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ABSTRACT

Here the physics on the de Haas-van Alphen (dHvA) eleptesented. There have
been many lecture notes (in Web sites) on the dHVA teffdany of them have been
written by theorists who have no experience on thesmnement of the dHvVA effect. One
of the authors (M.S.) has studied the frequency mixingefiiHvA) and the static skin
effect (Shubnikov-de Haas effect) of bismuth (Bi) as a ginis Ph.D. Thesis (Physics)
(University of Tokyo, 1977) under the instruction of Prof.i-8kbi Tanuma (Ph.D.
advisor). Around 1974, Prof. David Shoenberg (the late) visitedJniversity of Tokyo
and gave an excellent talk on the dHVA effect of coppéreaPhysics Colloquium (Prof
Ryogo Kubo was also present). When he explained the dHuédpeslated to the dog’s
bone, he pronounced it in Japanese, “inu no hone.” Hkswas very impressive and
greatly entertained the audience of the Physics DepartniBmiore his talk, Prof.
Shoenberg also visited the Institute of Solid State Pydithe University of Tokyo. At
that time, M.S. measured the dHVA effect of copper tanaxa the possibility of the
zone oscillation effect. Prof. Shoenberg gave invalushbiggestions to M.S. on the
experiment (unfortunately this experiment has failed) grehtly encouraged M.S. to
continue to do the dHVA experiments.

This lecture note is written based on the experiend@.8f during his Ph.D. work on
the dHVA effect. Note that the pioneering works on the didv/i were done by Prof.
Shoenberg [Proc. Roy. Soc.1&66, 687 (1936), Proc. Roy. Soc.156, 701 (1936), Proc.
Roy. Soc. A170 341 (1936)]. Numerical calculations (although they ang/ wmple
calculations) are made by Mathematica 5.2. For conveajeone program is also given
in the Appendix.

Notations:

h: Planck constant B: magnetic field

c: velocity of the light I magnetic length{l =+/ci/eB)

-€ charge of electron T Tesla (1 T = 1H0e)

Mo:  mass of free electron Oe unit of the magnetic field (=

m::  cyclotron mass Gauss)

m: mass of electron (in theory) & the Fermi energy

. cyclc_)tron frequency S extremal cross-sectional area of the
(w, =eB/(mc)) Fermi surface in a plane normal to
Bohr magnetong, =en/(2mc )) the magnetic field.

8%

guantum fluxoid ¢, =
2rhc/2e=2.0678x107 Gauss ch)
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1. Introduction

The de Haas-van Alphen (dHVA) effect is an osalgtvariation of the diamagnetic
susceptibility as a function of a magnetic fielteagth B). The method provides details
of the extremal areas of a Fermi surface. The #rgterimental observation of this
behavior was made by de Haas and van Alphen (19BG@y have measured a
magnetizationrM of semimetal bismuth (Bi) as a function of the metge field B) in
high fields at 14.2 K and found that the magneatigceptibilityM/B is a periodic function
of the reciprocal of the magnetic field B}/ This phenomenon is observed only at low



temperatures and high magnetic fields. Similar llasory behavior has been also
observed in magnetoresistance (so called the Skaadie Haas effect).

The dHvA phenomenon was explained by Lardas a direct consequence of the
guantization of closed electronic orbits in a magndield and thus as a direct
observational manifestation of a purely quantumhaees. The phenomenon became of
even greater interest and importance when On$ggémted out that the change irB1/
through a single period of oscillation was deterdiby the remarkably simple relation,

1_ 2re 1l
i F A ) hc S, @
whereP is the perlod (Gau§$ of the dHVA oscillation in B, F is the dHVA frequency
(Gauss), ands. is any extremal cross-sectional area of the Fesumiace in a plane
normal to the magnetic field. If theaxis is taken along the magnetic field, then tigecd
a Fermi surface cross section at height Sk;) and the extremal are& are the values
of §k;) at thek, wheredS(k,)/dk, = Q Thus maximum and minimum cross sections are

among the extremal ones. Since altering the magtiedd direction brings different
extremal areas into play, all extremal areas of Reemi surface can be mapped out.
When there are two extremal cross-sectional aréheoFermi surface in a plane normal
to the magnetic field and these two periods arelynegual, a beat phenomenon of the
two periods will be observed. Each period must iBerdangled through the analysis of
the Fourier transform.
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Fig.1 Fermi surface of the holeFig.2 Fermi surface of the electrom)(pocket for

pocket for Bi. The Bi. The major axis of the ellipsoid is tilted by
magnetic field (denoted 6.5° from the bisectrix axis.

by arrows) is in theYZ

plane.

Experimentally the value & (cmi®) can be determined from more convenient form



S, =——= P 9.54592x10" (Gauss cm?)/P(Gauss) [cm?] (2)

where P is in unit of Gaus$ and @, (= 27#ic/2e=2.0678x10" Gauss cr) is the
guantum fluxoid.
The dHVA effect can be observed in very pure metaly at low temperatures and
in strong magnetic fields that satisfy
£ >>ha, >> kT (3)
The first inequality means that the electron sysiemuantum-mechanically degenerate
even though, as required by the second inequdthig, magnetic field is sufficiently
strong. On the other hand, the observation of didséillation is determined by
85 At L0+, (4)
B &
That is, for the observation of oscillations, thecfuationsAB in an magnetic field
should be small and the electron density should h@otoo high because the period
depends on the ratibw, / & .

2. Fermi surface of Bf *°
2.1  Energy dispersion relation

Bismuth is a typical semimetal. The model of thadstructure of Bi consists of a set
of three equivalent electron ellipsoids at theoint and a single hole ellipsoid at the
point (see the Brillouin zone in Sec 2.2). In ohé¢he electron ellipsoidsa¢pocket), the
energyE is related to the momentuorin the absence of a magnetic field by

EQ+=)=-1 pon**p, (5)
B 2m,
(Lax mode? or ellipsoidal non-parabolic model) whefe is the energy gap to the next
lower band andn* is the effective mass tensor in units of the feéectron massy. The
effective mass tensony* is of the form

m O O
m*={0 m, m,|, (6)
0 m, m

where 1, 2, and 3 refer to the binad),(the bisectrix Y), and the trigonalZ) axes,
respectively. The other two electron ellipsoidsafidc pockets) are obtained by rotations
of £120° about the trigonal axis, respectively. Hifective mass tensors,* for the b
pocket andnc* for the ¢ pocket are given by

m+3m, V3m-m) ,3m
4 B 4 2
m x=|¥3M-m) Mmoo -m @)
© \/_4 4 2
3m, -m,
* 2 2 ™




For the holes, the energy momentum relationshifhénabsence of a magnetic field is
taken to be

5 -E= 5 P, ®

whereEy is the energy of the top of the hole band relatovéhe bottom of the electron
band and the effective mass tenkbrfor the hole pocket is

M 0 0
M*=[ 0 M, O | (9)
0 0 M,

The Fermi surface consists of one hole ellipsoidesolution and three electron
ellipsoids. One electron ellipsoid has its majoisadted by a small positive angle (=
6.5°) from the bisectrix direction.

