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PREFACE

This book is based on an honors course in advanced calculus that we gave in the
1960’s. The foundational material, presented in the unstarred sections of Chap-
ters 1 through 11, was normally covered, but different applications of this basic
material were stressed from year to year, and the book therefore contains more
material than was covered in any one year. It can accordingly be used (with
omissions) as a text for a year’s course in advanced calculus, or as a text for a
three-semester introduction to analysis.

These prerequisites are a good grounding in the calculus of one variable
from a mathematically rigorous point of view, together with some acquaintance
with linear algebra. The reader should be familiar with limit and continuity type
arguments and have a certain amount of mathematieal sophistication. As possi-
ble introductory texts, we mention Differential and Integral Calculus by R. Cou-
rant, Calculus by T. Apostol, Calculus by M. Spivak, and Pure Mathematics by
G. Hardy. The reader should also have some experience with partial derivatives.

In overall plan the book divides roughly into a first half which develops the
caleulus (principally the differential calculus) in the setting of normed vector
spaces, and a second half which deals with the calculus of differentiable manifolds.

Vector space calculus is treated in two chapters, the differential ealculus in
Chapter 3, and the basic theory of ordinary differential equations in Chapter 6.
The other early chapters are auxiliary. The first two chapters develop the neces-
sary purely algebraie theory of vector spaces, Chapter 4 presents the material
on compactness and completeness needed for the more substantive results of
the calculus, and Chapter 5 contains a brief account of the extra structure en-
countered in scalar product spaces. Chapter 7 is devoted to multilinear (tensor)
algebra and is, in the main, a reference chapter for later use. Chapter 8 deals
with the theory of (Riemann) integration on Euclidean spaces and includes (in
exercise form) the fundamental facts about the Fourier transform. Chapters 9
and 10 develop the differential and integral caleulus on manifolds, while Chapter
11 treats the exterior calculus of E. Cartan.

The first eleven chapters form a logical unit, each chapter depending on the
results of the preceding chapters. (Of course, many chapters contain material
that can be omitted on first reading; this is generally found in starred sections.)



On the other hand, Chapters 12, 13, and the latter parts of Chapters 6 and 11
are independent of each other, and are to be regarded as illustrative applications
of the methods developed in the earlier chapters. Presented here are elementary
Sturm-Liouville theory and Fourier series, elementary differential geometry,
potential theory, and classical mechanies. We usually covered only one or two
of these topics in our one-year course.

We have not hesitated to present the same material more than once from
different points of view. Tor example, although we have selected the contraction
mapping fixed-point theorem as our basic approach to the implicit-function
theorem, we have also outlined a “Newton’s method” proof in the text and have
sketched still a third proof in the exercises. Similarly, the calculus of variations
is encountered twice—once in the context of the differential calculus of an
infinite-dimensional vector space and later in the context of classical mechanics.
The notion of a submanifold of a vector space is introduced in the early chapters,
while the invariant definition of a manifold is given later on.

In the introductory treatment of vector space theory, we are more careful
and precise than is customary. In fact, this level of precision of language is not
maintained in the later chapters. Our feeling is that in linear algebra, where the
concepts are so clear and the axioms so familiar, it is pedagogically sound to
illustrate various subtle points, such as distinguishing between spaces that are
normally identified, discussing the naturality of various maps, and so on. Later
on, when overly precise language would be more cumbersome, the reader should
be able to produce for himself a more precise version of any assertions that he
finds to be formulated too loosely. Similarly, the proofs in the first few chapters
are presented in more formal detail. Again, the philosophy is that once the
student has mastered the notion of what constitutes a formal mathematical
proof, it is safe and more convenient to present arguments in the usual mathe-
matieal colloquialisms.

While the level of formality decreases, the level of mathematical sophisti-
cation does not. Thus increasingly abstract and sophisticated mathematical
objects are introduced. It has been our experience that Chapter 9 contains the
concepts most difficult for students to absorb, especially the notions of the
tangent space to a manifold and the Lie derivative of various objects with
respect to a vector field.



There are exercises of many different kinds spread throughout the book.
Some are in the nature of routine applications. Others ask the reader to fill in
or extend various proofs of results presented in the text. Sometimes whole
topies, such as the Fourier transform or the residue calculus, are presented in
exercise form. Due to the rather abstract nature of the textual material, the stu-
dent is strongly advised to work out as many of the exercises as he possibly can.

Any enterprise of this nature owes much to many people besides the authors,
but we particularly wish to acknowledge the help of L. Ahlfors, A. Gleason,
R. Kulkami, R. Rasala, and G. Mackey and the general influence of the book by
Dieudonné. We also wish to thank the staff of Jones and Bartlett for their invaluable
help in preparing this revised edition.

Cambridge, Massachusetts L.H.L.
1968, 1989 S.S.
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CHAPTER 0

INTRODUCTION

This preliminary chapter contains a short exposition of the set theory that
forms the substratum of mathematical thinking today. It begins with a brief
discussion of logic, so that set theory can be discussed with some precision, and
continues with a review of the way in which mathematical objects can be defined
as sets. The chapter ends with four sections which treat specific set-theoretic
topics.

It is intended that this material be used mainly for reference. Some of it
will be familiar to the reader and some of it will probably be new. We suggest
that he read the chapter through “lightly” at first, and then refer back to it
for details as needed.

1. LOGIC: QUANTIFIERS

A statement is a sentence which is true or false as it stands. Thus ‘1 < 2’ and
‘4 -+ 3 = 5 are, respectively, true and false mathematical statements. Many
sentences oceurring in mathematics contain variables and are therefore not true
or false as they stand, but become statements when the variables are given
values. Simple examples are ‘z < 4’, ‘ < ¥/, ‘z is an integer’, ‘3z? + y* = 10’
Such sentences will be called statement frames. If P(x) is a frame containing the
one variable ‘x’, then P(5) is the statement obtained by replacing ‘z’ in P(z) by
the numeral ‘5’. For example, if P(z) is ‘z < 4’, then P(5) is ‘5 < 4, P(\/2)
is ‘4/2 < 4’, and so on.

Another way to obtain a statement from the frame P(x) is to assert that P(x)
is always true. We do this by prefixing the phrase ‘for every 2’. Thus, ‘for every
z, z < 4’ is a false statement, and “for every z, 22 — 1 = (z — )(x 4+ 1) isa
true statement. This prefixing phrase is called a unwersal quaniifier. Syn-
onymous phrases are ‘for each ' and ‘for all 2’, and the symbol customarily
used is ‘(Vz)’, which can be read in any of these ways. One frequently presents
sentences containing variables as being always true without explicitly writing
the universal quantifiers. For instance, the associative law for the addition of
numbers is often written

r+ @Y+ = @+y+e

where it is understood that the equation is true for all z, ¥ and z. Thus the
1
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actual statement being made is
Vo) (V) (VA)lx + (y +2) = (@ + y) -+ 2]

Finally, we can convert the frame P(x) into a statement by asserting that
it is sometimes true, which we do by writing ‘there exists an z such that P(z)’.
This process is called existential gquantification. Synonymous prefixing phrases
here are ‘there is an x such that’, ‘for some z’, and, symbolically, ‘(3z)’.

The statement ‘(Vz){(x < 4)’ still contains the variable ‘z’, of course, but
‘2’ is no longer free to be given values, and is now called a bound variable.
Roughly speaking, quantified variables are bound and unquantified variables
are free. The notation ‘P(z)’ is used only when ‘2’ is free in the sentence being
discussed.

Now suppose that we have a sentence P(x, ) containing fwo free variables.
Clearly, we need two quantifiers to obtain a statement from this sentence.
This brings us to a very important observation. If quantifiers of both types are
used, then the order in which they are written affects the meaning of the statement;
(Ay)(Vz)P(z, y) and (Vx)(Iy) P (z, y) say different things. The first says that one y
can be found that works for all z: “there exists a y such that for all z...".
The second says that for each z a y can be found that works: “for each z there
exists a y such that ...”. But in the second case, it may very well happen that
when z is changed, the y that can be found will also have to be changed. The
existence of a single y that serves for all z is thus the stronger statement. Ior
example, it is true that (Vx)(3y)(x < y) and false that (Jy)(Vz)(xz < y). The
reader must be absolutely clear on this point; his whole mathematical future is
at stake. The second statement says that there exists a y, call it yo, such that
(Vx)(z < yo), that is, such that every number is less than yo. This is false;
Yo -+ 1, in particular, is not less than yo. The first statement says that for each z
we can find a corresponding y. And we can: take y = z + 1.

On the other hand, among a group of quantifiers of the same type the order
does not affect the meaning. Thus ‘(Vz)(Vy)’ and ‘(Vy) (Vz)’ have the same mean-
ing. We often abbreviate such clumps of similar quantifiers by using the quan-
tification symbol only once, as in ‘(Vz, ¥)’, which can be read ‘for every x and y’.
Thus the strictly correct ‘(Vz)(Vy)(Ve)[z + (y + 2) = (x + y) + 2]’ receives the
slightly more idiomatic rendition ‘(Vz, y, 2)[x + (y + 2) = (¢ + y) + 2. The
situation is clearly the same for a group of existential quantifiers.

The beginning student, generally feels that the prefixing phrases ‘for every z
there exists a y such that’ and ‘there exists a y such that for every 2’ sound
artificial and are unidiomatic. Thisisindeed the case, but this awkwardness is the
price that has to be paid for the order of the quantifiers to be fixed, so that the
meaning of the quantified statement is clear and unambiguous. Quantifiers do
oceur in ordinary idiomatic discourse, but their idiomatic occurrences often
house ambiguity. The following two sentences are good examples of such
ambiguous idiomatic usage: “Every x is less than some y” and “Some y is greater
than every z”. If a poll were taken, it would be found that most men on the
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street feel that these two sentences say the same thing, but half will feel that the
common agsertion is false and half will think it true! The trouble here is that
the matrix is preceded by one quantifier and followed by another, and the poor
reader doesn’t know which to take as the inside, or first applied, quantifier. The
two possible symbolic renditions of our first sentence, ‘{(Vz){z < #){(3y)’ and
‘Wa)(z < y)(3y)Y, are respectively false and true. DMathematicians do use
hanging quantifiers in the interests of more idiomatie writing, but only if they
are sure the reader will understand their order of application, either from the
context or by comparison with standard usage. In general, a hanging quantifier
would probably be read as the inside, or first applied, quantifier, and with this
understanding our two ambiguous sentences become true and false in that order.

After this apology the reader should be able to tolerate the definition of
sequential convergence. It involves three quantifiers and runs as follows: The
sequence {x,} converges to z if (Ve)(AN)(Vn)(if n > N then |z, — x| < €).
In cxactly the same format, we define a function f to be continuous at a if
(Ve)(A8) (V) (if [z — a| < 6 then [f(z) — fla)] < €). We often omit an inside
universal quantifier by displaying the final frame, so that the universal quanti-
fication is understood. Thus we define f to be continuous at a if for every e
there is a § such that

if |z —ada <3, then |f(x) — fla)] < e

We shall study these definitions later. We remark only that it is perfectly
possible to build up an intuitive understanding of what these and similar
quantified statements actually say.

2. THE LOGICAL CONNECTIVES

When the word ‘and’ is inserted between two sentences, the resulting sentence
is true if both constituent sentences are true and is false otherwise. That is, the
“truth value”, T or I, of the compound sentence depends ouly on the truth
values of the constituent sentences. We can thus deseribe the way ‘and’ acts in
compounding sentences in the simple “truth table”

P Q Pand@
T T T
T Ir I
F T i
¥ ¥ F

where ‘P’ and ‘Q’ stand for arbitrary statement frames. Words like ‘and’ are
called logical connectives. It is often convenient to use symbols for connectives,
and a standard symbol for ‘and’ is the ampersand ‘&’. Thus ‘P & @’ is read
‘P and @.
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Another logical connective is the word ‘or’. Unfortunately, this word is used
ambiguously in ordinary discourse. Sometimes it is used in the exclusive sense,
where ‘P or ¢’ means that one of P and @ is true, but not both, and sometimes
it is used in the #nclusive sense that at least one is true, and possibly both are
true. Mathematics cannot tolerate any fundamental ambiguity, and in mathe-
matics ‘or’ is always used in the latter way. We thus have the truth table

P Q Por@
T T T
T T T
F T T
Ir I Ir

The above two connectives are binary, in the sense that they combine fwo
sentences to form one new sentence. The word ‘not’ applies to one sentence and
really shouldn’t be considered a connective at all; nevertheless, it is called a
unary connective. A standard symbol for ‘not’ is ‘~’. Its truth table is obviously

P ~P
T I
I T

In idiomatic usage the word ‘not’ is generally buried in the interior of a
sentence. We write ‘x is not equal to %’ rather than ‘not (x is equal to y)’.
However, for the purpose of logical manipulation, the negation sign (the word
‘not’ or a symbol like ‘~’) precedes the sentence being negated. We shall, of
course, continue to write ‘x # y’, but keep in mind that this is idiomatic for
‘not (x = y)’ or ‘~(x = y)’.

We come now to the troublesome ‘if ..., then ... connective, which we
write as either ‘if P, then @ or ‘P = @’. This is almost always applied in the
universally quantified context (Vz)(P(x) = Q(z)), and its meaning is best
unraveled by a study of this usage. We consider ‘if x < 3, then z < 5 to be a
true sentence. More exactly, it is true for all z, so that the universal quantifi-
cation (Vz)(z < 3= z < 5) is a true statement. This conclusion forces us to
agree that, in particular, ‘2 < 3=2 <5, 4 <3=4 <5, and 6 <3=
6 < 5 are all true statements. The truth table for ‘=’ thus contains the
values entered below.

P Q P=q
T T T
T F -
Ir T T
F F T




0.2 THE LOGICAL COXNNECTIVES 5

On the other hand, we consider ‘¢ < 7 =2 < 5 to be a false sentence, and
therefore have to agree that ‘6 < 7 = 6 < 5’ is false. Thus the remaining row
in the table above gives the value ‘¥’ for P = Q.

Combinations of frame variables and logical connectives such as we have
been considering are called truth-functional forms. We can further combine the
elementary forms such as ‘P = @’ and ‘~P’ by connectives to construct com-
posite forms such as ‘~(P = @)’ and ‘(P = Q) & ( = P)’. A sentence has a
given (truth-functional) form if it can be obtained from that form by substitution.
Thus ‘z < y or ~{(x < ¥)’ has the form ‘P or ~P’, since it is obtained from this
form by substituting the sentence ‘z < ¥’ for the sentence variable ‘P’. Com-
posite truth-functional forms have truth tables that can be worked out by
combining the elementary tables. For example, ‘~ (I = @)’ has the table below,
the truth value for the whole form being in the column under the conneective
which is applied last (‘~’ in this example).

P Q ~P=0Q

T ¥ T
F T I
I T ¥l T
I F Fi T

Thus ~(P = @) is true only when P is true and ¢ is false.

A truth-funetional form such as ‘P or (~P)’ which is always true (i.c., has
only ‘T’ in the final column of its truth table) is called a tautology or a tautologous
form. The reader can check that

(P& (P=Q)=0Q and (P=@Q &@=R)=(P=R)

are also tautologous. Indeed, any valid principle of reasoning that does not
involve quantifiers must be expressed by a tautologous form.

The ‘if and only if’ form ‘P < @’, or ‘P if and only if @’, or ‘P iff ¢, is an
abbreviation for ‘(P = Q) & (@ = P)’. Its truth table works out to be

P Q PsQ

T T T
T ¥ F
¥ T ¥
F F T

That is, P < @ is true if P and Q have the same truth values, and is false
otherwise.

Two truth-functional forms 4 and B are said to be equivalent if (the final
columns of) their truth tables are the same, and, in view of the table for ‘<,
we see that A and B are equivalent if A < B 4s tautologous, and conversely.
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Replacing a sentence obtained by substitution in a form A by the equivalent
sentence obtained by the same substitutions in an equivalent form B is a device
much used in logical reasoning. Thus to prove a statement P true, it suffices to
prove the statement ~P false, since ‘P’ and ‘~(~P) are equivalent forms.
Other important equivalences are

~(PorQ) & (~P) & (~Q),
(P=Q) © Qor (~P),
~(P=0Q) © P & (~Q).

A bit of conventional sloppiness which we shall indulge in for smoother
idiom is the use of ‘if’ instead of the correct ‘if and only if’ in definitions. We
define f to be continuous at x if so-and-so, meaning, of course, that fis continuous
at « if and only if so-and-so. This causes no difficulty, since it is clear that ‘if
and only if’ is meant when a definition is being given.

3. NEGATIONS OF QUANTIFIERS

The combinations ‘~(Vz)’ and ‘(3z)~’ have the same meanings: something is
not always true if and only if it is sometimes false. Similarly, ‘~(3y)’ and ‘(Vy)~’
have the same meanings. These equivalences can be applied to move a negation
sign past each quantifier in a string of quantifiers, giving the following important
practical rule:

In taking the negation of a statement beginning with a string of quantifiers,
we simply change each quantifier to the opposite kind and move the negation
sign to the end of the string.

Thus
~(V2)(AY)(V2)P(z, ¥, 2) < (3x)(Vy)(3)~P(z, y, 2).

There are other principles of quantificational reasoning that can be isolated
and which we shall occasionally mention, but none seem worth formalizing here.

4. SETS

It is present-day practice to define every mathematical object as a set of some
kind or other, and we must examine this fundamental notion, however briefly.
A set is a collection of objects that is itself considered an entity. The objects
in the collection are called the elements or members of the set. The symbol for
‘is a member of’ is ‘€’ (a sort of capital epsilon), so that ‘c € A’ isread “z isa
member of A7, “x is an element of A”, “z belongs to A”, or “zisin A”.

We use the equals sign ‘=" in mathematics to mean logical identity; 4 = B
means that A 7s B. Now a set A is considered to be the same object as a set B
if and only if A and B have exactly the same members. That is, ‘4 = B’ means
that (Vz)(x € A & = € B).
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We say that a set A is a subset of a set B, or that A is included in B (or that
B is a superset of A) if every element of 4 is an element of B. The symbol for
inclusion is ‘C’. Thus ‘A C B’ means that (Vz)(x € A = v € B). Clearly,

(A =B) & (ACB)and (BC A).

This is a frequently used way of establishing set identity: we prove that A = B
by proving that A C B and that B C A. If the reader thinks about the above
equivalence, he will see that it depends first on the equivalence of the truth-func-
tional forms ‘P < @’ and ‘(P =Q) & (@ = P)’, and then on the obvious
quantificational equivalence between ‘(Vx)(R & S)’ and ‘(Vz)R & (Vx)S’.

