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We observed and controlled the Brownian motion of solitons.
We launched solitonic excitations in highly elongated 87Rb Bose–
Einstein condensates (BECs) and showed that a dilute background
of impurity atoms in a different internal state dramatically affects
the soliton. With no impurities and in one dimension (1D), these
solitons would have an infinite lifetime, a consequence of inte-
grability. In our experiment, the added impurities scatter off the
much larger soliton, contributing to its Brownian motion and
decreasing its lifetime. We describe the soliton’s diffusive behav-
ior using a quasi-1D scattering theory of impurity atoms interact-
ing with a soliton, giving diffusion coefficients consistent with
experiment.

soliton | Brownian motion | Bose–Einstein condensate | diffusion |
fluctuation dissipation

We studied the diffusion and decay of solitons in the
highly controlled quantum environment provided by

atomic Bose–Einstein condensates (BECs), where density max-
ima can be stabilized by attractive interactions [i.e., bright soli-
tons (1, 2)] or, as here, where density depletions can be sta-
bilized by repulsive interactions [i.e., dark solitons such as
kink solitons (3, 4) and solitonic vortices (5)]. By contaminat-
ing these BECs with small concentrations of impurity atoms,
we quantitatively studied how random processes destabilize
solitons.

Our BECs can be modeled by the one-dimensional (1D)
Gross–Pitaevski equation (GPE): an integrable nonlinear wave
equation with soliton solutions as excitations above the ground
state. For a homogeneous 1D BEC of particles with mass
mRb with density ρ0, speed of sound c, and healing length
ξ= ~/

√
2mRbc, the dark soliton solutions

ϕ(z , t) =
√
ρ0

[
i
vs
c

+
ξ

ξs
tanh

(
z − vs t√

2ξs

)]
[1]

are expressed in terms of time t , axial position z , soliton veloc-

ity vs , and soliton width ξs = ξ/
√

1− (vs/c)2. Such dark soli-

tons have a minimum density ρ0(vs/c)2 and a phase jump
−2 cos−1(vs/c), both dependent on the soliton velocity vs .
These behave as classical objects with a negative inertial mass
ms ≈− 4~ρ0/c, essentially the missing mass of the displaced
atoms. The negative mass implies that increasing the soliton veloc-
ity reduces its kinetic energy; thus, dissipation accelerates dark
solitons (6). This can be seen from the soliton equation of motion

−|ms |z̈ (t) = −γż (t)− ∂zV + f (t), [2]

where −γż is the friction force and V is the confining poten-
tial due to the mean-field effects of the condensate. The
random Langevin force f (t) has a white noise correlator
〈f (t)f (t ′)〉= 2γkBTδ(t − t ′), where T is temperature and
kB is Boltzmann’s constant. The connection between the fric-
tion coefficient γ and f (t) derives from the same microscopic

dynamics that yield the fluctuation–dissipation theorem for
positive mass objects—f (t) is responsible for Brownian motion,
whereas γ describes friction, but both have contributions from
impurity atoms.

Conventionally, the diffusion coefficient D is inversely pro-
portional to the friction coefficient: D ∝ 1/γ. For negative mass
objects, we show that the diffusion coefficient is instead pro-
portional to the friction coefficient D ∝ γ; this reflects that
friction is an antidamping force for negative mass objects.
The interplay between friction and confinement drives diffu-
sive behavior with linear-in-time variance in soliton position,
Var(z ) =Dt , the same Brownian motion present for positive
mass objects.

Solitons are infinitely long lived because of the integrability
of the 1D GPE. Integrability breaking is inherent in all physi-
cal systems—for example, from the nonzero transverse extent of
quasi-1D systems. Indeed, the kink soliton in 3D—the direct ana-
logue to the 1D GPE’s dark soliton solution—is only long-lived in
highly elongated geometries (7–9), where integrability breaking
is weak. Cold atom experiments have profoundly advanced our
understanding of soliton instability by controllably lifting integra-
bility by tuning the dimensionality (5, 10). Here, we studied the
further lifting of integrability by coupling solitons to a reservoir
of impurities.

