, (12.99) 

the last equality coming from the fact that h restricts the spectral measure E(p) to the 
hyperboloid p2  = m2, therefore to the projector over the one-particle state. 

Thus under the preceding hypothesis, we have the following. 

Theorem 17 (Existence of asymptotic fields). Let f, fl , • • • , A be regular solutions of 
the Klein—Gordon equation. We first define the 'out' fields. 

The vectors 

1 111 (t) > = Bfi  (t)Bf2  (t) • • • B.fn  (t)I S2 > (12.100) 
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W in  VI 3f2 • • • fn) >= lim (t)Bf2 (t) • • • Bfn (t)IS2 > 
1,-00 

(12.106) 
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form a Cauchy sequence; i.e. given E, there exists T = T(E) such that for ti,t2 > T 

III~(ti) > (t2) > II E. (12.101) 

If we note that 

(f ,f2, • • • 3f,) > = t
lim B (t) 1 f 2  (t) • • • B f > 
, CO 

then by linear extension 

IVut ( fi3f2, • • • ,fn) >= I'Vut (f ,fi,f2, • • • ,fn) > 

defines a real free scalar field (rut  such that 

1.  

= d3 x  [fr
o 

 (/) OUt] 

XI) =1 

2.  

(12.102) 

(12.103) 

(12.104) 

U(a, A)043ut(x)U-1  (a, A) = (/)'(Ax + a) (12.105) 

We define the 'in' fields with properties identical to those of the 'out' fields. 

Using the properties of e, the PCT operator, we thus show that 

e  _1 in (x) 0  = (pout( x)  

We give the main steps leading to the proof of the theorem, writing 

d 
1W(t1) > —1W(t2) >= f —1W(t) > dt. 

t2  dt 

(12.107) 

(12.108) 

It is enough to prove that for It' large enough, there exists a constant C such that 

11—
dt

1W(t) > 112  < cltl-Z • (12.109) 

This bound is proved by splitting the vacuum expectation value of the left-hand side 

of (12.109) into a sum of product of truncated vacuum expectation values and using the 

following intermediate results. 
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1. Properties of the regular solutions of the Klein-Gordon equation 
Let f (x) = f (t, x) be such a solution. Thus, for fixed t, it is an element of S(R3) 
and there exists a constant K such that for n = 0, 2, 1, ;,... 

K(  1 + 1t1  
(t, x)I <	

+ Ix I/ (1 + lx12 + Itl-
2 
 )4  

2. Properties of Bf  
The vector Bf > is independent of t. Therefore, 

(I 2 , Bf —
dt

Bfil) = (—
d

B* , Bpf2) = 0. 
dt f 

(12.110) 

(12.111) 

3. Decrease of the truncated vacuum expectation values 
,f,, are the regular solutions of the Klein-Gordon equation, then 

(S25B11  • • • Bfn S2) T  tl 3(7" (12.112) 

is bounded in t. 

We will need later on a natural extension of this theorem. Let Dm be a dense subset of 
1-1" on which will be defined the asymptotic 'in' fields. 

Then for each >E Dm 

lim
Bfi (t)B/2  (t) • • • Bf„(01(kin >=  = Bifni  Bf2  • • • Bilf,:l(l) in  > t-2 

Obviously, we have a similar result for the 'out' case. 

(12.113) 

Remark: In the statement of the theorem and its extension, nothing was said on the 
nature of the convergence. The precise result is that if the test functions LA,. ,fn 
are any of the regular solutions of the Klein-Gordon equation, then the conver-
gence is a weak convergence. If, on the other hand, the supports of these functions 
do not overlap, that is to say if their supports are such that -P— for 

,o(P) ,o(P,) w J) 5  
p E supp f, pi  E supp fi  and pi  E supp 4, i # j, then the convergence is a strong 
convergence. 

These results show, in particular, that for positive energy solutions of the Klein- 
Gordon equation i = n, we have 

I 'P ex  (fl f25 • • • JO > = 1/15f2, • • • ,fn; ex > (12.114) 

where 'ex' stands for 'in' or 'out', the 'ex' on the right-hand side stating that the state 
under consideration is in the Fock space Hex. 
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We saw in Chapter 5 on the physical states that it was natural to suppose that 

Rout (12.115) 

In fact, from the Wightman axioms and from the previous theorem, it is enough to add 

• Axiom 5': The completeness of the 'in' states 

7.1 (12.116) 

in order to prove the existence of an S-matrix. Indeed, from (12.107) we deduce that 

Hin = Rout (12.117) 

and since ei-i = 7-1, (12.115) follows. Therefore, (pout  and O'n act in the same Hil-
bert space and are unitarily equivalent. This leads to the existence of a unique unitary 
operator S such that 

Scout (X) = Oin  (X)S. (12.118) 

Moreover, S satisfies 

SID > = IS2 > 

U(a, A)SLI-1  (a, A) = S 

e-1 SO = S. (12.119) 

This result shows that a set of relatively natural hypotheses makes it possible to prove 
the existence of the diffusion operator. It is remarkable to get this result without being 
obliged to provide the details of the precise nature of the interaction. We will show now 
how to express the matrix elements of this operator in terms of basic quantities such as 
the vacuum expectation values of time-ordered products of fields. 

12.4 The Reduction Formulae 

We will show in this section how the elements of the S-matrix can be expressed as 
functions of the vacuum expectation values of T-products. 

Let A, ,fi, and gi, ,g„, be regular solutions of the Klein—Gordon equation 
corresponding to positive frequencies and let us consider the expression 

= < in • • • ,fn; inISIgn • .. , gm; in > = < •5fn; outIgn • .. , gm; in > 

= out Oci • • • %in), (gi • • • All)), (12.120) 

where we have introduced the usual notation of the scalar product in a Hilbert space 
and replaced the vectors Igi, ,gm;  in > and [fi, , fn; out > by the corresponding 
functions O'n(gi, ,gm)  and O't(f, 1, ,fn). 
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The derivation proceeds in steps. As a first step, let us choose one of the incoming 
particles, say that corresponding to gi. According to (12.103) applied to the 'in' states 

I  = ((pout • • • Jo, ogin
i 
 in (g

25 , 

g

m)

) 

= lim  f d3x  --out 
CcP (fi, • • • JO, giroB Oin(g2, • • • gM)) 

t->-C°  X0 =t 

= lim f d3
x(0011V

5 
 • • • Jo, giaa in 

(g2, 
 • • • 

gm
)) 

t"  X0 =t 

tf 
+i lim f dxo  f d3x00(0out • • • Jo, giroB oin (g25  • • • gm)).  

t f  —> oo , ti  —>-oo 

Let us study separately the two terms of the last equality. 
The first one shows an annihilator acting on the 'out' vector: 

(12.121) 

lim f d 3 x (0 out 
t—> CO xo t  

(i15 • • • ,fn), giaoB in  (g2, • • •,gm)) 

= OUt (fi • • • 
,
f

n
), ort in 

(g25 
 • • • 

gm
))

. (12.122) 

Indeed since g1  is a solution with positive energy, ci); jut  is a creation operator ia* (g1 ) and 
the expression that we study becomes, modulo coefficients, 

(a(ki)0°ut  (fn • • • ,fn), Oin (g2, • • • gm)) 

— E (gbfi) ouvi, • • • 5:ii,fn), in  (g2, • • • gM)), (12.123) 
i=1 

where'', means that f, is left out and (gi, JD is the scalar product of gi and off,• in Hi . Let 
us consider one of the terms of the sum in the formula (12.123). It can be interpreted 
by saying that the interaction process factorises into a coupling between the ingoing 
particle of index i and the outgoing particle of index 1 times the process having one 
initial particle less and one final particle less. 

Due to this factorisation, we say that this is a non-connected process and we will see 
later that, diagrammatically, it corresponds to a disconnected figure. Physically it corres-
ponds to a process in which an outgoing particle is in exactly the same momentum state 
as one among the incoming ones, so it is as if this particle has not participated in the 
scattering process. 

The second term can be written as 

i f ao ((pout (A • ,fn), (giCB) (xi ) o in(g2, • • • gM)) (12.124) 

= f coxi  (00uvi,  • A), (gi Bacigi ) (xi ) in  (g25 • • , gm)) 

= f coxi  (00uvi,  • ,A), (gi B(—A + m2)gi) (xi ) in  (g2, • • • gm)) 
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= f cia xi ((pout (in (gi(8e, — D  + m2)B(xi ))0  in 
(g25

gm))  

= if exigi (xl ) xl + 
m2) ((pout (A . . 

5 
 ;

i) B(xi)Oin (g2, • • • gm)), 

where we used the fact that gi is a test function at the point x1  to carry the action of 
the Laplacian from g1  to B. This result deserves a comment: let us introduce the Fourier 
transform of g1  and of the field B 

f d4xim (x1)(0 xi  + m2)(0outv
i, 5 

 c
1
,

5 
 

J )B(xi)Oln  (g2, • • • gm)) 

= 
1

(27)4 f ki (pi)elk.x1 (—k2  + m2) 

x  (0 out (f
i 
 . . f

n
)

5 
 Ego  in (

g25 gm
)) da k  do 

 (pi) dax1 
 

= 1  ei(ko-.01))ti 2  ) 2  (27)
gl 1) (-1e( + + m) 

x ((pout e
n

\ 
((ko PO) Om  (g2, • • • gm)) dko dr2 (pi) dt1 

=
1

f s(ko  —(0(pi))ii(Pi)(-14 +m2) 

x Wutoci , h((ko51,1))0in (g2, • • • ,gm)) dko dr2 (P1) 

(27
1

)4 f ((pi)o)8(Pi — m2)gi (131)(-14 n22) 

X (0°Ut (f15 • • • 51;1), B(Pi) (g25 • • • ,gm)) d4pi• 

This last equality, to be meaningful, implies that 

1. out 
(fi, 

 JO h (p Ton (g2 gm)); has a simple pole at /4 = m2; 

2. We multiply it by pi - m2  (operation which is called amputation);8  and 

3. The delta function which restricts pi  to be on the mass shell tells us that what 
contributes to the diffusion is the residue of this pole and that this residue, as a 
function of pi must be evaluated at (Pi )o = w(p1 ). Since B(p1 ) = Y (pi)h(pi), we 
see that the restriction to the mass shell implies that the contribution of this field 
is independent of the function h and we can replace, in the final expression, the 
regularised field B by 0. 

8  The existence of the pole at p? = m2  is not surprising. Going back to the Feynman rules we obtained 
previously, we see that at least in perturbation theory, there exists a propagator (/;. — m2)-1  associated with 
every one of the fields. On the other hand, we see that if, for some reason, this singularity is absent, the 
corresponding S-matrix element vanishes. 
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The result of this first step is summarised in 

I = non—connected terms 

+ xigi (xi )(III + m2) (Vut Oci • • •5f e n), (i) (xi ) in  (g2, • • • 5gm)). 

(12.125) 

Apart from the non-connected term, I is given by the matrix element of the field 
0(xi) between in and out states, but the in state has one particle less. 

It is now easy to guess the next steps. For example, as a second step, let us choose to 
transform in the integral of the right-hand side of (12.125), one of the out fields into an 
interacting field: 

J 
exigi (xi ) (Oxi + m2) (oout yi5•  • •5fn)5 B(xi)Oln (

g25 

 • • • , 

gm)

) (12.126) 

= lim f exigi  (xi)(111xi + m2) (00uv25•  • •5fn)5 (Bfi (t))*B(xi)om (
g2 

 • • • , 

gm)

) 

t—> CO 

= i lim f exigi (xi) 

X xi  + m 21 d3Y1/1 cyor0(00utu.25...5;,) 5 B*00B(x)oin(g2,•••5gm) 0_ y ,  

= i 
t
ll 

oo 
 f exigi (x1)

0 
+ M2) f d3  .Y1 _ t 

xfl CYO 5-3>;? (0 °ut  0`2, • • • ,fn), T (B* CYO B(xi)) (g25 • • • 5 gm)) • 

The introduction of the T-product in the last equality is justified by the fact that the 
quantity is computed at y? = +oo. We can thus replace the last term of (12.127) to make 
the appearance of an 'in' field and we get 

t—>oo 
lim  o d3 CYO (

0ou  V2, • • • ,fn) 507? T (B* (yi)B(xi)0 in (g2, , gm)) f
i=t 

= lim
0_ f d3Yif1 (1)(0° 

 uty25.  • . 5  ;i
s
)  , 

Y
(B* B (xi)) Oin  (g2, • gm)) 

+ f e yifi(Yi) ay? 

(p( OUV
25 5

f
n
)
, T (B* (y0B(xi)) °In  (g2, • • • gM)) • 

The first term can be written as 

t 
lim ('P out  (f25 • • • ,fn), T((Bfi (t))*B(X1)) 'P in  (g25 • • • ,gm)) 
—> —00 

= (Vut(f2, • • .J0, B(xi) (Bt,)* oin (g2, • • • ,gm» 
m 

 = Evngi)((pouv25... Jo, Bocoom(g25...4...
i,...

5gm))  

j=2 

and corresponds to a sum of non-connected contributions. 

(12.127) 
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The second term can be handled as in the first step and 

fd4Y1.71(Yi ) ay? (0
0uv

2,  ... , ,,,,), J 5 ? T(B* (Yi)B(xi))0in(g2, • • • ,gm)) 

=f d4Yifi (Y1)(Illyi + 
m2) (0  out (f2,  . . . ,A), T (B* (yi )B(xi ))0 in  (g2, . . . , gm)) 

= f d4YLIci (Y1)(Illyi  + m2)(Vut (f25. • • jn), T(O(Yi)B(xi))0in(g2, • • • ,gm)), 

(12.128) 

where we used the property that on the mass shell the fields B and the fields (/) coincide. 
Finally, after these two steps, we have shown that 

I = non- connected terms (12.129) 

+i2 f d4xi  d4y1 g1 ( 0116)1) (III  x1 + M2)(11I Y1 
+ m2) 

x • • • ,fn), T(0(x00(Y1))0in(g2, • • • ,gm)) 

and we show in this way the general result for the connected part of the S-matrix element 
under consideration, 

< • • •5in; • • • 'gni; in  >c 

= in±m  f dlyi • • • dlyn  • • • d4x;fi CVO • • • gi (xi) • • • gm (xm) 

x + M2) • • • x„, + 1112) < T(0 CYO • • • Y CY11) • • • ( XM)) >, (12.130) 

where < T(• • • ) > represents the vacuum expectation value of the T-product. 
For the momentum states, the formula can be written as 

< Pi,• • •,Pn;inISI915.• • qm; in >c 
= in+m f d4 y 1  . . . d4 yn  . . . d4 xmeii,i ...Yi • • • d-Cpn.yn-iiii .x1 ---i4,n.xm 

X n22) • • • xn, n12) < T(cb (y1) • • • (yn) • • • cb (x,n)) >, (12.131) 

where fi and q mean that the four-vectors p and q are on the positive energy branch of 
the mass hyperboloid. This formula expresses the fact that the S-matrix element can be 
obtained by amputating the fields corresponding to the asymptotic fields introduced in 
the T-product and then replacing them by the plane-wave solutions of the corresponding 
Klein—Gordon equation. 

In analogy with the Euclidean approach, we formally write that 

f (xi) • • • (a (xn) e-if rint(x)d4xDtt(o)  
< T(0(xi) • • • o(xn)) >= f rint (x) d4xDp,(0) 

(12.132) 
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where Dp.,(0) is a formal Gaussian measure, that is to say that 

f 0.(x)(/)(y)D WO) =< OIT (0(x)0(y))10 >= —iGF(x — y) (12.133) 

and 

< 01 T (0 (xi ) • • • (x2n)) 10 > 

= f (xi) • • • 0(x2n)Dit (0) 

= E < 017-(0(xi1 )o(xi.2 ))10 > • • • < oiT(0(x12n_1 )0(xi2n ))10 > 
pairs 

(12.134) 

and 

< 01 T(0(xi ) • • • ((x2n+i))10  >= f (gxi) • • • 0(x2n-o)Dit (0) = 0, (12.135) 

the formula (12.132) being interpreted as 

< T(0 (Xi ) • • • ( xn)) > 
f (/) (xi  ) • • • (/)(Xn)  (—if  rim  (x) d4  x)nDp,(0)  

(12.136) En b.  f(-1 f rint (x) d4  x)kDtt 

This last expression tells us that the vacuum expectation values of T-products of 
interacting fields can be written as the ratio of two infinite series whose elements can 
be written as Gaussian integrals of free-field polynomials. These Gaussian integrals are 
sums of products of Feynman propagators GF  . Each of these products forms what we 
call a Feynman diagram. We will study them in the next section. 

We can also introduce a generating functional 

f ei f (xv(x)d4x f 
Z U.] _< T(eif o(x)j(x)d4  x )  >= J

(x) d4  x D pt  (0) 
(12.137) 

f e i.l rint(x)expea(0)  

with 

1 
< T(0(xi) • • • 0(xn)) >= . •  Z[j]li.o • 

in Si (xi ) Sj(xn) 
(12.138) 

The connected processes, that is to say the processes which do not reduce to inde-
pendent subprocesses, play a very important role in diffusion theory. They are given by 
formulae analogous to the truncated expectation values defined previously. Truncation 
is the algebraic way to extract connectivity from a given vacuum expression. The gener-
ating functional of the connected or truncated vacuum expectation values of T-products 
is given by 
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GU] = log Z Ul • (12.139) 

Sketch of proof: let us compute the functional derivative of Z[j] with respect to j(x): 

aj (x)
ZU] =< T (x)ef 0(x)1(x)d4(x) > . (12.140) 

If we expand, formally, the right-hand side of this formula in powers of the function 
j, we get, after integration over the free measure, a sum of products of diagrams, some 
of them being connected to the point x. These diagrams are made of propagators —iGF  
having, except x, all their end points integrated over a function j or integrated as part 
of a vertex of the Lagrangian Lint. Let us choose one of the terms in the sum. It is the 
product of two parts: a part (a diagram) connected to the point x and another part 
made of diagrams having no connected links to x. It is obvious that the coefficient of the 
connected term is made out of all diagrams, connected or not, generated by the infinite 
expansion in powers of j of the functional Z(j). 

Therefore,  S 
S
(

x)
[j]  = (E [All diagrams connected to the point x])Z(j). Now if we call 

GU] the generating functional of the connected diagrams, s* G[j] is precisely equal to 

E [All diagrams connected to the point x]. Therefore, 

81(x) Z[j] =  
8.1 (x)

[71 Z[j], (12.141) 

leading to 

1 SZ[j] S log Z[j] 8G[j]  

Z[j] Sj(x) Sj(x) 8j(x)' 

which gives by integration formula (12.138). 

12.4.1 The Feynman Diagrams 

(12.142) 

If we leave aside very few exceptions, the results, which can be numerically exploitable, 
are obtained by perturbative methods. In particular, this is the case for the computation 
of cross sections. These methods allow us to give a concrete content to the diagrammatic 
analysis of particle interactions. 

Schematically, a collision (more generally an interaction) process can be represented 
by a black box, the interaction area, which is drawn as a ball, where the particles which 
will interact arrive and from where the particles resulting from the interaction leave (see 
Fig.12.2a). 

The perturbative expansions can be described in graphical terms as diagrams, the 
Feynman diagrams from which the associated expressions represent a possible contribu-
tion to the process (see Fig.12.2b). More precisely, we will see that to each diagram is 
associated a mathematical expression contributing to the probability amplitude of the 
process. 
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Figure 12.2 A diffusion diagram. 

A diagram is made of internal lines, the end points of which are vertices and of ex-
ternal lines for which only one of the end points is a vertex (with the exception of single 
propagators). A vertex is the intersection point of lines, it is generally the result of a con-
tribution of the interaction Lagrangian and there corresponds to it an integration over 
the entire position space. It is usual to split the set of external lines into two subsets: the 
subset of ingoing lines, which are usually drawn at the left, and the subset of outgoing lines, 
which are usually drawn at the right of the figures. The whole process is then interpreted 
as a physical process in which the elements (particles) associated with the ingoing lines 
interact and produce the elements associated with the outgoing lines. 

Since generally the diagrams are computed in Fourier transforms, we indicate the 
ingoing and outgoing lines and the internal lines with arrows on the lines. In general, 
an arrow on a line denotes the flow of some conserved quantity along this line. In the 
neutral scalar theory we are considering here, energy—momentum is the only conserved 
quantity, but we shall soon study more general theories with other conserved quantities, 
such as the electric charge. 

The orientation from left to right corresponds to the flow of time direction. Each 
line corresponds to a propagator and is characterised by a four-momentum and indices 
associated with the nature of the particles which propagate (spinor indices, internal sym-
metry indices, ...). For an ingoing particle with momentum p with an orientation from 
left to right, po  is the energy, thus a positive number, and the exponential factor in the 
Fourier transform is chosen to correspond to a positive energy plane wave. An outgoing 
particle oriented from left to right will have a four-momentum p with Po  > 0 or if it is 
oriented from right to left with po  < 0. Figure 12.3a shows the result of such a proced-
ure. Figure 12.3b makes precise the content of the previous statement and corresponds, 
if the time components of the pt  are positive, to the reaction 

1 + 2 + 3 —> 4 + 5 + 6 + 7, (12.143) 

where i indicates the particle with momentum pi. It makes explicit a possible, but not 
unique, choice for the orientation of the internal lines. 

Remark that with the above choice of orientation of the external lines, if for example 
poi poi po

4,  po, and p° were positive and p° and p6° negative, then the diagram would have 
been associated with the reaction 

2 + 3 + 6 —> 1 +4 +5 + 7. (12.144) 

The choice of orientation for the internal lines is arbitrary; the only constraints must 
do with the four-momentum which, as we will see, are submitted to the condition 
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Figure 12.3 Choices of orientations. (a) Direct external lines. (b) A choice of 
orientation for all the lines. 

of conservation of energy—momentum at each vertex9  (the algebraic sum of the 
four-momentum vanishes). 

In Minkowski space, the Feynman diagrams correspond to physical processes. 
In Chapter 10 concerning the Euclidean space formulation, we have, in the framework 

of an interacting Lagrangian field theory, introduced the perturbative expansion of the 
vacuum expectation values. This expansion was written diagrammatically, each diagram 
appearing with a certain combinatoric weight and corresponding to a precise analytic 
expression obtained by rules assigning particular functions to each line or to each vertex. 

The correspondences between Euclidean and relativistic theories extend obviously to 
perturbative elements and makes it possible to associate with the graphical diagrammatic 
expressions, analytical expressions in the Minkowski space with the same weight. From 
the important role played by the time or energy component, it is necessary to emphasise 
the orientation of the lines. 

The correspondence between Euclidean diagrams and Minkowski space diagrams 
is given in the bosonic case by the following table, which completes the one given in 
Chapter 10. 

Graphical element Name Euclidean factor Relativistic factor 

 

Internal line 

Ingoing line 

Outgoing line 

1  1  A4, 1 i  d4P 
(27)4  p2+m2" ' (27)4  p2—m2+ - 

1 ell'  A4 , 1 i CiP•x   d4 
(27)4  p2 +m2" ' (27)4  p2—m2 +ie r  

1 CiPsx   4, 1  
(27)4  p2 +m2 " ' (27)4  i el"  d4P 

p2-m2+ie 

X X Vertex A(27043(4)
(E 

 . 
Pi) _i),(27)43(4) ,E  . c Pi) 

9  This condition of conservation is due to the fact that the interaction is a local function of the fields and 
that the volume of integration is the whole space. 
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Let us illustrate these rules in the case of the theory with interaction —A04. We saw, in 
Chapter 10, the form of the Euclidean perturbative expression at second order in of 
the 2-point function < (x)0 (y) > 

B2  = 96A2  f f C(X — Xi)C (Xi — X2) 3  C (X2  —y) e xi d4x2. (12.145) 

The corresponding relativistic expression for < T (0 (x)0 (y)) > is given by 

B2  = i96X2  fGF  (X — X 1  ) GF  (X 1  — X2)3  GF  (x2  — y) exi e x2, 

where 

i f ciP.(x-Y) 
-iGF(x-y) =< OIT(0(X)0(Y))10 >= (27)4 p2  — m2  + is 

d4p. (12.146) 

Carrying the expression of GF  into B2, we get 

1  B2  = —i96X2   (27)12 f f CiP•xei".5 (4)  ( 
3 

p_i pi) 6(4) (q pi  

i=1 i=1 
3 

X  
1 1 1 et, daq dapi d4p3  p2 _ m2 + is q2 _ m2 + is i  1  p? m2 + is 

= -i96X2 e ip.( x-y) 6  (4) (p q) ( 
(27)12  f P

1 
2 _ m2 + is ) 2 

1 

  
3 ) 3 1  

x f f f 8(4)  - pi d4P d4  q d4p1  d4p2  d4P3 
1=1 1=1 

TT p2.  _ m2 + is  

= —i96X2  1  f cik(x-y) 1 
(27)12 p2 _ m2 + s  

)2 
B2(p) (12.147) 

The last equality yields an expression made of three blocks of terms: 

• A set of numerical coefficients including the combinatoric factor associated 
with the diagram, the coupling constants, and the various 27 factors we found 
previously; 

• Expressions characterising external lines: propagators, exponential factors, and a 
delta function expressing the energy—momentum conservation of the set of external 
lines; 

• An expression (here B2) which gives the value of the diagram, as a function of the 
four-momentum of the external lines, with the external lines amputated; and 
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• the integration is over the set of the four-momentum of the internal lines. In fact, 
we have one four-integration less than the number of internal lines because of the 
delta function of the overall energy—momentum conservation. 

Let us consider another example originated from the 04  theory: the connected contri-
butions to the first order in the coupling constant to I = < T(0.(x1 )0(x2)0(x3)0(x4)) >. 

The Euclidean analysis gives 

4 
I = —4!A ffl C(x - xi)  d4x. 

The corresponding expression in the physical space is 

4 
I = ffl Ggx_ xod4x. 

To this order, the connected contribution to the scattering amplitude 

< 92; > 

is given by 

- 1(27)44!X8 (4)  (1)1 + i)2 - 9i — 42), 

(12.148) 

(12.149) 

(12.150) 

where we used the fact that (0 x,  + M2) GF  (Xi  — X) = —6(4) (x, — x). Here again p means 
that p2  = m2  and p°  > 0. 

12.5 The Case of the Maxwell Field 

Introducing spin brings only minor modifications. We start with the case of the 
electromagnetic field. 

12.5.1 The Classical Maxwell Field 

In a previous chapter we introduced the vector potential A,(x), which transforms as 
a four-vector under Lorentz transformations, in order to describe the electromagnetic 
field. The corresponding field equation is the Maxwell equation 

(111g,, — a,a,,) (x) = jv(x) • (12.151) 

We noted that not all four components of A,, can be considered as independent 
dynamical variables. In particular, Eq. (12.151) contains no time derivative for Ao, 
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the zero component of the field. This is due to an invariance of this equation, which 
we called 'gauge invariance', which states that (12.151) remains invariant under the 
transformation Ao (x) —> Ao(x)+ 800(x), with 0(x) an arbitrary function. We noted that 
this invariance implies the non-existence of a Green function for the Maxwell equation. 
In order to overcome this problem we introduced the concept of 'gauge fixing' and we 
would like here to explain this concept a bit further. 

Maxwell's equations are obtained, through a variational principle, from the action 

S[A] = fdlx G. F0,,(x)F"(x)- Aa (x)j,(x)). (12.152) 

Since all components of the vector potential cannot be considered as independent 
dynamical variables, the variational method will not give a unique answer. For every 
solution satisfying (12.151), we can find an infinity of others by adding the divergence 
of an arbitrary scalar function 0(x). We want to impose a condition among the four 
components of Ao  to remove this arbitrariness. Therefore, a gauge fixing condition is a 
condition of the form G(A) = 0, where G is some suitably chosen functional of A. The 
obvious condition on G is the following: the equation 

G[A + ac = 0, (12.153) 

considered as an equation for 0, should yield a unique solution 0 = 4),],(x) for every 
vector potential A,, (x). It is clear that this condition implies that G is not gauge invariant. 
The Lorenz condition G = 8,,A"` (x) satisfies this criterion if we impose on 4  to vanish 
at infinity. Indeed, for G = a,Ait (x), (12.153) implies that DO = 0, which has a unique 
solution (/) = 0 for functions which vanish at infinity. In fact, an apparently much simpler 
choice is to choose one component of AN, to vanish, for example to impose Ao(x) = 0. 
It is easy to check that this condition also satisfies the criterion expressed by (12.153). 
In the next section we examine the so-called 'Coulomb gauge' given by the choice 
G = divA = 0. The advantage of these non-covariant gauge conditions is that they can 
be solved explicitly and eliminate the redundant degrees of freedom. The disadvantage 
is that they break explicit Lorentz covariance. In this book, unless stated otherwise, we 
want to keep Lorentz covariance at every step of the calculation, so we shall choose 
gauge conditions, such as the Lorenz one, which we cannot explicitly solve. Therefore, 
we are led to use the method introduced by Lagrange in order to solve constrained 
problems in classical mechanics. 

Maxwell's equations (12.151), together with the subsidiary condition G = 0, can be 
obtained from the Lagrangian density 

1 
G = --

4
F

P" 

„(x)F"(x) + b(x)G[A] — AP' (x)j 0 (x), (12.154) 

where b(x) is an auxiliary field called 'Lagrange multiplier'. Indeed, varying independ-
ently with respect to A,, and b we obtain the system of equations 



298 Relativistic Quantum Fields 

aPT,„ +
SAv =j„; G[A] = 0. (12.155) 

For the particular example in which G = aA this system is equivalent to 

111A v  - av b =iv;  a,Aa = O. (12.156) 

Since j is assumed to be a conserved current (otherwise, as we noted already, Max-
well's equations are inconsistent), these equations imply that ❑ b = 0; in other words, the 
field b(x) is a free field and does not participate in the dynamics. If it vanishes at infinity, 
the system (12.156) is equivalent to ElAv  = j„ and b = 0. For more complicated gauge 
conditions, for example if G depends non-linearly on A, the Lagrange multiplier field 
does not decouple and we should study the coupled system of A and b. 

12.5.2 The Quantum Field: I. The Functional Integral 

How much of the classical discussion in the previous section applies to the quantum field 
problem? We learned in the previous chapters that the transition from the classical to the 
quantum theory is conveniently encoded into the calculation of a Euclidean functional 
integral. For the electromagnetic field this amounts to the calculation of a generating 
functional of the form 

Z[j] = 
f D[A]e-sinv [Al-f d4xA j 

(12.157) 
f D[A]e-sinv[A] 

where, S,„„ [A] is the Maxwell gauge invariant action proportional to the integral of F2. 
However, we see immediately that this expression is ill-defined. The reason is again 
gauge invariance. If we denote, symbolically, the gauge transformation as A —>s2  A, with 
Q an element of the gauge group, both the numerator and the denominator of (12.157) 
remain invariant. A simple way to visualise the problem is to consider an integral from 
-oo to +oo of a function of two variables x and y: f dxdyQ(x,y). If Q is translational in-
variant it is, in fact, a function of only the difference x-y. Therefore, the integral contains 
an infinite factor given by f d(x + y), the volume of the translation group. Similarly, the 
expressions in (12.157) contain the volume of the gauge group. We remind that although 
the underlying group of electromagnetic gauge invariance is U(1), the gauge potentials 
take values in the Lie algebra of the group which is an infinite-dimensional space. We 
say often, in a formal sense, that the electromagnetic gauge group is U(1)', since it is 
as if we had a U(1) factor at every point in space.'°  

We could argue that this is not a serious problem, since we expect the factors to 
cancel between the numerator and the denominator, and here we want to investigate 
under which conditions this is indeed the case. For this, let us try to impose a gauge 
fixing condition of the form we used before, namely, G[A] = 0. We want to separate 

1°  Invariance under a compact group of global transformations does not create any difficulties, because the 
corresponding volume is finite. This is the case, for example, with the 0(4) invariance in Euclidean space. 
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the measure of the functional integral into a product of two factors, one D[12] on the 
group and a second D [A] on the space of functions satisfying the gauge condition. It will 
be convenient to use a more general gauge condition of the form G[A] = C(x), with C 
any given function of x, and then average over all functions C with a Gaussian measure. 
Consider one of the two integrals, for example the denominator D. We write 

D = f D[A]e-sinv[A] f D[A]D[C]D[G]e- sinv[A]-1 f d4xc2(x),, 
d [G — C], (12.158) 

where we have introduced a functional delta function which has no effect, since we 
integrate over all gauge conditions given by functions G. The discussion is only formal, 
but we could make it more precise by formulating the theory on the points of a finite 
Euclidean space lattice. 

Looking at the expression (12.158) we see that we can use the delta function to get rid 
of the integration over C. Then we change variables from G to Q. This is, in principle, 
possible, since we assumed that the gauge condition has a unique solution as an equation 
for the element of the gauge group. Therefore, taking into account the invariance of the 
action under gauge transformations, we find that 

D = f D[D]p[A] e—Sinv [A]-1 f xG2 [A]  det 6 G (12.159) 

For the class of gauge conditions we are considering, such as G = 8A, the Jacobi 
determinant is given by cleto. It is a divergent quantity but we will never have to compute 
it. The only thing that matters here is that it is a constant, independent of the vector 
potential A. So it can be taken out of the integral. The final result is that the denominator 
D is given by 

D = K f D[A]e-sinv[A]-1 f d4  xG2 [A] (12.160) 

with K some infinite constant. The same constant will appear in the expression for the 
numerator of (12.157). So, the net result of all this gauge fixing procedure is that, for 
the family of linear gauges, it is enough to change the Lagrangian density and use an 
effective one in which we have added the term G2, in accordance with the formula we 
used in (3.114). What happens when we use more complicated gauge conditions will be 
discussed in Chapter 14. 

We see that the effective field theory is gauge dependent, since the Lagrangian de-
pends on the arbitrary gauge fixing function G. This is not a trivial dependence since, 
as we have seen already, the Green functions depend on it. Even if we restrict ourselves 
to the very special family of (3.114), the Green functions are given by (3.116) and they 
depend on the arbitrary parameter a. It seems that we are obtaining an infinite family of 
different field theories and this is indeed the case. In which sense do all these theories 
describe the quantum version of Maxwell's electrodynamics? We shall answer this ques-
tion in two steps. In the next section we shall introduce the Fock space of states which is 
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associated with each one of these field theories. In a later Chapter (Chapter 18) we will 
argue that observable quantities are indeed gauge independent. 

12.5.3 The Quantum Field: II. The Particle Concept 

The free electromagnetic field is supposed to describe free photons, i.e. neutral, mass-
less particles with helicity equal to 1. As we have seen in the analysis of the one-particle 
states, photons have two degrees of polarisation corresponding to helicity equal ±1. In 
other words, there are no longitudinally polarised free photons. This is the particle ana-
logue of the familiar property of the classical electromagnetic radiation to be transversely 
polarised. Since we describe the electromagnetic field with the four-component vector 
potential, we expect that all components will not create physical photons. This is the 
redundancy we explained previously which is translated in the gauge invariance of the 
equations of motion. Therefore, we expect that the particle content of the electromag-
netic field will depend on the choice of the gauge condition. In this section we want to 
show and explain this dependence. 

12.5.3.1 The Coulomb gauge 

We start with a non-relativistic choice in which the particle concept is particularly trans-
parent. We choose the three-dimensional transverse gauge given by the gauge condition 
div A=O. It is often called the Coulomb gauge, although Coulomb never wrote this re-
lation. As we showed in section 3.4, in this gauge the zero component of the field is 
uniquely determined by the external sources, Eq. (3.28). We see, in particular, that for a 
fixed point charge, Ao reproduces the lir Coulomb potential, which explains the name 
attached to this gauge. 

We are left with the three-component vector potential A(x). We still must impose the 
gauge condition div A = 0 and this is easily done in momentum space. We start by 
writing the expansion in plane waves 

3 

A(x) = f E [ai(k)EW (k)e-ikx + a2 (k)6 (i)* (k)eikx] , 
1=1 

(12.161) 

where E (i)  (k) form a system of three orthonormal unit vectors. As usual, we choose 
E (3)  (k) to be in the direction of k: 

(6 (3)  (k) = • E (k) • E(1)  (k) = ; k • E(i)  (k) = 0 = 1,2. 
Ikl' 

(12.162) 

We shall call the third direction longitudinal and the first two transverse and we can 
rewrite the expansion (12.161) as 

A(x) = f cl.S2 0  fai• (k)E (3)  (k)e- ikx a3L E (3)* ) (k)eikx 

E l [ar (k)E (i)  (k)e- ikx 47.  (k)6 (1)* (k)eikil (12.163) 



2 

Hren = 1  
2(27)3 

f d3k E 47- (k)ar(k), 
i=1 

(12.165) 
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We see that the gauge condition div A = 0 implies that ak (k) = 0; in other words, only 
the transverse degrees of freedom survive. In terms of them we can write the canonical 
commutation relations as 

[ar (k), (k')]  =Std  (2n-  )32(003  (k — k'), (12.164) 

which allows us to interpret aT (k) and a;T (k') as annihilation and creation operators, 
respectively. The resulting Fock space is given by 7-1T  = E HpiT, i.e. it is the direct sum of 
the Hilbert spaces made out of the states of n free photons with transverse polarisation. 
The renormalised Hamiltonian is given by the sum of two expressions of the form given 
in Eq. (9.99): 

and it is positive definite. The overall picture is consistent with what we expect from the 
classical theory. 

Naturally, this analysis depends on the particular reference frame we have chosen and 
it is not Lorentz invariant. If we perform a Lorentz transformation, we mix transverse, 
longitudinal, and scalar components. For the free-field theory we are studying we can 
easily show that a Lorentz transformation can be compensated by a gauge transformation 
and the physical picture remains the same. 

A final remark: It is obvious that this analysis becomes meaningless when k —> 0, 
or, equivalently, —> 0 since, in this limit we cannot separate the longitudinal and 
transverse directions. So, we expect to find a singularity when the photon momentum 
vanishes. These singularities are what we have often called infrared singularities and will 
be studied later, in Chapter 21. 

12.5.3.2 A covariant gauge 

Let us now analyse the picture in a covariant gauge belonging to the family we studied 
in the previous section. Let us choose the Lorenz condition which, for the classical field, 
reads aA = 0. The Lagrangian reduces to 

= --
1 
 a

P" 
AveAv (12.166) 

and the propagator is proportional to gavl(k2 + i€)11. 
It, looks as if each component of the field satisfies an independent, massless, Klein-

Gordon equation, but with one important difference. Because of the Minkowski metric, 
the term for Ao in the Lagrangian has the opposite sign. If we ignore this problem for 
the moment, we proceed as we did with the Klein—Gordon field and we expand in plane 
waves using the equation we wrote in (6.107) with the normalisation of the four unit 

II  We recover here the infrared singularity when ku  —> 0. 
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vectors € (x) (k) given by (6.106). The standard quantisation rule gives the canonical it 
commutation relations of the form 

[a(A)  (k), a(A)* (li )] = —2k0 (27) 3gu' S(k—k'). (12.167) 

We can easily show that this form is also necessary in order to satisfy the causality 
equation (12.173), which we shall derive shortly. The usual convention implies that 
a(1)* and a(2)* are the creation operators of transverse photons, and a(°)* and a(3)* are, 
respectively, the creation operators of scalar and longitudinal photons (and equivalent 
notions for the annihilation operators). The Fock space appears to be that of four types 
of excitations, twice as many as that we obtained in the Coulomb gauge. 

So far, so good. However, we see immediately that a new problem arises: the com-
mutation relations for the scalar photons, X' = X = 0, as written in Eq. (12.167), have the 
opposite sign from those of the other three. This in turn implies that some states have a 
negative norm! Indeed, the one-photon state 

has the norm 

3  f 
lqi 1 >— 1 

(27)3 
d k 
—
2ko

f (k)am* (h)io > 

1  f d3k 
<WilWi >= (27)3 —2k0

ii(k)I2 0. 

(12.168) 

(12.169) 

We want to emphasise that this difficulty is again the reflection of the Minkowski 
metric of space—time and cannot be eliminated by any redefinition of the fields. As a 
consequence, the energy is not positive definite. We obtain 

3 

Hren = f dkEk [E a(A)* (k)a(A)  (k) — a(°)* (k) a(0)  (k)]. (12.170) 
x=i 

A formal way to describe this situation is to say that in the Fock space of states the 
scalar product is defined with an indefinite metric of the form 

('11,0) = (W, 17 0) ; 7110  >= (—)10  >, (12.171) 

where s is the number of scalar photons in the state 10 >. This metric is Hermitian, 
since it satisfies n2 = 1 and 77 =77* . Furthermore, the creation and annihilation operators 
for all four polarisations satisfy 

(0 , a(A)  (k)0) = (a(A)* (k)W , 0), (12.172) 

which means that the field A,. (x) is a self-adjoint operator. 
This metric was introduced by S. N. Gupta and K. Bleuler in 1950 and it is called the 

Gupta—Bleuler formalism. We could give a more detailed mathematical description of the 
resulting Fock space with this indefinite metric, but, in this book, we shall never need 
anything beyond the straightforward application of formula (12.171). 
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We still have the problem of having too many states in the Fock space. From our 
experience with the Coulomb gauge we expect some of them to be unphysical. Can we 
separate them? In other words, can we find a subspace of the large Fock space which 
contains only physical, positive norm, states? And, last but not least, can we obtain this 
separation in a Lorentz covariant way? Of course, we can apply the gauge condition 
aA = 0 which is Lorentz covariant, but here we are facing a new problem: the canonical 
quantisation yields the usual commutation relation 

[A ,(x), A, (y)] = „ A (x — y), (12.173) 

where A is given by the formula (9.103). This shows that, as we expect, the quantum 
field is not a classical function but an operator valued distribution. Can we apply the 
Lorenz condition 0A = 0 as an operator equation? In other words, can we assume that 

a Aiw >= 0 (12.174) 

for all states 1W > in the Fock space? The answer is no, as we can easily convince 
ourselves by applying a,/,' to both sides of the commutation relation (12.173). We obtain 

[a/. A,(x), A„ (y)] = Jay A (x — y) (12.175) 

and the right-hand side is, obviously, non-zero. There is therefore an inconsistency in 
willing to quantify the photon field in a Lorentz covariant way and at the same time 
imposing the Lorenz condition. Again, we overcome this problem by choosing to impose 
the Lorenz condition in a weaker form.12  We split the 0A operator into positive and 
negative frequency parts and we define the following. 

A state 1W > is physically acceptable if 

0/2A 7 (x)iw >= 0, (12.176) 

where (+) indicates that we only consider the positive frequency part of A,. 
In a given reference frame this condition is equivalent to 

(a(3)  (k) — a" (k))1W > = 0 (12.177) 

on each physical state.13  Note that this separation into 'physical' and 'unphysical' states 
is Lorentz covariant because it is based on the condition (12.176) which is valid in any 
frame. 

12  All these steps appear to be arbitrary and, in some sense, they are. Their final justification is based on the 
fact that, as we shall show, they lead to a mathematically consistent and physically correct theory. 

13  One may wonder whether for an interacting field, the splitting of frequencies into positive and negative 
ones is meaningful. The answer is yes because from the equations of motion, if the current is conserved, the 
divergence of the field 8.A satisfies the equation 

oa.A = 0 

and is therefore a free field. 
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The condition is obviously satisfied by the vacuum state. It is also satisfied by the one-
particle states with transverse photons. In fact, it is satisfied by any state which has only 
transverse photons. So the states which we expect, intuitively, to be physical satisfy the 
condition. However, and this comes as a surprise, there are other states which satisfy the 
condition and are, according to this definition, 'physical'. A simple example is given by 
the one-photon state which is a superposition of the form 1W >= (11(s) > +11(1) >V./2, 
i.e. one scalar and one longitudinal photon of the same momentum. In a similar way 
we can construct superpositions of states with two, three, etc. scalar and longitudinal 
photons which satisfy the condition. It is easy to show that any such state which has 
longitudinal and scalar photons has zero norm. 

Let us summarise. We quantised the free electromagnetic field using various gauge 
conditions. In both the field theory picture and the particle picture we found totally 
different quantum field theories. The space of states is different; the Green functions 
are different. We recover the question we asked in the previous section: in which sense 
can we say that all these field theories describe the same underlying physical theory? We 
expect the answer to be in the following form: they all must give the same result when we 
compute 'physically measurable quantities'. So the question is to define which quantities 
are physically measurable. We cannot answer this question if we restrict ourselves to 
free fields, since any physical measurement implies an interaction of the system with the 
measuring apparatus. Therefore, we should postpone this discussion until the interacting 
theory is studied. 

12.5.4 The Casimir Effect 

Before closing this section we want to point out an interesting consequence of the quant-
isation procedure we have established for the electromagnetic field. Let us consider, 
for simplicity, the Coulomb gauge which involves only the physical degrees of freedom 
given by the transversely polarised photons. We showed that the free field is described 
by a double infinity of three-dimensional harmonic oscillators. The vacuum state 10 > 
is annihilated by all annihilation operators and the vacuum expectation value of the 
renormalised Hamiltonian given by (12.165) vanishes: 

< o111.10 >= 0. (12.178) 

This result is not a direct consequence of the formalism. It was obtained in section 8.6 
by adjusting an additive constant with the effect of putting the zero-point energy of every 
harmonic oscillator equal to 0. We justified this choice by arguing that, in the absence 
of a gravitational field, only energy differences are measurable, so the absolute value 
of the vacuum expectation value in the expression (12.178) is arbitrary. The condition 
(12.178) defines in fact the Hamiltonian operator. It was H. Casimir who first realised 
that this procedure does lead to measurable effects. 

We start with the electromagnetic field quantised in empty space. The Hamiltonian 
is given by (12.165). Let us now consider that we bring two conducting plates at a 
distance L apart, placed at the points z = ±L/2. For simplicity, let us assume that in the 
corresponding (x,y) planes they extend to infinity and they are infinitely conducting. 
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We must now repeat the quantisation procedure restricted in the space between the 
two plates, with the boundary condition that the electromagnetic field must vanish for 
z = ±L/2. The calculation is straightforward: the only difference is that the k-modes in 
the z direction are discrete. We can compute again the new renormalised Hamiltonian 
operator Hren  using the condition that its value in the ground state vanishes. The new 
additive constant will depend on L; therefore, we can compute the difference in the 
ground state values AE(L) using Hren  and Hren. The derivative dAE(L)IdL will give a 
force between the two plates. In a problem at the end of this chapter we ask the reader 
to perform this computation and calculate the resulting force per unit surface in the 
transverse (x, y) plane. This effect, which has been measured experimentally, shows the 
physical meaning of the vacuum fluctuations in quantum field theory. We will encounter 
further manifestations of such phenomena in this book. 

12.6 Quantization of a Massive Field of Spin-1 

The quantisation of a massive spin-1 field is much simpler than the one we encountered 
for the massless case. First, there is no infrared singularity. Indeed, the Green func-
tion we computed in section 6.4 shows that there is no singularity when k,. —> 0, Eq. 
(6.104). Second, there is no gauge invariance and, therefore, we have no extra condition 
to impose. 

Going back to the notation of section 6.4, we write the Lagrangian as 

= -1F2  + 
2  
-
1

m2A2 —ApjA. (12.179) 
4  

It gives the Proca equation of motion with the current on the right-hand side14: 

1114, (x)—a„a„Av  (x) + m2A,2 (x) = (12.180) 

This equation implies that 

m2  al-AA(x) = (12.181) 

If the current is independently conserved, this equation, for m # 0, implies that 
aA= 0. Note, that this is an equation of motion and not an external condition we should 
impose. 

From the group theory point of view, a vector field has a dotted and an undotted 
index and, in three dimensions, it contains a spin 1 and a spin 0. If 0A = 0, the spin 0 
part is eliminated and we are left with a pure spin 1, therefore three degrees of freedom. 

14  In an interacting theory the current is a function of various fields. In deriving this equation we made an 
implicit assumption, namely that ju  does not depend on Am ; otherwise, we should include a term proportional 
to Sj/SA. This assumption is verified for the electromagnetic field interacting with a charged Dirac field; in other 
words, quantum electrodynamics, but it is not for many other theories. In particular, there is an important 
class of vector field theories, the so-called Yang—Mills theories, for which this assumption does not hold. As a 
result, the quantisation of these theories is more complicated and it will be studied in a special chapter later 
(Chapter 14). 
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This leads naturally to the introduction of a free field 

1  f  dap 
A,(x) = 

(27)3 20)(p) 
 

x E: l [a()  (p)E /.(:) (p)e-iP.X a(1)*  (p)E,(1)*  (p)eiP.x], (12.182) 

where we have taken into account the conditions related to the divergence by introducing 
three polarisation vectors E (1)  (p) such that 

p.€ (p) = 0 
E  (i) (p).E (i)(p) = 

E E (P)E rl) (P)  = (gea PoPa (12.183) 

with the a's satisfying the usual commutation rules. The resulting Fock space has 
positive-definite metric. 

The canonical commutation relations are given by 

[a(i)  (p), (2(1)* (p1)] = (27)3  2(o/A (3)  (p —p'). (12.184) 

We define the T-product by 

J 
-PAPvIM2  < 01 T (A,(x)Av(Y))10 >=  d4  p. 

(27) 4 p2 m2 + is  (12.185) 

This description, which is convenient for massive spin-1 particles, is singular in the 
limit when the mass tends to 0. In fact, this should be expected. When the mass is 0, the 
quadratic form is no more invertible, because of the degeneracy due to gauge invariance. 
Physically, this corresponds to the fact that, at this limit, one degree of freedom must 
disappear, and we should be left with only two. If one wants to construct an expression 
having a limit for m —> 0, it is necessary to modify the initial Lagrangian and take the full 
Lagrangian we used in Eq. (6.99) with the propagator given in (6.101). It corresponds 
to the massive spin-1 theory of the Proca equation, but with the addition of an extra 
gauge fixing term. 

Such a Lagrangian density gives the equations of motion 

(o + — av (8.A) = 0, 
a 

which implies, for the divergence of the field, that: 

(12.186) 

+ p,2)a.A= 0 (12.187) 

with /22  = 2  a-1 
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Note that this equation remains valid even if the field is coupled to a current with a 
term A, jA, provided the current is conserved. In other words, a conserved current does 
not affect the dynamics of the divergence of the field which is still given by the free-field 
equation (12.187). 

The functional integral over the A's gives for propagator the one of Eq. (6.101). 
If the current is conserved, we can introduce a field with a divergence equal to 0 

= A„ + 1
it2

av a .A 

since 

a.AT = 0.A + —
it2

❑  a.A = —
11,2(

❑ ± 122) a.A = o. 

The field can then be written as 

1 
A, = - —

it2
ava.A. 

(12.188) 

(12.189) 

(12.190) 

Remark that if this field is coupled to a conserved current f, then, modulo a 
divergence, 

j.A = j.AT. (12.191) 

By the procedures of canonical quantisation, to Eq. (12.186) corresponds a free field 

AN, (x) 

with 

3 
= f dS2„, E[a(i) (p)€ 1(i)  (p)e-iP + a(i)* (p)€ A(1)*  (p)eiP.x] 

i= 1 

f dog, p"` (p)e-ip.x a(c)* (p)eip.x]  
it it  (12.192) 

     

[a(1)  (p), a(I)* (q)] = Sy  (2n- )321/p2  + m28(3)  (p - q) 

[a(°)  (p), a(°)* (q)] = —(27)3  21/p2  + µ26 (3)  (p-q) (12.193) 

In the limit m —> 0, we get 

< 01 T (A,(x)A,(y))10 > 

(a 1)-1) dap. (12.194) e-ifqx-30 PAPv  
(27)4  i  I p2 is („  is)2 
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Note that now the resulting Fock space has an indefinite metric. These formulae are 
interesting because they have the correct massless limit but no infrared singularities for 
m # 0. So, they offer a 'regularised' form, namely expressions which depend on the 
parameter m, are regular when k goes to 0 as long as m is kept different from 0, and 
go to the corresponding expressions for the photon at the limit m —> 0. Therefore, they 
can be used in intermediate steps of a calculation. A convenient choice of gauge is the 
Feynman gauge corresponding to a —> oo. In section 16.5.4 we will see that quantum 
electrodynamics with a massive photon is in fact a perfectly acceptable physical theory. 

12.7 The Reduction Formulae for Photons 

We will now derive reduction formulae for processes involving photons. Let us consider 
an S-matrix element for which the 'out' state contains a transverse photon of momentum 
k = (1k I , k) and polarisation E 

< ...; k, E; out' Ili; in > = < ...; out' d (k)11fr; in > 

= _i  eik.x ->a o<...; outiE.AT(x)ilk;  in > d3x, (12.195) f

t   

where we use the orthogonality relations of the polarisations. The matrix element can be 
written, as for the other reduction formulae, as 

• 1 _i iim  f eik.x ao< ...; outiE.A(x)+—E.80.A(x)111f ;  in > d3x 
tf->°° ti. it2  

= non-connected terms 

(12.196) 

_i  
J 

eik.x (0  x + m2) < 2)  < ...; OUtIE .A(X) + —2 E .0 a .A(X) I lk e ; in > x. 
it 

 

But from the equation of motion (with a conserved current), we have 

2 -  2 
(111+ M2)— µ2

1 E.aa.A= tt2 E.aa.A = 

and the connected term, with sources, can be written as 

J 
eik.x (Ex + m2) 

x < ...; outlE.((111x  + m2)A(x)-a-1aa.A(x) I Ilk; in > d4x 

= f eik.x < ...; out' €./(x) I -0-; in > d4x. 

This formula can be generalised and gives 

< ...; kf, E f ; outlki, Ei; ...; in >c  

= _ eik f  sx-iki sy < ... f ; OUtIT (€f j (x)Ei j (y))I...; in >c  d4xd4y. 

(12.197) 

(12.198) 

(12.199) 
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12.8 The Reduction Formulae for Fermions 

We can also prove reduction formulae for theories involving Dirac fields. We only give 
the result, the proof being the same as in the bosonic case, the Klein-Gordon operator 
being replaced by the Dirac operator. The spinors u(s)  and v(s)  have been chosen as 
eigenstates of helicity and the creations and the annihilation operators create or annihilate 
states with well-defined helicity. Thus, al (p) and b*1  (p) create states of helicity when 
a*1  and b*i  create states of helicity 1. An asymptotic state of well-defined momentum 
and helicity is of the form 

41 (1)1) • • • V;f1 (11) • • • 10  >= s1; • • • ;i l ; • • • ; in > , 

the a*'s creating electrons and the b* creating positrons. 
Since, if and are free Dirac fields, 

a: (p) = (x)yoe—ip.xu(s) (p)d3x  

(p) = f
t
i)(s) (p)e-iPsxy°*(x)d3 x 

b,(p)  = f f  (x) y 0 e X v (5) (p) d3 x  

as(P ) 
= f Fi(S)  (P) eiP Lcfr (X) d 3  

the spinors with well-defined helicity can be defined satisfying 

v(s) s tr (p) = Cu()  (p). 

We get the reduction formula 

(12.200) 

(12.201) 

(12.202) 

< Pi,cei;• • • ;/,'1 ,04;• • • ;outlqi,Pi; • • • 41,Pi;• • • ;in > 
= non- connected terms 

+(-Onin' d4  Xi • • • &In — Ciq1.x1-...+iP1.Y1+...  f 

X Fl(al )  (pi ) ( ?yi—  M) • • • '1.)(15'1)  (.7/1 ) (i ? x'1-  m) 

x < 7' (" • *Oil) • • • Ifr CYO* (x1) • • • lk (4) • • • ) > • 

x (—i <ix1— m)u(P' )  (qi) • • • (—i<iTy
i
— m)v(151)  (p/i ) • • • , (12.203) 

where n and n' are, respectively, the numbers of particles and antiparticles. 
As for bosons, the amputated fields are replaced by plane wave solutions of the Dirac 

equation 
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u(q)e-'9' for an ingoing electron 

—77)(q/)e"?'x' for an ingoing positron 

Fi(p)ei" for an outgoing electron 

—v(p') eiP' for an outgoing positron 

12.9 Quantum Electrodynamics 

We already saw that the Lagrangian density for electrodynamics is 

L = Lem + E D Lint, 

where 

1 1 
Gem = —4F2  = (a,Av  -avA,)(eAv - a° A"`) 

ED = (ia,L —m)* 

Lint = 

(12.204) 

(12.205) 

The interaction Lagrangian can be obtained from the Dirac Lagrangian by replacing 
the usual derivative by the covariant derivative 

i8,, iD,. = — eA, (12.206) 

To this expression we should add a gauge fixing term, as explained previously. 
Now we are ready to give the Feynman rules. 

12.9.1 The Feynman Rules 

The theory is quantised through the functional integral and the T-products are 
generated by the generating functional 

f eifiu,v+if ipk+iflfrneif rint eif rem+if LDD(k, f ,A) 
ZU,T, 17]=  (12.207) f eif rint eif rem+if EDD(ilf, ,A) 

where 

eif EDD(*, Ifr,A) 

f elf rern+ifEDD(fr, ,A) 
(12.208) 

defines in the variables A, tai, and * a 'Gaussian measure' characterised by the 
propagators (12.193) for the photons and by 

< 01 7'(*(x)*(Y))10  >= iSF(x — 3)) (12.209) 

for the fermions. 
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The Feynman rules, for non-amputated diagrams in momentum space, are the 
following: 

k 
photon 

.(
gp, (1  —11A.)k pk, 

k2iE (k2 jo 2 

a R electron—positron 
p — m + if )p, 

  

a vertex —ie(yt )pa (27)43(4)  CE 1') 

Where X is the gauge fixing parameter. 

12.10 A Formal Expression for the S-Matrix 

As was said Previously, the Bargmann representation is particularly suited to express 
S-matrix elements. We gave in Chapters 8 and 9 a rather complete analysis of the 
Bargmann representation for systems with one degree of freedom and explicit formulae 
in the case of quadratic Hamiltonians. The extension to harmonic oscillators living in the 
underlying three-dimensional space is obvious, as well as to an arbitrary number of such 
oscillators. Therefore, there are no real problems in extending these ideas to quantum 
fields. However, the Bargmann representation involves naturally Hamiltonians and not 
the Lagrangians. 

Our first task is, therefore, to express quantum field theories in terms of Hamiltonians. 
We show in section 9.4 how the free scalar field is a natural generalisation of the position 
operator and how it can be expressed in terms of annihilation and creation operators 
which are obvious extensions of those defined for the dimensional harmonic oscillator. 

We will extend to quantum fields the result given at the end of Chapter 8 on the 
S-matrix in the case of a free massive scalar field interacting with an external source. 

The action is given by 

1 2 
S =

J 
 d4X.C(X) =

J 
 d4X[I0

m  
4)(X)a14 4)(X) — (x)2  -FAX)0(X)], (12.210) 

where j(x) is the source term. 
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The corresponding Hamiltonian is 

1 1 m2 
H0 (i) = f d3X[ (X)2 (04(X))2 2  4(X)2  -i(t, X)95(34 (12.211) 

where n-  (x) is given, following the definition of the Legendre transform, by 

a 
n-  (x) = — 

ax 
(x) I xo=o • 

o 

We note that Ho = Ho(j)1j=0. The quantised fields are, according to formula (9.96), 
expressed in terms of the creation and annihilation operators a* (k) and a(k) by 

3  
4)(x) = 1 d k s  

(27)3 f 2cok  [a(k)elk + a* (k)e-ik.x] 

• 

(27)3
[a(k)elkx  — a* (k)e-ikx] n-  (x) = 

i d3  k 
 

and the Hamiltonian is therefore 

(12.212) 

1 f d3  k 
Ho (j) = (2n)3 2(ok 

 [w(k)a* (k)a(k) - y (t, k)a* (k) - (t, k) a (k)] (12.213) 

with 

y (t, k) = f d3  xe-th x  j (t, x). 

We are therefore in a situation similar to that treated in sections 8.7.2 and 9.2.1 since 
the Hamiltonian is diagonal and is a sum of harmonic oscillators with one degree of 
freedom coupled to an external source. Thus, we can follow the steps leading to formula 
(9.48) and compute the matrix element of the evolution operator in the Bargmann space. 

States are of the form I z >= of d3kz(k)a*(k)  I 0 > and we can compute 

< z I e-i(t-tollow I > 

D(z)D(z) exp 
 I-  1  1  f d3k 

(k)z (t, k) + (to, kg (k)
1
1 

f iu,k)=i(k) L 2 (2n- )3 2(.0 
.(to,k)= .  

[f

to 

 t  I  1 

)3 

 f 

2

C 1 

(0

3  k

k

[ 

2

1 
x exp	

(27
(ks, k) z (s, k) - i(s, kWs, k)) 

k)z(s, k) - i)7 (s, k)z(s, k) - (s , k) y (s, kdids] 

[  1  f d3  
= exp (27)3

2(ok 
 i (kg (k)e-lw(t-t() )  + f e-lsw(t-s)  y (s, k)ds 

to 

1 
+k* (k)f Cia'('`°)  (s, k) ds - - f (u, k) y (s, k) duds 

to 2 to to  

 

(12.214) 
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The time evolution of I z > follows from this formula by replacing Ho(j) by Ho, i.e. 
by setting y and y equal to 0. The result is, as before, the replacement of z(k) and z(k) 

by .(k)eiwk` and z(k)e-iwo 

We are now ready to compute 

So (i7 =< z I So (i) I > 

From the previous discussion 

lim < z I U(tf,ti)  I > • tf +00 

So(j)(i, = lim =< z I eiV110 i(tf-ti)H0 (i)e-it3 o  e- > 

= lim 
tf —›+ 00 

D(z)D(z) ex
il 

ici,k=it(k) 112 
1 d3k 

t (k)z(t,k) + i(to,k)to (k)j] 
(27)3i 2cok 

ti —oo  z(to ,k)= to  (k) 

1 d3k 1 . 
x • exp[1 I 

(27)3 
 f 

2(ok 
 [i (i(s, k)z(s , k) - (s , k)fr(s, k)) - (s , k)z(s, k) 

0 
  

(s, k)z(s, k) - ii(s,k)y (s,k)]lds] 

d3krr +00 
= exp [ 

 (271.
1

)3 
 f 

2(ok
(k) + ji(k) f eiwks  y (s,k)ds (12.215) 

1 f  +00 +00 
+4' (k) 

J 
(s,k)ds - 

7J  -00 2 -Do -Do 

with 

e-kokiu-s1 y (u, k)y (s,k)dudsl] 

.it (k) = t to  (k) = (k)e-iwkt°  

and the normal kernel is given by suppressing the first term of the exponent of the last 
equation in formula (12.216): 

So (j)(i, = exp [  1
d3  k +00 

(2n-  )3 — ii(k) y (s,k)ds (12.216) 
f 

+00 1 f  +00 +00 
(k) 

 J 
e'wks  (s,k)ds - - 

-00 2 -00 J 
(u,k)y (s,k)dudsd. 

We can now rewrite this formula in a more intrinsic way. The first two terms in the 
exponent can be recombined 

1 d3  k
+00 

 1 i(keicoks—ik.x y  , .3, -. - s—ikx 3, - .5, -. -1 ( Pe) + (k)e iwk ( k) ds 
(27)3  f 2cok 1  

+00 d3  k 
= i f j(s, x)I  i 

(2n 
 f — 

204 
 [i (k) el" y (s,k) + (k)e-ii" )2 (s,k)]ldsd3  x 

-) 3   

= 1 f j(x)(p(x)d 4  x (12.217) 



So (i) = : e 
{i f j(x)0(x)d4x 

= : e 
f j(x)0(x)d4x 

+ -2 
ff i(x)GF(x - y) j (y)d4  xd4  y} 

2 
ff j(x)GF (x - y)j (y)d4  xd4  y 

e   (12.221) 
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by introducing 

1 f p (x) = isx 
(27)3 2cok

)ek+ (k)e-ilz.x} (12.218) 

The function yo (x) has the form of a free field written in the complex coordinate 
system. It is a solution of the Klein-Gordon equation. 

The last term in the exponent of formula (12.218) can also be transformed by 
reintroducing the source as a function of x: 

1 1 i d3k ii: e-iwkiu-s1 )2 (u,k)y (s,k)duds 
2 (27)3  J 2cok i i_ 

I (u, x)eik;xe-iwk l 1 1 f d3  k 1 1 +7 f . 
= u-s1  j (s, y)e-k'Y d 3  xd3  yduds 

2 (27)3  j 2cok  j j_ 00 1113 

2 

1 ff 1 f 

d3Wk 2 R4

k 
I elk' (x-Y)61 (yo - xo) +e  lks (x--Y)9 (xo - yo) li(y)d4Xd4y j* (x) (2n

- ) 3   

= 
2 R4 

ff I(X) GF(x - y) j(y)d4  xd4  y 

since 

(2n- )3  f 2cok 
eik.(x-y)9  (y

o 

 x

o

) e-ik.(x )--Y (xo -3)0) 

(272) 4  f 
d4k 

k2 _m2 + iE 

1 1 e ik. (x-y) = _GF (x y),  

1 d3k 

(12.219) 

which is the expression of the Feynman propagator given in (9.91). Combining these 
results we have obtained a concise form for the normal kernel of the S-matrix: 

So (i) (z, =e 
[i f j (x)yo (x)d4  x + 

2 
 f f j (x) GF  (x - y) j (y) d4  xd4

(12.220) 

We are now in position to reverse the process, that is to say, to go from a normal 
kernel to the operator structure in the Fock space. This is done by replacing in the matrix 
element every i(k) and (k) by, respectively, a* (k) and a(k). We get the S-matrix of a 
free scalar field with an external source j 
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where we have introduced the operator version 4(x) of yo (x) 

d312 
(/)(x) = 

(27)3 
f — 

2cok 
{a* (k) ik x  a(k) 

i.e. the free scalar field in terms of creation and annihilation operators. 
We will now treat the general case of the theory of a scalar field in interaction. To 

be explicit, we will choose as an example the model we studied in Chapter 9, i.e. the 
)44-theory of a massive scalar field with self-interaction. 

Then the free Lagrangian density will be changed by introducing an interaction term 
L(4)(x)) =: *4)(x)4  :. We choose to Wick order this term in order to eliminate divergent 
diagrams, like those we called 'tadpoles' in a footnote 6 in section 10.3. This ordering 
will be as much necessary in the Minkowski space as it was in the Euclidean space. Then 
the Hamiltonian will become, with V(4)(x)) = G (4(x)), 

1 1 2 
(i) = f d3  xf —27  (x)2  + I(V (x))2  + 

m 
 (x)2  V (0(x)) — j (t, x)0 (x)} 

= Ho (i) — 17(0), 

where V(0) = f d3  xV (0(x)). We also introduce that 

V (4)(4 •)) = f d3  (0(x)) 

V (0) = V (a*, a), 

the last equality expressing the fact that 4  is a free field, function of the creation and 
annihilation operators. Remark that V (a*, a) is normal ordered. We can thus perform all 
the analysis done in the case of the free Hamiltonian with an external source and leading 
to the functional integral in (12.217). We obtain, with a* (k) and a(k) being replaced 
respectively by i(k) and z(k) 

= limTco =< 
z eitillo ci(tf-ti)H0)e-itiHo 

> 
if 

 
-00 

=
i(t,k)=t(k) 

liM D (i)D (z) expl- 1  1  id3  
f+oo

k  I (k)z (t, k) (to  , (k)1]. 
t L 2 (27)3J 2cok 

.(to  ,k)= .  to (k) 

d3k 1 . 
x exp [f

t 
 1

(27
1  )3  f 

2(t)k 
 [i (i(S, k)z(s, k) — i(s, k)“s, k)) — icoki (s , k)z(s, k) 

(s, k)z(s, k) — (s, k)y (s, k)] — iV (5' (s, .), z(s, •))} ds]. (12.222) 

Since V is of order larger than 2 in .5 and z, (12.222) is no more a Gaussian functional 
integral and there is no closed form for its value. 



1 s {if d4xi(x)0(x)} 1  
1=0 Cxi) • • • Cxn) = I I . • 1 Si (Xi  ) 

i= 1 

(12.223) 
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We will now use formal identities. 
We start with an obvious identity 

which leads to 

f dsV(40(s,•))} f d 4xr/(49 (x))} 
=e  

1 
f d' C ( —) ti fd  xi (x)(P (x))} 

= e 1 Sj(x) e  
j=() (12.224) 

with the equalities to be taken as power series equalities. 
We will apply this equality with yo , the free field expressed in terms of the complex 

coordinates 

1 f 

2Wk  

d3  k 

(2n-  ) 3  
(x) = — P(k)eil" + z (k)e-ikl 

Thus, we can rewrite (12.222) with j = 0 

SIP, = lim =< z I &VI° I > tf ->+oo 
 ti->—oo  

(12.225) 

f 
= lim D (i)D (z) expF 1 1 d3k  t (k)z(t, k) + (to, k)t0 (k)1] t f  -› +00 z(t,k)=ii(k) L2 (27)3J 2cok 

z (0,k)=% (k) 

1 id3 k 1 . 
x exp[1

0

t
1 

(27)3] 2wk 
 [

2 
 (5.(s, k)z(s, k) - i(s, k)z(s, k)) - icy ki (s, k)z(s, k)] 

-iV(i(s, .), z(s, •))} ds] (12.226) 

1 
f d4ocrt ( . —) 

= e i 81(x) lim 
till,—oo ' 

f
D (i)D (z) exp 

,(t,k)= (k)
I- 1 1  1 d3k  
L2 (27)3  J 2wk  

z to,k)=0 (k)  

• k t (k)z (t, k) + (to, 1?) to  (k) I] exp [f t 
1 d3k,-

2

1 • , (i(s k)z(s k) 
to  (27)3  J 2cok L 

k) fr (s, k)) - i(s, k)z(s, k)) - icoki (s, k)z(s, k) - iy (s, k)z(s, k) 

(s , k) y (s, k)] } ds] 
=0 
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(12.227) 

-ifd4  xr (. H [f j(x)co(x)d4x+-
2

f f j (X) GF  (x - y) j(y)d4  xd4  
1 

= e 8/(x) e  
j=0 • 

We are now able to express the general S-matrix as an operator in the Fock space 

SI  = e f
exri ( 1  6 

i 8j(x)
e [i f j(x)co(x)d4  

 

 

x 
 )  1 X GF  - y )j(y) exed 
e[ 2 ff .( (12.228) 

j=o 

When restricted to the free-field case, i.e. no interaction, this formula can be written as 

d4x4)(x)/(x) 
=: e [i 

f j (X) g0 (X) &Id 
e  2 

ff j•  (X) G F (X KY) d4  xd4  
T(e  

(12.229) 

It is the generating function with respect to j of a set of identities expressing 
T-products of free fields as sums of normal products. This is the so-called Wick 
theorem. 

On the other hand, the S-matrix can be developed on a normal product basis on the 
Fock space, 

( +oo 

Sr—  
n=0 

ni f S n • • • Xn) (X1) • • • cb : < >5  

1=1 

where 

-if.0 ( 1 ) d4  X f f (X)GF  (X - yay)exed 
< 01S/10 >= e i 81(x) e  2 

j=0 

(12.230) 

(12.231) 

The Sn  (xi, • • • 5 xn)'s are the (distribution-valued) coefficients of the S-matrix. From 
formulae (12.228) and (12.231), we have 

1 8 
) 

i 
8.1(x) 

 
in .(xi 

 GF 
.i(ocoe

Li P(X) (X -Y)/(Y)d4xed 

j=0 

Sn (X15 5 X n) 

= e 
 f exri 
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=
f xri (1 3i800 ) 8 . • 

el  f j 4(x)h(x)d x f i(x) GF  (x  y)/(y) d4Xd4y 
i=1 h(xi) 

11
 
S7t  (h, j)L0  i=o, (12.232) 

- 811(xi) 
1=1 

where by definition 

S7t (h,j) =< 015'110 >-1  e
d-ifrj( i f h(x)j(x)d4x 

3.7(x) 

1 8 A  

x e z 
[7i  ffj(x)GF  (x - y)j (y)d4xed 

j=0 

We will now establish the link with the results obtained in Section 10.3. 
First we have 

(12.233) 

S7t (0, j) = Z(j) (12.234) 

with Z(j) defined by formula (12.137). 
In fact, by using the same reasoning as that used to prove formula (12.224), we shows 

with Elm (x) = GI  (4(x)),  that 

f elf (x) j(x) d4  x e-i f Lint (x) d4  xp it  (0) 

= f (-IfaJ  )ci4 x ei f (41(x)d4xDit  (0)  

= N-1e-ifc,(1,*)d4xeLi
ff 

(X) G F (x Y)1(y)d4xd4.3)]. 

The normalisation factor AT-1  will cancel when the same recipe is applied to the 
numerator and the denominator of (12.224) and we get 

i—rn  1 
 7‹ Tvp(xi) • • •0(xn)) >= s t(0,i) .

=1 
8j(x1) 0 

(12.235) 

Now since 

(fix + m2)GF(x -y) = 84(x -.Y)  
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and 

s ffj(X) GF  (X — y)j(y)d4xd4y 
= ij(x)e 

}
,
ffj(X) GF  (X — y)j (y)d4  xd4  y} 

(0 x  ± m2) e  2 
(x) 

we get that if for all i # j 5 xi # xi, then 

6 (

+ 
) 

(xj) 
SI Xt(O,j) \  

j=1 
i=o  [

Fr  8  

I 8 h k) S7t (h5j)  k=1 
h=O] j=0 

(12.236) 

and from formula (12.235) we finally obtains 

n 

Sn(4)(X1)5 • • • 5 0()Cn)) = 11(D, + m2) 

i=i 

< T(4)(xi) • • • (l)(xn)) > (12.237) 

12.11 Problems 

Problem 12.1 The Casimir effect: Following the discussion of the Casimir effect in 

section 12.5, compute the force per unit surface between two conducting plates at 

a distance L apart. Show that it corresponds to attraction. 
Hint: Start by quantising the electromagnetic field in a box L x R x R with R > > L. 

In the sum over the momentum modes introduce a cut-off function to regulate the high 

modes. 
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Applications 

13.1 On Cross Sections 

In the previous chapters, we saw how to compute the vacuum-to-vacuum matrix ele-
ments of elementary processes and we understood how we can calculate from these 
quantities the transition amplitudes between the asymptotic ingoing and outgoing states. 
We now give the rules which make it possible to extract from these amplitudes the num-
bers which are directly confronted to experiments. We need for that to introduce the 
notion of cross section. 

Although we are concerned with fields, the analysis which will follow favours the 
corpuscular interpretation (it is an excellent justification of the so-called wave—particle 
duality). 

To simplify, we will consider the case of two interacting particles. Usually one of 
these particles is the target and the other is the projectile which will hit the target. In 
the laboratory reference frame, this corresponds to one particle, the first one, at rest 
and the other one in motion. Obviously, in the centre-of-mass reference frame, nothing 
distinguishes the target from the beam.' 

Classically, a projectile, idealised as a ball of radius r in a linear motion, will hit the 
target, a ball of radius R, if the straight line followed by the centre of the projectile meets 
the disk of radius r + R perpendicular to it and centred at the centre of the target. 

The surface of this disk, crtot = 71" (r + R)2, is the total cross section of this collision 
process. 

Let us now consider the interaction of a unidirectional beam of monoenergetic 
particles I with a target built up of nc  centres of collision, for example C particles per 
unit volume and suppose that this target is a cylinder of volume V = Sl, where 1 is the 
length and S is the surface perpendicular to the direction of the ingoing particle. If the 
target is thin enough, the density nc  not too large, and the number of ingoing particles 
per unit time Ni  large enough but not too large, then the study of this interaction yields 

I  The terminology has a purely historical origin. In the early experiments a beam of accelerated particles 
was hitting a target which was fixed in the laboratory, hence the name of the reference frame. Today, however, 
most accelerators are colliders in which two beams of particles are accelerated in opposite directions and are 
brought into a head-on collision. In these cases the 'laboratory' frame is in fact the centre-of-mass one. 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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the knowledge of that of a process involving an ingoing particle and a centre of diffusion. 
The probability of a collision is then given by 

o-tot 
P = — v 

, 
ne = atotncl, (13.1) 

where the ratio crtot/S measures the fraction of the surface of the target that may gen-
erate a collision. We can reinterpret this equation by noting that the total number of 
scattered particles, Ntot, is proportional to the relative flux 0, of the ingoing particles, to 
the number of outgoing particles and to the number, A/c  = neS/, of scattering centres, the 
proportionality coefficient being the cross section. The probability is, indeed, given by 

Nt0 t 13=
, NZ  

(13.2) 

where Ni is the number of ingoing particles reaching the target per unit time. Since 
0i = Ni/S we have 

Ntot  = Ninc /crtot  = 0ineSiatot  = OiNcatot• (13.3) 

Clearly, this last relation does not make explicit the nature of the collisions. This 
nature depends on the level of description of the physical world we choose. If classically 
we represent the ingoing particles and the scattering centres as solid balls that keep 
their shapes, then the cross section is given by the geometric formula written at the 
beginning of this section. If, always classically, the scattering centres are potentials, the 
cross section is expressed in terms of the potentials. If now, our level of description is 
quantum physics, the particles are characterised by quantum numbers and we have two 
different types of collisions: the elastic collisions which preserve the quantum numbers 
and the inelastic collisions which may change them. Finally, if we accept (in the frame of 
quantum fields) that some particles can be created or annihilated, the nature and number 
of components of the result of the collision may sensitively differ from the initial state. 
This corresponds to one or more reactions of the type 

I+C—>A+B+.... 

If we restrict the collisions to be elastic collisions, 

I+C—>I+C, 

we can define, in the same way, the total elastic cross section o-teolt  by 

Not = °1Necrtec>t• 

The difference atot  — ateolt is the total cross section of all the inelastic collisions. 

(13.4) 

(13.5) 

(13.6) 
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Figure 13.1 The geometry of a collision. 

To study in more detail the interaction process, we must look at the scattering differ-
ential cross section. The definition and the study of this quantity suppose one chooses a 
reference frame and generally it is either the laboratory reference frame or the centre-of-
mass reference frame, the first one being often the natural system related to observation, 
the second one being the most convenient for computation. 

Let us choose for simplification the laboratory reference frame and let us study the 
elastic scattering in a solid angle characterised by the two angles 0i, and 0/, (see Fig. 13.1). 

If dNel  is the number of particles scattered in the solid angle d.f2L  = di/ (OL, OL) per 
unit time, we define the differential (elastic) cross section by 

aet(OL,OL) d 
dNel  = Oi N c 

 dr2L
di/L. (13.7) 

Identically we define the differential cross sections corresponding to inelastic colli-
sions. It is frequent to use o-ei (thr  L, 0L) = o (Q) instead of do-ei (OL,OL)Idil L. 

Let us define the differential cross section in the centre-of-mass reference frame with 
o-ei (4),(9), and 0 being the Euler angles in the centre-of-mass frame. It is easy to see 
that since the flux of ingoing particles is the flux relative to the target, then 

dael(4)L,OL)
= 

dael(0,0)  
dQL 

(13.8) 

For the collisions between elementary particles, the basic units for the length are the 
fermi, lfm = 10-15  m, and for the cross section the barn: lb = 102  fm2  = 10-30  m2. 

We now apply these ideas to the study of the non-relativistic quantum interaction of 
two particles A and B. 

Let mA, mB, rA, and rB  be the respective masses and positions of particles A and B. 
They are submitted to the action of a potential V (rA-rB) and their dynamics is governed 
by the Schrodinger Hamiltonian: 

.h2 p2 
H = " + B+ V(rA-rB)• 

2mA 2mB  
(13.9) 
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MArA+ mBrB After introducing the centre-of-mass variables r = rA  — rB  and r =  
mA + Ins 

the problem factorises into two parts: the free motion of the centre of mass and the 
mAms relative motion of a 'particle' of mass m = submitted to the potential V (r). The 

mA + ms 
initial problem reduces thus to the study of the scattering described by the Schrodinger 
equation 

h2 a 
1-1* (r, t) = (--

2m at 
+ V (r))* (r, t) = ih— ,cfr (r, t). (13.10) 

We now suppose that the potential decreases sufficiently rapidly at infinity: 

rV (r) —> 0 (13.11) 

for Sri = r —> oo (this condition excludes the Coulomb-type potentials). 
Let us suppose that initially the particle has a well-defined momentum pi  = hki, there-

fore an energy Et  = p22/2m, and let us consider the corresponding stationary solution 
(we assume evidently that Et  belongs to the continuous spectrum) 

Eat 

*i (r, t) = *t  (r) Ci  T (13.12) 

with 

h2 
(-- 

2m 
 + V (r))* (r) = E* (r). (13.13) 

We are interested in the solutions *(±) (r) satisfying the asymptotic condition 

eikr 
*1(7.)  (r) —> A (eiki.  + f (0 ,00) 

roo 
(13.14) 

the angles 9 and (/) representing the polar angles of the vector r in the reference frame 
in which the origin is the origin of r and the polar axis is the direction of the initial 
momentum. A is a normalisation constant, independent of r, 9, and cp. 

This asymptotic condition can be physically understood as a superposition of a plane 
wave of momentum ki  corresponding to the non-scattered initial wave and an outgo-
ing spherical wave (we can check that the group speed is positive). The differential 
cross section a (Q) d12, which is the number of particles emitted per unit time and 
per unit of incident flux in the solid angle d12, is therefore equal to the ratio of the 
flux of diffused particles crossing the element of surface r2  dS2 , for r —> oo, by the 
incident flux. 

To the Schrodinger equation is associated a probability current 

(r) = 2mi {**(r)(V1k (r)) — ik*  (r))* (r)} (13.15) 
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which satisfies the continuity equation 

ap 
V •j + 

at 
=0, (13.16) 

where p = 102. 
If the ingoing wave is given by ki  (r) = A eiki.r, its flux through a unit of surface 

normal to the direction of propagation ki  is 

Oi= ji • ki = —h  AA*ki = AA*vi. (13.17) 

The flux of the outgoing spherical wave, with the same normalisation, is given by 

cikr a ethr 
• = %VIA* f* (0 , (I)) 

r r 
(0 50)7)1. (13.18) 

Consequently, apart from the direction of motion, i.e. for 9 # 0, and the limit r —> 00 
showing that the observation is done at sufficiently large distance from the interaction 
zone, 

der (9,4)) 
dS2 = lim r2  dS2 = (950)12  dS2, 

dS2 r—> oo •
ki 

(13.19) 

thus, 

der (9, cp) 
 = if(954))12. dS2 

(13.20) 

This result has its real justification in a more realistic formulation of the scattering 
process. Indeed, the initial state cannot be a plane wave with a well-defined momentum, 
but must be a wave packet, that is to say a superposition of plane waves centred around 
a value ki . In this case, the asymptotic state is a superposition of asymptotic states 
(13.14). If the parameters which characterise the process are physically reasonable, it 
is straightforward to show that the differential cross section is effectively given by the 
formula (13.20) . 

This simple notion of cross section can be generalised to the framework of relativistic 
quantum field theories. The quantum aspect will be rendered by the fact that the cross 
section which measures a probability can be expressed as the square of a transition amp-
litude, the relativistic aspect being characterised by the way the cross section transforms 
under the action of the Lorentz group. 

13.2 Formal Theory of Scattering in Quantum Mechanics 

We saw in Chapter 8 that the solutions of the Schrodinger equation are easily expressed 
through the retarded Green function. We will show that the knowledge of this function 
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makes it possible to write the transition probabilities. In order to do this, we will first 
write an integral equation which the Green function satisfies. 

13.2.1 An Integral Equation for the Green Function 

The Schrodinger equation for the Hamiltonian H = Ho + V, with boundary conditions 
(q', q), is given by 

i f " 
G (q' , t'; q, t) = f 

) 
D (q) exp dsr(q(s), 4(s)), 

(t) =.7 

(13.21) 

where G is the corresponding Lagrangian. We will compare this Green function to that 
of a free theory (that is to say without interaction) given by the Lagrangian Lo using 

= Go — V. (13.22) 

Let us write that 

i f 
dsr(q(s), 4(s)) 

e 

— 
i f t, i f t,  

dsro(q(s), ii(s)) — ds V (q(s), s) 
= , e  h (13.23) 

i 
t 
 

f  t' 

= e
dsro(q(s), 4(s)) I 

n1  
( f dsV (q(s), s))n  

• t n=0 

from which we can write 

G (q , ; q, t) = Go (qc t' ; q, t) + G(1)  (q , ; q, t) + G(2)  (q' , t' ; q, t) + • • • , (13.24) 

Go (q', t'; q, t) being the Green function of the free theory. Let us study the nature of the 
first few terms: 

G(1)  (q , ; q, t) 

D (q)e dsro(q(s),4(s)) f dsV (q(s), s) f = h )=q 
q(t)=q 

t  i , f
q(e)

, D(q)e"  
h 
 f

t

dsro(q(s),4(s)) V (q(s) s)) ds 
q(t)=q 

= t  dt1 f d3q1 D ,q)e 
 fti dsro v (qi , tl ) f 

h f
f 0,)=q/

q 1 )= (11  

q(ti)=41 q(t)=q 

D (q)e  j;t' dsr) 
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ft' f 
=

t 
 Go(q ,t qi, si) V (qi,si) Go(qi,s1;(1,t) d3 dsi 

=--h f Go(4; qi) V (qi) Go(qi;q) d4  qi, (13.25) 

where a point of position q at time s is denoted q = (q, s), d4q = d3qds and the fact that 
the retarded Green functions G(4 , t'; q, t) and Go(q' , t'; q, t) vanish if t > t' has been 
used. 

Similarly, 

G(2)  (q% ; q, t) 
t' 

(
)2 q(e)=q'

(q)e  f it dsro(q(s),4(s)) 
( ds V (q(s), s)) 2 

2 h  q(t)=q  

1 i t' t' 

2(~i

D(q)ei ft? dsro (q(s),4(s)) v (q(s 1), si)v (q(s2.)  , 52
. ) dsids2 

t  t f q(̀ ' )=q' .g(t)=q  
t' = 1 

( 
)2f e( f t( f

q(
,D(q)ei ft  dsro ws),4(s)) 

2 h t')=q'
1 (q(S1) SOT (q(S2) S 2) C1S2 CIS 

t
q(t)=q 

t 

2 t

I 
1 

D (

q

) 

e

i f dsro (q(s),4(s)) v (q(so,so v (q(s2.
) s2

) 
) ds2  

h ./J q(t)=q 

By a change of variables, the last equality can be rewritten as 

G(2)  (q% t'; q, t) 

= —1  ( —i  ) 2  f f f Go q2) V (q2) Go (q2; qi) V (qi) Go (qi q) d3  g1  d3q2)dsids2 2 h 
t'

)2f
t t 

 sUf Go (qi; qi )17  (q i) Go (qi q2) V (q2) Go (q2; d3q1 d3q2)dsids2 

= ()2  f f GO(q/  ; q2)I (q2) GO (q2; q1)1  (q1) GO(q1; d4  g1  d4q2. (13.26) 

This analysis can be repeated for the other terms of the expansion (13.24) and we 
find that 

G(4; q) = G(qc ; q, t) 

= Go (qc ; q, t) — f Go (q' ; qi) V (q 1 ) Go (qi; q) dqi + • • • (13.27) 

(— )n  f f GO(q qn)V (qn)G0(qn; qn-1) • • • 1  (q1) GO (q1; d4  qn • • • C14  ql ± • • • 
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= Go  (qc t' ; q, t) + f Go  (q/  ; p) V (p)(Go(p; q) + f Go (p; q 1 ) V (qi ) Go(q 1  ; q) d4qi 

+ f f Go(P; qi) 17(qi)Go(q1; q2)17(q2)G0(q2;q) d4q2 d4q1 + • • • ) • 

= Go(q1; q) + f Go(q/  ; p) V (p) G(p; q) eq. (13.28) 

Given a wave function 00  (q) at the initial time t, the wave function at time t' due to 
the complete dynamics, that is to say including the action of the potential V, is given by 

ilf (q,  t') = f G(qc t/  ; q, t)00 (q) d3q. (13.29) 

Introducing the result at time t' of the evolution under the free dynamics, that is to 
say H0, of the initial wave function, 

.0(4c t') = f Go(q/  , t/  ; q, t)00(q) d3  q (13.30) 

and using Eq. (13.28), we get 

ilf (4) = .0(q') + f Go(qi  ; q) V (q)* (q) eq. (13.31) 

Iterating this equation, we obtain the Born expansion 

.1 I (q') = 0(qt) — f Go(qi  ; q 1 ) V (q 1 ) 0 (q 1 ) d4  qi  + • • • 

± (—i  
h

)n  f f GO (q/i qn) 17(qn)G0(qn; qn-1) • • • 17(q1)0(q1) eqn • • • d4q1 ± • • • • 

Reduced to the first two terms, the last equality is known as the Born approximation. 
It is easy to find the asymptotic formula (13.14) by inserting in the preceding equation 

an initial wave function 0 of the plane wave type. 
The physical problem that we consider is that of a beam of identical particles, for ex-

ample electrons hitting a thin aluminium sheet. If the beam is collimated the experience 
shows that one part of the beam crosses the sheet without change while another part is 
diffused in all the directions. We are interested in the study of this scattering process. 

By assuming that either the sheet is very thin or the interaction corresponding to 
each of the atoms very weak, we can reduce2  the problem to that of the interaction of 
the electron with one of the atoms. This system can be described, approximately, by a 

2  Under this hypothesis, we can neglect the interaction of an electron with all the other atoms or with other 
electrons. 
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Schrodinger equation with Hamiltonian H = Ho  + V, V being a potential characterising 
the effect of the atom. This system remains nevertheless very complex: the atom can be 
excited or ionised, and the electron can lose energy. To simplify a little more, we will 
assume that we are dealing with an elastic scattering; that is to say, the atom remains in 
the same energy state before and after the scattering. 

Without interaction, the particle evolves according to the free dynamics given by 1/0  
and, in order to simplify even further, we will assume that we have replaced the electron 
by a massive scalar particle in which case 1/0  = -A/2m. The scattering problem is then 
more simply analysed if one assumes that the range of the interaction V is finite. In this 
case, we can measure the effect of the diffusion by computing the probability that a free 
particle of momentum pi  becomes after a long enough time a free particle of momentum 
pf. Since the energy is conserved, pi  and p f  have the same module and the scattering 
is characterised by the angle between these two vectors. In fact, with the hypothesis of 
finite range of the interaction, this probability could be measured by taking initial and 
final states localised out of the area of influence of the interaction. 

As we have already discussed, the notion of initial and final times, i.e. the beginning 
of the experiment and the moment when the measurement is done, is translated math-
ematically into an infinitely remote time in the past (t1  = -oo) and an infinitely distant 
time in the future (tf  = +oo). 

The physical picture is quite simple. The initial state (t —> -oo) is formed by two 
particles, far apart from each other, moving one towards the other. Since the particles 
are assumed to be localised, they must be described by two well-separated, wave packets. 
If the distance between them is very large and the interaction of short range, the two 
particles can be assumed to be free. Similarly, the final state after the collision (t —> +oo) 
is formed by two free particle wave packets moving away one from the other. This is the 
correct physical description. The trouble is that it is rather awkward to work with wave 
packets and we would like to replace them by the much simpler plane waves, but, by 
doing so, we lose the property of localisation. We go around this difficulty by a technical 
artefact, which will be quite useful in several other cases: we assume that at the beginning 
and at the end of the experiment, there is no interaction and that the interaction appears 
and then disappears gradually at the moment of the measurement. We still have to face 
the technical problem of the control of the double limit. We can solve this problem thanks 
to, for example, a mathematical device consisting in the replacement of V by CI* V,E 
going to 0 at the end of the calculation. This device simulates what is called an adiabatic 
switching on and off of the interaction. We shall come back to this point shortly. 

So, let us consider a free state of momentum p with wave function 

 elP.X-1El 
Op(OC, t) 3 5 

(27) 

where E = p2/2m and 4(x, t) is a solution of the Schrodinger equation 

a 
i
at

95(x, = 1100(x, t) 

(13.32) 

(13.33) 
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and 

(4 = f (x', t'; x, t) 0(x, t) d3x. (13.34) 

The solution of the Schrodinger equation with Hamiltonian H, equal to cpi (x, t) at the 
time t, can be written as 

; (x', t') = f G(x', ; x, t) 0,(x, t) d3x. (13.35) 

If the initial condition was a plane wave of momentum kt  at time t = -oo, the solution 
at a later time t' can be written as 

(x', t') = lim f G(x', t'; x, t) (/),(x, t) d3 x. (13.36) 
t-,00 

Therefore, the probability amplitude for the initial state 4, at time t = -oo to become 
the final state Of  at time t' is given by 

(O f, = f (/),(x' , (x' , t') d3  x' 

= lim f Of (x', t') G(x', t'; x, t) 0,(x, t) d3 x' d3x. (13.37) 
t,-00 

Let us rewrite this last expression after introducing the bra and ket notations, 

Pk (x, t) = < klx > CiEt  

G(x, t';  x, t) =< x lei(t'-t)H  >; 

thus, 

(of, e+)) (13.38) 

= 
t_>
lim_00

f < lif ix' > eit'Ef < x'lei(t'-t)H lx >< xlki > CitEi d3x d3x' 

= t
-* -oo
lim f < k'f ix' > eit'Ef < X/ lei(t'-tgi lki > CitEi d3x' 

• - 
i 

 = 
t—*—oo
lrn f < k'f ix' > eit' Ef < xt i  ei(t-t)H e-itlio lk > d3xd3x/  

i ele Ho ei(e -011 = lim < kf e-itHo  iki >= lim < k f lU (t' , t)lki  > 
t,-0,0 t,-00 

=< k f lU(tc-oo)lki >. (13.39) 

It follows that 

lim (Of, =C+) ) kflU(00,-00)Iki >=< k f ISIki >= Sfi (13.40) 
9,00 
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is the S-matrix element between two plane waves Oi  and O f. Applying the equality 
(13.31) for Ifri(±)  to the expression of the S-matrix element we get 

Sfi = 83  (k f  - ki) + lim f (x' , t') Go  (x' , t' ; x, t)V (x, (x, t) d4  x d 3  x' . (13.41) 
t Boa 

The first term of this equality corresponds to the absence of interaction, the plane 
wave propagating without being perturbed. The second one corresponds to the scat-
tering by the potential. Using the Born expansion, it can be developed in powers of V. 
The different terms which appear are what is called the perturbative expansion of the 
S-matrix element under consideration. 

We will give a more rigorous justification of the introduction of the evolution operator 
U(t', t) and its relation with the S-matrix. 

The interest of the unitary operator U is that it is the evolution operator for the states 
in the interaction representation: 

10(t) >= u(t, to)I *I(to) >. (13.42) 

The last equality of Eq. (13.39) has shown the appearance of the ket U(t',-oo)10, >. 
We shall give a meaning to this notation through the notion of the adiabatic switching. 

As we explained earlier, replacing the potential V by Cell V does not mean that the 
physical potential depends effectively on time. It is just a formal way of taking into ac-
count the physical assumption that the range of the potential is sufficiently small so that 
the particle in the initial state has a very large probability to be far from the scattering 
area. 1/s gives the time beyond which the effective interaction is nearly 0. We can show 
in fact the following result: if we solve the Schrodinger equation with potential Cell V 
and the initial condition 

eik.x-iEk t (x, t) —> 5 
r-> -00 

(13.43) 

then at the limit E —> 0, for each time t, Ali (x, t) is a solution of the stationary equation 

HO' = (13.44) 

Thus, the adiabatic switching transforms each eigenfunction of 1/0  into an eigenfunc-
tion of H with the same eigenvalue. 

We now give a meaning to U(t, s) when one or two of the arguments are infinite. 
For this purpose, we rewrite the equation satisfied by U in the adiabatic approxima-

tion, replacing, since we are in the interaction representation, V(t) = eitHo ve—itHo with  
V(t)e-si tl: 

iat u,(t, t') = e-691  v(ou,(t, t'). (13.45) 

After integration we get 

U8  (t, t') = 1 - i Cel s1  V (s)Ue (s, t') ds. (13.46) 
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Taking the complex conjugate of this equation and permuting t and t', we get 

U,(t,t') = 1 — i U,(t, s) V(s)e-el sids = 1 + i f t o V (s)U,(s, t) ds. 
9 

(13.47) 

As for a usual evolution operator, Ue  (t', t) satisfies the semi-group and unitarity 
conditions and we define the expressions at the large time limit by 

U (t,±oo) = 1 — i lim f U (t, s) V(s)e-dsids (13.48) 
e—>0+ ±00  

and check that 

U(t,—oo) = U(t, s)U(s,—oo). (13.49) 

Introducing the orthonormal basis of the eigenstates of 1/0  (we assume that 1/0  has 
no bound states) given by the Ok's and the fact that this basis is complete for L2, 

f lOk > < Oki d3k = 1 (13.50) 

we get 

U(13' ±°°)I, 0 
= 1— i lim ceisi e

isH
e-isHo  

e—>0+ Loo  
17(S)(

ik 

 f

o 

 10k > < kl d3k) ds 

o 
= 1 —1 (

f 
e-sisleisHe-isEk v iirri 

e—>0 f±00
>< Oki ds d3k 

1 
= 1 + s_>0 lim  f E —HT 6 V 144 > < Oki d 3  k 

+ k 1 

f 
Tie

3  e >0 
= liM , H l 

. 
s 
 10k >< 0k 1 dk. 

+  

Going back to the definition of Ifri(±)  (t), we find that 

lg+) (t) > = eitlio e-itH 
c
hin

o+ 
 f 

Ek 

is  

H 
 ± 

is  195k > < kl0 > d
3
k 

eit -itH  lim 
is  

0+ — H + is 10i > 

= eitlio e-itH o
i 
 > 1 

 V 101 >); 
s—>0+ — H + is 

thus, with the notation t4±)  (0) = .1/4±), 

1 
Ilk > = 10i > + lim  V 101 > 

s—o+ Et  — H f is 

(13.51) 

(13.52) 

(13.53) 
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U(0,-oo) = f > < okI d3k (13.54) 

and 

u(0, —00)144 >= I iki(,±)  >= s2(±) 144 >, (13.55) 

where we introduced the Moller operator Q(+)  = U(0,-oo), which transforms the initial 
asymptotic states into scattering states. In fact, we can show, under very general condi-
tions on the potential V, that if H = Ho  + V and if * (t) is a solution of the Schrodinger 
equation, with H for Hamiltonian, orthogonal to all the bound states (that is to say be-
longing to the continuous spectrum of H), then there exists a unique solution of the 
Schrodinger equation of Hamiltonian 1/0  such that3  

s - lira (*(t)- OW) = 0 (13.56) 
t,-00 

Conversely, to each solution of the free equation corresponds a scattering solution of 
the complete equation. 

It thus follows that 

and 

s - lim U (0 , t) = s - lim eiHt e—it1-10 =  
t—>—oo t—* —oo 

(13.57) 

HIP-)  = S2 (±)Flo, (13.58) 

where 

Hi ifri(±)  >= Hs2(±) 10i  >= s2(±)110101 >= Eis2(±) 10i > = >. (13.59) 

In the same way, we define 

12H = U(0, oo) (13.60) 

which transforms the final asymptotic states into scattering states. 
Using the semi-group properties of U and the limiting procedure given by (13.58) 

U(oo, -oo) = U(oo, 0) U(0, -oo) = U(0, oo)1.  U(0, -oo) (13.61) 

3  We say that a sequence of vectors of a Hilbert space 0e converges strongly to 0: s — lime 0e = 0, if it 
converges in norm, that is to say if lime II0eI I = 0. It converges weakly, w — lime 0, = 0, if for any fixed vector 

lime (0i, W) = 0. We have a similar definition for the operators. If A, is a sequence of operators, we say that 
it converges strongly (or weakly) to A if for all vector W in the domain of definition of the Ai's and of A, the 
sequence of vectors Aitlf converge strongly (or weakly) to A0. 
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we can express the S-matrix in terms of the Moller operator: 

S = S2HtS2 (±) . (13.62) 

The Moller operators are isometric (and not unitary although they are strong limits 
of unitary operators), that is to say they preserve the norms, because 

s2(±)t  s-2(±)  = ffIlk >< 1(,±)  ik;,±)  > < Op' d3k d3P = f kkk > < Ok d3k = 1, (13.63) 

since, even at the limit, the U's remain unitary and thus 

(+) ikp(+) < ikk  I > = < (kk I tP > 

and 

(13.64) 

S2(±) Q(±)t  =ff 1 14+)  >< opiok >< d3k dap = f 11/4,±)  >< dap. (13.65) 

But this last expression which projects on the eigenstates of H is the identity only if 
H has no bound states; otherwise, 

f 1,4+) >< ,fr,(,±)  I  d3p  =1-  E Iifrc(,B)  >< n(B) 1 
a 

the sum being on the bound states of H satisfying HI ika(B)  >= Ealilfa(B) >. 
If ift• is an eigenstate of H of energy E 

S2(±)litk >= lime f ei11°t e-iHt. Lip > dt = lim 
is 

E->0+ s->O+  E -110 >. 

(13.66) 

(13.67) 

If is a bound state of H, its energy is lower than the energy of the eigenstates of Ho 
and therefore E - Ho never vanishes. It follows from these remarks that we can take the 
limit E —> 0 and we find 0. Thus, 

s2 (+)t
1 
e) >= 0. (13.68) 

Evidently all the preceding properties extend to Q. This result makes it possible to 
prove the unitarity of the S-matrix 

St = s2(+)t s2(-) s2(-)t s2(+) = s2 (±)t
[1

_E ikam, > < ifram)1is2 (±) = 1  

and 

sst = i2Hts2(±)s2(±)-ts2H = 1- s2(_) -1-  E iik0(
,
B) > < 

,,
13)i s-2(-) =1 
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as well as 

[S, Ho] = 0, (13.69) 

which is obtained using (13.58) and an identical relation for S2(-). 
We now give an expression for the elements of the S-matrix: 

Sfi  =< ofisoi >=<ofis?Hts-2(±)kai >=< > 

Using the identity (13.52) for t = 0 

Sfi = < 14-) >=< le)  > + < "tkr - lef+)  ilk > 
1 1 

= (kf - 1=4) + lim < (1)f IV (
Ef H + ie Ef — H - is )itfr+) > 

= (kf  - 1=4) + lim < of' v( 1 1 

+ is Ef  - - > 

= (kf  - 1=4) + lim 
2is 

< 
e-o+ (Ef - Ei)2 + e2 

I V I > lk  

= (k f  - ki) - 2in - (Ef  - Ei) <¢fIVI c+~ 
> • 

We can show equivalently that 

Sfi = (kf - - 2i7 (Ef  - < lfrir)  I VI4r > • 

(13.70) 

(13.71) 

(13.72) 

Equations (13.71) and (13.72) show that an S-matrix element depends only on the 
matrix element < ¢f I VI ifri(±)  > computed on the energy shell Ef  = Ei  and moreover on 
this energy shell we have 

< of' vilfric+)  >=< voi > . (13.73) 

In the expression giving the S-matrix element (13.71) the first term disappears in 
case the transition i —> f involves different states. It corresponds to a purely elastic 
forward scattering, that is to say in the direction of the incident particle. The second 
term expresses the fact that transitions between different states, that is to say states having 
different quantum numbers, are possible if they have the same energy. 

Remark that at lowest order in the Born expansion ifri(±)  = 0, and therefore 

< of >= 'f(r)f  -pi), (13.74) 

which is the Fourier transform of the potential. 
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Expressions like (13.72) of the S-matrix elements lead to the introduction of the T 
operator through the formula 

S = 1 + iT; (13.75) 

thus, 

< Of I T 101 > = Tfi = —271-6(Ef  — Ei) < 0./.1 171 1ki(±)  > • (13.76) 

The unitarity of the S-matrix leads to 

TT* = T* T = —i(T — T*) = 2 T. (13.77) 

13.2.2 The Cross Section in Quantum Mechanics 

13.2.2.1 The Lippmann—Schwinger Equation 

It is possible to recover the results of the first section in this formalism and in particular 
to prove formula (13.14). 

Starting from Eq. (13.53) and using the operator identity 

1 1 1 1 
— — = —(B— A) 

A B B A 
(13.78) 

with A = E — H f is and B = E — Ho  ± is we find the Lippmann—Schwinger equation 

. V l(Pi > , Illf ±)  > = I0i > + lim 
1 

e_>0+ Ei _ H ± 1E

. 

 
1 

=I0i > + 11M 1  V I0i > E —> 0+ Ei — Ho  ± lE 
1 1 

+  
Ei — Ho ± 18 

V 
 Ei — H ± is 

IV (Pi >1 

1 1 
= I0i > + lim  

, 

1 
'VIZ{  ilf ±. > 14) 1:+

 VIOi > } e o+ Ei  — Ho  ± is

:E

i—H±is 

= I0i > + lim  
e,o+ Ei— Ho  ± is 

Projecting the Lippmann—Schwinger equation on the position basis we get 

iki
(±)

(r) = 01(r) + f < rl lim 
1 

Ir/  > V (r') (r) dr' 
e,o+ Ei  — Ho  ± is 

(13.79) 

(13.80) 



and that 

then 

V (r) 0 if r > a (13.85) 

r>> a and r>> pia2, (13.86) 

rl V (r') .1fr +)  (r) dr' — f ciPi" V (r') Ifr +)  (r') dr' 
-  
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and 

< re lim 
1

1'1 > 
E->0+  - Ho ± is 

=
J 

< rep > lira < pl 
1 

E-> 0+  

1 1 
= firn     e-ip. (r'-r) dp 

e-o+ (27)3  f Ei - ± is  

2m i 1 
= urn   e-ik(r'-r)  dp 

e-o+ (27)3  i pi  - p2  ± is 

1 e±il'ilr'rl 
(13.81) 

(13.82) 

= -2m 
47 - rl 5  

where we used Ei  = p2/2m and a redefinition of E. 
We now check that the solution of the integral equation 

1 eiPilr'-re 
•tfr+)(r) = oi(r) - 2m— 

f  
V (I,' ) (r') dr' 

Ir' - rl 

satisfies the asymptotic condition (13.14). 
For this purpose we use 

1 1"1  - rl —> r - + —1  (I^ A r')2  + 0() (13.83) 
-> 00 2r 

and therefore that 

eiPilr'-r1 ipi , , 
[1 + + —

2r
(r A r )- + 0(—

r2
)] 

Ir - rl r—cx)  

If we now suppose that the potential has a finite range, 

(13.84) 



and therefore from (13.20) 

(27)4m2
1 < Of1 171 1fr1(±)  > 12. dS2 h4  

(13.90) 
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and 

1 •
- 

2m eApr 1+) (r) —>r->oo 3 e 1Pi.r -
47 
-

r 
f 'Pf V (r') Ifr +)  (r) dr 

(27) 

1 • eiPr 
= 3  [elPi.r  f(p, 0,0)—] 

(27)2 

with the ingoing momentum pf  = pr, IPf I = IPil = p and 

(27) 2  

f (P, 0) = 2m f f V(r)  t z +)  (r') dr, 

thus reintroducing the dependence with respect to h 

(27)2m 
f (P, 9,0) =  < OfIvrtfr +)  > 

h2  

(13.87) 

(13.88) 

(13.89) 

13.2.2.2 Cross Sections and T-Matrices 

We will now establish in a very general way the expression of cross sections in terms of 
T-matrix elements. 

The transition probability from the initial state 10, > to the final state kpf  > is given 
by (the two states are supposed to be different) 

Wfi = 1 < Of ISIOi > 12  = 1 < 14- 1) 11k,C+)  > 1 2  = 1 Tfil 2, (13.91) 

since from (13.20) 

< OfiSkki >= 8fi + iTfi (13.92) 

= 8fi - 2in-  8 (Ef - Ei) < I V 1114+)  >= fi - 2in- (Ef  - Ei)IT fii 2  

Tfi being the reduced T-matrix element (at given energy) 

Tfi =< 0/1 VI > • (13.93) 

We see when taking the square of this function that there will be an interpretation 
problem because of the delta function of conservation of energy. In fact (following J. 
Schwinger), we can interpret the product of two delta functions 
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2  

1 f 

e 
i (E1-Ei)t 1 

(8(Ef E1))  = —2n- h 
h dt8 (Ef  - Ei) = — 

h f dta (Ef  E1).  

Therefore, 

Wfi = —
27 

(Ef  - Ei)I < Of1 17 1 14±)  > 12  f dt, 

(13.94) 

(13.95) 

which has a logical interpretation: the probability of the transition is proportional to 
the total duration of the interaction. It is therefore natural that the probability of the 
transition per unit time is given by 

27r 
wfi  = (Ef  - Ei)I < Of1 17 1 14±)  > 12 • (13.96) 

This intuitive derivation can be obtained more rigorously by saying that wfi is the 
increase per unit time of the probability that a system initially in the state i is at the time 
t in the state f: 

Now, 

thus using 

d 
wfi =

li
I < U(t, 0) U(0, t') 1 lki(t/) > 12  

= dt—
d

1 < (PflU(t, 0)114±)) > 12. 

d 
wfi = [< U(t, O)Itkin >< U(t, 0)110 >1 

= < 0/1—dt U(t, 0)11/fin > < Of1U(t, 0)11/4±)) >* +h.c., 

(13.97) 

(13.98) 

dt 
U(t, 0) = V(t)U(t, 0) (13.99) 

wfi = < Of 1V(t)U(t, 0)114+)) >< (pf uct,coilfri(±)) >* +h.c. (13.100) 

From the definition of V(t) and of U(t, 0) 

< v(t) uct, 0>i >= e  ithf < 1 Ve-it1114±)) > 
= eit(ErEi) < o

f ' vil(ii +)) > (13.101) 

and 

< OflU(t, 0) 1 e)) > = eit(Ef-E0 < ofivf -E) ) > (13.102) 
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and therefore 

wfi = < OfIVIlfri(±) ) > < Oil tfri(±) ) >* +h.c. (13.103) 

This last expression can be clarified using the Lippmann—Schwinger equation 

wfi 

=—i <of IVl + Of* >* lirn < I
1

17 1 1  kin >*) 
E-> 0+ Et  — Ho + is 

= < of ' > sfi 
1 

- < f  I V11/4±)) > E  
E 

rn 
— Ef — is 

=2`,N < Of1171 1fr +)) > 8 fi 
1 1 

-i l < of  I  vrtfr•+)) > 1 2 urn  (  ) 
E-> 0+ — Ef  — is E, — Ef  + is 

= 2 < I V11/4±)) > 8fi +273(E f— Ei)i< 4;71171* ,C+) ) >I 2, 

and thus, if the final state is different from the initial state, 

wfi = 2n-  8(Ef — Ei)1 < Of1171 114±) > 12  = 2n- 8(Ef  — Ei)ITfil 2  • 

(13.104) 

+ h.c. 

< 071 17 1 1fri +) ) >* +h.c. 

(13.107) 

In practice, we are always interested in the transitions from a given initial state to a 
bunch of final states whose energies are between Ef  and Ef  + dEf  and of density p(Ef).4  
The probability of transition per unit time is therefore 

w = 2n f dfwfi (13.108) 

Ef+AEf  

= E 8(E' — Ei)1T fil 2  pf (E')dE' = 271- P I (E)IT fil 2  
f, fEr E f 

where the matrix element and the density are supposed to be slowly varying and in the 
final formula, the matrix element is calculated for the energy E = Ef  = E1  and the sum 
over the states f' excludes the states f. 

Remark that if we sum the probability of transition wfi over all the possible final states, 
we get from the closure relation 

4  pf (E)dE is the number of spin states of Of in the energy interval (E, E + dE). 
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dfwfi = lirn d f df < I U(t, 610i > < Oil U(t', t)10f > dt 

= urn — f df < U(t', t)10/ > < I U(t, 614)i > dt 

= lirn —
d 

< U(t', t)U(t, > dt 
d 

= lirn — < > = O. 
dt 

Applying this result to Eq. (13.106), we get 

0 = 2`,N < VI (+) ) > +27 f df 3(Ef  - Ei) I < (Pf1 17 1"tki(±) ) >12• (13.109) 

The second term on the right-hand side is proportional (neglecting the contribution 
from the state f) to the total cross section 

E Crfi (13.110) 

since the cross section o-fi is calculated by dividing the probability wfi by the ingoing state: 
(27)-3vi, vi  being the speed of the ingoing state. 

The equality (13.109) is known as the optical theorem. 

13.3 Scattering in Field Theories 

The preceding formalism extends to field theories. The calculation of cross sections is 
reduced to the computation of the T-matrix elements. 

From the results of Chapter 10 it follows that the T-matrix can be written, f 
and i characterising the initial and final states of respective momenta qt , • • • , q, and 
Pi, • • • , Pn, as 

1 

Tfi = (2n)43(4)  (E pi _E fi. 
i=i j=i 

(13.111) 

We can always assume that the momenta of the initial states are known with preci-
sion.5  The probability of a collision leading to a final state, the particles of which are 
characterised by spin states and by momenta denoted collectively by pi , • • • ,pn  up to 
dp , • • • , dpn  in a set Q, is given by6  

5  This is, of course, an approximation. Any physical one-particle state should be described by a wave packet, 
but, in most experiments, the uncertainty of the initial momenta is very small. 

6  Unless it is necessary, we will omit to write explicitly the spin indices. 
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where 

dwfi = f I Tfi l 2diii, • • • ,dfin, 
s2 

d_ 1 3  pi 
dpi  =    = 

(27)3  2w(pi) 

(13.112) 

(13.113) 

As in the case of quantum mechanics, the expression (13.112) is singular since it 
contains the square of a delta function. However, we can proceed as before and show 
that one of the delta functions can be replaced by 

1 

(27 )4 

f 
d4x (13.114) 

and introduce the probability of transition per unit volume, the initial states being 
normalised to one particle per unit volume, 

dwfi 1
1 

dwfi = 4  = (27)4  f 8(4) (E pi  E qj) IT fil 2 • • • , (13.115) 
HI  pi  f d x i=1 1=1 Pi 

the pi 's representing the densities of the initial particles. 
Formula (13.115) will be our starting point for the calculation of cross sections of 1 

initial particles and n final particles. We will consider the two most interesting cases. 

13.3.1 The Case of Two Initial Particles 

In the case 1 = 2 and in order to simplify the discussion, let us assume that we have only 
massive scalar particles. The cross section is the number of transitions per unit time and 
unit volume divided by the incident flux and the number of particles (diffusion centres) 
of the target. Since we normalised the incoming states to contain one particle per unit 
volume, the division factor reduces to the incoming flux whose value is 

vi = IV1  v21, (13.116) 

where v1  and v2  are the velocities of the two incoming particles. 
Therefore, 

dwfi = 
dwfi 

vi 
(13.117) 

We will restrict once more our analysis by limiting the final states to two-particle final 
states and consider the reaction 

A+B—>C+D, (13.118) 
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where A and B are with four-moment qi and q2  and C and D are with four-momenta pi  
and p2. 

The cross section can be written as 

da
(27)4  I 8(4)(pi p2

q2)1
.1. 1

2 
dpi dp2  

fi (27)6v,0102 J fi 2w(pi) 2w(p2) 
1 1 dpi  dp2  f 8(4) (pi + P2 ql —q2)1Tfil2260.

) 2w(pa) 4(27)2 
1
/(q

i .
q2) 2 

where we use the fact that the density of initial states is given by 

pi  = 2o)(qi). (13.119) 

The expression p1 e2v, can be written as a relativistic invariant 

(0102Vi)2  = 16C00102(0012)21  q1 q2  12 = 16 1 2 (w(qi) + w(92))2  
w(91) (0072) 

= 16((co(qi)co(q2) qD2 co(9 
1 
)20)(

q2
)2 (co(q

i 

 )2 + 

w(92)2) 

 

= 16((q1 .q2)2  —qiq3) 

and the last term is positive since qi and q2  are in V. . 
We get the differential cross section by restricting the particle C (we could also have 

chosen D) to have its momentum pi  in the solid angle d.Q. This constraint (with given 
qi and q2), by the conservation of the energy—momentum imposed by the delta function, 
fixes the length of pi , p2, and thus the energies p° = to(pi ). Let us choose the reference 
frame of the centre of mass q1  + q2  = 0. Then 

(27)4 dpi  dp2  
dCrfi f (P? + P(2) qcD 8(3)  (Pi + P2) ITfi 40 2w(p2) (27)-vi0102 20  

1  dp
0
i  (p? + p°2  - q°2)ITfir 4040
42) (27)2V/0102 J 

o „o „ 1 

(27)2v1v 102 
f F2 qi o\ 

qvI TfiI 2 4w(p1)w(p2)
Ipi  12  dipi  ids2 

1 I 1 IP112  
n OITfil2dS2 =  TI fil 2dS2. 

(27)8vi pi Q2  4(pi + 2 (27)8v10102 Lico(Pi)co(P2)vf 

For the integration of the delta function, we used that p? ± q?— q°2  is, through 
= co(pi), a function f (Ipi  I) and that f (Ipi  I) = 0 for a value Ipi  I = p = p(qi, q2); thus 
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1  
(i (IP =

(P)I 
(IP — P) 

and since 

f' = 
df GPI I)  _ P°Pi •P2 — (P1)2/4 

 - Ipil
+  

dIpil p5(31Pil P71)(2)  

we get in the centre-of-mass reference frame 

00 
8 (P? — — 4)IPI IdIPI I = oP1P3 0 6 (1Pil — d11,11. 

+ P2 

(13.120) 

(13.121) 

(13.122) 

Finally, since p1  .11 = mcvi  and p2.11 = mDv2  where vi  and v2  are the 
velocities of the particles C and D 

= viw(pi) i = 1, 2. (13.123) 

We have used the fact that the relativistic velocity of  is given by 

4,2 2 
2 1 1 2 pi P2 Pi •P2  vf  = ivi — v21 = +  2 

co(PI )2 w(P2)2 w(P1)w(P2) 
1 1 P2 

1 •E' 
4,

2
2 P? +Pi  _ 2 _ + + Pi (—,, ±

)2 
co(Pi)2  CO(P2)2  w(P1)w(P2) Wlevl w(P2 

P7 + A  2 = HP11 0 0  1 • 
P1P2 

(13.124) 

13.3.2 The Case of One Initial Particle 

We consider the decay of one particle into many particles: 

A—> B + C + • • • (13.125) 

and to simplify, we assume that the decay generates two particles. The decay rate (the 
inverse of the life time r) is 

w
1 (27)4   v so) (go p(DiTfii2 

 dpi  dp2  
p(27)3 

spin 
(27r)3  (27)3 ' 

the summation being over the spin states of the final particles. 
In the centre of mass of the initial particle, whose mass is mA, 

8(4) (P —  Pi — P2) = 8 (mA P3)8(3)  (Pi +p2) 

(13.126) 

(13.127) 



w _
1

_ 
0(27)5 

Ef ( nA  _ 1/p2 m2
B 
 _ 

1
/p2 m2

c
) I T

fi 
 2 d

p. 
 1 

spin 

(13.128) 
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and 

13.4 Applications 

We will compute the scattering cross section of a photon by a free electron to lowest 
order of perturbation theory. 

The amplitude is given by the matrix element 

Sfi =< pf , af; kf,Ef; outlqi, a i; ki, Ei; in >. (13.129) 

From formula (12.198), the connected part of this matrix element is given by (the 
S-matrix element is identical to the T-matrix element since the difference which corres-
ponds to the propagation without interaction of the fermion and of the photon is given 
by the disconnected diagram) 

cc = Tic = f eik f .y-iki.x 
" fi < Pf a f; °WIT f (x))19i,ai; i >e  

and the fermion current is given by 

(13.130) 

jp,(x) = e : ip (x)yo (x):, (13.131) 

where the Wick ordering indicates that there are no possible contractions between the 
two fields which appear in the current. 

Let us apply formula (12.202) 

Sfi = (-02  f d4  Xid 4  yf  d 4  Xd4  y iqi.xi+ipf.yf e ikf.y-ik;.x (13.132) 

x Ti(af ) (Pi)(F yf  in) < afr (3 OE f (x)ifr (xi)) >c in)u(ai  (qi) • 

According to formulae (12.132) and (12.136) this expression can be calculated as a 
vacuum expectation value of the same T-product in which is inserted the exponential of 
the interaction. If we are interested in the lowest order of perturbation theory, given by 
the lowest power of the coupling constant e, we get 

Sc  = (-02  f d4Xid4yfd4Xd4y eiki.Y-iki.x171(af)  (pi) (i > yf  rn) fi 
X < 01T (lk (3Y)E ...K.Y)Ei (X)1-k (Xi))10  >c — m)u("i)  (qi). 



kf Ei 
k 
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(a) (b) 

Figure 13.2 The diagrams contributing to the S-matrix element. 

Let us compute the value of the connected part of the T-product 

< ol T(iKY.f)efi(y)Eii(x)*(xi))Io >c 

= ieSF(Yf < 01T(ifKY)Eii(x)*(xj))10 >c 

+ieSF(yf — x) < 01T(54*(x)Efi(Y)*(xi))10  >c 

= e2SF(yf — < 01T(61k(Y)*(x) 54)10  > SF(x — xi) 

+e2SF(yf  — x) < (x)*(Y) 6)10  > SF (y — xi) 

= ie2SF(Yf fifSF (y—x) OF (x— xi) 

+ie2SF(yf —x) 3LliSF(x— y) if SF — xi) • 

This result corresponds to the two diagrams given by Fig. 13.2. 
Now since 

m)SF(x —  y) = 8(4)  

SF (x — y)(-11Ty — rn) = 8 (4)  (x 

we find that the S-matrix element contribution is 

s:c
fi 
 = _i(e)  2 f d4

xi
d4

yf 
 d4xd4y  e-iqi.xi  +ippyf elk!  .y-iki.x u(a f) (pf)  

x 8 (4)  (y/  — y) 6SF(y — x) li8(4)  (x — xi) 

+8 (4)  (yf — x) — y) 68(4)  (y — xi)Iu("i) (qi) 

= —i(e)2  f d4Xd4y u("f )  (pf)1e-i(gi±ki)• x±i(Pf±ki)•Y  IfSF(y — x) 

+ F (x  y) u(at) (qi) 

= —ie2  (27 )48(4)  (pf  + kf  — qi— ki) 

 

(13.133) 

(13.134) 

(13.135) 
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x f d4 AO) (1) — —ki)u(af)(pf) 
1

su(%)  (qi) 
 —in-FIE 

—ie2  (2n-  ) 48 (4)  (pf  + kf  —qi —ki) • 

x f d4p8 (4)  (p — pf  + k) u(c'f )  (p f) 
1 

— m +
flf u("i)  (qi) 

= —ie2  (27 )48(4)  (pf  + kf  — qi — ki)u("f )  (pf){6 

1 
± 7, fe

flf } u(a (qi) 
f + lE 

and therefore 

1 
m + iE 

Ii 

(13.136) 

Tfi = —e2  u(c'f )  (pf ){6 
1 

m + is 
6+6 1  if }u(%)  (qi) 

lof — m+ is  

= —e2  u("f )  (pf ){6 
m Af  —m + iE 

. . } u(%)  (qi) 
(qi + k1)2  — m2  + ls (qi — k f )2  — M2  + 1£ 

= —e214(af )  (pf)( 6  Ai 34 34 /of 6 qj' El qj' Ef 
, + (qi) (13.137) 

2 qi.ki 2 qi.k f ' qi.k f  

where we used the zero mass of the photon to write (q, + k)2  — m2  = 2qz.k and (q, — 
kf )2  — m2  = —2qi.kf  and that (P — m)u(p) = 0. If now we take the laboratory reference 
frame, that is to say the one in which the electron is at rest, then qi = (m, 0, 0, 0) and with 
polarisation vectors orthogonal to the hyperplane (k, qi) for Et  and to the hyperplane 
(kf,  , qi ), for ef  the expression reduces to 

Ti = —e2 u(af) (pf) 
(flf Af f )

u
(a

l
) 
(qi). 

2 qi ki 2 qi .k f  
(13.138) 

If the initial and final spin states of the electron are unknown, one has to sum the 
square of the amplitude on all possible values of a, and af .  

The sum over a, must be averaged over the number of possible spin states, namely 2 
in this case. There are indeed 2s + 1 possible initial spin states and we ignore which one 
it is, each state being weighted by its probability which is here 1/(2s + 1). Thus, 

1 
dwfi = 1e4(27 )48(4)  (pf + kf q, z_a  I Tfi  1 2  • 2 2s+1  

(13.139) 

To compute the square of the T-matrix element, we use the identity 

E 1Tinp)Quo)(012 = Tr((fi m) Q(4+ m)y°Qty°) • (13.140) 
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In fact 

E Fi(a)  (P) QU(13)  (q) 12  

= ( z_a iira) (p)Qrs  t(p)  (q)ti(P) (q) Qt tV (16) (q) 

E 14a) (p)Qrs ti fi) (q) (ut (P) (q) y ° ) 

t 

 (y ° Qt y 0 
)t 

 V (y  0 TIM 

v 

 (q) 

E  Fir (p) QrSt(p) (q)17413)  (q) ( y  Qt y  0 ) tV tc(

o

a ) (q) 

«,16 

= z_a uv )  (q)iir(  ")(p)Qrs 7,4,5) (q) 77.1  (q) y  0 Qt y  0)  tv 

(13 m)vrQrs  ( + st(Y°  Qt  Y ° ) tv  

= Tr((fi + m)Q(4 + m)y°  Qt y°). 

where we used 

E ti;.a)(p)Fia)(p) = (fi m)rs. (13.141) 

Formula (13.140) makes it possible to compute the contribution of T2. Using the 
commutation rules of the gamma matrices and in particular the identities (6.35) the 
norms of the k's, k2  = k2 = —1, f we get = 0 and of the polarisations E2  = E2  

1 
ITfil 2  

«=«f 

=
TH

+  k
ni)

( +  lof )( fif + Ind 2 1 2qi.kf 2qi.kf  

k f  +
4(e.f.ei)2 _2

] 

L kikf  
(13.142) 

with the following notation for a massless four-vector: k = kc, = Ikl. 
Taking into account the flux of incoming particles7  4pi .kz , the cross section is given by 

1 1 2  1 d3pf  d3kf  
do-  = (27)4  S (4)  (pf  + kf  qi ki) 

4pi.ki 2 
Err fii  (2706 2co(pf) 2ky  «„«f 

(13.143) 

7  The density of photons is gy  = 2q, the density of electrons Qei = 2co(q,), and the relative speed vi  = 1, 
so, in the laboratory reference frame, 

Qj Q27.4 = 4pi.ki. 
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If we are interested in the photons scattered 
perform the integration over the electron 
photon energy. We use 

f
S(4) (pf  + kf  — qz — ki)d3 pf  d3  k f  

in a solid angle 
momenta in their 

= f 8(py + -101kf l2dIk f ldS2 

k°,co(pf ) 
— dQ. 

Q modulo dQ, we must 
final state and over the 

(13.144) 
pf  .kf  

Thus, since in the laboratory reference frame pz .ki  = pf .kf  = mk', we have 

dcr 1 1 2  kf k 
4(ef .Ei)2  + — 2] 

dS2 —a (k? )2  4m2  1_ ki kf  

2 kf 
= a  ()2  

[kf k • 
' + 4(ef .ei)2  — (13.145) 

4m2  ki kikf  

after having reintroduced the dependence on c, h and the dimensionless fine structure 
constant a. This last formula is called the Klein—Nishina formula. If we introduce the 
angle between ki  and kf, the scattering angle, since 

(kf  —102  = —2ki .kf  = —2k?ky (1 — cos 0) 

= (pi — pf ) 2  = 2M2  — 2mco(pf ) = 2m(k19 — 4), (13.146) 

we get 

ki 
kf  — k. 5 

1 -F (t)(1 — COO) 
(13.147) 

which gives the frequency shift as a function of the scattering angle. 
In the limit of low energies kilm —> 0, the preceding formula shows that kf /k; —> 1 

and we obtain 

da a2 

dS2 
= —m2 (Ef•Ei) 2. (13.148) 

This expression is nothing else than the Thomson formula (3.141) of Chapter 3. In-
deed, the Poynting vector of the radiation field is given by S = Erad A Brad = lErad 12r and 
leads to a Larmor formula proportional to IErad  1 2  . If we are now interested in the energy 
radiated in a state of polarisation E f , it is enough to replace Erad by Ef.Erad. Similarly, 
if the incoming wave has a polarisation E t , then E0  = €,E0  and under the conditions of 
Chapter 3, 

dV )2
(E‘.. dV )2 = E2( )21Ei.Ef i2 = E2( )21Ei.Ef i2 

dt dt ° m ° m 

with our choice of the polarisation four-vectors. 

(13.149) 
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If the incoming beam of photons is not polarised, we average over the initial 
polarisations, that is to say over the Ei 's orthogonal to h1, and we find that 

do- a2  1 + cos 02  
= 

df2 m2  2 
(13.150) 

These equations tell us that scattering on free electrons can produce linearly polarised 
light. Let us choose the rest frame of the target electron and consider a beam of photons 
incident along the z axis. The initial polarisation vectors E t  lie on the x-y plane. If we look 
at a scattered photon at large angles, say along the x axis, its polarisation vector Ef  will lie 
on the y- z plane. Formula (13.148) tells us that only they component survives, i.e. even 
if the incident beam was unpolarised, the scattered photon will be linearly polarised. 

There is an interesting and timely application of the Thomson scattering formula 
(13.148). According to the standard cosmological model, the Universe started very hot 
and dense and it cooled down as it expanded. During this process it went through sev-
eral phase transitions. When the temperature was above a few keV, matter consisted of 
a hot plasma made out of electrons and protons with some light nuclei, mainly helium. 
Photons were trapped in the plasma and were not free. As the temperature dropped elec-
trons and nuclei combined to form the first atoms. Matter became neutral and photons 
could travel freely through space and can be observed today. They carry precious in-
formation regarding the conditions that prevailed when they last interacted with free 
electrons, i.e. the moment of recombination. According to the model, this happened at 
a time around 380,000 years after the Big Bang. Because of the expansion, the photon 
wavelength has since been redshifted and today it is observed as cosmic microwave back-
ground (CMB) radiation. It is remarkably homogeneous and isotropic and this fact is 
best understood in the framework of the so-called inflation model which postulates that, 
at very early times, on the order of 10-33  sec after the Big Bang, the Universe went 
through a state of exponentially fast expansion. Thus, the present visible Universe res-
ults from a very small region of the early Universe and the study of the CMB radiation 
brings to us the earliest information of the world history. This information is of two 
kinds. First, we observe density and temperature fluctuations on the order of 10-5. They 
are at the origin of the formation of the large structures we observe today, but here we 
want to concentrate on a second kind of information which concerns the polarisation 
of the CMB photons. Thomson scattering can produce such a polarisation; therefore, 
its properties will tell us something about the conditions during the last scattering. As 
we noted already, scattering at 90° of unpolarised photons produces linear polarisation. 
However, the same argument shows that if, in the electron rest frame, the incident ra-
diations along the z and y axes have the same intensity, the polarisation of the photons 
scattered in the x direction cancels. It follows that a net polarisation will reveal the pres-
ence of anisotropies along perpendicular directions, i.e. quadrupole anisotropies, at the 
moments just before the last scattering. It is assumed that inflation has washed out any 
large anisotropies, so the polarisation is expected to be small. We can treat these an-
isotropies as perturbations and make a multipole expansion in scalar, vector, tensor, 
etc. We can imagine various sources of such perturbations. In the inflation model scalar 
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perturbations come from density anisotropies, vector perturbations from the presence 
of magnetic vortices in the plasma, and tensor perturbations from the presence of grav-
itational waves created during the setup of inflation. These perturbations are expected 
to leave their imprint in the polarisation pattern of CMB radiation. 

Like any vector field, a polarisation E (x) of the CMB radiation can be decomposed 
into a pure gradient part and a pure curl part. They have different transformation prop-
erties under parity: the first, called the E-mode, is a pure vector and the second, the 
B-mode, a pseudo-vector. The scalar perturbations will contribute only to the E-mode 
because we cannot make a pseudo-vector out of the derivatives of a scalar. The E-mode 
polarisation has been measured already and it is well correlated with the observed tem-
perature fluctuations. A B-mode can come only from vector or tensor perturbations. 
The first are expected to be very small because inflation has presumably diluted any 
primordial vortices in the plasma, so we are left with gravitational waves as the principal 
source of a B-mode. Furthermore, their presence is a generic prediction of all inflation 
models. Therefore, it is easy to understand the excitement caused by the recent an-
nouncement by the BICEP2 observatory in the Antarctica of the first detection of this 
B-mode with the magnitude and properties expected from inflation models. This obser-
vation has not been confirmed by the Planck collaboration but, if such a result is verified 
by independent measurements and if all other sources of contamination8  are eliminated 
(note that this makes already many ifs), it will be the first, albeit indirect, observation of 
gravitational waves.9  

As a second example of a process in quantum electrodynamics we choose to calcu-
late the differential cross section for the creation of a pair µ+µ in electron—positron 
annihilation: 

e +e+  it+  . (13.151) 

It is a very important process for various reasons. First, electron—positron colliders 
have proven to be an extremely powerful tool for probing the structure of matter at very 
short distances. The reason is that the initial state, an electron and a positron, has the 
quantum numbers of the vacuum and, as such, it does not privilege any particular final 
state. Second, the amplitude for the reaction (13.151) can be computed in quantum 
electrodynamics, but also it can be accurately measured experimentally. Therefore, it 
provides a good test of the fundamental theory. Third, because of these properties, it 
can be used to calibrate the accelerator and to provide a measure with respect to which 
other processes can be compared. 

The muons are spin-Z fermions, like the electrons, but their mass is almost 200 
times larger. They are unstable with a lifetime of 2.2 x 10-6  sec. Their electromagnetic 
interactions are the same as those of the electrons, so the interaction Lagrangian density 
for the process (13.151) is given by 

8  An important source of error seems to be the scattering of the CMB photons from intergallactic dust 
whose effects are not easy to model. 

9  In 2016 the LIGO collaboration announced the direct detection of gravitational waves produced by a 
coalescence of two black holes. 
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Figure 13.3 The Feynman diagram for the 
reaction e + e+ —> µ + . The arrows on 
the fermion lines indicate the charge flow, those 
next to the lines the momentum flow. 

GI = —e[lfr (x)Yµlfr (x) + (x)y,IP (x)] , (13.152) 

where ift• and @ are the Dirac quantum fields for the electron and the muon, respectively, 
A is the electromagnetic field, and e is the electric charge. There is only one diagram 
contributing to this process, that of Fig. 13.3. p and p' are the four-momenta of the 
electron and the positron, respectively, s and s' the spin indices, and (q, r) and (q', r') the 
same quantities for the final muons. Energy—momentum conservation gives p + p' = k = 
q + q' , where k is the momentum of the virtual photon. We shall use the Lorentz invariant 
quantities, the so-called Mandelstam variables: 

(p+ p')2=k2=s, 

; q)2 = t ; q,  )2 = u (13.153) 

Note that s represents the square of the total energy in the centre-of-mass frame and 
t and u are the two invariant momentum transfers. These quantities satisfy s + t + u = 
2m2  + 2m'2 . 

Using the Feynman rules we developed previously, we can compute the amplitude for 
this reaction, 

M = ie2  [77/ (p' ) y (p)] [Ur(q)y,V1)  (q1, (13.154) 

where u and v are the spinor wave functions for the initial electron and positron and U 
and V those of the finalµ and µ,±. 

In most cases the electron and positron beams are unpolarised and we do not meas-
ure the polarisation of the final muons, (see, however, Problem 13.1 at the end of this 
chapter). So, in computing the square of the amplitude, we sum over final polarisations 
and average over the initial ones, 

4  1 
—4 2_, I m 

, 
= 4s2 Tr[(1 m)YA(15+ m)yv]Tr[(4+ a)YIL (41 — M)Y vb 

spins 

where m is the mass of the electron and m' that of the muon. 

(13.155) 
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The traces of the y matrices can be easily performed using the identities (6.36). For 
four matrices we obtain 

Tr ytt  y, yi, ya  = 16 (g „vgp, — git,ogva + gttagvp) • (13.156) 

The differential cross section is then given by 

da a2  
dS2 — 4s 

s— 4m'2 

 I

r s+ 4m'2  s— 4m'2 ll 
cos2t9] , (13.157) 

where we have neglected the electron mass m as compared to the muon mass and have 
introduced 9, the scattering angle, in the centre-of-mass frame (which, in this case, is 
also the laboratory frame). It is given, in terms of Lorentz invariant quantities, by the 
relation 

t — u 
cog) = , (13.158) 

Is(s — 4m'2) 

Following the same method, we can compute the cross section for any elementary 
reaction in quantum electrodynamics. In the list of exercises at the end of this chapter 
we propose the calculation of two other important processes, the Bhabha scattering, i.e. 
the electron—positron elastic scattering e + e+  —> e + e+, named after the Indian phys-
icist Homi Jehangir Bhabha, and the Moller scattering, i.e. the electron—electron elastic 
scattering e + e —> e + C, named after the Danish physicist Christian Moller. The 
first receives contributions from two diagrams, the annihilation diagram, which is the 
analogue of that shown in Fig. 13.3, and the one-photon exchange diagram in which a 
photon line is exchanged between the electron and the positron lines. The second has 
no annihilation diagram but it has two exchange diagrams, in which the two electrons in 
the final state are interchanged. The resulting cross sections, which the reader is asked 
to verify, are given by 

do- a2 1 + 1)2 \ 2  ± (_S 2  

dS2 1Bhabha = —2s 
[/42 (—

s t ) t 

da 4a2 s4 s2  

dS2 'Moller = s 4t2u2 
—
4tu 

+ 1) 5  

(13.159) 

(13.160) 

where we have neglected the electron mass compared to the centre-of-mass energy of 
the interaction: s » m2. 

Both expressions become singular when t = 0 and (13.160) also when u = 0. These 
singularities are due to the photon propagator in the exchange diagrams because of the 
zero photon mass. They are what we have called earlier infrared singularities and they will 
be studied in Chapter 21. 
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13.5 The Feynman Rules for the S-Matrix 

From the preceding sections, we can extract the Feynman rules for the diagrams in 
momentum space which are involved in the computation of the S-matrix elements of 
quantum electrodynamics. 

We find, up to combinatoric coefficients to be explained later, the following. 

• For the external lines 
The external lines are amputated and put on the mass shell p2  = m2. They are 

allocated: 
— a spinor u(p) for an incoming electron 

— a spinor v(p) for an incoming positron 

— a spinor Ti(p) for an outgoing electron 

— a spinor v(p) for an outgoing positron 

— a polarisation vector ex  (p) for an incoming photon 

— a polarisation vector e*A (p) for an outgoing photon 

• For the internal lines 
The propagators are: 

— (iSF(P)).)5 = for a fermion propagating from the index a to the ( p
i  

— m + is 
ce/3 

index 13 

— (iDF(P)) ay = i(
g,,, + (A-1 — 1)k,k,lk2

)  for a photon 
k2  + iE 

• The vertices are given by: 
— a delta function of conservation of energy and momentum 

— a factor (y,),,,6  for a photon of index ii, an incoming fermion of index a and an 
outgoing fermion of index 3. 

• An overall sign. It comes from the fact that fermion operators under the normal 
ordering, or time ordering, symbol, anticommute. When we move the operators 
to bring them in the required order to obtain a given diagram, we may end up 
with minus signs. It is easy to check that the net effect can be summarised in the 
following two rules: 
— A minus sign for every closed fermion loop; and 

— A minus sign for every anti-fermion line going through the diagram from the 
initial to the final state. 

• An overall numerical coefficient given by: 
— The factor coming from the expansion of the exponential. For QED, at the nth 

order of perturbation theory this factor equals (—ie)" In!. 

— A combinatoric factor which tells us how many times this particular diagram 
appears in the Wick expansion. There is no close formula giving this factor 
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for an arbitrary diagram, so we must compute it every time. Here are some 
simple rules: (i) QED has only one type of vertex, so diagrams with two ver-
tices interchanged are identical. This gives a factor n!, which cancels the one 
coming from the perturbation expansion. (ii) A symmetry factor coming from 
any interchange among external, or internal lines, which leaves the diagram 
unchanged. 

In Appendix D. 3 at the end of this book we summarise all these rules and we apply 
them in some simple examples. 

13.5.1 Feynman Rules for Other Theories 

These rules can be easily generalised to any local quantum field theory described by a 
Lagrangian density which is polynomial in the fields and their derivatives. In perturba-
tion theory a correlation function will be expressed, order by order, as a sum of Feynman 
diagrams. For the actual computation we must give the rules for the propagators and the 
vertices. 

We have already derived the Feynman propagators for scalar, spinor, or vector fields. 
For the latter we distinguish the massless case, for which a gauge fixing is required, and 
the massive one. Although it is straightforward to derive propagators for fields of any 
spin, we shall never need them in this book. 

So, the only new element in the rules for other field theories is the rule for the vertices. 
It is easily derived by going back to the perturbation expansion (9.72) and the Wick 
theorem. 

Let us first consider a term in the interaction Lagrangian which is a monomial in the 
fields with no derivatives. It has the general form 

GI = °{1.1 } °{1.2 } •••°{ ik}
7-, 

 {si
{a}131 1 

" ''
r 

 {sr}
{ctrfirl 

 ' 
(13.161) 

where the O's are the various fields, the set of indices {ii} denote collectively the nature 
of the field, and they include Lorentz as well as internal symmetry indices. F {4}  are nu-
merical matrices with indices which may also refer to Lorentz or internal symmetry. The 
lower index {s} indicates the type of the matrix, for example a y matrix, and the upper 
indices the matrix element. We have included the coupling constant in these matrices. 

This interaction term generates a vertex in the Feynman diagrams which has the 
following form: 

• It has k lines, one for each field. 

• Each line carries the set of {i1} indices. 

• The term is proportional to the product of the matrix elements of the correspond-
ing numerical matrices. 
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• There is an overall factor of (27)480)  (Ep) with the sum of the momenta for 
every line in the vertex considered as incoming, ensuring energy—momentum 
conservation for the vertex. 

In most cases the interaction Lagrangian is a Lorentz scalar, so the corresponding 
Lorentz indices are summed over. The same happens also for internal symmetry indices. 
These summations are also understood in the expression for the vertex. 

Including derivatives in some of the fields is also straightforward. In the momentum 
space Feynman rules, a derivative 8µ  on the field 0 will give a factor ip,, so the above 
set of rules is complemented by the following: 

• A derivative .9,o{o gives a factor ip,, where p is the momentum of the line 
corresponding to the field I. 

j} 
 . 

• As we said for QED, there is no simple rule for computing the combinatoric factor 
for an arbitrary diagram. However, the cancellation of the 1/n! factor from the 
expansion of the exponential holds for any theory. Let us consider an interaction 
Lagrangian which is a sum of k terms: 

GI = r1,1 rI,2 " rl,k• (13.162) 

A term contributing to the nth order of the perturbation expansion will be propos-
itional to 1/(ni ! n2!...nk!) with n1  + n2  + • • • + nk = n. In other words, the interaction 
ri,, will appear ni  times and a given diagram will have ni  vertices of this type. Per-
mutation among these vertices will give a combinatoric factor n1! and will cancel 
the one coming from the expansion. 

This completes the Feynman rules for arbitrary interaction Lagrangians which are 
given as a sum of monomials in the fields and their derivatives. We give below a list of 
those most commonly used. 

• On  theory: 

GI = 

where X is a coupling constant with dimensions [mass]4-". 

The vertex is represented by n 

n —1 

and it is given by —iX (27 )48 (4)  (Ep). 

• Scalar Yukawa theory: 

GI = gtfrlfriO. 
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The vertex is represented by 

and it is given by ig(27)48 (4)  (Ep) . 

• Pseudo-scalar Yukawa theory: 

Gz = g y5 0'0. 

The vertex is represented by a 
 

and it is given by ig(y5),0  (27)48(4)  (Ep) . 

• SU(2) pseudo-scalar Yukawa theory with a doublet of fermions and a triplet of 
bosons: 

Gz = gtfry5 T -Ili • cP 

:
k 

The vertex is represented by
a i 

and it is given by ig(rk)/1(y5)ap (27)48(4) (Ep). Here i, j, and k are the SU(2) indices 
(i,j=1, 2 and k=1, 2, 3) and a and f3 the Dirac indices (a, 3=1,..,4). This is a model 
for the interaction between pions and nucleons. 

• The interaction between the photon and a charged scalar particle, or, scalar elec-
trodynamics. Gauge invariance and the minimal coupling prescription generate two 
couplings: 

(i) L(1)  = ieA,(01- - 0*w-to). 

The vertex is represented by
p- 

and it is given by —ie(p 11)0 (27)48 (4) (Ep). 

(ii) L(2) = e2A,AA(PcP* 
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The vertex is represented by p  

and it is given by 2ie2gpx  (2n- ) 4 (4) (Ep).  

• Interaction between vector bosons. Of particular interest is the case of a self-
interaction between the members of a multiplet of vector bosons belonging to the 
adjoint representation of a compact Lie group G. We call Aait  the members of the 
multiplet. The index a runs between 1 and dA, the dimension of the adjoint repres-
entation of G. For example, for SU (N) dA  = N2  — 1. In the next chapter we shall 
derive the form of the interaction using a principle of gauge invariance, but for the 
purposes of obtaining the Feynman rules, it is sufficient to write the form of the 
interaction Lagrangian. Again, we obtain two couplings: 

(i) 41)  = leabc(attAa
v 
 _avAait)AithAvc, whereto&  are the structure constants of the 

Lie algebra of g. 

p1 P2 

The vertex is represented by 

p3 

• and it is given by 

giabc[g ktv (p1 — P2)p gv p (p2 P3) 

+g pµ (P3 Pl) vl (27 )4 8(4)  (EP)• 

(ii) £(2)  — 1 2 nb AC A Ali AVG'  
bc,1 aid c'ilittivzi 

(13.163) 

The vertex is represented by 

and it is given by 

[ feabfecd (g/tPgva g/ta gvp) (13.164) 

feacfedb(gµa gpv gttvgpa) feadfebe(g ktvg Pa gppgva)1 (27)43 (4)  (EP) 

We shall see in the next chapter that the process of choosing a gauge for the interac-
tion among massless vector bosons belonging to the adjoint representation of some 
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non-Abelian group often generates new vertices which were absent in the classical 
Lagrangian. We shall complete the Feynman rules accordingly. 

• The Fermi current-current model for weak interactions. It is an interaction 
between four Dirac fermions which gives a good low-energy approximation to 
processes such as the nuclear a-decay, 

GI
GF —0) = tk ya  (1 + y5)tk (2)  . (3)e (1 + y5)1// (4), 

where GF  is a constant with dimensions [mass]-2. 

The vertex is represented by 

and it is given by 

GF 
[ µ(1 Y5)]ap [Y A  (1  + Y5)]cr'fid(27)46(4) (EP). 

As we can see, the vertex function is a matrix both in Minkowski space and in 
whichever internal symmetry space we have. Let us recall that propagators are also 
matrices in the same spaces. The correlation function is thus a product of matrices. 
When computing a scattering amplitude we saturate the indices with those of the external 
particles and we obtain a scalar. 

It must be clear by now how one can obtain the Feynman rules for any given the-
ory expressed in terms of a Lagrangian density which is polynomial in the fields and 
their derivatives. This is already an important step in our understanding of quantum 
field theory. Using these rules we can compute any correlation function, or any scatter-
ing amplitude, in lowest order of perturbation theory. By this we mean diagrams which 
contain no closed loops, those we called 'tree diagrams'. We still have two important 
questions to address: first, how to choose the right theory among the infinity of polyno-
mial Lagrangians. Second, how to go beyond the lowest order and consider complicated 
diagrams involving loops. As it will turn out, the two questions are not unrelated. They 
will be the subject of the following chapters. 

13.6 Problems 

Problem 13.1 For some physical questions the use of polarised electron and 
positron beams in C e+  colliders makes it possible to extract information which 
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is washed out when we average over the initial spins. Repeat the calculation of the 
cross section for the process e + e+  —> it-  + it+  we presented earlier and find the 
dependence on the spins of the initial particles. 
Problem 13.2 Compute the differential cross section for the elastic electron-
positron scattering e + e+  —> e + e+. Show that at the limit when the mass of the 
electron is negligible compared to the centre-of-mass energy we obtain the formula 
(13.159). 

Problem 13.3 Compute the differential cross section for the elastic electron-
electron scattering e + e —> e + C. Show that at the limit of negligible electron 
mass we obtain the formula (13.160). 



14 

Geometry and Quantum Dynamics 

14.1 Introduction. QED Revisited 

In the first chapter we introduced the concept of symmetry. We saw that it restricts the 
possible form of interactions and leads to the appearance of conserved quantities. In this 
chapter we shall exploit this concept further. Let us choose the simplest example of a 
free Dirac field 0' (x). In section 6.3.11 we saw that it is described by the Lagrangian 
density: 

= (x)(0— m)*(x). (14.1) 

It is invariant under a U(1) group of phase transformations acting on the fields (x): 

t/i (x) —> ele* (x). (14.2) 

It is this invariance which leads to the conservation of the Dirac current j, = 
(x)y,t r (x). It is a global invariance, in the sense that the parameter 9 in (14.2) is inde-

pendent of the space—time point x. Is it possible to extend this invariance to a local one, 
namely one in which 9 is replaced by an arbitrary function of x; 9 (x)? There may be vari-
ous, essentially aesthetic, reasons for which we may wish to do that. In physical terms, 
we can argue that the formalism should allow for a local definition of the phase of the 
field, which is an unobservable quantity. If the phase is defined locally, we need a means 
to transfer the information from point to point. This requirement can be made more 
precise using a mathematical language. If we view the fields as sections in a fibre-bundle 
with base on the four-dimensional space—time, the global transformations of (14.2) im-
ply only a trivial structure with vanishing curvature. A much richer geometry can be 
obtained by allowing the group action to depend on the fibre, in other words by allowing 
local, or gauge, transformations. Whatever our motivations may be, physical or math-
ematical, it is clear that (14.1) is not invariant under (14.2) with 9 replaced by 0 (x). 
The reason is the presence of the derivative term in (14.1), which gives rise to a term 
proportional to a ,29 (x). In order to restore invariance, we must modify (14.1), in which 
case it will no longer describe a free Dirac field; invariance under gauge transformations 
leads to the introduction of interactions. Both physicists and mathematicians know the 
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answer to the particular case of (14.1) and we used it extensively in the first chapters of 
this book. We introduced a new field A, (x) and we replaced the derivative operator a, 
by a 'covariant derivative' D, which we found in (6.78) 

D, = a, + ieA,, 

where e is an arbitrary real constant. D, is called 'covariant' because it satisfies 

D,[ele(x)*(x)] = eie(x)D,* (x), 

valid if, at the same time, the gauge field Aµ  (x) undergoes the transformation 

Aµ  (x) —> A,(x) — —
1 ao (x). 
e 

The Dirac Lagrangian density becomes now 

(14.3) 

(14.4) 

(14.5) 

G = * (x)(i1P— m)* (x) = * (x)(iP— al— m)* (x). (14.6) 

It is invariant under the gauge transformations (14.2) and (14.5) and describes the 
interaction of a charged spinor field with an external electromagnetic field; For a physicist 
Aµ (x) is the electromagnetic field; for a mathematician the 1-form A is the connection 
on the fibre-bundle. We can complete the picture by including the degrees of freedom of 
the electromagnetic field itself and add to (14.6) the corresponding Lagrangian density. 
Again, gauge invariance determines its form uniquely and we are led to (3.6). A simple 
rule to derive the field tensor F, is to note that it is given by the commutator of two 
covariant derivatives: 

[D,, Dv ] = ieF,,. (14.7) 

The constant e we introduced is the electric charge, the coupling strength of the field 
* with the electromagnetic field. Note that if we consider a second field */, it will be 
coupled with its own charge e' which does not have to be equal to e. We shall come back 
to this remark shortly. 

Let us summarise: we started with a field theory invariant under a group U(1) of 
global phase transformations. The extension to a local invariance can be interpreted 
as a U(1) symmetry at each point x. In a qualitative way we can say that gauge in-
variance induces an invariance under U(1)°°. This extension, a purely geometrical 
requirement, implies the introduction of new interactions. The surprising result is that 
these 'geometrical' interactions describe the well-known electromagnetic forces. 

A few remarks before closing this section: 

1. We could as well have started from the free Schrodinger equation and derive the 
motion of a non-relativistic charged particle in an external electromagnetic field 
(see Problem 14.1). 
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2. Gauge invariance is already present in the classical Maxwell theory but its 
interpretation is physically more intuitive in the framework of quantum mechan-
ics. Indeed, it is the invariance under phase transformations of the wave function 
of the electron which naturally extends to a local invariance. 

3. The same reasoning can be applied to space—time transformations. Let us con-
sider the example of translations. Classical mechanics is assumed to be invariant 
under x, — xµ  + a,, where a, is a constant four-vector. We can again attempt 
to extend this invariance to local translations, where a, is an arbitrary function of 
the space—time point x„. This can be done in a mathematically consistent way by 
extending the invariance to the group of diffeomorphisms, which can be defined 
on any manifold, and gives the correct mathematical definition of the 'equivalence 
principle'. We explained in Chapter 4 that this extension implies the introduction 
of new forces. The resulting gauge invariant theory turns out to be classical general 
relativity, which is a consistent relativistic theory and contains Newton's theory in 
the non-relativistic limit. Thus, gravitational interactions have also a geometric ori-
gin. In fact, and we must insist on this, the mathematical formulation of Einstein's 
original motivation to extend the principle of equivalence to accelerated frames 
is precisely the requirement of gauge invariance. Historically, many mathematical 
techniques used in today's gauge theories were developed in the framework of 
general relativity. 

14.2 Non-Abelian Gauge Invariance and Yang-Mills 
Theories 

The extension of the formalism of gauge theories to non-Abelian groups has not been 
a trivial task and it was first discovered by trial and error. At the end of this chapter 
we present a very brief history of the development of these ideas, both because of their 
fundamental importance in physics, but also because the history itself happens to be 
complex and not widely known. References to more complete studies are also given. 
Here we with restrict ourselves to internal symmetries which are simpler to analyse and 
they are the ones we shall apply to particle physics outside gravitation. 

Let us consider a classical field theory given by a Lagrangian density E. It depends on 
a set of N fields (x), i = 1, ..., r, and their first derivatives. The Lorentz transformation 
properties of these fields will play no role in this section. We assume that the ifr's trans-
form linearly according to an r-dimensional representation, not necessarily irreducible, 
of a compact, simple, Lie group G which does not act on the space—time point x, 

W =
:r i

(x) —> U (co)tP (x) w E G, (14.8) 

where U(w) is the matrix of the representation of G. In fact, in this chapter we shall be 
dealing mainly with perturbation theory and it will turn out that we shall need only to 
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look at transformations close to the identity in G. Therefore, it will be useful to exhibit 
the corresponding Lie algebra. Whenever the global group structure is relevant it will be 
explicitly stated, 

W (x) —> etc   W O = E Oa  Ta (14.9) 
a=1 

where the Oa's are a set of m constant parameters, and the Ta's are m r x r matrices rep-
resenting the m generators of the Lie algebra of G. They satisfy the commutation rules 

[Ta Tb] = Z fabcTc (14.10) 

The f's are the structure constants of G and a summation over repeated indices is 
understood. The normalisation of the structure constants is usually fixed by requiring 
that, in the fundamental representation, the corresponding matrices of the generators to  
are normalised such as 

Tr (ta  tb) = sab —
2 

The Lagrangian density E(W ,aw) is assumed to be invariant under the global trans-
formations (14.9) or (14.8). As was done for the Abelian case, we wish to find a new 

invariant under the corresponding gauge transformations in which the 9''s of (14.9) 
are arbitrary functions of x. In the same qualitative sense, we look for a theory invariant 
under This problem was first solved by trial and error for the case of SU (2) by 
C. N. Yang and R. L. Mills in 1954.1  They gave the underlying physical motivation and 
these theories have been called since 'Yang—Mills theories'. The steps are direct gener-
alisations of those followed in the Abelian case. We need a gauge field, the analogue of 
the electromagnetic field, to transport the information contained in (14.9) from point to 
point. Since we can perform m independent transformations, the number of generators 
in the Lie algebra of G, we need m gauge fields Aat,(X), a = 1, ..., m. It is easy to show 
that they belong to the adjoint representation of G. Using the matrix representation of 
the generators we can cast Aatt (x) into an r x r matrix: 

Aµ (x) = E Aat,(X)Ta  
a=1 

The covariant derivatives can now be constructed as 

= a, + 

with g an arbitrary real constant. They satisfy 

1),eie(x) W (x) = ei(")(x)D, W (x) 

1  See, however, the historical remarks at the end of this chapter. 

(14.12) 

(14.13) 

(14.14) 
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provided the gauge fields transform as 

A (x) —> ei()(x)  A.,(x)e-i(")(x)  + g-i ei(9(x)) e-i)(x). (14.15) 

The Lagrangian density GOP ,DW) is invariant under the gauge transformations 
(14.9) and (14.15) with an x-dependent 0, if (111, a IP) is invariant under the corres-
ponding global ones (14.8) or (14.9). As was done with the electromagnetic field, we can 
include the degrees of freedom of the new gauge fields by adding to the Lagrangian dens-
ity a gauge-invariant kinetic term. It turns out that it is slightly more complicated than 
Fµv  of the Abelian case. Yang and Mills computed it for SU (2) but, in fact, it is uniquely 
determined by geometry plus some obvious requirements, such as absence of higher or-
der derivatives. The result is the 2-form constructed out of AA  which corresponds to the 
curvature on the fibre-bundle: 

Ttkv = avA„ [AA, Ad • 

It is again given by the commutator of the two covariant derivatives: 

[1) D v ] = ig.F,, . 

The full gauge invariant Lagrangian density can now be written as 

1 
Ginv = Tr.FA,Ft" + GOP ,DtP). 

By convention, in (14.16) the matrix A is taken to be 

(14.16) 

(14.17) 

(14.18) 

A = Aatt ta (14.19) 

where we recall that the ta's are the matrices representing the generators in the funda-
mental representation. It is only with this convention that the kinetic term in (14.18) is 
correctly normalised. In terms of the component fields Aaio  Fµv  reads as 

TAv  = FAav ta FA
a

v 
 = ai,j4c2

„ _ avAaiL+ giabe
AA

b Ac
v. (14.20) 

Under a gauge transformation TAv  transforms like a member of the adjoint 
representation. 

TAv(x) —> ez6aw,a T„,(x) e—i9a(x)ta. (14.21) 

This completes the construction of the gauge-invariant Lagrangian. We add some 
remarks: 

1. As it was the case with the electromagnetic field, the Lagrangian (14.18) does not 
contain terms proportional to AAA'. This means that under the usual quantisation 
rules developed earlier, the gauge fields describe massless particles. 
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2. Since ,F,„ is not linear in the fields the F2  term in (14.18), besides the usual 
kinetic term which is bilinear in the fields, contains trilinear and quadrilinear terms. 
In perturbation theory they will be treated as coupling terms whose strength is 
given by the coupling constant g. In other words, the non-Abelian gauge fields are 
self-coupled while the Abelian (photon) field is not. A Yang—Mills theory, con-
taining only gauge fields, is still a dynamically rich quantum field theory while a 
theory with the electromagnetic field alone is a trivial free theory. 

3. The same coupling constant g appears in the covariant derivative of the fields W 
in (14.13). This simple consequence of gauge invariance has an important phys-
ical application: if we add another field W', its coupling strength with the gauge 
fields will still be given by the same constant g. Contrary to the Abelian case 
studied earlier, if electromagnetism is part of a non-Abelian simple group, gauge 
invariance implies charge quantisation. 

4. The above analysis can be extended in a straightforward way to the case where the 
group G is the product of simple groups G = G1  x x G. The only difference is 
that we should introduce n coupling constants gi, ...,gn, one for each simple factor. 
Charge quantisation is still true inside each subgroup, but charges belonging to 
different factors are no more related. 

5. The situation changes if we consider non-semi-simple groups, where one or more 
of the factors Gi  is Abelian. In this case the associated coupling constants can 
be chosen different for each field and the corresponding Abelian charges are not 
quantised. 

14.3 Field Theories of Vector Fields 

As we discussed in Chapter 2, spin-1 particles are described by vector, or sometimes 
tensor, fields. Poincare invariance implies that a massive spin-1 particle has three physical 
degrees of freedom and a massless one has two. On the other hand, a Lorentz vector has 
four components, therefore, we expect our field theories to have redundant variables and 
we must find a way to impose some constraints in order to eliminate this redundancy.2  
For quantum electrodynamics this was achieved by gauge invariance. In this section we 
want to address this question more generally. 

Let us start with the case of a massive spin-1 particle described by a vector field A, (x). 
A first guess would be to write a Lagrangian density for the free field proportional to 
(8,A,)2  — m2A,Ali, which implies that each component of the field satisfies the Klein—
Gordon equation. We see immediately that this is unsatisfactory precisely because we 
want to end up with three independent degrees of freedom and not four. Furthermore, 

2  This counting applies to the quantum theory, where fields describe particles, but the study of constraint 
equations can be first done in classical field theory, although quantum corrections will bring additional com-
plications. Notice also that this problem becomes more severe if we want to study higher spin fields since 
the mismatch between the number of components of the corresponding tensor field and that of the physical 
degrees of freedom of the particle becomes larger. 
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we see that the space and time components of the field have opposite signs in the kinetic 
energy, so the Hamiltonian will not be positive definite. A better choice is given by 

1 1 
=

4 
(a

P' 2 
A, — avA )2  + —m2 A

IL 
 Ai' + jµ , (14.22) 

where we have introduced a coupling with some external current j„, (x). The equations 
of motion now become 

—a,a,Av  + m2A, + j, = 0 (14.23) 

and they imply that 

m2a,AA + = 0. (14.24) 

This consequence of the equations of motion is very interesting because it shows 
that the dynamics of the zero-spin content of the vector field is entirely determined 
by the properties of the current. In particular, if the latter is independently conserved, 
Ap  satisfies a four-dimensional transversality condition which eliminates the extra com-
ponent, leaving three physical degrees of freedom. If, on the other hand, the current 
is not conserved, the theory contains automatically spin-1 and spin-0 excitations. We 
shall see in Chapter 16 that this conclusion survives quantisation and holds order by 
order in perturbation theory, but only the conserved current case gives a consistent 
quantum field theory. Note also that the vector field propagator, computed as the in-
verse of the operator of the quadratic part of (14.22), is proportional, in momentum 
space, to 

1 
D = (g,„ 

k2  — m2 m2  
(14.25) (14.25) 

As expected, it is singular when m2  goes to 0. Indeed, we have already seen that 
in quantum electrodynamics the condition on aµ24µ is not a consequence of Maxwell's 
equations and should be imposed independently. Physically, this follows from the fact 
that at m —> 0, one extra degree of freedom should decouple, leaving only two physical 
ones. In Chapter 16 we will see in which sense quantum electrodynamics can be obtained 
as the limit of a massive theory. 

Let us now come to the massless case. In Chapter 3 we saw that Maxwell's equations 
can be obtained from a Lagrangian density 

1 
=

4 
 (a A, — ,26102  + 

by considering all components of the vector field as independent: 

(14.26) 

DA,— a,a„Av  + j„ = 0. (14.27) 
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Note that they imply the current conservation apf = 0; in other words, coupling a 
massless vector field to a non-conserved current gives inconsistent equations, already 
at the classical level. We also noted that the Lagrangian (14.26) does not allow us to 
compute the propagator of the photon field because the operator of the quadratic part 
is not invertible. To solve this problem we had imposed a gauge condition of the form 
awe' = ,b(x), with b(x) some given scalar function of x and a a constant, introduced 
only for convenience. Using a Lagrange multiplier, we can promote this condition to an 
equation of motion by considering the Lagrangian 

G = --
1
4 

(a,A, — av240
2  

2  + —
1

.„/Fit 
b2  — —

1
ba„,,r + jµ24µ. (14.28) 

Varying with respect to b gives precisely the gauge condition. The Lagrangian (14.26) 
is equivalent to the usual one 

G = --
1
4 

(a''  A, — a»,4µ ) 2 2  — 
2a 
—1

(a„AtL)2 + j,i4A , (14.29) 

which gives a whole family of theories labelled by the parameter a. For a long time gauge 
invariance was seen as a mere mathematical curiosity and it is only in the past forty years 
that it was recognised as a most important guiding physical principle. We could say that 
it follows from the non-observability of the gauge potential in local phenomena where 
only the electric and magnetic fields are measurable. However, in the quantum theory, 
this is only partly true. A famous counter-example is the well-known Bohm—Aharonov 
effect in which a charged particle is forced to circulate around an obstruction, such as an 
external magnetic field. In this case a winding number can arise in the form of a phase 
difference, and be detected. We shall see more examples of such topological effects later. 

We may worry whether imposing a gauge condition is legitimate and whether one has 
changed the physics. The answer requires a proof that physical quantities remain un-
changed, in particular that they do not depend on a. This proof will be given in Chapter 
18. Here we only note that the equations of motion for the gauge fixed Lagrangian 
(14.29), together with the conservation of the current, imply that 

oa,AA = 0, (14.30) 

which means that the divergence of A, satisfies a free-field equation of motion, even in 
the presence of the interaction with the current j„. This is why we can consistently assign 
to it a given value b(x). In the quantum theory it implies that although the complete Fock 
space of states associated with the Lagrangian (14.29) contains spin-0 photons, they will 
not be created by the interaction because the corresponding field is free. The argument 
presented here is only heuristic, but a more general result will be proven in Chapter 18. 
Note also that this is no more true if we use a non-linear gauge condition, for example 
one of the form awe' + A,AA = ,b(x). Although there is nothing a priori wrong with 
such a condition, we do not expect it to be implementable at the quantum level by a 
procedure as simple as that of (14.29) because the combination apAii + AAA does not 
satisfy a free-field equation of motion. We shall come back to this point shortly. 



368 Geometry and Quantum Dynamics 

As a third example we look at the Yang—Mills Lagrangian (14.18). We see again that 
the quadratic part is not invertible because of the zero modes associated with gauge 
invariance. We see also that, as it was the case for quantum electrodynamics, a gauge con-
dition does not follow from the equations of motion and must be imposed as a constraint 
equation. Again the simplest condition is a linear one of the form at'Aat, = NATI ba  (X) . Fol-
lowing the same steps as before we arrive at the analogue of the gauge fixed Lagrangian 
(14.29), which now reads 

= r,, 
1  

— —Tr[(aliA,)(av Av)] 
a 

(14.31) 

with .C,nv  given by (14.18). But here the analogy stops and trouble starts. Even in the 
absence of any other fields, keeping only the Yang—Mills part of the Lagrangian, the 
divergence of the gauge field aliAai, does not satisfy a free-field equation. This, of course, 
is due to the self-coupling terms among the gauge fields in the Yang—Mills Lagrangian. 
We conclude that the simple rule to solve the gauge ambiguity which we used in quantum 
electrodynamics, namely to add a (a,4)2 term in the Lagrangian, is not applicable in the 
non-Abelian theory, even for a linear gauge condition. Let us emphasise here that this 
problem will appear only at the quantum level. As a classical theory (14.31) is perfectly 
adequate. But the fact that a A is not a free field makes us believe that scalar degrees of 
freedom will be created at higher orders of perturbation theory. 

In order to understand the origin of the problem, let us go back to the reasoning 
that led us to the gauge-fixing procedure (14.29) or (14.31). We want to describe the 
quantum properties of a system of massless, spin-1, bosons. We know that each one has 
two physical degrees of freedom. So our physical space of states is the Fock space con-
structed out of the creation and annihilation operators for transversely polarised gauge 
bosons. However, we want also to keep explicit Lorentz covariance at every step of the 
calculation. This forces us to use four-component vector fields. So it is natural to start 
by considering a quantum theory inside a larger Fock space containing, in addition, 
longitudinal and scalar excitations. This is the natural choice consistent with Lorentz 
invariance and it is the one dictated by classical arguments. For the quantum theory, 
however, we saw in quantum electrodynamics that some of these new states have negat-
ive norm. This means that all our computations will yield transition probabilities between 
states inside this large space, which, because of the negative metric, will not satisfy a 
unitarity relation. It follows that in the quantum theory we must impose a second re-
quirement, on top of Lorentz invariance, namely a requirement related to unitarity. We 
must be able to prove that because of the gauge invariance of the original theory, our set 
of transition probabilities admits a restriction in the sub-space of physical states which 
does satisfy the unitarity relation. It is a necessary condition for the theory to be physic-
ally acceptable. We noted that the free-field equation (14.30) makes this result plausible 
for a linear gauge condition in quantum electrodynamics, a result which we shall prove 
order by order in perturbation theory in Chapter 18. This success made us believe that 
the 'minimal' choice of a Fock space, namely the one containing transverse, longitud-
inal, and scalar excitations, will be always adequate. Therefore, it came as a surprise 
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when people realised that, for a non-linear theory, either in the gauge condition or the 
interaction, this is no longer true. It turned out that in order to satisfy both Lorentz and 
unitarity conditions, we should start from an even larger unphysical space. This counter 
intuitive conclusion was first reached by Feynman by trial and error. We shall briefly 
present Feynman's argument in the next section and we shall develop a systematic way 
for constructing this large Fock space using symmetry arguments. In Chapter 18 we shall 
prove that physical transition probabilities are indeed gauge independent and satisfy the 
unitarity relation. 