We define a set by specifying its members. If the set is finite, the members
can actually be listed, and the notation used is braces surrounding a member-
ship list. For example {1, 4, 7} is the set containing the three numbers 1, 4, 7,
{x} is the unit set of z (the set having only the one object z as a member),
and {z, y} is the pair set of x and y. We can abuse this notation to name some
infinite sets. Thus {2, 4, 6, 8, ...} would certainly be considered the set of all
even positive integers. But infinite sets are generally defined by statement
frames. If P(x) is a frame containing the free variable ‘2’, then {x : P(z)} is the
set of all x such that P(z) is true. In other words, {x : P(z)} is that set A such
that

y€ A e Py).

TFor example, {z:x? < 9} is the set of all real numbers 2 such that 2% < 9,
that is, the open interval (—3, 3),and y € {z : 2% < 9} < y? < 9. A statement
frame P(z) can be thought of as stating a property that an object  may or may
not have, and {z : P(x)} is the set of all objects having that property.

We need the empty set &, in much the same way that we need zero in
arithmetic. If P(z) is never true, then {z : P(z)} = &. For example,

gz #a} = .

When we said earlier that all mathematical objects are customarily con-
sidered sets, it was taken for granted that the reader understands the distinction
between an object and a name of that object. To be on the safe side, we add a
few words. A chair is not the same thing as the word ‘chair’, and the number 4
is a mathematical object that is not the same thing as the numeral ‘4’. The
numeral ‘4’ is a name of the number 4, as also are ‘four’, 2 - 2°, and ‘IV’.
According to our present viewpoint, 4 itself is taken to be some specific set.
There is no need in this course to carry logical analysis this far, but some readers
may be interested to know that we usually define 4 as {0, 1, 2, 3}. Similarly,
2 = {0,1}, 1 = {0}, and O is the empty set .

It should be clear from the above discussion and our exposition thus far
that we are using a symbol surrounded by single quotation marks as a name of
that symbol (the symbol itself being a name of something else). Thus‘‘4’’isa
name of ‘4’ (which is itself a name of the number 4). This is strictly correct
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usage, but mathematicians almost universally mishandle it. It is accurate to
write: let z be the number; call this number ‘@’. However, the latter is almost
always written: call this number z. This imprecision causes no difficulty to the
reading mathematician, and it often saves the printed page from a shower of
quotation marks. There is, however, a potential victim of such ambiguous
treatment of symbols. This is the person who has never realized that mathe-
matics is not about symbols but about objects to which the symbols refer. Since
by now the present reader has safely avoided this pitfall, we can relax and
occasionally omit the strictly necessary quotation marks.

In order to avoid overworking the word ‘set’, we use many synonyms,
such as ‘class’, ‘collection’, ‘family’ and ‘aggregate’. Thus we might say, “Let @
be a family of classes of sets”. If a shoe store is a collection of pairs of shoes, then
a chain of shoe stores is such a three-level object.

5. RESTRICTED VARIABLES

A variable used in mathematics is not allowed to take all objects as values; it
can only take as values the members of a certain set, called the domain of the
variable. The domain is sometimes explicitly indicated, but is often only im-
plied. For example, the letter ‘n’ is customarily used to specify an integer, so
that ‘ (Yn)P(n)’ would automatically be read “for every integer n, P(n)”. How-
ever, sometimes 7 is taken to be a positive integer. In case of possible ambiguity
or doubt, we would indicate the restriction explicitly and write ‘(Vn € Z)P(n)’,
where ‘Z’ is the standard symbol for the set of all integers. The quantifier is
read, literally, “for all n in Z”, and more freely, “for every integer n”. Similarly,
‘(In € Z)P(n)’ is read “there exists an n in Z such that P(n)” or “there exists
an integer n such that P(n)”. Note that the symbol ‘€’ is here read as the
preposition ‘in’. The above quantifiers are called restricted quantifiers.

In the same way, we have restricted set formation, both implicit and explieit,
as in ‘{n:Pn)}’ and ‘{n € Z : P(n)}’, both of which are read “the set of all
integers n such that P(n)”.

Restricted variables can be defined as abbreviations of unrestricted variables
by

(V2 € A)P@x) & (V2)(z € A = P(x)),
Az € A)Pz) < @)(zre d & P(@)),
{xeAd:Plx)} = {r:z2€ 4 & Plx)}.

Although there is never any ambiguity in sentences containing explicitly
restricted variables, it sometimes helps the eye to see the structure of the
sentence if the restricting phrases are written in superseript position, as in
(V> %) (In®?). Some restriction was implicit on page 1. If the reader agreed that
(Vz)(z® — 1 = (z — 1)(x + 1)) was true, he probably took z to be a real
number.
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6. ORDERED PAIRS AND RELATIONS

Ordered pairs are basic tools, as the reader knows from analytic geometry.
According to our general principle, the ordered pair <a, b> is taken to be a
certain set, but here again we don’t care which particular set it is so long as it
guarantees the crucial characterizing property:

<Lzr,y> = <a,b> & xz=aandy = b.

Thus <1,3> » <3, 1>.

The notion of a correspondence, or relation, and the special case of a map-
ping, or function, is fundamental to mathematies. A correspondence is a pairing
of objects such that given any two objects z and y, the pair <z, y > either docs
or does not correspond. A particular correspondence (relation) is generally
presented by a statement frame P(x, y) having two free variables, with z and y
corresponding if any only if P(x, y) is true. Given any relation (correspondence),
the set of all ordered pairs <z, y> of corresponding elements is called its graph.

Now a relation is a mathematical object, and, as we have said several times,
it is current practice to regard every mathematical object as a set of some sort
or other. Since the graph of a relation is a set (of ordered pairs), it is efficient and
customary to take the graph io be the relation. Thus a relation (correspondence)
18 stmply a set of ordered pairs. If R is a relation, then we say that x has the
relation R to y, and we write ‘zRy’, if and only if <z,y> € E. We also say
that z corresponds to y under E. The set of all first elements occurring in the
ordered pairs of a relation R is called the domain of R and is designated dom R
or D(R). Thus

dom R = {z:(3y)<z,y> € R}.

The set of second elements is called the range of R:
range R = {y: (3x)<z,y> € R}.

The tnverse, R™*, of a relation R is the set of ordered pairs obtained by reversing

those of R:
R~!= {<zx,y> : <y,z> € R}.

A statement frame P(z, y) having two free variables actually determines a pair
of mutually inverse relations R & S, called the graphs of P, as follows:

R:{<x)y>:P(x)y)}7 S:{<y)x>:P<x7y)}'

A two-variable frame together with a choice of which variable is considered to
be first might be called a directed frame. Then a directed frame would have a
uniquely determined relation for its graph. The relation of strict inequality
on the real number system R would be considered the set {<z, y>: z < y},
since the variables in ‘z < ¢ have a natural order.

The set A X B= {<z,y> :z€ A &y € B} of all ordered pairs with
first element in A and second element in B is called the Cartesian product of the
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sets A and B. A relation R is always a subset of dom R X range R. If the two
“factor spaces” are the same, we can use exponential notation: 42 = A4 X 4.

The Cartesian product R?Z = R X R is the “analytic plane”. Analytic
geometry rests upon the one-to-one coordinate correspondence between R? and
the Euclidean plane E2 (determined by an axis system in the latter), which
enables us to treat geometric questions algebraically and algebraic questions
geometrically. In particular, since a relation between sets of real numbers is a
subset of R2, we can “picture” it by the corresponding subset of the Euclidean
plane, or of any model of the Euclidean plane, such as this page. A simple
Cartesian product is shown in Fig. 0.1 (A U B is the union of the sets A and B).

B
R[4}

1 4 4
AXB when A4 =({1,2]u2}, 3] and B=[1, 13]u{2}

Fig. 0.1 Fig. 0.2
If R is a relation and A is any set, then the restriction of Rto A,R | A,
is the subset of R consisting of those pairs with first element in A:
Rl A= {<z,y>:<z,y> € Rand z € A}.

Thus R | A = B n (A X range R), where C N D is the #ntersection of the sets

C and D.
If R is a relation and A is any set, then the image of A under R, R[A], is
the set of second elements of ordered pairs in R whose first elements are in A:

RAl= {y:Gx){x € A & <zx,y> € R)}.
Thus R[A] = range (R | A), as shown in Fig. 0.2.

7. FUNCTIONS AND MAPPINGS

A function is a relation f such that each domain element z is paired with exactly
one range element y. This property can be expressed as follows:

<z,y> €fand <z,2> €f = y= 2
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The y which is thus uniquely determined by f and z is designated f(x):
y=flx) & <z,y> &f.

One tends to think of a function as being active and a relation which is not
a function as being passive. A function f acts on an element z in its domain to
give f(x). We take z and apply f to it; indeed we often call a function an operator.
On the other hand, if B is a relation but not a function, then there is in general
no particular y related to an element z in its domain, and the pairing of x and y
is viewed more passively.

We often define a function f by specifying its value f(z) for each z in its
domain, and in this connection a stopped arrow notation is used to indicate the

pairing. Thus z — 22 is the function assigning to each number z its square z%

!
<-2, 4> <2, 4> + <4, 22—

| . T <4, — 25
Fig. 0.3

If we want it to be understood that f is this function, we can write “Consider
the function f: z > 22”. The domain of f must be understood for this notation
to be meaningful.

If f is a function, then f~! is of course a relation, but in general it is not a
function. For example, if fis the function z — z2, then f~! contains the pairs
<4,2> and <4, —2> and so is not a function (see Fig. 0.3). If f~! 4s a func-
tion, we say that f is one-fo-one and that f is a one-to-one correspondence between
its domain and its range. Fach z € dom f ecorresponds to only one y € range f
(f is a function), and each ¥ € range f corresponds to only one z & dom f (f ! is
g function).

The notation

fiA—B

is read “a (the) function f on A into B” or “the function f from A to B”. The
notation implies that f is a function, that dom f = A, and that range f C B.
Many people feel that the very notion of function should include all these
ingredients; that is, a function should be considered an ordered triple < f, A, B>,
where f is a function according to our more limited definition, A is the domain
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of f, and B 1s a superset of the range of f, which we shall call the codomain of fin
this context. We shall use the terms ‘map’, ‘mapping’, and ‘transformation’
for such a triple, so that the notation f: A — B in its totality presents a mapping.
Moreover, when there is no question about which set is the codomain, we shall
often call the function f itself a mapping, since the triple <f, 4, B> is then
determined by f. The two arrow notations can be combined, as in: “Define
fiR— Rby z— 22"

A mapping f: A — B is said to be injective if f is one-to-one, surjective if
range f = B, and bijective if it is both injective and surjective. A bijective
mapping f: A — B is thus a one-to-one correspondence between its domain A
and its codomain B. Of course, a function is always surjective onto its range R,
and the statement that f is surjective means that B = B, where B is the under-
stood codomain.

8. PRODUCT SETS; INDEX NOTATION

One of the characteristic habits of the modern mathematician is that as soon as
a new kind of object has been defined and discussed a little, he immediately
looks at the set of all such objects. With the notion of a function from 4 to S
well in hand, we naturally consider the set of all functions from 4 to S, which we
designate S4. Thus R® is the set of all real-valued functions of one real variable,
and S*' is the set of all infinite sequences in S. (It is understood that an infinite
sequence is nothing but a function whose domain is the set Z* of all positive
integers.) Similarly, if we set @ = {1,..., n}, then S™ is the set of all finite
sequences of length n in S.

If B is a subset of S, then its characteristic function (relative to S) is the fune-
tion on 8, usually designated X, which has the constant value 1 on B and the
constant value O off B. The set of all characteristic functions of subsets of S is
thus 25 (since 2 = {0, 1}). But because this collection of functions is in a
natural one-to-one correspondence with the collection of all subsets of S, X
corresponding to B, we tend to identify the two collections. Thus 2% is also
interpreted as the set of all subsets of S. We shall spend most of the remainder
of this section discussing further similar definitional ambiguities which mathe-
maticians tolerate.

The ordered triple <ux,y, 2> is usually defined to be the ordered pair
< <Lz,y>,z>. The reason for this definition is probably that a function of
two variables x and y is ordinarily considered a function of the single ordered
pair variable <z, y>, so that, for example, a real-valued function of two real
variables is a subset of (R X R) X R. But we also consider such a function a
subset of Cartesian 3-space R3®. Therefore, we define R® as (R X R) X R;
that is, we define the ordered triple <z, y, 2> as < <z, y>,z>.

On the other hand, the ordered triple <z, y, 2> could also be regarded as
the finite sequence {<1, 2>, <2, y>, <3, 2>}, which, of course, is a different
object. These two models for an ordered triple serve equally well, and, again,
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mathematicians tend to slur over the distinction. We shall have more to say
on this point later when we discuss natural isomorphisms (Section 1.6). For
the moment we shall simply regard R? and R® as being the same; an ordered
triple is something which can be “viewed” as being either an ordered pair of
which the first element is an ordered pair or as a sequence of length 3 (or, for that
matter, as an ordered pair of which the second element is an ordered pair).

Similarly, we pretend that Cartesian 4-space R* is R* R? X R2 or
R! X R* = RX ((RX R) X R), etc. Clearly, we are in effect assuming an
associative law for ordered pair formation that we don’t really have.

This kind of ambiguity, where we tend to identify two objects that really are
distinet, is a necessary corollary of deciding exactly what things are. It is one
of the prices we pay for the precision of set theory; in days when mathematics
was vaguer, there would have been a single fuzzy notion.

The device of indices, which is used frequently in mathematics, also has am-
biguous implications which we should examine. An indexed collection, as a set,
is nothing but the range set of a function, the indexing function, and a particular
indexed object, say x;, is simply the value of that function at the domain element 7.
If the set of indices is I, the indexed set is designated {x;:7 € I} or {z;};er
(or {x;} =, in case I = Z*). However, this notation suggests that we view the
indexed set as being obtained by letting the index run through the index set I
and collecting the indexed objects. That is, an indexed set is viewed as being
the set fogether with the indexing function. This ambivalence is reflected in the
fact that the same notation frequently designates the mapping. Thus we refer
to the sequence {x,} -, where, of course, the sequence is the mapping n + z,.
We believe that if the reader examines his idea of a sequence he will find this
ambiguity present. He means neither just the set nor just the mapping, but the
mapping with emphasis on its range, or the range “together with” the mapping.
But since set theory cannot reflect these nuances in any simple and graceful way,
we shall take an indexed set to be the indexing function. Of course, the same
range object may be repeated with different indices; there is no implication that
an indexing is one-to-one. Note also that indexing imposes no restriction on the
set being indexed ; any set can at least be self-indexed (by the identity function).

Except for the ambiguous ‘{z; : 7 € I}’, there is no universally used notation
for the indexing function. Since z; is the value of the function at 7, we might
think of ‘¢, as another way of writing ‘z(¢)’, in which case we designate the
function ‘2’ or ‘x’. We certainly do this in the case of ordered n-tuplets when
we say, “Consider the n-tuplet x = <z, ..., 2,>”. On the other hand, there
is no compelling reason to use this notation. We can call the indexing function
anything we want; if it is f, then of course f(7) = x; for all 4.

We come now to the general definition of Cartesian product. Earlier we
argued (in a special case) that the Cartesian product A X B X C is the set of
all ordered triples x = <x,, 23, x3> such that z; € 4,2, € B, and z3 € C.
More generally, A, X Ay X --- X A,, or [[i=; A;, is the set of ordered n-
tuples x = <z1,...,2,> such that ;€ A;fori = 1,...,n. If we interpret
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an ordered n-tuplet as a functionon 7@ = {1,..., n}, we have

II7=; A; is the set of all functions x with domain @ such that z; € A4;
foralli em.

This rephrasal generalizes almost verbatim to give us the notion of the
Cartesian product of an arbitrary indexed collection of sets.

Definition. The Cartesian product J[;ezS; of the indexed collection of
sets {S;:7 € I} is the set of all functions f with domain the index set I
such that f(7) € S; for all € I.

We can also use the notation J]{S;:7 &€ I} for the product and f; for the
value f(2).

9. COMPOSITION

If we are given maps f: A — B and ¢: B — C, then the composition of g with f,
g © f, is the map of A into C defined by

(g o Nx) = 9(f(=)) forall z e A.

This is the funection of a function operation of elementary calculus. If fand g are
the maps from R to R defined by f(z) = '3 + 1 and g(x) = 2%, then fog(x) =
@)Y+ 1=12%3 4+ 1,and go flz) = (23 + 1)2 = 223 4 223 1 1. Note
that the codomain of f must be the domain of ¢ in order for ¢ o f to be defined.
This operation is perhaps the basic binary operation of mathematies.

Lemma. Composition satisfies the associative law:
folgoh)= (fog)oh

Proof. (fo(geoh)@) = flgeh)@) = flgh@)) = (foplh@) =
((fog)oh)(x)forallz € domh. [

If A is a set, the identity map I4,: A — A is the mapping taking every
xz € A toitself. Thus 4 = {<z,z> : z € A}. If f maps 4 into B, then clearly

Jelyp=f=1Ip-f

If g: B — A is such that g o f = I, then we say that g is a left tnverse of f and
that f is a right nverse of g.

Lemma. If the mapping f: A — B has both a right inverse h and a left
inverse ¢, they must necessarily be equal.

Proof. This is just algebraic juggling and works for any associative operation.
We have
h=1TI40h= (gof)oh:go(foh):goIB:g, 0
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In this case we call the uniquely determined map ¢: B — A such that
fog= Igandgof= I, the tnverse of f. We then have:

Theorem. A mapping f: A — B has an inverse if and only if it is bijective,
in which case its inverse is its relational inverse f.

Proof. If f is bijective, then the relational inverse f~! is a function from B to A,
and the equations fo f~! = Iy and f~! o f = I, are obvious. On the other
hand, if f o ¢ = I, then f is surjective, since then every y in B can be written
y = f(g(y)). And if gof= I, then f is injective, for then the equation
f(z) = f(y) implies that x = ¢(f(x)) = ¢(f(y)) = y. Thus f is bijective if it
has an inverse. [

Now let ©(A4) be the set of all bijections f: A — A. Then ©(A4) is closed
under the binary operation of composition and

1) fo(goh)= (fog)ehforallf,g, h €&;
2) there exists a unique I € &(A) such that fo I = I o f = fforall fe&;
3) for each f € S there exists a unique ¢ € & such that fog = go f = I.

Any set G closed under a binary operation having these properties is called
a group with respect to that operation. Thus &(A4) is a group with respect to
composition.

Composition can also be defined for relations as follows. If R C 4 X B and
SCBXC,thenSo RC A X C is defined by

<z,2> €S8R & (A B)(<z,y> € R & <y,z> €08).

