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MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM
DISORDERED SUPERCONDUCTIVITY

Matthew P.A. Fisher

Abstract

These introductory lecture notes describe recent results on novel Mott
insulating phases which are “descendents” of superconductors – ob-
tained by “quantum disordering”. After a brief overview of quantum
magnetism, attention is focussed on the spin – liquid phase of the
two-leg Hubbard ladder and the nodal liquid – a descendent of the
dx2−y2 superconductor. These notes are self-contained and an effort
has been made to keep them accessible.

1 Introduction

At the foundation of the quantum theory of metals is the theory of the non-
interacting electron gas, in which the electrons move through the material
interacting only with the periodic potential of the ions, and not with one
another. Surprisingly, the properties of most metals are quite well described
by simply ignoring the strong Coulomb repulsion between electrons, essen-
tially because Pauli exlusion severely limits the phase space for electron
collisions [1]. But in some cases electron interactions can have dramatic
effects leading to a complete breakdown of the metallic state, even when
the conduction band is only partially occupied. In the simplest such Mott
insulator [2] there is only one electron per crystalline unit cell, and so a
half-filled metallic conduction band would be expected.
With the discovery of the cuprate superconductors in 1986 [3], there has

been a resurgence of interest in Mott insulators. There are two broad classes
of Mott insulators, distinguished by the presence or absence of magnetic
order [4, 5]. More commonly spin rotational invariance is spontaneously
broken, and long-range magnetic order, typically antiferromagnetic, is real-
ized [43]. There are then low energy spin excitations, the spin one magnons.
Alternatively, in a spin-liquid [4] Mott insulator there are no broken sym-
metries. Typically, the magnetic order is short-ranged and there is a gap to
all spin excitations: a spin-gap.

c© EDP Sciences, Springer-Verlag 1999
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In the cuprates the Mott insulator is antiferromagnetically ordered [7,8],
but upon doping with holes the antiferromagnetism is rapidly destroyed, and
above a certain level superconductivity occurs with dx2−y2 pairing symme-
try. But at intermediate doping levels between the magnetic and d-wave
superconducting phases, there are experimental signs of a spin gap opening
below a crossover temperature T ∗(x) (see Fig. 1). The ultimate nature of
the underlying quantum ground state in this portion of the phase diagram
– commonly called the pseudo-gap regime – is an intriguing puzzle. More
generally, the apparent connection between a spin-gap and superconduc-
tivity has been a source of motivation to search for Mott insulators of the
spin-liquid variety.

Generally, spin liquids are more common in low dimensions where quan-
tum fluctuations can suppress magnetism. Quasi-one-dimensional ladder
materials [9, 10] are promising in this regard and have received extensive
attention, particularly the two-leg ladder [11]. The Mott insulating spin-
liquid phase of the two-leg ladder can be understood by mapping to an
appropriate spin-model – the Heisenberg antiferromagnet. Spin-liquid be-
havior results from the formation of singlet bond formation across the rungs
of the ladder [12, 13].

Almost without exception, theoretical studies of spin-liquids start by
mapping to an appropriate spin-model, and the charge degrees of freedom
are thereafter ignored. This represents an enormous simplification, since
spin models are so much easier to analyze that the underlying interacting
electron model. This approach to quantum magnetism has yielded tremen-
dous progress in the past decade [5]. But is the simplification to a spin-
model always legitimate? A central goal of these lectures is to analyze a
novel two-dimensional spin-liquid phase – called a nodal liquid [14, 15] –
which probably cannot be described in terms of a spin model. Although
the nodal liquid is a Mott insulator with a charge gap and has no broken
symmetries, it possesses gapless Fermionic degrees of freedom which carry
spin.

The standard route to the spin-liquid invokes quantum fluctuations to
suppress the magnetic order of a quantum spin-model [4]. The proximity of
antiferromagnetism to d-wave superconductivity in the cuprates suggests an
alternate route. Indeed, as we shall see, the nodal liquid phase results when
a d-wave superconductor is “quantum disordered”. The gapless Fermionic
excitations in the nodal liquid are descendents of the low energy quasipar-
ticles of the d-wave superconductor.

The spin-liquid phase of the two-leg ladder gives us a simpler exam-
ple of a quantum disordered superconductor. To see this, we will revisit
the two-leg ladder, employing a model of interacting electrons [16], rather
than truncating to a spin-model. Retaining the charge degrees of free-
dom will enable us to show that the Mott-insulating phase of the two-leg
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Fig. 1. Schematic phase diagram of a high-temperature superconductor as a func-

tion of doping x and temperature T .

ladder actually exhibits pairing, with an approximate d-wave symmetry.
Moreover, upon doping, the two-leg ladder exhibits quasi-long-range super-
conducting (d-wave) pairing correlations. This behavior is reminiscent of
that seen in the underdoped cuprate superconductors.

These notes are organized as follows. In Section 2 a simple tight bind-
ing model of interacting electrons is introduced and it’s symmetry prop-
erties are discussed. Section 3 specializes to the Mott insulating state at
half-filling, focussing on the magnetic properties employing the Heisenberg
antiferromagnet spin-model. In Section 4 the method of Bosonization is
briefly reviewed for the case of a one-dimensionless spinless electron gas.
Section 5 is devoted to an analysis of the Mott insulating state of the two-
leg Hubbard ladder, employing a weak coupling perturbative renormaliza-
tion group approach. The remaining sections focus on the two-dimensional
d-wave superconductor, and the nodal liquid phase which descends from it
upon quantum disordering. Specifically, Section 6 briefly reviews BCS the-
ory for a d-wave superconductor focussing on the gapless quasiparticles. An
effective field theory for this state, including quantum phase fluctuations,
is obtained in Section 7. Section 8 implements a duality transformation
of this effective field theory, which enables a convenient description of the
nodal liquid phase in Section 9.

2 Models and metals

2.1 Noninteracting electrons

In metals the highest lying band of Bloch states is only partially occupied,
and there are low energy electronic excitations which consist of
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exciting electrons from just below the Fermi energy into unoccupied states.
These excitations can be thermally excited and contribute to thermody-
namic properties such as the specific heat, as well as to electrical conduc-
tion [1]. Tight binding models give a particularly simple description of the
conduction band. In the simplest case the states in the conduction band
are built up from a single atomic orbital on each of the ions in the solid.
The conduction electrons are presumed to be moving through the solid,
tunnelling between ions. We denote the creation and annihilation operators
for an electron with spin α =↑, ↓ on the ion at position x by c†α(x) and
cα(x). These operators satisfy the canonical Fermionic anti-commutation
relations,

[cα(x), c
†
β(x

′)]− = δαβδx,x′ . (2.1)

If the orbitals in question form a simple Bravais lattice with, say, cubic
symmetry, then the appropriate tight binding Hamiltonian is,

H0 = −t
∑
〈xx′〉

[
c†α(x)cα(x

′) + h.c.
]
− µ
∑
x
n(x), (2.2)

where the first summation is over near neighbor sites. Here t is the tun-
nelling rate between neighboring ions and for simplicity we have ignored
further neighbor tunnelling. The electron density n(x) = c†α(x)cα(x) can
be adjusted by tuning the chemical potential, µ.
In the Cuprate superconductors Copper and Oxygen atoms form two

dimensional sheets [7], with the Copper atoms sitting at the sites of a square
lattice and the Oxygen atoms sitting on the bonds, as depicted schematically
in Figure 2. In the simplest one-band models the sites of the tight binding
model are taken as the Copper atoms, and c†(x) removes an electron (adds
a hole) from a Copper 3d orbital. In most of the materials the 3d shell
is almost filled with roughly one hole per Copper atom, so that the tight
binding model is close to half-filling with 〈n(x)〉 ≈ 1.
The tight binding Hamiltonian is invariant under translations by an

arbitrary real space lattice vector, R,

cα(x)→ cα(x+R). (2.3)

This discrete symmetry implies the conservation of crystal momentum, up
to a reciprocal lattice vector,G, with exp(iG ·R) = 1. Being quadratic, the
Hamiltonian can be diagonalized by transforming to (crystal) momentum
space by defining,

cα(x) =
1
√
V

∑
k

ckαe
ik·x. (2.4)
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Fig. 2. Schematic illustration of a single Copper-Oxygen plane, consisting of a

square lattice of Copper atoms (solid points) and Oxygen atoms (open circles).

Two-dimensional Brillouin zone for the 2d square lattice tight binding model with

near neighbor hopping is shown at right. At half-filling all states in the Fermi sea

(shaded) are occupied.

Here V denotes the “volume” of the system, equal to the total number of
sites N with the lattice spacing set to unity, and the sum is over crystal mo-
mentum within the first Brillouin zone compatible with periodic boundary
conditions. The momentum space creation and anihillation operators also
satisfy canonical Fermion anticommutation relations:

[ckα, c
†
k′β ]− = δαβδkk′ . (2.5)

In momentum space the Hamiltonian takes the standard diagonal form,

H0 =
∑
kα

εkc
†
kαckα, (2.6)

invariant under the discrete translation symmetry: ckα → eik·Rckα. For a
2d square lattice with near-neighbor hopping, the energy is simply

εk = −2t[coskx + cos ky]− µ. (2.7)

The ground state consists of filling those states in momentum space with εk
negative, leaving the positive energy states unoccupied. The Fermi surface,
separating the occupied from empty states, is determined by the condition
εk = 0. For the 2d square lattice at half-filling with energy dispersion
equation (2.7) (at µ = 0), the Fermi surface is a diamond, as shown in
Figure 2.
Particle/hole excitations above the ground state consist of removing an

electron from within the full Fermi sea, and placing it in an unoccupied
positive energy state. In most metals the width of the conduction band
(proportional to t) is of order an electron volt (roughly 104 K) so that even
at room temperature only “low energy” particle/hole states confined within
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close proximity to the Fermi surface are thermally excited. In addition to
being thermally active, these low energy particle/hole excitations can be
excited by an electric field, and lead to metallic electrical conduction.
In the band theory of solids, insulators occur whenever the highest ly-

ing energy band is fully occupied. Excited states then involve promoting
electrons into the next available band which typically requires a very large
energy (electron volts). Not surprisingly, such band insulators are very
poor conductors of electricity. By constrast, in Mott insulators the highest
band is only partially occupied, yet conduction is blocked by strong electron
interactions.
Before addressing the complications of electron interactions, it is in-

structive to briefly consider the symmetries of the above Hamiltonian, and
the associated conserved quantities. There are only two continous symme-
tries, associated with conservation of charge and spin. The Hamiltonian is
invariant under the global U(1) charge symmetry,

cα(x)→ e
iθ0cα(x), (2.8)

for arbitrary (constant) angle θ0. Conservation of spin is due to the global
SU(2) symmetry, cα(x) → Uαβcβ(x), with U = exp(iθ · σ) and Pauli
matrices σαβ . The Hamiltonian is invariant under this transformation,
H0 → H0, for arbitrary spin rotations θ. Here and below we ignore spin-
orbit effects which (usually weakly) break the continuous spin rotational
symmetry.
There are also a number of discrete symmetries. The Hamiltonian is

real, H∗0 = H0, a signature of time reversal invariance (for models with
spin-independent interactions). For a square lattice the Hamiltonian is also
invariant under reflection (or parity) symmetry, cα(x) → cα(−x). This
implies that εk = ε−k. On the square lattice, a discrete particle/hole trans-
formation is implemented by

cα(x)
p/h
−→ eiπ·xc†α(x), (2.9)

with π = (π, π). At half-filling when µ = 0, H0 is invariant under this
symmetry, but with further neighbor hopping terms the kinetic energy will
generally not be particle/hole symmetric. In momentum space the parti-

cle/hole transformation is implemented via ckα → c†π−kα and invariance of
the kinetic energy implies that εk = −εk+π.

2.2 Interaction effects

Spin-independent density interactions can be included by adding an addi-
tional term to the Hamiltonian:

H1 =
1

2

∑
x,x′

v(x− x′)n(x)n(x′). (2.10)
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For Coulomb interactions v(x) ∼ e2/|x| is long-ranged. For simplicity the
long-ranged interactions are often ignored. In the Hubbard model [2,5] only
the on-site repulsive interaction is retained,

Hu = u
∑
x
n↑(x)n↓(x), (2.11)

with nα = c†αcα. This can be re-cast into a manifestly spin-rotationally
invariant form:

Hu =
u

2

∑
x
n(x)[n(x)− 1]. (2.12)

Despite the deceptive simplicity of these effective models, they are exceed-
ingly difficult to analyze. Even the Hubbard Hamiltonian, H = H0 +Hu,
which is parameterized by just two energy scales, t and u, is largely in-
tractable [4], except in one-dimension. Since the typical interaction scale u
is comparable to the kinetic energy t there is no small parameter. Moreover,
one is typically interested in phenomena occuring on temperature scales
which are much smaller than both u and t.

