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Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films
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A half-century after the discovery of the superconductor-insulator transition (SIT), one of the fundamental
predictions of the theory, the charge Berezinskii-Kosterlitz-Thouless (BKT) transition that is expected to occur
at the insulating side of the SIT, has remained unobserved. The charge BKT transition is a phenomenon dual to
the vortex BKT transition, which is at the heart of the very existence of two-dimensional superconductivity as a
zero-resistance state appearing at finite temperatures. The dual picture points to the possibility of the existence
of a superinsulating state endowed with zero conductance at finite temperature. Here, we report the observation
of the charge BKT transition on the insulating side of the SIT, identified by the critical behavior of the resistance.
We find that the critical temperature of the charge BKT transition depends on the magnetic field exhibiting first
the fast growth and then passing through the maximum at fields much less than the upper critical field. Finally,
we ascertain the effects of the finite electrostatic screening length and its divergence at the magnetic field-tuned

approach to the superconductor-insulator transition.

In 1996 Diamantini ef al.[1] demonstrated that in pla-
nar Josephson junction arrays (JJA) the vortex-charge duality
leads to a zero-temperature quantum phase transition between
a superconductor and its mirror image, which they termed
a superinsulator. The physical origin of a superinsulating
state is the charge confinement due to the logarithmic interac-
tion between the charges in two-dimensional (2D) systems [2—
4]. In disordered superconducting films, the charge confine-
ment on the insulating side of the SIT results from the diver-
gence of the dielectric constant & in the critical vicinity of the
transition. The logarithmic interaction holds over distances
d < r < A = &d, where d is the thickness of the film and A
is the electrostatic screening length [4]. This parallels the log-
arithmic interaction between vortices on the superconducting
side, which causes the vortex binding-unbinding topological
BKT transition into the superconducting state at finite temper-
ature T = Typr [5-7]. Accordingly, logarithmic interactions
between charges on the insulating side of the SIT is expected
to give rise to a charge BKT transition into the superinsulating
state with the conductance going to zero at a finite temperature
T = Teukr [3, 4, 8]. Applied magnetic fields can tune the SIT
with high resolution, offering a window into unexplored elec-
tronic functionalities since in the critical vicinity of the SIT
at the superconducting side the system should possess the su-
perinductance [9], and at the insulating side the system is ex-
pected to be a supercapacitor due to diverging dielectric con-
stant [4]. This calls for a thorough study of the highly resistive
state that terminates two-dimensional superconductivity at the
quantum critical point whose nature remains a subject of in-
tense research [3, 10-15].

Existing experimental data on JJA[16, 17], superconduct-

ing wire networks [18], InO [15], and TiN films [14, 19] sup-
port the picture of the dual vortex-charge BKT transitions
and corresponding formation of the mirror superconducting-
superinsulating states. Yet, while there have been numerous
experimental hallmarks of superinsulating behavior, the ev-
idence for the charge BKT transition, with its characteristic
criticality, has remained elusive. To answer this challenge,
we examine a NbTiN film, which is expected to combine the
high stability of TiN films with the enhanced superconducting
transition temperature 7, of NbN films, due to a larger Cooper
pairing coupling constant as compared to TiN. We thus expect
that all other relevant temperature scales, including the Ty,
are enhanced as well, opening a wider window for observing
critical behavior.