Experimental System
Our system (11) consisted of an elongated 87Rb BEC, confined
in a nominally flat-bottomed time-averaged potential, created
by spatially dithering one beam of our crossed dipole trap. We
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prepared N = 8(2) × 105 atoms∗ in the |F = 1,mF = 0〉 inter-
nal state at T = 10(5) nK. Our system’s ≈ 250µm longitudi-
nal extent was approximately 30 times its transverse Thomas–
Fermi diameter 2R⊥ set by the radial trap frequency ωr =
2π × 115(2) Hz and chemical potential µ≈ h × 1 kHz. We con-
trollably introduced a uniform (12) gas of NI impurity atoms
in thermal equilibrium, with our BECs using an rf pulse reso-
nant with the |F = 1,mF = 0〉 to |F = 1,mF = +1〉 transition
before evaporation to degeneracy (13). This gave impurity frac-
tions NI /N from 0 to 0.062 in our final BECs.

We then launched long-lived solitonic excitations using a
phase-imprinting technique (3, 4. Because our trap geometry had
a finite transverse extent, quantified by the ratio µ/~ωr ≈ 9, pla-
nar kink solitons could be dynamically unstable and decay into
3D excitations (14). Our soliton’s initial velocity vs ≈ 0.3 mm/s,
approximately 1/5 the 1D speed of sound c ≈ 1.4 mm/s (15),
implies that it is in an unstable regime (6), where it will convert
from a planar kink soliton to a nearly planar solitonic vortex. For
highly anisotropic geometries such as ours, the density profile of
these two types of solitons is nearly the same—as given by the 1D
GPE—reflecting that they become formally indistinguishable at
large velocity (14).

We absorption-imaged our solitons after a sufficiently long
time-of-flight (TOF) that their initial width ξs ≈ 0.24µm
expanded beyond our ≈ 2µm imaging resolution. Fig. 1A shows
our elongated BEC with no soliton present, and, in contrast, Fig.
1B displays a BEC with a soliton taken 0.947 s after its inception.
The soliton is the easily identified density depletion sandwiched
between two density enhancements. We quantitatively identified
the soliton position as the minimum of the density depletion
from 1D distributions (Fig. 1 B, Right). Our phase-imprinting
process launched several excitations in addition to the soliton of
interest. After a few hundred milliseconds, the additional exci-
tations dissipated, and the remaining soliton was identified. By
backtracking the soliton trajectory, we were able to identify the
soliton, even at short times.

Fig. 1E shows a series of 1D distributions taken from time
t ≈ 0 s to 4 s after the phase imprint. These images show three
salient features: (i) The soliton underwent approximately sinu-
soidal oscillations; (ii) the soliton was often absent at long times;
and (iii) there was significant scatter in the soliton position. Items
ii and iii suggest that random processes were important to the
soliton’s behavior. The solitons’ position zi—when present—is
represented by the light pink symbols in Fig. 1D, and the darker
pink symbols mark the average position 〈zi〉 for each time t .

Coupling to Impurities
Having established a procedure for creating solitons, we turned
to the impact of coupling to a reservoir of impurities, thus fur-
ther breaking integrability. Fig. 2 displays the soliton position vs.
time for a range of impurity fractions. Adding impurities gave
two dominant effects†: further increasing the scatter in the soli-
ton position z and further decreasing the soliton lifetime. These
effects manifested as a reduced fraction fs of images with a soli-
ton present and an increase in the sample variance Var(z ) =∑

(zi − 〈z 〉)2/ (M − 1) computed by using the number M of
measured positions zi at each time.

Reduced Lifetime. The addition of impurities had a dramatic
impact on the soliton lifetime. Although we lack a quantita-

∗In our system, number fluctuations increased at the lowest trap depth (Materials and
Methods).
†The soliton oscillation frequency was slightly shifted with impurities resulting from

an unintentional change in the underlying optical potential. This change also slightly
reduced the BECs’ longitudinal extent.
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Fig. 1. Soliton oscillations. (A) An absorption image after a 19.3 ms TOF
of an elongated condensate without a soliton and a longitudinal density
distribution obtained by averaging over the remaining transverse direction.
(B) An absorption image and 1D distribution at time t = 0.942 s with a
soliton with ≈30% imaged contrast. (C) A subset of the data where each
1D distribution is a unique realization of the experiment plotted vs. time t.
Notice a soliton was often absent at longer times. (D) The axial position zi

of the soliton (light pink) vs. time t for different realizations of the experi-
ment. We repeated each measurement 8 times. Dashed lines represent the
edges of the elongated condensate. The dark markers represent the aver-
age soliton position 〈zi〉 at each time t. In A and B the longitudinal densities
are given in arbitrary units (a.u.).