If R and S are mappings, this definition agrees with our earlier one.

10. DUALITY

There is another elementary but important phenomenon called duality which
occurs in practically all branches of mathematics. Let F: A X B — C be any
function of two variables. It is obvious that if z is held fixed, then F(x, y) is a
function of the one variable y. That is, for each fixed x there is a function
h*: B — C defined by A*(y) = F(z, y). Then z — A" is a mapping ¢ of 4 into
CB. Similarly, each y € B yields a function g, € C4, where g,(z) = F(z, y),
and y > ¢, is a mapping 8 from B to C4.

Now suppose conversely that we are given a mapping ¢: A — CZ. For each
r € A we designate the corresponding value of ¢ in index notation as A%, so
that % is a function from B to C, and we define F: 4 X B — C by F(z,y) =
h*(y). We are now back where we started. Thus the mappings ¢: 4 — CZ,
F:A X B—C,and : B— C4 are equivalent, and can be thought of as three
different ways of viewing the same phenomenon. The extreme mappings ¢ and
¢ will be said to be dual to each other.
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The mapping ¢ is the indexed family of functions {h*:x € A} C CB. Now
suppose that § C C® is an unindexed collection of functions on B into C, and
define F:§ X B — C by F(f,y) = f(y). Then 8: B — C¥ is defined by ¢,(f) =
f(y). What is happening here is simply that in the expression f(y) we regard both
symbols as variables, so that f(y) is a function on § X B. Then when we hold y
fixed, we have a function on § mapping & into C.

We shall see some important applications of this duality prineciple as our
subject develops. For example, an m X n matrix is a function t = {¢;;} in
R™X"  We picture the matrix as a rectangular array of numbers, where ‘4’ is
the row index and %’ is the column index, so that ¢;; is the number at the inter-
section of the 7th row and the jth column. If we hold < fixed, we get the n-tuple
forming the 7th row, and the matrix can therefore be interpreted as an m-tuple
of row n-tuples. Similarly (dually), it can be viewed as an n-tuple of column
m-tuples.

In the same vein, an n-tuple <fi, ..., f,> of functions from A to B can
be regarded as a single n-tuple-valued function from A to B7,

a— <f1(a)) L ;fn(a)>-

In a somewhat different application, duality will allow us to regard a finite-
dimensional vector space V as being its own second conjugate space (V*)*.

It is instructive to look at elementary Euclidean geometry from this point
of view. Today we regard a straight line as being a set of geometric points.
An older and more neutral view is to take points and lines as being two different
kinds of primitive objects. Accordingly, let A be the set of all points (so that A
is the Euclidean plane as we now view it), and let B be the set of all straight lines.
Let F be the incidence function: F(p, ) = 1 if p and [ are incident (p is “on” [,
lis “on” p) and F(p, l) = O otherwise. Thus F maps A X B into {0, 1}. Then
for each [ € B the function ¢;(p) = F(p, [} is the characteristic function of the
set of points that we think of as being the line { (¢;(p) has the value 1 if pison !
and 0 if p is not on [.) Thus each line determines the set of points that are on it.
But, dually, each point p determines the set of lines [ “on” 4, through ¢ts char-
acteristic function A?(l). Thus, in complete duality we can regard a line as being
a set, of points and a point as being a set of lines. This duality aspect of geometry
is basic in projective geometry.

It is sometimes awkward to invent new notation for the “partial” function
obtained by holding a variable fixed in a function of several variables, as we did
above when we set g,(z) = F(z, y), and there is another device that is frequently
useful in this situation. This is to put a dot in the position of the “varying
variable”. Thus F(a, -) is the function of one variable obtained from F(z, y)
by holding x fixed at the value a, so that in our beginning discussion of duality
we have

b = F(x,-), gy =F(-,y).

If f is a function of one variable, we can then write f = f(-), and so express the
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above equations also as h*(-) = F(z, -}, g,(-) = F(-, y). The flaw in this notation
is that we can’t indicate substitution without losing meaning. Thus the value
of the function F(z, -) at b is F(x, b), but from this evaluation we cannot read
backward and tell what function was evaluated. We are therefore forced to
some such cumbersome notation as F(z, -)|5, which can get out of hand. Never-
theless, the dot deviee is often helpful when it can be used without evaluation
difficulties. In addition to eliminating the need for temporary notation, as
mentioned above, it can also be used, in situations where it is strictly speaking
superfluous, to direct the eye at once to the position of the variable.

For example, later on D:F will designate the directional derivative of the
function F in the (fixed) direction £ This is a function whose value at « is
D¢F (o), and the notation D F(-) makes this implicitly understood fact explicit.

11. THE BOOLEAN OPERATIONS

Let S be a fixed domain, and let § be a family of subsets of S. The union of &,
or the union of all the sets in F, is the set of all elements belonging to at least one
set in ¥. We designate the union | or Jaes 4, and thus we have

Us = {z: 34)z e 4)}, yeUFe @4y e4).

We often consider the family § to be indexed. That is, we assume given a set [
(the set of indices) and a surjective mapping ¢ — A, from I to F, so that F =
{A;:7i € I}. Then the union of the indexed collection is designated {J;er 4; or
U{4;:ieI}. The device of indices has both technical and psychological
advantages, and we shall generally use it.

If & is finite, and either it or the index set is listed, then a different notation
is used for its union. If § = {4, B}, we designate the union 4 U B, a notation
that displays the listed names. Note that here we havexa € A UB < xz € A4 or
zeB. If §= {4;:1=1,...,n}, we generally write ‘A; U A, U---UA4,’
or ‘Ui=; A7 for Us.

The intersection of the indexed family {A}:cr, designated MN;cr 4, is the
set of all points that lie in every A;. Thus

ze4; & (VN e ).
iel

For an unindexed family § we use the notation (F or M4es 4, and if § =
{A, B}, then N5 = A N B.
The complement, A’, of a subset of 8 is the set of elements z <= 8 not in
A: A’ = {255 :2 & A}. The law of De Morgan states that the complement of
an intersection is the union of the complements:
(Q 4y =U .
eI €I

This an immediate consequence of the rule for negating quantifiers. It is the
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equivalence between ‘not always in’ and ‘sometimes not in’: [~(Vi)(zx € 4;) ©
(3)(x & A))] says exactly that
S (ﬂAi)’ e ze | J .

If we set B; = A and take complements again, we obtain the dual form:

(UierB) = Nier(B).
Other principles of quantification yield the laws

Bn (LEJI 4:) = -91 (BN Ay
from P & (32)Q(z) < (3x)(P & Q()),

BuU (QIA") = N (BuU 4y,

Bn (_ﬂ A,-) = ﬁl (BN 4)),
eI el

BU (U 45) = U BuU 4).
=y 4 el

In the case of two sets, these laws imply the following familiar laws of set algebra:
(AUB)Y = A'n B, (AnB)=A'"uB (De Morgan),
ANBUC)=(AnNBUAnNQO),
AuBnNnC)=(AuUuB)n(AUuC).

Even here, thinking in terms of indices makes the laws more intuitive. Thus
(A1 N dp) = A7 U 4%

is obvious when thought of as the equivalence between ‘not always in’ and
‘sometimes not in’.

The family § is disjoint if distinet sets in § have no elements in common, i.e.,
if VX, Y7NX %Y =XnNnY=g). For an indexed family {A.}se; the
condition becomes 7 # j = A; N A; = &. If § = {4, B}, we simply say that
A and B are disjoint.

Given f: U — V and an indexed family {B.} of subsets of V, we have the
following important identities:

UB]=Usrma 0 B = N84,
and, for a single set B C V,
B = (f7UBY.
For example,
zef [ B f) € () Bi = vi) (fa) € B)
o W)@efB) oze ﬂ B
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The first, but not the other two, of the three identities above remains valid
when f is replaced by any relation E. It follows from the commutative law,
(Ax)(3y)A & (y)(3x)A. The second identity fails for a general R because
‘(3r)(Vy)’ and ‘(Vy)(3x)’ have different meanings.

12. PARTITIONS AND EQUIVALENCE RELATIONS

A partition of a set A is a disjoint family F of sets whose union is 4. We call the
elements of F ‘fibers’, and we say that § fibers A orisa fibering of A. For example,
the set of straight lines parallel to a given line in the Euclidean plane is a fibering
of the plane. If ‘T’ designates the unique fiber containing the point z, then
x — T is a surjective mapping m: A — F which we call the projection of 4 on F.
Passing from a set A to a fibering & of A is one of the principal ways of forming
new mathematical objects.

Any function f automatically fibers its domain into sets on which f is con-
stant. If A is the Eueclidean plane and f(p) is the z-coordinate of the point p in
some coordinate system, then f is constant on each vertical line; more exactly,
f~Y(z) is a vertical line for every z in R. Moreover, x — f~!(x) is a bijection
from R to the set of all fibers (vertical lines). In general, if f: A — B is any sur-
jective mapping, and if for each value y in B we set

Ay=f"y = el flo) =y,

then § = {4, :y € B} is a fibering of 4 and ¢:y — A4, is a bijection from
B to &. Also ¢ o f is the projection m: A — &, since ¢ o f(x) = o(f(z)) is the
set T of all zin A such that f(z) = f(z).

The above process of generating a fibering of 4 from a function on A is
relatively trivial. A more important way of obtaining a fibering of A is from
an equality-like relation on A called an equivalence relation. An equivalence
relation ~ on A is a binary relation which is reflexive (x ~ x for every z € 4),
symmetric (x ~ y =y ~ x), and {ransitive (x ~ y and y ~ 2 = x ~ z). Every
fibering & of A generates a relation ~ by the stipulation that x ~ y if and only if
z and y are in the same fiber, and obviously ~ is an equivalence relation. The
most important fact to be established in this section is the converse.

Theorem. KEvery equivalence relation ~ on A4 is the equivalence relation
of a fibering.

Proof. We obviously have to define T as the set of elements y equivalent to z,
T = {y:y ~ z}, and our problem is to show that the family F of all subsets of 4
obtained this way is a fibering.

The reflexive, symmetric, and transitive laws become

z €T, TEF=yET, and zePandyecz = z€z

Reflexivity thus implies that § covers A. Transitivity says that if y € z, then
T €7 = x €Z,; that is, if y € 7, then 7 C 2 But also, if y €2, then z € 7 by
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symmetry, and so ZC 7. Thus y € Z implies ¥ = 2. Therefore, if two of our
sets @ and b have a point z in common, then @ = T = b. In other words, if @ is
not the set b, then @ and b are disjoint, and we have a fibering. [

The fundamental role this argument plays in mathematics is due to the fact
that in many important situations equivalence relations occur as the primary
object, and then are used to define partitions and functions. We give two
examples.

Let Z be the integers (positive, negative, and zero). A fraction ‘m/n’ can
be considered an ordered pair <m, n> of integers with n £ 0. The set of all
fractions is thus Z X (Z — {0}). Two fractions <m,n> and <p, ¢> are
“equal” if and only if mq = np, and equality is checked to be an equivalence
relation. The equivalence class <m, n> is the object taken to be the rational
number m/n. Thus the rational number system Q is the set of fibers in a par-
tition of Z X (Z — {0}).

Next, we choose a fixed integer p € Z and define a relation £ on Z by
mEn < p divides m — n. Then E is an equivalence relation, and the set Z, of
its equivalence classes is called the integers modulo p. It is easy to see that mEn
if and only if m and n have the same remainder when divided by p, so that in
this case there is an easily calculated function f, where f(m) is the remainder
after dividing m by p, which defines the fibering. The set of possible remainders
is {0,1,...,p — 1}, so that Z, contains p elements.

A function on a set A can be “factored” through a fibering of A by the
following theorem.

Theorem. Let ¢ be a function on 4, and let § be a fibering of A. Then ¢
is constant on each fiber of § if and only if there exists a function g on &
such that g = go .

Proof. 1f g is constant on each fiber of &, then the association of this unique
value with the fiber defines the function g, and clearly ¢ = g o w. The converse
is obvious. [



CHAPTER 1

VECTOR SPACES

The calculus of functions of more than one variable unites the caleulus of one
variable, which the reader presumably knows, with the theory of vector spaces,
and the adequacy of its treatment depends directly on the extent to which vector
space theory really is used. The theories of differential equations and differential
geometry are similarly based on a mixture of calculus and vector space theory.
Such “vector calculus” and its applications constitute the subject matter of this
book, and in order for our treatment to be completely satisfactory, we shall
have to spend considerable time at the beginning studying vector spaces them-
selves. This we do principally in the first two chapters. The present chapter is
devoted to general vector spaces and the next chapter to finite-dimensional
spaces.

We begin this chapter by introducing the basic concepts of the subject—
vector spaces, vector subspaces, linear combinations, and linear transforma-
tions—and then relate these notions to the lines and planes of geometry. Next
we establish the most elementary formal properties of linear transformations and
Cartesian product vector spaces, and take a brief look at quotient vector spaces.
This brings us to our first major objective, the study of direct sum decomposi-
tions, which we undertake in the fifth section. The chapter concludes with a
preliminary examination of bilinearity.

1. FUNDAMENTAL NOTIONS

Vector spaces and subspaces. The reader probably has already had some
contact with the notion of a vector space. Most beginning calculus texts discuss
geometric vectors, which are represented by “arrows” drawn from a chosen
origin O. These vectors are added geometrically by the parallelogram rule:
The sum of the vector OA (represented by the arrow from O to A) and the
veetor OB is the vector OP, where P is the vertex opposite O in the parallelogram
having 04 and OB as two sides (Fig. 1.1). Vectors can also be multiplied by
numbers: x(—O_A') is that vector OB such that B is on the line through O and
A, the distance from O to B is || times the distance from O to 4, and B and 4
arc on the same side of O if x is positive, and on opposite sides if z is negative
21
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(0A4+-0B)+0C=0P+00=0X OA+(0B+0C)=0A+0G=0X

Fig. 1.3

(Fig. 1.2). These two vector operations satisfy certain laws of algebra,
which we shall soon state in the definition. The geometric proofs of these laws
are generally sketchy, consisting more of plausibility arguments than of airtight
logic. For example, the geometric figure in Fig. 1.3 is the essence of the usual
proof that vector addition is associative. In each ecase the final vector 0X is
represented by the diagonal starting from O in the parallelepiped constructed
from the three edges OA, OB, and OC. The set of all geometric vectors, together
with these two operations and the laws of algebra that they satisfy, constitutes
one example of a vector space. We shall return to this situation in Section 2.

The reader may also have seen eoordinate triples treated as vectors. In this
system a three-dimensional vector is an ordered triple of numbers <z;, xq, 23>
which we think of geometrically as the coordinates of a point in space. Addition
1s now algebraically defined,

<y, zg, x3> + <Y1, Yo, y3> = <x1+?/1, x_2+y2, 3+ Y3 >,

as is multiplication by numbers, {<zy, Zs, 23> = <iry, fxs, fx3>. The
vector laws are much easier to prove for these objects, since they are almost
algebraic formalities. The set R? of all ordered triples of numbers, together with
these two operations, is a second example of a veector space.
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If we think of an ordered triple <z, 2, 3> as a function x with domain
the set of integers from 1 to 3, where z; is the value of the function x at 7 (see
Section 0.8), then this vector space suggests a general type called a function
space, which we shall examine after the definition. For the moment we remark
only that we defined the sum of the triple x and the triple y as that triple z
such that z; = z; + y; for every <.

A vector space, then, is a collection of objects that can be added to each
other and multiplied by numbers, subject to certain laws of algebra. In this
context a number is often called a scalar.

Definition. Let V be a sct, and let there be given a mapping <o, 8> +>
a+ 8 from VXV to V, called addition, and a mapping <z, a> — za
from R X V to V, called multeplication by scalars. Then V is a vector space
with respect to these two operations if:

Al. aFB+V)=(a+8)+ 7 forall o, 8,7 V.

A2. e+ =B+« forall o,8€V.

A3. There exists an element 0 € V such that a + 0 = « for all a € V.
A4. Tor every @ € V there exists a § € V such that « + 8 = 0.

S1. (xy)a = z(ya) forall z,yeR, ae€V.
S2. (z+ ya = za+ yo forall z,yeR, aeV.
S3. z(e+B) = za+ 28 forall zeR, o, V.
S4. loa = « forall acV.

In contexts where it is clear (as it generally is) which operations are intended,
we refer simply to the vector space V.

Certain further properties of a vector space follow directly from the axioms.
Thus the zero element postulated in A3 is unique, and for each « the 8 of A4
is unique, and is called —a. Also Oa = 0, 20 = 0, and (—1)a = —a. These
elementary consequences are considered in the exercises.

Our standard example of a vector space will be the set V = R of all real-
valued functions on a set 4 under the natural operations of addition of two
functions and multiplication of a function by a number. This generalizes the
example R'123 — R? that we looked at above. Remember that a function f
in R4 is simply a mathematical object of a certain kind. We are saying that two
of these objects can be added together in a natural way to form a third such
object, and that the set of all such objects then satisfies the above laws for
addition. Of course, f + ¢ is defined as the function whose value at a is f(a) +
g(a), so that (f + ¢)(a) = f(a) + g(a) for all @ in A. For example, in R?* we
defined the sum x -+ y as that triple whose value at ¢is z; + y; for all 7. Similarly,
¢f is the function defined by (¢f)(a) = c(f(a)) for all a. Laws Al through S4
follow at once from these definitions and the corresponding laws of algebra for
the real number system. For example, the equation (s + &)f = sf 4 tf means



24 VECTOR SPACES 1.1

that ((s + t)f) (@) = (sf + tf)(a) forall a € A. But

(0@ = s+ (@) = s(f@) + t(f(a))
= ($N(a) + () = (S + i)(a),

where we have used the definition of scalar multiplication in R*, the distributive
law in R, the definition of scalar multiplication in R“, and the definition of
addition in R4, in that order. Thus we have S2, and the other laws follow
similarly.

The set A can be anything at all. If A = R, then V = R® is the vector
space of all real-valued functions of one real variable. If A = R X R, then
V = R*™* is the space of all real-valued functions of two real variables. If
A= {1,2) =2, then V = R? = R? is the Cartesian plane, and if 4 =
{1,...,n} =7, then V = R" is Cartesian n-space. If A contains a single
point, then R4 is a natural bijective image of R itself, and of course R is trivially
a vector space with respect to 1ts own operations.