To grow suitable NbTiN films, we employed the atomic
layer deposition (ALD) technique based on sequential surface
reaction step-by-step film growth. The fabrication technique
is described in Supplementary Materials (SM). This highly
controllable process provides superior thickness and stoichio-
metric uniformity and an atomically smooth surface [20]. We
used NbCls, TiCly, and NH; as gaseous reactants; the stoi-
chiometry was tuned by varying the ratio of TiCl4/NbCls cy-
cles during growth [21]. The superconducting properties of
these ultrathin NbTiN films were optimized by utilizing AIN
buffer layers grown on top of the Si substrate [22]. NbTiN
films of thicknesses d = 10, 15, and 20 nm were grown, vary-
ing only the number of ALD cycles (240, 420, and 768 cycles,
respectively), with all other parameters of the ALD process
held constant. We show in Fig. 1(a) a high-resolution trans-
mission electron microscopy (HRTEM) image of the cross-
section of the 10 nm thick NbTiN film. It reveals that both the
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FIG. 1. Structure and composition of a 10 nm thick NbTiN film. (a) Cross-section of the film from High Resolution Transmission Electron
Microscopy (HRTEM). (b) HRTEM plan view bright field image. The yellow square shows a magnified image of one of the crystallites. (c)
Electron-diffraction data of the film. The rings are characteristic of polycrystalline structures; the bright spots arise from the crystalline lattice
of the underlying Si substrate. (d) Electron diffraction data from the panel (c) taken along the self-transparent dashed line in panel (c) and
plotted as the intensity vs. the wavenumber. Several Bragg peaks from the NbTiN film are observed, along with the (220) peak from the Si

substrate and the (100) peak from the AIN buffer layer.

AIN buffer layer and the NbTiN have a fine-dispersed poly-
crystalline structure. Presented in Fig. 1(b) is a plan view of a
large area containing many crystallites. The densely packed
crystallites have different orientations and are separated by
atomically thin inter-crystallite boundaries. A statistical anal-
ysis of the image finds the average crystallite size to be ap-
proximately 5nm. The electron diffraction data for the film
are shown in Fig. 1(c). The clearly seen rings confirm a poly-
crystalline structure. The analysis of the diffraction data along
the direction [220] of the Si substrate displayed in Fig. 1(d) re-
veals that the NbTiN crystallites have the same rock-salt crys-
tal structure as both NbN and TiN. Using Vegard’s law, we
find that our NbTiN film is an approximately 7:3 solid solu-
tion of NbN and TiN (see SM).

The films were lithographically patterned into bars and re-
sistivity measurements were performed at sub-Kelvin tem-
peratures in helium dilution refrigerators (see the details of
the sample geometry and measurement technique in SM).
Upon cooling in zero magnetic field, all three films undergo
a superconducting transition. The temperature dependences
of the resistance, R(T), given as resistance per square, are
shown in Fig.2(a) over four decades in temperature. All
the data presented in this paper were measured in the linear

response regime. The superconducting transition tempera-
ture, T, decreases with decreasing film thickness and conse-
quent increasing sheet resistance. The resistances of all three
films exhibit peaks at temperatures just above T, with the
peak amplitudes increasing as the thickness decreases. Sim-
ilar trends were observed in the parent compounds TiN [23]
and NbN [24] near the SIT and were attributed to quantum
contributions to conductivity due to weak localization and
electron-electron interaction effects. The sheet resistance of
the thinnest film achieves a maximum of 17.56 kQ/0O; notably,
this well exceeds the quantum resistance Ry = h/Qe)? =
6.45kQ/0 which is widely believed to be the upper bound-
ary for the existence of superconductivity in two dimensions.
A similar peak of 29.4kQ/0, well above Ry, was seen in
TiN [25].