In most metals, the low energy properties are quite well described by
simply ignoring the (strong!) interactions. This surprising fact can be un-
derstood (to some degree) from Landau’s Fermi-liquid theory [1], and more
recent renormalization group arguments [17]. The key point is that the
phase space available for collisions between excited particles and holes van-
ishes with their energy. In metals the phase space is evidently so restrictive
that the surviving interactions do not change the qualitative behavior of the
low energy particle/hole excitations. Indeed, the quasiparticle excitations
within Landau’s Fermi liquid theory have the same quantum numbers as the
electron (charge e spin 1/2 and momentum), but move with a “renormal-
ized” velocity. But some materials such as the Cuprates are not metallic,
even when band structure considerations would suggest a partially occu-
pied conduction band. In these Mott insulators one must invoke electron
interactions.

3 Mott insulators and quantum magnetism

The Hubbard model at half-filling is perhaps the simplest example of a
Mott insulator. To see this, consider the behavior as the ratio u/t is varied.
As discussed above, for u/t = 0 the model is diagonalized in momentum
space, and exhibits a Fermi surface. But at half-filling the model is also
soluble when u/t = ∞. Since the onsite Hubbard energy takes the form,
u(n − 1)2/2, in this limit the ground state consists simply of one electron
on each site. The electrons are frozen and immobile, since doubly occupied
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and unoccupied sites cost an energy proportional to u. The state is clearly
insulating – a Mott insulator.
In this large u limit it is very costly in energy to add an electron, and the

state exhibits a charge gap of order u. But there are many low energy spin
excitations, which consist of flipping the spin of an electron on a given site.
For infinite u this spin-one excitation costs no energy at all, and indeed the
ground state is highly degenerate since the spins of each of the N localized
electrons can be either up or down. For large but finite u/t one still expects
a charge gap, but the huge spin degeneracy will be lifted.
The fate of the spin degrees of freedom in the Mott insulator is enor-

mously interesting. Broadly speaking, Mott insulators come in two classes,
distinguished by the presence or absence of spontaneously broken symme-
tries. Often the spin rotational invariance is spontaneously broken and the
ground state is magnetic, but SU(2) invariant spin structures which break
translational symmetries are also possible. In the second class, usually re-
ferred to as spin liquid states there are no broken symmetries.

3.1 Spin models and quantum magnetism

Traditionally, spin physics in the Mott insulating states have been analyzed
by studying simple spin models. These focus on the electron spin operators:

S(x) =
1

2
c†α(x)σαβcβ(x), (3.1)

where σ is a vector of Pauli matrices. These spin operators satisfy standard
angular momentum commutation relations:

[Sµ(x), Sν(x
′] = iδxx′εµνλSλ. (3.2)

They also satisfy,

S2(x) =
3

4
n(x)[2− n(x)]. (3.3)

Within the restricted sector of the full Hilbert space with exactly one elec-
tron per site, these operators are bone fide spin 1/2 operators satisfying
S2 = s(s+1) with s = 1/2. Their matrix elements in the restricted Hilbert
space are identical to the Pauli matrices: σ/2.
The simplest spin model consists of a (square) lattice of spin 1/2 oper-

ators coupled via a near neighbor exchange interaction, J :

H = J
∑
〈xx′〉

S(x) · S(x′). (3.4)

This spin model can be obtained from the half-filled Hubbard model [5], by
working perturbatively in small t/u. For t/u = 0 the spins are decoupled,
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but an antiferromagnetic exchange interaction J = 4t2/u is generated at
second order in t. Specifically, the matrix elements of the spin Hamiltonian
in the restricted Hilbert space are obtained by using second order pertur-
bation theory in t. The intermediate virtual states are doubly occupied,
giving an energy denominator u.

Mapping the Hubbard model to a spin model represents an enormous
simplification. The complications due to the Fermi statistics of the under-
lying electrons have been subsumed into an exchange interaction. The spin
operators are essentially bosonic, commuting at different sites. It should be
emphasized that at higher order in t/u multi-spin exchange interactions will
be generated, also between further separated spins. If t/u is of order one,
then it is by no means obvious that it is legitimate to truncate to a spin
model at all.

A central focus of quantum magnetism during the past decade has been
exploring the possible ground states and low energy excitations of such spin
models [4, 5]. The above s = 1/2 square lattice Heisenberg antiferromag-
net is, of course, only one member of a huge class of such models. These
models can be generalized to larger spin s, to different lattices and/or di-
mensionalities, to include competing or frustrating interactions, to include
multi-spin interactions, to “spins” in different groups such as SU(N), etc.
Not surprisingly, there is an almost equally rich set of possible ground states.

The main focus of these notes is the 2d “nodal liquid”, a spin-liquid
phase obtained by quantum disordering a d-wave superconductor. As we
shall see in Section 9, in the nodal liquid the spin excitations are carried by
Fermionic degrees of freedom and cannot be described by (Bosonic) spin
operators. In truncating to the restricted Hilbert space with one electron
per site, one has effectively “thrown out the baby with the bath water”.
The nodal liquid phase probably requires retaining the charge degrees of
freedom.

But spin models are much simpler than interacting electron models, rel-
evant to many if not most Mott insulators (as well as other localized spin
systems) and extremely rich and interesting in their own right. So I would
like to briefly summarize some of the possible ground states, focussing on
spin 1/2 models on bi-partite lattices [5, 43]. Consider first those ground
states with spontaneously broken symmetries. Most common is the breaking
of spin-rotational invariance. If the spin operators are treated as classical
fixed length vectors, which is valid in the large spin limit (s → ∞), the
ground state of the near neighbor square lattice antiferromagnet is the Neel
state (up on one sublattice, down on the other) which breaks the SU(2)
symmetry. For finite s the Neel state is not the exact ground state, but the
ground state is still antiferromagnetically ordered, even for s = 1/2. Quan-
tum fluctuations play a role in reducing the sub-lattice magnetization, but
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(for the 2d square lattice) do not drive it to zero. The low energy excita-
tions are gapless spin-waves (i.e. magnons), as expected when a continuous
symmetry is spontaneously broken.
For some spin models the ground state is spin rotationally invariant

but spontaneously breaks (discrete) translational symmetry. The classic
example is the Majumdar – Ghosh Hamiltonian [5],

HMG = J
∑
x

[
S(x) · S(x+ 1) +

1

2
S(x) · S(x+ 2)

]
, (3.5)

which describes a one dimensional s = 1/2 Heisenberg antiferromagnetic
spin chain with a second neighbor exchange interaction. The exact ground
state of this model is a two-fold degenerate “spin-Peierls” state:

|G〉± =
∏
x

[| ↑2x〉| ↓2x±1〉 − | ↓2x〉| ↑2x±1〉]. (3.6)

This state consists of a product of “singlet bonds” formed from neighbor-
ing pairs of spins, and breaks invariance under translations by one lattice
spacing. Since the singlet bonds are rotationally invariant, the SU(2) sym-
metry remains unbroken. The second neighbor interaction has effectively
suppressed the tendency towards antiferromagnetic order.

3.2 Spin liquids

Spin liquid ground states in which no symmetries are broken generally oc-
cur more readily in low dimensions where quantum fluctuations are more
effective at destroying magnetic order. The one-dimensional s = 1/2 chain
with near neighbor antiferromagnetic exchange exhibits power law magnetic
correlations at the antiferromagnetic wave vector π [43]. Although “almost”
magnetically ordered the SU(2) symmetry is not broken in the ground state,
which thus technically qualifies as a spin liquid. More dramatic is the be-
havior of the s = 1/2 antiferromagnetic two-leg ladder, shown in Figure 3.
This model exhibits a featureless spin-rotationally invariant ground state
with exponentially decaying spin correlation fuctions and a non-zero energy
gap for all spin excitations [12, 13]. The physics can be best understood in
the limit in which the exchange interaction across the rungs of the ladder
greatly exceeds the intra-leg exchange: J⊥ � J . When J = 0 the ground
state consists of singlet bonds formed across the rungs of the ladder, with
triplet excitations separated by an energy gap of order J⊥. Perturbing in
small J will cause these singlet bonds to “resonate”, but one expects the
spin gap to survive at least for J � J⊥. It turns out that the ground
state evolves adiabatically and smoothly with increasing J , and in fact the
spin-liquid survives for arbitrarily large J⊥/J .
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J
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Fig. 3. Heisenberg spin model on a two-leg ladder. Spin 1/2 operators sit on

the sites of the ladder, interacting via an antiferromagnetic exchange J along the

ladder and J⊥ across the rungs.

There has been an enormous amount of theoretical effort expended
searching for two-dimensional spin 1/2 models which exhibit spin-liquid
ground states analogous to the two-leg ladder – but with little success.
The original motivation soon after the discovery of superconductivity in
the Cuprates was based on Anderson’s ideas [41] that a Mott insulating
spin-liquid exhibits “pre-formed” Cooper pairing. Doping the Mott insu-
lator would give the Cooper pairs room to move and to condense into a
superconducting state, presumed to have s-wave pairing symmetry. But it
soon became clear that the undoped Mott insulator in the Cuprates is not
a spin-liquid, but actually antiferromagnetically ordered. Moreover, recent
experiments have established that the pairing symmetry in the supercon-
ducting phase is d-wave rather than s-wave [19, 20].

However, recent theoretical work [16] (see Sect. 5 below) has established
that the pairing in the spin-liquid phase of the two-leg ladder actually has
(approximate) d-wave symmetry. Moreover, doping this Mott insulator
does indeed give the pairs room to move [21, 22], and they form a one-
dimensional d-wave “superconductor” (with quasi-long-ranged pairing cor-
relations). The nodal liquid phase [14, 15] discussed extensively below is a
two-dimensional analog of this spin-liquid phase. Indeed, we shall explicitly
construct the nodal liquid by quantum disordering a two-dimensional d-wave
superconductor. As we shall see, the resulting 2d nodal liquid posesses gap-
less Fermionic excitations, which are descendents of the d-wave quasiparti-
cles. These Fermions carry spin but no charge. The nodal liquid presumably
cannot be the ground state of any (Bosonic) spin-model. To describe the
nodal liquid one must employ the underlying interacting electron model
which retains the charge degrees of freedom.

Recent experiment has focussed attention on the underdoped regime
of the Cuprate materials [8], occuring between the antiferromagnetic and
superconducting phases (see Fig. 1). In this pseudo-gap regime insulat-
ing behavior is seen at low temperatures, and there are indications for a
spin gap – behavior reminiscent of a Mott insulating spin-liquid. We have
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suggested [14] that this strange phase can perhaps be understood in terms
of a doped nodal liquid.
Before discussing further the 2d nodal liquid, it is instructive to revisit

the spin liquid phase of the two-leg ladder and analyze it directly with a
model of interacting electrons. Specifically, we consider weak interactions
(small u/t), a limit in which truncation to a spin model is not possible.
This analysis is greatly aided by “Bosonization” – a powerful method which
enables an interacting electron model in one dimension to be re-formulated
in terms of collective Bosonic degrees of freedom. See references [23–27]
as well as Fradkin’s book [4] for useful reviews of Bosonization. First, in
Section 4 we briefly review Bosonization for the simplest case of a spin-
less one-dimensional electron gas, before turning to the two-leg ladder in
Section 5.

4 Bosonization primer

Consider the Hamiltonian for non-interacting spinless electrons hopping on
a 1d lattice,

H = −t
∑
x

c†(x)c(x + 1) + h.c. (4.1)

with hopping strength t. One can diagonalize this Hamiltonian by Fourier
transforming to momentum space as in equation (2.4), giving

H =
∑
k

εkc
†
kck, (4.2)

with energy dispersion εk = −t cos(k) for momentum |k| < π, as shown
in Figure 4. In the ground state all of the negative energy states with
momentum |k| ≤ kF are occupied. At half-filling the Fermi wavevector
kF = π/2. An effective low energy theory for these excitations can be
obtained by focussing on momenta close to ±kF and defining continuum
Fermi fields:

ψR(q) = ckF+q; ψL(q) = c−kF+q. (4.3)

Here the subscripts R/L refer to the right/left Fermi points, and q is as-
sumed to be smaller than a momentum cutoff, |q| < Λ with Λ � kF. One
can then linearize the dispersion about the Fermi points, writing ε±kF+q =
±vFq with vF the Fermi velocity. It is convenient to transform back to real
space, defining fields

ψP (x) =
1
√
V

∑
|q|<Λ

eiqxψP (q), (4.4)
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kkF

E

Fig. 4. Schematic energy dispersion for the one-dimensional electron gas. The

negative energy states are occupied, with momentum |k| < kF. The dispersion

can be linearized around ±kF, leading to a continuum Dirac Fermion theory.