Now let V be any vector space, and suppose that W is a nonempty subset of
V that is closed under the operations of V. That is, if « and 8 are in W, then so
isa + B, and if ais in W, then so is za for every scalar . For example, let V be
the vector space R@? of all real-valued functions on the closed interval [a, b] C R,
and let W be the set €([a, b)) of all continuous real-valued functions on [a, b].
Then W is a subset of V that is closed under the operations of V, since f+ ¢
and ¢f are continuous whenever f and g are. Or let V be Cartesian 2-space R?,
and let W be the set of ordered pairs x = <z, xo> such that z; + zo = 0.
Clearly, W is closed under the operations of V.

Such a subset W is always a vector space in its own right. The universally
quantified laws A1, A2, and S1 through S4 hold in W because they hold in the
larger set V. And since there is some 8 in W, it follows that 0 = 08 is in W
because W is closed under multiplication by scalars. Tor the same reason, if «
is in W, then so is —a = (—1)a. Therefore, A3 and A4 also hold, and we see
that W is a vector space. We have proved the following lemma.

Lemma. If W is a nonempty subset of a vector space V which is closed
under the operations of V, then W is itself a vector space.

We call W a subspace of V. Thus €([a, b]) is a subspace of R"*" and the
pairs <zp, x> such that z; + 2, = 0 form a subspace of R%. Subspaces will
be with us from now to the end.

A subspace of a vector space R4 is called a function space. In other words, a
function space is a collection of real-valued functions on a common domain
which is closed under addition and multiplication by scalars.

What we have defined so far ought to be called the notion of a real vector
space or a vector space over R. There is an analogous notion of a complex vector
space, for which the scalars are the complex numbers. Then laws S1 through S4
refer to multiplication by complex numbers, and the space C* of all complex-
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valued functions on A4 is the standard example. In fact, if the reader knew what
is meant by a field F, we could give a single general definition of a vector space
over F, where scalar multiplication is by the elements of F, and the standard
example is the space V = F4 of all functions from A4 to F. Throughout this
book it will be understood that a vector space is a real vector space unless explic-
itly stated otherwise. However, much of the analysis holds as well for complex
vector spaces, and most of the pure algebra is valid for any scalar field F.

EXERCISES

1.1 Sketch the geometric figure representing law S3,
“(04 +0B) = =01 + =0B),

for geometric vectors. Assume that xz > 1.

1.2 Prove S3 for R3 using the explicit displayed form {z1, 2, x5} for ordered triples.

1.3 The vector 0 postulated in A3 is unique, as elementary algebraic fiddling will
show. For suppose that 0’ also satisfies A3. Then

O =0+0 (A3 for 0)

04+0 (A2
=0 (A3 for 0).

Show by similar algebraic juggling that, given «, the 8 postulated in A4 is unique.
This unique 8 is designated —a.

1.4 Prove similarly that 0a = 0, 20 = 0, and (—1)a = —a.

1.5 Prove that if za = 0, then either z = Oora = 0.

1.6 Prove S1 for a function space R4, Prove S3.

1.7 Given that « is any vector in a vector space V, show that the set {za:z € R}
of all sealar multiples of « is a subspace of V.

1.8 Given that « and 8 are any two vectors in V, show that the set of all vectors
ra -+ yB, where z and y are any real numbers, is a subspace of V.

1.9 Show that the set of triples x in R3 such that z;1 — z2 -+ 223 = 0 is a subspace
M. If N is the similar subspace {x:z1+ z2+ z3 = 0}, find a nonzero vector a in
M N N. Show that M N N is the set {za:z & R] of all scalar multiples of a.

1.10 Let A be the open interval (0, 1), and let ¥V be R4, Given a point z in (0, 1),
let V, be the set of functions in ¥ that have a derivative at z. Show that V. is a sub-
space of V.

1.11 For any subsets 4 and B of a vector space V we define the set sum 4 -+ B by
A+ B={a+pB:ac AandB e B}. Showthat (A + B)+C = A4+ (B+ O).

112 If ACV and X CR, we similarly define X4 = {za:z&€ X and o€ A}.
Show that a nonvoid set A is a subspace if and only if A+ A4 = A and R4 = A.

1.13 Let V be R2, and let M be the line through the origin with slope k. Let x be
any nonzero vector in M. Show that M is the subspace Rx = {ix:t& R}.
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1.14 Show that any other line I with the same slope & is of the form M + a for some a.
1.15 Let 31 be a subspace of a vector space V, and let « and 3 be any two vectorsin V.
Given A = a-+ M and B = 8- M, show that either 4 = B or ANB = .
Show also that A 4+ B = (a« -+ B) + 2.

1.16 State more carefully and prove what is meant by “a subspace of a subspace is
a subspace”,

1.17 Prove that the intersection of two subspaces of a vector space is always itself
a subspace.

1.18 Prove more generally that the intersection W = [ier W, of any family
{W;:1& I} of subspaces of V is a subspace of V.

1.19 Let V again be R©:D and let W be the set of all functions f in V such that f'(x)
exists for every z in (0, 1). Show that 11" is the intersection of the collection of subspaces
of the form V, that were considered in Exercise 1.10.

1.20 Let V be a function space R*, and for a point a in .1 let W, be the set of functions
such that f(a) = 0. W, is clearly a subspace. For a subset B C .1 let W be the set
of functions f in V such that f = 0 on B. Show that Wpis the intersection [Yocp We.
1.21 Supposing again that X and ¥ are subspaces of V, show thatif X + ¥ = V and
XNY = {0}, then for every vector { in V there is a unique pair of vectors € X
and 7 &€ Y such that ¢ = £ 1.

1.22 Show that if X and Y are subspaces of a vector space V, then the union XY U Y
can only be a subspace if either Y C Y or VY C X.

Linear combinations and linear span. Because of the commutative and associ-
ative laws for vector addition, the sum of a finite set of vectors is the same for all
possible ways of adding them. I'or example, the sum of the three vectors
ag, ap, @ can be calculated in 12 ways, all of which give the same result:

(ag 4+ ap) + ac = ac + (ag + ap) = (ac + ag) + o = ap + (e + a,), ecte.

Therefore, if I = {a, b, ¢} is the set of indices used, the notation > ;=1 ay,
which indicates the sum without telling us how we got it, is unambiguous. In
general, for any finite indexed set of vectors {a;:7 € I} there is a uniquely
determined sum vector 3 ;er «; which we can compute by ordering and group-
ing the /s in any way.

The index set I is often a block of integers @ = {1,...,n}. In this case
the veetors «; form an n-tuple {e;}7, and unless directed to do otherwise we
would add them in their natural order and write the sum as > 7., «;. Note
that the way they are grouped is still left arbitrary.

Frequently, however, we have to use indexed sets that are not ordered.
TFor example, the general polynomial of degree at most 5 in the two variables

‘s and ‘¢’ is
2. cs't
0<iTI<H

and the finite sct of monomials {s%} ;. ;<5 has no natural order.
v yit5<5
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* The formal proof that the sum of a finite collection of vectors is indepen-
dent of how we add them is by induction. We give it only for the interested
reader.

In order to avoid looking silly, we begin the induction with two vectors,
in which case the commutative law a, + ap = ap + o, displays the identity of
all possible sums. Suppose then that the assertion is true for index sets having
fewer than n elements, and consider a collection {«;:7 € I'} having n members.
Let 8 and ¥ be the sum of these vectors computed in two ways. In the com-
putation of 3 there was a last addition performed, so that 8 = (Zies, o) +
Xier, @), where {Jy, Jo} partitions I and where we can write these two
partial sums without showing how they were formed, since by our inductive
hypothesis all possible ways of adding them give the same result.

Similarly, ¥ = (Ciek, @) + (ick, ou). Now set

ij = Jj N K and Eir = Z a;,
‘I:Eij
where it is understood that &, = 0 if Lj; is empty (see Exercise 1.37). Then
2 ieq, = £11+ £12 by the inductive hypothesis, and similarly for the other
three sums. Thus

B = (&11 + £12) + (21 + £22) = (E11+ E21) + (E12 + E22) - v,

which completes our proof.

A vector 8 is called a linear combination of a subset A of the vector space V
if 8 is a finite sum > x,a;, where the vectors «; are all in 4 and the scalars z;
are arbitrary. Thus, if A is the subset {"}q C R® of all “monomials”, then a
function f is a linear combination of the functions in A4 if and only if fis a
polynomial function f(t) = 37 cit®. If A is finite, it is often useful to take the
indexed set {a;} to be the whole of 4, and to simply use a O-coefficient for any
vector missing from the sum. Thus, if A is the subset {sin{, cost, ¢'} of R®,
then we can consider A an ordered triple in the listed ordering, and the function
3sint —e! = 3-sint+ 0-cost-+ (—1)e¢* is the linear combination of the
triple A having the coefficient triple <3,0, —1>.

Consider now the set L of all linear combinations of the two vectors
<1,1,1> and <0,1, —1> in R3 It is the set of all vectors s<1,1,1> -
t<0,1, —1> = <s,s-+t s — t>, where s and ¢ are any real numbers. Thus
L= {<s,s+ts—1t>:<st> cR?*. It will be clear on inspection that
L is closed under addition and scalar multiplication, and therefore is a subspace
of R%. Also, L contains each of the two given vectors, with coefficient pairs
<1,0> and <0, 1>, respectively. Finally, any subspace M of R® which
contains each of the two given vectors will also contain all of their linear combi-
nations, and so will include L. That is, L ¢s the smallest subspace of R® containing
<1,1,1> and <0, 1, —1>. Itis called the linear span of the two vectors, or the
subspace generated by the two vectors. In general, we have the following theorem.
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Theorem 1.1. If A is a nonempty subset of a vector space V, then the set
L(A) of all linear combinations of the vectors in A is a subspace, and it is
the smallest subspace of V which includes the set A.

Proof. Suppose first that 4 is finite. We can assume that we have indexed 4
in some way, so that A = {«;:7 € I} for some finite index set I, and every
element of L(A) is of the form > ;e; x;a;. Then we have

(X o) + (i) = 2 @i + yi)oy

because the left-hand side becomes >_; (x;a; -+ yse;) when it is regrouped by
pairs, and then S2 gives the right-hand side. We also have

e(2 i) = 2o (crs)ey

by S3 and mathematical induction. Thus L{4) is closed under addition and
multiplication by scalars and hence is a subspace. Moreover, L(A) contains
each o; (why?) and so includes A. Finally, if a subspace W includes 4, then it
contains each linear combination 3 x;a;, so it includes L{A). Therefore, L(A4)
can be directly characterized as the uniquely determined smallest subspace
which includes the set 4.

If A is infinite, we obviously can’t use a single finite listing. However, the
sum (2.7 z;a;) + (T y;8;) of two linear combinations of elements of A is
clearly a finite sum of scalars times elements of A. If we wish, we can rewrite it
as 271" 205, where we have set 8; = apyjand y; = zpqjforj=1,...,m.
In any case, L(A) is again closed under addition and multiplication by scalars
and so is a subspace. [J

We call L(A) the linear span of A. If L(A) = V, we say that A spans V;
V 1s finite-dimensional if it has a finite spanning set.

If V= R?, and if &', 6%, and §% are the “unit points on the axes”, §! =
<1,0,0>, 82 = <0,1,0>, and 8% = <0,0,1>, then {6°}} spans V, since
X = <1, 2o, 23> = <21,0,0> -+ <0,25,0> + <0,0,23> = 2,8 +
2982 + 238% = T3 2,6° for every x in R®. More generally, if V = R” and &’ is
the n-tuple having 1 in the jth place and 0 elsewhere, then we have similarly that
X = <&y, ..., Tn> = .oy ;8% so that {6} spans R®. Thus R™ is finite-
dimensional. In general, a function space on an infinite set A will not be finite-
dimensional. For example, it is true but not obvious that €([a, b]) has no finite
spanning set.

EXERCISES

1.23 Givena = <1,1,1>, 8 = 0,1, —1>,7Y = <2,0,1>, compute the lincar
combinations a« + 8+ 7Y, 3¢ — 284 V,za+ yB8+ Y. Find z,y, and z such that
ra+ yB-+2Y = <0,0,1> = 3. Do the same for §! and §2.

1.24 Given « = <1,1,1>,8 = <0,1,—1>, v = <1,0,2>, show that each of
o, 8,7 is a linear combination of the other two. Show that it is impossible to find
cocflicients z, 7, and 2z such that za -+ y8 + 2v = 8.
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1.25 a) Find the linear combination of the set 4 = <t,¢2 — 1,24 1> with coeffi-
cient triple <2, —1, 1>>. Do the same for <0, 1, 1>.
b) Find the coeflicient triple for which the linear combination of the triple 4
is (¢+ 1)2. Do the same for 1.
¢) Show in fact that any polynomial of degree < 2 is a linear combination of A.
1.26 Find the linear combination f of {ef, e !} C R® such that f(0) = 1andf/(0) = 2.
1.27 Find a linear combination f of sin z, cos z, and e* such that f(0) = 0, f/(0) = 1,
and f”7(0) = 1.
1.28 Suppose that a sin ¢ + b cos £ + ce® is the zero function. Prove thata = b =
¢c=0.
1.29 Prove that <1,1> and <1,2> span R2.
1.30 Show that the subspace M/ = {x:z; + 22 = 0} C R? is spanned by one vector.

1.31 Let M be the subspace {x:z1 — z2+ 223 = 0} in R%. Find two vectors a
and b in M neither of which is a scalar multiple of the other. Then show that Af is
the linear span of a and b.

1.32 Find the intersection of the linear span of <1,1,1> and <0,1, —1> in R3
with the coordinate subspace o = 0. Exhibit this intersection as a linear span.

1.33 Do the above exercise with the coordinate space replaced by
M= {x:21+ z2 = 0}.

1.34 DBy Theorem 1.1 the linear span L(A4) of an arbitrary subset A of a vector space
V has the following two properties:

i) L(A) is a subspace of V which includes A;

ii) If M is any subspace which includes A, then L(A) C M.
Using only (i) and (ii), show that

a) ACB= L(A) CL(B);

b) L(L(A)) = L(4).
1.35 Show that

a) if M and N are subspaces of V, then so is M -+ N;

b) for any subsets A, BC V, L(AU B) = L(A) 4+ L(B).
1.36 Remembering (Exercise 1.18) that the intersection of any family of subspaces
is a subspace, show that the linear span L(A) of a subset 4 of a vector space V is the
intersection of all the subspaces of V that include 4. This alternative characterization
is sometimes taken as the definition of linear span.
1.37 By convention, the sum of an empty set of vectors is taken to be the zero vector.

This is necessary if Theorem 1.1 is to be strictly correct. Why? What about the
preceding problem?

Linear transformations. The general function space R4 and the subspace
e([a, b]) of R both have the property that in addition to being closed under
the vector operations, they are also closed under the operation of multiplication
of two functions. That is, the pointwise product of two functions is again a
function [(fg)(a) = f(a)g(a)], and the product of two continuous functions is
continuous. With respect to these three operations, addition, multiplication,
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and scalar multiplication, R4 and €([a, b]) are examples of algebras. If the reader
noticed this extra operation, he may have wondered why, at least in the context
of function spaces, we bother with the notion of vector space. Why not study
all three operations? The answer is that the vector operations are exactly the
operations that are “preserved” by many of the most important mappings of
sets of functions. For example, define T:€([a, b]) — R by T(f) = ff f(®) dt.
Then the laws of the integral calculus say that T'(f 4 ¢) = T(f) + T(y) and
T(cf) = ¢T(f). Thus T “preserves” the vector operations. Or we can say that T
“commutes” with the vector operations, since plus followed by T equals T
followed by plus. However, T does not preserve multiplication: it is not true in
general that T'(fy) = T(/)T(y)-

Another example is the mapping T:x+y from R?® to R? defined by
Y1 = 2xy — x9 -+ 3, Y2 = 21 + 3xe — Sxz, for which we can again verify
that T(x +y) = T'(x) + T(y)and T'(cx) = ¢T(x). The theory of the solvability
of systems of linear equations is essentially the theory of such mappings T; thus
we have another important type of mapping that preserves the vector operations
(but not products).

These remarks suggest that we study vector spaces in part so that we can
study mappings which preserve the vector operations. Such mappings are
called linear transformations.

Definition. If V and W are vector spaces, then a mapping 7:V — W is a
linear transformation or a linear map if T(a 4+ B8) = T(a) + T(B) for all
a,B€V,and T(za) = 2T(a) foralla e V, 2z € R.

These two conditions on T can be combined into the single equation
T(xa+ yB) = 2T () + yT'(B) forall e,V andall z,yecR.

Moreover, this equation can be extended to any finite sum by induction, so
that if T is linear, then

T (; a‘iai> = ; ;T (es)

for any linear combination > x;x;. For example, ﬁf tef) =20 clfab fi

EXERCISES

1.38 Show that the most general linear map from R to R is multiplication by a con-
stant.

1.39 For a fixed « in V the mapping 2 — za from R to V is linear. Why?
1.40 Why is this true for ¢+ ra when z is fixed?

1.41 Show that every linear mapping from R to V is of the form z +> za for a fixed
vector o in V.
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1.42 Show that every linear mapping from R2 to V is of the form <z, z2> +>
Z1a1 + x2az for a fixed pair of vectorsa and a2 in V. What is the range of this mapping?

1.43 Show that the map f+> J2 f(t) dt from €({a, b]) to R does not preserve products.
1.44 Let g be any fixed funection in R4. Prove that the mapping T: R4 — R4
defined by T(f) = ¢f is linear.

1.45 Let ¢ be any mapping from a set A to a set B. Show that composition by ¢ is

a linear mapping from R? to RA. That is, show that T: RZ — R4 defined by T(f) =
fo ¢ is linear.

In order to acquire a supply of examples, we shall find all linear transforma-
tions having R™ as domain space. It may be well to start by looking at one such
transformation. Suppose we choose some fixed triple of functions {f;}$ in the
space R® of all real-valued functions on R, say f1{(f) = sin ¢, fo(t) = cos ¢, and
fs(t) = ¢ = exp(t). Then for each triple of numbers x = {z;}? in R® we have
the linear combination 3_%_, x,f; with {z,} as coefficients. This is the element of
R® whose value at tis 33 x;fi(t) = x; sin t + 25 cos t + zge’. Different coefficient
triples give different functions, and the mapping x> > i, z;f; = x, sin +
Zs €OS + 3 exp is thus a mapping from R3 to R®. It is clearly linear. If we call
this mapping T, then we ean recover the determining triple of functions from 7'
as the images of the “unit points” & in R3; T(¢’) = ¥ &if; = f;, and so
T(8Y) = sin, T(8%) = cos, and T(8%) = exp. We are going to see that every
linear mapping from R® to R® is of this form.

