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ABSTRACT 
Here the physics on the de Haas-van Alphen (dHvA) effect is presented. There have 

been many lecture notes (in Web sites) on the dHvA effect. Many of them have been 
written by theorists who have no experience on the measurement of the dHvA effect. One 
of the authors (M.S.) has studied the frequency mixing effect (dHvA) and the static skin 
effect (Shubnikov-de Haas effect) of bismuth (Bi) as a part of his Ph.D. Thesis (Physics) 
(University of Tokyo, 1977) under the instruction of Prof. Sei-ichi Tanuma (Ph.D. 
advisor). Around 1974, Prof. David Shoenberg (the late) visited the University of Tokyo 
and gave an excellent talk on the dHvA effect of copper at the Physics Colloquium (Prof 
Ryogo Kubo was also present). When he explained the dHvA period related to the dog’s 
bone, he pronounced it in Japanese, “inu no hone.” His talk was very impressive and 
greatly entertained the audience of the Physics Department. Before his talk, Prof. 
Shoenberg also visited the Institute of Solid State Physics at the University of Tokyo. At 
that time, M.S. measured the dHvA effect of copper to examine the possibility of the 
zone oscillation effect. Prof. Shoenberg gave invaluable suggestions to M.S. on the 
experiment (unfortunately this experiment has failed) and greatly encouraged M.S. to 
continue to do the dHvA experiments. 

This lecture note is written based on the experience of M.S. during his Ph.D. work on 
the dHvA effect. Note that the pioneering works on the dHvA of Bi were done by Prof. 
Shoenberg [Proc. Roy. Soc. A 156, 687 (1936), Proc. Roy. Soc. A 156, 701 (1936), Proc. 
Roy. Soc. A 170, 341 (1936)]. Numerical calculations (although they are very simple 
calculations) are made by Mathematica 5.2. For convenience, one program is also given 
in the Appendix. 
 
Notations: �

: Planck constant 
c: velocity of the light 
-e: charge of electron 
m0: mass of free electron 
mc: cyclotron mass 
m: mass of electron (in theory) 
ωc: cyclotron frequency 

))/(( cmeB cc =ω  

µB Bohr magneton ( ))2/( 0cmeB

�
=µ  

Φ0: quantum fluxoid (Φ0 = 
7100678.22/2 −×=ec

�π Gauss cm2) 

B: magnetic field 
l: magnetic length )/( eBcl �=  
T: Tesla (1 T = 104 Oe) 
Oe  unit of the magnetic field (= 

Gauss) 
εF: the Fermi energy 
Se: extremal cross-sectional area of the 

Fermi surface in a plane normal to 
the magnetic field. 
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1. Introduction 

The de Haas-van Alphen (dHvA) effect is an oscillatory variation of the diamagnetic 
susceptibility as a function of a magnetic field strength (B). The method provides details 
of the extremal areas of a Fermi surface. The first experimental observation of this 
behavior was made by de Haas and van Alphen (1930). They have measured a 
magnetization M of semimetal bismuth (Bi) as a function of the magnetic field (B) in 
high fields at 14.2 K and found that the magnetic susceptibility M/B is a periodic function 
of the reciprocal of the magnetic field (1/B). This phenomenon is observed only at low 
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temperatures and high magnetic fields. Similar oscillatory behavior has been also 
observed in magnetoresistance (so called the Shubnikov-de Haas effect). 

The dHvA phenomenon was explained by Landau1 as a direct consequence of the 
quantization of closed electronic orbits in a magnetic field and thus as a direct 
observational manifestation of a purely quantum mechanics. The phenomenon became of 
even greater interest and importance when Onsager2 pointed out that the change in 1/B 
through a single period of oscillation was determined by the remarkably simple relation,  

eSc

e

BF
P

12
)

1
(

1 �π=∆== , (1) 

where P is the period (Gauss-1) of the dHvA oscillation in 1/B, F is the dHvA frequency 
(Gauss), and Se is any extremal cross-sectional area of the Fermi surface in a plane 
normal to the magnetic field. If the z axis is taken along the magnetic field, then the are of 
a Fermi surface cross section at height kz is S(kz) and the extremal areas Se are the values 
of S(kz) at the kz where 0/)( =zz dkkdS . Thus maximum and minimum cross sections are 
among the extremal ones. Since altering the magnetic field direction brings different 
extremal areas into play, all extremal areas of the Fermi surface can be mapped out. 
When there are two extremal cross-sectional area of the Fermi surface in a plane normal 
to the magnetic field and these two periods are nearly equal, a beat phenomenon of the 
two periods will be observed. Each period must be disentangled through the analysis of 
the Fourier transform. 
 

 

 

Fig.1 Fermi surface of the hole 
pocket for Bi. The 
magnetic field (denoted 
by arrows) is in the YZ 
plane. 

 

Fig.2 Fermi surface of the electron (a) pocket for 
Bi. The major axis of the ellipsoid is tilted by 
6.5º from the bisectrix axis. 

 

 
Experimentally the value of Se (cm-2) can be determined from more convenient form 
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where P is in unit of Gauss-1 and Φ0 (= 7100678.22/2 −×=ec
�π Gauss cm2) is the 

quantum fluxoid. 
The dHVA effect can be observed in very pure metals only at low temperatures and 

in strong magnetic fields that satisfy 
TkBcF >>>> ωε � . (3) 

The first inequality means that the electron system is quantum-mechanically degenerate 
even though, as required by the second inequality, the magnetic field is sufficiently 
strong. On the other hand, the observation of dHvA oscillation is determined by 

410−≈≈∆

F

c

B

B

ε
ω�

. (4) 

That is, for the observation of oscillations, the fluctuations ∆Β in an magnetic field 
should be small and the electron density should not be too high because the period 
depends on the ratio Fc εω /

�
. 

 
 
2. Fermi surface of Bi3-10 
2.1 Energy dispersion relation 

Bismuth is a typical semimetal. The model of the band structure of Bi consists of a set 
of three equivalent electron ellipsoids at the L point and a single hole ellipsoid at the T 
point (see the Brillouin zone in Sec 2.2). In one of the electron ellipsoids (a-pocket), the 
energy E is related to the momentum p in the absence of a magnetic field by 

pmp ⋅⋅=+ −1
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, (5) 

(Lax model5 or ellipsoidal non-parabolic model) where EG is the energy gap to the next 
lower band and m* is the effective mass tensor in units of the free electron mass m0. The 
effective mass tensor ma* is of the form 
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where 1, 2, and 3 refer to the binary (X), the bisectrix (Y), and the trigonal (Z) axes, 
respectively. The other two electron ellipsoids (b and c pockets) are obtained by rotations 
of ±120º about the trigonal axis, respectively. The effective mass tensors mb* for the b 
pocket and mc* for the c pocket are given by 
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For the holes, the energy momentum relationship in the absence of a magnetic field is 
taken to be 

pMp ⋅⋅=− −1

0
0 *

2

1

m
EE , (8) 

where E0 is the energy of the top of the hole band relative to the bottom of the electron 
band and the effective mass tensor M* for the hole pocket is 
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The Fermi surface consists of one hole ellipsoid of revolution and three electron 
ellipsoids. One electron ellipsoid has its major axis tilted by a small positive angle (= 
6.5º) from the bisectrix direction. 
 