14.4 Gauge Fixing and BRST Invariance 

14.4.1 Introduction 

This section will be devoted to the explicit construction of the large Fock space which 
will turn out to be necessary for the consistent quantisation of gauge theories with a 
non-Abelian invariance. In the process of doing so we shall uncover a new symmetry 
of the theory which is called Becchi—Rouet—Stora—Tyutin (BRST) symmetry. It is realised 
non-linearly and it will turn out to have unsuspected and very deep consequences. In-
serted in the path integral approach, it will provide for a powerful method, not only to 
obtain the correct Feynman rules for all gauge choices, but also to answer all important 
technical questions such as renormalisation, unitarity of the S-matrix, and the problem 
of quantum anomalies. The power of the method is such that once we understand its ori-
gin, it will become clear that we could have postulated it and used it in order to define the 
theory. In fact it provides for a possible axiomatic definition of gauge theories because 
it introduces at once all fields and symmetries which are necessary in the quantisation 
process. In this section we shall not follow this axiomatic approach, but we shall instead 
derive, by trial and error, the quantum theory. 

14.4.2 The Traditional Faddeev-Popov Method 

14.4.2.1 Early Attempts 

Already during the nineteenth century, people faced the problem of formulating the 
classical mechanics of a dynamical system whose variables were not all independent 
but were satisfying some constraint equations. We have seen already that gauge theories 
belong to this class. A real history of the subject should start from these problems, but 
here we will not go that far and we will restrict ourselves to the more recent attempts to 
quantise non-Abelian gauge theories. 

In the 1950s, by using a heuristic method3  that generalises the quantisation of clas-
sical constrained systems, Dirac wrote a formula for the gauge-fixed path integral of a 

3  Here the word heuristic means that the mathematics is only justified for a system with a finite number of 
degrees of freedom, for instance a mechanical system of particles where the canonical variables are submitted 
to constraints. 
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gauge invariant Lagrangian —classical with a gauge function M. He was using a Hamilto-
nian approach which is not very convenient for a relativistic system, but, rewritten in a 
Lagrangian language and inserted in a path integral, it becomes, formally, 

Z(J) f [chp]S(A/1(49))det( E " 
gauge 

(C9)   ) 
&P SE 

so 
exp f dx(rciassicai + 14o) 5 (14.32) 

where Z(7) is the generating functional of Green functions and ,7(x) is a set of external 
sources. We note already the appearance of a determinant which originates from the 
gauge-fixing condition M = 0 and which will play an important role in the discussion. 

Dirac's work did not attract much attention, since, at the time, no interesting gauge 
symmetry was really used, besides QED, for which the gauge-fixing problem had been 
solved by brute force in a situation where the determinant in Eq. (14.32) is an irrelevant 
constant.4  We found it previously in Eq. (12.158). The non-Abelian gauge invariance 
was poorly known, and the only non-trivial gauge symmetry studied was gravity, and 
even that only as a classical theory. In fact, Dirac's work looked at the time as purely 
academic. He had in mind the quantisation of gravity, but it did not look very promising 
because he was working in a non-explicitly covariant Hamiltonian framework, not the 
best starting point for a quantum theory of general relativity. 

Let us anticipate what we shall present in the next sections and note that Dirac could 
have actually accelerated history, had he invented the ghost fields to express the determ-
inant he introduced. He could have made perhaps contact with a BRST invariant local 
action by using the formal identity that was introduced later, 

S(M) det " Tuge  (4)) )  
8c0 SE 

= f [dfl] [dS2] [db]expi f dx( —12 (3A4 aruge (4))  
40 SE )Q 

+ biv1) 

= f [dS2] [dS2] [db] expi f dxs(12.A4 ((p)), (14.33) 

where s acts as a differential operator acting with a graded Leibniz rule s(XY) = (sX) Y± 
XsY) and the — sign occurs if X has odd grading, with 

Tuge (0) 
s40= 

SE
12 s = b sb = O. (14.34) 

The first part of Eq. (14.33) is a straightforward application of the integration rules 
for anticommuting variables we introduced in Chapter 11. We shall come back to the s 
operation later. Of course history did not follow this route, and it took a long time before 

4  Dirac's method inspired B. DeWitt, who was among the first to be interested in a quantum theory of 
gravity. 
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it became possible (i) to set up the Dirac formalism in a practical setting to allow for 
explicit computations, and (ii) to discover at last the BRST symmetry with the nilpotent 
operation s, which will be the main object of this chapter. 

The next player in this game whose work has been very influential is Feynman, who, 
in the 1960s, looked at the Yang—Mills theory. He was not interested in the theory per se, 
but mainly as a laboratory for a quantum theory of gravity. As we have seen, Yang—Mills 
theories share with general relativity the problem of non-linearity, but they are simpler 
because the Lagrangian is still polynomial in the fields. Feynman tried to compute the 
amplitude for the scattering of two gauge bosons as an example for the calculation of 
the graviton—graviton amplitude. The calculation is simple. The Lagrangian is given by 
Eqs. (14.18) and (14.20). The interaction contains three- and four-boson vertices of the 
form 

El 
 , 2gf abc [a/242

., _ avAait]AtthAve g2f abcf aye Ac
vA

,ty Ave,  

Let us choose the Feynman gauge in which the propagator is 

r_v(k) ?lay ab sa_ 
k2  

(14.35) 

(14.36) 

with ?IA v  the Minkowski metric. It propagates all four components of the vector field, but 
Gol has the wrong sign. Let us look, for example, at the 1-loop diagram of Fig. 14.1(a). 
Feynman noted that the unphysical components with the zero index can circulate around 
the loop and they will contribute to the scattering amplitude. It is easy to check that this 
contribution will not be cancelled by that of any other diagram to that order. Therefore, 
a physical quantity, such as a scattering amplitude, would depend on the propagation 
of the unphysical components.5  Note that this problem does not appear in the Feynman 
gauge of quantum electrodynamics because there are no diagrams with only photon lines 
which form a loop. We see that the problem is due to the non-linearity which gives the 
self-couplings of the gauge bosons. 

In order to solve this problem Feynman made a bold suggestion. He was probably 
the only man at that time who understood that a quantum field theory is defined through 
the Feynman rules, so he decided to arbitrarily modify the naive rules and supplement 
them with a new one: when computing closed loops of gauge bosons, we should add a 
new diagram, in which the gauge boson circulating in the loop is replaced by a fictitious 
scalar field whose couplings are arranged so that the unwanted unphysical contributions 
of the propagator (14.36) exactly cancel, Fig. 14.1(b). We call these scalar fields ghosts 
and we shall see shortly that the term is fully justified. 

5  Feynman made the computation in the Teynman' gauge with the propagator given by Eq. (14.36). In 
a more general way, we could choose a family of gauges depending on a parameter a, as we did for QED, 
compute the sum of all 1-loop diagrams for the two-boson scattering amplitude (they include the three- and 
four-boson vertices), and show that the resulting expression for the amplitude is still a-dependent. Hence, the 
need to introduce the ghosts. 
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Figure 14.1 A 1-loop diagram for the scattering amplitude of two 
Yang—Mills bosons. (a) The gauge boson contribution, (b) the ghost 
contribution. 

14.4.2.2 The Faddeev—Popov Formula 
The Feynman rule of adding the ghost contribution sounds like a recipe. First, it is not 
clear how to generalise it to other gauges. Second, if we can check its effect for the 1-loop 
diagrams, it is not easy to guess why it should work at higher orders. Feynman conjec-
tured that this was indeed the case but the argument, based on symmetry properties, 
was not fully convincing. 

The correct version of Dirac's formula was found in 1967 by Ludvig Dmitrievich 
Faddeev and Victor Nikolaevich Popov from St Petersburg (then Leningrad) who suc-
ceeded to translate in the path integral language the intuitive idea of ghosts of Feynman. 
Moreover, they were able to replace the 8 function for imposing the gauge condition 
M (0) = 0 in the measure by a quadratic gauge-fixing term in the action, the way we 
used in QED in Eq. (12.160). This gave a formal justification for the Feynman recipe 
and offered the basis for a rigorous proof of the consistency of the method. But prob-
ably even more important, it uncovered a new symmetry which we will present in the 
following sections. 

The way Faddeev and Popov proceeded differed from the way Dirac did by choos-
ing to work directly in the manifestly covariant path integral formalism, rather than the 
Hamiltonian approach. Both methods are formally equivalent, but the approach of Fad-
deev and Popov provided eventually a local and covariant method for the perturbative 
gauge fixing of Yang—Mills theories. 

More specifically, the general question, which we already asked in the particular case 
of QED, is the following: in quantum field theory the mean value of an observable 
represented by an operator 0 is given by the ratio of two functional integrals 

f [410  Wexp [i f dx GC-classical)] Ai 
< >— (14.37) 

f [4] exp [i f dx(r classical)] D 

where the integration is taken over all classical field configurations. As we have often 
explained, the problem arises when the classical theory has a gauge invariance, i.e. the 
classical Lagrangian remains invariant under the transformation 
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cp gq). (14.38) 

Here g is an arbitrary gauge group element. We see that to every field configuration 
yo(x) there corresponds a whole family of configurations labelled by g, which leave the 
Lagrangian invariant. We call this family the orbit of the gauge group. The g's include 
the infinitesimal transformations 8gauge (c0), when g 1  + 8gauge  but also all large gauge 
transformations and, for a general group, elements which may be disconnected from 
the identity. This invariance creates two problems. First, the differential operator which 
appears in the quadratic approximation of the classical Lagrangian has zero modes and, 
therefore, it is not invertible. As a result we cannot compute the Green functions and 
the perturbation expansion cannot be defined. Second, let us choose 0 to be a gauge 
invariant operator representing some physical observable. Since the measure of integ-
ration [4], and r — classical are both invariant,6  we see that the path integral for < 0 > 
counts many times (in fact, an infinite number of times) the same value, for all config-
urations of yo that belong to the same gauge group orbit. Of course, the same reasoning 
can be applied to any symmetry group G, not only a gauge symmetry. For a finite sys-
tem, we can argue that we get the relevant result times the volume of the symmetry 
group.7 It will appear as a factor in both the numerator and the denominator of Eq. 
(14.37) and will cancel in the ratio. For a system with an infinite number of degrees 
of freedom we expect something analogous, but it is difficult to define precisely the 
meaning of the volume of the gauge group, which, as we have seen, should be viewed 
as g-. 

For all these questions, the gauge-fixing problem is quite a puzzling one. It leads us 
to all sorts of infinities which may be hard to control. The Faddeev—Popov construction 
offered the first systematic way to address it. Let us reproduce the historical path, and 
blankly use formulae that are only correct for finite integrals. The justification, whenever 
possible, will come later. 

We have the following formally obvious identity where the functional integration 
extends over the gauge group G {g(x)}, and gc0 is the gauge transformation of an 
arbitrary given field configuration yo 

[dg] [M (g yo)] det  m g  = 1. 
8g 

(14.39) 

We call the choice of the function M the gauge choice. This equality assumes that 
M is such that the condition M (go) = 0 has a unique solution in cp. In other words, 
we assume the existence of a gauge function, such that in the space of gauge field 
configurations, the curve M(go) = 0 cuts once and only once every given orbit {gyo }, 

6  The gauge invariance of the measure [thp] is trivial at the tree level, but must be checked order by order in 
perturbation theory. This non-trivial property will be studied in a later chapter using the BRST symmetry 

7  All these arguments can be made rigorous by defining the system in a finite, Euclidean space—time lattice 
with N points and a lattice spacing a. The functional integrals become ordinary integrals and all steps can 
be fully controlled. The problems will appear when we take the double limit of large volume N oo and 
continuum space—time a -f 0. 
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where go is a given field configuration and g runs over the gauge group. We will not 
discuss this condition for the function M in any detail here. We will briefly come back 
to it at the end of this chapter. We only mention that it is a very complex one from a 
global point of view (when we consider large gauge transformations) and it is generally 
wrong (as first shown by Vladimir Naumovich Gribov for the non-Abelian Yang—Mills 
theory in 1977). However, we can easily verify it for the class of gauge choices we 
will consider and restricting ourselves to gauge transformations in the vicinity of the 
identity. 

As a first step, let us slightly generalise the gauge choice from the condition M = 0 to 
the one M = X(x) with X (x) being a given function. The identity (14.39) is still valid: 

fg 
[dg] S [.A4 (g(p — X)] det  M g  (P) 

 = 1.  
8 g 

(14.40) 

Faddeev and Popov noted that we can choose any X and integrate over all such choices 
with a Gaussian measure. This gives us the formulae 

J [dX] exp [—i f dx—] f [dg] [.M(gyp— X)] det 8 M (
g 

 C°)  = C(a), (14.41) 
2a g 8 

where a is an arbitrary parameter which takes real values and C(a) a constant whose 
precise value will not be needed. This formula can be rewritten as 

fg 
f [dX] [dg]S[JVI(ggo — X)] det 8 ,A4 (99)  exp [—i dx—] = C (a) . (14.42) 

8 2a 

These formulae can be inserted into both the numerator Ai and the denominator D 
in the definition of the mean value of the gauge invariant observable 0 in Eq. (14.37). 
For example, for Ai we find that 

Af = 
C(a)

f [dg] f [dy)]0(go) 
g 

x det SM  V99)  exp [i f dx(r classical (0) 2a 
))Z 

 )1. 8g  
(14.43) 

Due to the gauge invariance of the measure, the Lagrangian, and the observable, we 
can perform the integral over go by setting everywhere g = 1, (we must change variables 
go —>g go and use the cyclicity property of the determinant). The last formula gives 

(g.  0  1  N.  = C(a) 
g 

( f [dg]) f [4] 0(go) det 8M 
8g ig=1 

x exp [i f dx(rciassicai (40) 
(M

2a  
())2

)1 
(14.44) 
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or, equivalently, 

1 8,A4 gauge (q)) 
= 

C(a) g 
(f [dg]) f [4

Sip 
] 0(go) det[ 

SE
I 

x exp [i f dx(rclassical (49) 
(M

2a
(4° 

))
2  (14.45) 

This is the desired result: we succeeded in factorising the volume of the gauge group 

fg [dg], which is field-independent, and the constant C times a well-defined gauge-fixed 
path integral. In computing the ratio Ai/D the field independent factors will cancel and 
we are left with a gauge-fixed action. The price is the appearance of the determinant, 
but because of it, the mean value of 0 cannot (formally) depend on the choice of the 
gauge function M. 

In order to obtain a path integral for a local quantum field theory, we use the in-
tegration rules for anticommuting Grassmann algebra valued fields and replace the 
determinant by a fermionic integral. We get 

< 0 >— f [4] [dS2] 0((p) 

X eXP [i f dx(rclassical(
„ 2 , AA lauge ((p)

49) 
cm (

" S2 (°' "  S2)]. (14.46) 
2a Syc, SE 

The fields S2 and S2 are Lorentz scalars but they are quantised using anti-
commutation rules. As a result they cannot represent physical degrees of freedom; 
otherwise, they would violate the spin-statistics theorem. Hence the term 'ghosts'. They 
should not appear in the asymptotic states; therefore, we do not need to compute 
amplitudes with external ghost lines. 

We can reintroduce an auxiliary field, which will denote by b, and get instead 

< 0 >— f [4] [dS-2] [dS2] [db] ((p) 

b2 _ (8.A4 
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 sf 

 SE 

auge ((p) 

X exp [i f dx(rdassical ((P) + — + bM(49)  —S2   S2)]. (14.47) 
a yc,   

This formula is called the Faddeev—Popov formula. It tells us that all this business of 
gauge fixing amounts to replacing the original gauge invariant Lagrangian by an effective 
one which contains the gauge-fixing function, but also new fields, the Faddeev—Popov 
ghosts. It answers the question we asked at the beginning of this section, namely it gives 
the Fock space, including physical as well as unphysical degrees of freedom, which is 
necessary for the consistent quantisation of a gauge theory. In an axiomatic formulation 
we should start from this space. For a covariant formalism ghosts are needed for a correct 
balance of propagating fields and we must therefore include them in the theory from the 
beginning. 

Before closing this section, let us look at some simple cases. 
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Everything we have said applies to any gauge invariant theory, including QED. For 
example, let us choose the usual gauge-fixing function M = atLAA. The term depending 
on the ghost fields is just S2❑S2. It follows that the ghost fields are free fields and we 
can integrate them away. We thus obtain the usual gauge-fixed effective Lagrangian. If, 
however, we decide to use a more complicated gauge condition, such as M = ap,AA + 

A0AA, this is no more true and we must include the ghost fields in our computations. 
Of course, we should be perverse to choose such a non-linear gauge condition in 

QED, but if we move to a Yang—Mills theory, we cannot get rid of the non-linearity. 
Choosing M = PAato  we see that ❑ is replaced by 8µDµ  with DA  the covariant derivative. 
It follows that we still obtain a ghost term given by 52 ❑S2, but, in addition, we obtain an 

f abcf2a Ab ntt pc.  extra term proportional to	 The ghost fields are coupled to the gauge `-`o' 
fields and should be included in the calculation. They give the loop terms conjectured 
by Feynman. We see that in the Yang—Mills theory, the simplest set of ghost fields that 
Feynman thought of turns out to be the same pair of anticommuting scalar fields, a ghost 
S2 a (x) and an anti-ghost f2a(x), that occur in the Faddeev—Popov formula. Q and S2 are 
valued in G, as the gauge field A.8  Their unphysical statistics (unphysical means here 
that it is opposite to that given by the usual spin-statistics relation) and their Feynman 
rules must allow for the above-mentioned compensations in all physical amplitudes, at 
least at any finite order of perturbation theory. 

Since we have more fields than gauge fields A, to maintain the general idea of gauge 
covariance for physics, it is natural to look for a symmetry that encodes the definition of 
the gauge symmetry acting on A, but also generalises it in a consistent way on the new 
fields Q, S2, and b. This symmetry must interchange the gauge fields and the ghosts, in 
order to ensure the compensations between these fields in closed loops for any choice 
of gauge. Such a symmetry between fields of different statistics is the BRST symmetry. 
It was actually found at the end of a rather long and intricated process, by Carlo Maria 
Becchi, Alain Rouet, and Raymond Stora, on the one hand, and Igor Viktorovich Tyutin 
on the other, as a symmetry of the Faddeev—Popov effective action. The initial motiv-
ation was to give a compact form of the complicated relations among the couplings of 
gauge fields and ghosts. 

Since that time, the mathematics of the space of gauge field configurations has been 
developed in such a way that it incorporates the ghosts as well-defined mathematical 
entities. The BRST symmetry can be directly constructed, before even thinking that it 
can be used for a gauge-fixing problem. As we will see, the ghosts and the gauge fields 
can be unified as an extended geometrical object. 

14.4.3 Graded Notation for the Classical and Ghost Yang-Mills 
Fields 

In order to construct the symmetry between classical fields and ghosts in the easiest way, 
it is convenient to introduce some compact notations. 

8  The notation is slightly misleading. The 'bar' does not mean that Q and 12 are related by an operation of 
complex conjugation. They are two independent fields, but, as we shall explain shortly, they carry opposite 
quantum numbers. 
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We shall adopt a matrix notation for the Yang—Mills field and we shall saturate its 
Lorentz indices with differential forms dx1L. We end up with formulae well adapted for 
using the formalism of differential algebra. 

The field 

A = = Aat,Tade (14.48) 

is called the Yang—Mills connection. It is an anticommuting (odd) quantity. 
We will shortly define a generalised grading that determines the statistics of all ob-

jects, including the ghosts. If it is even, they are commuting objects; if it is odd, they 
anticommute. 

In our case, this grading will be the sum of the ordinary form degree and a new 
quantum number, which we will discuss in more detail later on, called the ghost number. 

For instance, the scalar ghost and antighost have ghost numbers 1 and —1, respectively. 
Therefore they anticommute. The auxiliary field b has ghost number 0 and commutes. 

We introduce a universal graded bracket [ , ]: given two elements X and Y valued in 
the Lie algebra, we have 

[X, Y] XY f YX, (14.49) 

where the + sign only occurs if both X and Y are odd, that is, when their matrix elements 
are anticommuting objects. We have, for instance, 

F = dA + gAA = dA + 
2
— [A, A] (14.50) 

and the 2-form curvature F satisfies the following Bianchi identity, due to d2  = 0 and 
the Jacobi identity in the Lie algebra g: 

dF = —g[A,F], which implies that DF = 0. (14.51) 

We have g[F , Y] = DDY , where Y is any given function of the fields. We can write 
the covariant derivative of Q as DS2 = dS2 + g(AS2 + QA) = dS2 + g[A, Q], we have 
DDS2 = g[F, S2], and so on. 

When Y belongs to a given representation of the gauge algebra which is not the 
adjoint, we can conveniently define the notation [X, Y]` gXa It allows us to 
write in a unified way equations for matter fields in arbitrary representations of the gauge 
group. 

An infinitesimal gauge transformation is given by 

SA = DE = dE g[A, E], (14.52) 

where E = Ea(x)T' is now a a-valued matrix of infinitesimal parameters. 
Consistency requires that the commutator of two infinitesimal gauge transformations 

is a gauge transformation. This is automatically fulfilled because G is a Lie algebra and 
the structure constants satisfy the Jacobi identity. This implies that 
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[A, [A, A]] = 0 2[A, [A, €]] + , [A, A]] = 0, (14.53) 

which makes it possible to prove the closure of gauge transformations. 
Using this notation, we have for the Yang—Mills Lagrangian: 

1 1 
Gym = 

4 " 
= --

4
TrF1-"F,„ = 1 TrF A* F. (14.54) 

Gym is gauge invariant because F transforms covariantly under gauge transformations: 

SF = —g[E, F]. (14.55) 

Note that9  

1 1 
Gym = — 4Tr(F +* F) n (F +* F) + 4TrF n F (14.56) 

The last term is locally a pure derivative term because the Bianchi identity implies 
that d(TrF A F) = 2Tr(DF A F) = 0, and Tr(F A F) = d(A A F — A A A A). Therefore, 
it does not contribute to the equations of motion. The classical equations of motion 

D* F = 0 (14.57) 

are complicated non-linear equations, but they can be solved when the self-duality 
condition 

F +* F = 0 (14.58) 

is satisfied in Euclidean space, since the first term of the action is a positive square. This 
equation has very interesting solutions, called instantons, which will be discussed briefly 
later. 

14.4.4 Determination of the BRST Symmetry as 
the Extension of the Gauge Symmetry for the 
Classical and Ghost Fields 

Coming back to our problem, we are looking for a new symmetry, which encodes the 
gauge symmetry and will leave invariant the full local action, after it has been gauge-
fixed, with any possible choice of the gauge function, as follows:1°  

= Tr(— 
4  
—
1

F'" F + b (A) + • • • ) (14.59) 

Here, the terms ... are yet unknown, but may depend on A, S 2, S2, and b. 

9  The notation is slightly misleading. A factor d4x should be understood in the first three terms. 
1°  We follow the approach developed in: L. Baulieu and J. Thierry-Mieg, Nucl. Phys. B197, 477 (1982); 

L. Alvarez-Gaume and L. Baulieu, Nucl. Phys. B212, 255 (1983). For a pedagogical review see: L. Baulieu, 
Perturbative Gauge Theories, lectures given at the Cargese Summer School (Plenum Press, 1983), and Phys. 
Rept. 129, 1 (1985). 
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M (A) is a function that characterises the gauge. More precisely we shall choose M 
with the following properties: it must be a polynomial in the fields and their derivatives 
of canonical dimension equal to 2 and it must vanish sufficiently rapidly when the Euc-
lidean point x goes to infinity. This is the usual assumption concerning the terms in the 
Lagrangian in perturbation theory. 

Furthermore, let {g} denote an element of the gauge group and A —> { 44 the corres-
ponding gauge transformation. We consider the equation M Ogg) = C(x), with C(x) a 
given function belonging to the adjoint representation of the gauge group. M (A) must 
be such that this equation, considered as an equation for {g}, admits a unique solution 
for any A and any C, at least when {g} is restricted to be in the neighbourhood of the 
identity element. We shall examine later the case of large gauge transformations. 

Although non-covariant gauges can be, and often are, used, we shall restrict here to 
functions M (A) which are Lorentz scalars. In this case the term M (A) = ap,AA, which 
is the only one which is linear in the gauge field, is necessary in order to have a gauge 
fixing in the quadratic part of the Lagrangian and obtain well-defined propagators. It 
gives the Landau—Feynman-type gauges. _ 

Since the symmetry that acts on A, Q, Q, and b must in particular relate the longitud-
inal part of A to the ghosts (we have in mind the compensations in closed loops predicted 
by Feynman), the parameters of the symmetry must be anticommuting parameters and 
the simplest possibility is that it involves a single constant anticommuting parameter q. 
If we define 

amzsr = qs, (14.60) 

s will be called the generator of the BRST symmetry. We shall derive the action of s on 
all fields, from general arguments. 

Let us first define a grading which will be used to define the different statistics of all 
fields. It is the sum of the usual form degree and the ghost number g, defined as follows 

fields A 52 52 b 

form degree 1 0 0 0 
ghost number 0 1 -1 0 
grading 1 1 -1 0 

The grading of all fields is defined modulo two. When it is even, it denotes a 
commuting object and when it is odd an anticommuting one. 

Because of the definition 887zsr = ris, the BRST operator s acts as a left-differential 
operator, with the graded Leibniz rule 

s(XY) = (sX)Y ± Xs Y. (14.61) 

Here the minus sign occurs only if X has odd grading. The same graded rule holds for 
the exterior derivative d. Thus, both s and d are differential operators with grading one. 
The exterior derivative d increases the form degree by one unit and leaves the ghost 
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number unchanged; in contrast, the BRST operator increases the ghost number by one 
unit, but leaves fixed the form degree. 

The grading of the differential operators that act on the fields is 

operators d s 

form degree 1 0 
ghost number 0 1 
grading 1 1 

To determine the way s will transform all the fields (modulo rescaling of the fields and 
the coupling constant), the following property is in fact sufficient: 

s2  = 0 (14.62) 

sd + ds = 0. (14.63) 

The second property is the only possible one, because gauge transformations must 
commute with d. The first property, s2  = 0, is the simplest one that makes sense for 
a graded differential operator. It can be enforced because the fields are valued in a Lie 
algebra, which implies that the graded bracket [., .] satisfies the Jacobi identity. 

The symmetry operators we have studied so far were all chosen to act linearly on the 
fields. It will turn out that this is impossible for s, so we shall make the next simplest 
assumption: the s-transform of every field will be a local polynomial in the fields and 
their derivatives. In this case, ordinary dimensional analysis and the conservation of the 
ghost number uniquely determine the action of s, modulo a redefinition of the field b, 
and rescaling of the other fields and g. 

Let us recall that the canonical dimension of A equals 1 and that of b, derived from 
(14.59), equals 2. Since the ghost fields Q and Q have spin 0, we expect them to have 
each dimension equal to 1 and this is indeed the natural choice. However, because 
of the conservation of ghost number, they will only appear in the Lagrangian in the 
combination S2 S2, which means that only the sum of their dimensions is relevant. 

It will turn out that the choice Dim[S2] = 0 and Dim[S2] = 2 will be slightly more 
convenient. Under these conditions, the most general solution for the action of s is (see 
Problem (14.2)) 

sA = —dS2 — g[A, Q] 
syo = —g[S2 , yo] 
sS2 = --g  

[S2, S2] 
2 

sS2 = b 
sb = 0, (14.64) 

where yo is a matter field that transforms covariantly under the gauge symmetry. Note 
that s acts on A as well as the matter fields as a gauge transformation with the ghost field 
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S2 (x) playing the role of the gauge parameter. The dependence on the coupling constant 
g can be absorbed in a redefinition of the structure coefficients fia,c. 

The properties sS2 = b, sb = 0 imply that any function that is s-invariant and depends 
on b and S2 must be s-exact. This identifies the pair (S2, b) as a so-called 'trivial BRST 
doublet'. 

We can in fact verify that the property of (S2, b) to be a trivial BRST doublet re-
mains true if we redefine b by a rescaling and the addition of any combination of the 
fields A, yo, S2, S2. This of course changes the definition of sb and, accordingly, that of 
sS2. The important point is that sb must be the s-transform of some combination of 
the fields F, in which case sS2 will be given by b— F, so that we have both s2S2 = 0, 
and s2b = 0. 

Suppose now that we adopt a general definition of the bracket [o, 4)] namely that 
[X, Y]° FgeXb  Yc, where the coefficients Ft are matrix elements, which are yet 
undetermined. Then, we can verify that the property s2S2 = 0 for sS2 = —5 [S2, S2] im-
plies that the Ft's satisfy the Jacobi identity, and correspond therefore to Lie algebra 
coefficients, and the property s2A = 0 implies in turn that sA = —dS2 — g[A, S2]. 

We can also verify that the latter property s2A = 0 is equivalent to the closure of the 
gauge transformations on A. 

The proof that s2  = 0 completely determines the BRST equations, modulo rescaling 
factors and possible redefinitions of b, relies only on Lie algebra identities , which imply 
that, e.g., [S2, [S2, S2]] = 0, [Q, [AS2]] = 2[A, [S2,  fn. 

In fact, the intuitive property s2  = 0 summarises all properties of infinitesimal gauge 
transformations. 

Before closing this section we want to point out an elegant way to unify, in a compact 
••2 

notation, the ghost and the gauge fields. We can define d = d + s, with d = 0 and 
A= A + Q. Then the BRST equations for A and S2 can be elegantly written as 

P. (d+s)(A+12)+ 2[A+S2,A+S2]=F. (14.65) 

The property that s2  = 0, that is d2A = 0, is guaranteed by the Bianchi identity 

6P = (d + s)P + g[A + S2, P] = O. (14.66) 

The physical interpretation of this unification between the ghost and the gauge field 
is as follows. 

There is a generalised one form A= A + S2, where the classical part is A? = A and the 
ghost part is A(1)  = Q. Here the upper index is the ghost number and the lower one the 
ordinary form degree, and the degree of a generalised form is the sum of both. 

It is important to realise that the Faddeev—Popov ghost can be considered as a 
generalised one form, thanks to the introduction of this bi-grading. 

We understand that A is not observable, so it can include a ghost part as well as a 
longitudinal part. 
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On the other hand its curvature F must be physical, which justifies the property 
that the components with ghost number 1 and 2, namely Fl and Fe,, are zero. These 
vanishing conditions are precisely the BRST equations. 

Eq. (14.65) is in fact the tip of an iceberg. It is the sign of a geometrical origin for the 
BRST equations and of the depth of the notion of the BRST symmetry. 

However, its interpretation involves the fibre bundle formalism, which allows us to 
associate in a single entity the space—time and a Lie group, but goes beyond the scope of 
this book. 

In practice, it will be most useful in our further study of the question of internal 
consistency of a gauge theory. 

14.4.5 General BRST Invariant Action for the Yang-Mills 
Theory 

Now comes the determination of the Lagrangian that we will insert in the path integral 
formalism of the Yang—Mills theory. Although we have the answer for a particular class 
of gauge-fixing functions in the Faddeev—Popov formula (14.47), we want to derive it 
here in a more general way using only the BRST symmetry. We postulate that the action 
depends on all fields in the quartet (A, Q, Q, b) and is invariant under the BRST trans-
formations. Using this symmetry we shall be able to fix the dots we left undetermined in 
(14.59). We are looking for an action G that must satisfy the following requirements: 

• G is a local polynomial in the fields and their derivatives. 

• G is BRST invariant. 

• G has dimension 4. 

• G has ghost number 0. 

• G is Lorentz invariant. 

Since the BRST invariance is such that s2  = 0, we can express G as 

= sK, (14.67) 

where rci is s-invariant, but does not contain terms which are s-exact. In other words, 
represents the cohomology with ghost number 0 of s with the appropriate requirements 
listed above. Since s increases the ghost number by one unit, K must have ghost number 
-1, and, thus, it must be of the form 

K = Tr(S2Kgf). (14.68) 

Here Kgf  is a polynomial of all possible fields, with ghost number 0 and dimension 2. For 
convenience, we shall restrict ourselves here to gauge-fixing terms that preserve Lorentz 
invariance as well as the global symmetry of the gauge group G, although non-covariant 
and/or asymmetric gauges can be used. The only terms which are absolutely essential are 
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b and 8A because they will give well-defined propagators in perturbation theory. They 
both belong to the adjoint representation of the group, which means that all terms in Kgf  
should be chosen to be Lorentz scalars and members of the adjoint representation of 
G. Furthermore, they must satisfy all the other requirements we stated in the discussion 
following Eq. (14.59). 

Going over all possible monomials that depend on A, Q, S72, and b, we can verify that 
the general solution for r, which satisfies the above requirements, is, modulo an overall 
renormalization factor and boundary terms 

1 a 
= Tr( — 

4  
—F"  F

P" 
v  + s S2 (-

2 
 b + a

P" 2 
+ — [S2, S2] )), 

where a and p are arbitrary real numbers. They are called gauge parameters." 
If we expand (14.69), using the definition of s, we find that 

(14.69) 

, 
\ = Tr(— —

4
Piv v + a b2  + b(a,AA + p [S2, 12]) — 2 ap,DI S2 + —

2
[S2 , S2]2  ). (14.70) 

We can eliminate the field b by performing a Gaussian integration, which amounts to 
replacing b by its algebraic equation of motion, 

Thus, we get 

a AA p 
b =  [S2, S2]. 

a a 

= Tr (--
1
4 2 

Fi" F — —
1

(a,,,r)2  — S2 iL LY4  S2 — [S2, S2] 
a 

—1 (1 — 
(
i
i
)[S72,c2] 2) 

(14.71) 

(14.72) 

This Lagrangian has a complicated form, but it is conceptually very simple. 
The Dirac formula, completed by the work of Faddeev—Popov, when the gauge func-

tion is a linear function of the physical fields A, yo, is just a particular case of our general 
formula when a = p = 0. We can prove that these values of the gauge parameters form a 
fixed point under the renormalisation process which we shall develop in a later chapter. 

Let us rest for a while, and contemplate the results. The gauge invariance has been 
fixed in a BRST invariant way, since G is by construction s-invariant and contains the 
term (a,AIL) 2  that determines an invertible quadratic form for A. It also depends on 

II  In many cases we could add more terms. For example, if the gauge group is either U(1) or SU (N) with 
N > 2, we could add a term proportional to A,,V. Indeed, for these groups we can build an element of the 
adjoint representation by taking the symmetric product of two adjoints. Apart from curiosity, there are no 
compelling reasons to add such terms. 
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the ghosts and, in the family of gauges we have used, it contains quadratic and quartic 
terms. This is the price for maintaining the BRST invariance. We can simplify it by 
choosing special gauges, such as B = 0, which is perfectly adequate for most practical 
computations. 

In the case of electrodynamics DA S2 = ps2 and, in the = 0 gauge, the ghost fields 
decouple. We thus recover the usual form of the Lagrangian. The physical observables 
of the theory are defined as functions of E and B, i.e. of the transverse part of the gauge 
field A. In the Abelian case, we have sAA  = aAS2. Thus, the s-invariance of observ-
ables coincides with the intuitive requirement that A must be transverse. This definition 
becomes elusive in the non-Abelian case. 

The more precise—and in fact correct—definition of observables that we will shortly 
adopt is that they are functionals with ghost number 0 of the fields and are s-invariant 
and defined modulo s-exact terms. 

In short, observables are defined as the elements of the cohomology of the BRST 
symmetry with ghost number 0. 

We see that they cannot depend on b and S72, since these fields build a BRST-trivial 
doublet. But since they cannot depend on S2, they cannot depend also on S2, because 
of the conservation number. We have thus that the observables are gauge invariant 
functionals of the gauge field. 

The subtlety that occurs in quantum field theory is that the renormalisation can mix 
their mean values with those of BRST-exact functionals of the fields with the same 
dimensions, which justifies the definition of observables as the elements of the cohomo-
logy of the BRST operator s. A good example of an observable is in fact the classical 
Yang—Mills action. 

Let us now verify that the quadratic approximation of the Lagrangian truly gets 
invertible propagators. Keeping only the quadratic terms in our action, we get 

1 1 
£quad = Tr( — 4 ((gAv —aPa p aA av)— a„a„)Av 

2a 

We easily get that the free propagators are in momentum space 

1  
07

4
(o

, 
 Abv 

(—q)) 
= aav1,

v 
 1114, + 1 1 q Aqv  

q2 i8 q2 q2 + is  q2 1 

Aab 
s ( 2a (q) Qb (_q)%  = •-• 

q2 + is • 

(14.73) 

(14.74) 

(14.75) 

Note that the ghost propagator connects a field S2 to a field S2, although, as we pointed 
out already, the first is not the complex conjugate of the second. In a Feynman diagram 
a ghost line will have an arrow showing the flow of the ghost number. 

So far we have not considered the possible coupling of matter, for spinor or scalar 
fields. The BRST transformation of a scalar 0 or a spinor W reproduces the action of an 
infinitesimal gauge transformation, when we replace the parameter of the transformation 
by the ghost S2: 
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sal/ = —[S 2 , 11/] s0 = —[S 2 , 0]. (14.76) 

(We already introduced the convenient notation that when go' belongs to any given 
representation, [S2, yo] 1 TialS2a4o).) 

Thus, asking for the most general BRST invariant matter action, we get that 

£matter = 0D,D12 0 + V(0) + (e(1 + ay 5 )D,— m)t1/ , (14.77) 

where D is the covariant derivative, m is a mass for the spinor, and V an invariant self-
interacting potential for the scalar field. In practice it is chosen as a polynomial in 0 
of maximum degree four. When the coupling constant a is not zero, the Lagrangian 
violates parity. 

The presence of a scalar field may allow for a new phenomenon which will turn out 
to be very important for physical applications. Depending on the choice of the potential 
V, the value of the field I which corresponds to the minimum energy solution of the 
classical equations of motion may be non-zero. 

This phenomenon will be studied in detail in Chapter 15. In quantum language we 
say that 0 acquires a non-zero vacuum expectation value (v.e.v.) v = (0). In this case, 
the BRST exact part of the Lagrangian can contain extra-terms, such as 

_ a  
= Tr( — 

4 P'
v + — r matter + SQ (-

2
b + a

'L
A

P' 
+ y [v, 0] + —

2
[S 2 , S2])), (14.78) 

where y is a new gauge parameter. We shall see that such gauges are very convenient in 
practical calculations. 

The Lagrangian r, with a suitable choice of the gauge group and of the v.e.v. 
of 0, turns out to be the right one for describing, in a unified framework, the strong, 
electromagnetic, and weak interactions that we observe in nature. 

14.5 Feynman Rules for the BRST Invariant Yang—Mills 
Action 

We just proved that after all this gauge-fixing procedure is finished, we are left with 
an effective action with which computations should be performed. The original gauge 
invariance is explicitly broken by the gauge-fixing term, but a residue remains, the in-
variance under the BRST transformations which act non-linearly on the fields, including 
the ghosts. In the usual family of gauges, given by the function the effective ac- 
tion is shown in Eq. (14.72) with p = 0. In this section we want to write explicitly the 
resulting set of Feynman rules: 

• The propagator for the gauge field is given in Eq. (14.74). As expected, it depends 
on the gauge parameter a. 
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Figure 14.2 The gauge boson-ghost-antighost vertex. 

• The ghost propagator is given in Eq. (14.75). It corresponds to a contraction 
between Q and Q. Although these two must be treated as two independent fields, 
there are no (S2, Q), or (S2, S2) contractions. 

• The interaction terms between the gauge fields give the three- and four-boson 
vertices obtained in the expressions (13.163) and (13.164). 

• The new term, resulting from the gauge-fixing process, comes from the term 
S20A DA S2 in the effective Lagrangian which gives a gauge boson — ghost —
anti ghost vertex. After partial integration it becomes 

EYMgh = —gfabcat4 (sja)At pc• (14.79) 

Note that the derivative operator alL applies to S2 but not to Q: another indication 
that these fields should not be considered as complex conjugates to each other. 
This vertex is represented by Fig. 14.2 and it is given by gpP fabc (27  )46 4  (k + P-11). 

• A further rule should be added to those listed above: it stems from the fact that S2 
and S2 are anti-commuting ghost fields. It follows that ghosts do not appear in the 
external lines of an S-matrix diagram and there is a minus sign for every closed 
ghost loop. 

14.6 BRST Quantization of Gravity Seen as a Gauge Theory 

We have seen in the Chapter 4 that gravity is invariant under the gauge symmetry acting 
on fields by means of the Lie derivative: 

Atv gAvg + raw,. (14.80) 

Like every gauge invariance, (14.80) implies that the quadratic part of the Einstein—
Hilbert action f d4x,/— det(g)R(g,„) has zero modes and it is not invertible. It follows 
that we cannot compute the propagator for the metric field. 

Indeed, if we do a perturbative expansion of the metric gA„ = + K GA, and of 
f d4x/— det(g)R(gA„) in powers of K, we find that the quadratic approximation of the ac-
tion in the field GAv  is invariant under GA, —> GA„ + a{,,,„}, where i.,(x) is an infinitesimal 
local vector parameter. This is a gauge invariance analogous to the one that occurs in the 
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Yang—Mills theory, but in the case of gravity the infinitesimal parameter of the symmetry 
is a vector. 

Thus, for the quantisation, when we try to build a path integral of the type 

f d[gA dko]exp i f f d4x/— det(g)(R(gA„) + Lman„(yo)), (14.81) 

we must do the path integration over the metric, while remaining orthogonal to the space 
of the zero modes of Eq. (14.80). 

This is analogous to the problem we encountered—and solved—in the case of the 
gauge fields, where the zero modes come from the invariance of the action under AN, —> 

+ DILE. 

In the case of gravity, there are good gauge choices at the classical level. One of them 
is given by the harmonic, or de Donder, gauge condition 

apev  = 0. (14.82) 

This condition obviously breaks reparametrisation invariance. If one succeeds in 
adding consistently a term like 

1 
a 
— f d4xI— det(g)aaAv a„gPa g„ (14.83) 

to the action, it will ensure the propagation of zero modes that are not present in 
the quadratic field approximation of the Einstein—Hilbert action f d4x,/— det(g)R(g„v). 
Clearly, the word 'consistently' means that this term must be accompanied by other 
terms that ensure a BRST invariance associated with the gauge symmetry for repara-
metrisation. Indeed the physical quantities will be defined from the cohomology of 
the BRST symmetry of reparametrisation invariance. Formally, their mean values will 
depend neither on the choice of the gauge condition nor on the value of whichever para-
meter a we introduce for the gauge fixing, due to the presence of ghost terms that the 
BRST invariance determines. 

We will thus generalise what we did for the case of the Yang—Mills symmetry, by repla-
cing the algebra of Yang—Mills transformations by that of infinitesimal diffeomorphisms. 

How to construct the BRST symmetry for reparametrisation symmetry? We start 
from the gauge transformations 

8gµv = rattv• (14.84) 

We associate to the vector parameter V' an anti-commuting vector ghost field (x). 
We need an anti-ghost fieldeµ (x) and its Lagrange multiplier field bA. We keep in 

mind that the latter will be used to enforce a gauge condition on gAv. 
The nilpotent BRST symmetry operation is easy to construct as a generalisation of 

the Yang—Mills BRST invariance. It is 
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sgo, = rap, = = aye (14.85) 

see  = bp, sbo  = 0. (14.86) 

The nilpotency property of s, s2  = 0, is obvious when it acts on and bo. The 
property s2  = 0 on goy and co must be verified by computation. It is actually a direct 
consequence of the property that the Lie derivative operation G generates a closed Lie 
algebra. 

Obviously we have 

s f d4x/— det(g)R(gov) = 0 (14.87) 

since the Einstein—Hilbert action is reparametrisation invariant and the action of s on go, 
is identical to a gauge transformation when we replace 4 by c. 

Then the following gauge-fixing action 

Igf  = s f d4  xs( 0 (0,,,g1" + at" bv)), (14.88) 

where a is a gauge parameter, is s-exact and thus s invariant. 
It is what we need for a BRST invariant gauge fixing of the Einstein—Hilbert action. 

Indeed, by expansion of the s-exact term, it gives 

Igf = sJ d4x(ag"100  + bo (avg" + avregl") ,aavregi" • 

By Gaussian integration 

1 
ag" o  bybo  + kuvgov avrcgov)

l  6
avrcgovi2 

a 

we get the desired gauge-fixing term 

1 
— — avev agPago, . 

a 
 

(14.89) 

(14.90) 

(14.91) 

The remaining terms are rather complicated, but easy to compute, ghost-dependent 
terms by expanding the BRST-exact term. We must note that there are ghost-dependent 
terms with interactions of a higher degree, as a consequence of the definition of the 
BRST symmetry. 

Once we have a gauge-fixed action with a BRST invariance, we can proceed to try 
to define a perturbation expansion. The method consists of expanding the metric go, 
around a fixed background goov, for instance 

gov  = gottv  + ichA  v . (14.92) 
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We can then define a BRST invariant and gauge-fixed perturbation theory in K for 
the field h,„ which fluctuates around its classical value go 1,„ as predicted by the path 
integral. This is an important physical difference between gravity and another field 
theory. For field theories we compute the quantum fluctuations of the fields around a 
classical value which is often chosen to be zero. For gravity the field is the metric of 
space-time and the quantum fluctuations are always considered around a given classical 
background. 

This analysis determines, in principle, the rules for computing physical quantities in a 
perturbation expansion of quantum gravity. However, we understand that in practice the 
application of these rules will not be easy. The reason is that the effective Lagrangian is 
not a polynomial in the quantum field h,„ and when expanded in powers of the coupling 
constant, will yield an infinite number of terms. We shall see in a later chapter that this 
problem is so severe that it does not allow us to build a consistent quantum field theory 
of general relativity. 

14.7 The Gribov Ambiguity: The Failure of the Gauge-Fixing 
Process beyond Perturbation Theory 

14.7.1 A Simple Example 

Already at Chapter 3 on the classical electromagnetic field we encountered the problem 
of gauge fixing. It was fully developed in section 14.4 for a general gauge theory. The 
underlying assumption was the existence of a function M (yo) such that in the space of 
gauge field configurations yo, the curve M (hp) = 0 cuts once and only once every given 
orbit, when g runs over the gauge group. We postponed the discussion of this condition 
and here we want to show two things: first that, in general, this condition is not satisfied 
and second that this failure will not affect the actual computations we shall present in 
this book. 

The first result follows from elementary functional analysis. It is easy to see that if the 
gauge variation of the determinant of the functional derivative of the gauge function has 
at least one zero mode, every orbit will be cut more than once by the gauge function. 
This phenomenon was discovered as early as 1977 by Gribov12  and it is known as the 
Gribov ambiguity. He studied the simple example of the three-dimensional Yang—Mills 
theory in the Landau gauge in which the Faddeev—Popov determinant is a (a + A). He 
found many normalisable zero modes of the form 

a (a + A)co = 0 ; f Tr(ww) < oo (14.93) 

and related gauge field configurations with finite norm f A2  < 00. 

12  V. N. Gribov, NucL Phys. B139, 1 (1978). 



390 Geometry and Quantum Dynamics 

This gives the so-called Gribov copies of the gauge field configuration A, i.e. 

A' = A + (a + A)co, (14.94) 

It is clear that A' will contribute as well as A to the path integral. This shows the 
ambiguity of the gauge-fixing process. Note that even in this very simple case, it is still 
unknown whether the number of Gribov copies is the same for all orbits and we have 
no way to classify the orbits that behave differently. So Gribov's observation reveals a 
general loophole in the gauge-fixing process, but neither its details are fully understood, 
nor its consequences fully appreciated. 

14.7.2 The Gribov Question in a Broader Framework 

Gauge invariance is a key feature not only for electrodynamics and its non-Abelian 
Yang—Mills generalisation, but also for the theory of gravitation where the role of gauge 
invariance is played by the invariance under general changes of coordinates. In all these 
cases, we understand very precisely the way unphysical modes disappear perturbatively 
from the observables of the theory. Gauge fixing was an essential step in this process. 
The Feynman rules we derived depend on the gauge choice. What Gribov discovered 
was that, at least in the cases he studied, this process was ambiguous, gauge fixing 
was never complete. In the previous section we announced two results and here we 
want to complete the presentation. We shall show that the gauge ambiguity is a gen-
eral phenomenon for gauge theories and we shall discuss its importance for physical 
computations. 

In what follows, A can denote any kind of gauge field (photon, Yang—Mills field, 
graviton, etc.). Perturbatively, we explained that getting one representative per orbit of a 
gauge field around a given background is solved by adding to the classical Lagrangian a 
gauge-fixing term with gauge function ,F (A) , and a Faddeev—Popov term given by 

,4  T(A(X))2  
Lgauge-fixing = f  a x  ,f2 (x)D Fpr2 (x), 

2a 

where the Fadeev—Popov functional operator is13  

DFP 
= SA  8F(x) 6 gauge .  

(14.95) 

(14.96) 

We showed that the mean values of gauge invariant observables are independent of a at 
any given order of the perturbation expansion. When a —> 0, the condition ,F (A) = 0 is 
enforced in the quantum field theory. 

13  In fact, we can occasionally encounter situations in which higher order ghost interactions must be added 
in order to get a fully consistent perturbation theory. This can be seen by the correct application of the BRST 
formalism and does not affect the question of whether the gauge function F systematically cuts once and only 
once each orbit. 
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All these questions of gauge fixing in perturbation theory were fully understood 
already in 1974, but three years later, Gribov produced the example we showed in 
Eqs. (14.93) and (14.94), indicating that the programme failed at the non-perturbative 
level. The general mathematical answer was found by I. M. Singer in 1978, who showed 
that the Gribov ambiguity is not an exception, but a genuine property of all gauge the-
ories. We shall not reproduce the proof here, which is quite involved, but we shall try to 
explain the physical content. 

Let us rephrase the question of gauge fixing using a sufficiently abstract language, 
which is suitable to any type of gauge symmetry, in particular those studied extensively 
in this book. 

Given a gauge group G, we have the (huge) space {A} of all possible gauge field 
configurations which contribute to the path integral. Many of these fields are equivalent 
modulo gauge transformations and, since the integration measure is assumed to be gauge 
invariant, this leads to multiple counting. Therefore, it is intuitively justified to reorganise 
the elements of the space {A} in a more structured space, called the orbit space A, defined 
as follows: Given a gauge field configuration A, its orbit is made out of all other elements 
Ag that can be connected to A by all possible elements g(x) of the gauge group g. It 
is obvious from the multiplication property of gauge transformations that two different 
orbits cannot intersect. We call moduli space the space A/G of equivalence classes of 
gauge field configurations defined modulo all possible gauges transformations. Ideally we 
would have liked to define the path integral over the elements of A/G rather than those 
of {A} with a well-defined path integral measure. This would eliminate the necessity of 
gauge fixing. Unfortunately, this operation is impossible—rather, no one has as yet been 
able to define it concretely—within the context of a Lorentz invariant local quantum field 
theory, the framework we have been using all along this book. Hence the need for gauge 
fixing. 

In order to better understand the structure of the space of orbits we shall introduce 
the topological notion of small and large gauge transformations.14  A gauge transform-
ation is called 'small' if it is continuously connected to the identity transformation by 
the exponential of a succession of infinitesimal gauge transformations in the Lie algebra; 
otherwise, it is called 'large', which means that it is disconnected from the identity. We 
can understand this way that the representations of the space of gauge orbits may be 
non-trivial and the space of all orbits presents a lot of intertwinnings.15  

14  The terminology may be misleading since it refers to topological properties of the orbits and not to any 
intuitive notion of size. 

15  A concrete example of small and large transformations is obtained by studying the reparametrisation 
symmetry of the two-dimensional metric tensor. In the simplest case of the torus the explicit calculation is 
not very difficult and yields the following results: the orbits can be materialised in various representations, 
e.g. as curves piercing the upper complex plane or the Riemann disk, etc. The set of 2D-metrics defined 
modulo 'small diffeomorphisms' can be visualised as the coordinates of an upper complex plane. Then the 
remaining infinite discrete degeneracy, due to large gauge transformations that connect them, can be computed 
to form an SL(2, Z) group, such that fundamental modular domains—where no more points exist that can 
be related by a 'large', often called a 'modular' transformation,—build an infinite set of non-degenerated tiling 
patches, each one with a curved triangular shape, in the upper complex plane. A complete gauge fixing over 
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Mathematically, the idea of gauge fixing sounds very simple. We wish to pick up 
one representative for each orbit, using a gauge fixing local functional F(.4), which is 
globally well defined over the space of gauge field configurations and cuts each orbit 
only once. After the work of Gribov in 1977, it became clear that the gauge fixing with 
a local gauge function is perfectly well defined perturbatively, since, by construction, 
perturbation theory only deals with infinitesimal variations of the fields around a fixed 
configuration and the range of variations is too small to give a second intersection with 
each orbit. However, it may be not well defined non-perturbatively, since many gauge 
equivalent representatives will contribute to the path integral. This way the path integral 
will produce many copies of the true partition function, and will give a wrong answer. 
Moreover, the complexity of the space of orbits is such that the number of intersection 
points of the gauge function might vary depending on the orbit, and the factorisation 
of the 'volume' of the gauge group due to the infinite repletion of copies will not be 
achieved. 

Shortly after the work of Gribov, I. M. Singer gave a complete mathematical proof 
that all these problems do occur. He showed the general impossibility of a non-
perturbative gauge fixing with a local gauge function, no matter how ingenious the 
expression of the functional is. Singer showed that the topological properties of the 
space of gauge orbits imply that it has a non-trivial curvature, and there exists no local 
functional (A) which cuts each orbit only once; the orbits have such a complicated 
intertwining that any gauge fixing sub-manifold may not intersect some gauge orbits at 
all, or it may intersect some others more than once. 

This result not only settles the mathematical question, but also it indicates why it 
is not relevant to the numerical computations we may be willing to perform. Indeed, 
these computations will be essentially of two sorts. First, there will be perturbation 
expansions around a given field configuration. By definition, they involve only infin-
itesimal gauge transformations, continuously connected to the identity and, as we just 
pointed out, the range of variations is too small to give a second intersection with 
any given orbit. Second, we shall perform direct non-perturbative numerical compu-
tations of the path integral by approximating the four-space by a discrete finite lattice. 
In this case we shall prove that for a compact group, no gauge fixing is required. 
Nevertheless, in our present understanding of the theory, we are still facing the em-
barrassing situation of being unable to give, even in principle, let alone in practical 
computations, an analytic expression of the partition function of a gauge theory in a 
continuous formulation. There have been several attempts to find criteria to choose a 
unique representative of the Yang—Mills gauge field per orbit, but, despite of their in-
genuity, they only provide 'improved' non-perturbative formulations, but no rigorous 
proofs.1  6  

all 2-D tori metrics amounts to restrict the path integral to one arbitrarily chosen triangle. See L. Baulieu and 
D. Zwanziger, Phys. Rev. D87, 086006 (2013). 

16  For a review see: N. Vandersickel and D. Zwanziger, Phys.Rept. 520, 175 (2012). 
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14.8 Historical Notes 

Although many versions of the history of gauge theories exist already in the recent liter-
ature,17  the message has not yet reached the textbooks students usually read. We quote 
a comment from the review by J. D. Jackson and L. B. Okun: 'it is amusing how little 
the authors of textbooks know about the history of physics.' Here we present a very brief 
historical note on the evolution of the concept of gauge symmetry. 

The vector potential was introduced in classical electrodynamics during the first half 
of the nineteenth century, either implicitly or explicitly, by several authors independ-
ently. It appears in some manuscript notes by Carl Friedrich Gauss as early as 1835 and 
it was fully written by Gustav Kirchhoff in 1857, following some earlier work by Franz 
Neumann. It was soon noted that it carried redundant variables and several 'gauge con-
ditions' were used. The condition, which in modern notation is written as a,AA = 0, 
was proposed by the Danish mathematical physicist Ludvig Valentin Lorenz in 1867. 
Incidentally, most physics books misspell Lorenz's name as Lorentz, thus erroneously 
attributing the condition to the famous Dutch H. A. Lorentz, of the Lorentz trans-
formations.18  However, for internal symmetries, the concept of gauge invariance, as we 
know it today, belongs to quantum mechanics. It is the phase of the wave function, or 
that of the quantum fields, which is not an observable quantity and produces the in-
ternal symmetry transformations. The local version of these symmetries are the gauge 
theories we study here. The first person who realised that the invariance under local 
transformations of the phase of the wave function in the Schrodinger theory implies the 
introduction of an electromagnetic field was Vladimir Aleksandrovich Fock in 1926,19  
just after Schrodinger wrote his equation. In other words, Fock formulated and solved 
the problem we propose in Problem 14.1. Naturally, we would expect non-Abelian gauge 
theories to be constructed following the same principle immediately after isospin sym-
metry was established in the 1930s, following Heisenberg's original article of 1932. This 
is the method we followed in section 14.2. But here history took a totally unexpected 
route. 

The development of the general theory of relativity offered a new paradigm for a 
gauge theory. The fact that it can be written as the theory invariant under local trans-
lations was certainly known to Hilbert,2°  hence the name of Einstein—Hilbert action. For 
the next decades it became the starting point for all studies on theories invariant un-
der local transformations, such as the electromagnetic and the gravitational ones, which 
were the only fundamental interactions known at that time. It was, therefore, tempt-
ing to look for a unified theory, namely one in which both interactions follow from the 
same gauge principle. Today we know the attempt by Theodor Kaluza, completed by 

17  See, among others, 0. Darrigol, Electrodynamics from Ampere to Einstein' (Oxford University Press, Ox-
ford, 2000); L. O'Raifeartaigh, The Dawning of gauge theory, (Princeton University Press, Princeton, NJ 1997); 
L. O'Raifeartaigh and N. Straumann, Rev. Mod. Phys. 72, 1 (2000); J. D. Jackson and L. B. Okun, Rev. Mod. 
Phys. 73, 663 (2001) 

18  In French: On ne prete qu'aux riches. 
19  V. Fock, Z. Phys 39, 226 (1926); Translation: Physics-Uspekhi 53, 839 (2010). 
20  D. Hilbert, Gott. Nachr. 395 (1915). 
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Oscar Benjamin Klein,21  which is often used in supergravity and superstring theories. 
These authors consider a theory of general relativity formulated in a five-dimensional 
space—time (1+4). They remark that if the fifth dimension is compact, the components 
of the metric tensor along this dimension may look to a four-dimensional observer as 
those of an electromagnetic vector potential. What is less known is that the idea was 
introduced earlier by the Finnish Gunnar Nordstrom,22  who had constructed a scalar 
theory of gravitation. In 1914 he wrote a five-dimensional theory of electromagnetism 
and showed that if we assume that the fields are independent of the fifth coordinate, 
the assumption made later by Kaluza, the electromagnetic vector potential splits into a 
four-dimensional vector and a four-dimensional scalar, the latter being identified with 
his scalar field of gravitation, in some sense the mirror theory of Kaluza and Klein. An 
important contribution from this period is due to Hermann Klaus Hugo Wey1.23  He is 
more known for his 1918 unsuccessful attempt to enlarge diffeomorphisms to local scale 
transformations, but, in fact, a byproduct of this work was a different form of unifica-
tion between electromagnetism and gravitation. In his 1929 paper, which contains the 
gauge theory for the Dirac electron we saw in section 14.1, he introduced many concepts 
which have become classic, such as the Weyl two-component spinors and the vierbein 
and spin-connection formalism. Although the theory is no more scale invariant, he still 
used the term gauge invariance, a term which has survived ever since. 

In particle physics we put the birth of non-Abelian gauge theories in 1954, with the 
fundamental paper of Chen Ning Yang and Robert Laurence Mills.24  It is the paper 
which introduced the SU(2) gauge theory and, although it took some years before in-
teresting physical theories could be built, it is from that date that non-Abelian gauge 
theories became part of high energy physics. It is not surprising that they were imme-
diately named Yang—Mills theories. The influence of this work in high energy physics 
has often been emphasised, but here we want to mention some earlier and little known 
attempts which, according to present views, have followed a quite strange route. 

The first is due to Oscar Klein. In an obscure conference in 1938 he presented a paper 
with the title: 'On the Theory of Charged Fields',25  in which he attempts to construct an 
SU(2) gauge theory for the nuclear forces. This paper is amazing in many ways. First, 
of course, because it was done in 1938. He started from the discovery of the muon, 
misinterpreted as the Yukawa meson, in the old Yukawa theory in which the mesons were 
assumed to be vector particles. This provides the physical motivation. The aim is to write 
an SU(2) gauge theory unifying electromagnetism and nuclear forces. Second, and even 
more amazing, because he followed an incredibly circuitous road: he considered general 
relativity in a five-dimensional space, he compactified a la Kaluza—Klein, but he took the 
g4, components of the metric tensor to be 2 x 2 matrices. He wanted to describe the 
SU(2) gauge fields but the matrices he used, although they depend on three fields, are 

21  Th. Kaluza, K. Preuss. Akad. Wiss. p 966 (1921); 0. Klein, Z. Phys. 37, 895 (1926). 
22  G. Nordstrom, Phys. Z. 15, 504 (1914). 
23  H. Weyl, Deutsch Akad. Wiss. Berlin p 465 (1918); Z. Phys. 56, 330 (1929). 
24  C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954). It seems that similar results were also obtained by 

R. Shaw in his thesis. 
25  0. Klein, in Les Nouvelles Theories de la Physique (Paris, 1939), 81. Report in a Conference organised by 

the Institut International de Cooperation Intellectuelle, Warsaw, 1938. 
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not traceless. Despite this problem he found the correct expression for the field strength 
tensor of SU(2). In fact, answering an objection by Moller, he added a fourth vector 
field, thus promoting his theory to U(1) x SU(2). He added mass terms by hand and it 
is not clear whether he worried about the resulting breaking of gauge invariance. It is not 
known whether this paper has inspired anybody else's work and Klein himself mentioned 
it only once in a 1955 conference in Berne.26  

The second work in the same spirit is due to Wolfgang Pauli,27  who in 1953, in a letter 
to Abraham Pais, as well as in a series of seminars, developed precisely this approach: 
the construction of the SU(2) gauge theory as the flat space limit of a compactified 
higher dimensional theory of general relativity. He was closer to the approach followed 
today because he considered a six-dimensional theory with the compact space form-
ing an S2. He never published this work and we do not know whether he was aware of 
Klein's 1938 paper. He had realised that a mass term for the gauge bosons breaks the 
invariance and he had an animated argument during a seminar by Yang in the Insti-
tute for Advanced Studies in Princeton in 1954.28  What is certainly surprising is that 
Klein and Pauli, fifteen years apart from one another, decided to construct the SU(2) 
gauge theory for strong interactions and both choose to follow this totally counterintu-
itive method. It seems that the fascination which general relativity had exerted on this 
generation of physicists was such that, for many years, local transformations could not 
be conceived independently of general coordinate transformations. Yang and Mills were 
the first to understand that the gauge theory of an internal symmetry takes place in a 
fixed background space which can be chosen to be flat, in which case general relativity 
plays no role. 

With the work of Yang and Mills gauge theories entered particle physics. Although 
the initial motivation was a theory of strong interactions, the first semi-realistic models 
aimed at describing weak and electromagnetic interactions. We shall present later on in 
this book the present state of what is known as the standard model of elementary particle 
physics. To complete the story, we mention only a paper by Sheldon Lee Glashow and 
Murray Gell-Mann29  which is often left out from the history articles. In this paper the 
authors extend the Yang—Mills construction, which was originally done for SU(2), to 
arbitrary Lie algebras. The well-known result of associating a coupling constant with 
every simple factor in the algebra result, which we presented in section 14.2, appeared 
for the first time there. We can find the seed for what we will call later a grand unified 
theory. In a footnote they say: 

The remarkable universality of the electric charge would be better understood were the 
photon not merely a singlet, but a member of a family of vector mesons comprising a 
simple partially gauge invariant theory. 

26  0. Klein, Helv. Phys. Acta SuppL IV, 58 (1956). 
27  W. Pauli, unpublished. It is summarised in a letter to A. Pais, dated 22-25 July 1953. A. Pais, Inward 

Bound, (Oxford University Press, Oxford, 1986,584. 
28  C. N. Yang, Selected Papers 1945-1980 with Commentary (Freeman, San Francisco, 1983), 525. 
29  S. L. Glashow and M. Gell-Mann, Ann. of Phys. 15, 437 (1961); see also: R. Utiyama, Phys. Rev. 101, 

1597 (1956). 
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14.9 Problems 

Problem 14.1 The Schrodinger equation, together with the normalisation condi-
tion, is invariant under the U(1) group of constant phase transformations of the 
wave function V/ (x, t) —> w (x, t). Show that extending the invariance to local 
transformations, i.e. 0 replaced by 0(x, t), implies the introduction of a new in-
teraction. The resulting theory describes the motion of a non-relativistic charged 
particle in an external electromagnetic field. 

Problem 14.2 Determination of the action of BRST transformations, using power 
counting. 

Let us first assume that the gauge group is semi-simple. Using the fact that the 
ghost numbers and mass dimensions of Ap,,S2,Q,b,4) are, respectively 0, 1, —1, 0, 0 
and 1, 0, 2, 2, 1, show that the nilpotency of the BRST symmetry s and its grading 
properties imply that the most general s-transformations of the fields are 

sA = Z (—d S2 — gZ A[A, 
s4) = Z (—gZA[S 2  OD 

sS2 = Z 
2

ZA[S 2  D]) 

sQ = Z (b — a 2 ZAZsz [S2, S2] ) 

sb = —a 
2  
— Z AZ s2[S- 

where all Z-factors and a are arbitrary dimensionless constants. 
Show that we can set ZQ  = ZA = = 1 and a = 0 by multiplicative and linear 

field redefinitions. Show also that g can be absorbed into field redefinitions. 
Prove the curvature condition Eq. 1.48 for A + c, and show that for a scalar field, 

we have an analogous condition, 

(s + d) + [A + c,(/)] = . 

Write the Bianchi identity for this equation. Conversely, verify directly from this 
Bianchi identity that st/) = —[c, 0]. 

Generalise the exercise when the gauge group includes Abelian U(1) factors. 

Problem 14.3 A more general renormalisable gauge-fixing term. 
Generalise the Faddeev—Popov formula (14.47), using the gauge function 

,F (A, (P)a  = + dabcAir,Aoc  + Fi7(p i zi 

when the Lie algebra of the gauge group possesses a symmetric invariant tensor dab, 
and there is a scalar field (Pi  valued in a given representation of the Lie algebra, with 
structure coefficients vi defines a constant direction in the Lie algebra. 
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Application: Compute the ghost interactions in quantum electrodynamics, using 
the non-linear gauge function 

eA, + aA,AA , 

where a is a real massive parameter. 
Compute the ghost part of the action with the non-covariant gauge function 

p (A) = 0 Aa + /30Ag. Is it a well-defined gauge for the parameter /3 0? The 
Coulomb gauge is the limit /3 —> 0. Is it a well-defined limit? 



15 

Broken Symmetries 

15.1 Introduction 

Already at the classical level, an infinite system may exhibit the phenomenon of phase 
transitions. This is often accompanied by a change of the symmetry of the ground state. 
For example, in the liquid—solid phase transition, the translational invariance of the liquid 
phase is reduced to the discrete subgroup which leaves invariant the lattice of the solid. 
A field theory describes a system with an infinite number of degrees of freedom, so we 
expect to find here also the phenomenon of phase transitions. In this chapter we will 
study this phenomenon for field theories having both global and local symmetries. We 
will see that, in many cases, we encounter at least two phases. 

In one of them, whichever symmetry is present is manifest in the spectrum of the 
theory whose excitations appear to form irreducible representations of the symmetry 
group. This is called the symmetric phase, or the Wigner phase. For a gauge theory this 
implies that the vector gauge bosons are massless and belong to the adjoint represent-
ation. But, as we will argue later, we have good reasons to believe that for non-Abelian 
gauge theories, a strange phenomenon occurs in this phase: all physical states are sing-
lets of the group. All non-singlet states, such as those corresponding to the gauge fields, 
are supposed to be confined, in the sense that they do not appear as physically realisable 
asymptotic states. Although there are several indications in the direction of confinement, 
a rigorous proof is still missing and this constitutes one of the central unsolved problems 
in quantum field theory today. Nevertheless, such a gauge theory, based on the group 
SU (3) in this confined phase, provides the theory for strong interactions. It is called 
quantum chromodynamics and it will be presented in a later chapter. 

In the other phase, part of the symmetry is hidden from the spectrum. It is called 
spontaneously broken phase and, for gauge theories, we will show presently that the cor-
responding gauge bosons become massive. Such a gauge theory, based on the group 
U(2) spontaneously broken to U(1), describes in a unified way the electromagnetic and 
weak interactions. In this chapter we will study these phenomena of phase transitions in 
some simple examples. 

The realisation that a physical problem possesses a certain symmetry often simplifies 
its solution considerably. For example, let us calculate the electric field produced by a 
uniformly charged sphere at a point A outside the sphere. We could solve the problem 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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the hard way by considering the field created by a little volume element of the sphere and 
then integrating over. But everyone knows that it is sufficient to realise that the problem 
has a spherical symmetry and then Gauss's theorem for the surface through A gives 
the answer immediately. In this reasoning we have implicitly assumed that symmetric 
problems always possess symmetric solutions. Stated in this form the assumption sounds 
almost obvious. However, in practice, we need a much stronger one. Indeed, a real sphere 
is never absolutely symmetric and the charge is never distributed in a perfectly uniform 
way. Nevertheless, we still apply the above reasoning, hoping that small deviations from 
perfect symmetry will induce only small departures from the symmetric solution. This, 
however, is a much stronger statement, which is far from obvious, since it needs not only 
the existence of a symmetric solution but also an assumption about its stability. Let us 
investigate the conditions for such broken symmetries and some of their consequences. 

15.2 Global Symmetries 

15.2.1 An Example from Classical Mechanics 

A very simple example is provided by the problem of the bent rod. Let a cylindrical rod 
be charged as in Fig. 15.1. The problem is obviously symmetric under rotations around 
the z axis. Let z measure the distance from 0, and X(z) and Y(z) give the deviations, 
along the x and y directions, respectively, of the axis of the rod at the point z from 
the symmetric position. The general equations of elasticity are non-linear but, for small 
deflections, they can be linearised as 

—
d4 X d2  X

—
d4 Y d2  Y 

IE 
del 

+ F 
d22

= 0; IE 
d24 + 

F 
 d22  

= 0, (15.1) 

Figure 15.1 A cylindrical rod bent under a force F along its 
symmetry axis. (C,  E Boudjema) 
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where I = n- R4I4 is the moment of inertia of the rod and E is the Young modulus. It 
is obvious that the system (15.1) always possesses a symmetric solution X = Y = 0. 
However, we can also look for asymmetric solutions of the general form X = A+ Bz + 
C sin kz + D cos kz with k2  = FIEI, which satisfy the boundary conditions X = X" = 0 
at z = 0 and z = 1. We find that such solutions exist, X = C sin kz, provided kl = nn; 
n = 1, . The first such solution appears when F reaches a critical value F, given by 

Fcr = 
7r 2EI 

(15.2) 12 ' 

The appearance of these solutions is already an indication of instability and, indeed, 
a careful study of the stability problem proves that the non-symmetric solutions corres-
pond to lower energy. From that point Eqs. (15.1) are no longer valid, because they only 
apply to small deflections, and we must use the general equations of elasticity. The result 
is that this instability of the symmetric solution occurs for all values of F larger than Fcr. 

What has happened to the original symmetry of the equations? It is still hidden in 
the sense that we cannot predict in which direction in the x — y plane is the rod going to 
bend. They all correspond to solutions with precisely the same energy. In other words, 
if we apply a symmetry transformation (in this case, a rotation around the z axis) to an 
asymmetric solution, we obtain another asymmetric solution which is degenerate with 
the first one.1  

We call such a symmetry 'spontaneously broken', and in this simple example we see 
all its characteristics. There exists a critical point, i.e. a critical value of some external 
quantity which we can vary freely (in this case the external force F; in several phys-
ical systems it is the temperature), which determines whether spontaneous symmetry 
breaking will take place. Beyond this critical point: 

(i) the symmetric solution becomes unstable; and 

(ii) the ground state becomes degenerate. 

15.2.2 Spontaneous Symmetry Breaking in Non-relativistic 
Quantum Mechanics 

These considerations apply also to quantum physics with some new features. A 
symmetry transformation is represented by an operator which commutes with the 
Hamiltonian 

1  It is instructive to look at this problem also from a slightly different point of view. We can argue that the 
rod has imperfections which break the rotational symmetry. Let us model these imperfections by a small lateral 
force f, which, for simplicity, we assume to be applied at the centre of the rod and along the x direction. For 
non-zero f, the rod will bend in the direction of f and we can compute the maximum deviation A — X(112) as 
a function of f. The problem can be solved exactly and we obtain the function A(I). The important point is 
that for F < Fcr, we find that 0(f) goes to 0 with f but for F > Fe„ lim1_,0  A (f) 0. In other words, in this 
case, the symmetry breaking effects remain even in the absence of symmetry breaking forces. 



Global Symmetries 401 

[H, Q] = 0. (15.3) 

As a result, if I > is an eigenstate of the Hamiltonian, so is QIW > with the same 
eigenvalue, unless it happens that the state I > is annihilated by Q, QI > = 0. 

Let us start with the trivial example of a particle moving in a symmetric double well 
square potential. The symmetry is the discrete parity transformation P because the po-
tential satisfies V (—x) = V (x). Let us first neglect the tunnelling probability. This means 
that we consider the potential barrier to be infinite. The spectrum of states consists of 
two separated Hilbert spaces I n, L > and In, R >, where n labels the energy level and 
L or R indicate whether the particle is in the left, or right, well. H In, L >= Enin, L > 
and the same for R. All energy levels are doubly degenerate, but this is trivial, since the 
two spaces are totally disconnected. All wave functions are strictly localised in one of the 
two regions and < n, Lim, R > = 0 for all n and m. The parity operator connects the two 
spaces Pin, L > = In, R >, but the matrix elements < n, LIP1m, L > all vanish. 

As we have learned in quantum mechanics, the situation becomes more interesting if 
we lower the potential barrier and allow for the tunnelling probability of the particle to 
move from one well to the other. The states now become common eigenstates of H and 
P, the latter having eigenvalues ±1. In the intermediate region between the two wells 
the wave function is a superposition of real exponentials of the form e±  because the 
motion of the particle in this region is classically forbidden. In the path integral this 
tunnelling corresponds to trajectories in Euclidean (i.e. imaginary) time. 

This picture can be generalised in many ways, leading to interesting phenomena, 
some of which are related to spontaneous symmetry breaking. First, we can consider a 
potential with N identical wells and take the large N limit. We have studied this problem 
of a periodic one-dimensional potential in quantum mechanics and we know that it leads 
to the propagation of Bloch waves. The corresponding Euclidean time trajectories in the 
path integral will appear again in quantum field theory and we shall study them in a later 
chapter. A different generalisation consists of considering a system with many degrees of 
freedom and/or enlarging the symmetry to a continuous Lie group of transformations. 
The Heisenberg ferromagnet is a good example in which this kind of phenomena can be 
studied numerically (and in simple cases even analytically). 

It is known that several materials exhibit a phase transition and, at low temperature, 
they develop a spontaneous magnetisation. Heisenberg proposed a simple model which 
captures the essential physics of the phenomenon without inessential complications. For 
simplicity, let us consider a regular cubic lattice. The main assumptions are the fol-
lowing. (i) We neglect all atomic degrees of freedom and keep only a spin variable St, 
i = 1, 2, ..., N, at each lattice point i. (ii) The spin variables are subject to short-range 
forces and we can keep only nearest neighbour interactions. (iii) The interaction is as-
sumed to be rotationally invariant. We are thus led to an effective interaction Hamiltonian 
of the form 

(15.4) 
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where the sum extends over all pairs of nearest neighbouring points (in d dimensions 
each point has 2d nearest neighbours) ands` is a positive coupling constant. For a three-
dimensional lattice the system can be studied numerically and shows the phenomenon 
of spontaneous symmetry breaking of the 0(3) symmetry. 

Following the same terminology we used for the classical bent rod, we can say the 
following: 

1. The system has two phases: (i) the symmetric phase with the full 0(3) symmetry, 
where the spins are randomly oriented and there is no privileged direction in space; 
and (ii) the spontaneous broken phase in which the spins are oriented parallel to 
each other and a macroscopic magnetisation M appears. The symmetry is broken 
from the initial 0(3) down to 0(2), the subgroup of rotations around the axis 
defined by M. 

2. The external control parameter, the analogue of the external force, is the temper-
ature. There is a critical value T„, called the Curie temperature, which determines 
in which phase the system will be found. At any temperature there are two com-
peting mechanisms. The interaction privileges parallel spin configurations in order 
to minimise the energy in (15.4). Its strength grows with the number of nearest 
neighbours, i.e. with d. Thermal fluctuations, on the other hand, tend to destroy 
any long-range order. For most values of d (except d = 1 and d = oo), there 
is a phase transition at a critical temperature Tcr. At T > Tcr  thermal fluctu-
ations win and the system is in a disordered, or symmetric, phase. At T < Tcr  
the interaction wins and an ordered phase with spontaneous symmetry breaking 
appears. 

3. The order parameter, the analogue of the parameter A = X(z = 112) of the bent 
rod, is the magnetisation M. It is a d-dimensional vector, so the manifold of ground 
states will span the surface of a (d-1)-dimensional sphere. The new feature here 
is that the initial symmetry is not completely broken. A subgroup remains exact 
even in the low-temperature phase. 

The interesting point with this model is that we can study the physics starting from 
a system with a finite number of spins N and then take the limit N —> oo. In the three-
dimensional case this can only be done numerically, but some features can be understood 
qualitatively. Let us call J, i = 1, 2, 3, the three generators of 0(3). They all commute 
with the Hamiltonian (15.4). For simplicity we shall choose the spins Si  to be equal to 
1

• 
If we fix the z direction, at every lattice site we have a two-dimensional space of states 

with basic vectors given by 

+ > = 01  ) I- > =(°l.  ) (15.5) 

At low temperature the ground state consists of all spins parallel, giving a total mag-
netisation M. It is infinitely degenerate because we can rotate M in any direction. Starting 
from (15.5), the rotated spin state will be given by 



Global Symmetries 403 

± >0 = el 9  Ii, > • (15.6) 

For spin iwe have,/ = a/2. We can compute the overlap between two such states as 
the matrix element of the rotation operator between them, 

02 
 < +lei/ 912 I; 4_ >91 = cos 912, (15.7) 

where 912 is the angle between the two directions defined by 01  and 02. The important 
observation is that this overlap is smaller than 1, so when N —> oo , it goes to 0. For 
a system with an infinite number of degrees of freedom the various ground states are 
orthogonal and so are the Hilbert spaces which we can build above each one of them. 
Physically this means that although it costs no energy to turn a finite number of spins, it 
is impossible to turn simultaneously an infinite number of them. This is the origin of the 
phase transition. 

15.2.3 A Simple Field Theory Model 

Let 0(x) be a complex scalar field whose dynamics is described by the Lagrangian 
density 

G1 = (a,0) (P0*) — M2.4* — go4*)2, (15.8) 

where Li is a classical Lagrangian density and 0(x) is a classical field. No quantisation is 
considered for the moment. Equation (15.8) is invariant under the group U (1) of global 
transformations: 

(x) —> eie0(x). (15.9) 

To this invariance corresponds the current j'A  — 0,0* - 0*a,a0 whose conservation 
can be verified using the equations of motion. 

We are interested in the classical field configuration which minimises the energy of 
the system. We thus compute the Hamiltonian density given by 

xl = (a00)(.900*) + (.9,0*) + v(0) (15.10) 

v(0) = M200* + A(00*)2  • 

The first two terms of Hi are positive definite. They can only vanish for 0 = constant. 
Therefore, the ground state of the system corresponds to 0 = constant = minimum of 
V (0). V has a minimum only if > 0. In this case the position of the minimum depends 
on the sign of M2. (Note that we are still studying a classical field theory and M2  is just a 
parameter. We should not be misled by the notation into thinking that M is a 'mass' and 
M2  is necessarily positive.) For M2  > 0 the minimum is at 0 = 0 (symmetric solution, 
shown in Fig. 15.2, left side), but for M2  < 0 there is a whole circle of minima at the 



404 Broken Symmetries 

Figure 15.2 The potential V (p) with M2  > 0 
(left) and M2  <0 (right). 

complex O.-plane with radius v = (—M2/27)1 /2  (Fig. 15.2, right side). Any point on the 
circle corresponds to a spontaneous breaking of (15.9). 

We see that: 

the critical point is M2  = 0; 

for M2  > 0 the symmetric solution is stable; and 

for M2  < 0 spontaneous symmetry breaking occurs. 

Let us choose M2  < 0 . In order to reach the stable solution we translate the field 
cP. It is clear that there is no loss of generality by choosing a particular point on the 
circle, since they are all obtained from any given one by applying the transformations 
(15.9). Let us, for convenience, choose the point on the real axis in the 4)-plane. We thus 
write 

0(x) = [v + .0(x) + ix(x)1 • (15.12) 

Bringing (15.12) into (15.8) we find that 

ri(o) r2(fr,x)= 1(dok)2  +1(aAx)2  1(2"2)0.2  

—AV* (fr 2  + X 2) .1(fr2  + x2)2. (15.13) 

Note that .C2  does not contain any term proportional to x2, which is expected since 
V is locally flat in the x direction. A second remark concerns the arbitrary parameters 
of the theory. L i  contains two such parameters, a mass M and a dimensionless coupling 
constant A. In .C2  we have again the coupling constant X and a new mass parameter 
v which is a function of M and A. It is important to note that although .C2  contains 
also trilinear terms, their coupling strength is not a new parameter but is proportional 
to vX. 

The term spontaneously broken symmetry is slightly misleading because the invari-
ance is not broken. .C2  is still invariant under the transformations with infinitesimal 
parameter 9, 

alk = —9x; 8x =0* + 9v, (15.14) 
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to which corresponds a conserved current 

"tkattX — X aA lif + 0/ix. (15.15) 

The last term, which is linear in the derivative of x, is characteristic of the 
phenomenon of spontaneous symmetry breaking. 

It should be emphasised here that G 1  and £2  are completely equivalent Lagrangians. 
They both describe the dynamics of the same physical system and a change of variables, 
such as (15.12), cannot change the physics. However, this equivalence is only true if we 
can solve the problem exactly. In this case we shall find the same solution using either 
of them. However, we do not have exact solutions and we intend to apply perturbation 
theory, which is an approximation scheme. Then the equivalence is no longer guaran-
teed and, in fact, perturbation theory has much better chances to give sensible results 
using one language rather than the other. In particular, if we use G 1  as a quantum field 
theory and we decide to apply perturbation theory taking, as the unperturbed part, the 
quadratic terms of L1, we immediately see that we shall get nonsense. The spectrum of 
the unperturbed Hamiltonian would consist of particles with negative square mass, and 
no perturbation corrections, at any finite order, could change that. This is essentially due 
to the fact that, in doing so, we are trying to calculate the quantum fluctuations around 
an unstable solution and perturbation theory is just not designed to do so. In contrast, 
we see that the quadratic part of £2  gives a reasonable spectrum; thus, we hope that 
perturbation theory will also give reasonable results. Therefore, we conclude that our 
physical system, considered now as a quantum system, consists of two interacting scalar 
particles, one with mass m = 2Av2  and the other with m, = 0. We believe that this is 
the spectrum we would have found also starting from Lt , if we could solve the dynamics 
exactly. The remark we made on the Heisenberg ferromagnet applies here as well. We 
can choose any point on the circle of minima as our vacuum state, but the Hilbert spaces 
we build above each one of them are orthogonal to each other and there is no transition 
between states belonging to different spaces. 

The appearance of a zero-mass particle in the quantum version of the model is an 
example of a general theorem due to J. Goldstone. To every generator of a spontaneously 
broken symmetry there corresponds a massless particle, called the Goldstone particle. 
This theorem is just the translation, into quantum field theory language, of the statement 
about the degeneracy of the ground state. The ground state of a system described by 
a quantum field theory is the vacuum state, and you need massless excitations in the 
spectrum of states in order to allow for the degeneracy of the vacuum. We will give a 
more general proof of this theorem in a next section. 

15.2.4 The Linear a -Model 

This model was introduced in 1960 by M. Gell-Mann and M. Levy.2  Let us first look at 
the bosonic sector. It consists of four real spin-0 fields 01 (x), i = 1, ..., 4. The Lagrangian 

2  An earlier version was first proposed by J. Schwinger. 
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density is assumed to be invariant under 0(4) transformations: 

1 1 
E = 2(alt01)(aA0z ) M

2 (pi-4! woi>2. (15.16) 

The model is just a generalisation of the previous one, Eq. (15.8), from 0(2) to 0(4); 
therefore, the same analysis applies. We can compute the Hamiltonian density 7-i, 

1 1 
= 2(a°01)(a°0z) + -2 (V0)(V0z ) + 

. . 
v(0)= IA420i0i T.(opi)2, 

(15.17) 

(15.18) 

and we see that for M2  <0, we have the phenomenon of spontaneous symmetry 
breaking. The set of minima of the potential forms the surface of a four-dimensional 
hypersphere with OW = v2. If we choose a point in the 04  direction we break the sym-
metry from 0(4) to 0(3). We thus obtain three Goldstone bosons3  corresponding to the 
three fields 01, i = 1, 2, 3. 

The model becomes richer if we add fermions. There exists an alternative way to write 
(15.16) taking advantage of the fact that 0(4) is locally isomorphic to SU(2) x SU(2). 
The four-vector 01  can be written as a 2 x 2 matrix 0: 

(x) • r + v (x)11  
0 (x) =  (15.19) 

where r and 11 are the three Pauli matrices and the 2 x 2 unit matrix, respectively, and 
we have renamed the fields 1'2'3  (x) = in (x) and 04  (x) = a (x). The factor i has been 
introduced in order to make the 7-fields pseudoscalar, as we shall see presently. The 
0(4) transformations act on 0 as left- and right-SU(2) transformations: 

0(x) —> eir.°L (x)e-ir s 9 R (15.20) 

The Lagrangian (15.16) can be rewritten as 

= 
2 
-Tr[(.9A coit 1

ot)] - - M2Tr[00 -1 ] - L' Tr [0 012. 
4! 

(15.21) 

We add a doublet of Dirac fermion fields W (x) = n(x) ) which we split into the 
n(x) 

left- and right-hand components WL,R(x) = (1 ± y5) W (x). Under SU(2) x SU(2) WL  
and WR  are assumed to transform as members of the (2,1) and (1,2) representation, 

3  0(4) has six generators and 0(3) has three. 
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respectively. When the model was originally proposed it was meant to describe the pion—
nucleon strong interactions and p(x) and n(x) were the proton and neutron Dirac fields 
in Heisenberg's isospin notation. We keep this notation, although the motivation is no 
more valid. The SU(2) x SU(2) invariant Lagrangian (15.21) can then be completed as 

= + poR  + gtilLOWR  + h.c. 

+ 
1  
—Tr[(.91-Lo) (a

1 
ot)] - - M2Tr [0 01 ] — 

4! 
 Tr[0 Of] 2 (15.22) 

2 2  

where h.c. stands for 'Hermitian conjugate'. 
Some remarks: first, the fermions are massless. Indeed, a mass term proportional to 

WL WR  + h.c. is forbidden by the invariance under SU(2) x SU(2). Second, if we expand 
the Yukawa interaction term we find that the a-field is coupled to IP W and the n-fields 
to Wy5r W. So o is a scalar and the three pions are pseudoscalars. 

As we said previously, spontaneous symmetry breaking occurs if M2  <0. It is an easy 
exercise to translate the a-field o —> a + v with the following results: 

1. The symmetry is broken SU(2) x SU(2) —> SUv(2). This SUv(2), which is 
left intact, is the diagonal subgroup of the initial SU(2) x SU(2) with pure vec-
tor currents. It is the well-known isospin group. This result is due to our choice 
of translating only the o-field which is scalar under parity. Under SUv(2), i.e. 
isospin, a is a singlet and the three pions form a triplet. 

2. The triplet of pions is massless. They are the Goldstone bosons of the axial part 
of the symmetry which is spontaneously broken. 

3. The fermions acquire a mass. The Yukawa term gives, after the o translation, 
a term proportional to gvW tk which implies a common mass for both proton 
and neutron. This, of course, is a consequence of the invariance of the translated 
Lagrangian under isospin. 

4. The original Lagrangian (15.22) has a further U(1) invariance under which 
W —> eze  W and' —> 0. This invariance remains unbroken and the corresponding 
conserved charge is the fermion number. 

It is easy now to introduce a small explicit breaking the way we did for the problem 
of the bent rod. (See footnote 1 in section 15.2.1.) We add a term linear in the a-field 
which breaks SU(2) x SU(2) to SUv(2), 

= OWL  + OtIiR  + giPLOVIR  + h.c. — co- 
1 

+ —Tr[(e0) (a ,
1

ot)] - - M2Tr[0 Oil — —Tr[001 ]2, (15.23) 
4! 

where c is a constant with dimensions [Mass]3. In order to reach the minimum of the po-
tential, we still translate a. Keeping only terms of first order in c, we obtain, for M2  >0, 
a' = a + c/M2; in other words, when there is no underlying spontaneous symmetry 
breaking, the shift of the field goes to 0 together with c. The same happens to all sym-
metry breaking effects, such as the fermion mass which is given by m,/, = gc/M2, again 
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proportional to c and the 7r — a mass difference: m! — m„2  = Ac2/6M4. On the other hand, 
if M2  <0, the shift is o-' = a + v — c/2M2  with v2  = In this case, the sym- 
metry breaking effects remain, even when c goes to 0. In particular, the pions, which 
were massless Goldstone bosons in the absence of c, acquire a mass rn,2, = Ac2/6M4. We 
call them pseudo-Goldstone bosons and we believe that such a mechanism is a good model 
for real pions. As a final remark, we compute the triplet of axial currents in this model. 
Noether's theorem gives 

it,5 y rw + — a digt). (15.24) 

It is conserved in the absence of c. Using the equations of motion of the Lagrangian 
(15.23) we obtain 

(15.25) 

In other words, the divergence of the current is proportional to the field of the pseudo-
Goldstone boson. We call this relation P.C.A.C., for 'Partially Conserved Axial Current' 
and it has played an important role in the development of the theory of both strong and 
weak interactions. 

15.2.5 The Non-linear a-Model 

As we mentioned earlier, the o model was introduced as a quantum field theory for the 
interactions among pions and nucleons. Although today neither the pions nor the nuc-
leons are considered as elementary particles, we still need an effective field theory to 
describe them. Such a model could be useful at relatively low energies, E < 1GeV (i.e. 
relatively large distances), where the composite nature of the particles is not manifest. 
Indeed, this model has many attractive features: it has a built-in isospin symmetry. The 
pions are almost massless and they are the pseudo-Goldstone bosons of the spontan-
eously broken axial symmetry. This 'explains' an experimental puzzle, namely the fact 
that the pion masses (— 140 MeV) are very small compared to a typical hadronic mass, 
such as the nucleon mass, which is of order 1 GeV. Furthermore, the pions satisfy the 
P.C.A.C. relation (15.25), which is also phenomenologically very successful. The only 
drawback is the appearance of the o--field because there is no physical scalar boson in this 
mass range. A possible solution, already proposed in the original paper of Gell-Mann 
and Levy, is to make a very heavy. But, as we saw, the various parameters of the model 
are not all independent. Indeed, we have 

in! Ave, mw gv, (15.26) 

where g is the pion—nucleon coupling constant and that of the pion self-interaction. 
We know experimentally that g is of order 1, so v is of order 1 GeV. We see that a 
heavy a implies very strongly interacting pions. On the other hand, we want to keep the 
approximate invariance of the Lagrangian under 0(4) even in the absence of the o--field. 
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Since there is no linear representation of 0(4) of dimension 3, it follows that the triplet 
of pions will transform non-linearly. Gell-Mann and Levy proposed to use the simplest 
0(4) invariant condition among the fields o and it which is 

7t 2 + CT 2 = v2, (15.27) 

i.e. to promote the relation among the minimum energy classical field configurations to 
a relation among the quantum fields. We can use (15.27) to eliminate o and obtain a 
non-linear model. Keeping only the kinetic energy terms we obtain 

, 3 
Tri7/7 

Gnl = —
2 

2_, +  att7rid'ilri• 
ij= 1 v2  — E k  

(15.28) 

The kinetic energy term of a is replaced by a term proportional to the kinetic energy 
of n-  with a coefficient depending non-linearly on the pion field. 

So far the discussion was classical. To obtain the quantum theory we apply the stand-
ard recipe and put everything under a functional integral. We can integrate over the 
a-field using the condition (15.27) and we obtain a functional integral involving only 
the pion fields. The generating functional is given by 

D[7ri] pd Z [1] = ,,-s+f cinxj(x)sx (x) 
f [(v2 _ 2) 1/2 (15.29) 

where S[7] is the resulting action involving only the pion fields obtained from the Lag-
rangian (15.28) with the addition of the interaction terms. The integration measure is 
the 0(4) invariant functional measure on the three-sphere. The result reminds us of the 
one we obtained in the previous chapter on the quantisation of gauge theories with the 
Faddeev-Popov determinant. For future convenience, we wrote dnx for the Euclidean 
space integration measure, leaving its dimensionality free. 

Because of its non-linearity, this model is not easy to analyse using the techniques we 
have developed so far. Nevertheless, the idea of enforcing a symmetry in a non-linear 
way turned out to be quite powerful and we will come back to it in a later chapter. 

We can generalise the model to any group G spontaneously broken to a subgroup 7-i. If 
the dimension of the Lie algebra of g is dG  and that of 7-i is dH, we will obtain n = dG-dH  
massless Goldstone bosons, which we call n-z , i=1,...,n, all other fields being massive. In 
the same way we considered the limit ma  —> oo for the 0(4) sigma model, we can 
consider the limit when all massive degrees of freedom become very heavy. This way 
we expect to obtain an effective theory describing the interaction among the massless 
Goldstone bosons alone. The experience from the simple model shows that this theory 
will be strongly interacting. We hope that such an effective theory may be relevant for 
low-energy phenomena. 

There is a formal way to describe this infinite mass limit. Following the previous steps, 
let us distinguish in the original theory two sets of fields: n-i (x), the fields that become 
massless after spontaneous symmetry breaking, and a (x), which denotes, collectively, all 
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the others. In particular, the set a (x) may contain fields of any spin. In this theory the 
vacuum-to-vacuum amplitude is given by a functional integral of the form 

Z =f D[o]II" D[7rdeif (15.30) 

Following a suggestion by K. Wilson, let us imagine that we integrate over all heavy 
degrees of freedom and keep only the set of massless fields which will transform non-
linearly under G. We shall obtain an effective theory describing the strong interaction 
among the Goldstone modes: 

z = f nn t [7rd eif cinxreff(70 (15.31) 

iNn-i ] is the new integration measure which takes into account the fact that the 7t 
fields satisfy a non-linear relation. In the general case we do not know how to perform 
such an integration, so we cannot compute reff(ri) explicitly. We can only guess some 
general properties. It does not have to be polynomial in the 7T fields and their derivatives 
and it will realise the original symmetry under G non-linearly. Since it can only be used 
as an effective theory valid at low energies, we need only to keep the terms with the 
smallest number of derivatives. We need a term with two derivatives in order to define 
a Lorentz invariant dynamical theory, so the general form of the effective Lagrangian 
density will be 

n 

Leff (7i) = E Fij (7).9A7i(x)all Tri (X) + (15.32) 
ij= 1 

which resembles (15.28). Fy  is some matrix-valued function of the fields n-  and the dots 
stand for potential energy terms which do not contain derivatives of the fields. So the 
effective theory appears as a field theory with non-canonical, field-dependent, kinetic 
energy terms. We shall call all such theories non-linear a -models. We can interpret 
them as follows: the fields n-i (x) span a manifold isomorphic to the coset space gm. So 
Leff(ri) can be viewed as a dynamical theory in this manifold with a metric given by 

We propose a problem in the next chapter to study a particular example of such a 
theory with G = 0(N) and 7-i = 0(N — 1). 

15.2.6 Goldstone Theorem 

In section 15.2.3 we saw an example of Goldstone's theorem which states that to every 
generator of a spontaneously broken symmetry corresponds a massless particle. We want 
to give here a general proof which will not depend on a particular field theory model and 
which will illustrate the underlying assumptions for its validity.4  

4  This argument is due to W. Gilbert, Phys. Rev. Lett. 12, 713 (1964), who presented it as a proof against 
the possibility of spontaneous symmetry breaking without massless particles. As we shall see, the argument 
fails in the presence of gauge interactions. 
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Let us consider a theory with the following properties: 

1. Lorentz covariance; 

2. It is defined in a Hilbert space with only positive definite norm states; 

3. There exists a minimum energy 'vacuum' state 10 >, although we make no 
assumption about its unicity; and 

4. The theory is invariant under a Lie group of transformations G and this invari-
ance implies the existence of a set of conserved currents joz (x) i = 1, 2, ..., N, 
the dimension of the Lie algebra of G. The current conservation implies the 
time-independence of the corresponding charges:5  

0 Qt = f d3xx,(x) Qi = O. (15.33) 

We assume that the symmetry is not trivial; in other words, there exists at least 
one operator A(x) which is not a singlet of G: 

SA(x) [Q' ,A(x)] 0. (15.34) 

Assumptions 1-4 just given are the ones we usually make in local quantum field 
theory. Now comes the one about spontaneous symmetry breaking: 

5. We assume that for some Q1, the vacuum expectation value of SA is non-zero: 

< OISAIO >=< 01[V,A]10  > 0. (15.35) 

Note that this implies that the vacuum state is not invariant under G and, therefore, it 
is not annihilated by all the generators Q1. This is the formal version of the degeneracy of 
the vacuum we found in the previous examples. We saw there that applying a symmetry 
transformation to a minimum energy field configuration (a 'vacuum' state), we obtained 
another field configuration with the same energy. Using these assumptions we will prove 
that the spectrum of states contains a massless particle. 

Let us consider the Fourier transform of the vacuum expectation value of the 
commutator between the current ft, (x) and the operator A: 

f
d4  xeikx  < 01 [7.12i  (x),A(0)]10 > . (15.36) 

5  At this point our proof is only heuristic. The existence of the integrals in (15.33) assumes that all fields 
vanish sufficiently rapidly at infinity so that surface terms can be dropped. However, in the presence of massless 
particles this is not always true. See, for example, the Coulomb scattering amplitude in quantum mechanics. 
Note also that it is precisely the existence of such massless particles that we want to prove. A more rigorous way 
would be to define the charges as integrals inside a given volume V, gv  = f d 3  xj.(!)  (x) and study carefully the 
limit V —> oo. The result is that although the relations (15.33) are not valid in a strong sense, i.e. as operator 
equations, they can still be used in a weak sense as matrix elements between suitably localised states. 



412 Broken Symmetries 

GA  is a function of the four-vector k and, by assumptions 1. and 5., it is of the general 
form 

GA(k) = kAf (k2); f(k2) 0. (15.37) 

We now compute 

le G A  (k) = k2 f(k2) = -it f dax(aweik x) < 01K (x),A(0)]I0 >= 0, (15.38) 

where we used partial integration (see footnote 5) and the conservation of the current. 
The only solution of the two equations (15.37) and (15.38) is 

f(k2) = CS (k2) (15.39) 

with C some constant; in other words, the correlation function GA  (k) has a delta-
function singularity at k2  = 0. Notice that 8(k2) — Im(k2  - iE)-1  which is the propagator 
of a massless particle. To finish the proof we must show that this propagator corresponds 
to a massless physical state and it is not cancelled by some other massless state. This is 
guaranteed by assumption 2). Since all states have positive norm they all contribute with 
the same sign and no cancellations can occur. QED 

A final remark: Goldstone's theorem tells us that to every generator of a spon-
taneously broken symmetry corresponds a massless particle. This Goldstone (or 
pseudo-Goldstone) particle has the same quantum numbers as the divergence of the cor-
responding symmetry current. This is obvious from (15.38) and it is exemplified in the 
P.C.A.C. relation (15.25). Therefore, it can be used to answer the opposite question: if 
we observe a massless, or nearly massless, particle in nature, how could we know whether 
it is the Goldstone, or pseudo-Goldstone, particle of some spontaneously broken sym-
metry? The answer is to look for the existence of a conserved, or nearly conserved, 
symmetry current with the right quantum numbers. We will give a more operational 
version of this property in a later chapter. 

15.3 Gauge Symmetries 

In the previous chapter we introduced the concept of a gauge symmetry. We saw that it 
follows from a fundamental geometric principle, but it seems to imply the existence of 
massless vector particles. Since, apart from the photon, such particles are not present in 
physics, we concluded that gauge theories and, in particular, non-Abelian gauge theories 
cannot describe the interactions among elementary particles. In this chapter we studied 
the phenomenon of spontaneous symmetry breaking. We saw that it is also associated 
with the existence of massless particles, the Goldstone particles. We found one possible 
application in the pion system but, again, this requirement of massless particles seems to 
severely limit their applicability in particle physics. In this section we want to study the 
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consequences of spontaneous symmetry breaking in the presence of a gauge symmetry. 
We will find a very surprising result. When combined together the two problems will 
solve each other. It is this miracle that we want to present here. We start with the Abelian 
case. 

15.3.1 The Abelian Model 

We look at the model of section 15.2.3 in which the U(1) symmetry (15.9) has been 
promoted to a local symmetry with 9 —> 9(x). As we explained already, this implies the 
introduction of a massless vector field, which we can call the 'photon' and the interactions 
are obtained by replacing the derivative operator a by the covariant derivative D,,, and 
adding the photon kinetic energy term: 

1 
E l  =-4F,2„ + (a + ieAA)012  — M200* — X (00*)2. (15.40) 

L I  is invariant under the gauge transformation 

(x) —> eie(x)0(x); A —> AA -1 ap. (x) ' (15.41) 

The same analysis as before shows that for X > 0 and M2  < 0 there is a spontaneous 
breaking of the U(1) symmetry. Substituting (15.12) into (15.40) we obtain 

e2  v2  
Li —> r2 = — 4FA„ + A + evAd A  

1 1 1 
— + 
2 

fr ) 2  + — (a x)2  — — (2xv2)*2  
2 2 

+ • • • , (15.42) 

where the dots stand for coupling terms which are at least trilinear in the fields. 
The surprising term is the second one which is proportional to A. It looks as though 

the photon has become massive. Note that (15.42) is still gauge invariant since it is 
equivalent to (15.40). The gauge transformation is now obtained by substituting (15.12) 
into (15.41): 

(x) —> cos 61 (x) [if (x) + v] — sin 61 (x)x (x) — v 

X (x) —> cos 9 (x)x (x) + sin 9 (x) [0.  (x) + v] (15.43) 

A,,, —> a ite (x). 

This means that our previous conclusion, that gauge invariance forbids the presence 
of an A2  term, was simply wrong. Such a term can be present; only the gauge trans-
formation is slightly more complicated; it must be accompanied by a translation of the 
field. 

The Lagrangian (15.42), if taken as a quantum field theory, seems to describe the 
interaction of a massive vector particle (AA) and two scalars, one massive (v') and 
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one massless (x). However, we can see immediately that something is wrong with this 
counting. A warning is already contained in the non-diagonal term between A,, and a x • 
Indeed, the perturbative particle spectrum can be read from the Lagrangian only after 
we have diagonalised the quadratic part. A more direct way to see the trouble is to count 
the apparent degrees of freedom before and after the translation: 

Lagrangian (15.40): 

(i) One massless vector field: 2 degrees 

(ii) One complex scalar field: 2 degrees 

Total: 4 degrees 

Lagrangian (15.42): 

(i) One massive vector field: 3 degrees 

(ii) Two real scalar fields: 2 degrees 

Total: 5 degrees 

Since physical degrees of freedom cannot be created by a simple change of variables, 
we conclude that the Lagrangian (15.42) must contain fields which do not create phys-
ical particles. This is indeed the case, and we can exhibit a transformation which makes 
the unphysical fields disappear. Instead of parametrising the complex field by its real 
and imaginary parts, let us choose its modulus and its phase. The choice is dictated by 
the fact that it is a change of phase that describes the motion along the circle of the 
minima of the potential V (0). We thus write 

1 1 
cti(x)=_[z) + p(x)]ei“x)lv  ; Aµ(x) = B,(x)— vaw  (x). (15.44) 

In this notation, the gauge transformation (15.41) or (15.44) is simply a translation 
of the field (x) —> (x) + v0 (x). Substituting (15.44) into (15.40) we obtain 

e2 

2 

v

2 

2 
—>G3  =

1
B2 + —B2  + —

1 
(.9,,

2 
P)2  — —

1
az) ( 2) p2 

4 "  
p4 le2B2 (2vp p2) 

4 2 
= a0B, — avB . 

(15.45) 

The field (x) has disappeared. Formula (15.46) describes two massive particles, a 
vector (BO and a scalar (p). It exhibits no gauge invariance, since the original symmetry 

(x) —> (x) + v9 (x) is now trivial. 
We see that we obtained three different Lagrangians describing the same physical 

system. Li is invariant under the usual gauge transformation, but it contains a negative 
square mass and, therefore, it is unsuitable for quantisation. E2  is still gauge invariant, 
but the transformation law (15.44) is more complicated. It can be quantised in a space 



Gauge Symmetries 415 

containing unphysical degrees of freedom. This, by itself, is not a great obstacle and 
it occurs frequently. For example, ordinary quantum electrodynamics is usually quant-
ised in a space involving unphysical (longitudinal and scalar) photons. In fact, it is £2, 
in a suitable gauge, which is used for general proofs of renormalisability as well as for 
practical calculations. Finally, E3 is no longer invariant under any kind of gauge trans-
formation, but it exhibits clearly the particle spectrum of the theory. It contains only 
physical particles and they are all massive. This is the miracle that was announced earlier. 
Although we start from a gauge theory, the final spectrum contains massive particles 
only. 

Actually, E3 can be obtained from £2  by an appropriate choice of gauge. Indeed, let 
us choose to quantise £2  in a Landau—Feynman gauge. In the notation of the previous 
chapter, we add a term proportional to 1,F2  with = .90A0. Since it is a linear gauge 
and the model is Abelian, the ghost fields are decoupled. The quadratic part of the A— x 
system now becomes 

22 1 1 e  
EA_x  = --

4
F2

v 
— —

2a
(a

'4
APY + 

v 
—A2  + evA am'

1 
+ x>2  

2 2 IL  
(15.46) 

The propagators are well defined but there is still a non-diagonal A— x term. A more 
convenient gauge choice is given by = aoAl,  —evax. In this case EA_x  becomes 

1 2  1 
GA—x =

4
Foy

— —
2a

(.9A0)
2 

—
e2v2

A
2 

+ —
1 

(a x)2 
ae2V2 

x
2
. 2 IL  2 It 2 

The two propagators decouple and we find, in momentum space, that 

Gov (k) = 
-1 F

g a) 
 kµ  k„ 1 

k2  — e2v2  L /-4 k2 - a e2v2  

(15.47) 

1 
G(k) = k

2  — ae2v2
(15.48) 

for the A and x propagators, respectively. We note that we find the same singularity for 
both the x -propagator and the ko  kv  part of the A-propagator. We can check (see Prob-
lem 15.2) that these singularities cancel for every physical amplitude, as they should, 
since physical amplitudes must be independent of the gauge parameter a. Some special 
values for a: (i) a = 0: both x and the ka k„ part of A correspond to massless propagat-
ors. (ii) a = 1: they all have the same mass ev. (iii) a —> oo: GA, becomes the propagator 
of a massive vector field. x becomes infinitely heavy and decouples. The Lagrangian 
becomes E3. This choice is often referred to as the unitary gauge. Only physical degrees 
of freedom propagate. 

The conclusion of this section can now be stated as follows. 
In a spontaneously broken gauge theory the gauge vector bosons acquire a mass 

and the would-be massless Goldstone bosons decouple and disappear. Their degrees 
of freedom are used in order to make possible the transition from massless to massive 
vector bosons. This phenomenon has a complicated history. It was implicit in the first 
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phenomenological description of superconductivity by F and H. London as well as 
in the L. D. Landau and V. L. Ginzburg theory of 1950. In the framework of the 
BCS theory it was studied by Ph. Anderson in 1962. J. Schwinger was the first to 
understand the physical principles in particle physics. In four-dimensional field the-
ory it was first introduced by R. Brout and F Englert as well as by P. Higgs in 1964. 
It was further studied by G. S. Guralnik, C. R., Hagen, and T. W. B. Kibble. It is 
commonly known as the 'Higgs mechanism', but we will call it in this book the `BEH 
mechanism'. 

A final remark: The BEH phenomenon seems to violate Goldstone's theorem: there 
is a spontaneous symmetry breaking and no massless Goldstone particle. The reason is 
that in quantising a gauge theory, we do not respect the assumptions we stated in section 
15.2.6. In particular, assumptions 1 (explicit Lorentz invariance) and 2 (positivity in 
Hilbert space) cannot be enforced simultaneously. As we saw in the example of quantum 
electrodynamics, if we choose a covariant gauge we must introduce unphysical degrees 
of freedom, such as scalar photons, which come with negative metric; otherwise, if we 
want to have only physical, positive metric degrees of freedom, we must choose a non-
covariant gauge, such as the Coulomb gauge. 

15.3.2 The Non-Abelian Case 

The extension to the non-Abelian case is straightforward. Let us consider a gauge group 
G with m generators and, thus, m massless gauge bosons. The claim is that we can break 
part of the symmetry spontaneously, leaving a subgroup H with h generators unbroken. 
The h gauge bosons associated with H remain massless while the m — h others acquire 
a mass. In order to achieve this result we need m — h scalar degrees of freedom with 
the same quantum numbers as the broken generators. They will disappear from the 
physical spectrum and will re-appear as zero helicity states of the massive vector bosons. 
As previously, we will see that we need at least one more scalar state which remains 
physical. 

We introduce a multiplet of scalar fields 0, which transform according to some rep-
resentation, not necessarily irreducible, of G of dimension n. According to the rules we 
explained in the last section, the Lagrangian of the system is given by 

1 
=

4 
Tr(F ,F'") + (D 00)1-TY — V(0). (15.49) 

In component notation, the covariant derivative is, as usual, D, O, = 8,4)—ig(a) Ti7247.,01, 
where we have allowed for the possibility of having arbitrary coupling constants g(a)  for 
the various generators of G because we do not assume that G is simple or semi-simple. 
V(0) is a polynomial in 0 invariant under G of degree equal to 4. As before, we assume 
that we can choose the parameters in V such that the minimum is not at 0 = 0 but 
rather at 0 = v where v is a constant vector in the representation space of 0. v is 
not unique. The m generators of G can be separated into two classes: h generators, 
which annihilate v and form the Lie algebra of the unbroken subgroup H, and m — h 
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generators, represented in the representation of 0 by matrices Ta, such that Tav 0 
and all vectors Tav are independent and can be chosen orthogonal. Any vector in the 
orbit of v, i.e. of the form eiwa  Ta  V is an equivalent minimum of the potential. As before, 
we should translate the scalar fields 0 by 0 —> 0 + v. It is convenient to decompose 0 
into components along the orbit of v and orthogonal to it, the analogue of the x and V 
fields of the previous section. We can write 

m—h
a  TaV n—m±h  0  = iV X ± E  ik bub ± 

v, 
 

ITaVI a=1 b=1 

(15.50) 

where the vectors ub  form an orthonormal basis in the space orthogonal to all Tav's. 
The corresponding generators span the coset space G/H. As before, we will show that 
the fields x a will be absorbed by the BEH mechanism and the fields 1fr b  will remain 
physical. Note that the set of vectors ub  contains at least one element since, for all a, we 
have 

v • Tav = 0, (15.51) 

because the generators in a real unitary representation are antisymmetric. This shows 
that the dimension n of the representation of 0 must be larger than m—h and, therefore, 
there will remain at least one physical scalar field. 

Let us now bring in the Lagrangian (15.49) the expression of 0 from (15.50). We 
obtain 

m—h n—m+h 
1 -, 1 ., 1 

G= 
2 Eottxay  + 2 _ E  ottifrbr__ 

4 
Tr(F,,F1") 

a=1 b=1 

m—h m—h 
+ —1  V g(a)2iTav i2Aa

A 
 Aita _ Eg(a) TavaA v

A  a
Aa 

2 , A 
a=1 a=1 

— V (0) + • • • , (15.52) 

where the dots stand for coupling terms between the scalars and the gauge fields. In 
writing (15.52) we took into account that Tbv = 0 for b > m—h and that the vectors Tav 
are orthogonal. 

The analysis that gave us Goldstone's theorem shows that 

a 2 v 

a4)00.1 
lo=v(Taoi = o, (15.53) 

which shows that the x -fields would correspond to the Goldstone modes. As a result, 
ik , the only mass terms which appear in V in Eq. (15.52) are of the form kitel v1  and do 

not involve the x -fields. 
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As far as the bilinear terms in the fields are concerned, the Lagrangian (15.52) is 
the sum of terms of the form found in the Abelian case. All gauge bosons which do 
not correspond to H generators acquire a mass equal to ma  = g(a)  I Tay' and, through 
their mixing with the would-be Goldstone fields x, develop a zero helicity state. All 
other gauge bosons remain massless. The 1/i's represent the remaining physical BEH 
fields. 

15.4 Problems 

Problem 15.1 The patterns of spontaneous symmetry breaking of SU(5). It will 
be useful in constructing grand unified theories in a later chapter. We consider 
a model with a 24-plet of scalar fields belonging to the adjoint representation 
of SU(5), which we write as a 5 x 5 traceless matrix 0 (x). Write the most gen-
eral polynomial Lagrangian with terms of dimension smaller than or equal to 
4, invariant under global SU(5) transformations. (As usual, via discrete trans-
formations, we can ignore terms trilinear in the field 0 and its derivatives. The 
answer is given in Eq. (26.15).) Study the various patterns of spontaneous sym-
metry breaking for this model which result from different choices of the coupling 
constants appearing in the potential of the scalar field. (The answer is given in 
section 26.2.) 

Problem 15.2 We consider a field theory model with the following fields. (i) A 
Dirac spinor IP (x) which we split into its left- and right-handed parts: L = 1 ( 1 + 
y5)W , R = ( 1 - y5)W. (ii) A complex scalar field (/) (x). (iii) A real massless vector 
field 4.(x). We assume that the theory is invariant under the Abelian group of 
gauge transformations given by 

L —> eie°L; R —> e- ieeR; 0  _>. e2iee 0;  Aii,  _>. At  + ao. (15.54) 

1. Write the most general gauge invariant Lagrangian density with terms of 
dimension smaller than or equal to 4. Show that the fermion field is massless 
and the gauge field couples to the axial fermionic current. 

2. Choose the mass-square of the scalar field negative and study the model in 
the phase with spontaneous symmetry breaking. Find the mass spectrum in 
this phase. 

3. In the gauge given by the function .F = aAA, - evax  which we studied in 
section 15.3.1 compute the boson propagators and verify Eqs. (15.47) and 
(15.48). 

4. Compute the amplitude for the elastic scattering of two Dirac particles in 
the one-particle exchange approximation and show that the gauge-dependent 
poles cancel. 
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Problem 15.3 Consider a theory invariant under 0(3) gauge transformations in-
volving, in addition to the gauge bosons, three real scalar fields forming a triplet of 
0(3). 

1. Write the gauge invariant Lagrangian density containing all terms with 
dimension smaller than or equal to 4. 

2. Choose the parameters in order to induce a spontaneous breaking of the 
symmetry. 

3. Describe the spectrum of one-particle states in the broken phase. 



16 

Quantum Field Theory at Higher 
Orders 

16.1 Existence of Divergences in Loop Diagrams. 
Discussion 

The language of Feynman diagrams influenced considerably our approach to quantum 
field theory by providing a space—time image for the various terms in the perturbation 
expansion of Green functions. At this level, the Lagrangian is viewed as just a shorthand 
encoding of the Feynman rules. As we saw already, there exists a one-to-one correspond-
ence between the diagrams we can draw and the terms which appear using the Wick 
theorem. The rules of the previous chapters offer a precise algorithm for all calculations 
at any given order of perturbation. 

However, a cursory look at these rules shows that they often involve expressions which 
are mathematically ill-defined. As an example, let us consider the simplest quantum 
field theory, that of a single scalar field 4(x) interacting through a 04  interaction. If 
we compute the 4-point Green function at second order of perturbation, we find the 
diagram of Fig. 16.1. 

A straightforward application of the Feynman rules leads in Euclidean momentum 
space to an integral of the form 

I = f 
d4k 

 

(16.1) 
(k2  + m2)[(k — p) 2  + m2]' 

which diverges logarithmically at large k. 
Similar divergent terms can be found in all quantum field theories. A simple example 

in quantum electrodynamics is given by the photon self-energy diagram of Fig. 16.2, 
which is traditionally called 'vacuum polarisation'. 

The corresponding integral is 

= f
4 M 

d4  k Tr (y,, 1
1 

— Yv ) m k- 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 

(16.2) 
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Figure 16.1 A 1-loop divergent diagram in the 04  
theory. k— p 

k — q Figure 16.2 The 1-loop vacuum polarisation diagram. 

which is quadratically divergent. Such divergences occur when the momenta of the 
virtual particles appearing in the loops become very large and are called ultraviolet or 
short-distance singularities. 

Let us first recall that it is not the first time we encounter such divergences. When we 
computed the energy of the vacuum state using free fields we found an infinite contri-
bution corresponding to the sum of the zero-point energies for the infinite number of 
harmonic oscillators which describe each quantum field. In this chapter we shall present 
a specific method for avoiding these difficulties. 

16.2 Connected and 1-PI Diagrams 

The description of the perturbation series in terms of Feynman diagrams simplifies the 
introduction of some notions from elementary topology. We have already encountered 
in Chapter 12 the notion of connected and disconnected Green functions. In terms of 
Feynman diagrams these definitions are obvious. We could even introduce some further 
simplifications: an amputated diagram is a connected diagram multiplied by an inverse 
free propagator for every external line. Since these factors do not introduce any in-
tegrations, they do not affect the convergence properties of the diagram. A connected, 
amputated diagram will be called one-particle irreducible (1-PI), if it cannot be separated 
into two disconnected sub-diagrams by cutting a single internal line. One-particle re-
ducible diagrams are obtained as products of 1-PI ones multiplied by the propagators 
of the connecting lines whose momenta are fixed by energy and momentum conserva-
tion. We conclude that if we want to study the convergence properties of the integrals 
involved in the calculation of Feynman diagrams, it is sufficient to restrict ourselves 
to the subset of the 1-PI ones. The sum of all 1-PI diagrams gives the 1-PI Green 
functions. 

This diagrammatic analysis can also be obtained in an abstract way using the general 
formalism we developed in the previous chapters. Let £(4),(x)), i = 1, ..., N , be the 
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Lagrangian density describing the system of N interacting fields and let J (x) be N c-
number functions of space—time which transform with respect to all the symmetries of 
in such a way that E_i  yi (x)oi (x) is an invariant. They are often called classical sources. If 
we consider G + Eyzoi  and calculate the vacuum-to-vacuum transition amplitude in the 
presence of the sources, we obtain a functional .7[J,], which, if expanded in powers of 

gives all the Green functions of the theory, including the disconnected pieces. Using 
the path integral, it can be written as 

f Dyhief  d4x(r+Eloi) 
•FUil =	  f Doief exr (16.3) 

and the disconnected, n-point Green function Gil _ (xi , ..., xn) is given by 

.71 
 

Gi1, (xi, xn) = lyi =o• (16.4) 
s.7

snFT  ] 

i, (xi), ..., 8.7,n (xn) 

Similarly, we can construct generating functionals for the connected and the 1-PI 
Green functions. We define 

.717i] = ew[31. (16.5) 

In Chapter 12 we showed that WU], expanded in powers of J  around J = 0, gener-
ates the connected Green functions. The generating functional for the 1-PI functions is 
obtained from WU] by functional Legendre transformation the way the Hamiltonian is 
obtained from the Lagrangian in classical mechanics. We define the classical field (x)  
as the conjugate variable to y (x), 

) 8 W[Y]  
(1),

(ci (x)  _ 

and the effective action by 

N 

1,
fre

] = 
w u  E  f .xy (x)  cl) (x)  

i=1 

(16.6) 

(16.7) 

In (16.7) we are supposed to express J  as a functional of OW)  through the inverse of 
(16.6). We obtain 

8F 
ji(x) = ,c, . 

S~iz (x) 
(16.8) 

If we functionally expand the effective action in powers of 4(c1) , the coefficient 
functions are precisely the 1-PI Green functions 
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sn r  [oicci) ]  

F11 ,...,in ()C13 • • •3 Xn) = (cl I (a) 5 

S7  it ) (x1)5 —5 .5cb el)  (Xn) C5i 13  

(16.9) 

i.e. the sum of all 1-PI Feynman diagrams with n external lines corresponding to the 
fields i1i in. This property is well known in statistical mechanics. Let us give a simple 
proof here. Consider a theory with a single, neutral, scalar field (/) (x). The extension 
to other theories is straightforward. We start with the 2-point function. Taking the 
functional derivative of both sides of Eq. (16.6) with respect to Oel  (y), we obtain 

6  6 W [7]  = f d4 z 6.7(z) 62  W [J] s 4 (x (16.10) 
8c1(Y) 8.7(x) 80e1(V) 3.7(z)8.7(x) 

We remind that in this equation we are supposed to express the source J as a func-
tional of the classical field Ocl  through Eq. (16.8). The first factor under the integral is the 
second derivative of F with respect to Ocl. If now we put all external sources equal to 0, 
we obtain the result that the connected 2-point function is the inverse of the amputated 
one-particle irreducible 2-point function. In momentum space this tells us that 

G 2)  (p2)r (2)  (p2) = 1. 

Let us look at this result in lowest order perturbation theory. The complete propagator 
is given by G(2) (102)  = vp2 —m2. ) where the +iE prescription is understood. So, in the tree 
approximation Eq. (16.11) tells us that F(2)  (p2) = (p2 m2).Let us verify it explicitly: 
to this order the 1-PI 2-point function equals the amputated 2-point function. In order 
to obtain the latter we multiply the two external lines by the inverse propagator, which, 
to this order, is the free propagator. So we obtain F (2)  (p2) = G2inp 

(p
2) = (p2 _ m2), in  

agreement with Eq. (16.11). It follows that the perturbation expansion of r(2) (p2) can 
be written as 

r  (2) (1,2) = _i(p2 _ m2 _ E  (2) (1,2))
, (16.12) 

where E (2)  (P2) is a formal power series expansion in the coupling constant with the loop 
contributions. 

This result has a simple graphical representation shown in Fig. 16.3. The round bulb 
represents the connected 2-point function Gc(2) (p2). The elliptical bulb is the expression 
for —iE (2)  (p2). It gives 

E  (2) (1,2) 
G(2) (p2 =  

p2 _ m2 p2 _ m2 i   p2 

By summing the series we obtain 

G?) (p2 ) 
=  = ir(2) (p2)]-1, 

p2 _ m2 — E (2) (p2 ) L 

the result of Eq. (16.11). 

(16.13) 

(16.14) 
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Figure 16.3 The 1-PI decomposition of the 2-point function. 

We can continue with higher Green functions. If the 3-point function (3)  does not 
vanish by some symmetry property, it is given by differentiating once more Eq. (16.10) 
with respect to O (w) and then setting the external sources equal to 0. We obtain two 
terms: the first comes from differentiating the factor Sj(z)180c (y) 780d2 and the  

second from the differentiation of the 8 2  w my2, which gives a term of the form GP) F (2)  . 
More explicitly we get 

0= f d4  z[F (3)  (z , y, w) G(2)  (z, x) + f d4  u F (2)  (z, y) GP)  (z , x, u) F (2)  (u, w)J, (16.15) 

which expresses the 1-PI 3-point function in terms of the connected 3-point function. 
Using the relation (16.11) we can rewrite it as 

F (3)  (x, y, w) = f d4x1  d4yi  d4wi GP)  (xi ,Y1 , wi) r(2)  (xi, x) r (2)  (.vi,y) r (2)  (wi, w) 

= G irip (x, y, w), (16.16) 

which means that the 1-PI 3-point function is just the amputated 3-point function, a 
result we can easily check by drawing the corresponding diagram, Fig. 16.4. 

We can continue with all the higher order functions. By successive differentiations 
we can generalise the relation (16.16) and express any F(n)  function as a sum of 
terms: the first is the corresponding n point amputated connected function, the oth-
ers contain combinations of G(m)  with m < n and F(2) 's. The proof that the resulting 
F(n)  is the corresponding 1-PI proceeds by induction, although the combinatorics is, 
as usual, quite lengthy. Note also that if the 3-point function vanishes, as it is the 
case for a 04  theo7, the analogue of Eq. (16.16) is valid for the 4-point function: 
F(4)  (x, y, w, z) = Gc(,a)mp (X, y, w, z) (Fig. 16.5). 

Figure 16.4 The 1-PI decomposition of the 3-point 
function. 
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Figure 16.5 The 1-PI decomposition of the 4-point function. The 
dots stand for crossed terms. We see that if the 3-point function 
vanishes by symmetry, (4)  = Gc(4,2mp. 

16.3 Power Counting. Definition of Super-Renormalisable, 
Renormalizable, and Non-renormalisable Quantum 
Field Theories 

We saw already that a straightforward application of Feynman rules may lead to diver-
gent integrals. In this section we want to introduce a systematic method for finding all 
such divergences. As we noted earlier, it is sufficient to restrict ourselves to the study of 
the 1-PI diagrams. We want to emphasise that the entire approach will be perturbative, 
i.e. all calculations are supposed to be performed order by order in a power series ex-
pansion of the coupling constant. The calculation of the nth order cannot be envisaged 
unless the contributions of all lower orders have been successfully completed. 

A single-loop integral will be ultravioletly divergent if and only if the numerator is of 
degree equal or higher in the loop momentum than the denominator. For multiloop dia-
grams this may not be the case, since the divergence may be entirely due to a particular 
sub-diagram; however, as we emphasised earlier, in the spirit of perturbation theory, the 
divergent sub-diagram must be treated first. We thus arrive at the notion of superficial de-
gree of divergence d of a given 1-PI diagram, defined as the difference between the degree 
of integration momenta of the numerator minus that of the denominator. The diagram 
will be called primitively divergent if d > 0. Let us compute d for the diagrams of some 
simple field theories. 

We start with scalar field theories with interaction of the form Om with m integer 
larger than 2. (For m = 2 we have the trivial case of a free field theory.) Let us consider 
a 1-PI diagram of nth order in perturbation with I internal and E external lines. Every 
internal line brings four powers of k in the numerator through the d4k factor and two 
powers in the denominator through the propagator. Every vertex brings a 6 4-function of 
the energy-momentum conservation. All but one of them can be used to eliminate one 
integration each, the last reflecting the overall conservation which involves only external 
momenta. Therefore, we obtain 

d = 2/ — 4n + 4. (16.17) 

This expression can be made more transparent by expressing I in terms of E and m. 
A simple counting gives 2/ + E = mn and (16.17) becomes 
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Figure 16.6 16.6 The primitively divergent 1-PI diagrams in the 
four-dimensional 4,3  theory. 

d=(m-4)n—E+4. (16.18) 

This is the main result. We see that m = 4 is a critical value and we can distinguish 
three cases: 

1. m = 3, d = 4 — n — E. d is a decreasing function of n, the order of perturbation 
theory. Only a limited number of diagrams are primitively divergent. Above a 
certain order they are all convergent. The divergent ones are shown in Fig. 16.6. 
For reasons that will be clear soon, we shall call such theories super-renormalisable. 

2. m = 4, d = 4 — E. d is independent of the order of perturbation theory. If a Green 
function is divergent at some order, it will be divergent at all orders. For the 04  
theory we see that the primitively divergent diagrams are those with E = 2, which 
have d = 2 and are quadratically divergent and those with E = 4, which have 
d = 0 and are logarithmically divergent. (Note that for this theory, all Green 
functions with odd E vanish identically because of the symmetry —> —cp.) We 
shall call such theories renormalisable. 

3. m > 4, d is an increasing function of n. Every Green function, irrespectively of 
the number of external lines, will be divergent above some order of perturbation. 
We call such theories non-renormalisable. 

This power-counting analysis can be repeated for any quantum field theory. As a 
second example, we can look at quantum electrodynamics. We should now distinguish 
between photon and electron lines which we shall denote by Iy, /„ Ey, and Ee  for internal 
and external lines, respectively. Taking into account the fact that the fermion propagator 
behaves like 1C1  at large momenta, we obtain for the superficial degree of divergence of 
a 1-PI diagram: 

3 
d = 2Iy + 3/e  — 4n + 4 = 4 — Ey — iEe. (16.19) 

We see that d is independent of the order of perturbation theory and, therefore, the 
theory is renormalisable. The 1-PI Green functions which may be divergent are shown 
in Fig. 16.7. They are those with Ey = 2, Ee  = 0, the photon self-energy diagrams; 
Ey = 0, Ee  = 2, the electron self-energy; Ey = 1, Ee  = 2, the vertex diagrams, and, finally 
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viAovvs, - ):( 

Figure 16.7 The primitively divergent 1-PI Green's functions of 
quantum electrodynamics. The last one, the light-by-light scattering, 
is, in fact, convergent as a consequence of gauge invariance, as we shall 
see later. 

the Ey  = 4, Ee  = 0, the scattering of light by light. We will show shortly that the last 
one is, in fact, convergent, because of the gauge invariance of quantum electrodynamics. 
A final remark: the theory is invariant under the operation of charge conjugation which 
changes the sign of the photon field. It follows that a Green function with no external 
electron lines and an odd number of photon lines vanishes identically. This property is 
known as Furry's theorem. 

We leave as an exercise to the reader to establish the renormalisation properties of 
other field theories (see, Problem 16.1). In four dimensions of space—time, the result is 
the following: 

1. There exists only one super-renormalisable field theory with interaction of the 
form 03. 

2. There exist five renormalisable ones: 

2a. 04. 

2b. Yukawa 0•0 

2c. Quantum electrodynamics 

2d. Scalar electrodynamics, which contains two terms: [0-1- 0,0 - (B4O1-)0]AA and 
A12261,0t0 

2e. Yang—Mills TrG,„G" 

3. All other theories are non-renormalisable. 

For 03  the energy will turn out to be unbounded from below, so this theory alone 
cannot be a fundamental theory for a physical system. A most remarkable fact is that, 
as we will see later, nature uses all renormalisable theories to describe the interactions 
among elementary particles. 

Before closing this section we want to make a remark which is based on ordinary 
dimensional analysis. In four dimensions a boson field has dimensions of a mass (re-
member, we are using units such that the speed of light c and Planck's constant h are 
dimensionless) and a fermion field that of a mass to the power ;. Since all terms in 
a Lagrangian density must have dimensions equal to 4, we conclude that the coupling 
constant of a super-renormalisable theory must have the dimensions of a mass, that of 
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a renormalisable theory must be dimensionless, and that of a non-renormalisable the-
ory must have the dimensions of an inverse power of mass. In fact we can rephrase the 
power-counting argument for the superficial degree of divergence of a 1-PI diagram as 
an argument based on dimensional analysis. The result will be this connection between 
the dimensions of the coupling constant and the renormalisation properties of the the-
ory. There is, however, a fine point: for this argument to work we must assume that all 
boson propagators behave like 12-2  at large momenta and all fermion ones like le-1. So 
the argument will fail if this behaviour is not true. The most important example of such 
failure is a theory containing massive vector fields whose propagator goes like a constant 
at large k. As a result such theories, although they may have dimensionless coupling 
constants, are in fact non-renormalisable. 

16.4 Regularisation 

Since, as we just saw, the perturbation expansion often contains divergent integrals, we 
must introduce some prescription to deal with them. This means that we must modify 
the theory somehow in order to improve its short distance behaviour. A first idea could 
be to modify the rules of quantum field theory and obtain propagators which decrease, 
at large momenta, faster than the canonical powers we encountered so far. We can 
show that this is impossible without violating some of the fundamental principles we 
introduced before. In Problems 16.2 and 16.3 we present two such methods and their 
shortcomings. Alternatively, we can act on the short distance structure of space-time. 
The simplest such scheme, both conceptually and physically, is to replace the Euclidean 
space-time continuum by a regular lattice with spacing a. a gives the shortest possible 
distance and similarly A — a-1  the largest possible momentum. Poincare invariance is 
broken to a discrete subgroup, the symmetry group of the lattice. For fixed a there are no 
ultraviolet divergences since we integrate only up to momenta of order of A. At the limit 
a —> 0 we recover the usual continuum theory, including its divergences. We call this 
procedure regularisation. It consists of introducing a new parameter into the theory; here 
it is the lattice spacing, called cut-off, at the price of violating some principle, in this ex-
ample the symmetries of space-time. For finite values of the cut-off all calculations yield 
convergent, but cut-off dependent, expressions. The limit when the cut-off disappears 
will be studied in the next section. 

The formulation of quantum field theory on a space-time lattice is interesting in 
its own right because, on top of providing a cut-off for the calculation of Feynman 
diagrams, it offers a universal, non-perturbative definition of the theory. The space-time 
point x is replaced by an index i which takes integer values and labels the lattice site. The 
fields (/) (x) become 4),.1  Derivatives of fields are replaced by finite differences between 
neighbouring points of the form 4), - 0,±1  divided by the lattice spacing. The action is 

1  Gauge fields Aµ  (x) depend on both the point i and the direction in space given by the index pt. In other 
words, they depend on the link joining the point i and its neighbour in the direction it. This is why they are 
called 'connections'. 
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now given by a discrete sum over all lattice points and the functional integral reduces to a 
multiple integral in which, for every lattice site, we integrate all fields from -oo to +oo. If 
we introduce also an infrared cut-off by considering only a finite number of lattice sites, 
we obtain an ordinary finite-dimensional integral which can be evaluated numerically. 
Every quantity will depend on both, the lattice spacing and the lattice size. If we repeat 
the calculation by varying these parameters we can, in principle, study the continuum, 
infinite space limit. The important point is that the result will be independent of the 
properties of the perturbation expansion, thus providing a way to study field theory in 
the strong coupling region, where perturbation methods are unreliable. We shall come 
back to this point in a later chapter. 

On the other hand, if our purpose is not to give a non-perturbative definition of field 
theory but rather to perform computations of Feynman diagrams, we may choose any 
method that renders these diagrams finite. There exists a plethora of such methods and 
there is no need to give a complete list. The two examples we presented in Problems 16.2 
and 16.3 do that by modifying the Lagrangian density and, hence, the field propagators. 
Although conceptually simple, they are not very convenient to use. 

A different choice is to act directly on the divergent expressions at the level of each 
individual diagram. A simple prescription consists of expanding the integrand of every 
diagram in powers of the external momenta. Let us consider the divergent integral of 
(16.1) and expand it in powers of p. 

1 
I — d4k  

i (2n- )4  (k2  + m2)[(k— p)2  + m2] 

d4k 1 a 1 = f  
f (2n-)4  

 + pi, 
((k 2  + m2)2 ap, (k2 + m2) [(k -P)2  + M2] Ip=o + ••••) 

 

(16.20) 

where the dots stand for higher order terms. It is clear that only the first term is divergent; 
therefore, we can define the finite part of the diagram of Fig. 16.1 as the one we obtain by 
dropping the first divergent term. This prescription can be generalised to any diagram 
and yields finite expressions. For more divergent diagrams we may have to drop also 
higher terms in the expansion, but we shall always be left with convergent integrals. The 
method looks rather arbitrary; for example, instead of expanding in powers around zero 
external momentum, we could choose to do so around any other fixed value, provided it 
is a point of analyticity of the integrand. We shall come back to this arbitrariness in the 
next section; here, we only note that the terms we drop are polynomials in the external 
momenta. 

For practical calculations it is clear that we must choose a cut-off procedure that 
renders these computations as simple as possible. In the next section we will argue that 
physical quantities are independent of the particular choice of the cut-off. 

The simplest regularisation scheme turned out to be, by trial and error, a quite 
counterintuitive one. We start by illustrating it in the simple example of the divergent 
integral of (16.1). Since we are interested only in the divergent part, we can simplify the 
discussion by considering the value of I at p = 0. We thus obtain 
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d4k 

j (27)4 (k2 + m2)2. (16.21) 

Ignoring for the moment the divergence, we note that the integrand depends only 
on k2, so we choose spherical coordinates and write d4k = k3dkdS2(3), where df2(3)  is 
the surface element on the three-dimensional unit sphere. We further note that I would 
have been convergent if we were working in a Euclidean space—time of three, two, or one 
dimension. The crucial observation is that in all three cases we can write the result in a 
compact form, 

1(d)  — f  dd  k 1 1 F (2 — d/2) 
=• j (27)d (k2 + m2)2 — (47)(v2 (m2)(2-d/2)' d 1, 2, 3  (16.22) 

where F (z) is the well-known special function which generalises for a complex z the 
concept of the factorial. The important values for (16.22) are given by 

(7)1/2 
F (n) = (n — 1)!; F (n + 1/2) = 2n (2n — 1)!!; n = 1, 2, ... (16.23) 

And now comes the big step. Nothing on the right-hand side of (16.22) forces us to 
consider this expression only for d =1,2, or 3. In fact F is a meromorphic function in 
the entire complex plane with poles whenever its argument becomes equal to an integer 
n < 0. For the integral /(d), using the identity nF (n) = F (n + 1), we see that when 
d —> 4, the F function behaves as F (2 — d/2) — 2/(4 — d). So, we can argue that, at 
least for this integral, we have introduced a regularisation, i.e. a new parameter, namely 
E = 4 — d, such that the expression is well defined for all values in a region of E and 
diverges when E -> 0. 

Before showing how to generalise this approach to all other integrals we may en-
counter in the calculation of Feynman diagrams, let us try to make the logic clear by 
emphasising what this regularisation does not claim to be. First, it does not claim to be 
the result we would have obtained by quantising the theory in a complex number of di-
mensions. In fact we do not know how to consistently perform such an operation. In this 
sense, dimensional regularisation does not offer a non-perturbative definition of the field 
theory. The prescription applies directly to the integrals obtained order by order in the 
perturbation expansion. Second, it cannot even be viewed as the analytic continuation 
to the complex d plane of the results we obtain in performing the integral for d = 1, 2, 3. 
Indeed, the knowledge of the values of a function on a finite number of points on the real 
axis does not allow for a unique analytic continuation. Instead, the claim is that (16.22), 
appropriately generalised, offers an unambiguous prescription to obtain a well-defined 
answer for any Feynman diagram as long as E stays away from 0. 

The observation which allows for such a generalisation is that Feynman rules always 
yield a special class of integrals. In purely bosonic theories, whether renormalisable or 
not, they are of the form 
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= 
f r-r ddki N(ki,k2,...) ((22Ty  t (k, p)),  
" (2n- 

 

)d D(ki, k2, •••) 1r  1  
(16.24) 

where the k's and the p's are the momenta of the internal and external lines, respectively, 
the product over i runs over all internal lines, that of r over all vertices, the 8 func-
tions denote the energy and momentum conservation on every vertex, and N and D are 
polynomials of the form 

N(k1, k2, ...) = ...kv2k2v2 (16.25) 

D(ki, k2, ...) = fl + ;4). (16.26) 

D is just the product of all propagators and mi  is the mass of the ith line. N appears 
through derivative couplings and/or the Pk' parts of the propagators of higher spin 
bosonic fields. It equals 1 in theories with only scalar fields and non-derivative couplings, 
such as 04. All scalar products are written in terms of the d-dimensional Euclidean metric 
3,, which satisfies 

= Trl = d. (16.27) 

The dimensional regularisation consists in giving a precise expression for 
P2, ...Pn) as a function of d which coincides with the usual value whenever the latter 

exists and is well defined for every value of d in the complex d plane except for those 
positive integer values for which the original integral is divergent. 

At 1 loop the integral (16.24) reduces to 

f  ddk N(k) 
I (Pi, P2, — 

(2n-  )d D(k, Pi, P2, •••) 

with k being the loop momentum. The denominator D is of the form 

D(k, pi, P2, = [(k —  EcoP)2  + inN 

(16.28) 

(16.29) 

where E (op denotes the combination of external momenta which goes through the ith 
internal line. This product of propagators can be cast in a more convenient form by 
using a formula first introduced by Feynman 

1 1 dzi dz2...dz,i8 (1 — Eizi) 
 = (n — 1)! 

P1 P2. • • 1377 f0 [z1Pi z2P2  + • • • + Z,1.13,1 ]n 
(16.30) 

With the help of (16.30) and an appropriate change of variables, all 1-loop integrals 
become of the general form 
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f  d dk  
1(P1, P2, •••Prz) = 

(27r)d [1e2  + F2  (p, m, z)]n 
(16.31) 

with F being some scalar function of the external momenta, the masses, and the Feyn-
man parameters. F has the dimensions of a mass. I (p 15,- 25 •••pn) is obtained from 
/(P15P2, •••Pn) after integration with respect to the Feynman parameters zi  of (16.30). 
For odd values of 1 I vanishes by symmetric integration. For I even, it can be easily 
computed using spherical coordinates. Some simple cases are as follows: 

dd  k 1 1 F (ti — d12) [F2](d12-q) 
(27)d  [k2  + F2  (p, m, z)]n (47r)d12 F(t1) 

dd  k Vey 1 8,„ F (ti — 1 — d12) 
[F2] (c112+1-0

. 
 

(27)d [k2  + F2(p,m,z)]n (471")d/2  2 I'(11) 

(16.32) 

(16.33) 

At the end we are interested in the limit d —> 4. The first integral (16.32) diverges for 
< 2 and the second (16.33) for 17 < 3. For ti = 2 and d = 4 (16.32) is logarithmically 

divergent and our regularised expression is regular for Red < 4 and presents a simple 
pole — 1/(d — 4). For 17 = 1 it is quadratically divergent but our expression has still a 
simple pole at d = 4. The difference is that now the first pole from the left is at d = 2. 
We arrive at the same conclusions looking at the integral of (16.33): By dimensionally 
regularising a 1-loop integral corresponding to a Feynman diagram which, by power 
counting, diverges as A2n, we obtain a meromorphic function of d with simple poles 
starting at d = 4 — 2n. By convention, n = 0 denotes a logarithmic divergence. 

The generalisation to multiloop diagrams is straightforward: starting from (16.24) 
and using the Feynman formula (16.30) we write, in a compact notation, a general 
multi-loop diagram as 

ddkl  N (ki,k2, • • .) 
I (pi, P25 ...pn) = 

I
( 

" (27)d) f 
dz 

 [D2(k, z) + (k, p, z) + Do(p, z,m)ln 5 

(16.34) 

where, as before, ti is the total number of internal lines, lei (1 = 1, 2, ..L) are the independ-
ent loop momenta, the integral over z denotes the multiple integral over the Feynman 
parameters, and the denominator is a quadratic form in the loop momenta which we 
have split according to the degree in k. In a vector notation in which k = (k1 , k2, kL) 
we write 

D2 = (k, Ak) (16.35) 

Di = 2(k • q) (16.36) 

with A an L x L z-dependent matrix and q L linear combinations of the ex-
ternal momenta p with z-dependent coefficients. Do  is the k-independent part of the 
denominator. 

Diagonalising A, rescaling the momenta and shifting the integration variables we can 
write (16.34) as 
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(
d N(k15k2, •••)  

/(pi,P2, ...pn) =
27)d 

f 11 (  ddi<1  f dz(detA)-  
[K2  + (q, A-' q) + Do]''  

(16.37) 

Here the L momentum integrations have been separated and can be performed one 
after the other using the formulae (16.32), (16.33), or, appropriate generalisations. 
However, this is not the end of the story. We are still left with the integration over the 
Feynman parameters. There exists no closed formula for the general multiloop integral. 
The z integration may be singular because detA often vanishes at the edge of the integ-
ration region. A useful method is to write (detA)" — (a +1)-1a (detA)a+1, where a means 
the partial derivative with respect to one of the z's. By repeated partial integrations we 
can isolate and calculate explicitly all pieces which diverge when d goes to four. The 
finite pieces often require numerical integrations. 

Although formula (16.37) is general, it is not always the most convenient. The reason 
is that it treats all internal lines equally and does not distinguish possible divergent 
subdiagrams. We will come back to this point in the next section. 

So far we have considered only bosonic theories. The introduction of fermions 
presents a new feature, namely the presence of y -matrices. In d Euclidean dimensions 
we write 

{YA, Yv} = -28Av (16.38) 

with the Euclidean metric 8,v  satisfying (16.27). All d-dimensional properties of the 
Clifford algebra follow from (16.38). For example, we have 

Tryp, yv  = Try, y, = -dbp,„ 

Tr(yAi ) tt2k+i = 
= 

(16.39) 

Similar expressions can be written for all products of y -matrices or traces of such 
products. The only exception is y5  which, in four dimensions, is defined as y5  = 
(114!)E A,pa yA yv yp ya. The E symbol with four indices can only be defined in four di-
mensions and there is no appropriate generalisation. y5  can only appear in a Feynman 
diagram if it is present in the interaction, so we expect that for such theories, diagrams 
with an odd number of y5  vertices will not be dimensionally regularised. This sounds 
like a technical remark but we shall see in a later section that it is in fact the sign of a 
far-reaching property of quantum field theory. 

16.5 Renormalisation 

16.5.1 1-Loop Diagrams 

In the last section we saw that by introducing an appropriate regularisation scheme, we 
obtain well-defined expressions for any Feynman diagram which, however, often depend 
on a new parameter, the cut-off. In the dimensional regularisation it is given by E = 4 - d. 
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The limit E -> 0 cannot be taken directly without encountering the divergences of the 
original theory. On the other hand, it is precisely this limit which is physically interesting. 
In this section we want to address this question, namely, under which circumstances a 
meaningful four-dimensional theory can be recovered from the regularised E-dependent 
expressions? As we could have anticipated, the answer will turn out to be that this is 
only possible for the renormalisable (and super-renormalisable) theories we introduced 
earlier. The procedure to do so is called renormalisation. In this section we will present it 
for some simple examples. 

Let us start with the simplest four-dimensional renormalisable theory given by our 
already familiar Lagrangian density: 

1 1 A 

= 2 
1 

a,0(x)alto(x)— 2;1120' (x) — 4 Xcp4(x). (16.40) 

In d = 4 the field has the dimensions of a mass and the coupling constant X is 
dimensionless. Since we intend to use dimensional regularisation, we introduce a mass 
parameter p. and write the coefficient of the interaction term X —> WA, so that the 
coupling constant X remains dimensionless at all values of E. We shall present the renor-
malisation programme for this theory at the lowest non-trivial order, that which includes 
all diagrams up to and including those with one closed loop. 

The power-counting argument presented in section 16.3 shows that, at 1 loop, the 
only divergent 1-PI diagrams are those of Fig. 16.8. 

The 2-point diagram is quadratically divergent and the 4-point diagram logarithmic-
ally. We could prevent the appearance of the first diagram by normal ordering the 04  
term in the interaction Lagrangian, but we prefer not to do so. Normal ordering is just 
a particular prescription to avoid certain divergences but it is not the most convenient 
one. First, it is not general; for example, it will not prevent the appearance of the 4-
point diagram of Fig. 16.8, or even the 2-point one at higher orders and, second, as we 
will see in a later section, its use may complicate the discussion of possible symmetries 

  

Figure 16.8 The 1-loop primitively 
divergent diagrams of the 04 theory. 
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of L. We choose to work entirely with dimensional regularisation and we obtain for these 
diagrams in Minkowski space-time, using (16.32) at the limit d —> 4, 

(2) Xif f  dd  k 1 l'Am2  1 
ri - 2 (27)d k2 _ m2 -  1672  E 

1 f d dk 1 
Fi(4) (Pi, -,P4) = -2 A2A2E j 

(27)d (k2 - m2) [(k - P)2 - m2] 

dd  k 1 = 1 A2,1,  f2€ 1 d 
2

z f  
Jo (27)d [k - m2  + P2z(l - z)] 2  

3iX2  1 
=  + finite terms, 

1672  E 

(16.41) 

+ crossed (16.42) 

+ crossed 

where P = pi  + p2, 'crossed' stands for the contribution of the two crossed diagrams in 
Fig. 16.8 and 'finite terms' represent the contributions which are regular when d = 4. 
Some remarks follow. 

1. The divergent contributions are constants, independent of the external momenta. 
We will see shortly, in the example of quantum electrodynamics, that this is a 
particular feature of the 04  theory. In fact, even for 04, it is no more true when 
higher loops are considered. For example, the 2-loop diagram of Fig. 16.9 con-
tributes a divergent term proportional to p2. However, we can prove the following 
general property. All divergent terms are proportional to monomials in the ex-
ternal momenta. We have already introduced this result in the last section. For 
1-loop diagrams the proof is straightforward. We start from the general expres-
sion (16.31) and note that we can expand the integrand in powers of the external 
momenta p taken around some fixed point. Every term in this expansion increases 
the value of ri, so, after a finite number of terms, the integral becomes convergent. 
We will use this argument later on. It takes some more work to generalise the proof 
to multi-loop diagrams, but it can be done. 

2. The dependence of the divergent terms on m2  could be guessed from dimensional 
analysis. This is one of the attractive features of dimensional regularisation. 

3. The finite terms in (16.42) depend on the parameter ,t, t. The Laurent expansion 
in E brings terms of the form In{ [m2 _ p2zo _ zwit2}.  

The particular form of the divergent terms suggests the prescription to remove them. 
Let us start with the 2-point function. In the loop expansion we write 

Figure 16.9 A 2-loop diagram for the 2-point function with a 
divergent term proportional to p2. 
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60 

F(2) (p2) = E 
 Ft

(2) (p2) = F
0
(2) (1,2) + F

1
(2) (1,2) (16.43) 

/=0 

where the index 1 denotes the contribution of the diagrams with / loops. In the tree 
approximation we have 

F
0
(2) (p2) = _i(p2 m2

). (16.44) 

The 1-loop diagram adds the term given by (16.41). Since it is a constant, it can 
be interpreted as a correction to the value of the mass in (16.44). Therefore, we can 
introduce a renormalised mass mR, which is a function of m, X, and E. Of course, this 
function can only be computed as a formal power series in X. Up to and including 1-loop 
diagrams we write 

m2Ron, x,E) = (1 + X 1) + 0 (X2) . 
167 2  E 

(16.45) 

A formal power series whose zero-order term is non-vanishing is invertible in terms 
of another formal power series. So, we can write m as a function of mR, X, and E, 

M2  (MR, X, E) = 1112R  (1 - X  1) 
1671' 2  E + O(X 2) = M2RZ m  + 0 (X 2) , (16.46) 

where we have defined the function Z7n (X, E) as a formal power series in X with 
E-dependent coefficients. 

The parameter m is often called bare mass. Replacing in the Lagrangian (16.40) the 
bare mass m with the help of (16.46) results in (i) changing in the Feynman rules m by 
mR  and (ii) introducing a new term in G of the form 

X 1 
8r7n  = m2R 

3272 E 
2(X) (16.47) 

Since 8E,, is proportional to the coupling constant X, we can view it as a new vertex 
in the perturbation expansion which, to first order, gives the diagram of Fig. 16.10. In 
this case the complete 2-point function to first order in X is given by 

iXM2  1 lAM2  1 F(2) (p2) = (p2 m2

R 

 ) + R R 0(x2)  
16n-2  E 16n-2  E 

=
mR) 

+ 0(X2)

, 

 

(16.48) 

Figure 16.10 The new diagram resulting from 3G,, of Eq. (16.47). 
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which means that if we keep fixed mR  and X instead of m and X, we can take the limit 
d —> 4 and find no divergences up to and including 1-loop diagrams for the 2-point 
function. 

Let us now consider the 4-point function. In the same spirit we write 

00 

F (4)  (Pi , • •5P4) = E F,(4) (Pi,. •5P4) = ro(4)  (Pi,. •5P4) + r1(4)  (Pi , • •5P4) +.... (16.49) 
t=o 

In the tree approximation To(4)  b l ,,,- 15 -5 P4) = — iX. Including the 1-loop diagrams we 
obtain 

p(4) (/)15••,p4) = —iA (1
3X 

 1 + finite terms) + 0(X3). (16.50) 
1672  E 

The procedure is now clear. We change from the bare coupling constant X to the 
renormalised one AR  by writing 

or, equivalently, 

3X 1 
XR(X,E) = X 1-

16n2 E
+ 0(X 2)) 

3XR 1 
X(AR,E) = XR (1 + 

1672  E + 
0(4)) = XRZA. 

(16.51) 

(16.52) 

Again, replacing X with AR  in r produces a new 4-point vertex which cancels the 
divergent part of the 1-loop diagrams of Fig. 16.8. Let us also note that we can replace 
X with AR  in (16.46) since the difference will appear only at higher order. 

Until now we have succeeded in building a new, renormalised Lagrangian and the res-
ulting theory is free from divergences up to and including 1-loop diagrams. It involves 
two new terms which change the coefficients of the 02  and 04  terms of the original 
Lagrangian. These terms are usually called counter-terms. Before looking at higher or-
ders, let us see the price we had to pay for this achievement. It can be better seen at 
the 4-point function. Looking back at the expression (16.42) we make the following 
two observations. First, as we noted already, the finite part seems to depend on a new 
arbitrary parameter with the dimensions of a mass µ. Second, the definition of ZA  in 
(16.52) seems also arbitrary. We could add to it any term of the form CXR with C any 
arbitrary constant independent of E. Such an addition would change the value of the 
coupling constant at the 1-loop order. The two observations are not unrelated. Indeed, 
changing the parameter p, from µ1  to il.(2  in (16.42) adds a constant term proportional 
to X 1n(µ1/µ2) which, as we just saw, can be absorbed in a redefinition of ZA  and, thus, 
of the value of the coupling constant. In a later section we will study the µ-dependence 
of the theory more deeply, but for the moment we note that at 1 loop, all this renormal-
isation procedure for the 4-point function amounts to choosing the value of the coupling 
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constant. Since the latter was always considered as an arbitrary parameter of the theory, 
this does not seem to be a high price. We shall postpone a more elaborate discussion of 
this point to a later section. 

Let us summarise the discussion so far. At the 1-loop level all arbitrariness of the 
renormalisation programme consists in assigning prescribed values to two parameters of 
the theory, which can be chosen to be the mass and the coupling constant. A convenient 
choice is given by two conditions of the form. 

F  (2) (p2 = m2
R) 

 = 0 (16.53) 

F (4)  (P15-, P4) I point M = 1X (RA4)  . (16.54) 

The first one, Eq. (16.53), defines the physical mass as the pole of the complete 
propagator. Although this choice is the most natural for physics, from a purely technical 
point of view, we could use any condition assigning a prescribed value to F (2)  (P2) at 
a fixed point p2 = M

2, provided it is a point in which T (2)  (p2) is regular. Similarly, in 
the second condition Eq. (16.54), by 'point M' we mean some point in the space of 
the four-momentum pi , i = 1, .., 4, provided it is a point in which T(4)  is regular. For a 
massive theory the point pi  = 0 is an example. Once these conditions are imposed all 
Green functions at 1 loop are well defined and calculable. 

A final remark: To be precise, we must include in our list of counter-terms an additive 
constant in the Lagrangian which ensures that the vacuum state has zero energy. It was 
discussed in Chapter 8 as a normal ordering prescription, but it is not different to any 
of the counter-terms we encountered here. Like any of the Z's introduced so far, it has 
an expansion in perturbation theory and must be determined order by order. It corres-
ponds to the divergences of diagrams with no external lines, but since we rarely need to 
compute such diagrams, this counter-term is traditionally left out of the renormalisation 
programme. 

As a second example, we will present the renormalisation for the 1-loop diagrams of 
quantum electrodynamics. The primitively divergent diagrams are shown in Fig. 16.7. 
We start with the first one, the photon self-energy diagram given by 

2 c dd  k Tr[y,(1+ m) y, (IZ— 4+ m)] 
F /213) (q) e f (27r) d  (1e2  — m2) [(k — 9) 2  — m2)] 

(16.55) 

which, by power counting, is quadratically divergent. Using Feynman's formula (16.30) 
and the integrals (16.32) and (16.33), we obtain 

1 

Fu~'o) 
(q) = _ie  2 c 2d 

(47T  d/2
d -2 (q,q, — q2g,,,,)F (2 — d/2) f dzz(z — 1) (F 2  )2 

0 
2ia 1 
3n E (qtt qv — q

2
gpx) 

(16.56) 
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where F2  = m2  + q2z(1 — z), a = e2/4n-  is the fine structure constant and the dots stand 
for finite terms. 

The surprise in (16.56) is that the pole at d = 2 which signals the quadratic di-
vergence has disappeared. The 1/E part of I '°) (q) is proportional to q,q, — q2  g pi, and 
satisfies qIi F 12(2°)  (q) = 0. This is a welcome result. Indeed, were I' (2'0)  quadratically diver-
gent, the corresponding coefficient, by dimensional analysis, would have been a constant 
independent of the momentum q. In order to absorb the divergence we would have to 
introduce a counter-term in the Lagrangian of quantum electrodynamics proportional 
to A,1A'1, i.e. a photon mass term. Such a term is absent in the original Lagrangian 
because it is forbidden by gauge invariance. We see in this example the advantage of 
using a cut-off procedure, such as dimensional regularisation, which respects the invari-
ance properties of the theory. If we had used a more direct cut-off, for example cutting 
all momentum integrals at a scale A, we would have been obliged to introduce such a 
counter-term with a new constant. Such a term would have been a nuisance rather than 
a catastrophe. We could always recover the usual theory by imposing a renormalisation 
condition implying the vanishing of the renormalised value of the photon mass. However, 
for all intermediate calculations, we would have to keep the corresponding counter-term. 

The tensor structure of the divergence in (16.56) implies that we need a counter-
term for the photon kinetic energy part of the QED Lagrangian. In the same spirit as in 
(16.66), we write 

Ai' (x) = 42  4?(x) = (1 — ± I 
37 E 

+ 0 (a2  )) AR(x) 

Similarly, we compute the electron self-energy diagram and obtain 

, ddk yi,(P— A+ m)Y P'  F(0,2) (p) = —e2p, f (27)d k2[(p — k)2  — m2] 
is 1 21a 1 
--15 m+ ..., 

27 E Jr E 

(16.57) 

(16.58) 

where we have suppressed spinor indices and, again, the dots stand for finite terms. We 
now introduce two new counter-terms, one for the electron kinetic energy and another 
for its mass: 

a 1 
Ifr (x) = 4/2*R(x) = (1 — ,Tr.  + 0(a2)) *R(x) 

2a 1 
m = Z„,mR = (1 — — — + 0(a2)) MR. 

Jr E 

(16.59) 

(16.60) 

It is easy to check that replacing the iii (0— in)* part of the Lagrangian density with 
Z2*R(1.P-  Zm MR)1IfR, produces precisely the counter-term required to cancel the two 
divergent contributions of the electron self-energy. 
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The vertex diagram of Fig. 16.7 gives 

= _e3 /13E/2 f  ddk (15 — A+ m)yi, (p_ A+ m)  y V 

(2 d k2 [(p k)2 m2] [(p,  k)2 m2] 

is 1 
Tr e)//2  

(16.61) 

The complete computation of the finite terms is rather lengthy and will not be presen-
ted here. However, some parts of this diagram have important physical interpretation 
and are shown in Problem 16.4. For the renormalisation programme only the diver-
gent part is needed. Since the tree approximation vertex is just —ieyA, it follows that the 
complete vertex, including the 1-loop correction, is given by 

I' (1,2) • 
P') — + = (1 — + 

E 
(16.62) 

where the dots stand again for finite contributions. In order to cancel this divergence we 
introduce a coupling constant renormalisation e = ZeeR  with Ze  = 1 + 0(a). Putting all 
counter-terms together, the interaction Lagrangian becomes 

e-tif *AP' = —ZeZ2412 RY,u*RAIIIR• (16.63) 

It follows that the condition which determines the charge renormalisation constant 
Ze  is 

ZeZ2Z3  = Zi. (16.64) 

By comparing (16.62) and (16.59), we see that at least at this order, Zi = Z2; there-
fore, the entire charge renormalisation is determined by the photon self-energy diagram. 
In the next section we will show that this property is valid for all orders of perturbation 
theory and is a consequence of gauge invariance. 

The last diagram of Fig. 16.7 represents the scattering of light by light. By power 
counting, it is logarithmically divergent, so, in order to compute the coefficient of the 1/6 
part, it is sufficient to set all external momenta qi  = 0 and keep the highest power of the 
loop momentum in the numerator. We thus obtain 

F (4,0) d  k Tr(y,AyvIZYpIZY,A)  
ptvpa (q15 '725 '735 q4) = + (27)d (k2 m2)4 (16.65) 

where the dots stand for permutations in the indices and finite terms. We leave the expli-
cit calculation as an exercise (see Problem 16.4), but it will not come as a surprise to the 
reader the result that p(4'0)  is, in fact, convergent. The residue of the 1/E pole vanishes. 
The reason is the same which guaranteed the absence of the quadratically divergent 
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part of the photon self-energy diagram. Indeed, were p(4'0)  divergent, we would have to 
introduce a counter-term in the Lagrangian of quantum electrodynamics proportional to 
(A112402  which is forbidden by gauge invariance. Therefore, in a regularisation scheme 
such as dimensional regularisation, this diagram must be convergent. The explicit calcu-
lation shows that FIL(4,01 (qi, q2, q3, q4) satisfies the same transversality condition we found 
for F (2'13)  (q), namely q F (413) , q2, q3, 2 (qi, q4) = qv FA(4  '°)a  (qi, q2, q3  , q4) = ... = 0. ktv 't 1 Avpa  

We conclude that the 1-loop renormalisation properties of quantum electrodynamics 
resemble those of 04. All divergences can be absorbed in four counter-terms: the elec-
tron wave function and mass counter-terms, the photon wave function counter-term, 
and the vertex counter-term. Furthermore, we found a relation among the electron wave 
function and the vertex counter-terms, so that the entire electric charge renormalisa-
tion is due to the photon wave function counter-term. This property results from the 
gauge invariance of the theory and has an important physical consequence: if we con-
sider two charged fields and we assume that they both have the same unrenormalised 
electric charge, this property guarantees that the renormalised values of the charge will 
remain the same, irrespectively of whichever other interactions these fields may have. On 
the other hand, a very well established empirical fact is that all particles in nature have 
electric charges which are integer multiplets of an elementary charge. Strictly speaking, 
the gauge invariance of quantum electrodynamics does not explain this fact because it 
does not prevent us from using different unrenormalised charges. However, it does solve 
part of the problem because it guarantees their equality after renormalisation if, for some 
reason, the unrenormalised ones are chosen equal. We will develop this point further in 
a later chapter. 

As we did for the X04  theory, we note that all arbitrariness concerning the finite parts 
of the counter-terms can be determined by imposing four renormalisation conditions. 
One of them can be used to determine the physical mass of the electron and a second 
the value of the coupling constant, i.e. the electric charge. In contrast to 04, there exists 
a 'physical' value of a, the one which corresponds to the classically measured electric 
charge. It is the condition in which the electron is on its mass shell and the photon 
carries zero momentum. We shall have a closer look at the renormalisation of quantum 
electrodynamics soon, so we will not elaborate on these points here. 

16.5.2 Some 2-Loop Examples 

Let us have a quick look at 2 loops. Some examples are presented in Fig. 16.11. They 
include genuinely 2-loop diagrams, but also ones we generate by inserting the new ver-
tices we introduced at the previous order to the old 1-loop diagrams. For example, the 
diagram of Fig. 16.11 (c) is, by power counting, logarithmically divergent. However, a 
closer look reveals that the divergence is quadratic but it is entirely due to the insertion 
of the 1-loop subdiagram. If we add to it the diagram of Fig 16.11(d) with the counter-
term (16.47), which is on the same order in X R, the divergence disappears. In fact, if 
the counter-term is just the 1/E part we computed in (16.47), the entire contribution 
vanishes. This gives us an example of a superficially divergent diagram which is not 
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(a) 

(c) 

Figure 16.11 Examples of 2-loop divergent diagrams in the 
04  theory. 

primitively divergent and requires no new counter-term. We see, in this example, the 
importance of treating sub-diagrams first. 

The other diagrams bring new terms proportional to 1/E and 1/E2. For most of them 
the extension of the renormalisation programme presented previously is obvious. The 
new terms can again be absorbed in a redefinition of the constants Zm  and Z,, which 
acquire new terms proportional to X2R. The only qualitatively new feature comes from 
the diagram of Fig. 16.9. The explicit calculation of the divergent contributions is left as 
an exercise (see Problem 16.6). It is instructive because it offers a non-trivial example 
of a multi-loop diagram. It yields divergent contributions which are constant, are inde-
pendent of the external momentum p, and can be absorbed in Zm, and a new one, which, 
as we noted previously, contributes an 1/E divergent term proportional to ip2C4 with 
C a numerical constant. Such a term cannot be absorbed in a redefinition of either Zm  
or ZA  and requires a new renormalisation of the 2-point function. In the same spirit we 
change now the coefficient of the kinetic energy term in the Lagrangian. It is convenient 
to define a renormalised field by 

c
2

2  
0(x) = 4/24)R(x) = (1 + — 

E 
 + 0(4)) OR(x), 

which introduces a kinetic energy counter-term of the form 

1 
6rk e = CXRaitOR(X)POR(X)• 

(16.66) 

(16.67) 

This counter-term is often called wave function renormalisation. The presence of Z4, 
requires a new renormalisation condition in addition to those of (16.53) and (16.54). 
It can be expressed as a condition on the first derivative of the 2-point function with 
respect to p2, 



a  F2 (p2) 

apt IP2  =M2  = —i, (16.68) 

Renormalisation 443 

where, again, M2  is some conveniently chosen value of p2. Note that the values of M 
appearing in (16.54) and (16.68) need not be the same. 

16.5.3 All Orders 

The philosophy remains the same at higher loops but, as the number of diagrams in-
creases very fast, the correct bookkeeping becomes essential. At each order we can 
distinguish diagrams which diverge because of insertions of divergent subdiagrams, in 
which case they require no special treatment, from those which are primitively divergent 
and introduce a new counter-term. One of the complications comes from diagrams, like 
that of Fig. 16.12, which can be viewed as containing divergent subdiagrams in more 
than one way. Making sure that all these overlapping divergences are included with the 
correct combinatoric weight requires some care. 

An important ingredient is the concept of a forest, first introduced by W. Zimmer-
mann. If gi and g2  are two subdiagrams of a given diagram G, we will say that gi and 
g2  are disjoint if their intersection is empty and non-overlapping if they are either disjoint, 
or if one is a sub-diagram of the other. A forest U of G is a set of non-overlapping 1-PI 
subdiagrams of G, including the extreme cases of the empty one and G itself. 

For a diagram g, which has no divergent sub-diagrams, we introduce the operation 
FP(g,), for finite part as follows: if g, is convergent, FP(gi) = If it is divergent, write 
g, using the dimensional regularisation formula (16.37). Compute the Laurent series in 
E and drop the terms which are singular for E —> 0. This operation is straightforward 
if gi has no divergent sub-diagrams. Note that the so computed FP(gi ) is precisely the 
result of including the necessary counter-terms to remove the divergent pieces of g1. For 
a diagram G whose all divergent sub-diagrams are non-overlapping the generalisation 
is obvious: FP(G) is obtained by starting from the innermost divergent sub-diagram 
and working outwards. Zimmermann's forest formula generalises this procedure for a 
diagram G which has overlapping divergent sub-diagrams. It reads 

FP(G) = E flFP(g). (16.69) 
U gE U 

The sum runs over all forests and the product over all sub-diagrams in each forest. 
Zimmermann proved this formula using his subtraction scheme which yields the finite 

Figure 16.12 A 2-loop diagram of quantum 
electrodynamics with overlapping divergences. 
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part of a diagram by expanding the integrand in powers of the external momenta and 
dropping as many terms as necessary to make the integral convergent. It is easy to adjust 
the proof for the finite part obtained using the dimensional regularisation scheme. 

We will not present here the complete proof to all orders of perturbation. It can be 
found in a rigorous way in several specialised references.2  We give only the result: all 
divergences, at any finite order of perturbation, for the 04  quantum field theory can be 
absorbed by introducing counter-terms in the original Lagrangian. There are three such 
terms, Z„„ ZA., and 4, which are determined as formal power series in the coupling 
constant. All ambiguities in their determination are fixed by three renormalisation con-
ditions of the form (16.53), (16.54), and (16.68). Once these conditions are imposed, 
all Green functions, at any order of perturbation, are finite and calculable. Among the 
various choices for these renormalisation conditions there is one which we will call phys-
ical. It consists of choosing the value of the physical mass as the pole of the propagator 
in (16.53) and the same value M = mR  for the wave function renormalisation condi-
tion (16.68). It is clear that it is this choice that yields the S-matrix elements through 
the reduction formula we presented in Chapter 12. There is no corresponding 'physical' 
choice for Z,, because the coupling constant is not a directly measurable quantity in 04  
quantum field theory. We often use the value of the on-shell elastic scattering amplitude 
at threshold, i.e. = m2R, i = 1, .., 4, and s = (pi  + p2)2  = 4m212' but there is nothing 
wrong with using any other point to define (16.54). 

It must be clear by now how to apply this programme to any quantum field theory. 
At every order of perturbation we will need a counter-term for every new divergence, 
one which is not simply due to a divergent sub-diagram. Using the classification we 
introduced in section 16.3, we see that we have three distinct cases. 

For a super-renormalisable theory, this programme terminates at some finite order of 
perturbation. All divergent contributions to the counter-terms are explicitly known. In 
a four-dimensional space—time the only such theory is Ø.  For a renormalisable theory, 
such as 04  or QED, we have a finite number of counter-terms, but each one is given by an 
infinite series in the coupling constant. Finally, for a non-renormalisable theory, we must 
introduce new counter-terms at every order. Eventually, every Green function will be 
primitively divergent. Since for every counter-term we need a renormalisation condition 
to determine the corresponding arbitrary constant, these theories have no predictive 
power. 