Table | Bi band parameters used by Takano and Kawamura

. | |
pﬂrh;lﬁiﬂl iy iz g I Ty | ﬂf’f]_ I _"'fa
- | | T
AtFermi | 979|150 0.0301) 0.170 0.067 0.76
Iewvel [ I |
At the | | A
band edge lﬂ.Uﬂlﬁl ﬂ,342ﬂ.[}f}ﬁ3i {!,UEEi 0.048 0.54
Carrier density (H=0) | N=2,85x 17 ¢crn—2
Fermi energy (H=0) | Eg=25 4meV
Overlap energy (H=0) | E,=3T.6meVY
Band gap E; =15 mey*

E|;I.-. =6l meV 1%

Spin-splitting factor ;1% |E1uctruns A|  Holes

H{/binary axis 0,356 0.14
Hj|trigonal axis 0.5% 1.94

2.2 Brillouin zone and Fermi surface of Bi
The Brillouin zone and the Fermi surface of Bi alhewn here.
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3. Techniques for the measurement of dHVA

There are two major techniques to measure the dldgaillations: (1) field
modulation method using a lock-in amplifier. (2ygoe method. Because of the Fermi
surface in Bi is so small, the dHVA effect can lbserved in quite small fields as low as
100 Oe at 0.3 K and at fairly high temperaturescaufO or 30 K at fields of a few kOe).
It is in fact the metal in which the dHVA effect svéirst discovered and have probably
been more studied ever since than any other metal.

3.1  Field-modulation method

The system consists of a detecting coil, a comp@msaoil, and a filed modulation
coil. The static magnetic field (superconducting magnet or ion core magnet) is
modulated by a small AC fieldhcosat (wis a angular frequency) generated by the field
modulation coil. The direction of the AC filed ianallel to that of a static magnetic field
B. The voltage induced in the pick-up coiI is ginBn

v w[h—hsm(cut) += h23|n(2ax) L) (10)

whereh << B. The signal obtalned from the pick-up coil is phasnsitively detected at
the first harmonic or second harmonic modes witbic&-in amplifier. The DC signal is
2

proportional tocuhaa—'\: for the first-harmonic mode andh® "ar’]\f for the second-

harmonic mode. These signals are periodic B. IT’lhe Fourier analysis leads to the
dHVA frequencyF (or the dHVA period = 1F).
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Fig.5 The block diagram of the apparatus for the measene of the dHVA effect by
means of the field modulation methtd.



3.2  Torque method

When an external magnetic field is applied to tamgle, there is a torque on the
sample, giverM BV, whereM  is the component d¥l perpendicular t@ andV is the
volume. Using this method, the absolute value @& thagnetization can be exactly
determined. Note that the torque is equal to zdrenathe direction of the magnetic filed
is parallel to the symmetric direction of the saenpl
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Fig.6 The block diagram of the apparatus for measutiegdHvA effect by Torque de
Haas method.

4. Results of dHVA effect in Bi
4.1  Result from the modulation method (SuzukKj)

We show typical examples of the dHVA effect in Bidathe Fourier spectra for the
dH vH periods.
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Fig.7 The dHVA effect of Bi in the YZ pland. = 1.5 K. This signal corresponds to the
first harmonics §M /dh).
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Fig.8 The dHVA effect of Bi in the YZ pland. = 1.5 K. The signal corresponds to the
second harmonic9¢M/oh?).

4.2  Result of torque de Haas (Suzu®i
We show typical examples of the torque de Haad.in B
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Fig.9 Angular dependence of the torque de Has inth@lane. The torque is zero at
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Fig.11 The Fourier spectrum of the dHVA oscillation. Tinagnetic field is oriented in
the YZ plane. Th& axis corresponds to 0°. The branches A, B, andrspond
to thea-, b-, andc-electron pockets, respectively. The branch E spords to the
frequency mixing due to the quantum oscillationhaf Fermi energy (see Sec.5).
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Fig.12 The Fourier spectrum of the dHVA oscillation. Tinagnetic field is oriented to
make -36° from th& axis in theYZ plane. The branches A, B, and C correspond
to thea-, b-, andc-electron pockets, respectively.
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Fig.13 The angular dependence of the dHVA frequenciglanYyZ plane. The branches
A, B, andC correspond to the-, b-, andc-electron pockets, respectively. The
dHVA frequencyFe is approximately equal tBsa, andFp andFe coincide with
Fa + Fgc. Note that thd>- andc- pockets separate into two branches in the range
of the field angles from -48° to -70°, and this Imige a result of the fact that the
direction of magnetic field does not exactly lietlre YZ plane. Note that the
frequency ofo-oscillation is denoted as, herea meandA, BC, D, E, 2A or 3A.

4.3  Result of dHVA effect in Bi (Bhargravd)

Table II The su mmary of results of deA effect in 7B|
Elecirons Holes
Area in
108 e
Periods in 1075 GF ellipsnidal Periods in Area in
Axes Crystal axis  Ellipsoidal axis axiz 100Gt 10 em*
1 0532003 0,53 L0038 18.0 0453 0002 21.2
7.20£0.05
2 2.30£10.05 8.35 X005 1.1 045 £0.02 21.2
4,170,035
3 1.17£0.03 0,605 0,03 137 1.57520.005 6.1

1 blnary, 2: blsectrlx 3 trlgonal

12
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Fig.14 The angular dependence of electron dHVA peHad the XY plane for Bi. The
solid line is a fit assuming an ellipsoidal Ferrarface and using the measured
values of periods in the crystal axis and a tiljlarof 6.5
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Fig.15 The angular dependence of electron dHVA periodeanYZ plane. The tilt angle
measured is 6.50£0.25°. The shaded area showsglm where electron periods
were never reported. The solid line is a fit usamgellipsoidal Fermi surface.