tive model of the soliton’s decay mechanism, there are sev-
eral reasons to expect a finite lifetime. When dissipation is
present, solitons accelerate to the speed of sound and dis-
integrate. Furthermore, numerical simulations show that, in
anharmonic traps, solitons lose energy by phonon emission,
accelerate, and ultimately decay (16). All of these decay mech-
anisms can contribute to the soliton lifetime, even absent
impurities.

The added impurities act as scatterers impinging on the soli-
ton, further destabilizing it. This effect is captured in Fig. 3A,
showing the measured survival probability fs vs. time for a range
of impurity fractions. We fit to our data a model of the survival
probability

fs(t) = 1− 1

2
erfc

[
− ln(t/τ)√

2σ

]
, [3]

essentially the integrated lognormal distribution of decay times,
suitable for decay due to accumulated random processes (17).
The survival probability fs(t) has a characteristic width param-
eterized by σ and reaches 1/2 at time τ , which we associate
with the soliton lifetime. Fig. 3B shows the extracted lifetime τ
vs. impurity fraction NI /N , showing a monotonic decrease. Our
maximum NI /N gives a factor of four decrease in lifetime τ .
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Fig. 2. Impact of impurities. Here, we plot the position zi of the soliton
(light pink) vs. time t after the phase imprint for different impurity levels.
The dark pink markers represent the average position 〈zi〉 for each time t.
Dashed lines represent the endpoints of the condensate vs. t.

Soliton Diffusion. The second important consequence of adding
impurities was an increased scatter in soliton position z , remi-
niscent of Brownian motion. Indeed, as shown in Fig. 4B, this
scatter, quantified by Var(z ), increased linearly with time. We
obtained the diffusion coefficient D as the slope from linear
fits to these data and calculated D using a quasi-1D scattering
theory. The energy of the infinitely long 1D system is given by
the GPE energy functional

E [ϕ,ψ] =∫ (
~2|∇ϕ|2

2mRb
+

~2|∇ψ|2

2mRb
+

g

2
|ϕ|2|ϕ|2 +

g ′

2
|ϕ|2|ψ|2

)
dz , [4]

describing the majority gas interacting with itself along with the
impurities with interaction coefficients g and g ′, respectively.
The fields ϕ and ψ denote the condensate and impurity wave
functions. Because the impurities are very dilute, we do not

include interactions between impurity atoms. A soliton (Eq. 1)
acts as a supersymmetric Pöschl–Teller (18, 19) potential for the
impurity atoms with exact solutions in terms of hypergeomet-
ric functions (20). Impurity scattering states with momentum kz
in the rest frame of the soliton are described by the reflection
coefficient

R(kz ) =
1− cos(2πλ)

cosh(2πkz ξ)− cos(2πλ)
, [5]

where λ(λ − 1) = g ′/g . In 87Rb, we have g ≈ g ′, giving λ≈ 1.5.
The scattering problem is fully characterized by R(kz ), and the
problem is reduced to that of a classical heavy object moving
through a gas of lighter particles.

To understand soliton diffusion over many experimental runs,
we studied their distribution function f (t , z , vs). We used a
kinetic equation equivalent to Eq. 2 with a stochastic force due to
elastic collisions with the impurity atoms and a harmonic confin-
ing potential V (z )≈− |ms |ω2x2/2, where ω=ωtrap/

√
2 is the

effective frequency (21, 22). In the limit of small soliton veloc-
ity (vs/c)2� 1, the time-dependent distribution function can be
calculated exactly (Materials and Methods). The kinetic equa-
tion has no stable solutions: Eventually, all solitons accelerate
and disappear. However, the timescale for acceleration is set by
Γ−1 = |ms |/γ, was many seconds in our experiment. In the limit
of Γt� 1 and Γ�ω, the variance in position grew linearly with
time and diffusive behavior emerges (i.e., Var(z )≈Dt). We cal-
culate the diffusion coefficient