In the following theorem {&°}7} is the spanning set for R™ that we defined
earlier, so that x = 3.7 2,8 for every n-tuple x = <zy,...,z,> in R™

Theorem 1.2. If {B;}T is any fixed n-tuple of vectors in a vector space W,
then the “linear combination mapping” x+> >_.7 z;8; is a linear trans-
formation 7' from R™ to W, and T(8’) = B8, forj = 1,..., n. Conversely,
if T is any linear mapping from R” to W, and if we set 8; = T'(¢°) for j =
1,...,n, then T is the linear combination mapping x +— > | x;8-

Proof. The linearity of the linear combination map 7' follows by exactly the
same argument that we used in Theorem 1.1 to show that L(A4) is a subspace.
Thus

Tx+y) = 21 (x: + y)Bs = Zl (xiBi+ y:B2)

= 21: xiBi + 2 yiBi = T(x) + T(),

1

and

n

T(sx) = 21: (s2)B: = ; s(xiB:) = 821:: z:iB: = sT(x).

Also T(8") = "%, 8i8; = B;, since 6§ = land 8 = O for ¢ # j.
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Conversely, if T: R® — W is linear, and if we set 8; = T(a.j) for all j, then for
any x = <zi,..., I,> in R® we have T(x) = T(X} x; 8") = X1 2, T(8%) =
ST x8;. Thus T is the mapping x — > 7 z;8,. U

This is a tremendously important theorem, simple though it may seem, and
the reader is urged to fix it in his mind. To this end we shall invent some termi-
nology that we shall stay with for the first three chapters. If @ = {ay, ..., as}
1s an n-tuple of vectors in a vector space W, let La be the corresponding linear
combination mapping x — 27 z;a; from R™ to W. Note that the n-tuple «
itself is an element of W™, If T is any linear mapping from R™ to W, we shall call
the n-tuple {T'(8%)) 7 the skeleton of T. In these terms the theorem can be restated
as follows.

Theorem 1.2, I'or cach n-tuple a in W", the map La:R™ — W is linear
and its skeleton is . Conversely, if T' is any linear map from R” to W, then
T = Lp where 8 is the skeleton of 7.

Or again:

Theorem 1.2””. The map « +— La is a bijection from W7 to the set of all
linear maps T from R™ to W, and T — skeleton (T) is its inverse.

A linear transformation from a vector space V to the scalar field R is called
a linear functional on V. Thus f— f,f f(t) dt is a linear functional on V =
¢([a, b]). The above theorem is particularly simple for a linear functional F':
since W = R, each vector 8; = F(5%) in the skeleton of F is simply a number b;,
and the skeleton {b;}T is thus an element of R™. In this case we would write
F(x) = > 7 bx;, putting the numerical coefficient ‘b, before the variable
‘7. Thus F(x) = 3z, — x5 + 4x5 is the linear functional on R® with skeleton
<3, —1,4>. The set of all linear functionals on R”™ is in a natural one-to-one
correspondence with R” itself; we get b from F by b; = F(8?) for all 7, and we
get F from b by F(x) = > b, for all x in R™.

We next consider the case where the codomain space of T is a Cartesian
space R™, and in order to keep the two spaces clear in our minds, we shall, for
the moment, take the domain space to be R3. Each vector 8; = T(8%) in the
skeleton of T is now an m-tuple of numbers. If we picture this m-tuple as a
column of numbers, then the three m-tuples B; can be pictured as a rectangular
array of numbers, consisting of three columns each of m numbers. Let ¢;; be the
7th number in the jth column. Then the doubly indexed set of numbers {¢;;} is
called the matriz of the transformation 7. We call it an m-by-3 {an m X 3)
matrix because the pictured rectangular array has m rows and three columns.
The matrix determines 7' uniquely, since its columns form the skeleton of 7.
The identity T(x) = Y3 2,T(8") = 33 2;8; allows the m-tuple T(x) to be
calculated explicitly from x and the matrix {t;;}. Picture multiplying the
column m-tuple 8; by the scalar z; and then adding across the three columns at



1.1 FUNDAMENTAL NOTIONS 33

the 7th row, as below:
: / : :
Yi | = 21 ktn + ol liz )+ za] b3

}-’ 81 B2 B3

Since ¢;; is the ith number in the m-tuple 8;, the 7th number in the m-tuple
3, w85 is Ti—y x;t;;. That is, if we let y be the m-tuple T'(x), then

3
?/i:Etijxj for izl,...,m,

j=1

and this set of m scalar equations is cquivalent to the one-vector equation
y = T(x).

We can now replace three by n in the above discussion without changing
anything except the diagram, and thus obtain the following specialization of
Theorem 1.2.

Theorem 1.3. Every lincar mapping 7 from R™ to R™ determines the
m X n matrix t = {¢;;} having the skeleton of T as its columns, and the
expression of the equation y = T'(x) in linear combination form is equivalent
to the m scalar equations

n
yi:Ztijxj for :=1,...,m.
j=1

Conversely, each m X 1 matrix t determines the lincar combination mapping
having the columns of t as its skeleton, and the mapping t — T is therefore
a bijection from the set of all m X n matrices to the set of all linear maps
from R”™ to R™.

A linear functional F on R” is a linear mapping from R” to R!, so it must
be expressed by a 1 X nmatrix. That is, the n-tuple b in R™ which is the skeleton
of F is viewed as a matrix of one row and n columns.

As a final example of linear maps, we look at an important class of special
linear functionals defined on any function space, the so-called coordinate func-
tionals. If V = R? and ¢ € I, then the ith coordinate functional m; is simply
evaluation at 7, so that m;(f) = f(). These functionals are obviously linear. In
fact, the vector operations on functions were defined to make them linear; since
sf + tg is defined to be that function whose value at 7 is sf(7) 4 tg(7) for all 7,
we see that sf -ty is by definition that function such that m;(sf + tg) =
smi(f) + tmi(g) for all 7!

If V is R”, then 7; is the mapping x = <z, ..., 2,> — z; In this case
we know from the theorem that m; must be of the form =m;(x) = > 7 bx; for
some n-tuple b. What is b?
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The general form of the linearity property, T(3 x;e;) = > ;T (e;), shows
that T and T~! both carry subspaces into subspaces.

Theorem 1.4. If T:V — W is linear, then the T-image of the linear span
of any subset A C V is the linear span of the T-image of A: T[L{A)] =
L(T[A]). In particular, if A isa subspace, then sois T[{A4]. Furthermore, if ¥
is a subspace of W, then T™*[Y] is a subspace of V.

Proof. According to the formula T3 za;) = 3 z;T(a;), a vector in W is
the T-image of a linear combination on A if and only if it is a linear combination
on T[A]. That is, T[L(4)] = L(T[A]). If A is a subspace, then A = L(A) and
T[A] = L(T[A]), a subspace of W. Finally, if ¥ is a subspace of W and {a;} C
T7HY], then T(¥ zj) = X 4. T(a;) € L(Y) = Y. Thus ¥ xa; € T7YY]
and T7[Y] is its own lincar span. [

The subspace T71(0) = {a € V:T(a) = 0} is called the null space, or
kernel, of T, and is designated N(T) or 9(T). The range of T is the subspace
T[V] of W. It is designated R(T) or &(T).

Lemma 1.1. A linear mapping 7T is injective if and only if its null space
is {0}.

Proof. If T is injective, and if & £ 0, then T(a) # T(0) = 0 and the null space
accordingly contains only 0. On the other hand, if N(T) = {0}, then whenever
a# B, wehavea — B # 0, T(a) — T(B) = T(a — B) # 0,and T(a) # T(8);
this shows that T is injective. U

A lincar map T:V — W which is bijective is called an isomorphism.
Two vector spaces V and W are isomorphic if and only if there exists an iso-
morphism between them.

Yor example, the map <ecq, ..., ¢,> — 267 ¢;412° is an isomorphism of
R”™ with the vector space of all polynomials of degree < n.

Isomorphic spaces “have the same form”, and are identical as abstract
veetor spaces. That is, they cannot be distinguished from each other solely on
the basis of vector properties which they do or do not have.

When a linear transformation is from V to itself, special things can happen.
One possibility is that 7 can map a vector « essentially to itsclf, T(a) = za
for some z in R. In this case « is called an eigenvector (proper vector, character-
istic veetor), and x is the corresponding eigenvalue.

EXERCISES

1.46 In the situation of Exercise 1.45, show that T is an isomorphism if ¢ is bijective
by showing that

a) ¢ injective = T surjective,

b) ¢ surjective = T injective.
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1.47 Find the linear functional [ on R? such that I(<1,1>) = 0and I(<1,2>) = 1.
That is, find b = <b;, ba> in R? such that [ is the linear combination map

x — biz1 + bozsa.

1.48 Do the same for [(<2,1>) = —3 and I(<1,2>) = 4.

1.49 TFind the linear T: R? — R® such that T(<1,1>) = {2 and T(<1,2>) = t3.
That is, find the functions f1(¢) and f2(t) such that T is the linear combination map
x — z1f1 + z2f2.

1.50 Let T be the linear map from R2 to R3 such that T(8!) = <2, —1,1>, T(8%) =
<1,0,3>. Write down the matrix of T in standard rectangular form. Determine
whether or not 6! is in the range of 7.

1.51 Let T be the linear map from R3 to B3 whose matrix is

1 2 3
2 0 —1}
3 —1 1

Find T(x) when x = <1,1,0>; do the same for x = <3, —2,1>.

1.52 Let M be the linear span of <1, —1,0> and <0,1, 1>. Find the subspace
T[] by finding two vectors spanning it, where T is as in the above exercise.

1.53 Let T be the map <z, y> — <z -+ 2y, y> from R? to itself. Show that Tisa
linear combination mapping, and write down its matrix in standard form.

1.54 Do the same for T: <z, y,2> — <x — 2, + 2, y> from R3 to itself.

1.55 TFind a linear transformation T from R3 to itself whose range space is the span
of <1, —1,0> and < —1,0, 2>.

1.56 Find two linear functionals on R* the intersection of whose null spaces is the
linear span of <1, 1,1, 1> and <1,0, —1,0>. You now have in hand a linear
transformation whose null space is the above span. What is it?

1.57 Let V = C([a, b]) be the space of continuous real-valued functions on [a, b},
also designated @9%({a, b]), and let W = @1([a, b]) be those having continuous first
derivatives. Let D:W — V be differentiation (Df = f’), and define T on V by
T(f) = F, where F(z) = [ff(t) dt. By stating appropriate theorems of the caleulus,
show that D and T are linear, T maps into W, and D is a left inverse of T (Do T is
the identity on V).

1.58 1In the above exercise, identify the range of T and the null space of D. We
know that D is surjective and that T is injective. Why?

1.59 Let V be the linear span of the functions sin z and cos . Then the operation
of differentiation D is a linear transformation from V to V. Prove that D is an isomor-
phism from V to V. Show that D2 = —Ion V.

1.60 a) As the reader would guess, @3(R) is the set of real-valued functions on R
having continuous derivatives up to and including the third. Show that f — " is a
surjective linear map T from C3(R) to C(R).

b) For any fixed a in R show that f — <f(a), f'(a), f’{a)> is an isomorphism
from the null space N(T) to R3. [Hint: Apply Taylor’s formula with remainder.]
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1.61 An integral analogue of the matrix equations y; = >ty 1 = 1,...,m, is
the equation

1
g(s) = /0 K(s, 0f di, selo,1).

Assuming that K(s, t) is defined on the square [0, 1] X [0, 1] and is continuous as a
function of ¢ for each s, check that f — g is a linear mapping from €([0, 1]) to R,

1.62 For a finite set A = {a;}, Theorem 1.1 is a corollary of Theorem 1.4. Why?
1.63 Show that the inverse of an isomorphism is linear (and hence is an isomorphism).

1.64 Tind the ecigenvectors and eigenvalues of 7:R%Z — R? if the matrix of T is

1 —1
—2 0]
Since every scalar multiple xa of an eigenvector « is clearly also an eigenvector, it will
suffice to find one vector in each “eigendirection”. This is a problem in elementary

algebra.
1.65 Find the eigenvectors and eigenvalues of the transformations T whose matrices

are
i 1 -1 —1 1 —1 2 1
—2 0]’ —1 —1]’ -2 2] —4 —2]

1.66 The five transformations in the above two exercises exhibit four different kinds
of behavior according to the number of distinct eigendirections they have. What are
the possibilities?

1.67 Let V be the vector space of polynomials of degree < 3 and define 7:V — V
by f — ¢f(¢). Find the eigenvectors and eigenvalues of 7.

2. YECTOR SPACES AND GEOMETRY

The familiar coordinate systems of analytic geometry allow us to consider
geometric entities such as lines and planes in vector settings, and these geometrie
notions give us valuable intuitions about vector spaces. Before looking at the
veetor forms of these geometrie ideas, we shall briefly review the construction of
the coordinate correspondence for three-dimensional Euclidean space. As usual,
the confident reader can skip it.

We start with the line. A coordinate correspondence between a line L and
the real number system R is determined by choosing arbitrarily on L a zero
point O and a unit point @ distinet from O. Then to each point X on L is assigned
the number z such that |z] is the distance from O to X, measured in terms of
the segment O@ as unit, and x is positive or negative according as X and @ are
on the same side of O or on opposite sides. The mapping X — z is the coordinate
correspondence. Now consider three-dimensional Euclidean space E2. We want
to set up a coordinate correspondence between E® and the Cartesian vector
space R3. We first choose arbitrarily a zero point O and three unit points
Q1, Q2, and Q3 in such a way that the four points do not lie in a plane. Each of
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the unit points @; determines a line I; through O and a coordinate correspon-
dence on this line, as defined above. The three lines Ly, Lo, and L3 are called
the coordinate axes. Consider now any point X in E%. The plane through X
parallel to Ly and Lg intersects L, at a point X, and therefore determines a
number z;, the coordinate of X; on L;. In a similar way, X determines points
X, on Ly and X3 on L3z which have co-
ordinates xo and x3, respectively. Alto-
gether X determines a triple X,

Ly

X = <y, Lo, T3>

in R3, and we have thus defined a mapping
9: X — x from E* to R® (sce Fig. 1.4).
We call 6 the coordinate correspondence
defined by the axis system. The conven-
tion implicit in our notation above is that
6(Y) is y, 6(A4) is a, etc. Note that the
unit point @; on L; has thec coordinate
triple 8! = <1, 0, 0>, and similarly, that

8(Qs) = 82 = <0,1,0>

and
8(Q3) = 8% = <0,0,1>. Fig. 1.4

There are certain basic facts about the coordinate correspondence that have
to be proved as theorems of geometry before the correspondence can be used to
treat geometric questions algebraically. These geometric theorems are quite
tricky, and are almost impossible to discuss adequately on the basis of the usual
scecondary school treatment of geometry. We shall therefore simply assume
them. They are:

1) 6 is a bijection from E* to R?.

2) Two line segments AB and XY are equal in length and parallel, and the
direction from A to B is the same as that from X to Y if and only if b — a =
y — x {in the vector space R®). This relationship between line segments is
important enough to formalize. A directed line segment is a geometrie line seg-
ment, together with a choice of one of the two directions along it. If we interpret
AB as the directed line segment from A to B, and if we define the directed line
segments AB and XY to be equivalent (and write AB ~ XY) if they are equal
in length, parallel, and similarly directed, then (2) can be restated:

AB~XY @ b—a=y —x

3) If X = O, then Y is on the line through O and X in E3 if and only if
vy = tx for some ¢ in R. Moreover, this ¢ is the coordinate of Y with respeet to X
as unit point on the line through O and X.
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(y—x,y—2)=|XY?

(y,y) =102

So =x%+x%
|OX [2=r2=g2423

Fig. 1.5

4) If the axis system in E® is Cartesian, that is, if the axes are mutually
perpendicular and a common unit of distance is used, then the length |0X] of
the segment OX is given by the so-called Euclidean norm on R3, [0X| =
(33 2,52, This follows directly from the Pythagorean theorem. Then this
formula and a second application of the Pythagorean theorem to the triangle
OXY imply that the segments OX and OY are perpendicular if and only if the
scalar product (x,y) = Y o=, z:y; has the value 0 (see Fig. 1.5).

In applying this result, it is useful to note that the scalar product (x, y) is
linear as a function of either vector variable when the other is held fixed. Thus

3 3 3
(ex+dy,z) = 2, (cx;+dydzi = ¢ D xizs +d 2, yizs = clx, z) + d(y, z).
1 1 1

Exactly the same theorems hold for the coordinate correspondence between
the Euclidean plane E? and the Cartesian 2-space R?, except that now, of course,
(x,5) = L3 ziys = 21y1 + 2oy

We can easily obtain the equations for lines and
planes in E® from these basic theorems. First, we see
from (2) and (3) that if fixed points A and B are given, X
with A ## O, then the line through B parallel to the
segment OA contains the point X if and only if there 0
exists a scalar ¢t such that x — b = fa (see Fig. 1.6).

Therefore, the equation of this line is A

x = ta-+ b. Fig. 1.6

This vector equation is equivalent to the three numerical equations z; =
aid + b;, 7 = 1, 2, 3. These are customarily called the parametric equations of the
line, since they present the coordinate triple x of the varying point X on the line
as functions of the “parameter” ¢.
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Next, we know that the plane through B perpendicular to the direction of
the segment OA contains the point X if and only if BX 1 OA, and it therefore
follows from (2) and (4) that the plane contains X if and only if (x — b, a) = 0
(see Fig. 1.7). But (x — b, a) = (x, a) — (b, a) by the linearity of the scalar
product in its first variable, and if we set I = (b, a), we see that the equation of
the plane is

3
x,a)y =1 or Z at; = 1.
1

That is, a point X is on the plane through B perpendicular to the direction of
OA if and only if this equation holds for its coordinate triple x. Conversely,
if a # 0, then we can retrace the steps taken above to show that the set of points
X in E? whose coordinate triples x satisfy (x, a) = [ is a plane.

Fig. 1.7

The fact that R3 has the natural scalar product (x, y) is of course extremely
important, both algebraically and geometrically. However, most vector spaces
do not have natural scalar products, and we shall deliberately neglect scalar
products in our early vector theory (but shall return to them in Chapter 5).
This leads us to seek a different interpretation of the equation Y3 a;z; = L
We saw in Section 1 that x — Y5 asx; is the most general linear functional f on
R3. Therefore, given any plane M in E®, there is a nonzero linear functional f
on R3 and a number I such that the equation of M is f(x) = I. And conversely,
given any nonzero linear functional f:R® — R and any I € R, the locus of
f(x) = lis a plane 3 in E3. The reader will remember that we obtain the
coefficient triple a from f by a; = f(8%), since then f(x) = f(X3? z:6") =

Pzf(8) = Tz

Finally, we seek the vector form of the notion of parallel translation. In
plane geometry when we are considering two congruent figures that are parallel
and similarly oriented, we often think of obtaining one from the other by “sliding
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the plane along itself” in such a way that all lines remain parallel to their original
positions. This description of a parallel translation of the plane can be more
elegantly stated as the condition that every directed line segment slides to an
equivalent one. If X slides to Y and O slides to B, then OX slides to BY, so
that OX ~ BY and x = y — b by (2). Therefore, the coordinate form of such
a parallel sliding is the mapping x >y = x - b.