Focusing on the behavior of the thinnest film (d = 10 nm),
we note first that the global coherent superconducting state
is not achieved at lowest temperatures. Instead, the behav-
ior of the zero field resistivity suggests that the film falls into
the Bose metallic state, featuring a finite density of free vor-
tices. Figure 2(b) presents a set of magnetoresistance curves,
R(B), taken at different temperatures below 7, = 0.33 K deter-
mined by the inflection point of R(T) at zero magnetic field.
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FIG. 2. Temperature and magnetic field dependences of the resistance of NbTiN films. (a) The temperature dependences of the resistance
in zero magnetic field for three NbTiN films of thicknesses 10, 15, and 20 nm respectively. (b) Low-field isothermal magnetoresistance of
the 10 nm thick film at different temperatures. At temperatures below 0.1 K, the magnetoresistance develops a sharp kink at B <0.1 T having
the trend of moving to lower magnetic fields upon decreasing temperature. Above the kink, even a small increase in the field results in a
sharp increase of the resistance by several orders of magnitude. The crossing point, R, = 4.7kQ, By = 0.015 T, separates the regions with
dR/dT < 0 and dR/dT > 0. (c) Linear magnetoresistance of the 10nm and 15 nm thick films. The left ordinate corresponds to the data for
10 nm thick film taken in the 0.16 — 0.20 K temperature range, and the right hand ordinate refers to the data in the 0.2 — 0.6 K interval for the
15 nm thick film. Note that the two resistance scales differ by a factor of 3 - 10°. The magnetoresistance of the 15 nm thick film exhibits the
conventional superconducting behavior with the well-defined upper critical field B, (0) =10.5 T and the crossing point at B, = 11 T stemming
from the interplay of superconducting fluctuations contributing to conductivity [26, 27]. By contrast, the magnetoresistance of the 10 nm thick
film develops a colossal insulating peak at fields well below B.,. The vertical strokes on the 0.16 K and 0.20 K curves for the 10 nm thick film
mark the fields By« at which the magnetoresistance peaks are achieved. The inset presents the temperature dependence of By,.x (symbols).
The dotted line, extrapolating the data to 7 — 0 limit, illustrates the trend of By, of shifting towards almost zero field upon decreasing
temperature.

Prominent features of these magnetoresistance curves, espe-
cially profound at lowest temperatures, are the crossing point
at very low field By, = 0.015T that marks the SIT and will
be discussed later and the sharp kink at some temperature-
dependent magnetic field above which the resistance increases
extremely quickly as a function of the field. The kink field
shifts towards lower fields upon decreasing temperature. In-
specting the magnetoresistance behavior in the large field in-
terval, one sees that it shows inherently non-monotonic be-
havior marked by a colossal insulating peak, see Fig. 2(c). Im-
portantly, these peaks develop at magnetic fields for which the
thicker films are still fully superconducting, i.e. the field Bpyax,
where the maximum is observed, is well below the upper crit-
ical field B.,. This suggests that the indefinite growth of R(B)
at low temperatures/magnetic fields as well as the peak in the
resistance at higher temperatures in the 10 nm film is an im-
plication of Cooper pairing. The inset in Fig. 2(c) shows that
the position of the maximum of the resistance peaks moves to
lower fields upon decreasing temperature. There is a kink in

pected to diminish the resistance of the Cooper pair insulator.

To gain insight into the nature of the magnetic field-induced
states, we examine R(T) at different magnetic fields. Fig-
ure 3(a) displays the fan-like set of magnetoresistance curves,
characteristic to the magnetic field-induced SIT, for the 10nm
thick film. The crossing point (Bg, R.) in Fig. 2(b) now corre-
sponds to nearly temperature independent R(T) at B = 0.015 T
separating between the superconducting and insulating behav-
iors. Two important comments are in order here. First, the
field of the crossing point By, = 0.015T is by two orders of
magnitude lower than the upper critical field B,,. This dif-
fers it from the crossing point displayed by the thicker film
(d = 15nm) occurring at 11 T and resulting from the quantum
contributions to conductivity from superconducting fluctua-
tions [26, 27]. Second, the resistance at the SIT is R, = 4.7kQ
that is close but not equal to quantum resistance 6.45 kQ.

Re-plotting these data as logR vs. 1/T curves in Fig. 3(b),
we see that the behavior of the resistance in the entire temper-

the B,u,.(T) dependence at T ~ T, with the slope decreasing
signficantly when passing to T > T.. Extrapolating the data to
T — 0 shows that B,,,,(T) shifts to nearly zero field upon de-
creasing the temperature. Taken together, this indicates that
the mechanism that drives the system into the strongly lo-
calized state overpowers the effect of the suppression of the
Cooper pairing by the magnetic field, which would be ex-

ature range cannot be reduced to the Arrhenius temperature
dependence with a single activation energy. The activation
mechanism would have manifested itself as a straight line on
this graph. Instead there is a complicated evolution of the re-
sistance curves with increasing magnetic field. While at low
fields the logR(1/T) dependences exhibit hyperactivation, i.e.
faster than thermally activated growth [14], at larger fields, the
logR(1/T) curves exhibit a kink and bend down with decreas-
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FIG. 3.

