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PREFACE 

This book is based on an honors course in advanced calculus that we gave in the 
1960's. The foundational material, presented in the unstarred sections of Chap­
ters 1 through 11, was normally covered, but different applications of this basic 
material were stressed from year to year, and the book therefore contains more 
material than was covered in anyone year. It can accordingly be used (with 
omissions) as a text for a year's course in advanced calculus, or as a text for a 
three-semester introduction to analysis. 

These prerequisites are a good grounding in the calculus of one variable 
from a mathematically rigorous point of view, together with some acquaintance 
with linear algebra. The reader should be familiar with limit and continuity type 
arguments and have a certain amount of mathematical sophistication. AB possi­
ble introductory texts, we mention Differential and Integral Calculus by R. Cou­
rant, Calculus by T. Apostol, Calculus by M. Spivak, and Pure Mathematics by 
G. Hardy. The reader should also have some experience with partial derivatives. 

In overall plan the book divides roughly into a first half which develops the 
calculus (principally the differential calculus) in the setting of normed vector 
spaces, and a second half which deals with the calculus of differentiable manifolds. 

Vector space calculus is treated in two chapters, the differential calculus in 
Chapter 3, and the basic theory of ordinary differential equations in Chapter 6. 
The other early chapters are auxiliary. The first two chapters develop the neces­
sary purely algebraic theory of vector spaces, Chapter 4 presents the material 
on compactness and completeness needed for the more substantive results of 
the calculus, and Chapter 5 contains a brief account of the extra structure en­
countered in scalar product spaces. Chapter 7 is devoted to multilinear (tensor) 
algebra and is, in the main, a reference chapter for later use. Chapter 8 deals 
with the theory of (Riemann) integration on Euclidean spaces and includes (in 
exercise form) the fundamental facts about the Fourier transform. Chapters 9 
and 10 develop the differential and integral calculus on manifolds, while Chapter 
11 treats the exterior calculus of E. Cartan. 

The first eleven chapters form a logical unit, each chapter depending on the 
results of the preceding chapters. (Of course, many chapters contain material 
that can be omitted on first reading; this is generally found in starred sections.) 



On the other hand, Chapters 12, 13, and the latter parts of Chapters 6 and 11 
are independent of each other, and are to be regarded as illustrative applications 
of the methods developed in the earlier chapters. Presented here are elementary 
Sturm-Liouville theory and Fourier series, elementary differential geometry, 
potential theory, and classical mechanics. We usually covered only one or two 
of these topics in our one-year course. 

We have not hesitated to present the same material more than once from 
different points of view. For example, although we have selected the contraction 
mapping fixed-point theorem as our basic approach to the in1plicit-function 
theorem, we have also outlined a "Newton's method" proof in the text and have 
sketched still a third proof in the exercises. Similarly, the calculus of variations 
is encountered twice-once in the context of the differential calculus of an 
infinite-dimensional vector space and later in the context of classical mechanics. 
The notion of a submanifold of a vector space is introduced in the early ohapters, 
while the invariant definition of a manifold is given later on. 

In the introductory treatment of vector space theory, we are more careful 
and precise than is customary. In fact, this level of precision of language is not 
maintained in the later chapters. Our feeling is that in linear algebra, where the 
concepts are so clear and the axioms so familiar, it is pedagogically sound to 
illustrate various subtle points, such as distinguishing between spaces that are 
normally identified, discussing the naturality of various maps, and so on. Later 
on, when overly precise language would be more cumbersome, the reader should 
be able to produce for hin1self a more precise version of any assertions that he 
finds to be formulated too loosely. Similarly, the proofs in the first few chapters 
are presented in more formal detail. Again, the philosophy is that once the 
student has mastered the notion of what constitutes a fonnal mathematical 
proof, it is safe and more convenient to present arguments in the usual mathe­
matical colloquialisms. 

While the level of formality decreases, the level of mathematical sophisti­
cation does not. Thus increasingly abstract and sophisticated mathematical 
objects are introduced. It has been our experience that Chapter 9 contains the 
concepts most difficult for students to absorb, especially the notions of the 
tangent space to a manifold and the Lie derivative of various objects with 
respect to a vector field. 



There are exercises of many different kinds spread throughout the book. 
Some are in the nature of routine applications. Others ask the r~ader to fill in 
or extend various proofs of results presented in the text. Sometimes whole 
topics, such as the Fourier transform or the residue calculus, are presented in 
exercise form. Due to the rather abstract nature of the textual material, the stu­
dent is strongly advised to work out as many of the exercises as he possibly can. 

Any enterprise of this nature owes much to many people besides the authors, 
but we particularly wish to acknowledge the help of L. Ahlfors, A. Gleason, 
R. Kulkarni, R. Rasala, and G. Mackey and the general influence of the book by 
Dieudonne. We also wish to thank the staff of Jones and Bartlett for their invaluable 
help in preparing this revised edition. 

Cambridge, Massachusetts 
1968, 1989 

L.H.L. 
S.S. 
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CHAPTER 0 

INTRODUCTION 

This preliminary chapter contains a short exposition of the set theory that 
forms the substratum of mathematical thinking today. It begins with a brief 
discussion of logic, so that set theory can be discussed with some precision, and 
continues with a review of the way in which mathematical objects can be defined 
as sets. The chapter ends with four sections which treat specific set-theoretic 
topics. 

It is intended that this material be used mainly for reference. Some of it 
will be familiar to the reader and some of it will probably be new. We suggest 
that he read the chapter through "lightly" at first, and then refer back to it 
for details as needed. 

1. LOGIC: QUANTIFIERS 

A statement is a sentence which is true or false as it stands. Thus '1 < 2' and 
'4 + 3 = 5' are, respectively, true and false mathematical statements. Many 
sentences occurring in mathematics contain variables and are therefore not true 
or false as they stand, but become statements when the variables are given 
values. Simple examples are 'x < 4', 'x < 1/', 'x is an integer', '3x 2 + y2 = 10'. 
Such sentences will be called statementjrames. If P(x) is a frame containing the 
one variable 'x', then P(5) is the statement obtained by replacing 'x' in P(x) by 
the numeral '5'. For example, if P(x) is 'x < 4', then P(5) is '5 < 4', P(0) 
is '0 < 4', and so on. 

Another way to obtain a statement from the frame P(x) is to assert that P(x) 
is always true. We do this by prefixing the phrase 'for every x'. Thus, 'for every 
x, x < 4' is a false statement, and 'for every x, x 2 - 1 = (x - 1)(x + 1)' is a 
true statement. This prefixing phrase is called a universal quantifier. Syn­
onymous phrases are 'for each x' and 'for all x', and the symbol customarily 
used is '("Ix)', which can be read in any of these ways. One frequently presents 
sentences containing variables as being always true without explicitly writing 
the universal quantifiers. For instance, the associative law for the addition of 
numbers is often written 

x + (y + z) = (x + y) + z, 

where it is understood that the equation is true for all x, y and z. Thus the 
1 
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actual statement being made is 

(Vx) (Vy) (Vz) [x + (y + z) = (x + y) + z]. 
Finally, we can convert the frame P(x) into a statement by asserting that 

it is sometimes true, which we do by writing 'there exists an x such that P(x)'. 
This process is called existential quantification. Synonymous prefixing phrases 
here are 'there is an x such that', 'for some x', and, symbolically, '(::jx)'. 

The statement '(Vx)(x < 4)' still contains the variable 'x', of course, but 
'x' is no longer free to be given values, and is now called a bound variable. 
Roughly speaking, quantified variables are bound and unquantified variables 
are free. The notation 'P(x), is used only when 'x' is free in the sentence being 
discussed. 

Now suppose that we have a sentence P(x, y) containing two free variables. 
Clearly, we need two quantifiers to obtain a statement from this sentence. 
This brings us to a very important observation. If quantifiers of both types are 
used, then the order in which they are written affects the meaning of the statement; 
(::jy)(Vx)P(x, y) and (Vx)(::jy)P(x, y) say different things. The first says that one y 
can be found that works for all x: "there exists a y such that for all x ... ". 
The second says that for each x a y can be found that works: "for each x there 
exists a y such that ... ". ~ut in the second case, it may very well happen that 
when x is changed, the y that can be found will also have to be changed. The 
existence of a single y that serves for all x is thus the stronger statement. For 
example, it is true that (Vx)(::jy)(x < y) and false that (::jy)(Vx)(x < y). The 
reader must be absolutely clear on this point; his whole mathematical future is 
at stake. The second statement says that there exists a y, call it Yo, such that 
(Vx)(x < Yo), that is, such that every number is less than Yo. This is false; 
Yo + 1, in particular, is not less than Yo. The first statement says that for each x 
we can find a corresponding y. And we can: take y = x + 1. 

On the other hand, among a group of quantifiers of the same type the order 
does not affect the meaning. Thus '(Vx) (Vy)' and '(Vy) (Vx) , have the same mean­
ing. We often abbreviate such clumps of similar quantifiers by using the quan­
tification symbol only once, as in '(Vx, y)', which can be read 'for every x and y'. 
Thus the strictly correct '(Vx) (Vy) (Vz) [x + (y + z) = (x + y) + zl' receives the 
slightly more idiomatic rendition '(Vx, y, z)[x + (y + z) = (x + y) + zl'. The 
situation is clearly the same for a group of existential quantifiers. 

The beginning student generally feels that the prefixing phrases 'for every x 
there exists a y such that' and 'there exists a y such that for every x' sound 
artificial and are unidiomatic. This is indeed the case, but this awkwardness is the 
price that has to be paid for the order of the quantifiers to be fixed, so that the 
meaning of the quantified statement is clear and unambiguous. Quantifiers do 
occur in ordinary idiomatic discourse, but their idiomatic occurrences often 
house ambiguity. The following two sentences are good examples of such 
ambiguous idiomatic usage: "Every x is less than some y" and "Some y is greater 
than every x". If a poll were taken, it would be found that most men on the 
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street feel that these two sentences say the same thing, but half will feel that the 
common assertion is false and half will think it true! The trouble here is that 
the matrix is preceded by one quantifier and followed by another, and the poor 
reader doesn't know which to take as the inside, or first applied, quantifier. The 
two possible symbolic renditions of our first sentence, '[(Vx)(x < y)](3y)' and 
'(Vx)[(x < y)(3y)1', are respectively false and true. Mathematicians do use 
hanging quantifiers in the interests of more idiomatic writing, but only if they 
are sure the reader will understand their order of application, either from the 
context or by comparison with standard usage. In general, a hanging quantifier 
would probably be read as the inside, or first applied, quantifier, and with this 
understanding our two ambiguous sentences become true and false in that order. 

After this apology the reader should be able to tolerate t.he definit.ion of 
sequential convergence. It involves three quantifiers and runs as follows: The 
sequence {xn} converges to x if (Ve) (3N) (Vn) (if n > N then IXn - xl < e). 
In exactly the same format, we define a function f to be continuous at a if 
(Ve) (3 0) (Vx) (if Ix - al < 0 then If(x) - f(a) I < e). We often omit an inside 
universal quantifier by displaying the final frame, so that the universal quanti­
fication is understood. Thus we define f to be continuous at a if for every e 
there is a 0 such that 

if Ix - al < 0, then If(x) - f(a) I < E. 

We shall study these definitions later. We remark only that it is perfectly 
possible to build up an intuitive understanding of what these and similar 
quantified statements actually say. 

2. TIlE LOGICAL CONNECTIVES 

When the word 'and' is inserted between two sentences, the resulting sentence 
is true if both constituent sentences are true and is false otherwise. That is, the 
"truth value", T or F, of the compound sentence depends only on the truth 
values of the constituent sentences. We can thus describe the way 'and' acts in 
compounding sentences in the simple "truth table" 

P Q P and Q 

T T T 
T F F 
F T F 
F F F 

where 'P' and 'Q' stand for arbitrary statement frames. Words like 'and' are 
called logical connectives. It is often convenient to use symbols for connectives, 
and a standard symbol for 'and' is the ampersand '&'. Thus 'P & Q' is read 
'P andQ'. 
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Another logical connective is the word 'or'. Unfortunately, this word is used 
ambiguously in ordinary discourse. Sometimes it is used in the exclusive sense, 
where 'P or Q' means that one of P and Q is true, but not both, and sometimes 
it is used in the inclusive sense that at least one is true, and possibly both are 
true. Mathematics cannot tolerate any fundamental ambiguity, and in mathe­
matics 'or' is always used in the latter way. We thus have the truth table 

P Q P orQ 

T T T 
T F T 
F T T 
F F Ii' 

The above two connectives are binary, in the sense that they combine two 
sentences to form one new sentence. The word 'not' applies to one sentence and 
really shouldn't be considered a connective at all; nevertheless, it is called a 
unary connective. A standard symbol for 'not' is '~'. Its truth table is obviously 

P ~P 

T F 
F T 

In idiomatic usage the word 'not' is generally buried in the interior of a 
sentence. We write' x is not equal to y' rather than' not (x is equal to y)'. 
However, for the purpose of logical manipulation, the negation sign (the word 
'not' or a symbol like '~') precedes the sentence being negated. We shall, of 
course, continue to write 'x ~ y', but keep in mind that this is idiomatic for 
'not (x = y)' or '~(x = y)'. 

We come now to the troublesome 'if ... ,then ... ' connective, which we 
write as either 'if P, then Q' or 'P ==} Q'. This is almost always applied in the 
universally quantified context (Vx) (P(x) ==} Q(x»), and its meaning is best 
unraveled by a study of this usage. We consider 'if x < 3, then x < 5' to be a 
true sentence. More exactly, it is true for all x, so that the universal quantifi­
cation (Vx)(x < 3 ==} x < 5) is a true statement. This conclusion forces us to 
agree that, in particular, '2 < 3 ==} 2 < 5', '4 < 3 ==} 4 < 5', and '6 < 3 ==} 

6 < 5' are all true statements. The truth table for '==}' thus contains the 
values entered below. 

P Q P==}Q 

T T T 
T F 
F T T 
F F T 
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On the other hand, we consider 'x < 7 ==} x < 5' to be a false sentence, and 
therefore have to agree that '6 < 7 ==} 6 < 5' is false. Thus the remaining row 
in the table above gives the value 'F' for P ==} Q. 

Combinations of frame variables and logical connectives such as we have 
been considering are called truth-functional forms. We can further combine the 
elementary forms such as 'P ==} Q' and '",P' by connectives to construct com­
posite forms such as '",(P ==} Q)' and '(P ==} Q) & (Q ==} P)'. A sentence has a 
given (truth-functional) form if it can be obtained from that form by substitution. 
Thus 'x < y or ",(x < V)' has the form 'P or ",P', since it is obtained from this 
form by substituting the sentence 'x < y' for the sentence variable 'P'. Com­
posite truth-functional forms have truth tables that can be worked out by 
combining the elementary tables. For example, '",(P ==} Q)' has the table below, 
the truth value for the whole form being in the column under the connective 
which is applied last ('",' in this example). 

P Q ",(P ==} Q) 

T T F T 
T F T F 
F T F T 
F F F T 

Thus", (P ==} Q) is true only when P is true and Q is false. 
A truth-functional form such as 'P or (",P), which is always true (i.e., has 

only 'T' in the final column of its truth table) is called a tautology or a tautologous 
form. The reader can check that 

and ((P ==} Q) & (Q ==} R)) ==} (P ==} R) 

are also tautologous. Indeed, any valid principle of reasoning that does not 
involve quantifiers must be expressed by a tautologous form. 

The 'if and only if' form 'P <=? Q', or 'P if and only if Q', or 'P iff Q', is an 
abbreviation for '(P ==} Q) & (Q ==} P)'. Its truth table works out to be 

P Q P<=?Q 

T T T 
T F F 
F T F 
F F T 

That is, P <=? Q is true if P and Q have the same truth values, and is false 
otherwise. 

Two truth-functional forms A and B are said to be equivalent if (the final 
columns of) their truth tables are the same, and, in view of the table for '<=?', 

we see that A and B are equivalent if A <=? B is tautologous, and conversely. 
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Replacing a sentence obtained by substitution in a form A by the equivalent 
sentence obtained by the same substitutions in an equivalent form B is a device 
much used in logical reasoning. Thus to prove a statement P true, it suffices to 
prove the statement ",P false, since 'P' and '",(",P), are equivalent forms. 
Other important equivalences are 

",(P or Q) ~ (",P) & (",Q), 

(P => Q) ~ Q or (",P), 

",(P => Q) ~ P & (",Q). 

A bit of conventional sloppiness which we shall indulge in for smoother 
idiom is the use of 'if' instead of the correct 'if and only if' in definitions. We 
definefto be continuous at x if so-and-so, meaning, of course, thatfis continuous 
at x if and only if so-and-so. This causes no difficulty, since it is clear that 'if 
and only if' is meant when a definition is being given. 

3. NEGATIONS OF QUANTIFIERS 

The combinations '",(V'x)' and '(3x)",' have the same meanings: something is 
not always true if and only if it is sometimes false. Similarly, '",(3y)' and '(V'y)",' 
have the same meanings. These equivalences can be applied to move a negation 
sign past each quantifier in a string of quantifiers, giving the following important 
practical rule: 

In taking the negation of a statement beginning with a string of quantifiers, 
we simply change each quantifier to the opposite kind and move the negation 
sign to the end of the string. 

Thus 

",(V'x)(3y) (V'z)P(x, y, z) ~ (3x)(V'y)(3z)",P(x, y, z). 

There are other principles of quantificational reasoning that can be isolated 
and which we shall occasionally mention, but none seem worth formalizing here. 

4. SETS 

It is present-day practice to define every mathematical object as a set of some 
kind or other, and we must examine this fundamental notion, however briefly. 

A set is a collection of objects that is itself considered an entity. The objects 
in the collection are called the elements or members of the set. The symbol for 
'is a member of' is 'E' (a sort of capital epsilon), so that 'x E A' is read "x is a 
member of A", "x is an element of A", "x belongs to A", or "x is in A". 

We use the equals sign '=' in mathematics to mean logical identity; A = B 
means that A is B. Now a set A is considered to be the same object as a set B 
if and only if A and B have exactly the same members. That is, 'A = B' means 
that (V'x)(x E A ~ x E B). 
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We say that a set A is a subset of a set B, or that A is included in B (or that 
B is a superset of A) if every element of A is an element of B. The symbol for 
inclusion is Ie'. Thus 'A e B' means that (Yx)(x E A =} x E B). Clearly, 

(A = B) {=} (A e B) and (B e A). 

This is a frequently used way of establishing set identity: we prove that A = B 
by proving that A e B and that B e A. If the reader thinks about the above 
equivalence, he will see that it depends first on the equivalence of the truth-func­
tional forms 'P {=} Q' and '(P =} Q) & (Q =} P)', and then on the obvious 
quantificational equivalence between '(Yx)(R & S)' and '(Yx)R & (Yx)S'. 

We define a set by specifying its members. If the set is finite, the members 
can actually be listed, and the notation used is braces surrounding a member­
ship list. For example {I, 4, 7} is the set containing the three numbers 1, 4, 7, 
{x} is the unit set of x (the set having only the one object x as a member), 
and {x, y} is the pair set of x and y. We can abuse this notation to name some 
infinite sets. Thus {2, 4, 6, 8, ... } would certainly be considered the set of all 
even positive integers. But infinite sets are generally defined by statement 
frames. If P(x) is a frame containing the free variable 'x', then {x : P(x)} is the 
set of all x such that P(x) is true. In other words, {x : P(x)} is that set A such 
that 

yEA {=} P(y). 

For example, {x: x 2 < 9} is the set of all real numbers x such that x 2 < 9, 
that is, the open interval (-3, 3), and y E {x : x2 < 9} {=} y2 < 9. A statement 
frame P(x) can be thought of as stating a property that an object x mayor may 
not have, and {x : P(x)} is the set of all objects having that property. 

We need the empty set 0, in much the same way that we need zero in 
arithmetic. If P(x) is never true, then {x: P(x)} = 0. For example, 

{x:x ~ x} = 0. 

When we said earlier that all mathematical objects are customarily con­
sidered sets, it was taken for granted that the reader understands the distinction 
between an object and a name of that object. To be on the safe side, we add a 
few words. A chair is not the same thing as the word 'chair', and the number 4 
is a mathematical object that is not the same thing as the numeral '4'. The 
numeral '4' is a name of the number 4, as also are 'four', '2 + 2', and 'IV'. 
According to our present viewpoint, 4 itself is taken to be some specific set. 
There is no need in this course to carry logical analysis this far, but some readers 
may be interested to know that we usually define 4 as {O, 1, 2, 3}. Similarly, 
2 = {O, I}, 1 = {O}, and 0 is the empty set 0. 

It should be clear from the above discussion and our exposition thus far 
that we are using a symbol surrounded by single quotation marks as a name of 
that symbol (the symbol itself being a name of something else). Thus' '4' , is a 
name of '4' (which is itself a name of the number 4). This is strictly correct 
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usage, but mathematicians almost universally mishandle it. It is accurate to 
write: let x be the number; call this number 'x'. However, the latter is almost 
always written: call this number x. This imprecision causes no difficulty to the 
reading mathematician, and it often saves the printed page from a shower of 
quotation marks. There is, however, a potential victim of such ambiguous 
treatment of symbols. This is the person who has never realized that mathe­
matics is not about symbols but about objects to which the symbols refer. Since 
by now the present reader has safely avoided this pitfall, we can relax and 
occasionally omit the strictly necessary quotation marks. 

In order to avoid overworking the word 'set', we use many synonyms, 
such as 'class', 'collection', 'family' and 'aggregate'. Thus we might say, "Let a 
be a family of classes of sets". If a shoe store is a collection of pairs of shoes, then 
a chain of shoe stores is such a three-level object. 

5. RESTRICTED VARIABLES 

A variable used in mathematics is not allowed to take all objects as values; it 
can only take as values the members of a certain set, called the domain of the 
variable. The dOInain is sometimes explicitly indicated, but is often only im­
plied. For example, the letter' n' is customarily used to specify an integer, so 
that' (Vn)P(n) , would automatically be read "for every integer n, P(n)". How­
ever, sometimes n is taken to be a positive integer. In case of possible ambiguity 
or doubt, we would indicate the restriction explicitly and write' ("In E 71.)P(n)', 
where' 71.' is the standard symbol for the set of all integers. The quantifier is 
read, literally, "for all n in 71.", and more freely, "for every integer n". Similarly, 
'(3n E 71.)P(n), is read "there exists an n in 71. such that P(n)" or "there exists 
an integer n such that P(n)". Note that the symbol 'E' is here read as the 
preposition' in'. The above quantifiers are called restricted quantifiers. 

In the same way, we have restricted set formation, both implicit and explicit, 
as in '{n: P(n)} , and '{n E 71. : pen)}', both of which are read "the set of all 
integers n such that P(n)". 

by 
Restricted variables can be defined as abbreviations of unrestricted variables 

("Ix E A)P(x) ¢=> ("Ix) (x E A => P(x)), 

(3x E A)P(x) ¢=> (3x) (x E A & P(x)), 

{x E A :P(x)} = {x:x E A & P(x)}. 

Although there is never any ambiguity in sentences containing explicitly 
restricted variables, it sometimes helps the eye to see the structure of the 
sentence if the restricting phrases are written in superscript position, as in 
(Ve>o)(3nEZ). Some restriction was implicit on page 1. If the reader agreed that 
(Vx)(x 2 - 1 = (x - 1)(x + 1)) was true, he probably took x to be a real 
number. 
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6. ORDERED PAIRS AND RELATIONS 

Ordered pairs are basic tools, as the reader knows from analytic geometry. 
According to our general principle, the ordered pair -< a, b> is taken to be a 
certain set, but here again we don't care which particular set it is so long as it 
guarantees the crucial characterizing property: 

-<x,y> = -<a,b> R x = aandy = b. 

Thus -<1, 3> ~ -<3,1>. 
The notion of a correspondence, or relation, and the special case of a map­

ping, or function, is fundamental to mathematics. A correspondence is a pairing 
of objects such that given any two objects x and y, the pair -< x, y> either does 
or does not correspond. A particular correspondence (relation) is generally 
presented by a statement frame P(x, y) having two free variables, with x and y 
corresponding if any only if P(x, y) is true. Given any relation (correspondence), 
the set of all ordered pairs -<x, y> of corresponding elements is called its graph. 

Now a relation is a mathematical object, and, as we have said several times, 
it is current practice to regard every mathematical object as a set of some sort 
or other. Since the graph of a relation is a set (of ordered pairs), it is efficient and 
customary to take the graph to be the relation. Thus a relation (correspondence) 
is simply a set of ordered pairs. If R is a relation, then we say that x has the 
relation R to y, and we write 'xRy', if and only if -<x, y> E R. We also say 
that x corresponds to y under R. The set of all first elements occurring in the 
ordered pairs of a relation R is called the domain of R and is designated dom R 
or ~(R). Thus 

dom R = {x: (~y)-<x, y> E R}. 

The set of second elements is called the mnge of R: 

rangeR = {y:(~x)-<x,y> ER}. 

The inverse, R-l, of a relation R is the set of ordered pairs obtained by reversing 
those of R: 

R-1 = {-<x, y> : -<y, x> E R}. 

A statement frame P(x, y) having two free variables actually determines a pair 
of mutually inverse relations R & S, called the gmphs of P, as follows: 

R = {-<x, y> : P(x, y)}, S = {-<y, x> : P(x, y)}. 

A two-variable frame together with a choice of which variable is considered to 
be first might be called a directed frame. Then a directed frame would have a 
uniquely determined relation for its graph. The relation of strict inequality 
on the real number system IR would be considered the set {-<x, y> : x < y}, 
since the variables in 'x < y' have a natural order. 

The set A X B = {-<x, y> : x E A & y E B} of all ordered pairs with 
first element in A and second element in B is called the Cartesian product of the 
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sets A and B. A relation R is always a subset of dom R X range R. If the two 
"factor spaces" are the same, we can use exponential notation: A 2 = A X A. 

The Cartesian product R2 = R X R is the "analytic plane". Analytic 
geometry rests upon the one-to-one coordinate correspondence between R2 and 
the Euclidean plane [2 (determined by an axis system in the latter), which 
enables us to treat geometric questions algebraically and algebraic questions 
geometrically. In particular, since a relation between sets of real numbers is a 
subset of R2, we can "picture" it by the corresponding subset of the Euclidean 
plane, or of any model of the Euclidean plane, such as this page. A simple 
Cartesian product is shown in Fig. 0.1 (A U B is the union of the sets A and B). 

B 

B 
1 

1 A A 

AXB when A=[l, 2Iu[2t, 31 and B=[1, Itlu{2} 

Fig. 0.1 

R[AI 
I 
I 
I 
I 
I .... 
I 
I ----------,---
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I , 

A 
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If R is a relation and A is any set, then the restriction of R to A, R r A, 
is the subset of R consisting of those pairs with first element in A: 

R t A = {-<x, y> : -<x, y> E R and x E A}. 

Thus R r A = R n (A X range R), where C n D is the intersection of the sets 
CandD. 

If R is a relation and A is any set, then the image oj A under R, R[A), is 
the set of second elements of ordered pairs in R whose first elements are in A: 

R[A} = {y: (3x)(x E A & -<x. y> E R)}. 

Thus R[A] = range (R r A), as shown in Fig. 0.2. 

7. FUNCTIONS AND MAPPINGS 

A Junction is a relation J such that each domain element x is paired with exactly 
one range element y. This property can be expressed as follows: 

-<x, y> EJ and -<x, Z> EJ =} y = z. 
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The y which is thus uniquely determined by f and x is designated f(x): 

y = f(x) ~ <x, y> Ef. 

11 

One tends to think of a function as being active and a relation which is not 
a function as being passive. A function f acts on an element x in its domain to 
givef(x). We take x and apply fto it; indeed we often call a function an operator. 
On the other hand, if R is a relation but not a function, then there is in general 
no particular y related to an element x in its domain, and the pairing of x and y 
is viewed more passively. 

We often define a function f by specifying its value f(x) for each x in its 
domain, and in this connection a stopped arrow notation is used to indicate the 
pairing. Thus x 1-+ x 2 is the function assigning to each number x its square x2• 

Fig. 0.3 

If we want it to be understood that f is this function, we can write "Consider 
the function f: x 1-+ X2ll• The domain of f must be understood for this notation 
to be meaningful. 

If f is a function, then r 1 is of course a relation, but in general it is not a 
function. For example, if f is the function x 1-+ X2, then r 1 contains the pairs 
<4,2> and <4, -2> and so is not a function (see Fig. 0.3). If r 1 is a func­
tion, we say that f is one-to-one and that f is a one-to-one correspondence between 
its domain and its range. Each x E domf corresponds to only one y E rangef 
(f is a function), and each y E range f corresponds to only one x E dom f (r1 is 
a function). 

The notation· 
f:A -tB 

is read "a (the) function f on A into B" or "the function f from A to B". The 
notation implies that f is a function, that domf = A, and that range feB. 
Many people feel that the very notion of function should include all these 
ingredients; that is, a function should be considered an ordered triple < f, A, B> , 
where f is a function according to our more limited definition, A is the domain 
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of f, and B is a superset of the range of f, which we shall call the codomain of f in 
this context. We shall use the terms 'map', 'mapping', and 'transformation' 
for such a triple, so that the notationf: A --+ B in its totality presents a mapping. 
Moreover, when there is no question about which set is the codomain, we shall 
often call the function f itself a mapping, since the triple -<f, A, B>- is then 
determined by f. The two arrow notations can be combined, as in: "Define 
f: !Fl --+ !Fl by x 1-+ x2 ". 

A mapping f: A --+ B is said to be injective if f is one-to-one, surjective if 
range f = B, and bijective if it is both injective and surjective. A bijective 
mapping f: A --+ B is thus a one-to-one correspondence between its domain A 
and its codomain B. Of course, a function is always surjective onto its range R, 
and the statement that f is surjective means that R = B, where B is the under­
stood codomain. 

8. PRODUCT SETS; INDEX NOTATION 

One of the characteristic habits of the modern mathematician is that as soon as 
a new kind of object has been defined and discussed a little, he immediately 
looks at the set of all such objects. With the notion of a function from A to S 
well in hand, we naturally consider the set of all functions from A to S, which we 
designate SA. Thus!FlR is the set of all real-valued functions of one real variable, 
and sz+ is the set of all infinite sequences in S. (It is understood that an infinite 
sequence is nothing but a function whose domain is the set Z+ of all positive 
integers.) Similarly, if we set n = {I, ... , n}, then Sri is the set of all finite 
sequences of length n in S. 

If B is a subset of S, then itR characteristic function (relative to S) is the func­
tion on S, usually designated XB, which has the constant value I on B and the 
constant value 0 off B. The set of all characteristic functions of subsets of S is 
thus 28 (since 2 = {O, I} ). But because this collection of functions is in a 
natural one-to-one correspondence with the collection of all subsets of S, XB 

corresponding to B, we tend to identify the two collections. Thus 28 is also 
interpreted as the set of all subsets of S. We shall spend most of the remainder 
of this section discussing further similar definitional ambiguities which mathe­
maticians tolerate. 

The ordered triple -< x, y, z>- is usually defined to be the ordered pair 
-< -< x, y>- , z>- . The reason for this definition is probably that a function of 
two variables x and y is ordinarily considered a function of the single ordered 
pair variable -<x, y>-, so that, for example, a real-valued function of two real 
variables is a subset of (!Fl X !Fl) X !Fl. But we also consider such a function a 
subset of Cartesian 3-space !Fl3 • Therefore, we define !Fl3 as (!Fl X !Fl) X !Fl; 
that is, we define the ordered triple -<x, y, z>- as -< -<x, y>-. z>-. 

On the other hand, the ordered triple -<x, y, z>- could also be regarded as 
the finite sequence { -< I, x>-, -< 2, y>-, -< 3, z>- }, which, of course, is a different 
object. These two models for an ordered triple serve equally well, and, again, 
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mathematicians tend to slur over the distinction. We shall have more to say 
on this point later when we discuss natural isomorphisms (Section 1.6). For 
the moment we shall simply regard IRa and 1R"3" as being the same; an ordered 
triple is something which can be "viewed" as being either an ordered pair of 
which the first element is an ordered pair or as a sequence of length 3 (or, for that 
matter, as an ordered pair of which the second element is an ordered pair). 

Similarly, we pretend that Cartesian 4-space 1R4 is 1R4, 1R2 X 1R2, or 
IRI X IRa = IR X ((IR X IR) X IR), etc. Clearly, we are in effect assuming an 
associative law for ordered pair formation that we don't really have. 

This kind of ambiguity, where we tend to identify two objects that really are 
distinct, is a necessary corollary of deciding exactly what things are. It is one 
of the prices we pay for the precision of set theory; in days when mathematics 
was vaguer, there would have been a single fuzzy notion. 

The device of indices, which is used frequently in mathematics, also has am­
biguous implications which we should examine. An indexed collection, as a set, 
is nothing but the range set of a function, the indexing function, and a particular 
indexed object, say Xi, is simply the value of that function at the domain element i. 
If the set of indices is I, the indexed set is designated {Xi: i E l} or {Xi};EI 

(or {Xi};:'l in case I = Z+). However, this notation suggests that we view the 
indexed set as being obtained by letting the index run through the index set I 
and collecting the indexed objects. That is, an indexed set is viewed as being 
the set together with the indexing function. This ambivalence is reflected in the 
fact that the same notation frequently designates the mapping. Thus we refer 
to the sequence {Xn}:=l, where, of course, the sequence is the mapping n ~ Xn. 
We believe that if the reader examines his idea of a sequence he will find this 
ambiguity present. He means neither just the set nor just the mapping, but the 
mapping with emphasis on its range, or the range "together with" the mapping. 
But since set theory cannot reflect these nuances in any simple and graceful way, 
we shall take an indexed set to be the indexing function. Of course, the same 
range object may be repeated with different indices; there is no implication that 
an indexing is one-to-one. Note also that indexing imposes no restriction on the 
set being indexed; any set can at least be self-indexed (by the identity function). 

Except for the ambiguous' {Xi: i E I}', there is no universally used notation 
for the indexing function. Since Xi is the value of the function at i, we might 
think of 'x;' as another way of writing 'xCi)', in which case we designate the 
function 'x' or 'x'. We certainly do this in the case of ordered n-tuplets when 
we say, "Consider the n-tuplet x = -< XI, •.• , xn »". On the other hand, there 
is no compelling reason to use this notation. We can call the indexing function 
anything we want; if it is j, then of course j( i) = Xi for all i. 

We come now to the general definition of Cartesian product. Earlier we 
argued (in a special case) that the Cartesian product A X B X C is the set of 
all ordered triples x = -<XI, X2, xa» such that Xl E A, X2 E B, and Xa E C. 
More generally, A I X A 2 X ... X An, or IIi=1 Ai, is the set of ordered n­
tuples x = -< XI, ... , xn» such that Xi E Ai for i = 1, ... ,n. If we interpret 
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an ordered n-tuplet as a function on n = {I, ... , n}, we have 

IIi=l Ai is the set of all functions x with domain n such that Xi. E Ai 
for all i En. 
This rephrasal generalizes almost verbatim to give us the notion of the 

Cartesian product of an arbitrary indexed collection of sets. 

Definition. The Cartesian product IIiE1Si of the indexed collection of 
sets {Si: i E I} is the set of all functions f with domain the index set I 
such that f(i) E Si for all i E I. 

We can also use the notation II {Si : i E I} for the product and fi for the 
value f(i). 

9. COMPOSITION 

If we are given maps f: A ~ Band g: B ~ C, then the composition of g with f, 
g 0 f, is the map of A into C defined by 

(gof)(x) = g(j(x)) for all X E A. 

This is the function of a function operation of elementary calculus. If f and g are 
the maps from IR to IR defined by f(x) = Xl/3 + 1 and g(x) = x 2, then f 0 g(x) = 
(X 2)1/3 + 1 = X 2 / 3 + 1, and g 0 f(x) = (X 1/ 3 + 1)2 = X 2 / 3 + 2Xl/3 + 1. Note 
that the codomain of f must be the domain of g in order for go f to be defined. 
This operation is perhaps the basic binary operation of mathematics. 

Lemma. Composition satisfies the associative law: 

f 0 (g 0 h) = (f 0 g) 0 h. 

P1"OOf. (jo (g 0 h)) (x) = f((g 0 h)(x)) = f(g(h(x))) = (fo g) (h(x)) = 
((f 0 g) 0 h) (x) for all x E dom h. 0 

If A is a set, the identity map I A: A ~ A is the mapping taking every 
x E A to itself. Thus I A = {-< x, x>- : x E A}. If f maps A into B, then clearly 

foIA=f=IBof. 

If g: B ~ A is such that g 0 f = lA, then we say that g is a left inverse of f and 
that f is a right inverse of g. 

Lemma. If the mapping f: A ~ B has both a right inverse h and a left 
inverse g, they must necessarily be equal. 

Proof. This is just algebraic juggling and works for any associative operation. 
We have 

h = IA 0 h = (g 0 f) 0 h = go (f 0 h) = go IB = g. 0 
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In this case we call the uniquely determined map y: B ---t A such that 
fog = IB and g 0 f = IA the inverse of f. We then have: 

Theorem. A mapping f: A ---t B has an inverse if and only if it is bijective, 
in which case its inverse is its relational inverse f-l. 

Proof. If fis bijective, then the relational inverser1 is a function from B to A, 
and the equations fori = I Band r 1 0 f = I A are obvious. On the other 
hand, if fog = I B, then f is surjective, since then every y in B can be written 
y = f(g(y»). And if g 0 f = I A, then f is injective, for then the equation 
f(x) = f(y) implies that x = y(j(x») = y(j(y») = y. Thus f is bijective if it 
has an inverse. D 

Now let ~(A) be the set of all bijections f: A ---t A. Then ~(A) is closed 
under the binary operation of composition and 

1) f 0 (y 0 h) = (f 0 y) 0 h for all f, g, h E~; 

2) there exists a unique I E ~(A) such that f 0 I = I 0 f = f for all f E ~; 

3) for each f E ~ there exists a unique y E ~ such that fog = g 0 f = I. 

Any set G closed under a binary operation having these properties is called 
a group with respect to that operation. Thus ~(A) is a group with respect to 
composition. 

Composition can also be defined for relations as follows. If RCA X Band 
S C B X C, then S 0 RCA X C is defined by 

-<x,z>- ESoR <=> (3yEB)(-<x,y>- ER& -<y,z>- ES). 

If Rand S are mappings, this definition agrees with our earlier one. 

10. DUALITY 

There is another elementary but important phenomenon called duality which 
occurs in practically all branches of mathematics. Let F: A X B ---t C be any 
function of two variables. It is obvious that if x is held fixed, then F(x, y) is a 
function of the one variable y. That is, for each fixed x there is a function 
hX: B ---t C defined by hX(y) = F(x, y). Then x 1-+ hX is a mapping cp of A into 
CB. Similarly, each y E B yields a function gy E CA , where gy(x) = F(x, y), 
and y 1-+ yy is a mapping (J from B to CA. 

Now suppose conversely that we are given a mapping cp: A ---t CB. For each 
x E A we designate the corresponding value of cp in index notation as hX , so 
that hX is a function from B to C, and we define F: A X B ---t C by F(x, y) = 
hX(y). We are now back where we started. Thus the mappings cp: A ---t CB, 
/1': A X B ---t C, and (J: B ---t CA are equivalent, and can be thought of as three 
different ways of viewing the same phenomenon. The extreme mappings cp and 
(J will be said to be dual to each other. 
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The mapping I() is the indexed family of functions {hx: x E A} C CB. Now 
suppose that 5' C CB is an unindexed collection of functions on B into C, and 
define F: 5' X B -+ C by F(f, y) = f(y). Then 8: B -+ (J'.f is defined by gll(f) = 
f(y). What is happening here is simply that in the expressionf(y) we regard both 
symbols as variables, so that f(y) is a function on 5' X B. Then when we hold y 
fixed, we have a function on 5' mapping 5' into C. 

W c shall see some important applications of this duality principle as our 
subject develops. For example, an m X n matrix is a function t = {tij} in 
RmXn. We picture the matrix as a rectangular array of numbers, where Ii' is 
the row index and Ij' is the column index, so that tij is the number at the inter­
section of the ith row and the jth column. If we hold i fixed, we get the n-tuple 
forming the ith row, and the matrix can therefore be interpreted as an m-tuple 
of row n-tuples. Similarly (dually), it can be viewed as an n-tuple of column 
m-tuples. 

In the same vein, an n-tuple -<!I, ... ,fn > of functions from A to B can 
be regarded as a single n-tuple-valued function from A to Bn, 

In a somewhat different application, duality will allow us to regard a finite­
dimensional vector space V as being its own second conjugate space (V*)*. 

It is instructive to look at elementary Euclidean geometry from this point 
of view. Today we regard a straight line as being a set of geometric points. 
An older and more neutral view is to take points and lines as being two different 
kinds of primitive objects. Accordingly, let A be the set of all points (so that A 
is the Euclidean plane as we now view it), and let B be the set of all straight lines. 
Let F be the incidence function: F(p, l) = 1 if p and I are incident (p is "on" l, 
I is "on" p) and F(p, l) = 0 otherwise. Thus F maps A X B into {O, 1}. Then 
for each IE B the function gl(P) = F(p, I) is the characteristic function of the 
set of points that we think of as being the line l (gl(P) has the value 1 if p is on l 
and 0 if p is not on l.) Thus each line determines the set of points that are on it. 
But, dually, each point p determines the set of lines I "on" it, through its char­
acteristic function hP(I). Thus, in complete duality we can regard a line as being 
a set of points and a point as being a set of lines. This duality aspect of geometry 
is basic in projective geometry. 

It is sometimes awkward to invent new notation for the "partial" function 
obtained by holding a variable fixed in a function of several variables, as we did 
above when we set gil (x) = F(x, y), and there is another device that is frequently 
useful in this situation. This is to put a dot in the position of the "varying 
variable". Thus F(a,') is the function of one variable obtained from F(x, y) 
by holding x fixed at the value a, so that in our beginning discussion of duality 
we have 

hX = F(x, .), gil = F(·, y). 

If f is a function of one variable, we can then write f = f('), and so express the 
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above equations also as h"'(-) = F(x, .), gy(-) = F( . , y). The flaw in this notation 
is that we can't indicate substitution without losing meaning. Thus the value 
of the function F(x,·) at b is F(x, b), but from this evaluation we cannot read 
backward and tell what function was evaluated. Weare therefore forced to 
some such cumbersome notation as F(x, ·)/b, which can get out of hand. Never­
theless, the dot device is often helpful when it can be used without evaluation 
difficulties. In addition to eliminating the need for temporary notation, as 
mentioned above, it can also be used, in situations where it is strictly speaking 
superfluous, to direct the eye at once to the position of the variable. 

For example, later on D~F will designate the directional derivative of the 
function F in the (fixed) direction~. This is a function whose value at a is 
D~F(a), and the notation D~F(-) makes this implicitly understood fact explicit. 

11. THE BOOLEAN OPERATIONS 

Let S be a fixed domain, and let 5' be a family of subsets of S. The union of 5', 
or the union of all the sets in 5', is the set of all elements belonging to at least one 
set in 5'. We designate the union U5' or UAE~ A, and thus we have 

U5' = {x: (3A E~)(X E A)}, Y E U5' ¢=} (3A E~)(y E A). 

We often consider the family 5' to be indexed. That is, we assume given a set I 
(the set of indices) and a surjective mapping i 1-+ Ai from I to 5', so that 5' = 
{Ai: i E I}. Then the union of the indexed collection is designated UiEI Ai or 
U {Ai: i E I}. The device of indices has both technical and psychological 
advantages, and we shall generally use it. 

If 5' is finite, and either it or the index set is listed, then a different notation 
is used for its union. If 5' = {A, B}, we designate the union A U B, a notation 
that displays the listed names. Note that here we have x E A u B ¢=} x E A or 
x E B. If 5' = {Ai: i = 1, ... ,n}, we generally write 'AI U A2 U· .. U An' 
or 'Uf=l Ai' for U5'· 

The intersection of the indexed family {Ai}iEI, designated niEI Ai, is the 
set of all points that lie in every Ai. Thus 

x E nAi ¢=} fYiEI)(x E Ai). 
iEI 

For an unindexed family 5' we use the notation n5' or nAE~ A, and if 5' = 
{A, B}, then n5' = An B. 

The complement, A', of a subset of S is the set of elements x ,~: S not in 
A: A' = {XES: x fJ. A}. The law of De Morgan states that the complement of 
an intersection is the union of the complements: 

(n Ai)' = U (A~). 
iEI iEI 

This an immediate consequence of the rule for negating quantifiers. It is the 
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equivalence between 'not always in' and 'sometimes not in': [~(Vi)(x E Ai) <=? 

(3i)(x G! Ai)] says exactly that 

x E (0Ai)' <=? X E yeA:>. 
If we set Bi = A~ and take complements again, we obtain the dual form: 

(UiE1Bi)' = niEI(BD· 
Other principles of quantification yield the laws 

B n (U Ai) = U (B n Ai) 
iEI iEI 

from P & (3x)Q(x) <=? (3x)(P & Q(x», 

B U (n Ai) = n (B u Ai), 
iEI iEI 

B n (n Ai) = n (B n Ai), 
iEI iEI 

B U (U Ai) = U (B U Ai). 
iEI iEI 

In the case of two sets, these laws imply the following familiar laws of set algebra: 

(A U B)' = A' n B' , (A n B)' = A' U B' (De Morgan), 

A n (B U C) = (A n B) U (A n C), 

A u (B n C) = (A u B) n (A U C). 

Even here, thinking in terms of indices makes the laws more intuitive. Thus 

(AI n A 2 )' = A) u A~ 

is obvious when thought of as the equivalence between 'not always in' and 
'sometimes not in'. 

The family 5' is disjoint if distinct sets in 5' have no elements in common, i.e., 
if ('IX, yE5')(X ~ Y =} X n Y = 0). For an indexed family {Ai}iEI the 
condition becomes i ~ J =} Ai n Aj = 0. If 5' = {A, B}, we simply say that 
A and B are disjoint. 

Given f: U ~ V and an indexed family {Bi} of subsets of V, we have the 
following important identities: 

and, for a single set B C V, 

For example, 

x E r l [~ Bi] <=? f(x) E ~ Bi <=? (Vi) (j(x) E B i ) 

<=? (Vi) (x E f- 1[B i ]) <=? x E n f-l[B i l. 
i 
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The first, but not the other two, of the three identities above remains valid 
when f is replaced by any relation R. It follows from the commutative law, 
(3x)(3y)A ~ (3y)(3x)A. The second identity fails for a general R because 
'(3x)(Vy)' and '(Vy)(3x)' have different meanings. 

12. PARTITIONS AND EQUIVALENCE RELATIONS 

A partition of a set A is a disjoint family ;r of sets whose union is A. We call the 
elements of;r 'fibers', and we say that;r fibers A or is afibering of A. For example, 
the set of straight lines parallel to a given line in the Euclidean plane is a fibering 
of the plane. If 'x' designates the unique fiber containing the point x, then 
x ~ x is a surjective mapping 71': A ~ ;r which we call the projection of A on;r. 
Passing from a set A to a fibering ;r of A is one of the principal ways of forming 
new mathematical objects. 

Any function f automatically fibers its domain into sets on which f is con­
stant. If A is the Euclidean plane and f(p) is the x-coordinate of the point p in 
some coordinate system, then f is constant on each vertical line; more exactly, 
j-l(X) is a vertical line for every x in IR. Moreover, x ~ j-l(X) is a bijection 
from IR to the set of all fibers (vertical lines). In general, if j: A ~ B is any sur­
jective mapping, and if for each value y in B we set 

Ay = j-l(y) = {x E A: j(x) = y}, 

then ;r = {Ay: y E B} is a fibering of A and cp: y ~ Ay is a bijection from 
B to;r. Also cp 0 f is the projection 71': A ~;r, since cp 0 j(x) = cp(j(x) is the 
set x of all z in A such that j(z) = j(x). 

The above process of generating a fibering of A from a function on A is 
relatively trivial. A more important way of obtaining a fibering of A is from 
an equality-like relation on A called an equivalence relation. An equivalence 
relation ~ on A is a binary relation which is reflexive (x ~ x for every x E A), 
symmetric (x ~ y =? Y ~ x), and transitive (x ~ y and y ~ z =? X ~ z). Every 
fibering;r of A generates a relation ~ by the stipulation that x ~ y if and only if 
x and yare in the same fiber, and obviously ~ is an equivalence relation. The 
most important fact to be established in this section is the converse. 

Theorem. Every equivalence relation ~ on A is the equivalence relation 
of a fibering. 

Proof. We obviously have to define x as the set of elements y equivalent to x, 
x = {y: y ~ x}, and our problem is to show that the family ;r of all subsets of A 
obtained this way is a fibering. 

The reflexive, symmetric, and transitive laws become 

x Ex, x E 'ii =? Y Ex, and x E 'ii and y E Z =? X E Z. 

Reflexivity thus implies that ;r covers A. Transitivity says that if y E z, then 
x E 'ii =? X E z; that is, if y E z, then 'ii c z. But also, if y E z, then z E 'ii by 
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symmetry, and so z C y. Thus y E z implies y = z. Therefore, if two of our 
sets a and b have a point x in common, then a = x = 0. In other words, if a is 
not the set b, then a and b are disjoint, and we have a fibering. 0 

The fundamental role this argument plays in mathematics is due to the fact 
that in many important situations equivalence relations occur as the primary 
object, and then are used to define partitions and functions. We give two 
examples. 

Let lL be the integers (positive, negative, and zero). A fraction 'min' can 
be considered an ordered pair -< m, n>- of integers with n -:;e o. The set of all 
fractions is thus lL X (lL - {OJ). Two fractions -<m, n>- and -<p, q>- are 
"equal" if and only if mq = np, and equality is checked to be an equivalence 
relation. The equivalence class -< m, n>- is the object taken to be the rational 
number min. Thus the rational number system Q is the set of fibers in a par­
tition of lL X (lL - {O}). 

Next, we choose a fixed integer p ElL and define a relation E on lL by 
mEn <=> p divides m - n. Then E is an equivalence relation, and the set lLp of 
its equivalence classes is called the integers modulo p. It is easy to see that mEn 
if and only if m and n have the same remainder when divided by p, so that in 
this case there is an easily calculated function f, where f(m) is the remainder 
after dividing m by p, which defines the fibering. The set of possible remainders 
is {O, 1, ... , p - I}, so that lLp contains p elements. 

A function on a set A can be "factored" through a fibering of A by the 
following theorem. 

Theorem. Let g be a function on A, and let g: be a fibering of A. Then g 
is constant on each fiber of g: if and only if there exists a function y on g: 
such that g = y 0 7r. 

Proof. If g is constant on each fiber of g:, then the association of this unique 
value with the fiber defines the function y, and clearly g = yo 7r. The converse 
is obvious. 0 



CHAPTER 1 

VECTOR SPACES 

The calculus of functions of more than one variable unites the calculus of one 
variable, which the reader presumably knows, with the theory of vector spaces, 
and the adequacy of its treatment depends directly on the extent to which vector 
space theory really is used. The theories of differential equations and differential 
geometry are similarly based on a mixture of calculus and vector space theory. 
Such "vector calculus" and its applications constitute the subject matter of this 
book, and in order for our treatment to be completely satisfactory, we shall 
have to spend considerable time at the beginning studying vector spaces them­
selves. This we do principally in the first two chapters. The present chapter is 
devoted to general vector spaces and the next chapter to finite-dimensional 
spaces. 

We begin this chapter by introducing the basic concepts of the subject­
vector spaces, vector subspaces, linear combinations, and linear transforma­
tions-and then relate these notions to the lines and planes of geometry. Next 
we establish the most elementary formal properties of linear transformations and 
Cartesian product vector spaces, and take a brief look at quotient vector spaces. 
This brings us to our first major objective, the study of direct sum decomposi­
tions, which we undertake in the fifth section. The chapter concludes with a 
preliminary examination of bilinearity. 

I. FUNDAMENTAL NOTIONS 

Vector spaces and subspaces. The reader probably has already had some 
eontact with the notion of a vector space. l\Iost beginning calculus texts discuss 
1!:cometric vectors, which are represented by "arrows" drawn from a chosen 
origin O. These vectors are added geometrically by the parallelogram rule: 
The sum of the vector 01 (represented by the arrow from 0 to A) and the 
vcctor Oii is the vector QP, where P is the vertex opposite 0 in the parallelogram 
having OA and OB as two sides (Fig. 1.1). Vectors can also be multiplied by 
numbers: x(o"A) is that vector DB such that B is on the line through 0 and 
:1, the distance from 0 to B is Ixl times the distance from 0 to A, and B and A 
arc on the same side of 0 if x is positive, and on opposite sides if x is negative 

21 
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(Fig. 1.2). These two vector operations satisfy certain laws of algebra, 
which we shall soon state in the definition. The geometric proofs of these laws 
are generally sketchy, consisting more of plausibility arguments than of airtight 
logic. For example, the geometric figure in Fig. 1.3 is the essence of the usual 
proof that vector addition is associative. In each case the final vector OX is 
represented by the diagonal starting from 0 in the parallelepiped constructed 
from the three edges OA, OB, and ~C. The set of all geometric vectors, together 
with these two operations and the laws of algebra that they satisfy, constitutes 
one example of a vector space. We shall return to this situation in Section 2. 

The reader may also have seen coordinate triples tr€ated as vectors. In this 
system a three-dimensional vector is an ordered triple of numbers -< Xl, X2, xa> 
which we think of geometrically as the coordinates of a point in space. Addition 
is now algebraically defined, 

-<Xb X2,Xa> + -<YbY2,Ya> = -<Xl+Yb X.2+Y2,Xa+Ya>, 

as is multiplication by numbers, t-<Xl' X2, xa> = -<tXl, tX2, tXa>. The 
vector laws are much easier to prove for these objects, since they are almost 
algebraic formalities. The set ~3 of all ordered triples of numbers, together with 
these two operations, is a second example of a vector space. 
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If we think of an ordered triple -<Xli X2, X3 >- as a function x with domain 
the set of integers from 1 to 3, where Xi is the value of the function x at i (see 
Section 0.8), then this vector space suggests a general type called a function 
space, which we shall examine after the definition. For the moment we remark 
only that we defined the sum of the triple x and the triple y as that triple z 
such that Zi = Xi + Yi for every i. 

A vector space, then, is a collection of objects that can be added to each 
other and multiplied by numbers, subject to certain laws of algebra. In this 
context a number is often called a scalar. 

Definition. Let V be a set, and let there be given a mapping -< a, fl >- .­
a + fl from V X V to V, called addition, and a mapping -<x, a>- .- xa 
from IR X V to V, called multiplication by scalars. Then V is a vector space 
with respect to these two operations if: 

AI. a + (fl + 1') = (a + tJ) + I' for all a, fl, I' E V. 

A2. a + fl = fl + a for all a, fl E V. 

A3. There exists an element 0 E V such that a + 0 = a for all a E V. 

A4. For every a E V there exists a fl E V such that a + fl = O. 

S1. (xy)a = x(ya) for all x, y E IR, a E V. 

S2. (x + y)a = Xa + ya for all x, y E IR, a E V. 

S3. x(a + tJ) = Xa + xfl for all X E IR, a, fl E V. 

S4. Ia = a for all a E V. 

In contexts where it is clear (as it generally is) which operations are intended, 
we refer simply to the vector space V. 

Certain further properties of a vector space follow directly from the axioms. 
Thus the zero element postulated in A3 is unique, and for each a the fl of A4 
is unique, and is called -a. Also Oa = 0, xO = 0, and (-I)a = -a. These 
elementary consequences are considered in the exercises. 

Our standard example of a vector space will be the set V = IRA of all real­
valued functions on a set A under the natural operations of addition of two 
functions and multiplication of a function by a number. This generalizes the 
example lR(l,2,31 = 1R3 that we looked at above. Remember that a function f 
in IRA is simply a mathematical object of a certain kind. We are saying that two 
of these objects can be added together in a natural way to form a third such 
object, and that the set of all such objects then satisfies the above laws for 
addition. Of course, f + g is defined as the function whose value at a is f(a) + 
y(a), so that (f + g)(a) = f(a) + g(a) for all a in A. For example, in 1R3 we 
defined the sum x + y as that triple whose value at i is Xi + Yi for all i. Similarly, 
cf is the function defined by (cf)(a) = c(j(a») for all a. Laws Al through 84 
follow at once from these definitions and the corresponding laws of algebra for 
the real number system. For example, the equation (s + t)f = sf + tf means 
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that (s + t)f) (a) = (sf + tf)(a) for all a E A. But 

(s + t)f) (a) = (s + t) (f(a)) = s(f(a)) + t(f(a)) 

= (sf)(a) + (tf)(a) = (sf + tf)(a), 

where we have used the definition of scalar multiplication in IRA, the distributive 
law in IR, the definition of scalar multiplication in IRA, and the definition of 
addition in IRA, in that order. Thus we have S2, and the other laws follow 
similarly. 

The set A can be anything at all. If A = IR, then V = IRR is the vector 
space of all real-valued functions of one real variable. If A = IR X IR, then 
V = IRRXR is the space of all real-valued functions of two real variables. If 
A = {1,2} = 2, then V = 1R2 = 1R2 is the Cartesian plane, and if A = 
{I, ... ,n} = ii, then V = IRn is Cartesian n-space. If A contains a single 
point, then IRA is a natural bijective image of IR itself, and of course IR is trivially 
a vector space with respect to its own operations. 

Now let V be any vector space, and suppose that W is a nonempty subset of 
V that is closed under the operations of V. That is, if a and {3 are in W, then so 
is a + (3, and if a is in W, then so is Xa for every scalar x. For example, let V be 
the vector space lR[a,bl of all real-valued functions on the closed interval [a, b) C IR, 
and let W be the set e([a, b]) of all continuous real-valued functions on [a, b). 
Then W is a subset of V that is closed under the operations of V, since f + g 
and cf are continuous whenever f and g are. Or let V be Cartesian 2-space 1R2, 
and let W be the set of ordered pairs x = -<XI, X2> such that Xl + X2 = O. 
Clearly, W is closed under the operations of V. 

Such a subset W is always a vector space in its own right. The universally 
quantified laws AI, A2, and Sl through S4 hold in W because they hold in the 
larger set V. And since there is some {3 in W, it follows that 0 = O{3 is in W 
because W is closed under multiplication by scalars. For the same reason, if a 

is in W, then so is -a = (-l)a. Therefore, A3 and A4 also hold, and we see 
that W is a vector space. We have proved the following lemma. 

Lelllilla. If W is a nonempty subset of a vector space V which is closed 
under the operations of V, then W is itself a vector space. 

We call Wa subspace of V. Thus e([a, b]) is a subspace of lR[a,bl, and the 
pairs -<Xl, X2> such that Xl + X2 = 0 form a subspace of 1R2. Subspaces will 
be with us from now to the end. 

A subspace of a vector space IRA is called a function space. In other words, a 
function space is a collection of real-valued functions on a common domain 
which is closed under addition and multiplication by scalars. 

What we have defined so far ought to be called the notion of a real vector 
space or a vector space over IR. There is an analogous notion of a complex vector 
space, for which the scalars are the complex numbers. Then laws Sl through S4 
refer to mUltiplication by complex numbers, and the space CA of all complex-
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valued functions on A is the standard example. In fact, if the reader knew what 
is meant by a field F, we could give a single general definition of a vector space 
over F, where scalar multiplication is by the elements of F, and the standard 
example is the space V = FA of all functions from A to F. Throughout this 
book it will be understood that a vector space is a real vector space unless explic­
itly stated otherwise. However, much of the analysis holds as well for complex 
vector spaces, and most of the pure algebra is valid for any scalar field F. 

EXERCISES 

1.1 Sketch the geometric figure representing law S3, 

x(OA + oB) = x(OA) + x(oB), 

for geometric vectors. Assume that x > 1. 

1.2 Prove S3 for 1R3 using the explicit displayed form {Xl, X2, X3J for ordered triples. 

1.3 The vector 0 postulated in A3 is unique, as elementary algebraic fiddling will 
show. For suppose that 0' also satisfies A3. Then 

0' = 0'+0 

= 0+ 0' 

=0 

(A3 for 0) 

(A2) 

(A3 for 0'). 

Show by similar algebraic juggling that, given a, the {3 postulated in A4 is unique. 
This unique {3 is designated -a. 

1.4 Prove similarly that Oa = 0, xO = 0, and (-I)a = -a. 

1.5 Prove that if xa = 0, then either X = 0 or a = O. 

1.6 Prove SI for a function space IRA. Prove S3. 

1.7 Given that a is any vector in a vector space V, show that the set {xa: X E IR} 
of all scalar multiples of a is a subspace of V. 

1.8 Given that a and {3 are any two vectors in V, show that the set of all vectors 
.ra + y{3, where x and yare any real numbers, is a subspace of V. 

1.9 Show that the set of triples x in 1R3 such that Xl - X2 + 2X3 = 0 is a subspace 
M. If N is the similar subspace {x: Xl + X2 + X3 = O}, find a nonzero vector a in 
!If n N. Show that !If n N is the set {xa: X E IRJ of all scalar multiples of a. 

1.10 Let A be the open interval (0,1), and let V be IRA. Given a point X in (0,1), 
lct V:z; be the set of functions in V that have a derivative at x. Show that V:z; is a sub­
space of V. 

l.ll For any subsets A and B of a vector space V we define the set sum A + B by 
.1+B = {a+{3:aEAand{3EB}. Show that (A+B)+C = A+(B+C). 

1.12 If A C V and X C IR, we similarly define X A = {xa: X E X and a E .ti}. 
Show that a nonvoid set A is a subspace if and only if A + A = A and IRA = A. 

1.13 Let V be 1R2, and let !If be the line through the origin with slope k. Let x be 
any nonzero vector in M. Show that M is the subspace IRx = {tx: t E IR}. 
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1.14 Show that any other line L with the same slope k is of the form M + a for some a. 

1.15 Let !If be a subspace of a vector space V, and let a and {3 be any two vectors in V. 
Given A = a + 1If and B = {3 + M, show that either A = B or An B = 0. 
Show also that A + B = (a + (3) + M. 

1.16 State more carefully and prove what is meant by "a subspace of a subspace is 
a subspace". 

1.17 Prove that the intersection of two subspaces of a vector space is always itself 
a subspace. 

1.18 Prove more generally that the intersection TV = niEI Wi of any family 
{Wi: i E J} of subspaces of V is a subspace of V. 

1.19 Let V again be IR(O.l), and let W be the set of all functions f in V such that f' (x) 
exists for every x in (0, 1). Show that lr is the intersection of the collection of subspaces 
of the form V. that were considered in Exercise 1.10. 

1.20 Let V be a function space IR--t, and for a point a in .1 let Wa be the set of functions 
such that f(a) = O. Wa is clearly a subspace. For a subset Be A let W B be the set 
of functions f in V such that f = 0 on B. Show that lV B is the intersection naEB Wa. 

1.21 Supposing again that X and Yare subspaces of V, show that if X + y = V and 
X n l' = {O}, then for every vector ~ in V there is a unique pair of vectors !; E X 
and 71 E Y such that ~ = !; + 71. 

1.22 Show that if X and Yare subspaces of a vector space 17, then the union XU l' 
can only be a subspace if either XC Yor Y ex. 

Linear combinations and linear span. Because of the commutative and associ­
ative laws for vector addition, the sum of a finite set of vectors is the same for all 
possible ways of adding them. For example, the sum of the three vectors 
aa, ab, a c can be calculated in 12 ways, all of which give the same result: 

Therefore, if I = {a, b, c} is the set of indices used, the notation LiEI ai, 
which indicates the sum without telling us how we got it, is unambiguous. In 
general, for any finite indexed set of vectors {ai: i E l} there is a uniquely 
determined sum vector LiEI ai which we can compute by ordering and group­
ing the a/s in any way. 

The index set I is often a block of integers n = {1, ... ,n}. In this case 
the vectors ai form an n-tuple {ai}~' and unless directed to do otherwise we 
would add them in their natural order and write the sum as Li'=l ai. Note 
that the way they are grouped is still left arbitrary. 

Frequently, however, we have to use indexed sets that are not ordered. 
For example, the general polynomial of degree at most 5 in the two variables 
's' and 't' is 

and the finite set of monomials {Siti}i+i:$5 has no natural order. 
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* The formal proof that the sum of a finite collection of vectors is indepen­
dent of how we add them is by induction. We give it only for the interested 
reader. 

In order to avoid looking silly, we begin the induction with two vectors, 
in which case the commutative law aa + ab = ab + aa displays the identity of 
all possible sums. Suppose then that the assertion is true for index sets having 
fewer than n elements, and consider a collection {ai:i E I} having n members. 
Let {3 and 'Y be the sum of these vectors computed in two ways. In the com­
putation of {3 there was a last addition performed, so that {3 = (LiEJ1 ai) + 
(L iEJ 2 ai), where {JI, J 2 } partitions I and where we can write these two 
partial sums without showing how they were formed, since by our inductive 
hypothesis all possible ways of adding them give the same result. 

Similarly, 'Y = (LiEKl ai) + (L iEK2 ai). N ow set 

and ~jk = L: ai, 
iELjk 

where it is understood that ~jk = ° if L jk is empty (see Exercise 1.37). Then 
LiE J 1 = ~ 11 + h 2 by the inductive hypothesis, and similarly for the other 
three sums. Thus 

which completes our proof. * 

A vector {3 is called a linear combination of a subset A of the vector space V 
if (3 is a finite sum L Xiai, where the vectors ai are all in A and the scalars Xi 

are arbitrary. Thus, if A is the subset {tn}; C IRR of all "monomials", then a 
function f is a linear combination of the functions in A if and only if f is a 
polynomial function f(t) = L~ ci. If A is finite, it is often useful to take the 
indexed set {ai} to be the whole of A, and to simply use a O-coefficient for any 
vector missing from the sum. Thus, if A is the subset {sin t, cos t, et} of IRR , 

then we can consider A an ordered triple in the listed ordering, and the function 
3 sin t - et = 3· sin t + ° . cos t + (-I)et is the linear combination of the 
triple A having the coefficient triple -< 3, 0, -1>-. 

Consider now the set L of all linear combinations of the two vectors 
-< 1, 1, 1>- and -< 0, 1, -1>- in 1R3. It is the set of all vectors s -< 1, 1, 1>- + 
t -< 0, 1, -1>- = -< s, s + t, s - t>-, where sand t are any real numbers. Thus 
L = {-<s, s + t, s - t>- : -<s, t>- E 1R2}. It will be clear on inspection that 
L is closed under addition and scalar multiplication, and therefore is a subspace 
of 1R3. Also, L contains each of the two given vectors, with coefficient pairs 
-< 1, 0>- and -< 0, 1>-, respectively. Finally, any subspace M of 1R3 which 
contains ·each of the two given vectors will also contain all of their linear combi­
nations, and so will include L. That is, L is the smallest subspace of 1R3 containing 
-< 1, 1, 1>- and -< 0, 1, -1>-. It is called the linear span of the two vectors, or the 
subspace generated by the two vectors. In general, we have the following theorem. 



28 VECTOR SPACES 1.1 

Theorem 1.1. If A is a nonempty subset of a vector space V, then the set 
L(A) of all linear combinations of the vectors in A is a subspace, and it is 
the smallest subspace of V which includes the set A. 

Proof. Suppose first that A is finite. We can assume that we have indexed A 
in some way, so that A = {ai: i E I} for some finite index set I, and every 
element of L(A) is of the form LiEI Xiai. Then we have 

(L Xiai) + (L Yiai) = L (Xi + Yi)ai 

because the left-hand side becomes Li (Xiai + Yiai) when it is regrouped by 
pairs, and then S2 gives the right-hand side. We also have 

e(L Xiai) = L(exi)ai 

by S3 and mathematical induction. Thus L(A) is closed under addition and 
multiplication by scalars and hence is a subspace. Moreover, L(A) contains 
each ai (why?) and so includes A. Finally, if a subspace W includes A, then it 
contains each linear combination L Xiai, so it includes L(A). Therefore, L(A) 
can be directly characterized as the uniquely determined smallest subspace 
which includes the set A. 

If A is infinite, we obviously can't use a single finite listing. However, the 
sum (L~ Xiai) + (Lf Yj{3j) of two linear combinations of elements of A is 
clearly a finite sum of scalars times elements of A. If we wish, we can rewrite it 
as L~+m Xiai, where we have set (3j = an+j and Yj = xn+j for j = 1, ... , m. 
In any case, L(A) is again closed under addition and multiplication by scalars 
and so is a subspace. 0 

We call L(A) the linear span of A. If L(A) = V, we say that A spans V; 
V is finite-dimensional if it has a finite spanning set. 

If V = JR3, and if 0\ 02 , and 03 are the "unit points on the axes", 01 = 

-<1,0,0>-,02 = -<0,1,0>-, and 03 = -<0,0,1>-, then {Oi}r spans V, since 
x= -<Xl, X2, X3>- = -<XllO,O>- + -<0,X2,0>- + -<0,0,X3>- = X101 + 
X202 + X303 = L~ XiO i for every x in JR3. More generally, if V = JRn and oj is 
the n-tuple having 1 in the jth place and ° elsewhere, then we have similarly that 
x = -< Xl, ... , Xn >- = Li'=l Xioi, so that {oi}l spans JR n. Thus JRn is finite­
dimensional. In general, a function space on an infinite set A will not be finite­
dimensional. For example, it is true but not obvious that e([a, bJ) has no finite 
spanning set. 

EXERCISES 

1.23 Given a = -<1,1,1>-, {3 = -<0,1, -1>-,1' = -<2,0,1>-, compute the linear 
combinations a + {3 + 1', 3a - 2{3 + 1', xa + y{3 + z'Y. Find x, y, and z such that 
xa + y{3 + z'Y = -< 0,0,1>- = 03 • Do the same for 01 and 02. 

1.24 Given a = -<1,1,1>-, {3 = -<0,1, -1>-, I' = -<1,0,2>-, show that each of 
a, {3, I' is a linear combination of the other two. Show that it is impossible to find 
coefficients x, y, and z such that xa + y{3 + z'Y = 01. 
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1.25 a) Find the linear combination of the set A = <. t, t2 - 1, t2 + 1> with coeffi­
cient triple <'2, -1, 1>. Do the same for <'0,1,1>. 

b) Find the coefficient triple for which the linear combination of the triple A 
is (t + 1)2. Do the same for 1. 

c) Show in fact that any polynomial of degree ~ 2 is a linear combination of A. 

1.26 Find the linear combinationfof {e t , e-t} C jRR such thatf(O) = 1 andf'(O) = 2. 

1.27 Find a linear combination f of sin x, cos x, and eX such that f(O) = 0, ff (0) = 1, 
and f" (0) = 1. 

1.28 Suppose that a sin x + b cos x + ceX is the zero function. Prove that a = b = 
c = O. 

1.29 Prove that <'1,1> and <'1,2> span jR2. 

1.30 Show that the subspace M = {x: Xl + X2 = O} C jR2 is spanned by one vector. 

1.31 Let M be the subspace {x: Xl - X2 + 2X3 = O} in jR3. Find two vectors a 
and h in M neither of which is a scalar multiple of the other. Then show that M is 
the linear span of a and h. 

1.32 Find the intersection of the linear span of <. 1, 1, 1> and <. 0, 1, -1 > in jR3 

with the coordinate subspace X2 = O. Exhibit this intersection as a linear span. 

1.33 Do the above exercise with the coordinate space replaced by 

J[ = {x: Xl + X2 = O}. 

1.34 By Theorem 1.1 the linear span L(A) of an arbitrary subset .t of a vector space 
V has the following two properties: 

i) L( A) is a subspace of V which includes A; 

ii) If M is any subspace which includes A, then L(A) eM. 

Using only (i) and (ii), show that 

a) A C B=} L(A) C L(B); 
b) L(L(A)) = L(A). 

1.35 Show that 

a) if M and N are subspaces of V, then so is M + N; 
b) for any subsets A, B C V, L(A U B) = L(A) + L(B). 

1.36 Remembering (Exercise 1.18) that the intersection of any family of subspaces 
is a subspace, show that the linear span L(A) of a subset A of a vector space V is the 
intersection of all the subspaces of V that include A. This alternative characterization 
is sometimes taken as the definition of linear span. 

1.37 By convention, the sum of an empty set of vectors is taken to be the zero vector. 
This is necessary if Theorem 1.1 is to be strictly correct. Why? What about the 
preceding problem? 

Linear transformations. The general function space JRA and the subspace 
e([a, bJ) of jR[a,bJ both have the property that in addition to being closed under 
the vector operations, they are also closed under the operation of multiplication 
of two functions. That is, the pointwise product of two functions is again a 
function [(fg)(a) = f(a)g(a)J, and the product of two continuous functions is 
continuous. With respect to these three operations, addition, multiplication, 
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and scalar multiplication, IRA and e([a, b]) are examples of algebras. If the reader 
noticed this extra operation, he may have wondered why, at least in the context 
of function spaces, we bother with the notion of vector space. Why not study 
all three operations? The answer is that the vector operations are exactly the 
operations that are "preserved" by many of the most important mappings of 
sets of functions. For example, define T: e([a, b]) ~ IR by T(f) = f: f(t) dt. 
Then the laws of the integral calculus say that T(f + g) = T(f) + T(g) and 
T(cf) = cT(f). Thus T "preserves" the vector operations. Or we can say that T 
"commutes" with the vector operations, since plus followed by T equals T 
followed by plus. However, T does not preserve multiplication: it is not true in 
general that T(fg) = T(f)T(g). 

Another example is the mapping T: x ~ y from 1R3 to 1R2 defined by 
YI = 2XI - X2 + X3, Y2 = Xl + 3X2 - 5X3, for which we can again verify 
that T(x + y) = T(x) + T(y) and T(cx) = cT(x). The theory of the solvability 
of systems of linear equations is essentially the theory of such mappings T; thus 
we have another important type of mapping that preserves the vector operations 
(but not products). 

These remarks suggest that we study vector spaces in part so that we can 
study mappings which preserve the vector operations. Such mappings are 
called linear transformations. 

Definition. If V and Ware vector spaces, then a mapping T: V ~ W is a 
linear transformation or a linear map if T(a + (3) = T(a) + T({3) for all 
a, (3 E V, and T(xa) = xT(a) for all a E V, X E IR. 

These two conditions on T can be combined into the single equation 

T(xa + y(3) = xT(a) + yT({3) for all a, {3 E V and all x, y E IR. 

l\Ioreover, this equation can be extended to any finite sum by induction, so 
that if T is linear, then 

for any linear combination L Xiai· For example, f: (L~ cdi) = L~ Ci f: k 

EXERCISES 

1.38 Show that the most general linear map from IR to IR is multiplication by a con­
stant. 

1.39 For a fixed a in V the mapping x ~ xa from IR to V is linear. Why? 

1.40 Why is this true for a ~ xa when x is fixed? 

1.41 Show that every linear mapping from IR to V is of the form x ~ Xa for a fixed 
vector a in V. 
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1.42 Show that every linear mapping from 1R2 to V is of the form < Xl, X2 > 1-+ 

XIO!I + X20!2 for a fixed pair of vectorsO!l and 0!2 in V. What is the range of this mapping? 
1.43 Show that the map f 1-+ f: fCt) dt from eC[a, b]) to IR does not preserve products. 
1.44 Let g be any fixed function in IRA. Prove that the mapping T: IRA ~ IRA 
defined by TU) = gf is linear. 
1.45 Let cp be any mapping from a set A to a set B. Show that composition by cp is 
a linear mapping from IRB to IRA. That is, show that T: IRB ~ IRA defined by TU) = 
f 0 cp is linear. 

In order to acquire a supply of examples, we shall find all linear transforma­
tions having IR n as domain space. It may be well to start by looking at one such 
transformation. Suppose we choose some fixed triple of functions {Ii} ~ in the 
space IRR of all real-valued functions on IR, say !I (t) = sin t, f 2(t) = cos t, and 
fa(t) = et = exp(t). Then for each triple of numbers x = {xiH in 1R3 we have 
the linear combination L~=l Xdi with {Xi} as coefficients. This is the element of 
IRR whose value at t is L~ xiIi(t) = Xl sin t + X2 cos t + X3et. Different coefficient 
triples give different functions, and the mapping x 1-+ L~=l xdi = Xl sin + 
X2 cos + X3 exp is thus a mapping from 1R3 to IRR. It is clearly linear. If we call 
this mapping T, then we can recover the determining triple of functions from T 
as the images of the "unit points" ~i in 1R3; T(~j) = L ~!Ii = Ii, and so 
T(~l) = sin, T(~2) = cos, and T(~3) = expo We are going to see that every 
linear mapping from 1R3 to IRR is of this form. 

In the following theorem {~iH is the spanning set for IR n that we defined 
earlier, so that x = Li Xi~i for every n-tuple x = <Xl, ••• , xn> in IRn. 

Theorelll 1.2. If {~j} i is any fixed n-tuple of vectors in a vector space W, 
then the "linear combination mapping" x 1-+ Li Xi~i is a linear trans­
formation T from IR n to W, and T(~j) = ~j for j = 1, ... ,n. Conversely, 
if T is any linear mapping from IR n to W, and if we set ~j = T(~j) for j = 
1, ... ,n, then T is the linear combination mapping x 1-+ Li Xi~i. 

Proof. The linearity of the linear combination map T follows by exactly the 
same argument that we used in Theorem 1.1 to show that L(A) is a subspace. 
Thus 

n n 

T(x + y) = L: (Xi + Yi)~i = L: (Xi~i + Yi~i) 
I I 
n n 

= L: Xi~i + L: Yi~i = T(x) + T(y), 
I I 

and 
n n n 

T(sx) = L: (SXi)~i = L: S(Xi~i) = S L: Xi~i = sT(x). 
I I I 
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Conversely, if T: IRn ~ W is linear, and if we set (3j = T(5 j ) for all j, then for 
any x = -< Xb .•• , xn>- in IRn we have T(x) = T(L:i Xi 5i ) = L:i xiT( 5i ) = 

L:i Xi{3i. Thus T is the mapping x ~ L:i xi{3i. 0 

This is a tremendously important theorem, simple though it may seem, and 
the reader is urged to fix it in his mind. To this end we shall invent some termi­
nology that we shall stay with for the first three chapters. If a = {ab ... , an} 
is an n-tuple of vectors in a vector space W, let La. be the corresponding linear 
combination mapping x ~ L:i Xiai from IRn to W. Note that the n-tuple a 
itself is an element of W n • If T is any linear mapping from IR n to W, we shall call 
the n-tuple {T(5i)} i the skeleton of T. In these terms the theorem can be restated 
as follows. 

Theorelll 1.2'. For each n-tuple a in W n , the map La.: IR n ~ W is linear 
and its skeleton is a. Conversely, if T is any linear map from IR n to W, then 
T = Lp where (3 is the skeleton of T. 

Or again: 

Theorelll 1.2". The map a ~ La. is a bijection from wn to the set of all 
linear maps T from IRn to W, and T ~ skeleton (T) is its inverse. 

A linear transformation from a vector space V to the scalar field IR is called 
a linear functional on V. Thus f ~ f: f(t) dt is a linear f,unctional on V = 

e([a, bJ). The above theorem is particularly simple for a linear functional F: 
since W = IR, each vector (3i = F(5 i ) in the skeleton of F is simply a number bi , 

and the skeleton {b i } i is thus an element of IRn. In this case we would write 
F(x) = L:i biXi, putting the numerical coefficient 'b/ before the variable 
'xi'. Thus F(x) = 3x! - X2 + 4X3 is the linear functional on 1R3 with skeleton 
-< 3, -1, 4>-. The set of all linear functionals on IR n is in a natural one-to-one 
correspondence with IR n itself; we get b from F by bi = F(5 i ) for all i, and we 
get F from b by F(x) = L: biXi for all x in IRn. 

We next consider the case where the codomain space of T is a Cartesian 
space IRm, and in order to keep the two spaces clear in our minds, we shall, for 
the moment, take the domain space to be 1R3. Each vector (3i = T(5 i ) in the 
skeleton of T is now an m-tuple of numbers. If we picture this m-tuple as a 
column of numbers, then the three m-tuples {3i can be pictured as a rectangular 
army of numbers, consisting of three columns each of m numbers. Let tij be the 
ith number in the jth column. Then the doubly indexed set of numbers {tij} is 
called the matrix of the transformation T. We call it an m-by-3 (an m X 3) 
matrix because the pictured rectangular array has m rows and three columns. 
The matrix determines T uniquely, since its columns form the skeleton of T. 
The identity T(x) = L:~ x jT(5 j) = L:~ Xj{3j allows the m-tuple T(x) to be 
calculated explicitly from x and the matrix {tij}. Picture multiplying the 
column m-tuple {3j by the scalar Xj and then adding across the three columns at 
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the ith row, as below: 

Since tij is the ith number in the m-tuple (3j, the ith number in the m-tuple 
L:=1 Xj{3j is L:=1 Xjtij. That is, if we let y be the m-tuple T(x), then 

3 

Yi = L tijXj 
j=1 

for i = 1, ... , m, 

and this set of m scalar equations is equivalent to the one-vector equation 
y = T(x). 

We can now replace three by n in the above discussion without changing 
anything except the diagram, and thus obtain the following specialization of 
Theorem 1.2. 

Theorelll 1.3. Every linear mapping T from IR n to IRm determines the 
m X n matrix t = {tij} having the skeleton of T as its columns, and the 
expression of the equation y = T(x) in linear combination form is equivalent 
to the m scalar equations 

n 

Yi = L tijXj 
j=1 

for '/, = 1, ... , m. 

Conversely, each m X n matrix t determines the linear combination mapping 
having the columns of t as its skeleton, and the mapping t 1---+ T is therefore 
a bijection from the set of all m X n matrices to the set of all linear maps 
from IR n to IRm. 

A linear functional F on IR n is a linear mapping from IR n to IR 1, so it must 
be expressed by a 1 X n matrix. That is, the n-tuple b in IR n which is the skeleton 
of F is viewed as a matrix of one row and n columns. 

As a final example of linear maps, we look at an important class of special 
linear functionals defined on any function space, the so-called coordinate func­
tionals. If V = IRI and i E I, then the ith coordinate functional 1ri is simply 
evaluation at i, so that 1ri(f) = f(i). These functionals are obviously linear. In 
fact, the vector operations on functions were defined to make them linear; since 
sf + tg is defined to be that function whose value at i is sf(i) + tg(i) for all i, 
we see that sf + tg is by definition that function such that 1ri(sf + tg) = 
S1ri(f) + t1ri(g) for all i! 

If V is IR n , then 1rj is the mapping x = -<Xl> ... , x n >- 1---+ Xj. In this case 
we know from the theorem that 1rj must be of the form 1rj(x) = L1 biXi for 
some n-tuple b. What is b? 
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The general form of the linearity property, TeE Xiai) = L xiT(ai), shows 
that T and T- l both carry subspaces into subspaces. 

Theorem 1.4. If T: V ~ W is linear, then the T-image of the linear span 
of any subset A C V is the linear span of the T-image of A: T[L(A)] = 
L(T[AJ). In particular, if A is a subspace, then so is T[A]. Furthermore, if Y 
is a subspace of W, then T-l[y] is a subspace of V. 

Proof. According to the formula T(L Xiai) = L xiT(ai), a vector in W is 
the T-image of a linear combination on A if and only if it is a linear combination 
on T[A]. That is, T[L(A)] = L(T[AJ). If A is a subspace, then A = L(A) and 
T[A] = L(T[AJ), a subspace of W. Finally, if Y is a subspace of Wand {ail C 
T-lfY], then T(L Xiai) = L xiT(ai) E L(Y) = Y. Thus L Xiai E T-l[y] 
and T-l[y] is its own linear span. 0 

The subspace T-l(O) = {a E V: T(a) = O} is called the null space, or 
kernel, of T, and is designated N(T) or meT). The range of T is the subspace 
T[V] of W. It is designated R(T) or (!l(T). 

Lemma 1.1. A linear mapping T is injective if and only if its null space 
is {O}. 

Proof. If T is injective, and if a rf 0, then T(a) rf T(O) = 0 and the null space 
accordingly contains only O. On the other hand, if N(T) = {O}, then whenever 
a rf {3, we have a - (3 rf 0, T(a) - T({3) = T(a - (3) rf 0, and T(a) rf T({3); 
this shows that T is injective. 0 

A linear map T: V ~ W which is bijective is called an isomorphism. 
Two vector spaces V and Ware isomorphic if and only if there exists an iso­
morphism between them. 

For example, the map -< Cl, ... , Cn >- ~ Lo- l Ci+1Xi is an isomorphism of 
IR n with the vector space of all polynomials of degree < n. 

Isomorphic spaces "have the same form", and are identical as abstract 
vector spaces. That is, they cannot be distinguished from each other solely on 
the basis of vector properties which they do or do not have. 

When a linear transformation is from V to itselfJ special things can happen. 
One possibility is that T can map a vector a essentially to itself, T(a) = Xa 
for some x in IR. In this case a is called an eigenvector (proper vector, character­
istic vector), and x is the corresponding eigenvalue. 

EXERCISES 

1.46 In the situation of Exerci~e 1.45, show that T is an isomorphism if <p is bijective 
by showing that 

a) <p injective ==} T surjective, 
b) <p surjective ==} T injective. 
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1.47 FindthelinearfunctionallonIR2 suchthatl(-<I,I>-) = Oandl(-<1,2>-) = 1. 
That is, find b = -< bI, b2>- in 1R2 such that l is the linear combination map 

1.48 Dothesameforl(-<2,1>-) = -3 and l(-<1,2>-) = 4. 

1.49 Find the linear T: 1R2 ~ IRR such that T(-< 1,1 >-) = t2 and T(-< 1,2>-) = t3 • 

That is, find the functions h (t) and h(t) such that T is the linear combination map 
x ~ xI/I + x2h. 

1.50 LetTbethelinearmapfromIR2toIR3suchthatT(~1) = -<2, -1, 1>-, T(~2) = 
-< 1, 0, 3>-. Write down the matrix of T in standard rectangular form. Determine 
whether or not ~I is in the range of T. 

1.51 Let T be the linear map from 1R3 to 1R3 whose matrix is 

[1 2 3] 
2 ° -1 . 
3 -1 1 

Find T(x) when x = -< 1,1,0>-; do the same for x = -< 3, -2, 1>-. 

1.52 Let M be the linear span of -< 1, -1, 0>- and -< 0, 1, 1>-. Find the subspace 
T[M] by finding two vectors spanning it, where T is as in the above exercise. 

1.53 Let T be the map -< x, y >- ~ -< x + 2y, y>- from 1R2 to itself. Show that T is a 
linear combination mapping, and write down its matrix in standard form. 

1.54 Do the same for T: -< x, y, z >- ~ -< x - z, x + z, y>- from 1R3 to itself. 

1.55 Find a linear transformation T from 1R3 to itself whose range space is the span 
of -< 1, -1,0>- and -< -1,0,2>-. 

1.56 Find two linear functionals on 1R4 the intersection of whose null spaces is the 
linear span of -<1, 1, 1, 1>- and -<1,0, -1,0>-. You now have in hand a linear 
transformation whose null space is the above span. What is it? 

1.57 Let V = e([a, b]) be the space of continuous real-valued functions on [a, b], 
also designated eO([a, b]), and let lV = e 1 ([a, b]) be those having continuous first 
derivatives. Let D: lV ~ V be differentiation (Df = f'), and define T on V by 
T(f) = F, where F(x) = 1: f(t) dt. By stating appropriate theorems of the calculus, 
show that D and T are linear, T maps into lV, and D is a left inverse of T (D 0 Tis 
the identity on V). 

1.58 In the above exercise, identify the range of T and the null space of D. We 
know that D is surjective and that T is injective. Why? 

] .59 Let V be the linear span of the functions sin x and cos x. Then the operation 
of differentiation D is a linear transformation from V to V. Prove that D is an isomor­
phism from V to V. Show that D2 = -/ on V. 

1.60 a) As the reader would guess, e 3(1R) is the set of real-valued functions on IR 
having continuous derivatives up to and including the third. Show that f ~ fIll is a 
surjective linear map T from e 3(1R) to e(IR). 

b) For any fixed a in IR show that f ~ -<f(a), !,(a), j"(a) >- is an isomorphism 
from the null space N(T) to 1R3. [Hint: Apply Taylor's formula with remainder.] 
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1.61 .\n integral analogue of the matrix equations Yi = Li tiixi, i = 1, ... , tn, is 
the equation 

g(s) = 101 K(s, t)f(t) dt, s E [0, I]. 

Assuming that [(s, t) is defined on the square [0, I] X [0, I] and is continuous as a 
function of t for each s, check that f ----> g is a linear mapping from e([O, 1]) to 1R1O.1l. 

1.62 For a finite set A = {ai}, Theorem l.1 is a corollary of Theorem 104. Why? 

1.63 Show that the inverse of an isomorphism is linear (and hence is an isomorphism). 

1.64 Find the eigenvectors and eigenvalues of T: 1R2 ----> 1R2 if the matrix of T is 

[ 1 -1]. 
-2 ° 

Since every scalar multiple xa of an eigenvector a is clearly also an eigenvector, it will 
suffice to find one vector in cach "eigendirection". This is a problem in elementary 
algebra. 

1.65 Find the eigenvectors and eigenvalues of the transformations T whose matrices 
are 

[-1 -1], 
-1 -1 

[ 1 -1] 
-2 2' 

1.66 The five transformations in the above two exercises exhibit four different kinds 
of behavior according to the number of distinct eigendirections they have. What are 
the possi bili ties? 

1.67 Let V be the vector space of polynomials of degree ::::; 3 and define T: V ----> V 
by f ----> tj'(t). Find the eigenvectors and eigenvalues of T. 

2. VECTOR SPACES AND GEOMETRY 

The familiar coordinate systems of analytic geometry allow us to consider 
geometric entities such as lines and planes in vector settings, and these geometric 
notions give us valuable intuitions about vector spaces. Before looking at the 
vector forms of these geometric ideas, we shall briefly review the construction of 
the coordinate correspondence for three-dimensional Euclidean space. As usual, 
the confident reader can skip it. 

We start with the line. A coordinate correspondence between a line Land 
the real number system IR is determined by choosing arbitrarily on L a zero 
point 0 and a unit point Q distinct from O. Then to each point X on L is assigned 
the number x such that JxJ is the distance from 0 to X, measured in terms of 
the segment OQ as unit, and x is positive or negative according as X and Q are 
on the same side of 0 or on opposite sides. The mapping X ~ x is the coordinate 
correspondence. Now consider three-dimensional Euclidean space 1E3. We want 
to set up a coordinate correspondence between 1E3 and the Cartesian vector 
space 1R3. We first choose arbitrarily a zero point 0 and three unit points 
Ql, Q2, and Q3 in such a way that the four points do not lie in a plane. Each of 
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the unit points Qi determines a line Li through 0 and a coordinate correspon­
dence on this line, as defined above. The three lines L l , L 2, and L3 are called 
the coordinate axes. Consider now any point X in 1E3. The plane through X 
parallel to L2 and L3 intersects Ll at a point X b and therefore determines a 
number Xl, the coordinate of Xl on L l . In a similar way, X determines points 
X 2 on L2 and X 3 on L3 which have co­
ordinates X2 and X3, respectively. Alto­
gether X determines a triple 

in ~3, and we have thus defined a mapping 
(): X ~ x from 1E3 to ~3 (see Fig. 1.4). 
We call () the coordinate correspondence 
defined by the axis system. The conven­
tion implicit in our notation above is that 
()(Y) is y, ()(A) is a, etc. Note that the 
unit point Ql on Ll has the coordinate 
triple 01 = -< 1,0,0>, and similarly, that 

and 

()(Q3) = 03 = -< 0, 0, 1> . 

L~3X3 
/ ----

/ ---
/ --JI 

~_ Q2 // \ 

\ ----- // \ 
\ --..L \ 
\ Xl \ 
\ \ \ 

\ I 
\ \ I 
\ \ I 
\ \ \ 
\ \ I 
\ \ I 
\ I I 
I Q 1 ________ \x, 
\ 1\ ~ 

\ / L1 
X.,---_ I // 

- ---1.-

Fig. 1.4 

There are certain basic facts about the coordinate correspondence that have 
to be proved as theorems of geometry before the correspondence can be used to 
treat geometric questions algebraically. These geometric theorems are quite 
tricky, and are almost impossible to discuss adequately on the basis of the usual 
secondary sch:)ol treatment of geometry. We shall therefore simply assume 
them. They are: 

1) () is a bijection from 1E3 to ~3. 

2) Two line segments AB and XY are equal in length and parallel, and the 
direction from A to B is the same as that from X to Y if and only if b - a = 
y - X (in the vector space ~3). This relationship between line segments is 
important enough to formalize. A directed line segment is a geometric line seg­
ment, together with a choice of one of the two directions along it. If we interpret 
AB as the directed line segment from A to B, and if we define the directed line 
segments AB and XY to be equivalent (and write AB ~ XV) if they are equal 
in length, parallel, and similarly directed, then (2) can be restated: 

AB ~ XY <=} b - a = y - x. 

3) If X ~ 0, then Y is on the line through 0 and X in 1E3 if and only if 
y = tx for some t in R Moreover, this t is the coordinate of Y with respect to X 
as unit point on the line through 0 and X. 
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82 =Xr+X~ 
IOXI2=r2=82+x~ 

1.2 

y 

Fig. 1.5 

4) If the axis system in 1E3 is Cartesian, that is, if the axes are mutually 
perpendicular and a common unit of distance is used, then the length 10XI of 
the segment OX is given by the so-called Euclidean norm on 1R3 , 10XI = 
CE~ Xi 2)1/2. This follows directly from the Pythagorean theorem. Then this 
formula and a second application of the Pythagorean theorem to the triangle 
OXY imply that the segments OX and OY are perpendicular if and only if the 
scalar product (x, y) = L~=l XiYi has the value 0 (see Fig. 1.5). 

In applying this result, it is useful to note that the scalar product (x, y) is 
linear as a function of either vector variable when the other is held fixed. Thus 

3 3 3 

(cx + dy, z) = L: (CXi + dYi)zi = C L: XiZi + d L: YiZi = c(x, z) + dey, z). 
1 1 1 

Exactly the same theorems hold for the coordinate correspondence between 
the Euclidean plane 1E2 and the Cartesian 2-space 1R2, except that now, of course, 
(x, y) = L~ XiYi = XIYl + X2Y2· 

We can easily obtain the equations for lines and 
planes in 1E3 from these basic theorems. First, we see 
from (2) and (3) that if fixed points A and B are given, X 
with A F- 0, then the line through B parallel to the 
segment OA contains the point X if and only if there 0 
exists a scalar t such that x - b = ta (see Fig. 1.6). 
Therefore, the equation of this line is 

x = ta+ h. Fig. 1.6 

This vector equation is equivalent to the three numerical equations Xi = 
ait + bi, i = 1, 2, 3. These are customarily called the parametric equations of the 
line, since they present the coordinate triple x of the varying point X on the line 
as functions of the "parameter" t. 
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Next, we know that the plane through B perpendicular to the direction of 
the segment OA contains the point X if and only if BX 1. OA, and it therefore 
follows from (2) and (4) that the plane contains X if and only if (x - b, a) = 0 
(see Fig. 1.7). But (x - b, a) = (x, a) - (b, a) by the linearity of the scalar 
product in its first variable, and if we set l = (b, a), we see that the equation of 
the plane is 

(x, a) = l or 

That is, a point X is on the plane through B perpendicular to the direction of 
OA if and only if this equation holds for its coordinate triple x. Conversely, 
if a ¢ 0, then we can retrace the steps taken above to show that the set of points 
X in 1E3 whose coordinate triples x satisfy (x, a) = l is a plane. 

A 

Fig. 1.7 

The fact that 1R3 has the natural scalar product (x, y) is of course extremely 
important, both algebraically and geometrically. However, most vector spaces 
do not have natural scalar products, and we shall deliberately neglect scalar 
products in our early vector theory (but shall return to them in Chapter 5). 
This leads us to seek a different interpretation of the equation L~ aiXi = l. 
We saw in Section 1 that x 1---+ L~ aiXi is the most general linear functional f on 
1R3. Therefore, given any plane 111 in 1E3, there is a nonzero linear functional f 
on 1R3 and a number l such that the equation of 111 is f(x) = l. And conversely, 
given any nonzero linear functional f: IRa ~ IR and any l E IR, the locus of 
I(x) = l is a plane M in 1E3. The reader will remember that we obtain the 
coefficient triple a from f by ai = f(~i), since then f(x) = f(LI Xi~i) = 

3 i a Ll x;J( ~ ) = Ll Xiai· 

Finally, we seek the vector form of the notion of parallel translation. In 
plane geometry when we are considering two congruent figures that are parallel 
and similarly oriented, we often think of obtaining one from the other by "sliding 
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the plane along itself" in such a way that all lines remain parallel to their original 
positions. This description of a parallel translation of the plane can be more 
elegantly stated as the condition that every directed line segment slides to an 
equivalent one. If X slides to Y and 0 slides to B, then OX slides to BY, so 
that OX ~ BY and x = y - b by (2). Therefore, the coordinate form of such 
a parallel sliding is the mapping x ~ y = x + b. 

Conversely, for any b in ~2 the plane mapping defined by x ~ y = x + b 
is easily seen to be a parallel translation. These considerations hold equally well 
for parallel translations of the Euclidean space 1E3 • 

It is geometrically clear that under a parallel translation planes map to 
parallel planes and lines map to parallel lines, and now we can expect an easy 
algebraic proof. Consider, for example, the plane 111 with equation f(x) = l; 
let us ask what happens to 111 under the translation x ~ y = x + b. Since 
x = y - b, we see that a point x is on 111 if and only if its translate y satisfies 
the equation f(y - b) = lor, since f is linear, the equation f(y) = l', where 
l' = l + f(b). But this is the equation of a plane N. Thus the translate of M 
is the plane N. 

It is natural to transfer all this geometric terminology from sets in 1E3 
to the corresponding sets in ~3 and therefore to speak of the set of ordered 
triples x satisfying f(x) = l as a set of points in ~3 forming a plane in ~3, and 
to call the mapping x ~ x + b the (parallel) translation of ~3 through b, etc. 
l\Ioreover, since ~3 is a vector space, we would expect these geometric ideas to 
interplay with vector notions. For instance, translation through b is simply the 
operation of adding the constant vector b: x ~ x + b. Thus if 111 is a plane, then 
the plane N obtained by translating 111 through b is just the vector set sum 
111 + b. If the equation of 111 is f(x) = l, then the plane 111 goes through 0 if 
and only if l = 0, in which case 111 is a vector subspace of ~3 (the null space of f). 
It is easy to see that any plane 111 is a translate of a plane through O. Similarly, 
the line {ta + b : t E ~} is the translate through b of the line {ta : t E ~}, and 
this second line is a subspace, the linear span of the one vector a. Thus planes 
and lines in ~3 are translates of subspaces. 

These notions all carryover to an arbitrary real vector space in a perfectly 
satisfactory way and with additional dimensional variety. A plane in ~3 
through 0 is a vector space which is two-dimensional in a strictly algebraic sense 
which we shall discuss in the next chapter, and a line is similarly one-dimensional. 
In ~3 there are no proper subspaces other than planes and lines through 0, 
but in a vector space V with dimension n > 3 proper subspaces occur with all 
dimensions from 1 to n - 1. We shall therefore use the term "plane" loosely to 
refer to any translate of a subspace, whatever its dimension. More properly, 
translates of vector subspaces are called affine subspaces. 

We shall see that if V is a finite-dimensional space with dimension n, then 
the null space of a nonzero linear functionalfis always (n - I)-dimensional, and 
therefore it cannot be a Euclidean-like two-dimensional plane except when 
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n = 3. We use the term hyperplane for such a null space or one of its translates. 
Thus, in general, a hyperplane is a set with the equation f(x) = l, where f is 
a nonzero linear functional. It is a proper affine subspace (plane) which is maxi­
mal in the sense that the only affine subspace properly including it is the whole 
of V. In ~3 hyperplanes are ordinary geometric planes, and in ~2 hyperplanes 
are lines! 

EXERCISES 

2.1 Assuming the theorem AB ~ XY <=} b -'- a = y - x, show that OC is the sum 
of 01. and OB, as defined in the preliminary discussion of Section 1, if and only if 
c = b + a. Considering also our assumed geometric theorem (3), show that the 
mapping x 1--+ OX from ~3 to the vector space of geometric vectors is linear and 
hence an isomorphism. 

2.2 Let L be the line in the Cartesian plane ~2 with equation X2 = 3Xl. Express L 
in parametric form as x = ta for a suitable ordered pair a. 

2.3 Let V be any vector space, and let ex and {j be distinct vectors. Show that the 
line through ex and {j has the parametric equation 

~ = t{j + (1 - t)ex, tE ~. 

Show also that the segment from ex to {j is the image of [0, 1] in the above mapping. 

2.4 According to the Pythagorean theorem, a triangle with side lengths a, b, and e 
has a right angle at the vertex "opposite e" if and only if e2 = a2 + b2• 

a~ 
b 

Prove from this that in a Cartesian coordinate system in 1E3 the length IOXI of a 
segment OX is given by 

3 

IOXI 2 = :E X~, 
1 

where x = -< XI, X2, X3 >- is the coordinate triple of the point X. Next use our geometric 
theorem (2) to conclude that 

OX..L OY if and only if (x, y) = 0, where 

(Use the bilinearity of (x, y) to expand IX - YI2.) 

3 

(x, y) = :E XiYi. 
1 

2.5 More generally, the law of cosine says that in any triangle labeled as indicated, 
e2 = a2 + b2 - 2ab cos (J. 

B 
b 
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Apply this law to the diagram 

to prove that 
(x, y) = 21xllyl cos 8, 

where (x, y) is the scalar product I:~ XiYi, Ixl = (x, x)I/2 = 10XI, etc. 

2.6 Given a nonzero linear functional f: 1R3 --> IR, and given k E IR, show that the 
set of points X in P such that f(x) = k is a plane. [Hint: Find a h in 1R3 such that 
f(h) = k, and throw the equation f(x) = k into the form (x - h, a) = 0, etc.] 

2.7 Show that for any b in 1R3 the mapping X f-+ Y from P to itself defined by 
y = x + b is a parallel translation. That is, show that if X f-+ }' and Z f-+ W, then 
XZ"'" YW. 

2.8 Let M be the set in 1R3 with equation 3XI - X2 + X3 = 2. Find triplets a and h 
such that M is the plane through b perpendicular to the direction of a. What is the 
equation of the plane P = J[ + -< 1,2, 1>- '? 

2.9 Continuing the above exercise, what is the condition on the triplet h in order for 
N = M + h to pass through the origin? What is the equation of N? 

2.10 Show that if the plane Min 1R3 has the equation f(x) = l, then J[ is a translate 
of the null space N of the linear functional f. Show that any two translates M and P 
of N are either identical or disjoint. What is the condition on the ordered triple h 
in order that M + h = M? 

2.11 Generalize the above exercise to hyperplanes in IRn. 
2.12 Let N be the subspace (plane through the origin) in 1R3 with equation f(x) = O. 
Let M and P be any two planes obtained from N by parallel translation. Show that 
Q = ).11 + P is a third such plane. If M and P have the equations f(x) = it and 
f(x) = l2, find the equation for Q. 
2.13 If M is the plane in 1R3 with equation f(x) = l, and if r is any nonzero number, 
show that the set product rM is a plane parallel to M. 

2.14 In view of the above two exercises, discuss how we might consider the set of all 
parallel translates of the plane N with equation f(x) = 0 as forming a new vector 
space. 

2.15 Let L be the subspace (line through the origin) in 1R3 with parametric equation 
x = tao Discuss the set of all parallel translates of L in the spirit of the above three 
exercises. 

2.16 The best object to take as "being" the geometric vector AS is the equivalence 
class of all directed line segments XY such that XY ,.." AB. Assuming whatever you 
need from properties (1) through (4), show that this is an equivalence relation on the 
set of all directed line segments (Section 0.12). 

2.17 Assuming that the geometric vector AS is defined as in the above exercise, show 
that, strictly speaking, it is actually the mapping of the plane (or space) into itself that 
we have called the parallel translation through AB. Show also that AS + cD is the 
composition of the two translations. 
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3. PRODUCT SPACES AND HOM(V, W) 

Product spaces. If W is a vector space and A is an arbitrary set, then the set 
V = W A of all W-valued functions on A is a vector space in "exactly the same 
way that ~A is. Addition is the natural addition of functions, (f + g) (a) = 
f(a) + g(a), and, similarly, (xf)(a) = x(j(a) for every function f and scalar x. 
Laws Al through S4 follow just as before and for exactly the same reasons. For 
variety, let us check the associative law for addition. The equation! + (g + h) = 
(f + g) + h means that (j + (g + h)(a) = ((f + g) + h) (a) for all a E A. 
But 

(j + (g + h) (a) = f(a) + (g + h)(a) 

= f(a) + (g(a) + h(a) = (j(a) + g(a) + h(a) 

= (f + g)(a) + h(a) = ((f + g) + h) (a), 

where the middle equality in this chain of five holds by the associative law for W 
and the other four are applications of the definition of addition. Thus the 
associative law for addition holds in W A because it holds in W, and the other 
laws follow in exactly the same way. As before, we let 7ri be evaluation at i, 
so that 7ri(f) = f(i). Now, however, 7ri is vector valued rather than scalar valued, 
because it is a mapping from V to W, and we call it the ith coordinate projection 
rather than the ith coordinate functional. Again these maps are all linear. 
In fact, as before, the natural vector operations on W A are uniquely defined by 
the requirement that the projections 7ri all be linear. We call the value fU) = 
7r j(f) the jth coordinate of the vector f. Here the analogue of Cartesian n-space 
is the set wn of all n-tuples a = -< al, ... , a n >- of vectors in W; it is also 
designated W n • Clearly, aj is the jth coordinate of the n-tuple a. 

There is no reason why we must use the same space W at each index, as we 
did above. In fact, if W b ... , W n are any n vector spaces, then the set of all 
n-tuples a = -<ab ... , an >- such that aj E Wj for j = 1, ... , n is a vector 
space under the same definitions of the operations and for the same reasons. 
That is, the Cartesian product W = W 1 X W 2 X ... X W n is also a vector 
space of vector-valued functions. Such finite products will be very important 
to us. Of course, ~n is the product IIi Wi with each Wi = ~; but ~n can also 
be considered ~m X ~n-m, or more generally, IIf Wi, where Wi = ~mi and 
L:f mi = n. However, the most important use of finite product spaces arises 
from the fact that the study of certain phenomena on a vector space V may 
lead in a natural way to a collection {ViH of subspaces of V such that V is 
isomorphic to the product IIi Vi. Then the extra structure that V acquires 
when we regard it as the product space IIi Vi is used to study the phenomena 
in question. This is the theory of direct sums, and we shall investigate it in 
Section 5. 

Later in the course we shall need to consider a general Cartesian product of 
vector spaces. We remind the reader that if {Wi: i E J} is any indexed collection 
of vector spaces, then the Cartesian product IIiEI Wi of these vector spaces is 
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defined as the set of all functions f with domain I such that f(i) E Wi for all 
i E I (see Section 0.8). 

The following is a simple concrete example to keep in mind. Let S be the 
ordinary unit sphere in 1R3 , S = {x: L~ x~ = I}, and for each point x on S 
let W" be the subspace of 1R3 tangent to S at x. By this we mean the subspace 
(plane through 0) parallel to the tangent plane to S at x, so that the translate 
W" + x is the tangent plane (see Fig. 1.8). A function f in the product space 
W = II"es W" is a function which assigns to each point x on S a vector in W", 
that is, a vector parallel to the tangent plane to Sat x. Such a function is called 
a vector field on S. Thus the product set W is the set of all vector fields on S, 
and W itself is a vector space, as the next theorem states. 

Fig. 1.8 

Of course, the jth coordinate projection on W = IIiES Wi is evaluation 
at j, 7rj(f) = f(j), and the natural vector operations on Ware uniquely defined 
by the requirement that the coordinate projections all be linear. Thus f + g 
must be that element of W whose value at j, 7rj(f + g), is 7rj(f) + 7rj(g) = 
f(j) + g(j) for all j E I, and similarly for mUltiplication by scalars. 

Theorem. 3.1. The Cartesian product of a collection of vector spaces can 
be made into a vector space in exactly one way so that the coordinate pro­
jections are all linear. 

Proof. With the vector operations determined uniquely as above, the proofs of 
Al through S4 that we sampled earlier hold verbatim. They did not require that 
the functions being added have all their values in the same space, but only that 
the values at a given domain element i all lie in the same space. 0 

Hom.(V, W). Linear transformations have the simple but important properties 
that the sum of two linear transformations is linear and the composition of two 
linear transformations is linear. These imprecise statements are in essence the 
theme of this section, although they need bolstering by conditions on domains 
and codomains. Their proofs are simple formal algebraic arguments, but the 
objects being discussed will increase in conceptual complexity. 
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If W is a vector space and A is any set, we know that the space W A of all 
mappings f: A -+ W is a vector space of functions (now vector valued) in the 
same way that IRA is. If A is itself a vector space V, we naturally single out for 
special study the subset of WV consisting of all linear mappings. We designate 
this subset Hom(V, W). The fonowing elementary theorems summarize its 
basic algebraic properties. 

TheoreIn 3.2. Hom(V, W) is a vector subspace of WV. 

Pl·oof. The theorem is an easy formality. If Sand T are in Hom(V, W), then 

(S + T)(xa. + y(3) = S(xa. + y,8) + T(xa. + y,8) 

= xS(a.) + yS(,8) + xT(a.) + yT(,8) = xeS + T)(a.) + yeS + T)(,8), 

so S + T is linear and Hom(V, W) is closed under addition. The reader should 
be sure he knows the justification for each step in the above continued equality. 
The closure of Hom(V, W) under multiplication by scalars fonows similarly, 
and since Hom(V, W) contains the zero transformation, and so is nonempty, 
it is a subspace. 0 

TheoreIn 3.3. The composition of linear maps is linear: if T E Hom(V, W) 
and S E Hom(W, X), then SoT E Hom(V, X). Moreover, composition 
is distributive over addition, under the obvious hypotheses on domains and 
codomains: 

(Sl + S2) 0 T = SloT + S2 0 T and So (Tl + T 2) = So Tl + S 0 T2. 

Finally, composition commutes with scalar multiplication: 

C(S 0 T) = (cS) 0 T = S 0 (cT). 

Proof. We have 

So T(xa. + y,8) = S(T(xa. + y(3)) = S(xT(a.) + yT(,8») 

= xS(T(a.») + yS(T(,8») = xeS 0 T)(a.) + yeS 0 T)«(3), 

so SoT is linear. The two distributive laws will be left to the reader. 0 

Corollary. If T E Hom(V, W) is fixed, then composition on the right by T 
is a linear transformation from the vector space Hom(W, X) to the vector 
space Hom(V, X). It is an isomorphism if T is an isomorphism. 

P1'Oof. The algebraic properties of composition stated in the theorem can be 
combined as follows: 

(ClSl + C2S2) 0 T = Cl(Sl 0 T) + C2(S2 0 T), 

So (clTl + C2T2) = Cl(S 0 T 1) + C2(S 0 T2)' 

The first equation says exactly that composition on the right by a fixed T is a 
linear transformation. (Write SoT as 3(S) if the equations still don't look 
right.) If T is an isomorphism, then composition by T- l "undoes" composition 
by T, and so is its inverse. 0 
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The second equation implies a similar corollary about composition on the 
left by a fixed S. 

TheoreIn 3.4. If W is a product vector space, W = IIi Wi, then a mapping 
T from a vector space V to W is linear if and only if 7r i 0 T is linear for 
each coordinate projection 7ri. 

Proof. If T is linear, then 7ri 0 T is linear by the above theorem. Now suppose, 
conversely, that all the maps 7ri 0 T are linear. Then 

7ri(T(xa + y(3») = 7ri 0 T(xa + y(3) = X(7ri 0 T)(a) + Y(7ri 0 T)({3) 

= x7ri(T(a») + Y7ri(T({3») = 7ri(xT(a) + yT({3»). 

But if 7ri(f) = 7ri(g) for all i, then f = g. Therefore, T(xa + y(3) = xT(a) + 
yT({3), and T is linear. 0 

If T is a linear mapping from ~n to W whose skeleton is {{3j} n, then 7ri 0 T / 
has skeleton {7ri({3j)}f=l. If W is ~m, then 7ri is the ith coordinate functional / 
y 1---+ Yi, and (3j is the jth column in the matrix t = {tij} of T. Thus 7ri({3j) = tij, 
and 7ri 0 T is the linear functional whose skeleton is the ith row of the matrix of T. 

In the discussion centering around Theorem 1.3, we replaced the vector 
equation y = T(x) by the equivalent set of m scalar equations Yi = L:f=l tijXj, 
which we obtained by reading off the ith coordinate in the vector equation. But 
in "reading off" the ith coordinate we were applying the coordinate mapping 
7ri, or in more algebraic terms, we were replacing the linear map T by the set of 
linear maps {7ri 0 T}, which is equivalent to it by the above theorem. 

Now consider in particular the space Hom(V, V), which we may as well 
designate 'Hom(V)'. In addition to being a vector space, it is also closed under 
composition, which we consider a multiplication operation. Since composition 
of functions is always associative (see Section 0.9), we thus have for multiplica­
tion the laws 

A 0 (B 0 C) = (A 0 B) 0 C, 

A 0 (B + C) = (A 0 B) + (A 0 C), 

(A + B) 0 C = (A 0 C) + (B 0 C), 

k(A 0 B) = (kA) 0 B = A 0 (kB). 

Any vector space which has in addition to the vector operations an operation 
of multiplication related to the vector operations in the above ways is called 
an algebra. Thus, 

TheoreIn 3.5. Hom(V) is an algebra. 

We noticed earlier that certain real-valued function spaces are also algebras. 
Examples were ~A and e([O, 1]). In these cases multiplication is commutative, 
but in the case of Hom(V) multiplication is not commutative unless V is a 
trivial space (V = {O}) or V is isomorphic to~. We shall check this later when 
we examine the finite-dimensional theory in greater detail. 
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Product projections and injections. In addition to the coordinate projections, 
there is a second class of simple linear mappings that is of basic importance in 
the handling of a Cartesian product space W = IIkEK Wk. These are, for each 
j, the mapping OJ taking a vector a E Wj to the function in the product space 
having the value a at the index j and ° elsewhere. For example, O2 for WI X 
W 2 X W3 is the mapping a ~ -<0, a, 0> from W 2 to W. Or if we view ~3 as 
~ X ~2, then O2 is the mapping -< X2, X3 > ~ -< 0, -< X2, X3> > = -< 0, X2, X3 > . 
We call OJ the injection of Wj into IIk Wk. The linearity of OJ is probably obvious. 
The mappings 7r j and OJ are clearly connected, and the following pl'Ojection­
injection identities state their exact relationship. If I j is the identity trans­
formation on Wj, then 

and if i ~ j. 

If K is finite and I is the identity on the product space W, then 

L Ok 0 11'k = I. 
kEK 

In the case IIt=l Wi, we have 02 0 11'2(-<aI, a2, a3» = -<0, a2, 0>, and 
the identity simply says that -< aI, 0, ° > + -< 0, a2, ° > + -< 0, 0, a3> = 
-< aI, a2, a3> for all aI, a2, a3' These identities will probably be clear to the 
reader, and we leave the formal proofs as an exercise. 

The coordinate projections 11'j are useful in the study of any product space, 
but because of the limitation in the above identity, the injections OJ are of 
interest principally in the case of finite products. Together they enable us to 
decompose and reassemble linear maps whose domains or codomains are finite 
product spaces. 

For a simple example, consider the T in Hom(~3, ~2) whose matrix is 

[i -1 
1 

Then 11'1 0 T is the linear functional whose skeleton -< 2, -1, 1> is the first row 
in the matrix of T, and we know that we can visualize its expression in equation 
form, Yl = 2Xl - X2 + X3, as being obtained from the vector equation y = 
T(x) by "reading off the first row". Thus we "decompose" T into the two linear 
functionals li = 11'i 0 T. Then, speaking loosely, we have the reassembly 
T = -< h, l2> j more exactly, T(x) = -< 2Xl - X2 + X3, Xl + X2 + 4X3> = 
-< II (x), l2(X) > for all x. However, we want to present this reassembly as the 
action of the linear maps 01 and O2 . We have 

which shows that the decomposition and reassembly of T is an expression of the 
identity L Oi 0 11'i = I. In general, if T E Hom(V, W) and W = IIi Wi, then 
Ti = 11'; 0 T is in Hom(V, Wi) for each i, and Ti can be considered "the part 
of T going into W/', since Ti(a) is the ith coordinate of T(a) for each a. Then we 
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can reassemble the T/s to form T again by T = L Oi 0 Ti, for L Oi 0 Ti = 

(L Oi 0 'Tri) 0 T = loT = T. Moreover, any finite collection of T/s on a 
common domain can be put together in this way to make a T. For example, 
we can assemble an m-tuple {Ti} r of linear maps on a common domain V to 
form a single m-tuple-valued linear map T. Given a in V, we simply define 
T(a) as that m-tuple whose ith coordinate is Ti(a) for i = 1, ... , m, and then 
check that T is linear. Thus without having to calculate, we see from this 
assembly principle that T: x ~ -< 2XI - X2 + X3, Xl + X2 + 4X3>- is a linear 
mapping from 1R3 to 1R2, since we have formed T by assembling the two linear 
functionals ll(X) = 2XI - X2 + X3 and l2(X) = Xl + X2 + 4X3 to form a 
single ordcrcd-pair-valued map. This very intuitive proccss has an cqually 
simple formal justification. We rigorize our discussion in the following theorem. 

Theorem 3.6. If Ti is in Hom(V, Wi) for each i in a finite index set I, 
and if W is the product space IIiEI Wi, then there is a uniquely determined 
Tin Hom(V, W) such that Ti = 'Tri 0 T for all i in I. 

Proof. If T exists such that Ti = 'Tri 0 T for each i, then T = Iw 0 T = 

(L Oi 0 'Tri) 0 T = L Oi 0 (7ri 0 T) = L Oi 0 Ti. Thus T is uniquely determincd 
as L Oi 0 Ti. Moreover, this T does have the required property, since thcn 

'Trj 0 T = 'Trj 0 (L Oi 0 T i) = L ('Trj 0 Oi) 0 Ti = I j 0 T j = T j. 0 
i 

In the same way, we can decompose a linear T whose domain is a product 
space V = II;'=1 V j into the maps T j = To OJ with domains Vj, and thcn 
reassemble these maps to form T by the identity T = L;'=l T j 0 'Trj (check it 
mentally!). lVloreover, a finite collection of maps into a common codomain 
space can be put together to form a single map on the product of the domain 
spaces. Thus an n-tuple of maps {Ti} ~ into W defines a single map T into W, 
where the domain of T is the product of the domains of the T/s, by the equation 
T( -< aI, ... , an >-) = L~ Ti(ai) or T = L~ Ti 0 'Tri. For example, if T I: IR ~ 1R2 
is the map t ~ t -< 2, 1 >- = -< 2t, t>-, and T 2 and T 3 are similarly the maps 
t ~ t -< -1, 1>- and t ~ t -< 1,4>-, then T = Lt Ti 0 7ri is the mapping from 
1R3 to 1R2 whose matrix is 

-1 
1 !J. 

Again there is a simple formal argument, and we shall ask the reader to write 
out the proof of the following theorem. 

Theorem 3.7. If T j is in Hom(Vj, W) for each J in a finite index set J, 
and if V = IIjEJ Vi> then there exists a unique T in Hom(V, W) such 
that To OJ = T j for eachJ in J. 

Finally we should mention that Theorem 3.6 holds for all product spaces, 
finite or not, and states a property that characterizes product spaces. We shall 
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investigate this situation in the exercises. The proof of the general case of 
Theorem 3.6 has to get along without the injections OJ; instead, it is an application 
of Theorem 3.4. 

The reader may feel that we are being overly formal in using the projections 
7ri and the injections Oi to give algebraic formulations of processes that are 
easily visualized directly, such as reading off the scalar "components" of a 
vector equation. However, the mappings 

and Xi ~ -< 0, ... , 0, Xi, 0, ... , ° >-

are clearly fundamental devices, and making their relationships explicit now 
will be helpful to us later on when we have to handle their occurrences in more 
complicated situations. 

EXERCISES 

3.1 Show that IRm X IR" is isomorphic to 1R,,+m. 

3.2 Show more generally that if L:~ ni = n, then 11:"=1 IRni is isomorphic to IRn. 

3.3 Show that if {B, C] is a partitioning of .1, then IRA and IRB X IRe are isomorphic. 

3.4 Generalize the above to the case where {.li]~ partitions A. 

3.5 Rhow that a mapping T from a vector space r to a vector space Tr is linear if 
and only if (the graph of) T is a subspace of V X H'. 

3.6 L('t Sand T be nonzero linear maps from V to W. The definition of the map 
S + T is not the same as the set sum of (the graphs of) Sand T as subspaces of V X Tr. 
Show that the set sum of (the graphs of) Sand T cannot be a graph unless S = T. 

3.7 Give the justification for each step of the calculation in Theorem 3.2. 

3.8 Prove the distributive laws given in Theorem 3.3. 

3.9 L('t D: e 1([a, b)) --+ e([a, b)) be differentiation, and l('t S: e([a, b» --+ IR be the 
definit<> int('gral map f ~ J: f. Compute the eomposition SoD. 

3.10 We know that the g('nerallinear functional F on 1R2 is the map x ~ alXI + a2;(2 

determined by the pair a in 1R2, and that the g('neral linear map T in Hom(1R2) is 
determined by a matrix 

t = [tIl t12] . 
t21 t22 

Then F 0 T is another linear functional, and hence is of the form x ~ btXI + b2X2 for 
some b in 1R2. Compute b from t and a. Your computation should ,!lOW you that 
a ~ b is linear. What is its matrix? 

3.ll Given Sand Tin Hom(1R2) whose matrices are 

and [~ ~], 
respectively, find the matrix of SoT in Hom(1R2). 
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3.12 Given Sand T in Hom(~2) whose matrices are 

s = [811 812] 
821 822 

find the matrix of SoT. 

and t = [t11 t12] , 
t21 t22 

1.3 

3.13 With the above answer in mind, what would you guess the matrix of SoT is 
if Sand T are in Hom (~3)? Verify your guess. 

3.14 We know that if T E Hom(V, lV) is an isomorphism, t"'en T-l is an isomorphism 
in HomOT', V). Prove that 

SoT surjective =} S surjective, SoT injective =} T injective, 

and, therefore, that if T E Hom(V, tv), S E Hom(W, V), and 

SoT = Iv, To S = I. , 

then T is an isomorphism. 

3.15 Show that if S-1 and T-l exist, then (So T)-1 exists and equals T-l 0 S-I. 
Give a more careful statement of this result. 

3.16 Show that if Sand T in Hom V commute with each other, then the null space of 
T, N = N(T), and its range R = R(T) are invariant under S (S[N] C Nand S[R] C R). 

3.17 Show that if ex is an eigenvector of T and S commutes with T, then S(ex) is 
an eigenvector of T and has the same eigenvalue. 

3.18 Show that if S commutes with T and T-l exists, then S commutes with T-l. 

3.19 Given that ex is an eigenvector of T with eigenvalue x, show that ex is also an 
eigenvector of T2 = ToT, of Tn, and of T-l (if T is invertible) and that the corre­
sponding eigenvalues are x2, x n, and l/x. 

Given that p(t) is a polynomial in t, define the operator p(T), and under the above 
hypotheses, show that ex is an eigenvector of p(T) with eigenvalue p(x). 

3.20 If Sand T are in Hom V, we say that S doubly commute8 with T (and write 
S cc T) if S commutes with every A in Hom V which commutes with T. Fix T, and 
set {T]" = {S: S cc T}. Show that {T}" is a commutative subalgebra of Hom V. 

3.21 Given T in Hom V and ex in V, let N be the linear span of the "trajectory of ex 
under T" (the set {Tnex: n E l+]). Show that N is invariant under T. 

3.22 A transformation T in Hom V such that Tn = 0 for some n is said to be nilpotent. 
Show that if T is nilpotent, then I - T is invertible. [Hint: The power series 

_1_ = fxn 
1 - x 0 

is a finite sum if x is replaced by T.] 

3.23 Suppose that T is nilpotent, that S commutes with T, and that S-1 exists, where 
S, T E Hom V. Show that (S - T) -1 exists. 

3.24 Let q; be an isomorphism from a vector space V to a vector space W. Show that 
T ~ q; 0 To q;-1 is an algebra isomorphism from the algebra Hom V to the algebra 
Hom TV. 
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3.25 Show the 7r/s and (J/s explicitly for ~3 = ~ X ~ X ~ using the stopped arrow 
notation. Also write out the identity L: (Jj 0 7rj = I in explicit form. 

3.26 Do the same for ~5 = ~2 X ~3. 

3.27 Show that the first two projection-injection identities (7ri 0 (Ji = Ii and 7rj 0 (Ji = 0 
if j ~ i) are simply a restatement of the definition of (Ji. Show that the linearity of (Ji 
follows formally from these identities and Theorem 3.4. 

3.28 Prove the identity L: (Ji 0 7ri = I by applying 7rj to the equation and remembering 
that f = g if 7rj(f) = 7rj(g) for all j (this being just the equation f(j) = g(j) for all j). 

3.29 Prove the general case of Theorem 3.6. We are given an indexed collection of 
linear maps {Ti: i E I} with common domain V and codomains {Wi: i E 1]. The 
first question is how to define T: V ---+ W = IIi Wi. Do this by defining T(~) suitably 
for each ~ E V and then applying Theorem 3.4 to conclude that T is linear. 

3.30 Prove Theorem 3.7. 

3.31 We know without calculation that the map 

from ~3 to ~4 is linear. Why? (Cite relevant theorems from the text.) 

3.32 Write down the matrix for the transformation T in the above example, and then 
write down the mappings To (Ji from ~ to ~4 (for i = 1,2,3) in explicit ordered 
quadruplet form. 

3.33 Let W = II~ Wi be a finite product vector space and set Pi = (Ji 0 7ri, so that 
Pi is in Hom W for all i. Prove from the projection-injection identities that L:~ Pi = I 
(the identity map on W), Pi 0 pj = 0 if i ~ j, and Pi 0 Pi = Pi. Identify the range 
Ri = R(Pi). 

3.34 In the context of the above exercise, define T in Hom W as 

Show that a is an eigenvector of T if and only if a is in one of the subspaces Ri and that 
then the eigenvalue of a is i. 

3.35 In the same situation show that the polynomial 

n 

II (T - jl) = (T - I) 0 ••• 0 (T - nl) 
j=l 

is the zero transformation. 

3.36 Theorems 3.6 and 3.7 can be combined if T E Hom(V, 11'), where both V and lI' 
are product spaces: 

n 

V = II V j and 
1 

State and prove a theorem which says that such a T can be decomposed into a doubly 
indexed family {Tij} when Tij E Hom(Vi, Wj) and conversely that any such doubly 
indexed family can be assembled to form a single T form V to W. 
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3.37 Apply your theorem to the special case where V = IRn and TV = IRm (that is, 
Vi = Wj = IR for all i and j). Now Tij is from IR to IR and hence is simply multipli­
cation by a number tij. Show that the indexed collection {tij} of these numbers is the 
matrix of T. 

3.38 Given an m-tuple of vector spaces {Wi) '{', suppose that there are a vector space 
X and maps Pi in Hom(X, 1ri), i = 1, ... , m, with the following property: 

P. For any m-tuple of linear maps {Ti) from a common domain space V to the 
above spaces Wi (so that Ti E Hom(V, Wi), i = 1, ... , m), there is a unique T 
in Hom(V, X) such that Ti = Pi 0 T, i = 1, ... , m. 

Prove that there is a "canonical" isomorphism from 
m 

TV = II Wi to X 
1 

under which the given maps Pi become the projections 7ri. [Remark: The product space 
TV itself has property P by Theorem 3.6, and this exercise therefore shows that P is an 
abstract characterization of the product space.] 

4. AFFINE SUBSPACES AND QUOTIENT SPACES 

In this section we shall look at the "planes" in a vcctor space V and see what 
happens to them when we translate them, intersect them with each other, 
take their images under linear maps, and so on. Then we shall confine ourselves 
to the set of all planes that are translates of a fixed subspace and discover that 
this set itself is a vector space in the most obvious way. Some of this material 
has been anticipated in Section 2. 

Affine subspaces. If N is a subspace of a vector space V and a is any vector 
of V, then the set N + a = {~+ a : ~ EN} is called either the coset of N 
containing a or the affine subspace of V through a and parallel to N. The set N + a 

is also called the translate of N through a. We saw in Section 2 that affine sub­
spaces are thc general objects that we want to call planes. If N is given and fixed 
in a discussion, we shall use the notation a = N + a (see Section 0.12). 

We begin with a list of some simple properties of affine subspaces. Some of 
these will gencralize observations already made in Section 2, and the proofs of 
some will be left as exercises. 

1) With a fixed subspace N assumed, if 'Y E a, then 'Y = a. For if 'Y = 
a + 7]0, then 'Y + 7] = a + (7]0 + 7]) E a, so 'Y Ca. Also a + 7] = 'Y + (7] - 7]0) E 'Y, 
soaC'Y. Thusa= 'Y. 

2) With N fixed, for any a and {3, either a = 11 or a and 11 are disjoint. 
For if a and 11 are not disjoint, then there exists a 'Y in each, and a = 'Y = 11 
by (1). The reader may find it illuminating to compare these calculations with 
the more general ones of Section 0.12. Here a ~ {3 if and only if a - (3 EN. 

3) Now let a be the collection of all affine subspaces of V; a is thus the set 
of all cosets of all vector subspaces of V. Then the intersection of any sub-
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family of Ci is either empty or itself an affine subspace. In fact, if [Ai} iEI is 
an indexed collection of affine subspaces and Ai is a coset of the vector subspace 
Wi for each i E I, then niEI Ai is either empty or a coset of the vector subspace 
niEI Wi. For if {3 E niEI Ai, then (1) implies that Ai = {3 + Wi for all i, and 
then nAi = (3 + nWi. 

4) If A, BE Ci, then A + BE Ci. That is, the set sum of any two affine 
subspaces is itself an affine ~mbspace. 

5) If A E Ci and T E Hom(V, W), then T[A] is an affine subspace of W. 
In particular, if t E IR, then tA E Ci. 

6) If B is an affine subspace of Wand T E Hom(V, TV), then T- 1[B] is 
either empty or an affine subspace of V. 

7) For a fixed a E V the translation of V through a is the mapping 
Sa: V ~ V defined by Sa(~) = ~ + a for all ~ E V. Translation is not linear; 
for example, Sa(O) = a. It is clear, however, that translation carries affine 
subspaces into affine subspaces. Thus Sa(A) = A + a and Sa({3 + W) = 
(a + (3) + W. 

8) An affine transformation from a vector space V to a vector space W is a 
linear mapping from V to W followed by a translation in W. Thus an affine 
transformation is of the form ~ f-+ T(~) + (3, where T E Hom(V, W) and (3 E W. 
Note that ~ f-+ T(~ + a) is affine, since 

T(~ + a) = T(~) + {3, where (3 = T(a). 

It follows from (5) and (7) that an affine transformation carries affine 
subspaces of V into affine subspaces of W. 

Quotient space. Now fix a subspace N of V, and consider the set W of all 
translates (cosets) of N. We are going to see that W itself is a vector space in 
the most natural way possible. Addition will be set addition, and scalar multipli­
cation will be set multiplication (except in one special case). For example, if N 
is a line through the origin in 1R3, then W consists of all lines in 1R3 parallel to N. 
Weare saying that this set of parallel lines will automatically turn out to be a 
vector space: the set sums of any two of the lines in W turn out to be a line in W! 
And if LEW and t ~ 0, then the set product tL is a line in W. The translates 
of L fiber 1R3 , and the set of fibers is a natural vector space. 

During this discussion it will be helpful temporarily to indicate set sums by 
'+s' and set products by I •• '. With N fixed, it follows from (2) above that two 
eosets are disjoint or identical, so that the set W of all cosets is a fibering of V 
in the general case, just as it was in our example of the parallel lines. From (4) 
or by a direct calculation we know that ex +. II = a + (3. Thus W is closed 
under set addition, and, naturally, we take this to be our operation of addition 
on W. That is, we define + on W by ex + II = ex +. II. Then the natural map 
7r: a f-+ ex from V to W preserves addition, 7r(a + (3) = 7r(a) + 7r({3), since 
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this is just our equation a + {3 = a + ~ above. Similarly, if t EO IR, then the 
set product t . s a is either ta or {O]. Hence if we define ta as the set product when 
t ,e 0 and as 0 = N when t = 0, then 7r also preserves scalar multiplication, 

7r(ta) = t7r(a). 

We thus have two vectorlike operations on the set W of all cosets of N, 
and we naturally expect W to turn out to be a vector space. We could prove this 
by verifying all the laws, but it is more elegant to notice the general setting for 
such a verification proof. 

Theorem 4.1. Let V be a vector space, and let W be a set having two 
vectorlike operations, which we designate in the usual way. Suppose that 
there exists a surjective mapping T: V --+ W which preserves the operations: 
T(sa + t(3) = sT(a) + tT({3). Then W is a vector space. 

Proof. We have to check laws Al through S4. However, one example should 
make it clear to the reader how to proceed. We show that T(O) satisfies A3 and 
hence is the zero vector of lV. Since every (3 EO W is of the form T(a), we have 

T(O) + (3 = T(O) + T(a) = T(O + a) = T(a) = (3, 

which is A3. We shall ask the reader to check more of the laws in the exercises. 0 

Theorem 4.2. The set of cosets of a fixed subspace N of a vector space V 
themselves form a vector space, called the quotient space V IN, under the 
above natural operations, and the projection 7r is a surjective linear map 
from V to V IN. 
Theorem 4.3. If T is in Hom(V, W), and if the null space of T includes the 
subspace lIf C V, then T has a unique factorization through V I lIf. That is, 
there exists a unique transformation S in Hom(V 1M, W) such that T = 
S07r. 

Proof. Since T is zero on lIf, it follows that T is constant on each coset A of lIf, 
so that T[A] contains only one vector. If we define S(A) to be the unique 
vector in T[A], then S(a) = T(a), so So 7r = T by definition. Conversely, if 
T = R 0 7r, then R(a) = R 0 7r(a) = T(a), and R is our above S. The linearity 
of S is practically obvious. Thus 

S(a + m = S(a + (3) = T(a + (3) = T(a) + T({3) = S(a) + S(m, 

and homogeneity follows similarly. This completes the proof. 0 

One more remark is of interest here. If N is invariant under a linear map 
T in Hom V (that is, T[N] eN), then for each a in V, T[a] is a subset of the 
coset T(a), for 

T[a] = T[a + N] = T(a) +. T[N] C T(a) +. N = T(a). 
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There is therefore a map S: V IN -+ V IN defined by the requirement that 
S(a) = T(OI) (or S 0 7r = 7r 0 T), and it is easy to check that S is linear. There­
fore, 

Theorem 4.4. If a subspace N of a vector space V is carried into itself by a 
transformation T in Hom V, then there is a unique transformation S in 
Hom(V IN) such that S 0 7r = 7r 0 T. 

EXERCISES 

4.1 Prove properties (4), (5), and (6) of affine subspaces. 

4.2 Choose an origin 0 in the Euclidean plane P (your sheet of paper), and lct 
1.,1 and L2 be two parallel lines not containing O. Let X and Y be distinct points on 
1.,1 and Z any point on L2. Draw the figure giving the geometric sums 

and 

(parallelogram rule), and state the theorem from plane geometry that says that these 
two sum points are on a third line L3 parallel to L1 and L2. 

4.3 a) Prove the associative law for addition for Theorem 4.1. 
b) Prove also laws A4 and S2. 

4.4 Return now to Exercise 2.1 and reexamine the situation in the light of Theorem 
4.1. Show, finally, how we really know that the geometric vectors form a vector space. 

4.5 Prove that the mapping 8 of Theorem 4.3 is injective if and only if N is the 
null space of T. 

4.6 We know from Exercise 4.5 that if T is a surjective element of Hom(V, W) and 
N is the null space of T, then the 8 of Theorem 4.3 is an isomorphism from V IN to W. 
Its inverse 8-1 assigns a coset of N to each." in Tr. Show that the process of "indefinite 
integration" is an example of such a map 8-1• This is the process of calculating an 
integral and adding an arbitrary constant, as in 

J sin x dx = -cos x + c. 

4.7 Suppose that Nand Mare subspaces of a vector space V and that N C M. 
Hhow that then MIN is a subspace of V I N and that V I M is naturally isomorphic to the 
(Iuotient space (V IN)/(MIN). [Hint: Every coset of N is a subset of some coset of M.l 

4.8 Suppose that Nand M are any subspaces of a vector space V. Prove that 
(M + N)IN is naturally isomorphic to MI(M n N). (Start with the fact that each 
('oset of M n N is included in a unique coset of N.) 

4.9 Prove that the map 8 of Theorem 4.4 is linear. 

·~.IO Given T E Hom V, show that T2 = 0 (T2 = To T) if and only if R(T) C N(T). 

·~.ll Suppose that T E Hom V and the subspace N are such that T is the identity 
nn N and also on VIN. The latter assumption is that the 8 of Theorem 4.4 is the 
idcntityon V IN. Set R = T - I, and use the above exercise to show that R2 = O. 
Hhow that if T = 1+ Rand R2 = 0, then there is a subspace N such that T is the 
identity on N and also on V IN. 
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4.12 We now view the above situation a little differently. Supposing that T is the 
identity on N and on V IN, and setting R = I - T, show that there exists a 
K E Hom(V IN, V) such that R = K 0 7r. Show that for any coset A of N the action 
of T on A can be viewed as translation through K(A). That is, if ~ E .. 4 and 71 = K(A), 
then TW = ~+ 71. 

4.13 Consider the map T: <Xl, X2>- ~ <Xl + 2X2, X2>- in Hom !R2 , and let N be 
the null space of R = T - I. Identify N and show that T is the identity on Nand 
on !R21N. Find the map K of the above exercise. Such a mapping T is called a shear 
transformation of r parallel to N. Draw the unit squar~ and its image under T. 

4.14 If we remember that the linear span 1.,(.1) of a subset .1 of a vector space V can 
be defined as the intersection of all the subspaces of V that include .1, then the fact 
that the intersection of any collection of affine subspaces of a vector space V is either 
an affine subspace or empty suggests that we define the affine span .1J(A) of a nonempty 
subset A C V as the intersection of all affine subspaces including A. Then we know 
from (3) in our list of affine properties that .1J(.I) is an affine subspace, and by its 
definition above that it is the smallest affine subspace including A. We now naturally 
wonder whether M(A) can be directly described in terms of linear combinations. 
Show first that if a E ii, then M(A) = 1.,("1 - a) + a; then prove that M(A) is the 
set of all linear combinations I: Xiai on .1 such that I: Xi = 1. 

4.15 Show that the linear span of a set B is the affine span of B U {OJ. 

4.16 Show that .t/(A + 'Y) = .:\1/(.1) + 'Y for any 'Y in r and that M(xA) = xM(A) 
for any X in !R. 

5. DIRECT SUMS 

We come now to the heart of the chapter. It frequently happens that the study 
of some phenomenon on a vector space V leads to a finite collection of subspaces 
{Vi} such that V is naturally isomorphic to the product space IIi Vi. Under 
this isomorphism the maps (h 0 7r i on the product space become certain maps 
Pi in Hom V, and the projection-injection identities are reflected in the identities 
"'£Pi = I, P j 0 P j = P j for all .1, and Pi 0 P j = 0 if i ¢ i Also, Vi = range 
Pi. The product structure that V thus acquires is then used to study the phe­
nomenon that gave rise to it. For example, this is the way that we unravel the 
structure of a linear transformation in Hom V, the study of which is one of the 
central problems in linear algebra. 

Direct SUIllS. If VI, ... , V n are subspaces of the vector space V, then the 
mapping 7r: <aI,"" an >- ~ "'£7 ai is a linear transformation from II~ Vi 
to V, since it is the sum 7r = "'£7 7ri of the coordinate projections. 

Definition. We shall say that the Vi's are independent if 7r is injective and 
that V is the direct sum of the Vi's if 7r is an isomorphism. We express the 
latter relationship by writing V = VI EEl ... EEl V n = EB7 Vi. 

Thus V = EBi=I Vi if and only if 7r is injective and surjective, i.e., if and 
only if the subspaces {Vig are both independent and span V. A useful restate-
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ment of the direct sum condition is that each a E V is uniquely expressible as 
a sum :E~ ai, with ai E Vi for all i; a has some such expression because the V/s 
span V, and the expression is unique by their independence. 

For example, let V = e(lR) be the space of real-valued continuous functions 
on IR, let V. be the subset of even functions (functions f such that f( -x) = f(x) 
for all x), and let Vo be the subset of odd functions (functions such that f( -x) = 
-f(x) for all x). It is clear that V. and Vo are subspaces of V, and we claim that 
V = V. EB Yo' To see this, note that for any f in V, O(x) = (j(x) + f( -x))/2 
is even, h(x) = (j(x) - f( -x)) /2 is odd, and f = 0 + h. Thus V = V. + Yo' 
Moreover, this decomposition of f is unique, for if f = 01 + hI also, where 01 
is even and hI is odd, then 0 - 01 = hI - h, and therefore 0 - 01 = 0 = 
hI - h, since the only function that is both even and odd is zero. The even-odd 
components of eX are the hyperbolic cosine and sine functions: 

X (eX + e-X) (eX - e-X) . 
e = 2 + 2 = cosh x + smh x. 

Since 7r is injective if and only if its null space is {O} (Lemma 1.1), we have: 

Lelllllla 5.1. The independence of the subspaces Wig is equivalent to the 
property that if ai E Vi for all i and :E~ ai = 0, then ai = 0 for all i. 

Corollary. If the subspaces {Vi}~ are independent, ai E Vi for all i, and 
:E~ ai is an element of V j, then ai = 0 for i ~ j. 

We leave the proof to the reader. 
The case of two subspaces is particularly simple. 

Lelllllla 5.2. The subspaces 1If and N of V are independent if and only if 
1If n N = (O}. 

Proof. If a E M, {3 E N, and a + {3 = 0, then a = -{3 E M n N. If 1If n N = 

{O}, this will further imply that a = {3 = 0, so 1If and N are independent. 
On the other hand, if 0 ~ {3 E M n N, and if we set a = -{3, then a E JI.!, 
{j E N, and a + {3 = 0, so 1If and N are not independent. 0 

Note that the first argument above is simply the general form of the unique­
ness argument we gave earlier for the even-odd decomposition of a function 
on IR. 

Corollary. V = M EB N if and only if V = JI.! + Nand 1If n N = {O}. 

Definition. If V = M EB N, then M and N are called complementary sub­
spaces, and each is a complement of the other. 

Waming: A subspace M of V does not have a unique complementary subspace 
IInless M is trivial (that is, M = {O} or M = V). If we view 1R3 as coordinatized 
Euclidean 3-space, then M is a proper subspace if and only if M is a plane con­
taining the origin or M is a line through the origin (see Fig. 1.9). If M and N are 
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1R13 = NffiL 
~='1+A 

1.5 

Fig. 1.9 

proper subspaces one of which is a plane and the other a line not lying in that 
plane, then M and N are complementary subspaces. Moreover, these are 

nontrivial complementary pairs in IRs, The rea.der will be asked to prove 
some of these facts in the exercises and they all will be clear by the middle of 
the next chapter. 

The following lemma is technically useful. 

Lemma 5.3. If 171 and Vo are independent subspaces of 17 and {Yin are 
independent subspaces of Yo, then {Vi}'; are independent subspaces of V. 

Proof. If ai E Vi for all i and 2:1 ai = 0, then, setting ao = 2:2 ai, we have 
al + ao = 0, with ao E Yo. Therefore, a 1 = ao = 0 by the independence of 
17 1 and Vo. But then a2 = as = ... = an = 0 by the independence of 
{Yin, and we are done (Lemma 5.1). 0 

Corollary. V = V 1 EEl V 0 and V 0 = EBf=2 Vi together imply that 
V = EBf=l Vi. 

Projections. If V = EBf= 1 Vi, if 7r is the isomorphism -< a b ... , a n >- .­
a = 2:1 ai, and if 7rj is the jth projection map -<al>"" a n >- !--l> aj from 
IIi=i Vi to Vi> then (7rj 0 7r-1)(a) = ai. 

Definition. We call aj the jth component of a, and we call the linear map 
P j = 7rj 0 7r-1 the projection of V onto Vi (with respect to the given direct 
sum decomposition of V). Since each a in V is uniquely expressible as a sum 
a = 2:1 ai, with ai in Vi for all i, we can view Pj(a) = aj as "the part of 
a in V;". 

This use of the word "projection" is different from its use in the Cartesian 
product situation, and each is different from its use in the quotient space con­
text (Section 0.12). It is apparent that these three uses are related, and the 
ambiguity causes little confusion since the proper meaning is always clear from 
the context. 

Theorem 5.1. If the maps Pi are the above projections, then range Pi = Vi, 
Pi 0 P j = 0 for i ~ j, and L:l Pi = I. 

Proof. Since 7r is an isomorphism and P j = 7rj 0 7r-I, we have range P j = 
range 7rj = Vj. Next, it follows directly from the corollary to Lemma 5.1 that 
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if a E Vj, then PiCa) = 0 for i ¢ j, and so Pi 0 P j = 0 for i ¢ j. Finally, 
Ei Pi = Ei 7ri 0 7r-l = (Ei 7ri) 0 7r- l = 7r 0 7r-l = I, and we are done. 0 

The above projection properties are clearly the reflection in V of the pro­
jection-injection identities for the isomorphic space IIi Vi. 

A converse theorem is also true. 

Theorelll 5.2. If {Pi}i c Hom V satisfy :Li Pi = I and Pi 0 P j = 0 for 
i ¢ j, and if we set Vi = range Pi, then V = EB?=l Vi, and Pi is the 
corresponding projection on Vi. 

P1"Oof. The equation a = lea) = Ei PiCa) shows that the subspaces {Vi} i 
span V. Next, if fJ E Vj, then Pi(fJ) = 0 for i ¢ j, since fJ E range P j and 
Pi 0 P j = 0 if i ¢ j. Then also P;({3) = (I - Ei+j P i)({3) = 1({3) = (3. 
Now consider a = Ei ai for any choice of ai E Vi. Using the above two facts, 
we have Pj(a) = Pj(E?=l ai) = Ei=l Pj(ai) = aj. Therefore, a = 0 implies 
that aj = Pj(O) = 0 for all j, and the subspaces Vi are independent. 
Consequently, V = EBi Vi. Finally, the fact that a = E PiCa) and PiCa) E Vi 
for all i shows that P j(a) is the jth component of a for every a and therefore that 
P j is the projection of V onto Vj. 0 

There is an intrinsic characterization of the kind of map that is a projection. 

Lelllllla 5.4. The projections Pi are idempotent (Pr = Pi), or, equivalently, 
each is the identity on its range. The null space of Pi is the sum of the spaces 
V j for j ¢ i. 

Proof. PJ = P j 0 (I - Ei+j Pi) = P j 0 I = Pj. Since this can be rewritten 
as Pj(Pj(a» = Pj(a) for every a in V, it says exactly that P j is the identity 
on its range. 

Now set Wi = Ei+i V;, and note that if (3 E Wi, then P i({3) = 0 since 
Pi[Vj] = 0 for j ¢ i. Thus Wi C N(Pi). Conversely, if PiCa) = 0, then a = 
lea) = Ei Pj(a) = Ej+i Pj(a) E Wi. Thus N(Pi) C Wi, and the two spaces 
are equal. 0 

Conversely: 

Lelllllla 5.5. If P E Hom(V) is idempotent, then V is the direct sum of its 
range and null space, and P is the corresponding projection on its range. 

Proof. Setting Q = I - P, we have PQ = P - p 2 = O. Therefore, V is the 
direct sum of the ranges of P and Q, and P is the corresponding projection on its 
range, by the above theorem. Moreover, the range of Q is the null space of P, 
by the coronary. 0 

If V = M E9 Nand P is the corresponding projection on M, we call P the 
p1"Ojection on M along N. The projection P is not determined by M alone, since 
M does not determine N. A pair P and Q in Hom V such that P + Q = I and 
PQ = QP = 0 is called a pair of complementary projections. 
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In the above discussion we have neglected another fine point. Strictly 
speaking, when we form the sum 7r = L~ 7r i, we are treating each 7r j as though 
it were from II~ Vi to V, whereas actually the codomain of 7rj is Vj. And we 
want P j to be from V to V, whereas 7rj 0 7r- 1 has codomain Vj, so the equation 
P j = 7rj 0 7r- 1 can't quite be true either. To repair these flaws we have to 
introduce the injection Lj: Vj ---+ V, which is the identity map on Vj, but which 
views V j as a subspace of V and so takes Vas its codomain. If our concept of a 
mapping includes a codomain possibly larger than the range, then we have to 
admit such identity injections. Then, setting ifj = Lj 0 7rj, we have the correct 
equations 7r = L~ ifi and P j = ifj 0 7r- 1• 

EXERCISES 

5.1 Prove the corollary to Lemma 5.1. 

5.2 Let a bc the vector -< 1, 1, 1>- in 1R3, and let M = IRa be its one-dimrnsional 
span. Show that each of the three coordinate planes is a complement of M. 

5.3 Show that a finite product space V = II~ Vi has subspaces {WiH such that 
Wi is isomorphic to Vi and r = EB~ Wi. Show how the corresponding projections 
{Pi} are related to the 7r;'S and O;'s. 

5.4 If T E HomO', W), show that (the graph of) T is a complement of W' = 

{OJ X Win Y X W. 

5.5 If l is a linear functional on Y (l E Hom (Y, IR) = Y*), and if a is a vector in V 
such that l(a) r'- 0, show that F = N ® JI, where N is the null space of land M = IRa 
is the linear span of a. What does this result say about complements in 1R3? 

5.6 Show that any complement M of a subspace N of a vector space V is isomorphic 
to the quotient space YIN. 

5.7 We suppose again that every subspace has a complement. Show that if 
T E Hom Y is not injective, then there is a nonzero S in Hom Y such that To S = O. 
Show that if T E Hom Y is not surjective, then there is a nonzero S in Hom V such 
that SoT = O. 

5.8 Using the above exercise for half the arguments, show that T E Hom Y is 
injective if and only if To S = 0 => S = 0 and that T is surjective if and only if SoT = 

o => S = O. We thus have characterizations of injectivity and surjectivity that are 
formal, in the sense that they do not rrfer to the fact that Sand T are transformations, 
but refer only to the algebraic properties of Sand T as elements of an algebra. 

5.9 Let M and N be complementary subspaces of a vector space Y, and let X be a 
subspace such that X n N = {OJ. Show that there is a linear injection from X to M. 
[Hint: Consider the projection P of V onto M along N.] Show that any two comple­
ments of a subspace N are isomorphic by showing that the above injection is surjective 
if and only if X is a complement of N. 

5.10 Going back to the first point of the preceding exercise, let Y be a eomplemrnt of 
P[X] in M. Show that X n Y = {OJ and that X ® Y is a complement of N. 

5.Il Let M be a proper subspace of V, and let {ai: i E I} be a finite set in r. Set 
L = L( {ai}), and suppose that jlJ + L = Y. Show that there is a subset J C I such 
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that {ai: i E J} spans a complement of j[. [Hint: Consider a largest possible subset J 
such that ill n L ({ai} J) = {O}.l 

5.12 Given T E Hom(Y, 11") and S E Hom(lr, X), show that 

a) SoT is surjective <=> S is surjective and R(T) + N(S) = W; 
b) SoT is injective <=> T is injective and R(T) n N(S) = {O}; 
c) So Tis an isomorphism <=> Sis surjective, Tis injective,and lr = R(T) EB N(S). 

5.13 Assuming that every subspace of V has a complement, show that T E Hom Y 
satisfies T2 = 0 if and only if l' has a din'ct sum decomposition Y = JIll EB N such that 
T = 0 on Nand T[Jl1 C N. 

5.14 Suppose next that T3 = 0 but T2 rf O. Show that l' can be written as Y = 

Y 1 EB Y 2 EB 1':l, wlH're T[V rl C T' 2, T[l' 21 C Y:l , and T = 0 on 1':1. (Assume again 
that any subspace of a vector space haH a complement.) 

5.15 We now suppose that Tn = 0 but Tn-l rf o. Set Ni = null space (Ti) for 
t = 1, ... ,n - 1, and let VI be a complement of N n-l in Y. Show first that 

T[Yl1 n N n-2 = {OJ 

and that T[yrl C N n-l. Extend T[Yl1 to a complement Y2 of N n-2 in Nn-l, and 
show that in this way we can construct subspaces Y 1, ... , Y n such that 

n 

Y = ED Y i , for i < n, 
1 

and 
T[V n1 = {OJ. 

On solving a linear equation. 1\fany important problems in mathematics are 
in the following general form. A linear operator T: V ---t W is given, and for a 
given 1/ E W the equation T(~) = 1/ is to be solved for ~ E V. In our terms, the 
condition that there exist a solution is exactly the condition that 1/ be in the 
range space of T. In special circumstances this condition can be given more or 
less useful equivalent alternative formulations. Let us suppose that we know 
how to recognize R(T), in which case we may as well make it the new codomain, 
and so assume that T is surjective. There still remains the problem of determin­
ing what we mean by solving the equation. The universal principle running 
through all the important instances of the problem is that a solution process 
calculates a right inverse to T, that is, a linear operator S: W ---t V such that 
To S = I w , the identity on W. Thus a solution process picks one solution 
vector ~ E V for each 1/ E W in such a way that the solving ~ varies linearly with 
1/. Taking this as our meaning of solving, we have the following fundamental 
reformulation. 

TheoreIll 5.3. Let T be a surjective linear map from the vector space V 
to the vector space W, and let N be its null space. Then a subspace M is a 
complement of N if and only if the restriction of T to M is an isomorphism 
from M to W. The mapping M ~ (T r M)-1 is a bijection from the set 
of all such complementary subspaces M to the set of all linear right inverses 
of T. 
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Proof. It should be clear that a subspace M is the range of a linear right inverse 
of T (a map S such that T 0 S = I w) if and only if T r M is an isomorphism to W, 
in which caseS = (T r M)-l. Strictly speaking, the right inverse must be from 
W to V and therefore must be R = LM 0 S, where LM is the identity injection 
from M to V. Then (R 0 T)2 = R 0 (T 0 R) 0 T = R 0 Iw 0 T = RoT, and 
RoT is a projection whose range is M and whose null space is N (since R is 
injective). Thus V = M Ef) N. Conversely, if V = M Ef) N, then T r M is 
injective because JI.f n N = {O} and surjective because M + N = V implies 
that W = T[V] = T[JI.f + N] = T[M] + T[N] = T[M] + {O} = T[M]. 0 

Polynomials in T. The material in this subsection will be used in our study of 
differential equations with constant coefficients and in the proof of the diagonal­
izability of a symmetric matrix. In linear algebra it is basic in almost any 
approach to the canonical forms of matrices. 

If PI(t) = Lo ai and P2(t) = Lo bjtj are any two polynomials, then their 
product is the polynomial 

m+n 
p(t) = PI(t)P2(t) = L Cktk, 

o 

where Ck = Li+j=k aibj = Lf=o aibk-i. N ow let T be any fixed element of 
Hom(V), and for any polynomial q(t) let q(T) be the transformation obtained 
by replacing t by T. That is, if q(t) = L~ Cktk, then q(T) = L~ CkTk, where, of 
course, Tl is the composition product ToT 0 ••• 0 T with l factors. Then the 
bilinearity of composition (Theorem 3.3) shows that if p(t) = PI (t)P2(t), 
then p(T) = PI(T) 0 P2(T). In particular, any two polynomials in T commute 
with each other under composition. More simply, the commutative law for 
addition implies that 

if p(t) = PI(t) + P2(t), then p(T) = PI(T) + P2(T). 

The mapping p(t) 1---+ p(T) from the algebra of polynomials to the algebra 
Hom(V) thus preserves addition, multiplication, and (obviously) scalar mUltipli­
cation. That is, it preserves all the operations of an algebra and is therefore 
what is called an (algebra) homomorphism. 

The word "homomorphism" is a general term describing a mapping 8 
between two algebraic systems of the same kind such that 8 preserves the 
operations of the system. Thus a homomorphism between vector spaces is 
simply a linear transformation, and a homomorphism between groups is a 
mapping preserving the one group operation. An accessible, but not really 
typical, example of the latter is the logarithm function, which is a homomorphism 
from the multiplicative group of positive real numbers to the additive group of ~. 
The logarithm function is actually a bijective homomorphism and is therefore 
a group isomorphism. 

If this were a course in algebra, we would show that the division algorithm 
and the properties of the degree of a polynomial imply the following theorem. 
(However, see Exercises 5.16 through 5.20.) 
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Theorem 5.4. If PI(t) and P2(t) are relatively prime polynomials, then there 
exist polynomials al (t) and a2(t) such that 

al (t)PI (t) + a2(t)P2(t) = 1. 

By relatively prime we mean having no common factors except constants. 
We shall assume this theorem and the results of the discussion preceding it in 
proving our next theorem. 

We say that a subspace MeV is invariant under T E Hom(V) if T[M] eM 
[that is, T r M E Hom(M)]. 

Theorem 5.5. Let T be any transformation in Hom V, and let q be any 
polynomial. Then the null space N of q(T) is invariant under T, and if 
q = qlq2 is any factorization of q into relatively prime factors and N I and 
N 2 are the null space of ql(T) and q2(T), respectively, then N = N I E9 N 2. 

Proof. Since T 0 q(T) = q(T) 0 T, we see that if q(T) (a) = 0, then q(T)(Ta) = 
T(q(T)(a)) = 0, so T[N] eN. Note also that since q(T) = ql(T) 0 q2(T), 
it follows that any a in N 2 is also in N, so N 2 eN. Similarly, N leN. We can 
therefore replace V by Nand T by T r N j hence we can assume that T E Hom N 
and q(T) = ql(T) 0 q2(T) = 0. 

Now choose polynomials al and a2 so that alql + a2q2 = 1. Since P 1--+ p(T) 
is an algebraic homomorphism, we then have 

al(T) 0 ql(T) + a2(T) 0 q2(T) = I. 

Set Al = al(T), etc., so that Al 0 QI + A2 0 Q2 = I, QI 0 Q2 = 0, and all the 
operators Ai, Qi commute with each other. Finally, set Pi = Ai 0 Qi = Qi 0 Ai 
for i = 1,2. Then PI + P 2 = I and P IP 2 = P 2P I = 0. Thus PI and P 2 are 
projections, and N is the direct sum of their ranges: N = V I E9 V 2. Since each 
range is the null space of the other projectivn, we can rewrite this as N = 
N I E9 N 2, where Ni = N(Pi). It remains for us to show that N(Pi) = N(Qi). 
Note first that since QI 0 P 2 = QI 0 Q2 0 A2 = 0, we have QI = QI 0 I = 
QI 0 (PI + P 2) = QI 0 Pl' Then the two identities Pi = Ai 0 Qi and Qi = 
Qi 0 Pi show that the null space of each of Pi and Qi is included in the other, and 
so they are equal. This completes the proof of the theorem. 0 

Corollary. Let p(t) = rrf'=l Pi(t) be a factorization of the polynomial 
p(t) into relatively prime factors, let T be an element of Hom(Il), and set 
Ni = N(Pi(T)) for i = 1, ... ,m and N = N(p(T)). Then N and all the 
Ni are invariant under T, and N = EBf'=1 N i. 

Proof. The proof is by induction on m. The theorem is the case m = 2, and if 
we set q = rr~ Pi(t) and M = N(q(T)), then the theorem implies that 
N = N I E9 M and that N I and M are invariant under T. Restricting T to M, 
we see that the inductive hypothesis implies that M = EBf'=2 Ni and that Ni is 
invariant under T for i = 2, ... ,m. The corollary to Lemma 5.3 then yields 
our result. 0 
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EXERCISES 

5.16 Presumably the reader knows (or can see) that the degree d(P) of a polynomial 
P satisfies the laws 

d(P + Q) ~ max {d(P), d(Q)}, 

d(P . Q) = d(P) + d(Q) if both P and Q arc nonzero. 

The degree of the zero polynomial is undefined. (It would have to be -oo!) By induc­
tion on the degree of P, prove that for any two polynomials P and D, with D ~ 0, 
there are polynomials Q and R such that P = DQ + Rand d(R) < d(D) or R = o. 
[/lint: If d(P) < d(D), we can takeQ and R as what? If d(P) ;::: d(D), and if the lead­
ing terms of P and D arc ax" and bx>n, respectively, with n ;::: m, then the polynomial 

P' = P _ (~) x,,-mD 

has degree less than d(P), so P' = DQ' + R' by the inductive hypothesis. Now finish 
the prooL] 

5.17 Assuming the above result, prove that Rand Q are uniquely determined by 
P and D. (Assume also that P = DQ' + R', and prove from the properties of degree 
that R' = Rand Q' = Q.) These two results together constitute the division algorithm 
for polynomials. 