Table I Bi band parameters used by Takano and Kawamura8 

 
 
2.2 Brillouin zone and Fermi surface of Bi 

The Brillouin zone and the Fermi surface of Bi are shown here. 
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Fig.3 Brillouin zone of bismuth3-10 

 

 

      
Fig.4 Fermi surface of bismuth: binary axis (X), bisectrix (Y), and trigonal (Z). a, b, c 

are the electron pocket (Fermi surfaces) and h is the hole pocket. 
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3. Techniques for the measurement of dHvA 
There are two major techniques to measure the dHvA oscillations: (1) field 

modulation method using a lock-in amplifier. (2) torque method. Because of the Fermi 
surface in Bi is so small, the dHvA effect can be observed in quite small fields as low as 
100 Oe at 0.3 K and at fairly high temperatures up to 20 or 30 K at fields of a few kOe). 
It is in fact the metal in which the dHvA effect was first discovered and have probably 
been more studied ever since than any other metal. 
 
3.1 Field-modulation method 

The system consists of a detecting coil, a compensation coil, and a filed modulation 
coil. The static magnetic field B (superconducting magnet or ion core magnet) is 
modulated by a small AC field h0cosωt (ω is a angular frequency) generated by the field 
modulation coil. The direction of the AC filed is parallel to that of a static magnetic field 
B. The voltage induced in the pick-up coil is given by 

...})2sin(
2
1

)sin({ 2

2
2 +

∂
∂+

∂
∂∝

h

M
tht

h

M
hv ωωω , (10) 

where Bh << . The signal obtained from the pick-up coil is phase sensitively detected at 
the first harmonic or second harmonic modes with a lock-in amplifier. The DC signal is 

proportional to 
h

M
h

∂
∂ω  for the first-harmonic mode and 2

2
2

h

M
h

∂
∂ω for the second-

harmonic mode. These signals are periodic in 1/B. The Fourier analysis leads to the 
dHvA frequency F (or the dHvA period P = 1/F).  
 

 
 
Fig.5 The block diagram of the apparatus for the measurement of the dHvA effect by 

means of the field modulation method.10 
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3.2 Torque method 
When an external magnetic field is applied to the sample, there is a torque on the 

sample, given BVM⊥ , where ⊥M  is the component of M perpendicular to B and V is the 
volume. Using this method, the absolute value of the magnetization can be exactly 
determined. Note that the torque is equal to zero when the direction of the magnetic filed 
is parallel to the symmetric direction of the sample. 
 

 
Fig.6 The block diagram of the apparatus for measuring the dHvA effect by Torque de 

Haas method.9 
 
 
4. Results of dHvA effect in Bi 
4.1 Result from the modulation method (Suzuki.9) 

We show typical examples of the dHvA effect in Bi and the Fourier spectra for the  
dH vH periods. 
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Fig.7 The dHvA effect of Bi in the YZ plane. T = 1.5 K. This signal corresponds to the 

first harmonics ( hM ∂∂ / ). 
 

 
Fig.8 The dHvA effect of Bi in the YZ plane. T = 1.5 K. The signal corresponds to the 

second harmonics ( 22 / hM ∂∂ ). 
 
4.2 Result of torque de Haas (Suzuki9) 

We show typical examples of the torque de Haas in Bi.  
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Fig.9 Angular dependence of the torque de Has in the YZ plane. The torque is zero at 

the symmetry axes (Y and Z). B = 15 kOe. T = 4.2 K. 
 

   
Fig.10 The torque de Haas in the YZ plane. T = 1.5 K. 
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Fig.11 The Fourier spectrum of the dHvA oscillation. The magnetic field is oriented in 

the YZ plane. The Z axis corresponds to 0º. The branches A, B, and C correspond 
to the a-, b-, and c-electron pockets, respectively. The branch E corresponds to the 
frequency mixing due to the quantum oscillation of the Fermi energy (see Sec.5). 

 

 
Fig.12 The Fourier spectrum of the dHvA oscillation. The magnetic field is oriented to 

make -36º from the Z axis in the YZ plane. The branches A, B, and C correspond 
to the a-, b-, and c-electron pockets, respectively. 
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Fig.13 The angular dependence of the dHvA frequencies in the YZ plane. The branches 
A, B, and C correspond to the a-, b-, and c-electron pockets, respectively. The 
dHvA frequency FF is approximately equal to F3A, and FD and FE coincide with 
FA + FBC. Note that the b- and c- pockets separate into two branches in the range 
of the field angles from -48º to -70º, and this might be a result of the fact that the 
direction of magnetic field does not exactly lie in the YZ plane. Note that the 
frequency of α-oscillation is denoted as Fα where α means A, BC, D, E, 2A or 3A. 

 
4.3 Result of dHvA effect in Bi (Bhargrava7) 
 
Table II  The summary of results of dHvA effect in Bi.7 

 
1: binary, 2: bisectrix, 3: trigonal 
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Fig.14 The angular dependence of electron dHvA period P in the XY plane for Bi. The 

solid line is a fit assuming an ellipsoidal Fermi surface and using the measured 
values of periods in the crystal axis and a tilt angle of 6.5º.7 

 

 
Fig.15 The angular dependence of electron dHvA periods in the YZ plane. The tilt angle 

measured is 6.50±0.25º. The shaded area shows the region where electron periods 
were never reported. The solid line is a fit using an ellipsoidal Fermi surface.7 

 
 
5. Change of Fermi energy as a function of magnetic field 

The dimension of the Fermi surface of Bi is very small compared with that of 
ordinary metals. Therefore the quantum number of the Landau level at the Fermi energy 
has a small value even at a low magnetic field. The Fermi energy varies with a magnetic 
field in a quasi oscillatory way, since the Landau level intervals of the hole and electrons 
are generally different to each other. The Fermi energy is determined from the charge 
neutrality condition that )()()()( BNBNBNBN c

e
b
e

a
eh ++= . The field dependence of the 

Fermi energy in Bi is shown below when B is parallel to the binary, bisectrix, and 
trigonal axes, respectively. 

We note that the dHvA frequency mixing has been observed in Bi by Suzuki et al.10. 
The Fermi energy changes at magnetic fields where the Landau level crosses the Fermi 
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energy, so that the Fermi energy shows a pseudo periodic variation with the field. This 
variation is remarkable even at low magnetic field in Bi. The observed frequency mixing 
is due to this effect. 
 
(a) B // the binary axis (X) 

 
Fig.16 The magnetic field dependence of the Fermi energy (B //X, T = 0 K). The dotted 

and solid lines correspond to the Landau levels of the electron and hole, 
respectively. The curve of EF vs B exhibits kinks at the fields where the Landau 
levels cross the Fermi energy. BCn±: the Landau level of the electron b- and c 
pockets with the quantum number n and the spin up (+) (down (-))-state. hn±: 
the Landau level of the hole pockets with the quantum number n and the spin up 

(+) (down (-))-state. )
2

1

2

1
(),( σνωσ sc nnE ++= � , where νs is a spin-splitting 

factor defined in Sec.6.4, and σ = ±1. The expression of E(n, σ)will be discussed 
later. The ground Landau level is described by either Baraff6 model (denoted B) 
or Lax5 model (denoted by L).  