Temperature evolution of the magnetic field-induced states in the 10 nm thick NbTiN film. (a) Resistance in the log scale vs.

temperature at different magnetic fields listed in the legend in panel. The legend is the same for all the panels of this figure. (b) Resistance
vs. inverse temperature at different magnetic fields. Since none of the traces is a straight line, none of the temperature dependences can
be viewed as an Arrhenius behavior with a unique activation energy across the entire temperature interval. (c) Resistance in the log scale
vs. T2 in the field range between 4.5 and 8 T. (d) Three representative curves from panel (a) replotted as a conductance G = 1/R, vs.
temperature, demonstrating the transition into a superinsulating state at finite temperature. The dashed lines show the best fits to Eq. (1) with
the corresponding Tcgyr listed in the legend. (e) The conductance as a function of (T'/T gy — 1)™'/? for two magnetic fields. The dashed black
line is a guide to the eye revealing that linear slopes of the two curves are the same.

ing temperature. Note that in contrast to what was shown for
InO[15], our bending down curves are inconsistent with the
Efros-Shklovskii behavior, see Fig. 3(c).

In order to illuminate the physics governing the R(T') be-
havior, we replot the low-field data as the conductances, G =
1/R, vs. temperature in Fig. 3(d). We see in the conductance
curves an insulating analogue of the drop to zero of the re-
sistance at the onset of superconductivity. In the dual mirror
picture of the conductance, we thus see the transition of the
system into a superinsulating state characterized by zero con-
ductance at finite temperature. This suggests that we can write
the conductance in the generic form InG oc —a/(T — T*)* for
the finite temperature zero conducting state. Using T* as an
adjusting parameter, we find that @« = 0.48 + 0.03 gives the

best fit to the experimental data, consistent with @ = 1/2 cor-
responding to critical BKT behavior. We thus arrive at the
following expression for conductivity:

b
V(T/TCBKT) - 1) ’ (1)

with Tegr replacing 7. In Fig. 3(e) we plot G vs. (T /Tcpkr —
1)~!/2 for fields 0.12 and 0.25 T. The correct choice of the only
adjustable parameter, 7y, for each field (shown in the leg-
end for Fig. 3(d)), produces a linear dependence allowing the
determination of b and Gy as the slope and the intercept of the
respective lines: b was found to be 5.5 independent of mag-
netic field, whereas G varied with field. The dashed lines
in Fig. 3(d) correspond to Eq.(1). A close inspection of the

G = Gpexp (—
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FIG. 4. Charge BKT in the 10 nm NbTiN film. (a) Normalized
conductance vs. normalized temperature. The temperature is nor-
malized with respect to Tcgkr and the conductances were normalized
by their values at high temperatures 7' = 4T gxr. Symbols stand for
experimental data, and red lines show the fit obtained from the self-
consistent solution to Egs. (2),(3). We present data covering the full
range of magnetic field but omit a few curves to avoid overcrowding
the plot. (b) Magnetic field dependence of the transition temperatures
Tepkr- (¢) The screening length A, in the units of 7y vs. magnetic field.

fits reveals that while the conductance curves at B = 0.12
and 0.25T precisely follow the formula over six decades,
the 0.50T curve displays a slight departure from the critical
CBKT dependence.

To proceed further with the analysis, we choose the value
of Teyir for every isomagnetic G(T') curve and plot in Fig. 4(a)
the conductance normalized by its value at temperature 7 =
4T gxr Vs. the normalized temperature 7 /Tcpir(B). The corre-
sponding field-dependent charge BKT transition temperature
T ke 18 shown in Fig. 4(b). Remarkably, the complex diversity
of the R(T') Arrhenius plots of Fig. 3(b), collapse onto the uni-
versal curve. Moreover, the field-dependent evolution of the
curve shapes, including the change in concavity, now reduces
simply to a successive deviation from the universal curve: the
higher the magnetic field at which the curve is measured, the
higher the T'/T sy ratio at which the given curve departs from
the universal envelope. We stress that the above normaliza-
tion procedure does not presume any special temperature de-
pendence of G(T). The choice of the temperature at which the
normalizing value of the conductance is taken is somewhat ar-
bitrary, as seen from the quality of the collapse over the 2.5 +
5 range in T/ Tcpyr-