5.18 If P is any polynomial 
n 

P(x) = L: anxn, 
o 

and if t is any number, then of course pet) is the number 

n 

L: a"t". 
o 

Prove from the division algorithm that for any polynomial P and any number t there 
is a polynomial Q such that 

P(x) = (x - t)Q(x) + pet), 

and therefore that P(x) is divisible by (x - t) if and only if pet) = o. 
5.19 Let P and Q be nonzero polynomials, and choose polynomials Ao and Bo such 
that among all the polynomials of the form AP + BQ the polynomial 

D = AoP+ BoQ 

is nonzero and has minimum degree. Prove that D is a factor of both P and Q. (Sup­
pose that D does not divide P and apply the division algorithm to get a contradiction 
with the choice of Ao and Bo.) 

5.20 Let P and Q be nonzero relatively prime polynomials. This means that if E is a 
common factor of P and Q (P = EP', Q = EQ'), then E is a constant. Prove that 
there are polynomials A and B such that A(x)P(x) + B(x)Q(x) = 1. (Apply the 
above exercise.) 
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5.21 In the context of Theorem 5.5, show that the restriction of q2(T) = Q2 to N 1 

is an isomorphism (from N 1 to N 1). 

5.22 An involution on V is a mapping T EO Hom V such that T2 = 1. Show that if 
T is an involution, then V is a direct sum V = Vi EB V 2, where T(~) = ~ for every 
~ EO Vi (T = Ion Vi) and TW = -~ for every ~ EO 1'2 (T = -Ion V2). (Apply 
Theorem 5.5.) 

5.23 We noticed earlier (in an exercise) that if cp is any mapping from a set. t to a 
set B, then fl----+ fo cp is a linear map T." from \R E to \R.i. Show now that if 1/;; B -> C, 
then 

(This "hould turn out to hr a direct const'qurnce of tht' associativity of composition.) 

5.2,t Let. t be any set, and let cp; . t -> A be such that cp 0 cp(a) = a for ('very a. 
Then T.,,;fl----+focp is an involution on V = \R.t (since T."oy, = Ty,o T.,,). Show that 
the decomposition of \RR as the direct sum of the subspace of even functions and the 
subspace of odd functions aris('s from an involution on \RR defined by such a map 
cp; \R -> IR. 

5.25 Let V be a subspace of \RR consisting of differentiable functions, and suppose 
that V is invariant under differentiation (f EO V=} Df EO V). Suppose abo that on V 
the linear operator D EO Hom V satisfies D2 - 2D - 31 = o. Prove that V is the 
direct sum of two subspaces J[ and N such that D = 31 on J[ and D = -Ion N. 
Actually, it follows that J[ is the linear span of a single vector, and similarly for N. 
Find these two functions, if you can. (f' = 3f=} f = '?) 

*Block decompositions of linear maps. Given T in Hom V and a direct sum 
decomposition V = EB7 Vi, with corresponding projections {Pi}7, we can 
consider the maps Tij = Pi 0 To Pj. Although Tij is from V to V, we may also 
want to consider it as being from V j to Vi (in which case, strictly speaking, what 
is it?). We picture the T;/s arranged schematically in a rectangular array 
Similar to a matrix, as indicated below for n = 2. 

Furthermore, since T = Li,j Tij, we call the doubly indexed family the block 
decomposition of T associated with the given direct sum decomposition of V. 

1\10re generally, if TEO Hom(V, W) and W also has a direct sum decomposi­
tion W = EBi=l Wi, with corresponding projections {Qi}'{', then the family 
{Tij} defined by Tij = Qi 0 To P j and pictured as an m X n rectangular array 
is the block decomposition of T with respect to the two direct sum decompositions. 

Whenever T in Hom V has a special relationship to a particular direct sum 
decomposition of V, the corresponding block diagram may have features that 
display these special properties in a vivid way; this then helps us to understand 
the nature of T better and to calculate with it more easily. 
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For example, if V = VI E9 V 2, then VIis invariant under T (i.e., T[V de VI) 
if and only if the block diagram is upper triangular, as shown in the following 
diagram. 

Suppose, next, that T2 = O. Letting VI be the range of T, and supposing that 
V 1 has a complement V 2, the reader should clearly see that the corresponding 
block diagram is 

This form is called strictly upper triangular; it is upper triangular and also zero 
on the main diagonal. Conversely, if T has some strictly upper-triangular 
2 X 2 block diagram, then T2 = O. 

If R is a composition product, R = ST, then its block components can be 
computed in terms of those of Sand T. Thus 

Rik = PiRP" = PiSTPk = PiS (f Pj) TPk = t SijTjk . 
j=1 j=1 

We have used the identities 1= L.f=1 P j and P j = pJ. The 2 X 2 case is 
pictured below. 

SllTll + S12 T 21 SllT 12 + S12 T 22 

S21 T ll + S22 T 21 S21 T 12 + S22 T 22 

From this we can read off a fact that will be useful to us later: If Tis 2 X 2 
upper triangular (T21 = 0), and if Tii is invertible as a map from Vi to 
Vi (i = 1, 2), then T is invertible and its inverse is 

T -1 
11 

o 

-Tll-ITI2T22 -1 

T 22- 1 

We find this solution by simply setting the product diagram equal to 

II 0 

and solving; but of course with the diagram in hand it can simply be checked to 
be correct. 

EXERCISES 

5.26 Show that if T E Hom V, if V = EBl' Vi, and if {Pi}]' are the corresponding 
projections, then the sum of the transformation Tij = Pi 0 To P j is T. 
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5.27 If Sand T are in Hom V and {Sij} , {Tij} are their block components with 
respect to some direct sum decomposition of V, show that Sij 0 Tlk = 0 if j ,t. l. 

5.28 Verify that if T has an upper-triangular block diagram with respect to the 
direct sum decomposition V = VI <±l V 2, then VIis invariant under T. 

5.29 Verify that if the diagram is strictly upper triangular, then T2 = o. 
5.30 Show that if V = VI <±l V 2 <±l V 3 and T E Hom V, then the subspaces Vi are 
all invariant under T if and only if the block diagram for Tis 

[T o 1 o . 
T33 

Show that T is invertible if and only if Tii is invertible (as an element of Hom Vi) 
for each i. 

5.31 Supposing that T has an upper-triangular 2 X 2 block diagram and that Tii 
is invertible as an element of Hom Vi for i = 1, 2, verify that T is invertible by form­
ing the 2 X 2 block diagram that is the product of the diagram for T and the diagram 
given in the text as the inverse of T. 

5.32 Supposing that T is as in the preceding exercise, show that S = T-I must have 
the given block diagram by considering the two equations To S = I and SoT = I 
in their block form. 

5.33 What would strictly upper triangular mean for a 3 X 3 block diagram? What 
is the corresponding property of T? Show that T has this property if and only if it has 
a strictly upper-triangular block diagram. (See Exercise 5.14.) 

5.34 Suppose that T in Hom V satisfies Tn = 0 (but T,,-l ,t. 0). Show that T has 
a strictly upper-triangular n X n block decomposition. (Apply Exercise 5.15.) 

6. BILINEARITY 

Bilinear mappings. The notion of a bilinear mapping is important to the un­
derstanding of linear algebra because it is the vector setting for the duality 
principle (Section 0.10). 

Definition. If U, V, and Ware vector spaces, then a mapping 

w: -<~, 7]> ~ w(~, 7]) 

from U X V to W is bilinear if it is linear in each variable when the other 
variable is held fixed. 

That is, if we hold ~ fixed, then 7] ~ w(~, 7]) is linear [and so belongs to 
Hom(V, W)]; if we hold 7] fixed, then similarly w(~, 7]) is in Rom(U, W) as a 
function of~. This is not the same notion as linearity on the product vector 
space U X V. For example, -< x, y > ~ x + y is a linear mapping from 1R2 
to IR, but it is not bilinear. If y is held fixed, then the mapping x ~ x + y is 
affine (translation through y), but it is not linear unless y is O. On the other 
hand, -< x, y > ~ xy is a bilinear mapping from 1R2 to IR, but it is not linear. If y 
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is held fixed, then the mapping x ~ yx is linear. But the sum of two ordered 
couples does not map to the sum of their images: 

<x, y> + <u, v> = <x + u, y + v> ~ (x + u)(y + v), 

which is not the sum of the images, xy + uv. Similarly, the scalar product 
(x, Y) = Ll XiYi is bilinear from IR n X IR n to IR, as we observed in Section 2. 

The linear meaning of bilinearity is partially explained in the following 
theorem. 

Theorem 6.1. If w: U X V ~ W is bilinear, then, by duality, w is equiv­
alent to a linear mapping from U to Hom(V, W) and also to a linear mapping 
from V to Hom(U, W). 

Proof. For each fixed TJ E V let w~ be the mapping ~ ~ w(~, TJ). That is, 
w~w = w(~, TJ). Then w~ E Hom(U, W) by the bilinear hypothesis. The 
mapping TJ ~ w~ is thus from V to Hom(U, W), and its linearity is due to the 
linearity of w in TJ when ~ is held fixed: 

wCHd!"(O = w(~, CTJ + cit) = cw(~, TJ) + ciwa, t) = cw~W + ciw!"(~), 
so that 

Similarly, if we define w~ by w~(TJ) = w(~, TJ), then ~ ~ w~ is a linear mapping 
from U to Hom(V, W). Conversely, if IP: U ~ Hom(V, W) is linear, then the 
function w defined by w(~, TJ) = IP(O(TJ) is bilinear. Moreover, w~ = IP(~), so 
that IP is the mapping ~ ~ w~. 0 

We shall see that bilinearity occurs frequently. Sometimes the reinterpreta­
tion provided by the above theorem provides new insights; at other times it 
seems less helpful. 

For example, the composition map <S, T> ~ SoT is bilinear, and the 
corollary of Theorem 3.3, which in effect states that composition on the right by 
a fixed T is a linear map, is simply part of an explicit statement of the bilinearity. 
But the linear map T ~ composition by T is a complicated object that we have 
no need for except in the case W = lR-

On the other hand, the linear combination formula Ll Xi(Xi and Theorem 1.2 
do receive new illumination. 

Theorem 6.2. The mapping w(x, ex) = Ll Xi(Xi is bilinear from IR n X vn 
to V. The mapping ex ~ Wa. is therefore a linear mapping from vn to 
Hom(lRn , V), and, in fact, is an isomorphism. 

Proof. The linearity of w in x for a fixed ex was proved in Theorem 1.2, and its 
linearity in ex for a fixed x is seen in the same way. Then ex ~ Wa. is linear by 
Theorem 6.1. Its bijectivity was implicit in Theorem 1.2. 0 

It should be remarked that we can use any finite index set I just as well as 
the special set'ii and conclude that w(x, ex) = LiEI Xi(Xi is bilinear from IRI X Vi 
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to V and that a 1-+ Wa. is an isomorphism from VI to Hom(~I, V). Also note 
that Wa. = La. in the terminology of Section 1. 

Corollary. The scalar product (x, a) = I:1 Xiai is bilinear from ~n X ~n 
to ~; therefore, a 1-+ Wa = La is an isomorphism from ~n to Hom(~n, ~). 

Natural isomorphisms. We often find two vector spaces related to each other 
in such a way that a particular isomorphism between them is singled out. This 
phenomenon is hard to pin down in general terms but easy to describe by 
examples. 

Duality is one source of such "natural" isomorphisms. For example, an 
m X n matrix {iii} is a real-valued function of the two variables -< i,} >-, and 
as such it is an element of the Cartesian space ~mXn. We can also view {iii} as 
a sequence of n column vectors in ~m. This is the dual point of view where we 
hold} fixed and obtain a function of i for each i From this point of view {iii} 
is an element of (~m)n. This correspondence between ~mXn and (~m)n is clearly 
an isomorphism, and is an example of a natural isomorphism. 

We review next the various ways of looking at Cartesian n-space itself. 
One standard way of defining an ordered n-tuplet is by induction. The ordered 
triplet -< x, y, z>- is defined as the ordered pair -< -< x, y>- , z>- , and the ordered 
n-tuplet -<XI, ... , xn>- is defined as -< -<XI, ... , Xn-l>-, xn>-. Thus we 
define ~n inductively by setting ~l = ~ and ~n = ~n-l X ~. 

The ordered n-tuplet can also be defined as the function on n = {I, ... , n} 
which assigns Xi to i. Then 

-<Xl,""Xn>- = {-<l,Xl>-,"" -<n,xn>-}, 

and Cartesian n-space is ~ n = ~ ( 1, ... , nl . 
Finally, we often wish to view Cartesian (n + m)-space as the Cartesian 

product of Cartesian n-space with Cartesian m-space, so we now take 

as 

and ~n+m as ~n X ~m. 

Here again if we pair two different models for the same n-tuplet, we have an 
obvious natural isomorphism between the corresponding models for Cartesian 
n-space. 

Finally, the characteristic properties of Cartesian product spaces given in 
Theorems 3.6 and 3.7 yield natural isomorphisms. Theorem 3.6 says that an 
n-tuple of linear maps {Tig on a common domain V is equivalent to a single 
n-tuple-valued map T, where T(~) = -< Tl(~)"'" TnW >- for all ~ E V. 
(This is duality again! TiW is a function of the two variables i and 0 And it is 
not hard to see that this identification of T with {Tig is an isomorphism from 
I1i Hom(V, Wi) to Hom(V, IIi Wi). 

Similarly, Theorem 3.7 identifies an n-tuple of linear maps {Ti }1 into a com­
mon codomain V with a single linear map T of an n-tuple variable, and this iden­
tification is a natural isomorphism from II1 Hom(Wi, V) to Hom(II1 Wi, V). 
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An arbitrary isomorphism between two vector spaces identifies them in a 
transient way. For the moment we think of the vector spaces as representing the 
same abstract space, but only so long as the isomorphism is before us. If we 
shift to a different isomorphism between them, we obtain a new temporary 
identification. Natural isomorphisms, on the other hand, effect permanent 
identifications, and we think of paired objects as being two aspects of the same 
object in a deeper sense. Thus we think of a matrix as "being" either a sequence 
of row vectors, a sequence of column vectors, or a single function of two integer 
indices. We shall take a final look at this question at the end of Section 3 in the 
next chapter. 

*We can now make the ultimate dissection of the theorems centering 
around the linear combination formula. Laws Sl through S3 state exactly that 
the scalar product xa is bilinear. l\Iore precisely, they state that the mapping 
s: -< x, a >- ~ xa from IR X W to W is bilinear. In the language of Theorem G.1, 
xa = w",(x), and from that theorem we conclude that the mapping a ~ w'" is 
an isomorphism from W to Hom(lR, W). 

This isomorphism between Wand Hom(lR, W) extends to an isomor­
phism from wn to (Hom(lR, W)) n, which in turn is naturally isomorphic to 
Hom(lRn,W) by the second Cartesian product isomorphism. Thus wn is natu­
rally isomorphic to Hom(lR n , W); the mapping is a ~ La., where La.(x) = 

L~ Xiai· 

In particular, IRn is naturally isomorphic to the space Hom(lR n , IR) of all 
linear functionals on IR n , the n-tuple a corresponding to the functional Wa 

defined by wa(x) = L~ aiXi. 

Also, (IRrn)n is naturally isomorphic to Hom(lR n , 1R1n). And since IRmXn is 
naturally isomorphic to (IRrn)n, it follows that the spaces IRmXn and Hom(lR n , IRrn) 
are naturally isomorphic. This is simply our natural association of a transfor­
mation Tin Hom(lR n , IRm) to an m X n matrix {tij}. 



CHAPTER 2 

FINITE-DIMENSIONAL VECTOR SPACES 

We have defined a vector space to be finite-dimensional if it has a finite spanning 
set. In this chapter we shall focus our attention on such spaces, although this 
restriction is unnecessary for some of our discussion. We shall see that we can 
assign to each finite-dimensional space V a unique integer, called the dimension 
of V, which satisfies our intuitive requirements about dimensionality and which 
becomes a principal tool in the deeper explorations into the nature of such 
e;paces. A number of "dimensional identities" are crucial in these further 
investigations. We shall find that the dual space of all linear functionals on V, 
V* = Hom(V, IR), plays a more satisfactory role in finite-dimensional theory 
than in the context of general vector spaces. (However, we shall see later in 
the book that when we add limit theory to our algebra, there are certain special 
infinite-dimensional vector spaces for which the dual space plays an equally 
important role.) A finite-dimensional space can be characterized as a vector 
space isomorphic to some Cartesian space IR n , and such an isomorphism allows a 
transformation T in Hom V to be "transferred" to IR n , whereupon it acquires a 
matrix. The theory of linear transformations on such spaces is therefore mirrored 
eompletely by the theory of matrices. In this chapter we shall push much 
deeper into the nature of this relationship than we did in Chapter 1. We also 
include a section on matrix computations, a brief section describing the trace 
and determinant functions, and a short discussion of the diagonalization of a 
quadratic form. 

I. BASES 

Consider again a fixed finite indexed set of vectors a = {ai: i E I} in V and the 
corresponding linear combination map La.: x f---+ L Xiai from IRI to V having a 
lie; skeleton. 

Definition. The finite indexed set {ai: i E I} is independent if the above 
mapping La. is injective, and {ai} is a basis for V if La. is an isomorphism 
(onto V). In this situation we call {ai: i E J} an ordered basis or frame if 
J = n = {I, ... , n} for some positive integer n. 

Thus {ai : i E J} is a basis if and only if for each ~ E V there exists a unique 
illdexed "coefficient" set x = {Xi: i E I} E IRI such that ~ = L Xiai. The 

71 
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numbers Xi always exist because {ai: i E I} spans V, and x is unique because 
La. is injective. 

For example, we can check directly that hI = -< 2, 1>- and h 2 = -< 1, -3 >­
form a basis for jR2. The problem is to show that for each y E jR2 there is a 
unique x such that 

2 

Y = L Xihi = Xl -<2,1>- + X2-< 1, -3>- = -<2XI + X2, Xl - 3X2>-. 
I 

Since this vector equation is equivalent to the two scalar equations YI = 
2XI + X2 and Y2 = Xl - 3X2, we can find the unique solution Xl = (3YI + Y2)/7, 
X2 = (YI - 2Y2)/7 by the usual elimination method of secondary school 
algebra. 

The form of these definitions is dictated by our interpretation of the linear 
combination formula as a linear mapping. The more usual definition of indepen­
dence is a corollary. 

Lelllllla I.I. The independence of the finite indexed set {ai: i E I} is 
equivalent to the property that LI Xiai = 0 only if all the coefficients Xi 
are O. 

Proof. This is the property that the null space of La. consist only of 0, and is 
thus equivalent to the injectivity of La., that is, to the independence of {ai} , by 
Lemma 1.1 of Chapter 1. 0 

If {ain is an ordered basis (frame) for V, the unique n-tuple x such that 
~ = L~ Xiai is called the coordinate n-tuple of ~ (with respect to the basis {ai}), 
and Xi is the ith coordinate of~. We call Xiai (and sometimes Xi) the ith component 
of~. The mapping La. will be called a basis isomorphism, and its inverse L;:l, 
which assigns to each vector ~ E V its unique coordinate n-tuple x, is a coordinate 
isomorphism. The linear functional ~ 1---+ Xi is the jth coordinate functional; 
it is the composition of the coordinate isomorphism ~ 1---+ x with the jth coordi­
nate projection x 1---+ Xi on jRn. We shall see in Section 3 that the n coordinate 
functionals form a basis for V* = Hom(V, jR). 

In the above paragraph we took the index set I to be n = {I, ... , n} and 
used the language of n-tuples. The only difference for an arbitrary finite index 
set is that we speak of a coordinate function x = {Xi: i E I} instead of a coordi­
nate n-tuple. 

Our first concern will be to show that every finite-dimensional (finitely 
spanned) vector space has a basis. We start with some remarks about indices. 

We note first that a finite indexed set {ai: i E I} can be independent only 
if the indexing is injective as a mapping into V, for if ak = aI, then L Xiai = 0, 
where Xk = 1, Xl = -1, and Xi = 0 for the remaining indices. Also, if {ai : i E l} 
is independent and J C I, then {ai : i E J} is independent, since if LJ Xiai = 0, 
and if we set Xi = 0 for i E I - J, then LI Xiai = 0, and so each xi is o. 
A finite unindexed set is said to be independent if it is independent in some 
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(necessarily bijective) indexing. It will of course then be independent with 
respect to any bijective indexing. An arbitrary set is independent if every finite 
subset is independent. It follows that a set A is dependent (not independent) if 
and only if there exist distinct clements al> ..• , an in A and scalars Xl, ... , xn 

not all zero such that L7 x,;a,; = o. An unindexed basis would be defined in the 
obvious way. However, a set can always be regarded as being indexed, by itself 
if necessary! 

Lemma 1.2. If B is an independent subset of a vector space V and {3 is any 
vector not in the linear span L(B), then B U {{3} is independent. 

Proof. Otherwise there is a zero linear combination, ;r{3 + L~ :r,;{3,- = 0, where 
{3 I> •.. , {3n arc distinct clements of B and the coefficients are not all O. But then 
X cannot be zero: if it were, the equation would contradict the independence of 
B. We can therefore divide by;'/: and solve for {3, so that {3 E L(B), a contra­
diction. 0 

The reader will remember that we call a vector space V finite-dimensional 
if it has a finite spanning set {aJ 7. We can use the above lemma to construct a 
basis for such a V by choosing some of the a/so We simply run through the 
sequence {aig and choose those members that increase the linear span of the 
preceding choices. We end up with a spanning set since {aig spans, and our 
subsequence is independent at each step, by the lemma. In the same way we 
can extend an independent set {{3i} 7 to a basis by choosing some members of a 
spanning set {ai} 7. This procedure is intuitive, but it is messy to set up rigor­
ously. We shall therefore proceed differently. 

Theorem 1.1. Any minimal finite spanning set is a basis, and therefore any 
finite-dimensional vector space V has a basis. More generally, if {{3j : j E J} 
is a finite independent set and {ai: i E J} is a finite spanning set, and if K 
is a smallest subset of J such that {{3j} J U {ai} K spans, then this collection is 
independent and 2, basis. Therefore, any finite independent subset of a 
finite-dimensional space can be extended to a basis. 

Proof. It is sufficient to prove the second assertion, since it includes the first 
as a special case. If {{3j} J U {ai} K is not independent, then there is a nontrivial 
zero linear combination LJ Yj{3j + LK Xiai = O. If every Xi were zero, this 
pquation would contradict the independence of {{3j} J. Therefore, some Xk is 
Ilot zero, and we can solve the equation for ak. That is, if we set L = K - {k}, 
then the linear span of {{3j} J U {ai} L contains ak. It therefore includes the whole 
original spanning set and hence is V. But this contradicts the minimal nature of 
K, since L is a proper subset of K. Consequently, {{3j} J U {aJ K is independent. 0 

We next note that ~n itself has a very special basis. In the indexing map 
,: ~ ai the vector aj corresponds to the index j, but under the linear combi­
Ilation map x ~ L Xiai the vector aj corresponds to the function oj which has 
t he value 1 at j and the value 0 elsewhere, so that Li o{ai = aj. This function 
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~j is called a Kronecker delta function. It is clearly the characteristic function XB 
of the one-point set B = {J}, and the symbol ,~j, is ambiguous, just as 'XB' 

is ambiguous; in each case the meaning depends on what domain is implicit from 
the context. We have already used the delta functions on ~n in proving Theorem 
1.2 of Chapter 1. 

Theorem 1.2. The Kronecker functions {~j}i=l form a basis for ~n. 

Proof. Since Li Xi~i(j) = Xj by the definition of ~i, we see that L~ Xi~i is 
the n-tuple x itself, so the linear combination mapping L5: x 1--+ L~ Xi~i is the 
identity mapping x 1--+ x, a trivial isomorphism. 0 

Among all possible indexed bases for ~n, the Kronecker basis is thus singled 
out by the fact that its basis isomorphism is the identity; for this reason it is 
called the standard basis or the natural basis for ~n. The same holds for ~l for 
any finite set I. 

Finally, we shall draw some elementary conclusions from the existence of 
a basis. 

Theorem 1.3. If T E Hom(V, W) is an isomorphism and a = {ai: i E I} 
is a basis for V, then {T(ai) : i E I} is a basis for W. 

Proof. By hypothesis Lo. is an isomorphism in Hom(~n, V), and so To Lo. is 
an isomorphism in Hom(~n, W). Its skeleton {T(ai)} is therefore a basis for W. 0 

We can view any basis {ai} as the image of the standard basis {~i} under 
the basis isomorphism. Conversely, any isomorphism 8: ~l --t B becomes a basis 
isomorphism for the basis aj = 8(~j). 

Theorem 1.4. If X and Yare complementary subspaces of a vector space V, 
then the union of a basis for X and a basis for Y is a basis for V. Conversely, 
if a basis for V is partitioned into two sets, with linear spans X and Y, 
respectively, then X and Yare complementary subspaces of V .. 

Proof. We prove only the first statement. If {ai : i E J} is a basis for X and 
{ai: i E K} is a basis for Y, then it is clear that {ai : i E J uK} spans V, since 
its span includes both X and Y, and so X + Y = V. Suppose then that 
LJUK Xiai = O. Setting ~ = LJ Xiai and 7J = LK Xiai, we see that ~ E X, 
7J E Y, and ~ + 7J = O. But then ~ = 7J = 0, since X and Yare complementary. 
And then Xi = 0 for i E J because {ai} J is independent, and Xi = 0 for i E K 
because {ai} K is independent. Therefore, {ai} JUK is a basis for V. We leave the 
converse argument as an exercise. 0 

Corollary. If V = EB~ Vi and Bi is a basis for Vi, then B = U~ Bi is a 
basis for V. 

Proof. We see from the theorem that Bl U B2 is a basis for VI EB V 2. Proceed­
ing inductively we see that U{=l Bi is a basis for EB{=l Vi for j = 2, ... , n, 
and the corollary is the case j = n. 0 
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If we follow a coordinate isomorphism by a linear combination map, we get 
the mapping of the following existence theorem, which we state only in n-tuple 
form. 

Theorelll 1.5. If {3 = {l1i} ~ is an ordered basis for the vector space V, and 
if {ai} ~ is any n-tuple of vectors in a vector space W, then there exists a 
unique S E Hom(V, W) such that S(l1i) = ai for i = 1, ... , n. 

Proof. By hypothesis L~ is an isomorphism in Hom(!R n , V), and so 
S = La. 0 (L~)-1 is an clement of Hom(V, W) such that S(l1i) = La.(oi) = ai. 
Conversely, if S E Hom(V, W) is such that S(l1i) = ai for all i, then S 0 L~( oi) = 

ai for all i, so that S 0 L~ = La.. Thus S is uniquely determined as La. 0 (L~) -1. 0 

It is natural to ask how the unique S above varies with the n-tuple {ai}. 
The answer is: linearly and "isomorphically". 

Theorelll 1.6. Let {l1i} ~ be a fixed ordered basis for the vector space 
V, and for each n-tuple a = {aig chosen from the vector space W let 
Sa. E Hom(V, W) be the unique transformation defined above. Then the 
map a ~ Sa. is an isomorphism from wn to Hom(V, W). 

Proof. As above, Sa. = La. 0 (r\ where 0 is the basis isomorphism L~. N"ow we 
know from Theorem 6.2 of Chapter 1 that a ~ La. is an isomorphism from wn 
to Hom(!R n , W), and composition on the right by the fixed coordinate isomor­
phism 0-1 is an isomorphism from Hom(!R n , W) to Hom(V, W) by the corollary 
to Theorem 3.3 of Chapter 1. Composing these two isomorphisms gives us the 
theorem. 0 

*Infinite bases. Most vector spaces do not have finite bases, and it is natural to 
try to extend the above discussion to index sets I that may be infinite. The 
Kronecker functions {oi : i E I} have the same definitions, but they no longer 
span !R I . By definition f is a linear combination of the functions oi if and only 
if f is of the form LiEI! Cioi, where II is a finite subset of I. But then f = 0 
outside of I l' Conversely, if f E !RI is 0 except on a finite set 111 then f = 

LiEI J( i) oi. The linear span of {oi : i E I} is thus exactly the set of all func­
tions of !R I that are zero except on a finite set. We shall designate this sub­
space !RI. 

If {ai: i E I} is an indexed set of vectors in V and f E !R I , then the sum 
LiEI f(i)ai becomes meaningful if we adopt the reasonable convention that the 
sum of an arbitrary number of O's is O. Then LiEI = LiEIo' where lois any 
finite subset of I outside of which f is zero. 

With this convention, La.:f ~ Ld(i)ai is a linear map from !RI to V, as in 
Theorem 1.2 of Chapter 1. And with the same convention, LiEI f(i)ai is an 
elegant expression for the general linear combination of the vectors ai. Instead 
of choosing a finite subset II and numbers Ci for just those indices i in II, we 
define Ci for all i E I, but with the stipulation that Ci = 0 for all but a finite 
number of indices. That is, we take c = {Ci: i E I} as a function in !RI. 
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We make the same definitions of independence and basis as before. Then 
{ai: i E l} is a basis for V if and only if La.: IRI ~ V is an isomorphism, i.e., if 
and only if for each ~ E V there exists a unique x E IRI such that ~ = Li Xiai. 

By using an axiom of set theory called the axiom of choice, it can be shown 
that every vector space has a basis in this sense and that any independent set 
can be extended to a basis. Then Theorems 1.4 and 1.5 hold with only minor 
changes in notation. In particular, if a basis for a subspace 111 of V is extended 
to a basis for V, then the linear span of the added part is a subspace N comple­
mentary to M. Thus, in a purely algebraic sense, every subspace has com­
plementary subspaces. We assume this fact in some of our exercises. 

The above sums are always finite (despite appearances), and the above 
notion of basis is purely algebraic. However, infinite bases in this sense are not 
very useful in analysis, and we shall therefore concentrate for the present on 
spaces that have finite bases (i.e., are finite-dimensional). Then in one impor­
tant context later on we shall discuss infinite bases where the sums are genuinely 
infinite by virtue of limit theory. 

EXERCISES 

1.1 Show by a direct computation that {-< 1, -1>, -< 0, I>} is a basis for 1R2. 
1.2 The student must realize that the ith coordinate of a vector depends on the whole 

basis and not jm3t on the ith basis vector. Prove this for the second coordinate of 
vectors in 1R2 using the standard basis and the basis of the above exercise. 

1.3 Show that {-< 1, 1>, -< 1, 2>} is a basis for V = 1R2. The basis isomorphism 
from 1R2 to V is now from 1R2 to 1R3. Find its matrix. Find the matrix of the coordinate 
isomorphism. Compute the coordinates, with respect to this basis, of -< -1, 1 >, -< 0, 1>, 
-< 2,3 >. 
1.4 Show that {bi}~, where b l = -<1,0,0>, b 2 = -<1,1,0>, and b 3 = 

-< 1, 1, 1>, is a basis for 1R3. 
1.5 In the above exercise find the three linear functionals li that are the coordinate 

functionals with respect to the given basis. Since 

3 

x = L: li(X)b \ 
1 

finding the Ii is equivalent to solving x = L~ Yibi for the y/s in terms of 
x = -<Xl, X2, X3>. 

1.6 Show that any set of polynomials no two of which have the same degree is 
independent. 

1.7 Show that if {ai}~ is an independent subset of V and Tin Hom(V, W) is injec­
tive, then {T(ai)}~ is an independent subset of W. 

1.8 Show that if T is any element of Hom(V, W) and {T(ai)}~ is independent in W, 
then {ai}~ is independent in V. 
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1.9 Later on WE' are going to call a vpctor space V n-dinlPnsional if every basis for 
l' contains exactly n e\cmcnts. If l' is the span of a singlp vC'ctor a, so that l' = IRa, 
then V is clearly one-dimensional. 

Let {Vi} ~ bE' a collection of one-dimen~ional suh~pa('c~ of a vcrtor space Y, and 
choose a nonzero vpctor ai in V, for eaeh i. Provp that fai} ~ is indepC'ndpnt if ami 
only if the subspaces {Vi} ~ are indcppn<icn t and that fai: ~ is a ba"is if and only if 
V = EB7 Vi. 

1.10 Finish the proof of TheorC'm 1.4. 

1.11 Give a proof of ThC'orem 1.4 baspd on the pxistencC' of isomorphisms. 

1.12 ThE' rpader would guess, and \\"(' shall prOH' in thC' next sE'ction, that l'very 
subspace of a finite-dimensional space is fini te-<iimen"ional. Prove now that a sub­
space N of a finitC'-dinH'nsiollal H'dor spacer is finite-diIllcllsional if and only if it ha:, 
a complcment JI. (\York from a combination of Theorems 1.1 and 1.4 and direct sum 
projections.) 

1.13 SincE' {hin = {-< 1,0, ° >, -< 1, ], ° >, -< 1, 1, ] >} is a basis for 1R3, there is a 
unique T in Hom(1R3,1R2) such that T(h 1) = -<1,0>, T(h 2 ) = -<0,1>, and 
T(h3 ) = -< 1, 1 >. Find thl' matrix of T. (Find T( 8i ) for i = 1, 2, 3.) 

1.14 Find, similarly, the S in Hom 1R3 such that S(hi) = 8i for i = 1, 2, 3. 

1.15 Show that the infinite spqupnce ft u } ~ is a basis for the vcclor space of all poly­
nomials. 

2. DIMENSION 

The concept of dimension rests on the fact that two different bases for the same 
space always contain the same number of elements. This number, which is 
then the number of elements in every basis for V, is called the dimension of V. 
It tells all there is to know about V to within isomorphism: There exists an 
isomorphism between two spaces if and only if they have the same dimension. 
We shall consider only finite dimensions. If V is not finite-dimensional, its 
dimension is an infinite cardinal number, a concept with which the reader is 
probably unfamiliar. 

Lemma 2.1. If V is finite-dimensional and T in Hom V is surjective, then T 
is an isomorphism. 

Proof. Let 11 be the smallest number of elements that can span V. That is, there 
is some spanning set {a;} 7 and none with fewer than n elements. Then {ai} 7 is a 
basis, by Theorem 1.1, and the linear combination map 0: x f---> 2::7 Xiai is 
accordingly a basis isomorphism. But {iJJ 7 = {T(ai)} 7 also spans, since T is 
surjective, and so ToO is also a basis isomorphism, for the same reason. Then 
T = (T 0 0) 0 0- 1 is an isomorphism. 0 

Theorem 2.1. If V is finite-dimensional, then all bases for V contain the 
same number of elements. 

Proof. Two bases with nand m elements determine basis isomorphisms 
0: IR n ~ V and cp: 1R1n ~ V. Suppose that m < n and, viewing IR n as IR rn X IR n - m , 
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let 7r be the projection of IR n onto IRm, 

Since T = 0-1 0 cp is an isomorphism from IRm to IRn and To 7r: IR n ~ IR n is 
therefore surjective, it follows from the lemma that T 0 7r is an isomorphism. 
Then 7r = T- l 0 (T 0 7r) is an isomorphism. But it isn't, because 7r(on) = 0, 
and we have a contradiction. Therefore no basis can be smaller than any other 
basis. D 

The integer that is the number of elements in every basis for V is of course 
called the dimension of V, and we designate it d(V). Since the standard basis 
{oi} ~ for IR n has n elements, we see that IR n is n-dimensional in this precise sense. 

Corollary. Two finite-dimensional vector spaces are isomorphic if and only 
if they have the same dimension. 

Proof. If T is an isomorphism from V to Wand B is a basis for V, then T[B] is a 
basis for W by Theorem 1.3. Therefore d(V) = #B = #T[B] = d(W), where 
#A is the number of elements in A. Conversely, if d(V) = d(W) = n, then V 
and Ware each isomorphic to IRn and so to each other. D 

Theorem 2.2. Every subspace M of a finite-dimensional vector space V is 
finite-dimensional. 

Proof. Let a be the family of finite independent subsets of M. By Theorem 1.1, 
if A E a, then A can be extended to a basis for V, and so #A ~ d(V). Thus 
{#A : A E a} is a finite set of integers, and we can choose B E a such that 
n = #B is the maximum of this finite set. But then L(B) = M, because other­
wise for any a E ]J[ - L(B) we have B U {a} E a, by Lemma 1.2, and 

#(B U {a}) = n + 1, 

contradicting the maximal nature of n. Thus M is finitely spanned. D 

Corollary. Every subspace ]J[ of a finite-dimensional space V has a comple­
ment. 

Proof. Use Theorem 1.1 to extend a basis for M to a basis for V, and let N be 
the linear span of the added vectors. Then apply Theorem 1.4. D 

DiInensional identities. We now prove two basic dimensional identities. 
We will always assume V finite-dimensional. 

Lemma 2.2. If V 1 and V 2 are complementary subspaces of V, then d(V) = 
d(V 1) + d(V 2)' More generally, if V = EB~ Vi then d(V) = L~ d(Vi)' 

Proof. This follows at once from Theorem 1.4 and its corollary. D 

Theorem 2.3. If U and Ware subspaces of a finite-dimensional vector space, 
then d(U + W) + d(U n W) = d(U) + d(W). 
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Proof. Let V be a complement of U n Win U. We start by showing that then V 
is also a complement of W in U + W. First 

V + W = V + ((U n W) + W) = (V + (U n W») + W = U + W. 

We have used the obvious fact that the sum of a vector space and a subspace 
is the vector space. Next, 

V n W = (V n U) n W = V n (U n W) = {O}, 

because V is a complement of Un W in U. We thus have both V + W = 
U + Wand V n W = {O}, and so V is a complement of W in U + W by 
the corollary of Lemma 5.2 of Chapter 1. 

The theorem is now a corollary of the above lemma. We have 

d(U) + deW) = (d(U n W) + dey») + deW) = d(U n W) +(d(V) + deW») 
= d(U n W) + d(U + W). 0 

Theorem 2.4. Let V be finite-dimensional, and let W be any vector space. 
Let T E Hom(V, W) have null space N (in V) and range R (in W). Then R 
is finite-dimensional and dey) = deN) + d(R). 

Proof. Let U be a complement of N in V. Then we know that T r U is an 
isomorphism onto R. (See Theorem 5.3 of Chapter 1.) Therefore, R is finite­
dimensional and d(R) + deN) = d(U) + deN) = dey) by our first identity. 0 

Corollary. If W is finite-dimensional and deW) = dey), then T is injective 
if and only if it is surjective, so that in this case injectivity, surjectivity, and 
bijectivity are all equivalent. 

Proof. T is surjective if and only if R = W. But this is equivalent to d(R) = 
deW), and if deW) = deY), then. the theorem shows this is turn to be equivalent 
to deN) = 0, that is, to N = {O}. 0 

Theorem 2.5. If dey) = nand deW) = m, then Hom(V, W) is finite­
dimensional and its dimension is mn. 

Proof. By Theorem 1.6, Hom(V, W) is isomorphic to wn which is the direct 
sum of the n subspaces isomorphic to W under the injections (Ji for i = 1, ... ,n. 
The dimension of wn is therefore L~ m = mn by Lemma 2.2. 0 

Another proof of Theorem 2.5 will be available in Section 4. 

EXERCISES 

2.1 Prove that if d(V) = n, then any spanning subset of n elements is a basis. 

2.2 Prove that if-d(V) = n, then any independent subset of n elements is a basis. 

2.3 Show that if d(V) = nand lV is a subspace of the same dimension, then W = V. 
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2.4 Prove by using dimensional identities that if f is a nonzero linear functional on 
an n-dimensional space V, then its null space has dimension n - 1. 

2.5 Prove by u::;ing dimensional identities that if f is a linear functional on a finite­
dimensional space V, and if a is a vector not in its null space N, then V = N (B IRa. 

2.6 Given that N is an (n - I)-dimensional subspa<;e of an n-dimen:sional vector 
space V, show that N is the null space of a linear functional. 

2.7 Let X and Y be subspaces of a finite-dimensional vector space V, and suppose 
that Tin Hom(V, W) has null space N = X n L Show that T[X + 1"] = T[X] (B 

T( y), and then deduce Theorem 2.3 from Lemma 2.2 and Theorem 2.4. This proof 
still depends on the existence of a T having N = X n Y as its null space. Do we know 
of any such T'? 

2.8 Show that if T' i~ finite-dimen;;ional and S, T E Hom V, then 

SoT = I ==} T is invertible. 

Show also that To S = I ==} T is invertible. 

2.9 A subspace N of a vector space V has finite codimension n if the quotient space 
V IN is finite-dimensional, with dimension n. Show that a subspace N has finite 
codimension n if and only if N has a complementary subspace J1 of dimension 7!. 

(:\Iove a basis for V I N ba<;k into V.) Do not assume V to be finite-dimensional. 

2.10 Show that if N 1 and N 2 are subspaces of a vector space V with finite codimC'n­
sions, then N = N 1 n N 2 has finite co dimension and 

cod(N) ::;: cod(NI) + cod(Nz). 

(Consider the mapping ~ f-+ < ~I' ~2 >- when ~i is the coset of Ni containing ~.) 

2.11 In the above exercise, suppose that cod(N I) = cod(N 2), that is, d(V IN 1) 
d(VIN2). Prove that d(NJ/lv') = d(N2IN). 

2.12 Given nonzero vectors (3 in V and f in V* such that f({3) ,e 0, show that some 
scalar multiple of the mapping ~ f-+ f(~){3 is a projection. Prove that any projedion 
having a one-dimensional rangC' arises in this way. 

2.13 We know that the choice of an origin 0 in Euclidean 3-space 1E3 indu<;C's a 
vector space structure in 1E3 (under the correspondence X f-+ OX) and that this vector 
space is three-dimensional. Show that a geometric plane through 0 becomes a two­
dimensional subspace. 

2.14 An m-dimensional plane ,11 is a translate N + ao of an m-dimensional subspa<;e N. 
Let {{3i} ~ be any basis of N, and set ai = {3i + ao. Show that M is exactly the set of 
linear combinations 

such that 
m 

LXi = 1. 
o 

2.15 Show that Exercise 2.14 is a corollary of Exercise 4.14 of Chapter l. 

2.16 Show, conversely, that if a plane M is the affine span of m + 1 elements, then 
its dimension is ::;: m. 

2.17 From the above two exer<;ises concoct a direct definition of the dimension of an 
affine subspace. 
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2.18 Write a small essay suggested by the following definition. An (rn + I)-tuple 
{ai}O' is affinely independent if the conditions 

together imply that 

m 

L: Xiai = 0 
o 

Xi = 0 

and 
m 

L: Xi = 0 
o 

for all i. 

2.19 A polynomial on a vector space V is a real-valued function on V which can be 
represented as a finite sum of finite products of linear functionals. Define the degree 
of a polynomial; define a hornogeneous polynornial oj degree k. Show that the set of 
homogeneous polynomials of degree k is a vector space X k • -

2.20 Continuing the above exercise, show that if kl < k2 < ... < kN, then the 
vector spaces {XkJf are independent sub3paces of the vector space of all polynomials. 
[Assume that a polynom'ial p(t) of a real variable can be the zero function only if all 
its coefficients are O. For any polynomial P on V consider the polynomials p,,(t) = 

P(ta).J 

2.21 Let -<a, {3 >- be a basis for the two-dimensional space V, and let -<~, p. >- be the 
corresponding coordinate projections (dual basis in V*). Show that every polynomial 
on V "is a polynomial in the two variables ~ and p.". 

2.22 Let -< a, {3 >- be a basis for a two-dimensional vector space V, and let -<~, p. >­
be the corresponding coordinate projections (dual basis for V*). Show that 

-< ~2, ~p., p.2 >-
is a basis for the vector space of homogeneous polynomials on V of degree 2. Similarly, 
compute the dimension of the space of homogeneous polynomials of degree 3 on a 
two-dimensional vector space. 

2.23 Let V and W be two-dimensional vector spaces, and let F be a mapping from 
V to W. Using coordinate systems, define the notion of F being quadratic and then 
show that it is independent of coordinate systems. Generalize the above exercise to 
higher dimensions and also to higher degrees. 

2.24 Now let F: V ~ W be a mapping between two-dimensional spaces such that 
for any u, v E V and any l E W*, l (F(tu + v)) is a quadratic function of t, that is, of 
the form at2 + bt + c. Show that F is quadratic according to your definition in the 
above exercises. 

3. THE DUAL SPACE 

Although throughout this section all spaces will be assumed finite-dimensional, 
many of the definitions and properties are valid for infinite-dimensional spaces 
as well. But for such spaces there is a difference between pmely algebraic 
situations and situations in which algebra is mixed with hypotheses of continuity. 
One of the blessings of finite dimensionality is the absence of this complication. 
As the reader has probably surmised from the number of special linear functionals 
we have met, particularly the coordinate functionals, the space Hom(V, IR) 
of all linear functionals on V plays a special role. 
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Definition. The dual space (or conjugate space) V* of the vector space V is 
the vector space Hom(V, IR) of all linear mappings from V to IR. Its elements 
are called linear functionals. 

Weare going to see that in a certain sense V is in turn the dual space of 
V* (V and (V*)* are naturally isomorphic), so that the two spaces are sym­
metrically related. We shall briefly study the notion of annihilation (orthogonal­
ity) which has its origins in this setting, and then see that there is a natural 
isomorphism between Hom(V, W) and Hom(W*, V*). This gives the mathema­
tician a new tool to use in studying a linear transformation Tin Hom(V, W); 
the relationship between T and its image T* exposes new properties of T itself. 

Dual bases. At the outset one naturally wonders how big a space V* is, and we 
settle the question immediately. 

Theorem 3.1. Let {f3i}~ be an ordered basis for V, and let ej be the corre­
sponding jth coordinate functional on V: ej(l;) = Xi> where ~ = L~ Xif3i. 
Then {ejg is an ordered basis for V*. 

Proof. Let us first make the proof by a direct elementary calculation. 

a) Independence. Suppose that L~ Cjej = 0, that is, L~ Cjej(O = ° for 
all ~ E V. Taking ~ = f3i and remembering that the coordinate n-tuple of f3i 
is ~i, we see that the above equation reduces to Ci = 0, and this for all i. There­
fore, {ej}~ is independent. 

b) Spanning. First note that the basis expansion ~ = L Xif3i can be re­
written ~ = L ei(~)f3i' Then for any A E V* we have A(~) = L~ liei(~)' 
where we have set li = A(f3i). That is, A = L liei. This shows that {ej} ~ spans 
V*, and, together with (a), that it is a basis. D 

Definition. The basis {ej} for V* is called the dual of the basis {f3i} for V. 

As usual, one of our fundamental isomorphisms is lurking behind all this, 
but we shall leave its exposure to an exercise. 

Corollary. d(V*) = dey). 

The three equations 

A(~) = L A(f3i) . ei(~) 

are worth looking at. The first two are symmetrically related, each presenting 
the basis expansion of a vector with its coefficients computed by applying the 
corresponding element of the dual basis to the vector. The third is symmetric 
itself between ~ and A. 

Since a finite-dimensional space V and its dual space V* have the same 
dimension, they are of course isomorphic. In fact, each basis for V defines an 
isomorphism, for we have the associated coordinate isomorphism from V to IR n , 

the dual basis isomorphism from IR n to V*, and therefore the composite isomor-
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phism from V to V*. This isomorphism varies with the basis, however, and there 
is in general no natural isomorphism between V and V*. 

It is another matter with Cartesian space IR n because it has a standard 
basis, and therefore a standard isomorphism with its dual space (IRn)*. It is 
not hard to see that this is the isomorphism a 1-+ La, where La(x) = L~ aiXi, 
that we discussed in Section 1.6. We can therefore feel free to identify IR n with 
(IRn)*, only keeping in mind that when we think of an n-tuple a as a linear 
functional, we mean the functional La(x) = L~ aiXi. 

The second conjugate space. Despite the fact that V and V* are not naturally 
isomorphic in general, we shall now see that V is naturally isomorphic to V** = 
(V*)*. 

TheorelD 3.2. The function w: V X V* ~ IR defined by w(~, f) = f(O is 
bilinear, and the mapping ~ 1-+ w~ from V to V** is a natural isomorphism. 

Proof. In this context we generally set ~** = w~, so that ~** is defined by 
~**(f) = fW for all f E V*. The bilinearity of w should be clear, and Theorem 
6.1 of Chapter 1 therefore applies. The reader might like to run through a 
direct check of the linearity of ~ 1-+ ~** starting with (Cl h + C2 ~2) **(1). 

There still is the question of the injectivity of this mapping. If a ~ 0, we 
can find f E V* so that f(a) ~ O. One way is to make a the first vector of an 
ordered basis and to takefas the first functional in the dual basis; thenf(a) = 1. 
Since a**(f) = f(a) ~ 0, we see in particular that a** ~ O. The mapping 
~ ~ ~** is thus injective, and it is then bijective by the corollary of Theorem 
2.4. 0 

If we think of V** as being naturally identified with V in this way, the two 
Hpaces V and V* are symmetrically related to each other. Each is the dual of 
t.he other. In the expression 'f(~)' we think of both symbols as variables and 
t.hen hold one or the other fixed for the two interpretations. In such a situation 
we often use a more symmetric symbolism, such as (~,f), to indicate our inten­
t.ion to treat both symbols as variables. 

LelDlDa 3.1. If {Xi} is the basis in V* dual to the basis {ai} in V, then 
{ai*} is the basis in V** dual to the basis {Xi} in V*. 

1'l'oof. We have ai*(Xj) = Xj(ai) = 5}, which shows that a{* is the ith coordi­
nate projection. In case the reader has forgotten, the basis expansion f = L CjXj 
implies that ai*(f) = f(ai) = (L CjXj) (ai) = Ci, so that ai* is the mapping 
J 1-+ Ci. 0 

Annihilator subspaces. It is in this dual situation that orthogonality first 
naturally appears. However, we shall save the term 'orthogonal' for the latter 
enntext in which V and V* have been identified through a scalar product, and 
shall speak here of the annihilator of a set rather than its orthogonal com­
plement. 
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Defini tion. If A C V, the annihilator of A, A 0, is the set of all f in V * such 
that f(a) = 0 for all a in A. Similarly, if A c V*, then 

AO = {a E V:f(a) = 0 forallfE A}. 

If we view Vas (V*)*, the second definition is included in the first. 

The following properties arc easily establiHhed and will be left as exercises: 

1) A ° iH always a subspace. 
2) ACE =} EO C A 0. 

3) (L(A))O = A 0. 

4) (A u Bt = A ° n W. 
5) A C AOo. 

We now add one more crucial dimenHional identity to thoHe of the last 
section. 

Theorem 3.3. If W ii"l a subspace of V, then d(V) = d(W) + d(WO). 

Proof. Let {i3Yf be a basis for W, and extend it to a basis {{1i} ~ for V. Let 
{Ai}~ be the dual basis in V*. We claim that then {Ai}::'+l is a basis for Woo 
First, if j > In, then Aj({1i) = 0 for i = 1, ... , m, and so Aj is in WO by (3) 
above. Thus {Am+l' ... , An} CWo. Now suppose that f E W O, and let f = 

Lj'=l CjAj be its (dual) basis expansion. Then for each i ::; m we have Ci = 

f({1i) = 0, since {1i E Wand f E WO; therefore, f = L::'+l CjAj. Thus every fin 
WO is in the span of {Ai}::'+l. Altogether, we have shown that WO is the span of 
{Ai}::'+l, as claimed. Then d(WO) + d(W) = (n - m) + m = n = d(V), and 
we are done. D 

Corollary. A 00 = L(A) for every subset A C V. 

Proof. Since (L(A))O = A 0, we have d(L(A)) + d(A 0) = d(V), by the 
theorem. Also d(AO) + d(.400) = d(V*) = d(V). Thus d(AOO) = d(L(A)), 
and since L(A) C A 00, by (5) above, we have L(A) = A 00. D 

The adjoint of T. We shall now see that with every T in Hom(V, W) there is 
naturally associated an element of Hom(W*, V*) which we call the adjoint of 
T and designate T*. One consequence of the intimate relationship between T 
and T* is that the range of T* is exactly the annihilator of the null space of 
T. Combined with our dimensional identities, this implies that the ranges of T 
and T* have the same dimension. And later on, after we have established the 
connection between matrix representations of T and T*, this turns into the very 
mysterious fact that the dimension of the linear span of the row vectors of an m­
by-n matrix is the same as the dimension of the linear span of its column vectors, 
which gives us our notion of the rank of a matrix. In Chapter 5 we shall study a 
situation (Hilbert space) in which we are given a fixed fundamental isomorphism 
between V and V*. If T is in Hom V, then of course T* is in Hom V*, and we 
can use this isomorphism to "transfer" T* into Hom V. But now T can be com-
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pared with its (transferred) adjoint T*, and they may be equal. That is, T may 
be self-adjoint. It turns out that the self-adjoint transformations are "nice" ones, 
as we shall see for ourselves in simple cases, and also, fortunately, that many 
important linear maps arising from theoretical physics are self-adjoint. 

If T E Hom(V, W) and l E W*, then of course loT E V*. Moreover, the 
mapping l ~ loT (T fixed) is a linear mapping from W* to V* by the corollary 
to Theorem 3.3 of Chapter 1. This mapping is called the adjoint of T and is 
designated T*. Thus T* E Hom(W*, V*) and T*(l) = loT for all l E W*. 

Theorelll 3.4. The mapping T ~ T* is an isomorphism from the vector 
space Hom(V, W) to the vector space Hom(W*, V*). Also (T ° S)* = 
S* ° T* under the relevant hypotheses on domains and codomains. 

Proof. Everything we have said above through the linearity of T ~ T* is a 
consequence of the bilinearity of w(l, T) = loT. The map we have called T* 
is simply WT, and the linearity of T ~ T* thus follows from Theorem 6.1 of 
Chapter 1. Again the reader might benefit from a direct linearity check, begin­
ning with (ciTI + c2T2)*(l). 

To see that T ~ T* is injective, we take any T .,t. 0 and choose a E V so 
that T(a) .,t. O. We then choose l E W* so that l(T(a») .,t. o. Since l(T(a») = 
(T*(l») (a), we have verified that T* .,t. o. 

Next, if d(V) = m and d(W) = n, then also d(V*) = m and d(W*) = n . 
bythecorollaryofTheorem3.1,andd(Hom(V, W») = mn= d(Hom(W*, V*») 
by Theorem 2.5. The injective map T ~ T* is thus an isomorphism (by the 
corollary of Theorem 2.4). 

Finally, (T ° S)*l = lo (T ° S) = (loT) ° S = S*(l ° T) = S*(T*(l») = 
(S* ° T*)l, so that (T ° S)* = S* ° T*. D 

The reader would probably guess that T** becomes identified with T under 
the identification of V with V**. This is so, and it is actually the reason for 
calling the isomorphism ~ ~ ~** natural. We shall return to this question at the 
end of the section. Meanwhile, we record an important elementary identity. 

Theorelll 3.5. (R(T*»)O = N(T) and N(T*) = (R(T»)o. 

Proof. The following statements are definitionally equivalent in pairs as they 
occur: l E N(T*), T*(l) = 0, loT = 0, l(T(~») = 0 for all ~ E V, l E (R(T»)o. 
Therefore, N(T*) = (R(T»)o. The other proof is similar and will be left to the 
reader. [Start with a E N(T) and end with a E (R(T*»)o.] D 

The rank of a linear transformation is the dimension of its range space. 

Corollary. The rank of T* is equal to the rank of T. 

Proof. The dimensions of R(T) and (N(T»)O are each d(V) - d(N(T») by 
Theorems 2.4 and 3.3, and the second is d(R(T*») by the above theorem. 
Therefore, d(R(T») = d(R(T*»). D 
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Dyads. Consider any Tin Hom(V, W) whose range M is one-dimensional. If fJ 
is a nonzero vector in 111, then x ~ xfJ is a basis isomorphism (J: ~ --. M and 
rIoT: V --. ~ is a linear functional A E V*. Then T = (J 0 A and T(~) = 

A(~)fJ for all~. We write this as T = A(')fJ, and call any such T a dyad. 

Lemma 3.2. If T is the dyad A(' )fJ, then T* is the dyad fJ**(· )A. 

Proof. (T*(l»)(~) = (l 0 T)W = l(T(~») = l(A(~)fJ) = l(fJ)A(~), so that 
T*(l) = l(fJ)A = fJ**(l)A, and T* = fJ**(· )A. 0 

*Natural isomorphisms again. We are now in a position to illustrate more 
precisely the notion of a natural isomorphism. We saw above that among all the 
isomorphisms from a finite-dimensional vector space V to its second dual, we 
could single one out naturally, namely, the map ~ ~ ~**, where ~**(f) = f(~) 
for all f in V*. Let us call this isomorphism cpv. The technical meaning of the 
word 'natural' pertains to the collection {cpv} of all these isomorphisms; we 
found a way to choose one isomorphism CPV for each space V, and the proof that 
this is a "natural" choice lies in the smooth way the various cpv's relate to each 
other. To see what we mean by this, consider two finite-dimensional spaces V 
and Wand a map Tin Hom(V, W). Then T* is in Hom(W*, V*) and T** = 
(T*)* is in Hom(V**, W**). The setting for the four maps T, T**, cpv, and CPW 
can be displayed in a diagram as follows: 

V __ ----.::T'--___ W 

'I'~j j'l'w 
T** 

V**------- W** 

The diagram indicates two maps, CPw 0 T and T** 0 cpv, from V to W**, and we 
define the collection of isomorphisms {cpv} to be natural if these two maps are 
always equal for any V, Wand T. This is the condition that the two ways of 
going around the diagram give the same result, i.e., that the diagram be com­
mutative. 

Put another way, it is the condition that T "become" T** when V is identi­
fied with V** (by cpv) and W is identified with W** (by cpw). We leave its proof 
as an exercise. 

EXERCISES 

3.1 Let (J be an isomorphism from a vector space V to ~n. Show that the functionals 
{lI'i 0 (J}~ form a basis for V*. 
3.2 Show that the standard isomorphism from ~n to (~n)* that we get by composing 

the coordinate isomorphism for the standard basis for ~n (the identity) with the dual 
basis isomorphism for (~n)* is just our friend a ~ la, where la(x) = L~ a;Xi. (Show 
that the dual basis isomorphism is a ~ L~ a,"1f'i.) 
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3.3 We know from Theorem 1.6 that a choice of a basis {,Bi} for V defines an isomor­
phism from wn to Hom(V, W) for any vector space W. Apply this fact and Theorem 
1.3 to obtain a basis in V*, and show that this basis is the dual basis of {,Bi}. 

3.4 Prove the properties of A ° that are listed in the text. 

3.5 Find (a basis for) the annihilator of -< 1, 1, 1>- in ~3. (Use the isomorphism 
of (~3)* with ~3 to express the basis vectors as triples.) 

3.6 Find (a basis for) the annihilator of {-< 1,1, 1 >-, -< 1,2,3>-} in ~3. 

3.7 Find (a basis for) the annihilator of {-< 1, 1, 1, 1>-, -< 1, 2, 3, 4>-} in ~4. 

3.8 Show that if V = MEt> N, then V* = MO Et> N°. 

3.9 Show that if M is any subspace of an n-dimensional vector space V and d(M) 
In, then M can be viewed as being the linear span of an independent subset of m 
clements of V or as being the annihilator of (the intersection of the null spaces of) an 
independent subset of n - m elements of V*. 

3.10 If B = {Ii} ~ is a finite collection of linear functionals on V (B C V*), then its 
annihilator BO is simply the intersection N = n~ Ni of the null spaces Ni = N(fi) 
of the functionals k State the dual of Theorem 3.3 in this context. That is, take W 
as the linear span of the functionals Ii, so that we V* and lYo C V. State the dual 
of the corollary. 

3.11 Show that the following theorem is a consequence of the corollary of Theorem 3.3. 

Theorem.. Let N be the intersection n~ Ni of the null spaces of a set {fi}~ of 
linear functionals on V, and suppose that gin V* is zero on N. Then g is a linear 
combination of the set {M~. 

3.12 A corollary of Theorem 3.3 is that if W is a proper subspace of V, then there is 
Itt least one nonzero linear functional I in V* such that I = 0 on W. Prove this fact 
directly by elementary means. (You are allowed to construct a suitable basis.) 

3.13 An m-tuple of linear functionals {f;} ~ on a vector space V defines a linear 
mapping at--+ -<it(a), ... ,/m(a) >- from V to ~m. What theorem is being applied 
here? Prove that the range of this linear mapping is the whole of ~m if and only if 
{f;}~ is an independent set of functionals. [Hint: If the range is a proper subspace lV, 
t.here is a nonzero m-tuple a such that L~ aiXi = 0 for all x E W.] 

3.14 Continuing the above exercise, what is the null space N of the linear mapping 
It t--+ -< it (a), ... ,Im(a) >--? If g is a linear functional which is zero on N, show that g 
is a linear combination of the f;, now as a corollary of the above exercise and Theorem 
4.3 of Chapter 1. (Assume the set {fi} ~ independent.) 

3.15 Write out from scratch the proof that T* is linear [for a given Tin Hom(V, W)]. 
Also prove directly that T t--+ T* is linear. 

3.16 Prove the other half of Theorem 3.5. 

3.17 Let 8i be the isomorphism a t--+ a** from Vi to V;** for i = 1, 2, and suppose 
p;iven Tin Hom(V1, V2). The loose statement T = T** means exactly that 

or T** 0 81 = 82 0 T. 

Prove tlIis identity. As usual, do this by proving that it holds for each a in VI. 
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3.18 Let (J: IR,n ~ V be a basis isomorphism. Prove that the adjoint (J* is the coordi­
nate isomorphism for the dual basis if (IR,n)* is identified with IR,n in the natural way. 

3.19 Let w be any bilinear functional on V X TV. Then the two associated linear 
transformations are T: V ~ W* defined by (TW)(71) = w(~, 71) and S: lr ~ V* 
defined by (S(71»)W = w(~, 71). Prove that S = T* if W is identified with IF**. 
3.20 Suppose that fin (IR,m)* has coordinate m-tuple a [fey) = I:~ aiYi] and that T 
in Hom(lR,n, IR,m) has matrix t = {t;;}. Write out the explicit expression of the number 
f( T(x») in terms of all these coordinates. Rearrange the sum so that it appears in 
the form 

n 

g(x) = :E biXi, 
1 

and then read off the formula for b in terms of a. 

4. MATRICES 

Matrices and linear transforlllations. The reader has already learned something 
about matrices and their relationship to linear transformations from Chapter 1; 
we shall begin our more systematic discussion by reviewing this earlier material. 
By popular conception a matrix is a rectangular array of numbers such as 

Note that the first index numbers the rows and the second index numbers the 
columns. If there are m rows and n columns in the array, it is called an m-by-n 
(m X n) matrix. This notion is inexact. A rectangular array is a way of picturing 
a matrix, but a matrix is really a function, just as a sequence is a function. With 
the notation m = {I, ... , m}, the above matrix is a function assigning a num­
ber to every pair of integers -< i, j>- in m X n. It is thus an element of the set 
IR,mXn. The addition of two m X n matrices is performed in the obvious place­
by-place way, and is merely the addition of two functions in IR,mX7i; the same is 
true for scalar multiplication. The set of all m X n matrices is thus the vector 
space IR,mXn, a Cartesian space with a rather fancy finite index set. We shall use 
the customary index notation tij for the value t(i, j) of the function t at -< i, j>-, 
and we shall also write {tij} for t, just as we do for sequences and other indexed 
collections. 

The additional properties of matrices stem from the correspondence between 
m X n matrices {tij} and transformations T E Hom(lR,n, IR,m). 

The following theorem restates results from the first chapter. See Theorems 
1.2, 1.3, and 6.2 of Chapter 1 and the discussion of the linear combination map 
at the end of Section 1.6. 
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Theorem 4.1. Let {tij} be an m-by-n matrix, and let t j be the m-tuple that 
is itsjth column for j = 1, ... , n. Then there is a unique TinHom(~n, ~m) 
such that skeleton T = {tj} , i.e., such that T( oj) = t j for all j. T is defined 
as the linear combination mapping x ~ y = 2:.1=1 Xjt j, and an equivalent 
presentation of T is the collection of scalar equations 

n 

Yi = L tijXj 
j=l 

for i = 1, ... , m. 

Each T in Hom(~n, ~m) arises this way, and the bijection {tij} ~ T from 
~mXn to Hom(~n, ~m) is a natural isomorphism. 

The only additional remark called for here is that in identifying an m X n 
matrix with an n-tuple of m-tuples, we are making use of one of the standard 
identifications of duality (Section 0.10). We are treating the natural isomorphism 
between the really distinct spaces ~mXn and (~m)n as though it were the identity. 

We can also relate T to {tij} by way of the rows of {tij}. As above, taking 
ith coordinates in the m-tuple equation y = 2:.1=1 Xjtj, we get the equivalent 
and familiar system of numerical (scalar) equations Yi = 2:1=1 tijXj for 
i = 1, ... ,m. Now the mapping x ~ 2:1=1 CjXj from ~n to ~ is the most gen­
eral linear functional on ~n. In the above numerical equations, therefore, we 
have simply used the m rows of the matrix {tij} to present the m-tuple of linear 
functionals on ~n which is equivalent to the single m-tuple-valued linear 
mapping T in Hom(~n, ~m) by Theorem 3.6 of Chapter 1. 

The choice of ordered bases for arbitrary finite-dimensional spaces V and W 
allows us to transfer the above theorem to Hom(V, W). Since we are now going 
to correlate a matrix t in ~mXn with a transformation Tin Hom(V, W), we shall 
designate the transformation in Hom(~n, ~m) discussed above by T. 

Theorem 4.2. Let {ajg and {Ili} 7 be ordered bases for the vector spaces V 
and W, respectively. For each matrix {tij} in ~mXn let T be the unique 
element of Hom(V, W) such that T(aj) = 2:7'=1 tiif3i for j = 1, ... , n. 
Then the mapping {tij} ~ T is an isomorphism from ~mXn to Hom(V, W). 

1'1'oof. We simply combine the isomorphism {tij} ~ T of the above theorem 
with the isomorphism T ~ T = 1/; 0 To cp-1 from Hom(~n, ~m) to Hom(V, W), 
where cp and 1/; are the two given basis isomorphisms. Then T is the transforma­
tion described in the theorem, for T(aj) = 1/;(T(cp-1(aj»)) = 1/;(T(oj») = 

f(t;) = 2:7'=1 tijlli' The map {tij} ~ T is the composition of two isomorphisms 
alld so is an isomorphism. 0 

It is instructive to look at what we have just done in a slightly different way. 
(:iven the matrix {tij}, let Tj be the vector in W whose coordinate m-tuple is the 
.It h column t j of the matrix, so that T j = 2:~ 1 tijlli. Then let T be the unique 
(·lement of Hom(V, W) such that T(aj) = Tj for j = 1, ... ,n. Now we have 
()btained T from {tij} in the following two steps: T corresponds to the n-tuple 
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{Tj}i under the isomorphism from Hom(V, W) to wn given by Theorem 1.6, 
and {T j} ~ corresponds to the matrix {tij} by extension of the coordinate isomor­
phism between W and ~m to its product isomorphism from wn to (~m)n. 

Corollary. If y is the coordinate m-tuple of the vector." in W and x is the 
coordinate n-tuple of ~ in V (with respect to the given bases), then." = T(~) 
if and only if Yi = L1=1 tijXj for i = 1, ... , m. 

Proof. We know that the scalar equations are equivalent to y = T(x), which is 
the equation y = ",,-1 0 To <p(x). The isomorphism"" converts this to the 
equation." = T(~). 0 

Our problem now is to discover the matrix analogues of relationship between 
linear transformations. For transformations between the Cartesian spaces ~n 
this is a fairly direct, uncomplicated business, because, as we know, the matrix 
here is a natural alter ego for the transformation. But when we leave the Car­
tesian spaces, a transformation T no longer has a matrix in any natural way, and 
only acquires one when bases are chosen and a corresponding T on Cartesian 
spaces is thereby obtained. All matrices now are determined with respect to 
chosen bases, and all calculations are complicated by the necessary presence of 
the basis and coordinate isomorphisms. There are two ways of handling this 
situation. The first, which we shall follow in general, is to describe things 
directly for the general space V and simply to accept the necessarily more compli­
cated statements involving bases and dual bases and the corresponding loss in 
transparency. The other possibility is first to read off the answers for the 
Cartesian spaces and then to transcribe them via coordinate isomorphisms. 

Lemma 4.1. The matrix element tkj can be obtained from T by the formula 

where fJ.k is the kth element of the dual basis in W*. 

Proof. fJ.k(T(aj)) = fJ.k(Li"=1 tij{Ji) = Li tijfJ.k(fJ;) = Li tij c5~ = tkj. 0 

In terms of Cartesian spaces, T(c5 j). is the jth column m-tuple t j in the 
matrix {tij} of T, and tkj is the kth coordinate of tj. From the point of view of 
linear maps, the kth coordinate is obtained by applying the kth coordinate 
projection 'Irk, so that tkj = 'lrk(T(c5 j)). Under the basis isomorphisms, 'Irk 
becomes fJ.k, T becomes T, c5 j becomes aj, and the Cartesian identity becomes 
the identity of the lemma. 

The transpose. The transpose of the m X n matrix {tij} is the n X m matrix 
{tt} defined by tt = tji for all i, j. The rows of t* are of course the columns of t, 
and conversely. 

Theorem 4.3. The matrix of T* with respect to the dual bases in W* and 
V* is the transpose of the matrix of T. 
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Proof. If s is the matrix of T*, then Lemmas 3.1 and 4.1 imply that 

Sji = a;*(T*(J.LM = a;*(J.Li 0 T) 

= (J.Li 0 T)(aj) = J.Li(T(ai)) = tii' 0 

91 

Definition. The row space of the matrix {tii} E ~mXn is the subspace of ~n 
spanned by the m row vectors. The column space is similarly the span of 
the n column vectors in ~m. 

Corollary. The row and column spaces of a matrix have the same dimension. 

Proof. If T is the element of Hom(~n, ~m) defined by T(~i) = ti, then the 
set {tin of column vectors in the matrix {tii} is the image under T of the stan­
dard basis of ~n, and so its span, which we have called the column space of the 
matrix, is exactly the range of T. In particular, the dimension of the column 
space is d(R(T)) = rank T. 

Since the matrix of T* is the transpose t* of the matrix t, we have, similarly, 
t.hat rank T* is the dimension of the column space of t*. But the column space 
of t* is the row space of t, and the assertion of the corollary is thus reduced to 
the identity rank T* = rank T, which is the corollary of Theorem 3.5. 0 

This common dimension is called the rank of the matrix. 

Matrix products. If T E Hom(~n, ~m) and 8 E Hom(~m, ~l), then of course 
R = 80 T E Hom(~n, ~l), and it certainly should be possible to calculate the 
matrix r of R from the matrices sand t of 8 and T, respectively. To make this 
eomputation, we set y = T(x) and z = 8(y), so that z = (8 0 T)(x) = R(x). 
The equivalent scalar equations in terms of the matrices t and s are 

so that 

n 

Yi = L tihXh 
h=1 

and 
m 

Zk = L SkiYi, 
i=1 

But Zk = L~=1 rkhXh for k = 1, ... ,l. Taking x as ~i, we have 

m 

rki = L Skitii 
i=1 

for all k and j. 

We thus have found the formula for the matrix r of the map R = 80 T: x -t z. 
Of course, r is defined to be the product of the matrices sand t, and we write 
r = s . t or r = st. 

Note that in order for the product st to be defined, the number of columns 
ill the left factor must equal the number of rows in the right factor. We get the 
clement rki by going across the kth row of s and simultaneously down the jth 
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column of t, multiplying corresponding elements as we go, and adding the 
resulting products. This process is illustrated in Fig. 2.1. In terms of the scalar 
product (x, y) = L~ XiYi on ~n, we see that the element Tkj in r = st is the 
scalar product of the kth row of s and the jth column of t. 

(l by m) X (m by n) (l by n) 

n 
I 

Q 
I 
I 

klh mw~-<>--:--<>l 
In 

I 
I 
I 

• I 
I 

Q 

n 
I 
I 
I 

'I'lj 
------------.----

I 

jth column 

s • r 

Fig. 2.1 

Since we have defined the product of two matrices as the matrix of the 
product of the corresponding transformations, i.e., so that the mapping T ~ {tij} 
preserves products (8 0 T ~ st), it follows from the general principle of 
Theorem 4.1 of Chapter 1 that the algebraic laws satisfied by composition of 
transformations will automatically hold for the product of matrices. For 
example, we know without making an explicit computation that matrix multipli­
cation is associative. Then for square matrices we have the following theorem. 

Theorem 4.4. The set M n of square n X n matrices is an algebra naturally 
isomorphic to the algebra Hom(~n). 

Proof, We already know that T ~ {tij} is a natu~al linear isomorphism from 
Hom(~n) to l\f n (Theorem 4.1), and we have defined the product of matrices 
so that the mapping also preserves multiplication. The laws of algebra (for an 
algebra) therefore follow for M n from our observation in Theorem 3.5 of Chapter 
1 that they hold for Hom(~n). 0 

The identity I in Hom(~n) takes the basis vector oj into itself, and therefore 
its matrix e has oj for its jth column: e j = oj. Thus eij = o{ = 1 if i = j 
and eij = o{ = 0 if i ~ f. That is, the matrix e is 1 along the main diagonal 
(from upper left to lower right) and 0 elsewhere. Since I ~ e under the algebra 
isomorphism T ~ t, we know that e is the identity for matrix multiplication. 
Of course, we can check this directly: LJ=l tijejk = tik, and similarly for mul­
tiplying by e on the left. The symbol 'e' is ambiguous in that we have used it 
to denote the identity in the space ~nXn of square n X n matrices for any n. 

Corollary. A square n X n matrix t has a multiplicative inverse if and only 
if its rank is n. 
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Proof. By the theorem there exists an 8 E M n such that 8t = t8 = e if and 
only if there exists an 8 E Hom(lR n ) such that 8 0 T = T 0 8 = I. But such 
an 8 exists if and only if T is an isomorphism, and by the corollary to Theorem 2.4 
this is equivalent to the dimension of the range of T being n. But this dimension 
is the rank of t, and the argument is complete. D 

A square matrix (or a transformation in Hom V) is said to be nonsingular 
if it is invertible. 

Theorem 4.5. If {ai}~' {j3j}i', and {'Yk}11 are ordered bases for the vec­
tor spaces U, V, and lV, respectively, and if T E Hom(U, V) and 
8 E Hom(V, lV), then the matrix of 80 T is the product of the matrices 
of 8 and T (with respect to the given bases). 

Proof. By definition the matrix of 80 T is the matrix of 8 0 T = X-I 0 (8 0 T) 0 cp 

in Hom(lR n , 1R1), where cp and x are the given basis isomorphisms for U and lV. 
But if I/; is the basis isomorphism for V, we have 

80 T = (x- 1 0801/;) 0 (1/;-1 0 To cp) = ;S 0 T, 

and therefore its matrix is the product of the matrices of ;S and T by the defini­
tion of matrix multiplication. The latter are the matrices of 8 and Twith respect 
to the given bases. Putting these observations together, we have the theorem. D 

There is a simple relationship between matrix products and transposition. 

Theorem 4.6. If the matrix product 8t is defined, then so is t*8*, and 
t*8* = (8t)*. 

Proof. A direct calculation is easy. We have 

m m 

(St);k = (St)kj = L Skitij = L t;iS:k = (t* s *) jk· 
i=l i=l 

Thus (8t)* = t*8*, as asserted. D 

This identity is clearly the matrix form of the transformation identity 
(8 0 T)* = T* 0 8*, and it can be deduced from the latter identity if desired. 

Cartesian vectors as matrices. We can view an n-tuple x = -<Xb"" xn> 
as being alternatively either an n X 1 matrix, in which case we call it a column 
vector, or a 1 X n matrix, in which case we call it a row vector. Of course, these 
identifications are natural isomorphisms. The point of doing this is, in part, that 
then the equations Yi = L.f=l tijXj say exactly that the column vector y is the 
matrix product of t and the column vector x, that is, y = t· x. The linear map 
T: IR n ~ IR m becomes left multiplication by the fixed matrix t when IR n is viewed as 
the space of n X 1 column vectors. For this reason we shall take the column 
vector as the standard matrix interpretation of an n-tuple x; then x* is the 
corresponding row vector. 
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In particular, a linear functional F E (IRn)* becomes left multiplication by 
its matrix, which is of course 1 X n (F being from IR n to 1R1), and therefore is 
simply the row matrix interpretation of an n-tuple in IRn. That is, in the natural 
isomorphism a f-+ La from IRn to (IRn)*, where La(x) = L~ aiXi, the functional 
La can now be interpreted as left matrix multiplication by the n-tuple a viewed 
as the row vector a*. The matrix product of the row vector (1 X n matrix) a* 
and the column vector (n X 1 matrix) x is a 1 X 1 matrix a*· x, that is, a 
number. 

Let us now see what these observations say about T*. The number La (T(x» 
is the 1 X 1 matrix a*tx. Since La(T(x» = (T*(La»(x) by the definition of 
T*, we see that the functional T*(La) is left multiplication by the row vector 
a*t. Since the row vector form of La is a* and the row vector form of T*(La) is 
a*t, this shows that when the functionals on IR n are interpreted as row vectors, 
T* becomes right multiplication by t. This only repeats something we already 
know. If we take transposes to throw the row vectors into the standard column 
vector form for n-tuples, it shows that T* is left multiplication by t*, and so 
gives another proof that the matrix of T* is t*. 

Change of basis. If cP: x f-+ ~ = L~ xif3i and (j: y f-+ ~ = L~ Yif3i are two basis 
isomorphisms for V, then A = (j-l 0 cP is the isomorphism in Hom(lR n) which 
takes the coordinate n-tuple x of a vector ~ with respect to the basis {f3i} into the 
coordinate n-tuple y of the same vector with respect to the basis {f3i}. The 
isomorphism A is called the "change of coordinates" isomorphism. In terms 
of the matrix a of A, we have y = ax, as above. 

The change of coordinate map A = (j-l 0 cP should not be confused with the 
similar looking T = (j 0 cP -1. The latter is a mapping on V, and is the element 
of Hom(V) which takes each f3i to f3i. 

T' 

~.m .pI 
T B 

V W 

Til .p2 
IRn u;i1m Fig. 2.2 

We now want to see what happens to the matrix of a transformation 
T E Hom(V, W) when we change bases in its domain and codomain spaces. 
Suppose then that CPl and CP2 are basis isomorphisms from IRn to V, that 1/11 and 1/12 
are basis isomorphisms from IRm to W, and that t' and t" are the matrices of T 
with respect to the first and second bases, respectively. That is, t' is the matrix 
of T' = (1/11)-1 0 To CPl E Hom(lRn, IRm ), and similarly for t". The mapping 
A = cp;-1 0 CPl E Hom(lRn) is the change of coordinates transformation for 
V: if x is the coordinate n-tuple of a vector ~ with respect to the first basis 
[that is, ~ = CPl (x)], then A (x) is its coordinate n-tuple with respect to the second 
basis. Similarly, let B be the change of coordinates map 1/1;-1 01/11 for W. The 
diagram in Fig. 2.2 will help keep the various relationships of these spaces and 
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mappings straight. We say that the diagram is commutative, which means that 
any two paths between two points represent the same map. By selecting various 
pairs of paths, we can read off all the identities which hold for the nine maps 
T, T', Til, <PI, <P2, A, 1/Ib 1/12, B. For example, Til can be obtained by going back­
ward along A, forward along T', and then forward along B. That is, Til = 
BoT' 0 A-I. Since these "outside maps" are all maps of Cartesian spaces, we 
can then read off the corresponding matrix identity 

til = bt'a-1, 

showing how the matrix of T with respect to the second pair of bases is obtained 
from its matrix with respect to the first pair. 

What we have actually done in reading off the above identity from the 
diagram is to eliminate certain retraced steps in the longer path which the 
definitions would give us. Thus from the definitions we get 

BoT' 0 A-I = (1/1"21 0 1/11) 0 (1/111 0 T 0 <PI) 0 (<PlIo «2) = 1/1"21 0 T 0 <P2 = T". 

In the above situation the domain and codomain spaces were different, and 
the two basis changes were independent of each other. If W = V, so that 
T E Hom(V), then of course we consider only one basis change and the formula 
becomes 

t" = a· t' . a-I. 

Now consider a linear functional FE V*. If f" and f' are its coordinate 
n-tuples considered as column vectors (n X 1 matrices), then the matrices of F 
with respect to the two bases are the row vectors (f')* and (f")*, as we saw 
earlier. Also, there is no change of basis in the range space since here W = IR, 
with its permanent natural basis vector 1. Therefore, b = e in the formula 
t" = bt'a-t, and we have (f")* = (f')*a-1 or 

f" = (a-1)*f'. 

We want to compare this with the change of coordinates of a vector ~ E V, 
which, as we saw earlier, is given by 

x" = ax'. 

These changes go in the oppositive directions (with a transposition thrown in). 
For reasons largely historical, functionals F in V* are called covariant vectors, 
and since the matrix for a change of coordinates in V is the transpose of the 
inverse of the matrix for the corresponding change of coordinates in V*, the 
vectors ~ in V are called contravariant vectors. These terms are used in classical 
tensor analysis and differential geometry. 

The isomorphism {tij} f-t T, being from a Cartesian space IRmXn, is auto­
matically a basis isomorphism. Its basis in Hom(V, W) is the image under the 
isomorphism of the standard basis in IRmXn, where the latter is the set of 
Kronecker functions ,p defined by ~kl(i, j) = 0 if <. k, l> ¢ <. i, j> and 
~kl(k, l) = 1. (Remember that in IRA, ~a is that function such that ~a(b) = 0 
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if b r!= a and o"(a) = 1. Here A = m X 'ii and the elements a of A are ordered 
pairs a = <. k, Z>-.) The function okl is that matrix whose columns are all 0 
except for the lth, and the lth column is the m-tuple ok. The corrcsponding 
tran"formation D'd thus takes every ba"is vector (Xj to 0 except (Xl and takes (Xl 
to (3". That i", Dkl((Xj) = 0 if j r!= l, and Dk/((Xl) = (3k. Again, Dkl takes the lth 
basi" vector in V to the !.th basis vector in TV and takes the other basis vectors 
in V to O. 

If ~ = L: :ri(Xi, it follows that Dkl(~) = XI(3". 
Since {Dkl } is the basis defined by the isomorphi"l1l {tij} ~ T, it follows 

that {tij} is the coordinate set of T with respect to this basis; it is thc image of T 
under the coordinate isomorphism. It is interesting to see how this basis expan­
"ion of T automatically appear::;. We have 

so that 

T = L tijD ij . 
i,i 

Our original discu""ion of the dual basi" ill V* was a special ca"e of the 
pre::;ent situation. There we had Hom(V, IR.) = V*, with the permanent "tan­
dard basis 1 for R The basis for V* corresponding to the basis {(Xi} for V 
therefore con"ists of those maps Dl taking (Xl to 1 and (Xj to 0 for j r!= l. Then 
Dl(~) = DI(L: :rjCXj) = Xl, and Dl i" the lth coordinate functional C,l. 

Finally, we note that the matrix expression of T E Hom(lR.n , IR."') is very 
suggestive of the block decompositions of T that we discussed earlier in Section 
1.5. In the exerci"es we shall ask the reader to show that in fact T'd = tkID,,-/-

EXEHCISES 

4.1 Pro\"(' that if w: l' X l' ----f IR. i:-; a bilinear functional on rand T: r ----f r* 
is the corrt'sponding linear transformation defined by (T(1)))(O = w(~, 1)), then for 
any ba:-;is {(XI} for r the matrix t'j = W((XI, (Xj) is the matrix of T. . 

4·.2 Verify that the row and column rank of the following matrix are both 1: 

[ 
-5 

-10 
2 
4 

·1.3 Show by a direct calculation that if the row rank of a 2 X 3 matrix is 1, then so 
is itl'; column rank . 

.t.t Let {fin be a linearly dependent set of e2-functions (twice continuously differ­
entiable real-valued functions) on IR.. Show that the three triples <'fi(X),f:(x),f;'(x) >­
arc dependent for any x. Prove therefore that sin t, cos t, ancl et arc linearly indepen­
dent. (Compute the cieri\'ative triplei; for a well-chosen x.) 
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4.5 Compute 

r ~ -~l' -3 0 
4 2 

4.6 Compute 

[ a bJ X [ d -bJ. 
c d -c a 

From your answer give a necessary and sufficient condition for 

to exist. 

4.7 A matrix a is idempotent if a 2 = a. Find a basis for the vector space ~2X2 of 
all 2 X 2 matrices consisting entirely of idempotents. 

4.8 By a direct calculation show that 

is invertible and find its inverse. 

4.9 Show by explicitly solving the equation 

[; ~]. [: ~] = [~ ~] 
, 

that the matrix on the left is invertible if and only if (the determinant) ad - be is not 
zero. 

4.10 Find a nonzero 2 X 2 matrix 

[; ~] 
whose square is zero. 

4.11 Find all 2 X 2 matrices whose squares are zero. 

4.12 Prove by computing matrix products that matrix multiplication is associative. 

4.13 Similarly, prove directly the distributive law, (r + s) . t = r' t + s . t. 

4.14 Show that left matrix multiplication by a fixed r in ~mXn is a linear transforma­
tion from ~nXp to ~mXp. What theorem in Chapter 1 does this mirror? 

4.15 Show that the rank of a product of two matrices is at most the minimum of their 
ranks. (Remember that the rank of a matrix is the dimension of the range space of its 
associated T.) 

4.16 Let a be an m X n matrix, and let b be n X m. If m > n, show that a . b cannot 
be the identity e (m X m). 
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4.17 Let Z be the subset of 2 X 2 matrices of the form 

Prove that Z is a subalgebra of \R2X2 (that is, Z is closed under addition, scalar multipli­
cation, and matrix multiplication). Show that in fact Z is isomorphic to the complex 
number system. 

4.18 A matrix (necessarily square) which is equal to its transpose is said to be sym­
metric. As a square array it is symmetric about the main diagonal. Show that for any 
m X n matrix t the product t . t* is meaningful and symmetric. 

4.19 Show that if sand t are symmetric n X n matrices, and if they commute, then 
s' t is symmetric. (Do not try to answer this by writing out matrix products.) Show 
conversely that if s, t, and s' t are all symmetric, then sand t commute. 

4.20 Suppose that T in Hom \R 2 has a symmetric matrix and that T is not of the 
form cI. Show that T has exactly two eigenvectors (up to scalar multiples). What 
does the matrix of T become with respect to the "eigenbasis" for \R 2 consisting of these 
two eigenvectors? 

4.21 Show that the symmetric 2 X 2 matrix t has a symmetric square root 8 (82 = t) 
if and only if its eigenvalues are nonnegative. (Assume the above exercise.) 

4.22 Suppose that t is a 2 X 2 matrix such that t* = t-l. Show that t has one of 
the forms 

where a2 + b2 = 1. 

4.23 Prove that multiplication by the above t is a Euclidean isometry. That is, 
show that if y = t· x, where x and y E \R 2, then Ilxll = Ilyll, where Ilxll = (x~ + x~) 1/2. 

4.24 Let {Dkl} be the basis for Hom(V, TV) defined in the text. Taking lr = V, 
show that these operators satisfy the very important multiplication rules 

Dij 0 Dkl = 0 

Dik 0 Dkl = Dil. 

if j ~ k, 

4.25 Keeping the above identities in mind, show that if l ~ 1n, then there are trans­
formations Sand T in Hom V such that 

SoT - T 0 S = Dim. 

Also find Sand T such that 

SoT - T 0 S = Dll - Dmm. 

4.26 Given T in Hom \Rn, we know from Chapter 1 that T = Li.j Tij, where Tij = 

PiTPj and Pi = (Ji'Tri. Now we also have 

Show from the definition of Dij in the text that PiDijP j = Dij and that PiDklPj = 0 
if either i ~ k or j ~ l. Conclude that Tij = tijDij. 
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5. TRACE AND DETERMINANT 

Our aim in this short section is to acquaint the reader with two very special 
real-valued functions on Hom V and to describe some of their properties. 

Theorem 5.1. If V is an n-dimensional vector space, there is exactly one 
linear functional A on the vector space Hom(V) with the property that 
A(S 0 T) = A(T 0 S) for all S, Tin Hom(V) and normalized so that A(I) = n. 
If a basis is chosen for V and the corresponding matrix of T is {tij}, then 
A(T) = L:i'=1 tii, the sum of the elements on the main diagonal. 

Proof. If we choose a basis and define A(T) as L:~ tii, then it is clear that A is a 
linear functional on Hom(V) and that A(I) = n. Moreover, 

n (n ) n 
X(S 0 T) = 2: ~ Sijtji = .2: Sijtji = ~ tjiSij = X(T 0 S) . 

• =1 J=1 ',J=1 ',J 

That is, each basis for V gives us a functional A in (Hom V) * such that A(S 0 T) = 

A(T 0 S), A(l) = n, and A(T) = L: tii for the matrix representation of that basis. 
N ow suppose that J..I. is any element of (Hom(V)) * such that J..I.(S 0 T) = 

J..I.(T 0 S) and J..I.(I) = n. If we choose a basis for V and use the isomorphism 
8: {tij} 1--+ T from ~nXn to Hom V, we have a functional v = J..I. 0 8 on ~nXn 
(v = 8*J..I.) such that v(st) = v(ts) and v(e) = n. By Theorem 4.1 (or 3.1) v is 
given by a matrix c, v(t) = L:i.j=1 Cijtij, and the equation v(st - ts) = 0 
becomes L:i.j,k=1 Cij(Siktkj - Sjktki) = o. 

Weare going to leave it as an exercise for the reader to show that if l rf m, 
then very simple special matrices sand t can be chosen so that this sum reduces 
to Clm = 0, and, by a different choice, to Cll - Cmm = O. 

Together with the requirement that v(e) = n, this implies that Clm = 0 for 
l rf m and Cmm = 1 for m = 1, ... ', n. That is, v(t) = L:~ t mm , and v is the 
A of the basis being used. Altogether this shows that there is a unique A in 
(Hom V)* such that A(S 0 T) = A(T 0 S) for all Sand T and A(I) = n, and that 
A(T) has the diagonal evaluation as L: tii in every basis. 0 

This unique A is called the trace functional, and A(T) is the trace of T. It is 
usually designated tr(T). 

The determinant function tl(T) on Hom V is much more complicated, and 
we shall not prove that it exists until Chapter 7. Its geometric meaning is as 
follows. First, [tl(T)[ is the factor by which T multiplies volumes. More pre­
cisely, if we define a "volume" v for subsets of V by choosing a basis and using 
the coordinate correspondence to transfer to V the "natural" volume on ~n, 
then, for any figure A C V, v(T[AJ) = [tl(T)/. v(A). This will be spelled out in 
Chapter 8. Second, tl(T) is positive or negative according as T preserves or 
reverses orientation, which again is a sophisticated notion to be explained later. 
For the moment we shall list properties of tl(T) that are related to this geometric 
interpretation, and we give a sufficient number to show the uniqueness of tl. 
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v 
...-f--"A 

M-+-+---+--

Fig. 2.3 

We assume that for each finite-dimensional vector space V there is a func­
tion d (or dv when there is any question about domain) from Hom(V) to IR such 
that the following are true: 

a) d(S 0 T) = d(S) d(T) for any S, T in Hom(V). 

b) If a subspace N of V is invariant under T and T is the identity on Nand 
on V IN (that is, T[a] = a for each coset a = a + N of N), then 
d(T) = 1. Such a T is a shearing of V along the planes parallel to N. 
In two dimensions it can be pictured as in Fig. 2.3. 

c) If V is a direct sum V = M + N of T-invariant subspaces M and N, and 
if R = T r M and S = T r N, then d(T) = d(R) d(S). More exactly, 
dv(T) = d},f(R) dN(S). 

d) If V is one-dimensional, so that any Tin Hom(V) is simply multiplication 
by a constant CT, then d(T) is that constant CT. 

e) If V is two-dimensional and T interchanges a pair of independe~t vectors, 
then d(T) = -1. This is clearly a pure orientation-changing property. 

The fact that d is uniquely determined by these properties will follow from 
our discussion in the next section, which will also give us a process for calculating 
d. This process is efficient for dimensions greater than two, but for Tin Hom(1R2) 
there is a simple formula for d(T) which every student should know by heart. 

Theorem 5.2. If T is in Hom(1R2) and {tij} is its 2 X 2 matrix, then 
d(T) = tllt22 - t 12t 21 · 

This is a special case of a general formula, which we shall derive in Chapter 7, 
that expresses d(T) as a sum of n! terms, each term being a product of n numbers 
from the matrix of T. This formula is too complicated to be useful in computa­
tions for large n, but for n = 3 it is about as easy to use as our row-reduction 
calculation in the next section, and for n = 2 it becomes the above simple 
expression. There are a few more properties of d with which every student 
should be familiar. They will all be proved in Chapter 7. 

Theorem 5.3. If T isin Hom V, then d(T*) = d(T). If 8 is an isomorphism 
from V to Wand S = (J 0 ToO-l, then d(S) = d(T). 
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Theorem 5.4. The transformation Tis nonsingular (invertible) if and only 
if A(T) ~ O. 

In the next theorem we consider T in Hom Rn, and we want to think of A(T) 
as a function of the matrix t of T. To emphasize this we shall use the notation 
D(t) = A(T). 

Theorem 5.5 (Cramer's rule). Given an n X n matrix t and an n-tuple y, 
let t Ii y be the matrix obtained by replacing thejth column of t by y. Then 

y = t . x =} D(t)Xi = D(t Ii y) 
for all j. 

If t is nonsingular [D(t) ~ 0], this becomes an explicit form.lla for the 
solution x of the equation y = t· x; it is theoretically important even in those 
cases when it is not useful in practice (large n). 

EXERCISES 

5.1 Finish Theorem 5.1 by applying Exercise 4.25. 

5.2 It follows from our discussion of trace that tr(T) = :E tii is independent of the 
basis. Show that this fact follows directly from 

tr(t . s) = tr(s . t) 

and the change of basis formula in the preceding section. 

5.S Show by direct computation that the function d(t) = tllt22 - t12t21 satisfies 
d(s· t) = des) d(t) (where sand tare 2 X 2 matrices). Conclude that if V is two­
dimensional and d(T) is defined for T in Hom V by choosing a basis and setting 
d(T) = d(t), then d(T) is actually independent of the basis. 

5.4 Continuing the above exercise, show that d(T) = A(T) in any of the following 
cases: 

1) T interchanges two independent vectors. 

2) T has two eigenvectors. 

3) T has a matrix of the form 

[~ ~J. 
Hhow next that if T has none of the above forms, then T = R 0 S, where S is of type 
(1) and R is of type (2) or (3). [Hint: Suppose T(a) = {3, with a and {3 independent. 
Let S interchange a and (3, and consider R = To S.] Show finally that d(T) = A(T) 
for all T in Hom V. (V is two-dimensional.) 

5.5 If t is symmetric and 2 X 2, show that there is a 2 X 2 matrix s such that 
H* = 8-1, A(s) = 1, and sts-l is diagonal. 

5.6 Assuming Theorem 5.2, verify Theorem 5.4 for the 2 X 2 case. 

5.7 Assuming Theorem 5.2, verify Theorem 5.5 for the 2 X 2 case. 
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5.8 In this exercise we suppose that the reader remembers what a continuous func­
tion of a real variable is. Suppose that the 2 X 2 matrix function 

a(t) = [all (t) 
a2l (t) 

has continuous components aiit) for t E (0, 1), and suppose that a(t) is nonsingular 
for every t. Show that the solution y(t) to the linear equation a(t) . y(t) = x(t) has 
continuous components YI (t) and Y2(t) if the functions Xl (t) and X2(t) are continuous. 

5.9 A homogeneous second-order linear differential equation is an equation of the 
form 

Y" + alY' + aoy = 0, 

where al = al (t) and ao = ao(t) are continuous functions. A solution is a e2-function 
1 (i.e., a twice continuously differentiable function) such that I"(t) + al(t)/'(t) + 
ao(t)/(t) = o. Suppose that 1 and g are e2-functions [on (0,1), say] such that the 
2 X 2 matrix 

[ l(t) g(t) ] 
!'(t) g'(t) 

is always nonsingular. Show that there is a homogeneous second-order differential 
equation of which they are both solutions. 

5.10 In the above exercise show that the space of all solutions is a two-dimensional 
vector space. That is, show that if h(t) is any third solution, then h is a linear combi­
nation of 1 and g. 

5.11 Bya "linear motion" of the Cartesian plane 1R2 into itself we shall mean a con­
tinuous map X t--+ t(x) from [0, 1] to the set of 2 X 2 nonsingular matrices such that 
t(O) = e. Show that Ll (t(I)) > O. 

5.12 Show that if Ll(s) = 1, then there is a linear motion whose final matrix t(l) is s. 

6. MATRIX COMPUTATIONS 

The computational process by which the reader learned to solve systems of 
linear equations in secondary school algebra was undoubtedly "elimination by 
successive substitutions". The first equation is solved for the first unknown, and 
the solution expression is substituted for the first unknown in the remaining 
equations, thereby eliminating the first unknown from the remaining equations. 
Next, the second equation is solved for the second unknown, and this unknown is 
then eliminated from the remaining equations. In this way the unknowns are 
eliminated one at a time, and a solution is obtained. 

This same procedure also solves the following additional problems: 

1) to obtain an explicit basis for the linear span of a set of m vectors in IRn; 
therefore, in particular, 

2) to find the dimension of such a subspace; 

3) to compute the determinant of an m X m matrix; 

4) to compute the inverse of an invertible m X m matrix. 
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In this section we shall briefly study this process and the solutions to these 
problems. 

We start by noting that the kinds of changes we are going to make on a 
finite sequence of vectors do not alter its span. 

Lemma 6.1. Let {ai}'f be any m-tuple of vectors in a vector space, and let 
{i3i} 'f be obtained from {ai} 'f by anyone of the following elementary 
operations: 

1) interchanging two vectors; 

2) multiplying some ai by a nonzero scalar; 

3) replacing ai by ai - xaj for some j ~ i and some x E R 

Then 
L( {i3iH) = L( {ai}'f). 

Proof. If ai = ai - xaj, then ai = ai + Xaj. Thus if {i3i} 'f is obtained from 
{ai}'f by one operation of type (3), then {ai}'f can be obtained from {i3i}'f by 
one operation of type (3). In particular, each sequence is in the linear span of 
the other, and the two linear spans are therefore the same. 

Similarly, each of the other operations can be undone by one of the same 
type, and the linear spans are unchanged. 0 

When we perform these operations on the sequence of TOW vectors in a 
matrix, we call them elementary row operations. 

We define the order of an n-tuple x = <Xb"" x n > as the index of the 
first nonzero entry. Thus if Xi = ° for i < j and Xj ~ 0, then the order of x 
isj. The order of <0,0,0,2, -1,0> is 4. 

Let {aij} be an m X n matrix, let V be its row space, and let nl < n2 < 
... < nk be the integers that occur as orders of nonzero vectors in V. We are 
going to construct a basis for V consisting of k elements having exactly the 
above set of orders. 

If every nonzero row in {aij} has order >p, then every nonzero vector x in 
V has order> p, since x is a linear combination of these row vectors. Since some 
vector in V has the minimal order nb it follows that some row in {aij} has order 
1£1. We move such a row to the top by interchanging two rows. We then multiply 
this row x by a constant, so that its first nonzero entry xn1 is 1. Let a 1, ... , an 

be the row vectors that we now have, so that a 1 has order nl and a~l = 1. We 
next subtract multiples of a 1 from each of the other rows in such a way that the 
new ith row has ° as its nl-coordinate. Specifically, we replace a i by a i - a;.l· a1 
for i > 1. The matrix that we thus obtain has the property that its jth column 
is the zero m-tuple for eachj < n1 and its n1th column is 15 1 in IRm. Its first row 
has order nb and every other row has order >nl' Its row space is still V. We 
again call it a. 

Now let x = I:'f cia i be a vector in V with order n2. Then Cl = 0, for if 
Cl ~ 0, then the order of x is nl. Thus x is a linear combination of the second 
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to the mth rows, and, just as in the first case, one of these rows must therefore 
have order n2. 

We now repeat the above process all over again, keying now on this vector. 
We bring it to the second row, make its n2-coordinate 1, and subtract multiples 
of it from all the other rows (including the first), so that the resulting matrix 
has 52 for its n2th column. Next we find a row with order n3, bring it to the 
third row, and make the n3th column 53, etc. 

We exhibit this process below for one 3 X 4 matrix. This example is dis­
honest in that it has been chosen so that fractions will not occur through the 
application of (2). The reader will not be that lucky when he tries his hand. 
Our defense is that by keeping the matrices simple we make the process itself 
more apparent. 

[~ 
-1 

2 
4 

2 
4 
o 

---+ 
(3) 

---+ [00
1 

(3) 

2 
-1 

4 

1 
-1 

2 

o 
1 
o 

4 
2 
o 
2 
2 

-4 

4 
-2 

o 
o 4 
1 -2 
o 0 

-11 

;J 

-~l 11 

~l 

1 
-1 

4 

1 
1 
2 

o 
1 
o 

2 
2 
o 
2 

-2 
-4 

4 
-2 

o 

Note that from the final matrix we can tell that the orders in the row space 
are 1, 2, and 4, whereas the original matrix only displays the orders 1 and 2. 

We end up with an m X n matrix having the same row space V and the 
following special structure: 

1) For 1 :s; j :s; k the jth row has order nj. 

2) If k < m, the remaining m - k rows are zero (since a nonzero row would 
have order >nk, a contradiction). 

3) The njth column is 5j • 

It follows that any linear combination of the first k rows with coefficients 
Cb .•• , Ck has Cj in the njth place, and hence cannot be zero unless all the 
c/s are zero. These k rows thus form a basis for V, solving problems (1) and (2). 

Our final matrix is said to be in row-reduced echelon form. It can be shown to 
be uniquely determined by the space V and the above requirements relating its 
rows to the orders of the elements of V. Its rows form the canonical basis of V. 
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A typical row-reduced echelon matrix is shown in Fig. 2.4. This matrix is 8 X 11, 
its orders are 1, 4, 5, 7, 10, and its row space has dimension 5. It is entirely 0 
below the broken line. The dashes in the first five lines represent arbitrary num­
bers, but any change in these remaining entries changes the spanned space V. 

We shall now look for the significance of the row-reduction operations from 
the point of view of general linear theory. In this discussion it will be convenient 
to use the fact from Section 4 that if an n-tuplet in IR n is viewed as an n X 1 
matrix (i.e., as a column vector), then the system of linear equations Yk = 
L:.i=1 aiixj, i = 1, ... , m, expresses exactly the single matrix equation y = a' x. 
Thus the associated linear transformation A E Hom(lRn, IRm) is now viewed as 
being simply multiplication by the matrix a; y = A(x) if and only if y = a· x. 

1 - - 0 0 - 0 0 -
------, 

I 1 0 - 0 0 -
L-, 

I 1 - 0 0 -
L __ -, 

I 1 0 -
L ___ .., 

I 1 -

o - 0 

- 0 

- 0 
Fig. 2.4 

We first note that each of our elementary row operations on an m X n 
matrix a is equivalent to premultiplication by a corresponding m X m elementary 
matrix u. Supposing for the moment that this is so, we can find out what u 
is by using the m X m identity matrix e. Since U· a = (u· e) . a, we see that 
the result of performing the operation on the matrix a can also be obtained by 
premultiplying a by the matrix u . e. That is, if the elementary operation can 
be obtained as matrix multiplication by u, then the multiplier is u . e. This 
argument suggests that we should perform the operation on e and then see if 
premultiplying a by the resulting matrix performs the operation on a. 

If the elementary operation is interchanging the ioth and ioth rows, then 
performing it on e gives the matrix a with Ukk = 1 for k ~ io and k ~ io, 
uioio = Uioio = 1 and Ukl = 0 for all other indices. Moreover, examination of 
the sums defining the elements of the product matrix u . a will show that pre­
multiplying by this u does just interchange the ioth and ioth rows of any 
In X n matrix a. 

In the same way, multiplying the ioth row of a by c is equivalent to pre­
multiplying by the matrix u which is the same as e except that Uioio = c. 
Finally, multiplying theioth row by x and adding it to the ioth row is equivalent 
to premultiplying by the matrix u which is the identity e except that uioio is x 

instead of O. 
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These three elementary matrices are indicated schematically in Fig. 2.5. 
Each has the value 1 on the main diagonal and 0 off the main diagonal except as 
indicated. 

io jo io jo 

io 
~I I 

io c io x 

-I~i-
jo 

-1-1~ 
Fig. 2.5 

These elementary matrices u are all nonsingular (invertible). The row inter­
change matrix is its own inverse. The inverse of multiplying the jth row by e 
is multiplying the same row by lie. And the inverse of adding e times the jth 
row to the ith row is adding -e times the jth row to the ith row. 

If u 1, u 2 , ... , uP is a sequence of elementary matrices, and if 

b = up· Up-I • •••• u\ 

then b· a is the matrix obtained from a by performing the corresponding 
sequence of elementary row operations on a. If u \ ... , uP is a sequence which 
row reduces a, then r = b· a is the resulting row-reduced echelon matrix. 

Now suppose that a is a square m X m matrix and is nonsingular (invertible). 
Thus the dimension of the row space is m, and hence there are m different orders 
n}, ... ,nk' That is, k = m, and since 1 ~ nl < n2 < ... < nm = m, we 
must also have ni = i, i = 1, ... ,m. Remembering that the nith column in r is 
5\ we see that now the ith column in r is 5i and therefore that r is simply the 
identity matrix e. Thus b . a = e and b is the inverse of a. 

Let us find the inverse of 

by this procedure. The row-reducing sequence is 

2J ~ [1 2J ~ [1 4 (3) 0 -2 (2) 0 21J (3) [~ 
The corresponding elementary matrices are 
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The inverse is therefore the product 

[ 1 -2][1 0][ 1 o 1 0 -l -3 
0] = [-; ~]. 
1 2-2 

Check it if you are in doubt. 
Finally, since h· e = h, we see that we get h from e by applying the same 

row operations (gathered together as premultiplication by h) that we used to 
reduce a to echelon form. This is probably the best way of computing the inverse 
of a matrix. To keep track of the operations, we can place e to the right of a to 
form a single m X 2m matrix a I e, and then row reduce it. In echelon form it 
will then be the m X 2m matrix e I h, and we can read off the inverse h of the 
original matrix a. 

Let us recompute the inverse of 

D !] 
by this method. We row reduce 

[~ 2 1 ~l 4 0 
getting 

[! 2 1 ~] [~ -~I 1 ~] -- [~ 2 1 -~] 4 0 (3) -3 (2) 1 ~ 
2 

(3) [~ ~I -2 -~] , t 
from which we read off the inverse to be 

[-; 
2 -~l 

Finally we consider the problem of computing the determinant of a square 
m X m matrix. We use two elementary operations (one modified) as follows: 

1') interchanging two rows and simultaneously changing the sign of one of 
them; 

2) as before, replacing some row ai by ai - xaj for some j ~ i. 

When applied to the 1"OWS of a square matrix, these operations leave the determi­
nant unchanged. This follows from the properties of determinants listed in 
Section 5, and its proof will be left as an exercise. Moreover, these properties 
will be trivial consequences of our definition of a determinant in Chapter 7. 

Consider, then, a square m X m matrix {aij}. We interchange the first 
and pth rows to bring a row of minimal order nl to the top, and change the sign 
of the row being moved down (the first row here). We do not make the leading 
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coefficient of the new first row 1; this elementary operation is not being used 
now. We do subtract multiples of the first row from the remaining rows, in order 
to make all the remaining entries in the nlth column O. The nlth column is now 
C10 l , where Cl is the leading coefficient in the first row. And the new matrix has 
the same determinant as the original matrix. 

We continue as before, subject to the above modifications. We change the 
sign of a row moved downward in an interchange, we do not make leading 
coefficients 1, and we do clear out the njth column so that it becomes CjOn;, 

where Cj is the leading coefficient of the jth row (1 ::=; j ::=; k). As before, the 
remaining m - k rows are 0 (if k < m). Let us call this resulting matrix 
semireduced. Note that we can find the corresponding reduced echelon matrix 
from it by k applications of (2); we simply multiply the jth row by 1/ Cj for 
j = 1, ... ,k. If s is the semi reduced matrix which we obtained from a using 
(1') and (3), then we shall show below that its determinant, and therefore the 
determinant of a also, is the product of the entries on the main diagonal: IIi= 1 sii. 
Recapitulating, we can compute the determinant of a square matrix a by using 
the operations (1') and (3) to change a to a semireduced matrix s, and then 
taking the product of the numbers on the main diagonal of s. 

If we apply this process to 

D !J, 
we get 

4
2J (3) [ 1 2J ~ [1 OJ o -2 (3) 0 -2 ' 

and the determinant is 1 . (-2) = -2. Our 2 X 2 determinant formula, applied 
to 

gives 1 . 4 - 2· 3 = 4 - 6 = -2. 
If the original matrix {aij} is nons in gular, so that k = m and ni = i for 

i = 1, ... , m, then the jth column in the semireduced matrix is CjOi, so that 
Sjj = CiJ and we are claiming that the determinant is the product IIi=l Ci of the 
leading coefficients. 

To see this, note that if T is the transformation in Hom([Rn) corresponding 
to our semireduced matrix, then T( oj) = CjO j , so that [Rn is the direct sum of n 

T-invariant, one-dimensional subspaces, on the jth of which T is multiplication 
by Cj. It follows from (c) and (d) of our list of determinant properties that 
t:.(T) = II~ Cj = II~ Sjj. This is nonzero. 

On the other hand, if {aij} is singular, so that k = d(V) < m, then the mth 
row in the semi reduced matrix is 0 and, in particular, Smm = O. The product 
IIi Sii is thus zero. Now, without altering the main diagonal, we can subtract 
multiples of the columns containing the leading row entries (the columns with 
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indices nj) to make the mth column a zero column. This process is equivalent 
to postmultiplying by elementary matrices of type (2) and, therefore, again 
leaves the determinant unchanged. But now the transformation S of this matrix 
leaves ~m-l invariant (as the span of Clt, ... , Clm - 1 in ~m) and takes Clm to 0, 
so that t.(S) = 0 by (c) in the list of determinant properties. So again the 
determinant is the product of the entries on the main diagonal of the semi­
reduced matrix, zero in this case. 

We have also found that a matrix is nonsingular (invertible) if and only if its 
determinant is nonzero. 

EXERCISES 

6.1 Compute the canonical basis of the row space of 

[-1 

2 1 j 2 3 
-3 0 

4 -1 

6.2 Do the same for 

U 
2 4 :l 2 3 

-2 0 

6.3 Do the same for the above matrix but with a different first choice. 

6.4 Calculate the inverse of 

[~ 
2 
3 
4 ~] 

by row reduction. Check your answer by multiplication. 

6.5 Row reduce 

[~ 
2 
3 
4 

3 
4 
7 

Yl] 
Y2 . 

Y3 

How does the fourth column in the row-reduced matrix compare with the inverse of 

[~ 
computed in the above exercise? Explain. 

2 
3 
4 ~] 

6.6 Check whether or not -< 1, 1, 1, 1>-, -< 1, 2, 3, 4>-, -< 0, 1, 0, 1>-, and 
-< 4, 3, 2, 1>- are linearly independent by row reducing. Part of one of the row-reduc­
ing operations is unnecessary for this check. What is it? 
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6.7 Let us call a k-tuple of vectors {ai}t in [Rn canonical if the k X n matrix a with 
ai as its ith row for all i is in row-reduced echelon form. Supposing that an n-tuple ~ 
is in the row space of a, we can read off what its coordinates are with respect to the 
above canonical basis. What are they? How then can we check whether or not an 
arbitrary n-tuple ~ is in the row space? 

6.8 Use the device of row reducing, as suggested in the above exercise, to determine 
whether or not 51 = -< 1,0,0,0> is in the span of -< 1,1,1,1 >, -< 1,2,3,4>, and 
-< 2,0,1, -1 >. Do the same for -< 1,2,1,2>, and also for -< 1,1,0,4>. 

6.9 Supposing that a ,t. 0, show that 

[; ~J 
is invertible if and only if ad - bc ,t. ° by reducing the matrix to echelon form. 

6.10 Let a be an m X n matrix, and let u be the nonsingular matrix that row reduces 
a, so that r = u' a is the row-reduced echelon matrix obtained from a. Suppose that r 
has m - k > ° zero rows at the bottom (the kth row being nonzero). Show that the 
bottom m - k rows of u span the annihilator (range A)O of the range of A. That is, 
y = ax for some x if and only if 

m 

L: CiYi = ° 
1 

for each m-tuple c in the bottom m - k rows of u. [Hint: The bottom row of r is 
obtained by applying the bottom row of u to the columns of a.] 

6.11 Remember that we find the row-reducing matrix u by applying to the m X m 
identity matrix e the row operations that reduce a to r. That is, we row reduce the 
m X (n + m) juxtaposition matrix a I e to r I u. Assuming the result stated in the 
above exercise, find the range of A E Hom([R3) as the null space of a functional if the 
matrix of A is 

2 
3 
5 

6.12 Similarly, find the range of A if the matrix of A is 

r~ ~ iJ 
6.13 Let a be an m X n matrix, and let a be row reduced to r. Let A and R be the 
corresponding operators in Hom([Rn, [Rm) [so that A(x) = a . x]. Show that A and R 
have the same null space and that A * and R* have the same range space. 

6.14 Show that solving a system of m linear equations in n unknowns is equivalent 
to solving a matrix equation 

k = tx 

for the n-tuple x, given the m X n matrix t and the m-tuple k. Let T E Hom([Rn, [Rm) 

be multiplication by t. Review the possibilities for a solution from our general linear 
theory for T (range, null space, affine subspace). 
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6.15 Let b = c I d be the m X (n + p) matrix obtained by juxtaposing the m X n 
matrix c and the m X p matrix d. If a is an l X m matrix, show that 

a' b = ac I ad. 

State the similar result concerning the expression of b as the juxtaposition of n column 
m-tuples. State the corresponding theorem for the "distributivity" of right multipli­
cation over juxtaposition. 

6.16 Let a be an m X n matrix and k a column m-tuple. Let b II be the m X (n + 1) 
matrix obtained from the m X (n + 1) juxtaposition matrix a I k by row reduction. 
Show that a . x = k if and only if b . x = I. Show that there is a solution x if and only 
if every row that is zero in b is zero in I. Restate this condition in terms of the notion 
of row rank. 

6.17 Let b be the row-reduced echelon matrix obtained from an m X n matrix a. 
Thus b = U· a, where u is nonsingular, and Band i1 have the same null space (where 
B E Hom(~n, ~m) is multiplication by b). We can read off from b a basis for a sub­
space W C ~n such that B I W is an isomorphism onto range B. What is this basis? 
We then know that the null space N of B is a complement of W. One complement of W, 
call it M, can be read off from W. What is M? 

6.18 Continuing the above exercise, show that for each standard basis vector Oi in M 
we can read off from the matrix b a vector (Xi in W such that Oi - (Xi E N. Show that 
these vectors {oi - (Xi} form a basis for N. 

6.19 We still have to show that the modified elementary row operations leave the 
determinant of a square matrix unchanged, assuming the properties (a) through (e) 
from Section 5. First, show from (a), (c), (d), and (e) that if T in Hom ~2 is defined 
by T(ol) = 02 and T(02) = -01, then /:;'(T) = 1. Do this by a very simple factor­
ization, T = R 0 S, where (e) can be applied to S. Conclude that a type (1') elementary 
matrix has determinant 1. 

6.20 Show from the determinant property (b) that an elementary matrix of type (2) 
has determinant 1. Show, therefore, that the modified elementary row operations on a 
square matrix leave its determinant unchanged. 

*7. THE DIAGONALIZATION OF A QUADRATIC FORM 

As we mentioned earlier, one of the crucial problems of linear algebra is the 
analysis of the "structure" of a linear transformation T in Hom V. From the 
point of view of bases, every theorem in this area asserts that with the choice 
of a special basis for V the matrix of T can be given the such-and-such simple 
form. This is a very difficult part of the subject, and ,ye are only making con­
tact with it in this book, although Theorem 5.5 of Chapter 1 and its corollary 
form a cornerstone of the structural results. 

In this section we are going to solve a simpler problem. In the above lan­
guage it is the problem of choosing a basis for V making simple the matrix of a 
transformation T in Hom(V, V*). Such a transformation is equivalent to a 
bilinear functional on V (by Theorem 6.1 of Chapter 1 and Theorem 3.2 of this 
chapter); we shall tackle the problem in this setting. 
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Let V be a finite-dimensional real vector space, and let w: V X V ~ IR be 
a bilinear functional. If {aig is a basis for V, then w determines a matrix 
tij = w(ai' aj). We know that if w'l(~) = w(~, 7]), then W'l E V* and 7] 1-+ W'l is a 
linear mapping T from V to V*. We leave it as an exercise for the reader to 
show that {tij} is the matrix of T with respect to the basis {ai} for V and its 
dual basis for V* (Exercise 4.1). 

If ~ = L~ Xiai and 7] = L~ Yjaj, then 

i,j i,i 

In particular, if we set q(~) = w(~, ~), then q(~) = Li,j tijXiXj is a homogeneous 
quadratic polynomial in the coordinates Xi. 

For the rest of this section we assume that w is symmetric: w(~, 7]) = 
w(7], ~). Then we can recover w from the quadratic form q by 

( t ) _ qa + 7]) - qa - 7]) 
w ,>,7] - 4 ' 

as the reader can easily check. In particular, if the bilinear form w is not iden­
tically zero, then there are vectors ~ such that q(~) = wa, ~) ~ O. 

What we want to do is to show that we can find a basis {aig for V such that 
w(ai' aj) = 0 if i ~ j and w(ai' ai) has one of the three values 0, ± 1. Borrow­
ing from the standard usage of scalar product theory (see Chapter 5), we say 
that such a basis is orthonormal. Our proof that an orthonormal basis exists will 
be an induction on n = dim V. If n = 1, then any nonzero vector (3 is a basis, 
and if w({3, (3) ~ 0, then we can choose a = x{3 so that x 2w({3, (3) = w(a, a) = 

±I, the required value of X obviously being x = /w({3, (3)/-1/2. In the general 
case, if w is the zero functional, then any basis will trivially be orthonormal, and 
we can therefore suppose that w is not identically O. Then there exists a (3 such 
that w({3, (3) ~ 0, as we noted earlier. We set an = x{3, where x is chosen to 
make q(an) = wean, an) = ±1. The nonzero linear functionalf(~) = w(~, an) 
has an (n - I)-dimensional null space N, and if we let w' be the restriction of 
w to N X N, then w' has an orthonormal basis {aig- 1 by the inductive hypoth­
esis. Also w(ai' an) = wean, ai) = 0 if i < n, because ai is in the null space of f. 
Therefore, {aig is an orthonormal basis for w, and we have reached our goal: 

Theorelll 7.1. If w is a symmetric bilinear functional on a finite-dimensional 
real vector space V, then V has an w-orthonormal basis. 

For an w-orthonormal basis the expansion w(~, 7]) = L xiYjw(ai, aj) reduces to 

n 

w(~, 7]) = L: xiYiq(ai), 
i=1 

where q( ai) = ± 1 or O. If we let V 1 be the span of those basis vectors ai for 
which q(ai) = 1, and similarly for V -1 and V o, then we see that q(~) > 0 for 
every nonzero ~ in V b q(~) < 0 for every nonzero vector ~ in V -b and q = 0 
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on Vo. Furthermore, V = V 1 9 V -1 9 V 0, and the three subspaces are 
w-orthonormal to each other (which means that w{~, 71) = 0 if ~ E V 1 and 
71 E V -1> etc.). Finally, q(~) ::; 0 for every ~ in V -1 9 Yo· 

If we choose another orthonormal basis {~i} and let W 1, W -1, and W 0 be 
its corresponding subspaces, then W 1 may be different from V 1, but their dimen­
sions must be the same. For W 1 n (V -1 9 V 0) = {O}, since any nonzero ~ 
in this intersection would yield the contradictory inequalities q(~) > 0 and 
q(~) ::; o. Thus W 1 can be extended to a complement of V -1 9 Yo, and since 
V 1 is a complement, we have d(W 1) ::; d(V 1). Similarly, d(V 1) ::; d(W 1), 
and the dimensions therefore are equal. Incidentally, this shows that W 1 is a 
complement of V -1 9 Yo. In exactly the same way, we find that d(W -1) = 
d(V -1) and finally, by subtraction, that d(W 0) = d(Vo). It is conventional to 
reorder an w-orthonormal basis {ai} 1 so that all the a/s with q(ai) = 1 come first, 
then those with q(ai) = -1, and finally those with q(ai) = o. Our results 
above can then be stated as follows: 

Theorelll 7.2. If w is a symmetric bilinear functional on a finite-dimensional 
space V, then there are integers nand p such that if {ai} '{' is any w-ortho­
normal basis in conventional order, and if ~ = L:,{, Xiai, then 

q(~) = x~ + ... + x; - X;+1 - ... - X;+n 
p p+n 

=:E x~ - :E xl 
1 p+1 

The integer p - n is called the signature of the form q (or its associated 
symmetric bilinear functional w), and p + n is its rank. Note that p + n is the 
dimension of the column space of the above matrix of q, and hence equals the 
dimension of the range of the related linear map T. Therefore, p + n is the 
rank of every matrix of q. 

An inductive proof that an orthonormal basis exists doesn't show us how to 
find one in practice. Let us suppose that we have the matrix {tii} of w with 
respect to some basis {aig before us, so that w(~, 71) = L: XiYitij, where 
~ = L:1 Xiai, 71 = 1:1 Yiai, and tii = w(ai' ai), and we want to know how to go 
about actually finding an orthonormal basis {~i} 1. The main problem is to find 
an orthogonal basis; normalization is then trivial. The first objective is to find 
a vector ~ such that w(~, m 0;6- o. If some tii = w(ai' ai) is not zero, we can take 
~ = ai. If all tii = 0 and the form w is not the zero form, there must be some 
Iii 0;6- 0, say t12 0;6- O. If we set 1'1 = a1 + a2 and I'i = ai for i > 1, then {I'ig 
is a basis, and the matrix s = {Sii} of w with respect to the basis {-Y i} has 

Sll = W(I'1> 1'1) = w(a1 + a2, a1 + a2) = tll + 2t12 + t22 = 2t12 0;6- O. 

Similarly, sii = tii if either i or j is greater than 1. 
For example, if w is the bilinear form on 1R2 defined by w(x, y) = X1Y2 + 

X2Y1, then its matrix tii = w(,si, ,si) is 

[~ ~J' 
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and we must change the basis to get tt 1 ~ o. According to the above scheme, 
we set 'Yl = 15 1 + 152 and 'Y2 = 152 and get the new matrix Sij = W('Yi' 'Yj), 
which works out to 

[i ~]. 
The next step is to find a basis for the null space of the functional w(~, 'Y 1) = 

L XiS I i· We do this by modifying 'Y 2, ... , 'Y n; we replace 'Y j by 'Y j + e'Y 1 and 
calculate e so that this vector is in the null space. Therefore, we want 0 = 
w('Yj + e'Yl, 'Yl) = Slj + eS11, and so e = -sljls11. Note that we cannot take 
this orthogonalizing step until we have made Sl1 ~ o. The new set still spans 
and thus is a basis, and the new matrix {rij} has r11 ~ 0 and rlj = rjl = 0 for 
j > 1. We now simply repeat the whole procedure for the restriction of W to this 
(n - I)-dimensional null space, with matrix {rij : 2 ~ i, j ~ n}, and so on. 
This is a long process, but until we normalize, it consists only of rational oper­
ations on the original matrix. We add, subtract, multiply, and divide, but we 
do not have to find roots of polynomial equations. 

Continuing our above example, we set fh = 'Y b but we have to replace 'Y 2 
by fJ2 = 'Y2 - (SI2Is11)'Y1 = 'Y2 - t'Yl. The final matrix rij = W(fJi, fJj) 
has 

rll = Sl1 = 2, 

{rij} = [2 ?] . o -"2 

The final basisisfJl = 'Y 1 = 15 1 + c52andfJ2 = 'Y2 - t'Yl = 152 - t(c5 1 + 15 2)= 
(15 2 - 15 1)/2. 

The steps we had to take above are reminiscent of row reduction, but since 
we are changing bases simultaneously in the domain and range spaces of the 
transformation T: V ---? V* associated with w, each step involves simultaneously 
premultiplying and postmultiplying by an elementary matrix. That is, we are 
simultaneously row and column reducing. It should be intuitively clear that this 
has to be the case if we are to operate on a symmetric matrix in such a way as 
to keep it symmetric. -

For additional information about quadratic forms, we go back to the change 
of basis formula for the matrix of a transformation: til = b· t'· a-I. Here the 
transformation T associated with the form w is from V to V*, and so b = (a*)-I, 
according to our calculations in Section 4. Now one of the properties of the 
determinant function is that d(T*) = d(T), and so d(a*) = d(a). Therefore, 
if t and s are the matrices of a quadratic form with respect to a first and second 
basis in V, and if a is the change of basis matrix, then s = (a*)-I. t· a-I and 
deS) = (d(a-1))2 d(t). Therefore, a quadratic form has parity. If it is non­
singular, then its determinant is either always positive or always negative, and 
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we can call it even or odd. In our continuing example, the beginning and final 
matrices 

[~ ~] and 

both have determinant -1. 
In the two-dimensional case, the determinant of a form with respect to an 

orthonormalized basis is + 1 if the diagonal elements are both + 1 or both - 1 , 
and -1 if they are of opposite sign. We can therefore read off the signature of a 
nonsingular form over a two-dimensional space without orthonormalizing. If the 
determinant t11t22 - (t 12)2 is positive, the signature is ±2, and we can deter­
mine which by looking at t11 (since t11 is then unchanged by our orthogonalizing 
procedure). Thus the signature is +2 or -2 depending on whether tIl > 0 or 
t11 < o. If the determinant is negative, then the signature is O. Thus the 
signature of the form w(x, y) = X1Y2 + X2Yr, with matrix 

[~ ~], 
is known to be 0, without any calculation. 

Theorems 7.1 and 7.2 are important for the classification of critical points 
of real-valued functions on vector spaces. We shall see in Section 3.16 that the 
second differential of such a function F is a symmetric bilinear functional, and 
that the signature of its form has the same significance in determining the be­
havior of F near a point at which its first differential is zero that the sign of 
the second derivative has in the elementary calculus. 

A quadratic form q is said to be definite if q(~) is never zero except for ~ = O. 
Then q(~) must always have the same sign, and q is accordingly called positive 
definite or negative definite. Looking back to Theorem 7.2, it should be obvious 
that q is positive definite only if p = dey) and n = 0, and negative definite 
only if n = dey) and p = o. A symmetric bilinear functional whose associated 
quadratic form is positive definite is called a scalar product. This is a very 
important notion on general vector spaces, and the whole of Chapter 5 is de­
voted to developing some of its implications. 



CHAPTER 3 

THE DIFFERENTIAL CALCULUS 

Our algebraic background is now adequate for the differential calculus, but we 
still need some multidimensional limit theory. Roughly speaking, the differ­
ential calculus is the theory of linear approximations to nonlinear mappings, 
and we have to know what we mean by approximation in general vector settings. 
We shall therefore start this chapter by studying the notion of a measure of 
length, called a norm, for the vectors in a vector space V. We can then study 
the phenomenon suggested by the way in which a tangent plane to a surface 
approximates the surface near the point of tangency. This is the general theory 
of unique local linear approximations of mappings, called differentials. The 
collection of rules for computing differentials includes all the familiar laws of 
the differential calculus, and achieves the same goal of allowing complicated 
calculations to be performed in a routine way. However, the theory is richer 
in the multidimensional setting, and one new aspect which we must master is 
the interplay between the linear transformations which are differentials and their 
evaluations at given vectors, which are directional derivatives in general and 
partial derivatives when the vectors belong to a basis. In particular, when the 
spaces in question are finite-dimensional and are replaced by Cartesian spaces 
through a choice of bases, then the differential is entirely equivalent to its matrix, 
which is a certain matrix of partial derivatives called the Jacobian matrix of the 
mapping. Then the rules of the differential calculus are expressed in terms of 
matrix operations. 

Maximum and minimum points of real-valued functions are found exactly 
as before, by computing the differential and setting it equal to zero. However, 
we shall neglect this subject, except in starred sections. It also is much richer 
than its one-variable counterpart, and in certain infinite-dimensional situations 
it becomes the subject called the calculus of variations. 

Finally, we shall begin our study of the inverse-mapping theorem and the 
implicit-function theorem. The inverse-mapping theorem states that if a mapping 
between vector spaces is continuously differentiable, and if its differential at a 
point a is invertible (as a linear transformation), then the mapping itself is 
invertible in the neighborhood of a. The implicit-function theorem states that if 
a continuously differentiable vector-valued function G of two vector variables 
is set equal to zero, and if the second partial differential of G is invertible (as a 
linear mapping) at a point -< a, (3 >- where G(a, (3) = 0, then the equation 

116 
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G(~7J) = 0 can be solved for 7J in terms of ~ near this point. That is, there is a 
uniquely determined mapping 7J = F(~) defined near a such that (3 = F(a) and 
such that G(~, F(~») = 0 in the neighborhood of a. These two theorems are 
fundamental to the further development of analysis. They are deeper results 
than our work up to this point in that they depend on a special property of 
vector spaces called completeness; we shall have to put off part of their proofs to 
the next chapter, where we shall study completeness in a fairly systematic way. 

In a number of starred sections at the end of the chapter we present some 
harder material that we do not expect the reader to master. However, he should 
try to get a rough idea of what is going on. 

I. REVIEW IN IR 

Every student of the calculus is presumed to be familiar with the properties of 
the real number system and the theory of limits. But we shall need more than 
familiarity at this point. It will be absolutely essential that the student under­
stand the E-definitions and be able to work with them. 

To be on the safe side, we shall review some of this material in the setting of 
limits of functions; the confident reader can skip it. We suppose that all the 
functions we consider are defined at least on an open interval containing a, 
except possibly at a itself. The need for this exception is shown by the difference 
quotients of the calculus, which are not defined at the point near which their 
hchavior is crucial. 

Definition. f(x) approaches l as x approaches a (in symbols, f(x) ~ l as 
x ~ a) if for every positive E there exists a positive ~ such that 

o < Ix - al < ~ ~ If(x) - II < E. 

We also say that l is the limit of f(x) as x approaches a and write 
lim",--->af(x) = l. The displayed statement in the definition is understood to be 
universally quantified in x, so that the definition really begins with the three 
quantifiers (VE>O)(3~>O)(Vx). These prefixing quantifiers make the definition 
sound artificial and unidiomatic when read as 
ordinary prose, but the reader will remember from 
our introductory discussion of quantification that 
t his artificiality is absolutely necessary in order 
for the meaning of the sentence to be clear and 
unambiguous. A ny change in the order of the 
quantifiers (VE)(3~)(Vx) changes the meaning of the 
statement. 

The meaning of the inner universal quantifi­
mtion 

(Vx)(O < Ix - al < ~ ~ If(x) - II < E) 

is intuitive and easily pictured (see Fig. 3.1). 

I 

E{~-_-_-~i_-~-~~r-_ 
E{ I 

I 
--+­

I 
I 
I 

Fig. 3.1 
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For all x closer to a than ~ the value of f at x is closer to l than E. The 
definition begins by stating that such a positive ~ can be found for each positive E. 

Of course, ~ will vary with E; if E is made smaller, we will generally have to 
go closer to a, that is, we will have to take ~ smaller, before all the values of f 
on (a - ~, a + ~) - {a} become E close to l. 

The variables 'E' and '~' are almost always restricted to positive real num­
bers, and from now on we shall let this restriction be implicit unless there seems 
to be some special call for explicitness. Thus we shall write simply ('v'E)(3~) ... 

The definition of convergence is used in various ways. In the simplest 
situations we are given one or more functions having limits at a, say, f(x) ---+ u 
and g(x) ---+ v, and we want to prove that some other function h has a limit 10 

at a. In such cases we always try to find an inequality expressing the quantity we 
wish to make small, Ih(x) - 101, in terms of the quantities which we know can be 
made small, If(x) - ul and Ig(x) - vi. 

For example, suppose that h = f + g. Since f(x) is close to u and g(x) is 
close to v, clearly hex) is close to 10 = U + v. But how close? Since hex) - 10 = 
(f(x) - u) + (g(x) - v), we have 

Ih(x) - 101 ::; If(x) - ul + Ig(x) - vi. 
From thi~ it is clear that in order to make Ih(x) - 101 less than E it is sufficient 
to make each of If(x) - ul and Ig(x) - vi less than E/2. Therefore, given any E, 
we can take ~l so that 0 < Ix - al < ~l => If(x) - ul < E/2, and ~2 so that 
o < Ix - al < ~2 => Ig(x) - vi < E/2, and we can then take ~ as the smaller 
of these two numbers, so that if 0 < Ix - al < ~, then both inequalities hold. 
Thus 

o < Ix - al < ~ => Ih(x) - 101 ::; If(x) - ul + Ig(x) - vi < ~ + ~ = E, 

and we have found the desired ~ for the function h. 
Suppose next that u r!= 0 and that h = l/f. Clearly, hex) is close to 10 = l/u 

whenf(x) is close to u, and so we try to express hex) - 10 in terms of f(x) - u. 
Thus 

1 1 u - f(x) 
hex) - 10 = f(x) - U = f(x)u ' 

and so Ih(x) - 101 ::; If(x) - ul/lf(x)ul. The trouble here is that the denomi­
nator is variable, and if it should happen to be very small, it might cancel the 
smallness of If(x) - ul and not force a small quotient. But the answer to this 
problem is easy. Sincef(x) is close to u and u is not zero, f(x) cannot be close to 
zero. For instance, if f(x) is closer to u than lul/2, then f(x) must be farther 
from 0 than lul/2. We therefore choose ~l so that 0 < Ix - al < ~l => 
If(x) - ul < lul/2, from which it follows that If(x) I > lul/2. Then 

Ih(x) - 101 < 2If(x) - ul/luI 2, 
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and now, given any E, we take 02 so that 

o < Jx - aJ < 02 => Jf(x) - uJ < EJUJ2/2. 

Again taking 0 as the smaller of 01 and 02, so that both inequalities will hold 
Himultaneously when 0 < Jx - aJ < 0, we have 

o < Jx - aJ < 0 => Jh(x) - wJ < 2Jf(x) - UJ/JUJ2 < 2EJUJ2/2JuJ2 = E, 

and again we have found our 0 for the function h. 
We have tried to show how one would think about these situations. The 

actual proof that would be written down would only show the choice of o. Thus, 

Lelllllla 1.1. If f(x) ----+ u and g(x) ----+ v as x ----+ a, then f(x) + g(x) ----+ u + v 
as x ----+ a. 

Proof. Given E, choose 01 so that 0 < Jx - aJ < 01 => Jf(x) - aJ < E/2 
(by the assumed convergence of f to u at a), and, similarly, choose 02 so that 
o < Jx - aJ < 02 => Jg(x) - vJ < E/2. Take 0 as the smaller of 01 and 02. 
Then 

0< Jx - aJ < 0 => J(j(x) +g(x») - (u+v)J 
:::; Jf(x) - uJ + Jg(x) - vJ < E/2 + E/2 = E. 

Thus we have proved that for every E there is a 0 such that 

o < Jx - aJ < 0 => J (j(x) + g(x») - (u + v)1 < E, 

and we are done. 0 

In addition to understanding E-techniques in limit theory, it is necessary to 
understand and to be able to use the fundamental property of the real number 
system called the least upper bound property. In the following statement of the 
property the semi-infinite interval (- 00, a] is of course the subset {x E ~ : x :::; a}. 

If A is a nonempty subset of ~ such that A c (- 00, a] for some a, then 
there exists a uniquely determined smallest number b such that A C (- 00, b]. 

A number a such that A C (- 00, a] is called an upper bound of A; clearly, a 
iH an upper bound of A if and only if every x in A is less than or equal to a. 
A set having an upper bound is said to be bounded above. The property says that 
a nonempty set A which is bounded above has a least upper bound (lub). If 
we reverse the order relation by multiplying everything by -1, then we have the 
alternative formulation which asserts that a nonempty subset of ~ that is 
hounded below has a greatest lower bound (glb). The least upper bound of the 
interval (0, 1) is 1. The least upper bound of [0, 1] is also 1. The greatest lower 
hound of {1/n : n a positive integer} is O. Furthermore, lub {x : x is a positive 
rational number and x 2 < 2} = 0, glb {ex: x E ~} = 0, and lub {ex: x is 
rational and x < 0} = eV2• 
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EXERCISES 

1.1 Prove that if f(x) ----> I and f(x) ----> m as x ----> a, then I = 111. ·We can therefore 
talk about the limit of f as x ----> a. 

1.2 Prove that if f(x) ----> I and g(x) ----> m (as x ----> a), then f(x) g(x) ----> 1m as x ----> a. 

1.3 Prove that Jx - aJ ::::; JaJ/2 => JxJ 2:: JaJ/2. 

1.4 Prove (in detail) the greatest lower bound property from the least upper bound 
property. 

1.5 Show that lub A = x if and only if x is an upper bound of A and, for every 
positive E, x - E is not an upper bound of A. 

1.6 Let A and B be subsets of IR that are nonempty and bounded aboye. Show that 
A + B is nonempty and bounded above and that lub (A + B) = lub A + lub B. 

1. 7 Formulate and prove a correct theorem about the least upper bound of thr 
product of two sets. 

1.8 Define the notion of a one-sided limit for a function whose domain is a subset of IR. 
For example, we want to be able to discuss the limit of f(x) as x approaches a from 
below, which we might designate 

lim f(x). 
",fa 

1.9 If the domain of a real-valued function f is an interval, say [a, b], we say that f i~ 
an increasing function if 

x < y => f(x) ::::; fey). 

Prove that an increasing function has one-sided limits everywhere. 

1.10 Let [a, b] be a closed interval in IR, and letf: [a, b] ----> IR be increasing. Show that 
limx->yf(x) = fey) for all y in [a, b] (f is continuous on [a, b]) if and only if the range 
of f does not omit any subinterval (e, d) C [f(a) , feb)]. [Hint: Suppose the range omit~ 
(e, d), and set y = lub {x : f(x) ::::; e}. Then f(x) + fey) as x ----> y.] 

loll A set that intersects every open subinterval of an interval [s, t] is said to be 
dense in [s, t]. Show that if f: [a, b] ----> IR is increasing and rangefis dense in [f(a),j(b)], 
thenrangef = [f(a),f(b)]. (Foranyzbetweenf(a) andf(b) sety = lub {x:f(x)::::; z}, 
etc.) 

1.12 Assuming the results of the above two exercises, show that if f is a continuous 
strictly increasing function from [a, b] to IR, and if r = f(a) and s = feb), then f- 1 is a 
continuous strictly increasing function from [r, s] to IR. [A function f is continuous if 
f(x) ----> fey) as x ----> y for every y in its domain; it is strictly increasing if x < y ==} 

f(x) < f(y)·] 

1.13 Argue somewhat as in Exercise 1.11 above to prove that if f: [a, b] ----> IR is con­
tinuous on [a, b], then the range of f includes [f(a),j(b)]. This is the intermediate­
value theorem. 

1.14 Suppose the function q: IR ----> IR satisfies q(xy) = q(x) q(y) for all x, y E IR. 
Note that q(x) = xn (n a positive integer) and q(x) = JxJr (r any real number) satisfy 
this "functional equation". So does q(x) == 0 (r = -00 ?). Show that if q satisfies the 
functional equation and q(x) > 1 for x > 1, then there is a real number r > 1 such 
that q(x) = xr for all positive x. 
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1.15 Show that if q is continuous and satisfies the functional equation q(xy) = 

q(x) q(y) for all x, y E IR, and if there is at least one point a where q(a) ¢ 0, 1, then 
q(x) == xr for all positive x. Conclude that if also q is nonnegative, then q(x) == Ixlr on IR. 
1.16 Show that if q(x) == lxi', and if q(x + y) ~ q(x) + q(y), then r ~ 1. (Try y = 1 
and x large; what is q'(x) like if r > I?) 

2. NORMS 

rn the limit theory of IR, as reviewed briefly above, the absolute-value function 
is used prominently in expressions like' Ix - yl' to designate the distance 
between two numbers, here between x and y. The definition of the convergence 
of f(x) to u is simply a careful statement of what it means to say that the distance 
I/(x) - ul tends to zero as the distance Ix - al tends to zero. The properties of 
[:rl which we have used in our proofs are 

1) Ixl > 0 if x ~ 0, and 101 = 0; 

2) Ixyl = IxIIYI; 
3) Ix + yl ~ Ixl + Iyl· 
The limit theory of vector spaces is studied in terms of functions called 

/lOrms, which serve as multidimensional analogues of the absolute-value function 
on IR. Thus, if p: V ~ IR is a norm, then we want to interpret pea) as the "size" 
of a and pea - (3) as the "distance" between a and (3. However, if V is not 
one-dimensional, there is no one notion of size that is most natural. For example, 
if f is a positive continuous function on [a, b], and if we ask the reader for a 
number which could be used as a measure of how "large" f is, there are two 
possibilities that will probably occur to him: the maximum value of f and the area 
Ilnder the graph of f. Certainly, f must be considered small if max f is small. 
But also, we would have to agree that f is small in a different sense if its area is 
small. These are two examples of norms on the vector space V = e([a, b]) of all 
(·ontinuous functions on [a, b]: 

p(f) = max {If(t) I : t E [a, b]} and q(f) = lab If(t) I dt. 

\"ote that f can be small in the second sense and not in the first. 
In order to be useful, a notion of size for a vector must have properties 

analogous to those of the absolute-value function on IR. 

Definition. A norm is a real-valued function p on a vector space V such that 

nl. pea) > 0 if a ~ 0 (positivity); 

n2. p(xa) = Ixlp(a) for all a E V, x E IR (homogeneity); 

n3. pea + (3) ~ pea) + p({3) for all a, {3 E V (triangle inequality). 

A normed linear space (nls) , or normed vector space, is a vector space V 
together with a norm p on V. A normed linear space is thus really a pair 
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-< V, p:>, but generally we speak simply of the normed linear space V, a definite 
norm on V then being understood. 

It has been customary to designate the norm of a by Iiall, presumably to 
suggest the analogy with absolute value. The triangle inequality n3 then 
becomes Iia + ~II :::; Iiall + II~II. which is almost identical in form with the basic 
absolute-value inequality Ix + yl :::; Ixl + Iyl. Similarly, n2 becomes Ilxall = 
Ixiliall, analogous to Ixyl = Ixllyl in IR. Furthermore, Iia - ~II is similarly 
interpreted as the distance between a and~. This is reasonable since if we set 
a = ~ - 71 and ~ = 71 - r, then n3 becomes the usual triangle inequality of 
geometry: 

II~ - rll :::; II~ - 7111 + 1171 - rll· 

We shall use both the double bar notation and the "p"-notation for norms; each 
is on occasion superior to the other. 

The most commonly used norms on IRn are IlxilI = 1:7 lXii, the Euclidean 
norm IIxl12 = (1:7 X~)I/2, and Ilxll oo = max {Ixil}i. Similar norms on the 
infinite-dimensional vector space e([a, b)) of all continuous real-valued functions 
on [a, b] are 

IIflll = fa b If(t) I dt, 

( b )1/2 
IIfll2 = fa If(tW dt , 

Ilflloo = max {If(t) I : a :::; t :::; b}. 

It should be easy for the reader to check that II lit is a norm in both cases 
above, and we shall take up the so-called uniform norms II 1100 in the next 
paragraph. The Euclidean norms II 112 are trickier; their properties depend on 
scalar product considerations. These will be discussed in Chapter 5. :Meanwhile, 
so that the reader can use the Euclidean norm II 112 on IR n , we shall ask him to 
prove the triangle inequality for it (the other axioms being obvious) by brute 
force in an exercise. On IR itself the absolute value is a norm, and it is the only 
norm to within a constant multiple. 

We can transfer the above norms on IR n to arbitrary finite-dimensional 
spaces by the following general remark. 

Lemma 2.1. If p is a norm on a vector space Wand T is an injective linear 
map from a vector space V to W, then poT is a norm on V. 

Proof. The proof is left to the reader. 

Uniform norms. The two norms II 1100 considered above are special cases of a 
very general situation. Let A be an arbitrary nonempty set, and let <B(A, IR) 
be the set of all bounded functionsf: A ~ IR. That is, f E <B(A, IR) if and only if 
f E IRA and range f c [-b, b] for some b E IR. This is the same as saying that 
range If I c [0, b], and we call any such b a bound of If I· The set <B(A, IR) is a 
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vector space V, since if If I and Igl are bounded by band c, respectively, then 
Ixf + ygl is bounded by Ixlb + lyle. The uniform norm Ilfll., is defined as the 
smallest bound of If I· That is, 

Ilfll., = lub {If(p)1 : pEA}. 

Of course, it has to be checked that II II., is a norm. For any p in A, 

If(p) + g(p)1 :::; If(p) I + Ig(p)1 :::; Ilfll", + Ilgll.,· 

Thus Ilfll., + Ilgll., is a bound of If + gl and is therefore greater than or equal to 
the smallest such bound, which is Ilf + glloo. This gives the triangle inequality. 
Next we note that if x ~ 0, then b bounds If I if and only if Ixlb bounds Ixfl, and 
it follows that Ilxfll., = Ixillfll.,. Finally, Ilfll., ~ 0, and Ilfll., = ° only if f is 
the zero function. 

We can replace IR by any normed linear space W in the above discussion. 
A function f: A ---t W is bounded by b if and only if Ilf(p) II :::; b for all p in A, 
and we define the corresponding uniform norm on CB(A, W) by 

Ilflloo = lub {lIf(p) II : pEA}. 

If f E e([O, 1]), then we know that the continuous function f assumes the 
least upper bound of its range as a value (that is, f "assumes its maximum value"), 
so that then IIfll., is the maximum value of If I· In general, however, the definition 
must be given in terms of lub. 

Balls. Remembering that II a - ~II is interpreted as the distance from a to ~, it is 
natural to define the open ball of radius r about the center a as {~ : II a - ~ II < r}. 
We designate this ball Br(a). Translation through (3 preserves distance, 

and therefore ~ E Br(a) if and only if ~ + (3 E Br(a + (3). That is, translation 
through (3 carries Br(a) into Br(a + (3): T(:I[Br(a)] = Br(a + (3). Also, scalar 
multiplication by c multiplies all distances by c, and it follows in a similar way 
that cBr(a) = Bcr(ca). 

Although Br(a) behaves like a ball, the actual set being defined is different 
for different norms, and some of them "look unspherelike". The unit balls about 
the origin in 1R2 for the three norms II 1111 II 112, and II II., are shown in Fig. 3.2. 

A subset A of a nls V is bounded if it lies in some ball, say Br(a). Then it 
also lies in a ball about the origin, namely Br+llall(O). This is simply the fact that 
if II ~ - all < r, then II ~II < r + lIall, which we get from the triangle inequality 
upon rewriting II~II as lIa - a) + all. 

The radius of the largest ball about a vector {3 which does not touch a set A 
is naturally called the distance from {3 to A. It is clearly glb {II ~ - {311 : ~ E A} 
(see Fig. 3.3). 
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p(fj, A) =r 

Fig. 3.2 Fig. 3.3 Fig. 3.4 

A point ex is an interior point of a set A if some ball about ex is included in A. 
This is equivalent to saying that the distance from ex to the complement of A is 
positive (supposing that A is not the whole of V), and should coincide with 
the reader's intuitive notion of what an "inside" point should be. A subset A 
of a normed linear space is said to be open if every point of A is an interior 
point. 

If our language is to be consistent, an open ball should be an open set. It is: 
if ex E Br({3), then Ilex - (311 < r, and then Ba(ex) C Br({3), provided that 0 :;:; r -
"ex - {311, by virtue of the triangle inequality (see Fig. 3.4). The reader should 
write down the detailed proof. He has to show that if ~ E Ba(ex), then ~ E Br({3). 
Our intuitions about distances are quite trustworthy, but they should always be 
checked by a computation. The reader probably can see by a mental argument 
that the union of any collection of open sets is open. In particular, the union of 
any collection of open balls is open (Fig. 3.5), and this is probably the most 
intuitive way of visualizing an open set. (See Exercise 2.9.) 

Fig. 3.5 Fig. 3.6 

A subset C is said to be closed if its complement C' is open. 
Our discussion above shows that a non empty set C is closed if and only if 

every point not in it is at a positive distance from it: ex ~ C =? p(ex, C) > o. 
The so-called closed ball of radius r about {3, B = H : ,,~ - {311 :;:; r}, is a closed 
set. As Fig. 3.6 suggests, the proof is another application of the triangle in­
equality. 
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EXERCISES 

2.1 Show that if II~ - all ~ lIa11/2, then II~II ~ lIa1l/2. 
2.2 Prove in detail that 

n 

Ilxlh = L: Ix;1 
1 

is a norm on IR n. Also prove that 

Ilfll! = { 1/(t)1 dt 

is a norm on e([a, b]). 

2.3 For x in ~n let Ixl be the Euclidean length 

Ixl = [~xq/2, 
and let (x, y) be the scalar product 

The Schwarz inequality says that 

n 

(x, y) = L: XiYi. 
1 

I(x, y)1 ~ Ixllyl 

and that the inequality is strict if x and yare independent. 
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a) Prove the Schwarz inequality for the case n = 2 by squaring and canceling. 
b) Now prove it for the general n in the same way. 

2.4 Continuing the above exercise, prove that the Euclidean length Ixl is a norm. 
The crucial step is the triangle inequality, Ix + yl ~ Ixl + Iyl. Reduce it to the 
Schwarz inequality by squaring and canceling. This is of course our two-norm Ilxll2. 

2.5 Prove that the unit balls for the norms II 111 and II 1100 on 1R2 are as shown in 
Fig. 3.2. 

2.6 Prove that an open ball is an open set. 

2.7 Prove that a closed ball is a closed set. 

2.8 Give an example of a subset of 1R2 that is neither open nor closed. 

2.9 Show from the definition of an open set that any open set is the union of a 
family (perhaps very large!) of open balls. Show that any union of open sets is open. 
Conclude, therefore, that a set is open if and only if it is a union of open balls. 

2.10 A subset A. of a normed linear space V is said to be convex jf A includes the line 
segment joining any two of its points. We know that the line segment from a to {3 is 
the image of [0, 1] under the mapping t -> t{3 + (1 - t)a. Thus A. is convex if and 
only if a, {3 E A and t E [0, 11 =? t{3 + (1 - t)a E A. Prove that every ball Br('Y) in 
a normed linear space V is convex. 

2.11 A seminorm is the same as a norm except that the positivity condition nl is 
relaxed to nonnegativity: 

nl'. pea) ~ ° for all a. 
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Thus p(a) may be 0 for some nonzero a. Every norm is in particular a seminorm. 
Prove: 

a) If p is a seminorm on a vector space lr and T is a linear mapping from V to W, 
then poT is a seminorm on V. 

b) poT is a norm if and only if T is injective and p is a norm on range T. 

2.12 Show that the sum of two seminorms is a seminorm. 

2.13 Prove from the above two exercises (and not by a direct calculation) that 

q(f) = 11f'lloo + 11(to) I 
is a seminorm on the space e1([a, b]) of all continuously differentiable real-valued 
functions on [a, b], where to is a fixed point in [a, b). Prove that q is a norm. 

2.14 Show that the sum of two bounded sets is bounded. 

2.15 Prove that the sum Br(a) + B8 ({3) is exactly the ball Br+8 (a + (3). 

3. CONTINUITY 

Let V and W be any two normed linear spaces. We shall designate both norms 
by II II. This ambiguous usage does not cause confusion. It is like the ambiguous 
use of "0" for the zero elements of all the vector spaces under consideration. If we 
replace the absolute value sign I I by the general norm symbol II II in the 
definition we gave earlier for the limit of a real-valued function of a real variable, 
it becomes verbatim the corresponding definition of convergence in the general 
setting. However, we shall repeat the definition and take the occasion to relax 
the hypothesis on the domain of f. Accordingly, let A by any subset of V, and let 
f be any mapping from A to W. 

Definition. We say that f(~) approaches (3 as ~ approaches a, and write 
f(~) ~ {3 as ~ ~ a, if for every E there is a 0 such that 

~ E A and 0 < II ~ - all < 0 => IlfW - (311 < E. 

If a E A and f(~) ~ f(a) as ~ ~ a, then we say that f is continuous at a. 
We can then drop the requirement that ~ ~ a and have the direct E,O­
characterization of continuity: f is continuous at a if for every E there exists a 0 
such that II ~ - all < 0 => IlfW - f(a) II < E. It is understood here that ~ is 
universally quantified over the domain A of f. We say that f is continuous if f is 
continuous at every point a in its domain. If the absolute value of a number is 
replaced by the norm of a vector, the limit theorems that we sampled in Section 1 
hold verbatim for normed linear spaces. We shall ask the reader to write out a 
few of these transcriptions in the exercises. 

There is a property stronger than continuity at a which is much simpler to 
use when it is available. We say that f is Lipschitz continuous at a if there is a 
constant c such that IIf(~) - f(a) II ::; cll ~ - all for all ~ sufficiently close to a. 
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That is, there are constants c and r such that 

II t - all < r => IIf(t) - f(a) II ::; cll t - all· 

The point is that now we can take 8 simply as E/ c (provided E is small enough so 
that this makes 8 ::; r; otherwise we have to set 8 = min {E/C, r}). We say 
that f is a Lipschitz function (on its domain A) if there is a constant c such that 
Ilf(~) - f(7J) II ::; cllt - 7111 for all t,7J in A. For a linear map T: V ~ W the 
Lipschitz inequality is more simply written as 

for all ~ E V; we just use the fact that now T(~) - T(7J) = T(t - 71) and set 
~ = t - 71. In this context it is conventional to call T a bounded linear mapping 
rather than a Lipschitz linear mapping, and any such c is called a bound of T. 

We know from the beginning calculus that if f is a continuous real-valued 
function on [a, b) (that is, if f E e([a, b))), then II: f(x) £lxl ::; m(b - a), where 
m is the maximum value of If(x)l. But this is just the uniform norm of f, so that 
the inequality can be rewritten as II: fl ::; (b - a) 111!100. This shows that if the 
uniform norm is used on e([a, b)), then f 1---+ I: f is a bounded linear functional, 
with bound b - a. 

It should immediately be pointed out that this is not the same notion of 
boundedness we discussed earlier. There we called a real-valued function 
bounded if its range was a bounded subset of IR. The analogue here would be to 
call a vector-valued function bounded if its range is norm bounded. But a 
nonzero linear transformation cannot be bounded in this sense, because 

II T(xa) II = IxIIIT(a)ll· 

The present definition amounts to the boundedness in the earlier sense of the 
quotient T(a)/iiall (on V - {O}). It turns out that for a linear map T, being 
continuous and being Lipschitz are the same thing. 

TheoreDl 3.1. Let T be a linear mapping from a normed linear space V to a 
normed linear space W. Then the following conditions are equivalent: 

1) T is continuous at one point; 

2) T is continuous; 

3) T is bounded. 

Proof. (1) => (3). Suppose T is continuous at ao. Then, taking E = 1, there 
exists 8 such that lIa - aoll < 8 => IIT(a) - T(ao)1I < 1. Setting t = a - ao 
and using the additivity of T, we have II til < 8 => II T( t) II < 1. Now for any 
nonzero 71, t = 871/2117111 has norm 8/2. Therefore, IIT(t)1I < 1. But 
IIT(t)11 = 8I1T(7J)11/2117J11, giving IIT(7J)1I < 2117111/8. Thus T is bounded by 
C = '2/8. 
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(3) ==} (2). Suppose II TW II ~ Gil ~II for all~. Then for any ao and any E 

we can take 6 = E/G and have 

lIa - aoll < 6 ==} IIT(a) - T(ao)1I = IIT(a - ao)1I ~ Gila - aoll < G6 = E. 

(2) ==} (1). Trivial. 0 

In the lemma below we prove that the norm function is a Lipschitz function 
from V to~. 

Lemma 3.1. For all a, {3 E V, Illall - 1I{311 I ~ lIa - {311· 

Proof. We have lIall = II (a - (3) + {311 ~ IIa - {311 + 1I{311, so that lIall - 1I{311 ~ 
lIa - {311· Similarly, II{311 - lIall ~ 1I{3 - all = lIa - {311. This pair of inequal­
ities is equivalent to the lemma. 0 

Other Lipschitz mappings will appear when we study mappings with con­
tinuous differentials. Roughly speaking, the Lipschitz property lies between 
continuity and continuous differentiability, and it is frequently the condition 
that we actually apply under the hypothesis of continuous differentiability. 

The smallest bound of a bounded linear transformation T is called its norm. 
That is, 

IITII = lub {IIT(a)lI/l1all : a ~ O}. 

For example, let T: e([a, b]) ---+ ~ be the Riemann integral, T(f) = I: f(x) dx. 
We saw earlier that if we use the uniform norm IIfll", on e([a, b)), then T is 
bounded by b - a: IT(f)1 ~ (b - a)lIfll",. On the other hand, there is no smaller 
bound, because I: 1 = b - a = (b - a) II 111",· Thus IITII = b - a. Other 
formulations of the above definition are useful. Since 

IIT(a)lI/l1all = IIT(alllall)1I 

by homogeneity, and since {3 = aillall has norm 1, we have 

IITII = lub {IIT({3)1I : 1I{311 = 1}. 

Finally, if II"YII ~ 1, then"Y = x{3, where 1I{311 = 1 and Ixl ~ 1, and 

IIF("Y)II = IxIIlF({3)1I ~ IIF({3) II· 

We therefore have an inefficient but still useful characterization: 

IITII = lub {IIT("Y)II : II"YII ~ 1}. 

These last two formulations are uniform norms. Thus, if B I is the closed unit 
ball H : II ~II ~ 1}, we see that a linear T is bounded if and only if T fBI is 
bounded in the old sense, and then 

IITII = liT f BIll",· 

A linear map T: V ---+ Wisbouncled below byb if Ii Ta)1I ~ bll~1I for all ~ in V. 
If T has a bounded inverse and m = liT-III, then T is bounded below by 11m, 
for IIT-I('1)1I ~ mll'1l1 for all '1 E W if and only if II~II ~ mIlT(~)1I for all ~ E V. 
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If V is finite-dimensional, then it is true, conversely, that if T is bounded below, 
then it is invertible (why?), but in general this does not follow. 

If V and Ware normed linear spaces, then Hom(V, W) is defined to be the 
set of all bounded linear maps T: V ~ W. The results of Section 2.3 all remain 
true, but require some additional arguments. 

Theorem 3.2. Hom(V, W) is itself a normed linear space if II Til is defined 
as above, as the smallest bound for T. 

Proof. This follows from the uniform norm discussion of Section 2 by virtue 
of the identity IITII = liT r Billoo- 0 

Theorem 3.3. If U, V, and Ware normed linear spaces, and if 
T E Hom(U, V) and S E Hom(V, W), then SoT E Hom(U, W) and 
liS 0 Til ~ IISIIIITII. It follows that composition on the right by a fixed T 
is a bounded linear transformation from Hom(V, W) to Hom(U, W), and 
similarly for composition on the left by a fixed S. 

Proof 

II(S 0 T)(a)1I = IIS(T(a)) II ~ IISIIIIT(a)11 ~ IISII(IITllllall) = (IISII' IITII)(llall)· 

Thus SoT is bounded by liS II . II Til and everything else follows at once. 0 

As before, the conjugate space V* is Hom(V, IR), now the space of all bounded 
linear functionals. 

EXERCISES 

3.1 Write out the f,B-proofs of the following limit theorems. 

1) Let V and TV be normed linear spaces, and let F and G be mappings from V to W. 
If lim~->a FW = p. and lim~->a GW = v, then lim~->a (F + G) W = p. + v. 

2) Given F: V ~ lV and g: V ~ IR, if F(~) ~ p. and g(~) ~ b as ~ ~ a, then 
(gF)(~) ~ bp.. 

3.2 Prove that if F(~) ~ p. as ~ ~ a and G(.,,) ~ X as ." ~ p., then G 0 F(~) ~ X as 
~ ~ a. Give a careful, complete statement of the theorem you have proved. 

3.3 Suppose that A is an open subset of a nls V and that ao E A. Suppose that 
F: A ~ IR is such that lima->ao F(a) = b ~ O. Prove that l/F(a) ~ lib as a ~ ao 
(f, B-proof). 

3.4 The functionf(x) = Ixlr is continuous at x = 0 for any positive r. Prove thatf is 
not Lipschitz continuous at x = 0 if r < 1. Prove, however, that f is Lipschitz con­
tinuous at x = a if a > O. (Use the mean-value theorem.) 

3.5 Use the mean-value theorem of the calculus and the definition of the derivative 
to show that if f is a real-valued function on an interval I, and if f' exists everywhere, 
then f is a Lipschitz mapping if and only if f' is a bounded function. Show also that 
then Ilf'lloo is the smallest Lipschitz constant C. 
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3.6 The "working rules" for II Til are 

1) IITWII::; IITIIII~II for all ~; 

2) IITWII::; bll~ll, all ~ ==} IITII::; b. 

Prove these rules. 

3.7 Prove that if we use the one-norm Ilxlll = L~ IXil on IRn, then the norm of the 
linear functional 

is lIall",. 

3.8 Prove similarly that if IIxll = IIxll"" then IILali = Iialh. 

3.9 Use the above exercises to show that if Ilxll on IRn is the one-norm, then 

Ilxll = lub {If(x)1 :fE (IRn)* and IIfll ::; I}. 

3.10 Show that if Tin Hom(lRn, IRm) has matrix t = {tij] , and if we use the one­
norm Ilxlll on IRn and the uniform norm IIYII", on IRm, then IITII = Iltll",. 

3.ll Show that the meaning of 'Hom(V, TV)' has changed by giving an example of a 
linear mapping that fails to be bounded. There is one in the text. 