 
(b) B // the bisectrix (Y) 

 
Fig.17 The magnetic field dependence of the Fermi energy (T = 0 K). Magnetic field is 

along the Y axis (bisectrix).9,10 
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(c) B //the trigonal axis (Z) 

 
Fig.18 The magnetic field dependence of the Fermi energy (T = 0 K). Magnetic field is 

along the Z axis (trigonal).9,10 
 
 
6. Theoretical Background11-15 

6.1 The density of states: degeneracy of the Landau level 
The electrons in a cubic system with side L are characterized by their quantum 

number k, with components where k =(kx, ky, kz) = 2π/L (nx, ny, nz) and nx, ny, and nz are 
integers. The energy of the system is given by 

2
2

2
)( kk

m
E

�

= , 

where m is the mass of electrons (we assume m instead of m0 in the theory, for 
convenience). The k space contours of constant energy are spheres and for a given k an 
electron has velocity given by 

)(
1

kv kk E∇= � . (11) 

What happens in a magnetic field to the distribution of orbitals in k space? When a 
magnetic field B is applied along the z axis, the electron motion in this direction is 
unaffected by this field, but in the (x, y) plane the Lorentz force induces a circular motion 
of the electrons. The Lorentz force causes a representative point in k space to rotate in the 
(kx, ky) plane with frequency ωc = eB/mc (we use this notation in this Section) where -e is 
the charge of electron. This frequency, which is known as the cyclotron frequency, is 
independent of k, so the whole system of the representative points rotate about an axis 
(parallel to B) through the origin of k space. 

This regular periodic motion introduces a new quantization of the energy levels 
(Landau levels) in the (kx, ky) plane, corresponding to those of a harmonic oscillator with 
frequency ωc and energy 

2
2

2
)

2
1

( ⊥=+= k
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ncn

�
� ωε , (12) 

where ⊥k  is the magnitude of the in-plane wave vector and the quantum number n takes 
integer values 0, 1, 2, 3,…... Each Landau ring is associated with an area of k space. The 
area Sn is the area of the orbit n with the radius nkk =⊥  

)
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1
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22 +== n
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eB
kS nn �

ππ . (13) 
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Thus in a magnetic field the area of the orbit in k space is quantized. 
The area between two adjacent Landau rings is 

21

22

lc

eB
SSS nnn

ππ ==−=∆ + �  (l: the magnetic length), (14) 

 

 
Fig.19 Quantization scheme for free electrons. Electron states are denoted by points in 

the k space in the absence and presence of external magnetic field B. The states 
on each circle are degenerate. (a) When B = 0, there is one state per area (2π/L)2. 
(b) When B �  0, the electron energy is quantized into Landau levels. Each circle 
represents a Landau level with energy )2/1( += nE cn ω�

. 
 
The degeneracy of a quantum number n (the number of states) is 
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6.2 Semiclassical quantization of orbits in a magnetic field 

The Onsager-Lifshitz idea2,11 was based on a simple semi-classical treatment of how 
electrons move in a magnetic field, using the Bohr-Sommerfeld condition to quantize the 
motion. The dHvA frequency F (i.e., the reciprocal of the period in 1/B) is directly 
proportional to the extremal cross-section area S of the Fermi surface. 
The Lagrangian of the electron in the presence of electric and magnetic field is given by 

)
1

(
2

1 2 Avv ⋅−−=
c

qmL φ , (16) 

where m and q are the mass and charge of the particle. 
Canonical momentum: 

Av
v

p
c

q
m

L +=
∂
∂= . (17) 

Mechanical momentum:  

Apv�
c

q
m −== . (18) 



 17 

The Hamiltonian: 

φφ q
c

q

m
qmL

c

q
mLH +−=+=−⋅+=−⋅= 22 )(

2

1

2

1
)( ApvvAvvp . (19) 

The Hamiltonian formalism uses the vector potential A and the scalar potential φ, and not 
E and B, directly. The result is that the description of the particle depends on the gauge 
chosen. 

We assume that the orbits in a magnetic field are quantized by the Bohr-Sommerfeld 
relation 

ApApkv�
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e
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q
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�
. (20) �πγ 2)( +=⋅
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where q = -e (e>0) is the charge of electron, n is an integer, and γ is the phase correction: 
γ = 1/2 for free electron. ��

πγ 2)( +=⋅−⋅=⋅ ��� nd
c

e
dd rArkrp . (22) 

The equation of motion of an electron in a magnetic field is given by 

Bv
k ×−=

c

e

dt

d�
. (23) 

This means that the change in the vector k is normal to the direction of B and is also 
normal to v (normal to the energy surface). Thus k must be confined to the orbit defined 
by the intersection of the Fermi surface with a normal to B.  
Since dtd /)/1( rv kk =∇= ε�

 

Brrk ×−−= )( 0c

e�
, (24) 

where r0 [=(x0, y0)] is the position vector of the center of the orbit (guiding center): 

yk
eB

c
xx 	=− 0 , xk

eB

c
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−=− 0 , (25) 

In the complex plane, we have the relation, 

)()()( 2/
00 yx

i ikke
eB

c
yyixx +=−+− − π

�
. (26) 

This means that the magnitude of the position vector r –r0 =(x – x0, y-y0) of the electron is 
related to that of the wave vector k =(kx, ky) by a scaling factor eBcl /2 �==η . The 
phase of the position vector is different from that of the wave vector by –π/2 for the 
electron Fermi surface. l is so-called magnetic length. 
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Fig.20 The orbital motion of electron in the presence of B (B is directed out of page) in 

the k-space is similar to that in the r-space but scaled by the factor η and through 
π/2.12 
 

Note we assume r0 = 0 in this figure. 
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where �
× )( rr d =2 (area enclosed within the orbit) n (geometrical result) 

and Φ is the magnetic flux contained within the orbit in real space, nB A⋅=Φ . 
On the other hand, 
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by the Stokes theorem. 
Then we have �

πγ 2)(
2 +=Φ=Φ−Φ=⋅

�
n

c

e

c

e

c

e
drp . (29) 

It follows that the orbit of an electron is quantized in such a way that the flux through it is 
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nn �  (Onsager relation), (30) 

where Φ0 is a quantum fluxoid and is given by 
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In the dHvA we need the area of the orbit in the k-space. We define Sn(r) as an area 
enclosed by the orbit in the real space (r) and Sn(k) as an are enclosed by the orbit in the 
k-space. Then we have a relation 

)()()( 2
2

kkr nnn SlS
eB

c
S =

�	
��
= � . (32) 

The quantized magnetic flux is given by  
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Note that this equation can also be derived from the correspondence principle. The 
frequency for motion along a closed orbit is 
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where ωc is defined as 
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In the semiclassical limit, one should obtain equidistant levels with a separation ε∆  
equal to cω�

. 
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In the Fermi surface experiments we may be interested in the increment ∆Β for which 
two successive orbits, n and n+1, have the same are in the k-space on the Fermi surface 
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6.3  Quantum mechanics 
6.3.1 Landau gauge, symmetric gauge, and gauge transformation 
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In the presence of the magnetic field B (constant), we can choose the vector potential as 
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Here we define a gauge transformation between the vector potentials A and A’, 
χ∇+= AA ' , 



 20 

where Bxy
2

1=χ . 