We now describe the overall G(T, B) behavior using the two
dimensional Coulomb gas model developed in Ref. [28]. We
note first that the conduction is controlled by the density of
free charge carriers, G « ny, i.e. the conductance is propor-
tional to the inverse squared mean distance between the car-

riers. In the critical BKT region, ny is the 2D density of the
unbound charges, which is related to the correlation length A
at which the unbound charges appear via the equation:

1/1 1
ny = E(ﬁ‘ﬁ)’ @

where A, is the smaller of the bare electrostatic screening
length of the film, A or the lateral linear dimension of the film.
The screening length defines the maximal spatial scale of the
logarithmic charge interaction in the film V(r) o In(r/A) for
ro < r < A. The short distance cutoff, ry, is of the order
of the film thickness. Relating A, and the density of the un-
bound charges through the Poisson equation, we derive, fol-
lowing [28], a self-consistent equation for A

R R

where t = T/Teyr, and Z is the constant. At 4. — oo,
Egs. (2),(3), reduces to Eq. (1), with & = 2In(1/2).

Solving Egs. (2) and (3) with A, the only adjustable param-
eter, we find an excellent fit to all measured isomagnetic G(T')
(see representative curves in Fig. 4(a)). The field dependence
of A, is given in Fig.4(c). Thus, equations (2) and (3) of
the two-dimensional Coulomb gas model completely describe
all the complex diversity of the experimental data, including
both the BKT critical behavior and the deviation from criti-
cality, using only one adjustable parameter. This establishes
a superinsulator as a confined low temperature charge BKT
phase of the Cooper pair insulator. In this phase, vortices form
a Bose condensate that completely blocks the motion of the
Cooper pairs.

Let us now discuss the implications of identifying the na-
ture of the Cooper pair insulator as a two-dimensional neu-
tral Coulomb plasma of excessive/deficit Cooper pairs, each
carrying the charge +2e¢, and analyze further the parameters
of this Cooper pair plasma. We note first the apparent diver-
gence of A, upon decreasing B. That A, depends on B enables
its identification as the electrostatic screening length in disor-
dered films, A, = A = &d. Accordingly, its divergence upon
decreasing B corresponds to the divergence of the dielectric
constant upon approach to the SIT. The value of the magnetic
field, By = 0.015 T, where the SIT occurs, is determined by
the crossing point of the resistive curves, as seen in Fig. 2(b).
To analyze the character of the divergence we replot A./ry vs
(B — Bgr)/Bgr in a double-log scale. Fig. 5(a) demonstrates
that at the lowest fields A, « (B— Bg;)™”, with v = 0.51 £0.02.
This reveals the critical character of the divergence of the di-
electric constant upon approaching the SIT. Our finding is in
a full accord with the polarization catastrophe paradigm built
on the divergence of & as function of the carrier concentra-
tion upon approach to the quantum metal-insulator transition,
see [29] and [30] for the review. In our experiment, it is B— By
that plays the role of the deviation of the carrier concentration
from its critical value. The peculiarity of our system, that its
electrostatic properties are tuned by the magnetic field, may
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FIG. 5. Critical behavior and the effects of the finite electrostatic
screening length. (a) The screening length A, in units of ry in a
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(b) Normalized Arrhenius plots of conductances at various fields.
The shaded area corresponds to the critical region above Tcgkr de-
scribed by Eqgs.(2) and (3). The tails at T < Tcpxr demonstrate
thermally activated behavior highlighted by the dashed lines. The
slopes grow with decreasing magnetic field, the corresponding val-
ues T of the activation temperature are shown in the inset as black
circles. The inset presents a comparison of the activation energies,
To, and Tepkr In(A./r9) shown by squares, evidencing the logarith-
mic dependence of the activation energy on the screening length just
as expected for the 2D logarithmic Coulomb interaction between the
charges.

be understood once one realizes that the local suppression of
the vortex Bose-condensate proportional to B — By, stimulates
Landau-Zener tunneling of the Cooper pairs. We would then
expect the distance between these Cooper pairs, and hence A,
to scale as (B— Bg;)~'/2, comparable to what is seen in our ex-
periment. The change of the slope when far from the critical
point of the SIT requires further investigation.