5. Change of Fermi energy as a function of magnetfceld

The dimension of the Fermi surface of Bi is veryaintompared with that of
ordinary metals. Therefore the quantum number efLiZndau level at the Fermi energy
has a small value even at a low magnetic field. Féweni energy varies with a magnetic
field in a quasi oscillatory way, since the Landiewel intervals of the hole and electrons
are generally different to each other. The Fernarrgy is determined from the charge
neutrality condition thatN, (B) = N2(B) + N2(B) + N5(B) . The field dependence of the

Fermi energy in Bi is shown below whdhis parallel to the binary, bisectrix, and
trigonal axes, respectively.

We note that the dHVA frequency mixing has beereofesi in Bi by Suzuki et &f.
The Fermi energy changes at magnetic fields whHerd_andau level crosses the Fermi

13



energy, so that the Fermi energy shows a pseudodperariation with the field. This
variation is remarkable even at low magnetic fielBi. The observed frequency mixing
is due to this effect.

€) B // the binary axisX)
EF  FERMI ENERGY 4
(meV ) HII BINARY /% #

26—!‘5: H

25-l|

2 | i

MAGNETIC FIELD(kOe)

Fig.16 The magnetic field dependence of the Fermi en@BgyX, T = 0 K). The dotted
and solid lines correspond to the Landau levelsth& electron and hole,
respectively. The curve ddr vs B exhibits kinks at the fields where the Landau
levels cross the Fermi energgCnt: theLandau level of the electroor andc
pockets with the quantum numberand the spin up (+) (down (-))-statext:
theLandau level of the hole pockets with the quantwmipern and the spin up

(+) (down (-))-state.E(n,a):ha)c(n+%+%vsa), wherevs is a spin-splitting

factor defined in Sec.6.4, amd= +1. The expression &in, o)will be discussed
later. The ground Landau level is described byeeitaraff model (denoted B)
or Lax’ model (denoted bly).

(b) B // the bisectrix Y)

276

YZ PLANE
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288\1 5 10 15

;AAGNETIC FIELD(kOe)

2

P—

Fig.17 The magnetic field dependence of the Fermi enéfgy O K). Magnetic field is
along theY axis (bisectrix}:*°
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Fig.18 The magnetic field dependence of the Fermi enéfgy O K). Magnetic field is
along the Z axis (trigonaf)*°

6. Theoretical Background*™*°
6.1  The density of states: degeneracy of the Landéewvel

The electrons in a cubic system with sideare characterized by their quantum
numberk, with components whete =(k, ky, k) = 277L (ny, ny, n;) andny, ny, andn, are
integers. The energy of the system is given by

_ R
E(k) 2mk
where m is the mass of electrons (we assumeinstead ofmy in the theory, for
convenience). Th& space contours of constant energy are spherefaadgivenk an
electron has velocity given by
V, =%DKE(k). (12)

What happens in a magnetic field to the distributed orbitals ink space? When a
magnetic fieldB is applied along the axis, the electron motion in this direction is
unaffected by this field, but in the, () plane the Lorentz force induces a circular motion
of the electrons. The Lorentz force causes a reptasve point irk space to rotate in the
(kx, ky) plane with frequencys = eB/mc (we use this notation in this Section) whezés-
the charge of electron. This frequency, which iewn as the cyclotron frequency, is
independent ok, so the whole system of the representative pooitste about an axis
(parallel toB) through the origin ok space.

This regular periodic motion introduces a new guzahbn of the energy levels
(Landau levels) in thek, ky) plane, corresponding to those of a harmonic lasoil with
frequencyw: and energy

£ =ha,(n +1) =h—2kD2 (12)
" 20 2m
wherek; is the magnitude of the in-plane wave vector d&ddguantum number takes
integer values 0, 1, 2, 3,...... Each Landau ringssociated with an arealokpace. The
areas, is the area of the orhitwith the radiusk, =k
s =k2=2"B. 1) (13)
hc 2

15



Thus in a magnetic field the area of the orbk space is quantized.
The area between two adjacent Landau rings is

AS =S, -S = 2%8 =% (I: the magnetic length), (14)
(a) B,=0 (b} B,#0

Fig.19 Quantization scheme for free electrons. Electtates are denoted by points in
the k space in the absence and presence of externalet@dald B. The states
on each circle are degenerate. (a) WBenO0, there is one state per areaf(’.
(b) WhenB # 0, the electron energy is quantized into Landael¢ée Each circle
represents a Landau level with enefgy=#aw,.(n+ 1/2)

The degeneracy of a quantum numbéthe number of states) is

. AS, _2eB( LY _eBl _el?
D_pB_[Zn-jz_ hc[ j /0_ ’ (15)
L

= , or
27hc 27hC

6.2  Semiclassical quantization of orbits in a magtie field

The Onsager-Lifshitz idéa' was based on a simple semi-classical treatmehowf
electrons move in a magnetic field, using the BBmmerfeld condition to quantize the
motion. The dHVA frequency (i.e., the reciprocal of the period inB)/is directly
proportional to the extremal cross-section &edthe Fermi surface.
The Lagrangian of the electron in the presencdeatiec and magnetic field is given by

L=%mv2—q(¢7—ivm), (16)
o

wherem andq are the mass and charge of the particle.
Canonical momentum:

217

p==mv+da. (17)
ov C
Mechanical momentum:
7|:=m\/=p—EA. (18)
c

16



The Hamiltonian:
H=pv-L=(mv+IA)V-L="mi+ap=_"(p-IA)+qp.  (19)
c 2 2m c

The Hamiltonian formalism uses the vector potemtiaind the scalar potentig and not
E andB, directly. The result is that the description lo¢ tparticle depends on the gauge
chosen.

We assume that the orbits in a magnetic field asntized by the Bohr-Sommerfeld
relation

n=mv=hk=p—%A=p+§A. (20)

fpr =(n+y)2rm. (21)

whereq = -e (e>0) is the charge of electron,is an integer, angtis the phase correction:
y=1/2 for free electron.

§p ar =k mr—§§A (e = (n+ )27%. (22)
The equation of motion of an electron in a magnigtid is given by
A - € xB. (23)
dt o

This means that the change in the veétas normal to the direction d and is also
normal tov (normal to the energy surface). THushust be confined to the orbit defined
by the intersection of the Fermi surface with anmalrto B.