This last point may sound like a technicality, something related to our inability to 
handle ill-defined expressions. We want to argue here that this is not the case; non-
renormalisable theories cannot provide for a fundamental theory and the appearance of 
divergences growing without limit is a sign of a deep lying difficulty. In Problem 16.6 we 
consider a famous example, the Fermi current x current theory. Following K. Wilson, 
we argue that all field theories, whether renormalisable or not, should be viewed as ef-
fective theories describing physics up to a given scale. No theory can claim accuracy 

2  See, for example, John H. Lowenstein, lElPHZ Renormalization', 1975 Erice Conference in Mathematical 
Physics, NYU-TR11-75; 0. Piguet and S. P. Sorella, 'Algebraic Renormalization', Lecture Notes in Physics, 
Monographs (Springer, 1995). 
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to all scales, since we cannot possibly know the physics at arbitrarily high energies. In 
this view, a cut-off A denotes the scale up to which the theory can be trusted. For a 
typical non-renormalisable theory, such as the Fermi theory, see Problem 16.6, the ef-
fective coupling constant is not G/J, the one that appears in the Lagrangian, but the 
dimensionless quantity GA2. Since experimentally G/J = 10-5  GeV-2, it follows that 
for perturbation theory to make sense, A must be smaller than O(102)GeV. In fact, as 
we show in Problem 16.7, this estimate can be considerably lowered. Precision measure-
ments can bring it down to OW GeV . It was this argument that forced theorists to look 
beyond Fermi theory and led to the construction of the standard model, which we will 
study in a later chapter. This argument can be generalised. In Problem 16.7 we study 
a theorem, known as `decoupling theorem'. For a field theory to make physical sense 
particles with arbitrarily high masses should decouple and have no effect in low-energy 
dynamics. However, as we show in Problem 16.7, this is only true for renormalisable 
theories. It is this lack of the decoupling property that makes non-renormalisable theor-
ies unacceptable, since any prediction depends crucially on necessarily unknown physics 
at unaccessible energies. 

A final point concerning renormalisable theories. Let us consider the example of the 
Yukawa interaction between a spin-1 field *(x) and a scalar 0(x) given by Ey ^' ik ik 0 . 
It is a renormalisable theory and we can determine, order by order, the necessary coun-
terterms. At 1 loop we find that the four-0 diagram of Fig. 16.13 is divergent and 
requires a counter-term of the form SG — 04, although such a term was not present 
in the Lagrangian we started from. This term will not spoil the renormalisability of 
the theory, since 04  is also a renormalisable theory; it only shows that the Yukawa 
and 04  theories should be renormalised together, as we could have guessed by power 
counting. 

This example allows us to introduce the notion of stability, sometimes also called com-
pleteness. A renormalisable Lagrangian field theory will be called stable if it contains all 
monomials in the fields and their derivatives that are needed for the consistent imple-
mentation of the renormalisation programme to all orders of perturbation. It is obvious 
that a non-renormalisable theory is never stable. The stability requirement is of funda-
mental importance, as it tells us how many parameters are left free by the renormalisation 
procedure. This, in turn, tells us how many renormalisation conditions we must im-
pose in order to uniquely determine these parameters, and thus obtain a well-defined 
theory. 

• • 
• 

• 
• 
• 

• 
• 

• • • Figure 16.13 A 1-loop primitively divergent diagram with four external • •• • • boson lines in the Yukawa theory. 
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16.5.4 An 'Almost' Renormalisable Theory 

We just saw that power counting classifies all polynomial quantum field theories as 
super-renormalisable, renormalisable, and non-renormalisable. We also explained that 
the latter have no predictive power. Here we want to present an example which, in a 
certain sense, contradicts this statement. 

In section 14.3 we discussed briefly a model of quantum electrodynamics with a 
massive photon. We wrote the Lagrangian density as 

El = 1 — avA,)2  + —
2 

M2A,A1' + (0— m)* + eifr (16.70) 

Following the discussion of section 14.3 we note that the vector field is coupled to 
a conserved current and the condition .9,AA = 0 is a consequence of the equations of 
motion. The propagator is given by Eq. (14.25) (with M2  replacing m2) and the theory 
is non-renormalisable by power counting. Explicit computations confirm this prediction. 
For example, computing either of the two diagrams of Fig. 16.14 which represent the 
1-loop contribution to the four-fermion correlation function, we find quadratically di-
vergent results. However, if we put the two calculations together (see Problem 16.9), we 
find a surprise. The divergent contributions of the two diagrams cancel if the external 
fermion lines are on the mass-shell. It turns out that this miraculous cancellation persists 
for all Green functions and to all orders. If we compute S-matrix elements, the theory 
behaves as a renormalisable theory, although all off-shell Green functions are hopelessly 
divergent. In other words, the conclusion that such a theory is useless for physics is er-
roneous, although, technically, all steps of the argument are correct. The reason is that 
we do not necessarily need the full Green functions for arbitrary values of the external 
momenta in order to compute physical quantities. We want to explain this result, which 
was first obtained by E. C. G. Sttickelberg, because it is an excellent introduction to the 
gauge model which describes the electromagnetic and weak interactions. 

When computing S-matrix elements, external fermion lines of momentum p satisfy 
(P— m)u = 0 and external boson lines with momentum k and polarisation E satisfy k2  = 
M2  and k,EA = 0. Let us split the boson propagator into gp,v1(k2 — M2) and kiikv 1142 (k2 — 

M2). We want to argue that the last term does not contribute. The splitting is done, 
formally, by considering the Lagrangian 

Figure 16.14 The divergent contributions of the two diagrams cancel when the 
fermions are on the mass shell. 
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£2 = —1(0„Av  )2  + 1m2AAAI,  + 1(a,4)2  — 1A42952  + CO— m)* 
+eiji yi,*(AA + kaitc. (16.71) 

Comparing L and E2  we note the following. First, E2  contains two new degrees of 
freedom, namely the scalar field 0, which has a derivative coupling to the fermion cur-
rent, and the scalar component of AA. Indeed the equation at,All = 0 does not follow any 
more from the equations of motion. Furthermore, as we explained in section 14.3, this 
new degree of freedom corresponds to a negative metric state. Second, the A, propag-
ator is now just proportional to g (k2  —M2). Third, although Li  and E2  describe totally 
different field theories, if we restrict ourselves to diagrams with only external * lines 
and/or external A-lines satisfying kite = 0, they give identical results. This is true for 
every diagram, at any order of regularised but unrenormalised perturbation theory. The 
kid?, part of the vector propagator is reproduced by the internal 0-lines. Of course, E2  is 
still a non-renormalisable theory although all propagators are well behaved. The trouble 
now arises from the derivative coupling of the 0-field with the fermions. 

Let us now consider a field transformation of the form 

*/ = exp [—i
I
LO] *. (16.72) 

Replacing * by */ in E2  we obtain the Lagrangian 

£3  = (a,Av)2  + Im2A,LAA + 1(a,0)2  — 04202  
+.1/i'(ip— m) */ + etfr' yok' (16.73) 

The 0-field has decoupled and is now a harmless free field. E3  is still quantised in 
a space containing unphysical negative norm states, but it is renormalisable by power 
counting. Since the transformation (16.72) is of the form, perturbatively, *' = + 0 (e), 
the formal asymptotic theory we developed in Chapter 12 tells us that the S-matrices 
of L2  and E3  are identical. In particular, even if computed with E2, would turn out 
to be a free field. But, as we said previously, the S-matrix of E2, suitably restricted, is 
that of Li. We conclude that the latter can be computed using a renormalisable theory, 
namely E3. 

Let us summarise and state the result in a more precise way. We started with the 
Lagrangian Li which correctly describes the physical degrees of freedom. It is quantised 
in a space with only physical states but it is non-renormalisable by power counting and 
cannot be used to define a field theory order by order in perturbation. For this reason 
we turned to E3, which is quantised in a larger Hilbert space containing that of Li, but 
also unphysical, negative norm states. It is renormalisable by power counting and we can 
compute, order by order, an S-matrix. It is pseudo-unitary in the indefinite metric large 
space. The formal argument shows that this S-matrix admits a restriction in the subspace 
of physical states which is unitary. It is this restriction which defines the S-matrix of the 
original theory. 
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16.5.5 Composite Operators 

Before closing this section we want to go one step further. Up to now we have been con-
cerned with Green functions consisting of vacuum expectation values of time-ordered 
products of any number of fields. It is for such quantities that the Feynman rules and the 
renormalisation programme were set up. However, in perturbation theory we can con-
struct local operators as functions of the elementary fields.3  It will be useful to extend 
the programme to cover Green functions of such objects. We will do it here for operat-
ors which are monomials in the fields and their derivatives. Examples of such operators 
for the scalar theory (16.40) are 02  (X) = (X) • (x), 04  (X), (X) El (x), etc. For quantum 
electrodynamics a particularly interesting operator is the current j„ (x) = (x) yµ  (x). 
We will be interested in Green functions of the form 

g(Y1.5..V2, •••,Yn; X1.5 X2, XM) 

=< 01 T(01 (Y1)°2 (Y2)•••°11(342)01 (X1)02(X2)-0M(XM))10 >, 

(16.74) 

where Oa  denotes any composite operator of the type we are discussing and 44 any 
of the elementary fields of the theory. We assume that the fields Ob interact through a 
Lagrangian density G and we know how to compute and renormalise any Green function 
involving only products of fields. A formal way to obtain the Feynman rules for G is to 
change G by adding new terms 

—> G +Eja(x)0 a(x), (16.75) 

with ja (x) denoting classical, c-number external sources chosen such that the new term 
in (16.75) respects all symmetries of E. The derivatives of the corresponding generating 
functional with respect to ja(ya) taken at Ja  = 0 are precisely the Green functions we are 
interested in, 

zub12, .••5.7ki 

I 1 1b=l V ['bI ei 
f d4  x(r+Eli,=1  11,(X)Ob (X)+Eak=  a (X)0 a  (x)) (16.76) 

 

I 11=1 D [4' f d4 x  

g(yi,y2, •••5.Yn; xi, x2, • XM) 

3n+MZ 

8,71 (Y1 ) —81116)0811 (X1 (XM) 

(16.77) 

where / is the number of elementary fields of the theory and k that of the independent 
composite operators we want to consider. Since all the Oa's are monomials in the fields 
and to their derivatives, they can be viewed as new vertices, thus providing the Feynman 

3  In a later chapter we will introduce a particular form of a non-local operator but, for the general case, 
there is no renormalisation theory describing them. 
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rules for the calculation of G at any order in an expansion in powers of the coupling 
constants of E. We emphasise this point: the perturbation series is always determined by 
the expansion in powers of the original coupling constants. The new vertices generated 
by the composite operators will be taken only at fixed finite order. This is the reason we 
do not restrict them to those corresponding to renormalisable theories. It follows that 
the calculation of G in a regularised version of the theory is straightforward. We expect, 
however, new problems to appear when we attempt to take the limit E —> 0. Indeed, these 
operators are formal products of fields taken at the same space—time point and such 
products are, in general, singular. Therefore, we expect to require new renormalisation 
counter-terms in order to render the Green functions (16.74) finite. We will study here 
the renormalisation properties of Green functions involving a single composite operator 
and a string of fields. The general case is not essentially different. 

Let us start with the simplest example, that of the operator 4)2 (x) in a theory with 44 
interaction. The new vertex is shown on the left of Fig. 16.15. At 1 loop the only 1-PI 
divergent Green function is the one with two fields < 01T(4)2  (y)(/) (x 1 ) (x2))10 > shown 
on the right of Fig. 16.15. (Strictly speaking, there is also the vacuum Green function 
< 014)210 > which is also primitively divergent, but we will rarely need to consider it. A 
simple rule is to fix all such counter-terms by requiring the vacuum expectation value of 
any such composite operator to vanish.) The analytic expression for the diagram of Fig. 
16.15 is in fact the same with the one we computed for the 4-point function of Fig. 16.8. 
The divergence will be removed by a counter-term Z4,2 given by 

AR 
1 , (16.78) Z

(P
2 = 1 + 

167 E.  2 ' 

which multiplies the g2 2  term in (16.75). 
More complicated operators can be treated following the same lines. The required 

counter-terms are obtained by power counting and the general property of renormal-
isation applies, namely they are given by monomials in the fields and their derivatives. 
For example, let us look at 4)(x)E14)(x). The divergent 1-loop diagrams are shown in Fig. 
16.16 and contribute to the Green functions 

< 01T(4)(y)111 0 (5))0 (x1)0 (x2))10 > and < 01T(4)(Y)111 0 (5))0 (xi )•••0 (x4))10 > 

The first is quadratically divergent and the second one logarithmically. We leave the 
complete calculation as a problem but we see immediately a new feature. We cannot 

Figure 16.15 The vertex for the insertion of the 
operator 02  (left) and the 1-loop divergent diagram 
(right). 
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Figure 16.16 The primitively divergent 1-loop diagrams 
for the insertions of the operator 000. 

renormalise the Green functions of the operator (x)1114) (x) without simultaneously 
looking at those of 02(x) and 04 (x). We will call a set of composite operators complete 
under renormalisation if all Green functions with one operator from the set and a string 
of fields can be renormalised without the need to introduce operators outside the set. 
A complete set is called irreducible if it cannot be split into two disjoint complete sets. 
We saw already that 02(x) by itself forms a complete and irreducible set and so do the 
three operators 02  (x), (x), and 0(x)1114 (x). In Problem 16.10 we establish, by power 
counting, the rule to find such sets for any renormalisable field theory. Given an oper-
ator Oa  with dimensions da, the corresponding complete and irreducible set contains all 
operators with the same quantum numbers and dimensions smaller than or equal to da. 
If Oa, a = 1, 2, ..., k, form such a set, a simple way to organise the counter-terms is as a 
matrix Zab with a, b = 1, 2, ..., k. The finite parts of these matrix-valued renormalisation 
counter-terms can be determined by appropriately chosen renormalisation conditions 
(see Problem 16.10). There is no difficulty in extending the programme to the general 
case of Green functions with several composite operators. 

16.6 The Renormalisation Group 

16.6.1 General Discussion 

In the previous section we presented the renormalisation programme. We saw that for 
every renormalisable field theory, there exists a well-defined prescription which makes 
it possible, order by order in perturbation theory, to obtain finite expressions for all the 
Green functions. They are formal power series in the expansion parameter, for example 
the number of closed loops, and each term depends on the external momenta, the para-
meters such as the masses and coupling constants, but also the particular renormalisation 
scheme we have adopted. In this section we want to study this dependence more closely.4  

In order to be specific, let us choose the 04  theory we studied earlier, (16.40). A 
general renormalisation scheme is defined through three conditions, two for the 2-point 
function, such as (16.53) and (16.68) we used in the previous section, and one for the 
4-point function. For the sake of generality, we may not introduce the physical mass and 
use instead three conditions of the form, 

4  The concept of the renormalisation group was introduced formally in quantum field theory by E. C. 
G. Stueckelberg and A. Petermann, Hely. Phys. Acta 26, 499 (1953). The first application to the asymptotic 
behaviour of Green functions is due to M. Gell-Mann and F E. Low, Phys. Rev. 95, 1300 (1954). 
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r  (2) ip2 m2 i(n(
R
A4) )2 (16.79) 

ar2 (p2)  

ape IP2 =m2 (16.80) 

r (4)  (P15 • • 5 P4) I sym. point M = 1AR(A4), (16.81) 

where by `sym. point M' we mean the point in momentum space in which we consider 
all momenta pi  (i = 1, 2, 3, 4) entering the graph with Eip, = 0, 1) = M2, and (pi  + p)2  = 
4M2 /3  for all pairs i # j. M is an arbitrary mass parameter which is assumed to lie in 
the analyticity domains of both r (2)  and r(4) . Note that the parameter m(RA4)  in (16.79) 
is not the position of the pole of the propagator and is not equal to the physical mass.5  
At lowest order the latter is given by (;12/1 ) 2 = M2 + (m(

R
M)) 2 .  

Note also that for the physical choice M = mR, the two conditions (16.79) and 
(16.80) imply that F(2)  (p2) has the form 

r (2) (p2) = i(p2 (m)2)[1  + (p2 (4)2) (2) (p2)]
, (16.82) 

with f (2) (p2) a function of p2  such that the product (p2 (mP

R

h )2) f (2) (p2‘ ) vanishes at 
p2 = ( R)  2 

' 

As we saw in the previous section, these three renormalisation conditions uniquely 
determine, order by order in perturbation theory, the three counterterms Zi„ Z,n, 
and ZA. The renormalisability of the theory then guarantees that all Green functions 
F(2"), for all n, are finite and calculable as formal power series. They are of the form 
r(2n) R(  ) A4) where the external momenta p, are subject to the condi- tionkr • • P2n; mR( M), M  

= 0. The two parameters, the mass and the coupling constant, have a direct 
physical meaning and are related to measurable quantities. By varying them we map one 
physical theory to another. In contrast, the subtraction point M was introduced only 
in order to remove the ambiguities in the finite parts of the divergent diagrams. If we 
change from one point M1  to another M2 we will obtain a different set of Green func-
tions, but we expect them to describe the same physical theory. In this section we want 
to prove this property. In other words, we want to prove that the renormalisation pro-
gramme provides us with a family of Green functions F(2")  labelled by the point M, but 
physical quantities are independent of M. 

Let us consider the transformation 

M1 —> M2 = PM1, (16.83) 

with p being a numerical coefficient which can take any value in a domain including the 
value p = 1 and such that all resulting points M2 belong to the domain of analyticity 
of F(2)  and F(4)  and yield well-defined sets of Green functions. The question we want 
to answer is under which conditions all these different sets describe one and the same 
physical theory. 

5  We could have chosen mr = 0. This would only add an irrelevant constant to the 2-point function. 
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To illustrate the point, let us look first at the 4-point function and ignore, for the 
moment, the other two conditions. For the two choices M1  and M2  the renormalisation 
condition (16.81) gives 

r. (4) ,;), (Mt) . r  (4) (M2) 
1 I sym. point M1  — R 2  I sym. point M2  = 2— R  (16.84) 

where the subscripts 1 and 2 denote the Green functions obtained using the points M1  
and M2, respectively. It is clear that if the coupling constants AR(A41)  and Xi?(m2)  are totally 
unrelated the two sets of Green functions will be unrelated as well. Indeed, in the scheme 
based on M1  the value of the 4-point function at the symmetric point M2  is well defined 
and calculable as a formal power series in powers of AR(A41) . For the two sets to describe 
the same theory, F1(4)  and F(4)  must take the same value when computed at the same 
point; therefore, the A's must satisfy 

iX (RA42)  = F(4)  I sym. point M2  = (RM1)  i C2  P. (RMI 2  + C3 (A (RMI  ) 3  + • • • • (16.85) 

The C's are finite and calculable and depend on m(:), M1, and M2. It is important 
to note that the first coefficient C1  equals 1, because, at lowest order, the two schemes 
must be identical. 

It is now clear how to describe the general case for any Green function and taking into 
account all renormalisation conditions. The transformation M1  —> M2  implies different 
choices for the three counterterms 4, Zrn, and Zx. The two sets of Green functions 
will be physically equivalent if we can find three functions Zi,(mR(A41)  , XR(M1  M1, M2), 
m(m2)  (m(m1)  , R(m1)  , M1, M2), and AR(A42)  (mR(A4' ), XR(A41), M1,  M2) satisfying R R 

(m(Rmi), x(Rmi), mi  , m2) =1 + o(x(Rmi)) 

MZ + (m(
R
M2))2 (mRM1), X(

R

M1)
,M1,M2) 

=A412 (m(R1))2 0(x(
R
A41))  

X (Rit42)  (m(RA41),X (RA41)  5M15 M2) =X (RA41) ()((::Rit41))2) 

and such that 

M1 —> M2 

F(210 ...,p2n;mn), A(RA41 ); M1) 

(16.86) 

(16.87) 

= n( (M1) A (1141)
, 
 Mb  M2) r

2 
(2n) / (M2) (M ) R R  

V.1.5 •••5 P2n; MR AR 1V12)• 

In other words, the change M1  —> M2  should be absorbed in a change of the values of 
the mass, the coupling constant and the normalisation of the field. 

The transformations (16.87) form a group, called the renormalisation group. It de-
scribes the change in the Green functions induced by a change of the subtraction point. 
It is instructive to write also the corresponding infinitesimal transformations with p of 
Eq. (16.83) close to 1. For that we take the derivative of both sides of (16.87) with 
respect to M2  and set M1  = M2  = M: 
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a a a 
[m— + 13— + Ymm nylr(2n) m (pi, •..,p2n; m, M) = 0, 

ax 
(16.88) 

where we have dropped the subscripts R and the reference to the subtraction point. The 
functions p, ym, and y are defined as 

m ax(1142) 
POL., = M

01142I-- 2
-
- 

IM M M 

m m am(2) 
Ym(X5 

M
) =  

m aM2 IM1=M2=M 

m ainzo  
Y (X, —) = M im =Ai =m• 

am2 1 2  

(16.89) 

These functions are dimensionless and they can only depend on the ratio m/M. By 
applying the general equation (16.88) for n = 1 and 2 and using the renormalisation 
conditions (16.79), (16.80), and (16.81), we can express them as combinations of Green 
functions, or derivatives of Green functions, thus proving that they have a well-defined 
expansion in powers of the coupling constant. We obtain 

m a a F(2)  
Y (X, = i[m am ape  11P2=M2 

m 1 i a F(2)  
Ym(X, —) = Y + M  

M 2 2m2  am I P2=m2  
m aro)  

P(a, M
) = 2X y + iM

aM 
Isym. point M• 

(16.90) 

At lowest order p and y vanish because there is no dependence on M at that order. 
This is not true for ym, but this is only due to our peculiar renormalisation condition 
(16.79) which shifts the value of the mass by M2  even in the tree approximation. 

It is clear how to generalise this analysis to renormalisable theories with several fields 
cP, with masses mi, i = 1, ..., N, and several coupling constants Xi, j = 1, k. We will 
need N y and ym  functions and k p functions. In general, they will all depend on the 
k coupling constants. We can also extend the analysis to describe the subtraction point 
dependence of Green functions involving one composite operator. Since, as we saw, 
the renormalisation programme may introduce mixing among different operators, the 
corresponding y functions will be matrix-valued functions of the coupling constants. 

16.6.2 The Renormalisation Group in Dimensional 
Regularisation 

Equations (16.90) allow for the explicit calculation of the functions p, y, and ym  to any 
given order in perturbation theory. However, as we have said already, they do not provide 
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for the most convenient way to perform such calculations. We want to re-express them 
using the full power of the method of dimensional regularisation. 

Let us assume that we compute all Green functions in d dimensions and extract the 
four-dimensional finite part by dropping the 11€ terms. As we explained in section 16.5, 
the Green functions depend now on a parameter ,u, with the dimensions of a mass, 
which plays the same role as the subtraction point in more conventional schemes. As 
we showed in the previous section, a change in µ induces a change in the three counter-
terms. Therefore, we can immediately write the renormalisation group equation (16.88), 
with it replacing M. It is, however, instructive to re-derive the equation following the 
steps of section (16.5). We start again from the bare Lagrangian 

1 1 2 2 1 4  
E = 

2 
— aucPB (x) PcPB(x)— 2  mBOB (X)

4!
ABOB (X), (16.91) 

where the subscript B stands for 'bare'. Green functions computed with (16.91) depend 
on the cut-off parameter E and they diverge when E -> 0 if the bare parameters are kept 
fixed. The renormalisability of the theory guarantees that we can introduce renormalisa- 
tion counterterms Z,n, and ZA, as shown in section (16.5), functions of the cut-off, 
such that 

(2n) ,(2n) 
I R kYl ,  • •5 P2n; XR, MR, 1,1,) = I B ••,P2n; AB, MB, 6) + ••• (16.92) 

where the dots stand for terms which vanish when E -> 0. As shown in section 16.5, Eqs. 
(16.45), (16.52), and (16.66), the connection between the bare and the renormalised 
quantities is given by 

=Z42  (X/R, 6)45R (X) 

m2B  =Zni  0,R, OMR (16.93) 

AB =ILE  ZA (AR, €)Xio 

where we have introduced explicitly the factor ttE to make the coupling constant di-
mensionless, as we explained in the previous section. The important point is that in the 
minimal subtraction scheme, in which the Z's are determined only by the residues of the 
11€ poles, they cannot depend on either m or p, 

The renormalisation group equation is obtained by taking the derivative of both sides 
of (16.92) with respect to 1.1, keeping the bare quantities and E fixed, 

with 

a 
[it —

a 
+ —

a 
— ny + Ymm —

a m
i r(2n) (P1, ••,P2n, M, it) = 0 

ap, 
(16.94) 

a 
P(x,€)= It — a 

a 
gABA',E) = -

a it x13,,  
In ZA  

AB,E 

 



Y (X, E) = —
a

In Zo 
AB ,E 

1 a 
yn, (X, E) = — In Z7n. 

2 ap, A.B,E 
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(16.95) 

Three points should be noted here. First, these functions appear to depend on both X 
and E. However, the renormalisation group equation (16.94) shows that they can be ex-
pressed in terms of the renormalised Green functions. Therefore, they have well-defined 
limits when E -> 0. Second, the functions defined in (16.95) are not identical with those 
introduced previously in (16.90) because the latter depend on m/M. We will argue in 
a subsequent section that, nevertheless, they both contain all the physically interesting 
information. Third and most important, these functions can be computed very easily. 
Indeed, in order to compute the functions of (16.90) we need to compute the entire 2-
and 4-point functions, including the finite parts. In contrast, for those of (16.95), only 
the pole terms in the Z's are needed. Let us consider, as an example, the p function. The 
first of Eqs. (16.95) can be rewritten as 

a 
[13 + EA + px—, = 0. 

OX
v 

 

ZA  has an expansion in powers of 6-1, 

4)00  zx  =E 
i=0 

(16.96) 

(16.97) 

with Zr)  (X) = 1. The residues 4) (X) for i > 1 are formal power series in X starting at 
Xi. On the other hand, /3(X, E), which is regular at E = 0, admits an expansion in positive 
powers of E: 

00 

(,5 6) = Ep(owE. 
i=c, 

(16.98) 

Since Eq. (16.96) is an identity in E we can compute the coefficients p(o (X) by match-
ing the powers of E. We see immediately that /3(1) (X) = —X and all p(o's with i > 2 vanish. 
From now on, we will write p (A, E) = /3(X) — EX, dropping the index 0. Substituting in 
(16.96) we obtain the recursive relation 

(i+1) 
A2 azA. (A) a(Azx  (A)) 

- .) • OX 
(16.99) 

This is a very important relation. First, it makes it possible to compute /3(X) order by 
order in perturbation theory. Writing (16.99) for i = 0 we obtain 
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2 
 841) (x) 

(A) - A • ax 
(16.100) 

In other words, p (A) is entirely determined by the residues of the simple poles of ZA . 
Since 41)  starts with a term proportional to X (see Eq. (16.52)), it follows that p (A) 
starts as A2. Comparing with (16.52), we find that 

p = bo x 2  + b0.3  + ...; bo  = 
16

3  2 (16.101) 

A second important consequence of the recursive relation (16.99) is that although in 
the nth order of perturbation theory we encounter singularities up to E-n, only the simple 
poles are really new. The residues of the poles of higher order are uniquely determined 
by the lower order ones. At this point this is a technical property of the structure of the 
perturbation series and can be traced to the forest formula (16.69). In a later section we 
will use it to obtain physically interesting results concerning the asymptotic behaviour of 
Green functions for large values of the external momenta. 

16.6.3 Dependence of the 13 and y Functions on the 
Renormalization Scheme 

The way we obtained the renormalisation group functions shows that, in general, they 
depend on the particular renormalisation scheme we used to compute them. Since we in-
tend to use them in order to extract physical results, we want to study the extend of such 
scheme dependence. We will prove that the first non-vanishing term in the perturbation 
expansion is universal. 

Let us start with a theory with only one coupling constant. In one renormalisation 
scheme we have the function p (A) with an expansion 

/3(X) = boX2  + b1 A3  + .... (16.102) 

By changing the renormalisation scheme we obtain a new coupling constant )c' and a 
new a-function /3' (X'). The two are related by 

X' = F(X) = X +.f1 x2  + 0(A3) 
a , aF 

13' = ttw,),  = zx). 

(16.103) 

(16.104) 

Note the crucial fact that the first term in the expansion of F(X) in (16.103) is A. It is 
this property that makes F a new acceptable coupling constant. 

We expand now both sides of (16.104) and find that 

) = (1 + 2f1X + 0(X 2))(boA2  + b1X 3  + 0(A4)) 

= bo X 2  + (bi + 2fibo)X 3  + O(X4) = boX'2  + X/3  + 0(A'4), 
(16.105) 
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where we have used the inverse relation implied by (16.103), namely X = X' —fi X/2  + 
0(X'3). We have thus established the universality of bo and b1 . The generalisation to 
several coupling constants is straightforward. The result is that the first non-vanishing 
term is always scheme independent. Note that the same proof shows that the first 
non-vanishing term in the expansion of the anomalous dimension of the field y (X) is 
also scheme independent. At the end of the chapter we propose a problem in which 
we ask the reader to prove that there exists a renormalisation scheme in which the 
p function of the 44  theory is exactly given, to all orders of perturbation theory, 
by its first two non-vanishing terms. All higher order corrections can be chosen to 
vanish. 

16.7 Problems 

Problem 16.1 The power counting in various field theories. 

1. Repeat the power-counting computation and prove that the four-dimensional 
field theories mentioned in section 16.3 are indeed renormalisable. 

2. Prove that in a two-dimensional space—time all field theories involving 
only scalar fields with non-derivative polynomial interactions are super-
renormalisab le. 

3. Are there any renormalisable theories in a six-dimensional space—time? 

Problem 16.2 A simple way to regularise the ultraviolet behaviour of a quantum 
field theory is to introduce higher derivative terms in the quadratic part of 
the Lagrangian density. Consider the example of a single scalar field 0 with r 
given by 

1 1 
G= 2caticottc-2m202  + —2 (04')0(ait0) (16.106) 

with a constant with dimensions [nr2]. 
Show that the propagator behaves like 1?-4  at large momenta, but this has been 

achieved at the price of introducing degrees of freedom with negative energy. 
Hint: Show that the propagator in this theory is equivalent to that of a theory with two 

scalar fields 01  and 02  given by a Lagrangian density: 

1 1 1 1 
E = 2(0A01)(0A01)--2 n'il(Pi — —2 (0A02)(0A02) - 2mi0i. (16.107) 

Express the parameters of (16.106) in terms of those of (16.107) and study the limit 
2 M2 -> 00. 
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This shows that introducing auxiliary fields, in this case the 02  field, with negat-
ive kinetic energy, or, equivalently, quantised in a space with negative norm, results 
into a regularisation of the theory. 

Problem 16.3 The Pauli—Villars regularisation method. In 1949 Wolfgang Pauli 
and Felix Villars generalised the previous method and adapted it to quantum 
electrodynamics. 

Consider the QED Lagrangian density, for example, in the Feynman gauge: 

=
2 
 (a,A) (8µAv) + (i4 — m)ilf — Ai I (16.108) 

Introduce a set of ny  auxiliary photon fields and nf auxiliary fermion fields and 
generalise (16.108) to 

EPV = EZ0 [(0,Av(o)(PAP0))+1A4 AvcoAv(0 ] 

+ E;f 0 [1fros) (0—  nOlfro.)] — en'oE;1=f  o Ai* (i), (16.109) 

where A(0)  and 0•03)  are the usual photon and electron fields with masses Mo = 0 
and mo = m, respectively. The cij's are numerical coefficients with coo = 1. Every 
QED Feynman diagram will generate, under (16.109), a whole series of diagrams 
with identical structure in which every photon line is replaced by each one of the 
photon auxiliary fields and every fermion loop by the corresponding loop of the fer-
mion auxiliary fields. It is also obvious that gauge invariance is preserved because a 
local change of phase of any fermion field can be compensated by the correspond-
ing change of the photon field, with all massive photon auxiliary fields remaining 
unchanged. It is also clear that at the limit Mi  —> oo and m1  —> oo, i = 1, ny  and 
j = 1, ..., nf, we recover the original theory (16.108). Show that if the parameters in 
(16.109) satisfy the relations 

ny nf nf 

E 4 = 0; Vi E = E = 0, 
i=o j=o j=o 

(16.110) 

all Green's functions are finite. Note, however, that this gauge invariant regularisa-
tion has been achieved at the price of sacrificing the hermiticity of the Lagrangian 
because all c coefficients cannot be chosen real. Pauli and Villars chose to introduce 
imaginary couplings for the auxiliary fields, rather than negative signs in the kin-
etic energy. The practical result at the level of the Feynman diagrams is the same. 
Find the minimum number of auxiliary fields necessary to satisfy the conditions 
(16.110) 
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Problem 16.4 The anomalous magnetic moment of the electron. We saw in 
Chapter 7 that one of the triumphs of the Dirac theory has been the accurate 
prediction of the electron gyromagnetic ratio g = 2. One of the first triumphs of 
quantum electrodynamics was the computation of the radiative corrections to this 
value. Compute these corrections at the 1-loop order. 

Hint: Compute the finite part of the vertex diagram of Fig. 16.7 and isolate the term 
proportional to qp, = (p — p') 

Problem 16.5 Compute the 1-loop contribution to the light-by-light scattering 
amplitude (Fig. 16.7) and show that it is finite and satisfies the requirements of 
gauge invariance. 

Problem 16.6 Compute the 11€ part of the 2-loop diagram of Fig. 16.9 and isolate 
the term proportional to p2. 

Problem 16.7 The effective coupling constant in the Fermi theory of the weak in-
teractions. Already in 1934, Enrico Fermi proposed a simple model to describe the 
amplitude of neutron a-decay. This model proved to be very general encompassing 
the entire field of low-energy weak interactions. It describes the point interaction 
among four fermion fields with an interaction Lagrangian density of the form 

GF 
E = (frint(1  +Y5)/2) (/f3yA(1 +Y5)/4) + h.c., (16.111) 

where fit, i = 1, ..., 4, denote four fermion fields (in a-decay they are the fields 
of the neutron, the proton, the electron, and the neutrino) and GF is a coupling 
constant with dimension [m-2]. h.c. stands for 'Hermitian conjugate'. We will have 
a closer look at this Lagrangian in a later chapter. 

1. Show that the Fermi theory is non-renormalisable. 

2. Show that a Green function in the nth order of perturbation expansion has a 
leading divergence proportional to (GA2)" with A a cut-off with the dimen-
sions of a mass. We want to interpret the cut-off as the scale up to which the 
model can be trusted. 

3. The unrenormalised perturbation theory will break down when the n + 1 
order becomes equal to the n order. Using the experimental value of the 
Fermi coupling constant GF/V2 =z-- 10-5m-2  with mp  the proton mass mp  -'z=1 
GeV, derive a first estimation of A. 

4. As Joffe and Shabalin have pointed out, precision measurements can improve 
this bound considerably. The weak interactions are known to violate many 
quantum numbers, such as parity and strangeness, which are conserved by 
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strong interactions. Experimentally, we know that such violations in hadronic 
or nuclear physics are suppressed by at least eight orders of magnitude. Using 
this information, show that the limit on A can be reduced to a few GeV. 

Problem 16.8 Consider a model with two neutral scalar fields, 4(x) and ch (x), 
whose interaction is described by the Lagrangian density 

= —1  (a (1))(0P4)) + 1(0  )(0°0)— 1  m 202_ _1  m2o2_ Lo4 — 2g0202.  
2 2 14  2 2 4! 4! 4! 

(16.112) 

We consider the limit M —> oo keeping m and the interaction energy finite. Show 
that in this limit all effects of the 0 field in the dynamics of 4  can be absorbed in 
the renormalisation conditions of the effective Lagrangian obtained from (16.112) 
by putting = 0 

1 1 A1 4 
Leff = 000)0°0) —2 m

22 
— —4! • (16.113) 

This is an example of 'the decoupling theorem'. It states that if we have a renormalisable 
field theory and we take the limit in which some degrees of freedom become infinitely 
massive, the resulting theory is described by an effective field theory obtained by setting all 
heavy fields equal to 0, provided the resulting theory is also renormalisable. 

Problem 16.9 Compute the divergent contributions for the two diagrams of Fig. 
16.14 and show that they cancel when the external fermion lines are on the mass-
shell. 

Problem 16.10 Renormalisation of composite operators. In this problem we want 
to establish the renormalisation properties of the Green functions we considered in 
section 16.5.5. 

1. In a quantum field theory of a single scalar field with interaction term 
proportional to 04, consider the set of operators 

01 = 02; 02 = 04; 03 = 004). (16.114) 

Compute the matrix Z ab, a, b = 1, 2, 3 of the counterterms necessary to 
renormalise all Green functions consisting of one operator Oa  and a string 
of fields 4  at 1-loop. Establish a set of renormalisation conditions in order to 
determine this matrix completely. 
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2. Using a power-counting argument show the completeness property an-
nounced in section 16.5.5. Given an operator 0a  with dimensions da, the 
corresponding complete and irreducible set contains all operators with the 
same quantum numbers and dimensions smaller than or equal to da. 

Problem 16.11 Compute the first non-vanishing term in the expansion of the p-
function for the standard renormalisable field theories, i.e. 44, Yukawa, spinor 
electrodynamics, scalar electrodynamics, and Yang—Mills theories. 

Problem 16.12 Consider our usual X04  theory. At a given renormalisation scheme 
the perturbation expansion of the t3-function can be written as 

= boA2  + b0.3  + b2 A4  + b3 X 5  + . (16.115) 

Prove that we can construct a renormalisation scheme which makes the coeffi-
cient b2=0. By induction, prove that the scheme can be adapted order by order in 
perturbation theory in order to make all coefficients bi  with i > 2 equal to 0. 



17 

A First Glance at Renormalisation 
and Symmetry 

17.1 Introduction 

The results of the renormalisation programme can be summarised as follows. Given a 
classical Lagrangian density which is polynomial in a set of fields and their first deriv-
atives and corresponds, by power counting, to a renormalisable theory, there exists a 
well-defined prescription to obtain a unique finite expression for every Green function 
at any order of perturbation theory. By Green function we mean the vacuum expecta-
tion value of the time-ordered product of any number of fields, as well as local operators 
which are functions of them. In this section we want to address a further question. We 
have often seen the crucial role played by symmetries in classical field theories. Does this 
role survive the procedure of quantisation and renormalisation? In other words, under 
which conditions can we find the consequences of the symmetries of the classical Lag-
rangian in the renormalised Green functions? We have already anticipated the answer to 
this question in a number of cases. For example, when we were studying the renormal-
isation properties of the 04  theory we argued that all renormalised Green functions with 
an odd number of fields vanish because of the discrete symmetry (/) —> —(/). However, 
this symmetry is imposed at the level of the classical Lagrangian and, strictly speaking, 
we must prove that its consequences remain valid after renormalisation. For this ex-
ample, the proof is obvious since there are no Feynman diagrams with an odd number 
of external lines. A less trivial example is that of Poincare invariance. We have always 
worked with Lorentz invariant Lagrangians and we assumed that after renormalisation, 
the resulting Green functions still have the correct transformation properties. This is less 
obvious, because, although the Feynman rules manifestly respect Lorentz invariance, 
we still must prove that it is not spoiled by regularisation and renormalisation. A simple 
proof consists of noting that there exist many regularisation schemes which explicitly re-
spect Lorentz invariance. Therefore, the invariance will be valid at any intermediate step 
of the calculation and for all values of the regulator parameter. In particular, it will be 
valid separately for the divergent and the finite parts of any diagram and, consequently, 
for the renormalised expressions. Note however, that the proof would have been more 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
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complicated had we used a Lorentz non-invariant regulator, such as a space-time lattice. 
Even in this case we can prove that Lorentz invariance can still be recovered after renor-
malisation when the lattice spacing goes to 0 although it is broken at every intermediate 
step, but we will not present the proof here. 

In this chapter we want to study the general properties of symmetries in renormalised 
quantum field theory and, in particular, the non-trivial case of continuous symmetries. 

17.2 Global Symmetries 

Let us start by the simple example of internal global symmetries.' They were first in-
troduced by W. Heisenberg in 1932 when he postulated an approximate invariance of 
nuclear forces under the internal symmetry SU(2), which we call today isospin symmetry. 
With the discovery of the 7-mesons it gave rise to the pion-nucleon interaction, the first 
field-theory model for strong interactions. The two nucleons, p and n, are assumed to 
form a doublet of SU(2) and the pions in the three charge states 71-  , 7r-, and n-°  a triplet. 
Since the pions are pseudoscalar, the most general renormalisable Lagrangian invariant 
under isospin transformations is given by 

= WY (x)(iP - m)111 (x) + la ps (x) • 7r (x) - 1/227r (x) • 7r (x) 

(x)y5 r tk (x) • n (x) -• (x) • n (x))2  . (17.1) 

It describes all pion-nucleon scattering amplitudes for all charge states in terms of a 
single coupling constant g. It follows that the SU(2) symmetry implies relations among 
Green functions such as 7 + p p, n —> n, n —> 7r°  + p, etc. It is 
relations of that kind that we want to investigate and see whether they may remain valid 
after renormalisation. 

Let us study the general case of a Lagrangian density r, which is a polynomial in a 
set of fields 01 (x) and their first derivatives 0,01 (x), i = 1, m. G is supposed to be 
invariant under a group of transformations G under which the fields ci)i (x) transform 
linearly 

801 (x) = Ea  (L):1 4,1  (x), (17.2) 

where a runs from 1 to N, the dimension of the Lie algebra of G, e" are N, con-
stant, infinitesimal parameters, one for every generator, and the T's are N numerical 
matrices which characterise the representation, not necessarily irreducible, in which the 
fields belong. Since the e's are x-independent, the derivatives of the fields transform the 
same way: 

••• 0,„01 (x) = akt1.••0,..801 (x) = Ea  (Ta)lj a,,...a,„(y (x). (17.3) 

1  In this section we follow the presentation by S. Coleman, `Renormalization and Symmetry: A Review for 
Non-specialists', Erice Lectures 1971, reprinted in S. Coleman, Aspects of Symmetry (Cambridge University 
Press, Cambridge, 1985). 
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We have already shown that the invariance of the Lagrangian under (17.2) implies 
the existence of N conserved currents g(x). They are operators of dimension equal 
to 3 and are constructed as second-degree polynomials in the unrenormalised, classical 
fields and their first derivatives. The corresponding charges Q" are the generators of the 
infinitesimal transformations (17.2), 

= fd3 xj (x); [6" Q., Oi  (x)] = i60i  (x); [Q« Qs] = ifoy Qy, (17.4) 

where foy  are the structure constants of the Lie algebra of g. 
Since all composite operators 0, we consider in this chapter are monomials in the 

fields and their derivatives, we can obtain, at the classical level, similar commutation 
relations between them and the Q's. 

It is straightforward to transform, always at the classical level, these commutation 
relations into relations among Green functions. We can follow the general method we 
used in Chapter 14, but, for global symmetries, a simpler, formal way is to start from 
the expression. 

G (k xi, ..., xn) = f d4ye-ikY < OIT (17,(Y)(1)(xi) • • .0 (xn))10 >, (17.5) 

where we have suppressed the Lorentz and internal symmetry indices of the fields. We 
now compute the divergence le Gat, and obtain 

lea  G7, =i f d4y(e e-lkY) < OIT (77,(y)0 (x 1 ) (xn))10 > 

= — i f d4ye-lkY < 017-0017,(y)(/) (x 1 ) .. .(/) (xn))10 > (17.6) 

j E f co. ye-thy O(y0 _ oc?) < OIT (0(xi)•••Uoa  (Y)3 (Vx1)]...(1)(xn))10  >. 
1=1 

We have used partial integration and the sum of terms containing the equal time 
commutators in the last line are obtained when the alay derivative hits the 6-functions 
of the time-ordered product. We can simplify this expression, first by using current 
conservation pg(y) = 0 and, second, by going to the k = 0 frame: 

n 
koGo =i e-ik°4 < 01T(5(xi)...[Qa,o(x1)]...(a(xn))10 > 

i=1 
n 

(17.7) 

= — o i  T(0(x1)...8-0(  
i=i 

).-0(xn))10  >. 

Since, by the assumption (17.2), 3"0.(x,) is a linear combination of the element-
ary fields (/) (x), (17.7) expresses the divergence of the Green function G0" as a linear 
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combination of Green functions of the elementary fields. Relations of this form are 
called Ward—Takahashi identities and they were first derived for quantum electrodynam-
ics. They encode all the information coming from the symmetry of the Lagrangian at the 
level of the Green functions and, from there, at all measurable quantities. If the current 
is not exactly conserved the corresponding term in (17.6) does not vanish but it is given 
by the variation of the Lagrangian density under the symmetry transformation: 

12°  Goa e-ik°4 < o i  T(0(xi)•••[T, o(xi)]••.(aocro)10 > 

= — CikM < OIT (sb(x1)•••8a  0(xi)•••0(xn))10 > (17.8) 

i= 1 

— i f d4ye-ikY < 01 T(S.C(y)0(x1)-0(xn))10  >. 

As a first application we can consider the identities (17.7) and (17.8) at the limit 
k° 0. If we assume that our theory does not contain any massless field with the same 
quantum numbers as 4," or pip,- , then it is easy to see that the left-hand side vanishes. 
Indeed, in perturbation theory, pole singularities in the external momenta arise only 
from the propagators of massless particles. Therefore, (17.7) shows that a sum of Green 
functions of the elementary fields of the Lagrangian vanishes, as a consequence of the 
invariance of G under g. In Problem 17.1 we show that for the case of (17.1), these 
identities imply, in particular, the same mass for protons and neutrons, as well as for 
charged and neutral pions and a single value for all pion—nucleon coupling constants. At 
finite k, (17.7) gives a relation between the Green functions of the symmetry currents 
and those of the elementary fields of the theory. 

All these conclusions are valid at the classical level and the question we want to address 
is what happens to the quantum theory. Can we obtain a set of renormalised Green 
functions still satisfying the relation (17.7)? For the case of global symmetries the answer 
is yes and the simplest way to prove it is to exhibit a regulator which is compatible with 
any global symmetry. We want to emphasise, however, that the existence of such an 
invariant regulator is a sufficient condition for the symmetries to be preserved at the 
quantum level but it is not at all necessary. The symmetry could be recovered when the 
regulator is removed, but, in this case, we must give a proof that this is possible. 

The simplest, conceptually, regulator which respects all global symmetries is the one 
we presented in Problem 16.2. It is based on the relation (17.3), which implies that terms 
with higher derivatives in the kinetic energy of the fields are still invariant under g. Since 
adding such terms can render all Feynman diagrams convergent for all values of the 
regulator parameter, the Ward identities can be maintained.2  

This analysis has an important, although very simple, consequence for the 
renormalisation programme of a quantum field theory. In Chapter 16 we introduced 

2  To be precise, we must note that such a regulator is acceptable only when applied to massive fields; 
otherwise, some diagrams may become infrared divergent. 
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the concept of stability, or completeness. The results of this Chapter can be used to 
sharpen this concept. A Lagrangian field theory contains a certain number of paramet-
ers, masses, and coupling constants. At the classical level these parameters are arbitrary 
and we can impose any set of relations among them. A symmetry can be viewed as a 
particular set of such relations. An arbitrary relation which reduces the number of para-
meters in a field theory will not, in general, give a stable Lagrangian; the renormalisation 
programme will not respect the relation. What we have shown here is that relations which 
increase the global symmetries of a theory give stable Lagrangians. In fact, they are the 
only relations which are compatible with the requirement of stability, with the exception 
of the trivial case of a relation which yields a free-field theory. The example of the pion—
nucleon interaction (17.1) will illustrate this point better. Let us consider some special 
relations. 

Setting X = 0 does not increase the symmetry of the Lagrangian. The four-pion 
interaction term will appear as a counter-term at higher orders. The same is true with 
relations such as X = g, or, more general, f (X, g) = 0. The trivial exception is the relation 
g = 0 for which the fermions become free. Looking at the mass terms we note that µ = 0 
is not a stable relation. A theory with massless pions is not more symmetric than that with 
massive ones. In contrast, m = 0 is stable. The kinetic energy term of massless fermions 
has a larger symmetry because it is invariant under chiral transformations. This can be 
easily seen by separating the right and left components of the fermion field V/ = 1kR 

and noting that the kinetic energy splits into IP.  ip = ift•RiP*R  *Li, *L. Therefore, we 
can perform independent phase transformations of the right and left components. The 
mass term breaks half of this symmetry because it mixes *R andlfrt: = 01+ i/fLikR. 
So does the Yukawa term, but a discrete subgroup remains because we can absorb a 
change of sign of the fermionic part with a corresponding change of the pion field. We 
can verify these properties by explicit 1-loop calculations.3  

The formalism we set up to study the symmetry properties of a field theory allows 
us to go one step further and examine theories with broken symmetries. Let us consider 
again a Lagrangian density G invariant under a group of global transformations G and 
add to it a symmetry breaking term which we assume, as usual, to be a polynomial in the 
fields and their first derivatives of degree no higher than 4: 

E = Einv + Ebr• (17.9) 

Lbr  is assumed to be invariant only under a subgroup go  of g. Obviously, this state-
ment is meaningless unless we specify the symmetry breaking term. We can do so by 
performing first the renormalisation of Einv  and consider rbr  as insertion of a compos-
ite operator. We saw in Chapter 16 how Green functions are renormalised in this case: 
renormalisation forces us to include all terms with dimensions less than or equal to Lb. 

and compatible with the symmetries which are still left unbroken, in this case go. This 
allows us to distinguish between soft and hard breaking terms. We will call soft breaking 

3  The relation µ = m = 0 looks like a stable relation because the Lagrangian is left with no dimensionful 
parameter and becomes, classically, invariant under scale transformations. We will show, however, shortly that 
scale invariance is always broken by quantum corrections. 
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\ Figure 17.1 The 1-loop diagram for the insertion of the operator 
jµ (x) 

a term whose dimension is less than or equal to 3 and hard breaking one with dimension 
equal to 4. The origin of the terminology is clear: adding a soft breaking term with di-
mension d < 3 will force us to break G to Go for all terms with dimensions less than or 
equal to d, but we can still use all interaction terms with dimension equal to 4 invariant 
under the full group G. On the other hand, a hard breaking term with d = 4 will break 
G to Go  everywhere. In our example of the pion—nucleon interaction (17.1), introducing 
a mass splitting between the pions, which has d = 2, will not affect any other term, one 
between the nucleons, d = 3, will force us to split also the pions and any breaking in the 
interaction terms which have d = 4 will break the symmetry completely. The first two 
are soft breakings and the last is hard. 

Before closing this section, we want to point out a further, very important con-
sequence of the Ward—Takahashi identities (17.7). As we said earlier, the current 
operator g (x) is a monomial in the unrenormalised fields and, for scalar fields, their 
derivatives. For quantum electrodynamics it is our familiar Ili (x)yok (x). We emphasise 
here the fact that the fields I/i are the unrenormalised operators. Indeed, the commutation 
relations (17.4) which show that the charges are the generators of the symmetry trans-
formations of G are obtained using the canonical commutation relations. A priori, we 
would expect the Green functions of joa(x) (17.5) to be renormalised in two ways: first, 
by the Z factors that relate the unrenormalised to the renormalised fields and, second, by 
the counter-term which removes the divergence of the Green functions of the composite 
operator 

GiaL  (ko; xn) = Z2 • Go% (ki,; xi, xn), (17.10) 

where Z1  is the renormalisation factor for the composite operator jµ (x), Z2 is the square 
of the wave function renormalisation for the field 0' (x), and the dots stand for whichever 
other renormalisation counter-terms are needed for the rest of the Green function. For 
quantum electrodynamics at 1 loop, Z2 is determined by the electron 2-point function 
and is given in Eq. (16.59). 4 is determined by the diagram of Fig. 17.1. The important 
point is that these counter-terms spoil the Ward—Takahashi identity (17.7) because they 
multiply the left-hand side by Zj 1  Z2. However, we have just shown that renormalisation 
will never force us to violate any global internal symmetry. It follows that we can always 
choose 

Z./ = Z2. (17.11) 

This relation will be automatically satisfied if we use a regularisation scheme which 
respects the symmetry under G, but even if we do not, we will always be able to enforce 
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it. It follows that the Green functions of a symmetry current require no renormalisation. 
We could arrive at the same conclusion by noting that the commutation relations of the 
symmetry generators (17.4) are non-homogeneous and, therefore, they fix uniquely the 
absolute scale of the Q's. 

This is not a new result, it is the one we obtained in (16.64). Indeed it is easy to check 
diagrammatically that Z1  is equal to our old Z1  of the vertex function renormalisation of 
(16.62). Although quantum electrodynamics has a local U (1) symmetry, for the relation 
Zl  = Z2 only the global part is needed. 

17.3 Gauge Symmetries: Examples 

Gauge symmetries change the picture in two ways. First, for the non-Abelian case, the 
Ward identities are more complicated. As we showed in Chapter 14, the Lagrangian with 
which we actually derive the Feynman rules is not invariant under local transformations, 
because of the necessity to choose a particular gauge. The resulting Ward identities, 
which are called Slavnov—Taylor identities, are obtained using the BRST global sym-
metry under which the fields transform non-linearly. Second, the regularisation scheme 
of higher derivative kinetic terms is no more available because the relation (17.3) is 
no more true. Only the covariant derivatives of the fields transform like the fields them-
selves but they introduce new couplings and do not regularise all the Feynman diagrams. 
Dimensional regularisation offers a convenient alternative whenever applicable and, in-
deed, using this scheme we can prove in a straightforward way that we can enforce the 
Slavnov—Taylor identities for the renormalised Green functions at every order of per-
turbation theory. The next chapter will be entirely devoted to this question. Here we 
will only look at some specific cases. The results will serve as introduction to the general 
discussion in the following chapter. 

It follows from the previous discussion that the only cases where trouble may arise are 
the cases where dimensional regularisation cannot be used. As we pointed out in section 
16.4, this is the case of chiral transformations involving the matrix y5. It is this case that 
we want to investigate in this section. 

17.3.1 The Adler-Bell-Jackiw Anomaly 

Let us start with the simplest gauge theory, namely quantum electrodynamics. It has a 
conserved vector current j, (x): 

(x) = Ik(x)yiiik(x); tti it(x) = 0. (17.12) 

In the limit of vanishing electron mass it has a second current which is also conserved 
as a consequence of the classical equations of motion. It is the axial current: 

.itt5 (x) = (x)yity'lk (x); Pitt5 (x) = 0 (17.13) 
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The existence of the two conserved currents is a consequence of the invariance of the 
classical Lagrangian of massless electrodynamics under the group of chiral U(1) x U(1) 
transformations. When the electron mass is non-zero the axial symmetry is broken by 
the mass term, and the conservation equation (17.13) changes into 

ao (x) = 2ime* (x)y 51k (X) 2iMei5  (X). (17.14) 

It is the validity of Eq. (17.12) and (17.13), or (17.12) and (17.14), that we want to 
investigate order by order in perturbation theory. A naïve application of the method used 
in deriving Eq. (17.6) gives 

GA5  =i f cey(a e-ikY) < o (i,L5  (Y)0(xl)...(/J(xn))io > 

= — i f d4ye-lkY < 01TO/145  (Y)(k (xi )• • .0 (xn))10 > (17.15) 

jE f d4ye-iky 0 _ (y x°) < 01T((1)(x1)•••[1.O(V),0(xi)]...(1)(xn))10 >, 

where the fields 0(x) represent collectively the fields of electrons and/or photons. Let 
us choose, for simplicity, only photon fields, in which case the canonical commutation 
relations imply that all the equal time commutators on the right-hand side vanish. Taking 
the simplest non-trivial case with n=2 we rewrite (17.15) as 

G „i, =i f d4  y(01-̀  e-lkY) < OIT (I.  (y)Av(xl)Ap(x2))10 > 

= fd4yelky < 01T(0 A  j (Y))Av(xi)Ap(x2))10 > (17.16) 

=2me  f d4ye-ikY < 01 TO' (y)A» (xi (x2))10  >. 2meGv5p. 

Let us try to verify this relation order by order in perturbation theory. To lowest order 
the only diagrams are those of Fig. 17.2, together with those obtained by crossing the 
two external photon lines. By power counting, the diagrams are linearly divergent, so 
we assume that some suitable regulator has been introduced. The calculation of Go5,t, 
involves the following trace of y matrices and fermion propagators: 

1 
Yd• koG

o
5

vp Tr[
15 m  yp + 

42  _ m (41 + 42), 5
15 — m 

(17.17) 

We now write 11  + 42  = (15 + 42  — m) — — ¢l 1  + m) + 2m and use the fact that y5  
anticommutes with all four y matrices to get 
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YuYc 

Figure 17.2 The two lowest order diagrams contributing to the axial 
current Ward identity. 

kk"`G 05  vp
1 1 

Tr [ YpY 5 yv ] 
5  — m 15  — tli — m 

1 1 
+ Tr[  

1/-) — m YP  15  + 41 2 — mY 5 Yv 1  
1 1 5 1 

+ 2mTr[ Yp Y vY ]• 
15— m15  +42 — m 15-141 — m 

(17.18) 

The last term is the right-hand side of (17.16) we want to compute. We can rewrite the 
first two terms using the cyclic property of the trace and adding the two terms obtained 
from the crossed diagram (v H p and qi  H q2) as 

1 1 1 1 
Tr[ Yv Yv  p Y 5 ] 

15  — 41
y py ] Tr[  

1 —  m 15  — m
5

/5—m 15+4
Y 

1—m 
1 1 1 1 

Yp yv y 5] Tr[ Yp YvY 5  +Tr[ ]. 
15 — 412 — m 15  — m /5— m 15  +412 — m 

(17.19) 

Now, we remember that p is an integration variable. If the integrals were convergent, 
we would have been allowed to shift integration variables. Changing, for example, in 
the first term p' = p — qi will make the first two terms cancel. Similarly, the change 
p' = p — q2  makes the sum of the third and fourth terms vanish. In this case the Ward 
identity (17.16) is satisfied. 

The trouble is that shifting integration variables is not a legitimate operation for lin-
early divergent integrals. For example, if we use a cut-off A, the integral will behave like 
A. The shifted integral will give A + a constant. So, the difference will not give 0. 

The simplest way to proceed is indeed to introduce a cut-off. Dimensional regular-
isation does not respect the anti-commutation properties of y5  with all y matrices in 
d dimensions, but, following 't Hooft and Veltman, we can fix y5  in four dimensions as 
iyOy 1 y2 y 

3. As a result, y5  will anti-commute with the four-dimensional y matrices but it 
will commute with all the others in d-4 dimensions. In our diagram only the integration 
variable p lives in d dimensions, so we split it as 
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P = + (17.20) 

where pH  has components only in four dimensions and pi  only in the other d-4. The pre-
vious argument will apply only to pH ; therefore, we will obtain the identity (17.16) with 
an extra term proportional to 2y5151. The trace with the factor y5  requires the presence 
of four other four-dimensional y matrices. We have already the factors y„ and yp, and, 
in order to obtain a non-zero trace, we need one factor 41  and one 42. The symmetric 
integration forces us to keep another factor 151. The calculation is now straightforward, 
introducing Feynman parameters and replacing 151151  by p261d. The divergent integral 
gives a pole term of e-1  and, therefore, we obtain an extra finite term in (17.16): 

e2 a fi 5 kJ' GA  = 2me Gyp  + —272  EafivPq1q2' (17.21) 

This is an astonishing result. It is the first time we encounter a case in which the con-
sequences of the classical equations of motion and the canonical commutation relations 
are not valid in perturbation theory. It seems that the quantum theory does not respect 
the full U(1) x U(1) chiral symmetry of the classical Lagrangian. The second term in 
(17.21), which is responsible for such a violation, is called an anomaly. 

Several questions should be answered before assessing the importance of this result. 
First, although the above derivation is unambiguous, we would like to verify the res-
ult using a different method. Second, we want to know whether this breakdown of the 
classical symmetry depends on the particular matrix element we considered and how 
it changes in higher orders of perturbation. Third, we must study the possibility of ab-
sorbing the extra term in a redefinition of the axial current. Last, but not least, comes the 
question of the physical significance of the result. In this chapter we will answer the first 
three questions. The last one will be addressed later, when quantum field theory will be 
applied to describe the physics of fundamental interactions. 

17.3.2 A Path Integral Derivation 

It is easy to answer the first question. In Problem 17.2 we propose an independent calcu-
lation of the triangle diagram which assumes only the conservation of the vector current. 
The result is, of course, the same. Here we want to present a method which does not 
require the calculation of any Feynman diagram. It was introduced in 1979 by Kazuo 
Fujikawa and uses directly the path integral quantisation of gauge theories we studied 
in Chapter 14. In fact the method applies equally well to the Abelian gauge theory of 
quantum electrodynamics as well as to any non-Abelian Yang-Mills theory. 

Let us start with the path integral representation of the generating functional of the 
Green functions. We consider, as an example, a gauge theory based on a compact Lie 
group G with fermions belonging to an n-dimensional representation, 

f (14  xp(ir,  -m),fr+ TrF„„P"' +01 +ipp-A„?] f [D  ple  
Z[7/001 = (17.22) 

if d4xHip
2g2 

TrF
A f [D p]e  
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where, and are the classical sources for the quantum fields .1fr, 0', and AA  and 
DA is the measure of integration given by 

Dµ = 11[DAA(x)][D* (x)][D* (x)]. (17.23) 

In the gauge field part [DAA(x)] we include the Faddeev—Popov determinant, which, 
as usual, we assume to be independent of the fermion fields. 

Under a y5  transformation the fields transform as 

(x) —> el°  (x)Y5  1k (X); 11 (X) —> 1fr (X) e19 (x)Y5  . (17.24) 

The Lagrangian density in (17.22) transforms as 

—> — (x)* yA y5* — 2im9 (x)* y5* . (17.25) 

Using these transformation properties and, assuming the invariance of the measure 
(17.23), we derive, in the usual way, the classical Ward identities. The only step which 
is not obvious is, precisely, the invariance of the fermion part of the measure under 
(17.24). Let us examine it more closely. 

We expand the classical fermion fields in a complete set of eigenfunctions which we 
choose to be those of the operator ID  . In Euclidean space it is a Hermitian operator with 
real eigenvalues. We write 

n (x) = ni n (x);  f n  (X)1.  m  (X) d4  X = Sn,m (17.26) 

This expression is formal because in R4  the spectrum of eigenvalues is continuous. 
We can consider a finite box with some kind of boundary conditions, or a compactified 
version of R4, for example a stereographic projection of Euclidean four space onto a 
four-sphere S4. The fermion fields can be expanded in the basis of (I) n  (X) as 

(x)  = E anon (x);  i (x)  = E On bn, (17.27) 

where, as we explained in Chapter 11, the coefficients an  and k are independent 
elements of a Grassmann algebra. The integration measure (17.23) can be written as 

Dµ = 11 [DA (x)] fl dbn  11 dam. (17.28) 
n m 

Under the chiral transformation (17.24) the coefficient an  transforms as 

am  = E f exoni(x)i-eie(x)Y5on(x)an . E Cm,nan, (17.29) 
n n 



(A(x) = ii m E (1)n (X)t  y5e (Anim) 2  (I) n  (X) 
M—>oo 

= lim (E (I) n  (X) t y5  e-(D/M) 2  (I) n  (X)) . 
M—>oo 

n 

n (17.32) 
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and similarly for bn. In the transformation an  —> ain  the measure picks up a factor 
det[C]-1, where -1 appears because of the anti-commutation properties of the a's. Since 
we have the matrix elements of C, we can compute the determinant as the exponential 
of the trace of In C. For infinitesimal 9 we obtain 

[det C] -1  = e-i En  f d4xe(x)on  (x)t y5 On (x) = e-i f d4xe ocm(x)
3 (17.30) 

where 

A(x) = E (1)n(X)t  y50 n (X) . (17.31) 
n 

The classical chiral Ward identity (17.14) or (17.15) is obtained by noting that A(x) 
is formally proportional to the trace of y5  and, therefore, it vanishes. This implies the 
invariance of the measure of the functional integral. Of course, this argument is only 
formal because the expression (17.31) is, in fact, divergent. By considering the system in 
a finite volume we have regulated the infrared behaviour. We will need also an ultraviolet 
cut-off for the large eigenvalues. K. Fujikawa used a factor e-(An/A4)2 , which regulates 
eigenvalues such that X2n  >> M2: 

If, for simplicity, we assume that the gauge group is SU(N) and the fermions belong 
to the fundamental representation, we can write r4) 2  = D2 + 1 [,A, , V1Fk  v   with FAv = 
apA,,—a„A,L +[AA,Av ]. We can also choose plane wave solutions of the free Dirac operator 
as the basis for our expansion. When M —> oo the dominant contributions will come 
from the large momentum solutions and we can expand in powers of the gauge field. 
Since we have the factor y5, we will need a minimum of four y matrices in order to 
obtain a non-zero trace. Therefore, we obtain 

A(x) = lim Tr
d I k

y5e ikxe-(p/M)2 eikx 
M—* oo oo f (2n- )4  

2 1 1 f  d4k _k2 /M 2 
= lim Try5  ([y 1-`, yv]FA„) —

4M4 2 (27)4
e ' 

Moo 

— 1 

1672 
 - 

A  
= TrF v  (x) FA„  (x), 

(17.33) 

where PAv  = leAvno.FPa . The trace is taken in both Dirac and SU(N) indices, whenever 
applicable. 
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The non-vanishing of A(x) is the manifestation of the anomaly. Indeed, going back 
to the functional integral (17.22) and performing the y5  transformation (17.24) and 
(17.25), we obtain an extra term on the right-hand side of (17.25): 

1 
r —> r + 0(x) (a pii51  —2imi5  + —872 TrPo, (x)F") (17.34) 

in complete agreement with Eq. (17.21). The factor of 2 in front of the anomaly between 
Eq. (17.33) and (17.34) comes from the two factors Dili and DO' of the functional 
measure (17.23), and the absence of a factor proportional to the square of the gauge 
coupling constant is due to our normalisation of the gauge fields. This formula for the 
anomaly applies to the Abelian theory we examined before, in which case the extra term 
reproduces the triangle diagram in perturbation theory, as well as to non-Abelian Yang—
Mills theories. In this case the TrFo„(x)F"(x) term will produce a triangle diagram, 
but also a square and a pentagon. However, these are not new anomalies because gauge 
invariance fixes their coefficients uniquely in terms of that of the triangle. In a later 
chapter we shall study the precise form of the anomaly in some physically interesting 
Yang—Mills theories. Let us also note here that we can define a current G" (x) as 

G, = 2E,,,,„ Tr (Av  aPAa + —
2

AvAPA') . 
3 

(17.35) 

It is straightforward to verify that Go  is not gauge invariant but its divergence is 

a 0  Go  = TrP,,P" . (17.36) 

Before going further, let us look again at (17.31). Since 17 and y5  anticommute, 
if On  is an eigenfunction of 17 with eigenvalue Xn  # 0, y5On  is also an eigenfunction 
with eigenvalue —Xn. Since eigenfunctions corresponding to different eigenvalues are 
orthogonal, it follows that in the integral, only terms corresponding to zero eigenvalues 
survive. In the subspace of these zero modes we can choose a basis with eigenvectors 
common to both 1) and y5. Because 4 = 1, its eigenvalues are ±1. Let us denote the 
number of such eigenvalues by n±. If chiral symmetry is exact, n+  = n_ and the anomaly 
vanishes. Therefore, with the normalisation (17.26) and setting v = n+  — n_, we obtain 
an integrated form of the anomaly: 

1 
n+  — n_ = ii = 

32n-2 

f d
4  xTrPov (x)P"(x). (17.37) 

At first sight, given the relation (17.36), we would conclude that v = 0, since it is given 
by the integral over all space of the divergence of the current G. Indeed, in our calcu-
lations we often assumed that the classical fields vanish at infinity. However, for gauge 
fields this is not necessarily a reasonable assumption. Even if we want to assume that 
asymptotically we reach the vacuum state, this will only force the gauge fields to vanish 
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up to gauge transformations. We can find field configurations which give a non-vanishing 
integral in (17.37), although the fields at infinity are gauge equivalent to 0. But then we 
obtain another unexpected result. The left-hand side is necessarily an integer; therefore, 
the integral on the right must also be an integer. It turns out that this is guaranteed by 
a deep mathematical theorem. We have seen that Ft" has a very precise geometrical 
meaning; it is the curvature in the fibre bundle defined by the gauge theory. There exists 
a topological theorem, due to A. Pontryagin, which, in our notation, states precisely this 
property. The integral is a topological invariant of the theory and the integer v is called 
the Pontryagin index, or the winding number. We shall explain the origin of this name 
in a later chapter. Equation (17.37) relates a topological quantity related to the gauge 
theory with the chirality deficit, i.e. the difference between the number of positive and 
negative chirality zero modes of the Dirac operator. This relation, which we have derived 
heuristically here, has been proven rigorously in mathematics and it is called the Atiyah—
Singer index theorem. It is an amazing theorem because it relates seemingly independent 
properties of the manifold. The winding number is a topological quantity and, as such, 
it describes the global properties. The chirality deficit, on the other hand, is given by the 
zero eigenvalues of the Dirac operator, which is a first-order linear differential operator. 
Normally, we expect this quantity to reflect the local properties of the manifold. This 
relation between global and local properties shows the special role played in mathemat-
ics by the Dirac operator, which was introduced in physics, roughly as a square root of 
the four-dimensional Laplace operator, by the need to write a relativistic wave equation 
for the electron. Another beautiful example of the inter-relation between physics and 
mathematics. 

The second nice feature of (17.33) is that it generalises immediately to any space—
time with an even number of dimensions d = 2n because we can always write an epsilon 
symbol with 2n indices. This will determine the number of gauge tensors we will use. 
For example, in two dimensions the anomaly will be proportional to e,„F" . 

This calculation answers our first question, namely the independence of the anomaly 
on the particular way we computed the triangle diagram. In fact, K. Fujikawa has gone 
one step further and shown that, in his method, we obtain the same anomaly factor with 
any kind of smooth regularisation of the large eigenvalues. 

The second question concerns the degree of generality of the anomaly, regarding both 
its operator form and the value of its coefficient. There is a precise answer to this question 
in perturbation theory for Abelian and non-Abelian gauge theories, known as the Adler—
Bardeen theorem. It states that the axial anomaly is universal. The violation of the axial 
current conservation equation has the form we obtained here for all Green functions. 
Even more surprisingly, the numerical coefficient we found, by performing either the 
triangle diagram calculation or the semi-classical one of the fermionic measure, remains 
unchanged at every order in the perturbation expansion. It is one of the rare examples 
in quantum field theory in which a 1-loop effect remains unchanged at all orders. 

This theorem was proven by a careful analysis of the divergence structure of the 
diagrams that could contribute to the anomaly to all orders. We will not reproduce this 
proof here. We only note that by relating the anomaly to a topological invariant of the 
theory, the path integral derivation makes this result plausible. Indeed, the presence 
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of non-trivial renormalisations would make the anomaly a formal power series in the 
coupling constant and it does not seem possible to reconcile such a structure with the fact 
that the right-hand side of (17.37) must always remain an integer equal to the chirality 
deficit of the Dirac operator. We repeat, however, that in the form presented here, this is 
not a proof, only a plausibility argument. 

17.3.3 The Axial Anomaly and Renormalisation 

In this section we will answer our third question. We will prove that the anomaly cannot 
be absorbed by any gauge invariant redefinition of the axial current. Let us look again 
at Eq. (17.16) and (17.21). The first is the consequence of the classical Ward identity 
and the second the result we found by an explicit calculation of the triangle diagram. 
We want to prove that there is no acceptable subtraction of the triangle diagram which 
absorbs the anomaly. 

In order to be acceptable a subtraction term must satisfy the following requirements: 
(i) it must have the correct Lorentz transformation properties, i.e. it must be a three-
index axial tensor S,„,„ function of the two independent momenta qi and q2. (ii) It must 
be symmetric under the combined exchange (v 4--> p and qi 4--> q2), a consequence of 
Bose statistics for photons. (iii) As we have explained in the previous chapter, subtraction 
terms must be polynomials in the external momenta. By power counting we see that, for 
the triangle, this polynomial must be of maximum degree equal to 1. (iv) It must satisfy 
the requirements of vector current conservation: 

qvi  Si„p  (qi , q2) = q'S,„,,,p  (qi, q2) = 0. (17.38) 

It is easy to see that there is no tensor satisfying all these requirements. Condition 
(i) imposes the use of the totally antisymmetric tensor E g yp, . This leaves one index to 
be saturated with a linear combination of qi and q2. Bose statistics implies that this 
combination is (qi — q2)a  . But then the vector current conservation conditions (17.38) 
are not satisfied. 

This argument shows that the anomaly is not intrinsically linked to the axial current. 
It is rather due to the incompatibility between the conservation of the two currents, the 
vector and the axial. We can subtract the triangle diagram and enforce the axial current 
Ward identity, at the price of violating the corresponding one for the vector current. 
And this conclusion has nothing to do with the choice of any conceivable regularisation 
scheme. A widespread misunderstanding on this point has resulted in many erroneous 
claims in the literature which proposed 'miraculous' regulators aiming at renormalising 
the anomaly away. 

17.3.4 A Consistency Condition for Anomalies 

As we just noted, we have a certain freedom in defining what we will call 'anomaly'. 
Even in the Abelian case we can choose the current whose conservation will be violated. 
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J. Wess and B. Zumino have derived the consistency conditions that any anomaly choice 
should satisfy for the general case of non-Abelian Yang—Mills theories. 

Let us consider, for simplicity, a field theory with fermions belonging to the fun-
damental representation of some group SU(N). We can construct N2  vector currents 
and N2  axial vector ones. Since the anomaly is a 1-loop phenomenon, we do not need 
to worry about the gauge interactions. If we want to study the Ward identities for 
SU(N) x SU(N), it is enough to consider free fermions in external, classical vector and 
axial vector fields V and Aoi  , respectively, with i = 1, 2, ..., N2  — 1. The Ward identities 
can be derived by considering the variation of the generating functional of connected 
diagrams with respect to infinitesimal vector or axial gauge transformations. If v(x) and 
a(x) are the infinitesimal parameters, the variations are 

SV„ =v x V0 — 30v; SA„ = v x A„ 

M0  =a x V„ — Soa; 81/0  = a x A„, 
(17.39) 

where we have used a vector product notation for SU(N), i.e. (v x = Pkv,  
with Pk  the structure constants. For a complete list of all Ward identities, for example 
if we have massive fermions, we may have to introduce also external pseudoscalar, or 
even scalar, fields. The classical Ward identities will express the invariance of the gen-
erating functional under the transformations (17.39) while the anomaly will appear as 
a particular form of the variation. The important point is that the variations will satisfy 
the SU(N) x SU(N) algebra and they will be restricted by the Jacobi identity. Fol-
lowing the notation of Wess and Zumino, let us define the variations under the gauge 
transformations as differential operators of the form 

—X  =a
II  3V 
—+ V. x — +A x —+ 
, I.  SV„ SA, 

—Y =aµ
SV  

+A x—+V x—+ 
„ 

(17.40) 

where the dots refer to the other fields. They satisfy the commutation relations of the 
vector and axial charges: 

[Xi (X) X j =i;j1z6  (X 31) X k (X) 

[X (X) Y1  (Y)1 =40 (X —y) k (X) (17.41) 

[ 17  (x), YjC11)1 =fijk6  (x — X k (X) • 

We assume that we have renormalised the theory keeping the vector currents 
conserved. Therefore, the X-variations will be zero 

XiW = O. (17.42) 
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The anomaly will appear in the axial transformations: 

Yi  W Gi [V,„Apj. (17.43) 

We have assumed here that the anomaly Gi  will be a functional only of the ex-
ternal vector and axial vector fields and not of the other external fields we could have 
introduced. Combining (17.41), (17.42), and (17.43), we find that 

Xi(x)Gi(y) =fijka(x — y)Gk(x) 

Yi(x)Gi(y)—Yi(y)Gi(x)= 0. 
(17.44) 

The first one shows that the anomaly belongs to the adjoint representation. The 
second is the real consistency condition. Already for practical purposes, the knowledge 
of this condition is very important because it tells us precisely how much freedom we 
really have. For example, it has been used to check detailed computations. But, most im-
portantly, it offers the framework to go beyond the standard perturbation theory. Wess 
and Zumino asked the question of constructing an effective Lagrangian density, or, an 
effective generating functional, which would reproduce the 1-loop Ward identities, in-
cluding the anomaly, in the classical approximation. We know that this is impossible with 
an effective Lagrangian which is polynomial in the fields and their derivatives. This is the 
meaning of the impossibility of finding a subtraction term which is a polynomial in the 
external momenta. If we are willing to enlarge the scene and consider non-polynomial 
Lagrangians, the consistency condition (17.44) will constitute an important guide. We 
will come back to this point in the next chapter. 

17.4 The Breaking of Conformal Invariance 

At the beginning of this section we noted that we can always renormalise a quantum 
field theory in a way that respects the classical transformation properties of Green 
functions under the Poincare group. The argument was based on the fact that we can 
always choose a Poincare invariant regulator. Here we want to study other space—time 
symmetries for which we cannot find invariant regulators.4  

It is known from classical mechanics that there exist geometrical transformations, 
beyond those of rotations and translations, which leave the dynamics of some physical 
systems invariant. The example often given is the three-dimensional Laplace equation 
which is left invariant under space inversions x —> xl(x)2  . 5  They are discrete trans-
formations which leave the points on the surface of the unit sphere invariant and map 
the points in the interior outside and vice versa. The origin is mapped at infinity, which 

4  We follow the presentation given in S. Coleman, 'Dilatations', Erice Lectures 1971; Reprinted in S. 
Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1985). 

5  The terminology could be misleading because we have used the term "inversion" earlier to denote a parity 
transformation. 
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means that a completion of R3  with a cone at infinity is necessary. Another (continu-
ous) transformation is space dilatation, also called scale transformation, which multiplies 
all distances by a constant. It leaves invariant every system which has no intrinsic scale. 
Considering the four-dimensional Minkowski space, we can search for the smallest con-
nected group which contains the Poincare transformations and the inversions. It turns 
out that it is a fifteen-parameter group called the conformal group. In infinitesimal form it 
contains the ten Poincare generators, four generators of special conformal transforma-
tions obtained by combining translations and inversions, and one generator of dilatations. 
In this section we want to study the consequences of such transformations in quantum 
field theory. 

Let us consider our simple field theory model, that of a self-interacting real scalar 
field: 

G = 2a,o(x)a00(x)— 
2 
-1 m20 (X)

2 
- 

4 
-
A

! 
0(x)4. (17.45) 

A space dilatation, or scale transformation, acts on the coordinate x as a multiplication 
by a constant, 

x —> ex, (17.46) 

where a is a constant parameter. If we assume that the field 0 (x) transforms linearly 
under (17.46), we can write 

0 (x) —> ed0 (e x) (17.47) 

with d being some constant which we will call the scale dimension of the field 0. For 
infinitesimal transformations, (17.47) gives 

so(x) = (d + x p,0 0(x). (17.48) 

Is there a choice of d for which this transformation leaves invariant the Lagrangian 
(17.45)? Applying (17.48) to every term in (17.45) and performing an integration by 
parts, we find that the variations of the kinetic energy and the interaction terms are 
proportional to (d — 1), while that of the mass term is proportional to (d — 2). This is 
not surprising. We expect scale transformations to be symmetries in the absence of any 
dimensionful parameter because, in this case, there is no a priori scale. So if we assign 
d = 1 to our scalar field, scale invariance is broken only by the mass term. It will not 
appear as a surprise if we say that had we done the analysis with a Lagrangian involving 
fermion fields, the result would have been d = 1. Following Sidney Coleman, we want to 
stress, however, that despite appearances, this is not simple dimensional analysis! These 
are real scale transformations. The proof is that mass terms break the symmetry while 
nothing could conceivably violate dimensional analysis. The only result so far is that, 
classically, the scale dimensions of the various fields should be chosen equal to their 
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canonical dimensions in the sense of dimensional analysis for the theory to be invariant 
under dilatations, up to terms with dimensionful parameters. It is easy to check that for 
a renormalisable Lagrangian, the invariance covers the whole conformal group. 

The canonical Ward identities are obtained through Eq. (17.8) setting k°  = 0. We 
write them for the 1-PI Green functions in momentum space using the transformation 
properties of the field (17.48) and the fact that the dilatation symmetry breaking term is 
the mass term in (17.45), 

a 
(2n-1 

E Pi —  + 2n-4 
apt i=1 

r (2n)  (pi,p2,•••,p2n) + im2 2(2n) (
0, pi, P2, • • P2n) = 0, (17.49) 

where the last term, due to the symmetry breaking, is the 2n-point 1-PI Green function 
with an insertion of a 02  operator at zero momentum. We have put the scale dimen-
sion of the scalar field d equal to 1. We have also used the conservation of energy and 
momentum which gives a delta function S(4) (Ei2n1  pt).  

This is the classical Ward identity of broken scale invariance for the scalar field theory 
(17.45). Let us try to check it in perturbation theory. For example, let us take the 4-
point function, n = 2. For the massless theory the Ward identity becomes very simple: 
the 4-point function is independent of the external momenta! This is indeed correct 
in the tree approximation, where F(4)  is a constant, but it is obviously false at higher 
orders, as we have seen in the calculations of the previous sections. We can reach the 
same conclusion by looking at the full massive theory. The consequences of (17.49) are 
not satisfied in perturbation theory beyond the tree approximation. In our terminology, 
the Ward identities have anomalies. 

With the experience we have gained so far, we should not be very surprised by this 
result. It is obvious that any conceivable regularisation introduces, one way or another, 
a dimensionful parameter which breaks scale and conformal invariance. Although this 
does not prove that the classical Ward identities must be violated, it raises the suspicion 
that they may be. In this section we want to derive the correct Ward identities, those 
that are satisfied order by order in perturbation theory. They are known as the Callan-
Symanzik equations. 

Let us go back to our Lagrangian (17.45). The parameters which appear are the un-
renormalised ones. We know that Green functions calculated from (17.45) are divergent, 
but they can be defined if we introduce a suitable cut-off which we shall call A. In this 
case the unrenormalised Green functions will depend on 

r(2n) (PI,P2, •••P2n; m, A, A). (17.50) 

Since we are interested in the mass dependence, it is natural to compute the derivative 
of r (2n)  with respect to m. This is easy because F(2n)  is given by a sum of terms, each 
one being a multiple integral of a product of propagators (k2  - m2)-1. The derivative will 
be a sum of terms in each of which one propagator is replaced by its square. But this 
is, up to a multiplicative constant, just the unrenormalised Green function with a zero 
momentum 02  insertion: 



m2  r (2n)  (P1.3 P2, • 42n; A, A) =
(2n)

P2, • • •P2n; In, X, A) • 
a 

(17.51) 
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The renormalisability of the theory implies the existence of functions 

mR(m, X,, A); XR(m, A, A); Z(m, X, A); Z02 (m, X, A) (17.52) 

such that 

r  (2n) (p1; m, A) =znr,
F
(
t
2n) 

(pi; mR, R
, 

A ) 0(1/1n A) 

I 
(2n) 

13
(2n) M A) =Z02Zn,
,402R  (pi , MR, AR) + 0(1/1n A). 

(17.53) 

The renormalised Green functions F (2n)  and F (2n02R ) are independent of A; mR  and XR  

are the physical values of the mass and the coupling constant, respectively. 
The Callan—Symanzik equation is obtained by combining (17.51), (17.52) and 

(17.53), 

 

a mR 
m

p (xR) 
aARny R)  I 7R

,(2n) _2 k
lA
/1  R11 2n) 

R
mRu 02R (17.54) 

  

where we have defined the functions 

14(04/011/2) mit  (ainziam2) 
P(AR) — 

2(ami/am2) 
y (AR) —  

2(ami/am2) 

6(4) = i
2(ami/am2) 

• 

(17.55) 

It is easy to express the functions p, y, and S in terms of particular renormal-
ised Green functions of the theory. Therefore, they approach well-defined limits when 
A —> oo and since they are dimensionless, they can only depend on AR. y is often called 
the anomalous dimension of the field. This terminology may be misleading, since, obvi-
ously, the canonical dimension of any quantity cannot change. What it means is that y 
describes the difference between the scaling dimension of the field, which we called d, 
and the canonical dimension, which, for a scalar field, equals 1. 

Equation (17.54) is the Callan—Symanzik equation which involves only renormalised 
quantities. It gives the response of the Green functions under a change of the physical 
mass. Since, for a 04  theory, the mass is the only parameter that breaks scale invariance, 
this equation is also the broken scale invariance Ward identity. A final point: we have 
renormalised the Green functions on the mass shell and all quantities entering (17.54) 
are the physical ones. It follows that the limit mR  —> 0 does not exist because we have 
not introduced any independent subtraction point. It is with this price that the Callan—
Symanzik equation has this simple form. 

We want to make two remarks before closing this section: first, what went wrong 
with the derivation of (17.49) and which are the differences with (17.54). The answer 
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is simple: in deriving (17.49) we forgot everything about renormalisation. We assumed 
that the mass term which appears in the Lagrangian, in other words the unrenormal-
ised mass, is the only source of violation of scale invariance. As we see in (17.50) and 
(17.51) this is not true because the unrenormalised quantities depend also on the cut-
off A through the loops of perturbation theory diagrams in a complicated way. The 
unrenormalised Green functions have a simple dependence on the bare mass m but 
a complicated dependence on the cut-off. The renormalised Green functions have no 
dependence on the cut-off, but the dependence on the physical mass is complicated be-
cause it enters under the renormalisation conditions. It is this complicated dependence 
which is expressed through the Callan—Symanzik equation. 

The second remark is that, at first sight, this equation looks similar to the renormal-
isation group equation we derived in Chapter 16. But, in fact, their only similarity lies in 
the fact that they are both based on the renormalisability of the theory. Otherwise, they 
express different properties. We will come back to this point in a later chapter. 

17.5 A Non-Perturbative Anomaly 

This section does not belong to the mainline of this chapter. It attempts to study a phe-
nomenon which is not present at any order of perturbation theory. It was first discovered 
by Edward Witten and we present it here because it is simple, interesting, and instructive. 

The problem concerns a Yang—Mills theory based on the group SU(2) defined in 
four space—time dimensions. As usual, we define first the Euclidean version. It is given 
formally by a functional integral, 

1 f exTrF,,,,F1" 
Z = f [DAL ] e 2g2  (17.56) 

where, again, we assume that all gauge-fixing terms and Faddeev—Popov determinants 
are included in the functional measure [DA,]. A gauge transformation will be denoted 
by U(x), where U is an element of SU(2) and x a point in the four-dimensional Euc-
lidean space. We have often considered a simplification in the form of a finite volume 
approximation. Let us choose, for example, a projection of E4 to S4. The limit of infinite 
radius can be taken later. Therefore, a gauge transformation can be viewed as a map-
ping from S4 to the gauge group. SU(2) is the group of unitary and unimodular 2 x 2 
matrices. Any such matrix can be written as a superposition of the unit matrix and the 
three Pauli matrices U = u0  II + iu • a with the four real numbers u0  and u satisfying the 
condition E:_o = 1. This shows that SU(2) has the topology of a three-sphere S3. 
In other words, these gauge transformations involve mappings among hyperspheres. In 
mathematics there is a standard way to divide such mappings into equivalence classes, 
according to whether they can be continuously deformed to each other. It is called ho-
motopy theory. Since we are interested in the mappings from S4 we must study what 
mathematicians call the fourth homotopy group of SU(2), n-4 [SU(2)]. It is hard to visu-
alise mappings among hyperspheres, but all these groups have been computed and the 
important result for our problem is that n-4  [SU(2)] is non-trivial: 
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74[SU(2)] = Z2. (17.57) 

This means that, in four-dimensional space, there is a gauge transformation U(x) 
such that U(x) —> 11 as Ix' —> oo but it cannot be continuously deformed to the trivial 
transformation which is the identity everywhere. If we want to have a geometric picture 
we can think of U as being wrapped once around the three-dimensional hypersphere 
representing SU(2). Equation (17.57) tells us that we do not have to worry about trans-
formations wrapped several times around SU(2) because all those with an odd number 
of wrappings are deformable to our U and all those with an even number to the identity. 

As Witten pointed out, the existence of this topologically non-trivial mapping means 
that our expression (17.56) involves a double counting, because, to every gauge field A,1  
there is a second one, obtained by gauge transforming A by U: 

Au = u-iAA  u—iu-laA  U.
A  

(17.58) 

Two remarks may be useful here. First, note that U is not what we called previ-
ously a small gauge transformation. Therefore, our method of gauge fixing does not 
resolve this problem. A and AU  give precisely the same contribution to the functional 
integral since they are gauge transformed to each other and give the same F. But 
because in perturbation theory we study only small deviations from a given field con-
figuration, usually the zero field configuration, we are not sensitive to problems of this 
kind which give no contribution to any order of perturbation theory. The second re-
mark concerns, in fact, the relation with a subject we will study in a later chapter. We 
will encounter situations in which the gauge field configurations can be separated into 
classes and we will argue there that it is enough to integrate inside each class and then 
sum over the classes. But nothing like this can work here. U is a gauge transformation 
everywhere, not only at infinity. In going from A to AU  we do not encounter any sin-
gularities or divergences in the functional integral. They both belong to the same sector 
in field space. We are facing a real ambiguity resulting from an incomplete gauge-fixing 
procedure. 

As long as we are studying a pure Yang-Mills theory this double counting is harmless 
because the effect will cancel between the numerator and the denominator in any Green 
function calculation. The situation changes when we introduce massless fermions. Let 
us consider, as usual, that they belong to the fundamental, doublet, representation of 
SU(2). The functional integral becomes 

-I a' x[. TrFuv Ftw+orid 
Z = J [DAJ[D0] [D-t-Ple 4,2 (17.59) 

Since the Lagrangian density is bilinear in the fermion fields, we can integrate them 
out and obtain an effective theory including only the gauge fields. For a doublet of Dirac 
fermions this integration gives 

f [Dik][Mfr]e f  d4x*iThk  = det(0). (17.60) 
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The determinant is given, formally, by the product of the infinite number of the 
eigenvalues of I-i) . This is the expression we considered in (17.22). In deriving the 
Adler—Bell—Jackiw anomaly we were interested in axial transformations. We found that, 
in certain cases, we could not define this operator respecting gauge invariance. Here 
this problem does not arise because a doublet of Dirac fermions admits a gauge invari-
ant Dirac mass. Therefore, this theory can be regularised by Pauli—Villars regulators (a 
doublet of negative metric massive Dirac fields), which implies that 17 can be defined 
in a gauge invariant way, both under small gauge transformations and under the U 
transformation. 

Let us now consider, instead, a doublet of Weyl fermions. Since they have only one 
half the degrees of freedom of Dirac fermions, we expect to obtain the square root of 
the determinant [det(iP )]1 /2. Let us assume that we have defined the sign of the square 
root, for example by choosing it to be positive for a given field configuration Ao. Then 
[det(iP)]1 /2  will be invariant under infinitesimal gauge transformations, since they can-
not change the sign. But what about the topologically non-trivial gauge transformation 
U? The claim is that the square root is odd under U: 

[det(iP (A0))] 112  = —[det(iP (Aou))] 1/2. (17.61) 

This equation should be understood as follows: if we vary the gauge field continuously 
from A to Au  we will find the opposite sign for the square root. Since in the functional 
integral we must integrate over all field configurations, it follows that Z vanishes and the 
theory cannot be defined. 

The proof of (17.61) follows the arguments we used earlier, except that now we do 
not care about the zero modes of I-P because they satisfy (17.61). As we noted, the 
non-vanishing eigenvalues come in pairs of opposite sign. In the square root we want 
to keep only half of them, so let us assume that we have arranged, for a given field A, 
to keep for every pair ±A only +A. Now we vary A continuously, for example following 
the path Aot  = (1 — t)A,1  + tAou  for t varying continuously from 0 to 1. The spectrum 
of 1-) is the same for t = 0 and t = 1 but there may be a rearrangement and at some 
intermediate value 0 < to  < 1 there may be a crossing. One of the eigenvalues which 
was positive at t = 0 becomes negative at t = 1 and one which was negative becomes 
positive. The two will cross 0 at to where the determinant vanishes. If, at t = 0, we had 
defined the square root by keeping only the positive eigenvalues and then follow their 
evolution continuously, we will end up at t = 1 with one negative eigenvalue. 

The Atiyah—Singer index theorem which we mentioned previously allows us to follow 
the flow of the eigenvalues as we vary the gauge field. We will not present the proof here, 
which consists of studying the spectrum of the Dirac operator in five dimensions with 
the fifth dimension compactified in a circle. The result is what we indicated earlier. An 
odd number of pairs of eigenvalues cross 0 between A, and Aou  and [det(iP)]1 /2  changes 
sign. 

As announced, this is a non-perturbative anomaly. The theory is very well defined at 
the classical level, it has a well-behaved, renormalisable perturbation expansion, but it is 
ill-defined when non-perturbative effects are taken into account. It shows that quantum 
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field theories and, in particular, gauge theories are much richer than perturbation theory 
may lead us to believe. We will examine some more interesting cases from the physical 
point of view in a later chapter. 

17.6 Problems 

Problem 17.1 Show that the validity of the Ward—Takahashi identities derived from 
the invariance of the Lagrangian (17.1) under isospin transformations imply that 
the renormalised masses of the proton and the neutron are equal and that the same 
holds true for those of the charged and neutral pions. Similarly, show that a single, 
renormalised coupling constant describes all pion—nucleon vertices. 

Problem 17.2 Check the validity of Eq. (17.21) by a direct computation of 
the triangle diagrams of Fig. 17.2 using the Pauli—Villars regularisation method 
introduced in Problem 16.2. 
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Renormalisation of Yang-Mills 
Theory and BRST Symmetry 

18.1 Introduction 

In the previous chapter we presented the renormalisation programme for various Lag-
rangian field theories. We showed that it applies to Lagrangians which are polynomials 
in the fields and their derivatives and satisfy the power-counting requirement. The four-
dimensional Yang—Mills theory, in the gauges we considered in Chapter 14, falls into 
this category; therefore, it is a renormalisable theory. We also studied the consequences 
of symmetries of the classical action in the renormalised Green functions. In this chapter 
we want to repeat this exercise for the particular case of the BRST symmetry and show 
how it can be preserved by renormalisation. It will not be a trivial exercise because the 
BRST transformations of (14.64) act non-linearly on the fields, but it will be essential 
because it is only through this symmetry that we will be able to guarantee the gauge 
independence of physical quantities. 

The BRST invariant Lagrangian G + £matter encodes the gauge symmetry under the 
form of the BRST symmetry. It involves ghost fields and contains a gauge-fixing term 
and a ghost term. The part of the action that enforces the gauge fixing is a BRST-
exact term and the classical action and the observables are BRST-invariant expressions, 
defined modulo BRST-exact terms. In other words, the gauge-fixing action belongs to 
the trivial cohomology of the differential operator s and the physical quantities belong to 
the non-trivial part of the cohomology of s. 

As we said previously, the theory is renormalisable by power counting. Therefore, by 
imposing a finite number of renormalisation conditions, any Green function is finite and 
calculable at any finite order of perturbation theory. The general theorem we stated in 
the previous chapter applies and there is not much we could add. Nevertheless, many 
new questions arise. Some sound technical and some are physical. In this chapter we will 
address them in the following order. 

The first question is whether there exist renormalisation conditions which preserve 
the consequences of BRST symmetry for the renormalised Green functions, or, equi-
valently, whether the theory contains anomalies, in which case the loop corrections will 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
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break the relations among the Green functions implied by BRST symmetry in the tree 
approximation. We will show that, within the BRST formalism, the possibility of anom-
alies for the gauge symmetry is related to the existence of a non-trivial cohomology of s 
in the sector with ghost number one. Once this result is established, we can classify all 
possible anomalies that can occur in gauge theories, and check whether they cancel. For 
example, the axial anomaly found in the previous chapter will appear as a special case of 
this general result. 

The second question concerns the structure of counter-terms. Assuming the theory 
has no anomalies, we will determine the precise form of the counter-terms needed in 
order to ensure finite Green functions at any order of perturbation theory which satisfy 
the BRST Ward identities. 

The third question is the most important for physics. Gauge theories are formulated 
in a large space with many unphysical degrees of freedom (longitudinal and scalar gauge 
bosons, ghost-fields...) Furthermore, they contain unphysical parameters which determ-
ine the gauge. Green functions depend on all that. The physical question is to construct 
well-defined expressions which are calculable in perturbation theory and are suitable for 
representing physically measurable quantities. Intuitively, we expect such expressions to 
depend on the physical degrees of freedom only and to be independent of the choice 
of gauge. If we can define S-matrix elements, we expect them to satisfy a unitarity rela-
tion. However, the physical theories we will consider will always contain sectors in which 
the gauge symmetry will remain unbroken. Consequently, the corresponding gauge bo-
sons will be massless and, as we will see in Chapter 21, the definition of a physically 
measurable quantity is more subtle. 

18.2 Generating Functional of BRST Covariant Green 
Functions 

We introduced the BRST symmetry as the graded operator s for the generator of a scalar 
global symmetry with sd + ds = s2  = 0. We also introduced a constant anticommuting 
parameter 77, for the transformation 

BRST = /7S. (18.1) 

As usual, this symmetry implies the existence of Ward identities among the Green 
functions. The latter are obtained by computing the path integral of products of fields 
taken at different space—time points times the exponential of the BRST invariant action: 

G N = f [D 010 (X 1) • • • (X' z) • • • (I)(CN) exp(—S). (18.2) 

Here (/) stand for all fields (A, S 2 , S2, b, 0, 0), and we understand that a Wick rotation has 
been performed (we define the path integral in Euclidean space). This expression is still 
formal because no regularisation and renormalisation prescription has been specified. 
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As a consequence of the BRST symmetry of the action, we have the following relations 
among the tree-level Green functions, where one field 0(x;) has been replaced by its 
BRST transform .50 (xi ): 

0 = E f f [Dcb]o (xi) ... so (xi) ... (xN) exp(—S) (18.3) 

This tree-level identity can be proven by doing the change of variable 0 —> 0 +6,0 in the 
path integral, and using the s invariance of the action and of the path integral measure. 

Equation (18.3) is the Ward identity for the BRST symmetry. 
We must prove that all Ward identities of this type hold true order by order in per-

turbation theory. In other words, we must prove that the renormalisation programme 
can be done while preserving the Ward identities of the BRST symmetry. 

The path integral allows for a compact way of formulating all Ward identities. We 
introduce sources Is, for every field 0 = (A, S 2 , Q, b, 0 ,W), as well as sources vo  for every 
operator s0. We must be careful and avoid double counting. Indeed, we have sS2 = b, 
and thus there is no need to introduce a source vsj. In our notation, we set vsj = 0 and 
use jb whenever a source for sS2 is needed. Moreover, since sb = 0, we set vb = 0. 

As we explained in the previous chapter, the fact that some of the operators s0 are 
non-linear functions of the fields means that they must be independently renormal-
ised. All superficially divergent correlators of the type (0(x1) . (xi) ... (xN)) need a 
renormalisation. In this way the fields and their s-transforms acquire anomalous dimen-
sions, which must be perturbatively computed by inserting the operators in all possible 
divergent 1-PI Green functions of the theory. The Ward identities will give relations 
among all these anomalous dimensions. In fact, the operators s0 can mix by renormal-
isation with all other operators with the same quantum numbers and equal or smaller 
dimensions, but the BRST symmetry will restrict the possibilities for such mixings. 

Let us first define the effective action that includes the sources 

Seff* JO, vo) = f d4x(r + rmatter + (x)0(x) + vo (x)s(1)(x)) (18.4) 

with the obvious notation that the expression y(x)0(x) contains a summation over 
all fields 0, that is j4)(x)(/)(x) Eck=(A,s 2 ,s 2,b,cp,w) j4) (x)0(x). We have also consistently 
vq, (x)s0 (x) = E0=(A,,2,0,v,) (X)SO (X). 

We also define 

E (0, vo) = f d 4x(r + rmatter + Vo (X)S0 (X)). (18.5) 

The generating functional Zeal„ vo) of all possible connected Green functions of 
fields and their BRST transforms is thus log Zap, vo), where 

zap, vo) = f 
[D0] exp [—Seff(0,N, vo)] 
f [Do] exp [—Seff  (0, 0, 0)] 

(18.6) 
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We define as usual the generating functional of 1-PI Green functions P(0,   vo) by 
Legendre transformation of Zc(1, vi,) in the couple of variables (0,,70).1  

F (0, v = Z C74,, Vo) — f dX,70  (X)0 (X) (18.7) 

It follows that 

8 Z 
0(x) — 

8,74, (x)'
(18.8) 

which allows us to express the source J in terms of the field 0, as explained in the 
previous chapters. 

18.2.1 BRST Ward Identities in a Functional Form 
By doing again the change of variables 0 —> + in the path integral definition of 
ze govi,), it is easy to show that all tree-level Ward identities as in Eq. (18.3) can be put 
under the compact equivalent forms 

34 
d4 X 74) (x)

Sv  ) 
+ jsj  (x)b(x)) = 0 

(x 

for the connected Green functions, and 

f  
d 4  x(  o + 

r szr 6 Rr  
_ b(x)) = 0 

(x) Sv (x) (x) 

(18.9) 

(18.10) 

for the 1-PI Green functions, where S R  and 8 L  stand for right and left differentiations, 
respectively. 

In order to go on in a simplest notational way, we define a graded symplectic bracket 
for the fields 0 and sources vo, as follows: given any pair of functionals A(c/), vo) and 
B(c/), vi,), their graded bracket is 

S RA SIB S RA SIB \. 
{A, BI f d4  x

(
 

Sci )(x) SVo (x) 8V4, (X) 80 (X) 

This definition for the graded bracket {A, BI takes care of all possibilities for the 
ghost numbers of the fields. Note the absence of the fields S2 and b in the definition of 
the bracket. In this notation the Ward identity is 

1 is what we called 0(cl)  in Chapter 16. In order to lighten the notation we will drop the indication 'classical' 
whenever there is no risk of confusion. This is the case when 4  appears as an argument of the effective action F . 
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{F, F} = 0 (18.12) 

Suppose now that we have constructed a functional F which satisfies Eq. (18.12). 
Then, we can define the nilpotent transformation sr 

r Ertl' sz sz 
sr = IF, 1 = f d4x  (18.13) 

80(x) Svi,(x) 8v0 (x) 80(x) .  

We have = 0 on all fields 0 = (A, S2, CP, W) because of the Jacobi identity of the bracket 
{ , } and the property (18.12). 

These definitions will help us understand the renormalisation of the Yang—Mills the-
ory by simplifying the algebraic manipulations which will determine the renormalised 
Lagrangian and what will be called 'the renormalised symmetry'. 

18.3 Anomaly Condition 

Since the action S = f dd  x G of Eq. (14.72) is renormalisable by power counting it 
can be used to perturbatively define the Green functions of the fields and their BRST 
transformations with the following recursion technique. We assume that the theory has 
been renormalised at order n, yielding P(0, vi,), which satisfies the Ward identity at 
order n, that is 

{ 11(0, v0), 11(0, v0)1 = 0(hn+1) • (18.14) 

The renormalised nilpotent BRST symmetry is at this order 

sn { 11(0, vo), }. (18.15) 

We have the expansion 

/1(0, vo) = E + hFo)  + • • • + hn r(n)• (18.16) 

We can now proceed and compute the radiative corrections to order n + 1. The result 
involves further counter-terms of order 0(hn+1) and yields a renormalised /1+1 (0, vo). 

The first question is to find out whether Fn+i  (0, vo) can be computed such that it 
satisfies the Ward identity up to terms of order 0(hn+2). 

Since we do not want to assume that we use a regularisation that preserves the BRST 
symmetry (and, actually, when there are chiral fermions, such a regularisation does not 
exist), we expect that the Ward identity for Fn+i (0, vo) may be violated at order hn+1  , as 
follows: 

{ 11+1(0, vo), 11+1(0, v95)} =
f (0 vo) + 0(hn+2). (18.17) 

The upper and lower indices remind us that A4(0, vo) has ghost number 1 and has 
dimension 4. 
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For any given method of regularisation and subtraction, and after a given choice of 
renormalisation conditions has been adopted for the new divergent diagrams at order 
hni-1 , the properties of Feynman diagrams imply that A41 (0, vo) is a local functional of 
the fields and sources 0, and vi,. 

This last property is called quantum action principle. It is a general property valid 
order by order in the perturbation expansion of a quantum field theory that satisfies 
power-counting requirements as was explained in the previous chapter. Note that the 
terms 0(hn+2) generally contain terms that are non-local functionals of the fields. 

It may happen that the origin of the apparently anomalous term A41 (0, vo) is just a 
choice of renormalisation conditions that were not well adjusted in going from order W to 
hn+1  . In this case, A4(0, vo) can be eliminated by adjusting the local counter-terms, and 
we can proceed to order hn+2, and so on, which means that the theory can be renormal-
ised while preserving all the Ward identities. In this case, 6,41 (0, vo) is a spurious anomaly. 

Otherwise, the theory is called anomalous, which means that the Ward identity break-
ing term A41 (0, v0) cannot be eliminated perturbatively. In this case gauge invariant 
observables cannot be computed order by order in perturbation theory. In fact the 
consequences of an anomaly depend on the choice of gauge. 

18.3.1 General Solution for the Anomalies of the Ward 
Identities 

Determining the general expression of 6,41 (0, vo) may look as an impossible task. How-
ever, the algebraic properties of the BRST symmetry simplify tremendously the determ-
ination of the most general expression of the possible anomalous term 6,4 (0, vo). Then, 
the explicit computation of its coefficient indicates whether the theory is anomalous. 

The functional A41 (0, vo) is in fact severely restricted. We have indeed 

0 = i /1+1, Irn+13 11+111 = hn+1  SE f A4(0,7.10) + 0(hn+2). (18.18) 

Thus, 6,14(0, vo) must satisfy the so-called consistency condition: 

sE  f 6,14(0,7)0) = 0. (18.19) 

This equation generalises the Wess and Zumino consistency condition found for the case 
of the current algebra anomaly for theories with a global symmetry; see Eq. (17.44). As 
we will shortly see, it is quite simple to solve it, using power counting, since sE  is basically 
the BRST symmetry operator. Equation (18.19) is quite similar to that which defines the 
BRST invariant Lagrangian, except for the fact that 6,4 (0, vo) has ghost number 1. 

The consistency equation (18.19) is trivially satisfied if A14(0, vo) = SE A°4  (0, vo), in 
which case the anomaly is spurious, since hn+1  A°4(0,7.10) can be added as a local counter-
term which is just a mere modification of the tree-level part of F. 

Thus, non-spurious anomalies are the solutions A4(0, vo) that are defined modulo 
BRST-exact terms, that is, the elements A4(0, vo) of the non-trivial cohomology with 
ghost number equal to 1 of the BRST symmetry. 
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Equation (18.19) can be written as the local equation 

sE  6.14 (0, vo) + d64 (0, vo) = 0 (18.20) 

6.4(0, vo) 6.4(0, vo) + sE  A°1  (4) , V(p) (18.21) 

This equation can be solved by various techniques, using power counting, and writing 
all possible local polynomials of dimension 4 and ghost number 1 for D4 (4), (p). 

We first show that A11 (.0, vo) can only depend on A and S2. In fact, the dimensions 
of the sources v imply quite trivially that the possible v dependence can only be trivial 
(that is BRST exact). It is slightly more involved to show that any possible dependence 
on Q, b, 0 ,11/ is also trivial, but it can be done by inspection. 

Then, we are led to solve the consistency equation for a function A41  that depends 
only on A and Q. 

Consider the case when the gauge group is simple, say SU (N) or SO(N). We will 
show shortly that the solution for the anomaly Alt  (S2 ,A,F), defined modulo d- and 
s-exact terms, is the following 4-form with ghost number 1, 

1 
6.14  = Tr(dS2 A (A A dA + 

3
—A A A A A)), (18.22) 

where the trace is for the matrices in the Lie algebra. This expression does not look very 
suggestive. However, it can be written under the following amazingly simple as well as 
mathematically appealing expression 

6.14  = Tr( S2 
3A F 

A5(A, F)), (18.23) 

where A 5 (A,F) is the Chern—Simons term of order 5, which is the following 5-form, 
defined in dimension d > 5: 

1 1 
6.5 (A,F) = Tr(A F F— —

2
AAAAAAF+ —

10
AAAAAAAAA). (18.24) 

Moreover, in dimension d > 6, we have the so-called Chern—Simons identity2  

Tr(F F F) = d6.5 (A,F). (18.25) 

This last equation is, in fact, implied by the property dTr(F AF AF) = 3 Tr(DF AF AF) = 
0, due to the Bianchi identity DF = 0 and the cyclicity of the trace. Then, the local 
Poincare lemma, which states that any quantity f that satisfies df = 0 must be locally 

2  For d < 6 this equation is trivial and encodes no information, since both sides vanish identically, due 
to the fact that we cannot write a non-vanishing 6-form with less than 6 independent forms dx0  . Therefore, 
when A is a genuine 1-form, to get non trivial information from this equation the space must have at least six 
dimensions in order that del A ... n de6  0. 
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d-exact, implies the existence of the form 6.5(A, F) within the identity (18.25). Note 
that the Chern—Simons term 6,5  (A, F) is defined only modulo d-exact terms, since the 
change A5  (A, F) —> 6.5  (A, F) + d(..) leaves Eq. (18.25) unchanged. Once the existence 
of A5  (A, F) has been proven, it is a simple exercise to compute one of its representatives 
as a function of A and F, as in Eq. (18.24). 

Let us now prove the result of Eq. (18.23). From now on we will omit the A symbol 
for writing products of forms. The beautiful idea is to use the Chern—Simons iden-
tity (18.25) for extended forms, when the form degree is equal to the sum of the ordinary 
form degree and the ghost number. Indeed, since (s + d)2  = 0, we can do the following 
substitutions into Eq. (18.25), 

A—>A+S2, F—>t=(d+s)(A+12)+(A+S-2) 2  d—* d+s, 

so that 

with 

(18.26) 

A5(A + /2,1') = Tr((A + 12)P P — (A + 12)3  P + 
1 cl

(A + S2) 5) (18.27) 

Tr(FFF) = (d + s) A5  (A + 1 2 , P). (18.28) 

This identity now carries non-trivial information, even when A is a 1-form in four dimen-
sions, since s and Q have both ordinary form degree equal to 0, so that (d + s) A5  (A + 
S2, F) has non-vanishing components of form degree 4, 3, 2, 1, and 0. On the other 
hand, since the BRST equations are F = F, we have identically 

Tr(FFF) = Tr (FFF) , (18.29) 

and since any given ordinary 6-form vanishes in four dimensions, we have Tr(FFF) = 0 
and thus 

Tr(FFF) = 0. (18.30) 

To summarise this chain of arguments, we have 

(d + s) (6.5  (A + S2, F) = Tr(FFF) = Tr(FFF) = 0 (18.31) 

so that 

(d + s)(6.5  (A + S2 , F) = 0. (18.32) 

By isolating in this equation the terms with the same form degree and ghost number, we 
get a 'tower' of solutions of the consistency equations 
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g1 s05 -g  + = 0 

for 1 < g < 5, with 

(18.33) 

A5-g. = (A 5 (A + S2 , F))g5_g. (18.34) 

This proves Eq. (18.23), as a particular case for g = 1. Equations. (18.33) are often 
called descent equations. 

By using the expression of O 5 (A, F), computed in d > 5, it is then quite easy to 
deduce from Eq. (18.23) that the constant anomaly 6.41 , defined modulo d-exact and 
s-exact terms, is the expression All  = Tr(dS2 (AciA + AAA)) given in Eq. (18.22). It will 
be shortly used to select all possible anomalous vertices of the theory. 

When the Lie algebra has several factors, the methodology is the same, since the 
Chern—Simons formula holds true for any given invariant polynomial of curvatures. In 
this case there are several possible terms for O5(A + S2, F), which we may label by an 
index i, and the only possible arbitrary parameters are real numbers a1, which multiply 
each independent factor of the Chern—Simons term. 

For instance, if the Lie algebra is U(1) x SU(N), the anomaly contains three pos-
sible terms, corresponding to the following Chern classes in d > 6 dimensions, 
A u(i)dAu(i)dA dA U(1)Tr SU (N)FF , and Tr su (N)FFF . The consistent anomalies 
are thus 

al dQu(1)dAU(I)dAU(I)  + a2dS2u(i)Trsu(N) FF 

1 
+ a3TrSU(N) (c1S2 (AdA + — 

3 AAA)) • (18.35) 

The second term dr2u(i )Trsu(N)FF is called a mixed anomaly. 
Note that in order for a purely non-Abelian anomaly to exist, the corresponding six-

dimensional invariant Tr su (N)FFF must be non-vanishing. For this, we need an invariant 
symmetrical 3-tensor dabc  in the Lie algebra, in order that Trsu(N)FFF = dabcFaFbFc 

0 in six dimensions. The existence of such an invariant tensor depends on the gauge 
group (for instance, it exists for SU (3) but not for SU (2)). We see therefore that the 
algebraic determination of the consistent anomaly straightforwardly predicts that certain 
gauge groups cannot have anomalies, simply because their Lie algebra does not admit 
certain constant tensors. It is also a striking feature that anomalies in four dimensions are 
somehow related to the existence of Chern classes in dimension 6, which establishes a 
link between the chiral anomaly in four dimensions and topological invariants in higher 
dimensions. 

For the theory to be anomaly-free, it is necessary and sufficient that, order by or-
der in perturbation, all coefficients a, vanish. We will shortly explain how we select 
the 1-PI Green functions that determine the values of these coefficients, and how we 
perturbatively compute them. Moreover, the Adler—Bardeen theorem we mentioned in 
the previous chapter shows that for the anomalies associated with chiral fermions, if a 
coefficient vanishes at 1 loop, it vanishes to all orders. 
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18.3.2 The Possible Anomalous Vertices and the Anomaly 
Vanishing Condition 

Assuming that the BRST Ward identity has been enforced at 0 (hn) for the renormalised 
order n-generating functional F, the only possible way the BRST identity can be broken 
by radiative corrections is thus 

{1+1, rn} = hn +1  a f Tr( dS2 (AdA + AAA)) + 0(hn+2). (18.36) 

This equation allows us to perturbatively compute the finite real coefficient a, by 
selecting the renormalised 1-PI Green function that uniquely determines it. The right-
hand side is an operator composite out of the fields and their derivatives and its Green 
functions can be computed as we explained in Chapter 16. For the sake of simplicity, 
we consider the case of a simple Lie algebra, with only one possible coefficient a, the 
generalisation to a general Lie algebra being obvious. 

To identify the anomaly coefficient, we must differentiate both sides of (18.36) with 
respect to the appropriate fields and identify a as the numerical coefficient of given 
tensorial component of a particular renormalised 1—PI Green function. Let us see how 
it works. 

Since All  oc f TrdS2 (AdA + AAA), there are two possibilities. We should differ-
entiate the generating functional with respect to S2, and then two or three times with 
respect to A. Then we set all fields and sources equal to 0. The left-hand side of the 
resulting equation will identify the possible non-spurious anomalous 1-PI Green func-
tion, and the right-hand side will give a times some space—time distributions and gauge 
group and Lorentz invariant tensors. By computing the 1-PI Green function, the value 
of a will follow, with the same value, no matter which one of the two possibilities we 
follow. 

Let us choose the first one, with only three differentiations. We obtain3  

hnTr( Ta  TbTc)CIE µvpa 84  (x — y)—
a

s4(x—z) ay„ az, 
8L 81, SL f 

ci
, 8 RF  SL F  

=  
8 S2 a  (X) 8 Abli (y) 3 Af) (z)

4 t 
3 A!, (t) 8 2f4 d (t) 

(18.37) 

Note that only a symmetric tensor dab̀  can occur, simply by the fact that we have a 
symmetric derivation in A. Moreover, many terms in {Fn, Fn} have disappeared, after 

33  application of the operation sp. (x)3Ab,(y)8,9;,(z) 
and taking the sources equal to 0, simply by 

conservation of the ghost number. 

3  In the formulae of this section all fields and sources are set equal to 0, after the functional derivatives are 
taken, although we do not write it explicitly. 



a A a A 1 a nn a 3, (x  y) 8-r (x z)  _ 
ay [it a zy] 4 

Tr(Ta  TbTc)6/?, 
,

,(24ab  (Y), Acp (z), AcA! (x)). (18.41) 
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We must have therefore 

a a 
hnTr( Ta  Tb 71) a E Avp, —34  (X — y) —84(x — z) 

ayp a za  

= f d4  4(2 4 Ab  (y), Acv  (z), Accl, (t)) (v74 d (t), 1 la  (x)) 

+ (AA  (y), Accl, (t)) (Ac„(z), v74 d  (0, S2 a  (x)) 

+ (Av  (z) , 4, (t)) (A Ab  (y) , v74 d (t), S2 a  (x))) . (18.38) 

The last two terms must vanish because of the symmetries of the covariant tensors on 
the left-hand side of the equation. By multiplication by the inverse tensors of the group 
and of E Av pa  , we get (assuming a suitable normalisation for the Lie algebra generators Ta) 

a a 
Din a  —, 64  (x — y)— 34  (x — z) 

a yLtt a zy] 

= 4 
—
1 

Tr(Ta  Tb71)E;°:, f d4 t(Abc,(y),Acp  (z) 4(t))(v d (t), Da  (x)) • 

Since we assumed that the Ward identity is satisfied at order n— 1, we have 

(vAd(t), Da  (x)) = —
a

84 (x — osad  . 
., 

Thus, we finally have the identification of the anomaly coefficient as 

(18.39) 

(18.40) 

A necessary and sufficient vanishing condition of the anomaly is thus that the 1-PI 
Green function (A ab  (y), Aca (z), AcA! (x)) has no structure coefficient proportional to the 
fully antisymmetric tensor E tt, pa  . 

We leave as an exercise the determination of the value of a from the computation of 
the 4-point function. 

The coefficient of the 1-loop anomaly is, therefore, a rather easy computation, which 
is actually the same as that of the Adler—Bell—Jackiw anomaly, which we discussed in the 
previous chapter. Indeed, at the 1-loop level, only a closed loop of chiral fermions can 
contribute to the value of the gauge anomaly coefficient a. Therefore, we can ignore at 
this level the possible propagation of gauge fields, and the same diagrams contribute to 
the calculation of the chiral, as well as the gauge anomaly. 

In our discussion we considered the logical possibility that the anomaly coefficient 
could vanish up to a certain number of loops, and only get a non vanishing value at the 
next order. Remarkably enough, the Adler—Bardeen theorem we mentioned earlier states 
that if a vanishes at 1 loop, it vanishes to all orders. 
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As said earlier, in order to get a non-vanishing anomaly coefficient, the theory must 
involve the tensor €,„pa  and/or chiral fermions. Thus, a pure Yang—Mills theory, or one 
involving only Dirac fermions, is non-anomalous. Indeed, in this case, very effective 
symmetry preserving regularisations exist, such as the dimensional regularisation, and 
the previous discussion may appear as superfluous, since the counter-terms will be by 
construction BRST invariant, and no anomaly can occur. 

In contrast, in the presence of chiral fermions, the formula involves the tensor E Av pa  . 
1-loop computations indicate the possibility of anomalies, as seen in the previous chapter 
(which actually proves that there exists no invariant regularisation). In particular, this is 
the case of the theory which describes the weak interactions among elementary particles 
which are known to violate parity and are formulated in terms of chiral fermions. The 
consistency of the theory at the quantum level requires the vanishing of the coefficient 
of the anomaly, which must be achieved by compensations among the contributions 
of various fermion multiplets. Since, for the actual calculations, we must use a non-
invariant regularisation scheme, we need non-invariant counter-terms in order to restore 
the Ward identities. The method developed in this section is essential for their determ-
ination. In Chapter 25 the physical example of the theory of weak, electromagnetic, and 
strong interactions will be treated in detail. Let us only note here that it is based on the 
gauge group SU(2) x U(1) x SU(3), but only the SU(2) x U(1) sector contains chiral 
couplings. The condition of having no anomaly is thus that the 3-point function 

E a  (KAT (X), W+  AU), 1W v (Z)) (18.42) 

vanishes to all orders in perturbation theory. This amplitude corresponds to the invari-
ant generalised 6-form FPhoton Tr  (Fsu(2) Fsu(2),)  The 1-loop condition a = 0 leads to a 
consistency condition which determines the fermion content of the theory and will be 
discussed in Chapter 25. 

18.4 Dimensional Regularisation and Multiplicative 
Renormalisation 

18.4.1 Introduction 

We have shown that when quantising a classical Yang—Mills theory we may encounter 
one of the following three cases. 

The theory may have anomalies whose coefficients a do not vanish. In this case, 
the situation is hopeless and, in general, we will not be able to prove that the resulting 
perturbation theory defines a consistent quantum field theory. In particular, we won't 
be able to introduce gauge invariant physical observables. Fortunately, no physically 
interesting theories seem to fall into this class.4  

4  In this book we have studied only field theories formulated on Minkowski flat space. The possible existence 
of defects, external fluxes, or curved backgrounds are not considered, unless otherwise mentioned. 
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The second case concerns the theories for which anomalies are, in principle, possible, 
but their coefficients vanish as a result of compensations among different diagrams. It 
is the case of the theory which describes the electromagnetic and weak interactions. It 
contains chiral fermions whose y5  couplings prevent us from using an invariant regular-
isation scheme, such as dimensional regularisation. In such a case, the way to enforce 
the Ward identities going from one order of perturbation theory to the next may be 
quite tricky. Indeed, the regularisation breaks the BRST symmetry, and we must fulfil 
the Ward identities by a recursive adjustment of counter-terms, whose structure violates 
the BRST symmetry in such a way that it compensates for the violations introduced 
by the non-symmetric regularisation. The general situation is thus that non-symmetric 
counter-terms are needed in order to enforce the symmetry at the renormalised level. 
Such symmetry violating counter-terms cannot be obtained in an automatic way, al-
though the methodology is straightforward. At every given order, depending on the 
theory under consideration and the chosen regularisation scheme, we isolate by power 
counting the primitively divergent 1-PI diagrams. As we explained in the previous sec-
tion, for every divergent counter-term we have an arbitrary finite constant which we are 
free to adjust. Then we proceed by counting. We prove that, at every order, we have 
enough free parameters to allow us to enforce all BRST Ward identities. 

The third case is the simplest, both conceptually and technically. It is the one in which 
there is no possibility of an anomaly. The most common example is a gauge theory with 
only Dirac fermions and no y5  couplings. The simplicity here is due to the possibility 
of using dimensional regularisation which guarantees the validity of the BRST Ward 
identities, order by order in perturbation theory. In what follows, we will explain how 
the so-called 'multiplicative renormalisation' can be performed for the particular choice 
of linear gauges, which greatly simplify the proofs, as well as the practical computa-
tions. Note, however, that we solved the question of anomalies for general renormalisable 
gauges, and our proof can be extended to the case of more general non-linear gauges. 

18.4.2 Linear Gauges and Ward Identities for the BRST 
Symmetry and Ghost Equations of Motion 

The class of linear gauges are gauges for which the gauge function is linear in the 
gauge fields and possibly the scalar fields. Such gauges are often called Feynman—t'Hooft 
gauges. They define the theory by the BRST invariant local effective action 

E0 (A, 0, IP , S2, S2 ,b,vA,vo,vi p,vs2,; g) 

f d4  x(rd(A, 0 , IP) ± (i b2  ± b(aA + p[v,o]) (18.43) 

+(vAu  + 0,12)DA S2 — (vo — p[v, s-2])[Q ,o] - vip [s? , o] - v .Q[s2 , Q]) • 

It is convenient to isolate the gauge-fixing term from the rest of the action, including its 
ghost dependence, denoted by the superscript 



S Eo St° 8Eo 
ss=2 

= a,—
svA„ + 6[v, 

s Eo = ab + aA + p[v,c. 
8 b 

(18.46) 
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E0  (A, 0, (I f , S2, S2, b,vA, vo, vw, vs?; g) 
to(A, 0 , W ,D,vA— dS2 ,vo — 13[v, 12], vw, vs2; g) 

+ 1 d4  xel
2  b

2  + b(.9A + 13[v, OW . (18.44) 

The BRST symmetry of the action and its dependence on b and S2 imply the non-linear 
equations 

{to, to} Bio  to 
3to 3to 3to 3to Sto 3to Sto 3to n  
SA SvA  + SD Svc +  SO Svc + SW 824 = - 

and the linear ones 

(18.45) 

Both Ward identities (18.46) are specific to the case of linear gauges. We can show that 
they cannot be anomalous. 

18.4.3 Inverting the Ward Identities in Linear Gauges for a 
Local Field and Source Functional 

The renormalisation programme in linear gauges consists of renormalising the theory 
in such a way that the quantum action F that we can compute from the Feynman 
rules stemming from the action (18.44) satisfies the same functional identities as Eo 
in (18.45) and (18.46). The idea will be to incorporate the needed local counter-terms 
in a local action ER  that can be identified with Eo in the 0-th-order approximation. 

It will be instructive to solve the inverse problem of determining the most general local 
solution that satisfies Eqs. (18.45) and (18.46), when Eo is replaced by a yet unknown 
local functional ER  of the same fields and parameters, with the same canonical dimension 
and global symmetries, such as Lorentz invariance. 

We can, in fact, expand ER  as a Taylor series in the sources v. Then, using power 
counting, we find that the dependence in the v's is at most linear. By imposing that 
all terms in this expansion satisfy the Ward identities, we obtain that ER  must be of 
the form 

ER (A, 0, IP, S2, S 2, b, vA, vo, vw,  , vs2; g) 

= ER (A,  0 ,W, S 2 , vA — dS 7  2 ,vo — p[v, f2],v,,,v D; g) + 2b2  + b(aA + 13[v, O]),  (18.47) 
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where 

±R = SR(A, 0, IP) E Z.V3Rq) 

and the differential operator SR  is such that 

= 
0 

and 

(18.48) 

(18.49) 

sRSR (A, 0, W) = 0. (18.50) 

We found in an exercise of the previous chapter on the definition of the BRST 
symmetry that the nilpotency property of sR  implies that its action on the fields must be 

sRA = 4(—dr2 — gZAH, Ql) 
SRO = Zc(—gZA[S 2 0]) 
SRC = Zc(-- ZA[S2 D]), 

where ZA and Zc  are arbitrary dimensionless constants. 
Then the most general possible form for the local action SR(A, I, (P) is 

SR = f dxTr —1  — —1  (zAa[A,4,] + g4[A[A,24„] ] )2  
Z2  4 

1 2 
—

2 
40,2o + gZA[AA,0])

2 
 --

2
4(p(aisf + gZA[A,,,W])) + VR.(0)• 

(18.51) 

(18.52) 

All Z factors are arbitrary constants and VR.(0) is a globally invariant potential which 
is a polynomial of degree four of the scalar field with arbitrary coefficients representing 
the mass and coupling constants. 

It follows that the most general local solution of the Ward identity is in fact linked to 
E0  as follows: 

ER = to (ZAA, 0,Z Z S2,Z 2VA, —7A z24 Z  1 v0, —A  Z2  41 24 ZAZ2  V 12; g). ip  

(18.53) 

In fact, the difference between ±R and to is just a matter of multiplicative renormal-
isations of fields and constants. The overall constant Z can be interpreted as a further 
rescaling of the coupling constant. In fact, both operations sR  and s are identical, modulo 
these rescalings. The constants ZA, etc., are usually called wave function renormalisation 

constants, and we have used the notation ZA instead of the usual ZA we used in Chapter 
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16 in order to simplify the form of the equations. sR  can be called the renormalised 
BRST symmetry. 

It is worth noting that the linear Ward identities corresponding to the equations of 
motion of Q and b have completely fixed the dependence on these fields, a property that 
is called 'a non-renormalisation theorem'. 

18.4.4 The Structure of the Counter-terms within 
the Dimensional Regularisation Method 

Let us now show how the Ward identities determine the structure of the local counter-
terms of the renormalisation programme and parametrise their form, in the case where 
we use the BRST symmetry preserving dimensional regularisation. As said earlier, this 
is possible only if no chiral couplings exist in the theory. 

The symmetry preserving property means that when we use the Feynman rules from 
the local action ER  (Eq. 18.52), with arbitrary given constants Z, we get after an n-loop 
computation, where all loops have been dimensionally regularised but yet not renormal-
ised, a generating functional I'R'E (0, ; g) of the 1-PI Green functions which exactly 
satisfies the Ward identities (18.45) and (18.46): 

RE RE '  
x F

n
R,E 6  F

n
R,E 8  F 

n
R,E 6  F

n
R,E 6  F 

n
R,E 8  F 

n
R,E 6  PIR,E 6  FIR,E 

{ F11 ' ' FPI ' 1 - + + +   = 0 (18.54) 
SA 3vA 3S2 S vs2 30 Svc deltatk 8 Vqf 

8  F
n
R,E 8  F 

n
R,E SI'R'E 

 
 — a,  + 13[v,[ 

SD SvAu 30 

6  FR,E 
(18.55) 

Each term in the h expansion of I'R'E can be written as a Laurent series in E. Since 
contains terms up to order J, the identity (18.54) involves terms up to order 

h2n. Moreover, it depends on the constants Z, which can be thought of as Laurent 
series in E whose residues are Taylor expansions in g. All three Ward identities can 
be expanded in a Laurent series in E, with complicated identities satisfied among the 
coefficients. 

We proceed by induction. We suppose that the factors Z, 4 in the effective action 

R,n  (18.53) have been computed at order n, yielding 

±R,n ==z1 (co, Zg,n; g). (18.56) 

The constants Z and 4, are themselves Laurent series in E and polynomials of order n in 
Ii. From our recursion hypothesis, they are such that the theory has been renormalised 
at order hn. Thus, using the Feynman rules stemming from ER,n, we get a regularised 
generating functional of 1-PI Green functions that can be computed at any given finite 
order of perturbation theory, giving 

Sb 
= ab+ aA + 13[v,o[. 
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FnR' E  = terms of order up to hn  that are finite when E —> 0 
+ terms of order higher than hn that are possibly divergent when E —> 0. 

(18.57) 

, We define F(R)E as the truncation of FR'E when we only retain the terms up to order 
0(hn). The definition of the renormalised generating functional Fat order n is 

rR = iim,_>or(Rni
E (18.58) 

By assuming that the BRST symmetry is preserved by dimensional regularisation, we 
have 

{p
n
R,c p

n
R,c = 0 (18.59) 

and 

{±R,n, R,n} = 0, (18.60) 

because of the definition of ±R,n  in (18.53). These properties are of course verified for 
n = 0, taking all Z factors equal to 1. 

Let us now specify in more detail the terms of order 0(hn+1)  in  FnR,E They are 
a mixture of divergent and non-divergent terms when E —> 0. Since the use of ±R,n  
renormalises the theory up to 0(hn), the quantum action principle implies that the di-
vergent terms form a local functional Fn+

ioicaidiv  of the fields yo and the sources vv. Thus, 
Eq. (18.57) can be made more precise as follows: 

R,e = 
F(

R
ni

c h
+ 

n+1 local
(rn,div + 0 (hn+2) 1 n+1, finite) (18.61) 

is finite and generally contains non-local terms. Since the Z's have been In+ 1, finite 
computed only up to order O(W'), the terms 0(hn+2) generally contain local and non- 
local terms which may diverge when E —> 0. 

When we insert Eq. (18.61) in Eq. (18.59), the only sources of divergent terms of 
order hn+1  are such that we must have identically 

{± 0 (9 9 V 

 Z = 1 ; g)

; 

 Fnl
Ic_
Tal

div} 
 = 0. (18.62) 

As we will see shortly, this fixes the expression of F locaaiv 
Moreover, if we compute Fn,R  : i  out of 

±R,n+1 = ±R,n+1 
hn+1 

Fn
l
+
orl

div (18.63) 
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we will find that FnR4 is finite up to terms of order 0(hn+2), 

FnR4 = finite + 0(hn+2) (18.64) 

with 

Fn
R,6 

Fn
R,6 }  = 0 on+2) (18.65) 

because of Eq. (18.62). 
To go further, we must determine the general structure of F .  
Dimensional analysis indicates that it can be at most linear in the sources v,„ since 

it has dimension 4, and the sources vA, vs?, vo, vq, have respectively dimensions 3, 4, 3, 
and 5/2, which excludes any dependence that is quadratic or higher. 

In fact, Eq. (18.62) implies that 

rn
i
iT

i
div8z

(n+1) to(g 03  vg ,Z t, 1 ; g) + Ito(4 Z = 1 ; g), XI . (18.66) 

We have indeed {to, to} = 0 and Ito, {to, X}I i  {X, {to, to} = 0, for any given 
functional X. Then, dimensional analysis implies that 

X = E ,7(n+1) (18.67) 
99=A,S 2 ,tP 

SZ(n+1)  and 84n+1)  are constants that will be identified from the computation of Fn+I(I.  
We have 

6 6 hn+1 {Eo,X}  = hn+1 (v)_ v  _rto(v);v; = 
1; 

g) 

3go Svc, 

to(g',7),Zso = hn+1 c;-1-1 ; g) (v, vg„ z  = ; g) oon+2
), 

 (18.68) 

where the constant cn+1  and SZ(n+1)  are simply related, since go 899  + is nothing but 8v,  
the dilatation operator. 

It follows that we can express ER,n+i as 

±R,n+1 = 1  t0((P3v,,,
zp

v,
1+1;  g) + 00'1+2). 

n+1 
(18.69) 

The last term is irrelevant since we are only interested by the renormalisation at or-
der hn+1, so that our induction hypothesis will be satisfied by choosing the following 
`multiplicatively renormalised effective action' at order hn+1: 

±R,n+1 = to(q), Zson+1; g). (18.70) 
z,n+i 
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We have therefore shown that a given set of constants Z that parametrise E can al-
ways be determined in such a way that limo FnR'E is finite. This defines a renormalised 
functional FR'n that corresponds to certain values of the renormalisation conditions of 
the Green functions. These conditions can always be further adjusted by finite changes 
in the factors Z, as we just explained. 

Since the number of independent Z factors is equal to the number of fields and 
parameters of the theory, this proves the property of stability of the theory under 
renormalisation. 

Let us also note that when the Lie algebra is such that we have group factors that can 
mix, the renormalisation remains multiplicative, but in a matricial way. We will see an 
example in the next chapter. 

18.5 Observables 

Classically, gauge invariant quantities are functions of the matter fields, which transform 
tensorially under gauge transformations, of their covariant derivatives, and of the Yang—
Mills field-strength F,„. 

For the quantum theory, we will define the observables as mean values of field 
functionals that build the cohomology with ghost number 0 of the BRST symmetry. 

Within the dimensional regularisation method an observable is thus defined as 

(0)limE,0  f [DO] 0 exp — f d4-Ex(er  + -ermatter) (18.71) 

where all relevant Z factors have been defined in such a way that the theory is 
renormalised at the order n we are interested in. 

Any given observable is independent of variations of all gauge parameters a, /3, y, 
which we have introduced to obtain a gauge-fixed BRST invariant action. Indeed, the 
dependence on any parameters which belong to an sr-exact term, for instance a, is 
such that 

a 
Ty

(o)iiin, f [DO] sr (K)0 exp — f d4  x(rr  + Ermatter)• (18.72) 

Using the sr  invariance of the measure [DC0 and r  + f - - rmatter immediately implies that 

a 
—(0) = 0. 
a 

(18.73) 

This property is obviously valid order by order in perturbation theory. Note that it in-
dicates that physical observables only depend on the parameters that are contained in 
Cr  Ermatter• 
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Local observables are thus the same as those we expect from the classical argument, 
independently of the subtleties of the gauge-fixing process. 

18.6 Problems 

Problem 18.1 Anomaly cocycles. 
Compute the explicit expression of OS g  in Eq. (18.34) as a function of A and 

Q. Check the validity of Eq. (18.33), using directly the BRST transformation laws 
of A and S2. 
Problem 18.2 Antighost independence of Lagrangians and consistent anomalies. 

Show that any given functional of the fields that is s-invariant and depends either 
on the antighost S2 or on b must be s-exact. Deduce from this that any given part 
of a Lagrangian that depends on the ghost S2 must be part of an s-exact functional. 
Use power counting to get Eq. (14.69). 

Problem 18.3 Mixed Abelian—non-Abelian anomalies. 
Since the anomaly is defined modulo s- and d-exact terms, show that the mixed 

anomaly can be also written as 6.41  = f dAu(orsu(N) (dS2 A). Show that the mixed 
anomaly can be therefore interpreted as either a U(1) anomaly or an SU (N) 
anomaly, with the same coefficient. 

Problem 18.4 Anomaly compensating Green—Schwartz counterterms. 
We can extend the BRST transformations of the Yang—Mills theory by in-

troducing an 'Abelian 2-form gauge field' B,„ transforming under the BRST 
symmetry s as 

sB2  = dB1 — Tr(S2dA) 

where 

sB1 = dB(i — Tr(S2 S2A) 

s13° = --
1

6
Tr(S2 S2 S2) 

and B2  = 1 B„dx1L (ix' and B1 = IBIL1  de. BiLl  is called a vector anti-commuting 
ghost and 13° a scalar commuting ghost of ghost. 

Check that s2  = 0. Compute the s-variation of the 3-form curvature G3  = dB2  + 
Tr(AF — AAA). 

Find a BRST invariant action depending on B2  and A. 
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Consider now an action that has an SU (2) x U(1) anomaly. Show that its con-
sistent anomaly f Du(i)Trsu(2) FF can be expressed as a BRST exact-term, which 
is the s variation off B2TrFF. 

Interpret the result, and explain the physical origin of the disappearance of the 
anomaly when the 2-form gauge field B2  is introduced. 

Hint: Show that the BRST transformations can be written as descent equations, using 
the curvature equation G3  (d + s)B2  + Tr(AF — iAAA) = F, where A = A + A and 
b2  = B2  ± B1 + B1). 



19 

Some Consequences 
of the Renormalisation Group 

19.1 Introduction 

We found already two sets of equations, (16.88) or (16.94) and (17.54). The first two 
are different forms of the renormalisation group equation and the third is the equation 
of Callan and Symanzik. They look similar, so we start by pointing out what each one 
represents. First of all, as we explained earlier, these equations have similar form because 
they are obtained using the same framework of renormalised perturbation theory. 

The Callan—Symanzik equation is the correct Ward identity of broken scale invari-
ance. It expresses the fact that for a massive theory, scale invariance is broken. When 
we vary the physical mass we obtain a family of physically different field theories. The 
equation tells us that this dependence of the Green functions on the value of the phys-
ical mass is of two kinds: the classical one through the propagators which describes the 
range over which the interaction is spread. A scale invariant interaction is spread over all 
distances and the range is a measure of the breaking. But for a renormalisable theory, 
there is a second dependence. The physical mass enters, through the renormalisation 
conditions, on the definition of the physical coupling constant and the scale of the field. 

On the other hand, the renormalisation group equation describes the dependence 
of the Green functions on an unphysical parameter. When we vary the value of the 
subtraction point we obtain a family of Green functions and the renormalisation group 
tells us how they all describe one and the same physical theory. 

The resemblance comes from the fact that, here also, the value of the subtraction 
point enters, through the renormalisation conditions, on the definition of the parameters 
of the theory. Stated this way, they both sound of limited physical interest. Nobody cares 
much about the dependence on an unphysical parameter and nobody knows how to 
design an experiment in which the mass of a particle varies continuously. 

Now that we explained in what these equations are different, we can turn into what 
they have in common. They both describe the response of the Green functions under 
a change of a dimensionful parameter. Therefore, by ordinary dimensional analysis, we 
hope to be able to relate this response with that of the Green functions under the change 
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of other dimensionful quantities. Of particular interest are, of course, quantities related 
to the incident energy because it can be varied in physical experiments. In this chapter 
we want to obtain this information. 

19.2 The Asymptotic Behaviour of Green Functions 

Let us start with the Callan-Symanzik equation. In this section we shall only deal with 
renormalised quantities, so, in order to keep the notation light, we will drop the subscript 
R everywhere. The equation simplifies in a particular kinematical region, called the deep 
Euclidean region. We first take all momenta Euclidean, i.e. < 0 with real space parts 
and imaginary time parts. The reason for this strange choice is technical. In this book 
we will present only a brief discussion of the analyticity properties of Green functions 
as functions of the external momenta. The result will be that in the Euclidean region 
we stay away from all singularities. Here we can give only a plausibility argument by 
noticing that the Euclidean propagators are given by the inverse of (k2  + m2) which does 
not vanish. 

Let us now multiply all pi 's with a real parameter p. The deep Euclidean region is 
reached by choosing p very large keeping all partial sums among different pi 's different 
from 0. It is a very unphysical region in which all masses and all momentum transfers 
become large and negative. 

The first step is to simplify the equation by using a theorem originally due to S. Wein-
berg. It is a rigorous version of dimensional analysis. Let us first remark that F(2n)/F(2n) 

has dimension equal to [A4-2]. Therefore, we expect the ratio F (2n)  (PP )/r (2n)  (PPI) 1 2 to 

behave at large p as p-2. The theorem states that this naive expectation is in fact correct 
at any finite order of perturbation theory, with corrections which behave at most as a 
power of In p. Therefore, we can write the asymptotic form of (17.54) by omitting the 
right-hand side: 

a 
Lm—a am  + — + nY (A)] ra(s2n)  (PPii M, A) = 0. ax 

(19.1) 

We can use again dimensional analysis to trade the derivative with respect to m for 
that with respect to p. F 2n has dimensions [M4-2n] and it can be written as 

[,( 2n) (pp = m4-2n F(2n) (PPi 
m 

Therefore, the function 0(2n) = p 2n-4 r (2n) satisfies 

[
-p —

a 
+ p —

a
x 

(x) + ny(xdogn) = o. 
ap a 

(19.2) 

(19.3) 
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This equation can be solved by using Monge's standard method. We define ;, as a 
function of X and p through the equation 

—p —. 9 p + 13 00 —a  ]j,(A, 
[

ax p) = 0; ;.(A, P = 1) = A, (19.4) 

which is equivalent to 

ax _ 
pa

p 
= P(0). (19.5) 

The general solution of (19.3) is now given by 

p 

(I) (2n)  (PP1, • • •, PP2n; /V, A) = 
0  (2n) (pi, • • 

•3 P2n; rn, J)exp I n f 'Yclio [j,.(X3 P/AI . (19.6) 
1 

The physical meaning of (19.6) is clear. Scaling all momenta of a Green function by 
a common factor p and taking p large has the following effects: (i) it multiplies every ex-
ternal line by a factor, the exponential of (19.6), and (ii) it replaces the physical coupling 
constant A by an effective one, X, which is the solution of (19.5). In the deep Euclidean 
region the effective strength of the interaction is not determined by the physical coup-
ling constant A but by A, which is a function of p and X; i.e. it depends on how far in the 
deep Euclidean region we are. For this reason A is sometimes called running  coupling 
constant. 

The fact that the effective coupling constant of a renormalisable field theory depends 
on the scale of the external momenta can be understood by looking at simple Feynman 
diagrams. A Feynman diagram of nth order is proportional to An. On the other hand, if 
it is a multiloop diagram, it contains logarithms of the external momenta of degree up 
to  inn (k2/m2), where k2  is the square of a typical momentum transfer. For k2  large com-
pared to the mass these factors become very important. Summing up these logarithms 
introduces an effective coupling constant which depends on the scale. The differential 
equation (19.5) provides a formal way to take into account this dependence. It shows 
that if p > 0, A increases with increasing p and it will continue to increase as long as fi 
remains positive. The limit of X when p —> oo will be the first zero of p on the right of the 
initial value A. Similarly, for negative /3 X decreases with increasing p and, for p —> oo, it 
goes to the first zero of fi (x) for x < A. Finally, if p (x) = 0, A is independent of p. 

This analysis shows that we can classify the zeros of fi in two classes: Those of 
Fig. 19.1(a) are attractors; i.e. if we start somewhere in their neighbourhood, A ap-
proaches them for p —> oo. Those of Fig. 19.1(b) are repulsors; i.e. X goes further 
away from them as p —> oo. An attractor is always followed by a repulsor (multiple zeros 
must be counted accordingly). The conclusion is that the asymptotic behaviour of a field 
theory depends on the position and nature of the zeros of its fi-function. 

As long as perturbation theory is our only guide, we cannot say anything about the 
properties of p (x) for arbitrary X. We do not know whether it has any zeros, let alone their 
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Figure 19.1 The zeros of the p function. 
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Figure 19.2 The nature (repulsor or attractor) of the free field 
theory 0 of the p function. 

nature. The only information perturbation theory can hopefully provide is the behaviour 
of P(A) at the vicinity of X = 0. We know that /3(0) = 0, because X = 0 is a free field 
theory. The nature of this zero (attractor or repulsor), will depend on the sign of the 
first non-vanishing term in the expansion of /3(X) in powers of X. But this expansion is 
precisely perturbation theory. If ,6 starts as in Fig. 19.2(a) i.e. from positive values, the 
origin is a repulsor. The effective coupling constant will be driven away to larger values 
as we go deeper and deeper into the Euclidean region. In contrast, if the first term of /3 
is negative, Fig. 19.2(b), the origin is an attractor. If we start somewhere between the 
origin and the next zero of /3, the effective coupling constant will become smaller and 
smaller and it will vanish in the limit. Such a theory is called asymptotically free. 

And now we can state the following, very important theorem. 
Out of all renormalisable field theories, only the non-Abelian gauge theories are asymptot-

ically free. 
This theorem was first proven by David Gross, David Politzer, and Franck Wilczek. 

The proof consists of a simple, straightforward calculation. We compute the first term 
in the expansion of the t3-function for all renormalisable field theories, i.e. 04, Yukawa, 
spinor electrodynamics, scalar electrodynamics, non-Abelian Yang—Mills theories, and 
any combination of these. Only for the pure non-Abelian Yang—Mills theory, which has 
a single coupling constant, the 18-function is negative. If we add any other, independent 
pieces, we lose asymptotic freedom. 

We reach the same conclusion by looking at the renormalisation group equation 
(16.88) or (16.94). For the Callan—Symanzik equation we had to rely on Weinberg's 
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theorem to prove that in the deep Euclidean region, the right-hand side can be neg-
lected. For the renormalisation group equation we must use another theorem, sometimes 
referred to as Kinoshita—Lee—Nauenberg theorem, which we can again prove order by 
order in perturbation theory. It states that the asymptotic behaviour of the Green func-
tions in the deep Euclidean region is given by that of the corresponding massless theory. 
Although we will not prove any of these theorems here, we indicate that they both have 
to do with the behaviour of the theory when the mass goes to 0. The Green functions for 
the Callan—Symanzik equation are renormalised on the mass shell, which means that the 
subtraction point is chosen equal to the physical mass. This means that the limit m —> 0 
is singular; otherwise, we would have obtained a theory with no dimensionful parameter 
whatsoever. What the theorem shows is that this singularity is no worse than a power 
of In m2; no pole singularities, such as M-2, appear. If this is correct, then ordinary di-
mensional analysis shows that we can drop the right-hand side of the equation. Similarly 
for the renormalisation group equation. If we keep the subtraction point fixed, we can 
put the mass equal to 0, and since there are no terms going like inverse powers of the 
mass, the asymptotic behaviour at large momenta remains the same. From this point the 
analysis of (16.88) or (16.94) is the same as that of the Callan—Symanzik equation. We 
obtain Eq. (19.3) and, finally, Eq. (19.6). 

We started this section in order to draw physically relevant conclusions out of seem-
ingly technical equations. We are only halfway through. We obtained an equation which 
gives the dependence of Green functions on the external momenta, but only in the un-
physical deep Euclidean region. We still have some work to do in order to extract results 
which can be directly compared to experiment. We will do this in a later chapter. 

19.3 Stability and the Renormalization Group 

In Chapter 17 we noted that relations among the parameters of a field theory which 
increase the global symmetries of the Lagrangian are stable under renormalisation. Here 
we want to ask the opposite question: given a renormalisable field theory, can we find 
all possible stable relations among its parameters? Remarkably enough, the answer turns 
out to be very simple and provides for another interesting application of the concepts of 
the renormalisation group. 

In order to illustrate the argument let us show a simple field theory example. It consists 
of two scalar fields 01 (x) and 02 (x) with quartic interactions. To keep the example as 
simple as possible, let us impose the discrete symmetries (Pi  (x) —> (x), i = 1, 2 and 
01 (x) 4--> (x) . The most general renormalisable Lagrangian for this model is 

1(a 01)2 + 1(a 
1 

= 1(a A01)2  —2 OA 02)2  — —
2 n22(0i (aD--x (o4 +o4)-L

g
02 02  • 4! 1 2 4! 1 2  

(19.7) 

The model contains two arbitrary coupling constants, and g, and we can ask the 
question whether there exists a relation among them 
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(19.8) 

with a constant C, which is stable under renormalisation. By inspection, we see immedi-
ately that here the answer is yes. In fact C = 0 is an obvious such relation, since, at this 
point, the model describes a system of two uncorrelated scalar fields. Are there any other, 
less trivial, relations? The renormalisation group offers a systematic way to address this 
question. 

The coupling constants X and g and their ratio ti, depend on the renormalisation 
scheme. This dependence is perturbative, which means that the values at any scheme 
can be computed as a formal power series in the values at any other. Let us consider two 
such schemes with coupling constants X(i), g(1)  and A(2), g(2). We have 

A (1 ) =X(2)  + al X + a242)  + a3X (2)g(2) + • • • 

g(1) =g(2)  + 171A 2)  + b242)  + b3A(2)g(2)  + • ••3 

(19.9) 

where the a's and the b's are calculable numbers which relate the two schemes (for ex-
ample, they may depend on the ratio ect 11tt 2  of the subtraction points in the two schemes) 
and the dots stand for higher loop terms. The important, although trivial, observation, 
is that at lowest order we must always have X(1)  = A(2)  and g(1)  = g(2), since there is 
no renormalisation in the classical approximation. Furthermore, (19.9) exhausts all pos-
sible choices in the sense that, given a set of coupling constants X and g obtained in a 
scheme (1), any other possible set will be given in terms of a set of numbers a and b. The 
scheme dependence (19.9) is governed by the renormalisation group. A straightforward 
calculation gives for the /B-functions associated with the coupling constants X and g at 
the 1-loop level: 

1672 /3x  =3X2  + g2  

1672,6g  =1g2  + 2Ag.
(19.10) 

A relation invariant under renormalisation is a fixed point of the renormalisation 
group, i.e. a zero of the corresponding fl-function. For example, we find immediately 
the trivial fixed point g = 0, a zero of /3g, which means that if we start with no g term in 
the Lagrangian, no such term will be generated by renormalisation. If we are interested 
in the behaviour of the ratio li = g/X we compute the /B-function 

,6
X/3g  -OA —1 

'7 _ — X2 = 48n-27/A (172  — 417  + 3).  

Equation (19.11) shows that we obtain three fixed points, namely ti=0, 1, and 3. The 
first is the trivial one we saw earlier. The second, t1=1, gives a more symmetric theory 
in which the discrete symmetries of (19.7) are promoted into a continuous 0(2) group 
with 01  and 02  becoming the two components of an 0(2) vector. Finally, the third fixed 
point, 71=3, through the transformation Ifri = 01  + 02  and *2  = 01  — 02  reduces again 
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to a system of two uncoupled fields with interaction *14  + *1. Furthermore, Eq. (19.11) 
shows that these are the only possible values of the ratio of the coupling constants which 
are respected by renormalisation. 

For a theory with more than two coupling constants the solution requires the study of 
all possible relations which are admissible in perturbation theory, a task whose weight in-
creases very fast with the number of coupling constants. For every relation, we compute 
the corresponding fl-function and look for possible fixed points. Although an exhaustive 
study may be quite tedious, the answer is always unambiguous. The moral of the story 
is that the reducibility of a model, in other words, the possibility of imposing renorm-
alisation stable relations among its parameters, can be studied by studying the zeros of 
the /3-functions. We may ask the question: how reliable is such a computation? Answer: 
as reliable as perturbation theory can possibly be. The reason is the result we proved 
in section 16.6.3 showing that the first non-vanishing terms in the expansion of the 
/B-functions are independent of the renormalisation scheme we use to compute them. 

The reader may wonder whether all this is worth the trouble, since the results of this 
example could be easily guessed by inspection. To show that such is not the case, we 
turn now to a less obvious example. 

We consider a model involving a Majorana spinor (x) and two spin zero fields, a 
scalar A(x) and a pseudoscalar B(x). They interact through the Lagrangian density 

= 1(a ,A)2  + 2(a,B)2  +i*abp- (19.12) 

+ fi/fifrA + y5 1kB — (A2 + B2)2 —gA2B2, 

where we have left out possible mass terms which will not affect our discussion at the 
1-loop order. The model is renormalisable by power counting and contains three inde-
pendent coupling constants, a common Yukawa f and the two boson self-interactions 
. and g. It is easy to show that due to discrete symmetries, it is stable. It is also easy 

to guess, following the results of the previous model, that the point X = g gives also a 
stable theory. The question is whether there are other stable points, for example a rela-
tion between all three couplings f, X, and g. Unless we know already the answer, we do 
not believe it can be guessed by inspection. So let us go on with the calculation. 

The /3 functions are 

2 a 
pf 2 

Ael 
A 72 

72 /3
g 

 

= 

= f2 + x2 ▪ 2f4 

= f2  a, ▪  g2 2f4.  

(19.13) 

We are interested in the variables qi = A/f2  — 1 and rig = glf 2  — 1. The linear 
combinations 81  = Ill — q2  and 82  = 11 1  + 5172 satisfy, to first order in /I I  and /72, the 
relations 

3 9 
Psi As2 (19.14) 
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which show that the point X = g = f 2  is a fixed point and gives a stable theory. It is not 
easy to guess the underlying symmetry because it transforms fermions into bosons and 
vice versa. It is called supersymmetry and we will introduce it in the last chapter. 

19.4 Dimensional Transmutation 

In the examples studied in Chapter 15, the critical point for the phase transition between 
the unbroken and the broken phase was found to be M2  = 0, the vanishing of the mass of 
a scalar field. Sidney Coleman and Erick Weinberg asked the question of how this value 
is affected by quantum corrections. By doing so, they discovered an interesting physical 
phenomenon, that of dimensional transmutation. 

Let us look at the Abelian example of section 15.3.1. At the classical level we can 
choose the value M2  = 0. In this case the model contains two arbitrary parameters, 
the coupling constants e and X. They are both dimensionless and the theory exhibits 
classical scale invariance. We have already noted that the M2  = 0 choice is not stable 
under renormalisation but let us ignore this point for the moment. For positive values of 
X the potential V(0) has only one minimum, the point 0 = 0, which is invariant under 
the U(1) transformations (15.41). We conclude that the U(1) symmetry is unbroken. 
However, the absence of a 02  term makes the potential very flat around the 0 = 0 
point and it is legitimate to ask the question whether quantum corrections may change 
the situation. It turns out that this question can be answered using perturbation theory 
and the renormalisation group. We will follow the original discussion of Coleman and 
Weinberg. Before going to a specific model, we introduce some new field theory concepts 
which we will find useful. 

In section 16.2 we introduced the effective action I' [i, (d)] as the Legendre transform of 
the generating functional of the connected Green functions, Eq. (16.7). When expanded 
in powers of the classical field 0(e0, Eq. (16.9), it gives the one-particle irreducible Green 
functions. On the other hand, we noted in Chapter 15 that the ground state of the system 
corresponds to a constant field configuration. This suggests an alternative expansion of 
r [ow) ], namely in the number of derivatives of the classical field: 

r [ow) ]  = f da 4_ v (0(d) ) + 
1
1  (a ito(ci) ) 2 z  (ow)) + ...] . (19.15) 

V Wel) ) is called the effective potential. In the classical theory it coincides with what 
we have used so far, namely the sum of all non-derivative terms in the Lagrangian. 
Its higher order corrections are given by the sum of all 1-PI diagrams with zero external 
momenta. The renormalisation conditions, which we have expressed in terms of the 1-PI 
Green functions appearing in the expansion (16.9) of r [o( icD,  3 can be expressed equally 
well in terms of the functions V, Z, etc. of the expansion (19.17). For example, the 
conditions (16.53), (16.54), and (16.68) for the 04  theory can be rewritten in terms of V 
and Z as 
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d2  V 2. d4  V 
clip(d)2 110) =0 = 7/2  doc1)4 I 0(c1)-0 = A; Z(0) = 1. 3 (19.16) 

After these preliminaries, we consider the Coleman—Weinberg model, that of a mass-
less complex scalar field 0(x) interacting with the electromagnetic field A,(x), i.e. Eq. 
(15.40) with M = 0: 

1 

" P' 
ri = --4 F2  + 1 ca + ieA,)012  — X (00*)2 . (19.17) 

The analysis presented in section 15.3.1 shows that, classically, the ground state is 
given by the symmetric configuration 0 = 0. Let us compute the 1-loop quantum correc-
tions. We write 0 = (01 +1.02)/N/2 and compute V as the sum of all 1-loop 1-PI diagrams 
with zero external momenta. Because of the U(1) symmetry, it is sufficient to consider 
only external 01  lines. We need a gauge-fixing term and we choose to work in the Landau 
gauge in which the photon propagator is transverse, given by —i[g,„ — k,k,lk2]1(k2  + iE). 
We have three types of diagrams to consider: (i) those of Fig. 19.3(a) with only 0-lines 
in the loop, (ii) those of Fig. 19.3 (b) with only photon lines, and (iii) the mixed ones of 
Fig. 19.3(c). It is easy to see that in the Landau gauge and taking into account the fact 
that all external lines carry zero momentum, the diagrams of Fig. 19.3(c) vanish. We are 
left with the first two classes. The computation is straightforward and we find that 

1 d4k -.‘ 1 [(  )42   V ± (  42   V + 
3 
 ( e202   V 

i (27 )4 2n 2(k2  + iE) ) 6(k2  + iE) ) 4(k2  + iE) )1 
V1

i

' n1 
(19.18) 

where we have dropped the superscript (cl) for the classical field. The first term comes 
from the diagrams with only 01  internal lines, the second with only 02, and the third 
with only photons. Apart from combinatoric factors, they give identical contributions. 
Each one of the terms in the series is divergent. The first two have the usual ultraviolet 
divergences which we know how to remove by renormalisation. We must introduce a 
mass and a coupling constant counterterm. Note that the absence of a mass term M200* 
in the Lagrangian (19.17) does not prevent the appearance of a mass counter-term. This 
is in agreement with our conclusions in chapter 17 in which we showed that setting the 

a b c 

Figure 19.3 The three types of 1-loop diagrams contributing to 
V(0). 



516 Some Consequences of the Renormalisation Group 

mass of a scalar field equal to 0 does not increase the symmetries of the theory. However, 
the absence of a mass term in the propagators makes all terms with n > 1 in the series 
(19.18) infrared divergent. However, if we introduce some infrared cut-off, we can sum 
the series and obtain, after rotation to Euclidean space, 

= 
1 

V1 in(1 
d4k [ A02  

—) in (1 
A.02 
—) + 3 ln (1 

e202 
+ —)] . (19.19) 

(27)4  2k2  6k2  4k2  2 

In order to obtain the total effective potential to this order we add the 0-loop 
contribution V0, given, including the counter-terms, by 

XZA 61142 
170  = 4! + 2 2, 

where, as usual, the counter-terms are given by 

ZA  = 1 + zIA + e2; sit42 =
8e

1 e2 

(19.20) 

(19.21) 

with the z's and the S's divergent constants to be determined by the renormalisation 
conditions. In our case we want to use conditions of the form 

d2 v 
d02 10=0 = 0, (19.22) 

which ensures that the renormalised mass of the scalar field is 0. This condition will 
fix the counter-terms 81 and Bel  . For the coupling constant renormalisation we need a 
condition involving the fourth derivative of V with respect to C. We cannot impose the 
one used in (19.16) because of the infrared divergence at (/) = 0. So we introduce a 
subtraction pointµ and we impose 

d4  V 
do4 lo=, = A. 

We can now perform the momentum integrations in (19.19) and find that: 

V = 04 
 ± (

+ 

5  x2 3e4 \ 
04  (i n — 

02 25  
— 

4! 115272  6472 ) µ2 
— 

6
) . 

 

(19.23) 

(19.24) 

This is our final answer for the effective potential at this order. Note that because of 
the vanishing of the diagrams of Fig. 19.3 (c), there is no Xe2  term. Higher orders will 
bring corrections proportional to A3, A2e2, and e6. The consistency of the perturbation 
expansion requires that all coupling constants are << 1, so we must drop the A2  term and 
keep only the terms and e4. The effective potential (19.24) has a minimum away from 
the origin in classical field space. If we call v the value of the field at the minimum, we 
obtain 
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4  

d

dV _ 
0

(X6 1672 
 v3  = 0, (19.25) 

so we may have v # 0, provided the coupling constants satisfy the relation 

33 4  
= e. -

872 
 (19.26) 

From this point the analysis parallels that of Chapter 15. Translating the field 0 —> 0+ 
V breaks the gauge symmetry spontaneously and gives a mass to the photon my = e2v2. 

The would-be Goldstone boson decouples and we are left with a single neutral scalar 
field with mass ms = 3e4v2/872. 

We have a few remarks before closing this section. 

1. What we have established is an extension of the domain where spontaneous 
symmetry breaking occurs by considering the 1-loop radiative corrections to the 
effective potential. This result can be easily extended to the non-Abelian case. 

2. In principle, we can repeat the calculation for the simple 04  model of section 
15.2.3. The radiative corrections to the effective potential are given by (19.24), 
setting e = 0. However, here the analogy stops. Finding a non-zero v would require 
a balance between a term of order X and one of order X2  and such a relation makes 
no sense in perturbation theory. In our case we are saved because of the presence 
of two coupling constants. The relation (19.26) can be correct even if both are 
very small. 

3. In the symmetric phase the model is described by two dimensionless parameters, 
the coupling constants X and e. In the broken phase the two are related by (19.26), 
but we now have a new dimensionful parameter v. In other words, we have traded a 
dimensionless parameter for one bringing a mass scale. This phenomenon, which 
Coleman and Weinberg called dimensional transmutation, is expected to be quite 
general, for all theories which are classically scale invariant. Whether its study 
is possible by perturbation depends on the presence of more than one coupling 
constant. 

4. In our calculations we have worked in the Landau gauge. The effective potential is 
not a physically measurable quantity and, in general, it is not gauge invariant. This 
raises the question of the physical relevance of the result. The answer, which we do 
not prove here, is that although all intermediate steps, in particular the expression 
for the effective potential, are indeed gauge dependent, the physically measurable 
conclusions, such as the scalar to vector mass ratio ms/my, are not. 

5. The relation (19.26) looks rather peculiar; in particular, it does not seem to res-
ult from any symmetry of the Lagrangian. We have learned in this book to be 
suspicious against such arbitrary relations. The parameters of a Lagrangian are 
supposed to take generic values, unless otherwise dictated by an underlying sym-
metry. How general is an effect which seems to depend on a specific relation? 
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The answer turns out to be surprisingly simple. Let us start with a couple of gen-
eric values for and e with the only restriction of both being much smaller than 
1 for perturbation theory to be reliable. Since we have a massless theory, these 
coupling constants should be defined by renormalisation conditions imposed at a 
given scale IL. The dependence on µ can be studied using the equations of the 
renormalisation group. The result (see Problem 19.2) is that no matter what the 
initial values are, by a change of scale we can always bring the effective values of 
the coupling constants in agreement with the relation (19.26). The phenomenon 
of dimensional transmutation is indeed a genuine physical phenomenon. 

19.5 Problems 

Problem 19.1 In section 19.3 we studied the stability properties of a field theory 
involving two scalar fields. The purpose of this problem is to generalise the analysis 
to the case of a theory invariant under 0(N) x 0(N), as a function of N. 

1. The case N = 2. Consider a couple of two-component fields 01 (x) and (x), 
i=1,2. We use a vector notation and write the fields as 01  and 02. The scalar 
product 0 1  • 0 1  denotes the sum 0101 + f0q. The Lagrangian is 

E = 1(0,41) • (Poo + 1(a,4,2)(a/.02) -1r/22 (01 • 01 + °2 • °2) 

-±T! [(°1 • °1)2  ± (.2 • .2)21 (°1 • °1)(.2 • .2)• (19.27) 

The discrete invariance we studied in section 19.3 has now been pro-
moted to 0(2) x 0(2) x P, where P denotes the exchange transformation 
01 <--> 02. 
(i) Compute again the 1-loop t3-functions ,6 A  and /3g. 

(ii) Find the fixed points of the ratio ti = glA and explain their physical 
meaning. 

(iii) What can we say about their stability properties? 

2. We study now the general case of N-component fields where the scalar 
product denotes the sum 01  • 01  = 010i . The Lagrangian density has 
the same form as (19.27). The invariance is 0(N) x 0(N) x P. 

(i) Compute again the 1-loop t3-functions ,6 A  and ,8g as functions of N. 

(ii) Find the fixed points of the ratio ti = 

(iii) Study their stability properties. 

(iv) Consider the limit N —> oo keeping NX = A* fixed. Explain the meaning 
of the fixed points. 
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The answer to the last question is as follows. At the limit N —> oo with X* fixed, the 
fixed points are ti=1,0, and -1. They correspond to the uncoupled case, the symmet-
ric case and one in which the interaction becomes proportional to (X* IN)(03-03) 2  

By a change of variables of the form X = (01  + 2)1,./2 and Y = (01- 02)/,  it 
can be written as (A*/2N) (X • Y)2. It is invariant under a subgroup of the original 
0(N) x 0(N) symmetry, namely its diagonal subgroup 0(N) which rotates sim-
ultaneously X and Y. This coupling alone does not correspond to any fixed point 
for finite N, because the 0(N) symmetry allows for other couplings, such as X4, 
Y4, and X2  Y2. However, we can easily check that the diagrams which would give 
counter-terms away from this point are suppressed by inverse powers of N, so at the 
limit N —> oo this becomes a fixed point. Indeed, the counter-term for the (X • Y)2  
interaction can be isolated by looking at a 1-loop diagram with X1  Yi X2  I72  ex-
ternal lines. There are N such diagrams because we can circulate all N components 
in the loop. So the counter-term is proportional to ((X*)2  IN). On the other hand, 
the counter-term for the X4  term is obtained by looking at a diagram with four Xi 
external lines. If we start with only a (A*/2N) (X • Y) 2  interaction we have only one 
such diagram, so we obtain a counter-term proportional to ((X*)2  IN2). 

Problem 19.2 Compute the t3-functions for the coupling constants e and X of the 
Coleman-Weinberg model and show that the relation (19.26) which exhibits the 
phenomenon of dimensional transmutation is always reached for generic, but small, 
values of the coupling constants. 

Problem 19.3 The purpose of this problem is to study the renormalisation prop-
erties of the non-linear a-model we introduced in section 15.2.5. Consider the N 
component scalar field 0, (x), i = 1, 2, ..., N, interacting through an 0(N) invari-
ant interaction. Following the analysis of section 15.2.4, we assume that 0(N) 
is spontaneously broken to 0(N - 1) and introduce the notation 0 = (o-  ,n-j), 
j = 1, 2, ..., N -1. We eliminate the field a through the condition 

N-1 E  2 v2 = a2  + 7r• 
j=1 

(19.28) 

and we rescale the 7 field through n-j  —> We want to study the perturbation 
expansion in powers of X of the resulting non-linear model. 

(i) Show that at any order of perturbation the effective Lagrangian density is 
given by 

/L 
Leff  = —

1 
[aigr • attx + 

a 

v2 —Air 

a

• 

y 
ir  ] + In det(v2  - Xx • n) 

2 
(19.29) 



520 Some Consequences of the Renormalisation Group 

and we can ignore the bound induced by the condition (19.28). The non-
linear terms in (19.29) are understood as producing an infinite power series 
in A. 

(ii) Find the Feynman rules. 

(iii) Ignoring possible infrared divergences, use a power-counting argument to 
prove that the model is renormalisable in a two-dimensional space—time. 

(iv) Show that the linear term ca of Eq. (15.23) regularises the infrared beha-
viour. By power counting show that it does not impose a breaking of the 
0(N). 

(v) Find the counter-terms. 
The model is analysed in detail in 'Quantum Field Theory and Critical 

Phenomena', by Jean Zinn-Justin (Oxford Science). 



20 

Analyticity Properties of Feynman 
Diagrams 

20.1 Introduction 

In Chapter 12 we saw that the axioms of relativistic quantum field theory, in particu-
lar that of locality and causality, imply certain analyticity properties for the Wightman 
functions. They are analytic in an extended tube and their physical values are obtained 
as boundary values of these analytic functions when we approach the physical region. In 
this chapter we want to see how this programme is realised in the case of simple Feyn-
man diagrams. In doing so we will discover a surprisingly simple physical picture of the 
unitarity property of the S-matrix. 

For simplicity, we will consider only scalar field theories and, in this chapter, only 
massive particles. The extension to higher spins brings only inessential complications. 
In contrast, those due to the presence of massless particles are highly non-trivial, both 
technically and physically. We will look at them very briefly in a later chapter. 