Since 

)0,,(
2

1
xyB=∇χ , (43) 

the new vector potential 'A  is obtained as 
)0,,0(' Bx=A  (Landau gauge). (44) 

The corresponding gauge transformation for the wave functions, 

)()
2

exp()()exp()(' rxy
c

ieB

c

iq ψψχψ �� −== rr , (45) 

with q = -e (e>0). 
 
6.3.2 Operators in quantum mechanics 

We begin by the relation 

Ap�
c

e+= ˆˆ . 

z
xy

xyyxyyxxyx

B
ic

e

y

A

ic

e

x

A

ic

e

Ap
c

e
Ap

c

e
A

c

e
pA

c

e
p

���
=

∂
∂

−
∂

∂
=

−=++=

ˆˆ

],ˆ[],ˆ[]ˆ,ˆ[]ˆ,ˆ[ ππ

, (46) 

or 

zyx B
ic

e
�

=]ˆ,ˆ[ ππ , (47) 

where z
xy B

y

A

x

A
=

∂
∂−

∂
∂

ˆˆ
. 

Similarly we have 

xzy B
ic

e�=]ˆ,ˆ[ ππ , and yxz B
ic

e
�

=]ˆ,ˆ[ ππ , (48) 

Since A commute with r̂  (A is a function of r̂ ), �
ipxx xx == ]ˆ,ˆ[]ˆ,ˆ[ π , �ipyy yy == ]ˆ,ˆ[]ˆ,ˆ[ π , �ipzz zz == ]ˆ,ˆ[]ˆ,ˆ[ π . 

0]ˆ,ˆ[]ˆ,ˆ[ =+= yyy A
c

e
pxx π , 0]ˆ,ˆ[]ˆ,ˆ[ =+= xxx A

c

e
pyy π , (49) 

When B = (0,0,B) or Bz = B, 

ic

Be
yx

	
=]ˆ,ˆ[ ππ , 0]ˆ,ˆ[ =zy ππ , 0]ˆ,ˆ[ =xz ππ , (50) 

Note that 

2

22

]ˆ,ˆ[ 

�

�
�

i
ic

Be
yx −==ππ , (51) 

where l is called as a magnetic length and it is a cyclotron radius for the ground state 
Landau level: eBc /2 �


=  
Here we define the operators X̂  and Ŷ  for the guiding-center coordinates. 
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yy

l
x

eB

c
xX ππ ˆˆˆˆˆ

2

�−=−= , x

l
yY π̂ˆˆ

2

�+= ,  (52) 

The commutation relation is given by 

2
2

42222

]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆˆ,ˆˆ[]ˆ,ˆ[ il
l

y
l

x
ll

y
l

xYX yxyxxy =+−−=+−= ππππππ ����� , 

0]ˆ,ˆ[]ˆ,ˆ[]ˆˆ,ˆ[]ˆ,ˆ[
22

=−=−= yxxyxx

l
x

l
xX ππππππ �� , 

0]ˆ,ˆ[]ˆ,ˆ[]ˆˆ,ˆ[]ˆ,ˆ[
22

=+=+= xxxxxx

l
y

l
yY ππππππ �� . (53) 

When the uncertainties ∆X and ∆Y are defined by >=<∆ 22 ˆ)( XX  and >=<∆ 22 ˆ)( YY , 
respectively, we have the uncertainty relation, 

4
2

22 )4/1(]ˆ,ˆ[)4/1()()( lYXYX =≥∆∆ , or 2)2/1())(( lYX ≥∆∆ . 

The Hamiltonian Ĥ is given by 

)ˆˆ(
2

1
)ˆ(

2

1ˆ 222
yxmc

e

m
H ππ +=+= Ap , (54) 

We define the creation and annihilation operators, 

)ˆˆ(
2

ˆ yx ia ππ −= �
�

, )ˆˆ(
2

ˆ yx ia ππ +=+ �
�

, (55),(56) 

or 

)ˆˆ(
2

ˆ ++= aax 	



π , )ˆˆ(
2

ˆ aa
i

y −= +�
�

π , (57) 

1)(]ˆ,ˆ[]ˆˆ,ˆˆ[
2

]ˆ,ˆ[ 2

2

2

2

2

2

2

2

=−==+−=+ 

�

�




�




�




iiiiiaa xxyxyx ππππππ , 

)1ˆˆ2()ˆˆˆˆ(])ˆˆ()ˆˆ[(
2

ˆˆ
2

2

2

2
22

2

2
22 +=+=−−+=+ +++++ aaaaaaaaaayx �

�
�
�

�
�

ππ , 

Thus we have 

)
2

1
ˆˆ()

2

1
ˆˆ(ˆ

2

2

+=+= ++ aaaa
m

H cω�
�

�
, (58) 

where 

cm

eB

eBcmm ccc
c

�
�
�

�
��

===
)/(

2

2

2

ω . 

When Naa ˆˆˆ =+ , the Hamiltonian is described by 

)
2

1ˆ(ˆ += NH cω
�

. (59) 

We thus find the energy levels for the free electrons in a homogeneous magnetic field- 
also known as Landau levels. 
 
6.3.3 Schrödinger equation (Landau gauge) 

We consider the Hamiltonian given by 
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]ˆ)ˆˆ(ˆ[
2

1ˆ 222
zyx pxB

c

e
pp

m
H +++= , (60) 

xx p̂ˆ =π , xB
c

e
pyy ˆˆˆ +=π , (61) 

The guiding-center coordinates are  

yyy p
l

xB
c

e
p

l
x

l
xX ˆ)ˆˆ(ˆˆˆˆ

222

��� −=+−=−= π , xp
l

yY ˆˆˆ
2

�+= ,  (62) 

The Hamiltonian Ĥ  commutes with yp̂  and zp̂ . 

0]ˆ,ˆ[ =ypH  and 0]ˆ,ˆ[ =zpH  

The Hamiltonian Ĥ  also commutes with X̂ : 0]ˆ,ˆ[ =XH . 

zynzy kknEkknH ,,,,ˆ =  

and 

zyyzyy kknkkknp ,,,,ˆ �= , and zyzzyz kknkkknp ,,,,ˆ �=  

zyyzyy kknykkknpy ,,,,ˆ �= , zyyzyy kknykkknpz ,,,,ˆ �=  

or 

zyyzy kknykkkny
yi

,,,, �� =
∂
∂

, zyzzy kknzkkknz
zi

,,,, �� =
∂
∂

 

Schrödinger equation 

),,(),,(])()()[(
2
1 222 zyxzyx

yi
Bx

c

e

yixim
εψψ =

∂
∂++

∂
∂+

∂
∂ ���

, (63) 

)(),,( xezyx
zikyik zy φψ += , (64) 

β
ξ=x , with 	

 1===

c

eBm cωβ  and 
mc

eB
c =ω , 

yy
y kk

eB

c

eB

kc ���
=== βξ0 . 