Sincev = /n)0, g =dr/dt
nk =-S(r -r,)xB, (24)
c

whererq [=(Xo, Yo)] is the position vector of the center of the bfguiding center):

Ch Ch
Xx-%=—%k ,y-y,=——k_, 25
X0 eE y y yO eE X ( )
In the complex plane, we have the relation,
(x=) +i(y = ¥o) =2k, +ik,). (26)

This means that the magnitude of the position wecto, =(X — %, y-Yo) of the electron is
related to that of the wave vectlr=(k,, k;) by a scaling factop =1>=ch/eB. The

phase of the position vector is different from tbétthe wave vector by #2 for the
electron Fermi surfacéis so-called magnetic length.
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e

@ B
Fig.20 The orbital motion of electron in the presencddB is directed out of page) in
the k-space is similar to that in tliespace but scaled by the factpand through

2

Note we assume = 0 in this figure.

§hk mr=—5§r Xer=SBE§(r ><dr)=EBE?_An=ECD. (27)
C C C C

where
§ (r xdr)=2 (area enclosed within the orhit) (geometrical result)

and @is the magnetic flux contained within the orbir@al space® =B[An.
On the other hand,

_§§A Célr =—§§(DxA)ma=—§§Bma=—§¢, (28)

by the Stokes theorem.
Then we have

fp =%e¢-§¢=§¢=(n+y)2m. (29)
It follows that the orbit of an electron is quaetizin such a way that the flux through it is
® =(n+ y)? =2®0,(n+y) (Onsager relation), (30)
where @, is a quantum fluxoid and is given by
27hc _ hc _,
®, ==—=—"=20678x10" Gauss cf (31)
2e 2e

In the dHVA we need the area of the orbit in khgpace. We defin&,(r) as an area
enclosed by the orbit in the real spageandS,(k) as an are enclosed by the orbit in the

k-space. Then we have a relation
(Y ey 212
Sn(r)—[e—Bj S.(k) =1"S,(k). (32)

The quantized magnetic flux is given by

18



27hHC

®, =BS/(r) =BI*S (k) = (n+V)——2¢ (n+y), (33)
or
27hc 1 €°B? 27e
SiK)=(n+y, )——7—( +V)%B- (34)

Note that this equation can also be derived from ¢brrespondence principle. The
frequency for motion along a closed orbit is

=2 (35)
mcc
wherea is defined as
108 (36)
2imroe
In the semiclassical limit, one should obtain egiaht levels with a separatiois
equal toraw, .
Hence
AE = ha)c = ﬂ ’ (37)
c(0S/0¢)
or
?A - ps=28 (38)
C

In the Fermi surface experiments we may be intedest the incrementB for which
two successive orbitg,andn+1, have the same are in thapace on the Fermi surface

Si(k) = §,.4(k) =S(k)
e 2k
(n+ y)h_c Bn - (n +1+ y)h_CB

n+1?

2= nep2®, S = (ne1e ) 2E, (39)
or
1 1. 2@
G g )= e (40)

6.3 Quantum mechanics
6.3.1 Landau gauge symmetric gauge and gauge tisfarmation

——(p —A)* +qp= —(p+ A) (41)
In the presence of the magnetic fléalc(constant), we can choose the vector potential as
1 R I
A =§(B Xr) ZE 0O 0 B =§(—By, Bx,0) (symmetric gauge). (42)
X y z
Here we define a gauge transformation betweendbww potential®\ andA’,
A=A +0y,

19



where y = % Bxy.

Since

Oy = % B(y, x,0), (43)
the new vector potentig’ is obtained as

A'= (0,Bx,0) (Landau gauge). (44)
The corresponding gauge transformation for the wametions,

: iy _ —-ieB
r)=exp—=)y(r) =ex X r, 45
W(r) = expC () = expC o= xy(r) (45)

with g = -e (e>0).

6.3.2 Operators in quantum mechanics
We begin by the relation

, (46)
_GhOA enoA _er
ic X ic oy ic °
or
7 i5)= e, (47)
[
0
where A}—aA}:BZ.
ox oy
Similarly we have
7. 71=28,  and [m.7)=0B, (48)
ic
SinceA commute withf (A is a function off ),
(X 7] =[x p]=ir, [V.74]=[V.p]=ir, [Z7]=[Zp,]=in.
o~ .. € o n U
[X,”y]=[x,py+gﬁy]=0, [yJTx]=[y,px+EM=0, (49)
WhenB = (0,0B) or B, =B,
. .._€hB SN A
[ﬂx’n—y]z?! [ﬂy’sz]:o! [ z’ﬂ;(]:O’ (50)
Note that
A .. _€n’B_ R’
7T, 7T,] = =—l—, 51
i) === ==i (51)

wherel is called as a magnetic length and it is a cyolotadius for the ground state
Landau level:/* = ci/eB
Here we define the operatoks andY for the guiding-center coordinates.
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- c 1% n | 2

X =X=———7T, =X~ —TT Y =y+ —TT, 52

eE "’ oV y h ’ (52)
The commutation relation is given by

5O |2 |2 |2 |2 |4 2

XY =[x-—7m,y+—7r]=——[,X|-—[7, Yy +—[m,m]=i",

[X VY =[R= 7, § 7] = = (7, X =7, 9+ (7 7

.o N S 1% .

[ x!X]:[r[;(!X_Eﬂy]_[ﬂx!X] [r[;(!%ﬂy]zoi

- |2 |2
72NV = 17,9+ A1 =17, 91+ 17, 7] = 0. (53)

When the uncertaintiedX andAY are defined by(AX)? =< X2 > and (AY)? =< Y? >,
respectively, we have the uncertainty relation,

(AX)*(AY)? > (1/4)‘<[>2,\?]>‘2 = (U4)1*, or (BAX)(AY) = 1/2)I2.

The HamiltonianH is given by

= @+Eay =t (it+ i), (54)
2m C 2m
We define the creation and annihilation operators,
~_ b . A N
a=——(m -irm,), a'=———( +irm), 55),(56
\@_l( L 7)) \@_l( ) (55).(56)
or
= _(ara) =l (& -a) (57)
V2 ’ Y20 ’

2 2 2 2

A

~ At £~ .. A A £ . L.
[aia]:ﬁ[m_lﬂy!m*ﬂﬂy]:?l[m!m]:?I(_Ig_z)zl!

n’ n’ n’
A= SlB+8) - (8 -8 = (8" +8'8) =5 (28'a+1),
Thus we have

2
/A At A

N 1 1
H = aa+-)=hw(aa+>), 58
@A+ 0) =ha(@'a+2) (58)

where

o n _ heB

ms2  m(ch/eB) mc’

When &*a = N, the Hamiltonian is described by

ha, =

H = A (K +%). (59)

We thus find the energy levels for the free elawrim a homogeneous magnetic field-
also known as Landau levels.