3.12 For a fixed ~ in V define the mapping eVE: Hom(V, W) ~ W by eVE(T) = T(~). 

Prove that eVE is a bounded linear mapping. 

3.13 In the above exercise it is in fact true that IlevEIi = II~II, but to prove this we 
need a new theorem. 

Theorem. Given ~ in the normed linear space V, there exists a functionalfin V* 
such that Ilfll = 1 and If Wi = II~II. 

Assuming this theorem, prove that IlevEII = II~II. [Hint: Presumably you have already 
shown that lIevEII ::; II~II. You now need a Tin Hom(V, W) such that IITII = 1 and 
IITWII = II~II. Consider a suitable dyad.] 

3.14 Let t = {tij] be a square matrix, and define IItll as maXi (Lj Itijl). Prove that 
this is a norm on the space IRnXn of all n X n matrices. Prove that list II ::; IIsll . Iltll. 
Compute the norm of the identity matrix. 

3.15 Let V be the normed linear space IR n under the uniform norm IIxll", = max {Ixil). 
If T E Hom V, prove that II Til is the norm of its matrix IItll as defined in the above 
exercise. That is, show that 

(Show first that IItll is an upper bound of T, and then show that II T(x) II = Iltllllxll for 
a specially chosen x.) Does part of the previous exercise now become superfluous? 

3.16 Assume the following fact: If fE e([O, 1]) and Ilflll = a, then given E, there is a 
function U E e([O, 1]) such that 

Ilull", = 1 and 
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Let K(8, t) be continuous on [0, 1] X [0, 1] and bounded by b. Define T: e([O, 1]) ---+ 

ffi([O, 1]) by Th = k, where 

k(8) = fa1 K(8, t) h(t) dt. 

If V and TV are the normal linear spaces e and ffi under the uniform norms, prove that 

IITII = l~b /IK(8, 01 dt. 

[lIint: Proceed as in the above exercise.] 

3.17 Let V and TV be normed linear spaces, and let A be any subset of V containing 
more than one point. Let £(A, 11') be the set of all Lipschitz mappings from .1 to W. 
For fin £(.1, lr), let p(f) be the smallest Lipschitz constant for f. That is, 

p(f) = lub Ilfm - f(1/)II. 
~*~ II~ - 1/11 

Prove that £(.:1, Tr) is a vector space V and that p is a seminorm on V. 

:t18 Continuing the above exercise, show that if a is any fixed point of .1, then 
fI(f) + Ilf(a) II is a norm on V. 

:t19 Let K be a mapping from a subset A of a normed linear space V to V which 
differs from the identity by a Lipschitz mapping with constant c less than 1. We may 
as well take c = !, and then our hypothesis is that 

Prove that [( is injective and that its inverse is a Lipschitz mapping with constant 2. 

:1.20 Continuing the above exercise, suppose in addition that the domain A of [( is 
lin open subset of V and that K[C] is a closed set whenever C is a closed ball lying in A. 
Prove that if C = Cr(a) , the closed ball of radius r about a, is a subset of A, then 
I\[C] includes the ball B = B r/7('Y) , where 'Y = [((a). This proof is elementary but 
tricky. If there is a point v of B not in [([CJ, then since K[C] is closed, there is a largest 
hall B' about v disjoint from K[C] and a point 1/ = K(~) in [([C] as close to B' as we 
wish. Now if we change ~ by adding v - 1/, the change in the value of [( will approxi­
lIlate v - 1/ closely enough to force the new value of [( to be in B'. If we can also show 
t hat the new value ~ + (v - 1/) is in C, then this new value of [( is in [([CJ, and we 
have our contradiction. 

Draw a picture. Obviously, the radius p of B' is at most r/7. Show that if 
1/ = K (~) is chosen so that II v - 1/ II :-::; 3/2p, then the above assertions follow from the 
triangle inequality, and the Lipschitz inequality displayed in Exercise 3.19. You have 
t () prove that 

IIK(~+ (v - 1/» - vii < p 

Illl(i 

:1.21 Assume the result of the above exercise and show that 
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Show, therefore, that K[.I] is an open subset of Y. State a theorem about the Lipschitz 
invertibility of K, including all the hypotheses on K that were used in the above 
exercises. 

3.22 We shall see in the next chapter that if V and Tr are finite-dimensional spaces, 
then any continuom, map from V to Tr takes bounded closed sets into bounded closed 
sets. Assuming this and the results of the above exercises, prove the following theorem. 

Theorem. Let F be a mapping from an open subset A of a finite-dimensional 
normed linear space V to a finite-dimensional normed linear space W. Suppose 
that there is a T in Hom(V, lV) such that T-I exists and such that F - T is 
Lipschitz on A, with constant 112m, where m = liT-III. Then F is injective, its 
range R = F[.I] is an open subset of 11', and its inverse F-I is Lipschitz contin­
uous, with constant 2m. 

4. EQUIVALENT NORMS 

Two normed linear spaces V and Ware norm isomorphic if there is a bijection T 
from V to W such that T E Hom(V, W) and T- I E Hom(W, V). That is, an 
isomorphism is a linear isomorphism T such that both T and T- I are continuous 
(bounded). As usual, we regard isomorphic spaces as being essentially the same. 
For two different norms on the same space we are led to the following definition. 

Definition. Two norms p and q on the same vector space V are equivalent 
if there exist constants a and b such that p ~ aq and q ~ bp. 

Then (l/b)q ~ P ~ aq and (l/a)p ~ q ~ bp, so that two norms are 
equivalent if and only if either can be bracketed by two multiples of the other. 
The above definition simply says that the identity map ~ ~ ~ from V to V, 
considered as a map from the normed linear space -< V, p>- to the normed 
linear space -< V, q>-, is bounded in both directions, and hence that these two 
normed linear spaces are isomorphic. 

If V is infinite-dimensional, two norms will in general not be equivalent. 
For example, if V = e([O, 1]) and fn(t) = tn, then Ilfnlll = l/(n + 1) and 
Ilinlloo = 1. Therefore, there is no constant a such that lIilloo ~ aililil for all 
f E e[O, 1], and the norms II 1100 and II III are not equivalent on V = era, b]. 
This is why the very notion of a normed linear space depends on the assumption 
of a given norm. 

However, we have the following theorem, which we shall prove in the next 
chapter by more sophisticated methods than we are using at present. 

Theorem 4.1. On a finite-dimensional vector space Vall norms are equiva­
lent. 

We shall need this theorem and also the following consequence of it occasion­
ally in the present chapter. 

Theorem 4.2. If V and Ware finite-dimensional normed linear spaces, then 
every linear mapping T from V to W is necessarily bounded. 
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Proof. Because of the above theorem, it is sufficient to prove T bounded with 
respect to some pair of norms. Let (J: IR n ~ V and cp: IRm ~ W be any basis 
isomorphisms, and let {tii} be the matrix of T = cp-l 0 To (J in Hom(lRn, IRm). 
Then 

where b = max Itiil. Now q(T/) = IIcp-I(T/) 1100 and p(~) = II(J-I(~)III are norms 
on Wand V respectively,. by Lemma 2.1, and since 

q(T(~) = liT(o-l~)lloo ::; bll(J-I~III = bp(~), 

we see that T is bounded by b with respect to the norms p and q on V and W. D 

If we change to an equivalent norm, we are merely passing through an 
isomorphism, and all continuous linear properties remain unchanged. For 
example: 

Theorem 4.3. The vector space Hom(V, W) remains the same if either the 
domain norm or the range norm is replaced by an equivalent norm, and the 
two induced norms on Hom(V, W) are equivalent. 

Proof. The proof is left to the reader. 

We now ask what kind of a norm we might want on the Cartesian product 
V X W of two normed linear spaces. It is natural to try to choose the product 
norm so that the fundamental mappings relating the product space to the two 
factor spaces, the two projections 7ri and the two injections (Ji, should be con­
tinuous. It turns out that these requirements determine the product norm 
uniquely to within equivalence. For if II < a, ~ >- II has these properties, then 

II <a, ~>- II = II <a, 0>- + <0, ~>- II ::; II <a, 0>- II + II <0, ~>- II 
::; kliiall + k211 ~II ::; k(llall + II ~II), 

where k i is a bound of the injection (Ji and k is the larger of kl and k2 . Also, 
Iiall ::; cI11 <a, ~>- II and II~II ::; c211 <a, ~>- II, by the boundedness of the projec­
tions 7ri, and so Iiall + II~II ::; cll <a, ~>- II, where c = C1 + C2. Now Iiall + 
II ~II is clearly a norm II I! 1 on V X W, and our argument above shows that 
I! < a, ~ >- II will satisfy our requirements if and only if it is equivalent to II Ill. 
Any such norm will be called a product norm for V X W. The product norms 
IllOSt frequently used are the uniform (product) norm 

II;<a, ~>-Iloo = max {ilall, II~II}' 

the Euclidean (product) norm II <a, ~>- 112 = (lIa11 2 + 11~112)1/2, and the above 
Hum (product) norn1 II < a, ~ >- lit- We shall leave the verification that the uni­
form and Euclidean norms actually are norms as exercises. 

Each of these three product norms can be defined as well for n factor spaces 
as for two, and we gather the facts for this general case into a theorem. 
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Theorem 4.4. If { -< Vi, Pi'? n is a finite set of normed linear spaces, then 
II II I, II 112, and II II"" defined on V = IIi=l Vi by lIalll = L~ Pi(ai), 
IIal12 = (L~ Pi(aY) 1/2, and Ilall", = max {Pi(ai) : i = 1, ... ,n}, are 
equivalent norms on V, and each is a product norm in the sense that the 
projections 7ri and the injections (Ji are all continuous. 

* It looks above as though all we are doing is taking any norm II lion IR n and 
then defining a norm III Ilion the product space V by 

This is almost correct. The interested reader will discover, however, that 
II lion IR n must have the property that if IXil :-:::: IYil for i = 1, •.. ,n, then 
Ilxll :-:::: Ilyll for the triangle inequality to follow for III III in V. If we call such a 
norm on IRn an increasing norm, then the following is true. 

If II II is any increasing norm on IR n, then Ilia III = II-<Pl(al), ... , Pn(an) '? II 
is a product norm on V = II~ Vi. 

However, we shall use only the 1-, 2-, oo-product norms in this book. * 

The triangle inequality, the continuity of addition, and our requirements on 
a product norm form a set of nearly equivalent conditions. In particular, we 
make the following observation. 

Lemma 4.1. If V is a normed linear space, then the operation of addition 
is a bounded linear map from V X V to V. 

Proof. The triangle inequality for the norm on V says exactly that addition is 
bounded by 1 when the sum norm is used on V X V. 0 

A normed linear space V is a (norm) direct sum EB~ Vi if the mapping 
-< XI, ... , Xn '? 1---7 L~ Xi is a norm isomorphism from II~ Vi to V. That is, the 
given norm on V must be equivalent to the product norm it acquires when it is 
viewed as II~ Vi. If V is algebraically the direct sum EB~ Vi, we always have 

by the triangle inequality for the norm on V, and the sum on the right is the one­
norm for II~ Vi. Therefore, V will be the norm direct sum EB~ Vi if, conversely, 
there is an n-tuple of constants {ki } such that Ilxill :-:::: kilixil for all x. This is 
the same as saying that the projections Pi: X 1---7 Xi are all bounded. Thus, 

Theorem 4.5. If V is a normed linear space and V is algebraically the direct 
sum V = EB~ Vi, then V = EB~ Vi as normed linear spaces if and only if 
the associated projections {Pi} are all bounded. 
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EXERCISES 

4.1 The fact that Hom(V, lV) is unchanged when norms are replaced by equivalent 
norms can be viewed as a corollary of Theorem 3.3. Show that this is so. 

4.2 Write down a string of quite obvious inequalities showing that the norms 
II Ill, II 112, and II 1100 on IR n are equivalent. Discuss what happens as n ----> 00. 

4.3 Let V be an n-dimensional vector space, and consider the collection of all norms 
on V of the form p 0 0, where 0: V ----> IRn is a coordinate isomorphism and p is one of 
the norms II Ill, II 112, II 1100 on IRn. Show that all of these norms are equivalent. (Use 
the above exercise and the reasoning in Theorem 4.2.) 

4.4 Prove that II-<a, ~>-II max {ilall, II~II} is a norm on VX lV. 

1·.5 Prove that 11-< a, ~ >- II = Iiall + II ~II is a norm on V X lV. 

4.6 Prove that II-<a, ~>-II = (lIaI1 2+ 11~112)1!2isanormon VX TV. 

4.7 Assuming Exercises 4.4 through 4.6, prove by induction the corresponding part 
of Theorem 4.4. 

4.8 Prove that if A is an open subset of V X lV, ~hen 11'1[A) is an open subset of V. 

1,.9 Prove (E, 0) that -< T, S>- ----> SoT is a continuous map from 

Hom(VI, V2) X Hom(V2, V3) to Hom(VI, V3), 

where the Vi are all normed linear spaces. 

1.10 Let II II be any increasing norm on IRn; that is, Ilxll :::; Ilyll if Xi :::; Yi for all i. 
Lrt Pi be a norm on the vector space Vi for i = 1, ... ,n. Show that 

is a norm on V = IIi' Vi. 

I.ll Suppose that p: V ----> IR is a nonnegative function such that p(xa) = Ixlp(a) 
for all X, a. This is surely a minimum requirement for any function purporting to be a 
IIwasure of length of a vector. 

a) Define continuity with respect to p and show that Theorem 3.1 is valid. 
b) Our next requirement is that addition be continuous as a map from V X V to V, 

and we decide that continuity at 0 means that for every E there is a 0 such that 

p(a) < 0 and p({3) < 0 =} p(a + (3) < E. 

Argue again as in Theorem 3.1 to show that there is a constant c such that 

p(a + (3) :::; c (p(a) + p({3») for all a, (3 E V. 

1.12 Let V and TV be normed linear spaces, and let f: V X TV ----> IR be bounded and 
hilinear. Let T be the corresponding linear map from V to TV*. Prove that T is bounded 
1111(\ that II Til is the smallest bound to f, that is, the smallest b such that 

I!(a, (3) I :::; bllall 11{311 for all a, {3. 

1.13 Let the normed linear space V be a norm direct sum M E0 N. Prove that the 
"Ilhspaces M and N are closed sets in V. (The converse theorem is false.) 
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4.14 Let N be a closed subspace of the normed linear space V. If A is a coset N + a, 
define III A III as glb {II ~II : ~ E A}. Prove that III A III is a norm on the quotient space V IN. 
Prove also that if ~ is the coset containing t then the mapping ~ ~ ~ (the natural 
projection 71' of V onto V IN) is bounded by 1. 

4.15 Let V and TV be normed linear spaces, and let Tin Hom(V, W) have a null space 
which includes the closed subspace N. Prove that the unique linear S from V IN to TV 
defined by T = So 71' (Theorem 4.3 of Chapter 1) is bounded and that IISII = IITII. 
4.16 Let N be a closed subspace of a normed linear space, and suppose that N has a 
finite-dimensional complement in the purely algebraic sense. Prove that then V is the 
norm direct sum M E9 N. (Use the above exercise and Theorem 4.2 to prove that if P 
is the projection of V onto N along M, then P is bounded.) 

4.17 Let N 1 and N 2 be closed subspaces of the normed linear space V, and suppose 
that they have the same finite codimension. Prove that N 1 and N 2 are norm isomor­
phic. (Assume the results of the above exercise and Exercise 2.11 of Chapter 2.) 

4.18 Prove that if p is a seminorm on a vector space V, then its null set is a subspace 
N, p is constant on the cosets of N, and p factors: p = q 0 71', where q is a norm on V IN 
and 71' is the natural projection ~ ~ ~ of V onto V IN. Note that ~ ~ ~ is thus an 
isometric surjection from the seminormed space V to the normed space V IN. An 
isometry is a distance-preserving map. 

5. INFINITESIMALS 

The notion of an infinitesimal was abused in the early literature of the calculus, 
its treatment generally amounting to logical nonsense, and the term fell into 
such disrepute that many modern books avoid it completely. Nevertheless, it 
is a very useful idea, and we shall base our development of the differential upon 
the properties of two special classes of infinitesimals which we shall call "big oh" 
and "little oh" (and designate 'e' and 'e', respectively). 

Originally an infinitesimal was considered to be a number that "is infinitely 
small but not zero". Of course, there is no such number. Later, an infinitesimal 
was considered to be a variable that approaches zero as its limit. However, we 
know that it is functions that have limits, and a variable can be considered to 
have a limit only if it is somehow considered to be a function. We end up looking 
at functions cp such that cp(t) ~ 0 as t ~ O. The definition of derivative involves 
several such infinitesimals. If f'(x) exists and has the value a, then the funda­
mental difference quotient (J(x + t) - f(x)) It is the quotient of two infinites­
imals, and, furthermore, (U(x + t) - f(x))lt) - a also approaches 0 as t ~ O. 
This last function is not defined at 0, but we can get around this if we wish by 
multiplying through by t, obtaining 

(J(x + t) - f(x)) - at = cp(t), 

wheref(x + t) - f(x) is the "change in!" infinitesimal, at is a linear infinitesimal, 
and cp(t) is an infinitesimal that approaches Ofaster than t (i.e., cp(t)lt ~ 0 as t ~ 0). 
If we divide the last equation by t again, we see that this property of the infin-
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itesimal <p, that it converges to 0 faster than t as t -+ 0, is exactly equivalent to 
the fact that the difference quotient of 1 converges to a. This makes it clear that 
the study of derivatives is included in the study of the rate at which infinites­
imals get small, and the usefulness of this paraphrase will shortly become clear. 

Definition. A subset A of a normed linear space V is a neighborhood of a 
point a if A includes some open ball about a. A deleted neighborhood of a is a 
neighborhood of a minus the point a itself. 

We define special sets of functions fJ, 0, and 0 as follows. It will be assumed 
in these definitions that each function is from a neighborhood of 0 in a normed 
linear space V to a normed linear space W. 

1 E fJ if 1(0) = 0 and 1 is continuous at O. These functions are the infi­
nitesimals. 

1 E ° if 1(0) = 0 and 1 is Lipschitz continuous at o. That is, there exist 
positive constants rand e such that IIfW II ::; ell ~II on Br(O). 

f Eo if f(O) = 0 and Ilf(~) 11I11 ~II -+ 0 as ~ -+ o. 
When the spaces V and Ware not understood, we specify them by writing 

Cl(V, W), etc. 
A simple set of functions from ~ to ~ makes the qualitative difference 

hdween these classes apparent. The function f(x) = Ix1 1/2 is in fJ (~, ~) but not 
ill 0, g(x) = x is in ° and therefore in fJ but not in 0, and hex) = x 2 is in all 
three classes (Fig. 3.7). 

g 

f 

Fig. 3.7 

It is clear that fJ, 0, and 0 are unchanged when the norms on V and Ware 
n·placed by equivalent norms. 

Our previous notion of the sum of two functions does not apply to a pair 
of functions f, g E fJ(V, W) because their domains may be different. However, 
f I· g is defined on the intersection dom f n dom g, which is still a neighborhood 
"I' o. Moreover, addition remains commutative and associative when extended 
III this way. It is clear that then fJ(V, W) is almost a vector space. The only 
t rouble occurs in connection with the equation f + (-f) = 0; the domain of 
f lin function on the left is dom f, whereas we naturally take 0 to be the zero 
function on the whole of V. 
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* The way out of this difficulty is to identify two functions f and g in [f if 
they are the same on some ball about O. We define f and g to be equivalent 
(f '" g) if and only if there exists a neighborhood of 0 on whichf = g. We then 
check (in our minds) that this is an equivalence relation and that we now do 
have a vector space. Its elements are called germs of functions at o. Strictly 
speaking, a germ is thus an equivalence class of functions, but in practice one 
tends to think of germs in terms of their representing functions, only keeping in 
mind that two functions are the same as germs when they agree on a neighbor­
hood of 0.* 

As one might guess from our introductory discussion, the algebraic prop­
erties of the three classes [f, e, and e are crucial for the differential calculus. 
We gather them together in the following theorem. 

Theorelll 5.1 

1) e(V, W) c e(V, W) c [f(V, W), and each of the three classes is closed 
under addition and multiplication by scalars. 

2) If f E e(V, W), and if g E e(W, X), then g 0 f E e(V, X), where 
dom g 0 f = rl[dom gJ. 

3) If either f or g above is in e, then so is g 0 f. 
4) If f E e(V, W) and g E [f(V, IR), then fg E e(V, W), and similarly if 

f E [f and gEe. 

5) In (4) if either for g is in e and the other is merely bounded on a neigh­
borhood of 0, then fg E e(V, W). 

6) Hom(V, W) c e(V, W). 

-7) Hom(V, W) n e(V, W) = {O}. 

Proof. Let £.(V, W) be the set of infinitesimals f such that Ilf(~)11 ~ EII~II on 
some ball about O. Thenf E e if and only if f is in some £., and fEe if and only 
if f is in every £.. Obviously, e C e c [f. 

1) If Ilf(~)11 ~ all~11 on Bt(O) and Ilg(~)1I ~ bll~11 on Bu(O), then 

Ilf(O + g(~)11 ~ (a + b)II~11 

on Br(O), where r = min {t, u}. Thus e is closed under addition. The 
closure of e under addition follows similarly, or simply from the limit of a 
sum being the sum of the limits. 

2) If Ilfa)II ~ all~11 when II~II ~ t and Ilg(71)11 ~ bll7111 when 117111 ~ u, then 

IlgUW)11 ~ bllfWl1 ~ abll~11 

when II~II ~ t and Ilfa)11 ~ u, and so when II~II ~ r = min {t, u/a}. 
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3) Now suppose thatf E 0 in (2). Then, given E, we can take a = E/b and have 

Ilg(j(~) II ~ Ell ~II 

when II ~II ~ r. Thus g 0 f E 0. The argument when g E 0 and f E 0 is 
essentially the same. 

4) Given IlfW II ~ ell ~II on Br(O) and given E, we choose 8 such that IgW I ~ 
E/e on B~(O) and have 

Ilf(~)g(~) II ~ Ell ~II 

when II ~II ~ min (8, r). The other result follows similarly, as also does (5). 

6) A bounded linear transformation is in 0 by definition. 

7) Suppose that f E Hom(V, W) n 0(V, W). Take any a ~ o. Given E, 

choose r so that IlfW II ~ Ell ~II on Br(O). Then write a as a = x~, where 
II ~II < r. (Find ~ and x.) Then 

Ilf(a)1I = Ilf(x~)11 = Ixl· Ilf(~)11 ~ Ixl· E· II~II = Ellall· 

Thus Ilf(a) II ~ Ellall for every positive E, and so f(a) = O. Thus f = 0, 
proving (7). D 

Remark. The additivity of fwas not used in this argument, only its homogeneity. 
It follows therefore that there is no homogeneous function (of degree 1) in 0 

except o. 
Sometimes when more than one variable is present it is necessary to indicate 

with respect to which variable a function is in 0 or 0. We then write ''f(~) = o(~)" 
for ''I EO", where "O(~)" is used to designate an arbitrary element of o. 

The following rather curious lemma will be useful later in our proof of the 
differentiability of an implicitly defined function. It is understood that 71 = f(~), 

where f is the function we are studying. 

Lemma 5.1. If 71 = oW + 0( -< ~, 71 >-) and also 71 = d(~), then 71 = O(~). 

Proof. The hypotheses imply that there are numbers b, rl and p such that 
117111 ::; bll~11 + !(II~II + 117111) if II~II ~ rl and II~II + 117111 ::; p, and then that 
117111 ~ p/2 if II ~II is smaller than some r2. If II ~II ::; r = min {rb 1"2, p/2} , then 
all the conditions are met and 117111 ::; bll ~II + !(II ~II + 117111). But this is the 
inequality 117111::; (2b + 1)1I~11, and so 71 = 0(0. D 

We shall also need the following straightforward result. 

Lemma 5.2. If f E O(V, X) and g E O(V, Y), then -<f, g>- E O(V, X X Y). 
That is, -<O(~), o(~) >- = oW. 

/'roo!. The proof is left to the reader. 
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EXERCISES 

5.1 Prove in detail that the class g(V, W) is unchanged if the norms on V and TV 
are replaced by equivalent norms. 

5.2 Do the same for e and o. 

5.3 Prove (5) of the eo-theorem (Theorem 5.1). 

5.4 Prove also that if in (4) either for 9 is in e and the other is merely bounded on- a 
neighborhood of 0, thenfg E e(V, W). 

5.5 Prove Lemma 5.2. (Remember that P = < 1'\, P2>- is loose language for 
F = 01 0 PI + 02 0 F2.) State the generalization to n functions. State the o-form of 
the theorem. 

5.6 Given PI E e(Vl, vI') and P2 E e(V2, W), define P from (a subset of) V = 
VI X V2 to W by P(Cil, Ci2) = 1'\(Cil) + F2(Ci2). Prove that FE e(V, W). (First 
state the defining equation as an identity involving the projections 1fl and 1f2 and not 
involving explicit mention of the domain vectors Cil and Ci2.) 

5.7 Given Fl E e(Vl, W) and F2 E e(V2, ~), define precisely what you mean by 
FIF2 and show that it is in o(V 1 X V 2, W). 

5.8 Define the class en asfollows:f E en iff E g and IlfWII/II~11 nis bounded in some 
deleted ball about O. (A deleted neighborhood of Ci is a neighborhood minus Ci.) State 
and prove a theorem about f + 9 when f E en and 9 E em. 

5.9 State and prove a theorem about fog when f E en and 9 E em. 

5.10 State and prove a theorem about fg when f E en and 9 E em. 

5.II Define a similar class on. State and prove a theorem about fog when f E en 
and 9 E om. 

6. THE DIFFERENTIAL 

Before considering the notion of the differential, we shall review some geometric 
material from the elementary calculus. We do this for motivation only; our sub­
sequent theory is independent of the preliminary discussion. 

In the elementary one-variable calculus the derivative f'(a) of a function f 
at the point a has geometric meaning as the slope of the tangent line to the graph 
of f at the point a. (Of course, according to our notion of a function, the graph 
of f is f.) The tangent line thus has the (point-slope) equation y - f(a) = 

f'(a)(x - a), and is the graph of the affine map x f--+ f'(a) (x - a) + f(a). 
We ordinarily examine the nature of the curve f near the point < a, f(a) >­

by using new variables which are zero at this point. That is, we express every­
thing in terms of s = y - f(a) and t = x-a. This change of variables is 
simply the translation <x,y>- f--+ <t,s>- = <x-a,y-f(a)>- in the 
Cartesian plane ~2 which brings the point of interest < a, f(a) >- to the origin. 
If we picture the situation in a Euclidean plane, of which the next page is a satis­
factory local model, then this translation in ~2 is represented by a choice of new 
axes, the t- and s-axes, with origin at the point of tangency. Since y = f(x) 
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if and only if 8 = f(a + t) - f(a), we see that the image of f under this trans­
lation is the function !!.fa defined by t.fo(t) = f(a + t) - f(a). (See Fig. 3.8.) 
Of course, t.fa is simply our old friend the change in f brought about by changing 
x from a to a + t. 

dfa(t) - t.fa(t) =0(t) 

f(a+t) I 

'fo(t){ = = = i ~~ = _ ~ tj'C"HJ.(t) 

f(a) I t 
I : 
I I 
I I 
I I 
I I 
l ~ Fig. 3.8 
a a+t 

Similarly, the equation y - f(a) = 1'(a)(x - a) becomes s = 1'(a)t, and 
the tangent line accordingly translates to the line that is (the graph of) the 
linear functional l: t f---+ .f'(a)t having the number 1'(a) as its skeleton (matrix). 
Remember that from the point of view of the geometric configuration (curve and 
tangent line) in the Euclidean plane, all that we are doing is choosing the natural 
axis system, with origin at the point of tangency. Then the curve is (the graph 
of) the function t.fa, and the tangent line is (the graph of) the linear map l. 

Now it follows from the definition of 1'(a) that l can also be characterized as 
Ihe linear function that approximates t.fa most closely. For, by definition, 

t.fa(t) _ f'(a) 
t 

as 

and this is exactly the same as saying that 

t.fa(t) - let) _ 0 
t 

or 

t-O, 

t.fa - lEe. 

But we know from the Be-theorem that the expression of the function t.fa as the 
sum l + e is unique. This unique linear approximation l is called the differential 
of f at a and is designated dfa. Again, the differential of f at a is the linear function 
I: IR f---+ IR that approximates the actual change in f, t.fa, in the sense that 
tlJa - lEe; we saw above that if the derivative l' (a) exists, then the differential 
of J at a exists and has f'(a) as its skeleton (1 X 1 matrix). 

Similarly, if 1 is a function of two variables, then (the graph of) 1 is a surface 
ill Cartesian 3-space 1R3 = 1R2 X IR, and the tangent plane to this surface at 
-< a, b,l(a, b) >- has the equation z - l(a, b) = 11 Ca, b)(x - a) + 12(a, b)(x - b), 
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where/l = allax and 12 = aljay. If, as above, we set 

1l.1 <a,b>(S, t) = I(a + s, b + t) - I(a, b) 

and l(s, t) = s/t(a, b) + t/2(a, b), then 1l.1<a,b> is the change in I around a, b 
and 1 is the linear functional on ~2 with matrix (skeleton) -</t(a, b), /2(a, b) >. 
Moreover, it is a theorem of the standard calculus that if the partial derivatives 
of I are continuous, then again 1 approximates 1l.1 <a,b>, with error in e. Here 
also 1 is called the differential of I at -< a, b> and is designated dl <a,b> (Fig. 3.9). 
The notation in the figure has been changed to show the value at t = -< tt, t2 > 
of the differential dis of I at a = -< all a2> . 

Fig. 3.9 

The following definition should now be clear. As above, the local function 
ll.Fa is defined by ll.Fa(~) = F(a + ~) - F(a). 

Definition. Let V and W be normed linear spaces, and let A be a neighbor­
hood of a in V. A mapping F: A - W is differentiable at a if there is a T 
in Hom(V, W) such that ll.Faa) = T(~) + e(~). 
The ee-theorem implies then that T is uniquely determined, for if also ll.F a = 

S + e, then T - SEe, and so T - S = 0 by (7) of the theorem. This uniquely 
determined T is called the differential 01 F at a and is designated dF a' Thus 

ll.Fa = dFa + e, 

where dF a is the unique (bounded) linear approximation to ll.F a' 
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* Our preliminary discussion should make it clear that this definition of the 
differential agrees with standard usage when the domain space is R". However, 
in certain cases when the domain space is an infinite-dimensional function space, 
dF a is called the first variation of F at a. This is due to the fact that although the 
early writers on the calculus of variations saw its analogy with the differential 
calculus, they did not realize that it was the same subject.* 

We gather together in the next two theorems the familiar rules for differ­
entiation. They follow immediately from the definition and the el9-theorem. 

It will be convenient to use the notation !Da(V, W) for the set of all mappings 
from neighborhoods of a in V to W that are differentiable at a. 

Theorem 6.1 

1) If F E !Da(V, W), then t:.F a E e(V, W). 

2) If F, G E !Da(V, W), then F + G E !Da(V, W) and d(F + G)a = 
dFa + dGa. 

3) IfF E !Da(V, R) and G E !Da(V, W), then FG E !Da(V, W) and d(FG)a = 
F(a) dGa + dFaG(a), the second term beiIm a dyad. 

4) If F is a constant function on V, then F is differentiable and dF a = O. 

5) If F E Hom(V, W), then F is differentiable at every a E V and dF a = F. 

Proof 
1) t:.F a = dF a + 19 = e + f) = e by (1) and (6) of the el9-theorem. 

2) It is clear that t:.(F + G)a = t:.F a + i1Ga. Therefore, t:.(F + G)a = 
(dF a + 0) + (dGa + 0) = (dF a + dGa) + 0 by (1) of the el9-theorem. Since 
dF a + dGa E Hom(V, W), we have (2). 

3) t:.(FG)a(~) = F(a + ~)G(a + ~) - F(a)G(a) 

= t:.Fa(~)G(a) + F(a) t:.Ga(~) + t:.Fa(~) i1Ga(~), 
as the reader will see upon expanding and canceling. This is just the usual 
device of adding and subtracting middle terms in order to arrive at the form 
involving the t:.'s. Thus 

i1(FG)a = (dF a + 0)G(a) + F(a)(dGa + 19) + ee = dF aG(a) + F(a) dGa + 19 

by the efJ-theorem. 

4) If i1F a = 0, then dF a = 0 by (7) of the e0-theorem. 

5) t:.Fa(~) = F(a + ~) - F(a) = F(~). Thus t:.Fa = FE Hom(V, W). 0 

The composite-function rule is somewhat more complicated. 

Theorem 6.2. IfF E !Da(V, W) and G E !DF(a)(W, X), then Go F E !Da(V, X) 
and 
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Proof. We have 

il(G 0 F)a(V = G(F(a + ~») - G(F(a») 

= G(F(a) + ilF aa») - G(F(a») 

= ilGF(a,(ilFa(~») 
= dGF(a)(ilFaW) + e(ilFaU») 
= dGF(a)(dFa(~») + dGF(a)(e(~») + e 0 e 
= (dGF(a) 0 dFa)(~) + e 0 e + e 0 e. 

3.6 

Thus il(G 0 F)a = dGF(a) 0 dFa + e, and since dGF(a) 0 dFa E Hom(V, W), 
this proves the theorem. The reader should be able to justify each step taken in 
this chain of equalities. 0 

EXERCISES 

6.1 The coordinate mapping -< x, y >- ~ x from 1R2 to IR is differentiable. Why? 
What is its differential? 

6.2 Prove that differentiation commutes with the application of bounded linear 
maps. That is, show that if F: V --+ TV is differentiable at a and if T E Hom(TV, X), 
then To F is differentiable at a and d(T 0 F)a = To dF a. 

6.3 Prove that FE :Da(V, IR) and F(a) ¢ 0 =:::} G = I/F E :Da(V, IR) and 

dG = -dFa 
a (F(a»)2 

6.4 Let F: V --+ IR be differentiable at a, and let f: IR --+ IR be a function whose 
derivative exists at a = F(a). Prove that f 0 F is differentiable at a and that 

d(fo F)a = f'(a) dFa. 

[Remember that the differential of f at a is simply multiplication by its derivative: 
dfa(h) = hI' (a).J Show that the preceding problem is a special case. 

6.5 Let V and TV be normed linear spaces, and let F: V --+ TV and G: TV --+ V be 
continuous maps such that Go F = Iv and FoG = Iw. Suppose that F is differ­
entiable at a and that G is differentiable at (3 = F(a). Prove that 

6.6 Let f: V --+ IR be differentiable at a. Show that g = r is differentiable at a and 
that 

(Prove this both by an induction on the product rule and by the composite-function 
rule, assuming in the second case that D",x n = nx n - 1 .) 
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6.7 Prove from the product rule by induction that if the n functions Ii: V -t IR, 
i = 1, ... , n, are all differentiable at a, then so is f = In Ii, and that 

6.1l A monomial of degree n on the normed linear space V is a product In li of 
linear functionals (li E V*). A homogeneous polynomial of degree n is a finite sum of 
monomials of degree n. A polynomial of degree n is a sum of homogeneous polynomials 
Pi, i = 0, ... , n, where Po is a constant. Show from the above exercise and other 
known facts that a polynomial is differentiable everywhere. 

6.9 Show that if Fl: V -t WI and F2: V -t W2 are both differentiable at a, then 
so is F = -<Fl, F2> from V to W = Trl X W2 (use the injections 81 and 82). 

6.10 Show without using explicit computations, but using the results of earlier 
exercises instead, that the mapping F = 1R2 -t 1R2 defined by 

-<x, y> 1-+ -< (x - y)2, (x + y)3> 

is everywhere differentiable. Now compute its differential at -< a, b >. 
6.11 Let F: V -t X and G: W -t X be differentiable at a and fJ respectively, and 
define K: V X W -t X by 

K(~, 11) = FW + G(l1). 

Show that K is differentiable at -<a, fJ > 
a) by a direct .6-calculation; 
b) by using the projections 11"1 and 11"2 to express K in terms of F and G without 

explicit reference to the variable, and then applying the differentiation rules. 

6.12 Now suppose given F: V -t IR and G: TV -t X, and define K by 

Show that if F and G are differentiable at a and fJ respectively, then K is differentiable 
at -< a, fJ> in the manner of (b) in the above exercise. 

6.13 Let V and W be normed linear spaces. Prove that the map -< a, fJ> 1-+ lIall IIfJlI 
from V X W to IR is in 0(V X W, IR). Use the maximum norm on the product space. 

Let f: V X W -t IR be bounded and bilinear. Here bounded ness means that there 
is some b such that If(a, fJ)1 ::::; bllallllfJlI for all a, fJ. Prove that f is differentiable 
everywhere and find its differential. 

6.14 Let f and g be differentiable functions from IR to R We know from the composite­
function rule of the ordinary calculus that 

(fa g)'(a) = !'(g(a»)g'(a). 

Our composite-function rule says that 

d(f a g)a = dfu(a) a dga, 

where df", is the linear mapping t -t !,(x)t. Show that these two statements are equiv­
alent. 
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6.15 Prove that f(x, y) = II -< x, y>- [[ 1 = Ixl + IYI is differentiable except on the 
coordinate axes (that is, df<.a,b> exists if a and b are both nonzero). 

6.16 Comparing the shapes of the unit balls for [[ [[1 and II [[00 on ~2, guess from the 
above the theorem about the differentiability of [[ [[00' Prove it. 

6.17 Let V and W be fixed normed linear spaces, let Xd be the set of all maps from 
V to W that are differentiable at 0, let X 0 be the set of all maps from V to lV that 
belong to o(V, W), and let Xl be Hom(V, W). Prove that Xd and Xo are vector spaces 
and that Xd = Xo EB Xl. 

6.18 Let F be a Lipschitz function with constant C which is differentiable at a point a. 
Prove that [[dF ,,[I ~ C. 

7. DIRECTIONAL DERIVATIVES; THE MEAN-VALUE THEOREM 

Directional derivatives form the connecting link between differentials and the 
derivatives of the elementary calculus, and, although they add one more concept 
that has to be fitted into the scheme of things, the reader should find them 
intuitively satisfying and technically useful. 

A continuous function f from an interval I C ~ to a normed linear space W 
can have a derivativef'(x) at a point x E I in exactly the sense of the elementary 
calculus: 

f'(x) = lim f(x + t) - f(x) . 
t-+o t 

The range of such a function f is a curve or arc in W, and it is conventional to 
call f itself a parametrized arc when we want to keep this geometric notion in 
mind. We shall also call f'(x), if it exists, the tangent vector to the arc f at x. 
This terminology fits our geometric intuition, as Fig. 3.10 suggests. For sim­
plicity we have set x = 0 and f(x) = O. If f'(x) exists, we say that the param­
etrized arc f is smooth at x. We also say that f is smooth at a = f(x), but this 
terminology is ambiguous if f is not injective (i.e., if the arc crosses itself). An 
arc is smooth if it is smooth at every value of the parameter. 

We naturally wonder about the relationship between the existence of the 
tangent vector f'(x) and the differentiability of fat x. If dfx exists, then, being a 
linear map on ~, it is simply multiplication "by" the fixed vector a that is its 
skeleton, dfx(h) = h dfx(1) = ha, and we expect a to be the tangent vector, 

1'(0) 

~ 
1(1) 1(0+0 -1(0) 1 ~ t 

Fig. 3.10 
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f' (x). We showed this and also the converse result for the ordinary calculus in 
our preliminary discussion in Section 6. Actually, our argument was valid for 
vector-valued functions, but we shall repeat it anyway. 

When we think of a vector-valued function of a real variable as being an 
arc, we often use Greek letters like' 'A' and' 1" for the function, as we do below. 
This of course does not in any way change what is being proved, but is slightly 
suggestive of a geometric interpretation. 

Theorem 7.1. A parametrized arc 1': [a, b] -+ Vis differentiable at x E (a, b) 
if and only if the tangent vector (derivative) a = 'Y'(x) exists, in which case 
the tangent vector is the skeleton of the differential, d'Yx(h) = h'Y'(x) = ha. 

Proof. If the parametrized arc 1': [a, b] -+ V is differentiable at x E (a, b), then 
d'Yx(h) = hd'Yx(1) = ha, where a = d'Yx(1). Since Ll'Yx - d'Yx E tJ, this gives 
IILl'Yx(h) - hall/lhl-+ 0, and so Ll'Yx(h)/h -+ a as h -+ 0. Thus a is the derivative 
'Y'(x) in the ordinary sense. By reversing the above steps we see that the exis­
tence of 1" (x) implies the differentiability of I' at x. 0 

N ow let F be a function from an open set A in a normed linear space V to a 
normed linear space W. One way to study the behavior of F in the neighborhood 
of a point a in A is to consider how it behaves on each straight line through a. 

That is, we study F by temporarily restricting it to a one-dimensional domain. 
The advantage gained in doing this is that the restricted F is then simply a 
parametrized arc, and its differential is simply multiplication by its ordinary 
derivative. 

For any nonzero ~ E V the straight line through a in the direction ~ has the 
parametric representation t ....... a + t~. The restriction of F to this line is the 
parametrized arc 1': 'Y(t) = F(a + t~). Its tangent vector (derivative) at the 
origin t = 0, if it exists, is called the derivative of F in the direction ~ at a, or the 
derivative of F with respect to ~ at a, and is designated D~F(a). Clearly, 

D F() 1· F(a + t~) - F(a) 
~ a = 1m t . 

t---+o 

Comparing this with our original definition of 1', we see that the tangent vector 
'Y'(x) to a parametrized arc I' is the directional derivative Dl'Y(X) with respect 
to the standard basis vector 1 in R 

Strictly speaking, we are misusing the word "direction", because different 
vectors can have the same direction. Thus, if 11 = c~ with c > 0, then 11 and ~ 
point in the same direction, but, because DI;F(a) is linear in ~ (as we shall see in a 
moment), their associated derivatives are different: D~F(a) = cDI;F(a). 

We now want to establish the relationship between directional derivatives, 
which are vectors, and differentials, which are linear maps. We saw above that 
for an arc I' differentiability is equivalent to the existence of 'Y'(x) = Dl'Y(X). 
In the general case the relationship is not as simple as it is for arcs, but in one 
direction everything goes smoothly. 
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Theorelll 7.2. If F is differentiable at lX, and if A is any smooth arc through lX, 
with lX = A(X), then I' = F 0 A is smooth at x, and I"(x) = dFa(A'(X»). 
In particular, if F is differentiable at lX, then every directional derivative 
D~F(lX) exists, and D~F(lX) = dFaW. 

Proof. The smoothness of I' is equivalent to its differentiability at x and there­
fore follows from the composite-function theorem. Moreover, I"(x) = dl'x(1) = 
d(F 0 A)x(1) = dFa(dAA1») = dFa(A'(X»). If A is the parametrized line 
A(t) = lX + t~, then it has the constant derivative ~, and since lX = A(O) here, 
the above formula becomes 1"(0) = dFaW. That is, D~F(lX) = 1"(0) = 
dFaW. 0 

It is not true, conversely, that the existence of all the directional derivatives 
D~F(lX) of a function F at a point lX implies the differentiability of Fat lX. The 
easiest counterexample involves the notion of a homogenous function. We say 
that a function F: V -7 W is homogeneous if F(x~) = xF(~) for all x and ~. 

For such a function the directional derivative D~F(O) exists because the arc 
I'(t) = F(O + to = tFW is linear, and 1"(0) = F(~). Thus, all of the directional 
derivatives of a homogeneous function F exist at 0 and D~F(O) = F(~). If F is 
also differentiable at 0, then dFo(~) = D~F(O) = FW and F = dF o. Thus a 
differentiable homogeneous function must be linear. Therefore, any nonlinear 
homogeneous function F will be a function such that D~F(O) exists for all ~ but 
dFo does not exist. Taking the simplest possible situation, define F: 1R2 -7 IR by 
F(x, y) = X3 /(X 2 + y2) if <x, y> ~ <0,0> and F(O, 0) = O. Then 

F(tx, ty) = tF(x, y), 

so that F is homogeneous, but F is not linear. 
However, if V is finite-dimensional, and if for each ~ in a spanning set of 

vectors the directional derivative D~F(lX) exists and is a continuous function of lX 
on an open set A, then F is continuously differentiable on A. The proof of this 
fact depends on the mean-value theorem, which we take up next, but we shall 
not complete it until Section 9 (Theorem 9.3). 

The reader will remember the mean-value theorem as a cornerstone of the 
calculus, and this is just as true in our general theory. We shall apply it in the 
next section to give the proof of the general form of the above-mentioned 
theorem, and practically all of our more advanced work will depend on it. The 
ordinary mean-value theorem does not have an exact analogue here. Instead we 
shall prove a theorem that in the one-variable calculus is an easy consequence of 
the mean-value theorem. 

Theorelll 7.3. Let f be a continuous function (parametrized arc) from a 
closed interval [a, b] to a normed linear space, and suppose that f'(t) exists 
and that [[f'(t)[[ ::; m for all t E (a, b). Then [[feb) - f(a)[[ ::; m(b - a). 

Proof. Fix E > 0, and let A be the set of points x E [a, b] such that 

[[f(x) - f(a)[[ ::; (m + E)(X - a) + E. 
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A includes at least a small interval [a, e], because f is continuous at a. Set 
l = lub A. Then Ilf(l) - f(a) II ~ (m + e)(l - a) + ebythecontinuityoffatl. 
Thus lEA, and a < l ~ b. We claim that l = b. For if l < b, then f'(l) 
exists and IIf'(l)II ~ m. Therefore, there is a ~ such that 

II[f(x) - f(l)]j(x - l)II < m + e 

when Ix - II ~ ~. It follows that 

IIf(l + ~) - f(a) II ~ 11.f(l + ~) - f(l) II + IIf(l) - f(a) II 
~ (m + e)~ + (m + e)(l - a) + e 
= (m + e)(l + ~ - a) + e, 

so that l + ~ E A, a contradiction. Therefore, l = b. We thus have 

IIf(b) - f(a) II ~ (m + e)(b - a) + e, 

and, since e is arbitrary, IIf(b) - f(a) II ~ m(b - a). 0 

The following more general version of the mean-value theorem is the form in 
which it is ordinarily applied. As usual, F and G are from a subset of V to W. 

Theorem 7.4. If F is differentiable in the ball BT(a), and if IIdFj311 ~ e for 
every fJ in this ball, then 116Fj3(~)11 ~ ell ~II whenever fJ and fJ + ~ are in the 
ball. More generally, the same result holds if the ball BT(a) is replaced by 
any convex set C. 

Proof. The segment from fJ to fJ + ~ is the range of the parametrized arc 
X(t) = fJ + t~ from [0, 1] to V. If fJ and fJ + ~ are in the ball BT(a), then this 
segment is a subset of the ball. Setting 'Y(t) = F(fJ + t~), we then have 'Y'(x) = 

dFj3+xE(},,'(x») = dFi3+x~(~), from Theorem 7.2. Therefore, II'Y'(x)II ~ ell~II on 
[0,1], and the mean-value theorem then implies that 

116Fj3WII = IIF(fJ + ~) - F(fJ)II = II'Y(I) - 'Y(O)II ~ ell~II(1 - 0) = ell~II, 

which is the desired inequality. The only property of BT(a) that we have used is 
that it includes the line segment joining any two of its points. This is the 
definition of convexity, and the theorem is therefore true for any convex set. 0 

Corollary. If G is differentiable on the convex set C, if T E Hom(V, W), 
and if IIdGj3 - Til ~ e for all fJ in C, then II.::lGj3a) - T(~)II ~ ell ~II when­
ever fJ and fJ + ~ are in C. 

Proof. SetF = G - T,andnotethatdFj3 = dGj3 - Tand.::lFj3 = .::lGj3 - T. 0 

We end this section with a few words about notation. Notice the reversal 
of the positions of the variables in the identity (D~)(a) = dFa(~). This differ­
l!IlCe has practical importance. We have a function of the two variables' a' 
lI.nd ' e which we can convert to a function of one variable by holding the other 
variable fixed; it is convenient technically to put the fixed variable in subscript 
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position. Thus we think of dFa(~) with a held fixed and have the function dFa 
in Hom(V, W), whereas in (D~F)(a) we hold ~ fixed and have the directional 
derivative D~F: A ---t W in the fixed direction ~ as a function of a, generalizing 
the notation for any ordinary partial derivative aF jaxi(a) as a function of a. 
We can also express this implication of the subscript position of a variable in the 
dot notation (Section 0.10): when we write D~F(a), we are thinking of the value 
at a of the function D~F(·). 

Still a third notation that we shall use in later chapters puts the function 
symbol in subscript position. We write 

J F(a) = dFa • 

This notation implies that the mapping F is going to be fixed through a discussion 
and gets it "out of the way" by putting it in subscript position. 

If F is differentiable at each point of the open set A, then we naturally con­
sider dF to be the map a ~ dF a from A to Hom(V, W). In the "J"-notation, 
dF = J F. Later in this chapter we are going to consider the differentiability 
of this map at a. This notion of the second differential d2F a = d(dF)a is probably 
confusing at first sight, and a preliminary look at it now may ease the later 
discussion. We simply have a new map G = dF from an open set A in a normed 
linear space V to a normed linear space X = Hom(V, W), and we consider its 
differentiability at a. If dGa = d(dF)a exists, it is a linear map from V to 
Hom(V, W), and there is something special now. Referring back to Theorem 6.1 
of Chapter 1, we know that dGa = d2F a is equivalent by duality to a bilinear 
mapping w from V X V to W: since dGa(~) is itself a transformation in 
Hom(V, W), we can evaluate it at TI, and we define w by 

The dot notation may be helpful here. The mapping a ~ dF a is simply 
dF(.), and we have defined G by GO = dF(.). Later, the fact that dGaW is a 
mapping can be emphasized by writing it as dGaa)(·). In each case here we 
have a function of one variable, and the dot only reminds us of that fact and 
shows us where we shall put the variable when indicating an evaluation. In the 
case of w we have the original use of the dot, as in w(~, .) = dGa(~). 

EXERCISES 

7.1 Given f: IR ---+ IR such that f'(a) exists, show that the "directional derivative" 
Dbf(a) has the value bf' (a), by a direct evaluation of the limit of the difference quotient. 

7.2 Letfbe a real-valued function on an n-dimensional space V, and suppose thatfis 
differentiable at a E V. Show that the directions ~ in which the derivative D~F(a) is 
zero make up an (n - I)-dimensional subspace of V (or the whole of V). What similar 
conclusions can be drawn if f maps V to a two-dimensional space W? 
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7.3 a) Show by a direct argument on limits that if f and g are two functions from an 
interval Ie IR to a normed linear space V, and if f'(x) and g'(x) both exist, then 
(f+ g)'(x) exists and (f+ g)'(x) = !'(x) + g'(x). 

b) Prove the same result as a corollary of Theorems 7.1 and 7.2 and the differen­
tiation rules of Section 6. 

7.4 a) Given f: I - V and g: I - W, show by a direct limit argument that if 
!'(x) and g'(x) both exist, and if F = -<f, g>-: I - V X W, then F'(x) exists and 
W(x) = -<!'(x), g'(x) >-. 

b) Prove the same result from Theorems 7.1 and 7.2 and the differentiation rules of 
Hcction 6, using the exact relation F = fh 0 f + 82 0 g. 

7.5 In the spirit of the above two exercises, state a product law for derivatives of 
IU'CS and prove it as in the (b) proofs above. 

7.6 Find the tangent vector to the arc -<el,sint>- at t = OJ at t = 7r/2. [Apply 
Exercise 7.4(a).] What is the differential of the above parametrized arc at these two 
points? That is, if f(t) = -< el, sin t >-, what are dfo and df ... {2? 

7.7 Let F: 1R2 _1R2 be the mapping -<x, y>- ~ -<3x2y, x2y3>-. Compute the 
dircctional derivative D<1,2>F(3, -1) 

a) as the tangent vector at -< 3, -1>- to the arc f 0 ~, where ~ is the straight line 
through -< 3, -1 >- in the direction -< 1, 2>- j 

b) by first computing dF <3.-1> and then evaluating at -< 1, 2>-. 

7.8 Let ~ and JJ. be any two linear functionals on a vector space V. Evaluate the 
pl'llduct fW = ~WJJ.W along the line ~ = tOl., and hence compute D .. f(OI.). Now 
"valuate f along the general line ~ = ta + (J, and from it compute D .. f(fJ). 

7.9 Work the above exercise by computing differentials. 

7.10 If f: IR n - IR is differentiable at a, we know that its differential dfa, being a 
linear functional on IRn, is given by its skeleton n-tuple L according to the formula 

n 

dfa(x) = (L,x) = L: liXi. 
1 

III this context we call the n-tuple L the gradient of f at a. Show from the Schwarz 
IIwquality (Exercise 2.3) that if we use vectors y of Euclidean length 1, then the 
t1il'l'ctional derivative Dyf(a) is maximum when y points in the direction of the gradient 
IIf f. 
7.11 Let W be a normed linear space, and let V be the set of parametrized arcs 
~: [-1, 1] - W such that ~(O) = 0 and ~' (0) exists. Show that V is a vector space and 
'hilt X - ~'(O) is a surjective linear mapping from V to W. Describe in words the 
,-I,-ments of the quotient space V IN, where N is the null space of the above map. 

7.12 Find another homogeneous nonlinear function. Evaluate its directional deriva­
'lVI'S DEF(O), and show again that they do not make up a linear map. 

7.13 Prove that if F is a differentiable mapping from an open ball B of a normed 
lliwar space V to a normed linear space W such that dF .. = 0 for every a in B, then F 
i" " constant function. 

7. J.i Generalize the above exercise to the case where the domain of F is an open set A 
with the property that any two points of A can be joined by a smooth arc lying in A. 
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Show by a counterexample that the result does not generalize to arbitrary open sets A 
as the domain of F. 

7.15 Prove the following generalization of the mean-value theorem. Let f be a con­
tinuous mapping from the closed interval [a, b] to a normed linear space V, and let g 
be a continuous real-valued function on [a, b]. Suppose that f' (t) and g' (t) both exist, 
at all points of the open interval (a, b) and that 11f'(t) II ~ g'(t) on (a, b). Then 

llf(b) -f(a)ll:::; g(b) -g(a). 

[Consider the points x such that Ilf(x) - f(a) II ~ g(x) - g(a) + E(X - a) + E.] 

8. THE DIFFERENTIAL AND PRODUCT SPACES 

In this section we shall relate the differentiation rules to the special configurationH 
resulting from the expression of a vector space as a finite Cartesian product. 
When dealing with the range, this is a trivial consideration, but when the domain 
is a product space, we become involved with a deeper theorem. These general 
product considerations will be specialized to the IRn-spaces in the next section, 
but they also have a more general usefulness, as we shall see in the later sectionH 
of this chapter and in later chapters. 

We know that an m-tuple of functions on a common domain, Fi: A ~ Wi, 
i = 1, ... , m, is equivalent to a single m-tuple-valued function 

m 

F: A ~ W = II Wi, 
1 

F(OI) being the m-tuple {Fi (OI)}T for each a E A. We now check the obviously 
necessary fact that F is differentiable at a if and only if each Fi is differentiable 
at 01. 

TheoreDl 8.1. Given Fi: A ~ Wi, i = 1, ... , m, and F = -< FI, ... ,Fm >-, 
then F is differentiable at a if and only if all the functions Fi are, in which 
case dF", = -< dF!, ... , dF':: >-. 

Proof. Strictly speaking, F = LT 8i 0 F i , where 8j is the injection of W j into 
the product space W = lIT Wi (see Section 1.3). Since each 8i is linear and 
hence differentiable, with d(8i )", = 8i, we see that if each Fi is differentiable at 01, 

then so is F, and dF", = LT 8i 0 dF~. Less exactly, this is the statement 
dF", = -<dF!, ... , dF'::>-. The converse follows similarly from Fi = 7ri 0 F, 
where 7rj is the projection of lIT Wi onto Wj. D 

Theorems 7.1 and 8.1 have the following obvious corollary (which can also 
be proved as easily by a direct inspection of the limits involved) .. 

LeDlDla 8.1. If f; is an arc from [a, b] to Wi, for i = 1, ... , n, and if f i~ 
the n-tuple-valued arc f = -<iI,.·., fn >-, then f'(x) exists if and only if 
fI (x) exists for each i, in which case f'(x) = -<f~ (x), ... ,f~(x) >-. 
When the domain space V is a product space lI~ V j the situation is morl' 

complicated. A function F(h, ... , ~n) of n vector variables does not decomposl' 
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into an equivalent n-tuple of functions. Moreover, although its differential 
liFo. does decompose into an equivalent n-tuple of partial differentials {dF~}, 
we do not have the simple theorem that dFa. exists if and only if the partial 
differentials dF~ all exist. 

Of course, we regard a function F(h, ... , ~n) of n vector variables as being 
a function of the single n-tuple variable ~ = < h, ... , ~n >-, so that in principle 
t.here is nothing new when we consider the differentiability of F. However, when 
we consider a composition FoG, the inner function G must now be an n-tuple­
valued function G = < gl, ... , gn >-, where gi is from an open subset A of some 
normed linear space X to Vi, and we naturally try to express the differential 
of FoG in terms of the differentials dgi. To accomplish this we need the partial 
differentials dF~ of F. For the moment we shall define the jth partial differential 
of F at a = < ai, ... , a n >- as the restriction of the differential dF a. to Vj, 
(~onsidered as a subspace of V = In Vi. As usual, this really involves the 
injection OJ of Vj into II? Vi, and our formal (temporary) definition, accordingly, 
IK 

dF~ = dF a. 0 OJ. 

Then, since ~ = < h, ... , ~n >- = L:? Oi(~i)' we have 
n 

dFa.W = L dF~ai). 
1 

Himilarly, since G = < gl, ... , gn >- = L:? Oi 0 gi, we have 

n 

d(F 0 Gh = L dFhcY) 0 dg~, 
I 

which we shall call the general chain rule. There is ambiguity in the "i"-super­
H(Tipts in this formula: to be more proper we should write (dF)~ and d(gi)-y. 

We shall now work around to the real definition of a partial differential. 
Hince 

AFa. 0 OJ = (dFa.+ 19) 0 OJ = dFa. 0 OJ + 19 = dF~+ 19, 

II'P see that dF~ can be directly characterized, independently of dFa., as follows: 

dF~ is the unique element Ti of Hom(Vi, W) such that AFa. 0 Oi = Ti + 19. 

That is, dF~ is the differential at ai of the function of the one variable ~i 
oht.ained by holding the other variables in F(h, ... , ~n) fixed at the values 
Ei = aj. This is important because in practice it is often such partial differen­
I ill.bility that we come upon as the primary phenomenon. We shall therefore 
luke this direct characterization as our definition of dF~, after which our moti­
\'lLting calculation above is the proof of the following lemma. 

Lemma 8.2. If A is an open subset of a product space V = II? Vi, and if 
F: A -7 W is differentiable at a, then all the partial differentials dF~ exist 
and dF~ = dF a. 0 Oi' 
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The question then occurs as to whether the existence of all the partial 
differentials dF~ implies the existence of dF a.. The answer in general is negative, 
as we shall see in the next section, but if all the partial differentials dF~ exist for 
each a in an open set A and are continuous functions of a, then F is continuously 
differentiable on A. Note that Lemma 8.2 and the projection-injection identities 
show us what dFa. must be if it exists: dF~ = dFa. 0 8 i and L 8i 0 'Tri = I together 
imply that dFa. = L dF~ 0 'Tri. 

Theorem 8.2. Let A be an open subset of the normed linear space 
V = VI X V 2, and suppose that F: A ~ W has continuous partial differ­
entials dF~a.f3> and dF~a.f3> on A. Then dF <a.f3> exists and is continuous 
on A, and dF <a.f3>(~, 7]) = dF~a.f3>(~) + dF~a.f3>(7]). 

Proof. We shall use the sum norm on V = VI X V 2. Given E, we choose a so 
that I/dFi<J.'.v> - dFi<a.f3> II < E for every <'J.t, v>- in the a-ball about <'a, {3>­
and for i = 1, 2. Setting 

GW = F(a + ~,(3 + 7]) - dF~a.f3>(~), 
we have 

and the corollary of Theorem 7.4 implies that 

when II <. ~, 7] >- II < a. Arguing similarly with 

H(7]) = F(a, (3 + 7]) - dF~a.f3>(7]), 
we find that 

when II <.0, 7] >- 1/ < a. Combining the two inequalities, we have 

when II <. ~, 7] >- 1/ < a, where T = dF~a.f3> 0 'Trl + dF~a.f3> 0 'Tr2' That IS, 

tJ.F <a.f3> - T = l'l, and so dF <a.f3> exists and equals T. 0 

The theorem for more than two factor spaces is a corollary. 

Theorem 8.3. If A is an open subset of II~Vi and F ~ W is such that for 
each i = 1, ... , n the partial differential dF~ exists for all a E A and is 
continuous as a function of a = <. a 1> ••• , an >-, then dF a. exists and is 
continuous on A. If ~ = <. tI, ... , ~n >-, then dFa.W = L~ dF~(~i)" 

Proof. The existence and continuity of dF~ and dF! imply by the theorem that 
dF~ 0 7rl + dF! 0 'Tr2 is the differential of F considered as a function of the first 
two variables when the others are held fixed. Since it is the sum of continuouH 
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functions, it is itself continuous in a, and we can now apply the theorem again 
to add dF! to this sum partial differential, concluding that L ~ dF~ 0 7r i is the 
partial differential of F on the factor space VI X V 2 X V 3, and so on (which is 
colloquial for induction). 0 

As an illustration of the use of these two theorems, we shall deduce the 
general product rule (although a direct proof based on .1-estimates is perfectly 
feasible). A general product is simply a bounded bilinear mapping w: X X Y ---t W, 
where X, Y, and Ware all normed linear spaces. The boundedness inequality 
here is "w(~, 7/)11 ~ bll ~11117/11. 

We first show that w is differentiable. 

Lemma 8.3. A bounded bilinear mapping w: X X Y ---t W is everywhere 
differentiable and dW<a.{J>(~, 7/) = w(a, 7/) + w(~, (3). 

Proof. With (3 held fixed, g{Ja) = wa, (3) is in Hom(X, W) and therefore is 
cverywhere differentiable and equal to its own differential. That is, dw l exists 
and dW~a.{J>(~) = w(~, (3). Since {3 ~ g{J is a bounded linear mapping, 
dW~a.{J> = g{J is a continuous function of -< a, (3 '? Similarly, dW~a.{J>(7/) = 
w(a, 7/), and dw2 is continuous. The lemma is now a direct corollary of Theorem 
8.2. 0 

If w(~, 7/) is thought of as a product of ~ and 7/, then the product of two 
functions g(r) and her) is weyer), h(r), where g is from an open subset A of a 
Ilormed linear space V to X and h is from A to Y. The product rule is now just 
what would be expected: the differential of the product is the first times the 
differential of the second plus the second times the differential of the first. 

Theorem 8.4. If g: A ---t X and h: A ---t Yare differentiable at (3, then so 
is the product F(r) = weger), h(r) and 

dFp(r) = w(y({3), dhp(r) + w(dgp(r), h({3)). 

Proof. This is a direct corollary of Theorem 8.1, Lemma 8.3, and the chain 
rule. 0 

t:XERCISES 

8.1 Find the tangent vector to the arc -< sin t, cos t, t2 '? at t = 0; at t = 7r/2. 
What is the differential of the above parametrized arc at the two given points? That is, 
if I(t) = -< sin t, cos t, t2 '?, what are dlo and dlr /2? 

8.2 Give the detailed proof of Lemma 8.1. 

8.3 The formula .. 
dFuW = L dF!(~i) 

1 
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is probably obvious in view of the identity 
n 

~ = L (Ji(~i) 
1 

and the definition of partial differentials, but write out an explicit, detailed proof 
anyway. 

8.4 Let F be a differentiable mapping from an n-dimensional vector space V to a 
finite-dimensional vector space W, and define G: VX W ---7 Wby G(t 1J) = 1J - F(~). 
Thus the graph of F in V X W is the null set of G. Show that the null space of 
dG<a.fJ> has dimension n for every -«a, (3) E V X W. 

8.5 Let F(~, 1J) be a continuously differentiable function defined on a product 
A X B, where B is a ball and A is an open set. Suppose that dF~a.fJ> = 0 for all 
-«a, (3) in A X B. Prove that F is independent of 1J. That is, show that there is a 
continuously differentiable function Gm defined on A such that F(~, 1J) = Gm on 
AXB. 

8.6 By considering a domain in 1R2 as indicated at the right, show 
that there exists a function f(x, y) on an open set A in 1R2 such that 

everywhere and such that f(x, y) is not a function of x alone. 

8.7 Let F(~, 1J, t) be any function of three vector variables, and for fixed/' set 
G(~, 1J) = F(~, 1J, /'). Prove that the partial differential dF~a.fJ .. Y> exists if and only 
if dG~a.fJ> exists, in which case they are equal. 

8.8 Give a more careful proof of Theorem 8.3. That is, state the inductive hypothesis 
and show that the theorem follows from it and Theorem 8.2. If you are meticulous in 
your argument, you will need a form of the above exercise. 

8.9 Let f be a differentiable mapping from 1R2 to IR. Regarding 1R2 as IR X IR, show 
that the two partial differentials of f are simply multiplication by its partial derivatives. 
Generalize to n dimensions. Show that the above is still true for a map F from 1R2 to a 
general vector space V, the partial derivatives now being vectors. 

8.10 Give the details of the proof of Theorem 8.4. 

9. THE DIFFERENTIAL AND IRn 

We shall now apply the results of the last two sections to mappings involving the 
Cartesian spaces IR n , the bread and butter spaces of finite-dimensional theory. 
We start with the domain. 

Theorem 9.1. If F is a mapping from (an open subset of) IRn to a normed 
linear space W, then the directional derivative of F in the direction of the .ith 
standard basis vector ~j is just the partial derivative aF / ax;, and the .ith 
partial differential is multiplication by aF /aXj: dF~(h) = h(aF /aXj) (a). 
More exactly, if anyone of the above three objects exists at a, then they 
all do, with the above relationships. 
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Proof. We have 

aF () l' F(ab"" aj + t, ... , an) - F(ab ... , aj, ... , an) -- a = Im~~--~~~~--~~~--~~--~~--~~ 
aXj t--->o t 

= lim F(a + t~j) - F(a) = DOiF(a). 
t--->o t 

Moreover, since the restriction of F to a + lR~j is a parametrized arc whose 
differential at 0 is by definition the jth partial differential of F at a and whose 
tangent vector at 0 we have just computed to be (aFjaxj)(a), the remainder of 
the theorem follows from Theorem 7.1. 0 

Combining this theorem and Theorem 7.2, we obtain the following result. 

Theorelll 9.2. If V = IRn and F is differentiable at a, then the partial 
derivatives (aF jaXj) (a) all exist and the n-tuple of partial derivatives at 
a, {(aFjaxj)(a))~, is the skeleton of dFa. In particular, 

n aF 
DyF(a) = E1 Yj aXj (a). 

Proof. Since dFa(~i) = DaiF(a) = (aFjaXi) (a), as we noted above, we have 

( n i) n i n aF 
DyF(a) = dFa(Y) = dFa L Yi~ = L Yi dFa(~ ) = L Yi --a . (a). 

1 1 1 X, 

All that we have done here is to display dF a as the linear combination mapping 
defined by its skeleton {dFa(~i)} (see Theorem 1.2 of Chapter 1), where T(~i) = 
tlFa(~i) is now recognized as the partial derivative (aFjaXi)(a). 0 

The above formula shows the barbarism of the classical notation for partial 
Ilcrivatives: note how it comes out if we try to evaluate dFa(x). The notation 
[)aiF is precise but cumbersome. Other notations are Fj and DjF. Each has its 
problems, but the second probably minimizes the difficulties. Using it, our 
formula reads dFa(Y) = L:J=1 yjDjF(a). 

In the opposite direction we have the corresponding specialization of 
Theorem 8.3. 

Theorelll 9.3. If A is an open subset of IRn, and if F is a mapping from A 
to a normed linear space W such that all of the \ partial derivatives 
(aF jaXj) (a) exist and are continuous on A, then F is continuously differ­
entiable on A. 

Proof. Since the jth partial differential of F is simply multiplication by aF j aXil 
we are (by Theorem 9.1) assuming the existence and continuity of all the partial 
differentials dF~ on A. Theorem 9.3 thus becomes a special case of Theorem 8.3. 0 

N ow suppose that the range space of F is also a Cartesian space, so that F 
is a mapping from an open subset A of IRn to IRm. Then dFa is in Hom(lRn, IRm). 
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For computational purposes we want to represent linear maps from IRn to IR'" 
by their matrices, and it is therefore of the utmost importance to find the matrix 
t of the differential T = dF a' This matrix is called the Jacobian matrix of F 
at a. 

The columns of t form the skeleton of dF a, and we saw above that this 
skeleton is the n-tuple of partial derivatives (aF /aXj) (a). If we write the m­
tuple-valued F loosely as an m-tuple of functions, F = -<!11""! m >-, then 
according to Lemma 8.1, the jth column of t is the m-tuple 

aF ~ aft aim ~ 
a- (a) = a- (a), ... 'a- (a) . 

Xj Xj Xj 
Thus, 

Theorelll 9.4. Let F be a mapping from an open subset of IRn to IRm, and 
suppose that F is differentiable at a. Then the matrix of dFa (the Jacobian 
matrix of F at a) is given by 

ali 
tij = a- (a). 

Xj 

If we use the notation Yi = /i(x), we have 

aYi 
tij = a- (a). Xj 

If we also have a differentiable map z = G(y) = -< gl (y), ... , gl(y) >- from 
an open set B C IRm into 1R1, then dGb has, similarly, the matrix 

agk (b) = aZk (b). 
aYi aYi 

Also, if B contains b = F(a), then the composite-function rule 

has the matrix form 

or simply 

aZk _ :t aZk aYi 
aXj - i=l aYi aXj . 

This is the usual form of the chain rule in the calculus. We see that it is merely 
the expression of the composition of linear maps as matrix multiplication. 

We saw in Section 8 that the ordinary derivativef'(a) of a function! of one 
real variable is the skeleton of the differential d!a, and it is perfectly reasonable to 
generalize this relationship and define the derivative F'(a) of a function F of 
n real variables to be the skeleton of dFa , so that F'(a) is the n-tuple of partial 
derivatives {(aF /aXi) (a)H, as we saw above. In particular, if F is from an open 
subset of IRn to IRm, then F'(a) is the Jacobian matrix of F at a. This gives the 
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matrix chain rule the standard form 

(G 0 F)'(a) = G'(F(a))F'(a). 

Some authors use the word 'derivative' for what we have called the differ­
ential, but this is a change from the traditional meaning in the one-variable case, 
and we prefer to maintain the distinction as discussed above: the differential dF a. 
is the linear map approximating flFa. and the derivative F'(a) must be the 
matrix of this linear map when the domain and range spaces are Cartesian. 
However, we shall stay with the language of Jacobians. 

Suppose now that A is an open subset of a finite-dimensional vector space V 
and that H: A ~ W is differentiable at a E A. Suppose that W is also finite­
dimensional and that cp: V ~ IR n and 1/;: W ~ IRm are any coordinate isomor­
phisms. If A = cp[A], then A is an open subset of IRn and H = 1/; 0 H 0 cp-l is a 
mapping from A to IRm which is differentiable at a = cp(a), with dY. = 
1/; 0 dHa. 0 cp-l. Then dH. is given by its Jacobian matrix {(ohi/oXj) (a)} , which 
we now call the Jacobian matrix of H with respect to the chosen bases in V and 
W. Change of bases in V and W changes the Jacobian matrix according to the 
rule given in Section 2.4. 

If F is a mapping from IRn to itself, then the determinant of the Jacobian 
matrix COr;oXj)(a) is called the Jacobian of Fat a. It is designated 

or 

if it is understood that Yi = rex). Another notation is J F(a) (or simply J(a) if 
F is understood). However, this is sometimes used to indicate the differential 
dF., and we shall write det J F(a) instead. 

If F(x) = -<x~ - x~, 2XIX2 >-, then its Jacobian matrix is 

[ 2Xl -2X2] 
2X2 2Xl' 

EXERCISES 

9.1 By analogy with the notion of a parametrized are, we define a smooth param­
ct.rized two-dimensional surface in a normed linear space W to be a continuously 
differentiable map r from a rectangle I X J in 1R2 to W. Suppose that I X J = 

[-1,1] X [-1,1], and invent a definition of the tangent space to the range of r in W 
at the point nO, 0). Show that the two vectors 

or (0 0) 
ox ' and or (0 0) oy , 

are a basis for this tangent space. (This should not have been your definition.) 

/ 
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9.2 Generalize the above exercise to a smooth parametrized n-dimensional surface 
in a normed linear space W. 

9.3 Compute the Jacobian matrix of the mapping -< x, y > ~ -< x2, y2, (x + y)2 >. 
Show that its rank is two except at the origin. 

9.4 Let F = -<P, p, f3 > from 1R3 to 1R3 be defined by 

hex, y, z) = x + y + z, hex, y, z) = x2 + y2 + z2, 
and 

Compute the Jacobian of F at -< a, b, c >. Show that it is nonsingular unless two of the 
three coordinates are equal. Describe the locus of its singularities. 

9.5 Compute the Jacobian of the mapping F: -<x, y> ~ -< (x + y)2, y3> from 
1R2 to 1R2 at -< 1, -1> j at -< 1,0> jat -<a, b>. Compute the Jacobian of G: -<8, t> ~ 
-< 8 - t, 8 + t> at -< u, v>. 

9.6 In the above exercise compute the compositions FoG and G 0 F. Compute the 
Jacobian of FoG at -< y, v>. Compute the corresponding product of the Jacobians 
of F and G. 

9.7 Compute the Jacobian matrix and determinant of the mapping T defined by 
x = r cos 8, y = r sin 8, z = z. Composing a function f(x, y, z) with this mapping 
gives a new function: 

g(r, 8, z) = fer cos 8, r sin 8, z). 

That is, g = f 0 T. This composition (substitution) is called the change to cylindrical 
coordinates in 1R3. 

9.8 Compute the Jacobian determinant of the polar coordinate transformation 
-<r, 8> ~ -<x, y>, where x = r cos 8, y = r sin 8. 

9.9 The transformation to spherical coordinates is given by x = r sin 'P cos 8, 
y = r sin 'P sin 8,.z = r cos 8. Compute the Jacobian 

a(x, y, z) 
a(r, 'P, 8) 

9.10 Write out the chain rule for the following special cases: 

dw/dt = ?, where w = F(x, y), x = get), y = h(t). 

Find dw/dt when w = F(xl, ... , x n) and Xi = gi(t), i = 1, ... ,n, Find aw/au when 
w = F(x, y), x = g(u, v), y = h(u, v). The special case where g(u, v) = 'lit can be 
rewritten 

a 
ax F(x, hex, v». 

Compute it. 

9.11 If w = f(x, y), x = r cos 8, and y = r sin 8, show that 

[ r aw]2 + [aw]2 = [aw]2 + [aw]2, 
ar a8. ax ay 
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10. ELEMENTARY APPLICATIONS 

The elementary max-min theory from the standard calculus generalizes with 
little change, and we include a brief discussion of it at this point. 

TheoreDl 10.1. Let F be a real-valued function defined on an open subset A 
of a normed linear space V, and suppose that F assumes a relative maximum 
value at a point a in A where dF a exists. Then dF a = O. 

Proof. By definition D~F(a) is the derivative 'Y'(O) of the function 'Y(t) = 
F(a + t~), and the domain of'Y is a neighborhood of 0 in R Since'Y has a relative 
maximum value at 0, we have 'Y'(O) = 0 by the elementary calculus. Thus 
dFa(~) = D~F(a) = 0 for all ~, and so dFa = O. 0 

A point a such that dFa = 0 is called a critical point. The theorem states 
that a differentiable real-valued function can have an interior extremal value 
only at a critical point. 

If V is IRn, then the above argument shows that a real-valued function F 
can have a relative maximum (or minimum) at a only if the partial derivatives 
(aF/aXi)(a) are all zero, and, as in the elementary calculus, this often provides 
a way of calculating maximum (or minimum) values. Suppose, for example, 
that we want to show that the cube is the most efficient rectangular parallelepiped 
from the point of view of minimizing surface area for a given volume V. If 
the edges are x, y and z, we have V = xyz and A = 2(xy + xz + yz) = 
2(xy + V/y + V/x). Then from 0 = aAjax = 2(y - V/x2), we see that 
V = yx2, and, similarly, aA/ay = 0 implies that V = xy2. Therefore, yx2 = 
xy2, and since neither x nor y can be 0, it follows that x = y. Then V = yx2 = 
x 3, and x = V I /3 = y. Finally, substituting in V = xyz shows that z = V I /3. 

Our critical configuration is thus a cube, with minimum area A = 6V2 /3. 

It was assumed above that A has an absolute minimum at some point 
-< x, y, z >-. The reader might enjoy showing that A ~ 00 if any of x, y, z tends 
to 0 or 00, which implies that the minimum does indeed exist. 

We shall return to the problem of determining critical points in Sections 
12, 15, and 16. 

The condition dF a = 0 is necessary but not sufficient for an interior maxi­
mum or mmimum. The reader will remember a sufficient condition from 
beginning calculus: If f'(x) = 0 and f"(x) < 0 (>0), then x is a relative maxi­
mum (minimum) point for f. We shall prove the corresponding general theorem 
in Section 16. There are more possibilities now; among them we have the 
analogous sufficient condition that if dF a = 0 and d2F a is negative (positive) 
definite as a quadratic form on V, then a is a relative maximum (minimum) 
point of F. 

We consider next the notion of a tangent plane to a graph. The calculation 
of tangent lines to curves and tangent planes to surfaces is ordinarily considered 
a geometric application of the derivative, and we take this as sufficient justifica­
tion for considering the general question here. 
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Let F be a mapping from an open subset A of a normed linear space V to 
a normed linear space W. When we view F as a graph in V X W, we think of it 
as a "surface" S lying "over" the domain A, generalizing the geometric interpre­
tation of the graph of a real-valued function of two real variables in 1R3 = 1R2 X IR. 
The projection 11'1: V X W ~ V projects S "down" onto A, 

-< ~, F(~) >- t;rt ~, 

and the mapping ~ 1---+ -<~, F(~) >- gives the point of S lying "over"~. Our 
geometric imagery views V as the plane (subspace) V X {O} in V X W, just as 
we customarily visualize IR as the real axis IR X {O} in 1R2. 

We now assume that F is differentiable at a. Our preliminary discussion in 
Section 6 suggested that (the graph of) the linear function dF a is the tangent 
plane to (the graph of) the function IlF a in V X W, and that its translate M 
through -< a, F(a) >- is the tangent plane at -< a, F(a) >- to the surface S that is 
(the graph of) F. The equation of this plane is TJ - F(a) = dFa(~ - a), and 
it is accordingly (the graph of) the affine function GW = dFa(~ - a) + F(a). 
Now we know that dFa is the unique T in Hom(V, W) such that IlFa(!;) = 
T(r) + ('J(r), and if we set r = ~ - a, it is easy to see that this is the same as 
saying that G is the unique affine map from V to W such that 

F(~) - G(~) = ('J(~ - a). 

That is, M is the unique plane over V that "fits" the surface S around -< a, F(a) >­
in the sense of ('J-approximation. 

However, there is one further geometric fact that greatly strengthens our 
feeling that this really is the tangent plane. 

Theorem 10.2. The plane with equation TJ - F(a) = dFa(~ - a) is 
exactly the union of all the straight lines through -< a, F(a) >- in V X W 
that are tangent to smooth curves on the surface S = graph F passing 
through this point. In other words, the vectors in the subspace dF a of 
V X Ware exactly the tangent vectors to curves lying in S and passing 
through -< a, F(a) >-. 

P,·OOj. This is nearly trivial. If -<~, TJ >- E dF a, then the arc 

'Y(t) = -< a + t~, F(a + t~) >-

in S lying over the line t 1---+ a + t~ in V has -<~, dF aa) >- = -<~, TJ >- as its 
tangent vector at -< a, F(a) >-, by Lemma 8.1 and Theorem 8.2. 

Conversely, if t 1---+ -< X(t), F (X(t») >- is any smooth arc in S passing through a, 

with a = X(to), then its tangent vector at -< a, F(a) >- is 

-< X' (to), dF a (X' (to») >- , 

a vector in (the graph of) dFa. 0 
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As an example of the general tangent plane discussed above, let F = 
<ft,h> be the map from 1R2 to 1R2 defined by ft(x) = (x~ - x~)/2, h(x) = 
.CIX2. The graph of F is a surface over 1R2 in 1R4 = 1R2 X 1R2. According to our 
above discussion, the tangent plane at < a, F(a) > has the equation y = 
rlFa(x - a) + F(a). At a = <1,2> the Jacobian matrix of dFa is 

-2] 
1 ' 

and F(a) = < -!, 2>. The equation of the tangent plane 1If at < 1, 2> is thus 

<Yb Y2> = [~ -~] <Xl - 1, X2 - 2> + < -~, 2>. 

(~omputing the matrix product, we have the scalar equations 

YI = Xl - 2X2 + (-1 +4 -!) = Xl - 2X2 + !, 
Y2 = 2XI + X2 + (-2 -2 +2) = 2XI + X2 - 2. 

Note that these two equations present the affine space]I.J as the intersection 
of the hyperplane in 1R4 consisting of all < Xb X2, Yb Y2> such that 

Xl - 2X2 - YI = -!, 

with the hyperplane having the equation 

EXERCISES 

10.1 Find the maximum value of f(x, y, z) = x + y + z on the ellipsoid 

x2 + 2y2 + 3z2 = 1. 

10.2 Find the maximum value of the linear functional f(x) = L1 CiXi on the unit 
""here L1 x~ = 1. 

10.3 Find the (minimum) distance between the two lines 

and y = 8<1,1,1> + <1,0, -1> 
111 1R3. 

10.4 Show that there is a uniquely determined pair of closest points on the two lines 
\ = ta + I and y = 8b + m in IRn unless b = ka for some k. We assume that 
II .,e 0 ~ b. Remember that if b is not of the form ka, then I(a, b)1 < lIall2 IIblb 
1I('(:ording to the Schwarz inequality. 

10.5 Show that the origin is the only critical point of f(x, y, z) = xy + yz + zx. 
Find a line through the origin along which 0 is a maximum point for f, and find another 
line along which 0 is a minimum point. 
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10.6 In the problem of minimizing the area of a rectangular parallelepiped of given 
volume V worked out in the text, it was assumed that 

has an absolute minimum at an interior point of the first quadrant. Prove this. Show 
first that A --+ ao if < x, y> approaches the boundary in any way: 

x --+ 0, x --+ ao, y --+ 0, or y --+ ao. 

10.7 Let F: 1R2 --+ 1R2 be the mapping defined by 

Find the equation of the tangent plane in 1R4 to the graph of F over the point a 
<11"/4,11"/4>. 
10.8 Define F: 1R3 --+ 1R2 by 

3 3 

YI = L x7, Y2 = L x~. 
1 1 

Find the equation of the tangent plane to the graph of F in 1R5 over a = < 1,2, -1 >. 
10.9 Let w(~, 1/) be a bounded bilinear mapping from a product normed linear space 

V X ll" to a normed linear space X. Show that the equation of the tangent plane to thc 
graph S of w in V X ll" X X at the point <a, (3, 'Y> E S is 

s = w(~, (3) + w(a, 1/) + w(a, (3). 

10.10 Let F be a bounded linear functional on the normed linear space V. Show that 
the equation of the tangent plane to the graph of F3 in V X IR over the point a can be 
written in the form y = F2(a) (3FW - 2F(a). 

10.11 Show that if the general equation for a tangent plane given in the text is applied 
to a mapping Fin Hom(V, W), then it reduces to the equation for F itself [1/ = F(~)], 

no matter where the point of tangency. (Naturally!) 

10.12 Continuing Exercise 9.1, show that the tangent space to the range of r in n· 
at r(O) is the projection on ll" of the tangent 8pace to the graph of r in 1R2 X ll" at the 
point < 0, r(O) >. Now define the tangent plane to range r in lV at r(O), and show 
that it is similarly the projection of the tangent plane to the graph of r. 
10.13 Let F: V --+ W be differentiable at a. Show that the range of dF a is the pro­
jection on 11" of the tangent space to the graph of F in V X W at the point < a, F(a) >. 

ll. THE IMPLICIT-FUNCTION THEOREM 

The formula for the Jacobian of a composite map that we obtained in Section \) 
is reminiscent of the chain rule for the differential of a composite map that we 
derived earlier (Section 8). The Jacobian formula involves numbers (partial 
derivatives) that we multiply and add; the differential chain rule involves linear 
maps (partial differentials) that we compose and add. (The similarity becomes 
a full formal analogy if we use block decompositions.) Roughly speaking, the 



3.11 THE IMPLICIT-FUNCTW:>i THEOREM 165 

whole differential calculus goes this way. In the one-variable calculus a differ­
ential is a linear map from the one-dimensional space IR to itself, and is therefore 
multiplication by a number, the derivative. In the many-variable calculus when 
we decompose with respect to one-dimensional subspaces, we get blocks of such 
numbers, i.e., Jacobian matrices. When we generalize the whole theory to vector 
spaces that are not one-dimensional, we get essentially the same formulas but 
with numbers replaced by linear maps (differentials) and multiplication by 
composition. 

Thus the derivative of an inverse function is the reciprocal of the derivative 
of the function: if 9 = r 1 and b = f(a), then g'(b) = l/f'(a). The differential 
of an inverse map is the composition inverse of the differential of the map: if 
G = F-1 and F(a) = {3, then dG{3 = (dFa)-l. 

If the equation g(x, y) = ° defines y implicitly as a function of x, y = f(x), 
we learn to compute f'(a) in the elementary calculus by differentiating 

and we get 

where b = f(a). Hence 

g(x,f(x)) == 0, 

8g 8g , 
8_- (a, b) + 8-- (a, b) f (a) = 0, 

x y 

8g/8x 
f'(a) = - 8g/ay' 

We shall see below that if G(~, 7)) = ° defines 7) as a function of ~, 7) = F(~), 
and if (3 = F(a), then we calculate the differential dFa by differentiating the 
identity G(~, F(~)) = 0, and we get a formula formally identical to the above. 

Finally, in exactly the same way, the so-called auxiliary variable method of 
solving max-min problems in the elementary calculus has the same formal 
structure as our later solution of a "constrained" maximum problem by Lagrange 
multipliers. 

In this section we shall consider the existence and differentiability of func­
tions implicitly defined. Suppose that we are given a (vector-valued) function 
G(~, 7)) of two vector variables, and we want to know whether setting G equal 
to ° defines 7) as a function of ~, that is, whether there exists a unique function F 
such that G (~, F(~)) is identically zero. Supposing that such an "implicitly 
defined" function F exists and that everything is differentiable, we can try 
to compute the differential of F at a by differentiating the equation G(~, F(~)) = 

0, or Go <.1, F'? = 0. We get dG~a,B> 0 dla + dG~a,{3> 0 dFa = 0, where we 
have set (3 = F(a). If dG2 is invertible, we can solve for dF a, getting 

elFa = -(clG~a,{3»-l 0 dG~a,{3>. 

Note that this has the same form as the corresponding expression from the 
elementary calculus that we reviewed above. If F is uniquely determined, then 
so is elF a, and the above calculation therefore strongly suggests that we are 
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going to need the existence of (dG~a,tJ»-1 as a necessary condition for the 
existence of a uniquely defined implicit function around the point -< a, (3 > . 
Since (3 is F(a), we also need G(a, n = O. These considerations will lead us to 
the right theorem, but we shall have to postpone part of its proof to the next 
chapter. What we can prove here is that if there is an implicitly defined function, 
then it must be differentiable. 

Theorem 11.1. Let V, W, and X be normed linear spaces, and let G be a 
mapping from an open subset A X B of V X W to X. Suppose that F is a con­
tinuous mapping from A to B implicitly defined by the equation G(~, 1/) = 0, 
that is, satisfying G(~, F(~)) = 0 on A. Finally, suppose that G is differ­
entiable at -< a, (3 >, where (3 = F(a), and that dG~a,tJ> is invertible. Then 
F is differentiable at a and dFa = -(dG~a,tJ»-1 0 dG~a,tJ>. 

Proof. Set 1/ = dFaa), so that G(a + ~,(3 + 1/) = G(a + ~,F(a + ~)) = O. 
Then 

0= G(a + ~,(3 + 1/) - G(a, (3) = dG<a,tJ>a, 1/) = dG<a,tJ>(~, 1/) + e(~, 1/) 

= dG~a,tJ>(~) + dG~a,tJ>(1/) + e(~, 1/). 

Applying T- l to this equation, where T = dG~a,tJ>' and solving for 1/, we get 

1/ = _T-l(dG~a,tJ>(~)) + O(e( -<~, 1/> )). 

This equation is of the form 1/ = O(~) + e( -< ~, 1/ > ), and since 1/ = dF a(~) is 
an infinitesimal 9'(~), by the continuity of F at a, Lemmas 5.1 and 5.2 imply 
first that 1/ = O(~) and then that -<~, 1/> = O(~). Thus O(e(-<~, 1/») = 
e(eO(m) = ea), and we have 

dFaW = 1/ = 8W + e(~), 
where 8 = -(dG~a,tJ»-1 0 dG~a,tJ>' an element of Hom(V, W). Therefore, F 
is differentiable at a and dF a has the asserted value. 0 

We shall show in the next chapter, as an application of the fixed-point 
theorem, that if V, W, and X are finite-dimensional, and if G is a continuously 
differentiable mapping from an open subset A X B of V X W to X such that 
at the point -<a, (3) we have both G(a, (3) = 0 and dG~a,tJ> invertible, then 
there is a uniquely determined continuous mapping F from a neighborhood M of 
a to B such that F(a) = (3 and G(~, F(~)) = 0 on M. The same theorem is true 
for the more general class of complete normed linear spaces which we shall study 
in the next chapter. For these spaces it is also true that if T- l exists, then so 
does 8-1 for all 8 sufficiently close to T, and the mapping 81--+8-1 is contin­
uous. Therefore dG~p.,.> is invertible for all -<fJ., v> sufficiently close to 
-< a, (3 >, and the above theorem then implies that F is differentiable on a 
neighborhood of a. Moreover, only continuous mappings are involved in the 
formula given by the theorem for dF: fJ. 1--+ dFp., and it follows that F is in fact 
continuously differentiable near a. These conclusions constitute the implicit­
function theorem, which we now restate. 
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Theorem n.2. Let V, W, and X be finite-dimensional (or, more generally, 
complete) normed linear spaces, let A X B be an open subset of V X W, 
and let G: A X B ~ X be continuously differentiable. Suppose that at the 
point -< a, (3 >- in A X B we have both G(a, (3) = 0 and dG~<x,f3> invertible. 
Then there is a ball M about a and a uniquely defined continuously differen­
tiable mapping F from M to B such that F(a) = (3 and G(~, F(O) = 0 on M. 

The so-called inverse-mapping theorem is a special case of the implicit-
fUllction theorem. 

Theorem n.3. Let H be a continuously differentiable mapping from an 
open subset B of a finite-dimensional (or complete) normed linear space W 
to a normed linear space V, and suppose that its differential is invertible at 
a point (3. Then H itself is invertible near (3. That is, there is a ball M about 
a = H((3) and a uniquely determined continuously differentiable function F 
from M to B such that F(a) = (3 and H(F(~)) = ~ on M. 

1)(00/. Set G(~, 1/) = ~ - H(1/). Then G is continuously differentiable from 
V X B to V and dG~a,f3> = -dHf3 is invertible. The implicit-function theorem 
then gives us a ball M about a and a uniquely determined continuously differ­
f»1t.iable mapping F from M to B such that F(a) = (3 and 0 = G(~, F(~)) = 
• . H(FW) on M. 0 

The inverse-mapping theorem is often given a slightly different formulation 
'Wilich we state as a corollary. 

Corollary. Under the hypotheses of the above theorem there exists an open 
neighborhood U of (3 such that H is injective on U, N = H[U] is open in 
V, and H-1 is continuously differentiable on N. (See Fig. 3.11.) 

Fig. 3.11 

l'mo/. The proof of the corollary is left as an exercise. 

In practice we often have to apply the Cartesian formulations of these 
~hnorems. The student should certainly be able to write these downf but we 
iltmll state them anyway; starting with the simpler inverse-mapping .theorem. 

Theorem n.4. Suppose that we are given n continuously differentiable 
real-valued functions Gi (Y1,"" Yn), i = 1, ... ,n, of n real variables 
defined on a neighborhood B of a point b in ~n and suppose that the Jacobian 
determinan t 
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is not zero. Then there is a ball M about a = G(b) in ~n and a uniquely 
determined n-tuple F = -< F 1, ... , F n >- of continuously differentiable real­
valued functions defined on M such that F(a) = band G(F(x)) = x on 111 
for i = 1, ... ,n. That is, Gi(F 1(Xb ... ,xn), ... ,F n(Xb ... ,xn)) = ;r, 
for all x in M and for i = 1, ... , n. 

For example, if x = -< Y~ + Y~, Y~ + Y~ >-, then at the point b = -< 1, 2 >­
we have 

a(Xl, X2) _ det [3yt 3Y~]1 
a(Yl, Y2) - 2Yl, 2Y2 < 1.2 > 

= det [;: I!] = -12 ,= 0, 

and we therefore know without trying to solve explicitly that there is a uniqUf' 
solution for y in terms of x near x = -< 13 + 23, 12 + 22>- = -< 9, 5>-. Thl' 
reader would find it virtually impossible to solve for y, since he would quickly 
discover that he had to solve a polynomial equation of degree 6. This clearly 
shows the power of the theorem: we are guaranteed the existence of a mappillJ!: 
which may be very difficult if not impossible to find explicitly. (However, ill 
the next chapter we shall discover an iterative procedure for approximating thl' 
inverse mapping as closely as we want.) 

Everything we have said here applies all the more to the implicit-functioll 
theorem, which we now state in Cartesian form. 

Theorem n.s. Suppose that. we are given m continuously differentiabll' 
real-valued functions Gi(x, y) = Gi(Xl, ... , Xn, Yb ... , Ym) of n + m real 
variables defined on an open subset A X B of ~n+m and an (n + m)-tupll' 
-<a, b>- = -<ab"" an, b1, • •• , bm>- such that Gi(a, b) = 0 for i, 
1, ... , m, and such that the Jacobian determinant 

is not zero. Then there is a ball M about a in ~n and a uniquely determinl'd 
m-tuple F = -< F 1, .•• , F m >- of continuously differentiable real-vaIUl·d 
functions Fj(x) = Fj(Xb ... ,xn) defined on M such that b = F(a) alld 
Gi(x, F(x)) = 0 on M for i = 1, ... ,m. That is, bi = Fi(ab ... ,an) I'lli' 
i = 1, ... ,m, and Gi (Xl, ... ,Xn; F 1(Xb ... ,xn), ... ,F m(Xb ... ,xn )) 

o for all x in M and for i = 1, ... , m. 

For example, the equations 

X~ + x~ - y~ - y~ = 0, 

x~ - x~ - y~ - y~ = 0 

can be solved uniquely for y in terms of x near -< x, y>- -< 1, 1, 1, -1>-, 
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because they hold at that point and because 

a(GI, G2) = det [-2Y~, -2Y2] (2 2) 
a(YI, Y2) -3Yb -3y~ = 6 YIY2 - Y2YI 

has the value 12 there. Of course, we mean only that the solution functions 
exist, not that we can explicitly produce them. 

EXERCISES 

11.1 Show that -< x, y> ....... -< e" + ell, eX + e-II > is locally invertible about any 
point -< a, b >, and compute the Jacobian matrix of the inverse map. 

11.2 Show that -< u, v> ....... -< eU + e', eU - eV > is locally invertible about any 
point -< a, b> in 1R2, by computing the Jacobian matrix. In this case the whole map­
ping is invertible, with an easily computed inverse. Make this calculation, compute 
the Jacobian matrix of the inverse map, and verify that the two matrices are inverses 
at the appropriate points. 

11.3 Show that the mapping -<x,y,z> ....... -<sinx,cosy,ez > from 1R3 to 1R3 is 
locally invertible about -< 0, 11'/2, 0>. Show that 

-<x, y, z> ....... -<sin (x + y + z), cos (x - y + z), e<dll-z) > 

is locally invertible about -<11'/4, -11'/4,0>. 

11.4 Express the second map of the above exercise as the composition of two maps, 
and obtain your answer a second way. 

11.5 Let F: -<x, y> ....... -<u, v> be the mapping from 1R2 to 1R2 defined by u = 
x2 + y2, V = 2xy. Compute an inverse G of F, being careful to give the domain and 
range of G. How many inverse mappings are there? Compute the Jacobian matrices 
of F at -< 1,2> and of Gat -< 5,4>, and show by multiplying them that they are 
inverse. 

11.6 Consider now the mapping F: -< x, y> ....... -< x3, y3 >. Show that dF <0.0> is 
singular and yet that the mapping has an inverse G. What conclusion do we draw 
about the differentiability of G at the origin? 

11.7 Define F:1R2 ---t1R2 by -<x,y> ....... -<e"cosy,eXsiny>. Prove that F is 
locally invertible about every point. 

11.8 Define F: 1R3 ---t 1R3 by x ....... y where 

YI = Xl + x~ + (X3 - 1)\ 
2 3 

Y2 = Xl + X2+ (X3 - 3X3), 
3 2 

Y3 = Xl + X2 + X3. 

Prove that x ....... y = F(x) is locally invertible about x = -< 0, 0, 1>. 

11.9 For a functionf: IR ---t IR the proof of local invertibility around a point a where 
dfa is nonsingular is much simpler than the general case. Show first that the Jacobian 
matrix of f at a is the number f'ea). We are therefore assuming thatf'(x) is continuous 
in a neighborhood of a and that f' (a) ;>'! O. Prove that then f is strictly increasing (or 
decreasing) in an interval about a. Now finish the theorem. (See Exercise 1.12.) 
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n.IO Show that the equations 

t2 + x3 + y3 + z3 = 0, t + x2 + y2 + z2 = 4, 

have differentiable solutions x(t), y(t), z(t) around -<t, x, y, z> = -<0, -1, 1,0>, 

n.n Show that the equations 

x + 2y + 3u + 4. 4 e e e e = , 

can be uniquely solved for u and v in terms of x and y around the point -< 0, 0, 0, ° > , 

n.12 Let S be the graph of the equation 

xz + sin (xy) + cos (xz) = 1 

in IJ;P. Determine whether in the neighborhood of (0,1,1) S is the graph of a diffrr­
entiable function in any of the following forms: 

z = f(x, y), x = g(y, z), y = h(x, z). 

n.13 Given functionsf and g from 1R3 to IR such thatf(a, b, c) = ° and g(a, b, c) = n, 
write down the condition on the partial derivatives of f and g that guarantees tht, 
existence of a unique pair of differentiable functions y = h(x) and z = k(x) satisfyin/-': 

h(a) = b, k(a) = c, 
and 

f(x, y, z) = f(x, h(x), k(x)) = 0, 

g(x, y, z) = g(x, h(x), k(x)) = ° around -<a, b, c>. 

n.14 Let G(t TJ, n be a continuously differentiable mapping from V = In Vi to 11 
such that dG!: V3 ----> W is invertible and G(a) = G(aI, a2, (3) = 0. Prove that then' 
exists a uniquely determined function t = F(~, TJ) defined around -< aI, a2 > III 

VI X V 2 such that G(~, TJ, F(~, TJ)) = ° and F(al, (2) = a3. Also show that 

dF~t,~> = [-dG~t,~'\>l-l[dG~t,~,r>l, 
where t = F(~, TJ). 

n.15 Let F(t TJ) be a continuously differentiable function from V X tv to X, and 
suppose that dF~a,{3> is invertible. Setting'Y = F(a, (3), show that there is a product 
neighborhood L X M X N of -< 'Y, a, (3 > in X X V X Wand a unique continuously 
differentiable mapping G: L X M ----> N such that on LX M, F(~, G(t, ~)) = !: 
n.16 Suppose that the equation g(x, y, z) = ° can be solved for z in terms of x and iI, 
This means that there is a function f(x, y) such that g(x, y, f(x, y)) = 0. Suppose abo 
that everything is differentiable and compute az/ax. 

n.17 Suppose that the equations 

g(x, y, z) = ° and h(x, y, z) = ° 
can be solved for y and z as functions of x. Compute dy/dx. 

n.IS Suppose that g(x, y, u, v) = ° and h(x, y, u, v) = ° can be solved for u and I' 

as functions of x and y. Compute au/ax. 

n.19 Compute dz/dx where x3 + y3 + z3 = ° and x 2 + y2 +- z2 = 1. 

n.20 If t3 + x3 + y3 + z3 = ° and t2 + x 2 + y2 + z2 = 1, then az/ax is ambiguolI~, 
We are obviously going to think of two of the variables as functions of the other two, 
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Also z is going to be dependent and x independent. But is t or y going to be the other 
independent variable? Compute azjax under each of these assumptions. 

1l.21 We are given four "physical variables" p, v, t, and cp such that each of them is a 
function of any two of the other three. Show that atjap has two quite different mean­
ings, and make explicit what the relationship between them is by labeling the various 
functions that are relevant and applying the implicit differentiation process. 

1l.22 Again the "one-dimensional" case is substantially simpler. Let G be a con­
tinuously differentiable mapping from 1R2 to IR such that G(a, b) = 0 and 

(a Gjay) (a, b) = G2(a, b) > o. 
Show that there are positive numbers E and ~ such that for each c in (a - ~, a + ~) 
the function g(y) = G(c, y) is strictly increasing on [b - E, b + E) and G(c, b - E) < 
o < G(c, b + E). Conclude from the intermediate-value theorem (Exercise 1.13) that 
there exists a unique function F: (a - ~, a + ~) ---+ (b - E, b + E) such that 

G(x,F(x» = O. 

1l.23 By applying the same argument used in the above exercise a second time, prove 
that F is continuous. 

1l.24 In the inverse-function theorem show that dF a = (dH fj) -1. That is, the differ­
ential of the inverse of H is the inverse of the differential of H. Show this 

a) by applying the implicit-function theorem; 
b) by a direct calculation from the identity H (FW) = ~. 

11.25 Again in the context of the inverse-mapping theorem, show that there is a 
neighborhood I'll of f3 in A such that F(H(rJ» = ." on M. (Don't work at this. Just 
apply the theorem again.) 

11.26 We continue in the context of the inverse-mapping theorem. Assume the result 
(from the next chapter) that if dH~l exists, then so does dH"i1, for ~ sufficiently close 
to f3. Show that there is an open neighborhood U of f3 in B such that H is injective on U, 
H[U) is an open set N in V, and H-1 is continuously differentiable on N. 

11.27 Use Exercise 3.21 to give a direct proof of the existence of a Lipschitz con­
tinuous local inverse in the context of the inverse-mapping theorem. [Hint: Apply 
Theorem 7.4.) 

11.28 A direct proof of the differentiability of an inverse function is simpler than the 
implicit-function theorem proof. Work out such a proof, modeling your arguments in a 
general way upon those in Theorem 11.1. 

11.29 Prove that the implicit-function theorem can be deduced from the inverse­
function theorem as follows. Set 

H(~,.,,) = -<~, G(~, .,,) >, 
ILnd show that dH <a,fj> has the block diagram 

I I 0 
dG1 dG2 

Then show that dH <a,fj> -1 exists from the block diagram results of Chapter 1. Apply 
the inverse-mapping theorem. 
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12. SUBMANIFOLDS AND LAGRANGE MULTIPLIERS 

If V and Ware finite-dimensional spaces, with dimensions nand m, respectively, 
and if F is a continuous mapping from an open subset A of V to W, then (the 
graph of) F is a subset of V X W which we visualize as a kind of "n-dimensional 
surface" S spread out over A. (See Section 10.) We shall call F an n-dimensional 
patch in V X W. :\Iore generally, if X is any (n + m)-dimensional vector space, 
we shall call a subset S an n-dimensional patch if there is an isomorphism 'P 
from X to a product space V X W such that V is n-dimensional and 'P[S] is a 
patch in V X W. That is, S becomes a patch in the above sense when X is 
considered to be V X W. This means that if 11"1 is the projection of X = V X W 
onto V, then 1I"dS] is an open subset A of V, and the restriction 11"1 r S is one-to­
one and has a continuous inverse. If 11"2 is the projection on W, then F = 
11"2 a (11"1 r S)-I~ is the map from A to W whose graph in V X W is S (when 
V X W is identified with X). 

N ow there are important surfaces that aren't such "patch" surfaces. Con­
sider, for instance, the surface of the unit ball in ~3, S = {x : L~ x 2 = I}. S is 
obviously a two-dimensional surface in ~3 which cannot be expressed as a graph, 
no matter how we try to express ~3 as a direct sum. However, it should be 
equally clear that S is the union of overlapping surface patches. If a is any point 
on S, then any sufficiently small neighborhood N of a in ~3 will intersect S in a 
patch; we take Vas the subspace parallel to the tangent plane at a and Was 
the perpendicular line through O. Moreover, this property of S is a completely 
adequate definition of what we mean by a submanifold. 

A subset S of an (n + m)-dimensional vector space X is an n-dimensional 
submanifold of X if each a on S has a neighborhood N in X whose intersection 
with S is an n-dimensional patch. 

We say that S is smooth if all these patches Sa are smooth, that is, if the 
function F: A ---? W whose graph in V X W is the patch Sa (when X is viewed 
as V X W) is continuously differentiable for every such patch Sa. 

The sphere we considered above is a two-dimensional smooth submanifold 
of ~3. 

Submanifolds are frequently presented as zero sets of mappings. For 
example, our sphere above is the zero set of the mapping G from ~3 to ~ defined 
by G(x) = L~ xl - 1. It is obviously important to have a condition guar­
anteeing that such a null set is a submanifold. 

Theorem 12.1. Let G be a continuously differentiable mapping from an open 
subset U of an (n + m)-dimensional vector space X to an m-dimensional 
vector space Y such that dGa is surjective for every a in the zero set S of G. 
Then S is an n-dimensional submanifold of X. 

Proof. Choose any point 'Y of S. Since dG-y is surjective from the (n + m)­
dimensional vector space X to the m-dimensional vector space Y, we know that 
the null space V of dG-y has dimension n (Theorem 2.4, Chapter 2). Let W be any 
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complement of V, and think of X as V X W, so that G now becomes a function of 
two vector variables and 'Y is a point < a, /3 >- such that G(a, /3) = O. The 
restriction of dG <a.,fJ> to W is an isomorphism from W to Y; that is, (dG~a.,fJ»-l 
exists. Therefore, by the implicit-function theorem, there is a product neigh­
borhood Sa(a) X Sr(/3) of < a, /3 >- in X whose intersection with S is the graph 
of a function on Sa(a). This proves our theorem. 0 

If S is a smooth submanifold, then the function F whose graph is the patch 
of S around 'Y (when X is viewed suitably as V X W) is continuously differentia­
ble, and therefore S has a uniquely determined n-dimensional tangent plane M 
at 'Y that fits S most closely around 'Y in the sense of our l'J-approximations. 
If 'Y = 0, this tangent plane is an n-dimensional subspace, and in general it is 
the translate through 'Y of a subspace N. We call N t.he tangent space of S at 'Y; 
its elements are exactly the vectors in X tangent to parametrized arcs drawn 
in S through 'Y. What we are going to do later is to describe an n-dimensional 
manifold S independently of any imbedding of S in a vector space. The tangent 
space to S at a point 'Y will still be an invaluable notion, but we are not going to 
he able to visualize it by an actual tangent plane in a space X carrying S. 
Instead, we will have to construct the vector space tangent to S at 'Y some­
how. 

The clue is provided by Theorem 10.2, which tells us that if S is imbedded 
I1S a submanifold in a vector space X, then each vector tangent to S at 'Y can be 
presented as the unique tangent vector at 'Y to some smooth curve lying in S. 
This mapping from the set of smooth curves in S through 'Y to the tangent space 
Itt'Y is not injective; clearly, different curves can be tangent to each other at 'Y 
ILlld so have the same tangent vector there. Therefore, the object in S that 
eorresponds to a tangent vector at 'Y is an equivalence class of smooth curves 
through 'Y, and this will in fact be our definition of a tangent vector for a general 
lIIanifold. 

The notion of a submanifold allows us to consider in an elegant way a 
<:Iassical "constrained" maximum problem. Weare given an open subset U 
of a finite-dimensional vector space X, a differentiable real-valued function F 
defined on U, and a submanifold S lying in U. We shall suppose that the 
,ubmanifold S is the zero set of a continuously differentiable mapping G from U 
10 a vector space Y such that dG"( is surjective for each 'Y on S. We wish to 
('lIllsider the problem of maximizing (or minimizing) F('Y) when 'Y is "con­
Htrained" to lie on S. We cannot expect to find such a maximum point 'Yo by 
Hd,ting dF"( = 0 and solving for 'Y, because 'Yo will not be a critical point for F. 
(:ollsider, for example, the function fI(x) = L~ xT - 1 from ~3 to ~ and F(x) = 
.1'2' Here the "surface" defined by fI = 0 is the unit sphere L~ xT = 1, and on 
Ihis sphere F has its maximum value 1 at <0,1,0>-. But F is linear, and so 
,[/,,"( = F can never be the zero transformation. The device known as Lagrange 
multipliers shows that we can nevertheless find such constrained critical points 
by solving dL,,( = 0 for a suitable function L. 
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Theorem 12.2. Suppose that F has a maximum value on S at the point 1'. 

Then there is a functionall in y* such that I' is a critical point of the func­
tion F - (loG). 

Proof. By the implicit-function theorem we can express X as V X W in such a 
way that the neighborhood of S around I' is the graph of a mapping H from an 
open set A in V to W. Thus, expressing F and G as functions on V X W, we 
have G(~, 1/) = 0 near I' = «a, (3) if and only if 1/ = H(~), and the restriction 
of F(~, 1/) to this zero surface is thus the function K: A ~ IR defined by Ka) = 
F (~, H (~». By assumption a is a critical point for this function. Thus 

o = dKa = dF~a,p> + dF~a,p> 0 dHa. 

Also from the identity G(~, H(O) = 0, we get 

o = dG~a,p> + dG~a,p> 0 dHa. 

Since dG~a,fJ> is invertible, we can solve the second equation for dHa and 
substitute in the first, thus getting, dropping the subscripts for simplicity, 

dF I - dF 2 0 (dG2)-1 0 dG I = O. 

Let l E y* be the functional dF 2 0 (dG2)-I. Then we have dF I = lo dG I and, 
by definition, dF 2 = lo dG2 • Composing the first equation (on the right) with 
1rl: V X W ~ V and the second with 1r2, and adding, we get dF <a,p> = 
lo dG<a,p>. That is, d(F - lo Gh = o. 0 

Nothing we have said so far explains the phrase "Lagrange mUltipliers". 
This comes out of the Cartesian expression of the theorem, where we have U 
an open subset of a Cartesian space IR n, Y = IRm, G = « gl, ... , gm> , and l ill 
y* of the form lc: l(y) = L'f CiYi. Then F - loG = F - L'f Cig i , and 
d(F - lo G)a = 0 becomes 

aF magi - - 1: Ci - = 0, j = 1, ... , n. 
aXj 1 aXj 

These n equations together with the m equations G = « gl, ... , gm> = 0 give 
m + n equations in the m + n unknowns Xb ••• , X n , Cb ••• , Cm. 

Our original trivial example will show how this works out in practice. We 
want to maximize F(x) = X2 from 1R3 to IR subject to the constraint L~ x'f = 1. 
Here g(x) = L~ x'f - 1 is also from 1R3 to IR, and our method tells us to look 
for a critical point of F - cg subject to g = O. Our system of equations is 

0- 2CXl = 0, 

1 - 2CX2 = 0, 

0- 2CX3 = 0, 
3 

1: x~ = 1. 
1 
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The first says that c = ° or Xl = 0, and the second implies that c cannot be 0. 
Therefore, Xl = Xa = 0, and the fourth equation then shows that X2 = ±1. 

Another example is our problem of minimizing the surface area A = 
2(xy + yz + zx) of a rectangular parallelepiped, subject to the constraint of a 
constant volume, xyz = V. The theorem says that the minimum point will be a 
critical point of A - A V for some A, and, setting the differential of this function 
equal to zero, we get the equations 

together with the constraint 

2(y + z) - AyZ = 0, 

2(x + z) - AXZ = 0, 

2(x + y) - AXY = 0, 

xyz = V. 

The first three equations imply that X = Y = z; the last then gives VIla at the 
common value. 

*13. FUNCTIONAL DEPENDENCE 

The question, roughly, is this: If we are given a collection of continuous functions, 
all defined on some open set A, how can we tell whether or not some of them are 
functions of the rest? For example, if we are given three real-valued continuous 
functions fll 12, and fa, how can we tell whether or not some one of them is a 
function of the other two, say fa is a function offl and12, which means that there 
is a function of two variables g(x, y) such that fa(t) = g(!I (t), f2(t)) for all t in 
the common domain A? If this happens, we say that fa is functionally dependent 
on !I and f2. This is very nearly the same as asking when it will be the case that 
the range S of the mapping F: t ~ <'!I(t),!2(t), fa(t) >- is a two-dimensional 
submanifold of IRa. However, there are differences in these questions that are 
worth noting. If fa is functionally dependent on fl and f2' then the range of F 
certainly lies on a two-dimensional submanifold of IRa, namely, the graph of g. 
But this is no guarantee that it itself forms a two-dimensional submanifold. 
For example, both 12 and fa might be functionally dependent on !I, f2 = go fl' 
and fa = h 0!I, in which case the range of F lies on the curve <. s, g(s), h(s) >- in 
IRa, which is a one-dimensional submanifold. In the opposite direction, the range 
of F can be a two-dimensional submanifold M without fa being functionally 
dependent onf2 and fl. All we can conclude in this case is that locally one of the 
functions {h} ~ is a function of the other two, since locally M is a surface patch, 
in the language of the last section. But if we move a little bit away on the 
eurving surface M to the neighborhood of another point, we may have to solve 
for a different one of the functions. Nevertheless, if M = range F is a subset of 
u two-dimensional manifold, it is reasonable to say that the functions {h} ~ are 
functionally dependent, and we are led to examine this more natural notion. 
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If we assume that F = -<ft, f2' fa >- is continuously differentiable and that 
the rank of dF a is 3 at some point a in A, then the implicit-function theorem 
implies that F[A] includes a whole ball in 1R3 about the point F(a). Thus a 
necessary condition for !If = range F to lie on a two-dimensional submanifold in 
1R3 is that the rank of dF a be everywhere less than 3. We shall see, in fact, that 
if the rank of dF a is 2 for all a, then lIf = range F is essentially a two-dimensional 
manifold. (There is still a tiny difficulty that we shall explain later.) Our tools 
are going to be the implicit-function theorem and the following theorem, which 
could well have come much earlier, that the rank of T is a "lower semi con­
tinuous" function of T. 

Theorelll 13.1. Let V and W be finite-dimensional vector spaces, normed 
in some way. Then for any Tin Hom(V, W) there is an E such that 

liS - Til < E ==} rank S ~ rank T. 

Pl'oof. Let T have null space N and range R, and let X be any complement of 
N in V. Then the restriction of T to X is an isomorphism to R, and hence is 
bounded below by some positive m. (I ts inverse from R to X is bounded by 
some b, by Theorem 4.2, and we set m = l/b.) Then if liS - Til < m/2, it 
follows that S is bounded below on X by m/2, for the inequalities 

II T(a) II ~ mllall and II(S - T)(a)11 ::s; (m/2)llall 

together imply that IIS(a)11 ~ (m/2)llall. In particular, S is injective on X, and 
so rank S = derange S) ~ d(X) = d(R) = rank T. D 

We can now prove the general local theorem. 

Theorelll 13.2. Let V and W be finite-dimensional spaces, let l' be an integer 
less than the dimension of W, and let F be a continuously differentiable map 
from an open subset A C V to W such that the rank of dF-y = r for all 'Y 

in A. Then each point 'Y in A has a neighborhood U such that F[U] is an 
r-dimensional patch submanifold of W. 

Proof. For a fixed 'Y in A let VIand Y be the null space and range of dF-y, let 
V 2 be a complement of VI in V, and view V as VI X V 2. Then F becomes 
a function F(~, 71) of two variables, and if 'Y = -<a, f3>-, then dF~a,{J> is an 
isomorphism from V 2 to Y. At this point we can already choose the decom­
position W = WI Et> W 2 with respect to which F[A] is going to be a graph 
(locally). We simply choose any direct sum decomposition W = WI Et> W 2 

such that W2 is a complement of Y = range dF <a,{J>' Thus WI might be Y, 
but it doesn't have to be. Let P be the projection of W onto W b along W 2. 

Since Y is a complement of the null space of P, we know that PlY is an 
isomorphism from Y to WI. In particular, WI is r-dimensional, and 

rank P 0 dF <a,{J> = r. 
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Moreover, and this is crucial, P is an isomorphism from the range of 
dF <~,~> to WI for all <~, 71 >- sufficiently close to < a, (3 >-. For the above rank 
theorem implies that rank po dF <~,~> ~ rank P 0 dF <a,~> = r on some 
neighborhood of < a, (3 >-. On the other hand, the range of P 0 dF <~,~> is 
included in the range of P, which is WI, and so rank P 0 dF <~,~> ~ r. Thus 
rank po dF <~,'1> = r for <~, 71>- near <a, (3)-, and since rank dF <~,~> = r 
by hypothesis, we see that P is an isomorphism on the range of any such dF <~,'1>' 

Now define H: WI X A -+ WI as the mapping 

<r,~, 71>- f---+ P 0 Fa, 71) - r. 
If J1. = po F(a, (3), then dH~I',a,~> = P 0 dF~a,~>, which is an isomor­

phism from V 2 to WI. Therefore, by the implicit-function theorem there exists 
a neighborhood L X M X N of <J1., a, (3 >- and a uniquely determined con­
tinuously differentiable mapping G from L X M to N such that 

H(r, ~, G(r, ~») = 0 
on L X M. That is, 

r = P 0 F(~, G(r, ~») 
on L X M. 

The remainder of our argument consists in showing that F (~, G(r, ~») is a 
function of r alone. We start by differentiating the above equation with respect 
to ~, getting 

0= po (dFI+dF2odG2) = podFo <I,dG2>-. 

As noted above, P is an isomorphism on the range of dF <~,~> for all <~, 71 >­
sufficiently close to < a, (3 >- , and if we suppose that L X M is also taken small 
enough so that this holds, then the above equation implies that 

dF <~,~> 0 < I, dG2>- = 0 

for all < r, ~>- E L X M. But this is just the statement that the partial differ­
ential with respect to ~ of F (~, G(r, ~») is identically 0, and hence that 

F(~, G(r, ~») 

is a continuously differentiable function K of r alone: 

F(~, G(r, ~») = K(t). 

Hince 71 = G(r, ~) and r = P 0 F(~, 71), we thus have Fa, 71) = K(P 0 F(~, 71»), 
or 

F = K 0 P 0 F, 

and this holds on the open set U consisting of those points <~, 71 >- in M X /1/ 
Huch that P 0 F(~, 71) E L. If we think of W as WI X W 2, then F and K 
are ordered pairs of functions, F = < FI, F2>- and K = < l, k>- ,P is the 
mapping < r, /I >- f---+ r, and the second component of the above equation is 

F2 = k 0 Fl. 
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Since F1[U] = P 0 F[U] = L, the above equation says that F[U] is the graph of 
the mapping k from L to W 2. Moreover, L is an open subset of the r-dimensional 
vector space W 1, and therefore F[U] is an r-dimensional patch manifold in 
W = W 1 X W 2• 0 

The above theorem includes the answer to our original question about 
functional dependence. 

Corollary. Let F = {fi}i be an m-tuple of continuously differentiable 
real-valued functions defined on an open subset A of a normed linear space 
V, and suppose that the rank of dFa has the constant value r on A, where r 
is less than m. Then any point 'Y in A has a neighborhood U over which 
m - r of the functions are functionally dependent on the remaining r. 

Proof. By hypothesis the range Y of dF'Y = -<df~, ... , df!7> is an r-dimen­
sional subspace of IRm. We can therefore find a basis for a complementary sub­
space W 2 by choosing m - r of the standard basis elements {6 i}, and we may 
as well renumber the functions t so that these are 6T+1, ••• ,6m • Then the 
projection P of IRm onto W = L(61, ••• , 6T ) is an isomorphism from Y to W 
(since Y is a complement of its null space), and by the theorem there is a neigh­
borhood U of 'Y over which (l - P) 0 F is a function k of po F. But this says 
exactly that -<r+1, ... ,r> = k 0 -<fl, ... ,r>. That is, k is an (m - r)­
tuple-valued function, k = -<kr+t, ... , km >, and fi = ki 0 -<ft, ... ,F> for 
j = r + 1, ... ,m. 0 

y Fig. 3.12 

We mentioned earlier in the section that there was a difficulty in concluding 
that if F is a continuously differentiable map from an open subset A of V to W 
whose differential has constant rank r less than deW), then S = range F is an 
r-dimensional submanifold of S. The flaw can be described as follows. The 
definition of a submanifold S of X required that each point of S have a neighbor­
hood in X whose intersection with S is a patch. In the case before us, what we 
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can conclude is that if fl is a point of S, then fl = F(at.) for some at. in A, and at. 
has a neighborhood U whose image under F is a patch. But this image may not 
be a full neighborhood of fl in S, because S may curve back on itself in such a 
way as to intrude into every neighborhood of fl. Consider, for example, the one­
dimensional r imbedded in 1R3 suggested by following Fig. 3.12. The curve 
begins in the xz-plane along the z-axis, curves over, and when it comes to the 
xy-plane it starts spiraling in to the origin in the xy-plane (the point of change 
over from the xz-plane to the xy-plane is a singularity that we could smooth out). 
The origin is not a point having a neighborhood in 1R3 whose intersection with r 
is a one-patch, but the full curve is the image of (-1, 1) under a continuously 
differentiable injection. 

We would consider r to be a one-dimensional manifold without any difficulty, 
but something has gone wrong with its imbedding in 1R 3, so it is not a one-dimen­
sional submanifold of 1R3. 

*14. UNIFORM CONTINUITY AND FUNCTION-VALUED MAPPINGS 

In the next chapter we shall see that a continuous function F whose domain is a 
bounded closed subset of a finite-dimensional vector space V is necessarily 
uniformly continuous. This means that given E, there is a ~ such that 

I!~ - 'III < ~ =} IIF(~) - F('1)1I < E 

for all vectors ~ and 'I in the domain of F. 
The point is that 8 depends only on E and not, as in ordinary continuity, 

on the "anchor" point at which continuity is being asserted. This is a very 
important property. In this section we shall see that it underlies a class of 
theorems in which a point map is escalated to a function-valued map, and prop­
erties of the point map imply corresponding properties of the function-valued 
map. Such theorems have powerful applications, as we shall see in Section 15 
and in Section 1 of Chapter 6. An application that we shall get immediately here 
is the theorem on differentIation under the integral sign. However, it is only 
Theorem 14.3 that will be used later in the book. 

Suppose first that Fa, 'I) is a bounded continuous function from a product 
open set M X N to a normed linear space X. Holding 'I fixed, we have a function 
I.(E) = F(~, 'I) which is a bounded continuous function on M, that is, an 
~Iement of the normed linear space Y = me(M, X) of all bounded continuous 
maps from M to X. This function is also indicated F( . , 'I), so that f~ = F( . , 'I)' 
We are supposing that the uniform norm is being used on Y: 

IIf~1I = lub {lIf'l(~)1I : ~ E M} = lub {IIF(~, '1)11 : ~ EM}. 

Theorem 14.1. In the above context, if F is unt"formly continuous, then the 
mapping 'I 1-+ f'l (or 'I 1-+ F(·, 'I)) is continuous, in fact, uniformly continuous, 
from N to Y. 
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Proof. Given E, choose 8 so that 

II-<~, 1]>- - -<}L, v>-II < 8 => IIF(~, 1]) - F(}L, v)11 < E. 

Taking}L = ~ and rewriting the right-hand side, we have 

for all~. Thus 
111] - vII < 8 => Ilf'1W - f.WII < E 

111] - vII < 8 => Ilf'1 - f.lloo ::::; E. 0 

We have proved that if a function of two variables is uniformly continuous, 
then the mappings obtained from it by the general duality principle are con­
tinuous. This phenomenon lies behind many well-known facts. For example: 

Corollary. If F(x, y) is a uniformly continuous real-valued function on the 
unit square [0, 11 X [0, 11 in ~2, then U F(x, y) dx is a continuous function 
of y. 

Proof. The mapping y ~ IJ F(x, y) dx is the composition of the bounded 
linear mapping f ~ IJ f from e([O, 11 to ~ with the continuous mapping 
y ~ F( . , y) from [0, 1] to e[O, 1], and is continuous as the composition of con­
tinuous mappings. 0 

We consider next the differentiability of the above duality-induced mapping. 

Theorelll 14.2. If F is a bounded continuous mapping from an open product 
set M X N of a normed linear space V X W to a normed linear space X, 
and if dJi'~a.fJ> exists and is a bounded uniformly continuous function of 
-<a, fJ>- on M X N, then cP: 1] ~ F(·, 1]) is a differentiable mapping from 
N to Y = CBe(M, X), and [dcpfJ(1])]W = dF~~.fJ>(1]). 

Proof. Given E, we choose 8 by the uniform continuity of dF 2 , so that 

II}L - vii < 8 => IldF~~.Jl> - dF~~ .• >11 < E 

for all ~ E M. The corollary to Theorem 7.4 then implies that 

for all ~ E M, all fJ EN, and all 1] such that the line segment from fJ to fJ + 1] 
is in N. We fix fJ and rewrite the right-hand side of the above inequality. This 
is the heart of the proof. First 

dF~~.fJ>(1]) = Fa, fJ + 1]) - F(~, fJ) 

= [ffJ+'1 - ftJ](O = [cp(fJ + 1]) - cp(fJ)](~) = [dCPfJ(1])](~)· 

Next we can check that if IldF~Jl .• >11 ::::; b for -<}L, v>- EM X N, then the map­
ping T defined by the formula [T(1])J(~) = dF~~.fJ>(1]) is an element of 
Hom(W, Y) of norm at most b. We leave the detailed verification of this as an 
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exercise for the reader. The last displayed inequality now takes the form 

and hence 
1171// < ~ => II[Acp/l(71) - T(71)]WII ~ EII7III, 

//71// < ~ => //Acp/l(71) - T(71)//", ~ E//71//. 

This says exactly that the mapping cP is differentiable at (3 and dcp/l = T. 0 
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The mapping cP is in fact continuously differentiable, as can be seen by 
arguing a little further in the above manner. The situation is very close to being 
an application of Theorem 14.1. 

The classical theorem on differentiability under the integral sign is a corollary 
of the above theorem. We give a simple case. Note that if 71 is a real variable y, 
then the above formula for dcp can be rewritten in terms of arc derivatives: 

[cp'(b)]W = ~~ (~, b). 

Corollary. If F(x, y) is a continuous real-valued function on the unit 
square [0, 1] X [0, 1], and if aF jay exists and is a uniformly continuous 
function on the square, then U F(x, y) dx is a differentiable function of y 
and its derivative is U (aFjay) (x, y) dx. 

Proof. The mapping T: y f-+ U F(x, y) dx is the composition of the bounded 
linear mappingf f-+ U f(x) dx from e([O, 1]) to IR with the differentiable mapping 
cp: y f-+ F( . ,y) from [0, 1] to e([O, 1]), and is therefore differentiable by the 
composite-function rule. Then Theorem 7.2 and the fact that the differential of 
a bounded linear map is itself give 

T'(y) = 101 
[cp'(y)](x) dx = 101 :~ (x, y) dx. 0 

We come now to the situation of most importance to us, where a point to 
point map generates a function-to-function map by composition. Let A be an 
open set in a normed linear space V, let S be an arbitrary set, and let a be the 
set of bounded mapsf from S to A. Then a is a subset of the normed linear space 
<B(S, V) of all bounded functions from S to V under the uniform norm. A func­
tion f E a will be an interior point of a if and only if the distance from the range 
of f to the boundary of a is a positive number ~, for this is clearly equivalent to 
saying that a includes a ball in <B(S, V) about the point f. Now let g be any 
bounded mapping from A to a normed linear space W, and let G: a ~ <B(S, W) 
be composition by g. That is, h = G(f) if and only if f E a and h = g 0 f. We 
can consider both the continuity and differentiability of G, but we shall only 
work out the differentiability theorem. 

Theorem 14.3. Let the function g: A ~ W be differentiable at each point 
a in A, and let dg(JI. be a bounded uniformly continuous function of a. Then 
the mapping G: a ~ <B(S, W) defined by G(fl = go f is differentiable at 
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any interior point f in <t and dGj : CB(S, V) -t CB(S, W) is defined by 

[dGj(h)](s) = dgj(8)(h(s» 
for all s E S. 

Proof. Given E, choose (j by the uniform continuity of dg so that 

and then apply the corollary to Theorem 7.4 once more to conclude that 

3.15 

provided the line segment from a to a + ~ is in A. Now choose any fixed interior 
point f in a, and choose (j' ::; (j so that Ba, (f) c <t. Then for any h in CB(S, V), 

Ilhll", < (j' =} II~gjc.) (h(s» - dgj(8) (h(s» II ::; Ellh(s) II 
for aIls E S. Define a map T: CB(S, V) ~ CB(S, W) by [T(h)](s) = dgjcs)(h(s». 
Then the above displayed inequality can be rewritten as 

That is, ~Gj = T + I:l. We will therefore be done when we h,ave shown that 
T E Hom(CB(S, V), CB(S, W». 

First, we have 

(T(h l + h2»(s) = dgjcs ) ((h l + h2)(s» = dgjCs) (hl(S) + h2(s» 

= dgjcs)(hl(s» + dgj(8 ) (h2(s» = (T(hl»(S) + (T(h2»(S). 

Thus T(hl + h2) = T(h l ) + T(h2), and homogeneity follows similarly. Second, 
if b is a bound to Iidgall on A, then IIT(h)ll", = lub {II (T(h»(s)11 : s E S} ::; 
lub {lldgjcs ) II . Ilh(s) II : s E S} ::; bllhll",· Therefore, II Til ::; b, and we are 
finished. 0 

In the above situation, if g is from A X U to W, so that G(f) is the function 
h given by h(t) = g(j(t), t), then nothing is changed except that the theorem is 
about dgl instead of dg. If, in addition, V is a product space V 1 X V 2, so that f 
is of the form <hh> and [G(f)](t) = g(!I(t),f2(t), t), then our rules about 
partial differentials give us the formula 

[dGj(h)](t) = dyJc!)(hl(t» + dY7c!) (h2(t». 

*15. THE CALCULUS OF VARIATIONS 

The problems of the calculus of variations are simply critical-point problems of a 
certain type with a characteristic twist in the way the condition dF a = 0 is used. 
We shall illustrate the subject by proving one of its standard theorems. 

Since we want to solve a constrained maximum problem in which the domain 
is an infinite-dimensional vector space, a systematic discussion would start off 
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with a more general form of the Lagrange multiplier theorem. However, for our 
purpose it is sufficient to note that if S is a closed plane M + a, then the restric­
tion of F to S is equivalent to a new function on the vector space 111, and its 
differential at {3 = T/ + a in S is clearly just the restriction of dFfJ to M. The 
requirement that {3 be a critical point for the constrained function is therefore 
simply the requirement that dFfJ vanish on M. 

Let F be a uniformly continuous differentiable real-valued function of three 
variables defined on (an open subset of) W X W X IR, where W is a normed 
linear space. Given a closed interval [a, b] C IR, let V be the normed linear space 
e1([a, b], W) of smooth arcs f: [a, b] ~ W, with Ilfll taken as Ilflloo + 11!'1100. 
The problem is to maximize the (nonlinear) functional G(f) = f: F(j(t), !'(t), t) dt, 
subject to the restraints f(a) = a and feb) = {3. That is, we consider only 
smooth arcs in W with fixed endpoints a and {3, and we want to find that arc 
from a to {3 which maximizes (or minimizes) the integral. Now we can show 
that G is a continuously differentiable function from (an open subset of) V to R 
The easiest way to do this is to let X be the space e([a, b], W) of continuous arcs 
under the uniform norm, and to consider first the more general functional K 
from X X X to IR defined by K(f, g) = f: F(j(t), get), t) dt. By Theorem 14.3 
the integrand map <f, g>- 1---+ F(jO, gO, .) is differentiable from X X X to 
e([a, b]) and its differential at <f, g>- evaluated at < h, k>- is the function 

dF~f(t),g(t),t>(h(t)) + dF~f(t),g(t),t>k(t). 
Sincef 1---+ f: f(t) is a bounded linear functional on e, it is differentiable and equal 
to its differential. The composite-function rule therefore implies that K is 
differentiable and that 

dK<f,g>(h, k) = i b [dF1(h(t)) + dF2(k(t))] dt, 

where the partial differentials in the integrand are at the point <f(t), get), t>-. 
Now the pairs <f, g>- such thatf' exists and equals g form a closed subspace of 
X X X which is isomorphic to V. It is obvious that they form a subspace, but 
to see that it is closed requires the theory of the integral for parametrized arcs 
from Chapter 4, for it depends on the representation f(t) = f(a) + f~ !,(s) ds 
and the consequent norm inequality Ilf(t) - f(a) II :::; (t - a) 11!'1100. Assuming 
this, we see that our original functional G is just the restriction of K to this sub­
space (isomorphic to) V, and hence is differentiable with 

This differential dGf is called the first variation of G about f. 
The fixed endpoints a and {3 for the arc f determine in turn a closed plane P 

in V, for the evaluation maps (coordinate projections) 7r z: f 1---+ f(x) are bounded 
and P is the intersection of the hyperplanes 7r a = a and 7rb = {3. Since P is a 
translate of the subspace M = {f E V: f(a) = feb) = O}, our constrained 
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maximum equation is 

dG/(h) = lab [dFl(h(t)) + dF2(h'(t))] dt = 0 

for all h in M. 
We come now to the special trick of the calculus of variations, called the 

lemma of Du Bois-Reymond. 
Suppose for simplicity that W = IR. Then F is a function F(x, y, t) of three 

real variables, the partial differentials are equivalent to ordinary partial deriva­
tives, and our critical-point equation is 

dG/(h) = rb 
(aF . h + aF . h') = O. Ja ax ay 

If we integrate the first term in the integral by parts and remember that h(a) = 
h(b) = 0, we see that the equation becomes 

where g = h'. Since h is an arbitrary continuously differentiable function except 
for the constraints h(a) = h(b) = 0, we see that g is an arbitrary continuous 
function except for the constraint f: get) dt = O. That is, aFjay - faFjax is 
orthogonal to the null space N of the linear functional g ~ f: get) dt. Since the 
one-dimensional space N 1. is clearly the set of constant functions, 

our condition becomes 

aF taF 
ay (f(t),f'(t), t) = Jo ax (f(s),I'(s), s) ds + C. 

This equation implies, in particular, that the left member is differentiable. This 
is not immediately apparent, since!, is only assumed to be continuous. Differ­
entiating, we conclude finally that I is a critical point of the mapping G if and 
only if it is a solution of the differential equation 

:t :: (f(t),!'(t), t) = :~ (f(t),f'(t), t), 

which is called the Euler equation of the variational problem. It is an ordinary 
differential equation for the unknown function I; when the indicated derivative 
is computed, it takes the form 

a2 F I" + a2 F !' + a2 F _ aF = 0 
ay2 ay ax ay at ax . 

If W is not IR, we get exactly the same result from the general form of the 
integration by parts formula (using Theorem 6.3) and a more sophisticated 
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version of the above argument. (See Exercise 10.14 and 10.15 of Chapter 4.) 
That is, the smooth arc / with fixed endpoints a and p is a critical point of the 
mapping g 1-+ f: F(g(t), g'(t), t) dt if and only if it satisfies the Euler differential 
equation 

d 2 1 
dt dF </(1)./'(1),1> = dF </(1)./'(1),1>· 

This is now a vector-valued equation, with values in W*. If W is finite-dimen­
sional, with dimension n, then a choice of basis makes W* into IRn, and this 
vector equation is equivalent to n scalar equations 

! ::i (j(t), f'(t), t) = :~ (j(t),f'(t), t), 

where F is now a function of 2n + 1 real variables, 

F(x, y, t) = F(xb ... , Xn, Yb ... , Yn, t). 

Finally, let us see what happens to the simpler v~riational problem (W = IR) 
when the endpoints of/are not fixed. Now the critical-point equation is dG/(h) = 
o for all h in V, and when we integrate by parts it becomes 

b b 

of. hI + 1 (oF -!!:.. OF) h = 0 oY a ox dt oY 
for all h in V. We can reason essentially as above, but a little more closely, to 
conclude that a function / is a critical point if and only if it satisfies the Euler 
equation 

!!:..(OF) _ of = 0 
dt oY ox 

and also the endpoint conditions 

oFi - OFi - 0 oY I=a - oY I=b - • 

This has been only a quick look at the variational calculus, and the interested 
reader can pursue it further in treatises devoted to the subject. There are many 
more questions of the general type we have considered. For example, we may 
want neither fixed nor completely free endpoints but freedom subj~ct to con­
straints. We shall take this up in Chapter 13 in the special case of the varia­
tional equations of mechanics. Or again, / may be a function of two or more 
variables and the integral may be a multiple integral. In this case the Euler 
equation may become a system of partial differential equations in the unknown/. 
Finally, there is the question of sufficient conditions for the critical function to 
give. a maximum or minimum value to the integral. This will naturally involve a 
study of the second differential of the functional G, or its second variation, as it is 
known in this subject. 
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*16. THE SECOND DIFFERENTIAL AND 
THE CLASSIFICATION OF CRITICAL POIN.TS 

Suppose that V and Ware normed linear spaces, that A is an open subset of V, 
and that F: A ~ W is a continuously differentiable mapping. The first differ­
ential of F is the continuous mapping dF: l' ~ dF-y from A to Hom(V, W). W(' 
now want to study the differentiability of this mapping at the point a. Prp­
sumably, we know what it means to say that dF is differentiable at a. By 
definition d(dF)a is a bounded linear transformation T from V to Hom(V, W) 
such that A(dF)a(1]) - T(1]) = 0(1]). That is, dFa+'1 - dFa - T(7J) is all 
element of Hom(V, W) of norm less than el17J11 for 71 sufficiently small. We St't 

d2Fa = d(dF)a and repeat: d2Fa = d2FaO is a linear map from V to Hom(V, W), 
d2Fa(1]) = d2Fa(1])(-) is an element of Hom(V, W), and d2Fa(1])U) is a vector 
in W. Also, we know that d2F a is equivalent to a bounded bilinear map 

w:Vx V~W, 
where w(7J, t) = d2Fa(1])(t). 

The vector d2Fa(7J)(t) clearly ought to be some kind of second derivative of 
F at a, and the reader might even conjecture that it is the mixed derivative ill 
the directions t and 1]. 

Theorem 16.1. If F: A ~ W is continuously differentiable, and if th(' 
second differential d2Fa exists, then for each fixed p. E V the functioll 
D!,F: l' ~ D!,F(1') from A to W is differentiable at a and Dp(D!,F)(a) = 
(d 2F a(V)) (p.), 

Proof, We use the evaluation-at-p. map eVIL: Hom(V, W) ~ W defined for a 
fixed p. in V by ev!'(T) = T(p.). It is a bounded linear mapping. Then 

(D!,F)(a) = dFa(p.) = ev!'(dFa) = (ev!, 0 dF)(a), 

so that the function D!,F is the composition eVIL 0 dF. It is differentiable at (X 

because d(dF)a exists and eVIL is linear. Thus (Dp(D!,F))(a) = d(D!,F)a(v) =c 

d(ev!, 0 dF)a(v) = (ev!, 0 d(dF)a) (v) = ev!'[(d2Fa)(v)] = (d2Fa(V)) (p.). 0 

The reader must remember in going through the above argument that D!,F 
is the function (D!,F) (.), and he might prefer to use this notation, as follow,; 

Dp((D!,F)('))la = d((D!,F)('))a(v) = d(ev!, 0 dF(.))a(v) 

= rev!' 0 d(dF(.))a](v) = eV!,(d2Fa(v)). 

If the domain space V is the Cartesian space IRn, then the differentiability of 
(DaiF)O = (aFjaxj)(') at a implies the existence of the second partial deriva 
tives (a 2Fjaxi aXj) (a) by Theorem 9.2, and with band c fixed, we then haw 

Dc(DbF) = De (L bi :~) = :E biDe ::i 

= L bi (L Cj~ (aF)) = L biCj a2F . 
aXj aXi i,j aXj aXi 
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Thus, 

Corollary I. If V = IR n in the above theorem, then the existence of d2 Fa 
implies the existence of all the second partial derivatives (o2FjoXi OXj) (a) 
and 

Moreover, from the above considerations and Theorem 9.3 we can also 
conclude that: 

Theorem 16.2. If V = IR n , and if all the second partial derivatives 
(o2F /OXi OXj) (a) exist and are continuous on the open set A, then the 
second differential d2Fa exists on A and is continuous. 

Proof. We have directly from Theorem 9.3 that each first partial derivative 
(oF /OXj)(') is differentiable. But of I OXj = eVa; a dF, and the corollary is then a 
consequence of the following general principle. 0 

Lemma. If {Si}~ is a finite collection of linear maps on a vector space W 
such that S = -<S1, ... , Sk> is invertible, then a mapping F: A ~ W is 
differentiable at a if and only if Si a F is differentiable at a for all i. 

Proof. For then S a F and F = S-1 a S a F are differentiable, by Theorems 8.1 
and 6.2. 0 

These considerations clearly extend to any number of differentiations. Thus, 
if d2F(.): y ~ d2Fy is differentiable at a, then for fixed band c the evaluation 
d2F(.)(b, c) is differentiable at a and the formula 

shows (for special choices of b and c) that all the second partials (o2F loxj OXi)(') 
are differentiable at a, with 

Conversely, if all the third partials exist and are continuous on A, then the 
~econd partials are differentiable on A by Theorem 9.3, and then d2F(.) is 
differentiable by the lemma, since (o2F loxi OXj)(-) = ev <ai,a;> a d2F(.). 

As the reader will remember, it is crucially important in working with 
higher-order derivatives that o2F loxi OXj = o2F lo.'Cj OXi, and we very much 
need the same theorem here. 

Theorem 16.3. The second differential is a symmetric function of its two 
arguments: (d2Fa(7J)(~) = (d2Fa(O) (7J). 
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Proof. By the definition of d(dF)a, given E, there is a 8 such that 

whenever 117]11 ~ 8. Of course, tl(dF)a(7]) = dFa+7I - dFa. If we write down 
the same inequality with 7] replaced by 7] + r, then the difference of the trans­
formations in the left members of the two inequalities is 

and the triangle inequality therefore implies that 

provided that both 7] and 7] + r have norms at most 8. We shall take II rll ~ 8/3 
and 117]11 ~ 28/3. If we hold r fixed, and if we set T = d2Fa (-r) and G(~) = 
F(~) - F(~ + r), then this inequality becomes IldGa+7I - Til ~ 2E(II7]11 + Ilrll), 
and since it holds whenever 117]11 ~ 28/3, we can apply the corollary to Theorem 
7.4 and conclude that IltlGa+7I(~) - T(~)II ~ 2E(II7]1I + IIrl!)11 ~II, provided that 7] 
and 7] + ~ have norms at most 28/3. This inequality therefore holds if 7], r, and ~ 
all have norms at most 8/3. If we now set r = -7], we have 

and tlGa+7IW = F(a + 7] + ~) - F(a + 7]) - F(a + ~) + F(a). This function 
of 7] and ~ is called the second difference of F at a, and is designated tl2Fa(7], ~). 
Note that it is symmetric in ~ and 7]. Our final inequality can now be rewritten as 

Reversing 7] and ~, and using the symmetry of tl2Fa, we see that 

provided 7] and ~ have norms at most 8/3. But now it follows by the usual 
homogeneity argument that this inequality holds for all 7] and~. Finally, since 
E is arbitrary, the left-hand side is zero. 0 

The reader will remember from the elementary calculus that a critical 
point a for a function / [f'(a) = 0] is a relative extremum point if the second 
derivativef"(a) exists and is not zero. In fact, if f"(a) < 0, then/has a relative 
maximum at a, becausef"(a) < 0 implies thatf' is decreasing in a neighborhood 
of a and the graph of / is therefore concave down in a neighborhood of a. Simi­
larly, / has a relative minimum at a if f'(a) = 0 and f"(a) > O. If f"(a) = 0, 
nothing can be concluded. 

If / is a real-valued function defined on an open set A in a finite-dimensional 
vector space V, if ex E A is a critical point of /, and if d2/a. exists and is a non-
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singular element of Hom(V, V*), then we can draw similar conclusions about the 
behavior of I near a, only now there is a richer variety of possibilities. The 
reader is probably already familiar with what happens for a function I from 1R2 
to IR. Then a may be a relative maximum point (a "cap" point on the graph 
of I), a relative minimum point, or a saddle point as shown in Fig. 3.13 for the 
graph of the translated function t:./a. However, it must be realized that new 
axes may have to be chosen for the orientation of the saddle to the axes to look as 
shown. Replacing I by t:./a amounts to supposing that 0 is the critical point and 
that 1(0) = o. Note that if 0 i~_ a saddle point, then there are two complemen­
tary subspaces, the coordinate axes in the Fig. 3.13, such that 0 is a relative 
maximum for Iwhen/is restricted to one of them, and a relative minimum point 
for the restriction of I to the other. 

Fig. 3.13 

We shall now investigate the general case and find that it is just like the 
two-dimensional case except that when there is a saddle point the subspace on 
which the critical point is a maximum point may have any dimension from 1 
to n - 1 [where d(V) = n). Moreover, this dimension is exactly the number of 
-l's in the standard orthonormal basis representation of the quadratic form 
q(~) = wa, ~) = d2IOt(~, ~). 

Our hypotheses, then, are that I is a continuously differentiable real-valued 
function on an open subset of a finite-dimensional normed linear space V, that 
a E A is a critical point for I (dla = 0), and that the mapping d21a.: V --+ V* 
exists and is nonsingular. This last hypothesis is equivalent to assuming that the 
bilinear form wa, '7) = d2Ia(~, '7) has a nonsingular matrix with respect to any 
basis for V. We now use Theorem 7.1 of Chapter 2 to choose an w-orthonormal 
basis {ai}~' Remember that this means that w(ai' aj) = 0 if i ¢ j, w(ai' ai) = 1 
for i = 1, ... ,p, and w(ai' ai) = -1 for i = p + 1, ... ,n. There cannot be 
any 0 values for w(ai' ai) because the Inatrix tij = w(ai' aj) is nonsingular: if 
w(ai' ai) = 0, then the whole ith column is zero, the column space has dimen­
sion :::;; n - 1, and the Inatrix is singular. 

We can use the basis isomorphism tp to replace V by IR" (i.e., replace I by 
1 0 tp), and we can therefore suppose that V = IR" and that the standard basis is 
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w-orthonormal, with w(x, y) = Ll XiYi - L;+l XiYi. Since 

w(!5i, !5 j) = d2fa{!5 i, !5 j) = DaiDaif(a) = a a2
a'f (a), 

Xi Xj 

our hypothesis of w-orth0gonality is that (a2flaXi aXj) (a) = 0 for i ¢ j, 
a2flaxl = 1 for i = 1, ... ,p, and a2flaxl = -1 for i = p + 1, ... , n. 
Since p can have any value from 0 to n, there are n + 1 possibilities. We show 
first that if p = n, then a is a relative minimum of f. In this case the quadratic 
form q is said to be positive definite, since q(x) = w(x, x) is positive for every 
nonzero x. We also say that the bilinear form w(x, y) = d2fa(x, y) is positive 
definite, and, in the language of Chapter 5, that w is a scalar product. 

Theorelll 16.4. Let f be a continuously differentiable real-valued function 
defined on an open subset A of Rn , and let a E A be a critical point of fat 
which d2f exists and is positive definite. Thenf has a relative minimum at a. 

Proof. We suppose, as above, that the standard basis {!5 i } ~ is w-orthonormal. 
By the definition of d2fa, given E, there is a 15 such that 

whenever Ilyll ::::; 15. Now dfa = 0, since a is a critical point off, and d2fa(x, y) = 
L~ XiYi, by the assumption that {!5 i ) ~ is w-orthonormal. Therefore, if we use 
the two-norm on IR and set y = tx, we have 

Also, if h(t) = f(a + tx), then h'(s) = dfa+8x(X), and this inequality therefore 
says that (1 - E)tllxl1 2 ::::; h'(t) ::::; (1 + E)tllxI1 2• Integrating, and remembering 
that h(l) - h(O) = f(a + x) - f(a) = fl.fa(x), we have 

e 2 E) IIxl1 2 ::::; Ilfa(x) ::::; e ~ E) IIxll 2 

whenever Ilxll ::::;15. This shows not only that a is a relative minimum point 
but also that fl.fa lies between two very close paraboloids when x is sufficiently 
small. 0 

The above argument will work just as well in general. If 

p n 

q(x) = :E x~ - :E x~ 
1 p+l 

is the quadratic form of the second differential and IIxll~ = L~ xl, then replac­
ing IIxl1 2 inside the absolute values in the above inequalities by q(x), we conclude 
that 

q(x) - Ellxl1 2 < A f ( ) < q(x) + Ellxl1 2 

2 - UJa X - 2 ' 



3.17 THE TAYLOR F.ORMULA 191 

or 

! (t (1 - E)X~ - t (1 + E)X~) ~ afa(x) 
1 p+l 

~ i (t (1 + E)X~ - t (1 - E)X~) . 
1 p+l 

This shows that afa lies between two very close quadratic surfaces of: the 
same type when IIxll ~ ~. If 1 ~ p ~ n - 1 and a = 0, then f has a relative 
minimum on the subspace VI = L( {aiH) and a relative maximum on the 
complementary space V 2 = L({~i}~+l)' 

According to our remarks at the end of Section 2.7, we can read off the type 
of a critical point for a function of two variables without orthonormalizing by 
looking at the determinant of the matrix of the (assumed nonsingular) form d2fa. 
This determinant is 

2 a2f a2f (a2f)2 
tUt22 - (t12) = ax2 ax2 - ax ax . 

1 2 1 2 

If it is positive, then a is either a relative minimum or a relative maximum. We 
can tell which by following f along a single line, say the xraxis. Thus, if 
a2f/ax~ < 0, then a is a relative maximum point. On the other hand, if the 
above expression is negative, then a is a saddle point. 

It is important for the calculus of variations that Theorem 16.4 remains 
true when the domain space is replaced by a space of the general type that we 
shall study in the next chapter, called a Banach space. The hypotheses now are 
that a is a critical point of f, that q(~) = dfa(~, ~) is positive definite, and that 
the scalar product norm qlJ 2 (see Chapter 5) is equivalent to. the given norm on 
V. The proof remains virtually unchanged. 

*17. HIGHER ORDER DIFFERENTIALS. THE TAYLOR FORMULA 

We have seen that if V and Ware normed linear spaces, and if F is a differ­
entiable mapping from an open set A in V to W, then its differential dF = dF(o) 
is a mapping from A to Hom(V, W). If this mapping is differentiable on A, then 
its differential d(dF) = d(dFk) is a mapping from A to Hom(V, Hom(V, W)). 
We remember that an element of Hom(V, Hom(V, W)) is equivalent by duality 
to a bilinear mapping from V X V to W, and if we designate the space of all such 
bilinear mappings by Hom2(V, W), then d(dF) can be considered to be from A to 
Hom2(V, W). We write d(dF) = d2F, and call this mapping the second differ­
ential of F. In Section 16 we saw that d2Fa(~, 1/) = D~(D'1F)(a), and that if 
V = IR n , then 

2 ~F 
d Fa(b, c) = DbDcF(a) = L: biCj~ (a). 

UXjUXi 

The differentials of higher order are defined in the same way. If 

d2F: A --+ Hom2(V, W) 
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is differentiable on A, then its differential, d(d2F) = d3F, is from A to 
Hom(V, Hom2(V, W)) = Hom 3(V, W), the space of all trilinear mappings from 
V 3 = V X V X V to W. Continuing inductively, we arrive at the notion of the nth 
differential of F on A as a mapping from A to Hom(V, Homn- 1(V, W)) = 
Homn(V, W), the space of all n-linear mappings from vn to W. The theorem 
that d2Fa is a symmetric element of Hom2(V, W) extends inductively to show 
that dnFa is a symmetric element of Homn(V, W). We shall omit this proof. 

Our theorem on the evaluation of the second differential by mixed directional 
derivatives also generalizes by induction to give 

D~l' ... ,D~nF(a) = dnFa(6, ... , ~n)' 

for starting from the left-hand term, we have 

D~1(D~2"'" D~nF)Ola = d(D~2" .. , D~nF('))a(~I) 
= d(d n - 1Fo (b, ... , ~n))a(6) 
= d(ev<~2"".~n> 0 dn-1F(.,)a(~I) 
= rev 0 d(dn- 1F ) ](1: ) <~2'''''~''> (.) a <;1 

= eV<b".~n>(dnFaal)) 
= (dnFa(6))(b, .. . , ~n) = dnFa(~b ... , ~n)' 

If V = IR n , then our conclusions about partial derivatives extend inductively 
in the same way to show that F has continuous differentials on A up through 
order m if and only if all the mth-order partial derivatives amF jaxip ... , aXim 
exist and are continuous on A, with 

dmFa(cI, ... , cm) = t dp .•• , ci'ma . amF a . (a). 
i 1 ..... i m=1 X'l' ... , X'm 

We now consider the behavior of F along the line t t-+ a + t7J, where, of 
course, a and 7J are fixed. If A(t) = F(a + t7J), then we can prove by induction 
that 

We know this to be true for j = 1 by Theorem 7.2, and assuming it for j = m, 
we have, by the same theorem, 

dm+1A (dAm)' . 
dtm+1 = dtm (t) = d(D':,'F)a+t,,(7J) = D,,(D':,'F)(a + t7J) = D':,'+IF(a + t7J). 

Now suppose that Fis real-valued (W = IR). We then have Taylor's formula: 

tm r+ 1 
A(t) = A(O) + tA'(O) + ... + m! A(m)(O) + (m + I)! A(m+l)(kt) 

for some k between 0 and 1. Taking t = 1 and substituting from above, we have 

F(a + 7J) = F(a) + D"F(a) + ... + ~! D':,'F(a) + (m! I)! D':,'+IF(a + k7J), 
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which is the general Taylor formula in the normed linear space context. In 
terms of differentials, it is 

1 
F(a + 71) = F(a) + dFa (7J) + ... + -, d""Fa (7J, •.• , 71) m. 

1 d""+l ( + (m + I)! Fa+k~ 71, ... , 71). 

If V = IR n, then DyG = L~ Yi aGjaxi, and so the general term in the 
Taylor expansion is 

1 (n a )m 1 n amF 
m! L Yi ax' F(a) = m!. ~ _ Yil··· Yim ax' ... ax' (a). 

1" ttt . .. ,'Im-1 '&1 1m 

If m = n = 2, and if we use the notation x = -<x, y>-, s = -< 8, t>-, then 

1 2 1[2a2F a2F 2a2F ] 
2! D8 F(a) = 2 8 ax2 (a) + 28t ax ay (a) + t ay2 (a) . 

The above description is logically simple, but it is inefficient in that it repeats 
identical terms such as YIY2(a2Fjaxl aX2) and Y2Yl(a2Fjax2 aXl). We conclude 
by describing for the interested reader the modern "multi-index" notation for this 
very complicated situation. 

Remember that we are looking at the mth term of the Taylor formula for F, 
and that F has n variables. 

For any n-tuple k = -< kll ... , kn >- of nonnegative integers, we define jkj 
as L~ ki' and for x E IRn, we set Xk = XlklXl2 ... xnkn. Also we set Fk = 

Fklk2· .. kn' or better, if DjF = aFjaxj, we set 

DkF = D/IDl2 . .. DnknF = Fk • 

Finally, we set k! = kl !k2! ... kn!, and if p ~ jkj, we set (t) = p!jk !(p - jkj)!. 
Then the mth term of the Taylor expansion of F is 

1, L (mk ) DkF(a)xk, 
m·lkl=m 

which is surely a notational triumph. 
The general Taylor formula is too cumbersome to be of much use in practice; 

it is principally of theoretical value. The Taylor expansions that we actually 
compute are generally found by other means, such as substitution of a poly­
nomial (or power series) in a power series. For example, 

( X + 2)3 (x + 2)5 
sin (x + y2) = (x + y2) - 3 !Y + 5 t ... 

= x + y2 _ x3 _ x2y2 + (X5 _ Xy4) + (X4y2 _ y6) ••• 

3! 2 5! 2 4! 3! 

A mapping from A to W which has continuous differentials of all orders 
through k is said to be of class Ck on A, and the collection of all such mappings 
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is designated Ck(A, W) or ek(A, W). It is clear that Ck(A, W) is a vect(i)l"'Space 
(induction). Moreover, it can also be shown by induction that a composition 
of Ck-maps is itself of class Ck. This depends on <recognizing the generail form of 
the mth differential of a composition FoG as being a finite sum, each term of 
which is a composition of functions chosen from F, dF, ... , dmF, G, dG, ... , dmG. 

Functions of many variables are involved in these calculations, and it is 
simplest to treat each as a function of a single n-tuplet variable and to apply the 
obvious corollary of Theorem 8.1 that if Gt, ... , Gn are of class Ck, then so is 
G = -< Gr, ... , Gn>, with dkG = -< dkGt, ... , dkGn>. As a special case of 
composition, we can conclude that a product of Ck-maps is of class Ck. 

We shall see in the next chapter that cP: T ~ T- I is a differentiable map on 
the open set of invertible elements in Hom V (if V is a Banach space) and that 
dCPT(H) = - T-IHT- I. Since -<S, H, T> ~ S-IHT-Ithen has continuous par­
tial differentials, we can continue, and another induction shows that cP is of class 
Ck for every k and that dm'PT(H b ... , H m) is a finite sum of finite products of 
T-t, HI, ... , H m' 'It then follows that a function F defined implicitly by a Ck_ 
function G is also of class ck, for its differential, as computed in the implicit­
function theorem, is then a composition of maps of class Ck-I. 

A mapping F which is of class Ck for all k is said to be of class Coo, and it 
follows from our remarks above that the family of Coo-maps is closed under all 
the operations that we have met in the calculus. If the domain of F is an open 
set in IRn, then FE eOO(A, W) if and only if all the partial derivatives of F exist 
and are continuous on A. 



CHAPTER 4 

COMPACTNESS AND COMPLETENESS 

In this chapter we shall investigate two properties of subsets of a normed linear 
space V which are concerned with the fact that in a certain sense all the points 
which ought to be there really are there. These notions are largely independent 
of the algebraic structure of V, and we shall therefore study them in their own 
most natural setting, that of metric spaces. The stronger of these two properties, 
compactness, helps to explain why the theory of finite-dimensional spaces is so 
simple and satisfactory. The weaker property, completeness, is shared by 
important infinite-dimensional normed linear spaces, and allows us to treat 
these spaces in almost as satisfactory a way. 

It is these properties that save the calculus from being largely a formal 
theory. They allow us to define crucial elements by limiting processes, and are 
responsible, for example, for an infinite series having a sum, a continuous real­
valued function assuming a maximum value, and a definite integral existing. 
For the real number system itself, the compactness property is equivalent to the 
least upper bound property, which has already been an absolutely essential tool 
in our construction of the differential calculus in Chapter 3. 

In Sections 8 through 10 we shall apply completeness to the calculus. The 
first of these sections is devoted to the existence and differentiability of functions 
defined by power series, and since we want to include power series in an operator 
T, we shall take the occasion to introduce and exploit the notion of a Banach 
algebra. Next we shall prove the contraction mapping fixed-point theorem, which 
is the missing ingredient in our unfinished proof of the implicit-function theorem 
in Chapter 3 and which will be the basis for the fundamental existence and 
uniqueness theorem for ordinary differential equations in Chapter 6. In Section 
10 we shall prove a simple extension theorem for linear mappings into a complete 
normed linear space and apply it to construct the Riemann integral of a param­
atrized arc. 

1. METRIC SPACES; OPEN AND CLOSED SETS 

In the preceding chapter we occasionally treated questions of convergence and 
continuity in situations where the domain was an arbitrary subset A of a normed 
linear space V. In such discussions the algebraic structure of V fades into the 
background, and the vector operations of V are used only to produce the combi-

195 



196 COMPACTNESS AND COMPLETENESS 4.1 

nation Iia - !311, which is interpreted as the distance from a to!3. If we distill 
out of these contexts what is essential to the convergence and continuity argu­
ments, we find that we need a space A and a function p: A X A ~ JR, p(x, y) 
being called the distance from x to y, such that 

1) p(x, y) > 0 if x ¥- y, and p(x, x) = 0; 

2) p(x, y) = p(y, x) for all x, YEA; 

3) p(x, z) ::; p(x, y) + p(y, z) for all x, y, z E A. 

Any set A together with such a function p from A X A to JR is called a metric 
space; the function p is the metric. It is obvious that a normed linear space is a 
metric space under the norm metric pea, m = Iia - !311 and that any subset B 
of a metric space A is itself a metric space under p r B X B. If we start with a 
nice intuitive space, like JRn under one of its standard norms, and choose a weird 
subset B, it will be clear that a metric space can be a very odd object, and may 
fail to have almost any property one can think of. 