Having determined the screening length and T'csy as a func-
tion of magnetic field, we can now make an independent

cross-check on the 2D Coulomb nature of the superinsula-
tor. Shown in Fig.5(b) are Arrhenius plots of the normal-
ized conductance vs. Teger/T at various magnetic fields high-
lighting the thermally activated behavior at low temperatures,
T < Tesir- Note that Eqs. (2) and (3) describe conductance
only at T > Tcyr, shown as a shaded rectangle. The field
dependent activation temperatures T, are presented in the in-
set to Fig.5(b). When the typical size of the unbound pair
becomes comparable to A, the interaction ceases to be loga-
rithmic and the conductance is dominated by thermodynam-
ically activated free charges. Thus, the low-temperature tails
in G(T) are expected to be exponential and to depart from
the BKT criticality curve. Theoretical calculations [3, 31]
and simulations [32] of thermally activated hopping trans-
port in a 2D insulator with logarithmic Coulomb interactions
between the charge carriers yield an activation temperature
To = TegrIn(A./rp). In the same inset we present our ex-
perimental values of Teyir In(A./7p) at the same fields; these
indeed appear remarkably close to the independently deter-
mined Ty in accord with the theoretical expectations. This
correspondence validates the 2D Coulomb logarithmic inter-
action between charges at distances not exceeding the screen-
ing length. Similarly, exponential low-temperature tails in the
resistance were observed in JJA on the superconducting side
of the SIT. The tails appeared below the vortex BKT transition
temperature where the applied magnetic field introduced the
excess unbound vortices [33].

We now can resolve the long-standing open question in the
study of the SIT: the origin of the giant peak in the magne-
toresistance. It arises from the combination of the dielectric
constant rapidly decaying with the increase of the magnetic
field and the nonmonotonic behavior of T¢gy. In order to gain
insight into the behavior of the latter, we employ the model
of JJA, an array of superconducting granules connected with
Josephson links, which is an adequate representation for the
critically disordered superconducting film. The origin of the
nonmonotonic behavior of T can be explained by recall-
ing that the energy gap of the Cooper pair insulator in JJA,
A.(B), is suppressed by the Josephson coupling E, between
the neighboring granules, A.(B) = A.(0)[1 — AE,(B)/E ] [31],
where E. is the Coulomb energy of a single granule and A
is a constant. The Josephson coupling is maximal at zero
field and, in the irregular JJA, has the minimum at the frus-
tration factor f = 1/2[34], where f = BS/®y, S is the av-
erage area of the JJA elemental cell and @ is the magnetic
flux quantum. Accordingly, the effective Coulomb energy ac-
quires the maximum at f = 1/2, i.e. the nonmonotonic be-
havior of Ty reflects the nonmonotonic behavior of E; as
a function of the magnetic field. This enables us to estimate
the parameters of the system as follows. The observed max-
imum in Ty at B = 4T (Fig4(b)) implies that the average
area of an elemental cell of our self-induced granular struc-
ture, S ~ 260 nm? and, hence, the linear size of the elemental
cell VS ~ 16nm~ 3.5¢, where £ = 4.5nm is the supercon-
ducting coherence length of the NbTiN film (Table II). Inter-
estingly, this correlates with the analogous estimates for TiN,



where VS ~ 4¢ was observed [35]. The described nonmono-
tonic behavior is accompanied by the overall suppression of
the superconducting gap by the increasing magnetic field. The
latter eventually would suppress the superconducting gap in
Cooper pair droplets and hence A, resulting in a further drop
of the resistance. Then, the Cooper pair insulator ends up as a
metal [25].