We assume the periodic boundary condition along the y axis. 
),,(),,( zyxzLyx y ψψ =+ , (65) 

or 

1=yy Lik
e , 

or 

yyy nLk )/2( π=  (ny: integers), (66) 

Then we have 

. )()]2()[()(" 22
1

2
0 ξφξξξφ zkmE

Be

c 


 +−+−=  

We put 

m

k
nE z

c 2
)

2

1
(

22

1

��
++= ω  (Landau level), (67) 

or 
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)
2

1
(

2
)

2

1
(22 2222

1 ++=++= n
c

eB
knmkmE zcz

����
ω , 

)()]12()[()(" 2
0 ξφξξξφ +−−= n . 

Finally we get a differential equation for )(ξφ . 

)(])(12[)(" 2
0 ξφξξξφ −−++ n . 

The solution of this differential equation is 

)()!2()( 0
2

)(
2/1

2
0

ξξπξφ
ξξ

−=
−

−−
n

n
n Hen , (68) 

with 

yy kk
eB

c ��
==0ξ , 

eB

c��
= , 

ykx 2
0

0
0

��
=== ξ

β
ξ

 

The coordinate x0 is the center of orbits. Suppose that the size of the system along the x 
axis is Lx. The coordinate x0 should satisfy the condition, 0<x0<Lx. Since the energy of 
the system is independent of x0, this state is degenerate. 

xy Lkx <===< 2
0

0
00 �� ξ

β
ξ

, (69) 

or 

xy
y

y Ln
L

k <= 22 2 �� π
, 

or 

22 �π
yx

y

LL
n < . 

Thus the degeneracy is given by the number of allowed ky values for the system. 

00
22 22222 Φ

Φ=
Φ

==== BA

eB

c
AALL

g yx 	


πππ

, (70) 

where 

7
0 100678.2

2

2 −×==Φ
e

c
�

π
 Gauss cm2. 

The energy dispersion is plotted as a function of kz for each Landau level with the index n. 

m

k
nknE z

cz 2
)

2

1
(),(

22��
++= ω . (71) 

 
6.3.4 Another method 

)]ˆˆ(ˆ[
2

1
)ˆ(

2

1ˆ 2
2

2
22 pAApApAp ⋅+⋅++=+=

c

e

c

e

mc

e

m
H , 

zzyyxxzzyyxx pApApAApApAp ˆˆˆˆˆˆˆˆ +++++=⋅+⋅ pAAp  



 24 

 pA ˆ2],ˆ[],ˆ[],ˆ[ ⋅+++= zzyyxx ApApAp  

 pAA ˆ2 ⋅+⋅∇=
i

�
. 

Then we have 

)ˆ
2

ˆ(
2

1

)]ˆ2(ˆ[
2

1ˆ

2
2

2
2

2
2

2
2

pAAAp

pAAAp

⋅+⋅∇++=

⋅+⋅∇++=

c

e

ic

e

c

e

m

ic

e

c

e

m
H

�

�

 

Since 0=⋅∇ A , 

ypx
mc

eB
x

mc

Be

mc

e

c

e

m
H ˆˆˆ

2
ˆ

2

1
)ˆ

2
ˆ(

2

1ˆ 2
2

22
22

2

2
2 ++=⋅++= ppAAp , 

where 

eB

c��
=2 , 

mc

eB

mc

�
�

��
== 2

2

ω ,  2

22
2

mc

Be
m c =ω , 

yc
c

yc pxx
m

m
pxx

mc

Be

m
H ˆˆˆ

2
ˆ

2

1
ˆˆˆ

2
ˆ

2

1ˆ 2
2

22
2

22
2 ωωω ++=++= pp . 

The first and second terms of this Hamiltonian are that of the simple harmonics along the 
x axis. 

This Hamiltonian Ĥ commutes with yp̂  and zp̂ . Thus the wave function can be 

described by the form, 
)()(),,( zkyki

n
zyexzyx += φψ . 

 
6.4 The Zeeman splitting of the Landau level 

Here we consider the effect of the spin magnetic moment on the Landau level. 
 

 
Fig.21 Spin angular momentum S and spin magnetic moment µµµµs for free 

electron. 2/�S �= . )/2( �S	
Bs µ−= . cmeB 02/



=µ  (Bohr magnetron). 

 
The spin magnetic moment µµµµs is given by µµµµs =  �S )2/()/( BB gg µµ −=− � , where 

)2/( 0cmeB



=µ  (Bohr magneton). The factor g is called the Landé-g factor and is equal 

to g =2.0023 for free electrons. In the presence of magnetic field B along the z axis, the 
Zeeman energy is given by  
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σνωσωσµ
sc

c
c

B
s

g

m

m
B

g ��
2

1
)

2
(

2 0

===⋅− B� , (72) 

where 0/ mgmcs =ν  and σ = ±1. Thus we have the splitting of the Landau level in the 

presence of magnetic field as 

)
2

1

2

1
(),( σνωσ sc nnE ++= � . (73) 

where νs is much smaller than 1 for Bi. 
 
6.5 Numerical calculations using Mathematica 5.2 
6.5.1. ((Mathematica 5.2-1)) Energy dispersion of the Landau level 

We consider the energy dispersion of the Landau level with the quantum number n as 
a function of kz. 
 
Here we assume that 1→

�
, 1→cω , and 1→m  for numerical calculations. n = 0,1, 

2, …, 20. 

G �n_� :� � � c 	
n 
 1

2 � 
 � 2
2m

kz2

 
 rule1={� 
 1,� c
 1,m
 1} 
 {� � 1,� c� 1,m� 1} 
 G1=G[n]/.rule1 

 

1

2 � kz2

2 � n 

 

Plot �Evaluate �Table �G1, �n,0,20� � �, �kz, � 10,10�,
PlotStyle� Table �Hue �0.1i�, �i,0,10� �,Prolog � AbsoluteThickness �2�,
Background � GrayLevel �0.5�,AxesLabel � �"kz","E �n,kz� "�,
PlotRange� � � �8,8�, �0,20� � �  

-8 -6 -4 -2 2 4 6 8
kz

2.5

5

7.5
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12.5

15

17.5

20
E �n,kz �

 
 � Graphics �
 
Fig.22 Energy dispersion of the Landau levels with n and kz for a 3D electron gas in the 

presence of a magnetic field along the z axis. 



 26 

 
6.5.2. ((Mathematica 5.2-2)) Solution of Schrödinger equation 
 
(*Landau level*) 

 � x:� �� D �#,x�
&
 

 
� y:� � 	
 D �#,y� 
 eBx

c
#

�
&
 

 � y[� [x,y,z]] 
 � Bex � �x,y,z�

c � � � � �0,1,0� �x,y, z�
 

 � y[� y[� [x,y,z]]]//Simplify 
 

1

c2 �B2e2x2 � �x,y,z� � c � �2 � Bex �  0,1,0! �x, y, z� " c � �  0,2,0! �x,y,z� # #
 

 Nest[� y,� [x,y,z],2]//Simplify 
 

1

c2 �B2e2x2 � �x,y,z� � c � �2 � Bex �  0,1,0! �x, y, z� " c � �  0,2,0! �x,y,z� # #
 

 � z:� �� D �#,z�
&
 

 

f $
1

2m %Nest & ' x, ( &x,y,z)
, 2

) *
Nest & ' y, ( &x, y,z)