Metric spaces very often arise in practice as subsets of normed linear 
spaces with the norm metric, but they come from other sources too. Even in the 
normed linear space context, metrics other than the norm metric are used. 
For example, S might be a two-dimensional spherical surface in JR3, say S = 
{x : r:,~ xl = I}, and p(x, y) might be the great circle distance from x to y. Or, 
more generally, S might be any smooth two-dimensional surface in JR3, and 
p(x, y) might be the length of the shortest curve connecting x to y in S. 

In this chapter we shall adopt the metric space context for our arguments 
wherever it is appropriate, so that the student may become familiar with this 
more general but very intuitive notion. We begin by reproducing the basic 
definitions in the language of metrics. Because the scalar-vector dichotomy is 
not a factor in this context, we shall drop our convention that points be repre­
sented by Greek or boldface roman letters and shall use whatever letters we wish. 

Definition. If X and Yare metric spaces, then j: X ~ Y is continuous at 
a E X if for every E there is a ~ such that 

p(x, a) < ~ =? p(j(x),j(a) < E. 

Here we have used the same symbol' p' for metrics on different spaces, just 
as earlier we made ambiguous use of the norm symbol. 

Definition. The (open) ball oj radius r about p, BT(p), is simply the set of 
points whose distance from p is less that r: 

BT(P) = {x :p(x, p) < r}. 

Definition. A subset A C X is open if every point p in A is the center of 
some ball included in A, that is, if 
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LeDlDla 1.1. Every ball is open; in fact, if q E Br(P) and a = r - p(p, q), 
then Ba(q) C Br(P). 

Proof. This amounts to the triangle inequality. For, if x E Ba(q), then p(x, q) < 
a and p(x, p) ~ p(x, q) + p(q, p) < a + p(p, q) = r, so that x E Br(P). 
Thus Ba(q) C Br(P). 0 

LeDlDla 1.2. If P is held fixed, then p(p, x) is a continuous function of x. 

Proof. A symbol-by-symbol paraphrase of Lemma 3.1 of Chapter 3 shows that 
Ip(p, x) - p(p, y)1 ~ p(x, y), so that p(p, x) is actually a Lipschitz function 
with constant 1. 0 

TheoreDl 1.1. The family ~ of all open subsets of a metric space S has the 
following properties: 

1) The union of any collection of open sets is open; that is, if {Ai: i E J} C 
~, then UiEI Ai E ~. 

2) The intersection of two open sets is open; that is, if A, B E ~, then 
A nB E~. 

3) 0, V E~. 

Proof. These properties follow immediately from the definition. Thus any 
point p in U i A i lies in some A j, and therefore, since A j is open, some ball about p 
is a subset of Aj and hence of the larger set Ui Ai. 0 

Corollary. A set is open if and only if it is a union of open balls. 

Proof. This follows from the definition of open set, the lemma above, and 
property (1) of the theorem. 0 

The union of all the open subsets of an arbitrary set A is an open subset of 
A, by (1), and therefore is the largest open subset of A. It is called the interior 
of A and is designated A into Clearly, p is in A int if and only if some ball about p 
is a subset of A, and it is helpful to visualize A int as the union of all the balls 
that are in A. 

Definition. A set A is closed if A' is open. 

The theorem above and De Morgan's law (Section 0.11) then yield the 
following complementary set of properties for closed sets. 

TheoreDl 1.2 

1) The intersection of any family of closed sets is closed. 

2) The union of two closed sets is closed. 

3) 0 and V are closed. 

Proof. Suppose, for example, that {Bi: i E J} is a family of closed sets. Then 
the complement B: is open for each i, so that Ui B: is open by the above theorem. 
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Also, UiB[ = miBi)' by De Morgan's law (see Section 0.11). Thus niBi is 
the complement of an open set and is closed. 0 

Continuing our "complementary" development, we define the closure, if, of 
an arbitrary set A as the intersection of all closed sets including A, and we have 
from (1) above that if is the smallest closed set including A. De Morgan's law 
implies the important identity 

For F is a closed superset of A if and only if its complement U = F' is an open 
subset of A'. By De Morgan's law the complement of the intersection of all such 
sets F is the union of all such sets U. That is, the complement of if is (A')int. 

This identity yields a direct characterization of closure: 

Lemma 1.3. A point p is in if if and only if every ball about p intersects A. 

Proof. A point p is not in if if and only if p is in the interior of A', that is, if and 
only if some ball about p does not intersect A. Negating the extreme members 
of this equivalence gives the lemma. 0 

Definition. The boundary, iJA, of an arbitrary set A is the difference 
between its closure and its interior. Thus 

iJA = if - Aint. 

Since A - B = A n B', we have the symmetric characterization iJA = 
if n (A'). Therefore, iJA = iJ(A') j also, 

p E iJA if and only if every ball about p intersects both A and A'. 

Example. A ball Br(a) is an open set. In a normed linear space the closure of 
Br(a) is the closed ball about a of radius r, H : p(~, a) ~ r}. This is easily seen 
from Lemma 1.3. The boundary iJBr(a) is then the spherical surface of radius I' 
about a, H: p(~, a) = r}. If some but not all of the points of this surface are 
added to the open ball, we obtain a set that is neither open nor closed. The 
student should expect that a random set he may encounter will be neither open 
nor closed. 

Continuous functions furnish an important source of open and closed sets 
by the following lemma. 

Lemma 1.4. If X and Yare metric spaces, and if f is a continuous mapping 
from X to Y, then f-I[A] is open in X whenever A is open in Y. 

Proof. If pEr I [A], then f(p) E A, and, since A is open, some ball B. (f(p) 
is a subset of A. But the continuity of fat p says exactly that there is a ~ such 
that f[Ba(p)] C B.(f(p). In particular, f[Ba(p)] C A and Ba(P) Cf-I[A]. 
Thus for each p inrI[A] there is a ball about p included inf-I[A], and this set 
is therefore open. 0 
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Since f-I[A'] = (f-I[A])', we also have the following corollary. 

Corollary. Iff: X -- Y is continuous, thenrI[C] is closed in X whenever C 
is closed in Y. 

The converses of both of these results hold as well. As an example of the use 
of this lemma, consider for a fixed a E X the continuous function f: X -- IR 
defined by f(~D = p(~, a). The sets (-1',1'), [0,1'], and {r} are respectively open, 
closed, and closed subsets of IR. Therefore, their inverse images under f-the ball 
Br(a), the closed ball a: pa, a) ~ r}, and the spherical surface a : p(~, a) = r} 
----<are respectively open, closed, and closed in X. In particular, the triangle 
inequality argument demonstrating directly that Br(a) is open is now seen to be 
unnecessary by virtue of the triangle inequality argument that demonstrates the 
continuity of the distance function (Lemma 1.2). 

It is not true that continuous functions take closed sets into closed sets in the 
forward direction. For example, if f: IR -- IR is the arc tangent function, then 
f[lR] = range f = (-7r /2, 7r /2), which is not a closed subset of IR. The reader 
may feel that this example cheats and that we should only expect the f-image of a 
closed set to be a closed subset of the metric space that is the range of f. He 
might then consider f(x) = 2x/(1 + x 2 ) from IR to its range [-1, 1]. The set 
of positive integers Z+ is a closed subset of IR, but f[Z+] = {2n/ (1 + n 2)} ~ is not 
closed in [-1, 1], since 0 is clearly in its closure. 

The distance between two nonempty sets A and B, p(A, B), is defined as 
glb {p( a, b) : a E A and b E B}. If A and B intersect, the distance is zero. 
If A and B are disjoint, the distance may still be zero. For example, the interior 
and exterior of a circle in the plane are disjoint open sets whose distance apart is 
zero. The x-axis and (the graph of) the function f(x) = l/x are disjoint closed 
sets whose distance apart is zero. As we have remarked earlier, a set A is closed 
if and only if every point not in A is a positive distance from A. More generally, 
for any set A a point p is in A if and only if p(p, A) = o. 

We list below some simple properties of the distance between subsets of a 
normed linear space. 

1) Distance is unchanged by a translation: p(A, B) = p(A + "/, B + "/) 
(became II (a + "/) - ({3 + "/) II = Iia - (311)· 

2) p(kA, kB) = Iklp(A, B) (because Ilka - k{311 = Ikilia - (31f). 
3) If N is a subspace, then the distance from B to N is unchanged when we 

translate B through a vector in N: p(N, B) = p(N, B + 71) if 71 E N 
(because N - 71 = N). 

4) If T E Hom(V, W), then p(T[A], T[B]) ~ IITllp(A, B) (because 

/IT(a) - T({3)1I ~ IIT/I. lIa - (311)· 

Lemma 1.5. If N is a proper closed subspace and 0 < E < 1, there exists an 
a suc:n that Ila/l = 1 and p(a, N) > 1 - E. 
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Proof. Choose any (3 ~ N. Then p({3, N) > 0 (because N is closed), and there 
exists an 71 EN such that 

11{3 - 7111 < p({3, N)/(1 - E) 

[by the definition of p({3, N)]. Set a = ({3 - 71)/II{3 - 7111. Then Iiall = 1 and 

p(a, N) = p({3 - 71, N)/II{3 - 7111 
= p({3, N)/II{3 - 7111 > p({3, N)(1 - E)/p({3, N) = 1 - E, 

by (2), (3), and the definition of 71. 0 

The reader may feel that we ought to be able to improve this lemma. Surely, 
all we have to do is choose the point in N which is closest to (3, and so obtain 
11{3 - 7111 = p({3, N), giving finally a vector a such that Iiall = 1 and p(a, N) = 1. 
However, this is a matter on which our intuition lets us down: if N is infinite­
dimensional, there may not be a closest point 71! For example, as we shall see 
later in the exercises of Chapter 5, if V is the space e([ -1, 1]) under the two­
norm Ilfll = (f!l f2)1/2, and if N is the set of functions g in V such that U g = 0, 
then N is a closed subspace for which we cannot find such a "best" Ci. But if N is 
finite-dimensional, we can always find such a point, and if V is a Hilbert space, 
(see Chapter 5) we can also. 

EXERCISES 

1.1 Write out the proof of Lemma 1.2. 

1.2 Prove (2) and (3) of Theorem 1.1. 

1.3 Prove (2) of Theorem 1.2. 

1.4 It is not true that the intersection of a sequence of open sets is necessarily open. 
Find a counterexample in ~. 

1.5 Prove the corollary of Lemma 1.4. 

1.6 Prove that pEA if and only if pep, A) = o. 
1.7 Let X and Y be metric spaces, and let j: X --+ Y have the property that j-l[B] 

is open in X whenever B is open in Y. Prove that j is continuous. 

1.8 Show that p(x, A) = p(x, A). 
1.9 Show that p(x, A) is a continuous function of x. (In fact, it is Lipschitz con­

tinuous.) 

1.10 Invent metric spaces S (by choosing subsets of ~2) having the following prop­
erties: 

1) S has n points. 

2) S is infinite and p(x, y) ~ 1 if x ~ y. 

3) S has a ball Bl(a) such that the closed ball {x: p(x, a) :$ I} is not the same as 
the closure of Bl(a). 
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1.11 Prove that in a normed linear space a closed ball is the closure of the corre­
sponding open ball. 

1.12 Show that if f: X -+ Y and g: Y -+ Z are continuous (where X, Y, and Z are 
metric spaces), then so is g 0 f. 
1.13 Let X and Y be metric spaces. Define the notion of a product metric on Z = 
X X Y. Define a I-metric PI and a uniform metric p", on Z (showing that they are 
metrics) in analogy with the I-norm and uniform norm on a product of normed linear 
spaces, and show that each is a product metric according to your definition above. 

1.14 Do the same for a 2-metric P2 on Z = X X Y. 

1.IS Let X and Y be metric spaces, and let V be a normed linear space. Letf: X -+ IR 
and g: Y -+ V be continuous maps. Prove that 

-< x, y>- 1-+ f(x) g(y) 

is a continuous map from X X Y to v. 

*2. TOPOLOGY 

If X is an arbitrary set and 3 is any family of subsets of X satisfying properties 
(1) through (3) in Theorem 1.1, then 3 is called a topology on X. Theorem 1.1 
thus asserts that the open subsets of a metric space X form a topology on X. 
The subsequent definitions of interior, closed set, and closure were purely 
topological in the sense that they depended only on the topology 3, as were 
Theorem 1.2 and the identity (A), = (A')int. The study of the consequences of 
the existence of a topology is called general topology. 

On the other hand, the definitions of balls and continuity given earlier were 
metric definitions, and therefore part of metric space theory. In metric spaces, 
then, we have not only the topology, but also our E-definitions of continuity and 
balls and the spherical characterizations of closure and interior. 

The reader may be surprised to be told now that although continuity and 
convergence were defined metrically, they also have purely topological char­
acterizations and are therefore topological ideas. This is easy to see if one keeps 
in mind that in a metric space an open set is nothing but a union of balls. We 
have: 

f is continuous at p if and only if for every open set A containing f(p) there 
exists an open set B containing p such that f[B] C A. 

This local condition involving behavior around a single point p is more 
fluently rendered in terms of the notion of neighborhood. A set A is a neighbor­
hood of a point p if pEA into Then we have: 

f is continuous at p if and only if for every neighborhood N of f(p) , r1[N] 
is a neighborhood of p. 

Finally there is an elegant topological characterization of global continuity. 
Suppose that 8 1 and 8 2 are topological spaces. Then f: 8 1 -+ 8 2 is continuous 
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(everywhere) if and only if rl[A] is open whenever A is open. Also, f is con­
tinuous if and only if f-l[B] is closed whenever B is closed. These conditionH 
are not surprising in view of Lemma 1.4. 

3. SEQUENTIAL CONVERGENCE 

In addition to shifting to the more general point of view of metric space theory, 
we also want to add to our kit of tools the notion of sequential convergence, 
which the reader will probably remember from his previous encounter with the 
calculus. One of the principal reasons why metric space theory is simpler and 
more intuitive than general topology is that nearly all metric arguments can be 
presented in terms of sequential convergence, and in this chapter we shall 
partially make up for our previous neglect of this tool by using it constantly and 
in preference to other alternatives. 

Definition. We say that the infinite sequence {xn} converges to the point a 
if for every E there is an N such that 

n > N => p(xn' a) < E. 

We also say that Xn approaches a as n approaches (or tends to) infinity, and 
we call a the limit of the sequence. In symbols we write Xn ~ a as n ~ 00, or 
limn-+oo Xn = a. Formally, this definition is practically identical with our earlier 
definition of function convergence, and where there are parallel theorems the 
arguments that we use in one situation will generally hold almost verbatim in 
the other. Thus the proof of Lemma 1.1 of Chapter 3 can be alternated slightly 
to give the following result. 

Lemma 3.1. If {M and {"Ii} are two sequences in a normed linear space V, 
then 

~i ~ a and 7Ji ~ {3 => ~i + 7Ji ~ a + {3. 

The main difference is that we now choose N as max {N b N 2} instead of 
choosing ~ as min {~1' ~2}. Similarly: 

Lemma 3.2. If ~i ~ a in V and Xi ~ a in IR, then Xi~i ~ aa. 

As before, the definition begins with three quantifiers, (VE) (3N) (Vn). A 
somewhat more idiomatic form can be obtained by rephrasing the definition in 
terms of balls and the notion of "almost all n". We say that P(n) is true for 
almost all n if P(n) is true for all but a finite number of integers n, or equivalently, 
if (3N)(Vn>N)P(n). Then we see that 

lim Xn = a if and only if every ball about a contains almost all the Xn • 

The following sequential characterization provides probably the most 
intuitive way of viewing the notion of closure and closed sets. 
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Theorem. 3.1. A point x is in the closure A of a set A if and only if there is a 
sequence {xn} in A converging to x. 

Therefore, a set A is closed if and only if every convergent sequence lying 
in A has its limit in A. 

Proof. If {Xn} C A and Xn ~ x, then every ball about x contains almost every 
Xn> and so, in particular, intersects A. Thus x E A by Lemma 1.3. Conversely, 
if x E A, then every ball about x intersects A, and we can construct a sequence in 
A that converges to x by choosing Xn as any point in B lin (X) n A. Since A is 
closed if and only if A = A, the second statement of the theorem follows from 
the first. 0 

There is also a sequential characterization of continuity which helps greatly 
in using the notion of continuity in a flexible way. Let X and Y be metric spaces, 
and let f be any function from X to Y. 

Theorelll 3.2. The function f is continuous at a if and only if, for any 
sequence {xn} in X, if Xn ~ a, then f(xn) ~ f(a). 

Proof. Suppose first that f is continuous at a, and let {xn} be any sequence 
converging to a. Then, given any E, there is a 0 such that 

p(X , a) < 0 =} p(j(x) , f(a)) < E, 

by the continuity of f at a, and for this 0 there is an N such that 

n > N =} p(xn , a) < 0, 

because ;t·n ~ a. Combining these implications, we see that given E we have 
found N so that n > N =} p(f(xn) , f(a)) < E. That is, f(xn) ~ f(a). 

N ow suppose that f is not continuous at a. In considering such a negation 
it is important that implicit universal quantifiers be made explicit. Thus, for­
mally, we are assuming that ~(V'E)(30)(V'x)(p(x , a) < 0 =} p(j(X) , f(a)) < E), 
that is, that (3E)(V'0)(3x)(p(x, a) < 0 &p(f(x) ,f(a)) ~ E). Such symbolization 
will not be necessary after the reader has had some practice in computing logical 
negations; the experienced thinker will intuit the correct negation without a 
formal calculation. In any event, we now have a fixed E, and for each 0 of the 
form 0 = lin we can let Xn be a corresponding x. We then have p(xn , a) < lin 
and p(f(xn) , f(a)) ~ E for all n. The first inequality shows tnat Xn ~ a; the 
second shows that f(xn) + f(a). Thus, if f is not continuous at a, then the 
sequential condition is not satisfied. 0 

The above type of argument is used very frequently and almost amounts to 
an automatic proof procedure in the relevant situations. We want to prove, say, 
that (V'x)(3y)(V'z)P(x, y, z). Arguing by contradiction, we suppose this false, so 
that (3x)(V'y)(3z)~P(x, y, z). Then, instead of trying to use all numbers y, we 
let y run through some sequence converging to zero, such as (lIn}, and we choose 
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one corresponding z, Zn, for each such y. We end up with "",P(x, lin, zn) for the 
given x and all n, and we finish by arguing sequentially. 

The reader will remember that two norms p and q on a vector space V are 
equivalent if and only if the identity map ~ 1-+ ~ is continuous from -< V, p>- to 
-< V, q>- and also from -< V, q>- to -< V, p>-. By virtue of the above theorem 
we now see that: 

Theorem 3.3. The norms p and q are equivalent if and only if they yield 
exactly the same collection of convergent sequences. 

Earlier we argued that a norm on a product V X W of two normed linear 
spaces should be equivalent to 11-< a, ~ >- III = lIall + II ~II. Now with respect to 
this sum norm it is clear that a sequence -< an, ~n >- in V X W converges to 
-< a, ~ >- if and only if an ---+ a in V and ~n ---+ ~ in W. We now see (again by 
Theorem 3.2) that: 

Theorem 3.4. A product norm on V X W is any norm with the property 
that -< an, ~n >- ---+ -< a, ~ >- in V X W if and only if an ---+ a in V and 
~n ---+ ~ in W. 

EXERCISES 

3.1 Prove that a convergent sequence in a metric space has a unique limit. That is, 
show that if Xn --+ a and x .. --+ b, then a = b. 

3.2 Show that Xn --+ x in the metric space X if and only if P(Xn, x) --+ 0 in IR. 
3.3 Prove that if Xn --+ a in IR and Xn ;;:::: 0 for all n, then a ;;:::: O. 

3.4 Prove that if Xn --+ 0 in IR and IYnl ::;; Xn for all n, then Yn --+ O. 
3.5 Give detailed E, N-proofs of Lemmas 3.1 and 3.2. 

3.6 By applying Theorem 3.2, prove that if X is a metric space, V is a normed linear 
space, and F and G are continuous maps from X to V, then F + G is continuous. 
State and prove the similar theorem for a product FG. 

3.7 Prove that continuity is preserved under composition by applying Theorem 3.2. 

3.8 Show that (the range of) a sequence of points in a metric space is in general not 
a closed set. Show that it may be a closed set. 

3.9 The fact that in a normed linear space the closure of an open ball includes the 
corresponding closed ball is practically trivial on the basis of Lemma 3.2 and Theorem 
3.1. Show that this is so. 

3.10 Show directly that if the maximum norm 11-< a, ~).. II = max {liall, II ~II} is used 
on V = VI X V2, then it is true that 

-<an, ~ .. >- --+ -<a, ~>- in V 
if and only if 

an --+ a in VI and 
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S.ll Show that if II II is any increasing norm on 1R2 (see the remark after Theorem 4.3 
of Chapter 3), then 

p(-<Xl,Yl>, -<X2,Y2» = lI-<p(xl,x2),p(Yl,Y2»1I 

is a metric on the product X X Y of two metric spaces X and Y. 

S.I2 In the above exercise show that -< Xn , Yn> -+ -< x, y> in X X Y if and only if 
Xn -+ x in X and Yn -+ yin Y. This property would be our minimal requirement for a 
product metric. 

S.IS Defining a product metric as above, use Theorem 3.2 to show that 

-<f, g> : S -+ X X Y 

is continuous if and only if f: S -+ X and g: S -+ Yare both continuous. 

3.14 Let X, Y, and Z be metric spaces, and let f: X X Y -+ Z be a mapping such 
that f(x, y) is continuous in the variables separately. Suppose also that the continuity 
in x is uniform over y. That is, suppose that given E and XO, there is a ~ such that 

p(x, xo) < ~ => p(f(x, y), f(xo, y») < E 

for every value of y. Show that then f is continuous on X X Y. 

3.15 Define the function f on the closed unit square [0, 1] X [0, 1] by 

f(O,O) = 0, 
xy 

f(x, y) = (x + y)2 if -<x, y> F- -<0,0>. 

Then f is continuous as a function of x for each fixed value of y, and conversely. Show, 
however, that f is not continuous at the origin. That is, find a sequence -< Xn, Yn > 
converging to -< 0, 0> in the plane such that f(x n, Yn) does not converge to O. This 
example shows that continuity of a function of two variables is a stronger property 
than continuity in each variable separately. 

4. SEQUENTIAL COMPACTNESS 

The reader is probably familiar with the idea of a subsequence. A subsequence of 
a sequence {xn} is a new sequence {Ym} that is formed by selecting an infinite 
number, but generally not all, of the terms X n , and counting them off in the 
order of the selected indices. Thus, if nl is the first selected n, n2 the next, and 
so on, and if we set Ym = xn .. , then we obtain the subsequence 

or 

Strictly speaking, this counting off of the selected set of indices n is a sequence 
m ~ nm from Z+ to Z+ which preserves order: nm+l > nm for all m. And the 
subsequence m ~ xn ... is the composition of the sequence n ~ Xn and the 
selector sequence. 

In order to avoid subscripts on subscripts, we may use the notation n(m) 
instead of nm • In either case we are being conventionally sloppy: we are using 
the same symbol' n' as an integer-valued variable, when we write Xn , and as the 
selector function, when we write n(m) or nm• This is one of the standard nota-
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tional ambiguities which we tolerate in elementary calculus, because the cure is 
considered worse than the disease. We could say: let f be a sequence, i.e., a 
function from Z+ to IR. Then a subsequence of f is a composition fog, where g 
is a mapping from Z+ to Z+ such that g(m + 1) > g(m) for all m. 

If you have grasped the idea of subsequence, you should be able to see that 
any infinite sequence of O's and l's, say {O, 1, 0, 0, 1, 0, 0, 0, 1, ... }, can be 
obtained as a subsequence of {O, 1,0, 1,0, 1, ... , [1 + (-1)n]/2, ... }. 

If Xn --+ a, then it should be clear that every subsequence also converges to a. 
We leave the details as an exercise. On the other hand, if the sequence {xn} 
does not converge to a, then there is an E such that for every N there is some 
larger n at which p(xn' a) ~ E. Now we can choose such an n for every N, 
taking care that nN+l > nN, and thus choose a subsequence all of whose terms 
are at a distance at least E from a. Then this sequence has no subsequence 
converging to a. Thus, if {Xn} does not converge to a, then it has a subsequence 
no (sub ) subsequence of which converges to a. Therefore, 

Lemma 4.1. If the sequence {xn} and the point a are such that every 
subsequence of {xn} has itself a subsequence that converges to a, then 
Xn --+ a. 

This is a wild and unlikely sounding lemma, but we shall use it to prove a 
most important theorem (Theorem 4.2). 

Definition. A subset A of a metric space is sequentially compact if every 
sequence in A has a subsequence that converges to a point of A. 

Here, so to speak, we create convergence out of nothing. One would expect 
a compact set to have very powerful properties, and perhaps suspect that there 
aren't many such sets. We shall soon see, however, that every bounded closed 
subset of IRn is compact, and it is in the theory of finite-dimensional spaces that 
we most frequently use this notion. Sequential compactness in infinite-dimen­
sional spaces is a much rarer phenomenon, but when it does occur it is very 
important, as we shall see in our brief look at Sturm-Liouville theory in Chapter 6. 

We begin with a few simple but important general results. 

Lemma 4.2. If A is a sequentially compact subset of a metric space S, 
then A is closed and bounded. 

Proof. Suppose that {xn} C A and that Xn --+ b. By the compactness of A 
there exists'a subsequence {Xn(i)}i that converges to a point a EA. But a sub­
sequence of a convergent sequence converges to the same limit. Therefore, 
a = band b E A. Thus A is closed. 

Boundedness here will mean lying in some ball about a given point b. If A 
is not bounded, for each n there exists a point Xn E A such that p(xn, b) > n. 
By compactness a suBsequence {Xn(i)}i converges to a point a E A, and 

P(Xn(i), b) --+ p(a, b). 

This clearly contradicts P(Xn(i), b) > n(i) ~ i. 0 
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Continuous functions carry compact sets into compact sets. The proof of 
the following result is left as an exercise. 

TheorelD 4.1. If f is continuous and A is a sequentially compact subset of its 
domain, then I[A] is sequentially compact. 

A nonempty compact set A C iii' contains maximum and minimum elements. 
This is because lub A is the limit of a sequence in A, and hence belongs to A 
itself, since A is closed. Combining this fact with the above theorem, we obtain 
the following well-known corollary. 

Corollary. Iff is a continuous real-valued function and dom (f) is nonempty 
and sequentially compact, then f is bounded and assumes maximum and 
minimum values. 

The following very useful result is related to the above theorem. 

TheorelD 4.2. If f is continuous and bijective and dom (f) is sequentially 
compact, then r 1 is continuous. 

Proof. We have to show that if Yn ~ Y in the range of I, and if Xn = f-1(Yn) 
and: x = rl(y), then Xn ~ x. It is sufficient to show that every subsequence 
{Xn(i)}i has itself a subsequence converging to x (by Lemma 4.1). But, since 
dom (f) is compact, there is a subsequence {Xn(i(i»} i converging to some z, and 
the continuity of f implies that f(z) = limi->oc f(Xn(i(j») = limi->oc Yn(i(j» = y. 
Therefore, z = r1(y) = x, which is what we had to prove. Thus r 1 is con­
tinuous. 0 

We now take up the problem of showing that bounded closed sets in IRn are 
compact. We first prove it for IR itself and then give an inductive argument 
for IRn. 

A sequence {xn} C IR is said to be increasing if Xn ~ xn+1 for all n. It is 
strictly increasing if Xn < Xn+1 for all n. The notions of a decreasing sequence 
and a strictly decreasing sequence are obvious. A sequence which is either increas­
ing or decreasing is said to be monotone. The relevance of these notions here lies 
in the following two lemmas. 

LelDlDa 4.3. A bounded monotone sequence in IR is convergent. 

Proof. Suppose that {xn} is increasing and bounded above. Let 1 be the least 
upper bound of its range. That is, Xn ~ 1 for all n, but for every E, 1 - E is not an 
upper bound, and so 1 - E < XN for some N. Then 

n > N =} 1 - E < XN ~ Xn ~ 1, 

and so IXn - II < E. That is, Xn ~ 1 as n ~ 00. 0 

LelDlDa 4.4. Any sequence in IR has a monotone subsequence. 

Proof. Call Xn a peak term if it is greater than or equal to all later terms. If 
there are infinitely many peak terms, then they obviously form a decreasing 
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subsequence. On the other hand, if there are only finitely many peak terms, then 
there is a last one xno (or none at all), and then every later term is strictly less 
than some other still later term. We choose any n1 greater than no, and then we 
can choose n2 > n1 so that xnl < xn2' etc. Therefore, in this case we can choose 
a strictly increasing subsequence. We have thus shown that any sequence {xn } 

in IR has either a decreasing subsequence or a strictly increasing subsequence. 0 

Putting these two lemmas together, we have: 

Theorem 4.3. Every bounded sequence in IR has a convergent subsequence. 

Now we can generalize to IRn by induction. 

Theorem 4.4. Every bounded sequence in IR n has a convergent subsequence 
(using any product norm, say II /11)' 

Proof. The above theorem is the case n = 1. Suppose then that the theorem is 
true for n - 1, and let {xm}m be a bounded sequence in IRn. Thinking of IRn as 
IR n- 1 X IR, we have xm = -< ym, zm>-, and {ym} m is bounded in IRn-1, because if 
x = -< y, z>-, then /lx/l 1 = /ly/l 1 + Izi ;::: /lyl/ 1. Therefore, there is a subsequence 
{yn(i)}i converging to some y in IR n-t, by the inductive hypothesis. Since 
{Zn(i)} is bounded in IR, it has a subsequence {Zn(i(p»} p converging to some x in 
IR. Of course, the corresponding subsubsequence {yn(i(p»} p still converges to y 
in IR n-t, and then {xn(i(p»} p converges to x = -< y, Z>- in IRn = IRn- 1 X IR, 
since its two component sequences now converge to y and z, respectively. We 
have thus found a convergent subsequence of {xn}. 0 

Theorem 4.5. If A is a bounded closed subset of IRn, then A is sequentially 
compact (in any product norm). 

Proof. If {xn} C A, then there is a subsequence {Xn(i)}i converging to'some x 
in IRn, by Theorem 4.4, and x is in A, since A is closed. Thus A is compact. 0 

We can now fill in one of the minor gaps in the last chapter. 

Theorem 4.6. All norms on IR n are equivalent. 

Proof. It is sufficient to prove that an arbitrary norm /I /I is equivalent to /I /I 1. 
Setting a = max {I/cSi/lg, we have 

/lxI/ = II~ XicSill ~ ~ IXil /lcSil/ ~ al/xllt, 

so one of our inequalities is trivial. We also have I /lxI/ - /lyl/ I ~ /Ix - yl/ ~ 
all X - yl/ 1, so /lxI/ is a continuous function on IRn with respect to the one-norm. 
Now the unit one-sphere S = {x: /lx/l1 = I} is closed and bounded and so 
compact (in the one-norm). The restriction of the continuous function /lx/I to 
this compact set S has a minimum value m, and m cannot be zero because S 
does not contain the zero vector. We thus have /lx/l ;::: m/lxl/1 on S, and so 
/lx/l ;::: m/lxl/ 1 on IRn, by homogeneity. Altogether we have found positive 
constants a and m such that m/l /I 1 ~ /I /I ~ a/l /I 1. 0 
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Composing with a coordinate isomorphism, we see that all norms on any 
finite-dimensional vector space are equivalent. 

Corollary. If M is a finite-dimensional subspace of the normed linear space 
V, then M iR a closed subspace of V. 

Proof. Suppose that {~n} eM and ~n -+ a E V. We have to show that a is in 
M. Now an} is a bounded subset of M, and its closure in M is therefore se­
quentially compact, by the theorem. Therefore, some subsequence converges to 
a point {3 in M as well as to a, and so a = (3 E M. 0 

EXERCISES 

4.1 Prove by induction that if f: Z+ ---+ Z+ is such that fen + 1) > fen) for all n, 
then fen) ~ n for all n. 

4.2 Prove carefully that if Xn ---+ a as n ---+ 00, then Xn(m) ---+ a as m ---+ 00 for any 
subsequence. The above exercise is useful in this proof. 

4.3 Prove that if {Xn} is an increasing sequence in IR (Xn+1 ~ Xn for all n), and if 
{Xn} has a convergent subsequence, then {Xn} converges. 

4.4 Give a more detailed version of the argument that if the sequence {xn} does not 
converge to a, then there is an E and a subsequence {Xn(m)} m such that P(Xn(m), a) ~ E 

for all m. 

4.5 Find a sequence in IR having no convergent subsequence. 

4.6 Find a nonconvergent sequence in IR such that the set of limit points of con­
vergent subsequence consists exactly of the number 1. 

4.7 Show that there is a sequence {Xn} in [0,1] such that for any y E [0, 1] there is a 
subsequence Xnm converging to y. 

4.8 Show that the set of limits of convergent subsequences of a sequence {Xn} in a 
metric space X is a closed subset of X. 

4.9 Prove Theorem 4.1. 

4.10 Prove that the Cartesian product of two sequentially compact metric spaces is 
sequentially compact. (The proof is essentially in the text.) 

4.11 A metric space is boundedly compact if every closed bounded set is sequentially 
compact. Prove that the Cartesian product of two boundedly compact metric spaces is 
boundedly compact (using, say, the maximum metric on the product space). 

4.12 Prove that the sum A + B of two sequentially compact subsets of a normed 
linear space is sequentially compact. 

4.13 Prove th_at the sum A + B of a closed set and a compact set is closed. 

4.14 Show by an example in IR that the sum of two closed sets neea not be closed. 

4.15 Let {Cn} be a decreasing sequence (Cn+l C Cn for all n) of nonempty closed 
subsets of a sequentially compact metric space S. Prove that ni Cn is nonempty. 

4.16 Give an example of a decreasing sequence {Cn} of nonempty closed subsets of 
a metric space such that n i C n = 0. 
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4.17 Suppose the metric space S has the property that every decreasing sequence 
{Cn] of nonempty closed subsets of S has nonempty intersection. Prove that then S 
must be sequentially compact. [Hint: Given any sequence {x;} C S, let Cn be thr 
closure of {Xi: i ~ n}.J 

4.18 Let.l be a sequentially compact subset of a nls V, and let B be obtained from .I 
by drawing all line segments from points of A to the origin (that is, 

B = {ta: a E A and t E [0, 1]}). 

Prove that B is compact. 

4.19 Show by applYing a compactness argument to Lemma 1.5 that if N is a proper 
closed subspace of a finite-dimensional vector space V, then there exists a in V such 
that lIall = p(a, N) = 1. 

5. COMPACTNESS AND UNIFORMITY 

The word' uniform' is frequently used as a qualifying adjective in mathematics. 
Roughly speaking, it concerns a "point" property P(y) which mayor may not 
hold at each point y in a domain A and whose definition involves an existential 
quantifier. A typical form for P(y) is (Vc)(3d)Q(y, c, d). Thus, if P(y) is 'f is 
continuous at y', then P(y) has the form (VE)(3lJ)Q(y, E, lJ). The property holds 
on A if it holds for all y in A, that is, if 

(VyEA)[(Vc)(3d)Q(y, c, d)]. 

Here d will, in general, depend both on y and c; if either y or c is changed, the 
corresponding d may have to be changed. Thus lJ in the definition of continuity 
depends both on E and on the point y at which continuity is being asserted. The 
property is said to hold uniformly on A, or uniformly in y, if a value d can be 
found that is independent of y (but still dependent on c). Thus the property holds 
uniformly in y if 

(Vc)(3d)(VyEA)Q(y, c, d); 

the uniformity of the property is expressed in the reversal of the order of the 
quantifiers (VyEA) and (3d). Thus f is uniformly continuous on A if 

(VE)(3lJ)(Vy, ZEA)[p(y, z) < lJ ==> p(J(y), fez)) < E]. 

Now lJ is independent of the point at which continuity is being asserted, but still 
dependent on E, of course. 

We saw in Section 14 of the last chapter how much more powerful the point 
condition of continuity becomes when it holds uniformly. In the remainder of 
this section we shall discuss some other uniform notions, and shall see that the 
uniform property is often implied by the point property if the domain over which 
it holds is sequentially compact. 

The formal statement forms we have examined above show clearly the 
distinction between uniformity and nonuniformity. However, in writing an 
argument, we would generally follow our more idiomatic practice of dropping out 
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the inside universal quantifier. For example, a sequence of functions Un} C W A 

converges pointwise to f: A -+ W if it converges to f at every point P in A, that 
is, if for every point p in A and for every f there is an N such that 

n> N => p(jn(p),f(p) ~ f. 

The sequence converges uniformly on A if an N exists that is independent of p, 
that is, if for every f there is an N such that 

n > N => p(jn(P),f(p) ~ f for every p in A. 

When p(~, 71) = II ~ - 711[, saying that p(jn(P), f(p) ~ f for all p is the same as 
saying that IIfn - fll"" ~ f. Thus fn -+ funiformly if and only if IIfn - fll"" -+ 0; 
this is why the norm IIfll"" is called the uniform norm. 

Pointwise convergence does not imply uniform convergence. Thus fn(x) = 
xn on A = (0, 1) converges pointwise to the zero function but does not converge 
uniformly. 

Nor does continuity on A imply uniform continuity. The function f(x) = 
1/x is continuous on (0, 1) but is not uniformly continuous. The function 
sin (l/x) is continuous and bounded on (0, 1) but is not unifomlly continuous. 
Compactness changes the latter situation, however. 

Theorem 5.1. If f is continuous on A and A is compact, then f is uniformly 
continuous on A. 

Proof. This is one of our "automatic" negation proofs. Uniform continuity 
(UC) is the property 

(Vf>o)(H>O)(Vx, yEA)[p(x, y) < ~ => p(j(x),j(y) < f]. 

Therefore, .....,UC ~ (3f)(V~)(3x, y)[p(x, y) < ~ and p(j(x), fey)~ ~ f]. Take 
~ = lin, with corresponding Xn and Yn. Thus, for all n, p(xn, Yn) < lin and 
p (j(xn), f(Yn) ~ f, where f is a fixed positive number. Now {xn} has a con­
vergent subsequence, say Xn(i) -+ x, by the compactness of A. Since 

P(Yn(i), Xn(i») < Iii, 
we also have Yn(i) -+ x. By the continuity of f at x, 

p(j(xn(i»),f(Yn(i»)) ~ p(j(xn(i»),f(x) +p(j(X),f(Yn(i»)) -+0, 

which contradicts p (j(Xn(i»), f(Yn(i»)) ~ f. This completes the proof by nega­
tion. 0 

The compactness of A does not, however, automatically convert the point­
wise convergence of a sequence of functions on A into uniform convergence. The 
"piecewise linear" functions fn: [0, 1] -+ [0, 1] defined by the graph shown in 
Fig. 4.1 converge pointwise to zero on the compact domain [0, 1], but the con­
vergence is not uniform. (However, see Exercise 5.4.) 
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We pointed out earlier that the distance between a pair of disjoint closed 
sets may be zero. However, if one of the closed sets is compact, then the distance 
must be positive. 

Theorem 5.2. If A and C are disjoint nonempty closed sets, one of which is 
compact, then p(A, C) > o. 

Proof. The proof is by automatic contradiction, and is left to the reader. 

This result is again a uniformity condition. Saying that a set A is disjoint 
from a closed set C is saying that (VxEA )(3r>O) (Br(x) n C = 0). Saying that 
p(A, C) > 0 is saying that (3r>O)(VxEA ) ••• 

As a last consequence of sequential compactness, we shall establish a very 
powerful property which is taken as the definition of compactness in general 
topology. First, however, we need some preparatory work. If A is a subset of a 
metric space S, the r-neighborhood of A, Br[A], is simply the union of all the balls 
of radius r about points of A: 

Br[A] = U {Br(a) : a E A} = {x: (3aEA) (p(x, a) < r)}. 

A subset A C S is r-dense in S if S C Br[A], that is, if each point of S is closer 
than r to some point of A. 

A subset A of a metric space S is dense in S if A = S. This is the same as 
saying that for every point p in S there are points of A arbitrarily close to p. 
The set iQ of all rational numbers is a dense subset of the real number system IR, 
because any irrational real number x can be arbitrarily closely approximated by 
rational numbers. Since we do arithmetic in decimal notation, it is customary to 
use decimal approximations, and if 0 < x < 1 and the decimal expansion of 
x is x = L~ an/lOn, where each an is an integer and 0 ~ an < 10, then 
:Ef an/IOn is a rational number differing from x by less than lO-N. Note that A 
is a dense subset of B if and only if A is r-dense in B for every positive r. 

A set B is said to be totally bounded if for every positive r there is a finite set 
which is r-dense in B. Thus for every positive r the set B can be covered by a 
finite number of balls of radius r. For example, the n - 1 numbers {i/nH- 1 are 
(l/n)-dense in the open interval (0, 1) for each n, and so (0, 1) is totally bounded. 
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Total boundedness is a much stronger property than boundedness, as the 
following lemma shows. 

Lemma 5.1. If the normed linear space V is infinite-dimensional, then its 
closed unit ball BI = H: II ~II ~ I} cannot be covered by a finite number 
of balls of radius -1. 

Proof. Since V is not finite-dimensional, we can choose a sequence {an} such 
that an+l is not in the linear span M n of {aI, ... , an}, for each n. Since M n is 
closed in V, by the corollary of Theorem 4.6, we can apply Lemma 1.5 to find 
a vector ~n in M n such that II ~n II = 1 and p( ~n' M n-l) > i for all n > 1. 
We take h = adilalll, and we have a sequence Hn} C BI such that 

II~m - ~nll > i 
if m ¢ n. Then no ball of radius -1 can contain more than one h, proving the 
lemma. 0 

For a concrete example, let V be e([O, 1]), and letfn be the "peak" function 
sketched in Fig. 4.2, where the three points on the base are 1/(2n + 2), 1/(2n+ 1), 
and 1/2n. Then fn+l is "disjoint" from fn (that is, fn+dn = 0), and we have 
Ilfnlloo = 1 for all nand Ilfn - fmlloo = 1 if n ¢ m. Thus no ball of radius i can 
contain more than one of the functions f n, and accordingly the closed unit ball in 
V cannot be covered by a finite number of balls of radius l 

Lemma 5.2. Every sequentially compact set A is totally bounded. 

Proof. If A is not totally bounded, then there exists an r such that no finite 
subset F is r-dense in A. We can then define a sequence {Pn} inductively by 
taking PI as any point of A, P2 as any point of A not in Br(PI), and Pn as any 
point of A not in Br[U~-l Pi] = U~-l Br(Pi). Then {Pn} is a sequence in A 
such that P(Pi' Pj) ~ r for all i ¢ j. But this sequence can have no convergent 
subsequence. Thus, if A is not totally bounded, then A is not sequentially com­
pact, proving the lemma. 0 

Corollary. A normed linear space V is finite-dimensional if and only if its 
closed unit ball is sequentially compact. 

Proof. This follows from Theorem 4.4 in one direction and from the above two 
lemmas in the other direction. 0 

Lemma 5.3. Suppose that A is sequentially compact and that {Ei : i E J} 
is an open covering of A (that is, {Ei} is a family of open sets and A C UiEi). 
Then there exists an r > 0 with the property that for every point P in A the 
ball Br(P) is included in some E j • 

Proof. Otherwise, for every r there is a point P in A such that Br(P) is not a sub­
set of any E j • Take r = l/n, with corresponding sequence {Pn}. Thus Bl/n(Pn) 
is not a subset of any Ej • Since A is sequentially compact, {Pn} has a convergent 
subsequence, Pn(m) ~ P as m ~ 00. Since {Ei} covers A, some E j contains p, 
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and then B.(p) C E j for some E > 0, since E j is open. Taking m large enough so 
that l/m < E/2 and also P(Pn(m), p) < E/2, we have 

Blfn(m)(Pn(m» C B.(p) C Ej, 

contradicting the fact that Blfn(Pn) is not a subset of any Ei. The lemma has 
thus been proved. 0 

Theorem 5.S. If ff is an open covering of a sequentially compact set A, 
then some finite subfamily of ff covers A. 

Proof. By the lemma immediately above there exists an l' > 0 such that for 
every P in A the ball Br(P) lies entirely in some set of ff, and by the first lemma 
there exist Pb ... , Pn in A such that A C U~ Br(Pi). Taking corresponding sets 
Ei in ff such that Br(Pi) C Ei for i = 1, ... , n, we clearly have A C U~ E i • 0 

In general topology, a set A such that every open covering of A includes a 
finite covering is said to be compact or to have the Heine-Borel property. Thc 
above theorem says that in a metric space every sequentially compact set if:; 
compact. We shall see below that the reverse implication also holds, so that thc 
two notions are in fact equivalent on a metric space. 

Theorem 5.4. If A is a compact metric space, then A is sequentially 
compact. 

Proof. Let {xn} be any sequence in A, and let ff be the collection of open balls B 
such that B contains only finitely many Xi. If ff were to cover A, then by com­
pactness A would be the union of finitely many balls in ff, and this would clearly 
imply that the whole of A contains only finitely many Xi, contradicting the fact 
that {Xi} is an infinite sequence. Therefore, ff does not cover A, and so there is a 
point X in A such that every ball about x contains infinitely many of the Xi. 

More precisely, every ball about x contains Xi for infinitely many indices i. It can 
now be safely left to the reader to see that a subsequence of {xn} converges to x. 0 

EXERCISES 

5.1 Show thatfn(x) = xn does not converge uniformly on (0, 1). 

5.2 Show thatf(x) = l/x is not uniformly continuous on (0,1). 

5.S Define the notion of a function [{: X X Y ~ }' being uniformly Lipschitz in its 
second variable over its first variable. 

5,4, Let S be a sequentially compact metric space, and let {fn) be a sequence of 
continuous real-valued functions on S that decreases pointwise to zero (that is, {fn(P)] 
is a decreasing sequence in IR andfn(p) ~ 0 as n ~ co for each p in S). Prove that the 
convergence is uniform. (Try to apply Exercise 4.15.) 

5.5 Restate the corollaries of Theorems 15.1 and 15.2 of Chapter 3, employing the 
weaker hypotheses that suffice by virtue of Theorem 5.1 of the present section. 
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5.6 Prove Theorem 5.2. 

5.7 Prove that if .1 is an r-dense subset of a set X in a normed linear space V, and 
if B is an s-dense subset of a set Y C V, then A + B is (r + s)-dense in X + Y. Con­
clude that the sum of two totally bounded subsets of V is totally bounded. 

5.8 Suppose that the n points {Pi] i are r-dense in a metric space X. Let A. be any 
subset of X. Show that A. has a subset of at most n points that is 2r-dense in A. 
Conclude that any subset of a totally bounded metric space is itself totally bounded. 

5.9 Prove that the Cartesian product of two totally bounded metric spaces is totally 
bounded. 

5.10 Show that if a metric space X has a dense subset A that is totally bounded, then 
X is total!y bounded. 

5.11 Show that if two continuous mappings f and g from a metric space X to a metric 
space Yare equal on a dense subset of X, then they are equal everywhere. 

5.12 Write out in explicit quantified form involving the existence of balls the state­
ment that the interiors of the sets {Ai} cover the metric space A. Then show that the 
conclusion of Lemma 5.3 is another uniformity assertion. 

5.13 Reprove the theorem that a continuous function on a compact domain is 
bounded on the basis of Theorem 5.3. 

5.14 Reprove the theorem that a continuous function on a compact domain is 
uniformly continuous from Theorem 5.3. 

6. EQUICONTINUITY 

The application of sequential compactness that we shall make in an infinite­
dimensional context revolves around the notion of an equicontinuou8 family of 
functions. If A and B are metric spaces, then a subset fr C BA is said to be 
equicontinuou8 at Po in A if all the functions of fr are continuous at Po and if 
given E, there is a ~ which works for them all, i.e., such that 

p(p, Po) < ~ => p(j(p),f(Po» < E for every fin fr. 

The family fr is uniformly equicontinuou8 if ~ is also independent of Po, and so is 
dependent only on E. Our quantifier string is thus (VE)(3~)(Vp, qEA)(Vr'.f). 

For example, given m > 0, let fr be a collection of functions f from (0, 1) to 
(0, 1) such that!' exists and 1f'1 :$ m on (0, 1). Then If(x) - f(y) I :$ mix - yl, 
by the ordinary mean-value theorem. Therefore, given any E, we can take 
~ = Elm and have 

Ix - yl < ~ => If(x) - f(y)1 < E 

for all x, y E (0, 1) and all f E fr. The collection fr is thus uniformly equicon­
tinuous. 

TheorelD 6.1. If A and B are totally bounded metric spaces, and if ff is a 
uniformly equicontinuou8 subfamily of BA, then fr is totally bounded in the 
uniform metric. 



216 COMPACTNESS AND COMPLETENESS 4.7 

Proof. Given E > 0, choose 8 so that for allfin 5 and all Pi, P2 in A, P(Pb P2) < 
o =? P(J(Pl), f(P2») < E/4. Let D be a finite subset of A which is o-dense in A, 
and let E be a finite subset of B which is (E/4)-dense in B. Let G be the set ED of 
all functions on D into E. G is of course finite; in fact, #G = nm , where m = #D 
and n = #E. Finally, for each g E G let 5 g be the set of all functions f E 5 such 
that 

p(j(p), g(p») < E/4 for every P E D. 

We claim that the collections 5 g cover 5 and that each 5 g has diameter at most E. 
We will then obtain a finite E-dense subset of 5 by choosing one function from 
each nonempty 5g , and the theorem will be proved. 

To show that every f E 5 is in some 5g , we simply construct a suitable g. 

For each P in D there exists a q in E whose distance from f(p) is less than E/4. 
If we choose one such q in E for each pin D, we have a function gin G such that 
fE5g • 

The final thing we have to show is that if f, h E 5g , then p(f, h) ~ E. Since 
p(h, g) < E/4 on D and p(f, g) < E/4 on D, it follows that 

p(j(p), h(p») < E/2 for every p E D. 

Then for any p' E A we have only to choose p E D such that p(p', p) < 0, and 
we have 

p(j(p'), h(p'») ~ p(j(p'),f(p») + p(j(p), h(p») + p(h(p), h(p'») 

~ E/4 + E/2 + E/4 = E. 0 

The above proof is a good example of a mathematical argument that is 
completely elementary but hard. When referring to mathematical reasoning, the 
words 'sophisticated' and 'difficult' are by no means equivalent. 

7. COMPLETENESS 

If xn ~ a as n ~ 00, then the terms Xn obviously get close to each other as n 
gets large. On the other hand, if {xn} is a sequence whose terms get arbitrarily 
close to each other as n ~ 00, then {xn} clearly ought to converge to a limit. 
I t may not, however; the desired limit point may be missing from the sp~ce. 
If a metric space S is such that every sequence which ought to converge actually 
does converge, then we say that S is complete. We now make this notion precise. 

Definition. {Xn} is a Cauchy sequence if for every E there is an N such that 

m > Nand n > N =? p(xm, xn) < E. 

Lemma 7.1. If {xn} is convergent, then {Xn} is Cauchy. 

Proof. Given E, we choose N such that n > N =? p(xn' a) < E/2, where a is 
the limit of the sequence. Then if m and n are both greater than N, we have 

p(xm' xn) ~ p(xm' a) + p(a, xn) <: E/2 + E/2 = E. 0 
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Lelllllla 7.2. If {Xn} is Cauchy, and if a subsequence is convergent, then 
{xn} itself converges. 

Proof. Suppose that Xn(i) -+ a as i -+ 00. Given E, we take N so that m, n > N =} 

p(xn' xm) < E. Because Xn(i) -+ a as i -+ 00, we can choose an i such that 
n(i) > Nand P(Xn(i), a) < E. Thus if m > N, we have 

p(xm' a) ~ p(xm' Xn(i» + p(Xn(i), a) < 2E, 

and so Xm -+ a. 0 

Actually, of course, if m, n > N =} p(xm, xn) < E, and if Xn -+ a, then for 
any m > N it is true that p(xm' a) ~ E. Why? 

Lelllllla 7.3. If A and B are metric spaces, and if T is a Lipschitz mapping 
from A to B, then T carries Cauchy sequences in A into Cauchy sequences in 
B. This is true in particular if A and Bare normed linear spaces and T is an 
element of Hom(A, B). 

Proof. Let {xn} be a Cauchy sequence in A, and set Yn = T(xn). Given E, 

choose N so that m, n > N =} p(xm' xn) < EIC, when C is a Lipschitz constant 
for F. Then 

m, n > N =} P(Ym, Yn) = p(T(xm), T(xn») ~ Cp(xm, xn) < CEIC = E. 0 

This lemma has a substantial generalization, as follows. 

Theorelll 7.1. If A and B are metric spaces, {xn} is Cauchy in A, and 
F: A -+ B is uniformly continuous, then {F(xn )} is Cauchy in B. 

Proof. The proof is left as an exercise. 

The student should try to acquire a good intuitive feel for the truth of these 
lemmas, after which the technical proofs become more or less obvious. 

Definition. A metric space A is complete if every Cauchy sequence in A 
converges to a limit in A. A complete normed linear space is called a Banach 
space. 

Weare now going to list some important examples of Banach spaces. In 
each case a proof is necessary, so the list becomes a collection of theorems. 

Theorelll 7.2. IR is complete. 

Proof. Let {xn} be Cauchy in R Then {xn} is bounded (why?) and so, by 
Theorem 4.3, has a convergent subsequence. Lemma 7.2 then implies that 
{xn} is convergent. 0 

Theorelll 7.3. If A is a complete metric space, and if f is a continuous 
bijective mapping from A to a metric space B such that r 1 is Lipschitz 
continuous, then B is complete. In particular, if V is a Banach space, and if 
Tin Hom(V, W) is invertible, then W is a Banach space. 
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Prool. Suppose that {Yn} is a Cauchy sequence in B, and set Xi = I-I(y,) for 
all i. Then {Xi} is Cauchy in A, by Lemma 7.3, and so converges to some X in A, 
since A is complete. But then Yn = I(xn) ~ I(x), because I is continuomt 
Thus every Cauchy sequence in B is convergent and B is complete. 0 

The Banach space assertion is a specia.l case, because the invertibility of '1' 
means that T- I exists in Hom(W, V) and hence is a Lipschitz mapping. 

Corollary. If p and q are equivalent norms on V and -< V, p>- is completc, 
then so is -< V, q>-. 

Theorenl 7.4. If V I and V 2 are Banach spaces, then so is V 1 X V 2. 

Proof. If {-< tn, 7Jn >-} is Cauchy, then so are each of {tn} and {7Jn} (by 
Lemma 7.3, since the projections 7ri are bounded). Then tn ~ a and 7Jn ~ {:J 

for some a E V land {3 E V 2· Thus -< tn, 7Jn >- ~ -< a, {3 >- in V I X V 2. (See 
Theorem 3.4.) 0 

Corollary 1. If {Vi] 1 are Banach spaces, then so is IIi=l Vi. 

Corollary 2. Every finite-dimensional vector space is a Banach space 
(in any norm). 

Proof. IR n is complete (in the one-norm, say) by Theorem 7.2 and Corollary 1 
above. We then impose a one-norm on V by choosing a basis, and apply the 
corollary of Theorem 7.3 to pass to any other norm. 0 

TheoreIIl 7.5. Let W be a Banach space, let A be any set, and let 03(A, W) 
be the vector space of all bounded functions from A to W with the uniform 
norm Ilill"" = lub {lli(a)11 : a E A}. Then 03(A, W) is a Banach space. 

Prooi. Let Un] be Cauchy, and choose any a E A. Since Ilin(a) - 1m (a) I! ~ 
Ilin - imll"" it follows that Un(a)} is Cauchy in Wand so convergent. Definc 
g: A ~ W by yea) = limin(a) for each a E A. We have to show that g is 
bounded and that in ~ y. 

Given E, we choose N so that m, n > N =:} Ilim - inll"" < E. Then 

Ilim(a) - yea) II = lim Ilim(a) - inCa) II ~ E. 
n-->"" 

Thus, if m > N, then Ilim(a) - y(a)!1 ~ E for all a E A, and hence Ilim - gil"" ~ 
E. This implies both that im - g E 03(A, W), and so 

g = im - (fm - g) E 03(A, W), 

and that im ~ g in the uniform norm. 0 

TheoreIIl 7.6. If V is a normed linear space and W is a Banach space, then 
Hom(V, W) is a Banach space. 

The method of proof is identical to that of the preceding theorem, and we 
leave it as an exercise. Boundedness here has a different meaning, but it is used 
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in essentially the same way. One additional fact has to be established, namely, 
that the limit map (corresponding to g in the above theorem) is linear. 

Theorem 7.7. A closed subset of a complete metric space is complete. A 
complete subset of any metric space is closed. 

Proof. The proof is left to the reader. 

It follows from Theorem 7.7 that a complete metric space A is absolutely 
closed, in the sense that no matter how we extend A to a larger metric space 
B, A is always a closed subset of B. Actually, this property is equivalent to 
completeness, for if A is not complete, then a very important construction of 
metric space theory shows that A can be completed. That is, we can construct 
a complete metric space B which includes A. Now, if A is not complete, then 
the closure of A in B, being complete, is different from A, and A is not absolutely 
closed. 

See Exercise 7.21 through 7.23 for a construction of the completion of a 
metric space. The completion of a normed linear space is of course a Banach 
space. 

Theorem 7.8. In the context of Theorem 7.5, let A be a metric space, let 
e(A, W) be the space of continuous functions from A to W, and set 

CBe(A, W) = CB(A, W) n e(A, W). 

Then CBe is a closed subspace ofCB. 
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Fig. 4.3 

Proof. We suppose that Un} C CBe and that IIfn - all", --t 0, where g E CB. 
We have to show that g is continuous. This is an application of a much used 
"up, over, and down" argument, which can be schematically indicated as in 
Fig. 4.3. 

Given E, we first choose any n such that IIfn - all", < E/3. Consider now 
any a EA. Sincefn is continuous at a, there exists a 6 such that 

p(x, a) < 6 :::} Ilfn(x) - fn(a) II < E/3. 
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Then 

p(x, a) < 6 ==> Ilg(x) - g(a)11 :::; IIg(x) - fn(x) II + Ilfn(x) - fn(a) II 
+ Ilfn(a) - g(a)11 < E/3 + E/3 + E/3 = E. 

Thus g is continuous at a for every a E A, and so g E me. 0 

This important classical result is traditionally stated as follows: The limit oj 
a uniformly convergent sequence of continuous functions is continuous. 

Remark. The proof was slightly more general. We actually showed that if 
fn ---+ f uniformly, and if each fn is continuous at a, then f is continuous at a. 

Corollary. me(A, W) is a Banach space. 

Theorem 7.9. If A is a sequentially compact metric space, then A is com­
plete. 

Proof. A Cauchy sequence in A has a subsequence converging to a limit in A, 
and therefore, by Lemma 7.2, itself converges to that limit. Thus A is complete. 0 

In Section 5 we proved that a compact set is also totally bounded. It can be 
shown, conversely, that a complete, totally bounded set A is sequentially com­
pact, so that these two properties together are equivalent to compactness. 

The crucial fact is that if A is totally bounded, then every sequence in A 
has a Cauchy subsequence. If A is also complete, this Cauchy subsequence will 
converge to a point of A. Thus the fact that total boundedness and complete­
ness together are equivalent to compactness follows directly from the next 
lemma. 

Lemma 7.4. If A is totally bounded, then every sequence in A has a Cauchy 
subsequence. 

Proof. Let {Pm} be any sequence in A. Since A can be covered by a finite 
number of balls of radius 1, at least one ball in such a covering contains infinitely 
many of the points {Pm}. More precisely, there exists an infinite set M 1 C z+ 
such that the set {Pm: m E M I} lies in a single ball of radius 1. Suppose that 
M b ... , M n C Z+ have been defined so that M i+1 C M;for i = 1, ... ,n - 1, 
M n is infinite, and {Pm: m E M i } is a subset of a ball of radius l/i for i = 1, ... ,n. 
Since A can be covered by a finite family of balls of radius l/(n + 1), at least 
one covering ball contains infinitely many points of the set {Pm: mE M n}. More 
precisely, there exists an infinite set M n+l C M n such that {Pm: m E M n+l} 
is a subset of a ball of radius l/(n + 1). We thus define an infinite sequence 
{M n} of subsets of Z+ having the above properties. 

N ow choose ml E M 1, m2 E M 2 so that m2 > ml, and, in general, mn+l E 

Mn+l so that m n+l > m". Then the subsequence {PmJn is Cauchy. For 
given E, we can choose n so that l/n < E/2. Then i, j > n ==> mi, mj E M n ==> 
P(Pm., Pm.) < 2(1/n) < E. This proves the lemma, and our theorem is a . . , 
corollary. 0 
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Theorem 7.10. A metric space S is sequentially compact if and only if S is 
totally bounded and complete. 

The next three sections will be devoted to applications of completeness to 
the calculus, but before embarking on these vital matters we should say a few 
words about infinite series. As in the ordinary calculus, if {~n} is a sequence in a 
normed linear space V, we say that the series :E ~i converges and has the sum a, 
and write:E~ ~i = a, if the sequence of partial sums converges to a. This means 
that Un -t a as n -t ao, where Un is the finite sum :Ei ~i for each n. We say that 
:E ~i converges absolutely if the series of norms :E II M converges in IR. This is 
abuse of language unless it is true that every absolutely convergent series con­
verges, and the importance of the notion stems from the following theorem. 

Theorem 7.11. If V is a Banach space, then every absolutely convergent 
series in V is convergent. 

Proof. Let:E ~i be absolutely convergent. This means that :E II ~ill converges in 
R, i.e., that the sequence {sn} converges in R, where Sn = :Ei II ~ill. If m < n, 
then 

Since {Si} is Cauchy in R, this inequality shows that {Ui} is Cauchy in V and 
therefore, because V is complete, that {un} is convergent in V. That is, :E ~i is 
convergent in V. 0 

The reader will be asked to show in an exercise that, conversely, if a normed 
linear space V is such that every absolutely convergent series converges, then V 
is complete. This property therefore characterizes Banach spaces. 

We shall make frequent use of the above theorem. For the moment we 
note just one corollary, the classical Weierstrass comparison test. 

Corollary. If {In} is a sequence of bounded real-valued (or W-valued, for 
some Banach space W) functions on a common domain A, and if there is a 
sequence {M n} of positive constants such that :E M n is convergent and 
IIfnll"" ~ Mn for each n, then :E fn is uniformly convergent. 

Proof. The hypotheses imply that :Ellfnll"" converges, and so :E fn converges in 
the Banach space CB(A, W) by the theorem. But convergence in CB(A, W) is 
uniform convergence. 0 

EXERCISES 

7.1 Prove that a Cauchy sequence in a metric space is a bounded set. 

7.2 Let V be a normed linear space. Prove that the sum of two Cauchy sequences 
in V is Cauchy. 

7.3 Show also that if {~n} is Cauchy in V and {an} is Cauchy in R, then {an~n} is 
Cauchy in V. 
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7.4 Prove that if {~n} is a Cauchy sequence in a normed linear space V, then 
(II ~n II) is a Cauchy sequence in R 

7.5 Prove that if [Xn} and [Yn} are two Cauchy sequences in a metric space S, 
then [P(Xn, Yn)} is a Cauchy sequence in IR. 

7.6 Prove the statement made after the proof of Lemma 7.2. 

7.7 Thl' rational number system is an incomplete metric space. Prove this by 
exhibiting a Cauchy sequence of rational .lUmbers that does not converge to a rational 
number. 

7.8 Prove Theorem 7.1. 

7.9 Deduce a strengthened form of Theorem 7.3 from Theorem 7.1. 

7.10 Write out a careful proof of Theorem 7.6, modeled on the proof of Theorem 7.5. 

7.Il Prove Theorem 7.7. 

7.12 Let the metric space X have a dense subset Y such that every Cauchy sequence 
in Y is convergent in X. Prove that X is complete. 

7.13 Show that the set W of all Cauchy sequences in a normed linear space V i~ 

itself a vector space and that a seminorm P can be defined on W by p( {~n)) = lim lI~nll. 
(Put this together from the material in the text and the preceding problems.) 

7.14 Continuing the above exercise, for each ~ E V, let ~c be the constant sequence 
all of whose terms are~. Show that 0: ~ f-+ ~c is an isometric linear injection of V into II· 
and that O[V) is dense in W in terms of the seminorm from the above exercise. 

7.15 Prove next that every Cauchy sequence in O[V) is convergent in W. Put Exer­
cises 4.18 of Chapter 3 and 7.12 through 7.14 of this chapter together to conclude that 
if N is the set of null Cauchy sequences in W, then WIN is a Banach space, and that 
~ f-+ ~c is an isometric linear injection from V to a dense subspace of WIN. This con­
stitutes the standard completion of the normed linear space V. 

7.16 We shall now sketch a nonstandard way of forming the completion of a metric 
space S. Choose some point Po in S, and let V be the set of real-valued functions on S 
such that I(po) = 0 and I is a Lipschitz function. For I in Y define 11I11 as the smallest 
Lipschitz constant for I. That is, 

Ilfll = lub {1/(p) - l(q)llp(p, q)}. 
p-:/,q 

Prove that r is a normed linear space under this norm. (V actually is complete, but 
we do not need this fact.) 

7.17 Continuing the above exercise, we know that the dual space V* of all bounded 
linear functionals on V is complete by Theorem 7.6. We now want to show that Scan 
be isometrically imbedded in V*; then the closure of S as a subset of V will be the 
desired completion of S. For each pES, let Op: V ~ IR be "evaluation at p". That is, 
Op(f) = I(p)· Show that Op E V* and that 1I0p - Oqll ::; pep, q). 

7.18 In order to conclude that the mapping 0: p f-+ Op is an isometry (i.e., is distance­
preserving), we have to prove the opposite inequality 1I0p - Oqll 2: pep, q). To do this, 
choose p and consider the special function I(x) = pep, x) - pep, Po). Show that I is 
in V and that 11/11 = 1 (from an early lemma in the chapter). Now apply the definition 
of 1I0p - Oqll and conclude that 0 is an isometric injection of S into V*. Then 0(8) is 
our constructed completion. 
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7.19 Prove that if a normed linear space V has the property that every absolutely 
convergent series converges, then V is complete. (Let {an} be a Cauchy sequence. 
Show that there is a subsequence {an;1 i such that if ~i = a ni+1 - ani' then II ~ill < 2-i• 

Conclude that the subsequence converges and finish up.) 

7.20 The above exercise gives a very useful criterion for V to be complete. Use it to 
prove that if V is a Banach space and N is a closed subspace, then VI N is a Banach 
space (see Exercise 4.14 of Chapter 3 for the norm on V IN). 

7.21 Prove that the sum of a uniformly convergent series of infinitesimals (all on the 
same domain) is an infinitesimal. 

8. A FIRST LOOK AT BANACH ALGEBRAS 

When we were considering the implicit-function theorem and the inverse-function 
theorem in· the last chapter, we saw how useful it is to know that if a transfor­
mation T has an inverse T-1, then so does S whenever liS - Til is small enough, 
and that the mapping T 1-+ T- 1 is continuous on the open set of all invertible 
elements. When the spaces in question are finite-dimensional, these facts can 
be made to follow from the continuity of the determinant function T 1-+ /leT) 
from Hom V to IR. It is also possible to produce them by arguing directly in 
terms of upper and lower bounds for T and its close approximations S. But the 
most natural, most elegant,. and-in the case of Banach spaces-easiest way to 
prove these things is to show that if V is a Banach space and T in Hom V has 
norm less than one, then the sum of the geometric series :EO' Tn is the inverse of 
I - T, just as in the elementary calculus. But in making this argument, the 
fact that T is a linear transformation has little importance, and we shall digress 
for a moment to explore this situation. 

Ust us summarize the norm and algebraic properties of Hom V when V is a 
Banach space. First of all, we know that Hom V is also a Banach space. Second, 
it is an algebra. That is, it possesses an associative mUltiplication operation 
(composition) that relates to the linear operations according to the following 
laws: 

S(TI + T 2) = ST1 + ST2, 

(SI + S2)T = SIT + S2T, 

c(ST) = (cS)T = S(cT). 

Finally, multiplication is related to the norm by 

IISTII 5 IISII II Til and 11111 = 1. 

This list of properties constitutes exactly the axioms for a Banach algebra. 
Just as we can see certain properties of functions most clearly by forgetting 

that they are functions and considering them only as elements of a vector space, 
now it turns out that we can treat certain properties of transformations in 
Hom(V) most simply by forgetting the complicated nature of a linear transfor­
mation and considering it merely as an element of an abstract Banach algebra.A. 
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The most important simple thing we can do in a Banach algebra that we 
couldn't do in a Banach space is to consider power series. The following theorem 
shows that the geometric series, in particular, plays the same central role here 
that it plays in elementary calculus. Since we are not thinking of the elements of 
A as transformations, we shall designate them by lower-case letters; e is the 
identity of A. 

Theorem 8.1. If A is a Banach algebra, and if x in A has norm less than one, 
then (e - x) is invertible and its inverse is the sum of the geometric series 
lUX: 

00 

(e - X)-l = LX". 
o 

Also, lie - (e - x)-Ill ~ rl(l - r), where r = Ilxll. 
Proof. Since Ilx"ll ~ Ilxll" = r", the series L x" is absolutely convergent when 
Ilxll < 1 by comparison with the ordinary geometric series L r". It is therefore 
convergent, and if y = L~ x", then 

" (e - x)y = lim (e - x) L xi = lim (e - X"+l) = e, 
n--+co 0 

since Ilxll"+1 ~ r,,+l --+ o. That is, y = (e - X)-I. Finally, 

lie - (e - x)-lll = II~ x"ll ~ ~ r" = rl(l - r). 0 

Theorem 8.2. The set ;n of invertible elements in a Banach algebra A is 
open and the mapping x 1-4 X-I is continuous from ;n to;n. In fact, if y-l 

exists and m = Ily-111, then (y - h)-l exists whenever Ilhll < 11m and 
II(y - h)-l - y-Ill ~ m211hll/(l - mllhl!). 

Proof. Set x = y-Ih. Then (y - h) = y(e - x), where Ilxll = Ily-Ihil ~ 
mllhll, and so by the above theorem y - h will be invertible, with (y - h)-l = 
(e - X)-Iy-t, provided Ilhll < 11m. Then also 

Ily-1 - (y - h)-III ~ lie - (e - x)-Ill . m, 

and this is bounded above by 

mrl(l - r) ~ m211hll/(1 - mllhll), 
by the last inequality in the above theorem. 0 

Corollary. If V and Ware Banach spaces, then the invertible elements in 
Hom(V, W) form an open set, and the map T 1-4 T-1 is continuous on this 
domain. 

Proof. Suppose that T- I exists, and set m = liT-III. Then if liT - SII < 11m, 
we have III - T-1SII ~ liT-III liT - SII < 1, and so T-1S = I - (I - T-IS) 
is an invertible element of Hom V. Therefore, S = T(T-IS) is invertible and 
S-I = (T-1S)-IT-1. The continuity of S 1-4 S-I is left to the reader. 0 
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We saw above that the map x 1-+ (e - X)-l from the open unit ball B1(O) in 
a Banach algebra A to A is the sum of the geometric power series. We can define 
many other mappings by convergent power series, at hardly any greater effort. 

Theorem 8.3. Let A be a Banach algebra. Let the sequence {an} C A and 
the positive number ~ be such that the sequence {llanll ~n} is bounded. Then 
L anxn converges for x in the ball Ba(O) in A, and if 0 < s < ~,then the 
series converges uniformly on B8(O). 

Proof. Set r = s/~, and let b be a bound for the sequence {llanll ~n}. On the 
ball Bs(O) we then have Ilanxnll ::; Ilanllsn = Ilanll ~nrn ::; brn, and the series 
therefore converges uniformly on this ball by comparison with the geometric 
series bL rn, since 1" < 1. 0 

The series of most interest to us will have real coefficients. They are included 
in the above argument because the product of the vector x and the scalar t is 
the algebra product (te)x. In addition to dealing with the above geometric series, 
we shall be particularly interested in the exponential function eX = Lo xn In!. 
The usual comparison arguments of the elementary calculus show just as easily 
here that this series converges for every x in A and uniformly on any ball. 

It is natural to consider the differentiability of the maps from A to A defined 
by such convergent series, and we state the basic facts below, starting with a 
fundamental theorem on the differentiability of a limit of a sequence. 

Theorem 8.4. Let {Fn} be a sequence of maps from a ball B in a normed 
linear space V to a normed linear space W such that F n converges pointwise 
to a map F on B and such that {dF:} converges for each a and uniformly over 
a. Then F is differentiable on Band dF {J = lim dF~ for each {3 in B. 

Proof. Fix {3 and set T = lim dF~. By the uniform convergence of {dFn} , 
given E, there is an N such that IldF: - dF~11 ::; E for all n ~ N and for all a 
in B. It then follows from the mean-value theorem for differentials that 

for all n ~ N and all ~ such that (3 + ~ E B. Letting n ~ 00 and regrouping, 
we have 

II(~F{JW - TW) - (~F:W - dF:W) II ::; 2EII~11 
for all such ~. But, by the definition of dF: there is a ~ such that 

II~F:(~) - dF:WII ::; EII~II 

when II ~II < ~. Putting these last two inequalities together, we see that 

II ~II < ~ => II~F{J(~) - T(~)II ::; 3EII ~II· 
Thus F is differentiable at {3 and dF{J = T. 0 

The remaining proofs are left as a set of exercises. 
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Lemma 8.1. Multiplication on a Banach algebra A is differentiable (from 
A X A to A). If we let p be the product function, so that p(x, y) = xv, 
then dP<a.b>(X, y) = ay + xb. 

Lemma 8.2. Let A be a commutative Banach algebra, and let p be the 
monomial function p(x) = ax7l • Then p is everywhere differentiable and 
dpy(x) = nayn-Ix . 

Lemma 8.3. If {llanllrn] is a bounded sequence in IR, then {nllanllsn} is 
bounded for any 0 < s < r, and therefore L na"xn- l converges uniformly 
on any ball in A smaller than Br(O). 

Theorem 8.5. If A is a commutative Banach algebra and {an} C A is such 
that (1Ianllrn] is bounded in IR, then F(x) = Lo anxn is defined and differ­
entiable on the ball Br(O) in A, and 

dFy(x) = (~nanyn-t). x. 

It is natural to call the element L~ nanyn-t the derivative of F at y and to 
designate it F'(y), although this departs from our rule that derivatives are 
vectors obtained as limits of difference quotients. The remarkable aspect of the 
above theorem is that for this kind of differentiable mapping from a,n open 
,mbset of A to A the linear transformation dF-y is multiplication by an element 
of A: dFy(:r) = F'(y) . :r. 

In particular, the exponential function exp (x) = eX = Lo xn In! is its own 
derivative, since L~ nxn- l In! = LO xm 1m!, and from this fact (see the exer­
cises) or from direct algebraic manipulation of the series in question, we can 
deduce the law of exponents eX+y = eXeY • Remember, though, that this is on a 
commutative Banach algebra. The function x ~ eX = Lo xnln! can be defined 
just as easily on any Banach algebra A, but it is not nearly as pleasant when A 
is noncommutative. However, one thing that we can always do, and often 
thereby save the day, is to restrict the exponential mapping to a commutative 
subalgebra of A, say that generated by a single element x. For example, we can 
consider the parametrized arc 'Y(t) = etx (x fixed) into any Banach algebra A, 
and, because its range lies in the commutative subalgebra X generated by x, we 
can apply Theorem 7.2 of Chapter 3 to conclude that 'Y is differentiable and that 

'Y'(t) = d exptx (x) = xetx. 

This can also easily be proved directly from the law of exponents: 

~'Yt(h) = e<t+hlx - etx = etx(ehx - 1), 

and since it is clear from the series that (chx - l)lh -+ ;); as h ~ 0, we have that 

'Y'(t) = lim ~'Y,(h) = XCix. 
h-+O h 
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EXERCISES 

8.1 Finish the proof of the corollary of Theorem 8.2. 

8.2 Let.1 be a Banach algebra, and let [an) C R and x E .1 be such that L aix i 

converges. Suppose also that x satisfies a polynomial indentity p(x) = LO bixi = 0, 
where {b i] C Rand bn ;t. O. Prove that the element L~ aix i is a polynomial in x of 
degree::S; n - 1. (Let JI be the linear span of {Xi) 0- 1, and show first that Xi E JI 
for all i.) 

8.3 Let.1 be any Banach algebra, let x be a fixed element in .1, and let X be the 
smallest closed subalgebra of A containing x. Prove that X is a commutative Banach 
algebra. (The set of polynomials p(x) = LO aixi is the smallest algebra containing x. 
Consider its closure in X.) 

8.4 Prove Lemma 8.1. [Hint: -< x, y >- ~ xy is a bounded bilinear map.] 

8.5 Prove Lemma 8.2 by making a direct ~-estimate from the binomial expansion, 
as in the elementary calculus. 

8.6 Prove Lemma 8.2 by induction from Lemma 8.1. 

8.7 Let A be any Banach algebra. Prove that p: x ~ x3 is differentiable and that 
dpa(x) = xa2 + axa + a2x. 

8.8 Prove by induction that if q(x) = x n , then q is differentiable and 

Deduce Lemma 8.2 as a corollary. 

n-I 
L:: aixa(n-I-i). 
i=O 

8.9 Let.1 be any Banach algebra. Prove that r: x ~ x-I is everywhere differentiable 
on the open set U of invertible elements and that 

[Hint: Examine the proofs of Theorems 8.1 and 8.2.] 

8.10 Let A be an open subset of a normed linear space V, and let F and G be mappings 
from A to a Banach algebra X that are differentiable at a. Prove that the product 
mapping FG is differentiable at a and that d(FG .. ) = F(a) dG .. + dF .. G(a). Does it 
follow that d(F2) .. = 2F(a) dP .. ? 

8.11 Continuing the above exercise, show that if X is a commutative Banach algebra, 
then d(pn) .. = npn-I(a) dP ... 

8.12 Let F: A --+ X be a differentiable map from an open set A of a normed linear 
space to a Banach algebra X, and suppose that the element P(~) is invertible in X 
for every ~ in A. Prove that the map G: ~ ~ [F(m-I is differentiable and that 
dG .. (~) = -F(a)-I dP .. (~)P(a). Show also that if P isa parametrized arc(A=lC R), 
then G' (a) = - P(a) -1 . P' (a) . F(a) -1. 

8.13 Prove Lemma 8.3. 

8.14 Prove Theorem 8.5 by showing that Lemma 8.3 makes Theorem 8.4 applicable. 

8.15 Show that in Theorem 8.4 the convergence of Fn to P needs only to be assumed 
at one point, provided we know that the codomain space 1r is a Banach space. 
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8.16 We want to prove the law of exponents for the exponential function on a com­
mutative Banach algebra. Show first that (exp (-x) ) (exp x) == e by applying Exercise 
7.13 of Chapter 3, the above Exercise 8.10, and the fact that d eXPa (x) = (exp a)x. 

8.17 Show that if X is a commutative Banach algebra and F: X ---> X is a differ­
entiable map such that dF a(~) = ~F(a), then F(~) = {3 exp ~ for some constant {3. 
[Consider the differential of FW exp (-~).l 

8.18 Now set F(~) = exp (~+ 7/) and prove from the above exercise that 

exp (~+ 7/) = exp W exp (7/). 

You will also need the fact that exp 0 = 1. 

8.19 Let z be a nilpotent element in a commutative Banach algebra X. That is, 
zP = 0 for some positive integer p. Show by an elementary estimate based on the 
binomial expansion that if Ilxll < 1, then Ilx + zll n :::; knpllxll n-p for n > p. The 
series of positive terms L nar n converges for r < 1 (by the ratio test). Show, therefore, 
that the series for log (1 - (x + z)) and for (1 - (x + z)) -1 converge when IIxll < 1. 

8.20 Continuing the above exercise, show that F(y) = log (1 - y) is defined and 
differentiable on the ball Ily - zll < 1 and that dFa(x) = -(1 - a)-I. x. Show, 
therefore, that exp (log (1 - y)) = 1 - Y on this ball, either by applying the inverse 
mapping theorem or by applying the composite function rule for differentiating. 
Conclude that for every nilpotent element z in X there exists a u in X such that 
exp u = 1 - z. 

8.21 Let Xl, ... , Xn be Banach algebras. Show that the product Banach space 
X = IIi Xi becomes a Banach algebra if the product xy = -< x, ... ,Xn > -< YI, ... ,Yn > 
is defined as -<XIYI, ... , XnYn> and if the maximum norm is used on X. 

8.22 In the above situation the projections 7ri have now become bounded algebra 
homomorphisms. In fact, just as in our original vector definitions on a product space, 
our definition of multiplication on X was determined by the requirement that 7ri(XY) = 
7ri(X)7ri(Y) for all i. State and prove an algebra theorem analogous to Theorem 3.4 of 
Chapter 1. 

8.23 Continuing the above discussion, suppose that the series L anxn converges in X, 
with sum y. Show that then L(an)i(xi) n converges in Xi to Yi for each i, where, of 
course, y = -< YI, ... , Yn >. Conclude that eX = -< eXt, ... , eXn> for any x = 
-<Xl, ... , x n > in X. 

8.24 Define the sine and cosine functions on a commutative Banach algebra, and 
show that sin' = cos, cos' = -sin, sin2 + cos2 = e. 

9. THE CONTRACTION MAPPING FIXED-POINT THEOREM 

In this section we shall prove the very simple and elegant fixed-point theorem for 
contraction mappings, and then shall use it to complete the proof of the implicit­
function theorem. Later, in Chapter 6, it will be the basis of our proof of the 
fundamental existence and uniqueness theorem for ordinary differential equa­
tions. The section concludes with a comparison of the iterative procedure of the 
fixed-point theorem and that of Newton's method. 
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A mapping K from a metric space X to itself is a contraction if it is a Lipschitz 
mapping with constant less than 1; that is, if there is a constant C with 0 < C < 1 
such that p(K(x), K(y)) ~ Cp(x, y) for all x, y EX. A fixed point of K is, of 
course, a point x such that K(x) = x. 

A contraction K can have at most one fixed point, since if K(x) = x and 
K(y) = y, thenp(x, y) = p(K(x), K(y)) ~ Cp(x, y), and so (1 - C)p(x, y) ~ O. 
Since C < 1, this implies that p(x, y) = 0 and x = y. 

Theorem 9.1. Let X be a nonempty complete metric space, and let 
K: X - X be a contraction. Then K has a (unique) fixed point. 

Proof. Choose any Xo in X, and define the sequence {xn } 0 inductively by setting 
Xl = K(xo), X2 = K(Xl) = K2(XO)' and Xn = K(Xn_l) = Kn(xo). Set 6 = 
P(Xh xo). Thenp(x2, Xl) = P(K(Xl), K(xo)) ~ Cp(Xl, xo) = C6, and, by induc­
tion, 

p(xn+l> xn) = p(K(xn), K(Xn_l)) ~ Cp(xn> Xn-l) ~ C· cn-l 6 = Cn 6. 

It follows that {xn } is Cauchy, for if m > n, then 
m-l m-l 

p(xm , xn) ~ :E P(Xi+l, Xi) ~ :E Ci6 < Cn6/(1 - C), 
n n 

and Cn _ 0 as n - 00, because C < 1. Since X is complete, {xn} converges to 
some a in X, and it then follows that K(a) = lim K(xn) = lim Xn+l = a, so 
that a is a fixed point. 0 

In practice, we meet mappings K that are contractions only near some 
particular point p, and we have to establish that a suitable neighborhood of p 
is carried into itself by K. We show below that if K is a contraction on a ball 
about p, and if K doesn't move the center of p very far, then the theorem can 
be applied. 

Corollary 1. Let D be a closed ball in a complete metric space X, and let 
K: D - X be a contraction which moves the center of D a distance at 
most (1 - C)r, where r is the radius of D and C is the contraction constant. 
Then K has a unique fixed point and it is in D. 

Proof. We simply check that the range of K is actually in D. If p is the center 
of D and X is any point in D, then 

p(K(x), p) ~ p(K(x), K(p)) + p(K(p), p) 
~ Cp(x, p) + (1 - C)r ~ Cr + (1 - C)r = r. 0 

Corollary 2. Let B be an open ball in a complete metric space X, and let 
K: B - X be a contraction which moves the center of B a distance less than 
(1 - C)r, where r is the radius of Band C is the contraction constant. 
Then K has a unique fixed point. 

Proof. Restrict K to any slightly smaller closed ball D concentric with B, and 
apply the above corollary. 0 
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Corollary 3. Let K be a contraction on the complete metric space X, and 
suppose that K moves the point x a distance d. Then the distance from x to 
the fixed point is at most dl(1 - C), where C is the contraction constant. 

Proof. Let D be the closed ball about x of radius r = dl(1 - C), and apply 
Corollary 1 to the restriction of K to D. It implies that the fixed point is in D. 0 

We now suppose that the contraction K contains a parameter s, so that K 
is now a function of two variables K(s, x). We shall assume that K is a con­
traction in x uniformly over s, which means that peKes, x), K(s, y) s Cp(x, y) 
for all x, y, and s, where 0 < C < 1. We shall also assume that K is a con­
tinuous function of s for each fixed x. 

Corollary 4. Let K be a mapping from S X X to X, where X is a complete 
metric space and S is any metric space, and suppose that K(s, x) is a con­
traction in x uniformly over s and is continuous in s for each x. Then the 
fixed point P. is a continuous function of s. 

Proof. Given f, we use the continuity of K in its first variable around the point 
-< t, PI >- to choose 5, so that if pes, t) < 5, then the distance from K(s, PI) to 
K(t, Pt) is at most f. Since K(t, PI) = Pt, this simply says that the contraction 
with parameter value 8 moves PI a distance at most f, and so the distance from 
PI to the fixed point P. is at most f/(1 - C) by Corollary 3. That is, pes, t) < 
5 ~ p(P., Pt) < f/(1 - C), where C is the uniform contraction constant, and 
the mapping s 1--+ P. is accordingly continuous at t. 0 

Combining Corollaries 2 and 4, we have the following theorem. 

Theorem 9.2. Let B be a ball in a complete metric space X, let S be any 
metric space, and let K be a mapping from S X B to X which is a contraction 
in its second variable uniformly over its first variable and is continuous in its 
first variable for each value of its second variable. Suppose also that K 
moves the center of B a distance less than (1 - C)r for every s in S, where r 
is the radius of Band C is the uniform contraction constant. Then for each s 
in S there is a unique P in B such that K(s, p) = p, and the mapping 
s 1--+ P is continuous from S to B. 

We can now complete the proof of the implicit-function theorem. 

Theorem 9.3. Let V, W, and X be Banach spaces, let A X B be an open 
subset of V X W, and let G: A X B - X be continuous and have a con­
tinuous second partial differential. Suppose that the point -< ex, f3 >- in 
A X B is such that G(ex, (3) = 0 and dG"<.a..fJ> is invertible. Then there are 
open balls M and N about ex and f3, respectively, such that for each ~ in M 
there is a unique." in N satisfying G(~, .,,) = O. The function F thus 
uniquely defined near -< ex, f3 >- by the condition G(~, F(~) = 0 is continuous. 

Proof. Set T = dG"<.a..fJ> and K(~,.,,) = ." - T-l(G(~, .,,). Then K is a con­
tinuous mapping from A X B to W such that K(ex, (3) = f3, and K has a con-
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tinuous second partial differential such that dK~a,(j> = 0. Because dK~p,.> is 
a continuous function of -<p., v>-, we can choose a product ball 111 X N about 
-< a, (3 >- on which dK~p,.> is bounded by!, and we can then decrease the ball M 
if necessary so that for p. in M we also have IIK(p., (3) - (311 < 1"/2, where l' is the 
radius of the ball N. The mean-value theorem for differentials implies that K is 
a contraction in its second variable with constant t. The preceding theorem 
therefore shows that for each ~ in M there is a unique." in N such that K(t, .,,) = 
." and the mapping F: ~ 1-+ ." is continuous. Since K(~, .,,) = ." if and only if 
G(~, .,,) = 0, we are done. 0 

Theorems 8.2 and 9.3 complete the list of ingredients of the implicit-function 
theorem. (However, see Exercise 9.8.) 

We next show, in the other direction, that if a contraction depending on a 
parameter is continuously differentiable, then the fixed point is a continuously 
differentiable function of the parameter. 

Theorem 9.4. Let V and W be Banach spaces, and let K be a differentiable 
mapping from an open subset A X B of V X W to W which satisfies the 
hypotheses of Theorem 9.2. Then the function F from A to B uniquely 
defined by the equation K(~, F(~)) = F(~) is differentiable. 

Proof. The inequality IIK(~, .,,') - K(~, .,,")11 ~ Gil.,,' - .,,"11 is equivalent to 
IldK~a,(j>11 ~ G for all -<a, (3>- in A X B. We now define G by G(~, .,,) = 
." - K(~, .,,), and observe that dG2 = 1- dK2 and that dG2 is therefore 
invertible by Theorem 8.1. Since G(~, F(~)) = 0, it follows from Theorem 11.1 
of Chapter 3 that F is differentiable and that its differential is obtained by 
differentiating the above equation. 0 

Corollary. If K is continuously differentiable, then so is F. 

* We should emphasize that the fixed-point theorem not only has the implicit­
function theorem as a consequence, but the proof of the fixed-point theorem 
gives an iterative procedure for actually finding the value of F(~), once we 
know how to compute T-1 (where T = dG~a,(j». In fact, for a given value of 
~ in a small enough ball about -< a, (3 >- consider the function G(~, .). If we 
set K(~, .,,) = ." - T-IG(~, .,,), then the inductive procedure 

"'i+I = K(~, ."D 
becomes 

(9.1) 

The meaning of this iterative procedure is easily seen by studying the graph of 
the situation where V = W = RI. (See Fig. 4.4.) As was proved above, under 
suitable hypotheses, the series EII"'i+l - "'ill converges geometrically. 

It is instructive to compare this procedure with Newton's method of elemen­
tary calculus. There the iterative scheme (9.1) is replaced by 

(9.2) 
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z G(x,.) 

Fig. 4.4 

where Si = dG~q.T/i>. (See Fig. 4.5.) As we shall see, this procedure (when it 
works) converges much more rapidly than (9.1), but it suffers from the dis­
advantage that we must be able to compute the inverses of an infinite number of 
linear transformations Si. 

Fig. 4.5 

Let us suppress the ~ which will be fixed in the argument and consider a map 
G defined in some neighborhood of the origin in a Banach space. Suppose that G 
has two continuous differentials. For definiteness, we assume that G is defined 
in the unit ball, B, and we suppose that for each x E B the map dG", is invertible 
and, in fact, 

IIdG;lll :::; K, 

Let Xo = 0 and, assuming that Xn has been defined, we set 

Xn+l = Xn - S;;lG(Xn), 

where Sn = dG",,,. We shall show that if II G(O) II is sufficiently small (in terms 
of K), then the procedure is well defined (that is, Ilxn+lll < 1) and converges 
rapidly. In fact, if T is any real number between one and two (for instance 
T = i), we shall show that for some c (which can be made large if IIG(O)II is 
small) 
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Note that if we can establish (*) for large enough c, then Ilxnll :$ 1 follows. 
In fact, 

i 00 00 -c(r-1) 
IIx'lI < L: e-crn < L: e-crn < L: e-cn(r-l) = e , 

, - 1 - 1 - 1 1 - e-c<r-ll 

which is :$ 1 if c is large. Let us try to prove (*) by induction. Assuming it true 
for n, we have 

IIXn+1 - xnll = IIS;;-IG(Xn)1I 

:$ KII G (Xn-l - S;;-':1 G(Xn_l» II 
:$ K{IIG(xn_l) - dG"'n_lS;;-':IG(Xn-l)1I + Kllxn - xn_1112} 

by Taylor's theorem. Now the first term on the right of the inequality vanishes, 
and we have 

IIXn+1 - xnll :$ K211xn - xn_111 2 :$ K2e-2crn. 

For the induction to work we must have 

or 
(**) 

Since T < 2, this last inequality can be arranged by choosing c sufficiently 
large. We must still verify (*) for n = 1. This says that 

or 
-cr 

IIG(O)II :$ e K . 

In summary, for 1 < T < 2 choose c so that K2 :$ e(2-r)cr and 

-c(r-l) 
e < 1 1 - e-C<r-ll - . 

Then if (***) holds, the sequence Xn converges exponentially, that is, (*) holds. 
If x = lim Xi, then G(x) = lim G(xn) = lim Sn(Xn+l - xn) = O. This is 
Newton's method. 

As a possible choice of c and T, let T = I, and let c be given by K2 = e3c /4, 
so that (**) just holds. We may also assume that K ~ 23/4, so that e3c /4 ~ 43/ 4 

or eC ~ 4, which guarantees that e-c/2 :$ !, implying that e-c/ 2/(1 - e-c/2) :$ 
1. Then (***) becomes the requirement G(O) :$ K-5• 

We end this section with an example of the fixed-point iterative procedure in 
its simplest context, that of the inverse-mapping theorem. We suppose that 
H(O) = 0 and that dH(j1 exists, and we want to invert H near zero, i.e., solve 
the equation H(1/) - ~ = 0 for 1/ in terms of~. Our theory above tells us that 
the 1/ corresponding to ~ will be the fixed point of the contraction K(~, 1/) = 
1/ - T-1H(1/) + T-l(~), where T = dH o. In order to make our example as 
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simple as possible, we shall take H from ~2 to ~2 and choose it so that dH 0 = f. 
Also, in order to avoid indices, we shall use the mongrel notation x = -< x, y? , 
U = -<u, V? 

Consider the mapping x = H(u) defined by x = u + v2 , y = u 3 + v. 
The Jacobian matrix 

[3~2 2;] 
is clearly the identity at the origin. Moreover, in the expression K(x, u) = 
x + u - H(u), the difference H(u) - u is just the function J(u) = -< v2, U 3 ? 
This cancellation of the first-order terms is the practical expression of the fact 
that in forming K(~, .,,) = ." - T-IG(~, .,,), we have acted to make dK 2 = 0 at 
the "center point" (the origin here). We naturally start the iteration with 
Uo = 0, and then our fixed-point sequence proceeds 

UI = K(x, uo) = K(x, 0), ... , Un = K(x, Un-I)' 

Thus Uo = 0 and Un = K(x, Un-I) = X - J(Un_I), giving 

UI = x, VI = y, 
U2 = X - y2, V2 = Y - x 3 , 

U3 = X - (y - X 3 )2, V3 = Y - (x - y2) 3, 

U4 = X - [y - (x - y2)3J2, V4 = Y - [x - (y - X 3 )2]3. 

We are guaranteed that this sequence Un will converge geometrically provided 
the starting point x is close enough to 0, and it seems clear that these two 
sequences of polynomials are computing the Taylor series expansions for the 
inverse functions u(x, y) and vex, y). We shall ask the reader to prove this in an 
exercise. The two Taylor series start out 

u(x, y) = x - y2 - 2yx3 + ... , 
vex, y) = y - x 3 + 3x 2y2 + .. . 

EXERCISES 

9.1 Let B be a compact subset of a normed linear space such that rB C B for all 
r E [0, 1]. Suppose that F: B - B is a Lipschitz mapping with constant 1 (i.e., 
IIFW - F(.,,) II ~ II~ - .,,11 for all ~,." E B). Prove that F has a fixed point. [Hint: 
Consider first G = rF for 0 < r < 1.] 

9.2 Give an example to show that the fixed point in the above exercise may not be 
unique. 

9.3 Let X be a compact metric space, and let K: X - X "reduce each nonzero 
distance". That is, p(K(x), K(y») < p(x, y) if x ~ y. Prove that K has a unique 
fixed point. (Show that otherwise glb {p(K(x), x)} is positive and achieved as a 
minimum. Then get a contradiction.) 

9.4 Let K be a mapping from S X X to X, where X is a complete metric space and S 
is any metric space, and suppose that K(s, x) is a contraction in s uniformly over x and 
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is Lipschitz continuous in x uniformly over x. Show that the fixed point P. is a Lipschitz 
continuous function of s. [Hint: Modify the E,~-beginning of the proof of Corollary 
4 of Theorem 9.1.] 

9.5 Let D be an open subset of a Banach space V, and let K: D ---+ V be such that 
I - K is Lipschitz with constant j-. 

a) Show that if Br(a) C D and (3 = K (a), then Br/2({3) C K[D]. (Apply a corollary 
of the fixed-point theorem to a certain simple contraction mapping.) \ 

b) Conclude that K is injective and has an open range, and that K-l is Lipschitz 
with constant 2. 

9.6 Deduce an improved version of the result in Exercise 3.20, Chapter 3, from the 
result in the above exercise. 

9.7 In the context of Theorem 9.3, show that dG~,. .• > is invertible if IldK~,.."> II < 1. 
(Do not be confused by the notation. We merely want to know that 8 is invertible if 
III - T-l 0 811 < 1.) 

9.8 There is a slight discrepancy between the statements of Theorem 11.2 in Chapter 
3 and Theorem 9.3. In the one case we assert the existence of a unique continuous 
mapping from a ball M, and in the other case, from the ball M to the ball N. Show 
that the requirement that the range be in N can be dropped by showing that two 
continuous solutions must agree on M. (Use the point-by-point uniqueness of 
Theorem 9.3.) 

9.9 Compute the expression for dFa from the identity G(~, F(~» = 0 in Theorem 
9.4, and show that if K is continuously differentiable, then all the maps involved in the 
solution expression are continuous and that a 1--+ dF a is therefore continuous. 

9.10 Going back to the example worked out at the end of Section 9, show by induction 
that the polynomials Un - U n-l and Vn - Vn-l contain no terms of degree less than n. 

9.11 Continuing the above exercise, show therefore that the power series defined by 
taking the terms of degree at most n from Un is convergent in a ball about 0 and that its 
sum is the first component u(x, y) of the mapping inverse to H. 

9.12 The above conclusions hold generally. Let J = -< K, L>- be any mapping 
from a ball about 0 in 1R2 to 1R2 defined by the convergent power series 

K(x, t) = L a;ixiyi, L(x, y) = L biiXiyi 

in which there are no terms of degree 0 or 1. With the conventions x = -< x, y>- and 
U = -< u, v >-, consider the iterative sequence 

Uo = 0, Un = X - J(U n-l). 

Make any necessary assumptions about what happens when one power series is sub­
stituted in another, and show by induction that Un - Un-l contains no terms of 
degree less than n, and therefore that the Un define a convergent power series whose 
sum is the function u(x, y) = -< u(x, y), v(x, y) >- inverse to H in a neighborhood of O. 
[Remember that J(TJ) = H(TJ) - TJ.] 

9.13 Let A be a Banach algebra, and let x be an element of A of norm less than 1. 
Show that 

ao 

(e - x)-1 = IT (1 + x2\ 
;=1 
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This means that if 7rn is the partial product IH (1 + x2\ then 7rn --. (e - x) -1. 

[Hint: Prove by induction that (e - X)7rn-l = e - x2n.J 
This is another example of convergence at an exponential rate, like Newton's 

method in the text. 

10. THE INTEGRAL OF A PARAMETRIZED ARC 

In this section we shall make our final application of completeness. We first, 
prove a very general extension theorem, and then apply it to the construction of 
the Riemann integral as an extension of an elementary integral defined for step 
functions. 

TheoreD1 10.1. Let U be a subspace of a normed linear space V, and let 7' 
be a bounded linear mapping from U to a Banach space W. Then T has a 
uniquely determined extension to a bounded linear transformation 8 from 
the closure D to W. Moreover, 11811 = IITII. 

ProoJ. Fix a E D and choose {~n} C U so that ~n -+ a. Then {~n} is Cauchy and 
{T(~n)} is Cauchy (by the lemmas of Section 7), so that {T(~n)} con­
verges to some (3 E W. If {lIn} is any other sequence in U converging to a, 
then ~n - lIn -+ 0, T(~n) - T(lIn) = T(~n - lIn) -+ 0, and so T(lIn) -+ {3 also. 
Thus {3 is independent of the sequence chosen, and, clearly, (3 must be the valuc 
8(a) at a of any continuous extension 8 of T. If a E U, then (3 = lim T(an) = 
T(a) by the continuity of T. We thus have 8 uniquely defined on D by the 
requirement that it be a continuous extension of T. 

I t remains to be shown that 8 is linear and bounded by II Til. For any a, {3 E D 
we choose {~n}, {lIn} C U, so that ~n -+ a and lIn -+ (3. Then x~n + YlIn -+ 

x~ + YlI, so that 

8(xa + y(3) = lim T(x~n + YlIn) = x lim T(~n) + Y lim T(lIn) = x8(a) + y8({3). 

Thus 8 is linear. Finally, 

118(a)11 = lim IIT(~n)11 ~ IITlllim II~nll = !ITII· Ilall· 

Thus II Til is a bound for 8, and, since 8 includes T, 11811 = II Til. 0 

The above theorem has many applications, but we shall use it only once, to 
obtain the Riemann integral f: J(t) dt of a continuous function J mapping a 
closed interval [a, b] into a Banach space Was an extension of the trivial integral 
for step functions. If W is a normed linear space and J: [a, b] -+ W is a con­
tinuous function defined on a closed interval [a, b] C IR, we might expect to be 
able to define f: J(t) dt as a suitable vector in Wand to proceed with the integral 
calculus of vector-valued functions of one real variable. We haven't done this 
until now because we need the completeness of W to prove that the integral 
exists! 

At first we shall integrate only certain elementary functions called step 
functions. A finite subset A of [a, b] which contains the two endpoints a and b 
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will be called a partition of [a, b). Thus A is (the range of) some finite sequence 
{ti}o,wherea= to < tl < ... < tn = b,andAsubdivides[a, b) into a sequence 
of smaller intervals. To be definite, we shall take the open intervals (ti-b ti), 
i = 1, ... , n, as the intervals of the subdivision. If A and B are partitions and 
A C B, we shall say that B is a j·efinement of A. Then each interval (Sj-b Sj) of 
the B-subdivision is included in an interval (ti-b ti) of the A-subdivision; ti-l 
is the largest element of A which is less than or equal to Sj-b and ti is the smallest 
greater than or equal to Sj. A step function is simply a map f: [a, b) ---t W which 
is constant on the intervals of some subdivision A = {ti} 0· That is, thE'J'e exists 
a sequence of vectors {aiH such that f(~) = ai when ~ E (ii-b ti). The values 
of f at the subdividing points may be among these values or they may be different. 

For each step function f we define f: f(t) dt as Li'= 1 ai Ilti, where f = ai on 
(t;-b ti) and Ilti = ti - ti_l. If f were real-valued, this would be simply the 
sum of the areas of the rectangles making up the region between the graph of f 
and the t-axis. Now f may be described as a step function in terms of many 
different subdivisions. For example, if f is constant on the intervals of A, and 
if we obtain B from A by adding one new point s, then f is constant on the 
(smaller) intervals of B. We have to be sure that the value of the integral of f 
doesn't change when we change the describing subdivision. In the case just 
mentioned this is easy to see. The one new point slies in some interval (ti-l, ti), 
defined by the partition A. The contribution of this interval to the A-sum is 
ai(ti - ti_l), while in the B-sum it splits into ai(ti - s) + ai(s - ti_l). But 
this is the same vector. The remaining summands are the same in the two sums, 
and the integral is therefore unchanged. In general, suppose that f is a step 
function with respect to A and also with respect to C. Set B = A U C, the 
"common refinement" of A and C. We can pass from A to B in a sequence of 
steps at each of which we add one new point. As we have seen, the integral 
remains unchanged at each of these steps, and so it is the same for A as for B. 
It is similarly the same for C and B, and so for A and C. We have thus shown 
that f: f is independent of the subdivision used to define f. 

Now fix [a, b) and W, and let e be the set of all step functions from [a, b) 
to W. Then e is a vector space. For, if f and gin e are step functions relative to 
partitions A and B, then both functions are constant on the intervals of C = 
A u B, and therefore xf + yg is also. Moreover, if C = {ti} 0, and if on (ti-b ti) 
we havef = ai and g = (3;, so that xf + yg = xai + y{3i there, then the equation 

is just f: (xf + yg) = x f: f + y f: g. The map f ~ f: f is thus linear from e to 
W. Finally, 
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where !!fll"" = lub {!!f(t)!! : t E [a, b]} = max {!!ai!! : 1 ~ i ~ n}. That is, if 
we use on S the uniform norm defined from the norm of W, then the linear 
mapping I ~ f; f is bounded by (b - a). If W is complete, this transformation 
therefore has a unique bounded linear extension to the closure S of S in 
(B([a, b], W) by Theorem 10.1. But we can show that S includes the space 
e([a, b], W) of all continuous functions from [a, b] to W, and the integral of a 
continuous function is thus uniquely defined. 

Lemma 10.1. e([a, b], W) c S. 

Proof. A continuous function f on [a, b] is uniformly continuous (Theorem 5.1). 
That is, given E>o, there exists 15>0 such that !s - tl < 15 => IIf(s) - I(t) II < E. 
Now take any partition A = {ti} 0 on [a, b] such that Ati = ti - ti-l < 15 for all 
i, and take ai as any value of f on (ti-l, ti). Then IIf(t) - aill < E on [ti-b tJ 
Thus, if g is the step function with value ai on (ti-l, til and g(a) = aI, then 
IIf - gil"" ~ E. Thus f is in S, as desired. 0 

Our main theorem is a recapitulation. 

Theorem 10.2. If W is a Banach space and V = e([a, b], W) under the 
uniform norm, then there exists a J E Hom(V, W) uniquely determined by 
setting J(f) = lim f; fn, where Un} is any sequence in S converging to f 
and f; fn is the integral on S defined above. Moreover, IIJII ~ (b - a). 

If fis elementary from [a, b] to Wand c E [a, b], then of coursefis elementary 
on each of [a, c] and [c, b]. If c is added to a subdivision A used in defining f, and 
if the sum defining f; f with respect to B = A u {c} is broken into two sums 
at c, we clearly have f; I = f: f + feb f. This same identity then follows for any 
continuous function f on [a, b], since f; I = lim f; In = lim (f: In + Lb fn) = 

lim f: f n + lim Lb In = f: I + Lb f. 
The fundamental theorem of the calculus is still with us. 

Theorem 10.3. If f E e([a, b], W) and F: [a, b] --t W is defined by F(x) = 
f: f(t) dt, then F' exists on (a, b) and F'(x) = f(x). 

Proof. By the continuity of fat Xo, for every E there exists a 15 such that 

IIf(xo) - f(x)!1 < E 

whenever Ix - xol < 15. But then 

IIJ~: (J(xo) - f(t» dtl/ ~ Elx - xol, 

and since fx~ f(xo) dt = f(xo} (x - xo) by the definition of the integral for an 
elementary function, we see that 

Ilf(xo) - (1: f(t) dt/(x - xo) )11 < E. 

Since f:a f(t) dt = F(x) - F(xo), this is exactly the statement that the differ­
ence quotient for F converges to f(xo), as was to be proved. 0 
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EXERCISES 

10.1 Prove the following analogue of Theorem 10.1. Let A be a subset of a metric 
space B, let C be a complete metric space, and let F: A ~ C be uniformly continuous. 
Then F extends uniquely to a continuous map from A to C. 

10.2 In Exercises 7.16 through 7.18 we have constructed a completion of 8, namely, 
0[8] in V*. Prove that this completion is unique to within isometry. That is, supposing 
that cp is some other isometric imbedding of 8 in a complete space X, show that the 
identification of the two images of 8 by cp 0 0-1 (from 0[8] to cp[8J) extends to an 
isometric bijection from O[S] to cp[S]. [Hint: Apply the above exercise.] 

10.3 Suppose that 8 is a normed linear space X and that X is a dense subset of a 
complete metric space Y. This means, remember, that every point of Y is the limit of a 
sequence lying in the subset X. Prove that the vector space structure of X extends in a 
unique way to make Y a Banach space. Since we know from Exercise 7.18 that a metric 
space can be completed, this shows again that a normed linear space can always be 
completed to a Banach space. 

10.4 In the elementary calculus, if f is continuous, then 

{f(t) dt = f(x)(b - a) 

for some x in (a, b). Show that this is not true for vector-valued continuous functionsf 
by considering the arc f: [0, 11"] ~ 1R2 defined by 

f(t) = -< sin t, cos t>-. 

10.5 Show that integration commutes with the application of linear transformations. 
That is, show that if f is a continuous function from [a, b] to a Banach space W, and if 
T E Hom(W, X), where X is a Banach space, then 

{ T(f(t)) dt = T[{ f(t) dt]. 

[Hint: Make the computation directly for step functions.] 

10.6 State and prove the theorem suggested by the following identity: 

{ -<f(t), get) >- dt = -< { f(t) dt, { get) dt >-. 
(Apply the above exercise.) 

10.7 Let W be any normed linear space, {ain a finite set of vectors in W, and 
{fin a corresponding set of real-valued continuous functions on [a, b]. Define the 
arc l' by 

" 
1'(t) = L: j;(t)a;. 

1 

Prove that f: 1'(t) dt exists and equals * [lab I;(t) dt] ai. 
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10.8 Let f be a continuous function from ~2 to a Banach space W. Describe how 
one might set up a theory of a double integral 

ff f(s, t) ds dt, 
IXJ 

where I X J is a closed rectangle. 

10.9 Prove that if fn converges uniformly to f, then 

{ fn(t) dt ~ {f(t) dt. 

This is trivial if you have understood the definition and properties of the integral. 

10.10 Suppose that {fn} is a sequence of smooth arcs from [a, b] to a Banach space TV 
such that Ll f~(t) is uniformly convergent. Suppose also that Ll fn(a) is convergent. 
Prove that then L fn(t) is uniformly convergent, that f = Ll fn is smooth, and that 
l' = Ll f~. (Use the above exercise and the fundamental theorem of the calculus.) 

10.n Prove that even if lV is not a Banach space, if the arc f: [a, b] ~ W has a 
continuous derivative, then f: f' exists and equals f(b) - f(a). 

10.12 Let X be a normed linear space, and set (I, ~) = l(~) for ~ E X and IE X*. 
Now let f and g be continuously differentiable functions (arcs) from the closed interval 
[a, b] to X and X*, respectively. Prove the integration by parts formula: 

(g(b),f(b» - (g(a),f(a» = {(f(t), g'(t» dt + lab (j'(t), g(t» dt. 

[Hint: Apply Theorem 8.4 from Chapter 3.] 

10.13 State the generalization of the above integration by parts formula that holds 
for any bounded bilinear mapping w: V X lV ~ X, where X is a Banach space. 

10.14 Let t ~ It be a fixed continuous map from a closed interval [a, b] to the dual W* 
of a Banach space lV. Suppose that for any continuous map g from [a, b] to lV 

{ g(t) dt = 0 =? {It(g(t)) dt = O. 

Show that there exists a fixed L E W* such that 

{It(g(t)) dt = L ({ g(t) dt) 

for all continuous arcs g: [a, b] ~ W. Show that it then follows that It = L for all t. 
10.15 Use the above exercise to deduce the general Euler equation of Section 3.15. 

n. THE COMPLEX NUMBER SYSTEM 

The complex number system C is the third basic number field that must be 
studied, after the rational numbers and the real numbers, and the reader surely 
has had some contact with it in the past. 

Almost everybody views a complex number ~ as being equivalent to a pair 
of real numbers, the "real and imaginary parts" of ~, and the complex number 
system C is thus viewed as being Cartesian 2-space ~ 2 with some further struc-
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ture. In particular, a complex-valued function is simply a certain kind of vector­
valued function, and is equivalent to an ordered pair of real-valued functions, 
again its real and imaginary parts. 

What distinguishes the complex number system C from its vector substratum 
1R2 is the presence of an additional operation, complex multiplication. The 
vector operations of 1R2 together with this complex multiplication operation 
make C into a commutative algebra. Moreover, it turns out that -< 1, 0>- is the 
unique multiplicative identity in C and that every nonzero complex number ~ 
has a multiplicative inverse. These additional facts are summarized by saying 
that C is a field, and they allow us to use C as a new scalar field in vector space 
theory. In fact, the whole development of Chapters 1 and 2 remains valid when 
IR is replaced everywhere by Co Scalar multiplication is now multiplication by 
complex numbers. Thus cn is the vector space of ordered n-tuples of complex 
numbers -< ~l! ... , ~n >-, and the product of an n-tuple by a complex scalar ex. 
is defined by ex.-< ~l! ... ' ~n>- = -<ex.~l! ... ' ex.~n>-' where ex.~i is complex 
multiplication. 

It is time to come to grips with complex multiplication. As the reader prob­
ably knows, it is given by an odd looking formula that is motivated by thinking 
of an element ~ = -<Xl! X2>- as being in the form Xl + iX2' where i 2 = -1, 
and then using the ordinary laws of algebra. Then we have 

~." = (Xl + ix2)(YI + iY2) 

= XIYI + iXIY2 + iX2YI + i2X2Y2 = (XIYI - X2Y2) + i(XIY2 + X2Yl), 

and thus our definition is 

-< Xl, X2>- -< YI, Y2>- = -< XIYI - X2Y2, XIY2 + X2YI >-. 

Of course, it has to be verified that this operation is commutative and satisfies 
the laws for an algebra. A straightforward check is possible but dull, and we 
shall indicate a neater way in the exercises. 

The mapping X ~ -< X, 0>- is an isomorphic injection of the field IR into the 
field C. It clearly preserves sums, and the reader can check in his mind that it 
also preserves products. It is conventional to identify X with its image -< x, 0>- , 
and so to view IR as a subfield of C. 

The mysterious i can be identified in C as the pair -< 0, 1>-, since then 
i 2 = -<0,1>- -<0,1>- = -< -1,0>-, which we have identified with -1. With 
these identifications we have -< x, y>- = -< X, 0>- + -< 0, y>- = -< X, 0>- + 
-< 0, 1>- -< y, 0>- = X + iy, and this is the way we shall write complex numbers 
from now on. 

The mapping X + iy ~ X - iy is a field isomorphism of C with itself. 
That is, it preserves both sums and products, as the reader can easily check. 
Such a self-isomorphism is called an automorphism. The above automorphism is 
called complex conjugation, and the image X - iy of r = X + iy is called the 
conjugate of r, and is designated r. We shall ask the reader to show in an exercise 
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that conjugation is the only automorphism of C (except the identity automor­
phism) which leaves the elements of the subfield IR fixed. 

The Euclidean norm of r = x + iy = -< x, y>- is called the absolute value 
of r, and is designated Irl, so that Irl = Ix + iyl = (x 2 + y2)1/2. This is 
reasonable beeause it then turns out that Ipl = Irll'Yl. This can be verified by 
squaring and multiplying, but it is much more elegant first to notice the relation­
ship between absolute value and the conjugation automorphism, namely, 

rf = Irl 2 
[(x+iy)(x - iy) = x2 - (iy) 2 = X 2+y2]. Then Ipl2 = (p)(p) = (rf)('Y'Y) = 
IrI21'Y1 2, and taking square roots gives us our identity. The identity rf = Irl 2 

also shows us that if r ~ 0, then fll rl 2 is its multiplicative inverse. 
Because the real number system IR is a subfield of the complex number 

system C, any vector space over C is automatically also a vector space over IR: 
multiplication by complex scalars includes multiplication by real scalars. And 
any complex linear transformation between complex vector spaces is auto­
matically real linear. The converse, of course, does not hold. For example, a 
real linear mapping T from 1R2 to 1R2 is not in general complex linear from C to C, 
nor does a real linear S in Hom 1R4 become a complex linear mapping in Hom C2 

when 1R4 is viewed as C 2• We shall study this question in the exercises. 
The complex differentiability of a mapping F between complex vector spaces 

has the obvious definition llF", = T + ('), where T is complex linear, and then 
F is also real differentiable, in view of the above remarks. But F may be real 
differentiable without being complex differentiable. It follows from the dis­
cussion at the end of Section 8 that if {an} C C and {lanI5 n} is bounded, then the 
series L anrn converges on the ball Ba(O) in the (real) Banach algebra C, and 
F(r) = La anrn is real differentiable on this ball, with dFIl(r) = (L~ nan(3n)r = 
F'«(3) . r But multiplication by F'«(3) is obviously a complex linear operation 
on the one-dimensional complex vector space Co Therefore, complex-valued 
functions defined by convergent complex power series are automatically com­
plex differentiable. But we can go even further. In this case, if r ~ 0, we can 
divide by r in the defining equation 

to get the result that 

llFIlW ~ F'«(3) 
r as r~o. 

That is, F'«(3) is now an honest derivative again, with the complex infinitesimal r 
in the denominator of the difference quotient. 

The consequences of complex differentiability are incalculable, and we shall 
mostly leave them as future pleasures to be experienced in a course on functions 
of complex variables. See, however, the problems on the residue calculus at the 
end of Chapter 12 and the proof in Chapter 11, Exercise 4.3, of the following 
fundamental theorem of algebra. 
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Theorem. Every polynomial with complex coefficients is a product of 
linear factors. 

A weaker but equivalent statement is that every polynomial has at least one 
(complex) root. The crux of the matter is that x 2 + 1 cannot be factored over jR 

(i.e., it has no real root), but over C we have x 2 + 1 = (x + i)(x -- i), with the 
two roots ± i. 

For later use we add a few more words about the complex exponential func­
tion exp r = ei = LO' rn/n!. If r = x + iy, we have ei = ex+ill = eXeill , and 
ei1l = LO' (iy)n/n! = (1 - y2/2! +y4/4! - ... ) +i(y - y3/3!+ yS/5! - ... ) = 
cos y + i sin y. Thus ex +i1l = eX(cos y + i sin y). That is, the real and imaginary 
parts of the complex-valued function exp (x + iy) are eX cos y and eX sin y, 
respectively. 

EXERCISES 

11.1 Prove the associativity of complex multiplication directly from its definition. 

B.2 Prove the distributive law, 

a(~ + 71) = a~ + a71, 
for complex numbers. 

B.3 Show that scalar multiplication by a real number a, a-< x, y>- = -< ax, ay >-, in 
C = 1R2 is consistent with the interpretation of a as the complex number -< a, 0>- and 
the definition of complex multiplication. 

11.4 Let 8 be an automorphism of the complex number field leaving the real numbers 
fixed. Prove that 8 is either the identity or complex conjugation. [Hint: (8(i))2 = 

fJ(i 2 ) = fJ( -1) = -1. Show that the only complex numbers x + iy whose squares are 
-1 are ±i, and then finish up.] 

11.5 If we remember that C is in particular the two-dimensional real vector space 1R2, 
we see that multiplying the elements of C by the complex number a + ib must define 
a linear transformation on 1R2. Show that its matrix is 

11.6 The above exercise suggests that the complex number system may be like the 
set A of all 2 X 2 real matrices of the form 

Prove that A is a subalgebra of the matrix algebra jR2X2 (that is, A is closed under 
multiplication, addition, and scalar multiplication) and that the mapping 

[: -!] ~ a+ ib 

is a bijection from A to C that preserves all algebra operations. We therefore can 
conclude that the laws of an algebra automatically hold for C. Why? 
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II.7 In the above matrix model of the complex number system show that the abso­
lute value identity Inl = ls-I 1')'1 is a determinant property. 

II.S Let lr be a real vector space, and let V be the real vector space W X W. 
Show that there is a () in Hom V such that (}2 = -1. (Think of C as being the real 
vector space ~2 = ~ X ~ under multiplication by i.) 

11.9 Let V be a real vector space, and let () in Hom V satisfy (}2 = -1. Show that r 
becomes a complex vector space if ia is defined as (}(a). If the complex vector space r 
is made from the real vector space ll' as in this and the above exercise, we shall call 
V the complexification of lr. We shall regard IV itself as being a real subspace of r 
(actually lr X {OJ), and then V = WEe ill'. 

II.IO Show that the complex vector space C" is the complexification of ~". Show 
more generally that for any set .1 the complex vector space CA is the complexificatioll 
of the real vector space ~A. 

II.II Let V be the complexification of the real vector space lV. Define the operation 
of complex conjugation on V. That is, show that there is a real linear mapping <p such 
that <p2 = 1 and <p(ia) = -i<p(a). Show, conversely, that if V is a complex vector 
space and <p is a conjugation on V [a real linear mapping <p such that <p2 = 1 and 
<p(ia) = -i<p(a)], then V is (isomorphic to) the complexification of a real linear spac(' 
W. (Apply Theorem 5.5 of Chapter 1 to the identity <p2 - 1 = 0.) 

II.12 Let W be a real vector space, and let V be its complexification. Show that, 
every T in Hom lr "extends" to a complex linear S in Hom V which commutes with thp 
conjugation <p. By S extending T we mean, of course, that S I (lJ' X {O}) = T. 
Show, conversely, that if S in Hom V commutes with conjugation, then S is th!' 
extension of a T in Hom W. 

II.13 In this situation we naturally call S the complexification of T. Show finally 
that if S is the complexification of T, then its null space X in V is the direct sum 
X = N Ee iN, where N is the null space of Tin lV. Remember that we are viewing r 
as lV Ee ilV. 

II.14 On a complex normed linear space V the norm is required to be complex homo­
geneous: 

IIAali = IAI . Iiall 

for all complex numbers A. Show that the natural definitions of II Ill, II 112, and II 1100 
on Cn have this property. 

II.IS If a real normed linear space lV is complexified to V = W Ee ilV, there is no 
trivial formula which converts the real norm for lV into a complex norm for V. Sho\\ 
that, nevertheless, any product norm on V (which really is lr X lr) can be used to 
generate an equivalent complex norm. [Hint: Given -< ~, 1] > E V, consider the set of 
numbers {1I(x + iy) -<~, 1] > II: Ix + iyl = I}, and try to obtain from this set a singl!' 
number that works.] 

II.16 Show that every nonzero complex number has a logarithm. That is, show that. 
if u + iv ~ 0, then there exists an x + iy such that e,,+ill = u + iv. (Write the equatioll 
e"(cos y + i sin y) = u + iv, and solve by being slightly clever.) 

II.17 The fundamental theorem of algebra and Theorem 5.5 of Chapter 1 imply 
that if V is a complex vector space and T in Hom V satisfies p(T) = 0 for a polynomial 
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p, then there are subs paces {Vi] 1 of V, complex numbers [Xi] 1, and integers [?lti] 1 such 
that V = E81 Vi, Vi is T-invariant for each, and (T - XiT)mi = 0 on 1'i for each i. 
Show that this is so. Show also that if V is finite-dimensional, then every T in Hom V 
must satisfy some polynomial equation p(t) = O. (Consider the linear independence or 
dependence of the vector I, T, T2, ... , Tn 2 , ••• ,in the vector space Hom V.) 

Il.I8 Suppose that the polynomial p in the above exercise has real coefficients. Use 
the fact that complex conjugation is an automorphism of IC to prove that if X is a root 
of p, then so is X. 

Show that if V is the complexification of a real space Wand T is the complexifica­
tion of R E Hom W, then there exists a real polynomial p such that p(T) = O. 

Il.I9 Show that if W is a finite-dimensional real vector space and R E Hom W is an 
isomorphism, then there exists an A E Hom W such that R = eA (that is, log R exists). 
This is a hard exercise, but it can be proved from Exercises 8.19 through 8.23, 11.12, 
11.17, and 11.18. 

*12. WEAK METHODS 

Our theorem that all norms are equivalent on a finite-dimensional space suggests 
that the limit theory of such spaces should be accessible independently of norms, 
and our earlier theorem that every linear transformation with a finite-dimen­
sional domain is automatically bounded reinforces this impression. We shall look 
into this question in this section. In a sense this effort is irrelevant, since we 
can't do without norms completely, and since they are so handy that we use 
them even when we don't have to. 

Roughly speaking, what we are going to do is to study a vector-valued map F 
by studying the whole collection of real-valued maps (l 0 F : 1 E V*) . 

Theorem 12.1. If V is finite-dimensional, then ~n ~ ~ in V (with respect to 
any, and so every, norm) if and only if lan) ~ l(~) in IR for each 1 in V*. 

Proof. If ~n ~ ~ and 1 E V*, then l(~n) ~ l(~), since 1 is automatically con­
tinuous. Conversely, if l(~n) ~ l(~) for every 1 in V*, then, choosing a basis 
{tli}~ for V, we have Ei(~n) ~ Ei(~) for each functional Ei in the dual basis, and 
this implies that ~n ~ ~ in the associated one-norm, since I! ~n - ~!! 1 = 
L~ IEi(~n) - Ei(~)1 ~ o. 0 

Remark. If V is an arbitrary normed linear space, so that V* = Hom(V, IR) 
is the set of bounded linear functionals, then we say that ~n ~ ~ weakly if 
l(~n) ~ l(~) for each 1 E V*. The above theorem can therefore be rephrased to 
Ray that in a finite-dimensional space, weak convergence and norm convergence are 
equivalent notions. 

We shall now see that in a similar way the integration and differentiation of 
parametrized arcs can all be thrown back to the standard calculus of real-valued 
functions of a real variable by applying functionals from V* and using the 
natural isomorphism of V** with V. Thus, if f E e([a, b], V) and X E V*, then 
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A 0 f E e([a, bJ. ~), and so the integral I: A 0 f exists from standard calculus. If WI' 
vary A, we can check that the map A 1--+ I: A 0 f is linear, hence is in V**, awl 
therefore is given by a uniquely determined vector a E V (by duality; S('I' 
Chapter 2, Theorem 3.2.). That is, there exists a unique a E V such thai 
A(a) = I: A 0 f for every A E V*, and we define this a to be I: f. Thus integra 
tion is defined so as to commute with the application of linear functionab 
I: f is that vector such that 

A (lab f) = lab A(j(t)) dt for all A E V*. 

Similarly, if all the real-valued functions {A 0 f: A E V*} are differentiahll' 
at xo, then the mapping A 1--+ (A 0 f), (xo) is linear by the linearity of the derivati\'I . 
in the standard calculus: 

Therefore, there is again a unique a E V such that 

(A 0 j)'(xo) = A(a) for all A E V*, 

and if we define this a to be the derivative l' (xo), we have again defined an opcr­
ation of the calculus by commutativity with linear functionals: 

(A of') (xo) = (A 0 f), (xo). 

N ow the fundamental theorem of the calculus appears as follows. 
If F(x) = I: f, then (A 0 F)(x) = I: A 0 f by the weak definition of tlw 

integral. The fundamental theorem of the standard calculus then says thai 
(A 0 F)' exists and (A 0 F)'(x) = (A 0 f) (x) = A(j(X)). By the weak definition 01 
the derivative we then have that F' exists and F'(x) = f(x). 

The one conclusion that we don't get so easily by weak methods is the nOflll 
inequality [[I: f[[ ~ (b - a)[[f[["", This requires a theorem about norms Oil 

finite-dimensional spaces that we shall not prove in this course. 

Theorem 12.2. [[a**[[ = [[all for each a E V. 

What is being asserted is that lub [a**(A)[/[[AII = [[all. Since a**(A) = A(a), 
and since IA(a)1 ~ IIAII . IJal1 by the definition of IIAII, we see that 

lub la**(A)I/[IAII ~ Ila[l· 

Our problem is therefore to find A E V* with IIAII = 1 and IA(a)1 = Iiali. If WI' 

multiply through by a suitable constant (replacing a by ca, where c = 1/I!all). 
we can suppose that Ila!1 = 1. Then a is on the unit spherical surface, and tIll' 
problem is to find a functional A E V* such that the affine subspace (hyperplane) 
where A = 1 touches the unit sphere at a (so that A(a) = 1) and otherwi:-w 
lies outside the unit sphere (so that IA(OI ~ 1 when II ~II = 1, and henc(' 
[IAII ~ 1). It is clear geometrically that such "tangent planes" must exist, but, 
we shall drop the matter here. 
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If we assume this theorem, then, since 

Ix (lab 1)1 = lib x(j(t)) dtl ~ (b - a) max {lx(j(t))I: t E [a, bJ} 

~ (b - a)IIXII max {11/(t)II} (from IX(a)1 ~ IIXII· Iiall) 
= (b - a)IIXII . 11/1100, 

we get 

the extreme members of which form the desired inequality. 



CHAPTER 5 

SCALAR PRODUCT SPACE~ 

In this short chapter we shall look into what is going on behind two-norms, arrd 
we shall find that a wholly new branch of linear analysis is opened up. TIll'c' 
norms can be eharaderized abHtractly a::; those arising from sealar prodw·t 
They are the finite and infinite-dimensional analogues of ordinary geometri,' 
length, and they carry with them practically all the concepts of Eucliden" 
geometry, such as the notion of the angle between two vectors, perpendicularit, 
(orthogonality) and the Pythagorean theorem, and the existence of marr.' 
rigid motions. 

The impact of this extra structure is particularly dramatic for infinil(' 
dimensional spaces. Infinite orthogonal bases exist in great profusion and C:tII 

be handled about as easily a::; bases in finite-dimensional spaces, although 01<' 
basis expamlion of a vector is now a convergent infinite series, ~ = L~ x,n, 
l\Iany of the most important series expansions in mathematics are examples (II 
such orthogonal basis expansions. For example, we shall see in the next chapkr 
that the Fourier series expan::;ion of a continuous function 1 on [0, 71'] is the basi" 
expansion of 1 under the two-norm 111112 = (fo 12)1/2 for the particular orthog 
onal basis [an) ~ = {sin lIt)~. If a vector space is complete under a scalar prodW't 
norm, it is called a Hilbert space. The more advanced theory of such space::; i.': 
one of the most beautiful parts of mathematics. 

1. SCALAR PRODUCTS 

A scalar product on a real vector ::;pace r is a real-valued function from V X 
to ~, its value at the pair -<~, TJ >- ordinarily being designated (~, TJ), such that 

a) (~, TJ) iH linear in ~ when TJ is held fixed; 

b) (~, TJ) = (TJ,~) (symmetry); 

c) (~, 0 > 0 if ~ ~ 0 (positive definiteness). 

If (c) is replaced by the weaker condition 

c') (~, ~) ;:::: 0 for all ~ E TT, 

then (~, TJ) is called a semiscalar product. 
Two important examples of scalar products are 

n 

(x, Y) = L :riYi 
1 

when V = ~n 

248 
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and 

(f, g) = lab f(t) g(t) dt when v = e([a, b]). 

On a complex vector space (b) must be replaced by 

b/) (~, 1]) = (1], ~) (Hermitian symmetry), 

where the bar denotes complex conjugation. The corresponding examples are 
(z, w) = L1 Z.Wi when V = en and (f, g) = J: jg when V is the space of 
continuous complex-valued functions on [a, b]. We shall study only the real case. 

It follows from (a) and (b) that a semiscalar product is also linear in the 
second variable when the first variable is held fixed, and therefore is a symmetric 
bilinear functional whose associated quadratic form q(~) = (~, ~) is positive 
definite or positive semidefinite [(c) or (c /); see the last section in Chapter 2]. 
The definiteness of the form q has far-reaching consequences, as we shall begin 
to see at once. 

Theorem 1.1. The Schwarz inequality 

I(~, 1])1 ~ (~, ~)1/2(1], 1])1/2 

is valid for any semiscalar product. 

Proof. We have 0 ~ (~ - t1], ~ - t1]) = (~, ~) - 2t(~, 1]) + t2 (1], 1]) for every 
t E~. Since this quadratic in t is never negative, it cannot have distinct roots, 
and the usual (b 2 - 4ac)-formula implies that 4(~, 1])2 - 4(~, ~)(1], 1]) ~ 0, 
which is equivalent to the Schwarz inequality. 0 

We can also proceed directly. If (1], 1]) > 0, and if we set t = (~, 1])/(1], 1]) 
in the quadratic inequality in the first line of the proof, then the resulting 
expression simplifies to the Schwarz inequality. If (1], 1]) = 0, then (~, 1]) must 
also be 0 (or else the beginning inequality is clearly false for some t), and now 
the Schwarz inequality holds trivially. 

Corollary. If (~, 1]) is a scalar product, then II ~II = (~, ~)1/2 is a norm. 

Proof 

II~ + 1]11 2 = (~+ 1], ~ + 1]) 

= II ~112 + 2(~, 1]) + 111]11 2 ~ II ~112 + 211 ~II 111]11 + 111]11 2 

= (II ~II + 111]11)2, 

(by Schwarz) 

proving the triangle inequality. Also, Ilc~1I = (c~, C~)1/2 = (C2(~, ~»)1/2 = 
lei II ~II. 0 

Note that the Schwarz inequality I(~, 1])1 ~ 1I~1I111]11 is now just the state­
ment that the bilinear functional (~, 1]) is bounded by one with respect to the 
scalar product norm. 

A normed linear space V in which the norm is a scalar product norm is 
called a pre-Hilbert space. If V is complete in this norm, it is a Hilbert space. 
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The two examples of scalar products mentioned earlier give us the real explana­
tion of our two-norms for the first time: 

( 
n )1/2 

\lxl12 = ~ x~ for x E IRn 

and 

for IE e([a, b]) 

are scalar product norms. 
Since the scalar product norm on IR n becomes Euclidean length under a 

Cartesian coordinate correspondence with Euclidean n-space, it is conventional 
to call IRn itself Euclidean n-space IP when we want it understood that thp 
scalar product norm is being used. 

Any finite-dimensional space V is a Hilbert space with respect to any scalar 
product norm, because its finite dimensionality guarantees its completeness. 
On the other hand, we shall see in Exercise 1.10 that e([a, b]) is incomplete in th(' 
two-norm, and is therefore a pre-Hilbert space but not a Hilbert space in this 
norm. (Remember, however, that e([a, b]) is complete in the uniform norm 
11111",.) It is important to the real uses of Hilbert spaces in mathematics that any 
pre-Hilbert space can be completed to a Hilbert space, but the theory of infinite­
dimensional Hilbert spaces is for the most part beyond the scope of this book. 

Scalar product norms have in some sense the smoothest possible unit 
spheres, because these spheres are quadratic surfaces. 

It is orthogonality that gives the theory of pre-Hilbert spaces its special 
flavor. Two vectors a and fJ are said to be orthogonal, written a 1- fJ, if (a, fJ) = O. 
This definition gets its inspiration from geometry; we noted in Chapter 1 that 
two geometric vectors are perpendicular if and only if their coordinate triples x 
and y satisfy (x, y) = O. It is an interesting problem to go further and to show 
from the law of cosines (c 2 = a2 + b2 - 2ab cos (J) that the angle (J between two 
geometric vectors is given by (x, y) = Ilxllllyll cos (J. This would motivate us 
to define the angle (J between two vectors ~ and 'I] in a pre-Hilbert space by 
(~, '1]) = II ~IIII'I]II cos (J, but we shall have no use for this more general formu­
lation. 

We say that two subsets A and B are orthogonal, and we write A 1- B, if 
a 1- fJ for every a in A and fJ in B; for any subset A we set A 1- = {fJ E V: fJ 1- A J . 

Lemma 1.1. If fJ is orthogonal to the set A, then fJ is orthogonal to L(A), tlw 
closure of the linear span of A. It follows that B1- is a closed subspace for 
every subset B. 

Proof. The first assertion depends on the linearity and continuity of the scalar 
product in one of its variables; it will be left to the reader. As for A = B1-, it 
includes the closure of its own linear span, by the first part, and so is a closed 
subspace. 0 
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Lemma 1.2. In any pre-Hilbert space we have the parallelogram law, 

Iia + ~112 + Iia - ~112 = 2(lla11 2 + 11~112), 
and the Pythagorean theorem, 

a.l.~ if and only if 

If {aig is a (pairwise) orthogonal collection of vectors, then 

Proof. Since Iia + ~112 = IIal1 2 + 2(a,~) + 1I~112, by the bilinearity of the 
scalar product Iia + ~112, we see that Iia + ~112 = IIal1 2 + 11~112 if and only if 
(a,~) = 0, which is the Pythagorean theorem. Writing down the similar 
expansion of Iia - ~112 and adding, we have the parallelogram law. The last 
statement follows from the Pythagorean theorem and Lemma 1.1 by induction. 
Or we can obtain this statement directly by expanding the scalar product on the 
left and noticing that all "mixed terms" drop out by orthogonality. 0 

The reader will notice that the Schwarz inequality has not been used in this 
lemma, but it would have been silly to state the lemma before proving that 
II~II = (~, ~)1/2 is a norm. 

If {ai}i are orthogonal and nonzero, then the identity II l:~ Xiail12 = 
l:i xlilail1 2 shows that l:i Xiai can be zero only if all the coefficients Xi are zero. 
Thus, 

Corollary. A finite collection of (pairwise) orthogonal nonzero vectors is 
independent. Similarly, a finite collection of orthogonal subspaces is 
independent. 

EXERCISES 

1.1 Complete the second proof of Theorem 1.1. 

1.2 Reexamine the proof of Theorem 1.1 and show that if ~ and 7J are independent, 
then the Schwarz inequality is strict. 

1.3 Continuing the above exercise, now show that the triangle inequality is strict 
if ~ and 7J are independent. 

1.4 a) Show that the sum of two semiscalar products is a semiscalar product. 
b) Show that if (p., v) is a semi scalar product on a vector space 1V and if T is a 

linear transformation from a vector space V to W, then I~, 7Jl = (Tp., Tv) is a 
semiscalar product on V. 

c) Deduce from (a) and (b) that 

(j, g) = f(a)g(a) + t !'(t)g'(t) dt 

is a semiscalar product on V = e l (la, b]). Prove that it is a scalar product. 
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1.5 If a is held fixed, we know that f(~) = (~, a) is continuous. Why? Prove mOIl 
generally that (~, 1/) is continuous as a map from V X V to R 

1.6 Let l' be a two-dimensional Hilbert space, and let {al, (2) be any basis for \ 
Show that a scalar product (~, 1/) has the form 

(t 1/) = aXIYI + b(XIY2 + X2YI) + CX2Y2, 

where b2 < ac. Here, of course, ~ = Xlal + X2a2, 1/ = Ylal + Y2a2. 

1.7 Prove that if w(x, y) = aXIYI + b(XIY2 + X2YI) + CX2Y2 and b2 < ac, then ,.' 
is a scalar product on 1R2. 

1.8 Let w(~, 1/) be any symmetric bilinear functional on a finite-dimensional veclut 
space Y, and let q(~) = w(~, ~) be its associated quadratic form. Show that for aliI 
choice of a basis for Y the equation IJ(~) = 1 becomes a quadratic equation in til< 
coordinates {x;] of ~. 

1.9 Prove in detail that if a vector {3 is orthogonal to a set A in a pre-Hilbert spa(·,'. 
then (3 is orthogonal to L(A). 

1.10 We know from the last chapter that the Riemann integral is defined for the ;;('1 

e of uniform limits of real-valued step functions on [0, 1] and that e includes all till' 
continuous functions. Given that k is the step function whose value is 1 on [0, !l and 
o on [!, 1], show that Ilf - kl12 > 0 for any continuous function f. Show, howevpl'. 
that there is a sequence of continuous functions {fn) such that Ilfn - kl12 ---> O. ShOll. 
therefore, that e([O, 1]) is incomplete in the two-norm, by showing that the abo\ (. 
sequence [j n] is Cauchy but not convergent in e([O, 1]). 

2. ORTHOGONAL PROJECTION 

One of the most important devices in geometric reasoning is "dropping a per­
pendicular" from a point to a line or a plane and then using right triangh· 
arguments. This device is equally important in pre-Hilbert space theory. If M 
is a subspace and a is any element in V, then by "the foot of the perpendicular 
dropped from a to M" we mean that vector J.L in M such that (a - J.L) 1- 111, 
if such a J.L exists. (See Fig. 5.1.) Writing a as J.L + (a - J.L), we see that tllP 
existence of the "foot" J.L in JIll for each a in V is equiv­
alent to the direct sum decomposition V = M $ M 1-. 

N ow it is precisely this direct sum decomposition 
that the completeness of a Hilbert space guarantees, 
as we shall shortly see. We start by proving the 
geometrically intuitive fact that J.L is the foot of the 
perpendicular dropped from a to M if and only if J.L 

is the point in M closest to a. 
It ig.5.1 

111 

Lemma 2.1. If J.L is in the subspace M, then (a - J.L) 1- M if and only' if J.L is 
the unique point in M closest to a, that is, J.L is the "best approximation" to 
a in M. 

Proof. If (a - J.L) 1- M and ~ is any other point in M, then Iia - ~112 = 

II(a - J.L) + (J.L - ~)112 = Iia - J.L112 + IIJ.L - ~112 > Iia - J.L112. Thus J.L is the 
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unique point in M closest to a. Conversely, suppose that JJ. is a point in M closest 
to a,and let ~beanynonzerovectorinM. Then Iia -JJ.11 2 .:::; II(a -JJ.)+t~1I2, 
which becomes 0 .:::; 2t(a - JJ., 0 + t211 ~112 when the right-hand scalar product is 
expanded. This can hold for all t only if (a - JJ., ~) = 0 (otherwise let t = ?). 
Therefore, (a - JJ.) .1. M. 0 

On the basis of this lemma it is clear that a way to look for JJ. is to take a 
sequence JJ.n in M such that Iia - JJ.nll --t p(a, M) and to hope to define JJ. as its 
limit. Here is the crux of the matter: We can prove that such a sequence {JJ.n} is 
always Cauchy, but its limit may not exist if M is not complete! 

Lemma 2.2. If {JJ.n} is a sequence in the subspace M whose distance from 
some vector a converges to the distance p from a to M, then {JJ.n} is Cauchy. 

Proof. By the parallelogram law, IIJJ.n - JJ.m11 2 = II(a - JJ.n) - (a - JJ.m)112 = 
2(lla - JJ.n11 2 + Iia - JJ.mI1 2) - 112a - (JJ.n + JJ.m)112. Since the first term on the 
right converges to 4p2 as n, m --t 00, and since the second term is always 
.:::; -4p2 (factor out the 2), we see that IIJJ.n - JJ.m1l 2 --t 0 as n,m --t 00. 0 

Theorem 2.1. If M is a complete subspace of a pre-Hilbert space V, then 
V = M ED M l., In particular, this is true for any finite-dimensional sub­
space of a pre-Hilbert space and for any closed subspace of a Hilbert space. 

Proof. This follows at once from the last two lemmas, since now JJ. = lim JJ.n 
exists, Iia - JJ.II = p(a, M), and so (a - JJ.) .1. M. 0 

If V = M ED M-L, then the projection on M along Ml. is called the orthogonal 
projection on M, or simply the projection on M, since among all the projections on 
M associated with the various complements of M, the orthogonal projection is 
distinguished. Thus, if M is a complete subspace of V, and if P is the projection 
on M, then P(~) is at once the foot of the perpendicular dropped from ~ to M 
(which is where the word "projection" comes from) and also the best approxi­
mation to ~ in M (Lemma 2.1). 

Lemma 2.3. If {MiH is a finite collection of complete, pairwise orthogonal 
subspaces, and if for a vector a in V, ai is the projection of a on "Ali for 
i = 1, ... , n, then L~ ai is the projection of a on EB~ Mi. 

Proof. We have to show that a - L~ ai is orthogonal to EB~ Mj, and it is 
sufficient to show it orthogonal to each M j separately. But if ~ E Mj, then 
(a - L~ ai, ~) = (a - aj, ~), since (ai, ~) = 0 for i ~ j, and (a - aj, ~) = 0 
because aj is the projection of a on M j. Thus (a - L~ ai, ~) = O. 0 

Lemma 2.4. The projection of ~ on the one-dimensional span of a single 
nonzero vector." is «(~, .")/11.,,11 2).,,. 

Proof. Here JJ. must be of the form x.". But (~ - x.,,) .1. ." if and only if 

or 
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We call the number (~, '17)/11'1711 2 the 'I7-Fourier coefficient of~. If '17 is a unit 

(normalized) vector, then this Fourier coefficient is just (~, '17). It follows from 
Lemma 2.3 that if {'Pi} ~ is an orthogonal collection of nonzero vectors, and if 
{Xin are the corresponding Fourier coefficients of a vector ~, then L~ Xi'Pi is thl' 
projection of ~ on the subspace M spanned by {'Pi} ~. Therefore, ~ - L~ Xi'Pi -L M. 
and (Lemma 2.1) L~ Xi'Pi is the best approximation to ~ in M. If ~ is in M, thcll 
both of these statements say that ~ = L~ Xi'Pi. (This can of course be verified 
directly, by letting ~ = L~ ai'Pi be the basis expansion of ~ and computinl!; 
(~, 'Pj) = L~ ai('Pi, 'Pj) = ajll'PjI12.) 

If an orthogonal set of vectors {'Pi} is also normalized (lI'Pill = 1), then we 
call the set orthonormal. 

Theorem 2.2. If {'Pi} ~ is an infinite orthonormal sequence, and if {Xi} ~ are 
the corresponding Fourier coefficients of a vector ~, then 

(Bessel's inequality), 

and ~ = L~ Xi'Pi if and only if L~ xl = II ~112 (Parseval's equation). 

Proof. Setting Un = L~ Xi'Pi and ~ = (~ - un) +Un , and remembering that 
~ - Un -L Un, we have 

n 

11~112 = II~ _ un l1 2 + 1: X~. 
1 

Therefore, L~ xl ~ II ~112 for all n, proving Bessel's inequality, and Un --+ ~ (that 
is, II ~ - Un II --+ 0) if and only if L~ xl --+ II ~112, proving Parseval's identity. 0 

We call the formal series I: Xi 'Pi the Fourier series of ~ (with respect to the 
orthonormal set {'Pi}). The Parseval condition says that the Fourier series of ~ 
converges to ~ if and only if II ~112 = I:~ xl. 

An infinite orthonormal sequence {'Pi} ~ is called a basis for a pre-Hilbert 
space V if every element in V is the sum of its Fourier series. 

Theorem 2.3. An infinite orthonormal sequence {'Pi} ~ is a basis for a pre­
Hilbert space V if (and only if) its linear span is dense in V. 

Proof. Let ~ be any element of V, and let {Xi} be its sequence of Fourier 
coefficients. Since the linear span of {'Pi} is dense in V, given any E, there is a 
finite linear combination L~ Yi'Pi which approximates ~ to within E. But 
L~ Xi'Pi is the best approximation to ~ in the span of {'Pi}~' by Lemmas 2.3 and 
2.1, and so 

for any m ~ n. 

That is, ~ = L~ Xi'Pi. 0 

CoroIJary. If V is a Hilbert space, then the orthonormal sequence {'Pi} ~ 
is a basis if and only if {'Pi}.L = {O}. 
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Proof. Let M be the closure of the linear span of {lPi}~. Since V = M + M.l., 
and since M.l. = {lPi}.l., by Lemma 1.1, we see that {lPi}.l. = {o} if and only if 
V = M, and, by the theorem, this holds if and only if {lPi} is a basis. 0 

Note that when orthogonal bases only are being used, the coefficient of a 
vector ~ at a basis element {3 is always the Fourier coefficient (~, (3)/11{3112. 
Thus the {3-coefficient of ~ depends only on {3 and is independent of the choice 
of the rest of the basis. However, we know from Chapter 2 that when an arbi­
trary basis containing {3 is being used, then the {3-coefficient of ~ varies with the 
basis. This partly explains the favored position of orthogonal bases. 

We often obtain an orthonormal sequence by "orthogonalizing" some given 
sequence. 

Lemma 2.5. If {ai} is a finite or infinite sequence of independent vectors, 
then there is an orthonormal sequence {lPi} such that {ai}! and {lPi}'~,have 
the same linear span for all n. 

Proof. Since normalizing is trivial, we shall only orthogonalize. Suppose, to be 
definite, that the sequence is infinite, and let M n be the linear span of 
{aI, ... , an}. Let JLn be the orthogonal projection of an on M n-l, and set 
IPn = an - JLn (and IPI = al). This is our sequence. We halVe lPi E Mi C M n-l 
if i < n, and IPn 1. M n-l, so that the vectors lPi are mutually orthogonal. 
Also, IPn ~ 0, since an is not in M n_ l . Thus {lPi}! is an independent subset of 
the n-dimensional vector space M n, by the corollary of Lemma 1.2, and so 
{lPi}! spans Mn. 0 

The actual calculation of the orthogonalized sequence {lPn} can be carried 
out recursively, starting with IPI = ab by noticing that since JLn is the projection 
of an on the span of IPI, ... , IPn-b it must be the vector L:~-l CilPi, where ci.is 
the Fourier coefficient of an with respect to lPi. 

Consider, for example, the sequence {xn} 0' in e([O, 1]). We have IPI = 
al = 1. Next, 1P2 = a2 - JL2 = X - c· 1, where 

C = (a2, IPI)/[IIPI[[2 = fol x· 1/f; (1)2 = !. 

Then 1P3 = a3 - (C21P2 + CIIPI), where 

CI = fol x 2 • 1/fol (1)2 = t 
and 

C2 = fol x 2(x - !)/fol (x - !)2 = (! - i)/(2;) = 1. 

Thus the first three terms in the orthogonalization of {xn} 0' in e([O, 1]) are 1, 
x - !, x 2 - (x - !) - t = x 2 - X + i. This process is completely elemen­
tary, but the calculations obviously become burdensome after only a few terms. 

We remember from general bilinear theory that if for {3 in V we define 
(}{J: V ~ IR by (},s(~) = (~, (3), then (},s E V* and (): {3 ~ (},s is a linear mapping 
from V to V*. If a, '1/) is a scalar product, then (},s({3) = 11{311 2 > ° if {3 ~ 0, and 
so () is injective. Actually, () is an isometry, as we shall ask the reader to show in 
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an exercise. If V is finite-dimensional, the injectivity of () implies that () is an 
isomorphism. But we have a much more startling result: 

Theorem 2.4. () is an isomorphism if and only if V is a Hilbert space. 

Proof. Suppose first that V is a Hilbert space. We have to show that () is sur­
jective, i.e., that every nonzero F in V* is of the form ()p. Given such an F, let N 
be its null space, let a be a vector orthogonal to N (Theorem 2.1), and consider 
(3 = ca, where c is to be determined later. Every vector ~ in V is uniquely a sum 
~ = x{3 + 1/, where 1/ is in N. [This only says that V IN is one-dimensional, which 
presumably we know, but we can check it directly by applying F and seeing that 
F(~ - x(3) = 0 if and only if x = FWIF({3).J But now the equations 

FW = F(x{3 + 1/) = xF({3) = xcF(a) 
and 

()fjW = (~, (3) = (x{3 + 1/, (3) = xll{311 2 = xc 2 11al1 2 

show that ()p = F if we take c = F(a)/llaI1 2• 

Conversely, if () is surjective (and assuming that it is an isometry), then it is 
an isomorphism in Hom(V, V*), and since V* is complete by Theorem 7.6, 
Chapter 4, it follows that V is complete by Theorem 7.3 of the same chapter. 
Weare finished. 0 

EXERCISES 

2.1 In the proof of Lemma 2.1, if (a - }J., ~) -,.6 0, what value of t will contradict 
the inequality 0 ~ 2t(a -}J., ~) + t211~112? 
2.2 Prove the "only if" part of Theorem 2.3. 

2.3 Let {Mi} be an orthogonal sequence of complete subspaces of a pre-Hilbert 
space V, and let Pi be the (orthogonal) projection on Mi. Prove that {Pi~) is Cauchy 
for any ~ in V. 

2.4 Show that the functions {sin nt) :'=1 form an orthogonal collection of elements in 
the pre-Hilbert space e([O,1I"» with respect to the standard scalar product (I, g) = 

fo'" I(t) g(t) dt. Show also that Iisin ntl12 = ...;'11"/2. 

2.5 Compute the Fourier coefficients of the function I(t) = t in e([0,1I"]) with 
respect to the above orthogonal set. What then is the best two-norm approximation 
to t in the two-dimensional space spanned by sin t and sin 2t? Sketch the graph of this 
approximating function, indicating its salient features in the usual manner of calculus 
curve sketching. 

2.6 The "step" function I defined by f(t) = 11"/2 on [0,11"/21 and f(t) = ° on (11"/2,11"1 
is of course discontinuous at 11"/2. Nevertheless, calculate its Fourier coefficients with 
respect to {sin nt) :'=1 in e([o, 11"]) and graph its best approximation in the span of 
{sin nt}~. 

2.7 Show that the functions {sin nt) :'=1 U {cos nt) :'=0 form an orthogonal collection 
of elements in the pre-Hilbert space e([ -11",11"]) with respect to the standard scalar 
product (f, g) = f~" I(t) g(t) dt. 



5.3 SELF-ADJOINT TRANSFORMATIONS 257 

2.8 Calculate the first three terms in the orthogonalization of {xn} 0' in e([ -1, 1]). 

2.9 Use the definition of the norm of a bounded linear transformation and the 
Schwarz inequality to show that 1101/11 ~ 11{311 [where Ol/(~) = (~, (3)]. In order to 
conclude that {3 ~ 01/ is an isometry, we also need the opposite inequality, 1101/11 2:: 1I{311. 
Prove this by using a special value of ~. 

2.10 Show that if V is an incomplete pre-Hilbert space, then V has a proper closed 
subspace JJf such that M J.. = {O}. [Hint: There must exist P E V* not of the form 
PW = (~, a).] Together with Theorem 2.1, this shows that a pre-Hilbert space V is a 
Hilbert space if and only if V = M EEl M J.. for every closed subspace M. 

2.11 The isometry 0: a ~ Oa [where Oa(~) = (~, a)] imbeds the pre-Hilbert space V 
in its conjugate space V*. We know that V* is complete. Why? The closure of Vas 
a subspace of V* is therefore complete, and we can hence complete V as a Banach 
space. Let H be its completion. It is a Banach space including (the isometric image of) 
V as a dense subspace. Show that the scalar product on V extends uniquely to Hand 
that the norm on H is the extended scalar product norm, so that H is a Hilbert space. 

2.12 Show that under the isometric imbedding a ~ Oa of a pre-Hilbert space V into 
V* orthogonality is equivalent to annihilation as discussed in Section 2.3. Discuss the 
connection between the properties of the annihilator A 0 and Lemma 1.1 of this chapter. 

2.13 Prove that if C is a nonempty complete convex subset of a pre-Hilbert space V, 
and if a is any vector not in C, then there is a unique JI. E C closest to a. (Examine the 
proof of Lemma 2.2.) 

3. SELF-ADJOINT TRANSFORMATIONS 

Definition. If V is a pre-Hilbert space, then T in Hom V is self-adjoint if 
(Ta, (3) = (a, T(3) for every a, {3 E V. The set of all self-adjoint transforma­
tions will be designated SA. 

Self-adjointness suggests that T ought to become its own adjoint under the 
injection ° of V into V*. We check this now. Since (a, (3) = OfJ(a) , we can rewrite 
the equation (Ta,{3) = (a, T(3) as OfJ(Ta) = OTtI(a), and again as (T*(0tl)(a) = t,(TrI.) 
~ by the definition of T*. This holds for all a and (3 if and only if T*(OfJ) = 

OTfJ for all (3 E V, or T* 0 ° = ° 0 T, which is the asserted identification. 

Lemma 3.1. If V is a finite-dimensional Hilbert space and {<Pi}~ is an 
orthonormal basis for V, then T E Hom(V) is self-adjoint if and only if the 
matrix {tij} of T with respect to {<Pi} is symmetric (t = t*). 

Proof. If we substitute the basis expansions of a and {3 and expand, we see that 
(a, T(3) = (Ta, (3) for all a and {3 if and only if (<Pi, T<pj) = (T<pi, <pj) for all i 
and j. But T<P1 = Lk=l tkl<Pk, and when this is substituted in these last scalar 
products, the equation becomes tij = tji. That is, T is self-adjoint if and only if 
t = t*. 0 

A self-adjoint T is said to be nonnegative if (T~, 0 2:: 0 for all~. Then 
[~, '11] = (T~, '11) is a semiscalar product! 
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Lemma 3.2. If T is a nonnegative self-adjoint transformation, then 
IITWII ~ IITI11/2(T~, ~)1/2 for all~. Therefore, if (T~,~) = 0, then 
T~ = 0, and, more generally, if (T~n' ~n) ~ 0, then T(~n) ~ o. 

Proof. If T is nonnegative as well as self-adjoint, then [~, 17] = (TI;, 17) is a 
semiscalar product, and so, by Schwarz's inequality, 

I(TI;, 17)1 = [~, 17] ~ [I;, ~P/2[17, 17P/2 = (T~, ~)1/2(T17, 17)1/2. 

Taking 17 = T~, the factor on the right becomes (T(T~), T~)1/2, which is lesH 
than or equal to IITI11/21IT~II, by Schwarz and the definition of IITII. Dividing by 
II T ~II, we get the inequality of the lemma. 0 

If a ~ 0 and T(a) = Ca for some c, then a is called an eigenvector (proper 
vector, characteristic vector) of T, and c is the associated eigenvalue (proper 
value, characteristic value). 

Theorem 3.1. If V is a finite-dimensional Hilbert space and T is a self­
adjoint element of Hom V, then V has an orthonormal basis consisting 
entirely of eigenvectors of T. 

Proof. Consider the function (T~, ~). It is a continuous real-valued function 
of ~, and on the unit sphere S = {~: II~II = I} it is bounded above by IITII 
(by Schwarz). Set m = lub {(TI;,~): II~II = I}. Since S is compact (being 
bounded and closed), (T~, ~) assumes the value m at some point a on S. Now 
m - T is a nonnegative self-adjoint transformation (Check this!), and (Ta, a) = 
m is equivalent to ((m - T)a, a) = o. Therefore, (m - T)a = 0 by Lemma 
3.2, and Ta = ma. We have thus found one ~igenvector for T. Now set VI = V, 
a1 = a, and m1 = m, and let V 2 be {a1} 1.. Then T[V2] C V2, for if I;.l all 

then (T~, a1) = (~, Tal) = m(~, a1) = O. 
We can therefore repeat the above argument for the restriction of T to the 

Hilbert space V 2 and find a2 in V 2 such that IIa211 = 1 and T(a2) = m2a2, 
where m2 = lub {(T~, ~) : II ~II = 1 and ~ E V 2J. Clearly, m2 ~ mI. We then 
set V 3 = {all a2} 1. and continue, arriving finally at an orthonormal basis 
{aig of eigenvectors of T. 0 

Now let All •.• , AT be the distinct values in the list mil ... , mn , and let M j 

be the linear span of those basis vectors ai for which mi = Aj. Then the sub­
spaces 1I1 j are orthogonal to each other, V = E9; lIfj, each 1I1 j is T-invariant, 
and the restriction of T to 1I1 j is Aj times the identity. Since all the nonzero 
vectors in 1I1j are eigenvectors with eigenvalue Aj, if the a/s spanning ]lI j are 
replaced by any other orthonormal basis for AI j, then we still have an ortho­
normal basis of eigenvectors. The a/s are therefore not in general uniquely 
determined. But the subspaces 1I1 j and the eigenvalues Aj are unique. This will 
follow if we show that every eigenvector is in an ]lI j . 

Lemma 3.3. In the context of the above discussion, if ~ ~ 0 and T(I;) = x~ 
for some x in IR, then ~ E 1I1j (and so x = Aj) for some j. 
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Proof. Since V = EB; M j , we have ~ = L; ~i with ~i E Mi. Then 
r r r r 

L: X~i = x~ = TW = L: Tai) = L: Xi~i and L: (x - Xi)~i = O. 
1 1 1 1 

Since the subspaces Mi are independent, every component (x - XiHi is O. But 
some ~j ~ 0, since ~ ~ O. Therefore, x = Xi> h = 0 for i ~ j, and 

~ = ~j E M j • 0 

We have thus proved the following theorem. 

Theorelll 3.2. If V is a finite-dimensional Hilbert space and T is a self­
adjoint element of Hom V, then there are uniquely determined subspaces 
{Vi}; of V, and distinct scalars {Xi};, such that {Vi} is an orthogonal 
family whose sum is V and the restriction of T to Vi is Xi times the identity. 

If V is a finite-dimensional vector space and we are given T E Hom V, then 
we know how to compute related mappings such as T2 and T- 1 (if it exists) 
and vectors Ta, T-1a, etc., by choosing a basis for V and then computing matrix 
products, inverses (when they exist), and so on. Some of these computations, 
particularly those related to inverses, can be quite arduous. One enormous 
advantage of a basis consisting of eigenvectors for T is that it trivializes all of 
these calculations. 

To see this, let {i3n} be a basis of V consisting entirely of eigenvectors for T, 
and let {rn} be the corresponding eigenvalues. To compute T~, we write down 
the basis expansion for ~, ~ = L~ Xii3i, and then T~ = L~ rixii3i. T2 has the 
same eigenvectors, but with eigenvalues {rl}. Thus T 2a = L~ rlxii3i. T- 1 

exists if and only if no ri = 0, in which case it has the same eigenvectors with 
eigenvalues {l/ri}. Thus T- 1 ~ = L~ (x;jri)i3i. If P(t) = L~ antn is any 
polynomial, then P(T) takes i3i into P(ri)i3i. Thus P(T) ~ = L~ P(ri)xii3i. 
By now the point should be amply clear. 

The additional value of orthonormality in a basis is already clear fom the 
last section. Basically, it enables us to compute the coefficients {Xi} of ~ by 
scalar products: Xi = (~, i3i). 

This is a good place to say a few words about the general eigenvalue problem 
in finite-dimensional theory. Our complete analysis above was made possible by 
the self-adjointness of T (or the symmetry of the matrix t). What we can say 
about an arbitrary T in Hom V is much less satisfactory. 