We start with a simple kinematical analysis. The n-point Green function depends 
on the n external momenta. By Lorentz invariance it really depends on the scalar 
products pi  • pj, whose number is restricted by the overall energy—momentum conserva-
tion: Ei  pi  = 0. For simplicity we consider all momenta incoming. If some are outgoing 
we must change their signs. For example, the 2-point function is a function of only one 
variable, p2. For the 4-point function (Fig. 20.1), we introduce the Mandelstam variables 

s = (pi +p2)2; t = (pi +p3)2; u = (pi +p4)2. 

Energy—momentum conservation implies that they satisfy 

4 

S +t+u=Epi  
i=1 

(20.1) 

(20.2) 

which means that the 4-point function depends on six scalar variables, which can be 
chosen to be the four squares of the external momenta and two scalar products. For a 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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Figure 20.1 The Mandelstam variables. 

scattering amplitude, where the external momenta are on the mass shells of the corres-
ponding particles, they reduce to two variables, which, in a particular reference frame, 
correspond to the incident energy and the scattering angle. Note also that for a pro-
cess pi + /3,2  —f (—p3) + (—pa) s = (pi + p2)2  equals the square of the total energy in 
the centre-of-mass frame and t and u are the squares of the two momentum transfers. 
This counting can be extended to higher n-point functions, each additional momentum 
bringing four more variables, its square and three scalar products. Obviously, for a phys-
ical amplitude, all these variables take real values, but it will be instructive to consider the 
extension to the complex domain and study the analyticity properties. Note also that a 
fundamental property of quantum field theory which we call crossing symmetry' implies 
that when we compute a 4-point Green function, we can obtain the scattering amplitudes 
for three physical processes, depending on which momenta we consider as incoming and 
which as outgoing. We call these processes channels. Thus we speak about the s-channel 
(pi + /3,2 —f  (—p3) + (—pa)), the t-channel (pi + p3  —> (—p2) + (—pa)), or the u-channel 
(pi + p4  —> (—p2) + (—p3)). It is easy to check that the physical regions for these three 
processes do not overlap. For example, when all masses are equal, the physical region 
for the s-channel is s > 4m2, t and u are negative, and, similarly, that for the t-channel is 
t > 4m2, while s and u are negative. The fact that the same Green function describes all 
three scattering amplitudes according to the domain of the variables implies that we can 
relate these amplitudes by analytic continuation. This is another motivation to study the 
analyticity properties. 

20.2 Singularities of Tree Diagrams 

We start with the trivial case of tree diagrams. The only singularities are the poles 
of the propagators at k2  = m2  with the Feynman prescription m2  —> m2  — i€. If we 
consider a two-particle scattering amplitude (Fig. 20.2), the singularity appears at 
s = (pi  + p2)2  = m2. The physical region for this amplitude is s > (m1  + m2) 2, the square 

1  Crossing symmetry is obvious in perturbation theory when we compute a scattering amplitude using 
Feynman diagrams. 
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Figure 20.2 The s-channel pole of a scattering 
amplitude. 

of the sum of the two incoming particles. On the other hand, we recall that the asymptotic 
theory which allowed us to relate scattering amplitudes to Feynman diagrams applies, 
strictly speaking, only to stable particles. Unstable particles do not correspond to in, 
or out, states. The stability of the exchange particle implies both m < m1  + m2  and 
m < m3  + m4, the masses of the outgoing particles. In other words, the singularity is 
always below the threshold of the physical region. The same is true if we look at a pole 
in a momentum transfer variable t or u. The physical region is t < (mi  — m3)2  but the 
stability of the outgoing particle implies m3  > m + ml , which means again that the pole 
singularity is outside the physical region. 

This analysis applies also to 'tree-like' lines in a diagram, i.e. lines that, if cut, separate 
the diagram into two disconnected pieces (Fig. 20.3). The pole singularity appears at 

pi)
2 

= 1/22  but again stability implies that m is smaller than the sum of the masses of 
all the particles on the left or the right. We can find connected but one particle reducible 
Feynman diagrams whose tree-like lines appear to generate poles of higher order; see, 
for example the diagram of Fig. 20.4. The internal line with momentum k will give a 
factor 

2  
k2 - m2 + i€ 

E (k) 
k2 — m2 + i€ 

(20.3) 

where E (k2) is the 1-PI part of the 2-point function of the field whose propagator we 
are considering. For an arbitrary choice of the renormalisation condition used to define 
E (k2), this diagram does indeed produce a double pole, (k2  — m2)-2. However, for a 
scattering amplitude we must use physical, on-shell, renormalisation conditions which 

Figure 20.3 The pole generated by a tree-like 
internal line. 

k
> 

Figure 20.4 An example of a double pole. 
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force E (k2) to vanish when k2  equals m2, the value of the physical mass. As a result, 
scattering amplitudes have only simple poles. We will come back to this point when 
discussing unstable particles. 

20.3 Loop Diagrams 

In Contrast, to the tree diagrams, the singularity structure of loop diagrams is much 
more involved. Let us look at the 1-PI ones. The expression for a general diagram was 
given at (16.24) with N and D given in (16.25) and (16.26). Singularities will appear 
only when D vanishes. It is clear that when all momenta are Euclidean the propagators 
for massive particles are strictly positive definite and never vanish. It follows that the 
Green functions are analytic in any finite region of Euclidean space. It is not difficult 
to prove that this conclusion survives renormalisation for some set of Euclidean space 
renormalisation conditions, because, as we explained already, order by order in perturb-
ation theory, the counter-terms introduce only polynomials in the external momenta. 
Therefore, singularities will appear only when we move to the physical Minkowski space 
and, in particular, when we consider scattering amplitudes. A zero of D will be a sin-
gular point of the Green function if it appears in the domain of integration of the loop 
momenta and cannot be avoided by suitably deforming the integration contour. Using 
the general formula (16.37), we can trade the momentum integrations for those over the 
Feynman parameters z which vary from 0 to 1. Singularities will appear in two cases: (i) 
when, for some values of the external momenta, the denominator vanishes at the edge 
of the domain of the z integration (end-point singularities); it is clear that such a point 
cannot be avoided by any kind of deformation of the z integration contour and we will 
obtain a singularity; and (ii) when the contour of the z integration is pinched between 
two, or more, singularities (pinching singularities). L. D. Landau has derived a set of 
equations which exhibit the necessary conditions for such singularities to occur for a 
multiloop diagram, but we will not discuss them here. We will limit ourselves to showing 
explicitly the singularity structure of some simple 1-loop diagrams. 

We start with the simplest one, the 1-PI diagram of Fig. 20.5. It can be viewed either 
as the 1-loop contribution to the 2-point function in a 03  theory or as part of the 1-
loop contribution to the 4-point function in a 04  theory. We started its computation in 
(16.42). Here we will need also the finite part. We write that 

1 
/(s) = f

j  
1  dz 1  ddk  

0  (27)d [k2  — m2  + sz(1 — z)]2  ' 
(20.4) 

where s is either p2, for a 2-point function, or (p1  + p2)2  for a 4-point one. We are 
interested in the analytic properties of I(s) in the complex s plane. Performing the 

, C > >p  Figure 20.5 The 1-loop singularities of the 2-point function. 
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d-dimensional momentum integration and dropping terms which vanish when E goes 
to 0, we obtain 

1 2 
— i1672 /(s) = — — y + ln(47) — f dz ln[m2  + sz(z — 1)]. 

E 0 
(20.5) 

We have used the expansions F (€12) = 2IE —y + 0(E) and ce€ = 1 + dna + 0(E2). y is 
the Euler constant. The analytic properties in s are contained in the last term. We write 

1 ± N/1 — 4/7 m2 
sz2 — SZ + M2 = S(Z — z+) (z — z_); z± = 

2
; 77 = —. 

s 

With this notation the integral in (20.5) gives 

(20.6) 

fo 
1   z +  

dz ln[m2  + sz(z— 1)] = In s + ln(z+z_) + il — 4ri ln— — 2. 
z_ 

(20.7) 

Keeping only the principal definition of the logarithm, often called the physical sheet, 
we obtain 

f 
1  1 + ,/1 — 4ri 

dz ln[m2  + sz(z— 1)] =1n m2  — 2 + 11 — 471 ln (20.8) 
1 — N/1 — 471 

The singularity structure can be read from this expression. We see, in particular, that: 
(i) for real s < 4m2, z+  and z_ are complex conjugate to each other and the amplitude is 
real and analytic on the physical sheet.2  (ii) The threshold of the physical region s = 4m2  
is a branch point with a cut running from s = 4m2  to infinity. The discontinuity across 
the cut can be computed as the difference 2iLI(s) I(s + iE) — /(s — iE): 

i 
2iiI(s) = 

87 
s — 4m2  

0(s — 4m2). 
s 

(20.9) 

In principle, if a function I(s) is analytic in the cut plane, the knowledge of the dis-
continuity across the cut allows us to reconstruct the function by writing the Cauchy 
theorem along a contour C going around the cut, as shown in Fig. 20.6. Such a relation 
was first used by R. Kronig and H. A. Kramers in order to express the forward scat-
tering amplitude of light of frequency w in a medium as an integral over the imaginary 
part of the scattering amplitude at all frequencies. By the optical theorem this equals the 
total absorption cross section of light in the medium. These relations are called dispersion 
relations. However, in our case, AI(s) goes to a constant when s goes to infinity and the 
integral does not converge. We can go around this difficulty by introducing a subtraction, 
namely by writing the Cauchy integral not for the function I(s) but for the difference 

2  Note, however, a singularity at s = 0 on the second sheet. 
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[I(s) — I(so)]/(s — so). so  is an arbitrary point provided it is a point of analyticity of I(s). 
We thus obtain a once subtracted dispersion relation which takes the form 

co s — so A/(s') 
I(s) = I(so) + — f ds'  

7 4m2 (S/  — SO) (S
i  — s) . 

(20.10) 

It determines the value of I(s), in particular the value of its real part at any given point 
s, in terms of the imaginary part along the cut. The price we pay is the introduction of 
an unknown constant, the value of I at the point so. But this is precisely the arbitrariness 
we always had in going through the renormalisation programme. For example, if I is the 
scalar field 2-point function in a 43  theory, this will correspond to the renormalisation 
condition which determines the mass. If it is the 4-point function in a 04  field theory, we 
can choose so = 4m2 /3, in which case I(so) is just the coupling constant. 

For the 04  theory we have two more identical diagrams, one for each crossed channel, 
t and u. It follows that for this theory and at 1-loop order, the two-particle elastic scatter-
ing amplitude satisfies independent dispersion relations in each of the variables. In each 
of them, the imaginary part is independent of the other variables. This simple property 
ceases to be true for other field theories, or for 4)4  at higher orders. The simplest example 
is the box diagram in a 43  theory, Fig. 20.7. Apart from trivial numerical factors, it is 
given by the integral 

)=( Figure 20.7 The box diagram. 
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/(4) (Pi, •••,P4) = 
d4k 1 

J (27)4  (k2  — m2) [(k + Pi)2  m2] [(k + + P3) 2  — m2]Rk — P2)2  — m2i' 
(20.11) 

where, as usual, by m2  we mean m2  + i€. There is no reason to introduce a regulator to 
an already nicely convergent integral. Using the Feynman parameters zi , i =1,2,3,4, Eq. 
(16.30), we rewrite (20.11) as 

I p4) = (4)  (pi 3! d4k  11  11L  dz1  8(1 — EL zi) 

J (2n- )4  jo [k2  F2]4 

with F2  given by 

F2  = Z224.5 + Zi Z3 t - M2  [Zi Z3 - (Z2 + Z4)2] • 

(20.12) 

(20.13) 

We have put the external momenta on the mass shell, j;) = m2. s and t are the Mandel-
stam variables, Eq. (20.1). The four-dimensional momentum integral can be performed 
and gives 

l 

/(4) (s
,
t)  

fo 
— zz) (20.14) 

(F2)2  

To this expression we must add the crossed diagram, which is the same as (20.14) 
with s and u interchanged. The analyticity properties of the scattering amplitude 
I(4)  (s, t) for complex values of the squares of the centre-of-mass energy s and the 
momentum transfer t can be obtained by looking at the singularities of (20.14). 
The physical region of the amplitude is given by s > 4m2, t,u < 0 restricted by the 
condition (20.2), s + t + u = 4m2. The new feature is that the discontinuity across 
the cut in the s-plane is a function of t which has its own singularities in the complex 
t-plane. A straightforward calculation gives the discontinuity in s for fixed t, defined as 
2iAs/(4) (s, t) = /(4) (s + i€, t) —/(4) (s — i€, t), as 

1(4)  (s + i€, t) — 1(4)  (s — it€ , t) = 
i 1 

in

A + 2sDis(s— 4m2) 

D A — 2sDi s(s — 4m2) 
(20.15) 

where a factor 6(s — 4m2) is understood. A and D are functions of the Mandelstam 
variables 

A = s2  (s — 2m2)2  — s2  (s 4m2)(t — u) (20.16) 

D = stRs — 4m2)(t — 4m2) — 4m4]. (20.17) 

Note also that the centre-of-mass scattering angle 6 is given in terms of the 
Mandelstam variables as 
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t —  u 
cose =  

s — 4m2.  
(20.18) 

Using (20.15), we can write an (unsubtracted) fixed t dispersion relation for I(4)  (s, t): 

1 '°o Asp4)(.5,,t) 
i(4)(s,t) = _ ds'. 

7 4m2 S' — S 
(20.19) 

On the other hand, As/(4)  has a discontinuity in t for fixed s, given again by 2ips, (s, t) = 
A j(4)  (s, t+i€)— AsI(4)  (s, t—itE). It follows that we can express I(4)  (S, t) in terms of a double 
dispersion relation of the form 

1 1 1  Pst(S/ 5  t')  
I14)  (s, t) =	 d/dtl . 

72  i i (s' — s)(t' — t) 
(20.20) 

Adding the crossed box diagram gives a similar expression with s and u interchanged, 
i.e. a double dispersion relation in t and u. The sum is 

j f (s, — s)(t/ — t 
721(4) (S, t) = f pst  (.5,, t,

s'dt' + 
)

d 
) f put (ii/ , t,) du'dt'. 

J (74,  - to (t, _ 0  
(20.21) 

The double discontinuities ,ost  and put  are called double spectral functions. They vanish 
outside a certain region in their variables which we can determine by looking at (20.15). 

The relation (20.21) is a particular example of a general expression which is assumed 
to describe any scattering amplitude, called the Mandelstam representation. We will see it 
again in a later section. 

20.4 Unstable Particles 

The restriction to stable particles, although theoretically justified, is too strong for phys-
ical applications. The large majority of physical particles whose interactions we describe 
by quantum field theory are in fact unstable.3  Nevertheless, we expect this formalism to 
be still applicable, provided the lifetime of the unstable particle is long compared to the 
typical time during which the interaction takes place. However, this raises the spectrum 
of having singularities in the physical region of scattering amplitudes, which is obviously 
unacceptable. We will address this question here. 

Let us consider a very simple model consisting of two real scalar fields, 0(x) and 0 (x). 
Their interaction is assumed to be of the form 

G = 1(00)2  + 1(a0)2 _ 1m202 _1/14202 _ _A 
04 _ gm 0¢2. 

2 2 2 2 4! 2 
(20.22) 

3  The only elementary particles which appear to be absolutely stable are the photon, since it is massless, the 
neutrinos, as the lightest fermions, the electron, as the lightest electrically charged particle, and, possibly, the 
proton, if baryon number turns out to be absolutely conserved. 
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We have explicitly included the factor m to make the coupling constant g dimension-
less. In the quantum theory these fields describe two spin-0 particles which we call A, 
for 0, and a, for 4). We will assume M > 2m, which means that A can decay into two 
a's. More realistic models will be examined in a later chapter. 

The physical region for the scattering amplitude of the process a + a —> a + a is 
s > 4m2. In lowest order (tree approximation) this amplitude receives a contribution 
from the diagram of Fig. 20.8(a) given by 

1 /(4)(
s, 
 = ig2m2  

— M2  
(20.23) 

where the dots stand for the crossed terms with the A exchange in the t and u channels. 
The contribution (20.23) clearly exhibits the s = M2  pole in the physical region. The 
same interaction which is responsible for this singularity causes the A particle to decay 
with an amplitude given, to lowest order, by the diagram of Fig. 20.9: 

j(3)  = igm. (20.24) 

We obtain the decay probability by integrating over the two-particle phase-space4, 

a 

(a) (b) 

•'v•' ••'• • •6• 

(c) 

Figure 20.8 The contribution of an unstable intermediate particle: in 
the tree approximation (a), including higher orders (b) and (c). 

Figure 20.9 The decay diagram of the unstable particle A to two a's. 

4  In our model the two particles in the final state are identical, so we integrate over half the phase space. 
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g
2 n12

4 4 dr = 
4M 
— d41  d42  (27) (P — qi  — q2), 

where d4 denotes the invariant measure on the hyperboloid q2  = m2  given by 

dR
CI4 

(27)  
q 

 3
2 d3  q 

q° 
_  - m2,  (q0

(27) 
) = . qo = ✓ i qi2 + m2 

2' 

(20.25) 

(20.26) 

The result is 

   

    

r= 
g2 m2 

1 1,

/ M2 4m2 

2M 167 M2  
(20.27) 

We want to argue that if the lifetime of the particle, which is the inverse of T, is long, 
the field-theoretic description should be adequate. We want to make this statement more 
precise. 

The tree diagrams of Fig. 20.8(a) give the order g2  contribution to the a + a —> a + a 
scattering amplitude. At order g4  we have several new diagrams, but, among them, we 
want to single out the one of Fig. 20.8(b). It is the g2  correction to the A propagator. We 
have already computed this diagram and let us call the result ig2  m2  E (p2). At this order 
the A propagator is given by 

GA  (p2) = p2 M2 (I" • [ g2m2 z  h2) 
1M2 (20.28) 

 

Let us assume, for the moment, that this procedure can be iterated; in other words, let 
us assume that we are allowed to isolate the set of diagrams of Fig. 20.8(c) and sum the 
resulting series. We will try to justify this assumption presently. Under this assumption, 
the A propagator becomes 

GA (P2)  = p2 M2 g2 m2 E (p2) (20.29) 

s The important point is that as we have computed already for p2 > 4m2 E  (pa) has 
both a real and an imaginary part. The ultraviolet divergence 11€ belongs to the real 
part, while the imaginary part (20.9) is well defined and calculable. Therefore, the 
renormalisation condition which determines the mass of A can only be enforced on 
Re E (p2): 

Re (p2)1p2 =m2 = 0. (20.30) 

It follows that the position of the pole of the propagator (20.29) is shifted to the 
complex p2-plane with an imaginary part proportional to (M2  — 4m2)/M2, leaving the 
real axis free of singularities. This mechanism seems to solve the problem of the s = M2  
pole in the a + a scattering amplitude, but it appears as an artefact. Let us have a closer 
look. 
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The first observation is that the imaginary part of E (p2) is given, apart from a trivial 
kinematical factor, by the decay probability (20.27). We will argue in the next section 
that this is a general result in quantum field theory, but here this observation allows us 
to write the propagator (20.29), at the vicinity of the pole, as 

i  

GA (1)2) = 
p2 M2 + 21M F 

(20.31) 

This resembles the Breit—Wigner formula we obtain in non-relativistic potential scat-
tering for a resonance. Because of that we often call unstable particles resonances. In the 
a+ a scattering amplitude the A exchange represented by (20.31) will give the dominant 
contribution if the position of the pole is not too far from the real axis. This enables us 
to sharpen the long lifetime criterion for an unstable particle. The necessary condition 
for the applicability of this formalism is F << M. We conclude that switching on the in-
teraction which makes a particle to decay moves the pole originally situated at p2  = M2  
to the complex plane and, in fact, it produces a pair of complex conjugate poles on the 
unphysical sheet because the imaginary part of E changes sign when we turn around the 
branch point p2  = 4m2. It is in this sense that we often say that unstable particles have 
complex masses. 

The last point we want to make in this section concerns the summation of the series of 
diagrams in Fig. 20.8(c). In principle, the perturbation series is an expansion in powers 
of the coupling constant and each term should contain all diagrams of a given order. 
It is only in this case that formal properties, such as the unitarity of the S-matrix or its 
gauge invariance, are expected to hold. Here we have not followed this rule; we have 
selected a certain class of diagrams at each order. Formally, it is just a rearrangement 
of the terms in the perturbation expansion which produces a new series in which the 
zero order A propagator is a sum containing arbitrary powers of g. This raises the ques-
tion of the consistency of the scheme. Rather than starting a lengthy discussion on the 
properties of the perturbation expansion, discussion in which we are in no position to 
reach meaningful conclusions, we note that it is just a formal series and the only thing 
we need is a parameter allowing us to identify successive orders. The coupling constant 
is one such parameter, but it is by no means the only possible one. In order to justify our 
expansion it is sufficient to exhibit a new parameter, let us call it 77, such that each term 
in the expansion of the a + a scattering amplitude in powers of 77 automatically contains 
the infinite series of diagrams of Fig. 20.8(c). There is a simple formal way to obtain 
such an 17-expansion which is useful in many other applications of quantum field theory. 

We modify our Lagrangian (20.22) by introducing N copies of the field 0. The in- 
teraction term becomes Et We will consider a double expansion in powers of 
g and 1/N for the scattering of al  + al  —> a2  + a2, where at  is the particle associated 
with the field The tree diagram of Fig. 20.8(a) is of order g2  and the box diagram 
of Fig. 20.10 of order g4. The 1-loop correction of Fig. 20.8(b) gives g4N because we 
can circulate all the N components in the loop. Every subsequent term in the series of 
Fig. 20.8(c) brings a factor g2N . This suggests we should consider the expansion in 
powers of 1/N while keeping k = g,./TV fixed. This will make all terms in the series of 
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Figure 20.10 The box diagram contribution of the unstable particle A to 
the scattering amplitude. a 

Fig. 20.8(c) of order 1/N, while the box diagram and all the others are of order 1/N2  and 
higher. Intuitively, we expect such an expansion to make sense for large N, but we want 
to emphasise here that for the purposes of defining a formal power series, any value will 
do. It defines a theory in which it is legitimate to replace the real value of the mass in the 
propagator of an unstable particle by its complex value. The 1/N expansion provides a 
powerful method for studying quantum field theory in many applications which go far 
beyond the unstable particles we are studying here. We will see some examples in a later 
chapter. 

20.5 Cutkosky Unitarity Relations 

In section 20.3 we derived dispersion relations for the scattering amplitude in quantum 
field theory. We made the analogy with the Kronig—Krammers dispersion relation for the 
scattering of light. However, the analogy is still incomplete. In the Kronig—Krammers 
relation the discontinuity across the cut, i.e. the spectral function, was related by the 
optical theorem to the total cross section. It is this kind of correspondence that we want 
to establish in this section for the amplitudes of quantum field theory. We have already 
done so for the special case of the imaginary part of the 2-point function, which was 
found to be proportional to the total decay probability of the unstable particle. We want 
to generalise this relation for the imaginary part of every amplitude. 

Let us go back to the derivation of the relation between ImE (p2) and F. Using our 
previous notation we can start from the expression of the 2-point function: 

1(2) (p2) = r cl4q 1 (270484 (p q) 

(2,) 4 (2n)4 (1,2 fl,2 (q2 rn2 +i,) / 

= d4k 1  
(27)4  (k2—m2  -Fic)[(k—P)2 —m2 +ic)] (20.32) 

As we have pointed out already, this expression is real and analytic when P2  = s < 
4m2. An imaginary part will appear when s reaches the physical threshold s = 4m2. Let 
us see how: with P2  real and positive we choose the P = 0 frame, i.e. the centre-of-
mass frame in the case of a two-particle scattering amplitude. The product of the two 
propagators can be split into four factors as 
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1 

 

(20.33) 
(k0  - K0  + iE)(ko  + Ko  - iE)(ko  - Po - Ko  + i€)(ko  - Po  + K°-i€)'  

     

with Ko = ,/k2 + m2 > m.  

In the complex k°  plane this expression has four poles which, with Feynman's iE 
prescription, have moved into the complex plane, two into the upper half and two into 
the lower half. We perform the ko integration by closing the contour into the lower half 
plane and the result is the sum of the two residues: [21(0/30(2K0-P0)]-1  for the ko  = K0-iE 
pole and [21(0/30(2K0 +P0)]-1  for the ko  = Po  +1(0-iE pole. We still have to integrate over 
k, which is equivalent, up to the angular part, to integrating over Ko from m to infinity. 
The denominator of the second residue never vanishes during this integration, so this 
pole will give a real contribution to /(2)  (P2). Only the first residue will contribute to 
the imaginary part because it has a singularity at Ko = P0/2 which reaches the region of 
integration when Po  reaches the physical threshold 2m. The result is a branch cut starting 
at s = 4m2  to infinity. The discontinuity across the cut will be given by the difference 
between the values at Po + if and Po - iE. For the distribution [x - xo  f iE]-1  we have 

1 1  = p  in-  (x — xo) 
x — xo f i€ x — xo 

(20.34) 

where P denotes the principal value. It follows that the discontinuity across the cut is 
obtained by first choosing the ko = K0  - if pole in the k0  integration and, second, by 
replacing the Po  = 2K0  singularity by 8(P0  - 2K0). The important point is that these 
operations have both a very simple interpretation. The first is obtained by replacing the 
propagator (k2  - m2  + iE)-1  in the diagram by the mass-shell condition S(k2  - m2)0 (ko) 
under the ko integration and the second by doing the same with the second propagator, 
namely replacing (q2  - m2  + iE)-1  with 8 (q2  - m2)(9 (go). But this is precisely the expression 
for the total decay probability if .1(2)  (P2) is the 1-loop contribution to the propagator of 
an unstable particle. Obviously, this result remains true if (20.32) is a 4-point function 
in a 04  theory. The discontinuity across the cut is again obtained by putting the two 
internal lines on their mass-shell and integrating over the phase space. We can represent 
this result diagrammatically in Fig. 20.11. We see that it resembles the unitarity relation. 
The imaginary part of an amplitude from an initial to a final state M (ain  —> af) at 1 loop 
is given in terms of the product of amplitudes in the tree approximation M (ain  —> an) 

Figure 20.11 The cutting rule for the 2-point function. 
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and ../v1* (an  —> af), where an  is an intermediate state. It is an example of the so-called 
cutting rules, which yield the Cutkosky unitarity relation. 

The rules can be stated as the following: the imaginary part of a Feynman diagram 
corresponding to a singularity in the physical region may be obtained by the following 

(i) Cutting the diagram in all possible ways; 

(ii) For each cut replacing the cut propagators by the mass-shell delta functions; 

(iii) Integrating each time over the corresponding phase-space; and 

(iv) Summing over all possible cuts. 

It is straightforward to repeat the proof for any 1-loop diagram. For example, an 
interested and courageous reader can compute this way the discontinuities of the box 
diagram and verify the results of section 20.3 (see Problem 20.1). As usual, the extension 
to multiloop diagrams is possible, albeit rather complicated. It requires a careful analysis 
of all the Landau singularities of a general diagram and the use of the theory of functions 
of several complex variables. 

Two remarks: First, the Cutkosky rules can be viewed as a generalisation of the unitar-
ity relation and the optical theorem for any individual Feynman diagram. Second, they 
can be used to redefine the Feynman rules for the computation of loop diagrams without 
the use of regularisation. Indeed, since the tree diagrams can be computed without in-
tegrations, they can be used to define the imaginary part of 1-loop diagrams because the 
phase-space integrals are always convergent. Then the real part of the 1-loop diagram 
can be obtained by writing a dispersion relation. This relation may require subtractions if 
the imaginary part does not vanish at infinity. Thus, the power counting and the renorm-
alisation programme for 1-loop diagrams can be re-expressed in terms of the asymptotic 
behaviour of tree diagrams. Then the programme can be extended to higher loops by 
iteration. 

20.6 The Analytic S-Matrix Theory 

The rules of quantum field theory allow the computation of Green functions defined as 
vacuum expectation values of time-ordered products of operators at arbitrary external 
momenta. Out of these expressions we can construct S-matrix elements by appropriate 
choice of the external lines and taking the boundary value in the physical momentum 
region. This programme often appears as both unnecessarily general and unnecessarily 
heavy. It is unnecessarily general because the basic axioms are formulated in terms of 
objects, the quantum fields, which are not directly related to measurable quantities. It is 
also unnecessarily heavy because the calculation often goes through unphysical quant-
ities, such as the Green functions of longitudinal, scalar, or ghost degrees of freedom 
in gauge theories. For practical purposes, this makes sometimes the calculation prohib-
itively lengthy. For these reasons, the formulation of alternative approaches has been 
attempted. They are all based, in one way or another, on the unitarity of the S-matrix. 
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We will present here briefly the conceptual part of a programme which, although not 
actively pursued at present, has given some important results in quantum scattering 
theory.5  

The original idea of an S-matrix theory goes back to Wheeler in 1937 and Heisen-
berg in 1943, but it was only in the late 1950s and early 1960s that it was developed 
as an alternative to quantum field theory. It is motivated by the fact that in elementary 
particle physics, practically all physical information is obtained through scattering ex-
periments, so one should formulate a theory in which the scattering amplitudes are the 
fundamental objects. This approach was developed by Geoffrey F. Chew, Stanley Man-
delstam, Tullio Regge, et al. The basic object is the S-matrix, which is assumed to satisfy 
certain axioms. They are extracted from the properties one finds in local quantum field 
theory order by order in perturbation expansion, but here no underlying field theory is 
assumed. These axioms include the following 

(i) Unitarity. S is supposed to be a unitary matrix. As usual, it is convenient to sub-
tract the no-scattering part and define the matrix T as S = 11 + i T. S and T are 
assumed to satisfy the unitarity relations 

SSt = StS = 11; 2Im T = Trt. (20.35) 

(ii) Poincare invariance. The S-matrix elements are functions of the external mo-
menta. Invariance under space and time translations implies that they are 
proportional to (2n- )4  84  (E pi). Invariance under Lorentz transformations implies 
that up to kinematical factors related to the normalisation of the states, they are 
functions of the independent scalar products pi  • pj. For spinless external particles 
the amplitude is a scalar function. For particles with spin it can be developed in 
a standard basis of helicity amplitudes with scalar coefficient functions. In partic-
ular, the two-particle to two-particle amplitude is a function of the Mandelstam 
variables s, t, and u, subject to the condition s+t+u=E m2. 

(iii) Crossing symmetry. The same set of functions describe the amplitudes for all pro-
cesses with the external momenta considered as incoming or outgoing. In the 
presence of spin and/or internal quantum numbers, this rule is understood for lin-
ear combinations of partial amplitudes and with the possible exchange of particles 
and anti-particles. 

(iv) Internal symmetries. Invariance under possible internal symmetries, such as isospin 
for strong interactions, is implemented in the usual way by applying the Wigner—
Eckart theorem. For example, all pion—nucleon processes are described by two 
basic amplitudes, which can be viewed, in the n-  —N channel, as corresponding to 
I= i and I = Z. 

5  Many books have been published on this subject, mainly during the nineteen sixties. See, for example, R. 
J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, 'The Analytic S-Matrix' (Cambridge University 
Press, 1966); G. F Chew, 'S-Matrix Theory of Strong Interactions', A Lecture Note and Reprint Volume (W. 
A. Benjamin, 1962). 
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(v) Maximum analyticity. This is the main new axiom in the theory. It can be 
formulated intuitively as the requirement that the Lorentz invariant functions rep-
resenting a scattering amplitude are analytic functions of the external momenta 
with only those singularities imposed by unitarity. The trouble is that although it 
is easy to give specific examples of this axiom, the precise mathematical formu-
lation for the general case, as well as its self-consistency, has remained somehow 
vague. Let us look at the unitarity relation (20.35) for a 'generic' case of a two-
particle to two-particle amplitude A + A —> A + A, ignoring spin and isospin 
complications. We assume that all particles have the same mass m and carry no 
extra conserved quantum numbers. Introducing a complete set of intermediate 
states In > we rewrite (20.35) as 

< af  I Im TI ain  > E< afITIan  >< anlTtlain  > (27)46 4  (Pi — Pn). (20.36) 

This is taken to mean that the singularities of the amplitude correspond to the possible 
intermediate states in (20.36). 

The first such state is the one-particle state, which, although it lies below the physical 
region of the scattering amplitude, can be reached by analytic continuation. It gives 
an imaginary part proportional to S(s — m2), which implies a single pole of the form 
1/(s — m2) for the amplitude. This gives the first rule: stable particle intermediate states 
give singularities in terms of simple poles. 

The next intermediate state is the two-particle state which starts at s = 4m2. It gives a 
branch cut from s = 4m2  to infinity. The next state is the three-particle state with a cut 
from s = 9m2  to infinity. 

We continue with multiparticle states with branch points at s = (nm)2, etc. We con-
clude with our second rule, namely that multiparticle intermediate states give an infinite 
number of branch cuts, as shown in Fig. 20.12. As usual in the theory of functions of a 
complex variable, introducing these cuts we make the amplitude a single-valued function 
on a Riemann surface. 

It is straightforward to extend these considerations to more realistic scattering amp-
litudes, such as the pion + nucleon —> pion + nucleon. If we take the pion—nucleon 
channel as the s-channel, the pole lies at s = M2, with M the nucleon mass, and 
the cuts start at s = (M + m)2, s = (M + 2m)2,..., s = (M + nm)2, until we reach 
the nucleon—antinucleon threshold which gives a branch point at s = 9M2, etc. In 

Figure 20.12 The single-particle pole and the 
multiparticle thresholds of the scattering amplitude in the 
complex s plane keeping t fixed. 

     

4m2  9m2 
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the absence of massless particles (or accidental degeneracies), all branch points are 
separated.6  

Many amplitudes in strong interactions are known to present several resonances. For 
the pion—nucleon system the first is called N* and has spin and isospin equal to 1. Al-
though, strictly speaking, it is not an intermediate state, we postulate, according to our 
previous analysis, that it gives a pair of complex conjugate poles in the second sheet. 
This is our third rule. In principle, it should be considered as simply empirical be-
cause, in a complete theory, resonances should be calculable from the dynamics, and 
in the S-matrix theory, the knowledge of the physical singularities should be sufficient to 
determine those in the unphysical sheets. 

So far we have looked at the s-channel keeping t fixed. We can repeat the analysis 
at the t-channel. In our toy example it is again an A + A —> A + A amplitude and the 
same analysis applies. We obtain a pole at t = m2  and branch points at t = (nm)2  . For 
fixed u = uo, these t-singularities are reflected into s-singularities through the relation 
s + t + u = 4m2. The resulting picture is shown in Fig. 20.13. It represents the singularity 
structure of the physical sheet for the A + A —> A + A amplitude. By convention, we 
decided to draw the cuts along the real s axis. Obviously, we can deform them anywhere 
in the complex plane. Only the end points are fixed for fixed uo. 

We still must decide which is the physical value of the A + A —> A + A amplitude. 
Taking uo  < 0 and s real s > 4m2  — uo, we see that all three variables s, t, and u take 
values which correspond to the physical region of the s-channel amplitude. By analogy 
with the Feynman iE prescription which we saw in perturbation theory, we decide to 
define the physical region as the boundary value of the analytic function F(s, uo) shown 
in Fig. 20.13 when s becomes real, larger than 4m2, reaching the real axis from above: 
limF(s + iE, uo). This is our fourth rule. From this physical sheet, going through one- or 
more of the cuts, we reach the unphysical sheets. 

We are now in a position to give a precise meaning to our axiom (iii) of crossing 
symmetry. Starting from the general analytic function F(s, uo) we saw that the physical 
amplitude in the s-channel is obtained by taking s > 4m2, limF(s + iE, u0). If we want 
the physical amplitude in the t-channel, we must take t > 4m2, t + iE —> t. With uo fixed 

Figure 20.13 The singularities (poles and cuts) in the 
complex s plane for the two-particle scattering amplitude, 
coming from intermediate states in the s-channel (on the 
right) and the t-channel (on the left). The arrows show 
the approach to the s-channel physical region. 

6  This discussion is restricted to hadronic physics where there are no massless particles. In particular, we 
neglect photons and electromagnetic interactions. The argument is that the amplitude for the emission of 
n photons will be suppressed by a factor en. In other words, we assume that in contrast to the hadronic 
interactions, the electromagnetic ones can be treated in perturbation. Of course, this was the 'historical' line. 
We will see in a later chapter that what we consider today as the fundamental strong interactions involve 
a non-Abelian Yang—Mills theory with massless gauge bosons called 'gluons'. The multi-gluon intermediate 
states will produce branch points all piling up at the same point, thus complicating the picture considerably. 
Although we will argue that perturbation theory is still applicable, the techniques of the S-matrix theory will 
turn out to be very useful. 
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and negative this is reached by analytically continuing F to s < 4m2  without crossing any 
cuts, through the gap between the right- and left-hand cuts to the lower half s-plane, and 
approaching the negative real axis from below. 

This simple picture gets more complicated for the case of unequal masses and 
conserved quantum numbers, like the pion—nucleon system. If the t-channel is the 
r + n-  —> N + N, the physical region starts at t = 4M2, but the first intermediate state 

and, hence, the first branch point start at the two-pion intermediate state at t = 4m2. 
By G-parity7  there is no three-pion intermediate state, so the next branch point is at 
t = 16m2; etc. Obviously, all these points are reached by analytic continuation. 

(vi) Polynomial boundedness. Our sixth axiom is the one necessary to write multidimen-
sional dispersion relations. It states that the amplitude, considered as a function of 
several complex variables, is bounded at infinity by a polynomial at any complex 
direction. Although easy to formulate, it is not easy to study mathematically. In 
particular, it is not known under which conditions it may follow from the general 
axioms of quantum field theory. 

The combined use of these axioms allows us to write general dispersion relations. For 
the function F (s, u0) of Fig. 20.13 the Cauchy contour is shown in Fig. 20.14. 

Considering the analytic function M (s, t, u) as a function of two complex variables 
we can write a generalised Cauchy theorem expressing the value of the amplitude at any 
given point as a multiple integral over the discontinuities. Since, according to axiom (v), 
they correspond to the possible intermediate states, they are, in principle, measurable. 
This is the spirit of the approach: unitarity and analyticity completely determine the 
scattering amplitude, up to possible subtractions. Axiom (vi) guarantees that we will 
encounter only a finite number of them. 

The typical example is the Mandelstam representation which generalises the relation 
we found in (20.21). For the pion—nucleon scattering amplitude it can be written as 

C 

t 

 —0 •  
S 

„ Figure 20.14 The contour for the Cauchy 
integral in the general s-channel dispersion 

C relation. 

7  G-parity generalises the concept of charge conjugation C for particles with non-zero electric charge. It is 
defined as the product of C with a 180° rotation around the second axis in isospin space: G = T2 . Since 
strong interactions are invariant under both charge conjugation and isospin transformations, they preserve G. 
It is easy to see that an n-pion state is an eigenstate of G with eigenvalue equal to (—)n. 
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M (s, t, u) = 7+ f ds' Pss4 + I f dt' + I f du' P",(11)  

+ 12 f f ds'dt' ( fs;sc()/(;,̀' )t)  + 7,12  f f ds'du' (7ugu'i,l)u)  

f f dedu' (put t('u'i,l)u) (20.37) 

Up to possible subtractions, this is the most general double dispersion relation we can 
write. The spectral functions can be computed by considering all possible intermediate 
states. As we saw in the analysis of the box diagram, a double spectral function, such as 
At, will be non-vanishing if, for a given physical multiparticle intermediate state in the 
s-channel, there are physical, multiparticle intermediate states in the t-channel. Figure 
20.15 shows the result for the case of the nucleon + nucleon —> nucleon + nucleon 
amplitude which is simple enough because all external masses are equal and there are no 
single particle poles, but it presents the complication of having the two-pion intermediate 
states in the N + N —> N + N channel. 

The basic assumption for applying such relations in practical calculations is that if 
we are interested in the value of the amplitude at low energies, the dispersion integrals 
are dominated by the closest singularities, so only low-lying intermediate states need 
to be considered. In Problem 20.1 we show this property in a simple example. The 
exchange of the lightest particle in the cross channel gives the dominant contribution 

s = 4M2 s=0 t=0 

N+N—>N+N 

PstO Ptu0 
u= 4M2  

u= 4m2, 
u=0 

Figure 20.15 The Mandelstam diagram for the reaction N + N 
N + N. In every channel the physical region starts at 4M2  but the 
regions of non-vanishing double spectral functions extend down to 4mn 
because of the two-pion intermediate state in the N + N N + N 
channel. 



Figure 20.16 The one p exchange diagrams in the t and u 
P3 channel, respectively. 
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P1 P3 P1 P4 

X 

P2 P4 P2 

to the long-range forces in the direct channel. This observation gave rise to a practical 
attempt to illustrate the S-matrix programme known as the bootstrap hypothesis. As we 
just said, the exchange of a virtual particle in the crossed channel generates forces in 
the direct channel. These in turn could produce bound states, or resonances, which 
should be identified with those whose exchange we considered. Hence the name bootstrap 
from the well-known Miinchausen tale: a particle produces the forces which create it. 
Historically, this was first applied to the p resonance in pion-pion scattering with only 
qualitative success. Let us give a brief description. 

We consider the amplitude A(s, t) which describes the pion-pion scattering. We will 
try to compute it using the axioms of S-matrix under certain simplifying approxima-
tions. (i) In the unitarity condition (20.35) and (20.36) we will keep only the two-pion 
intermediate state. This approximation is often called the elastic unitarity approximation. 
This means that in the physical region of the s-channel we keep only the cut starting 
at s = 4mn and we ignore all the higher ones. We expect such an approximation to be 
justified at low energies. (ii) We approximate all singularities in the cross channels by 
the ones created by the 1-p exchange diagrams of Fig. 20.16. As we explained earlier, 
this exchange creates a left-hand singularity in the s-channel. We can now describe the 
various steps of the calculation. 

Step 1: Compute the two diagrams of Fig. 20.16. The spin and parity properties of 
the pions and the p are 0-  and 1-, respectively, and both have isospin equal to 1. 
So, the 7 — n-  - p vertex is described by an effective Lagrangian density of the form 

= g„pn x 8,7t • pIL , where the three-vector notation refers to isospin. The same 
Lagrangian describes the decay p —> 27r, so the coupling constant g„,, is given in 
terms of the p width 1'p. A straightforward calculation gives 

0
7rirp 

 2q2 (1 + cos6) + s 
A = 

16(27)2Lyiffisi 2q2  (1 - cos6) + m2  
(20.38) 

where we have used the pion mass as the unit of masses, q is the momentum in the 
centre-of-mass frame, s = 4(q2  + 1), and fay; are isospin coefficients. 



Ail  (s) = f P (cos 0)A(s, cos 9) dcos 9, 
-1 

(20.39) 

( 

 In  2) . 
gn.2,p 

 4q2 + m2
p 
 + s  2q2 + m2

P

12,12 + m2
P 

 1 

A11  (s) = 
167 2q2 2q2 m2 (20.40) 
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Step 2: According to the bootstrap hypothesis, we expect this exchange to create the p 
resonance in the s-channel, so we project the previous result in the L = 1 and I = 1 
partial wave. This gives us a function Afi  (s), where the subscript 11 means that the 
amplitude is in the L = 1 and I = 1 s-channel partial wave and the superscript L 
that, in our approximation, it contains all the left-hand cuts. 4 (s) depends on two 
parameters, m p  and I',,, the mass and the width of the p resonance. 

The isospin projection gives < / = 1 = 1 >= 1 and the projection on the 
L = 1 partial wave is obtained by integrating A with the L = 1 Legendre polynomial 

which, using the expression for the amplitude given by (20.38), yields 

Step 3: We write the partial wave amplitude A(s) (we drop the subscript 11) as 

A(s) = N (s) , 
D(s) 

(20.41) 

where D(s) is supposed to have only the right-hand (`physical') singularities and N(s) 
only the left-hand ones. In our approximation N(s) has the singularities of 4 (s).8  
On the right-hand cut N is real and on the left-hand cut D is real, so we can write 

ImD(s) = N (s)ImA-1  (s); ImN(s) = D(s)ImA(s). (20.42) 

These equations are exact but not very tractable. We will use our approximations to 
simplify them and bring them to a solvable form. 

(i) The discontinuity of A(s) on the left-hand cut equals that of AL  (s), so the second 
of Eq. (20.42) can be written as 

ImN(s) = D(s)ImAL  (s). (20.43) 

(ii) According to the elastic unitarity approximation the discontinuity of A-1  (s) on the 
right-hand cut is given by the two-pion intermediate state in the L = 1, I = 1 

8  This separation is not unique, since we can multiply both the numerator and the denominator of (20.41) 
by a common factor, provided we do not introduce extra singularities. This kind of ambiguity has been dis-
cussed extensively in the literature (it is called the Castillejo, Dalitz, Dyson, or CDD, ambiguity), but it will not 
affect directly our calculation. 
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partial wave. This implies that the right-hand cut discontinuity Im A-1  (s) is given 
by a kinematical factor Im A-1  (s) = -q[Nis and the first of Eq. (20.42) simplifies as 

q Im D(s) = - V s —,_N (s). (20.44) 

(iii) We will try to solve the system of the two equations (20.43) and (20.44) by it-
erations. We start with D = 1, in which case (20.43) implies that N(s) = AL  (s), 
up to possible subtractions. Bringing this result to (20.44) we determine the first 
iteration of D(s) through a dispersion relation. And we start all over again. 

This method allows us to construct an approximate form of the pion-pion scat-
tering amplitude in which the one p exchange is the only singularity in the cross 
channel. The amplitude depends on two parameters, mp  and Fp. According to 
the bootstrap hypothesis, we must identify the same p resonance in the s-channel. 
It will appear as a complex pole in the amplitude of the Breit-Wigner form we 
found in Eq. (20.31). By construction, N(s) has no singularities in the physical 
region, so this pole will correspond to a zero of D(s) in the complex plane. Thus, 
the equation we must solve is 

D(s) = 0. (20.45) 

A solution of this equation will be some complex number s = so(mp, Fp). The 
real and imaginary parts of so should be identified with the mass and the width of 
the resonance, according to (20.31), i.e. m p  and Fp. This gives us a set of consist-
ency equations which can be solved numerically in order to determine the only 
free parameters of the problem, m p  and Fp. The results are not spectacular: the 
mass turns out to be around 320 MeV and the width around 50 MeV, compared 
to the experimental values of 750 and 100 MeV, respectively. We could argue that 
this is not unexpected since the basic assumption was that the one p singularity in 
the cross channels dominates the two-pion elastic cuts. The latter have a threshold 
of 2m„ = 280 MeV. Therefore, it is not surprising that the calculation gives a very 
light p. 

The programme has been applied also to other problems, such as the n-  -K 
scattering with the K* resonance replacing p. The results are always, at best, qual-
itative. It is clear that the one-particle exchange approximation is a very crude one 
but anything beyond it yields much more complicated equations. 

This calculation illustrates the use of the analytic properties of the S-matrix 
elements to determine the two particle-to-two particle scattering amplitude. 
In principle, it is possible to write higher dimensional dispersion relations for 
multiparticle amplitudes but they have not been analysed in any detail. 
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20.7 Problems 

Problem 20.1 Compute the box diagram of Fig. 20.7 using the cutting rules of 
section 20.5. 
Problem 20.2 The purpose of this problem is to study the inter-relation between 
the singularities of a scattering amplitude in the various channels. 

Consider the scattering of two spinless particles a + a —> a + a. Show that 
the t-channel exchange of a particle A with mass mA  induces in the s-channel a 
Yukawa potential of the form e-mAr/r. In other words, the large distance interaction 
is dominated by the t-channel singularity which is closest to the physical region. 
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Infrared Singularities 

21.1 Introduction. Physical Origin 

We encountered already the notion of infrared singularities, first in Chapter 3 in the study 
of the classical electromagnetic field and later in many other places where we had to 
deal with particles of zero mass. We had postponed the discussion of these singular-
ities and here we want to fill partially this gap. We have seen clearly that the origin 
of these divergences is the zero mass of a certain particle, often the photon, which 
makes it possible to consider excitations with arbitrarily low frequency and prevents 
the appearance of a mass gap in the energy spectrum. In this sense, the infrared sin-
gularities are the opposite to the ultraviolet ones we studied so far. The important 
difference between the two is that the second was due to a mathematical mistake in 
our formalism, namely the multiplication of the field operator-valued distributions at 
the same space—time point. They were correctly handled in perturbation theory by the 
process of renormalisation. On the other hand, the infrared divergences have a clear 
physical origin, the appearance in the spectrum of states of excitations with arbitrar-
ily large wavelength which produce long-range forces. Therefore, we do not expect a 
technical solution but a physical one; we must correctly define the physically measur-
able quantities in the presence of long-range forces. This will require some modification 
of the scattering formalism we presented in Chapter 12. Indeed, in formulating the 
asymptotic condition which led us to the definition of the scattering amplitude, we 
explicitly assumed that the interaction dies off sufficiently fast at spatial infinity, or, 
equivalently, that we had no zero mass particles. The problem appears already in non-
relativistic quantum mechanics where the scattering by a Coulomb potential is more 
complicated than that from a short-range one. It is also evident by looking at the 
analyticity properties of the scattering amplitude we studied in Chapter 20. In the 
presence of a zero mass particle, all branch points for an arbitrary number of such 
intermediate particles collapse at s = 0 which becomes an essential singularity of the 
amplitude. In this chapter we will show, in some simple examples, how to handle these 
complications. 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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P1  >  P3 P1 > 

 

P3 

 

P2 > >  P4 P2 > > P4 
(a) (b) 

Figure 21.1 Diagrams contributing to the forward (backward) 
electron—electron scattering. 

21.2 The Example of Quantum Electrodynamics 

The first example of a field theory showing infrared singularities is that of quantum 
electrodynamics due to the vanishing mass of the photon. Because of that, if we consider 
a graph with a photon line, internal or external, with momentum k, the point k = 0 
may belong to the physical region and may create singularities in certain kinematical 
configurations. Some examples follow. 

A trivial example is the elastic electron-electron scattering amplitude. At lowest order 
we find the two diagrams of Fig. 21.1 Both contain the 1/k2  photon propagator. Using 
the Mandelstam variables, the first is proportional to lit and the second to 1/u. Both 
singularities belong to the edge of the physical region. Going to the centre-of-mass frame 
we find that 

1 
t = --

1 
 (s- 4m2) (1 - cos 9); u = --

2
(s- 4m2) (1 + cos 0), 

2  
(21.1) 

where 0 is the scattering angle. We see that t = 0 and u = 0 correspond to forward and 
backward scattering, respectively. Due to the identity of the particles in the initial and 
final states, we expect the cross section to be invariant under the exchange 9 4--> 7 -0 or, 
equivalently, t 4--> u. In problem 13.3 we compute the differential cross section for this 
process and find the well-known Moller formula 

da 4a2  I-  (s - 2m2)2  ( 4 3  ) 4  
—(C+C—>C+C)= + + 1] . (21.2) 
dS2 s L (s — 4m2)2  sin4 0 sine  0 sine  0 

We recover the singularities at 0 equal 0 and n-. 
A second example is the Bhabha scattering amplitude for e + e+  —> e + e+  which we 

computed again in problem 13.2. Here the one photon exchange diagram contributes 
only in the t channel. The result is given by 

2 dcr , 1 1 t2 (s)2 
—
dS2 

(e-  +e+  —> e-  + e+  ) =
a2 
—
2s 

[u-  -+-) +(-) + - 1, 
s t s t 

which is still singular at 9 equal 0 and 7. 

(21.3) 
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Figure 21.2 The differential cross sections for e + e+  annihilation as measured at LEP. 
The three curves correspond to the cross section at the peak of the Z0  pole and at ±2 GeV 
above and below it. On the left-hand side we see the Bhabha scattering with the steep rise in 
the forward direction. For comparison, we show on the right-hand side the same quantity for 
the e + + it+  process in which there is no one-photon exchange contribution in the 
crossed channel and, as a result, there is no such phenomenon. CERN, LEP collaborations, 
L3 (left), DELPHI (right). 

For comparison, in section 13.3 we computed also the amplitude for the electron— 
positron annihilation into + ,u+  which has no one photon exchange diagrams in the 
cross channels and no singularity in the physical region; see Eq. (13.157). 

Before discussing the physical significance of such singularities, we want to point out 
that the above expressions are, experimentally, correct. Fig. 21.2 shows the measured e 
e+  cross section both for e-  +e+ and +µ+ final states1  in the vicinity of the Z°  pole. We 
see the rise of the cross section at small angles. The theoretical curves are those given in 
Eqs. (13.159) and (13.157), but they include the radiative corrections. It is because of 
such corrections in the initial and final states that the curves do not look symmetric. We 
see that the agreement between theory and experiment is perfect. 

The usual answer to the problem of forward scattering is the remark that it is not a 
measurable quantity, since we cannot put a detector there, because it will be saturated 
by the incoming particles which did not scatter. Although this is, essentially, correct, it 
does not answer all the questions because the singularity in (13.160) is not integrable. It 

1  There are no good measurements for the Moller amplitude at very small angles. 
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follows that if we want to compute the total cross section by integrating (13.160) over all 
angles (with a factor 1 because of the identity of the particles), we will find a divergent 
result. 

Similar infrared singularities appear in all tree-level QED scattering amplitudes. They 
all correspond to a corner of phase space where the momentum of a photon line goes 
to O. 

At 1 loop the situation may become worse. The classical example is the vertex func- 
tion F (1'2)  (p, p') of Fig. 16.7. For p and p' on the mass-shell, it gives the 1-loop correction Ft 
to the scattering of an electron from an external classical electromagnetic potential. For 
t = (p — p')2  = 0 it gives the static properties of the electron, namely its charge and 
its magnetic moment. In Problem 16.4 we computed the latter and found a spectacular 
agreement with experiment. In contrast, the value of the charge contained the ultravi-
olet divergence and had to be imposed by a renormalisation condition. We computed 
the 1/E part in (16.58). In order to impose a renormalisation condition we need also 
the finite part. Among the various choices, the one which leads to the physical S-matrix 
is the one in which the external momenta are on-shell. For I' 1'2)  (p, p') this means that 
p2 = p'2 = m2, 15  u(p)  = mu(p),  15,u(p,) = mu(p'), and t = 02. Let us try to compute 
the corresponding counter-term here. In the notation we used in Problem 16.4 we must 
compute the quantity F1  (t), which we had called 'the charge form factor', at t = 0. We 
find that 

a 1 dz 1  
F1 (0) = 1 + — — + • • • + 4 fo 

1 

 1  _  zi 
 . 

27 E 
(21.4) 

The first term is the classical value. The next is the ultraviolet divergence found in 
(16.58). The dots stand for terms which are finite and contain, in particular, a term 
proportional to ln(m/µ); i.e. they contain the dependence on the scale parameter intro-
duced by the dimensional regularisation. The trouble comes from the last term. z1  is one 
of the Feynman parameters and the integral is divergent when z1  —> 1. We can convince 
ourselves that this is an infrared divergence because we can repeat the calculation re-
placing the photon propagator 1/k2  with 1/(k2  + my), assuming a fictitious mass for the 
photon, and the term is replaced by ln(m/my). Note that in our on-shell renormalisation 
scheme, we must introduce a counter-term such that F1 (0) = 1. Equation (21.4) shows 
that this is impossible. 

What is the meaning of this divergence? We can look at it in two ways. The first tells 
us that what we called 'physical' renormalisation conditions are impossible to enforce 
for this theory. Since they were the ones leading to the definition of the S-matrix, this 
means that scattering amplitudes do not exist in quantum electrodynamics. Although this 
result may sound catastrophic, we cannot pretend it was totally unexpected. In setting 
up the framework for the theory of scattering we had repeatedly assumed the absence 
of zero mass particles. A second way to look at this divergence is to view it as part 
of the 1-loop correction to the amplitude of scattering of an electron from an external 

2  This last choice, t = 0, is not important for what follows. 
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/2\ 
Figure 21.3 The diagrams contributing to the 
scattering of an electron in an external 
electromagnetic field, in the Born approximation 
and the 1-loop corrections. 

potential, the philosophy we had in Problem 16.4. It is in this framework that F. Bloch 
and A. Nordsieck found the solution in 1937. Let us illustrate their argument. 

For simplicity let us keep the infrared cut-off my. We want to compute the amplitude 
for the scattering with a momentum transfer t = (p — p')2. The physical region corres-
ponds to t < 0. The total amplitude for our process will be given, in perturbation theory, 
by the diagrams of Fig. 21.3. The first is the Born approximation followed by the 1-loop 
corrections. The ultraviolet renormalisation is straightforward to perform at some value 
of t, for example t = 0, and all the dependence on E and p, will disappear. The total 
amplitude will be of the form 

(t) = ie/Ct [
—t 

Mii(p') y A 1 + a C (t) In + • • • + • • • u(p), 
my 

(21.5) 

where C(t) is a calculable function of t which behaves at large momentum transfers as 
ln(—t/m2). The dots stand again for terms which have finite limits when my  goes to zero. 
The differential cross section, summed and averaged over the electron final and initial 
spin, can be written as 

dS2
cr 
 ( d a )S2 mz 

d [ t 
1 + 2a C ln + • • • + 0 (a2)1 . (21.6) 

(du 1 cl.c2),1  is the cross section in the classical approximation which is proportional 
to e2. We have written explicitly only the interference term between the 0- and 1-loop 
amplitudes which diverges when my  —> 0. The 0(a2) terms contain the square of the 
1-loop contributions, but also the interference between the 0- and the 2-loop diagrams 
and, at this stage of our calculation, cannot be included. 

The expression (21.6) is still infrared divergent but Bloch and Nordsieck remarked 
that in the limit my  —> 0, it is not a physically measurable quantity. To understand 
the reason let us think of an experimental setup. We need a source of electrons with 
momentum p and a detector capable of detecting electrons of momentum p' which we 
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Figure 21.4 Bremsstrahlung processes. 

can place at an angle Q with respect to the incident beam. In order to compare with 
(21.6) we must be sure that we detect an electron and nothing else; for example, we must 
not count events in which the final electron is accompanied by one or more, photons. 
Examples of such processes are shown in the diagrams of Fig. 21.4. In the presence of the 
external field, a photon is radiated by the initial, or the final, electron. It is our familiar 
bremsstrahlung process. The key point is that every detector has a finite resolution, 
both in energy, i.e. it cannot detect photons with an energy smaller than some threshold 
S, and in angle, i.e. it automatically integrates over an angle AO. In other words, our 
experimental setup does not measure the cross section for the process of Fig. 21.3 but 
rather the incoherent sum of all processes representing the electron scattering with 0, 1, 
2, etc. soft photons integrated over a certain angular region. In perturbation theory every 
emitted photon carries a factor of e, so the 0(a) cross section is the one of Fig. 21.4. 
The amplitude is proportional to 

+1<m  
JV1 (t , co) — (eAef)17t(p')e[f 

(p' + k)2 
+ 

— m2 y +Y 
 15 

— k)2

F 
 — m2

du(p), (21.7) 

where w is the photon energy and E its polarisation. The important thing is that the 
electron propagators behave, at small w, like 1/co. Taking the square and integrating over 
the phase space for my  < w < 8 we find the quantity we should add to (21.6) in order 
to obtain the 0(a) measurable quantity. The result, which we could have anticipated, 
is that the sum is finite when we take the limit my  —> 0, keeping S fixed. The exact 
computation is rather lengthy, but it simplifies in the physically interesting case when 
the momentum transfer —t is much larger than m2  (see Problem 21.1). The result takes 
the form 

(dcr dcr 
[ —a  lnn 0(a2)] , 

da4 eff (dS2 )ci
1 — m2) l  82 +  (21.8) 

where we have called 'effective differential cross section' the quantity which is actually 
measured by our detector. We have used the asymptotic form of the function C(t). We 
note that the result contains a double logarithm, one which we can call 'ultraviolet' and 
the second which we call 'infrared'. This double logarithm structure was first discovered 
by V. V. Sudakov. 
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21.3 General Discussion 

The result of Eq. (21.8) answers the technical part of the infrared divergence prob-
lem in QED. We defined a physically measurable quantity in which the infrared cut-off 
disappeared and is replaced by a physical scale S provided by our detector. However, 
this answer is not yet totally satisfactory. First, it is only a first-order result. This can, 
in principle, be remedied by investing more work in the computation of higher orders. 
However, there is a second point: as Sudakov has shown, these double logarithms will 
appear at every order, so the leading behaviour of the nth order will be proportional to 

[a ln ( 7;,i ln . So at large momentum transfer, the effective expansion parameter 

is not a but rather [a ln ( 7;i) ln (01 a is a very small number (— 1/137), but each 
one of the logs can also become quite important. The situation is much more critical 
for quantum chromodynamics, the theory that describes the strong interactions, which 
we will study shortly. In this theory the corresponding a - strong is of ordersto io. For all 
these reasons, we want to go beyond the lowest order result. This was already done in 
the original work of Bloch and Nordsieck, but it has been considerably improved since. 

The principle of the computation is rather simple, but the practical details are not. 
Let us stick to our previous problem of the scattering of an electron from an external 
potential. We will sketch only the calculation for the leading infrared singularity, namely, 
in each order of perturbation the term with the highest power of the infrared logarithm. 
We can follow the electron line. There will be several photon lines attached to it. For our 
argument it does not matter whether they are external or internal, the only important 
point is whether they are 'hard' or 'soft'. We call 'hard' a photon which is detected in 
our detector, i.e. whose energy is larger than 8. By contrast, a 'soft' photon line is one 
whose momentum k can go to 0. Following the incoming electron line we can mark the 
first hard photon. We are interested only in the photons which are emitted before this one 
because the electron propagator which follows such an emission behaves like 1/k. Those 
which are emitted after the hard photon, even if they are soft, they could not produce 
such an infrared divergence. Similarly, we are interested in the photon lines which are 
emitted after the last hard photon from the outgoing electron line. The typical diagram 
is shown in Fig. 21.5. We intend to sum all these diagrams. 

The typical diagram with n soft photons will contribute to the sum a term propor-
tional to 

Figure 21.5 A Bremsstrahlung diagram with 
multiple soft photon emission. hard 
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m(n) (p,p') enTi(iy) p,±1(n±.  
L n  (P'+k,02-m2 n-1 (p'+kn+kn-1)2-m2 

eAefixt (p' + E' { k} , p — E {k}) 

t54142+m 
 r 

 
(p-k-k2)2_,n2  2 (p_k

1
)2_,n2 i] ti(p), (21.9) 

where K is some kernel which represents the box part of the diagram. E' {k} and E {k} 
represent the sums of the momenta of the soft photons emitted from the outgoing and 
incoming electron line, respectively. Some of these photon lines may recombine to form 
photon loops. We must sum all these diagrams, something which sounds like a formid-
able task. The calculation is simplified if we remark that since we are interested only in 
the limit when all k's go to 0, we can drop the k factors in the numerators, the k2 's in the 
denominators and all the k-dependence in the kernel. Furthermore, we can bring the p's 
and p"s next to the spinors and use the Dirac equation. We are left with scalar products 
p • E in the numerators and p • k in the denominators. Then we must sum over all possible 
permutations of the k's, square the matrix element, sum over the photon polarisations, 
and integrate over the phase space with all photon energies smaller than 8. All these op-
erations are superficially easy, although, if we want to be careful, they are rather involved. 
As it was the case with the lowest order expression (21.8), the final result can be written 
in a simple form at the limit —t >> m2. In that limit we find that all the Sudakov double 
logarithms exponentiate and we obtain the simple answer 

da da 

ci 1:1S2 )et-t- 1:1S2 ) x  

a —t 
exp [--

7 In M4  In 
(

— 
p)] 

t  2 
(21.10) 

The exponential of the double logarithm is called 'the Sudakov form factor'. This 
expression gives the sum of all the leading infrared terms and answers all our previous 
questions.3  We see that the effective probability goes to 0 when 8 goes to 0, a result easy 
to understand: the probability of observing a bremsstrahlung process with no emitted 
photons vanishes. There exist similar, but more complicated expressions for the next-
to-leading terms, the next-to-next-to-leading terms, etc. 

21.4 Infrared Singularities in Other Theories 

In the previous section we showed the appearance of the infrared singularities in QED 
and the way to treat them. Our result can be phrased by saying that scattering amp-
litudes cannot be defined but measurable transition probabilities can. It is obvious that 
similar results can be obtained for every theory which has massless particles which can 
be radiated incoherently. The most interesting case for high energy physics is quantum 
chromodynamics (QCD). It is an unbroken Yang—Mills theory based on the group 

3  The simple expression of Eq. (21.10) is valid only in the region -t >> m2; therefore, it does not cover 
the t 0 region. However, we can repeat the analysis without the large t simplification and show that the 
physically measurable integrated effective cross section is indeed finite. 
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K Figure 21.6 Emission of a soft pion from an external nucleon 
line. 

  

SU(3) with fermions, the quarks belonging to the fundamental, triplet, representation. 
The gauge bosons form an octet of massless spin-1 fields, called gluons. They are like 
photons except that they are self-coupled according to the Yang—Mills Lagrangian. In 
perturbation theory we can show that the infrared properties are similar to those of QED 
but the phenomenon is overshadowed by a non-perturbative property of the theory, the 
one we called 'confinement' in Chapter 15. 

There are no other massless bosons in particle physics, but we can address the ques-
tion of the low-energy behaviour of theories with almost massless particles. In section 
15.2.4 we saw that at the limit in which chiral symmetry is broken only spontaneously, 
the pions are massless Goldstone bosons. Which are the infrared properties of the a-
model with zero mass pions? The answer turns out to be very simple, at least in the 
leading order approximation. Let us consider the radiation of a soft pion from an ex-
ternal nucleon line, the part of the diagram we show in Fig. 21.6. As we saw in section 
15.2.4, the pions are pseudoscalars, so the amplitude for this emission is proportional to 

p ' + 1 ± M N  K(p, ± kp), A4(7) (p5P') — g7d(P
, 
 )3/5  (p' + k)2  — nik 

where we have suppressed isospin indices. K (p' + k, p) is some kernel, which transforms 
like a spinor and represents the rest of the diagram. The important point is that because 
of the presence of the y5  matrix, the numerator gives 77i(p')[-15' —1‹ + mN ] = —ii(p')1 ‹ . In 
other words, the amplitude is suppressed by a factor proportional to k. We can still study 
the phenomenon of the radiation of soft pions but it will not play a role as important as 
that of soft photons. 

In particle physics we do not have any other candidates of field theories which are 
liable to exhibit the phenomenon of soft quanta radiation. If gravitons exist they may 
have such a behaviour, but we do not know whether quantum gravity will be described 
by a quantum field theory. However, scalar field theories are often used to describe phase 
transitions in models of statistical mechanics and it is important to know their infrared 
properties. 

For a general field theory we can perform a power-counting argument for the infrared, 
similar to the one we made for the ultraviolet. The results are, obviously, inverted. Non-
renormalisable theories are infrared-safe but super-renormalisable ones are singular. Let 
us illustrate it for a massless 03  theory in four dimensions. The 1-loop, 2-point function, 
shown in Fig. 21.7(a), is given by the integral 

F(2)(1,2) = g2µ2 f  d4k   1 

J (2n-)4  k2  (k — p) 25  
(21.12) 
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Figure 21.7 The 1-loop correction to the 
scalar propagator in 03  theory (a). An internal 
line with several self-interaction bubbles (b). 

 

(b) 

where gµ is the coupling constant. The integral is ultravioletly divergent and needs a 
subtraction. To ensure the masslessness of the theory, we should impose the condition 
I'(2)  (p2 = 0) = 0. But this is impossible because at p = 0 the integral is infrared divergent. 
So we must subtract it at some other value. We can interpret this result in two ways. We 
can say that the massless theory does not exist mathematically because, at higher orders, 
we may encounter a diagram of the form shown in Fig. 21.7 (b), where an internal line 
has several self-interaction bubbles. It gives a contribution to the diagram of the form 

f d4 k  1 FE(k2)1n  

J (27)4  k2  L k2 
(21.13) 

E (k2) is the subtracted 2-point function, but as we just explained, E (k2  = 0) # 0. 
As a result the integral (21.13) is violently infrared divergent and the theory makes no 
sense. A second interpretation is to perform first the summation of the bubble diagrams 
following the method we explained in section 20.4. The result is that the pole of the 
propagator will be displaced from p2  = 0 to some other point p2  = m2. Since we have 
no instability, the value of the mass will be real but the theory will describe a massive 
particle. 

Super-renormalisable massless theories in less than four dimensions present similar 
problems. K. Symanzik, using an expansion in powers of E = d — 4, has shown that a 
massless 04  theory can be consistently defined in a space with dimensions between three 
and four. The worse case is in d = 2. Even a free massless scalar field in two dimensions 
has a singular 2-point function of the form 

f  d2 k  elkx  
G(x) = 

(2n- )2  k2  
(21.14) 

Before closing this section we want to point out that massless fields are often ill-
defined if we quantise the theory in a compact space. In all cases evaluating the Feynman 
propagator involves computing the inverse of the d-dimensional Laplace operator. This 
operator has always a zero mode, the one corresponding to the constant function. In a 
non-compact space this eigenfunction can be ignored because it is non-normalisable and 
the zero-eigenvalue does not belong to the spectrum of the operator.4  In a compact space 
this is no more true and the Laplacian is not invertible. The most important application 
of this remark is the d-dimensional de Sitter space whose Euclidean version is Sd, the 

4  The case of the two-dimensional flat space is marginal. The zero eigenvalue does not belong to the 
spectrum but it is the accumulation point of a series of eigenvalues. 
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d-dimensional compact sphere. It follows that a massless scalar field cannot be consist-
ently defined in de Sitter space without introducing some important modifications in the 
quantum field theory axioms we have considered so far. 

21.5 Problems 

Problem 21.1 Compute the order a2  effective differential cross section for the 
scattering of an electron on an external electromagnetic field and verify Sudakov's 
formula (21.8). 



22 

Coherent States and Classical Limit 
of Quantum Electrodynamics 

22.1 Introduction 

In this chapter we want to address the question of the classical limit in quantum field 
theory. The main concepts and applications in this book have been developed with the 
perspective of elementary particle physics. In particular, the space of physical states, to 
which we are mainly referring, is the Fock space. Every state in this space contains a 
well-defined number of particles, and states containing different numbers of particles 
are orthogonal to each other. It is perfectly suitable to describe scattering experiments, 
even more so, if the particles in question are massive, but it is not the best starting point 
to consider the classical limit. When computing scattering amplitudes we often take the 
limit of plane waves, while classical particles should be localised in space. We could, and 
should, work with wave packets, which are characterised by square integrable functions. 
The well-known problem in this case is that a wave packet describing a free particle, 
since it corresponds to a superposition of waves with different frequencies, spreads in 
time. It was Schrodinger, already in 1926, at the very early days of quantum mechanics, 
who first asked the question to find the 'best' wave function for a free particle, meaning 
the one with the minimum spread. We shall give the answer in this chapter. 

The question of the classical limit becomes more complex if we consider massless 
particles. We saw already that the concept of a one-particle asymptotic state is mean-
ingless when massless particles are involved and we called these problems, collectively, 
`infrared problems'. If we ignore the graviton, which has never been detected, the only 
known massless particles are the gluons and the photons. Both are kept massless because 
they are the gauge bosons of unbroken local symmetries. The first mediate the strong 
interactions between the quarks and the resulting gauge theory is called 'quantum chro-
modynamics'. It will be studied in a later chapter. The infrared problems in this theory 
are very important but, as we have already noted, their macroscopic effects are overshad-
owed by a different, poorly understood, phenomenon, that of 'confinement'. Gluons are 
not present in asymptotic states. We are left with the photons whose infrared problems 
we addressed in the previous chapter. Here we want to ask the question of the classical 
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limit of an n-photon state. How is it related to the classical state of a given configuration 
of electric and magnetic fields? 

It turns out that the answer to these questions involves the Bargmann space of co-
herent states, which we introduced in Chapter 8. Here we shall describe their properties 
and argue that they offer the natural basis to discuss the classical limit. 

22.2 The Definition of Coherent States 

When we studied the harmonic oscillator and determined the spectrum of the theory, we 
found that the construction of a Fock space is a very convenient and powerful tool that 
gives an insight which is complementary to that given by the set of wave functions. 

In Chapter 8 we introduced another basis of states, called coherent states or 
Bargmann representation, which, at the time, looked mostly as an interesting exercise. 
One motivation was that the Bargmann representation is particularly well suited for the 
definition of the path integral formula, but we want to show here that these states have a 
deep physical meaning going much beyond the technical aspects we have seen. 

The history of coherent states is intimately related to the connection between classical 
and quantum physics. In the historical introduction we presented in Chapter 8 for the 
approach which gave rise to the path integral formalism, we mentioned the work of 
Schrodinger, who invented the coherent states as early as 1926 in quantum mechanics—
he called them 'states of minimal dispersion'. He wanted to find wave functions that 
maximally concentrate around a classical trajectory. We will present this property shortly. 
However, the use of this concept was largely ignored till the second half of the twentieth 
century. It is only that late that John Klauder, followed by Valentine Bargmann, Roy 
Glauber, George Sudarshan, and others, generalised in depth the idea to quantum field 
theory. The reader will not be surprised to learn that the importance of this work grew 
with the fast development in the last decades of the technologies in lasers and photonics, 
to which developments the concepts of coherent states played an important role. Today, 
they form one of the pillars of quantum optics. 

Coherent states can be constructed for any quantum theory with a vacuum 10 > and 
a Fock space with an orthonormal basis. The latter involves a creation and a destruction 
operator al' and a whose actions allow us to connect all possible elements of the basis, 
using the relation [a, at] = h. In what follows we will often adopt the usual convention 
h = 1, since the only thing that matters is that the commutator never vanishes. Once 
the coherent states have been understood for the harmonic oscillator, not much must 
be changed for considering the situation when the Hamiltonian is perturbed by non-
quadratic interactions. 

In Chapter 8 the Bargman states were introduced by the relation Iz >= exp[zai] 10 >, 
where z is a complex number and we showed that Iz > is an eigenvector of the destruc-
tion operator a with eigenvalue z. We will use this property here as a definition and define 
the coherent states as the set of all eigenvectors of a. 

A side remark: there is a strong asymmetry in choosing to diagonalise a rather than at. 
In fact, at has no eigenvector, but the null vector, because the Fock basis only involves 
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lz — z12  < zlz >= exp (22.6) 
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integers n > 0, since, by construction, it involves states with positive energy. Note that 
the states that diagonalise the Hamiltonian are not coherent states, with the exception of 
the vacuum. 

The coherent states Iz > are in fact labelled by a complex number z and defined as 
the general solution of the eigenvector equation 

alz >= zlz > . (22.1) 

z is complex because a is not a Hermitian operator, and the vacuum 10 > is the coherent 
state for z = 0. By doing an expansion of the eigenvalue equation for lz > on the standard 
orthogonal basis {In >} of the Fock space of the harmonic oscillator, we find recursion 
relations. They can be easily solved, and we find the following equivalent definitions for 
all possible coherent states, 

Iz 
2 n=°° n 

IZI E  z —In > = exp --Iz 2 1 > = exp-- exp zat In > 
2 N/T7! 2 

n=0 

= exp(zat —ia)10 > (22.2) 

with .5' the complex conjugate of z. 
The unitary operator 

D(z) = exp(zat —ia) (22.3) 

is called the displacement operator. It creates the coherent state Iz > out of the vacuum. 
We changed here the definition given in Chapter 8 by choosing a normalisation such that 
1z > has norm 1 for all values of z. 

The operator D(z) makes it possible to connect to each other any pair of coherent 
states, using the composition relation 

zY — z'.• 
D(z)D(i) = exp

2 
D(z + i). (22.4) 

Indeed the factor exp(zY — /5) is a pure phase, and the last formula implies that 

zY — z'Z' 
D(z)Iz >= exp

2
I z + i > . (22.5) 

The coherent states build an overcomplete basis of the Hilbert space, as can be seen 
from these formulas: two elements are never orthogonal, since 

We have, however, an orthogonality relation for the displacement operator, meaning 
that 
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Tr[D(z)D(z')] = 782(z — z'). (22.7) 

The fact that the basis of coherent states is overcomplete is obvious. It is labelled by 
the ensemble of complex numbers, the cardinal of which is much larger than that of the 
ensemble of integers that label the states of a Fock basis, which is complete. 

Getting an overcomplete non-orthogonal basis is a source of enrichment for describ-
ing the system in its various states. In fact, orthogonality is not a necessary demand for 
a basis. It is no more than a mathematically convenient property for a set of basic vec-
tors in a Hilbert space, but using such a basis sometimes hides the geometrical nature of 
objects we wish to describe. 

If we restore the dependence on h # 1 in Eq. (22.6), we find that it appears in the 
denominator of the exponential, < zlz' >= exp 122/

h
12

• 
Thus, as soon as z # z', the 

overlap goes very fast to 0 in the limit h —> 0. The classical case can be somehow seen 
as the limiting case where two different coherent states become orthogonal. 

What truly matters for describing quantum physics is the existence of the complete-
ness relation 

E iz >< f dziz > < zi  = 1. (22.8) 

When a basis is overcomplete, part of the projectors may contribute negatively, to get 
some compensations. 

The completion relation makes it possible to define density matrices as 

p f d 2zP(z)lz > < 21. (22.9) 

Systems that behave almost classically correspond to cases where the function P(z) is 
almost never negative. If it is the case, the quantum matrix density p can be interpreted 
as a probability density for states that look almost classical. 

When systems have many degrees of freedom, as in QED, we index the states by 
further labels such as the momentum k and the spin s, and do appropriate summations, 
as we will see shortly, I z >—> Izo > . 

For lasers, the generalised occupation number mean value 

< no >= Trpat a (22.10) 

vanishes almost completely outside a small volume around the value of k (corresponding 
to the value of the frequency of the monochromatic laser), which leads to an almost 
positive function P(z), which explains the almost classical aspect of the laser beam. 

More refined examples exist in QED with an almost positive function P(z), which 
looks classical, but the evolution of the corresponding states cannot be described by the 
classical equations of motion. The squeezed states we will shortly describe are examples 
of this, and have been materialised by producing the so-called laser beams with 2-photon 
states. Note that in this case 
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< E >— h < nks  > co. (22.11) 

The richness and the predictive power of the quantum world appears when we ob-
serve that there are many limits leading to the same energy density, since the right-hand 
side involves the product h < nk,s  > and we can take different limits of both h and 
< nk,s  > that lead to the same value of < E >. 

A given coherent state I z > can be projected on any given element of the Fock space 
basis and satisfies 

Zn 1Z1
2 

< nlz >= 
ni 

 exp , 
2 

(22.12) 

and, thus (with the exception I z > being the vacuum), it contains all possible states of 
the Fock basis, distributed with a Poisson probability distribution. In other words, the 
occupation number for the eigenvalues of the Hamiltonian is as random as it can be in 
any given coherent state, through a Poisson distribution. In fact, for the mean value for 
the occupation number for N = ata, we have 

N =< ziNiz >= Iz12. (22.13) 

It is easy to see that, depending on the value of Izi, N can be as small or as large as 
possible, and never zero but for the vacuum. Whatever the value of Izi is, the coherent 
states exhibit a maximally random distribution over all states of an orthogonal basis. 

This has physically interesting consequences. For instance, a 'soft' laser beam with 
a greatly attenuated beam behaves qualitatively exactly as a very powerful one, which 
explains the interference pattern experiments where the fringes appear at a very 
slow rate, with the wrong (although intuitive) interpretation that photons arrive one 
by one. 

Interestingly enough, the probability amplitude of getting the vacuum in any given 
coherent state is 

< Olz >= exp—IzI2. (22.14) 

22.3 Fluctuations 

What is really the advantage of using such an overcomplete basis? It was in fact inferred 
to by Schrodinger, since he was looking for wave functions that disperse minimally in 
time, both for the mean value of the position operator x = a + at and for that of the 
momentum p = —i(a — 

He was concerned with the dissipation properties of waves, in particular those of 
the 'natural' basis that diagonalise the Hamiltonian, which can give huge values of the 
quadratic fluctuations between some states < 16a12  > and < lApI2  >, allowed by the 
Heisenberg inequalities < I OxI2  > < I ApI2  >> a. 
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The coherent states are such that the Heisenberg relation gives an equality, instead of 
a minoration. For that reason they are the 'best' approximation to a classical state, and 
as we will see shortly, they remain so when time evolves. 

Coming back to the q and p representation in the case of the harmonic oscillator , we 
easily compute the following normalised to one coherent state wave functions 

co 2h 
tkz(x) xlz >= (—)r exp Im(z)2  exp --

2h 
[x — ( 

(7)
)f z] 2 . (22.15) 

Under this form, discovered by Schrodinger, there is not much intuition of why this 
wave packet dissipates in a minimal way. We will show why it is so in a direct way. 

22.3.1 Time Evolution of Coherent States 

The time-evolution is given by the evolution operator exp—Ht. Eigenstates of a are not 
eigenstates of H. So they have a non-trivial time evolution. For the harmonic oscillator, 
using the previous equations and H = co(aat + 1), we have 

. cot cot 
lz > —> lz(t) >= exp-1-

2h  I
> . (22.16) 

So lz(t) > remains a coherent state, and, moreover, it comes back equal to itself for 
every time interval equal to an integer multiple of its period. In fact, for a high enough 
frequency, a coherent state has basically no dispersion, and it is as near as possible to a 
classical state. This explains the fact that its wave function in position space appears as 
describing an object concentrated around the trajectory of a classical motion. 

22.3.2 Dispersion of Coherent States 

Because coherent states z are eigenvectors of a, and they evolve with time towards other 
coherent states, the quadratic fluctuations of both operators a and at vanish identically, 
as well as those of their time evolution. Thus, 

< z(t)1(6,a)21z(t) >< z(t)1a2 1z(t) > —(< z(t)lalz(t) >)2  = 0 (22.17) 

and 

< z(t)I(Aat)21z(t) >< z(t)lat 21z(t) > —(< z(t)lat lz(t) >)2  = 0. (22.18) 

In contrast, the quadratic fluctuation of x = a + at and its momentum p = —i(a — at) 
don't vanish. An easy computation, using H = hco(aat + 1), gives 

< z(t)I(Ax)2 1z(t) >= < z(t)I(AP)21z(t) >= 2 (22.19) 
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and thus 

h2 
< z(t)I (Ax)121z(t) >< z(t)I (AP)21z(t) >= . (22.20) 

This holds true for all values of z. This is the typical property of coherent states. 
Being eigenvalues of the annihilation operator, coherent states (i) minimise the quadratic 
fluctuation of the position operator x and its canonical momentum p, and (ii) keep them 
equal for the whole time evolution. Other sets only satisfy the Heisenberg uncertainty 

h2 
principle, < 0x2  > < Opt  » T  . 

Coherent states give position and momentum fluctuations at the lowest possible equal 
values allowed by the Heisenberg uncertainty relation. We, thus, find the general result 
that coherent states, defined by diagonalising destruction operators, approach classical 
states in the nearest possible way. 

We see that the quadratic fluctuations are independent of z, in contrast to the mean 
values < z(t)1x2 1z(t) > or < z(t)Ip21z(t) >, which depend quadratically on z. Further-
more, by comparing < x2  > and < 0x2  >, we find that the most obvious departure 
from classical physics is for the eigenstates with the smallest eigenvalues, when Izi « 1. 

22.4 Coherent States and the Classical Limit of QED 
towards Maxwell Theory 

In QED, the free field A is a linear superposition of oscillators ak  and al-  k  indexed by 
the continuous three-dimensional momentum k and the value of the spin index s. The 
vacuum is for zero photons, and the Fock space is made of states with an arbitrary 
number of real photons with any given momentum and spin. 

The basis of coherent states is defined as for an infinite collection of harmonic 
oscillators, 

ak,sIZk,s > = Zk,sIZk,s > 5 (22.21) 

for all values of k and s. We have a continuum of complex eigenvalues, indexed by the 
three-vector k and the polarisation index s. 

Once coherent states are defined for the operator of the vector potential we get 
other coherent states for the electric and magnetic fields, the components of the field 
strength F,„, which are linear in A,. 

We decompose the field operators A and F on components with positive and negative 
energy ±w, with w = Ikl, with the obvious notation A = A+ + A. We have for the 
monochromatic electric field E 

E = I(w)E • [a exp i(k • r — cot) + at exp —i (k • r — cot)] 

= I (w)E • [x cos(k • r — cot) + psin(k • r — cot)]. (22.22) 
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In a problem at the end of this chapter we ask the result for the coherent state 
describing the electric field in a rectangular cavity. 

We are now ready to understand the limiting case of quantum electrodynamics and 
the way a classical configuration is created by the interaction of the vacuum of quantum 
electrodynamics with a set of classical macroscopic charges producing a classical current: 

(x) = (p (x),./(x)). (22.23) 

The vacuum of the theory is defined by a state with zero real photons. Such states 
can carry energy. 

From the basic rules of perturbation theory, the time-evolution operator of the 
theory is 

exp —j (t) (22.24) 

where Hi (t) is the linear interaction Hamiltonian between the field and the current 

11/  (t) = —
J 

d3r/(r, t) • A(r, t). (22.25) 

After a Fourier transformation from the space of positions {r} to that of momenta 
{k}, 11/  (t) can be expanded in creation and annihilation operators as 

HI (t) = E (Ek
' 
 s • j (k, k s S  E* . (k, k  eiwt) 

2 , 5 

k,s 

(22.26) 

where y (k, t) is the Fourier transform of the macroscopic classical current density /(r, t), 
(k, t)* its complex conjugate, and C a normalisation factor, which depends on the 

volume of the space. 
Perturbation theory implies that after the current J is switched on adiabatically, the 

probability amplitude that the vacuum state at t = —oo evolves to a vacuum state with 
zero real photons at time t = oo is 

< r  H1(010 >5 (22.27) 

where, as usual, a time ordering is understood. 
Now, we observe that the time-evolution operator exp f WO is nothing but 

a displacement operator in the space of coherent states with eigenvalues of order 
E k,s • (125  t) • Therefore, the final state, that is, exp f 11/  (010 >, must be a coherent 
state. 

We conclude with two remarks. Starting from a coherent state with a large eigen-
value (because the sources are macroscopic), the final coherent state has very small 
fluctuations, with a very small dispersion in the occupation number of each Fock space 
element over which the coherent state decomposes; it is therefore as close to a classical 
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state as it can be. It is a priori different from the vacuum at t = —oo, which persisted 
before the sources were adiabatically turned on. 

Furthermore, a formula can be given for the value of the final coherent state, showing 
that the field is given by the Maxwell theory with the classical current J(r, t). Indeed, 
using the explicit form of the evolution operator, and applying the decomposition of 
the Feynman propagator in positive and negative frequency parts, the standard rules 
of Green functions imply that the final value of A(r, t) at t = oo can be computed by 
the Lienard—Wiechert formula using the retarded Green functions (assuming that the 
classical field and the current are zero at time t = —oo and that the current has been 
switched on adiabatically at t —oo). 

It must be noted that in standard quantum mechanics and for certain specific po-
tentials, we can precisely and often non-perturbatively compute the evolution of the 
coherent states. This is also the case in quantum field theory. 

22.5 Squeezed States 

The squeezed states are a generalisation of coherent states. Their existence was pointed 
out by theorists, in their quest of finding interesting basis for the Hilbert space. They 
first attracted attention in quantum optics in the late 1970s. In the early development, 
their principal potential applications were for the field of optical communications and 
quantum non-demolition experiments designed for the detection of gravity waves. Later 
on, because of their capacity for optimising quantum fluctuations, squeezed states have 
been used in various subjects, such as quantum measurement theory, quantum non-
linear dynamics, molecular dynamics, dissipative quantum mechanics, condensed matter 
physics, and gravity. 

In quantum optics, the uncertainty principle is a fundamental obstruction that engin-
eers encounter for coding and transmitting information by optical means. In fact, the 
quantum noise of light beams places a limit on the information capacity of an optical 
beam since the uncertainty principle is a statement about areas in phase space; noise 
levels in different quadratures are statements about intersections of uncertainty ellipses 
with these axes. Any procedure which can deform or squeeze the uncertainty circle 
for Ax and Ap to an ellipse can in principle be used for noise reduction in one of the 
quadratures. 

So the idea of squeezed states is to isolate states such that the dispersion of canonical 
variables has been distributed in such a way that the dispersion of one variable is reduced, 
at the cost of increasing that of the rest of the variables in the phase space. 

We will illustrate it in the case of two canonical variables x and p we defined as 
(putting h = 1) 

x = al-  + a p = i(at — a). (22.28) 

We have a circular symmetry for the uncertainty dispersion relations since we have 
seen that 
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A 2 A 2 , < (Lax) > 2 = < (Lap)  > ,, = 1, (22.29) 

so that the uncertainty product is at its minimum value. 
Squeezed states are just defined by doing a unitary transformation, with 

xs  = at exp —if3 + a exp if3 Ps = exp ip - a exp —iP) (22.30) 

where f3 is a real number. 
It is easy to show that 

Axs  = Ox cos p + Op sin p 

Aps  = —Ax sin f3 + Ap cos /3 (22.31) 

and that we can find angles p, such that 

Axs  < 1 APs > 1. (22.32) 

The uncertainty dispersion has now an ellipsoidal symmetry, and we see that the 
quantum noise for xs  can be much less than that for x. 

We can choose a rotated base 

as  = r(cos f3a + sin Pal') (22.33) 

and define directly squeezed states as the eigenstates of as. 
Given a generic coherent state Iz >, the so-called '2-photons' squeezed states 
z >, are obtained from the vacuum by first making a coherent state Iz > using the 

displacement operator D(z) and then by squeezing it with the unitary operator 

so that 

1 
S(v) = exp 

2  
— (v* a2  — v

2
), where v exp if3, 

z >s  S(v) exp(zat — z*a)10 >. 

(22.34) 

(22.35) 

The time evolution of such states has been often mimicked by introducing some non-
linearity in the Hamiltonian for absorbing the z dependence. In fact, squeezed states can 
be experimentally produced by forcing coherent states to propagate through a non-linear 
medium, which reproduces the effect of the non-linearity of the Hamiltonian. 

We can apply this idea to a monochromatic electric field E by applying unitary op-
erations to the creation and destruction operators, yielding E —> Es. 'Two-photon laser 
experiments' allow us to realise experimentally the change E —> E„ and we can observe 
that the quantum fluctuation occur in an ellipsoidal way for the two transverse compon-
ents of Es  instead of in a circular way for the two components in E. The production of 
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squeezed states using media with non-linear optical responses has become an art, which 
can be even extended to the case of condensed matter physics, by replacing photons by 
phonons. There is a wealth of experiments, where the construction of squeezed states 
has been achieved, optimising the production of quantum states that defeat as much 
as possible the uncertainty principle. They realise a macroscopic quasi-classical limit of 
electrodynamics, which cannot be interpreted from the purely classical theory. 

22.6 Problems 

Problem 22.1 Coherent states of the electromagnetic field 
Consider the electromagnetic field quantised in a cubic box of dimension L. 

1. Define the coherent states for such an electromagnetic field. 

2. If Itii (0) > is the coherent state describing the state of the field at t = 0, find 
its state Itii (t) > at a later time t. 

3. Study the quantum fluctuations of the energy OH/ < H > of the electro-
magnetic field which is described by a coherent state. Give an estimation of 
this quantity for the case of the radiation in a resonant cavity of L=10 cm, 
which is tuned to a frequency of 1 MHz. The average external field in the 
cavity equals 1 Gauss. What can we deduce for the validity of the classical 
approximation for this system? 



23 

Quantum Field Theories 
with a Large Number of Fields 

23.1 Introduction 

In section 20.4, in the study of the properties of unstable particles, we introduced the 
notion of the 1/N expansion, where N is the number of fields in the theory. This was 
used as an artefact to justify a particular reordering of terms in the infinite series of 
the perturbation expansion. In this section we want to study this concept a little more 
systematically. 

Almost all the results we have obtained so far, and most of those we will obtain later, 
in quantum field theory are based on renormalised perturbation theory, in which, for 
practical reasons, we keep only the first few terms. This approach has two important 
limitations. The first concerns the numerical results. At best, they can be useful at the 
weak coupling limit when the value of the effective coupling constant is small. We say 
`at best' because, in the absence of any mathematical understanding of the convergence 
properties of the series, we cannot guarantee that even weak coupling results are reli-
able. In a later chapter we will expose briefly the few rigorous results which have been 
obtained in this subject. On the other hand, as we will see in the next chapter, the res-
ults obtained using the perturbation expansion are often in spectacular agreement with 
experiment. The second limitation concerns the general properties of the theory. We 
have seen in previous sections that the first terms in the perturbation expansion have 
rather simple properties as analytic functions and this does not change radically as we 
go to higher orders. In particular, effects such as the presence of bound states will ap-
pear only if we can sum an infinite number of terms. For all these reasons, and others 
we can easily imagine, it is interesting to invent a different approach. Since summing 
the entire series does not appear to be feasible, people have tried to invent methods of 
partial summations. The 1/N expansion is one of them. It has several advantages. First, 
it is systematic. Under some well-defined conditions, it gives an unambiguous rule to 
perform these partial summations. It offers a formal parameter, namely 1/N, which can 
be used to label the terms in the new expansion. In this respect, it is as 'consistent' as 
the ordinary perturbation series. Second, in some simple cases, the summations can be 
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performed explicitly. Third, the new series has a richer structure and we can hope that 
it may capture some of the non-perturbative properties of the underlying theory. In this 
section we will study some of these aspects. 

23.2 Vector Models 

By vector models we mean theories with N-component fields which form a vector rep-
resentation of a group 0(N). An example was the model we used in section 20.4. It is the 
simplest large N model and we shall use it as an example. It is described by a Lagrangian 
density of the form 

1 1 
E = 2(ait0i)(a A(Pi) — —2 m2 (oisoi) — 4i  (oioi)2, (23.1) 

where the index i runs from 1 to N and a summation over repeated indices is understood. 
Following the arguments of section 20.4, let us consider the scattering amplitude for the 
process al  + al  —> a2  + a2. The first diagrams in the perturbation expansion are shown 
in Fig. 23.1. The tree diagram (a) is of order A and the 1-loop diagrams are of order 
X2. However, diagram 23.1(b) has an extra factor N relative to those in 23.1(c) and 
(d) because we can circulate all N components in the first loop, but not in the others. 
This argument can be extended to diagrams with any number of loops and we see that 
at any order, diagrams, even with the same topology, will come with various powers of 
N depending on their particular group theory structure. If we try to take the large N 
limit keeping A fixed we obtain divergent expressions reflecting the simple fact that at 
N -+ oo, we obtain an infinite number of graphs. In section 20.4 we saw that the correct 
limit was to first rescale the coupling constant and define 

= AN (23.2) 

Figure 23.1 The first diagrams in the perturbation 
expansion for the al  + al  -+ a2  + a2  scattering 
amplitude. The lines are drawn in a way to show the 
factor of N in the loop of the s-channel diagram (b). 
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and take the limit N —> oo keeping fixed. There is a systematic way to prove this result 
and keep track of all the powers of N in the perturbation expansion by rewriting the 
Lagrangian (23.1) in a way which resembles the one we used in section 20.4: 

E = 
1 
—2 (0A(Pi)(altOi)  1  m20i(Pi + 3

N 
—2 — 

2 
 — 

1 
 oioi. (23.3) 

The difference with the case we studied in section 20.4 where 0 was the field of an 
unstable particle is that in the Lagrangian (23.3) it is an auxiliary field. This Lagrangian 
is in fact strictly equivalent to (23.1). Indeed, since the field 0 does not have a kinetic 
energy term, its equation of motion is 60 = 44i  and if we replace it in (23.3) we recover 
(23.1). This simply reflects the fact that the Lagrangian (23.3) is quadratic in 0 with no 
kinetic energy and the functional integration is trivial. Note that the field 0 has canonical 
dimension equal to 2, so no terms of the form 0" with n > 2 will ever be generated 
as counter-terms in perturbation theory. On the other hand, the Lagrangian has no 
symmetry 0 —> —0; therefore, we expect to find a term linear in 0. Indeed, the first 
non-trivial diagram in the perturbation expansion of (23.3) with 0 external lines is the 
one shown in Fig. 23.2. It contributes to the 1-point function and it gives a contribution 
proportional to N from the 4  loop. Since it is divergent we must introduce a counter-
term of the form Nc0 . In the terminology we used in section 16.5.3 the Lagrangian 
(23.3) is not stable. We restore stability by adding such a term already in the classical 
theory and we complete (23.3) as 

—> r—Nc0. (23.4) 

This has no real effect on the dynamics because we can eliminate it by a transla-
tion of the field 0 —> 0 + V2  with V a constant. As usual, we can determine V by a 
renormalisation condition and we choose the simplest one, namely 

< 01010 >= O. (23.5) 

In the tree approximation V2  = c5,73. The condition (23.5) eliminates all one-
0 Green's functions and only changes the value of the mass of 0:  m2 = m2 + V2.  

At 1 loop, V receives the contribution of the diagram of Fig. 23.2, which is di-
vergent. The divergence is eliminated through a counterterm Sc determined by the 

Figure 23.2 The 1-loop diagram contributing to the 1-point Green's function. 
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renormalisation condition (23.5). In the original Lagrangian (23.1) it corresponds to 
mass renormalisation. 

What we gained with all this rearrangement is that in the new Lagrangian, the powers 
of N are easier to follow because every term in it is, effectively, proportional to N. This 
is true for the 02  term, but also for all the others because of the summation over i. In the 
Feynman rules N appears explicitly in the 0 propagator which is a constant proportional 
to 1/N. 

We can go one step further by noting that (23.3) is also quadratic in the fields 4„ so 
we can formally integrate over them. The operation will be only formal because we will 
obtain a 0-dependent determinant of the form [det(EI + m2  + 0)]-1/2, which we can only 
compute in perturbation. The result will be an effective theory depending only on 0, 

eiseffioN = f p[odeis[0i,o,N1, (23.6) 

where we have indicated explicitly the N-dependence. As we noted earlier, every term 
in (23.3) is proportional to N, so we obtain 

Seff10 , AT] = NSeff [(P 1]. (23.7) 

In other words, N plays the same role as 1/h in the usual perturbation expansion. A 
simple counting shows that a one-particle irreducible diagram with E external 0 lines 
and L loops has a power of N given by N1-E-L  This shows that the leading term in 1/N 
will be given by the diagrams in our effective field theory with no loops (remember, the 
effective field theory has only 0 lines) and the minimum number of external 0 lines. 
Since we have eliminated the one-0 Green's function, the leading term will be 1/N and 
corresponds to tree diagrams with two external 0 lines. This is very simple. It is a 1-PI 
diagram, computed with Seff with no internal 0 lines, so it is given by the sum of the 
free contribution plus the 1-loop correction of Fig. 23.3: 

2 3N 1 d4q 
(k2) = + 5: 4 f (q2 #22) [(k q)2 _ 7722]' (23.8) 

The momentum integral in this expression is logarithmically divergent but the diver-
gence can be absorbed in the renormalisation of the coupling constant. So the result can 
be written as 

Figure 23.3 The exact 1-PI 2-point function to leading order in 1/N. 
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(k2) = —
3N 

+ iE (k2), (23.9) 

where the constants in and are assumed to represent the renormalised values and 
iE (k2) is the finite part of the 1-loop contribution. The complete 0 propagator is the 
inverse of IT)  (k2) given by 

G,(02)  (k2) =  (23.10) 

Diagrammatically this is equivalent to the series of diagrams given in Fig. 23.4. 
We emphasise that this result is exact to leading order in 1/N but to all orders in the 
perturbation expansion. 

For example, the al  +ai  —> a2+a2  scattering amplitude we considered at the beginning 
of this section is obtained, in leading 1/N order, but to all orders in perturbation, by the 
one-0 exchange diagram shown in Fig. 23.5(a) with the complete 0 propagator given 
in (23.10). We can arrive at the same conclusion if we eliminate the auxiliary field and go 
back to the original variables (Pi. The amplitude is now given in terms of the sum of the 
bubble diagrams shown in Fig. 23.5(b). We can again sum the infinite series and verify 
that the two expressions, Fig. 23.5(a) and Fig. 23.5(b), are indeed identical. 

Let us summarise. In our 0(N) vector model we can compute exactly any scatter-
ing amplitude in the leading 1/N order but to all orders in perturbation by summing 
an infinite series of Feynman diagrams. The model remains renormalisable but we need 
only a mass and a coupling constant renormalisation. The wave function renormalisa-
tion, which is normally associated with the diagram of Fig. 16.9, appears only in the next 
order in the 1/N expansion. 

In a four-dimensional space—time the scalar 0(N)-invariant Lagrangian (23.1) we 
studied here is essentially the only vector model which yields a renormalisable quantum 

twOtov ttwOwzOtrar tozOtwy 
Figure 23.4 The diagrammatic expansion of the propagator. 
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(b) Figure 23.5 The al  + al  -+ a2  + a2  amplitude 
in terms of the 0 propagator (a), and the sum of 
the bubble diagrams (b). 
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field theory. As we explained earlier, we can sum the infinite series of diagrams ex-
plicitly and obtain expressions in closed form for the leading terms in 1/N. This 
is obtained by rescaling the coupling constant as shown in Eq. (23.2). The limit 
N —> oo gives well-defined expressions only if we keep of Eq. (23.2) fixed. In 
Problem 23.1 we compute various quantities, such as the effective potential, in this 
theory, but no essentially new phenomena appear. The situation changes if we con-
sider theories in three or two space—time dimensions, and in Problem 23.2 we consider 
a very interesting case of a spinor theory of the general form (ifroki)2, the so-called 
Gross—Neveu model. It is easy to show that it is renormalisable in two space—time di-
mensions and in the large N limit it presents many interesting features. Since we have 
not studied field theories in other than four dimensions in this book, we will not go 
to further details here. Some rigorous results concerning this model will be presented 
later. 

23.3 Fields in the Adjoint Representation 

In the previous section we studied the large N limit of models in which the fields belong 
to the N-dimensional representation of the symmetry group (the vector representation 
for the 0(N) group or the fundamental representation for the U(N) group in the Gross—
Neveu model). When N goes to infinity the number of fields grows linearly with N. We 
showed that we can sum the series of dominant diagrams and obtain explicit expressions 
for quantities such as scattering amplitudes or the effective potential. In this section 
we want to address the same question but for theories in which the fields belong to 
the adjoint representation of the symmetry group. The application we have in mind is, 
naturally, the Yang—Mills theories. The obvious difference is that now the number of 
fields grows quadratically with N. 

Let us first consider a pure Yang—Mills theory on the group SU(N). The gauge po-
tentials A, are matrix valued, so in order to keep track of factors of N we put the matrix 
indices explicitly: A. In fact, the Lorentz index it will not play any role, so we will drop 
it in what follows. The analysis could be applied equally well to any spin fields, provided 
they belong to the adjoint representation of SU(N). From the group theory point of 
view this matrix representation reflects the fact that the adjoint of SU(N) can be writ-
ten as the traceless product of a fundamental and an anti-fundamental representation: 
AZ• — where the q's belong to the fundamental representation. The A-propagator 
will have a group theory structure given by 

< At Alk  > < qt) (q1  4k) > 8 — 
17

8-1;81k, (23.11) 

while that of a q will be 

< > (23.12) 
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\AAAA' ivv< X 
Figure 23.6 't Hooft's double-line representation 
for the diagrams of a Yang—Mills theory. 

The second term on the right-hand side of Eq. (23.11) is due to the fact that we 
considered an SU(N) theory, rather than a U(N) one. It is clear that in the N —> oo 
limit the difference will appear only in the sub-dominant terms. These relations suggest 
a new way of writing the Feynman diagrams, first proposed by G. 't Hooft. We write an 
oriented line to follow every fundamental representation index, as shown in Fig. 23.6. 
The vector bosons are represented by a double line with opposite orientations.1  It is 
now straightforward to represent the vertices with three or four gauge bosons, always 
ignoring the space-time indices and momentum factors. 

The Yang-Mills action is proportional to the trace of the product FF, so, instructed 
by our experience with the vector model, we rescale the fields and write the action as 

S = N — f dtx (--
4

TrFF) . k2 

The large N limit will be taken keeping fixed the 't Hooft coupling constant: 

(23.13) 

g- 2 = Ng2 . (23.14) 

We are now in a position to count the factors of N in a given diagram. Let us start 
with the vacuum to vacuum diagrams. In the double-line representation of Fig. 23.6 all 
indices must be contracted to make loops. The lines which form every loop will close 
the perimeter of an oriented polygon. Every loop, i.e. every face of a polygon, will give 
a factor of N from the summation over the indices. Every propagator, i.e. every edge 
of the polygon, will give a factor 1/N, while every vertex will give a factor of N. These 
factors come from our rescaled action of Eq. (23.13). Putting together all polygons we 
obtain a two-dimensional surface. Since all polygons are oriented and the lines in the 
edges go in opposite directions, we can define an orientation for the entire surface. A 
diagram with F polygon faces, E edges, and V vertices has a factor of N given by 
NF+17-E. The exponent is known in topology and it is called the Euler characteristic x. 
An oriented surface is topologically equivalent to a sphere which may have a number B 

1  Here the fact that we considered an SU(N) group is important. Had we considered an orthogonal group, 
in which the fundamental and the anti-fundamental representations are equivalent, we would not have obtained 
oriented lines. 
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of boundaries; in other words, holes cut on the surface and a number H of handles. The 
Euler characteristic is given by 

X = 2 — 2H — B. (23.15) 

It follows that the leading behaviour of the connected vacuum to vacuum amplitude 
is N2  and it is given in terms of diagrams with no boundaries which have the topology of 
a sphere. In our double-line notation a boundary is formed by a line with an index going 
only in one direction. This line does not correspond to a vector boson propagator since 
the latter comes always with a double line with indices going in opposite directions. It 
corresponds to a field belonging to the fundamental representation. In chapter 25 we will 
study an SU (3) gauge theory for the strong interactions with an octet of gauge bosons 
which we call gluons and a set of spinor fields in the fundamental triplet representation 
which describe the quarks. We conclude that at large N, the leading vacuum to vacuum 
diagrams are made out of gluons with no quark lines. This result is intuitively obvious, 
because at every order in perturbation theory we can create either a pair of gluons or 
a quark—antiquark pair and we have N2  gluons and only N quarks. Going back to the 
traditional single line representation of the Feynman diagrams we lose the orientation of 
the surface. Since we have no handles, the resulting diagram can be drawn on a plane 
with no line crossings in which one line must go on top of the other, i.e. a planar diagram. 
So our previous result can be phrased in the following form: In an SU(N) gauge theory, 
taking the limit N —> oo with g fixed, the leading behaviour of the connected vacuum to 
vacuum amplitude is given by the sum of all planar diagrams with no quark lines. Quarks 
will appear only in the subleading behaviour. The topological relation (23.15) shows 
that it is given by diagrams with no handles (H = 0), but one boundary. So they are 
planar diagrams with a single quark loop which forms the boundary of the graph. They 
give a contribution to the amplitude which grows like N. 

The planar diagrams form a much larger set than the bubble diagrams we found in 
the vector models and nobody has been able to compute the sum. Therefore, the large 
N behaviour of these theories is not known explicitly. There have been some interesting 
attempts to extract physical consequences for the theory of strong interactions, especially 
meson phenomenology, but they have not given any quantitative results. 

Before closing this section, let us draw an analogy between the N —> oo limit and the 
h —> 0 limit. Formally, they are identical. Let us write Feynman's path integral for some 
gauge invariant quantity 

liN  
< 0 > f D[A]0[A]e 

"gS[A] 
(23.16) 

where we have restored the factor h and we denote all fields collectively by A. The N 
factor is taken from our expression (23.13). Taking the classical limit means that as h 
goes to 0 the measure is concentrated on fields which are solutions of the classical equa-
tions of motion Ad. The value of the gauge-invariant quantity is the one it obtains for 
this classical field configuration 0 [Ad], or any gauge equivalent of it. Since the group 
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is SU(N), the gauge potential is given by some N x N matrix. Similarly, as N goes 
to infinity we expect the measure to be concentrated on some classical field configura-
tion, except that this time it will be an infinite-dimensional matrix, Ac(7). Summing the 
planar diagrams amounts into finding this unique field configuration. If we have it we 
can compute the large N value of any observable, simply as 0[A,(/°°)]. For this reason 
Ac(°°)  is called the master field. The problem is that although in simple cases we can solve 
the classical equations of motion and find Ad, we have no practical way of computing, 
even approximately, the master field. If we make the reasonable assumption that, at large 
N, the solution will respect symmetries such as translational invariance, we expect the 
master field to be gauge equivalent to a constant field configuration, so it will be an 
infinite-dimensional, constant matrix. 

23.4 The Large N Limit as a Classical Field Theory 

In the previous sections we studied various field theory models in the limit when the 
number of fields goes to infinity. We used the language of Feynman diagrams and we 
found that we must rescale the coupling constant to take into account the fact that in 
this limit we have an infinite number of diagrams at every order of perturbation. When 
N goes to infinity the bare coupling constant must go to 0. In this section we will try to 
study an alternative limit which will give us a classical field theory formulated in a space 
with extra dimensions. The result will be particularly interesting for gauge theories. 

Let us start with the vector model. The field is 01(x), i = 1, 2, ..., N. When N goes 
to infinity we can replace 01 (x) by a single field 4)(x, a), 0 < o < 2n-, using any kind of 
discrete transformation. For example, we can expand 4)(x, a) in Fourier series, or in the 
basis of Legendre polynomials, etc. In an orthonormal basis we find that 

27-c 
Oi (X)(P i (X) —> f cla4)(x,a)0(x,a), (23.17) 

i.e. we obtain a single field in a five-dimensional space where the fifth dimension is 
compact. The problem with the vector model of Eq. (23.1) is that the interaction term 
(01)z)2  is no more local in o . The surprising feature is that for a Yang—Mills theory, the 
resulting expression turns out to be local. 

Let us consider an SU(N) Yang—Mills theory in a d-dimensional space with potentials 

A,(x) = Aap,(x) ta, (23.18) 

where ta  are the standard SU(N) matrices. The statement is that in an appropriate large 
N limit there exists a reformulation of the theory in which the gauge fields and the gauge 
potentials are replaced by 

A,(x) —> z2) Fitv (x) —> Titv(x, zi, z2), (23.19) 
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where A and T are c-number functions in a (d + 2)-dimensional space, Greek indices still 
run from 0 to d — 1 and z1  and z2  are local symplectic coordinates on a two-dimensional 
closed surface. So far there is no surprise. We obtain two extra compact dimensions be-
cause the gauge fields are represented by matrices which have two indices. The surprise 
comes when we express the Yang—Mills action in this (d + 2)-dimensional space. The 
result is 

f d4xTrFAvP" —> f d4xdS2.F„„ (x, z1, z2)P"(x, z1, z2), (23.20) 

where dS2 is the measure on the surface (for a sphere it is the familiar sin 04)&9) and 
.F,„ (x, z1 , z2) is given by 

Fttv(x, zi, z2) = a AAv(x, zi, z2)—avAA (x, zi, z2) + {AA (x, zi, z2), A„(x, zi, z2)} • (23.21) 

tic , g} is the classical Poisson bracket defined by 

ti 
of ag  of ag  _

c ' g}  — az1  az2 —  az2 azi .  
(23.22) 

We see that, as announced, in the action (23.20) all terms are local in the (d + 2)-
dimensional space. 

The proof of this statement is basically algebraic. We can show that the SU(N) 
algebra, at the limit N —> oo, with the generators appropriately rescaled, becomes 
isomorphic to the algebra of symplectic, or area preserving diffeomorphisms of a two-
dimensional surface. The generators of symplectic transformations of a surface, locally 
have the form 

and satisfy the algebra 

of a of a 
LI = az2  az1  — az1 az2 

(23.23) 

[LI , 4] = L {f ,g
} . (23.24) 

The direct way to prove this result is to compute the structure constants of the SU(N) 
algebra and show that at the limit when N —> oo they go to the corresponding structure 
constants of [SDiff(S)].2  We will present here a simpler proof which applies to the case 
when the two-dimensional surface is a sphere. In this case there exists a globally defined 
pair of symplectic coordinates, such as z1  = cos 9 and z2  = 0. In the relation (23.23) we 
can form a basis of generators choosing f to be the spherical harmonics: f = 171,7,(0 , 0). 
The generators of the area-preserving diffeomorphisms can then be expressed as 

2  See J. Hoppe, MIT PhD thesis, 1982. 
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L1,m  = 
aYi,„, a aYi,m  a 

(23.25) 
acose ao acos 6  

They satisfy the Lie algebra 

[1.1,m, Le,,nd = fi,m;  l r mr  Le,  m” (23.26) 

with the structure constants given by 

1 171,m) Yl ,m' l  = f4m;  p m,Y 1" ,m" (23.27) 

where the curly bracket represents the Poisson bracket with respect to and cos O. 
After these preliminaries, we turn to the proof of our statement. We first remark that 

the spherical harmonics 174m  (0, 0) are harmonic homogeneous polynomials of degree 1 
in three Euclidean coordinates x1, x2, x3, 

x1  = cos sin 0, x2  = sin (/) sin 0, x3  = cos 9 (23.28) 

Yi,m(0,o) = E (m) 
ii...i, z, 

ik =1,2,3 
k=1,...,1 

(23.29) 

where a (m)  is a symmetric and traceless tensor. For fixed 1 there are 21 + 1 linearly ti . 
independent tensors cez(im)q, m = —1,...,1. 

Let us now choose, inside SU(N), an SU(2) subgroup by choosing three N x N 
Hermitian matrices which form an N-dimensional irreducible representation of the Lie 
algebra of SU(2): 

[Si, = iEjjkSk. (23.30) 

The S matrices, together with the a tensors introduced earlier, can be used to 
construct a basis of N2 -1 matrices acting on the fundamental representation of SU(N), 

S1(N) - E acno. s. s, - z„... z. 
ik=i,2,3 
k=1,...,1 

[ S ( N ) 
s(N) • c(N)r ,m" (,(N) 

l,m ,m' 111,m; ,m' '1" ,m" 

(23.31) 

where the f's appearing on the right-hand side of (23.31) are just the SU(N) structure 
constants in a somehow unusual notation. Their normalisation is given by 

2  — l  
Tr (S1 m) N) ) — ton 47r  

1 N  N 
4 

1 
5( ,m' le a mm' • (23.32) 



The Large N Limit as a Classical Field Theory 577 

The important, although trivial, observation is that the three SU(2) generators Si, 
rescaled by a factor proportional to 1/N, will have well-defined limits as N goes to 
infinity: 

2 
Si —* Ti = (23.33) 

Indeed, all matrix elements of Ti  are bounded by KT) abl < 1. They satisfy the 
rescaled algebra 

and the Casimir element 

2i 
[Ti, T] = 

N
— EiskTk 

T2 = T2 + 7,2 _L  7'2 
= 

I 1  
1 2 3 • 

N2  

(23.34) 

(23.35) 

In other words, under the norm IIxII2=Trx2,  the limits as N goes to infinity of the 
generators Ti  are three objects xi  which commute by (23.34) and are constrained by 
(23.35): 

X2  + X2  + X2  = 1 1 2 3 ' (23.36) 

If we consider two polynomial functions f (xi, x2, x3) and g (xi , x2, x3) the correspond-
ing matrix polynomials f (T1, T2, T3) and g(T1, T2, T3) have commutation relations for 
large N which follow from (23.34): 

N	 af ag 
[f ,g] —> Eijk  Xi — — • 

2i ax; axk 
(23.37) 

If we replace now in the SU(N) basis (23.31) the SU(2) generators Si  by the rescaled 
ones Ti, we obtain a set of N2  — 1 matrices T(m)  which, according to (23.29), (23.31), 
and (23.37), satisfy 

111.  [ Ti'(Nm)  2i , —> { Yt,m3 (23.38) 

The relation (23.38) completes the algebraic part of the proof. It shows that the 
SU(N) algebra, under the rescaling (23.33), does go to that of [SDiff(S2)]. It is now 
straightforward to obtain the limit for the Yang—Mills action. We expand the classical 
fields SU(N) on the basis of the matrices T/(N.), 

42(x) = E Ai,m(x) T(N) A 
1=1,...,N-1 
m=-1,...,1 

(23.39) 
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which, according to (23.38), implies that the rescaled commutator has as a limit the 
Poisson bracket: 

N [A /2, Ay] —> , 0), A, (x, 0 , 0)} . (23.40) 

Combining (23.40) with the fact that the trace of the T matrices is obtained from 
(23.32) by rescaling 

Tr 
 (

T()  T(N) ) —>N 811,8 mm,  , 1,m ,m' (23.41) 

we obtain the result for the case of the sphere. The torus can be treated similarly because 
it also admits a pair of globally defined symplectic coordinates. 

Putting now all N factors together we see that the correct rescaling to obtain this result 
is given by the limit of the commutator (23.40). On the left-hand side the A's are N x N 
matrices and on the right-hand side, they are c-number functions. It implies that in this 
large N limit we keep the combination g-2N3  fixed. In contrast to what happens in the 't 
Hooft limit, here the bare coupling constant goes to infinity for large N. This is reflected 
to the fact that we cannot use ordinary perturbation expansion starting from the action 
(23.20) because the quadratic part has no derivatives with respect to z1  and z2. Every 
term in this expansion is divergent, as it should since the rescaling did not absorb the 
infinite number of diagrams in the original Yang-Mills theory. The only perturbation 
which could be meaningful would be around a non-trivial classical solution. 

23.5 Problems 

Problem 23.1 In section 19.4 we introduced the concept of the effective potential 
V (0) as a function of the classical field. We saw that its knowledge allows us to study 
the various phases of the theory. In the vector model defined by the Lagrangian 
density (23.1), compute the effective potential in the leading 1/N approximation. 
Use this expression in order to investigate whether this theory exhibits, in this 
approximation, the phenomenon of spontaneous breaking of the 0(N) symmetry. 

Problem 23.2 The Gross-Neveu model. We consider a field theory in two space-
time dimensions defined by the Lagrangian density 

= iiP -tfr +g( t)2, (23.42) 

where is a fermion field, i = 1, ..., N , and a summation over repeated indices is 
understood. The Lagrangian is invariant under a U (N) symmetry. 
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(i) Show by power counting that in two space—time dimensions the theory is 
renormalisable. 

(ii) Show that despite the absence of a mass term, the model is stable under 
renormalisation because of a discrete chiral symmetry. 

(iii) We want to study the large N limit of this theory. Find the effective coupling 
constant k which should be kept fixed in order to obtain finite expressions 
when N —> oo. 

(iv) Use the methods we introduced in the study of the 0(N) vector model, 
section 23.2, in order to compute the effective potential as a function of the 
classical auxiliary field. 

(v) Show that the theory is asymptotically free in the sense we explained in 
section 19.2. 

(vi) Study the phenomena of spontaneous symmetry breaking and dimensional 
transmutation. 

The model is analysed in the lectures by S. Coleman at the 1979 Erice Summer School. 



24 

The Existence of Field Theories 
beyond the Perturbation Expansion 

24.1 Introduction 

All throughout this book we have emphasised the deep connection between the soph-
isticated mathematical description of the fundamental laws of nature and the detailed 
experimental results. It is this connection which characterises modern physics. Quantum 
field theory is the best example of it. As we have seen in the previous chapters, quantum 
field theories are the natural extension of classical field theories (the main one being 
electromagnetism), with the integration of the ideas of special relativity and quantum 
mechanics. A given field theory, whether classical or quantum, is supposed to describe a 
particular class of physical phenomena. This is reflected by the choice of the variables, 
the fields, and the particular form of the interaction we assume taking place among 
them. Historically, the early formulations were following the Hamiltonian, approach and 
we were splitting the Hamiltonian into the 'free' part, which contained only the kin-
etic energies and the mass terms, and the interaction terms. In the formulation we have 
presented so far the strength of the latter was taken to be 'weak'. This was understood 
either in absolute terms, a coupling constant whose numerical value was much smaller 
than 1, or relative to the contribution of the other terms, such as the kinetic energies and 
masses. This way we can imagine that a physical quantity can be computed as a series 
of 'elementary' processes involving more and more times the interaction. This was the 
perturbation expansion whose properties we studied in the previous chapters. The basic 
assumption is that a term of order n, i.e. one involving the interaction n times, should 
be smaller than the corresponding one of order m with m < n. It yields the expansion in 
terms of Feynman diagrams and, after several formal manipulations, the renormalised 
perturbation series. 

A conceptually new step was the path integral approach introduced to its full gener-
ality by Feynman. As we explained in Chapters 8 to 12, it contains two fundamental 
ingredients: Dirac's visionary focus on the importance of this new formulation of 
quantum mechanics, on the one hand, and the introduction by Wiener of an integral 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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description of the Brownian motion (the so-called Wiener integral), on the other. 
Feynman's path integral formulation, the functional integral defined in Chapter 8 as 

f eif [0(xIi(x)-C(x)1d4  x n (y)

, 

 

1 IyER4  
(24.1) 

was the first global form of the generating functional of a physical theory, the theory 
being defined by a Lagrangian E(4(x)) = L(x). Naturally, as for the Hamiltonian, it 
is possible to split the Lagrangian .0 into a quadratic part Go corresponding to a free 
system, i.e. without interaction, and an interactive part, GI, usually describing the self 
couplings of the fields (non-quadratic terms) or the couplings between different fields. 
Then the integral (24.1) is formally proportional to 

f eif [0(x)i(x)-ci (x)1d4xe-if Lo (x)d4xn (y) C( f ei f [0(x)/(x)-ri (x)].z14xD4  (0) (24.2) 
I IyER4  

with the introduction of the formal Gaussian measure Dp,(0) built from the free 
Lagrangian Go. 

After normalisation, we obtain this way the generating functional Z[j] given by 
formula (12.136) . 

If the object of interest is the estimation of some given physical quantity, such as, 
for example, the T-product < T(cp(xi ) • • • cp(xn)) > of n fields, then its formal per-
turbative expansion is obtained by expanding in the functional integrals of (12.131) the 
exponentials of the interaction as a sum of powers of GI  as given by formula (12.135). 
We then recover the formal perturbative expansion to arbitrary order as given by the 
Feynman recipe. This approach has been incredibly efficient with great successes in nu-
merical predictions. The intermediate step to get these results was the renormalisation 
procedure that we have explained in the previous chapters. 

What is missing is the intrinsic consistency of this complex mathematical machinery: 
functional integration, perturbation expansion, and renormalisation. We can express 
a physical theory through compact formulae. But these formulae are of the form of 
functional integrals which imply integration on a space of functions, a space of infinite 
dimensions. The existence of these functional integrals is very hard to prove because 
the argument is oscillatory and very little is known about the functional property of the 
measure of integration. Moreover, many of the main results were obtained from per-
turbation theory and, apart from the formal relation, nothing is really known between 
the global theory and the perturbation expansion. The question we want to address in 
this chapter is how to reassemble in a rational way the global aspect, the perturbation 
theory, and the renormalisation procedure. 

During the past forty years considerable progress has been made on the existence 
and the properties of the physical theories. We will show, admittedly on some simplified 
models, that it is possible to understand precisely how the different practical approaches 
can be made coherent. 
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24.2 The Equivalence between Relativistic and Euclidean 
Field Theories 

The basic ingredient that makes it possible to give a mathematical meaning to field the-
ories is an equivalence relation between field theories in Minkowski space and their 
corresponding theories in the Euclidean R4  space. The metric in Minkowski space is 
(+, —,—,—). As we have done several times previously, we perform a —90° rotation of the 
time coordinate (this is often called the Wick rotation), i.e. we change t —> —it in order to 
arrive at the metric (—,—,—,—) or, equivalently, (+, +, +, +). We have presented this idea 
in the path integral framework in Chapter 10. Formally, this has the effect of changing 
the exponent in the functional integral (24.2) from —if (x) ex where x = (t, x1, x2, x3) 
to —f (x) d4x where now x = (xo, xl , x2, x3). It results from this complex rotation that in 
the integrals the exponential is now exp—f ri(x)d4x; thus, if the interaction Lagrangian 
has some positivity property, the function to integrate will not blow up when the fields 
(as integration variables) go to infinity and we can expect to control the integrals. It also 
reduces the singularity due to the metric: in Minkowski space x.x t2  _ 4  _ 4  _ x3

2 = 0  

means that x is on the light cone while in Euclidean space x.x x02 + xi   + 
x2

2 + 
x3
2 = 0  

means that x 0, i.e. a point, and also simplifies the invariance properties since we go 
from Lorentz invariance SL(2, C) to the Euclidean SO(4) invariance. 

In 1972, Konrad Osterwalder and Robert Schrader have proposed a set of axioms 
for Euclidean field theories.' These axioms are expressed as necessary and sufficient 
conditions for Euclidean Green functions to define a unique Wightman field theory. 
More precisely, they proved that under these conditions, the Euclidean Green functions 
have analytic continuation whose boundary values define a unique set of Wightman 
functions. These conditions are, except for one, very similar to the Wightman axioms. 
They set five axioms for Euclidean Green functions En (xl , x2, • • • , xn), n = 0, 1, 2 ... , as 
follows. 

Let fi  , • • • ,f, E S (R4). We define f = f, „f2, • • •fn) E S(R4n) 

En() = f en (xi, x2, • • • ,x„)fl (xi) • • • fn(xn)d4  x • • • d4  x • (24.3) 

We introduce the following transformations for all functions f(xl , x2, • • • , xn) E 
S(R4n): 

f f* by fn(xl, x2, • • • 5 x/1) = f(xn,"  5 xi) (24.4) 

f —> ef by (ef)n(xi, • • • ,x/1) = fn(Oxi, • • • 5 9 xn) (24.5) 

f by fn.  (xi," • ,xn) = f (X7 ( 1), " X1r (n)) (24.6) 

with 0 x = (—xo, xi , x2, x3) and 7 (1,2, • • • n) = (27- (1), • • • , (n)). 
The list of axioms is the following. 

1  K. Osterwalder and R. Schrader, Comm. Math. Phys. 31, 83 (1973). 
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• EO : Distributions 

Ep-1 En  E S (R4n), (24.7) 

i.e. the Euclidean Green functions are tempered distributions. 

• El : Euclidean invariance 
For all a E R4  and R E SO(4), with obvious notations, we have 

en(f) = en(f(a,R)), (24.8) 

where for a function g : R4  —> C, g(a,R)  (x) = g(a + Rx). 

• E2 : Positivity 

E en+.(ef: x fm) 0 
n,m 

• E3 : Symmetry 

en(f) = en(fn") 

• E4 : Cluster property  

Vfn  E S n = 1, 2, • • • . (24.9) 

for all permutations of (1, 2, • • • , n). 
(24.10) 

llm r[en+m(Of: X gm(Xa,1)) —  en(Of:)em(gm)] = 0, 
x—>00 

n,m 

where a is a space-like vector. 

(24.11) 

Remark: The Euclidean space is symmetric under the Euclidean group of rotations. It is 
the axiom E2 on positivity which points a particular direction, through the function 
9, which will be the time direction in the Minkowski space. 

From these axioms we can prove the following theorem. 

Theorem 18 (Equivalence between Euclidean and Relativistic Field Theories). To 
a given sequence of Euclidean Green functions satisfying conditions EO, El, E2, E3, 
and E4 there corresponds a unique sequence of Wightman functions Wn, n = 1, 2 • • • , 
satisfying the properties (a)—(e) of Theorem 12 and Theorem 13. 

The method for proving this theorem is to perform the analytic continuation cor-
responding to the Wick rotation, i.e. the complexification of time. Euclidean world and 
Minkowski world are related by analytic continuation. That this is possible is due to the 
fact that the Wightman functions are boundary values of analytic functions which are 
analytic in tubes. These tubes can be extended as we have seen, since from Lorentz 
covariance follows the invariance under the complex Lorentz group, to a much larger 
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complex region: the extended tubes. We have seen that unlike the forward tubes, the 
extended tubes contain real points, the Jost points, which are space-like to each other; 
hence by locality, the Wightman functions are symmetric functions of their complex 
arguments. This in turn makes it possible to extend the domain of analyticity (more 
precisely the domain of holomorphy),2  to a larger one, the so-called Bargmann—Hall—
Wightman domain of holomorphy, which contains Euclidean points, i.e. points of the 
form z = (it, xl , x2, x3). This analytic continuation is something complicated since for 
an n-point Wightman function, it is n complex time variables which must be analyt-
ically continued. Usually the Euclidean functions resulting from the Wick rotation of 
Wightman functions are called Schwinger functions. 

The main difference between the Euclidean world and the Minkowski one is that in 
the Euclidean world no direction of space plays a special role, in contrast to what happens 
in Minkowski space. As we pointed out earlier, the choice of this direction results from 
the axiom of positivity E2. 

Most of the main results concerning properties and existence of quantum field theor-
ies were obtained in the Euclidean framework. All of the following sections of this chapter 
are written in this framework. By Osterwalder—Schrader axioms they can be understood 
as results obtained in Minkowski space. 

24.3 Construction of Field Theories 

In the following sections of this chapter we will show that, thanks to the Osterwalder—
Schrader axioms, we can prove the global existence and some properties of a relativistic 
field theory by proving the existence of the corresponding global Euclidean field the-
ory. This is immediate for a theory quadratic in the fields since, by Minlos' theorem, we 
know how to prove the existence of infinite-dimensional Gaussian integrals. Therefore, 
the goal is to find systematically under which conditions the existence of a global meas-
ure or, equivalently, the existence of its moments can be proven for the case where the 
interaction is a polynomial of order greater than 2. Usually, the difficulty of the proof 
increases with the dimensions of the underlying space over which the theory is defined, 
but other parameters, such as the nature of fields, fermionic or bosonic, massive or mass-
less, scalars spinors or vectors, simple polynomial or gauge interactions, can affect the 
difficulties considerably. 

We will start with simplified models and then go gradually to models with more phys-
ical significance. In this section we will only present the problems and the results, with 
no proofs. A sample of these proofs will be given in the following sections. 

Some properties characterising quantum field theories (QFT) can be easily under-
stood by using simplified models. For example, the divergence of the perturbation series 

2  In contrast to what happens in one dimension, in higher dimensions a domain of holomorphy is a maximal 
domain in the sense that there exists an analytic (or holomorphic function) which cannot be extended to a 
larger domain. In our case, the extension is possible because of the symmetry property of the Wightman 
functions for space-like points and the Lorentz invariance. 
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and the relation between its properties and those of the underlying global expression, the 
so-called Borel summability, appear in low dimensions of space—time and are independ-
ent of the Lorentz transformation properties of the fields. Already in zero dimensions we 
see easily that a polynomial interaction of order 2k, k > 2, when expanded in a power 
series, generates numerical coefficients growing up as fast as a factorial to the power 
k. The resulting series is divergent, no matter how small the coefficient in front of this 
polynomial is (i.e. of the smallness of the coupling constant). The same problem appears 
in higher space—time dimensions: the number of graphs at order n in the perturbation 
expansion increases as a power of n!. This is the fundamental difficulty in studying the 
convergence properties of any perturbation series. Each term of the series can be small, 
provided the coupling constant is small, but the number of such small terms grows too 
fast. At any given order n of perturbation the estimates on both the values of the graphs 
produced and the coupling constants grow geometrically with n, while the number of 
graphs grows like a power of n!. So even if the coupling constants are very small, they 
cannot control this type of divergence. We will be able to overcome this difficulty in 
some specific cases by introducing new types of expansions in which, at every order, 
we produce enough 'small' factors able to dominate the factorial increase in the number 
of graphs. For the rest of this chapter domination will be the name of the game. This 
process will grow more and more sophisticated as we study models of increasing com-
plexity. The technical level of the detailed proofs becomes soon very involved so, in most 
cases, only the main ideas and the results will be presented. For simplicity, we will start 
with a scalar field interacting through a 04  term, because this choice is the simplest one 
which does not correspond to a free-field theory and offers the guarantee that the energy 
is bounded from below. We will consider this model embedded in a Euclidean space of d 
dimensions3  and we will denote it by Ø.  At the end we will study a model with fermions 
and one with gauge bosons. We give here the list of the models and a short discussion 
for each of them. This list does not exhaust the models which have been studied, but it 
helps introducing all the essential techniques and results. 

• The zero-dimensional model 004  (see section 24.4). In some sense it is a trivial case 
because the corresponding QFT is described by usual functions, the field 4)  being 
now a single scalar variable x. The functional integral reduces to a single one-
dimensional integral, from —oo to +oo, of the exponential of —(1x2  + Xx4). It is a 
nicely convergent integral, as long as Re X > 0, but it diverges for all Re X < 0. 
This shows that an expansion in powers of X cannot be absolutely convergent and 
the series will turn out to be only Borel summable. We will establish this result in 
the next section. 

• The two-dimensional model 024  (see section 24.6). We then prove the same results in 
dimension 2. The theory will be scalar and massive and the interaction quartic. We 
will start by defining it in a finite volume. As for the zero-dimensional case, the 

3  We recall that a d-dimensional Euclidean space corresponds to a Minkowski space with 1 time and d-1 
space dimensions. 
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quadratic part will make it possible to define the Gaussian measure, which will be 
the reference measure, and the quartic part will be the interaction. The perturba-
tion expansion is obtained by expanding the interaction part. But then, due to the 
increase in dimension, we will encounter the first new difficulty: there are infinities 
which appear in the graphs of the perturbative expansion. Nevertheless, this theory 
is superrenormalisable, i.e. there is a finite number of divergent graphs, the ones 
we called 'tadpoles', resulting from the contraction of two fields at the same point. 
This is the first appearance of a renormalisation problem. As we saw in Chapter 
10, this particular problem can be algebraically solved by the Wick ordering, but 
to do it properly we need to introduce an ultraviolet cut-off. In turn this cut-off 
breaks the boundedness from below of the energy; as a result, the exponential of 
the interaction part of the Lagrangian is blowing up like a power of the logarithm 
of the cut-off. We will call this estimate a 'Wick bound'. Thus, in order to remove 
the ultraviolet cut-off, we must do something. It will be an 'improved' expansion. 
Roughly speaking, which will be made more precise in section 24.6, we will have 
to expand enough to have small constants, but not too much to avoid the num-
ber of terms produced to explode. All these arguments are related to a given scale 
which in this case is made of unit squares. This is well defined since the action 
is local and the exponential of the action in a given volume can be written as the 
product of exponentials, one per square, each of them being the exponential of the 
action restricted to this square. The idea is, starting from the theory with a given 
ultraviolet cut-off, to try to lower this cut-off to another value (in a suitable de-
creasing sequence of cut-offs). This can be done by creating enough perturbative 
terms which are small (at least because the coupling constants are small), but not 
too many because the number of these small terms is growing like factorials. As 
a side result, we check at the order at which we stop the expansion that the over-
all small coefficient produced is small enough not only to still control the number 
of terms but also to dominate the Wick bound. We can bound the sequence of 
terms produced, and the last term is a bounded path integral corresponding to a 
finite ultraviolet cut-off, both estimates being independent of the initial ultraviolet 
cut-off. This expansion makes it possible to bound any expectation value by an 
exponential of the volume, independently of the initial ultraviolet cut-off. As a last 
step, the existence of the thermodynamic, or infinite volume, limit must be proven. 
This is done by mimicking statistical mechanics via two expansions: a cluster ex-
pansion, based on the sufficiently rapid decrease of the correlation between two 
distant clusters, and a Mayer expansion, making it possible to perform the division 
of two cluster expansions, one for the expectation value of some quantity (like a 
product of fields) and the other for the normalisation factor or, in the statistical 
mechanics language, the partition function. The basic ideas justifying this result 
are the following. 

1. The theory is massive, from which follows that for not too large coupling 
constant, the interaction is of short range. 

2. The final measure is well approached by a Gaussian measure built from the 
quadratic part of the Lagrangian. 
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3. The lowering of the ultraviolet cut-off is made by an expansion producing 
small momentum factors (depending on the cut-off). The coupling constant 
must be small to ensure a small parameter when there are no small momentum 
dependent factors. 

• The three-dimensional model 034  (see section 24.7). At first sight this sounds like a 
straightforward generalisation of 01. Both models are superrenormalisable, so we 
expect the same techniques to apply. However, there are important differences 
which create two new, essential complications. 

1. The theory is still superrenormalisable, i.e. there is a finite number of perturb-
ative graphs which are infinite (tadpole, vacuum, and mass counter-terms). 
Tadpoles can still be eliminated by Wick ordering, but the other ones need to 
be renormalised, and this cannot be done algebraically. 

2. We cannot dominate the Wick bound which is proportional to the square of the 
cut-off for a quartic interaction. 

Because of this last condition, we must refine the space localisation and in-
troduce momentum slices. Suppose we have a sequence M, M2, . , MJ • • • , with 
M > 1. We can consider that the ultraviolet cut-off of the theory is MP, for some 
large integer p. Then we will introduce coverings indexed by i with cubes of size 
A4-31  and the expansion for the removal of the ultraviolet cut-off will be related 
to the size of the cubes in a given momentum slice. Having to do an estimate on 
cubes of size smaller than 1 gives a supplementary small factor and if we have op-
timised suitably the number of terms produced, this will be enough to control the 
Wick bound and to give a small factor allowing the resummation of all the terms 
generated by the expansion. This is what is called a phase space cell expansion. To 
summarise, the principle of the phase space cell expansion is to apply a truncated 
perturbation expansion on the exponential in smaller and smaller cubes in such a 
way that at the end of the expansion a field localised in A and of high momentum 
M remains in the exponent if M2 I A I < 0(1) (this will give in A a finite Wick 
bound). 

Since there are some divergent graphs, the starting expression for the theory with 
a cut-off must be done in such a way that when expanding in powers of the coupling 
constant, i.e. producing perturbative graphs, each term must have a limit which is the 
expected renormalised graph. Hence, we must introduce the corresponding counter-
terms, with their right coefficients. These counter-terms are finite since we have a cut-off 
and they have the right coefficients to exactly compensate the part going to infinity when 
the cut-off is removed. It will turn out that the introduction of these counter-terms in the 
exponential changes the Wick bound, but not significantly. 

As was said previously, there are small factors due to the momentum expansion, but 
a given vertex localised in the cube whose size is related to the momentum expansion 
has more than one field and each field has a range of momentum values running 
from the highest momentum Mh to the lowest one M1. Given a cube A of a given 
size, a field in this cube such that 4IA I < 1 does not produce a small factor when 
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contracted (or integrated with the Gaussian measure). This generates a new difficulty: 
the domination of badly localised fields which must be estimated in another way. 
Nevertheless, we can prove, even in this case, the same results as those we proved for 
the two-dimensional case. 

• The Gross—Neveu model (see section 24.8). We saw in the comparison between the 
44 and the 034  models that the increase in the number of primitively divergent dia-
grams created non-trivial complications. So it is not surprising that these methods 
will break down if we consider a renormalisable theory, like cet . Indeed, the infinite 
number of primitively divergent diagrams prevents us from finding enough small 
factors to dominate the Wick bound. This seems to be the case for all renormal-
isable theories, with some notable exceptions, to wit asymptotically free theories. As 
we can show, in such theories the decrease of the strength of the coupling at high 
momenta will provide the necessary convergence factors. 

The first model of this kind we will study is the massive version of the two-
dimensional Gross—Neveu model we analysed in Problem 23.2. This model is very 
interesting in the sense that it has a convergent perturbation expansion. It is a little 
more different technically than what we studied previously since the fields are fer-
mions (which make the perturbative expansion to converge). Nevertheless, in the 
discussion of this theory, we encounter the same type of difficulties as those we 
found in the 01 field theory: we need to do a phase space cell expansion, but 
there is a drastic difference since now there are infinitely many counter-terms. 
But here asymptotic freedom comes to the rescue. It tells us that the paramet-
ers of the theory, the coupling constant, the mass, and the wave function, obey 
the renormalisation group flow equations. This means that the coupling constant 
is decreasing with the increase of the ultraviolet momentum cut-off and that the 
leading terms can be computed from 1-loop perturbative graphs with, if necessary, 
2-loop corrections. Hence at a given momentum we must put as counterterms 
in the exponential only the most divergent ones (or their most divergent parts). 
We then must perform a phase space cell expansion. Since there are divergences 
at any order of perturbation theory, we must modify the momentum expansion 
part of the phase space cell expansion: some of the divergent graphs appearing in 
these expansions will not be compensated if there are enough convergent factors 
already produced which can be associated with them. Furthermore, there are also 
low momentum fields which must be treated differently than by Gaussian integra-
tion. Despite these new difficulties, we are again able to prove the existence of the 
theory with all the desired properties. 

• The four-dimensional Yang—Mills theory (see section 24.9). This is the last model we 
will attempt to present. As we have seen already, it is renormalisable and asymp-
totically free. We will see in the next chapter that this kind of theory, based on the 
group SU(3), describes the fundamental strong interactions. So this theory has a 
capital physical importance; unfortunately, it is much more complicated than all 
those we have studied so far. At the end, the same tools will be applied, but after 
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a tedious preparation of the theory and for results much less general. This type of 
theory is more singular for at least three reasons. 

1. The Lagrangian is positive, but if we use the quadratic part to define the Gaus-
sian measure, the remaining terms are no more positive. Therefore, there is a 
lack of positivity, an ingredient which is essential for the proof of the existence 
of the global measure. 

2. The theory is gauge invariant. We must fix the gauge to have a well-defined 
integral. As we showed in Chapter 14, this gauge fixing introduces other com-
plications such as the Faddeev—Popov ghosts (or equivalently a field-dependent 
determinant). 

3. The theory is massless. We must introduce an infrared cut-off. To remove the 
infrared cut-off means to solve the confinement problem and nobody has ob-
tained any rigorous results in this direction. At present, all available results for 
a Yang—Mills theory are restricted to a finite volume. 

The proof we could present is the existence of the theory without ultraviolet cut-
off in a finite volume. Even that turns out to be quite complicated. First, we must 
define the precise model we start with. We choose, because it preserves positivity, to 
fix the initial expression to be in the axial gauge. The price to be paid is a breaking 
of explicit Euclidean invariance. Computations of Feynman diagrams in this gauge 
are awkward, so, in order to perform such computations, we must change the gauge 
and pass to a gauge like the Feynman one. 

The most important choice will be that of the momentum cut-off. The mo-
mentum cut-off we will chose is not gauge invariant but Euclidean invariant and, 
therefore, it generates Euclidean invariant counter-terms such as A2  and A4, where 
A is the Euclidean gauge field. In fact, we will take a class of cut-offs which has the 
property that the coefficient of A4  is positive (the A2  term has a negative coefficient 
but this can be controlled). As a consequence, the action is positive definite even if 
the coefficient of the highest degree term is vanishing when the cut-off is removed. 
This positivity, which is of the form g4A4  , is enough to ensure the domination of 
all the terms which need to be dominated. 

We have a final remark before leaving this section. All the results we present deal with 
the rigorous definition of the functional integral measure starting from the Gaussian 
measure. They can be viewed as results on the summability properties of the perturb-
ation expansion. As such they say nothing about the possible existence of phases away 
from the weak coupling regime. Our experience, theoretical as well as numerical, from 
models in statistical mechanics tells us that a system often has a phase diagram with re-
gions not accessible to a weak coupling expansion. If such phases exist for the models we 
have studied, our approach will miss them. This could be the case for sufficiently strong 
coupling in the low-dimensional models, but it is certainly true for the gauge theories. 
We will see in the next chapter that both phenomenological and numerical evidence 
show that, at zero temperature, the system is in a confining phase (i.e. a phase in which 
the only physical states are bound states not visible in the perturbation expansion), for 
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all values of the coupling. There is experimental evidence based on heavy ion collisions 
that a phase transition to a `deconfining phase' (namely a phase in which the physical 
states are those corresponding to free gauge bosons) may appear, but only at sufficiently 
high temperature. 

In the rest of this chapter we present these results, including, in some cases, the main 
steps of the proofs, only for the .4 and 44 models. Although we will not show all the 
details, the next sections, especially the last one, will be quite technical. The reader who 
is not interested in these mathematical aspects can skip them. They will not be needed in 
the following chapters. They have been included for completion, but also, because, as it 
has been said, the models we study introduce progressively some very powerful specific 
techniques. These techniques are always based on physical intuition or on subtle ana-
lysis of the relationships between different technical objects or ideas. Some have already 
been introduced, but some others are new. They all form a powerful arsenal which has 
been proven essential in our struggle to understand quantum field theory beyond the 
perturbation expansion. However, the most important physical problems, the rigorous 
definition of four-dimensional gauge theories with broken, or unbroken, symmetry, are 
still in front of us and the road to their solution is not clear. 

24.4 The Zero-Dimensional 44  Model 

Let us consider the zero-dimensional quantum field theory given by the Lagrangian 
(x) = Go  (x) + (x) = lax2  + Xx4  , a > 0, where Lo = lax2  . It will be the toy model cor-

responding to the one described by (10.65). The associated free measure, built up to a 
normalisation from the free Lagrangian part, is the Gaussian measure dp,a-i (x) given by 

a _ i ax2 
dp,a-1 (x) = .\/ — e 2  dx, 

27r 

satisfying 

f oo
dµQ i (x) = 1 

and the integration by parts formula is given by 

dF(x)  
f F(x)xdp,a-i (x) = a f citt a-i (x) . 

dx 

The generating functional of expectation values Z[j] is 

1 f +`'" 1 f +°° 4 
Z[j] = — exe-ri(x)Citta-i 

(x) 
= — exe-Ax (x),

-oo Z 

(24.12) 

(24.13) 

(24.14) 
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where the partition function is given by 

+00 

Z[X] = f CAX4  CIP,a-1 (X). (24.15) 
-00 

This insures that the global or interaction measure dp, defining the theory is given by 

e Ax4 dµa-i (x)  
dµ =  	 (24.16) 

Z[X] 

We will show that already from such a simple model we can explore the relationship 
between a global theory and its perturbation expansion. 

24.4.1 The Divergence of the Perturbation Series 

As we have noted already, a Taylor expansion in powers of X cannot be convergent 
because the integral clearly diverges for ReX < 0, but it will be instructive to see it 
explicitly. 

In the sequel we will encounter a lot of numerical constants. From now on, unless 
explicitly stated, we will use equivalently for them the notation K or 0(1). 

Lemma 1. For the moments of order m of the interaction measure given by < xm > [X] = 
+.1  jr_co+cx)  xme-Ax4  t a-i(x), m = 0, 1, • • • , the power series in X resulting from the 

expansion of e-Ax4  are not summable. 

Proof. Let us consider the numerator 

xme-Ax
4 
dtta-1 (X) = Sm  Pt.1 . (24.17) 

-00 

After expanding the exponential in powers of X, we get 

+00 xn +00 f  sm[x]  = E(_i)n x4n+m d
m, cri 

 (x).  

n! _00  
n=0 

The integral term can be easily calculated and gives 

f +oo 
x4n+m A „ (x) = a2n+ 7  (4n + m)!2-(2n+ s) 

= a4n+m (2n +  

(24.18) 

(24.19) 

if m is even and a4n+m = 0 if m is odd. 
Since we are interested in the convergence of (24.18), we look at the behaviour 

of a given term for large values of n, large with respect to m, m being fixed. Using 
the Stirling formula, n! (Lle )n  2n n, we get that 
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a4n+m '-= N/2a n2' (!) 1,  a2n ( L)2n24n ,....., cna2n (20  
2 e 

(24.20) 

for some constant C. Thus, the generic term in the alternating series S,n  [X] 
behaves as 

1n 

, 
. a4n_Fm + n (f )7  (16),a2)n  (Pn  

= C(m) (a2  C2X)n  (n - 1)! (24.21) 

for some other constant C, which means, by application of the Leibniz test, that 
the series is not convergent. 

A similar result can be proved for Z[X], which corresponds to Sm[X] for m = 0. 
It is easy to see that the ratio of the two power series in X cannot, as a formal power 
series in X, be convergent. 

24.4.2 The Borel Summability 

If we have a function of z E C, A(z) which has an asymptotic expansion A(z) = E akzk  
as z —> 0, then we wish to determine conditions under which this function A(z) can be 
uniquely reconstructed from its asymptotic expansion. One method of reconstruction is 
given by the Borel summation. 

We say that the formal power series E akzk  is Borel summable if 

• Its Borel transform 

13A(z) = E _ak zk 
k! 

(24.22) 

converges in some circle Izi < R. 

• BA(z) has an analytic continuation to a neighbourhood of the positive real axis. 

converges for some z 0. 

1 r _oz  B(z) = - 
i

e BA(t)dt 
z o 

(24.23) 

Remark: If the integral (24.23) converges for some zo 0, then (because it is a Laplace 
transform) it converges for all z with 9iz-1  > 9iz-01 . This domain is a circle tangent 
to the imaginary axis. 

BA(z) is the Borel transform of the series E akzk  and B(z) is its Borel sum. 
A theorem of G. N. Watson gives a sufficient condition for the function A(z) to 

be equal to the Borel sum of its asymptotic series. It was improved by A. Sokal in a 
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way which was particularly useful for quantum field theories, i.e. by restricting the 
domain of analyticity of A(z)4. 

Let us define, for some positive number R, the disc CR = {z E C I  9iZ-1  > R-1}. 

Theorem 19 (Sokal). Let A(z) be analytic in the disc CR and has in this domain an 
asymptotic expansion 

N-1 
ak 

A(z) = E k  -z
k  RN(z)  with 

! k=0 
I RN(z) I < ACN IzI NN! (24.24) 

uniformly in N for some positive constants A, C and for all z E CR. 
Then 13A(z) = E —k  zk  converges for IzI < C-1  and has an analytic continuation to k! 

the striplike region Sc = {z E C I dist(z, R) < G-1) where it satisfies the bound 

1 BA(z) I< Kelzl iR (24.25) 

uniformly in every Sc with C' > C. Furthermore, A(z) can be represented by the 
absolutely convergent integral 

J A(z) = 1 - e-tizBA(t)dt for any z E CR. (24.26) 
z o 

There is a converse part in this theorem that we have not stated. 
It is now easy to establish for X E C using e-Ax4  < etAx4  that 

+co 
- Ax4  x e att,1(x) < 

 f
+00 

xrne-91Ax4 du,1 (x) 
-co 

(24.27) 

  

and that the functions Z[A] and Z[X]Sm [X] are analytic for X E C in some disc CR of the 
complex plane. 

Furthermore, with the estimates of 24.4.1, starting from 

with 

e-Ax4  = 1 - Xx4  + 
2! 

 (-Xx4)2  +
N 

+ —1
! 
 (-Xx4)N  + RN[X ] (x) (24.28) 

1 A dN+1 e-x4 t
1 A RN [X] (X) =

f  

N! dtN+' 
Ot. O N dt = (- x)4(N+1) 

N! 
J 

Cx4t (X-ONCit 

(_Ax4)-r. „,, , c  ux (1  _ tedu  1 4 f A  
N! 0  

4  A. Sokal, J. Math. Phys. 21, 261 (1980). 

(24.29) 
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we get that 

RN [X] (X) 
< RI N+1 x4(N+1) 1  

N! 
(24.30) 

We can now introduce these results in Sm  [X] as given by (24.17) 

Sm  [X] = f +°°  Xme-Ax4  Cl/2,r] (x) = EIV-n n 0 (-1)n An4 r° x4n+mcitta-i 
(x) 

+ f xmRN[A](x)ditcri (x) = En-0 (-1)0;4 f +cx' x4n+mdita_1 (x) + RN (A) 

and the remainder RN (X) is bounded by 

RN (X) 
= RIN+111\./.1 f+c° X4(N+1)+md/..ta1 (x) < A(CIX1) N N!, (24.31) 

thus showing that this zero-dimensional QFT is Borel summable. Moreover, we have 
defined the 'interacting' measure for the x4  interaction. 

24.5 General Facts about Scalar Field Theories in d = 2 
or d = 3 Dimensions 

We will mainly use the formalism introduced in chapter 10. The field theory we want 
to construct is the one given by the Lagrangian (10.65) except that it is the theory of a 
scalar field with a quartic self-interaction in a space of arbitrary dimensions d, d E Z+, 
i.e. x E Rd. 

The Lagrangian is made of two parts r(x) = Lo  (x) + ri(x), the free Lagrangian 
corresponding to the quadratic part and the interacting Lagrangian Li to the interacting 
part. The corresponding action is S = fRd  r(x)dd  x = So  + S1  and the formal generating 
functional is given by 

Z[J] = f euko)e-s fl  Do(x), (24.32) 
xEfild 

which can be written using the free part of the action to define, up to a normalisation 
factor, the Gaussian measure ditc,  of covariance 

1 1 
C(x — = (—A + m2)-1  (x — y) 

=e'p(27r)d p2 + m2 ddP 

z[>] = f ei00)e-Sint ditc  = f eiou) e  xf cxy4 ddxditc.  

(24.33) 

(24.34) 
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We get then the vacuum expectation values (v.e.v.) 

< 0(xn) >= fw(xi) • • • (X0e Af CxY4ddxditC (24.35) 

with the partition function Z given by 

fZ = Z[7] i,=0  = e-A i 0(x)4dd xdi f lc  

Z < 0(x i ) . . . 0(xn) > = f 0(x i ) . . . 0(xn)e-A  f 
cxy4daxditc. 

(24.36) 

In fact 

_xf cx)a ddx  
dµ = —e ditc 

defines a normalised measure; the measure of the interacting theory and the vacuum 
expectation values are nothing else than the moments of this measure. 

We note that for coinciding arguments the covariance 

C (X — = C (0) = 
1 1 

dd  
(27)d Rd p2 m2 p (24.37) 

is infinite for d > 2. 
For this reason and also for other ones which will become clear later on, we will 

introduce momentum cut-offs. 
For the rest of this section, given an increasing sequence of positive numbers {M1  

i E Z} with M1  = 0 for i = 0, M1  > 1 and Moo  = +co , we will use the fact that 

1 00 00 2 
= dae'

(P2+m2) = E 
dcee-"

(P2+m2) 

JD i=0 A4721 
(24.38) 

p2 + m2 

and define the cut-off covariances (24.33) for some positive integer p 

p_i • • cp = > ci with C
1 

= f eiP(x-Y) dcee-"
(P2+m2)d2p. 

i=0 
(27)2  

(24.39) 

We can prove the following in d dimensions. 

Lemma 2. 31‹ > 0 such that 

ci y)  < K(vii+i)d-2 e-M,Ix-y1 = 1,2,• • • (24.40) 
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• for d = 2, the coefficient (Mi+1)(1-2  is replaced by ln(Mi+i/Mi) 
• for i = 0, the exponential decrease is given by e'lx-Y1. 

According to Minlos' theorem, it follows from (24.39), that the Gaussian measure is 
now a product of measures 

dttc, = 1Iditto, (24.41) 

which means that the field is a discrete sum 

p-1 

0 = E 
i=0 

(24.42) 

of independent Gaussian variables 01  of covariance C . 
The usual tool to compute expectation values is the integration by parts formula 

(24.13) 

f 0 (x)F(0)ditc = f
Rd 

 ddYC(x f so(y) F(0)dµc. (24.43) 

Since we want to compute the v.e.v. of product of fields and since the interaction is 
a polynomial in the field, the Gaussian integration generates a sum of products of cov-
ariances with all the internal arguments (the vertices) being integrated. We have seen in 
section 10.3 that the result can be expressed as diagrams, the so-called Euclidean Feyn-
man diagrams, with precise rules to compute their associated values. These rules were 
given for fields over R4  and we have seen that for the 04  interaction in four dimensions 
some diagrams are divergent. To study the perturbative expansion, we need to know 
which diagrams are divergent. In 16.3, a formula is given expressing the superficial de-
gree of divergence of a 1-PI diagram G for a Om theory in four dimensions. From section 
10.3 and the previous formula, we can easily deduce that, in d dimensions, a diagram G 
has a superficial degree of divergence D(G) given by 

D(G) = VD — E(dI2 —1) + d (24.44) 

with E the number of external lines, 2n is the power of the monomial of defining the 
interaction, V the number of vertices, and D = 2n(d/2 — 1) — d the power counting of 
a vertex. When D(G) < 0 for all diagrams except a finite number, the theory is super-
renormalisable. It is the case for n = 2 and n = 1 in three dimensions and the trivial case 
n = 1 in four dimensions. If D(G) is independent of V, the theory is just renormalisable. 
This is the case for n = 3 in three dimensions and n = 2 in four dimensions. 

Finally, we will also cut off the space of integration of the Lagrangian density. This 
will be necessary in order to control the expressions occurring in the computation of the 
v.e.v.. The space cut-off will be denoted here by A, a volume in W', and the interaction 
part of the action is 
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rint(x)dd X. (24.45) 

All v.e.v. will now be indexed by the two cut-offs p and A, p meaning that the free 
measure dpc is replaced by ditcp, and A meaning that the space integration will be 
restricted to A. 

We are now ready to apply this formalism to the 44  theory in two and three 
dimensions and transpose to these cases the results of the previous section. 

24.6 The 44  Theory in d = 2 Dimensions 

In this section we want to illustrate some of the methods which were described only 
in qualitative terms in the previous sections, in the particular example of the two-
dimensional, massive, 44  field theory. We will assume that the coupling constant X 
is small enough5  and we start with the study of this theory when the underlying space 
has two dimensions. In fact, the results can be extended to the case where the interaction 
is a polynomial of even degree P(0) with small coefficients. 

24.6.1 The Divergence of the 1441  Perturbation Series 

We have done the power counting of the theory in Problem 16.7. We start by doing the 
expansion with respect to X in the normalisation term Z. We suppose X to be small 

but 

Z(p, A) = f —X f (f cb(x)4d2x) clitcp  + 0(X2) 

= 1 — f Cp(0)2d2x + 0(X2) 

1 
114  C (0) — 

(27)2 
 /

0 
 f, 9  p2 +1  m2  d2p Cln Mp. 

(24.46) 

(24.47) 

Taking the limit of p —> oo, we find the divergent tadpole. Obviously, the presence of 
a divergent diagram is not acceptable. If we want to prove the existence of any theory, 
we need to have at least all terms of its perturbative expansion to be finite. This is in 
dimension 2 the first trace of the need to renormalise the theory. We already have seen 
this necessity in Chapter 10 and in this chapter we got the answer namely, we had to 
replace 0.(x)4  with its Wick ordered form : 0.(x)4  :, where formally (see 10.61) 

: 0(x)4  := (x)4  — 6 C (0) (/) (x)2  + 3C(0)2 (24.48) 

5  See, however, a remark at the end of this section. 
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and with the cut-off 

: 0(x)4  := 0(x)4  — 6Cp  (0)0 (x)2  + 3Cp  (0)2 (24.49) 

with the property that 

f 0(x)4 0. 

According to the formulae related to the power counting, D = —2 and D(G) = 
2(1 — V). Thus, the only primitively divergent diagrams in X(/)1 have one vertex, i.e. 
the tadpoles. They correspond to D(G) = 0. The diagrams are divergent but as a logar-
ithm rather than a power. So removing all the tadpoles with the Wick ordering ensures 
the existence of a well-defined perturbation expansion. 

For our studies in the previous chapters, this was the end of the game. We proved that 
every term in the perturbation expansion is well defined. Here, however, we want to go 
further: we want to prove that there exists a way to sum the series and define a measure 
for the interacting theory. The starting expressions to define this interacting measure 
corresponding to a 424  theory are 

di
1 

tp,A = e
_A fA :0004:d2

xdit 
 

Z(p, A) 
(24.50) 

To prove the existence of this measure for p —> oo, we will have to estimate its mo-
ments, i.e. the various v.e.v.'s, and prove that they have a well-defined limit when we 
remove the cut-off. Then we must study their properties in order to prove, by the re-
construction and Osterwalder—Schrader theorems, that this measure corresponds to a 
two-dimensional quantum field theory with quartic interaction. 

Let us take the example of the partition function 

z (p, A) = f e- (P(x) 4  d2xditc, • (24.51) 

The expansion in power of X is given by 

Z(p, A) = (—A)n  f 
n! 

n=0 fn  : (X)4  : d2 ClitC p • (24.52) 

We will now give an estimate of the generic term 

f 0004 : d2x 
n 

ditCp• (24.53) 

We will give some arguments showing that this term behaves as the same one in zero 
dimensions. Roughly speaking we must estimate the Gaussian integration of 4n fields, 
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more precisely the number of vacuum diagrams we can draw with n 4-vertices. For that 
we can use an L1  — estimate. Let us explain how this method6  can be used to get 
estimates on sums. 

Suppose we must estimate 

E 
lEA 

(24.54) 

where A is a set of denumerable indices and a, a function on this set. If we can find 
positive numbers cj  such that 

E  1 e• < 1 — 
jEA 

(24.55) 

then we can replace the sum over a set of indices by taking the supremum of a suitable 
expression: 

Eai  = E cict l ai < E ql sup sup (24.56) 
iEA iEA iEA 

The coefficients cz  are called combinatoric factors. 
We give some examples. 

• A = Nn. We can take ci = K1 where 111 2  = ii + • • • + in for (11 , • • • , in) E (Nn) 

and K is such that 

1 1 
_, K lil n+E  EN. 

(24.57) 

• A = ID where ID is a partition of W' by unit cubes A. The cube A can be the 
location of some field and we are interested in the choice of the cube A' in which 
this field will contract another field. The choice of the cube A' is done by the factor 
cA,A,  = Kd(A, A')', E > 0 where d(A, A') = sup (1, dist(A, s')), dist(A, A') 
being the Euclidean distance between the two cubes and K being such that 

1 1 
 1. 

K - E d(A, A')n+6 
< 
— YEE) 

(24.58) 

In order to estimate the number of terms produced by the Gaussian integration in 
(24.53) we take one of the fields in one of the interaction packages IA  : 0(x)4  : d2x. 
Because of the Wick ordering, this field cannot contract with another field in the same 
interaction package. It will therefore contract to another of the remaining n— 1 packages. 

6  This was introduced by J. Glimm and A. Jaffe, Fortschr. Phys., 21, 327 (1973). 
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There are n — 1 choices. Now, there are four fields in each interaction which means 
a factor 4 to choose which of the four fields will be hit by the contraction. Thus the 
complete contraction of one of the n components gives (4(n — 1))4. Now it remains at 
most n — 1 packages. Repeating the process we can estimate the number of terms as 

(4(n— 1))4(4(n— 3))4  • • • 1 
(4n4(n— 1) • • \ 4 

 
• 4(2)4 

4n4(n — 2) • • • 4 

= ( 4n n! 4  
4(22n) 

( 2n )2n 2(2n+2) 

(2n)!. (24.59) 
8n12 n ! /  

2• ) e 

This is of the same order as the result obtained in the case of the zero-dimensional 
model (24.20). The complete bound on (24.53) is now obtained by an a priori estimate 
of a diagram with n-vertices. We now give a simple argument showing that a diagram G 
with n vertices of a )41 theory is bounded by Cn for some positive constant C. 

The argument is the following: given an n-vertex diagram, we can number its vertices 
by 1, 2, • • • , n. Each vertex is an elementary diagram g1 with initial and final lines. The 
initial lines of g3 are those joining vertices gk with k < j. The final lines of g1 are those 
joining vertices gi with 1 > j. If we think of each vertex gj  as an operator acting on the 
initial lines to give the final ones, then the diagram G can be bounded by the product of 
the Hilbert—Schmidt norms of each g1. With a )44  theory, the four lines of each vertex 
can be oriented in three different types: 

• Four initial lines and no final lines or no initial lines and four final; 

• One initial line and three final ones or three initial lines and one final; and 

• Two initial lines and two final lines. 

Thus, the contribution of the nth-order term is bounded for some constants K and 
C by 

f f (1) 004  : d2x)n  ditcp  KCp.nn!. (24.60) 

ii. ii€ii..- I 
I1/2 
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This is a bound on the nth-order term and not an estimate, but the dominant 
contribution is the number of terms. This contribution behaves as an n! as for the zero-
dimensional model, a contribution which cannot be beaten by a constant to the nth 
power. We thus conclude that the power expansion in A of the partition function is di-
vergent. It is easy to extend this result for any moment of the theory, i.e. terms of the 
form < 0(x1 ) • • • 0(x,n) >. 

24.6.2 The Existence of the 1441  Theory 

In the case of the zero-dimensional field theory, the existence of the measure, or, equi-
valently, of its various moments, was obvious because the exponential of the interaction 
reinforces the convergence of the measure and all the integrals were absolutely conver-
gent. We will see that for the 424  theory the situation is more complicated. Although the 
renormalisation we had to perform in order to obtain, order by order, a well-defined per-
turbation expansion was a very simple one, namely the Wick ordering of the interaction 
monomial, we will see that, by doing so, we lose the positivity property of the interaction. 
In fact, with the Wick order defined by the cut-off covariance Cp, we have that 

: 0(x)4  : = 0(x)4  - 6Cp  (0)0(x)2  + 3C p  (0) 2  

= (x)2  - 3C p  (0))2  - 6C p  (0)2  > -6Cp  (0)2; (24.61) 

thus, 

1Z(P,  A)1 = f
e-A 1'A:0004:d2xditc,  < e6ACp  (0)21Ai dm, cp 

 

= e6Acp  (o)2 < c mi))2A1A1 (24.62) 

for some constant K. We thus see that when p —> oo we do not have an a priori finite 
bound on Z. 

To simplify the notations we will note that 

vA  = f : 0004  : d2x. 
A 

(24.63) 

We will also choose the sequence of momentum cut-offs {M1} to be of the form M1 = 
for some L > 1. 

We will now give some elements showing how we prove the existence of the 424  
theory. It will be done in two steps. For the first step we will prove that Z (p, A) has a 
limit when p —> oo and moreover 

lim Z(p, A) < Ke (24.64) 
p—>C0 

for some positive constant K result, which shows that following a statistical mechanics 
interpretation (Z being the partition function) the energy per unit volume is bounded 
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1 

IA I p-> 
firn ln Z(p, A) < C (24.65) 

for another positive constant C. 
Then, for the second step we will apply a classical method from statistical mechanics 

(the so-called Mayer expansion) where the v.e.v.'s have a limit when A —> R2. This 
property results from the fact that the covariance linking two distant vertices decreases 
exponentially when the distance between these two vertices increases with a rate bounded 
by the mass m. 

We will mainly explain the way to get the bound (24.64) and only give some argu-
ments for the Mayer expansion, then the analyticity property in X and the estimate of 
the reminder in the power expansion of the interaction part will be easy to prove. 

To prove the estimate (24.64) and more generally a similar bound for any v.e.v., 
i.e. Schwinger functions, we will introduce a covering of R2  with unit squares 
Ai, A2, 03, • • • . We then try to lower the cut-off index p in each unit square. This will 
generate small terms due to the coupling constant X, which is supposed to be small, 
and convergent factors coming from the lowering of momentum cut-off. With enough 
small factors we can hope to beat the blowing up of the bound on the exponential of the 
interaction. 

To lower the cut-off index in Z, we associate with each square A E A a parameter t p,A  
which will ensure the interpolation between Op  and Op-1  in A. Therefore, the interaction 
V, which is 

V = X f : 0.(x)4  : d2x = X f : 0.(x)4  : d2x = (24.66) 
A A ACA ACA 

becomes in each square 

f : (tp,p0P  (X) ± 4'p_1 (X))
4 

: d2
X = Vp (tp,p) 

A 

and Z(p, A) becomes 

Z(p, A;tp) = f e-Af,:o(x4-04:d2xditcp 
AcA 

with an obvious definition of (/)(x, t p,A) and t p  = {tp,p I A C A}. 
The value of Z(p, A;tp) at t p  0 is Z(p -1, A). 
We then write for each A 

e-vp, = e-vp,(t 

(24.67) 

(24.68) 

t„„A  =1 
1 d  

(t„,)dtp,A  + e-176. (tP,A )  — 
=

e , 
 f dtp,A  tp,p=0 

(24.69) 
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and we define the operators ip,p and Pp,A  

.rp,A
(t ),A) = e-vA  (t„,°) 

tp,p =0 

l  
ppAe

-Vp (tp,p) = — -6. )dt 
fo dtp,A e pA • 

The operator P acts as a derivative on 
uip,A 

VA  (tp,p) = fo : 0(x, t p,A) 4  : d2  x, thus on the field 

d
Sb(x, tp,A ) = OP, 

dtp,p 

(24.70) 

(24.71) 

then when integrated, we will see that the field OP will produce a small factor. 
We now define an expansion by applying ni  times formula (24.69) in each square 

A C A and for each index i, 1 < i < p. The operators I and P have the following 
properties: 

• ip,p and Pp,,A,  commute if the pair (p, A) # (p', A'); and 

• Pp,A/p,A  0 and Vp,Aln = 

Therefore, we can write 

e-v = ri 11 (L, A  + Pi, A  ) ni e- v° . I (24.72) 
AcA i>0 

A generic term of the expansion has therefore the form 

T({vi,,})  =n I n[pi.,A]v,A e-v6.(1,1) I 
A • 

(24.73) 

where Vi,p E N, 0 < vi,A  < ni and 

17,6,(114,6.1) = Vo lti,A =o if  vi,A (24.74) 

For each A, we define that i(A) = sup {ilti,A  # 0}, then we can prove the following 
lemma. 

Lemma 3. There exist constants K and e such that 

f T(Ivi,AI)diacp  
< 11 I e  K (I og  ( ) )2

2v• 
11 (4vi  

o i>0 (Vi,A)! 
Vi'A  . (24.75) 

We can also prove the following corollary. 
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Lemma 4. There exists an E such that 

1  
f T({vi,A })dµcp  

i,4 (1)i,4)! 
such that 

(24.76) 

This corollary expresses the fact that when no vertex has been produced in a square 
A, the price to pay is a factor K and we get a factor [L-T each time a 04  is hit by the 
action of a P operator. 