D ≈ γ + γ0
|ms |ω2

(
kBT

|ms |
+

v2
i

2

)
, [6]

where vi is the soliton’s initial velocity. The offset γ0 accounts for
any diffusion present without impurities. The friction coefficient
γ is given by

γ =
2~
kBT

∑
m,l

∫ ∞
−∞

dkz
2π

k2
z

∣∣∣∣ ∂ε∂kz
∣∣∣∣R(kz )n(ε) [1 + n(ε)], [7]

an extension of ref. 23. εm,l(kz ) = ~2k2
z /2mRb+~2j 2m,l/2mRbR

2
⊥

is the impurities’ quasi-1D dispersion along with quantized states
in the radial direction, described by Bessel functions. We account
for radial confinement by summing over quantum numbers m
and l . n(ε) is the Bose–Einstein distribution for impurity atoms‡.

Fig. 4B plots D measured experimentally (markers) and com-
puted theoretically (curves; colored for different temperatures)
as a function of NI /N . The theory provides rather accurate esti-
mates of the experimentally observed diffusion coefficient, with a
single fitting parameter given byγ0 = 5.32×10−4 mm2/s.γ0 is set
by the diffusion coefficient at NI /N = 0, where D is suppressed
in agreement with our theory. Diffusion at zero impurity concen-
tration could be due to a number of factors, including scattering
of thermal phonons from the soliton, as well as trap anharmonic-
ity (6, 16). In our quasi-1D system, the soliton is not reflectionless
to phonons in the majority gas as it would be in 1D.

Conclusion and Outlook
Our data show that added uncondensed impurity atoms con-
tribute to soliton diffusion; however, the soliton lifetime falls
monotonically with increasing impurity fraction, even when the
additional impurities all enter the condensate. We speculate
that this might arise from two independent effects: (i) A static
soliton forms a potential minimum for impurity atoms, imply-
ing that, after some time, impurities will congregate in these

‡In our model, the condensed atoms do not contribute to the stochastic force underlying
diffusion because they are all in the ground state. The impurity atoms are condensed
for impurity fraction & 0.2%; thus, the number of thermal impurity atoms is constant,
leading to constant friction coefficient.
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Fig. 3. Soliton lifetime in the presence of impurities. (A) Histograms of soliton occurrence probability fs vs. time t after phase imprint. The blue solid curves
are fits to the lognormal-based survival function, from which we extract the lifetime τ . For each impurity fraction, we stopped collecting data when fs fell
below approximately 0.2. (B) Lifetime τ extracted from fit to the survival fraction fs vs. impurity fraction NI/N.

minima (7), broadening and destabilizing the soliton; or (ii)
because the soliton moves in excess of the speed of sound for the
impurity atoms, even condensed atoms can reflect from the mov-
ing soliton. Although this coherent reflection process would not
add to diffusion, it would transfer momentum, thereby increas-
ing the apparent damping coefficient and thereby reducing the
soliton lifetime. This latter model predicts a reduction of life-
time qualitatively similar to, but quantitatively in excess of, that
observed in experiments.

Solitons in spinor systems with impurity scatterers is an excit-
ing playground for studying integrability breaking and diffusion
of quasiclassical, negative-mass objects. Our observed reduction
in soliton lifetime with increasing impurity fraction is in need of a
quantitative theory. For the case of no impurities, there is a fur-
ther open question for both theory and experiment of whether
friction and diffusion can be present, even in the case of pre-
served integrability, for example, due to non-Markovian effects,
as was recently discovered for bright solitons (24). Future exper-
iments could study the impact of different types of impurities on
soliton dynamics by introducing impurities of a different atomic
mass. Lastly, mixtures with tunable interactions could freely tune
the amount of impurity scattering, offering an additional way to
change D .

Materials and Methods
BEC Creation. We created BECs in the optical potential formed by a pair of
crossed horizontal laser beams of wavelength λ = 1064 nm (11). The beam
traveling orthogonal to the elongated direction of the BEC was spatially
dithered by modulating the frequency of an acoustic-optic modulator at a
few hundred kHz. This created an anharmonic, time-averaged potential. To
reach the extremely cold temperatures necessary to realize long-lived soli-
tons, we evaporated to the lowest dipole trap depth in which our technical
stability allowed us to realize uniform BECs.