(with P = R,L) which vary slowly on the scale of the lattice spacing. This is
equivalent to expanding the lattice electron operators in terms of continuum
fields,

c(x) ∼ ψR(x)e
ikFx + ψL(x)e

−ikFx. (4.5)

After linearization, the effective low energy Hamiltonian takes the form,
H =

∫
dxH, with Hamiltonian density,

H = −vF[ψ
†
Ri∂xψR − ψ

†
Li∂xψL]. (4.6)

describing a one-dimensional relativistic Dirac particle. The associated
Lagrangian density is simply

L = ψ†
R
i∂tψR + ψ

†
L
i∂tψL −H. (4.7)

Consider a particle/hole excitation about the right Fermi point, where an
electron is removed from a state with k < kF and placed into an unoccupied
state with k + q > kF. For small momentum change q, the energy of this
excitation is ωq = vFq. Together with the negative momentum excitations
about the left Fermi point, this linear dispersion relation is identical to that
for phonons in one-dimension. The method of Bosonization exploits this
similarity by introducing a phonon displacement field, θ, to decribe this lin-
early dispersing density wave [23, 25]. We follow the heuristic development
of Haldane [27], which reveals the important physics, dispensing with math-
ematical rigor. To this end, consider a Jordan-Wigner transformation [4]
which replaces the electron operator, c(x), by a (hard-core) boson operator,

c(x) = O(x)b(x) ≡ exp

[
iπ
∑
x′<x

n(x′)

]
b(x). (4.8)
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where n(x) = c†(x)c(x) is the number operator. One can easily verify
that the Bose operators commute at different sites. Moreover, the lattice
Hamiltonian equation (4.1) can be re-expressed in terms of these Bosons,
and takes the identical form with c′s replaced by b′s. This transforma-
tion, exchanging Fermions for Bosons, is a special feature of one-dimension.
The Boson operators can be (approximately) decomposed in terms of an
amplitude and a phase,

b(x)→
√
ρeiϕ. (4.9)

We now imagine passing to the continuum limit, focussing on scales long
compared to the lattice spacing. In this limit we decompose the total density
as, ρ(x) = ρ0 + ρ̃, where the mean density, ρ0 = kF/π, and ρ̃ is an operator
measuring fluctuations in the density. As usual, the density and phase are
canonically conjugate quantum variables, taken to satisfy

[ϕ(x), ρ̃(x′)] = iδ(x− x′). (4.10)

Now we introduce a phonon-like displacement field, θ(x), via ρ̃(x) =
∂xθ(x)/π. The full density takes the form: πρ(x) = kF + ∂xθ. The above
commutation relations are satisfied if one takes,

[ϕ(x), θ(x′)] = −iπΘ(x′ − x). (4.11)

Here Θ(x) denotes the heavyside step function, not to be confused with the
displacement field θ. Notice that ∂xϕ/π is the momentum conjugate to θ.
The effective (Bosonized) Hamiltonian density which describes the 1d

density wave takes the form:

H =
v

2π
[g(∂xϕ)

2 + g−1(∂xθ)
2]. (4.12)

This Hamiltonian describes a wave propagating at velocity v, as can be
readily verified upon using the commutation relations to obtain the equa-
tions of motion, ∂2t θ = v

2∂2xθ, and similarly for ϕ. Clearly one should equate
v with the Fermi velocity, vF. The additional dimensionless parameter, g,
can be determined as follows. A small variation in density, ρ̃, will lead to a
change in energy, E = ρ̃2/2κ, where κ = ∂ρ/∂µ is the compressibility. Since
∂xθ = πρ̃, one deduces from H that κ = g/πv. But for a non-interacting
electron gas, πvκ = 1, so that g = 1. In the presence of (short-ranged)
interactions between the (spinless) electrons, one can argue that the above
Hamiltonian density remains valid, but with renormalized values of both
g and v. This Hamiltonian would then describe a (spinless) Luttinger liq-
uid [27, 28], rather than the free electron gas.
The power of Bosonization relies on the ability to re-express the electron

operator c(x) in terms of the Boson fields. Clearly c(x) must remove a unit
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charge (e) at x, and satisfy Fermion anticommutation relations. Consider
first the Bose operator, b ∼ exp(iϕ), which removes unit charge. To see
this, note that one can write,

eiϕ(x) = eiπ
∫
x
−∞ dx

′P (x′), (4.13)

where P = ∂xϕ/π is the momentum conjugate to θ. Since the momentum
operator is the generator of translations (in θ), this creates a kink in θ of
height π centered at position x – which corresponds to a localized unit of
charge since the density ρ̃ = ∂xθ/π. To construct the (Fermionic) elec-
tron operator requires multiplying this Bose operator by a Jordan-Wigner
“string”:

O(x) = eiπ
∑
x′<x n(x

′) → eiπ
∫
x ρ(x′) = ei(kFx+θ). (4.14)

Since this string operator carries momentum kF, the resulting Fermionic
operator Oeiϕ should be identified with the right moving continuum Fermi
field, ψR. We have thereby identified the correct Bosonized form for the
(continuum) electron operators:

ψP (x) = e
iφP (x); φP = ϕ+ Pθ, (4.15)

with P = R/L = ±. From equation (4.10) the chiral Boson fields φP can
be shown to satisfy the so-called Kac-Moody commutation realtions:

[φP (x), φP (x
′)] = iPπ sgn(x− x′), (4.16)

[φR(x), φL(x
′)] = iπ. (4.17)

These commutation relations can be used to show that ψR and ψL anticom-
mute.
It is instructive to re-express the Bosonized Hamiltonian density in terms

of the chiral boson fields,

H = πvF[n
2
R + n

2
L], (4.18)

where we have defined right and left moving densities

nP = P
1

2π
∂xφP , (4.19)

which sum to give the total density, nR + nL = ρ̃. These chiral densities
can be expressed in terms of the chiral electron operators as,

nP =: ψ
†
PψP :≡ ψ

†
PψP − 〈ψ

†
PψP 〉. (4.20)

Notice that the Bosonized Hamiltonian decouples into right and left moving
sectors.
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An advantage of Bosonization is the ease with which electron interactions
can be incorporated. Consider a (short-range) density-density interaction
added to the original lattice Hamiltonian. Using equation (4.5) this can
be decomposed into the continuum Dirac fields, and will be quartic and
spatially local. Due to momentum conservation, only three terms are possi-
ble: Two chiral terms of the form (ψ†PψP )

2 with P = R/L, and a right/left

mixing term of the form, ψ†RψRψ
†
LψL. Under Bosonization the chiral terms

are proportional to (∂xφP )
2, and can be seen to simply shift the Fermi ve-

locity in equation (4.18). The right/left mixing term also Bosonizes into a
quadratic form proportional to (∂xθ)

2− (∂xϕ)2. When added to the Hamil-
tonian in equation (4.12), this term can be absorbed by shifting both the
Fermi velcocity and the dimensionless Luttinger parameter, g, which is then
no longer equal to one. For repulsive interactions g < 1, whereas g > 1 with
attractive interactions. This innocuous looking shift in g has profound ef-
fects on the nature of the electron correlation functions. In fact, it leads to
new chiral operators which have fractional charge, ge. The resulting one-
dimensional phase is usually called a “Luttinger liquid” [27]. For electrons
with spin or for 1d models with multiple bands, the quartic Fermion oper-
ators can have even more dramatic consequences, for example opening up
energy gaps as we shall see in Section 5.
The Lagrangian density in the Bosonized representation takes the form

of a free scalar field,

L =
g

2
κµ(∂µϕ)

2, (4.21)

with g = 1 for the free Fermion gas, and g 6= 1 in the interacting Luttinger
liquid. The Greek index µ runs over time and the spatial coordinate, µ =
0, 1 = t, x. Here κ0 = 1/πv and κ1 = −v2κ0. When re-expressed in
terms of θ the Lagrangian takes the identical form, except with g → 1/g
for the Luttinger liquid. Changing from the ϕ to the θ representation can
be viewed as a duality transformation. In Section 8 we will consider an
analogous duality transformation in two spatial dimensions.

5 2 Leg Hubbard ladder

5.1 Bonding and antibonding bands

We now consider electrons hopping on a two-leg ladder as shown in Figure 5.
The kinetic energy takes the form,

H0 = −t
∑
〈xx′〉

[
c†α(x)cα(x

′) + h.c.
]
− µ
∑
x
n(x), (5.1)

where n(x) = c†α(x)cα(x), and the summation is taken over near neighbors
on the two-leg ladder, with y = 1, 2. Due to a parity symmetry under
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Fig. 5. A two-leg ladder and its band structure. In the low-energy limit, the

energy dispersion is linearized near the Fermi points. The two resulting relativistic

Dirac Fermions are distinguished by pseudospin indices i = 1, 2 for the anti-

bonding and bonding bands, respectively.

interchange of the two legs of the ladder, it is convenient to consider even
and odd parity bonding and anti-bonding operators:

bα(x) =
1
√
2
[cα(x, y = 1) + cα(x, y = 2)], (5.2)

aα(x) =
1
√
2
[cα(x, y = 1)− cα(x, y = 2)], (5.3)

which depend only on the coordinate x along the ladder. The Hamiltonian
splits into even and odd contributions, H0 = Ha(a) + Hb(b). Each is a
one-dimensional tight binding model which can be readily diagonalized by
transforming to momentum space,

b(x) =
1
√
N

∑
k

bke
ikx, (5.4)

and similarly for the anti-bonding operator. Here N denotes the number of
sites along the ladder. The diagonal form is

H0 =
∑
k

[εaka
†
kαakα + ε

b
kb
†
kαbkα], (5.5)

which describes two one-dimensional bands with dispersion ε
a/b
k =

−2t cosk ± t− µ. These are sketched in Figure 5.
Focussing on the case at half-filling with one electron per site (µ = 0),

both bands intersect the Fermi energy, εF = 0. There are four Fermi points
at ±kF1 and ±kF2, for the antibonding and bonding bands, respectively.
Gapless particle/hole excitations exist at each of the four Fermi points.
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Fig. 6. Fermi points for the two-leg ladder plotted in the two-dimensional Brillouin

zone, with the antibonding band (denoted 1) at ky = π and the bonding band

(2) at ky = 0. The shaded region represents the Fermi sea for a two-dimensional

square lattice model at half-filling.

Due to particle/hole symmetry present with near neighbor hopping, εak +
εbk+π = 0, which implies that kF1 + kF2 = π. Moreover, the Fermi velocity
in each band is the same, hereafter denoted as v. It is instructive to plot
these Fermi points in two-dimensional momentum space, taking transverse
momentum ky = 0, π for the two bands, as shown in Figure 6. The four
Fermi points can be viewed as constant ky slices through a two-dimensional
Fermi surface.
As we shall see, with even weak electron interactions present the gapless

Fermi points are unstable, and a gap opens in the spectrum. Of interest are
the properties of the resulting Mott insulator. As discussed in Section 3,
for strong interactions mapping to a spin model is possible, and the electron
spins across the rungs of the ladder are effectively locked into singlets:

|RS〉 =
1
√
2
[c†↑(1)c

†
↓(2)− c

†
↓(1)c

†
↑(2)]|0〉, (5.6)

where y = 1, 2 refers to the two legs of the ladder, and we have suppressed
the rung position x. The state |0〉 denotes a rung with no electrons.
It is extremely instructive to re-express this rung-singlet state in terms

of the bonding and anti-bonding operators. One finds,

|RS〉 =
1
√
2
[b†↑b

†
↓ − a

†
↑a
†
↓]|0〉, (5.7)

a linear combination of adding a singlet (Cooper) pair into the bonding and
antibonding orbitals. This paired form is suggestive of superconductivity.
Indeed, when viewed in momentum space, the ground state of a supercon-
ductor is a product of singlet pairs with zero center of mass momentum at
different points around the Fermi surface. In an s-wave superconductor, the
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pairs are all added with the same sign, but if the pairs are formed with a
relative angular momentum (e.g. d-wave) sign changes are expected. But
notice the most important relative minus sign in the rung singlet state! The
spin-liquid phase of the two-leg ladder is evidently related to a paired super-
conductor with non-zero angular momentum. Since pairing in the bonding
band at ky = 0 has a positive sign and pairing in the anti-bonding band at
ky = π is negative, in the two-dimensional Brillouin zone (see Fig. 6) the
sign is proportional to k2x − k