Conversely, for any b in R? the plane mapping defined by x>y = x -+ b
is easily seen to be a parallel translation. These considerations hold equally well
for parallel translations of the Euclidean space E3.

It is geometrically clear that under a parallel translation planes map to
parallel planes and lines map to parallel lines, and now we can expect an easy
algebraic proof. Consider, for example, the plane M with equation f(x) = I;
let us ask what happens to M under the translation x — y = x 4 b. Since
x = y — b, we see that a point x is on A if and only if its translate y satisfies
the equation f(y — b) = [ or, since f is linear, the equation f(y) = I’, where
" = I+ f(b). But this is the equation of a plane N. Thus the translate of 47
is the plane N.

It is natural to transfer all this geometric terminology from sets in E®
to the corresponding sets in R3 and therefore to speak of the set of ordered
triples x satisfying f(x) = [ as a set of points in R® forming a plane in R3, and
to call the mapping x + x 4 b the (parallel) translation of R3 through b, etec.
AMoreover, since R? is a vector space, we would expect these geometric ideas to
interplay with vector notions. For instance, translation through b is simply the
operation of adding the constant vector b: x — x -+ b. Thus if M is a plane, then
the plane N obtained by translating 3/ through b is just the vector set sum
M + b. If the equation of M is f(x) = [, then the plane M goes through 0 if
and only if I = 0, in which case M is a vector subspace of R® (the null space of f).
It is easy to see that any plane M is a translate of a plane through 0. Similarly,
the line {ta -+ b : { € R} is the translate through b of the line {ia : t € R}, and
this second line is a subspace, the linear span of the one vector a. Thus planes
and lines in R® are translates of subspaces.

These notions all earry over to an arbitrary real vector space in a perfectly
satisfactory way and with additional dimensional variety. A plane in R3
through 0 is a vector space which is two-dimensional in a strictly algebraic sense
which we shall discuss in the next chapter, and a line is similarly one-dimensional.
In R® there are no proper subspaces other than planes and lines through 0,
but in a vector space V with dimension n > 3 proper subspaces occur with all
dimensions from 1 to n — 1. We shall therefore use the term “plane” loosely to
refer to any translate of a subspace, whatever its dimension. More properly,
translates of vector subspaces are called affine subspaces.

We shall see that if V is a finite-dimensional space with dimension n, then
the null space of a nonzero linear functional f is always (n — 1)-dimensional, and
therefore it cannot be a Euclidean-like two-dimensional plane except when
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n = 3. We use the term hyperplane for such a null space or one of its translates.
Thus, in general, a hyperplane is a set with the equation f(x) = [, where f is
a nonzero linear functional. It is a proper affine subspace (plane) which is maxi-
mal in the sense that the only affine subspace properly including it is the whole
of V. In R? hyperplanes are ordinary geometric planes, and in R? hyperplanes
are lines!

EXERCISES

2.1 Assuming the theorem AB~ XY & b — a = y — x, show that OC is the sum
of 04 and 5?, as defined in the preliminary discussion of Section 1, if and only if
¢ = b4 a. Considering also our assumed geometric theorem (3), show that the
mapping x+— 0X from R3 to the vector space of geometric vectors is linear and
hence an isomorphism.

2.2 Let L be the line in the Cartesian plane R? with equation zo = 3z;. Express L
in parametric form as x = ta for a suitable ordered pair a.

2.3 Let V be any vector space, and let « and B be distinet vectors. Show that the
line through « and B has the parametric equation

t=t8+1—ta teR

Show also that the segment from o to 8 is the image of [0, 1] in the above mapping.

2.4 According to the Pythagorean theorem, a triangle with side lengths a, b, and ¢
has a right angle at the vertex “opposite ¢” if and only if ¢ = a? + b2

b

Prove from this that in a Cartesian coordinate system in E3 the length |OX| of a
segment OX is given by

3
0X|® = 3" &
1
where x = <z, x2, £3 > is the coordinate triple of the point X. Next use our geometric
theorem (2) to conclude that
3
0X 1 O0Y ifandonlyif (x,y) =0, where x,5) = Z T
1

(Use the bilinearity of (x, y) to expand |X — ¥]2.)
2.5 More generally, the law of cosine says that in any triangle labeled as indicated,

T =aqa b - 2ab [GON) 6.
‘

b
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Apply this law to the diagram
X

(x,¥) = 2|x|[y] cos 6,

to prove that

where (x, y) is the sealar product 2.3 ziys, [x] = (x, x)1/2 = [0X], ete.

2.6 Given a nonzero linear functional f: R® — R, and given k € R, show that the
set of points X in E3 such that f(x) = k is a plane. [Hint: Find a b in R3 such that
f(b) = k, and throw the equation f(x) = k into the form (x — b, a) = 0, ete.]

2.7 Show that for any b in R3 the mapping X +— Y from E? to itself defined by
y = x-+ b is a parallel translation. That is, show that if X+ ¥ and Z+— W, then
XZ ~ YW,

2.8 Let 3 be the set in R® with equation 327 — 22+ z3 = 2. Find tripletsaand b
such that M is the plane through b perpendicular to the direction of a. What is the
equation of the plane P = M 4 <1,2,1>7

2.9 Continuing the above exercise, what is the condition on the triplet b in order for
N = M 4 b to pass through the origin? What is the equation of N?

2.10 Show that if the plane M in R3 has the equation f(x) = [, then }/ is a translate
of the null space N of the linear functional f. Show that any two translates M and P
of N are either identical or disjoint. What is the condition on the ordered triple b
in order that M +b = M?

2.11 Generalize the above exercise to hyperplanes in R™.

2.12 Let N be the subspace (plane through the origin) in R3 with equation f(x) = 0.
Let M and P be any two planes obtained from N by parallel translation. Show that
Q@ = M+ P is a third such plane. If M and P have the equations f(x) = [; and
f(x) = l2, find the equation for Q.

2.13 If M is the plane in R3 with equation f(x) = [, and if r is any nonzero number,
show that the set product 7 is a plane parallel to M.

2.14 1In view of the above two exercises, discuss how we might consider the set of all
parallel translates of the plane N with equation f(x) = 0 as forming a new vector
space.

2.15 Let L be the subspace (line through the origin) in R3 with parametric equation
x = ta. Discuss the set of all parallel translates of L in the spirit of the above three
exercises.

2.16 The best object to take as “being” the geometric vector AAB is the equivalence
class of all directed line segments XY such that XY ~ AB. Assuming whatever you
need from properties (1) through (4), show that this 7s an equivalence relation on the
set of all directed line segments (Section 0.12).

2.17 Assuming that the geometric vector AB is defined as in the above exercise, show
that, strictly speaking, it is actually the mapping of the plane (or space) into itself that
we have called the parallel translation through AB. Show also that AB + CD is the
composition of the two translations.
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3. PRODUCT SPACES AND HOM(V, W)

Product spaces. If W is a vector space and A is an arbitrary set, then the set
V = W4 of all W-valued functions on 4 is a vector space in exactly the same
way that R4 is. Addition is the natural addition of functions, (f + ¢)(a) =
f(a) + g(a), and, similarly, (zf)(a) = x(f(a)) for every function f and scalar z.
Laws Al through S4 follow just as before and for exactly the same reasons. For
variety, let us check the associative law for addition. The equationf+ (¢ h) =
(f +¢9) + h means that (f+ (g + 1))(@) = ((f+ ¢) + h)(a) for all a € 4.
But

(f+ (g + W) (a) = fl@) + (g + h)(a)
= f(a) + (9(a) + h(a)) = (f(a) + g(a)) + h(a)
= (f+ 9@ + kia) = ((f + 9) + k) (a),

where the middle equality in this chain of five holds by the associative law for W
and the other four are applications of the definition of addition. Thus the
associative law for addition holds in W4 because it holds in W, and the other
laws follow in exactly the same way. As before, we let m; be evaluation at 1,
so that m:(f) = f(¥). Now, however, 7; is vector valued rather than scalar valued,
because it is a mapping from V to W, and we call it the 7th coordinate projection
rather than the sth coordinate functional. Again these maps are all linear.
In fact, as before, the natural vector operations on W+ are uniquely defined by
the requirement that the projections m; all be linear. We call the value f(j) =
7;(f) the jth coordinate of the vector f. Here the analogue of Cartesian n-space
is the set W7 of all n-tuples @ = <ay, ..., a,> of vectors in W; it is also
designated W™. Clearly, «; is the jth coordinate of the n-tuple «.

There is no reason why we must use the same space W at each index, as we
did above. In fact, if Wy, ..., W, are any n vector spaces, then the set of all
n-tuples @ = <oy, ..., a,> such that ;€ W; for j = 1,...,n is a vector
space under the same definitions of the operations and for the same reasons.
That is, the Cartesian product W = W; X Wy X .-+ X W, is also a vector
space of vector-valued functions. Such finite products will be very important
to us. Of course, R” is the product [T W; with each W, = R; but R”™ can also
be considered R™ X R™™™, or more generally, J]{ W,, where W, = R™: and
> Y m; = n. However, the most important use of finite product spaces arises
from the fact that the study of certain phenomena on a vector space V may
lead in a natural way to a collection {V;}7 of subspaces of V such that V is
isomorphie to the product JJ? V;. Then the extra structure that V acquires
when we regard it as the product space T[T V; is used to study the phenomena
in question. This is the theory of direct sums, and we shall investigate it in
Section 5.

Later in the course we shall need to consider a general Cartesian product of
vector spaces. We remind the reader that if {W, :{ € I} is any indexed collection
of vector spaces, then the Cartesian product J[.er W; of these vector spaces is
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defined as the set of all functions f with domain I such that f(z) € W; for all
7 € I (see Section 0.8).

The following is a simple conerete example to keep in mind. Let S be the
ordinary unit sphere in R3, S = {x: Y %¥2? = 1}, and for each point x on 8
let W, be the subspace of R? tangent to S at x. By this we mean the subspace
(plane through O) parallel to the tangent plane to S at x, so that the translate
W, -+ x is the tangent plane (see Fig. 1.8). A function f in the product space
W = Jl.es W, is a funetion which assigns to each point x on S a vector in W,
that is, a vector parallel to the tangent plane to S at x. Such a funection is ealled
a vector field on S. Thus the product set W is the set of all veetor fields on S,
and W itself is a vector space, as the next theorem states.

Fig. 1.8

Of course, the jth coordinate projection on W = [[;es W; is evaluation
at 7, m;(f) = f(3), and the natural vector operations on W are uniquely defined
by the requirement that the coordinate projections all be linear. Thus f-}+ ¢
must be that element of W whose value at j, 7;(f + g), is 7;(f) + 7;(g) =
f(5) + g(9) for all j € I, and similarly for multiplication by scalars.

Theorem 3.1. The Cartesian product of a collection of vector spaces can
be made into a vector space in exactly one way so that the coordinate pro-
jections are all linear.

Proof. With the vector operations determined uniquely as above, the proofs of
A1 through S4 that we sampled earlier hold verbatim. They did not require that
the functions being added have all their values in the same space, but only that
the values at a given domain element ¢ all lie in the same space. U

Hom(V, W). Linear transformations have the simple but important properties
that the sum of two linear transformations is linear and the composition of two
linear transformations is linear. These imprecise statements are in essence the
theme of this section, although they need bolstering by conditions on domains
and codomains. Their proofs are simple formal algebraic arguments, but the
objects being discussed will increase in conceptual complexity.
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If W is a vector space and A is any set, we know that the space W4 of all
mappings f: A — W is a vector space of functions (now vector valued) in the
same way that R4 is. If A is itself a vector space V, we naturally single out for
special study the subset of WY consisting of all linear mappings. We designate
this subset Hom(V, W). The following elementary theorems summarize its
basic algebraic properties.

Theorem 3.2. Hom(V, W) is a vector subspace of WV.
Proof. The theorem is an easy formality. If S and 7 are in Hom(V, W), then

(8 + T)(xa + yB) = S(za + yB) + T(ze + yB)

= 18(a) + yS(B8) + 2T () + yT(B) = (S + T){(a) + y(S + T)(8),
so 8 4 T is linear and Hom(V, W) is closed under addition. The reader should
be sure he knows the justification for each step in the above continued equality.
The closure of Hom(V, W) under multiplication by secalars follows similarly,
and since Hom(V, W) contains the zero transformation, and so is nonempty,
it is a subspace. [

Theorem 3.3. The composition of linear maps is linear: if 7 € Hom(V, W)
and S € Hom(W, X), then S o 7 € Hom(V, X). Moreover, composition
is distributive over addition, under the obvious hypotheses on domains and
codomains:

(S;+82)oT=8;T+83T and Se{(I1+Ta)=8T;+87T,.
Finally, composition commutes with scalar multiplication:
c(SoT) = (c8)oT = So{(cT).
Proof. We have
S o T(wa + yB) = S(T(xe + y8)) = S(zT(e) + yT(8))
= z8(T(x)) + yS(T(B)) = 2(S o T)(a) + y(S ° T)(8),
50 S o T is linear. The two distributive laws will be left to the reader. U

Corollary. If T & Hom(V, W) is fixed, then composition on the right by 7
is a linear transformation from the veector space Hom(W, X) to the vector
space Hom(V, X). It is an isomorphism if 7 is an isomorphism.

Proof. The algebraic properties of composition stated in the theorem can be
combined as follows:

(€381 +¢aSa) o T = ¢y (Sy o T) + ¢ca(S2° T).

So(e1T1 + c2Ts) = ¢1(So Ty) + c2(S o To).
The first equation says exactly that composition on the right by a fixed 7 is a
linear transformation. (Write S o T as 3(S) if the equations still don’t look

right.) If T is an isomorphism, then composition by 7! “undoes” composition
by T, and so is its inverse. [
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The second equation implies a similar corollary about composition on the
left by a fixed S.

Theorem 3.4. If W is a product vector space, W = [[; W, then a mapping
T from a vector space V to W is linear if and only if m; ¢ T is linear for
each coordinate projection ;.

Proof. If T is linear, then 7; o T is linear by the above theorem. Now suppose,
conversely, that all the maps m; o T are linear. Then

7 (T(xa + yB)) = w0 T(xe + yB) = a(mw; o T)(a) + y(w; o T)(B)
= ami(T(a)) 4 ym:i(T(B)) = m:(zT(a) + yT(B)).

But if 7;(f) = mi(g) for all 7, then f = g. Therefore, T(za + yB8) = zT(a) -+
yT(B), and T is linear. 0

If T is a linear mapping from R” to W whose skeleton is {8;}", then m; o T
has skeleton {7 (8,)};=1. If W is R™, then ; is the ¢th coordinate functional
y — ¥, and B, is the jth column in the matrix t = {¢;;} of 7. Thus m;(8;) = t;j,
and m; o T is the linear functional whose skeleton is the 7th row of the matrix of 7.

In the discussion centering around Theorem 1.3, we replaced the vector
equation y = T'(x) by the equivalent set of m scalar equations y; = 37 ¢z,
which we obtained by reading off the ¢th coordinate in the vector equation. But
in “reading off” the 7th coordinate we were applying the coordinate mapping
7;, or in more algebraic terms, we were replacing the linear map 7 by the set of
linear maps {m; o T}, which is equivalent to it by the above theorem.

Now consider in particular the space Hom(V, V), which we may as well
designate ‘Hom(V)’. In addition to being a vector space, it is also closed under
composition, which we consider a multiplication operation. Since ecomposition
of functions is always associative (see Section 0.9), we thus have for multiplica-
tion the laws

Ao (BoC)= (AoB)oC,

Ao (B+C)=(4A°B)+ (4-0),

(A+B)yoeC= (4d0)+ (B-(),
k(A oB) = (kA) o B= A o (kB).

Any vector space which has in addition to the vector operations an operation
of multiplication related to the vector operations in the above ways is called
an algebra. Thus,

Theorem 3.5. Hom(V) is an algebra.

We noticed earlier that certain real-valued function spaces are also algebras.
Examples were R4 and €([0, 1]). In these cases multiplication is commutative,
but in the case of Hom(V) multiplication is not commutative unless V is a
trivial space (V = {0}) or V is isomorphic to R. We shall check this later when
we examine the finite-dimensional theory in greater detail.
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Product projections and injections. In addition to the coordinate projections,
there is a second class of simple linear mappings that is of basic importance in
the handling of a Cartesian product space W = []rex Wi. These are, for each
J, the mapping 6; taking a vector « € W; to the function in the product space
having the value « at the index j and 0 elsewhere. For example, 6, for W; X
Wy X Wy is the mapping « — <0, «, 0> from W, to W. Or if we view R? as
R X RZ then 8, is the mapping <zs, 3> + <0, <zs, 3> > = <0, 29, T3> .
We call 6; the injection of W, into [, Wr. The linearity of 9, is probably obvious.
The mappings =; and 8; are clearly conneccted, and the following projection-
injection identities state their exact relationship. If I; is the identity trans-
formation on W, then

wio by = I; and wio b, =0 if 7).
If K is finite and I is the identity on the product space W, then

Z ﬁk o Ty — I

EEK
In the case [Ii—; Wi, we have 6050 wa(<ay, as, ag>) = <0, az, 0>, and
the identity simply says that <oy, 0, 0> 4 <0, a5, 0> + <0, 0, ag> =
<ay, as, az> for all ay, as, 3. These identities will probably be clear to the
reader, and we leave the formal proofs as an exercise.

The coordinate projections 7; are useful in the study of any product space,
but because of the limitation in the above identity, the injections 6; are of
interest principally in the case of finite products. Together they enable us to
decompose and reassemble linear maps whose domains or codomains are finite
product spaces.