6.3.3 Schrodinger equation (Landau gauge)
We consider the Hamiltonian given by
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A =2i[ B2+ (P, +EBR?+ .1, (60)
m C

ﬁX:f)X’ ﬁyzﬁy-i-%Bs\(! (61)
The guiding-center coordinates are
X —Q—Eﬁ —Q—E(ﬁ +EB§<)——E|E) \?—9+E|@ (62)
o nYoc Y o
The HamiltonianH commutes withp, and p, .
[H,p]=0 and [H,p,]=0
The HamiltonianH also commutes wittX : [I:I : )2] =0.
Hlnk, k) = E,|nk,.k,)
and
p,|n.k, .k, )=nk,|n k, k), and p,|nk,k ) =7k nk,k,)
<y|f)y‘n,ky,kz>:hky<y‘n,ky,kz>, (z|p, n,ky,kz> = hky<y‘n,ky,kz>
or

iﬁainnk k) =k, (v, 22 (2n k) = ik, (2n k)

1Ry R 1 Ry Nz TE 1Ry Rz 1 Ry Rz

Schrddinger equation

S22 B+ (2 y.2) = (v, (63)
m i 0x idy c i oy
W(xy,2) =" gx), (64)

x=%  with p= M= fB_L g =08
£ h ac / mc

Chk, ch
= =.|—k, =/k,.
“0=F eB \eB’ 7

We assume the periodic boundary condition along tinds.

Wxy+L,2)=¢(xY,2), (65)
or

ot =1,
or

k, = (2m/L,)n, (n,: integers), (66)

Then we have
(E) =[(E—EV2+-C (- 2 2
@'($) =[(§ =) +ehB( 2mE +7°k,")]1A<)
We put

1, K%k}
zha(n+-)+—
E, =ha( 2) o

(Landau level), (67)

or
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2mE = h%k,” + 2mhc,(n + %) =h’k?

@'(&) =[(& - &) - @n+1)]¢<) .
Finally we get a differential equation fgX¢ . )
@& +[2n+1-(& - &) 1<) -
The solution of this differential equation is
_(6-4,)?

@ &) =(nm2"n)y e 2 H (E-&), (68)

ch
&= gk =1k,

ch

eB
X, —%:x?fo =17k,

2eBa 1
+==(n+),
c 2

with

The coordinate is the center obrbits. Suppose that the size of the system aloayg t
axis isLx. The coordinate, should satisfy the condition, &<Lx. Since the energy of
the system is independent)@f this state is degenerate.

0<x0—%:€<‘0:€2ky<LX, (69)
or
ik = <L,
Ly
or
L,L,
NS 2

Thus the degeneracy is given by the number of @by values for the system.
L. L
=5h o A2: ACh:BA:CD’ (70)
2t 2wt 5 Ot 20, 20,
eB

where
o, _22—”’0 = 20678x107 Gauss cf
e

The energy dispersion is plotted as a functiok, ér each Landau level with the indax

1, h%k’
E(nk,) =hrw(n+=) +—=.
(nk,) =ha,(n+)+= =

(71)

6.3.4 Another method
A=l Sar=——(p A2+9(ﬁm+Am)l,
2m (o (o)
ﬁm-’-Am_pr<+pyA\/+pzAz+A<f)x+A/f)y+Azf)z
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=[P Al+[P, Al+[D.. Al+2A D

=_EDDX+2A®.
i
Then we have
~ 1 ~ D e2 2 e h
H=_—[p* + 5 A%+~ (CO A +2A )]
2m c c i
2
=L@+ S AT ome2ag
2m c ic c
SinceJ[A =0,
~ 1 ~D e2 2 28 1 D esz A2 eB AA
H=—@pP +=A"+—A = pr+t—X+— ,
2m(p c? C P) 2mp 2mc? mc Py
where
Ezzc_h ho = " :hiB ma)zzeZBz
eB’ * m? mc’ ' mé’
~ 1 ~D esz A2 AA 1 ~D mwz A2 AA
H=—Dp +——=X+auXp,=—p +—X" +aw.X,.
2mp 2mc? Ly 2mp 2 Ly

The first and second terms of this Hamiltoniantaeg of the simple harmonics along the
X axis.

This HamiltonianH commutes withp, and p,. Thus the wave function can be
described by the form,

Y(xy.2) =g (x)e"

yY+K,2)

6.4  The Zeeman splitting of the Landau level
Here we consider the effect of the spin magnetimem on the Landau level.

Fig.21 Spin angular momentt_;rﬁs—aﬁd spin  magnetic momenjs for free
electronS=n6/2. p,=-QuS/h). u; =enl/2me (Bohr magnetron).

The spin magnetic momenk is given byus = —gug(S/h) =-(9us /2)e , where
Ug = €enl(2m,c) (Bohr magneton). The factaris called the Landg-factor and is equal

to g =2.0023 for free electrons. In the presence ofnetg field B along thez axis, the
Zeeman energy is given by
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=) =hayo, (72)
2° 2

wherev, =gm./m, and o = £1. Thus we have the splitting of the Landawelem the

presence of magnetic field as

-n EIB=%BJ=hw —l:(
S 2 C ..

E(n,0) =ha)c(n+% +%vsa). (73)

wherevs is much smaller than 1 for Bi.

6.5  Numerical calculations using Mathematica 5.2
6.5.1. ((Mathematica 5.2-1)) Energy dispersion ohe Landau level

We consider the energy dispersion of the Landael l&ith the quantum numberas
a function ofk;.

Here we assume that- 1, @, - 1, andm - 1 for numerical calculations = 0,1,

2, ..., 20. ,
. 1, & >
GNnJ:=huwC (n+§) . anz

rul el={a-1, wc-1, ms1}
{h->1, wc->1, m>1}

Gl=@ n]/.rulel

1 kz?