The explanation of why we get a small factor for each P1,4 comes from the fact that 
Py,p will produce a 04-vertex at a point x integrated in a unit square A with one of the 
four fields being of covariance C. From (24.40), we get a factor ln(M,±1//141), i.e. In L, 
with our choice of cut-off and an exponential decrease emdx-.1, thus integrating over x 

f
A

Ix-vil e  -A4.2  ix—Y2i e—Moe3 Ix—y31d2 x  

< 
 f

CA/Ilk-31  d2  X < KI AIM72  = KIAILT2i  
A 

(24.77) 

This is the small factor per vertex which will ensure, besides A, the convergence of 
the expansion. We extract from it the convergent bound L'E we use for the proof of 
Lemma 4. 

From the corollary, we get immediately a bound for (24.62) 

 

iz(p,A)i {K + • ± 'in' )1 (24.78) 

and since 

we have 

Ac A i>0 

L [1'4 < eLie  
ni! 

(24.79) 

[L4El ni 
K + (L-ic  + + ) < K + eL-  < K + K(e) <K (24.80) 

i>O
ni! 

i>0 

and we finally get the bound 

f e-vn ditc, KIA1 (24.81) 

uniformly in p. 
It is easy to check from these estimates that Z(p, A) has a limit when p —> oo and that 

this limit satisfies (24.81). 



The A.04  Theory in d = 2 Dimensions 605 

As a result of the Wick ordering in the interaction term, we also have, using Jensen's 
inequality, a very straightforward lower bound 

Z(p, A) = fe A  In*x)4:d2xdptcp  > e-A f (fA:(1)(x)4:d2x)dAcP  = 1. (24.82) 

We will now give some arguments for the proof of Lemma 3 and Lemma 4. First we 
split in two parts the integral to estimate 

f T ( { vi, }) dit cp = f I 11 [Pi, 

A • 

-vA  I ditc,  

(nsupevA)[ fim 
A A i 

[Po] vo 
2 
ditc, (24.83) 

where in the second part of the formula [P,,A]°i,A is the polynomial in the fields resulting 
from the action of the derivatives on the exponential. 

Now using the bound (24.61), 

17,6, (IviA  ) > —K(ln Ll(A) )2 . (24.84) 

The first term in the right-hand side product of (24.83) gives the required exponential 
bound of the lemma. 

It remains to compute the Gaussian integral 

frP [P,,Alvz4  
2 
ditcp . (24.85) 

In order to estimate the Gaussian integral I we will use the combinatoric factors. 
We know that to compute the Gaussian integral we will have to contract all the fields 
and we know also that the result is independent of the order we choose to perform 
the contraction. We will use this possibility and order the fields before performing the 
contraction. Let us set mi,A  = 2v,,A  . We order the pairs (1, A) by 

(i, A) > A') if mi,A  > 1/21,,p,  

and we start by contracting the fields corresponding to the highest values of the 
numbers mi,A  

So let us suppose we want to contract a field indexed by (1, A) with a field indexed 
by A'). By definition of the process mi,A  > mew, to control the number of term 
produced, we have the following combinatoric factors (the ci  of formula (24.57) and 
(24.58)): 

• Kd(A, 0')3  to choose in which square the contracted field is located; 

• K[112  to choose the momentum index; and 

• 4m,,,A,  to choose which field characterised by the pair (1', A') is contracted. 
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Because of the ordering we have chosen, we can symmetrise the estimate by replacing 

mew  < (
mi,,A,

) 1/2 (
ni,A

) 1/2 . 

The factor to bound the number of terms produced is 

d(A, fl Ki8(4„,,,4)2m,. (24.86) 
Propagator VertexPt,p 

We now must estimate a given diagram. A diagram is made of an ensemble of 
vertices localised in squares of R2  and lines joining these vertices to these lines are 
associated propagators with an exponential decrease. We will take a fraction S of this 
exponential decrease, e-svd(°'°')  which is bounded by C8d(A'A'), to control the factor 
per line in (24.86). We must therefore finally estimate a diagram with propagator of 
the form 

e8Lid(6"6/)  X 000  (X — .Y) X (Y), 

x and x' being the characteristic functions of the unit square A and A'. The remaining 
part of the diagram is estimated as in section 24.4.1. We have one more piece of in-
formation: if a vertex g1 has a line of lower momentum index i, we can extract from the 
integrals a factor (P)-(1-0. This gives a bound 

csd K(Li)-(1-0. (24.87) 
line Pi,6, 

Collecting all these results (24.86) and (24.87) we obtain the proof of Lemma 3 with 
1 — = € which can be taken close to 1 and the 1/(viA)! comes from the integration on 
the to . 

To prove Lemma 4, we will use the convergent factor of Lemma 3, (L4)' divided 
into four pieces (L-i)-E/4, and use the fact that 

1. (4vi,A)2vi,,, [L1-6 < 1 for i > 1, Vo < ni with ni [Li]E ; 

2. KeKon L) 2  i8 [Lir/4 < 1 for i > 1; and 

3. KeK(ln Li(6.12  [Li(A)]-no)6/4 < 1 for i(A) > 1. 

The last condition to be satisfied shows the minimal growth on ni, which has to grow 
faster than (ln Li)2. The remaining L-i614  factor is the convergent factor appearing in 
Lemma 4. 

Doing the same analysis, we can also prove the following bound, uniformly in p, for 
the Schwinger functions , with K1, K2, and C being some positive constants 
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Z(p, A) < 0(x1) • • • 0(xm) > = f (xi) • • • 00(xn)e-A. f" P̀(x)4 ddxclitc 

<K1 Cm  m!K I2A1 (24.88) 

In all these cases, we can prove the existence of the limit of all these quantities when 
p oo. To do it, for example for the partition function, we prove that Z(p, A) satisfies 
a Cauchy sequence in the variable p. For this, it is enough to study the difference AZ = 
Z(p, A)—Z(p-1, A) using the expansion. Introducing the parameters t p,A, for all squares 
A, we see that the difference AZ contains at least one term with a derivative with respect 
to tp,A for at least one A. This means that a field OP will be contracted, thus producing 
a convergent factor L-P, a part of which can be used as the factor showing that the 
difference AZ tends to 0 as L-PE. 

In order to prove the infinite volume limit, the thermodynamic limit in the statistical 
mechanics language, we perform a cluster (or Mayer or Kirkwood—Salzburg) expansion. 

24.6.3 The Cluster Expansion 

We will now describe a very important tool in the study of rigorous results for large 
physical systems: the cluster expansion. It is presented here for a massive scalar field 
theory in two dimensions, but these results can be extended easily to higher dimensions 
and to other types of field theories. 

The cluster expansion is based on the sufficiently rapid decrease with the distance 
of the connected Schwinger functions as a function of their arguments.7  Technically 
the method has its origin in statistical mechanics to prove the infinite volume limit of 
thermodynamic quantities. 

We will study Schwinger S2-functions where the Q fields are localised in disjoint unit 
squaress  Da, .65,5, • • • 5  0S2. 

 

SA(A,• • • 5  As„) 
1 = 

 7 lim  f • • • f f  oczo• • •oczoe-Aln:0(x)4:d2xditpu .4 2X1 • • • d2 Xn, 
P—>co Ac, As? 
  

(24.89) 

where 

Z = lim e-A in:0(x)4:d 2 x,., 
—>00

Ljit,0 • 
p  

(24.90) 

7  The exponential decrease is due to the fact that this is a massive field theory, the range of the forces being 
on the order of m-1. It translates, in the rigorous quantum field theory language, the Yukawa potential we find 
in the old meson theory. The strength of the exponential decrease has a value which is close to the mass m, the 
bare mass, initially introduced in the theory. The fact that the coupling constant is small leads to the fact that 
the physical mass is close to the bare one. For massless theories, there are long-range effects and the clustering 
depends strongly on the way the covariance is decreasing, usually like a power, like the Coulomb potential in 
electrodynamics. 

8  The disjointness condition is not essential 
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We also introduce the unnormalised function 

I .C2 
In (A«, • • • , AD) = (H (/)(zi)d2zi)e-A fA :46 (x)4

:d2xdiap• 

i=a 

(24.91) 

The squares Aa, , AD  will be taken as squares of reference; they are elements of a 
network of unit squares Do. Because the theory is a massive theory, there is an exponen-
tial decrease in the distance of the covariances with a strength close to the value of the 
mass (the bare mass). The idea of the expansion is to test the link between any square of 
Do  and the set of reference squares with the effect that only the aggregation of squares 
close to the squares of reference will count significantly. This is a direct consequence of 
the fact that because the coupling constant is small enough, the global measure of the 
theory is correctly approximated by the free measure. 

We thus introduce a set of parameters Is, I i E (1, 2, ... , )1 with values 0 < st  < 1. 
These parameters will make it possible to decouple a given square from the other ones. 
Thus let us choose i E Do and consider the covariance 

C(x—y; 51) = C(x—y)Esi + (1 — si)(x6, (x) X Ai (Y) 

+ — X6.1 (x))(1 — )(6.1 (Y)))1 

= C(si)(x — y), (24.92) 

where )(Ai  (x) is the characteristic function of the square O1 . When s1  = 1 we get the 
usual covariance and when s = 0, the covariance is different from 0 in two cases: either 
when both x and y are in O1  or when both x and y are in the complementary of O1 . 
Moreover, the derivative of the covariance with respect to s1  has the effect of coupling 
Ai to its complementary set. 

Looking at the connected part of Schwinger functions ScA  we will prove the following. 

Lemma 5. Let (/)(x0 be a field localised in A„, (/)(x fi) a field localised in Op up to (/)(xs2), 
a field localised in AS2, Aa, Op • • • C A. Then the connected Schwinger function 
ScA (A„, • • • , AD) has a limit Sc(Aa, • • • , AD) when A —> R2, and given e, there 
exist two constants, JL E  and KE, independent of A such that 

Sc(,... , As?) < K, c(m-E)T >An) (24.93) 

for any )c < ?L E, T(0«, • • • , AD) being the length of the smallest tree linking all the 0;'s, 
i = a, . , S2 . 

The proof goes as follows. We replace in the definition of (24.90) and (24.91), the co-
variance C by C(si ) and thus define I(si ) and Z(s1). Then the first step of the expansion 
is defined, starting from the expression when s1  = 1 by 

1  d 
/(1) = /(0) + f /(s1)• 

o dsi 
(24.94) 
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Since the measure dp, factorises for s1  = 0, we have that 

/(0) = i,1\6,1 /6,1 (24.95) 

and 

—/(si) = E 46,1,A2(si) 
dsi 

(24.96) 

with 

46,1,42 (Ace, • • • AS2; sl) = f dudv[XA (u) XA2  (v) + )(Al  (v) X 6.2  (u)] 

82 
C(u, v)	  (11 (/)(Ai))e-A  f A 4(x)4:d2 x idit(si) 

30(u)80(v) yz  

with 0(A) the integral of 0(z) over A. The right-hand side of (24.97) shows 
that a propagator is connecting the square A2  to the square O1 . We then repeat 
the same procedure for \ A, starting from an arbitrary square of A \ Ai and for 
46142  (S1) by introducing a new parameter s2  which interpolates between O1 U A2 and 
A\(t1  U A2). 

The expansion will terminate when all the squares of the space A have been tested 
with at least another square. We then get 

/A (Aa,..., An) = E E /(Xl; {A}t), 
x-1 , i=1 

(24.98) 

where the sums run over all partitions of A in disjoint sets. /(Xi; { A} i) represents I 
restricted to Xi  where the (/)(Ay ) are on square Ay  E Xi. We can rewrite /(Xi; {A}i) as 
a sum of connected graphs joining the squares of X 

I (X) =E G). (24.99) 

From the way the development has been defined these graphs have a tree structure 
based on the squares of X with, if necessary, some intermediate squares. Among all these 
graphs, some are particular: they are the ones built over a unique square not containing 
any 0(z). We will note a the value of I (X) in this case. Using Jensen's inequality and the 
bound on Zp, (24.64), we get that a is finite and different from 0.9  This number a, will 
play the role of the activity in condensed matter physics. 

9  It can be taken close to 1 by letting the coupling constant go to 0. 

(24.97) 
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We therefore replace (24.98) with 

As.2) = E E (,(x z.; (24.100) 
el 1=1 

where the second sum on the right-hand side runs over all the partitions X1, , Xq  of 
A such that either IX, 1 > 2 or IXi l = 1, but then there is at least one 0(z) in Xi. 

Each I (X, G) is a sum of elementary terms generated by the expansion. We will now 
explain how these terms are made. For this purpose we need to look in more detail at the 
form taken by the interpolating covariances. 

At the first step starting from A i , we introduce a covariance linking A i  to a square 02  
different from Ai. We note this covariance C(si). We then test the coupling of Ai U 02 

with a square A3 in A different from Ai and A2: 

C(si , s2) = s2C(si ) + (1 — s2)C(si )1 (24.101) 

with 

C(si)i(x,Y) = uA2 (x)C(si)(x,Y)xA, u6.2 CY) 

X(A-40.16,2)(X)C(S1) (X, 3)) UA2) (24.102) 

or more formally (with A standing for xA, the characteristic function of A) 

C(Si)1 = O1 U A2C(S1).A1 U 02  + (A-01  U 02)C(si)(A — U A2) 

without the explicit x and y dependance. 
By the definition of C(si, s2), the derivative of C(si, s2) with respect to s2  will link a 

square A3 in the complementary of Ai U A2 to either Ai or 02. 
We then introduce more generally 

C(si , s2  , si) = siC(si , • + (1 — si)C(si, • • • (24.103) 

with 

C(S1, • • • 5 Si-l)i = 01 U • .. AiC(Si,. U (24.104) 

+ (A —o, U Ai)C(si, • • • , — U • • • Ai)• 

We can now express the complete cluster expansion introducing the operator 

1'(0,A') =
dC(s) 

(x, y) 
2 

ds (x)30 (y) 
X4 (X)X4' (Y)d2xd2y (24.105) 
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isj>1 

The A.04  Theory in d = 2 Dimensions 611 

and this gives on Q = 0(6,0 0(0s2)e-  f :0(x)4  '12 x 

I = f Qdp., = f Qclit I o, (24.106) 
41 

E f 
42 41 

dsi  f P(0  02)Qdit(si, s2) s2 =O LAI UA2 
41 u42 

• • • P(02, 1)QdP,(si, • • • si) si=o  dS . . . LU41 • (24.107) 

We now must estimate the derivatives with respect to sk  of the covariances C(si, , sk) 
appearing in the definition of the P's. By this same definition of the P's, a square Ak+1  
not in Ai U•••U Ak will be linked to a square of Ai U•••U Ak whose index is given by 
the value of the function ii(k) taken in the set 

We have the following lemma. 

Lemma 6. 

d 

(1, , 

i-2 

k). 

C(S1, 3 = 11 Sk 
k=q(i) 

XA (i)Cni• (24.108) • • • 
XAn(i)  dSi_i 

Proof. Let us give the proof. 

d 1-", / 
.. (24.109) X4,(,) 

XAn(i) [C(515 • • • si-2) C(315 • • • Si-2)i-1]X4= 

XAn(i) C(S1, Si-2)X41 

\ 
Si_2C(Si • • ,Si-3) , • 

X4,X4,,(0 if 
q(i) = i — 1 
q(i) = i — 2 

and the proof results from repeating this analysis. 

We then define a function 

f = fl s,( is)  . • (24.110) 

We will show some examples of the structures which are produced by the expansion by 
drawing some trees and the associated 77 values. 
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1 5  
1 

3
1 2 4.\*Ni 

6 
1(2) = n(3) = 1 n(2) = 1 1(3) = 1(4) = 2 

1(5) = 1(6) = 4 

5 1 4 
1 2 3.\\1  6 

n (2) = 1 1(3) = 1(5) = 2 

n(4) = -n(6) = 3 

I I I 
1 2 3 

-n(2) = 1 

-n(3) = 2 Figure 24.2 Some examples of trees and n. 

1 Figure 24.3 The graph G. 

1 2 
Figure 24.4 The link D i 6.2. 

2
3  

a y 

Figure 24.5 The four possible graphs resulting from G. 

In Fig. 24.2, we can see that different rl functions can lead to the same graph. 
Let us now consider the graph G shown in Fig. 24.3 with a given square Ai. 
We will see how it can be built following the procedure outlined in this section. 
From Ai, we first choose a square ,6,2  (see Fig. 24.4). We have then two possible 

choices for the positions of A3 and of 6,4. This leads to graphs shown in Fig. 24.5. We 
finally add 6,5 and then in order to get G, there is only one choice for each of the four 
graphs drawn in Fig. 24.5. 

By introducing now the short-hand notation C(i,j) for C(x,Y)[Xi(x)Xi(Y) 
Xi (y) xi (x)], then for each of the four graphs 

• a corresponds to si .53.53  C(1, 2)C(2, 3)C(2, 4)C(1, 5); 

• ,6 corresponds to sis3.53  C(1, 2)C(2, 3)C(1, 4)C(2, 5); 
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• y corresponds to s1 .53.53  C(1, 2)C(1, 3)C(2, 4)C(2, 5); and 

• S corresponds to s1  s3  C(1, 2) C(1, 3) C(3, 4) C(3, 5). 

We then have for I(X,G), X =U7 Ai and G given, 

I(X, G) = E f f (n, s)[ f . ff Xi) 

q(G) 

(24.111) 

,2 
xA„(t)  t XA (Xi) 80 (x,

i,i)6 (xi) 
Q 

 x 
4/, (s) fl d2xi]ds1  . • • dsn• 

A graph G is a tree whose initial vertex, Ai, and the topological structure are given. 
Moreover it is characterised, for given indices of the other vertices, i.e. n, by a sequence 
ni  where 

ni = {number of k such that n (k) = i = 1,...,n— 1. (24.112) 

We remark that for different sequences {ni} can correspond to graphs having the same 
topological structure. 

Introducing 

= {number of k such that n(k) < j < k— 2}, j = 1, . , n — 1 to (24.113) 

we can show easily that 

ni + • • • + nn-1  = n — 1 

and that for the corresponding n-function 

f (n, s) = . (24.114) 

Lemma 7. Given a function n, we get the following identities relating the ns, the qs, and 
f (11,$), 

q1 = Elej nk j = 1, . . . , n — 1 
= qj — + 1 j = 1, . , n — 1 with by convention qo = 0 

and 

E fo

1 1 f 
• • • f 07, s)ds 1  . . . dsn_i  11 ni ! = 1, (24.115) 

o 

the sum being over all the n-functions compatible with the given choice of ns. 

If we now go back to the four graphs a, p, y, and 8, we remark that all these graphs 
have n1  = 2, and that three, a, /3, and y, have n2  = 2 although the fourth, 8, has 
n3  = 2, the other n's being zero. The lemma can be checked for these examples, the 
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proof resulting from the fact that the integration over the s's gives the combinatoric 
factors related to the weight of the graph. 

Lemma 8. Given X and G, there exists constants K(€), C, and K independent of X, G, 
and A such that 

I / (X, G) 1 < CKIXI 11 [K )e-(m-E)d(P)1 in-11+ (24.116) 
pEG 

where IXI is the number of unit squares in X, d(p) is the Euclidean distance between the 
centres of the squares in which are the end points of the propagator p, 1 is the number of 
fields 0(z), and 

[a]+  = a for a E N 
= 0 elsewhere. 

Replacing in the formula 

dC(s) 
(x, y)

2 

j ds 60(x)80(y)
X4 (X) Xp,  (y)d2xd2y 

with 

sup 
dC(s)  f 

(X, .Y)

62 

(x)60 CY) 
X4 (X)X4' (Y)d2xd2y 

xE4yEp, ds 

we must, ti given, estimate 

[ n  
im(i)=1. Ocni) -I so (xi) 1-0(AiAlie-A 

fA3:0(X)4:d2X 

(24.117) 

(24.118) 

(24.119) 

the product being on derivatives with respect to fields localised at points oc,i contained 
in Ai. The number of derivatives with respect to 4  is by definition equal to ri = n, + 4 
(when i = 1, r1  = ni). Some of these derivatives will hit the exponential. They give 

rA.:,,, (x)4:d 2 x  
• 

6 _A
= -4X : 
 (x)3 e  e = 80(x) 

(24.120) 

Let p be the number of derivatives acting on the exponential; we have 

[(n - 4)/4]+  < p (24.121) 

thus, n —p act on the field (z) or on the fields produced by derivatives which have acted 
on the exponential. The most singular term (i.e. producing monomials harder to control) 
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comes when among the ri derivatives, the p derivatives act first. The other derivatives 
act therefore on 03P+4  (p derivatives having acted on 04  plus the 4 fields) and give 

(3p +  4)! 3  +1. .± P P 
3 

(4p + ri)! 
(24.122) 

where the product of the fields is in reality a product of integrals in Ai of monomials 
: 0" : with 1 < a < 3. Such a term is bounded by 

K3P+1i-ri+P[(3p + i - r=  + p)!] 112 . (24.123) 

The case where all the p derivatives don't act first on the exponential gives factors 
all bounded by (3p + l)!/(4p + lI  — ri)!. The sum over all possible choices of deriv-
atives acting on the exponential is bounded by a factor 2 per derivative to decide 
whether a derivative acts on the exponential or on already produced or existing fields. 
Adding the numerical factors coming from the derivative of a monomial (typically a 04), 
we get 

E 16 sup  (4 (3P+13111-ri)! [(4p + 4 - ri)!]  1/2 
p+ 

p 
< Kri [4q1/2 [77q3/2. (24.124) 

We can thus estimate the contribution of these factors on the product of derivatives by 

KnK 1uq 1/2 11 [n  ( A)  3/2 (24.125) 
AEG 

with n (A i) = 
The X-dependance is given by Ain-11+  since if there are more squares than fields 0(z), 

at least n — 1 derivations will hit the exponential. This is the factor which will make the 
thermodynamic limit (infinite volume limit) to converge. 

We now give some arguments justifying why derived fields can be bounded by square 
roots of factorials. We start with (24.111). The integration over the position xi is done by 
taking the supremum for each propagator. It remains to bound the absolute value of an 
expression like (24.119). From the bound on the propagators we extract a factor e-md(1)  
where d(l) is the Euclidean distance between the centres of the end squares of the line 1. 
A part of this decrease e-(m-E)d(1)  will be used to prove the decrease involved in Lemma 5, 
formula (24.93). After having performed the derivations we must estimate 

f fl [11 f : 0(x)" : CAIA:0(x)41dtt  

A 
(24.126) 
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that we bound by 

[ f [II f (x)a  :]2dµ] 1/2  f -A [11 e fA:cb(x)4  I d,u112, (24.127) 

the second term being the partition function Zx which is bounded by Kn. 
We now prove the following. 

Lemma 9. 

f 11 [11 f : CP(X)") ] 2dµ < KP li [p(mr2 
A A A 

where p = EA  p(A) and p(A) = a (A). 

(24.128) 

The proof of this lemma is very simple. The left-hand side of formula (24.127) is 
a sum of products of Gaussian contractions. These contractions are obtained by the 
integration by parts formula from Chapter 10 and are independent of the order in which 
the integration by parts is applied, and in particular, from which field we start first, which 
one is second, and so on. The idea is therefore to introduce the partial order relation on 
the squares A given by the number of fields in a given square n(A) : n(A1 ) > n(A2) > 
.... We start the contractions with fields in O1 . We choose by a factor [d(A1 , 6/)]2+3  

the square A' in which the contraction will hold and by n(A') which fields in A' will 
be contracted. Since n(L1) > n(A'), a combinatoric factor n(A1)1 /2  will be attributed 
to the contacting square and a factor n(0')1/2  to the contracted one, and the factor 
[d(A1 , A')]2+3  will be attributed to the propagator between the two fields. This last factor 
will be controlled by the decrease of the propagator (which must be, as we have seen, 
integrable) and the result will be a constant K. 

Finally, to conclude the proof of Lemma 8, we must bound the right-hand side of 
(24.111): 

1 1 
f f(q,G)1...1 f f 07, G)1 ni!l. sup —1. . sup —1 (24.129) 

{n} nil In} ni! 
n(G) n(G) 

This means to estimate 

An-111 
e-(m-E)d(p) Kn K1 pi 1/2[11 e—E cl(p) [n (A ) q 3/21  

n(A)! 
(24.130) 

The rules to construct the tree will help us to beat the factorial factors per square 
using the exponential decrease of the propagators. Indeed, let us consider a square At; it 
is related to ri other squares Ai(1),..., (ri), which by construction are distinct squares. 
If all these squares were regularly laid around Ai, they would form a disk centred around 
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A, and of radius r such that Tr r2 I.,. Let now S, 0 < S < 1. It follows that r 8 of the 
squares are at least at a distance d from A, such that 

d > K[r, (1 —S)]1/2, (24.131) 

from which it follows that 

-EK[rio-s)11 /2 /2] < K (E.  kr' [ri!rk  
p

< Le 
1

l
i
l 

(24.132) 

for any k E N. This completes the proof of lemma 8. 
The bound on I (X) is similar to that given in Lemma 8 since the sum over all possible 

graphs G having X for support is equivalent to sum up all possible values of the Ili 's. In 
fact, we have 

E  = 2n-1 E 
"

< 2n-12n-1 = K. 
2ni 

Eni=n-1 E ni=n-1 

(24.133) 

24.6.4 The Mayer Expansion 

In the previous section we introduced the cluster expansion. It is an expansion which, 
starting from the expectation value with respect to an interacting measure localised in 
some finite volume A of some function Q, localised in space, expresses it as a con-
vergent expansion. These unnormalised quantities blow up as an exponential of the 
volume IA I. The Mayer expansion deals with the normalised quantities. It was in-
troduced in statistical mechanics to prove the existence of macroscopic quantities in 
the thermodynamic limit. More precisely, it shows that all the thermodynamical en-
sembles have the same (and unique) infinite volume limit. In fact, what the cluster 
expansion proves is that in the absence of long-range forces, the pressure of the system 

log ZA  exists. It is the Mayer expansion which shows that the normalised 
quantities, such as the normalised correlation functions, exist. They correspond in 
field theory to normalised expectation values. Again, as for the cluster expansion, the 
Mayer expansion will be described in the framework of the X(/4 quantum field the-
ory but extended to more general situations, i.e. higher dimensions or other types of 
theories. 

The first idea is to rewrite an expression like (24.98) without the disjointness condi- 
tions of the X1's. Let Aa AD  be the squares of A which contain the fields 0(A) and 
let us call S2 their union. In addition, let us introduce a potential Va,fi  

0 if the squares Aa  and Afi are different 
Va,fi = 

+00 
 

if the squares Aa  and Afi are identical. 
(24.134) 
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Then (24.98) can be written as 

/(ac, ... an)  = E1 E 
n<IAI—S2 oe<fi 

4jEA 

q 

xE E Fri(x.;;{A}J), 
el q—partitions 1 

X=UXi 
XDS2 

where 

S2 n 

X  = U Ai' 
a 1 

(24.135) 

An order has been put on the union of a and A and the q-partitions are partitions 
(01, , co,/  of the indices a, p, , Q, 1, . . . , n) in q sets not reduced to a single square. 
The notation I stands for the product of I by the associate a4. The main difference 
between formula (24.98) and formula (24.135) is that in X the square can now overlap 
with, as a counterpart, a symmetry factor 1/n!. 

Let us remark that since by convention I (X) is zero as soon as two squares coincide, 
it is possible to suppress the condition n < I A I — S2. 

Now, the next step is to replace everywhere ev.,P (except for the squares containing 
the fields 0(z)) by 

e17°>4 = 1 + (e17',P — 1) = 1 + /14,„f . (24.136) 

If two squares Ac, and Ai; are disjoint, then /1/1,,,fi  = 0 and nothing is changed. If these 
two squares coincide then Ma,fi = —1 and if Acy E Xi and Afi E Xi with i # j, then I(X1) 
and /(Xi) are said to be linked by a Mayer link and the result is called a polymer (i.e. a 
connected set made with one layer or more). We will note /(X;; {A};), the connected set 
built from the 7(Xi)'s linked by Mayer links. The support of I is the union of the support 
of the I(Xi)'s, which means that squares belonging to the support can have multiplicities. 
Thus, 

/(aa  ... an)  = E_n! E E E 117(X;; 
n>0 Ai...An  el q—partitions 1 

AjEA X=UXi 
XDS2 

(24.137) 

Among the connected sets X, some contain some of the af 's. We will note still X for 
these and use the notation Y for those which don't contain any of the al's. The sum on 
the partitions factorises into a product of partitions of X-type times partitions of Y-type. 
Let n1  be the set of indices corresponding to X-type connected sets. Thus, the sum over 
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n is replaced by sums over n1  and n2  = n — n1 . Since the number of partition of n as a 
sum n1  + n2  is given by the binomial coefficient, we have 

i(ac, ... an)  = aI AI EIEE i( xi;  AI i) 
ni! 

Al ...An  el q—partitions 1 
A,EA X=UXt  

x1ns20 XDQ 

x [ n2, E E E 117(Yi;{A}J)]. 
n2 0 Ai...An  el q—partitions 1 

A jEA Y=UYi 
xins20 

It is not difficult to see that the term in between the brackets is nothing else than the 
partition function Z A; therefore, 

n! 
E E E ru(xi;{A}i). 

n>0 Ai...An  e 1 q—partitions 1 
AiEA x=uxi  

x1ns20 xDs2 

(24.139) 

Now from Lemma 8, we see that VA, A > 1, there exists (A, K) such that for < 
X(A, K) 

1/(X, G)I < CKIxn121 [K (E)e-(m-E)d(P)124-1X\121 (24.140) 
pEG 

This bound extends obviously to the polymers I's provided I XI is now the number of 
squares with their multiplicities. 

We remark also that the sum over q is bounded since q < IQ I. The sum over the 
squares Ai is as before, starting from the trees attached to the graphs G appearing in 
the decomposition I(X) = E I (X, G), a decomposition which also extends to Mayer 
graphs I(X) = E I(X, G). As before, the summation over the positions of the squares 
can be done using e'd(P)  and the decrease between the squares of the q(z) is extracted 
in the same way up to a redefinition of E. 

The connected functions with respect to the 0(z)'s are defined by 

S(S) = E n Se  (Di) (24.141) 
non-trivial partitions i 

52=S21 U•••US2p 

and reciprocally 

S`(12) = — E (_1)P(p_1)1 S (S2 i). (24.142) 
non-trivial partitions 

52=S21 U•••US2p 

(24.138) 
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We have therefore 

,E1 n!  E E (Xi; Gi) 

Ai•••An 
AicA 

(24.143) 

and the proof of Lemma 5. 
There are many terms which are produced during the Mayer expansion. Let us ex-

plain how they are controlled. A connected Mayer graph is a union of graphs G1, , Gk 

linked by Mayer links. We begin by constructing a skeleton of this polymer: we start 
with G1  giving an order to the squares of G1 . If more than one link connect G1  to Gj, 
we keep only the Mayer link starting from the square of G1  having the lowest index. 
Then we do the same analysis for each of the Gi linked to G1 , testing their Mayer links 
with the graphs Gi not already linked to G1 . Since in each G1  the squares are distinct, 
two Mayer links cannot start from the same square. The summation is then essentially 
reduced to the estimation of the number of graphs having the same skeleton. We must 
define combinatoric factors for the number of Mayer links leaving a graph Gt, the num-
ber of squares nj in each of the graphs Gj linked by Mayer links to Gi, the number of 
external indices in G1  (i.e. the number of 0(z) in Gi), and the index of the square which 
is an end point to the link. The link of G1  to different G1's is obtained by the binomial 
law, i.e. replacing 1/n! with 1/ni! for each Gt, and the choices of the external indices are 
bounded by Cn,. It remains for each Gi to control 

E E EI(X,G). (24.144) 
G 

But the /(X, G)'s are bounded by nprop e—Ed' the sum being on all G having different 
indices n,. Using 

E ne-EciKn (24.145) 
Al—An 

We can sum over all possible ni and each skeleton is multiplied by a factor Knn!, which 
concludes the sketch of the proof. 

Note that it is possible using these methods to replace the initial 0(A) by f : (x) : 
n(x)d2x for any a E Z+  and to get a similar result. 

A remark before closing this section: we have chosen to give a proof of the conver-
gence of the Mayer expansion following the spirit in which the cluster expansion was 
presented, despite the fact that more generally, the existence (and the convergence) of 
the Mayer expansion can be shown to result from a condition expressed in a theorem of 
D. Brydges.1°  

1°  D. Brydges, 'A Short Course on Cluster Expansions', in Critical Phenomena, Random Systems, Gauge 
Theories, Les Houches session )(LEI, 1984 (Elsevier Science, 1986). 
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Theorem 20 (Brydges' bound). Suppose that the polymers in the cluster expansion 
formula (24.98) satisfy the bound 

E < 1. (24.146) 
oEx 

Then the Mayer expansion converges. 

Where 0 E X means that the union of squares forming X contains the origin 0. This 
point, 0, can be replaced by any point of R2, this condition being only necessary to break 
the translational invariance. 

We remark that the Brydges' condition can be replaced by the following. 

Lemma 10. Given K, if for X small enough we have 

E < 1;  
°Ex 

then the Mayer expansion converges. 

This condition can be checked during our proof. 

(24.147) 

24.6.5 The Infinite Volume Limit of X 

The infinite volume limit results immediately for 04-field theory in two dimensions from 
the cluster and the Mayer expansions. 

Let us consider an imbedded sequence of domains Ai, Ai C Ai±iwith Ai = 
E82. They can be obtained by adding at each step a square A i±i to Ai in order to construct 

Ai+i. We assume that Q C A. Thus, SAi+i appears as a perturbation of S Ai by e r  

We then introduce a dependance on replacing this term with e f°i+1 . We thus have 

SA1+1 (01 =1  = S Sp,+1 (14.=0  = SA  

cwsAi+1  (0 = .[Ai+, = z-Ali+, (0 —d7,,,.+1 (0 

= (S2 U A; + S A. i (S2;)S ni+i  (A; (24.148) 

As for the connected graphs, only graphs joining one square of S2 to A are different 
from 0. Thus extracting from the tree associated with each graph a factor linking S2 to 
A we get 

d 
(.) (usual bound) .e—Edist(52,4i) (24.149) 
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and thus 

SA1+1 S Ai  < Ke-Edist(S2,4i)
, (24.150) 

which proves the limit by extracting a Cauchy sequence. 

24.6.6 The Borel Summability of the X  Theory 

The proof of the Borel summability of 44 theory is very similar to the results we got 
in the two preceding sections. It proceeds by following two steps: (1) bound on the 
remainder of the perturbation expansion; (2) analyticity of the global expression in the 
Sokal sector. 

We have shown in section 24.6.1 on the divergence of the perturbation series that a 
generic term of order n behaves as 

KCn  n! 

From this result we can infer that its Borel transform is convergent in a disc of radius 
C, centred at the origin, and define in this way an analytic function in this domain. 

As for the zero-dimensional model, we can expand in powers of the exponential of 
the interaction up to the Nth order. The rest of order N of the Taylor formula is given by 

N+1 
RN[

X  p 21]  = 1 )(A (f d 
ti,A4004:d2x 

 

N! 0 j etN +1 e dlicp (X --01\14dt. 

We must estimate RN [X I p, A]. 
Each derivative will produce a IA  : (x)4  : d2x; thus, 

(24.151) 

RN[X I p, A] (24.152) 

1 X N+1 
= _(_0N+1 f (f (f 0(x)4 d2x) e-t f A:0(x)4:d 2xdit c  ) 

N! A 

First, we must estimate the Gaussian integral 

(X — t) N dt. 

I(p, A) = f (f 
A 

 
) N+1 

(x)4 d2x e-t f A:0(x)4:d 2  x
co 

 (24.153) 

As we did in the previous section, we will introduce in the field the interpolation 
parameters tp4  and the operators IpA and PpA. 

We get 

i(p' 11)  = )1  H (,p ,A  + pp A)nil(f : 0(x)4 d2x)N+1e
up 

_t iA:0(x)4:d2x..., 
,cp• 

4cA 1>0 A 

(24.154) 



The X04  Theory in d = 2 Dimensions 623 

It is easy to see that the existence of 4(N + 1) fields will produce in the bound (24.81) 
an overall factor C(2  (1\1+1)  (2(N + 1))! 

The first Gaussian integral in (24.154) can be estimated by 

2(N+1) 
I ( I : 0(x)4  : d2x) dttc, < I A IKC2(N+1)  (2(N + 1))!, (24.155) 

from which follows that after the change of variable t —> Xt in the last integral over t, 
we get 

IRN[X I to, AU CIXI N  CN  N! (24.156) 

for some constants C. 
These estimates on the perturbation expansion show that the Borel transform is 

analytic in a disc centred at the origin. 
It remains now to look at the analyticity. A first remark is that the exponential of the 

interaction is an entire function of X. Moreover in the estimate over the v.e.v. nothing is 
changed if we replace X with its real part; thus the various integrals giving the partition 
function and the other v.e.v. are analytic in a neighbourhood of 0 in the half-space RX > 
0, thus showing by the Borel transformation the relation between a global theory and its 
perturbation expansion. 

24.6.7 The Mass Gap for 01 in a Strong External Field 

In two dimensions the simple quartic interaction term can be replaced with a polynomial 
of even degree, since the only thing that entered the proofs we presented was that this 
polynomial had to be bounded from below, with the bound independent of the size of 
the integration variable 4). The idea of the proof reflects the fact that the dominating part 
in the Lagrangian function is the quadratic part, the free part, the interaction appearing 
in some way only as a small perturbation of a Gaussian system. This condition was 
essential in the proofs we presented earlier. It is also easy to understand it intuitively. 
Consider a system in statistical mechanics. It is well known that if we start with a free 
system and increase progressively the strength of the interaction there will appear some 
critical values of the parameters. In the case of X04, this means explicitly that there is a 
critical value X, such that for X << X, we are in a single phase region, clearly dominated, if 
X is small enough, by the free underlying system. In this case we showed the existence of 
an exponential clustering with a range related to the bare mass (m-1). When X increases 
and approaches the critical value X = X„ we are at the critical point where there is a 
long-range order. As a result the previous expansion fails to converge and this signals 
the appearance of a phase transition. 

In this section, we want to point out that our previous results could be extended to 
cover values of the coupling constant much larger than the critical value, provided some 
care is taken to ensure that the system is in a single phase. This is because, by going 
through the critical value, we are experiencing a phase transition and beyond this critical 
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values there may exist more than one phase. We need therefore to find a way to be in one 
of these phases. Take the example of the Ising model; we can single out a phase by intro-
ducing a coupling with a strong magnetic field. When this field is large enough, we can 
again be in a system where the main behaviour is that of a free (Gaussian) theory with 
a well-defined mass, which, however, can be different from the one we started with." 
For the X•14 theory this can be technically achieved by choosing to study an interaction 
of the form AP(0) + pupk, with P even and 1 < k <degP. In this case we can prove 
that, for pt large enough, there is a mass gap (thus, a non-zero minimal mass) in the 
energy spectrum. We will not go through all the details, but the essential steps are the 
following. 

Let us take P(0) = 04  in two dimensions, i.e. an interaction A04  + µ,4). If a = a(A, ,u) 
is the minimum of Xy4  + py and mo, the mass of the Gaussian measure, we perform the 
following transformations: 

• Translation 
We translate the fields : (x) —> 0(x) + a; thus an expectation value is changed as 

< F(0) > A,P,m2 Pa (0) > A,Pa +alq.y,m?) 

with Fa (0) = F(4 + a) and Pa (y) = P(y + a) — P(a). 

• Scaling 

< F > A p
'MO 

 =< F, >sAs_ 
a, 2/3 — S 2 M 0

2, 
 

where F,(0(x)) = F (0(sx)) and s2  = a21v with o a constant independent of a to be 
determined later. 

• Mass shift 

< F > A P+—b2 m0 1 =< F > P* m02+62,  ' 2 '  

where P* is characterised by a change of Wick ordering, 

: P :m2 =: P :m2+b2, 

with 11,2  = o-  b2, b2  being the coefficient of y2  in the development of P(y) — P(a) in 
power of y. 

After these transformations the theory is characterised by a mass ri4 = m(2)a-2a + 2b2  r, 
all the coefficients of the interaction polynomial being small with respect to the bare 
transformed mass 7/4, and we are under the conditions of a weakly coupled 04  
theory. 

11  T. Spencer, Comm. Math. Phys. 39, 63 (1974). 
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24.7 The 1.(0)4  Theory in d = 3 Dimensions 

In the previous section we established the existence of the X(/4 theory. In this section 
we want to extend this result to three dimensions. In order to emphasise the role of 
the dimension, we will first comment on the results of the preceding section for the 04  
interaction in an arbitrary dimension d and then sketch the main ideas of the proof on 
the existence and on the Borel summability of the X01 theory. In some special cases the 
proofs given for d = 3 can be extended to four dimensions (for example, the planar or 
the infrared 

In 44, the existence of the v.e.v.'s in a finite volume was obtained by introducing 
an increasing sequence of cut-offs Mc, = 0 < Ml  < M2, , < ...Mt, < Mi_i  < 
Mi, i E Z±, a global cut-off Mp, defined by the index p, the largest index, a cover 
of the space of interest A by squares of unit size and by creating an expansion whose 
aim was, in each square of the cover, to progressively lower this cut-off value, going first 
from p to p — 1 up to the momentum cut-off being equal to 1 for which the bound was 
obvious. This way we had to compare the interaction measure with a cut-off Mp  to an 
interaction with cut-off Mp_1  and so on. This comparison was obtained by performing 
a truncated perturbation expansion which produced interaction vertices with at least 
one field having a momentum Mp. For a 04  interaction, this leads in d-dimensions to a 
convergence factor 

[Mp_1]-(4-d) (24.157) 

per 04  vertex. 
In fact, redoing the analysis leading to formula (24.77), we know that a vertex 

produced in the expansion has one field of high lower index i. In d dimensions, the 
covariances obey the estimate (24.40). This means that we get a factor M2,c112) . For a 
covariance linking two vertices, only half of it (the square root) will be attributed to each 
of the two vertices. By the nature of the expansion, all the remaining fields will have 
smaller lower cut-offs; therefore, we will bound the contribution of the four propagators 

(d-2) (d-2)  

by K[M1  2 ]4  (if the interaction is 02", we will have to replace it by K[M1 2 2n) Integ- 
rating over a unit volume in dimension d (or a larger one) gives a factor Mt d; therefore, 
we got very generally for each 02n-produced vertex a bound 

(d-2) 

K[M1 z ] 2nM2d = Km(n (d-2)-d) (24.158) 

12  We will follow the references: 

1. J. Glimm and A. Jaffe, Fortschr. Phys. 21, 327 (1973). 

2. J. Magnen and R. Seneor, Comm. Math. Phys. 56, 237 (1977). 

3. R. Seneor, `Theorie constructive des champs.', Troisieme cycle de la physique en Suisse Romande, 
Semestre d'hiver (1986/1987). 
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 ]4-d >> I [ln Mp]2 if d = 2 
[Ni

p
] 2(d-2) if d > 2. 

(24.160) 
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which gives KNI c1-4)  for a 44  interaction, i.e. M2-1+d/a)  per field. It is a small factor 
provided d < 4. 

From now on, except when specifically stated, we will discuss only the case of a 04  
theory. 

We also know that by doing a perturbative expansion of the interaction term we will 
get a small factor X (if it has a small value). This factor is independent of the scale of 
momenta. In addition, by the way the perturbation is built, we will get, for all dimensions 
less than four, momentum-dependent small factors. If enough perturbation vertices are 
produced, we can hope in this way to beat the divergence of the Wick bound. However, 
we also know, from the analysis of the perturbation expansion, that the resulting series 
is divergent. More specifically, when we have produced k vertices, i.e. we have done 
an expansion up to the kth order and 4k fields have been produced, we end up, by 
Gaussian integration, with 2k! contractions, i.e. a blowing up of the number of diagrams 
produced. At the kth order, there is a convergent 1/k! factor which takes account of 
the combinatoric of the expansion, but it is not enough to compensate the number of 
diagrams produced. Thus, we need to optimise the value of k between the divergence 
of the perturbation series and the convergent factors generated to stop optimally the 
perturbation expansion, and this choice must be such that at the end of the estimate 
there is enough convergence to control the Wick bound and to resum each term of the 
expansion. 

Let us take, as an example, what happens going from Mp  to Mp_1 . In a unit volume, 
we obtain, using the estimate on the number of terms produced given by (24.19), 

r 
" p-1 J 

1-k(4-d) 2k! 2-k ek [-(4-d) In +In 2k-1] 
• k! 

(24.159) 

The minimum is obtained when k = 1/2 [Mp_1] (4-d)  and the value is e-1/2[A4P-1]41-d . This 
factor is enough to dominate the Wick bound if 

The first inequality is possible as soon as the sequence of cut-off increases at least as fast 
as p°(1)  . However, the last inequality is impossible as soon 4 — d < 2(d — 2), i.e. d > 8/3. 
In other words, for dimension d > 2 we cannot control the Wick bound by doing an 
analysis in unit volumes. We will have to adapt the size of the volumes in which an 
expansion will be done according to the index of the momenta we are considering. This 
gives rise to an expansion known as a phase space, or a multiscale expansion (depending 
on the point of view). 

Let us now apply what we previously learned in dimensions 0 and 2 to the X04-
theory in three dimensions. The degree of divergence D of a vertex of this theory is —1. 
The theory is still superrenormalisable, but the Wick ordering of the interaction which 
suppresses the tadpoles does not remove all the divergences. It remains three divergent 
diagrams: two vacuum energy diagrams, and one mass diagram. 
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(a) (b) Figure 24.6 The divergent vacuum diagrams. 

Among the 2-vertex vacuum diagrams of Fig. 24.6, (a) is linearly divergent, D(G) = 
-1, and (b) is logarithmically divergent, D(G) = 0. There is also a mass correction given 
by the diagram of Fig. 16.9 for which D(G) = 0, thus corresponding to a logarithmic 
divergence. 

In order to prove results identical to those proven for )4 in two dimensions, we first 
introduce an increasing sequence of momentum cut-offs with an upper cut-off of index 
p. Then we add to the interaction Lagrangian the counter-terms corresponding to the 
divergent diagrams with their proper coefficients, in such a way that, when performing 
a truncated perturbation expansion, to the divergent diagrams will be associated their 
cut-off counter-terms.13  

The renormalised action in the volume A is given by 

2 
V (A, g, p;cp) = X f : 4)(x)4  : d3  x - —

2 
f 3m p2 (x) : 4)(x)2  : d3x 

A A 
2 
 f  (f • 0004  : d3x) 

2 
diti, 

A : 

X3  
f (f

A 
 : 4)(x)41  : d3X)

3 

 dit p, (24.161) 

where dµ p  stands for ditcp, where the mass correction 8m2p(x) corresponding to the 
diagram of Fig. 16.9 is given by 

sm2p (x) = —42  f : yb(x)3  : f : (1')3  : d3y)d,u,p, (24.162) 

and where the third and fourth terms of the interaction (24.161) correspond to the 
vacuum diagrams of Fig. 24.6. 

The partition function is given by 

Z (A, X, p) = f e-v(A,A,P;0) dm, p (24.163) 

13  This is in principle the same mechanism as that corresponding to replace monomials in the field by the 
corresponding Wick ordered ones. For example, when one Wick orders 04, this means that everytime the 04  
vertex will be produced, there will be associated with the right combinatoric coefficient a 02  counter-term 
corresponding to the contraction of two of the fields of the vertex, forming a tadpole, and a constant one 
corresponding to the complete self-contractions of all four fields. 
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To summarise, the general principle of all the expansions is that by adding the 
counter-terms in the exponent, the divergent diagrams minus their counter-terms will 
converge to finite quantities when p —> oo. We remark that in contradistinction with 
the Wick order mechanism, these counter-terms are not necessarily linear in the coup-
ling constant X. For example, the mass counter-term we obtained in Eq. (24.162) is 
proportional to X2. This non-linearity of the counter-terms has for consequence that 
at any given order in the perturbation expansion there remain some divergent terms 
which are not compensated. The compensation is complete only if we look at the ex-
pansion to all orders. Regarding the Wick bound, this will not be a problem if, by the 
nature of the expansion, we have produced enough small factors to compensate this 
divergence. 

As an example, let us show this compensation mechanism for the mass counter-term. 
Suppose that two functional derivatives 3180(x)8184)(y) act on the exponential of the 

interaction. The following two terms will be produced, 

(4A)2  f : 03(x) :: 3 (Y) : dttc,, - 23m2p  (x)6 (3) (x - 

= (47)2  3![C p  (x - y)] 3  — 28m2p (x)3(3) (x - y) 

= 2F,, (x - y) - 23m p2  (x)8 (3) (x - y) Frp"(X — y) (24.164) 

with F p  (x y) = (4A2)23' [Cp  (x - y)] 3  and 3m p2  (x) = (4A2)23' f [C p  (x - y)] 3d3y. It is easy to 
check that Fre" (x - y) is not singular (we can integrate with some regular function f (y)), 

although C(x)3 1/1x13  is not integrable. 
A consequence of this renormalisation procedure is that the Fourier transform Fpren (p) 

of T•ren  is finite for all p and all p such that Fri (0) = 0. 
P 

More concretely, in the general series resulting from expansions and contractions, we 
will obtain expressions like 

[C (., x)C(•,y)  
8 cvm,A,p;0)]d3  xd3  ycif. t p • 

80(x) sou) 
(24.165) 

Among the terms produced by the application of the functional derivatives, we will get 

f [ 2 C(•,  x)C(.,Y)[Fp(X-Y)-(f F p  (x - z)d3  z) 83  (x - y)]d3  xd3  de-17 (A,A,p;0)]dit p  

= - f [ f [C(., x) - C(.,y)]2Fp  (x - y)d3xd3y] e-vo,x,p,o)] dit p  

=- f [ f n—V>  C(., x)] 2(x - y)2Fp (X -y)d3xd3  de-17 (A,A,p;0)]dit 

showing that renormalisation amounts to the replacement of F by (x - y)2  F and the 
application of a gradient on the two external legs. Vacuum energy terms can also be 
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produced during the expansion, but since they are constant terms they will be identically 
cancelled by the counter-terms. 

Now we give some elements on how, in order to prove the existence of the limit when 
p oo, the expansion must be modified because the underlying space is of dimension 
three. 

We know from the commentaries made at the beginning of this section that we cannot 
hope to dominate the Wick bound by producing enough perturbation terms in volumes 
of unit size. If a perturbation term means small factors on one side, it also means increas-
ing divergent factorials in the number of terms produced on the other side. Therefore, in 
order to control the Wick bound, if some amount of perturbation terms are produced in 
volumes of size 1, then other perturbation terms must be produced in covers with cubes 
of smaller and smaller sizes. 

Let us start by giving a more precise definition of the sequence of cut-offs. Choosing 
M, M > 1, large enough, we define the sequence of momenta 

Mo = 0, M1  = M, • • • ,2141 = , Mp  = MP (24.166) 

with p being the index of the largest cut-off. Next, we introduce the notion of momentum 
slices. To each slice i, defined by momenta in the interval [Mi_1, Ali ], we associate a 
cover {DJ, partition of R3, made of cubes A E Di  of size 1/3  = My'. Each {Di} is a 
refinement of the cover Dz_i , the sequence of volumes satisfying 

lAol = 1 > lAil > ••• > I > • • • , with I > I Ai I, J EV. (24.167) 

We define 15 = u0<1<p D1 and the elements of phase space by the following. 

Definition 1. Cell of phase space 
A cell of the phase space is a pair [M1-1,  Mt ] x A, 0 E Di. 

We also define the following. 

Definition 2. Properly localised field 

114
1

1 < 10 11/3. (24.168) 

A field 0 localised in a cube A and with lower momentum Mt  satisfying (24.168) is said 
to be properly localised. 

The introduction of this notion of properly localised fields relies on the fact that it 
is impossible to simultaneously localise a function and its Fourier transform with an 
arbitrary precision. 
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Because of the local nature of the interaction, for any index i, introducing 4) 
FLED, 4'x6, = E4ED, 045 with 4 = CPX60 we have 

v(A„A,p; E 06,) = E v(x„A,p;oA) = E V. (24.169) 
AEDi AED, n A AEDi n A 

24.7.1 The Expansion: Definition 

24.7.1.1 The Factors Which Will Guarantee the Convergence 

In dimension d > 2 we learned that we cannot hope to beat the Wick bound in cubes 
of unit size and we need to do expansions in cubes of smaller and smaller sizes. This 
has led to the introduction of momentum slices and associated covers and thus to phase 
space. 

The existence of the theory in an infinite volume (the thermodynamic limit) will rely 
on the following: 

• The smallness of the coupling constant X 

• A sufficiently rapid decrease of the propagators'4  

cnd(A, A')-n (24.170) 

with n E Z+5  where d(A, A') is the scaled distance: 

d(A, A') = sup(1, dist(A, A'), /14/dist(A, A'), /14pdist(0, A')) (24.171) 

and dist(A, A') is the Euclidean distance between A and A'. We remark that 
in case both lower momentum cut-offs are zero, the scaled distance reduces to 
sup(1, dist(A, A')). 

This behaviour of a propagator, cnd(A, 0')—n, n E Z+, corresponds to the con-
tractions of two fields, one 4) with low momentum M localised in A, with another 
one 4/  localised in A/  with low momentum M'. In fact, if (/) is properly localised 
and if A E Di and A' E Di,  with < 1, the factor d(A, A')-m satisfies 

E d(A, 0(1) Vm > 3 (24.172) 
YED,, 

with some 0(1) depending on m and showing that it is a good combinatoric factor 
for the sum, A resulting from all possible A/  E Dp . This factor was already noted 
in section 24.6 when we introduced the notion of combinatoric factors. 

• The boundedness from below of the interaction 

14  For the theories we are considering, the decrease of the propagators is exponential, although a power like 
one with n > 3 would have been sufficient. 
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and the facts that at scale i and depending on the dimension. 

• A propagator behaves like 

KnIVe d(A, A')-n in d = 4 dimensions 

KnMid(A, in d = 3 dimensions. 

• The integration is done on cells of size I A I = NITd  

from which follows that the following convergent factors can be attributed 

per leg or per field of index i 

per integration. 

24.7.1.2 The Expansions 
The phase space expansion is then defined as the result, for each momentum slice, of 
two successive expansions: 

• A horizontal expansion 
In each slice i, a cluster expansion is done to test the coupling between the different 
cubes of Di  as it was done in section 24.6.3 on X04  in two dimensions by introdu-
cing interpolated covariances, depending on parameters sl , s2, ... as in (24.103) 
and (24.105). 

• A vertical expansion 
From a cluster expansion at scale i we cannot hope to perform a thermodynamic 
limit since the interaction still couples the various horizontal slices; therefore, in 
each cell (1, A), an expansion is done to test the coupling between fields of indices 
larger than or equal to i and those of indices smaller than i by introducing in the 
interaction new interpolating parameters {ti,, 1 different from the {si}'s introduced 
for the cluster expansion. 

This is done in modifying each VA  by 

Levi [(411(x) ti,A01(X))4  + (1— t44)(1;01(X)4113  X = VA(ItAl) (24.173) 

with the splitting of the field into two parts 4(x) = Oh(x) + 4/(x) with 

the well-localised part or high momentum part 

the low momentum part. (24.174) 
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We remark that the parameters ty interpolate the interaction, going from tiA  = 1 to 
ti o = 0. This interpolation can be seen as connecting two situations: an initial expression 
with an interaction where in A E D, there are the full components of the fields, their 
high momentum as well as their low momentum parts, and a final expression where 
the interaction is now the sum of two 04  interactions in A, one with high momentum 
fields (from which a single cluster and Mayer expansions make it possible to perform 
the thermodynamic limit), and another one with low momentum fields, i.e. with no 
couplings between high and low momentum fields, for which we will have to repeat the 
procedure. 

A Taylor expansion is done up to the fifth order on each e-17A (t) . The reason to expand 
to this order is that each time a 04  is derived, at least one high momentum leg and one low 
momentum leg will be simultaneously produced. The existence of the high momentum 
leg will guarantee the convergence. If in a cube A five derivations are done, this implies 
that in this cube there are five low momentum legs (that we considered at scale i as 
external legs) and thus the corresponding sub-diagrams, with at least five external legs, 
will be convergent according to the general power counting of the theory. 

This expansion is expressed algebraically, for each ti,A, by 

e-v° (t) =1
Rzt,)e-vA  (t) (24.175) 

where Ii(1)  e-17A (t)  are the first four Taylor expansion terms around 4,6, = 0 and RT e-17  A (t)  
is the remainder term (which involves five derivatives with respect to ti4). 

In each slice, the two expansions will generate graphs the same way as in cg, for 
example through formula (24.98) or through the Mayer links. Some of these graphs 
are connected. The horizontal connectivity is the usual one as it appears in cluster ex-
pansions. The vertical connectivity results from the notion of connectivity for cubes 
belonging to different covers. 

Definition 3 (Connectivity). Ai E Di and Ai E Di, with j < i, are connected if: 

• There is a propagator connecting them (this is an element of the cluster expansion at 
level i). This implies that i = j; 

• C Ai and there is a vertex localised in A with two fields or more, one of index i 
and one of index j; 

• i = j + 1 , C Ot 1 and the ith vertical expansion has produced a remainder term 
R(A4). in Ai, i.e. there are five low momentum legs produced by a vertex in Ai. 

24.7.2 The Expansion Completed 

The expansion, as defined by a succession of cluster and Mayer expansions, must be 
completed. For example, we have in the exponential of the interaction a mass counter-
term of second order in which behaves as ln MP. This mass counter-term must cancel 
the divergence part of a mass term formed by the contraction of some vertices generated 
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during the expansion. On the other hand, we know that unless expanding an infinite 
number of terms, there will remain some non-cancelled divergences. We will have to 
explain what to do in terms of contractions when a vertex is produced by a cluster 
expansion or when it is produced by a vertical expansion. This will lead to a combin-
ation of perturbation and contraction formulae which will form what is called a 'partly 
renormalised expansion'. It is partly renormalised because in the later stages of the ex-
pansion some logarithmic divergences will remain uncancelled. They will occur only in 
terms where convergent factors produced earlier in the expansion are strong enough to 
dominate these divergences. Finally, we must explain what we should do with the low 
momentum fields. Low momentum fields cannot be integrated with Gaussian meas-
ure because they will produce too many terms. Thus, for 0 E Di, we split each low 
momentum field part of index 1 as defined in (24.174) into two parts, 

00 (X) = (X) + 8044 005 (24.176) 

where 

0i,A(x) = )(Ai ) f 046, (Y)d3.Y. (24.177) 

We will show that 34/,A  behaves as a high momentum field. To see this behaviour, 
we decompose the field over the momentum slices and prove this property for each 
component: 4)/  = 4)-;; thus 34)/,A (x) = 844 A  (x) with i > j and 

844,A (x) = (Y.  (x) XA (x) XA (x)  f Ori  (V)d3 Y 
lAl 4°  

(24.178) 

now introducing in the integral part a formal Taylor expansion of 4)-7  (y) around x 

(y) = (x) + f (y — x) v a„4)(x + s(y — x))ds 

we get that 

xA  (x) 
34,10,(x) = 

 I
-
AI 

f n(y)(f (y — x)v (x + s(y — x))d)d3y. 
o 

(24.179) 

(24.180) 

As a result, with the arguments given at the beginning of this section, we see that with 
respect to the low momentum component the y— x coefficient gives a NI' and the deriv-
ative acting on the field gives a MI; thus the whole right-hand side gives an extra factor 
NV' which transforms this low momentum component into a high momentum one. 

What remains of the low momentum part will not, as it has been said, be integrated 
with the Gaussian measure and will be controlled by the positivity of the interaction using 

1 (7)44 14  = 
1 r 

(P1(x)d3x  

4 A-1 
< f X(/) (x)4  d3x. 
- AI 4 

(24.181) 
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Now, each term of the expansion will be of the form of a sum of products of high mo-
mentum fields and 84-fields times the exponential of the interaction and will be estimated 
using 

f ficoh,s(p)il 
h 

kai,A I 
A 

e-A  f (44:+c7)dttp  

2 
1/2 

[ f [11 (Oh, 80)1 dttp] (sup H 10/41e-f (4:-EGT) 5  (24.182) 

where CT stands for the counter-terms and the supremum is bounded by 

< [2A-1/410 riRt
]pp!e  i

fA  04
. 
 

(24.183) 

In order to control this last exponential term, we use the fact that in - fA  : :, the 
low momentum part can be written as 

f : - 441  := --
1

— CO
1

4/1 4 . 0 — 6C/Of ± 3 (24.184) 
A 2 A A 2 

The first term of the right-hand side will be used to dominate the exponential factor 
introduced in the bound (24.183) for a product of low momentum fields localised in a 
cube A. The second term is bounded from below by Kq I A I for some constant K. This 
term can be estimated as follows: since we are dealing with the low momentum part at 
level i, in d dimensions, A E Di, 10I=  Mdi  and Cl= `114(d-2)]2; thus (-/ 

KCl I A I < [Mt] 2(d-2)-d  = /Wlt 

thus showing that for slices of high momentum i in each cube A (as they are generated by 
the vertical expansion) of a cover Di, the bound of the exponential of the interaction (or 
Wick bound, it will be the same bound for the high momentum field part) corresponds 
to an estimate (for dimensions less than 4) of a constant per cube. 

The expansion thus completed is called 'a partly renormalised phase space expansion' 
(PRPSE). 

We will not develop more these points here.15  We go directly to the results. 

24.7.3 The Results 
As for the 44 case, we have the following theorems. 

Theorem 21 (I). Let X E lArgAl < 2, then there exists C(A) > 0 such that 

fe
-v(A,n,p) dit  < ec(x)IAI (24.186) 

15  See J. Magnen and R. Seneor, Comm. Math. Phys., 56, 237 (1977). 

(24.185) 
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Theorem 22 (II). In the weak coupling region, i.e. )elm small enough, the Euclidean vacuum 
expectation values (Schwinger functions) satisfy the Osterwalder—Schrader axioms with 
an exponential clustering. They can be analytically continued in X in the domain defined 
in Theorem I and are C°° at A = 0. 

Theorem 23 (III). Under the conditions of Theorems I and II, the perturbation series of these 
functions at X = 0 are Borel summable. 

We will not prove these theorems. Their proofs result from the same arguments used 
to prove the existence and the cluster property of the theory in a finite volume and is 
similar to that given for cg. The infinite volume limit is then proved exactly as for the 
two-dimensional case. 

24.8 The Massive Gross-Neveu Model in d = 2 Dimensions 

The massive Gross—Neveu field theory is probably the simplest renormalisable theory: it 
is two dimensional, it is massive, i.e. the infrared difficulties are avoided, it has a quartic 
interaction, its perturbation series is, with finite ultraviolet cut-off, convergent in a disk, 
and the diagrams of the theory are topologically the same as those of a 04  bosonic the-
ory. It has an infinite number of divergent diagrams but it is asymptotically free. It was 
introduced in Problem 23.2. 

The interest of the model stems from the fact that it mimics many properties 
which, as we will see in the next chapter, are found in the real world. Both massless 
or massive Gross—Neveu models are asymptotically free. By massive we mean hav-
ing a non-zero bare mass. We will deal with massive N-component fermion fields. We 
will construct the Schwinger functions of the model using the property of asymptotic 
freedom together with the existence of a non-zero bare mass to get a small para-
meter of expansion. The model being just renormalisable there are infinitely many 
primitively divergent diagrams requiring coupling constant, mass, and wave function 
counter-terms. 

We will first introduce the model with ultraviolet cut-offs and finite volume and show 
that the unnormalised and unrenormalised Schwinger functions are entire functions of 
the coupling constant. The next step will be to define a partly renormalised phase space 
expansion (PRPSE) with given bare coupling and a correct bare mass ansatz. This 
PRPSE is shown to be absolutely convergent if the bare constants are suitably chosen 
following the renormalisation group expressions. 

24.8.1 Definition of the Model 

The model is defined by the Lagrangian density 

G(*, *) = * (i0g + m)* — g(tk .*)2 (24.187) 
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with *.* = Ea a  tlia  'cfraa . a, b, . . . are spinor indices taking the values 0,1 and a, a', ... 
are internal indices; we will call them 'colour indices', taking the values 1, , N16; we 
may also note A, B, ... pairs of colour and spinor indices: A = (a, a), B = (b, f3), ....; 
m is the mass and the wave function renormalisation; and finally g > 0. The finite 
volume A will be a square box in R2  of area I A I. Given M > 1, we define a sequence of 
momentum cut-offs M, M2, • • • , MP; the starting ultraviolet cut-off will be referred to 
as corresponding to the index p. 

The model has a perturbation expansion similar to a (4)2  field theory with an N-
component vector field 4. Formally the 2p-point functions are defined by 

,Sp f ..  
2p LY1,c15 " 53/p,cp; Z1,di " ,Zpdp) (24.188) 

1 
= 2  f 00 • • • 01 (vp)T1, (zi) • • • VdPp (zp)e-f rok,k) fl  dT(x)d0, (x)  

Z = f of r(")  11 chfr (x) &fr.  (x), (24.189) 

where the fermionic integration follows the Berezin rules. 
With cut-offs, we can rewrite this formula as; 

c.Y1,•",Yp;81,— ,Sp f..  
L'2p,A,p " 5Yp,cp; Z1,di " ,Zpdp) (24.190) 

1 
lfr./1 (3)1) • • • *P (z ) • • • VP (z ) EP (T4) d (W. tfr p p 1 dp 

 p e itp 5 ) 
zA,p f 

with 

ri,p = —gP (T 02,  

mp, gy p, and gp  being respectively, with cut-off p, the bare mass, the bare wave function 
renormalisation, and the bare coupling constant. Also from now on we will omit the col-
our indices. We have also introduced, using the quadratic part of the cut-off Lagrangian 
Lo,p(*, = (4-04 + mp)*, the fermion Gaussian measure defined by 

f lfra(x)1kb(Y)dit(lfrik) = Ca,b(x (24.191) 

where C a,b(x —  y) is the fermion propagator. 
With a cut-off ri p  (p), it is defined by 

p (x — .Y) 
f eiMX-y)  P M p 

.P (p)d2jo -
p
2p2 ± m2

0 
  (24.192) 

16  We consider N > 2 since the Gross—Neveu model corresponding to N = 1 can be solved completely. 
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with 

YO = _oi) 5 Yl = (
01 ) 

1S =  Po Yo + Pi Ya = -Y: {Ya, Yb} = -28a,b• (24.193) 

The theory is invariant under a change of scale 

m —> m/s (24.194) 
g

g/s2, 

which means that we can choose to be equal to 1. 
Let us start for simplicity with a Gross-Neveu model where ri p  is an exponential 

cut-off of index p, m depends on p, and = 1. 
Now we rewrite Cp  as the convolution of two terms 

(x - y) = f p2 

+ (x—y) rn 
2

e_2p2A42(p+1) 
d

2 
p = f A„ (x - t)B p  (t — y)dt (24.195) 

± m  

where 

/3 M 2A4-2(p+1) e_P
2A4-2(p+1) 

A(P) (p2 
 +  m2)3/4 e-P and E(p) -  

(1,2 + m2)3/4 
(24.196) 

In this case, the unnormalised 2-point Schwinger function of formula (24.190), omit-
ting all colour and spinor indices, is given, after a complete expansion in powers of gp  of 
the exponential of the interaction, by 

S2p,A,p({Y} {z}) (24.197) 
-HE0 (gp yi f  

n!
*(311) • • • CVp)* (zi) • • • lk (zp)[ f (lk lk)2  d2  xr dit p(lk Ifr) 

A n=0 

E
+°° (g  

n! A 

d 2 
xi 

 • • • d 2
xn 
 E .. 

n=0

.[yi,,, • • • Yp,cp  
zi,di  • • • zp,di, 

abi 

where gp  is the bare coupling constant and 

f Ifra(x)-(kb(Y)ditp = Cp,a,b(x-y). (24.198) 

X 
Xn,bn

n,bn 
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We use the Cayley's notation for determinants 

(4'a) = det p;a,b(Ui — V j) • 
Z.)j,b 

(24.199) 

Now we can estimate the determinant using Gram's inequality which says that 

det (f J; (x)gf (x)dx) 

Applying it to the right-hand side. of (24.197) we get 

is2p,A,p({y}, {z})i < E f d2xi • • • d2xn  P)n  
n! n A  

(24.200) 

(24.201) 

2n (E ivip;a 112)( E iiBp;b112)1• 11 II Ap ;ci II 2 II Bp ;di 112 

a b i=1...p 

with 

1lAp,a112 = A p,a,b(X) 4 112 < 0 (1)MPI2 (24.202) 
b 

fA 
1 /), b,a (X) d2X} 

and similar formula for B. Therefore, 

r i  
is2p,A,pay}, {z})I E f d2x1  • • • d2xn (gp  [0(1)1147117+2n 'Ain 

n! n A 

(24.203) 

which shows that the radius of convergence of S2p,A,p as a power series in gp  is infinite. 
This proves easily (reintroducing 

Lemma 11. The unnormalised Schwinger functions S2p,A,p ({y} , {z}), in a finite volume A 
and with a finite ultraviolet cut-off MP, are entire functions of the bare coupling constant 
gp  for any finite value of the bare mass m and of the wave function coefficient (both of 
them can depend on the ultraviolet cut-off). 

This result is in strong contrast with the case of the similar bosonic 04- field theory 
for which the radius of convergence is zero. This is a consequence of the Pauli principle 
which is expressed by the fact that the interaction is the logarithm of a determinant in 
which, by its structure, many cancellations are hidden. It is reflected in the Feynman 
rule according to which diagrams with an even, or odd, number of fermionic loops have 
opposite signs. 

In order to go further, we must face two main problems: the infinite volume limit and 
the removal of the ultraviolet cut-off. 
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24.8.2 The Infinite Volume Limit 

As we did in the previous section, p being given we choose („ = 1 and mp  fixed. We will 
prove that with fixed ultraviolet cut-off, the bare expansion of the normalised Schwinger 
functions S2p,p, which are the limits of S2p,A,p when A tends to R2, still has a non-zero 
radius of convergence. 

The proof of the existence of the infinite volume limit results from a cluster expansion 
followed by a Mayer expansion. It follows mainly what was described in sections 24.6.3 
and 24.6.4 and will not be reproduced here. It relies on the fact that the theory is massive 
and propagators fall off rapidly with the distance. The result is expressed in the following 
lemma. 

Lemma 12. The expansions for the normalised, as well as the truncated Schwinger functions 
S and ST, for fixed bare mass m p, considered as power series in gp, have a non-zero 
radius of convergence r p(A,mp), which satisfies 

[rp  (A, mp)]- 1 < K (
mp 

 )m 1 Op = 
Cp (24.204) 

with a bound uniform in A. The thermodynamic limit of S and ST  exists, uniformly in 
gp  for Ig p l (C p)-1  . 

Therefore as power series in gp, these normalised functions have a non-zero radius of 
convergence rp (mp), with rp(mp) > (C p)-1. 

24.8.3 The Removal of the Ultraviolet Cut-off 

To remove the ultraviolet cut-off we need to refine the analysis, as it was done for 034, 
by introducing momentum slices given by the scale of momenta 1, M,M2,...,MP , ac-
companied by a corresponding sequence of covariances C°  (x — y), . , CP (x — y) with 
Cp  (x — y) = Ek=0, Ck  (X — y). The functions A and B are decomposed in a sim- 
ilar way such that Ck  (x — y) = f Ak  (x — t)Bk (t — y)d2 t. The techniques are the same as 
before, with one important difference: the theory is renormalisable and, therefore, we 
have an infinite number of primitively divergent diagrams requiring an infinite number 
of counter-terms. We saw in the (4 theory that in order to define the measure of the 
interacting theory, we had to raise the counter-terms in the exponent of the exponential, 
each counter-term with the right coefficient, in order to cancel the divergent graphs of 
the perturbation expansion. We explained there that this had to be done up to a given 
order, thus producing what we called 'a partly renormalised phase space expansion' 
(PRPSE). This was achieved for 44 because the theory was superrenormalisable and 
there were only a finite number of divergent diagrams. In the case of the Gross—Neveu 
model the need to introduce counter-terms at any order in the perturbation expansion 
makes the construction of a PRPSE more difficult, but nevertheless possible, because of 
the property of the theory to be asymptotically free. In fact, in a given momentum slice, 
it will be necessary to introduce only a finite number of counter-terms. We also see why 
these methods do not apply to theories like 444, QED, etc. 
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24.8.4 The Behaviour of the Effective Constants 
and the Approximate Renormalization Group Flow 

Our aim is to study the evolution of the effective constants as functions of the cut-
off index p. The main behaviour of gp  is governed by the first non-vanishing term of 
the corresponding t3-function, although the subleading term also plays a role. For the 
coupling constant we choose as an ansatz the formula obtained by retaining the first 
orders of perturbation theory 

gp  (C) = f(p,C)-1  where f (P5 C) -P2 On /MP + (N3/N2) In p + C (24.205) 

with C being a large enough positive constant. 
By parity considerations, the mass term is only logarithmically divergent and be-

cause, except for the initial tadpole which is linear in the coupling constant, all these 
2-point graphs have at least two vertices, we obtain, by asymptotic freedom 'a convergent 
logarithmic power counting' for large energy. 

Let us define 

gp-1 = gp + Sgp Mp-1 = Mp + 8Mp p-1= + 4p5 (24.206) 

where 34, 8mp, and 4p  are given by the sum of the counter-terms corresponding to 
the 4- and 2-point functions at level p computed with effective coupling gp  and effective 
propagators G. 

The transformation p —> p - 1 is a renormalisation group transformation 
At lowest order in gp, we obtain 

gp-1 -- gp  { 1 - (ln M) U32 (pg 2) + (-/ On M + y3) (gpk 2)2] + 0(43)1 

mp-i '=- mp {1  - Y On A4) (gpk 2) + 0(4)15 (24.207) 

"p-i '=- {1  + y2 (ln A4) (gpk 2)2  + 0(4)1, 

where 

12 = -2N(N -1)17r y = -(2N- 1)/7 Y2  = (2N- 1)/(27)2. (24.208) 

The fact that N2 is negative is the characteristic of an asymptotically free theory. 
We define /33  = y3  + 2y2  and, since )63 = 2(N - 1)/72  has already been computed, we 

get y3  = (N - 3/2)/72 . 
The Gaussian measure at level p - 1 corresponds to the covariance 

p-1 (P) /3  + nip-1 (P)  
Cp*_1  (p) = t 7 p -1 (P) 2 

p-1 (P)P2 + M2p-1 (P) 
(24.209) 
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where 

p-1(P) p(1  np-i(P)) + p-101 p-1  (L')) 

m p-1(p) = m p( 1 Op-1(p)) + m p-1(11 p-1(P))• (24.210) 

More generally, we can prove the following. We define inductively gk, mk, and by 

gk = gk+1 8gk+1 mk = mk+1 8 Mk+1 = 4-k+1 (24.211) 

with 8g,k+1, ,,A Mk+ 1 and (5 -k+1 given by the sum of the counter-terms corresponding to the 
4- and 2-point functions at level k + 1 computed with effective coupling gk and effective 
propagators C*q , q > k + 1 given by 

,i(P) + mg  (p)  c*qw -  ?kw 
(p)p2  + 

where 

-q(p) - p-i(p)) + E k-ioi(p) - (p))] + 
g<i<p 

mg(p) . nip (1 - qp-i (P)) E [micti (p)-qi_i(p))] moq(p). 
q<i<p 

Then, starting from the ansatz (24.205), we obtain the following. 

Lemma 13. 

Sgk  = -(ln A4)[,624 + 03 - p(1nM)g13,-83g12,1p(-132 1n M) 

+ 0(ln k/k4) (4)(e-o(i)(p-k)i, 

(24.212) 

(24.213) 

where by definition 133  = y3  + 83  is the usual third-order term in the 13-function used in 
the previous formulae. 

This makes it possible, starting from the ansatz on gp, to prove some estimates on the 
values taken by the constants at step k. 

Lemma 14. There exists some constant 0(1) such that if C is a positive number satisfying 
C > 0(1), and gp  is defined by (24.205), then gk  is positive and behaves according to 
the bounds 
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—,62  (ln M)k + (1 311 2) In k + C/2 < 41  

—p2  On M)k + (Y31132) In k + 2C, 

and choosing for the mass and the wave function, the gp-dependent ansatz 

m p  = m.{1 — [82(1n M) 
+ J 

f( ,p , CA Ap  1 (N-1/2)/(N-1) 

-p =1, 

the running mass and the wave function satisfy 

(m/2).1e-(N-1/2)/(N-1) 1/2)/(N-1) 
< Mk < 2172.k-(N  

k - "p= (YM In M) [(1 I k) — (1 p)] + 0 Kin k)/k2] . 

We will first prove formula (24.214) of this lemma. 
Assuming (24.214) at order k, we rewrite (24.206) and (24.213) as 

- - 
gk1 1 - gk

1 
 = On A4) [P2 + 

(-/3 

/3  

2(ln M)k 
83

+ '9 
((ln k)) _ + 0(1)(p-k)

] 
19 (-P2ln M) ( k2  ' 

(24.214) 

(24.215) 

(24.216) 

(24.217) 

(24.218) 

(24.219) 

and (24.214) will follow from the logarithmic divergence of 1/k, the summability of 
(ln k)/k2, of e-19(1)0)4), and the obvious bound 

E (1831/,0)=1331(p — OP 1 831, (24.220) 

which ends the proof of this formula. 
The rest of this lemma relies essentially on the definition of 8gk taking account only of 

the most divergent terms and on the following lemmas with obvious graphical notations. 

Lemma 15. 

8gk = —(1nM)[/32k'Pg + (y3k'P  - (1 2'P)2(1nM))g3  + 0(4)1, (24.221) 

k , where 132,p  and y3 
,p are defined by the diagrammatic expressions shown in Fig. 24.7. 

Furthermore the following limits exist, 

P2 = liM 13'2e y3  'c'°, = lim t°°  
k-> oo k->oo 

y 
 

(24.222) 
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iZ  
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(log M)yk 
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Figure 24.7 The diagrammatic expressions for p2,0  and y3k,p  . The mark 'IV in the 
second diagram means that the inner bubble is renormalised. 

and /32 is the usual first coefficient of the 13 function, computed with the wave function 
= 1 introduced in sections 24.8.1 and 24.8.2. We remark that with standard conven-

tion /32 is negative, which corresponds to asymptotic freedom, hence to D.k  > 0 for small 
gk  > 0. 

This lemma can be proven by inspection on the diagrams. 
Now it is easy to show that (24.207) leads for large p, starting from finite and 

positive go, to 

gp 2  H32 (ln M)p + (fi31132)  ln p + Cri  =f (p, C)-1 (24.223) 

with C and two constants. Finally, using the scale invariance (24.194) we will choose 
a gp-dependent mass ansatz for large values of p 

mp  = m.{1— [p2(ln M) + f (p, CA (N-1/2)/(N-1) A) } (24.224) 

= 1. 

These are the essential ingredients. We see that asymptotic freedom provides the ne-
cessary logarithmic convergent factors, so we do not have to carry on the expansions any 
further. Roughly speaking, for the purposes of constructing a partly renormalised phase 
space expansion, an asymptotically free renormalisable theory behaves, effectively, as a 
superrenormalisable theory. 

We are now in a position to formulate the basic results, under the form of a theorem. 

Theorem 24. Under the ansatz (24.205), the PRPSE is absolutely and uniformly conver-
gent for C positive large enough. The normalised Schwinger functions S2p,p(C), sums of 
the PRPSE, have limits S2p(C) = S2p,p(C) and are the Schwinger functions of 
a non-trivial Euclidean theory satisfying the Osterwalder—Schrader axioms. 

The limits S2p(C) are analytic in C for C complex with 92C > 0(1). 
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The renormalised coupling constant gren  defined at zero momenta lies in a disc Dc = 
{g1941/g) > C'}. For C' large enough and for gren  E Dr', the map from C to gren  may 
be inverted and C becomes an analytic function of gren  E Dc, with 92C > 0(1). The 
theory can therefore be parametrised by gren  instead of C, is analytic in Dc', and is the 
Borel sum of the usual renormalised perturbation series in gren  with renormalised mass 
and gren  determined by the renormalisation conditions 

gren  = s4 (C, m) (0, o, o, o) 
(Mren) 1  = S2 (C, M)(0, 0) 

r d 
-1-en = (mren)2  ti— 

dpo 
S2(C , m)(P) 1p=o, 

where SA  is the amputated 4-point function. 4 

(24.225) 

We will not prove this theorem. A large part of the proof is based on the same type of 
estimates as those given to prove the convergence of the g¢4-theory in three dimensions. 

24.9 The Yang-Mills Field Theory in d = 4 

As we said earlier, this is by far the most complicated among all models for which rigor-
ous results have been obtained. It is also the most interesting one, since it is close to the 
theory which describes the fundamental strong interactions among elementary particles. 
We have studied its properties in perturbation theory in the previous chapters, where 
we have established that it is: (i) renormalisable and (ii) asymptotically free. Therefore, 
we would expect that the results obtained in the previous section concerning the Gross—
Neveu model should be applicable also to the four-dimensional Yang—Mills gauge theory. 
It will turn out that this is partly true, but only after several crucial questions, both phys-
ical and technical, have been answered. We will give here a list of the most important 
among these difficulties and how they have been bypassed. 

24.9.1 A Physical Problem 

We start with a physical problem, which, of course, is not unrelated to many technical 
ones: the gauge bosons associated with an unbroken gauge symmetry are massless.17  
We recall that in all our previous estimates a non-zero mass gap was essential for the 
convergence of the cluster expansion and the existence of the infinite volume limit. It 
follows that in the case of the Yang—Mills theory, we will be unable to take this limit and 
all our results will be valid only inside a fixed finite volume. Does this mean that they are 
uninteresting for physics? Fortunately no, and we want to explain here why. 

17  We have explained already that breaking the symmetry spontaneously gives masses to the gauge bosons, 
but at the price of losing the property of asymptotic freedom. 
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In section 24.3 we explained that in the theory for strong interactions which we call 
`quantum chromodynamics', all available experimental results as well as numerical es-
timations point to the existence of a confining phase for all values of the coupling, 
which means that at infinite volume the system is not described by the states we find 
in perturbation theory, namely free, massless gauge bosons, but instead a collection of 
bound states not present in perturbation. The gauge bosons are 'confined' inside a small 
volume. Experimentally the size of this confining volume is found to be of order of 1 f, or 
10-13cm. Scattering experiments in present accelerators, like the LHC, probe distances 
down to 10-16  — 10-17cm, much smaller than the confining volume. Because of asymp-
totic freedom, the effective coupling constant inside this volume is small and we perform 
perturbation theory calculations. It is therefore important to know the properties of the 
perturbation expansion, even inside the confining volume. 

24.9.2 Many Technical Problems 

As we have said already, the physical problem of the zero mass gauge bosons creates 
many technical problems, which we will try to indicate qualitatively in this section. They 
are mostly related to the resulting gauge invariance of the theory we start with. 

The proof of the existence of the Yang—Mills theory without ultraviolet cut-off will 
rely essentially on the same constructive machinery which has been developed in the 
previous sections. Several elements were essential in this process: 

1. In order to start with well-defined initial expressions, we must introduce a 
sequence of ultraviolet cut-offs. 

2. We know, and that was the reason to shift to Euclidean space, that we need some 
control of the exponential of the Lagrangian, the so-called positivity of energy. 

3. Similarly we need to define a reference measure as this was done previously in the 
scalar 04  theories with weak coupling. In these cases this measure was the Gaussian 
measure and it was extracted from the quadratic part of the Lagrangian. This 
Gaussian measure played two roles, one as a reference measure, the remaining of 
the Lagrangian assumed to be a small perturbation of this measure, and second 
this measure had to be the right tool to generate the perturbative diagrams of the 
expansion. 

The trouble is that the gauge structure of the theory, and in particular the need for 
a gauge fixing, makes this machinery much more complex to set up, requiring many 
artificial-looking choices. 

Let us start with the ultraviolet cut-off. Ideally, we would have liked to use one which 
respects gauge invariance; otherwise, we would produce gauge non-invariant counter-
terms, not present in our initial Lagrangian. When we studied the renormalisation 
properties of the Yang—Mills theories in Chapter 18, we used dimensional regularisa-
tion. But this is a prescription applicable only to the calculation of Feynman diagrams 
and it is not obvious how to adapt it to the definition of a global measure in a functional 
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integral. As we explained in section 24.3, we will use a Euclidean invariant cut-off with 
the consequence of producing counterterms proportional to A2  and A4. This will not 
create too many problems and, in fact, it will be essential to the definition of a global 
measure. By a suitable choice of a class of Euclidean invariant cut-offs, it will be possible 
to get the coefficient of the A4  term positive. This will be the key property which will 
help controlling the positivity properties, although the practical computations will not be 
that simple. 

Then we come to the gauge choice. It is easy to see that there exists no global choice 
which satisfies all our requirements. In the previous chapters we often used gauges be-
longing to the family 80A0  = C(x), with C some given function, for example C = 0 
for the Feynman gauge. It has the advantage of producing well-defined and easy-to-use 
Feynman rules, but it breaks every one among our other requirements: (i) it suffers from 
the Gribov ambiguity we explained in section 14.7 and this makes a global definition of 
the path integral measure problematic. (ii) It breaks positivity. We saw this already in the 
Abelian case where we had to use a space of states with negative norm, as well as in the 
Yang—Mills case where we had to introduce the Faddeev—Popov ghosts. In this section 
we will use an axial gauge, in which one of the components of the Euclidean gauge field 
is set equal to 0. It has many attractive properties, such as to be free of Gribov copies and 
Faddeev—Popov ghosts. For these reasons it is the one used exclusively in the numerical 
computations of Yang—Mills theories on a space—time lattice we will present in the next 
chapter. It respects positivity of the Gaussian measure, but it is singular when used in 
perturbation theory calculations. For this reason, in order to recover our usual Feynman 
rules of perturbation theory, we will have to make a local change of gauge and pass to 
one of the families mentioned earlier. 

The real story is even more complicated. As we mentioned earlier, in order to define 
the theory we introduce a momentum cut-off of a certain type which breaks gauge invari-
ance and requires gauge restoring counter terms. These gauge-dependent counter-terms 
proportional to A4  will stabilise the field variables in the Lie algebra at sizes of order g-1. 
Combined with the positivity of the axial gauge, then the field variables in the Lie al-
gebra become, in probability, of order g-112. To exploit this fact, we must make a division 
of the phase space for the field into small field regions and large field regions and ex-
pect that the large field regions can be resumed being more 'rare' than the small field 
regions. An explicit change of gauge can then be done in the small field regions, making 
it possible to use the usual perturbation theory. However, large field regions and small 
field regions are connected by vertices connecting high momentum and low momentum 
fields. Usually, it is possible to dominate the low momentum fields, as it was done for 
gubl, using the positivity of the interaction and thus to free the small field regions. This 
can be done in some specific cases using the positivity due to the ad hoc positivity of the 
gauge-restoring A4-counter-term, but it is not always possible. In these cases, we must 
use a background-dependent gauge and a background-dependent propagator to analyse 
the small field perturbative regions. The background field at a given scale and position is 
roughly made of all the large fields of low frequencies located at this position. The use of 
the background-dependent gauge and the resulting propagator makes the cluster expan-
sion and the evaluation of the large field region more complicated than how it is done 
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for simpler models. In these regions, the functional integrals are renormalised by their 
coupling to higher momenta in small field regions. This coupling results in a determin-
ant which reflects the difference in normalisation between the Gaussian measure with a 
given background field and the ordinary Gaussian measure with no background field. 
This determinant must be controlled. The proof that the construction is correct is given 
by the fact that the Schwinger functions which are obtained satisfy the appropriate Ward 
identities, which are the remnant of gauge invariance under small gauge transformations. 

Other effects, such as the invariance under large gauge transformations or non-
trivial topological effects such as instantons, will not be discussed. Also the com-
plete Osterwalder—Schrader axioms have not been proven, although the Osterwalder—
Schrader positivity is, probably, correct.18  

The final result, whose proof we will not be presented here,19  is that in the ultraviolet 
limit, keeping the infrared cut-off fixed, the Schwinger functions exist and satisfy the 
corresponding Ward identities. 

18  An indication is that this positivity has been proven for the theory with a lattice ultraviolet cut-off and we 
expect to be able to link the two by introducing an overall momentum cut-off (of our type) large enough with 
respect to the lattice spacing. 

19  See J. Magnen, V. Rivasseau and R. Seneor, Comm. Math. Phys. 155, 325 (1993). For an alternative 
approach using a lattice ultraviolet cut-off, see T. Balaban, Comm. Math. Phys. 95, 17 (1984); 96, 223 (1984); 
98, 17 (1985); 99, 75 (1985); 99, 329 (1985); 102, 277 (1985); 109, 249 (1987); 116, 1 (1988); 119, 243 
(1988); 122, 175 (1989); 122, 355 (1989). 
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Fundamental Interactions 

25.1 Introduction. What Is an 'Elementary Particle'? 

The modern era of theoretical high energy physics has a precise starting date: 2 June 
1947, the date of the Shelter Island Conference. The most important contribution that 
was presented at this conference was not a theoretical breakthrough but an experimental 
result. Willis Lamb, of Columbia University, reported the measurement of an energy 
difference of about 1000 MHz between the 2S112  and 2P112  levels of the hydrogen atom. 
We recall that, as we saw in Chapter 7, the Dirac theory predicts an exact degeneracy 
for these two levels. The importance of the 'Lamb shift' is not that it was unexpected. 
As Steven Weinberg puts it, 'It was not so much that it forced us to change our phys-
ical theories, as that it forced us to take them seriously.' In the months which followed, 
Richard Feynman and Julian Schwinger set the foundations of the theory of renormalisa-
tion, the well-defined prescription to compute the higher order terms in the perturbation 
series of quantum electrodynamics, which we saw in Chapter 16. As it became known a 
bit later, similar ideas had been developed independently in Japan by Sin-Itiro Tomon-
aga, who was the first to give the precise computation of the Lamb shift to first order. 
The entire programme was formally described by Freeman Dyson in 1949. Quantum 
electrodynamics, the theory of interacting photons and electrons, supplemented with 
the programme of renormalisation, is one of the most successful theories in physics. Its 
agreement with experiment is spectacular. But it was also the first successful quantum 
field theory, the quantum mechanics of a relativistic system with an infinite number of 
degrees of freedom. 

In the previous chapters we set the formalism for such a theory. In this chapter we 
will show that it provides the unifying language to describe physical phenomena at the 
fundamental level. Through the successful use of these ideas there has been spectacular 
progress during the past 40 years which has resulted in a much deeper comprehension 
of the laws of nature. 

The purpose of elementary particle physics is twofold: to discover the fundamental 
constituents of matter, on the one hand, and to understand the nature of their interac-
tions, on the other. A chapter on this subject should normally begin with a definition of 
what is an elementary particle. The trouble is that we have no such definition. We can 
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Table 25.1 This table shows our present ideas on the structure of matter. Quarks and gluons do not 
exist as free particles and the graviton has not been observed. 

TABLE OF ELEMENTARY PARTICLES 

Quanta of Radiation 

Strong interactions Eight gluons 
Electromagnetic interactions Photon (y) 
Weak interactions Bosons W+, W—, Z0  
Gravitational interactions Graviton (?) 

Matter Particles 

Leptons Quarks 

1st family 
2nd family 
3rd family 

ua, da, a = 1,2,3 
ca, sa, a = 1,2,3 
ta, ba, a = 1,2,3 

BEH Boson 

only give a table whose entries evolve with time and represent, at any given moment, 
the current state of our knowledge (or ignorance) of the structure of matter. The idea 
that the structure of matter is discontinuous is very old and goes back to Democritus, a 
Greek philosopher who, around 400 BC, postulated the existence of fundamental build-
ing blocks of all matter which he called 'atoms', i.e. `unbreakables'. Today we know 
that atoms are not elementary but have instead a complex internal structure and can be 
broken. However, they are 'unbreakable' in the sense that the pieces of an iron atom once 
broken are no more iron. The physical existence of atoms was established only by the 
beginning of the previous century and during the past hundred years we have uncovered 
deeper and deeper layers of the cosmic structure: 

atoms —> electrons, nuclei —> electrons, protons, neutrons —> electrons, quarks —> ?? 

There is no reason to believe that we have reached the innermost layer, if such a thing 
exists at all. Therefore, to the question 'what is an elementary particle?' we can only 
answer by showing the Table of Elementary Particles known today (Table 25.1). A good 
introduction to the laws of fundamental physics is to go through the various entries of 
this table. This will lead us to introduce the kinds of interactions that these particles 
undergo. 

25.2 The Four Interactions 

Although our perception on the identity of elementary particles has changed radically 
many times during the past century, our knowledge of their interactions has remained 
remarkably stable. We know that the structure of matter at all scales known today, from 
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the clusters of galaxies down to the shortest distances explored (— 10-16  cm), can be 
qualitatively understood by the action of four types of interaction. In order of decreasing 
strength, they are the following: 

• Strong interactions. They are mainly responsible for nuclear structure. Indeed, we 
know experimentally that the various nuclei are bound states of protons and neut-
rons. Protons carry each a unit of positive electric charge and, therefore, they are 
subject to electrostatic repulsion. The remarkable cohesion of nuclei shows the 
existence of attractive forces among protons and neutrons which must be much 
stronger and outweigh the electromagnetic repulsive forces. Strong interactions 
have a short range, typically on the order of 10-13  cm, and their effects are not 
manifest at everyday life. Not all known particles are subject to strong interactions. 
Those that are, are called `hadrons'. Among the particles of Table 25.1, the quarks 
and the gluons are hadrons but all other particles, such as the electrons and the 
neutrinos, are not. Understanding the nature of the strong interactions has been a 
long-lasting problem in high-energy physics. Its solution has offered deep insight 
into the laws of nature, insight that far exceeds the domain of nuclear forces. We 
will give a brief description of these ideas later on in this chapter. 

• Electromagnetic interactions. They are responsible for atomic and molecular struc-
ture. They have a long range and their effects are observable at macroscopic scales. 
We learned in a previous chapter that the electromagnetic interactions are the res-
ults of the exchange of virtual photons, the quanta of the electromagnetic field, 
between electrically charged particles. The long range is due to the zero mass of 
the photon. 

• Weak interactions. They are responsible for nuclear a-decay as well as the decays of 
other unstable particles. To give a measure of how weak interactions are, we note 
that, experimentally, neutrinos, which have no strong or electromagnetic interac-
tions, are produced at the centre of the sun and escape nevertheless without being 
absorbed. For a very massive star, neutrino radiation is the only known cooling 
mechanism. We know today that weak interactions share many common features 
with electromagnetic ones. They are also due to the exchange of virtual quanta, the 
weak vector bosons W+, W-, and Z°. However, these quanta are massive and, con-
sequently, the weak interactions are short ranged. In this chapter we will explore 
this weak-electromagnetic analogy much further. 

• Gravitational interactions. Their importance in both terrestrial and cosmic phenom-
ena is well known but, at the microscopic level, their effects are too small to be 
observable. We presented already their description at the classical level, but we will 
mention only very briefly their quantum effects at the end of this book. 

A final look at Table 25.1 reveals some remarkable regularities. (i) All interactions are 
produced by the exchange of virtual quanta. They are the eight gluons for the strong 
interactions, the photon for the electromagnetic ones, and the bosons W and Z for the 
weak, and we believe the graviton plays that role for the gravitational interactions. For the 
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first three, they are vector (spin-1) fields, while the graviton is assumed to be a tensor, 
spin-2 field. (ii) The constituents of matter appear to be all spin-1 particles. They are 
divided into quarks, which are hadrons, and 'leptons' which have no strong interactions. 
(iii) In the table we see six quark species, u, d, c, s, t, and b. In the physicists' jargon they 
are called 'flavours'. In turn, each one of them appears under three forms, often called 
`colours' (the terms flavour and colour have no relation with the ordinary sense of these 
words). This triplet structure will turn out to be very important later. (iv) Quarks and 
gluons do not appear as free particles. They form a large number of bound states, the 
hadrons. (v) Quarks and leptons seem to fall into three distinct groups, or 'families'. This 
family structure is one of the great puzzles in elementary particle physics. We believe 
we understand the importance of the first family. It is composed of an electron and its 
associated neutrino as well as up- and down-quarks. These quarks are the constituents of 
protons and neutrons. The role of each member of this family in the structure of matter 
is obvious. In contrast, the role of the other two remains obscure. Muon and tau leptons 
seem to be heavier versions of the electron but they cannot be viewed as excited states of 
it because they seem to carry their own quantum numbers. The associated quarks with 
exotic names, such as charm, strange, top, and bottom, form new, unstable hadrons 
which are not present in ordinary matter. Why does nature produce three similar copies 
of apparently the same structure? (vi) The sum of all electric charges inside any family 
is equal to 0. 

In this chapter we will present the successful application of the concepts and tech-
niques of quantum field theory to these interactions. These efforts gave rise to one of the 
most exciting and rewarding periods in modern physics. It is usually said that progress 
in science occurs when an unexpected experimental result contradicts current theoret-
ical beliefs. This forces scientists to change their ideas and leads to a new theory. This 
has often been the case in the past, but the revolution we are going to describe here 
had a theoretical, rather an aesthetic motivation. It was a triumph of abstract theoretical 
thought which brought geometry into physics. The road has been long and circuitous 
and many a time it gave the impression of leading to a dead end. The detailed history 
of this revolution has not yet been written and we will not attempt here to follow the 
historical order. This would had led to a too lengthy presentation, mainly because the 
theoretical developments often anticipated the experimental results. In many cases theor-
ists had only their intuition for a guide and their deductions were necessarily speculative. 
We will use instead all the experimental results known today and show that they point 
unmistakably to what is called 'the standard model' of elementary particle interactions. 

25.3 The Standard Model of Weak and Electromagnetic 
Interactions 

25.3.1 A Brief Summary of the Phenomenology 

Before going into model building, let us first recall the essential phenomenological prop-
erties of weak interactions. It is instructive to go back to the late sixties when the essential 
features of the model were found. 
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Weak interaction phenomena were, until 1971, well described by a simple phenomen-
ological model involving an operator (x) , the 'weak current', which is the analogue of 
the familiar electromagnetic current. In terms of it we can build an effective Lagrangian 
density of the form 

G t  
E F =

A 
 (x).7A  (x), (25.1) 

where t means Hermitian conjugation. 
This is the famous current x current theory and GI N/2 is the Fermi coupling constant, 

which is equal to 10-5 M—p2roton • The weak current (x) is a sum of two parts, a leptonic 
part /A  (x) and a hadronic one liA (x). They are both of the V —A form, i.e. they can 
be written as a particular superposition of a vector and an axial part and satisfy simple 
algebraic relations. We will come back to this point presently. It is straightforward to 
write the leptonic current in terms of the fields of known leptons as 

(x) = (x))/A  (1 + y5)ve(x) + A(x)yA (1 + y5)v,(x), (25.2) 

where we have used a notation in which the particle symbols e, v„ pc, and v1  denote 
also the corresponding Dirac fields. In 1971 the leptonic current had only these two 
terms; today we know that we must add a third one to describe the r family: f (x)yA  (1 + 
y5)v,(x). The V —A structure we mentioned in the first part of this paragraph is shown 
by the presence of the 1 + y5  projector. The vector and the axial currents enter with 
exactly the same coefficient. This property, equal strength for all currents, is often called 
`universality'. As we saw in Chapter 7, 1 + y5  projects the four-component Dirac spinors 
into two-component left-handed Weyl spinors. In other words, V — A implies that only 
the left-handed leptons participate in weak interactions. Another remarkable property of 
the V —A current is that it generates an SU (2) algebra. 

The origin of this algebra is simple to trace. Let us introduce a compact notation 
which will be useful later. We put every charged lepton, together with the associated 
neutrino, into a doublet, 

( VI  (X) 
X)

fT (X)  L,R 
(25.3) 

where the index i runs over the three families, I), = v„ v,„ and vi  and fT = e-, and 
r-  for i=1,2, and 3, respectively. L and R denote the left- and right-handed spinors 
WL,R = 1(1 ± y5)W W. For each family we can construct eight currents, four involving only 
WL  and four only WR, 

AL,ROC) A L,R (x) = ; = yx  r tPLR  (x), (25.4) 

where T are the usual Pauli matrices. All currents we have used so far can be written as 
linear combinations of these j's. For example, the electromagnetic current is given by 
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1 — T3 1 — T 3  
n = E 2yA •  + 2

Wpi (25.5) 

The summations extend over the three lepton families. Similarly, the charged weak 
current (25.2) is given by 

E (25.6) 

Two remarks are in order here. First, Eqs. (25.5) and (25.6) show that electro-
magnetic and weak interactions, being vectorial do not mix right- and left-handed 
components. Second, in 1971 the charged current (25.6) described all weak interac-
tions known at the time. There was no evidence for a need to introduce neutral currents 
involving the unit matrix, or the r3  matrix in (25.6). 

Since leptons have no strong interactions, the complete leptonic Lagrangian, in the 
limit of vanishing lepton masses, could be written as 

Slept = E E _ _
1

F2 _ ejemAA  + —41xt  4 Av (25.7) 

It is invariant under U(2) x U(2) transformations' which rotate separately right- and 
left-handed doublets, as well as several U(1) phase transformations which correspond to 
the conservation of the various lepton numbers. A mass term, which is proportional to 

WR WR WL  , breaks the separate L and R invariance into the diagonal subgroup leaving 
only the vector currents conserved. Note also that if neutrinos are massless, the right-
handed neutrino fields are free fields and can be omitted. As we will see later, recent 
experimental data show that neutrinos do have non-zero masses but it is still unclear 
whether their right-handed components are present. Furthermore, experiments show 
that all three lepton numbers are not separately conserved and neutrinos oscillate among 
the different species, but let us ignore this complication for the moment. 

The generators of the U(2) x U(2) symmetry are precisely the space integrals of the 
time components of the V —A and V + A currents 

QL,R = E f d3401_ R(x) (25.8) 

and satisfy the U(2) x U(2) algebra, i.e. the two U(1) charges commute among 
themselves as well as with all other charges and the six SU (2) ones satisfy 

Q1L b,R1 = jEabcQ111c,R; Q'RI = 0, (25.9) 

1  As we explained in section 17.3, the axial part of the U(1) current will be subject to the Adler—Bell—Jackiw 
anomaly condition, but this fact will play no role in our present discussion which, for the moment, concerns 
only the classical symmetries. 
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where both the family index i,j and the SU (2) index a, b, c run through 1,2,3. Current 
conservation guarantees the time independence of the charges Q`. 

It is not so easy to write such an explicit form for the weak hadronic current hA (x). 
First of all, it will depend on which particles we consider as elementary. But even if 
today there is a general consensus on this question in favour of the quarks, we still need 
to guess the form of the current using experimental data which involve hadrons. To do 
so we need to know some of the properties of strong interactions. It was a very important 
discovery, which took several years and is due to the work of several people, when it was 
finally established that, at the limit of vanishing quark masses, strong interactions are 
invariant under a chiral symmetry group U(f) x U(f), where f is the number of quark 
flavours, always modulo the Adler—Bell—Jackiw anomaly condition. The weak hadronic 
current hA (x) can be identified with the currents of this symmetry group. Today we know 
that f =6 and the symmetry between hadrons and leptons is striking. In the late sixties, 
however, we only knew the up, down, and strange quarks and this analogy was far from 
obvious. A further complication was related to the conservation of the various flavour 
numbers. In the leptonic world there was good evidence that the electronic and muonic 
numbers were separately conserved.2  This was mainly due to the absence of the decay 
mode µ, —> e + y, which is allowed by angular momentum and electric charge conserva-
tion. In contrast, strangeness, which is the quantum number associated with the s quark, 
was not even approximately conserved. Strange particles, such as K-mesons or A and 
E baryons, were known to decay via weak interactions to non-strange particles, such as 
7-mesons and protons and neutrons. The hadronic weak current which described all 
data at that time was of the form 

hA  = yA (cos 9 dL  + sin 9 SL), (25.10) 

with 9 a phenomenological parameter known as 'the Cabibbo angle'. We see that only a 
linear combination of the down- and strange quarks participated in the weak interactions, 
while the orthogonal one (cos 9 sL — sin 9 dL) did not. Let us note also that in writing the 
current (25.10), a summation over the three colour indices of the quarks is understood. 
Unless absolutely necessary, we will avoid writing this colour summation explicitly, in 
order to keep the notation simple. 

The Lagrangian (25.1), with the total weak current Jx  (x) given by the sum of (25.6) 
and (25.10), despite its phenomenological character, is an extremely elegant structure. 
This simple and compact form could not only fit a large variety of data, but also it in-
corporated fundamental physical principles, such as universality and current algebra, 
that we mentioned earlier. Thus, at the phenomenological level, we had a perfectly 
working scheme; there was no compelling experimental reason to try to change it. It de-
scribed correctly all experimental results which were inside its natural domain, namely 
all data which, at the time, could definitely be attributed to weak interactions. And yet 
we were not happy. What we wanted was not a phenomenological scheme, but a phys-
ical theory. Yang—Mills theories were studied not because they fitted the data better, but 

2  Although today we know that this is not absolutely true (see the discussion in the section on neutrino 
masses), it is still a very good approximation. 
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rather because of their aesthetic beauty and, more important, their mathematical con-
sistency. The problem with (25.1) is that because of its dimensionful coupling constant, 
it is hopelessly non-renormalisable. Only tree-level diagrams can be computed. 

25.3.2 Model Building 

In this section we want to apply all the powerful machinery of gauge theories to the real 
world and construct a realistic gauge theory. Following the historical order we start with 
the weak and electromagnetic interactions. The idea of putting these two fundamental 
forces together and treating them on equal footing was not obvious. Indeed, as we just 
saw, weak interactions violate parity and involve V — A currents while electromagnetic 
ones conserve parity and involve vector currents. The first suggestion along this line 
goes back to the work of Sheldon Lee Glashow in 1961. Here let us try to be general and 
develop a step-by-step approach to model building. The essential steps are the following. 

1. Choose a gauge group G. 

2. Choose the fields of the 'elementary' particles whose interactions you want to 
describe and assign them to representations of G. Include scalar fields to allow for 
the Brout—Enblert—Higgs (BEH) mechanism. 

3. Write the most general renormalisable Lagrangian invariant under G. At this stage 
gauge invariance is still exact and all gauge vector bosons are massless. 

4. Choose the parameters of the BEH potential so that spontaneous symmetry 
breaking occurs. In practice, this often means to choose a negative value for a 
parameter µ2. 

5. Translate the scalars and rewrite the Lagrangian in terms of the translated fields. 
Choose a suitable gauge and quantise the theory. 

Remark: Gauge theories provide only the general framework, not a detailed model. The 
latter will depend on the particular choices made in steps 1 and 2. 

The construction of the standard model has been one of the most exciting and most 
rewarding periods of modern physics. Although the motivation was entirely theoret-
ical, both theory and experiment made spectacular discoveries which were parallel and 
complementary. It would have been instructive to follow in detail the historical order, 
precisely in order to show this close cooperation, but it would lengthen the exposition 
considerably. Therefore, we choose to go directly to the model in its final form, as it has 
been established today and we will only comment on the highlights of the interrelation 
between theory and experiment. We will follow step by step the programme we set up. 

25.3.3 The Lepton World 

The leptonic part of this model was first proposed by Steven Weinberg and Abdus Salam 
in 1967 and 1968. 
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• Step 1: Looking at Table 25.1 we see that for the combined electromagnetic 
and weak interactions, we have four gauge bosons, namely WI, Z°, and the 
photon. As we explained in Chapter 14, each one of them corresponds to a 
generator of the group G. The only non-trivial group with four generators is 
U(2) SU(2) x U(1). Here comes the first remark about the theory—experiment 
connection: when the model was proposed the three intermediate vector bosons 
were still out of reach of any accelerator. Furthermore, the weak neutral currents, 
such as (eyx (1 ± y5 )e) and (13 yA  (1 ± y5)v), had not yet been observed and their 
very existence was in doubt. Consequently, several attempts were made to build 
models which avoided them. None were particularly attractive and the subsequent 
discovery of the neutral currents at CERN by the Gargamelle group in 1973 es-
tablished the SU(2) 0 U(1) model unambiguously and offered the first triumph 
of these ideas. A naïve identification would have been to assign the photon to 
the generator of U(1) and the other three to those of SU(2). Glashow's remark 
was that a much richer structure is obtained if you allow for a mixing between 
the two neutral generators, that of U(1) and the neutral component of SU(2). 
Following the notation which was inspired by the hadronic physics, we call Ti, 
i = 1, 2,3, the three generators of SU(2) and Y that of U(1). Then the electric 
charge operator Q will be a linear combination of T3 and Y. By convention, we 
write 

1 
Q = + —Y . (25.11) 

The coefficient in front of Y is arbitrary and only fixes the normalisation of the 
U(1) generator relatively to those of SU(2). We will come back to this point in a 
later chapter. This ends our discussion of the first step. 

• Step 2: Leptons have always been considered as elementary particles, both in 
1967, when the model was initially proposed, and today. Their number has in-
creased from 4 to 6 with the discovery of the r and its associated neutrino v„ so 
we must look for SU(2) representations of dimension 6. However, as we noted 
already, a striking feature of the data is the phenomenon of family repetition. 
We do not understand why nature chooses to repeat itself three times, but the 
simplest way to incorporate this observation with the model is to use three times 
the same representations, one for each family. This leaves SU(2) doublets and/or 
singlets as the only possible choices. A further experimental input we will use is 
the fact that the charged W's couple only to the left-handed components of the 
lepton fields, in contrast to the photon, which couples with equal strength to both 
right and left. These considerations lead us to assign the left-handed components 
of the lepton fields to doublets of SU(2). In the notation of section 25.3.1, we 
write 

. 1 w
i
t
( x) = i = 1, 2, 3. (1 + ,e7(x) )- ; (25.12) 



The Standard Model of Weak and Electromagnetic Interactions 657 

The right-handed components are assigned to singlets of SU(2): 

viR(x) = —
1 

(1 — y5)vi(x) (?); £7R(x) = 
2
-
1 

2
(1 — y5),e7(x). (25.13) 

The question mark next to the right-handed neutrinos means that the presence 
of these fields is not confirmed by the data. We will drop them in this chapter, 
but we will come back to this point later. We will also simplify the notation and 
put fa (x) = Ri(x). The resulting transformation properties under local SU(2) 
transformations are 

—> eix8(x) @1 (x); Ri(x) —> Ri(x) (25.14) 

with r the three Pauli matrices. This assignment and the Y normalisation given by 
Eq. (25.11) fix also the U(1) charge and, therefore, the transformation properties, 
of the lepton fields. For all i we find that 

Y(Vii) = -1; Y(Ri) = -2. (25.15) 

If a right-handed neutrino exists, it has Y(viR) = 0, which shows that it is not 
coupled to any gauge boson. 

We are left with the choice of the BEH scalar fields. Although one of them has 
been discovered, we still have no precise information concerning their number, so 
we will choose the minimal solution. We must give masses to three vector gauge 
bosons and keep the fourth one massless. The latter will be identified with the 
photon. We recall that for every vector boson acquiring mass, a scalar with the 
same quantum numbers decouples. At the end we will remain with at least one 
physical, neutral, scalar field. It follows that the minimal number to start with is 
four, two charged and two neutral. We choose to put them, under SU(2), into a 
complex doublet: 

eh 0+ = ) • (I)(x) eire(x) (1) (x),  (25.16) 

with the conjugate fields cp-  and 0" forming 01'. The U(1) charge of 0 is 
Y(0) = 1. 

This ends our choices for the second step. At this point the model is complete. 
All further steps are purely technical and uniquely defined. 

• Step 3: What follows is straightforward algebra. We write the most general, renor-
malisable, Lagrangian, involving the fields (25.12), (25.13), and (25.16) invariant 
under gauge transformations of SU(2) x U(1). We will also assume the separate 
conservation of the three lepton numbers, but we will further discuss this point in 
a later section. The requirement of renormalisability implies that all terms in the 
Lagrangian are monomials in the fields and their derivatives and their canonical 
dimension is smaller than or equal to 4. The result is 
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= —
4
— W„ • Wµ„ — 

4
B ,B" + ID,012  — V(0) 

3 

E [kiptk Gi(kRio h.c.) ] . (25.17) 

If we call W and B the gauge fields associated with SU(2) and U(1), respectively, 
the corresponding field strengths and B,„ appearing in (25.17) are given by 
(14.16) and (3.6) 

Wµ„ = a,wv —av w,+ gWµ  x W, = a,B,—a,B,. (25.18) 

Similarly, the covariant derivatives in (25.17) are determined by the assumed 
transformation properties of the fields, as shown in (14.13): 

(a,— igi • 1/K, + ig4B,) V/11_,; = + ig' Ri 

420 = (a, —igi • WA  —ig4B,) 0. 
(25.19) 

The two coupling constants g and g' correspond to the groups SU(2) and U(1), 
respectively. The most general potential V(0) for the scalar fields compatible with 
the transformation properties of the field 0 is 

V(0) = µ20t0 +A(0t0)2. (25.20) 

The last term in (25.17) is a Yukawa coupling term between the scalar 0 and the 
fermions. Since we have assumed the absence of right-handed neutrinos, this is the 
most general term which is invariant under SU(2) x U(1). As usual, h.c. stands for 
`Hermitian conjugate'. Gi  are three arbitrary coupling constants. 

A final remark: As expected, the gauge bosons IV, and Bp, appear to be massless. 
The same is true for all fermions. This is not surprising because the assumed 
different transformation properties of the right- and left-handed compon-
ents forbid the appearance of a Dirac mass term in the Lagrangian. On 
the other hand, the assumption about the conservation of the three leptonic 
numbers forbids the appearance of a Majorana mass term. In fact, the only 
dimensionful parameter in (25.17) is /1,2, the parameter in the BEH potential 
(25.20). Therefore, the mass of every particle in the model is expected to be 
proportional to I it I. 

• Step 4: The next step of our programme consists in choosing the parameter /22  of 
the scalar potential negative in order to trigger the phenomenon of spontaneous 
symmetry breaking and the BEH mechanism. The minimum of the potential oc-
curs at a point v2  = —µ29,.. As we explained in Chapter 15, we can choose the 
direction of the breaking to be along the real part of 0°. 



mw v(g2  +g,2)1/2 

MZ =  2 cos Ow (25.27) 
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• Step 5: Translating the BEH field by a real constant 

±
( ) 

v 

2 
2 

V = - 
A, 

(25.21) 

transforms the Lagrangian and generates new terms, as was explained in Chapter 
15. Let us look at some of them. 
(i) Fermion mass terms. Replacing 0°  by v in the Yukawa term in (25.17) creates 

a mass term for the charged leptons, leaving the neutrinos massless. 

1 1 1 
me = — Gev mµ  = — GAv mi  = —Gr v. (25.22) 

Since we had three arbitrary constants Gi, we can fit the three observed lepton 
masses. 

(ii) Gauge boson mass terms. They come from the ID,012  term in the Lagrangian. 
A straight substitution produces the following quadratic terms among the 
gauge boson fields: 

1 v2 [g2 Twl Twlit , Tv72 Tv72p, 
) B — gW3)] 

8 w  w w IL • 

Defining the charged vector bosons as 

w± = wl 
iw2 

Nh 

we obtain their masses: 

(25.23) 

(25.24) 

vg 
mw = 

2 
(25.25) 

The neutral gauge bosons Bp, and n  have a 2 x 2 non-diagonal mass matrix. 
After diagonalisation, we define the mass eigenstates, 

= sin OwB — cos 9W Wµ  

= cos OwBA  + sin Ow WA3  

with tan 9 = g'/g. They correspond to the mass eigenvalues 

(25.26) 

mA= 0. 
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As expected, one of the neutral gauge bosons is massless and will be identified 
with the photon. The BEH mechanism breaks the original symmetry accord-
ing to SU(2) x U(1) ± U(1)em  and 9w is the angle between the original 
U(1) and the one left unbroken. It is the parameter first introduced by S. L. 
Glashow, although it is often referred to as 'Weinberg angle'. 

(iii) Physical scalar mass. Three out of the four real fields of the 0 doublet will 
be absorbed by the BEH mechanism in order to allow for the three gauge 
bosons WI  and Z°  to acquire a mass. The fourth one, which corresponds 
to (10°0°1'1)1/2, remains physical. Its mass is given by the coefficient of the 
quadratic part of V(0) after the translation (25.21) and is equal to 

ms = /-2µ2  = (25.28) 

Note that the mechanism of spontaneous symmetry breaking is at the origin 
of the creation of all masses of elementary particles, fermions as well as gauge 
bosons, with the exception of the remaining physical scalar. 

In addition, we produce various coupling terms which we will present, 
together with the hadronic ones, in the next section. 

25.3.4 Extension to Hadrons 

Introducing the hadrons into the model presents some novel features. They are mainly 
due to the fact that the individual quark quantum numbers are not separately conserved 
and we have the phenomenon of flavour mixing. As regards to the second step, today 
there is a consensus regarding the choice of the 'elementary' constituents of matter. 
Besides the six leptons, there are six quarks. They are fractionally charged and come 
each in three 'colours'. 

Let us pause here for a moment and make a second history comment. In the sixties 
only three quark flavours were known, the ones we present in Table 25.1 as u, d, and s. 
Their electric charges are +3,-3, and respectively, and the weak current which was 
known at the time was the one given in Eq. (25.10). Trying to extend the gauge theory 
ideas to this three quark hadronic world we were faced with the following difficulty. The 
commutator of h and ht, which gives the neutral component of SU (2) , contains pieces of 
the form ds and 3d, i.e. flavour-changing neutral currents. Their presence would induce 
decays of the type K°  —> µ+µ-, or K°  —> vv, both of which were absolutely excluded 
experimentally. The solution to this puzzle was found in 1970 by S. L. Glashow, J. 
Iliopoulos, and L. Maiani. It consisted of proposing the existence of a fourth quark 
flavour, named c for 'charm', which made possible the addition of a second piece to the 
charged weak current: 

hx = itLyA (cos 9 dL  + sin 9 sL) + 4,yA (cos 9 sL  - sin 61 (25.29) 

It is easy to check now that the resulting neutral current is diagonal in flavour space. 
The introduction of a fourth quark implied the prediction on the existence of an entire 
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Figure 25.1 1-loop contributions to a strangeness changing 
neutral current process. 

new hadronic sector, namely the hadrons containing c among their constituents. Since, 
experimentally, the value of cos 9 is close to 1, the 'charmed' particles are predicted to 
decay predominantly to strange particles. We could even go a step further. At the limit 
of exact flavour symmetry, when all quarks have the same mass, the processes involving 
flavour changing neutral currents were forbidden by the symmetry. But we know that 
flavour symmetry is broken and the quarks do not have the same mass. If we look at 
these processes at higher orders we find, for example, the square diagrams of Fig. 25.1. 
They induce amplitudes for processes such as K°  —> µ,±µ,-, or the AS = 2 transition 
K°  - K°, which gives the Ks  - KL  mass difference. The u and c quark contributions 

? have opposite signs, so the resulting amplitudes are proportional to (ne
2  - mu

2)/m  Tv  This 
property implied the translation of the experimental upper limits on these processes to 
an upper limit on mc, i.e. upper limits of a few GeV on the masses of the charmed 
particles. The subsequent experimental discovery of these new particles in the predicted 
mass range and with precisely the correct decay signature was a second great success of 
these ideas. 

Coming back to present day, we see that in order to explore the lepton-hadron uni-
versality property, we must use also doublets and singlets for the quarks. The first novel 
feature we mentioned in the previous paragraph is that all quarks appear to have non-
vanishing Dirac masses, so we must introduce both right-handed singlets for each family. 
A naïve assignment would be to write the analogue of Eqs. (25.12) and (25.13) as 

QL (X)  = (1  + Y5) di  (x) )' UR (X); DR (x) (25.30) 

with the index i running over the three families as U1  = u, c, t and Di  = d, s, b for i = 
1, 2, 3, respectively.3  This assignment determines the SU (2) transformation properties 
of the quark fields. It also fixes their Y charges and, hence, their U(1) properties. Using 
Eq. (25.11), we find that 

1 4 2 
3

(QL) = -' • = -' Y(q)
3  

(Y Y = -3. (25.31) 

3  An additional index a, running also through 1,2, and 3 and denoting the colour, is understood. 
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The presence of the two right-handed singlets has an important consequence. Even 
if we had only one family, we would have two distinct Yukawa terms between the quarks 
and the scalar fields of the form 

rYuk = Gd(QLDRCP h.c.) + Gu(OLUR + h.c.). (25.32) 

0; is the doublet made out of (/)°* and 4)-. It has the same transformation properties 
under SU (2) as 0, but the opposite Y charge (see Problem 25.1). 

If there were only one family, this would have been the end of the story. The hadron 
Lagrangian 41)  is the same as (25.17) with quark fields replacing leptons and the extra 
term of (25.32). The complication we alluded to before comes with the addition of more 
families. In this case the total Lagrangian is not just the sum over the family index. The 
physical reason is the non-conservation of the individual quark quantum numbers we 
mentioned previously. In writing (25.30), we implicitly assumed a particular pairing of 
the quarks in each family, u with d, c with s, and t with b. In general, we could choose 
any basis in family space and, since we have two Yukawa terms, we will not be able to 
diagonalise both of them simultaneously. It follows that the most general Lagrangian will 
contain a matrix with non-diagonal terms which mix the families. By convention, we 
attribute it to a different choice of basis in the d — s — b space. It follows that the correct 
generalisation of the Yukawa Lagrangian (25.32) to many families is given by 

rYuk = E [ (01_,GijDIR  + h.c.) ] E -Fh.c.)] (25.33) 

where the Yukawa coupling constant Gd has become a matrix in family space. After 
translation of the scalar field, we will produce masses for the up-quarks given by mu  = 
Gul  v, me  = G2u  v- and mt  = Gu3v, as well as a 3 x 3 mass matrix for the down-quarks given 
by Gijv. As usually, we want to work in a field space where the masses are diagonal, so 
we change our initial d — s — b basis to bring Gij into a diagonal form. This can be done 
through a 3 x 3 unitary matrix 151  = 1  EY such that UtGdU = diag(md, m„mb). In 
the simplest example of only two families, it is easy to show that the most general such 
matrix, after using all freedom for field redefinitions and phase choices, is a real rotation 

( cos 9 sin 
C = 

—sin 9 cos 9 ) 
(25.34) 

with 9 being our familiar Cabibbo angle. For three families we can show (see Problem 
25.2) that the matrix has three angles, the three Euler angles, and an arbitrary phase. It 
is traditionally written in the form 

(C1 S1 C3 S1 S3 

CKNI = —s1 c3  cic2c3  — s2s3e'8  cic2s3  + s2c3e'8  , 
—S1S2 C1S2C3 + C2S3ei3  ciS2S3 — C2C3eI3  

(25.35) 
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with the notation ck  = cos Ok  and sk  = sin Ok, k = 1, 2, 3. The novel feature is the possib-
ility of introducing the phase 3. This means that a six-quark model has a natural source 
of CP, or T, violation, while a four-quark model does not. This brings us to a third 
historical remark. It has been known since 1965 that weak interactions are not invariant 
under time reversal. The absence of a natural source for such violation in a two-family 
model prompted M. Kobayashi and T. Maskawa to postulate the existence of a third 
family, prediction, which was again verified with the discovery of t, b, and t. So we see 
that the consistency and the simplicity of the electroweak theory repeatedly determined 
the spectrum of elementary particles. 

The total Lagrangian density, before the translation of the scalar field, is now 

1 1 
= -4  Ivo, • wily - 4B,v Bov + ID,o 12  - v(o) 

3 

▪ E + RiiIpR1  - Gi(kRio + h.c.) 
i=i 

+ QLi1 QL + fAi1 r..4 + DRiIpDR + Giu (01_,u0; + h.c.)] 
3 ▪ E [(QLGA0 h.c.) ] . 

The covariant derivatives on the quark fields are given by 

(25.36) 

D,QL = (a, - • w„ - icB„) QL (25.37) 

Do  L4 = (a, - i 32  B 0) 

= (a, + icB„) D 

The classical Lagrangian (25.36) contains 17 arbitrary real parameters. They are the 
following: 

- The two gauge coupling constants g and g'. 

- The two parameters of the BEH potential X and µ2. 

- Three Yukawa coupling constants for the three lepton families, Ge,,,,. 

- Six Yukawa coupling constants for the three quark families, Guu'c't  and Gdd's' b. 

- Four parameters of the Cabibbo—Kobayashi—Maskawa (CKM) matrix, the three 
angles and the phase 8. 

A final remark: Fifteen out of these 17 parameters are directly connected with the BEH 
sector. 
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Translating the field 0 by Eq. (25.21) and diagonalising the resulting down-quark 
mass matrix produces the mass terms for fermions and bosons which we introduced 
before as well as several coupling terms. We will write them here in the unitary gauge 
we introduced in section 15.3 in which only the fields representing physical particles 
appear. In other gauges we must also include the ghosts and the three unphysical BEH 
fields. 

(i) The gauge boson—fermion couplings. They are the ones which generate the known 
weak and electromagnetic interactions. At, is coupled to the charged fermions 
through the usual electromagnetic current 

3 gg' 1 
 ey1-'e + E (_

2
itaeua — —

3
dayAda) + ... AA, (g2 + g/2)112 3 

a=1 

(25.38) 

where the dots stand for the contribution of the other two families e —> µ, r, 
u —> c, t and d —> s,b and the summation over a extends over the three colours. 
Equation (25.38) shows that the electric charge e is given, in terms of g and g' by 

g  
e= (g2 gt

= g sin Ow = g' cos Ow . ± 
e

2 ) 1/2  

Similarly, the couplings of the charged W's to the weak current are 

(25.39) 

3 
g (- (i + y5)e + E TiayA 0 + Y5 ) daKm vey t,,   

2,./2 a=1 

+ ...) Wµ + h.c. (25.40) 

As expected, only left-handed fermions participate. dcKm is the linear com-
bination of d — s — b given by the CKNI matrix (25.35). By diagonalising the 
down-quark mass matrix we introduced the off-diagonal terms into the hadron 
current. When considering processes, like nuclear a-decay, or µ,-decay, where 
the momentum transfer is very small compared to the W mass, the W propag-
ator can be approximated by III tv-2  and the effective Fermi coupling constant is 
given by 

G = g2 
= 1 

8m2w, 2v2  
(25.41) 

In contrast to the charged weak current (25.40), the Z°-fermion couplings 
involve both left- and right-handed fermions: 

e 1 

2 sin Ow cos Ow 
[vLYA  vL + (sin2  Ow  — cost  Ow)kY A  eL 

+2 sin2 9wiReeR + ...] Zi, 
(25.42) 
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3  

2 
 E [(_

3 
1 

tan Ow — cot Ow) ilLy'-'4_, + ( —3 
1 

tan 9w + cot Ow) 4_,y12 4_, 
a=1 

+3  tan9w(24yA4-4y12 4) + ... 4. 

(25.43) 

Again, the summation is over the colour indices and the dots stand for the 
contribution of the other two families. We verify in this formula the property 
of the weak neutral current to be diagonal in the quark flavour space. Another 
interesting property is that the axial part of the neutral current is proportional 
to [iy,y5u— dy,y5cl]. This particular form of the coupling is important for the 
phenomenological applications, such as the induced parity violating effects in 
atoms and nuclei. 

(ii) The gauge boson self-couplings. One of the characteristic features of Yang—Mills 
theories is the particular form of the self-couplings among the gauge bosons. 
They come from the square of the non-Abelian curvature in the Lagrangian, 
which, in our case, is the term AW,,, • W". Expressed in terms of the physical 
fields, this term gives 

— ig(sin OwA" — cos OwZ") ( W' IKLE, — IF' Wii„) 

— ig(sin OwF" — cos OwZ") IF; W1 

— g2(sin OwA" — cos OwZA) 2  r Wv- 
+ g2  (sin OwA" — cos OwZA) (sin Owie — cos OwZy ) Wµ  W, 

ci

A 

2 ci

A 

2 

2 
_ 6  (W+ Wit-)2 + 6 

2 
(W+ 

 v 
w-)23 

(25.44) 

where we have used the notation F,„ = a AA„ — avAA, igly = aµ  W,} — av wl, and 
4, = a Az, — avz,,, with g sin 9w = e. Let us concentrate on the photon- W+  IF-
couplings. If we forget, for the moment, about the SU(2) gauge invariance, we 
can use different coupling constants for the two trilinear couplings in (25.44), 
say e for the first and eK for the second. For a charged, massive W, the magnetic 
moment µ, and the quadrupole moment Q are given by 

=  = 
(1 + K)e eK 

it   2mw Q 
m2 

W 
(25.45) 

Looking at (25.44), we see that K = 1. Therefore, SU(2) gauge invariance 
gives very specific predictions concerning the electromagnetic parameters of the 
charged vector bosons. The gyromagnetic ratio equals 2 and the quadrupole 
moment equals —mi. 

(iii) The scalar—fermion couplings. They are given by the Yukawa terms in (25.17). The 
same couplings generate the fermion masses through spontaneous symmetry 
breaking. It follows that the physical BEH scalar couples to quarks and leptons 
with strength proportional to the fermion mass. Therefore, the prediction is that 



-(71 +!a)2 [g2n,  + (g2 + g,2)4,1  . (25.46) 
1 
4 
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it will decay predominantly to the heaviest possible fermion compatible with 
phase space. This property provides a typical signature for its identification. 

(iv) The scalar—gauge boson couplings. They come from the covariant derivative term 
I D,012  in the Lagrangian. In the unitary gauge only one neutral scalar field 
survives: 

(v) The scalar self-couplings. They are proportional to X (v + 4,)4. Equations (25.28) 
and (25.41) show that X = Gm2s/Nh, so this coupling has been measured together 
with ms, the BEH mass. The latter is around 126 GeV, so X is on the order of 

, appreciable, but according to our experience, still in the perturbative regime. 
On the other hand, this relation shows that were the physical scalar particle very 
heavy, it would have been also strongly interacting and this sector of the model 
would have been non-perturbative. 

The five-step programme is now complete for both leptons and quarks. Although the 
number of arbitrary parameters seems very large, we should not forget that they are all 
mass and coupling parameters, like the electron mass and the fine structure constant of 
quantum electrodynamics. The reason we have more of them is that the standard model 
describes in a unified framework a much larger number of particles and interactions. 

Just a few words concerning the fermion masses. Leaving aside the neutrinos, the 
other fermion masses are shown in Table 25.2. 

Some remarks: 

• Even without the neutrinos, these values are spread over a huge range. The ratio 
between the electron and the t-quark masses is larger than 105. Il we include the 
limits on the neutrino masses it exceeds 1011  and, probably, much higher. It is 
hard to imagine that they all come from the same spontaneous symmetry breaking 
mechanism. 

Table 25.2 Fermion masses are shown in MeV. The lepton masses are directly measurable but those of 
the quarks are only indirectly estimated. This is particularly significant for the u and d quarks. The 
uncertainties, experimental or estimated, are also shown. For the electron and the muon the uncertainties 
are too small to be included. 

FERMION MASSES 

Leptons Quarks 

e tt I u/d c/s t/b 

2.3 (+0.7, —0.5) 1275 ± 25 173070 ± 520 
0.51100 105.6584 1776.82 ± 0.16 4.8 (+0.5, —0.3) 95 ± 5 4180 ±30 
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• For the two heavy quark families the up-type quarks are heavier than the down-type 
ones. This pattern is reversed for the light quarks of the first family. 

• If we restrict ourselves to the first family we see that the mass ratio of the two quarks 
equals a factor of 2, so, at the quark level, isospin symmetry is very badly broken. 
If it appears to be a good approximate symmetry in hadronic physics, it is because 
the quark masses contribute very little to the masses of hadrons. The scale of the 
first is a few MeV while that of the second is 1 GeV. The global isospin symmetry 
seems to be accidental. We will come back to the origin of hadron masses later. 

• Despite their small values, the mass pattern of the light quarks seems to have very 
important consequences. The fact that the down-quark is much heavier than the 
up one results, probably, in the neutron being slightly heavier than the proton. 
Hydrogen stability, at the origin of all matter creation, is due to this accident. 

Our confidence in this model is amply justified on the basis of its ability to accurately 
describe the bulk of our present-day data and, especially, of its enormous success in 
predicting new phenomena. We have mentioned already some of them. Let us give here 
a brief summary. 

1. The discovery of weak neutral currents by Gargamelle in 1973: 

vp, + e v + e; Vµ  + N —> V µ  + X. 

Not only their existence, but also their detailed properties were predicted. In gen-
eral we would expect, for every lepton and every quark flavour a parameter that 
determines the strength of the neutral current relatively to the charged one and an-
other to fix the ratio of the vector and axial parts. In the standard model, in which 
the breaking comes through an isodoublet scalar field, they are all expressible in 
terms of the angle 9w. This is brilliantly confirmed by the data. 

2. The discovery of charmed particles at SLAG in 1974-1976. Their presence was 
essential to ensure the absence of strangeness changing neutral currents, ex. 
K°  —> µ,± + Their characteristic property is to decay predominantly into 
strange particles. 

3. As we will see shortly, a necessary condition for the consistency of the model is 
that Et Qi  = 0 inside each family. When the r lepton was discovered the b and t 
quarks were predicted with the right electric charges. 

4. The discovery of the W and Z bosons at CERN in 1983 involved a brilliant innov-
ation in accelerator technology. The characteristic relation of the standard model 
with an isodoublet BEH mechanism mz = m w/ cos Ow is checked with very high 
accuracy (including radiative corrections). 

5. The t-quark was seen at LEP through its effects in radiative corrections before its 
actual discovery at Fermilab. 

6. The final touch: the recent discovery of the Brout—Englert—Higgs scalar at CERN. 
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A brief comparison with all available experimental data will be presented later. All 17 
parameters of the model have been determined experimentally. 

At lowest order the parameters g, g', and v enter into the expressions for the electric 
charge (25.39), the Fermi coupling (25.41), the W and Z masses (25.25) and (25.27), 
and the couplings of the weak neutral current (25.42) and (25.43). This gives us a large 
number of predictions, all of which have been verified experimentally. 

The Yukawa couplings and the parameters of the CKNI matrix are determined 
through the fermion spectrum and decay properties. An important experimental effort 
is actually devoted to the precise determination of the mixing angles and the phase 
connected with CP violation. 

The last parameter X has been determined through the measurement of the mass of 
the recently discovered scalar boson. At lowest order it enters only into the BEH mass 
and self-coupling. 

25.3.5 The Neutrino Masses 

We have postponed the discussion concerning the masses of the neutrinos. This was 
done for simplicity, but also because, until recently, all experimental results were com-
patible with vanishing neutrino masses. The situation changed radically with a new 
generation of experiments including solar, atmospheric, and terrestrial neutrinos. We 
will present here these results, which are among the most remarkable discoveries of 
high-energy physics in recent years. 

The first question concerns the total number of neutrino species. In the standard 
model it is related to the total number of families. A new neutrino, even with very low, or 
vanishing, mass, would still remain undetectable in ordinary experiments, provided its 
companion charged lepton is sufficiently heavy. This problem was brilliantly solved by 
the first LEP experiment. The clue was to measure very precisely the decay parameters 
of the Z°  boson. Equations (25.42) and (25.43) show the contribution of each element-
ary fermion in the model. The decays into quarks and charged leptons can be measured 
separately and their sum constitutes the visible part of the Z°  width.4  The neutrino final 
states cannot be measured directly but their total contribution can be determined by the 
difference between the experimentally measured total and visible widths. In turn this in-
fluences the value of the cross section at the peak of the Z°  curve. Using (25.42) we can 
express it in terms of N„ the number of neutrino species contributing to the decay, i.e. 
those with masses less than half the mass of Z°. In practice, in order to reduce the errors, 
we define the 'invisible ratio' RiCnv = rinvini, i.e. the ratio of the invisible width over the 
purely leptonic width. We will assume, first, that all invisible width is due to standard 
model neutrinos and, second, that universality for all families holds. Then we obtain 

FVV 
Rionv  = Nv  () , 

ril SM 

(25.47) 

4  By 'visible', we mean the decays whose final states are visible in the detector. 
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Figure 25.2 The hadronic production cross section in 
the vicinity of Z°. The predicted curves for two-, three-, 
and four-neutrino species are shown under the 
assumption of standard model couplings and negligible 
masses. Note that the error bars have been multiplied by 
10 for illustration purposes (C,  CERN, LEP 
collaborations). 

where the ratio which multiplies N is the one we compute in the standard model. We 
compare the measured value of Ri°, with the standard model calculation and we obtain 

N, = 3. (25.48) 

We can visualise the result in Fig. 25.2 which shows also the strong dependence of 
the hadronic peak cross section on the number of neutrinos. The great precision of 
the measurements makes it possible to put very strict limits on any other conceivable 
contributions of unknown neutral particles in the Z°  decay width. If new families exist, 
their neutrinos are very heavy. 

Let us come now to the problem of masses. We have two classes of experiments. The 
first aims at a direct measurement of the mass of each particular species. They have 
given only upper limits so far. They are, including the corresponding confidence levels, 

m, < 2.2 eV (95% CL) (25.49) 

m„, < 170 keV (90% CL); m„ < 18.2 MeV (95% CL). (25.50) 

The best limit is the one on m„. It comes from the study of the electron energy 
spectrum in the a-decay of tritium. In Problem 25.6 we compute this spectrum for the 
simple case of neutron a-decay and we show that the form of the end-point, i.e. the point 
where the electron has the maximum possible kinetic energy, is very sensitive to m„. A 
new generation of experiments along the same lines are expected to improve the limit 
(25.49) by an order of magnitude. A better, but indirect, limit is obtained by the absence 
of neutrinoless double a-decay. An ordinary double /3-decay process is one in which 
two neutrons in a nucleus decay simultaneously produce two electrons and two anti-
neutrinos: N1  —> N2  + 2e + 213e. Being double weak, these processes are very rare, but 
have been observed for some isotopes for which all other decay channels are energetically 
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Figure 25.3 Neutrinoless double beta decay. The cross represents the 
presence of a Majorana mass. 

forbidden. In 1939 W. Furry suggested the existence of a neutrinoless double a-decay, 
a process of the form shown in the Feynman diagram of Fig. 25.3. Such decay violates 
lepton number conservation and, as can be seen from Fig. 25.3, requires the neutrino to 
be identical with its own anti-particle and, therefore, it tests the presence of a Majorana 
mass. The resulting limit is on the order of 0.4 eV, which again may be substantially 
improved in the near future. 

All these are negative results and support the view that neutrinos could indeed be 
massless. However, in recent years, a different series of experiments changed radic-
ally this picture. We know today that neutrinos do have non-zero masses, although 
we do not know their precise values. They are all based on the observation that with 
massive neutrinos, the lepton sector of the standard model is expected to exhibit the 
phenomenon of flavour mixing, as is the case with the quark sector. In analogy with 
the down-quarks, neutrino masses could be described by a general 3 x 3 matrix, in 
which case each one of the three lepton numbers would not be separately conserved. 
It follows that neutrinos could undergo quantum mechanical oscillations among the 
three species. In Problem 25.7 we compute the amplitude for such oscillations and 
show that it depends on the mass differences Am,. For example, a ve, produced in /3 
decay could change into a v, or a v, in the course of its propagation. Such oscilla-
tions, which are impossible if all three neutrinos have degenerate, in particular zero, 
masses, have been detected in three types of experiments. The first used solar neutri-
nos, i.e. neutrinos produced by the nuclear reactions in the interior of the Sun. The 
second used the neutrinos found in the decay products of 7 or K mesons produced 
by cosmic rays in the upper atmosphere, and the third used the neutrinos coming 
from nuclear reactors in power stations or specifically produced using particle accel-
erators. We are still far from determining the entire neutrino mass matrix accurately, 
but we know some general features: the mass differences are very small, on the or-
der of 10-3  and 10-5  eV, and the mixing angles among the flavours are larger than 
those we encounter in the quark sector. Most experimental results are compatible with 
a minimal neutrino content in which the neutrinos are described by Majorana fermi-
ons, but further studies are necessary in order to confirm this hypothesis. Note that 
if the actual mass values are on the same order as the mass differences, their direct 
kinematical determination will be impossible in the near future. On the other hand, 
such tiny values may indicate that their origin lies in physics beyond the standard 
model. 
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25.3.6 Some Sample Calculations 

The standard electroweak model is a renormalisable quantum field theory and, con-
sequently, the technology of Feynman diagrams we developed in the previous chapters 
allows us to compute any correlation function in the perturbation expansion. Here we 
will present only some calculations which will help us to understand better the intricacies 
of spontaneously broken gauge theories. 

We start with a series of tree diagram computations, first performed by Christopher 
Llewellyn Smith in 1973. By that time the standard model was known, but the calculation 
could have been done any time previously. The purpose is to show that the requirement 
of renormalisability points unambiguously to a spontaneously broken gauge theory and 
exhibits clearly the role of each piece of the puzzle. 

Let us consider the Fermi theory of weak interactions, Eq. (25.1). We showed already 
that it is the low-energy approximation of the standard model with the coupling strength 
given by eq. (25.41), but let us suppress this information for the moment. It is a non-
renormalisable theory, so we can only compute tree-level diagram-s, but, at that level, it 
is phenomenologically successful. The purpose of the exercise is to seek possible modi-
fications of the theory in order to improve its convergence properties, still keeping the 
agreement with experiment. 

We look at the electron-neutrino system. For example, the cross section for the elastic 
electron-anti-neutrino scattering of Fig. 25.4(a) in the four-fermion theory (25.1) is 
given by the square of the amplitude: 

TiMei = i —,-[ e(11)Ytt( 1  + Y5)vv (112)]['Dv(PDY A  ( 1  + Y5)ue(POL 
,il 2 

(25.51) 

The Fermi coupling constant has dimensions [M]-2. At high energies we can neglect 
the fermion masses and the cross section will behave as 

(Tel -- G2 s, (25.52) 

where s is the total energy in the centre of mass, s = (pi  +p2)2. Remember, however, that 
in section 20.5 we showed that this cross section is proportional to the imaginary part of 

(a) 

Figure 25.4 The elastic electron—anti-neutrino scattering at first 
order in the Fermi coupling constant (a) and at second order (b). 
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the corresponding 1-loop amplitude of Fig. 25.4(b). It follows therefore that if we write 
a dispersion relation for the latter of the form 

(fel (SI)  
Mel (S) '''' f ds', 

s' — s 
(25.53) 

it will require two subtractions. Of course, this is in agreement with the fact that the 
diagram of Fig. 25.4(b) is quadratically divergent. It is not difficult to guess a first modi-
fication of (25.1) to improve this result. We assume the existence of a massive, charged, 
intermediate vector boson WI  and write (25.1) in the form of (25.40). g is dimension-
less, so we expect any lepton cross section to behave at high energies not worse than 
a constant. In fact, the suggestion for the existence of such an intermediate boson was 
made much before the construction of the standard model. 

Now we have enlarged our set of particles and we must study all tree amplitudes in 
the e—v—W system. We choose the inelastic process v + T) —> W+  + W. In the tree ap-
proximation it is given by the diagram of Fig. 25.5(a). We may think that a W, being a 
vector particle, is like a photon, but it is massive. In the diagram of Fig. 25.5(a) this dif-
ference manifests itself only in the fact that a W may have three degrees of polarisation, 
in contrast to a photon which has only two. So we look at the cross section to produce a 
pair of longitudinally polarised W's. We obtain 

M(v13 —> WW) — g2i)(Pi)f —  ( 1  + Y5) :12+  mme2r (1  + Y5)u(P2), (25.54) 

where EI  are the polarisation vectors for the pair of W's. A longitudinal polarisation is 
proportional to the W momentum k, EL  — klmw, so at large k, the cross section will 
behave as 

g4 
cr (vi3 —> WL WL) — 

m4w
s. (25.55) 

In other words, we are back to the problem we had in (25.52). This again is compatible 
with the fact that the propagator of a massive vector boson behaves at large momenta like 
a constant and the diagram of Fig. 25.5 (b) is quadratically divergent. Adding a massive 
W did not make the Fermi theory renormalisable. 

We must further enlarge our physical system to produce new tree diagrams to dump 
the bad asymptotic behaviour found in Eq. (25.55). Note that the trouble appears in the 
p-wave scattering, since both W's are longitudinally polarised. Looking at the diagram 
of Fig. 25.5(a) we see that we have the following choices: we can add a contribu-
tion to the s channel, or one in the u channel, or a combination of the two. The first 
leads to the diagram of Fig. 25.6(a), which implies the addition of a new neutral vector 
particle Z. The second is shown in Fig. 25.6(b) and requires a new positively charged 
lepton. The second choice leads to the Georgi—Glashow model we introduce in Problem 
25.8, but here we assume only the first since we know experimentally of the existence 
of Z. 
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Figure 25.5 The v v Ir+  IF-  amplitude in the tree 
approximation (a) and the 1-loop contribution to the v r) elastic 
amplitude (b). 
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Figure 25.6 Possible corrections to the v v—> W+  Tr- 
amplitude in the s-channel (a) and the u-channel (b). 

We want to have a cancellation in the asymptotic behaviour between the two diagrams 
of Figs. 25.5(a) and 25.6(a), so the Z exchange must be also proportional to g2. The 
neutrinos are left-handed, so the v-13-Z vertex is essentially unique, up to an arbitrary 
coupling constant: — Dy, (1 + y5 )vZIL. We must still determine the Z-W+-W-  vertex. 
We have three vector fields, so we need one derivative. We also note that W+  and W-
are complex conjugate to each other and the effective interaction Lagrangian must be 
Hermitian. This leaves us with three possible dimension 4 terms, the ones we have in 
Eq. (25.44) with arbitrary coefficients. The cancellation in the cross section for longit-
udinally polarised W's gives a relation between these coupling constants. We can go one 
step further because the presence of electrically charged particles forces us to enlarge 
our system and include the photon. We repeat the exercise for the e+  + e —> WL + WE, 
as well as the amplitudes for producing pairs of W-Z and W-y. We thus arrive at the 
solution of (25.44) which describes the Yang-Mills couplings. 

We are almost home, but we are still missing the scalar particle. For that we must 
look at the scattering of two vector particles, for example the one shown in Fig. 25.7(a). 
We find that a good high-energy behaviour requires the addition of a scalar field (Fig. 
25.7(b)). We thus arrive at the standard model without assuming a gauge theory to start 
with. 

We can object that in our search we succeeded because we knew the answer and this 
is certainly true. However, now that we have the machinery, we can ask the more general 
question. Consider a set of fields, spin 0, spin 1/2, and spin 1. Among the latter, some 
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Figure 25.7 The high-energy behaviour 
in the tree diagram describing the scattering 
of two vector bosons (a) is tamed by the 
scalar boson contribution (b). 

are assumed massless and some are massive. Write the most general Hermitian, Lorentz 
invariant, interaction Lagrangian among them with terms of dimension smaller than or 
equal to 4. We can simplify it by imposing invariance under some global symmetry. 
Our theory so far is characterised by a large set of parameters, masses, and coupling 
constants. Impose 'tree unitarity' for all amplitudes, i.e. no cross section computed in the 
tree approximation should grow at infinity.5  This gives relations among the parameters. 
The resulting theory is equivalent to a Yang—Mills gauge theory. The relations among 
the parameters simply express the BRST symmetry in the unitary gauge; in other words, 
if the BRST identities are not satisfied the theory cannot be renormalisable. All massive 
vector bosons correspond to spontaneously broken generators via a BEH mechanism 
with two possible exceptions: (i) the trivial one of free fields, and (ii) massive neutral 
vector bosons coupled to conserved currents following the Stiickelberg formalism we 
exposed in section 16.5.4. 

As a second example of calculations in the framework of the standard model we want 
to compute some static quantities of boson and fermion fields, the analogue of the g-2 
computation we indicated in Problem 16.4. We want to show explicitly the fundamental 
importance of the underlying BRST symmetry, so we choose to work in the unitary 
gauge we introduced in section 15.3 which contains only physical degrees of freedom. 
The strange property of this gauge is that the theory is non-renormalisable by power 
counting; nevertheless, physical quantities will turn out to be finite. 

Let us start with the electrostatic properties of the charged vector boson WI; in other 
words, we consider the scattering of a W from an external electromagnetic field. We 
write the amplitude for this process as A/1„„p (pl , p2)EiE2, where pi, E1  and p2, E2 are 
the momenta and the polarisation vectors of the incoming and outgoing W, respectively. 
We must study the vertex function M A„p (p1,p2). In order to simplify the calculations we 
can ignore the lepton and quark fields and restrict ourselves to the bosonic sector of the 
standard model. At 1 loop the diagrams which contribute to this process are shown in 
Figs. 25.8 and 25.9. We analyse .A4 Avp (Pi , p2) in form factors. The initial and final W's 
are on the mass shell, so we must have 

qA.A4,,„ = 0; 14 =14 = m2w; Pi • El  = p2 • E2 = 0, (25.56) 

5  We want to stress here that this argument is by no means a proof of renormalisability. A real proof requires 
the steps we went through in Chapter 18. It is, however, a proof of the opposite statement, namely that a 
massive, non-Abelian Yang—Mills theory is not renormalisable if the vector bosons do not acquire their mass 
through the mechanism of spontaneous symmetry breaking. Tree unitarity is a necessary ingredient for a 
renormalisable theory but not a sufficient one. See, for example, the theories with anomalous Ward identities, 
whose presence is manifest only in loop diagrams. We will address this question for the standard model in the 
next section. 
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7' 

Figure 25.8 Diagrams contributing to the scattering amplitude of a 
charged W in an external electromagnetic field. 

Figure 25.9 Diagrams contributing to the scattering amplitude of a 
charged W in an external electromagnetic field. 

where q = p2  — pi . The most general form of M compatible with these constraints can 
be written as 

,vp(P1,P2) = F1(q2)[(1)1 + P2) Agvp + 2(qvgAp — qpgitv)] 

+F2(q2) (qvgit p— qpg,,,v) + F3 (q2)+ mw  (PI + P2)itqvqp, (25.57) 

where F1, F2, and F3  are three form factors which, in the tree approximation, are given 
by F1 (0) = ie and F2  (0) = F3  (0) = 0. The last two are the anomalous magnetic moment 
and the anomalous quadrupole moment of the W, respectively, and, in a renormal-
isable theory, they must be both finite and calculable. It is this property which we 
want to verify for the spontaneously broken SU (2) x U(1) theory using the unitary 
gauge. 

Let us start with the remark that only the three diagrams of Fig. 25.8 contribute to 
the anomalous quadrupole moment A Q = F3  (0). Indeed, the four-boson vertices of the 
Lagrangian (25.44) have no derivatives; therefore, each one of the diagrams of Fig. 25.9 
will give a tensor depending on either pi  or p2  but not on both, so it will contribute to F1  
and F2  but not to F3. 
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The explicit computation of all these diagrams by hand is too lengthy and tedious. 
However, there exist today several efficient computer programs which compute symbol-
ically any set of Feynman diagrams at 1 loop (for some processes even higher loops). For 
pedagogical purposes we will present here the explicit calculation of the simplest among 
them, the scalar exchange of Fig. 25.8 and show that its contribution to F2(0) and F3(0) 
is finite. 

Using the Lagrangian (25.44) and (25.46) we obtain 

Mµ„ (pi, P2) = iemj,Vg2  f A { [(pi — (Pi —k)a'gitio' AvP (27) 

+ (P2 — k)tzgp'a' (102 k)atta' qa'g,up' qp'gtzad 

[gpp' 0,1-k?(P1-k)°'  1 [gcra' (P2-kr (p2-k)1 
mw m2  

I(k2-mD [(Pi -k)2-147] [(P2-k)2-m2w] ' 
(25.58) 

where we have used the coupling constant of the scalar- W vertex given by (25.46): 

—
1 

2 
g

2 
V = gm w•  (25.59) 

We want to compute the 1/E contributions to F2(0) and F3(0). The calculation is 
straightforward. In order to obtain a divergent contribution, we must have at least two 
powers of k in the numerator. It follows that the term proportional to el  ga a' is finite.6  

25.3.7 Anomalies in the Standard Model 

In the previous section we saw in the explicit calculations the crucial role played by the 
BRST Ward identities in the consistency of the standard model. The renormalisable 
gauges contain unphysical degrees of freedom and it is only by virtue of this symmetry 
that they decouple from physical quantities. Therefore, we expect that a failure to enforce 
these identities may result in a physically unacceptable theory. In section 18.3 on the 
other hand, we saw that the algebra SU (2) x U(1) is not automatically anomaly-free. 
The purpose of this section is twofold. We first verify explicitly that, in general, the 
standard electroweak theory does contain anomalies and, what is worse, they do prevent 
us from defining a physically relevant theory. Second, we show that for the particular 
family structure we observe in nature, the coefficient of the anomaly vanishes. These 
results were obtained by Cl. Bouchiat, J. Iliopoulos, and Ph. Meyer as well as D. Gross 
and R. Jackiw. 

6  In a renormalisable gauge the W propagator has only this term and the contribution of this particular 
diagram is finite. This shows, if need there is, that the contributions of individual Feynman diagrams are 
gauge dependent. 
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In the general analysis presented in section 18.3 we saw that for the SU (2) x U(1) 
algebra, the dangerous piece is the axial U(1). Therefore, in order to avoid lengthy 
calculations, we first start with a simplified Abelian model consisting of a fermion field 
W, two massless neutral vector fields 4, and BA, and a complex scalar field 4). We define, 
as usual, the right- and left-handed spinors L = 1(1 + y5) tP and R = 1(1 - y5 ) W. We 
require the Lagrangian to be invariant under two Abelian gauge groups under which the 
fields transform as 

I .L -> e1e9  L; R -> eiee  R; -> Ai  + 0N,6; B,, -> Ai; ¢ -> (25.60) 

and 

II.L -> g L; R -> e-ige  R; Aµ  -> A,; Bµ  -> B, + 0,0; -> e2ig90. (25.61) 

The Lagrangian density which is invariant under the U(1) x U(1) gauge transform-
ations (25.60) and (25.61) is given by 

= -1261,„Al" - Bt" + Liy 1-̀  (a„ — igBOL (25.62) 

+Riyli (a, + igBa)R + (a - 2igB,2)012  - it 2  00*  - A(00*)2  

-../2G(RL4)*) - NhG(LR4)) 

with A" = a „A, - a„A, and B,„ = a„ B„ - av B,. 
We now assume that pt2  < 0 and the vacuum expectation value < 0 >0= v1,/ is 

different from 0. We can always choose v real and write 

0= 
+ v + i(p2  

(25.63) 

 

In terms of the translated fields the quadratic and the interaction parts of the 
Lagrangian are 

E = Go + E/ (25.64) 

Go = - „Bi-tv + a(a A01)2  + 1  (aIL  02) 2  + 2  (25.65) 
(4g2v2)BIL -

1., (2AV2)Of — 2gVBA 01/ 02 — GvWW  

Gt =-2gB"`(0104)2-4)20„01)+4g2vB04)i  + 2g2BIL2  (Of + OD (25.66) 

+OP yii tPAA - yi,y5tP - GtP1114)1  + y5'02 

-Av0i (44 + 44) - P,(44 + 44)2. 

The constant v is chosen such that the coefficient of the term linear in 01  vanishes. 
As expected, the B field appears massive. 

The Feynman rules are readily obtained. The important point is that in a gauge such 
that a ,BIL = 0, the propagators of the B and 42  fields in momentum space are 
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-i F kykv  1 ikykv  
< By, By > =  

k2  — (2gv) 2  l_gilv  (2gv)2  i k2  (2gv)2  

i 
< 02, 02 >= k2 

< B y, 02 > = 0. 

(25.67) 

(25.68) 

(25.69) 

Equations (25.67) to (25.69) show two things: first, that the large k behaviour of all 
propagators is that of a renormalisable theory and second, that this has been achieved 
at the price of introducing an unphysical zero-mass pole in the last term of (25.67). 
This reminds us of the case we studied in section 15.3.1 and, as it happened there, 
we expect this pole to cancel against the corresponding one of the 02  propagator for 
all physical quantities. Indeed, it is easy to verify that such a cancellation does oc-
cur, for example, at lowest order in the fermion—fermion scattering amplitude given 
by the two diagrams of Fig. 25.10. We studied a simplified version of this model in 
Problem 15.2. 

Looking closer at this cancellation we see that it is the result of a very special relation 
among the four constants which enter in the calculation: the B — W coupling constant 
g, the 02  — W Yukawa coupling constant G, the B mass gv, and the W mass Gv. This 
relation is the lowest order version of the BRST Ward identity. We can now easily guess 
in which case this cancellation will fail. We look at the forward scattering amplitude of 
two A vector bosons. The lowest order diagrams which exhibit the zero-mass pole are 
shown in Fig. 25.11. We compute the residue of the pole. The first diagram with the B 
contribution gives 

_i 
R(B) = —

4v2
(ki + k2) a  (ki + k2) pry' v (ki, k2)P,),(ki, k2) (25.70) 

 

02 

Figure 25.10 The fermion—fermion scattering amplitude in the tree 
approximation in the simplified Abelian version of the standard 
model. 

01 

Figure 25.11 The triangle anomaly in the simplified standard model. 
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and the second one with 02  

R(42) = iG2  Tov(ki, k2) T pa (kl, k2) (25.71) 

where T (ki k2) and T (kb k2) are defined by the corresponding triangle diagrams. 
We see now that in order for the cancellation to occur, we need an identity of the form 
—(k1  + k2)a  To% = 2Gv .  Tay. But the T's are precisely the triangle diagrams we computed 
in section 17.3. We learnt that the correct Ward identity is instead 

— (k1  + k2) cx  7 = 2Gv To„ + 872 E„,„„agk. (25.72) 

We see that the residue of the (k1  + k2)2  = 0 pole does not vanish, which means 
that the unphysical degrees of freedom do not decouple. It follows that this model is 
unacceptable for physical applications. 

In order to remedy to this difficulty we first observe that the anomaly is independent 
of the fermion mass. Therefore, we introduce another fermion field * which has a new 
Yukawa coupling constant G' but carries the opposite charges under both gauge groups. 
It follows that W and * have different masses but the fermion part of both currents is 
odd under the exchange W —> *. Therefore, the anomalies disappear and the residues 
of the (k1  + k2)2  = 0 poles associated with the B and the 02  propagators cancel. 

The extension of this anomaly cancellation mechanism to the real world of the stand-
ard SU (2) x U(1) model is immediate. Considering only one family of fermions, we first 
see that a purely leptonic model would indeed be anomalous. Adding the other leptons 
only multiplies the coefficient of the anomaly by 3. The cancellation comes between 
leptons and hadrons. For the first family of the electron and its neutrino, adding n had-
ron doublets with electric charges Qt  and Qi  — 1, i = 1, n, we see immediately that the 
requirement of vanishing anomaly coefficient (18.42) implies the relation 

E Qi  — 1 = O. (25.73) 
i=i 

Since the electron charge equals -1, this condition can be expressed by saying that the 
sum of all electric charges in a family must vanish. It is satisfied, in particular, by the 
three-colour model with Qi  = 3, but also by other, integer charge models. 

In fact, the anomaly vanishing condition (25.73) has a wider application. The stand-
ard model could have been invented after the Yang—Mills theory was written, much 
before the discovery of the quarks. At that time the 'elementary' particles were thought 
to be the electron and its neutrino, the proton and the neutron, so we would have used 
one lepton and one hadron doublet. The condition (25.73) is satisfied. When quarks 
were discovered we changed from nucleons to quarks. The condition is again satisfied. If 
tomorrow we find that our known leptons and/or quarks are composite, the new building 
blocks will be required to satisfy this condition again. Since the contribution of a chiral 
fermion to the anomaly is independent of its mass, it must be the same no matter which 
mass scale we are using to compute it. 
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This anomaly cancellation condition ensures that the coefficient of the axial anomaly 
vanishes at 1 loop. Then the Adler—Bardeen theorem we have mentioned previously 
implies the vanishing at all orders and guarantees the consistency of the theory. Families 
must be complete. Thus, the discovery of a new lepton, the tau, implied the existence of 
two new quarks, the b and the t, a prediction which was again verified experimentally. 

Before closing this section we want to point out that the discussion on the anomaly 
cancellation mechanism we presented here is not limited to the U(1) x SU (2) gauge 
theory of the standard model. Mathematical consistency requires that the cancellation 
condition should be imposed in any gauge theory. In particular, this includes several 
models we will study in the following sections which include a gauge theory for the strong 
interactions, as well as more general models, which we call 'grand unified theories'. H. 
Georgi and S. L. Glashow found the generalisation of the anomaly equation (25.73) 
for a gauge theory based on any Lie algebra with a given fermion content. It takes a 
surprisingly simple form (see Problem 25.9) 

Aabe = Tr (Y 5  { Fa, 161 Fc), (25.74) 

where Fa  denotes the Hermitian matrix which determines the coupling of the gauge field 
Wia` to the fermions through the interaction W Pali/ r . As we see, Fa  may include a y5. 
Georgi and Glashow showed that the anomaly is always a positive multiplet of Aab„ so 
this quantity should vanish identically for all values of the Lie algebra indices a, b, and c. 

Since gauge theories are believed to describe all fundamental interactions, the an-
omaly cancellation condition plays an important role not only in the framework of the 
standard model, but also in all modern attempts to go beyond, from grand unified the-
ories to superstrings. It is remarkable that this seemingly obscure higher order effect 
dictates to a certain extent the structure of the world. 

25.4 A Gauge Theory for Strong Interactions 

25.4.1 Are Strong Interactions Simple? 

The discovery of the fundamental theory of strong interactions was made as a response 
to an experimental challenge. For many years the efforts to understand the nature of 
strong interactions were concentrated in the study of the experimental results from had-
ronic collisions. The resulting picture invariably appeared to be too complicated to allow 
for a simple interpretation. We understand now that this complexity should not be at-
tributed to the fundamental interactions themselves, but is instead due to the fact that 
the objects we are dealing with, namely the hadrons, are themselves too complicated. It 
is as if we were trying to discover quantum electrodynamics by studying the interactions 
among complex molecules. There were already several experimental hints pointing to-
wards a composite structure for the hadrons, but the decisive progress came with a set of 
experiments from the Stanford Linear Accelerator Centre (SLAG) by the late sixties and 
early seventies. They were studying the large momentum transfer scattering, often called 



A Gauge Theory for Strong Interactions 681 

C 

X 

Figure 25.12 Deep inelastic electron-nucleon scattering 
with the production of a final state IX >. 

deep inelastic scattering, of electrons off nucleons.7  The process is shown schematically 
in Fig. 25.12 in the one-photon exchange approximation. It is an 'inclusive process', in 
the sense that in the final state, only the momentum of the electron was measured. The 
hadronic state, denoted by X, was not. Therefore, what was measured corresponds to a 
sum over all possible X. This inclusive cross section may be written as 

do- 1  - 1.1.  Ae  (0) < XljA (0)IP > 12  (27)4  34  (k' + Px — k— P), 
drl'clE' 

(25.75) 

where E denotes a sum over all possible final states IX > and an average over the initial 
spins. 4,e (0) = Fie(CyAue(k) is the electron current and L (0) the hadron current. We can 
rewrite the cross section as 

with 

do 1 
v " drl'clE' q4 m ir 

= 2(k Ak'„ + — gp,„k • k') 

1 
= _, < (0) ix >< xiyv (0) ip > (2n-) 3  8 4  (k' + Px — k— P) 

= 
 f

4
e' < put, (x)y, (0) ip > 

47- 

(25.76) 

(25.77) 

and q = k— k' = Px — P. In computing mw, we have taken into account that the spinors 
ue (k) and ue (k') satisfy the free Dirac equation but we have put me  = 0. In the last line 
we have omitted the sign showing the average over the spin of the nucleon. Note that 

can be rewritten as 

7  If we use a hydrogen target we obtain the scattering on protons. If we combine the results with those on 
other nuclei, for example deuteron, we can extract the scattering cross section on neutrons. 
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d 4  x wp,„ = f ciqx < PiUtA(x),I(0)11P > 

d4x 
TA v = f e-14x  < PITUlt; (x)y,(0))1P > . 

(25.78) 

In replacing the matrix element of the product of the two currents with that of their 
commutator, we have added a term proportional to < piy„(o)4(x)ip >. It is easy to 
see that this term gives a vanishing contribution. Indeed, the intermediate states In > 
which are liable to contribute must have the quantum numbers of the target nucleon 
and an energy En  equal to MN  - q°. But q°  is positive and there are no hadronic states 
with the quantum numbers of a nucleon and with energy smaller than the nucleon mass. 
The relation (25.78) is an example of the optical theorem; it states that Wnn  equals the 
imaginary part of the forward Compton amplitude of a virtual photon with mass q2. 

Taking into account the conservation of the electromagnetic current as well as invari-
ance under parity (see Problem 25.10 for parity violating processes), we can write the 
most general form of Wn, as 

1 ( q • P\ q • P\ qttqv Ty/  
1  + Witv = -(gi'v -  2 ) 13/' q2 ) .131)  qv  q2 ) W2  (25.79) 

with W1,2  two scalar functions which can depend only on v = 2q • P and q2. We can 
choose two dimensionless variables, x = Q2/v and /14/2v/Q2, with Q2  = -q2. After trivial 
rescaling it has become customary to define two dimensionless functions F1  = MN  W1  
and F2  = V W2/MN, called structure functions. 

The surprising result of the SLAG experiment was that when both v and Q2  become 
large with fixed ratio x, these structure functions were, to a good approximation, func-
tions only of x. Here 'large' means large compared to the nucleon mass. This property 
became known as scale invariance; changing the energy scale of the experiment, Q2  and 
v with x fixed, does not change the cross section. 

This result is very interesting because it is very easy to understand it using a naive 
and wrong reasoning. When Q2  —> oo with fixed x, the second variable /14/2v/Q2  goes to 
0. Naively, a function F(x, /14/2v/Q2) can be approximated by 

F(x,M12v1Q2) = F(x,0) M
2 

Q
N _ F(1) ( x30)  
2 (25.80) 

where F(1)  is the first derivative of F with respect to /14/2v/Q2  keeping x fixed. So we 
expect to be left with only the x dependence. This argument expresses the intuitive idea 
that at very high energies and momentum transfers, the masses are unimportant and 
the theory exhibits scale invariance. Feynman had even built a simple model which had 
this scale behaviour. Let us assume that the target nucleon is made out of elementary 
constituents which interact with the incident photon as point-like particles. We will call 
them collectively partons. If we neglect all interactions among the partons, we can easily 
reproduce this scaling property. The trouble, of course, is that the assumption of no 
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interaction is meaningless. The partons cannot be free and still bind strongly to form 
a nucleon. Nevertheless, it was such a schizophrenic behaviour that was indicated by 
the data. The partons were almost free when probed by a virtual photon in the deep 
inelastic region and still very strongly bound in ordinary hadronic experiments. The 
answer was obtained by using the Callan—Symanzik equation obtained in section 17.4, 
which is the correct form of the scale invariance Ward identity. We saw that there is a 
class of theories, those we called asymptotically free, which have precisely this property, 
i.e. the effective strength of the interaction may be large at low energies, but it goes to 0 
at high energies. We learnt that only pure non-Abelian gauge theories are asymptotically 
free. If we add any other pieces this property is lost. Such is the case, for example, 
for the gauge theory of the standard electroweak model. The coupling constants g' for 
the U(1) piece of the gauge group, G, for the Yukawa terms, and X for the scalar field 
self-coupling, all become large in the deep Euclidean region. Since at higher orders the 
a-functions mix the evolutions of the coupling constants, asymptotic freedom is entirely 
lost. 

The message of this theorem is clear. If we want to understand the success of the 
naïve parton model in a quantum field theory language, we must assume that strong 
interactions are described by an unbroken non-Abelian gauge theory. In the deep 
inelastic region asymptotic freedom has already set in and the effective strength of 
strong interactions has become small. At small momentum transfers, on the other 
hand, where most of the data of hadronic reactions come from, Eq. (19.5) shows that 
the effective coupling constant increases. We enter the strong coupling regime and 
perturbation theory breaks down. 

25.4.2 Quantum Chromodynamics 

In principle, there are several ways to realise a non-Abelian gauge theory for strong inter-
actions, but, in practice, if we assume the standard quark model with fractional electric 
charges and three colours, there is one natural scheme. The quark fields can be written 
as a matrix with f rows and c columns, where f and c denote the number of flavours 
and colours, respectively. In the usual quark model f = 6 and c = 3. Therefore, there 
is a natural non-Abelian group SU(6) 0 SU(3). The SU(6) piece mixes quark fields 
having the same colour and different flavours, while the SU(3) piece does the opposite, 
mixes colours and leaves flavours unchanged. We know experimentally that the flavour 
group is badly broken because the quark masses are spread over a very wide range and 
there exist no massless vector bosons with flavour quantum numbers. As we explained 
already, a spontaneous breaking destroys asymptotic freedom and we know that an expli-
cit breaking is incompatible with renormalisability. This leaves the colour group SU(3) 
as the natural choice. The resulting theory is called quantum chromodynamics, or QCD.8  
It has eight (32 -1) massless gauge bosons, which we call gluons. For massless quarks the 
Lagrangian density is given by 

8  We follow the presentation of D. Gross, 'Applications of the Renormalization Group to High-Energy 
Physics', in Les Houches 1975, Proceedings, Methods in Field Theory (North-Holland/World Scientific, 1976). 



