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SEARCH & DISCOVERY

In some ways, the physics of granular
materials—powders, sand, and the
like—could hardly be simpler. The in-

dividual grains are, by definition, too big
to be jostled by thermal fluctuations. Once
they se!le—say, in a heap—they sit there,
each grain locked in place by its neighbors.

But granular materials’ athermal na-
ture also makes them confounding. (See
the article by Anita Mehta, Gary Barker,
and Jean-Marc Luck, PHYSICS TODAY,
May 2009, page 40.) Once formed,
a granular material won’t spon-
taneously explore new configu-
rations, so its behavior depends
intimately on how it’s prepared.
A vibration that triggers an ava-
lanche in one sandpile might
barely register in another. 

So when Cambridge Univer-
sity’s Sam Edwards endeavored
during the 1980s to construct 
a universal theory of granular
packings, he’d set himself a tall
order. He and his student Robert
Oakesho! approached the prob-
lem by drawing an analogy be-
tween a packing of grains and 
a thermodynamic ensemble of
atoms: The volume of the pack-
ing is to the grains as the energy
of the ensemble is to the atoms,
and the number of ways the grains can
stably fill the volume—more precisely,
the logarithm of that number—consti-
tutes an entropy.1 From those properties
followed others, including the granular
equivalents of temperature, free energy,
and specific heat. Underpinning it all was
a seemingly innocent conjecture: that all
allowable configurations occur with equal
probability.

Edwards’s model yielded valuable in-
sights into granular behavior. It helped
explain, for example, the density fluctu-
ations of powder shaken in a container.
But Edwards himself never bothered to
check whether the equiprobability con-
jecture was valid. 

Now researchers led by Daan Frenkel
of Cambridge University and Bulbul
Chakraborty of Brandeis University have

tested Edwards’s conjecture in simulated
packings and found that it holds at only
a single point in parameter space.2 As it
happens, that point—at the boundary
between stability and flow—might be the
most important in all of granular physics.

A numbers game
If you suspect someone has rigged a die
by shaving it, you might roll the die and
note how frequently the different faces

come up. The shaved face and its op -
posite should appear more o#en than
the others. But only a#er several rolls—
necessarily, many more rolls than there
are faces on the die—does the bias be-
come apparent. Statisticians call that the
law of large numbers.

In theory, you could test Edwards’s
equiprobability conjecture in the same
way—by either experimentally or nu-

merically generating many different
packings of the same grains. But the law
of large numbers would work heavily
against you. There are more ways to sta-
bly pack even 100 grains than there are
atoms in the universe. A real-life granular
packing is akin to an infinite-sided die.

A more direct way to tell if a die has
been shaved is to measure the areas of its
faces. In essence, that’s how Frenkel and
his colleagues approached the testing of
Edwards’s conjecture. They noted that
the possible arrangements of grains in a
packing can be described with a many-
dimensional energy landscape. Each local
minimum represents a stable configura-

tion, to which nearby unstable
configurations equilibrate. Those
nearby states form what’s known
as a basin of a!raction; much like
the area of a die face, the volume
of a stable configuration’s basin
of a!raction reflects the probabil-
ity of that configuration arising
by chance. 

For systems larger than a few
grains, however, the energy land-
scape is too complicated to ex-
plicitly calculate. How, then, to
measure the basins?

To start, the researchers ran-
domly select a stable configura-
tion in the landscape. That is,
they simulate the compression of
loose grains to some predeter-
mined packing density. For com-
putational simplicity, they con-

sider a two-dimensional system of fric-
tionless grains: Each grain is modeled as
an incompressible disk surrounded by a
so# outer ring, as illustrated in figure 1;
the packing density is the fraction of the
total area covered by disks.

Once the packing has stabilized, the
group initiates a Monte Carlo algorithm
that displaces disks at random, in tiny 
increments. Before finalizing a displace-
ment, the code checks that the perturbed
packing remains in the original basin of
a!raction; displacements that would tip
the system to a new basin are rejected. In
that way, the algorithm performs a sta-
tistical random walk that’s confined to
the original configuration’s basin, as il-
lustrated schematically by the arrows in 
figure 2. From the properties of the walk,
the team can estimate the basin’s volume,

Theorists have tested what seemed like an untestable 
conjecture: that all the possible arrangements of grains in
a packing are equally probable.