For a simple example, consider the 7' in Hom(R® R?) whose matrix is

2 —1 1
1 1 4"

Then 7y o T 1s the linear functional whose skeleton <2, —1, 1> is the first row
in the matrix of 7, and we know that we can visualize its expression in equation
form, y; = 2z — %2 + x3, as being obtained from the vector equation y =
T(x) by “rcading off the first row”. Thus we “decompose” T into the two linear
functionals I; = m; o T. Then, speaking loosely, we have the reassembly
T = <1, l1o>; more exactly, T(x) = <2x; — 29 -} x3, 71 -+ 29 - 423> =
<11(x), lo(x) > for all x. However, we want to present this reassembly as the
action of the lincar maps 6, and 8. We have

<L), (x)> = 0:(11(x)) + 02(lo(x)) = (610 71 + 0z 0 m) (T(x)) = T(x),

which shows that the decomposition and reassembly of 7" is an expression of the
identity 3" ;o 7; = I. In general, if T € Hom(V, W) and W = I]; W,, then
T; = m;o T is in Hom(V, W,) for each ¢, and T; can be considered “the part
of T going into W,”, since T';(«) is the 7th coordinate of T'(«) for cach «. Then we
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can reassemble the 7’s to form T again by T'= X 0,0 T;, for > 6;0 T; =
3 b;om)eT=1oT=7T. Moreover, any finite collection of T;s on a
common domain can be put together in this way to make a T. For example,
we can assemble an m-tuple {T;}T* of linear maps on a common domain V to
form a single m-tuple-valued linear map 7. Given « in V, we simply define
T(a) as that m-tuple whose 7th coordinate is 7;(a) for 7z = 1, ..., m, and then
check that 7' is linear. Thus without having to calculate, we see from this
assembly principle that 7T :x — <2z, — o -+ 23, x1 + 22 + 423> is a linear
mapping from R? to R2, since we have formed T by assembling the two linear
functionals I,(x) = 2x; — 23 + x3 and ly(x) = 2, + xo + 423 to form a
single ordered-pair-valued map. This very intuitive process has an cqually
simple formal justification. We rigorize our discussion in the following theorem.

Theorem 3.6. If 7; is in Hom(V, W;) for each 7 in a finite index set I,
and if W is the product space [];er W, then there is a uniquely determined
T in Hom(V, W) such that T'; = m; o T for all ¢ in 1.

Proof. If T exists such that T; = m;o T for each 7, then T = Iy o T =
3 biom)e T =3 60;0(m;oT)= > 6;oT; Thus T is uniquely determined
as 3 6;o T, Moreover, this T does have the required property, since then

7I'j°T: WjO(ZOiOT,'):Z_(ﬂ'joﬁi)OT,;ZIjOTj:Tj. D

In the same way, we can decompose a linear T whose domain is a product
space V = JI7=, V; into the maps T; = T o §; with domains V;, and then
reassemble these maps to form T by the identity T' = >}, T o 7; (check it
mentally!). Moreover, a finite collection of maps into a common codomain
space can be put together to form a single map on the product of the domain
spaces. Thus an n-tuple of maps {7T';}T into W defines a single map T into W,
where the domain of T is the produet of the domains of the 7'/’s, by the equation
T(<ay,...,o0n>) = ¢ Ti(ayor T = 3.7 T;om;. Forexample,if T;: R — R?
is the map t— £<2,1> = <2t t>, and T, and T3 are similarly the maps
t—t<—1,1> and t+— t<1,4>, then T = 33 T; o 7; is the mapping from
R3 to R? whose matrix is

[2 —1 1]
1 1 41"

Again there is a simple formal argument, and we shall ask the reader to write
out the proof of the following theorem.

Theorem 3.7. If T'; is in Hom(V;, W) for each j in a finite index set J,
and if V = J];es V;, then there exists a unique 7' in Hom(V, W) such
that T o 8; = T; for each 7 in J.

Finally we should mention that Theorem 3.6 holds for all product spaces,
finite or not, and states a property that characterizes product spaces. We shall
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investigate this situation in the exercises. The proof of the general case of
Theorem 3.6 has to get along without the injections 6;; instead, it isan application
of Theorem 3.4.

The reader may feel that we are being overly formal in using the projections
m; and the injections 6; to give algebraic formulations of processes that are
casily visualized directly, such as reading off the scalar “components” of a
vector equation. However, the mappings

X X and ;= <0,...,0,2,0,...,0>

arce clearly fundamental deviees, and making their relationships explicit now
will be helpful to us later on when we have to handle their occurrences in more
complicated situations.

EXERCISES

3.1 Show that B™ X R™ is isomorphic to R**™,

3.2 Show more gencrally that if 21" n; = n, then [[%%; R™ is isomorphic to R™.
3.3 Show that if {B, C} is a partitioning of .1, then R4 and R® X RC are isomorphic.
3.4 Generalize the above to the case where {.1,}] partitions A.

3.5 Show that a mapping T from a vector space 17 to a vector space T is linear if
and only if (the graph of) T is a subspace of V' X W

3.6 Let S and T be nonzero linear maps from V to W. The definition of the map
S -+ T'is not the same as the set sum of (the graphs of) S and T as subspaces of V' X 11",
Show that the set sum of (the graphs of) S and T’ cannot be a graph unless S = 7.

3.7 Give the justification for each step of the caleulation in Theorem 3.2.
3.8 Prove the distributive laws given in Theorem 3.3.

3.9 Let D:@!([a, b)) — €({a, b)) be differentiation, and let S: @({a, b]) — R be the
definite integral map f— J2 f. Compute the composition So D).

3.10  We know that the general linear functional /7 on R? is the map x — a1z - asxs
determined by the pair a in R?, and that the general linear map 7' in Hom(R?) is

determined by a matrix
f = fir ti2 .
tor loo

Then /o T is another linear functional, and hence is of the form x+— bz + boxs for
some b in B2 Compute b from t and a. Your computation should show yvou that
a— b is linear. What is its matrix?

3.11 Given S and T in Hom(R?) whose matrices are

[1 2} and [2 1])
3 4 0 1

respectively, find the matrix of So 7 in Hom(R?2).
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3.12 Given S and 7T in Hom(R?) whose matrices are

t t
. [811 812] and 1t = [ 1 12],
S21 S22 t21 t22
find the matrix of So T.
3.13 With the above answer in mind, what would you guess the matrix of So T is

if Sand T are in Hom(R3)? Verify your guess.

3.14 We know thatif T € Hom(V, ) is an isomorphism, t+en 71 is an isomorphism
in Hom(1V, V). Prove that

So T surjective = S surjective, So T injective = T injective,
and, therefore, that if T € Hom(V, W), S & Hom(1¥, V), and

S°T=Iv, T°S=I,,

then T is an isomorphism.
3.15 Show that if §—1 and T exist, then (Seo T)~! exists and equals T—1o S—1,
Give a more careful statement of this result.
3.16 Show thatif Sand T in Hom V commute with each other, then the null space of
T,N = N(T), and itsrange R = R(T) are invariant under S (S{NJC N and S{R]C R).
3.17 Show that if « is an eigenvector of T and S commutes with 7, then S{(a) is
an eigenvector of 7 and has the same eigenvalue.
3.18 Show that if S commutes with 7 and T~ exists, then S commutes with 71,
3.19 Given that « is an eigenvector of T with eigenvalue z, show that « is also an
eigenvector of T2 = To T, of T and of T—! (if T is invertible) and that the corre-
sponding eigenvalues are z2, z*, and 1/z.

Given that p(f) is a polynomial in ¢, define the operator p(T), and under the above
hypotheses, show that « is an eigenvector of p(T) with eigenvalue p(x).
3.20 If S and T are in Hom V, we say that S doubly commutes with T (and write
Sce T) if S commutes with every .4 in Hom V which commutes with 7. Fix T, and
set {T}” = {S:8SccT}. Show that {T}” is a commutative subalgebra of Hom V.
3.21 Given T in Hom V and a in V, let N be the linear span of the “trajectory of «
under T” (the set {T"a:n& Z*)). Show that N is invariant under 7.
3.22 A transformation T in Hom V such that T™ = 0 for some n is said to be nilpotent.
Show that if T is nilpotent, then I — T is invertible. [Hint: The power series

1 N
T I

is a finite sum if z is replaced by T.]

3.23 Suppose that T is nilpotent, that S commutes with T, and that S—! exists, where
S, T & Hom V. Show that (8§ — T) 1! exists.

3.24 Let ¢ be an isomorphism from a vector space V to a vector space W. Show that

T — ¢o To o1 is an algebra isomorphism from the algebra Hom V to the algebra
Hom V.
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3.25 Show the 7;’s and ;s explicitly for R® = R X R X R using the stopped arrow
notation. Also write out the identity 2. 8;0 m; = I in explicit form.

3.26 Do the same for R? = R2 X R3,

3.27 Show that the first two projection-injection identities (r;0 8; = I;and m;0 8; = 0
if 7 # ©) are simply a restatement of the definition of #;. Show that the linearity of 8;
follows formally from these identities and Theorem 3.4.

3.28 Prove the identity Y, 6;0 w; = I by applying 7; to the equation and remembering
that f = g if w;(f) = m;{g) for all § (this being just the equation f(7) = g(j) for all 7).
3.29 Prove the general case of Theorem 3.6. We are given an indexed collection of
linear maps {7;:7 & I} with common domain V and codomains {W;:2& I}. The
first question is how to define T: V. — W = []; W. Do this by defining T(£) suitably
for each £ € V and then applying Theorem 3.4 to conclude that T is linear.

3.30 Prove Theorem 3.7.

3.31 We know without calculation that the map
T:x — <3x; — 22+ @3, x2 + 3, x1 — 5x3, 221 >

from R3 to R* is linear. Why? (Cite relevant theorems from the text.)

3.32 Write down the matrix for the transformation T in the above example, and then
write down the mappings 7'¢ 8; from R to R* (for ¢ = 1, 2, 3) in explicit ordered
quadruplet form.

3.33 Let W = [ W. be a finite product vector space and set p; = 6;0 m;, so that
p;isin Hom W for all 7. Prove from the projection-injection identities that > f p; = I
(the identity map on W), p;o p; = 0 if ¢ # j, and p;o p; = pi. Identify the range
R; = R(py).

3.34 In the context of the above exercise, define T in Hom W as

n

> MPm.

m=1

Show that « is an eigenvector of 7' if and only if @ is in one of the subspaces R; and that
then the eigenvalue of « is 7.

3.35 In the same situation show that the polynomial
Il @—iD=@—Do--o(T —nD)
j=1

is the zero transformation.

3.36 Theorems 3.6 and 3.7 can be combined if 7' € Hom(V, W), where both V and I}’
are product spaces:

v=]Iv, aad w=]Iw.
1
State and prove a theorem which says that such a 7' can be decomposed into a doubly

indexed family {T';} when T; € Hom(V;, W;) and conversely that any such doubly
indexed family can be assembled to form a single 7' form V to W.
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3.37 Apply your theorem to the special case where ¥V = R” and IV = R™ (that is,
V.= W; = Rforall?and j). Now T;;is from R to R and hence is simply multipli-
cation by a number ¢;;. Show that the indexed collection {t;;} of these numbers is the
matrix of T.

3.38 Given an m-tuple of vector spaces {11, T*, suppose that there are a vector space

X and maps p; in Hom(X, W), 7 = 1,...,m, with the following property:
P. For any m-tuple of linear maps {7} from a common domain space V to the
above spaces H; (so that T, & Hom(V, W), ¢ = 1,...,m), there is a unique T
in Hom(V, X) such that T'; = p;e T, = 1,...,m.

Prove that there is a “canonical” isomorphism from

w=]]w: to X
1
under which the given maps p; become the projections m;. {Remark: The product space
T itself has property P by Theorem 3.6, and this exercise therefore shows that P is an
abstract characterization of the product space.]

4. AFFINE SUBSPACES AND QUOTIENT SPACES

In this seetion we shall look at the “planes” in a vector space V and see what
happens to them when we translate them, intersect them with each other,
take their images under linear maps, and so on. Then we shall confine ourselves
to the set of all planes that are translates of a fixed subspace and discover that
this set itself is a vector space in the most obvious way. Some of this material
has been anticipated in Section 2.

Affine subspaces. If N is a subspace of a vector space V and « is any vector
of V, then the set N 4 a = {{+4 «: &N} is called cither the coset of N
containing a or the affine subspace of V through o and parallel to N. Theset N 4 «
is also called the translate of N through «. We saw in Section 2 that affine sub-
spaces are the general objects that we want to call planes. If N is given and fixed
in a discussion, we shall use the notation @ = N + « (see Section 0.12).

We begin with a list of some simple properties of affine subspaces. Some of
these will generalize observations already made in Section 2, and the proofs of
some will be left as exercises.

1) With a fixed subspace N assumed, if ¥ € & then ¥ = a For if v =
a+ g theny+y9=a+ (gp+9€as0¥Ca Alsoa+ =7+ (n — n0) €7,
soa C7Y. Thusa = 7.

2) With N fixed, for any « and 8, cither @ = 8 or @ and § are disjoint.
For if @ and 8 are not disjoint, then there exists a ¥ in each, and a = 7 = 8
by (1). The reader may find it illuminating to compare these calculations with
the more general ones of Section 0.12. Here o ~ 8 if and only if « — 8 € N.

3) Now let @ be the collection of all affine subspaces of V; @ is thus the set
of all cosets of all vector subspaces of V. Then the intersection of any sub-
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family of @ is either empty or itself an affine subspace. In fact, if [A4;}.er is
an indexed collection of affine subspaces and A, is a coset of the vector subspace
W for each ¢ € I, then (;er A is either empty or a coset of the vector subspace
Nicr Wy Torif B e Nier Ay, then (1) implies that 4; = 8 -+ W, for all ¢, and
then NA4; = B+ NW..

4) If A, B € @, then A4 4 B €@. That is, the sct sum of any two affine
subspaces 1s itself an affine subspace.

5 If Ae@and T € Hom(V, W), then T[A] is an athine subspace of W.
In particular, if t € R, then {4 € Q.

6) If B is an affine subspace of W and T & Hom(V, W), then 77 ![B] is
either empty or an affine subspace of V.

7) For a fixed o« € V the translation of V through o is the mapping
Sa: V — V defined by S,(¢) = ¢+ « for all ¢ € V. Translation is not linear;
for example, S,(0) = «. It is clear, however, that translation carries affine
subspaces into affine subspaces. Thus S,(4) = 4 +a and S,(8 -+ W) =
(a+8)+W.

8) An affine transformation from a vector space V to a veetor space Wis a
linear mapping from V to W followed by a translation in W. Thus an affine
transformation is of the form ¢ ~» T'(¢) - 8, where T’ € Hom(V, W) and 8 € W.
Note that £ — T'(¢ -+ ) is affine, since

T(¢+a)=T()+8  where = T(a).

It follows from (5) and (7) that an affine transformation carries affine
subspaces of V into affine subspaces of W.

Quotient space. Now fix a subspace N of V, and consider the set W of all
translates (cosets) of N. We are going to see that W itself is a vector space in
the most natural way possible. Addition will be set addition, and scalar multipli-
cation will be set multiplication (except in one special case). For example, if ¥
is a line through the origin in R®, then W consists of all lines in R® parallel to N.
We are saying that this set of parallel lines will automatically turn out to be a
vector space: the set sums of any two of the lines in W turn out to be a line in W'!
And if L € W and ¢ # 0, then the set product {L is a line in W. The translates
of L fiber R3, and the set of fibers is a natural vector space.

During this discussion it will be helpful temporarily to indicate set sums by
‘4" and set products by ;. With N fixed, it follows from (2) above that two
cosets are disjoint or identical, so that the set W of all cosets is a fibering of V
in the general case, just as it was in our example of the parallel lines. From (4)
or by a direct calculation we know that @+ 8 = a« -~ 8. Thus W is closed
under set addition, and, naturally, we take this to be our operation of addition
on W. That is, we define - on W by @ -+ 8 = & -+, 8. Then the natural map
miar— & from V to W preserves addition, w(a -+ 8) = w(a) + 7(8), since




54 VECTOR SPACES 14

this is just our equation « + 8 = & - § above. Similarly, if ¢ € R, then the
set product ¢ -5 @ is cither {o or {0} . Hence if we define ta as the set product when
{ # 0and as 0 = N when ¢ = 0, then 7 also preserves scalar multiplication,

T(la) = im(a).

We thus have two vectorlike operations on the set W of all cosets of N,
and we naturally expeet W to turn out to be a vector space. We could prove this
by verifying all the laws, but it is more elegant to notice the general setting for
such a verification proof.

Theorem 4.1. T.et V be a veetor space, and let W be a set having two
vectorlike operations, which we designate in the usual way. Suppose that
there exists a surjective mapping 7: V- — W which preserves the operations:
T(sa + t8) = sT(a) -+ (T(B). Then W is a vector space.

Proof. We have to check laws Al through S4. However, one example should
make it clear to the reader how to proceed. We show that 7'(0) satisfies A3 and
henee is the zero vector of . Since every 8 € W is of the form T(«), we have

TO)+8=T0)+T() = T(0+ «) = T(a) = 8,
which is A3. We shall ask the reader to check more of the laws in the exercises. [

Theorem 4.2. The set of cosets of a fixed subspace N of a vector space V
themselves form a vector space, called the quotient space V/N, under the
above natural operations, and the projection 7 is a surjective linear map
from V to V/N.

Theorem 4.3. If T is in Hom(V, W), and if the null space of T includes the
subspace A/ C V, then T has a unique factorization through V/Af. That is,
there exists a unique transformation S in Hom(V /M, W) such that 7 =
S o .

Proof. Since T is zero on B, it follows that T is constant on each coset A of 37,
so that T[A] contains only one vector. If we define S{(A) to be the unique
vector in T[A], then S(&) = T(a), so S o # = T by definition. Conversely, if
T = Rom, then BR(@) = Row(a) = T(a),and R is our above S. The linearity
of 8 is practically obvious. Thus

S@+B) = Sla+8) =T+ B) =T+ TE = S@ + S@),
and homogeneity follows similarly. This completes the proof. [

One more remark is of interest here. If N is invariant under a linear map
T in Hom V (that is, T[N] C N), then for each « in V, T[a] is a subset of the
coset T(a), for

T(a] = Tla + Nl = T(a) +s TIN] C T(a) +: N = T().
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There is therefore a map S:V/N — V/N defined by the requirement that
S(&) = T(a) (or Som = 7 o T), and it is easy to check that S is linear. There-
fore,

Theorem 4.4. If a subspace N of a vector space V is carried into itself by a
transformation 7 in Hom V, then there is a unique transformation S in
Hom(V/N) such that Sowr = wo T.

EXERCISES

4.1 Prove properties (4), (5), and (6) of affine subspaces.

4.2 Choose an origin O in the Euclidean plane E2 (your sheet of paper), and let
L1 and Lg be two parallel lines not containing 0. Let X and Y be distinet points on
Li and Z any point on Lz. Draw the figure giving the geometric sums

W—E—ﬁ and (_)T"—E—Z)_Z

(parallelogram rule), and state the theorem from plane geometry that says that these
two sum points are on a third line L3 parallel to L; and Ls.

4.3 a) Prove the associative law for addition for Theorem 4.1.
b) Prove also laws A4 and S2.