Temperature Measurement. We measured temperature below the major-
ity atom’s condensation temperature Tc = 350 nK by removing the major-
ity atoms and fitting the TOF expanded impurity atoms to a Maxwell–
Boltzmann (MB) distribution (13). Once the temperature was below Tc for
the impurity atoms, MB fits systematically underestimated the tempera-
ture. Fitting the small number of impurity atoms to a Bose distribution was
technically challenging due to low signal-to-noise ratio and the addition of
another free parameter, the chemical potential. To limit the number of free
parameters, we performed a global fit on the different impurity fractions,
where we constrained the chemical potential µ to be negative. This pro-
vided an estimate of the temperature with large uncertainties. We found
for our usual operating parameters, and, based on information from both
temperature measurements, T = 10(5) nK.

Impurity Characterization. We used a Blackman enveloped rf pulse at a
∼ 9 G magnetic field to transfer the |F = 1, mF = 0〉 atoms primarily to the
|F = 1, mF = + 1〉 internal state (25). We varied the impurity fraction by tun-
ing the rf amplitude. Even though the fraction of impurity atoms before
evaporation determined the fraction after evaporation, they were not equal
due to more effective evaporation of the minority spin state (13). We
characterized the impurity fraction through careful, calibrated absorption
imaging with a Stern–Gerlach technique during TOF to measure the relative
fraction of the impurity atoms after evaporation.
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Fig. 4. Brownian diffusion constant dependence on impurities. (A) An
example for the linear fit of Var(z) vs. t for 1.2% impurities. Data are binned
into 0.36-s bins; the uncertainties are the sample SD. (B) The diffusion coef-
ficient D vs. impurity fraction NI/N. The experimental results (markers) are
extracted from the slope of a linear fit of the sample variance Var(z) vs.
time t. The uncertainty in D is the uncertainty from that fit. See Mate-
rials and Methods for an explanation of uncertainty in NI/N. The theory
curves (solid and dashed curves) plot the calculated D for our measured
temperature.
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Soliton Creation. We applied a phase shift to half of a condensate by
imaging a back-lit, carefully focused razor edge with light red detuned
by ≈ 6.8 GHz from the D2 transition for 20 µs.

Scattering Theory of Impurities. Minimizing Eq. 4 with respect to ϕ∗, ψ∗

gives the coupled equations of motion

i~∂tϕ(z, t) = −
~2

2mRb
∂

2
zϕ(z, t) + g|ϕ|2ϕ+

g′

2
|ψ|2ϕ, [8]

i~∂tψ(z, t) = −
~2

2mRb
∂

2
zψ(z, t) +

g′

2
|ϕ|2ψ. [9]

In the experiment, we observed that the soliton remained stable for long
times in the presence of impurities. Therefore, we neglect the last term of
Eq. 8, giving the well-known solitonic solution in Eq. 1. We seek a solution
for the impurity wavefunction ψ(z) in the soliton rest frame. In the radial
direction, the single-particle wave functions are the usual Bessel functions
for a particle in a cylindrical well. For ψ(z), we combine Eqs. 1 and 9 with
ψ(z, t) = e−iEzt/~eimRbvsz′/~ψ(z′). This gives a Schrödinger equation with a
Pöschl–Teller potential (18, 20),

∂2ψ(z′)

∂z′2
+

[
γ2

s λ(λ− 1)

cosh2(γsz′)
+ k2

z

]
ψ(z′) = 0. [10]

The dimensionless parameters are z′ = (z − vst)/
√

2ξ, k2
z = 4mRbξ

2/

~2
(

Ez + mRbv2
s /2− g′ρ0/2

)
, λ(λ − 1) = 2mRbξ

2g′ρ0/~2 = g′/g, and γs =√
1− (vs/c)2. g and g′ are the effective 1D interaction parameters after

integrating over the transverse degrees of freedom in ψ and ϕ. Because the
transverse wave functions are different, in general, g′/g . 1. However, R(kz)
is periodic in g′/g (through λ), and small variations in this parameter do not
strongly affect the result. Solving for ψ(z′) and the scattering matrix then
gives R(kz) Eq. 5. For λ≈ 1.5, this potential also has a single, shallow bound
state. Occupation of the bound state by an impurity atom can only occur
through three body collisions (two impurity atoms and soliton), scenarios
that we did not consider here.