— +

2
Hot [Bval uate[Tabl e[&@, {n, 0, 20311, {kz, -10, 103,

RAot3yl e-» TablefHie0. 1i 1, {i, 0, 1031, Pro og- Absol ut eThi ckness[2],
Background » G ayLevel [0. 5], AxesLabel -» {"k;", "E(, kz)"},
A ot Range- {{-8, 8}, {0, 20}}]

+N

-G aphi cs-

Fig.22 Energy dispersion of the Landau levels witndk; for a 3D electron gas in the
presence of a magnetic field along deexis.
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6.5.2. ((Mathematica 5.2-2)) Solution of Schrédingesquation

(*Landau | evel *)
TX . = i Di#, x] &

1

b} e Bx
ny:= (- Dif, y1-
1

# &
exylX, Yy, z] -1hw<0'1'0> X Y, Z]
ﬂY[NY[WC[X y,z]11//Sinplify

Bze X2 yix, y, z]+ch 21 Bexy Ot x vy, z21-cny©29 %, v, z1))
Nest[rry zp[x y,z],2]//Sinmplify

Bze X2 yix, y, z]+ch 21 Bexy Ot x vy, z1-cny©29 %, v, z1))

iz .=_—D[#, Z]&
1
f=

1
ﬁn (I\ESt [7(')(, W[X, y; Z]! 2] +I\ESt [7fy, dI[X1 y; Z]! 2] +

Nest [z, ¥[X, Y, Z]1, 21) =ELyIx, y, z1 /7 Snplify
(B e?x%yix, v, z] -cn cny©%? (x y, z21-21Bexy@L0 [x, y, 2] +
0,20

202

ch w2 x y, 21 +y@%0 x, y, 21))) = ELylx, y, z]
(*We assune the formof wave function
Y[ X, Yy, z] =(Exp[i ky y2 +i kz z] ¢[X]
rul el={y-»(Exp[i ky #2 +i kz #3] o¢[#1] &)}
{w% (ejky#2+ik2#3¢[#1] &>}
f1=f/.rulel//Sinplify

1 ,
e (cel (kyy+kz z)

cm
(—Bze2x2+ZBcekth+c2 (2EL m- (ky2+kzz) 1)) ¢[X] +C2H2 ¢ [X x])) =0

= ((-B°e’x*+2Bcekyxs +c* (2ELm- (ky® +kz?) #9)) ¢[X] +C?8° ¢ [X]) =0
(-B?e?x? +2Bcekyxh+c® (2ELm- (ky?+ kz?) %)) ¢[X] +c?H% ¢ [X] == 0
eg2=Solvereql, ¢ [x11 /79 nplify /7 Hatten
{d)”[X] R (BPe’x?-2Bcekyxh+c? (-2ELmw (ky? +kz?) 1)) ¢[X] }
c2n2

eq83= ¢ [X] - (¢ [X] /. €Q2) ==
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(B?e?x%2-2Bcekyxh+c? (-2ELms+ (ky? +kz?) %)) ¢[x]
- 252 +¢"[X] =0

VChange[E}_’ ¥, X, Z, f_] .=

/. {Dix1, {x, n31= NaSt[(D[f, Z]

Di#, z] &), ¥[z1, nl,

YIX] = ¥[z], X f}
(* change of variable

_ _ [mec _ B _ B
X=E/B, B=af T -\[gc, wc = B
£ i s dinensionl ess
%)
seql = vchange[eq3, &, X, &, g] /7 RS nplify

Bz ¢// [é\] ——

1
e (B e?c?+cp (-2Bekycn+cp (-2ELms (ky?+kz%) %)) o[€])

eB
| e2 = -
rul e {/3—>\/-ﬁc}

oNES

seg2=seql/.rule2//Simlify

clh [8ecn clzam (ky2+k22—2ky§\/§zwhzm o161 +Bend(£] | -0

( \ \ ] o)) J
seq3 = Sol ve[seq2, ¢[€11 /79 nplify//Hatten

2Elme+ [ky2+k22-2ky§\/5:

{7161~ Ben J
seqd=¢ [E] - (¢ [E] /. seq3) =0// RIS nplify

( ( ( AR
IBeg?n+c |-2ELmy |ky?+kz? -2ky £ | B8 | 12| | p[¢]
\ \ \ <))

Be &na+c

¢ [&] = Ben
(*

— szky_’e;B_ Chky_ ;h_
€0=p eB ™\ mcC eB eBky
*)

rul e3= {wa\/f: £0)
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Be
k -
{ yaso\/Ch }
segb=seq4/.rule3//Simplify
(Be (£-€0)2n +c (-2ELm+ kz2h%)) ¢[£€]

¢/I[§] —
Ben
(xThe energy EL
1y, 82 k2
El=a wc(n+§)+f‘2:]
A WC = eBa
mc

*)

21,52
I‘U|64={E|.—)7eBﬁ (I’1+1)+fl kz }
. nmc 2 2nm
Be (= +n) A 2.2
{El—) (2 ) +ka1
cn 2n

seqg6=seq5/.ruled//Simlify
$71€] = (-1-2Nn+ -2££0+ €07 ol€]
DSol ve[ segG, ol &1, €]

-5 48 ,
{{mg] se 2 C[1] HerniteH[n, €-£0] +
_i2+§§0 n 1 2
) i _0- _
e Ci2] I-ypergeonetrlchl[ 5 o (& -€0) H}

6.5.3. ((Mathematica 5.2-3)) Plot of the Landau wavfunction as a function of¢,
where & = 0.

(*Si mpl e Harnmoni cs wave function*)
(*plot of en[&]*)
conj ugat eRUl e = {Qonpl ex[re , im] = Gonpl ex[re, -imj};

Uhprot ect [SuperSar]; SuperSar /: exp_*:=exp/. conj ugat eRUl €;
ot ect [Super S ar ]

{ Super St ar} ,

win, £1:=2"2 7 V4 (ny)? Exp[-i] Hermit eHn, €]

ptl[n_]:=Plot[Evaluate[y[n, &§],{&, -
6, 6}, Pl ot Label »{n}, Pl ot Poi nt s-100, Pl ot Range-Al | , Di spl ayFunc
tion-ldentity, Frane-True]

pt 2=Eval uat e[ Tabl e[ pt 1[ n],{n, 0, 8}]]; Show G aphi csArray[ Parti
tion[pt2, 2]]]
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-G aphi cs=
Fig.23 Plot of the wave functiomg,(§ With & = 0 as a functionof. n=0, 1, ...,and 6.