2
y, consistent with a so-called dx2−y2 pairing

symmetry.
If the interactions are weak, it is legitimate to focus on electronic states

near the Fermi points. As in Section 4, the electron operators can be conve-
niently decomposed into continuum fields near the Fermi points which vary
slowly on the scale of the lattice. Denoting c1 = a and c2 = b, the bonding
and antibonding operators are expanded as,

ciα ∼ ψRiαe
ikFix + ψ

Liαe
−ikFix, (5.8)

with i = 1, 2. Upon linearizing the spectrum around the four Fermi points
the kinetic energy takes the form, H0 =

∫
dxH0, with Hamiltonian density,

H0 = −v
∑
i,α

[ψ†
Riαi∂xψRiα − ψ

†
Liαi∂xψLiα]. (5.9)

This Hamiltonian describes massless Dirac Fermions, with four flavors la-
belled by band and spin indices. Implicit in this theory is a momentum
cutoff, Λ, whose inverse exceeds the lattice spacing. Only modes with mo-
mentum |k| < Λ are included in these continuum fields. Since the spectrum
is massless, this simple theory is “critical” and scale invariant behavior is
expected. This can be seen by considering the (Euclidian) action, written
as a space-time integral of the Lagrangian density,

S =

∫
dτdxL0, (5.10)

L0 =
∑
Pα

ψ†
Piα∂τψPiα +H0, (5.11)

with P = R/L, and τ denoting imaginary time. The partition function,
Z = Tr exp(−βH0), can be expressed as a (coherent state Grassman) path
integral [29],

Z =

∫
[Dψ][Dψ̄]e−S(ψ̄,ψ). (5.12)

A simple renormalization group can be implemented [17,30] by first integrat-
ing out fields ψ(k, ω) with momentum k lying in the interval Λ/b < |k| < Λ,
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with rescaling parameter b > 1. Since modes with different momentum and
frequency are not coupled, the action takes the same form after this inte-
gration, except with a smaller momentum cutoff, Λ/b. The renormalization
group transformation is completed by a rescaling procedure which returns
the cutoff to it’s original value:

x→ bx; τ → bτ ; ψ → b−1/2ψ. (5.13)

The field rescaling has been chosen to leave the action invariant. This simple
theory is at a renormalization group fixed point.

5.2 Interactions

Electron-electron interactions scatter right-moving electrons into left-
moving electrons and vice-versa. We consider general finite-ranged spin-
independent interactions, but assume that the typical interaction strength,
u, is weak – much smaller than the bandwidth. We focus on the effects
of the interactions to leading non-vanishing order in u. In this limit it is
legitimate to keep only those pieces of the interactions which scatter the
low energy Dirac Fermions. A general four Fermion interaction on the two-
leg ladder (such as the Hubbard u) can be readily decomposed in terms of
the continuum Dirac fields. It is instructive to see how these quartic terms
in ψ(x) transform under the rescaling transformation equation (5.13). A
simple quartic term with no spatial gradients is seen to be invariant, so
that these operators are “marginal” under the renormalization group. The
corresponding interaction strengths will “flow” under the renormalization
group transformation due to non-linear interaction effects. On the other
hand, a quartic term involving gradients such as u2(ψ

†∂xψ)
2, would rapidly

scale to zero under rescaling: u2 → u2/b
2, and can thus be ignored. More-

over, four-Fermion interactions which are chiral, say only scattering right
movers, do not renormalize to lowest order in u and can thus also be ne-
glected [21,22]. A As discussed in Section 4, these terms simply lead to small
shifts in the Fermi velocity. All of the remaining four-Fermion interactions
can be conveniently expressed in terms of currents, defined as

Jij = ψ
†
iαψjα, J ij =

1

2
ψ†iασαβψjβ ; (5.14)

Iij = ψiαεαβψjβ , Iij =
1

2
ψiα(εσ)αβψjβ , (5.15)

where the R,L subscript has been suppressed. Both J and I are invariant
under global SU(2) spin rotations, whereas J and I rotate as SU(2) vectors.
Due to Fermi statistics, some of the currents are (anti-)symmetric

Iij = Iji Iij = −Iji, (5.16)
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so that Iii = 0 (no sum on i).
The full set of marginal momentum-conserving four-Fermion interactions

can be written

H(1)I = b
ρ
ijJRijJLij − b

σ
ijJRij · JLij ,

+ fρijJRiiJLjj − f
σ
ijJRii · JLjj . (5.17)

Here fij and bij denote the forward and backward (Cooper) scattering am-
plitudes, respectively, between bands i and j. Summation on i, j = 1, 2 is
implied. To avoid double counting, we set fii = 0 (no sum on i). Hermitic-
ity implies b12 = b21 and parity symmetry (R ↔ L) gives f12 = f21, so that
there are generally eight independent couplings bρ,σ11 , b

ρ,σ
22 , b

ρ,σ
12 , and f

ρ,σ
12 . At

half-filling with particle/hole symmetry b11 = b22. Additional momentum
non-conserving Umklapp interactions of the form

H
(2)
I = u

ρ
ijI
†
RijILîĵ − u

σ
ijI
†
Rij · ILîĵ + h.c. (5.18)

are also allowed, (here 1̂ = 2, 2̂ = 1). Because the currents (Iij), Iij are
(anti-)symmetric, one can always choose u12 = u21 for convenience. We
also take uσii = 0 since Iii = 0. With particle/hole symmetry there are
thus just three independent Umklapp vertices, uρ11, u

ρ
12, and u

σ
12. Together

with the six forward and backward vertices, nine independent couplings
are required to describe the most general set of marginal non-chiral four-
Fermion interactions for a two-leg ladder with particle/hole symmetry at
half-filling.
The renormalization group transformation described above can be imple-

mented by working perturbatively for small interaction parameters [16,21].
Upon systematically integrating out high-energy modes away from the Fermi
points and then rescaling the spatial coordinate and Fermi fields, a set of
renormalization group (RG) transformations can be derived for the inter-
action strengths. Denoting the nine interaction strengths as gi, and setting
the rescaling parameter b = 1 + d` with d` infinitesimal, the leading order
differential RG flow equations take the general form,

∂`gi = Aijkgjgk, (5.19)

valid up to order g3. The matrix of coefficients Aijk is given explicitly in
reference [16].
These nine coupled non-linear differential equations are quite compli-

cated, but can be integrated numerically starting with initial values ap-
propriate to a lattice interaction (such as the Hubbard interaction). This
integration reveals that some of the couplings remain small, while others
tend to increase, sometimes after a sign change, and then eventually di-
verge. Quite surprisingly, though, the ratios of the growing couplings tend
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to approach fixed constants, which are independent of the initial coupling
strengths, at least over a wide range in the nine dimensional parameter
space. These constants can be determined by inserting the Ansatz,

gi(`) =
gi0

(`d − `)
, (5.20)

into the RG flow equations, to obtain nine algebraic equations quadratic
in the constants gi0. There are various distinct solutions of these algebraic
equations, or rays in the nine-dimensional space, which correspond to differ-
ent possible phases. But for generic repulsive interactions between the elec-
trons on the two-leg ladder, a numerical integration reveals
that the flows are essentially always attracted to one particular ray [16].
This is the spin-liquid phase of interest, which we refer to as a d-Mott
phase. In the d-Mott phase, two of the nine coupling constants, bρ11 and f

σ
12,

remain small, while the other seven grow large with fixed ratios:

bρ12 =
1

4
bσ12 = f

ρ
12 = −

1

4
bσ11 = (5.21)

2uρ11 = 2u
ρ
12=

1

2
uσ12 = g > 0. (5.22)

Once the ratio’s are fixed, there is a single remaining coupling contant,
denoted g, which measures the distance from the origin along a very special
direction (or “ray”) in the nine dimensional space of couplings. The RG
equations reveal that as the flows scale towards strong coupling, they are
attracted to this special direction. If the initial bare interaction parameters
are sufficiently weak, the RG flows have sufficient “time” to renormalize
onto this special “ray”, before scaling out of the regime of perturbative
validity. In this case, the low energy physics, on the scale of energy gaps
which open in the spectrum, is universal, depending only on the properties
of the physics along this special ray, and independent of the precise values
of the bare interaction strengths.

5.3 Bosonization

To determine the properties of the resulting d-Mott phase, it is extremely
helpful to Bosonize the theory. As discussed in Section 4 the (continuum)
electron fields can expressed in terms of Boson fields:

ψ
P iα = κiαe

iφPiα ; φP iα = ϕiα + Pθiα, (5.23)

with P = R/L = ±. The displacement field θiα and phase field ϕiα satisfy
the commutation relations

[ϕiα(x), θjβ(x
′)] = −iπδijδαβΘ(x

′ − x). (5.24)
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Klein factors, satisfying

{κiα, κjβ} = 2δijδαβ , (5.25)

have been introduced so that the Fermionic operators in different bands or
with different spins anticommute with one another. When the
Hamiltonian is Bosonized, the Klein factors only enter in the combination,
Γ = κ1↑κ1↓κ2↑κ2↓. Since Γ

2 = 1, one can take Γ = ±1. Hereafter, we will
put Γ = 1.
The Bosonized form for the kinetic energy equation (5.9) is

H0 =
v

2π

∑
i,α

[(∂xθiα)
2 + (∂xϕiα)

2], (5.26)

which describes density waves propagating in band i and with spin α.
This expression can be conveniently separated into charge and spin

modes, by defining

θiρ = (θi↑ + θi↓)/
√
2 (5.27)

θiσ = (θi↑ − θi↓)/
√
2, (5.28)

and similarly for ϕ. The
√
2 ensures that these new fields satisfy the same

commutators, equation (5.24). It is also convenient to combine the fields in
the two bands into a ± combination, by defining

θµ± = (θ1µ ± θ2µ)/
√
2, (5.29)

where µ = ρ, σ, and similarly for ϕ.
The Hamiltonian density H0 can now be re-expressed in a charge/spin

and flavor decoupled form,

H0 =
v

2π

∑
µ,±

[(∂xθµ±)
2 + (∂xϕµ±)

2]. (5.30)

The fields θρ+ and ϕρ+ describe the total charge and current fluctuations,

since under Bosonization, ψ†
P iαψPiα = 2∂xθρ+/π and vPψ†

P iαψPiα =
2∂xϕρ+/π.
While it is possible to Bosonize the interaction Hamiltonians in full gen-

erality [16], we do not reproduce it here. In addition to terms quadratic in
gradients of the Boson fields (as in H0), the Bosonized interaction consists
of terms bi-linear in cos 2θ and cos 2ϕ. More specifically, of the eight non-
chiral Boson fields (θµ± and ϕµ±) only five enter as arguments of cosine
terms. In the momentum conserving terms these are θσ±, ϕρ− and ϕσ−.
The Umklapp terms also involve the overall charge displacement field, via
cos 2θρ+. This can be understood by considering how the Boson fields trans-
form under a spatial translation, x→ x+ x0. The chiral electron operators
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transform as ψPi → ψP ie
ipkFix0 , which is equivalent to θiα → θiα + kFix0.

Three of the charge/spin and flavor fields are thus invariant under spatial
translations, whereas θρ+ → θρ+ + πx0. The momentum conserving terms
are invariant under spatial translations, so cannot depend on cos 2θρ+.

The full interacting theory is invariant under spatially constant shifts of
the remaining three Boson fields – ϕρ+, ϕσ+ and θρ−. For the first two of
these, the conservation law responsible for this symmetry is readily appar-
ent. Specifically, the operators exp(iaQ) and exp(iaSz), with Q the total
electric charge and Sz the total z-component of spin, generate “transla-
tions” proportional to a in the two fields ϕρ+ and ϕσ+. To see this, we note
that Q =

∫
dxρ(x) with ρ(x) = 2∂xθρ+/π the momentum conjugate to ϕρ+,

whereas Sz can be expressed as an integral of the momentum conjugate to
ϕσ+. Since the total charge is conserved, [Q,H ] = 0, the full Hamiltonian
must therefore be invariant under ϕρ+ → ϕρ+ + a for arbitrary constant a,
precluding a cosine term for this field. Similarly, conservation of Sz implies
invariance under ϕσ+ → ϕσ+ + a.