4.4 Return now to Exercise 2.1 and reexamine the situation in the light of Theorem
4.1. Show, finally, how we really know that the geometric vectors form a vector space.

4.5 Prove that the mapping S of Theorem 4.3 is injective if and only if N is the
null space of T.

4.6 We know from Exercise 4.5 that if T is a surjective element of Hom(V, W) and
N is the null space of T, then the S of Theorem 4.3 is an ¢somorphism from V/N to W.
Its inverse S—! assigns a coset of N to each 7in 11". Show that the process of “indefinite
integration” is an example of such a map 8—1. This is the process of ecalculating an
integral and adding an arbitrary constant, as in

fsinxd:v = —cosz+c.

4.7 Suppose that N and M are subspaces of a vector space V and that N C M.
Show that then M /N is a subspace of V/N and that V /M is naturally isomorphie to the
quotient space (V/N)/(M/N). [Hint: Every coset of N is a subset of some coset of M.}

4.8 Suppose that N and 3/ are any subspaces of a vector space V. Prove that
(M + N)/N is naturally isomorphic to 3//(M N N). (Start with the fact that each
coset of M N N is included in a unique coset of N.)

4.9 Prove that the map S of Theorem 4.4 is linear.

4.10 Given T € Hom V, show that 72 = 0 (T2 = T o T)if and only if R(T) C N(T).
+.11 Suppose that T & Hom V and the subspace N are such that T is the identity
on N and also on V/N. The latter assumption is that the 8 of Theorem 4.4 is the
identity on V/N. Set R = T — I, and use the above exercise to show that R = 0.
show that if T = I+ R and R? = 0, then there is a subspace N such that 7T is the
identity on N and also on V/N.
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4,12 We now view the above situation a little differently. Supposing that T is the
identity on N and on V/N, and setting B = I — T, show that there exists a
K € Hom(V/N, V) such that R = K o . Show that for any coset A of N the action
of T on A can be viewed as translation through K(A). Thatis,if £ € A andn = K(.1),
then T(§) = £+ ».

4.13 Consider the map T: <z, 22> +— <z -+ 2r2, x2> in Hom R?, and let N be
the null space of B = T — I. Identify N and show that T is the identity on N and
on R?/N. Find the map K of the above exercise. Such a mapping T is called a shear
transformation of 17 parallel to N. Draw the unit square and its image under T'.

4.14 If we remember that the linear span L(.1) of a subset .1 of a vector space V can
be defined as the intersection of all the subspaces of V that include .1, then the fact
that the intersection of any collection of affine subspaces of a vector space 1V is either
an affine subspace or empty suggests that we define the affine span 3/ (A) of a nonempty
subset A C V as the intersection of all affine subspaces including 4. Then we know
from (3) in our list of affine properties that 3/(.1) is an affine subspace, and by its
definition above that it is the smallest affine subspace including A. We now naturally
wonder whether M(A) can be directly deseribed in terms of linear combinations.
Show first that if @ € A, then M(A) = L(A — a) + «; then prove that M (A) is the
set of all linear combinations > z:; on .1 such that > x; = 1.

4.15 Show that the linear span of a set B is the affine span of BU {0].

4.16 Show that M(A 4+ 7v) = M (1) 7 for any ¥ in V and that M{zA) = 23(4)
for any r in R.

5. DIRECT SUMS

We come now to the heart of the chapter. It frequently happens that the study
of some phenomenon on a veetor space V leads to a finite collection of subspaces
{V;} such that V is naturally isomorphic to the product space I]; V,;. Under
this isomorphism the maps 6; o 7; on the product space become certain maps
P;in Hom V, and the projection-injection identities are reflected in the identities
S>P;=1, P;joP;= P;forall jand P;o P; = 0if ¢ # 7. Also, V,; = range
P;. The product structure that V thus acquires is then used to study the phe-
nomenon that gave rise to it. For example, this is the way that we unravel the
structure of a linear transformation in Hom V|, the study of which is one of the
central problems in linear algebra.

Direct sums. If V, ..., V, are subspaces of the vector spacc V, then the
mapping 7: <aq, ..., e, > > 27 a; is a linear transformation from JI% V;
to V, since it is the sum m = .7 m; of the coordinate projections.

Definition. We shall say that the Vs are independent if w is injective and
that V is the direct sum of the Vs if 7 is an isomorphism. We express the
latter relationship by writing V=V, & --- & V, = @} V.

Thus V = @2, V; if and only if 7 is injective and surjective, i.e., if and
only if the subspaces {V;}7 are both independent and span V. A useful restate-



1.5 DIRECT SUMS 57

ment of the direct sum condition is that each o € V is uniquely expressible as
a sum 3 7 a;, with a; € V; for all 7; « has some such expression because the Vs
span V, and the expression is unigue by their independence.

For example, let V = €(R) be the space of real-valued continuous functions
on R, let V, be the subset of even functions (functions f such that f(—z) = f(z)
for all z), and let V, be the subset of odd functions (functions such that f(—z) =
—f(z) for all x). It is clear that V., and V, are subspaces of V, and we claim that
V="V,® V, To see this, note that for any fin V, g(z) = (f(z) + f(—=x))/2
iseven, h(z) = (f(x) — f(—=x))/2isodd,and f = g+ h. ThusV =V, -+ V,.
Moreover, this decomposition of f is unique, for if f = ¢; + h; also, where g
is even and h; is odd, then ¢ — ¢y = hy — h, and therefore ¢ — ¢; = 0 =
Ity — h, since the only funetion that is both even and odd is zero. The even-odd
components of ¢* are the hyperbolic cosine and sine functions:

(& — )
2

z_ (€ +e™)

5 = cosh x - sinh z.

+

(4

Since 7 is injective if and only if its null space is {0} (Lemma 1.1), we have:

Lemma 5.1. The independence of the subspaces [V} 7 is equivalent to the
property that if a; € V; for all ¢ and >.7 a; = 0, then o; = 0 for all <.

Corollary. If the subspaces {V;}7 are independent, «; € V; for all ¢, and
3.1 a; is an clement of V;, then a; = 0 for ¢  j.

We leave the proof to the reader.
The case of two subspaces is particularly simple.

Lemma 5.2. The subspaces 37 and N of V are independent if and only if
MnN= {0}.

Proof. fae M, N,anda+8=0,thena= —B8e M NN. fMNN =
{0}, this will further imply that « = 8= 0, so M and N are independent.
On the other hand, if 0 % g€ M NN, and if we set a = —8, then o« € 3,
Be N,and e + 8 = 0, so M and N are not independent.

Note that the first argument above is simply the general form of the unique-
ness argument we gave earlier for the even-odd decomposition of a function
on R.

Corollary. V=M & N if and only if V=M 4+ N and M NN = {0}.

Definition. If V = M & N, then M and N are called complementary sub-
spaces, and each is a complement of the other.

Warning: A subspace M of V does not have a unique complementary subspace
unless M is trivial (that is, M = {0} or M = V). If we view R? as coordinatized
lduclidean 3-space, then M is a proper subspace if and only if M is a plane con-
taining the origin or M is a line through the origin (see Fig. 1.9). If M and N are
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Fig. 1.9

proper subspaces one of which is a plane and the other a line not lying in that
plane, then 2 and N are complementary subspaces. Moreover, these are the
only nontrivial complementary pairs in R3. The reader will be asked to prove
some of these facts in the exercises and they all will be clear by the middle of
the next chapter.

The following lemma, is technically useful.

Lemma 5.3. If V; and V are independent subspaces of V and {V,}7 are
independent subspaces of Vy, then {V;}7 are independent subspaces of V.

Proof. If a; € V; for all 7 and 3} a; = 0, then, setting ag = Y.} o;, we have
ay + ap = 0, with ag € V. Therefore, a; = a9 = 0 by the independence of
Vi and Vy. But then ay = a3 = -+ = a, = 0 by the independence of
{V}%, and we are done (Lemma 5.1). [

Corollary. V=V, & Vy and Vo= @L, V. together imply that
V = @?:1 Vi'

Projections. If V =@}, V,, if 7 is the isomorphism <aj,...,a,> —
a= Y 1a; and if m; is the jth projection map <e;,...,a,> = a; from
Iy Vi to V;, then (mj o 7~ 1) (a) = a.

Definition. We call a; the jth component of @, and we call the linear map
P; = ;o w~! the projection of V onto V; (with respect to the given direct
sum decomposition of V). Since each « in V is uniquely expressible as a sum
a = X 7a; with a; in V; for all ¢, we can view P;(a) = «; as “the part of
ain V;”.

This use of the word “projection” is different from its use in the Cartesian
product situation, and each is different from its use in the quotient space con-
text (Section 0.12). It is apparent that these three uses are related, and the
ambiguity causes little confusion since the proper meaning is always clear from
the context.

Theorem 5.1. If the maps P; are the above projections, then range P, = V,,

P,oP;=0forz # j,and 27 P; = I.

Proof. Since m is an isomorphism and P; = m; o 7!, we have range P; =
range m; = V;. Next, it follows directly from the corollary to Lemma 5.1 that
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if « € V;, then Py(a) = 0 for 7 £ j, and so P;o P; = 0 for 7 # j. Finally,
SiP=Ytmoeon = (Ztm)on ! = won! = I, and we are done. [J

The above projection properties are clearly the reflection in V of the pro-
jection-injection identities for the isomorphic space []} V.
A converse theorem is also true.

Theorem 5.2. If {P;}7C Hom V satisfy > 1 P;= I and P;o P; = 0 for
17 7, and if we set V; = range P;, then V= @, V; and P; is the
corresponding projection on V.

Proof. The equation a = I{a) = 3% P;(a) shows that the subspaces {V.}3
span V. Next, if & V;, then Pi{8) = 0 for ¢ # j, since § € range P; and
PioP; =0 if ¢35 Then also Pi8) = (I — 2ix; P8 = I(8) = 8.
Now consider e = Y7 «a; for any choice of a; € V;. Using the above two facts,
we have Pj(e) = P;(3_7-q ) = 21—y Pj{es) = «aj. Therefore, « = 0 implies
that a; = P;(0) = 0 for all j, and the subspaces V,; are independent.
Consequently, V = @} V.. Finally, the fact that o = 3 Pi(e) and P(a) € V;
for all ¢ shows that P;(«) is the jth component of « for every « and therefore that
P; is the projection of V onto V;.

There is an intrinsic characterization of the kind of map that is a projection.

Lemma 5.4. The projections P;are idempotent (P? = P;), or, equivalently,
each is the identity on its range. The null space of P; is the sum of the spaces
V;fory # i

Proof. P? = Pjo (I — ¥ ;.;P;) = P;o I = P;. Since this can be rewritten
as P;(P;(c)) = Pj(a) for every a in V, it says exactly that P; is the identity
on its range.

Now set W; = 3_;.: V;, and note that if 3 € W, then P;(8) = 0 since
PV =0f{orj = 7 Thus W, C N(P;). Conversely, if P;(a) = 0, then a =
I{a) = 21 Pila) = 2.4 Pj(e) € W;. Thus N(P;) C W;, and the two spaces
are equal. [

Conversely:

Lemma 5.5. If P € Hom(V) is idempotent, then V is the direct sum of its
range and null space, and P is the corresponding projection on its range.

Proof. Setting Q = I — P, we have PQ = P — P? = 0. Therefore, V is the
direet sum of the ranges of P and @, and P is the corresponding projection on its
range, by the above theorem. Moreover, the range of @ is the null space of P,
by the corollary. 0

If V=M & N and P is the corresponding projection on M, we call P the
projection on M along N. The projection P is not determined by M alone, since
M does not determine N. A pair P and Q in Hom V such that P + @ = [ and
PQ = QP = 0 is called a pair of complementary projections.
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In the above discussion we have neglected another fine point. Strictly
speaking, when we form the sum 7 = 3.7 7;, we are treating each 7; as though
it were from [} V; to V, whereas actually the codomain of ; is V;. And we
want P; to be from V to V, whereas m; o 7" has codomain V;, so the equation
P; = m;jow~! can’t quite be true either. To repair these flaws we have to
introduce the injection ¢;: V; — V, which is the identity map on V;, but which
views V; as a subspace of V and so takes V as its codomain. If our concept of a
mapping includes a codomain possibly larger than the range, then we have to
admit such identity injections. Then, setting #; = t; o 7;, we have the correct

equations 7 = Y17, and P = #;0 L

EXERCISES

5.1 Prove the corollary to Lemma 5.1.

5.2 Let o be the vector <1,1, 1> in R3, and let M = R« be its one-dimensional
span. Show that each of the three coordinate planes is a complement of M.

5.3 Show that a finite product space V' = T V; has subspaces {W,)} such that
W; is isomorphic to V; and V = P} W.. Show how the corresponding projections
{P;} are related to the w;’s and 8,s.

5.4 If T € Hom(V, W), show that (the graph of) T is a complement of W =
{0) X Win VX W.

5.5 If lis a linear functional on V (I € Hom(V, R) = V*) and if « is a vector in ¥
such that l{a) # 0, show that V' = N @ 1/, where N is the null space of [ and M = Ra
is the linear span of @. What does this result say about complements in R3?

5.6 Show that any complement M of a subspace N of a vector space V is isomorphie
to the quotient space V/N.

5.7 We suppose again that every subspace has a complement. Show that if
T € Hom V is not injective, then there is a nonzero S in Hom V such that 7o S = 0.

Show that if 7 € Hom V is not surjective, then there is a nonzero S in Hom V such
that So T = 0.

5.8 Using the above exercise for half the arguments, show that 7€ Hom V is
injective if and only if To .S = 0= S = 0and that T is surjective if and only if Se T =
0= 8 = 0. We thus have characterizations of injectivity and surjectivity that are
formal, in the sense that they do not refer to the fact that S and T are transformations,
but refer only to the algebraic properties of S and 7 as elements of an algebra.

5.9 Let M and N be complementary subspaces of a vector space V, and let X be a
subspace such that X N N = {0}. Show that there is a linear injection from X to M.
[I[Tint: Consider the projection P of V onto M along N.] Show that any two comple-
ments of a subspace N are isomorphic by showing that the above injection is surjective
if and only if X is a complement of N.

5.10 Going back to the first point of the preceding exercise, let ¥ be a complement of
P[X]in M. Show that X N ¥ = {0} and that X ® Y is a complement of N.

5.11 Let M be a proper subspace of V, and let {a;:7 € I} be a finite set in V. Set
L = L({a;}), and suppose that M -+ L = V. Show that there is a subset J C I such
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that {a;:7 € J} spans a complement of 3. [Iint: Consider a largest possible subset J
such that M N L ({asy ) = {0}.]
5.12 Given T € Hom(V, ") and S € Hom (", X), show that

a) So T is surjective & S is surjective and R(T) + N(S) = W;

b) Seo T isinjective <= T is injective and R(T) N N(S) = {0};

¢) So Tisanisomorphism <= Sissurjective, T is injective,and 1" = R(T) ® N(S).
5.13  Assuming that every subspace of 17 has a complement, show that T € Hom V
satisfies 72 = 01if and only if V" has a direet sum decomposition V = M @ N such that
T =0on N and T[] CN.
5.114  Suppose next that 7% = 0 but T? £ 0. Show that V can be written as 17 =
Vi@ Va® Ty, where T(VH[C Vo, TV C Vg, and T = 0 on V3. (Asswme again
that any subspace of a veetor space has a complement.)
5.13 We now suppose that T = 0 but 7771 £ 0. Set N; = null space (T for
t=1,...,n— 1,and let V"1 be a complement of N,_3 in 7. Show first that

TIVilN Na—e = {0}

and that T[V1] C N,.—1. Extend T[V}] to a complement V2 of N, in N,_1, and
show that in this way we can construet subspaces Vi, ..., V, such that

V=@V, TIVICVi1 for i<n,

and
TV, = {0}.

On solving a linear equation. N any important problems in mathematics are
in the following general form. A linear operator T: V — W is given, and for a
given 7 € W the equation T'(£) = 7 is to be solved for ¢ € V. In our terms, the
condition that there exist a solution is exactly the condition that 5 be in the
range space of 7. In special circumstances this condition ecan be given more or
less useful equivalent alternative formulations. Let us suppose that we know
how to recognize R(T), in which case we may as well make it the new codomain,
and so assume that T is surjective. There still remains the problem of determin-
ing what we mean by solving the equation. The universal principle running
through all the important instances of the problem is that a solution process
calculates a right inverse to T, that is, a linear operator S: W -—» V such that
T oS = Iy, the identity on W. Thus a sclution process picks one solution
vector £ € V for each n € W in such a way that the solving £ varies linearly with
7. Taking this as our meaning of solving, we have the following fundamental
reformulation.

Theorem 5.3. Let T be a surjective linear map from the vector space V
to the vector space W, and let N be its null space. Then a subspace M is a
complement of N if and only if the restrietion of T to M is an isomorphism
from M to W. The mapping M +— (T [ M)~ is a bijection from the set
of all such complementary subspaces M to the set of all linear right inverses
of T.



62 VECTOR SPACES 1.5

Proof. It should be clear that a subspace M is the range of a linear right inverse
of T (a map Ssuch that T o S = I'y) ifand only if T’ [ M isan isomorphism to W,
in which case S = (T [ M)™!. Strictly speaking, the right inverse must be from
W to V and therefore must be B = tyr o S, where t37 is the identity injection
from M toV. Then (RoT)2=Ro(ToR)oT=RolIyoT = RoT,and
R - T is a projection whose range is M and whose null space is N (since R is
injective). Thus V=M @& N. Conversely, if V=M @& N, then T [ M is
injective because M NN = {0} and surjective because M + N = V implies
that W = T[V] = T[M + N] = T[M] + T[{N] = T[M]+ {0} = T[M]. U

Polynomials in T. The material in this subsection will be used in our study of
differential equations with constant coefficients and in the proof of the diagonal-
izability of a symmetric matrix. In linear algebra it is basic in almost any
approach to the canonical forms of matrices.

If p1(t) = X7 ait and py(t) = 37 b;t’ are any two polynomials, then their
product is the polynomial

m+4n

p(t) = p1()p2(t) = 20: ext”,

where ¢y = X ipj—rab; = Zf:o aby_;. Now let T be any fixed element of
Hom(V), and for any polynomial ¢(t) let ¢(T) be the transformation obtained
by replacing ¢ by T. That is, if ¢({) = X} cit*, then ¢(T) = T} ¢, T*, where, of
course, T' is the composition product 7o T o - - - o T with [ factors. Then the
bilinearity of composition (Theorem 3.3) shows that if p() = p1(O)p:(8),
then p(T) = p(T) o po(T). In particular, any two polyno