684 Fundamental Interactions 

1 6 3 

EQCD 2 
= --Trgp,,Pav  E E 4f  

f=1 ij=1 

(25.81) 

The field strength can be written in terms of the eight gluon gauge fields GA" (x) 
a = 1,...,8 as 

with 

yµv = aµ yv — Ovg — igs[g GI] 

8 
(x) = E GA" (x)e 

a=1 

(25.82) 

(25.83) 

and X" the eight 3 x 3 traceless Gell—Mann matrices. gs  is the strong interaction coupling 
constant. The covariant derivative DA  is a 3 x 3 matrix given by 

DA  = + law (25.84) 

The 1-loop a-function of this theory receives two contributions. The first comes 
from the non-Abelian self-coupling among the vector bosons, including the Faddeev-
Popov ghosts, and it is negative, as expected. The second comes from the diagrams with 
one fermion loop. Since each flavour contributes independently, the result is propor-
tional to Nf, the total number of flavours. They have exactly the same structure as the 
vacuum polarisation term in quantum electrodynamics, so they give a positive contri-
bution to the a-function. For a general SU(N) group with fermions in the fundamental 
representation, the result is 

P(gs) = 
e ( 11 

N 
 2 

NI
) = —bogs 

(47)2  3 3 ) 
(25.85) 

We see that for SU (3), we still have asymptotic freedom, provided Nf  < 17. Following 
the analysis of section 19.2, we conclude that the effective strength of the interaction 
in the deep Euclidean region will be given by the running coupling constant ks, solution 
of the equation 

oks  
t = P(gs), 

at 
(25.86) 

which, for t large enough, may become sufficiently small for perturbation theory to be 
applicable. Indeed, solving (25.86) with p given by (25.85), we find that 

2 
k2 (t) =  (25.87) 

1 + 2b0g2t' 



1 as(Q2) 
= 4n-  bo  ln Q2 /A2  

(25.89) 
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where the momenta are scaled according to p, —> pp, and t =lnp. As long as b0  
remains positive, i.e. Nf  < 17, the denominator does not vanish. For large p k goes to 0 
logarithmically. As in quantum electrodynamics, it is customary to define as  = g2/4n. If 
Q denotes the typical momentum which grows large and µ the initial subtraction point 
where p = 1, we have 2t =lnQ2/µ2  and the relation (25.87) can be written as 

as(Q2) =
as(A2) (25.88) 

1 + 4n-  boas(µ2) ln Q2 /p.,2  • 

We introduce a parameter A with the dimensions of a mass through the relation 
ln A2  = In 11,2  - [4n- boas  (µ2)]-1  and rewrite (25.88) as 

in which all reference to the initial value of the coupling constant as  (µ,2) has disappeared 
in favour of a scale parameter A. It shows clearly the behaviour of the effective coupling 
constant. At scales Q2  much larger than A, as (Q2) decreases according to the property 
of asymptotic freedom. On the other hand, when Q2  decreases, as(Q2) increases and 
it diverges when Q = A. Of course, the perturbation theory on which this analysis is 
based cannot be trusted when as  becomes large but we expect this equation to describe 
the behaviour of the effective strength of the theory for Q2  > A2. Figure 25.13 shows a 
comparison with the available data. The agreement between theory and experiment is 
impressive. 

What about the region Q2  < A2? Perturbation theory breaks down, in particular 
because (25.81) predicts the existence of asymptotic states corresponding to massless 
quarks and gluons. None of them have ever been seen in hadronic collisions. We get out 
of this difficulty by assuming that this breakdown of perturbation is not only quantitative, 
but also qualitative, in the sense that even the space of states is not correctly described 
by it. We have previously called this property 'confinement' and argued that only colour 
singlet states appear as free particles. In the absence of a real proof of this property, we 
will only try to explain this concept a bit further. 

Let us go back to quantum electrodynamics. Consider an electron and a positron, 
created at point x0  and pulled a distance L apart. For large L the electric field between 
them falls like L-2  because the field lines are spread over all space. Imagine that we 
had a way to confine the electric field lines in a thin tube starting at the position 
of the electron and ending at that of the positron. The field would remain con-
stant, independent of L, and we would need an infinite amount of energy to separate 
the two particles. The QED vacuum does not have this property and, therefore, in 
physics electric charges are not confined. The closest we can think of is a perfect 
superconductor, except that it is not electric but magnetic lines that would form a 
thin tube. If magnetic monopoles exist, they would be confined in a superconducting 
medium. 
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Figure 25.13 The evolution of the QCD effective coupling 
constant and comparison with experimental measurements. The 
theoretical precision with which as  has been extracted from the data 
is indicated in parentheses: NLO means 'next-to-leading order', 
NNLO 'next-to-next-to-leading order', etc. The width of the line 
gives the QCD prediction including the theoretical uncertainties. 
Experimentally, the most precise determination of as  comes from 
LEP measurements on the Z0  mass. The lowest energy point, which 
gives a very significant contribution to the overall precision, comes 
from an accurate measurement of the r hadronic decays. The LHC 
collaborations have recently presented data extending the Q range to 
1 TeV. They are included in the graph (C) CERN, CMS 
collaboration). 

What we need is to show that QCD vacuum confines the colour electric lines. K. 
Wilson gave a simple criterion for such confinement. Consider, for QCD, the analogue 
of the Bohm—Aharonov phase along a closed path. 

W [C] = Tr [P exp (igs  deg, (x))] . (25.90) 

Here g, (x) is the 3 x 3 matrix valued gluon field and the integral is taken along C, a 
closed path in space—time. The symbol P denotes a particular ordering, which we will 
call path ordering. This is necessary because the field is matrix valued and the matrices 
in different points do not commute. A simple ordering choice is to parametrise the path 
C in terms of a parameter s, 0 < s < 1, and decide to place the matrices with the smaller 
value of s to the left. For a line along the time axis, this convention coincides with the time 
ordering we introduced earlier. Equation (25.90) defines the operator W as a functional 
of the path. It is easy to show (see Problem 25.11) that, after taking the trace, it is gauge 
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invariant. In fact, people have argued that all gauge invariant quantities can be expressed 
in terms of such Wilson loops, but we will not develop this point here. 

We do not know how to compute a Wilson loop for large paths because, at large 
separations, gs  becomes large and perturbation theory does not apply. Wilson gave a 
prescription of how to evaluate the vacuum expectation value of W numerically by 
approximating the continuum space-time by a four-dimensional lattice. What is rel-
atively simple to prove is that this quantity offers a criterion for confinement. It can be 
expressed as 

CKL(C)  no confinement 
< W[C] >o  — 

CK' I(C)  confinement. 
(25.91) 

Here L(C) denotes the length of the perimeter of C and E (C) the area enclosed by it. 
K and K' are constants. In other words, the behaviour of the vacuum expectation value 
of a Wilson loop for large paths, area or length law, determines the phase of the theory, 
confining or not. 

A simple argument in favour of (25.91) is the following. Let us consider again the 
pair creation process we introduced previously. We assume that at time -T/2 a quark-
antiquark pair is created at the point x = 0 and then pulled a distance L apart. Let us 
call V (L) the resulting potential energy. We let them stay at the points ±L/2 for time T 
and then they come together again and annihilate. If the quarks are very heavy, we can 
consider that during the time T they act as external sources (x) given by 

joa  (X) = 804e [83  (X + 33  (X (25.92) 

 

where A are the colour SU(3) matrices. When T becomes very large the process is just 
the vacuum-to-vacuum amplitude in the presence of the sources: 

f  DUe(sE+f Ad4x) 
< 010 > = 

f D UesE 
_< e1 >. (25.93) 

In Euclidean space this amplitude is given by e[E0(J)-E0]T  where E0  (j) and ED  are 
the ground state energies in the presence and absence of the source, respectively. The 
difference is precisely the potential energy V. On the other hand, with the sources given 
by (25.92), we can choose a gauge in which the right-hand side of (25.93) is proportional 
to a Wilson loop spanned by T and L. We thus obtain the relation 

1 
V (L) lim —ln < W[C] > . 

T-*oo T 
(25.94) 

Since the area of the loop is LT, we see that if we have an area law, the potential is 
linear in L and we have a constant confining force, while if we have a length law it goes 
like constant + °(1IL). The force falls like 1/L2  and the charges are free. We will see in 
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a later section how this conclusion is affected by the presence of dynamical quarks. It is 
customary to introduce the quantity 

= lim V (L) o 
L-*oo L 

(25.95) 

which, for historical reasons, it is called the string tension. The lattice simulations of 
quantum chromodynamics performed so far, admittedly at rather small lattices, support 
the confinement hypothesis. 

In writing (25.81), we left the flavour group SU(6) as a global symmetry. In fact, 
(25.81) with massless quarks has a much larger flavour symmetry, namely U(6) 0 U(6) 
because we can perform U(6) rotations independently to the left and right components 
of the fermion fields. Since the zero-mass approximation cannot be justified for all quark 
flavours, we expect at least part of this symmetry to be badly broken. It is instructive to 
see the fate of the various pieces. 

The U(1) vector symmetry, associated with a common phase change of all quark fla-
vours, right and left, remains as an exact symmetry and corresponds to the conservation 
of baryon number. The axial U(1) part (opposite phase changes for right and left fields) 
is expected to be broken by quantum effects, the same way that we found the anomalous 
conservation law of the axial current in quantum electrodynamics. We will come back to 
this point at the end of this section. 

Let us come now to the SU(6) 0 SU(6) part. The massless approximation is very 
good for u and d, questionable for s, and meaningless for all higher quark flavours.9  If 
it were not for the weak interactions, we would still have the conservation of the vector 
currents which correspond to the diagonal generators of vector SU(6) describing the 
separate conservation of each quark species. But weak interactions break these symmet-
ries and cause the decay of strange, charm, b— and t— hadrons. We are thus left with 
SU(2) 0 SU(2), which, if our theory is right, must be a good approximate symmetry 
of the real hadronic world. It is precisely the symmetry we studied in section 15.2.4. 
The diagonal subgroup of this symmetry is vector SU(2) and corresponds to the well-
known isospin symmetry of strong interactions. Indeed, all states, hadrons as well as 
nuclear levels, can be classified according to SU(2) representations with very small mass 
splittings among the members of an isospin multiplet. For example, the proton—neutron 
mass difference is measured to be (mn  — mp)/(mn  + mp) — 7 x 10-4. Similarly, hadronic 
processes can be described by isospin invariant amplitudes. 

What about the axial part of SU(2) 0 SU(2)? At first sight there is no such symmetry 
in the spectrum of hadron states. The nucleon does not have an almost degenerate part-
ner with opposite parity. Could nevertheless the axial currents be still conserved? A 
physical process involving the matrix elements of this current is the decay of the charged 
pion: Jr 1  —> /1  + I)/  (c)/), where 1 stands for e or pt. In units of the W mass, it is a very low 

9  Naturally, the validity of this statement depends on the energy scale we are considering. At extremely 
high energies, much higher than 100 GeV, even the heavy quark flavours can be considered as approximately 
massless. We will encounter some theoretical speculations along these lines in the next chapter. 
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momentum transfer process and, as we explained before, we can use the effective Fermi 
currentx current theory. The decay amplitude is given by 

1 = < 1(ki), v 02)17-1F (0)1n-  (q) > 

= — 1, villA(0)10 > Olhx(0)In- (q) > 
(25.96) 

2  
=—

G 
 Pv(k2)YA(1  + y5)v (ki)] < OlhA  (0)17 (q) >, 

where HF is the Fermi interaction Hamiltonian given in (25.1), 11(k1 ), v (k2) > is the 
state with a charged lepton 1 with momentum k1  and the associated neutrino with mo-
mentum k2, and In-  (q) > is the one-pion state with momentum q. u and v are the Dirac 
spinors for the leptons. Since the pion has intrinsic parity -1, only the axial part of the 
hadronic current contributes to the decay. The most general form of this matrix element, 
consistent with Lorentz invariance, is 

< Olhx(0)17(q) >=< 01AA (0)17(q) >= .f,  qA (25.97) 

AA  denotes the axial part of the hadronic current and f, is a constant whose value is 
determined by the observed pion decay rate. Multiplying both sides of (25.97) by qx and 
taking into account that q2  = in!, we obtain the desired result 

oia AAA (o)in- (q) > = if, in!, (25.98) 

which reminds us of the P.C.A.C. relation we found in section 15.2.4. Two conclusions 
can be drawn from this equation. First the axial current cannot be exactly conserved, 
since this would imply a stable and/or massless pion. Second, the conservation could 
be approximate, valid only at the limit of vanishing pion mass. We recall that, exper- 
imentally, in, 140 MeV, a very low value in the scale of hadron masses, so this 
approximation may be reasonable. 

If this partial conservation of the axial hadronic current is indeed an approximate 
symmetry of the strong interactions, we must explain why we see no trace of it in the 
particle spectra. Here the analysis we made in Chapter 15 will be very useful. We learnt 
that a symmetry of the equations of motion may not appear as a symmetry of the solu-
tion. We called this phenomenon 'spontaneous symmetry breaking' and, for a global 
symmetry, we argued that it is accompanied by the appearance of massless particles, the 
so-called Goldstone particles, which have the quantum numbers of the divergence of 
the corresponding current. In the study of the a-model of sections 15.2.4 and 15.2.5 we 
saw a model which exhibits this phenomenon of partial conservation of the axial current. 
Since in SU (2)0 SU (2) we have a triplet of axial currents, we expect a triplet of pseudo-
scalar Goldstone bosons. We conclude that, at least as far as its symmetry properties, the 
Lagrangian (25.81) can provide an approximate description of the dynamics of strong 
interactions, provided we assume that the chiral SU(f) 0 SU(f) symmetry is spontan-
eously broken to its diagonal vector subgroup SU(f) 0 SU(f) —> SU , vector • Since we 
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do not have the analogue of the a field, we do not know the detailed mechanism which 
is responsible for this breaking. Looking at the spectrum of hadrons we infer that it oc-
curs at an energy scale on the order of a few hundred MeV, where the effective coupling 
strength of QCD is large and perturbation theory does not apply. We believe it to be 
dynamical, triggered by the formation of a scalar quark-anti-quark bound state which 
acquires a non-zero vacuum expectation value. If this is correct, it means that the role 
of the a field is played by a bound state. The observable signal of this mechanism is the 
appearance of almost massless pseudoscalar bosons. They are the Goldstone bosons of 
the spontaneous symmetry breaking. They are not exactly massless because the original 
symmetry was only approximate. Lattice computations support this view but it has also 
several observable consequences. Let us derive the simplest of them, originally due to 
Stephen Adler. We consider the matrix element M, (k) of the axial current between two 
hadronic states la > and l b > . 

d4  xe-ikx 
Mo(k) = f (27)4 < ali4„(x)lb > . (25.99) 

If we compute k"1114„, we obtain the matrix element of the divergence of the axial 
current. We may be tempted to put the result equal to 0, and indeed this would have 
been the case if the symmetry was not spontaneously broken. But Goldstone's theorem 
tells that there exists precisely a massless particle whose quantum numbers are those of 
the divergence of the current. In this case we have an almost Goldstone particle with 
a mass m, close to 0. The resulting one-pion intermediate state, represented by the 
diagram of Fig. 25.14, still dominates the process at low momenta because of the one-
pion propagator. Its contribution is equal to 

f 

mm

2 

le III/2 (k) — k2 7 n" 2 5  M (k) (25.100) , 7  

where J., is the constant introduced in Eq. (25.98) and M,(k) is the amplitude for emis-
sion (or absorption) of a pion of momentum k in the process a —> b + 7 (or a + 7r —> b) . 
In the numerator we have put k2  = m7,2  but the assumption of the pion pole dominance 
is valid only as long as the pion mass is close to 0. For an exactly massless pion, i.e. 
an exactly conserved axial current, the factor in front is just k2/k2. At low momenta we 
obtain the relation 

Figure 25.14 One-pion pole in the matrix element of the divergence of the axial 
current. 
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lim M, (k) — r„.1  lim ki' M,(k). (25.101) 
k->0 - k->0 

The relation (25.101) expresses Adler's condition. The amplitude for emission or 
absorption of a Goldstone particle vanishes at low energy with a term linear in the mo-
mentum of the Goldstone particle. Although we derived it for pions, it is clearly valid 
for any Goldstone particle. The only ingredient we used was the fact that the quantum 
field of the Goldstone particle and the divergence of the corresponding current had ex-
actly the same quantum numbers and we could use the second, appropriately rescaled, 
in place of the first in the reduction formula. 

We can obtain similar low-energy theorems for amplitudes involving any number of 
pions. In Problem 25.12 we derive the Adler—Weisberger relation which relates the low-
energy pion—nucleon scattering amplitude to the weak coupling constant of the axial 
current in nuclear beta-decay. The method is always the same. We write the chiral sym-
metry Ward identity we obtained in Eq. (17.8) and replace the divergence of the axial 
current with the pion field. 

The spontaneous breaking of the chiral symmetry offers an explanation for the had-
ron masses. As we said, the breaking occurs at a scale on the order of the QCD parameter 
A, i.e. a few hundred MeV. Since a nucleon is made out of three quarks, its mass is on 
the order of 3 x A —1 GeV. 

We must make a final remark concerning the axial U(1) symmetry. The conservation 
of the corresponding gauge invariant current is broken by the Adler—Bell—Jackiw anom-
aly, as we explained in section 17.3. Does this settle the question of this symmetry? Not 
completely, because, as we showed in Eq. (17.35), we can add to the gauge invariant 
current the gauge dependent piece G, and obtain a conserved current. Since it is not 
a gauge invariant operator we cannot use it directly in the analogue of Eq. (25.97) to 
create a physical state out of the vacuum. However, in any covariant gauge, we can con-
sider the vacuum expectation value of the time-ordered product of this gauge dependent 
but conserved current with a string of gauge invariant operators, for example appropri-
ate composite operators of quark-anti-quark fields. We can now repeat the procedure 
we used in Chapter 17 and obtain Ward identities because the commutation relations 
between the zero component of the current and the quark fields remain unchanged. 
Then, following the same argument which we presented after Eq. (17.8), we conclude 
that either we have a symmetry relating the Green functions of gauge invariant operators 
or we have a zero-mass pole with the quantum numbers of the divergence of the current. 
The first part of the alternative is excluded by the data because there is no trace of an 
axial symmetry in the spectrum of hadrons. On the other hand, there is no massless, 
or nearly massless pseudoscalar particle with the U(1) quantum numbers, such as an 
isoscalar partner of the pion. In other words, this symmetry does not appear either as a 
manifest or as a spontaneously broken symmetry. This puzzle was known as the miss-
ing Goldstone boson. The only possible answer would be that although a zero-mass pole 
appears in matrix elements of the gauge-dependent current, it does not appear in phys-
ical, gauge invariant, quantities. This is not impossible because, as we have seen, gauge 
theories quantised in a covariant gauge always contain unphysical degrees of freedom, 
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some of which may appear as massless. In a later section we will show that this is indeed 
the case. 

We see that testing the quantitative predictions of quantum chromodynamics against 
experimental results will not be an easy task. We must adopt different strategies accord-
ing to the energy scale we want to probe. In order to use the techniques of perturbation 
theory we have studied so far we must make sure that the running coupling constant ks  
is small and this happens only at large energy scales. On the other hand, at low energies 
the theory becomes strongly interacting and perturbation theory is unreliable. We must 
develop non-perturbative methods, such as the study of phenomenological models, or, 
more directly, computations on a space—time lattice. In the following sections we will 
give very brief presentations of these two methods. 

25.4.3 Quantum Chromodynamics in Perturbation Theory 

In section 19.2 we showed that the knowledge of the 1-loop t3-function allows us to 
compute the effective value of the running coupling constant in the deep Euclidean 
region where all masses can be neglected. We also noted that this is not the region in 
which real experiments are done. Here we want to complete the analysis and bridge the 
gap between theory and experiment. We will first consider the structure functions WZ  
i = 1, 2, appearing in the expression (25.79). 

25.4.3.1 Kinematics 

We start with some kinematics. Since q = k — k', we have q2  = 2EE' (cos 9 — 1), where E 
and E' are the energies of the initial and final electron and 9 is the scattering angle. In the 
deep inelastic region the energy of the incident electron is large, 9 is large; therefore, q2  
is large and negative. However, this does not bring 7,a, of (25.78) in the deep Euclidean 
region because the nucleon is on its mass shell, P2  = Mk, and, furthermore, Ta y is a 
forward scattering amplitude of a virtual photon on the target nucleon, which means 
that the momentum transfer is zero. Looking closer at the kinematics we see that the 
inequality P'2  = (P + q)2  > Mk implies that the physical region for the ratio x = Q2  /v 
is given by 0 < x < 1. Since Ww, is the matrix element of the commutator of two 
current operators, it vanishes when their separation is space-like. Let us choose a frame 
in which the target nucleon is at rest and the z-axis is along the vector q. When we let 
Q2  —> oo keeping x fixed, we have qo = Q2/(2MNx), qz

2 = Q2 + 
q0
2 q02 which implies 

that q+  = qo + qz  — 0(Q2) and q_ = qo — qz  finite. It follows that in the space—time 
integral of Eq. (25.78) the dominant contributions will come from the region in which 
the exponent is stationary; in other words, the region 

x_ = t — z 0 (1/ Q2); x+  = t + z — finite; = x_x+ -> 0. (25.102) 

We thus arrive at the conclusion that in deep inelastic scattering we probe the 
commutator of two current operators near the light cone. 
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25.4.3.2 The Short Distance Expansion 

We start by analysing a simpler situation, that of the corresponding commutator at short 
distances x1  —> 0, i.e. at the tip of the light cone, rather than the entire light cone. This is 
based on the intuitive picture that equal time commutation relations will be simple even 
in presence of interactions. 

Let us consider two local operators A(x) and B(y). In a quantum field theory they 
may be monomials in the fundamental fields and their derivatives. In 1969 Kenneth 
Wilson postulated a simple form for the product A(x)B(y) when the difference x—y goes 
to 0, 

A(x)B(0)1,,„,0 E ci (x).9,  (0), (25.103) 

where the sum extends over the infinite set of all local operators Oz which have the same 
quantum numbers as the product on the left. The C, 's are c-number coefficient functions 
which may be singular when x goes to 0. Two points are important in this expansion. 
First, it is assumed to be an operator equation. The coefficient functions C, do not 
depend on the particular matrix element we may consider.1°  Second, the behaviour of 
C, (x) at the origin can be determined by dimensional analysis. If dA, dB, and di  are the 
dimensions of the operators A, B, and 01, respectively, the coefficient functions C, are 
assumed to behave at short distances, up to logarithmic corrections, as 

ci(x)1
I x' di-dA-dB

, (25.104) 

where Ix' denotes the modulus of x„,. In fact, it is simpler to consider this relation in 
Euclidean space. In Minkowski space we must let x11  go to 0 staying in the interior of the 
light cone in which is positive. Since we will often apply this relation to the matrix 
element of a commutator which vanishes outside the light cone, this is not any important 
restriction. The expansion (25.104) shows that the product of the two operators A and 
B will be dominated at short distances by the operators with the lowest dimension di. In a 
four-dimensional space—time, all canonical fields, as well as the derivative operators, have 
strictly positive dimensions. Therefore, for any cl, we can construct only a finite number 
of local operators Oi. It follows that any product (25.103) will be approximated, with 
any desired accuracy, by a finite number of terms.11  

The validity of this expansion can be verified in quantum field theory order by order 
in perturbation. It is obviously correct for free-field theories. For example, if we consider 

10  This should not be understood as an assumption about the convergence of the expansion (25.103) in a 
strong sense. Although we write it this way, we will only use it inside a Green function and it is under this form 
that we can prove it in perturbation theory, as we will explain shortly. 

II  This statement should be made more precise. For operators made out of free fields the numbers which 
appear in (25.104) are the canonical dimensions. When interactions are included they change according to 
the discussion in section 16.6 on the renormalisation group. These changes induce corrections which are 
formal series in powers of the coupling constant. The assumption is that for small values of the coupling, these 
changes do not induce large deviations from the canonical values. In particular, Id— d"" I << 1 for all operators. 
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a neutral scalar field 0(x), the trivial case to check (25.103) is to look at the vacuum 
expectation value of the product of two fields: 

—1 1 
< 01 T(4)(X)0(0))10 > = iGF(X)Ixt,—>0 472 x2 (25.105) 

As announced, this is a trivial case. Taking the vacuum expectation value has killed 
all but the unit operator on the right-hand side of the expansion (25.103). Since di = 0, 
the singularity is Had we looked at the product T(0 (x)0(0)) we would have found 
an extra term equal to : 02 (0) : whose vacuum expectation value vanishes because of the 
normal ordering. Staying with free fields, we can consider the product of two composite 
operators of the form T(: 42(x) 42(0) :). We have normal ordered the composite 
operators because we are interested in the singularity when x goes to 0 and not in those 
induced by taking the product of two fields at the same point. Using Wick's theorem and 
the singularity of the Feynman propagator function (25.105) we obtain 

1 1 
T(: (x) 42(0) :)xu —>0 =   : 422  (0) : : 040) : (25.106) 82T 4 (x2 i€)2 27-2 (x2 iE) 

in agreement with the expansion (25.103) and the singularity structure given by 
(25.104). 

We can now switch on the interactions and check these relations order by order in 
perturbation. For the scalar theory we can consider a 44  interaction. The simplest case 
is the product of two fields T(0(x)0 (0)). Generalising (25.105) we expect to find the 
unit operator with a singular function 1/x2  and a : 02 (0) : operator with a coefficient 
which has at most a logarithmic singularity of the form ln(lxlm) to some power. The 
unit operator will contribute only to the disconnected part of whichever Green function 
we are considering. Diagrammatically, the expansion is shown in Fig. 25.15 where we 
have considered the matrix element of T(0(x)0(0)) between two states la > and lb >. 
The left-hand side is the matrix element < al T(0(x)0(0))11, > and can be computed 
in perturbation theory using the Feynman rules. The right-hand side represents the 
insertion of the unit operator, which contributes only in the trivial case with la >= lb >, 

: 02 :  

  

• 

 

 

a = b 

Figure 25.15 The diagrammatic representation of the short distance 
expansion of Eq. (25.103). 



A Gauge Theory for Strong Interactions 695 

Figure 25.16 The short distance expansion 
for two operators A and B. 

and the insertion of the composite : 02 (0) : operator which we have studied in section 
16.5.5. At the limit x1  —> 0 it is, indeed, logarithmically divergent and matches the 
divergence on the left-hand side. 

Figure 25.16 generalises this picture for two arbitrary local operators A and B. 
We see immediately that we will need two sorts of counter-terms: our usual ZA  and 

ZB  in order to render well defined the Green functions involving either of these op-
erators and a string of fields. These counter-terms are often matrix valued. However, 
they may be altogether absent if the operators satisfy a conservation equation. In this 
case, as we have shown in Chapter 16, the corresponding anomalous dimensions van-
ish. This is the case of the electromagnetic, or the weak, currents which are exactly, or 
partially, conserved. The second type of counter-term is the one we may need in order 
to render well-defined Green functions involving the product AB and a string of fields. 
We will call this counter-term ZAB  and it may also be matrix valued. It may be present 
even for conserved currents. If A and B are both equal to the electromagnetic current 
'fr yok , simple power counting shows that the only Green function which may become 
divergent is the vacuum expectation value < 01 T .0 (x),7„(0))i0 >. We have computed 
this diagram in Chapter 16. We saw that although it is potentially quadratically diver-
gent if we use a gauge invariant regularisation, such as the dimensional regularisation, 
the result is proportional to (govq2  — qoq,) and it becomes only logarithmically diver-
gent. This counter-term will give a new anomalous dimension yyy but its effect is to 
give a multiplicative factor to the matrix element and, as we will see shortly, it will not 
affect our calculation. Using the formalism we developed in Chapter 16 we can extend 
the proof of the validity of the short-distance expansion (25.103) to all orders. The 
power-counting argument tells us that the singular terms will involve all operators with 
dimensions smaller than or equal to dA  + dB. The detailed proof involves some rather 
complicated combinatorics to show that the coefficients of the singular terms precisely 
match on the right- and left-hand sides of Fig. 25.16. 

25.4.3.3 Light Cone Operator Product Expansion 

In the previous section we studied the short distance singularities for a product of two 
local operators. The expansion was simple because the short distance limit allowed us to 
go to Euclidean space in which x,,,x0  —> 0 implies that x11  —> 0. This is no more true in 
Minkowski space. For the applications we have in mind in the deep inelastic region we 
need the commutator of two current operators with separations in which x,,,x0  —> 0 while 
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the components of x, may remain finite. This changes the expansion (25.103) because 
its basic ingredient was the fact that the building blocks of a composite local operator, 
i.e. powers of the fields or derivative operators, have all positive dimensions. At the light 
cone, however, we can use also powers of xA  which remains finite but has dimension 
equal to -1. Therefore, operators with high dimension will contribute to the expansion 
provided they have a high spin. This yields a light cone operator product expansion of 
the form 

A(x)B(0)Ixide,—>o E (25.107) 
3,2 

where the operators CYJ Ay  are symmetric, traceless tensors of spin equal to J. Dimen-
sional analysis now modifies Eq. (25.104) and tells that the expected behaviour of the 
coefficient functions C(x2) will be given by 

c! (x2 ) x2  -> 0 , xi' :finite (X2) (47"A -dB)I2  • (25.108) 

We see that the relevant quantity now is the difference between the dimension 4 of 
the operator and its spin/. We will call this quantity twist and we conclude that operators 
with the lowest twist dominate. In a scalar field theory the lowest twist operators have 

twist equal to 2 and they are of the form 4) DAi DAy  4). With fermion fields we can 

again construct twist two operators of the form 'cfryA, DA2 . Similarly with gauge 

fields we have the operators GAi, DA2  DAy_ GvAy  . In all these formulae D denotes an 
ordinary, or a covariant, derivative. In quantum chromodynamics we will encounter the 
last two sets of operators where are the quark fields which carry both colour and 
flavour indices and GA, is the gluon field strength which carries only colour indices. 
To give a non-vanishing matrix element between one-nucleon states the colour indices 
should combine to make a colour singlet. The operator with only gluon fields will be 
always flavour singlet while the one having also quark fields can be singlet or non-singlet. 
Since the quarks are assumed to belong to the fundamental representation of SU(Nf), 
the non-singlet piece belongs to the adjoint. We can separate singlet and non-singlet by 
looking at particular combinations of structure functions involving protons or neutrons. 
For example, it is easy to see that the combination F2 - FT1, i.e. the difference of the F2 
structure functions measured in the deep inelastic scattering of electrons off protons and 
neutrons, receives contributions only from the flavour non-singlet operators. 

In perturbation theory we can prove the expansion (25.107) and (25.108) using the 
same techniques as for (25.103) and (25.104), order by order in the coupling constant 
expansion. Here also the underlying assumption, which is common to all perturbation 
theory calculations, is that summing the higher orders will not upset the lower order 
results. In particular, the contribution of operators with higher twist will be suppressed, 
relative to those of twist two, by powers of M2x2, where M is a typical mass in the 
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problem, for example, the nucleon mass in deep inelastic scattering. In the nth or-
der of perturbation theory this power suppression is corrected by lnn(M2x2) and the 
assumption is that these logarithms do not sum up to powers. At any order of per-
turbation theory renormalisation will simply introduce anomalous dimensions for the 
various operators. Here the difference between flavour singlet and non-singlet operators 
becomes important because it implies that the non-singlet operators will be multiplic-
atively renormalised at 1-loop order while we expect to have a mixing between the two 
operators which contribute to the flavour singlet quantities. 

25.4.3.4 Renormalisation Group Equations for the Coefficient Functions 

We saw the important role played by the coefficient functions in the operator product 
expansion. In this section we want to show that they satisfy the same renormalisation 
group, or Callan—Symanzik, equations as the Green functions. 

Let us start with the short distance expansion (25.103). We can consider the right-
and left-hand sides as kernels in an n-point function of the underlying field theory and 
we can transform the expansion to a relation among Green functions involving insertions 
of composite operators: 

To(x)B(0)01(.30-.0n(yn))10 > Ix„,o 

Ei  ci (x) oi T(oimoi Cvi)...on(yn))io > . (25.109) 

To simplify the notation we have written, collectively, 44 to denote all elementary 
fields of the theory. The index k can be used to distinguish among them. For quantum 
chromodynamics they are the gluons and the various quark fields. We assume that the 
underlying field theory is renormalisable and the Green functions appearing in (25.109) 
are renormalised and depend on the coupling constant (or constants) g, the various 
masses which we call M and the parameterµ of the renormalisation scheme we are using. 
In a perturbation expansion of quantum chromodynamics the coefficient functions will 
depend on the quark masses. At very high energies all but the top quark can be assumed 
massless. On the other hand, if we start from a nucleon target, the probability of exciting 
a t — i pair is very small. Therefore, the same asymptotic theorems we used in section 
19.2 allow us to compute the large Q2  behaviour using a massless theory. Let us now 
apply to both sides of (25.109) the renormalisation group differential operator 

2 a a 
= — + p—. ait 2 ag  (25.110) 

Since the Green functions satisfy the renormalisation group equation, we obtain 

E [DC p((3,ni )  = E yA - yB - YAB) r'((3, ) (25.111) 

where yi, yA, and yB are the anomalous dimensions of the operators 0„ A, and B, re-
spectively, and we have simplified the form of the equation by assuming that they do 
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not mix under renormalisation, either among themselves or with other operators in the 
theory. yAB is the anomalous dimension which comes from the counter-term ZAB which 
is often required to make the vacuum expectation value of the product AB well defined. 
The generalisation to more realistic cases is straightforward and amounts to writing a 
matrix equation with matrix-valued anomalous dimensions. 

The important point is that the operator product expansion (25.103) is assumed to be 
an operator equation (although in a weak sense), which implies that the renormalisation 
group equation (25.111) is valid for every Green function r(n) . It follows that the Cz 's 
must satisfy the equation 

[D - yi  + yA + YB YAB] Ci(x, g, it) = O. (25.112) 

In the realistic cases where the operators A and B are conserved, or partially con-
served, currents, we have yA = yB = 0 and yAB is a constant independent of i, so it can 
be absorbed in a multiplicative factor common to all Cz 's. To simplify the notation, we 
will drop it in the following. 

25.4.3.5 Application to Deep Inelastic Scattering 

We are now ready to apply this formalism to the experimental results in deep inelastic 
scattering. We want, in particular, to obtain a detailed description of the observed 
approximate scale invariance of the structure functions. 

We start with a simple toy case in which we use scalar, rather than vector, currents 
which means that W and T have no tensor indices: 

d t̀y 
W(x, /UW2) = f 

427- 
< PIL(Y),,7 (0)]IP > ImT 

d4y 
T(x,MPQ2) = f 4 < PI T(.OU (0)) IP > • 

(25.113) 

W and T are related by a dispersion relation in v with fixed Q2, as we showed in 
section 20, 

T(Q25v) = vs  f di/ v"(v' - v) W(Q25 v') + Ps-i (Q2, v), (25.114) 

where we have assumed that the dispersion relation requires s subtractions. Ps_i (Q2, v) 
is a polynomial of s - 1 degree in v whose coefficients are functions of Q2. The 
integral extends over the discontinuities in v shown in Fig. 25.17. The right-hand 
cut goes from Q2  to oo and corresponds to the intermediate states in the s-channel. 
The left-hand cut goes from -Q2  to -oo and corresponds to the u-channel inter-
mediate states. But T is a forward scattering amplitude and (25.113) shows that 
it is symmetric when q goes into -q, i.e. T(Q2, v) = T(Q2,-v). Indeed, changing 
the sign of q can be absorbed into changing the sign of y in the integral. Because 
of translational invariance the matrix element of the time-ordered product satisfies 
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Q2 _Q2 

Figure 25.17 The cut v-plane. 

< PI T(3.  (-y),7 (0)) I P > = < PIT ( (0),7 (y)) I P > = < PIT ( (y),7 (0)) I P >.12  The data sug-
gest that for large Q2  with x fixed, both W and T satisfy approximate scale invariance, 
which implies that the polynomial Ps_i satisfies Ps_i (Q2, v) —> Ps_1 (x-1). Under this 
assumption, the dispersion relation (25.114) becomes a dispersion relation in x 

+1 xis-1 dx/ 
T(Q2

5 
 = xl-s / 

W(Q25 + Ps-1 (X-1)5 
1 - X 

(25.115) 

where again, up to a factor of 2, the integral can be restricted to positive x. At large Q2  
T is dominated by the light cone, so we can use the expansion (25.107), 

T —> ~iJ f C! (x2) < PION> 

= j(2i)-7 (Pq)-7  (
2, 2 ).7  [f d4xe-i9x C! (x2)] Ott 

= Ei  x--ra1(Q2)0iJ, 

where we have defined 

y
a.7 (Q2)  _ 0,Q2).7  (

42 
 f d4xe iqx (x2)  

and 

< PIOU  kty  IP > = 01' 7 [P ' ..P - trace terms]. •  

(25.116) 

(25.117) 

(25.118) 

The trace terms are subtracted to make the operator a pure spin J. They contain 
terms of the form P PAj g At'at = Alk, so they are sub-dominant in the deep inelastic 
region. Combining with the dispersion relation (25.115) and expanding in powers of 
the scale variable x, we finally obtain that 

12  For the physical case of vector currents this property implies that T„ (Q2, v) = T (Q2  ,-v). 
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dx,c3-1 w(Q2,x) E L-1(Q2)  00;  ,7 > s. (25.119) 

Because of the subtractions, the first s terms are undetermined but, for J > s, the 
moments of the structure function, which can be extracted from the data, determine the 
Fourier transform of the corresponding coefficient functions in the light cone expansion. 
00  are just numerical coefficients. They are given by the matrix elements of the local 
operators 00(0) between one-nucleon states. They depend on the nucleon mass but not 
on Q2. All dependence on Q2  is contained in the coefficient functions C--7  (Q2). Thus, 
the operator product expansion which gave the relation (25.119) achieves our goal: it 
factors the short distance properties which can be studied by perturbation theory and 
the large distance ones which give only the unknown numerical coefficients 00. The 
experimental results on a particular value of Q2  can be used to fit these numbers and then 
the renormalisation group and perturbation theory will determine the Q2  dependence of 
the structure functions. 

Extending this analysis to the real world of deep inelastic scattering requires only 
technical changes. Some are simplifications and some are complications. The simplific-
ations come from the fact that the electromagnetic current of Eq. (25.78), or the weak 
current we saw in Section 25.3.1, are conserved, or partially conserved. According to 
our discussion in Chapter 17 their anomalous dimensions vanish. The same is true for 
any operator 00  which satisfies a conservation equation. This is the case for the energy-
momentum tensor which will appear on the right-hand side of the light cone expansion 
for y = 2. The complications are of two kinds. The first comes from the presence of the 
two tensor indices which means that we must write the dispersion relations separately 
for every structure function F1. The second comes from the mixing of the flavour sing-
let operators as a result of renormalisation which means that the anomalous dimensions 
which determine the scaling properties of the corresponding coefficient functions are 
matrix valued. 

Putting all this together we obtain the Q2  dependence of the moments of the structure 
functions. A typical behaviour, for a non-singlet combination, is given by 

My(Q2) = fol dx,07-2F(Q2,x) = Ei  q(Q2/µ2,g) Oiy 

= Ei  a-7(1,k(o) exp[— fot  y7 (k(e)c110,y, (25.120) 

where µ is some reference scale which must be already at the perturbative regime of 
quantum chromodynamics. In practice a scale of a few GeV is sufficient. For the scale 
parameter t we take 2t =ln(Q2/µ2) and the anomalous dimension of the operator Oij is 
given, at 1-loop order, by K7  (g2) = eg2. We took into account the fact that the anomal-
ous dimensions of the currents vanish. When Q2  goes to infinity the effective coupling 
constant k(t) goes to 0, as shown in Eq. (25.87). It follows that at this limit the moment 
My(Q2) behaves like 
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MI( Q2  ) I Q2 _> 00  E ( n 
n2 )  -(r7/47  bo)

(25.121) 

with K7 a constant to be determined by the data at the reference scale µ. The logarithmic 
factor is the correction to the free-field result. 

It is also useful to rewrite Eq. (25.120) as an evolution equation. We have 

Q2 
aQ

a 2A43(Q2) Ei  pt2 
ap,2 

 (Q2 I it2 

= Ei  [(p (g) - y;7  (g)) (Q21 112  , g)]Oiy. (25.122) 

In QCD p (g) starts as g3  (see Eq. (25.85)), and the first-order corrections to L`! are 
of order g2. It follows that the term proportional to the p function is of order g4  and 
can be dropped if we are interested only at the 1-loop corrections. At 1 loop and for a 
non-singlet combination of structure functions, we have only one operator for a given 
spin and this allows us to write the solution of (25.122) in a very simple form:13  

[ a 2) y/47 bo 
( Q2) 114

,
( 2) 

as 
 (Q2) (25.123) 

By inverse Mellin transformation we can reconstruct the structure functions them-
selves from their moments and compare with the measurements at any value Q2 > µ2  

Alternatively, we can extract /141(Q2) from F. Note that these operations require the 
precise measurement of F at small x, especially for large J. On the other hand, in order 
to reach small x keeping Q2  large we need very high energies. In recent years a ded-
icated electron—proton (or positron—proton) collider (HERA) at DESY near Hamburg 
has provided high-quality measurements fully confirming quantum chromodynamics in 
deep inelastic scattering. 

25.4.3.6 Connection with the Parton Model Formalism. The A.PD.G.L. 
(Altarelli—Parisi, Dokshitzer—Gribov—Lipatov) Equations 

In the previous sections we developed two pictures to describe the composite struc-
ture of hadrons. The first, the parton model, is intuitively very simple. Hadrons, such 
as protons or neutrons, are made out of elementary constituents, the partons. At very 
high energies, in the frame in which the hadron moves very fast, it is seen by the vir-
tual photon as a thin pancake because of Lorentz contraction. The basic assumption 
is that interactions among partons, which in this frame involve exchange forces in the 

13  For the flavour singlet combinations we must compute the matrix of the anomalous dimensions. At 
higher orders the computations become more complicated because the operators 0 iy mix also with gauge 
non-invariant operators, such as those made out of the Faddeev-Popov ghost fields. 
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transverse plane, are very weak. So partons interact with the incident photon as quasi-
free particles. The strong point of this picture is its simplicity. Among the weak points 
we can mention are the lack of a theoretical basis for the free-particle assumption, the 
absence of a systematic way to estimate the corrections to this `zero-order' approxima-
tion, and the difficulty to understand why partons are not kicked out of the hadron after 
they are hit by the virtual photon. The second picture is based on the property of non-
Abelian gauge theories to be asymptotically free. It identifies the partons with quarks, 
anti-quarks, and gluons. It explains the quasi-free particle behaviour and offers a con-
sistent expansion scheme to compute the logarithmic corrections to scale invariance. 
Finally, through the property of the effective coupling constant to increase with dis-
tance, it provides for an intuitive, albeit neither rigorous nor quantitative, understanding 
of confinement. However, all this is achieved at the price of using a rather heavy form-
alism based on the operator product expansion in which the simple intuitive picture of 
the photon interacting with individual point-like partons is lost. Here we want to com-
bine the two pictures and obtain a generalised parton model which includes the QCD 
corrections. 

We start with a more precise formulation of the parton picture. Let k1' denote the 
four-momentum of the parton i in the rest frame of the nucleon. We have 

= Ek (E k°, 0) = (MN, 0). (25.124) 

We can perform a Lorentz boost in the z direction with parameter w = 1 i+vz and i-vz  
z  define P+ = P°d-P  and  P-  = P°  - Pz . Under the boost the momenta become 2 

Piz (13+ p-5  pi) = (1114ew, Me' 5 01) 

—> (k k k)-) = (leiF  ew kT k)-) 5 (25.125) 

where _L denotes the momentum in the x - y plane. The parton picture becomes simple 
in the infinite momentum frame, w —> oo. The key concept of the model is the parton 
distribution function fi (z) defined as the probability to find inside the nucleon a parton 
of type i carrying a fraction z of the nucleon's longitudinal momentum. In the limit of 
large w we have 

leL  k+  MN  
z = —pL p—+ °( —p+) ' (25.126) 

The basic assumptions are that 0 < z < 1; in other words, at large w there are no par-
tons going in the opposite direction and, furthermore, the parton transverse momenta 
kiL  are bounded. The process is presented diagrammatically in Fig. 25.18. The photon-
nucleon interaction is presented as the incoherent sum of photon-parton interactions. 
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hadrons 
Figure 25.18 The photon—nucleon 
interaction as the incoherent sum of 
photon—parton interactions. 

In quantum chromodynamics the partons are the various quark flavours with distribu-
tion functions u(z), d(z), s(z), etc., the anti-quarks it(z), etc., and the gluons Gi (z). In 
the usual quark model with fractionally charged quarks we obtain immediately the sum 
rules 

E  f dz z [qi(z) + .41(z) + Gi(z)] = 1 
o 

(25.127) 

fo l  dz [u(z) — u(z)] = 2 

f l  
o 
 dz [d(z) — d(z)] = 1 

fo

i 
dz [s(z) —3(z)] = 0 

fo l  dz [c(z) — 4z)] = 0 (25.128) 

etc. 

E f dz [q(z) —4(z)] = 3, (25.129) 

where we have called collectively q(z) the distribution function of any quark species. 
The first one (25.127) expresses the conservation of the total momentum, those of Eqs. 
(25.128) refer to a proton target and express the conservation of the electric charge, 
and the last one (25.129) express that of the baryon number. The notation is slightly 
misleading. The range of the index i in the summation in (25.127) is not the same in the 
three terms. 

We can now compute the diagram of Fig. 25.18. The gluons are neutral, so only 
quarks and anti-quarks interact with the incident virtual photon, 

(-)2 
Wµ» (x, Q2)  = E f 1 

z  
_dz

2k 
q(z) W(q)  Q2  

, • q' 
(25.130) 
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where W(qto))  is given by the same expression as in (25.78) with a quark, or anti-quark, 
with momentum kg  replacing the nucleon. The explicit 1/z factor takes into account 
the difference in the incident fluxes between a nucleon of momentum P and a quark of 
momentum k. W(0  is the imaginary part of the forward Compton scattering amplitude A v 
of a virtual photon of mass -Q2  on a free on-shell quark (or anti-quark), satisfying the 
free Dirac equation. So, apart from kinematic factors, we have 

w(q) E ii(kq)yA-Emq)yvu(kq) 
spins Av (q+kq)2—mi+i€ 

8(x - z)Tr [1<gyi,(¢l+ j<q) . (25.131) 

For simplicity, we will neglect the quark masses since the probability of finding inside 
the nucleon a very heavy quark flavour is negligible. Replacing (25.131) in (25.130) and 
using (25.78), we finally obtain that 

Fl (x)  = qi(x); F2  (X) = 2 E qi(x), (25.132) 

where ei  is the charge of the ith quark. The scaling property of the parton model is 
manifest and, furthermore, we obtain an identity, the Callan-Gross relation 

2 x (x) = F2  (X), (25.133) 

which translates the fact that the charged partons have spin 1/2. 
Obviously the parton model can be re-derived in the language of field theory by using 

a free quark model. The proton is a collection of three quarks and the electromagnetic 
current is given by the sum of terms eggyAq. Using free-field theory to compute the 
coefficient functions in the light cone expansion of the product of two currents, we im-
mediately obtain the parton model results as expressed in the relations (25.132) (see 
Problem 25.13). On the other hand, we saw in the previous section that taking into ac-
count the leading QCD corrections introduces a t dependence of the structure functions 
Fi  which can be computed by inverse Mellin transformation starting from the moments 
given in Eqs. (25.121). Therefore, we can define quark and gluon distribution functions 
q(z, t), 4(z, t), and G(z, t) such that they reproduce in a parton model language the QCD 
results. Staying with the non-singlet combinations, we write 

My (t) = f dx x" [q(x, t) - q(x, t)]. (25.134) 

Following APDGL, we note that the 1-loop evolution equations (25.123) can be re-
produced if we postulate that the quark distribution functions satisfy a master equation 
of the form 

dq(x, t) 
dt 

a s(t) f dy 
— q(y, t)P (xl y); f dz z1-1P(z) = ry (25.135) 

x 
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or, equivalently, 

q(x, t) + dq(x, t) = f dyf 
i 
 dzS(zy,  — x)q(y, t) p(z _ 1) + 

a s  (t) 
_p(z)dt] . (25.136) 

o o 

This equation incorporates the 1-loop QCD corrections but it admits a parton model 
interpretation: q(y, t) is the probability of finding inside the nucleon a quark with a frac-
tion y of the total longitudinal momentum. This quark can radiate a gluon and reduce 
its part of the longitudinal momentum from y to x. Thus, the quantity inside the square 
bracket 3 (z — 1) + ÷`,) P(z) dt can be interpreted as the probability density of finding in-
side a quark another quark with fraction z of the parent momentum. The second of the 
equations (25.135) shows that the moments of this probability density are given by the 
1-loop anomalous dimensions of the lowest twist operators in the light cone expansion. 

The generalisation to cover also the singlet case is now straightforward. We will 
need the gluon distribution function G(z, t) and write a system of two coupled 
integro-differential equations of the form 

2f 
dqi(x, t) _ as(t) f 

Y

dy x-- 

dt
, 

 — .
4.r x _, qj(y, t)Pgiv (xly) + G(y, t)PgiG(xly) (25.137) 

.Y j=1  

dG(x, t) _ a s(t) 11  dy x--, 
2f  CY, t)PG • (xIY) + G(y, t)PGG(xl Y) , (25.138) 

dt — 47 i x Y j=1 

where the summation goes up to twice the number of flavours because we have used 
q for both quarks and anti-quarks. Concerning the probability functions we note that 
gluons are flavour singlets; therefore, we must have Pqz qj  = 81iPqq. Similarly, in the limit 
of exact flavour symmetry, i.e. in the limit of vanishing quark masses, PqiG  = PqG  and 
PGq, = PGq. In this case the APDGL equations (25.137) and (25.138) take the simpler 
form 

dqi(x, t) = a JO dy 

dt 4n x 

 —
y 
 [qj(y, t)Pqq (xly) + G(y, t)PqG(xIY)] (25.139) 

(25.140) 
dG(x, t) a s(t) 11  dy zr 

qj (y, t)PGq (xly) + G(Y, t)PGG(x1Y) 
dt x Y j=i 

  

The probability density is now a matrix and, again, its moments are given by the 
matrix of the anomalous dimensions. 

Equations (25.139) and (25.140), although formulated using the concepts of the 
parton model, are strictly equivalent to the 1-loop QCD equations we derived in the 
previous section. The connection with the operator product expansion is provided by 
the relation among the moments of the probability density and the anomalous dimen-
sions of the lowest twist operators. Their advantage is that they give a simple picture of 
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3273a21m11 (Q2) 
a — (25.142) 
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the process. At large Q2  the scattering of the virtual photon with the charged constitu-
ents takes place at a time scale which is much shorter than the characteristic time of the 
interactions among the constituents. This is manifest in the infinite momentum frame. 
Once this basic property is understood, it is easy to apply quantum chromodynamics to 
processes other than the deep inelastic lepton—nucleon scattering. 

Obviously, the equivalence between the APDGL equations and QCD is not limited to 
the 1-loop approximation.14  We can generalise Eqs. (25.139) and (25.140) by including 
the evolution of the effective coupling constant and obtain an effective parton model 
which includes all logarithmic corrections predicted by quantum chromodynamics. 

25.4.3.7 Application to Other Processes 

The experiments of deep inelastic scattering of leptons (electrons, muons, or neutri-
nos) on nucleons played an important role in discovering the nature of the fundamental 
strong interactions because, historically, they were the first ones in which the proper-
ties of the parton model and the QCD corrections were studied and understood. As 
we explained in the previous sections, this was due to the fact that they were the only 
processes in which we could isolate a piece belonging to the deep Euclidean kinematic 
region. We remind that this was the region we felt safe to apply the asymptotic theorems 
which allowed us to extract physical results out of the renormalisation group equations. 
The reason was that in this region we were sure to stay away from infrared singularities 
and we could study the limit of a massless theory. However, after the discussion we had 
in Chapter 21, we know that going to the deep Euclidean region is certainly a sufficient 
condition to be infrared safe, but it is by no means a necessary one. The appearance 
of infrared singularities is limited to certain well-defined kinematic regions, those we 
called 'exceptional momenta', which are generically characterised by the property that 
the square of at least one partial sum of external momenta remains finite. The results of 
the renormalisation group can be safely applied to all other regions. This result enlarged 
considerably the domain of applicability of QCD and allowed us to compute many pro-
cesses in hadronic physics. We will mention briefly some of these applications in this 
section. 

We start with the simplest process, that of the total electron—positron annihila-
tion cross section in hadrons. The diagram is shown in Fig. 25.19 in the one-photon 
approximation. Following the same analysis that yielded Eq. (25.78), we obtain 

2 
a (e+  + e —> hadrons) = 

8
3 
7a2  f 

d4xeiQsx < 0I [J (OAP > . Q4 (25.141) 

Q is the virtual photon momentum and Q2  is the square of the total energy in the 
centre-of-mass system. By the optical theorem we have 

14  See L. Baulieu and C. Kounnas, Nucl. Phys. B141, 423 (1978) ; B155, 429 (1979). 
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hadrons 
Figure 25.19 The process e+ e hadrons 
in the one-photon approximation. 

where n (Q2) is given by the vacuum expectation value of the T-ordered product of two 
currents: 

nitv (Q2)  _ (gitv Q2 _ Qv) n (Q2)  _ f exeigx < oi 7-(1, (47v (o))io > . (25.143) 

11,v  (Q2) represents the QCD corrections to the photon propagator. When Q2  —> 00 
the dominant contributions to the integral come from the tip of the light cone, so it is the 
short distance expansion of Eq. (25.103) which is relevant. This simplifies the analysis 
tremendously because the entire process takes place at short distances and, in contrast 
to what happened at the deep inelastic scattering, we do not have to factor out any large 
distance contributions. Furthermore, when Q2  is far from all thresholds, we expect to be 
able to apply the renormalisation group analysis (we will come back to this point shortly), 
which tells us that after renormalisation, 11(Q2) can be computed in QCD perturbation 
theory, using the running coupling constant a, (Q2). Figure 25.20 shows the zero-order 
(parton model) result as well as the order a, corrections. It is instructive to define the 
ratio of the total hadronic cross section divided by that of e+  + e + pt-  at the 
same energy because the latter is a pure QED process involving only point-like particles: 

a (e+  + —> hadrons) 
R(Q2) = 	  

a (e+ + e—> ea+ + µ,-) 
(25.144) 

In R all kinematical factors as well as the photon propagator cancel. At lowest order 
in QCD the hadronic system consists of a single quark-anti-quark pair and we must 
sum over all quarks whose production is energetically possible. We thus obtain the very 
simple result 

R(Q2)  E 4 , (25.145) 

where et is the electric charge, measured in units of the electron charge, of the ith type 
of quark. The sum extends over the three quark colours as well as the quark flavours. 
In this approximation R is a constant. The Q2  dependence comes with the a, correc-
tions which are given by the diagrams of Figs. 25.20(b), (c), and (d). They are identical 
with the 2-loop vacuum polarisation diagrams in QED. The special QCD features, such 
as the three or four gluon couplings, will appear only at higher orders. Figure 25.21 
shows the value of R, as measured in electron-positron colliders. The comparison with 
Eq. (25.145) requires some comments. At very low values of 1,/T, below 1 GeV, the 
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Figure 25.20 The hadronic contributions to the photon propagator at 
zero order in as  (a) and the one-gluon corrections (b), (c), and (d). 

Figure 25.21 The ratio R from low energies, up to and above the Z0  mass. 
The gray dotted lines is the parton model prediction and the red one includes 
QCD corrections (© Particle Data Group). 

effective QCD coupling constant is large and we do not expect perturbation theory to 
apply. Indeed the data show large variations in R due to resonance production. Sur-
prisingly, the asymptotic regime of Eq. (25.145) seems to be reached quite soon, at 

QZ— 2 GeV, although the corresponding value of as  is not that small (see at Fig. 
25.13). At this energy only u, d, and s quarks can be produced and Eq. (25.145) gives 
R = 3(4/9 + 1/9 + 1/9) = 2 in rather good agreement with the data. At — 3-4 GeV 
we cross the charm threshold. As expected, perturbation theory breaks down because at 
this range Q2  cannot be considered larger than all relevant masses. We observe instead 
the charm—anti-charm resonances, such as the RIP, the IP', etc. However, as soon as we 
pass the thresholds, R settles down to a new constant value, in agreement with the parton 
model result. The new value is obtained by adding the charm quark contribution which 
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equals 3 x 4/9 = 4/3 bringing the new value of R to 10/3. The same happens again at 
— 10 GeV when we cross the b- b threshold. Above it R increases by 3 x 1/9 = 

to a total of 4. We predict a new jump by 4/3 when we cross the t- i threshold, but no 
electron-positron collider has reached this energy yet. At energies close to the Z°  mass 
the one-photon approximation of Eq. (25.141) breaks down and the total cross section 
is dominated by the Z°  pole. 

This discussion illustrates an approximate method for treating threshold effects, called 
`the step function approximation'. In computing R we included the diagrams of Fig. 
25.20 for all quark flavours satisfying 2mq  < VT for which we set mq  = 0. Flavours 
with 2mq  > VT were completely left out, as if their masses were infinite. Hence the 
name 'step function'. Quark masses are either zero, if below VT, or infinite if they are 
above. We can compute the corrections to this approximation at higher orders in as, but, 
as the data show, these corrections do not seem to be numerically very important. 

The parton model with the foundations provided by QCD changed radically our 
views on hadronic collisions. Hadrons are viewed as bags full of partons and a hadronic 
collision is the result of collisions among individual partons. Most of the time the lat-
ter are peripheral processes in which the momentum transfer Q between the colliding 
partons is low. The characteristic scale of the interaction, given by the inverse of the mo-
mentum transfer, is large, comparable to that of the interaction among the constituents. 
In this case we expect the free parton model to be a bad approximation. Alternatively, 
we can say that the effective strong interaction coupling constant a, (Q2) is large and per-
turbation theory does not apply. These events constitute the bulk of the measurements 
and are beyond the domain of perturbative QCD. However, we expect that, from time 
to time, events occur, similar to those which led Rutherford to discover the existence of 
the atomic nucleus. They are hard collisions in which the momentum transfer between 
the colliding partons is large. In this case we expect as(Q2) to be small and perturbation 
theory to apply. 

Let us consider, as an example, a proton-proton collision in which a quark of the first 
proton makes a hard scattering with an anti-quark of the second. It may be a quark-anti-
quark annihilation producing a final state F with a large invariant mass Q2. Using the 
parton model notation we write in the centre-of-mass system:15  

a (P(Pi) ++p(P2) —> F(Q) +X) 

= fol  dxicbc2  Eij qi(xoqi(x2)a (gi(xiP) + cx2P) -> F(0). (25.146) 

The distribution functions qi  and 41  can be extracted from the deep inelastic scattering 
data, so we need only to compute the cross section qi+41  —> F. A simple case, which has a 
clear experimental signature, is the one in which i = j and the state F consists of a virtual 
photon of positive invariant mass Q2  which gives a lepton-anti-lepton pair, such as e+  
or tett-. So the total process appears as p + p —> +r+ X. It is an inclusive process, 

15  The symbols q and 9  are used with two different meanings: q; (xi) and q3 (x2) are the parton model 
distribution functions to find a quark (or anti-quark) of flavour i (or j) carrying a fraction x1  (or x2) of the 
proton momentum. a (q,(xiP) + 4j(x2P) F(Q)) is the cross section for the quark—anti-quark annihilation 
to the final state F. 
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in the sense that we sum over all hadronic states X. The lepton pair has a large invariant 
mass. These reactions are called Drell-Yann processes. The subprocess q + 4 —> + 1-  is 
just the one we considered in Fig. 25.19 with the initial and final states interchanged. At 
zero order in as  it is given by the corresponding QED process, averaged over the quark 
colour indices: 

47a e? 
a (qi + 4 +

2 
= e . 9Q2 (25.147) 

In actual experiments one usually measures the momenta k1  and k2  of the final 
leptons, so we measure the momentum of the virtual photon Q = k1  + k2. A use-
ful quantity is the photon's rapidity, denoted by Y. It is defined, in the proton-proton 
centre-of-mass frame, as 

= 1,/ cosh Y. (25.148) 

If s = 4E2  is the square of the total energy in the centre-of-mass system of the col-
lision, the momenta of the initial protons are P1  = (E, 0, 0, E) and P2  = (E, 0, 0,-E). 
Assuming, in the spirit of the parton model, that the transverse momenta of the partons 
are negligible, we obtain immediately the relations 

Q2 y [ 1/2  = Xi x2s; e = 

[ ,,2  1/2 
X1 = [

0 1/2 
eY  ; x2 - e-Y. (25.149) 

It follows that the differential cross section for a Drell-Yann process producing a 
lepton-anti-lepton pair with invariant square mass Q2  and rapidity Y is given by 

d2a 4n-a,2„,e,2 
dQ2dY

(p + p —> 1+ + r + x) =Exiqi(xox24i(x2)  9Q2 
i=1 

(25.150) 

with x1  and x2  given by (25.149). 
The generalisation of these ideas to describe any hard collision among partons is 

straightforward. In QCD partons are quarks, anti-quarks, or gluons. If we denote, col-
lectively, their distribution functions f (x), we can compute the differential cross section 
for the reaction shown in Fig. 25.22. Two hadrons, for example two protons, collide at 
high centre-of-mass energy involving a hard subprocess in which a parton i of the first 
hadron and a parton j of the second scatter give two partons and/. We assume that all 
partons are massless and the total energy 3 and momentum transfer i of the subprocess 
are both large. In the parton model the differential cross section is given by 



. 
 +(p p + + X) = E ficx.ogx.d i +3 , +3  ). 

dxidxjdt di 
do- 

(25.151) 
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Figure 25.22 The parton picture of the collision between two 
hadrons. 

It is a simple kinematical exercise to rewrite this cross section in terms of the parton 
rapidities ye and yy as well as the transverse momentum p' of the final partons in the 
centre-of-mass frame of the collision 

n- 
d4a a = E xifi(x0x,h(x;)

,
d

(i + +1,), (25.152) 
dyp dy1' d2p1  

where the variables xi and x1  are given by 

p± p±  2 
xi = — coshy e"; xi = 2 coshy 

Vs 
(25.153) 

with y = (ye — y1')/2 and Y = (ye + yy)12. The summation extends over all pairs of 
partons i and j. 

In the Drell—Yann process i' and j' were a pair of leptons. In general, they could be 
two partons, quarks, anti-quarks, or gluons. They will not appear as such in the final 
state of the experiment because of the phenomenon of confinement. Each one will turn 
to a number of hadrons. The details of this hadronisation involve soft processes which 
are not describable by perturbative QCD. But, if they are soft, they will not change the 
large transverse momentum of the parent parton i' or f. Therefore, we expect to observe 
two jets of collimated hadrons as shown in Fig. 25.23. At higher orders we can consider 
subprocesses of the form i + j —> + + k', such as a hard quark—quark scattering with 
a radiation of an extra hard gluon. This will result in an event with three large angle jets 
in the final state. 

This phenomenon of large angle jet production in hadronic collisions has been ex-
tensively studied in recent years. It turns out to be even more important in LHC 
because of its higher energy and luminosity. Apart from providing a confirmation 
of the QCD picture, it threatens to give the main background in the research for 
eventual new physics. Indeed, a new heavy particle produced at the LHC will decay 
promptly, often giving hadronic jets at large angles. For this reason, a considerable the-
oretical effort has been invested in the calculation of this background as accurately as 
possible. 



712 Fundamental Interactions 

Figure 25.23 A hard collision with two jets in the final state. 

25.4.4 Quantum Chromodynamics on a Space-Time Lattice 
The formulation of quantum field theory on a space—time lattice may have several motiv-
ations. For a physical condensed matter system the lattice represents the physical reality, 
the underlying crystal structure of the solid. For such a system, the description in terms 
of a continuum field theory is an approximation, valid when a typical correlation length is 
much larger than the lattice spacing. Such is the case, for example, for temperatures near 
the critical point of a phase transition. At the opposite side, in the relativistic quantum 
field theories we studied in this book, we assumed a physical, continuum Minkowski 
space—time. For these theories the lattice is an approximation. In section 16.4 we intro-
duced this concept as a means to regulate the short distance behaviour of the theory. 
We noted that this method does provide for an ultraviolet cut-off, but it is not very con-
venient for performing actual calculations of Feynman diagrams. Since we have been 
mainly concerned with quantum field theory in perturbation expansion, we adopted 
other, more efficient, regularisation schemes. However, we also noted that a discrete 
space—time offers a way to define directly the path integral without reference to perturb-
ation expansion. Therefore, it makes it possible, in principle, to perform approximate 
calculations in the strong coupling regime where perturbation theory is unreliable. In 
this section we will try to use this approach for the physically interesting case of quantum 
chromodynamics where, as we saw earlier, new physical phenomena, such as quark and 
gluon confinement, are expected to appear for sufficiently strong coupling. 

Let us start by rewriting our familiar expressions for the various field theory models 
we studied so far for the case where the continuum space—time is replaced by a Euclidean 
lattice which, for simplicity, we assume to have a hypercubic symmetry. The space—time 
point x1  is replaced by 

x —> n /La, (25.154) 

where a is a constant length (the lattice spacing), and n„ is a d-dimensional vector with 
components n, = (n1, n2, ..., nd) which take integer values 0 < n1  < N, is the 
number of points of our lattice in the direction µ ,. The total number of points, i.e. the 
volume of the system, is given by V — r =1 id N The presence of a introduces an it 
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ultraviolet, or short distance, cut-off because all momenta are bounded from above by 
27/a. The presence of N,, introduces an infrared, or large distance cut-off because the 
momenta are also bounded from below by 27 INa, where N is the maximum of NA. The 
infinite volume continuum space is recovered at the double limit a —> 0 and NA  —> oo. 
From our experience with systems in statistical mechanics, we suspect that these limits 
should not be taken independently. For example, in classical thermodynamics we obtain 
finite values for quantities such as the pressure or the temperature only if the number of 
particles N and the volume V go to infinity with fixed ratio N/V = p, the particle density. 
The particular limit we should consider in our field theory examples will be studied in 
this section. 

25.4.4.1 Scalar Fields on a Lattice 

Let us start with the simplest field theory, that of a self-interacting scalar field 4(x). In 
the continuum Euclidean space the action is written as 

SEP] = f [ —2 4)(x)II14)(x) — V (4)) (25.155) 

 

where ❑ — -82 and, as usual, we assume that the potential V (0) is a polynomial in — a4t   
the field 4(x).16  On the lattice the point x is replaced by the lattice site n according to the 
relation (25.154) and we will drop the factor a to simplify the notation. The derivatives 
are replaced by the corresponding finite differences. So the action becomes 

SE
d  

(0) = adE [on E  n±l'a  2  + v (on)  , 
a 

 
2 

n r=1 
(25.156) 

where r denotes the unit vector in the direction r. Note that for fixed lattice spacing, a 
is the minimum length of the theory; therefore, we can only consider quantities whose 
characteristic size is larger than a. In particular, this applies to the wave length of a 
particle, i.e. if m is the mass, we must always keep ma « 1. 

The action given by (25.156) has the correct continuum limit but it is certainly not 
unique. We can add any term provided it vanishes when a goes to 0. In the notation 
we used in section 16.5.5, let 0(x) denote any local operator, which, in the continuum 
space—time, is a monomial in the field 4  and its derivatives of canonical dimension D. Its 
lattice version will contain products of the field (/) at the same, or neighbouring, points. 
We can determine its a —> 0 behaviour by ordinary dimensional analysis. In a space—time 
of dimension d it behaves like a°-d. For this reason, in d = 4 dimensions, operators with 
dimension D > 5 are called irrelevant operators. They give vanishing contributions in the 
continuum limit, although they affect the physics at finite lattice spacing. We will make 
use of this freedom to add such irrelevant operators in the next section. 

16  With this phase convention the exponential factor in the path integral is given by exp(SE/h). 
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Starting from the classical action (25.155) we obtain the continuum quantum field 
theory by a formal functional integration. In practice however, for a four-dimensional 
theory, we can compute this path integral only in perturbation. We expect that the dis-
crete version of the path integral will give us the corresponding lattice quantum field 
theory. We want to know in which sense the continuum theory is obtained as a limit of 
the discrete one and whether we can use the second to define the first non-perturbatively. 
On the lattice the functional integral reduces to a multiple ordinary integral 

D [4I -> 11 dOn, (25.157) 

where the product extends over all lattice points. If we take, for simplicity, N, = N for 
all it, we must perform an Nd-dimensional integral, each one from -oo to +oo. 

In order to get some intuition let us study the simplest case of the free-field theory 
with a potential V (0) = m202/2. We have seen that in the continuum theory the only 
non-trivial 1 -PI correlation function is the 2-point function which, in momentum space, 
is given by  F(2)  (k)  (k2  + m2). In Minkowski space it gives the usual dispersion relation 

k°  = ±,1(k2  + m2). Let us compute the corresponding quantity on the lattice. We define 
the momentum on the lattice by 

2n-  P 
P = Na (25.158) 

with P = (P1,P2,...,Pd), a vector whose components are integers modulo N. Using 
periodic boundary conditions, we diagonalise the kinetic term with a discrete Fourier 
transformation: 

on  = _1 E eiap.„-p-p; 4.,_ = _1 \--, e iapsn A, 
Nd12 P Nd12 Z-4 Wn• 

P n 

The lattice action (25.156) in momentum space becomes 

d 
- [ _ 1r 

m2 
 + 2a1 2  

SE * = ad
1.  E Op E cos pra 

az 2 a2 -P  p r=1 

and the 2-point function is given by 

2 2 

d d F  (2)Lat (p)  
2 a 

cos pra - 1  (
2 m2 

r=1 

(25.159) 

(25.160) 

(25.161) 

Let us first remark that we obtain an additive mass term equal to 2d/a2. It is sometimes 
called 'lattice mass counter-term', but this terminology is slightly misleading. Strictly 
speaking there is no mass renormalisation in a free-field theory. The mass, defined by 
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the zero of the 1-PI 2-point function, is always equal to m2. The constant d/a2  just 
cancels the one we obtain from the cospa term in Eq. (25.161). However, this constant 
is divergent when a goes to 0, so, for practical computations, it is convenient to define 
an effective mass on the lattice: 

2 
mLat = m

2 2d
• a 

(25.162) 

In particular, if we want to describe a massless field in the continuum limit, we should 
start with a 2d/a2  effective mass term on the lattice. The use of periodic boundary condi-
tions implies that the momentum p takes values inside the Brillouin zone [-7rla, +71a). 
We obtain the dispersion relation by looking at the zeros of the 2-point function (25.161) 
inside the Brillouin zone. Going back to Minkowski space we obtain 

d-1 

4 sin h2 ,2 = m- Poa , + 
4 h2 Pia — E s.;n..  

a2 2 a2 2  5  i=1 
(25.163) 

which, for a —> 0, reduces to the usual p6 = p2  + m2. We can solve for pc, as a function 
of pi  even for finite a with the result 

oa
m4  

2a2 d  P = In [± + 
2 

i= 1 ='=1 

pia1  d-1 

pia 
+ 

2 
1 + m2a2  + 

1=1 

pia sine  Pia  

Inside the Brillouin zone, the right-hand side is a monotonically increasing function of 
pi . Therefore, this relation has the right properties for a dispersion relation. In particular, 
for pi  = 0 and ma « 1, the two solutions are po = ±m. 

Let us summarise. In a space—time lattice scalar fields live on the lattice sites and, 
as it happens in the continuum, the kinetic energy term couples fields at nearby points. 
The lattice offers a good regularisation scheme, and the resulting theory has the correct 
free-field limit. 

25.4.4.2 Fermion Fields on a Lattice 

Let us now turn to spin-1/2 fields. The obvious difference is that they obey Fermi—Dirac 
statistics, so the integrations over the field variables must be performed in a Grassman-
nian manifold with the Berezin rules we explained in Chapter 11. This sounds very 
serious because computers do not usually handle such integrals, but, in fact, this is not 
a real problem. All theories we may be interested in are quadratic in the fermion fields, 
so the integrations can be done explicitly and they just produce determinants which 
depend only on boson fields. We will never have to do anything else. The second differ-
ence comes from the kinetic energy term which, for fermions, has first-order derivatives. 
Therefore, the lattice action will be given by 



SE(*) = ad [1fr Y: n
n+ap. n-aµ -  

2a im'c n + • • • 5 

µ=1 

(25.165) 
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where the dots stand for coupling terms which will be of the general form 1frnA(0)1//,,, 
with A some matrix-valued function of boson fields. We can repeat the exercise we did 
for the scalar fields and obtain the free-field 2-point function on the lattice, the analogue 
of Eq. (25.161): 

d 
(2)Latt sin p,,a 

(P) 2_, Y  a
im, 

u=1 
(25.166) 

which should be compared with the corresponding expression in the continuum: 
r  (22 ) P — im. 

Two remarks are in order here. The first is the absence of an additive mass counter-
term, in contradistinction to what we found for the scalar field. This result is not 
unexpected. From dimensional analysis, an additive mass counter-term should be 
proportional to a-1. But we know that fermion masses are protected from such counter-
terms because of chiral symmetry. This is also in agreement with the fact that in the 
2-point function, Eq. (25.166), we find a sine rather than a cosine. The second remark 
is more subtle. As we did for the scalar case, let us compute the dispersion relation in 
Minkowski space for finite lattice spacing and compare with the corresponding result in 
the continuum. To simplify the result, let us choose m = 0. We find that 

[

d-1 d-1 

poa = In ± E sin2  pia + 1 + E sine  pia . 
N, i=1 \ i=1  

(25.167) 

The important difference with the corresponding result in Eq. (25.164) is that we 
have sin2  pa rather than sin2  pa/2. This is due to the fact that the fermion kinetic energy 
has first-order derivatives, while that of the scalar field has second order. As a result, 
the right-hand side of Eq. (25.167) is no more a monotonically increasing function of pi  
inside the Brillouin zone. In addition to the expected solution pc, = 0 for pi  = 0, we also 
obtain Po = 0 for pi  = ±n-  la. It seems that on the lattice we describe 2d  fermionic states, 
all having the same, in this example zero, mass. 

We will argue shortly that this result too is not unexpected and it is also due to chiral 
symmetry, but, for the moment, we remark that, in contrast to the scalar field case, the 
lattice regularisation does not correctly describe the physical fermionic states. This is a 
serious problem because we wanted to use the lattice formulation to describe theories 
like QCD. 

Several solutions to this problem have been proposed and we will show here one, 
which is most commonly used and is due to Kenneth Wilson. In his 1976 Cargese 
lectures Wilson proposed to use a Euclidean lattice regularisation in order to study 
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QCD numerically. To solve the problem of the extra fermionic states he suggested the 
introduction of a new term in the action with the following properties: (i) it must be an ir-
relevant operator so that it vanishes in the continuum limit. (ii) For finite a it must lift the 
degeneracy between the 'normal' fermionic state and its lattice partners in such a way 
that the latter decouple in the continuum limit. These requirements do not determine 
this term uniquely and, in the notation of Eq. (25.156), a simple choice is given by 

f d 

Swilson ad  E k n E I I n+iv 21if n 1  if n-hz) 
n r=1 

(25.168) 

with f an adjustable constant. Note that this term mimics the second-order derivative of 
the scalar field action of Eq. (25.156). It satisfies the first requirement because, for small 
a, it goes like 

Swiison —> ja  f dd (x) • 2 
(25.169) 

In other words, it vanishes with a. It satisfies also the second requirement because it has 
no y matrices, so, on the lattice, it contributes a p-dependent mass term. Since it comes 
from a second derivative, it contributes to the dispersion relation terms proportional to 
(fl a) Et sine  pi a/2. It gives a vanishing contribution to the mass of the state with pi  = 0, 
but it moves that of all states which live on the boundary of the Brillouin zone, where 
at least one of the components of pi  equals ±n-  la, by an amount proportional to 1/a. In 
this way the new, unwanted, states will become infinitely heavy in the continuum limit. 
In Problem 16.8 we presented the so-called `decoupling theorem' which states under 
which conditions an infinitely massive state decouples from low-energy dynamics. We 
will come back to this point shortly. 

With the addition of the Wilson term the fermionic lattice action becomes17  

d 

SE(*) = ad  E [tn 2_, Y kn+ 
Yu + - df 

+.
n 

(n2
a

) "tkni. (25.170) Ikn- 
n=1 2a 2a 

We first note that the Wilson term does introduce a lattice mass counter-term which, 
when a goes to 0, is linearly divergent. In the terminology we used for the scalar fields, 
in order to describe a zero-mass fermion we must choose an effective mass on the lattice 
equal to dfla. This shows that the Wilson term breaks explicitly chiral invariance. This is 
not without consequences because one of the properties of quantum chromodynamics in 
the strong coupling regime we wanted to study using the lattice formulation was precisely 
the spontaneous breaking of chiral symmetry. We will postpone the discussion of this 
point until we have a complete formulation of the theory. 

17  We have chosen all four y matrices in Euclidean space to be anti-Hermitian. 
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The conclusion of this section is that we can use a lattice regularisation for field theor-
ies involving fermions which, like scalar fields, are localised on the lattice sites. However, 
chiral symmetry is explicitly broken by the lattice. 

25.4.4.3 Gauge Fields on a Lattice 

We have learnt how to introduce matter fields, both spin 0 and spin 1/2, on a space—
time lattice. In order to complete the picture, we should also study gauge fields. We will 
follow the same reasoning presented in Chapter 14 which led us to their introduction in 
the continuum. 

Let us consider a lattice field theory containing a set of fields fin, which, in the notation 
of Eq. (14.8), we write as a multiplet qin. As before, n labels the lattice site and i runs 
from 1 to r. The fields can be scalars or spinors and the dynamics is given by some lattice 
action S(@). We assume that the ifr's transform linearly according to an r-dimensional 
representation, not necessarily irreducible, of a group G which leaves S invariant, 

qin —> Q (CO)qin E G, (25.171) 

where Q (w) is the matrix of the representation of G corresponding to the group element 
w. This is just the lattice transcription of (14.8). If G is a Lie group we can write the 
analogue of (14.9), 

tifn  e qin e= 9"T", (25.172) 
«=1 

where the O's are a set of m constant parameters, and the Ta's are m r x r matrices 
representing the m generators of the Lie algebra of G which satisfy the commutation 
relations (14.10). 

These are global transformations. As before, we obtain the corresponding gauge ones 
by taking the group elements w of (25.171), or the parameters 0" of (25.172), to de-
pend on the lattice site n. The terms in the action which are non-invariant under these 
local transformations are those which contain products of fields in neighbouring points 
coming from the lattice version of the derivative operators in Eq. (25.156) or (25.165). 
Under the transformations (25.171) these terms transform as 

111nWn+rra 0-1  (WOO (COn+iv)@n+iv• (25.173) 

As we did in the continuum, we restore invariance by introducing gauge fields U 
which are matrix valued in the group G and correspond to every ordered pair of neigh-
bouring points n and n +1.a. All local terms in the action are unaffected, but the products 
on different points become 
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tlin+iyz ± @n Un,n+1.a@n+iyz• (25.174) 

They are invariant under (25.171) provided the U's transform as 

Un,n+iyz (60n)Un,n+iyz0  1  (COnd-iv) (25.175) 

and we will impose on U the constraint Un,m  = U;1n. We see that, in contrast to matter 
fields, gauge fields do not live on the lattice sites but on oriented links. It is a clear way 
to exhibit the fact that they correspond to the connections we introduced in the previous 
chapters. The terms (25.174) give on the lattice the couplings between matter and gauge 
fields. 

If the group G is a Lie group we can write the matrices U as 

Un,n+iv = a 3 (25.176) 

where, in order to make contact with the expressions we used in the continuum, we 
introduced a constant g, which will become the coupling constant, and the lattice spacing 
a to give A the dimensions of a mass. Note that U takes values in the group G while A 
takes values in the corresponding Lie algebra. For the continuum limit it is convenient 
to introduce the notation Un,n+p, —> LIA(n) and similarly for A. It is easy to check that, in 
the continuum limit, the A's have the right transformation properties for gauge fields we 
found in Eq. (14.15). Indeed, let us expand (25.176) and (25.175) in powers of a and 
9, keeping only first-order terms: 

LIA (n) = 11 + iagA"A(n)T" + 

e'9' = ll + i0" + . (25.177) 

Inserting these expressions into the expansion of the transformation properties of U, 
Eq. (25.175), and restoring x = na, we obtain that 

1 
A7L (x) —> A7L (x) — iao-(x) + Ai3p (x)0Y (X)P3Y (25.178) 

in agreement with Eq. (14.15). The derivative on 9 comes from the expansion of 
9(n + 

We can now write the gauge invariant action of scalar or fermion fields and study 
the continuum limit. Let us take, for example, a charged scalar field and the group G = 
U(1). The coupling terms will come from products of the scalar fields in neighbouring 
points. The action becomes 

Sk = d tn  U (n)4) + (n — it) 0,1_1, E  
a2  

n 11=1 

(25.179) 
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where the dots stand for terms not involving the gauge field U. In order to obtain the 
continuum limit we must develop the fields and keep terms up to order a2: 

On±tt = (x) f (20/2  (X) +
2
4 Dow  

U n (n) = 1 + iagAn,(x)- 2g. 24,i (x)241' (x) + 

U
2 

(n - it) = 1 - iagAn,(x) + a2  @ALAI' (x) - gyAn (x)Aa (x)) + . 

Substituting (25.4.4.3) into (25.179), we obtain the action of scalar electrodynamics 
of Eq. (15.40) with the exception of the F2  term. 

The procedure we developed so far gives us the lattice formulation of gauge theories 
where the gauge fields are external classical fields without dynamical degrees of free-
dom. To obtain the full theory we need the lattice version of the F2  terms. As for the 
continuum, the guiding principle is gauge invariance. Let us consider two points on the 
lattice n and m. We will call a path pn,,n  on the lattice a sequence of oriented links which 
join continuously the two points. Consider next the product of the gauge fields U along 
all the links of the path pn,m: 

P(P)  (n, m) = fl Un,n+ • • .Um—v ,m • (25.180) 

Using the transformation rule (25.175), we see that 13(P)  (n, m) transforms as 

13(P)  (n, m) —> S2 (con)13(P)  (n, m) S2-1  (co ,n) (25.181) 

It follows that if we consider a closed path c = pn,n  the quantity TrP(° is gauge in-
variant. The simplest closed path for a hypercubic lattice has four links and it is called 
plaquette. We introduce the notation 

"P„,„„ (n) = U p,(n)U„(n + µ)U-I1 (n + v)LI (n). (25.182) 

It is now straightforward to show (see Problem 25.11), that the action 

Sg  = _ E [1 - Re(TePt,„ (n))] g2 
(25.183) 

is gauge invariant and, in d=4, goes to the space-time integral of Tr(F2) when a goes to 
0. It is the term introduced by K. Wilson to describe the pure gauge part of the action on 
the lattice and it is called the Wilson action. In section 25.4.2 we introduced the concept 
of a Wilson loop, Eq. (25.90). We see that Tr'P,,„(n) is the simplest Wilson loop on the 
lattice. So the Wilson action involves the sum over all elementary Wilson loops. The 
restriction it < v avoids double counting. 

This concludes our discussion on the lattice description of gauge fields. We have the 
choice to consider either the group-valued fields U or the Lie algebra valued ones A as 
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independent variables. For the continuum limit the A's are clearly more convenient. On 
the other hand, for purely lattice calculations, the U's present several advantages. 

First, they allow us to study numerically non-Lie groups. The simplest example is 
the gauged version of Z2, the group of the Ising model. The gauge fields take the values 
U = ±1 and, for the pure gauge theory, the functional integral is reduced to a sum. 
Independently of its significance in statistical mechanics, the model is interesting as a toy 
model for more complicated cases. 

Second, for a compact Lie group G, the use of the variables U which take values 
in the group allows us to write the lattice version of the path integral without the need 
to add a gauge-fixing term. The reason is that the integration over the U's produces a 
harmless factor given by the volume of the group which is assumed to be compact. This 
finite factor is common to both the numerator and the denominator in the expression for 
the generating functional and it safely cancels. In contradistinction, the continuum space 
formulation uses the A's as dynamical variables which take values in the Lie algebra of 
the group. As we noted already, the factor which results from the integration is infinite, 
corresponding, formally, to the volume of the group G°°. It was the necessity to deal 
with such situations that led us to the gauge-fixing procedure and the BRST symmetry. 
We conclude that as long as we stay on the lattice keeping a finite, gauge fixing is not 
compulsory. 

25.4.4.4 QCD on a Lattice. Formal Discussion 

We are now in a position to formulate and study any gauge theory on a space—time lat-
tice. The obvious choice is quantum chromodynamics because it presents a rich variety 
of interesting non-perturbative phenomena. We would like to address issues such as the 
spontaneous breaking of chiral symmetry, the confinement of colour non-singlet degrees 
of freedom, and, of course, the spectrum of hadronic states. Before looking at the res-
ults of the numerical simulations, let us present some formal arguments related to these 
topics. 

We saw already that the Wilson term (25.168) breaks explicitly chiral invariance for 
any finite value of the lattice spacing. The introduction of such a term was necessary to 
ensure that the continuum limit contains only the desired fermionic degrees of freedom. 
We want to argue here that the resulting breaking of chiral symmetry was not accidental, 
due to some peculiarity of the Wilson term, but it was dictated by the known properties 
of this symmetry. The space—time lattice can be viewed as an efficient cut-off which reg-
ulates all short distance singularities. Therefore, all formal manipulations are legitimate 
as long as a is kept different from 0. Furthermore, we learned that this regulator respects 
whichever gauge invariance we want to impose. If we could find a prescription which 
respects chiral invariance and has the correct continuum limit, we would have obtained 
a way to write a gauge theory without chiral anomaly. But we proved in section 17.3 that 
this is impossible, which means that a regulator respecting both gauge and chiral sym-
metry does not exist. This result can be proven directly on the lattice without reference to 
the proof we presented in the continuum and is known as the Nielsen—Ninomiya theorem. 
For quantum chromodynamics it implies that the study of the spontaneous breaking of 
chiral invariance will not be a straightforward exercise. We will see the results in the next 
section. Note also that if we wanted to study on the lattice a theory like the standard 
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model of the electroweak interactions in which both the vector and the axial currents are 
coupled to gauge fields, we could not expect to obtain the correct continuum limit unless 
we used the full fermion content of a family for which, as we proved in section 25.3.7, 
the coefficient of the anomaly vanishes. Indeed, we pointed out in the formulation of the 
decoupling theorem in Problem 16.8 that the heavy modes decouple only if the initial 
and the final theory are both renormalisable. This is not the case for the standard model 
if the families are not complete because the axial anomaly induces a non-renormalisable 
counter-term. 

Before going to the second point in our list, namely the phenomenon of quark and 
gluon confinement, it is instructive to discuss the properties of the phase diagram of a 
lattice field theory and exhibit the differences between global and local symmetries. Let 
us first note that there exists a formal analogy between a quantum field theory formulated 
on a Euclidean lattice and the partition function of a statistical system. The coupling 
constant g2  of the first plays the role of the temperature in the second. Let us look 
at the simplest model based on the group Z2. For a global symmetry we know that a 
suitable order parameter is the average magnetisation. Keeping a and the volume finite 
the average magnetisation is 0 in the absence of an external magnetic field because the 
configurations with spins plus or minus 1 have equal probabilities. At the infinite volume 
limit, however, the system has two phases. At sufficiently high temperature it is in a 
symmetric or disordered phase in which the magnetisation vanishes. Below Tc  we are 
in a phase of broken symmetry with non-zero magnetisation. We can probe the order 
parameter by introducing an external source coupled to it, in this case a magnetic field 
h. In the presence of h the basic configurations an  = ±1 are separated by an energy 
difference AE = 2hN which diverges when N goes to infinity with fixed h. The external 
source should be put to 0 after the infinite volume limit has been taken. All this is well 
known from both exact solutions, whenever available, and numerical simulations. We 
want to know how much of this analysis survives when the underlying Z2 symmetry 
becomes local. The answer is contained in a theorem proven by Shmuel Elitzur who 
showed that there exists no local order parameter for a gauge symmetry in which the 
fields take values in a compact manifold. The proof goes as follows. 

Let us consider a local function of the gauge fields f (U). We compute the mean value 
< f (U) > by 

< i (U) > = lim lim < f (U) >y,N 
.7—>0 N—>oo 

= lim lim Z, N  f exp [S(U) + y • U] f (U)DU , 
.7—>0 N—>oo 

(25.184) 

where the limits are taken in the right order, as explained earlier. The action and 
the integration measure are supposed to be invariant under the gauge transformations 
(25.175), which we write, formally, as U —> w U. If f is going to be a candidate for an 
order parameter it should not be gauge invariant, i.e. we must have 

f f (w U)dco = 0, (25.185) 
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where the integral is taken independently in every con. Since the symmetry is local, we 
can consider a subgroup of the transformations which act only on a finite subset of the 
U's, which we call U', leaving the rest U invariant: U = "'U. If now we change the 
integration variables in (25.184) from U to 'LT, we obtain 

< f (U) >y,N= ZE N  f exp [s( +y/ • a'.7' + :7 • Cdf (wU)DUdco. (25.186) 

For a gauge theory we can always choose the set U' finite and independent of N, such 
that if the source J is bounded from below by E we have 

exP Cr • U') — 11 < /1(E) (25.187) 

with 17 staying positive for positive E and going to 0 uniformly in E, independently of 
J or N. Note that such an inequality does not hold for the global Ising symmetry we 
considered before because all the spins transform simultaneously and we cannot find 
transformations which act only on a finite subset of them. Going back to (25.186) we 
write expf • U' = 1 + (expj' • U' —1). The first term vanishes because of (25.185) and 
the second can be bounded using (25.187). So we obtain the bound 

I < f (U) >J,N I _< 2 /7  (E)SuPf, (25.188) 

which, in the ordered limit j —> 0 , N —> oo, gives 

< f (U) >= 0 (25.189) 

for all local functions f satisfying (25.185). 
This result is sometimes interpreted as saying that a gauge symmetry cannot be spon-

taneously broken because only gauge invariant local functions of the fields can have a 
non-zero vacuum expectation value. Although such an interpretation may be misleading 
because the theorem does not imply anything directly for the continuum theory,18  it is 
certainly true that in order to study the phase diagram of the lattice theory, we must use 
a non-local order parameter. The Wilson loop was introduced for this purpose. There 
is a simple argument, first developed by Alexander Polyakov, which shows that a lattice 
gauge theory based on a compact group at the strong coupling limit exhibits always the 
property of confinement. It uses the fact that a Wilson loop is made out of the sum 
of all plaquettes which span it, so if it were not for the integration measure, it would 

18  A non-zero mean value for a gauge non-invariant quantity would be a signal for a phase transition res-
ulting in a spontaneous breaking of the gauge symmetry. Elitzur's theorem shows that this does not happen 
on the lattice. As we just saw, it is based on the fact that on the lattice the group can be taken to be compact. 
On the other hand, since it is a gauge group, it can be chosen to act on a fixed, finite subset of variables. So a 
gauge group on a lattice with a fixed lattice spacing a behaves effectively like a system with a finite number of 
degrees of freedom and cannot have any phase transitions. But such transitions may occur when we take the 
limit a —> 0 because in the continuum, even an arbitrarily small but finite region of space contains always an 
infinite number of degrees of freedom. 
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always have an area law, which, as we showed in section 25.4.2, implies confinement. 
But at the strong coupling limit 1/g2  —> 0, exp(g-2SE) goes to 1 and the integration over 
the compact group gives only a constant. This argument applies to all compact groups, 
Abelian as well as non-Abelian, at the infinite coupling limit. The next question is to ex-
amine whether there is a phase transition when we go towards the weak coupling region 
and/or the continuum theory. We can prove that such a deconfining phase transition is 
indeed present at weak coupling for the Abelian lattice theory, but we have only numer-
ical evidence concerning its absence for the non-Abelian case. Note that the presence of 
dynamical fermions affects these conclusions in an important way. We argued previously 
that a perimeter law for the Wilson loop indicates that the force between two opposite 
charges vanishes at large distances. We interpreted this result as showing the presence 
of free quarks. This, however, is true only if quarks are infinitely heavy and we do not 
consider the possibility of creating quark-anti-quark pairs from the gluon field out of 
the vacuum. In the real world such pair creations are possible and the phenomenon can 
occur in the following way. We consider a quark-anti-quark pair which we attempt to 
separate. Let us assume that the force between them remains constant, which, for clas-
sical quarks, would indicate confinement. However, in reality, after a certain distance 
it becomes energetically advantageous to create a new pair. The newly created quark 
(anti-quark) can bind with the initial anti-quark (quark), resulting in the appearance of 
two mesons. The force between them goes to 0 with distance, but this does not imply 
deconfinement, but screening. We still do not observe free quarks or gluons although the 
effective forces between them vanish at large distance. The presence of screening makes 
the study of the phase diagram, both analytical and numerical, more complicated. 

25.4.4.5 QCD on a Lattice. Numerical Results 

There are certainly many more analytical studies we can perform on lattice gauge theor-
ies, but the most important results are those obtained by direct numerical integrations. 
Indeed, it is for this purpose that lattice gauge theories were introduced in the first place. 
We will briefly present the ideas and discuss some of the results. Let us only warn the 
reader that it is an extremely active field of research covering topics not only from phys-
ics, but also from numerical analysis and computer science and cannot be adequately 
summarised in one section. 

It is clear that had we unlimited computing power, we could compute any expectation 
value, or any correlation function, on any given lattice characterised by a lattice spacing 
a and a total volume N. We could repeat the calculation by varying a and N and obtain 
the results as functions of the lattice parameters. With enough accuracy we could study 
the limit of infinite volume and vanishing lattice spacing. In order to understand the non-
perturbative aspects of QCD we would like to compute quantities such as the expectation 
value of the Wilson loop and the correlation functions of composite operators. The first 
would show us directly whether the theory exhibits the property of confinement. The 
second would give us the spectrum of physical states. Let us, for example, consider the 
2-point function of an operator 0: G(2) (x) — < T (0 (-42), 0 (42)) > and let G(2)  (k2) 
be its Fourier transform. We found in Problem 20.2 that the large distance behaviour 
of G(2)  is given by the nearest singularity of G(2)  (k2) in the complex k2  plane. If this 
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singularity is a simple pole on the real axis at k2  = m2, showing the existence of a stable 
particle of mass m with the quantum numbers of the operator 0, G(2)  behaves as e'n r. 
Therefore, from the study of the 2-point functions we can infer the particle spectrum 
of the theory. If we choose 0 — gy5 riq with q the doublet of u and d quarks, we obtain 
the quantum numbers of the pion. A nearly zero value of its mass would indicate the 
spontaneous breaking of approximate chiral symmetry. 

Of course, in the real world we do not possess unlimited computing power and the 
programme presented earlier can be realised only to a certain degree of approximation. 
In fact, it is not surprising that reliable results to a fraction of these questions have only 
recently been obtained and the programme is still going on. 

It must be clear by our previous discussion that a direct computation of the mul-
tidimensional integral to which the Feynman path integral is reduced on the lattice is 
beyond any available, or even imaginable, computing system.19  New algorithms which 
are inspired by the well-known method of steepest descent have been developed. The 
most commonly used, the Metropolis algorithm, was invented in the very early days of 
the first computers (1953) by Nicholas Metropolis, but it is more often known as the 
Monte Carlo algorithm. Strictly speaking it is not an integration programme but rather 
a sampling algorithm, suitable to study the landscape of hyper-surfaces. It is a Markov 
chain Monte Carlo method which provides efficient samplings from a probability dis-
tribution for which direct methods are impossible, or extremely time-consuming. In the 
course of the years it has grown into a full branch of computational science incorporat-
ing many rigorous results from numerical analysis and the theory of stochastic processes. 
Let us illustrate the principle in a simple example from lattice gauge theories. We choose 
to compute numerically the mean value of some quantity f (U), 

(25.190) 

The Metropolis algorithm consists of starting from an initial field configuration 
chosen randomly. For Z2 a simple choice is U„(n) = ±1 with equal probability. For 
U(1) we can write U,(n) = e'eA (n)  and choose 0 uniformly in the interval [0, 27r). This 
is similar for any other group. We will call this configuration Co. We will generate a new 
configuration by applying the following recipe. We go through all the links, one after the 
other. Each time we attempt to change the field on that link. For Z2 we just flip the spin. 
For a continuous group we replace U,(n) by U,(n)V,(n), no summation in n or it, with 
V uniformly chosen in the group. For example, for U(1) we take V = e'' and we choose 
cP uniformly inside [0, 27r). Each time we compute the resulting variation of the action 
SS and we keep the new value of the field in the link n to n + µ, if 8S satisfies 

19  A simple order of magnitude estimation. Let us assume that the computation of a single integral from 
—oo to +oo requires K simple operations. For simple well-behaved functions K may be of order 102  to 103. 
For a four-dimensional theory a rather low value for N is of order 106, which gives around 30 points in each 
direction. The resulting number of elementary operations is KN, clearly beyond any system. 
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e3s  > r, (25.191) 

where r is a number uniformly distributed in the interval 0 to 1 and independently 
chosen for each link. After sweeping this way through all the links we obtain a new 
configuration, C1 . We start all over again and we generate a sequence of configurations 
C2, C3,..., CM..... For each of them we compute the corresponding value of f: fm(U). 
We expect the average we are looking for to be given by 

Under some specific assumptions we can prove the existence of the limit in (25.192) 
and its independence on the initial configuration Co. In practice, of course, we stop 
the sweep at a certain step M and, again under some assumptions, we can estimate the 
error Sf.  . There is no universal, easily implementable criterion to decide when to stop, 
but we expect to have a good approximation if the resulting field configurations Cm are 
statistically independent, for example, when the correlation between Cm and CM' goes 
to 0 for large IM - MI. 

This is the principle of the algorithm in its simplest form. Several improvements have 
been incorporated in order to speed up the convergence (for example, instead of updat-
ing one link at a time we proceed to change a sizable fraction of them simultaneously) or, 
to obtain a more reliable estimate of the uncertainties. For the case of QCD, people have 
also used the possibility of adding irrelevant operators to the lattice action, in addition to 
the one introduced by Wilson to solve the fermion problem, see Eq. (25.168). They aim 
at improving the convergence and/or minimising the finite size effects. Another obvious 
addition is related to the question of gauge invariance. As we noted before, on the lattice 
we do not have to fix the gauge because the volume of the gauge group is finite. How-
ever, when applying the Metropolis algorithm, we do not want to spend computational 
time on configurations which are gauge equivalent, only to find out that SS is zero. We 
want to be sure that every updating of the value of the field in a link yields an inequival-
ent configuration and this requires a gauge fixing. A commonly used gauge is given by 
imposing on all U's the condition U4  (n) = 11. It corresponds, in the continuum, to the 
familiar gauge Ao (x) = 0, for which the Faddeev-Popov determinant is trivial. 

An important bottleneck in the calculation has been the computation of the determ-
inant of the huge matrix resulting from the integration over the fermion fields for each 
field configuration. For this reason, all early results from lattice simulations were treating 
quarks as external sources with no dynamical degrees of freedom. This was called the 
quenched approximation. It is only recently, with the increasing computing power, that the 
influence of fermion loops is included. 

Before going into the actual calculations, let us estimate the lattice parameters we 
should ideally need in order to simulate the physically interesting, non-perturbative re-
gion of QCD. In units of mass, we want to cover the area from a few MeV, the order 
of magnitude of the light quark masses, to a few GeV, above which perturbation theory 
becomes reliable. The upper end tells us that we need to consider lattice spacings a 
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smaller than one-tenth of a fermi.2°  The lower end requires a total lattice size larger 
than 100 fermi, which means at least 1000 points in each direction. For the moment 
we do not have the means to consider so large lattices and, as we will see, the low mass 
region where the spontaneous breaking of chiral symmetry is expected to occur can be 
approached only by extrapolation. State of the art computations use lattices of 26  = 64 
points in each direction. 

Let us now present some of the results that have been obtained and briefly comment 
on them. 

Figure 25.24 gives a general view of the spectrum of hadrons obtained in various 
lattice simulations. The different colours refer to different groups who performed the 
calculations. The b-states are displaced by 4 GeV in order to show them in the same 
figure. Isospin symmetry has been assumed by taking the masses of the two light quarks 
mu  and md  equal. The input parameters are the common mass mu  = md  and the masses 
of the s, c, and b quarks. To them we must add a third one which corresponds to the value 
of the strong interaction coupling constant, or, equivalently, a scale parameter similar to 
the one we introduced in the continuum in Eq. (25.89). The question of the spontaneous 
breaking of the chiral symmetry will be shown independently. 

Putting all these results in the same figure may be misleading, because they come from 
different simulations and the assumptions and the input parameters are not always the 

V VS 4)'s 
9 ;̀' 9s  Bc  
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Figure 25.24 The hadron spectrum (©A.S. Kronfeld). 
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same. However, it offers a comprehensive picture and shows that the lattice calculations 
have reached maturity. The fit is quite impressive. 

In the previous results the low value of the pion mass is an input. The phenomenon of 
the spontaneous breaking of chiral symmetry is the object of an independent study and 
we show the results in Figs. 25.25 and 25.26. The idea is to compute the pion mass Mn 
as a function of the quark mass m. Although we must use rather large values of m, if the 
idea of spontaneous breaking is correct, we must find, by extrapolation, that Mn goes 
to 0 with m. We remind that in the lattice chiral symmetry must be explicitly broken. In 
Fig. 25.25 the breaking is given by the Wilson fermionic term of Eq. (25.168). In Fig. 
25.26 a different method is used. We start by writing QCD in a five-dimensional lattice. 
Then we consider a layered phase in which the five-dimensional space is split into layers 
of four-dimensional sublattices. We can show that the fermionic zero modes become 
localised in these subspaces. In the continuum limit we can obtain a four-dimensional 
space with the correct fermion degrees of freedom. Both calculations are consistent with 
spontaneous breaking of the chiral symmetry. 

There are many more results which have been obtained in lattice QCD including the 
spectrum of gluon bound states, called glueballs, the hadronic matrix elements in weak 
interaction transitions, or the evidence for confinement for all couplings in non-Abelian 
theories. The work is still in progress but the results presented here show already the 
power of the method. 

Figure 25.25 The relation between the pion square mass and the quark mass, 
both normalised to 47F 1GeV . F is the pion decay constant fn. of Eq. (25.97). 
The line is the theoretical extrapolation to the GMOR (Gell-Mann — Oakes —
Renner) relation based on the chiral current algebra Eq. (25.9). The calculation 
uses Wilson fermions. The lattice parameters are indicated (C) G.P. Engel et al, 
arXiv:1406.4987). 
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Figure 25.26 The relation between the pion square mass and the quark mass. The 
calculation uses domain wall fermions. The lattice parameters are indicated (C) C. Allton et 
al, RBC-UKQCD Collaborations, arXiv: 0804.0473). 

25.4.5 Instantons 

25.4.5.1 Perturbation Expansion and Semi-classical Approximation 

Formulated in terms of Feynman's path integral, perturbation is an expansion around a 
background field configuration, often chosen to be solution of the classical equations of 
motion. If we write the classical action Sp], we set 4(x) = 00(x)+4;(x). If the Lagrangian 
density is polynomial in (/) the translated action Sfrpo (x) + (x)] will be again polynomial 
of the same degree in 4(x) with 00(x)-dependent coefficients. For example, for the 04  
theory we obtain 

s[4,] = S[013] (0A4))2
(m

2 + A(gi) 4;2  + 00(i53  + 4. (25.193) 

If 00(x) does not satisfy the classical equations of motion, we should add the terms 
linear in if). In general, an expansion around a field configuration which is a solution of 
the classical equations of motion amounts to computing small fluctuations around the 
classical solution, hence the name semi-classical approximation. It is easy to see that this 
is in fact equivalent to perturbation expansion. The simplest way is to note that we can 
rescale the field 4  -f N5.4). The path integral becomes, in the Euclidean space, 
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f D[o]e-s[o] f D[i]e s[0] (25.194) 

The coupling constant X does not change the classical equations of motion, so, for 
the classical theory, it can be set to any value. In the quantum theory on the other hand, 
the value of X determines how much configurations which are not classical solutions 
contribute to the integral. We can say, naïvely, that if X = 0, only the classical solution 
contributes. So for small X we can keep only configurations close to it. So expansion 
in powers of X appears to be equivalent to semi-classical approximation.21  40  = 0 is a 
solution of the classical equations of motion in the absence of sources. An expansion 
around it corresponds to our usual perturbation expansion. We have also encountered 
the case 40  = v with v a constant, given by the position of the minimum of the classical 
potential. It led us to the study of the phenomenon of spontaneous symmetry breaking. 
The general case of including in the functional integral several field configurations 44)  
was avoided so far, first for reasons of simplicity and, second, because we expect their 
contribution to be exponentially small compared to that of the configuration which gives 
the absolute minimum of the action. However, we know that in quantum mechanics 
there are phenomena, such as those related to penetration through a potential barrier, 
which are not accessible to any finite order of perturbation theory precisely because they 
are suppressed by exponential factors. In this section we want to study these questions 
with particular emphasis on gauge theories and QCD. 

25.4.5.2 The Winding Number Rediscovered 

For simplicity, let us consider first a pure Yang—Mills theory based on some compact, 
simple group G. The invariant action is proportional to the integral over all Euclidean 
space of TrF2. The perturbation theory we have considered so far is the semi-classical 
expansion around the zero field configuration. The corresponding value of the classical 
action is S = 0. We want to study here the possibility of taking into account the expansion 
around other finite action field configurations which may be solutions of the classical 
equations of motion.22  

The Euclidean action is 0(4) invariant, so, in the integral over the four-space E4, 
we can use four-dimensional spherical coordinates. We can imagine performing first the 
integration over the angular variables, so we are left with an integration over the radial 
variable r. We will obtain a finite action if F vanishes at infinity faster than 1/r2. Since 

21  The argument is, at best, intuitive and it makes sense only to the extent that perturbation expansion makes 
sense. It is based on the observation that the contribution of each field configuration to the integral is weighted 
by e-s[01, but this does not necessarily mean that we need to keep only small action configurations because 
the argument ignores the question of how many such configurations exist, in other words their measure in 
the functional space. In particular, it may lead us to conclude that in the calculation of the path integral, only 
field configurations of finite action need to be considered. In fact, it is the opposite that may be true. In simple 
toy models we can find examples in which finite action field configurations form a set of measure zero in the 
functional space, so we would conclude that they can be omitted. The configurations of finite action and, in 
particular, small finite action become important only in perturbation theory because it is only around them 
that we can meaningfully expand. 

22  We follow the presentation given by S. Coleman, in 'The Uses of Instantons', Erice Summer School 
1977, reprinted in Aspects of Symmetry (Cambridge University Press, 1985). 
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F ^ dA, a naïve conclusion would be that A should go to 0 at infinity faster than 1/r. But 
this reasoning forgets gauge invariance. F is gauge invariant but A is not. So the correct 
statement is that A should go to 0 at infinity faster than 11r, up to gauge transformations, 

A, (x) = S2 (x)a,,srl  (x) + (25.195) 

where the dots stand for terms which vanish at infinity faster than 1/r. Q (x) is a function 
from the Euclidean four-space to the gauge group G and, for the purposes of this dis-
cussion, we can choose it to be of order 1, i.e. a function of the angular variables only. 
Thus, Q (x) establishes a mapping from S3, the angular part of E4, into G. Any gauge 
potential in the family (25.195) will give a finite action field F. Obviously, Q (x) is not 
unique. We can change it by a gauge transformation Q —> gS2 with g(x) an element of 
G. Since we are interested in the asymptotic behaviour of the fields for large r, we can 
ask the question whether we can always choose g(x) = 52-1  for r —> oo. We want g to 
be a regular gauge transformation everywhere in E l; otherwise, we may introduce sin-
gularities in the action integral. This implies that g(0) must be a non-singular constant 
gauge transformation. All such transformations are continuously connected to the iden-
tity transformation because our gauge groups do not have disconnected pieces. So the 
question is whether the gauge transformation 52, which is defined on the hypersphere 
at infinity, is continuously connected to the identity transformation. This question is 
answered precisely by the study of the homotopy classes of the mapping S3  —> G. In 
Problem 25.15 we study explicitly a toy model in which G is replaced by the Abelian 
group U(1) and the space is the Euclidean plane, so 53  is replaced by the circle S1 . 
Topologically U(1) is equivalent to a circle, so in the problem we study the mappings 
S1  —> S1 . Armed with this experience we turn here to the physically more interesting 
case of the mappings S3  —> G and we choose first the simple case G = SU(2). We can 
write every SU(2) matrix in terms of the unit 2 x 2 matrix and the three Pauli matrices as 

4 

g(a,) = a411 + is • cr; lal2  = = 1, (25.196) 
i=i 

so a group element g is parametrised by the four real numbers satisfying the unit mod-
ulus condition (25.196); in other words, SU(2) is topologically equivalent to 53, so we 
must study the mappings 53  —> S3. We can follow the same intuitive chain of arguments 
that led us to the solution of the toy model, but, in fact, the problem has been solved 
mathematically and the homotopy classes of all such mappings are known. For the case 
of S3  —> S3  there exist an infinite number of homotopy classes labelled by an integer 
number v, called the winding number. Every mapping is homotopic to one in the family 

g(°)  (x) = [g(x,)]v (25.197) 

with g(x,) given by (25.196) for a, = xit • We can view v as the number of times the 
hypersphere at infinity is wrapped around SU(2), which justifies the term 'winding'. 
In fact, we can show that the winding number is our old Pontryagin index we found 
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in section 17.3 which is given by the integral (17.37). This result can be generalised to 
arbitrary groups as follows: (i) the maps 53  —> U(1) are all homotopic to the trivial one, 
i.e. they are continuously deformable to the identity. (ii) The maps 53  —> G, with G 
any simple Lie group, can be continuously deformed into a mapping of S3  —> SU(2), 
a subgroup of G. So, for any simple gauge group, they are characterised by a winding 
number. An arbitrary gauge group can be written locally as G [U (1)]n x G1  x x Gk 

with the Gi 's being simple groups, so it will be characterised by k independent winding 
numbers, one for each 

This answers our first question, namely we found that finite action field configurations 
form homotopy classes, those of the mappings S3  —> G. For non-Abelian groups they 
are labelled by a set of winding numbers. The A, = 0 configuration we have been using 
in perturbation theory belongs to the class with v = 0. 

25.4.5.3 An example of a non-trivial configuration 

The most important result of the previous section is the existence of a non-trivial wind-
ing number. Before studying the consequences for our favourite gauge theories let us 
show an explicit example of a finite action classical field configuration belonging to a 
winding number v = 1. As we explained earlier, there is no essential loss of generality by 
restricting ourselves to a gauge group SU(2). 

Any finite action gauge potential At, belonging to the v = 1 class will be asymptotically 
gauge equivalent to 

AIL  = g(1) (x)0 
o

[g(1) (x)1-1 g(1) (

x

) X4 1 + ix • Cr 

r 
(25.198) 

with the obvious notation x = (x4, x), r = (xi + x2)112 . We can define x* = (x4,-x) 
and obtain [g(1) (x)]-1  = g(1) (x*). This leads us to look for solutions of the equations of 
motion of the form 

A = f (r)g(1) (x) [g(1) 001_1 (25.199) 

f (r) must be regular everywhere, which implies the boundary condition f (0) = 0. We 
must now obtain (and solve) a differential equation for f. The task is rendered easier 
by the following remark. We start from the definition Fµ v  = ZE,Lvpa Fpa. It follows that 
FF = FF and this gives us the Schwarz inequality, 

f d4  xFF = [f d4  xFF f d4XPP] 2  f d 4xFP = 32721v1, (25.200) 

   

where we have used the index theorem of (17.37). We thus obtain a bound for the 
classical action 

1 8721vI S = —
4g2 

f d4  xFF > 
g

21  v 



2 /law, (x — xo) v  
A a  = 

g (x — x0)2  + p2' 
(25.203) 

A Gauge Theory for Strong Interactions 733 

where g is the Yang—Mills coupling constant. The bound is saturated only for field 
configurations which are self-, or anti-self-, dual: 

F = ±F. (25.202) 

We will look for solutions of the self-duality equation (25.202), which is a first-
order differential equation, because, if we can find them, we know that they will be 
also solutions of the full equations of motion since they saturate the bound (25.201) 
and consequently they give local minima of the action. Furthermore, they will give the 
minimum action solutions inside a given homotopy class, thus providing the dominant 
contributions in a semi-classical expansion. 

Using the ansatz (25.199) in the self-duality equation (25.202), A. A. Belavin, A. M. 
Polyakov, A. S. Schwartz, and Yu. S. Tyupkin found the simple solution f(r) = r2/(r2  + 
p2). p is an arbitrary scale and reflects the fact that the initial classical theory is scale 
invariant. This solution is centred at x = 0. Using the invariance under translations we 
can find a family of such solutions by just replacing everywhere x —> x— xo  with xo, 
another free parameter. Finally, we can perform gauge transformations which do not 
change the homotopy class. 

A simpler and more suggestive form of this solution is given by 

where n  is antisymmetric in tt and v and is given by 

= Eaiji r ai4 = aa (25.204) 

Although the solution (25.203) looks strange, it has a simple interpretation. The space 
E4 has an 0(4) SU(2) x SU(2) invariance. The sphere at infinity has an SU(2) invari-
ance. The internal symmetry is also SU(2). Since we want a solution that maps SU(2) 
into SU(2), it is natural to establish a correspondence between one of the subgroups 
of 0(4) and the internal symmetry group. The tensor ij plays that role. So the solution 
(25.203) is 0(4) invariant because any 0(4) rotation can be compensated by an internal 
symmetry transformation. We can verify by explicit computation of the integral of FF 
that this solution has winding number equal to 1. In fact, Eq. (25.203) represents an 
eight-parameter family of solutions with v=1 which corresponds to the symmetries of 
the original equations of motion: four parameters for space—time translations given by 
xo, one parameter for dilatations given by p, and three parameters for constant gauge 
transformations which are still global symmetries of the theory, even after gauge fixing. 
A mathematical theorem, due to M. Atiya and R. Ward, shows that every finite action 
solution with v = 1 belongs to this family of solutions. 

The solution is localised around x = xo  not only in space but also in time. For this 
reason it is called an instanton. It goes to 0 everywhere at infinity, but it is not equivalent 
to the zero field solution. If we go back to Minkowski space, it interpolates between the 
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zero field configuration and one which is obtained by a gauge transformation which is 
not continuously connected to the identity. Let us also note that by space inversion, we 
obtain a new solution which has a winding number equal to —1. This is obvious since 
FF is a pseudoscalar. We call this new solution an anti-instanton. 

A final remark: Suppose that we could find a similar instanton solution in E3  rather 
than E4. E3  is the space part of four-dimensional Minkowski space. An E3  in-
stanton would be a time-independent, space-localised solution of the Yang—Mills 
equations; therefore, we would expect such a solution to describe, in the quantum 
theory, a 'particle', but one which is not present in perturbation theory. Are there 
such 'particles'? The answer is no, for a pure Yang—Mills theory and the reason is 
very simple. In order to find the corresponding winding number we should study 
the mappings of S2  (the sphere at infinity of E3) into S3. All these mappings are 
trivial, in the sense that they can be continuously deformed to the mapping on the 
identity.23  Therefore, such a 'particle' would not be topologically stable. However, 
the situation will change if we consider a Yang—Mills theory with BEH fields, as we 
will show in the next chapter. 

25.4.5.4 The Structure of the Ground State in Gauge Theories 

The existence of a non-trivial winding number shows the existence of an infinity of finite 
action field configurations for the classical Yang—Mills theory. All these configurations 
fall into homotopy classes. Here we want to study the consequences for the quantum 
theory.24  

In the quantum theory we must first fix the gauge. Until now we have worked in cov-
ariant gauges because they give the simplest Feynman rules to compute loop diagrams. 
However, here we are not going to compute any diagrams; we will only evaluate the 
functional integral around a given field configuration. It turns out that in this case it is 
simpler to use a ghost-free gauge, i.e. a gauge in which the Faddeev—Popov ghosts de-
couple. We choose, following S. Coleman, the so-called 'axial gauge' and we set A3  = 0. 
The calculation becomes more transparent if we start by quantising the theory in a finite 
volume and take the limit of infinite volume at the end. We consider a box of volume 
V (±X, Y, ±Z) in E3  and a Euclidean time interval ± T. We must impose boundary 
conditions at the edges of the box as well as the initial and final times ±T and a con-
venient choice is to ensure that all surface terms when we perform partial integrations 
vanish. Since such terms are given by 

8S = 1 — f d3S 
g2 (25.205) 

where no is a unit vector normal to the surface and F,„ is antisymmetric in pt and v, 
we conclude that 8S depends only on the tangential components of the gauge field. 
Obviously, we must choose conditions such that A3  = 0, but also such that when the size 

23  In fact all mappings of Sn into S'n are trivial for n < m. 
24  In this section we summarise the discussion presented by Sidney Coleman in his 1977 Erice lectures. 
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of the box goes to infinity, the resulting classical field configuration gives a finite action. 
This is guaranteed if we choose boundary conditions at ±T corresponding to definite 
values of the winding number, say ni  at -T and of  at + T. This in turn implies that the 
field inside the box corresponds to a winding number n = of-ni. This is possible because 
Eq. (17.36) shows that the winding number, being proportional to the integral over all 
space of a,, G"`, depends only on the normal components of which are given in 
terms of the tangential components of A, (see Eq. (17.35)). It follows that the winding 
number will remain constant as the box goes to infinity. We can show (see Problem 
25.16) that with our choice of fixing the tangential components of the gauge potential at 
the boundaries of the box corresponding to a definite value of the winding number, we 
can take the limit of large V and T provided we integrate over field configurations inside 
this homotopy class, 

M(V, T, n) f D[AidescaA]s n, (25.206) 

where the Kronecker symbol 8,n  means that we integrate only over field configurations 
with winding number v = n. As usual, M(V, T, n) represents a transition matrix element 
between an initial and a final state determined by the boundary conditions and is given by 

M(V, T, n) --< nfie-2HT ini  > (25.207) 

> and Int- > are states defined by field configurations with the corresponding 
winding number. Equation (25.207) shows that when T —> oo, we pick up the eigenstate 
of H with the lowest eigenvalue. The expression becomes more transparent if we Fourier 
transform M with respect to n: 

ic 4 (V , T,  0) = E ein9  114(V , T,  n) f D[A,]esei [A]  eiv9 (25.208) 

The important point is that the winding number is given by Eq. (17.37), which is 
an integral over all space of a local density. The size of an instanton is determined by 
the parameter p which is independent of T or V. Therefore, it remains fixed when 
the volume goes to infinity. It follows that we can consider the configuration with total 
winding number n as the result of an arbitrary number of instantons and anti-instantons, 
provided their difference equals n. For example, if we split the box T into T = T1  + T2, 
we obtain, approximately, 

M(17, Ti ± T2, n) = E M(V, T1, ni)A4(17  T2, n2); (25.209) 

in other words, we put a field configuration with winding number n1  in the first half 
of the box and one with winding number n2  in the second. By doing so, we ignore 
field configurations which have a winding number n in the entire box but do not cor-
respond to a definite winding number in any of the two parts. Since the size of the 
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instanton configurations is very small compared to the sizes of the boxes, we expect the 
contribution of such configurations to go to 0 as the box goes to infinity, roughly as a 
surface-to-volume effect. 

The composition law (25.209) implies that for large T1  and T2, M(V, T, 0) satisfies 

M(V, T1  + T2,0) = M(V, T1,6) SI'(1 7  , T2,0), (25.210) 

which means that M satisfies a composition law of a simple exponential, as expected 
from the expectation value of the operator CHT  in an energy eigenstate. As T —> oo, we 
select the lowest energy eigenstate corresponding to winding number v. Since it is a state 
with the lowest energy we will call it 0-vacuum and denote it by 10 >. In this section we 
will compute the energy corresponding to each 0-state. 

In the spirit of the previous discussion, we approximate the configuration with wind-
ing number v by an arbitrary number of instanton and anti-instanton configurations 
satisfying v = n - n. They are centred at points xoz , which are separated by distances 
large compared to their sizes given by the parameters p1. This is often called the dilute 
gas approximation, by analogy to the corresponding one used in statistical mechanics. We 
will calculate the functional integral for such a configuration. 

Let us call So the value of the classical action for one instanton, or anti-instanton. 
Computing the quadratic fluctuations around this solution yields an expression of the 
form [detA]-1/2e-s0 . Using the explicit form of the solution (25.203) we can compute 
the values of So and detA, but we will not need these values here, so let us call the one-
instanton contribution to the functional integral Ke-so. In the dilute gas approximation 
the classical value for n such configurations equals nSo and the quadratic fluctuations 
give Kne-nso. This is the contribution of n configurations centred around the points xio  
which are held fixed. We must still integrate over these positions. In each of the four 
dimensions of the box V, T we can place the centres at -X < x(1)  < x6 < ... < xon < +X. 
Integrating over all positions gives 

+x 

fx	

xl, (2X) n n dX0 f 4  dxn-1  f dxo  =  
-x -x n! 

Putting all these together we write Eqs. (25.207) and (25.208) as 

< oie_2HT io  ,,,, 1 E (Ke-so )n+nei(n-n)9 (2 
n!h! 3 

n,n
17TrEil = e4KVTe-s0 cos 61 

which shows that the 0-state has an energy density per unit volume given by 

(25.211) 

(25.212) 

E0  = -2K cos 0 e-s° . (25.213) 

The precise value in Eq. (25.213) is not important; what is important, however, is 
that E0  does depend on 0, which means that the 0-vacua are indeed different states. 
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The expression (25.208) has a very simple interpretation. Taking into account field 
configurations with non-vanishing winding number in the Yang—Mills functional integral 
results in a continuum of vacuum states, labelled by a parameter 9, in complete analogy 
with the Bloch waves in a periodic potential. The perturbation theory around each one 
of these vacuum states is determined by an effective action given by Eq. (25.208): 

Seff = SYM + 
i9 

3272  J 
d4xFF, (25.214) 

where we have used the expression (17.37) for the winding number v. Our old perturb-
ation theory corresponds to the particular value 9 = 0. In other words, a Yang—Mills 
theory has a more complex structure than naïvely anticipated; namely, it contains a 
second 'hidden' coupling constant, the parameter 9. We could be tempted to ignore the 
new term in (25.214) because, as shown in Eq. (17.36), it is equal to the integral over all 
space of a four-divergence. However, our instanton analysis proved that the assumption 
that all fields always vanish at infinity is not correct for a gauge theory. 

A final remark: FF is a pseudoscalar; therefore, for 9 0 this term violates parity. Since 
it conserves charge conjugation, it violates CP and, consequently, time-reversal 
invariance. This is also obvious from the presence of the i-factor. Since strong 
interactions are known to conserve CP and T, it means that experiments should 
put severe bounds on the allowed values of 9 for QCD. We will discuss this point 
shortly. 

25.4.5.5 Instantons in QCD 

The only new element that QCD introduces in the discussion presented so far is the 
presence of quark fields. They do not affect the instanton solutions because configura-
tions such as the one shown in Eq. (25.203) are still finite action solutions of the classical 
equations of motion corresponding to zero values of the quark fields. However, they do 
affect the conclusions we reached concerning the structure of the vacuum state as we 
will explain here. 

Let us first consider the simple case of exactly massless quarks. The important points 
were already presented in the discussion of the chiral anomaly in section 17.3. They 
are summarised in Eqs. (17.24), (17.30), (17.33), and (17.37). The first three show 
that a chiral transformation on a massless fermion field results in the addition in the 
effective Lagrangian density of a term proportional to the trace of FF. Since this is 
precisely the effect of taking into account the functional integral of field configurations 
with non-vanishing winding number, as shown in Eq. (25.214), we conclude that in 
QCD with massless quarks, the effective 9 coupling constant can be chosen equal to 0 
and all instanton effects disappear. How is this compatible with the result shown in Eq. 
(25.213) which led us to conclude that the 19 > states were all different? The answer 
is given by Eq. (17.37), which relates the winding number with the zero modes of the 
covariant Dirac operator. It shows that for v 0, the covariant Dirac operator in a 
gauge field with non-vanishing winding number has at least one zero mode. We have 
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already seen that the constant K which appears in the energy density of the 161  > vacua is 
related to the determinants we obtain when computing the quadratic fluctuations in the 
functional integral. For fermion fields this determinant appears in the numerator. The 
presence of a zero mode means that the determinant vanishes and hence, K = 0. All 
161  > vacua have vanishing energy density. Note that for this result it suffices to have just 
one quark flavour with vanishing mass. 

We are tempted to interpret this result as meaning that the theory possesses a family 
of ground states with degenerate energies. To prove that this is indeed the case we must 
show that the 161  > states are genuinely different states and they are not just proportional 
to each other. The simplest way to show it, which will also exhibit the underlying 
physics, is to compute the expectation value < 9lcr±(x)19 > where we choose a± to 
be gauge invariant chiral operators. For a single-quark field with vanishing mass the 
simplest choice is 

a±(x) = 2 
—
1_

Ifr (x) (1 ± y5)* (x). (25.215) 

Under a chiral transformation they satisfy 

8o-±(x) = T2icr± (x). (25.216) 

In Problem 25.17 we compute the expectation value < 9 Icr± (x)19 > and show that 
it is different from 0. We conclude that this theory satisfies all the conditions we set in 
Chapter 15 for the phenomenon of spontaneous symmetry breaking. The U(1) chiral 
symmetry is spontaneously broken and the 19 > vacua form a family of degenerate 
ground states. What is remarkable is that we discovered this phenomenon by perform-
ing a first-order semi-classical calculation. The classical theory shows no sign of it. It 
is the first time that we encounter a field theory which exhibits the phenomenon of 
spontaneous symmetry breaking and this phenomenon is manifest in finite order per-
turbation theory. By contrast, we can think of the SU (2) chiral symmetry of QCD. We 
argued in section 25.4.2 that it is spontaneously broken and the pions are the approx-
imate Goldstone bosons. But there is no way to study this phenomenon at any finite 
order of perturbation theory. We tried to explain this failure by saying that it happens 
at a low mass scale in which the effective coupling constant is large and perturbation 
theory breaks down. The interaction becomes strong and produces quark—anti-quark 
bound states, a phenomenon clearly outside perturbation theory. Therefore, we must 
admit that, in contrast to the Abelian part, the spontaneous breaking of the non-Abelian 
chiral symmetry remains a conjecture. 

This brings us to the question we asked in 25.4.2: granted that the U(1) chiral sym-
metry is spontaneously broken, why there is no physical Goldstone boson? We have now 
the tools to answer this question quantitatively. Let us start by looking at the gauge in-
variant Green function < 61 10-, (x)o-_(0)10 >. In the functional integral we must include 
the A,, = 0 configuration, as well as the one with one instanton and one anti-instanton. 
The first gives the ordinary perturbation theory, which, at lowest order, is the diagram 
with one quark loop. It has a cut but no poles. The second factors into the product 



A Gauge Theory for Strong Interactions 739 

< 010-,10 > < 01Q_10 >. We have computed these expressions in Problem 25.17 and, 
again, they have no zero-mass pole. On the other hand, if we look at the gauge-dependent 
matrix element < 01 G,(x)o-_(0)10 >, the only configurations that contribute are those 
with v = 1. Therefore, taking into account Eqs. (17.36) and (17.37), we obtain 

f d4x8"` < 0IG,(x)o-_(0)10 >= 3272  < 01(7_10 > 0. (25.217) 

Since this relation is valid for all k, we conclude that the Fourier transform of the mat-
rix element < 01G,(x)cr_(0)10 > does have a k2  = 0 pole whose residue is proportional 
to the expectation value < 0 Icr_10 >. This analysis answers our main question and solves 
the mystery of the missing Goldstone boson. A k2  = 0 pole does appear but only in 
gauge-dependent Green functions. 

If QCD had at least one massless quark flavour, this would have been the end of 
the story. The 9-term in the effective Lagrangian (25.214) could be put equal to 0 and 
no observable CP violation would result. The lightest quark seems to be the u-quark 
and this is the natural candidate for being massless. In the framework of the standard 
model this would mean that the parameter Gul  in the Yukawa Lagrangian (25.33) is 
equal to 0. In reality, the mass of a light quark is not a directly measurable physical 
quantity because the quarks do not appear as physical states. The masses that appear in 
the Lagrangian are parameters which can be determined only indirectly. The trouble is 
that all indirect determinations, such as lattice simulations, chiral symmetry perturbation 
approximations, current algebra calculations, all seem to indicate a non-vanishing mass 
for all quark flavours. If this is the case, the 9-vacua are all different and the 9-term 
is observable. This is known as the strong CP problem. Can we set by hand 9 = 0? If 
QCD was the only interaction the quarks had, this would have been an acceptable choice 
because radiative corrections would not force us to violate this symmetry. However, 
weak interactions are known to violate CP and as a result, they produce an effective 
9-term. It turns out that the strongest constraint comes from the absence of a neutron 
electric dipole moment. It can be translated as an upper bound for 9 on the order of 
0 < 10-9, several orders of magnitude smaller than what we could naïvely expect from 
the electroweak radiative corrections. A deeper explanation is clearly needed. 

Roberto Peccei and Helen Quinn proposed to enlarge the model in such a way as to 
restore a U(1) axial symmetry, even in the presence of massive quarks. For the standard 
model a simple way to achieve this goal is to consider two BEH doublets, one which is 
coupled only to up-type quarks and a second one for the down-type. Now we have an ex-
tra freedom, namely to perform phase changes of the scalar fields. It is easy to check that 
the 0-term can be absorbed and no CP violation is induced. However, as Steven Wein-
berg and Franck Wilczek have observed, this U(1)pQ  is spontaneously broken at the 
classical level, since both BEH doublets acquire a non-zero vacuum expectation value. 
The resulting Goldstone boson does not remain massless, because of the instanton ef-
fects. It follows that such a theory contains a pseudo-scalar pseudo-Goldstone boson 
which is called an axion. Its detailed properties, mass and couplings, depend on the par-
ticular model. The simplest two-doublet model is already ruled out by experiment, but 
other models are not. An active experimental programme is being currently pursued 
aiming to discover and, possibly, study axions. 
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25.5 Problems 

Problem 25.1 The properties of S U (2) spinors. Show that if W denotes an SU(2) 
doublet, the complex conjugate spinor W* belongs to an equivalent representation 
of SU(2) and find the equivalence matrix. This is a particular example of the gen-
eral property of SU(2) for which all representations are real. Such a property is lost 
for higher unitary groups. 

Problem 25.2 The general Kobayashi—Maskawa matrix. Given a theory with of  
quark families find the number of physically measurable arbitrary parameters which 
appear in the resulting Kobayashi—Maskawa matrix. Verify that for n1=3, we obtain 
the three Euler angles and a phase. 

Problem 25.3 Stability of the SU(2) x U(1) electroweak theory. The standard elec-
troweak model has 17 parameters. An interesting question is to examine whether 
they are all truly independent, or whether we can impose some relation among 
them. In particular, people have looked at the possibility of determining the ratio 
mz/ms, i.e. expressing the mass of the BEH scalar in terms of that of the gauge bo-
sons. Using the renormalisation group analysis we presented in section 19.3, show 
that a relation of the form mz/ms = C, with C a fixed constant, will not be stable 
under renormalisation. 

Problem 25.4 Higgs hunting. One of the main items in the agenda of experi-
mental high energy physics has been the study of the mechanism underlying the 
spontaneous symmetry breaking of the theory. 

1. In the standard model find the dominant decay modes of the BEH particle 
as a function of its mass. 

2. Assuming ms ',-,- 126 GeV compute the branching ratio for the two-photon 
decay mode B y y = rAS:9->_,Z , where the total width can be estimated by the 
dominant decay mode. 

Problem 25.5 In the symmetry breaking pattern of the standard model we found 
that, in the classical approximation, we have the relation (25.27) between the gauge 
boson masses and the mixing angle. Find how this relation is modified if we add 
a second scalar field, belonging to a triplet of weak SU(2), which takes a vacuum 
expectation value v'. 

Problem 25.6 The end-point spectrum in fi-decay. Compute the energy spectrum 
of the emitted electron in neutron ,B-decay in the vicinity of the 'end-point', i.e. in 
the region in which the electron takes almost all the available energy. Show that 
the form of the spectrum is very sensitive to a possible non-vanishing value of 
the neutrino mass mv  . Given the very low value of the momentum carried by the 
leptons compared to the W mass, it is sufficient to use the Fermi theory. 
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Problem 25.7 Neutrino oscillations. 

1. We start with a two-flavour model, ve  and v„. We assume that neutrinos are 
massive Dirac particles and the flavour numbers are not separately conserved. 
Let us call the mass eigenstates I vi > and 11)2  > with mass eigenvalues m1  
and m2, respectively. At t = 0 a ve  is produced with momentum p and travels 
through the vacuum. Find the probability that it interacts like a v, at time 
t. Show that it exhibits an oscillatory behaviour which is absent if the two 
masses m1  and m2  are equal. Show that the oscillation amplitude depends on 
a single mixing parameter. 

2. Repeat the exercise with the physical case of three flavours. Find the number 
of parameters which determine the mixing, when the neutrinos are described 
by (i) Dirac fields and (ii) Majorana fields. 

Hint: The difference between the two is that Majorana fields are real and we 
cannot redefine their phases. 

3. The solar neutrinos which were detected on earth and first pointed to the 
phenomenon of neutrino oscillations are produced by nuclear reactions in 
the interior of the sun. The first such reaction, which triggers all the oth-
ers, is hydrogen fusion: proton+proton —> deuteron+positron+neutrino. All 
these are low-momentum transfer reactions, so only electron neutrinos are 
produced. On the other hand, the neutrinos travel a long way inside the sun, 
which is a relatively high density medium, so the approximation we made 
in the first part of this problem of vacuum propagation is not justified. The 
purpose of this question is to model the presence of matter. 

(i) Show that in the standard model, electron neutrinos interact with mat-
ter differently from the other two species and draw the corresponding 
diagrams. What is the difference between neutrinos and anti-neutrinos? 

(ii) Let us first make the simplifying assumption of a medium with a 
constant matter density. If H is the total Hamiltonian which governs 
neutrino propagation, we can write H = Hv  + Hm. Hv  is the part which 
describes the vacuum propagation and contains the kinetic energy and 
mass terms. As we noted earlier, it is diagonal in the basis of the mass 
eigenstates I vi >, I v2  > and I v3  > . Show that Hm  is diagonal in the basis 
of flavour eigenstates I ve  >, I v, >, and I v, > . Show that on this basis and 
in the Fermi theory approximation, in which the vector boson propag-
ator is replaced by a point interaction, it can be written, up to an overall 
factor, as Hm  a diag [(1 + Cpe), 1, 1] with io, the density of electrons 
and C a numerical constant which changes sign between neutrinos and 
anti-neutrinos. 

(iii) Study the phenomenon of oscillations in this medium. 
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Remark: The constant density approximation is not justified for the sun where the density 
changes from a maximum in the centre to 0 at the surface. The general case can 
only be solved numerically since it depends on the solar model. There is, however, 
an approximation, which is quite realistic and allows for exact solutions. It is the 
adiabatic approximation valid when density variations are small over one oscillation 
length. In this case the problem can be solved going to a variable basis of eigenstates, 
exactly analogous to the phenomenon of spin precession in a slowly varying magnetic 
field. 

Problem 25.8 The Georgi—Glashow model. In the very early seventies, the dawn 
of the gauge theory era, the existence of neutral currents was not yet experiment-
ally confirmed. So theorists looked for models, alternative to the standard one, 
with no observable neutral currents. The first, and the simplest, was proposed by 
Howard Georgi and Sheldon Lee Glashow. Although it was very soon ruled out 
by experiment, it still serves as a toy model for spontaneously broken gauge the-
ories because it has several attractive features. It unifies weak and electromagnetic 
interactions in a simple gauge group. The electric charge is one of the generat-
ors and, since the group is simple, the values of electric charges are automatically 
quantised. It exhibits phenomena such as the existence of magnetic monopoles and 
the electric—magnetic duality which we find typically in models going beyond the 
standard model, some of which we will study in the next chapter. 

The model is based on the gauge group 0 (3) . We studied the pattern of 
spontaneous symmetry breaking in Problem 2.3. Here we want to introduce 
fermions. 

1. We restrict to the lepton world. The first idea is to consider the group SU (2), 
which is locally isomorphic to 0 (3) , and put the leptons of each family in a 
doublet. Show that this model is incompatible with the observed weak and 
electromagnetic interactions of the leptons. 

2. Following Georgi and Glashow we enlarge the lepton spectrum by assuming 
the existence of heavy, as yet unobserved, leptons. For each family we intro-
duce one positively charged and one neutral heavy lepton. Show that we can 
obtain an acceptable, by 1970 standards, model in which left-handed leptons 
are put in 0(3) triplets and right-handed ones in 0(3) singlets. Exhibit the 
lepton—vector boson couplings after spontaneous symmetry breaking. 

It turns out that there is no simple acceptable extension of this model to include quarks. 
Furthermore, the experimental discovery of weak neutral currents, followed by that of the 
neutral vector boson, put an end to the search of this kind of models. 

Problem 25.9 Using the general results of section 18.3 prove the Georgi—Glashow 
formula (25.74). 
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Problem 25.10 Deep inelastic neutrino—nucleon scattering. Repeat the analysis 
which gave us the expression (25.79) for Wp,„ in the case of electron—nucleon deep 
inelastic scattering to the case when the incident lepton is a neutrino. 

Hint: Neutrino—nucleon interactions do not conserve parity. 

Problem 25.11 Show that the Wilson loop defined in Eq. (25.90) is gauge 
invariant. 

Problem 25.12 Chiral symmetry and /3-decay. 

1. We write the contribution of the weak axial current in the neutron /3-decay as 

< p(q2)IAA1n(q1 ) > itp(q2)[gA(q2))/ A  + gp(q2)e] y5un (q1), (25.218) 

where un  and up  are the Dirac spinors of the initial neutron and the final 
proton with momenta qi and q2, respectively, and q = q1 —q2  is the momentum 
transfer. gA  and gp are two form factors which, from Poincare invariance, 
depend only on q2. We remind that the proton—neutron mass difference is 
very small, so the approximation q2  0 is very good. Apply the principle of 
P.C.A.C. of Eq. (15.25) to the axial current and find a relation of the form 

MgA(0) — fag, (25.219) 

where M is the mass of the nucleon, f,. the pion decay constant given in Eq. 
(25.97), and g, the pion—nucleon coupling constant defined in Eq. (17.1). 

This relation, known as the Goldberger—Treiman relation, played an important 
role in the development of the ideas related to chiral symmetry. 

2. In studying the non-relativistic scattering theory we found the useful concept 
of the scattering length, which is defined, up to a kinematical factor, as the 
value of the elastic scattering amplitude at threshold. In this problem we 
want to compute such quantities for the physically interesting case of the 
elastic scattering of pions on nucleons. 

We start by introducing the Green functions 

Gab;ij = zl 
f d4x  

a < P2,111T ("ati (X) avAb„ (Y)) IPI, i > 
fir mn 

— mx2
_ 

mx
2 )e_iki xeik2y, (25.220) 

where a and b are the axial current isotopic spin indices, a, b = 1, 2, 3, i 
and j those of the initial and final nucleon states, i,j = 1, 2, and pi  and 
p2  the momenta of the initial and final nucleons. G is a function of the ex-
ternal momenta k1  , k2, pi, and p2, subject to the overall energy—momentum 
conservation and we have chosen the normalisation factor such that at the 
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limit kl 1,  1, 2, G equals the corresponding pion—nucleon scattering 
amplitude. 

Similarly, we define the Green functions 

Gab;ij 
v 

Ga
i

b;ij 

, < p2i1T (Aa,,(x)Abp(y)) = fn  f d4xd4y IPi,i > 

(q—m,r2)(k3_ mDcikixeik2y 

— r 4 — d xd4  y < P241 Hap,(x), At(Y)11Pi, >i 8(x° yO) 

—11Z7,2 )(k3  — m7,2 )e-ikixeik2y 

(25.221) 

(25.222) 
Gab = 1  f d4xd4y < p2,ii[Ag(x),avAbv(y)iipi, > S(x°  — y°) 

(14 — in!) (k3 — mn.2 )e-ik xeik2y. (25.223) 

(i) Show that they satisfy a Ward identity of the form 

Gakij G0  t-71 • (25.224) 

We want to use this identity to obtain the value of the s-wave pion—
nucleon scattering amplitude at threshold, neglecting terms of order 
inn/MN. 

(ii) Prove that the first two terms give a vanishing contribution when k1  = 
k2  = 0. 

Hint: For the first term show that the contribution of the pole diagrams to 
the s-wave amplitude goes to 0 and for the second use PC.A.C. 

(iii) Use the SU(2) x SU(2) current algebra to show that the identity 
(25.224) determines the combination of the pion—nucleon scattering 
lengths which is antisymmetric in the pion isospin indices. 

(iv) In the pion—nucleon channel the total isospin can take two values, III = 
and III = ;. We call the corresponding scattering lengths a112  and a312. 
Show that the previous results can be combined to give 

a112  — a312 ti 0.3M-71; a112  + 2a312  ti 0 (25.225) 

in good agreement with experiment. 

(v) Since the scattering lengths are the values of the corresponding scat-
tering amplitudes at threshold, use the forward dispersion relations and 
the optical theorem to express the first of these relations in terms of an 
integral over the difference of the pion-nucleon total cross sections. 
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In this form, as an integral over cross sections, this relation was derived by Stephen Adler 
as well as William Weisberger. It is called the Adler—Weisberger relation and gave the 
first great success of the current algebra ideas. The derivation we present here, which is 
expressed as a low-energy theorem, is due to Steven Weinberg. 

Problem 25.13 Apply the light-cone operator product expansion formalism we 
developed in section 25.4.3 to the free quark parton model and derive the relations 
(25.132). 

Problem 25.14 Show, by explicit computation, that the continuum limit of the 
Wilson action of Eq. (25.183) is the Yang—Mills action. 

Problem 25.15 Study the homotopy classes of the mapping between two circles, 
SI  —> SI , and show that they are labelled by an integer winding number. 

Problem 25.16 Study the large volume and large time limits of the Euclidean func-
tional integral we considered in section 25.4.5 and derive the energy of the 0-states 
given in Eq. (25.213). 

Problem 25.17 Compute the expectation value < 0 la± (x)10 >, where the chiral 
operator a is given in terms of a massless quark field * by Eq. (25.215), of (X) = 

1* (X) (1 ± y5)ilf (x), and 10 > is the vacuum state defined in section 25.4.5. 2 
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Beyond the Standard Model 

This chapter follows a different spirit from the one that has prevailed in the rest of the 
book. The physical concepts and models we have presented so far, although often quite 
abstract, were solidly anchored in experimental results. The mathematical methods we 
used were motivated to serve a well-defined phenomenological purpose. In this chapter 
we will break away from this philosophy and we will attempt to present a panorama 
of theoretical speculations which have dominated research in theoretical high-energy 
physics over the past decades. The style of presentation will change accordingly, from 
deductive and pedagogical, appropriate to a text book, to more descriptive, like that of 
a general review. The purpose is to stimulate interest for further reading rather than 
to build a convincing sequence of arguments. We will not present a well-established 
scientific doctrine but a line of research in progress. The reader should be more critical 
than before. 

In high-energy physics we have been extremely fortunate to construct a fundamental 
theory in remarkable agreement with experiment. In contrast, over the past decades the-
orists have often worked with very little experimental input. The enormous complexity 
of modern high-energy or astrophysics experiments has stretched the time between the 
conception, the design, and the completion of an experiment to decades. As a result, 
our ideas are necessarily tentative and seem to go in many directions. We try to cover as 
much of these ideas as possible, but many results will be presented without a full justific-
ation and the reader will be referred to the original literature. The choice of the material 
is, obviously, subjective, but we believe it accurately reflects the general opinions prevail-
ing in the scientific community. With one notable exception. We do not cover at all the 
subject of quantum gravity and, consequently, all the extremely rich and exciting line of 
research in local supersymmetry and superstring theory. To present even a partial view 
of this subject would have required a second volume. 

We are aware of the fact that coming experiments may change completely our the-
oretical prejudices. However, we feel that many of these speculations are sufficiently 
attractive to deserve our attention. Either in their present form or embedded in a larger 
scheme, they may form the basis of the theory of tomorrow, the one that experiments 
will establish. We have been extremely frustrated during all these years with experiments 
presenting no new directions to explore and we cannot hide our excitement now that the 

From Classical to Quantum Fields. Laurent Baulieu, John Iliopoulos and Roland Seneor. 
© Laurent Baulieu, John Iliopoulos and Roland Seneor, 2017. Published 2017 by Oxford University Press. 
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long-awaited results are at last in sight. Never in the past were new experimental facilities 
loaded with so many expectations. We are confident that great and exciting discoveries 
lay ahead. 

26.1 Why 

26.1.1 The Standard Model Has Been Enormously Successful 

As we have already emphasised, the agreement between the standard model and ex-
periment is truly remarkable. Many new phenomena were discovered following its 
predictions: the weak neutral currents, the charmed particles as well as those of the 
heavier flavours, the intermediate vector bosons, the effective strength of the interac-
tions as predicted by the renormalisation group, the presence of gluons among the 
constituents of hadronic matter, and, finally, the recent discovery of an 'elementary' 
scalar particle. All these spectacular successes of the standard model are in fact suc-
cesses of renormalised perturbation theory. Indeed what we have learnt was how to 
apply the methods which had been proven so powerful in quantum electrodynam-
ics to other elementary particle interactions. But in some cases, we have been able 
to go beyond perturbation. The beautiful results on the spectrum of light hadrons 
which were obtained by the QCD calculations on a space—time lattice show clearly 
that what we call 'the standard model' is, in fact, a fundamental theory. The remark-
able quality of modern high-energy physics experiments has provided us with a large 
amount of data of unprecedented accuracy. All can be fit using the standard model 
with no free parameters beyond those which are directly determined by experiment. 
Figure 26.1 indicates the overall quality of such a fit. It shows a variety of physical 
quantities, masses, decay widths, asymmetries, etc., which can be measured experi-
mentally and determined theoretically in the framework of the standard model. The 
theoretical determination can be either part of the global fit or indirect through radiat-
ive corrections. There is one measurement which lays beyond two standard deviations 
away from the theoretical predictions, but it is not sufficient to conclude that there is 
evidence for new physics rather than an accident, or the result of incorrectly combining 
incompatible experiments. To this list we should add some low-energy high precision 
measurements, such as the anomalous magnetic moments of the electron and the muon, 
which could also indicate the presence of possible new physics beyond the standard 
model. 

Another impressive fit concerns the strong interaction effective coupling constant as 
a function of the momentum scale (Fig. 25.13). This fit already shows the importance 
of taking into account the radiative corrections, since, in the tree approximation, a, is, 
obviously, a constant. Similarly, Fig. 26.2 shows the importance of the weak radiative 
corrections in the framework of the standard model. Because of the special Yukawa 
couplings, the dependence of these corrections on the fermion masses is quadratic, while 
it is only logarithmic in the BEH mass. The E parameters are designed to disentangle the 
two. The ones we use in Fig. 26.2 are defined by 
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▪ Global EW fit 
▪ Indirect determination 
♦ Measurement 
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Figure 26.1 Various physical quantities and their agreement 
with the Standard Model computations (O: M. Baak et al, 
G-Fitter Group Collaboration, arXiv: 1407.3792). 
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ln 
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E3 = , — + 

12Nnn- 2  mz 6N/27 2  mz 

(26.1) 

(26.2) 

where the dots stand for subleading corrections. As you can see, the e's vanish in the ab-
sence of weak interaction radiative corrections; in other words, el  = e3  = 0 are the values 
we get in the tree approximation of the standard model but including the purely QED 
and QCD radiative corrections. We see clearly in Fig. 26.2 that this point is excluded 
by the data. The latest values for these parameters are e l  = (5.21 ± 0.08) x 10-3  and 
E3  = (5.279 ± 0.04) x 10-3. 

26.1.2 Predictions for New Physics 

This great success of the standard model can be interpreted by saying that perturbation 
theory is very reliable outside the region where strong interactions become important. 
We have seen in section 25.4.3 that in all known physics this happens only in hadronic 
processes in which the relevant energy and momentum transfer is comparable to the cor-
responding typical mass scale. We can use this property to make a qualitative prediction 
for the expected results of future experiments in the multi-hundred GeV range, such as 
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Figure 26.2 The importance of the weak 
interaction radiative corrections. The 
standard model prediction, at 95% 

x10-3 confidence level, is included with the 
corresponding error bar (10: M. Ciuchini et 
al, arXiv:1306.4644). 

the LHC. The new information is that LHC has indeed found a 'light' scalar particle, in 
agreement with the prediction based on previous experiments, implying a value of the 
coupling constant X on the order of 6. This value lies inside the classically 'acceptable' 
region: 

1 > X > 0. (26.3) 

We have already discussed these limits in the previous chapter. The lower limit for X 
comes from the classical stability of the theory. If X is negative the potential is unbounded 
from below and there is no ground state. The upper limit comes from the requirement of 
keeping the theory in the weak coupling regime. If X > 1 the scalar sector of the theory 
becomes strongly interacting and we expect to see plenty of resonances and bound states 
rather than a single elementary particle. 

Going to higher orders is straightforward, using the renormalisation group equations. 
The running of the effective mass is determined by that of X. Keeping only the dominant 
terms and assuming p = log(v2/µ2) is small (pt v), we find that 

dX 3 2  

dp [A  + 3A14 — 9h4 + ...], (26.4) 

where ht  is the coupling of the scalar boson to the top quark. The dots stand for less 
important terms, such as the other Yukawa couplings to the fermions and the couplings 
with the gauge bosons. This equation is correct as long as all couplings remain smaller 
than 1, so that perturbation theory is valid, and no new physics beyond the standard 
model becomes important. Now we can repeat the argument on the upper and lower 
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Figure 26.3 The Standard Model phase diagram in terms of the BEH scalar and top quark masses. 
It shows the regions of stability, meta-stability and instability of the broken phase vacuum. The dotted 
lines show the scale in which instability occurs. The diagram assumes no new physics up to the Planck 
scale. At the right we zoom at the region around the experimental values of Mh and Mt . We see that we 
are in the meta-stability region. The plot includes radiative corrections. The grading of the colours 
indicates the estimated theoretical uncertainties (© D. Buttazzo et al arXiv: 1307.3536). 

bounds for X but this time taking into account the full scale dependence X(µ). We thus 
obtain for the BEH mass an upper bound given by the requirement of weak coupling 
regime (X (A) < 1) all the way up to the scale and a lower bound by the requirement of 
vacuum stability (X(µ) > 0), again up to µ. Obviously, the bounds will be more stringent 
the larger the assumed value of it . Figure 26.3 shows the regions of stability, meta-
stability and instability assuming no new physics up to the Planck scale. It is interesting to 
notice that the experimental point lies in the meta-stability region, although the estimated 
life-time of the Standard Model vacuum state exceeds the age of the Universe. 

How reliable is this conclusion? These are the standard model predictions, assuming 
no new physics shows up to the scale µ. We want to argue here that, in fact, the open-
ing of new physical thresholds can be safely predicted already at a scale of a few TeV, 
although their precise nature cannot. 

With the experimental discovery of the BEH scalar boson the electroweak theory is 
complete. All coupling constants have been measured and they belong to the perturb-
ative regime. Following K. Wilson, we can fix a scale µ, and imagine that we integrate 
over all degrees of freedom with energies above µ,. It is the scale up to which the theory 
can be trusted; in other words, we assume that physics at scales below it is accurately 
described by the standard model. We thus obtain an effective field theory describing the 
light, meaning lighter than degrees of freedom. We can compute this theory in per- 
turbation, but, even non-perturbatively, we can guess its general form. Integrating over 
the heavy degrees of freedom does not break any symmetry, so the effective theory will 
be a sum over all operators built out of the light fields consistent with the symmetries 
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of the standard model. The dependence of the coefficients on it can be deduced from 
dimensional analysis. If p. is larger than any other mass scale of the theory, for the stand-
ard model this means p, much larger than the top quark mass, the coefficient of an 
operator 0, with dimensions di, is proportional to 11, (4-di )  up to logarithmic corrections. 
Therefore, we can distinguish three classes of operators: 

(i) Operators whose dimension di  is larger than 4. Their contribution decreases as 
a power of so they become irrelevant for large µ,. 

(ii) Operators with di  = 4. They are precisely the operators appearing in the stand- 
ard model Lagrangian and they receive logarithmic corrections in These 
corrections are described by the equations of the renormalisation group. They 
are sometimes called 'marginal operators'. 

(iii) Operators with di  < 4. Their coefficients grow like positive powers of pt, so 
they become dominant at large scales. In the standard model there are only 
two such operators: the unit operator 1 with dimension equal to 0 and the 
operator 02, where 0 is the field of the BEH scalar, with dimension equal 
to 2. The first contributes only to the induced cosmological constant which, 
in the absence of gravitational interactions, is not observable.' We conclude 
that the only dominant operator of the standard model is the mass term of the 
scalar boson. It receives corrections which grow quadratically with the energy 
scale. 

This problem is often referred to as the hierarchy problem because it was first analysed 
in the framework of the so-called 'grand unified theories', which we will present in the 
next section. However, we want to emphasise here that it is a genuine instability of all 
generic quantum field theories involving scalar fields. This quadratic dependence on the 
scale should not be confused with the quadratic divergence, which is present in scalar 
theories. The latter is removed by renormalisation, while the former affects the finite 
mass counter-term, which must be adjusted, order-by-order, in order to cancel the scale 
dependence. This adjustment will be more and more severe the higher the assumed 
scale is. 

This argument allows us to introduce the concept of naturalness. The underlying idea 
is that all physical theories are effective theories valid up to a certain scale, because we 
can never assume that we know physics at all scales. A quantum field theory will be called 
natural if the values of its parameters depend only logarithmically on this large energy 
scale. According to this definition, the standard model is not natural. It must be replaced 
by a different theory above a certain scale it. t. Given the fact that the BEH scalar has a 
rather strong coupling to the top quark, the 11, 2  dependence induced by a t-quark loop 
will require very fine adjustments if the scale is much larger than 1 TeV, 

(M,2s)eff = ms CaeffP,23 (26.5) 

1  We have also the fermion mass terms which are dimension three operators, but they are protected by the 
symmetries of the model. 
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where C is a calculable numerical coefficient of order 1 and aeff  some effective coupling 
constant. In practice it is dominated by the large coupling to the top quark. The moral 
of the story is that the BEH particle cannot remain light unless there is a precise mech-
anism to cancel this quadratic dependence on the high scale. We will see later how such 
cancellation mechanisms can be implemented and what kind of new physics they imply. 

26.1.3 Unsolved Problems of the Standard Model 

Despite its enormous success, there are several reasons to suspect that the gauge the-
ory of the standard model cannot be considered as a truly fundamental theory. We have 
already mentioned some of its shortcomings. One was the family problem: why do we 
observe three, apparently similar, families of elementary fermions? Another is the prob-
lem of masses. It is hard to believe that all these widely spread mass values are arbitrary 
parameters in a fundamental theory. This problem existed already with mass values such 
as me  and mt. It is accentuated with the values of the neutrino masses. A third very im-
portant problem is that U(1) x SU(2) x SU(3) is not a unified theory at all. Each group 
factor comes with its own coupling strength. Even worse is the presence of U(1) be-
cause it allows for any number of coupling constants. We have already explained that 
in a non-Abelian group the coupling constant is fixed by the gauge boson self-coupling 
and it must be the same, except for Clebsch—Gordan coefficients, for every matter mul-
tiplet. For U(1), however, this is not so. In other words, the present theory does not 
explain why electric charge appears to be quantised and we do not see particles with 
charge n-e. For the standard model the observed very precise equality (up to one part 
in 1020) of the electric charges of the proton and the positron seems to be accidental. 
Last, but not least, the standard model leaves out the gravitational forces. Although, at 
present energies, the latter are very weak, we expect a fundamental theory to describe all 
fundamental interactions. 

For all these reasons, and others that we can easily add, theorists tried to imagine 
schemes that go beyond the standard model. There exists an old theoretical prejudice 
which says that a better theory is a more symmetric one, so it is not surprising that most 
of these extensions involve some enlargement of the symmetries of the standard model. 
In this chapter we will briefly present some of these speculations. 

26.2 Grand Unified Theories 

26.2.1 Generalities 

The hypothesis of grand unification states that U(1) x SU(2) x SU(3) is the remnant 
of a larger, simple, or semi-simple group G, which is spontaneously broken at very high 
energies. The scheme looks like 

G± U(1) x SU(2) x SU(3) 
mw 
—> U M em,. x SU(3), (26.6) 
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where the breaking of G may be a multistage one and M is one (or several) characteristic 
mass scale (s). 

Two questions immediately arise concerning this idea: 

(i) Is it possible? In other words, are there groups which contain U(1) x SU(2) x 
SU(3) as a subgroup and which can accommodate the observed particles? 

(ii) Does it work? i.e. is the observed dynamics compatible with this grand unification 
idea? 

We will try to answer each one of these questions separately following the approach 
introduced first by Howard Georgi and Sheldon Glashow. 

We first observe that G must contain electromagnetism; i.e. the photon must be one 
of the gauge bosons of G. This is part of the requirement that G contains the group of 
the standard model. Another way to say the same thing is to say that the electric charge 
operator Q must be one of the generators of the algebra of G. Since G is semi-simple, all 
its generators are represented by traceless matrices. It follows that in any representation 
of G, we must have 

Tr(Q) = 0. (26.7) 

In other words, the sum of the electric charges of all particles in a given representation 
vanishes. 

For simplicity, let us make a first assumption. The 15 (or 16) spinors of a family 
fill a representation, not necessarily irreducible, of G; i.e. we assume that there are no 
other, as yet unobserved, particles which sit in the same representation. Property (26.7), 
together with the above assumption, have a very important consequence. As we have 
remarked, the members of a family satisfy (26.7) because the sum of their charges van-
ishes. This, however, is not true if we consider leptons or quarks separately. Therefore, 
each irreducible representation of G will contain both leptons and quarks. This means 
that there exist gauge bosons of G which can change a lepton into a quark, or vice versa. 
We conclude that a grand unified theory, which satisfies our assumption, cannot con-
serve baryon and lepton numbers separately. This sounds disastrous, since it raises the 
spectrum of proton decay. The amplitude for such a decay is given by the exchange of 
the corresponding gauge boson and, therefore, it is of order M-2, where M is the gauge 
boson's mass. The resulting proton lifetime will be of order 

M4 
 

Tp Mp
5

(26.8) 

Using the experimental limit (for particular decay modes) of a few times 1033  years, 
we can put a lower limit on M: 

M > 1016GeV. (26.9) 

Grand unification is not a low-energy phenomenon! 



24 = [(2, 3) ED (2, 3)] ED (1, 8) ED [(3, 1) ED (1, 1)] 

gluons WI, Z°, y, 
( X'\ Q= 4/3 

Y Q= 1/3 

(26.10) 
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26.2.2 The Simplest GUT: SU(5) 

In this section we will answer the first question by giving a specific example of a group 
G which satisfies our requirements. 

U(1) x SU(2) x SU(3) corresponds to a Lie algebra of rank 4 (i.e. there are four 
generators which commute: one of U(1), one of SU(2), and two of SU(3)). Therefore, 
let us first look for a grand unification group of rank 4. We list all possible candidates: 

[SU(2)]4, [S0(5)]23  [G2]2  SO(8), SO(9), SP(8), Et, [SU(3)] 2, SU(5). 

The first two are excluded because they have no SU(3) subgroup. The next five 
admit no complex representations; therefore, they cannot accommodate the observed 
families where, as we already saw, the right- and left-handed particles do not transform 
the same way. (We again assume that no unobserved fermions will complete a given 
representation). Finally, in SU(3) x SU(3) quarks and leptons must live in separate 

— ,_quarks representations because the leptons have no colour. But E 0 0 and the same is 
true for leptons. This leaves us with SU(5) as the only candidate of a grand unified 
theory (GUT) group of rank 4. It is the simplest and, although, as we will see, it has 
many shortcomings, it can be considered as the 'standard model' of grand unification. 

The gauge bosons belong to the 24-dimensional adjoint representation. It is useful to 
decompose it into its SU(2) x SU(3) content. We find that 

where the first number denotes the SU(2) and the second the SU(3) representation. 
The known vector bosons can be identified with the eight gluons of QCD in the (1, 8) 
piece (a singlet of SU(2) and an octet of SU(3)), as well as the electroweak gauge bosons 
W, Z, and y in the (3, 1) ED (1, 1) piece. We are left with 12 new ones, called X and Y, 
with electric charges 3and 4, respectively, which transform as a doublet of SU(2) and 
a triplet and anti-triplet of SU(3). They must be heavy, according to the limit (26.9). 

Let us now come to the matter-field assignment. We will try to put all the two-
component spinors of a family in a representation (not necessarily irreducible) of SU(5). 
But before doing so, we observe that all gauge couplings, being vectorial, conserve heli-
city. Therefore, we cannot put right- and left-handed spinors in the same representation. 
We go around this problem by replacing all right-handed spinors with the corresponding 
left-handed charge conjugate ones. A quick glance at the representation table of SU(5) 
suggests to use each family in order to fill two (or three, if a right-handed neutrino exists) 
distinct, irreducible, representations: the 5 and the 10. Their SU(2) 0 SU(3) content is 

5 = (1, 3) ED (2, 1) (26.11) 
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10 = (2, 3) ED (1, ED (1, 1). (26.12) 

The identification is now obvious. We often write these representations as a five-vector 
and a 5 x 5 antisymmetric matrix. Comparing the quantum numbers in a family with 
(26.11) and (26.12) and using (26.7), we find that 

5 

 = (

di 0 uc 3  -u`2  -ui  -dl  
cic 2 0 Uc  1 —u2 —d2 
dc3 = 'ha 10 = 0 —u3 —d3 
e- 0 -ec 
-ve  ) L 0 L 

_ ip, ab (26.13) 

If we have a right-handed neutrino, it must be assigned to the singlet representation 
of SU(5). This is an unpleasant feature. In the absence of a vR  we could say that the 
choice of SU(5) was 'natural', in the sense that it is the only group with an acceptable 
15-dimensional representation (although not an irreducible one). As we will see, with 16 
dimensions, other choices are aesthetically more appealing. A technical remark is that it 
is important to note that the sum of these representations is anomaly-free. 

Let us finally study the symmetry breaking system. The first step goes through a 
24-plet of scalars 0 (x). It is convenient to represent the 24 as a 5 x 5 traceless matrix. 
The vacuum expectation value which breaks SU(5) down to U(1) x SU(2) x SU(3) is 
proportional to the diagonal matrix 

      

1 
A24 = = 

15 
1 

-3/2 

  

• (26.14) 

  

-3/2 

  

SU(3) is defined to act on the upper three components of the five-dimensional space 
and SU(2) on the lower two. The potential for the 0 (x) field can be written as 

V(0) = --
1 
 m2Tr(0

4
2) + — [Tr(0

2 
2)]2  + —

h2
Tr(04) 

2
hi  

(26.15) 

The vacuum expectation value of 0 is determined by the minimum of V(0). It is 
easy to show (see Problem 15.1) that for hi and h2  positive, this minimum is precisely 
VX24  with 

7 ] 1 
V2  = m2  [hi  + — h2  . 

15 
(26.16) 

Note that if h2  < 0 with hi > 0 the direction of breaking is instead SU(5) —> U(1) x 
SU(4). 
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Can we use the same 24-plet in order to obtain the second breaking of the stand-
ard model? The answer is no for two reasons. First, the 24 does not contain any (2, 1) 
piece (see Eq. (26.10)) which is the one needed for the U(1) x S U (2) —> U(1)e.m. 
breaking. Second, the 24 does not have the required Yukawa couplings to the fermions. 
Indeed with the 5 and 10 assignments the fermions can acquire masses through Yukawa 
couplings with scalars belonging to one of the representations in the products 

5 (S)1.0 = 5 6)45 (26.17) 

10010 =ED45 ED50. (26.18) 

We see that the 24 is absent while the 5 looks promising. If H(x) is a five-plet of 
scalars, the complete potential of the scalar fields is 

Vs = V(0) + V(H) + V (0 , H) (26.19) 

with V(0) given by (26.15) and 

1 1 V(H) = --
2

i.t2HtH 
4
_ x(H, , 

 
V (0 , H) = aHtHTr(02) + PI/142H. 

(26.20) 

(26.21) 

We can show that for an appropriate range of the parameters m2, kt 2, hi, h2, X, a, and 
p, we obtain the desired breaking 

< >0 — V 

( 1 
1 

1 (26.22) 
—3/2 — e/2 

—3/2 + E/2 

0 
0 

< H >0— v ( 0 (26.23) 
0 
1 

The small number E in (26.19) is due to the mixed terms V (0, H) in the potential 
and it causes a breaking of SU(2) x U(1) already from the vacuum expectation value of 
0. We must have e << 1; otherwise the breaking of the standard model would have been 
of the same order as that of SU(5). Using the potential (26.19) we find that 

3pv2 V4 

E 
= 20h2 V2 V4 

± 0 (-) (26.24) 
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which means that € must be of the order 10-28. It is hard to see how such a number 
may come out for generic values of the coupling constants. This is part of the natur-
alness problem which we presented in the previous section. As we will explain in the 
next section, it plagues all grand unified theories. In the case of SU(5) this problem 
has two aspects. The first is the general problem of the two widely separated symmetry 
breaking scales. We expect to have V2  —m, and v2  — mi./. But the presence of the 
mixed terms in V (0, H) induces a (mi)eff on the order of V2, unless the parameters 
of the potential are very finely tuned. The second is related to the five-plet of scalars 
H which, under U(1) x SU(2) x SU(3), is split as shown in Eq. (26.11). The SU(2) 
doublet is used for the electroweak breaking and must have a mass on the order of v2. 
The SU(3) triplet components, however, can mediate baryon number violating trans-
itions and should be superheavy on the order of V2. Again there is no natural way to 
obtain such a doublet-triplet splitting without a fine tuning of the parameters in the 
potential. 

The fermion masses are due to the vacuum expectation value of H. Looking back 
at the assignment (26.13) we see that the up-quarks take their masses through (26.18) 
while the down-quarks and the charged leptons through (26.17). 

This discussion answers the first question; namely it shows that there exist groups 
which have the required representations to be used for grand unification. Let us now 
turn to the second question, namely the study of the dynamical consequences of GUTs. 

26.2.3 Dynamics of GUTs 

26.2.3.1 Tree-Level SU(5) Predictions 

Let us first examine the dynamical predictions of SU(5) at the Lagrangian level without 
taking into account higher order effects. There are several such predictions: 

(i) The first concerns the coupling constants. SU(5) is a simple group and hence 
it has only one coupling constant g. On the other hand in nature we observe 
three distinct ones, gl , g2, and g3, corresponding to each one of the factors of 
the standard model U(1) x SU(2) x SU(3). The naive prediction would be 
gi = g2  = g3. However, we must be more careful with the relative normalisa-
tions. For non-Abelian groups, like SU(2), SU(3), or SU(5), the normalisation 
of the generators is fixed by the algebra, which is a non-linear relation. So the 
question arises only for U(1). In the standard model the U(1) generator Y is 
related to the electric charge and the third component of weak isospin T3 by 
Q = T3  + 1/2Y; see the relation (25.11). The factor iwas chosen for historical 
reasons. For the embedding of U(1) x SU(2) x SU(3) into SU(5), all generators 
must be normalised the same way. Let us choose the normalisation by requiring 
Tr(J, jj) = R313 , where R is a constant which may depend on the representation 
we use to compute the trace, but it is independent of i and/. Let us now compute 
Tr( T32) using, for example, the electron family. We find Tr( T32) = 2. Similarly 
we find Tr [ (1/2 Y)2] = 3 Therefore, we see that for the embedding, the U(1) 
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generator must be rescaled by 1/2 Y —> cY with, c2  = i. Therefore, the tree-level 
prediction of any grand unified theory based on a simple group is 

iic2 3 g1 
2 

g2  = g3  = g sin2Ow = =  = . (26.25) gi2 + g22 g2/c2 + g2 8 

(ii) The second concerns Fermion masses. Fermion masses are generated through 
the same mechanism as in the standard model, i.e. through Yukawa couplings 
with scalar fields. Therefore, they depend on the particular BEH system one 
assumes. In the minimal SU(5) model with only a 5-plet of scalars we see in 
Eqs. (26.17) and (26.18) that we have two independent coupling constants for 
each family. The up-quarks take their masses through (26.18), while the down-
quarks and the charged leptons through (26.17). This last property implies the 
relations 

Md = Me Ms  = M A mb = Int • (26.26) 

It is obvious that these predictions are lost if we assume a more complicated 
scalar system, for example by including higher dimensional representations. 

(iii) The third concerns baryon and lepton number violation. X, Y, or heavy scalar 
boson exchanges lead to baryon and lepton number violation. In Fig. 26.4 we 
depict some diagrams contributing to proton decay. In SU(5) the main decay 
mode is expected to be p —> n-°  e+  with a branching ratio on the order of 30-40% 
followed by p —> we+  or p —> p°  e+  . The neutrino modes, such as p —> n-  +13, 
are expected to be rare (— 10% or less). Bound neutrons are also expected to 
decay with n —> n.  - e+  being the dominant mode. All these decay modes are easily 
detectable. The overall lifetime depends on the masses of the superheavy gauge 
bosons X and Y (see Eq. (26.8)). 