The five Boson fields entering as arguments of various cosine terms will
tend to be pinned at the minima of these potentials. Two of these 5 fields,
θσ− and ϕσ−, are dual to one another so that the uncertainty principle pre-
cludes pinning both fields. Since there are various competing terms in the
potential seen by these 5 fields, minimization for a given set of bare inter-
action strengths is generally complicated. However, along the special ray in
the nine dimensional space of interaction parameters the nine independent
coupling constants can be replaced by a single parameter g. The resulting
Bosonized theory is found to reduce to a very simple and highly symmetrical
form when expressed in terms of a new set of Boson fields, defined by

(θ, ϕ)1 = (θ, ϕ)ρ+, (θ, ϕ)2 = (θ, ϕ)σ+,

(θ, ϕ)3 = (θ, ϕ)σ−, (θ, ϕ)4 = (ϕ, θ)ρ−. (5.31)

The first three are simply the charge/spin and flavor fields defined earlier.
However, in the fourth pair of fields, θ and ϕ have been interchanged.

In terms of these new fields, the full interacting Hamiltonian density
along the special ray takes an exceedingly simple form: H = H0+HI , with

H0 =
v

2π

∑
a

[(∂xθa)
2 + (∂xϕa)

2], (5.32)

HI =
g

2π2

∑
a

[(∂xθa)
2 − (∂xϕa)

2]

−4g
∑
a6=b

cos 2θa cos 2θb. (5.33)
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5.4 d-Mott phase

We now briefly discuss some of the general physical properties of the d-Mott
phase which follow from this Hamiltonian. Ground state properties can
be inferred by employing semi-classical considerations. Since the fields ϕa
enter quadratically, they can be integrated out when the partition function
is expressed as a path integral over Boson fields. This leaves an effective
action in terms of the four fields θa. Since the single coupling constant g
is marginally relevant and flowing off to strong coupling, these fields will
be pinned in the minima of the cosine potentials. Specifically, there are
two sets of semiclassical ground states with all θa = naπ or all θa = (na +
1/2)π, where na are integers. It can be shown [16] that these different
solutions actually correspond to the same physical state, so that the ground
state is unique. Excitations will be separated from the ground state by a
finite energy gap, since the fields are harmonically confined, and instanton
excitations connecting different minima are also costly in energy.
Consider first those fields which are pinned by momentum conserving

interaction terms. Since both θσ± fields are pinned, so are the spin-fields in
each band, θiσ (i = 1, 2). Since ∂xθiσ is proportional to the z-component
of spin in band i, a pinning of these fields implies that the spin in each
band vanishes, and excitations with non-zero spin are expected to cost finite
energy: the spin gap. This can equivalently be interpreted as singlet pairing
of electron pairs in each band. It is instructive to consider the pair field
operator in band i:

∆i = ψRi↑ψLi↓ = κi↑κi↓e
i
√
2(ϕiρ+θiσ). (5.34)

With θiσ ≈ 0, ϕiρ can be interpreted as the phase of the pair field in band i.
The relative phase of the pair field in the two bands follows by considering
the product

∆1∆
†
2 = −Γe

i2θσ−ei2ϕρ− , (5.35)

with Γ = κ1↑κ1↓κ2↑κ2↓ = 1. Since θ4 = ϕρ− the relative phase is also
pinned by the cosine potential, with a sign change in the relative pair field,
∆1∆

†
2 < 0, corresponding to an approximate d-wave symmetry.
To discuss the physics of the remaining overall charge mode (θρ+), it is

convenient to first imagine “turning off” the Umklapp interactions. After
pinning the other three fields to the minima of the cosine potentials, the
pair field operator in band i becomes

∆i ∼ (−1)
ieiϕρ+ , (5.36)

so that ϕρ+ is the phase of the pair field. In the absence of Umklapp
scattering, the Lagrangian for this phase field is simply,

L =
1

2
κµ(∂µϕρ+)

2. (5.37)
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Being in one-spatial dimension, these gapless phase fluctuations lead to
power law decay of the pair field spatial correlation function, ∆∗(x)∆(0) ∼
1/xη. A true superconductor (for d > 1) exhibits (off-diagonal) long-ranged
order, and this correlation function would not decay to zero even as x→∞.
But in one-dimension a “superconductor” can at best exhibit power law
decay, since true off-diagonal long-ranged order is not possible [5]. Thus,
in the absence of Umklapp scattering the 2-leg ladder would be a one-
dimensional d-wave “superconductor”.
But what is the effect of the momentum non-conserving Umklapp in-

teractions? Once the other three fields are pinned in the minima of the
cosine potentials in the above Hamiltonian equation (5.33), the Umklapp
scattering terms take the simple form,

Hu = −12g cos 2θρ+. (5.38)

This term tends to pin the field θρ+. The pair field phase, ϕρ+, being
the conjugate field will fluctuate wildly. These quantum flucutations will
destroy the power-law 1d “superconducting” phase, leading to an expo-
nentially decaying pair-field correlation function. What is the fate of this
one-dimensional “quantum disordered d-wave superconductor”?
To see this, one simply has to consider the “dual” representation in

terms of the θρ+ field, rather than ϕρ+. A lattice version of this duality
transformation is carried out in detail in the Appendix. Alternatively, one
can obtain the dual theory directly from the Bosonized Hamiltonian equa-
tion (5.32). The appropriate Lagrangian dual to equation (5.37) above, is
simply

L =
1

2
κµ(∂µθρ+)

2, (5.39)

which describes gapless density waves. These density flucutations will be
pinned by the Umklapp terms in Hu, leading to a Mott insulator with
a gap to charge excitations. Since there is also a spin-gap this phase is
equivalent to the spin-liquid, discussed at strong coupling in terms of the
Heisenberg model in Section 3. But we now see that this spin-liquid phase
exhibits superconducitng d-wave pairing correlations, despite being an insu-
lator. The spin-liquid phase can thus be described as a quantum disordered
one-dimensional d-wave “superconductor”.
The Euclidian action associated with the phase Lagrangian in equa-

tion (5.37) is equivalent to the effective Hamiltonian in the low temperature
phase of the classical 2d xy model, (with imaginary time playing the role
of a second spatial coordinate). The 2d xy model can be disordered by
introducing vortices into the phase of the order parameter [31]. For this
it is convenient to go to a dual representation [32]. As shown explicitly in
the Appendix, the dual represention is equivalent to the θρ+ representa-
tion, with the strength of the Umklapp term playing the role of a vortex
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fugacity. In Section 8, we will quantum disorder a two-dimensional d-wave
superconductor, and it will be extremely convenient to consider a duality
transformation – a three dimensional version of the 2d θ ↔ ϕ duality dis-
cussed here. The resulting nodal liquid phase will be particularly simple to
analyze in the dual representation.

5.5 Symmetry and doping

Due to the highly symmetric form of the Hamiltonian in equations (5.32)
and (5.33), it is possible to make considerable further progress in analyzing
it’s properties. Indeed, as shown in reference [16], under a re-Fermionization
procedure this Hamiltonian is equivalent to the SO(8) Gross-Neveu model
[33], which has been studied extensively by particle field theorists. The
SO(8) Gross-Neveu model posesses a remarkable symmetry known as trial-
ity [34], which can be used to equate the energies of various excited states.
In particular, the energy of the lowest excited state with the quantum num-
bers of an electron (charge e and s = 1/2) is equal to the energy of the
lowest lying spinless charge 2e exited state (a Cooper pair). This beauti-
fully demonstrates pairing in the insulating d-Mott phase: the energy to
add two electrons of opposite spin far apart is twice as large as the energy
to add them into a Cooper pair bound state. It turns out, moreover, that
the Gross-Neveu model is integrable [35] so it is possible to fully enumerate
the energies and quantum numbers of all the low energy excited states [16]
(grouped into SO(8) multiplets) and compute exactly various correlation
functions [36].

We finally briefly mention the effects of doping the d-Mott phase away
from half-filling. This can be achieved by adding a chemical potential term
to the Hamiltonian in equations (5.32) and (5.33), with Hµ = H − µQ,
where Q is the total electric charge:

Q =
2

π

∫
∂xθρ+. (5.40)

Since the field θρ+ is pinned in the cosine potential by the Umklapp in-
teraction terms, Hu, for small µ the density will stay fixed at half-filling.
Eventually, µ will pass through the Mott charge gap and the density will
change. This occurs via π instantons in θρ+, connecting adjacent minima
of the cosine potential. Each instanton carries charge 2e, but no spin, so
can be intepreted as a Cooper pair. In this doped phase, the Umklapp
scattering terms will no longer we able to freeze the charge fluctuations,
and one expects gapless excitations in the density and pair field phase, ϕρ+.
This doped phase will exhibit power-law d-wave superconducting correla-
tions [21].
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6 d-Wave superconductivity

We now turn to the case of a two-dimensional superconductor which ex-
hibits a particular type of d-wave pairing (denoted dx2−y2) appropriate to
the Cuprates. Our ultimate goal is to quantum disorder this state to obtain
a description of the “nodal liquid”. There are two main distinctions be-
tween the 2d d-wave superconductor and it’s one-dimensional counterpart
considered above. Firstly, a 2d superconductor exhibits true (off-diagonal)
long-ranged order at T = 0. But more importantly, due to sign changes in
the pair wave function, the dx2−y2 superconductor exhibits gapless quasi-
particle excitations. We first briefly review BCS theory which gives one
a powerful framework to describe d-wave pairing and the gapless quasi-
particles. In Section 7 below we incorporate quantum flucutations of the
order parameter phase to obtain a complete effective low-energy theory of
the dx−y2 phase. In Section 8 a dual represention is derived, and used to
quantum disorder the superconductor in Section 9.

6.1 BCS theory re-visited

It is instructive to briefly review BCS theory [37], focussing on the symme-
tries of the pair wave function and the superconducting order parameter. In
particular, it is important to emphasize the important distinction between
the wave function for the center of mass of the Cooper pair (often ignored)
and the wavefunction for the relative coordinate.
Consider a Hamiltonian expressed as a sum of kinetic energy and inter-

action terms, H = H0+Hint, with H0 given in equation (2.2). We consider
a rather general form for the electron interactions:

Hint =
1

2V

∑
k,k′q

vq(k,k
′)c†k+qαc

†
−k+qβc−k′+qβck′+qα, (6.1)

which is invariant under global charge U(1) and spin SU(2) symmetries. For
simplicity Umklapp interaction terms have been ignored, so that the crystal
momentum is conserved. The interaction term describes a two electron
scattering process with 2q the total conserved momentum of the pair. For
a density-density interaction in real space, such as the Coulomb interaction,
vq(k,k

′) = v(|k − k′|), so is independent of q.
Superconductivity within BCS theory requires an attractive interaction

(in the appropriate angular momentum channel) between electrons. But
the bare Coulomb interaction is of course strongly repulsive. In traditional
low temperature superconductors, phonons are believed to drive the pair-
ing, inducing a retarded attractive interaction at low energies below the
deBye energy. Superconductivity in the high temperature Cuprates is prob-
ably of electronic origin. In this case, retardation leading to an attractive
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interaction at low energies would be due to virtual interactions via high
energy electron states well away from EF. These processes can be studied
via a renormalization group procedure [17], which consists of “integrating
out” high energy electron states, and seeing how the remaining interac-
tions between those electrons near the Fermi energy are modified. This
is precisely what we implemented in detail for the two-leg ladder in Sec-
tion 5. One thereby arrives at an effective low energy theory involving
electron states within a small energy range of width 2Λ around EF, scatter-
ing off one another with an effective (or renormalized) interaction potential.
In the following, we view vq(k,k

′) as an effective low energy interaction.
For the two-leg ladder the renormalized potential is given by putting the
nine coupling contants equal to their values along the special ray. Upon
Bosonization, the effective potential is given explicitly in equation (5.33).
More generally, the form of the renormalized potential will be constrained
by the original symmetries of the Hamiltonian. Specifically, time reveral and
parity symmetries imply that vq(k,k

′) is real, and odd in it’s arguments:
vq(k,k

′) = v−q(−k,−k′). Hermiticity implies vq(k,k′) = vq(k
′,k). The

summation over momentum is now understood to be constrained, involving
only electron operators with energy in a shell of width 2Λ about EF.
BCS theory can be implemented by considering the operator,

Pαβk (q) = c−k+qαck+qβ, (6.2)

which destroys a pair of electrons, with total momentum 2q. For k near
the Fermi surface, and |q| � kF, [Pk(q), P

†
k(q

′)] = 0 for q 6= q′, so that
the pair operator resembles a boson operator, b(q). By analogy with Bose
condensation, in the superconducting phase one expects a non-zero expec-
tation value for the pair operator: 〈P 〉 6= 0. The pair operators entering
into Hint are expressed as P = 〈P 〉+δP , and the fluctuations δP = P −〈P 〉
are presumed to be small. Upon ignoring terms quadratic in δP , Hint can
be written (dropping additive constants),