By comparison to NbTiN, the behaviors complying with
the formation of the superinsulating state were observed in
other materials at very low temperatures. In TiN films the
superinsulator appeared at 40 mK [19]. More recently, the fi-
nite temperature zero-conductance state in InO was reported
at T < 35mK[15]. The temperature dependence of the con-
ductance in InO was found to follow the so-called Vogel-
Fulcher-Tamman dependence, o o exp[—const/(T*—T)] [36—
38]. This, however, can be viewed as a manifestation of the
same BKT physics but in a more disordered system [39].

To summarize, our findings conclusively establish the finite
temperature superinsulating state in NbTiN as the low tem-
perature charge BKT phase of the Cooper pair insulator. We
demonstrate superinsulating behavior in a new material with a
substantially higher transition temperature of nearly 200 mK,
allowing for the first time a detailed characterization of behav-
ior of the system both above and below T and its evolution
in a wide range of magnetic fields.

Supplementary Materials
Fabrication technique

The Atomic Layer Deposition (ALD) growths were carried
out in a custom-made viscous flow ALD reactor in the self
limiting regime. A constant flow of ultrahigh-purity nitro-
gen (UHP, 99.999%, Airgas) at ~ 350 sccm with a pressure
of ~ 1.1 Torr was maintained by mass flow controllers. An
inert gas purifier (Entegris GateKeeper) was used to further
purify the N, gas by reducing the contamination level of Hj,
CO, and CO; to less than 1 ppb and O, and H,O to less than
100 ppt. The thermal ALD growth of the AIN/NbTiN multi-
layer was performed using alternating exposures to the follow-
ing gaseous reactants with the corresponding timing sequence
(exposure-purge) in seconds: AICl; (anhydrous, 99.999%,
Sigma-Aldrich) (1 - 10), NbCls (anhydrous, 99.995%, Sigma-
Aldrich) (1 - 10), TiCly (99.995%, Sigma-Aldrich) (0.5 - 10)
and NHj3 (anhydrous, 99.9995%, Sigma-Aldrich) (1.5 - 10).
The intrinsic silicon substrates were initially cleaned in-situ
using a 60 s exposure to O3 repeated 5 times. The AIN buffer
layer of thickness 7.5+0.5 nm was deposited at 450° C with
200 ALD cycles. The chamber temperature was then lowered
to 350° C to synthesize the NbTiN layers. The growth cy-
cle of the NbTiN is 2x(TiCly + NH3) and 1xX(NbCls + NHj3)
that was repeated 80, 140, and 256 times with the correspond-
ing total ALD cycles 240, 420 and 768 to produce the dif-
ferent film thicknesses 10 nm, 15 nm, and 20 nm, respectively
as measured ex-istu by X-ray reflectivity (XRR). The chem-

ical composition measured by X-ray Photoemission Spec-
troscopy (XPS) and Rutherford Backscattering Spectroscopy
(RBS) show consistently for the AIN layer 5.5+0.3% of ClI
impurities and a Al/N ratio of 1+0.05, whereas for the NbTiN
films 3+0.3% of Cl impurities, a Nb/Ti ratio of 2.3+0.03
and a (Nb+Ti)/N ratio of 1+0.03. The material densities
measured by RBS and XRR are 2.5+0.01 g/cm? in AIN and
6+0.05 g/cm? in the NbTiN.

Analysis of structure and composition of NbTiN films

The structure of Nb,Ti;_,N films grown on Si substrates
with AIN buffer layers was investigated using the JEOL-
4000EX electron microscope operated at 400kV, with the
point-to-point resolution of 0.16 nm and the line resolution
of 0.1 nm. The Digital Micrograph software (GATAN) was
used for the digital processing of High Resolution Transmis-
sion Electron Microscopy (HRTEM) images. The interplanar
spacings were determined with the accuracy about 0.05 nm.
The images displayed in Figs. 1(a,b) were calibrated using the
lattice of the crystalline Si substrate clearly visible in HRTEM
image presented in Fig. 1(a). In order to determine structure
and composition of NbTiN film, we use electron diffraction
data (Fig. I(c)) which contain characteristic rings and point re-
flexes. The latter were identified as belonging to the (220) or-
der of the Si substrate with the interplanar spacing d = 1.92 A
and then served as a reference scale for determining the inter-
planar spacing of the NbTiN film.