7. General form of the oscillatory magnetization (lifshitz-Kosevich)
The expression of the oscillatory magnetization derived by Lifshitz and
Kosevich'as

V2T(enle)? [0S 2mPTem, . ¢S . 7

M=- S exp(- sin +—-)cos , (74
/2BY? 2 *lop2|, p( ehB ) (ehB 4) %) (74)

where the sum ovex extends all extremal cross-sectional are of thenFeurface, the

phase #74 if 0S/dp,>0 (minimum) and #/4 if dS/0p,<0 (maximum),mp is a mass of

free electron, andn, = (1/27)0S/0s . The termcosfm,/m, arises from the Zeeman

splitting of spins The magnetization oscillatiare periodic in B. The period is

5= 278 (75)

cS
The influence of electron scattering is not tak&o iaccount in the derivation given
above. Its effect is easily estimated. A propeoaot of the influence of collisions gives
rise to an additional factor. If the mean time lew collisions isr, the corresponding
uncertainty in electron energiéd r is equivalent to a temperature, so-called Dingle
temperature

nzcm:) ox (2n2chm:)

exp(- hH (76)
whereTy is the Dlngle temperature and is defined by
_h
O kT

8. Simple model to understand the dHVA effe¢t®

Consider the figure showing Landau levels assottiafth successive values o 0,
1, 2, ...,s. The upper green line represents the Fermi leveThe levels belows: are
filled, those above are empty. Singeis much larger than the level-separatiom,., the
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numbern = s of occupied levels is very large. Let us assunag¢ the magnetic field is
increased slightly. The level separation will irese, and one of the lower levels will
eventually cross the Fermi level. The resultingriiation of levels is similar to the
original one except that the number of filled lesvieélows: is nown = s-1, instead oh =

s. Sincen is large, this difference is essentially negligibso that one expects the new
state to be equivalent to the original one. Thiplies a periodic dependence of the
magnetization.

&
=5 =5
F1
n=s-1 n=5-1
=1 =1
=0 =0
— i _ 4

Fig.24 Schematic energy diagram of a 2D free electroniigéise absence and presence
of B. At B = 0, the states below are occupied. The energy levels are split into
the Landau levels with (a= 0, 1, 2,..., and for a specified field and (b) = O,
1, 2,..., ands-1 for another specified field. The total energytted electrons is the
same as in the absence of a magnetic field.

((Mathematica 5.2-4)) Schematic energy diagram asfanction of 1/B
This figure shows the schematic diagram of thetionaof each Landau levels as a
function of & /haw,. Whene, /hw, = s (integer), there are s Landau levels below the

Fermi levele:.

Aot [Eval uate[TabIe[Iﬁ (hitSepx -n1 -thitSepix-n-11), ¢(n, 1, 303,

{i, 1, m}]], {x, 0, 31}, Prol og- Absol ut eThi ckness[3],
AotSyle- Tabl efHie[0.1j1, ¢j, 0, 1031, PotRange - {{0, 31}, {0, 1}}]
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Fig.25 Schematic diagram for the separation of the Laridael as a function of B/
The x axis iss = N/(pB). They axis is equal to the energy normalized by the
Fermi energy:. The number of the Landau levels belgws equal tos atx = s,

9. Derivation of the oscillatory behavior in a 2D mdel.
The energy level of each Landau level is givenzby(n+1/2 , wheren = 0, 1,
2, ... Each on of the Landau level is degeneraté @ntainspB states. We now

consider several cases.

(A) Then=0,1,2,...s1 states are occupied = s state is empty.

1=5

A
n=5-1

Fig.26

& =has.

32



N = pBs.
The total energy is constant,

s-1
U=u, :Z,OB(n+%)ha)C :ha)c,oB[%s(s—l) +%s] :ha)c,oB%s2 Z%EFN . (77)
n=0

(B)  The case where thre= s state is not filled.

We now consider the case whew, decreases. This corresponds to the decrease of
B.
() e<hw /2, wherecis the energy difference defined by the figureobel

&
=
n=5-1
=1
=0
ﬁ ¥
Fig.27
(i) hew, 12<e<hw,
—
g =5 &
n=s-1
=1
=0
ﬁ ¥
Fig.28
& =shw, +&,
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with 0<e<hw, .

Then=0,1, 2, ...,%1) levels are occupied and the s level is not filled.
The total number of electronsNs The energy due to the partially occupied s state is

(N —sz)ha)C(s+%) . Then the total energy is
S 1 1 1
U-Uy =2 M+ )ha, —2 &N +(N - B (s+7)
n=0

1
=ha)CpB%s2 —%EF N + (N —,oBs)th(s+E), (78)
where
PBsS<N < pB(s+1), and shw <& =(s+Dhw.
Here we introducd as

A =N - pBs.
The parameted satisfies the inequality
0<A< B,
for % <%<$ . The parameterd denotes the number of electrons partially

occupied in then = s state
The parametep = pBs is the total number of electrons occupied inrtke0, 1, 2,...,

s-1 states fonE<l <M.
N B N

(i) Then=0,1,2,...sstates are occupied = st1 state is empty.

A
=5

n=s-1

Fig.29

In this case we have
& =haw(s+]).
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N = poB(s+1).
U=U, =3 B0+ D, = heo, 85 s(s+D) +2 (5+1)]

1 1
—hw.B=(s+D?>==¢g_N
CPBZ( ) S &F

10. Total energy vB
We now discuss the total energy as a functioB.of

1

N(s+>)

The total energy has a local minimumBt — 2.
ps(s+])

((Proof))

Since

ha, _heB_ 2(1)5 =244,B,
m.c 2mc

the total energy is expressed by
U -U, :ha)ch%sz —%EFN +(N —,oBs)ha)C(s+%)

= U, pB*s” — %EF N + 1,BN(2s+1) — 1, 0B*s(2s+1)

= —%EFN + (1.BN(2s+1) — u, pB*s(s+1) = f (B).
f*(B) = tgN (2s+1) = 214, Bs +1) = 0.

1
N(s+>)
Thenf(B) has a local maximum & =— 2,
ps(s+1)
or
1_pslst)
B N, 1
2

We also show that the total energyB bgcomes zero at
l = 2 and 1 = w .
B N B N
((Proof))
We note that) - Up=0 at
& =hws, and N =pBs.

Then e :ha)cs:%B:ﬂsB:Z,uBﬁ.

mc mc

2

f(B) =—uBN7+uBBN(2s+1)—qu82s(s+1),

or
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f(B)= —%{pza%(sﬂ) ~NoB(@2s+1) + N7,

or

N N? N N
f(B) == 0[B*s(s+1) ——B(2s+1) + —] = 4 0(SB—— HB-—].
(B) =~ p[Bs(s+1) P (S+)+p] Mg (s p)[(s+) p]

The solution of(B) =0 is
= 2 andl = w .
B N B N

11. MagnetizationM vsB
The magnetizatioM is given by

2
U __9BAU _ ,dU _ , N’ OF 79

9B 0x ox 0X p  OX

where

X==,
B

2

F= s(s+1)—x—+ P (2s+1)—

2

a—F—ZS(S 1)—— —(25 1)
ox
M = XZMa_F:M[23(3+1)p_21_£(23+1)] .
P 0X Yo, N°x N
M =0 at
_2s(s+1) p
2s+1 N~

((Mathematica 5.2-5)) The Mathematica program is irthe Appendix.
In this numerical calculation we use= 10, = 1, ando = 1. for simplicity.