H1 =
1

2V

∑
k,q

[c†k+qαc
†
−k+qβ∆

βα
k (q) + h.c.], (6.3)

where we have introduced the (complex) superconducting order parameter
(or “gap”), ∆, defined as,

∆αβk (q) =
∑
k′

vq(k,k
′)〈c−k′+qαck′+qβ〉. (6.4)

BCS is a self-consistent mean field theory: the full mean field (or quasipar-
ticle) Hamiltonian, Hqp = H0 + H1, which depends on ∆, is employed to
compute the expectation value 〈c−k′+qαck′+qβ〉. Upon insertion in equa-
tion (6.4) one obtains a self-consistent equation which determines ∆ – the
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celebrated BCS gap-equation. Notice that Hqp is bi-linear in electron op-
erators and hence tractable, although it does involve “anomalous” terms
involving pairs of creation or annihilation operators.
Before carrying through this procedure, it is instructive to consider the

form for the pair wavefunction which follows from a non-zero expectation
value of the pair operator 〈P 〉 6= 0. Consider removing a pair of electrons,
at positions R± r/2, with R the center of mass position and r the relative
coordinate. The pair wave function can be defined as,

Φαβ(R, r) = 〈cα(R − r/2)cβ(R + r/2)〉, (6.5)

which depends on the spin of the electrons as well as the (center of mass
and relative) positions. Upon transforming the electron operators into mo-
mentum space, one finds that

Φαβ(R, r) =
∑
Q

eiQ·RΦαβ(Q, r), (6.6)

with Q the center of mass momentum and

Φαβ(Q, r) =
1

N

∑
k

〈Pαβk (Q/2)〉e
ik·r . (6.7)

Notice that the wavefunction in the relative coordinate, involves a Fourier
transform with respect to the relative pair momentum, k.
It is also instructive to define a spatially varying superconducting order

parameter by Fourier transforming the gap function, ∆k(q):

∆αβk (x) =
∑
Q

eiQ·x∆k(Q/2). (6.8)

In the superconducting phase one can often ignore the spatial dependence
of the complex order parameter ∆k(x), and indeed in BCS theory this
x dependence is dropped. However, if one wishes to include the effects
of quantum fluctuations (to quantum disorder the superconductor) it is
necessary to consider a spatially varying order parameter as discussed in
Section 7 below.
By analogy with Bose condensation, one expects the Cooper pairs to be

condensed into a state of zero momentum, Q = 0. This requires

〈Pαβk (q)〉 = δq,0〈c−kαckβ〉, (6.9)

which gives a relative pair wavefunction, Φ(r) ≡ Φ(Q = 0, r) of the form,

Φαβ(r) =
1

N

∑
k

eik·rΦαβk ; Φαβk = 〈c−kαckβ〉. (6.10)
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Due to the electron anticommutation relations one has Φαβk = −Φ
βα
−k, which

implies that the pair wavefunction is antisymmetric under exchange of the
two electrons: Φαβ(r) = −Φβα(−r).
When the Cooper pairs are condensed into a state with zero momentum,

the superconducting order parameter becomes spatially uniform: ∆αβk (x) ≡

∆αβk , as seen from equation (6.4). The mean field Hamiltonian then takes
a rather simpler form:

H1 =
1

2

∑
k

[c†kαc
†
−kβ∆

βα
k + h.c.], (6.11)

whereas the self-consistentcy condition becomes,

∆αβk =
1

V

∑
k′

v0(k,k
′)〈c−k′αck′β〉 · (6.12)

Since the full model has a conserved SU(2) spin symmetry, the relative
pair wavefunction can be expressed as the product of an orbital and a spin
wavefunction: Φαβk = φαβΦk. The spin piece can be chosen as an eigenfunc-
tion of the total spin of the pair, that is a singlet with S = 0 or a triplet
with S = 1. In conventional low temperature superconductors and in the
Cuprates the Cooper pairs are singlets with,

φαβ = δα↓δβ↑ − δα↑δβ↓, (6.13)

in which case the orbital wavefunction is symmetric: Φk = Φ−k =
〈c−k↓ck↑〉. (In the superfluid phases of 3 − He on the other hand, the
Cooper pairs have S = 1.) The superconducting order parameter is then

also a singlet; ∆αβk ≡ φαβ∆k, with ∆k = ∆−k satisfying

∆k =
1

V

∑
k′

v0(k,k
′)〈c−k′↓ck′↑〉 · (6.14)

For singlet pairing, the final mean field (quasiparticle) Hamiltonian be-
comes, Hqp = H0 +H1 with,

H1 =
∑
k

[∆kc
†
k↑c
†
−k↓ +∆

∗
kc−k↓ck↑]. (6.15)

To complete the self-consistency requires diagonalizing the quasiparticle
Hamiltonian. This is usually done in a way which masks the spin rotational
invariance [37]. We prefer to keep the spin rotational invariance explicit, by
defining a new set of Fermion operators, for ky > 0:

χ1α(k) = ckα; χ2α(k) = iσ
y
αβc

†
−kβ, (6.16)
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which satisfy canonical Fermion anti-commutation relations:

[χaα(k), χ
†
bβ(k

′)]− = δabδαβδkk′ . (6.17)

The first index a, b = 1, 2 acts in the particle/hole subspace. The σy in the
definition of χ2α has been introduced so that these new operators transform
like SU(2) spinors under spin rotations: χaα → Uαβχaβ , with U = exp(iθ ·
σ) a global spin rotation.
In these variables, the quasiparticle Hamiltonian becomes

Hqp =
∑
k

′
χ†(k)[τzεk + τ

+∆k + τ
−∆∗k]χ(k), (6.18)

where the prime on the summation denotes over ky positive, only, and we
have introduced a vector of Pauli matrices, ~τab acting in the particle/hole
subspace. Also, we are employing the notation τ± = (τx ± iτy)/2. To
evaluate the self-consistency condition equation (6.14) we need the anoma-
lous average of two electron fields (the orbital piece of the relative pair
wavefunction), which is re-expressed as,

Φk ≡
1

2

∑
±

〈c∓k↓c±k↑〉 =
1

2
〈χ†(k)τ+χ(k)〉 · (6.19)

Diagonalization is now achieved by performing an SU(2) rotation in the par-
ticle/hole subspace, by defining rotated Fermion fields: χ(k) ≡ U(k)χ̃(k),

with U(k) = e−iθk·τ . Assuming for simplicity that ∆k is real, the ap-
propriate rotation is around the y-axis by an angle θk, U(k) = e

−iθkτ
y/2,

with

sin(θk) =
∆k
Ek
; Ek =

√
ε2k +∆

2
k. (6.20)

In terms of the rotated Fermion fields, χ̃, the quasiparticle Hamiltonian is
diagonal,

Hqp =
∑
k

′
Ekχ̃

†(k)τz χ̃(k), (6.21)

with Ek the quasiparticle energy. Finally, we define a set of rotated electron
operators via

χ̃1α(k) = akα; χ̃2α(k) = iσ
y
αβa

†
−kβ, (6.22)

and the quasiparticle Hamiltonian can be re-expressed in standard form,

Hqp =
∑
k

Eka
†
kαakα, (6.23)
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where we have dropped an additive constant. Notice that the quasiparticle
energy Ek ≥ 0 for all momentum. On the Fermi surface, εk = 0 and the
quasiparticle energy is given by |∆k| – the energy gap.
To complete the self-consistentcy, the anomalous electron average (or

relative orbital pair wavefunction from Eq. (6.19)) is expressed in terms
of the quasiparticle operators. Upon using the fact that [U †τ+U ]diag =
sin(θ)τz/2 one obtains,

Φk =
∆k
2Ek
[〈a†kαakα〉 − 1], (6.24)

which reduces to Φk = −∆k/2Ek at zero temperature. At finite tempera-

ture the number of quasiparticles is simply a Fermi function: 〈a†kαakα〉 =
2f(Ek), with f(E) = [exp(βE) + 1]

−1. One thereby obtains the celebrated
BCS gap equation:

∆k = −
1

V

∑
k′

v0(k,k
′)
∆k′

2Ek′
[1− 2f(Ek′)]. (6.25)

6.2 d-wave symmetry

In a system with rotational invariance the orbital piece of the pair wave-
function, proportional to ∆k from equation (6.24), can be chosen as an
eigenstate of angular momentum, a spherical harmonic Ylm in three dimen-
sions. The simplest case is s-wave, with ∆k a constant over the (spherical)
Fermi surface. Real materials of course do not share the full continuous
rotational symmetry of free space. Nevertheless, a superconductor in which
∆k is everywhere positive over the Fermi surface is (loosely) referred to as
having s-wave pairing – a property of all conventional low temperature su-
perconductors. Since |∆k| is the quasiparticle energy on the Fermi surface,
there are no low energy electronic excitations in an s-wave superconductor
– the Fermi surface is fully gapped. Within BCS theory the magnitude of
the (zero temperature) energy gap is related to the superconducting transi-
tion temperature: 2|∆| ≈ 3.5kBTc. The presence of an energy gap leads to
thermally activated behavior for various low temperature properties, such
as the electronic specific heat and the magnetic penetration length.
It is clear from the self-consistent gap equation (Eq. (6.25)) that a purely

repulsive effective interaction, v0(k,k
′) > 0, precludes s-wave pairing within

BCS theory (since 1 − 2f(Ek) ≥ 0). In conventional superconductors,
phonons are believed to drive s-wave pairing [37], generating an effective
attractive interaction at low energies.
Recent experiment [19,20] has established that in the high temperature

superconductors the orbital pairing symmetry is a particular form of d-wave,
usually denoted as dx2−y2 . Here x and y refer to the directions along the
crystalline axis of a single Cu-O sheet, within which the Cu atoms form a
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Fig. 7. In the dx2−y2 superconductor the quasiparticle energy vanishes at four

points (±K1 and ±K2) in the Brillouin zone. The dotted line represents the

Fermi surface. The wavevector q is rotated with respect to the a and b axis of the

square lattice.

square lattice. In terms of the corresponding two dimensional momentum,
k = (kx, ky), the angular dependence of the gap function in this state is
∆k ∼ k2x−k

2
y, and from equation (6.24) the orbital piece of the relative pair

wave function has the same d-wave symmetry.

A novel feature of the dx2−y2 state is that the gap function ∆k van-
ishes along lines in k − space with kx = ±ky, corresponding to nodes in
the relative pair wave function. These lines intersect the (two-dimensional)
Fermi surface at four points in momentum space. Near these four points (or
“nodes”) in momentum space there are electronic excitations with arbitrary
low energy, in striking constast to the fully gapped s-wave case. These low
energy quasiparticle excitations dominate the physics of the dx2−y2 super-
conductor at temperatures well below Tc, leading to power law temperature
corrections in such quantities as the electronic specific heat and the mag-
netic penetration length.

6.3 Continuum description of gapless quasiparticles

It is convenient to obtain a continuum description of the gapless d-wave
quasiparticles, analogous to the Dirac theory description of the low energy
properties of the 1d free Fermions employed in Section 4. A continuum
form can be obtained directly from the general quasiparticle Hamiltonian
equation (6.18) by specializing to dx2−y2 symmetry and then focussing on
those momenta close to the four nodes where the quasiparticle energy Ek =
0 (see Fig. 7). For a model with particle/hole symmetry εk = −εk+π, which
together with parity symmetry implies that the four nodes occur at the
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special wavevectors ±Kj, with K1 = (π/2, π/2) and K2 = (−π/2, π/2).
It is convenient to introduce two continuum fields Ψj, one for each pair of
nodes, expanded around ±K1,±K2:

Ψjaα(q) = χaα(Kj + q). (6.26)

Here, the wavevectors q are assumed to be small, within a circle of radius
Λ around the origin. With this definition, the particle/hole transformation
is extremely simple,

Ψ→ Ψ†. (6.27)

For this reason it is convenient to always define the continuum fields Ψ
around ±Kj, and account for deviations of the node momenta from these
values by a particle/hole symmetry-breaking parameter λ.

