The dot product (scalar product)

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = a_1 b_1 + a_2 b_2 + a_3 b_3$$

is a scalar

The cross product (vector product) $\mathbf{a} \times \mathbf{b}$ is a vector with magnitude $|\mathbf{a}| |\mathbf{b}| \cos \theta$ and a direction perpendicular to both \mathbf{a} and \mathbf{b} in a right-handed sense.

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{e}_1 + (a_3b_1 - a_1b_3)\mathbf{e}_2 + (a_1b_2 - a_2b_1)\mathbf{e}_3$$

The scalar triple product $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$ is a scalar

$$[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = \mathbf{a} \times \mathbf{b} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{c} \times \mathbf{a}$$

The vector triple product is a vector

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

The Kronecker Delta is symmetric $\delta_{ij} = \delta_{ji}$ and $\delta_{ij}a_j = a_i$

The Alternating Tensor:

$$\epsilon_{ijk} = \begin{cases} 0 & \text{if any of } i, j \text{ or } k \text{ are equal,} \\ 1 & \text{if } (i, j, k) = (1, 2, 3), (2, 3, 1) \text{ or } (3, 1, 2) \\ -1 & \text{if } (i, j, k) = (1, 3, 2), (3, 2, 1) \text{ or } (2, 1, 3) \end{cases}$$

The Alternating Tensor is *antisymmetric*:

$$\epsilon_{ijk} = -\epsilon_{jik}$$

The Alternating Tensor is invariant under cyclic permutations of the indices:

$$\epsilon_{ijk} = \epsilon_{iki} = \epsilon kij$$

The vector product:

$$(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} \, a_j b_k$$

The relation between δ_{ij} and ϵ_{ijk} :

$$\epsilon_{ijk} \, \epsilon_{klm} = \delta_{il} \delta_{im} - \delta_{im} \delta_{il}$$

In all of the below formulae we are considering the vector $\mathbf{F} = (F_1, F_2, F_3)$

Basic Vector Differentiation

If $\mathbf{F} = \mathbf{F}(t)$ then

$$\frac{d\mathbf{F}}{dt} = \left(\frac{dF_1}{dt}, \frac{dF_2}{dt}, \frac{dF_3}{dt}\right)$$

The unit tangent to the curve $\mathbf{x} = \boldsymbol{\psi}(t)$ is given by

$$\frac{d\mathbf{x}/dt}{|d\mathbf{x}/dt|}$$

Grad, Div and Curl

The gradient of a scalar field f(x, y, z) (= $f(x_1, x_2, x_3)$) is given by

$$\operatorname{grad} f = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right)$$

 ∇f is the vector field with a direction perpendicular to the isosurfaces of f with a magnitude equal to the rate of change of f in that direction.

The directional derivative of f in the direction of a unit vector $\hat{\boldsymbol{u}}$ is $(\nabla f) \cdot \hat{\boldsymbol{u}}$

 ∇ pronounced del or nabla is a vector differential operator. It is possible to study the 'algebra of ∇ '.

The *divergence* of a vector field \boldsymbol{F} is given by

$$\operatorname{div} \mathbf{F} = \mathbf{\nabla} \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \frac{\partial F_3}{\partial x_3}$$

A vector field \mathbf{F} is solenoidal if $\nabla \cdot \mathbf{F} = 0$ everywhere.

The curl of a vector field \mathbf{F} is given by

$$\operatorname{curl} \mathbf{F} = \mathbf{\nabla} \times \mathbf{F} = \begin{pmatrix} \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \end{pmatrix} \mathbf{e}_1 + \begin{pmatrix} \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \end{pmatrix} \mathbf{e}_2 + \begin{pmatrix} \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \end{pmatrix} \mathbf{e}_3$$

$$= \begin{pmatrix} \frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3} \end{pmatrix} \mathbf{e}_1 + \begin{pmatrix} \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1} \end{pmatrix} \mathbf{e}_2 + \begin{pmatrix} \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \end{pmatrix} \mathbf{e}_3$$

$$= \begin{pmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{pmatrix} = \begin{pmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ F_1 & F_2 & F_3 \end{pmatrix}$$

A vector field \mathbf{F} is *irrotational* if $\nabla \times \mathbf{F} = 0$ everywhere.