(*de Iiiaas van Al phen efffct*)
U= -,S (s+1) quBZ+N(S+§) uBB - § NEF/. BF> uBf

N uB
2p

BN(; +s) uB-
eql=D U, B]
N(E +s) B-Bs (1+s) uBp

Sol ve[Ne& 1+ 2(; ,) B]

{B> 20782, )

Ulrx , s 1:=Uy. B—>)1(//Snp|ify
UL[ x, s]

"5 BZS (1+s) uBp
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1 N+2Ns N S(1+S),ow

2 1 x o x2 )

2= Ul[x, S]x°p/ N 7/ Power Expand /7 Snpli fy
B (NEX2-N(1+2s)Xp+5S (1+S) p2)

) 2N

Sol ve[ U2=:0, x] / / Si npl i fy

(oo 22, fxo 22123

naxl= UL[x, S] /. {x- > C "5 Py  gnplify
N(S+%)

I\?uB

8sp+8s2p
rul el={N-10, p-1, uB-1}
{N=10, p-1, uB-1}

(2= Wx, s (UitSep[x-—2] - UitSep[x- (1+NS)"])

1 o(N+2Ns NP sA+8) o) 14 Sp . (1+s) p
E/JB\ x -?-T)(thtSep[x-—N}-lhltStep[x- N ”
U4=U2/ . {x-1/y}

1 N 5 V[ 1 sp . 1 (1+S)p1)
2/JB[(N+2NS)y—IO -s(1+s)y p] kmltSep[y—N]—thtStep[y— N ])l

(*Free energy as a function of x=1/B*)

pl1=Pl ot [ Eval uat e[ Tabl e[ U2/ .rul el,{s,0,20}]],{x,0.1,2},PlotS
tyl esHue[ O], Prol og-»Absol ut eThi ckness|[ 2], Backgr ound-Gr ayLeve

I 10.5], Pl ot Poi nt s-»50, AxesLabel -{"1/B"," U U0"}]

-G aphi cs-

pl10=PI ot [ Eval uat e[ Tabl e[ U2/ . rul el, {s, 0, 20}]1, {x, 0. 4, 2}, Pl ot
Styl esHue[ 0] , Pr ol og-»Absol ut eThi ckness[ 2], Backgr ound-G ayLev

el [ 0. 5], Pl ot Poi nt s-100, AxesLabel -{"1/B", " U U0"}]
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-G aphi cs-
Fig.30 The plot ofU-Up vs 1B (the detail).

pl11=Pl ot [ Eval uat e[ Tabl e[ U4/ .rul el, {s, 0,20}]],{y, 0.1, 10}, Pl o
t Styl esHue[ 0] , Prol og-»Absol ut eThi ckness|[ 2], Pl ot Poi nt s-50, Pl 0
t Range-{{0, 10}, {0, 7}}, Backgr ound-GrayLevel [ 0. 5], AxesLabel »{
n Bll n Fll

-G aphi cs-
Fig.31 Plot ofU-Up vsB.
M= X D[R, x1 7/ Snplify

xzriuB( N-2Ns _E _S2+Sie (L+s) DW (D rac[blta[x-s—p] -D'racDeIta[x- d-s) D]) -
| 2 \ X 0 X2 ) N
2])'(3 (/,LB(N(X+28X) ~2s (1+5S) p) (lhitStep X_SI\T] -mitSep[x-m’\T’)p]))]
(*Magnetization as a function of 1/B*)

pl2=Pl ot [ Eval uat e[ Tabl e[ M . rul el, {s, 0,20}]],{x, 0.1, 2}, Pl ot St
yl e-»Hue[ 0. 4], Prol og-»Absol ut eThi ckness|[ 2], Backgr ound-G- ayLev
el [ 0. 5], Pl ot Poi nt s-200, AxesLabel -{"1/B","M'}]
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-G aphi cs-
Fig.33 Plot of M vs 1/B

Sho 11, p12, Pl ot Range-»{{0, 1

-8, 8}}]

-G aphi cs=
Fig.33 Plot ofU-Up andM as a function of B.
(* The paraneters A=N pBs and u=pBs*)

NN1=N-p B s
N-B s o
NN2[ x_, s_] =NN1/. B-1/x// Sinplify
Sp
N- =7
: 1+S
N\ = N\R[X, S] (mitSep[x-SlfJ’]-Lhitsep[x_ ( +N)p])
Se i Sp . (1+s)p
(N‘T) (m'tSep[X——N]-mltSep[x_ W ])
P (i SP 1 _h (1+5) p
NNE= = (mltSep[X——N]—UﬁltSep[x_ . 1)

Sp (LhitSIep[x-SW"] —U‘IitSIep[x_L;)D])

X
b11=Pl ot [ Eval uat e[ Tabl e[ NN3/ . rul el, {s, 0, 20}]],{x, 0.1, 2}, Pl ot

Styl esHue[ 0] , Pr ol og-»Absol ut eThi ckness[ 2], Backgr ound-G ayLev
el [ 0. 5], AxesLabel -{"1/B","A"}]
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-G aphi cs-
Fig.34 Plot ofA vs 1B (red).

b22=Pl ot [ Eval uat e[ Tabl e[ N\d/ . rul el, {s, 0, 20}]],{x, 0.1, 2}, Pl ot
Styl esHue[ 0. 5], Prol og-Absol ut eThi ckness|[ 2], Backgr ound-Gr ayL
evel [ 0. 5], AxesLabel -»{"1/B", "u"

-G aphi cs=
Fig.35 Plot of iz vs 1B (blue).

Showf b11, b22

-G aphi cs-
Fig.36 Plot of A vs 1B (red) andu vs 1B (blue).
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12. Conclusion
The physics on the dHVA effect of metals (in patae, bismuth) has been presented
with the aid of Mathematica 5.2.

Appendix
Mathematica 5.2 program (5) in Sec.10 is givenctmvenience.
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