We first note that the eigenvalues of T can be determined algebraically, for X 
is an eigenvalue if and only if T - XI is not injective, or, equivalently, is singu­
lar, and we know that T - XIis singular ifand only if its determinant .1(T - XI) 
is O. If we choose any basis for V, the determinant of T - XI is the determinant 
of its matrix t - Xe, and our later formula in Chapter 7 shows that this is a 
polynomial of degree n in X. It is easy to see that this polynomial is independent 
of the basis; it is called the characteristic polynomial of T. Thus the eigenvalues 
of T are exactly the roots of the characteristic polynomial of T. 
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However, T need not have any eigenvectors! Consider, for example, a 900 

rotation in the Cartesian plane. This is the map T: -< x, y> f-4 -< -y, x> . 
Thus T(OI) = 02 and T(02) = -0\ so the matrix of Tis 

[~ -~l 
Then the matrix of T - A is 

[~ -~l 
and the characteristic polynomial of T is the determinant of this matrix: A 2 + 1. 
Since this polynomial is irreducible over IR, there are no eigenvalues. 

Note how different the outcome is if we consider the transformation with the 
same matrix on complex 2-space (:2. Here the scalar field is the complex number 
system, and T is the map -< z}, Z2> f-4 -< -Z2, Zl > from (:2 to (:2. But now 
>-.2 + 1 = (>-. + i)(>-' - i), and T has eigenvalues ±i! To find the eigenvectors 
for i, we solve T(z) = iz, which is the equation -< -Z2, Zl > = -< iz}, iz2> , or 
Z2 = -iz l . Thus -<1, -i> (or i-<l, -i> = -<i, 1» is the unique eigen­
vector for i to within a scalar multiple. 

We return to our real theory. If T E Hom V and n = d(V), so that 
d(Hom V) = n2 , then the set of n2 + 1 vectors {Tin2 in Hom V is dependent. 
But this is exactly the same as saying that p(T) = 0 for some polynomial p of 
degree ~n2. That is, any T in Hom V satisfies a polynomial identity p(T) = O. 
Now suppose that T is an eigenvalue of T and that TW = T~. Then p(T)(O = 
p(/') ~ === 0, and so p(r) = O. That is, every eigenvalue of T is a root of the 
polynomial p. Conversely, if p(r) = 0, then we know from the remainder 
theorem of algebra that t - l' is a factor of the polynomial p(t), and therefore 
(t - 1')1n will be one of the relatively prime factors of p. Now suppose that p is 
the minimal polynomial of T (see Exercise 3.5). Theorem 5.5, Chapter 1, tells 
us that (T - 1'I)m is zero on a corresponding subspace N of V and therefore, in 
particular, that T - rl is not injective when restricted to N. That is, l' is an 
eigenvalue. We have proved: 

Theorem 3.3. The eigenvalues of T are zeros (roots) of every polynomial 
p(t) such that p(T) = 0, and are exactly the roots of the minimal polynomial. 

EXERCISES 

3.1 Use the defining identity (T~, 1/) = (~, T1/) to show that the set S.I of all self­
adjoint elements of Hom r is a subspace. Prove similarly that if Sand T are self­
adjoint, then ST is self-adjoint if and only if ST = TS. Conclude that if T is 
self-adjoint, then so is p(T) for any polynomial p. 

3.2 Show that if T is self-adjoint, then S = T2 is nonnegative. Show, therefore, 
that if T is self-adjoint and a ~ 0, then T2 + aI cannot be the zero transformation. 

3.3 Let p(t) = t2 + bt + c be an irreducible quadratic polynomial (b2 < 4c), and 
let T be a self-adjoint transformation. Show that p(T) ~ O. (Complete the squarc 
and apply carlier exercises.) 
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3.4 Let T be self-adjoint and nilpotent (Tn = 0 for some n). Prove that T = o. 
This can be done in various ways. One method is to show it first for n = 2 and then 
for n = 2m by induction. Finally, any n can be bracketed by powers of 2, 2m ::; 

n < 2m+! . 

3.5 Let V be any vector space, and let T be an element of Hom V. Suppose that there 
is a polynomial q such that q(T) = 0, and let p be such a polynomial of minimum 
degree. Show that p is unique (to within a constant multiple). It is called the minimal 
polynomial of T. Show that if we apply Theorem 5.5 of Chapter 1 to the minimal 
polynomial p of T, then the subspaces Ni must both be nontrivial. 

3.6 It is a corollary of the fundamental theorem of algebra that a polynomial with 
real coefficients can be factored into a product of linear factors (t - r) and irreducible 
quadratic factors' (t 2 + bt + c). Let T be a self-adjoint transformation on a finite­
dimensional Hilbert space, and let pet) be its minimal polynomial. Deduce a new 
proof of Theorem 3.1 by applying to pet) the above remark, Theorem 5.5 of Chapter 1, 
and Exercises 3.1 through 3.4. 

3.7 Prove that if T is a self-adjoint transformation on a pre-Hilbert space V, then 
its null space is the orthogonal complement of its range: N(T) = (R(T»)J.. Conclude 
that if V is a Hilbert space, then a self-adjoint T is injective if and only if its range is 
dense (in V). 

3.8 Assuming the above exercise, show that if V is a Hilbert space and T is a self­
adjoint element of Hom V that is bounded below (as well as bounded), then T is sur­
jective. 

3.9 Let T be self-adjoint and nonnegative, and set m = lub {(T~, ~): II~II = I}. 
Use the Schwarz inequality and the inequality of Lemma 3.2 to show that m = II Til· 
3.10 Let V be a Hilbert space, let T be a self-adjoint element of Hom V, and set 
m = lub {(T~,~): II~II = I}. Show that if a> m, then a - T (=aI - T) is in­
vertible and II (a - T) -111 ::; I/(a - m). (Apply the Schwarz inequality, the definition 
of m, and Exercise 3.8.) 

3.11 Let P be a bounded linear transformation on a pre-Hilbert space V that is a 
projection in the sense of Chapter 1. Prove that if P is self-adjoint, then P is an 
orthogonal projection. Now prove the converse. 

3.12 Let V be a finite-dimensional Hilbert space, let T in Hom V be self-adjoint, 
and suppose that S in Hom V commutes with T. Show that the subspaces 111 i of 
Theorem 3.1 and Lemma 3.3 are invariant under S. 

3.13 A self-adjoint transformation T on a finite-dimensional Hilbert space V is said 
to have a simple spectrum if all its eigenvalues are distinct. By this we mean that all 
the subspaces 111 i are one-dimensional. Suppose that T is a self-adjoint transformation 
with a simple spectrum, and suppose that S commutes with T. Show that S is also 
self-adjoint. (Apply the above exercise.) 

3.14 Let H be a Hilbert space, and let w[~, 1/J be a bounded bilinear form on H X H. 
That is, there is a constant b such that 

Iw[~, 1/11 ::; bll~IIII1/11 for all ~,1/ E H. 

Show that there is a unique T in Hom V such that w[t 1/J = (~, T1/). Show that Tis 
self-adjoint if and only if w is symmetric. 
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4. ORTHOGONAL TRANSFORMATIONS 

Assuming that V is a Hilbert space and that therefare 0: V ~ V* is an isamar­
phism, we can .of caurse replace the adjaint T* E Ham V* .of any T E Ham V 
by the carresP.onding transfarmatian 0-1 0 T* 0 0 E Ham V. In Hilbert space 
theary it is this mapping that is called the adjaint .of T and is designated T*. 
Then, exactly as in .our discussi.on .of a self-adjaint T, we see that 

(Ta, (3) = (a, T*(3) far all a, f3 E V 

and that T* is uniquely defined by this identity. Finally, Tis self-adjaint if and 
.only if T = T*. 

Althaugh it really am aunts ta the abave way .of intraducing T* inta Ham V, 
we can make a direct definitian. as fallaws. Far each 71 the mapping ~ ~ (T~, '11) 
is linear and baunded, and sa is an elemen!t~of V*, which, by Thearem 2.4, is 
given by a unique element f3." in V accarding ta the farmula (T~, 71) = (~, f3.,,). 
Naw we check that 71 ~ f3n is linear and baunded and is therefare an element .of 
Ham V which we call T*, etc. 

The matrix calculatians .of Lemma 3.1 generalize verbatim ta shaw that the 
matrix .of T* in Ham V is the transpase t* .of the matrix t .of T. 

Anather very impartant type .of transfarmatian an a Hilbert space is .one 
that preserves the scalar praduct. 

Definition. A transfarmatian T E Ham V is orthogonal if (Ta, T(3) = 
(a, (3) far all a, f3 E V. 

By the basic adjaint identity abave this is entirely equivalent ta (a, T*T(3) = 
(a, (3), far all a, f3, and hence ta T*T = I. An arthaganal T is injective, since 
IITal1 2 = Ila11 2, and is therefare invertible if V is finite-dimensianal. Whether V 
is finite-dimensianal .or nat, if T is invertible, then the abave canditian becames 
T* = T-1• 

If T E Ham IR n, the matrix farm .of the equatian T*T = I is .of caurse 
t *t = e, and if this is written aut, it becames 

n 

L tkitkj = Cl} 
k=l 

far all i, j, 

which simply says that the calumns .of t farm an arthanarmal set (and hence a 
basis) in IRn. We thus have: 

Theorem 4.1. A transfarmatian T E Ham IR n is arthaganal if and .only if 
the image .of the standard basis {Ili} i under T is anather arthanarmal basis 
(with respect ta the standard scalar product). 

The necessity .of this canditian is, .of caurse, abviaus fram the scalar-praduct­
preserving definitian .of arthaganality, and the sufficiency can alsa be checked 
directly using the basis expansians .of a and f3. 

We can naw state the eigenbasis thearem in different terms. By a diagonal 
matrix we mean a matrix which is zero everywhere except an the main diaganal. 
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Theorelll 4.2. Let t = {tii} be a symmetric n X n matrix. Then there 
exists an orthogonal n X n matrix b such that b-1tb is a diagonal matrix. 

Proof. Since the transformation T E Hom IR n defined by t is self-adjoint, there 
exists an orthonormal basis {bi} i of eigenvectors of T, with corresponding 
eigenvalues {ri}i. Let B be the orthogonal transformation defined by B(~i) = 
bi, j = 1, ... ,n. (The n-tuples b i are the columns of the matrix b = {bii} 
of B.) Then (B-1 0 T 0 B)(~i) = ri~i. Since (B-1 0 T 0 B)(~i) is the jth 
column of b-1tb, we see that s = b-1tb is diagonal, with 8ji = rj. 0 

For later applications we are also going to want the following result. 

Theorelll 4.3. Any invertible T E Hom V on a finite-dimensional Hilbert 
space V can be expressed in the form T = RS, where R is orthogonal and S 
is self-adjoint and positive. 

Proof. For any T, T*T is self-adjoint, since (T*T)* = T*T** = T*T. Let 
{'Pi}i be an orthonormal eigenbasis, and let {ri}i be the corresponding eigen­
values of T*T. Then 0 < II T'Pi1l 2 = (T*T'Pi, tpi) = (ritpi, 'Pi) = ri for each i. 
Since all the eigenvalues of T*T are thus positive, we can define a positive square 
root S = (T*T)1/2 by Stpi = (ri)1/2tpi, i = 1,2, ... ,n. It is clear that S2 = 
T*T and that S is self-adjoint. 

Then A = ST-1 is orthogonal, for (ST- 1a, ST-1fJ) = (T- 1a, S2T-1fJ) = 
(T- 1a, T*TT-1fJ) = (T- 1a, T*fJ) = (TT- 1a, fJ) = (a, fJ). Since T = A -IS, 
we set R = A-I and have the theorem. 0 

It is not hard to see that the above factorization of T is unique. Also, by 
starting with TT*, we can express T in the form T = SR, where S is self-adjoint 
and positive and R is orthogonal. 

We call these factorizations the polar decompositions of T, since they func­
tion somewhat like the polar coordinate factorization z = rei8 of a complex 
number. 

Corollary. Any nonsingular n X n matrix t can be expressed as t = udv, 
where u and v are orthogonal and d is diagonal. 

Proof. From the theorem we have t = rs, where r is orthogonal and s is sym­
metric. By Theorem 4.2, s = bdb-l, where d is diagonal and b is orthogonal. 
Thus t = rs = (rb)db-1 = udv, where u = rb and v = b-1 are both 
orthogonal. 0 

EXERCISES 

4.1 Let V be a Hilbert space, and suppose that 8 and T in Hom V satisfy 

(T~, 11) = (~, 811) for all ~,11. 

Write out the proof of the identity 8 = (J-10 T* 0 (J. 
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4.2 Write out the analogue of the proof of Lemma 3.1 which shows that the matrix 
of T* is the transpose of the matrix of T. 

4.3 Once again show that if (~, 71) = (~, S-) for all ~, then 71 = S-. Conclude that if 
S, T in Hom V are such that (~, TTJ) = (~, STJ) for all 71, then T = S. 

4.4 Let {a, b} be an orthonormal basis for 1R2, and let t be the 2 X 2 matrix whose 
columns are a and b. Show by direct calculation that the rows of t are also ortho­
normal. 

4.5 State again why it is that if V is finite-dimensional, and if Sand T in Hom V 
satisfy SoT = I, then T is invertible and S = T-l. Now let V be a finite-dimensional 
Hilbert space, and let T be an orthogonal transformation in Hom V. Show that T* ill 
also orthogonal. 

4.6 Let t be an n X n matrix whose columns form an orthonormal basis for IRn. 
Prove that the rows of t also form an orthonormal basis. (Apply the above exercise.) 

4.7 Show that a nonnegative self-adjoint transformation S on a finite-dimensional 
Hilbert space has a uniquely determined nonnegative self-adjoint square root. 

4.8 Prove that if V is a finite-dimensional Hilbert space and T E Hom V, then the 
"polar decomposition" of T, T = RS, of Theorem 4.3 is unique. (Apply the above 
exercise.) 

5. COMPACT TRANSFORMATIONS 

Theorem 3.1 breaks down when V is an infinite-dimensional Hilbert space. 
A self-adjoint transformation T does not in general have enough eigenvectors 
to form a basis for V, and a more sophisticated analysis, allowing for a "con­
tinuous spectrum" as well as a "discrete spectrum", is necessary. This en­
riched situation is the reason for the need for further study of Hilbert space 
theory at the graduate level, and is one of the sources of complexity in the 
mathematical structure of quantum mechanics. 

" However, there is one very important special case in which the eigenbasis 
theorem is available, and which will have a startling application in the next 
chapter. 

Definition. Let V and W be any normed linear spaces, and let S be the unit 
ball in V. A transformation T in Hom(V, W) is compact if the closure of 
T[S] in W is sequentially compact. 

TheoreID 5.1. Let V be any pre-Hilbert space, and let T E Hom V be self­
adjoint and compact. Then the pre-Hilbert space R = range (T) has an 
orthonormal basis {\oi} consisting entirely of eigenvectors of T, and the 
corresponding sequence of eigenvalues {rn} converges to 0 (or is finite). 

Proof. The proof is just like that of Theorem 3.1 except that we have to start a 
little differently. Set m = IITII = lub {IIT(~)II : II ~II = I}, and choose a se­
quence Hn} such that II ~n II = 1 for all n and II T( ~n) II ---? m. Then 

((m2 - T 2Hn, ~n) = m2 - IIT(~n)112 ---? 0, 
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and since m2 - T2 is a nonnegative self-adjoint transformation, Lemma 3.2 
tells that (m2 - T2)(~n) -7 O. But since T is compact, we can suppose (passing 
to a subsequence if necessary) that {T ~n} converges, say to fj. Then T2 ~n -7 Tfj, 
and so m2~n -7 Tfj also. Thus ~n -7 Tfj/m2 and fj = lim T~n = T2(fj)/m2 
Since Ilfjll = lim IIT(~n)1I = m, we have a nonzero vector fj such that T2(fj) = 
m2fj. Set a = fj/llfjll. 

We have thus found a vector a such that Iiall = 1 and 0 = (m2 - T2)(a) = 
(m - T)(m + T)(a). Then either (m + T)(a) = 0, in which case T(a) = 
-ma, or (m + T)(a) = 'Y ¢ 0 and (m - T)'Y = 0, in which case T'Y = m'Y. 
Thus there exists a vector 'PI (a or 'Y /II'YII) such that II'PIII = 1 and T('PI) = 
rl'PI, where hi = m. We now proceed just as in Theorem 3.I. 

For notational consistency we set mi = m, V I = V, and now set V 2 = 
{'PI} 1.. Then T[V2] C V 2, since if a.i 'Pb then (Ta, 'PI) = (a, T'P2) = 
rl(a, 'PI) = O. Thus T r V 2 is compact and self-adjoint, and if m2 = liT r V 211, 
there exists 'P2 with 11'P211 = 1 and T('P2) = r2'P2, where Ir21 = m2. We continue 
inductively, obtaining an orthonormal sequence {'Pn} C V and a sequence 
{rn} C IR such that T'Pn = rn'Pn and Irnl = liT r V nil, where 

V n = {'Pb ... , 'Pn_l}l.. 

We suppose for the moment, since this is the most interesting case, that 
rn ¢ 0 for all n.- Then we claim that Irnl -7 O. For Irnl is decreasing in any case, 
and if it does not converge to 0, then there exists a b > 0 such that Irnl ~ b 
for all n. Then IIT('Pi) - T('Pj)11 2 = Ilri'Pi - rj'Pj112 = "1Iri'PiI12 + Ilrj'Pjl12 = 
ri2 + r; ~ 2b2 for all i ¢ j, and the sequence {T('Pi)} can have no convergent 
subsequence, contradicting the compactness of T. Therefore Irnll O. 

Finally, we have to show that the orthonormal sequence {'Pi} is a basis for R. 
If fj = T(a), and if {bn} and {an} are the Fourier coefficients of fj and a, 
then we expect that bn = rnan, and this is easy to check: bn = (fj, 'Pn) = 
(T(a), 'Pn) = (a, T('Pn)) = (a, rn'Pn) = rn(a, 'Pn) = rnan. This is just saying 
that T(an'Pn) = bn'Pn' and therefore fj - L~ bi'Pi = T(a - L~ ai'Pi). Now 
a - L~ ai'Pi is orthogonal to {'Pi}~ and therefore is an element of V n+b and the 
norm of T on V n+l is Irn+ll. Moreover, Iia - L~ ai'Pili ~ lIall, by the Pytha­
gorean theorem. Altogether we can conclude that 

and since rn+1 -70, this implies that fj = Li bi'Pi. 'Thus {'Pi} is a basis for 
R(T). Also, since T is self-adjoint, N(T) = R(T)l. = {'Pi} 1. = ni Vi. 

If some ri = 0, then there is a first n such that rn = O. In this 
case liT r V nil = Irnl = 0, so that V n C N(T). But 'Pi E R(T) if i < n, since 
then 'Pi = T('Pi)/ri, and so N(T) = R(T)l. C {'Pb ... , 'Pn_l}l. = V n' There­
fore, N(T) = Vn and R(T) is the span of {'Pi}~-I. 0 

/ 



CHAPTER 6 

DIFFERENTIAL EQUATIONS 

This chapter is not a small differential equations textbook; we leave out far too 
much. We are principally concerned with some of the theory of the subject, 
although we shall say one or two practical things. Our first goal is the funda­
mental existence and uniqueness theorem of ordinary differential equations, 
which we prove as an elegant application of the fixed-point theorem. Next we 
look at the linear theory, where we make vital use of material from the first two 
chapters and get quite specific about the process of actually finding solutions. 
So far our development is linked to the initial-value problem, concerning the 
existence of, and in some cases the ways of finding, a unique solution passing 
through some initially prescribed point in the space containing the solution 
curves. However, some of the most important aspects of the subject relate to 
what are called boundary-value problems, and our last and most sophisticated 
effort will be directed toward making a first step into this large area. This will 
involve us in the theory of Chapter 5, for we shall find ourselves studying self­
adjoint operators. In fact, the basic theorem about Fourier series expansion:;; 
will come out of recognizing a certain right inverse of a differential operator to be 
a compact self-adjoint operator. 

1. THE FUNDAMENTAL THEOREM 

Let A be an open subset of a Banach space W, let I be an open interval in IR, and 
let F: I X A ~ W be continuous. We want to study the differential equation 

dOi/dt = F(t, (1). 

A solution of this equation is a function!: J ~ A, where J is an open subinterval 
of I, such that f' (t) exists and 

f' (t) = F (t, f(t)) 

for every t in J. Note that a solution f has to be continuously differentiable, for 
the existence of f' implies the continuity of f, and then f' (t) = F (t, f( t)) is 
continuous by the continuity of F. 

Weare going to see that if F has a continuous second partial differential, 
then there exists a uniquely determined "local" solution through any point 

-<to, 010> E I X A. 
266 
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In saying that the solution f goes through < to, ao > , we mean, of course, that 
ao = f(to). The requirement that the solution f have the value ao when t = to 
is called an initial condition. 

The existence and continuity of dF~t.a> implies, via the mean-value 
theorem, that F(t, a) is locally uniformly Lipschitz in a. By this we mean that 
for any point < to, ao> in I X A there is a neighborhood M X N and a constant 
b such that IIF(t, ~) - F(t, '17)11 ::::; bll ~ - '1711 for all t in M and all ~, '17 in N. 
To see this we simply choose balls M and N about to and ao such that dF~I.a> is 
bounded, say by b, on M X N, and apply Theorem 7.4 of Chapter 3. This is the 
condition that we actually use below. 

Theorelll 1.1. Let A be an open subset of a Banach space W, let I be an 
open interval in IR, and let F be a continuous mapping from I X A to W 
which is locally uniformly Lipschitz in its second variable. Then for any 
point <to, ao> in I X A, for some neighborhood U of ao and for any 
sufficiently small interval J containing to, there is a unique function f from 
J to U which is a solution of the differential equation passing through the 
point < to, ao> . 

Proof. If f is a solution on J through < to, ao> , then an integration gives 

so that 

f(t) - f(t o) = rl F(s,f(s)) ds, 
110 

f(t) = ao + r t F(s,f(s)) ds 
lto 

for t E J. Conversely, if f satisfies this "integral equation", then the funda­
mental theorem of the calculus implies that !'(t) exists and equals F(t,f(t)) 
on J, so thatfis a solution of the differential equation which clearly goes through 
< to, ao>. Now for any continuous f: J ---7 A we can define g: J ---7 W by 

g(t) = ao + rt F(s,f(s)) ds, 
lto 

and our argument above shows that f is a solution of the differential equation if 
and only if f is a fixed point of the mapping K: f f---+ g. This suggests that we try 
to show that K is a contraction, so that we can apply the fixed-point theorem. 

We start by choosing a neighborhood L X U of <to, ao> on which F(t, a) 
is bounded and Lipschitz in a uniformly over t. Let J be some open subinterval 
of L containing to, and let V be the Banach space CJ3e(J, W) of bounded con­
tinuous functions from J to W. Our later calculation will show how small we 
have to take J. We assume that the neighborhood U is a ball about ao of radius 
r, and we consider the ball of functions 'U = Br(ao) in V, where ao is the con­
stant function with value ao. Then any fin 'U has its range in U, so that F(t, f(t)) 
is defined, bounded, and continuous. That is, K as defined earlier maps the ball 
'U into V. 
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We now calculate. Let F be bounded by m on L X U and let 0 be the length 
of J. Then 

IIK(ao) - aoll", = lub {Ill: F(s, ao) dsll : t E J} ::::; om (1) 

by the norm inequality for integrals (see Section 10 of Chapter 4). Also, if fI 
and f2 are in'ti, and if c is a Lipschitz constant for F on L X U, then 

IIK(h) - K(f2)11", = lub {Ill: F(s,h(s)) - F(s,h(s))II} 

::::; olub {IIF(s,h(s)) - F(s,h(s))II} 

::::; oc lub {llh(s) - h(s)ll} 

= ocllh - 1211",. (2) 

From (2) we see that K is a contraction with constant C = OC if OC < 1, and 
from (1) we see that K moves the center ao of the ball 'ti a distance less than 
(1 - C)r if om < (1 - oc)r. This double requirement on 0 is equivalent to 

r 
0< + ' m cr 

and with any such 0 the theorem follows from a corollary of the fixed-point 
theorem (Corollary 2 of Theorem 9.1, Chapter 4). 0 

Corollary. The theorem holds if F: I X A ~ W is continuous and has a 
continuous second partial differential. 

We next show that any two solutions through < to, ao>- must agree on the 
intersection of their domains (under the hypotheses of Theorem 1.1). 

Lelllllla 1.1. Let gl and g2 be any two solutions of da/dt = F(t, a) through 
< to, ao>-. Then gl (t) = g2(t) for all t in the intersection J = J 1 n J 2 of 
their domains. 

Proof. Otherwise there is a point s in J such that gl(S) ~ g2(S). Suppose that 
s > to, and set C = {t: t > to and gl (t) ~ g2(t)} and x = glb C. The set C 
is open, since gl and g2 are continuous, and therefore x is not in C. That is, 
gl(X) = g2(X). Call this common value a and apply the theorem to <x, a>-. 
With r such that Br(a) CA, we choose 0 small enough so that the differential 
equation has a unique solution g from (x - 0, x + 0) to Br(a) passing through 
<x, a>-, and we also take 0 small enough so that the restrictions of gl and g2 to 
(x - 0, x + 0) have ranges in Br(a). But then gl = g2 = g on this interval 
by the uniqueness of g, and this contradicts the definition of x. Therefore, 
gl = g2 on the intersection of their domains. 0 

This lemma allows us to remove the restriction on the range of f in the 
theorem. 

Theorelll 1.2. Let A, I, and F be as in Theorem 1.1. Then for any point 
< to, ao>- in I X A and any sufficiently small interval neighborhood J of to, 
there is a unique solution from J to A passing through < to, ao>- . 
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Fig. 6.1 

Global solutions. The solutions we have found for the differential equation 
dajdt = F(t, a) are defined only in sufficiently small neighborhoods of the initial 
point to and are accordingly called local solutions. Now if we run along to Ii. 
point -< tl , al > near the end of such a local solution and then consider the local 
solution about -< tt, al > , first of all it will have to agree with our first solution 
on the intersection of the two domains, and secondly it will in general extend 
farther beyond tl than the first solution, so the two local solutions will fit together 
to make a solution on a larger t-interval than either gives separately. We can 
continue in this way to extend our original solution to what might be called a 
global solution, made up of a patchwork of matching local solutions. These 
notions are somewhat vague as described above, and we now turn to a more 
precise construction of a global solution. 

Given -< to, ao> C I X A, let (f be the family of all solutions through 
-< to, ao>. Thus g E (f if and only if g is a solution on an interval J C I, to E J, 
and g(to) = ao. Lemma 1.1 shows exactly that the uniont f of all the functions g 
in (f is itself a function, for if -< tl , al > E gl and -< tIl a2 > E g2, then al = 
gl (t) = g2(t) = a2' 

Moreover, f is a solution, because around any x in its domain f agrees with 
some g E (f. By the way f was defined we see that f is the unique maximum 
solution through -< to, ao>. We have thus proved the following theorem. 

Theorelll 1.3. Let F: I X A ~ V be a function satisfying the hypotheses of 
Theorem 1.1. Then through each -< to, ao> in I X A there is a uniquely 
determined maximal solution to the differential equation dajdt = F(t, a). 

In general, we would have to expect a maximal solution to "run into the 
boundary of A" and therefore to have a domain interval J properly included in I, 
as Fig. 6.1 suggests. 

t Remember that we are taking a function to be a set of ordered pairs, so that the 
union of a family of functions makes precise sense. 
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However, if A is the whole space W, and if F(t, a) is Lipsohitz in a for each t, 
with a Lipschitz bound e(t) that is continuous in t, then we can show that each 
maximal solution is over the whole of I. We shall shortly see that this condition 
is a natural one for the linear equation. 

Theorem 1.4. Let W be a Banach space, and let I be an open interval in ~. 
Let F: I X W ~ W be continuous, and suppose that there is a continuous 
function e: I ~ ~ such that 

for all t in I and all aI, a2 in W. Then each maximal solution to the differ­
ential equation daldt = F(t, a) has the whole of I for its domain. 

Proof. Suppose, on the contrary, that g is a maximal solution whose domain 
interval J has right-hand endpoint b less than that of I. We choose a finite open 
interval L containing b and such that LeI (see Fig. 6.2). Since L is compact, 
the continuous function e(t) has a maximum value e on L. We choose any tl 
in L n J close enough to b so that b - tl < lie, and we set al = g(t l ) and 
m = max IIF(t, al) lion L. With these values of e and m, and with any r, the 
proof of Theorem 1.1 gives us a local solution f through -< t l , al >- with domain 
(It - 5, tl + 5) for any 5 less than r/(m + re) = liCe + (mlr». Since we 
now have no restriction on r (because A = W), this bound on 5 becomes 
lie, and since we chose tl so that tl + (lie) > b, we can now choose 5 so that 
tl + 5 > b. But this gives us a contradiction; the maximal solution g through 
-< tt, al >- includes the local solution f, so that, in particular, tl + 5 :::; b. 
We have thus proved the theorem. 0 

! 

I 
I ~b 

Fig. 6.2 

Going back to our original situation, we can conclude that if the Lipschitz 
control of F is of the stronger type assumed above, and if the domain J of some 
maximal solution g is less than I, then the open set A cannot be the whole of W. 
It is in fact true that the distance from g(t) to the boundary of A approaches 
zero as t approaches an endpoint b of J which is interior to I. That is, it is now a 
theorem that p(j(t), A') ~ 0 as t ~ b. The proof is more complicated than our 
argument above, and we leave it as a set of exercises for the interested reader. 

The nth-order equation. Let AI, A 2, ... , An be open subsets of a Banach 
space W, let Ibean open interval in~, and let G: I X Al X A2 X· .. X An ~ W 
be continuous. We consider the differential equation 

dnaldtn = G(t, a, daldt, ... ,dn-Ialdtn- l ). 
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A functionf: J ~ W is a solution to this equation if J is an open subinterval of 
I, f has continuous derivatives on J up to the nth order, f(i-ll[J] C Ai, i = 
1, ... , n, and 

f(n)(t) = GCt, f(t),f'(t), . .. ,pn-ll(t)) 

for t E J. An initial condition is now given by a point 

-<to, f3I, f32,"" f3n>- E I X Al X··· X An. 

The basic theorem is almost the same as before. To simplify our notation, let a 
be the n-tuple -< aI, a2, ... , an >- in wn = V, and set A = In Ai. Also let 
1/1 be the mapping f 1---+ -< f, 1', ... , f(n-I) >- . Then the solution equation 
becomesf(n)(t) = GCt,1/If(t)). 

Theorem 1.5. Let G: I X A ~ W be as above and suppose, in addition, 
that G(t, a) is locally uniformly Lipschitz in a. Then for any -< to, fJ >- in 
I X A and for any sufficiently small open interval J containing to, there is a 
unique functionffrom J to W such thatfis a solution to the above nth-order 
equation satisfying the initial condition if;f(to) = fJ. 

Proof. There is an ancient and standard device for reducing a single nth-order 
equation to a system of first-order equations. The idea is to replace the single 
equation 

dna/dtn = G(t, a, da/dt, ... ,dn-Ia/dtn- I) 

by the system of equations 

daddt = a2, 
da2/dt = aa, 

dan_ddt = an, 
dan/dt = G(t, aI, a2, ... , an), 

and then to recognize this system as equivalent to a single first-order equation 
on a different space. In fact, if we define the mapping F = -<FI, ... , Fn>­
from I X A to V = wn by setting Fi(t, a) = ai+I for i = 1, ... , n - 1, and 
Fn(t, a) = G(t, a), then the above system becomes the single equation 

da/dt = F(t, a), 

where F is clearly locally uniformly Lipschitz in a. Now a function f = 
-<iI, ... ,fn >- from J to V is a solution of this equation if and only if 

f~ =h, 

f~ =ia, 

f~-I = fn, 

f~ = G(t, !I, ... , fn), 
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that is, if and only if f1 has derivatives up to order n, t/!(/I) = f and f~n\t) = 
GCt, t/!/I(t). The n-tuplet initial condition 1/If(to) = fl is now just f(to) = fl. 
Thus the nth-order theorem for G has turned into the first-order theorem for F, 
and so follows from Theorems 1.1 and 1.2 0 

The local solution through -< to, fl> extends to a unique maximal solution 
by Theorem 1.3 applied to our first-order problem dot./dt = F(t, a), and the 
domain of the maximal solution is the whole of I if G(t, a) is Lipschitz in a with 
a bound c(t) that is continuous and if A = W n , as in Theorem 1.4. 

EXERCISES 

1.1 Consider the equation da/dt = F(t, a) in the special case where W = 1R2. 
Write out the equation as a pair of equations involving real-valued functions and real 
variables. 

1.2 Consider the system of differential equations 

dy/dt = cos xy. 

Define the function F: 1R3 ~ 1R2 so that the above system becomes 

da/dt = F(t, a), 

where a = -<x, y>. 
1.3 In the above exercise show that F is uniformly Lipschitz in a on IR X A, where 

A is any bounded open set in 1R2. Is F uniformly Lipschitz on IR X 1R2? 

1.4 Write out the above system in terms of a solution function 1 = -</1,12>. 
Write out for this system the integrated form used in proving Theorem 1.1. 

1.5 The fixed-point theorem iteration sequence that we used in proving Theorem 1.1 
starts off with 10 as the constant function ao and then proceeds by 

In(t) = ao+ fo' F(S,fn-1(S» ds. 

Compute this sequence as far as /4 for the differential equation 

dx/dt=t+x [/'(t) = t + I(t)] 

with the initial condition 1(0) = O. That is, take 10 = 0 and compute/1, 12, fa, and 14 
from the formula. Now guess the solution 1 and verify it. 

1.6 Compute the iterates 10, /1,12, and fa for the initial-value problem 

dy/dx = x + y2, y(O) = o. 

Supposing that the solution 1 has a power series expansion about 0, what are its first 
three nonzero terms? 

1.7 Make the computation in the above exercise for the initial condition/(O) = -1. 

1.8 Do the same for 1(0) = +1. 
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1.9 Suppose that W is a Banach space and that F and G are functions from IR X W4 
to W satisfying suitable Lipschitz conditions. Show how the second-order system 

TI" = F(t, t TI, /;" TI'), ~" = G(t, ~, TI, /;" TI') 

would be brought under our standard theory by making it into a single second-order 
equation. 

I.IO Answer the above exercise by converting it to a first-order system and then to a 
single first-order equation. 

l.ll Let 8 be a nonnegative, continuous, real-valued function defined on an interval 
[0, a) c IR, and suppose that there are constants band e > 0 such that 

8(x) ~ e 10'" 8(t) dt + bx for all x E [0, a). 

a) Prove by induction that if m = 11811"" then 

8(x) ~ m(e~t + ~ f (e~( 
n. C j=l J. 

for every n. 

b) Then prove that 

( b cz ) 8 x) ~ - (e - 1 
e 

for all x. 

1.12 Let W be a Banach space, let I be an interval in IR, and let F be a continuous 
mapping from I X W to W. Suppose that IIF(t, cio) II :::; b for all tEl and that 

lIF(t, a) - F(t, (3) II :::; ella - {311 

for all t in I and all a, (3 in W. Let f be the global solution through -< to, ao >-, and 
set 8(x) = Ilf(to + x) - aoll. Prove that 

8(x) ~ fox 8(t) dt + bx 

for x > 0 and to + x in I. Then use the result in the above exercise to derive a much 
stronger bound than we have in the text on the growth of the solution f(t) as t goes 
away from to. 

1.13 With the hypotheses on F as in the above exercise, show that the iteration 
sequence for the solution through -< to, ao>- converges on the whole of I by showing 
inductively that if fo = ao and 

then 

fn(t) = ao+ fol F«S),fn-l(S)) ds, 

b (ett 
Ifn(t) - fn-l(t) I ~ - -, . 

C n. 

From these inequalities prove directly that the solution f through -< to, ao>- satisfies 

IIf(t) - aoll < ~ (ec1t-tol - 1). 
-c 
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2. DIFFERENTIABLE DEPENDENCE ON PARAMETERS 

It is exceedingly important in some applications to know how the solution to the 
system 

f'(t) = G(t,f(t)), 

varies with the initial point -< t l , al >-. In order to state the problem precisely, 
we fix an open interval J, set 'U = Br(ao) C V = CBe(J, W) as in the previous 
section, and require a solution in'U passing through -< h, al >- , where -< h, al >­
is near -< to, ao>-. Supposing that a unique solution f exists, we then have a 
mapping -< tll al >- ~ f, and it is the continuity and differentiability of this map 
that we wish to study. 

TheoreDl 2.1. Let L X U be a neighborhood of -< to, ao>- in the Banach 
space ~ X W, and let F(t, a) be a bounded continuous mapping from 
L X U to W which is Lipschitz in a uniformly over t. Then there is a neigh­
borhood J X N of -< to, ao>- with the following property. For any -< tll al >­
in J X N there is a unique function f from J to U which is a solution of the 
differential equation da/dt = F(t, a) passing through -< t l , al >-, and the 
mapping -< t l , al >- ~ f from J X N to V is continuous. 

Proof. We simply reexamine the calculation of Theorem 1.1 and take 0 a little 
smaller. Let K(tll all f) be the mapping of that theorem but with initial point 
-< t l , al >-, so that g = K(t l , all f) if and only if get) = al + ft~ F(s, f(s)) ds for 
all t in J. Clearly K is continuous in -< tl, al >- for each fixed f. 

If N is the ball B r / 2 (ao), then the inequality (1) in the proof shows that 
IIK(tll aI, ao) - aoll ~ lIal - aoll + om ~ r/2 + om. The second inequality 
remains unchanged. Therefore, f ~ K(tll aI, f) is a map from'U to V which is a 
contraction with constant C = OC if OC < 1, and which moves the center ao of 'U 
a distance less than (1 - C)r if r/2 + om < (1 - oc)r. This new double 
requirement on 0 is equivalent to 

r 
o < 2(m + cr)' 

which is just half the old value. With J of length 0, we can now apply Theorem 
9.2 of Chapter 4 to the map K(tl' aI, f) from (J X N) X'U to V, and so have 
our theorem. 0 

If we want the map -< tll al >- ~ f to be differentiable, it is sufficient, by 
Theorem 9.4 of Chapter 4, to know in addition to the above that 

K:(JXN)X'U~V 

is continuously differentiable. And to deduce this, it is sufficient to suppose that 
dF exists and is utniformly continuous on L X U. 

TheoreDl 2.2. Let L X U be a neighborhood of -< to, ao>- in the Banach 
space ~ X W, and let F(t, a) be a bounded mapping from LX U to W such 
that dF exists, is bounded, and is uniformly continuous on L X U. Then, in 
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the context of the above theorem, the solution f is a continuously differ­
entiable function of the initial value -< tt, at >- . 

Proof. We have to show that the map K(tt, at, f) from (J X N) X '11 to Vis con­
tinuously differentiable, after which we can apply Theorem 9.4 of Chapter 4, as 
we remarked above. Now the mapping h 1--+ k defined by k(t) = ft~ h(s) ds is a 
bounded linear mapping from V to V which clearly depends continuously on tt, 
and by Theorem 14.3 of Chapter 3 the integrand map f 1--+ h defined by h(s) = 
F(s, f(s)) is continuously differentiable on '11. Composing these two maps we see 
that dK~tl''''l.J> exists and is continuous on J X N X '11. Now 

LlK~tl''''l.J>(~) = ~, 

so that dK 2 = I, and LlK~tl''''l.J>(h) = - ft~l+h F(s,f(s)) ds, from which it 
follows easily that dK~tl''''l.J>(h) =-hF(tt,f(t)). The three partial differentials 
dK t, dK 2, and dK 3 thus exist and are continuous on J X N X '11, and it follows 
from Theorem 8.3 of Chapter 3 that KCtt, at, f) is continuously differentiable 
there. D 

Corollary. If s is any point in J, then the value f(s) of a solution at s is a 
differentiable function of its value at to. 

Proof. Let f", be the solution through -< to, a>-. By the theorem, a 1--+ f", is a 
continuously differentiable map from N to the function space V = ffie(J, W). 
Eut 71'8: f 1--+ f(s) is a bounded linear mapping and thus trivially continuously 
differentiable. Composing these two maps, we see that a 1--+ f",(s) is continuously 
differentiable on N. D 

It is also possible to make the continuous and differentiable dependence of 
the solution on its initial value -< to, ao>- into a global affair. The following is 
the theorem. We shall not go into its proof here. 

Theorem 2.3. Let f be the maximal solution through -< to, ao>- with domain 
J, and let [a, b] be any finite closed subinterval of J containing to. Then there 
exists an E > 0 such that for every -< tt, at >- E B E( -< to, ao>-) the domain 
of the global solution through -<tt, at >- includes [a, b], and the restriction 
of this solution to [a, b] is a continuous function of -< tt, at >-. If F satisfies 
the hypotheses of Theorem 2.2, then this dependence is continuously 
differentiable. 

Finally, suppose that F depends continuously (or continuously differ­
entiably) on a parameter A, so that we have F(A, t, a) on M X I X A. Now the 
solution f to the initial-value problem 

f'(t) = F(t,f(t)), 

depends on the parameter A as well as on the initial condition fUt) = at, and if 
the reader has fully understood our arguments above, he will see that we can 
show in the same way that the dependence of f on A is also continuous (con­
tinuously differentiable). We shall not go into these details here. 
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3. THE LINEAR EQUATION 

We now suppose that the function F of Section 1 is from I X W to Wand con­
tinuous, and that F(t, a) is linear in a for each fixed t. It is not hard to see that 
we then automatically have the strong Lipschitz hypothesis of Theorem 1.4, 
which we shall in any case now assume. Here this is a boundedness condition 
on a linear map: we are assuming that F(t, a) = Tt(a), where T t E Hom W, 
and that II Ttll :::; e(t) for all t, where e(t) is continuous on I. 

As one might expect, in this situation the existence and uniqueness theory of 
Section 1 makes contact with general linear theory. Let X 0 be the vector space 
e(1, W) of all continuous functions from I to W, and let X 1 be its subspace 
e 1(1, W) of all functions having continuous first derivatives. Norms will play 
no role in our theorem. 

Theorem 3.1. The mapping S: X 1 ~ X 0 defined by setting g = Sf if 
get) = f'(t) - F(t, f(t)) is a surjective linear mapping. The set N of global 
solutions of the differential equation da/dt = F(t, a) is the null space of S, 
and is therefore, in particular, a vector space. For each to E I the restriction 
to N of the coordinate (evaluation) mapping 'Trto: f ~ f(to) is an isomorphism 
from N to W. The null space M of 'Trto is therefore a complement of N in X 1, 

and so determines a right inverse R of S. The mapping f ~ -< Sf, f(to) > 
is an isomorphism from X 1 to X 0 X W, and this fact is equivalent to all 
the above assertions. 

Proof. For any fixed gin Xo we set G(t, a) = F(t, a) + get) and consider the 
(nonlinear) equation da/dt = G(t, a). By Theorems 1.3 and 1.4 it has a unique 
maximal solution f through any initial point -< to, ao>, and the domain of f is 
the whole of I. That is, for each pair -< g, a> in X 0 X W there is a unique f in 
X 1 such that -< Sf, f(to) > = -< g, a>. The mapping 

-<S, 'Trto> :f~ -<Sf,f(to» 

is thus bijective, and since it is clearly linear, it is an isomorphism. In particular, 
S is surjective. The null space N of S is the inverse image of {O} X W under the 
above isomorphism; that is, 'Trto r N is an isomorphism from N to W. 

Finally, the null space M of 'Trto is the inverse image of X 0 X {O} under 
-< S, 'Tr to> , and the direct sum decomposition X 1 = M $ N simply reflects the 
decomposition X 0 X W = (X 0 X {O}) EB ({O} X W) under the inverse isomor­
phism. This finishes the proof of the theorem. 0 

The problem of finding, for a given g in X 0 and a given ao in W, the unique f 
in X 1 such that S(f) = g and f(to) = ao is called the initial-value problem. At 
the theoretical level, the problem is solved by the above theorem, which states 
that the uniquely determined f exists. At the practical level of computation, the 
problem remains important. 

The fact that M = Mto is a complement of N breaks down the initial-value 
problem into two independent subproblems. The right inverse R associated with 
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Mto finds h in X 1 such that S(h) = g and h(to) = O. The inverse of the isomor­
phism f 1-+ f(to) from N to W selects that k in Xl such that S(k) = 0 and 
k(to) = ao. Then f = h + k. The first subproblem is the problem of "solving 
the inhomogeneous equation with homogeneous initial data ", and the second is 
the problem of "solving the homogeneous equation with inhomogeneous initial 
data". In a certain sense the initial-value problem is the "direct sum" of these 
two independent problems. 

We shall now study the homogeneous equation da/dt = Tt(a) more closely. 
As we saw above, its solution space N is isomorphic to W under each projection 
map 'lrt = f 1-+ f(t). Let CPt be this isomorphism (so that CPt = 'lrt r N). We now 
choose some fixed to in I-we may as well suppose that I contains 0 and take 
to = O-and set K t = CPt 0 CPOI. Then {Kt} is a one-parameter family of linear 
isomorphisms of W with itself, and if we setf(3(t) = K t({3), thenf(3 is the solution 
of da/dt = Tt(a) passing through <0, fJ>. We call K t a fundamental solution of 
the homogeneous equation da/dt = Tt(a). 

Since fp(t) = Tt(f(3(t)), we see that d(Kt)/dt = T t 0 K t in the sense that 
the equation is true at each fJ in W. However, the derivative d(Kt)/dt does not 
necessarily exist as a norm limit in Hom W. This is because our hypotheses on T, 
do not imply that the mapping t 1-+ T t is continuous from I to Hom W. If this 
mapping is continuous, then the mapping <t, A> 1-+ T t 0 A is continuous from 
I X Hom W to Hom W, and the initial-value problem 

dA/dt = T t 0 A, Ao = I 

has a unique solution At in (31(1, Hom W). Because evaluation at fJ is a bounded 
linear mapping from Hom W to W, At(fJ) is a differentiable function of t and 

This implies that At(fJ) = Kt(fJ) for all fJ, so K t = At. In particular, the 
fundamental solution t 1-+ K t is now a differentiable map into Hom W, and 
dKt/dt = T t 0 K t. We have proved the following theorem. 

Theorem. 3.2. Let t 1-+ T t be a continuous map from an interval neighbor­
hood I of 0 to Hom W. Then the fundamental solution t 1-+ K t of the 
differential equation da/dt = Tt(a) is the parametrized arc from I to 
Hom W that is the solution of the initial-value problem dA/dt = T t 0 A, 
Ao = I. 

In terms of the isomorphisms K t = K(t), we can now obtain an explicit 
solution for the inhomogeneous equation dajdt = Tt(a) + g(t). We want f such 
that 

f'(t) - Tt(f(t)) = g(t). 

Now K'(t) = T t 0 K(t), so that T t = K'(t) 0 K(t)-l, and it follows from 
Exercise 8.12 of Chapter 4 and the general product rule for differentiation 
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(Theorem 8.4 of Chapter 3) that the left side of the equation above is exactly 

K(t) (~t [K(t)-l (J(t) )]) . 

The equation we have to solve can thus be rewritten as 

We therefore have an obvious solution, and even if the reader has found our 
:plOtivating argument too technical, he should be able to check the solution by 
differentiating. 

Theorelll 3.3. In the context of Theorem 3.2, the function 

f(t) = K t [fot K;l(g(S) dsJ 
is the solution of the inhomogeneous initial-value problem 

da/dt = Tt(a) + g(t), f(O) = o. 
This therefore is a formula for the right inverse R of S determined by thp 
complement M 0 of the null space N of S. 

The special case of the constant coefficient equation, where the "coefficient" 
operator T t is a fixed T in Hom W, is extremely important. The first new fact. 
to be observed is that if f is a solution of da/dt = T(a), then so is 1'. For the 
equationf'(t) = T(j(t) has a differentiable right-hand side, and differentiating, 
we getf"(t) = T(j'(t). That is: 

Lelllllla 3.1. The solution space N of the constant coefficient equation 
da/dt = T(a) is invariant under the derivative operator D. 

Moreover, we see from the differential equation that the operator D on N 
is just composition with T. More precisely, the equation f'(t) = T(J(t) can be 
rewritten 'lrt 0 D = To 'lrt, and since the restriction of 'lrt to N is the isomor­
phism CPt from N to W, this equation can be solved for T. We thus have the 
following lemma. 

Lemma 3.2. For each fixed t the isomorphism CPt from N to W takes the 
derivative operator D on N to the operator T on W. That is, 

T = CPt 0 D 0 cp-;l. 

The equation for the fundamental solution K t is now dS/dt = TS. In the 
elementary calculus this is the equation for the exponential function, which leads 
us to expect and immediately check that K t = etT• (See the end of Section 8 of 
Chapter 4.) The solution of da/dt = T(a) through <0, {3> is thus the function 

etT (3 = f: ti Ti.({3) . 
o J! 
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If T satisfies a polynomial equation p(T) = 0, as we know it must if W is 
finite-dimensional, then our analysis can be carried significantly further. Suppose 
for now that p has only real roots, so that its relatively prime factorization is 
p(x) = II~(x - Xi)mi. Then we know from Theorem 5.5 of Chapter 1 that W 
is the direct sum W = EB~ Wi of the null spaces Wi of the transformations 
(T - Xi)mi , and that each Wi is invariant under T. This gives us a much simpler 
form for the solution curve etTa if the point a is in one of the null spaces Wi. 
Taking such a subspace Wi itself as W for the moment, we have (T - Xl)m = 0, 
so that T = XI + R, where Rm = 0, and the factorization etT = et).etR, 

together with the now finite series expansion of etR, gives us 

etTa = et). [a + tR(a) + ... + tm-1 Rm-1(a)]. 
(m - 1)\ 

Note that the number of terms on the right is the degree of the factor (t - X)m 
in the polynomial p(t). 

In the general situation where W = EB~ Wi, we have a = L:~ ai, etT(a), = 
L:~ etT(ai), and each etT(ai) of the above form. The solution of f'(t) = T(j(t)) 
through the general point -< 0, a>- is thus a finite sum of terms of the form 
tiet).ifJi;' the number of terms being the degree of the polynomial p. 

If W is a complex Banach space, then the restriction that p have only real 
roots is superfluous. We get exactly the same formula but with complex values 
of X. This introduces more variety into the behavior of the solution curves 
since an outside exponential factor et). = etpeiIP now has a periodic factor if 
11 ~ 0. 

Altogether we have proved the following theorem. 

TheorelD 3.4. If W is a real or complex Banach space and T E Hom W, 
then the solution curve in W of the initial-value problem f' (t) = T (j(t)) , 
f(O) = fJ, is 

aD i 
f(t) = etT fJ = L ~ Ti(fJ). 

o J. 

If T satisfies a polynomial equation (T - X)m = 0, then 

f(t) = et)' [fJ + tR(fJ) + ... + (~:11) \ Rm-1(fJ) ] , 

where R = T - H. If T satisfies a polynomial equation p(T) = ° and p 
has the relatively prime factorization p(x) = II~ (x - Xi)mi, then f(t) is a 
sum of k terms of the above type, and so has the form 

f(t) = L tiet).ifJij, 
i.i 

where the number of terms on the right is the degree of the polynomial p, 
and each fJii is a fixed (constant) vector. 



280 DIFFERENTIAL EQUATIONS 

It is important to notice how the asymptotic behavior of f(t) as t ---? + 00 iH 

controlled by the polynomial roots Ai. We first restrict ourselves to the solution 
through a vector a in one of the subspaces Wi, which amounts to supposing that. 
(T - A)m = O. Then if A has a positive real part, so that eO. = et/Leitv with 
JL > 0, then Ilf(t)1I ---? 00 in exponential fashion. If A has a negative real part, 
then f(t) approaches zero as t ---? 00 (but its norm becomes infinite exponentially 
fast as t ---? -(0). If the real part of A is zero, then IIf(t)lI---? 00 like tm - I if 
m > 1. Thus the only way for f to be bounded on the whole of IR is for the real 
part of A to be zero and m = 1, in which case f is periodic. Similarly, in the 
general case where p(T) = In (T - An)m" = 0, it will be true that all the 
solution curves are bounded on the whole of IR if and only if the roots An are all 
pure imaginary and all the multiplicities mn are 1. 

EXERCISES 

3.1 Let I be an open interval in IR, and let W be a normed linear space. Let F(t, a) 
be a continuous function from I X W to W which is linear in a for each fixed t. Prove 
that there is a function c(t) which is bounded on every closed interval [a, b] included 
in I and such that IIF(t, a) II ~ c(t) Iiall for all a and t. Then show that c can be made 
continuous. (You may want to use the Heine-Borel property: If [a, b] is covered by n 
collection of open intervals, then some finite subcollection already covers [a, b].) 

3.2 In the text we omitted checking that jf-+ jCn) - G(t,j,j', ... ,jCn-I) is sur­
jective from Xn to Xo. Prove that this is so by tracking down the surjectivity through 
the reduction to a first-order system. 

3.3 Suppose that the coefficients ai(t) in the operator 
n 

Tj = L: aJ'i) 
o 

are all themselves in el . Show that the null space N of T is a subspace of en+!. State 
a generalization of this theorem and indicate roughly why it is true. 

3.4 Suppose that W is a Banach space, T E Hom W, and (3 is an eigenvector of l' 
with eigenvalue r. Show that the solution of the constant coefficient equation dot/dt = 
T(a) through < 0, (3 >- is j(t) = etT{3. 

3.5 Suppose next that W is finite-dimensional and has a basis {(3iH consisting of 
eigenvectors of T, with corresponding eigenvalues rio Find a formula for the solution 
through < 0, a>- in terms of the basis expansion of a. 

3.6 A very important special case of the linear equation da/dt = Tt(a) is when th(' 
operator function T t is periodic. Suppose, for example, that Tt+l = T t for all t. 
Show that then Kt+n = Kt(Kl)n for all t and n. 

Assume next that KI has a logarithm, and so can be written KI = eA for some A 
in Hom W. (We know from Exercise 11.19 of Chapter 4 that this is always possibll~ 
if W is finite-dimensional.) Show that now K t can be written in the form 

K t = B(t)e tA , 

where B(t) is periodic with period 1. 
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3.7 Continuing the above exercise, suppose now that W is a finite-dimensional 
complex vector space. Using the analysis of etAfJ given in the text, show that the 
differential equation da/dt = Tt(a) has a periodic solution (with any period) only if 
KI has an eigenvalue of absolute value 1. Show also that if KI has an nth root of 
unity as an eigenvalue, then the differential equation has a periodic solution with 
period n. 
3.8 Write out the special form that the formula of Theorem 3.3 takes in the constant 

coefficient situation. 

3.9 It is interesting to look at the facts of Theorem 3.1 from the point of view of 
Theorem 5.3 of Chapter 1. Assume that S: Xl ~ Xo is surjective and that its null 
space N is isomorphic to W under the coordinate (evaluation) map 71'to. Prove that if M 
is the nulls pace of 71'to in Xl, then S r M is an isomorphism onto Xo by applying this 
theorem. 

4. THE nTH-ORDER LINEAR EQUATION 

The nth-order linear differential equation is the equation 

dna/dtn = GCt, a, da/dt, ... , dn-Ia/dtn- l), 

where GCt, a) = GCt, ab ..• , an) is now linear from V = wn to W for each t in I. 
We convert this to a first-order equation da/dt = FCt, a) just as before, where 
now F is a map from I X V to V that is linear in its second variable a, FCt, a) = 
TtCa). 

Our proof of Theorem 1.5 showed that a functionf in e(n) (I, W) is a solution 
of the nth-order equation dna/dtn = G(t, a, ... , dn-Ia/dtn- l) if and only if 
the n-tuplet 1/;f = -<f,!', ... ,f(n-O> is a solution of the first-order equation 
da/dt = F(t, a) = TtCa). We know that the latter solutions form a vector 
subspace N of el(I, wn), and since the map 1/;: f I--'t -<f,!', ... ,!'n-l) > is 
linear from en(l, W) to el(I, Wn), it follows that the set N of solutions of the 
nth-order equation is a subspace of en(I, W) and 1/; r N is an isomorphism from 
'N to N. Since the coordinate evaluation CPt = 7rt r N is an isomorphism from N 
to wn for each t (Theorem 3.1), it follows that the map 

7rt 0 1/;:fl--'t -<fCt),!'Ct), ... ,f(n-OCt» 

takes N isomorphically to wn. Its null space M t is a complement of N in en, as 
before. Here M t is the set of functions f in enCI, W) such that fCt) = ... = 
f(n-OCt) = O. 

We now consider the special case W = ~. For each fixed t, G is now a linear 
map from ~n to ~, that is, an element of c~n)*, and its coordinate set with 
respect to the standard basis is an n-tuple k = -< kl' ... , k n > . Since the 
linear map varies continuously with t, the n-tuple k varies continuously with t. 
Thus, when we take t into account, we have an n-tuple kCt) = -<kl(t), ... , knCt) > 
of continuous real-valued functions on I such that 

n 

GCt, Xb ••• , xn) = :E kiCt)Xi. 
i=l 
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The solution space N of the nth-order differential equation 

dna/dtn = G(a, ... , dn-la/dtn-I, t) 

is just the null space of the linear transformation L: en(I, !R.) ~ eO(I, !R.) 
defined by 

If we shift indices to coincide with the order of the derivative, and if we let t n ) 

also have a coefficient function, then our nth-order linear differential operator J, 
appears as 

(Lf)(t) = anCt)f(n)(t) + ... + ao(t)f(t). 

Giving t n) a coefficient function an changes nothing provided an(t) is never 
zero, since then it can be divided out to give the form we have studied. This is 
called the regular case. The singular case, where an(t) is zero for some t, requires 
further study, and we shall not go into it here. 

We recapitulate what our general linear theory tells us about this situation. 

Theorem 4.1. L is a surjective linear transformation from the space en(l) 
of all real-valued functions on I having continuous derivatives through 
order n to the space e°(I) = e(I) of continuous functions on I. Its null 
space N is the solution space of our original differential equation. For 
each to in I the restriction to N of the mapping <Pto 0 1/;:fl---7 -<f(to), ... , 
tn-°(tO) >- is an isomorphism from N to !R. n, and the set Mto of functions 
f in en such that f(to) = ... = fIn-OCto) = 0 is therefore a complement 
of N in en(I), and determines a linear right inverse of L. 

The practical problem of "solving" the differential equation LU) = g for J 
when g is given falls into two parts. First we have to find the null space N of L, 
that is, we have to solve the homogeneous equation LU) = O. Since N is all 
n-dimensional vector space, the problem of delineating it is equivalent to finding 
a basis, and this is clearly the efficient way to proceed. Our first problem there­
fore is to find n linearly independent solutions {uiE of LU) = O. Our second 
problem is to find a right inverse of L, that is, a linear way of picking one f such 
that LU) = g for each g. Here the obvious thing to do is to try to make th(, 
formula of Theorem 3.3 into a practical computation. If v is one solution or 
LU) = g, then of course the set of all solutions is the affine subspace N + v. 

We shall start with the first problem, that of finding a basis {Ui} ~ of solutiolls 
to LU) = O. Unfortunately, there is no general method available, and we hav(~ 
to be content with partial success. We shall see that we can easily solve thp 
first-order equation directly, and that if we can find one solution of the nth­
order equation, then we can reduce the problem to solving an equation of order 
n - 1. Moreover, in the very important special case of an operator L with 
constant coefficients, Theorem 3.4 gives a complete explicit solution. 

The first-order homogeneous linear equation can be written in the form 
y' + a(t)y = 0, where the coefficient of y' has been divided out. Dividing by y 
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and remembering that y' /y = (log y)" we see that, formally at least, a solution 
is given by log y = - J a(t) dt or y = e-fa<tldt, and we can check it by inspec­
tion. Thus the equation y' + y/t = 0 has a solution y = e-1og t = 1ft, as the 
reader might have noticed directly. 

Suppose now that L is an nth-order operator and that we know one solution 
U of Lf = o. Our problem then is to find n - 1 solutions VlJ ••• ,Vn-l inde­
pendent of each other and of u. It might even be reasonable to guess that these 
could be determined as solutions of an equation of order n - 1. We try to find 
a second solution vet) in the form c(t)u(t), where c(t) is an unknown function. 
Our motivation, in part, is that such a solution would automatically be inde­
pendent of u unless c(t) turns out to be a constant. 

Now if vet) = c(t)u(t), then v' = cu' + c'u, and generally 

vU) = t (~) c(i)uU- i ). 
i=O '/. 

If we write down L(v) = L~ aj(t)v(j)(t) and collect those terms involving c(t), 
we get 

n 

L(v) = c(t) L ajuU) + terms involving c', ... , c(n) 
o 

= cL(u) + S(c') = S(c'), 

where S is a certain linear differential operator of order n - 1 which can be 
explicitly computed from the above formulas. We claim that solving S(n = 0 
solves our original problem. For suppose that {gin- l is a basis for the null 
space of S, and set Ci(t) = Jci gi. Then L(CiU) = S(c~) = S(gi) = 0 for i = 
1, ... , n - 1. Moreover, u, ClU, ... ,Cn_lU are independent, for if u = 
L~-l kic.u, then 1 = L~-l kiCi(t) and 0 = L~-l kiC~(t) = L~-l kigi(t), con­
tradicting the independence of the set {gi}. 

We have thus shown that if we can find one solution u of the nth-order 
equation Lf = 0, then its complete solution is reduced to solving an equation 
Sf = 0 of order n - 1 (although our independence argument was a little 
sketchy). 

This reduction procedure does not combine with the solution of the first­
order equation to build up a sequence of independent solutions of the nth-order 
equation because, roughly speaking, it "works off the top instead of off the 
bottom". For the combination to be successful, we would have to be able to 
find from a given nth-order operator a first-order operator S such that N(S) C 
N(L), and we can't do this in general. However, we can do it when the coefficient 
functions in L are all constants, although we shall in fact proceed differently. 

Meanwhile it is valuable to note that a second-order equation Lf = 0 can 
be solved completely if we can find one solution u, since the above argument 
reduces the remaining problem to a first-order equation which can then be solved 
by an integration, as we saw earlier. Consider, for instance, the equation 
y" - 2y/t2 = 0 over any interval I not containing 0, so that ao(t) = l/t2 is 
continuous on I. We see by inspection that u(t) = t2 is one solution. Then we 
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know that we can find a solution vet) independent of u(t) in the form vet) = t2c(t) 
and that the problem will become a first-order problem for c'. We have, in fac1, 
v' = t2c' + 2tc and v" = t 2c" + 4tc' + 2c, so that L(v) = v" - 2v/t2 = 

t2c" + 4tc', and L(v) = 0 if and only if (c')' + (4/t)c' = O. Thus 

c' = e-f4dt/t = e-41ogt = l/t\ c = 1/t3 

(to within a scalar multiple; we only want a basis!), and v = t2c(t) = l/l. 
(The reader may wish to check that this is the promised solution.) The null 
space of the operator LU) = f" - 2f/t2 is thus the linear span of {t 2, l/t] . 

We now turn to an important tractable case, the differential operator 

Lf = anf(n) + an_d(n-O + ... + aof, 

where the coefficients ai are constants and an might as well be taken to 1. What 
makes this case accessible is that now L is a polynomial in the derivative operator 
D. That is, if Df =!" so that Djf = f(j), then L = p(D), where p(x) = 

L~ aixi. 
The most elegant, but not the most elementary, way to handle this equation 

is to go over to the equivalent first-order system dx/dt = T(x) on IR n and to 
apply the relevant theory from the last section. 

Theorem 4.2. If pet) = (t - b)n, then the solution space N of the COIl­

stant coefficient nth-order equation p(D)f = 0 has the basis 

{ebt , tebt, ... , tn-1ebt}. 

If pet) is a polynomial which has a relatively prime factorization pet) = 
II~ Pi(t) with each P.(t) of the above fonn, then the solution space of the 
constant coefficient equation p(D)f = 0 has the basis UB" where Bi is th(! 
above basis for the solution space Ni of pi(D)f = O. 

Proof. We know that the mapping if;:f~ <'f,!', ... ,f(n-O>- is an isomor­
phism from the null space N of p(D) to the null space N of dx/dt - T(x). It i;; 
clear that if; commutes with differentiation, if;(Df) = <.!', ... , f(n) >- = Dif; (f) , 
and since we know that N is invariant under D by Lemma 3.1, it follows (and call 
easily be checked directly) that N is invariant under D. By Lemma 3.2 we have 
T = CPt 0 D 0 CPt 1, which simply says that the isomorphism CPt: N ---7 IRn take;; 
the operator D on N into the operator T on IRn. Altogether CPt 0 if; takes D 
on N into Ton IR n, and since p(D) = 0 on N, it follows that peT) = 0 on IRn. 

We saw in Theorem 3.4 that if peT) = 0 and p = (t - b)n, then the 
solution space N of dx/dt = T(x) is spanned by vectors of the form 

The first coordinates of the n-tuple-valued functions g in N form the space N 
(under the isomorphism f = if;-lg), and we therefore see that N is spanned by 
the functions ebt, ... ,tn-1ebt. Since N is n-dimensional, and since there are n 
of these functions, the spanning set forms a basis. 
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The remainder of the theorem can be viewed as the combination of the 
above and the direct application of Theorem 5.5 of Chapter 1 to the equation 
p(D) = 0 on N, or as the carry-over to N under the isomorphism 1/; -1 of the facts 
already established for N in the last section. 0 

If the roots of the polynomial p are not all real, then we have to resort to 
the complexification theory that we developed in the exercises of Section 11, 
Chapter 4. Except for one final step, the results are the same. The one extra 
fact that has to be applied is that the null space of a real operator T acting on a 
real vector space Y is exactly the intersection with Y of the null space of the 
complexification S of T acting on the complexification Z = Y EB iY of Y. 
This implies that if p(t) is a polynomial with real coefficients, then we get the 
real solutions of p(D)f = 0 as the real parts of the complex solutions. In order 
to see exactly what this means, suppose that q(x) = (x2 - 2bx + c)m is one of 
the relatively prime factors of p(x) over tR, with x2 - 2bx + c irreducible over tR. 
Over C, q(x) factors into (x - A)m(X - x)m, where A = b + iw and w2 = c - b2. 
It follows from our general theory above that the complex 2m-dimensional 
null space of q(D) is the complex span of 

{eht teht tm- 1eht e~t teXt tm- 1eXt } , , ... , ", ... , . 

The real parts of the complex linear combinations of these 2m functions is a 
2m-dimensional real vector space spanned by the real parts of the above functions 
and the real parts of i times the above functions. That is, the null space of the 
real operator q(D) is a 2m-dimensional real space spanned by 

{ebt cos wt, tebt cos wt, ... , tm- 1ebt cos wt; ebt sin wt, ... , tm- 1ebt sin wt}. 

Since there are 2m of these functions, they must be independent and must form 
a basis for the real solution space of q(D)f = O. Thus, 

Theorelll 4.3. If p(t) = (t2 + 2bt + c)m and b2 < c, then the solution space 
of the constant coefficient 2mth-order equation p(D)f = 0 has the basis 

{ i bt }m-l { i bt· }m-l t e cos wt i=O ute sm wt i=O, 

where w2 = c - b2. For any polynomial p(t) with real coefficients, if p(t) = 
II~ Pi(t) is its relatively prime factorization into powers of linear factors and 
powers of irreducible quadratic factors, then the solution space N of 
p(D)f = 0 has the basis U~ Bi, where Bi is the basis for the null space of 
Pi(D) that we displayed above if Pi(t) is a power of an irreducible quadratic, 
and Bi is the basis of Theorem 4.2 if Pi(t) is a power of a linear factor. 

Suppose, for example, that we want to find a basis for the null space of 
D4 - 1 = O. Here p(x) = X4 - 1 = (x - l)(x + l)(x - i)(x + i). The 
basis for the complex solution space is therefore {e t, e-t, eit, e-it}. Since eit = 

cos t + i sin t, the basis for the real solution space is {e t, e-t, cos t, sin t}. 
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The same problem for D3 - 1 = 0 gives us 

p(x) = x 3 - 1 = (x - 1)(x2 + X + 1) 

= (x - 1) (x + 1 +2iV~ (x + 1 -2i~, 
so that the basis for the complex solution space is 

{et, e-[(1+i.y3)/2lt, e-[(1-i.y3/2Jt} 

and the basis for the real solution space is 

{et, e-t/2 cos (V3t/2), e-t/2 sin (y'3t/2)}. 

6.4 

* Our results above suggest that the collection a of all real-valued 
solutions of constant coefficient homogeneous linear differential equations con­
tains the functions ti, ert , cos wt, sin wt for all i, r, and w, and is closed under 
addition and multiplication, and is in fact the algebra generated by these functions. 

We can easily prove this conjecture. We first consider sums. Suppose that 
T(f) = 0 and that S(g) = 0, where Sand T are two such constant coefficient 
operators. Then f + g is in the null space of SoT because Sand T commute: 
(S 0 T)(f + g) = (S 0 T)(f) + (S 0 T)(g) = S(Tf) + T(Sg) = 0 + 0 = o. We 
know that Sand T commute because they are both polynomials in D. 

In order to treat products, we first have to recognize that the linear span of 
all the trigonometric functions sin at, cos bt is an algebra. In other words, any 
finite product of such functions is a linear combination of such functions. This 
is the role of a certain class of trigonometric identities, such as 2 sin x cos y = 
sin (x + y) + sin (x - y), which the reader has undoubtedly had to struggle 
with. (And again the mystery disappears when we are allowed to treat them 
as complex exponentials.) Then we observe that any function in the algebra a is 
a finite sum of terms each of which is of the form tVt sin wt or tVt cos wt for 
some i, r, and w. We can exhibit an operator T having such a function in its 
null space, and our finite sum of such terms will then be in the null space of the 
composition of these operators T by our first argument. 

We are tempted to say one more thing. The functions ti, ert, sin wt, cos wt, 
and sums of their products can be shown to be exactly the continuous functions 
f: IR - IR such that the set of translates of f has a finite-dimensional span. That 
is, if we define translation through x, K x, by (Kxf)(t) = f(t - x), then for 
exactly the above functionsfthe linear span of {Kxf, x E IR} is finite-dimensional. 
This second characterization of exactly the same class of functions cannot be 
accidental. Part of the secret lies in the fact that the constant coefficient oper­
ators T are exactly those linear differential operators that commute with trans­
lation. That is, if T is a linear differential operator, then T 0 Kx = Kx 0 T for 
all x if and only if T has constant coefficients. Now we have noted in an early 
chapter that if To S = SoT, then the null space of T is invariant under S. 
Therefore, the null space N of a constant coefficient operator T is invariant under 
all translations: Kx[N] eN for all x. Now we know that N is finite-dimensional 
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from our differential equation theory. Therefore, the functions in N are such 
that their translates have a finite-dimensional span! 

This device of gaining additional information about the null space N of a 
linear operator T by finding operators S that commute with T, so that N is 
S-invariant, is much used in advanced mathematics. It is especially important 
when we have a group of commuting operators S, as we do in the above case with 
the operators S = K",. 

What we have not shown is that if a continuous function f is such that its 
translation generates a finite-dimensional vector space, then f is in the null space 
of some constant coefficient operator p(D). This is delicate, and it depends on 
showing that if {Kt} is a one-parameter family of linear transformations on a 
finite-dimensional space such that K.+t = K. 0 K t and K t --7 I as t --7 0, then 
there is an S in Hom V such that K t = ets.* 

EXERCISES 

Find solutions for the following equations. 

4.1 

4.3 

4.5 

4.7 

x"-3x'+2x = 0 

x"+2x'+3x = 0 

XIII - 3x"+ 3x' - x = 0 

x(6) - x" = 0 

4.9 XIII ~ x" = 0 

4.2 x" + 2x' - 3x = 0 

4.4 x" + 2x' + x = 0 

4.6 x'" - x = 0 

4.8 x'" = 0 

4.10 Solve the initial-value problem x" + 4x' - 5x = 0, x(O) = 1, x'(O) = 2. 

4.11 Solve the initial-value problem XIII + x' = O,x(O) = O,x'(O) = -l,x"(O) = 1. 

4.12 Find one solution u of the equation 4t2x" + x = 0 by trying u(t) = tn, and then 
find a second solution as in the text by setting v(t) = c(t)u(t). 

4.13 Solve t3x'" - 3tx' + 3x = 0 by trying u(t) = tn. 

4.14 Solve tx" + x' = O. 

4.15 Solve t(xlll + x') + 2(x" + x) = O. 

4.16 Knowing that e-bt cos wt and e-bt sin wt are solutions of a second-order linear 
differential equation, and observing that their values at 0 are 1 and 0, we know that 
they are independent. Why? 

4.17 Find constant coefficient differential equations of which the following functions 
are solutions: t2 , sin t, t2 sin t. 

4.18 If f and g are independent solutions of a second-order linear differential equation 
u" + alu' + a2U = 0 with continuous coefficient functions, then we know that the 
vectors <f(x) , f'(x) > and <g(x), g'(x) > are independent at every point x. Show 
conversely that if two functions have this latter property, then they are solutions 
of a second-order differential equation. 

4.19 Solve the equation (D - a)3f = 0 by applying the order-reducing procedure 
discussed in the text starting with the obvious solution eat. 



288 DIFFERENTIAL EQUATIONS 6.5 

5. SOLVING THE INHOMOGENEOUS EQUATION 

We come now to the problem of solving the inhomogeneous equation L(f) = g. 
We shall briefly describe a practical method which works easily some of the time 
and a theoretical method which works all the time, but which may be hard to 
apply. The latter is just the translation of Theorem 3.3 into matrix language. 

We first consider the constant coefficient equation L(f) = g in the special 
case where g itself is in the null space of a constant coefficient operator S. A 
simple example is y' - ay = ebt (or y' - ay = sin bt), where g(t) = ebt is in the 
null space of S = (D - b). In such a situation a solution f must be in the 
null space of SoL, for So L(f) = S(g) = O. We know what all these functions 
are, and our problem is to select f among them such that L(f) is the given g. 

For the moment suppose that the polynomials Land S (polynomials in D) 
have no factors in common. Then we know that L is an isomorphism on the 
null space N s of S and therefore that there exists an f in N s such that Lf = g. 
Since we have a basis for N s, we could construct the matrix for the action of Lon 
N s and find f by solving a matrix equation, but the simplest thing to do is take 
a general linear combination of the basis, with unknown coefficients, let L act 
on it, and see what the coefficients must be to give g. 

For example, to solve y' - ay = ebt , we try f(t) = cebt and apply 

L: (D - a)(cebt) = (b - a)cebt J, ebt, 

and we see that c = 1j(b - a). 
Again, to solve y' - ay = cos bt, we observe that cos bt is in the null space 

of S = D2 + b2 and that this null space has the basis {sin bt, cos bt}. We 
therefore set f(t) = CI sin bt + C2 cos bt and solve (D - a)f = cos bt, getting 

(-acI - bC2) sin bt + (bCI - aC2) cos bt = cos bt, 

-aCI - bC2 = 0, 

bCI - aC2 = 1, 

and 

f(t) = 2 b b2 sin bt - 2 a b2 cos bt. 
a + a + 

When Land S do have factors in common, the situation is more complicated, 
but a similar procedure can be proved to work. Now an extra factor ti must be 
introduced, where i is the number of occurrences of the common factor in L. 
For example, in solving (D - r)2f = eTt, we have SoL = (D - r)3, and so 
we must set f(t) = ct2eTt . Our equation then becomes 

(D - r)2ct2eTt = 2ceTt J, eTt, 
and so C = !. 

For (D 2 + 1)f = sin t we have to set f(t) = t(CI sin t + C2 cos t), and after 
we work it out we find that CI = 0 and C2 = -!, so that f = -!t cos t. 
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This procedure, called, naturally, the method of undetermined coefficients, vio­
lates our philosophy about a solution process being a linear right inverse. Indeed, 
it is not a single process, applicable to any g occurring on the right, but varies 
with the operator S. However, when it is available, it is the easiest way to com­
pute explicit solutions. 

We describe next a general theoretical method, called variation of parameters, 
that is a right inverse to L and does therefore apply to every g. Moreover, it 
inverts the general (variable coefficient) linear nth-order operator L: 

" (Lf)(t) = L: ai(t)j<i)(t). 
o 

We are assuming that we know the null space N of Lj that is, we assume 
known n linearly independent solutions {Ui}~ of the homogeneous equation 
Lf = O. What we are going to do is to translate into this context our formula 
K t f~ K-;l(g(S») ds for the solution to da/dt = Tt(a) + get). Since 

1/1: f 1-+ -<f,!', ... ,f("-O > 

is an isomorphism from the solution space N of the nth-order equation LCf) = 0 
to the solution space N of the equivalent first-order system dx/dt = Tt(x), it 
follows that if we have a basis {uiH for N, then the columns of the matrix 
Wij = uji-ll form a basis for N. 

Let wet) be the matrix Wij(t) = uji-o (t). Since evaluation at t is the isomor­
phism tpt from N to IR", the columns of wet) form a basis for IR", for each t. 
But Kt(a) is the value at t of the solution of dx/dt = TI(x) through the initial 
point -< 0, a> , and it follows that the linear transformation KI takes the columns 
of the matrix w(O) to the corresponding columns of wet). The matrix for KI is 
therefore wet) . w(O)-l, and the matrix form of our formula 

f(t) = Ktlot (Ks)-l(g(S») ds 

is therefore 

f(t) = wet) . w(O)-l . lot w(O) . w(S)-l . g(s) ds. 

Moreover, since integration commutes with the application of a constant linear 
transformation (here multiplication by a constant matrix), the middle w(O) 
factors cancel, and we have the result that 

rl 1 f(t) = wet) . Jo w(s)- . g(s) ds 

is the solution of dx/dt = Tt(x) + get) which passes through -<0,0>. Finally, 
set k(s) = W(S)-l . g(s), so that this solution formula splits into the pair 

f(t) = wet) . f k(s) ds, w(s) . k(s) = g(s). 
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N ow we want to solve the inhomogeneous nth-order equation L(f) = g, and 
this means solving the first-order system with g = -< 0, ... , 0, g>-. Therefore, 
the second equation above is equivalent to 

L: wij(s)kj(s) = 0, 
j 

L: wn;(s)kj(s) = g(s). 
j 

i < n, 

Moreover, the solution J of the nth-order equation is the first component of the 
n-tuple f (that is, J = ",-If), and so we end up with 

J(t) = 1;1 Wlj(t) it kj(s) ds = ~ Uj(t)Cj(t), 

where Ci(t) is the antiderivative I~ ki(s) ds. Any other antiderivative would do 
as well, since the difference between the two resulting formulas is of the form 
I:i aiui(t), a solution of the homogeneous equation L(f) = 0. We have proved 
the following theorem. 

Theorem. 5.1. If {Ui(t)}~ is a basis for the solution space of the homogeneous 
equation L(h) = 0, and if J(t) = I:~ Ci(t)Ui(t), where the derivatives cW) 
are determined as the solutions of the equations 

L: cW)u~j)(t) = 0, j = 0, ... , n - 2, 
i 

L: c~(t)u~n-l)(t) = get), 
i 

then L(f) = g. 

We now consider a simple example of this method. The equation y" + y = 
sec x has constant coefficients, and we can therefore easily find the null space of 
the homogeneous equation y" + y. A basis for it is {sin x, cos x}. But we can't 
use the method of undetermined coefficients, because sec x is not a solution of a 
constant coefficient equation. We therefore try for a solution 

vex) = C1(X) sin x + C2(X) cos x. 

Our system of equations to be solved is 

ci sin x + c~ cos x = 0, 

ci cos x - C2 sin x = sec x. 

Thus c~ = -c~ tan x and c~ (cos x + sin x tan x) = sec x, giving 

and 

(Check it!) 

C~ = 1, 

C1 = x, 

C~ = -tanx, 

C2 = log cos x, 

vex) = x sin x + (log cos x) cos x. 
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This is all we shall say about the process of finding solutions. In cases where 
everything works we have complete control of the solutions of L(f) = g, and 
we can then solve the initial-value problem. If L has order n, then we know that 
the null space N is n-dimensional, and if for a given g the function v is one 
solution of the inhomogeneous equation L(f) = g, then the set of all solutions is 
the n-dimensional plane (affine subspace) M = N + v. If we have found a 
basis {Ui} ~ for N, then every solution of L(f) = g is of the form I = L~ CiUi + v. 

The initial-value problem is the problem of finding I such that L(f) = g and 
l(to) = aY,,!,(to) = ag, . .. ,!'n-l)(to) = a~, where <.aY, ... , a~>- = a O is the 
given initial value. We can now find this unique I by using these n conditions 
to determine the n coefficients Ci in I = L CiUi + V. We get n equations in the n 
unknowns Ci. Our ability to solve this problem uniquely again comes back to the 
fact that the matrix Wij(tO) = uji-ll(tO) is nonsingular, as did our success in 
carrying out the variation of parameters process. 

We conclude this section by discussing a very simple and important example. 
When a perfectly elastic spring is stretched or compressed, it resists with a 
"restoring" force proportional to its deformation. If we picture a coiled spring 
lying along the x-axis, with one end fixed and the free end at the origin when 
undisturbed (Fig. 6.3), then when the coil is stretched a distance x (compression 
being negative stretching), the force it exerts is -cx, where C is a constant rep­
resenting the stiffness, or elasticity, of the spring, and the minus sign shows 
that the force is in the direction opposite to the displacement. This is Hooke's 
law. 

Fig. 6.3 

Suppose that we attach a point mass m to the free end of the spring, pull the 
spring out to an initial position xo = a, and let go. The reader knows perfectly 
well that the system will then oscillate, and we want to describe its vibration 
explicitly. We disregard the InaSS of the spring itself (which amounts to ad­
justing m), and for the moment we suppose that friction is zero, so that the 
system will oscillate forever. Newton's law says that if the force F is applied to 
the mass m, then the particle will accelerate according to the equation 

d2x 
m dt 2 = F. 

Here F = -cx, so the equation combining the laws of Newton and Hooke is 

d2x 
m dt2 + ex = O. 
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This is almost the simplest constant coefficient equation, and we know that the 
general solution is 

x = CI sin Qt + C2 cos Qt, 

where Q = v'c/m. Our initial condition was that x = a and x' = 0 when t = O. 
Thus C2 = a and CI = 0, so x = a cos Qt. The particle oscillates forever 
between x = -a and x = a. The maximum displacement a is called the 
amplitude A of the oscillation. The number of complete oscillations per unit time 
is called the frequency f, so f = Q/27r = v'C/27rVm. This is the quantitative 
expression of the intuitively clear fact that the frequency will increase with the 
stiffness c and decrease as the mass m increases. Other initial conditions are 
equally reasonable. We might consider the system originally at rest and strike 
it, so that we start with an initial velocity v and an initial displacement 0 at 
time t = O. Now C2 = 0 and x = CI sin Qt. In order to evaluate Cll we remem­
ber that dx/dt = v at t = 0, and since dx/dt = CIQ cos Qt, we have v = CIQ 

and CI = v/Q, the amplitude for this motion. In general, the initial condition 
would be x = a and x' = v when t = 0, and the unique solution thus determined 
would involve both terms of the general solution, with amplitude to be calculated. 

The situation is both more realistic and more interesting when friction is 
taken into account. Frictional resistance is ideally a force proportional to the 
velocity dx/ dt but again with a negative sign, since its direction is opposite to 
that of the motion. Our new equation is thus 

d2x dx 
m dt2 + k dt + cx = 0, 

and we know that the system will act in quite different ways depending on the 
relationship among the constants m, k, and c. The reader will be asked to explore 
these equations further in the exercises. 

It is extraordinary that exactly the same equation governs a freely oscillating 
electric circuit. It is now written 

d2x dx 1 
L dt2 + R dt + eX = 0, 

where L, R, and C are the inductance, resistance, and capacitance of the circuit, 
respectively, and dx/dt is the current. However, the ordinary operation of such 
a circuit involves forced rather than free oscillation. An alternating (sinusoidal) 
voltage is applied as an extra, external, "force" term, and the equation is now 

d2x dx x . 
L dt2 + R dt + C = a sm wt. 

This shows the most interesting behavior of alL Using the method of un­
determined coefficients, we find that the solution contains transient terms that 
die away, contributed by the homogeneous equation, and a permanent part of 
frequency w/27r, arising from the inhomogeneous term a sin wt. New phenomena 
called phase and resonance now appear, as the reader will discover in the exercises. 
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EXERCISES 

Find particular solutions of the following equations. 

5.1 x" - x = t4 5.2 x" - x = sin t 

5.4 x" + x = sin t 
5.6 y" - y' = eX 

5.5 y" - y' = x2 

5.3 x" - x = sin t + t4 

(Here y' = dy/dx.) 

5.7 Consider the equation y" + y = sec x that was solved in the text. To what 
interval I must we limit our discussion? Check that the particular solution found in 
the text is correct. Solve the initial-value problem for 

f"(x) + f(x) = sec x, f(O) = 1, j'(0) -1. 

Solve the following equations by variation of parameters. 

S.S x" + x = tan t 5.9 x'" + x' = t 5.10 y" + y = 1 

5.11 y(4) - Y = cos x 5.12 y" + 4y = sec 2x 5.13 y" + 4y = sec x 

5.14 Show that the general solution 

of the frictionless elastic equation m(d2x/dt2 ) + cx = 0 can be rewritten in the form 

A sin (Ot - a). 

(Remember that sin (x - y) = sin x cos y - cos x sin y.) This type of motion along 
a line is called simple harmonic motion. 

5.15 In the above exercise express A and a in terms of the initial values dx/dt = v 
and x = a when t = o. 
5.16 Consider now the freely vibrating system with friction taken into account, and 
therefore having the equation 

m(d2x/dt2 ) + k(dx/dt) + cx = 0, 

all coefficients being positive. Show that if k 2 < 4mc, then the system oscillates forever, 
but with amplitude decreasing exponentially. Determine the frequency of oscillation. 
Use Exercise 5.14 to simplify the solution, and sketch its graph. 

5.17 Show that if the frictional force is sufficiently large (k2 ~ 4mc), then a freely 
vibrating system does not in fact vibrate. Taking the simplest case k 2 = 4mc, sketch 
the behavior of the system for the initial condition dx/dt = 0 and x = a when t = O. 
Do the same for the initial condition dx/dt = v and x = 0 when t = o. 
S.IS Use the method of undetermined coefficients to find a particular solution of the 
equation of the driven electric circuit 

Assuming that R > 0, show by a general argument that your particular solution is in 
fact the steady-state part (the part without exponential decay) of the general solution. 
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5.19 In the above exercise show that the "current" dx/dt for your solution can b(~ 
written in the form 

dx 

dt 
a sin (wt - a), 

VR2+X2 

where X = Lw - l/wC. Here a is called the phase angle. 

5.20 Continuing our discussion, show that the current flowing in the circuit will have 
a maximum amplitude when the frequency of the "impressed voltage" a sin wt iH 
1/27rv LC. This is the phenomenon of resonance. Show also that the current is in 
phase with the impressed voltage (i.e., that a = 0) if and only if L = C = O. 

5.21 What is the condition that the phase a be approximately gOO? -gOO? 

5.22 In the theory of a stable equilibrium point in a dynamical system we end up with 
two scalar products (~, 7J) and (t 7J») on a finite-dimensional vector space V, the qua­
dratic form q(~) = H(~, ~») being the potential energy and p(e> = !(e, e> being the 
kinetic energy. Now we know that dqaW = (a, ~») and similarly for p, and because of 
this fact it can be shown that the Lagrangian equations can be written 

d (d~ ) dt dt' 7J = (~, 7J»). 

Prove that a basis {,ail i can be found for V such that this vector equation becomes the 
system of second-order equations 

d2xi 
dt2 = AiXi, i = 1, ... , n, 

where the constants Ai are positive. Show therefore that the motion of the system is the 
sum of n linearly independent simple harmonic motions. 

6. THE BOUNDARY-VALUE PROBLEM 

We now turn to a problem which seems to be like the initial-value problem but 
which turns out to be of a wholly different character. Suppose that T is a second­
order operator, which we consider over a closed interval [a, b]. Some of the most 
important problems in physics require us to find solutions to T(f) = g such that 
f has given values at a and b, instead of f and l' having given values at a single 
point to. This new problem is called a boundary-value problem, because {a, b} is 
the boundary of the domain I = [a, b]. The boundary-value problem, like the 
initial-value problem, breaks neatly into two subproblems if the set 

M = {j E e2 ([a, b]) : f(a) = f(b) = O} 

turns out to be a complement of the null space N of T. However, if the reader 
will consider this general question for a moment, he will realize that he doesn't 
have a clue to it from our initial-value development, and, in fact, wholly new 
tools have to be devised. 

Our procedure will be to forget that we are trying to solve the boundary­
value problem and instead to speculate on the nature of a linear differential 
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operator T from the point of view of scalar products and the theory of self­
adjoint operators. That is, our present study of T will be by means of the scalar 
product (f, g) = J: f(t)g(t) dt, the general problem being the usual one of 
solving Tf = g by finding a right inverse S of T. Also, as usual, S may be deter­
mined by finding a complement M of N(T). Now, however, it turns out that if T 
is "formally self-adjoint", then suitable choices of M will make the associated 
right inverses S self-adjoint and compact, and the eigenvectors of S, computed as 
those solutions of the homogeneous equation Tf - rf = 0 which lie in M, then 
allow (relatively) the same easy handling of S, by virtue of Theorem 5.1 of 
Chapter 5, that they gave us earlier in the finite-dimensional situation. 

We first consider the notion of "formal adjoint" for an nth-order linear 
differential operator T. The ordinary formula for integration by parts, 

allows the derivatives of f occurring in the scalar product (Tf, g) to be shifted 
one at a time to g. At the end, f is undifferentiated and g is acted on by a certain 
nth-order linear differential operator R. The endpoint evaluations, like the 
above fgl~, that accumulate step by step can be described as 

B(f, g)l: = L kij(x)f(i)(x)g<il(x)l:, 
O"':i+j<n 

where the coefficient functions kij(x) are linear combinations of the coefficient 
functions ai(x) and their derivatives. Thus 

(Tf, g) = (f, Rg) + B(f, g)l~. 

The operator R is called the formal adJ·oint of T, and if R = T, we say that T is 
formally self-adjoint. 

Every application of the integration by parts formula introduces a sign 
change, and the reader may be able to see that the leading coefficient of R is 
(-1) n times the leading coefficient of T. Assuming this, we see that a necessary 
condition for formal self-adjointness is that n be even, so that Rand T have the 
same first terms. 

Supposing that T is formally self-adjoint, we seek a complement M of the 
null space N of T in en([a, b]) with the further property that S, the associated 
right inverse of T, is self-adjoint as a mapping from the pre-Hilbert space 
eO([a, b]) to itself. Let us see what this further requirement amounts to. For 
any u, v E eO, set f = Su and g = Sv, so that f and g are in M and u = Tf, 
v = Tg. Then (u, Sv) = (Tf, g) = (f, Tg) + B(f, g)l~ = (Su, v) + B(f, g)l~. 

We thus have: 

LeIllIlla 6.1. If T is a formally self-adjoint differential operator and M is a 
complement of the null space of T, then the right inverse of T determined 
by M is self-adjoint if and only if 

f, gEM =} B(f, g)l~ = o. 
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From now on we shall consider only the seoond-order ca.se, However, IIlmO/!t 
everything Uillt we are going to do worh perfectly well for the general r.Me, the 
pritll of genemlity being only Additional notationsl complexity, 

We start hy oomputing the formal adjoint of the second-order op4:'nLtor 
TI _ cJ" + cd' + eJ. WII hllve 

(Tj, g) = f cJ"g + f cd'g I- f co/g, 

f eJ'g - eJfI r -f j(e lg)', 

f C2/"g = c:/,g! - f !'(C2g)' 

= (c,/'g f(c29}'):t + f / (C29)", 

givillg 

(I, Ng) - f l(e'l{J)" - (c /{J )' + (Co9'), 

ond 
BU, g) - e~U 'g - g'/) + (e, - ~)ffl. 

ThWi Ng == C2fI" + (2c~ - e, )g' + (I'; - c; + cl)g au.1 R = T if and only if 
2e'; - C, ..." C, (and e~ - e; _ 0), that is, c; = Ct. We have provP.d: 

Lemnla 6.2. T he ~nd-order diITercntial opcrotor T is formally Self­
adjoint if and only if 

Tf "'" c~f" + c;r + CM = (clI' )' + cal, 

in which case 
BU, g) -= ttV'g - g'f). 

A constant coefficient operntor is tllU~ formally self·adjoi llt if and only 
ifc, = O. 

Suppo;!ing that T is formally 8elf-adjoint, we noW try to find a complement M 
of ita null space N slIch that I, gEM = BU, fI)1! _ O. Since N is two-diUlell' 
sional, any complement M ClUj be described as the intersection of the lIull space 
of two linear fUlictiollal~ I, and 13 on X 1 - e2{!a, bJ). ,For ~mple, tbe MODO 
point" complement MI~ tha t we had eArlier in connt!ctiOIl with the initial-value 
problem i~ tho intel'SCCtion of the nullllp8ct'l1 of tile tl'l'O fUllctionals '1(J) = /(10) 
lI.ntllJ (f) ... J'(lu). Here, howeVer, the vllilishing of II and I~ for two functiol1ll 
I and (J mtJ.~t imply that B(I, V).J: = C3(1'(1 - g'f).J: = 0, and the fWlCtiollsls 
1,(1) must therefore involve the valUe<! of f and/, at a and at b. We would natu­
rally guess, alld it can be proved, that eAch of II and II must be of the fonn 
l(f) = k,J(a) + kJ'(a) I- kJ(b) + kJ'(b). 

Our problem can therefore bc restated Il!j follows. We mll~t find two linear 
funetiollals II and /) of the above general fonn such that if M is the intersection 
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of thp,ir null spaces, then 

a) M is a complement of N , and 

b) I, g E loT ~ t;2(f'U - !7'!)1! = 0, 

in which case we cal! the boundary condition 11(/) - I~(n - 0 ~c1f·adjoint. 

Lemma 6.3. We tllll rcpiuCI) (11.) by 

11.') T j~ illjl'<!(ive 011 M. 

Proof. If T is injective on AI, then M n N - {O}, 80 that the map 

f -> -< II (f), l~(f) >-
is injective on N, and therefore, ~ll.Use N i~ tWo-JiIllCIl~i\!rud, i~ all iWlllorphi~JU 
from N to R~ (by the corollary of Theorem 2.4, Chapter 2). Then M is a comple­
ment of N by Theorem f •. a of Chapter L 0 

Now we un c8.!lily write down various pain 11 and l~ tha~ form a self-adjoint 
boundary condition, We li~t wille below. 

1) f E M<=> f(a) = feb) = 0 [that is, ldf) = f{a) Ilud 12 m - feb)]. 

2) IE M ~f'(a) "" I'(b) "" O. 
3) l\Iore genera\ly,/,(a) - V(a),j'(b) "" c/(b) . (Tn fact, lz can he any I that 

uepo::w:Is only on the values at a, and Iz can be any I that depends only on b. 
Thu~ II(!) = kd(a) + kJ'(a), anu if l,(f) ...., 1,0) = 0, then the pairs 
</(a),/'(a» and <y(a),II'(a» are dependent, since both lie in the one­
dimensional null space of it. and M f'y ...., 1/14 _ O. The same holds for 12 
and b, 50 that this split pair of endpoint conditions makes h(f, oj]! = 0 hy 
making the valUe!! of IJ at a and at b separately 0.) 

4) If c2(a) = c2(b), then tM.kef E!If <=> f(a) = I(b) lu,,1/'(a) = I'(b) . That 
is, II(/) = I(a) - I(b) and 12(f) = /,(a) - f'(b). 

We now show thllt in every clise hut (3) the condit.ion (a') also holds if we 
replace l' by '1' - X for a suitablc~. T his is true also for case (3), but the proof is 
han.ler, am.! we ~llall omit it. 

1..., 11111111 6.4. Suppose that M is defined by one of the self-/ldjoint boumlary 
conrlilion!l (1), (2), or (4) above, that C2(t) ~ m > 0 on la, bj, and that 
~ 2: co(t) + I on la , b]. T hen 

I« T - ' )/,/)1 ;, mll!'lI: ·1·llf lll 
for all f E M . In particular, M is a complement of the null WM.~e I)f l' - X 
ami hence defines a sclf~adjoint right inveI"SC of T - ~ . 

P roof. We have 

«}.. T)/,/) - - t (c~I')'I -1 i' (}.. - CO)/2 

= -C21'f r + t c2(f')~ + t (}.. -co)/'}.. 
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Under any of conditions (1), (2), or (4), cd'jJ! = 0, and the two integral terms 
are clearly bounded below by mllf'll~ and Ilfll~, respectively. Lemma 6.3 then 
implies that !vI is a complement of the null space of T - "A. 0 

We come now to our main theorem. It says that the right inverse S of T - "A 

determined by the subspace !vI above is a compact self-adjoint mapping of the 
pre-Hilbert space eO([a, b]) into itself, and is therefore endowed with all the rich 
eigenvalue structures of Theorem 5.1 of the last chapter. First we present some 
classical terminology. A Sturm-Liouville system on [a, b] is a formally self-adjoint 
second-order differential operator Tf = (cd')' + cof defined over the closed 
interval [a, b], together with a self-adjoint boundary ~ondition II (f) = l2(f) = 0 
for that interval. If C2(t) is never zero on [a, b], the system is called regular. If 
c2(a) or c2(b) is zero, or if the interval [a, b] is replaced by an infinite interval 
such as [a, 00], then the system is called singular. 

Theorelll 6.1. If T: l1, l2 is a regular Sturm-Liouville system on [a, b], with 
C2 positive, then the subspace !vI defined by the homogeneous boundary 
condition is a complement of N(T - "A) if "A is taken sufficiently large, and 
the right inverse of T - "A thus determined by !vI is a compact self-adjoint 
mapping of the pre-Hilbert space eO([a, b]) into itself. 

Proof. The proof depends on the inequality of the above lemma. Since we have 
proved this inequality only for boundary conditions (1), (2), and.(4), our proof 
will be complete only for those cases. 

Set g = (T - "A)f. Since IIgl1211fl12 ~ I((T - "A)f,f)1 by the Schwarz 
inequality, we see from the lemma first that Ilfll~ ::; Ilg11211f112' so that 

IIfl12 ::; Ilg112' 

and then that mllf'll~ ::; IIgl1211fl12 ::; IIgll~, so that 

11f'112 ::; IlgI12/vm. 
We have already checked that the right inverse S of the formally self­

adjoint T - "A defined by !vI is self-adjoint, and it remains for us to show that the 
set S[U] = {f: IIgl12 ::; 1} has compact closure. For any such f the Schwarz 
inequality and the above inequality imply that 

ly lY Iy - xl 1/2 
If(y) - f(x) I ::; x lf'l = x 1f'1· 1 ::; 1If'I121y - xl 1/2 ::; vm 

Thus S[U] is uniformly equicontinuous. Since the common domain of the 
functions in S[U] is the compact set [a, b], we will be able to conclude from 
Theorem 6.1 of Chapter 4 that the set S[U] is totally bounded if we can show 
that there is a constant C such that all the functions in S[U] have their ranges in 
[-C, C]. Taking y and x in the last inequality where If I assumes its maximum 
and minimum values, we have Ilfll", - min If I ::; (b - a) 1/2/vm. But 
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(min Ifl)(b - a)1/2 ::;; IIfl12 ::;; IIYl12 ::;; 1, and therefore 

Ilfll", ::;; e = l/(b - a)1/2 + (b - a)1/2/vm. 

Thus S[U] is a uniformly equicontinuous set of functions mapping the com­
pact set [a, b] into the compact set [-e, e], and is therefore totally bounded in 
the uniform norm. Since e([a, b]) is complete in the uniform norm, every sequence 
in S[ U] has a subsequence uniformly converging to some fEe, and since 
IIfll2 ::;; (b - a)1/21Ifll"" this subsequence also converges to f in the two-norm. 

We have thus shown that if H is the pre-Hilbert space e([a, b]) under the 
standard scalar product, then the image S[U] of the unit ball U C H under S has 
the property that every sequence in S[U] has a subsequence converging in H. 
This is the property we actually used in proving Theorem 5.1 of Chapter 5, but 
it is not quite the definition of the compactness of S, which requires us to show 
that the closure S[U] is compact in H. However, if {~n} is any sequence in this 
closure, then we can choose {Sn} in S[U] so that II~n - snll < l/n. The se­
quence {s n} has a convergent subsequence {s n(m)} m as above, and then {~n(m)} m 

converges to the same limit. Thus S is a compact operator. 0 

Theorelll 6.2. There exists an orthonormal sequence {<Pn} consisting entirely 
of eigenvectors of T and forming a basis for M. Moreover, the Fourier 
expansion of any f E M with respect to the basis {<Pn} converges uniformly 
to f (as well as in the two-norm). 

Proof. By Theorem 5.1 of Chapter 5 there exist an eigenbasis for the range of S, 
which is M. Since S<Pn = 1'n<Pn for some nonzero rn, we have (T - X)(rn<Pn) = 
<Pn and T<Pn = (1 + Xrn)/rn)<Pn' The uniformity of the series convergence 
comes out of the following general consideration. 

Lelllllla 6.5. Suppose that T is a self-adjoint operator on a pre-Hilbert 
space V and that T is compact as a mapping from V to -< V, q>- , where q is a 
second norm on V that dominates the scalar product norm p (q 2:: cp). 
Then T is compact (from p to p), and the eigenbasis expansion L bn<Pn of an 
element {3 in the range of T converges to {3 in both norms. 

Proof. Let U be the unit ball of V in the scalar product norm. By the hypothesis 
of the lemma, the q-closure B of T[U] is compact. B is then also p-compact, for 
any sequence in it has a q-convergent subsequence which also p-converges to the 
same limit, because p ::;; cq. We can therefore apply the eigenbasis theorem. 

Now let a and (3 = T(a) have the Fourier series L ai<Pi and L bi<Pi, and let 
T(<Pi) = ri<Pi. Then bi = riai, because bi = (T(a), <Pi) = (a, T(<Pi)) = 
(a, ri<Pi) = ri(a, <Pi) = riai. Since the sequence of partial sums L~ ai<Pi is 
p-bounded (Bessel's inequality), the sequence {L~ bi<Pi} = {T(L:~ ai<Pi)} is 
totally q-bounded. Any subsequence of it therefore has a subsubsequence 
q-converging to some element 'Y in V. Since it then p-converges to 'Y, 'Y must be {3. 

Thus every subsequence has a subsubsequence q-converging to {3, and so 
{L~ bi<Pi} itself q-converges to {3 by Lemma 4.1 of Chapter 4. 0 
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EXERCISES 

6.1 Given that Tf(x) = xf"(x) + f(x) and Sf(x) = !'(x), compute To Sand SoT. 

6.2 Show that the differential operators T = aD and S = bD commute if and 
only if the functions a(x) and b(x) are proportional. 

6.3 Show that the differential operators T = aD2 and S = bD commute if and 
only if b(x) is a first-degree polynomial b(x) = ex + d and a(x) = k(b(x»2. 

6.4 Compute the formal adjoint S of T if 

a) Tf = 1', b) Tf = 1", c) Tf = 1"', d) (Tf)(x) = xf'(x) , 
e) (Tf) (x) = x3f" (x). 

6.5 Let Sand T be linear differential operators of orders m and n, respectively. 
What are the coefficient conditions for SoT to be a linear differential operator of 
order m + n? 

6.6 Let T be the second-order linear differential operator 

(Tf)(t) = a2(t)f"(t) + al(t)f'(t) + ao(t)f(t). 

What are the conditions on its coefficient functions for its formal adjoint to exist'! 
What are these conditions for T of order n? 

6.7 Let Sand T be linear differential operators of order m and n, respectively, and 
suppose that all coefficients are e""-functions (infinitely differentiable). Prove that 
SoT - T a S is of order :-:; m + n - 1. 

6.8 A a-blip is a continuous nonnegative function cp such 
that cp = 0 outside of [-a, a] and J~6 cp = 1 (Fig. 6.4). We 
assume that there exists an infinitely differentiable I-blip cpo 
Show that there exists an infinitely differentiable a-blip for 
every a > O. Define what you would mean by a a-blip centered 
at x, and show that one exists. 

Fig. 6.4 

6.9 Let f be a continuous function on [a, b] such that (f, g) = J: fg = 0 whenever 
g is an infinitely differentiable function which vanishes near a and b. Show that f = O. 
(Use the above exercise.) 

6.10 Let eOO([a, bJ) be the vector space of infinitely differentiable functions on [a, b], 
and let T be a second-order linear differential operator with coefficients in e"": 

(Tf)(t) = a2(t)f" (t) + al (t)f' (t) + aoCt)f(t). 

Let S be a linear operator on e""([a, bJ) such that 

(Tf, g) - (f, Sg) = K(f, g) 

is a bilinear functional depending only on the values of f, g,f', and g' at a and b. 
Prove that S is the formal adjoint of T. [Hint: Take f to be a a-blip centered at x. 
Then K(f, g) = O. Now try to work the assertion to be proved into a form to which 
the above exercise can be applied.] 
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6.11 Prove an nth-order generalization of the above exercise. 

6.12 Let X be the space of linear differential operators with ~oo-coefficients, and let AT 
be the formal adjoint of T. Prove that T ~ AT is an isomorphism from X to X. 
Prove that A(TOS) = As 0 AT. 

7. FOURIER SERIES 

There are not many regular Sturm-Liouville systems whose associated ortho­
normal eigenbases have proved to be important in actual calculations. Most 
orthonormal bases that are used, such as those due to Bessel, Legendre, Hermite, 
and Laguerre, arise from singular Sturm-Liouville systems and are therefore 
beyond the limitations we have set for this discussion. However, the most well­
known example, Fourier series, is available to us. 

We shall consider the constant coefficient operator Tf = D2f, which is clearly 
both formally self-adjoint and regular, and either the boundary condition 
f(O) = f(7r) = 0 on [0, 7r] (type 1) or the periodic boundary conditionf( -7r) = 
f(7r), f'(-7r) = f'(7r) on [-7r, 7r] (type 4). 

To solve the first problem, we have to find the solutions of f" - V = 0 
which satisfy f(O) = f(7r) = O. If}.. > 0, then we know that the two-dimen­
sional solution space is spanned by {crx, c-rx} , where r = }..1/2. But if CICrx + 
C2C-rx is 0 at both 0 and 7r, then CI = C2 = 0 (because the pairs -< 1, 1>- and 
-< cT1r , c-T1r >- are independent). Therefore, there are no solutions satisfying the 
boundary conditions when}.. > O. If}.. = 0, then f(x) = CIX + Co and again 
CI = Co = O. 

If }.. < 0, then the solution space is spanned by {sin rx, cos rx}, where 
r = (_}..) 1/2. Now if C1 sin rx + C2 cos rx is 0 at x = 0 and x = 7r, we get, 
first, that C2 = 0 and, second, that r7r = n7r for some integer n. Thus the 
eigenfunctions for the first system form the set {sin nx} f, and the corresponding 
eigenvalues of D2 are {-n2} f. 

At the end of this section we shall prove that the functions in ~2([a, b]) 
that are zero near a and b are dense in ~([a, b]) in the two-norm. Assuming this, 
it follows from Theorem 2.3 of Chapter 5 that a basis for M is a basis for ~o, and 
we now have the following corollary of the Sturm-Liouville theorem. 

TheoreD1 7.1. The sequence {sin nx}f is an orthogonal basis for the pre­
Hilbert space ~O([O, 7r]). If f E ~2([0, 7r]) and f(O) = f(7r) = 0, then the 
Fourier series for f converges uniformly to f. 

We now consider the second boundary problem. The computations are a 
little more complicated, but again if f(x) = CICrx + C2C-rx, and if f( -7r) = f(7r) 
and 1'( -7r) = f'(7r), then f = O. For now we have 
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giving CI (eT'lr - e-r ll") = 0, and so CI = o. Again f(x) = CIX + Co is ruled out 
Finally, if f(x) = CI sin rx + C2 cos rx, our boundary conditions become 

2CI sin nr = 0 and 2rC2 sin nr = 0, 

so that again r = n, but this time the full solution space of (D2 + n2)f = 0 
satisfies the boundary condition. 

Theorem 7.2. The set {sin nx} ~ U {cos nx} 0 forms an orthogonal basis for 
the pre-Hilbert space eO([ -7r, 7r]). If f E e2 ([ -7r, 7r)) and f( -7r) = f(7r), 
1'( -7r) = f'(7r), then the Fourier series for f converges to f uniformly on 
[-7r,7r). 

Remaining proof. This theorem follows from our general Sturm-Liouville dis­
cussion except for the orthogonality of sin nx and cos nx. We have 

(sin nx, cos nx) = f~lI" sin nt cos nt dt 

= t f~" sin 2nt dt 

= -(1/4n) cos 2nx)~1I" 

= o. 
Or we can simply remark that the first integrand is an odd function and therefore 
its integral over any symmetric interval [-a, a) is necessarily zero. 

The orthogonality of eigenvectors having different eigenvalues follows of 
course, as in the proof of Theorem 3.1 of Chapter 5. 0 

Finally, we prove the density theorem we needed above. There are very 
slick ways of doing this, but they require more machinery than we have avail­
able, and rather than taking the time to make the machines, we shall prove the 
theorem with our bare hands. 

It is standard notation to let a subscript zero on a symbol denoting a class 
of functions pick out those functions in the class that are zero "on the boundary" 
in some suitable sense. Here eo([a, b)) will denote the functions in e([a, bJ) that 
are zero in neighborhoods of a and b, and similarly for e~([a, b)). 

Theorem 7.3. e 2 ([a, b)) is dense in e([a, b)) in the uniform norm, and 
e6([a, b)) is dense in e([a, b)) in the two-norm. 

Proof. We first approximate f E e([a, b)) to within E by a piecewise "linear" 
function g by drawing straight line segments between the adjacent points on the 
graph of f lying over a subdivision a = Xo < Xl < ... < Xn = b of [a, bJ. 
If f varies by less than E on each interval (Xi-I, Xi), then Ilf - all"" :::; E. Now 
a' (t) is a step function which is constant on the intervals of the above sub­
division. We now alter g'(t) slightly near each jump in such a way that the new 
function h(t) is continuous there. If we do it as sketched in Fig. 6.5, the total 
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1 

o 

Fig. 6.5 Fig. 6.6 

integral error at the jump is zero, I:.0:,,& (h - g') = 0, and the maximum error 
I:''-a is 611/4. This will be less than E if we take 6 = E/llg'II"" since 11 ~ 21Ig'II",. 
We now have a continuous function h such that II: h(t) dt - (J(x) - I(a)) I < 2E. 
In other words, we have approximated I uniformly by a continuously differ­
entiable function. 

Now choose g and h in e1([a, b)) so that first III - gil", < E/2 and then 
IIg' - hll", < E/2(b - a). Then 

Ig(x) - g(O) - 10'" hi < E/2, 

and so H(x) = fO' h + g(O) is a twice continuously differentiable function such 
that III - HII", < E. In other words, e 2«(a, b)) is dense in e([a, b]) in the 
uniform norm. It is then also dense in the two-nonn, since 

11/112 = (ib 12y/2 ~ 1I/1I",(ib 1 r/2 = (b - a)1/211/11",. 

But now we can do something which we couldn't do for the uniform norm: 
we can alter the approximating function to one that is zero on neighborhoods of a 
and b, and keep the two-norm approximation good. Given 6, let e(t) be a non­
negative function on [a, b] such that e(t) = 1 on [a + 26, b - 26], e(t) = 0 on 
la, a + 6] and on [b - 0, b], e" is continuous, and lIell", = 1. Such an e(t) clearly 
exists, since we can draw it. We leave it as an interesting exercise to actually 
define e(t). Here is a hint: Show somehow that there is a fifth-degree polynomial 
pet} having a graph between 0 and 1 as shown in Fig. 6.6, with a zero second 
derivative at 0 and at 1, and then use a piece of the graph, suitably translated, 
compressed, rotated, etc., to help patch together e(t). 

Anyway, then IIg - egl12 ~ IIgll",,(46)1/2 for any g on e([a, b)), and if g has 
continuous derivatives up to order 2, then so does ego Thus, if we start with I in e 
and approximate it by gin e2 , and then approximate g by eg, we have altogether 
the second approximation of the theorem. 0 
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EXERCISES 

7.1 Convert the orthogonal basis {sin nxJ '1 for the pre-Hilbert space e([O, 7rJ) to 
an orthonormal basis. 

7.2 Do the same for the orthogonal basis {sinnxJ'1U {cosnxJO' for e([-7r,7rJ). 

7.3 Show that {sin nx] '1 is an orthogonal basis for the vector space V of all odd 
continuous functions on [-7r, 7r]. (De clever. Do not calculate from scratch.) Normal­
ize t.he above basis. 

7.4 State and prove the corresponding theorem for the even functions on [-7r,7r]. 

7.5 Prove that the derivative of an odd function is even, and conversely. 

7.6 \Ye now want to prove t.he following s(.ronger tlH'Ol'em ahout (he uniform 
convergence of Fourier series. 

TheoreIll. Let f have a continuous derivative on [-7r, 7r], and suppose that 
f( -7r) = f(7r)· Then the Fourier series for f converges to f uniformly. 

Assume for convenience that f is even. (This only cuts down the number of 
calculations.) Show first that the Fourier series for l' is the series obtained from the 
Fourier series for f by term-by-term differentiation. Apply the above exercises here. 
Next show from the two-Horm convergence of its Fourier series to l' and the Schwarz 
inequality that the Fourier series for f converges uniformly. 

7.7 Prove that {cos nx] 0' is an orthonormal basis for the space 11[ of e2-function:-; 
on [0,7r] such that 1'(0) =f'(7r) = O. 

7.8 Find a fifth-degree polynomial p(x) such that 

p(O) = p'(O) = p"(O) = 0, p' (1) = p" (1) = 0, p(l) 1. 

(Forget the last condition until the end.) Sketch the graph of p. 

7.9 Usc a "piece" of the above polynomial p to construct a function e(x) such that e' 
and elf exist and are continuous, e(x) = 0 when x < a + 0 and x > b - 0, e(x) = 1 
on [a + 20, b - 20], and llell", = 1. 

7.10 Prove the Weierstrass theorem given below on [0, 7r] in the following steps. \Ve 
know that f can be uniformly approximated by a e2-function g. 

1) Show that c and d can be found and that g(t) ~ c(t) - d is 0 at 0 and 7r. 

2) Use the Fourier series expansion of this function and the Maclaurin series for 
the functions sin nx to show that the polynomial p(x) can be found. 

TheoreIll (The Weierstrass approximation theorem). The polynomials are dense 
in e([a, bJ) in the uniform norm. That is, given any continuous function f 011 

[a, b] and any f, there is a polynomial p such that /f(x) - p(x)/ < f for all :;; 
in [a, b]. 



CHAPTER 7 

MULTILINEAR FUNCTIONALS 

This chapter is principally for reference. Although most of the proofs will be 
included, the reader is not expected to study them. Our goal is a collection of 
basic theorems about alternating multilinear functionals, or exterior forms, and 
the determinant function is one of our rewards. 

1. BILINEAR FUNCTIONALS 

We have already studied various aspects of bilinear functionals. We looked at 
their duality implications in Section 6, Chapter 1, we considered the "canonical 
forms" of symmetric bilinear functionals and their equivalent quadratic forms 
in Section 7, Chapter 2, and, of course, the whole scalar product theory of 
Chapter 5 is the theory of a still more special kind of bilinear functional. In this 
chapter we shall restrict ourselves to bilinear and multilinear functionals over 
finite-dimensional spaces, and our concerns are purely algebraic. 

We begin with some material related to our earlier algebra. If V and Ware 
finite-dimensional vector spaces, then the set of all bilinear functionals on 
V X W is pretty clearly a vector space. We designate it V* ® W* and call it 
the tensor product of V* and W*. Our first theorem simply states something 
that was implicit in Theorem 6.1 of Chapter 1. 

TheoreIn 1.1. The vector spaces V* ® W*, Hom(V, W*), and Hom(W, V*) 
are naturally isomorphic. 

Proof. We saw in Theorem 6.1 of Chapter 1 that eachfin V* ® W* determines 
a linear mapping a 1--+ fa from W to V*, wherefa(t) = f(t, a), and we also noted 
that this correspondence from V* ® W* to Hom(W, V*) is bijective. All that 
the present theorem adds is that this bijective correspondence is linear and so 
constitutes a natural isomorphism, as does the similar one from V* ® W* to 
Hom(V, W*). To see this, leth be the bilinear functional corresponding to Tin 
Hom(V, W*). Then f(T+S) = h + fs, for f(T+S)(a, (3) = (T + S)(a))({3) = 
(T(a) + S(a))({3) = (T(a))({3) + (S(a))({3) = h(a, (3) + fs(a, (3). We can 
do the same for homogeneity. 

The isomorphism of V* ® W* with Hom(W, V*) follows in exactly the 
same way by reversing the roles of the variables. We are thus finished with the 
proof. D 

305 
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Before looking for bases in V* Q9 W*, we define a bilinear functional 'Y Q9 A 
for any two functionals 'Y E V* and A E W* by ('Y Q9 A)(~, '1/) = 'Y(~)A('1/). 
We call 'Y Q9 A the tensor product of the functionals 'Y and A and call any bilinear 
functional having this form elementary. It is not too hard to see thatf E V* Q9 W* 
is elementary if and only if the corresponding T E Hom(V, W*) is a dyad. 

If V and Ware finite-dimensional, with dimensions m and n, respectively, 
then the above isomorphism of V* Q9 W* with Hom(V, W*) shows that the 
dimension of V* Q9 W* is mn. We now describe the basis determined by given 
bases in V and W. 

Theorem 1.2. Let {ai}'{' and {{jiH be any bases for V and W, and let their 
dual bases in V* and W* be {Mi}'{' and {viH. Then the mn elementary 
bilinear functionals {Mi Q9 Vi} form the corresponding basis for V* Q9 W*. 

Proof· Since Mi Q9 Vi(~' '1/) = MiWVi('1/) = xiYb the matrix expansionf(~, '1/) = 
Li,i tiixiYi becomes f(~, '1/) = Li,i tii(Mi Q9 Vi)(~' '1/) or 

f = 1: tii(Mi Q9 v;). 
i,i 

The set {Mi Q9 Vi} thus spans V* Q9 W*. Since it contains the same number of 
elements (mn) as the dimension of V* Q9 W*, it forms a basis. 0 

Of course, independence can also be checked directly. If Li,i tii(Mi Q9 Vi) = 

0, then for every pair -<k, l>, tkl = Li,i tii(Mi Q9 Vi) (ak' (jl) = O. 
We should also remark that this theorem is entirely equivalent to our 

discussion of the basis for Hom(V, W) at the end of Section 4, Chapter 2. 

2. MULTILINEAR FUNCTIONALS 

All the above considerations generalize to multilinear functionals 

f: VI X '" X Vn ~ IR. 

We change notation, just as we do in replacing the traditional -<x, y> E 1R2 by 
x = -<Xl,"" Xn> E IRn. Thus we write f(al,"" an) = f(a), where 
a = -<al,"" an> E VI X ... X V n. Our requirement now is that 

f(all . .. , an) 

be a linear functional of ai when ai is held fixed for all i :;z!! i. The set of all such 
functionals is a vector space, called the tensor product of the dual spaces 
Vr, ... , V:, and is designated Vr Q9 ... Q9 V:. 

As before, there are natural isomorphims between these tensor product 
spaces and various Hom spaces. For example, 

and 

are naturally isomorphic. Also, there are additional isomorphisms of a variety 



7.2 MULTILINEAR FUNCTIONALS 30.7 

not encountered in the bilinear case. However, it will not be necessary for us to 
look into these questions. 

We define elementary multilinear functionals as before. If Ai E vt, i = 
1, ... , n, and E = -< h, ... , ~n >- , then 

To keep our notation as simple as possible, and also because it is the case of 
most interest to us, we shall consider the question of bases only when VI = 
V 2 = ... = V n = V. In this case (V*)® = V* (8) ... (8) V* (in factors) is 
called the space of covariant tensors of order n (over V). 

If {aj}i is a basis for V and! E (V*)®, then we can eXlJand the value 
!(E) = !(h, ... , ~n) with respect to the basis expansions of the vectors ~i just 
as we did when! was bilinear, but now the result is notationally more complex. 
If we set ~i = Li!=l x}aj for i = 1, ... , n (so that the coordinate set of ~i is 
xi = {xJ} j) and use the linearity of the!(h, ... , ~n) in its separate variables one 
variable at a time, we get 

!(~l' ... , ~n) = L X!lX;2 ... x;J(aplI a p2 , ... , apn), 

where the sum is taken over all n-tuples p = -< PI, ... , Pn >- such that 1 .:::; Pi .:::; 
m for each i from 1 to m. The set of all these n-tuples is just the set of all func­
tions from {I, ... , n} to {I, ... ,m}. We have designated this set mn, using the 
notation n = {I, ... , n}, and the scope of the above sum can thus be indicated 
in the formula as follows: 

!(h, ... , ~n) = I: X!l··· x;J(ap1 , ... , apn)· 
PEm1' 

A strict proof of this formula would require an induction on n, and is left to the 
interested reader. At the inductive step he wilt have to rewrite a double sum 
LpE;nii LjEm as the single sum LqEm n+l using the fact that an ordered pair 
-<p, j>- in mn X m is equivalent to an (n + 1)-tuplet q E mn+t, where qi = Pi 
for i = 1, ... , nand qn+l = j. 

If {,ui}i is the dual basis for V* and q E mn, let,uq be the elementary func­
tional,uql (8) ... (8) ,uqn· Thus ,uq(apII ... , apJ = ll1,uqi(ap) = 0. unless p = q, 
in which case its value is 1. More generally, 

}Lq(h, ... , ~n) = ,uql (h) ... ,uqn (~n) = X!l ... x~n· 

Therefore, if we set cq = !(aq1 , • .. , aqn), the general expansion now appears as 

f(~b ... , ~n) = I: CP,uP(~l' ... ' ~n) 
PEm1' 

or! = L ~, which is the same formula we obtained in the bilinear case, but 
with more sophisticated notation. The functionals {,up: p E mn} thus span 
(V*)®. They are also independent. For, if L Cp,lLp = 0., then for each q, 
cq = L cp,lLp(aq1 , ... , aqJ = 0.. We have proved the following theorem. 
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Theorem 2.1. The set {Mp : p E mn} is a basis for (V*)@. For any f ill 
(V*)@ its coordinate function {cp } is defined by cp = f(OlPl' ••• ,00Pn)· 

Thusf = L CpMp andf(~b ... , ~n) = L cpMp(h, ... , ~n) = L Cp X!l ... x~. 
for any f E (V*)@ and any -< h, ... , ~n >- E vn. 

Corollary. The dimension of (V*)@ is mn. 

Proof. There are m n functions in mn, so the basis {Mp: p E mn} has m n ele­
ments. 0 

3. PERMUTATIONS 

A permutation on a set S is a bijection f: S -t S. If S(S) is the set of all permu­
tations on S, then S = S(S) is closed under composition (u, pES =} u 0 pES) 
and inversion (u E S =} u- I E S). Also, the identity map I is in S, and, of course, 
the composition operation is associative. Together these statements say exactly 
that S is a group under composition. The simplest kind of permutation other 
than I is one which interchanges a pair of elements of S and leaves every other 
element fixed. Such a permuation is called a transposition. 

We now take S to be the finite set n = {I, ... ,n} and set Sn = Sen). 
I t is not hard to see that then any permutation can be expressed as a product of 
transpositions, and in more than one way. 

A more elementary fact that we shall need is that if p is a fixed element of Sn, 
then the mapping u I---t u 0 p is a bijection Sn I---t Sn. It is surjective because 
any u' can be written u' = (u' 0 p-I) 0 p, and it is injective because UI 0 P = 
U2 0 P =} (UI 0 p) 0 p-I = (U2 0 p) 0 p-l =} Ul = U2. Similarly, the mapping 
U I---t P 0 U (p fixed) is bijective. 

We also need the fact that there are n! elements in Sn. This is the ele­
mentary count from secondary school algebra. In defining an element U E Sn, 
u(I) can be chosen in n ways. For each of these choices u(2) can be chosen in 
n - 1 ways, so that -<u(I), u(2) >- can be chosen in n(n - 1) ways. For each of 
these choices u(3) can be chosen in n - 2 ways, etc. Altogether u can be chosen 
in n(n - I)(n - 2) ... 1 = n! ways. 

In the sequel we shall often write 'pu' instead of 'p 0 u', just as we occasion­
ally wrote 'ST' instead of'S 0 T' for the composition of linear maps. 

If ~ = -< ~b ... , ~n >- E vn andu E Sn, then we can "apply u to ~", or "per­
mute the elements of -< ~I' ... ' ~n>- through u". We mean, of course, that 
we can replace -< h, ... , ~n >- by -< ~ .. (1}, ••• , ~ .. (n) >-, that is, we can replace ~ 
by ~ 0 u. 

Permuting the variables changes a functional f E (V*)@ into a new such 
functional. Specifically, given f E (V*)@ and u E Sn, we define r by 

rw = fa 0 u- I ) = fa..-I(}), ... , ~cr-I(n». 
The reason for using u-1 instead of u is, in part, that it gives us the following 
formula. 
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Proof. J'tlltl2)(~) = f(l;o (Ul O(2)-I) = f(l;o (u2"l o(11») = f(l;ou2"l) o(11) = 
1"1(1; 0 u2"l) = (rl)tl2(1;). 0 

Theorem 3.1. For each u in Sn the mapping Ttl defined by f f-+ r is a linear 
isomorphism of (V*)@ onto itself. The mapping u f-+ Ttl is an antihomo­
morphism from the group Sn to the group of nonsingular elements of 
Hom(V*)®). 

Proof. Permuting the variables does not alter the property of multilinearity, so 
Ttl maps (V*)® into itself. It is linear, since (af + bg)tI = ar + bgtl. And 
Tptl = Ttl 0 Tp, becausef'tI = (f't. Thusu f-+ Ttl preserves products, but in the 
reverse order. This is why it is called an antihomomorphism. Finally, 

so that Ttl is invertible (nonsingular, an isomorphism). 0 

The mapping u f-+ Ttl is a representation (really an antirepresentation) of the 
group Sn by linear transformations on (V*)®. 

Lemma 3.2. Each Ttl carries the basis {J.!p} into itself, and so is a permu­
tation on the basis. 

Proof. We have (J.!p)tI(l;) = J.!p(1; 0 u-1) = II~=1 J.!Pi(~tI-l(i»' Settingj = u- 1(i) 
and so having i = u(j), this product can be rewritten IIi=l J.!p"r.;)(~j) = J.!potl(I;). 
Thus 

(J.!p)" = J.!POtl, 

and since p f-+ P 0 u is a permutation on m'fi, we are done. 0 

4. THE SIGN OF A PERMUTATION 

We consider now the special polynomial E on ~ n defined by 

E(x) = E(X1, ... , xn) = II (Xi - Xj). 
l~i<j~n 

This is the product over all pairs -< i, j>- E n X n such that i < j. This set of 
ordered pairs is in one-to-one correspondence with the collection P of all pair 
sets {i, j} en such that i ~ j, the ordered pair being obtained from the un­
ordered pair by putting it in its natural order. Now it is clear that for any 
permutation u E Sn, the mapping {i, j} f-+ {u(i), u(j)} is a permutation of P. 
This means that the factors in the polynomial EtI(x) = E(x 0 u) are exactly the 
same as in the polynomial E(x) except for the changes of sign that occur when u 
reverses the order of a pair. Therefore, if n is the number of these reversals, we 
have Etl = (-1)nE. The mapping u f-+ (-I)n is designated 'sgn' (and called 
"sign"). Thus sgn is a function from Sn to {I, -I} such that Etl = (sgnu)E, 
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for all er E Sn. It follows that 

sgnper = (sgnp) (sgner), 

for (sgnper)E = EPU = (EP)U = (sgner)EP = (sgnp) (sgner)E, and we call 
evaluate E at any n-tuple x such that E(x) -;t. 0 and cancel the factor E(x). 
Also 

sgner = -1 if er is a transposition. 

This is clear if er interchanges adjacent numbers because it then changes th(~ 
sign of just one factor in E(x); we leave the general case as an exercise for the 
interested reader. 

5. THE SUBSPACE an OF ALTERNATING TENSORS 

Definition. A covariant tensor f E (V*)@ is symmetric if !" = f for all 
er E Sn. 

If f is bilinear [f E (V*)®], this is just the condition f(~, 1]) = f(1], 0 for 
all ~,1] E V. 

Definition. A covariant tensor f E (V*)@ is antisymmetric or alternating if 
!" = (sgn er)f for all er E Sn. 

Since each er is a product of transpositions, this can also be expressed as th(, 
fact that f just changes sign if two of its arguments are interchanged. In tIll' 
case of a bilinear functional it is the conditionf(~, 1]) = -f(1] , ~) for all ~,1] E V. 
It is important to note that iffis alternating, thenf(~) = 0 whenever the n-tupl(' 
~ = -< ~b ••. , ~n >- is not injective (~i = ~j for some i -;t. j). The set of all 
symmetric elements of (V*)@ is clearly a subspace, as is also the (for us) mOJ"(' 
important set an of all alternating elements. There is an important linear pro­
jection from (V*)@ to an which we now describe. 

Theorelll 5.1. The mapping f ~ (1/n!)LuESn (sgn er)!" is a projection H 
from (V*)@ to an. 

Proof. We first check that Qf E an for every f in (V*)@. We have (Qf)P = 

(1/n!)Lu (sgner)!"p. Now sgner = (sgnerp)(sgnp). Setting er' = er 0 p and 
remembering that er ~ er' is a bijection, we thus have 

(Qil = (Sg~p):E (sgner')!'" = (sgnp)(Qf). 
n. a' 

Hence Qf E an. 
If jis already in an, then!" = (sgner)f and Qf = (1/n!)LuESn f. Since S" 

has n! elements, Qf = f. Thus Q is a projection from (V*)@ to an. 0 

Lenllna 5.1. Q(f') = (sgn p)Qf. 

Proof. The formula for Q(fP) is the same as that for (Qf)P except that per replaces 
erp. The proof is thus the same as the one for the theorem above. 0 
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Theorem 5.2. The vector space an of alternating n-linear functionals over 
the m-dimensional vector space V has dimension C;:). 

Proof. If f E an and 1 = Lp cpJJ,p, then since :r = (sgn u)/, we have 
Lp cpJJ,pocr = Lp (sgn u)cpJJ,p for any U in Sn. Setting po U = q, the left sum 
becomes Lq Cqocr-lJJ,q, and since the basis expansion is unique, we must have 
Cqocr-l = sgnucq or cp = (sgnu)cpocr for all p E m,'ii. Working backward, we see, 
conversely, that this condition implies that:r = (sgn u)f. Thus 1 E an if and 
only if its coordinate function cp satisfies the identity 

for all p E m,'ii and all U E Sn. 

This has many consequences. For one thing, cp = 0 unless p is one-to-one 
(injective). For if Pi = Pi and U is the transposition interchanging i and j, then 
p 0 U = p, cp = (sgn u)cpocr = -cp , and so cp = o. Since no p can be injective 
if n > m, we see that in this case the only element of an is the zero functional. 
Thus n > m =} dim an = o. 

Now suppose that n :::; m. For any injective p, the set {p 0 U : U E Sn} 

consists of all the (injective) n-tuples with the same range set as p. There are 
clearly n! of them. Exactly one q = po U counts off the range set in its natural 
order, i.e., satisfies ql < q2 < ... < qn. We select this unique q as the repre­
sentative of all the elements p 0 U having this range. The collection C of these 
canonical (representative) q's is thus in one-to-one correspondence with the 
collection of all (range) subsets of m = {I, ... , m} of size n. 

Each injective p E m,'ii is uniquely expressible as p = q 0 U for some q E C, 
U E Sn. Thus each 1 in an is the sum LqEC LcrESn tqocrJJ,qocr. Since tqocr = (sgn u)tq, 
this sum can be rewritten LqEC tq Lcr (sgn u)JJ,qocr = LqEC tqVq, where we have 
Het Vq = Lcr (sgn u)JJ,qo(J' = n!Q(JJ,q). 

We are just about done. Each Vq is alternating, since it is in the range of Q, 

and the expansion 

which we have just found to be valid for every 1 E an shows that the set 
{vq : q E C} spans an. It is also independent, since LqEC tqVq = LpEmfi tpJJ,p 
and the set {JJ,p} is independent. It is therefore a basis for an. 

Now the total number of injective mappings p from n = {I, ... ,n} to 
m = {I, ... ,m} is m(m - 1) ... (m - n + 1), for the first element can be 
chosen in m ways, the second in m - 1 ways, and so on down through n choices, 
the last element having m - (n - 1) = m - n + 1 possibilities. We have seen 
above that the number of these p's with a given range is n!. Therefore, the 
number of different range sets is 

m(m _ 1) ... m - n + 1 _ m! _ (m) . 
n! - n!(m - n)! - n 

And this is the number of elements q E C. 0 
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The case n = m is very important. Now C contains only one element, thp 
identity I in Sm, so that 

f = CIIlI = CI L: (sgn u)p,u 
u 

and 

u 

u 

This is essentially the formula for the determinant, as we shall see. 

6. THE DETERMINANT 

We saw in Section 5 that the dimension of the space am of alternating m-forms 
over an m-dimensional V is (:) = 1. Thus, to within scalar multiples there is only 
one alternating m-linear functional D over V = IRm , and we can adjust th(~ 
constant so that D(al, ... , am) = 1. This uniquely determined m-form is th(~ 
determinanifunctional, and its value D(xl, ... , xm) at the m-tuple -<Xl, ••• ,xm>­
is the determinant of the matrix x = {Xij} whoseJth column is x j for J = 1, ... , m. 

Lemma 6.1. D(t 1, ... , t m) = LuESm (sgn u)tu(l) , I ••• tu(m),m' 

Proof. This is just the last remark of the last section, with the constant CI = 1, 
since D(al, ... , am) = 1, and with the notation changed to the usual matrix 
form tij. 0 

Corollary I. D(t*) = D(t). 

Proof. If we reorder the factors of the product tul,l ••• ttTm,m in the order of th(' 
values Ui, the product becomes tl'PI ••• tm,Pm' where p = u- l • Since 

is a bijection from Sn to Sn, and since sgn(u- l ) = sgn u, the sum in the lemma 
can be rewritten as LpESm (sgn p) tl'PI ••. tm,Pm' But this is 

Corollary 2. D(t) is an alternating m-linear functional of the rows of 1. 

Now let dim V = m, and letfbe any nonzero alternating m-form on V. For 
any T in Hom V the functionalh defined by h(~l' ... , ~n) = f(T~l' ... , T~n) 
also belongs to am. Since am is one-dimensional, h = krf for some constant kT . 

Moreover, kT is independent of i, since if gT = kT' g and g = ci, we must havp 
ch = kT' ci and kT' = kT. This unique constant is called the determinant of T; 
we shall designate it !leT). Note that !leT) is defined independently of any basi::; 
for V. 

Theorem 6.1. !l(S 0 T) = !l(S) !leT). 
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Proof 

fl.(S 0 T)f(h, ... , ~m) = f(S 0 T)(~l)' ... , (S 0 T)(~m)) 

= f(S(T(h)), ... ,S(T(~m))) 

= fl.(S)f(T(h), ... , T(~m)) = fl.(T) fl.(S)f(~I' ... , ~m)' 

Now divide out f. 0 

Theorem 6.2. If (J is an isomorphism from V to W, and if T E Hom V and 
S = (J 0 ToO-l, then fl.(S) = fl.(T). 

Proof. If f is any nonzero alternating m-form on W, and if we define g by 
(J(h, ... , ~n) = f«(J~1l ... ,(J~n)' Then g is a nonzero alternating m-form on V. 

Now f(S 0 (J~1l ... ,S 0 (J~n) = fl.(S)f«(J~, ... , (J~n) = fl.(S)g(h, ... , ~n)' 
and alsof(S 0 (J~1l •.• ,S 0 (J~n) = f«(J 0 Th, . .. , (J 0 T~n) = g(Th, ... , T~n) = 
b.(T)g(~1l ... , ~n)' Thus fl.(S)g = fl.(T)g and fl.(S) = fl.(T). 0 

The reader will expect the two notions of determinant we have introduced 
to agree; we prove this now. 

Corollary 1. If t is the matrix of T with respect to some basis in V, then 
D(t) = fl.(T). 

Proof. If (J is the coordinate isomorphism, then T = (J 0 To (J-I is in Hom IRm 
and fl.(T) = fl.(T) by the theorem. Also, the columns of t are the m-tuple 
T(OI), ... ,T(om). Thus D(t) = D(t\ ... , t m) = D(T(OI), ... , T(om)) = 
b.(T) D(oI, ... , om) = fl.(T). Altogether we have D(t) = fl.(T). 0 

Corollary 2. If sand tare m X m matrices, then D(s· t) = D(s) D(t). 

Proof. D(s· t) = fl.(S 0 T) = fl.(S) fl.(T) = D(s) D(t). 0 

Corollary 3. D(t) = 0 if and only if t is singular. 

J)roof. If t is nonsingular, then t- l exists and D(t) D(CI) = D(tt- l) = 

n(I) = 1. In particular, D(t) ~ O. If t is singular, some column, say tIl is a 
linear combination of the others, tl = L;' Cit;, and D(tIl"" t m ) = 
L:;' c;D(ti, t2, ... , t m) = 0, since each term in the sum evaluates D at an 
lit-tuple having two identical elements, and so is 0 by the alternating property. 0 

We still have to show that fl. has all the properties we ascribed to it in 
Chapter 2. Some of them are in hand. We know that fl.(S 0 T) = fl.(S) fl.(T), 
ILnd the one- and two-dimensional properties are trivial. Thus, if T interchanges 
independent vectors al and a2 in a two-dimensional space, then its matrix with 
respect to them as a basis is t = [~ Al, and so fl.(T) = D(t) = -1. 

The following lemma will complete the job. 

Lemma 6.2. Consider D(t) = D(t \ ... , t m) under the special assumption 
that t m = om. If s is the (m - 1) X (m - 1) matrix obtained from the 
m X m matrix t by deleting its last row and last column, then D(s) = D(t). 
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Proof. This can be made to follow from an inspection of the formula of LemmlL 
6.1, but we shall argue directly. 

If t has om also as its jth column for some j ~ m, then of course D(t) = (I 

by the alternating property. This means that D(t) is unchanged if thejth columll 
is altered in the mth place, and therefore D(t) depends only on the values iij ill 
the rows i ~ m. That is, D(t) depends only on s. Now t ~ s is clearly a Slll'­

jective mapping to ~m-lXm-l, and, as a function of s, D(t) is alternatill~ 
(m - I)-linear. It therefore is a constant multiple of the determinant I) 
on ~(m-l)X(m-l). To see what the constant is, we evaluate at 

Then D(s) = 1 = D(t) for this special choice, and so D(s) = D(t) in general. [[ 

In order to get a hold on the remaining two properties, we consider all 
m X m matrix t whose last m - n columns are on+ 1, .•• , om, and we apply 
the above lemma repeatedly. We have, first, D(t) = D(t)mm), where (t)1II111 
is the (m - 1) X (m - 1) matrix obtained from t by deleting the last rowalHl 
the last column. Since this matrix has om-l as its last column (om-l being no\\' 
an (m - I)-tuple), the same argument shows that its determinant is the salll(' 
as that of the (m - 2) X (m - 2) matrix obtained from it in the same way. 
We can keep on going as long as the o-columns last, and thus see that D(t) is tll(· 
determinant of the n X n matrix that is the upper left corner of t. If we interpret 
this in terms of transformations, we have the following lemma. 

Lenuna 6.3. 3uppose that V is m-dimensional and that T in Hom V iH 
the identity on an (m - n)-dimensional subspace X. Let Y be a compl(·­
ment of X, and let p be the projection on Y along X. Then po (T f Y) call 
be considered an element of Hom Y and Ll(T) = Lly(p 0 (T f V»). 

Proof. Let ar, ... , an be a basis for Y, and let an+r, ... , am be a basis for X. 
Then {ai}'{' is a basis for V, and since T(ai) = ai for i = n + 1, ... , m, til!' 
matrix for T has oi as its ith column for i = n + 1, ... ,m. The lemma will 
therefore follow from our above discussion if we can show that the matrix of 
po (T f Y) in Hom Y is the n X n upper left corner of t. The student should 
be able to see this if he visualizes what vector (p 0 T)(ai) is for i ::;; n. D 

Corollary. In the above situation if Y is also invariant under T, thpll 
Ll(T) = Lly(T f V). 

Proof. The proof follows immediately since now p 0 (T f Y) = T f Y. I [ 

If the roles of X and Yare interchanged, both being invariant under T and 
T being the identity on Y, then this same lemma tells us that Ll(T) = Llx(T f X). 
If we only know that X and Yare T-invariant, then we can factor T into II 

commuting product T = T loT 2 = T 2 0 T r, where T 1 and T 2 are of the two 
more special types discussed above, and so have the rule Ll(T) = Ll(T1) Ll(T2 ) = 

Llx(T f X) Lly(T f V), another of our properties listed in Chapter 2. 
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The final rule is also a consequence of the above lemma. If T is the identity 
on X and also on V IX, then it isn't too hard to see that po (T f Y) is the 
identity, as an element of Hom Y, and so A(T) = 1 by the lemma. 

We now prove the theorem concerning "expansion by minors (or cofactors)". 
Let t be an m X m matrix, and let (t)pr be the (m - 1) X (m - 1) submatrix 
obtained from t by deleting the pth row and rth column. Then, 

Theorem 6.3. D(t) = L:i"=1 (-l)i+rtir D(t)ir). That is, we can evaluate 
D(t) by going down the rth column, multiplying each element by the 
determinant of the (m - 1) X (m - 1) matrix associated with it, and 
adding. The two occurrences of 'D' in the theorem are of course over di­
mensions m and m - 1, respectively. 

Proof. Consider D(t) = D(tl, ... ,tm) under the special assumption that 
e = op. Since D(t) is an alternating linear functional both of the columns of t 
and of the rows of t, we can move the rth column and pth row to the right­
bottom border, and apply Lemma 6.2. Thus 

D(t) = (_l)m-r(_l)m-p D(er) = (-l)P+rD(er), 

assuming that the rth column of t is or. In general, e = L:i"=1 tir oi, and if we 
expand D(t t, ... , t m) with respect to this sum in the rth place, and if we use the 
above evaluation of the separate terms of the resulting sum, we get D(t) = 
L:i"=1 (_l)i+r tir D(t)ir. 0 

Corollary 1. If S ~ r, then L:i"=1 (-l)i+rti. D(t)ir) = o. 
Proof. We now have the expansion of the theorem for a matrix with identicalsth 
and rth columns, and the determinant of this matrix is zero by the alternating 
property. 0 

For simpler notation, set Cij = (-l)i+j D (t)ij). This is called the cofactor 
of the element tij in t. Our two results together say that 

m 

L: Cirti. = o~ D(t). 
i=1 

In particular, if D(t) ~ 0, then the matrix s whose entries are Sri = Cir/ D(t) is 
the inverse of t. This observation gives us a neat way to express the solution of 
a system of linear equations. We want to solve t . x = y for x in terms of y, 
supposing that D(t) ~ O. Since s is the inverse of t, we have x = s' y. That is, 
Xj = L:i"=1 SjiYi = (L:i"=1 YiCij)/ D(t) for J = 1, ... ,m. According to our 
expansion theorem, the numerator in this expression is exactly the determinant 
dj of the matrix obtained from t by replacing its Jth column by the m-tuple y. 
Hence, with dj defined this way, the solution to t . x = y is the m-tuple 

This is Cramer's rule. It was stated in slightly different notation in Section 2.5. 
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7. THE EXTERIOR ALGEBRA 

Our final job is to introduce a multiplication operation between alternatiIlK 
n-linear functionals (also now called exterior n-Iorms). We first extend the tensol' 
product operation that we have used to fashion elementary covariant tensors out. 
of functionals. 

Definition. If IE (V*)@ and g E (V*)<D, then I ® g is that element of 
(V*)<l!±D defined as follows: 

I ® g(~1! ... , ~n+l) = I(~l' ... , ~n)g(~n+1! ... , ~n+l)' 

We naturally ask how this operation combines with the projection n of 
(V*)<li±D onto an+l • 

Theorem 7.1. n(f ® g) = n(f ® ng) = n(nl ® g). 

Prool. We have 

n(f ® ng) = (n ~ l)! ~ (sgn u)(f ® ng)" 

1 (1 )U 
= (n + l)! ~ (sgn u) I ® Ii ~ (sgn p)gP 

= (n; l) !l! ~ (sgn u)(sgn p)(f ® gP)". 

We can regard p as acting on the full n + l places of I ® g by taking it as thl' 
identity on the first n places. Then (f ® gP)U = (f ® g)pu. Set pu = u'. Fol' 
each u' there are exactly l! pairs <p, u'? with pu = u', namely, the pair;; 
{<p, p-1u''?: p E Sl}. Thus the above sum is 

(n ~ l)! ~ (sgn u') (f ® g)U' = n(f ® g). 

The proof for n(nl ® g) is essentially the same. 0 

Definition. If I E an and g E ai, then I 1\ g = (n;;l)n(f ® g). 

Lemma 7.1. !I 1\ h 1\ ... 1\ Ik = (n!/nl!n2!'" nk!)n(fl ® ... ® Ik), 
where ni is the order of J;, i = 1, ... , k, and n = L~ ni. 

Proof. This is simply an induction, using the definition of the wedge operation 1\ 
and the above theorem. 0 

Corollary. If Ai E V*, i = 1, ... , n, then 

In particular, if ql < ... < qn and {JLiH' is a basis for V*, then 

JLql 1\ ... 1\ JLqn = n!n(JLq) = the basis element IIq of an. 
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TheoreUl 7.2. If f E an and g E ai, then g 1\ f = (_1)lnf 1\ g. In par­
ticular, A 1\ A = 0 for A E V*. 

Proof. We have g @f = U @ g)", where (f is the permutation moving each of 
the last l places over each of the first n places. Thus (f is the product of In 
transpositions, (sgn (f) = (_1)ln, and 

Q(g @f) = QU@ g)" = (sgn (f)QU@ g) = (_1)lnQU @ g). 

We multiply by C;-l) and have the theorem. D 

Corollary. If {Ai} ~ C V*, then Al 1\ ... 1\ An = 0 if and only if the 
sequence {Ai} ~ is dependent. 

Proof. If {Ai} is independent, it can be extended to a basis for V*, and then 
Al 1\ ... 1\ An is some basis vector Vq of an by the above corollary. In par­
ticular, A I 1\ . . . 1\ An ~ O. 

If {Ai} is dependent, then one of its elements, say AI, is a linear combination of 
the rest, Al = :E~ CiAi and Al 1\ A2 1\ ... 1\ An = :Ei'=2 CiAi 1\ (A2 1\ ... 1\ An). 
The ith of these terms repeats Ai, and so is 0 by the lemma and the above 
corollary. D 

LeUlUla 7.2. The mapping <'f, g>- f---t f 1\ g is a bilinear mapping from 
an X a l to a n+l. 

Proof. This follows at once from the obvious bilinearity of f @ g. D 

We conclude with an important extension theorem. 

TheoreUl 7.3. Let () be the alternating n-linear map 

from (v*)n to an. Then for any alternating n-linearfunctional F(AI' ... ,An) 
on (v*)n, there is a uniquely determined linear functional G on an such that 
F = Go e. The mapping G f---t F is thus a canonical isomorphism from 
(an) * to an(V*). 

Proof. The straightforward way to prove this is to define G by establishing its 
necessary values on a basis, using the equation F = Go e, and then to show 
from the linearity of G, the alternating multilinearity of 

and the alternating multilinearity of F that the identity F = Go () holds 
everywhere. This computation becomes notationally complex. Instead, we shall 
be devious. We shall see that by proving more than the theorem asserts we get 
a shorter proof of the theorem. 

We consider the space an(V*) of all alternating n-linear functions on (v*)n. 
We know from Theorem 5.2 that d(an(V*» = C;;'), since d(V*) = d(V) = m. 
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Now for each functional Gin (a n )*, the functional Go e is alternating and u­
linear, and so G;-+ F = Go e is a mapping from (an)* to an(v*) which is 
clearly linear. Moreover it is injective, for if G ~ 0, then F(fJ-q(l), ... , fJ-q(n)) = 

G(Vq) ~ 0 for some basis vector Vq = fJ-q(1) 1\ ... 1\ fJ-q(n) of an(v*). Sincp 
d(an(V*) = ('::) = dean) = d(an)*), the mapping is an isomorphism (by 
the corollary of Theorem 2.4, Chapter 2). In particular, every F in an(v*) i::; 
of the form Go e. 0 

It can be shown further that the property asserted in the above theorem is 
an abstract characterization of an. By this we mean the following. Suppose that 
a vector space X and an alternating mapping cp from (v*)n to X are given, and 
suppose that every alternating functional F on (v*)n extends uniquely to it 

linear functional G on X (that is, F = Go cp). Then X is isomorphic to an, and 
in such a way that cp becomes e. 

To see this we simply note that the hypothesis of unique extensibility is 
exactly the hypothesis that <I>: G;-+ F = Go cp is an isomorphism from X* to 
an(v*). The theorem gave an isomorphism 8 from (an)* to an(v*), and the 
adjoint (<I>-1 0 8)* is thus an isomorphism from X** to (an)**, that is, from X 
to an. We won't check that cp "becomes" e. 

By virtue of Corollary 1 of Theorem 6.2, the identity D(t) = D(t*) is the 
matrix form of the more general identity b.(T) = b.(T*), and it is interesting to 
note the "coordinate free" proof of this equation. Here, of course, T E Hom V. 

We first note that the identity (T*A)(O = A(T~) carries through the defini­
tions of @ and 1\ to give 

T*Al 1\ ... 1\ T*An(~lI ... , ~n) = Al 1\ ... 1\ An(T~lI ... ,T~n). (*) 

Also, ev~: Al 1\ ... 1\ An;-+ Al 1\ ... 1\ An(~I' ... '~n) is an alternating 
n-linear functional on an(v*) for each l; E V n. The left member of (*) is thus 
ev~(T*Al' ... , T*An), and, if n = dim V, this is b.(T*)ev~(Al' ... , An) by the 
definition of b.. By the same definition the right side of (*) becomes 

b.(T)[AI 1\ ... 1\ An(~I' ... , ~n)l = b.(T)ev~(Al' ... , An). 

Thus (*) implies the identity b.(T*)ev~ = b.(T)ev~. Since ev~ ~ 0 if l; = 
Hi}! is independent, we have proved that b.(T*) = b.(T). 

We call a wedge product Al 1\ ... 1\ An of functionals Ai E V* a multi-
vector. We saw above that Al 1\ ... 1\ An ~ 0 if and only if {Ai}1 is inde-
pendent, in which case {Ai}! spans an n-dimensional subspace of V*. The 
following lemma shows that this geometric connection is not accidental. 

Lemma 7.3. Two independent n-tuples {Ai}1 and {fJ-i}1 in V* have the 
same linear span if and only if fJ-l 1\ ... 1\ fJ-n = k(AI 1\ ... 1\ An) for 
some k. 

Proof. If {fJ-j}! C L( {Ai}1), then each fJ-j is a linear combination of the A/S, and 
if we expand fJ-l 1\ ... 1\ fJ-n according to these basis expansions, we get 
k(Al 1\ ... 1\ An). If, furthermore, {fJ-i}1 is independent, then k cannot be zero. 
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Now suppose, conversely, that Jll /\ ... /\ Jln = kCAl /\ •.. /\ An), where 
k ¢ O. This implies first that {Jli} 1 is independent, and then that 

Jlj /\ (AI /\ ... /\ An) = 0 

for each j, so that each Jlj is dependent on {Ai}1. Together, these two con­
sequences imply that the set {Jlin has the same linear span as {Ain. 0 

This lemma shows that a multivector has a relationship to the subspace it 
determines like that of a single vector to its span. 

8. EXTERIOR POWERS OF SCALAR PRODUCT SPACES 

Let V be a finite-dimensional vector space, and let ( , ) be a nondegenerate 
(nonsingular) symmetric bilinear form on V. In this and the next section we shall 
call any such bilinear form a scalar product, even though it may not be 
positive definite. We know that the bilinear form ( , ) induces an isomorphism 
of V with V* sending y E V into y E V*, where y(x) = (x, 'fi) = (x, y) for all 
x E V. We then get a nondegenerate form (scalar product), which we shall con­
tinue to denote by ( , ), on V* by setting (ii, v) = (u, v). We also obtain a 
nondegenerate scalar product on aq by setting 

(iiI /\ ... /\ iiq , VI /\ ... /\ Vq ) = det (iii, VJ-). (8.1) 

To check that (8.1) makes sense, we first remark that for fixed Vb ... , Vq E V*, 
the right-hand side of (8.1) is an antisymmetric multilinear function of the 
vectors iiI, ... , iiq, and therefore extends to a linear function on aq(v*) by 
Theorem 7.3. Similarly, holding the ii's fixed determines a linear function on 
aq(v*), and (8.1) is well defined and extends to a bilinear function on aq(V*). 
The right-hand side of (8.1) is clearly symmetric in U and v, so that the bilinear 
form we get is indeed symmetric. To see that it is nondegenerate, let us choose a 
basis Ul, ... , Un so that 

(8.2) 

(We can always find such a basis by Theorem 7.1 of Chapter 2.) We know that 
{iii} = {iii! /\ ... /\ iii.} forms a basis for aq, where i = <ib ... ,iq> ranges 
over all q-tuplets of integers such that 1 ::::; i l < ... < i q ::::; n, and we claim 
that 

(8.3) 

In fact, if i ¢ j, then ir ¢ js for some value of r between 1 and q and for aIls. 
In this case one whole row of the matrix (Ui" Ujm) vanishes, namely, the rth row. 
Thus (8.1) gives zero in this case. If i = j, then (8.2) says that the matrix has 
±1 down the diagonal and zeros elsewhere, establishing (8.3), and thus the fact 
that ( , ) is nondegenerate on aq• In particular, we have 

(Ul /\ •.. /\ Un, Ul /\ ••• /\ Un) = (-1)#, 

where # is the number of minus signs occurring in (8.3). 

(8.4) 
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9. THE STAR OPERATOR 

Let V be a finite-dimensional vector space endowed with a nondegenerate scalar 
product as in Section 8. The space an is one-dimensional if n is the dimension of 
V. The induced scalar product on an is non degenerate, so that (u, u) is either 
always positive or always negative for all nonzero u E an. In particular, there 
are exactly two u's in an with (u, u) = ±l. Let us choose one of them and hold 
it fixed for the remainder of this section. Geometrically, this amounts to choosing 
an orientation on V. We thus have picked a 

with (9.1) 

Let ii be some fixed element of a q. Then for any y E a n- q, ii /\ YEan, and so 
we can write ii /\ Y = fv(Y)u, where fv(y) depends linearly on y. Since the 
induced scalar product ( , ) on an - q is nondegenerate, there is a unique 
element *ii E a n- q such that (y, *ii) = hey). To repeat, we have assigned a 
*ii E an - q to each ii E aq by setting 

(y, *ii)u = ii /\ y. (9.2) 

We have thus defined a map, *, from aq to an - q• It is clear from (9.2) that this 
map is linear. Let Ut, •.. , Un be a basis for V satisfying (8.2) and also u = 
Ut /\ ••. /\ Un, and construct the corresponding bases for the spaces aq and 
an - q• Then Ui /\ Uj = 0 if any i l occurring in the q-tuplet i also occurs in j. 
If no i l occurs in j then 

where Ek = sgn k 
If we compare this with (9.2) and (8.3), we see that 

(9.3) 

where the sign is the same as that occurring in (8.3), i.e., the sign is positive or 
negative according as the number of jl with (Uj" ujz) = -1 which appear in j 
is even or odd. Applying * to (9.3), we see that 

**ii = (-1)q(n-qJ+#v 

Let v and 10 be elements of aq• Then 

(*v, *w)u = v /\ *w = (-1)q(n-q)*w /\ v = (_l)q(n-q)(**w, v)u. 

If we apply (9.4), we see that 

(*v, *w) = (-1)#(v, w). 

(9.4) 

(9.5) 



CHAPTER 8 

INTEGRATION 

1. INTRODUCTION 

In this chapter we shall present a theory of integration in n-dimensional Euclid­
ean space lEn, which the reader will remember is simply Cartesian n-space 
IRon together with the standard scalar product. Our main item of business is to 
introduce a notion of size for subsets of lEn (area in two dimensions, volume in 
three ... ). Before proceeding to the formal definitions, let us see what properties 
we would like our notion of size to have. We are looking for a function jJ. which 
assigns a number jJ.(A) to bounded subsets A C P. 

i) We would like jJ.(A) to be a nonnegative real number. 

ii) If AC B, we would expect to have jJ.(A) ::; jJ.(B). 

iii) If A and B are disjoint (that is, A n B = 0), then we would expect to 
have jJ.(A U B) = jJ.(A) + jJ.(B). 

iv) Let T be any Euclidean motion. * For any set A let T A be the set of all 
points of the form Tx, where x E A. We then would expect to have 
jJ.(T A) = jJ.(A). (Thus we want "congruent" sets to have the same size.) 

v) We would expect a "lower-dimensional set" (where this is suitably de­
fined) to have zero size. Thus points in the line, curves in the plane, 
surfaces in three-space, etc., should all have zero size. 

vi) By the same token, we would expect open sets to have positive size. 

In the above discussion we did not specify what kind of sets we were talking 
about. One might be ambitious and try to assign a size to every subset of lEn. 
This proves to be impossible, however, for the following reason: Let U and V 
be any two bounded open subsets of IE 3. It can be shown t that we can find 

* Recall that a Euclidean motion is an isometry of lEn and can thus be represented as 
the composition of the translation and an orthogonal transformation. 
t S. Banach and A. Tarski, Sur la decomposition des ensembles de pointes en partie 
respectivement congruentes, Fund. Math. 6, 244-277 (1924). R. 1\1. Robinson, On the 
decomposition of spheres, Fund. Math. 34, 246-260 (1947). 
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decompositions 

and 

with U, n U; = 0 = Vi n V; for i ¢ j, and Euclidean motions Ti with 
TiUi = Vi. In other words, we can break up U into finitely many pieces, move 
these pieces around, and then recombine them to get V. Needless to say, the 
sets Ui will have to look very bad. A moment's reflection shows that if we wish 
to assign a size to all subsets (including those like U i ), we cannot satisfy (ii) , 
(iii), (iv), and (vi). In fact, (iii) [repeated (k - I) times] implies that 

k 

p,(U) = :E p,(Ui ), 
i=1 

and (iv) implies that p,(Ui ) = p,(Vi ). Thus p,(U) = p,(V), or the size of any two 
open sets would coincide. Since any open set contains two disjoint open sets, 
this implies, by (ii), that p,(U) ? 2p,(U), so p,(U) = O. 

Weare thus faced with a choice. Either we dispense with some of require­
ments (i) through (vi) above, or we do not assign a size to every subset of lEn. 
Since our requirements are reasonable, we prefer the second alternative. This 
means, of course, that now, in addition to introducing a notion of size, we must 
describe the class of "good" sets we wish to admit. 

We shall proceed axiomatically, listing some "reasonable" axioms for a class 
of subsets and a function p,. 

2. AXIOMS 

Our axioms will concern a class :D of subsets of lEn and a function p, defined on :D. 
(That is, p,(A) is defined if A is a subset of lEn belonging to our collection :D.) 

I. :D is a collection of subsets of P such that: 

:Dl. If A E :D and B E :D, then A u B E :D, A n B E :D, and A - B E :D. 

:D2. If A E :D and T is a translation, then T A E :D. 

:D3. The set D~ = {x: 0 ~ Xi < I} belongs to :D. 

II. The real-valued function p, has the following properties: 

p.!. p,(A) ? 0 for all A E :D. 

p,2. If A E :D, B E :D, and A n B = 0, then p,(A U B) = p,(A) + p,(B). 

p,3. For any A E :D and any translation T, we have p,(T A) = p,(A). 

p,4. p,(D~) = 1. 

Before proceeding, some remarks about our axioms are in order. Axiom:D1 
will allow us to perform elementary set-theoretical operations with the elements 
of :D. Note that in Axioms :D2 and p,3 we are only allowing translations, but in 
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~ur list of desired properties we wanted proper behavior with respect to all 
llIuclidean motions in (iv). The reason for this is that we shall show that for 
B~good" choices of :0, the axioms, as they stand, uniquely determine J.I.. It will 
'lhen turn out that J.I. actually satisfies the stronger condition (iv) , while we 
Issume the weaker condition J.l.3 as an axiom. 

I 
I ---------- --* ---
I 
I 
I 
I 
I 

Fig. 8.1 

Axiom :03 guarantees that our theory is not completely trivial, i.e., the 
t}bllection :0 is not empty. Axiom J.l.4 has the effect of normalizing J.I.. Without it, 
tf¥ly J.I. satisfying J.l.l, J.l.2, and J.l.3 could be multiplied by any nonnegative real 
"1;tumber, and the new function J.I.' so obtained would still satisfy our axioms. 
flh particular, J.l.4 guarantees that we do not choose J.I. to be the trivial function 
:lSSigp.ing to each A the value zero. 

Fig. 8.2 

Our program for the next few sections is to make some reasonable choices for 
.:0 and to show that for the given:o there exists a unique J.I. satisfying J.l.l through J.l.4. 

An important elementary consequence of the :0, J.I.-axioms that we shall fre­
quently use without comment is: 

p.5. If A c U1 Ai and all the sets are in :0, then J.I.(A) :::; l:1 J.I.(Ai). 