Once we have restricted attention to the momenta near the nodes, it is
legitimate to linearize in the quasiparticle Hamiltonian. The resulting the-
ory is more conveniently written in coordinates perpendicular and parallel
to the Fermi surface, so we perform the rotation via x → (x − y)/

√
2 and

y → (x+ y)/
√
2, correspondingly transforming the momenta qx and qy (see

Fig. 7). Linearizing near the nodes, we put εK1+q = vFqx where vF is the
Fermi velocity and

∆K1+q = ∆̃qy + O(q
2), (6.28)

where ∆̃ has dimensions of a velocity. An identical linearization is possible
around the second pair of nodes, except with qx ↔ qy. It is finally convenient
to Fourier transform back into real space by defining,

Ψj(x) =
1
√
V

∑
q

eiq·xΨj(q), (6.29)

where the momentum summation is for q < Λ. The continuum fields Ψ(x)
describe long lengthscale variations of the quasiparticles, on scales greater
than Λ−1. We thereby arrive at a compact form for the continuum quasi-
particle Hamiltonian in a dx2−y2 superconductor: Hqp = HΨ +Hλ with

HΨ = Ψ†1[vFτ
zi∂x + (∆̃τ

+ + ∆̃∗τ−)i∂y]Ψ1

+(1↔ 2;x↔ y), (6.30)

and the particle/hole symmetry breaking term,

Hλ = λΨ
†
jτ
zΨj . (6.31)
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The quasiparticle Hamiltonian takes the form of (four) Dirac equations in
2 + 1 space-time dimensions, and can be readily diagonalized. For the first
pair of nodes one obtains the relativistic dispersion,

E1(q) =
√
(vFqx + λ)2 + |∆̃|2q2y, (6.32)

and a similar expression is obtained for E2 except with qx and qy inter-
changed. As usual in Dirac theory, the negative energy single particle states
with energy −Ej(q) are filled but positive energy holes states can be cre-
ated. As expected, the quasiparticle energy vanishes at the nodes (q = 0
with particle/hole symmetry λ = 0), so the “relativistic” particle is mass-
less. Notice that non-zero λ indeed shifts the positions of the nodes.

In this continuum description ∆̃ serves as a complex superconducting
order parameter for the dx2−y2 state. Indeed, when ∆̃ = 0 one recovers the
metallic Fermi surface and the quasiparticle Hamiltonian describes gapless
excitations for all qy. Below we will include quantum fluctuations by al-

lowing ∆̃ to depend on space and time. Before doing so, it is convenient
to see how ∆̃ transforms under a particle/hole transformation. From the
transformation properties of the electron fields one deduces that the gap
transforms as, ∆k → −∆∗−k+π, which is equivalent to complex conjugation
for the (linearized) order parameter,

∆̃→ ∆̃∗. (6.33)

Together with equation (6.27) this implies that the quasiparticle
Hamiltonian in equation (6.30) is indeed particle/hole symmetric: HΨ →
HΨ.

7 Effective field theory

7.1 Quasiparticles and phase flucutations

Our goal in this section is to obtain a complete low-energy effective theory
for the dx2−y2 superconductor. This task is complicated by the existence
of additional gapless excitations, besides the quasiparticles. Specifically,
since the global U(1) charge conservation symmetry (cα → eiθ0cα) is spon-
taneously broken by the existence of a non-zero order parameter, ∆̃ 6= 0,
gapless Goldstone modes are expected. (In a three-dimensional supercon-
ductor these modes are actually gapped, due to the presence of long-ranged
Coulomb interactions, but would be gapless for a thin 2d film.) These modes
propogate in the phase of the complex order parameter. Thus a correct low
energy theory for the dx2−y2 state requires consideration of a spatially vary-

ing order parameter, ∆̃(x). Generally, both the magnitude and the phase
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of the complex order parameter can vary, but we will focus exclusively on
the phase fluctuations, writing

∆̃(x) = |∆|eiϕ(x), (7.1)

with |∆| a (real) constant. Since amplitude fluctuations are costly in energy
this should suffice in the superconducting phase, and will also allow us
to describe the nodal liquid in which superconductivity is destroyed by
phase fluctuations. The desired low energy effective theory can be obtained
from symmetry considerations, and the form of the continuum quasiparticle
Hamiltonian. A more microscopic approach, discussed briefly below, would
entail integrating out high energy degrees of freedom in a functional integral
representation.

7.1.1 Symmetry considerations

Since the BCS gap equation has a degenerate manifold of solutions for
arbitrary phase ϕ, the energy should only depend on gradients of ϕ(x).
The appropriate Lagrangian which describes the fluctuations of the phase
of the superconducing order parameter can thus be developed as a gradient
expansion, with lowest order terms of the form,

Lϕ =
1

2
κµ(∂µϕ)

2, (7.2)

where the Greek index µ runs over time and two spatial coordinates: µ =
0, 1, 2 = t, x, y. Here κ0 is equal to the compressibility of the condensate
(ignoring for the moment long-ranged Coulomb forces) and κj = −v2cκ0 (for
j = 1, 2 = x, y) with vc the superfluid sound velocity. This form is largely
dictated by symmetry. Parity and four-fold rotational symmetry determine
the form of the spatial gradient terms. The stiffness coefficients, κµ, can be
estimated as follows. The pair compressibility κ0 should be roughly one half
the electron compressibility – at least for weak interactions. If the pairing
is electronic in origin, the Fermi velocity sets the scale for vc.
In general a Berry’s phase term [4] linear in ∂tϕ is allowed,

LBerry = n0∂tϕ, (7.3)

where n0 is a two-dimensional number density. For a model with parti-
cle/hole symmetry which must be invariant under

ϕ→ −ϕ, (7.4)

(which follows from the particle/hole transformation properties of the order
parameter ∆̃ ∼ eiϕ → ∆̃∗) it naively appears that the number density n0
must vanish. However, this is not the case [15]. To see this it is necessary to
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return to the lattice where the term in the (Euclidian) action which follows
from LBerry is,

SBerry = in0

∫ βh̄

0

dτ
∑
i

∂τϕi, (7.5)

where i labels the sites of a square lattice with lattice spacing set to one and
β = 1/kBT . The partition function is expressed as a functional integral of
exp(−S) over configurations ϕi(τ), with β periodic boundary conditions on
the fields eiϕ. This implies the boundary conditions,

ϕi(β) = ϕi(0) + 2πNi, (7.6)

with integer winding numbers Ni. We thus see that the Berry’s phase term
contributes a multiplicative piece to the partition function (in each winding
sector) of the form;

exp(−SBerry) = e
i2πn0NW , (7.7)

with integer NW =
∑

iNi. Under the particle/hole transformation equa-
tion (7.4), the winding numbers change sign, NW → −NW. The Berry’s
phase term is thus invariant under the particle/hole transformation provided
n0 is integer or half-integer.
The appropriate value for n0 can be readily determined by obtaining the

lattice Hamiltonian associated with the Lagrangian density Lϕ+LBerry. The
first contribution can be conveniently regularized on the lattice as,

Lϕ = −t
∑
<i,j>

cos(ϕi − ϕj)−
1

u

∑
i

(∂tϕi)
2. (7.8)

Upon inclusion of the Berry’s phase term this gives the lattice Hamiltonian,

Hϕ = −t
∑
<i,j>

cos(ϕi − ϕj) + u
∑
i

(ni − n0)
2. (7.9)

Here ni denotes a Cooper-pair number operator, canonically conjugate to
the phase fields:

[ϕi, nj ] = iδij . (7.10)

The first term in Hϕ describes the hopping of charge 2e (spinless) Cooper
pairs between neighboring sites of the lattice, and the second term is an
onsite repulsive interaction. The parameter n0 plays the role of an “off-set”
charge and determines the average number of Cooper pairs per site. For
the Hubbard model at half-filling with one electron per site, the number
of Cooper pairs clearly equals one-half the number of lattice sites. This is
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especially apparent in the limit of very large attractive Hubbard interaction
when the electrons pair into on-site singlets, but is expected to be more
generally valid. Thus, it is clear that one should take n0 = 1/2. Tuning
away from particle/hole symmetry with a chemical potantial µ, corresponds
to changing n0 away from one-half.
In the superconducting phase one expects that the winding numbers

will all vanish, since the phase field ϕ is essentially constant in space and
time, and the Berry’s term plays no role. But when the superconductor
is “quantum disordered”, the phase field fluctuates wildly with signifigant
winding, and inclusion of the Berry’s phase term is expected to be important
(but see Sect. 8 below).
It remains to couple these phase fluctuations to the gapless quasiparti-

cles. Since the order parameter ∆̃ directly enters the quasiparticle
Hamiltonian equation (6.30), one can readily guess the appropriate coupling.
We should simply replace ∆̃→ v∆e

iϕ with v∆ real. Since ϕ varies spatially,
some care is required. In the quasiparticle Hamiltonian we let,

∆̃τ+i∂y → v∆τ
+eiϕ/2(i∂y)e

iϕ/2, (7.11)

and similarly for the τ− term. This “symmetric” form leads to an her-
mitian Hamiltonian, physical currents, and respects the symmetries of the
problem. A careful derivation of equation (7.11) is given below. With this
prescription, the quasiparticle Hamiltonian becomes

Hqp =
∑
s=±

Ψ†1[vFτ
zi∂x + v∆τ

seisϕ/2(i∂y)e
isϕ/2]Ψ1

+(1↔ 2;x↔ y). (7.12)

Since ϕ can also fluctuate with time, it will convenient to consider the time
dependence via a Lagrangian formulation. The Lagrangian density is

Lqp = Ψ
†
ji∂tΨj −Hqp. (7.13)

The full low-energy effective Lagrangian in the d-wave superconductor is
obtained by adding the two contributions: Lϕ + Lqp.

7.1.2 Microscopic approach

To illustrate how one might try to “derive” this effective theory from a more
microscopic starting point, we briefly consider a simple model Hamiltonian,

H = H0 − V
∑
〈~x~x′〉

c†α(~x)c
†
β(~x

′)cβ(~x
′)cα(~x), (7.14)

where H0 is the usual kinetic energy describing hopping on a 2d square lat-
tice and we have added an attractive near-neighbor interaction with strength
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V . To derive the effective field theory, it is convenient to express the par-
tition function Z = Tr e−βH , as an imaginary time coherent state path
integral [29],

Z =

∫
[Dc][Dc]e−S , (7.15)

where c and c are Grassman fields and the Euclidean action is simply

S =

∫
dτ

{∑
~x

cα(~x)∂τcα(~x) +H [c, c]

}
· (7.16)

We consider here only T = 0, for which the τ integration domain is infinite.
The possibility of a d-wave superconducting phase can be entertained by
decoupling the above action using a Hubbard-Stratonovich transformation:

Z =

∫
[Dc][Dc][D∆][D∆∗]e−S1 , (7.17)

with S1 =
∫
dτ [
∑
~x cα(~x)∂τ cα(~x) +Heff ]. The effective Hamiltonian can be

decomposed into Heff = H0 +Hint +H∆, with

Hint =
∑
〈~x~x′〉

[
∆αβ~x~x′cα(~x)cβ(~x

′) + h.c.
]
, (7.18)

H∆ =
1

V

∑
〈~x~x′〉

|∆αβ~x~x′ |
2. (7.19)

Equations (7.18- 7.19) form a basis for studying the original electron model.
At this stage BCS mean field theory could be implemented by integrating
out the electron degrees of freedom to obtain an effective action only de-
pending on ∆, Seff(∆). Minimizing this action with respect to ∆ would
give the gap equation. One could imagine including fluctuations by ex-
panding about the saddle point solution. But for a d-wave superconductor
this procedure is problematic, since integrating out gapless quasiparticles
will generate singular long-ranged interactions in Seff(∆). It is preferable
to retain the gapless quasiparticles in the effective theory, and only inte-
grate out the high frequency electron modes which are well away from the
nodes. In this way, the dynamics and interactions generated for the order
parameter ∆ will be local.
Rather than trying to implement this procedure, we content ourselves

with arguing that the “symmetric” prescription adopted above indeed gives
the correct form for the phase-quasiparticle coupling term. To this end we
focus on singlet pairing, defining

∆αβ~x~x′ = ∆(~x, ~x
′)(δα↑δβ↓ − δα↓δβ↑). (7.20)
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The triplet pieces of ∆ are presumed to be massive, so that they can be safely
integrated out. Since ∆ lives on the bonds, it is convenient to associate two
such fields with each site on the square lattice, i.e.

∆1(~x) ≡ ∆(~x, ~x+ ê1), (7.21)

∆2(~x) ≡ ∆(~x, ~x+ ê2), (7.22)

where ê1, ê2 are unit vectors along the a and b axes of the square lattice,
respectively. The interaction Hamiltonian becomes,

Hint =
∑
j,~x

{
∆j(~x)

[
c†↑(~x)c

†
↓(~x+ êj)− ↑↔↓

]
+ h.c.

}
, (7.23)

where the sum includes all lattice sites and j = 1, 2. The magnitudes of
∆1 and ∆2, as well as their relative sign, are determined by the effective
action generated upon integrating out the high-energy modes. For a d-wave
superconductor the effective action will be minimized for ∆1 = −∆2 =
∆0e

iϕ, up to massive modes. We can now take the continuum limit. For
agreement with Section 6, we define v∆ = 2

√
2∆0, or ∆1 = −∆2 = ∆̃/2

√
2.