As we noted already, baryon and lepton number violation is a general feature 
of all grand unified theories. A large experimental effort has been concentrated to 
detect any trace of proton instability. The result is a higher limit on its lifetime. At 
present, for the easily detectable decay modes, such as the n-°  + e+  one, this limit 

Figure 26.4 Some diagrams contributing to proton decay. 
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is close to 1033  years. In the absence of any direct observation of baryon number 
non-conservation, physicists have tried to see its possible effects in cosmology. 

In traditional cosmological models baryons and antibaryons were assumed to 
have been created in pairs since the Hamiltonian conserved baryon number. The 
only way to obtain a non-zero baryon number was to put it in by hand as an ini-
tial condition. In the so-called 'symmetric' cosmologies it was argued that within 
some range of temperatures (-1 GeV), a phase transition occurs which results 
in a spontaneous symmetry breaking and thermal radiation becomes unstable 
against separation of nucleons from antinucleons. The situation was compared 
to what happens in a ferromagnet where a domain structure appears. Accord-
ing to this view the observed predominance of matter over antimatter is a local 
effect. The trouble with this theory is that there is no evidence for the pres-
ence of large amounts of antimatter anywhere in the universe. The rare traces 
of antinucleons detected in cosmic rays are compatible with the estimated pro-
duction of antimatter in particle collisions and no large-scale annihilations have 
been observed. Nevertheless, this was the accepted doctrine for many years. The 
reason is that in a symmetric cosmological model, where no net baryon number 
is put in by hand under the initial conditions, the eventual appearance of ba-
ryon excess requires (i) the violation of C and CP invariance, (ii) the violation of 
baryon number conservation, and (iii) the departure from thermal equilibrium. 
The necessity for the first two conditions is obvious since otherwise there is no 
distinction between baryons and antibaryons. The significance of the third one 
is also very simple. In a stationary universe, where all interactions are in thermal 
equilibrium, the particle abundances are given by Boltzmann's law which in-
volves only the particle masses. But PCT invariance guarantees that baryons 
and antibaryons have equal masses and, therefore, no net baryon number can 
possibly be produced. 

Charge conjugation is known to be maximally violated in weak interactions. 
The violation of CP has been observed already in 1964 in the decays of neut-
ral kaons. The expansion of the universe provides the necessary departure from 
thermal equilibrium. So out of the three necessary conditions only the second 
one, the violation of baryon number, has not yet been experimentally verified. 
Grand unified theories provide a theoretical framework for such a violation 
and offer the possibility for an estimation of the resulting number of baryons 
in the universe. It is worth noting that the suggestion for a baryon—antibaryon 
asymmetry was first made by A. D. Sakharov in 1966, much before the advent 
of gauge theories. Several detailed calculations have been performed in order 
to reproduce the observed ratio of baryon number density to entropy density 
knB/s — 10-10, or, equivalently the baryon to photon ratio nB/ny  — 10-9. The 
results depend on the particular model and the symmetry breaking pattern we 
assume. In recent models one takes into account also the violation of lepton num-
ber. Despite the fact that no absolutely convincing model has been produced, it 
is remarkable that even a qualitative agreement between theory and observation 
can be reached. 
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(iv) Finally we remark that the SU(5) Lagrangian, including the Yukawa couplings, 
is invariant under a U(1) group of global phase transformations 

vr ab ei0 ifrab ifra  —> e —3j(9  a
H

a 
 _>. e-210 

Ha, (26.27) 

with all other fields left invariant. We can verify that this global symmetry is also 
anomaly free. The non-zero vacuum expectation value of H seems to break this 
symmetry spontaneously. This sounds disastrous since it normally leads to the 
appearance of a truly massless Goldstone boson. However, we are saved because 
the symmetry is not really broken; it is simply changed. We can check imme-
diately that even after the translation of the scalar fields, the linear combination 

+ 4Y remains as a global symmetry, where J  is the generator of (26.27) and 
Y the U(1) part of SU(5) given by (26.14). The conserved charge of this sym-
metry is the difference B - L of baryon and lepton numbers. This conservation 
has some very important consequences. In particular, it gives some precise pre- 
dictions for the nucleon decay properties. For example, p e+  7°  or n —> e+  7r- 
are allowed but n —> e n+  is not. The same is true for n - h oscillations which 
violate B - L. As we will see, this property remains true (or nearly true) in many 
grand unified models. 

26.2.3.2 Higher Order Effects 

The tree-level predictions (26.25) and (26.26) are in violent disagreement with experi-
ment. However, before throwing away the entire scheme, we must understand that these 
predictions are consequences of the full symmetry and can only be true at energies 
well above M where the SU(5) breaking can be neglected. In order to compare these 
predictions with the real world we must extrapolate to present day energies. These ex-
trapolations can be performed using the equations of the renormalisation group, as was 
first suggested by Howard Georgi, Helen Quinn, and Steven Weinberg. Several assump-
tions enter in this procedure. The most important one is connected with the very idea of 
grand unification. We must assume that we know all fundamental physics, in particular 
the entire spectrum of elementary particles, from our accelerators, to energies of 1016  
GeV or higher. As we will see, the results are sensitive to the possible existence of new 
thresholds at high energies. 

For simplicity let us ignore the standard model symmetry breaking and study the case 
SU(5) —> U(1) x SU(2) x SU (3) . It will be clear that the generalisation to more realistic 
cases is considerably longer, but straightforward. Since we have only one breaking we will 
keep only the 24-plet of scalar fields with the vacuum expectation value given by (26.14). 
Furthermore, all fermions will remain massless. We write the Lagrangian density as 

1 
= - 

4  
-Tr  G

14

1 
+ 111 /I + -Tr(D,0 Di' 0) - V(0) (26.28) 

with the potential V(0) given by Eq. (26.15). The Lagrangian (26.28) contains four 
independent parameters, namely the gauge coupling constant g and the three parameters 
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of the scalar potential m2, h1, and h2. After spontaneous symmetry breaking via the 
translation 0 —> 0 + ( Vh,h)X24, we obtain the following mass spectrum: 

(0 M2 = (5/3) V2g2  for the vector gauge bosons G9,...,G20. 

(ii) M3 = (1/3) V2 h2  for the scalars 01,...,08. 

(iii) MZ = (4/3) V2 h2  for the scalars 021,...,023. 

(iv) /14f = 2 V2 [hi + (7/15)h2] for 024, with the vacuum expectation value V given by 
Eq. (26.16). The eight gauge bosons GI  ,..., G8  (the gluons), as well as G21,..., G24  
(the photon, the Z°  and the W's), remain massless. The scalar components 09  
to 020  will be absorbed by the BEH mechanism. 

We choose to renormalise the broken theory by imposing the following seven 
renormalisation conditions: 

(i) Three conditions for the three independent masses M2, Ml, and M22, which will 
be chosen physical, as the poles of the corresponding propagators. 

(ii) Three wave function renormalisation conditions for fermions, vector bosons and 
scalars, respectively.2  For example, the condition on the scalars reads 

d r, („ (2) 2 
—dp2 I A \F ) Ip2=_A2  = 1 (26.29) 

and similarly for fermions and gauge bosons. it is a subtraction point. However, 
since the SU(5) symmetry is broken, we must specify on which component of 0 
we impose the condition. This is done with the index A which runs from 1 to 24. 
The conservation of U(1) x SU (2) x SU (3) implies that we need only to dis-
tinguish four distinct cases (A=1,...,8; 9,...,20; 21,...,23; 24). Once the condition 
is imposed on any of the components, all the other Green's functions become 
finite and calculable. The same remarks apply to the vector bosons. 

(iii) Finally, we must impose one renormalisation condition for the gauge coupling 
constant. Let us choose it to be the value of the fermion—vector boson 3-point 
function at p2  = —/1.2  

r
1.1-' 

(3) 
Aab13P2)1p2=_A2  = igAyA TaAb  no summation over A, (26.30) 

where pi  and p2  are the momenta of the external fermion lines which carry 
SU(5) indices a and b with p = pi  — p2, T is the corresponding SU(5) matrix, 
and, again, the index A denotes the particular vector boson we have used. 

2  In fact, for fermions we need as many conditions as the number of different irreducible representations 
that appear in (26.28). 
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We want to emphasise that once these three kinds of renormalisation conditions have 
been imposed, the perturbation theory is completely defined and all Green functions are 
finite and calculable as formal power series in gA. It is not possible to impose any further 
conditions. Note, in particular, that there exists only one gauge coupling constant, as we 
should expect from a grand unified theory based on a simple group, like SU(5). Does 
this mean that we can compute a QCD process as a power series in the weak interaction 
coupling constant? Formally, the answer is yes, but in practice this is not so. Formal 
perturbation theory guarantees that if in (26.30) we choose A to denote one of the SU(2) 
gauge bosons, all other 3-point functions are finite and calculable. In particular, if F3(3)  

is the 3-point function with a gluon external gauge boson we can write3  

F
3 
 (p  = (3) 2 2x _ ) — g2  + Clg2 +  C2g;  + (26.31) 

where the coefficients C, are finite and calculable functions ofµ and the masses of the 
theory. However, it is easy to check that Cn  is of the form C, [1n(M2/µ2)]n, which, for 

— 1015, gives [70]n. In other words, although the series (26.31) is well defined, it is 
useless for practical computations. 

The remedy to this difficulty is easy to guess. We renormalise the same broken SU(5) 
theory in three different ways by choosing the index A in the conditions (26.29) and 
(26.30) corresponding to the bosons of U(1), SU(2), or SU(3). This gives us three 
perturbation expansions in powers of gi, g2, or g3  always of the same theory, but each 
one is suited to particular processes. The values of the gi 's will be fixed by experiment, 
but we must always remember that all three describe the same theory, so we write the 
generalisation of (26.31), 

= M2  µ2  , a), (26.32) 

where a denotes, collectively, the ratios Mi/M and M2/M. In the limit of exact SU(5) 
symmetry, i.e. when M2/µ2  —> 0, all coupling constants must be equal. This happens 
only at infinite energy. So the functions F11  must satisfy 

Fii (gi, 0, a) = (26.33) 

We can rewrite (26.32) as renormalisation group equations by taking the total 
derivative with respect to µ2  of both sides of (26.32). In the Landau gauge we obtain 

where 

13(i)  t, P, a) =[-1) ap gj + P o) P,a)—
a

]F#, 

M2  

P(k)  (giz, P, a) = 2 dgk  • 
dP2 P2  

(26.34) 

(26.35) 

3  We will use the following notation: for A=1,...,8 we call gA = g3; A=21,...,23 gA = g2; g(A=24) = gl • 
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The differential equations (26.34) with the boundary conditions (26.35) are our basic 
equations. The 18-functions are calculable at any given order of perturbation theory as 
power series of the form 

p(k) (go  p a  = b (

0

k)  ( p a  )g2  (26.36) 

Note that the b coefficients, unlike those of F11  itself, do not contain large logarithms. 
This can be easily understood since the /B-functions, as defined by Eqs. (26.35), pos-
sess well-defined limits for both p —> oo, when they become the t3-functions of SU(3), 
SU (2), or U(1), and p —> 0, when they become all equal to that of SU(5). In contrast, 
Fij  has no limit when p —> oo with gj kept fixed. 

The system of Eqs. (26.34) can be solved with the standard method of characteristics 
which we saw in section 19.2. The solution expresses any coupling constant in terms of 
any other, 

A = F11 = q(gi,  Pa) (26.37) 

with 77 a known function which can be determined order by order in perturbation the-
ory by solving the system of the renormalisation group equations, provided we have 
computed the /B-functions up to that order. In the classical approximation, when all 
/B-functions vanish, we have the tree-level results of Eq. (26.25). At 1 loop we obtain 

1 f P  dx 
2 — = —

02
./ 

+2 — 
(,)

(x, a) — a)]. 0 
4.. 

(26.38) 

The integral is well defined at x = 0 because the difference of the /3-functions vanishes 
when the scale goes to infinity. 

These equations contain an important prediction. We can use as input the experi-
mentally measured effective strengths of strong, electromagnetic, and weak interactions 
at moderate (let us say — 10 GeV) energies. The two independent equations (26.37) 
contain three unknown parameters, namely p and the two masses M1/M and M2/M of 
the scalar fields denoted, collectively by a. However, it turns out that the dependence on 
a is very weak, even when higher orders are taken into account. If we ignore it, we can 
use the two equations to fix p, which means the grand unification scale M, and obtain 
a relation between measured values of the three coupling constants g1. This relation is 
usually presented as a prediction for the value of sin Ow. For a comparison with experi-
ment we must make a more complete analysis and include the breaking of the standard 
model with a 5-plet of scalars. A pictorial way often used to present the result is to write 
the renormalisation group equations in the step function approximation we introduced 
in section 25.4.3 in which, at any given scale, we put all heavier masses at infinity and 
all lower masses at zero. In this approximation for all energies up to the scale M, the 
three coupling constants gl , g2, and g3  evolve independently, each one following its own 
renormalisation group equation. The prediction is correct if the three curves meet at the 
scale M. Figure 26.5 shows the result for the group SU(5). As we can see the curves 
do not really meet. We will see later that this can be considerably improved if we extend 
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Figure 26.5 The renormalisation group evolution of the inverse coupling constants 

i 1 = 1, 2, 3 of the three Standard Model groups U(1), SU (2) and SU(3) without 
supersymmetry, (left) and with supersymmetry, (right). The uncertainties are also shown. The 
calculations include 2-loop effects (C,  Particle Data Group). 

the model. Here we want only to stress that Fig. 26.5 is only valid in the step function 
approximation. In the real analysis we presented earlier, the curves meet only at infinite 
energy, as shown in the boundary conditions (26.33). Indeed, if we plot the real solutions 
and expand around the scale M we obtain Fig. 26.6. 

This renormalisation group analysis can be repeated for the fermion masses of Eq. 
(26.26), since they are proportional to the scalar-fermion coupling constants. At 1 loop 
we find the ratio 

where a, is the strong interaction coupling constant evaluated at the corresponding scale 
and f is the number of families. The agreement is very good precisely for f = 3. Note 
that this result was obtained by A. Buras, J. Ellis, M. K. Gaillard, and D. V. Nanopoulos 
before LEP had shown that there exist only three light neutrinos. 

We might be tempted to apply the same analysis to the other two mass ratios, for ex-
ample ms/m,, where the agreement with experiment is not good, but we will not discuss 
this point here. 

26.2.4 Other Grand Unified Theories 

In the previous section we examined in some detail the grand unified model based on the 
group SU(5). The main reason for this choice was its simplicity. In fact, as we mentioned 
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Figure 26.6 Detail of the region around the grand unification scale 
using exact 2-loop a-functions (C,  I. Antoniadis et al, LPTENS 81-4). 

already, this simplest model does not quite fit the experimental data. However, the gen-
eral properties remain the same in practically all models and the methods we developed 
can be applied in a straightforward way to every other model, although the detailed nu-
merical results may differ. In this section we will briefly present some other 'classical' 
grand unified theories and we will try to explain their respective merits. 

26.2.4.1 A Rank 5 GUT: SO(10) 

The SU(5) model, in its simple and most attractive version, has no natural place for a 
right-handed neutrino. We must add it as an extra singlet. The only simple group which 
can be used for grand unification without need for a singlet representation and without 
introducing exotic fermions is SO(10). It is a group of rank 5, which means that the 
corresponding algebra has five commuting generators. For SU(5) we had proven that it 
was the only acceptable group of rank 4. Similarly, we can prove that SO(10) is the only 
one of rank 5. The proof goes along the same lines: we list all possible candidates and we 
eliminate the unacceptable ones. The only candidate which almost makes it is SU(6). 
It has a 15-dimensional representation but its decomposition in SU(2) x SU (3) shows 
that it cannot accommodate the members of a family. We find that 

15 = (2, 3) ED (0) ED (1, 3) ED (2, 1) ED (1, 1) 

The troublesome piece is the (1,3) which is a singlet of SU(2) and triplet of colour 
rather than an anti-triplet. 

The only successful candidate is SO(10) which has a 16-dimensional irreducible rep-
resentation. SO(10) contains SU(5) as a subgroup and the 16-plet decomposes under 
SU(5) into 
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16 = 10 ED ED 1, (26.40) 

i.e. we find our old 5 and 10 as well as a singlet. The obvious interpretation of this last 
one is a right-handed neutrino (or veL). 

The salient features of this GUT are the following. The gauge bosons belong to a 
45-dimensional (adjoint) representation which under SU(5) decomposes as 

45 = 246)10 6)10 6)1. (26.41) 

An interesting property of the model is that all members of a family, enlarged with a 
right-handed neutrino, belong to a single irreducible representation, the 16-dimensional 
spinorial representation we mentioned earlier (Eq. 26.40). In this respect the family 
structure seems more natural in SO(10) than in SU(5). On the other hand, again no 
explanation is offered for the observed number of families. It is also interesting to point 
out that SO(10) has no anomalies. Another interesting feature is that B—L is now a gauge 
generator. It must be spontaneously broken; otherwise, there would remain a massless 
photon coupled to it. However, this violation does not lead to any observable effects in 
nucleon decay because the branching ratio of forbidden to allowed decays is predicted 
to be very small. 

In the long journey from SO(10) down to U(1) x SU(2) x SU(3), nature may choose 
various paths. She can take the direct road (just one big break) or she may decide to go 
through one, or more, of the intermediate subgroups: 

—> 

—> SU(5) —> 

SO(10) 
—> SU (5) x U(1) —> 

—> 
—> SU(4) x SU(2) x SU(2) —> 
—> SU(4) x SU(2) x U(1) —> 

1 

 —> U(1) x SU(2) x SU(3). (26.42) 

The BEH system depends on the breaking pattern we choose, but, in any case, it is 
more complex than that of SU(5). Several representations are necessary. 

The main experimental prediction of SO(10), which differs substantially from that of 
SU(5), concerns the neutrino mass. The presence of vR  allows for a Dirac mass DR  vi, 
and the violation of B — L allows for a Majorana term. The Dirac mass term comes 
presumably from a Yukawa coupling to a BEH scalar and, therefore, it is an adjustable 
parameter, like any other fermion mass in the theory. A priori we expect a term on the 
same order of magnitude as the up-quark masses. The problem then is how to make sure 
that the physical neutrino masses are sufficiently small. The main remark here is that the 
Majorana mass, which comes from the superheavy breaking, is expected to be large, on 
the order of the SO(10) symmetry breaking scale. The resulting neutrino mass spectrum 
will depend on the details of the BEH system. For example, if SO(10) is broken through 
the vacuum expectation value of a 126-plet of scalars, the neutrino mass matrix for one 
family takes the form 



mD/2 M V R (pL, 13D 
( 0 mD/2' ( vcR  ) 

(26.43) 
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where mD  and M are the Dirac and Majorana masses. As we just explained, we expect 
mD  << M. Then the SU(2) doublets and singlets will be approximate mass eigenstates 
with masses 4/4M and M, respectively. For mD  — 1 GeV and M — 1016  GeV we find 
a negligibly small mass for the doublet neutrino of order 10-7  eV. Of course one also 
expects mixings among the three families but they are very model dependent. Let us 
also mention that even if the Majorana mass term is forbidden in the tree approximation 
(for example, if B- L is not broken through the 126 but through a 16 representation), it 
may be generated in higher orders through a particular 2-loop diagram. The value of M 
is suppressed in this case by coupling constants and the resulting neutrino mass may be 
on the order of 1 eV or higher. 

The moral of the story is twofold. First, the theory offers, through the spontaneous 
breaking of B - L, a natural mechanism to obtain very light neutrinos, and second al-
most any desired pattern of masses and mixings can be reproduced by adjusting the 
parameters of an already rather complicated BEH system. 

26.2.4.2 Other Models 

It is by now obvious that a large variety of grand unified theories can be obtained by play-
ing around with elementary group theory and scalar field representations. This partly 
explains the popularity that GUTs have enjoyed for more than 30 years. There is no 
point in giving a complete list of all models which claim some agreement with data, 
which is usually the case for published models. We will only mention two examples of 
models based on exceptional groups. 

An aesthetically unattractive feature of all models based on unitary, orthogonal, or 
symplectic algebra is that these form infinite series, so it may be hard to understand 
why any one in particular would provide the basis for a fundamental theory. Excep-
tional groups, on the other hand, are unique; they are just G2, Et, E6, E7, and E8. The 
first one is excluded because it is too small to contain SU(3) as a subgroup. The 
others could, in principle, be used as candidates for GUTs. We present here only E6  
and E8. 

E6: It is the most attractive exceptional group for grand unification. It is the only 
one which admits complex representations and, from the group theory point of 
view, it can be considered as the natural extension of SU(5) and SO(10). In-
deed, based on the Dynkin diagram pattern, we could define exceptional algebras 
E4  and E5  as isomorphic to SU(5) and SO(10), respectively. Of course, E6  con-
tains SO(10) and a fortiori SU(5), as subgroups. Furthermore it is 'safe', i.e. it is 
automatically anomaly-free. Its fundamental representation has 27 dimensions and, 
under SO(10) and SU(5), decomposes as 

SO(10) SU(5) 
27 —> 16 6)10 6)1 —> 10 6)6)1 6)5 6)6)1. (26.44) 
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The 78-dimensional adjoint representation decomposes as 

s) 
78 —>

000 
 45 6)16 6)1-6 6)1 

SU(5) 
—> 24 6)10 6) foED1ED1OEOED 1 6)10 6)5 6)1 6)1. 

(26.45) 

There are several inequivalent possibilities of constructing grand unified theories 
based on E6 and, in this section, we will mention only one example which satisfies the 
following requirements: 

(i) All fermions of one family belong to the same irreducible representation. 

(ii) All unobserved, fermions get naturally superheavy masses. 

(iii) All required scalars belong to representations appearing in the product of two 
fermion representations. This last requirement means that the resulting scalar 
particles can be viewed as fermion—anti-fermion bound states. 

We will assign the fermions of each family to the 27 fundamental representation, 
which, therefore, contains new, unobserved fermions. The scalar fields must belong, 
according to (iii), to one, or more, of the representations: 

27 0 27 = (27 6) 351)s 6) 351A. (26.46) 

The important observation comes from the decomposition (26.44). Out of the 27 
fermions of a family, 12 (i.e. 5 6) 5 6) 1) can take an SU(5) invariant (and a fortiori 
U(1) 0 SU(2) 0 SU(3) invariant) mass. Therefore, these fermions are expected to have 
masses on the order of 1016  GeV (this is sometimes called 'the survival hypothesis'). It 
is easy to check that with the BEH system (26.46) this indeed happens. This explains 
why only 15 light fermions are observed in each family. 

The simplest symmetry breaking pattern of this model goes through SO(10), al-
though others have also been considered. The detailed predictions, including some 
interesting speculations concerning the fermion mass spectrum, are model dependent. 

E8: If uniqueness is an important criterion for choosing the group of grand uni-
fication, then E8 is the most prominent candidate. Its unique features include: (i) 
it is the largest exceptional group with a finite-dimensional Lie algebra. (ii) It con-
tains E6, and, thus, SO(10), SU(5), etc., as subgroups. (iii) It is the only simple 
Lie group whose lowest dimensional representation is the adjoint. This offers the 
possibility of putting fermions and gauge bosons in the same, lowest dimensional, 
representation. In fact, E8 has a natural, built-in, fermion—boson symmetry, as we 
will see later. It is the symmetry group which appears automatically in some mod-
ern superstring models. These are the good news. Now the bad news: the adjoint 
representation has dimension 248, so a large number of new gauge bosons and 
fermions is required. Similarly, the necessary scalar field representations are enorm-
ous, the simplest version using the 3875-dimensional representation. On the other 
hand, we can put all known fermions, together with many unknown ones, in the 
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same 248 representation. After symmetry breaking, we can arrange to have three 
light SU (5) families (5 ED 10) and three heavier 1 TeV), conjugate ones (5 ED 10). 
All other fermions become superheavy. E8 has only real representations, so the the-
ory is 'vector-like', i.e. there are equal numbers of right- and left-handed fermions 
and, before symmetry breaking, we can write the theory using only vector currents. 

26.2.5 Magnetic Monopoles 

In this section we want to present a general feature of grand unified theories which is 
interesting in its own right and shows a novel property of gauge theories.4  This discus-
sion will also allow us to introduce the idea of duality, which plays a crucial role in many 
modern theories, such as that of strings and branes. 

26.2.5.1 Abelian Magnetic Monopoles 

The empty-space Maxwell's equations possess an obvious invariance under the following 
interchange of electric and magnetic fields: 

E —> B B —> —E. (26.47) 

As a matter of fact, this invariance is much larger and covers the entire U(1) group 
of transformations E + iB —> (E + 113). However, as we will see presently, only the 
discreet subgroup (26.47) could possibly survive in the presence of sources. 

In a compact relativistic notation the transformation (26.47) can be written as a 
duality transformation: 

P" —> Pi" Pt') —Fµ°. (26.48) 

It is an empirical fact that the presence of matter destroys this symmetry. Indeed, we 
have electric charges and electric currents /it  = (p,j) but no corresponding magnetic 
ones. Maxwell's equations are 

.9„P" = av fwv = 0. (26.49) 

We can try to restore the symmetry, but then we must introduce a magnetic current 
= (cr, k) and write Eqs. (26.49) as 

av P" = av Piv = , (26.50) 

which are invariant under (26.48), provided jA and ko transform as 

j't —> —> . (26.51) 

4  We follow the presentation given in S. Coleman, 'The Magnetic Monopole Fifty Years Later', Erice 
Summer School 1981 in The Unity of the Fundamental Interactions, ed. A. Zichichi (Plenum Press, 1983). 
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For example, if the electric current results from the motion of point electric charges, 
the magnetic current le will result from the motion of point magnetic charges, i.e. 
magnetic monopoles. 

The introduction of magnetic charges looks at first sight like a trivial generalisation 
of quantum electrodynamics. However, it is easy to see that this is not so. The usual 
quantisation procedure is set up in terms of the vector potential Ai' rather than the 
electric and magnetic fields F". The latter is given by F" = alLAv — avAA. This last 
relation implies the vanishing of av PILv and thus the absence of any magnetic current. 
We conclude that in a theory with magnetic monopoles, the vector potential cannot be a 
well-defined function of the space—time point x. 

In our familiar theory, we can view an isolated magnetic monopole of magnetic charge 
g sitting at the origin, as one end of a solenoid in the limit when the latter is infinitely 
long and infinitely thin. The line occupied by the solenoid, say the negative z axis, is 
called the Dirac string. An observer will see a magnetic flux coming out of the origin 
as if a monopole were present. He won't realise that the flux is coming back through 
the solenoid, because, by assumption, this is infinitely thin. The total magnetic field is 
singular on the string and is given by 

B = g —r + 47g0(—z)3(x)8(y)i 
r2  

(26.52) 

with 1- and :1 being the corresponding unit vectors. The first term represents the field 
of the monopole which has the usual point-particle singularity, while the second is the 
singular contribution of the string. We can construct a vector potential A whose curl is B. 
Of course, we expect also A to be singular on the negative z axis. A simple computation, 
using spherical coordinates, gives 

g 1 — cos 61  •• 
r sin 9 

(26.53) 

where 4  is the unit vector in the 0-direction. A can be taken to represent the field of the 
monopole and indeed this is true everywhere except on the negative z axis. Since, by our 
previous argument, we know that a string-like singularity must exist, the form (26.53) 
is the best we can do. Obviously, the choice of the negative z axis as the position of the 
string is arbitrary and we could have placed the solenoid along any line from the origin 
to infinity. 

So far the discussion was purely classical. Quantum mechanics brings a subtle dif-
ference. In classical electrodynamics the vector potential A, is not measurable, only the 
components E and B of Fp,,, are. In quantum mechanics, however, we can detect dir-
ectly the presence of AA  by the Bohm—Aharonov effect. By moving around electrically 
charged test particles we can discover the magnetic flux coming back through the string. 
The corresponding change in the phase of the wave function will be 

fr e47rieg*
, (26.54) 
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where 47rg is the flux and e the charge of the test particle. The usual interference ex-
periment will detect the phase change and hence the presence of the string, unless 
exp(47rieg) equals 1 or 

1 
eg = 0, ±1, (26.55) 

Condition (26.55) is the famous Dirac quantisation condition. If it is satisfied, the 
string is undetectable by any conceivable experiment and we have obtained a real mag-
netic monopole. On the other hand, it shows that if there exists a magnetic monopole in 
the world, all electric charges must be quantised; i.e. they must be multiplets of an ele-
mentary charge eo . Similarly all magnetic charges must be multiplets of an elementary 
magnetic charge go  such that 2e0g0  is an integer. A particle that has both electric and 
magnetic charge is called 'a dyon'. 

26.2.5.2 The 't Hooft—Polyakov Monopole 

In the Abelian case we saw that magnetic monopoles give rise to singular vector poten-
tials. We will now turn to non-Abelian theories. We have good reasons to believe that the 
electromagnetic gauge group is part of a bigger group which is spontaneously broken 
through the BEH mechanism. The simplest such theory, although not the one chosen 
by nature, is the Georgi—Glashow SO(3) model, which we studied in Problems 15.3 and 
25.8. It is a theory without weak neutral currents in which the only gauge bosons are 
W+, and y. We introduce a triplet of scalars and we write the Lagrangian as 

1 1 
= --

4
G,„ • G" 

2 
+ — (D,40) • (1)1'40)— V(0) 

G,„ = av u — eW x W„ 

D,(1) = — V x 

V(0) = X —(02  — v2)2. 
4 

(26.56) 

(26.57) 

We have written the scalar potential V in a form which exhibits explicitly the minimum 
away from the origin in field space and we have not included any fermions for simplicity. 

From (26.56) we can compute the corresponding Hamiltonian density 

3 

1-i = —
2 

L[E` • Ei  + Bi  • Bi + (Doo) • (i)00) + (Di.) • (Di0)] + V(0), (26.58) 
1=1 

where we have defined the non-Abelian 'electric' and 'magnetic' fields as E1  = —G°1  and 
Bi  = —Elik Gik  and the bold-face vectors refer again to the internal symmetry space. The 
important point about 1-i is that it is the sum of positive semidefinite terms. Therefore, 
the minimum energy solution will be that for which 1-i = 0. On the other hand, 1-i is 
invariant under local SO(3) rotations in the internal symmetry space. However, the only 
symmetric solution, i.e. the field configuration 
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= 0 = 0, (26.59) 

gives 7-1 = v2  and thus corresponds to infinite total energy. The zero energy solution 
must make each term of (26.58) vanish. An example of such a solution is 

= 0 = V12 (26.60) 

with k being the unit vector in the third direction in the internal symmetry space. Obvi-
ously, since 7-1 is gauge invariant, any gauge transform of (26.60) will give another zero 
energy solution. In particular, there is nothing sacred about choosing • to point along 
the third direction. 

The solution (26.60), or any transform of it, exhibits the well-known BEH phe-
nomenon. The symmetry SO(3) is spontaneously broken since the invariance of the 
solution is reduced to the group of rotations around the third axis, i.e. U(1). Two of the 
vector bosons acquire a mass and it is natural to identify the third one, which remains 
massless, with the photon. 

Up to now we have found two sets of solutions of the equations of motion given 
by the Lagrangian density (26.56): one SO(3) symmetric solution given by (26.59) 
and a whole family of asymmetric ones given by (26.60) and all its gauge transforms. 
The first corresponds to infinite total energy while all the second ones correspond to 
zero energy. They describe the family of stable vacuum states. A natural question is the 
following. Are there any finite, non-zero-energy, non-trivial, particle-like solutions? The 
condition of finite total energy implies that 7-1 must vanish at large distances; therefore, 
asymptotically, any such solution will approach one belonging to the family (26.60). 

There is no general method for finding the solutions of coupled, non-linear, par-
tial differential equations. What is usually done is to guess a particular form of the 
solution and to simplify the equations. In doing the guesswork we often try first to 
guess the symmetries of the solution. Since we are looking for a stable particle-like 
solution (the magnetic monopole) the solution must be time-independent. Further-
more it will be left invariant by a group of transformations which is a subgroup of the 
symmetries of the equations of motion. In the rest frame of the particle the latter is 
G = SO(3) 0 SO(3) 0 P 0 R where the first SO(3) corresponds to spatial rotations, 
the second corresponds to the internal symmetry, P denotes parity, and R denotes the 
transformation • —> —0. In guessing the form of the monopole solution we will try 
to enforce as much of the symmetry G as possible. Invariance under spatial rotations 
will force to be asymptotically constant and G9  — r1-1. It is easy to verify that this 
solution has zero total magnetic charge like the vacuum solution of Eq. (26.60). On the 
other hand, since our solution must approach at large distances one of the internal sym-
metry breaking ones, we cannot enforce the second SO(3) either. Finally, both P and R 
change the sign of the magnetic charge and cannot be included. Let us choose, there-
fore, to impose invariance under SO(3) 0 PR, where SO(3) is the diagonal subgroup 
of SO(3) 0 SO(3) and PR is the product of the two. We seek solutions of the general 
form 
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xa  
Oa  = H(evr) 

er2  
woe° =0 (26.61) 

= —EajA 
ere 

 [1 — K (evr)], 

with H and K functions of a single variable. Space and internal symmetry indices are 
mixed and the ansatz (26.61) is spherically symmetric in the sense that a spatial rotation 
can be compensated for by an internal symmetry rotation. The procedure parallels the 
one we followed in section 25.4.5 when we were discussing instanton solutions. Plugging 
(26.61) into the equations of motion we obtain a system of coupled ordinary differential 
equations for H and K which can be solved, at least numerically. It is easy to verify 
that this solution does describe a magnetic monopole. We can compute the associated 
magnetic field and we find asymptotically 

1 xi  
Bi  —> -- 

e r3  

which corresponds to a magnetic charge, 

(26.62) 

1 
g = 

e 
(26.63) 

thus obtaining I egi = 1. Note that here e is the charge of the boson which has isospin = 1. 
If we had included isospin a  fields, for example isospinor fermions, the symmetry group 
would have been SU (2) and the smallest electric charge in the theory would have been 
e/2I . We thus recover the Dirac quantisation condition which states that the minimum 

magnetic charge is given by I emingm,n1 = 1. We can also compute the total energy of 
the solution, which can be interpreted as the classical approximation to the mass of the 
monopole. We find that 

47V 
Mmonopole = f (A/e2) 

e 
(26.64) 

with f a given function of the ratio of the coupling constants which is larger than 1 for X 
positive. It turns out that for x = X/e2  ranging from 0 to 10 f stays of order 1 (f (0) = 1, 
f (10) 1.44). Since the mass of the massive vector bosons after spontaneous symmetry 
breaking is of order ev, it follows that 

Mmonopole Mvector bosonia 102Mvector boson • (26.65) 

B. Julia and A. Zee have generalised the solution (26.61) by choosing a non-vanishing 
They obtained dyon solutions with masses satisfying 

M
ayon > v(e2  + g2)1/2. (26.66) 
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It is interesting to note that the inequality is saturated when the scalar field self-
coupling goes to 0. We will see shortly that this limit has other interesting consequences. 

In general, we can obtain multi-charged solutions with electric charge ne and magnetic 
charge mg, with n and m integers. The Dirac quantisation condition is again verified. 

The asymptotic form of the scalar field is obtained from (26.61) by solving for H. We 
find that 

.x'a  
l'aas = v—r , (26.67) 

i.e. Pas  points as in Fig. 26.7. This corresponds to a (singular) gauge transformation of 
the vacuum configuration (26.60) of Fig. 26.8. 

Following the same arguments as in section 25.4.5 we see that topologically Pas maps 
the surface at spatial infinity S2  onto the corresponding surface of internal space which 
is also S2. Since it is not possible to continuously deform the map of Fig. 26.7 to the 
constant map of Fig. 26.8, we conclude that the monopole configuration is topologic-
ally stable and cannot decay to the vacuum. We can understand this physically as the 
consequence of conservation of magnetic charge. 

We also note that the solution (26.61) is regular everywhere, including the origin. 
The presence of the scalar field makes possible the existence of a magnetic monopole 
solution which not only does not have the Dirac string singularity, but also it is smooth 

Figure 26.7 The asymptotic form of the BEH field for the 
monopole solution. 

I I I Figure 26.8 The BEH field in the vacuum configuration. 
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all the way to r = 0. Therefore, the monopoles are non-singular, finite energy, static 
solutions of the classical equations of motion. It is reasonable to assume, although there 
is no rigorous proof for this, that they survive quantisation and correspond to real, phys-
ical particles. The fact that they have a regular internal structure has a very important 
physical consequence: the mass of the 't Hooft—Polyakov monopole is calculable, while 
that of the Dirac one is not. The spectrum of the stable one-particle states will consist 
of: (i) a massless photon, (ii) a pair of charged vector bosons WI  with mass of order 
ev and electric charge ±e, (iii) a neutral scalar boson with mass of order N5.v, and (iv) 
a monopole and an anti-monopole, each with mass of order vie and magnetic charge 
±g = T (1/e). 

An interesting simplification occurs in the so-called 'BPS' (Bogomolny—Prasad—
Sommerfield) limit, which consists of X —> 0+  keeping v fixed and maintaining the form 
of the solution (26.61). In this limit the physical scalar boson becomes massless, like the 
photon and gives rise to a new long-range force. On the other hand, as we noted already, 
in this limit the masse of the dyon saturates the bound (26.66). We call this bound 'BPS 
bound' and we will come back to it shortly. 

26.2.5.3 Other Gauge Groups 

In quantum electrodynamics magnetic monopoles are a curiosity. They may exist, in 
which case they have important physical consequences like the quantisation of elec-
tric charge, but nobody forces us to introduce them. The theory makes perfect sense 
without them. The monopole configuration is a singular one for the gauge potential 
Ai' (x). On the other hand, we just saw that if electromagnetism is part of an SO(3) 
gauge theory with a triplet of BEH fields, magnetic monopoles are, probably, part of 
the physical spectrum. Of course, SO(3) and SU(2) are not the right invariance groups 
for physics because they have no room for weak neutral currents. Could we apply the 
same reasoning to the gauge group of the standard model which is SU(2) 0 U(1) 
broken to U(1)? Does the standard model imply the existence of stable magnetic mono-
poles? The answer is no even if one enlarges the scalar field content. The reason is that 
the stability argument of the previous section does not apply to the standard model. 
The argument was based on the fact that there is no SO(3) continuous, non-singular 
gauge transformation which can deform the monopole configuration of Eq. (26.61) to 
the vacuum one of Eq. (26.60). However, it is easy to see that this is no more true 
when the gauge group is SU(2) 0 U(1). The presence of the U(1) factor makes the 
't Hooft—Polyakov magnetic monopole unstable. Therefore, the natural application of 
these ideas is the framework of grand unified theories. Let us first present briefly the 
results of the general case which was investigated by P. Goddard, J. Nuyts, and D. 
Olive. 

Let us assume that a gauge theory of a simple group G is spontaneously broken 
through the BEH mechanism to a subgroup H. (In the 't Hooft—Polyakov case G was 
SO(3) and H was U(1).) Goddard, Nuyts, and Olive showed that we can again find 
magnetic monopole and dyon solutions with the following properties: if H is not just 
U(1), the 'electric' (and 'magnetic') charges are not given by a single number because 
the fields form multiplets of H. It turns out that the electric charges are described in 
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terms of the group H, while the magnetic ones in terms of its dual, denoted by H*. 
The distinction between the two sounds like a mathematical detail because, for all prac-
tical purposes, they are locally isomorphic, like SO(3) and SU(2). However, we have 
seen already that such details may be relevant. For example, SU(2) admits half-integer 
charges while SO(3) does not and this affects the Dirac quantisation condition. We will 
encounter this problem again when studying monopoles in the grand unified model 
SU(5). More precisely, the values of the electric charges can be viewed as vectors q 
in the weight lattice of H and the magnetic charges as vectors g in that of H*. The 
quantisation condition now reads 

eq • g = 2n-  N; N E (26.68) 

26.2.5.4 Monopoles and Instantons in Gauge Theories 

Magnetic monopoles are particle-like solutions which are absent from the spectrum of 
states in perturbation theory. In section 25.4.5 we proved that they do not appear in 
a pure gauge theory and, indeed, in this section we saw that the presence of the BEH 
field was essential for their stability. They are classical solutions in four-dimensional 
Minkowski space, but, since they are time-independent, they can be viewed as solu-
tions in the three-dimensional Euclidean space. In this sense a magnetic monopole in 
d space-time dimensions is equivalent to an instanton in d — 1 dimensions. A general 
gauge theory, in particular a grand unified theory, will contain both such solutions. 
The monopoles will impose a Dirac-type charge quantisation condition and the instan-
tons will introduce the angle 9 as a second effective coupling constant, as shown in Eq. 
(25.2 1 5). 

We can repeat the previous analysis and look for monopole and dyon solutions in a 
gauge theory including the 9 term. For a monopole, we obtain a shift in the value of the 
charge given by 

9e2  
q =  87  (26.69) 

and, for a dyon, taking into account the Dirac condition 

9e 47r 
q = ne + —m; g = —m; n,m E 7Z.  

27r 

It is useful to introduce a complex representation and write 

(26.70) 

9 4n- 
= — — 

e2  
q + ig = e(n + mr). (26.71) 

The BPS bound can be written using this notation as 

M > vein + mi ff. (26.72) 
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26.2.5.5 Monopoles in Grand Unified Theories 

In the previous section we argued in favour of grand unified theories in which we start 
with a simple group G and, after several spontaneous symmetry breakings, we end up 
with SU(3) 0 U(1). Since SU(2) can be embedded in any simple G, we expect to find 
stable monopole solutions in every grand unified theory. This question was first studied 
by C. P. Dokos and T. N. Tomaras in 1979. 

Indeed, we can give a general proof of this statement. The presence of the U(1),.m.  
factor in the unbroken gauge subgroup of the simple grand unified group guarantees 
the existence of smooth, finite-energy, topologically stable, particle-like solutions of the 
equations of motion with quantised magnetic charge. The proof of stability is the direct 
generalisation of the simple topological argument given in the previous section. Let us 
exhibit the grand unified monopoles in the case of the SU(5) prototype model. 

Let us try to find the quantum numbers of the SU(5) monopole using only simple 
symmetry arguments. We start by determining the minimum value of the magnetic 
charge Arm,. Since the minimum value of electric charge is emir, = e/3 (the down-quark) 
we would expect, naively, to have g,„„ = 3/(2e). However, this is incorrect. The reason 
is, again, our sloppy way in dealing with group theory, not paying much attention to 
the difference between a group and its Lie algebra. Being more careful, Dokos and To-
maras have established that in the case of SU(5), the unbroken group H is only locally 
isomorphic to SU(3) x U(1). The group H is really the set of SU(5) matrices of the form 

ue-'" 
e3'"	 (26.73) 

1 

with u an element of SU(3). The mapping from SU(3) 0 U(1) to H, defined by 
(u, ei") —> diag(ue-i", e3ia , 1) is 3 to 1, since the three elements (u, ei"), (ue2"3, ei("+21r/3)), 
and (uer i/3, ei("41r/3) of SU(3) 0 U(1) are mapped to the same element of H. In other 
words, H is the group SU(3) 0 U(1)/Z3, with Z3 being the centre of SU(3). As a 
consequence of this, using the same phase argument of the previous section, we can 
show that girth, = [2 • 3 • emin]-i  = [2e]-1  with lel being again the electron charge. We thus 
recover the Dirac quantisation condition. 

Let us next identify the SU(2) subgroup of SU(5) which will be used to construct 
the symmetry group of the monopole solution. It is clear that it cannot be a subgroup of 
SU (3) colour because it must contain electromagnetism. On the other hand it cannot be 
the SU(2) of the standard model as we have already shown. Therefore, we are led to a 
choice of the form 

0 

T = 1 (
0  

2 T 
0 

(26.74) 

for the SU(2) generators T. It follows that the monopole magnetic field will have both 
ordinary magnetic and colour magnetic components. 
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From now on, the analysis proceeds like in the previous section. We can identify the 
asymptotic form of the solution and obtain a system of ordinary differential equations. 
The monopole mass in the classical approximation will be on the order of 102M, with 
M being the mass of the vector bosons of SU(5); i.e. the magnetic monopoles of grand 
unified theories are superheavy with masses of order 1018  GeV, far beyond the reach 
of any accelerator. On the other hand, the lightest monopole is stable. It is amusing to 
note that the only stable elementary particles in a grand unified theory are the photon, 
which is massless, the lightest neutrino, the electron, and the monopole. Neutrino decay 
is forbidden by angular momentum conservation because the neutrino is the lightest 
spin-Z particle. The stability of the electron and that of the monopole are guaranteed 
by the conservation of electric and magnetic charge. Let us also mention that, as shown 
by C. Callan and V. Rubakov, although baryons in grand unified theories may have 
long life-times, magnetic monopoles act as catalysers: in their presence baryons decay 
promptly. 

Since monopoles are stable, whichever might have been produced in the course of the 
evolution of the Universe have a reasonable chance of being around today. The problem 
of estimating the monopole abundance is therefore reduced into that of estimating the 
rate of monopole production and that of subsequent monopole—antimonopole annihila-
tion. At the very early Universe, when temperature was sufficiently high, we expect all 
symmetries, which are spontaneously broken today, to be restored. At T > T, — M 
we have the full SU(5) symmetry. But for magnetic monopoles to exist SU(5) must 
be broken. Therefore, there were no monopoles when T > T, . They are produced 
during the phase transition but the production mechanism is model dependent. If 
the phase transition is second order the vacuum expectation value of the scalar field 
undergoes large fluctuations and a domain structure is established. The resulting do-
main walls contain topological defects in the scalar field orientation which give rise to 
magnetic monopoles. A rough estimation of their density gives dmonopole ^' where 

is the correlation length. Although its precise estimation is difficult, it is certainly 
less than the horizon length at temperature T. The latter is of order CMp 7-2, where 
Mp is the Planck mass and C depends on the number of massless degrees of free-
dom in thermal equilibrium at temperature T. We thus obtain a bound for the initial 
monopole density on the order dnion  7-3  > 10-10. A similar result is obtained even 
in the case of a first-order phase transition. Order of magnitude estimations show 
that the annihilation rate in an expanding Universe does not substantially reduce this 
number. We are thus left with a monopole density d — 10-10  T3, i.e. comparable to 
the baryon density. This is obviously absurd if we take into account their enormous 
mass. 

Several mechanisms have been proposed to reduce the number of monopoles surviv-
ing but the most attractive proposal today is based on the inflation scenario. During the 
exponential expansion any initial monopole density is 'inflated away' and reduced to es-
sentially 0. During an eventual subsequent reheating new monopoles could be produced 
but the production rate depends crucially on the reheating temperature. The final result 
is model dependent, but acceptably low densities can be obtained. 
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26.2.5.6 The Montonen—Olive Duality Conjecture 

All our quantitative understanding of four-dimensional quantum field theories comes 
from perturbation theory. The enormous success of the standard model testifies to that. 
On the other hand we know that such an understanding is necessarily limited. Many 
exciting physical phenomena are not accessible to perturbation. The obvious example is 
confinement in QCD. The perturbative spectrum of the theory is described by the Fock 
space of states of quarks and gluons, but we know that the asymptotic states are those 
of hadrons. In a qualitative way, we attribute this property to the behaviour of the QCD 
effective coupling strength as a function of scale. At short distances the coupling is weak 
and perturbative calculations are reliable. At large distances we enter the strong coupling 
regime and perturbation theory breaks down. If we had an exact, analytic solution of the 
quantum field theory, we would have found the hadrons as complicated functionals of 
the quark and gluon fields, describing static, finite energy, particle-like configurations. 
Physicists have often tried to guess effective descriptions of QCD in terms of collective 
variables valid at large distances, where the description in terms of quark and gluon fields 
is inadequate. 

The model with non-Abelian magnetic monopoles may provide a simple example of 
such a situation. We recall that in the BPS limit, the perturbative, one-particle states of 
the system, i.e. those corresponding to the elementary fields in the original Lagrangian, 
are the massless photon, the massless scalar, and the two spin-1 bosons of mass M = ev 
and electric charge ±e. The strength of the interaction is given by e. In addition the spec-
trum contains non-perturbative one-particle states, the magnetic monopoles. In contrast 
to the gauge bosons, they are not point-particles but extended objects. Their masses 
are Mmor, = gv and they have a magnetic charge g = ±i/e. The electric charge is con-
served as a consequence of Noether's theorem, because it corresponds to an unbroken 
symmetry of the Lagrangian. The magnetic charge is conserved as a consequence of 
the topological structure of the monopole solution. All this reminds us of the duality 
symmetry of Maxwell's equations (26.48) and (26.51). 

The complete quantum mechanical properties of this model are not known. For small 
e we can use perturbation theory. Note that in this case g is large and the monopoles are 
heavy. When e grows large we enter the strong coupling regime and perturbation theory 
breaks down. In this case g is small and the monopoles are light. C. Montonen and D. 
Olive made the following conjecture. This model admits two dual equivalent field theory 
formulations in which electric (Noether) and magnetic (topological) quantum numbers 
exchange roles. The Lagrangian (26.56) in the BPS limit gives the first one. The elec-
trically charged gauge bosons are the elementary fields, e is the coupling constant and 
the monopoles are the extended objects. Obviously, this description should be useful 
when e is small. In the dual equivalent description the monopoles are the elementary 
fields, together with the photon and the massless scalar, g is the new coupling constant, 
and the electrically charged gauge bosons correspond to extended, soliton-like, solu-
tions. This will be the useful description for large e. This is the conservative version of 
the conjecture. In fact, Montonen and Olive went a step further. They conjectured that 
for this particular model, the two field theories are identical; i.e. the new Lagrangian is 
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again given by (26.56) with g replacing e. The monopole fields and the photon form a 
triplet under a new SO(3) gauge group. This may sound strange because the monopole 
solution appears to be gauge equivalent to a spherically symmetric one and, naively, we 
expect the monopole to have zero spin. In fact, the situation is more involved and a com-
plete calculation of the total angular momentum of the solution is not easy. We will not 
develop this point here. 

A proof of this conjecture would require a complete solution of the field theory, a 
rather unlikely state of affairs in any foreseeable future. We can only verify its cal-
culable consequences. So far, such checks have been successful. Let us mention only 
one. We can generalise the classical solution (26.61) to one describing any number of 
well-separated monopoles and/or antimonopoles at rest. Studying the instantaneous ac-
celeration of such states, N. S. Manton has found the long-range part of the classical 
force between two monopoles. The surprising result is 

2g2  
F = --2 opposite charge; F = 0 same charge, (26.75) 

r 

i.e. twice the naively expected attraction for opposite charges and no force at all for same 
charges. How does this agree with the known forces between the electrically charged 
particles of the model? It does! The classical force between the two charged vector bo-
sons receives two contributions. The one-photon exchange graph gives a Coulomb force 
of ±e2/r2, attraction for opposite charges, and repulsion for like charges. The one-scalar 
exchange graph is always attractive, like all even spin exchanges. It is given by the tri-
linear term in (26.56), after translation of the scalar field. The result is —e21r2; i.e. it 
doubles the attractive part of the photon and cancels the repulsive one. Therefore, in a 
completely independent calculation, we derive the result (26.75) with e replacing g. 

26.3 The Trial of Scalars 

The purpose of this section is not to destroy, but to fulfil. It is our firm belief, shared by 
most physicists, that gauge theories have come to stay. 'Beyond' here does not mean that 
we propose to replace gauge theories with something else, but rather to embed them into 
a larger scheme with a tighter structure and higher predictive power. There are several 
reasons for such a search. 

As we said in the previous chapter, gauge theories contain two and possibly three 
independent worlds. The world of radiation with the gauge bosons, the world of matter 
with the fermions, and, finally, in our present understanding, the world of BEH scalars. 
In the framework of gauge theories these worlds are essentially unrelated to each other. 
Given a group G the world of radiation is completely determined, but we have no way 
of knowing a priori which and how many fermion representations should be introduced; 
the world of matter is, to a great extent, arbitrary. 

This arbitrariness is even more disturbing if one considers the world of BEH scal-
ars. Not only their number and their representations are undetermined, but their mere 
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presence introduces a large number of arbitrary parameters into the theory. Note that 
this is independent of our computational ability, since these are parameters which ap-
pear in our fundamental Lagrangian. What makes things worse is that these arbitrary 
parameters appear with a wild range of values. The situation becomes even more dra-
matic in grand unified theories where we may have to adjust parameters with as many 
as 28 significant figures. This is the problem of gauge hierarchy which is connected to 
the enormously different mass scales at which spontaneous symmetry breaking occurs. 
The breaking of G into U(1) 0 SU(2) 0 SU (3) happens at M — 1016  GeV. This means 
that a certain BEH field 0 acquires a non-zero vacuum expectation value V — 1016  
GeV. The second breaking, that of U(1) 0 SU(2), occurs at it — 102  GeV; i.e. we must 
have a second scalar field H with v — 102  GeV. But the combined potential of the scalar 
fields will contain terms of the form 02H2  (see Eq. (26.21)). Therefore, after the first 
breaking, the H mass will be given by 

2 2 .--. MH  = pt, + u(a V2  ), (26.76) 

where µ, is the mass appearing in the symmetric Lagrangian. On the other hand we know 
that v2  — m2H, so unless there is a very precise cancellation between 11, 2  and 0(a V2), a 
cancellation which should extend to 28 decimal figures, v will turn out to be of order 
V and the two breakings will come together; in other words, the theory is not able to 
sustain naturally a gauge hierarchy. It is the same naturalness problem, except that here 
it appears already at the classical approximation. This grand-fine tuning of parameters 
must be repeated order by order in perturbation theory because, unlike fermions, scalar 
field masses require counter-terms which depend quadratically on the mass scale. The 
whole structure looks extremely unlikely. The problem is similar to that of the induced 
cosmological constant in any theory with spontaneous symmetry breaking. We believe 
that despite its rather technical aspect, the problem is sufficiently important so that some 
new insight will be gained when it is eventually solved. 

One possible remedy is to throw away the scalars as fundamental elementary particles. 
After all, their sole purpose was to provoke the spontaneous symmetry breaking through 
their non-vanishing vacuum expectation values. In non-relativistic physics this phe-
nomenon is known to occur but the role of the BEH fields is played by fermion pairs. 
This idea of dynamical symmetry breaking has been studied extensively, especially under 
the name of `technicolour'. The physical idea is very simple and attractive. Let us intro-
duce it by considering first QCD with two massless quark flavours. Although we cannot 
solve the theory, we believe that it presents the phenomenon of spontaneous chiral sym-
metry breaking and the ground state contains an arbitrary number of quark—anti-quark 
pairs. As a result the quarks acquire a mass and a triplet of zero mass Goldstone particles 
appear, which we identified to the pions. 

Let us now introduce the U(1) x SU(2) gauge theory without any elementary scalar 
fields. The W boson 2-point function is of the general form 

G``° (p) = (ev 
PA') P )11(p2) 2 (26.77) 
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and, for a zero mass vector boson, we must have 

11(0) = 0. (26.78) 

We do not know how to compute 11(p2) exactly since this would require the complete 
solution of the QCD dynamics; however, we can estimate the contribution of a particular 
intermediate state, that of the one-pion state. It is given by the diagram of Fig. 26.9. It 
gives 

Gt" (p) I1-pion = i(igfrPA)
p
i  (—igfn pv), (26.79) 

where g is the SU(2) coupling constant and fir  the effective constant which couples the 
pion to the axial current defined in Eq. (25.97). In writing the right-hand side of Eq. 
(26.79) we made use of the fact that the pion, being a Goldstone particle, is massless. 
This explains the 1/p2  term in the propagator. It follows that the contribution of this 
particular term in the W propagator is 

(26.80) 

The surprising result is that the two equations (26.80) and(26.78) disagree; in other 
words, the W has acquired a mass. No other state can cancel the value of (26.80) because 
no other state has a 1/p2  pole. Therefore, we have obtained a W mass given by 

mw = er• (26.81) 

What about the neutral vector bosons. Here the situation is more complicated because 
n-°  couples to both AIL3  and B • It follows that there is one linear combination which 
couples to 2r°  and becomes massive and the orthogonal one which remains massless. 
It is not difficult to recognise Eqs. (25.26) and (25.27) of the Weinberg—Salam model. 
Even its great success, namely the relation between mw, mz, and 9w, is there! 

Could the pions be the BEH scalars of weak interactions? Unfortunately, the answer 
is no. First, because there would be no physical pions left. They would have been eaten 
up by the BEH mechanism. Second, the order of magnitude is not right. Using the 
experimental value fir  — 102  MeV, we find mw of the same order. But the message 
of the exercise is clear: we need new interactions which become strong at a scale one 
thousand times larger than QCD. 

Technicolor is the commercial name of the new strong interactions in the multi-
hundred GeV region. Let us assume that we have a non-Abelian gauge theory with a 
certain number of `techni-flavours', for example one doublet, of massless fermions (the 
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Figure 26.10 Fermion mass generation in the extended 
technicolour scheme. 

`techni-quarks'), Ut  and Dt, each coming in several `techni-colours', for example three. 
The corresponding gauge bosons form a multiplet of `techni-gluons'. These new strong 
interactions look like QCD except that we assume that their A parameter defined in Eq. 
(25.89), i.e. the scale in which the interaction becomes strong, is A Techn "--- 1 03 A clop . All 
our previous analysis applies verbatim, but now you should read GeV everywhere in the 
place of MeV. The massless technipions are absorbed through the BEH mechanism, but 
a whole spectrum of `techni-hadrons' appear with masses around 1 TeV. 

Is this the end of the story? Remember that in the standard model the scalar fields are 
those which give masses to the fermions. Here who gives masses to ordinary quarks and 
leptons? We could try to be economical and use the same mechanism at higher orders, 
but ordinary fermions communicate with the techniquarks only through the electroweak 
gauge bosons. Since all these couplings are vectorial (vector or axial vector), they cannot 
change the chirality of the fermions so they will never produce a mass term. We should 
complicate the model by introducing a third type of gauge interaction which couples 
directly ordinary fermions to Ut  and D. In such a scheme of 'extended technicolor' the 
mechanism for the fermion mass generation is shown in Fig. 26.10. The ordinary fer-
mionf is coupled to Ut  or D, through the extended technicolor gauge boson S. Because 
of the vacuum condensate of the techniquarks the chirality of the fermion line changes 
and the net result is an effective ff term, i.e. a fermion mass. But now, who gives masses 
to the new gauge bosons S? We need a new interaction and repeat the same story. 

Despite their many attractive features, the technicolor models suffer, up to now, from 
several important difficulties. First, the available field theory technology does not allow 
for any precise quantitative computation of bound state effects and everything must 
be based on analogy with the chiral symmetry breaking in QCD. Second, as we have 
just seen, although the initial idea is very simple, its detailed application gets quite 
complicated. Third, and most important, nobody has succeeded in producing an en-
tirely satisfactory phenomenological model. In particular, the simplest models have large 
flavour-changing neutral currents. Nevertheless there is still hope and the scheme has 
some predictions which can be tested experimentally in the near future. 
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Supersymmetry, or the Defence 
of Scalars 

27.1 Introduction 

The best defence of scalars is the remark that they are not the only ones which reduce 
the predictive power of a gauge theory. As we have already seen, going through the chain 
radiation—fermion matter fields—BEH scalars we encounter an increasing degree of ar-
bitrariness. Eliminating the scalars does not eliminate all arbitrariness. A more attractive 
possibility would be to connect the three worlds with some sort of symmetry principle. 
Then the knowledge of the vector bosons will determine the fermions and the scalars and 
the absence of quadratically divergent counter-terms in the fermion masses will forbid 
their appearance in the scalar masses. 

Is it possible to construct such a symmetry? A general form of an infinitesimal 
transformation acting on a set of fields 01  (x), i = 1, . m, can be written as 

SY (x) = Ea(Ta)ickl.  (x) (27.1) 

where a = 1, n with n denoting the number of independent transformations; in other 
words, n is the number of generators of the Lie algebra of the group we are considering. 
For U(1) n = 1, for SU(2) n = 3, etc. The E'S are infinitesimal parameters and Ta  is 
the matrix of the representation of the fields. Usually the E'S are taken to be c-numbers; 
in which case the transformation (27.1) mixes only fields with the same spin and obey-
ing the same statistics. It is clear that if we want to change the spin of the fields with 
a transformation (27.1), the corresponding E'S must transform non-trivially under ro-
tations. If they have non-zero integer spin they can mix scalars with vectors, or spin-
with spin-1 fields. This was the case with the old S U (6) transformations and their re-
lativistic extensions. If, on the other hand, the E'S are anticommuting parameters, they 
will mix fermions with bosons. If they have zero spin, the transformations (27.1) will 
change the statistics of the fields without changing their spin; i.e. they will turn a phys-
ical field into a ghost. The BRST transformations which we saw in the quantisation of 
non-Abelian gauge theories belong to this class. Here we want to connect physical bosons 
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with physical fermions; therefore, the infinitesimal parameters must be anticommuting 
spinors. We will call such transformations `supersymmetry transformations' and we see 
that a given irreducible representation will contain both fermions and bosons. It is not a 
priori obvious that such supersymmetries can be implemented consistently, but in fact 
they can. In the following we will give a very brief description of their properties as well 
as their possible applications. There exist several specialised textbooks on this subject to 
which we refer for further reading. 

27.2 The Supersymmetry Algebra 

We want to find symmetry transformations which generalise (27.1) with anti-commuting 
es. First some definitions. Let Am  m = 1, D denote the generators of a Lie algebra 
and Qa  a = 1, d be the elements of a d-dimensional representation: 

[A,,, An] = finnAi; [Am, Qa] = 4fla  Qfi • (27.2) 

A graded superalgebra is the algebraic scheme which consists of the generators Am  
and Qa  if we can find a set of constants rni such that 

[Q., Qfi]+ = QaQfi + QfQ« = CpA. • (27.3) 

The constraint on the r's is that they must satisfy the corresponding Jacobi identities 
for the set of Eqs. (27.2) and (27.3) to be self-consistent. 

There exist theorems which give a classification of graded superalgebras analogous 
to the Cartan classification of Lie algebras, but we will not need them here. The only 
superalgebra we will use is the one in which the Lie algebra is that of the Poincare 
group with generators P, and M, and the grading representation (27.2) is given by a 
Majorana spinor Qa: 

[PA, Qa] = 0; [Q., MiLv] = Zya6 Qfi (27.4) 

[Q., Qfi]+ = 0; [Q., Qfi]+ = —2Y«)5/3/1, (27.5) 

in which y" = [y y°]. The defining relations (27.4) and (27.5) admit the Lorentz 
group S L(2, C) as an automorphism. The components of Q are the generators of the 
special supersymmetry transformations. The second relation of (27.4) shows only that 
they have spin 1. The first is more important because it shows that they are transla-
tionally invariant. We will come back to this point later. The anticommutation relations 
(27.5) are the fundamental relations of the new symmetry. 

An obvious generalisation of (27.4) and (27.5) consists of starting from the Poincare 
algebra ® a compact internal symmetry G with generators At. If the Q's belong to a 
certain representation of the internal symmetry, we write them as Qa where the index 
a =1,..,4 labels the components of the Majorana spinor and m is the index of the internal 
symmetry, m=1,2,...,d. The algebra now takes the form 
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[Ai, Ai] = f Aki [PA, Vc1:] = 0; [Q,m, = iy:fiv  Q' (27.6) 

[241, = linn QP,1,; [Van Qnfi]+ = 0; [Q:, = —28mnY:fiPtt• (27.7) 

The algebra (27.6) and (27.7) admits SL(2, C) 0 G as a group of automorphisms. 
In the literature both the Majorana and the Weyl representations are frequently used 

and it is helpful to be able to change from one to the other. 
For example, in the Weyl representation (27.5) becomes 

Q,51+ = Q,d+ = 0  ; Q,d+ = 2(ana,j)/t• (27.8) 

We see that the supersymmetry algebra with N spinorial generators has a natural 
global U(N) symmetry, the group of unitary transformations that transform the Q's 
among themselves. Such symmetries were introduced by Pierre Fayet and are called 
R-symmetries.' For N=1 we have a group of phase transformations 

Qa —f el`k Qa . (27.9) 

27.3 Why This Particular Algebra; or All Possible 
Supersymmetries of the S Matrix 

The superalgebra (27.6) and (27.7) combines in a non-trivial way Poincare invariance 
with an internal symmetry. There exists a theorem, known as the Coleman—Mandula the-
orem, which states that for ordinary algebras, such a combination cannot be a symmetry 
of a unitary S matrix. The only possibility is the trivial case of a direct product Poin-
care 0 internal symmetry'. This is what we have been using everywhere in this book. 
The superalgebras (27.6) and (27.7) seem to violate this theorem. The reason is that, 
implicit in the Coleman—Mandula proof, there is the assumption that the algebra closes 
with commutators only. To be more precise, they use the fact that the trace of the oper-
ators that appear in the algebraic relations vanishes. This is always true if these relations 
contain only commutators because of the cyclic property of the trace. But if we allow 
for anticommutators it is no more true. We will state, without proof, the generalisation 
of this theorem to include superalgebras, i.e. algebras which close using both commutat-
ors and anti-commutators. The remarkable result, obtained by Haag, Lopuszanski, and 
Sohnius, is that (27.4) and (27.5), or (27.6) and (27.7), is essentially the only admissible 
one. More precisely, the theorem shows that the grading operators Q should belong to 
the (Z, 0), or (0, I) representation of the Lorentz group. The only possible extension 2 
is to generalise the anticommutators in (27.8) by introducing operators which commute 
with all other operators in the algebra. Thus, we may have 

[Q am  Qn,31+ = Eap z mn (27.10) 

1  Fayet had introduced the U(1) R-symmetry before the advent of supersymmetry and extended the 
concept later. 
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where Zmn are a set of central charges, i.e. operators which commute with every operator 
in the algebra. Since Eco is antisymmetric in its indices, it follows that the Z's must also be 
antisymmetric, Z' = —Z', which in turn implies that this central charge vanishes for 
N=1. The conclusion is that out of the infinitely many ways we can grade the Poincare 
algebra, only the one we introduced, in which we used a spin-1 operator, may be relevant 
for physics. 

27.4 Representations in Terms of One-Particle States 

In order to extract the possible physical consequences of supersymmetry, we must 
construct the representations of the algebra in terms of one-particle states, i.e. the one-
particle `supermultiplets'. We start by observing that the spinorial charges commute with 
P. and, therefore, they do not change the momentum of the one-particle state. Further-
more, the operator P2  commutes with all the operators of the algebra, which implies that 
all the members of a supermultiplet will have the same mass. As it is the case with the 
Poincare algebra, we can distinguish two cases: P2  # 0 and P2  = 0. 

27.4.1 Massive Case 

We can go to the rest frame in which the right-hand side of (27.5) or (27.8) becomes 
a number. Let us first forget about a possible internal symmetry and consider the case 
N=1. Equation (27.8) gives 

[Q«, Q,d+ = 2A48 00j, (27.11) 

where P2  = M2. Equation (27.11) implies that the operators Q1,./1/1 and 0,/,../1 satisfy 
the anticommutation relations for creation and annihilation operators of free fermions. 
Since the index a can take two values, 1 and 2, and Qi = QZ = 0, starting from any 
one-particle state with spin S and projection Sz, we can build a four-dimensional Fock 
space with states 

IS,Sz;ni, n2 >= Q2n2 IS, Sz > n2 = 0, 1. (27.12) 

We can define a parity operation under which the Majorana spinor Qa, a = 1, ...4, 
transforms as 

(QOP = (Y °Q)«. (27.13) 

Then the spin-parity content of the representation (27.12) is 

(S— 1/2)°; ; ; (S + 1/2)-", (27.14) 

where rj = ±i, ±1 for S integer or half-integer. Some examples follow: 
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S = 0: a scalar, a pseudoscalar, a spinor. 

S = 1: a scalar, a vector, two spinors (or a pseudo-scalar, a pseudo-vector, two spinors). 

S = 1: a vector, a pseudo-vector, a spinor, a 1 spinor. 

S = 1: a vector, a tensor, two 1 spinors. 

In this counting the spinors are Weyl or Majorana. We see that the S=0 example can 
be viewed as the simplest supersymmetric extension of the chiral spinors of the standard 
model, so this multiplet is often called chiral multiplet. Similarly, the S = 1 example 
corresponds to the supersymmetric extension of a massive vector. 

The generalisation to include internal symmetries is straightforward. Ignoring, for the 
moment, the possibility of having central charges in the supersymmetry algebra, we see 
that the only difference is that now we have more creation operators and the correspond-
ing Fock space has 22N  independent states, where N is the number of spinorial charges. 
A well-established theoretical prejudice, supported by all available experimental data, is 
that if we exclude gravitation, there exist no elementary particles with spin higher than 1. 
This prejudice is based on the great difficulties we encounter if we want to write con-
sistent field theories with high spin particles. Based on this prejudice, N = 2 should be 
the largest supersymmetry for massive particles because it allows precisely the transition 
from a —1 to a +1 spin state in four steps of 1.2  

The presence of central charges brings an interesting complication. We consider the 
algebra (27.7) modified by (27.10). We can construct the operator OH as 

Q:(—)  = Van — E E afi Umn  Qnfi (27.15) 
fin 

with U being a unitary N x N matrix. Let us compute the anticommutator 

E  [Q:(-), 27(-)1+  = 
am 

E 
am 

[Q.:  — E Ea  LT Z , .,,,m — E 
 Eay

utmk Qk
y
l
+ 

 

fin yk 

= 8NH — 2Tr(UZt + ZUt) (27.16) 

with H being the Hamiltonian. The left-hand side of (27.16) is a positive-definite oper-
ator, so if we take the matrix element between a one-particle state at rest, we obtain the 
inequality 

1 
M> —Tr(UZt + ZUt). 

4N 
(27.17) 

Taking into account the fact that the matrix Z can be written as the product of a 
positive Hermitian matrix times the unitary matrix U, we can rewrite this inequality as 

2  We will see later how this counting may be modified by the presence of possible central charges in the 
supersymmetry algebra. 
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1 
M > —TrN/Z, 

— 2N 
(27.18) 

which gives an interesting lower bound for the mass of a multiplet in terms of its eigen-
values of the central charges. If the bound is saturated, the operators Qt:H annihilate any 
state of the multiplet, which justifies the superscript (—). But this means that we have only 
N creation and annihilation operators, rather than 2N. We will call such multiplets short 
multiplets, since they have fewer states. We will see that they appear naturally in gauge 
theories with extended supersymmetry when part of the symmetry is spontaneously 
broken.3  

27.4.2 Massless Case 

Here we choose the frame P1  = (E, 0, 0, E) . The relation (27.8) yields 

[Qa, )41+ = 2E(1 — az) = 4E6a28)42. (27.19) 

Only Q2 and Q2 can be considered as creation and annihilation operators. The other 
two operators Q1  and Qi annihilate any one-particle state with the momentum Pi., = 
(E, 0, 0, E). Starting from a one-particle state with helicity ±A, we obtain the state with 
helicity ±(X + 1). It follows that all massless multiplets of N=1 supersymmetry contain 
just two states, one fermionic and one bosonic. As we have shown in Chapter 12 all 
quantum field theories we are considering satisfy the CPT theorem. Therefore, to a state 
with helicity X different from 0 corresponds the CPT-transformed state with helicity —X. 
For every multiplet we will also have the CPT-transformed multiplet. Some interesting 
examples follow: 

X = —I. one spin I and one spin 0 (both massless). 2' 2 

X = I. one spin 2' 

= 2 ' one spin 2' 

and one spin 1 (both massless). 
3 and one spin 2 (both massless). 

The first is the massless version of the chiral multiplet we found in the massive case. 
Obviously, we will be tempted to identify the second one with the photon, or any other 
massless gauge boson, and its supersymmetric partner, often called photino, or gaugino, 
and the third with the conjectured mediator of the gravitational forces, the graviton and 
its partner, called gravitino. The counting of degrees of freedom that we saw in the BEH 
effect can be made also in supersymmetry. Including the CPT-transformed multiplets, 

3  The mass bound obtained in (27.18) reminds us of a similar one we obtained in section 26.2.5 when 
we studied the mass spectrum of magnetic monopoles, namely the inequalities (26.66) and (26.72). In the 
Bogomolny—Prasad—Sommerfield limit the corresponding bound was saturated. As we will see later, the short 
multiplets of extended supersymmetry appear often in grand unified theories when the spontaneous breaking 
of the non-Abelian gauge symmetry induces the appearance of magnetic monopoles and in these cases the two 
bounds coincide. For this reason the short multiplets are also called BPS multiplets, although, in general, the 
two phenomena are unrelated. 
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we can combine the degrees of freedom of a massless multiplet containing one spin 1 
and one spin- aparticle with those of a multiplet containing a spin-1 and two spin 0 to 
obtain a massive multiplet containing a massive spin 1, two spin zMajorana, or Weyl 
(which can be combined into one spin iDirac), and one spin 0. 

If we have more than one spinorial charge, i.e. N > 1, we obtain N creation and 
annihilation operators. Again, the operators gin and gin annihilate the one-particle 
massless states. Note, that this implies that the same should be true for any cent-
ral charges; in other words, massless particles must be neutral under central charges 
in extended supersymmetry. The consequence of the prejudice we mentioned previ-
ously is that N = 4 is the largest supersymmetry which may be interesting for particle 
physics without gravitation if we consider massless particles. The reason is that N = 
4 contains four creation operators and allows us to go from a helicity state X = —1 
to that of X = +1. Any increase in the number of spinorial charges will automatic-
ally yield representations containing higher helicities. Finally, if we include gravitation, 
the same prejudice tells us that we must allow for elementary particles with helicities 
IAI < 2. The previous counting argument now gives N = 8 as the maximum allowed 
supersymmetry. 

We can easily find examples of massless representations for such extended super-
symmetries. Let us assume that we have a state which has the maximum helicity in the 
representation; we call it Amax•  We can apply N annihilation operators, thus obtaining N 
states with helicity Amax—  After n such steps we obtain N!In!(N —n)! states with helicity 
Amax n/2 which form a rank n antisymmetric tensor representation of the R-symmetry. 
We can apply at most N annihilation operators, so the minimum value of the helicity is 
Amin = Amax —N/2. Here again, we must add the CPT-transformed states. Some examples 
follow: for N=2, we have two multiplets not exceeding spin 1. 

Amax = 1: one spin 1, two spin Z, forming a doublet of R, two spin-0 singlets of R. 

Amax = 1: one spin 1, two spin 0, forming a doublet of R. 

For obvious reasons, we will call the first a gauge multiplet and the second a matter 
multiplet. 

Similarly, for N=4 we have only one possible supermultiplet containing 1 spin 1, 4 
spin 1, and 6 spin 0. It is identical with its CPT-transformed multiplet. In our previ-
ous terminology, it is a gauge multiplet and we do not have the analogue of a matter 
multiplet. In N=3, we find the same answer because, for Xmax=1, we find 1 spin 1 
with helicity +1, 3 spin i  with helicity +1, 3 spin 0 and 1 spin 2  with helicity to 
which we should add the CPT-transformed multiplet, thus reconstructing the one we 
found for N=4. As a last example we compute the helicity states of the N = 8 mul-
tiplet with Xmax=2. There is only one possibility with 1 spin 2, 8 spin 1, 28 spin 1, 56 
spin 1, and 70 spin 0. Again this multiplet is identical with that of N=7 taking into 
account CPT. 

A concluding remark: All representations contain equal number of bosonic and 
fermionic states. All states in an irreducible representation have the same mass. 
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27.5 Representations in Terms of Field Operators: 
Superspace 

Our aim is to obtain field theoretical realisations of supersymmetry; therefore, we look 
for representations in terms of local fields. Such representations were first obtained by 
trial and error, but the most elegant method is to use the concept of superspace. 

We want to find a representation of the supersymmetry algebra (27.4) and (27.5) 
in terms of differential operators. Following the same method we use for the ordinary 
Poincare group, we consider the coset space formed by the super-Poincare group4  di-
vided by the Lorentz group. This natural parameter space for the operators P„,, Q, and 
Q has eight dimensions, four (the usual Minkowski space) associated with the operat-
ors P, and four with the spinors Q and Q. The last four coordinates, however, are not 
numbers but elements of a Grassmann algebra. An element of this space will be denoted 
by zm  = (x, 0,5). This eight-dimensional space is called `superspace'. In Chapter 11 
we introduced the basic rules of calculus in a Grassmannian manifold. They apply to 
superspace. 

A 'finite' group element can be defined by 

G(x,0,5) = el[eQ+9Q- (27.20) 

The quotation marks around the word 'finite' mean that although G is formally an 
exponential in the variables e and 9, its expansion in powers of them terminates after the 
first terms. In this sense a supersymmetry transformation is always 'infinitesimal'. We 
can multiply two such group elements and, by Hausdorff's formula, obtain 

G(y,,)G(x,9,9) = G(y + x-itat9 + +9, +9). (27.21) 

This means that the group induces a motion of the parameter space into itself 

: (x,0,0) —> (y + x-itc75 + ieo4, + 9, + 5). (27.22) 

Equation (27.22) shows that supersymmetry transformations act on superspace as 
generalised translations. The required representation of the algebra (27.4) and (27.5) in 
terms of differential operators can be read off (27.22): 

= 
a u a •e-  aea " axa 

Qa 
 a , a 
=

aea " •e- axa (27.23) 

. a 
= 1 . axa 

4  That is, the group we obtain by formally integrating the algebra (27.4) and (27.5). 

Qa 
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A superfield is a function of the superspace element zM  : 0...(x,0,6), where the dots 
stand for possible Lorentz tensor or spinor indices. A transformation of the group acts 
on it as a generalised translation: 

G(y,4,4)0(x,0,0) = ci)(y + x - 0- 0 + 4, + 0,4 + 0). (27.24) 

The interest of the superfields derives from the fact that like any function of 
Grassmann variables, they are polynomials in 6 and 6, 

0(x, 6,0) = A(x) + 01/i (x) + 9X (x) + + 0000 R(x), (27.25) 

where the coefficient functions A(x) (scalar), '0 (x) (spinor), etc. are ordinary fields, i.e. 
a superfield is a finite multiplet of fields. Using the transformation property (27.24) and 
expanding both sides in powers of 0 and 6 we obtain the transformation properties of the 
coefficient functions which, under supersymmetry transformations, transform among 
themselves. In this way we have obtained representations of supersymmetry in terms of 
a finite number of fields. 

It is easy to see that the representation (27.25) is a reducible one. We must be able 
to impose covariant restrictions on the superfield (27.25) in order to decompose it into 
irreducible representations. For example, we can verify that the condition on 0 to be a 
real function is a covariant one. The systematic way to obtain such covariant constraints 
is to realise that the algebra (27.4) and (27.5) contains the algebra of the Q's or the Q's 
as subalgebras 

[Q, = 0; [Q, = 0. (27.26) 

We can therefore study the motion of the group on the corresponding cosets. We can 
parametrise the group elements as 

G1 (x, = ei((9Q-x ') ei° ; G2  (X, 9, 6) = ei(19 Q-xs P)  ei9I 2  . (27.27) 

The formulae (27.25) and (27.27) give three different but equivalent ways of 
representing the group elements and, therefore, lead to three different types of super-
fields. Of course, by Hausdorff's formula we can shift from one to another, the three 
representations being equivalent, 

G(x,0,0) = Gi(x +i0a0,0,0) = G2(x-i0o-0,0,0), (27.28) 

and similarly for the corresponding superfields 

0(x, 9,9) = 01 (x+ i0a0,0,0)= 02(x-i0a0,0,0). (27.29) 

The generators Q and Q, which on a superfield of type 0 were represented by the 
operators (27.23), when acting on a superfield of type 01  are given by 
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a a a 
Q= ; Q=  To 

and on a superfield of type 02  by 

a a 
Q= ; = -4 + 2i0a 

ae ae ax 

(27.30) 

(27.31) 

We see that the same way that we were able to impose a reality constraint which was 
invariant for a superfield of type 0, we can, for example, impose on a superfield of type 
01  to be independent of 9, or on 02 to be independent of 0. In other words, .91.96 is a 
covariant derivative when it acts on a superfield of type 01  and aim on 02. By a shift 
(27.29) we define covariant derivatives for any type of superfield 

Dao = ae" wt ) 0;
a 

=
. T ) 0 (27.32) 

a . a 
Doi  = ( w)  + 2icre 

Tx
) 01; tO1= — (27.33) 

a a . a Do2 =
89  

to2  = (-
,v) 

 - 210Cr T
x
) 0192. (27.34) 

These differential operators anticommute with the infinitesimal supersymmetry 
transformations. They will be very useful when we decide to construct Lagrangian field 
theory models. 

A superfield of any of the three types shown in Eqs. (27.32)—(27.34) may have 
Lorentz indices corresponding to a given spin s. In this case the lowest spin in the 
representation will be s. We can sharpen this analysis and obtain all linear irreducible 
representations, but we will not need them here. In this book we have studied only the 
properties of scalar, spinor, and vector fields and, therefore, we will introduce the su-
perfields that contain only these fields. Obviously, any representation will contain both 
fermion and boson fields. A superfield of type 01  will give 

01(x,(9) = A(x) + (x) + 90F(x). (27.35) 

It contains spin 0 and spin-1/2 fields, and similarly for 02 (x,6). The real superfield 
can be expanded as 

0(x, 9,6) = C +ie x
2 

+ iee
2 

+ iN)— 66 (M — iN) 

— ecrt,6vA 

+ i669&  (La — a,aa ak —i996 + ataiti) 

+ - (9666 (D+ (27.36) 
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where a reality condition on 0 has been imposed. The supermultiplet (27.35) contains 
a chiral spinor *(x) and it is called 'chiral multiplet' while (27.36) contains a vector 
field v, (x) and is called 'vector'. The peculiar notation in the coefficients of the expan-
sion (27.36) is used because of historical reasons and also because it leads to simpler 
transformation properties under infinitesimal transformations. 

The global U(1) R transformations we found when studying the algebra have a simple 
interpretation in superspace. A point (x, 0,0) transforms as 

(x, 9,o) —> (x, (27.37) 

A vector superfield is 'neutral' under R, while a chiral one may be multiplied by a 
phase 

v(x,f 9,6) v (x, e-io ,6eio); s(x,(9) —> eino s(x, Oe-4). (27.38) 

It is straightforward to write the explicit form of the transformation properties in 
terms of the component fields. For example, for the chiral multiplet (27.35), we obtain 
under supersymmetry 

SA = f; = + 24T; SF = f cr,& • , (27.39) 

where 4 is the parameter of the infinitesimal supersymmetry transformation. 
Given a chiral superfield S(x, 0) of type 01  and its conjugate S(x, 0), which is of type 

02, we can construct a vector superfield in the following way. First, through (27.29) we 
transform both of them into superfields of type 0: 

S(x, 0) = (/)(x - i0a0,0); S(x,0) = 0(x + i0a0,0). (27.40) 

This way we can combine them together. The simplest is just to take the difference 
i(S - which we call as. It is a vector multiplet whose components, in the notation of 
Eq. (27.36), are5  

C =Im A; x = M + iN = F; = .9,Re A; = D = O. (27.41) 

The interest of this special vector multiplet is that it generalises the notion of a gauge 
transformation in which the vector field is transformed by the derivative of a scalar func-
tion. Similarly, given a vector multiplet V(x, 0,0) we can construct chiral multiplets by 
eliminating the 0 dependence. Of particular interest is the one given by 

5  The relation x = Vi should be read as x = the Majorana spinor equivalent to the Weyl spinor Vi; in other 
Via words, x = ilf-6  ). Note also that we could have taken the vector superfield corresponding to the sum S + S. 

It is easy to verify that it is related to the one we consider by a parity transformation. 



Representations in Terms of Field Operators: Superspace 795 

1- 
Ira  = --

4
DDDa V. (27.42) 

_ The chirality condition follows immediately from the fact that the product of three 
D operators vanishes. It is a superfield with an undotted spinor index and we can verify 
that among its components it contains the term proportional to .90), — .9, v,. Therefore, 
it is suitable to describe the 2-form field strength of a vector field. 

Two remarks concerning these representations. First, if we compare with the res-
ults obtained when we studied the representations in terms of one-particle states, we 
see that we have more fields than the physical states which are contained in an ir-
reducible representation. Therefore, some of the fields must turn out to be auxiliary 
fields. Their presence is, however, necessary in order to ensure linear transformation 
properties. Second, we note that the field F in (27.39) transforms, under supersym-
metry, with a total derivative. This is not accidental. It follows from the fact that 
a supersymmetry transformation acts in superspace as a generalised translation. But 
the F term is already proportional to the maximum allowed power of 6, so any 
higher power in the expansion will be necessarily a space derivative. This property 
will be always true with the last component in the expansion of a superfield, i.e. F 
for a chiral superfield (27.35), D for a vector (27.36), etc. We will use this property 
soon. 

Before closing this section we must establish a tensor calculus in order to be able to 
combine irreducible representations together. This is essential for the construction of 
Lagrangian models. Here again the superfield formalism simplifies our task enormously. 
All the necessary tensor calculus is contained in the trivial observation that the product 
of two superfields is again a superfield. For example, let Si (x, 6) and S2  (x, 9) be two su-
perfields of type 01 (x, 0). We form the product: S12  (x, 0) = Si (x, 6)S2  (x, 9). Expanding 
both members in powers of 0 and identifying the coefficients we obtain 

Al2 (x) = Ai (x)A2(x) 

ki2 (X) = *1 (X)A2 (X) + 1k2 (X)A1 (X) (27.43) 
1 

F12 (X) = Fl (x)A2(x) + F2 (x)Ai(x) — —
2 

ifri (x) V' (X) • 

Similarly, the product of two vector superfields is again a vector superfield. For ex-
ample, taking the square V2  and expanding in powers of 0 and 9 we find that its D term 
contains the expression viie, i.e. the mass of the vector field. We can also multiply su-
perfields upon which we have acted with the corresponding covariant derivatives, Eqs. 
(27.32) to (27.34) . As we noted already, two, or more, superfields of different types 
cannot get multiplied together. Rather we should transform them first into superfields of 
the same type by using the relations (27.29) and then multiply them. For example, we 
can multiply 0 and 0 of Eq. (27.40) and expand in powers of 0 and 9. This way we ob-
tain a vector multiplet whose components are bilinears in the components of S. We can 
verify that the last term in the expansion, i.e. the D component of the vector multiplet, 
contains 
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.... —0065 [ADA* — ii  frati.907/ + FF*] . (27.44) 

The first two terms are recognised as the kinetic energy terms of a complex spin-0 
field and a two-component Weyl spinor. The last term has no derivative on the F-field, 
which shows that F will be, in fact, an auxiliary field. 

The last bilinear we will need corresponds to the square of the chiral field (27.42) 
which we expect to use for the kinetic energy term of a vector field. Indeed, since the 
v,„ = 9,v„ — 9,,v, term appears in the expansion of Wa  in the term proportional to 9a, 
the square v„„voy will appear in the F term in the expansion of its square: 

W« Wa  lee + Pi  fra loo — —iXo-'-'9,j — 41  v„,,,v1" + D2  + 
Ti
i  v,,,01". (27.45) 

We recognise in this expansion the kinetic energy term of the spinor and the vector 
fields. D appears with no derivative, so it will be an auxiliary field while the last term 
is a four derivative. Note that the same term can also be obtained as a D term in the 
expansion of the vector multiplet Wa D" V, 

waw"109+ 1F61%166 — [w(x1Yx v -Fir6 f)& 111906o+••••, (27.46) 

where the dots stand for terms which are four derivatives. 
The final step is to use this tensor calculus and build Lagrangian field theories 

invariant under supersymmetry transformations. As we said earlier, supersymmetry 
transformations can be viewed as a kind of generalised translations in superspace. There-
fore, the problem is similar to that of constructing translationally invariant field theories. 
We all know that the only Lagrangian density invariant under translations is a trivial 
constant. However, what is important is to have an invariant action which is obtained by 
integrating the Lagrangian density over all four-dimensional space—time. The same must 
be true for supersymmetry. Now, the Lagrangian density will be a function of some su-
perfields and their covariant derivatives; i.e. it will be a function of the superspace point 
(x,0,0). The action will be given by an eight-dimensional integral over superspace: 

I = f r(x,9,6)d4xiged26. (27.47) 

By construction, this integral is invariant under supersymmetry. This invariance can 
be verified by noting that only the last term in the expansion of r in powers of 0 and 0, the 
one proportional to 0000, will survive the integration. This follows from the integration 
rules over Grassmann variables we established in Chapter 11. But, as we noted earlier, 
the variation of the last term in the expansion of any superfield, such as an F or a D term, 
is given by a total derivative. Therefore, their integrals over all space—time vanish. We will 
call F-terms those coming from the expansion of a chiral superfield and D-terms those 
coming from vector multiplets. Since chiral and vector superfields are the only ones we 
will use in this book, all Lagrangian densities we will write will be of one of these two 
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types. In fact, we can always work in superspace in terms of superfields and never write 
down the component fields explicitly. Feynman rules can be derived and all the results 
of the next sections can be obtained in a more direct way. We will not use this powerful 
formalism here for the sake of physical transparency. In this way the next sections can 
be understood by the reader who has not studied this one very carefully. Another reason 
is that the superspace formalism cannot be directly generalised to the cases of extended 
supersymmetries which contain several spinorial generators. 

27.6 A Simple Field Theory Model 

We will discuss here the simplest supersymmetric invariant field-theory model in four 
dimensions, that of a self-interacting chiral multiplet S. We introduced already the kinetic 
term, Eq. (27.44), and the mass term S2+Hermitian conjugate, Eq. (27.43). For the 
interaction we choose the term 53  + h.c. In terms of component fields, the complete 
Lagrangian, after integration over the Grassmann variables (9 and B, reads 

= 2 [(.9 + (aB)2  + yd + F2  + G2] + m[FA + GB— —11k d
(27.48) 

+ g[F(A2  — B2) + 2GAB —1-fr (A — y5B)*], 

where we changed the notations in two ways: (i) we separated the real and imaginary 
parts of the scalar fields A —> i  (A + iB) and F —> z  (F + iG) and (ii) we switched to 
the Majorana representation for the spinor m is a common mass for all fields and 
g a dimensionless coupling constant. In terms of superfields the kinetic energy term is 
the D term in the expansion of the vector multiplet SS we obtained in Eqs. (27.40) and 
(27.44), the mass term is the F term in the expansion of the chiral superfield S2  of Eq. 
(27.43), and the interaction term is the F term in the expansion of S3. As we mentioned 
earlier, F(x) and G(x) are auxiliary fields and can be eliminated using the equations of 
motion, 

F + mA + g(A2  — B2) = 0; G + mB + 2gAB = 0, (27.49) 

in which case the Lagrangian takes the form 

= 2[w? + (aB)2  + ydA - m2(A2 + B2) - mop] 

— mgA(A2  + B2) — g* (A — y5 B)* — 1  —
2 

 g2  (A2  + B2)2. 
(27.50) 

It describes Yukawa, trilinear, and quartic couplings among a Majorana spinor, a 
scalar, and a pseudoscalar. The consequence of supersymmetry is that all fields have a 
common mass and all interactions are described in terms of a single coupling constant. 
Apart from the mass term, this is the Lagrangian we discovered in section 19.3 as a fixed 
point of the renormalisation group. Supersymmetry implies the conservation of a spin-1 
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current, which is 

I' = y A  dA(A— Y5B)Y itlk - (F+ Y5G)Y A l fr • (27.51) 

The Lagrangian (27.48) is the most general renormalisable supersymmetric invariant 
theory of one chiral multiplet. Strictly speaking we could add a term linear in the field F: 

G —> r + XF. (27.52) 

Such a term does not break supersymmetry because, as we said earlier, the variation 
of F is a total derivative. However, it has no effect on the model because it can be 
eliminated by a shift in the field A. 

The renormalisation of this theory is straightforward. We will go through in some 
detail, both as an exercise in the technology of Ward identities and because the results 
will turn out to be unexpected and interesting. 

We start by noting that supersymmetry being a global symmetry, we can use several 
supersymmetric invariant regularisation schemes. A conceptually simple one is to intro-
duce higher derivatives in the kinetic energy the way we saw in section 16.4.6  It amounts 
into modifying the kinetic energy part of the Lagrangian (27.48) by adding terms of the 
form 4'1(aA  DA)2  and similarly for all other fields. 4' is a regulator parameter with dimen-
sions

2  
[114]-2  which will go to 0 at the end of the calculation, after the renormalisation 

has been performed. The important point is that in the presence of 4', all diagrams are 
convergent and, consequently, all formal manipulations are allowed and well defined. 
Furthermore, the 4'-terms respect supersymmetry. 

The first important result is valid for all theories with global supersymmetry and 
concerns the vacuum energy. Although it is often left out from the renormalisation pro-
gramme, a generic quantum field theory requires a constant counter-term in order to 
remove the divergence of the vacuum diagrams. The corresponding renormalisation 
condition is usually chosen to impose the vanishing of the vacuum energy. In a super-
symmetric theory this counter-term is absent. All terms generated by the boson loops 
in the vacuum diagrams are cancelled by the corresponding ones having fermion loops. 
Since every supersymmetric theory has equal number of bosonic and fermionic degrees 
of freedom with degenerate masses, this cancellation is exact. A formal way to obtain 
this result is to write the local analogue of the supersymmetry algebra (27.5), or (27.8), 
in the form 

[Q,„Y;(x)]+  = 2 (yv  y°) co  7T (x) + ..., (27.53) 

where ,r; (x) is the spin-1 supersymmetry current and T,I,' (x) is the energy-momentum 
tensor. The dots stand for terms containing space derivatives whose vacuum expectation 
value vanishes. The algebra of charges (27.5) or (27.8) is obtained from (27.53) by 
integration over d3x. If supersymmetry is exact, the charge Q annihilates the vacuum 

6  The use of dimensional regularisation, although possible in this simple case, should be avoided because 
supersymmetry transformations involve y5  in an essential way. 
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and this implies the vanishing of the vacuum expectation value of the energy—momentum 
tensor: 

< 017nx)10 >= 0, (27.54) 

which means that no constant counter-term, or, equivalently, normal ordering of the 
terms in the Lagrangian, is needed. 

The physical significance of this result is understood if we consider a supersymmet-
ric theory in the presence of an external gravitational field. In a generic field theory the 
vacuum fluctuations induce an infinite vacuum energy, which implies an infinite cosmo-
logical constant. In a supersymmetric theory the induced cosmological constant is zero. 
Note, however, that this is valid only when supersymmetry is exact. In a broken theory, 
whether explicitly or spontaneously, we obtain a non-zero cosmological constant. 

After this general result, let us come back to the particular model of the Lagrangian 
(27.48). The conservation of the current (27.51) yields Ward identities among different 
Green functions. A simple way to obtain them is to introduce external sources for each 
field and write the generating functional as 

eif (r+jcd4xD[0]  
Z [y] — . 

f elf rcl 
4 
 xp[o] 

(27.55) 

where 0 denotes collectively all fields A, B, F, G, and and the source term is given by 
yo = .AAA + yBB + yFF + jGG— Frt f . The external sources are assumed to form a chiral 
multiplet so that the part of the action corresponding to yo is supersymmetric invariant. 
This means that the sources transform as the fields themselves: 

8,7A = -OA  F1)Y Aa 
8,7B = i(.90-7)Y5Y t'a 
8,7F = 
8,7G = 

S n  = .9A (7F — y5.7G)y Aa + (7A + Y5,7B)a• 

(27.56) 

Under the transformation (27.56) Z[7] is invariant, which gives the Ward identities 

. SZ SZ SZ SZ 
—1— (altiDy A  + i — (atdi)y5ytL  + i — i-i+ i—riy5 

h 8.713 6.7F 3.7 G 

SZ 
— —Sri PA C7F — y5.7G)yli  +.7A+ Y5,7131 = 0. 

(27.57) 

As usual, we can rewrite (27.57) as Ward identities for the one-particle irreducible 
Green functions by Legendre transforming the connected Green functions generating 
functional WU] = In Z 
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PER] = W- f (JARA + IBRB + IFRF + IGRG - FIROd4  x, (27.58) 

where Ro  = SW 13,70  (0 = A, B, F, G), RIfr = SW lb), and go = -SF ISRo, n = -31761R,fr. 

SF SF Sr Sr 
i R,

frRA SRB
+ + iy a AR* + iy5yAa

SRFA
Rik 

 8RG 
 

Sr 
+ (RF  + y5RG- aARAyA -aARBy5yA)-

814 
= 0. 

(27.59) 

This equation is the functional form of the Ward identities for the 1-PI Green func-
tions. It states that F [R] is invariant under supersymmetry transformations, i.e. if we 
transform the classical fields R as the fields A, B, etc., we obtain 31-=0. The existence of 
a supersymmetric invariant regularisation scheme ensures that these Ward identities can 
be enforced in the renormalised theory. 

Two important consequences follow from these Ward identities. (i) The vacuum 
expectation values of all fields vanish. (ii) The Lagrangian (27.48) is stable under renor-
malisation, i.e. no new counter-terms will be needed at every order in perturbation 
theory. 

We can prove these properties very easily. The only fields for which the first does not 
follow trivially from Lorentz invariance or parity conservation are A and F. We take the 
functional derivative of the identity (27.57) with respect to n and then set all sources 
equal to 0. The result is 

< F >0= 0. (27.60) 

On the other hand, the equation of motion for F, Eq. (27.49), in the presence of the 4 
regulator term, reads (1 +4' 111 2)F mA + g (A2  - B2) = 0. Taking the vacuum expectation 
value and using (27.60) and the Ward identity < AA >o=< BB >0, we obtain 

< A >0= 0; (27.61) 

in other words, no counter-terms linear in A or F are needed. 
We can now proceed with the renormalisation programme the usual way. We 

introduce three counter-terms for wave function, mass, and coupling constant renor-
malisation: 

R = Z 2  0; MR = ZM 3m; gR = Z3 g. 

They are determined by the following three renormalisation conditions:7  

dFAA(p2) 

dp2 P -  
— 

I 20 = -1; FAF(P2  = 0) = MR 

FFAA(Pz = 0) = l'Aok(pi = 0) = 2gR. 

(27.62) 

(27.63) 

7  For simplicity, we choose to impose all renormalisation conditions at zero external momenta. This way 
the parameter mR is not the physical mass but the value of the 2-point function at zero momentum. In section 
16.6 we showed how the two are related. 
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The Ward identities tell us that this choice is possible order by order in perturbation. 
For example, taking different derivatives of (27.59) we obtain for the 2-point functions 

FAA(P2) = FBB(p2) = —P2 rg(p2) (27.64) 

PAF(p2) = FBG(p2) = r,(2, ) (P2), (27.65) 

where we have defined Fok  (p) = ip P (p2) P (p2 ) . Equations (27.64) tell us that 
FAA(0) = 0, which means that no A2  counter-term needs to be introduced. Similarly for 
the 3- and 4-point functions we obtain Ward identities of the form 

FAAA (Pi = 0) = FABB(Pi = 0) = 0; FAAAA (Pi = 0) = 0, (27.66) 

meaning that no A3, AB2, or A4  counter-terms are required. This analysis shows that 
supersymmetry can be maintained in the renormalised theory, a result we knew already 
from the existence of the supersymmetric invariant 4 regulator. 

Let us now have a closer look at the renormalisation and compute the 1-loop mass 
counter-term. Let us choose, for example, the two diagrams of Fig. 27.1. Since y52  = —1, 
we see immediately that the two contributions cancel and, at this order, Sm = 0. We 
may think that this is an accident of the 1-loop diagrams but we can also check that 
we obtain the same result at two loops, although now the cancellation involves diagrams 
with different topologies, such as those shown in Fig. 27.2. It turns out that this persists 
to all orders and the way to prove it is to remark that the unrenormalised Lagrangian 
(27.48) satisfies, in the presence of the 4 regulator, the identity 

a = 1 a 
—-- 
am

.0 
 2g aA

C 
 g' 

(27.67) 

where Eg  denotes the interaction part of E. We use this property and evaluate the 
derivative with respect to m of a Green function 

a 
am 

a f ei f (r+,70)d4 x p [0]  
-  

am f eif rd4  xv[o] . 
(27.68) 

The derivative of the denominator vanishes because of (27.60). For the numerator 
we find 

A 
• — • • • • . 

 

B 
• — • 

Y. 5 ,' `,Y5 Figure 27.1 The 1-loop contributions to 

   

* * * * * V/ the fermion 2-point function. 

A, B A, B .4% 
A, B / : \„F, G 

I I ‘ t • I '' Figure 27.2 The 2-loop contributions to 
* i/i A, B V/ the fermion 2-point function. 
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e
Tn 

 f eif (r+Ycd4xD[o] = f if (r+-74')d4x f a rgd4.YD[ck]  
2g aA 

= 
1

g
e r(r-rg+ja)d4  x f 

SA  
 f ei f rgd4  x yD[0]  

2  

= im f pi f (c+.70)d4x f Fd4yD[0]— f 
eif +.70)d4x f jAd4yD[0]• 2g 

In terms of the connected Green functions this gives 

a 
am 

w	
m 6wm  4 f 

(y)d4y, 
 

2g .1 3,7F(y) d Y  — 2g 3  

(27.69) 

(27.70) 

which means that for every unrenormalised but regularised connected Green function 
other than the one JA function, the derivative with respect to the unrenormalised mass is 
equivalent to the insertion of a zero momentum F field. In terms of the 1-PI functions 
this implies the identity 

Tn
T[R] = __

m f Rgy)day+ 8F[R] 

d4y, 
 2g 6RA(y) 

(27.71) 

which means again that for every 1-PI function other than the one RF , the derivat-
ive with respect to the unrenormalised mass is equivalent to the insertion of a zero 
momentum A field. 

Let us now apply Eq. (27.71). We take the functional derivative with respect to RF 
and then put all the R's equal to 0. Using (27.60) we find that 

m = Z-1  FFA  (p2  = 0). (27.72) 

Comparing with (27.63) we get mR  = Zm, or 8m = 0. Similarly, taking the second 
derivative with respect to Rik  we obtain 

7-1 1 3 
Ofr kp) =

2g 
2  FA (PA = 0,p), (27.73) 

which, for p = 0 and using the renormalisation condition (27.63), gives gR = g, i.e. 
Z' = 1. 

This completes the proof that for this model, the only counter-term required is merely 
a common wave function renormalisation. No mass or coupling constant counter-terms 
are needed. 

This result sounds miraculous but it can be understood using the superspace form-
alism. We noted already that the kinetic energy part of (27.48) is a D-type term while 
the mass and the interaction terms are of F-type. Going back to the analysis of section 
27.5 we remark that the former results from the integrations over both d9 and d9 be-
cause a D term comes from a vector multiplet which depends on both. On the other 
hand, an F term comes from a chiral multiplet which depends on either 9 or 6. The 
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Feynman propagators are determined by the kinetic energy terms. It follows that all the 
counter-terms will involve dB& integrations, which give a vanishing result if applied to 
functions of only one of them. This explains the previous result and generalises it to 
the following theorem. In a supersymmetric theory only D terms need to be renormalised. 
This very peculiar consequence of supersymmetry, known as non-renormalisation the-
orem, was first discovered in this simple model at 1-loop order by Julius Wess and Bruno 
Zumino and proven to all orders by J. Iliopoulos and B. Zumino. As we will see later, 
this particular property makes supersymmetry attractive for physical applications. 

Before closing this section let us mention an interesting consequence of the simple 
renormalisation properties of this model. Let us write the Callan—Symanzik equation 
for the 1-PI Green functions. We noted already in the derivation of Eq. (27.71) that the 
derivative with respect to the bare mass is equivalent to the insertion of a zero momentum 
A field, instead of the insertion of a composite operator 02  which we found in the general 
case. Since A is an elementary field of the theory, it is renormalised by a ,../7 factor. It 
follows that, in the notation we used in section 17.4, the functions S (g) and y (g) are 
proportional to each other. In fact, f3 (g) is also proportional to them because all three 
come from the single counter-term Z. In Problem 27.1 we derive these proportionality 
relations. We have often emphasised the importance of the zeros of the a-function. We 
have also noted that perturbation theory can give us information only about the trivial 
fixed point g = 0. This model is an exception. Let us assume that p(g) vanishes for 
some g = g* # 0. Since f3 and y are, essentially, the same function, it follows that 
p(g*) = y (g*) = 0; in other words, at g = g* we would have a scale invariant theory with 
all fields having vanishing anomalous dimensions. It is not difficult to convince ourselves 
that for a field theory quantised in a space with only positive norm states, as is the case 
for this model, this implies that the theory is free. But the coupling constant was defined 
as the value of a 3-point function at zero external momenta, see Eqs. (27.63). If this 
value is non-zero we will have non-trivial scattering amplitudes, which is not possible for 
a free field theory. So we arrive at the conclusion that the a-function of this model has 
no fixed points other than the trivial one g = 0. 

27.7 Supersymmetry and Gauge Invariance 

27.7.1 The Abelian Case 

A combination of supersymmetry with gauge invariance is clearly necessary for the ap-
plication of these ideas to the real world. Let us start with an Abelian gauge theory and 
construct the supersymmetric extension of quantum electrodynamics. 

If v, is the photon field and 01  and 02  are the real and imaginary parts of a charged 
field, an infinitesimal gauge transformation is given by 

Sv , = .9,A;  &Pi = e A02; 802 = —eA01, (27.74) 

where A is a scalar function. In order to extend (27.74) to supersymmetry we must re-
place v, with a whole vector multiplet V(x, 0 ,6) . It means that the photon field v, will 
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be accompanied by its supersymmetric partners x, M, N, etc. shown in Eq. (27.36). 
Let us also assume that the matter fields are given in terms of a charged chiral multiplet 
W (x, 0) and W (x, 0). We expect, therefore, to describe simultaneously the interaction of 
photons with charged scalars, pseudoscalars, and spinors, together with other interac-
tions involving the supersymmetric partners of the photon. It is obvious that if we keep 
A as a scalar function, the transformation (27.74) is not preserved by supersymmetry 
because it transforms only the photon but not its partners. We choose to generalise the 
gauge transformation (27.74) by replacing A with a whole chiral multiplet A (x, 6) and 
A (x, 0). In Eq. (27.41) we constructed, out of the chiral multiplet A (x, 0), a vector mul-
tiplet which we called dA. Therefore, we write the supersymmetric extension of the 
gauge transformations (27.74) as 

SV = A; 3W1  = ei11112; 8W2  = (27.75) 

It is easy to check, using the relations (27.41), that the vector component of the su-
perfield V transforms by the derivative of a scalar function, as it should. On the other 
hand, we also see that the fields and D are gauge invariant. 

We are now in a position to write the supersymmetric extension of quantum elec-
trodynamics. We have already the kinetic part of the vector multiplet, Eqs. (27.45) and 
(27.46), and the kinetic and the mass term of the charged chiral multiplet. We must now 
construct the gauge invariant interaction term. As usually, the only term which breaks 
gauge invariance is the free kinetic part of the chiral multiplet. According to Eqs. (27.40) 
and (27.44), it is given by a bilinear of the form W (x — i0a6, 0)W (x + i0a0, 0). When W 
transforms, formally, by a phase with the chiral multiplet A the bilinear transforms by a 
phase 

W W p e'(^- A) (27.76) 

We restore gauge invariance by introducing the vector multiplet V which transforms 
precisely by Eq. (27.75) with a A proportional to A—A. It follows that the gauge invariant 
kinetic energy and interaction term is given by 

(27.77) 

which means that we must take the D term of the vector multiplet obtained by the 
product of the chiral multiplets W and W and the exponential of the vector multiplet 
V. This way we have a gauge invariant supersymmetric quantum electrodynamics. The 
problem is that the interaction terms are non-polynomial in the fields and, as a con-
sequence, it seems that this theory cannot be studied with the methods we developed 
in this book. Let us remind, however, that this new theory has many more degrees of 
freedom and we attempt to describe the interactions of a much larger set of fields. On 
the other hand, this has been achieved by a large extension of gauge invariance. By 
promoting gauge invariance from (27.74) to the supersymmetric extension (27.75) we 
introduced a much larger gauge freedom, from that of a single scalar function to that 
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of an entire chiral multiplet. It follows that this new theory contains a large number of 
unphysical degrees of freedom. We can use the generalised gauge freedom to eliminate as 
many of them as possible. Looking at the transformation properties (27.41) we see that 
we can choose a supersymmetric gauge such that all fields of the vector multiplet with 
the exception of v,, X, and D can be put equal to 0. This is called the Wess—Zumino gauge 
and, by making this choice, the supersymmetric extension of quantum electrodynamics 
takes the form 

i 1 
G = — —

4
(.90), — av v,)2  — 

2  
—;,.y1-'.9X + 

2
—D2  

' 
1 

+ 2 KaA02  + 0A2)2  + (a/302  + (aB2)2  -FT — Fl — G — GZ 

— il k 1 Ytte ifr 1 -irtifadA0-2] 
, i 

+ m [FIA1  + F2A2  + G1 B1  + G2B2 — 21/iilki — 2ilf21/f2] 

+ Y A1k2 -Ai PA2 +A2PAI + B2.9AB1] 

- 2  
-
1

e2v vA [264 + + + + eD(Ai  B2  — A2B1) 

— ieX RAI  + y5B1)1/f2 - (A2 + y5B2)i]• (27.78) 

The interpretation is straightforward. v, is the photon field and X the field of its super- 
symmetric partner, the photino. The real Majorana spinors and *2  can be combined 
together to form a complex Dirac spinor, the field of the electron. A1, A2, B1, and B2  
are the real and imaginary parts of two complex, charged, spin-0 fields, a scalar and a 
pseudoscalar. They are the supersymmetric partners of the electron, sometimes called se-
lectrons. As before, the fields F1, F2, G1, G2, and D are auxiliary. The Lagrangian (27.78) 
is invariant under ordinary gauge transformations. In fact, if we eliminate the auxiliary 
fields, we obtain the usual interaction of a photon with a charged scalar, pseudoscalar, 
and spinor field including the seagull term and the quartic term among the scalar fields. 
Supersymmetry has introduced only two new elements: (i) the coupling constant in 
front of the quartic self-interaction of the spin-0 fields is not arbitrary, but it is equal 
to e212, and (ii) new terms, those of the last line in (27.78), appeared which describe 
a Yukawa-type interaction between the Majorana spinor (the photino) and the spin-1 
and 0 fields of the matter multiplet. The strength of this new interaction is again equal 
to the electric charge e. Strictly speaking, (27.78) is not invariant under supersymmetry 
transformations. However, a supersymmetry transformation can be compensated for by 
a gauge transformation, so all physical results will be supersymmetric. 

The theory is renormalisable by power counting and we can easily show that all rela-
tions implied by supersymmetry can be maintained. Following our previous discussion, 
we conclude that there will be no mass counter-term for the chiral multiplet because the 
latter is an F-type term. In contrast, all other expected counter-terms, i.e. the wave func-
tion renormalisation counter-term for the vector multiplet, that for the chiral one, and 
the coupling constant counter-term, will be present. Here the remark we made in regards 
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to Eq. (27.46) is important. Although the photon kinetic energy term was first written as 
an F-term, the fact that it can also be written as a D-term implies that it is not protected 
by a non-renormalisation theorem and it will require its own special counter-term. 

27.7.2 The Non-Abelian Case 

The extension to the Yang—Mills theories follows the same lines. The only difference 
is that now the superfields are matrix valued. The vector multiplet, as well as the chiral 
multiplet of the gauge transformation, belongs to the adjoint representation of a compact 
Lie group, 

V = V1T1; A = AiTi  , (27.79) 

where the T's are the matrices that represent the generators of the corresponding Lie 
algebra in the adjoint representation. The transformation law of Eq. (27.75) becomes 

e v' = e-iA eveiA, (27.80) 

where A is a left-handed chiral superfield and A is its right-handed Hermitian conjugate. 
The supersymmetric field strength ircy of Eq. (27.42) generalises into the matrix 

1 - - 
= --

4
DDe-vDaev  

It has the expected transformation properties 

/FL = eid W eta . 

Using Ircy we can write the supersymmetric Yang—Mills Lagrangian as 

1 
ESYM = (VP iroe ir& lo0 4g 

(27.81) 

(27.82) 

(27.83) 

where, as before, the same expression can be written as a D-term. It is again a non-
polynomial Lagrangian, but in the Wess—Zumino gauge, after the elimination of the 
auxiliary fields, it takes the remarkably simple form 

where 

1 
= --

4g2
Tr [ WIL2„ — 2iJeDd.], (27.84) 

= aµ vv  — .9„vp, + i[vt„ vv]; Dt,,A = ad. + (27.85) 

This Lagrangian describes the gauge invariant interaction of m2-1 massless Majorana 
fermions belonging to the adjoint representation of SU(m) with the gauge fields. The 
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surprising result is that it is automatically supersymmetric, in the same sense as for 
(27.76); i.e. a supersymmetry transformation can be compensated for by a gauge 
transformation. The corresponding spin-; conserved current is 

= — 
1
—Tr(Wyp y v yPeX). (27.86) 

We observe here the appearance of something like a connection between 'radiation', 
i.e. the gauge fields, and 'matter' multiplets in the sense that the vector gauge field and 
its supersymmetric partner, the spinor field, give by themselves an interaction invariant 
under supersymmetry. We will come back to this point later. 

In section 25.4.5 we found that the Lagrangian of non-Abelian gauge theories con-
tains an additional effective term proportional to the winding number v which represents 
the effects of instantons, Eq. (25.214). It is easy to find its supersymmetric extension. 
In writing the Yang—Mills Lagrangian, Eq. (27.84), we considered the real part of the 
superfield W" W". Its imaginary part is given, in the Wess—Zumino gauge, by 

1 
—Tr Wa  Wa lee — Ira ir&166) = Tr [ Wa„ — y5 Da  X] . 
2i 

(27.87) 

The first term is the instanton Lagrangian. Its supersymmetric partner is the CP-
violating, gauge invariant interaction of the X spinors. In Eq. (17.36) we have shown that 
the first term on the right-hand side of Eq. (27.87) is proportional to a four-derivative. 
The same is true for the second. Since X is a Majorana spinor, we find that 

TrJe y5Dd. aaTrJe y5 X. (27.88) 

In all field theories we are considering in this book fermion fields are supposed to 
fall sufficiently rapidly at infinity so that total derivatives of the fermion terms can 
be dropped. This is not always the case with boson fields, as we have already seen. 
Therefore, the instanton term should be maintained. 

The introduction of other multiplets in the form of chiral superfields presents no 
difficulties. Let W (W) be a left (right)-handed chiral multiplet belonging to some d-
dimensional representation of the gauge group. We can rewrite the superfields V and 
A as matrices in the same representation by using the T matrices of Eq. (27.79) that 
represent the generators in this representation. The transformation properties can be 
written as 

W—> —> (27.89) 

Then the superfield 17 W is gauge invariant and its D component describes the 
gauge and supersymmetry invariant interaction of the chiral multiplet to which we can 
add an invariant mass term as the F component of W2. In the Wess—Zumino gauge 
we obtain a renormalisable theory. We leave as an exercise the calculation of the ,6-
function for an SU(m) gauge theory interacting with n chiral multiplets belonging to the 
fundamental representation of SU(m). The result is 
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mg3 

1672 
(3 n), (27.90) 

which means that for n < 3, the theory is asymptotically free, although it contains scalar 
and pseudoscalar particles. This is because, in supersymmetric theories, the quartic 
couplings of the spin-0 fields are not independent but they are determined by the gauge 
coupling constant, see the remark after Eq. (27.78). 

If we have n chiral multiplets Wt, i = 1, ..., n, each one belonging to a representation d, 
of the gauge group, we can couple them to the gauge multiplet through the D compon-
ents of the superfields WievW,. In the Wess—Zumino gauge, after the elimination of the 
auxiliary fields, we obtain the simple Lagrangian 

= — 4÷,Tr[Wii2, — 2/414 Did.] + Et' - i Et' 
- h.c.) — V(L) + (27.91) 

where some explanations on the notation are needed: and Oi represent the spinor 
and scalar fields of the chiral multiplets W1. All terms are supposed to be summed over 
i = 1, n. D(i)  is the covariant derivative corresponding to the representation di. The 
Yukawa terms between the gauginos and the spinor and scalar fields of the chiral mul-
tiplets generalise the corresponding terms we found in Eq. (27.78). k, r, and a are group 
indices and the constants 4' contain the corresponding Clebsch—Gordan coefficients. 
The last term is the instanton contribution. V(W) is the F component of the chiral su-
perfield given by the sum of all the bilinear and trilinear terms, invariant under the gauge 
group, of the form miiWiWi + WiWiWk. V is the supersymmetric generalisation of the 
scalar field potential we found in gauge theories and, for this reason, it is often called 
the superpotential. In fact, if we set the spinor fields equal to 0, it becomes the clas- 
sical potential for the scalar fields (pi. The new coupling constants k  are not related to 
the gauge coupling constant, but because all these terms are F terms, they will not be 
independently renormalis ed. 

27.7.3 Extended Sup ersymmetries 

Supersymmetric gauge theories with more spinorial generators, 2 < N < 4, have been 
only marginally applied to particle physics at currently available energies, because they 
do not offer an obvious way to distinguish right-handed from left-handed fermions. 
Nevertheless, they have remarkable properties as quantum field theories, properties that 
are still under investigation, and some of the results that have been recently obtained are 
among the most important and most promising in our efforts towards an understanding 
of quantum field theory beyond the perturbation expansion. We will not give a detailed 
presentation of these results here, first, because some of the technical methods used for 
their derivation go beyond what we have studied in this book and, second, because the 
work is still in progress and it may be too early to assess their real significance. We will 
only show how to construct the supersymmetric Lagrangians and merely indicate their 
properties. As we have already noted, we do not have a general superspace formulation 
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applicable to all theories with extended supersymmetry but, in most cases, we can use 
the N=1 superfields and, for the explicit calculations, the usual component formalism. 

We start with the N = 2 theory. Our construction will be based on two observations. 
First, we know already the massless states from our analysis in section 27.4, so we know 
what kind of fields we should include. Since we want to construct a gauge theory, we will 
use the multiplet which contains helicity equal to 1 states. Second, we know that every 
theory with N = 2 supersymmetry has also an N = 1 one, with the addition of an SU (2) 
R-symmetry. So, if a local Lagrangian exhibiting N = 2 supersymmetry exists at all, it 
must be a special case of our general N = 1 Lagrangian (27.91), the one which has the 
right kind of extra fields and upon which we have imposed the R-symmetry. Even if we 
could not figure out the result immediately, we could always search for the corresponding 
fixed points of the renormalisation group following the method we developed in section 
19.3. In fact, we will not need this computation here because, from symmetry arguments 
alone, the answer will be unique. In section 27.4 we found that the N = 2 multiplet 
which has a vector field can be decomposed under N = 1 supersymmetry, as the sum 
of one massless vector multiplet (vu, X) and one massless chiral multiplet (*, 0), both 
belonging to the adjoint representation of the gauge group. So our Lagrangian will be 
given by Eq. (27.91) choosing n = 1 and d1  denoting the adjoint representation. This 
Lagrangian depends on the set of arbitrary parameters of the superpotential V(W), but 
we must still impose the R-symmetry relating the spinors X and *. In fact, a discrete 
subgroup of the form X —> * and * —> —X with all other fields left invariant is sufficient 
because it implies the vanishing of the superpotential since the latter depends on * and 
not on X. As a result, the Lagrangian is unique; either it has an N = 2 supersymmetry 
or there is no local Lagrangian which does. To exhibit this extended supersymmetry we 
note that the Lagrangian we started from has, by construction, an N = 1 invariance with 
multiplets (v,, X) and (*, 0), to whom we should add the N = 1 auxiliary fields D and F. 
Because of the R symmetry we imposed it has also a second N = 1 supersymmetry with 
multiplets (v,,*, D) and (—X, 0,F). Therefore, it is the N = 2 theory we are looking for. 

This is an N=2 supersymmetric 'pure gauge' theory, in the sense that it has only the 
fields required by supersymmetry and gauge invariance. In particular, it is a trivial free 
field theory when the gauge group is U(1). We can still add massless matter multiplets, 
but, as we explained in section 27.4, we do not have N = 2 massive matter multiplets, 
because all such multiplets have spin larger than or equal to 1. So the N=2 supersym-
metric extension of quantum electrodynamics will describe massless electrons. We will 
come back to this point shortly. 

The N = 4 theory can be constructed following the same method. As we showed 
in section 27.4, the multiplet will contain one spin-1, four spin-2, and six spin-0 fields, 
all belonging to the adjoint representation of the gauge group g. The R symmetry is 
SU(4) — 0(6). It can be viewed as a set of 4 x 4 unitary matrices that rotate the four 
supersymmetry charges. The spinors belong to the fundamental representation (quartet) 
of SU(4) and the scalars to a sextet, which can be seen as the antisymmetric product 
of two quartets. We can start again from the general formula (27.91) of an N=1 gauge 
theory. We will need a real vector multiplet V, a left-handed chiral multiplet T3, and 
two more left-handed chiral multiplets T1  and T2. They are all matrix valued belonging 
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to the adjoint representation of the gauge group. We can construct the Lagrangian by 
imposing the R symmetry, but it is simpler to pass from the N=2 theory using the results 
we just obtained. Under N=2, V and T3 combine to form an N=2 gauge multiplet while 
T1  and T2 combine to form an N=2 massless matter multiplet. It is now straightforward 
to obtain the Lagrangian 

3 

EN=4 = EN=i(V) E Tr[tev  T 1] 0000 + 2gfabc T§106, r • —inst, (27.92) 
i=1 

where we have included the instanton contribution. In the Wess—Zumino gauge we can 
express the Lagrangian in terms of the component fields as 

EN-4 = 4g2 Tr (WA,WILv  i Ei=1  A1 y, DA + Ea
6 
=1 DILOaDOa 

+ Ea6=i j,i77ixl(Pa + Ea6,b=i [Oa, 4'b] [0a, Obi 

71") (27.93) 

where the Ta's are six antisymmetric 4 x 4 matrices. The potential for the scalars is given 
by the trace of the commutator square and vanishes only if 4  is represented by a diagonal 
matrix. We thus obtain families of degenerate ground states, all corresponding to zero 
potential and, therefore, all preserving N=4 supersymmetry. They are parametrised by 
the vacuum expectation values of the scalar fields that correspond to diagonal matrices; 
in other words, they form a manifold with dimension equal to the rank of the group g 
These fields are called moduli. Out of all these theories, only that corresponding to 4=0 
for all fields leaves the gauge group unbroken. The others will break spontaneously G to 
a subgroup 7-i. 

As we noted already in section 27.4, this Lagrangian describes also the N = 3 theory. 
All fields belong to the gauge multiplet and there are no separate matter multiplets. In 
particular, the theory is free if the gauge group is U(1). The connection between radi-
ation and matter we noted in the N=1 Yang—Mills theory is here manifest. The theory 
contains 'matter' (spinor and scalar) fields, but they all belong to the same multiplet as 
the 'radiation', i.e. the gauge fields. 

The remarkable convergence properties of supersymmetric theories, which led to 
the non-renormalisation theorems we presented earlier, have now even more surprising 
consequences. The most astonishing result is that the )6-function of an N = 4 super-
symmetric Yang—Mills theory based on any group SU(m) vanishes to all orders of the 
perturbation expansion. The effective coupling constant is scale independent and does 
not run. We often say that N = 4 is a finite theory with no need of counter-terms, but 
this may be misleading. The theory is not a free-field theory. Gauge invariant composite 
operators do have non-vanishing anomalous dimensions and their correlation functions 
are non-trivial. For N = 2 we have an intermediate result: the )6-function receives only 
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1-loop contributions. These results can be verified by explicit calculations and we can 
construct all order proofs. They are not straightforward, the way we proved the non-
renormalisation theorems in section 27.6, because of two difficulties. First, there is no set 
of auxiliary fields for N = 4 and in order to verify supersymmetry we must use the equa-
tions of motion. Second, we have no regularisation scheme that preserves both super-
symmetry and gauge invariance. In a later section we will see how we can overcome these 
technical difficulties and show the vanishing of the fl-function order by order in per-
turbation theory using the general BRST technology. Furthermore, we will indicate how 
these properties open the way for a non-perturbative understanding of these theories. 

27.8 Spontaneous Symmetry Breaking and Supersymmetry 

In this section we want to study the phenomenon of spontaneous symmetry breaking 
in supersymmetric theories. In fact this question has two aspects. The first is the con-
sequences of supersymmetry in the breaking of global or gauge symmetries we have 
studied so far. The second is the possibility of spontaneous breaking of supersymmetry 
itself. Indeed, fermions and bosons are not degenerate in nature, so supersymmetry, if 
it is at all relevant, must be broken. Although explicit but soft, in the sense we used in 
Chapter 17, breaking mechanisms are used for phenomenological purposes, it is more 
interesting to study the possibility of spontaneous breaking. 

The usual mechanism for spontaneous symmetry breaking of a non-supersymmetric 
theory is the introduction of some spin-0 field with negative square mass. It is not 
straightforward to apply this option in supersymmetry because it could imply an ima-
ginary mass for the corresponding fermion. It follows that the entire discussion on 
spontaneous symmetry breaking we presented in Chapter 15 and we followed until now 
must be reformulated in the presence of supersymmetry. This is a consequence of the 
particular relation between the supersymmetry generators and the space—time transla-
tions implied by the algebra (27.5). Indeed, this relation implies, in the absence of any 
central charges, that 

H= 
4  _E 

"
(27.94) 

where H is the total Hamiltonian and Qt, i = 1, ..., 4N, are the real components of the 
Majorana spinors representing the N generators of supersymmetry transformations.8  

8  In this section we will often use the relation between supersymmetry generators and the Hamiltonian, so 
let us state some of its limitations. The first, namely the absence of central charges, we noted already. A more 
fundamental one concerns the existence of the charges Q as operators. We write them usually as the integrals 
over three space of the zero components of the corresponding conserved currents. The convergence of the 
integral depends on the behaviour of the fields at spatial infinity, which is connected with the range of the 
interactions. If we assume that all forces are short ranged we can impose on the fields to vanish sufficiently 
fast as x oo. However, the spontaneous breaking of a global symmetry is accompanied by the appearance 
of massless excitations, the Goldstone particles, which create long-range forces. In this case the charges are 
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This relation has important consequences. First, it shows that the energy of a supersym-
metric system is always positive semi-definite, which excludes the option of a negative 
square mass for some scalar fields. Second, it shows that if we have a zero energy ground 
state, we must have 

HI 0 > = 0 = < 01010  >= 0 = QiI0 >= 0. (27.96) 

In other words, a zero energy eigenstate is always annihilated by all supersymmetry gen-
erators and, therefore, it is supersymmetric. This surprising result could be interpreted, 
naively, as implying the impossibility of spontaneous supersymmetry breaking, since it 
shows that a supersymmetric state is always the ground state. This conclusion is incor-
rect, as we will show by explicit examples shortly and the loophole lies in the assumption 
contained in 'if we have a zero energy ground state'. Indeed, the examples will be such 
that they admit no supersymmetric state at all. In this respect the physics of spontan-
eous breaking of global supersymmetry is very different from that of other symmetries 
where one shows that the symmetric state corresponds to a local maximum of the en-
ergy and is, therefore, unstable, while the non-symmetric ground state is degenerate. In 
supersymmetry spontaneous breaking means that there is no supersymmetric state and 
the ground state does not have to be degenerate. Another conclusion from the global 
relations (27.94) and (27.96) is that an extended global supersymmetry with N charges 
cannot be spontaneously broken to one with N' < N. Indeed, either the ground state of 
the system has zero energy, in which case it is annihilated by all supersymmetry generat-
ors, or it has positive energy, in which case all are broken. Again, this conclusion depends 
crucially on the existence of the supersymmetry charges as globally defined operators. 

27.8.1 Goldstone and BEH Phenomena in the Presence 
of Supersymmetry 

The phenomenon of spontaneous symmetry breaking, global or local, presents some 
novel features in the presence of extended supersymmetry as will be shown in some 
examples. Throughout this section we will use the superfield formalism of N=1 
supersymmetry, appropriately adapted to higher N. 

We start with the simplest example, the N = 2 extension of QED. In this language 
the N=2 gauge multiplet can be built from one vector multiplet V(x, 0,0), which, in 

defined as integrals in a finite volume. In the infinite volume limit the transformations should be interpreted as 
automorphisms. The possible presence of central charges may be important. Let us consider, as an example, 
a weaker form of the supersymmetry algebra which consists of writing the local current algebra relation which 
replaces the global relation (27.8), 

f d3y [XI (x)L = 2 (cr' T„„ (x)crn  + C', (27.95) 

where J is the supersymmetry current, T is the energy—momentum tensor, and we allowed for the presence 
of a central charge C. It is clear that if C is different from 0 we cannot integrate this relation over x and the 
supersymmetry charges will not be defined. 
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the Wess—Zumino gauge, has components (v,L, A, D) and one chiral multiplet T(x,0) 
of N=1 with components (, t, s, FT, GT). The N=2 matter multiplet is built from one 
N=1 chiral multiplet WI  (x, 9) and one anti-chiral W2  (x,0), with components Oh , A1 , B1, 
F1 , G1 ) and (1h, A2, B2, F2, G2), respectively, which, as we did in the N=1 case, we can 
combine into a charged chiral multiplet W (x, 0) and W (x, 9). The resulting Lagrangian is 

EN=2 = EN=1(V, W) + [(TT)]0000 + 2e [W1 W2  1]00  , (27.97) 

where E N=1  ( V, W) is the N=1 supersymmetric QED Lagrangian we wrote in the 
previous section in which the mass of the matter multiplet is set equal to 0. In the 
Wess—Zumino gauge (27.97) is polynomial and renormalisable by power counting. 

The Lagrangian (27.97) is invariant under the following groups of transformations: 
(i) the U(1) gauge transformations of super-QED. (ii) The N=2 global supersymmetry. 
(iii) An R-symmetry of global U(2) = SU(2) x U(1) transformations. The two su-
persymmetry charges Qi  and Q2  form a doublet of the SU(2) part of R. The Abelian 
U(1) part has the usual interpretation in N=1 superspace given in Eqs. (27.37) and 
(27.38) under which the superfields V, WI , and W2  are neutral and T takes the phase 
2/3. (iv) Since it is a massless theory, it is invariant at the classical level under dilatations 
and conformal transformations. Note that a mass term for the matter multiplet breaks 
both dilatation invariance and the U(1) part of the R-symmetry. Under a conformal 
transformation, the two supersymmetry generators Qi and Q2  transform into a pair of 
new ones, 01  and Q2, sometimes called 'special' super-charges, so the theory (27.97) is 
classically invariant under a superconformal algebra. 

It is obvious from the Lagrangian (27.97) that if the vacuum expectation values of 
the scalar fields of the matter multiplet A and B are set equal to 0, the total potential for 
all the scalar fields vanishes for any value of < t >0  and < s >0. Therefore, a translation 
of the form 

t —> t + v, (27.98) 

with v an arbitrary mass scale, breaks spontaneously both the U(1) part of the R sym-
metry and dilatations. The breaking of dilatations implies that of conformal invariance 
and, therefore, the breaking of the invariance under the special supersymmetry generat-
ors 01  and Q2. The resulting potential is still equal to 0, so the theory is invariant under 
the original N=2 supersymmetry, U(1) gauge symmetry and SU(2) R symmetry. Un-
der the translation (27.98), the last term in the Lagrangian (27.97) generates a new term 
proportional to evtli W, i.e. a common mass for the matter multiplet, but all the fields of 
the N=2 gauge multiplet remain massless. 

According to the general theory of spontaneous symmetry breaking of global sym-
metries we studied in Chapter 15, we expect a massless excitation, the Goldstone mode, 
for every generator which is broken by the translation (27.98). They are: (i) the charge 
of the U(1) part of the R-symmetry, which we call R1 , (ii) the generator of the dilata-
tions D, and (iii) the two special supersymmetry charges 01  and Q2. It is not difficult to 
identify the corresponding massless excitations. We write the transformation properties 
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of every field under these broken symmetries and we identify those that contain, on the 
right-hand side, the constant v. We thus find 

[Ri , .5] —‹ t >0; [D, t] --‹ t >0 

[01; 1d- —‹ t >0; [02; .]-E —‹ t >0, (27.99) 

which means that all the partners of the photon in the N=2 multiplet are Goldstone 
particles. At higher orders quantum anomalies are expected to break all these symmet-
ries, so we should call them pseudo-Goldstone particles; however, they are protected 
from acquiring a mass because the N=2 supersymmetry and the U(1) gauge symmetry 
remain exact. 

The net result of all these operations is to give a mass to the matter multiplet, still 
keeping the extended supersymmetry exact. This sounds strange because, according to 
our analysis in section 27.4, the smallest massive multiplet of N = 2 has a massive spin-1 
particle. In other words, the spectrum we found is in disagreement with the N=2 algebra 
(27.7). 

It is not difficult to guess the answer to this puzzle. We have seen already that in 
supersymmetric gauge theories a supersymmetry transformation should be often com-
pensated by a gauge transformation. When we translate the scalar fields the conserved 
currents get modified and so does the algebra of the corresponding charges. Since N=2 
supersymmetry remains exact, we must still find two conserved spinorial charges, but 
now the algebra may be modified. We saw in section 27.3 that the only consistent modi-
fication is the appearance of central charges on the right-hand side of (27.7). They must 
be conserved operators, already existing in the theory because by translating the scalar 
fields we did not create any new symmetries. Since gauge transformations were necessary 
to enforce the N=2 supersymmetry in the first place, we conclude that the charge oper-
ator of the U(1) gauge symmetry will appear as a central charge in the supersymmetry 
algebra. 

This result can be verified by explicit calculation in the present example. In Problem 
27.3 we ask the reader to compute the supersymmetry currents and use canonical com-
mutation relations at equal times to evaluate the anti-commutator of the two spinorial 
charges. The result is given by 

[Q1,  Q2]+ = 2Q(em) (t + Y5S), (27.100) 

where Q1  and Q2  are the two supersymmetry generators, Q(em)  is related to the U(1) 
gauge generator and the expression Q(em)  (t + y5s) means that the anticommutator of the 
two spinorial charges does not vanish as an operator equation but it is given by a field-
dependent gauge transformation. In the present case the fields that appear are the scalar 
and pseudoscalar components of the T multiplet. This implies that the supersymmetry 
algebra, as it was written in Eq. (27.7) without central charges, can be used only in 
evaluating gauge invariant quantities which are annihilated by the gauge generator. When 
we translate the field t by the new mass scale v, the charge Q(em)  appears explicitly as a 
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central charge. The massive matter multiplet is an example of a short multiplet like those 
we introduced in section 27.4. We can easily verify that the mass bound (27.18) is indeed 
saturated. 

A similar phenomenon appears in the spontaneous breaking of a gauge symmetry. Let 
us stay with the N=2 supersymmetric theory and consider the case in which the gauge 
group is a non-Abelian group G whose Lie algebra has dimension n. In terms of N=1 
superfields, the theory contains the vector multiplet V and the chiral multiplet T, both 
belonging to the adjoint representation of G. We do not need to introduce any matter 
multiplets W. We can write the Lagrangian as 

EN=2 = EN=1(V) + [Tel/  1]e9(jo + rinst (27.101) 

with E N=i(V) the N=1 Yang—Mills Lagrangian given in Eqs. (27.83) and (27.84). The 
equations that eliminate the auxiliary fields are 

D = g[t,s]; F = 0; G = 0 (27.102) 

with g the gauge coupling constant. The potential for the scalar fields t and s is given by 

V (t, s) = --
1 
 g2Tr[t, 42. (27.103) 

As expected, we obtain the symmetric vacuum state in which V vanishes for t = s = 0, 
but also a whole family of degenerate vacua where the scalar fields take non-zero vacuum 
expectation values satisfying 

[< t > , < s >] = 0, (27.104) 

i.e. the vacuum expectation values belong to the Cartan sub-algebra of g. By translating 
the superfield T we give mass to some of the components of the vector superfield V, 
thus breaking the gauge group G to the subgroup 7-1 which leaves invariant (27.104). 
The mass spectrum for the components of the gauge superfield V can be read from the 
second-order expansion of the term [< T > el' < T >]00oo where the superfield T is 
replaced by its vacuum expectation value. Let us denote by m the number of generators 
of 1-t. We see here an example of the supersymmetric extension of the BEH mechan-
ism we explained in section 27.4. A massless vector multiplet combines with a massless 
chiral multiplet to become a massive vector multiplet. The original n-component V and 
T superfields, which were in the adjoint representation of G, are now split into two sets: 
the m corresponding to the unbroken generators of 7-1 and the others n — m, which cor-
respond to the broken generators. For the latter the corresponding components of V 
and T combine to form N=1 massive vector multiplets. As a result we obtain: (i) n — m 
massive vector multiplets corresponding to the broken generators of G, (ii) m massless 
vector multiplets corresponding to the unbroken generators of 7-1, and (iii) the remaining 
m massless chiral multiplets which, together with the vector ones, form m massless N=2 
vector multiplets. The pseudo-Goldstone particles corresponding to the breaking of the 
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global symmetries, such as dilatations, U(1) R symmetry, and special supersymmetry 
transformations, are linear combinations of the fields contained in these multiplets. 

Since the vacuum state, even after the translation of the scalar fields, has zero en-
ergy, the N=2 supersymmetry remains unbroken. The massive vector multiplets are 
short multiplets of N = 2, so, again, we expect central charges to appear on the right-
hand side of the supersymmetry algebra. They appear with the same mechanism which 
we found in the Abelian case; namely the anticommutator of the two supersymmetry 
charges produces, on the right-hand side, a field-dependent gauge transformation. In 
the unbroken phase it can be set equal to 0 but when the scalar fields acquire a non-zero 
vacuum expectation value, the generators of the corresponding gauge transformations 
appear as central charges. Let us derive some of their properties which depend only on 
the symmetry breaking pattern G 7-i. Let us consider the two linear combinations of 
the G generators 

Zt  = — <ta > Ta; Zs  = — <sa > Ta (27.105) 
V V 

with < ta  > and < sa > being the vacuum expectation values of the t and s scalar 
components of T. v is given by v2  = Ea  [(< ta  >)2  (< sa  >)21. We saw that both Z's 
belong to the Cartan sub-algebra of G, so we have 

[Zt, Zs] = 0. (27.106) 

If Y = ya Ta  is any generator of G, our first result is as follows. 
Y is a generator of 7-1 if, and only if, it commutes with both Zt  and Z. Indeed, if fabc are  

the structure constants of G, for Y to remain unbroken we must have fabcyb < tc >= 
fabcyb < >= 0. 

Our second result follows immediately: 
Zt  and Zs  belong to the centre of the algebra. 
Indeed, from the first result we have that they commute with all unbroken generators 

of g. Since supersymmetry remains unbroken, it means that they commute with the 
two spinorial generators. Finally, they commute with the generators of the SU(2) R-
symmetry because t and s are SU(2) singlets. 

If Zt  and Z., are proportional, we can use a rotation of the U(1) R-symmetry to set 
< s >= 0. In this case 7-i contains only one U(1) factor. 

An important property of the short multiplets is that their masses are not renormalised 
at any finite order of perturbation theory. The reason is that they exist only if the mass 
bound (27.18) is saturated. Any correction would move the masses away from their 
minimum value. As a result the operators QH we introduced in section 27.4 will no 
more annihilate the states of the multiplet and we should obtain a regular long multiplet. 
But we do not expect corrections at any finite order of perturbation theory to create 
new states. It follows that these mass values are protected against perturbative quantum 
corrections. It is one of the rare cases in quantum field theory in which a result at the 
classical level is, in fact, exact. 

It is instructive to check all these results by explicit computation in the simple case in 
which the breaking G 7-i is 0(3) —> U(1). 
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Starting from the N = 2 Lagrangian we can first compute the Noether current of 
N = 1 supersymmetry, the generalisation of Eq. (27.86). Using component fields we 
find that 

1 1 ,PJ(1) = --
4 

va
Pa 

[yp, ya] y,A, a —eEabcAacP*b 

+ 2 
—[(r1)4b)a ytt -R (P (lf)ayAl 5 (27.107) 

where we have put 4 = (t + is)I Nh. The subscripts L and R denote the left- and 
right-handed components of the spinors, written in the Weyl representation. e is the 
0(3) coupling constant, in anticipation of the fact that under the symmetry breaking 
0(3) —> U(1), the unbroken U(1) group is identified with electromagnetism. The 
second supersymmetry current is now immediately obtained by the substitution —> 
and —> 

,
✓

e(2) 
— Tiv„ 

a 
 a  l 

r
y JYAs 

a , abc a ,k*b (pc + [(00)a
yA
4 (I7:00*)a

yi
: a ] 1 AL (27.108) 

They are both conserved as a consequence of the equations of motion. We can now 
compute the anticommutator of the two spinorial charges using canonical commutation 
relations. After some algebra we can cast the result in the form 

[QM, Q(2)]+  f (27.109) 

where RA' is a gauge invariant antisymmetric two-index tensor given by 

Rttv 
 = (ya

w, 
 _ joa

ttvw (27.110) 

Oa  is the dual of the gauge field strength and the dots stand for terms which involve 
AV 

the fermion fields. Equation (27.109) is exact. In the unbroken phase of the theory, 
all fields are assumed to go to 0 sufficiently rapidly at infinity and the surface integral 
vanishes. In the broken phase this is no more true for the boson fields and a central 
charge appears. We can always choose to put the non-zero vacuum expectation value v 
in the third component of t =Re4 with all other components vanishing. We thus find that 

vgiOa = —vEi; voila = vBi, (27.111) 

where E and B are the electric and magnetic fields of the unbroken U(1) subgroup of 
0(3). The eigenvalues of the central charge operator are given by the surface integrals 
(27.109) of the radial components of the electric and magnetic fields: 

f dSiEi  = q; f dSiBi  = g, (27.112) 

with q and g being the electric and magnetic charge, respectively. Therefore, we see that 
the massive multiplets in this model are short N = 2 multiplets with electric charges ±e 
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and no magnetic charge. Their mass equals Nhev and saturates the bound found in Eq. 
(27.18). As a result, it remains unchanged to all orders of perturbation theory. On the 
other hand, we saw in section 26.2.5 that this model contains magnetic monopoles and 
dyons whose masses, in the BPS limit, saturate the bound (26.66). It is remarkable that 
it is precisely the bound we obtain by combining Eqs. (27.18) with (27.112). The BPS 
states form short N=2 multiplets. This is the reason why short multiplets are often called 
BPS multiplets, although, as we saw, BPS states appear also in non-supersymmetric 
models. 

We can follow the same steps to analyse the spontaneous breaking of the gauge sym-
metry in the N=4 supersymmetric theory. Taking again the example of an 0(3) gauge 
group spontaneously broken to U(1) we find the following. 

In the unbroken phase the theory contains three massless vector multiplets of N=4 
which form a triplet of the 0(3) gauge group. The global R-symmetry is SU(4) which 
is locally isomorphic to 0(6). There is no central charge in the supersymmetry algebra. 

In the broken phase we obtain the following: 

(i) A massive complex vector multiplet which contains the two vector bosons IFILI  
which became massive through the BEH mechanism. Their supersymmetric 
partners are four Dirac spinors and five complex scalars, all with the same mass 
,../2ev. All regular massive multiplets of N = 4 have spins > 2, as we saw in section 
27.4. Therefore, those we find are short multiplets and a central charge appears 
in the algebra. It can be again identified with the generator of the unbroken U(1) 
subgroup. 

(ii) A real massless vector multiplet containing a neutral vector boson (the 'photon'), 
four Majorana spinors (the Goldstone spinors corresponding to the spontaneous 
breaking of the four special generators of the super-conformal algebra), and six 
scalars (one dilaton and five Goldstone bosons of the spontaneous breaking of 
the global symmetry 0(6) —> 0(5)). In addition, we have massive monopole 
and dyon multiplets, all saturating the BPS bound. Again, all these masses are 
protected against quantum corrections at any order of perturbation theory. 

27.8.2 Spontaneous Supersymmetry Breaking in Perturbation 
Theory 

Until now we looked at the spontaneous breaking of internal bosonic symmetries, but 
supersymmetry was left unbroken. Let us turn now to the possibility of breaking spon-
taneously supersymmetry itself. We saw in the general discussion in Chapter 15 that 
to every generator of a spontaneously broken global symmetry corresponds a zero mass 
particle with quantum numbers given by the divergence of the associated conserved cur-
rent. The conserved current of supersymmetry has spin equal to ;, so the divergence has 
spin equal to 1. It follows that spontaneous supersymmetry breaking will result in the ap-
pearance of a zero mass Goldstone fermion for every broken supersymmetry generator. 
This particle is often called goldstino. We want to study this phenomenon of spontaneous 
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supersymmetry breaking and the associated appearance of a goldstino in a simple field 
theory model. 

In our previous analysis we showed that a supersymmetric vacuum state is always 
stable. Thus, it would have been impossible to break supersymmetry spontaneously if 
it were not for the strange property, which we mentioned already, namely the possib-
ility of adding to the Lagrangian a term linear in the auxiliary fields without breaking 
supersymmetry explicitly. If we restrict ourselves to chiral and vector multiplets, in the 
notation we used previously, the auxiliary fields are F-fields, G-fields, or D-fields. The 
first are scalars, the other two pseudoscalars. Let denote, collectively, all other spin-0 
fields. We will assume that neither Lorentz nor translational invariance is broken; con-
sequently, only spin-0 fields can acquire non-zero, constant, vacuum expectation values. 
Let us recall also that the signature of the spontaneous breaking of a symmetry is the 
appearance of a constant term on the right-hand side of the transformation properties 
of some field under infinitesimal transformations. Using the transformation properties, 
such as (27.39), we can easily show that spontaneous symmetry breaking occurs only 
when one, or more, of the auxiliary fields acquires a non-vanishing vacuum expectation 
value because they are the only ones which appear without derivatives in the transform-
ation laws of the spinors. The potential of the scalar fields in the tree approximation has 
the form 

— V (4)) = 2 [E + E + E D 

+ [E FiF, (0) + E Gi G,(0) + E Di D1(0)], (27.113) 

where the functions Fi  (0), Gi (0), and Di(0) are polynomials in the physical fields 4)  of 
degree not higher than second. The equations which eliminate the auxiliary fields are 

Fi = Fi(4)); Gi = Gi(4)); Di  = Di (4), (27.114) 

so the potential, in terms of the physical fields, reads 

V(0) = 2 [E  FZ  (0) + E GZ (0)  E L;$ (0)] . (27.115) 

The important observation is that V is non-negative and vanishes only for 

Fi(cp) = 0; G1(0) = 0; D1(0) = 0. (27.116) 

This positivity property of the potential is the reflexion of the positivity of the total 
energy we found in Eq. (27.94). When Eqs. (27.116) are satisfied, Eqs. (27.114) show 
that all auxiliary fields have zero vacuum expectation values and, as we said already, 
supersymmetry is unbroken. It follows that the only way to break supersymmetry spon-
taneously, at least in the classical approximation, is to arrange so that the system of 
algebraic equations (27.116) has no real solution. In such a case, at least one of the 
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auxiliary fields will have a non-vanishing vacuum expectation value and supersymmetry 
will be broken. 

We saw already in section 27.6 that adding a term linear in F in the simple field theory 
model in Eq. (27.52) does not break supersymmetry because it can be eliminated by a 
shift in the field A. In other words, Eqs. (27.116) have a real solution. We can complicate 
the model by adding more chiral multiplets and in Problem 27.4 we study this case and 
show that a minimum of three multiplets is needed. 

Here we will exhibit a simpler case, namely the supersymmetric extension of quantum 
electrodynamics, Eq. (27.76), with the addition of a term linear in the auxiliary field D, 
following the work of P. Fayet and J. Iliopoulos: 

r —> r + 03. (27.117) 

We repeat that this term does not break supersymmetry explicitly but, D being 
pseudoscalar, it breaks parity explicitly, but softly. The system of Eqs. (27.116) reads 

mA 1  = 0; mA2  = 0; mB1  = 0; mB2  = 0 

e(A1 B2 — A2B1 ) + = 0. (27.118) 

It is clear that this system has no solution. We therefore expect supersymmetry to 
be spontaneously broken. Indeed, eliminating the auxiliary fields we find non-diagonal 
mass terms among the scalars and pseudoscalars. By diagonalisation we obtain the fields 
A1, A2, B1, and B2 with mass terms 

- - -  
— 2 

—(7/12  + e)(i4i
2 
 + Bi

2 
 ) — —

2
(m2 — 002

2 
 + B22). (27.119) 

This mass spectrum shows clearly that we have obtained a spontaneous breaking of 
supersymmetry since the masses of the scalar and spinor members of the chiral mul-
tiplets are no longer the same. We can easily verify that the corresponding Goldstone 
particle is the massless spinor A. 

From this point, what follows depends on the sign of the square mass terms m2  ± 4e. 
If they are both positive, the story ends here. If one of them is negative, this in turn 
depends on the magnitude and sign of the parameter , the corresponding scalar fields 
become BEH fields for the U(1) gauge symmetry, and the photon becomes massive. 
Therefore, the introduction of the linear term D can trigger the spontaneous breaking 
of both supersymmetry and gauge symmetry. In this case the Goldstone spinor is a linear 
combination of A and the ifr's. It is clear that without loss of generality we can choose 

e > 0. If m2  —e < 0, we can translate the A2 field 

A2 —> 2:12 + V; V2  = 2(e — m2)1e2, (27.120) 

which gives a mass to the photon and the g2  field decouples, as it is the case in the BEH 
mechanism. The new feature here is that the fermions acquire non-diagonal mass terms 
which, after diagonalisation, give 
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1 
m = I [(1 + cos p)1/r1  — (1 — cos p)y5iii2 — ,./1 sin px] 

1 
112 = 1  [(1 — cos P)Y51k1 + (1 + cos 16)1k2 + ,../2 sin fi Y5Ai 

1 
= — 

,../2 
 sin /3 Oh + y5 *2) + cos PA, 

(27.121) 

where /3 =arctan(ev/m). With the redefinitions (27.121) the fermion mass terms in the 
Lagrangian take the form 

1  
Gm 

= _

2 

 _ N/m2 + e2 v2 0/ 1  1. ,1,1  
r 'i + p2172), (27.122) 

which means that the spinor is massless. We can verify that it has the correct trans-
formation properties of the goldstino. Indeed under an infinitesimal supersymmetry 
transformation with spinorial parameter a, we find that 

5 b11 — ; 8  ri2 - 

m2 
4 =   p Ysa +  

e cos 
 (27.123) 

where the dots stand for terms which are proportional to the other fields. We see that 
only 8 contains a constant term which shows that is indeed the goldstino. 

This method can be applied to any gauge theory provided the algebra is not semi-
simple; otherwise, a linear D term cannot be added. 

27.8.3 Dynamical Breaking of Supersymmetry 

In studying the standard model we encountered the possibility of a spontaneous breaking 
of part of the symmetry outside perturbation theory. We envisaged this possibility for the 
electroweak gauge symmetry breaking in the framework of the technicolor models, but 
the concrete case we know for sure that such a breaking occurs is the breaking of global 
chiral symmetry in quantum chromodynamics. The difficulties we found in breaking 
supersymmetry spontaneously in the classical theory prompted people to consider the 
spontaneous breaking, either at higher orders in perturbation, or, dynamically, by non-
perturbative effects. 

If supersymmetry is exact at the classical level, it means that Eqs. (27.116) have a real 
solution. Since these terms are usually protected by non-renormalisation theorems, this 
situation is not likely to change when higher order corrections are taken into account. We 
are left with the possibility of a dynamical breaking by effects which cannot be seen in 
perturbation theory. Again, explicit calculations in four-dimensional field theories can-
not be made, but Witten proposed a simple criterion to decide whether such a breaking 
could be possible. The argument is based on the following simple observation. 

Let us assume that we have a physical system admitting a supersymmetry charge op-
erator Q which commutes with the Hamiltonian H. As we have often done in this book, 
we start by quantising the system in a finite volume of three-space V. The spectrum 
of the Hamiltonian is discrete: HIn >= En in >. The states of the system will be either 
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bosonic, lb >, or fermionic, [f >. Taking into account the relation Q2  = H without any 
central charges, we obtain, for En  # 0, 

Qlb >= 'N/Tli >; Q[f >= •NrElb > . (27.124) 

In other words, the existence of the charge Q implies that all eigenstates of H with non-
vanishing energy come in pairs, one bosonic and one fermionic, with the same energy. 
This conclusion does not necessarily apply to zero energy eigenstates, because they are 
all annihilated by Q: Qlno >= 0. We also recall that when supersymmetry is spon-
taneously broken, the ground state of the Hamiltonian corresponds to strictly positive 
energy; therefore, the existence of zero energy eigenstates implies that supersymmetry is 
unbroken. E. Witten introduced the operator (—) F, where F is the fermionic number. It is 
equal to 1 for a fermion and 0 for a boson. We can construct the index of this operator as 

W = Tr(—)F. (27.125) 

W is called the Witten index. In computing W we can restrict to the subspace of the 
zero energy eigenstates because all states which come in fermion—boson pairs give a 
vanishing contribution to the trace. We see that W measures the difference between the 
bosonic and fermionic zero energy eigenstates of the Hamiltonian, W = nb—n f. 

In general, we do not know how to compute the spectrum of the Hamiltonian of a 
given physical system, but we expect the eigenvalues En  to depend on the volume V and 
the various parameters of the model, such as masses and coupling constants. In some 
cases we may be able to compute reliably the energy spectrum only at some limited 
region of the parameter space, for example when the couplings are very weak. The 
interesting property of W is that it is largely independent of the particular values of the 
parameters we used to compute it. 

Let us call {g} , collectively, the entire set of parameters of our model. The energy 
levels will depend, in general, on {g}: E({g}). As the parameters vary, the energy eigen-
values will change, but the only changes that may affect the value of W are those which 
change the zero energy eigenstates.9  They are of two kinds. First, when, for some value 
{gi} , an energy level which was strictly positive goes to 0 {g} —> {gi} = E({g}) —> 0. 
But for all values of E # 0 the level is degenerate corresponding to a boson—fermion 
pair. Therefore, both states will move to zero energy simultaneously, nb and of  will both 
increase by 1, and the value of W will not be affected. Second, for a different value {g2} 
a zero energy level may move to a positive value. But again, as soon as the energy be-
comes different from 0, the level must be degenerate describing a boson—fermion pair. 
By continuity, it follows that zero energy states can move to positive energy only in pairs, 
nb and of  will both decrease by 1, thus leaving the value of W unchanged. The great 
interest of the Witten index is precisely this independence of the particular values of the 

9  We assume that the deformations of the theory we are considering are sufficiently smooth so that the 
space of states remains the same. The energy levels may move around but no new states are created. We will 
not give a precise definition of this 'smoothness' assumption, but an obvious counterexample is provided by 
the transition from a free to an interacting theory. Setting the coupling constants equal to 0 is not a 'smooth' 
deformation, as can be easily checked in simple examples. 
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parameters of the theory. If we succeed in computing it in some region, even away from 
the physical region, we can trust the result. In fact we can show that W is a topological 
invariant and this explains why it remains unchanged under a large class of deformations 
of the underlying theory. 

If W is different from 0, it means that there is an unbalance between the bosonic 
and fermionic zero energy eigenstates and at least one of nb and of is different from 0. 
This unbalance will not change by varying the parameters of the theory; therefore, the 
ground state will remain always at zero energy. But a zero energy state is annihilated 
by the supersymmetry generator; therefore, in this theory supersymmetry will not be 
spontaneously broken. If, on the other hand, we have W = 0, it may happen that for 
certain values of the parameters, all eigenstates move to positive values of the energy. 
The ground state of the system will have positive energy and, according to our previous 
discussion, supersymmetry will be spontaneously broken. However, we cannot draw 
any firm conclusion because W = 0 implies that either nb = of  = 0, in which case 
supersymmetry is spontaneously broken, or nb = of  # 0, in which case supersymmetry 
remains exact. 

If W # 0 supersymmetry cannot be spontaneously broken, perturbatively or non-
perturbatively. 

If W = 0 we cannot predict the outcome for sure. We need a detailed study of the 
spectrum of the theory. 

Let us apply this criterion to the simple supersymmetric field theory model we studied 
in section 27.6. After elimination of the auxiliary fields, the classical potential for the 
scalar field A is given by 

2 

2 
V (A) = —

1
g2 A2  (A + —

m
) . 

g 
(27.126) 

We can study the spectrum of this model in a finite volume in the semi-classical 
approximation. We find two zero energy ground states corresponding to the values of 
the scalar field < A >= 0 and < A >= —mlg. They are both bosonic because, for 
m 0, the fermionic states are massive.10  So, for this model we find W = 2. We knew 
that this model had no spontaneous supersymmetry breaking at the classical level and 
the non-renormalisation theorems showed that this remained true at any finite order in 
perturbation theory, but this argument tells us that it is also true when non-perturbative 
effects are taken into account. 

27.9 Dualities in Supersymmetric Gauge Theories 

In section 26.2.5 we introduced the idea of duality in gauge theories. In its simplest form 
it interchanges electric and magnetic quantities as well as weak and strong coupling 

10  Taking the limit m = 0 does not change the value of W because the massless fermionic states are ac-
companied by massless bosonic ones. The important point is that the fermion Vi does not transform like a 
goldstino. 
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regimes. We presented the Montonen-Olive conjecture which postulates the actual iden-
tity of the two descriptions, at least for the simple Georgi—Glashow model. Strange as 
it may sound, we saw that this conjecture passed some simple tests. We can now ad-
dress the following questions: how far can we trust this conjecture? In the absence of any 
rigorous proof can we, at least, use it as a means to define the theory in the strong coup-
ling region? Does it apply to all gauge theories and, if not, are there models for which 
it comes closer to the truth? Last but not least, how can we use it in order to extract 
physically interesting results? In this section we will attempt to give a partial answer to 
some of these questions. 

Let us first note that the identification g —> lig cannot be exact everywhere for a 
generic gauge theory. The reason is that the effective value of the coupling constant 
depends on the scale and if such an identification can be enforced in one scale, it won't 
be true in another. However, we have seen in Section 27.7.1 that there is a class of gauge 
theories for which the running of the effective coupling constant is particularly simple. 
They are the gauge theories with extended N = 4 or N = 2 supersymmetries. For these 
theories the duality conjecture has given novel and interesting results. 

Let us illustrate the physical ideas in the simple N = 2 Georgi—Glashow model we 
studied before in which the gauge group is spontaneously broken 0(3) —> U(1). The 
N = 4 case can be considered as a field theorist's dream: all anomalies cancel, in both the 
R-symmetry and the symmetry under dilatations. As a result the theory is conformally 
invariant and has two well-defined dimensionless coupling constants, the gauge coup-
ling g and a 9 angle. In contrast, the N = 2 theory shares many essential features with 
the real world. It is asymptotically free and it has a, presumably, complicated dynamics. 
After spontaneous symmetry breaking we obtain a massless vector field (the photon), to-
gether with its N = 2 supersymmetric partners. Since the theory is asymptotically free, 
at high scales we can use perturbation. At low energies, however, we enter the strong 
coupling regime. Following the Wilson suggestion we used in section 15.2.5 when we 
obtained the non-linear a-model, let us integrate over all massive degrees of freedom 
and obtain an effective Lagrangian describing the low-energy strong interaction of the 
massless modes. Note that it is precisely the kind of exercise we would have liked to solve 
for QCD in order to obtain an effective theory of hadrons. Such a Wilsonian effective 
Lagrangian is not necessarily renormalisable, in the same sense that the Fermi theory 
was not. For QCD we do not know how to solve this problem. Here, however, super-
symmetry comes to the rescue. Integrating the heavy degrees of freedom does not break 
supersymmetry, so we expect the effective Lagrangian to be N = 2 supersymmetric. In 
our example the gauge group of the massless modes is U(1), so the theory is expressed 
in terms of a single massless N = 2 neutral vector multiplet. Its N = 1 decomposition 
contains a neutral vector multiplet V and a chiral multiplet T. In the previous sections 
we have often written the most general N = 2 theory for any gauge group, but we were 
interested in renormalisable theories for which all terms are monomials in the fields and 
their derivatives with dimension smaller than or equal to 4. For U(1) this gives a trivial 
free theory; it is the sum of the kinetic energies of the photon and its partners. In an ef-
fective theory we can allow for more general terms, but, at low energies, we can expand 
any amplitude in powers of energy and keep only the first non-vanishing contributions. 
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As a result the dominant terms are those that contribute the lowest power in energy. We 
can use a simple power-counting argument, similar to the one we used in section 16.3 to 
find the degree of divergence of a given diagram, to determine all such terms. 

Let us consider a 1-PI diagram with Ef (If ) external (internal) fermion lines, Eb (4) 
external (internal) boson lines, Ea  (IQ) external (internal) lines of auxiliary fields, V1 ver-
tices of type i with d1 derivatives, and L loops. Since all particles are massless, the power 
of energy associated with any such diagram is given by simple dimensional analysis: 

D = 4L +EVidi  —2Ib— If . (27.127) 

Note that the internal lines Ia  do not contribute in formula (27.127) because the 
auxiliary fields have constant propagators. Let us denote by fi, bt, and ai  the number of 
fermion, boson, and auxiliary field lines coming in the vertex V1. As we did in section 
16.3, we can trade the number of internal lines with that of external lines by using the 
topological properties of the diagram: 

L = 4 + + - + 24 + Eb = 

2If  + Ef = 21a + Ea  = (27.128) 

The result is 

1 
D = + 2L — 

1 
—Ef  — + 2; Si = +

2 
 + — 2. 

2  
(27.129) 

We see that we obtain the minimum value of D by: (i) choosing diagrams with zero 
loops (this is not surprising, since an effective theory is supposed to be used in the tree 
approximation), and (ii) minimising the factor Si. Note that the latter does not depend 
on b1, the number of boson lines on the vertex. The vertices V1 will be determined by 
any combination of integers di, J., and az  > 0 which minimise Si, keeping b1 arbitrary. 
All the terms in the free Lagrangian of the tree approximation give Si = 0 The formula 
still looks complicated but, again, supersymmetry helps to find the answer. We will de-
termine the kind of effective vertices V1 by first considering N = 1 supersymmetry and 
then imposing the SU (2) R-symmetry. N = 1 supersymmetry tells us that we will en-
counter only two types of terms, those which generalise the two terms we found in Eqs. 
(27.46) and (27.44). To each one we can introduce an arbitrary function of the chiral 
multiplet T: 

Leff = 21C(T ,r)9606 —  —
2

[T (T)Waira  leo + h.c.] (27.130) 

where 1C and T are two arbitrary functions of the chiral superfield T. The important 
observation is that T depends on T but not on T. In expanding the Lagrangian (27.130) 
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in the component fields we must keep only terms that give Si = 0.11 In terms of the 
component fields the low-energy effective Lagrangian reads 

a2ic(,h  ,,,*, 
Leff = aoTp; [aAopo* + 2 (-(iff)-0-)-FF*] 

3 * /a0 0*  - + h.c. + 1 [ a 1C(49,0 ) 

 ('

I

ii 

)p* 
+ 1 a , )  (*. y y  ,k)apid 

2 a249a0* r r 2 azos* A 5  

1 a41C(0,0*)  (j.,/,.)2 
4 a20820* \.'r r 

1 F 1 d2r(p)  ( j,),,, ( 7, ,/,) drdr) (xx)F] L 2 chp 2  \ i
+ h.c. 

+ IT(0) [(,1150 — 21iii)VI'v  + 21/.,v 7pilv  — D2] + h.c. 

4 ddb) 
[1(.  

d(o r'v ) ; (.7 vf, 1j 
) .7{ 7 [Ylt,  Yv ] k)VA1 h.c., ` 

(27.131) 

where the components of the vector and chiral multiplets are denoted by (vµ, X, D) and 
(*.,(/), F), respectively. The Lagrangian (27.131) contains all terms with S = 0. Looking 
only at the scalar field sector we see that we have obtained an effective theory of the 
general form shown in Eq. (15.32), i.e. a non-linear a-model describing the interaction 
of the moduli fields c. The metric in the moduli space is given by 

a 2 A:(0,00')  
Fii (o) = 

 aoao* 
 . (27.132) 

An even-dimensional manifold in which we can introduce an operation of complex 
conjugation and choose coordinates such that the relation (27.132) can be enforced 
locally is called a Kahler manifold. By extension, we will call the function 1C(0,0*) the 
Kahler potential. 

We obtain the N = 2 theory by imposing the R-symmetry to (27.131). Under SU (2) 
the two spinors (*, X) transform as a doublet, the three auxiliary fields (ImF, ReF, 
DI,V2) as a triplet, and all other fields are singlets. As we saw in section 27.7.1, it is 
sufficient to impose invariance under a subgroup of discrete transformations and we 
choose a rotation by an angle n-  around the second axis which gives 

—> X; X —> —*; D —> —D; F —> F* (27.133) 

Invariance under (27.133) implies relations among the functions 1C and T. Equating 
the coefficients of the kinetic energies IfrP and XP X of the spinors we find that 

02k (o, o*)  = ReT (0). 
000* 

(27.134) 

II It is obvious that there are no terms in the expansion that give negative because there are no terms with 
boson lines and no derivatives. 
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The absence of a (XX)2  term implies that 

041C(0,0*) _ 0  
• 020020*  (27.135) 

Finally, separating the right- and left-handed components of * and X and equating 
the coefficients of the terms 1 I f y,y5 .-tfr and Xy,y5 X, we obtain, after partial integration, 

2 1T a
0/C 

02 
(0,0*)  

a P  — (0) = 4). /2 000* 
(27.136) 

Under these conditions the Lagrangian (27.131) is invariant under the transform-
ations (27.133) and, as we saw in section 27.7.1, it is invariant under N = 2 
supersymmetry. It looks as if we have obtained three relations among the functions 1C 
and T, but they are not independent. It is obvious that (27.135) and (27.136) follow in 
fact from (27.134). This relation implies, in turn, that both 1C and T can be expressed 
in terms of a single function which is usually written as 

1 dh(0) 0*  h((1))  
(T (0) — • 1  C 0,0*) — Im • 

zini dci) ' 47 
(27.137) 

The first of these relations implies that h is an holomorphic function, i.e. it depends 
on 0 but not on 0*. This property of holomorphicity is characteristic of supersymmetry 
and comes from the fact that the corresponding term in the super-potential is expressed 
as an F-term.12  We often find the notation 

h(0 ) 
=d.F  

d0

(0) 

 
(27.138) 

where the function T (0) is called the prepotential. 
We understand better this result if we go back to the original theory which is invariant 

under N = 2 supersymmetry and 0(3) gauge symmetry. All fields are triplets of 0(3) 
and 0 is the third component of the scalar field. The spontaneous breaking of the gauge 
symmetry 0(3) —> U(1) is obtained by giving a non-zero vacuum expectation value 
to 0. We remind that the classical potential is flat in the direction of 0, which means 
that the vacuum expectation value is undetermined. We have called these fields moduli 
and it is not surprising that the effective theory depends on their values. They have 
two effects: they produce non-canonical kinetic energy terms for all other fields with a 
field-dependent coefficient and field-dependent coupling 'constants' for all interaction 
vertices. The consequence of N = 2 supersymmetry is that all this dependence on the 
moduli can be expressed in terms of a single function h(t). In the tree approximation all 

12  We remind that an F-term comes from the expansion of a chiral superfield which depends on 9 and not 
on O. 
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couplings are absent and the kinetic energy is canonical. It follows that the corresponding 
value of h, with a suitable normalisation of the constants, is 

h(0)10 = (47i
0 

e2 
+ 

27 ) = rei0 (27.139) 

with rci given by (26.71). 
The remarkable result, first obtained by N. Seiberg and E. Witten, is to show that by 

performing semi-classical calculations, we can determine h(0) exactly. Their method is 
based on the following observations: (i) the original theory is asymptotically free. So, for 
large values of (/) the coupling is weak and low-order perturbation expansion is assumed 
to be reliable. (ii) The t3-function receives only 1-loop contributions, so the evolution of 
the effective coupling constant is known. These two properties imply that we can express 
the prepotential (0) in perturbation theory, including the 1-loop corrections, as 

2 
.F(0) = 27

A2 
—02 1n — ' (27.140) 

where we have used the analogue of Eq. (25.89) to replace the running coupling constant 
e2  by a scale A. The fact that the N = 2 /B-function is given by its 1-loop term ensures 
that this formula does not receive any higher order perturbative corrections. On the 
other hand, if we had looked at the N=4 theory whose t3-function vanishes, the formula 
(27.139) would have been exact. 

(iii) The third and most important observation is connected with duality. As we 
noted already, the effective theory depends on the point in the space of mod-
uli. In the particular example O(3) —> U(1) we are considering, this space is a 
two-dimensional manifold and we can choose as a complex co-ordinate the value 
of the gauge invariant quantity 

3 

a2  = E oioi. 
i=i 

So, the question is to find the coordinate transformations 

(27.141) 

a —> f (a) (27.142) 

that yield physically equivalent theories. Note that since in our effective theory (27.131) 
the coupling constant is a-dependent, the electromagnetic duality transformation e —> 
1/e belongs to the general class (27.142). However, expressing the Montonen—Olive 
conjecture is not straightforward for a theory with a running coupling constant. The 
Seiberg—Witten result is based on the observation that for N = 2, duality should be ex-
pressed as the invariance under the transformations that respect the Kahler structure in 
the space of moduli. The full justification of this point is rather lengthy and we will not 
present all the calculations in detail; we will only indicate the essential steps. 
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Using the variables (27.141) and the relations (27.137), the metric (27.132) can be 
written as 

(ds)2  = Im d2F(a)  dada*. 
da2  

(27.143) 

Seiberg and Witten observe that this description can be only locally valid because the 

harmonic function Im 1̀2 •T(a)  cannot be positive definite everywhere. This is because a da2  
harmonic function attains its extreme values at the boundary of its domain of definition; 
therefore, if it is defined everywhere in the manifold, it cannot have a minimum. 