Our beginning work will be largely combinational. We will first consider 
(generalized) rectangles, which are just Cartesian products of intervals, and the 

iway in which a point inside a rectangle determines a splitting of the rectangle 
,.into a collection of smaller rectangles, as indicated in Fig. 8.1. This is associated 
with the fact that the intersection of any two rectangles is a rectangle and the 
difference of two rectangles is a finite disjoint union df rectangles (see Fig. 8.2). 
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--------r--

Fig. 8.3 

I 
I 
I 
I 
I 

f-------- t---

8.3 

We call a set A paved if it can be expressed as the union of a finite disjoint 
collection p of rectangles (a paving of A). It will follow from our combinational 
considerations that the collection !Dmin of all the paved sets satisfies Axioms !Dl 
through !D3 and is the smallest family that does: any other collection !D satisfying 
the axioms includes !Dmin. It will then follow that if M satisfies Ml through M4 on 
!Dmin, then it must have the natural value (the product of the lengths of the sides) 
for a rectangle. This implies that M is uniquely defined on !Dmin by requirements 
Ml through M4, since the value M(A) for any paved set A must be the sum of the 
natural values for the rectangles in a paving of A. The existence of M on !Dmin 
thus depends on the crucial lemma that two different pavings of the set A give 
the same sum. (See Fig. 8.3.) 

This comes down to the fact that the "intersection" of two pavings of A is 
a third paving "finer" than either, and the fact that when a single rectangle is 
broken up, the natural values of M for the pieces add up to M for the fragmented 
rectangle. 

All these considerations are elementary but exceedingly messy in detail. We 
give the proofs below for the reader to refer to in case of doubt, but he may 
prefer to study only the definitions and statements of results and then to proceed 
to Section 6. 

3. RECTANGLES AND PAVED SETS 

We first introduce some notation and terminology. Let a = -< a \ ... , an >­
and b = -<bI, ... , bn>- be elements of lEn. By the rectangle D~ we shall mean 
the set of all x = -< xI, ... , xn >- in lEn with ai ~ Xi < bi • Thus 

Dh - { . i < i < bi . - 1 } a- x.a _X ,2- , ... ,n. (3.1) 

Note that in order for D~ to be nonempty, we must have ai < bi for all i. 
In other words, 

D~= 0' if ai ;::: bi for some i. (3.2) 

In the plane (n = 2) for instance, our rectangles D~ correspond to ordinary 
Euclidean rectangles whose sides are parallel to the axes. (We should perhaps use 
an additional adjective and call our sets level rectangles, braced rectangles, or 
something else, but for simplicity we shall just call them rectangles.) Note that 
in the plane our rectangles include the left-hand and lower edges but not the 
right-hand and upper ones (see Fig. 8.4). 



8.3 RECTANGLES AND PAVED SETS 325 

----1'-------------X2= 0 Fig. 8.4 

For general n, if we set 1 = -< 1, ... , 1» , then our notation coincides with 
that of ::03. 

We now collect some elementary facts about rectangles. It follows imme­
diatelyfrom the definition (3.1) that if a = -<at, ... , ak », b = -<bt, . .. , bn », 
etc., then 

O~nO~ = O!, (3.3) 
where 

and ~ = 1, ... , n. 

(The reader should draw various different instances of this equation in the plane 
to get the correct geometrical feeling.) Note that the case where O~ n O~ = >Z5 
is included in (3.3) by (3.2). Another immediate consequence of the definition 
(3.1) is 

for any translation T. (3.4) 

We will now establish some elementary results which will imply that any ::0 
satisfying Axioms ::01 through ::03 must contain all rectangles. 

Lemma 3.1. Any rectangle O~ can be written as the disjoint union 

where b r - a r E D~. 

(What this says is that any "big" rectangle can be written as a finite union 
of "small" ones.) 

Proof. We may assume that O~ ~ >Z5 (otherwise take k = 0 in the union). 
Thus bi > ai . In particular, if we choose the integer m sufficiently large, 
(1/2m)(b - a) will lie in O~. 

By induction, it therefore suffices to prove that we can decompose O~ into 
the disjoint union 

2n 

D~ = U D~: with d. - c. = !(b - a). (3.5) 
.=1 

(For then we can continue to subdivide until the rectangles we get are small 
enough.) 

We get this subdivision in the obvious way by choosing the vertex "in the 
middle" of the rectangle and considering all rectangles obtained by cutting 
D~ through this point by coordinate hyperplanes. To write down an explicit 
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h[2J / 

Db{2) I/Db{1,2J 
a{2) a[l,2J 

b = b{l,2) 

Db0 Db'll l' 
a0 a[l] 

Fig. 8.5 

formula, it will be convenient to use the set of all subsets of {I, ... , n} as an 
indexing set, rather than the integers 1, ... ,2n. Let J denote an arbitrary sub-
set of {1,2, ... ,n}. LetaJ= <a}, ... ,aj> andbJ = <b}, ... ,bj> be 
given by 

if i E J, 

if i ~ J 
and 

if i E J, 

if i ~ J. 

Then any x E D~ lies in one and only one D~::-. In other words, D~::- n D~~ = 
525 if J r" K and UallJ D~::- = D~. (The case where n = 2 is shown in Fig. 8.5.) 
Since b J - aJ = -!(b - a) for all J, we have proved the lemma. 0 

We now observe that for any c E D~ we have, by (3.3), 

Do = D~ n D~-l' (3.6) 

Let Tv denote translation through the vector v. Then D~-l = Tc - l D~ by 
(3.4). Thus by Axioms i>2 and i>3 the rectangle D~-l must belong to i>. 
By (3.6) and Axiom i>1 we conclude that Do E i> for any c E D~. 

Observe that TaD~-a = D~ by (3.4). Thus 

whenever b -a E D~. 

If we now apply Lemma 3.1 we conclude that 

D~ E i> for all a and b. (3.7) 

We make the following definition. 

Definition 3.1. A subset S C lEn will be called a paved set if S is the disjoint 
union of finitely many rectangles. 

We can then assert: 

Proposition 3.1. Any i> satisfying Axioms i>1 through i>3 must contain all 
paved sets. Let i>min denote the collection of all finite unions of rectangles; 
then i>min satisfies Axioms i>1 through i>3. 

Proof. We have already proved the first part of this proposition. We leave the 
second part as an exercise for the reader. 
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4. THE MINIMAL THEORY 

Weare now going to see how far M is determined by Axioms M1 through M3. 
In fact, we are going to show the M(D~) is what it should be; i.e., if 

and 

then we must have 

M(D~) = {~bl - al) ... (b n - an) 
if D~ = 0, 
if D~ 7"= 0. (4.1) 

AxiomM4 says that (4.1) holds for the special case a = 0, b = 1. Examining 
the proof of Lemma 3.1 shows that D~ can be written as the disjoint union of 2n 

rectangles, all congruent (via translation) to D~12, where i = (!, ... , !). 
Axioms M2 and M3 then imply that 

M(D~12) = 21n' 

Repeating this argument inductively shows that 

D ll2r 1 
M( 0 ) = 2M 

We shall now use (4.2) to verify (4.1). The idea is 
to approximate any rectangle by unions of trans­
lates of cubes 

D ll2r o . 
Fig. 8.6 

Observe that in proving (4.1) we need to consider only rectangles of the form 
D~. In fact, we take c = b - a and observe that 

T -a (D~) = D~, 
so Axiom M3 implies that M(D~) = M(D~), and by definition e1 ••• en = 

(b 1 - a1 ) ••• (bn - an). If D~ = 0, then (4.1) is trivially true (from Axiom 
M2). Suppose that D~ 7"= 0. Then c = -<e1, ... , en> with ei > 0 for all i. 
For each r there are n integers N 1, ••• , Nn such that (Fig. 8.6) 

(4.3) 

In what follows, let k = -< kl, ... , kn>, 1 = -< l1, ... , In>, etc., denote 
vectors with integral coordinates (i.e., the k/s are integers). Let us write 
k < 1 if k i < li for all i. If N = -<N 11 ••• , N n >, then it follows from (4.3) 
and the definitions that 

D (l/2 r )k+1I2r C DC 
(I/2 r )k 0 whenever 

For any k and 1, 

Since 

D (l/2 r )k+1I2r n D(l/2 r JL+1I2r _ n< 
(l/2 r )k (l/2 r )L - )U 

k < N. 

if k 7"= l. 
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by (4.2) (and Axiom f..!2) and 

we conclude that 

U D (1I2r)k+l/2r C DC 
(l/2 r )k 0, 

k<N 

f..!(Oo) ~ <jb X (the number of k satisfying 0 ::; k < N). 

It is easy to see that there are N 1 • N 2' •..• N n such k, so that 

f..!(Do) ~ <jb X (N l ·· . N n ) = (~f)'" (~f)' 
According to (4.3), Nj2 r ~ e, - 1/2", so we have 

f..!(Do) ~ (e1 - ;r)'" (en - ;r)' 
Similarly, 

Doc U 
and we conclude that 

f..!(Do) ::; (e1 + ~r) ... (en + ~r) 
Letting r --t 00 in (4.4) and (4.!i) proves (4.1). 

8.;, 

(4.,1 ) 

(4.lil 

In deriving (4.1) we made use of Axiom f..!4. Examining our argument show,,: 
that if f..!' satisfied f..!2 and f..!3 but not f..!4, we could argue in the same mamH'l" 
except that we would have to multiply everything by the fixed constant f..!'(D~). 
To sum up, we have proved: 

Proposition 4.1. If f..! satisfies Axioms f..!1 through f..!4, then the value of Jl 

or any rectangle is uniquely determined and is given by (4.1). If f..!' satisfi('~ 
f..!1 through f..!3, then for any rectangle 0:, 

where 

5. THE MINIMAL THEORY (Continued) 

We will now show that formula (4.1) extends to give a unique f..! defined on ~llli" 
so as to satisfy Axioms f..!1 through f..!4. We must establish essentially two fact,~. 

1) Every union of rectangles can be written as a disjoint union oj rectangles 

This will then allow us to use Axiomf..!l to determine f..!(A) for every A E ~mi", 
by setting 

if A is the disjoint union of the D:;. Since A might be written in another way 
as a disjoint union of rectangles, this formula is not well defined until we estab­
lish that: 

2) IJ A = U D:; = U D~f are two representations of A as a disjoint unioll 
of rectangles, then 
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Fig. 8.7 Fig. 8.8 

We first introduce some notation. 

Definition 5.1. A paving p of lEn is a finite collection of mutually disjoint 
rectangles. The floor of this paving, denoted by [pI, is the union of all 
rectangles belonging to p. 

If p = {D~:} and T is a translation, we set Tp = {TD~:}. 
If p and g are two pavings, we say that g is finer than p (and write g -< p) 

if every rectangle of p is a union of rectangles of g. It is clear that if p -< 9:/ 

and g -< p, then g -< 9:/. Note also that g -< P implies [p[ C [gr. 

Proposition 5.1. Let p and g be any two pavings. There exists a third 
paving 9:/ such that 9:/ -< p and 9:/ -< g. 

Proof. The idea of the proof is very simple. Each rectangle in p or in g deter­
mines 2n hyperplanes (each hyperplane containing a face of the rectangle). 
If we collect all these hyperplanes, they will "enclose" a number of rectangles. 
We let 9:/ consist of those rectangles in this collection which do not contain any 
smaller rectangle. Figure 8.7 shows the case (for n = 2) where p and g each 
contain one rectangle. Here 9:/ contains nine rectangles. 

We now fill in the details of this argument. Let Cl = -< cL ... , c~ >- , ... , 
Ck = -< ck, ... , Ck>- be all the vectors that occur in the description of the 
rectangles of p and g. (In other words, if D~ E: P or E: g, then a and b are among 
the c's.) Let d 1, ..• , dkn be the vectors of the form -< cL ... , cin >-, where the i/s 
range independently from 1 to k, (so that there are kn of them). (See Fig. 8.8 for 
the case where n = 2 and p and g consist of one rectangle each.) For each d i 

there is at most one smallest dj(i) such that d i < dj(i)' In fact, if 

d i = -<cll,···,cin >-, 
then set dj(i) = -< cll' ... , cfn>-' where 

I I 
Cjz = mIn cm. 

el >e l 
m 'I 
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Let '1:1 = {D~~(;)}. Then '1:1 is finer than P and s. 
D~ = D~p for suitable a and (3 and 

In fact, if D~ E p, say, then 

DdfJ-d a - DdO(O) 
d~ ~ • . (5.1) 

To see this observe that if x E D~~, then d", ~ x < d~. Choose a largest 
d i ~ x. Then d i ~ x < dj(i), so x E D~{(;). This proves the proposition. We 
will later want to use the particular form of the '1:1 we constructed to find addi­
tional information. 0 

We can now prove (1) and (2). 

Lemma 5.1. Let PI, ... ,PI be pavings. Then there exists a paving s 
such that lsi = Ipil u· .. u IpzI· 

Proof. By repeated applications of Proposition 5.1 we can choose a paving ~/ 

which is finer than all the p/s. Then each Ipil is the union of suitable rectangles 
of '1:1. Let S be the collection of all these rectangles occurring in all the p/s. 
Then lsi = Ipil U· .. u Ipkl. D 

In particular, we have proved (1). More generally, we have shown that every 
A E :Dmin is of the form A = Ipi for a suitable paving p. We now wish to turn 
our attention to (2). 

Lemma 5.2. Let d < . . . < c;l' c~ < . . . < C~2' ••• ,c~ < . . . < c~n be 11 

sequences of numbers. Then 

1 11. 1 11. D < c , ... , c >- '"" D < C 0 +1'···' c. +1 >-J.l. T} Tn = £...J J.L "'I '11. 

<clll""enl> l<il<rl <c~ , ... ,e'!' > . 
-: 1.1 "'11. 

l:5i~<rn 

Proof. In fact, C~i - c\ = c1 - c; + c~ - c1 + ... + C~i - C;i-I, so that th(' 
lemma follows from (4.1) when we multiply out all the factors. D 

We now prove (2). Let P = {D~:} and S = {D!~}, where A = Ipi = lsi· 
Let '1:1 be the paving we constructed in the proof of Proposition 5.1. Let..4- = 
{D~i} be the collection of those rectangles D~~ of '1:1 such that D~~ C Ipi = lsi· 
Then to prove (2) it suffices to show that 

L M(D~i) = L: M(D~:) = L M(D!t). (5.2) 

Now each rectangle D~: is decomposed into rectangles D~{(l) according to (5.1), 
that is, ai = d"" hi = d~, etc. 

By construction of the d's, this is exactly a decomposition of the typl! 
described in Lemma 5.2. Thus (5.1) implies that 

M(D~~) = L: M(D~{(i». 
d a :5di 

dj(i)<dp 
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Summing over all D~: (and doing the same for D~l) proves (5.2). We can thus 
state: 

TheoreD1 5.1. Every A E :Dmin can be written as A = Ipl. The number 
JL(A) = LOEPJL(O) does not depend on the choice of p. We thus get a 
well-defined function JL on :Dmin. It satisfies Axioms JL1 through JL4. If JL' is 
any other function on :Dmin satisfying JL2 and JL3, then JL'(A) = KJL(A), 
where K = JL'(O~). 

Proof. The proof of the last two assertions of the theorem is easy and is left as an 
exercise for the reader. 

6. CONTENTED SETS 

Theorem 5.1 shows that our axioms are not vacuous. It does not provide us 
with a satisfactory theory, however, because :Dmin contains far too few sets. 
In particular, it does not fulfill requirement (iii), since :Dmin is not invariant 
under rotations, except under very special ones. We are now going to remedy 
this by repeating the arguments of Section 4; we are going to try to approximate 
more general sets by sets whose JL'S we know, i.e., by sets contained in :Dmin. 

This idea goes back to Archimedes, who used it to find the areas of figures in 
the plane. 

Definition 6.1. Let A be any subset of lEn. We say that P is an inner paving 
of A if Ipi CA. We say that S is an outer paving of A if A c lsi. 
We list several obvious facts. 

If Ipi cAe lsi, then JL(p) ~ JL(S). 

If Ipi cAe lsi, then ITpl eTA c ITsl· 

If Al n A2 = 525 and Ipil CAb Ip21 C A 2, 
then PI U P2 is an inner paving of Al U A 2. 

Definition 6.2. For any bounded subset A of lEn let 

JL*(A) = lub JL(lpi) 
IpicA 

be called the inner content of A and let 

,a(A) = glb JL(isi) 
AC/sl 

be called the outer content of A. 

(6.1) 

(6.2) 

(6.3) 

Note that since A is bounded, there exists a S with A c lsi. This shows that 
peA) is defined. This together with (6.1) shows that JL*(A) is defined and that 

JL*(A) ~ ,a(A). (6.4) 
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Definition 6.3. A set A will be called contented if J-t*(A) = ,ileA). We call 
J-t*(A) = ,ileA) the content of A and denote it by J-t(A). 

Observe that every A E ~min is contented. In fact, if A = lvi, then v is 
both an inner and an outer paving of A. Thus J-t*(A) = ,ileA) = J-t(lvl), and the 
new definition of J-t(A) coincides with the old one. 

Our next immediate objective is to show that the collection of all contented 
sets fulfills Axioms ~1 through ~3. 

Proposition 6.1. A set A is contented if and only if its boundary is con­
tented and has content zero. 

Proof. Suppose A is contented. For any 0 > 0 we can find an inner paving p 
and an outer paving S such that J-t(S) - J-t(p) < 0/2. We want to replace p by 
a close paving p' with Ip'l c int A. To do this, we choose a small number 1/ 
and replace each rectangle D~ of p by D~+~~~=:~. We let p~ be the collection 
of all these rectangles. Then Ip~1 C int Ipl, so Ip~1 C int A. Furthermore, 
J-t(lp~l) = (1 - 21/)nJ-t(lpl), since the factor (1 - 21/) is the decrease of each side 
of each rectangle of p. Similarly, we replace S by a slightly larger s~, with 
A C int S~ and J-t(S~) :::; (1 + 21/)nJ-t(S). By choosing 1/ sufficiently small, we 
can thus arrange that J-t(S~) - J-t(p~) < o. Let v be a paving which is finer 
than S~ and p~, with Ivl = Is~l. Let.4- C v consist of those rectangles of 'V 

lying in int A. Then Ivl = Is~1 =:> 1.4-1 =:> Ip~l, so J-t(lvl) - J-t(I.4-I) :::; o. But, 
aA c Iv - .4-1, so that ,il(aA) :::; J-t(lv - .4-1) = J-t(lvl) - J-t(I.4-1) < o. In other 
words, ,il(aA) = o. 

Conversely, suppose that aA has content zero. Let.4- be an outer paving of 
aA with J-t(I.4-1) < E. Let v be a paving finer than .4- and such that A C Ivl. 
Let p C v consist of those rectangles contained in A. Let S C v consist of those 
rectangles lying in Ipi U 1.4-1. ThenJ-t(lsl) :::; J-t(lpl) +J-t(I.4-1) < J-tCipl) + E. Further­
more, A C lsi. In fact, let x E A. Then xED for some 0 E v. If 0 n aA ~ 
0, then 0 n 1.4-1 ~ 0, so 0 c 1.4-1, since v is a refinement of.4-. If 0 n aA = 0, 
then every point of 0 must lie in A, so that 0 C Ipl. We have thus constructed 
p and S with Ipi cAe lsi and J-t(S) - J-t(p) < E. Since we can do this for any f, 

this implies that A is contented. D 

Proposition 6.2. The union of any finite number of sets with content zero 
has content zero. If A c Band B has content zero, then so does A. 

Proof. The proof is obvious. 

TheoreIn 6.1. Let ~con denote the collection of all contented sets. Theil 
~con satisfies Axioms ~1 through ~3, and the J-t given in Definition 6.3 sat­
isfies J-t1 through J-t4. If J-t' is any other function on ~con satisfying J-t1 through 
J-t3, then J-t' = KJ-t, where K = J-t'(Db). 

Proof. Let us verify the axioms. 

:D1. For any A and B, 

a(A u B) c aA u aB and a(A n B) c aA u aBo 
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By Proposition 6.1, if A and B are contented, then aA and aB have content 
zero. Thus so do aA u aB, a(A u B), and a(A n B), by Proposition 6.2. 
Hence A u B and A n B are contented. 

~2. Follows immediately from (6.1). 

~3. Is obvious. 

p,2. If A 1 and A 2 are contented, we can find inner pavings Ih and P2 such 
that P,(A1) - p,(lp1/) < e/2andp,(A2) - p,(lp2/) < e/2. If A1 n A2 = )25, 
then P 1 U P2 is an inner paving of A 1 u A 2, and so 

P,(A1 u A 2) ;::: p,(A 1) + P,(A2)' 

On the other hand, let 81 and 82 be outer pavings of A1 and A 2, respectively, 
with P,(81) < P,(A1) + e/2 and P,(82) < P,(A2) + e/2. 

Let v be a paving with Ivl = 1811 u 1821. Then v is an outer paving of 
A1 u A2 and p,(lvl) ~ P,(181/) + p,(182/)' Thus p,(A1 u A z) ~ p,(lv/) ~ 
P,(A1) + P,(A2) + e, or p,(A1 u A 2) ~ p,(A1) + P,(A2)' These two inequal­
ities together give p,2. 

p,1. Is obvious. 

p,3. Follows from (6.2) and Definition 6.3. 

p,4. We already know. 

The second part of the theorem follows from Theorem 5.1 and Definition 6.3. 
In fact, we know that p,'(lpl) = Kp,(lp[), and (6.1) together with Axiom p,2 
implies that p,'(lpl) ~ p,'(A) ~ p,'(18!). Since we can choose p and 8 to be 
arbitrarily close approximations to A (relative to p,), we are done. 0 

Remark. It is useful to note that we have actually proved a little more than 
what is stated in Theorem 6.1. We have proved, namely, that if i) is any collec­
tion of sets satisfying i)1 through i)3, such that i)min C i) C i)con, and if p,': i) ~ IR. 
satisfiesp,l through p,3, then p,'(A) = Kp,(A) for all A in i), where K = p,'(D~). 

7. WHEN IS A SET CONTENTED? 

We will now establish some useful criteria for deciding whether a given set is 
contented. 

Recall that a closed ball B: with center x and 
radius r is given by 

B~ = {y: Iiy - xii ~ r}. (7.1) 

Note that 

for any e > 0, (7.2) 
and 

(7.3) 

(See Fig. 8.9.) Fig. 8.9 
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If we combine (7.2) and (7.3), we see that any cube G lies in a ball B such 
that fl(B) S 2n(Vn)np.(G) and that any ball B lies in a cube G such that p.(G) < 
3n( yn)nfl(B). 

Lelllllla 7.1. Let A be a subset of lEn. Then A has content zero if and only 
if for every E > 0 there exist a finite number of balls {Bi} covering A 
with L fl(Bi) < E. 

Proof. If we have such a collection of covering balls, then by the above remark 
we can enlarge each ball to a rectangle to get a paving p such that A C Ipi and 
p.(lpl) < 3n(yn)nE. Therefore, fleA) = 0 if we can always find the {Bi }. 

Conversely, suppose A has content O. Then for any 0 we can find an outer 
paving p with p.(lpl) < o. For each rectangle 0 in the paving we can, by thp 
arguments of Section 4, find a finite number of cubes which cover 0 and whose 
total content is as close as we like to p.(O), say <2p.(O). By doing this for each 
o E p, we have a finite number of cubes {Oi} covering A with total content 
less than 20. Then by our remark before the lemma each cube O. lies in a ball 
Bi such that P.(Oi) < 2n(Vn)nfl (B.), and so we have a covering of A by balls Bi 
such that L fl(Bi) < 2n+1(yn)n o. If we take 0 = E/2n+1(yn)n, we have the 
desired collection of balls, proving the lemma. 0 

Recall that a map cp of U C P ---+ lEn is said to satisfy a Lipschitz condition 
if there is a constant K (called the Lipschitz constant) such that 

IIcp(y) - cp(x) II < KIIY - xii· (7.4) 

Proposition 7.1. Let A be a set of content zero with if C U, and let 
cp: U ---+ lEn satisfy a Lipschitz condition. Then cp(A) has content zero. 

Proof. The proof consists of applying both parts of Lemma 7.1. Since A has 
content zero, for any E > 0 we can find a finite number of balls covering A whose 
total outer content is less than E/Kn. By (7.4), cp(B~) C B:[,.), so that the images 
of the balls covering A cover cp(A) and have a total volume less than E. 0 

Recall that if cp is a (continuously) differentiable map of an open set U into 
lEn, then cp satisfies a Lipschitz condition on any compact subset of U. 

As a consequence of Proposition 7.1, we can thus state: 

Proposition 7.2. Let cp be a continuously differentiable map defined on an 
open set U, and ld A be a bounded set of content zero with if C U. Then 
cp(A) has content zero. 

Let A be any compact subset of P lying entirely in the subspace given by 
xn = O. Then A has content zero. In fact, for some sufficiently large fixed r, 
the set A is contained in the rectangle 

o <T •...• T •• > 
<-T •.•.• -T.O) > for any E > 0, 

which has arbitrarily small volume. 
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Now let 1/;: V C p-l ~ P be a continuously differentiable map given by 

<yl, ... , yn-l> ~ <I/;l(yl, ... , yn-l), ... , I/;n(yI, ... , yn-l». 

Let B be any bounded subset of p-l with ]'j C V. We can then write I/;(B) = 
~(A), where A is the set of points in lEn of the form (y, 0), where y E B, and 
where ~ is a differentiable map such that 

~(Xl, ... , xn) = <I/;I(xI, ... , xn - l ), ... , I/;n(xI, ... , xn- l». 

By Proposition 7.2 we see that p.CI/;(B) = o. Thus, 

Proposition 7.3. Let I/; be a differentiable map of V C IEn - 1 into lEn, and 
let B be a bounded set such that ]'j c V. Then I/;(B) has content zero. 

We have thus recovered requirement (v) of Section l. 
An immediate consequence of Propositions 7.3 and 6.1 is: 

Proposition 7.4. Let A C P be such that aA c UI/;i(Bi) where each I/;i and 
Bi is as in Proposition 7.3. Then A is contented. 

This shows that every set "we can draw" is contented. 

Exercise. Show that every ball is contented. 

8. BEHAVIOR UNDER LINEAR DISTORTIONS 

We shall continue to derive consequences of Proposition 7.l. 

Proposition 8.1. Let ~ be a one-to-one map of U ~ P which satisfies a 
Lipschitz condition and is such that ~-l is continuous. If A c U is con­
tented, then so is ~(A). 

Proof. Since A is contented, aA has content zero. By the conditions on ~, 
we know that a~(A) = ~(aA). Thus a~(A) has content zero, and so ~(A) is 
contented. 0 

An immediate consequence of Proposition 8.1 is: 

Proposition 8.2. Let L be a linear transformation of P. Then LA is con­
tented whenever A is contented. 

Proof. If Lis nonsingular, Proposition 8.1 applies. If L is singular, it maps all 
of lEn onto a proper subspace. Any such subspace is contained in the image of 
{x : xn = O} by a suitable linear transformation, and so p.(LA) = 0 for any 
contented A. 0 

Theorem 8.1. Let L be a linear transformation of P. Then for any con­
tented A we have 

p.(LA) = Idet LIp.(A). (8.1) 

Proof. We can restrict our attention to nonsingular L, since we have already 
checked Eq. (8.1) for det L = o. If L is nonsingular, then L carries the class of 
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contented sets into itself. Let us define fJ.' by fJ.'(A) = fJ.(LA) for each A E :Deon. 

We claim that fJ.' satisfies Axioms fJ.1 through fJ.3 on :Deon. 

In fact, fJ.1 and fJ.2 are obviously true; fJ.3 follows from the fact that for any 
translation Tv, we have T LvL = LTv, so that 

fJ.'(TvA) = fJ.(LTvA) = fJ.(TLvLA) = fJ.(LA) = fJ.'(A). 

By Theorem 5.2 we thus conclude that 

fJ.' = kLfJ., 

where kL is some constant depending on L. We must show that kL = Idet LI. 
We first observe that if 0 is an orthogonal transformation, then 

fJ.(OA) = fJ.(A). 

In fact, we know that fJ.(OA) = kOfJ.(A). If we take A to be the unit ball B~, 
then OB~ = B~, so ko = l. 

Next we observe that fJ.(L I L 2 A) = kL1fJ.(L 2 A) = kLJCL2fJ.(A), so that 

Now we recall that any nonsingular L can be written as L = PO, where P 
is a positive self-adjoint operator and 0 is orthogonal. Thus kL = kp and 
Idet LI = Idet PI Idet 01 = Idet PI, so we need only verify (S.l) for positive self­
adjoint linear transformations. Any such P can be written as P = OID01\ 
whe~e 0 1 is orthogonal and D is diagonal. Since P is positive, all the eigenvalues 
of D are positive. Since det P = det D and kp = kD, we need only verify (S.U 
for the case where L is given by a diagonal matrix with positive eigenvalues 
Ar, ... ,An. But then LD~ = D~Al"")'n>, so that 

fJ.'(D~) = fJ.(D~Al, ... ,An» = AI' .. An = Idet LI, 
verifying (8.1). 0 

Exercise. Let VI, ... , Vn be vectors of lEn. By the parallelepiped spanned by VI, ... , Vn 
we mean the set of all vectors of the form L7~1 XiVi, where 0 :::; xi:::; 1. Show that its 
content is Idet ((Vi, Vj))II/2. 

9. AXIOMS FOR INTEGRATION 

SO far we have shown that there is a unique fJ. defined for a large collection of 
sets in lEn. However, we do not have an effective way to compute fJ., except in 
very special cases. To remedy this we must introduce a theory of integration. 
We first introduce some notation. 

Definition 9.1. Let f be any real-valued function on lEn. By the support of 
j, denoted by supp j, we shall mean the closure of the set where j is not zero; 
that is, 

suppj = {x: j(x) rf O}. 
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Observe that 
supp (f + g) C supp f U supp g (9.1) 

and 
supp fg c supp f n supp g. (9.2) 

We shall say that f has compact support if supp f is compact. Equation (9.1) 
[and Eq. (9.2) applied to constant gj shows that the set of all functions with 
compact support form a vector space. 

Let T be any one-to-one transformation of lEn onto itself. For any function f 
we denote by Tf the functions given by 

(Tf)(x) = f(T-1x). (9.3) 

Observe that if T and T- 1 are continuous, then 

and 

supp Tf = T supp f. (9.4) 

Definition 9.2. Let A be a subset of lEn. By the characteristic function of A, 
denoted by eA, we shall mean the function given by 

Note that 

if x E A, 
if xtiA. 

eA lnA 2 = eAl . eA 2 , 

eA lUA 2 = eAl + eA 2 - eA lnA 2 , 

supp eA = X, 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

for any one-to-one map T of lEn onto itself. 
By a theory of integration on P we shall mean a collection 5' of functions 

and a rule I which assigns a real number If to each f E 5', subject to the follow­
ing axioms: 

5'1. 5' is a vector subspace of the space of all bounded functions of compact 
support. 

5'2. If f E 5' and T is a translation, then Tf E 5'. 

5'3. eo belongs to 5' for any rectangle D. 
II. I is a linear function on 5'. 

I2. ITf = If for any translation T. 

I3. Iff ~ 0, then If ~ O. 

I4. IeD~ = 1. 

Note that the axioms imply that 5' contains all functions of the form 
eOl + e0 2 + ... + eOk for any rectangles Db ... ,Ok, In particular, for any 
paving p, the function e 11'1 must belong to 5'. 



338 INTEGRATION 8.10 

Also note that from I3 we have at once the stronger version: 

I3'. f:::; g =} If :::; I g, since then g - f ~ O. 

Proposition 9.1. Let a:, I be a system satisfying Axioms n through a:3 and 
II through I4. Then 

J eA = ,u(A) (9.10) 

for every contented set A such that eA E a:, and 

I5. IIfl :::; IIflloo,u(suppf) for every f Ea:. 

Proof. The axioms guarantee that eA E a: for every A E !Dmin and that v(A) = 
I eA satisfies ,u1 through ,u4. Therefore, I eA = ,u(A) for every A E !Dmin by the 
uniqueness of ,u (Proposition 4.1). It follows that if A is a contented set such 
that eA E a:, and if p and s are inner and outer pavings of A, then 

,u(lpi) = J e 1,,1 :::; J eA :::; J e lsi = ,u(jsi). 

Therefore, I eA lies between ,u*(A) and ,a(A), and so equals ,u(A). For any 
f E a: and any A E !Dmin such that supp f ~ A, we have -llfll",eA :::; f :::; 
IIfll",eA, and therefore IIfl :::; IIfll",,u(A) by I3' and (9.10). Taking the greatest 
lower bound of the right side over all such sets A, we have I5. 0 

10. INTEGRATION OF CONTENTED FUNCTIONS 

We will now proceed to deal with Axioms a: and I in the same way we dealt 
with Axioms !D and,u. We will construct a "minimal" theory and then get a "big" 
one by approximating. According to Proposition 9.1, the class a: must contain 
the function e 1,,1 for any paving p. By a:1 it must therefore contain all linear 
combinations of such. 

Definition 10.1. By a paved function we shall mean a function f = f" 
given by 

(10.1) 

for some paving p. 

It is easy to see that the collection of all paved functions satisfies Axioms n 
through 53. Furthermore, by Proposition 9.1 and Axiom II the integral, I, is 
uniquely determined on the class of all paved functions by 

(10.2) 

if f is given by (10.1). 
The reader should verify that if we let a:p be the class of all paved functions 

and let I be given by (10.2), then all our axioms are satisfied. Don't forget to 
show that I is well defined: if f is expressed as in (10.1) in two ways, then the 
sums given by (10.2) are equal. 
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The paved functions obviously form too small a collection of functions. 
We would like to have an 5' including all continuous functions with compact 
support and all characteristic functions of the form eA with A contented, for 
example. 

Definition 10.2. A bounded function f with compact support is said to be 
contented if for any e > 0 and a > 0 there exists a paved function g = g.,a 
and a contented set A = A.,a such that 

If(x) - g(x) I < e for all x (/. A 
and 

,u(A) < a. 
The pair -< g, A >- will be called a paved e, a-a pproxima tion to f. 

(10.3) 

(10.4) 

Let us verify that the collection of all contented functions, 5'con, satisfies 
Axioms 5'1 through n. It is clear that iffis contented, so is affor any constant a. 
If fl and f2 are contented, let -<gb Al >- and -<Y2, A 2>- be paved e,a-approxi­
mations to fl and f2' respectively. Then 

for all x (/. Al U A 2, 
and 

Thus -<gl + g2, Al U A 2>- gives a paved 2e, 2 a-approximation tofI + 12. 
To verify 5'2 we simply observe that if -< g, A>- is a paved e, a-approximation 

to f, then -< Tg, T A >- is one to Tf. 
A similar argument establishes the analogous result for multiplication: 

Proposition 10.1. Let fI and f2 be two contented functions. Then fd2 is 
contented. 

Proof. Let M be such that Ifl(X) < M and If2(X)1 < M for all x. Recall that 
the product of two paved functions is a paved function. Using the same notation 
as before, we have 

Ifl12(X) - gl(X)g2(X)1 :::; IfI(x)llf2(X) - g2(x)1 + Ig2(X)llfl(X) - gl(x)1 

< Me + (M + e)e 

Thus -<glg2, Al U A 2>- is a paved (2M + e)e, 2a-approximation tofd2' D 

As for 5'3, it is immediate that a stronger statement is true: 

Proposition 10.2. If B is a contented set, then eB is a contented function. 

Proof· In fact, let p be an mner paving of B with ,u(B) - ,u(lpl) < a. Then 

eB(x) - e II'I (x) = 0 if x (/. B - Ipl, 
and 

,u(B - Ipl) < a, 
so eipi ,Ipi is a paved e, a-approximation to eB for any e > O. D 
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We now establish a useful alternative characterization of a contented func­
tion. 

Proposition 10.3. A function f is contented if and only if for every E there 
are paved functions hand k such that h :::; f :::; k and I (k - h) < E. 

Proof. Iff is contented, let R be a rectangle including supp f. Let -< g, A>- be an 
E, a-approximation to f. Let P be a paved set including A = A.,5 such thai. 
p,(P) < a, and let m be a bound of If I· Then g - E(eR) - mep :::; f :::; g -+ 
E(eR) + l1Wp, where the outside functions are clearly paved and the differenceH 
of their integrals is less than 2Ep,(R) + 2ma. Since E and a are arbitrary, we have 
our hand k. Conversely, if hand k are paved functions such that h :::; f :::; k 
and I(k - h) < a, then the set where k - h 2:: al/2 is a paved set A. Further­
more, a1/2p,(A) :::; IeA(k - h) :::; I(k - h) :::; a, so that p,(A) :::; a1/2. Given E 

and a, we only have to choose a :::; min (E2, a2 ) and take g as either k or h to sec 
that f is contented. 0 

Corollary. A function f is contented if for every E there are contented 
functions fr and f2 such that fr :::; f :::; f2 and I (12 - fr) < E. 

Proof. For then we can find paved functions h :::; fr and k 2:: f2 such thai. 
f (11 - h) < E and I (k - f2) < f and end up with h :::; f :::; k and I (k - h) < 3E. 0 

Theorem. 10.1. Let 5' be a class of functions satisfying Axioms n through 5'3 

and such that 5' pC 5' C 5'ean. Then there exists a unique I satisfying Axioms 
II through I4 on 5'. 

Proof. If I is any integral on 5' satisfying Axioms II through I4, then we must 
have If simultaneously equal to lub Ih for h paved and :::;f and equal to glb I Ie 
for k paved and 2::f, by Proposition 10.3. The integral is thus uniquely de­
termined on 5'. l\loreover, it is easy to see that if the integral on 5' is defined by 
If = lub I h = glb I k, then Axioms II through I4 follow from the fact that 
they hold for the uniquely determined integral on the paved functions. 0 

Exercise 10.1. Let f and g be contented functions such that f(x) = g(x) for x tl. A, 
where J.t(A) = O. Then Jf = Jg. (This shows that for the purpose of integration 
we need to know a function only as to a set of content zero.) 

Definition 10.3. Let f be a contented function and A a contented set. 
We call I eAf the integral of f over A and denote it by I Af. Thus 

Lf= feAf. (10.5) 

An immediate consequence of Axiom II and (9.7) is 

(10.6) 

An immediate consequence of Exercise 10.1 is 

IL fl :::; ~~~ If(x)Ip,(A). 
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We close this section by giving another useful characterization of contented 
functions. 

Proposition 10.4. Let f be a bounded function with compact support. 
Then f is contented if and only if to every E > 0 and ~ > 0 we can find an 
1/ > 0 and a contented set Aa such that ,u(Aa) < ~ and 

If(x) - f(y) I < E whenever IIx - yll < 1/ and x, y ft Aa. (10.7) 

Proof. Suppose that for every E, ~ we can find 1/ and Aa. Let p = {Di} be a 
paving such that 

i) suppfelpl; 

ii) if x, y E Di, then IIx - yll < 1/; 

iii) if S = {Di E p: Di n Aa ~ .0}, then ,u(lsD < 2~. 
Then let f •. 2a(x) = f(Xi) when x E Di, where Xi is some point of Di. By (ii) 
and (iii), we see that f •. 2a,ISI is a paved E, 2~-approximation to f. Thus f is 
contented. 

Conversely, suppose that f is contented, 
and letf./2.a/2, A./ 2 •a/2 be a paved approxima­
tion to f. 

Let p = {Di} be the paving associated 
with f./2.aj2. Replace each Di by the rec­
tangle D~ obtained by contracting Di about 
its center by a factor (1 - ~). (See Fig. 8.10.) 
Thus ,u(DD = (1 - ~)n,u(Di). For any x, 
y E UD~, if 

IIx - yll < 1/, 

where 1/ is sufficiently small, then X and y belong 
to the same D~. If 

X, Y E UDi. 
then 

I I 

I I 

Fig. B.I0 

and ilx - yll < 1/, 

If(x) - f(y) I ~ If(x) - f./2.m(x)1 + If(y) - f./2.m(y)1 

+ If./2.a/2(x) - f./2.m(y)l· 

D 
D 

But the third term vanishes, so that if(x) - f(y) I < E. Now by first choosing ~ 
sufficiently small, we can arrange that ,u(lpl - UDD < ~/2. Then we can 
choose 1/ so small that IIx - yll < 1/ implies that x, y belong to the same D~ if 
x, y E UD~. For this 1/ and for Aa = A./ 2 •a/2 U (ipi - UDD, Eq. (10.7) holds, 
and ,u(Aa) < ~. 0 

In particular, a bounded function which is continuous except at a set of 
content zero and has compact support is contented. 



342 INTEGRATION 8.11 

EXERCISES 

10.2 Show that for any bounded set A, CA is a contented function if and only if A iK 
a contented set. 
10.3 Let! be a contented function whose support is contained in a cube D. For each 0 
let p~ = {Di.~}iEI~ be a paving with Ip~1 = 0 and whose cubes have diameter IC~K 
than o. Let Xi.~ be some point of Di.~. The expression 

is called a Riemann o-approximating sum for f. Show that for any E > 0 there exists a 
00 [= oo(f)] > 0 such that 

whenever 0 < 00. 

11. THE CHANGE OF VARIABLES FORMULA 

This section will be devoted to the proof of the following theorem, which is of 
fundamental importance. 

Theorem 11.1. Let U and V be bounded open sets in IRn, and let !p be a 
continuously differentiable one-to-one map of U onto V with !p - 1 differentiable 
Let f be a contented function with supp f C V. Then (f 0 !p) is a contented function, 
and 

!vf= !u(focp)ldetJI"I. (11.1 ) 

Recall that if the map cp is given by yi = cpi(Xl, ... , xn), then J I" is th(~ 
linear transformation whose matrix is [acpi/aXj). 

Note that if cp is a nonsingular linear transformation (so that JI" is just cp), 
then Theorem 11.1 is an easy consequence of Theorem 8.1. In fact, for functions 
of the form CA we observe that CA 0 cp = CI"-lA, and Eq. (11.1) reduces, in this 
case, to (8.1). By linearity, (11.1) is valid for all paved functions. 

Furthermore,fo cp is contented. Suppose If(x) - f(y) I < Ewhen IIx - yll < 
cp and x, y tl A, with ,u(A) < o. Then If 0 cp(u) - f 0 cp(v) I < E when 

and u, v tl cp-l(A), 

with ,u(cp-l A) < o/Idet cpl. 
Now let g •. ~, A •. ~ be an approximating family of paved functions for f. Theil 

Ifo cp(x) - g •. ~ 0 cp(x) I < eforx tl cp-l(A •. ~) and,u(cp-lA •. ~) < o/Idet cpl. Thus 
I(g •. ~ 0 cp)ldet cpl -t I(fo cp)ldet cpl, and Eq. (11.1) is valid for all contentedf. 

The proof of Theorem 11.1 for nonlinear maps is a bit more tricky. It con­
sists essentially of approximating cp locally by linear maps, and we shall do it ill 
several steps. We shall use the uniform norm IIxli ao = max IXil on ~n. This is 
convenient because a ball in this norm is actually a cube, although this nicety 
isn't really necessary. 
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Let t/t be a (continuously) differentiable map defined on a convex open set U. 
If the cube D = D:~~~ lies in U, then the mean-value theorem (Section 7, 
Chapter 3) implies that for any y E D, 

Thus 

Thus 

1It/t(y) - t/t(p)lIao < lIy - pllao sup IIJIft(z)lI· 

.1'(D) DIft(p)+Krl 
'I' C Ift(p)-Krl, where 

zED 

(11.2) 

LeDlDla 11.1. Let cp be as in Theorem 11.1. Then for any contented set A 
with A c U we have 

~(cp(A)) ~ L Idet J",I· (11.3) 

Proof. Let us apply Eq. (11.2) to the map t/t = L -lcp, where L is a linear 
transformation. Then 

(11.4) 

for any D contained in the domain of the definition of cp and for any linear 
tmnsformation L. 

For any E > 0, let ~ be so small that IIJ",(x)-IJ",(y)1I < 1 + E for 

IIx - yllao < ~ 
for all x, y in a compact neighborhood of A. (It is possible to choose such a ~, 

since J(x) is a uniformly continuous function of x, so that J",(x)-IJ",(y) is close 
to the identity matrix when x is close to y; see Section 8, Chapter 4.) 

Choose an outer paving if = {Di} of A, where the Di are cubes all having 
edges of length less than~. Let Xi be a point of Di. Then applying (11.4) to 
each Di taking L = J",(Xi), we get 

~(cp(A)) < ~(CP(lifD) = L ~CP(Di) < L Idet J",(Xi) I (1 + E)n~(Di)' 
We can also suppose ~ to have been taken small enough so that 

Idet J",(Z) I > (I - E)ldet J",(Xi)I for all Z E Di and all i. 

Then we have 

and so 

fD.ldetJ",I> (1 - E)ldetJ",(xi)I~(Di)' 
• 

~(cp(A)) < -1 1 (1 + E)" r Idet J",I. 
- E Jill 

Since E is arbitrary and if is an arbitrary outer paving of A, we get (11.3). 0 
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We can now conclude that f 0 cp is contented for any contented f with 
supp f c V. In fact, let K be chosen so large that it is a Lipschitz constant for «' 

on cp-l(SUppf),and so large thatK > IdetJ<,O-I(u)1 foru ESUPPf. Nowgivcll 
E and a, we can find an 1/ such that 

lJ(u) - f(v) I < E if Ilu - vII < 1/ and u, v r;;. A~ with ,u(A~) < a. 

But this implies that 

If 0 cp(x) - f 0 cp(y) I < E if IIx - yll < 1//K and x, y r;;. cp-l(A~), 

where ,u(cp-l(A~)) < K~, by (11.3). Since K was chosen independently of f 

and a, this shows that f 0 cp is contented. 

Lemma 1l.2. Let cp, U, and V be as in Theorem 11.1. Let f be a nonnega­
tive contented function with supp f c V. Then 

01.5) 

Proof. Let -< g, A>- be a paved E, a-approximation to fwith g(u) :::; feu) for all u. 
If p = {Oi} is the paving associated with g, we may assume that supp f C Ipi 
Then 

I g = 21 g(Ui),u(Oi) :::; L g(Ui) 1<,0-1 (Oi) Idet J<'oI :::; 11 ~-I(Oi) (fo cp)ldet JI'I 
u~E.Di 

Since we can choose g so that f g --+ ff, we obtain (11.5). 0 

Lemma 1l.3. Let cp, U, V, and f be as in Theorem 11.1. Let f be a nOIl­
negative function. Then Eq. (11.1) holds. 

Proof. Let us apply (11.5) to the map cp-l and the function (fo cp)ldetJ<'oI. 
Since J <,0 (x) 0 J <,0-1 (cp(x)) = id, we obtain 

IUo cp)ldetJ<'o1 :::; I[Uo cp) 0 cp-l](1detJ<'o1 0 cp-l)ldetJ<,O-11 

= If. 
Combining this with (11.5) proves the lemma. 0 

Completion of the proof of Theorem 11.1. Any real-valued contented function call 
be written as the difference of two positive contented functions. If for all x, 
f(x) > -1'11 for some large M, we write f = (f + Meo) - Meo, where 
supp feD. Since we have verified Eq. (11.1) for nonnegative functions, and sinc(' 
both sides of (11.1) are linear inf, we are done. Similarly, any bounded complex­
valued contented function f can be written as f = fl + ih, where fl and f2 arc 
bounded real-valued contented functions. 0 
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In practice, we sometimes may apply Eq. (11.1) to a situation where the 
hypotheses of Theorem 11.1 are not, strictly speaking, verified. For instance, in 
1R2 we may want to introduce "polar coordinates". That is, we let r, ° be coordi­
nates on 1R2; if S is the set 0 ::; ° < 21r,0 ::; r, we consider the map cp: S ~ 1R2 
given by x = r cos 0, y = r sin 0, where x, yare coordinates on a second copy 
of \R 2• Now this map is one-to-one and has positive Jacobian for r > O. If we 
consider the open sets U C S given by 0 < r, 0 < ° ::; 21r and V C \R 2 given by 
V = \R 2 - {x, y : y = 0, x ~ O}, the hypotheses of Theorem 11.1 are fulfilled, 
and we can write (since det J", = r) 

JI= J(focp)r (11.6) 

if supp leV. However, Eq. (11.6) is valid without the restriction supp leV. 
In fact, if D. is a strip of width E about the ray y = 0, x ~ 0, then I = leD. + 
leRn_D. and fleD. ~ 0 as E ~ 0 (Fig. 8.11). Similarly, f(fo cp)(r 0 cp)eD. 0 cp ~ 0, 
so that (11.6) is valid for all contented I by this simple limit argument. 

Fig. 8.11 

We will not state a general theorem covering all such useful extensions of 
Theorem 11.1. In each case the limit argument is usually quite straightforward 
and will be left to the reader. 

EXERCISES 

11.1 By the parallelepiped spanned by vI, ... , vn we mean the set of all x = LevI + 
... + ~nvn, where 0 ::; ~i < 1. Show that the content of this parallelepiped is given by 

Jdet ((Vi, Vj))J1I2. 

n.2 Express the content of the ellipsoid 

{ (xl)2 (xn) 2 } 
x: (a 1)2 + ... + (an)2 :::; 1 

in terms of the content of the unit ball. 

n.3 Compute the Jacobian determinant of the map <r, 0> 1--+ <x, y>, where 
x = r cos 0, y = r sin 0. 

n.4 Compute the Jacobian determinant of the- map <r, 0, cpr 1--+ <x, y, z>, 
where x = r cos cp sin 0, y = r sin cp sin 0, z = r cos 0. 

n.5 Compute the Jacobian determinant of the map <r, 0, z> 1--+ <x, y, z>, 
where x = r cos 0, y = r sin 0, z = -z. 
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12. SUCCESSIVE INTEGRATION 

In the case of one variable, i.e., the theory of integration on IRI, the fundamental 
theorem of the calculus reduces the computation of the integral of a function to 
the computation of its antiderivative. The generalization of this theorem to 
n dimensions will be presented in a later chapter. In this section we will show 
how, in many cases, the computation of an n-dimensional integral can be reduced 
to n successive one-dimensional integrations. 

Suppose we regard IRn , in some fixed way, as the direct product IRn = 
IRk X 1R1. We shall write everyz E IRn as z = -<x, y>, where x E IRk and y E IR/. 

Definition: 12.1. We say that a contented function f is contented relative to 
the decomposition IRn = IRk X IRI if there exists a set AI C IRk of content 
zero (in IRk) such that 

i) for each fixed x E IRk, X ~ A" the function f(x, .) is a contented function 
on IRI; 

ii) the function IRlf which assigns to x the number IRlf(x, .) is a contented 
function on IRk. 

It is easy to see that the set of all such functions satisfies Axioms 5'1 through 
5'3. (The only axiom that is not immediate is 5'2. But this is an easy consequence 
of the fact that any translation T can be rewritten as TIT2 ,where Tl is a trans­
lation in IRk and T2 is a translation in 1R1.) 

It is equally easy to verify that the rule which assigns to any such f the 
number 

satisfies Axioms II through I4. The only one which isn't immediately obvious 
is I3. However, if p is any paving with supp f C Ipl, then 

f ~ IIfllelpl 
and 

lk (ll IIfllelpl) = IIflllk II eipi = IIfllJ.L(elpl)' 

since 

lkll eO = J.L(e o ) 

for any rectangle (direct verification). Thus, by the uniqueness part of Theorem 
10.1, we have 

(12.1) 

Note, in particular, that if f is also contented relative to the decomposition 
IRn = IRI X IRk, then 

In particular, for such f the double integration is independent of the order. 
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In practice, all the functions that we shall come across will be contented 
relative to any decomposition of IRn. In particular, writing IRn = 1R1 X· .. X 1R1, 
we have 

(12.2) 

In terms of the rectangular coordinates x 1, • • • , xn , this last expression is usually 
written as 

For this reason, the expression on the left-hand side of (12.2) is frequently 
written as 

hnf = j ... jf(x\ ... ,xn) dx 1 • •• dxn. 

Let us work out some simple examples illustrating the methods of integra­
tion given in the previous sections. 

ExaDlple 1. Compute the volume of the intersection of the solid cone with vertex 
angle a (vertex at 0) with the spherical shell 1 ~ r ~ 2 (Fig. 8.12). By a Euclidean 
motion we may assume that the axis of the cone is the z-axis. If we introduce 
polar coordinates, we see that the set in question is the iInage of the set 

0<2,2".,<>/2> 
<1,0,0> , 1 ~ r < 2, 

in the -<r, I{J, 6>-space (Fig. 8.13). 

Fig. 8.12 

o ~ 6 ~ a/2 

r 

Fig. 8.13 

By the change of variables formula and Exercise 11.4 we see that the volume 
in question is given by 

j 1,2 (2". (<>/2 
r2 sin 6 = 1 10 10 r2 sin 6 dO dl{J dr 

1, 2 ("/2 2 
= 211" 1 10 r sin 6 d'O dr 

= 211" h2 [1 - cos (a/2)]r2 dr 

= 211"[1 - cos (a/2)](! - i). 
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Exalllple 2. Let B be a contented set in the plane, and let !I and f2 be two COlI­
tented functions defined on B. Let A be the set of all -<x, y, z>- E 1E3 such thai, 
-<x, y>- E B andfl(x, y) ::::; z ::::; hex, y). If G is any contented function on A, 
we can express the integral JAG as 

1 G = 1 {r I2 (X'Y) G(x, y, z) dZ} dx dy. 
A A Jh(X,y) 

For example, compute the integral J A z, where 
A is the set of all points in the unit ball lying 
above the surface z = x2 + y2 (Fig. 8.14). 
Thus 

A = {-<x,y,z>-: X2 +y2+Z2::::; 1,z ~ X2 +y2}. 

Fig.II.H 

We must have x2 + y2 ::::; a, where a2 + a = 1 [so that a = (VS - 1)/2], ill 
order for -<x, y, z>- to belong to A. Then !I (x, y) = x2 + y2, f2(x, y) = 
vI - (X2 + y2), and 

;;
/ 2 (X,y) 

z dz = t[1 - (x 2 + y2) - (x 2 + y2)2], 
h(x,y) 

so that, using polar coordinates in the plane (and Exercise 11.3), 

1 z = t r [1 - (x2 + y2) - (x2 + y2)2] = 7r r..;a r(l - r2 - r4) dr. 
A Jx2+y25,a Jo 

As we saw in the last example, part of the problem of computing an integral 
as an iterated integral is to determine a good description of the domain of 
integration in terms of the decomposition of the vector space. It is usually It. 

great help in visualizing the situation to draw a figure. 

Exalllple 3. Compute the volume enclosed by a surface of revolution. Here we arp 
given a function f of one variable, and we consider the surface obtained by 
rotating the curve x = fez), Zl ::::; Z ::::; Z2, around the z-axis (Fig. 8.15). We 
thus wish to compute ,u(A), where 

A = {-<x, y, z>- : x2 + y2 ::::; fez), Zl ::::; Z ::::; Z2}' 

Here it is obviously convenient to use cylindrical coordinates, and we sen 
that A is the image of the set 

B = {-<r, e, z>- : r ::::; fez), 0 ::::; e < 27r} 

in the -< r, e, z>- -space. By Exercise 11.5, we wish to compute 

fB r = fo 2". 1.:2 fo/(Z) r dr dz de = 27r 1.:2 (fo/(Z) r dr) dz = 27r f.:2 f(~ 2 dz. 

Thus 
j Z2 2 

,u(A) = 7r fez) dz. 
Z1 
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z 

x=f(z) 

-+--+-x 

Fig. 8.15 

EXERCISES 

12.1 Compute the volume of the region between the surfaces z = x2 + y2 and 
z = x+ y. 

12.2 Find the volume of the region in lEa bounded by the plane z = 0, the cylinder 
x2 + y2 = 2x, and the cone z = +vx2 + y2. 

12.3 Compute fA (x2 + y2)2 dx dy dz, where A is the region bounded by the plane 
z = 2 and the surface x2 + y2 = 2z. 

12.4 Compute fAx, where 

A = {-<x,y,z>:x2+y2+z2~ a2,x~ O,y~ O,z~O}. 

12.5 Compute 

\ i (:: + ~: + ::y/2, 
whe~ A is the region bounded by the ellipsoid 

) ::+~:+::=l. 
i'et p be a nonnegative function (to be called the density of mass in the following 

discussion) defined on a domain V in P. The total mass of -< V, p> is defined as 

M = kP(X) dx. 

If M F- 0, the center of gravity of -< V, p> is the point C = -<Cl, C2, Ca>, where 

C1 = .! In XIP(X) dx, 

C2 = .! In X2P(X) dx, 

Ca = .! L xap(x) dx. 
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12.6 A homogeneous solid (where P is constant) is given by Xl ~ 0, X2 ~ 0, X3 ~ 0, 
and 

2 2 2 
Xl + X2 + X3 < 1. 
a 2 b2 c2 -

Find its center of gravity. 

12.7 The unit cube has density p(x) = X1X3. Find its total mass and its center of 
gravity. 

12.8 Find the center of mass of the homogeneous body bounded by the surfaces 
x2 + y2 + z2 = a 2 and x2 + y2 = ax. 

The notion of center of mass can, of course, be defined for a region in a Euclidean spacc 
of any dimension. Thus, for a region D in the plane with density p, the center of mass 
will be the point -<xo, Yo>-, where 

JDXP 
Xo =--

JDP 
and JDYP Yo = --. 

JDP 

12.9 Let D be a region in the xz-plane which lies entirely in the half-plane X > 0. 
Let A be the solid in 1E3 obtained by rotating D about the z-axis. Show that IL(A) = 

211" dlL(D) , where d is the distance of the center of mass of the region D (with uniform 
density) from the z-axis. (Use cylindrical coordinates.) This is known as Guldin's rule. 

Observe that in the definition of center of gravity we obtain a vector (i.e., a point 
in 1E3) as the answer by integrating each of its coordinates. This suggests the following 
definition: Let V be a finite-dimensional vector space, and let el, ... , ek be a basis 
for V. Call a map ffrom lEn to V (f is a vector-valued function on lEn with values in V) 
contented if when we write f(x) = L: fi(x)ei, each of the (real-valued) functions fi 
is contented. Define the integral of f over D by 

12.10 Show that the condition that a function be contented and the value of its 
integral are independent of the choice of basis e1, ... , ek. 

Let ~ be a point not in the closed domain D, which has a 
mass distribution p. The gravitational force on a particle of 
unit mass situated at ~ is defined to be the vector 

1 p(x)(x - ~) dx 
D Ilx - ~113 

(here x - ~ is an 1E3-valued function on [3). Fig. 8.16 

12.11 Let D be the spherical shell bounded by two concentric spheres 81 and 82 
(Fig. 8.16), with center at the origin. Let P be a m;l.SS distribution on D which depends 
only on the distance from the center, that is, p(x) = f(llxll). Show that the gravita­
tional force vanishes at any ~ inside 81. 

12.12 -< D, p>- is as in Exercise 12.5. Show that the gravitational force on a point 
outside 82 is the same as that due to a particle situated at the origin and whose mass 
is the' total mass of D. 
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13. ABSOLUTELY INTEGRABLE FUNCTIONS 

Thus far we have been dealing with bounded functions of compact support. In 
practice, we would like to be able to integrate functions which neither are 
bounded nor have compact support. Let f be a function defined on lEn, let M be 
a nonnegative real number, and let A be a (bounded) contented subset of lEn. 
Let If be the function 

If(x) = {~ 
f(x) 

if x El A, 
if x E A and If(x) I > M, 
if x E A and If(x) I ~ M. 

Thus If is a bounded function of compact support. It is obtained from f by 
cutting f back to zero outside A and cutting f back to M when If(x) I > M. 

We say that a function f is absolutely integrable if 

i) If is a contented function for all M > 0 and contented sets A; and 

ii) for any E > 0 there is a bounded contented set A. such that eA • • f is 
bounded and for all M > 0 and all B with B n A. = >0, 

JlfWI < E. 

It is easy to check that the sum of two absolutely integrable functions is again 
absolutely integrable. Thus the set of absolutely integrable functions forms a 
vector space. Note that if f satisfies condition (i) and If(x) I < Ig(x)1 for all x, 
where g is absolutely integrable, then f is absolutely integrable. 

Let f be an absolutely integrable function. Given any E, choose a correspond­
ing A.. Then for any numbers M I and M 2 ~ maXxEA. If(x) I and for any sets 
Al ~ A. and A2 ~ A., 

If we let E ~ 0 and choose a corresponding family of A., then the above inequal­
ity implies that the lim ffA. is independent of the choice of the A •. We define 
this limit to be f f. 

We now list some very crude sufficient criteria for a function to be absolutely 
integrable. We will consider the two different causes of trouble-nonbounded­
ness and lack of compact support. 

Let f be a bounded function with fA contented for any contented set A. 
Suppose If(x) I ::; Cllxll-k for large values of Ilxll. Let Br be the ball of radius r 
centered at the origin. If TI is large enough so that the inequality holds for 
IIxll ~ Tb then for T2 ~ TI we have 

JlfBr2-Br11 ::; C ( IIxll-k = COnf.r2 Tn-1-k, 
J Br2-Brl rl 

where On is some constant depending on n (in fact, it is the "surface area" of the 
unit sphere in lEn). If k > n, this last integral becomes 

COn (n-k n-k) n _ k T2 - Tl , 
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which is ~ [Cln/(k - n)lr~-k, which tends to zero as r1 ---+ 00 if k > n. Thus 
we can assert: 

Let f be a bounded function such that fA is contented for any contented 
set A. Suppose that If(x)1 ---+ 0 as Ilxll ---+ 00 in such a way that Ilxllklf(x)1 is 
bounded for some k > n. Then f is absolutely integrable. 

N ow let us examine the situation when f is of compact support but un­
bounded. Suppose first that there is a point Xo such that f is bounded in the 
complement of any neighborhood of Xo. Suppose, furthermore, that 

If(x)1 ~ Ckllx - xoll-k 

for some constants C and k. Then if If(x) I > 111, Ilx - xoll-k > M/C or 
IIx - xoll < C/MI/k. 

Let B1 be the ball of radius CM1I / k centered at Xo. Then If(x)1 > M1 
implies that x E B 1. Furthermore, for M 2 > M 1 we have 

where B2 is the ball of radius CM-;I/k centered at Xo. Thus 

where Q n and V n depend only on n. If k < n, the integral on the right becomes 

Cn- k Cn-k 
__ (M~k-n)/k _ M~k-n)/k) < __ M(k-n)/k 
n-k n-k 1 • 

Thus 

which can be made arbitrarily small by choosing M 1 large. 
Thus if f has compact support and is such that fM is contented for all M and 

If(x) I < Cllx - xoll-k with k < n, thenfis absolutely integrable. 
More generally, let S be a bounded subset of an l-dimensional subspace of 

lEn. Let d(x) denote the distance from x to S. Let f be a function of compact 
support with fM contented for all M. If If(x) I < C d(x)-k with k < n - l, 
then f is absolutely integrable. The proof is similar to that given above and is left 
to the reader. 

Let Uk} be a sequence of absolutely integrable functions. Under what 
conditions will the sequence f f n ---+ f f if the sequence A(x) ---+ f(x)? Even if the 
sequence converges uniformly, there is no guarantee that the integrals converge. 
For instance, if fk = (l/kn)eD~, then Ifk(X)1 ~ l/kn, so that fk approaches zero 
uniformly. On the other hand, ffk = 1 for all k. 
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We say that a set of functions Uk} is uniformly absolutely integrable if for 
any E > 0 there is an A. which can be chosen independently of k such that 

for all M 

wherever B n A. = 0. 
We frequently verify that {ik} is uniformly absolutely integrable by showing 

that there is an absolutely integrable function g such that Ifk(X)1 ~ Ig(x)1 for 
all k and x. 

Let Uk} be a uniformly absolutely integrable sequence of functions. Suppose 
that fk ~ f uniformly. Suppose in addition that f is absolutely integrable. Then 
Ifk ~ If. In fact, for any 0 > 0 we can find a ko such that Ifk(X) - f(x) I < 0 
for all k > ko and all x. We can also find A. and M. such that 

Ilfk - If I < Ilf~A. - Ifkl + Ilffo - If I + Ilf~A. - Iffol 

< E+E+oj.l(A.), 

which can be made arbitrarily small by first choosing E small (which then gives 
an A.) and then choosing 0 small (which means choosing ko large). 

The main applications that we shall make of the preceding ideas will be to 
the problems of computing iterated integrals and of differentiating under the 
integral sign. 

Proposition 13.1. Let f be a function on ~k X ~l. Suppose that the set of 
functions U(x, .)} is uniformly absolutely integrable, where x is restricted 
to lie in a bounded contented set K C ~k. Then the function eKXRI. f is 
absolutely integrable, and 

( zf = ( ( zf(x, y) dy dx = ( I ( f(x, y) dx dy. 
1KxR 1K JR JR 1K 

Proof. By assumption, for any E > 0 we can find M and A. C ~l such that 

if AnA. = 0. (13.1) 

Now for any set B in ~n, 

leKxRllff/1 = leK(x) D Iff/(x, ·)1 

~ j.I(K) E if B n K X A. = 0. 

This shows that eKXRI f is absolutely integrable on ~n. Now choose a sufficiently 
large 0 = 01 X 02 and an M such that 

I IKXRI f - IKXRI ft! I < E, 

and also such that 

for all x E K. 
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Then we have 

and 
r I fff = r r Jff (x, y) dy dx. 

lxXR JK JR 
Thus 

so that 
r If= r rJ(x,y)dydx. 

JKXR JK JR 

Finally Eq. (13.1) shows that the function F(y) = fK f(', y) IS absolutely 
integrable. In fact, using the same A and M as in (13.1), we get 

Thus we get 

r zf = r r J(x, y) dy dx = r I r f(x, y) dx dy. 0 
lxXR lx JR JR lx 

An extension of the same argument shows the following. 

Proposition 13.2. Let f be absolutely integrable on IR.n and such that thc 
functions f(x, .) are uniformly absolutely integrable for each x E IR. k • Then 

If = Ilf(x, y) dy dx. 

We now turn our attention to the problem of differentiating under thc 
integral sign. 

Proposition 13.3. Let (t, x) ~ F(t, x) be a function on I X IR.n, wherc 
I = [a, b] C IR.. Suppose that 

i) F and aF j at are continuous functions on I X IR.n; 

ii) (aFjat)(t,') is a uniformly absolutely integrable family of functions; 

iii) F(t,') is absolutely integrable for all tEl. 

Letf(t) = fF(t, .). Thenfis a differentiable function of t and 

f'(t) = r (aFjat)(t, .). 
JRn 

Proof. Let G(t) = fRn(aFjat)(t, .). Then G(t) is continuous; hence we can pass 
to the limit under the integral sign of a family of absolutely integrable 
functions. Furthermore, 

f G(s) ds = lnf (aFjat)(s,') ds 
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by Proposition 13.1. Thus 

1t G(s) = ( (F(t,') - F(a, .)) = ( F(t,') - ( F(a,') = f(t) - f(a). 
a JRn JRn JRn 

Differentiating this equation with respect to t gives the desired result. 0 

Finally, let us state the change of variables fonnula for absolutely integrable 
functions. 

Let tp: U ~ V be a differentiable one-to-one map with differentiable inverse, 
where U and V are two open sets in ~n. Let f be an absolutely integrable 
function defined on V. Then (f 0 tp)ldet J <pI is an absolutely integrable func­
tion on U and 

Jvf= Ju (fo tp)ldetJ<pI· 

Proof. To show that (f 0 tp)ldet J <pI is absolutely integrable, let E > 0 and 
choose an A. C V such that (ii) holds. Then A. is compact, and therefore so is 
tp-l(A.). In particular, tp-l(A.) is a bounded contented set and Idet J <pI is 
bounded on it. If B n tp-l(A.) = 0, where Be U is bounded and contented, 
then 

( IdetJ<pIMI(fotp)MI::; J. IfMI < E. 
lB <p(B) 

This shows that (f 0 tp) I det J <pI is absolutely integrable. The rest of the proposi­
tion then follows from 

by letting E ~ O. 0 

EXERCISES 

13.1 Evaluate the integral f~"" e-x2 dx. [Hint: Compute its square.] 

13.2 Evaluate the integral fo"" e-x2x2k dx. 

13.3 Evaluate the volume of the unit ball in an odd-dimensional space. [Hint: Ob­
serve that the Jacobian determinant for "polar" coordinates is of the form rn - 1 X j, 
wherejis a function of the "angular variables". Thus the volume of the unit ball is of 
the form CfJ rn - 1 dr, where C is determined by integrating j over the "angular vari­
ables". Evaluate C by computing <f':"" e-x2 dx)n.] 

14. PROBLEM SET: THE FOURIER TRANSFORM 

Let a = <al, ... , an> be an n-tuple whose entries are nonnegative integers. 
By Da we shall mean the differential operator 

!lal+"'+a" D a = _(J ___ _ 

ax~l ... ax~" 
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Let lal = al + ... + an. Let Q(x, D) = Llal:::;k aa(x)Da be the differential 
operator where each aa is a polynomial in x. Thus if f is a Ck-function on IRn , 

we have 

For any f which is Coo on IRn we set 

IIfllQ = sup I Qf(x) I· 
xERn 

We denote by s the space of all f E Coo such that 

IlfllQ < 00 (14.1) 

for all Q. To see what this means, let us consider those Q with k = o. Then 
(14.1) says that for any polynomial a(·) the function a· f is bounded. In other 
words, f vanishes at infinity faster than the inverse of any polynomial; that is, 

lim IlxIIPf(x) = 0 
IIxll--->oo 

for all p. To say that (14.1) holds means that the same is true for any derivative 
of f as well. 

If f is a Coo-function of compact support, then (14.1) obviously holds, so 
f E s. A more instructive example is provided by the function n given by 

n(x) = e-lIxIl2 • 

Since limT--->oo rPe-r2 = 0 for any p, it follows that limllxll--->oo a(x)n(x) = o. On 
the other hand, it is easy to see (by induction) that Dan(x) = Pa(x)n(x) for 
some polynomial Pa. Thus Qn(x) = PQ(x)n(x), where P Q is a polynomial. 
Thus n E s. 

It is easy to see that the space S is a vector space. We shall introduce a 
notion of convergence on this space by saying that fn ~ f if for every fixed Q, 

Ilfn - fllQ ~ o. 
(Note that the space S is not a Banach space in that convergence depends on an 
infinity of different norms.) 

EXERCISES 

14.1 Let cp be a Coo-function which grows slowly at infinity. That is, suppose that 
for every a there is a polynomial P a such that 

for all x. 

Show that if I E S, then cpl E S. Furthermore, the map of S into itself sending I ~ cpl 
is continuous, that is, if In ~ I, then CPln ~ cpf. 
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For x = -<Xl, ... , Xn> E ~n and ~ = -< ~1, ... , ~n> E ~n* we denote the value 
of ~ at x by 

Also for any a = -<a l , ... , an> and any x E ~n we let 

xa = (Xl)al ... (xn)an , 

and similarly ~a = (e)al ... (~n)an, etc. 
For any f E S we define its Fourier transformj, which is a function on ~n*, by 

Jm = J e-i(x'~>f(x) dx. 

We note that 

J(O) = Jf and 

14.2 Show that j possesses derivatives of all orders with respect to ~ and that 

DrJm = (-i)laIJ e-i(x.nxaf(x) dx; 

in other words, 

where g(x) = (-i) lalxaf(x). 

14.3 Show that 

D~JW = OW, 

/'-.. 

aaf . m = i~1m. 
XJ 

[Hint: Write the integral as an iterated integral and use integration by parts with 
respect to the jth variable.] 

14.4 Conclude that the map fl---+ J sends S(~n) into S(~n*) and that if fn ~ 0 in S, 
thenJn ~ 0 in S(~n*). 

14.5 Show that 
f:Jw = e-i(",.t>jw 

Recall that T",f(x) = f(x - w). 

for any w E ~n. 

14.6 For any f E S define f by 
f(x) = f(-x), 

where denotes complex conjugation. Show that 

1w =jW. 

14.7 Let n = 1, and letfbe an even real-valued function of x. Show that 

Jm = J cos (x, ~) f(x) dx. 

14.8 Let n(x) = e-(1I2).r 2 where x E ~l. Show that 

and conclude that 

dn ( ) • ) d~ ~ = -~ri(~ , 

log nW = _-H2 + const, 
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so that 
n(~) = const X e-O/2a2. 

Evaluate this constant as vz;;: by setting ~ = 0 and using Exercise 13.1. Thus 

nW = V21r e-(1I2)E2. 

8.14 

14.9 Show that the limit limE-->o IF' (sin x)/x dx exists. Let us call this limit d. 
Show that for any R > 0, limE-->o I.II· (sin Rx)/x dx = d. 

If f E S, we have seen thatJ E S(lRn*). We can therefore consider the function 

f ei(Y.E)Jm d~. 

The purpose of the next few exercises is to show that 

fey) = _1_ jei (1I·E>Jm d~ 
(2'/1")" • 

(14.2) 

We first remark that since all integrals involved are absolutely convergent, it 
suffices to show that 

f Rn fRI 
fey) = lim ... lim ~ J(~I, ••. , nei(yIEI+ ... +1In~l d~1 ... dt. 

RI-->oo R,,-->oo (2'/1") -R" -RI 

Substituting the definition of f into this formula and interchanging the order of inte­
gration with respect to x and ~, we get 

I· I· ( 1 )"fiRn fR I f( 1 n) i[(yl_ZllEI+··+(1In-znlEnl dl:l dl:ndx 1m··· 1m - ... x, ... ,xe ., ... ., . 
RI-->oo R,,-->oo 27 -R" -RI 

It therefore suffices to evaluate this limit one variable at a time (provided the conver­
gence is uniform, which will be clear from the proof). We have thus reduced the problem 
to functions of one variable. We must show that if f E S(IR 1), then 

R 

fey) = lim 21 fer f(x)ei(Y-ZlE d~ dx. 
R-->oo '/I" J-R 

We shall first show that 
R 

fey) = lim 41d fer f(x)ei(Y-ZH d~ dx, 
R-->oo J-R 

where d is given in Exercise 14.9. 

14.10 Show that this last integral can be written as 

.! foo f( ) sin R(y - x) dx = ! 100 fey - u) + fey + u) . Ru d 
2d x d 2 sm u. _ y-x 0 u 

14.11 Let 

g(u) = fey - u) ~ fey + u) - fey). 
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Show that g(O) = 0 and conclude that g(x) = xh(x) for 0 ~ x ~ 1, where h E Cl. By 
integrating by parts, show that 

I r g(u) sin Ru + t g(u) sin Rul < const -R1 . Jl u JlIE U 

Conclude that 

1· 1 100 
fey - u) + fey + u) . Ru d f( ) 

Im-d 2 sm- U= y. 
R~ 0 U 

This proves that 

fey) = 4~ f eill~fm d~. 
14.12 Using Exercise 14.8, conclude that d = 7r/2. 

Let h E Sand h E S. Define the function h * h by setting 

h * 12 (x) = jh(x-Y)h(y)dy. 

Note that this makes good sense, since the integrand on the right clearly converges for 
each fixed value of x. We can be more precise. Since fi E S, we can, for any integer p, 
find a Kp such that 

so that 

f L Rn 

Ih(y)1 < 1 +- Rp . 
IIIIII>R 

Then 

j (l+ IIxllq)h(x - y)h(y) dy = { (1+ IIxllq)h(x - y)h(y) dy 
J 111111«1/2) II" II 

+ { (1 + Ilxllq)h(x - y)h(y) dy. 
J 111111>(1/2) II" II 

The first integral is at most 

Cn (illxllnl + Ilxll)q m~x Ih(z)1 1 + ~ttlxlDP , 
while the second is at most 

(1 + IIxllq) max Ih(u)1 Lp(illxlD n 

" 1 + (illxlDp 
By choosing p > q + n, we see that both terms go to zero. Thus 

lim (1 + IIxllq)h * hex) = o. 
II" 11--+00 

14.13 Show that 

a (ah ) (a h) -. (fl * h) = -. * h = h * -. . 
ax' ax' ax' 

Conclude that h * hE S. 
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14.14 Show that if cp is any bounded continuous function on IR", then 

II cp(x + y)f (x)h(y) dx dy = I CP(U)(fl * h)(u) duo 

14.15 Conclude that 
------ A A h*hW =hWhW. 

14.16 Show that 

f * l(y) = c~rf'Jw,2ei(Y'O d~. 
14.17 Conclude that for any f E S, 

[Hint: Set y = 0 in Exercise 14.16.] 

8.14 

(14.3) 

The following exercises use the Fourier transform to develop facts which are useful 
in the study of partial differential equations. We will make use of these facts at the 
end of the last chapter. The reader may prefer to postpone his study of these problems 
until then. 

On the space S, define the norm II II. by setting 

IIfll~ = (21frnl (1 + 1I~1I2)'ljWI2 d~, 
and the scalar product (f, g). by 

(f' g). = 1(1 + 1I~1I2)'JWgW d~. 
14.18 Let s = R be a nonnegative integer. Show that 

IIfll~ = L '(R ~ I /)' f 1 Daf(x) 12 dx, 
lal~Ra. a . 

where a! = a1! ... an!. [Use the multinomial theorem, a repeated application of 
Exercise 14.3, and Eq. (15.3).] 

We thus see that IIfliR measures the size of f and its derivatives to order R in 
the square integral norm. It is helpful to think of II II. as a generalization of this notion 
of size, where now s can be an arbitrary real number. 

Note that 
IIfll.::::;; IIfllt if s::::;; t. 

For any real s define the operator K8 by setting 

14.19 Show that the operator K = Kl is given by 

a2f 
Kf =f- L 2 ' 

aXl 
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14.20 Show that for any real numbers 8 and t, 

IIK'fllt = Ilfllt+28 
and 

14.21 Show that Ko+t = K' 0 Kt, so that, in particular, K' in invertible for all 8. 

We now define the space H8 to be the completion of S under the norm II II.. The 
space H8 is a Hilbert space with a scalar product ( , )8. We can think of the elements 
of H. as "generalized functions with generalized derivatives up to order 8". By con­
struction, the space S is a dense subspace of H. in the norm II II •. We note that Exer­
cise 14.20 implies that the operator K' can be extended to an isometric map of H t into 
H t -2 •. We shall also denote this extended map by K8. By Exercise 14.21, 

is the inverse of K', so that K' is a norm-preserving isomorphism of H t onto H t -28. 

14.22 Let u E H. and v E H -s. Show that 

I(u, v)ol ::; lIuI1 8 1Ivll-8 • 

Thus we can extend -< u, v >- ~ (u, v)o to a function on H. X H -s which is linear in 
u and antilinear in v [that is, (u, aVI + b2V2)0 = a(u, VI) + b(u, V2)] and satisfies the 
above inequality. Thus any v E H -s defines a bounded linear function, l, on H. by 
l(u) = (u, v)o. 

14.23 Conversely, let l be a bounded linear function on Hs. Show that there is a 
v E H -s with l(u) = (u, v)o for all u E H •. [Hint: Consider the linear form v = K'w, 
where w is a suitable element of H 8 , using Theorem 2.4 of Chapter 5.] 

14.24 Show that 

I (u, v)ol 
IIvll-s = sup II II 

uEH. U. 
u,,",O 

(Exercise 14.22 gives an inequality. If v ;& 0, take u = K-'v to get 

in order to get an equality.) 

14.25 Let 28 > n (where our functions are defined on IRn). Show that for any f E S 
we have 

(Sobolev's inequality). 

(Use Eq. (14.2), Schwarz's inequality, and the fact that the integral on the right of 
the inequality is absolutely convergent.) 

Sobolev's inequality shows that the injection of S into C(lRn) extends to a continuous 
injection of H. into C(lRn), where C(lRn) is given the uniform norm. We can thus 
regard the elements of H. as actual functions on IRn if 8 > n/2. 
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By induction on lal we can assert that for 8 > n/2, any f E H 1al +. has lal con­
tinuous derivatives and 

(14.4) 

14.26 Let Q be a bounded open subset of ~n. Let cP E S satisfy supp cP C Q. Show 
that 

14.28 Show that 

and conclude that 

for all ~. 

I ~1li,?W I ~ JL(Q) 1/211 Dllcpll 0, 

1(1 + 11~112)ki,?2WI ~ JL(Q)llcpllz. 

14.29 More generally, let y; be a function in S which satisfies y;(x) = 1 for all x E Q, 

and let cp E S satisfy supp cp C Q. Show that 

Ii,?WI = I(cp,h)ol ~ IlcpI181Ihll-s, 
where y;~(x) = y;(x) e-i<x,~), and that 

I D~i,?W I ~ Ilcpll.IIY;~ 11-., 
where y;~(x) = xay;(x)e-i(x,~). 

Let us denote by H~ the completion under II II. of the space of those functions in S 
whose supports lie in Q. According to Exercise 14.29, any cp E H~ defines an actual 
function i,? of ~ which is differentiable and satisfies 

I D~i,?(~) I ~ Ilcpll.IIY;~(x) 11-8, 
where 11Y;~(x)il-. depends only on Q, a, ~, and -8, and is independent of cpo Further­
more, Ilcpll; = J(1 + 11~112)81i,?WI2 d~. 
14.30 Let 8 < t. Then the injection H t ~ H. is a compact mapping. That is, if 
{CPi} is a sequence of elements of HP such that IICPil1 t ~ 1 for all i, then we can select a 
subsequence {cpi) which converges in II II •. [Hint: By Exercise 14.29, the sequence oj 

functions cpi(~) is bounded and equicontinuous on U: II~II ~ r} for only fixed r. w(~ 
can thus choose a subsequence which converges uniformly and therefore a subsubsc­
quence which converges on U: II~II < r} for all r (the uniformity possibly depending 
on r). Then if {CPi) is this subsubsequence, 

IICPij - CPikll~ = f (1 + 1I~1I2)8IcpijW - CPikWI2 d~ 

= ( (1 + 1I~1I2)8Icpi;(~) - CPikWI 2 d~ 
J II~II:$ r 
+ ( (1 + 11~1I2)8IcpijW - CPikWI 2 d~ 

lu~ lI>r 

~ ( (1 + 11~112)8Icpij(~) - CPikWI 2 d~ 
lu~ 11:$ r 

+ (1 + 1I~1I2)8-t {IICPij1l7 + IICPikll~}.J 



CHAPTER 9 

DIFFERENTIABLE MANIFOLDS 

Thus far our study of the calculus has been devoted to the study of properties 
of and operations on functions defined on (subsets of) a vector space. One of 
the ideas used was the approximation of possibly nonlinear functions at each 
point by linear functions. In this chapter we shall generalize our notion of space 
to include spaces which cannot, in any natural way, be regarded as open subsets 
of a vector space. One of the tools we shall use is the "approximation" of such a 
space at each point by a linear space. 

Suppose we are interested in studying functions on (the surface of) the unit 
sphere in 1E3. The sphere is a two-dimensional object in the sense that we can 
describe a neighborhood of every point of the sphere in a bicontinuous way by 
two coordinates. On the other hand, we cannot map the sphere in a bicontinuous 
one-to-one way onto an open subset of the plane (since the sphere is compact and 
an open subset of 1E2 is not). Thus pieces of the sphere can be described by open 
subsets of 1E2, but the whole sphere cannot. Therefore, if we want to do calculus 
on the whole sphere at once, we must introduce a more general class of spaces 
and study functions on them. 

Even if a space can be regarded as a subset of a vector space, it is conceivable 
that it cannot be so regarded in any canonical way. Thus the state of a (homo­
geneous ideal) gas in equilibrium is specified when one gives any two of the three 
parameters: temperature, pressure, or volume. There is no reason to prefer any 
two to the third. The transition from one set of parameters to the other is given 
by a one-to-one bidifferentiable map. Thus any function of the states of the 
gas which is a differentiable function in terms of one choice of parameters is 
differentiable in terms of any other. Thus it makes sense to talk of differentiable 
functions on the states of the gas. However, a function which is linear in terms 
of one choice of parameters need not be linear in terms of the other. Thus it 
doesn't really make sense to talk of linear functions on the states of the gas. 
In such a situation we would like to know what properties of functions and what 
operations make sense in the space and are not artifacts of the description we 
give of the space. 

Finally, even in a vector space it is sometimes convenient to introduce 
"nonlinear coordinates" for the solution of specific problems: for example, polar 
coordinates in Exercises 11.3 and 11.4, Chapter 8. We would therefore like to 
know how various objects change when we change coordinates and, if possible, 
to introduce notation which is independent of the coordinate system. 

363 
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We will begin our formal discussion with the definition of differentiable 
manifolds. The basic idea is ~imilar to the one that is used in everyday life to 
describe the surface of the earth. One gives a collection of charts describing small 
overlapping portions of the globe. We can piece the whole picture together by 
seeing how the charts match up. 

Fig. 9.1 

1. ATLASES 

Let M be a set. Let V be a Banach space. (For almost all our applications we 
shall take V to be IRn for some integer n.) A V-atlas of class Ck on M is a collec­
tion a of pairs (Ui , l{Ji) called charts, where Ui is a subset of M and l{Ji is a bijec­
tive map of Ui onto an open subset of V subject to the following conditions 
(Fig. 9.1): 

AI. For any (Ui , l{Ji) E a and (Uj, I{Jj) E a the sets l{Ji(Ui n Uj) and 
I{Jj(Ui n Uj ) are open subsets of V, and the maps 

l{Ji 0 I{Jjl: I{Jj(Ui n Uj) ---t l{Ji(Ui n Uj) 

are differentiable of class Ck. 

A2. UUi = M. 
The functions l{Ji 0 I{Jjl are called the transition functions of the atlas a. 

The following are examples of sets with atlases. 

ExalDple I. The trivial example. Let M be an open subset of V. If we take a 
to consist of the single element (U, I{J), where U = M and I{J: U ---t V is the 
identity map, then Axioms Al and A2 are trivially fulfilled. 

ExalDple 2. The sphere. Let M = sn denote the subset of IRn+t given by 
(Xl)2 + ... + (xn+l)2 = 1. Let the set U 1 consist of those points for which 
xn+t > -1, and let U 2 consist of those points for which xn+t < 1. Let 

1P1; U 1 ---t IRn 
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be given by 
i 

i (I n+l) X • 1 y 0 IPI X , ••• , x = 1 + xn+l ' ~ = , ... , n, 

where y\ ... , yn are coordinates on IRn. Thus the map IPI is given by the 
projection from the "south pole", -< 0, ... , 0, -1>-, to IRn regarded as the 
equatorial plane (see Fig. 9.2). Similarly, define 1P2 by 

i 
i 0 (I n+l) _ X • Y 1P2 X , ••• , x-I _ xn +l 

Then IPI(U1 n U 2 ) = 1P2(U1 n U 2 ) = {y E IRn: y ~ O}. Now 

Thus 

or 

'" i 2( 1 n+l (X I)2 + ... + (xn)2 
£...., (y 0 1P1) x, ... , x ) = (1 + xn+l) 2 

1 - (xn+l)2 1 _ xn+l 

= (1 + xn+l)2 = 1 + xn+1 • 

1P1 (x) 
1P2(X) = 111P1(X)11 2 

In other words, the map 1P2 0 IPIl, defined for all y ~ 0, is given by 

-l( ) Y 1P2 0 1P1 Y = llYfi2 . 
Thus conditions Al and A2 are fulfilled. 

Fig. 9.2 

Note that the atlas we gave for the sphere contains only two charts (each 
given by polar projection). An atlas of the earth usually contains many more 
charts. In other words, many different atlases can be used to describe the same 
set. We shall return to this point later. 
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Fig. 9.3 

Example 3. The circle. The circle 8 1 is a "one-dimensional sphere" and therefore 
has an atlas as described in Example 2. We wish to describe a different atlas 
on 8 1. Regard 8 1 as the unit circle x~ + x~ = 1, and consider the function 8b 

defined in a neighborhood of < 1, 0> on the upper semicircle of 8 1, which gives 
the angle from the point on 8 1 to < 1, 0> (see Fig. 9.3). As we move counter­
clockwise around the circle, this function is well defined until we hit < 1, ° > 
again. We will take, as the first chart in our atlas, (U 1, 81), where U1 = 
8 1 - {< 1,0>} and 81 is the function defined above. Let U 2 = 8 1 - {<o, I>}, 
and define 82 to be 7r /2 plus the angle (measured counterclockwise) from 
<0,1> (see Fig. 9.4). Now U1 n U2 = 8 1 - {<1,0>, <0, I>}, and 
81(U 1 n U2 ) = (0,27r) - {7r/2}. 

I I 

I I 
o "./2 

The map 82 0 811 is given by 

82 0 811(x) = {~+ 27r 

2". 

if ° < x < 7r/2, 
if 7r/2 < x < 27r. 

Example 4. The product of two atlases. Let a = {CUi, 'Pi)} be a V I-atlas on a set 
M, and let <B = {(Wb 1/Ij)} be a V2-atlas on a set N, where VI and V 2 are 
Banach spaces. Then the collection e = {( U i X V j, 'Pi X 1/1 j)} is a (V 1 X V 2)­
atlas on M X N. Here 'Pi X 1/Ij(p, q) = < 'Pi(P) , 1/Ii(q) > if <p, q> E Ui X Wj. 
lt is easy to check that e satisfies conditions Al and A2. We shall call e the 
product of a and <B and write e = a X <B. 

For instance, let M = (0,1) C 1R1 and N = 8 1 • Then we can regard 
M X N as a cylinder or an annulus. If M = N = 81, then M X N is a torus. 

Cylinder Annulus Torus 
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It is an instructive exercise to write down the atlases and transition functions 
explicitly in these cases. 

ExaDlple 5. As a generalization of our first example, let S be a submanifold of 
an (n + m)-dimensional vector space X, as defined in Section 12 of Chapter 3. 
For each neighborhood N defined there, the set S n N, together with the map l{J 
which is defined as the projection 1r1 restricted to S, provides a chart with 
values in V (where X is viewed as V X W). In such a neighborhood N the set S 
is presented as a graph of function F. In other words, 

SnN= {-<x,F(x)~ EVX W:XE1r1(S)}, 

where F is a smooth map of A = 1r1(S n N) into W. Let N' be another such 
neighborhood with corresponding projection 1r~ (where now X is identified with 
V X W in some other way). Then l{J' 0 l{J-1(X) = 1r~(x, F(x»), which shows 
that l{J' 0 l{J-1 is a smooth map. Thus every submanifold in the sense of Chapter 3 
possesses an atlas. 

Exercise. Let!P" (projective n-space) denote the space of all lines through the origin 
in 1R"+1. Any such line is determined by a nonzero vector lying on the line. Two such 
vectors, -< Xl, ... , x,,+l ~ and -< y1, ... , y,,+l ~ , determine the same line if and only 
if they differ by a factor, that is, yi = AX' for all i, where A is some (nonzero) real 
number. We can thus regard an element of !P" as an equivalence class of nonzero 
vectors. For each i between 1 and n + 1, let U. C !P" be the set of those elements 
coming from vectors with Xi ~ O. Map 

by sending 

~ 1 i-I i+1 ,,+1 ~ 1 ,,+1 X X X X -<x, ... ,x ~~ -", ... ,-.-,-.-, ... ,-.- . 
x' x· x' x' 

Show that the map ai is well defined and that {(Ui, ai)} is an atlas on P". 

2. FUNCTIONS, CONVERGENCE 

Let G, be a V-atlas of class Ck on a set M. Let/be a real-valued function defined 
on M. For a chart (Ui , l{Ji) we obtain a function Ii defined on l{Ji(Ui) by setting 

(2.1) 

The function /i can be regarded as the "local expression of f" in terms of the 
chart (Ui , l{Ji). In general, the functions /i will look quite different from one 
another. For example, let M = S", let a be the atlas described, and let / be the 
function on the sphere assigned to the point -<Xl, ... , x" + 1 ~ the value x .. +1. 
Then 

while 

/2(Y) = /0 l{J21(y) = 1 - 1 +~IYIl2 ' 
as one can check by solving the equations. 
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Returning to the general discussion, we observe that the functions fi are 
not completely independent of one another. In fact, it follows from the defini­
tion (2.1) that we have 

Ii 0 <Pi 0 <pjl = I; on <Pj(Ui n Uj). (2.2) 

[Thus in the example cited above we indeed have f2(Y) = fl(y/llyI12), as is 
required by (2.2).] 

We now come to a simple but important observation. Suppose we start 
with a collection of functions {fi}, eachfi defined on <Pi(Ui), and such that (2.2) 
holds. Then there exists a unique function f on M such that Ii = f 0 <pil. In 
fact, define f by setting f(p) = fi (<Pi(p) if p E U i. For f to be well defined, we 
must be sure that this definition is consistent, i.e., that if p is also in Uj, then 
fi(<Pi(p) = I;(<pj(p), but this is exactly what (2.2) says. 

We can thus think of a real-valued function in two ways: as either 

i) an object defined invariantly on M, i.e., a map from M to ~, or 

ii) a collection of objects (in this case functions) one defined for each chart 
and satisfying certain "transition laws", namely (2.2). 

This dual way of looking at objects on M will recur quite frequently in what 
follows. 

Let M be a set with an atlas of class Ck • We will say that a function f is of 
class Cl (l ~ k) if each of the functions Ii defined by (2.1) is of class Cl • Note 
that since l ~ k, this can happen without any interference from (2.2). If Ii E Cl 

and <pil 0 <Pj E Ck (k ~ l), then fi 0 (<pi l 0 <Pj) E Cl. If l were larger than k, 
then in general fi would not be of class Cl if I; were, and there would be very 
few functions of class Cl • 

Since we will not wish to constantly specify degrees of differentiability of 
our atlas, from now on when we speak of an atlas we shall mean an atlas of class Coo. 

Let M be a set with an atlas <t. We shall say that a sequence of points 
{Xi E M} converges to X E M if 

i) there exists a chart (U i , <Pi) E a and an integer Ni such that X E U i and 
for all k > N, Xk E Ui ; 

ii) <Pi(Xkh>N converges to <p(x). 

Note that if (Uj, <pj) is any other chart with X E Uj, then there exists an N j 
such that <Pj(Xk) E Uj for k > N j and <Pj(Xk) ---? <pj(x). In fact, choose N j so 
that <Pi(Xk) E <Pi(Ui n Uj) for all k ~ N j. (This is possible since <Pj(Ui n Uj) 
is open by AI.) The fact that the <Pj(Xk) converge to <Pj(x) follows from the 
continuity of <Pj 0 <pil. It thus makes good sense to say that {Xk} converges to x. 

Warning. It does not make sense to say that a sequence {Xk} is a Cauchy 
sequence. Thus, for example, let M = sn with the atlas described above. If {Xk} 
is a sequence of points converging to the north pole in sn, then <PI (Xk) ---? 0, 
while <P2(Xk) ---? 00. This example becomes even more sticky if we remove the 
north pole, i.e., let M = sn - {-< 0, ... , 0, 1 > } and define the charts as before. 
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Then {Xk} has no limit (in M). Clearly, {IP1 (Xk)} is a Cauchy sequence, while 
{IP2(Xk)} is not. 

Once we have a notion of convergence, we can talk about such things as 
open sets and closed sets. We could also define them directly. For instance, a set 
U is open if IPi(U n Ui) is an open subset of IPi(Ui ) for all charts (Ui, IPi), and so on. 

EXERCISES 

2.1 Show that the above definition of a set's being open is consistent, i.e., that there 
exist nonempty open sets. (In fact, each of the U/s is open.) 

2.2 Show that a sequence {xc>} converges to x if and only if for every open set U 
containing x there is an Nu with Xc> E U for a > Nu. 

Let a = {CUi, IPi)} be an atlas on M, and let U be an open subset of M relative 
to this atlas. Let a f U be the collection of all pairs (Ui n U, IPi f U). It is 
easy to check that a f U is an atlas on U. We shall call it the restriction of 
a to U. 

Let f be a function defined on the open set U. We say that f is of class Cl 

on U if it is of class Cl relative to the atlas (1, f U on U. For later convenience 
we shall say that a function f defined on a subset of M is of class Cl if 

i) the domain of f is some open set U of M, and 

ii) f is of class Cion U. 

3. DIFFERENTIABLE MANIFOLDS 

In our discussion of the examples in Section 1, the particular choice of atlas that 
we made in each case was rather arbitrary. We could equally well have intro­
duced a different atlas in each case without changing the class of differentiable 
functions, or the class of open sets, or convergent sequences, and so on. We 
therefore introduce an equivalence relation between atlases on M: 

Let (1,1 and (1,2 be atlases on M. We say that they are equivalent if their 
union (1,1 U (1,2 is again an atlas on M. 

The crucial condition is that Al still hold for the union. This means that 
for any charts (Ui, IP;) E (1,1 and (Wi> "'j) E (1,2 the sets IPi(Ui n Wj) and 
"'j(Ui n Wj) are open and IPi 0 ",;1 is a differentiable map of "'j(Ui n Wj) onto 
IPi(Ui n Wj) with a differentiable inverse. 

It is clear that the relation introduced is an equivalence relation. Further­
more, it is an easy exercise to check that if f is a function of class Cl with respect 
to a given atlas, it is of class Cl with respect to any equivalent one. The same is 
true for the notions of open set and convergence. 
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Definition 3.1. A set M together with an equivalence class of atlases on M is 
called a differentiable manifold if it satisfies the "Hausdorff property": For any 
two points Xl ¢ x2 ofM there are open sets Uland U2 with Xl E UI andX2E U2 with 
UI n U2 = 0. 

In what follows we shall (by abuse of the language) denote a differentiable 
manifold by M, where the equivalence class of atlases is understood. By an 
atlas of M we shall then mean an atlas belonging to the given equivalence class, 
and by a chart of M we shall mean a chart belonging to some atlas of M. 

We sha.ll also adopt the notational convention that V is the Banach space 
where the charts on M take their values (and shall say that M is a V-manifold). 
If there are several manifolds, M 1, M 2, etc., under discussion, we shall denote 
the corresponding vector spaces by VI, V 2, etc. If V = Rn, we say that M is 
an n-dimensional manifold. 

Let M 1 and M 2 be differentiable manifolds. A map cp: M 1 ~ M 2 is called 
continuous if for any open set U 2 eM 2 the set cp-1(U 2) is an open subset of MI' 
Let X2 E M 2, and let U 2 be any open set containing X2' If CP(X1) = X2, then 
cp-1(U2) is an open set containing Xl. If (W, a) is a chart about Xl, then 
W n cp-1(U2) is an open subset of W, and a(W n cp-1(U2») is an open set in VI 
containing a(xI)' Therefore, there exists an E > 0 such that cp(x) E U 2 for all 
X E W, with Ila(x) - a(xl)1I < E. In this sense, all points "close to Xl" are 
mapped "close to X2". Note that the choice of E will depend on the chart (W, a) 
as well as on Xb X2, U 2, and cpo 

If M b M 2, and M 3 are differentiable manifolds, and if cp: M 1 ~ M 2 and 
"': M 2 ~ M 3 are continuous maps, it is easy to see that their composition 
'" 0 cp is a continuous map from M 1 to M 3' 

Let cp be a continuous map from M 1 to M 2. Let (W b aI) be a chart on M 1 

and (W 2, (2) a chart on M 2. We say that these charts are compatible (under cp) 
if cp(W 1) c W 2. If a 2 is an atlas on M 2 and al is an atlas on M b we say that al 
and a2 are compatible under cp if for every (W b al) E al there exists a 
(W 2, (2) E a2 compatible with it, i.e., such that cp(W 1) c W 2. (Note that the 
map a2 0 (cp f WI) 0 all is then a continuous map of an open subset of VI into 
V 2') Given a 2 and cp, we can always find an al compatible with a2 under cpo 
In fact, let a'l be any atlas on M b and set 

al = {(WI n cp-I(W2»), a f (WI n cp-l(W2»)}, 

where (W 11 a) ranges over all charts of a'i and (W 2, (3) ranges over all charts 
of a2. 

Definition 3.2. Let M 1 and M 2 be differentiable manifolds, and let cp be a 
map: MI .!4 M 2 • We say that cp is differentiable if the following hold: 

i) cp is continuous. 

ii) Let a l and a 2 be compatible atlases under cpo Then for any compatible 
(W b aI) E al and (W 2, (2) E a2 , the map 

a2 0 cp 0 all: al(W1) ~ a2(W2) 

is differentiable (as a map of an open subset of a Banach space into a 
Banach space). (See Fig. 9.5.) 
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Fig. 9.5 

In order to check that a continuous map tp is differentiable, it suffices to 
check much less than (ii). Condition (ii) relates to any pair of compatible atlases 
and any pair of compatible charts. In fact, we can assert: 

Proposition 3.1. Let tp: M 1 -+ M 2 be continuous, and let (11 and (12 be 
compatible atlases under tp. Suppose that for every (WI, aI) E a l there 
exists a (W 2, (2) E (12 with tp(W 1) c W 2 and a2 0 tp 0 a'i'"1 differentiable. 
Then tp is differentiable. 

Proof. Let (U 1, (31) and (U 2, (32) be any charts on M 1 and M 2 with tp(U 1) C U 2' 
We must show that f32 0 tp 0 f31 1 is differentiable. It suffices to show that it is 
differentiable in the neighborhood of every point f3(XI), where Xl E U l' Choose 
(W 1, aI) E (11 with X E W 11 and choose (W 2, aI) E a2 with tp(W 1) C W 2' 
Then on f3I(W1 nUl), we have 

f32 0 tp 0 f311 = (f32 0 a;I) 0 (a2 0 tp 0 all) 0 (al 0 f3I I ), 

sO that the left-hand side is differentiable. 0 

In other words, it suffices to verify differentiability with one pair of atlases. 
We have as a consequence: 

Proposition 3.2. Let tp: M 1 -+ M 2 and 1/1: M 2 -+ M a be differentiable. 
Then 1/1 0 tp is differentiable. 

Proof. Let (1a be an atlas on M a. Choose (12 compatible with (1a under 1/1, 

a.nd then choose an atlas (11 on M 1 compatible with (12 under tp. For any 
(W 11 aI) E (11 choose (W 2, (2) E (12 and (Wa, aa) E aa with tp(W 1) C W 2 and 
I/I(W2) C Wa. Then aa 01/10 tp 0 a'i'"1 = (aa 01/10 a;I) 0 (a2 0 tp 0 a'i'"I) is dif­
ferentiable. 0 

Exercise 3.1. Let MI = 8", let M2 = lPn, and let tp: MI -+ M2 be the map sending 
each point of the unit sphere into the line it determines. (Note that two antipodal 
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points of ,sn go into the same point of [P'n.) Construct compatible atlases for <p and 
show that <p is differen tiable. 

N ate that if f is any function on M with values in a Banach space, then f i~ 

differentiable as a function (in the sense of Section 2) if and only if it is differ­
entiable as a map of manifolds. In particular, let <p: M 1 ---+ M 2 be a differentiabl(' 
map, and let f be a differentiable function on IJI 2 (defined on some open subset, 
say U 2). Then f 0 <p is a differentiable function on M 1 [defined on the open seL 
<p-l(U2)]. Thus <p "pulls back" a differentiable function on lYI2 to 1If1• From 
this point of view we can say that <p induces a map from the collection of differ­
entiable functions on 1II2 to the collection of differentiable functions on MI. WI: 

shall denote this induced map by <p*. Thus 

differentiable functions on M 2 ~ differentiable functions on M 1 

is given by 
<p*[f] = f 0 <p. 

If 1/;: M 2 ---+ M 3 is a second differentiable map, then (1/; 0 <p) * goes from functiOlIC; 
on AI3 to functions on 1If 1, and we have 

(1/; 0 <p)* = <p* o 1/;* (3.1 ) 

(note the change of order). In fact, for 0 on M 3, 

(1/; 0 <p)*0 = 0 0 (1/; 0 <p) = (0 0 1/;) 0 <p = <p *[1/; *[0]]· 

Observe that if <p is any map from M 1 ---+ M 2 and f is any function definel I 
on a subset S2 of M 2, then the "pullback" <p*[f] = f 0 <p is a function defined ()II 
<p-l(S2) of MI. The fact that <p is continuous allows us to conclude that if S2 ic; 
open, then so is <p-l(S2). The fact that <p is differentiable implies that <p*[f] i, 
differentiable whenever f is. 

The map <p* commutes with all algebraic operations whenever they an' 
defined. More precisely, suppose f and 0 take values in the same vector spacI' 
and have domains of definition U 1 and U 2. Then f + 9 is defined on U 1 n (!~, 

and <p*[fl + <p*[0] is defined on <p-l(U1 n U2), and we clearly have 

<p*[f + oj = <p*[fj + <p*[0]· 

EXERCISES 

3.2 Let il12 be a finite-dimensional manifold, and let <p: ilh --> JIz be eontinuou,; 
Suppose that <p*[fl is differentiable for any (locally defined) differentiable real-valul'd 
function f. Conclude that <p is differentiable. 

3.3 Show that if <p is a bounded linear map between Banach spaces, then <p* :1 

defined above is an extension of <p* as defined in Section 3, Chapter 2. 
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4. THE TANGENT SPACE 

In this section we are going to construct an "approximating vector space" to a 
differentiable manifold at each point of the manifold. This will allow us to 
formulate most of the notions of the differential calculus on manifolds. 

Let 111 be a differentiable manifold, and let x be a point of 111 (Fig. 9.6). 
Lei I C IR be an interval containing the origin. Let <p be a differentiable map 
of I into 111 such that <p(O) = x. We will call <p a (differentiable) curve through x. 

Let f be any differentiable real-valued function on 111 defined in a neigh­
borhood of x. Then <p*[fl is differentiable on IR and we can consider its derivative 
at the origin. Define the operator D", by 

D",(f) = d<p *[fl/ . 
dt t=o 

In view of the linearity of <p*, the map 
f ~ D",(f) is linear: 

Similarly, we have Leibnitz's rule: 

~) 
M 

o 

Fig. 9.6 

which can easily be checked. The functional D", depends on the curve <po If 'if; 
is a second curve, then, in general, D '" ~ D",. If, however, D", = D "" then we 
say that the curves <p and 'if; are tangent at x, and we write <p ,...., 'if;. Thus 

if and only if D",(f) = D",(f) for all differentiable functions f. 

It is easy to check that,...., is an equivalence relation. An equivalence class 
of curves through x will be called a tangent vector at X. If ~ is a tangent vector 
at x and <p E ~, we say that ~ is tangent to <p at X. 

For any differentiable function f defined about x and any tangent vector ~, 
we set 

where <p E~. Thus ~ gives us a functional on differentiable functions defined 
about X. We have 

Haf + bg) = aHf) + b~(g), 
Hfg) = f(xH(g) + g(xH(f)· 

(4.1) 

(4.2) 

Let us examine what the equivalence relation,...., says in terms of a chart 
(W, a) about X. The functional D",(f) can be written as 

dfo <p / = d(fo a-I) 0 (a 0 <p) / 
dt t=O dt t=o' 
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If we set <I> = a 0 cp and F = f 0 a-I, then <I> is a parametrized curve in a Banaeh 
space and F is a differentiable function there. We can thus write 

D",(f) = dF(<I>'(O)) = D~'(o)F. 

From this expression we see (setting '11 = a 0 if;) that if; '" cp if and only if 
<1>'(0) = '11'(0). We thus see that in terms of a chart (W, a), every tangent. 
vector ~ at x corresponds to a unique vector ~O! E V given by 

~a = (a 0 cp),(O), 
where cp E ~. 

Conversely, given any v E V, there is a tangent vector ~ with ~O! = /' 
In fact, define cp by setting cp(t) = a-I (a(x) + tv). Then cp is defined in a sma.ll 
enough interval about 0, and (a 0 cp)' = v. 

In short, a choice of chart allows us to identify the set of all tangent vector:; 
at x with V. Let (U, (3) be a second chart about x. Then 

~{3 = «(30 cp)'(O) = «(30 a-I) 0 (a 0 cp)'(O). 

By the chain rule we thus have 

~(3 = J{3oa- 1(a(x))t", 

where J -y(p) is the differential dY p of Y at p. 
Since J{3oa-1(a(x)) is a linear map of V into itself, Eq. (4.3) says that tIl(' 

set of all tangent vectors at x can be identified with V, the identification beilll!­
determined up to an automorphism of V. In particular, we can make the set. 
of all tangent vectors at x into a vector space by defining 

a~ + br) = 5", 
where 5" is determined by 

for some chart a. Equation (4.3) shows that this definition is independent of CY. 

We shall denote the space of tangent vectors at x by Tx(M) and shall can il. 
the tangent space (to M) at x. 

Let if; be a differentiable map of M 1 to M 2, and let cp be a curve passinl!­
through x E !III (see Fig. 9.7). Then if; 0 cp is a curve passing through if; (x) EM 2' 

It is easy to check that if cp '" cp, then if; 0 cp '" if; 0 cpo Thus the map if; induces a. 
mapping of Tx(M 1) into Tif;(x)(M2 ) , which we shall denote by if;u. To repeat, 

.. 
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Fig. 9.8 Fig. 9.9 

if ~ E Tx (M 1), then t/lua) = fJ is determined by 

and 

for all cp E ~. 

Let (U, a) be a chart about x, and let (W, (3) be a chart about 1/I(x). Then 

~a = (a 0 cp)'(O) 

fJIJ = «(301/1 0 cp)'(O) = «(301/1 0 a-I) 0 (a 0 cp)'(O). 

By the chain rule we can thus write 

fJIJ = JIJoy,oa-l(a(x»)~a. 
This says that if we identify T x(M 1) with VI via a and identify T y,(x)(M 2) with 
V 2 via (3, then 1/Iu becomes identified with the linear map JIJoy,oa-1(a(x»). In 
particular, the map t/I*x is a continuous linear mapping from Tx(M 1) to T y,(x)(M 2)' 
If cp: M 1 -+ M 2 and t/I: M 2 -+ M 3 are two differentiable mappings, then it 
follows immediately from the definitions that 

(1/1 0 cp)u = t/I*<p(X) 0 cp*x. (4.4) 

We have seen that the choice of chart (U, a) identifies Tx(M) with V. 
Now suppose that M is actually V itself (or an open subset of V) regarded as a 
differentiable manifold. Then M has a distinguished chart, namely (M, id). 
Thus on an open subset of V the identity chart gives us a distinguished way of 
identifying Tx(M) with V. It is sometimes convenient to picture Tx(M) as a 
copy of V whose origin has been translated to x. We would then draw a tangent 
vector at x as an arrow originating at x. (See Fig. 9.8.) 

Now suppose that M is a general manifold and that 1/1 is a differentiable map 
of M into a vector space VI' Then 1/1* (Tx(M») is a subspace of TY,lX)(V1), 
If we regard t/I*(Tx(M» as a subspace of VI and consider the corresponding 
hyperplane through x, we get the "plane tangent to 1/I(M) at x" in the intuitive 
sense (Fig. 9.9). 
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It is very convenient to think of tangent vectors in this way, that is, to 
regard them as vectors tangent to M if M were mapped into a vector spac(' 

H! is a real-valued differentiable function defined in a neighborhood U 01 
of x E M, then we can regard it as a map of the manifold U to the manifold Iffi I. 
We therefore get a map!*x: Tx(M) -> Tf(dlffil). Recall that we identify Ty(lffil) 
with Iffil for any y E Iffil. Therefore, !*x can be viewed as a map from T*x(l't1) 
to Iffi 1. The reader should check that this map is indeed given by 

for ~ E TxCM). (4..'i) 

In particular, if we take M 3 = Iffi and y., = ! in (4.4), we can assert: 

Let y., be a differentiable map of M 1 to M 2, and let! be a differentiable fUll(' 
tion on M2 defined in a neighborhood of y.,(x). Then for any ~ E Tx(lII]), 

~(y.,*(f)) = y.,h(O(f)· (4.()) 

From now on, we shall frequently drop the subscript x in y.,*x when it can 1)(' 
understood from the context. Thus we would write (4.4) as (y., 0 cp)* = y.,* 0 cP*. 

Some authors call the mapping y.,*x the differential of y., at x and designate it # ,. 
If 111 1 and 1112 are open subsets of Banach spaces VIand V 2 (and hence ar(' 
differentiable manifolds under their identity charts), then y.,*x as defined aboY<' 
does reduce to the differential #x when Tx(lJI,) is identified with Vi. Thi.~ 

reduction does depend on the identification, however. 

5. FLOWS AND VECTOR FIELDS 

Let M 1 and M 2 be differentiable manifolds. A map g from M 1 -> M 2 is called :I 
diffeomorphism if g is a differentiable one-to-one map of M 1 onto M 2 such thaI. 
(I-I is also differentiable. 

Let M be a differentiable manifold. A map cp: 1JI X Iffi -> 1JI is called a 01lC-

parameter group if 

i) cP is differentiable; 

ii) cp(x, 0) = x for all x E 1JI; 

iii) cp(cp(x, s), t) = cp(x, s + t) for all x E 1JI and s, t E R 

We can express conditions (ii) and (iii) a little differently. Let CPt: M -> JII 
be given by 

CPt(x) = cp(x, t). 

For each t E Iffi the map CPt is differentiable. In fact, 

where Lt is the differentiable map of M -> M X Iffi given by Lt(X) = (x, t). 
Then condition (ii) says that CPo = id. Condition (iii) says that 

CPt 0 CPs = CPt+s' 

If we take t = -s in this equation, we get CPt 0 CP-t = id. Thus for each t 
the map CPt is a diffeomorphism and (cpt)-l = CP-t. 
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Fig. 9.10 

We now give some examples of one-parameter groups. 

Example I. Let M = V be a vector space, and let wE M. Let cp: V X ~ --t V 
be given by 

cp(v, t) = v + two 

It is easy to check that (i), (ii), and (iii) are satisfied. (See Fig. 9.10.) 

Example 2. Let M = V be a finite-dimensional vector space, and let A be a 
linear transformation A: V --t V. Recall that the linear transformation etA is 
defined by 

i.e., for any v E V, 

2A2 3A3 
etA = 1 + tA + _t _ + _t _ + ... 

2! 3! 

co ti 
etAv = ~ -;-; Aiv. 

i=03· 

(See Figs. 9.11 and 9.12.) Since the convergence of the series is uniform on any 

A=[ _~ ~J V=!R2 
V=!R2 A=[~~J 

Fig.9.11 Fig. 9.12 
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compact set of <v, t>-, the map cp: M X ~ ~ M given by 

cp(v, t) = etA v 

is easily seen to be differentiable and to satisfy (ii) and (iii) as well. 

Example 3. Let M be the circle 8 1, and let a be any real number. Let cp~ be the 
diffeomorphism consisting of rotation through angle tao In terms of the atlas 
a = {(Ub 81), (U2 , 82)}, the map cp is given by 

81 (cp(x, t)) = 81(x) + ta, 
= 81(x) + ta - 21l', 

82 (cp(x, t)) = 82(x) + ta, 
= 82 (x) + ta - 21l', 

x E Ub 81(x) < 21l' - ta, 
x E U1 , 81 (x) > 21l' - ta, 

x E U2 , 82 (x) < 21l' + 1l'/2 - ta, 
x E U2, 82(x) > 21l' + 1l'/2 - tao 

(Strictly speaking, this doesn't quite define cp for all values of < x, t>- • If 
x = <1,0>- and ta = 1l'/2, then x f1. U 1 and cp(x, 1l'/2) f1. U2. This is e~sily 
remedied by the introduction of a third chart.) It is easy to see that cp is a onc­
parameter group. 

Example 4. Let M = 8 1 X 8 1 be the torus, and let a and b be real numbers. 
Write x E M as x = <Xb X2>-, where Xi E 8 1• Define cp<a,b> by 

cp <a,b> (Xb X2, t) = < CPf(Xl), CP~(X2) >- , 

where cpa and cpb are given in Example 3. Then cp<a,b> is a one-parameter group 
and indeed a rather instructive one. The reader should check to see that essen­
tially different behavior arises according to whether b/a is rational or irrational. 

[The construction of Example 4 from Example 3 can be generalized as 
follows. If cp: M X ~ ~ M and 1/1: N X ~ ~ N are one-parameter groups, 
then we can construct a one-parameter group on M X N given by CPt X I/It. 
The map of M X N X ~ ~ M X N sending <x, y, t>- ~ < CPt (x) , I/It(Y)>- lH 

differentiable because it can be written as the composite (cp X 1/1) 0 ~, where 

cp X 1/1: M X ~ X N X ~ ~ M X N, 
and 

~: M X N X ~ ~ M X ~ X N X ~ 

is given by ~(x, y, t) = <x, t, y, t>-.] 

In each of the four preceding examples we started out with an "infinitesimal 
generator" to construct the one-parameter group, namely, the vector w ill 
Example 1, the linear transformation A in Example 2, the real number a ill 
Example 3, and the pair < a, b>- in Example 4. We will now show that associated 
with anyone-parameter group on a manifold, there is a nice object which we 
can regard as the infinitesimal generator of the one-parameter group. 

Let cp: M X ~ ~ M be a one-parameter group. For each x E M considcr 
the map CPx of ~ ~ M given by 

CPx(t) = cp(x, t). 
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In view of condition (ii), we know that <;?x(O) = x. Thus <;?x is a curve passing 
through x (see Fig. 9.13). Let us denote the tangent to this curve by X(x). 
We thus get a mapping X which assigns to each x E M a vector X(x) E TxCM). 
Any such map, i.e., any rule assigning to each x E M a vector in Tx(M), will be 
called a vector field. We have seen that everyone-parameter group gives rise to a 
vector field which we shall call the infinitesimal generator of the one-parameter 
group. 

Fig. 9.13 

Let Y be a vector field on M, and let (U, a) be a chart on M. For each 
x E U we get a vector Y(x)a E V. We can regard this as defining a V-valued 
function Ya on a (U) : 

Ya(v) = Y(a-l(v))a for v E a(U). (5.1) 

Let (W, (3) be a second chart, and let Y~ be the corresponding V-valued function 
on (3(W). If we compare (5.1) with (4.3), we see that 

Y~({3 0 a-lev)) = J~ca-l(V) 0 Ya(v) if v E a(U n W). (5.2) 

Equation (5.1) gives the "local expression" of a vector field with respect to a 
chart, and Eq. (5.2) describes the "transition law" from one chart to another. 

Conversely, let a be an atlas of M, and let Y a be a V-valued function defined 
on a(U) for each chart (U, a) E a. Suppose that the Ya satisfy (5.2). Then for 
each x E M we can let Y(x) E Tx(M) be defined by setting 

Y(x)a = Ya(a(x)) 

for some chart (U, a) about x. It follows from the transition law given by (4.3) 
and (5.2) that this definition does not depend on the choice of (U, a). 

Observe that J~oa-l is a COO-function (linear transformation-valued function) 
on a(U n W). Therefore, if Y is a vector field and Ya is a V-valued COO-function 
on a(U), the function Y~ will be Coo on (3(U n V). In other words, it is consistent 
to require that the functions Y a be of class Coo. We shall therefore say that Y 
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is a COO-vector field if the function Y a is Coo for every chart (U, a). As in the casl' 
of functions and mappings, in order to verify that Y is Coo, it suffices to check that 
the Ya are Coo for all charts (U, a) belonging to some atlas of M. 

Let us check that the infinitesimal generator X of a one-parameter group <{' 

is a Coo-vector field. In fact, if (U, a) is a chart, then 

Xa(v) = (a 0 IPx),(O), 

where IPx(t) = IP(x, t). We can write a 0 IPx(t) = <I>a(v, t), where 

<I>a(v, t) = a 0 IP(a-l(v), t). 

Let U' CUbe a neighborhood of x such that IP(Y, t) E U for y E U' and It I < f: 

Then <I>a is a differentiable map of a(U') X 1- a(U), where 1= {t: It I < f: 
In terms of this representation, we can write 

Xa(v) = a!a (v, 0). (5.;)) 

This shows that X is a Coo-vector field. 
If we evaluate (5.3) in the case of Example 1, we get <I>id(V, t) = v + tll', 

so that X id = w. In the case of Example 2 we !!:et Xid(V) = Av. 
There are various algebraic operations that can be performed with vector 

fields. The set of all vector fields on M forms a vector space in the obvious way. 
If X and Yare Coo-vector fields, then so is aX + bY (a and b are constants), 
where 

(aX + bY)(x) = aX(x) + bY(x), xEM. 

Similarly, we can multiply a vector field by a function. If f is a function and X 
is a vector field, we define fX by 

(fX)(x) = f(x)X(x), xEM. 

It is easy to see that if f and X are differentiable, then so is fX. It is also easy 
to check the various associative laws for this multiplication. 

We have seen that anyone-parameter group defines a smooth vector field. 
Let us examine the converse. Does any Coo-vector field define a one-parameter 
group? The answer to the question as stated is "no". 

In fact, let X = a/ax l be the vector field corresponding to translation in the 
xl-direction in ~n. Let M = ~2 - C, where C is some nonempty closed set. 
of ~n. Then if p is any point of M that lies on a line parallel to that xl-axis which 
intersects C (Fig. 9.14), then IPt(p) will not be defined (will not lie in M) for 
every t. 

The reader may object that M "has some 
points missing" and that is why X does not 
generate a one-parameter group. But we can 
construct a counterexample on ~2 itself. In 
fact, if we consider the vector field X on ~2 
given by 

Xid(X I , x2) = (1, _(X2)2), 

--~p~-----+----~~ 

Fig. 9.14 
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then (5.3) shows that cp, if defined, satisfies 

d4? d4? 
dt (x, t) = dt (4?(x, t), 0) = X(4?(x, t), 

where 4? = 4?id. If we let yi(t, x) = Xi 0 4?(x, t), then 

dyl 
dt = 1, yl(O) = xl, 

If x 2 ~ 0, then the unique solution of the second equation is given by 

2 1 
Y (t) = t + 1/x2 ' 

which is not defined for all values of t. Of course, the trouble is that we only 
have a local existence theorem for differential equations. 

We must therefore give up on the requirement that cp be defined on all of 
MXR 

Definition 5.1. A flow on 111 is a map cp of an open set U C 111 X IR ---t 111 
such that 

i) 111 X {O} C U; 
ii) cp is differentiable; 
iii) cp(x, 0) = x; 

iv) cp(cp(x, s), t) = cp(x, s + t) whenever both sides of this equation are 
defined. 

For x fixed, CPx(t) = cp(x, t) is defined for sufficiently small t, so that cp gives 
rise to a vector field X as before. We shall call X the infinitesimal generator 
of the flow cpo 

As the previous examples show, there may be no t ~ 0 such that cp(x, t) is 
defined for all x, and there may be no x such that cp(x, t) is defined for all t. 

Proposition 5.1. Let X be a smooth vector field on 111. Then there exists a 
neighborhood U of 111 X {O} in 111 X IR and a flow cp: U ---t 111 having X as 
its infinitesimal generator. 

Proof. We shall first construct the curve CPx(t) for any x E M, and shall then 
verify that -< x, t>- f-+ cp(x, t) is indeed a flow. 

Let x be a point of 111, and let (U, a) be a chart about x. Then Xa gives us 
lfn ordinary differential equation in a(U), namely, 

dv 
dt = Xa(v), v E a(U). 

By the fundamental existence theorem for ordinary differential equations, there 
exists an e > 0, an open set 0 containing a(x), and a map 

4?a: 0 X {t: It I < e} ---t a(U) 
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such that 
<Pa is Coo, <pa(V,O) = v, 

and 

d<Pad~' t) = Xa(<pa(V, t»). 

Here the choice of the open set 0 and of f depends on a(x) and a(U). The 
uniqueness part of the theorem asserts that <Pa is uniquely determined up to the 
domain of definition; i.e., if <Pv is any curve defined for It I < f' with <pv(O) = v 
and 

d<Pv(t) = X (<p (t») 
dt a v , 

then <pv(t) = <pa(v, t). 
This implies that 

<pa(V, t + s) = <pa(<pa(v, s), t) 

whenever both sides are defined. (Just hold s fixed in the equation.) 

Consider the curve <1>'\(,) defined by 

(5.4) 

<1>'\(t) = a -l(<I>a(a(x),t)). (5.5) 

It is defined for I t I < E, and is a continuous, in fact differentiable map of this 
interval intoM. Furthermore, if we write IjJ = <1>axO then (5.4) asserts that the 
tangent vector to the curve ljJ(t + .) isX(IjJ(t)), the value of the vector field at the 
point ljJ(t). We will write this condition as 

1jJ,(t) = X(IjJ(t)). (5.6) 

Equation (5.6) is the way we would write the "first order differential equation" 
on M corresponding to the vector field X. A differentiable curve IjJ satisfying 
(5.6) is called an integral curve of X. We now can formulate a manifold version 
of the uniqueness theorem of differential equations: 

Lemma 5.1. Let 1\11:1---'> M and 1\12:1 ---'> M be two integral curves of X defined on 
the same interval I. If 1\11 (8) = 1\12(8) at some point 8 E Ithen 1\11 = 1\12, i.e. 1\11 (t) = 
1\12(t) for all tEl. 

Proof We wish to show that the set where IjJl(t) -;t! 1jJ2(t) is empty. Let 

A = {t:t:? sand IjJl(t) -;t! 1jJ2(t)}. 

We wish to show that A is empty, and similarly that the set B = {t:t ~ sand 
IjJl(t) -;t! 1jJ2(t)} is empty. Suppose that A is not empty, and let 

t + = glb A = glb {t:t :? sand IjJl (t) -;t! 1jJ2(t)}. 

We will derive a contradiction by 

i) using the uniqueness theorem for differential equations to show that IjJl (t +) 

-;t!1jJ2(t+), and 

ii) using the Hausdorff property of manifolds to show that IjJl (t +) = 1jJ2(t +). 
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Details: i). Suppose that 1\11 (t +) = 1\12(t +) = Y EM. We can find a coordinate 
chart (13, W) abouty, and then 13 a 1\11 and 13 a 1\12 are solutions of the same system 
of first order ordinary differential equations, and they both take on the value 
13(Y) at t = t +. Hence, by uniqueness for differential equations, 13 a 1\11 and 13 a 1\12 
must be equal in some interval about t +, and hence 1\11 (t) = 1\12(t) for all t in this 
interval. This is impossible since there must be points: arbitrarily close to t + 
where 1\11 (t) ;t.! 1\12(t) by the glb property of t +. This proves i). Now suppose that 
1\11 (t +) ;t.! 1\12(t +). We can find neighborhoods U 1 of 1\11 (t +) and U 2 of 1\12(t +) such 
that U 1 n U 2 = 0. But then the continuity of the 1\11 imply that 1\11 (t) E Uland 
1\12(t) E U2 for t close enough to t+, and hence that I\Il(t) ;t.! 1\12(t) for t in some 
interval about t +. This once again contradicts the glb property of t +, proving 
ii). The same argument with glb replaced by lub shows that B is empty proving 
Lemma 5.1. The above argument is typical of a "connectedness argument." 
We showed that the set where I\Il(t) = 1\12(t) is both open and closed, and hence 
must be the whole interval I. 

Lemma 5.1 shows that (5.5) defines a solution curve of X passing through 
x at time t = 0, and is independent of the choice of chart in any common 
interval of definition about o. In other words it is legitimate to define the curve 
<Px(-) by 

which defines <px(t)for I t I < E. Unfortunately the E depends not only on x but 
also on the choice of chart. We use Lemma 5.1 and extend the definition of <Px(·) 
as far as possible, much as we did for ordinary differential equations on a vector 
space in Chapter 6: For any S with Is I < Ewe lety = <Px(s) and obtain a curve 
<Py(.) defined for It I < E'. By Lemma 5.1 

<Py(t) = <pX<s+t)ifls+tl < E. (5.7) 

It may happen that I s I + E' > E. Then there will exist a t with I t I < E' and 
Is + t I > E. Then the right hand side of (5.7) is not defined, but the left is. We 
then take (5.7) as the definition of <Px(s + t), extending the domain of definition 
of <Px(-). We then continue: Let Ix + denote the set of all s > 0 for which there 
exists a finite sequence of real numbers So = 0 < SI < ... < Sk = s and points 
Xo, . • • Xk-l E M with Xo = x, SI in the domain of definition of <Px(·), X2 = <Px(SI) 
and, inductively, 

Si+l in the domain of definition of <PXj(·) and Xi+ 1 = <Pxj(Si+ 1). 

If S E Tt, so is Sf for 0 < Sf < s, and so is s + TJ for sufficiently small 
positive TJ. Thus rt is an interval, half open on the right. By repeated use of 
(5.4) we define IPx(s) for s E Tt We construct r; in a similar fashion and 
set Ix = It u r;. Then IPx(s) is defined for s E Ix, and I is the maximal 
interval for which our construction defines IPx. For each x E M we obtain an 
open interval I x in which the curve IPx(·) is defined. 

Let U = UXEM{X} X Ix. Then U is an open subset of M X I. To verify this, 
let (x, 8) E U. We must show that there is a neighborhood W of x and an E > 0 
such that s E I x for all Is - 81 < E and x E W. By definition, there is a finite 
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sequence of points x = XO, Xl, ... , Xk and charts (U b al), ... , (Uk, ak) with 
Xi-l E Ui and Xi E Ui and such that 

ai(xi) = <J!",/ai(xi_l), ti), 

where tl + ... + tk = s. It is now clear from the continuity properties of the 
<J!", that if we choose Xo such that al(xO) is close enough to al(xO), then the 
points Xi defined inductively by 

ai(xi) = <J!",; (ai(xi-l), ti) 

will be well defined. [That is, aj{Xj_l) will be in the domain of the definition of 
<J!",;(. ,ti).] This means that "8 E Ixo for all such points Xo. The same argument 
shows that "8 + TJ E I Xo for TJ sufficiently small and X sufficiently close to X. 

This shows that U is open. 
N ow define cp by setting 

cp(x, t) = CPx(t) for (x, t) E U. 

That cp is differentiable near M X {O} follows from the fact that cp is given (in 
terms of a chart) as the solution of an ordinary differential equation. The 
fundamental existence theorem then guarantees the differentiability. Near the 
point (x, t) we can write 

and so cp is differentiable because it is the composite of differentiable maps. D 

6. LIE DERIVATIVES 

Let cp be a one-parameter group on a manifold M, and let f be a differentiable 
function on M. Then for each t the function cpi[f] is differentiable, and for t ~ 0 
we can form the function 

(6.1) 

We claim that the limit of this expression as t --+ 0 exists. In fact, for any 
x E M, cpi[f](x) = f 0 CPt(x) = f 0 CPx(t) and, therefore, 

lim cpi[f] - f (x) = lim f 0 CPx(t) - f 0 CPx(O) = D"",f = X(x)f. (6.2) 
hO t hO t 

Here X(x) is a tangent vector at x and we are using the notation introduced in 
Section 4. We shall call the limit of (6.1) the derivative of f with respect to the 
one-parameter group cp, and shall denote it by Dxf. More generally, for any 
smooth vector field X and differentiable function f we define Dxf by 

Dxf(x) = X(x)f for all x E M, (6.3) 

and call it the Lie derivative of f with respect to X. In terms of the flow 
generated by X, we can, near any x E M, represent Dxf as the limit of (6.1), 
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where, in general, (6.1) will only be defined for a sufficiently small neighborhood 
of x and for sufficiently small Itl. 

Our notation generalizes the notation in Chapter 3 for directional derivative. 
In fact, if III is an open subset of V and X is the "constant vector field" of 
Example 1 

Xid = wE V, 
then 

(Dxf)id = Dwfid' 

where Dw is the directional derivative with respect to w. 
Note that Dxf is linear in X; that is, 

DaX+byf = aDxf + bDyg 

if X and Yare vector fields and a and b are constants. 
Let if; be a diffeomorphism of M 1 onto M 2, and let X be a vector field on M 2. 

We define the "pullback" vector field if;*[X] on MI by setting 

for all x EM. (6.4) 

Note that if; must be a diffeomorphism for (6.4) to make sense, since if;-I enters 
into the definition. This is in contrast to the "pullback" for functions, which 
made sense for any differentiable map. Equation (6.4) does indeed define a 
vector field, since 

and 

Let us check that if;*[X] is a smooth vector field if X is. To this effect, let a1 

and a2 be compatible atlases on M 1 and M 2, and let (U, a) E a l and (W, (3) E a2 

be compatible charts. Then (6.4) says that 

if;*[X],,(v) = J"orlo{rI({3 0 if; 0 a-I(v») . X(3({3 0 if; 0 a-I(v») for v E a(U), 

which is a differentiable function of v. Since, by the chain rule, 

J"orlo{rI({3oif; o a-I(v») ·J(3oy,o,,-I(V) = 1, 

we can rewrite the last expression more simply as 

if;*[X],,(v) = (J(3oy,o,,-I(V»)-IX(3({3oif; o a- I(v») for v E a(U). (6.5) 

Thus if;*[X]" is the product of a smooth HomeV 2, V I)-valued function and a 
smooth V 2-valued function, which shows that if;*[X] is a smooth vector field. 

Exercise. Let <p be the flow generated by X on .V 2. Show that the flow generated by 
if;*[X] is given by 

If <p is a one-parameter group, then we can write (6.6) as 

-<x, t> ~ if;-I 0 <Pt 0 if;(x). 

(6.6) 

(6.6') 
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The vector field X The vector field Y 
(Xf=af/ax) (Yf=x(af/ay») 

X(u, v) = <1, 0> =lil Y(u, v) = <0, u> 1Ot*(Y) 

",l(X) 

(a) (b) (c) 

IOl(Y) - Y = D,.y 
t -, 

IOl(Y)-Y (since independent of t) 

(d) (f) 

1{It(X)-X 

(g) (h) (i) 

Fig. 9.15 

It is easy to check that if T/ll: Ml ---+ M2 and T/l2: M2 ---+ M3 are diffeo­
morphisms and Y is a vector field on M 3, then 

(1/12 0 1/Il)*Y = T/liT/l;Y. 
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""r(X) -x = DyX 
t 

(since independent of t) 

Fig;. 9.15 (cont.) 

(j) 
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If f is a differentiable function on M 2, then 

D"'*lxM'*[f]) = -.f;*(Dxf). (6.7) 

In fact, by (6.3) and (4.6) we have, for x EM 17 

D"'*lx]-.f;*[f](x) = -.f;*[X](x)-.f;*[f] 

= -.f;;IX(-.f;(x»)-.f;*[f] 

= (-.f;*-.f;;IX(-.f;(x»))f 

= X(-.f;(x»)f 

= (Dxf)(-.f;(x») 

= -.f;*(Dxf) (x). 

by (6.3) 

by (6.4) 

by (4.6) 

Let 'P be a one-parameter group on M with infinitesimal generator X, and 
let Y be another smooth vector field on M. For t r£ 0 we can form the vector 
field 

'Pi[Y] - Y 
t 

(6.8) 

and investigate its limit as t ~ 0, which we shall call Dx Y. In Fig. 9.15 we 
have shown the calculation of DyX and Dx Y for two very simple fields on the 
Cartesian plane ~2. The field X is the constant field X id = 1117 so that Xf = 
af/ax in terms of Cartesian coordinates x, y. The corresponding flow is given 
by 'Pt(x, y) = -< x + t, y>-. Thus 'Pt* = id if we identify the tangent space at 
each point of the plane with the plane itself. Then Y I--t 'Pi Y consists of "moving" 
the vector field Y to the left by t units. Here we have taken Y = X1l2, so that 
Yf = x(8f/ay). In Fig. 9.1.5(c) we have pictured 'PiY, and have superimposed Y 
and 'PiY in Fig. 9.15(d). Figure 9.15(e) represents 'PiY - Y and Fig. 9.15(f) 
is (l/t){'PiY - V}, which coincides with its limit, Dx Y, since the expression is 
independent of t. The one-parameter group generated by Y is -.f;t where -.f;t(x, y) = 
-<x, y + tx>-. Here at any p E ~2 we have -.f;t*lll = III + t1l 2 , so that -.f;iX = 
-.f;-t*X(-.f;(x») = III - t1l2 • In Fig. 9.15(g) we have drawn -.f;iX and in Fig. 9.15(h) 
we have superimposed it on X. Note that DxY = -DyX. However, these 
two derivatives are nonzero for quite different reasons. The field 'PiY varies 
\vith t because the field Y is not constant. The field -.f;i X varies with t because 
of "distortion" in the flow 1/It. See Fig. 9.15(g) and (h). In the general case, 
Dx Y will r,esult from a superposition of these two effects. We now make the 
general calculation. 

Let (U, a) be a chart on M, and for v E a( U) let 0 be a sufficiently small open 
set containing v, and let E > 0 be sufficiently small, so that tf>" given by 

is defined for w E 0 and It I < E. Then, for It I < E, Eq. (6.5) implies that 

(6.9) 
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The right-hand side of this equation is of the form A;IZt, where At and Zt are 
differentiable functions of t with A 0 = I. Therefore, its derivative with respect 
to t exists and 

d(At lZt) I l' AtlZt - Zo = 1m ----"--'----" 
dt t=o t-+o t 

1· A (At lZt - zo) = 1m t 
t-+o t 

1· Zt - Atzo = 1m -=------:---'--" 
t-+o t 

1· (Zt - Zo Atzo - zo) = 1m - ----=:.--"-----" 
t-+o t t 

= Zo - Aozo· 

Now in (6.9) Zt = Ya(cf>a(v, t)), so 

Zo = dYa (a!a (v, 0)) 

= dYa(Xa(V)). 

Here Ya is a V-valued function, so dYa is its differential at the point cf>a(v, 0). 
Hence dYa(Xa(v)) is the value of this differential at Xa(v). The transformation 
At = J <l>a(V,t) = d(cf>a)(v,t), so 

dd~lt=o = a :~alt=o 
= d acf>a 

at 

= d(Xa)v. 

Thus the derivative of (6.9) at t = 0 can be written as 

d(Ya)v(Xa(v)) - d(Xa)v(Ya(v)) = DXa(v)Ya - Dya(v)Xa. 

We have thus shown that the limit in (6.8) exists. If we denote it by Dx Y, 
we can write 

(6.10) 

As before, we can use (6.10) as the definition of Dx Y for arbitrary vector 
fields X and Y. Again, this represents the derivative of Y with respect to the 
flow generated by X, that is, the limit of (6.9) where now (c.8) is only locally 
defined. 

From (6.10) we derive the surprising result that DxY = -DyX. For this 
reason it is convenient to introduce a notation which expresses the antisym­
metry more clearly, and we shall write 

DxY = [X, Y]. 
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The expression on the right-hand side is called the Lie bracket of X and Y. 
We have 

[X, Yj = -[Y, Xj. (6.11) 

Let us evaluate the Lie bracket for some of the examples listed in the 
beginning of Section 5. Let M = IRn. 

Example 1. If Xid = WI and Yid = W2 are "constant" vector fields, then (6.10) 
shows that [X, Yj = O. 

Example 2. Let Xid(V) = Av, where A is a linear transformation, and let 
Yid = w. Then (6.10) says that 

[X, Yhd(V) = -Aw, 

since the directional derivative of the linear function Av with respect to w is Aw. 

Example 3. Let Xid(V) = Av and Yid(V) = Bv, where A and B are linear 
transformations. Then by (6.10), 

[X, Yjid(V) = BAv - ABv = (BA - AB)v. (6.12) 

Thus in this case [X, Yj again comes from a linear transformation, namely, 
BA - AB. In this case the antisymmetry in A and B is quite apparent. 

We now return to the general case. Let cp be a one-parameter group on M, 
let Y be a smooth vector field on M, and let I be a differentiable function on M. 
According to (6.7), 

Then 

cpi(Dyj) - Dyj 
t 

DCPt[Yl(CPj [ID - Dy(cpi[ID + Dy(cpif) - Dyj 
t t 

= D{CP![~I_y}cpi[IJ - D y (cpiI t- I). 

Since the functions cp£[j] are uniformly differentiable, we may take the limit as 
t ---? 0 to obtain 

In other words, 

Dx(Dyj) = DDxyj + Dy(Dxf) 

= D[x,yJi + Dy(DxI). 

D[x,yJi = Dx(Dyj) - Dy(Dxf). (6.13) 

In view of its definition as a derivative, it is clear that Dx Y is linear in Y: 

DX(aYl + bY2) = aDXYl + bDx Y2 

if a and b are constants and X and Yare vector fields. By the antisymmetry, 
it must therefore also be linear in X. That is, 

DaXl+bX2Y = [aXl + bX2, Yj = a[Xl' Yj + b[X2' Yj = aDx1Y + bDx2Y. 
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Let X and Y be vector fields on a manifold M 2, and let ~ be a diffeomorphism 
of M 1 onto M 2. Then 

~*[X, Y] = [~*X, ~*Y]. (6.14) 

In fact, suppose X generates the flow cpo Then 

~*[X, Y] = ~*DxY = ~* lim (cpi Y - Y) 
t=o t 

* *y *y = lim ~ CPt - ~ 
t=o t 
r ~* cpN-l* ~*y - ~*y 

= t~ t 

= lim (~-1 0 CPt 0 ~)*~*y - ~*Y. 
t=o t 

Since ~-1 0 CPt 0 ~ is the flow generated by ~*X, we conclude that the last limit 
is D",*x~*Y, which proves (6.14). 

Now let Y and Z be smooth vector fields on M, and let X be the infinitesimal 
generator of cpo Then 

Dx[Y, Z] = ~~ cpi[Y, Z] t- [Y, Z] 

= lim [cpi Y, cpiZ] - [Y, Z] 
t=o t 

= ~~ {[ cpi Y t- Y, cpiZ] + [ Y, cpiz t Z]} 

= [DxY,Z] + [Y, DxZ]. 
Thus 

[X, [Y, Z]] = [lx, Y], Z] + [Y, [X, Z]]. (6.15) 

In view of the antisymmetry of the Lie bracket, Eq. (6.15) can be rewritten as 

[X, [Y, Z]] + [Y, [Z, XJ] + [Z, [X, YJ] = O. (6.16) 

Equation (6.15), or (6.16), is known as Jacobi's identity. 

7. LINEAR DIFFERENTIAL FORMS 

Let M be a differentiable manifold. We have attached to each x EM a vector space 
Tx(M). Its dual space, (Tx(M»*, is called the cotangent space to M at x, and will be 
denoted by T:(M). Thus an element ofT:(M) is a continuous linear function on Tx(M); 
it is called a covector. 

Some explanation of the word "continuous" is in order. In the case where 
M [and hence Tx(M)] is finite-dimensional, all linear functions on Tx(M) are 
continuous, so no further comment is necessary. We shall be concerned primarily 
with this case. More generally, let l be a linear function on Tx(M). For any 
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chart (U, a) about x we have identified Tx(M) with V, thus identifying ~ E Tx(M) 
with ~a E V. Then 1 determines a linear function la on V by 

(7.1) 

If (W, 13) is a second chart, then 

<~fj, lfj) = <Jaofj-l({3(X))~fj, la). 

Since J aorl ({3(x)) is a continuous map of V into V, we see that la is continuous 
if and only if lfj is. We shall therefore say that 1 is continuous if la is continuous 
for some (and hence any) a. In this case we see that (7.1) gives us an identifica­
tion of T:(l\[) with V* sending 1 into lao The last equation says that the rule 
for change of charts is given by 

(7.2) 

Let f be a differentiable function on M, and let x EM. Then the function 
on Tx(M) sending each ~ E Tx(M) into Hf) will be denoted by df(x). Thus 

<~, clf(x) = U· 

It is easy to see that df E T:(l\[). In fact, in terms of a chart (U, a) about x, 

<~, df(x) = D~(fa) (a(x)). 

Note that f assigns an element df(x) of T:(lIf) to each x E lIf. A map which 
assigns to each x E lJl an element of T:(lJl) will be called a covector field or a 
linear differential form. The linear differential form determined by the function f 
will be denoted simply by df. 

Let W be a linear differential form. Thus w(x) E T:(lJl) for each x E lJI. 
Let <X be an atlas of lIf. For each (U, a) E lJl we obtain the V*-valued function 
w'" on a(U) defined by 

for v E a(U). (7.3) 

If (W, (3) E <X, then (7.2) says that 

Wfj({3o a-lev)) = (J",orl({3o a-l(v))*w",(v) 

= (Jfjo",-l(V))-l*W",(V) for v E a(U n W). (7.4) 

As before, Eq. (7.4) shows that it makes sense to require that W be smooth. 
We say that W is a Ck-differential form if w'" is a V*-valued Ck-function for every 
chart (U, a). By (7.4) it suffices to check this for all charts in an atlas. Also, if 
we are given V*-valued functions w"" each defined on a(U), (U, a) E <X, and 
satisfying (7.4), then they define a linear differential form W on M via (7.3). 

If W is a differential form and f is a function, we define the form fw by 
fw(x) = f(x)w(x). Similarly, we define WI + W2 by 

(WI + W2)(X) = Wl(X) + W2(X). 
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Let M 1 and M 2 be differentiable manifolds, and let "': M 1 -? M 2 be a 
differentiable map. For any x EM 1 we have the map "'*x: Tx(M 1) -? T 'Pex)(M 2)' 
It therefore defines a dual map 

("'u)*: T:ex/M2) -? T: (M1)' 

(The reader can check that if l E T;Cx)(M2), then ~ -? (",*(0, l) is a continuous 
linear function of ~, by verification in terms of a chart.) 

N ow let w be a differential form on M 2. It assigns w (",(x») E T;cx) (M 2) to 
",(x), and thus assigns an element ("'*x)*(w(",(x»)) E Ti(M 1) to x E M 1. We 
thus "pull back" the form w to obtain a form on M 1 which we shall call ",*w. 
Thus 

(7.f» 

Note that ",* is defined for any differentiable map as in the case of func­
tions, not only for diffeomorphisms (and in contrast to the situation for vector 
fields). 

It is easy to give the expression for ",* in terms of compatible charts (U, 0') 
of M 1 and (W, (3) of M 2. In fact, from the local expression for ",* we see that, 

v E O'(U). (7.6) 

From (7.6) we see that ",*w is smooth if w is. It is clear that ",* preserves algebraie 
operations: 

(7.7) 

and 
",*(fw) = ",*(fJ",*(w). (7.8) 

If ",: M1 -? M2 and 1/;: M2 -? M3 are differentiable maps, then (4.4) and 
(7.5) show that 

(I/; 0 ",)*w = ",*I/;*w. (7.U) 

Let 1/;: M 1 -? M 2 be a differentiable map, and let f be a differentiable func­
tion on ]1,[2. Then (4.6) and the definition df show that 

d(I/;*(fJ) = 1/;* df. (7.10) 

Let", be a flow on M with infinitesimal generator X, and let w be a smooth 
linear differential form on M. Then the form ",iw is locally defined and, as in tIll' 
case of functions and vector fields, the limit as t -? 0 of 

* "'tW- w 
t 

exists. We can verify this by using (7.6) and proceeding as we did in the casp 
of vector fields. The limit will be a smooth covector field which we shall call 
Dxw. We could give an expression for Dxw in terms of a chart, just as w(' 
did for vector fields. 
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If f is a differentiable function, w a smooth differential form, and X the 
infinitesimal generator of cp, then 

Dx(fw) = (Dxf)w + fDxw. (7.11) 
In fact, 

D (f) 1· cp7fw - fw 
x w = 1m t 

t->o 

= lim (cp7f - f cpi(w) + fCP7w - w) 
t->o t t 

= (Dxf)w + fDxw. 

If 9 is a differentiable function on M, then 

cp7 dg - dg = dcp7[g] - dg = d (cp7[g] - g) 
t t t· 

An easy verification in terms of a chart shows that the limit of this last expression 
exists and is indeed d(Dxcp). Thus 

Dx(df) = d(Dxf). (7.12) 

Equations (7.11) and (7.12) show that if 

w = h dg l + ... + fk d(/k, 
then 

Dxw = (Dxfd dg l + ... + (Dxfk) dgk + h d(Dxg l ) + ... + fk d(Dxgk). 

(7.12') 

Let w be a smooth linear differential form, and let X be a smooth vector field. 
Then (X, w) is a smooth function given by 

(X, w)(x) = (X(x), w(x). 

Note that (X, w) is linear in both X and w. Also observe that for any smooth 
function f we have 

(X, df) = Dxf· (7.13) 

8. COMPUTATIONS WITH COORDINATES 

For the remainder of this chapter we shall assume that our manifolds are finite­
dimensional. Let M be a differentiable manifold whose V = IRn. If (U, a) is a 
chart of M, then we define the function x~ on U by setting 

x~(x) = ith coordinate of a(x). 

If f is any differentiable function on U, then we can write Eq. (2.1) as 

f(x) = fa(x~(x), ... , x~(x)), 

(8.1) 
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which we shall write as 
f = fa(x~, ... ,x~). (8.2) 

We define the vector field a / ax~ on U by 

(aai ) (v) = 8i(= <0, . '," l l : .. ,0». 
Xa a ~th positIOn 

(8.3) 

If X is any vector field on U, then we have 

X = Xl ~+ ... +Xn~, 
a axl a axn (8.4) 

a a 

where the functions X~ are defined by 

(X)a(a(x)) = <X~(x), .. . , X~(x) >. (8.5) 

Equation (8.4) allows us to regard the vector field X as a "differential operator". 
In fact, it follows from the definitions that 

(8.G) 

Since x~ is a differentiable function on U, dx~ is a differential form on U and 

for all v E U. (8.7) 
In particular, 

<~ d' j) - .~ 
ax~' Xa - u,. (8.8) 

If W is a differential form on U, then 

W = ala dx~ + ... + ana dx~, (8.9) 

where the functions a,a are defined by 

wa(a(x)) = <ala(x), ... , ana(x) >E IRn*. (8.10) 

I t then follows from the definitions that 

df = afa d 1 + ... + afa d n 
J axi Xa axn Xa· (8.11) 

a a 

Equation (8.11) has built into it the transition law for differential forms under a 
change of charts. In fact, if (W, (3) is a second chart, then on Un W we hav(', 
by (8.11), 

d i axb d 1 axb d n 
X(j = axl Xa + ... + axn Xa. 

a a 

(8.12) 
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If we write W = al{3 dxA + ... + an {3 dx~ and substitute (8.12), we get 

" ax~ aia = L... axi ai{3· 
a 

Now 

[ax~J aX] 
a 

395 

is the matrix J{3oa- l . If we compare with (8.10), we see that we have recovered 
(7.4). 

Since the subscripts a, (3, etc., clutter up the formulas, we shall frequently 
use the following notational convcntions: Instcad of writing x~ we shall write Xi, 
and instead of writing x~ we shall write yi. Thus 

i i X = Xa, k k 
Z = X-y, etc. 

Similarly, we shall write Xi for X~, yi for X~, ai for a,a, bi for ai{3, and so on. 
Then Eqs. (8.1) through (8.12) can be written as 

xi(x) = ith coordinate of a(x), 

f = fa(XI, ... , xn), 

(to) a (v) = Oi, 

X=XI~+ ... +Xn~, 
ax l axn 

(X)a(a(x) = <XI(X), ... , xn(x», 

Dxf = Xl afa + ... + xn afa , 
axl axn 

wa(a(x) = <al(x), ... ,an(x», 

df = afa dx l + ... + ():f~ dxi 
axl aX]' 

d i ayi d I ay i d n 
y = ax! x + ... + ax; x. 

(8.1') 

(8.2') 

(8.3') 

(8.4') 

(8.5') 

(8.6') 

(8.7') 

(8.8') 

(8.9') 

(8.10') 

(8.11') 

(8.12') 

The formulas for "pullback" also take a simple form. Let if;: M I --> M 2 be a 
differentiable map, and suppose that M I is m-dimensional and M 2 is n-dimen-
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sional. Let (U, a) and (W, (3) be compatible charts. Then the map 

(3 0 1/; 0 a-I: a(U) -t (3(W) 
is given by 

i = 1, ... , n, 

that is, by n functions of m real variables. If f is a function on M 2 with 

f = ffl(yl, ... ,yn) on W, 
then 

1/;*[f1 = fa(XI, ... , Xm) on U, 
where 

9.8 

(8.13) 

(8.14) 

The rule for "pulling back" a differential form is also very easy. In fact, if 

w = al dyl + ... + an dyn on W, 

then 1/;*w has the same form on U, where we now regard the a's and y's as 
functions of the x's and expand by using (8.12). Thus 

* '"' ayi . 
1/; w = L....- ai a----:- dx J , x J 

where ai = a,(yl(xt, . .. ,xm), .. . , yn(x l , ... , xm)). 
Let x E U. Then 

( a) ayj a 
1/;* a---: (x) = L a---: (x) a---: (1/;(x)) 

x' j x' yJ 

gives the formula for 1/;u. 

EXERCISES 

(8.15) 

8.1 Let x and y be rectangular coordinates on P, and let (r, (J) be polar "coordinates" 
on P - {O}. Express the vector fields ajar and aja(J in terms of rectangular coordi­
nates. Express ajax and ajay in terms of polar coordinates. 

8.2 Let x, y, z be rectangular coordinates on 1f3. Let 

a a x = y--z--, 
az ay 

a a 
Y = z--x-, 

ax az 
and 

a a 
z=x--y-' 

ay ax 

Compute [X, Y], [X, Z], and [Y, ZJ. Note that X represents the infinitesimal generator 
of the one-parameter group of rotations about the x-axis. We sometimes call X the 
"infinitesimal rotation about the x-axis". We can do the same for Y and Z. 

8.3 Let 

a a 
A = y-+z-, 

az ay 
a a 

B=x-+z-, 
az ax 

and 
a a C=x--y_· 

ay ax 

Compute [A, BJ, [A, C), and [B, CJ. Show that Af = Bf = Cf = 0 if f(x, y, z) 
x 2 + y2 - z2. Sketch the integral curves of each of the vector fields A, B, and C. 
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8.4 Let 

o 0 
D = u-+v-, 

ov ou 

o 0 
E = u--v-, 

ov ou 
and 

o 0 
F=u--v-· 

OU OV 

Compute [D, El, [D, Fl, and [E, F]. 

8.5 Let P1, ... , P n be polynomials in xl, ... , xn with no constant term, that is, 

P1(O, ... ,O) = 0. 
Let 

1 0 n 0 I=x -+···+x-
ox1 oxn 

and 

Show that 
[I,X] = ° 

if and only if the P/s are linear. [Hint: Consider the expansion of the P/s into homoge­
neous terms.] 

8.6 Let X and the P;'s be as in Exercise 8.5, and suppose that the P;'s are linear. Let 

1 0 n 0 
A = }..lX - + ... + }..nx -, 

ox1 oxn 

and suppose that 
fo~ i ~ j. 

Show that [A, X] = ° if and only if Pi = f.l.iXi, that is, 

10+ + nO X = f.l.1X - . . . f.l.nX-
ox1 oxn 

for some 1 n 
f.I. , ••• , f.I. • 

8.7 Let A be as in Exercise 8.6, and suppose, in addition, that 

for any i, j, T. 

Show that if the Pis are at most quadratic, then 

[A,X] = ° 
if and only if Pi = f.l.iXi. Generalize this result to the case where Pi can be a polynomial 
of degree at most m. 

9. RIEMANN METRICS 

Let M be a finite-dimensional differentiable manifold. A Riemann metric, m, 
on M is a rule which assigns a positive definite scalar product ( , )m . ., to the 
vector space Tz(M) for each x E M. We shall usually drop the subscripts m and 
x when they are understood from the context. Thus if m is a Riemann metric 
on M, x E M, and ~, ." E T.,(M), we shall write the scalar product of ~ and." as 

(~, .,,) = (~, "')m • .,. 
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Let (U, a) be a chart of M. Define the functions gij on U by setting 

gij(X) = (a~i (x), a~j (x») , 

so that % = (ji>' If~, TJ E TxCM) with 

then 

" i a ~ = L.J ~ a---: (x) 
x' 

and 

(~, TJ) = L g,j(xHiTJ j . 
i.j 

Since dx 1 (x), ... ,dx"(x) is the basis of T:UIl) dual io t.he basis 

a a 
a-I (:r), ... 'a- (x), 

X x" 
we have 

so that the last equation can be written as 

(~, TJ)m,x = L (j,j(x)(~, clxi)(TJ, dx j ). 

Equation (9.2) is usually written more succinctly as 

m I U = L g,j(x) dx i dx j . 

[Here (9.3) is to be interpreted as a short way of writing (9.2).] 
Let (W, fJ) be a second chart with 

hkl(X) = (a~k (x), a~l (x») , ;1; E W, 

that is, 
m IW= Lh/cldykdi· 

Then for x E Un W, we have 

so 

that is, 

a al a 
(x) - " (-r) (x) axi' - L.J axi . ayk ' 

a a/ a 
if;) (x) = L [i;) (x) ayl ' 

alal 
gij = L hkl axi axj ' 

k,l 

9.9 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

Note that (9.5) is the answer we would get if we fonnally substituted (8.12) for 
the dy's in (9.4) and collected the coefficients of dx i dx j • 

In any event, it is clear from (9.5) that if the h,j are all smooth functions 
on W, then the (j,j are smooth on U n W. In view of this we shall say that a 
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Riemann metric is smooth if the functions gij given by (9.3) are smooth for any 
chart (U, a) belonging to an atlas a of M. Also, if we are given functions 
gij = gji defined for each (U, a) E a such that 

i) L gij(X) ~i~j > 0 unless ~ = 0 for all x E U, 

ii) the transition law (9.5) holds, 

then the gij define a Riemann metric on ]1.[. In the following discussion we shall 
assume that our Riemann metrics are smooth. 

Let if;: M 1 --+ M 2 be a differentiable map, and let m be a Riemann metric 
on M 2. For any x EM 1 define ( , )",*(m),x on TxCM1) by 

(9.6) 

Note that this defines a symmetric bilinear function of ~ and 7]. It is not 
necessarily positive definite, however, since it is conceivable that if;*(~) = 0 
with ~ ~ O. Thus, in general, (9.6) does not define a Riemann metric on MI. 
For certain if; it does. 

A differentiable map if;: M 1 --+ M 2 is called an immersion if if;*x is an injection 
(i.e., is one-to-one) for all x EM 1. 

If if;: M 1 --+ M 2 is an immersion and m is a Riemann metric on M 2, then we 
define the Riemann metric if;*(m) on M 1 by (9.6). 

Let (U, a) and (W, (3) be compatible charts of M1 and M 2, and let 

m I W = L hkl dl dyl. 

Then 

where 

which is just (9.5) again (with a different interpretation). Or, more succinctly, 

if;*(m) I U = L if;*(hk1)if;*(dyk)if;"-(dyl). 

Let us give some examples of these formulas. If M = IRn , then the identity 
chart induces a Riemann metric on IR n given by 

(dX1)2 + ... + (dxn)2. 

Let us see what this looks like in terms of polar coordinates in 1R2 and 1R3. 
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In IR 2 if we write 

then 

so 

Xl = r cos 0, x 2 = r sin 0, 

dx l = cos 0 dr - r sin 0 dO, 
dx2 = sin 0 dr + r cos 0 dO, 

9.9 

(9.7) 

Note that (9.7) holds whenever the forms dr and dO are defined, i.e., on all of 
1R2 - {O}. (Even though the function 0 is not well defined on all of 1R2 - {O}, 
the form dO is. In fact, we can write 

Xl dx2 - x2 dx l 
dO = (XI)2 + (X2)2 .) 

In 1R3 we introduce 

Then 

Thus 

Xl = r cos cp sin 0, 
x 2 = r sin cp sin 0, 
x3 = r cos o. 

dx l = cos cp sin 0 dr - r sin cp sin 0 dcp + r cos cp cos 0 dO, 
dx 2 = sin cp sin 0 dr + r cos cp sin 0 dcp + r sin cp cos 0 dO, 
dx 3 = cos 0 dr - r sin 0 dO. 

(9.8) 

(dXI)2 + (dx2)2 + (dx 3)2 = dr2 + r2 sin2 0 dcp2 + r2 d02• (9.9) 

Again, (9.9) is valid wherever the forms on the right are defined, which this time 
means when (X I)2 + (X 2)2 ~ O. 

Let us consider the map L of the unit sphere 8 2 -+ 1R3, which consists of 
regarding a point of 8 2 as a point of 1R3. We then get an induced Riemann metric 
on 8 2• 

Let us set 
dO = L* dO and dcp = L* dcp, 

so the forms dO and dcp are defined on U = 8 2 - {<O, 0,1>-, <0,0, -1>-}. 
Then on U we can write (since r = 1 on 8 2) 

(9.10) 

We now return to general considerations. Let M be a differentiable manifold 
and let C: I -+ M be a differentiable map, where I is an interval in IRI. Let t 
denote the coordinate of the identity chart on l. We shall set 

C'(S) = C* (~) (s), s E I, 

so that C'(s) E TC(B)(M) is the tangent vector to the curve C at s. If (U, a) is 
a chart on M and xl, ... ,xn are the coordinate functions of (U, a), then if 
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C(l') C U for some I' C I, 

a 0 C = -<Xl 0 C, ... ,xn 0 C>-, 
so that 

, J dx l 0 C dxn 0 C \. 
C (t)", =, dt , ... , (It- ret). 

When there is no possibility of confusion, we shall omit the 0 C and simply write 

and 

Now let m be a Riemann metric on M. Then IIC'(t)11 = (C'(t), C'(t))1/2 is a 
continuous function. In fact, in terms of a chart, we can write 

The integral 
IIC'(t)1I = V2:: %(C(t)xi'(t)xj'(t) . 

[ IIC'(t)11 dt (9.11) 

is called the length ofthe curve C. It will be defined if IIC' (t) II is integrable over I. 
This will certainly be the case if I and IIC'(t) II are both bounded, for instance. 
Note that the length is independent of the parametrization. More precisely, 
let ep: J -t I be a one-to-one differentiable map, and let C I = Co ep. Then at 
any r E J we have 

that is, 

Ci(r) = ;: C'(t). 