TABLE I. Lattice Parameters. The tabulated parameters for NbN and
TiN, and experimental values for NbTiN. d is the interplane distance.

NbN TiN NbTIN

lattice constant 439 [A] 4.24 [A] 433 [A]
plane d[A] d[A] d[A]
(111) 2.54 2.45 2.51
(200) 2.20 2.12 2.17
(220) 1.55 1.5 1.54
(311) 1.32 1.28 1.31
(222) 1.27 1.22 1.25
(420) 0.98 0.95 0.97
(422) 0.90 0.87 0.89

The detailed analysis of the electron-diffraction data reveals
that our NbTiN have the same rock-salt crystalline structure
as both NbN and TiN. We find that the lattice constant of the
NbTiN film is a = 4.33 A. The values of the interplanar spac-
ings corresponding to the different planes are derived from the
positions of the ring brightness maxima shown in Fig. 1(d) and
are presented in Table I. The AIN buffer layer has hexagonal



lattice 63 mc; the (100) order of the buffer layer has d = 2.7 A.
The composition of the NbTiN films is found using the Veg-
ard’s law,

anptin = X - anpN + (1 = %) - amin, 4

where a is the lattice constant and 0 < x < 1. Comparison
the tabulated data on NbN and TiN (see TableI) yields that
NDTIN is a solid solution of NbN [40, 41] and TiN [40, 42]
with x = 0.7 £ 0.02.

Samples and Measurements

In order to carry out transport measurements, NbTiN films
were patterned using photolithography and plasma etching
into 10-contact resistivity bars 50 um wide and with 100,
250, and 100um separation between the voltage probes
(Fig.6). The chosen design allows for Hall effect measure-
ments and both two-probe and four-probe resistivity measure-
ments. Measurements of the temperature and magnetic field

100 pm]

50 um
250 pm
100 pm] 5 um

FIG. 6. The sketch of the samples.

dependences of the resistance were carried out in helium dilu-
tion refrigerators. The magnetic field was always perpendic-
ular to the plane of the sample. In the low resistance range,
the standard four-probe constant-current measurements were
performed at 10nA and 3 Hz. In the high resistance range,
the two-probe constant-voltage technique was used instead,
with a 100 uV/3 Hzprobe. The excitations in both cases
were verified to be in the linear response regime. Both sets
of measurements were performed using SR830 lock-in am-
plifiers. The high-resistivity measurements also employed
an SR570 low-noise current preamplifier. The resistance per
square in the two-probe geometry was determined by match-
ing the two-probe and four probe measurements at high tem-
perature (7' ~ 10 K).

The measurement of the Hall effect in 10 nm thick film yields
the carrier density n = 4.7 - 10> cm™. The upper critical

field B.,(0) for films 15 and 20 nm was estimated as B../1.05,

TABLE II. Parameters of NbTiN films: d is the film thickness, T,
is the superconducting critical temperature defined by the inflection
point of R(T'), Rzo is the room temperature resistance, B.,(0) is the
upper critical field, D is the diffusion constant, &,(0) is the supercon-
ducting coherence length.

dlnm] T.[K] R0 Bo(0)[T] Dlem%c] &,(0) [nm]
10 0.33 1900 — — —
15 3.35 940 10.5 0.24 4.65
20 4.27 390 12 0.27 4.35

where B, is the crossing point[26, 27]. The crossing point
for the 15 nm thick film is shown in the Fig. 2(c). The diffu-
sion coefficient, D, and the superconducting coherence length,
£4(0), are given by

_ ﬂkBTC
" 2yeB(0) ©)
£4(0) = 0.85 /&)l = 0.85 3_h (6)
d ' 0T 2N 27 eB o (0)

where k; is Boltzmann constant, y is Euler’s constant, and
vy~ 1.781.
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