It will be convenient to introduce the auxiliary variable aD = h(a) and write the metric 
in the symmetric form 

(ds) 2  = (dada*D — daDda*). (27.144) 

We can consider the two complex variables (a, aD) as coordinates on a two-
dimensional complex space X. The form of the metric (27.144) on the moduli space 
M suggests we introduce on X the symplectic form w = Im daD  A da*. If a complex 
variable u labels the point on M," the pair (a(u), aD(u)) defines a map M —> X with the 
induced metric 

2  
da da*D  daD da* * 

(ds) =
d  

2 du du* du du* ) ud u  
(27.145) 

The question now is to find the group of transformations that preserve this form of 
the metric. This is easy to answer. Let us rewrite (27.145) as 

da" da*P 
(ds)-  = 2 E43  

du du* 
—dudu* (27.146) 

with the obvious notation in which a" is the two-component vector (a, aD) and E,,fi is 
the two-index antisymmetric tensor. The metric now is invariant under the special linear 
group SL(2, IR), which leaves Eap invariant and commutes with the operation of complex 
conjugation. We can also add a constant to either a or aD, so the transformations are 

(a 
a

D) a 
jw  (a

D C2 
) (ci) (27.147) 

with M a 2x 2 matrix of SL(2,R). 
Up to now we have looked only at the scalar field sector of the theory and we found 

that the Kahler metric on the moduli space is left invariant under the transformations 
(27.147). We want to understand the physical meaning of these transformations and 

13  A convenient choice is 2u = a2. 
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justify the conjecture that they can be used to define the property of duality. For this we 
must remember that the scalar fields belong to a massless N=2 supersymmetry multiplet, 
together with a pair of spinors and a photon. We know what we should expect from a 
duality transformation when it acts on the photon field, so we want to see how our 
SL(2, IR) transformations act on photons. 

Let us write an element of SL (2, IR) in terms of two generators, Tb and S: 

( 

Tb  = 1 
0
1)
\ 
 ' 1 s = ( 1 3   

0
1 ) (27.148) 

with real b. We can immediately read the action of Tb on the photon kinetic energy. We 
see that it gives aD  —> aD  + ab, which implies a shift proportional to Ob in h(0). Using 
(27.131), (27.137), and (27.139), we conclude that the result of a Tb transformation is 
to shift the value of 9 in the Lagrangian by an amount proportional to b. Our discussion 
in section 25.4.5 has taught us that 9 is an angle. It follows that b must be equal to 
27 n with n being an integer; in other words, only the subgroup SL(2,&) of SL(2,FR) 
is acceptable. The transformation is of the form t —> t + 1 and it is a symmetry of the 
Lagrangian. 

It takes some more work to find the physical meaning of S. It is a discrete trans-
formation aD  —> a, a —> —aD, which implies that r —> —1/r. It reminds us of the 
electric—magnetic duality transformation we found in section 26.2.5, but it inverts r 
rather than just the charge e. As such it is not expected to be a symmetry of the Lag-
rangian, in the same way that the substitution e —> lie is not. It maps one physical theory 
onto another and, in the case of the electric—magnetic duality, we had conjectured that 
the two theories describe the same physics. Here supersymmetry helps us to go further 
and prove this conjecture for the transformation S. Let us go through the main steps of 
the proof. 

The photon field is contained in the chiral superfield W, in the Lagrangian (27.130). 
It satisfies the chirality condition D W = 0, where D is the supercovariant derivative. We 
can implement this constraint in the functional integral by using a Lagrange multiplier 
given by a real chiral superfield VD and add a term proportional to 

f d4Xd294:126 VDD W ^' f d4Xd29c126D VD W ^' f d4Xd29 WD W. (27.149) 

The effective Lagrangian is given by the sum of (27.130) and (27.149). The de-
pendence on W is quadratic and we can perform the Gaussian functional integral to 
eliminate W in favour of the new field WD. The result is a new effective Lagrangian ED 
proportional to 

ED '''
[7"T) WDWDlee + h.c.]. (27.150) 

We are halfway through. We need to compute the result of the S transformation on 
the chiral multiplet T. Using the second of the relations (27.137) we find that 
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f d4xd2ed26h(T)T—> f d 4xd2ed26hD(TD)113 (27.151) 

with hD(h(T)) = -T. Expressed in terms of superfields, the first of Eqs. (27.137) can be 
written as T (T) — dh(T)/dT, which implies that for the coefficient of the transformed 
kinetic energy term of the gauge field given by Eq. (27.150), 

- [T (T)]-1  = -[dh(T)1c1T]-i  = dhD(TD)IdTD = TD ( 7' D) 5 (27.152) 

which shows that the transformation S which, in the space of moduli interchanges aD  —> 
a, a —> -aD, relates two physically equivalent theories. This proves the conjecture that 
the SL (2, &) transformations generalise the duality property of electromagnetism in our 
N=2 model. The role of the constants c1  and c2  in the general transformation (27.147) 
will be discussed later. 

The next point is to use these properties in order to determine the singularities of 
the prepotential. This is an essential step because the knowledge of the singularities 
combined with the asymptotic form determines completely an holomorphic function. 
An obvious singular point is the point at infinity because we find it in the perturbative 
result and the large field region corresponds to weak coupling where perturbation can 
be trusted. In the classical approximation we find also a singularity at 0 = 0 because, 
at this point, the full 0(3) gauge symmetry is restored. However, at small values of the 
field the coupling is strong and the classical picture is not expected to be reliable. The 
simplest ansatz is to assume that the point at infinity is the only singular point. Looking 
at the expression (27.140) which is valid for large 0, we see that the singularity at infinity 
is logarithmic. Using our variables a and aD  we can write 

dF 2ia a is 
aD  = h(a) = — 

da TT 
= — 1n— + 

7 
— . (27.153) 

A  

The logarithmic singularity implies the existence of a non-trivial monodromy because 
if we follow a circle around the point at infinity, always staying at large values of the field 
where the expression (27.153) is correct, the logarithm of 02  changes by 2n-i and ln a —> 
ln a + ni. It follows that the action of this monodromy on our (a, aD) space is given by 

M°  ° (aaD ) = \ 2 -1) (aD ) - (-aD  + 2a) ' (27.154) 

The interesting point is that the very existence and the nature of this monodromy 
show that our ansatz, namely the assumption that the logarithmic singularity at infinity 
is the only singular point in the moduli space, is not correct. The reason is simple: if there 
is no other singularity all closed paths around the point at infinity would be continuously 
deformable to each other; in other words, monodromies would form an Abelian repres-
entation of the fundamental group (or the first homotopy group), of the moduli space in 
SL(2,&). But this implies that the action of all monodromies, not only those restricted 
to large values of the field, would be given by (27.154). Since in this monodromy a goes 
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into —a, a2  would have been a good coordinate defined everywhere in the moduli space. 
But we argued previously that this is impossible because the induced metric could not 
be positive definite. The conclusion is that we must have further singularities, or other 
topological obstructions, in addition to the one we found at infinity. 

We could be tempted to consider the point at the origin in field space, which we found 
in the classical theory, and consider a manifold with two singularities, but the same 
analysis of the monodromies shows that it does not solve our problem. Furthermore, 
Seiberg and Witten have argued that this singularity at the origin is washed out in the 
quantum theory. We conclude that the moduli space must have at least one singular 
point, somewhere at a value u = u0  different from 0. Since the operation u —> —u is a 
symmetry of the theory, being part of the unbroken centre of 0(3), the point u = —u0  will 
be a singular point too. We are thus led to considering a manifold with three singularities, 
±uo, and infinity. At this point we must do three things. (i) Find the physical origin of 
the singularities at ±u0; (ii) check whether there are other singularities; and (iii) if not, 
construct the corresponding holomorphic function. 

It is easy to complete the first task. We know that this theory contains, in addition 
to the gauge bosons and their N = 2 supersymmetric partners, magnetic monopoles 
and dyons. They form short N = 2 multiplets, so their masses saturate the BPS bound 
(26.66). At the classical level the value of the central charge Zci is given by 

Zci = a(ne  + icinm), (27.155) 

where n, and nm  are the electric and magnetic charges, respectively, which, for 0(3), 
take integer values. As we explained in the previous section, the dyon masses saturate 
the BPS bound even when all quantum corrections are included because it is only in this 
case that we can have short multiplets. We can compute the value of the central charge in 
our effective theory (27.131) by computing the N = 2 supersymmetry algebra directly. 
Alternatively, we can couple the pure gauge theory to a charged matter multiplet. The 
result is that for electrically charged particles with no magnetic charge the value of Z is 
ane. By duality, the corresponding value of the central charge for magnetic monopoles 
will be aDnm. So, for a general state we obtain 

Z = ane  + aDnm. (27.156) 

This formula has the correct classical limit and exhibits the property of duality. As 
we said earlier, it can be verified by direct computation. Before pointing out the con-
sequences for the singularity structure in the moduli space, let us note that it is not 
invariant under the constant translations of either a or aD contained in the transform-
ations (27.147). It follows that we must put c1  = c2  = 0. On the other hand, since ne  
and nm  are integers, we obtain an independent derivation of the result that SL(2, IR) 
should be restricted to SL(2,7Z). Concerning the singularities, we remind that they oc-
cur at points in the space of the moduli in which new massless states appear. Looking 
at (27.156) we see that given a pair ne, rtm, Z, and therefore the dyon masses, vanish 
at points away from the origin a = 0, thus creating singularities in the manifold. For 
example, a magnetic monopole (n, = 0, nm  = 1) becomes massless for aD = 0, although 
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a is different from 0. A single charge dyon (1,1) becomes massless at a + aD  = 0. We 
could think that if we consider all the series of dyons (n„ 1) we would find an infinity of 
singular points, namely the points u such that the equations aD  + nea = 0 are satisfied. In 
fact, this is not so. Let us call /co  the solution of the equation aD  = 0. A 1-loop calculation 
around that point shows that the monodromy is 

aD  —> aD; a —> a — 2aD, (27.157) 

which shows that the entire series corresponds to the same pair of singularities u = ±uo. 
This discussion completes our first task; namely, it shows the physical mechanism 

through which singularities, other than the one at infinity, appear. 
We will only give a plausibility argument regarding the second task. If the physical 

origin of singularities is the appearance of massless states, this discussion should exhaust 
all possibilities because dyons are the only states in the semi-classical spectrum. Seiberg 
and Witten, by considering the N = 2 theory coupled to matter, gave a full justification 
of this point. 

The third task is purely technical. By appropriately rescaling the variable u, we can 
bring the singularities at u = ±1. The moduli space of vacua for our theory is a two-
dimensional space with singularities at u = 1, -1, and oo and a &2  symmetry u 4--> —u. 
Since we have three singularities the monodromies form a non-Abelian representation 
of the fundamental group and the discussion is more complicated than the one we 
have just presented, but no new physical input is required. The solution determines 
the holomorphic function h(a). Seiberg and Witten wrote it in a parametric form a(u) 
and h = aD(u) as follows 

,../2 f 1  dx.,/,‘ 
a(u) =  

71- -1 N/OC2  - 1 

Nh f u  dx ..,4 
aD(n) = 

71- 1 N/X2  - 1 

(27.158) 

(27.159) 

This completes the construction and fully determines the low-energy theory (27.131). 
Similar results can be obtained for the N = 4 theory and, to a certain extent, even for 
N = 1. We want to emphasise that although the N = 2 model does not resemble anything 
like the real world, this construction is, nevertheless, a remarkable achievement because 
it shows that a fully interacting four-dimensional dynamical theory can be determined 
beyond the perturbation expansion. 

27.10 Twisted Supersymmetry and Topological Field 
Theories 

27.10.1 Introduction 

In this section, we present a relatively new subject, that of topological quantum field 
theory (TQFT). The main interest in TQFTs started in 1988, following the work of 
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E. Witten, who showed that one can use the N=2, d=4 super-Yang—Mills theory to 
compute topological invariants on four-dimensional manifolds. In this book we will ad-
opt a rather broad definition of a TQFT as a theory which contains observables whose 
quantum expectation values are independent of any local changes of the metric which is 
used to describe the manifold, provided these changes do not affect its topological prop-
erties. More precisely, a TQFT is a quantum field theory defined from a local action, 
whose propagators and possibly the interactions may be metric dependent; however, 
it allows us to compute expectation values which remain the same when we vary the 
metric by local deformations. This is a non-trivial programme, since when the met-
ric varies, not only the propagators and vertices change, but also the measure of the 
path integral. Very subtle compensations must occur for the existence of topological 
observables. 

There are basically two kinds of local actions that can be used to define a TQFT. 
Some are themselves metric independent, but define a classical propagation of fields, 
with a celebrated example of the three-dimensional Chern—Simons action. They contain 
topological observables such as a Wilson loop. Indeed, such observables are classically 
gauge invariant and metric independent, and changing the metric only influences the 
standard gauge-fixing sector of the action. The metric independence of the Wilson loop 
at the quantum level can be simply shown by using standard BRST Ward identities. 
Other theories are of a more intriguing type, which we will study here. Their action 
is metric dependent, but possesses a supersymmetry which provides Ward identities, 
which in turn explain the metric independence of some observables. They are often 
called TQFTs of the cohomological type. 

We may wonder why such theories are of interest for physicists. The obvious answer is 
that, as we have already seen, topological observables, such as a Wilson loop, often carry 
important physical information. We will show here a second answer; namely, the study 
of such theories provides a deep insight into the structure of quantum field theories with 
extended supersymmetry and, more generally, into the whole quantisation programme. 

The addition of topological terms to local actions of various QFTs was done much 
before the introduction of TQFTs. In section 25.4.5 we saw that many aspects of instan-
ton effects in Yang—Mills theories are taken into account by adding a topological term to 
the action, which is proportional to the second Chern class. In Eq. (25.214) we saw that 
the effective theory is given by 

1 i9 
Seff = f d4  X ( — Tr (F,„F" 

3272 
) + € 1-"PaTr(F,,Fpa)) • g2  (27.160) 

Here (9 is a dimensionless constant whose values reflect the definition of the vacuum 
state. Using this property, we showed that we can answer physical questions such as the 
famous U(1) problem which is connected with the absence of a light isoscalar pseudo-
Goldstone boson. In section 25.4.5 we said that 61  is just a second coupling constant 
and, in most applications, this is indeed correct. However, here we can see immedi-
ately that this is true only as long as the first coupling constant g is kept finite and the 
theory is quantised using the usual Yang—Mills action. Let us consider the formal limit 
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g -+ oo, keeping (9 finite. The Yang—Mills term drops out and the effective action is given 
entirely by the topological term. What kind of quantum field theory does such an effect-
ive theory describe? The immediate answer is a completely trivial one since this term, 
being topological, is just a constant given by the Pontryagin index. We cannot derive 
any equations of motion by varying the action with respect to the field A and, there-
fore, it seems that we have no dynamical degrees of freedom. Note also that this action 
is independent of the metric we use to describe the geometry of our four-dimensional 
space—time.14  

It is not difficult to identify the source of all these problems. The theory given only 
by the topological term 

St  — f d4x€"PaTr(Fp,Fpa) (27.161) 

has a large gauge invariance, much larger than that of the Yang—Mills theory, because St  
is invariant under the transformations 

Aµ  (X) —> Aµ  (X) + E A  (X) (27.162) 

with E µ  (X) being any a-valued local vector parameter, provided it is globally well defined 
possibly modulo ordinary gauge transformations, and does not change the winding num-
ber of the gauge field configuration. This huge invariance explains why the classical 
propagation cannot be defined, not only for the longitudinal degrees of freedom of A 
but also for the transverse ones. It means that the gauge field has local zero modes in all 
possible directions. This is in contradistinction with the ordinary Yang—Mills theory in 
which the gauge transformation 

Aµ  (X) —> A A(x) + LY:.L E (X) (27.163) 

affects only the longitudinal component of the field. Thus, from the physicists point 
of view, the possibility of quantising a topological invariant comes as no surprise. The 
reader who has followed the BRST method presented in Chapter 14 can guess the pro-
cedure which will be developed in this section. We will show that the quite unorthodox 
question of gauge fixing the huge gauge symmetry (27.162) can be successfully solved 
by a BRST-like invariant gauge-fixing term of the local invariance (27.162) of Tr(F A F). 
The main technical difference is the size of the space of the zero modes, but the meth-
odology is completely analogous. We must build a BRST symmetry that contains ghosts 
and antighosts and encode the definition of the gauge symmetry on the classical fields 
and ghosts. Then we must find a practical gauge-fixing action that is BRST exact and 
check that no further zero modes arise. Then, we can safely define the path integral from 
this BRST invariant action. Observables will then be defined from the cohomology of the 

14  In this book we have studied only quantum field theory in flat Minkowski space. Had we introduced a 
non-trivial metric g„ it would have changed the form of the Yang—Mills Lagrangian but not that of the 9 term 
since Eq. (17.37) remains true. 
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BRST symmetry. If there is no anomaly, the theory is renormalisable, and it is expected 
that the observables will be independent of the parameters which have been introduced 
for the gauge-fixing action, through BRST exact terms. 

Interesting facts often happen in the process that we just explained for building a 
TQFT. In the case of the quantisation of the action (27.161), the surprise is that we 
get, in the simplest case, an action identical to the N=2, d=4 action, modulo an op-
eration called twist,15  that is, a mere change of variables on the fields that respects a 
sub-algebra of the global symmetries of the N=2, d=4 action. In fact, the construction 
just described introduces fermions that look superficially like ghosts, since they have in-
teger spin, in apparent contradiction with the spin-statistics theorem, and gives an action 
that looks as a new type of supersymmetric action. Naturally, this contradiction is only 
apparent because, as we will see, in Euclidean space, the twist operation is just a linear 
mapping of the two Majorana spinors of N=2 to a new set of integer spin fields. So, by 
the inverse operation, which we can call untwisting, the TQFT action will turn out to 
be identical with the usual N=2, d=4 action. A surprising feature that turns out to be 
quite generic is that the TQFT action is determined by a smaller number of supersym-
metries than that given by the number of parameters of the Poincare supersymmetry of 
the untwisted model. For instance, in the case of N=2, we have a total of 5=1 (scalar) 
+4 (vector) twisted supersymmetries that determine the theory. But the TQFT action 
determined by these five supersymmetries turns out to be automatically invariant un-
der three more supersymmetries, with three parameters that are assembled in a self-dual 
2-form. These unpredicted extra supersymmetries seem accidental, but the total of the 
5+3 supersymmetries is identical to the number of the 8 Poincare supersymmetry gen-
erators of the untwisted N=2 action. For the N=4 extended supersymmetry, the same 
kind of phenomenon happens. We find a smaller algebra (with 9 generators) than the 
super-Poincare algebra (with 16 generators) that determines the twisted TQFT action. 
The advantage is that the former constitute an off-shell closed algebra, contrast to what 
happens to the latter for which we have no finite set of auxiliary fields which can close the 
algebra. This makes it possible to establish reliable proofs based on Ward identities for 
the N=4 theory. Naturally, the TQFT action turns out again to be automatically invari-
ant under 7 more supersymmetry generators which allow us to recover the 16 generators 
of the original N=4 theory. 

To grab some understanding of all this, we first study a very simple case, that of a 
problem with a finite number of degrees of freedom. We show a method for construct-
ing a TQFT corresponding to the quantum mechanical example where the classical 
coordinates are those of a point particle ql (t) , i = 1, 2, moving in a plane with no ori-
gin, and thus with a non-trivial topology. In this case the topological observables are 
the possible winding numbers of closed trajectories I' that may enclose the origin, and 
the classical action is . ft. dtExpectation values of these observables reproduce the 27r 
winding numbers of trajectories at the quantum level. 

15  No relation with the term introduced in section 25.4.3. 
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27.10.2 A Quantum Mechanical Toy Model 

We start from a classical action equal to the winding number of the trajectory /' of a 
particle moving in a plane with no origin, 

1 f 1 f 
IC  qt ] =

F
dt =

F
dt = nr, (27.164) 

where nr is the winding number of the trajectory /' around the origin.16  
We could add this topological term to any given non-relativistic action of quantum 

mechanics. This would lead to interesting physical effects, analogous to the Aharonov—
Bohm effect. However, we will ask ourselves the strange question of defining the path 
integral 

< ([q]) >= f [dq]0([q]) exp It [q] =?, (27.165) 

where 0 (q) is some observable. The question looks quite weird, since we start from an 
action with no equation of motion and the usual visualisation of quantum mechanical 
effects being defined as fluctuations around classical trajectories weighted by exp h[q] 
becomes immaterial. In fact, the question mark in Eq. (27.165) is justified because h[q] 
remains the same for arbitrary local variations of q, so that the path integral is completely 
degenerate. This observation can be rephrased by saying that we have a gauge invariance 
of the action, SIC  [q] = 0, with 

4(0 = E (t). (27.166) 

The gauge invariance of the action is so large (here the gauge invariance is arbitrary 
coordinate redefinitions that do not change the winding number) that the path integral 
is ill-defined. We can, however, quickly recover hope, after a bit of thinking. 

This degeneracy of the path integral is in fact analogous to the one we had in the 
case of the Yang—Mills theory in the sector of the longitudinal components of the gauge 
fields, yielding an undefined longitudinal propagator. We solved the question in the 
Yang—Mills case by adding to the action a gauge-fixing term and appropriate ghost-
dependent terms, such that the total action becomes BRST invariant, while the added 
terms were BRST exact and the observables defined as the cohomology of the BRST 
symmetry. 

To define the path integral (27.165), we thus decide to add a gauge-fixing term of 
the huge symmetry (27.166), while imposing a corresponding BRST-like symmetry. 
We thus introduce an anti-commuting ghost W 1 (t), in correspondence with the local 

16  L. Baulieu and E. Rabinovici, Phys. Lett. B 316, 93 (1993). 
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parameter E(t), € 1 (t) —> W 1 (t) but the opposite statistics. We must also introduce an 
antighost Wl(t) and a Lagrange parameter Hz (t). We call qt  (t), V/ t  (t), V/ z  (t), 111  (t) a to-
pological quartet. We thus define the BRST-like symmetry associated with the invariance 
q(t) = E(t) as 

Qq1=

fi t  

QtPi  = 0 

Qty: 
 = Hi  

QHi  = O. (27.167) 

We have Q2  = 0. Note the equation (d + Q)q = dq + W . 
We can use the following q-dependent topological gauge-fixing function, which we 

will impose in a BRST-like invariant way, that is by adding to the action a Q-exact term, 

where 

q1 SV[q] 
+Ei.—

Sql R2 =q` + . 5  (27.168) 

V[q] = O. (27.169) 

This choice of a 'topological gauge function' is a non-trivial one, since 9 is multi-valued. 

In fact, there are instanton-like solutions of the equation +E11 9= 0. They are concent-

ric circles on which the particle moves at constant velocity. They have winding number 
n and their radius goes like 1/,/n. 

The local topological action is obtained as 

aHi qk  
It [q] h[q] + f dtQ(q-ii

2 
+ + Eile—q2)) . 

j   
(27.170) 

Here gj is the metric on the plane without the origin that we supposed constant for 
simplicity for the computation that we will shortly exhibit.17  

It is easy to show that with the new action we obtain a well-defined propagator, since 
the former can be written as 

It[q] + fr  dt + Hjgii (qi  + Eik0 — C (41i j)) dq,  <11 

h[q] - f dt (L qi ) 2  + (tpi 820 tpi 
sqiq, )) • (27.171) 

17  We could in fact had chosen a non-constant metric on the plane, gy gy(q), in which case the compu- 
tation which follows would have yielded an action that is reparametrisation invariant in q and depends on the 
Christoffel symbols rik (g) and Riemann tensor Rrk(g). 
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For a = 1 the mixed term in (:gi  + Ei. q1)2  cancels the corresponding one in h[q], so that J 2 

we get for the action18  

I[q] = f (dt —(4)2  + 
2q2  +

+ 
829. 

 W)) . (27.173) 
F 2 Sqlq) 

This action has the property that a change in the metric, g + 8g, amounts to modifying 
the action by the addition of a Q-exact term. If we consider Q-invariant observables that 
are metric independent, such as functionals of W1  and dX whose Q-variation is a pure 
derivative, i.e. 

, Etjdgi1 W3 , Eijdqidqi , (27.174) 

the Ward identities of the Q symmetry imply that their correlators do not depend on 
variations of the metric. This is a deep result, since we have a quantum mechanical 
action that depends on the metric, but some expectation values are metric independent, 
which justifies the denomination of a topological model. Note that we can compute 
other quantities, using the action I. If they do not belong to the cohomology of the Q 
symmetry, they will in general depend on variations of the metric. In fact, as seen from 
the point of view of quantum mechanics, the action is just an ordinary supersymmetric 
action. It can be interpreted as an action for a particle with spin, as can be shown by a 
standard Hamiltonian treatment. What is important here is that we have succeeded in 
building an action for which the metric can be viewed as a sort of gauge parameter, with 
non-trivial topological observables. We achieved this through a process of gauge fixing 
of a topological action, in our case a winding number, which preserves the BSRT-like 
symmetry associated with the general invariance of the topological term. 

The process can be clearly generalised. As we will see, in the case of the Yang—Mills 
field, it will open a new chapter for supersymmetric Yang—Mils theories. 

27.10.3 Yang-Mills TQFT 

In the previous section we showed in the toy model that a purely topological theory, 
the one given by the action (27.164), can be reinterpreted at the quantum level as a 
supersymmetric interacting theory. The generalisation to four dimensions will imply a 
similar phenomenon for the action given by (27.161). We will show that, in a certain 
sense which will be made precise shortly, it gives rise to our N = 2 supersymmetric 
Yang—Mills theory. Here we will follow the opposite way; namely, we will start from the 
N = 2 theory and derive the topological term of Eq. (27.161). 

18  When we perform a more detailed computation with a non-constant metric, go —> go (q), nothing is really 
changed, but the fact that the action ( 27.173) is generalised as 

I[q] = dt (gijq+ +tki go + (q):qk 1  + ao) (27.172) 

+Rijki(g)WiWitPktP/). 
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27.10.3.1 Notion of Twist for the Yang—Mills Theories, with Emphasis on the 
d = 4, N = 2 Theory 

Depending on the space dimensionality, we have often the possibility of mapping spinors 
onto tensors, an operation called twist, which has been proven most useful in the context 
of topological quantum field theory and has interesting applications to supersymmetric 
theories. 

Here we will detail the first historical description of the twist, in the case of the d = 4, 
N = 2 theory, starting from our knowledge of supersymmetric Yang—Mills theories. We 
have seen already that such theories are invariant under both global Lorentz invariance 
and R-symmetry. The latter is associated with the rank of the supersymmetry. In a Euc-
lidean formulation, the Lorentz symmetry becomes the rotational invariance SO(d). For 
the d = 4, N = 2 theory, the R-symmetry is R = SU(2), so the global symmetry is 
SO(4) x SU(2) SUL(2) x SUR(2) x SU(2).19  

The twist operation consists of breaking this symmetry into one of a lower rank. In 
practice we arrange for a breaking of SUR(2) x SU(2) —> SUR' (2) x U(1) with SUR' (2) 
the diagonal subgroup of the original product. We are thus left with the symmetry group 
SUL(2) x SUR' (2) x U(1) SO'(4) x U(1). We can now define a new Lorentz group 
from the analytic continuation of SO'(4). This sounds strange because this new group 
has a piece coming from our initial internal symmetry group. It follows that the fields 
will have peculiar transformation properties. The leftover internal symmetry is U(1) and 
we will call the corresponding conserved charge shadow. 

To see in more detail how this goes, let us recall that the vector multiplet of the N = 2 
super-Yang—Mills theory is made out of a gauge field 4„ a scalar field t, and a pseudo-
scalar s, all singlets of the SU(2) R-symmetry, as well as a pair of Majorana fermions X 
which form a doublet of SU(2) (in section 27.7.1 they were denoted by X and O. To 
these fields we must add a triplet of auxiliary fields which we will denote, collectively, 
G1  (in terms of the N = 1 fields they are the F, G, and D auxiliary fields used in the 
previous sections). All these fields are in the adjoint representation of whichever gauge 
group G we are considering. They satisfy the following supersymmetry transformations 
with a Majorana parameter E which is a doublet of the internal SU(2) symmetry. In the 
following we will choose E to be a commuting parameter: 

(
sSUSyA

tt 
 = _i(TyitA) 

ssusy s  = _(Ty5A.) asusyt  = _() 

8susy •A  = FE + y5 [s, — i y5 Ds + GE 

8Susy Gi = T i DA y5 [s, X] — [t, X])) . (27.175) 

19  The R and L indices refer to the right- and left-handed components of the Lorentz group. 
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The r i's are the usual Pauli matrices and we can easily verify that these transformation 
properties close an off-shell supersymmetry algebra of the Wess-Zumino type 

(Ssusy)  2 = 8gauge ( (T  [ y
5 

 s t] 6 ) i (Ty  u E)Ap,  _ i(Tyu E)ait. (27.176) 

Let us write the spinors in the Weyl representation in which they carry two types 
of SU(2) indices: Aza  (and Aza), with i referring to the internal symmetry SU(2). Alto-
gether, we have eight spinorial, anticommuting, components. The symmetry reduction 
consists in identifying and summing over indices of type i and a.20  This operation leads 
us to decompose the eight spinorial components of any given pair of Majorana spinors, 
valued in the fundamental representation of the R = SU(2) symmetry, as scalar, vector, 
and anti-selfdual tensor of SO' (4)), and U(1) charges 1, -1, and 1, respectively. The 
decomposition is 8 = 1 ED 4 ED 3. This can be done for all quantities that are organised 
as pairs of Majorana spinors in the supersymmetric theory, not only the fundamental 
fields, but also the generators and parameters of supersymmetry. 

In practice this is done as follows: the fields of the N = 2 gauge multiplet which 
belong to the adjoint representation of the gauge group G are twisted into 

where 

G1) —> (Aµ, Y'µ5 Xptv, n (P GAv), 

13  A[003] 

(-s Arec.a& 

X px S Ayr fi  (a13) 

(27.177) 

(27.178) 

are the anticommuting fields resulting from the twist of the spinor fields (Aal , ;.a) into 
()Lam La). Note that the Lorentz indices for the scalar fields (0, /P.) and the gauge boson 
AA  remain the same after the twisting operation. We see that in flat space, the twist 
operation looks like a linear change of variables on the fields, and that the lowering of the 
global symmetry has been obtained by the identification and contraction of the indices 
of type i and 6e. 

The vector multiplet in representations of L' is thus made of the gauge field Ag0, 
both bosonic scalar fields 0(2)  = t + s and (7)(-2)  = t- s, an anticommuting vector ifro(1), 

an anticommuting anti-selfdual 2-form evi-), an anticommuting scalar g"), and a com-
muting auxiliary field GiTv)- (the SU(2)-triplet auxiliary field Gi  has been identified with 
an anti-selfdual 2-form GiTv)- of L') . The superscripts in parenthesis denote the internal 
symmetry U(1) charges of the fields and they will be dropped in the following. 

20  It is obvious that for this operation to be possible, the internal symmetry group must have an SU(2) 
component. For example, in the N = 4, d = 4 case the R symmetry is SU (4) and there are three independent 
possibilities for choosing an SU(2) factor within the R symmetry. Each one gives a different generalisation of 
the operations we describe in the N = 2 case. 
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The scalar, vector, and tensor anticommuting generators are obtained by the same 
linear mappings as for the spinorial fields, namely 8 Eal Q,„ icri,6"Q&„ and 8,„- 

auavi  QuI• 
The interesting result is that the (off-shell) supersymmetry algebra (27.176) greatly 

simplifies when it is given in twisted variables and can be written, in an obvious 
notation, as 

s2 = gauge (0), {8,sµ} = am, 
 8gauge

, 8 {Aso 
 = gtt, agauge ((7)) (27.179) 

and 

{ 8 5 8  „} = 0, {8A 5 8,0,1 = 4  P;„v (av + S g"ge Ov», {8itv5 8„1 = —8  PT„a g"ge ((k). 
(27.180) 

The commuting supersymmetry parameter E is twisted into (C0 sk t V"). The com-
plete supersymmetry generator can be written as 

sSUSy jos  eV
sta 
 el

siL 
 = (E CU 

att
a

v
t )Q

.1 
 + i

crtt
&IQ

&I (27.181) 

and the transformation laws for the twisted N = 2, d = 4 super-Yang—Mills theory are 

sA„ = 

S = —D,20 

s (/) = 0 

S(/)= 1)  

S = [(1), (I)] 

S Xttv = Gpx 

S G,„ = [05 X Av] 

sp  A, = —gAd1 —  XAv 

Sµ = Fp, + Gpv + gAv[05(M 

st.,(/) = 

Sµ (7)=0 

sµ  17 = 

Sµ  Xpa = 4 P;,/,' D,(7) 

s„ Gpa  = Dµ Xpa — 4 Ppaµv (Dvrl + [Y „(7)]) 

(27.182) 

for the scalar and vector pieces, while for the tensor supersymmetry they are 

s pa  At, = —4 PT,c„„,K 1/1K 

, A  = —4  179a AK  Spa a (I) 

Spa c = 0 

Spa = Xpa 

Spa  = —Gpc, 

S pa  Ap, = —4 Pp-, [,,K  (2 FK + GK + 4  PT,c,,,t v [(i), (7)] 

Spa  Gµ v  = —4 /70, [AK  (4 DK ikv] + [0, kdol) — 4170,p, v (air + [0,'j])• (27.183) 

We may wonder at this point whether we have done something wrong because we 
seem to have a theory with integer spin, but anticommuting fields, something which 
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sounds contrary to the spin-statistics theorem. We have learned in Chapter 12 that this 
is impossible in a theory satisfying the usual quantum field theory axioms and, in partic-
ular, positivity of the energy. On the other hand, it is hard to imagine how anything could 
go wrong with a simple change of variables. The answer, of course, is that these are not 
canonical fields like those we have studied so far. Indeed, we can rewrite the action in 
terms of the twisted fields. It is given by 

1 1 1 sN=2,d=4 f cox Tr  (
1 

 G"`° (Fitv  + GA') - ev + 4 [0, + old/  p. 

+0 01-t - 0DA DA + [0, 0] 2  — [0, . (27.184) 

As we see, the quadratic part of the action is non-diagonal in the fields, so we cannot 
read immediately the expression for the Hamiltonian and check the positivity of the en-
ergy. In fact, in order to do so, we must diagonalise the quadratic part, which, in practice, 
means to go back to the original variables. So it is legitimate to ask the question whether 
all this is anything more than a complicated way to obscure the physical content of an 
otherwise simple theory. To answer this question we must study the theory (27.184) a 
bit further. 

Let us first note that it can be written as an s-exact term 

1 SN=2,d=4 = s  kV-1) = s f &Ix Tr (-
2 

x'" (F„„ + Gi") + (i)(13„ipt - [77,0])) . (27.185) 

In fact kli(-1)  is the most general local functional of the fields which is renormalisable, of 
U(1) charge -1 and satisfies the requirement sit (-1) = 0.21 

We can then check that the action (27.185) is also si,v-invariant. This shows that the 
invariance under sµv  is rather a consequence of the invariance under the five transform- 
ations s and This is our first non-trivial result. The twisted formalism shows that the 
set of eight supersymmetry transformations which describe the invariance of the N = 2, 
d = 4 theory is redundant and the invariance depends on five parameters only. Although 
this sounds like a technical point, it is in fact important for the quantisation programme 
because it gives a simpler set of Ward identities. And we have seen in Chapter 16 that 
they play a crucial role in the very definition of the quantum theory. In particular, the 
proof of the renormalisation properties of theories with extended supersymmetry greatly 
simplifies if we use the twisted language. For example, we noted in section 27.7.1 that 
the proof of finiteness of the N = 4, d = 4 theory was complicated because we have 
no set of auxiliary fields to realise the supersymmetry off-shell. Now we understand that 

21  If we relax the requirement of s, invariance, we get the same action, but there are arbitrary coefficients 
in front of each term in the antecedent of the s-exact term. Their variations leave invariant the mean values of 
observables defined from the cohomology of s, according to the general properties of the BRST formalism. 
In particular, we can get rid of the term s4,[ri ,0], which is the source of the quartic interactions on the N =2 
action. But the values of the coefficients determined by the demand of s„ invariance are necessary for the 
identification of the TQFT action with the untwisted N =2 action. We will come back to this point shortly. 
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this is due to the fact that we were dealing with a redundant set of symmetry generators. 
In the twisted formalism the symmetry can be enforced off-shell and the proof of the 
non-renormalisation theorems follows standard lines. 

In fact, the action (27.185) can be written as an ss„-exact term, variation of a term 
involving the Chern—Simons term, as follows: 

sN=2,d=4 

= SSA  f d4x Tr (€ 1  „pa (AO pA a  — 224,,ApAo. + (e" q + xi")*„) (27.186) 

We have thus displayed the following novel result: the N = 2 Yang—Mills action can 
be expressed in terms of twisted fields and it is remarkable that it is completely fixed 
by the requirement of s and sµ  invariance, which means that the theory needs much less 
symmetry than expected. In particular, the tensor supersymmetry brings no information 
at the classical level and we can truly let it aside. We can show that the gauge fixing of 
the action can be done in an s and/or s, invariant way, a property that greatly simplifies 
the classification of observables of the theory at the quantum leve1.22  

27.10.3.2 The Interpretation of Yang—Mills Supersymmetry as a Quantum 
Topological Symmetry 

The previous results are more than a mathematical curiosity. The algebra (27.179) sat-
isfied by s and s, modulo gauge transformations gives a very simple decomposition of 
the space—time derivative, with no Dirac matrices. The invariance under the action of 
this simple algebra fully determines the N = 2, d = 4 theory. 

The formulation can be improved to get rid of the gauge transformations, and give 
a more geometrical interpretation for the fields. By introducing a 'shadow' scalar field, 
analogous to a Faddeev—Popov field, i.e. an anticommuting scalar field ca valued in the 
adjoint representation, we can deduce from s the following scalar graded differential 
operator, which we call stop: 

stopA = * — Dc 

stop* = —DO — [c, ik] 
stop0 = —[c, 0] 

1 
stopc = 0 — 1[c, c] 

stop0 = n — [c, (l)] 

stop)? = —[(1), (I)] • (27.187) 

The difference between s and stop  is basically gauge transformations that involve the 
fields c. By setting c = 0, stop  becomes identical to s. Owing to the transformation law of 

22  We can verify that there is no anomaly in the tensor symmetry, so that it is also possible to ignore it at the 
quantum level. 
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the shadow c, stop  is a differential operator that closes exactly (not only modulo gauge 
transformations). We have on all fields 

op p s2  = st  d + dstop  = d2 = 0. to  (27.188) 

Stop is in fact quite analogous to the BRST operator that we used in the quantisation 
of the Yang—Mills theory. Because it is nilpotent, the classification of invariants can be 
expressed as a cohomology problem. The analogy with the ordinary BRST symmetry is 
quite striking, and we can verify from (27.187) the identity 

1 
(d + stop)(A + c) + 2 [A+ c,A+ c] = F + IP + 0 

with its Bianchi identity 

(27.189) 

(d + stop)(F + * + 0) + [A + c,F + -0 + 0] = 0. (27.190) 

This curvature equation gives an interesting geometrical meaning to the twisted fields 
of supersymmetric theories that appear on the right-hand side of Eq. (27.189).23  This 
geometrical equation shows that the twisted fields have a more natural geometrical in-
terpretation as components of a generalised curvature in an extended space, although 
the untwisted super Poincare formulation exhibits more clearly the physical degrees of 
freedom of the theory. 

The curvature equation is very suggestive. Exactly as we did in order to properly 
understand the anomaly equation in the case of the Yang—Mills theory, we can use the 
Chern—Simons formula to obtain a similar result for the super Yang—Mills theory. For 
any given invariant polynomial P(F), we have the identity dP (F) = 0, and thus we have 

(d + stop)P (F + * + 0) = 0. (27.191) 

Taking for instance P (F + * + 0) = Tr(F + ifr + 0.) (F + * + 0) we get by expansion 
in form degree the solutions of the cohomological equation stop (•••) + d(...) = 0: 

stopTr(FF) = —2dTr(Fik) 

stopTr(F*) = —dTr (F0 + Il  ifrik) 

1 
stopTr 

(
F(/) + —00) = —dTr(2*0) 

2 

stopTr(k0)) = — 0:1Tr(00) 

stopTI-(00)) = 0, 

23  The equation can be improved to include the vectorial sp, transformations. 

(27.192) 
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where the multiplication is understood as a multiplication of forms. These equations are 
very similar to the descent equations for the anomaly cocycles. But they have a very 
different interpretation. If they are integrated over cocycles of appropriate dimensions 
M4_,g. , they give the following operators ALg  that are stop  invariant: 

stop  04-g  = 0 (27.193) 

with 

0° - 
J   

Tr(FF) 
ma 

A 1  = f  Tr(F*) — 
M3 

A2 f Tr (F(/) 
+ 2 

—1  lfr lfr ) 
M2  

Di -
J 

Tr(frO) 
M1  

A,̀,,' Tr(00). (27.194) 

Such operators are called topological observables for the following reason. If we compute 
the mean values 

< 
A  g 

>
sN=2,d=4 

L-‘  4-g (27.195) 

by using the (gauge-fixed) N = 2, d = 4 action for the path integral, the result will be 
invariant under variations of the metric, i.e. 

3 
g  

eN=2,d=4 
< A `-' = O. 4-g (27.196) 

agtt V 

The proof of this result is, in principle, quite simple. It is based on the observation 
that since the action can be written as an stop-exact term (in fact, it is so by construc-
tion), its dependence on the metric can only appear through a similar stop-exact term. If 
we interpret stop  as a BRST symmetry, all parameters in the action, and in particular the 
metric, appear as gauge parameters in the BRST quantisation. The Ward identities for 
the stop  symmetry show that the mean values of all stop-invariant operators are independ-
ent of these parameters. The proof follows the same lines as that presented in Chapter 
18 for the Yang-Mills theory. We should only check that this prediction of invariance 
of the observables which belong to the cohomology of the stop  symmetry is compat-
ible with renormalisation. Checking that the theory is multiplicatively renormalisable is a 
straightforward exercise on BRST quantisation,24  which we leave aside, since the goal of 

24  We must in particular determine how the standard Faddeev—Popov ghosts transform under the stop  
symmetry. Then the observables are defined as the cohomology of stop, within the usual BRST cohomolgy. 
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this chapter is only to sketch the existence of an unexpected geometrical interpretation 
of supersymmetry, with the right ingredients. 

As we can expect, many other supersymmetries can be twisted, and one can system-
atically look for topological invariants in analogous ways.25  For instance, the expectation 
values < Ag g  > are related to the so-called Donaldson invariants, which play a profound 
role in the classification of four-dimensional manifolds. 

In deriving the previous result we used only the invariance under stop. Therefore, we 
may question the role of the vector supersymmetry st,. From a pragmatic point of view it 
is important because it allows us to determine the action uniquely. Indeed, the invariance 
under stop, together with gauge invariance, implies that the action (modulo trivial field 
rescalings) is 

H v  
I = f d4xstop(x„v  (±1  + F,v) + 0(a' + a[ri,C)) (27.197) 

with a being an arbitrary parameter. This remaining unique degeneracy of the TQFT 
action is fixed by imposing the se„ symmetry which implies a =1. This identifies the action 
with the N = 2, d = 4 action, modulo the twist. It must be noted that we can compute 
the topological observables for all values of a, in particular for a = 0. Their expectation 
values remain the same, due to the Ward identities of the stop-symmetry. 

A deeper justification for having the se, symmetry is the following. The stop  invariance 
forces the action to be stop-exact. But then the energy—momentum tensor must be also 
stop-exact, 

Tpx = StopZktv • (27.198) 

In other words, the energy—momentum tensor T,,,„ has an stop-antecedent. If we demand, 
as it is natural, that the tensor ZAv  be also conserved, it can be considered as the Noether 
current of a fermionic symmetry with a vector index, which is precisely the sµ-symmetry, 
with }se„ stop } = at, (modulo gauge transformations). 

Finally, let us summarise by justifying, in a reverse way as compared to the intro-
duction, why the scalar component stop  of the twisted supersymmetry can be called a 
topological symmetry, or rather the BRST symmetry associated with a topological sym-
metry. By looking at the definition of stop, we can interpret the anticommuting vector 
field ifrk, as a generalised Faddeev—Popov ghost associated with the general local trans-
formation of the gauge field, 8Ap, = Eit (x), where the local parameter Eit (x) is defined 
modulo infinitesimal gauge transformations. At the classical level, only a Lagrangian 
which is locally a pure derivative, such as the second Chern class TrFF, can be invari-
ant under such a (huge) local gauge symmetry. It gives no equations of motion, so the 
classical content of such a theory is empty. However, we can perform a BRST invariant 

25  See, in particular, L. Baulieu, H. Kanno, and I. M. Singer, Commun. Math. Phys. 194, 149 (1998); L. 
Baulieu and I. M. Singer, Nucl. Phys. Proc. Sup. 15B, 12 (1988); L. Baulieu, G. Bossard, and A. Tanzini, 
YHEP 0508, 037 (2005); L. Baulieu and G. Bossard, Phys. Lett. B 632, 131 (2006); L. Baulieu, G. Bossard, 
and S. P. Sorella, Nucl. Phys. B753, 273 (2006). 
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gauge fixing of this action. It must be obtained by adding an stop-exact gauge fixing to 
the action. This description and Eq. (27.184) indicate that this gauge fixing is nothing 
but the N = 2, d = 4 action. This way the latter appears as a gauge-fixed action of the 
second Chern class TrFF, if we use as a 'gauge condition' for A the self-duality condition 
for the curvature F in addition to the Feynman—Landau condition. Then the observ-
ables are defined as the cohomology of this BRST symmetry, which yields the cocycles 
found earlier as the topological observables. In this construction, the mean values of 
observables are obviously metric independent, which is the definition of a topological 
observable. 

27.11 Supersymmetry and Particle Physics 

Since fermions and bosons are not degenerate, supersymmetry, if present in nature, 
must be broken. Furthermore we saw that a spontaneous breaking results in the appear-
ance of a massless Goldstone fermion. We want to study its properties, independently of 
any particular model. The first guess would be to try to identify it with one of the neut-
rinos. It is easy to see that this cannot be true. First, the neutrinos don't seem to have 
zero masses and, second, they don't even seem to be approximate Goldstone spinors. 
Indeed, we have shown in section 25.4.2 that a Goldstone particle has very specific 
properties. They all come from the observation that it has the same quantum num-
bers as the divergence of the corresponding conserved current. Therefore, it satisfies 
the low-energy theorems we obtained for pions in section 25.4.2 and, in particular, the 
Adler relation (25.101). Let q (x) be the field associated with the Goldstone fermion and 
,7,,,, the conserved supersymmetry current. Adler's relation reads 

lim M(k) = 0, (27.199) 
k„—>o 

where M(k) is the amplitude for the emission (or absorption) of a Goldstone fermion 
with momentum k and we have suppressed spinor indices. This is a very powerful pre-
diction and can be checked by studying the end-point spectrum in nuclear a-decay. This 
is the region in phase space in which the emitted electron takes almost all available en-
ergy leaving a neutrino carrying almost zero energy. Unfortunately, the prediction is not 
verified. Experiments show no such suppression, which means that the electron neutrino 
is not a Goldstone fermion. The same is true for all other neutrinos. 

The question now is the following: if the Goldstone fermion is not one of the neutri-
nos, then where is it? There are two possible answers to this question which correspond 
to the two possible ways to implement supersymmetry: (i) as a global symmetry or (ii) as 
a local, or gauge, symmetry. In the first case the Goldstone fermion is a physical particle 
and, since it does not seem to appear in our experiments, we must make it 'invisible'. We 
will discuss the second possibility later. 

Several mechanisms have been proposed to hide the zero-mass goldstino, but the 
simplest is to endow it with a new, conserved quantum number and arrange so that all 
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other particles which share this number are heavy. Such a quantum number appears 
naturally in the framework of our supersymmetric theories and it is present even 
in models in which the goldstino problem is absent. It is the R-symmetry we have 
already introduced in the previous sections. We can define a discrete subgroup of the 
R-symmetry, which we will call R-Parity as 

( )12 = ( )2S ( )3 (B—L) (27.200) 

where S is the spin of the one-particle state we are considering and B and L are the 
baryon and lepton numbers, respectively. It is easy to check that Eq. (27.200) gives 
R = 0 for all known particles, fermions as well as bosons, while it will give R = —1 for 
the goldstino. Similarly, the supersymmetric partners of the known particles, such as 
the photino we introduced in section 27.4, or the selectrons of section 27.7.1, will have 
R = ±1. Since R is conserved, the R-particles are produced in pairs and the lightest one 
is stable. In a spontaneously broken global supersymmetry this is the goldstino, which is 
massless. 

Since the goldstino cannot be a known particle, can it be the partner of such a particle? 
For example, can it be identified with the photino? As we said earlier, the mechanism 
of spontaneous symmetry breaking, which is at the origin of the existence of the gold-
stino, allows us to find some properties of the latter, independently of the details of 
a particular model. In a spontaneously broken theory the spin-1 conserved current is 
given by 

.7,(x) = dy,y5q(x) + .70(x), (27.201) 

where d is a parameter with dimensions (mass)2, g(x) is the goldstino field, and j, (x) is 
the usual part of the current which is at least bilinear in the fields. In other words, the 
field of a Goldstone particle can be identified with the linear piece in the current. The 
conservation of Jµ  (x) gives 

di/5)/µ8"`n = (27.202) 

This is the equation of motion of the goldstino. In the absence of spontaneous break-
ing d = 0 and att = 0. In fact, to lowest order, the contribution of a given multiplet to 
alt  is proportional to the square mass-splitting 1.m2. Thus, the coupling constant of 
the goldstino to a spin-0—spin4 pair is given by 

m2 

fn = f (27.203) 

where the sign depends on the chirality of the fermion. It follows that if the goldstino 
were the photino, oc e and the (mass)2-splittings would have been proportional to the 
electric charge. For example, if se  and to  were the charged spin-0 partners of the electron, 
we would have 
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m2 (se)  + m2 (te)  = 2m2 (e)  . (27.204) 

This relation is clearly unacceptable. The conclusion is that the photon cannot be 
the bosonic partner of the goldstino. With a similar argument we prove that the same 
is true for the Z°  boson, the scalar boson, or any linear combination of them. This is a 
model-independent result. Not only can we not identify the goldstino with the neutrino, 
but also we cannot pair it with any of the known neutral particles. Therefore, strictly 
speaking, there is no acceptable supersymmetric extension of the standard model with 
spontaneously broken global supersymmetry. The one that comes closest to it assumes 
an enlargement of the gauge group to U(1) 0 U(1) 0 SU (2) 0 SU (3), thus involving 
a new neutral gauge boson. We will not study it in detail here but we will rather ex-
tract those features which are model independent and are likely to be present in any 
supersymmetric theory. 

Here is the moment to present the second mechanism to hide the goldstino, namely 
to promote supersymmetry to a local, or gauge, symmetry. This is not as simple as 
writing a Yang—Mills theory because supersymmetry is not an internal symmetry. The 
anticommutator of two supersymmetry charges contains the generator of translations, so 
gauging supersymmetry will necessarily imply gauging the translations. In other words, 
at the classical level, a gauge supersymmetry will contain, in the bosonic sector, general 
relativity. This theory is called supergravity. Since in this book we have studied field 
theory only in flat space, we will not derive its properties in any detail. In the next section 
we will briefly write the equations and the particle content but here we will only discuss 
its consequences for the goldstino. 

We have already noted that the conserved supersymmetry current has spin equal to 1. 
In writing a gauge theory we must introduce the gauge fields whose quantum numbers 
are those of the symmetry currents. It follows that the gauge fields necessary to turn 
supersymmetry into a local symmetry must be spin-; spinors. Similarly, the gauge field 
necessary to turn translations into a gauge symmetry must have the quantum numbers 
of the energy—momentum tensor, i.e. it must have spin equal to 2. We have seen that the 
zero-mass representations contain a multiplet with a spin-2 state, the graviton, and its 
spin-1 partner, the gravitino. They are both massless, as expected from gauge fields. 

In Yang—Mills theories we noted the BEH phenomenon in which a massless spin-1 
particle absorbs a massless spin-0 one and becomes a massive spin-1 vector boson: 

(m = 0, spin = 1 + m = 0, spin = 0) = (m # 0, spin = 1). 

The corresponding phenomenon in supergravity will involve a massless spin-1 fermion 
absorbing a massless spin4 goldstino to become a massive spin-1 particle. 

3 1 
(m = 0, spin = 7 

2 2 
+ m = 0, spin = = (m

2 
0, spin = ) . 

We will call this mechanism naturally the super-BEH mechanism and, as it happens in the 
bosonic case, the goldstino has disappeared from the physical spectrum of states. At low 
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energies, when gravitational interactions are decoupled, the theory will look, presumably, 
like a model with explicitly broken global supersymmetry. It will contain many arbitrary 
parameters, usually mass splittings and mixing angles. In principle, they are calculable 
in terms of the initial supergravity theory, but the relation is not always clear. Most often, 
they just parametrise our ignorance of the underlying symmetry breaking mechanism. It 
is this general framework which has been used in most phenomenological studies. 

As a final remark, let us have another look at Eq. (27.119). As a result of supersym-
metry breaking the masses of the chiral multiplet members are split, but we see that some 
pattern remains. The masses squared of the spin-0 fields are equally spaced above and 
below those of the fermions. In other words, we obtained a mass formula of the form 

EH2,7(2.7 +1)„,4 = 0, (27.205)  
y 

where my is the mass of the particle of spin J. It turns out that such a formula is 
valid in every spontaneously broken supersymmetric model and even in some explicitly 
broken ones. We used it already in (27.204)  in order to prove the impossibility of pairing 
together the photon and the goldstino. It plays an important role in model building. 

27.11.1 Supersymmetry and the Standard Model 

Let us now try to apply these ideas to the real world. We want to build a supersymmetric 
model which describes the low-energy phenomenology. There may be several answers 
to this question but, in practice, there is only one class of models which come close to 
being realistic. They were discovered by Pierre Fayet in the seventies. They assume a 
super-algebra with only one spinorial generator; consequently, all particles of a given su-
permultiplet must belong to the same representation of the gauge group. As we explained 
earlier, this is dictated by chirality. It is easy to see that in a supersymmetric model with 
two spinorial charges, each supermultiplet will contain fermions with both right and left 
components and it is not clear how to break this right—left symmetry. In the following 
we will try to keep the discussion as general as possible, so that our conclusions will be 
generally valid. 

All models of global supersymmetry use three types of multiplets: 

(i) Chiral multiplets. As we said already, they contain one Weyl (or Majorana) fer-
mion and two scalars. Chiral multiplets are used to represent the matter (leptons 
and quarks) fields as well as the BEH fields of the standard model. 

(ii) Massless vector multiplets. They contain one vector and one Weyl (or Majorana) 
fermion, both in the adjoint representation of the gauge group. They are the 
obvious candidates to generalise the gauge bosons. 

(iii) Massive vector multiplets. They are the result of the ordinary BEH mechanism in 
the presence of supersymmetry. A massive vector multiplet is formed by a vector 
field, a Dirac spinor, and a scalar. These degrees of freedom are the combination 
of those of a massless vector multiplet and a chiral multiplet. 
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The physical degrees of freedom of the particles in the minimal standard model with 
one scalar multiplet are the following: 

Bosonic degrees of freedom = 28 

Fermionic degrees of freedom = 90 (or 96, if we include "R's). 

It follows that a supersymmetric extension of the standard model will necessarily in-
troduce new particles. We can even go one step further. In N=1 supersymmetry all the 
particles of a given supermultiplet must belong to the same representation of the gauge 
group. For the various particles of the standard model this yields the following: 

(i) The gauge bosons are one colour octet (gluons), one SU(2) triplet, and one 
singlet (WI, Z°, y). No known fermions have these quantum numbers. 

(ii) The BEH scalars transform as SU(2) doublets but they receive a non-zero va-
cuum expectation value; consequently, they cannot be the partners of leptons or 
quarks. Otherwise, we would have induced a spontaneous violation of lepton or 
baryon number. Furthermore, we must enlarge the scalar sector by introducing 
a second complex chiral supermultiplet. This is necessary for several technical 
reasons which are related to the fact that, in supersymmetry, the scalars must 
have their own spin-1/2 partners. This in turn creates new problems like, for ex-
ample, new triangle anomalies which must be cancelled. Furthermore, now the 
operation of complex conjugation on the scalars induces a helicity change of the 
corresponding spinors. Therefore, we cannot use the same doublet of scalar fields 
to give masses to both up- and down-quarks. Finally, with just one scalar super-
multiplet, we cannot give masses to the charged partners of the W's. The net 
result is a richer spectrum of physical scalar particles. Since we start with eight 
scalars (rather than four), we end up having five physical ones (rather than just 
one). They are the scalar partners of the massive vector bosons and three neutral 
ones. 

The conclusion is that in the standard model, supersymmetry associates known bo-
sons with unknown fermions and known fermions with unknown bosons. We are far 
from obtaining a connection between the three independent worlds. For this reason this 
extension cannot be considered as a fundamental theory. Nevertheless, the phenomen-
ological conclusions we will derive are sufficiently general to be valid, unless otherwise 
stated, in every theory based on supersymmetry. 

We close this section with a table of the particle content in the supersymmetric stand-
ard model. Although the spectrum of these particles, as we will see shortly, is model 
dependent, their very existence is a crucial test of the whole supersymmetry idea. We 
will argue presently that its experimental verification is expected to be within the reach 
of LHC . 

Strictly speaking, the existence of the particles appearing in Table 27.1 is the only 
model-independent test of N = 1 supersymmetry. It is not a very useful one, however, 
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Table 27.1 The assignment is conventional. In any particular model the 
physical particles may be linear combinations of those appearing here. 

The particle content of the supersymmetric standard model 

Spin-1 Spin-1/2 Spin-0 
Gluons Gluinos No partner 
Photon Photino No partner 
W±  2 Dirac Winos w±  H 

i b 
g o 

g s 
s o 

n 
s 

Z°  2 Majorana Zinos z 

1 Majorana Higgsino 

Standard 

00  

Pseudoscalar 
00' 

Leptons Spin-0 leptons 
Quarks Spin-0 quarks 

without some further theoretical input. Indeed, a prediction about the existence of such 
a rich spectroscopy of new particles is only meaningful if the masses of the new particles 
are also predicted, at least to within an order of magnitude. Let us draw here a paral-
lel with the prediction concerning the charmed particles we studied in section 25.3.4. 
They were introduced in order to suppress the induced flavour changing weak neutral 
currents, or the AS = 2 transitions. This suppression was effective only if the masses 
of the new particles were not too large, so the prediction could have been falsified by 
experiment. We will argue here that the situation is similar concerning supersymmetry. 

Supersymmetry is the only known scheme which allows, even in principle, a connec-
tion between the Poincare symmetry of space—time and internal symmetries. It provides 
a framework for the unification of the various worlds of gauge theories. We believe that 
supersymmetry will turn out to be part of our world; the only question is that of scale. 
How badly is supersymmetry broken? In other words, how heavy are the supersym-
metric partners of the known particles? We claim that under some rather reasonable 
assumptions, we can answer this question for the supersymmetric standard model. 

In section 26.1.2 we pointed out the quadratic dependence of the scalar mass on the 
high-energy scale µ up to which we assume the theory to be valid. Since the data show 
that the BEH scalar is light, this scale should be very low, less than 1 or 2 TeV, unless 
new physics shows up. This new physics should be able to cancel the p,2  dependence of 
the scalar mass. Supersymmetry is the only local quantum field theory which has this 
property. In the presence of broken supersymmetry the scale µ, is replaced by Am, the 
scale of supersymmetry breaking. Therefore, the previous bound gives an upper bound 
of a few TeV for the supersymmetric particles. A badly broken supersymmetry is not 
effective in protecting the small mass scale. If supersymmetry is the mechanism which 
stabilises the scalar mass in the standard model it has reasonable chances to be discovered 
at the LHC. We will describe some possible experimental signatures in a later section. 
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27.11.2 Supersymmetry and Grand Unified Theories 

The sensitivity of the BEH mass to the high-energy scale is particularly troublesome 
in grand unified theories. It is the gauge hierarchy problem which plagues all known 
GUTs. As we explained already, the problem has two aspects, one physical and one 
technical. The physical aspect is to understand the profound reason why nature creates 
the two largely separated mass scales. The technical aspect is related to renormalisa-
tion. In the notation of section 26.2, in order for the model to be able to sustain a 
gauge hierarchy, we must impose a very precise relation among the parameters of the 
potential. It is this relation which is destroyed by renormalisation effects and must be 
enforced artificially order by order in perturbation theory. As we will see shortly, su-
persymmetry may provide the mechanism to answer the physical problem, but it can 
certainly solve the technical one. The key is the non-renormalisation theorem we men-
tioned earlier. If supersymmetry is exact, the mass parameters of the potential do not get 
renormalised. 

After these remarks on the gauge hierarchy problem, we can proceed in supersym-
metrising our favourite GUT model. The construction parallels that of the low-energy 
standard model with similar conclusions. Again, no known particle can be the super-
partner of another known particle. Furthermore, assuming a spontaneous symmetry 
breaking, we can repeat the analysis which led us to conclude that U(1)0 SU (2)0 SU (3) 
was too small. The corresponding conclusion here will be that SU(5) is too small, since 
SU(5) does not contain anything larger than the group of the standard model. 

Finally, we can repeat the renormalisation group estimation of the grand unification 
scale and the proton lifetime. We had found in section 26.2.3 that at low energies the 
effective coupling constants evolve following, approximately, the renormalisation group 
equations of U(1), SU (2), or SU (3). The same remains true in a supersymmetric the-
ory, but now the values of the /B-functions are different. The number of Yang—Mills 
gauge bosons is the same as before. They are the ones which give rise to negative p-
functions. On the other hand, supersymmetric theories have a larger number of 'matter' 
fields, spinors, and scalars, which give positive contributions. The net result is a smaller, 
in absolute value, /3-function and, therefore, a slower variation of the asymptotically free 
coupling constants. The agreement now is remarkable (see Fig. 26.5). The three curves 
appear to come together. Expressed in terms of a prediction for the value of the weak 
mixing angle sin Ow, this agreement is 

sin2  Ow (no SUSY) — 0.214; sin2  Ow (SUSY) — 0.232 

sin2  Ow (exp) = 0.23149 ± 0.00017. (27.206) 

The resulting value for M is M — 1016 - 1017  GeV. If nothing else contributes to 
proton decay, it is beyond the reach of experiment. Fortunately, there are other contri-
butions, which, although of higher order, turn out to be dominant. They are due to the 
exchange of the fermionic partners of the heavy bosons and their contribution is model 
dependent. Not surprisingly, in many models the result turns out to be on the order of 
1033  years. 
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27.11.3 The Minimal Supersymmetric Standard Model 

In Table 27.1 we had given the new particles that we expect to find in a supersym-
metric extension of the standard model. Note, in particular, a richer system of scalar 
particles. Since the symmetry is broken, an important element is the breaking mech-
anism which determines the mass spectrum. Unfortunately, it is the least understood 
sector of the theory. We believe that it is a spontaneous breaking at a scale where the 
effective theory is supergravity. In this case the Goldstone fermion is absorbed by the 
spin-1 gravitino. At lower energies the theory looks like a model with explicitly, but 
softly, broken global supersymmetry. It is this framework that has been used in most 
phenomenological studies so far. The important point is that supersymmetry brings 
many new particles but no new couplings. At energies lower than the scale of grand 
unification we still have the three gauge couplings of U(1), SU(2), and SU(3). With 
no further assumptions we must introduce a set of new arbitrary parameters describing 
the masses and mixing angles of all new particles. Even with massless neutrinos, this is 
a very large number. Note that already in the standard model the masses and mixing 
angles of quarks and leptons are arbitrary parameters to be determined by experiment. 
But we have seen in Section 26.2.3 that grand unification may reduce this number by 
providing relations among masses, like, for example, Eq. (26.39), which was the result 
of the SU(5) relations (26.26). Something similar was applied to supersymmetry by S. 
Dimopoulos and H. Georgi and, independently, by N. Sakai. In the literature we find 
many variations of this idea and the most economic one is called the minimal supersym-
metric standard model (MSSM). The basic assumption is that at the grand unification 
scale the supersymmetry breaking parameters which determine the mass splittings in 
the supermultiplets are the simplest possible. From this point we use the renormal-
isation group equations to derive the spectrum at present energies and compare with 
experiment. Remember again that these relations involve only the known gauge coupling 
constants. 

In the MSSM the spectrum of the supersymmetric partners of ordinary particles 
(quarks, leptons, and gauge bosons) at the GUT scale is assumed to be determined by 
a minimum number of parameters: a common mass parameter m112  for all gauginos, 
a corresponding one mo for all squarks and sleptons, and a common trilinear coupling 
among the various scalars, denoted by A. This choices are dictated only by simplicity. In 
fact, we have no reason to believe that they will be exact in the real world, but they have 
the obvious merit of providing a simple framework of analysing experimental data. The 
absence of flavour-changing neutral interactions sets limits on the possible mass differ-
ences among squarks and sleptons of different families, but does not force them to be 0. 
The most interesting sector is the BEH system. We need two doublets, as we explained 
previously. At the phenomenological level this introduces some new parameters. First, 
there will be two vacuum expectation values to break U(1) 0 SU(2), which we will call 
v1  and v2. They are taken by the neutral components of the two doublets, but we have 
weak isospin Iz  = +2 and the other ./z  = —I. It follows that no CP breaking is introduced 
because we can rotate the two phases independently and bring both v's to real values. 
An important parameter for phenomenology is the ratio 
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tan k = (27.207) 

A second parameter is a mixing term between the two scalar multiplets. At the grand 
unification scale of SU (5) the two doublets are promoted to two chiral supermultiplets 
belonging to 5 and 5 and the mixing term is written as µH1 H2 with µ a new arbitrary 
constant. Various versions of the MSSM make different assumptions regarding It is 
often left arbitrary and it is determined by the requirement that the BEH system pro-
duces the correct electroweak symmetry breaking when extrapolated to lower energies 
using the renormalisation group equations. In all cases this last requirement severely re-
stricts the parameters of the scalar potential. On the other hand, we do not want the 
electroweak breaking to occur at the grand unification scale, so all corresponding square 
masses must be positive or zero at that scale. In extrapolating from MGUT  down to 
present energies, we require the correct breaking at mw, no breaking in between, and 
the maintaining of the perturbative nature of the theory everywhere. This means that all 
couplings should remain smaller than 1 and the effective potential bounded from below 
in the entire region. It turns out that all these requirements leave a relatively narrow win-
dow for the possible values of the parameters which can be compared with experiment. 
The attractive point of this scenario is the introduction in a 'natural' way of the large 
separation between MGUT  and mw. It is simply due to the logarithmic running of the 
parameters. In practice the running of the effective mass of the scalars is dominated by 
the t-quark loop because of the corresponding very large Yukawa coupling. The typical 
renormalisation group equations give a relation of the form 

At 
mw NIGUT e't ; a` =  —47

• (27.208) 

Without any other assumptions the experimental signatures for the discovery of the 
supersymmetric particles are not very precise. A simple, hand-waving argument shows 
that ordinary particles are expected to be lighter than their supersymmetric partners. 
The reason is that the former take their masses solely through the BEH mechanism 
while the latter through both the supersymmetry breaking and the BEH mechanisms. 
Similar theoretical arguments almost always predict squarks and gluinos heavier than 
sleptons and other gauginos. The reason is that in most models the masses are set equal 
at the grand unification scale and the differences are due to the strong interactions of 
squarks and gluinos. For the same reason the masses of sneutrinos are predicted to be 
on the same order as those of the corresponding charged sleptons. Note, however, that 
the assumption of equal masses at the GUT scale is totally arbitrary with no theoretical, 
or phenomenological, basis whatsoever. In fact, this simple model is already excluded by 
the data, so it is only for the simplicity of the presentation that it is still studied, although 
several of the results we present are quite general. 

Some simple relations follow from these general assumptions of the minimal model. 
The gauginos must obey the renormalisation group equations of the gauge couplings, 

iCa)  
mi(P) = m

ai(M)
, (27.209) 
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where m is the common mass at the GUT scale M and µ is the low scale. This gives a 
`prediction' for the three gauginos of U(1), SU(2), and SU(3) at present energies 

m1 : m2  : m3  = 1 : 2 : 7. (27.210) 

This picture may be slightly complicated because of mixings with higgsinos. Note 
also that in the MSSM R-parity is conserved; therefore, all new particles are produced 
in pairs and the lightest among them is stable. It is usually denoted by LSP (lightest su-
persymmetric particle). In almost all models it is identified with a linear combination of 
the neutral gauginos and higgsinos. In this case its interactions are comparable to those 
of the neutrinos and it leaves no trace in the detector. Since all new particles will even-
tually end up giving LSPs, a precise determination of missing transverse momentum is 
an essential handle in the search of supersymmetric particles. Furthermore, the LSP of-
fers an excellent candidate for cold dark matter, a necessary ingredient in cosmological 
models. For all these reasons, mLsp is a very important phenomenological parameter, 
although no precise predictions for its value can be given. The cosmological arguments 
mentioned already give a rather loose bound mLsp < 0(200) GeV. Of course, the gold-
stino, which, if it exists, is massless, is absent from theories derived from supergravity 
with a super-BEH mechanism. 

Let us now briefly discuss some results on masses and decay properties. In the MSSM 
the analysis is made as a function of the parameters we introduced earlier and the result 
should be given as a multi-dimensional plot. Some among the most important points 
follow: 

(i) The BEH system. It is probably the most sensitive test of the MSSM. Five scalars 
are predicted, a pair of charged ones and three neutrals. The requirements of the 
correct symmetry breaking allow for a rather narrow window in the mass of the 
lightest neutral, the analogue of the standard model BEH scalar. At the tree level 
these predictions give a limit for m0  on the order of the Z-mass, already excluded 
by experiment. Radiative corrections, especially the t-quark loops, raise this limit 
considerably. In most models we find m0  < 130 GeV, although a small amount 
of fine tuning is still necessary. The recently discovered scalar particle with a 
mass of 126 GeV falls remarkably close to this value. 

(ii) Scalar partners of quarks and leptons (squarks, sleptons). There exists one 
such partner for every left- or right-handed quark and lepton. The break-
ing of U(1) 0 SU(2) causes mixings among the partners of opposite chirality 
fermions, so the final mass spectrum is the result of several diagonalisations. 
For this reason squarks do not necessarily follow the mass hierarchy of their 
quark partners. Squarks are produced in hadron collisions either in pairs or 
in association with gluinos (R must be conserved). Their decay modes are 
of the form 4 -> q + LSP (quark + LSP) or, if phase space permits, 4 -> 
q + k - (quark + gluino)._ The signature is missing PT  plus jets. Sleptons be-
have similarly and give 1 —> 1 + LSP. The signal is again missing energy and 
momentum. 



858 Supersymmetry, or the Defence of Scalars 

(iii) Gluinos. They are an important test of any supersymmetry scheme because they 
are expected to have substantial production cross sections in hadron colliders. 
Their specific decay properties are model dependent and the searches allow for 
various final states. At the end LSPs are expected to be produced. 

(iv) Gauginos and higgsinos. They mix among themselves and must be analysed 
together. The charged ones are the supersymmetric partners of WI  and HI  
and are described by a 2 x 2 mass matrix. Even before LHC, LEP had given a 
limit of 90-100 GeV for the mass of the lighter of the two. Among the neutral 
ones, the partners of W3, B, and the two CP-even neutral scalars mix in a 4 x 4 
matrix. The lightest of them is assumed to be the LSP. 

The picture that emerges is that supersymmetric particles may be spread all over from 
a few hundred GeV to 1 or 2 TeV. The most recent LHC data suggest that the lower 
limit may be as high as 1 TeV. 

The mass ratios and decay properties we presented depend often on the minimal hy-
pothesis which was made only for convenience and has no theoretical base. However, 
if sparticles are discovered and their masses and mixing angles measured, we can easily 
go back and compute the symmetry breaking pattern at GUT energies. This, in turn, 
will give us a hint on the breaking mechanism which, as we explained, is probably re-
lated to the fundamental way gravity is unified with the other interactions. Looking for 
supersymmetric particles will be an important part of experimental search in the years 
to come. We all hope that it will be both exciting and rewarding and, in any case, we 
will know soon whether supersymmetry is a fundamental symmetry of particle forces at 
present energies. 

27.12 Gauge Supersymmetry 

Supergravity is the theory of local supersymmetry, i.e. supersymmetry transformations 
whose infinitesimal parameters — which are anticommuting spinors — are also func-
tions of the space—time point x. There are several reasons to go from global to local 
supersymmetry: 

(i) We have learned in recent years that all fundamental symmetries in nature are 
local (or gauge) symmetries. 

(ii) The supersymmetry algebra contains the translations. So local supersymmetry 
transformations imply local translations and we know that invariance under local 
translations leads to general relativity which, at least at the classical level, gives a 
perfect description of the gravitational interactions. 

(iii) As we already noted, local supersymmetry provided the most attractive explan-
ation for the absence of a physical goldstino. 

(iv) In the previous section we saw that in a supersymmetric grand unified theory the 
unification scale approaches the Planck mass (1019  GeV) at which gravitational 
interactions can no more be neglected. 
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The gauge fields of local supersymmetry can be easily deduced. Let us introduce an 
anticommuting spinor E for every spinorial charge Q and write the basic relation (27.7) 
as a commutator, 

[ E m Qm , n ri = 28mn em a  x pµ
, 
 n, m = 1,...,N, (27.211) 

where no summation over m and n is implied. In a local supersymmetry transformation 
E becomes a function E(x). Equation (27.211) implies that the product of two super-
symmetry transformations with parameters E l  (x) and E2  (x) is a local translation with 
parameter 

av  (x) = E 1 (X)cr„ 2 (X). (27.212) 

On the other hand, we know that going from a global symmetry with parameter (9 
to the corresponding local one with parameter 0 (x) results in the introduction of a set 
of gauge fields which have the quantum numbers of aµ9 (x). If (9 (x) is a scalar function, 
which is the case for internal symmetries, 8µe (x) is a vector and so are the corresponding 
gauge fields (ex. gluons, WI, Z°, y). If the parameter is itself a vector, like a, (x) of 
translations, a ,a, (x) is a two-index tensor and the associated gauge field has spin 2. In 
supersymmetry the parameters Em(x) have spin 1/2 so the gauge fields will have spin 3/2. 
We conclude that the gauge fields of local supersymmetry, otherwise called supergravity, 
are one spin-2 field and N spin-3/2 ones. To those we must add all other fields necessary 
to complete the multiplet. 

27.12.1 N=1 Supergravity 

This is the simplest supergravity theory and it provides for a good basis for a phe-
nomenological analysis. The gauge fields are the metric tensor g A„(x), which represents 
the graviton and a spin-3/2 Majorana `gravitino' 1/!µ (x). We can start by writing the Lag-
rangian of 'pure' supergravity, i.e. without any matter fields. The Lagrangian of general 
relativity can be written as 

1 1 
rg = — ,,, g,-R = eR, 

2K 2 2K 2  
(27.213) 

where g 44, (x) is the metric tensor and g = det gt,„ (x). R is the curvature constructed out 
of 4,(x) and its derivatives. We have also introduced the vierbein field em  in terms of 
which g44, (x) is given as Ai, (x) = eµ (x)en,(x)n44, with iht, the Minkowski space metric. It 
is well known that if we want to study spinor fields in general relativity the vierbein, or 
tetrad, formalism is more convenient. e equals —,./, and K2  is the gravitational coupling 
constant. Equation (27.213) is the Lagrangian of the gravitational field in empty space. 
We add to it the Rarita—Schwinger Lagrangian of a spin-3/2 massless field in interaction 
with gravitation 

1 
ERS = — i'N'E 4"Pa 1   k ItY5Yvp plk a , (27.214) 
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where D p  is the covariant derivative 

1 1 

DP P  2 
= a + — co

P  nYmn; Ymn = 4—[Ym, Yni (27.215) 

and co pmn(x) is the spin connection. Although co pmn(x) can be treated as an independent 
field, its equation of motion expresses it in terms of the vierbein and its derivatives. 

The remarkable result is that the sum of (27.213) and (27.214) 

= rg + G AS (27.216) 

gives a theory invariant under local supersymmetry transformations with parameter E (x): 

8en = 
2 

8co' = 0 (27.217) 

1 1 1 
80,,=

K 2 • 
—D,E(x)= — (a, + —counym„) E (X) . 

Two remarks are in order here. First the invariance of (27.216) reminds us of the 
similar result obtained in global supersymmetry, where we found that the sum of a 
Yang—Mills Lagrangian and that of a set of Majorana spinors belonging to the ad-
joint representation were automatically supersymmetric. This means that all gauge 
theories, both of space—time and of internal symmetries, admit a natural supersym-
metric extension. This is one of the reasons for which many theorists consider that 
supersymmetry should be part of our world. The second remark is technical. The trans-
formations (27.217) close an algebra only if we use the equations of motion derived 
from (27.216). We can avoid this inconvenience by introducing a set of auxiliary fields. 
In fact, we have partly done so, because the spin connection is already an auxiliary 
field. 

The next step is to couple the N = 1 supergravity fields with matter in the form 
of chiral or vector multiplets. The resulting Lagrangian is quite complicated and will 
not be given explicitly here. Let us only mention that, in the most general case, it in-
volves two arbitrary functions. If we call z the set of complex scalar fields, the two 
functions are G(z, z*), a real function, invariant under whichever gauge group we have 
used, and fij (z), an analytic function which transforms as a symmetric product of two 
adjoint representations of the gauge group. 

We may wonder why we have obtained arbitrary functions of the fields, but we must 
remember that in the absence of gravity, we impose to our theories the requirement 
of renormalisability which restricts the possible terms in a Lagrangian to monomials 
of low degree. In the presence of gravity, however, renormalisability is anyway lost, so 
no such restriction exists. Although supergravity may be a fundamental theory, at our 
present understanding we can only use it as an effective theory. In view of this, it is quite 
remarkable that only the two aforementioned functions occur. 
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27.12.2 N = 8 Supergravity 

One of the arguments to introduce supersymmetry was the desire to obtain a connection 
among the three independent worlds of gauge theories, the worlds of radiation, matter, 
and scalar fields. None of the models presented so far achieved this goal. They all en-
larged each world separately into a whole supermultiplet, but they did not put them 
together, with the exception of an association of some of the scalars with the massive 
gauge vector bosons. N = 8 supergravity is the only one which attempts a complete uni-
fication. It is the largest supersymmetry we can consider if we do not want to introduce 
states with spin higher than 2. We have already constructed the irreducible representation 
of one-particle states which contain the following: 

1 spin-2 graviton 

8 spin-3/2 Majorana gravitini 

28 spin-1 vector bosons 

56 spin-1/2 Majorana fermions 

70 spin-0 scalars. 

(27.218) 

The Lagrangian which involves all these fields and is invariant under eight local su-
persymmetry transformations was constructed by E. Cremmer and B. Julia, who also 
uncovered its remarkable symmetry properties. In contrast to the N = 1 case, there is 
no known system of auxiliary fields. Since we have 28 vector bosons we expect the nat-
ural gauge symmetry to be SO(8). This is bad news because SO(8) does not contain 
U(1) 0 SU(2) 0 SU(3) as subgroup. The remarkable property of the theory, which 
raised N = 8 to the status of a candidate for a truly fundamental theory, is the fact that 
the final Lagrangian has unexpected symmetries: (i) a global non-compact E7 symmetry 
and (ii) a gauge SU(8) symmetry whose gauge bosons are not elementary fields. They 
are composites made out of the 70 scalars. SU(8) is large enough to contain the sym-
metries of the standard model, but this implies that all known gauge fields (gluons, WI, 
Z°, y) are in fact composite states. The elementary fields are only the members of the 
fundamental multiplet (27.218). None of the particles we know is among them; they 
should all be obtained as bound states. 

N = 8 supergravity promised to give us a truly unified theory of all interactions, 
including gravitation and a description of the world in terms of a single fundamental 
multiplet. The main question was whether it defined a consistent field theory. 

In pure quantum gravity some higher order computations have been made in order to 
check the way infinities arise in the perturbation expansion. The task may seem absurd, 
since the result is known in advance: the quantum theory of gravity is a non-polynomial 
theory and there is little hope that its perturbation expansion could make sense. How-
ever, the way invariant counter-terms are generated by Feynman diagrams order by 
order is an intrinsically interesting question. Moreover, other theoretical schemes, such 
as string theory, give a finite theory that includes quantum gravity as a singular limit. It 
is a challenge to precisely understand how it can be used to regularise these apparently 
lethal infinities of quantum gravity, provided they are under control. 
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For supergravity the hope was that the large number of supersymmetries would en-
sure a sufficient cancellation of the divergences of perturbation theory so that to make 
the theory finite. We have no clear answer to this question. It may still happen that mi-
raculous compensations due to supersymmetry hold true to all orders, so that, although 
the theory is not renormalisable by power counting, some, hopefully the physically rel-
evant ones, Green functions are finite to all orders. Checking this property of finiteness 
has been done for several multiloop diagrams, which is a technical 'tour de force', and 
the result, although not conclusive, has not yet shown that finiteness definitely fails. 

In some sense N = 8 supergravity can be viewed as the end of a road, the road 
of local quantum field theory. The usual response of physicists whenever faced with a 
new problem was to seek the solution in an increase of the symmetry. This quest for 
larger and larger symmetry led us to the standard model, to grand unified theories, and 
then to supersymmetry, to supergravity, and, finally, to the largest possible supergravity, 
that with N = 8. In the traditional framework we are working, that of local quantum 
field theory, there exists no known larger symmetry scheme. The next step had to be 
a very radical one. The very concept of point particle, which had successfully passed 
all previous tests, was abandoned. During the past decades the theoretical investigations 
have moved towards the theory of interacting extended objects. 

27.13 Problems 

Problem 27.1 Write the Callan—Symanzik equation for the chiral supersymmetric 
model of section 27.6 and compute the /8, y, and 8 functions at 1 loop. 
Problem 27.2 Compute the fi-function of the supersymmetric SU(m) gauge theory 
with n chiral multiplets belonging to the fundamental representation of SU(m) and 
derive the result of Eq. (27.90). 

Problem 27.3 Study the spontaneous symmetry breaking in the N = 2 supersym-
metric U(1) gauge theory of section 27.8 and derive the central charges in the 
algebra of Eq. (27.100). 

Problem 27.4 Consider the generalisation of the chiral supersymmetric field the-
ory we studied in section 27.6 which involves n chiral multiplets. Add liner terms 
proportional to the F components and show that a spontaneous supersymmetry 
breaking can occur when n > 3. 



Appendix A 
Tensor Calculus 

This appendix develops some of the mathematical tools necessary to understand the first 
part of this book. It is not a complete mathematical treatise. 

A.1 Algebraic Theory of Tensors 

In non-relativistic classical physics, it is natural to choose the Euclidean space 1113  as the 
configuration space and to equip this space with a Cartesian system of coordinates such 
that a point x of space is represented by (x1 , x2, x3). If the system under interest has 
a spherical symmetry, then it is natural to take spherical coordinates characterised by 
r, (9,0. The equations of physics can be expressed in any of these systems of coordin-
ates. In relativistic physics, the configuration space is the space—time whose points x are 
represented in Cartesian coordinates by x°  = ct, x1 , x2, x3. Again, this representation is 
not unique and we can introduce other systems of coordinates taking into account, for 
example, some particular symmetry of the system, or implying some dynamical aspects, 
as, for example, the fact that this system is in motion with respect to some observer in 
the initial frame. In any case, even if the equations of physics are invariant under some 
transformations of coordinates, they are expressed in terms of quantities, like the velo-
city or the forces, for which we need to know the way they transform under a change of 
coordinates. 

In the study of physical systems, it appears natural to study quantities, the tensors, 
having well-defined transformation rules with respect to the changes of coordinates. 

In what follows, we will define and study the algebraic properties of these objects 
without emphasising their intrinsic nature. Then we will sketch a more geometric and 
global presentation of tensors. 

A second part of the appendix will be devoted to some elements of differential 
calculus. 

The last part of this appendix, even more sketchy, introduces some basic notions from 
the theory of groups and Lie algebras. 

A.1.1 Definitions 

Let us consider an n-dimension space (we may think of R"). Let qo be a point of 
this space. In the coordinate system x, a point q close to q0  is given by coordinates 
x1 , x2, . , x". By changing to the system of coordinates z, we mean that this same point 
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is now represented by the coordinates , xn and that at least locally, that is to say 
in a neighbourhood of go, we have x1  = xi ( 1 , , for i = 1, . . n, = (xi xn)  

for j = 1, n and these functions are sufficiently regular (differentiable). We have, of 
course, x = x((x)) and z = (x()). 

Definition 4. A tensor or a tensor field T of type (r, s) is a set of numbers ti s such that 

a ax'.  ax.11 axis (x)  = E ...E  „,ki,..•,kr - 
(x) 

11,•••11.5 1,...,15
0,e1 aVzr ax/1 axis '  

k1=1 15=1 

where the numbers (x) are relative to the system of coordinates (xl  , , xn) and 

the numbers T 3•1.5 (Z.) to the system of coordinates ()V 3 )7'). 
••, 

The lower indices are the covariant indices and the upper indices are the contravariant 
indices. A tensor of type (r, s) is called r-times contravariant (or contravariant of degree 
r) and s-times covariant (or covariant of degree s). 

A.1.2 Examples 

We give some examples of tensors. 

1. The velocity. 
t) x(  i The velocity v(t) = d

dt s a (1, 0)-tensor. Expressing it indeed as a function of 
the velocity in the system x, we get 

vi(t) = dxj(t) _ &i a xi  

dt = a . v(t).  
(A.2) 

This is an example of a vector. 

2. The gradient. 
Let us consider a differentiable function f (x). Its gradient has for components 

7 a a ) 

vf  = ' • • • ' acn f  

and we get 

az1 _ 
(W), (x) = — (of)1(x), 

a xi 

where (Vf)i(Tc) = a f (x()). This shows that Vf is a covariant tensor. This is an 

example of a covector. 

(A.1) 

(A.3)  

(A.4)  
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3. A metric. 
Let us consider a vector space IR". A riemannian metric over 1W' is defined by giving 
at each point a positive definite quadratic form gib on the tangent vectors. It makes 
it possible to write the infinitesimal element dl of the length of a curve t —> x(t), 
t E R, as 

dl = I gijvi(t)vi (t)dt. (A.5) 

The properties of transformation of the metric by change of coordinates are 
defined in such a way that dl is independent of the choice of the system of 
coordinates. 

An example of a metric is the Euclidean metric. It is given in Cartesian 
coordinates by 

gtj = 61). (A.6) 

By the invariance property, it must be written in another system of coordinates x as 

axk  axl  
g#(c) = gki(x) 0 0. 

This shows that gib is a tensor of type (0, 2). 
Remark that by derivation of xi = xl((x)) we get 

I 9 ,C1 axk  8? = 
a ax, 

which implies that the matrices { 
ax'

} and { } are inverse of each other. 

Exercise 1 Show that in R3, the metric related to the spherical coordinates x1  = 
p cos 9 , x2  = p sin 9 cos 4, x3  = p sin 9 sin is given by 

1 0 0 
gij  = (0 p2  0 (A.9) 

0 0 p2  sin2  

Another structure often used by physicists is the structure of pseudo-Riemannian space. 
It is defined by a non-degenerated non-necessarily positive definite metric. According 
to Silvester's theorem, it is characterised by a signature, i.e. after diagonalisation, by the 
difference between the number of its positive and negative eigenvalues. The space R4  
equipped with the Minkowski metric gp,„, gµ  = 6,„ for µ, = 1, 2, 3 and AL, = 4,, for 

= 0, is the Minkowski space, M4  , of the special relativity. 

(A.7)  

(A.8)  
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A.1.3 Algebraic Properties of Tensors 

We describe now some operations on tensors that lead to define new tensors. 

1. Addition 
Tensors of a given type form at each point a vector space: if T and S are of type 
(r, s), then X T + AS is of type (r,$) and the space is of dimension nr+  

2. Permutation of indices 
By permutation of indices of the same type, contravariant or covariant, a tensor 
is transformed into another tensor. Let c E Sr  and µ, E Ss, Sk being the group of 
permutation of k elements. If Ti?[::: is a tensor of type (r, s), then 

(A.10) 

is also a tensor of type (r, s). 

3. Contraction 
The contraction VP of the kth upper index with the lth lower index is an operation 
which changes a tensor T of type (r, s) into a tensor Vik  T of type (r — 1, s — 1) by 

(VP T) 1,:k+1,• • ?ir (A.11) 

4. Tensor product 
By tensor product, from two tensors, T of type (r, s) and S of type (p, q), we build 
a new tensor T 0 S of type (r + p, s + q) whose elements are 

(T S)11"."4" = 741"'"ir Sir+1"."4"  . (A.12) 
J1,•••11s+q .11,•••4r .1s+1,•••4s+q 

The proofs are direct applications of the formulae (A.1) and (A.8). 

A.1.4 Bases 

Vectors (or tensors of type (1, 0) or, in a more standard mathematical language vector 

fields) form, at each point, a space of dimension n. We will note a basis of this space 
{e,}z =1,...,n  and a vector v is written v = vie,. 

Similarly, the covectors (or tensors of type (0, 1)) form, at each point, a space of 
dimension n. With {ei} i=1,...,,, a basis of this space, a covector w is written as w = wiel 

A basis of tensors of type (r, s) is given by ez, 0 • • • 0 eir  0 ell 0 • • • 0 els and a tensor 
T of type (r, s) can be written at each point of space 

T = r eit  0 • • • 0 eir  0 0 • • • 0 s . (A.13) 

Let us return to the definition of a covector given in the examples in section A.1.2. 
More intrinsically, we can define the gradient of a function f as the components of a 
linear functional on vectors: the differential df of the function. If v is a vector and f a 
function, we set 
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(df, v) = 
a xi

(A.14) 

With {e;"} the dual basis of {e; }, df is written as df = af —e . More generally, the cov- 

ariant tensors are defined as multilinear forms on vectors. It follows that it is natural to 
take e1  = e;" with (<, ef) = 8j. This last relation, however, does not make it possible to 
identify the space of vectors with the space of covectors because this identification is not 
invariant by change of coordinates. Indeed, if we want the equality between a vector and 
a covector to remain after a change of coordinates, it is necessary that the basis 1e, and 
1e;K I transform in the same way. But if in the change from x to z, e, is transformed by the 

matrix A = {—av into = e;" is transformed according to (24-1)'. We thus see that 
a xi 

the identification is only possible for orthogonal transformations. 
However, for a given choice of basis, we can find simple expressions of the elements 

of these two bases. 
The elements of the basis of vectors can be identified with differential operators. 

Let, indeed, v be a vector and f be a function. The tensor product of v with Vf is a 
(1, 1)-tensor. It becomes a scalar by contraction' and can be written as 

= vi 
d
a7if. (A.15) 

av  is called the derivative off along v. To a vector of the basis e1  corresponds by formula 
of • a a aei f = z  the differential —. Through this identification, the operators 1 
ax ax z ax z — fi=i n 

form a natural basis of vectors. 
Similarly, we can exhibit a natural basis for the covectors by using the definition 

(A.14) of the differential of a function. With the choice of function f = Xk, we de-
duce that (dxk, v) = Vk, thus (dxk, ei ) = 81e, which shows that the 1dx11,=1,...,n  form a basis 
of the linear forms on the space of vectors. We thus recover the formula of the ordinary 
differential calculus 

af 
df = —doe. 

a xi 
(A.16) 

This shows that the differential df is in fact the covariant tensor whose components are 
given by the gradient (one of the examples in the preceding section). 

We will see later on that the vectors are elements of the tangent bundle of a manifold 
M (M is what we call the space up to now) and the covectors are linear forms on the 
tangent bundle, i.e. elements of the cotangent bundle. 

1  From the tensor point of view, a scalar is invariant by changes of coordinates. 
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A.2 Manifolds and Tensors 

In this section, we will define in the more general framework of manifold the no-
tions that were introduced previously. Tensors will appear naturally as intrinsic objects, 
independent of any system of representation. 

A.2.1 Manifolds, Tangent, and Cotangent Bundles 

A.2.1.1 Differentiable Manifolds 

A differentiable manifold (this means C°° unless explicitly stated otherwise) M of dimen-
sion m is a set M with a finite or denumerable collection of charts {C1}, each point q of 
the manifold being in at least one chart. 

A chart C is a couple (U, 0) where U is an open set of M (the domain of the chart) 
and 0 a homeomorphism of U onto an open set of Rm. For q E U, the elements x E 
of the open set, image of U, define a local coordinate system. 

Two charts C1  and C2  are compatible either if U1  fl U2  = 0 or if the mappings 010 °21  
and 02  0 0-1 1, suitably restricted, are diffeomorphisms of the corresponding open sets of 
Rm. Explicitly, this means if q E U1  fl U2, V1  and V2  being the image open sets in lir, 
that f = 02  0 0-1  : V1  —> V2  with {x1} E V1  I--> 5 . . , e)} E V2  is a family of m 
differentiable functions of m variables and the same for 02  0 . We also suppose that 
the manifold is separable; i.e. any 2 distinct points of M have neighbourhoods which do 
not intersect. 

N is a submanifold, N C M, of dimension n, m > n, if Vq E N, there exists a 
chart (U 0) with q E U and 0 : U —> (xi , xm), such that 0 unN : U n N —> 
(x1 , . , xn,  

An atlas is a system of compatible charts covering M. 
We define ll = E Rn  X1  < 01 and aRn+  = {x E Rn  X1  = 0}. A mapping f of an 

open set U of Rn in Rm is differentiable if it is the restriction of a differentiable mapping 
of an open set of Rn  in Rm. 

Let M be a separable (and metrisable) space, M is a manifold with boundary if there 
exists a covering with open sets U1  and homeomorphisms 0, of the U1  in open sets in RM, 
such that Vi, j, 0, o 071 1 0j  (uinui)  is The boundary of M, am = Ui 0T 1 (0,(ui) fl 
awn+  ). M \ am and am have the structure of a manifold; am has no boundary. 

A.2.1.2 Tangent Bundle 

Over each point q E M, there exists a vector space, the tangent space Tq(M), whose 
elements v are the tangent vectors, i.e. the equivalence classes of curves u(t) on M such 
that u(0) = q. 

In a chart C, two curves u(t) and /4(0 are equivalent if q = u(0) = 14(0) and if 
(0 o u(t) -ch o = 0. We have thus defined a homeomorphism 

ec,(q) : u(t) —> D(0 o u(t)) E Rm (A.17) 

between the equivalence classes of curves on M at q and the vectors of Rm (if f is a 
differentiable function of Rm in Rn, we recall that the derivative, Df, of f, is, in terms 
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of components, the matrix of the partial derivatives Df1  = i = 1, . . . , n j = 

1, . . . , m). We will note by van equivalent class of curves. If u(t) is a curve, element of the 
o u equivalence class v E Tq(M), we will identify, as much as possible,2  v to d1 dt 

(t) 
 t=o 

with components v1, ...,vm. 
This complicated formalism used to define the tangent vector of a curve on a manifold 

is due to the fact that we do not know how to compare two neighbour points in M without 
referring to the underlying Rm. It makes it possible, however, to understand how a vector 
V E Tq(M) is changed after a change of local coordinates for q E M. Let us suppose 
indeed that q belongs to two charts C and C and let 0 and be the corresponding 
mappings. It is how one moves from the local coordinates x to the local coordinates z. 
The bijection mapping ec becomes Cie  = o 0-1), but D(.i. o 0-1) is the matrix 

— thus for the components of v, v1  —> = (this is the transformation formula of 
a xd 
a vector which was introduced in the preceding section). 

In what follows when using local coordinates, we will omit as much as possible to explicitly 
write the morphisms 0 and ec. 

We can then show that the union T(M) of the tangent spaces UqEM  Tq(M) can 
naturally be structured as a differentiable manifold of dimension 2m. 

We call 11 the natural projection 11 : (q, v) E T(M) 1—> q E M. Its inverse image 
(q) is the tangent space Tq (M). 

Definition 5. We call vector bundle a quadruplet (X, M, 11,F), where X is the manifold, M 
a submanifold of X, 11 a surjection of X onto M, and F a vector space such that for 
each point q E M there exists a neighbourhood U of q whose inverse image rrl (u) is 
diffeomorphic to M x F. F is called the fibre. 

From this definition results that T(M) is a vector bundle. The fibre F above each 
point q of M is the tangent space Tq(M). We call T(M) the tangent bundle. A local 
coordinate system for T(M) is given by (x1 , ... xm, v1 , ... vm). 

A.2.2 Differential of a Mapping 

If f : M1  —> M2 is a differentiable mapping, i.e. if in local coordinates, it is given by 
differentiable functions, it induces a mapping, the differential of the mapping, Tq(f) at 
each point q E M1. If v E M1  and if u is a curve t E R H u(t) E M1  such that u(0) = q 

du(t)  and  = v then3  
dt t=o 5  

d 
Tq(f)(v) = —

dt 
f (u(t)). (A.19) 

  

2  The identification is straightforward only as long as we remain in the same chart. 
3  Rigorously, the differential of the mapping at q should be written as 

Tq(f) = E.) 12 (f (q)) o D(.2 o f 0O 1 1) eci (q) (A.18) 

and is independent of the choices of the charts C1 and C2. 
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It extends to a mapping T(f) : T (Ml ) —> T (M2) given by 

T(f) : (q, v) H (f (q), T9(f) • v). (A.20) 

We can check that for h=f og then T(h) = T(f) o T(g). 

A.2.3 Vector Fields 

An r-times differentiable vector field X is a mapping Cr of M in T(M) such that I-1.X = 1. 
In a local chart, we have X : q —> (q, u(q)). In practice, we often omit to write the 
reference to the point q of the basis. 

A vector field X makes it possible to define, on a manifold, curves whose tangent 
vectors at each point are given by X. More precisely, if t —> u(t), is a curve on M, it will 
be called the integral curve of X if at each point, the vector tangent to the curve is equal 
to X. 

To each vector field X, we associate a differential equation ii=Xou which can be 
written in a chart 

• dui  (t) 
u =  = 

dt
(u(t)), i = 1, . . . , m (A.21) 

with the initial condition u(0) = go. 
Under very general conditions, for example X being a C°° vector field, there exists a 

local solution, i.e. an interval I = {—a, a}, and a neighbourhood V of qo such that 

otx go —> u(t, go) (A.22) 

is, for t E I, a diffeomorphism of V into a neighbourhood of M and u(t, qo), a solution 
of (A.21). 

The diffeomorphisms IX form (at least locally) a one-parameter group 

th X 0  0X = thX 
t2 +t2 • (A.23)  

the local flow of X. 
Reciprocally, if we know a one-parameter group of diffeomorphisms, we can associate 

with it a vector field 

dOx  
X— 

d; t=0 

(A.24)  

  

Let now f E Co be an infinitely differentiable function with compact support and 
consider the function t —> f o Otx. We define the Lie derivative Lx associated with the 
vector field X by 

Lxf =  
dt

f o Oic  
t=0 

(A.25) 
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In terms of coordinates, if q(t) = u(t, q(0)) is a solution of (A.21), then (f o tx)(q) = 
f (q(t)), and formula (A.25) can be written as 

 

af a qi  
= — 

t=o aql at 

  

Lxf = —dt f (q(0) 
af 

= (q) = xf• 
a =0 q 

(A.26) 

  

We thus see that on functions, the Lie derivative is nothing else than the derivative along 
the vector X. 

A.2.4 Cotangent Bundle 

The dual space of Tq(M) (the set of linear mappings of Tq(M) in R) is the cotangent 
space Tq* (M). 

Remark: At the opposite of all the notions precedingly defined and which are independ-
ent of the choice of the atlas, we saw in section A.1.4 that we cannot canonically 
identify Tq(M) to its dual space Tq* (M). In contrast, the space of the linear forms 
on Tq* (M), i.e. the dual Tq** (M) of Tq* (M), is identical to Tq(M). 

A vector bundle structure can be put on the union T* (M) = Uq q  T*  (M) • 
We saw in section A.1.4 that the differential of a function at the point q E M was an 

element of T* (M). 
If f E C°°  (M), formula (A.14) gives, in local coordinates, the action of the differential 

df, at q, on the element v E Tq(M). Formula (A.26) shows that this is the action of the 
Lie derivative on f: 

(df , v) = Lz f (q). (A.27) 

The differential is a vector, i.e. a contravariant tensor of degree 1. 

A.2.5 Tensors 

We reproduce in this section the content of section A.1 but this time in the framework 
of the theory of manifolds. 

A.2.5.1 Natural Bases 

We now give a global justification to the content of section A.1.4. For clarification, let 
C = C(U, 0) be a chart and 0(q) = E eixi  where {et } is a basis of Rm. The inverse 
mapping Oil  (q) associates with it a basis in Tq(U) symbolically noted I 

a ql 
or at. This 

partial derivative is the Lie derivative with respect to the inverse image of ei by ec: on 
a function g E C°°  (M),

(e.)
ag ) = . To an arbitrary vector u jej of Rni corresponds 
a ql  

the differential operator ul To simplify the notations, we will merge any time there 
a qz  

are no ambiguities, the basis —a with its image under ec: . 
a ql axi 

By duality, the corresponding basis in Tq* (U) is noted {dqi} : it is the basis for the 
linear forms on Tq (M) and (dqi, aj) = 8.1; . 
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Remarks: 
1. For the same reasons as in the previous section, the notation dql is not 

fortuitous and corresponds to the differential of q1; 

2. For M = Rm or in an open set U C M, we will use x instead of q in all these 
formulae (since e 1). 

A.2.5.2 Change of Basis 

We now define the effect of changes of basis on Tq(M) and 777  (M). 
Let us first see how a vector field X : M —> T(M) is transformed by a diffeomorphism 

0 : M —> N. It induces on tangent fibres, the mapping T(0) that we saw previously 
and on X a mapping 0*X T(0) o X o 0-1. 

To not repeat, we will suppose that locally 0 is given by the linear mapping L : x 
Lx It follows that 

a axe a a 
= 

axi 
ai — = = = (Ltr491 (A.28) 

and since 

vi al = viai = = L (A.29) 

then 

= Piz'. (A.30) 

Thus in local coordinates T(0) : (xi, v') E Tx (M) 1--> (Li  k xk  , L IV) E T1 (N) and 

0*X : (xi, u') H (xi, Liivi(L-1  x)). (A.31) 

In the same way, we can study the mapping T* (f) induced by f on the cotangent 
bundle. Remarking that a1  = L4dxf, we find that 

T* (f) : ( (Lik xk  , (A.32) 

A.2.5.3 Definition of Tensors 

Definition 6. A r-times contravariant and a s-times covariant tensor at q is a multilinear 
mapping 

Tq* (M) x Tq* (M) x • • • x Tq* (M) x Tq(M) x Tq(M) x • • • x Tq (M) —> R. (A.33) 

r—times  s—times 

We note (Tq)sr(NI) the space of tensors of type (r, s) at q E M. 

The union of these spaces, for all points of M, can be given a structure of fibre space 
which will be noted Tr (M). 
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Examples Multilinear mappings are known when we know them on a basis. Therefore, 

we will define a basis for contravariant tensors. On T* (M), a basis of the linear 

forms is given by el, . , em, basis of the dual space Tq(M). Therefore, if v*1, . , er 

are r elements of T* (M), the equation 

((v*1, , er), ei1  0 ei2  0 • • • 0 eir ) = (v7, ei2 ) . . . eir ) (A.34) 

defines a multilinear mapping on 

Tq* (M) x Tq* (M) x • • • x Tq* (M) , (A.35) 

r—times 

which is noted ez, 0 ei2  0 • • • 0 eir . Each ei1  0 ei2  0 • • • 0 eir  is a tensor of order r. 
The set of these tensors forms a basis of the r-times contravariant tensors. 

On this basis, a tensor is written as 

t = E 1 ei2 g • • • g eir, tih"" r  = t(i)  E R. (A.36) 

{i} 

Definition 7. The mapping, t : M Ts (M), such that 11 o t = 1 is an r-times 
contravariant and s-times covariant tensor field (or tensor). We note Tsr(M) the set of 
all these tensor fields. 

Examples 

1. The differential of a function df is a covariant vector field. 

2. Locally a tensor field can be written as 

E a. 0 • • • 0 air  de 0 • • • 0 de. (A.37) 

The t(i)  are the components of the tensor field. 

A.2.5.4 Law of Transformation 

A diffeomorphism : M1  —> M2 induces an isomorphism 0* : Tr(Mi) —> Tsr (A42) 
such that the following diagram is commutative 

All 3  q 

it(q)  
Tq)sr  

 

> 0(q) 

lo*t(k(o) 

> (TP(q))sr  

 

Tq(C®...®Tq(C®Tq (SO®. • .0 T; (0) 
(A.38) 
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with t E (M) and 

0* t = T(0) 0 • • • 0 T(0) 0 T* (0) 0 • • • 0 T* (4)) ot o 4)-1  . (A.39) 

 

r—times s—times 

  

Here T (4)) and T* (4)) are, respectively,4  the mappings induced by 0 between the tangent 

and cotangent bundles. 

Examples 

1. If M = III' and 0 : x —> x + a, a E Rrn, then 

T(0) : (x,u) H (x+a,u) (A.41) 

and 

T* (0) : (x,v) H (x+a,v). (A.42) 

A tensor 

t : x (x, (x)ai, 0 • • • 0 az, 0 dxi' 0 • • • 0 this) (A.43) 

becomes 

0* t : x H (x, (x-a)ai, 0 • • • 0 air  0 dxi' 0 • • • 0 dx's). (A.44) 

2. If M = 1I8m and 0 : xi  H Lik xk  

then 

T* (0) : , dxi vj) H (Lik xk  , dxf (L-1)11 v (A.45) 

For the covariant indices, L must be replaced by (L-1)tr; thus 

0* t : x (x, ai, 0 • • • 0 air  0 dxil 0 • • • 0 dxis . . . Linr.,,(L-1);11  ... (A.46) 

cui tm,,...,mr (L-1 x)) 

3. If g E C°°(M): 

0*dg = d(g o 0-1). (A.47) 

4  In a chart, we have for T* (4)) a formula similar to (A.20): 

T* (0) : (q, v) (q(9),  (T (0-1  ))ir (q) • v). (A.40) 



Appendix A: Tensor Calculus 875 

As already remarked, it is possible to add and multiply tensors at the same point. 
However, this is only valid for tensors of the same type. 

We can multiply two arbitrary tensors. This defines a mapping 0, the tensor 
product, 

y
s
r
l
i x  y 

s
y
22

r (A.48) 

This mapping is associative and distributive 

(t1  0 t2) 0 t3  = 0 (t2  0 t3) (A.49) 

t1 0 (at2  + pt3) = at1  0 t2  + pt1  0 t3. (A.50) 

A.2.6 Lie Derivative 

Let us see now how the one-parameter groups of diffeomorphisms 'I act on tensors 
S ETS.  

The way, using OX, to go from xo  to x(t) is a change of coordinates; we define the 
law of transformation of the components at xo by 0 

X — Sk1—kr aXil 
— 11 ••••,5 • 

axioi 

axis axoli axoir 

ax'o 
axk, axkr (A.51) 

Remark: since Otx (x0) = x(t), to compare the tensor S at point xo with the transformed 
tensor, we must pull it back from x(t) to xo. This is done using the property that 
a diffeomorphism 0 of M induces the diffeomorphisms T(0) and T* (0) of the 
tangent and cotangent bundles. Thus, a vector v E Tx(M) will be compared to an 
element of Tx(t)  (0X). The transformed tensor at the point q can then be written as 

(02ct )* S = T (.0 ct ) . . . T (0xt ) T* (0xt ) 0 T* (Oxt ) oSo0 tx  

giving formula (A.51). 

This makes it possible to define the Lie derivative 

LxS = 1(0_x )
* 
S 

=o 

(A.52)  

(A.53)  



876 Appendix A: Tensor Calculus 

ax, ax,  In coordinates, using the facts  that ax` = + + o(t) and ° = t— + o(t) we get a axi xl 
84 84 

(Lx;;:  
= xk jr  

axk 
axk 

+ s1..ir  ki  j.2....j.s  

•

axjt 

i k a X ir  
— s?1••• r 

.11—ls axk 

axk  axis r  axk 

(A.54) 

Obviously LxS E T.  The Lie derivative Lx is compatible with the algebraic properties 
of tensors: 

1.  

Lx (f + g) = Lx (f) + Lx(g). (A.55) 

2.  

Lx (f .g) = f .Lx(g) + g.Lx(f). (A.56) 

3. The Lie derivative commutes with contractions. 

We recover the preceding definition, applying formula (A.54) to a function. Thus, with 
a (1, 0)-tensor Y, we find that 

and thus 

a Yi • a Xi  
LxYi =Xi— — 

axj a Yi 
(A.57) 

LxY = —LyX. (A.58) 

Theorem 25. Let f be a function 

kyyf = ax(ayf)—ay(axf)= [ax,ay]f • (A.59) 

The bracket of the operators ax and ay is a first-order differential operator: the vector 
field Lx Y. 

The vector field [X, Y] = LxY is called the Lie bracket of the fields X and Y. 

5  Equation (A.21) can be written as an integral, x(t) = xo + fo  X(x(s))ds, with x instead of u. Thus, for t 
small enough, x(t) = xo + tX(x0) + o(t). By derivation, we get the following two formulae. 
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A.2.7 Riemannian Structure 

Let us introduce a new structure on the manifold M which makes it possible to identify 
the tangent and the cotangent bundles. 

Definition 8. If on the manifold M, there exists a 2-times covariant symmetric and non-
degenerate vector field g E T2 (M), then M is said to be a pseudo-Riemannian manifold. 
If g is positive, M is a Riemannian manifold, and g is its metric. 

In local coordinates g = gikdxi 0 dxk, which is generally noted gij dxlcix , and non-
degenerate means det(gik  (q)) # 0, Vq. 

We will suppose from now on that there exists a metric. 

Examples On a pseudo-Riemannian space, g defines a linear bijection T q(M) ± 
(M) 

Vq E M : v = viei —> vi = gikvk, (A.60) 

the e1  generating the dual basis: (ei, e') = 82 and we can define a scalar product (, ) 
between two vectors x,y by 

(x,y) = xi  Aix'. (A.61) 

This allows us to speak of covariant and contravariant components of a vector and by 
extension of a tensor. The tensor g can be used to lower or to raise the indices. To this 
tensor is associated a 2-times contravariant tensor by 

ik 
g gkj = j• (A.62) 

It is also possible to define the scalar product of two covectors by a formula similar to 
(A.61). If X' and 5, are two covectors obtained by lowering the indices of two vectors x 
and y, then the two scalar products are equal: 

,5,) = xigt1  = xi  gifyi = (x, y). (A.63) 

Because of the existence of a metric, we can speak of the symmetry or of the anti-
symmetry of a linear operator A, tensor of type (1,1). In fact, the effect of this operator 
on vectors is given by the matrix elements Al, and Ay  = gikAil defines a bilinear form on 
vectors. 

Definition 9. A is symmetrical (respectively antisymmetrical) if the quadratic form Ail  is 
symmetrical: Ail = Afi (respectively antisymmetrical: Ail = —41). 

Since the eigenvalues of an operator A is a well-defined notion, we can also speak of 
the eigenvalues of the corresponding bilinear form in a space with metric. 
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Definition 10. The eigenvalues of the bilinear form Aii with the metric are the eigenvalues 
of the operator A. 

Examples 

1. If A is a linear operator, TrAll and det All, which are built with the eigenvalues of 
A, are invariants depending on the metric. 

2. The invariants of the electromagnetic field F,, are the coefficients of the 
characteristic polynomial 

P,„ = det (F,„ —420 (A.64) 
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Differential Calculus 

B.1 Differential Form 

Let us consider a (0, 2)-tensor of components Tv. We can split it into a symmetrical 
tensor TS and into an antisymmetrical tensor T°. The components of Ta are 

= — (B.1) 

We have 

Ta = T i dx
1 

dx1  = T i (doci  ®dx' — dxi dxi) 

=E Ti!; (dxi  ®dx' — dxi dxi). (B.2) 

Let us introduce the notation 

dxi  A dxi = dxi  cloci — dxi dxi (B.3) 

This example and the notation we introduced can be generalised. 

Definition 11. Let Ep(M) be the space of p-times covariant totally antisymmetric tensor 
fields; its elements are p-forms. 

We set E0(M) = C°°(M) and E1  (M) = T0(/14) An element w E Ep(M) can be 
written in the natural basis of a local chart U as 

T = 0 • • • 0 eiP = E A • • • A dxiP 
ii <•••<ip  

1 
= A • • • A dx4  

P•
i (B.4) 

where the E C°°  ( U) are completely antisymmetric, i.e. 

(-1)a  COii ...iv (B.5) 



with 

(-1)a 

pi!p2! 
 (0)1),,,,...,(kp1 )(6°2)Cr(kp1+1 )...0"(kp1 -Fp2 )• 

cerESp 1  -Fp2  

(B.9) Wki ...kp1 +p2  
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a E Sp being a permutation of the p numbers , ip  and (-1)a being the sign of this 
permutation. 

The elements 

dx 1  A • • • A dxjP, it  < • • • < ip (B.6) 

form a basis for the p-forms. This notation generalises formula (B.3) and 

dx1' A • • • A dXiP = E ea(z1)  0 0 ea(4) = (-1)a  de(ii)  A • • • A de(iP ) (B.7) 
Cr EPp 

where by an abuse of notation we have written a(ii) the image of if  by the permutation 
a (i1, • • • , ip) —> a (ii , • • • , ip) • 

We define by A the exterior product of 2 forms. It is a mapping of Ep1  x Ep2  —> Ep1  +p2  

associative and distributive which to col  E Ep1  and to CO2 E Ep2  associates w = wl  A CO2 E 

Ep1"2  locally given by 

= wki  ...kpi+p2 dXki  A • • • A dX kP 1 +P2 (B.8) 
k 1  < <kp 1  +p2  

We can check that the exterior product of m 1-forms acting on m vectors vi E Tq(M), 

((w1 A CO2 A • • • A wm)(q),  v1  0 • • • 0 vm) = E(_00, (coi(q), yaw)  
i=i 

= det(wi(q), 

where the sum is on the m! permutations. 

Remark: if in local coordinates w = widxi  and v = vi ei then (co, v) = coivi. 
We easily prove the following. 

Lemma 16. Vcoi E Ep1, CO2 E Ep2  

CO1 A CO2 = (-1)PIP2CO2 A COI. 

With the use of the metric tensor, we can define an isomorphism 

(B.10)  

(B.11)  

(B.12)  

* : Ep En-p, p = 1,...,n, (B.13) 
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which to each p-form co 

1 
w = 11  A • • • A dxiP (B.14) 

P•i  

associates an (m — p)-form *co 

*to
1

1
1  

 g (Di . . . E ,...i„,dXiP+1  A • • • A dxim pi(m—p)!  

where 1g = detg I . 
We have 

*0* = (-0P(m—P)+si, 

where (-1)S =  detg  
detgl 

Remark: 

(B.15)  

(B.16)  

1. We check that on 1-forms col  = dx1  and cot  = dxf the exterior product 
coincides with the definition introduced at the beginning of the section. 

2.  

dxi  A dxi  = 0 (B.17) 

by antisymmetry. 

3. A basis dxi' A • • • A dx1P of Ep(Rm) is made, because of the antisymmetry, of 
Cm independent elements. 

4.  

dxi' A • • • A dxiP = 0 (B.18) 

if p > m, m being the dimension of space. 

5. On Dr, there is a canonical m-form (the volume form) 

dxl  A • • • A dxm  = dxz' 0 • • • 0 dxim , (B.19) 

where Ei,,...,„n  are the components of completely antisymmetric tensors such 
as = 1. 

6. On M, of dimension m, every m-form w is given locally by a number. In 
fact, there is only one such element in the basis dxl  A • • • A dxm (Oa (1,2,...,m) = 
(-1)a coi2.,). By a change of coordinates x —> x, this col ...m  transforms into 
Co l with 

...m = (B.20) 
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where J is the jacobian of the transformation 

= det() . 
axi 

7. If co and v are 2 p-forms, then W A *V = V A *W. 

(B.21) 

Exercise 2 Prove that if g is a (0, 2)-tensor generating a non-degenerate quadratic form 
(g), then setting I g I=  I detg 

1/ g dx1  A • • • A dx"' (B.22) 

is a tensor (it is the volume element for the metric g). 

We now define the interior product as the contraction of a differential form with a 
vector field. 

Definition 12. The interior product by a vector field X E T,1 is a linear mapping ix : 
EP(M) E p_i (M) 

ix(w) 
= ®w), (B.23) 

j=1 P  

where the contraction 17.1  has been defined in Appendix A.1.3. 

The interior product obeys a Leibniz graded rule. For p a p-form and y a q-form, we 
have 

ix (P A y) = ix(16) A + (—OPP A iX(Y)• 

It satisfies that 

iX(iY(W)) = -iY(iX(W)) 

and we have also 

[Lx, (W) = LYE (w) = i[x,17] (W)• 

Examples For p = 1, ix  (w) = (co, X) E (M). 

(B.24) 
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B.2 Exterior Differential 

Definition 13. The exterior differential is a mapping 

d : Ep(M) Ep+104)• 

Let w be a p-form 

1 • co = 7  E C(0dXil  A • • • A dX1P, C(0 E C°°(M), 

(i) 

its exterior differential dw is given by 

dco = —
1 E dC(0 A dxil  A • • • A dx4  

P! 

It satisfies the properties: 

(B.25)  

(B.26)  

(B.27)  

d(coi + CO2) = dw1 d(025  COI  E Ep(M) 

d(coi A w2) = (d(01) A w2 + (-1)pW1 A (d(02) if col is a p-form 

d(dw) = 0, co E Ep(M), p = 0,1, ,m. 
If 0 is a diffeomorphism, then ck*dw = di*w. 

Remark: d(dx'1 n•••A dx'P) = 0for0< p< m.  

Moreover 

Lx (co) = i x do) + dix(w). 

Examples If M = R3  and g = 1, identifying E0 with E3 and E1 with E2, we recover the 
elementary expressions of the differential calculus 

1. (dA = (VA 
2. *(dv), = (V x v), = (rotv), 
3. *(d*v) = V.v = divv. 

Exercise 3 Carry out in R3  the change to spherical coordinates of the volume form 
d3x = dx1  A dx2  A dx3. We find with the polar coordinates (r , 0): 

r2  sin B dr A d6 A dq. (B.28) 

Definition 14. A p-form w is closed if and only if dw = 0; it is exact if and only if w = dv 
for v E Ep-1(M)• 
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Lemma 17. If M is a star-shaped open set of Rm (a subset S2 of Rm is star-shaped if there 
exists a point p E Q such that every segment linking p to another point of Q is entirely 
inside Q), then dw = 0 implies that w is an exact form. 

Since in Rm every neighbourhood contains a convex set, it results that locally every 
closed form is an exact form. 

We can also introduce the codifferential S : Ep  —> Ep_1  which generalises the notion of 
divergence. We have 

8 *d  *(_1)m(p+1)-f-s (B.29) 

and 

d  = *8 * (_opm-f-1-Es (B.30) 

B.2.1 Integration 

If M is a manifold of dimension m, an m-form defines a measure on M. 

Definition 15. M, of dimension m, is an orientable manifold, if there exists an m-form Q 
which is nowhere zero. 

Examples 
1. an open set Rm is orientable, its m-form is dxl  A • • • A dxm. 
2. the tangent bundle is orientable, even if M is not orientable. 
3. since S2 is different from 0, every m-form can be written as f S2, f E 

Let us suppose M is orientable and let S2 be the associated form. In a local chart 
(U, 0), the restriction of S2 to U is, according to 3), of the form w(x)dx1  A • • • A dxm. 
Supposing w > 0, one defines the integration of an m-form with support in U by 

f S2 f = f 0* (S2 f) = f °°  dxl  Tx)  dx2  . r  dxmw(x)(f o 0-1)(x). (B.31) 
-00 -00 -00 

The value of the integral is invariant by diffeomorphisms. This makes it possible to 
give an intrinsic definition of the integral over M by a covering with local charts: if 
f = Ef„ each fi  having its support in an open set U1  of the atlas. Thus, 

L, = E f (S2.ii). (B.32) 

The following theorem generalises the Green and Gauss-Ostrogradski formulae. 

Theorem 26 (Stokes' theorem). If M is an orientable manifold with boundary, of 
dimension m and if w is an (m -1)-form with compact support 

dco = 
am

(B.33) 
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Remark: If w = dv, another application of Stokes formula leads to a(am) = 0. The 
boundary of a manifold has no boundary. 

Let us give some examples. 

1. Let M = [a, b) be an interval of R, and letf E EI,3 a function with compact support 
on M 

f 

a

b 
df = —f (a). (B.34) 

If the support of f is not compact, then f (b) # 0, and Stoke's formula (B.33) is 
not true. 

2. Let us consider in R2  a 1-form T and a domain U, with boundary au, we have 

f
au 

 T = f
tj 
 dT (B.35) 

or in coordinates 

aT aT 
maxi + T2dx2) = f (— _

\dxi  
fau u  ax2 axl 

A dX2. (B.36) 

This is Green's formula. When au is a closed curve, i.e. given by x(s), 0 < s < 1 
and x(0) = x(1), we note the first integral of formula (B.36) by 

T. 
fau  

(B.37) 

3. Let us consider in the Euclidean space R3  a 2-form T and let V be a domain with 
boundary a V, then in coordinates 

v 2
1 i • f (07'12 07'23 + T31 dx1  dx2 dx3. - TijdX A dx' = 

V ax3  axi ax2 (B.38)  

Remark that introducing the 1-form B =* T (with the Euclidean metric) the pre-
ceding expression can be written as B = (B1, B2, B3) and the surface element dS, 
dS' = 2 Eilk dx/ A dxk, 

fa  v 
 B.d S = f (div B) dx1  A dx2  A dx3  = f *8B, (B.39) 

the first equality being the Gauss—Ostrogradski theorem. 

4. Let us consider in the Euclidean space 1113  a 1-form T and let U be a surface with 
boundary au-, then in term of coordinates 
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Tidxi  = f dT = f rotT.dS, (B.40) 
fau 

where 

1 
(rot T)1 = 

2 —Efka•Tk• (B.41) 

Remark: in the cases described earlier, the boundary of the domain is not necessarily 
made out of only one connected part. In these cases one difficulty remains: which 
sign to give to the integrals on the different connected components of the boundary 
if there are more than one. An answer can be given in the cases where the domain 
of integration is a submanifold of an orientable manifold M by following the sign 
of the normal vector to the curve or the surface. 

To conclude, we will give a proof of Cauchy formula as a consequence of Green's 
formula. 

Let us consider the complex plane C with generic points (x,y) and set z = x + iy and 
= x — iy. Every function of (x,y) can be considered as a function of z and z, and 

a = a a a = a a 
+i 

 
az ax ay ax ay.  

(B.42) 

Let D be a bounded open set of C whose boundary OD = C is sufficiently regular 
(piecewise C1 ). If f E C1  (D) (D the closure of D) is a complex valued function, by 
applying Green's formula, we get 

dz = f df A dz (B.43) 
aD 

or, noting that df = gdz,  A dz, 

f (z, dz = 2i f dx A d 
= 

f of di A dz. (B.44) 
faD D  D a z 

The function f is called analytic in D if the Cauchy—Riemann conditions 

or 

of 
 o az 

au _ av av au 

ay ax
_ 

ax 

(B.45)  

(B.46)  

are satisfied, u and v being respectively the real and imaginary parts of f. In this 
case, according to formula (B.44), the form f(z,,5')dz is closed. Remark that the 
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Cauchy-Riemann conditions (B.46) can be written as Af = of = 0 or equivalently 

df = f dz where f = , f
,2
,. We deduce the following: 

1. every polynomial of z is an analytic function, 

2. fc  zn clz = 0 for all n > 0, 

3. fc  z'dz = 0 for all n > 0 if C is a contour which does not contain the origin of 
coordinates, 

4. 36C z-ndz, n > 0, is independent of the contour C, circling around the origin 
of coordinates. Therefore taking for C a circle, oriented clockwise and centred 
at the origin, we have with z = e'9  that the only non-vanishing integral is for 
n = 1 and 

f z-1  dz = 27i. 
c 
  

Lemma 18 (Cauchy formula). Let be f E Ci  (h), then fort E D 

1 ( 1 f (z) 

f“.)  = 27ri V ap z- '' dz  + f 
afia
Z  — 

dZ A d,2) 
D  

(B.47)  

(B.48)  

We prove the lemma by applying Green's formula (B.44) to f (z)I(z-O in DE  obtained 
from D by removing a small disc of radius E centred at the origin. We therefore get since 
(z - 0-1  is analytic in DE  

27r aflaz,  _ /'

JDE  z
_ dz A dz = f —

f (z)
dz - f f (' + Eei9 )idt9 (B.49) 

aD Z — o  

and the lemma is proved by letting E go to 0 and using that f is continuous in a 
neighbourhood of . 

For a function f, analytic in D, formula (B.48) reduces to 

f(° 27ri JaD 

1

2 
 , 
(z) 

.dz 

and consequently the following lemma. 

Lemma 19. If f is analytic in the disc Dr  = {z; I z l< r}, then 

f (z) = Ef"(0)±. 
n! 0 

(B.50)  

(B.51)  
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The series is uniformly convergent on every compact subset of Dr  and the nth 
derivative f"(0) is given by 

1 (0) = n! f .1..) c1 .  
27ri y n+1  - 

with the contour y C Dr  surrounding the origin. 

(B.52) 



Appendix C 
Groups and Lie Algebras 

C.1 Lie Groups 

C.1.1 Definitions 

We recall that a group G is a set with a product law such that 

1. gig2  E G for all g1,g2  E G. 

2. (gig2)g3  = gl (g2g3) for all gl,g2,g3 E G. 

3. There exists in G a (unique) element e, the neutral element, such that eg = ge = g 
for all g E G. 

4. For each g E G, there exists an inverse g-1 such that gg-1  = g-1  g = e. 

A subgroup H of a group G is a subset H C G such that if g1, g2  E H then gig-21  E H. 
A subgroup is a group. 

If H is a subgroup, the set of elements {Hg}gEG  is the quotient space G/H of G by H. 
Hg is the right equivalence class of g. 

If the subgroup H is distinguished, that is to say, for all g E G, gHg-1  = H, the 
quotient space G/H is a group: the quotient group. 

The set of elements of a group which commutes with the other elements of the group 
forms a commutative subgroup called the centre. 

Definition 16. Let G and G' be two groups. A mapping f of G into G' is a group 
homeomorphism if 

f (srig2) = f (sri) f(g2) Vgl g2 E G. (C.1) 

If e' is the neutral element of G', its inverse image, Kerf = f-1(e'), is the kernel of the 
mapping. If the mapping is surjective, f(G) = G', and injective, Kerf = {e}, it is an 
isomorphism. 

We check easily that the kernel of a group homomorphism is a subgroup. 

Definition 17. A group automorphism G is an isomorphism of G on itself. 
It is an inner automorphism if, for some h E G, it is given by 

G 3 g H hgh-1  E G. (C.2) 

An element like hgh-1  is called the element of g conjugate by h. 
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C.1.2 Representations 

Let G be a group and V be a vector space on R or on C. 

Definition 18. A representation of the group G on the vector space V is a mapping 7 of G 
into the linear operators of V such that 

1. 7 (e) = 1, is the identity operator on V. 

2. (g1g2) = (g1)7  (g2) Vgl ig2 E G. 

A representation is indeed a homomorphism of G in the group of linear operators on V. 

If W C V, W is an invariant vectorial subspace for the representation 7 if 

7 (g)W c W Vg E G. (C.3) 

A finite-dimensional representation is a triplet (G, V, n- ) such that V be of finite dimension. 
The dimension of V is called the dimension of the representation. If dim V = n, the 
operators 7 (g) are the n x n matrices . 

A representation such that 7 (g) = 1, the identity of V, is called trivial. 
If 7 (g) is a finite-dimensional representation, the traces of the matrix elements (g) = 

Trn (g) are called the characters of the representation. 

Definition 19. Two representations 7 and it of G, respectively, in V and P are equivalent if 
there exists a bijection given by the linear operator A : V —> P such that 

An (g) = n (g)A Vg E G. 

If n-  is a representation of G in V whose only invariant subspaces are V and 101 then 
7r is an irreducible representation. 

Lemma 20 (Schur's Lemma). Let 7 and it be irreducible representations of G, re-
spectively, in V and V. Suppose there exists an operator A of V in V such 
that 

An (g) = ft (g)A Vg E G. (C.4) 

Then either A = 0 or A is a bijection of V on P 

Proof. Let W = {x E V;Ax = 0}, formula (C.4) shows that n- W C W. Thus, W is 
an invariant subspace. If it is an empty set, then A is injective and if it is the whole 
space V then A = 0. Let now W = AV, formula (C.4) shows that ft W C W. 
Again, as already argued, the irreductibility of it means that either A is surjectif or 
A = 0, which closes the proof of the lemma. 

The following lemma, which is the usual application of Schur's lemma, follows from 
the preceding lemma or can be directly proved. 
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Lemma 21. Let 7 be a irreducible representation of G in V. If A is an operator which 
commutes with all the elements of the representation, then A = Al, A being a number. 

Proof. Since A is a linear operator in a finite-dimensional space, it has at least one 
eigenvalue A. Then W = {x E V;Ax = Xx} . The fact that A commutes with 

the elements of the representation means that Eq. (C.4) is satisfied. Therefore, 

this means also that W is an invariant subspace and, consequently, because of the 

irreducibility of n, W = V since A # 0. 

Definition 20. Let 71  and 72  be two representations of a group G in, respectively, V1  and V2, 

vector spaces of finite dimension. We call tensor product 7 1 072  of the two representations, 
a representation n in the vector space V = V1  0 V2, the vector space tensor product,1  
such that for all vi  E V1 and v2  E V2  and for all g E G 

7  (g)(V1 0 v2) = 71 (g)V1 0 72 (g)V2. (C.5) 

The tensor product of two irreducible representations is not an irreducible representation. 
It splits into a direct sum of irreducible representations, each one with a given multiplicity. 

Definition 21. Let X,, i = 1,...,m, be m vector spaces of finite dimension over the same 
field K. Their direct sum X = X1  e  • • • e  Xm  is the vector space over K of elements 
(xl , • • • , xm) obtained by defining on the Cartesian product X1  x X2  • • • x Xm  two 
operations 

• (xi, " • xm) (Y13 " • 3Y)/1) = (Xi -1- .Y13 • " xm +YM) 
• A(X1  • • • Xm) = (XX1 , • • • Ax,n) 

for any E K and for any (xl , • • • , xm) and (yi , • • • ,y,n) in X . 

The dimension dim X of X is such that dim X = dim X1  + • • • + dim Xm  

Definition 22. Let X,, i = 1,...,m, be m vector spaces of finite dimension and let 7, be m 
representations of a group G in the corresponding spaces. The direct sum representation 
Jr = n-1  e  • • • e  n-m is defined in the direct sum vector space X = e  • • • e  Xm  by, 
for all g E G and for all x, E (Xi, Xm) E X , 

(g) (X1 • • • xm) = (71 (g)xi, • • • 7rm(g)xm). (C.6) 

This representation is highly reducible, since by construction, each Xk is an invariant 

subspace. A representation n-c, appears in the sum with the multiplicity k if k of the 

representations {7,},=1,...,m  are equivalent to n-(,. The matrix of the operator 7 (g) in X is a 

matrix with blocks of dimension dim(X1), i = 1,...,m, on the diagonal and 0 elsewhere. 

1  The tensor product V of two vector spaces E and F is a vector space V = E 0 F such that there exists a 
bilinear mapping of E x F in V given by (x x y H x y for all x c E and y c F), the tensor product of the 
vectors of the basis ei ® f generating a basis in V. 
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Let V be the space of a representation 7 of a group G. Suppose there is on it a bilinear 
Hermitian form ( , ) (if v, w E V, (v, w) = (w, v)), 7 is a unitary representation if Vg E G 
(7r (g)w, n (g)v) = (w, v), that is to say the 7 (g)'s are unitary matrices. 

C.1.3 Lie Groups 

We first give a general definition of Lie groups and then restrict to a subcategory: the 
matrix Lie groups. 

Definition 23. A Lie group G is a group which has the structure of a differentiable manifold 
such that the mappings 

1. (/):G—>G with tb(g) = g-1  
2. ifr• :Gx G—>G with ifr(g,h) = gh 

are differentiable. 

All the Lie groups we will study are subgroups of the groups GL(n, R) or GL(n, C), 
the groups of the n x n matrices, with non-vanishing determinant on R or C. 

Lemma 22. The groups GL(n, R) and GL(n, C) are Lie groups. 

A E GL(n, R) if det A # 0. We easily check the group structure. The manifold struc-
ture can be seen as follows. The fact that the determinant is non-zero means that it is 
an open set of Rn2, or more precisely of the ring M(n, R) of the n x n matrices. We 
can take the matrix elements Al for coordinates in M(n, R). We check easily that to take 
the inverse of a matrix in GL(n, R) or to make the product of two such matrices are 
differentiable mappings (indeed C'"). 

We now give some examples of matrix Lie groups. 

1. The rotation group O(n, R) of dimension n. 
It is the group of real displacements in the Euclidean space W which leave fixed 
a point. A E 0(n, R) if A E GL(n, R) and AuA = 1. The A's are the orthogonal 
matrices with determinant ±1 (because det AtrA = det Au  det A = (detA)2  = 1). 
The hypersurface generated by the group in Rn2  is given by the system of 
equations 

= k (C.7) 

It corresponds to n(n + 1)/2 equations. Therefore, the manifold of the group is of 
dimension n2  - n(n + 1)/2 = n(n - 1)/2. 

2. The group SO(n,R). 
It is the subgroup of the group O(n, R) made of matrices of determinant 1. It has 
the same dimension as O(n, R). It is the connected component of this group which 
contains the identity. 
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3. The group SL(n,R). 
It is the group of order n matrices with determinant equal to 1. The manifold of 
this group is defined by det A = 1. Its dimension is n2  — 1. 

4. The unitary group U(n). 
It is defined in the space of complex matrices of order n by 

UU* = 1. 

In term of coefficients, this is equivalent to 

LP. = S. k lk' 

We can check that the system (C.9) corresponding to n2  real equations. Therefore, 
the dimension of the manifold2  is 2n2  — n2  = n2. 

5. The unimodular group SU (n). It is the subgroup of U(n) made of the matrices 
with determinant 1. It has the dimension n2  — 1. 

6. The group SL(n,C). 
It is made of the complex matrices of order n and with determinant 1. Its 
dimension on C is n2  — 1 (or on R, 2n2  — 2). 

7. The group 0((p, q), R) (with p + q = n). 
It is the group of motions, leaving fixed the origin, in the pseudo-riemannian space 
Rn  with the metric g. The signature of the metric is (p, q). It can also be defined as 
the group of transformations leaving invariant the quadratic form (x,y) = (xi  giiyi) 
with (x, x) = (x1 ) 2  + • • • + (xP)2  — • • • — (xn) 2. 

The group 0(3, 1) is the Lorentz group. 
If G is the matrix group defined on we call identical representation, the 

representation 7 such that 7 (g) = g. 

Exercise 4 Check that the identical representations of GL(n, K) and of SL(n, K) 
are irreducible, K being R or C. 

Some of these groups are studied in detail in this book because they play an important 
role in physics. 

C.1.4 One Parameter Subgroup. Tangent Space 

The Lie groups being manifolds, we can study the tangent space at a point. It is usual 
to take for point the neutral element. In fact, it is possible by a group action to move the 
tangent space at a point to the tangent space at the neutral element. To study the tangent 
space, we will consider the one-parameter subgroups of the group. 

2  The group manifold is not analytic since the derivatives of Eq. (C.9) with respect to U] are not zero. 

(C.8)  

(C.9)  
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The one-parameter subgroups are the parametrised curves on the group. A one-
parameter subgroup t i--> g(t) E G going through the neutral element is defined by 
the properties 

g(0) = 1 (1 is the notation for the neutral element of the group), 

g(ti + t2) = g(ti)g(t2) which implies that g(-t) = g(t)-1. 

We associate with g(t) a vector, element of the tangent space, by 

A = g(t)-idg(t)  . (C.10)  
dt 

We check first that A is independent of t. Consider 

dg(t) _ dg(t + s) 

in fact g(t + s), we have 

5 

S=0 

(C.11)  
dt - ds 

thus using the group property g(t + s) = g(t)g(s), 

dg(t) = g(t) (dg(s) 

0) (C.12)  
dt ds 

and then 

A = dg(s) 

s=0 

(C.13)  
ds 

A is the generator of the one-parameter group. 
Conversely, the differential equation (C.13), with initial condition g(0) = 1, has, 

for t small enough, a unique solution. It is a one-parameter subgroup g(t). Using the 
multiplication law of the group, this is in fact a solution for arbitrary t. We then write 

g(t) = exp(At), (C.14) 

a notation justified by the following definition. 

dg(t) Definition 24. Let g(t) be a one parameter group with . = A. The mapping A —> 
, t=0 

g(1) is called the exponential mapping. It is a mapping from the tangent space of the 

group to the group. 

In the case of groups of matrices, the exponential mapping is the usual exponential 
of matrices. We set for A E GL(n, R) 
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°° AP 
exp(A) = E 7. 

p=1 

We have thus the following lemma. 

Lemma 23. Introducing the norm 1A1= (E •( 

1. The series (C.15) is convergent. 
2. If A and B commute 

(C.15) 

exp(A + B) = exp (A) exp(B). (C.16) 

3. If U = exp(A), then U-1  = exp(A). 
4. exp(A') = (exp(A))'. 
5. exp(tA) is solution of the differential equation (C.13). 

We usually write exp (A) as an ordinary exponential eA  . 
The set of the vectors A tangent to the group at the identity forms the tangent space T 

of the group. It is a vector space of dimension n, if n is the dimension of the group. 
We present here another approach, less intrinsic, but more intuitive of tangent space 

of the group. 
Let us study the tangent space of a Lie group G of dimension n. Let (x1 , • • • , xn) be 

a system of coordinates in the neighbourhood of the neutral element of the group 1 of 
coordinates (0, • • • , 0). In terms of these coordinates, the two differentiable mappings 
0 and 0' giving the inverse and the product can be written with g = (x1  , • • • , xn) and 
h  = (yi yn)  as  

(` (g)

( )

,xn) et (gh)  = (xi 5 xn
5y

1
5

y
n) = . . . n . 

(C.17) 
Developing these expressions to second order in x and y we obtain that 

(g, h) = ax' + byi  + aik xi xk  + yk
kx

i yk (C.18) 

Since IP.  (g,l) =1/' (1, g)   = g we deduce that a = b = 1. Since V/ (g, gri ) = (g,cb(g)) = 1, 
we deduce that at first order ci)i  (g) = —xi, and that ask  and bijk  are antisymmetric in j, k. 
Formula (C.18) can therefore be written as 

*i  (g, h) = yi  + yk (C.19) 

We define an alternated bilinear operation [, on T by 
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where x and y represent, respectively, the points of coordinates {xi} and tyi  1 . From the 
associativity of the product 

1  k (g, 1  k (h5 0) = lfr (ill (g5 h), 1) (C.20) 

we deduce the formula 

[x, [y, z]] + [y, [z,x]] + [z, [x, y]] = 0. (C.21) 

We give some properties of this space. 

1. Let gi (t) be a one-parameter subgroup of generator Al . Let us thus consider an in-
ner automorphism given by an element h E G: gi (t) i--> hg 1  (t)h-1  . Since hg 1  (t) 11-1  
is a one-parameter subgroup of G, we get by derivation that hAi lf l  E T: the group 
acts by conjugation on the tangent space. 

2. Let g1 (t) and g2  (t) be two one-parameter subgroups with, respectively, Al  and A2 

for generators. The commutator of g1  and g2  F(t, s) = g1 (t)g2(s)g-i 1  (t)g21  (s) is a 
two-parameter family of elements of G. Consider the derivative at 0 of F(t, s) with 
respect to s: 

H (t) = dF (t, s) 

ds 
= g1 (t)A2gi(t)-1  —A2. 

s=0 
(C.22)  

  

It is the sum of two elements of the tangent space, therefore an element of T. More 
precisely, it is a curve in the tangent space going through 0. Its derivative 

dH (t) 

dt 

is an element of the tangent space to T at A. Since T = Rn, T can be identified 
with its dual space and therefore the derivative (C.23) is an element of T. It can 
be written as [Ai, A2]. 

Exercise 5 Check that 

d2  

dt2
gi(t)g2(t)gT1(t)g21(t) = [Ai , Ad • 

t=0 

(C.24) 

  

The result of this exercise is that the bilinear form [, ] is antisymmetric. 

C.2 Lie Algebras 

C.2.1 Definition 

In section A.2, we introduced the notion of a Lie bracket [X, Y] of two vector fields 
X, Y. The bracket [X, Y] is an alternate bilinear form. We found the same structure 
when studying the tangent space at a point of a Lie group. 

(C.23)  
t=0 
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Definition 25. A vector space V with an alternate bilinear operation, the bracket, [,], is 
called a Lie algebra if every triplet X, Y and Z of V satisfies the following identity, the 
Jacobi identity: 

[X, [Y, Z] ] + [Y, [Z, X]] + [Z, [X, Y]] = 0. (C.25) 

The Jacobi identity can be obtained as the result of a derivation on the bracket. In fact, 
for all X E V, let us introduce the linear operator adX defined by ad X(Y) = [X, Y]. 
Then formula (C.25) can be rewritten as 

ad X[Y , Z] = [ad X (Y), Z] + [Y, ad X (Z)], (C.26) 

that is to say that adX acts as a derivation. We now give some examples of Lie algebras. 

Examples 

1. The vector fields in a domain of R" form a Lie algebra for the Lie bracket. In 
fact, if X = Xt and Y = Yi  

axi ay' 

[X, Y]z = = a Y1 
— 

axz 

ay • 
(C.27) 

2. The Euclidean vector space R3  with bracket given by the vector product A is a 
Lie algebra. 

3. An algebra of linear operators is a Lie algebra with a bracket given by the 
commutator of two operators. 

4. The space Mn  of order n matrices is a Lie algebra. If A, B E Mn  then [A, B] = 
AB— BA. 

5. The tangent space of a Lie group is a Lie algebra. 

The interest of the notion of Lie algebra is that because of the exponential mapping, it 
is possible, knowing the Lie algebra of a Lie group, to recover the connected component 
of the identity of this group. 

We introduced the notion of Lie bracket by studying the vector fields. We just saw 
that the tangent space of a Lie group has also a structure of Lie algebra. This naturally 
follows from the theorem 

Theorem 27. If X and Y are two vector fields of the tangent space Tx(M) of a differentiable 
manifold M, then their Lie bracket is also in this space. 

We give a proof in a simple case. Let us suppose that the manifold M is given by an 
equation f (xi, , xn) = 0. Locally, we can always suppose that by a change of coordin-
ates, it can be written x1  = 0. The fact that the vector fields X and Y are in the tangent 
space of M is equivalent to 

axf I f=0 = Lxf I f=0 = LY.f j=0 = 0, (C.28) 
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thus in our case 

x1  1 x1=0 x1  =o 0; yl 1
,0=0 

 = 0. (C.29) 

Therefore, 

. i  axl 
pc, 111 1x1=0 = (xi a Y  axi ) 

= 0, 
x1  =0 

(C.30)  

 

since X1 1 1  x =o leads that, in the neighbourhood of 0, XI  = xl  g(x) and thus 

a yl 

  

= 0 and 
axl 
axi 

= 0. 
x1 =0 

(C.31)  

   

x1=0 

      

If 7 is a representation 7 : G —> GL(n, R) of a group G, then Te(7), the induced 
tangent mapping at e (the neutral element) maps the tangent space at this point, that is 
to say the Lie algebra g of G, into the space of matrices M(n, R). This mapping is a Lie 
algebra homomorphism, that is to say 

Te(7)([A, BD = [Te(n- )(A), Te(n-)(B)] VA, B E g. (C.32) 

Te(7r) is a matrix representation of the Lie algebra g. 

C.2.2 Matrix Lie Algebras 

We list here the Lie algebras associated with the Lie groups introduced in the preceding 
section. 

1. The Lie algebra of 0(n, R). 
We start with a one-parameter subgroup g(t), that is to say an n x n matrix 
depending on t E R. By the definition of the group, we have g(t)g(t)' = 1. Differ-
entiating this condition with respect to t and taking the value at t = 0, we find with 
A = dg(t) 

t=0 

A' +A = O. (C.33) 

The Lie algebra elements are therefore all the antisymmetric matrices with real 
coefficients. We have that A E o(n,R), the Lie algebra of O(n, R). We can check 
that the dimension of the space generated by these matrices is n(n — 1)/2. It is as 
expected the dimension of the group (or of the manifold of the group). 

2. The Lie algebra so(n,R) of SO(n,R). 
It is the same algebra as that of O(n, R). In fact, SO(n, R) is a connected compon- 
ent of 0(n, R); therefore, it has the same tangent structure. We can also see this 
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analytically since the supplementary condition det g(t) = 1 leads3  by derivation to 
no new constraints. 

3. The Lie algebra of SL(N,R). 
From footnote 3 we see that taking the derivative detg(t) = 1 leads to Tr A = 0. 
The Lie algebra is made of traceless matrices. 

4. The Lie algebra u(n) of U(n). 
We easily checks that it is made of the anti-Hermitian matrices, that is to say those 
which satisfy A* + A = 0. 

5. The Lie algebra su(n) of SU (n) is a Lie subalgebra of u(n) made of traceless 
anti-Hermitian matrices. 

6. The Lie algebra sl(n,C) of SL(n,C). 
It is made of traceless complex matrices. 

7. The Lie algebra of the group 0((p, q), R) is made of the matrices A satisfying 
All' G + GA = 0, where G is the matrix associated with the metric g. 

To conclude, we will obtain some relations specific to the matrix Lie groups viewed 
as groups of transformations of Euclidean or pseudo-Euclidean spaces. We take as an 
example SO(3, R). 

An example of a one-parameter subgroup of the rotation group SO(3, R) is given by 
the rotations R3 (9), of angle ( 9, with z axis of coordinates 

( cos 9 — sin 9 0 
R3(9) = sin 9 cos 9 0 

0 0 1 
(C.34) 

The derivative at point 0 defines an element /3  of the Lie algebra of dimension 3 of the 
group. Considering the other rotations, we get the existence of 3 elements y1 ,72, and /3  

1 = 0= 0  
0 

( 

0 0 

0  
1 

0 

—1 ; 
0 

1 = 

0 

0 
1 

0 1 

0 0 ; 
0 0 

,73 = 
0 —1 
1 0 
0 0 

0 
0 , 
0 

(C.35)  

satisfying 

L71,721 = J3; 1  2,.731 = gi; 1  3,,h1 =J2. (C.36)  

These last relations show that so(3,R) is isomorphic to the Lie algebra of R3  (the algebra 
of vectors generated by A). The 3 matrices built in this way form a basis of this Lie 
algebra of dimension 3, that is to say the 3 x 3 antisymmetrical matrices. 

= eTr log  A 3  We can prove this assertion by using the fact that detA 
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It is possible to associate with each real (or complex) matrix` of order n a vector field 
Ty in R" (or Cn) by 

Tyx = X E W'. (C.37) 

The integral curves of these vector fields are defined by the differential equation 

= —/x (C.38) 

of solution 

x(t) = exp(—/t)xo (C.39) 

if xo = x(0) is the initial condition. 
For the rotations, we check easily that the three vector fields Tyi , i = 1, 2, 3, which are 

generally written L1, have for components 

Ty, = (0, z, y); Tj2  = (—z,0,x); Ty, = (y,—x,0). (C.40) 

Since we have seen that the Lie bracket of two vector fields is a vector field 

[Tx, Ty] = T[x,y] . (C.41) 

We deduce in our particular case, by linearity, that 

[Ty,, = T - [7,7i ] = TEigk = Elik Tik• (C.42) 

The differential operators associated with the vector fields aTy  (or the Lie derivatives 
LTy) are the so-called generators of the group. 

Examples Setting aTy,  = L„,, we have, with (x1, x2, x3) = (x,y, z) 

a a a a 
Lx  = z —

ay 
 — y—

az
; = x

az 
 — z —

ax
; = y—

ax 
 — x— 

ay 
(C.43) 

and the three generators satisfy the commutation relations of the angular mo-
mentum. 

The generators also make it possible to reconstruct the action of the group on 
functions. 

If f (x) is a function on W', under the action of the one-parameter group exp(—/t), it 
becomes 4)(4 x) = f (exp(—P)x). 4)(4 x) is the solution of the differential equation 

d 
dt

0(4 x) = —(9T3  0)(4 x) (C.44) 
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with the initial condition 4)(0, x) = f (x). We can write this solution as 

0 (t, x) = e`87:7 f (x), (C.45) 

where the exponential is defined by its formal expansion and has a meaning whenever 
the corresponding series is convergent. 

Examples The generator of the translation group in R is —dx  . A translation by a changes d 
a function f (x) in f (x - a). Formula (C.13) can then be written as 

1) a2  ,,, a3 
(1) 

f (x - a) = e-aaf (x) = f (x) - af ('' (x) + — f ``' (x) - —
3!

f`-'' (x) + • • • , 
2! 

which is nothing else than the Taylor expansion off around x. 

(C.46) 



Appendix D 
A Collection of Useful Formulae 

(The numbers in parenthesis refer to the sections in the book in which these concepts 
are presented.) 

D.1 Units and Notations 

• The standard high energy unit system c = h = 1 is used. 

• The Minkowski metric is denoted by g,„ or gp,„ whenever there is no risk of 
confusion with the curved space metric. 

It is given by /700  = 1, /hi  = -1, q,„ = 0 for µ # v. 

• The scalar product of two four-vectors p and q is denoted by pq = p° - p • q. 
The mass shell condition for a particle of mass m > 0 is: p2  = m2. 

• The invariant measure on the positive energy branch of the mass hyperboloid p2  = 
m2  is given by Eq. (5.16): 

d4p d3p 
df2„, = (27)8(p2  m2)9(p°) =  

(27)4 2(2n- )31,/p2  + m2  

• The Fourier transform of a function f (x) in d dimensions is defined by 

1  
l(p) = (27)d f dd  xe-11'f (x). 

• The SU (2) Pauli matrices are denoted by either a, or r and are given by 

(D.1)  

(D.2)  

U3=
(01  -01) •  

(D.3) 

• The SU (3) Gell-Mann matrices are denoted by A'', a = 1, ..., 8 and are given by 

0 1 0 0 -i 0 1 0 0 0 0 1 
1 = (1 0 0) X2 = i 0 0) A3  = (0 -1 0) = (0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 
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0 0 -i 0 0 0 0 0 0 1  1 0 0 
)`5= 0 0 0 ) = 0 0 1 ) = 0 0 -i =  =- 0  0 

( 
1 0 . 

i 0 0 0 1 0 O i 0 V 3  0 0 -2 
(D.4) 

D.2 Free Fields 

• Neutral scalar field 
- Lagrangian density (section 6.2): 

E = 2 [(00)2 m_01 (D.5) 

- Equation of motion (section 6.2): 

(❑  + 

m2

) = 0 (D.6) 

- Feynman propagator (sections 3.8, 6.2): 

  

   

(D.7) p2 m2 + iE 

 

- Expansion in plane waves (section 6.2): 

4)(x) = f dS2,„,[a(p)e 1  px a* (p)elPX1  

- Canonical commutation relations (section 9.4): 

[a(p), a* (p')] = (27)32copS3 (p-p') 

(D.8)  

(D.9)  

• Complex scalar field 
- Lagrangian density (section 6.2): 

   

E = ( 01LO) O A  4)*  - m200*  (D.12)  

- Expansion in plane waves (section 6.2): 

  

4(x) = f dS2,, [a(p)e-ipx b*(P)eipX] 

- Canonical commutation relations (section 9.4): 

[a(p), a* (p')] = [b(p), b* (p')] = (2n-  ) 3 20)1,8 3  (p - p') 

with all other commutators vanishing. 

(D.15)  

(D.16)  
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• Dirac field 
- Lagrangian density (section 6.3): 

G = WY (ip- m) WY 

- Equation of motion (section 6.3): 

(iP- m)tk = 0 

- Feynman propagator (section 6.3): 

i 

15- m + ie 

- Expansion in plane waves (section 6.3): 

2 

W = f dS2,n  E [ac, (k) um (k)e-ikx  + bl(k)v(")  (k)eikx ] 
a = 1 

(D.13)  

(D.14)  

(D.15)  

(D.16)  

- The elementary solutions satisfy the orthogonality relations (section 6.3): 

Tim (k)u(13)  (k) = 2m8"6 Ti")  (k)v(e)  (k) = 0 (D.17) 

'DM (k)v(13)  (k) = -2m8"3 F.)(")  (k)u(  fi)  (k) = 0 

- Canonical anticommutation relations (section 11.1): 

{as (p), ats, (p')} = (27)3  2cop8 3  (p - p') c,,, (D.18) 

{bs(p), bts, (p')} = (27)3  2cop8 3  (p - p') 8 „, 

with all other anticommutators vanishing. 

• Massless vector field in a covariant gauge 
- Lagrangian density (sections 3.6, 6.4): 

1 1 
G = --

4
F

IL 
„Fov  + —

2a
(aAAA)2 ; Fo, = a„Av —a,,A0 (D.19) 

- Equation of motion (sections 3.6, 6.4): 

eFo, + 1av a,Ao = 0 
a 

- Feynman propagator (sections 3.8, 6.4): 

1 MI kv  gu y  
k2  + ieL k2  (1 - a) 

(D.20)  

(D.21)  



Appendix D: A Collection of Useful Formulae 905 

- Expansion in plane waves (section 6.4): 

3 

A 0(x) = fdQ0  E [a(A) (k)E (k)e-ikx aw* (k)E ow* (k)eikx] (D.22) 
=0 

The four € vectors are called polarisation vectors and satisfy the orthonormality 
relations (section 6.4): 

3 E (A)  (k)e(x)* (k) 

" (D.23)  = goy; E (A)P  (k)E (A)* (k) =  
A=0 6 (A)P (k)6 1(9A)* (k)  

where, again, * means 'complex conjugation'. 

- Canonical commutation relations (section 12.5): 

[a(x)  (k), a(A')* (1i)] = -2k0  (2n-  )3  gur  8 3  (k -k').  (D.24) 

• Massive vector field 
- Lagrangian density (section 6.4): 

E  = __1  F2 1  _m2A2 
4 2 

(D.25) 

- Equation of motion (section 6.4): 

111A0  - 8d„ A° + m2A„= 0; m281`,40  = 0. (D.26) 

- Feynman propagator (section 6.4): 

1 kv 1 
 [e.  V  

k2  - M2  + iE m2 

- Plane wave expansion (section 12.5): 

3 

(x) = f dS2,, E [a(i)  (p)E (p)e-iP' x  + a(i)* (p)e 12(i)*  (p)eiPs x]. 
1=1 

The three polarisation vectors E (1)  (p) satisfy (section 12.5): 

p.E (0  (p) = 0 

E (i)  (P).6"  (1)) = S# 

E EL')  (1))6 ,1)  (1)) = —(g ea 
papa  

2 ) 

(D.27)  

(D.28)  

(D.29)  



A scalar line _ _ _ _o 1 

u(p, s) 

Fermion lines 
5(p, s) 

906 Appendix D: A Collection of Useful Formulae 

— Canonical commutation relations (section 12.5): 

[a(i)  (p), a(i)*  (p')] = 4(27)3 2(01,8(3)  (p — p'). (D.30) 

D.3 Feynman Rules for Scattering Amplitudes 

A scattering amplitude relating a set of initial to a set of final particles is given, order 
by order in perturbation theory, by the sum of all connected and amputated Feynman 
diagrams to that order in the expansion, with external lines corresponding to the initial 
and final particles of the amplitude. The rules for calculating these diagrams are the 
following. 

• External lines (section 13.3) 
— All external momenta are put on the mass shell of the corresponding particle: 

p2 = m2.  

— All polarisation vectors correspond to physical particles. In particular, photon 
polarisations are transverse. 

— A factor, corresponding to the wave function of the external particle, multiplies 
each external line. They are given in Fig. D.1. 

• Internal lines (section 13.3) 
— To every internal line corresponds a Feynman propagator, according to the spin 

of the line. In general, the propagators are matrices carrying Lorentz as well as 
internal symmetry indices. The expressions are given in section D.2. 

— To every internal line of momentum p there is an integration f d4p/(2n- )4. 

• Vertices (sections 13.3, 14.5) 
To every vertex there is attached a 6-function of energy—momentum conservation: 
(2n- )484(Epi), where the momenta pi  of all the lines converging to the vertex are 
drawn in-coming. 
For a connected diagram the 6-function of energy—momentum conservation in 
every vertex determines the momenta of all internal lines in terms of the external 
momenta, leaving only one momentum undetermined for every closed loop. As a 

A spin — 1 line i\AAAA0 A(p) 

Figure D.1 The factors applied to every external scalar, 
spinor or vector line in a Feynman diagram for a scattering 
amplitude. The momenta and spins are those of the external 
particle. Possible internal symmetry indices have been 
suppressed. 
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result, we must perform only one integration for every closed loop. An overall S-
function, expressing the total energy—momentum conservation between the initial 
and final particles, factors out: (27) 4  8 4  (E (pi ) — E (pf )). 

The vertex function is a matrix both in Minkowski space and in whichever in-
ternal symmetry space we have. We give here a list of the most commonly used 
vertices: 
— 04  theory: 

X 
4  

The vertex is represented by 

and it is given by 4. 

— Scalar Yukawa theory: 

Li =g 

The vertex is represented by 

and it is given by g. 

— Pseudo-scalar Yukawa theory: 

Gz = g-Try5*0 

The vertex is represented by 

and it is given by g(y5),43. 

a 



P 
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— SU(2) pseudo-scalar Yukawa theory with a doublet of fermions and a triplet of 
bosons. 

Gl = glk Y5r* • 

• k 

The vertex is represented by 

a 

and it is given by g(t k)v (y5),, fi. 
Here i, j, and k are the SU(2) indices (i,j=1,2 and k=1,2,3) and a and the the 

Dirac indices (a, t3=1,...,4). 

— The gluon—quark vertex in QCD. The interaction Lagrangian is given by 

6 3 

= —gs E E (D.31) 
f=1 ij=1 

It is represented by 

and it is given by —g,(Xa) y  (y/t ) 8ff,  , where i and j are the quark colour indices 
(i,j=1,2,3), a is the gluon colour index (a=1,...,8), a and /3 are Dirac indices, 
and X are the SU (3) Gell-Mann matrices. f and f' are flavour indices and gs  is 
the strong interaction coupling constant. 

— Scalar electrodynamics. It has two couplings: 

(i) r(ii)  = ieA,,,(0/24)* —0*aito) 

The vertex is represented by 

and it is given by —e(p + p') . 
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(ii) £(2) = e2A
AAi 00* 

The vertex is represented by 

and it is given by 2e2gAv. 

— Yang—Mills theory. In a covariant gauge it has three couplings: 

(i) r(11)  = gfabc(a0Aav— avApAob A" where fabe  are the structure constants of 
the Lie algebra of G. 

The vertex is represented by 

P2 

P3 

and it is given by 

(ii) EP) 2 
/ = 1 

fabcfab'e'AobA,Aktb'Avd 

The vertex is represented by 

(D.32) gfabckuv (P1 — P2) p gvp (P2 — p3)µ 

+gpo(P3 — 1,1)v1• 

and it is given by 

— g2  Veabfeed (gppgva g,uagvP) (D.33) 

feacfedb(g,uagpv gAvgpa) feadfebc(g ovg — gppgva)] 
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(iii) The gauge boson—ghost coupling 

EYMgh = —gfabcali (Sj a)AboS2c (D.34) 

The vertex is represented by 

a 4.1  milik. c 
is* ► ft, 

is* , Aft 
P p 

and it is given by gefabc• 

— There is an overall numerical factor multiplying every diagram. It is composed 
by various pieces: 
— A factor in  from the perturbation expansion. 

— A minus sign for every closed fermion loop. 

— A minus sign for every anti-fermion line crossing the diagram from the initial 
to the final state. 

— Finally, a combinatoric factor coming from all the different contractions in 
the Wick expansion which give this particular diagram. 

D.4 Examples 

The only rule which is not spelled out in a totally clear and unambiguous way is the one 
which gives the final overall combinatoric factor. So, we will end this appendix with a 
few examples to illustrate the procedure. 

• A 1-loop diagram in second-order 04  theory. We consider the scattering amplitude 
of two scalar bosons with momenta pi  and p2  going into two bosons with momenta 
p3 and p4. 

• ....
-

I 
--. — •••• P1 • . 

• I 
/ P3 

 
• , 

X 
I • • 

• ...- *".. • P4  

/ • 

This diagram has a very large combinatoric factor because all lines are identical 
and can be connected in many different ways. We find the following: 

X 
/ ♦ 

P2 / 
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— A factor i2  = —1 from the perturbation expansion. 

— A factor 4 x 3 = 12 from the ways we can combine the two external lines with 
momenta pi  and p2  to the four lines of the first vertex. 

— The same factor 4 x 3 = 12 from the second vertex and the lines in the final 
state. 

— A factor of 2 from the two ways to connect the lines in the loop. 

The overall factor is -288. This is why we define the coupling constant in the 04  
theory as A/4!. If we take this definition into account, the coefficient of this diagram 
ends up being -A2/2. 

If we repeat the analysis for the self-interaction of a charged scalar field with 
interaction Lagrangian proportional to (0*)2, the diagram looks the same but now 
the lines have arrows showing the charge flow. In the contractions we must respect 
charge conservation and we find a factor of 4 (instead of 12) for each vertex and 
no factor for the loop. The overall factor is -16. In this case we usually define the 
coupling constant as X/4 and the diagram has a resulting factor -A2. 

• A 1-loop diagram in fourth-order QED. We chose the one shown here which 
contributes to the e+ + e —> e+ + e scattering amplitude. 

— There is a factor i4  = 1 from the perturbation expansion. 

— In QED all lines in a vertex are distinct; therefore, there is only one contraction 
which produces this diagram. The combinatoric factor equals 1. 

— There is a minus sign from the fermion loop. 
Therefore, the overall factor is -1. 

• The relative sign between two tree diagrams in QED. We consider the same process 
e+ + e —> e+ + e and we look at the two tree diagrams 

— Both diagrams have a factor i2  = —1 from the perturbation expansion. 

— There is no combinatoric factor. 

— The second diagram has a minus sign because the positron line goes through 
the diagram from the initial to the final state. 

As a result, the first diagram has an overall factor equal to -1 and the second to +1. 



Appendix E 
Extract from Maxwell's A Treatise 
on Electricity and Magnetism 

These four pages are extracted from Maxwell's A Treatise on Electricity and Magnetism. 
The first two pages show how Maxwell, although he knew both the corpuscular and 
undulatory theories, is only interested in the adequation of his theory with the latter. 
The last two pages are concerned with the problem of the action at a distance and the 
contradiction with Ampere's laws to conclude finally at the necessity of a medium, the 
aether. 

7811 In several parts of this treatise an attempt has been made to explain electromagnetic 
phenomena by means of mechanical action transmitted from one body to another by 
means of a medium occupying the space between them. The undulatory theory of light 
also assumes the existence of a medium. We have now to show that the properties of the 
electromagnetic medium are identical with those of the luminiferous medium. 

To fill all space with a new medium whenever any new phenomenon is to be explained 
is by no means philosophical, but if the study of two different branches of science has 
independently suggested the idea of a medium, and if the properties which must be 
attributed to the medium in order to account for electromagnetic phenomena are of the 
same kind as those which we attribute to the luminiferous medium in order to account 
for the phenomena of light, the evidence for the physical existence of the medium will 
be considerably strengthened. 

But the properties of bodies are capable of quantitative measurement. We therefore 
obtain the numerical value of some property of the medium, such as the velocity with 
which a disturbance is propagated through it, which can be calculated from electromag-
netic experiments, and also observed directly in the case of light. If it should be found 
that the velocity of propagation of electromagnetic disturbances is the same as the velo-
city of light, and this not only in air, but in other transparent media, we shall have strong 
reasons for believing that light is an electromagnetic phenomenon, and the combination 
of the optical with the electrical evidence will produce a conviction of the reality of the 
medium similar to that which we obtain, in the case of other kinds of matter, from the 
combined evidence of the senses. 

782.] When light is emitted, a certain amount of energy is expended by the luminous 
body, and if the light is absorbed by another body, this body becomes heated, showing 
that is has received energy from without. During the interval of time after the light left 
the first body and before it reached the second, it must have existed as energy in the 
intervening space. 
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According to the theory of emission, the transmission of energy is effected by the 
actual transference of light-corpuscules from the luminous to the illuminated body, car-
rying with them their kinetic energy, together with any other kind of energy of which 
they may be the receptacles. 

According to the theory of undulation, there is a material medium which fills the 
space between the two bodies, and it is by the action of contiguous parts of this medium 
that the energy is passed on, from one portion to the next, till it reaches the illuminated 
body. 

The luminiferous medium is therefore, during the passage of light through it, a re-
ceptacle of energy. In the undulatory theory, as developed by Huygens, Fresnel, Young, 
Green, &c this energy is supposed to be partly potential and partly kinetic. The potential 
energy is supposed to be due to the distortion of the elementary portions of the medium. 
We must therefore regard the medium as elastic. The kinetic energy is supposed to be 
due to the vibratory motion of the medium. We must therefore regard the medium as 
having a finite density. 

In the theory of electricity and magnetism adopted in this treatise, two forms of energy 
are recognised, the electrostatic and the electrokinetic (see Arts. 630 and 636), and these 
are supposed to have their seat, not merely in the electrified or magnetized bodies, but 
in every part of the surrounding space, where electric or magnetic force is observed to 
act. Hence our theory agrees with the undulatory theory in assuming the existence of a 
medium which is capable of becoming a receptacle of two forms of energy*. 

865.] There appears to be, in the minds of these eminent men, some prejudice, or 
a priori objection, against the hypothesis of a medium in which the phenomena of ra-
diation of light and heat and the electric actions at a distance take place. It is true that 
at one time those who speculated as to the causes of physical phenomena were in the 
habit of accounting for each kind of action at a distance by means of a special aethereal 
fluid, whose function and property it was to produce these actions. They filled all spaces 
three and four times over with aethers of different kinds, the properties of which were 
invented merely to 'save appearances,' so that more rational enquirers were willing rather 
to accept not only Newton's definite law of attraction at a distance, but even the dogma 
of Cotes*, that action at a distance is one of the primary properties of matter, and that no 
explanation can be more intelligible than this fact. Hence the undulatory theory of light 
has met with much opposition, directed not against its failure to explain the phenomena, 
but against its assumption of the existence of a medium in which light is propagated. 

866.] We have seen that the mathematical expressions for electrodynamic action led, 
in the mind of Gauss, to the conviction that a theory of the propagation of electric action 
in time would be found to be the very keystone of electrodynamics. Now we are unable 
to conceive of propagation in time, except either as the flight of a material substance 

* Tor my own part, considering the relation of a vacuum to the magnetic force and the general character of 
magnetic phenomena external to the magnet, I am more inclined to the notion that in the transmission of the 
force there is such an action, external to the magnet, than that the effects are merely attraction and repulsion 
at a distance. Such an action may be a function of the other; for it is not at all unlikely that, if there be an other, 
it should have other uses than simply the conveyance of radiations — Faraday's Experimental Researches, 3075. 

* Preface to Newton's Principia, 2nd edition. 
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through space, or as the propagation of a condition of motion or stress in a medium 
already existing in space. In the theory of Neumann, the mathematical conception called 
Potential, which we are unable to conceive as a material substance, is supposed to be 
projected from one particle to another, in a manner which is quite independent of a 
medium, and which, as Neumann has himself pointed out, is extremely different from 
that of the propagation of light. In the theories of Riemann and Bern it would appear 
that the action is supposed to be propagated in a manner somewhat more similar to that 
of light. 

But in all of these theories the question naturally occurs:— If something is transmitted 
from one particle to another at a distance, what is its condition after it has left the one 
particle and before it has reached the other? If this something is the potential energy of 
the two particles, as in Neumann's theory, how are we to conceive this energy as exist-
ing in a point of space, coinciding neither with the one particle nor with the other? In 
fact, whenever energy is transmitted from one body to another in time, there must be a 
medium or substance in which the energy exists after it leaves one body and before it 
reaches the other, for energy, as Torriecelli* remarked, 'is a quintessence of so subtile a 
nature that it cannot be contained in any vessel except the inmost substance of material 
things.' Hence all these theories lead to the conception of medium in which the propaga-
tion takes place, and if we admit this medium as an hypothesis, I think it ought to occupy 
a prominent place in our investigations, and that we ought to endeavour to construct a 
mental representation of all the details of its action, and this has been my constant aim 
in this treatise. 
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