Thus 

IICier)II = IIC'(ep(r» II 1 ~~ I· (9.12) 

On the other hand, by the law for change of variable in an integral we have 

lllC'ol1 = i IIC'(ep(·)II I ~; I 
= i IICiOl1 by (9.12). 

More generally, we say that a curve C defined on an interval I is piecewise 
differentiable if 

i) C is continuous; 

ii) I = I I U' .. U IT and C, on each Ij, is the restriction of a differentiable 
curve defined on some interval Ij strictly containing Ii' 
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(Thus a piecewise differentiable curve is a curve with a finite number of "cor­
ners".) If C is piecewise differentiable, then IIC'(t) II is defined and continuous 
except at a finite number of t's, where it may have a jump discontinuity. In 
particular, the integral (9.11) will exist and the curve will have a length. 

Exercise. Let C be a curve mapping I onto a straight line segment in IRn in a one-to­
one manner. Show that the length of C is the same as the length of the segment. 

Let C: [0, 1] ~ 1R2 be a curve with C(O) = 0 and C(I) = v E 1R2. If we use 
the expression (9.7), we see that 

IIIC'(t) II dt = IvI(r'(t))2 + (r(t)O'(t))2dt 

~ Ilr'(t)1 dt 
1 

~ 10 r'(t) dt 

= Ilvll, 
with equality holding if and only if 0' = 0 and r' ~ O. Thus among all curves 
joining ° to v, the straight line segment has shortest length. 

Similarly, on the sphere, let C be any curve C: [0, 1] ~ 8 2 with C(O) = 
(0,0, 1) and C(I) = p -:;6- (0,0, -1), and let 01 = O(C(I) ). Then 

IIIC'(t)11 dt = I vi (O'(t))2 + sin2 o (P'(t)) 2 dt 

~ 101 IO'(t)1 dt. 

If we let tl denote the first point in [0, 1] where 0 = 01, then 

I (1 (tI (tI 
IIC'(t) II dt ~ io IO'(t) I dt ~ io IO'(t)1 dt ~ io O'(t) dt = 01, 

with equality only if <p' = ° and tl = 1. Thus the shortest curve joining any 
two points on 8 2 is the great circle joining them. 

In both examples above we were aided by a very fortuitous choice of coordi­
nates (polar coordinates in the plane and a kind of polar coordinates on the 
sphere). We shall see in Section 11, Chapter 13, that this is not accidental. We 
shall see that on any Riemann manifold one can introduce local coordinates in 
terms of which it is easy to describe the curves that locally minimize length. 



CHAPTER 10 

THE INTEGRAL CALCULUS ON MANIFOLDS 

In this chapter we shall study integration on manifolds. In order to develop 
the integral calculus, we shall have to restrict the class of manifolds under 
consideration. In this chapter we shall assume that all manifolds M that arise 
satisfy the following two conditions: 

1) M is finite-dimensional. 

2) M possesses an atlas ex containing (at most) a countable number of 
charts; that is, ex = {(Ui , (Xi)}i=1,2, ...• 

Before getting down to the business of integration, there are several technical 
facts to be established. The first two sections will be devoted to this task. 

1. COMPACTNESS 

A subset A of a manifold 1Jl is said to be compact if it has the following property: 

i) If {U,} is any collection of open sets with 

ACUU" 

there exist finitely many of the U" say U'I' ... , U", such that 

A C U'I U ... U U", 

Alternatively, we can say: 

ii) A set A is compact if and only if for any family {F,} of closed sets 
such that 

there exist finitely many of the F, such that 

A n F'I n ... n F" = 0. 

The equivalence of (i) and (ii) can be seen by taking U, equal to the comple­
ment of F,. 

In Section 5 of Chapter 4 we established that if M = U is an open subset of 
IRn, then A C U is compact if and only if A is a closed bounded subset of IRn. 

403 
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We make some further trivial remarks about compactness: 

iii) If A b ... , AT are compact, so is A 1 U ... U AT' 

10.1 

In fact, if {U,} covers A1 u··· U AT, it certainly covers each A j . We can 
thus choose for each j a finite subcollection which covers A j . The union of these 
subcollections forms a finite sub collection covering A 1 U ... U AT' 

iv) If 1/;: M 1 ---7 M 2 is continuous and A eM 1 is compact, then 1/;[A] is 
compact. 

In fact, if {U,} covers 1/;[A], then {y;-1(U,)} covers A. If the U, are open, 
so are the 1/;-1(U,), since 1/; is continuous. We can thus choose '1, ... , 'T so that 

A C 1/;-1(U,J u· .. u 1/;-1 (U,), 

which implies that 1/;[A] C U'I U· .. U U'T' 
We see from this that if A = A1 u· .. U An where each Aj is contained 

in some Wi, where (Wi, f3i) is a chart, and f3i(Aj) is a compact subset of ~n, 
then A is compact. In particular, the manifold M itself may be compact. For 
instance, we can write sn as the union of the upper and lower hemispheres: 
sn = {x: xn+1 ~ O} U {x : xn+1 ~ O}. Each hemisphere is compact. In fact, 
the upper hemisphere is mapped onto {y : Ilyll ~ I} by the map IP1 of Section 8.1, 
and the lower hemisphere is mapped onto the same set by IP2' Thus the sphere 
is compact. 

On the other hand, an open subset of ~n is not compact. However, it can 
be written as a countable union of compact sets. In fact, if U C ~n is an open 
set, let 

An = {x E U: IIxll ~ nand p(x, aU) ~ lin}. 

It is easy to check that An is compact and that 

UAn = U. 

In view of condition (2), we can say the same for any manifold M under 
consideration: 

Proposition 1.1. Any manifold M satisfying (1) and (2) can be written as 

where each Ai C 111 is compact. 

Proof. In fact, by (2) 

and by the preceding discussion each Uj can be written as the countable union 
of compact sets. Since the countable union of a countable union is still count­
able, we obtain Proposition 1.1. 0 
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An immediate corollary is: 

Proposition 1.2. Let M be a manifold [satisfying (1) and (2)], and let {U.} 
be an open covering of M. Then we can select a countable sub collection 
{Uj } such that 

Proof. Write M = UA" where Ar is compact. For each r we can choose finitely 
many Ur,b Ur,2, ... , Ur,kr so that 

Ar C Ur,l u· .. U Ur,kr" 
The collection 

is a countable subcollection covering M. D 

2. PARTITIONS OF UNITY 

In the following discussion it will be convenient for us to have a method of 
"breaking up" functions, vector fields, etc., into "little pieces". For this purpose 
we introduce the following notation: 

Definition 2.1. A collection {gj} of COO-functions is said to be a partition of 
unity if 

i) gi 2:: 0 for all i; 

ii) supp git is compact for all i; 

iii) each x E M has a neighborhood Vx such that Vx n supp gi = 0 
for all but a finite number of i; and 

iv) L gi(X) = 1 for all x E M. 

Note that in view of (iii) the sum occurring in (iv) is actually finite, since 
for any x all but a finite number of the gi(X) vanish. Note also that: 

Proposition 2.1. If A is a compact set and {gj} is a partition of unity, then 

An supp gi = 0 
for all but a finite number of i. 

Proof. In fact, each x E A has a neighborhood Vx given by (iii). The sets 
{V x} xEA form an open covering of A. Since A is compact, we can select a finite 
sub collection {V 1, ... , Vr } with A C V 1 U ... U V r. Since each V k has a 
nonempty intersection with only finitely many of the supp 9i, so does their 
union, and so a fortiori does A. D 

t Recall that supp 9 is the closure of the set {x: g(x) rf O}. 
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Oefinition 2.2. Let {U,} be an open cuvering of AI, and let fgj} be a parti­
tion of unity. We Ray that {gj} is subordinate to {U,} if for every j there 
exists an l(j) such that 

BUPP gj C U'<il' (2.1) 

Th.ore ... 2.1. Let {fl,} be any open covering of M. There exists a partition 
of unity fgj} subordinate to {U ,}. 

The proof that we shall present below is due tu Bunic anu Fralllpton. t 
First we introduce some preliminary notions. 
The function 1 on ~ defined by 

Ie-lIlt 

I(u) = 0 
if u> 0, 
if u ~ 0 

is C~. For u '" 0 it is clear that J has uerivatives uf all urders. To check thatJ is 
Coo at 0, it suffices to show that J(k'(u) -> 0 as u -> 0 from the right. But 
ICk'(u) = Pk(l / u)e- II., where Pk is a polynomial of degree 2k. So 

lim f,k,(U) = lim Pk(s)e-' = 0, 
u--->O , om:> 

since e' goes to iufinity faster than any polynomial. 
Note that J(u) > 0 if and only if u > O. Now consider the function g~ on ~ 

defined by 
g~(x) = J(x - a)J(b - x). 

Then y! is CZl and nonnegative and 

if and only if a < x < b. 

More generally, if a = -<a l
, .•• , ak >- and b = -<b l

, ••• , bk >-, define the 
fUllctiull y~ on Rk by setting 

g~(x) = g~:(x)g!;(X2) . .. Ot.(xk), 

where x = -<Xl, ... J Xk>. Then gZ 2: 0,0: E CZJ, and 

y~(x) > 0 if and only if a l < Xl < b l , ... ,ak < x' < b'. (2.2) 

Lemma. Let I" ... .Ik be COO-functions on a manifold At, and let W = 

{x: a l < JI(X) < b" ... , ak < J.(x) < b'}. There exists a nonnegative 
COO-function 9 such that W = {x : g(x) > O}. 

In fact, if we define 9 by 

then it is clear that 9 has the ue.ired pruperties. 

t Smooth functions on nanach manifold., J. Malh and Meek. 15, 877-898 (1966). 
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We now t.urn to the proof of Theorem 2. L 

P roof. For each x E M choose 0. V, containing x and a chart (V, ,,) about x. 
Then a(U n U.) i9 an 01)('0 !l4't containing a(x) in RIO. Choose a and b such thllt 

... {z) E int O!' 
Let W" = ",- l(int D~). Then 

lV~ C If. 

and 

Ilnd 

Q>Ca(V n V.) . 

11' ~ is compact. 

AIJ:K) if xl, ... ,x~ an! the <.:w roiu.ates givcn by a, 

11'., = {y: a l < r,1 (y) < bl, ... , 0" < x"C,,) < b"}. 

By our lcmmu we can fino a nonncgative C"-function Iz such that 

11'2 - {y :/z(Y) > OJ. 

(2.3) 

Since x E lV .. lhl;l {lI'z} cover Jr. By Proposition 1.2 we can Re!ftCtll countable 
su\)t"Qvering {Wi}. Let liS denote the corresponding function~ by Ii; that is, 
if Wi = Wz , we IW;t/t "'" I~· 

r..,. 
VI - IV] - {.t :fd.r:) > OJ, 
V2 - {X:/f(X) > O,/I(X) <!}, 

1', = {x :/.(:r.) > 0, hex) < l / r, ... ,/,_,(x) < I/r} . 

It is clear thut V I is open and that, V j C IV j, so that, by (~.3), 

Vi is compact ,nd Vi '- U. (2.4) 

for some . - l(j). 
lor each ;t E M let q(x) dcnot(' the first integer q for which fa{x) > O. 

Thus/p(x) = [) if p < q(x) and /~CZ1(I) > o. 
1.et V z - {y: /"cz/y) > tfq(Z)(;c)} . Since/V(I )(x) > 0, it follows that x C I'A 

and I' z i~ open. Furlhtmnorc, 

if r > q(l') and l i T" < !fv(All:). (2.5) 

ACCQrding to thc lemma, f!sch I\j,t 1' , can be given as Vi = {.t:: !1lc) > OJ, 
where!1, is a suitable C"'-function. Let g = L i];. I LL view uf (2.5) this is really 
a finite awn ilL the ncip;hborhood uf lilLy 2.". Thus Y is C"'. Now !1q(Z)(x) > 0, 
since x E V V\I)' Thus g > O. Set 

,; 
(lj = -. 

g 

We claim that {OJ} il:l the desired partition of unity. In fnet, (i) holds by uur 
construction, (ii) nno (2.1) follow from (~.4), (iii) follows from (2.5), and (iv) 
hold!~ hy construction. 0 



408 THE INTEGRAL CALCULUS ON MANIFOLDS 10.3 

3. DENSITIES 

If we regard IRn as a differentiable manifold, then the law for change of variables 
for an integral shows that the integrand does not have the same transition law 
as that of a function under change of chart. For this reason we cannot expect 
to integrate functions on a manifold. We now introduce the type of object that 
we can integrate. 

Definition 3.1. A density P is a rule which assigns to each chart (U, a) of 
M a function Pa defined on a(U) subject to the following transition law: 
If (W, (3) is a second chart of M, then 

for v E a(U n W). (3.1) 

If a is an atlas of M and functions Pa, are given for all (Ui, ai) E a satisfying 
(3.1), then the Pa, define a density P on M. In fact, if (U, a) is any chart of M 
(not necessarily belonging to a), define Pa by 

This definition is consistent: If v E a(U n Ui) n a(U n Uj), then by (3.1), 

Pa;(aj 0 a-1(v))ldet Ja;oa-l(v)1 

= Pa, (ai 0 a,-:-1 (aj 0 a-I (v) )) Idet J aioail (aj 0 a-I (v) ) IIdet J a;oa- I (v) I 

= Pa;(ai 0 a-I (v)) Idet Ja,oa-l(v)1 

by the chain rule and the multiplicative property of determinants. 
In view of (3.1) it makes sense to talk about local smoothness properties of 

densities. We will say that a density P is Ck if for any chart (U, a) the function 
Pa is Ck • As usual, it suffices to verify this for all charts (U, a) belonging to some 
atlas. Similarly, we say that a density P is locally absolutely integrable if for 
any chart (U, a) the function Pa is absolutely integrable. By the last proposition 
of Chapter 8 this is again independent of the choice of atlases. 

Let P be a density on M, and let x be a point of M. It does not make sense 
to talk about the value of pat x. However, (3.1) shows that it does make sense 
to talk about the sign of P at x, More precisely, we say that 

P > 0 at x if Pa(a(x)) > 0 (3.2) 

f~r a chart (U, a) about x. Equation (3.1) shows that if Pa(a(x)) > 0, then 
P/3({3(x)) > 0 for any other chart (W, (3) about x. Similarly, it makes sense to 
say that P < 0 at x, P > 0 at x, or P ~ 0 at x. 

Definition 3.2. Let P be a density on M. By the support of P, denoted by 
supp P, we shall mean the closure of the set of points of M at which P does 
not vanish. That is, 

supp P = {x: P ~ 0 at x}. 
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Let Pl and P2 be densities. We define their sum by setting 

(Pl + P2)a = Pla + P2a (3.3) 

for any chart (U, ex). It is immediate that the right-hand side of (3.3) satisfies 
the transition law (3.1), and so defines density on M. 

Let P be a density, and let f be a function. We define the density fp by 

(3.4) 

Again, the verification of (3.1) is immediate in view of the transition laws for 
functions. 

It is clear that 
supp (Pl + P2) C supp Pl U supp P2 (3.5) 

and 
supp (fp) = suppf n supp p. (3.6) 

We shall write 
Pl ::; P2 at x if P2 - Pl 2: 0 at x 

and 
Pl ::; P2 if Pl::; P2 at all x E M. 

Let P denote the space of locally absolutely integrable densities of compact 
support. We observe that P is a vector space and that the product fp belongs 
to P if f is a (bounded) locally contented function and pEP. 

TheoreIn 3.1. There exists a unique linear function f on P satisfying the 
following condition: If pEP is such that supp pC U, where (U, ex) is a 
chart of M, then 

Jp = ( Pa. 
ia(U) 

(3.7) 

Proof. We first show that there is at most one linear function satisfying (3.7). 
Let a be an atlas of M, and let {gj} be a partition of unity subordinate to a. 
For each} choose an iU) so that 

supp gj C Ui(j). 

Write P = 1· P = L gj' p. Since supp P is compact, only finitely many 
of the terms gjp are not identically zero. Thus the sum is finite. Since f is linear, 

By (3.7), 

Thus 
(3.8) 

Thus f, if it exists, must be given by (3.8). To establish the existence of f, 
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we must show that (3.8) defines a linear function on P satisfying (3.7). The 
linearity is obvious; we must verify (3.7). 

Suppose supp pC U for some chart (U, a). We must show that 

( p", = L: 1 (gjP)"'iU)' 
l",(U) j "'iU) (UiU» 

Since p = L (ljp and therefore P'" = L «(ljp)"" it suffices to show that 

1 (gjp)", = ( (gjP)"'i' (3.9) 
",(U) l"'i(Ui) 

where supp (ljP C U n Ui . By (3.1), 

«(ljp)", = «(ljP)"'i 0 (a, 0 a-I). \det J"'iO",-I\, 

SO that (3.9) holds by the transformation law for integrals in IRn. 0 

We can derive a number of useful properties of the integral from the for­
mula (3.8): 

(3.10) 

In fact, since (lj 2:: 0, we have «(ljPl)", :::; «(ljP2)", for any chart (U, a). 
Thus (3.10) follows from the corresponding fact on IRn if we use (3.8). 

Let us say that a set A has content zero if A C A I U ... U Ap where each 
Ai is compact, A, C Ui for some chart (Ui, ai), and ai(A,) has content zero ill 
IRn. It is easy to see that the union of any finite number of sets of content zero 
has content zero. It is also clear that the function eA is contented. 

Let us call a set B C J1[ contented if the function eB is contented. For any 
pEP we define IB P by 

(3.11) 

It follows from (3.8) that 

Lp=O 
for any pEP if A has content zero. We can thus ignore sets of content zero for 
the purpose of integration. In practice, one usually takes advantage of this when 
computing integrals, rather than using (3.8). For instance, in computing an 
integral over sn, we can "ignore" any meridian: for example, if 

A = {x E sn : x = (t, 0, ... , ±yr=t2) E IR n +I }, 

then 
for any p. 

This means that we can compute Isn P by introducing polar coordinates 
(Fig. 10.1) and expressing P in terms of them. Thus in S2, if U = S2 - A and 
a is the polar coordinate chart on U, then 

( P = (2" (" P'" dO dcp. 
lS2 lo lo 
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(J 

~~--------------~ 

a(S-A) 

---+--------------~2~~----~ 

Fig. 10.1 

It is worth observing that if N is a differentiable manifold of dimension less 
than dim M and if; is a differentiable map of N ~ M, then Proposition 7.3 of 
Chapter 8 implies that if A is any compact subset of N, then if;(A) has content 
zero in M. In this sense, one can ignore "lower-dimensional sets" when integrat­
ing on M. 

4. VOLUME DENSITY OF A RIEMANN METRIC 

Let M be a differentiable manifold with a Riemann metric o. We define the 
density 0' [=0'(0)] as follows. For each chart (U, a) with coordinates Xl, ••• , xn 
let 

O'a(a(x)) = Idet [(a~i (x), a~j (x)) ]1 1
/
2 = Idet (gij(x))I I / 2 • (4.1) 

Here 

is the matrix whose ijth entry is the scalar product of the vectors 

a -a . (x) 
x' 

and 

so that (in view of Exercise 8.1 of Chapter 8) 

a 
a---: (x), 

X1 

O'a(a(x)) = volume of the parallelepiped spanned by (a/axi)(x) with 
respect to the Euclidean metric ( , )0,., on T.,(M). 

It is easy to see that (4.1) actually defines a density. Let (W, fJ) be a second 
chart about x with coordinates yl, ... ,yn. Then 

so that 
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Now 

for all k and l. We can write this as the matrix equation 

so that 

U~(~(x) = Idet [(a~i (x), a~j (x)) J det [;:~] det [~:~JI1/2 

= 1 det [(a~i (x), a~j (X)) JI 1/2
1 det [~::JI 

= ua(a(x) Idet[~::]I(X). 

lOA 

If M is an open subset of Euclidean space with the Euclidean metric, then 
the volume density, when integrated over any contented set, yields the ordinary 
Euclidean volume of that set. In fact, if x I, ... , Xn are orthonormal coordinates 
corresponding to the identity chart, then gij(X) = 0 if i ~ j and gii = 1, so 
that Uid == 1 and thus 

L U = L 1 = }L(A). 

More generally, let 'P be an immersion of a k-dimensional manifold Minto 
IRn such that 'P(M) is an open subset of a k-dimensional hyperplane in IR n, and 
let m be the Riemann metric induced on M by 'P. Then, if U denotes the corre­
sponding volume density, fA U is the k-dimensional Euclidean volume of 'P(A). 
In fact, by a Euclidean motion, we may assume that 'P maps M into IRk C IRn. 
Then, since 'P is an immersion and M is k-dimensional, we can use x I, ... , Xk 

as coordinates on M and conclude, as before, that U is given by the function in 
terms of these coordinates, and hence that fA U = }L('P(A). 

Now let 'PI and 'P2 be two immersions of M ~ IRn. Let (U, a) be a coordinate 
chart on M with coordinates y\ ... ,yk. If mI is the Riemann metric induced 
by 'Pi, then 

and 

where the scalar product on the right is the Euclidean scalar product. Let 111 
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Fig. 10.2 

and U2 be the volume densities corresponding to ml and m2. Then 

and 
1 [(iJIPl iJIPl)J11/2 

U la = det iJyi' iJyi 

U2a = Idet [ (~~~ , ~~~) JI 1
/
2 

In particular, given an L > 0, there is a K = K(k, n, L) such that if 

II~;~II < L and II~~!II < L for all i = 1, ... , k, 

then, by the mean-value theorem, 

lUI - U2 I < K (11iJ IP2 _ iJIP111 + ... + IliJCf?2 _ iJCPlll) . a a - iJy 1 iJy t iJyk iJyk 

RO}1ghly speaking, this means that if CPt and CP2 are close, in the sense that their 
derivatives are close, then the densities they induce are close. 

We apply this remark to the following situation. We let CPt be an immersion 
qf Minto IR" and let (W, a) be some chart of M with coordinates yt, ••• , yk. 
We let U = W - C = UUz, where C is some closed set of content zero and 
such that Uz n Uz' = 9J if Z ¢ l'. For each Z let z, be a point of Ui whose 
coordinates are -< yl, ••• , y~ > , and for z = -< y t, ... , yk> define CP2 by setting, 

1 k ~.. iJCPl 
CP2(y , ••. , y ) = CPl (zz) + £oJ (y' - yi) iJy' (zz) 

i~z E Uz• (See Fig. 10.2.) 
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If the Uz's are sufficiently small, then 

II:~~ - ~~!II 
will be small. More generally, we could choose CP2 to be any affine linear map 
approximating CPl on each Uz• We thus see that the volume of W in terms of the 
Riemann metric induced by cP is the limit of the (suljace) volume of polyhedra 
approximating cp(W). Here the approximation must be in the sense of slope 
(Le., the derivatives must be close) and not merely in the sense of position. 

The construction of the volume density can be generalized and suggests an 
alternative definition of the notion of density. In fact, let P be a rule which 
assigns to each x in M a function, Px, on n tangent vectors in Tx(M) subject to 
the rule 

(4.2) 

where ~i E Tx(M) and A: Tx(M) ~ Tx(M) is a linear transformation. Then 
we see that P determines a density by setting 

Pa(a(x)) = P (a~l (x), ... 'a~n (X)) (4.3) 

if (U, a) is a chart with coordinates uI, ... ,un. The fact that (4.3) defines a 
density follows immediately from (4.2) and the transformation law for the 
a/au i under change of coordinates. 

Conversely, given a density P in terms of the Pa, define p(a/auI, ... , a/aun) 
by (4.3). Since the vectors {a/aUi}i=l, ... ,n form a basis at each x in U, any 
6, ... , ~n in Tx(M) can be written as 

a 
~i=B-a . (x), u' 

where B is a linear transformation of Tx(M) into itself. Then (4.2) determines 
p(6, ... , ~n) as 

p(6, ... , ~n) = Idet BIPa(a(x)). (4.4) 

That this definition is consistent (i.e., doesn't depend on a) follows from (4.2) 
and the transformation law (3.1) for densities. 

EXERCISES 

4.1 Let M = Sl X Sl be the torus, and let cp: M -+ 1R4 be given by 

xl 0 cp(8J, 82) = cos 81, 

x20 cp(81, 82) = sin 81, 

x 3 0 cp(81, 82) = 2 cos 82, 

X4 0 cp(8l, 82) = 2 sin 82, 
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where Xl, ... , x4 are the rectangular coordinates on ~4 and (}l, (}2 are angular coordi­
nates on M. 

a) Express the Riemann metric induced on M by '" (from the Euclidean metric 
on ~4) in terms of the coordinates (}l, (}2. [That is, compute the Yij«(}l, (}2).] 

b) What is the volume of M relative to this Riemann metric? 

4.2 Consider the Riemann metric in­
duced on Sl X Sl by the immersion", into 
fEB by 

x 0 ",(u, v) = (a - cos u) cos v, 

yo 'P(u, v) = (a - cos u) sin v, 

z 0 ",(u, v) = sin u, 

where u and v are angular coordinates and 
a > 2. What is the total surface area of 
Sl X Sl under this metric? 

4.3 Let 'I' map a region U of the xy-plane 
into IP by the formula 

",(x, y) = (x, y, F(x, y)), 
Fig. 10.3 

so that 'P(U) is the surface z = F(x, y). (See Fig. 10.3.) Show that the area of this 
surface is given by 

4.4 Find the area of the paraboloid 

z = x2 + y2 for x2 + y2 ::; 1. 

4.5 Let U C ~2, and let '1': U - P be given by 

",(u, v) = (x(u, v), y(u, v), z(u, v)), 

where x, y, z are rectangular coordinates on P. Show the area of the surface 'P(U) 
is given by 

i r flax ay _ ax ay)2 + (ay az _ ay az)2 + (ax iJz _ ax ay)2. 
I Ju ~\au av avau au av avau au av avau 

4.6 Compute the surface area of the unit sphere in P. 
4.7 Let Ml and M2 be differentiable manifolds, and let 0' be a density on M2 

which is nowhere zero. For each density P on MIX M2, each product chart (Ul X U2, 
al X a2), and each X2 E U2, define the function Plal(', X2) by 

Plal(Vl, X2)Ua (a2(X2)) = PaIXa2(Vl, a2(x2)) 
for all VI E al(UI). 

a) Show that PIal(VI, X2) is independent of the chart (U2, a2). 
b) Show that for each fixed X2 E M2 the functions Plal(', X2) define a density on MI. 

We shall call this density PI(X2). 
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c) Show that if P is a smooth density of compact support on M1 X 1112 and (j is 
smooth, then P1(X2) is a smooth density of compact support 011 1111. 

d) Let P be as in (c). Define the function Fp on l!f2 by 

F p(X2) = r PI (X2). 
1Ml 

Sketch how you would prove the fact that Fp is a smooth function of compact 
support on !If 2 and that 

5. PULLBACK AND LIE DERIVATIVES OF DENSITIES 

Let cp: M 1 ~ M 2 be a diffeomorphism, and let p be a density on M 2. Define 
the density cp*p on lJf 1 by 

(5.1) 

for ~i E Tx(M 1) and cp* = Cp*x. To show that cp*p is actually a density, we must 
check that (4.2) holds for any linear transformation A of T x(M 1). But 

cp*p(Ah, ... , A~n) = P(cp*A~l' ... , cp*A~n) 

which is the desired identity. 

= p(cp*Acp*lcp*~b ... , cp*Acp*lCP*~n) 

= Idet cp*Acp*ll p(cp*h, ... , CP*~n) 
= Idet Alcp*p(h, ... , ~n), 

Let (U, a) and (W, (3) be compatible charts on M 1 and M 2 with coordinates 
u 1, ... , un and WI, ... , wn, respectively. Then for all points of U we have, 
by (4.3), 

(cp*p) (a(.)) = p (cp* ~, ... 'CP*~) = Idet (aw~)1 p (~, ... ,~) 
a. au1 aun au' awl awn 

= Idet (~::)I p~({3 0 cp(.)). 

In other words, we have 

(cp*p)a. = Idet J~o'Poa.-llp({3 0 cp 0 a-1(.)). 

The density cp*p is called the pullback of p by cp*. It is clear that 

CP*(P1 + P2) = CP*(P1) + CP*(P2) 
and that 

cp*(fp) = cp*(f)cp*(p) 
for any function f. 

It follows directly from the definition that 

supp cp*p = cp-1[SUpp pl. 

(5.2) 



10.5 PULLBACK AND LIE DERIVATIVES OF DENSITIES 417 

Proposition 5.1. Let cP: M 1 ---7 M 2 be a diffeomorphism, and let P be a 
locally absolutely integrable density ,vith compact support on M 2. Then 

(5.3) 

Proof. It suffices to prove (5.3) for the case 

supp P C cp( U) 

for some chart (U, a) of M 1 with cp(U) C W, where (W, (3) is a chart of M 2. 

In fact, the set of all such cp( U) is an open covering of J],f 2, and we can therefore 
choose a partition of unity {gj} subordinate to it. If we write P = L gjP, then 
the sum is finite and each gjp has the observed property. Since both sides of (5.3) 
are linear, we conclude that it suffices to prove (5.3) for each term. 

Now if supp pC cp(U), then 

fp = r P{1 = r P{1 
J{1(W) J{1otp(U) 

and 

thus establishing (5.3). D 

Now let CPt be a one-parameter group on Al with infinitesimal generator X. 
Let P be a density on M, let (U, a) be a chart, and let W be an open subset of U 
such that CPt(W) C U for all It I < e. Then 

(/(P)a(v) = Pa(<I>a(v, t) Idet (aa<l>a) I for v E a(W), 
v (V,t) 

where <l>a(v, t) = a 0 CPt 0 a-1(v) and (a<l>a/av)(V,t) is the Jacobian of v ~ <l>a(v, t). 
We would like to compute the derivative of this expression with respect to t at 
t = O. Now <l>a(v, 0) = v, and so 

det (a<l>a) = 1. 
av (V,O) • 

Consequ~ntly, we can conclude that 

det (a<l>a) > 0 
av (V,t) 

for t close to zero. We can therefore omit the absolute-value sign and write 

d(cpiP)al = dpa(<I>a) I +Pa(V)i£(deta<l>a)/ . 
dt t=o dt t=o dt av t=o 
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We simply evaluate the first derivative on the right by the chain rule, and get 

dpa (a:a) = dPa(Xa(V). 

In terms of coordinates xl, ... , xn, we can write 

if Xa = -< X~, ... , X~ >-. 
To evaluate the second term on the right, we need to make a preliminary 

observation. Let ACt) = (aij(t) be a differentiable matrix-valued function of t 
with A(O) = id = (of). Then 

d(de~~(t) = lim~ (det A(t) - 1). 

Now aii(O) = 1 and aij(O) = 0 (i ~ j). To say that A is differentiable means 
that each of the functions aij(t) is differentiable. We can therefore find a constant 
K such that lai/t)1 :::;; Kltl (i ~ j) and laii(t) - 11 :::;; Kltl. In the expansion of 
det A(t), the only term which will not vanish at least as t2 is the diagonal product 
all(t)··· ann(t). In fact, any other term in L ± ali1(t)··· aniJt) involves at 
least two off-diagonal terms and thus vanishes at least as t2• Thus 

~ (det A(t) = ~~~ (all(t)··· ann(t) - 1) 

= ail(O) + ... + a~n(O) 
= tr A'(O). 

If we take A = a'P,,/ av, we conclude that 

!i (det a'Pa) = tr aXa = L: ax~ . 
dt av av ax' 

Thus 

We repeat: 

Proposition 5.2. Let <Pt be a one-parameter group of diffeomorphisms of M 
with infinitesimal generator X, and let P be a differentiable density on M. 
Then 

* Dxp = lim <PtP - P 
t=o t 

exists and is given locally by 

(DxP)a = L: a(7~~) x, 

if X = -<X~, ... , X:>- on the chart (U, a). 
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The density Dxp is sometimes called the divergence of <X, p> and is 
denoted by div <X, p>. Thus div <X, p> = Dxp is the density given by 

(div <X, P»a = 1: aa . (X~Pa) 
x' 

N ow let p be a differentiable density, 
and let A be a compact contented set. 
Then 

Thus 

1 p = ( e<pt(A)p 
<pt(Al 1M 

= 1M <p:(e<p,cAlP) 

= I (<pie<pM»)(<ptp) 

= leA<Pi(p) 

= L <p:p. 

~ (i,cA/ - i p) = i ~ (<pip - p). 

on (U, ex). 

Fig. 10.4 

Using a partition of unity, we can easily see that the limit under the integral 
sign is uniform, and we thus have the formula 

ddt(l p)1 = 1 Dxp = [ div <X,p>. 
<pt(Al t=o A } A 

6. THE DIVERGENCE THEOREM 

Let <P be a flow on a differentiable manifold M with infinitesimal generator X. 
Let p be a density belonging to P, and let A be a contented subset of M. Then 
for small values of t, we would expect the difference f"'t(Al P - fA P to depend 
only on what is happening near the boundary of A (Fig. lOA). In the limit, 
we would expect the derivative of f<P,cAl p at t = 0 (which is given by 
fA div <X, p» to be given by some integral over aA. In order to formulate 
such a result, we must first single out a class of sets whose boundaries are suffi­
ciently nice to allow us to integrate over them. We therefore make the following 
definition: 

Definition. Let M be a differentiable manifold, and let D be a subset of M. 
We say that D is a domain with regular boundary if for every x E M there is a 
chart (U, ex) about x, with coordinates x!, ... ,x:, such that one of the 
following three possibilities holds: 
i) Un D = 50; 
ii) U c D; 
iii) cx(U n D) = exCU) n {v = <Vi, ... I vn > E IRn : Vn ~ O}. 
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Note that if x G!: TI, we can always find a (U, a) about x such that (i) holds. 
If x E int D, we can always find a chart (U, a) about x such that (ii) holds. 
This imposes no restrictions on D. The crucial condition is imposed when 
x E aD. Then we cannot find charts about x satisfying (i) or (ii). In this case, 
(iii) implies that a(U n aD) is an open subset of IRn-1 (Fig. 10.5). In fact, 
a(U n aD) = {v E a(U) : vn = O} = a(U) n IRn-l, where we regard IRn- 1 as 
the subspace of IRn consisting of those vectors with last component zero. 

a(UnaD) 

Fig. 10.5 

Let a be an atlas of M such that each chart of a satisfies either (i), (ii), or 
(iii). For each (U, a) E a consider the map a r aD: U n aD ~ IR n- 1 C IRn. 
[Of course, the maps a r aD will have a nonempty domain uf definition only for 
charts of type (iii).] We claim that {(U n aD, a I aD)} is an atlas on aD. In 
fact, let (U, a) and (W, (3) be two charts in a such that C n lV n aD ~ [25. 
Let Xl, ... ,xn be the coordinates of (U, a), and let yl, ... ,yn be those of 
(W, (3). The map f3 0 a-I is given by 

On a(U n W n aD), we have xn = 0 and yn = O. In particular, 

yn(x l , ... , xn- l , 0) == 0, 

and the functions yl(xl, ... , xn-l, 0), ... , 
yn-l (xl, ... , xn-l, 0) are differentiable. This ]) 
shows that (f3 I aD) 0 (a r aD)-1 is differen­
tiable on a(U n aD). We thus get a manifold x 
structure on aD. 

I t is easy to see that this manifold struc­
ture is independent of the particular atlas of !If 
that was chosen. We shall denote by L the map 
of aD ~ M which sends each x E aD, regarded Fig. 10.6 
as an element of M, into itself. It is clear that 
L is a differentiable map. (In fact, (U n aD, a r aD) and (U, a) are compatible 
charts in terms of which a 0 ,0 (a I aD)-1 is just the map of IRn-1 ~ IRn.) 

Let x be a point of aD regarded as a point of M, and let t be an element 
of Tx(M). We say that t points into D if for every curve C with C'(O) = t. 
we have C(t) E D for sufficiently small positive t (Fig. 10.6). In 
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terms of a chart (U, a) of type (iii), let ~'" = -< e, ... , ~n >. Then it is clear 
that ~ points into D if and only if C > o. Similarly, a tangent vector ~ points 
out of D (obvious definition) if and only if ~n < o. If ~n = 0, then ~ is tangent 
to the boundary-it lies in L*Tx(aD). 

Let P be a density on M and X a vector field on M. Define the density Px 
on aD by 

for ~i E Tx(aD). (6.1) 

It is easy to check that (6.1) defines a density. (This is left as an exercise for 
the reader.) If (U, a) is a chart of type (iii) about x and X", = -< Xl, ... , xn> , 
then applying (4.3) to the chart (U n aD, a f aD) and the density Px, we see 
that 

(Px) ~aD=p(~, ... ,_a_,x). 
'" axl axn - l 

Let A be the linear transformation of Tx(lIf) given by 

a a 
A axl = axl ' 

a a A--=--, axn - l axn - l 

The matrix of A is 
1 0 

o 1 0 

o 
and therefore Idet AI = Ixnl. Thus we have 

a 
A-=X. 

axn 

(Px)", taD = IXnlp" at all points of a(U n aD). (6.2) 

We can now state our results. 

TheorelU 6.1 (The divergence theorem). t Let D be a domain with regular 
boundary, let PEP, and let X be a smooth vector field on M. Define the 
function EX on aD by 

Then 

EX(X) = { ~ 
-1 

if X(x) points out of D, 
if X(x) is tangent to aD, 
if X(x) points into D. 

{ div -<X, p> = { EXPX. 
lD laD 

Remark. In terms of a chart of type (iii), the function EX is given by 

EX = -sgnXn. 

(6.3) 

(6.4) 

t This formulation and proof of the divergence theorem was suggested to us by 
Richard Rasala. 



422 THE INTEGRAL CALCULUS ON MANIFOLDS 
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Fig. 10.7 
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10.6 

Fig. 10.8 

Fig. 10.10 

Proof. Let a be an atlas of M each of whose charts is one of the three types. 
Let {Yi} be a partition of unity subordinate to a. Write P = L YiP. This is a 
finite sum. Since both sides of (6.3) are linear functions of P it suffices to verify 
(6.3) for each of the summands YiP. Changing our notation (replacing YiP by p), 
we reduce the problem to proving (6.3) under the additional assumption 
supp pC U, where (U, a) is a chart of type (i), (ii), or (iii). There are therefore 
three cases to consider. 

CASE I. supp P C U and Un 15 = ¢. (See Fig. 10.7.) Then both sides of 
(6.3) vanish, and so (6.3) is correct. 

CASE II. supp pC U with U C int D. (See Fig. 10.8.) Then the right-hand 
side of (6.3) vanishes. We must show that the left-hand side does also. But 

r div -<X, p'r = r div -<X, p'r = 1 2: a(Xi~a) = 2: 1 a (Xipa) 
} D } U a(U) ax' a(U) axi 

Now each of the functions XiPa has its support lying inside a(U). Choose some 
large R so that a(U) C O!R' We can then replace fa(U) by fO!!'R' We extend 
its domain of definition to all of ~n by setting it equal to zero outside a(U). 
(See Fig. 10.9.) Writing the integral as an iterated integral and integrating with 
respect to Xi first, we see that 

1 aXiPa 
a(U) axi 

= f Xipa(" ., R, ... ) - Xipa("" -R, . .. ) dx l dx2 dX i - l dxi . .. dxn = O. 

This last integral vanishes, because the function XiPa vanishes outside a(U). 
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CASE III. supp p is contained in a chart of type (iii). (See Fig. 10.10.) Then 

( div -<X, p> = ( div -<X, p> = 1: 1 aXipa. J D J Dnu a(DnU) ax' 
Now 

a(U n D) = a(U) n {v: vn ~ O}. 

We can therefore replace the domain 
of integration by the rectangle 
D~~R::~.~R,o>. (See Fig. 10.11.) 
For 1 ~ i < n all the integrals in <:- R, _. '_''':''---:''---1_ 

the sum vanish as before. For 
i = n we obtain 

JD div -<X, p> = - ~n-l XnPa. Fig. 10.11 

... ,R> 

'-'---IV"~ = 0 

If we compare this with (6.2) and (6.4), we see that this is exactly the assertion of 
(6.3). 0 

If the manifold M is given a Riemann metric, then we can give an alternative 
version of the divergence theorem. Let dV be the volume density of the Riemann 
metric, so that 

dV(h, ... , ~n) = Idet ((~i' ~j»)11/2, ~i E Tx(M), 

is the volume of the parallelepiped spanned by the ~i in the tangent space (with 
respect to the Euclidean metric given by the scalar product on the tangent space). 

Now the map L is an immersion, and therefore we get an induced Riemann 
metric on aD. Let dS be the corresponding volume density on aD. Thus, if 
{Mi=l, ... ,n-l are n - 1 vectors in Tx(aD), dS(~b ... , ~n-l) is the (n - 1)­
dimensional volume of the parallelepiped spanned by L*~l"'" L*~n-l in 
L*Tx(aD) c Tx(M). For any x E aD let n E Tx(M) be the vector of unit length 
which is orthogonal to L*Tx(aD) and which points out of D (Fig. 10.12). We 

Fig. 10.12 Fig. 10.13 
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clearly have 
dS(h, ... , ~n-I) = dV(L*h, ... , L*~n-b n). 

For any vector X(x) E TxCM) (Fig. 10.13) the volume of the parallelepiped 
spanned by h, ... , ~n-I, X(x) is I (X(x), n) IdS(~1i ... '~n-I)' [In fact, write 

X(x) = (X(x), n)n + Ill, 

where III E L*T(aD).] If we compare this with (6.1), we see that 

dV x = I (X, n)ldS. 
Furthermore, it is clear that 

e(x) = sgn (X(x), n). 

Let p be any density on M. Then we can write 

p = jdV, 

where j is a function. Furthermore, we clearly have px = j dV x and 

div -<X, p> = div -<X, j dV>. 

We can then rewrite (6.3) as 

r div -<X,jdV> = r j. (X, n) dS. lD laD 

7. MORE COMPLICATED DOMAINS 

(6.5) 

(6.6) 

For many purposes, Theorem 6.1 is not quite sufficiently broad. The trouble is 
that we would like to apply (6.3) to domains whose boundaries are not com­
pletely smooth. For instance, we would like to apply it to a rectangle in [Rn. 
N ow the boundary of a rectangle is regular at all points except those lying on an 
edge (i.e., the intersection of two faces). Since the edges form a set "of dimension 
n - 2", we would expect that their presence does not invalidate (6.3). This is 
in fact the case. 

Let M be a differentiable manifold, and let D be a subset of M. We say 
that D is a domain with almost regular boundary if to every x E M there is a 
chart (U, a) about x, with coordinates xl, ... ,x~, such that one of the following 
four possibilities holds: 

i) Un D = 0; 
ii) UeD; 

iii) a(U n D) = a(U) n {v = -<VI, ... , vn> E [Rn : Vn :?: O}; 

iv) a(U n D) = a(U) n {v = -<VI, ... , Vn> E [Rn: Vk :?: 0, ... ,Vn :?: O}. 

The novel point is that we are now allowing for possibility (iv) where k < n. 
This, of course, is a new possibility only if n > 1. Let us assume n > 1 and see 
what (iv) allows. We can write a(U n aD) as the union of certain open subsets 
lying in (n - I)-dimensional subspaces of [Rn-I, together with a union of 
portions lying in subspaces of dimension n - 2. 
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B 

Fig. 10.14 H~ 

In fact, for k ::; p ::; n let 

H k - { • k 0 P - 0 p+1 0 n O} p- v.v > , ... ,v - ,v > , ... ,v > . 
Thus H~ is an open subset of the (n - I)-dimensional subspace given by 
vP = o. (See Fig. 10.14.) We can write 

ex(U n aD) c ex(U) n {(Ht u Ht+1 U· .. u H!) uS}, 

where'S is the union of the subspaces (of dimension n - 2) where at least two 
of the vP vanish. 

Fig. 10.15 

Observe that if x E Un aD is such that ex(x) E H~ for some p, then there is a 
chart about x of type (iii). In fact, simply renumber the coordinates so that vP 

becomes vn, that is, map IFiin.!4 IFiin by sending -<vI, ... ,vn >- -+ -< wI, ... , wn>-, 
where 

Wi = Vi 

Wi = Vi +1 

wn = vp • 

for i < p, 

for p::; i < n, 

Then in a sufficiently small neighborhood U 1 of x the chart (U 1, '" 0 ex) is of 
type (iii). (See Fig. 10.15.) 
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We next observe the set of x E aD having a neighborhood of type (iii) forms 
a differentiable manifold. The argument is just as before. The only difference 
is that this time these points do not exhaust all of aD. We shall denote this 
manifold by lib. Thus lib is a manifold which, as a set, is not aD but only the 
"regular" points of aD, that is, those having charts of type (iii). 

Theorem 7.1 (The divergence theorem). Let M be an n-dimensional 
manifold, and let D C M be a domain with almost regular boundary. 
Let lib be as above, and let i be the injection of lib --7 M. Then for any 
pEP we have 

( div <.X, p> = r~ EXPX. 
JD JiJD 

(7.1) 

Proof. The proof proceeds as before. We choose a connecting atlas of charts 
of types (i) through (iv) and a partition of unity {gj} subordinate to the atlas. 
We write P = L gjp and now have four cases to consider. The first three cases 
have already been handled. 

The new case arises when p has its support in U, where (U, a) is a chart of 
type (iv). We must evaluate 

1 L: aXipa. 
a(UnD) axi 

The terms in the sum corresponding to i < k make no contribution to the 
integral, as before. Let us extend XiPa to be defined on all of ~n by setting it 
equal to zero outside a(U), just as before. Then, for k :::; i :::; n we have 

1 axipa ( axipa 
a (u n D) ----a:ii = J B ----a:ii' 

where B = {v: vk ~ 0, ... , vn ~ O}. Writing 
this as an iterated integral and integrating first 
with respect to Xi, we obtain 

where the set Ai C ~n-I is given by 
Fig. 10.16 

A { J 1 i-I i+I n,- k > 0 n > O} i= ,V, ... ,V ,v , ... ,V r:V _ , ... ,V _ • 

Note that Ai differs from HZ by a set of content zero in ~n-I (namely, where at 
least one of the vl = 0 for k = l :::; n). Thus we can replace the Ai by the H~ 
in the integral. Summing over k :::; i :::; n, we get 

which is exactly the assertion of Theorem 7.1 for case (iv). 0 
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Fig. 10.17 Fig. 10.18 

We should point out that even Theorem 7.1 does not cover all cases for which 
it is useful to have a divergence theorem. For instance, in the plane, Theorem 7.1 
does apply to the case where D is a triangle. (See Fig. 10.16.) This is because 
we can "stretch" each angle to a right angle (in fact, we can do this by a linear 
change of variables of ~2). (See Fig. 10.17.) 

However Theorem 7.1 does not apply to a quadrilateral such as the one in 
Fig. 10.18, since there is no CI-transformation that will convert an angle greater 
than 7r into one smaller than 7r (since its Jacobian at the corner must carry 
lines into lines). Thus Theorem 7.1 doesn't apply directly. However, we can 
write the quadrilateral as the union of two triangles, apply Theorem 7.1 to each 
triangle, and note that the contributions of each triangle coming from the 
common boundary cancel each other out. Thus the divergence theorem does 
apply to our quadrilateral. 

This procedure works in a quite general context. In fact, it works for all 
cases where we shall need the divergence theorem in this book, whether Theorem 
7.1 applies directly or we can reduce to it by a finite subdivision of our domain, 
followed by a limiting argument. We shall not, however, fornmlate a general 
theorem covering all such cases; it is clear in each instance how to proceed. 

EXERCISES 

In Euclidean space we shall write div X instead of div -< X, p> when p is taken to 
be the Euclidean volume density. 

7.1 Let x, y, z be rectangular coordinates on P. Let the vector field X be given by 

X = r2 (x ~ + y ~ + z~) , ax ay az 
where r2 = x2 + y2 + Z2. Show directly that 

Is (X, n) dA = L div X 

by integrating both sides. Here B is a ball centered at the origin and S is its boundary. 
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7.2 Let the vector field Y be given by 

Y = Yrnr + Y 8n 8 + Y",1l;", 

in terms of polar "coordinates" r, e,,<p on 1E3, where n r , n,.and n,<pare the unit vectors in 
the directions a/ar, a/a,e and a/a;<p respectively. Show that 

div Y = ~{a~(r2sin<p Yr)+aa(j(rY8)+aa (r sin <p y",)}. 
r sm <p r <p 

7.3 Compute the divergence of a vector field in terms of polar coodrinates in the 
plane. 

7.4 Compute the divergence of a vector field in terms of cylindrical coordinates 
in 1E3. 

7.5 Let q be the volume (area) density on the unit sphere S2. Compute div qX 

in terms of the coordinates (j, <p (polar coordinates) on the sphere. 



CHAPTER 11 

EXTERIOR CALCULUS 

Let M be a differentiable manifold and let W be a linear differential form in ilf. 
For any differentiable curve C: [a, bl ----i M \ye can consider the integral f: (C'(t), wC(t) elt. Let [c, ell ----i [a, bl be a differentiable lllap given by s ----i t(s). 
The curve B: [c, ell ----i M given by B(s) = C(t(s)) satisfies 

B'(s) = t'(s)C'(t(s)). 

Thus if t'(s) > 0 for all s, 

fed (B'(s), WB(s) ds = lab (C'(t), WC(t) dt. 

Thus a linear differential form is something we can integrate over "oriented" 
curves of ]1.1 and is independent of the parametrization. In this chapter ,ye shall 
introduce objects \yhich can be integrated over "oriented k-dimensional surfaces" 
of M and study their properties. 

1. EXTERIOH DIFFEHENTIAL FOHMS 

We defined a linear differential form to be a rule which assigns an element of 
T;(M) to each x E M. We can regard T;(M) as a 1 (Tx(M)). In view of this, 
we make the following generalization of this definition. By an exterior differ­
ential form of degree q on III we mean a rule which assigns an clement of 
aq(Tx(M)) to each x E M. If W is an exterior form of degree q and (U, a) is a 
chart, then, since a identifies each Tx(il1) with V for x E U, we obtain an 
aq (V)-valued function, W,,' on a( U) defined by 

if v = a(x) and ~1, ... , ~q E Tx(M). 

It is easy to write down the transition laws. In fact, if (W, (3) is a second 
chart, we have 

WiJ((3(x))(~J, ... , ~~) = w(X)(~l, ... , ~q) = w,,(a(x))(~;, ... , ~:D 

or, since ~iJ = JiJo,,-l(a(x))(~,,) for ~ E Tx(I1f), we see that 

w,,(v)(~;, ... , ~~) = WiJ((3 0 a-1(v)) (JiJo,,-l(vH~, ... ,JiJo,,-l(vH':x). (1.1) 

In order to write (1.1) in a less cumbersome form, we introduce the following 
notation. Let V 1 and V 2 be vector spaces, and let l: V 1 ---7 V 2 be a linear map. 

429 
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We define (iP(l) to be the linear map of (iP(Y 2) -7 (iP(V I) given by 

(iP(l)(w)(vr, . .. , vp) = w(l(vI), ... ,1(vp)) 

for all 10 E (iP(V2) and VI, ... ,Vp E VI. Note that under the identification of 
(i I (V) with V* the map (i I (l) coincides with the map 1*: V; -7 V~. Note also 
that if WI Eo (iP(V 2) and 102 E (iq(v 2), then 

(iP(l)n' l 1\ (iQ(l)U'2 = (ip+q(l)(wl 1\ W2)' (1.2) 

This follows directly from the definitions. Also, if /1 : V I -7 V 2 and 12: V 2 -7 V 3, 
then 

(1.3) 

It is clear that if 1 depends differentiably on some parameters, then so does 
(iP(l) for any p. 

We can now write (1.1) as 

(1.1') 

It is clear from (1.1') that it is consistent to require that w" be a smooth 
function. We therefore say that W is a smooth differential form if all the functions 
w" are C'" on O'.(U) for all charts (U, 0'.). As usual, it suffices to verify this for all 
charts in an atlas. We let /\ q(l'tJ) denote the space of all smooth exterior forms 
of degree q. 

Let WI E /\P(M) and W2 E /\q(M). We define the exterior (p + q)-form 
WI 1\ W2 by 

for all x E l'tJ. 

It is easy to check that WI 1\ W2 is a smooth (p + q)-form. We thus get a multi­
plication on exterior forms. To make the formalism complete, it is convenient 
to denote the space of differentiable functions on l'tJ by /\ O(]I.f) and to denote 
the product of a function f and a p-form W by fw or f 1\ w. This product is 
given by 

(f 1\ w)(x) = (fw)(x) = f(x)w(x) for all x E M. 

We have thus defined, for all 0 ~ p ~ nand 0 ~ q ~ 11, a multiplication 
sending WI E /\P(M) and W2 E /\q(M) into WI 1\ W2 E /\p+q(M) (where 
WI 1\ W2 == 0 if p + q > n = dim M). The rules for the 1\ -product on anti­
symmetric tensors carryover and thus, for instance, 

WI 1\ (W2 1\ W2) = (WI 1\ W2) 1\ W3, 

WI 1\ (W2 + W3) = WI 1\ W2 + WI 1\ W3, 

and so OIl. 

Let M I and M 2 be differentiable manifolds, and let cp: M I -7 M 2 be a 
differentiable map. For each W E /\ q (M 2) we define the form cp*w E /\q(M I) by 

cp*w(x) = (iq (cp*x)( we cp(x)) ). (1.4) 
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It is easy to check that cp*w is indeed an element of /\ q(M 1), that is, it is a 
smooth q-form. Note also that (7.5) of Chapter 9 is a special case of (l.4)-the 
case q = 1. (If we make the convention that a°(l) = id, then the case q = 0 
of (1.4) is the rule for pullback of functions.) 

It follows from (1.4) that cp* is linear, that is, 

(1.5) 
and from (1.2) that 

(1.6) 

If cp is a one-parameter group on a manifold M with infinitesimal generator 
X, then we can show that the 

* 1· CPtW - W D 
1m t = XW 

t--->O 

exists for any W E /\ q(M). The proof of the existence of this limit is straight­
forward and will be omitted. We shall derive a useful formula allowing a simple 
calculation of Dxw in Section 3. 

Let us now see how to compute with the /\ q(M) in terms of local coordinates. 
Let (U, a) be a chart of M with coordinates xI, .. . , xn. Then dxi E /\1(U) 
(where by /\ q(U) we mean the set of differentiable q-forms defined on U). 
For any it, ... , iq the form dX il 1\ ... 1\ dxiq belongs to /\q(U), and for every 
x E U the forms 

{(dXil 1\ ... 1\ dxiq)(X)}i1<"'<iq 

form a basis for aq(Tx(M). From this it follows that every exterior form w 

of degree q which is defined on U can be written as 

w= (1.7) 

where the a's are functions; that is, 

w(x) = L: ai1 ..... iq(X)(dx il 1\ ... 1\ dxiq)(x) 
i1<···<i. 

for all x E U. It is easy to see that wE /\q(U) if and only if all the func­
tions ai1 ..... iq are COO-functions on U. 

If (W, (3) is a second chart with coordinates y1, ... , yn and 

w = '" b· . dyh 1\ . . . 1\ dyiq 
£.... Jlo···.Jq , (1.8) 

then it is easy to compute the transition law relating the b's to the a's on U n W. 
In fact, on Un W we have 

(1.9) 

where yi = yi(xI, ... ,xn). Then all we have to do is to substitute (1.9) into 
(1.8) and collect the coefficients of dXil 1\ ... 1\ dxio. For instance, if q = 2, 
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then we have 

w = L bhh dyh 1\ dyj2 
h<h 

= " b . . (a yh dx l + ... + ayh dxn ) 
.k..... 1112 ax! axn 

1, <12 

11.1 

If we collect the coefficients of dXi' 1\ dxi2 (remember the 1\ -multiplication is 
anticommutative), we get 

w = " [" b·· (ay~ ayh _ ayh ayh)] dXi, 1\ dXi2 . 
. k..... .k..... 1112 axil aXi2 a;J;i, a;Ci2 . 

1-1<1,11 h<J2 

Thus 

(1.10) 

Although (1.10) looks a little formidable, the point is that all one has to remem­
ber is (1.9) and the law for I\-multiplication. For general q the same argument 
gives 

I ay:' ... 
I ax" 

a . . - " b . . det l . -z,l.···.'l.q - . L.-i . JI,···.J q : 

11 < <1q a h y 
aXiq 

a/qJ axil 
. . 

ayjq 

aXiq 

(1.1 I) 

The formula for pullback takes exactly the same form. Let <p: lJJ! ---7 )1,f c 

be a differentiable map, and suppose that (U, a) and (W, (3) are compatibl(· 
charts, where xl, ... , xm are the coordinates of (U, a) and y\ ... , yn are thos(' 
of (W, (3). Then we get that yi 0 <p are functions on U and can thus be written as 

yj 0 <p = yj(x\ ... , xm). 

Since <p* dyj = d(yj 0 <p), we have 

* j ayj . i 
<p (dy) = L -a . dx . x, 

If 

then, by (1.5) and (1.6), 

<p*(w) = L (bh ..... jq 0 <p)(<p* dyh) 1\ ... 1\ (<p* dyjq). 
h<···<jq 

(1.12) 

(1.1:: ) 

The expression for (1.13) in terms of the dx's can be computed by substituting 
(1.12) into (1.13) and collecting coefficients. The answer, of course, will look 
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just like it did before. If 

",*(w) = " a· . dX i, 1\ ... 1\ dx iq , ,... .l-I 'It ... ,'q 
il<···<i. 

then the a's are given by 

. .. aY~·1 aX'l 
. . 

ayi. 
aXia 

433 

(1.14) 

Again, we emphasize that there is no need to remember a complicated 
looking formula like (1.14); Eqs. (1.5), (1.6), and (1.12) (and of course the rules 
for 1\ -multiplication) are sufficient. In many cases, it is much more convenient 
to do the substitutions directly than to use (1.14). 

2. ORIENTED MANIFOLDS AND 
THE INTEGRATION OF EXTERIOR DIFFERENTIAL FORMS 

Let lvI be an n-dimensional manifold. Let (U, a) and (W, (3) be two charts on lvI 
with coordinates xl, ... , xn and yl, ... ,yn. Let w be an exterior differential 
form of degree n. Then we can write 

on U 
and 

w = b dyl 1\ ... 1\ dyn on W, 

where the functions a and b are related on U n W by (1.11), which, in this case 
(q = n), becomes 

or 

or, finally, 

aa(v) = bfj ({3 0 a-I (v) ) det J fjoa-l(v) for v E a(U n W). 

If P is a density on lvI, then the transition laws for Pa are given by 

Pa(v) = Pfj({3 0 a-1(v))ldet Jfjoa-l(v)l. 

(2.1) 

(2.2) 

Note that (2.2) and (2.1) look almost the same; the difference is the absolute­
value sign that occurs in (2.2) but not in (2.1). In particular, if (U, a) and 
(W, (3) were such that det J fjoa-l > 0, then (2.2) and (2.1) would agree for this 
pair of charts. 
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This leads us to the following definition: An atlas a of M is said to be 
oriented if for any pair of charts (U, a) and (W, (3) of a we have 

detJj3o",-l(a(x)) > 0 for all x E U n W. 

There is no guarantee that there exists an oriented atlas on a given manifold M. 
In fact, it is not difficult to show that there does not exist an oriented atlas on 
certain manifolds. (An example of a manifold possessing no oriented atlas is 
the Mobius strip.) 

We say that a manifold M is orientable if it has an oriented atlas. 
Let M be an orientable manifold, and let a l and a2 be two oriented atlases. 

We say that a l and a2 have the same orientation, and write al 0' a2 , if a l U a2 

is again an oriented atlas. To say that a l 0' a2 meabs that for any (U, a) E a l 

and any (W, (3) E a2 we have 

det Jj3o",-l(V) > 0 on a(U n W). 

It is clear that 0' is an equivalence relation. An equivalence class of oriented 
atlases is called an orientation of M. An orientable manifold, together with a 
choice of orientation, will be called an oriented manifold. We shall denote an 
oriented manifold by M. That is, M is a manifold M together with a choice 
of orientation. Thus an oriented one-dimensional manifold has a preferred 
direction at each point (Fig. 11.1); an oriented two-dimensional manifold has a 
notion of clockwise versus counterclockwise direction (Fig. 11.2); and at any 
point of an oriented three-dimensional manifold we can distinguish between 
right- and left-handedness. 

Fig. 11.1 Fig. 11.2 

In general, let M be an oriented manifold, and let (U, a) be a chart of M 
with coordinates xl, ... ,xn. We say that (U, a) is a positive chart if Jj3o",-l > 0 
for any chart (W, (3) belongi~g to any oriented atlas defining (i.e., belonging to) 
the orientation. (It suffices to check this, of course, for all (W, (3) belonging to 
one fixed atlas defining the orientation.) Note that if U is connected, then if 
(U, a) is not positive, then the chart (U, a l ), where 

is a positive chart. 
We shall say that (U, a) is a negative chart if det J j3o",-l < 0 for all (W, (3) 

belonging to an atlas defining the orientation. (Thus, if U is connected, thell 
(U, a) must be either positive or negative.) 
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We now return to our initial observation comparing (2.1) with (2.2). 

Proposition 2.1. Let l\1 be an oriented n-dimensional manifold. We can 
identify exterior forms of degree n with densities by sending the form w 

into the density pW, where for any positive chart (U, a) with coordinates 
Xl, ... , x n , the function p: is determined by 

w = p:(a(.)) dx l 1\ ... 1\ dxn 

Another way of writing (2.3) is 

on U. 

w(a/ax l , .•. , a/axn) = p(a/ax l , ..• , a/axn). 

(2.3) 

(2.3') 

In other words, if w = a clx l 1\ ... 1\ clx" on U, then p~(v) = aa. That pW 
is really a density follows from the fact that (2.2) reduces to (2.1) for all pairs 
of charts belonging to a positive atlas. 

It is clear that this identification is additive, 

(2.4) 

and that for any fUllction, 
(2.5) 

Furthermore, if w(x) = 0, then pW = 0 at x. By the support of a differential 
form we mean, as usual, the closure of the set of x for which w(x) ~ O. We say 
that an n-form w is locally absolutely integrable if the density pW is locally 
absolutely integrable. Note that to say that w is locally absolutely integrable 
means that for any chart (U, a), with coordinates Xl, ... ,xn of some atlas ex, if 

w = a dx l 1\ ... 1\ clxn on U, 

then the function aa = a 0 a- l is an absolutely integrable function on a(U). 
Let r(M) denote the space of absolutely integrable n-forms of compact support. 
It is clear that r(M) is a vector space and that fw E r(M) if f is a (bounded) 
contented function and wE r(M). As a consequence of Proposition 2.1 and 
Theorem 3.1 of Chapter 10, we can state: 

Theorem 2.1. Let M be an oriented manifold. There exists a unique linear 
function f on r(M) satisfying the following condition: If supp w C U, 
where (U, a) is a positive chart with coordinates xl, ... , x n , and if w = 
a dx l 1\ ... 1\ clxn, then 

Jw = 1 aa· 
a(U) 

(2.6) 

Observe that we can write 

for all wE r(M). (2.7) 

The recipe for computing f w is now very simple. We break w up into small 
pieces such that each piece lies in some U. (We can ignore sets of content zero 
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in the process.) If supp w C U, and if (U, a) is a positive chart, we express w as 

w = a dx 1 /\ ••• /\ dxn. 

And if a is given as a = aa(xI, ... , x n), we integrate the function aa over IRn. 
The computations are automatic. Thus one point that has to be checked is that 
the chart (U, a) is positive. If it is negative, then f w is given by - faa. 

Let M1 be an oriented manifold of dimension q, let cp: M1 ---t M2 be a 
differentiable map, and let w E Aq(M2 ). Then for any contented compact set 
A C M1 the form eACP*(w) belongs to r(M 1), so we can consider its integral. 
This integral is sometimes denoted by fcp(A) w; that is, we make the definition 

(2.8) 

If we regard cp(A) as an "oriented q-dimensional surface" in M 2, then we see 
that the elements of A q(M 2) are objects that we can integrate over such 
"surfaces". (Of course, if q = 1, we say "curves".) 

C(c) 

C(a) 

a b Fig. 11.3 C(b) Fig. 11.4 

Let us illustrate by some examples. Suppose that M 2 = IR n , and let A C IR 1 

be the interval a :::; t :::; b. Let xl, ... , xn be the coordinates of IR n, and let 
w = a1dx 1 + ... + andxn. We regard 1R1 as an oriented manifold on which 
the identity chart is positive (and its coordinate is t). If C: IR 1 ---t IRn is a differ­
entiable curve (Fig. 11.3), then 

r w = je[a,bP*(W) 
} C([a,b]) 

lb (1 ) 1 dx n dxn 
= a -+ ... +a - dt 

a dt dt 

b 

= 1 (C'(t), w) dt. (2.9) 

From this last expression we see that C does not have to be differentiable every­
where in order for fC([a,b]) w to make sense. In fact, if C is differentiable 
everywhere on IR except at a finite number of points, and if C'(t) is always 
bounded (when regarded as an element of IRn), then the function (C'(·), w) is 
defined everywhere except for a set of content zero and is bounded. Thus 
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C*(w) is a contented density and (2.9) still makes sense. Now the curve can 
have corners. (See Fig. 11.4.) 

It should be observed that if w = df (and if C is continuous), then 
b r df = r d(f 0 C) = r (f 0 C)' 

JC([a.b]) JC([a.b]) Ja 

= fCC(b») - fCC(a»). (2.10) 

In this case the integral depends not on the particular curve C but on the end­
points. In general, Ic w depends on the curve C. We will obtain conditions for 
it to be independent of C in Section 5. 

In the next example let M 2 = 1R3 and M I = U C 1R2 where (u, v) are 
Euclidean coordinates on 1R2 and x, y, z are Euclidean coordinates on 1R3. Let 

w = P dx A dy + Q dx A dz + R dy A dz 

be an element of /\ 2(1R3). If <p: U ~ 1R3 is given by the fUIlctions x(u, v), 
y(u, v), and z(u, v), then for A C U, 

r w = feA<P*w = feA<P*cP dx A dy + Q dx A dz + R dy Adz) 
JI"(A) 

= r [(P 0 ) (ax ay _ ay ax) + (Q 0 ) (ax az _ az ax) J A <P au av au av <P au av au av 

+ (R 0 ) (ay az _ az aY)J. 
<P au av au av 

'We conclude this section with another look at the volume density of Riemann 
metrics, this time for an oriented manifold. If M is an oriented manifold with a 
Riemann metric, then the volume density u corresponds to an n-form n. By 
our rule for this correspondence, if (U, a) is a positive chart with coordinates 
Xl, •.. ,xn , then 

n = a ax l A ... A dx n , 

where, by (4.1) of Chapter 10, a(x) = Idet (%)11/2 is the volume in Tx(JJl) of 
the parallelepiped spanned by 

a a 
ax l (x), ... 'axn (x). 

Let el(x), ... ,en(x) be an orthonormal basis of Tx(M) (relative to the scalar 
product given by the Riemann metric). Then 

Idet (gijW/ 2 = Idet [C~i' ej ) JI = Idet AI, 

where A = (a/ax i , ej) is the matrix of the linear transformation carrying 
ej ~ a/axj. If wl(x), ... ,wn(x) is the dual basis of the e's, then 

wl(x) A ... 1\ wn(x) = det A axl(x) A ... A axn(x). 
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Now wl(x), ... , wn(x) can be any orthonormal basis of T:(M). [T:(M) has a 
scalar product, since it is the dual space of the scalar product space Tx(M).] 
We thus get the following result: If wI, ... , w n are linear differential forms such 
that for each x EM, wl(x), ... , wn(x) is an orthonormal basis of T:(M), then 

n = ±w l 1\ ... 1\ w n . 

We can write 
(2.11) 

if we know that WI 1\ ... 1\ w n is a positive multiple of dx l 1\ ... 1\ dx". 
Can we always find such forms wI, ... , wn on U? The answer is "yes": we can 
do it by applying the orthonormalization procedure to dxt, ... ,dxn. That is, 
we set 

I d:c l where Ildxlll(x) = Ildxl (x) II > 0 
w = Ildxlll ' is a Coo -function on U, 

2 d;r2 - (dx 2, WI) WI 
W - , 

- IIdx 2 - (dX2,WI )wlll 

The matrix which relates the dx's to the w's is composed of Coo-functions, so that. 
the wi E /\ I (U). Furthermore, it is a triangular matrix with positive entries 
on the diagonal, so its determinant is positive. We have thus constructed tIl(' 
desired forms WI, ..• ,wn , so (2.11) holds. For instance, it follows from 
Eq. (9.10), Chapter 9, that dO, sin 0 dcp form an orthonormal basis for Tx(8 2 ) at. 
all x E 8 2 (except the north and south poles). If we choose the orientation on 8~ 
so that 0, cp form a positive chart, then the volume form is given by 

n = sin 0 dO 1\ dcp. 

3. THE OPERATOR d 

With every function f we have associated a linear differential form df. We can 
thus regard d as a map from /\ o(M) to /\ I (l\f). As such, it is linear and satisfies 

d(fd2) = f2 dfl + fl diz. 

We now seek to define a cl: /\k(M) ~ /\k+I(.ilf) for k > 0 as well. We shall 
require that d be linear and satisfy some identity with regard to multiplication, 
generalizing the above formula for cl(fd2)' The condition we will impose is that 

cl(WI 1\ W2) = clWI 1\ W2 + (-l)PwI 1\ clW2 

if WI is a form of degree p. The factor (-l)P accounts for the anticommutativity 
of 1\. The reader should check that d is consistent with this law, at least to the 
extent that d(wl 1\ W2) = (-l)pq cl(W2 1\ WI) if WI is of degree p and W2 is of 
degree q. 

Weare going to impose one further condition on cl which will uniquely 
determine it. This condition (which lies at the heart of the matter) requires 
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Fig. 11.5 

some introduction. Let f be a differentiable function, and let C: I ~ M be a 
differentiable curve. For any points a, bEl, the fundamental theorem of 
the calculus implies that 

f(C(b)) - f(C(a)) = lb d(fd~ C) dt = lb C* df. 

We can regard b and a (with ± signs attached) as the "oriented boundary" 
of the interval [a, b]. Let us make the convention that "integrating" an element 
of /\ O(p) is just evaluating the function at the point p. As such, the equation 
above says that the integral of the "pullback" of f over the "boundary", that is, 
feb) - f(a), equals the integral of the "pullback" of df over [a, b]. In some sense, 
we would like to be able to say that if w is a form of degree k, then the integral 
of the "pullback" of w over the k-dimensional boundary" of a (k + I)-dimen­
sional region is equal to the integral of the pullback of dw over the (k + 1)­
dimensional region. Without trying to make this requirement precise, let us see 
what it says for the case where k = 1 and the region is a triangle in the plane. 
Let cP be a smooth map of some neighborhood of the triangle ~ C 1R2 into M, 
and let the vertices of ~ be mapped by cp into x, y, and z (see Fig. 11.5). The 
boundary of ~ consists of three curves (segments) Cb C2 , and Ca (with the 
proper orientations). Let w be a linear differential form on M. We would then 
expect that 

cp dw = ClCP W + C2CP w + CaCP w. J * J** J** J** 

If w = df, then the three integrals on the right become (by the fundamental 
theorem of the calculus) fey) - f(x) + fez) - fey) + f(x) - fez) = O. Thus 
f cp* d(df) = O. Since the triangle was arbitrary, we expect that 

d(df) = O. 
We now assert: 

Theorelll 3.1. There exists a unique linear map d: /\k(M) ~ /\k+l(M) 
such that on /\° it coincides with the old d and such that 

d(Wl 1\ W2) = dWl 1\ W2 + (-I)Pwl 1\ dW2 

and 
d(df) = 0 if f E /\ O(M). 

(3.1) 

(3.2) 
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Proof. We first establish the uniqueness of d. To do this we observe that (3.1) 
implies that d is local, in the sense that if w = w' on some open set U, thell 
dw = dw' on U. In fact, let W be an open set with We U, and let ep be a Coo_ 
function such that ep(x) == 1 for x E Wand supp ep C U. Then epw = epw' every­
where on ]1.[, and thus dlepw) = d(epw'). But, by (3.1), d(epw) = ep dw + dep /\ 
w = dw on W, since ep == 1 and dep = 0 there. Thus elw = elw' on W. Since W 
can be arbitrary, we conclude that dw = dw' on (T. 

Let (U, a) be a chart with coordinates Xl, ••• ,xn. Every wE I\k(M) 
can be written as 

w= on U. 

Now [by induction on k, using (3.1) and (3.2)] d(elx i1 /\ ... /\ dX ik) = O. 
Thus (3.1) implies that 

on U. (3.3) 

Equation (3.3) gives a local formula for el. It also shows that d is unique. In 
fact, we have shown that there is at most one operator d on any open subset 
o C 111 mapping 1\ k(O) ~ 1\k+1(0) and satisfying the hypotheses of the 
theorem (for 0). On the set 0 n U it must be given by (3.3). 

We now claim that in order to establish the existence of el, it suffices to show 
that the d given by (3.3) [in any chart (U, a)] satisfies the requirement of the 
theorem on I\klU). In fact, suppose we have shown this to be so. Let a be 
an atlas of 111, and for each chart (U, a) E a define the operator da: I\k(U) ~ 
1\k+1(U) by (3.3). We would like to set clw = claw on U. For this to be con­
sistent, we must show that claw = dpw on U n W if (W, (3) is some other chart. 
But both da and clp satisfy the hypotheses of the theorem on Un W, and they 
must therefore coincide there. 

Thus to prove the theorem, it suffices to check that the operator cl, defined 
by (3.3), fulfills our requirements as a map of I\k(U) ~ 1\k+1(U). It is ob­
viously linear. To check (3.2), we observe that 

so 

'" af i df = L..J -;--: dx , 
va;' 

d(df) = L: d (~£) /\ d;t i = t (a!2txi dxi) 

= L: (~-~)d i /\ d,i 
i<j axi axi axi axi x x 

=0 

by the equality of mixed partials. 
Now we turn to (3.1). Since both sides of (3.1) are linear in WI and W2 

separately, it suffices to check (3.1) for WI = a clXi1 /\ ... /\ dx ip and W2 = 
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b dxh /\ ... /\ dx jq• Now WI /\ W2 = ab dXi1 /\ ... /\ dx ip /\ dx il /\ ... /\ dxjq 

and d(ab) = b da + a db; therefore, 

d(WI /\ W2) = b da /\ dX i1 /\ ... /\ dxip /\ dx il /\ ... /\ dx jq 

+ a db /\ dx i 1 /\ • • • /\ dx ip /\ dx il /\ . . . /\ dxi., 
while 

dWI /\ W2 = (da /\ dX i1 /\ ... /\ dx ip) /\ (b dx il /\ ... /\ dx jq ) 

= b da /\ dX i1 /\ ... /\ dx ip /\ dx il /\ ... /\ dx jq 

and 
WI /\ dW2 = (a dXi1 /\ ... /\ dx ip) /\ (db /\ dx il /\ ... /\ dx jq) 

= (-1)Pa db /\ dX i1 /\ ... /\ dx ip /\ dxh /\ ... /\ dx\ 

so we see that (3.1) holds. This proves the theorem. D 

We can draw a number of important corollaries from Eq. (3.3). 
First of all, it follows immediately that for W E /\k(M), for any k, we have 

d(dw) = O. (3.4) 

(Remember we merely assumed it for k = 0.) 
Secondly, let cp: M I -+ M 2 be a differentiable map. Then for W E /\k(M 2) 

we have 
dcp*w = cp* dw. (3.5) 

To check (3.5), it suffices to verify it for any pair of compatible charts. 
But if Xl, •.• , xn are coordinates on 1112 and, locally, 

W = " a· . dX i1 /\ ... /\ dXik £....i 'Zll' . .,'l.k , 

we have 

= cp* dw. 

In particular, if X is a vector field on 111, we conclude that 

Dx dw = d(Dxw). 

EXERCISES 

3.1 Compute d of the following differential forms. 

a) 'Y = L~ (-l)i-IxidxI /\ ... /\ dXi-1 /\ dXi+1 /\ ... /\ dX n 

b) r-n'Y, where 'Y is as in (a) and r = {xi + ... + X~} 1/2 

c) L Pi dqi 

d) sin (X2 + y2 + z2) (x dx + y dy + z dz) 

(3.6) 
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Let V be a vector space equipped with a nonsingular bilinear form and an orientatioll 
Then we can define the *-operator as in Chapter 7. Since we identify the tangent spa", 
Tx(V) with V for any x E V, we can consider the *-operator as mapping !\k(V) 
!\n-k(V). For instance, in 1R2, with the rectangular coordinates (x, y), we have 

*dx = dy, *dy = -dx, 
and so on. 

3.2 Show that 

for any function f on 1R2. 
3.3 Obtain a similar eXJlrc~sion for d * din IRn with its usual sealar produet. (Re(':,11 

that 

and, more generally, 

*dxh 1\ ... 1\ dX ik = ± dxil 1\ ... 1\ dx 1n-k, 

where (il, ... , ik,jl, ... ,jn-k) is a permutation of (1, ... , n) and the ± is the si~I' 
of the permutation.) 

3.4 Let x, y, z, t be coordinates on 1R4. Introduce a scalar product on the tangelll 
space at each point so that 

(dx, dy) 
and 

(dx, dx) = (dy, dy) = (dz, dz) = 1, 

(dx, dz) = (dx, dt) = (dy, dz) = (dy, dt) 

(c dt, c dt) = -1, 

where c is a positive constant. Let the two-form w be given by 

(dz, dt) = 0, 

w = C(EI dx 1\ dt + E2 dy 1\ dt + E3 dz 1\ dt) 

+ BI dy 1\ dz + B2 dz 1\ dx + B3 dx 1\ dy. 

Let the three-form 'Y be given by 

'Y = p dx 1\ dy 1\ dz - (Jr dy 1\ dz + Jz dz 1\ dx + h dx 1\ dy) 1\ dt. 

Write the equations 
dw = 0, d * w = 47r'Y 

as equations involving the various coefficients and their partial derivatives. 

4. STOKES' THEOREM 

In this section we shall prove a theorem which will be a far-reaching generaliza 
tion of the fundamental theorem of the calculus of one variable. It should, 
perhaps, be called the fundamental theorem of the calculus of several variables 
We first make some definitions. 

Let D be a domain with regular boundary in a manifold M. We recall 
(page 419) that each point of M lies in a chart (U, a) which is one of three types 



11.4 STOKES' THEOHEM 443 

Let (U, a) and (W, (3) be two charts of M of type (iii). Then, as on page 420, 
the matrix of J{Joa-1 is given by 

ayl ayl 
axl axn 

ayn-l ayn-l , 
axl axn 

0 0 0 0 
ayn 
axn 

and so 

(4.1) 

Furthermore, yn(xl, ... ,xn) > 0 if xn > 0, since a(U n W) n {v: vn > O} = 
a(U n W n int D). Thus ayn jaxn > 0 at a boundary point where Xn = O. 

N ow suppose that 1\1 is an oriented manifold, and let D C M be a domain 
with regular boundary. We shall make aD into an oriented manifold. We say 
that an atlas a is adjusted if each (U, a) E a is of type (i), (ii), or (iii) and, in 
addition, if each chart of a is positive. 

If dim M > 1, we can always find an adjusted atlas. In fact, by choosing 
the U connected, we find that every (U, a) is either positive or negative. If 
(U, a) is negative, we replace it by (U, a'), where x~, = -x~. 

If dim M = 1, then aD consists of a discrete set of points (which we can 
regard as a "zero-dimensional manifold"). Each x E aD lies in a chart of type 
(iii) which is either positive or negative. We assign a plus sign to x if any chart 
(and hence all constricted charts) of type (iii) is negative. We assign a minus sign 
to x if its charts of type (iii) are positive. In this way we "orient" aD, as shown 
in Fig .. 11.6. 

D + 
Fig. 1I.6 

If dim M > 1, we choose an adjusted (oriented) atlas on M. It then follows 
from (4.1) and the fact that aynjaxn > 0 that 

det J(fJ ~aD)o(a ~aD)-l > O. 

This shows that (U f aD, a f aD) is an oriented atlas on aD. We thus get an 
orientation on aD. This is not quite the orientation we want on aD. For reasons 
that will soon become apparent, we choose the orientation on aD so that 
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(U r aD, a r aD) has the same sign as (_I)n. That is, (U r aD, a r aD) is a 
positive chart if n is even, and we take the orientation opposite to that deter­
mined by (U r aD, a r aD) if n is odd. We can now state our main theorem. 

Theorem 4.1 (Stokes'theorem). Let M be an n-dimensional oriented mani­
fold, and let DC M be a domain with regular boundary. Let aD denote 
the boundary of D regarded as an oriented manifold. Then for any 
wE !\ n-I(M) with compact support we have 

( L*W = ( dw, 
lao 10 

(4.2) 

where, as usual, L is the injection of boundary D into M. 

Proof. For n = 1 this is just the fundamental theorem of the calculus. 
For n > lour proof is almost exactly the same as the proof of Theorem 6.1 

of Chapter 10. Choose an adjusted atlas a and a partition of unity {gj} sub­
ordinate to a. Since w has compact support, we can write 

W = LgjW, 

where the sum is finite. Since both sides of (4.2) are linear, it suffices to verify 
(4.2) for each of the summands gJW' Since supp gjW C U, where (U, a), we 
must check the three possibilities: (U, a) satisfies (i), (ii), or (iii). 

If (U, a) satisfies (i), L*W = 0, since supp W n aD = 0, and 

10 dw = 1M eD dw = 0, 

since D n supp W = 0. Thus both sides of (4.2) vanish. 
If (U, a) satisfies (ii), the left-hand side of (4.2) vanishes. We must show 

that the same holds for the right-hand side. Let Xl, .•• ,xn be the coordinates 
on (U, a), and write 

gjW = al dx2 1\ ... 1\ dxn + a2 dx l 1\ dx3 1\ ... 1\ clxn + ... 

Then 

and thus 

+ an clx 1 1\ ... 1\ dxn-l. 

d "( )i-l aai did n gjW = £...i -1 axi x 1\ ... 1\ x, 

Since gjW has compact support, the functions ai have compact support, and 
we can replace the integral over ~n by the integral over O!R, where R = 
-< R, ... , R> and R is chosen so large that supp ai C O!R' But writing the 
multiple integral as an integral, we get 

fO'!..R ~~~ = .£n-l ai( . .. , R, ... ) - ai( . .. , - R, ... ) = 0, 

since ai( . .. , R, ... ) = ai( . .. , -R, ... ) = 0. 
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Fig. 11.7 

We now examine f dyjw in case (iii). The argument proceeds exactly as 
before, except that we must compute fa(unD) aa;jaXi instead of fa(U)' (See 
Fig. 11.7.) 

We can now replace the region of integration by a rectangle of the form 
D~~R::~.~R.O> for large R. If i < n, f aa;jaxi = 0 as before. If i = n, we get 

1 ~an = - ( an(·, " ... ",0), 
a(UnD) uXn JRn-l 

so that 

! d(Yjw) = 2: (_1)i-l! aaa~ = (_I)n ( an(-,·, ... ",0). 
x' JRn-l 

Now since xn = 0 on Un aD, we see that L* dxn = O. Thus 

L*W = (L*an)(L* dx l ) /\ •.• /\ (L* dxn- 1), 

or if (by abuse of notation) we regard xl, ... ,xn - 1 as the coordinates of 
(U r aD, ex r aD), we get 

L*W = a(·,·, ... ,·, 0) dx l /\ •.. /\ dxn-l. 

In view of the choice we made for the orientation of aD, we conclude that 

r ,*w = (_I)n r an(·,·, ... ,·, 0). 
JaD JRn-l 

This completes the proof of the theorem. 0 

Theorem 4.1, like the divergence theorem, is not sufficiently broad for us to 
apply to more general domams. For this purpose, we will again use the notion 
of a domain with almost regular boundary. 

We have already seen that the set of x E aD having a neighborhood of type 
(iii) forms a differentiable manifold. (Recall that these points need not exhaust 
all of aD). Similarly, if M is an oriented manifold, then this collection of points 
becomes an oriented manifold (with (-1) n times the induced orientation, as 
before). By abuse of language we shall denote this oriented manifold by aD. 
Thus aD is an oriented manifold which, as a set, is not aD but only the "regular" 
points of aD, that is, the points of ab. 
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Theorem 4.2 (Stokes' theorem). Let M be an n-dimensional oriented 
manifold, and let D C M be a domain with almost regular boundary. 
Let aD be as above, and let L be the injection of aD ---7 M. Then for any 
W E /\ n-l(M) with compact support we have 

( L*W = ( dw. 
iao io (4.2) 

Proof. The proof proceeds as before. We choose an adjusted atlas and a par­
tition of unity {gj} subordinate to the atlas. We write w = L: gjW and now 
have four cases to consider. The first three cases have been handled already. 
The new case is where 

'" 1 ---- . gjW = £oJ aj dx 1\ ... 1\ dx' 1\ ... 1\ dxn, 
j 

'where the ---- indicates that dx j is to be omitted, has its support contained in U, 
where (U, a) is a chart of type (iv). By linearity, it suffices to verify (4.2) for 
each summand on the right, i.e., for 

aj dx l 1\ .. , 1\ d'7ii 1\ ... 1\ dxn. 

Now L*(aj dx l 1\ ... 1\ £j 1\ ... 1\ dxn) = 0 unless j ~ k, since dxP 

vanishes on the piece of aD n U whose image under a lies in H;. If j < p, 
then all these dxP occur, and thus L *(aj dx l 1\ ... 1\ £j 1\ ... 1\ dx n) = O. 
If j > p, then L *(aj dx l 1\ ... 1\ dxj 1\ dxn) vanish everywhere except on the 
portion of aD which maps under a onto H7. 

On the other hand, 

d(aj dx l 1\ ... 1\ dx j 1\ ... 1\ dxn) = (_l)j-l ~~: dx l 1\ ... 1\ dxn. 

We can evaluate the integral JD by integrating over the rectangle 
[]<R, ... ,R, ... ,R> 

< -R .... , -R,O, ... ,0,0 > 

(where the - R's extend through the (k - l)th position). Integrating first 
with regard to xj, we obtain 

( d(aj dx l 1\ ... 1\ dx j 1\ .. , 1\ dxn ) = (-l)j ( k aj. 
iD iH. 

On the other hand, the orientation on Hj is such that this integral has the 
sign necessary to make (4.2) hold. This proves Theorem 4.2. 0 

As before, we can apply Theorems 4.1 and 4.2 to still more general domains 
by using a limit argument. For instance, Theorem 4.2, as stated, does not apply 
to the domain D in Fig. 11.8, because the curves C l and C2 are tangent at P. 
It does apply, however, to the approximating domain obtained by "breaking 
off a little piece" (Fig. 11.9), and it is clear that the values of both sides of (4.2) 
for D' are close to those for D. We thus obtain (4.2) for D by passing to the 
limit. As before, we will not state a more general theorem covering these cases. 
It will be clear in each instance how to apply a limit argument. 
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p~-~-

Fig. 11.8 Fig. 11.9 

Since the statement and proof of Stokes' theorem are so close to those of the 
divergence theorem, the reader might suspect that one implies the other. On 
an oriented manifold, the divergence theorem is, indeed, a corollary of Stokes' 
theorem. To see this, let 0 be an element of /\ n(M) corresponding to the 
density p. If X is a vector field, then the n-form DxO clearly corresponds to the 
density Dxp = div <X, p>-. Anticipating some notation that we shall intro­
duce in Section 6, let X ...J 0 be the (n - I)-form defined by 

X ...JO(e, ... , ~n-l) = (-I)n- IOa l , ... , ~n-\ X). 

In terms of coordinates, if 0 = a dx l 1\ ... 1\ dxn , then 

X ...J 0 = a[XI dx2 1\ ... 1\ dxn - X 2 dx l 1\ dx3 1\ ... 1\ dxn 

+ ... + (_I)n- Ixn dx l 1\ ... 1\ dxn- l]. 
Note that 

d(X ...J 0) = (L a;;.) dx 1 1\ ... 1\ dxn, 

which is exactly the n-form DxO, since it corresponds to the density Dxp = 
div < X, p>-. Thus, by Stokes' theorem, 

( ,*(X...J 0) = ( d(X...J 0) = ( div -< X, p>- . 
Jao Jo JD 

We must compare X ...J 0 with the density px on aD. By (2.2) they agree on 
everything up to sign. To check that the signs agree, it suffices to compare 

px(~' ... ,_a) = p(~, ... ,_a ,X) 
axl axn- l axl axn- l 

with 

'*(X...JO(~, ... ,_a )) 
axl axn- l 

at any x E aD. Now 

,*(X ...JO) = (_I)n- I x n dx l 1\ ... 1\ dxn- l 

and, according to our convention, Xl, ••• , x n - l is a positive or negative coordi­
nate system according to the sign of (_l)n. Thus the two coincide if and only 
if xn is negative, that is, 

( '*(X...J 0) = { EXPx. 
Jao JaD 
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EXERCISES 

4.1 Compute the following surface integrals both directly and by using Stokes' 
theorem. Let 0 denote the unit cube, and let B be the unit ball in 1R3. 

a) faD x dy A dz + y dz A dx + z dx A dy 
b) fan x3 dy A dz 
c) faD cos z dx A dy 
d) fou x dy A dz, where 

U = [(x, y, z) : x ~ 0, y ~ 0, z ~ 0, x2 + y2 + z2 ::; I} 

4.2 Let w = yz dx + x dy + dz. Let'Y hc the unit circle in the plane oriented in the 
count.crdoekwise direction. ComJlute f7 w. Let 

.\r = {(x, y, z) : z = 0, x2 + y2 ::; 1], 
A2 = {(x, y, z) : z = 1 - x2 - y2, x2 + y2 ::; 1]. 

Orient the surfaces A 1 and .12 so that aAI = aA2 = 'Y. Verify that fAI dw = fA2 dw = 
f w by computing the integrals. 

4.3 Let 8 1 be the circle and define w = (1!27r) de, where 8 is the angular coordinate. 

a) Let cp: 8 1 -781 be a differentiable map. Show that fcp*w is an integer. This 
integer is called the degree of cP and is denoted by deg cpo 

b) Let CPt be a collection of maps (one for each t) which depends differentiably 
on t. Show that deg CPO = deg CPl. 

c) Let us regard 8 1 as the unit circle in the complex numbers. Let f be some 
function on the complex numbers, and suppose that fez) ~ 0 for Izl = r. Define 
CPr.! by setting CPr.!(e i8 ) = f(re i8 )/lf(rei8)1. Suppose fez) = Zn. Compute deg cpr.! 
for r ~ O. 

d) Letfbe a polynomial of degree n ~ 1. Thus 

fez) = a"zn+ an_Iz,,-I + ... + ao, 

where an ~ O. Show that there is at least one complex number Zo at which f(zo) = O. 
[Hint: Suppose the contrary. Then CPr,(llun)! it! defined for all 0 ::; r < 00 and deg 
CPr,(1 Ian)! = const, by (b). Evaluate limr=o andlimr=oo of this eX)ll'eSHion.] 

Let X be a vector field defined in some neighborhood U of the origin in IP, and suppose 
that X(O) = 0 and that X(x) ~ 0 for x ~ O. Thus X vani:shes only at the origin. 
Define the map CPr: 8 1 -7 8 1 by 

i8. X(re i8 ) 

cpr(e ) = IIX(rei8) II' 

This map is defined for sufficiently small r. By Exerci8e 4.3(h) the degree of this map 
does not depend on r. This degree is called the index of the vector field X at the origin. 

4.4 Compute the index of 

a) 
a a 

x-+y-, 
ax ax 

a a 
b) x- - y-' 

ax ay 
a a 

c) y- - x-' 
ax ay 

d) Construct a vector field wi th index 2. 
e) Show that the index of -X is the same as the index of X for any vector field X. 
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4.5 Let X be a vector field on an oriented two-dimensional manifold, and suppose 
that X(p) = 0 for some p E M and that X does not vanish at any other point in a 
small neighborhood of p. By choosing an oriented chart mapping p into zero, we get a 
vector field on [2 vanishing at the origin. Show that the index of this vector field does 
not depend on the choice of charts. We can thus define the index of X at p. 

4.6 a) On the sphere 8 2 let X be a vector field which is tangent to the meridian 
circles everywhere and vanishes only at the north and south poles. What is its 
index at each pole? 

b) Let Y be a vector field which is tangent to the circles of latitude everywhere 
and vanishes only at the north and south poles. What is its index at each pole? 

5. SOME ILLUSTRATIONS OF STOKES' THEOREM 

As a simple but important corollary of Theorem 4.2, we state: 

Theorem 5.1. Let cp:]I.{ 1 ~ ]I.{ 2 be a differentiable map of the oriented 
k-dimensional manifold Ml into the n-dimensional manifold ]I.{ 2. Let w 
be a form of degree k - 1 on ]I.{ 2, and let 
D C M 1 be a domain with almost regular q 

boundary on MI. Then we have 

(5.1) 

Equation (5.1) follows directly from (4.2) 
and from the fact that cp*d = dcp*. 

p 

Fig. 11.10 

We can regard the right-hand side of (5.1) as the integral of dw over the 
"oriented k-dimensional hypersurfaces" cp(D). Equation (5.1) says that this 
integral is equal to the integral of w over the (k - I)-dimensional hypersur­
face cp(aD). 

[Sj------
-------
-------

p 

q 

Fig. 11.11 

We now give a simple application of Theorem 5.1. Let Co: [0, 1] ~ ]I.{ and 
C1 : [0, 1] ~ M be two differentiable curves with CoCO) = Cl(O) ~ p and 
Co(I) = Cl(I) = q. (See Fig. 11.10.) We say that Co andCl are (differentiably) 
homotopic if there exists a differentiable map cp of a neighborhood of the unit 
square [0,1] X [0,1] C [R2 into ]I.{ such that cp(t,O) = Co(t), cp(t, 1) = Cl(t), 
'P(O, s) = p, and cp(I, s) = q. (See Fig. 11.11.) For each value of s we get the 
curve C. given by CB(t) = cp(t, s). We think of cp as providing a differentiable 
"deformation" of the curve Co into the curve Cl. 



450 EXTERIOR CALCULUS 11.5 

Proposition 5.1. Let Co and C1 be differentiably homotopic curves, and 
let w be a linear differential form on M with dw = 0. Then 

(5.2) 

Proof. In fact, 

{ 0<1.1> ,,/w = {0<1.1> cp* dw = 0. Ja <0.0> J[ <0.0 > 

But faD is the sum of the four terms corresponding to the four sides of the square. 
The two vertical sides (t = ° and t = 1) contribute nothing, since cp maps 
these curves into points. The top gives - fe l (because of the counterclockwise 
orientation), and the bottom gives feo. Thus feo w - fe l w = 0, proving the 
proposition. 0 

It is easy to see that the proposition extends without difficulty to piecewise 
differentiable curves and piecewise differentiable homotopies. Let us say that 
two piecewise differentiable curves, Co and C lI are (piecewise differentiably) 
homotopic if there is continuous map cp of [0, 1] X [0, 1] ~ M such that 

i) cp(O, s) = p, cp(l, s) = q; 

ii) cp(t,O) = Co(t), cp(t, 1) = C1(t); 

iii) there are a finite number of points to < tl < ... < tm such that cp 
coincides with the restriction of a differentiable map defined in some 
neighborhood of each rectangle [ti' ti+d X [0, 1]. (See Fig. 11.12.) 

To verify that Proposition 5.1 holds for the case of piecewise differentiable 
homotopies, we apply Stokes' theorem to each rectangle and observe that the 
contribution of the interior vertical lines cancel one another. 

We say that a manifold M is connected if every pair of points can be joined 
by a (piecewise differentiable) curve. Thus IRn, for example, is connected. We 
say that M is simply connected if all (piecewise differentiable) curves joining the 
same two points are (piecewise differentiably) homotopic. (Note that the circle, 
8 1 is not simply connected.) Let us verify that IR n is simply connected. If Co 
and C1 are two curves, let cp: [0, 1] X [0, 1] ~ IRn be given by 

cp(t, s) = sC oCt) + (1 - S)C 1 (t). 

It is clear that cp has all the desired properties. 

Fig. 1l.12 

Proposition 5.2. Let M be a connected and simply connected manifold, 
and let 0 EM. Let wE /\ I(M) satisfy dw = 0. For any x E M let 
f(x) = fe w, where C is some piecewise differentiable curve joining 0 to x. 
The function f is well defined and differentiable, and df = w. 
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Proof. It follows from Proposition 5.1 that f is well defined. If Co and C l are 
two curves joining 0 to x, then they are homotopic, and so feo w = fe l w. 
It is clear that f is continuous, since 

f(x) - fey) = fD w, 

where D is any curve joining y to x (Fig. 11.13). 
To check that f is differentiable, let (U, a) be a chart about x with coordi­

nates <Xl, ... , xn>. Then 

f(x!, ... , xi + h, ... ,xn) - f(x l, ... , xn) = fe w, 

where C is any curve joining p to q, where a(p) = (Xl, ... , xi, ... ,xn ), and 
where a(q) = (xl, ... , Xi + h, ... ,xn). We can take C to be the curve given 
by 

a 0 C(t) = (xl, ... , xi + ht, ... , xn). 

If w = al dx l + ... + an dxn, then 

fe w = fol hai dt = foh ai(xl, ... ,xi + s, ... ,xn) ds. 

(See Fig. 11.14.) Thus 

1· 1 [f( 1 i hI n) f( 1 n)] i Im-h X, •.• ,X + , ... ,X - X, ..• ,X =a, 
h-.O 

that is, aj / axi = ai. This shows that f is differentiable and that df = w, proving 
the proposition. 0 

______ -x~ 
o 

Fig. 11.13 Fig. 11.14 

We have thus established that every wE /V(/R n ) with dw = 0 is of the 
form df. More generally, it can be established that if Q E !\k(/R n ) satisfies 
dQ = 0, then Q = dw for some w E !\k-l(/R n ). 

*This is not true for an arbitrary manifold. For instance, every w E !\ 1 (8 1) 

satisfies dw = O. Yet the element of angle form (which is, unfortunately, 
denoted by dO) is not the d of any function. The fact that d2 = 0 shows that if 
Q = dw, then dQ = O. Thus the space d[!\k-l(M)] C !\k(M) is a subspace of 
the space kerk d of elements in !\k(M) satisfying dQ = O. The quotient space 
kerk d/d[!\k-lj is denoted by Hk(M) and is called the kth cohomology group of 
M. If M is compact, it can be shown that Hk is finite-dimensional. It measures 
(roughly speaking) "how many" k-dimensional holes there are in M.* 
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6. TilE LIE DERIVATIVE OF A DIFFERENTIAL FORM 

Let M be a differentiable manifold, and let 'P be a flow on M with infinitesimal 
generator X. For any W E /\ k(M) we can consider the expression 

* 'PtW - W 
t 

It is not difficult (using local expressions) to verify that the limit as t ---7 0 exists 
and is again an element of /\k(M), which we denote by Dxw. The purpose of 
this section is to provide an effective formula for computing Dxw. For this 
purpose, we first collect some properties of Dx. First of all, we have that it is 
linear: 

Secondly, we have 

'Pi(WI 1\ W2) - WI 1\ W2 = ('PiWI) 1\ ('PiW2) - WI 1\ W2 

= ('PiWI) 1\ ('PiW2) - ('PiWI) 1\ W2 

+ ('Pi WI) 1\ W2 - WI 1\ W2. 

Dividing by t and passing to the limit, we see that 

DX(WI 1\ W2) = (DXWI) 1\ W2 + WI 1\ DXW2. 

Finally, since 'Pi d = d'Pi, we have 

Dx dw = d(Dxw). 

Actually, these three formulas suffice for the computation. If 

W = " a· . dxil 1\ ... 1\ dX ik, ~ zI .. ··.lk 

then 

Dxw = "Dx(a· . dXil 1\ ... 1\ dX ik ) ~ ~ zl····,'lk by (6.1) 

(6.1) 

(6.2) 

(6.3) 

= " [(Dxa . ) dXil 1\ ... 1\ clXik + a . (Dx dXil) 1\ ... 1\ clXik L.J l.l, ... ,tk 'l.!,· .. ,'l.k 

+ ... + a,l ..... i k clXil 1\ ... 1\ (Dx dXik )] by repeated use of (6.2) 

= " [(Dxa· ) dxil 1\ ... 1\ clXik + a· . cl(DxXI) 1\ ... 1\ dxk 
L...J 11, ... ,Zk ZI,'" Ilk 

+ ... + a,l ..... ik clXil 1\ ... 1\ cl(DxXik)] by (6.3). 

Since this expression is rather cumbersome (the d(DxXi) have to be expanded and 
the terms collected), we shall derive a simpler and more convenient expression 
for D XW. In order to do this, we make an algebraic detour. 

Recall that the operator cl: /\k(M) ---7 /\k+I(M) is linear and satisfies the 
identity 

cl(WI 1\ W2) = clWI 1\ W2 + (_l)kwl 1\ dW2 

if WI E /\k(M). More generally, any (sequence of linear) maps () of 

/\k(M) ---7/\k+I(M) 

(6.4) 
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satisfying the identity 

(J(WI 1\ W2) = (JWI 1\ W2 + (_I)kwl 1\ (JW2 (6.4') 

and 
supp (Jw C supp W t (6.5) 

will be called an antiderivation of the algebra A(M). 
It follows from (6.5) that if WI == W2 on an open set U, then (J(WI) == (J(W2) 

on U. Now about every x E lIf we can find a neighborhood U and functions 
xl, ... , x n , so that wE A k(M) can be written as 

on U. (6.6) 

Then by repeated use of (6.4') we have 

(J(w) == '" [(J(a· . ) 1\ clXil 1\ ... 1\ clXik + a· . (J(clxil) 1\ ... 1\ dxik L..... 11, ...• 1..k 1..1.···,7k 

+ ... + (-I)k-Iail ..... ik clXil 1\ ... 1\ (J(clX ik)]. (6.7) 

We thus arrive at the important conclusion: 

Proposition 6.1. Any antiderivation (J: Ak(M) ---+ AHI(M), k = 0, ... ,n, 
is uniquely determined by its action on A o(M) and A I(M). That is, if 
(JI(W) = (J2(W) for all wE AO(M) and AI(M), then (JI(Q) = (J2(Q) for 
Q E Ak(M) for any k. 

Now suppose we are given maps 

and 

which satisfy (6.5) and (6.4') where it makes sense, that is, 

and (J(fW) = (J(f)l\lw + f(J(w). (6.8) 

Then any chart (U, ex) defines (J: Ak(U) ---+ AHl(U) by (6.7). This 
gives an antiderivation (Ju on U, as can easily be checked by the use of the ar­
gument on pp. 440-441. By the uniqueness argument, if (W, (3) is a second chart, 
the antiderivations (Ju and (Jw coincide on Un W. Therefore, Eq. (6.7) is 
consistent and yields a well-defined antiderivation on A(M). (Observe that we 
have just repeated about two-thirds of the proof of Theorem 3.1 for the more 
general context of any antiderivation.) 

t This condition is actually a consequence of (6.4). In fact, let U be an open set 
containing supp w. Since {U, lIf-supp w} is an open covering of 1II, we can find a 
partition of unity subordinate to it. In particular, we can find a COO-function cP which 
is identically one on supp wand vanishes outside U. Then w = cpw, so that 

Thus supp (J(w) C supp w U supp cp C U. Since U is an arbitrary neighborhood of 
supp w, we conclude that supp (J(w) C supp w. 
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Also observe that in the above arguments, nothing changes if instead of 
0: /\k(M) ~ /\Hl(M) we have 0: /\k(M) ~ /\k-l(M). [We take this to 
mean O(f) = 0 for f E /\ O(M).] In fact, the same argument works for 

0: /\k ~ /\Hr 

for any odd integer r. We can thus state: 

Proposition 6.2. Let 0: AO(M) ~ Ar(M) and 0: Al(M) ~ A r + 1(M) be 
linear maps satisfying (6.5) and (6.8), where r is odd. Then there exists one 
and only one way of extending 0 to an antiderivation 0: A h(M) ~ A h + reM) 
satisfying (6.4). 

As an application of this proposition, we will attach an antiderivation 
O(X): /\k(M) ~ /\ k-l(M) to every smooth vector field X on AI. Since r = -1, 
for f E /\ o(M) we set 

O(X)f = o. 
For w E /\ l(M) we set 

O(X)w = (X, w). (6.9) 

To verify (6.8) means to check that 

O(X)(fw) = fO(X)w, 
that is, that 

(X, fw) = f(X, w), 
which is obvious. 

If f is a function and 0 is an antiderivation, we denote by fO the map which 
sends w ~ fO(w). It is easy to check that this is again an antiderivation. 

We can assert the following as a consequence of the uniqueness theorem: 
Let X and Y be smooth vector fields, and let f and g be smooth functions. Then 

O(fX + gY) = fO(X) + gO(Y). (6.10) 

By the proposition, it suffices to check (6.10) on all w E /\l(M). By (6.9), this 
is just 

(fX + gY, w) = f(X, w) + g(Y, w), 
which is obvious. 

In particular, in a chart (U, h), if 

X=Xl~+ ... +xn~, 
axl axn 

then 

O(X) = L XiO (a~i) . 
To evaluate O(ajaxi ), we use (6.8) and the fact that 

if i ~ j, 
if i = j. 
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Thus, for example, O(ajaxi) dxP /\ dxq = 0 if neither p = i nor q = i, while 
O(ajaxi) (dxi /\ dxi ) = dxi , O(ajaxi)(dxi /\ dxi ) = -dxi , etc. 

Let us call a (sequence of) map(s) D: /\k(JI1) ---7 /\H8CM), where s is even, 
a derivation if it satisfies (6.5) and 

D(WI /\ W2) = DWI /\ W2 + WI /\ DW2· (6.11) 

Since s is even, this is consistent. The most important example is Dx 
where s = O. Then (6.11) is just (6.2). 

All the previous arguments about existence and uniqueness of extensions 
apply unchanged to derivations, as can easily be checked. We can therefore 
assert: 

Proposition 6.3. Let D: /\0(1'01) ---7/\ 0+8(1\f) and D: /\ I(M) ---7/\ H8(1'o1), 
where s is even, be maps satisfying (6.5) and (6.8) (with 0 replaced by D). 
Then there exists one and only one way of extending D to a derivation of 
/\(M). 

We need one further algebraic fact. 

Proposition 6.4. Let 01: /\ k ---7 /\ k+r 1 and Oz: /\k ---7 /\ k+r2 be antideriva­
tions. Then 0102 + 0201: /\k ---7 /\k+r 1 +'2 i" a derivation. 

Proof. Since Tl and r2 are both odd, i"1 + 1"2 is eyen. Equation (6.5) obviously 
holds. To verify (6.4'), let WI E /\k(l\I). Then 

Similarly, 

0102(Wl /\ W2) = 01[02Wl /\ W2 + (_l)kWI /\ 02W2] 

= 0102Wl /\ W2 + (_1)k+r202Wl /\ 01W2 

+ (_l)kOlWI /\ 02W2 + WI /\ 0102W2· 

0201 (WI /\ W2) = 0201Wl /\ W2 + (_l)k+rlOlWI /\ 02W2 

+ (_1)k02Wl /\ 0IW2 + WI /\ 0201W2· 

Since rl and T2 are both odd, the middle terms cancel when we add. Hence we get 

(0 102 + 0201)(Wl /\ W2) = (0 102 + 0201)Wl /\ W2 + WI /\ (0 102 + 0201)W2. 0 

As a first application of Proposition 6.3, we observe that 

O(X) 0 O(Y) = -O(Y) 0 O(X). (6.12) 

In fact, by Proposition 6.4, O(X)O(Y) + O(Y)O(X) is a derivation of degree 
-2, that is, it vanishes on /\0 and /\ 1. It must therefore vanish identically. 
We could, of course, directly verify (6.12) from the local description of O(X) 
and O(Y). 

As a more serious use of Proposition 6.4, consider O(X) 0 d + d 0 O(X), 
where X is a smooth vector field. Since d: /\k ---7 /\Hl and O(X): /\k ---7 /\k-r, 
we conclude that O(X) 0 d + d 0 O(X): /\ k ---7 /\ k. We now assert the main 
formula of this section: 

Dx = O(X) 0 d + d 0 O(X). (6.13) 
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Since both sides of (6.13) are derivations, it suffices to check (6.13) for 
fUllctions and linear differential forms. If j E 1\ o(M), then O(X)j = O. Thus, 
by (6.9), Eq. (6.13) becomes 

Dxj = (X, df), 

which we know holds. Next we must verify (6.13) for wE I\I(M). By (6.5), it, 
suffices to verify (6.13) locally. If we write w = al dx l + ... + an dxn, it 
suffices, by linearity, to verify (6.13) for each term ai dXi. Since both sides of 
(6.13) are clerivations, we have 

Dx(a, dxi) = (DXai) dxi + a,(Dx dxi) 
and 

[O(X) d + clO(X)](a, dx i) = [O(X) d + clO(X)](a,) dx i + a,[O(X) d + dO(X)] clXi. 

Since we have verified (6.13) for functions, we only have to check (6.13) for dXi. 
Now 

and 
[O(X) d + clO(X)] dxi = dO(X) d.ri = d(X, dxi) = dDxXi. 

This completes the proof of (6.13). 
In many circumstances it will be convenient to free the letter 0 for other uses. 

We shall therefore occasionally adopt the notation 

X .J w = O(X)w. 

The symbol .J is called the interior product. X.J w is the interior product of 
the form w with the vector field X. If wE 1\\ then X.J w E I\k-l. Equa­
tion (6.13) can then be rewritten as 

Dxw = X .J dw + d(X .J w). (6.14) 

Let us see what (6.14) says in some special eases in terms of local coordinates. 
If w = al clx l + ... + an dxn and 

X Xl a xn a = ax 1 + ... + a.rn ' 
then 

Hence 

while 

so 

j (aa j) i (aXi) i d(X.J w) = LX axi dx + L aj axi dx. 
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Thus 

( j aai aXJ) i 
Dxw = L LX a----:+ aj-a' dx, 

i j xJ x' 

"\vhich agrees with Eq. (7.12') of Chapter 9. 
As a second illustration, let n = a dx 1 1\ ... 1\ dx n , where n = dim 111. 

Then dn = 0, so (6.14) reduces to 

Dxn = d(X ..J n). 
If X = L Xi(ajax i), then 

X ..J n = L Xi (a~i) ..J w 

= L aXi (~-;) ..J (dx l 1\ . . . 1\ d:rn ) 
ax' 

= L (_l)i-laX i dx 1 1\ ... 1\ dX i- 1 1\ dX i+1 1\ ... 1\ dxn , 

which is merely the formula introduced at the end of Section 4. Then 

(~ aax') 1 n Dxn = d(X..J n) = L... axi- dx 1\ ... 1\ dx . 

Since we can always locally identify a density with an n-form by identifying P 
\\"ith Pc< dx 1 1\ ... 1\ dxn on (U, a), we obtain another proof of Proposition 5.2 
of Chapter 10. 

Appendix I. "VECTOR ANALYSIS" 

We list here the relationships between notions introduced in this chapter and 
various concepts found in books on "vector analysis ", although we shall have 
no occasion to use them. 

In oricnted Euclidean three-space 1E 3 , there are a number of identifications 
we can make which give a special form to some of the operations we have 
introduced in this chapter. 

First of all, in 1E 3 , as in any Riemann space, we can (and shall) identify 
vector fields with linear differential forms. Thus for allY function f we can 
regard df as a vector field. As such, it is called grad f. Thus, in 1E3 , in terms of 
rectangular coordinates x, y, z, 

gradf = ..Jaf ,~, af"'- , 
,ax ay aZ( 

where we have also identified vector fields on 1E3 with 1E3-valued functions. 
Secondly, since 1E3 is oriented, we can, via the *-operator (acting on each Tn, 

identify A 2(1E3) with A 1(1E3). Recall that * is given by 

*(dx 1\ dy) = dz, *(dx 1\ dz) = -dy, *(dy 1\ dz) = dx. (L1) 
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In particular, if Wi = <.P, Q, R>- = P dx + Q dy + R dz and W2 = 
<.L, M, N>- = L dx + M dy + N dz, we can introduce the so-called "vector 
product" of Wi with W2. It is defined by 

Wi X W2 = *(Wi /\ W2) 

and is given [in view of (1.1) 1 by 

<.P, Q, R>- X <.L, M, N>- = <.QN - RM, RL - PN, PM - QL>-. 

Also we introduce the operator 

curl W = *dw. 

Thus, if W = <.P, Q, R>-, we have 

curl w =.-J aR _ aQ, ap _ aR , aQ _ ~~ \... . 
" ay az az ax ax ay ( 

Consider an oriented surface in 1E3; i.e., let cp: S -t 1E3. Let n be the volume 
form on S associated with the Riemann metric induced by cpo By definition, if 
~b ~2 E Tx(S), then 

n(~b b) = dV <. CP*~b CP*~2' n>-, 

where dV is the volume element of 1E3 and n is the unit normal vector. Another 
way of writing this is to say that 

n(h, ~2) = U(CP*~b cp*b), 

where U = *n when we regard n as a differential form. Now let iii be a form in 
1E3 , and suppose that cp*w = fn for some function f. Then 

f(x) = (w, *n)(cp(x)). 
Thus 

Iscp*(W) = !sfn = Is (w,*n)n = I(*w,n)n. 

Applying this to w = dw, where w = P dx + Q dy + R dz, we can rewrite 
Stokes' theorem as 

Ie w = Ie P dx + Q dy + R dz = Is (curl w, n)n, 

where S is some surface spanning the closed curve C. 
If we apply the remark to the case w = *w and S = aD, we obtain, since 

** = id (for n = 3), 

I (w, n)n = ID d * w 

Note that 

d * w = (ap + aQ + ~~) dx /\ dy /\ dz 
ax ay az ' 

which we write as div W; that is, 

div w = d * w. 
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(It is in fact div {w, dV}, where dV is the volume element and we regard w as a 
vector field.) Thus we get the divergence theorem again. Note that 

curl (grad f) = *d df == 0 
and 

div (curl w) = d ** dw = d2w = 0, 
since d2 = o. 

Appendix II. ELEMENTARY DIFFERENTIAL 
GEOMETRY OF SURFACES IN 1E3 

For purposes of computation, it is convenient to introduce the notion of a 
vector-valued differential form. Let E be a vector space, and let M be a differen­
tiable manifold. By an E-valued exterior differential form !l of degree p we 
shall mean a rule which assigns an element !l:z; to each x EM, where !l:z; is 
an antisymmetric E-valued multilinear function of degree p on T:z;(M). For 
instance, if p = 0, then an E-valued zero-form is just a function on M with 
values in E. An E-valued one-form is a rule which assigns an element of E to 
each tangent vector ~ at any point of M, and so on. 

Suppose that E is finite-dimensional and that {eb ... , eN} is a basis for E. 
Let !lb ... ,!IN be (real-valued) p-forms. We can then consider the E-valued 
p-form!l = !llel + ... + !lNeN, where, for any p vectors h, ... , ~p in T:z;(M), 
we have 

!l:z;(h, ... , ~p) = !lIAh, ... , ~p)el + ... + !IN:z;(h, ... , ~p)eN. 

Conversely, if !l is an E-valued form, then real-valued forms !lb ... , !IN can 
be defined by the above equation. In short, once a basis for an N-dimensional 
vector space E has been chosen, giving an E-valued differential form n is the 
same as giving N real-valued forms, and we can write 

N 

!l = L !liei 
I 

or 

The rules for local description of E-valued forms, as well as the transition 
laws, are similar to those of real-valued forms, so we won't describe them in 
detail. For the sake of simplicity, we shall restrict our attention to the case 
where E is finite-dimensional, although for the most part this assumption is 
unnecessary. 

If w is a real-valued differential form of degree p, and if !l is an E-valued 
form of degree q, then we can define the form w /\ !l in the obvious way. In 
terms of a basis, if!l = -<!lb ... ,!lN >- , then w /\ !l = -< w /\ !lb ... , w /\ !IN>-. 

More generally, let E and F be (finite-dimensional) vector spaces, and let # 
be a bilinear map of E X F -) G, where G is a third vector space. Let 

{eb . .. ,eN} 
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be a basis for E, let {h, ... ,f M} be a basis for F, and let {gI, ... ,od be a 
basis for G. Suppose that the map # is given by 

#{ei, h} = L a~jOk. 
k 

Then if W = L Wiei is an E-valued form and n = L niIj is an F-valued form, 
we define the G-valued form W 1\ n by 

W 1\ n = L (2: a~jWi 1\ nj) Ok· 
k t.J 

It is easy to check that this does not depend on the particular bases chosen. 
\Ve shall want to this notion primarily in two contexts. First of all, 

we will be interested in the case where E = F and G = IR, so that # is a bilinear 
form on E. Suppose # is a scalar product and el, ... , eN is an orthonormal basis. 
Then we shall write (w 1\ n) to remind us of the scalar product. If 

and 
then 

(W 1\ n) = L Wi 1\ ni' 

Kote that in this case if W is a ]i-form and n is a q-form, then 

as in the case of real-valued forms. 
The second case we shall be interested in is where F = G and E = Hom(F), 

and # is just the evaluation map evaluating a linear transformation on a vector 
of F to give another element of F. This time, choosing a basis for F determines a 
basis for Hom(F), so we can regard was a matrix of real-valued differential forms. 
If W = (Wij) and n = -< nl , ... , nM >- , then 

W 1\ n= -<LWlj 1\ nj, ... ,LWMj 1\ nj >-. 
The operator d makes sense for vector-valued forms just as it did for real­

valued forms, and it satisfies the same rules. Thus, if n = -< n!, ... , nN>-, 
then dn = -< dn j , ..• , dnN>- and 

dew 1\ n) = dw 1\ n+ (-l)Pw 1\ dn 

if W is an E-valued form of degree p and n is an F-valued form. 
We shall apply the notion of vector-valued forms to develop (mostly in 

exercise form) some elementary facts about the geometry of oriented surfaces 
in IE :l. Let 111 be an oriented two-dimensional manifold, and let 'P be a differ­
entiable map of },1 into 1E3. We shall assume that 'P* is not singular at any point 
of M, i.e., that 'P is an immersion. Thus at each point p EO JI the space 'P* (T p(M») 
is a two-dimensional subspace ofT<p(p)(1E 3 ). Since we can identify T<p(p)(1E 3 ) 

,'vith 1E 3 , we can regard 'P*(Tp(ilf)) as a two-dimensional subspace of 1E3. 
(See Fig. 11.15.) Since M is oriented, so is the tangent plane 'P*(Tp(Nl)). 
Therefore, there is a unique unit vector orthogonal to the tangent plane which, 
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'P*(Tp(M)) 

Fig. H.lS 

together with an oriented basis of the tangent plane, gives an oriented basis 
of 1E3. This vector is called the normal vector and will be denoted by n(p). We 
can consider n an 1E 3-valued function on M. Since Ilnll = 1, we can regard n as 
a mapping from M to the unit sphere. Note that cp(M) lies in a fixed plane of 1E3 
if and only if n = const (n = the normal vector to the plane). We therefore can 
expect the variation of n to be useful in describing how the surface cp(M) is 
"bending". 

Let 0 be the (oriented) area form on M corresponding to the Riemann metric 
induced by cpo Let Os be the (oriented) area form on the unit sphere. Then 
n*(Os) is a two-form on M, and therefore we can write 

n*Os = KO. 

The function K is called the Gaussian curvature of the surface cp(M). Note that 
K = 0 if cp(M) lies in a plane. Also, K = 0 if cp(M) is a cylinder (see the exer­
cises). 

For any oriented two-dimensional manifold with a Riemann metric we 
let (f denote the set of all oriented bases in all tangent spaces of M. Thus an 
element of (f is given by -<iI, 12 '>, where -<fll 12 '> is an orthonormal basis of 
T ",(M) for some x E M. Note that 12 is determined by fl' because of the orienta­
tion and the fact that f2 1. II. Thus we can consider (f the space of all tangent 
vectors of unit length. For each x E M the set of all unit vectors is just a circle. 
We leave it to the reader to verify that (f is, in fact, a three-dimensional manifold. 
We denote by 7r the map that assigns to each -<f II f 2'> the point x when 
-<fll f2 '> is an orthonormal basis at x. Again, the reader should verify that 7r 

is a differentiable map of (f onto M. 
In the case at hand, where the metric comes from an immersion cp, we define 

several vector-valued functions X, el, e2, and e3 on (f as follows: 

X = cp 0 7r, 

el ( -<It, f2 '» = cp*1t, 

e2( -<It, f2 '» = CPJ2, 

e3 = no 7r. 
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(In the middle two equations we regard cp* Ii as elements of 1E3 via the identifica­
tion of TI"(x)1E3 with 1E3 .) Thus at any point z of 5', the vectors el(z), e2(z), e3(z) 
form an orthonormal basis of 1E 3 , where el (z) and e2(z) are tangent to the surface 
at cp(n·(z)) = X(z) and ea(z) is orthogonal to this surface. We can therefore 
write 

(dX 1\ ea) = (dX, e3) = 0 and 

By the first equation we can write 

dX = Wlel + W2e2, (11.1) 
where 

and 

are (real-valued) linear differential forms defined on 5'. 
Similarly, let us define the forms Wij by setting 

Wij = (dei, ej). 

Applying d to the equation (ei' ej) = 8ik shows that 

(11.2) 

If we apply d to (11.1), we get 

o = d dX = dWlel - WI 1\ del + dW2e2 - W2 1\ de2. 

Taking the scalar product of this equation with el and e2, respectively, shows 
(since WII = 0 and W22 = 0) that 

If we apply d to the equation 

we get 

and 

dei = L: Wijej, 
j 

0= 'L,(dWijej - Wij 1\ dej) 

and if we take the scalar product with ej, we get 

dWij = L: Wik 1\ Wkj· 
k 

If we apply d to the equation (dX, e3) = 0, we get 

o = d(dX, (3) = (dX, de3) = (wlel + W2e2, Walel + Wa2e2), 

which implies that 

(11.3) 

(11.4) 

(11.5) 

We will now interpret these equations. Let z = </I,j2> be a point of 5'. 
For any ~ E Tz(5') we have 

(~, dX) = (~, d7r*cp) = (~, 7r*dcp) = (7r*~, dcp) = CP*(7r*~). 
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Therefore, 

(~, WI) = ('P*7r*~, el) 

- ('P*7r*~,'P*it) 

= (7r*~,it), (II.6) 

since the metric was defined to make 'P* an isometry. In other words, (~, WI) 

and (~,W2) are the components of 7r*~ with respect to the basis -<it,f2>-' 
If TJ is another tangent vector at z, then WI 1\ W2(~' TJ) is the (oriented) area of 
the parallelogram spanned by 7r * ~ and 7r *TJ. In other words, 

WI 1\ W2 = 7r*Q, 

where Q is the oriented area form on M. 
Similarly, 

and we have 
n*7r*~ = (~, w31)el + (~, w32)e2 

(~, W31)'P*it + (~, w32)'P*f2' 

(II.7) 

(II.S) 

(II. g) 

Since we can regard el and e2 as an orthonormal basis of the tangent space to the 
unit sphere, we conclude that W3I 1\ W32(~' TJ) is the oriented area on the unit 
sphere of the parallelogram spanned by n*7r*~ and n*7r*TJ. Thus 

Let 

W3I 1\ W32 = 7r*n*Qs 

= 7r*KQ 

= KWI 1\ W2' 

be the matrix of the linear transformation n*: T x(M) -+ T n(x)(S2) in terms of 
the basis -<it, f2 >- of TxClI1) and -< ell e2>- of T n(x)(S2). Then comparing (I1.6) 
with (II.9) shows that 

and (II.lO) 

If we substitute this into (II.5), we conclude that b = bl, i.e., that the 
matrix of n* is symmetric. This suggests that it corresponds to a symmetric 
bilinear form of some geometrical significance. In other words, we want to 
consider the quadratic form 

awi + 2bwIW2 + cw~ 
[where it is understood that this is the quadratic form on Tz(fJ) which assigns 
the number 

to any ~ E Tz(5')]. 
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EXERCISES 

11.1 Show that 

a<t Wl)2 + 2b<t Wl)<~, W2) + c<t W2)2 = (cp*7J"*t n*7J"*~). 

11.2 The quadratic form which assigns to each ~ E TAM) the number (cp*~, n*~) 
is called the second fundamental form of the surface. We shall denote it by II(~). 
(What is usually called the first fundamental form is just 1I~112 in our terminology.) 
Let C be any smooth curve with C'(O) = ~. Show that 

IIm = - (d2;t: C (0), n(x») . 

Thus IICn measures how much the curve cp 0 C is bending in the n-direction. Suppose 
we choose C to be such that cp 0 C lies in the plane spanned by CP*~ and n(x). [Geomet­
rically, this amounts to considering the curve obtained on the surface by intersecting 
the surface with the plane spanned by CP*~ and n(x).] Show that II(n is the curvature 
of this plane curve. 

In this sense, the second fundamental form II(n tells us how much the surface is 
bending in the direction of r. 

Note that 

Let Al and A2 be the eigenvalues of the matrix 

[~ ~J. 
Thus 

Al = max IIm and for II~II = 1. 

If Al ~ A2, there are two orthogonal eigenvectors which are called the directions of 
principal curvature of the surface. (Note that they must be orthogonal, since they are 
eigenvectors of a' symmetric matrix.) 

If A is a Euclidean motion of [3, then if; = A 0 cp is another immersion of 
M and it is easy to check that both the Riemann metric induced by if; and the second 
fundamental form associated with if; coincide with those attached to cpo What is not 
so obvious is the con verse: If if; and cp induce the same metric and the same second funda­
mental form, then if; = A 0 cp for some Euclidean motion A. We will not prove this fact, 
although it is a fairly easy consequence of what we have already established. 

We have seen the meaning of w!, W2, W3l, and W32 in geometric terms. Let us 
now interpret the one remaining form, W12. 

Let I' be a differentiable curve on M. A differentiable family of unit vectors 
11 (-) along I' (where 11 (s) E T'Y(s)(M)J is the same as a curve C in ~ with 7r 0 C = 1'. 

(Here C(s) = -<11 (s), 12(S) >-.J Let us call the family ft (s) parallel if the unit 
vectors are all changing normally to the surface in three-space. In other words, 
it (s) is parallel if the vector 

dcpn(s) (ft (s)) 
ds 
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is normal to rp(M) for all s. Let us see how to express this condition. Let 1;. 
be the tangent vector to the curve C at C(s). Then, by the definition of dell 

d 
ds rp*'Y(8) (fl (s») = (1;8, del)' 

Note that (1;., del), el(C(s»)) = 0 and (1;., del), e2(C(s»)) = (1;., WI2). Now 
el and e2 span the tangent space to rp(M), so saying that fl (-) is parallel is the 
same as saying that (1;., W12) = O. 

Thus h(s) is parallel along 'Y if and only if (1;., W12) = O. 
Let M and M be two-dimensional manifolds with Riemann metrics . 

. Let u: M ---. M be a differentiable map which is an isometry. Let 5' be the 
manifold of orthonormal bases of 111, and let 5' be the manifold of orthornormal 
bases of M. Then u induces a map U of 5' ~ 5' by 

u(-<h,f2"» = -<U*!I,U*f2">' 

Let WI be the differential form on 5' given, as in (1I.6), by 

for I; E T z (5'), 

where z = -<fl, f2">, with the corresponding definition for W2, w}, and W2' 
Then for any I; E Tz(5') we have, since if 0 U = u 0 7r, 

(I;, U*WI) = (u*l;, WI) = (7i' *u*l;, u*fl) = (u*7r *1;, u*fl) = (7r *1;, fl) = (I;, WI)' 

In other words, 
and 

Now suppose that the metrics on M and AI come from immersions rp and <p. 
Then we get forms Wij and Wij. Now by (1I.3) we have 

U*(WI 1\ (21) = u*dwI = d(u*wI) = dWI = WI 1\ W21' 

Thus 
and 

or 
and 

Since the differential forms WI and W2 are linearly independent, this can only 
happen if 

In other words, if the two surfaces rp(M) and <p(M) are isometric, they have 
the "same" W12, that is, the same notion of "parallel vector fields". Observe 
that a piece of a cylinder and a piece of the plane are isometric, even though they 
are not congruent by a Euclidean motion. In different terms, while the forms WI3 

and W23 depend on how the surface is immersed in 1E 3 , the form WI2 depends 
only on the Riemann metric induced by the immersion. 

N ow we have (1I.4): 
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From this we conclude that the Gaussian curvature K also does not depend only 
on the immersion, but only on the Riemann metric coming from the immersion. 

Since Wl2 does not depend on C(J, we should be able to define it for an arbitrary 
two-dimensional manifold with a Riemann metric. Note that the preceding 
argument shows that Wl2 is uniquely determined by Eq. (11.4). It therefore 
suffices to construct an W12 on a coordinate neighborhood so as to satisfy (11.4). 
It will then follow from the uniqueness that any two such coincide to give a 
well-defined form. Let U be a coordinate neighborhood of M, and let y;: U ---t it 

be a differentiable map such that 71" 0 y; = id. Thus y; assigns a basis <11,12 >­
to each x E U, in a differentiable manner. (One possible way to construct y; is 
to apply the orthonormalization procedure to the vector fields < ajax!, ajax 2 >-.) 

Once we have chosen y;, any basis of Tx differs from y;(x) by a rotation. 
If we let 7 denote the (angular) coordinate giving this rotation (so that 7 is 
only defined mod 271"), then we can use the local coordinates on U together 
with 7 as coordinates on 7I"-I(U). l\lore precisely, if Xl and x 2 are local coordi­
nates on U, we define yl, y2, 7 by 

and 7(Z) is given for Z = < el, e2> by 

el = cos 7(Z)Jr + sin 7(z)h, e2 = -sin 7(Z)Jr + cos 7(Z)h, (11.11) 

where <Jr,h> = y;(x) when <el, e2> E Tx(M). 
Now let 

and 

so that 81 and 82 are forms defined on U and are, in fact, the dual basis for y;(x) 
at each x E M. If we set 

and 

then (11.11) gives 

WI = cos 7al + sin 7a2 and 

Note that 

Define the functions II and l2 on M by 

and 

Let k1 = II 0 71" and k2 = l2 0 71", so that 

and 

Now 

dWl = -sin 7 d7 1\ a1 + cos 7 d7 1\ a2 + (k1 cos 7 + k2 sin 7)a1 1\ a2, 

dW2 = -cos 7 d7 1\ a1 - sin 7 d7 1\ a2 + C+k2 cos 7 - k1 sin 7)a1 1\ a2. 
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Since WI A W2 = al A a2, we can rewrite these equations as 

dWI = (dr + (k l cos r + k2 sin r)wI) A W2, 

dW2 = - (dr - (+k2 cos r - kl sin r)w2) A WI. 

We thus see that the form 

Wl2 = dr + (k l cos r + k2 sin r)wI + (-kl sin r + k2 cos r)w2 

= dr + klal + k2a2 

satisfies the desired equations. 
As before, on any two-dimensional Riemann manifold we will call a family 

of unit vectors parallel along a curve l' if (~., W12) = O. With this definition of 
parallel translation we can state the following: 

Theorem. Let l' be any differentiable curve on M. Given the unit vector 
gl E T'Y(o)(M), there is a unique parallel family of unit vectors gl (s) along 1', 
with gl (0) = gl. If g~ (0) is another unit vector of T'Y(O)(M) differing from gl 

by an angle CT, then g~(s) differs from gl(S) by the same angle CT for all s. 

Proof. It is clearly sufficient (by breaking l' up into small pieces if necessary) to 
prove the theorem for curves l' lying entirely in a coordinate chart. Then we 
can use the local expression for W12. 

Let us rewrite the condition for parallel translation along I'(s). In terms of 
local coordinates, the unit vector gl (s) is given by a function r(s), where 

gl(S) = cos r(s)!l (I'(s») - sin r(s)!2(I'(s»). 

Then 

(~., W12) = (~. dr) + (~., klal + k2( 2) 

dr(s) * 
= ([S + (~., 7r (kllh + k2Ih» 

dr(s) 
= ([8 - (7r*~., klfh + k2(J2). 

But 7r *~. = r. is the tangent vector to l' at I'(s). Thus 

where F'Y(s) = (r., kl(J1 + k2(J2) is a function depending only on s. In par­
ticular, gl(S) is parallel if and only if 

dr(s) = F ( ) 
ds 'Y S • 

From this we see that given gl (0) there is a unique parallel family gl (s), starting 
with gl (0). Furthermore, if g~ (0) is a second unit vector at 1'(0), the angle 
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between gl(S) and g~(s) is equal to the angle between gl(O) and g~(O). Thus 
parallel translation preserves angles, which proves the theorem. 0 

Note that if M is (locally isometric to) Euclidean space, then we can choose 

a 
h = axl and 

so that {}l = dx l and (}2 = dx 2• In this case, kl = k2 = 0 and T is just the 
angle that gl makes with a/ax\ that is, with the xl-axis. Thus W12 = -dT 
in this case. Then the condition for parallel translation becomes dT / ds = 0, 
which coincides \\"ith the usual notion of parallelism in Euclidean geometry. 
1\' ote that in Euclidean "pace the parallelism does not depend on the curve 1'. 

This is not true in general. 

Exercise II .3. Let 1'1 and 1'2 be two arcs of great circles joining the north and south 
poles on S2. Suppose that 1'1 and 1'2 are orthogonal at the l)oles. Let r be a tangent 
vector of the north pole. Compare its translates to the south pole via 1'1 and 1'2. 

Let M be any two-dimensional Riemann manifold. For any curve I' on M 
there is an obvious way of choosing unit vectors along 1': just let gl(S) be the 
unit tangent vector to I' at I'(s). Thus for every curve I' on III we get a curve, 
which we shall call y, on 5'. [Here y = (I'(s), gl(S), g2(S) and gl(S) is the 
tangent to I'(s).] 

We call the form y*(W12) the geodesic curvature form of 1'. [In the Euclidean 
case this is just the ordinary curvature (see the exercises).] 

Let us consider those curves whose geodesic curvatures vanish, i.e., those 
curves whose tangent vectors are parallel. We shall call such a curve a geodesic 
with respect to the given Riemann metric. Note that the condition that a curve 
be geodesic is given, in local coordinates, by a second-order differential equa­
tion. Therefore, a geodesic CO is uniquely specified by giving C(t) and C'(t) 
at any fixed value of t. In Chapter 13 we use the term "geodesic" to mean 
a curve which locally minimizes length. It is the purpose of the next few exercises 
to show that geodesics in our present sense have this property. 

EXERCISES 

11.4 Let x, y be local coordinates on U eM. Through each point of the curve 
y = 0 (that is, the x-axis in the local coordinates), construct the unique geodesic 
orthogonal to this curve. (See Fig. 11.16.) Let s be the arc-length parameter along 
the geodesic, so that the geodesic passing through (u, 0) is given by 

(y(u, 8), x(u, 8»). 

Show that the map (u, 8) ~ (y(u, 8), x(u, 8») has nonzero Jacobian at (0,0) and 
therefore defines a coordinate system in some open subset U' C U. 
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Fig. 11.16 Fig. 11.17 

11.5 We are going to make a further change of coordinates. Let Y be the vector 
field on U' defined by the properties 

IIYII = 1, (Y, du) > o. 

Thus Y is orthogonal to the geodesics u = const and points in the increasing U-direc­
tion. Let us consider the solution curves of this vector field parametrized by the initial 
position along the geodesic u = O. That is, let v be the arc-length parameter along the 
geodesic u = 0, and consider the map 

(u, v) ~ (u, s(u, v»), 

where s(u, v) is the s-coordinate of the intersection of the solution curve of Y passing 
through (0, v) with the geodesic given by u. (See Fig. 11.17.) Again the existence 
theorem and smooth dependence on parameters, together with the fact that the curves 
u = 0 and s = 0 are already orthogonal, guarantees that we can find some neighbor­
hood W so that (u, v) are coordinates on W. "We have thus constructed coordinates 
such that the curves u = const are geodesics and the curves u = const and v = const 
are orthogonal. Such a system of coordinates is called a geodesic parallel coordinate 
system. 

11.6 Let (u, v) be a coordinate system on U C ill for which (a/au, a/av) == 0, so 
that the metric takes the form 

ds2 = P du2 + q dv 2 • 

Define the choice of frame if; by normalizing a/au, a/av so that if;(x) = <h, h >-, 
where h = (a/au)/II(a/au) II and h = (a/av)/II(a/av) II. Show that the forms fh 
and fh are given by 

{II = P du, {I2 = q dv, 
and 

( 1 ap 1 aq ) 
W12 = dT - 1l"* - - du + - - dv 

q av p au 
and 

K - - ~ [i. (.!:. aq) + ~ (! ap)]. 
- pq au p au av q av 
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11.7 Let (u, v) be a geodesic parallel coordinate system, as in Exercise II.5. The 
curve Cu given by Cu(v) = Cu, v) is a geodesic. Thus (CI/(v), W12) = 0. But in terms 
of our local coordinates, (CI/(v) , dT) = 0, since C'(v) is always parallel to one of the 
base vectors 12, and 

(CI/ (v), ir*du) = (C1 (v), dU) = 0, 

since u = const along C. Thus we conclude that aq/au = 0, or q = q(v). Let us 
replace the parameter v by w 10' q(t) dt. Then (u, v) is a geodesic parallel coordinate 
system for which we have 

ds 2 = P du2 + dw2, 

and now the arc length along any curve u = const is I dw. 

11.8 Show that for Iwl sufficiently small, any curve joining, (0, 0) to (0, w) must have 
arc length at least Iwl. Conclude that (since the choice of our original curve x = ° 
was arbitrary) the geodesics locally minimize length. 

II.9 Let -< w, z>- be local coordinates on an open set U of a Riemann manifold 
with the property that the curves Cz given by Cz(w) = (w, z) are geodesics param­
etrized according to arc length. Thus z = const is a geodesic and [[a/aw[[ = 1. Let 

Show that aa/aw = 0. [llint: Show that by orthonormalizing (a/aw, a/az) , we obtain 
a map if; whose associated forms (h and (h are given by (h = dw + adz, (12 = b dz, 
where b = [[a/az - a(a/aw)[[. Then compute l1 and l2 and use the fact that z = ° 
is a geodesic.] 

11.10 Construct geodesic polar coordinates. That is, for a fixed p E },[ let 0 be an 
angular coordinate on the unit circle in Tp(l\1). For each 0 let CoO be the unique 
geodesic, parametrized by arc length, such that C(O) = p and C'(O) corresponds to 
angle 0 in Tp(JI). Show that the map (r, 0) f--+ Co(r) gives "coordinates" on U - {p}, 
where U is some neighborhood of p. By taking -< r, 0>- to be the -< w, z>- of Exercise 
H.9 and passing to the limit r = 0, conclude that 

(fr, :0) == 0. 

Thus in terms of the "coordinates" -<r, 0>- on U - (pJ, the Riemann metric takes 
the form 

ds 2 = dr2 + .1 d02 . 

These coordinates are the analogue, for a general two-dimensional Riemann manifold, 
of the polar coordinates introduced on the plane and on the sphere at the end of 
Chapter 9. The argument given there applies generally to give another proof of the 
fact that geodesics locally minimize arc length. 

We now continue to study the consequenees of the equation 

dW12 = - 7r*(Kn). 

Let D be a domain with regular boundary on M, and let if; be a map of some 
neighborhood of D -7 g: satisfying 7r 0 if; = identity. Then, by Stokes' 
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theorem, 
(II.12) 

where 12 is the area form on 1l1. 
Let us apply this to the map ~ constructed as follows: Let Y be a vector field 

on a compact manifold M which vanishes at only a finite number of points 
P1, ... ,Pr' At any x E 111 where Yx ~ 0, put hex) = Yx/llYxll, so ~(x) = 
-< x, it (x), 12 (x) >-. About each point Pi choose a chart (Ui, h,) such that Ui con­
tains no other point Pj and hi (Pi) = (0,0) in the plane. Let 'Yi,r be hi1(Cr), 
where Cr is the circle of radius r in the plane. [Here r is chosen so small that Cr 

lies in hi(U,).j Now let D = M - U, (interiors of 'Yi,r)' We must compute 
J'Yi' ~*(W12)' where "f"r is oriented clockwise rather than counterclockwise. 
F~r this purpose, we introduce about p, the orthonormal frames coming from 
the coordinates xl, x 2 • Thus we have coordinates xt, x 2 , r, where rex, f1' h) 
measures the angle thath(x) makes with 

a~llx' 
Thus (taking 'Y"r,T clockwise) 

- £i,r drCh(s)) = 21l' 

(index of Y at p,). But ~*W12 = ~*dr + ~*(k1a1 + k2( 2), so 

- £i,r ~*W12 = 21l' (index of Y at p,) + £i,r k 101 + k 202. 

Now as r --7 0, the second term on the right vanishes and JD --7 JM on the right 
of (II.12). Thus we have proved the following: 

Let Y be a vector field which vanishes at a finite number of points Pb ... , Pn. 
Then 

L index (Y) = -21- r K dA. 
i Pi 1l' JM (1I.13) 

In particular, the sum of the indices of a vector field is independent of the 
vector field, and the total integral of the curvature is independent of the 
Riemann metric. 

Thus, for instance, if It! is S2, the vector field tangent to the meridian circles 
has zeros only at the north and south poles, and the index at each of these 
points is +1. Thus (II. 13) says that the sum of indices of any vector field on S2 
must equal 2. (In particular, it is impossible to construct a vector field on S2 
which does not vanish anywhere.) Furthermore, (1I.13) says that no matter 
what Riemann metric we put on S2, we have 

r K dA = 41l'. 
lS2 

Similarly, if M is the torus, we can put it on a vector field which does not 
vanish anywhere, so the integer in (II.13) is 0. 
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EXERCISES 

Let M denote the torus with angular coordinates <PI, <P2 (defined up to 271-). The map F 
will denote the immersion of M ----> Euclidean three-space given by 

Xl (2 + cos <pI) cos <P2, 

X2 (2 + cos <PI) sin <P2, 

X3 sin <Pl. 

lI.n What is the Riemann metric on 111 induced by F? That is, compute (a/a<pI, 
a/a<PI)p, (aja<PI, a/a<P2)p and (a/a<P2, a/a<P2)p for each p E 111. (These can be given aH 
functions of <PI, <P2.) Let h, 12 denote the vector fields obtained by orthonormalizing 
a/a<p!, a/a<p2. What is the explicit expression for /l,h? 

11.12 What is the total area of the torus relative to this Riemann metric? 

11.13 In terms of the vector fields h, 12 given in Exercise 11.11 we can introduce 
(angular) coordinates <PI, <p2, r on 5'. In terms of these coordinates, what are the 
explicit expressions for the vector-valued functions X, p, f2, p, on 5'? (Each of these 
vector-valued functions should be given in terms of the fixed standard basis of Euclidean 
three-space, i.e., a triplet of functions of <PI, <p2, r.) Thus 

X(<p!, <p2, r) = < (2 + cos <PI) cos <p2, (2 + cos <PI) sin <P2, sin <PI >- . 
What are the corresponding expressions for h, 12, and h? 
11.14 What are the explicit expressions for the forms WI, W2, and Wl2 on 5' given in 
terms of d<PI, d<P2, and dr? 

11.15 What is the Gaussian curvature K of M? (Again, K can be given as a function 
of <PI, <P2.) For which points of M is the Gaussian curvature positive, and for which 
points is it negative? 

11.16 On any Riemann manifold there is an obvious way of identifying a linear 
differential form with a vector field [via the identification of Ti(M) with Tx(M) given 
by the scalar product in T x (ill) J. If g is a function, the vector field associated to the 
form dg is denoted by grad g. Let M be the torus with Riemann metric as above, and 
let Xl be the function given by XI(<PI, <P2) = (2 + cos <PI) cos <P2, as before. Show that 
the vector field X = grad Xl vanishes at exactly four points, and compute its index 
at each of these points. 

Let Xl, x2 be a local system of coordinates on U eM, and let 1/;: U ----> 5' be given by 
orthonormalizing <a/ax l , a/ax2>-. Thus coordinates on 7I"-I(U) are Xl 071", x2 0 71", r, 
where r(z) is the angle that h makes with a/ax l if z = <h, 12 >-. Then 

Wl2 = dr + klCl!I + k2C1!2 = dr + 7I"*1/;*WI2 

on 7I"-I(U). Let C be a curve in U with C'(t) > 0, and let C be the curve in ir(U) 
assigning to each t the unit tangent vector C'(t)/IIC'(t) II. Then 

k Wl2 = fC*wl2 = fe 1/;*WI2 + fc dr, 

where r is the angle that C' (t) makes with the x-axis. 



APP. II. DIFFERENTIAL GEOMETRY OF SURFACES IN 1E3 473 

From this formula we can deduce a number of interesting consequences which we 
.llIte in exercise form. 

11.17 Show that the sum of the exterior angles of a geodesic triangle D is given by 
;l~ fD KQ. (A geodesic triangle is a domain whose boundary consists of three 
1I'·lIl/eRics.) 

11.111 Suppose that D is a domain which in the local coordinates is 
111\'1'11 by a simple polygon. Thus aD = Cl U ... U Ck, where each 
", i,. a curve which is a straight line segment in the local coordinate 
1I"t.l'm. Let cq, ... , Olk be the interior angles. (See Fig. 11.18.) 
I'Ihllw that 

Fig. 11.18 

11.19 This gives us another way of computing the integer in (11.13) if M is a compact 
"Irrace. 

Hefinition. A cellulation of a compact differentiable two-dimensional manifold M 
is a finite collection of closed subsets (called the cells) Fl, ... , F m such that 

m 

M = U Fi 

Ratisfy the following: 

1) For each Fi there is a one-to-one bidifferentiable map J; of a neighborhood of 
Fi onto a polygon with ni edges (ni 2': 3). 

2) For i ~ j, either Fi n F j is empty or fi(Fi n F j) is a fixed edge or vertex oL_ 
the corresponding polygon. 

Let f be the number of faces, e the number of edges, and v the number of vertices 
III the eellulation of a two-dimensional Riemann manifold. Show that 

f-e+v = LKfl. 
Thusf - e + v does not depend on the cellulation, We have thus given three distinct 
lIlly:> of computing an integer attached to the manifold. This integer is called the Euler 
,llIIracteristic and is denoted by X(M). Thus 

X(M) = 1 KQ = f - e+ v = L index Y. 
M p, 

11.20 By a regular cellulation we mean a cellulation such that each face has the same 
lIumber of edges and each vertex is the union of the same number of edges. Show that 
there are at most five possibilities for the number of faces in a regular cellulation of the 
~phcre. Conclude that there are at most five "regular solids". 



CHAPTER 12 

POTENTIAL THEORY IN lEn 

1. SOLID ANGLE 

In what follows Xl, ... ,xn will denote Euclidean coordinates on lEn. Let 
r2 = (X I)2 + ... + (xn)2; then dr2 = 21' dr, so that we have 

r dr = L Xi dxi, 

*1' dr = L (_I)i-IXi dx l 1\ ... J2i ... 1\ dxn, 

d * rdr = ndx l 1\ ... 1\ dxn. 

Let i denote the injection of sn-l --} lEn as the unit sphere. Let V n denote thc 
volume of the unit ball and A n - l the volume of the unit (n - I)-sphere. The 
volume of the sphere of radius r is thus rn - l A n - b and so 

Vn = e rn-1An_ 1 dr = .! An-I. 
)0 n 

Since i*(*r dr) is an (n - I)-form invariant under rotations, it is some multiple of 
the volume form on sn-l. By Stokes' theorem, 

( i*(*r dr) = ( dH dr = n ( dx 1 1\ ... 1\ dxn. 
lsn-l lBn lBn 

Comparing this with the above, we conclude that i*(*r dr) is the volume form on 
the unit sphere. 

Let p denote the projection of lEn - {O} onto the unit sphere. Set 

T = p*i*(*r dr). 

Then T is called the element of solid angle. Integrated over any (n - I)-surface, 
it gives the volume (counting sign of orientation and multiplicity) of its pro­
jection on the unit (n - I)-sphere. 

We have 
dT = 0, 

since 
clT = dp*i*( *1" dr) 

= p*(di*(*r dr) = 0, 

because i*(*r dr) is an (n - I)-form on the (n - I)-dimensional manifold sn-t, 
and d of any (n - I)-form on an (n - I)-dimensional manifold must vanish. 

474 
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Let iR denote the injection of the sn-l into lEn as the sphere of radius R 
(so that i 1 = i). It then follows directly from the definitions that 

where dSR is the induced volume form. (See Fig. 12.1.) 

Fig. 12.1 

Now the volume of the ball of radius R is RnV n and the surface volume 
(area) of the sphere of radius R is R n- 1 A n- 1 = R-1(nRnV n). Now iR(*dr) is 
an (n - I)-form and thus iRe *dr) = f clSR for some function f. Since *clr and 
clSR are invariant under rotation, we conclude that f is a constant. But 

r i'R(*r dr) = n r dx 1 1\ ... 1\ dxn = nRnVn, 
Jsn-l JBn(RJ 

form which we conclude that 

dS .* (*r dr) .* ( d ) R = 'tR -r- = 'tR * r . 

Thus 

.* ( *dr) 0 'tR T - -- = . rn - 1 

Now let x be any point in P - {O}, and let h, ... , ~n-l be tangent vectors 
at x. Then 

( *dr) T - rn- 1 (h, ... , ~n-l) 

will vanish if all the ~'s are tangent to the sphere centered at the origin and 
passing through x, by the above equation. If one of the ~'s, say ~b is a multiple 
of (ajar)x, then again the expression will vanish, because T(h, ... , ~n-l) = 
t'(*r dr)(p*h, ... ,P*~n-l) and p*h = 0, and because *dr(h, ... , .) == O. By 
multilinearity, we conclude that the expression vanishes identically and there­
fore that 

*dr *rdr I: (_I)i-l X i dx 1 1\ ... 1\ ~ 1\ ... 1\ dxn 
T- --- -- - ~~--~----------------------------- rn- 1 - rn - rn 

where the ---- indicates that the corresponding term is omitted. 
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2. GREEN'S FORMULAS 

G 
\0 u 

Let u and v be smooth functions on lEn. Then 

so 

and therefore 

"au i du = L.J a--:- dx , 
x' 

[ a2u ] 1 
d* du = L (axi)2 dx /\ ... 

where the operator 

is called the Laplacian. 

12.2 

Fig. 12.2 

Let U be an open subset with compact closure and almost regular boundary. 
(See Fig. 12.2.) Set 

Du[u, v] = i du /\ *dv = i dv /\ *du = f (~~ :~i) dx 1 /\ ••• /\ dxn. 

Now Iau u * dv = Iu d(u * dv). But d(u * dv) = du /\ *dv + u /\ d * dv, so 

r u * dv = Du[u, v] + r (wlv) dx 1 /\ •.• /\ dxn. (2.1) 
lau lu 

Since Du is symmetric in u and v, we have 

r u * dv - v * du = r (u~v - v.1u) dx 1 /\ ••• /\ dxn. (2.2) 
lou lu 

Suppose U contains the origin, and let U. = U - B., where B. is the ball of 
radius E centered at the origin. Let v = r2-n.t Then dv = (2 - n)r1- n dr and 
*dv = -(n - 2)r, so that d * dv = O. Substituting into (2.2) and taking E 

tFor n = 2, set v = log r. 
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small enough so that au. = au - aB., we get 

_ (n - 2) r (UT + r 2
-

n * ;u) + (n _ 2) r UT + En - 2 r *du 
Jau n - JaB. JaB. 

= -1 r2 - nAU dx l 1\ ... 1\ dxn. 
u. 

Let us examine what happens as E ~ o. The first term on the left does not 
depend on E. For the second term, let us write U = u(O) + e(E). Then the 
second term becomes (n - 2)An_IU(0) + e(E). For the third term on the left, 
we write 

Thus the third term on the left vanishes to order En - 2• Since r 2- n is an integrable 
function on P, the right-hand side tends to - Iu r2 - n Au dx l 1\ ... 1\ dxn. 
Therefore, if we let E ~ 0, we get 

An_Iu(O) = r (UT + r 2
-

n * ;u) _ ~21 r 2 - n Au dx l 1\ ... 1\ dxn. 
Jau n - n - u 

(2.3) 
In particular, if U is a harmonic function, that is, Au = 0, then 

1 1 1 f *du u(O) = -- UT+ -. 
A n_ 1 au A n- I (n - 2) au rn- 2 (2.4) 

In the special case U = Ba, the second term on the right-hand side of (2.4) 
becomes 

1 r *du = 1 1 d * du = o. 
(n - 2)An_ Ian- 2 J aBa (n - 2)An_ 1an-a Ba 

Thus (by the definition of A n - I and T) 

() ISa U dS 
uO=JdS' 

Sa 
(2.5) 

where Sa is the sphere of radius E and dS is its volume element. In other words, 
if U is a function that is harmonic in some domain, then the value of u at any 
point is equal to its average value on any sphere centered at that point whose 
interior is completely contained in the domain. 

3. THE MAXIMUM PRINCIPLE 

Equation (2.5) has a number of startling consequences which we shall now 
develop. Let U be a function that is harmonic in a domain U. Let Xo be some 
point of U, and suppose that there is a neighborhood W of Xo such that W C U 
and 

U(x) :::; u(xo) for all x E W. 
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Fig. 12.3 Fig. 12.4 

(See Fig. 12.3.) Let Sa be a sphere of radius a centered at xo, where a is so small 
that Ba C W. Then u(x) ~ u(xo) for all x E Sa. Therefore, 

!. u dS ~ u(xo)!. dS. 
Ba Sa 

If there were some point x E Sa with u(x) < u(xo), then u(y) would be less than 
u(xo) for all y sufficiently close to x, since u is continuous. But then the above 
inequality would be a strict inequality, i.e., 

!. u dS < u(xo)!. dS, 
Ba Ba 

which contradicts (2.5). We must therefore have 

u(x) = u(xo) for all x E Sa. 

Now suppose that W is an open set that is connected; that is, suppose that any 
two points of W can be "joined by a continuous curve lying entirely in W. Let y 
be any point of W, and let C be a curve joining Xo to y. About each x on the curve 
we can find a sufficiently small ball with center x lying entirely in W. By the 
compactness of C we can choose a finite number of these balls which cover C. 
We can therefore formulate the following: There are a finite number of spheres 
Sal' ... , Sak such that each sphere and its interior lie entirely in W, Sal has 
center xo, the center Xi of Sam lies on Sa;, and y E Sak' (See Fig. 12.4.) But this 
implies that u(xo) = U(Xl) = ... = U(Xk) = u(y). In other words, we have 
established: 

Proposition 3.1. Let u be harmonic in a connected open set W, and suppose 
that u achieves its maximum value at some Xo E W. Then u is constant 
on W. 

An immediate corollary of this result is: 

Proposition 3.2. Let U be a connected open set with D compact. Then if 
u is a function that is continuous in D and harmonic in U, 

unless u is a constant. 

u(x) < max u(y) 
yEBU 

(3.1) 
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Proof. In fact, since U is compact and u is continuous, u must achieve its 
maximum at some point Xo of U. If we could actually choose Xo E U, then u 
would have to be a constant by Proposition 3.1. If u is not a constant, then 
Xo E au, and we have (3.1). 0 

From this we deduce: 

Proposition 3.3. Let U be a connected open set with U compact. Let u 
and v be functions that are continuous in U and harmonic in U. Suppose 
that 

u(y) = v(y) for all y E au. 
Then 

u(x) = vex) foran x E U. 

Proof. In fact, u - v satisfies the hypotheses of Proposition 3.2 and vanishes 
on au. Thus u(x) - vex) ~ 0 for x E U. Similarly vex) - u(x) ~ 0, which 
implies the proposition. 0 

An alternative way of formulating Proposition 3.3 is to say that on a domain 
U a harmonic function is completely determined by its boundary values. This 
is a uniqueness theorem: there is at most one harmonic function with given 
boundary values. It suggests the problem of deciding whether the corresponding 
existence theorem is true. This problem is known as Dirichlet's problem. 

Dirichlet's problem. Given a continuous function f defined on au, does 
there exist a function u that is continuous in U and harmonic in U and such 
that u(y) = fey) for all y E aU? 

We shall show in Section 9 that we can always solve Dirichlet's problem for 
domains with almost regular boundary. 

4. GREEN'S FUNCTIONS 

Suppose that U is a domain for which the Dirichlet problem can be solved . 
. We shall show in this section that the solution can be given "explicitly" in terms 

of a certain integral over the boundary. 
We first introduce some notation. For each x E P sett 

1 
Kn(x, y) = (n - 2)An_ 1 llx _ ylln-2 

so that (for fixed x) 
1 

*dKn(x, .) = -A T., 
n-l 

for y E lEn - {x} 

on lEn - {x}, 

(n ~ 3), 

where T., denotes the solid angle about the point x. Then for x E U, Eq. (2.3) 

tThis is for n ~ 3. For n = 2, set K2(X, y) = (1/2?r) In Ix - yl. 
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since G(x,·) and h are smooth functions on By .•. On the other hand, 

f G(x,') • dG(y,') = f K(x,') • dG(y,') -/- f h(x,') • dO(y, .). 
iJBz,t 8Sz .t iJBr.~ 

The second term tends to 7.ero, as above. The first term can be written (for 
n :? 3) 

A (~ 2) " 2 ( .dG(y, .) = A (~ 2) " 2 ( d • dO(y, .) = 0, 
n - I n E J iJBz,e n - l n f J Bz,t 

since GCy,,) is harmonic in RZ,f' A similar argument works for n = 2 with 
. ,,-2 replaced by log •. This proves (4.3). 

LeL u be any smooLh [uncLion on U. Apply (2.2) LO u and v = G(x,') 
on U - Bx .•. We get (since G(x,·) = 0 on aU) 

f u. dG(x, .) - f u * dG(x, .) -/- f G(x, .) * du 
au aS r .e aB:r.~ 

= fu G(x,·) ilu dx l 
/\ •.• /\ dx". 

The third integral on the left-hand side can be written as 

1 K,,(x,')' du -/- jh(X,.) * du 

'B... 1 1 1 
= A(n'-2)."-2 'B • du I B h(x,') 

n ;r,t iJ ;r,t 

1 e(."-l) -/- e(."-l) 
A(n - 2)." 2 

and so tends to zero. (The usual modification works for n - 2.) vVe get 

u(x) = r G(x,') ilu dx l 
/\ ••• /\ dx' -/- f u * dG(x, .). (4.4) 

Ju au 

We observe that (4.4) shows that if we know that there exists a solution to 
tJ.1i' = f with the boundary conditions Ii' = 0, then it is given hy 

F(x) = f G(x, y)f(y) dy. 

Rimilarly, if we know that there exists a smooth sol1ltion to the problem 

6u = 0, 

then it is given by 

u(x) = f(x) for x E au, 

u(x) = r 'U' dG(x, .), 
Joll 

(4.5) 

(4.6) 

It is important to observe that these formulas are consequences of thc existence 
of Gr~fm'f! function for U. Thus they are valid whenever we can find the func­
tion h such that properties (ii) and (iii) hold. 
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5. TIlE POISSON INTEGRAL FORMULA 

In this section we shall explicitly construct the Green function for a ball of 
radius R. Let B R be the ball of radius R centered at the origin. 

For any x E lEn - {O} let x' be the image of x under inversion with respect 
to the sphere of radius R: 

R2 
X' = II:r112 x. 

Define the function G R by 

if or r£ 0, 
(5.1) 

if x = O.t 

If x E B R, then x' ~ B H, and so the second terms on the right-hand side of 
(5.1) are cont.inuous and harmonic on B ll . We must merely check that property 
(iii) holds. No\\" for Ilull = R we have, by similar triangles (or direct 
computation), 

R Ily - x'II 
W = Ily - ;rll ' (5.2) 

so that 

for Ilyll = R. 

(See Fig. l~Uj.) This is (iii), so \\"e have verified that Gil is the Green function 
for t.he ball of radius R. 

To apply (4.4) we must compute *dGu on the sphere of radius R. Now by 
(5.1) we have (for x r£ 0) 

But, by (5.2), 

if Ill/II = R. 

tIf n = 2, set 

GR(x, y) = log lIy - xii - log ~ lIy - x'II 
R 

= log lIyll - log R 

if x =;t. 0, 

if x = o. 
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x'·~----------~--~~ 

Fig. 12.5 

We thus see that for Ilyll = R, 

.* (A dG) .* { 1 "" [ i i IIxl12 ( i R2 i)] d i} 1,R n-l * R = 1,R Ily _ xlln L.... y - x - R2 Y - IIxl12 X * Y 

.* {R2 - IIxl12 "" i d i} 
= 1,R Ily _ xlln R2 L.... Y * y 

.* {R2 _ IIxl12 } 
= 1,R R211y _ xlln * r dr . 

But iR(*r dr) = R dSR, where dSR is the volume element on the sphere of 
radius R. If we substitute into (4.6), we obtain 

u(x) = R2 - IIxl1 2 r u(y) dSR (the Poisson integral formula). (5.3) 
RAn_ 1 J SR Ily - xlln 

In the proof of (5.3) we used the assumption that the function u is differ­
entiable in some neighborhood of the ball BRand is harmonic for Ilxll < R. 
Actually, all that we need to assume is that u is differentiable and harmonic for 
Ilxll < R and continuous on the closed ball Ilxll ::;; R. In fact, for any Ilxll < R, 
Eq. (5.3) will be valid with R replaced by Ra , where Ilxll < Ra < R. If we then 
let Ra approach R, we recover (5.3) by virtue of the assumed continuity of u. 