,2
) *

Nest & ' z, ( &x,y,z)
,2

) + ,
E1 ( &x,y, z) - -

Simplify 

 

1

2c2m .B2e2x2 / 0x,y,z1 2 c 3 .c 3 / 40,0,25 0x,y, z1 2 2 6 Bex / 40,1,05 0x,y,z1 7
c 3 . / 40,2,05 0x, y,z1 7 / 42,0,05 0x,y,z1 8 8 8 9 E1 / 0x,y,z1  

 (*We assume the form of wave function 
      � [x,y,z]=(Exp[:  ky y2 +:  kz z] ; [x] 
       
      *) 
 rule1={� 
 (Exp[:  ky #2 +:  kz #3] ; [#1]&)} 
 < = > ? @ A ky#2B A kz#3 C D#1E &F G  
 f1=f/.rule1//Simplify 
 
1

cm H I J KkyyLkzzM
N N O

B2e2x2 P 2Bcekyx Q P c2 N
2E1m

O N
ky2 P kz2 R Q 2R R S TxU P c2 Q 2 S V V TxU R W X 0 

 
eq1 Y Z Z [ B2e2x2 \ 2Bcekyx ] \ c2 Z2E1m [ Zky2 \ kz2^ ] 2^ ^ _ `xa \ c2 ] 2 _ b b `xa ^ c 0 
 d e B2e2x2 f 2Bcekyx g f c2 d2E1m e dky2 f kz2h g 2h h i jxk f c2 g 2 i l l jxk m 0 

 eq2 n Solve oeq1, p q q oxr r s s
Simplify

s s
Flatten 

 t u v v wxx y zB2e2x2 { 2Bcekyx | } c2 z { 2E1m } zky2 } kz2 ~ | 2~ ~ u wxx
c2 | 2 �  

 eq3 � � � � �x� � � � � � �x� �
.eq2� � 0 
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 � �
B2e2x2 � 2Bcekyx � � c2 � � 2E1m � �

ky2 � kz2� � 2 � � � �x�
c2 � 2 � � � � �x� 	 0

 

 

vchange 
Eq_, � _,x_,z_,f_� :

Eq �. � D 
 � 
x�, �x,n_� � � Nest � ���� 1

D 
f,z� D 
#, z� &����, � 
z�,n�
,� 
x� � � 
z�,x � f

�
 

 

� �
change of variable

x� �  ! , ! � " # # # # # # # # # #m $ c% � & ' ' ' ' ' ' ' 'e B%
c
, ( c � e B

m c� is dimensionless� )
 

 
seq1 * vchange +eq3, , ,x, - , -. / 0 0 FullSimplify

 

 

1 2 2 3 3 4 5 6 7
1

c2
1 2 8 2 9 9B2e2 5 2 : c 1 9 ; 2Beky 5 8 : c 1 9 ;2E1m : 9ky2 : kz2 < 8 2< < < 2 4 5 6 <

 

 
rule2 = > ? @ A B B B B B B B B BeBC

c D  
 E F G H I I I I I I I IIBe

c J K  
 seq2=seq1/.rule2//Simplify 

 

1

c L MNOOOO MNOOOO PBe Q 2 L R c MNOOOO2E1m P MNOOOOky2 R kz2 P 2ky Q S T T T T T T T TTBe

c L UVWWWW L 2UVWWWW UVWWWW X Y Q Z R Be L X [ [ Y Q Z UVWWWW \ 0
 

 seq3 ] Solve ^seq2, _ ` ` ^ a b b c c Simplify c c Flatten 
 d e f f g h i j

klmmmmBe h 2 n o c klmmmm p2E1m o klmmmmky2 o kz2 p 2ky h q r r r r r r rrBe
cs tuvvvv n 2tuvvvv tuvvvv e g h i

Be n w
 

 seq4 x y z z { | } ~ � y z z { | } �.seq3� � 0 � � FullSimplify 
 � � � � � � �

������Be � 2 � � c ������ �2E1m � ������ky2 � kz2 � 2ky � � � � � � � � ��Be
c� ������ � 2������ ������ � � � �

Be �
 

 

� ��
0� � c � ky

e B
� � � � � � � � � �e B� c

c � ky
e B

� � � � � � � � � �c �
e B

ky� �
 

 
rule3 � �ky   ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢¢eB

c £ ¤ 0¥
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 �ky � � 0 � � � � � � � � ��Be

c � �  
 seq5=seq4/.rule3//Simplify 

 � � � 	 
 � � 
Be 
 
 � 
 0� 2 � � c 
 � 2E1m � kz2 � 2 � � � 	 
 �Be �
 

 

� �
The energy E1

E1� � � c �n� 1
2 � � � 2 kz2

2 m� � c � e B �
m c� �

 

 
rule4 � � E1 � eB �

mc  n ! 1
2 " ! � 2kz2

2m #  
 $E1 % Be & 1

2 ' n( )
cm ' kz2 ) 2

2m *  
 seq6=seq5/.rule4//Simplify 

 + , , - . / 0 1 2 1 2 2n 3 . 2 2 2 . . 0 3 . 024 + - . /  
 DSolve[seq6,5 [6 ], 6 ] 
 

7 7 8 9 : ; < = > ?2
2 @ ? ?0

C
9
1

;
HermiteH

9
n,

: A :
0

; B
= > ?2

2 @ ? ?0
C

9
2

;
Hypergeometric1F1 C A n

2
,
1

2
, D : A :

0E 2F G G
 

 
6.5.3. ((Mathematica 5.2-3)) Plot of the Landau wave function as a function of ξξξξ, 

where ξξξξ0 = 0. 
 

(*Simple Harmonics wave function*) 
 (*plot of H n[ 6 ]*) 
 

conjugateRule I JComplex Kre_,im_L M Complex Kre, N imL O;
Unprotect KSuperStarL;SuperStar P:exp_ Q :I exp P.conjugateRule;
Protect KSuperStarL  

 {SuperStar} 

 R Sn_, T_U
:V 2W nX

2 Y W1X
4 Zn [ \ W1X

2 Exp ] ^ T 2
2 _ HermiteH Sn, T U

 
 pt1[n_]:=Plot[Evaluate[` [n,6 ]],{6 ,-
6,6},PlotLabela {n},PlotPointsa 100,PlotRangea All,DisplayFunc
tiona Identity,Framea True] 
 
pt2=Evaluate[Table[pt1[n],{n,0,8}]];Show[GraphicsArray[Parti
tion[pt2,2]]] 
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 � GraphicsArray �  
 Plot[Evaluate[Table[ ` [n,6 ],{n,0,6}]],{6 ,-
6,6},Prologa AbsoluteThickness[2],PlotStylea Table[Hue[0.1 
i],{i,0,8}],AxesLabela {"6 "," �
[n, 6 ]"},Framea True,Backgrounda GrayLevel[0.5]] 
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 � Graphics �  
Fig.23 Plot of the wave function )(ξφn with ξ0 = 0 as a function of ξ. n = 0, 1, …,and 6. 