FIGURE 1. IN THIS GRANULAR PACKING,
each grain is locked in place by its neighbors.
Grains are modeled as partially compressible
disks consisting of a hard core (dark purple)
encircled by a soft outer ring (light purple).
Hard cores are forbidden from overlapping,
whereas outer rings repel each other with a
spring-like force when they overlap.
(Adapted from ref. 2.)

A thermodynamic theory of granular material endures
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despite incomplete knowledge of its
boundaries. Crucially, one needn’t repeat
the process for every basin to know
whether Edwards’s conjecture holds up;
a representative sampling will do.

Wrong ’til it wasn’t
In 2011 Frenkel teamed with Ning Xu
(University of Science and Technology of
China) and Andrea Liu (University of
Pennsylvania) to apply the Monte Carlo
method to packings of 16 disks, the most
the code could handle at the time.3 Al-
though the researchers considered only
a single packing density, they found that
the basin volumes differed wildly, by up
to several orders of magnitude. That re-
sult jibed with a 2009 study by Corey
O’Hern (Yale University), Mark Sha!uck
(City College of New York), and cowork-
ers, who enumerated all the possible con-
figurations of a seven-disk packing and
found that some configurations arose in
experiments more frequently than others.4

So when Frenkel’s new team of collab-
orators revisited the packing configura-
tion problem, recalls group member Ste-
fano Martiniani, “We didn’t go in with
the aim of checking whether the conjec-
ture was right or wrong. We already felt
it was wrong, full stop.”

Instead, the researchers were mainly
interested in studying larger systems and
seeing how the basin-volume distribution
would vary with packing density. Martini-
ani and postdoc Julian Schrenk had spent
three and a half years rewriting and fine-
tuning the code. It was now fast enough
to compute the basin volume of a 64-disk
configuration in just a week’s time.

The team found that the basin-volume
distributions in those packings narrowed
as packing density decreased. At a den-
sity known as the unjamming point—the
lowest density at which a stable packing
can form—the basin volumes were nearly
identical. Suspecting that the residual
differences might have been an artifact of
the finite system size, the group used a
scaling technique to extrapolate their 
results to the limit of infinitely many
grains. In that limit, the variation in basin
volumes disappeared altogether at the
unjamming point. At that density, and
seemingly nowhere else, Edwards’s
equiprobability conjecture held.

“Lovely if true”
The new results don’t close the case on
the Edwards conjecture. For one, it’s un-

clear whether simulations of frictionless
disks will generalize to real 3D packings
of frictional, irregularly shaped grains.
Plus, the simulated packings were formed
through a specific protocol of isotropic
compression; real granular packings are
more likely to form under the directed
forces of gravity or shear.

But if the conjecture does hold up,
even if only at the unjamming point, the
implications could be far reaching. The
unjamming point is where static pack-
ings destabilize and begin to flow. If 
Edwards’s model works there—and es-
pecially if it can be expanded to nearby
densities—it might reveal universal pre-
cursors to avalanching, shearing, and
other types of mechanical failure.

Even where the simulation results are
at odds with the equiprobability conjec-
ture, the discrepancies could be instruc-
tive. It’s relatively straightforward to
amend Edwards’s definition of entropy

to permit a distribution of configuration
probabilities. The math becomes more
difficult, but the equations don’t substan-
tially change. 

Says Karen Daniels, an experimental-
ist at North Carolina State University,
“Away from jamming, there might not be
equiprobability, but if we can put the cor-
rect probabilities into our models—and
simulations like Frenkel’s tell us how to
do that—then we might be able to be!er
understand our experimental data. It’s
lovely if the Edwards conjecture is true—
and interesting if it isn’t.”     

Ashley G. Smart
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FIGURE 2. AN ENERGY LANDSCAPE depicts the possible arrangements of grains in a
packing: Stable configurations (dots) correspond to local minima to which “basins” (colored
areas) of nearby unstable configurations are attracted. (Contours are equal-energy curves.)
Striped regions are inaccessible because they would require the partially compressible grains
to be either unallowably close or too distant to touch one another. The many-dimensional
energy landscape can’t be calculated explicitly, but the volume of a configuration’s basin 
of attraction can be estimated numerically from a random walk confined to that basin’s 
configuration space, as illustrated by the arrows. (Adapted from ref. 2.)


