ChemSusChem

Supporting Information

Tailoring Activated Carbons for Efficient Downstream Processing: Selective Liquid-Phase Adsorption of Lysine

Jeff Deischter, Nadja Wolter, and Regina Palkovits*^[a]

TABLE OF CONTENTS

Figure S 1. Nitrogen physisorption adsorption-desorption isotherms (offset: 200 cm ³ g ⁻¹). (b) DFT pore size distributions (offset: $0.1 \text{ cm}^3 \text{A}^{-1} \text{g}^{-1}$).	2
Figure S 2 Rates of CO and CO ₂ released during TPD-MS analysis of the activated carbons.	2
Figure S 3 Water vapor adsorption isotherms of the activated carbons at 30 °C Figure S 4 Separation factor as a function of CO (left) and CO2 (right) released during TPD- MS analysis for activated carbons Figure S 5 Nitrogen physisorption adsorption-desorption isotherms (offset: 200 cm ³ g ⁻¹). (b) DFT pore size distributions (offset: 0.1 cm ³ A ⁻¹ g ⁻¹) of modified CW20 carbons Figure S 6 Rates of CO and CO ₂ released during TPD-MS analysis of the modified Silcarbor CW20.	3 4 5 1 6
Figure S 7 Water vapor adsorption isotherms of modified Silcarbon CW20 at 30 °C Figure S 8 Separation factor as a function of CO ₂ and CO (normalized by specific surface area) released during TPD-MS analysis for modified Silcarbon CW20	6 7

Table S 1 Activated carbon surface functionalities obtained by Boehm titration. Table S 2 Results of textural properties for modified Silcarbon CW20 and amounts of CO, CO_2 released obtained by TPD-MS.

Figure S 1. Nitrogen physisorption adsorption-desorption isotherms (offset: $200 \text{ cm}^3\text{g}^{-1}$). (b) DFT pore size distributions (offset: $0.1 \text{ cm}^3\text{A}^{-1}\text{g}^{-1}$).

Figure S 2 Rates of CO and CO₂ released during TPD-MS analysis of the activated carbons.

Figure S 3 Water vapor adsorption isotherms of the activated carbons at 30 °C.

	Carbon surface functionalities (µmol g ⁻¹)					
Activated Carbon	Phenolic	Lactonic	Carboxylic			
CW20	317	171	143			
KB-G	275	564	261			
PA 4N	112	52	483			
CP 6/400	142	15	383			
A Supra EUR	198	61	37			
Blü 100562	85	38	85			

Table S 1 Activated carbon surface functionalities obtained by Boehm titration.

Figure S 4 Separation factor as a function of CO (left) and CO2 (right) released during TPD-MS analysis for activated carbons.

					rption	
	l extural properties			(µmol g⁻¹)c		
Activated	Stotal	V _{total}	Vmicro	00	00	
Carbon	(m² g⁻¹)ª	(cm ³ g ⁻¹)	(cm ³ g ⁻¹) ^b	CO	CO_2	
CW20	2023	1.83	0.49	2052	63	
CW20 ox.	1196	0.87	0.31	4217	522	
4M HNO3						
CW20 red. 300 °C	1713	1.73	0.41	1660	43	
CW20 red. 500 °C	1406	1.28	0.34	838	20	

Table S 2 Results of textural properties for modified Silcarbon CW20 and amounts of CO, CO₂ released obtained by TPD-MS.

^a BET Method, ^b t-plot method, ^c amounts of CO, CO₂ released obtained by TPD-MS.

Figure S 5 Nitrogen physisorption adsorption-desorption isotherms (offset: $200 \text{ cm}^3\text{g}^{-1}$). (b) DFT pore size distributions (offset: $0.1 \text{ cm}^3\text{A}^{-1}\text{g}^{-1}$) of modified CW20 carbons.

Figure S 6 Rates of CO and CO₂ released during TPD-MS analysis of the modified Silcarbon CW20.

Figure S 7 Water vapor adsorption isotherms of modified Silcarbon CW20 at 30 °C.

Figure S 8 Separation factor as a function of CO_2 and CO (normalized by specific surface area) released during TPD-MS analysis for modified Silcarbon CW20.

Recycling Study

The recycling studies were conducted in a fixed-bed column setup filled with the activated carbon CW20 (ox. 4M HNO₃) at 30 °C. The adsorptive aqueous solution of lysine was pumped through the fixed-bed by an HPLC pump and a feed flow rate on 1 mL min⁻¹. For desorption studies H₂O was used with a similar flow rate. The fixed-bed contained 0.2 g of adsorbent. Sample fractions were taken each minute and analyzed by HPLC analysis.