 
7. General form of the oscillatory magnetization (Lifshitz-Kosevich) 

The expression of the oscillatory magnetization is derived by Lifshitz and 
Kosevich11as 

�
±−

∂
∂−=

−

e

cec

ez
e m

m

Be

cS

Be

Tcm

p

S
S

B

ceT
M )cos()

4
sin()

2
exp(

)/(2

0

22/1

2

2

2/12/3

2/3 πππ
π ��

�
, (74) 

where the sum over e extends all extremal cross-sectional are of the Fermi surface, the 
phase +π/4 if zpS ∂∂ / >0 (minimum) and -π/4 if zpS ∂∂ / <0 (maximum), m0 is a mass of 

free electron, and επ ∂∂= /)2/1( Smc . The term )/cos( 0mmcπ arises from the Zeeman 

splitting of spins. The magnetization oscillations are periodic in 1/B. The period is 

ecS

e

H

�π2
)

1
( =∆ , (75) 

The influence of electron scattering is not taken into account in the derivation given 
above. Its effect is easily estimated. A proper account of the influence of collisions gives 
rise to an additional factor. If the mean time between collisions is τ, the corresponding 
uncertainty in electron energies τ/

�
 is equivalent to a temperature, so-called Dingle 

temperature 

)
2

exp()
2

exp(
22

He

cmTk

He

cm cdBc �π
τ

π −=− , (76) 

where Td is the Dingle temperature and is defined by 

τB
d k

T 	= . 

 
8. Simple model to understand the dHvA effect13,16 

Consider the figure showing Landau levels associated with successive values of n = 0, 
1, 2, …, s. The upper green line represents the Fermi level εF. The levels below εF are 
filled, those above are empty. Since εF is much larger than the level-separation cω


, the 



 31 

number n = s of occupied levels is very large. Let us assume that the magnetic field is 
increased slightly. The level separation will increase, and one of the lower levels will 
eventually cross the Fermi level. The resulting distribution of levels is similar to the 
original one except that the number of filled levels below εF is now n = s-1, instead of n = 
s. Since n is large, this difference is essentially negligible, so that one expects the new 
state to be equivalent to the original one. This implies a periodic dependence of the 
magnetization. 
 

    
 
Fig.24 Schematic energy diagram of a 2D free electron gas in the absence and presence 

of B. At B = 0, the states below εF are occupied. The energy levels are split into 
the Landau levels with (a) n = 0, 1, 2,…, and s for a specified field and (b) n = 0, 
1, 2,…, and s-1 for another specified field. The total energy of the electrons is the 
same as in the absence of a magnetic field. 

 
((Mathematica 5.2-4)) Schematic energy diagram as a function of 1/B 

This figure shows the schematic diagram of the location of each Landau levels as a 
function of cF ωε �/ . When scF =ωε �/  (integer), there are s Landau levels below the 

Fermi level εF. 
 
Plot �Evaluate �Table � i

n �UnitStep �x � n� � UnitStep �x � n � 1� �
, �n, 1, 30	,

�i, 1, n	 
 
 , �x, 0,31	, Prolog � AbsoluteThickness �3�
,

PlotStyle � Table �Hue �0.1j�
, �j,0,10	 �

, PlotRange � � �0,31	, �0,1	 	 
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 � Graphics �  
Fig.25 Schematic diagram for the separation of the Landau level as a function of 1/B. 

The x axis is s = N/(ρB). The y axis is equal to the energy normalized by the 
Fermi energy εF. The number of the Landau levels below εF is equal to s at x = s. 

 
9. Derivation of the oscillatory behavior in a 2D model. 

The energy level of each Landau level is given by )2/1( +ncω�
, where n = 0, 1, 

2, ….. Each on of the Landau level is degenerate and contains ρB states. We now 
consider several cases. 
 
(A) The n = 0, 1, 2, …, s-1 states are occupied. n = s state is empty. 

 
Fig.26 
 

scF ωε �= . 
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BsN ρ= . 
The total energy is constant, 

NsBsssBnBUU Fccc

s

n

ερωρωωρ
2

1

2

1
]

2

1
)1(

2

1
[)

2

1
( 2

1

0
0 ==+−=+== �−

=

���
. (77) 

 
(B) The case where the n = s state is not filled. 

We now consider the case when cω�
 decreases. This corresponds to the decrease of 

B. 
(i) 2/cωε �< , where ε is the energy difference defined by the figure below. 

 

 
Fig.27 
 
(ii) cc ωεω �� <<2/  

 
Fig.28 

εωε += cF s� , 
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with cωε �<<0 . 

 
The n = 0, 1, 2, …, (s-1) levels are occupied and the n = s level is not filled. 
The total number of electrons is N. The energy due to the partially occupied n = s state is 

)
2

1
()( +− sBsN cωρ � . Then the total energy is 

)
2

1
()(

2

1
)

2

1
(

1

0
0 +−+−+=− �−

=
sBsNNnBUU cFc

s

n

ωρεωρ ��  

)
2

1
()(

2

1

2

1 2 +−+−= sBsNNsB cFc ωρερω �� , (78) 

where 
)1( +<< sBNBs ρρ , and cFc ss ωεω �� )1( +=< . 

Here we introduce λ as 
BsN ρλ −= . 

The parameter λ satisfies the inequality 
Bρλ <<0 , 

for 
N

s

BN

s )1(1 +<< ρρ
. The parameter λ denotes the number of electrons partially 

occupied in the n = s state  
The parameter Bsρµ =  is the total number of electrons occupied in the n = 0, 1, 2,…, 

s-1 states for 
N

s

BN

s )1(1 +<< ρρ
. 

 
(iii) The n = 0, 1, 2, …, s states are occupied. n = s+1 state is empty. 
 

 
Fig.29 
 
In this case we have 

)1( += scF ωε � . 
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)1( += sBN ρ . 

NsB

sssBnBUU

Fc

cc

s

n

ερω

ρωωρ

2

1
)1(

2

1

)]1(
2

1
)1(

2

1
[)

2

1
(

2

0
0

=+=

+++=+== �
=

�

��
 

 
10. Total energy vs B 

We now discuss the total energy as a function of B. 

The total energy has a local minimum at 
)1(

)
2

1
(

+

+
=

ss

sN
B

ρ
. 

((Proof)) 
Since 
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the total energy is expressed by 
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We also show that the total energy )(Bf  becomes zero at  

N

s

B

ρ=1
 and 

N
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((Proof)) 
We note that U - U0=0 at  
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])12()1([)( 222 NsBNssBBf B ++−+−= ρρ
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The solution of f(B) = 0 is 

N

s

B

ρ=1
 and 

N

s

B
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11. Magnetization M vs B 

The magnetization M is given by 

x
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M = 0 at 
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((Mathematica 5.2-5)) The Mathematica program is in the Appendix. 
In this numerical calculation we use n = 10, µB = 1, and ρ = 1. for simplicity. 
 