Equation (5.3) gives the solution of Dirichlet's problem for a ball provided 
we know that the solution exists. That is, if u is any function that is harmonic on 
the open ball and continuous on the closed ball, it satisfies (5.3). Now let us 
show that (5.3) is actually a solution of Dirichlet's problem for prescribed 
boundary values. Thus suppose we are given a continuous function u defined on 
the sphere SR. Then we are given u(y) for all y E SR. Define u(x) for Ilxll < R 
by (5.3). We must show that 

a) u is harmonic for Ilxll < R, and 

b) u(x) ~ u(Yo) if x ~ Yo and IIYol1 = R. 

To prove (a) we observe that G R(X, y) is a differentiable function of x and y 
in the range Ilxll < Rl < R, Rl < Ilyll < R2/Rb and is, by construction, a 
harmonic function of y. For Ilxll < Rand Ilyll < R, we know, by (4.4), that 

GR(x, y) = GR(y, x). 
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Thus for fixed y with Ilyll < R, GR(·, y) is a harmonic function on BR - {y}. 
Letting lIyll ~ R, we see that GR(X, y) is a harmonic function of x for 
IIxll < Rl < R for each fixed y E SR. Thus 

aGR 
"""!l'""" (x, y) 
vy' 

is a harmonic function of x for each yES R. In other words, all the coefficients 
of *dGR(·, y) are harmonic functions of x for each y E SR, and therefore so is 
each coefficient of u(y) * dGR(·, y). It follows that the function u(x) = 
ISR U * dGR(x, .) is a harmonic function of x, since the integral converges uni­
formly (as do the integrals of the various derivatives with respect to x) for 
Ilxll < Rl < R. This proves (a). 

To prove (b) we first remark that the constant one is a harmonic function 
everywhere, so Eq. (5.3) applies to it. We thus have 

R2 - IIxl1 2 r dSR = 1 
An- 1R JSR lIy - xlln 

for any IIxll < R. (5.4) 

Now let Yo be some point of SR, and let u be a continuous function on SR. 
For any E > 0 we can find a a > 0 such that 

lu(y) - u(Yo)1 < E for Ily - Yoll :::; 2a (y E SR). 

Let ZI = {y E SR : Ily - Yoll > 2a} and Z2 = {y E SR : Ily - Yoll :::; 2a}. 
Then by (5.3) and (5.4) we have, for Ilxll < R, 

u(x) _ u(Yo) = R2 - IIxl1 2 r u(y) - u(yo) dSR 
(An-I) R } SR Ily - xlln , 

so 

where 

II = R2 - IIxl1 2 r lu(y) - u(Yo)1 dSR 
An_ 1R JZ 1 Ily - xlln 

and 

12 = R2 - IIxl1 2 r lu(y) - u(yo)1 dSR. 
An- 1R JZ2 Ily - xlln 

Now if Ilyo - xii < a, then for all y E ZI we have Ily - xii> Ily - Yoll -
Ilx - Yoll, so that Ily - xii > a. Thus for all x such that Ilx - Yoll < a the 
integral occurring in II is uniformly bounded. Since Ilxll ~ R as x ~ Yo, we 
conclude that I 1 ~ 0 as x ~ Yo. 

With respect to 12, we know that lu(y) - u(Yo)1 < E for all y E Z2, so that 

I < R2 - IIxl1 2 r EdSR < (R2 - IIxll 2 r dSR)_ 
2 An- 1R Jz2 11y - xlln E An- 1R JSR Ily - xii - E 

by (5.4). This proves (b). 
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We have thus proved: 

Theorem 5.1. Let u be a continuous function defined on the sphere SR. 
There is a unique continuous function defined for IIxil ~ R which coincides 
with the given function on the sphere S R and is hannonic for Ilxil < R. 
This function is given by (5.3) for all IIxll < R. 

Fig. 12.6 

6. CONSEQUENCES OF THE POISSON INTEGRAL FORMULA 

In the proof of Theorem 5.1 we assumed that u is continuous in the closed ball, 
possesses two continuous derivatives in the open ball, and is harmonic in the 
open ball. However, it is clear from (5.3) that u possesses derivatives of all 
orders when Ilxll < R. In fact, if IIxll < RI < R, we can differentiate (5.3) 
under the integral sign any number of times, since all the integrals we obtain 
will be uniformly integrable in Ilxll. Now if u is hannonic in some open set U 
and x E U, we can choose R sufficiently small so that the ball of radius R 
centered at x will be contained in U. (See Fig. 12.6.) We can then apply (5.3). 
We thus conclude: 

Proposition 6.1. Let u be a function defined on an open set U, possessing 
two continuous derivatives, and satisfying ilu == O. Then u has continuous 
derivatives of all orders. 

We can improve Proposition 6.1 by examining (5.3) a little more closely. 
Let Ilyll = R, and let RI < R. Therefore, all Ilxll ~ R 1• The multinomial 
theorem allows us to expand 

(6.1) 

where the coefficients depend on y but the series converges unifonnly in x for 
all Ilyll = R. Furthennore, if D is any operator of partial differentiation with 
respect to x, then we obtain an analogous expansion 

D{lly - xll-n} = L Bal ..... a,,(y)X~l ... x~", 

where this series is obtained from (5.4) by term-by-term differentiatio:p. and 
converges uniformly in the same region. If we now substitute (6.1) into (5.3), 
we can integrate the series term by term because of the unifonn convergence in 
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y, and we conclude that 

where the series converges uniformly for Ilxll < R I • Furthermore, we can 
differentiate the series term by term. Doing this and evaluating at x = 0, 
we see that 

alGa = Dau(O), 

where a = <aI. ... , an>. 
We thus have proved: 

Proposition 6.2. Let u be harmonic in the ball Ilxll < R. Then 

u(x) = L ~ Dau(O)x", 
a. 

(6.2) 

where the Taylor series (6.2) converges for all IIxll < R and converges 
uniformly for all IIxll ::::; RI < R. In particular, u is determined throughout 
the ball by its value and the value of all its derivatives at the origin. 

Fig. 12.7 

Let U be some connected open subset of lEn, and let u and v be two harmonic 
functions on U. Suppose that u and v have the same value and the same deriva­
tives of all orders at some point x E U. Let y be some other point of U. We 
can then connect x to y by a series of balls lying in U, where the center of each 
ball lies in the interior of the preceding ball, and such that x is the center of the 
first ball and y lies in the last ball. (See Fig. 12.7.) We thus conclude that 

u(y) = v(y). 

Thus we have: 

Proposition 6.3. Let u and v be harmonic functions defined on an open 
connected set U. Suppose that u and v, together with all their derivatives, 
coincide at some point of U. Then u == von U. In particular, if u(x) = v(x) 
for all x E W, where W is some open subset of U, then u(x) = v(x) for 
all x E U. 
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We continue to examine the consequences of (5.3). Let u be given by (5.3). 
Let D denote any operator of partial differentiation with respect to x. Thus 

aa1 + ... +an 
Dau= ~~----~~~ 

(aX 1)al' .. (axn)a n 

Then Dau(x) is given by an integral over S R of a function involving, at worst, 
inverse powers of Ily - xii for y on SR and the function u on SR. In particular, 
if Ilxll < Rl < R, then we can estimate the maximum absolute value of Dau 
in terms of the values of u on S R and the difference R - R 1. In short, 

IDau(x)1 :::; c(Da, R, Rd max lu(y)1 
liyli=R 

for Ilxll < R 1, (6.3) 

where c depends only on 0', R, and R 1 • Now suppose that u is harmonic in some 
open set U, and let Kl and K2 be compact subsets of U with 

K1 C int K2 C K2 C U. 

About each x E K 1 we can draw an open ball B Rx such that B Rx C int K 2 , 

so that 
SRx C K 2 • 

We can also draw a ball B R,x of slightly smaller radius about x. Now the open 
balls B R,x cover K 1. Since K 1 is compact, we can select a finite number of these 
balls which cover K 1• By applying (6.3) to each of these balls, replacing lu(y)1 
by the larger maxzEK2 lu(z)l, and using the smallest of the finitely many con­
stants c, we conclude that 

max IDau(x)1 < c(O', K 1 , K 2 ) max lu(z)l. 
xEK, zEK2 

(6.4) 

In particular, we have: 

Proposition 6.4. Let {Uk} be a sequence of harmonic functions defined on 
an open set U that converges uniformly on any compact subset of U. Then 
the sequence of partial derivatives {Dau} also converges uniformly on any 
compact subset. In particular, the limit of the sequence is again a harmonic 
function. 

In fact, for any compact subset K 1 we can always find a compact subset K2 
such that K 1 C int K 2 • Applying (6.4) to the harmonic functions u, - Uj 

establishes the uniform convergence of {DaUk } on K 1. Since the sequence of 
partial derivatives converges uniformly, flu = lim flUk = O. 

7. HARNACK'S THEOREM 

We continue to reap the consequences of Eq. (5.3). In addition to what we 
assumed in the preceding section, let us suppose that u(y) 2: 0 for all y E SR. 
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Fig. 12.8 

Now for Ilxll = RI < R we have (see Fig. 12.8) 

R - RI ::::; [[y - xii::::; R + RI 

Then, by (5.3), 

for all Ilyll = R. 

R2 - Ri ( R2 - Ri 1 
An_IR(R + RI)n JSR udSR ::::; u(x) ::::; An_IR(R - RI)n SR udSR . 

Now according to (2.5), the integrals occurring on the right and left of this 
inequality are equal to An_IRn-Iu(O). Thus 

(R2 _ Ri)Rn- 2 (R 2 - Ri)Rn- 2 
(R + RI)n u(O)::::; u(x)::::; (R _ RI)n u(O). (7.1) 

Inequality (7.1) is known as Harnack's inequality. It has the following con­
sequence. Suppose that {Uk} is a sequence of functions satisfying (.1).3) and 
such that 

for all y E SR' 

If we apply (7.1) to the functions Uj - Ui (j ~ i), we conclude that 

for all Ilxll::::; R I , 

where d(R, R I ) depends only on Rand R I . 
In particular, if the sequence converges at the origin, it converges uniformly 

for Ilxll ::::; RI < R. By applying our usual device of joining two points by a 
sequence of balls, we deduce: 

Proposition 7.1 (Harnack's theorem). Let {Uk} be a sequence of harmonic 
functions defined on a connected open set U and such that 

for all x E U. (7.2) 

Suppose that the sequence {Uk(P)} converges for some p E U. Then the 
sequence of functions {Uk} converges uniformly on any compact subset of U 
and, by Proposition 6.4, the limit function is again harmonic. 
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A useful variation of Harnack's theorem is: 

Proposition 7.2. Let {Uk} be a sequence of harmonic functions defined on 
an open set U and satisfying (7.2). Suppose that there is a constant M such 
that Uk(X) < M for all k and all x E U. Then the sequence of functions 
{Uk} converges uniformly on any compact subset of U to a harmonic 
function. 

To prove Proposition 7.2 we remark that this time the convergence of 
{Uk(X)} at each x E U is automatic because it is a monotone (nondecreasing) 
sequence of bounded real numbers. Proposition 7.1 guarantees that the con­
vergence is uniform on compact subsets to a harmonic limit function. 

8. SUBHARMONIC FUNCTIONS 

In this section and the next we shall show that Dirichlet's problem can be solved 
for bounded open sets U whose boundaries satisfy certain regularity conditions. 
The proof that we shall present (there are many others) is due to Perron and 
makes essential use of the concept of a subharmonic function. Let U be a function 
defined on the open set U. We say that U is subharmonic if 

a) U is continuous; and 

b) for any connected open subset W of U and any harmonic function, v 
defined on W, the function U - v satisfies the maximum principle on W. 
In other words, for any such Wand v, if there is some Xo E W with 

U(X) - v(x) :::; u(xo) - v(xo) 

then u(x) - v(x) = u(xo) - v(xo) in W. 

for all x E W, 

In order to understand condition (b) a little better, we study some of its 
consequences. First of all, we can let v be the harmonic function that is iden­
tically zero. Then (b) says that U satisfies the maximum principle on every open 
subset of U. 

Next we let BR be some ball with center z whose closure is contained in U. 
In particular, its boundary, SR, is contained in U, and the function U is con­
tinuous on SR. We can therefore find a harmonic function v defined on the open 
ball and taking on the values u(y) for y E SR. We take W to be the open ball 
and v to be the function we have just constructed. Then u - v vanishes on SR, 
so (b) implies that u(x) :::; v(x) for all x E W. In particular, u(z) :::; v(z). But 

v(z) = A lRn_ 1 ( u dSR. 
n-l JSR 

We have thus shown that if u is a subharmonic function defined on U and SR 
is a sphere with center z lying in U, then 

u(z) :::; A lRn_ 1 { u dSR • 
n-l J SR 
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In other words, a subharmonic function is always less than or equal to its aver­
age value over a sphere about a point. This property is frequently taken as the 
definition of a function's being subharmonic, and the hypothesis of continuity is 
somewhat relaxed. However, the definition we gave above is more suitable for 
our present purposes. 

Let WI and W2 be two subharmonic functions defined on an open set U. 
Define the function WI V W2 by setting 

(WI V W2)(X) = max [WI (X), W2(X)], 

The function WI V W2 is again subharmonic. The fact that WI V W2 is con­
tinuous is established as follows: Let x be any point of U. Then WI V W2(X) is 
either WI(X) or W2(X), say WI(X). Since WI is continuous, for any E > 0, we can 
find a 0 > 0 such that IWI(Y) - wI(x)1 < E for IY - xl < o. Similarly, we 
can arrange to have W2(Y) < W2(X) + E for that same range of y, so that 
W2(Y) < WI(X) + E, since WI(X) = max [WI(X), W2(X)]. For these values of Y 
we thus have 

WI(X) - E < WI(Y) :::; WI V W2(Y) < WI(X) + E, 

so that WI V W2 is continuous. Now let W be a connected open subset of U 
and let v be a harmonic function on W. Suppose that WI V W2 - v takes on 
its maximum value at some point Xo of W. Suppose that WI V W2(XO) = 
WI(XO)' Then for all x E W 

WI(X) - v(x) :::; WI V W2(X) - v(X) :::; WI(XO) - v(xo). 

Since WI is subharmonic, the right and left sides of this inequality must be equal. 
Thus WI V W2 - v satisfies the maximum principle on W, which shows that 
WI V W2 is subharmonic. 

Let W be a subharmonic function defined on an open set U, and let B be a 
ball whose closure is contained in U. Let u be the solution of Dirichlet's problem 
for the ball B with boundary values w. Thus u is the unique function continuous 
in the closed ball, harmonic in the open ball, and coinciding with W on the 
boundary S of B. As we have already observed, w(x) :::; u(x) for x E B. Now 
define the function W B by setting 

{W(X) 
WB(X) = u(x) 

for x E U - B, 
for x E B. 

We claim that the function WB is again subharmonic. The proof is just as before. 
The continuity is obvious, as before. If W is subset of U and v is a harmonic 
function on W, then WB - v cannot achieve a strict maximum at any interior 
point: suppose WB(X) - v(x) :::; WB(XO) - v(xo) for all x E W. (See Fig. 12.9.) 
If Xo E U - B, then we have w(x) - v(x) :::; WB(X) - v(x) :::; WB(XO) - v(xo) = 
w(xo) - v(xo). Since W is subharmonic, all these inequalities must be equalities. 
On the other hand, if Xo E B, then since W B is harmonic in the open ball, we must 
have WB(X) - v(x) = WB(XO) - v(xo) for all x E W. By continuity, this implies 
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Fig. 12.9 

that WB(Y) - v(y) = WB(XO) - v(xo) for yEW n S. If W n S ;;t!= 0, we can 
take y as a new Xo and the problem is reduced to the previous case. 

In short, to every subharmonic function W defined on U we have attached 
another subharmonic function WB such that WB is actually harmonic in the 
interior of B and coincides with W in U - B, and such that W :::; WB throughout 
U. It is clear from the method of construction that if WI and W2 are two sub­
harmonic functions defined on U with WI :::; W2, then 

9. DIRICHLET'S PROBLEM 

Let U be an open subset of lEn with '[j compact. We say that U has a touchable 
boundary if for every p E au there IS a ball B such that Jj n '[j = {p}. Thus 
Fig. 12.1O(a) represents a domain with a touchable boundary, while Fig. 12.1O(b) 
and 12.1O( c) represent domains that have untouchable points on their boundaries. 

0 ... ----,. , 
\ 

P I 
\ I 

'--"" 

(a) (b) (c) 

Fig. 12.10 

Let U be an open subset of P with '[j compact and with touchable boundary. 
Let f be a bounded function defined on a U, and suppose that If(p) I < M for all 
p E aU. Let Wj denote the class of all functions defined on U which satisfy the 
following two conditions: 

a) each W E Wj is subharmonic; and 

b) for each p E au, 
lim sup w(x) :::; f(p). 

zEU 
z-+p 
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We can rephrase condition (b) as follows: For each p E au and each e > 0 
there is a ~ > 0 (which depends on p, w, and e) such that 

W(X) ~ f(p) + e for Ilx - pli < ~. 

Note that the family of functions Wf is nonempty, since the constant function 
which is identically -M clearly belongs to Wf. Also note that condition (b) 
implies that lim sup w(x) < M as x --t aU. Since W E Wf is subharmonic, we 
conclude from the maximum principle that Iwi < M for all W E Wf' 

Now define the function Uf by setting 

Uf{X) = lub w(x). 
wEW, 

In view of the preceding remarks, the function Uf is well defined and, in fact, 
lu(x)1 < M for all x E U. We shall show that if f is continuous on au, the 
function Uf is the solution of the Dirichlet problem for U. We must thus show 
that Uf is harmonic and takes on the boundary values f. 

We first show, without any continuity restrictions onf, that Uf is harmonic. 
To do this it is sufficient to show that uf is harmonic in any open ball B, where 
13 c U. Let x be some point of B. Let WI, W2, •.• , Wk, ••• , be a sequence of 
functions belonging to Wf such that lim Wi(X) = uf(X). (Such a sequence 
exists by the definition of Uf.) Now define 

W'l = WI, 

w~ = Wl V W2, 

W~ = Wl V . . . V Wi. 

Then w~ ::; w~ ::; . . . ::; w~ ::; ... is a monotone increasing sequence of func­
tions belonging to Wf with lim w~(x) = Uf(X). Now replace each w~ by W~B' 
The function WiB belongs to W" since it is subharmonic and coincides with w~ 
near aU. Furthermore, since W ::; WB for any subharmonic function, we can 
conclude that lim W:B(X) = Uf(X). Inside the ball B, each of the functions W:B 
is harmonic, so that the sequence {W:B} is a monotone nondecreasing sequence 
of harmonic functions in B. Since all the functions of Wf are bounded by M, 
we conclude from Proposition 7.2 that the sequence {W:B} converges uniformly 
on any compact subset of B to a function U which is harmonic in B, and we have 
uf(X) = u(x). Furthermore, by definition, we have u(y) ::; Uf(Y) for any y E B. 
We would like to show that we actually have u(y) = uf(Y) for all such y. To this 
effect, we follow the same procedure at y, namely, we select a sequence {V:B} 
where each V:B is harmonic in B, belongs to W" and is such that the sequence is 
monotone nondecreasing and lim V:B(Y) = Uf(Y). In this way we obtain another 
function v which is harmonic in B and satisfies v ::; Uf throughout B, and 
v(y) = Uf(Y). Finally, let the functions 8i be defined by 
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and consider the functions SiB. On the one hand, they all belong to W, and are 
harmonic in B. Furthermore, we have W:B :::; SiB and ViB :::; $iB. Finally, the 
sequence {SiB} is nondecreasing and therefnre converges to a harmonic function 
8 in B. By construction, we have 

"":::;S and v :::; S 

throughout B, while u(x) = 8(X) = uAx) and u(y) = 8(y) = u,(y). Applying 
the maximum principle to the harmonic functions u - 8 and v - 8, we conclude 
(since the maximum value 0 is achieved at x and y, respectively) that S = 
u = v in all of B. We thus see that u,(y) = u(y) for any y E B, which shows 
that u, is harmonic in U. Note that in proving that u, is harmonic we did not 
make use of any properties of the boundary of U or any continuity assumptions 
off· 

Fig. 12.11 

Now let p E aU be a touchable point of the boundary, and assume that f is 
continuous at p. We shall show that u,(x) -+ f(p) as x -+ p. Let the ball BR 
of radius R with center 21 touch f] at p, that is, BR n f] = {pl. (See Fig. 12.11.) 
Since f is continuous at p, for any E > 0 we can find an RI > R such that 

If(q) - f(p)1 < E for all q E aU n BR1• (9.1) 

Define the function b by setting b(x) = IIx - zll2-n - R2- n.t Note that b is 
defined and harmonic on u::n - {z} and is negative for IIx - 211/ > R. Further­
more, b(x) :::; K < 0 if IIx - 2111 ~ RI • In particular, for all q E aU we have 

2M 
f(g) < K beg) + E + f(P). (9.2) 

In fact, this is just (9.1) if IIq - 2111 < RlI and it follows from If(q) 1 < M if 
IIq - 2111 ~ RI . By the maximum principle for subharmonic functions we 
conclude that w(x) < (2M/K)b(x) + E + f(p) for any w E W, and any x E U. 
We thus have 

2M 
u,(x) < K b(x) + f(p) + E for any x E U. 

On t~e other hand, we have, for the same reason as before, 

2M 
f(p) - E - K b(q) < f(q) for anyq E au, 

t b(x) = In (Rlllx - zli) if n = 2. 
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SO that the harmonic function f(p) - E - (2MjK)b actually belongs to Wj. 
In particular, we have 

2M 
f(p) - E - K b(x) ~ Uj(x) for any x E U. 

Putting the two inequalities together, we conclude that 

2M 
IUj(x) - f(p) I ~ K b(x) + E for all x E U. (9.3) 

Now the function b is continuous and vanishes at p. Thus by choosing x 
sufficiently close to p we can arrange that the right-hand side of (9.3) is less than 
2E. Thus Uf(X) -+ f(p) as x -+ p. 

In particular, if all points of au are touchable, and if f is continuous at all 
points of the boundary, we have proved: 

Theorem 9.1. Let U be an open subset of P with compact closure and 
touchable boundary. Let f be a continuous function defined on au. Then 
there exists a unique function Uj which is continuous on V and harmonic 
in U, and which coincides with f on aU. 

Some remarks concerning Theorem 9.1 and its proof are in order. 

a) The only time we used the assumption that aU is touchable was when 
we constructed a function b which was subharmonic in V, vanished at p, and took 
on values less than some negative constant on all points of au outside some 
neighborhood of p. Now a more careful analysis will show that we can always 
construct such a function so long as we can touch p from the outside by a cone. 
Thus we can solve the Dirichlet problem even at points like the p in Fig. 12.12. 

Fig. 12.12 

b) On the other hand, some condition on the boundary is necessary. For 
instance, if aU contains an isolated point p, then we cannot assign the value at p 
arbitrarily. In fact, if U is continuous in a neighborhood W of p and harmonic in 
W - {p}, then the Poisson integral formula implies that the various derivatives 
of U will also be bounded in W - {p}. Therefore, the proof of the mean-value 
theorem applies to the point p itself, and so u(p) is determined and cannot be 
assigned arbitrarily. More generally, a more delicate argument shows that 
the Dirichlet problem cannot be solved for domains whose boundaries con­
tain spikes pointing inward or (in dim ~3) sufficiently sharp cusps (as in 
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Fig. 12.13 

Fig. 12.13). This is the mathematical analogue of the physical fact that a very 
sharp conductor cannot hold a charge, but will spark. (The relation with 
electrostatics will be discussed in Section 12.) 

c) For the purpose of applying the results of Section 4, i.e., the construction 
of the Green function of the domain and the various identities, Theorem 9.1 
is still not quite enough. We need to know not only that the Green function 
exists, but also that it has continuous derivatives up to the boundary. This fact 
requires further argument and additional assumptions about the nature of the 
boundary; it will be discussed in the next section. 

au 

___ ~-:;;-=:::::==::::~:-'_xn = 0 Fig. 12.14 

10. BEHAVIOR NEAR THE BOUNDARY 

The purpose of this section is to discuss the behavior of the solution of the 
Dirichlet problem near the boundary. In fact, we shall prove: 

Theorem 10.1. Let U be a domain with regular boundary and compact 
closure in lEn. Let f be a continuously differentiable function defined on au, 
and let u be the solution of the Dirichlet problem with boundary values f. 
Then the partial derivatives auf axi can be extended to continuous functions 
on D. Furthermore, if p E au and ~ = -< e, ... , C>- is tangent to 
the boundary at p, then 

<~, df) = <~, du) = L (aujaxiHi. 

The following proof was suggested to us by Professor Ahlfors and is repro­
duced here with his kind permission. 

Proof. Let p be some point of au, and let us arrange, by a Euclidean motion, 
that the tangent plane to au at p is the plane xn = O. (See Fig. 12.14.) Then 
near p the points of aU are all points of the form (Xl, ... , xn-I, cp(xI, ... , X n - l )), 



496 POTENTIAL THEORY IN lEn 12.10 

where cp is a function defined near the origin of IRn - 1 and vanishing at the origin, 
together with all its first derivatives. In particular, there is a constant C > 1 
such that 

Icp(x\ 0 • 0 ,xn-I)1 ~ C{(XI)2 + 0 • 0 + (xn-I)2} 

in some neighborhood of the origin of IRn-lo We can therefore choose a suffi­
ciently small R < 1/2C so that the (open) ball of radius R with center 
(0, . 0 0 , 0, R) lies entirely within U and the ball of radius R with center 
(0, . 0 • ,0, - R) lies inside the complement of Do (See Fig. 12.15.) 

Let z = (0, 0 •• ,0, - R). Then for all q E au sufficiently close to p we have 

Ilq - zl12 = (X I)2 + ... + (Xn - I)2 + R2 - 2Rcp(q) + cp2(q) 

;::: (1 - 2RC){(Xl)2 + ... + (xn-l)2} + R2 + cp2(q), 
so that 

IIq - zll - R ;::: k{(X 1)2 + ... + (xn-l)2} , 

where k is some positive constant. Let cp(r) = rn - 2 (=In r if n = 2). Then 
cp'(R) ~ 0, and therefore Icp(llq - zll) - cp(R)1 > Cillq - zll - Ri for a suit­
able C > 0. In particular, we have the inequality 

or 

if n = 2 

for some positive constant K. 
Now let us replace the function f by f - [f(p) + L~-l (af/axi)(p)xi]. 

Then u - (f(p) + L~-l (af/axi)(p)xij is the solution of the corresponding 
Dirichlet problem. In this way we may assume (changing our notation accord­
ingly) that f, together with its first derivatives, vanishes at p. Since f is assumed 
to have continuous first derivatives, we may apply Taylor's theorem to conclude 
that there exists a c > ° such that for all q on au sufficiently close to p we have 

(10.2) 

As in the last section, let 

b(x) = Ilx - zll2-n - R 2- n 

R 
= In Ilq - zll if n = 2. 

If we compare (10.2) with (10.1), we see that for all q E aU sufficiently close to 
p we have 

c 
If(q)1 ~ K Ib(q)l· 

On the other hand, since b is strictly negative outside some neighborhood of p 
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• (0, ... , 0, -'2C) 

Fig. 12.15 Fig. 12.16 

(on aU), and since f is bounded on aff, we can (using the above inequality for 
all q near p) find a constant A such that 

If(q) I :$ Alb(q)1 for all q E aU. (to.3) 

Since the function b is harmonic in U, the maximum principle applied to u - Ab 
and Ab - u allows us to conclude that 

lu(x)1 :$ Alb(x)1 for all x E U. (10.4) 

Now the function b is a differentiable function of the distance from z which 
vanishes when this distance is R. In particular, there is a constant a > 0 
such that 

Ib(x)1 :$ a d(x), 

where d(x) denotes the distance from x to the sphere of radius R with center z. 
Now let B be the ball of radius R with center -z = (0, ... ,0, R), so that B 
lies in U, and let S = aB. Note that S is tangent to the sphere about z at the 
point p. (See Fig. 12.16.) Thus for points y on S, d(y) :$ cillY - p1l2. If we 
substitute this into (10.4) using the previous inequality, we conclude that 

lu(y)1 :$ LilY - pll2 for all YES, (10.5) 

for some constant L. We apply the Poisson integral formula to the ball Band 
the function u and differentiate with respect to Xi to obtain 

au _ -2(x' + Zi) f _ u(y) dS + R2 - IIx + z1l2, f u(y) (Xi - yi) dS 
ax. - An_1R IIx - ylln An_1R IIx - ylln+2 . 

(10.6) 
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Now let x be on the normal to the boundary through p, so that x = (0, ... , 0, xn). 
If /xn/ < R, then 

I/y - pI/ ~ I/y - xl/ + /xn/ ~ 21/y - xl/. 
Thus 

I I I/x ~~I/n dsl ~ 2n I I/~~~I/n dS ~ 2nD II/y - pl/2-n dS. 

Since the sphere is (n - l)-dimensional, this last integral converges absolutely, 
and we thus see that the first integral in (10.6) is uniformly absolutely conver­
gent. (Note that the term containing this integral vanishes if i < n.) We now 
show that the second term in (10.6) tends to zero as xn tends to zero. In fact, 
R2 - /Ix + zl/2 = xn(2R - xn), so we can write the second term of (10.6) as 

(2R - xn) (xn) 1/2 I (xn) 1/2U(Y) (Xi _ yi) 
A n- 1R I/x - yl/n+2 dS. 

This time, since xn ~ I/x - yl/ for all YES, we can assert that the integrand 
is smaller in absolute value than 

/u(y)l/x i - yil < lu(y)1 < lu(y)12n+1/2 < D2n+1/21/y _ pl/3/2-n 
I/y - xl/n+3/2 - I/y - xl/n+l/2 - I/y - pl/n+l/2 - , 

which is again absolutely integrable. Therefore, the integral occurring in the 
last expression is uniformly bounded for all values of xn ~ o. Since (xn) 1/2 --7 0, 
we conclude that the second term of (10.6) approaches zero. 

If we now rephrase the result we have obtained independently of the 
special choice of coordinates, we see that we have proved the following: Let p 
be any point of au, and let x be a point on the normal line to au through p. 
If ~ is any vector parallel to a tangent vector at p, then (~, du) --7 (~, df) as 
x --7 p along the normal line. If a/an denotes the unit vector in the normal 
direction (pointing into U), then 

<~ , dU) --7 -2 I u(y) - u(p) dS 
an An-l I/y - pl/n ' 

(10.7) 

where the integral is taken over the sphere of radius R tangent to au at p and 
lying inside U. 

SO far, we have proved convergence only if x --7 p along the normal direction. 
If we go back and examine the argument, we see that the radius R and the 
constant D in (10.5) can be chosen uniformly for all p E au. (In fact, since aU 
is compact, we can cover au by a finite number of neighborhoods, of type (iii), 
such that a ball of radius R about each p E aU lies in one of these neighborhoods, 
where R is sufficiently small. In such a situation it is clear that the choice of R 
(still smaller, if necessary) depends only on the second derivatives of the change 
of charts from Euclidean coordinates to the adjusted charts. Also the choice 
of D depends only on the constants involved in the Taylor expansion of f and 
on R. Thus the choice of Rand D can be made uniformly.) Since, byassump-
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tion, the partial derivatives of f are continuous and the right-hand side of (10.7) 
is continuous in p, we conclude that the limits of the partial derivatives of u 
exist as we approach the boundary in any direction, and that in fact we have 
proved Theorem 10.1. 0 

We can now construct a Green function for any domain with regular 
boundary by the solution of Dirichlet's problem, as in Section 4. Theorem 10.1 
tells us that it is differentiable in the closed set V in the sense that the partial 
derivatives are continuous up to the boundary. If we want to derive the various 
formulas of Section 4, we can do so by applying a limit argument: We simply 
replace V by a smaller domain va such that va ~ V and aVa ~ av as a ~ o. 

(Actually, a more careful and delicate argument will show that if f has two 
continuous derivatives, then the auj axi we obtain as limits on the boundary are 
in fact continuously differentiable. Since aujaxi is the solution of the Dirichlet 
problem with these boundary values, we conclude that the second derivatives 
of u can be extended so as to be continuous on V. In this way one can prove that 
if f is C~, all the derivatives of u can be extended so as to be continuous on V. 
In particular, all the derivatives of the Green function G(x, .) can be extended 
to continuous functions at the boundary for any x E V.) 

11. DIRICHLET'S PRINCIPLE 

The solution of Dirichlet's problem has an interesting and useful characteri­
zation as the solution of the problem of minimizing the Dirichlet integral 
D[u, u] = J'L (aujaxi )2 with given boundary values. More precisely, 

Theorem 11.1 (Dirichlet's principle). Let V be a domain with compact 
closure and regular boundary, and let f be a continuously differentiable 
function on aV. Let u be the solution of the Dirichlet problem with 
boundary values f, and let w be any function which is differentiable in V 
and takes on the values of f on the boundary, and whose derivatives can 
be extended to be continuous in V. Then 

D[u, u] ::; D[w, w], 

and equality holds if and only if u = w. 

(11.1) 

Proof. Let us write w = u + v, where now v is continuously differentiable on 
V, continuous on V, and vanishing on av. Then 

D[w, w] = D[u + v, u + v] = D[u, u] + D[v, v] + 2D[u, v], (11.2) 

since D is bilinear and symmetric in its arguments. 
Now suppose for the moment that u possesses two continuous derivatives 

and v possesses one continuous derivative in a neighborhood of V. Then 

D[u, v] = Du[u, v] = ( dv * du = ( v * du - ( vLlu = O. (11.3) 
Ju Jau Ju 
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Now D[v, v] = J'L. (av/ax i )2 ~ 0 and vanishes if and only if all the derivatives 
of v vanish, so that v is a constant on each component of U. Since v vanishes on 
au, we conclude that D[v, v] = 0 if and only if v = O. 

In case u and v are not necessarily differentiable in a neighborhood of au, 
we establish that D[u, v] = 0 by writing 

Du[u, v] = lim Dua[u, v], 

where Ua is a sequence of domains which approach U as a ~ 0 and aUa ~ au. 
Applying the previous argument to each of the domains Ua, we conclude that 
D[u, v] = 0 and D[v, v] = 0 if and only if v = O. This proves the theorem. 0 

12. PHYSICAL APPLICATIONS 

The study of Laplace's equation and its solutions plays an important role in 
many theories of classical physics. This is essentially due to the intimate 
connection between the Laplace operator and Euclidean geometry. Since this 
is not the place to elaborate on the physical applications, we refer the reader to 
any physics text for the details. (See, for instance, Feynman, Leighton, and 
Sands, The Feynman Lectures on Physics, Addison-Wesley, Reading, Mass., 
1964, vol. II, especially Chapter 12.) We shall briefly mention some of the 
relevant physics in this section. 

In electrostatics it is assumed that the electric field E satisfies the equations 

d * E = p, dE= 0, 

where p is the density of charge and we identify the vector field E with a linear 
differential form via the Euclidean metric on 1E3. Here p is assumed, for the 
moment, to be a smooth density. (It is also convenient to consider the limiting 
cases of "surface distributions" and "point distributions".) By the second of 
these equations, we know that E can be written as 

E = -dcp, 

where cp is a smooth function known as the potential of the electric field. The 
first equation then implies that 

Acp = d * dcp = -po 

H p is given, then cp is determined by the formula 

1 f p(x) 
cp(y) = 471' Ily - xii dx 

(since A2 = 471'). As limiting cases, we obtain, for charge distributed along a 
surface S with density u dA, the formulas 

( ) _ ~ r u(x) dA 
cp y - 471' } S Ily - xii ' 
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where dA is the area density of ,the surface, and 

( ) _ -.!... ( l(x) ds 
IP y - 47r Jc lIy - xII ' 

where l ds is a linear distribution along a curve C. 
For a point charge located at x, we obtain 

where e is the magnitude of the charge. 

Fig. 12.17 

There can be no electric field along a conductor (since this would result in a 
motion of the charge, which contradicts the assumption of a static field). Thus 

and IP = const. 

In most problems that arise the distribution of charge is not known in 
advance, but must be determined. For example, suppose that a unit charge is 
placed at a point x inside a cavity whose boundary is a conductor which is 
grounded, i.e., kept at zero potential. (See Fig. 12.17.) We want to find the 
electric field inside the cavity. There will be a charge distribution induced on 
the boundary surface that we also wish to determine. Since there is no charge 
distribution anywhere inside the cavity, except at x, the potential IP must be 
harmonic everywhere except at x, and, in fact, differs from 

1 

by a harmonic function. Since we want IP = 0 on the boundary, we see that the 
desired potential IP is exactly the Green function for the domain. The surface 
density can then be determined from dIP along the boundary. (This is another 
reason why it is important to know that the solution of Dirichlet's problem is 
differentiable at the boundary.) 

More frequently, we are interested in the electric field outside conducting 
surfaces. Here, strictly speaking, the theory we have developed of Dirichlet's 
problem does not apply, since we considered only bounded domains. We can 
handle this problem in one of two ways. First, we can reduce to the Dirichlet 
problem by considering everything contained inside a very large conducting 
sphere (at potential zero). Then we let the radius go to infinity to get the 
desired potential as a limit. Second, we can modify our arguments in SeCtions 3 
through 10 to include the case of unbounded domains, but restrict all our func­
tions to vanishing as clr at infinity. The details are left to the reader. 

In the theory of diffusion one assumes that material of some nature is 
flowing according to a vector field X. If the density of the material is p dV, 



502 POTENTIAL THEORY IN lEn 12.12 

then the amount of material flowing per unit time through an oriented piece of 
surface S is given by 

Is p(X, n) dA = Is *pX, 

where n is the unit normal vector to the surface, dA is the element of area, and, 
we are regarding pX on the right-hand side as a linear differential form via the 
Euclidean metric. Thus the net amount of material flowing out of any region is 
d * pX = div -< X, p>-. Now "material" may be produced in the region at a rate 
s dV (where s is the function describing the rate of productivity of the sources 
in the region). Thus the total change of density is given by 

~~ dV = div -<X, p>- - s dV. 

If, as we shall assume, the situation is stationary, i.e., the density does not 
change, we obtain the equations 

div -<X, p>- = s dV. 

On the other hand, it frequently happens that the flow is given by the gradient 
of some function, i.e., 

PidX = dN 

for some function N. Combining these equations, we obtain 

I1N = s. 

In the theory of heat N is the temperature, PidX is the rate of flow of heat, and 
s is the density of the sources of heat. The equation PidX = dN says that the 
rate of flow of heat is proportional to the gradient of temperature. In the theory 
of diffusion of particles it is assumed that the rate of flow of the material is 
proportional to the change (i.e., gradient) of the density of the particles. (This 
says that the particles tend to flow from a region of higher density to a region 
of lower density.) Then N represents the density of the particles and s represents 
the rate of production of particles. 

Suppose, for example, that the boundary of a region D is kept at some fixed 
temperature j, where j is a given function on aD and there are no sources of heat 
inside D. Then the distribution of temperature in D is given by the function N 
which satisfies the differential equation I1N = 0 and the boundary condition 
N = j on aD. In other words, the temperature is determined by the solution 
of Dirichlet's problem. 

In the theory of steaily, incompressible, il'rotational flow of a fluid it is assumed­
that a vector field X is given which represents the flow of the liquid. By the 
incompressibility it follows that d * X = O. It is assumed that there is no 
circulation, that is, dX = O. Thus X = dcp for some function cp which is a 
solution of Laplace's equations. The natural boundary-value problems that arise 
in this case are different from those we have been discussing, so we simply refer 
the reader to standard works on fluid mechanics. 



12.13 PROBLEM SET: THE CALCULUS OF RESIDUES 503 

SUPPLEMENTARY EXERCISES 

1. Let VI and V2 be vector spaces with scalar products. A linear map l: VI -+ V2 
is said to be conformal (or a similarity) if 

(lv, lw) = c(v, w), 

where c is a positive constant. (Note that if c = 1, then l is an isometry.) 
Let M 1 and M 2 be manifolds each with a Riemann metric. A differentiable (C"') map 

IP is said to be conformal if IP*", is conformal for each x E MI. Thus, to say that IP is 
conformal means that 

for any x E MI. (Note that this time the c can depend on x.) 

a) Let IP: U -+ 1R2 be a conformal map, where U C 1R2 and we use the Euclidean 
metric on U and on 1R2. Suppose IP is given by 

lP(x, y) = (u, v), 

where u = u(x, y) and v = vex, y), and where (x, y) and (u, v) are rectangular 
coordinates in the plane. Show that either the equations 

hold or the equations 

au av -=--, 
ax ay 

hold. 

au av 
ay=-ax 

au av 
ay = ax 

b) Conclude that if u and v are as in (a), then they are both harmonic functions. 

2. a) Let u be a harmonic function defined on all of IRn. Show that if u is bounded 
then it must be a constant. 

b) Using (a) and Exercise 1, show that there is no conformal map of 1R2 onto a 
bounded subset U C 1R2. 

13. PROBLEM SET: THE CALCULUS OF RESIDUES 

On a manifold M we can consider complex-valued smooth functions, differ­
ential forms, etc. For instance, we say that the function 

j=u+iv 

is a complex-valued C'" -function if each of the real-valued functions u and v are 
real-valued C"'-functions. Similarly, we consider' the complex-valued linear 
differential form 

w = 0' + iT, 

where 0'1" E j\/(M) are linear (real-valued) differential forms. We can then per­
form the usual operators, remembering that i 2 = -1. Thus 

jw = (uu - VT) + i(vu + p,T). 
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Similarly, if 
and 

then 
WI /\ W2 = (0"1 /\ 0"2 - T1 /\ T2) + i(O"l /\ T2 + T1 /\ 0"2) 

is a complex-valued exterior two-form. 
We similarly have the operator d given by 

df= du+ idv, dw = dO" + idT, etc. 

12.13 

If X 1 and X 2 are vector fields, we define the "complex vector field" Xl + iX 2 

as that differential operator on complex-valued functions which is given by 

(Xl + iX2)f = Xd + iX2/ 

= (X 1u - X 2v) + i(X1V + X2U). 

From now on, let M be an open subset of 1R2 with rectangular coordinates 
(x,y). Wesetz=x+iy,so 

dz = dx + idy. 
We let 

:z = x - iy, d:z = dx - idy, 

and then define the complex vector fields ajaz and aja:z by 

a l(a .a) and a l(a .a) 
az = 2 ax - ~ ay a:z = 2 ax + ~ ay . 

We then set 

:~ = (:z)f and 

for any complex function f. 

EXERCISES 

13.1 Show that for any complex-valued smooth function f we have 

df = :~ dz + :~ dz. 

13.2 Show that Leibnitz's rule holds for a/az and a/az; that is, 

and aUg) = f (ag) + (i!!.). 
az az g az 

A functionf is called holomorphic (or complex analytic) if af/az = O. For a holomorphic 
function f we write 

f' = af. 
az 
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13.3 Show that dz and di are independent in the sense that 

if a dz + b di = 0, then a = 0 and b = O. 

13.4 Conclude that f is holomorphic if and only if df = h dz for some h. 

13.5 Show that 
d(z") = nzn-l dz 

(on 1R2 - {O} if n < 0) for all integers n, so that z" is holomorphic. 

505 

13.6 Conclude that every polynomial p given by p(z) = L:~ akzk is holomorphic and 
that 

" 
p'(z) = E kakz"-l. 

1 

13.7 Define the function e' by setting e' = eX (cos y + i sin y). Show that 

de' = e'dz. 

13.8 Show that the product of two holomorphic functions is holomorphic. 

13.9 Let f = u + iv be a holomorphic function, and consider the map sending 
(x, y) --t (u, II) as a map of Me 1R2 into 1R2. Show that this map is conformal and that 
its Jacobian determinant at the point (x, y) is /f'(z)/2 if z = x + iy. 

13.10 Let g be a holomorphic function defined on the image of M under the map of 
M C 1R2 corresponding to f. Define g 0 f by 

go f(x, y) = g(u(x, y), II(X, y)) 

[which we can write, for short, as g 0 fez) = g(j(z) )]. Show that g 0 f is holomorphic 
and that 

(gof)'(z) = g'(j(z»)f'(z). 

13.II Let U be a domain with almost regular boundary in the plane. By Stokes' 
theorem we have 

( 11= ( dll 
fau fu 

for any complex-valued linear differential form II. (This is to be interpreted, as usual, 
as the equality of the real and imaginary parts of both sides.) Conclude that 

r g dz = r dg A dz = r ~~ di Adz. 
Jau Ju Juuz 

13.12 Show that di A dz = 2i dx A dy, so that 

r g dz = 2i ( ag dx A dy = 2i ( ag . Jw k~ k~ 
13.13 Conclude that if f is a smooth function defined in a neighborhood of V, and 
if f is holomorphic in U, then 

( fdz = o. 
fau 



506 POTENTIAL THEORY IN lEn 12.13 

Fig. 12.18 Fig. 12.19 

13.14 Let ~ = r + iT/, where (r, T/) E U and U is a smooth function defined in a neigh­
borhood of D. (See Fig. 12.18.) Show that 

Um = ~[1 U(z) dz + (au/az dz AdZ]. 
2m, au Z - ~ Ju Z - ~ 

[Hint: Apply Exercise 13.11 to the function U(z)/(z - ~) and the domain U - B., 
where B. is a disk of radius E about~. Then let E -7 0.] 

13.15 Conclude that if f is holomorphic in U, then for any ~ E U, 

fm = ~ 1 fez) dz. 
2m, auz-~ 

13.16 Let f be holomorphic in U - {al} U ... U {ak} (and let f be smooth in 

TV - {at} U ... U {ak}, 

where W ~ U), Suppose that in a neighborhood of each ai 

fez) = Bhi.i(Z - ai) -hi + ... + B1,i(Z - a)-l + r,oi(Z), 

where r,oi is holomorphic in the neighborhood. (See Fig. 12.19.) Show that 

-1-1 fez) dz = Bll + Bl2 + ... + B lk. 
2'/1'i au 

[Hint: Apply Exercise 13.13 to U - UDi •• where Di .• are small disks around the ai, 
and let E -7 0.] 

The result of Exercise 13.16 can frequently be used to evaluate definite integrals. For 
example, suppose we wish to evaluate 

fo21r R(cos (J, sin (J) d(J, 

where R is some rational function of two variables. If we set z = ei6 , then this integral 
becomes 
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where Dl is the unit disk. To apply Exercise la.IS', we must merely find the points aj 

and the coefficients Bl,j to evaluate the integral, For instance, if a > 0, 

r dO •. 1 {2r dO 'L' { dz 
J 0 a + COs 0 = "2 J 0 a + cos 0 = - ~ -, };JDl 212 + 2az + 1 . 

Now 212+ 2az+ 1 ,.,; (21 - aI)(z - a2), where al = -a+ (a2 _1)112 and a2 = 
-a - (a2 - 1)112. Thus only al E DI, and 

1 -1 (1 1) 
212 + 2az+ 1 = al - a2 z-=-a7 -21 - a2 ' 

sO the integral is evaluated as 

Va2-1 
13.17 Evaluate 

(a> 0). 

13.18 Evaluate 

t.. sin2 0 
Jo a+bcosO dO• 

Let P and Q be polynomials such that Q(x) :pi. 0 for any real x. Suppose that 

P(z) = a,,_2z,,-2 + a .. _3z·-3 + ... + alZ + ao 
and 

Q(z) = b"z" + b,,_IZ,,-I + ... + bIZ + bo, 

where b .. :pi. O. In other words, the degree of Q is at least two more than the degree of 
P. Then P /Q is absolutely integrable and 

P(x) dx lim P(x) 1"" lR 
-ao Q(x) = R-+"" -R Q(x) . 

u 
Fig. 12.20 

Now consider Jau [P(z)/Q(z)] dz, where U is a semidisk of radius R. (See Fig. 12.20.) 
The integral over au splits into two parts: 

P(x) dx + P(z) dz lR 1 
-R Q(x) fR Q(z) , 
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where rR is half the circle of radius R. For large values of R we have, for liz II = R, 

so 

I ( P(z) dzl = liR r P(Re") dOl < C1I' 

JrR Q(z) J 0 Q(Rei9) - R 

and thus limR--->oo JrE = O. We can then apply Exercise 13.16, since there will be only a 
finite number of zeros of Q in the upper half-plane. 

13.19 Evaluate 

13.20 Show that 

(a > 0). 

100 dx 11' (2n - 2)! 
-00 (x2 + l)n = 22(n-l) [(n - 1)!]2' 



CHAPTER 13 

CLASSICAL MECHANICS 

In this chapter we shall present a brief introduction to the study of classical 
theoretical mechanics. We emphasize that what we are studying is a branch 
of mathematics-idealized from the mathematical considerations common to 
many problems arising in the physics of mechanical systems. We will thus 
formulate, on an axiomatic basis, a mathematical model that describes features 
that arise in the study of the equations of mechanics. The model will apply to 
most situations arising in the mechanical applications. In order to simplify the 
mathematics, we have sacrificed a certain amount of generality, and therefore 
there will be some situations in classical mechanics where our model is inadequate. 

Mechanics is devoted to the study of how a physical system evolves in time. 
The first fundamental assumption is that the system can be described (locally) 
by a collection of continuous parameters. More precisely, we assume that the 
set of all possible "positions" or configurations of the physical system is a 
differentiable manifold M which is called the configuration space. 

For example, if the physical system consists of three particles free to move 
in space, we can describe the "position" of the system at any given instant by 
giving the positions of each of the three particles. Thus, in this case, the con­
figuration space is 

1E3 X 1E3 X 1E3. 

H we insist that no two particles be able to occupy the same position of space at 
the same time, then the configuration space M is given by 

M = 1E3 X 1E3 X 1E3 - S, 
where 

s = {-<Vb V2, V3 >- : Vi E 1E3 and VI = V2 or VI = V3 or V2 = V3}. 

If the physical system is a rigid body (say a top) spinning about some point 
held fixed in space, then the position of the system is completely described by 
giving the position in space of three orthonormal vectors on the body (drawn 
through the fixed point, say). Since these vectors can be placed in any position 
but must remain orthonormal and cannot change orientation (from right- to 
left-handedness), we see that M is the set of all oriented orthonormal bases of 1E3 • 

In this case M is a three-dimensional manifold. If we fix some arbitrary initial 
orthonormal basis -< eb e2, e3>-, then any possible position of the system is 

509 
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given by -< VI, V2, V3 >-, where Vi = Aei and A is a rotation, that is, A is an 
orthogonal linear transformation with positive determinant. Thus M is diffeo­
morphic to 0+(3), the space of all orthogonal three-by-three matrices with 
positive determinant. 

The basic problem of mechanics is to describe how the configuration of the 
system changes in time. As the system evolves, the configuration at any instant 
t will be given by some point G(t) EM. Our problem is to give a reasonably 
simple description of the possible curves G which can arise as actual changes 
in the configuration of the mechanical system. 

The second fundamental assumption of classical mechanics is that the 
curve G(t) can be determined from a knowledge of the "state" of the system 
at any given time. That is, we may (and, in general, will) have to know more 
about the system at a given time than its configuration in order to be able to 
predict its future configuration. However, if we do have enough such instan­
taneous information, we can determine the curve G(t). The total amount of 
relevant information is called the state of the system. It is assumed that the set 
of all states is itself a differentiable manifold, S. Since the state of a system con­
tains more information than the configuration, we can assign to every state s the 
configuration 1I'(s) EM of the system in the state s. In other words, we have a 
map 11': S -- M. We assume that this map 11' is differentiable. 

It is assumed that if we know the state s of the system at time to, we can 
predict its state at any future time t. Thus we are given a map 

'Pt,to: S -- S 

such that if the system is in the state s at time to, it will be in the state 'Pt,to(s) 

at time t. Now there is nothing special about the time to. If t > tl > to and s 
is the state at time to, then 'Ptl,tO(S) is the state at time h, and therefore 

'Pt,tl ('Ptl,tO(S» 
is the state at time t. 

In other words, 

Now it turns out that in most (basic) mechanical systems, if the time is suitably 
parametrized, the function 'Pt,to really depends only on t - to. (This fails to 
hold in the so-called nonconservative systems. A typical nonconservative 
system is one involving friction. This is usually a consequence of not studying 
a sufficiently complete system. In the case of friction, for example, the heat loss 
must be taken into account.) Let us assume that 'Pt,to depends only on t - to. 
Then, if we write 

and 

then the previous equation can be written as 
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This looks like the defining relation for a one-parameter group except that so 
far we have been restricting ourselves to nonnegative values of 8. In point of 
fact, it is assumed that this restriction is unnecessary and, in fact, we are given 
a flow ep on S. 

To repeat, we are given a differentiable manifold M representing the set of 
all possible configurations of our system, a differentiable manifold S representing 
all possible states of the system, a differentiable map 1r: S ~ M, and a flow ep on 
S. Then the curves C(t) are all assumed to be of the form 

C(t) = 1rep/(x) for some xES. 

We must therefore describe S, 1r, and ep for any given configuration space M. 
Classical mechanics makes a very definite assumption about the nature of the 
space S (and the map 1r). It asserts that the state of a system is completely 
determined by its (configuration and its) "momentum". What is the momentum 
of our abstract setup? As usual, the momentum should be something that resists 
change in velocity. It turns out that an appropriate object representing "infinitesi­
mal resistance to change in istantaneous velocity" is a cotangent vector. A 
heuristic motivation for this, which the reader may choose to ignore, is the fol­
lowing: At any given configuration x EM, the set of all possible velocity vectors 
is just TAM). At any given v E Tx(M), a "resistance to change in v" would be 
some function defined near v and vanishing at v. To first order we could replace 
such a function by its differential. Thus "infinitesimal resistance" is a linear 
function on Tv(Tx(M). Since Tx(M) is a vector space, we may identify 
Tv(Tx(M) with TxCM) for each v. Thus all possible "momenta" become identi­
fied with all elements of T:(M). 

The set S is thus taken to be the set of all momenta, i.e., the set of all 
cotangent vectors at all points of M. We must first show how to make this 
space into a differentiable manifold. 

1. THE TANGENT AND COTANGENT BUNDLES 

Let M be a differentiable manifold, and let us consider the set T(M) of all 
tangent vectors to all points of M. Thus 

T(M) = U Tx(M). 
xEM 

Let 1r denote the map of T(M) onto M which assigns to each tangent vector the 
point of M at which it is defined; that is, if ~ E Tx(M), then 1r(~) = x. We 
claim that T(M) can be made into a differentiable manifold in a natural way, 
so that 1r is a differentiable map. In fact, let a be an atlas on M. For any 
(U, a) E a, define T(a): 1r- 1(U) ~ V E9 V by setting 

T(aH = -< a(x), ~a >- if ~ E Tx(M), x E U. (1.1) 

We claim that the collection (1r- 1U, T(a) is an atlas on T(M). To check that 
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T(a) is one-to-one, we observe that if ~ E T",(M) and 'T/ E TII(M) with x ~ y, 
then a(x) ~ a(y); while if ~ ~ 'T/ and both lie in T",(M), we have ta ~ 'T/a. 
To check that the transition law is satisfied, we note that Eq. (4.3), Chapter 9 
implies that if (U, a) and (W, (3) are two charts of ct, 

T({3) 0 T(a)-l(v, ~a) = <(3o a-lev), JfJoa-l(vHa>- (1.2) 

for <v, ~a>- E T(a)7r- l (U n W), that is, v E a(U n W) and ~a arbitrary 
in V. 

The fact that the structure on T(M) does not depend on the choice of (j, 

is obvious. That 7r is differentiable is also clear; in fact, (7r- l (U), T(a)) and 
(U, a) are compatible charts in terms of which a 0 7r 0 T(a)-l(v, ~a) = v. We 
call T(M), together with its structure as a differentiable manifold, the tangent 
bundle of M. 

If M is finite-dimensional, let (U, a) be a chart of M with coordinates 
xl, ... , xn, so that 

a(x) = <xl(x), ... , xn(x) >- E IRn. 

We will denote the coordinates associated to the chart T(a) on 7r- l (U) by 
<ql, ... , qn, qt, ... , ct>-. Hence if ~ E T",(M), where x E U, we have 

T(a)(~) = <a(x), ~a>-

<ql(~), ... , qn(~), ql(~), ... , qnw >-, 
so that 

i i q =X07r and (1.3) 

In other words, the qi are just the coordinates Xi regarded as functions on T(M) 
via 7r, and the qi(~) are the components of ~ relative to the basis 

{(a~i).,' ... , (a:n ) J . 
We can follow a similar procedure for 

T*(M) = U T:(M), 
",EM 

which we call the cotangent bundle. If (U, a) is a chart of an atlas (j, of M, 
define the map 

by setting 
T*(a) (l) = < a(x), la >- (1.4) 

for l E T:(M) and x E U. As before, this defines an atlas on T*(M) which, 
in turn, defines a differentiable structure on T*(M) which is independent of the 
choice of atlas of M. (Note that we have used the same letter, 7r, to denote the 
two projections: that of T(M) ~ M and that of T*(M) ~ M. Whenever there 
is any confusion, we shall denote these maps by 7rT and 7rT*.) 
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If M is finite-dimensional and (U, a) is a chart on the coordinates Xl, ••• , xn , 

we shall denote the coordinates of (n·-l(U), T*(a)) by 

-<ql, ... , qn, pI, ... , pn>-. 

Thus, if l E T:(M), where x E U, we have 

T*(a)l = -< a(x), la >-
= -<ql(l), ... , qn(l), pl(l), ... ,pn(l) >-, 

so that 
and 

2. EQUATIONS OF VARIATION 

(1.5) 

Let M 1 and M 2 be two differentiable !nanifolds, and let cp: M 1 ~ M 2 be a differ­
entiable !nap. Then cp induces a map T(cp) of T(M 1) ~ T(M 2) when we set 

(2.1) 

To check that T(cp) is differentiable, let us choose compatible charts (U, a) on 
M 1 and (W, (3) on M 2. Then it follows from the definition of T(cp) that 

(T(U), T(a)) and (T(W), T({3)) 

are compatible charts. Furthermore, 

T({3) 0 T(cp) 0 T(a)-l(vb V2) = -< ({3 0 cp 0 a-l)vb JPoI{Joa-1(Vl)V2>-' (2.2) 

This establishes that T(cp) is differentiable. Observe that if l/;: M 2 ~ M 3 is a 
second differentiable map, then it follows from Eq. (4.4) of Chapter 9 that 

T(l/; 0 cp) = T(l/;) 0 T(cp). 

Furthermore, it is clear from the definition that 

1f' 0 T(cp) = cp 0 1f'. 

In other words, the diagram 

T(",) 
• T(M2) 

!~ 

'" 
• M2 

(2.3) 

(2.4) 

commutes in the sense that it doesn't matter which path one takes to get from 
T(M l) to M 2. 

In particular, if {CPI} is a one-parameter group of diffeomorphisms of M, we 
get a one-parameter group T(CPI) on T(M), where, by (2.4), 

(2.5) 
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If X is the infinitesimal generator of {cpt}, let us denote by T(X) the infini­
tesimal generator of {T(cpt)}. It follows from (2.5) that if ~ E Tx(M), then 

(2.6) 

Let us obtain the expression for T(X) in terms of a chart: Let (U, a) be a 
chart, and choose an open set W such that W C U and E > 0 such that CPt (W)C U 
for It I < E. Then 

T(a) 0 T(cpt) 0 T(a)-l-<v, w>- = -< (a 0 CPt 0 a-l)v, J(ao'P oa-1)(v)w>-, 
t 

so that, differentiating with respect to tat t = 0, we see by Eq. (4.9) of Chapter 9 
that 

(2.7) 

If M is finite-dimensional, Xl, ••• , xn are the coordinates of (U, a), and 

Xa = -<XI, ... , xn>-, 

then we can rewrite (2.7) as 

T(X)r(a)-<v, W>- = ~XI(V)' ... ' Xn(v), L aa~; wi, ... , L aa~; wi~, 
(2.7') 

where w = -< WI, .•• , w n >-. In other words, in terms of the local coordinates 
-<ql, ... , qn, ql, ... , qn>- the differential equation corresponding to T(X) 
take the form 

dqi xi( I n) (jj= q, ... ,q (2.8) 

and 

(2.9) 

Note that Eqs. (2.8) are just the local equations corresponding to the vector field 
X. Since qi = xi 0 7r, this is simply another way of writing (2.6). Suppose that 

CPt(x) = -<xl(t), ... , xn(t) >-

is a solution curve of X lying in U. Then we can regard the coefficients 

axi axi I n -a . = -a . (x (t), . .. , x (t) xJ XJ _ 

as functions of t alone. Thus (2.9) takes the form 

dw at = A(t)w 

of a linear differential equation for w. This linear differential equation is called 
the equation of variation of X along the curve cp(x). Roughly speaking, it repre-
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sents, to linear approximation, how solution curves of X near cp(x) are deviating 
from cp(x). 

We now go through a similar construction for the cotangent bundle. If 
cp: M 1 ~ M 2 is a differentiable map, then CP:: T;(x)(M 2) ~ T:(M 1) is going in 
the wrong direction. We therefore restrict our attention to maps which are 
locally diffeomorphisms, and we define T*(cp) by setting 

T*(cp)l = (cp-1)*l = (cp;(x»)-ll if l E T:(M1). (2.10) 

Since cp is a diffeomorphism, 

(cp *)-1: T:(M 1) ~ T;(x)(M 2) 

is well defined, and we have 
7r 0 T*(cp) = cp 0 7r. (2.11) 

If (U, a) and (W, (3) are compatible charts on M 1 and M 2, then 

T*({3) 0 T*(cp) 0 T*(a)-1-<vbV2> -«{3ocpoa-l)vb[JPotpoa-l(V1)]*-lv2>, 

(2.12) 
and so T*(cp) is differentiable. 

If cp: M 1 ~ M 2 and 1/;: M 2 ~ M 3 are diffeomorphisms, then 

T*(I/; 0 cp)l = (I/; 0 cp)*-ll = (cp* 0 I/;*)-ll = 1/;*-1 0 cp*-ll, 

so that 
T*(I/; 0 cp) = T*(I/;) 0 T*(cp). (2.13) 

In particular, if {cpt} is a flow on a manifold M, we obtain a flow T*(cpt) 
on T*(M). It satisfies 

(2.14) 

If X is the infinitesimal generator of {cpt}, we denote by T*(X) the infinitesimal 
generator of {T*(cpt)}. It satisfies 

for l E T:(M). (2.15) 

3. THE FUNDAMENTAL LINEAR DIFFERENTIAL FORM ON T*(M) 

Before returning to our study of mechanics, we study in some detail the geometry 
of the cotangent bundle. Let M be a differentiable manifold, and let z be a point 
of T*(M). Let ~ be a tangent vector to T*(M) at the point z, so that 

~ E Tz(T*(M)). 

Then 7r*~ is an element of Tr(z)(M). Since z E T~(z)(M) is a linear function on 
T r(z)(M), we can consider the expression 

(7r*~, z) 

which depends linearly on ~. We denote this linear function of ~ by 8z• We have 
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thus defined a linear differential form 8 on T*(M) by setting 

(3.1) 

The form 8 is called the fundamental linear form of T*(M). Let us obtain the 
expression for 8 in terms of a chart (-71·-1(U), T*(a). Since T*(a) maps '7I'"-l(U) 
onto an open set, 0 of V ED V*, the expression 8T*(a) should be a function from 
o to (V ED V*)* which can be identified with V* ED V. Let us evaluate this 
function. In terms of the chart (U, a) on M and ('7I'"-l(U), T*(a) on T*(M), 
we have 

h*(a) = -<v, w*> E V ED V* and 

so that 
('71'"*~, z) = (v, za) . 

. Thus ( -< v, w* >, (8zh*(a» = (v, Z a); that is, 

(8zh*(a) = -<Za, 0> E V* ED V = (V ED V*)*. 

In other words, the local expression 8a for the differential form 8 in terms of 
the chart T*(a) is given by 

(3.2) 

If M is finite-dimensional and we use the local coordinates -< q 1, ••. , qn, 
pi, ... ,pn>, then 

while 

and Z = L pi(z) dx~. 

Thus 

while 

«a~i)z' 8z ) = 0, 

so that 

or 
(3.3) 

Of course, (3.3) is just a way of writing (3.2) in terms of a basis of V = IRn. 
Let cp: M 1 ~ M 2 be a diffeomorphism, let 81 be the fundamental linear form 

on T*(M 1), and let 82 be the fundamental linear form on T*(M 2). Let 

and '7I'"(Z) = x E MI. 
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Then 

and so 

In other words, 

THE FUNDAMENTAL EXTERIOR TWO-FORM ON T*(M) 

(T*(cph~, B2T*('P)z) = (CP*20'II"*~, T*(cp)z) 

= (CP*20'II" *~, (cp*);C~)z) 

= ('II" *~, z) 
= (~, Biz). 

In particular, if {cpt} is a flow on M, then 

(T*(cpt»)*B = B. 
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(3.4) 

If X is a vector field on M, then the infinitesimal version of the last equation is 

DT*(x)B = o. (3.5) 

Note that any vector field X on M defines a functionfx on T*(M) by 

fx(z) = (X20' z) if 'II"(z) = x. (3.6) 

We also have 
fx = (T*(X), B}, (3.7) 

since (T*(X)z, Bz) = ('II"*T*(X)z, z) = (X20' z) by (2.15). 
Finally, in view of (3.5) and Eq. (6.14), Chapter 11, we have 

o = DT*(x)B = d(T*(X), B) + T*(X) ...J dB, 

so that 
dfx = -T*(X) ...J dB. (3.8) 

For reasons which will become clear later on, the function fx is sometimes called 
the momentum function associated to the vector field X. 

4. THE FUNDAMENTAL EXTERIOR TWO-FORM ON T*(M) 

It turns out that the exterior two-form 

D = dB (4.1) 

plays a fundamental role in mechanics, and we therefore study some of its 
properties. First of all, since d2 = 0, we have 

dD= o. (4.2) 

We claim that Dz is'a nonsingular bilinear form on Tz(T*(M») for each 
z E T*(M). That is, 

if ~ E Tz(T*(M») is such that ~...J Dz = 0, then ~ = O. (4.3) 
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For this purpose we compute the local expression for n in terms of a chart 
(7r- I (U), T*(a) [where Z E 7r- I (U)]. The map T*(a) gives a diffeomorphism 
of 7r- I (U) with a subset of V E9 V*, and by (3.4) the form (J on M carries over 
to the corresponding form (Ja on V E9 V* = T*(V). Also, (Ja can be regarded as 
a (V* E9 V)-valued function which is given by (3.2). Let us denote h*(a) by ~a, 
and let 

~a = -<Xl> X 2 > E V E9 V* 

be considered a constant vector field on V E9 V*. Then 

(~a, (Ja)<u!.u;> = (X I, u;), 
and so d(~a, (Ja) is the linear differential form given by 

On the other hand, since ~a is a constant vector field, the Lie derivative DEa(Ja 
reduces to the ordinary derivative of the linear function -< U2, u; > ~ -< u;, 0> . 
This derivative is just the constant -<X2 , 0>. Thus the Lie derivative DEa(Ja 
is given by the constant linear form 

D~a(Ja = -<X2 ,0> E V* E9 V; 
that is, 

(Tla, DEa(Ja) = (Y l> X 2). 

Now ~a..J na = ~a..J d(Ja = DEa(Ja - d(~a, (Ja), so we see that ~a..J na is the 
constant form 

~a..J (lfJ = -<X2 ,-X1 > E V* E9 V. 

To recapitulate, if ~ E Tz(T*(M) is such that h*(a) is given by h*(a) = 
-<Xl> X 2 > E V E9 V*, then 

(~ ..J nz)T*(a) = -< X 2, -X 1> E V* E9 V. (4.4) 

Equation (4.3) clearly follows from this. 
Since (4.3) is of fundamental importance, we present an alternative deriva­

tion for the case of a finite-dimensional manifold. If we use the coordinates 
-<qi, ... , qn, pi, ... , pn>, then 

so that 
(4.5) 

If 

"(iiJ iiJ) X = L..J A iJqi + B iJpi ' 
then 

(4.6) 

Thus (X ..J n)z = 0 if and only if Xz = O. This shows that on T*(M) we 
have a one-to-one correspondence, X ~ X ..J n, between vector fields and 
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linear differential forms. Let us denote by Wx the form corresponding to X, 
so that 

Wx = X ..In; 

and let us denote by X w the vector field corresponding to the linear differential 
form w. Thus 

Observe that 
dw= 0 

In fact, by (4.2), 

w = Xw ..J n = Wx.,. 

if and only if Dx.,n = O. 

Dx.,n = d(Xw..J n) = dw. 

(4.7) 

In particular, there is a distinguished class of ve~tor fields on T*(M)-those 
corresponding to functions, i.e., the vector fields of the form X dF, where F is a 
function on T*(M). These vector fields are called Hamiltonian vector fields. 

*In view of (4.6), if Dxn = 0, then locally, at least, X is of the form XdF, 
since any form w with dw = 0 can be written locally as w = dF. If we make the 
topological assumption that T*(M) has vanishing first cohomology group, then 
Dxn = 0 is equivalent to X being Hamiltonian. This assumption is really a 
restriction on the nature of the configuration space M. Since we do not wish to 
restrict M in this manner, we will not take Dxn = 0 as the definition of a 
Hamiltonian vector field.* 

Note that if X and Yare Hamiltonian vector fields, so is aX + bY, where a 
and b are constants. In fact, if X = X dF and Y = XdG, then 

aX + bY = Xd(aF+bG)' 

Furthermore, [X, Y] is also a Hamiltonian vector field. In fact, 

Dx(Y..J n) = Dx Y ..J n + Y ..J Dxn 

= DxY..Jn, 

since Dxn = O. Since Dx Y = [X, Y], we see that 

[X, Y] ..J n = Dx dG = dDxG. 

In other words, we have 
(4.8) 

We thus see that we have a binary operation on functions corresponding to the 
Lie bracket on Hamiltonian vector fields. It is called the Poisson b1'acket and is 
denoted by {F, G}. In other words, we define 

(4.9) 

so that we can rewrite (4.8) as 

[XdF' X dG ] = XdfF,GI' (4.8') 
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Note that 

XdFG = (XdF' dG) = (XdF' XdG ...J 11) = (XdG A X dF,11), 

so that, in particular, 
{F, G} = -{G, F}. 

In terms of local coordinates <.qI, ... , qn, pI, ... ,pn>, we have 

so that by (4.4), 

and therefore 

,,(aF i aF i) dF = £.oJ aqi dq + api dp , 

13.5 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

from which the antisymmetry (4.11) is apparent. A consequence of (4.11) is 
the following: 

Proposition 4.1. If F and G are functions on T*(M) such that 

XdFG = 0, 
then 

In other words, if G is constant along the solution curves of X dF, then F is 
constant along the solution curves of X dG . 

In fact, 
XdFG = {F, G} = -{G, F} = -XdGF. 

It will turn out that Proposition 4.1 is the prototype of all the "conservation 
laws" of mechanics. 

We close this section with the following observation. Let Y be a vector 
field on M. Then the momentum function of Y is a function jy on T*(M). 
Equation (3.8) asserts that 

-T*(Y) = X dfy ' (4.14) 

5. HAMILTONIAN MECHANICS 

As we indicated in the introduction, the first fundamental assumption of mech­
anics is that the evolution of the system is determined by a flow on T*(M), 
where M is the configuration space of the system. The second fundamental 
assumption concerns the character of the flow. It is assumed that the infinitesi­
mal generator of the flow is a Hamiltonian vector field. That is, it is assumed 
that there is a function H (called the energy) on T*(M) such that the vector 
field X-dH is the infinitesimal generator of the flow on T*(M) describing the 
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evolution of the system. (The minus sign is a consequence of certain standard 
conventions.) In order to see what this means, let us express the equations of 
motion in terms of q- and p-coordinates for a finite-dimensional system. Thus 

(oH 0 oH 0) 
X -dH = L: opi oqi - oqi opi . 

Thus, if -<ql(-), . .. , qn(.), pl(-), ... , pn(-)>- is an integral curve of the flow, 
it must satisfy the differential equations 

dqi oH 
de opi and (5.1) 

A trivial consequence of (4.11) is that 

X_dHH = O. 

In other words, the function H is constant along trajectories of the system. 
This principle is known as the law of conservation of energy. 

More generally, we can formulate Proposition 4.1 as: 

Proposition 5.1. Let X -dH be the infinitesimal generator of a mechanical 
system with energy H. Let F be a function such that 

XdFH = O. 

Then F is constant on the trajectories, i.e., solution curves, of the flow 
generated by X-dH. 

Proposition 5.1 is the prototype of all the "momentum conservation" laws 
we shall derive later; see, for example, the discussion at the beginning of Section 6. 

In order to specify the mechanical system, one must give the function H. 
It turns out (in many but not all cases) that the energy is the sum of two terms, 
H = K + U, where K is called the kinetic energy and U is called the potential 
energy. They each have a very special form which we now describe. 

The kinetic energy is a function on T*(M) which is associated with a 
Riemann metric on M. Let ( , ) be a Riemann metric on M. It gives a scalar 
product ( , )x on each Tx(M), and therefore induces an isomorphism of TiM) 
with T:(M), and thus gives a scalar product on T:(M) which we will continue 
to denote by ( , ). The function K is then defined by 

K(l) = tel, l). (5.2) 

To understand the relevance of a Riemann metric to mechanics, let us consider the 
most elementary case - the study of a single particle of mass m in lEa. The usual relation 
between velocity and momentum, 

p=mq 

can be formulated as follows: Consider the Riemann metric on 1E3 which is 
m X the Euclidean metric. That is, if -< x, y, z>- are rectangular coordinates on 
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1E3 and -< qx, qy, qZ1 qx, qy, qz>- are the corresponding coordinates on T(1E3), 
then 

where 
(5.3) 

and 

(5.4) 

Thus the passage from velocity to momentum depends on the choice of a 
Riemann metric, which determines a map from T(JJ1) --> T*(JJ1). This can be 
regarded as a generalized "choice of mass" for the configuration. 

The function U is assumed to be of the form U = U 0 7[", where U is a 
function on JJ1. The form F = - dU is called the force field whose potential is U. 
I t can be regarded as a vector field on JJ1 in view of the Riemann metric on JJ1: 

for any ~ E Tx(JJ1). 

In the special case of a single particle in 1E3 with mass m, substituting (5.3) 
and (5.4) into Eq. (5.1) gives, when we write H = K + U, 

and 

or, since m is constant, 

dpi = Fi 
dt 

which is the usual rule stating that force = mass X acceleration. 

(5.5) 

(5.6) 

Returning to the general theory, we now formulate a useful corollary of 
Proposition 5.1. 

Proposition 5.2. Let H = K + U be the energy associated with the 
Riemann metric ( , ) and the function U on JJ1. Let Y be a vector field on 
JJ1 which is an infinitesimal isometry of ( , ) and is such that YU = o. 
Then the momentum function jy is constant under the flow generated 
by X_dH • 

Let {<pt} be the flow generated by Y. Since <Pt is a local isometry, (<pil, <pil) = 

(I, I) wherever <pil is defined, so that 

K(T*(cp7)z) = K(I), 
and thus 

T*(Y)K = O. 
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Also, 
T*(Y)U = (T*(Y), dU) 

= (T*(Y), 11"* dV) = (1I"*T*(Y), dU) = (Y, dD) = 0, 

so that T*(Y)H = 0 and Proposition 5.1 applies [see Eq. (4.14)]. 

6. THE CENTRAL.FORCE PROBLEM 

Before proceeding with the general theory, we illustrate the previous results in 
a simple but important case. We will study the motion of a particle in 1E3 acted 
on by a "force centered at the origin". That is, our configuration space M will 
be taken to be 1E3 - {O}, and the Riemann metric is m X the Euclidean metric, 
where m is the "mass" of the particle. We also assume that the function D 
depends only on the distance to the origin. Thus D(x, y, z) = P(r), where 
r2 = x 2 + y2 + Z2. Under these circumstances it is clear that any rotation 
about the origin is an isometry of the Riemann metric and preserves D. We 
can therefore apply Proposition 5.2 to the infinitesimal rotations x(al ay) -
y(alax) to conclude that the corresponding momentum function XPy - yp", is 
constant. (This momentum function is known as the angular momentum about 
the z-axis.) Similarly, the functions Xpz - zp", and YPz - Zpy must be constant 
on any trajectory of the flow. If we write x = -< x, y, z>- and p = -< p"" Py, pz>- , 
then these three conservation laws can be combined to read 

x A p = const, (6.1) 

which is known as the law of conservation of angular momentum. Here x and p 
are considered vector-valued functions on T*(M). In order to study the impli­
cations of (6.1), let us first distinguish two cases: where the constant rE 0 and 
where the constant vanishes. If the constant occurring in (6.1) does not vanish, 
then (6.1) implies that the plane spanned by x and p does not change. In 
particular, the motion is such that x lies in a fixed plane. If x A p = 0, we 
argue as follows: 

Since p = mx, we have x A x = o. Since x rE 0, this implies that 

x = Ax 

for some function X of time. Now Ilxll = (x, x) 1/2, so 

:t Ilxll = II!II (x, x) = CI:II 'X) = Xllxll, (6.2) 

and therefore 

so that x/llxli = const; that is, x lies on a fixed ray through the origin. 
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If we differentiate (6.2) and make use of the fact that x/llxll is constant, we 
get, by (5.6), 

1n ~: Ilxll = CI:II ,1n :t x) = - CI:~' P'(llxll) 11:11)' 
that is, 

(6.3) 

where r = Ilxll. 
In any event, in all cases the particle x moves in a plane. We may therefore 

restrict our attention to the plane. That is, we can consider a "new" mechanical 
system where M = 1E2 - {O} and its Riemann metric, the function V = Per), 
etc. Let us introduce polar "coordinates" in the plane. Then a/ao preserves the 
metric and the potential. If -< r, 0, p" po>- are the corresponding coordinates 
on T*(M), then Proposition 5.2 implies that 

Po = const. (6.4) 

(Note that this is really just that part of (6.1) that we haven't yet used.) Now 
in terms of polar coordinates, the Euclidean metric has the form of Eq. (8.7) 
of Chapter 9, so that the Riemann metric associated to the mass m which is 
m X the Euclidean metric is given by 

II (r, 8) 112 = m{r2 + r282}. 

In particular, the associated map from T(M) to T*(M) is given by 

Pr = mr and (6.5) 
Thus (6.4) says that 

(6.4') 

To understand the significance of (6.4'), consider a curve x(·) in the plane. 
Consider the region 'U bounded by the portion of the ray from 0 to x(O), the 
portion of the ray from 0 to x(t), and the curve x(·) from 0 to t. (See Fig. 13.1.) 
Then 

~1 r2 dO = 1 r dr 1\ dO 
a~ ~ 

is the area of 'U. On the other hand, since dO = 0 
on the rays, we see that 

1 r2 dO = (t r28dt. 
a~ 10 

xeD) 

D 
Fig. 13.1 

Thus (6.4') is exactly the content of Kepler's second law: The particle sweeps 
out area at a constant rate. 

Thus we have seen that the spherical symmetry of the system implies that 
the motion is in a plane and that Kepler's second law holds. 
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We have not yet made use of the conservation of energy, which in the 
present context reads 

tmr2 + tmr2e2 + P(r) = const = 2~ p~ + 2~r2 p: + P(r). (6.6) 

Let us examine a particular solution curve for which P8 = A = const. Then 
differeI\tiating (6.6) gives 

dp d2r A2 
dtT = m dt2 = mr3 - P'(r). (6.7) 

We can interpret (6.7) as the equations of motion of a one-dimensional 
mechanical system. The kinetic energy of this system is tmr2, and the potential 
energy Q is given by 

A2 
Q(r) = P(r) + 2----"2 . 

mr 
(6.8) 

The second term in (6.8) is known as the centrifugal potential and the correspond­
ing term, A 2/mr3, occurring in (6.7) is called the centrifugal force. Note that if 
A = 0, then (6.7) reduc(ls to (6.3), which is what we would expect. 

'. 

a b 

Fig. 13.2 

We can now use the following procedure for solving the equations of motio~: 
First, for a given angular momentum find the various solution curves r(·) of (6.7). 
For a solution r(·), determine 8(·) by integrating e = A/mr2 to get 

t 

8(t) = ( ~( ) ds + const. (6.9) lto mr s 

We can obtain a good bit of information about the nature of the solutions 
of (6.7) by using the law of conservation of energy. We draw a graph of the 
function, as shown in Fig. 13.2. Suppose that the trajectory r(·) has the con­
stant energy El = tmr2 + Q(r). Then if the set {r : Q(r) ~ E 1} is bounded, 
r(t) must always be in this set, since tmr2 ~ o. In fact, suppose that the 
interval a ~ r ~ b is such that Q(a) = Q(b) = El and Q(b + E) > El and 
Q(a - E) > E 1 for small E. Then if a ~ r(to) ~ b for some value of to, it follows 
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that a ~ r(t) ~ b for all t. Furthermore, if Q(r) < E 1 for a < r < b, then for 
a < r(to) < b, r(t) cannot vanish. The particle is thus moving to one of the 
limits r = a and r = b. If we use the law of conservation of energy, we see that 

~mf2 + Q(r) = Et, 
so that 

dr = r = ± lEI - Q(r) . 
dt \I!m 

For a < r < b we see that r is a monotone function of t, and we can solve to 
obtain t as a function of r by the formula 

t(r) = ±<!m)1/2 r dx + to 
Jto VEl - Q(x) 

if r(to) = roo (6.10) 

In particular, if Q'(a) ~ 0 and Q'(b) ~ 0, the integral in (6.10) converges, so 
that it takes a finite amount of time for r to get to a or to b. Thus (since 
dr/dt = Q'(r) ~ 0), the function r oscillates between a and b taking the time 

b 

T = <!m)I/21 dx 
a VEl - Q(x) 

to get from one side to the other. 
If {r: Q(r) ~ E 2} is not bounded, then the motion with energy E2 need 

not be bounded. For instance, suppose that Q(r) < E2 for r > a. Then if 
r(to) > a and r(to) < 0, T will decrease until it hits a at which time it will turn 
around and then go off to infinity; if f(to) > 0, then r will simply go to infinity. 
The trajectory in this case is that of r coming in from infinity, turning around 
at a, and then going back to infinity. 

We recall that this is a descriptive analysis of the function r(·). The curve 
8(·) is then to be determined by (6.9). 

Frequently we are interested in the tajectories as curves in the r8-plane 
without reference to the time dependence. Suppose that the energy is E and the 
angular momentum is A. For the range where r ~ 0 we can substitute 

d8 A 
dt mr2 

into (6.10) to obtain [since d8/dr = (d8/dt)(dt/dr)] 

8(r) = ± (~21 )1/21T A dx + 8(ro). 
m TO x2VE - Q(x) 

In the important case where P(r) = -air corresponding to the inverse-square 
law of gravitational attraction, we have 

A 2 a 
Q(x) = 2mx2 - X" ' 
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so that the integmnd is 

1 A A 

(2m)1/2· 2 ~ A2 a = 2 [ (A mOl) 2 m2a.2]1/2 
X E---+- x 2mE- --- +--2mx2 x x A A2' 

A mOl 
d x A 

dx arccos ~ 
m 2a 2 

2mE+A2" 

Thus 
A mOl 

8(r) - 8(ro) = arccos ~ 
m2a2 

2mE+A2" 

r A 

Let us choose ro to be the minimum value of 1", and let us choose 8(1'0) = o. 
Let us set 

and 

We see that the equations for the orbit are 

p. = 1 + e cos 8. 
r 

(6.11) 

This is the equation of a conic section (Kepler's first law). If E < 0, then 
e < 1 and (6.11) represents an ellipse, whose major and minor semiaxes are 

and 

p a 
a = 1 - e2 = 21EI 

b= _P __ 
v'1 - e2 

A 

We leave to the readers the details of working out the hyperbolic and parabolic 
orbits. 

For the elliptic orbit, Kepler's second law implies that the total area of the 
interior of the ellipse is swept out at the uniform rate A/2m. Thus the area, 
1rab, of the ellipse is given by (A/2m)T. Thus 

~ T = 1rab = 7ra A , 
2m v'2m1EI 

and hence 
T = 27ra3/2v' m/a. 

In other words, the square of the period of motion is proportional to the cube 
of the linear dimension of the orbit (Kepler's third law). 
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7. THE TWO-BODY PROBLEM 

Let us consider the mechanical system consisting of n particles each having 
mass mi, so that the configuration space is 1E3 X ... X 1E3 (n times), and if 
a = -<a I, ... , an> EM, where a l = -<xl, yI, ZI> E 1E3 , then 

!lldl1 2 = !mllldI l1 2 + ... + !mnlldnl1 2 

= !mI[(xI)2 + U/)2 + (ZI)2] + ... + !mn[(xn)2 + (yn)2 + (zn)2] 

is the kinetic energy of the system. As we indicated in Section 1, we may wish 
to restrict the manifold M to be that subset of 1E3 X ... X 1E3 for which no 
ai = aj for any i '1'" J. Let us further assume that the potential energy depends 
only on the mutual distances between the particles. That is, let us assume that 

U(ar, ... ,an) = P(lla2 - alii, Ilaj - alii, ... , Ilan - an-III). 

Then if A is a Euclidean motion of 1E3 and we apply A simultaneously to all the 
particles, the kinetic and potential energy are conserved. That is, the trans­
formation 

is an isometry of the Riemann metric on M and preserves U. 
Let -<xl, yI, zr, ... ,xn, yn, zn> be the Cartesian coordinates on M, 

and let 

be the eorresponding coordinates on T*(M). Now a/ax is the vector field 
representing the infinitesimal translation in the x-direction in 1E3. Therefore, 

a a a -+-+ ... +-ax i ax2 axn 

is the infinitesimal generator of the one-parameter group 

-<xl, yr, zr, x2, ... ,xn, yn, zn> 

1--+ -<Xl + t, yr, zr, x2 + t, y2, Z2, ... ,xn + t, yn, zn>. 

We can therefore apply Proposition 5.2 to conclude that the function 

Px1 + Px2 + ... + pxn 

is constant in any trajectory. This function is known as the total linear momen­
tum in the x-direction. Similarly, the total linear momentum in the y-direction, 

Pyl + ... + pyn, 

and the total linear momentum in the z-direction, 

Pzl + ... + pzn, 

must be conserved. If we define pi E 1E3 by setting pi = -< Pxt, Pyt, Pzt> , then 
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we can say that the 1E3-valued funct~on 

pl+p2+ ... +pn 

must be conserved. This is the law of conservation of total linear momentum. 
(For two particles the assertion that PI + P2 is conserved is just Newton's law 
of "equality of action and reaction". In our setup we see that this law is a 
reflection of the invariance of the physical situation under translations.) 

The vector field x(ajay) - y(ajax) represents infinitesimal rotation about 
the z-axis in 1E3. Therefore, 

la la 2a 2a na n a 
X ayl_- y ax1 + x ay2 - y ax2 + ... + x ayn - y axn 

represents simultaneous infinitesimal rotation of all the particles about the z-axis. 
Therefore, the function 

q",lPyl - qylP",l + ... + qxnpyn - qynp",n 

is conserved. This is the law of conservation of total angular momentum about 
the z-axis. Similarly, we obtain the law of conservation of total angular momen­
tum about the x- and y-axes. If we set 

qi = -< qxl, qyl, qzj>- E 1E3, 

we can combine the three equations by saying that the function 

ql 1\ pI + ... + qn 1\ pn 

with values in 1\ 2(1E3) is constant on the trajectdries of the motion. 
Let us examine more closely the law of conservation of total linear momen­

tum. In view of the fact that 

etc., we have pi = mi(daijdt), and thus 

d (1 2 n) dt mla + m2a + ... + mna = const. 
/' 

In other words, the center of mass 

C = mla1 + ... + mnan 

ml + ... + m,n 

moves in a straight line with constant velocity. 
Suppose there are only two particles. Then it is reasonable to introduce the 

center of mass 
1+ 2 C = mla m2a 

ml + m2 

and the relative position vector 
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as new coordinates. If we solve for a land a2, we get 

and therefore the kinetic energy is given by 

K(C, d) = -21 m~2 IIdl1 2 + !(ml + m2)IICI1 2, 
ml m2 

while U(C, d) = P(lldll). 
Thus the motions of the system have the following description: The center 

of mass has constant linear motion, and the relative position vector d = a 1 - a2 

satisfies the equations of motion of a single particle with mass 

mlm2 
ml + m2 

in the central-force field with potential U = P(lldll). We can thus apply the 
results of the preceding section to determine the motions of the particle. In 
particular, if P(lldll) = a/lldll is the inverse-square potential, the corresponding 
two-body problems can be completely solved. 

Note that if m2 is very large compared to mb then C is very close to a2. 

In this case d(·) is a good approximation to the motion of the smaller particle 
relative to the larger one. 

This is the situation that arises, for example, in the study of the motion of 
of the planets relative to the sun. 

8. LAGRANGE'S EQUATIONS 

Our discussion of mechanics has led us to a certain kind of vector field X on 
T*(M), where M is the configuration manifold. In the case where H = K + U, 
the Riemann metric giving K induces an isomorphism .c [that is, a diffeo­
morphism which is linear on each Tx(lI1)] from T(M) to T*(M). We therefore 
obtain a vector field Y on T(M) such that .c*Yv = X,c(V) at any v E T(M). 
We can therefore inquire about the form of this vector field Y in terms of local 
coordinates <ql, ... , qn, ql, ... ,qn»- on T(M), associated with coordinates 
<Xl, ... ,xn»- on M. Suppose that the Riemann metric is given by 

II(qi, ... , qn)1I2 = L Oii(qi, ... ,qn)(iqj. 

If <qi, ... , qn, pi, ... ,pn»- are corresponding local coordinates on T*(M), 
then the diffeomorphism .c is given by 

(8.1) 

We could proceed to use (8.1) to obtain the local expression for .c and thereby 
the local expression for Y. However, it is more convenient to argue a little 
differently. Let L be the function on T(M) defined by 

L( In· 1 .n) 1"" ·i .j -U( 1 n) q , ... ,q , q , ... ,q = 2" £...., gijq q - q, ... ,q , (8.2) 
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that is, 
L= K- U, 

where K(v) = !llvl12 and U(v) = D(7I"(v» are the kinetic and potential energy 
expressed as functions on T(M). We can rewrite (8.1) as 

i aL 
p = aqi' 

Then for any l E T*(M), we have 

H(l) = (Jr1(l), l) - L(£-l(l». 

In fact, by definition, 

so that 
(£-l(l), l) = IIll12 = 1I£-1(l)112, 

(£-1(l), l) - L(£-l(l» = IIll12 - !llll12 + D(7I"(l» 

= !llll12 + U(l) 

= H(l). 

In terms of local coordinates we can write (8.4) as 

H(q1, ... ,qn, pI, ... ,pn) = L p'qi - L(qt, ... , qn, qt, ... , qn), 

(8.3) 

(8.4) 

(8.5) 

where the qi are regarded as functions of the q's and p's via £-1. We can write 
the map £-1 as 

qi = qi, .i aH 
q = api' (8.6) 

since H(l) = !llll12 + D(7I"(l». Furthermore, by (8.5), 

aH a ['" .i i L( 1 n.l .n)] aq' = aq' £... q P - q, ... , q , q , ... , q 

a(q' 0 £--1) i aCLo £-1) aL aqi 0 £-1 
= L aq' p - aq' - aqi aq' 

aL 0 £-1 
=-

by (8.4). 
Now let vO = -<q 10, ... , qn(.), q1(.), ... , qnO>- be a solution curve 

to the vector field Y, so that £ 0 v(·) is a solution curve of X on T*(M). Then 
by (5.1), 

and 
dpi d(aL/aqi) aH aL 
dt = dt = - aqi = aq' . 

In other words, Eqs. (5.1) are equivalent to the equations 

d(aL/af]') _ a~ = 0 
dt aq' 

(8.7) 
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on T(1I1). The first of Eqs. (8.7) says that we are dealing with a system of second­
order differential equations which is given implicitly by the second of Eqs. (8.7). 
Equations (8.7) are known as Lagrange's equations. 

For certain purposes Lagrange's equations are very convenient. We illus­
trate by establishing the "principle of mechanical similarity". Note that 
Eqs. (8.7) are unchanged if we replace L by cL, where c is any nonzero constant. 
Suppose that 111 is an open subset of a vector space with linear coordinates 
Xl, •.• , xn and that the Riemann metric is given by 2: Yij(/r/, where the Yij are 
constant. Let ma denote the linear map consisting of multiplication by a > 0, 
that is, ma(x \ ... , xn) = -< ax \ ... , axn>-. Suppose that U is a homogeneous 
function of degree p, so that 

U(ax1, ... , axn) = aPU(x1, ... , xn). 

Now let us change our time scale by a factor (3, replacing t by s = (3t. Then 

daqi a dqi 
([8= {iTt' 

and 
1 " daqi daqj a2 1" dqi dqj 
2 L.. Yij ([8 ([8 = (322 L.. Yij Tt Tt . 

Let us choose (3 so that a 2 / (32 = a P, that is, 

(3 = a 1-(l/2)P. 

Then 

( In a dq1 a dq) P (1 n dq1 dqn) 
L aq, ... ,aq,-----;{8'···'ds- =aL q,···,q,Tt'···'Tt· 

In other words, replacing qi by aqi and t by (3t carries solutions into solution: 
if we change the linear scale by a and change the time scale by a 1-(/ 2)p, we 
obtain an isomorphic situation. For instance, if U is homogeneous of degree -1 
(as in the case of an inverse-square law of attraction), then (3 = a 3/2• In par­
ticular, the period of any periodic orbit is proportional to the ~-power of its 
linear dimension, which is just Kepler's third law. We thus see that Kepler's 
third law is an exact consequence of the inverse-square law of attraction. 

Returning to the study of the general Lagrangian system, we observe again 
that it is a system of second-order differential equations. We can therefore 
apply the fundamental existence and uniqueness theorem to it to conclude that 
jor every x E 111 and jor every t E Tx(1I1) there is a unique curve CO which is a 
trajectory oj the system and jor which C(O) = x and C'(O) = t. 

9. VARIATIONAL PRINCIPLES 

The function L plays a crucial role in the study of variational principles of 
mechanics. Consider the following problem: Let p and q be two points of M, 
and let t1 < t2 be two real numbers. For any differentiable curve C defined on 
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the interval [tl! t2] we set 

VARIATIONAL PRINCIPLES 

I[C] = (t2 L(C'(t») dt. 
ltl 

533 

(9.1) 

Note that C'(t) E T(M) and L is a function on T(M), so the integrand makes 
sense. Among all curves joining p to q, find that curve for which I[C] takes on 
its minimum value. We shall see t.hat a necessary condition for I[C] to be a 
minimum is that it be a trajectory of a mechanical system. (In fact, if a suitable 
notion of neighborhood is introduced on the space of curves, it is also a necessary 
condition for C to be even a local minimum.) 

Before establishing this result, it is convenient to have another expression 
for I[C]. As before, let .c be the map of T(M) -+ T*(M) given by the Riemann 
metric. Let'C be the curve in T*(M) given by 

'C(t) = .c(C'(t»). 
Then 

I[C] = '- (J - (t2 H('C(t») dt, 
10 ltl 

(9.2) 

where (J is the fundamental linear form on T*(M). 
In fact, in terms of local coordinates, 

!c "!c i d i "1 aL d i " j aL .i( ) d __ (J = £.oJ _ p q = £.oJ ;-;-: q = £.oJ ~ q t t, 
C C c'vq' vq' 

since the curve C' by definition is such that 

qi(t) = ~~ (t). 
But, by (8.5), 

L: j :~ qi(t) dt = L: j (pi 0 .c)(t)qi(t) dt = j[H 0 .c(C'(t») + L(C'(t»)] dt, 

so (9.2) holds. 
Let Z be a vector field on M which generates a flow IP. For all sufficiently 

small 8 the curve IPs 0 CO will be defined and 

so that 
(IPs 0 C)'(t) = IPs*C'(t) = T[IPsl(C'(t»), 

I[IPs 0 C] = (t2 L(T[IP.]C'(t») dt 
ltl 

= { (J- {!2 H (.c o T(1P8)(C'(t»))dt. (9.3) 
1 .cotp.o C' 1 tl 

Since I[C] is to be a minimum, we must have 

dl['Ps 0 C] = 0 
ds . 

We will now compute this derivative so as to derive the consequences of the above 
equation. 
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Now £ 0 T[cp.] 0 £-1 is a flow on T*(M) which satisfies 

7r 0 £ 0 T(cp.) 0 £-1 = CP •• 

13.9 

Let Z be the infinitesimal generator of this flow, so that at all points of T*(M) 
we have 

7r*Z = Z. (9.4) 

If we differentiate (9.3) with respect to s at s = 0, we obtain 

dd I[cp. 0 C] = (DzO - (2 DzH(C(t)) dt. 
s Ie lt1 

Now 

DzO = d(Z, 0) + Z ~ dO and (Z, O)l = (7r*Z, l) = (Z, l) = jz(l), 

so we get 

dd I[cp. 0 C] = (Z ~ dO - (2 D-zH(C(t)) dt + jZ(C(t2)) - jZ(C(t1))' 
s Ie lt1 

(9.5) 

N ow suppose that the vector field Z vanishes at p and q. Then all the curves 
CPs 0 C join p to q. If C is to minimize the integral I, then the derivative 
d(l[cp. 0 C])/ds must vanish at s = O. Note that in this case the two last 
terms of (9.5) vanish and we must have 

for all vector fields vanishing at p and q. In particular, let us take 

a 
Z=1/I-. 

ax' 
=0 

for x E U, 

for x I;t: U, 

(9.6) 

where 1/1 is a Coo-function whose support lies in some coordinate neighborhood U 
of M with coordinates <xl, ... ,xn >. Suppose further that 1/I(p) = 1/I(q) = 0 
if p E U or q E U. Then by (2.7') 

a a1/l a 
T (Z) = 1/1:;;-:- + L ;--: ;-:-: , uq' uq1 uq1 

so that 

- a "j a Z = £*T(Z) = 1/1:;;-:- + £.oJ B ;-:, uq' up1 

where Bj are some functions on T*(M) which depend linearly on Z. [This, of 
course, is just a restatement of (9.4).] Then 

Z ~ dO = Z ~ L dpi A dqi = L B j dqj -1/1 dpi, 
j 
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while 

D-H = Vt o~ + "£ BiO~. 
z oqt i Op1 

Thus if the curve V is given by V(t) = -< ql(t), ... , qn(t), p I(t), ... , pn(t) >-, 
Eq. (9.6) becomes 

f ["£ Bi (dqi - o~) - Vt (dpi + oH.)] dt = O. 
dt oW dt oq' 

Now by construction, V(t) = £ 0 C'(t), so on l! we have 

dqi . oH 
at = i/ = opi (9.7) 

by (8.6). Thus the first sum occurring in the above integral vanishes and we 
must have 

f Vt (1/ + :~) dt = O. 

This must hold for all functions Vt whose support lies in a coordinate neighbor­
hood and vanishes at p and q. Clearly, this can happen only if 

dpi oH 
dt = - oqi' (9.8) 

This must hold for all i. Since (9.6) and (9.8) are exactly (5.2), we can assert: 

Proposition 9.1. A necessary condition for C to minimize the functional 
I[C] is that C is a trajectory of the corresponding dynamical system. 

The question of when this necessary condition is also sufficient is a more 
complicated one. We shall not discuss it in any generality here, but refer the 
reader to any standard source on the calculus of variations. 

q 
----~, 

Fig. 13.3 

By the way, we can derive a bonus from (9.5). Suppose that we consider 
the following problem: Let N 1 and N 2 be two submanifolds (Fig. 13.3) of M, 
and suppose that we require that C minimize I among all curves joining N 1 to N 2 

and not merely among those joining p to q. In this case (9.5) will have to vanish 
for all vector fields Z which are tangent to N 1 at p and to N 2 at q. Now observe 
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that if G is a solution to this minimum problem, it certainly is a solution to the 
problem of minimizing I among all curves joining p to q. In particular, G must 
be a trajectory of the mechanical system. As the reader can easily check, this 
implies that 

k z ..J (J - J (D-zH) (C(t)) dt = 0 

for all vector fields Z. Thus, if G solves the more difficult minimization problem, 
we must have 

Now 

and 

Since if p '=/= q we can choose Zp arbitrarily in T peN 1) and Zq arbitrarily in 
Tq(N 2), we conclude in this case that G must also satisfy 

(~, C(t1) = 0 

(7), C(t2 ) = 0 

so we can write (9.9) as 

(~, G'(t1)) = 0 

(7), G'(t2)) = 0 

forall ~ETp(N1)' 

for all 7) E Tq(N2). 

forall ~ETp(N1)' 

for all 7) E Tq(N2). 

(9.9) 

(9.10) 

In other words, the curve G must be orthogonal to the submanifolds N 1 and N 2. 

Although our statement of Proposition 9.1 was couched in the framework of 
dynamical systems, it actually can be formulated in a more general context. 
Let L be any function on T(M)-not necessarily of the type K - U. We can 
then define the integral I as in (9.1) and again pose the minimization problem. 
This is the typical problem in the calculus of variations. We have already 
discusse<\ this problem from a different point of view in Section 3.15. We leave 
to the reader the task of showing that our arguments carryover in this more 
general case if the matrix 

(ax~~Xj) 
is nowhere singular. (Here the map £ of T(M) ~ T*(lJf) is given by 

1 n .1 .n ..J 1 n aL aL \... < x , ... ,x , x , ... ,x >- ~ '\ x , ... , x 'ax1 ' ... , axn ( , 

and the nonsingularity guarantees that this map is locally a diffeomorphism.) 
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10. GEODESIC COORDINATES 

In this section we depart momentarily from the study of mechanics in order to 
exhibit some applications of the results of the preceding paragraphs to the 
study of Riemann manifolds. Note that a Riemann manifold always defines a 
mechanical system by its kinetic energy if we set the potential energy equal to 
zero. It is this special kind of mechanical system that we wish to study in this 
section. 

Let M be a finite-dimensional manifold with a Riemann metric and, as 
above, define L on T(M) by setting 

L(v) = illvl1 2• 

This then determines a vector field Yon T(M) which corresponds to the system 
of differential equations (8.7) in terms of local coordinates. Let p be a point of M. 
For every ~ E Tp(M) there is a unique trajectory CEO such that 

q(O) = ~. 

In terms of local coordinates, if ~ = -< ~ 1, ••• , ~n >- , then 

CE(t) = -< ql(t), ..• , qf(t) >-, 
where qi are the unique solutions of the differential equations 

dq~ .i 
di=% 

with the initial conditions 

d(oLjoli) _ oL = 0 
dt oqi 

qE(O) = xi(p), 

By the fundamental existence and uniqueness theorem the functions qi are 
defined for sufficiently small t. We can regard C E(t) as dependent on both ~ and t. 
In other words, we have a map C.O assigning to each ~ E Tp(M) and each 
sufficiently small t a point of M. The map C.(·) is, in fact, defined in some 
neighborhood of T p(M) X {O} C T p(M) X IR. 

The above is true for any Lagrangian function. In the case of no potential 
energy we can say a lot more. Let s be a real number. Consider the curve 
CE(s .), that is, 

CE(st) = -<ql(st), ... , qf(st) >-. 
Then (suppressing the subscript ~ which is to be understood in the following 
computations) 
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and 

~[:~ (ql(st), ... , qn(st), S(/(st), ... , S(t(st»)J 

= ! S~ Yik(ql(St), ... , qn(st»)i/(st) 

= S2 ~ ;~ (ql(.), ... ,qn(-), q\), ... , qn(-») I.t. 
In other words, 

:t :~ (ql(S .), ... , It(s .») - ;~ (ql(S .), ... , ... , sqn(s .») It 
= S2 [! :~ (ql(-), ... ,qn(.») _ :~ (ql(.), ... , qn(-») JI.t = o. 

Thus the curve C~(s·) is again a trajectory of the system, and we clearly have 

CHs ·)10 = sC~(-)lo = s~. 

By the uniqueness theorem for differential equations we thus must have 

C~(st) = C.~(t). (l0.1) 

We are therefore led to define a map, which we shall call exp, from 
Tp(M) -7 M by setting 

exp (~) = C~(l). (10.2) 

Note that the map exp is defined and differentiable in some neighborhood of 
the origin in Tp(M). In fact, by (10.1), 

exp W = C~mll(11 ~II), 

where now UII ~lllies on the unit sphere in T p(M) [the unit sphere with respect 
to the Euclidean metric given by the scalar product on Tp(M)J. Since the unit 
sphere is compact, there is some f > 0 such that C~(t) is defined for all 'T/ on the 
unit sphere and all It I < f. Thus exp will be defined for all II ~II < f. 

The map exp is a differentiable map from some neighborhood of the origin 
in the vector space T p(M) into the manifold. Let us compute 

exp*o: To[Tp(M)J -7 Tp(M). 

Let ~ E Tp(M), and let us consider the straight line through 0, l~, in Tp(M) 
given by l~(t) = t~. Since Tp(M) is a vector space, we can identify To[Tp(M)] 
with Tp(M) via the identity chart, in which case we identify 

l~(O) with ~. 
But 

exp [l~(t)J = exp (t~) = Ct~(l) = C~(t), (10.3) 
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and the tangent to this curve at 0 is just~. In other words, 

exp*o [l[(O)] = ~. 

Thus, if we identify To[Tp(M)] with Tp(M), we can assert that 

exp*o: To[Tp(M)] ~ Tp(M) 
is given by 

539 

(10.4) 

In particular, the map exp*o is nonsingular, so that by the implicit-function 
theorem the map exp is a diffeomorphism in some neighborhood of the origin. 

We have thus constructed a diffeomorphism exp from some neighborhood 
of the origin in T p(M) into M, which by (10.3) carries straight lines through the 
origin into trajectories through p. In the case of no potential energy the trajec­
tories are called geodesics for reasons which will soon become apparent. If we 
identify T p(M) with V by some chart (U, ex), we can then use exp to introduce 
a new chart (U', na) by setting 

n;;1(~a) = exp W. 
The chart n" has the property that n,,(p) = 0 and na carries geodesics through p 
into straight lines through the origin. The chart (U', na) is called a geodesic 
normal chart, and corresponding coordinates are called geodesic normal coordinates 
onM. 

Let us consider the curve C~O = exp (. ~) which is defined for 0 ~ t ~ 1 
so long as II ~II < E. We have 

I[C~(·)] = f01 L(q(t)) dt = ! 101 IICHt) 112 dt. 

But, by the conservation of energy, for any trajectory of our system we have 
H 0 £(C'(t)) = const. In this case, since U = 0, H 0 £(C'(t)) = L(C'(t)) = 

!IICHt)112 = const. Since CE(O) = ~,we have IIC~(t) II = II ~II, and therefore 

I[C~O] = ! 11~112 dt = llfl. 11 2 

o 2 

Now let {{j.} be a one-parameter group of rotations in Tp(M). Then 

CPs = exp 0 {j. 0 exp-1 

(10.5) 

defines a one-parameter group on the open set U = exp {v: Ilvll < E} eM. 
If II ~II < E, we have by (10.5) 

I[cp. 0 C~(.)] = 11{j.~f = 11~112 , 
2 2 

so, by (9.10), we get 

d 
d/[CP8 0 C~(·)] = 0 = fZ p (V(l)) = (C'(l), ZC(1», 
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M Fig. 13.4 

whereZ is the infinitesimal generator of 'P. ButZO(l) = exp*o Y~I where Yis the 
vector field on T p(M) which is the infinitesimal generator of the one-parameter 
group of rotations. Now we can choose {3 arbitrarily. Therefore, Yt can be any. 
vector tangent to the sphere of radius II~II in Tp(M). We thus conclude that 
(7], CW») = 0 for any fJ wpich is tangent to exp Sliell, where SlItll is the sphere 
of radius II~II in Tp(M). (See Fig. 13.4.) In other words, not only are the rays 
through the origin orthogonal to the spheres in the Euclidean metric of Tp(M), 
but also the image of a ray through the origin under exp is orthogonal to the 
image of a sphere about p in the Riemann metric of M. 

In particular, we can transfer "polar coordinates" on Tp(M) to M so as to 
get "geodesic polar coordinates" on M. This has the following effect: Let r be 
the "radial coordinate", that is, r is the function defined in U by 

rex) = Ilexp-l xII. 
Then for any x E U, x ¢ p, and any r E Tx(M) we have 

Ilrll ~ I(r, dr)l, (10.6) 

with equality holding only if r is tangent to a geodesic through p. In fact, 
suppose that r E Tx(M), where x = exp ~ for some ~ E Tp(M). Then we can 
write r = rl + r2, where rl is some multiple of CW) and r2 is tangent to 
exp SII~II. By the above result, (rI, r2) = 0, so 

IIrl1 2 = IIrll1 2 + IIr211 2 

and we obtain (10.6), with equality holding only if IIr211 = O. 
We are now in the same fortunate position we were in Section 9 of Chapter 9. 

Let D be any curve joining p to x, where x = exp~. Let tl be the first time that 
D(t) E exp Slieli. Then the length of 

D = fol IID'(t)11 dt ~ fotl IID'(t)II dt ~ fot1 I(D'(t), dr)1 

~ fotl (D'(t), dr) = r[D(h)] = II~II. 

Furthernl.Ore, equality holds only if D'(t) is a nonnegative multiple of a tangent 
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to a fixed geodesic through p. Then D must be the geodesic C~(-). In short, 
we have proved; 

Theorem 10.1. Let E > ° be so small that the map exp is a diffeomorphism 
onB. = HE Tp(M) : II~II < E}. Let x = exp ~ be a point of U = exp B •. 
Then the geodesic C~ joining p to x has length II ~II, and any other curve D 
joining p to x is strictly longer unless D differs from C~ only in a (monotone) 
change of parameter. In other words, loosely speaking, geodesics are locally 
the shortest curves joining two points. 

Since we have come this far, let us show in addition that geodesics also 
locally minimize the energy. Let D be any curve from [0,1] to M. Then by 
Schwarz's inequality we have 

(101 IID'(t) II dt)2 ~ 101 IID'(t) 112 dtJol 1 dt 

= 2l[D], 

with equality holding only if liD' (t) II is constant. If C ~(.) is the geodesic joining p 
to x = axp ~, we thus have 

I[D] ~ ! (101 UD'(t) II dt)2 ~ i (101 IIC'(t)U dtl = !1I~1I2. 

Now equality holds in the second inequality only if D'(t) is proportional to C'(t), 
while equality holds in the first only if IID'(t) II = const. We thus conclude that 
IID'(t)1I = II~II, that is, D'(t) = C'(t). In short, we have proved: 

Proposition 10.1. Under the hypotheses of Theorem 10.1 the curve C~(-) 
is a strict absolute minimum for I[C] among all curves C: [0,1] -+ M such 
that C(O) = p and C(l) = x. 

11. EULER'S EQUATIONS 

Under certain circumstances, which we shall presently describe, the equations of 
motion take a particularly elegant form. The first special assumption that we 
shall make is that there is an isomorphism of T(M) with M X V. More precisely, 
we assume that there is a diffeomorphism, £, of T(M) with ltf X V such that 
£(~) = <.m, v> I where m = 'Ira), and for each x EM the map .~ t-+ v of 
T:.:(M) -+ V is a linear isomorphism of vector spaces. For example, if M is an 
open subset of V, then the identity chart defines such an isomorphism 

£(~) = <''Ir(~), ~id>. 

A slightly less trivial example is furnished by the n-dimensional torus Tn = 
8 1 X ... X 8 1• Then we can introduce "angular variables" 01, ... , On, where 
0' is the angular variable on the ith circle. We thus obtain n vector fields 
a/ao 1, ••• ,aiM'" which are linearly independent at each point of ltf. We have a 
basis of T:.:(M) and therefore an isomorphism of T:.:(M) with an = V which 
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defines the desired map L. We shall encounter a more complicated example in 
the next section. We should point out that only very special kinds of manifolds 
admit such an isomorphism L of T(M) with M X V. 

For the rest of this section we shall identify T(M') with M X V and T*(M) 
with M X V* via the corresponding (adjoint) isomorphism. 

The rule which identifies each T",(M) with V can be regarded as a V-valued 
linear differential form on M. Let us denote this form by w. In other words, 
the identification L is given by L(O = (~, w",) if ~ E TAM). We can therefore 
study the V-valued exterior two-form dw. For each pair of tangent. vectors 
~, 7] E T",(M) we obtain (7], ~ ..J dw) as an element of V. Now we can identify ~ 
and 7] with vectors of V. We thus obtain a V-valued antisymmetric bilinear form 
on V; if we call it a"" we have 

a",(v, w) = (7], ~..J dw), 

where (~, w",) = v, (7], w",) = w, and ~, 7] E T",(M). Note that, in general, the 
bilinear form a", depends on x. Our second fundamental assumption about the 
identification L is that a", is independent of x. That is, we assume that there is a 
V-valued bilinear form a such that 

(Y, X ..J dw) = a(X, w), (Y, w») (11.1) 

for all vector fields X and Y on M. 
In the examples given above (the open subset of Von the torus) dw = 0, 

so that (11.1) holds trivially. In the next section we shall come across a case 
where dw ~ O. 

To understand (11.1) a little better, let us introduce the following notation: 
For any v E V let (j be the vector field on M given by «(j,-w)", = v for all x E M. 
Then for any v, wE V, we have 

('11;, (j ..J dw) = D,,(11;, w) - Dw«(j, w) - ([(j, 11;], w). 

Now (11;, w) = wand «(j, w) = v are constants, so the first two terms on the right 
disappear. Thus we can rewrite (11.1) as 

a(v, w) = -([(j, 11;], w). (ILl') 

For the kinetic energy of a mechanical system we need a Riemann metric 
on M. A Riemann metric on M gives a scalar product on each T",(M). This 
means giving a scalar product ( , )", on V for each x E M. Our third special 
assumption is that ( , )", does not depend on x. Thus we are given a scalar 
product on V which gives the Riemann metric on M via the identification of 
T(M) with M X V. 

We wish to describe the vector field on T*(M) as X'-dH, where H = K + U, 
K being the kinetic energy'of the Riemann metric and U being some potential 
energy. Since T*(M) = M X V*, a vector field X on T*(M) can be uniquely 
written as X = Xl + X 2 , where Xl is t!1ngent to M and X 2 is tangent to V*. 
Furthermore, we can regard Xl as a V-valued function and X 2 as a V*-valued 
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function (identifying the tangent space to vector space V* with V*). Then 

(X, 0)<%,1> = (Xl' l) 

at any -<x, l> EM X V*. We should really write this as 

(,,0) = «" 7r*w), p), 

where W is the form defined above and the V* -valued function p: M X V* -+ V* 
is the projection onto the second factor, p(m, l) = l. Then 

(', X .JdO) = «" 7r*w), (X, dp» - «X, 7r*w), (', dp» - «" X7r* .J dw), p). 

Substituting Y = Y I + Y 2 and using (11.1), we obtain 

(Y, X.J dO) = (Yb X 2 ) - (Xb Y 2 ) - (a(Xb Y I ), l). 

Now H = K + U, where K(l) = !(l, l) and U(x, l) = Vex). Thus 

(Y, dH) = (Y2 , l) + YIV, 
and the equation 

(Y, X .J dO) = -(Y, dH) 
becomes 

which must hold for all choices of Y. 
Setting Y 1 = 0, we get 

(11.3) 

In fact, the scalar product occurring in the last equation is on V*. Transferring 
it to an equation on V, we get 

(11.4) 

Let t 1---+ -<G(t), vet) > be a solution curve of our system transferred to T(M) = 
M X V by the Riemann metric. Then this last equation says G'(t) = vet). 

If we set Y 2 = 0 in (11.2) and use (11.4), we get 

(', X 2 ) - (a(XI' .), Xl) = -(., dV). 

Now for any solution of (G, v) we have 

(', X 2 ) = (, ~~) , 
so that these last two equations can be rewritten as 

G'(t) = vet), 

(, ~~) = (a(v,·),v) - (v,dV), 

which are known as Euler's equations. 

(11.5) 
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12. RIGID-BODY MOTION 

We shall apply the results of the previous section to the study of the motion of 
a rigid body. For simplicity, we shall confine ourselves to the study of the 
motion of a rigid body with one point fixed. The more general case where the 
body as a whole is allowed to move can be handled by similar methods. (Fre­
quently, by considering first the motion of the center of gravity, the more 
general case can be split into two parts: the motion of the center of gravity and 
the motion of the body relative to the center of gravity. This then reduces the 
problem to the one we are studying.) 

In order to exhibit the generality of our method, we shall consider the 
equations of motion of a rigid body in P. Only at the end will we make use of 
the fact that n = 3. Let us fix some positive orthonormal system "drawn through 
the fixed point of the body". In other words, we fix some initial position Xo = 
-< b 1, ••• , bn >- of the body. Any other position, Xl, of the body can be obtained 
from Xo by a rotation: Xl = RlXo. Let R(t) = eAt be a one-parameter group 
of rotations. Then 

is a curve of possible positions of the body. The tangent to this curve at X 1 will 
- - -1 be denoted by Ax!. Thus Ax! E Tx!(M). If X2 = R2XO = R2Rl RlXO = 

R2RllXb then AX2 is the tangent to the curve R2R(t)xo = R2R~lRlR(t)xo, 
so that AX2 = (R2RllhAxl' It is clear from its definition that AX! = 0 if and 
only if A = O. 

We can regard the map A ~ AX! as a map from the space of skew adjoint 
linear transformations to Tx)(M). Let V denote the space.of skew adjoint linear 
transformations. Then since 

d' V d' M n(n - 1) lm=lm = 2 

and the map A ~ AX) is an injection, we conclude that it is an isomorphism. 
We thus have a trivialization T(M) ~ M X V. Consequently, we get a V­
valued linear differential form w, as in Section 11. 

Let us describe once more the meaning of wx: Tx(M) ~ V. If ~ E TAM) 
represents an infinitesimal motion of the body, then since the body is rigid, we 
can regard ~ as an infinitesimal rotation of the body relative to an observer 
situated outside the body (fixed in space). Thus ~ = B for some B E V, say. 
Then <~, w) is the corresponding infinitesimal rotation expressed in terms of 
the basis attached to the body; that is, <~, w) = R~IBRI if X = RIXo . 

. We denote by A the vector field X ~ Ax corresponding to A E V. Let CPt 
be the one-parameter group generated by !J for some BE V. Note that at any 
X2 = R2XO we have cP + X2 = R2eBtxO' Then at any Xl = RlXO we have 

R ASR-I R As R As Bt CPt Ie I Xl = CPt Ie Xo = Ie e Xo 
= RleBt(e-BteAseBt)xo, 
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so that -----A- ( -BtA Bt) 'Pt* Xl = e e 'l'tX1. 

If we differentiate this equation with respect to t at t = 0, we conclude that 

[A, .S] = (AB - BA) = -[A, B], 

so that, according to (11.1), we have 

a(A, B) = [A, B] = BA - AB. (12.1) 

We now show how a mass distribution on the body determines a Riemann metric 
on M. Let p be a particle on the body with mass m. We will assume that the 
particle p has coordinates <. pI, ... , pn> relative to the axes drawn on the 
body. Suppose that the body is at position x = <. b1, ••• , bn >. Then the 
particle p will be situated at the point p Ib 1 + ... + pnbn E P. If R(t) = eAt 
is a one-parameter group of rotations, then when the body is at R1R(t)x the 
particle p will be situate~_ at 

Rl[plR(t)b1 + ... + pnR(t)bn] = RIR(t)p. 

Thus the velocity of the particle p as the body undergoes the motion generated 
by A is R1Ap, and the kinetic energy of the particle p is -lml/R1Api/2 = 
!mIIApI/2, since Rl is an orthogonal linear transformation. We define the kinetic 
energy of Ax to be the total kinetic energy of all the particles of the body. Thus 

tl/Axl/ 2 = t J ml/Apl/2. (12.2) 
body 

Note that I/Axll depends only on A, so that our third requirement of the last 
section is satisfied, provided (12.2) does indeed define a norm on V. (Note: That 
the mass distribution could be such that Ap = 0 for all p in {p : m(p) > O} 
does not imply that A = O. For example, suppose that all the mass were con­
centrated along a line l. If A represents infinitesimal rotation about l, so that 
Ap = 0 for pEl, then I/AI/ = O. However, it is clear that if the set of p for 
which m > 0 spans P, then (12.2) defines a Riemann metric. In fact, 

I/AI/ = 0 => Ap = 0 
for all p belonging to a spanning set, and thus A = 0.) 

Let us examine the scalar product given in (12.2) a little more closely. Let f 
denote the linear function on lEn ® lEn corresponding to the scalar product on 
P (which is a bilinear form); in other words, 

f(al ® b1 + ... + ak ® bk) = (all b1) + ... + (ak' bk). 

Let s be any element of V ® V. Then s defines a bilinear form on Hom(P) 
given by 

s(A, B) = f(A ® B)s). 

Note that if the tensor s is symmetric, so is the corresponding bilinear form. In 
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our present context the scalar product (12.2) comes from the tensor I E V @ V, 
where 

1= f mp@p 
body 

is called the inertia tensor of the body. * Thus (12.2) can be written as 

111112 = I(A, A). 

Euler's equations in this case become 

G'(t) = A(t) and ( dA) A_ .' dt = 1([·, A], A) - (Ac(t), dU). (12.3) 

N ow the tensor I is symmetric. We can therefore find an orthonormal basis 
e 1, .•. , en of IP which diagonalizes I, so that 

1= Ile l @ e l + I2e 2 @ e2 + ... + Inen @ en. 

Let Eij (i < j) be the antisymmetric matrix defined by 

(l~i,j). 

Then 
if i, j ~ kl 

and 
I(Eih Eij) = Ii + h 

Now let us see what Eqs. (12.3) say for the case n = 3, where we have 

Suppose A(t) = al(t)E23 - a2(t)E 13 + a3(t)E 12 , and let 

B = blE 23 - b2E 13 + b3E12 = const. 

Then substituting B into (12.3) and comparing the coefficients of b l , b2 , and 
b3 , we get 

dal -
(I2 + fa) dt = (I3 - I 2)a2a3 + al (E12' dU), 

da2 -
(II + 13) dt = (II - I 3)ala3 + a2(-E12' dU), (12.4) 

da3 -
(II + 12) dt = (I2 - I l )ala2 + a3(E13 , dU). 

A simple case of these equations arises when there is no potential, that is, 
U = O. First of all, suppose that the body has a spherically symmetric distri-

* This differs slightly from that which is usually called the inertia tensor in physics 
texts. In terms of the coefficients Ii introduced below, what is usually called Iii is 
Ii + Ii in our setup. 
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bution of mass. Then II = 12 = I a and Eqs. (12.4) become 

dal = da2 = daa = 0 
dt dt dt . 

547 

In other words, A = const. The motion of the body consists of a steady rotation 
about some axis fixed on the body. Of course, this means that for an observer 
in space also, the body undergoes a steady rotation about a fixed axis. 

Next, let us consider the case of an axially symmetric rigid body moving 
freely; that is, II = 12 and U = o. The equations of motion then become 

where 

dal dt = Ka2aa, 

da2 dt = -Kalaa, 

daa = 0 
dt ' 

K = Ia - 12 • 

Ia + 12 

The solutions of these equations can be written down immediately: aa = 
s = const and 

al = Cl cos Kst + C2 sin Kst, 

a2 = -Cl sin Kst + C2 cos Kst. 

Thus for an observer situated on the body the instantaneous axis of rotation 
describes a circle around the axis of symmetry of the body. This motion is 
known as regular precession. (This motion should not be confused with the astro­
nomical precession of the earth's axis, which is due to the gravitational action 
of the sun and moon.) 

If no two of II, 12 , and I a are equal, then the equations of motion can still 
be solved in terms of integrals, although the expression is rather complicated. 
We refer the reader to any standard book on mechanics for the details. 

So far we have been considering the motion with no potential. If V rf 0, 
then Eqs. (12.4) are usually not so easy to solve. Let us treat the case of a 
symmetrical top; that is, II = 12 and U is given by the gravitational potential. 
In order to solve this problem it is convenient to use the Euler angles of astron­
omy as the local coordinates on M. In order to avoid confusion, we reproduce 
the definitions here: We let ~x, ~y, ~z be the basis vectors of lEa corresponding to 
the rectangular coordinates x, y, z, where we take the origin of lEa to be the fixed 
point of the body. We may assume that the center of mass of the body is distinct 
from the fixed point-otherwise there will be no gravitational force acting on 
the body. It is easy to see that the center of mass C lies on the axis of symmetry. 
We shall assume that the vectors drawn on the body are such that ba points in 
the direction from the fixed point to the center of mass, i.e., from 0 to c. Then 
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o < 0 < 7r is defined to be the angle between b 3 and 8.: 

cos 0 = (b 3 , 8.). 

The line of nodes is the intersection of the plane spanned by bl and b2 with the 
xy-plane. (Thus, in order for it to be defined, we must restrict to the open set 
b ¢ ± 8 •. ) We define the unit vector n along the line of nodes to be the one that 
makes 8., ba, n a positive (right-handed) basis of lEa. 

Fig. 13.5 

The angle 0 < 1/; < 27r is defined to be the angle that n makes with 8x and 
o < cp < 21T' is defined to be the angle that n makes with b1• We now wish to find 
the transformation relating the basis of TxCM) given by ajaO, a/acp, a/a1/; with 
the orthogonal basis E 12, -E1a, E 23 introduced earlier. Suppose that x has 
the coordinate -< 0, 1/;, cp>. (See Fig. 13.5.) Now (a/aO)x represents an infinitesi­
mal rotation about the line of nodes and n = (cos cp)b 1 - (sin cp)b 2 , so that 

(:O)x = (cos CP)E23 - (sin cp)(-E13)· 

The vector (a/acp)x represents infinitesimal rotation about ba, so that 

Finally, (a/a1/;)x represents infinitesimal rotation about 8 •. Now 

(8., b3 ) = cos o. 
Furthermore, since (8., n) = 0, the projection of 8. onto the plane spanned by 
81 and 82 must still be orthogonal to n, since n lies in that plane. It is therefore 
easy to check that this projection is given by (sin cp)b1 + (cos cp)h Thus 

8. = sin 0 [(sin cp)b 1 + (cos cp)b21 + (cos 0)b 3, 
and therefore 

(a~)x = (sin Osincp)E23 + (sinOcoscp)(-Ed + (COSO)E12. 
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If ~ E TlIl(M) is given by , 

E ,!(to):c +if;(a~)z+4>(:~Jz; 
we have 

2,K(~) = II EII2 i 

= 02(CoS'6)2(12 + 1 3) + (sin ~)2(Il + 13 ) + 4>2(11 + 12) 

+ 2q,if;(ll + 12 ) cos.6 

5&9 

+ ~2{(sin2 6)[(12 + 1 3) sin2 ~ + (II + 1 8) COS2~] + (II + 12) cos2 6}. 

Now, by assumption II = 12, Let us set 

and 

Then the above expression simplifies to 

K(8, I/t, ~; 0, ~, 4» = iM 1(02 + ~2 sin2 6) + !M 2(4) + ~ cos 6)2. (12.5) 

Let us now obtain the expression for the potential energy. It is proportional 
to the height of the center of gravity if we assume (as we shall) a uniformly 
vertical gravitational field. Thus 

D(8, I/t, ~) = k cos 6, (12.6) 

where k = mgllell and m is the total mass of the body, g is the force of the 
gravitational field, and lIell is the distance of the center of gravity from the fixed 
point. Thus the Lagrangian is given by 

L(6, I/t, ~; 0, ~, 4» = !M 1 (02 + ~2 sin2 6) + !M 2(4) + ~ cos 6)2 - k cos 6. 
(12.7) 

Note that a/a~ and a/al/t are both isometries of the Riemann metric which 
leave D invariant. Thus the corresponding momenta are constants of the motion. 
In other words, for any motion of the system we have . 

and 

where C 1 and C 2 are constants. But 

P818", = :t = Ml ~ sin2 8 + M2 cos 8(4) + ~ cos 6) = C1 

and 
P 818rp = M 2 (4) + ~ cos 6) = C2• 

Solving these equations gives 

(12.8) 
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Let us substitute (12.8) into the expression for the energy, 

E = K + D = !M1 (02 + 1/;2 sin2 8) + !M2(i,O + I/; cos 8) + k cos 0, 

to get, for a given value of C 1 and C 2 , the expression 

C~ 1 °2 (C 1 - C2 cos 8)2 
2M2 +"2 M 18 + 2Ml sin2 8 + k cos 8 = const. (12.9) 

Thus, just as in our treatment of the central-force problem, for a fixed 
value of Pa/a", and Pa/a"" the motion of 8 is determined by a one-dimensional 
mechanical system whose energy is given by (12.9). After solving this mechan­
ical system for 8, we can then obtain 1/;(.) and <p(') by integrations from (12.8). 
In order to obtain qualitative information about the behavior of the solutions 
8(·), we can apply the method of Section 5 to our one-dimensional mechanical 
system. Note that if C 1 ~ C 2 (as would be the case if the body were "spinning 
fast"), the kinetic energy tends to infinity as 8 --t 0 and as 8 --t Tr. We there­
fore conclude that 8 oscillates between two values 0 < 81 ::::; 8 ::::; 82 < Tr. 

In other words, the axis of symmetry of the body executes a periodic up and down 
motion (called nutation). As 8 oscillates, I/; satisfies (12.8). Let us graph the 
curve that ba traces out on the unit sphere. If C1 > C2 cos 8 > 0 for 81 ::::; 

8 ::::; 82, then I/; > 0 although it oscillates in magnitude. The motion is thus as 
given in Fig. 13.6. Another possibility is that 

and 

so that I/; is negative near 8 = 81 and positive max 8 = 82, In this case the 
average of I/; ovp.r a period is still positive, so that the motion is as shown in 
Fig. 13.7. 

Fig. 13.6 Fig. 13.7 Fig. 13.8 

A limiting case is where C1 - C2 cos 81 = 0, where the motion of ba is as 
shown in Fig. 13.8. (This is the case that arises if the axis of a spinning top is 
held fixed at some position 8, '" and then allowed to fall.) 

The motion of the axis of body around the z-axis in all these cases is called 
precession. It should be remembered that all this time the top is spinning about 
its axis with constant angular momentum C 2. 
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13. SMALL OSCILLATIONS 

Suppose we are given a mechanical system on a manifold l\{ with energy 
H = K + U. Suppose that the "force field" dU vanishes at some Xo E l\{. 

Then the constant curve C(t) ~ Xo is a tra.jectory of the system. In fact, let us 
choose a chart (W, a) with coordinates Xl, ••• , xn such that 

a(xo) = -<0, ... ,0>. 

Then in the corresponding coordinates -< q 1, ••• , qn> on 11"-1 (W) we have at 
the point -<0, ... , 0, ... ,0> 

and 
aH CJK 
CJpi = api = O. 

It is therefore natural to expect that for small initial values of q and p and 
for small intervals of time, the solutions of the system should be well approxi-
mated by the following linear system: . 

Replace the potential energy, 

U(x 1, ••• , xn) = l: aijXiXj + U 3, 

[where U 3 = e(llxI1 3); that is, U 3 vanishes to third order at x = 0] by the 
quadratic potential energy, 

U2(x) = !l: aijXiXj, 

and replace the kinetic energy corresponding to the given Riemann metric, 

K(q, q) = !l: Yij(q)qiqj, 

by the one corresponding to the Euclidean metric at xo, 

K 2(q, q) = !l: Yij(O, ... , O)qiqi. 

We thus obtain a mechanical system H 2 whose corresponding equations 
(5.1) are actually linear. [The reader should check, as an exercise, that these 
equations are exactly the equations of variation (introduced in Section 2) of the 
vector field X-dH along the curve C(t) = -<0, ... , ... 0> in T*(M).] 

Of course, as time increases, the values of qi and pi might become quit~ 
large and the linear approximations useless. However, under certain circum­
stances we can guarantee that qi and pi remain small for all time. In fact, 
suppose that the quadratic form l: aijxixi is positive definite. Then U has a 
strict minimum at xo-say U(xo) = o. In particular, if we start at Xo with a 
kinetic energy K = E, where E is sufficiently small, then x will be restricted to 
the neighborhood of Xo defined by U(x) :::;; E, and the momenta will be restricted 
by the condition K :::;; E, since, by the conservation of energy, K + U == E. 
(See Fig. 13.9.) Thus the qi and the pi will remain small. This does not mean 
that the solutions to the original mechanical system with Hamiltonian H will 
remain close to one fixed solution curve of the linearized system. It does mean 
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Fig. 13.9 

that for any short interval of time (that is, a short interval near any time in the 
future), the trajectory will be close to some trajectory of the linearized system. 
It is therefore important to study the behavior of such mechanical systems. 

Weare thus interested in the following kind of mechanical system: The con­
figuration space M is a vector space. The Riemann metric is given by a Euclidean 
metric on the manifold. The potential energy is a positive definite quadratic 
form on this vector space. Let us choose rectangular coordinates x 1, ... , xn 
with respect to the Euclidean metric. Thus 

and the map £ is given by 

Thus 
L(q, q) = K(q) - V(q) 

= -!(L (qi) 2 - L aijqiqi) 

and Lagrange's equations become 

(13.1) 

(Of course, these are just the Euler equations (11.15) for the case at hand where 
a == 0.) 

Equations (13.1) can be written more suggestively as follows: Let A be the 
linear transformation whose matrix is (aii). Stated invariantly, A is the unique 
self-adjoint linear transformation such that 

Vex) = (Ax, x). (13.2) 

Then the trajectories v(·) of the system are the solutions of the second-order 
differential equations 

d2v 
dt2 = -Av. (13.3) 

To find the actual solutions of (13.1) and (13.3) we apply Theorem 3.1 of 
Chapter 5. According to that theorem, if M is finite-dimensional, we can find an 
orthonormal basis e1, ... , en of eigenvalues of A. In other words, if Zi are the 
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rectangular coordinates corresponding to this basis, 

U(Zl, ... ,zn) = Al(zl)2 + ... + An(zn)2 

and Eqs. (13.1) and (13.3) become 

d2zi i 
dt 2 = -Aiz . 

Thus the general solution of (13.3) is given by 

553 

vet) = (al cos Alt + bl sin Alt)e I + ... + (an COS Ant + bn sin Ant)en, 
(13.4) 

where the constants a I and b I are determined by 

v(O) = aIel + ... + anen 

and 

~~ (0) = Alble l + ... + Anbnen. 

Thus the general motion is a superposition of independent oscillations, the 
frequency of each oscillation being determined by the eigenvalues {Ai}. That 
is why the mechanical system (13.1) is called a system of "small oscillations". 

14. SMALL OSCILLATIONS (Continued) 

So far, we have been considering the linearized equations (13.1) as an approxi­
mation to a finite-dimensional mechanical system. The philosophy has been 
that the solutions to the actual mechanical system exist, but are hard to find. 
We use (13.3) as good approximating equations. 

(0,1) 

Fig. 13.10 

It turns out that the method has more extensive applications, even to the 
case of infinite-dimensional systems where the very existence of solutions to the 
"actual" mechanical systems may be difficult to establish. Let us illustrate by 
the mechanical system consisting of a stretched string which is held fixed at two 
endpoints. For simplicity in illustration, we shall assume that the string is 
restricted to move in the xy-plane, although this is in no way essential to the 
argument. Let us assume that the string is homogeneous and that the two 
fixed points are (0,0) and (0, 1). Then the configuration space should be all 
possible smooth curves joining (0,0) to (0, 1). Thus the curve shown in Fig. 
13.10 would be a possible element of our configuration space. In some sense, 
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the configuration is an "infinite-dimensional manifold" and with suitable work 
this idea can be made precise. However, what is of interest to us is behavior 
near the "equilibrium" curve C(t) = (t,O). For such curves we will have 
dx/dt > 0, and so the curve can be described by using x as independent variable, 
i.e., by giving a function u(x}. In other words, we are replacing the big con­
figuration space by the approximating vector space V of all functions u of one 
variable, with u(O) = u(l) = o. Thus V is regarded as the "tangent space" 
to our system, in the sense that u is the "tangent vector" to the curve CB (-), 

where CB(T) = CT, SUeT)). (Remember that our configuration space is a 
collection of curves, so that a curve in our configuration space is a one-parameter 
family of curves.) Now we expect the "kinetic energy" of u to be the total of 
the kinetic energy of all the particles on the string. The particle at T has velocity 
U(T) and therefore kinetic energy imU(T)2. If we assume that the mass density 
is constant, we thus get 

as the expression for the kinetic energy. This makes V into a pre-Hilbert space 
as in Section 6 of Chapter 6. 

We expect that the potential energy depends on the stretching of the string, 
i.e., that it is some function of the length: 

D(C) = F (101 IIC'(t)1I dt) = F(L), 

where L is the length of the curve and F is some smooth funbtion with F(I) = O. 
For curves parametrized by x, the length is given by 

Now 
VI + a2 = 1 + !a2 + higher-order terms. 

Thus using a Taylor expansion for F, 

F(L) = F'(I)(L - 1) + quadratic terms in (L - 1) 

and 

L - 1 = ~ 101 (~iY dx + f higher-order terms in ~: ' 
we see that U 2, the quadratic approximation to D, is given by 

C du 2 11 ( ) 
U2 (u) ="2 0 dx dx. 
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By analogy with (13.3) we expect that the "small oscillations" of the string are 
solutions Ut(·) of the equations 

where A is the self-adjoint linear operator such that 

C du 2 11 ( ) (Au, u) = 2" 0 dx dx. 

Now 

(Au, u) = ; 101 
u(Au) dx. 

Since u(O) = u(l) = 0, we have, by integration by parts, 

so that 

Equation (13.3) thus becomes 

(14.1) 

Note that we have derived (14.1) by reasoning by analogy. We have not 
formulated the actual (nonlinear) infinite-dimensional mechanical system, nor 
have we any guarantee that there is one that can be solved. Furthermore, we 
don't actually know the function F. We only need to know its form and the 
value of F'(l). Nevertheless, Eq. (14.1) gives a good explanation of observed 
physical phenomena. 

The solution of (14.1) proceeds just as in the finite-dimensional case due to 
the fact that the operator A with the boundary conditions u(O) = u(l) = 0 
is a Sturm-Liouville system, so the results of Sections 6 and 7 of Chapter 6 
apply. In fact, we can choose the functions 

un(x) = sin (mrx) 

as an orthogonal basis of eigenvectors of A, where Un has the eigenvalue 
n2(c/m)7r2. Thus the general solution is given by 

Ut(x) = (a1 cos at + b1 sin at) sin (7rx) 

+ (a2 cos 2at + b2 sin 2at) sin (27rx) + ... , 
where a = (c/m) 7r2. In other words, the general solution is a superposition 
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(linear combination) of the "harmonics" 

sin nat sin mrx, cos nat sin mrx. 

These can be regarded as "standing waves", as, for example, in Fig. 13.11. 

-r---+--~~--~~~---r--~----X 

sin 3al sin 3".x Fig. 13.11 

As another illustration of this method, let us consider the "vibrating mem­
brane" in n-dimensions. Here we are given a domain D with almost regular 
boundary in lEn. We consider a stretched membrane in IEn+l = lEn X lEI 
which is fastened along aD in P X {O}. Again, as our linear approximation V 
to the configuration manifold, we take the space of all functions u on D which 
vanish on aD. To be precise, we let V be the space of functions which we 
defined, are of class C2 in some neighborhood TI, and vanish on aD. Thus the 
membrane is the surface in IEn + 1 whose points are of the form 

<x\ ... , xn , u(x l , ••• , x n», 
where <Xl, ... ,xn > ED. As before, we define the kinetic energy as 

K(u) = t JD u2, 
while the potential energy is to be some function of the total volume (area) 
which vanishes at p.(D). Now the total volume (area) of the hypersurface is 
given by (see Exercise 4.3, Chapter 10) 

L ~1 + 2: (::iY· 
Thus, as before, 

U2 (u) = ~ f 2: (*~Y = ~ D[u, u], 

where D is the Dirichlet integral introduced in Section 11 of Chapter 12. By 
Green's formula we have (since u = 0 on aD) 

D[u, u] = - JD u~u. 
Thus the operator A of (13.3) is given by -(c/m)~, and Eq. (13.3) becomes 

d2 c 
dt2 Ui = m ~u. (14.2) 
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Note that this is exactly (14.1) if n = 1. In order to solve (14.2), we must find 
a complete set of eigenvalues for (14.2). If {un} is such a basis, where "Ai is the 
eigenvalue associated to Ui, then the general solution of (14.2) would be given by 

Ut(x) = L (an cos "Ant + bn sin "Ant)un(x). 

The problem of showing that -Il has a complete set of eigenvectors IS 

somewhat more difficult for n > 1, and will be discussed in the exercises. 

EXERCISES 

In order to study the eigenvalue problem it is convenient to replace the space of 
CI-functions vanishing on aD by the space Hf (where we refer back to page 361 for the 
definition of the spaces Hf.) To show that this replacement is legitimate, we have: 

14.1 Show that if ep is a function which is Cl in a neighborhood of 15, then ep E HD 
if and only if ep vanishes on aD. 

14.2 Let the operator K be defined as Kf = (1 - Il)f for smooth f and extended as 
in Section 14 of Chapter 8 to a map of H. ~ H._2• Let g E Ho. Since 

I (g, v) I :::; Ilgllollvllo :::; IIgliollvlll for any v E Hf, 

conclude that there is a bounded linear map L from H{/ to Hf satisfying 

(Lg, vh = (g, v)o for all v E Hf. 

14.3 Letf and g be locally integrable functions on D. By this we mean thatfep and 
gep are integrable for every test function ep E Co(D). We say that the differential 
equation Kf = g holds weakly on D if (f, Kep) = (g, ep) for all test functions ep E Co(D). 
Show that this generalizes the notion of being a solution by proving the following 
lemma. 

Lem.m.a. If the functions f and g are respectively in the classes C2(D) and CO(D), 
then the equation Kf = g holds in the weak sense if and only if it holds in the 
classical sense. 

In proving this lemma you may assume that if h is a continuous function on D 
such that JD hep = 0 for every test function ep, then h = O. 

14.4 Prove that the operator L of Exercise 14.2 is a right inverse of K in the weak 
sense. That is, show that if g E H{/ andf = Lg, then Kf = -g weakly on D. 

14.5 We now want to show that f is actually in C2(D) if g is suitably smooth. 
Roughly speaking, what we want to do is to "round off" f and g near the boundary of C 
in such a way that we can consider the adjusted functions to be defined on the whole 
of ~n, and can then apply Exercises 14.25 and 14.30 of Chapter 8. 

Our rounding off process will simply be multiplication by an arbitrary but fixed 
function 1/1 in Co(D). Prove, to begin with, that multiplication by such a 1/1 is a bounded 
linear mapping of H. into itself for any 8. 

14.6 We know that D; = ajax; is a bounded linear mapping from H. to H.-l for 
every 8. Combine this fact with the result of the above exercise to show that if Kf = g 
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weakly on D, and ift/; is any fixed element of Co(D), then there is a differential operator 
R of order 1 defined on the whole of ~n such that 

1) K(I/If) = t/;g + Rg weakly on D; 

2) h ~ Rh is a bounded linear mapping from H. to H._l for every 8. 

In order to consider R to be defined on ~n we have to extend t/; to ~n in an 
obvious way. The proof is essentially an integration by parts. 

14.7 We say that a function h defined on D is locally in H. if cph E H. (when extended 
to ~n) for every cp E Co(D). Use the above exercise to prove the following lemma: 

LeUlUla. Suppose that Kf = g weakly in D, tha;t f E H j locally in D, and that 
g E Hm locally in D. Then f E Hmin(m+2,i+1l locally in D. 

[Hint: In order to prove this crucial lemma, show first that the weak differential 
equation of Exercise 14.6 holds for all test functions cp on ~n. The crux of the matter 
is that there is a function X E Co(D) such that X = Ion the support oft/;. We extend X 

to ~n as above, and then for each test function cp on ~n we write 

cp = Xcp + (1 - X)cp, 

where Xcp E Co(D). Now use the fact that the test functions cp on ~n are dense in H. 
for every 8, that I/If E H j , and that t/;g E Hm.] 

14.8 Suppose now that g E Hf!, that f = Lg E Hf (Exercise 14.2), and that kf = g 
weakly on D (Exercise 14.4). Apply the above lemma repeatedly to show that if 
g E Hm locally in D, then f E Hm+210cally in D. Conclude from Sobolev's lemma that 
if m > n/2+ j and g E Hm locally in D, thenf = Lg E Ci+2(D). 

14.9 Show that IILglll ::::; Ilglio and conclude from Exercise 14.31 of Chapter 8 that if 
we regard L as an operator from Hf! to Hf!, it is compact, and all of its eigenvectors 
belong to Hf, Use Exercise 14.8 to show that every eigenvector belongs to Coo(D). 

15. CANONICAL TRANSFORMATIONS 

In Sections 1 through 5 we formulated the notion of a mechanical system as a 
flow of a certain type on the cotangent bundle of the configuration space. The 
defining equations for the vector field X generating this flow were X ...J n = 
-dH. Thus the basic property of the cotangent bundle used in singling out the 
class of flows is the existence of the two-form n. It turns out that in studying 
the equations of mechanics it is sometimes convenient to forget that the flow is 
on the cotangent bundle and to concentrate on the form n. For instance, we may 
be able to introduce charts that don't arise from the configuration manifold but 
in terms of which the vector field X takes a particulary simple form. We shall 
therefore want to consider a manifold N which carries a two-form n, subject to 
certain restrictions which we shall describe below. On such manifolds we shall 
study vector fields satisfying X j n = -dH. It will be convenient to allow H 
to depend on the time t, as well as being a function on N, so that X will be a 
time-dependent vector field. The reason for this is twofold. First of all, it allows 
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the consideration of "nonconservative" mechanical systems. Secondly, even in 
the study of the systems we have introduced so far, it is sometimes convenient 
to make a time-dependent change of coordinates to simplify the equations. This 
has the effect of changin~ 81 time-independent vector field into a time-dependent 
one. Now to the definitions:' 

Definition. if.: xnanifold N is said to possess a Hamiltonian structure (or to 
be a Hamiltonian manifolif) if there is an exterior two-form n defined on N 
such that 

i) dn = 8\ and 

ii) n is of maximal rank in the sense that (4~3) holds. 

Remarks 

a) As we have seen, if N = T*(M), then N is a Hamiltonian manifold 
where n is given by (4.1). 

b) If N is finite-dimensional, then it must be even-dimensionall In fact, 
condition (ii) says that n restricted to each tangent space:is an antisymmetric 
bilinear form which is nonsingular. This can happen on a; vector only if it is 
even-dimensional. 

c) It can be proved that if N is a finite-dimensional Hamiltonian manifold, 
then one can always find local coordinates ql, ... , qn, PI, ... ,Pn such that 

~\ = L dPi /\ dqi. 

[We know this to be the case if N = T*(M).] The point of this result (which 
we shall not prove here) is that locally all Hamiltonian manifolds of the same 
finite dimension look alike. 

We shall now single out a class of vector fields on N X IR. 

Definition. The vector field X is a Hamiltonian vector field if there is a 
function H = Hx on N X IR such that 

Xt = (X, dt) == 1, (15.1) 

where t is the standard coordinate on IR, regarded as a function on N X IR, 
and 

X .J (1I"*n - dH /\ dt) = OJ (15.2) 

where 11" is the projection of N X IR onto N; 1I"(x, t) = x. Note that H is 
determined up to a function of t alone. 

Let us set 

so that (15.2) can be written as 

X.J (w - dH /\ dt) = O. (15.2') 
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Fig. 13.12 

If we consider the direct sum decomposition of the tangent space of N X JR, 
then condition (15.1) says that we can write 

X= (x,~), 
where X is a time-dependent vector field on N; that is, X is a rule which assigns 
a tangent vector X(x, t) E Tz(N) to each x and t. Since w does not involve dt, 
we can write 

X .J w = X(·, t) .J n at any time t. (15.3) 

[Strictly speaking, this equality should be written as follows: Let it: N ~ N X JR 
be the map defined by it(x) = (x, t). Then 

ii(X.J w) = X(·, t) .J n.] (15.3') 
Also, 

- . aH 
(X, dH) ~ (X(·, t), dH(·, t) + at at any time t. 

Thus (15.2) can be split up into two equations. When we compare the terms not 
involving dt, we obtain 

Xc-, t) .J n = -dH(·, t) for every fixed t. (15.2a) 
Thus 

- aH 
X .J w = -dH + dt dt. (15.2b) 

Note that (15.2a) is just the condition stated at the beginning of Section 5 with 
the novelty that H (and therefore X) can now depend on time. 

Definition. A diffeomorphism, cp, of N X JR ~ N X JR is called a canonical 
transformation if 

i) cp*(w) = w - dW 1\ dt, where W = Wi' is some function depending 
on cp; and 
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Fig. 13.13 

ii) iP is time-preserving, i.e., iP has the form iP(x, t) = (!p(x, t), t), where 
!p(', t) is a diffeomorphism of N for each t. 

Observe that if iP is a canonical transformation, then so is iP- 1 and 

Wq;-l = -(iP')*Wq;' (15.4) 

Also observe that if iP and if; are canonical transformations, then so is if; 0 iP, 
where 

(15.5) 

These facts follow directly from the definitions and will be left as exercises for the 
reader. 

We note next that if iP is a canonical transformation and X is a Hamiltonian 
vector field, then iP*(X) is also a Hamiltonian vector field. In fact, 

iP*X..J [w - d(Wq; + iP*H) /\ dt] = iP*X..J [iP*w - iP*(dH /\ dt)] 

= iP*[X..J (w - dH /\ dt)] = O. 
Thus we may take H 'P*X as 

H;p*x = Wq; + iP*H. (15.6) 

Let X be a Haxniltonian vector field, and let iP be the map of N X IR ~ N X IR 
obtained by letting the system evolve from time t = 0 according to the flow 
generated by X. That is, let the map !p(', t) be defined so that the curve 
t 1-+ !p(x, t) is a solution curve to the (time-dependent) vector field X which 
passes through x at time t = O. To put it another way, the curve t 1-+ (!p(x, t), t) 
is the solution curve to the vector field X which passes through (x, 0) at time 
zero. (See Figs. 13.12 and 13.13.) 

Note that it follows from the definition of iP that 

iP* (~) = X'P(Z,t). 

We claim that iP is a canonical transformation. In fact, 

ii(iP*w) = (iP 0 it)*'Jr*O = !p(', t)*O, 
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since ip 0 it(x, t) = (rp(x, t), t). But 

by (15.2a). Thus 

d f * ) * ds ..,q;(-' s) 11 = rp(., s) DX(.,t)11 = 0 

.* * {"\ '/,t~ W = .', 

13.15 

or, in other words, rp*w is of the form w + () 1\ dt. To determine () it suffices to 
take the interior product with a/at, since w doesn't involve dt. But 

( a * * ) * [(a) * ] * - * * ( aH ) at .J ip 7r 11 = ip ip* at .J 7r 11 = ip (X .J 7r 11) = ip -dH + at dt , 

so () = ip* dH. Thus ip is a canonical transformation and 

Wi? = -ip*Hx. (15.7) 

Note that (15.7) is just what we would expect from (15.6). In fact, rp*X = a/at, 
and we may take H a/at = O. 

Equations (15.6) and (15.7) are used in conjunction in the following way: 
Suppose that H = H 0 + H b where we know how to solve the differential 
equations corresponding to H o. In other words, we can find the map ip corre­
sponding to the vector field X 0, where X 0 ...J (w - dH 0 1\ dt) = O. If 

X .J (w - dH 1\ dt) = 0, 

then rp*X is a vector field whose corresponding Hamiltonian function is ip*H 1 

by (15.6) 
This method was first introduced by Lagrange in the study of the n-body 

problem. We can let H 0 be the Hamiltonian obtained by ignoring the terms in 
the potential energy coming from the interaction of the planets, and let HI be 
the rest of the Hamiltonian H. The solution for H 0 is then given by having the 
planets move about the sun according to Kepler's laws. For simplicity in 
discussion, let us restrict our attention to that portion of phase space where the 
motion is elliptical. Then the motion of the planets is specified by giving the 
various parameters of each ellipse (such as the plane of the ellipse, its major 
axis, its eccentricity, etc.) and telling the position of the planet on its ellipse at 
time t = O. This corresponds to the use of the map rp. One then regards the 
equations of motion of the whole system as differential equations for the 
parameters of each ellipse. This corresponds to studying the vector field rp* X. 
This idea of introducing the parameters of the ellipses as "generalized" coordi­
nates was one of the key steps leading to the notion of the invariant calculus 
on manifolds. 

We have seen that solving the differential equations corresponding to a 
Hamiltonian H is the same as looking for a map ip satisfying (l5.7). Under 
certain circumstances this can be reduced to looking for the solution to a certain 
partial differential equation. Suppose that we have local coordinates ql • ••. , q .. , 
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PI, ... , Pn such that n = L: dPi /\ dqi. Let V = V(qb ... , qn, Pb ... , Pn, t) 
be a function such that the maps <PI and <P2 are diffeomorphisms, where 

and 

..Jav av '--
<P2(qI, ... , qn, PI. ... , Pn, t) = ,apt' ... , apn ' PI, ... , Pn, t { 

We claim that ;p = <PI 0 <P2l is a canonical transformation and that 

w- = <p2"I* av . 
«J at 

Note that", = d(L: Pi dqi) = -d(L: qi dpi). Thus 

<P * '" - '" = d(;P* L: Pi dqi + L: qi dpi) 

= d<p2"l*(<pi L: Pi dqi + <p~ L: qi dpi) 

= d -1* (" av: d . + " av d i) <P2 £.... aq' q. £.... api P 

= d<P2l* (dV - ~~ dt) 

= <P21*d dV - d<p;:l* av /\ dt 
at 

= -d ( -1* av) /\ dt <P2 at . 

(15.8) 

If we substitute into (15.7) we see that <p solves our differential equations if and 
only if 

-1* av + -*H - 0 <P2 at <p -. 

But ;p*H = <P2 l*<PtH, so we can write this equation as 

av * at + <pIN = 0 

or 

av ( av av) at + H qb"" qn, aql ' ... , aqn ,t = O. 

Equation (15.9) is known as the Hamilton-Jacobi equation. 

(15.9) 

(15.9') 

We therefore have a prescription for (locally) solving the equations of 
motion: Find a solution V of (15.9) which has the property that <PI and <P2 are 
diffeomorphisms. Under certain circumstances, a proper choice of coordinates 
allows us to solve (15.9) by the method of "separation of variables". We illus­
trate this method in the following examples. 
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Example 1. Central-force motion again. Here 

1 (2 p~) ( ) H = 2m PT + -;:2 + U r , 

when we use polar coordinates in the plane. Equation (15.9) becomes 

av 1 [(aV)2 1 (aV)2] at + 2m aT + r2 ao + U(r) = O. 

Since the variables t and 0 do not occur explicitly in this equation, we seek a 
solution of the form 

v = V 1(t) + V 2(0) + V 3 (r) 

and conclude that both V~(t) and V~(O) depend only on r, and so must be 
constants. We may thus write 

VW) = -E, VHO) = Ae, 

where E and Ae are constants. (This just reflects the conservation of energy and 
angular momentum.) We then get the equation 

av _ V' ( ) _ ~ ( ) A~ !I - 3 r - 2m E - U(r) - - . ur r2 
Thus 

r [ A2J1 /2 V = AeO + Jo 2m(E - U(s)) - s: ds - Et 

is a solution of (15.9). Here we consider Va function of the variables r, 0, E, Ae. 
Then the map <P2 is given by 

<P2(r, 0; E, Ae) = j -t +fT[ "1 0 2m(E-

mds 
A2]1/2 ' 

U(s)) - -.!!. S2 

fT ~ Ae ds 
o - 2 1/2' E, Ae . 

o S2 [2m(E - U(s)) - ~:] 
Now the map <P1 0 <p;-1 takes the flow into the constant flow, so that we must 
have 

and 

mds 
A2]1/2 U(s)) _ _ e 
S2 

fT 

Ae ds 
0- 00 = 2 1/2' 

o S2 [2m(E - U(s)) - ~:] 
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where to and 80 are constants. Note that the second of these equations gives the 
orbit explicitly, which can then be solved to give r as a function of t. 

Exalllple 2. The simple harmonic oscillator. Here 

p2 kq2 
H~2m+2' 

so Eq. (15.9) becomes 

Again, since time doesn't enter explicitly, we can write 

V= -Et+W, 
where W is a function of q alone which must satisfy 

~ (Wl)2 + kq2 = E 
2m 2 

or 

rq (2E )1/2 
W = ...;mJc JoT - S2 ds. 

Then 

av _ (m)1/21q (2E 2)-1/2 -- - --s ds-t 
aE k 0 k . 

Thus 

• -', ~ - (;)'" 1'(¥ ::"),,, 
= _ (;y/2 arccos (2~y/2q. 

Solving for q in terms of t gives 

/2E (k)1/2 
q = '\JT cos m (t - to). 

Exalllple 3. The motion of a particle attracted by two fixed point masses. Here 

where rl and 1'2 are the distances to the two points and A and B are constants 
(determined by the masses of these two points). 

For the purpose of solving this problem, it is convenient to introduce so­
called elliptical coordinates. Let us assume that the two fixed points lie on the 
x-axis, each at a distance c from the origin. We may take c = 1 for simplicity. 
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(-1,0) (1, 0) 

Fig. 13.14 

(See Fig. 13.14.) In the xy-plane define the local coordinates ~ and 1] by setting 

Thus the curves ~ = const represent ellipses with semimajor axis ~ and foci at 
the two fixed points, while the curves 1] = const are hyperbolas with semimajor 
axis 1] and the same foci. Note that 0 < 11] I .::;: 1 .::;: ~ < 00. The equations of 
these two curves are 

and 

so that 

Thus 
dy ~ d~ 1] d1] 
-=---- , 
y F - 1 1 - 1]2 

and therefore 

If we now rotate about the x-axis to get the analogue of cylindrical coordinates 
in space, we have the coordinates 

-<x, p, ()'? and -<~, 1], ()'? 

in space, and the Euclidean metric is given by 

dx2 + dy2 + dz2 = dx2 + dp2 + p2 d()2 

(~2 - 1]2) C2d~2 1 + 1 ~21]2) + (e - 1)(1 - 1]2) d()2. 

Also, 
u = A + B = Ar2 + Brl 

rl r2 rlr2 
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where a = A + Band f3 = A-B. Then H takes the form 

1 
H(~, '1/, 8, P t , Pf/' Po, t) = 2m(p _ '1/ 2 ) 

567 

X [(e - I)P~ + {'l/2 - l)P; + (p 1 1 + 1 ~ '1/ 2) pN + a~ + f3'1/l 

Since t and (j do not occur explicitly in (15.9), we may write 

V = - Et + Ao(j + W, 

where now W must satisfy 

( 2 (OW) 2 
(2 (OW) (1 1) 2 ~ - 1) --ar + 1/ - 1) 0'1/2 + P _ 1 + 1 _ 1/ 2 Ao + a~ + f3'1/ 

= 2m(~2 - 1/2)E. 

Note that if we set W = Wl(~) + W2 (1/), this equation separates into two, and 
we can explicitly solve each of them by quadratures. This gives the solution to 
the original equations of motion. We leave the details to the reader. 
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Rellick's lemma, 362 (Ex. 14.30) 
resonance, 294 
restricted variables, 8 
restriction (of a relation), 10 
Riemann metric, 397 
right inverse, 14, 61 
rigid-body motion, 544 
row-reduced echelon form, 104 
row space (of a matrix), 91 
row vector, 93 

scalar, 23 
scalar product, 38, 248 
Schwarz inequality, 125, 249 
second conjugate space, 83 
second difference, 188 
second differential, 150, 186ff 
self-adjoint, 257 
seminorm, 125 
semiscalar product, 248 
separation of variables, 563f 
sequential convergence, 202ff 
set, 6 
shear transformation, 56 
sign of a permutation, 309 
signature (of a quadratic form), 113 
simple harmonic motion, 293 
skeleton, 32 
small oscillations, 551 
smooth arc, 146 
Sobolev's inequality, 361 
solid angle, 474 
span, linear, 28 
spherical coordinates, 345 (Ex. 11.4) 
standard basis, 74 
star operator, 320 
state, 510 
statement, 1 
statement frame, 1 
stop function, 237 
Sturm-Liouville system, 298 
submanifold, 172, 367 
subsequence, 205 
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subset, 7 
subspace (vector), 24 
successive integration, 346 
support, of a density, 408 

of a differential form, 425 
of a function, 336 

surjective, 12 
symmetric tensor, 310 

tangent bundle, 511 
tangent plane, 162 
tangent space, 373 
tangent vector, 146, 373 
tautology, 5 
Taylor's formula, 191ff 
tensor product, 305f 
topology, 201 
total linear momentum, 528 
totally bounded, 212 
trace, 99 
translation, 40, 53 
transpose, 90 
triangle inequality, for metrics, 196 

for norms, 121 
truth-functional forms, 5 
truth table, 3 

two-body problem, 528 
two-norm, 250 

undetermined coefficients, 289 
uniform conditions, 210ff 
uniform continuity, 179, 210 
uniform convergence, 211 
uniform norm, 123 
uniformly absolutely integrable, 353 
union, 17 
unit set, 7 
universal quantifier, 1 
upper triangular, 66 

variation of parameters, 289 
variational principles, 532 
vector analysis, 457 
vector field, 44 
vector space, 23 
volume density of a Riemann metric, 411 
volume of an immersed hypersurface, 

413,415 

weak sequential convergence, 245 
wedge operation, 316 
Weierstrass approximation theorem, 304 
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