 $(\boldsymbol{F}\cdot\boldsymbol{\nabla})$ is a vector differential operator which can act on a scalar or a vector

$$(\mathbf{F} \cdot \mathbf{\nabla}) f = F_1 \frac{\partial f}{\partial x} + F_2 \frac{\partial f}{\partial y} + F_3 \frac{\partial f}{\partial z}$$
$$(\mathbf{F} \cdot \mathbf{\nabla}) \mathbf{G} = ((\mathbf{F} \cdot \mathbf{\nabla}) G_1, (\mathbf{F} \cdot \mathbf{\nabla}) G_2, (\mathbf{F} \cdot \mathbf{\nabla}) G_3)$$

The Laplacian operator $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ can act on a scalar or a vector.

Grad, Div and Curl and suffix notation

In suffix notation

$$\mathbf{r} = (x, y, z) = x_i$$

$$\operatorname{grad} f = (\nabla f)_i = \frac{\partial f}{\partial x_i}$$

$$(\nabla)_i = \frac{\partial}{\partial x_i}$$

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_j}{\partial x_j}$$

$$(\operatorname{curl} \mathbf{F})_i = (\nabla \times \mathbf{F})_i = \epsilon_{ijk} \frac{\partial F_k}{\partial x_j}$$

$$(\mathbf{F} \cdot \nabla) = F_j \frac{\partial}{\partial x_j}$$

Note: Here you cannot move the $\frac{\partial}{\partial x_i}$ around as it acts on everything that follows it.

If ${\pmb F}$ and ${\pmb G}$ are vector fields and φ and ψ are scalar fields then

$$\nabla \cdot (\nabla \varphi) = \nabla^2 \varphi$$

$$\nabla \cdot (\nabla \times F) = 0$$

$$\nabla \times (\nabla \varphi) = 0$$

$$\nabla (\varphi \psi) = \varphi \nabla \psi + \psi \nabla \varphi$$

$$\nabla \cdot (\varphi F) = \varphi \nabla \cdot F + F \cdot \nabla \varphi$$

$$\nabla \times (\varphi F) = \varphi \nabla \times F + \nabla \varphi \times F$$

$$\nabla \times (\varphi F) = \nabla (\nabla \cdot F) - \nabla^2 F$$

$$\nabla (F \cdot G) = F \times (\nabla \times G) + G \times (\nabla \times F) + (F \cdot \nabla)G + (G \cdot \nabla)F$$

$$\nabla \cdot (F \times G) = G \cdot (\nabla \times F) - F \cdot (\nabla \times G)$$

$$\nabla \times (F \times G) = F(\nabla \cdot G) - G(\nabla \cdot F) + (G \cdot \nabla)F - (F \cdot \nabla)G$$

An alternative definition of divergence is given by

$$\nabla \cdot \boldsymbol{F} = \lim_{\delta V \to 0} \frac{1}{\delta V} \oiint_{\delta S} \boldsymbol{F} \cdot \boldsymbol{n} \, dS,$$

where δV is a small volume bounded by a surface δS which has outward-pointing normal n.

An alternative definition of *curl* is given by

$$\boldsymbol{n} \cdot \boldsymbol{\nabla} \times \boldsymbol{F} = \lim_{\delta S \to 0} \frac{1}{\delta S} \oint_{\delta C} \boldsymbol{F} \cdot d\boldsymbol{r},$$

where δS is a small open surface bounded by a curve δC which is oriented in a right-handed sense.

Physical Interpretation of divergence and curl

The divergence of a vector field gives a measure of how much expansion and contraction there is in the field.

The curl of a vector field gives a measure of how much rotation or twist there is in the field.

The Divergence and Stokes' Theorems

The divergence theorem states that

$$\iiint\limits_{V} \mathbf{\nabla} \cdot \mathbf{F} = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS,$$

where S is the closed surface enclosing the volume V and n is the outward-pointing normal from the surface.

Stokes' theorem states that

$$\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, dS = \oint_{C} \mathbf{F} \cdot d\mathbf{r},$$

where C is the closed curve enclosing the open surface S and n is the normal from the surface.

Conservative Vector fields, line integrals and exact differentials

The following 5 statements are equivalent in a simply-connected domain:

- (i) $\nabla \times \mathbf{F} = 0$ at each point in the domain.
- (ii) $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ around every closed curve in the region.
- (iii) $\int_{P}^{Q} \mathbf{F} \cdot d\mathbf{r}$ is independent of the path of integration from P to Q.
- (iv) $\mathbf{F} \cdot d\mathbf{r}$ is an exact differential.
- (v) $\mathbf{F} = \nabla \phi$ for some scalar ϕ which is single-valued in the region.

If $\nabla \cdot \mathbf{F} = 0$ then $\mathbf{F} = \nabla \times \mathbf{A}$ for some \mathbf{A} . (This vector potential \mathbf{A} is not unique.)