(*de Haas van Alphen effect*) 

 
U � � 1

2
s

�
s � 1� �

B � B2 � N �
s � 1

2 � �
BB � 1

2
NEF 	. EF 
 �

B
N�  

 
BN � 1

2 � s
 � B � N2 � B
2 � � 1

2
B2s �1 � s� � B �

 
 eq1=D[U,B] 

 
N � 1

2 � s� � B � Bs �1 � s� � B �
 

 Solve[eq1� 0,B] 
 

� �
B � N �1 � 2s 

2 �s � s2 ! " "  
 
U1 #x_,s_$ :% U &. B ' 1

x
& & Simplify

 
 U1[x,s] 
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1

2 � B
���� N � 2Ns

x � N2� � s �1 � s� �
x2

	
��
 

 U2 � U1 
x,s�
x2 � � N2 � � PowerExpand � � Simplify 

 
� � B �N2x2 � N �1 � 2s� x � � s �1 � s� � 2 �

2N2  
 Solve[U2� 0,x]//Simplify 
 

� �
x � s �

N � , �
x � �1 � s� �

N � �  
 

max1 � U1 �x,s !
. "x # s $1 % s& '

N (s % 1
2 )

* ! !
Simplify

 

 

N2 + B
8s , - 8s2 ,  

 rule1={N. 10,/ . 1,0 B. 1} 
 {N1 10,2 1 1,3 B1 1} 
 
U2 4 U1 5x,s6 7

UnitStep 8x 9 s :
N ; 9 UnitStep 8x 9 <1 = s> :

N ; ?  
 
1

2 @ B ABCC N D 2Ns
x E N2F E s G1 D sH F

x2 IJKK LUnitStep Mx E s F
N N E UnitStep Mx E G1 D sH F

N N O  
 U4=U2/.{x. 1/y} 
 
1

2 P B QRSS TN U 2NsV y W N2X W s T1 U sV y2 X YZ[[ QRSSUnitStep \ 1
y

W s X
N ] W UnitStep \ 1

y
W T1 U sV X

N ] YZ[[
 

 (*Free energy as a function of x=1/B*) 
 
p11=Plot[Evaluate[Table[U2/.rule1,{s,0,20}]],{x,0.1,2},PlotS
tyle. Hue[0],Prolog. AbsoluteThickness[2],Background. GrayLeve
l[0.5],PlotPoints. 50,AxesLabel. {"1/B","U-U0"}] 
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 ` Graphics `  
 
p110=Plot[Evaluate[Table[U2/.rule1,{s,0,20}]],{x,0.4,2},Plot
Style. Hue[0],Prolog. AbsoluteThickness[2],Background. GrayLev
el[0.5],PlotPoints. 100,AxesLabel. {"1/B","U-U0"}] 
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 ` Graphics `  
Fig.30 The plot of U-U0 vs 1/B (the detail). 
 
p111=Plot[Evaluate[Table[U4/.rule1,{s,0,20}]],{y,0.1,10},Plo
tStyle. Hue[0],Prolog. AbsoluteThickness[2],PlotPoints. 50,Plo
tRange. {{0,10},{0,7}},Background. GrayLevel[0.5],AxesLabel. {
"B","F"}] 
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 ` Graphics `  
Fig.31 Plot of U-U0 vs B. 

 M � x2D �
U2,x

� � �
Simplify 

 

x2
���� 1
2

� B ���� N � 2Ns
x 	 N2
 	 s �1 � s� 


x2


��� �DiracDelta �x 	 s 

N � 	 DiracDelta �x 	 �1 � s� 


N � � 	
1

2x3
�� B �N �x � 2sx� 	 2s �1 � s� 
 � �UnitStep �x 	 s 


N � 	 UnitStep �x 	 �1 � s� 

N � � �


���
 

 (*Magnetization as a function of 1/B*) 
 
 
p12=Plot[Evaluate[Table[M/.rule1,{s,0,20}]],{x,0.1,2},PlotSt
yle. Hue[0.4],Prolog. AbsoluteThickness[2],Background. GrayLev
el[0.5],PlotPoints. 200,AxesLabel. {"1/B","M"}] 
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 ` Graphics `  
Fig.33 Plot of M vs 1/B 
 Show[p11,p12,PlotRange. {{0,1},{-8,8}}] 
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 ` Graphics `  
Fig.33 Plot of U-U0 and M as a function of 1/B. 
 (* The parameters � =N-/ Bs and 0 =/ Bs*)  
 NN1=N-/  B s 
 N-B s 2  
 NN2[x_,s_]=NN1/.B. 1/x//Simplify 
 
N � s �

x  

 
NN3 � NN2 �x,s� �

UnitStep �x � s 	
N 
 � UnitStep �x � �1 � s
 	

N 
 �  
 �N � s �

x � �UnitStep �x � s �
N � � UnitStep �x � �1 � s� �

N � �  
 
NN4 � s �

x �UnitStep �x � s �
N � � UnitStep �x � �1 � s �

N � !  
 

s " #UnitStep $x % s&
N ' % UnitStep $x % (1)s* &

N ' +
x  

 
b11=Plot[Evaluate[Table[NN3/.rule1,{s,0,20}]],{x,0.1,2},Plot
Style. Hue[0],Prolog. AbsoluteThickness[2],Background. GrayLev
el[0.5],AxesLabel. {"1/B","� "}] 
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 ` Graphics `  
Fig.34  Plot of λ vs 1/B (red). 
 
b22=Plot[Evaluate[Table[NN4/.rule1,{s,0,20}]],{x,0.1,2},Plot
Style. Hue[0.5],Prolog. AbsoluteThickness[2],Background. GrayL
evel[0.5],AxesLabel. {"1/B","0 "}] 
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 ` Graphics `  
Fig.35 Plot of µ vs 1/B (blue). 
 
 Show[b11,b22] 
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 ` Graphics `  
Fig.36 Plot of λ  vs 1/B (red) and µ vs 1/B (blue). 
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12. Conclusion 

The physics on the dHvA effect of metals (in particular, bismuth) has been presented 
with the aid of Mathematica 5.2.  

 
Appendix 
Mathematica 5.2 program (5) in Sec.10 is given, for convenience. 
 
 
REFERENCES 
1. L. Landau, Z. Phys. 64, 629 (1930). 
2. L. Onsager, Phil. Mag. 43, 1006 (1952). 
3. D. Shoenberg, Proc. Roy. Soc. A 170, 341 (1939). 
4. M.H. Cohen, Phys. Rev. 121, 387 (1962). 
5. R.N. Brown, J.G. Mavroides, and B. Lax, Phys. Rev. 129, 2055 (1963). 
6. G.E. Smith, G.A. Baraff, and J.M. Rowell, Phys. Rev. B 135, A1118 (1964). 
7. R.N. Bhargrava, Phys. Rev. 156, 785 (1967). 
8. S. Takano and H. Kawamura, J. Phys. Soc. Jpn. 28, 348 (1970). 
9. M. Suzuki; Ph.D. Thesis at the University of Tokyo (1977). 
10. M. Suzuki, H. Suematsu, and S. Tanuma, J. Phys. Soc. Jpn.43, 499 (1977). 
11. I.M. Lifshitz and A.M. Kosevich, Sov. Phys. JETP 2, 636 (1956). 
12. A.B. Pippard, Dynamics of conduction electrons. (Gordon and Breach, New York, 

1965). 
13. A.A. Abrikosov, Solid State Physics Supplement 12, Introduction to the theory of 

normal metals, (Academic Press, New York, 1972). 
14. D. Shoenberg, Magnetic oscillations in metals. (Cambridge University Press, 

London, 1984). 
15. C. Kittel, Introduction to Solid State Physics, Sixth edition, (John Wiley and Sons 

Inc., New York, 1986). 