Kinetic Theory of the Soliton. To define a diffusion coefficient, we studied
the distribution function of many solitons, f(t, z(t), vs(t)) (corresponding to
many experimental runs). The distribution function of solitons follows a
Boltzmann equation with a collision integral in Fokker–Planck form

df

dt
=

∂

∂p

(
Af + B

∂f

∂p

)
, [11]

where A and B are the drift and diffusion transport coefficients, and the
left-hand side is a total time derivative. For vs� c, we can write A≈ γvs and
B ≈ γkBT , where vs is the soliton velocity and γ is the friction coefficient
given in Eq. 7. Finally, we write the soliton momentum as p = −|ms|vs (23).
The kinetic equation then takes the form

∂f

∂t
+ vs

∂f

∂z
=

∂

∂vs

(
−Γvsf −

∂zV

|ms|
f + Γv2

th
∂f

∂vs

)
, [12]

where Γ = γ/|ms| and v2
th = kBT/|ms| is the thermal velocity. This equa-

tion can be solved analytically by using the method of characteristics in
the case of a harmonic potential V(z) =− |ms|ω2z2/2. The solution is the
time-dependent distribution function f(t, z, vs), parametrized by functions

gi(t, ω), with Gaussian form

f(t, z, vs) =
1

2π
√

4g1g3 − g2
2

exp

{
−

1

4g1g3 − g2
2

[
g1v2

s + g3z2

+ g2vsz + vivs(g2g4 + 2g1g5) + viz(g2g5 + 2g3g4)

+v2
i (g3g2

4 + g1g2
5 + g2g4g5)

]}
. [13]

where vi is the soliton initial velocity and functions gi(t, ω) are given by

g1(t, ω) =
1 + 4ω2(et − 1)− et [cos(tω̄) + ω̄ sin(tω̄)]

2ω2ω̄2
[14]

g2(t, ω) = −
2et

ω̄2
[1− cos(tω̄)] [15]

g3(t, ω) =
1 + 4ω2(et − 1) + et [ω̄ sin(tω̄)− cos(tω̄)]

2ω̄2
[16]

g4(t, ω) = −
2et/2

ω̄
sin
(

tω̄

2

)
[17]

g5(t, ω) = −
et/2

ω̄

[
sin
(

tω̄

2

)
+ ω̄ cos

(
tω̄

2

)]
, [18]

where we work in dimensionless units t→ t/Γ, ω→ωΓ, vs→ vthvs, z →
vthz/Γ, and ω̄=

√
4ω2 − 1. Eq. 12 does not have a stable solution where

∂f/∂t→ 0, due to the fact that the soliton is inherently unstable. The solu-
tion given in Eq. 13 is valid for vs� c. Finally, we calculate the variance in
soliton position, Var(z)(t) =

∫
dvs
∫

dz z2f(t, z, vs) = 2g1 + v2
i g2

4, finding the
exact expression (with restored units)

Var(z)(t) =
4v2

th(eΓt − 1)

4ω2 − Γ2
+

4v2
i eΓt

4ω2 − Γ2
sin2

(
tω̄

2

)
+

v2
thΓ2eΓt

ω2(4ω2 − Γ2)

[
1− eΓt

(
cos(tω̄) +

ω̄

Γ
sin(tω̄)

)]
[19]

where ω̄ =
√

4ω2 − Γ2. In the limits Γt � 1, Γ � ω, we find diffusive
behavior Var(z)≈D(t)t, with the time-dependent diffusion coefficient

D(t) ≈
v2

thΓ

ω2
+

v2
i Γ

ω2
sin2

(
tω̄

2

)
. [20]

Setting sin2(tω̄/2) ≈ 1/2, we find the diffusion coefficient D presented in
Eq. 6. We note that in the limit Γt � 1, ω → 0, we have Var(z) ∝ Γt3—the
variance has no linear in t dependence, and the soliton undergoes ballistic
motion, followed by exponential increase of Var(z) and soliton death§.
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