In addition, we take the continuum limit of the electron fields, using the
decompositions

c†↑ ∼ Ψ†111i
x+y−Ψ122(−i)

x+y+Ψ†211(−i)
x−y−Ψ222i

x−y,

c†↓ ∼ Ψ†112i
x+y+Ψ121(−i)

x+y+Ψ†212(−i)
x−y+Ψ221i

x−y,

and the hermitian conjugates of these equations. Inserting these into equa-
tion (7.23), gradient-expanding the Ψ fields, and rotating 45 degrees to
x−y coordinates along the (π, π) and (−π, π) directions, one obtains Hint =∫
d2xHint, with

Hint =

[
∆̃

2

(
Ψ†1τ

+i∂yΨ1 − (i∂yΨ
†
1)τ
+Ψ1

)
+ h.c.

]

+(1↔ 2, x↔ y). (7.24)

This form is identical to the ∆̃ term in equation (6.30) when the order
parameter ∆̃ is constant, but the symmetric placement of derivatives is
important in the presence of phase gradients. In particular, now let ∆̃ =
v∆e

iϕ and integrate by parts to transfer the derivative in the second term
from the Ψ† to the ∆̃Ψ combination. Upon using the operator identity

1

2

(
eiϕi∂y + i∂ye

iϕ
)
= eiϕ/2i∂ye

iϕ/2, (7.25)

this becomes identical to the symmetrized form of the phase-quasiparticle
interaction hypothesized in equation (7.12).



618 Topological Aspects of Low Dimensional Systems

7.2 Nodons

Treatment of quantum phase fluctuations is complicated by the coupling
between the quasiparticle Fermion operators, Ψ, and exponentials of the
phase ϕ, as seen explicitly in Hqp in equation (7.12). The form of the
coupling is determined by the electric charge carried by Ψ, which is uncertain
– being built from electron and hole operators. To isolate the uncertain
charge of Ψ it is extremely convenient to perform a change of variables [14],
defining a new set of fermion fields ψj via

ψj = exp(−iϕτ
z/2)Ψj. (7.26)

In the superconducting phase, and in the absence of quantum flucutations
of the order-paramater phase, one can set ϕ = 0, and these new fermions
are simply the d-wave quasiparticles. However, when the field ϕ is dy-
namical and fluctuates strongly this change of variables is non-trivial. In
particular, the new fermion fields ψ are electrically neutral, invariant un-
der a global U(1) charge transformation (since ϕ → ϕ + 2θ0 under the
U(1) charge transformation in Eq. (2.8)). As we shall see, when the d-wave
superconductivity is quantum disordered, these new fields will play a fun-
damental role, describing low energy gapless excitations, centered at the
former nodes. For this reason, we refer to these fermions as nodons. For
completeness, we quote the symmetry properties of the nodon field under a
particle/hole transformation. Since ϕ→ −ϕ, one has simply

ψ → ψ†. (7.27)

The full Lagrangian in the d-wave superconductor, L = Lϕ + Lqp, can
be conveniently re-expressed in terms of these nodon fields since Lqp =
Lψ + Lint + Lλ with a free nodon piece,

Lψ = ψ†1[i∂t − vFτ
zi∂x − v∆τ

xi∂y]ψ1

+(1↔ 2, x↔ y), (7.28)

interacting with the phase of the order-parameter:

Lint = ∂µϕJµ. (7.29)

Here the electrical 3-current Jµ is given by

J0 =
1

2
ψ†jτ

zψj , (7.30)

Jj =
vF

2
ψ†jψj . (7.31)
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Because the transformation in equation (7.26) is local, identical expressions
hold for these currents in terms of the quasiparticle fields, Ψ. The form of
the particle/hole asymmetry term remains the same in terms of the nodon
fields:

Lλ = λψ
†
jτ
zψj . (7.32)

It is instructive to re-express the components of the currents Jµ back in
terms of the original electron operators. One finds

J0 =
1

2

(
c†KjcKj + c

†
−Kj

c−Kj

)
, (7.33)

(with an implicit spin summation) which corresponds physically to the total
electron density living at the nodes, in units of the Cooper pair charge.
Similarly,

Jj =
vF

2

(
c†
Kj

c
Kj
− c†

−Kj
c
−Kj

)
(7.34)

corresponds to the current carried by the electrons at the nodes. Thus, Jµ
can be correctly interpreted as the quasiparticles three-current.
To complete the description of a quantum mechanically fluctuating order

parameter phase interacting with the gapless fermionic excitations at the
nodes, we minimally couple to an external electromagnetic field, Aµ. Since
the nodon fermions are neutral, the only coupling is to the order-parameter
phase, via the substitution ∂µϕ→ ∂µϕ−2Aµ. Here we have set the electron
charge e = 1, with a factor of 2 appropriate for Cooper pairs. The final
Lagrangian then takes the form L = Lϕ + Lψ + Lint + Lλ, with

Lϕ =
1

2
κµ(∂µϕ− 2Aµ)

2, (7.35)

Lint = (∂µϕ− 2Aµ)Jµ, (7.36)

and Lψ still given by equation (7.28). Here we have dropped the Berry’s
phase term, which is not expected to play an important role in the su-
perconducting phase. Long-ranged Coulomb interactions could be readily
incorporated at this stage by treating A0 as a dynamical field and adding
a term to the Lagrangian of the form, Lcoul = (1/2)(∂jA0)2. The spatial
components of the electromagnetic field, Aj , have been included to keep
track of the current operator.

7.2.1 Symmetries and conservation laws

If the full effective Lagrangian L is to correctly describe the low energy
physics it must exhibit the same symmetries as the original electron Hamil-
tonian – the most important being charge and spin conservation. Since the
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ψ operators are electrically neutral the full U(1) charge transformation is
implemented by ϕ → ϕ + 2θ0 for constant θ0, and L is indeed invariant.
Moreover, the Lagrangian is invariant under ψα → Uαβψβ for arbitrary
(global) SU(2) spin rotations U = exp(iθ · σ). Since the Cooper pairs are
in spin singlets, all of the spin is carried by the nodons.
As usual, associated with each continuous symmetry is a conserved

“charge” which satisfies a continuity equation (Noether’s theorem). Since
the Lagrangian only depends on gradients of ϕ, the Euler-Lagrange equation
of motion reduces to the continuity equation,

∂µJ
tot
µ = 0, (7.37)

where the total electric 3-current is given by J totµ = ∂L/∂(∂µϕ) =
−∂L/∂Aµ. This gives,

J totµ = κµ(∂µϕ−Aµ) + Jµ, (7.38)

where the first term is the Cooper pair 3-current and the second the quasi-
particles current.
The analogous conserved spin currents can be obtained by considering

infinitesimal spin rotations,

U = 1 + iθ(x, t) · σ, (7.39)

for slowly varying θ(x, t). Under this spin rotation the Lagrangian trans-
forms as,

L → L+ ∂µθ · jµ, (7.40)

with jµ given below. After an integration by parts, invariance of the action
S under global spin rotations implies continuity equations ∂µjµ = 0 for
each of the three spin polarizations, j. The space-time components of the
conserved spin currents are given explicitly by,

j0 =
1

2
ψ†1σψ1 + (1→ 2), (7.41)

jx =
1

2
vFψ

†
1στ

zψ1 +
1

2
v∆ψ

†
2στ

xψ2, (7.42)

and jy the same as jx except with ψ1 ↔ ψ2. Notice that in contrast to
the electrical current, the spin current operator has a contribution which
is proportional to the velocity tangential to the Fermi surface, v∆, which is
anomalous when re-expressed in terms of the original electron operators.
Surprisingly, the effective Lagrangian exhibits additional continuous

symmetries, not present in the original Hamiltonian. Firstly, L is invari-
ant under separate SU(2) spin rotations on the two pairs of nodes, ψj for
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j = 1, 2. Moreover, the Lagrangian is also invariant under two additional
U(1) transformations ψj → eiθjψj for arbitrary constant phases, θj . These

latter symmetries imply two new conserved “charges”, ψ†jψj (no sum on
j). We refer to these conserved quantities as “nodon charges”. The asso-
ciated conserved nodon 3-currents take the same form as the spin currents
above, except replacing σ/2 by the identity. As seen from equation (7.31),
the conserved nodon charges are proportional to the quasiparticle electrical
current, since Jj = (vF/2)ψ

†
jψj .

It is possible to add to L additional interaction terms which are con-
sistent with the original U(1) and SU(2) symmetries, but do not conserve
the “nodon charge”. Specifically, anomalous quartic interaction terms of
the form ψ4 arise from Umklapp scattering processes in the original elec-
tron Hamiltonian and clearly change the nodon charge. However, such
interactions are unimportant at low energies due to severe phase space re-
strictions. To see this, consider how the action, S =

∫
d2xdtL transforms

under a renormalization group (RG) rescaling transformation,

xµ → bxµ; ψ → b−1ψ; ϕ→ b−1/2ϕ, (7.43)

with rescaling parameter b > 1. By construction, this leaves the quadratic
pieces Sψ and Sϕ invariant, but interaction terms such as uψ

4 scale to zero
under the RG (b→∞) since u→ u/b. It is the T = 0 “fixed point” theory
described by the quadratic terms which exhibits the additional symmetries.
Incidentally, the coupling term Lint above also scales to zero (as b−1/2)
under the renormalization group. In the resulting quadratic theory the
quasiparticles and phase fluctuations actually decouple.

7.2.2 Superfluid stiffness

The above effective theory is particularly convenient for examining very low
temperatures properties of the dx2−y2 state. Of interest are charge response
functions such as the electrical conductivity and the superfluid stiffness
(measureable via the penetration length). The spin excitations (carried
by the quasiparticles) can also be probed via resonance techniques, such as
NMR and ESR. Impurity scattering can be readily incorporated by coupling
a random potential to the electron density (which can be re-expressed as a
nodon bi-linear).
For illustrative purposes we briefly consider the quasiparticle contribu-

tion to the low temperature superfluid stiffness and extract the famous
T -linear dependence. For a Galilean invariant system of mass m bosons the
superfluid stiffnessKs equals the superfluid density divided bym. But more
generally Ks can be extracted rather directly by considering the response
of the system to a transverse vector potential [38]. We set A0 = 0 and
decompose the static vector potential Aj into longitudinal and transverse



622 Topological Aspects of Low Dimensional Systems

pieces:

Aj = A`,j +At,j , (7.44)

with ∂jAt,j = 0 and εijA`,j = 0. The superfluid stiffness is then given by,

Ks =
1

V

∂2F

∂A2t,x
, (7.45)

where F = −kBT lnZ is the Free energy and V → ∞ is the area of the 2d
system. Here At,x can be taken spatially constant.
To extract F the partition function can be written as an imaginary time

coherent state path integral [29],

Z =

∫
[Dϕ][Dψ][Dψ]exp(−SE), (7.46)

with Euclidian action SE =
∫
d2xdτLE. The longitudinal vector potential,

which can be expressed as a gradient of a scalar field A`,j = ∂jΛ, can be
eliminated entirely by shifting ϕ→ ϕ+Λ. Moreover, the crossterm between
∂jϕ and At,j vanishes since At is divergenceless. The Gaussian integral
over ϕ can then be readily perfomed and simply generates an irrelevant
interaction term (J ∼ (ψ†ψ)2) which can be ignored. One thereby arrives at
an effective action depending only on ψ and Aj with associated Hamiltonian
density of the form: Heff = Hψ +HA, with Hψ the free nodon Hamiltonian
and

HA =
1

2
K0sA

2
t,j +At,jJj . (7.47)

Here K0s = κ0v
2
c is the superfluid stiffness from the Cooper pairs, and Jj =

(vF/2)ψ
†
jψj . Notice that the (transverse) vector potential acts as an effective

chemical potential for the “nodon charge” density, ρn = ψ†jψj . Thus, the
superfluid stiffness can be expressed in terms of the nodon “compressibility”
as

Ks = K
0
s − (vF/2)

2κn, (7.48)

where κn = ∂ρn/∂µn and µn = (vF/2)At,x is the nodon “chemical poten-
tial”.
The nodon compressibility can be extracted by diagonalizing the

Hamiltonian, Hψ. From the first pair of nodes one obtains the free Fermion
form,

Hψ =
∑
q

E1(q)[a
†
qaq + b

†
qbq], (7.49)
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where E1(q) is given in equation (6.32) and we have suppressed the spin
index. Here a and b are particle and hole operators, respectively. The nodon
charge is simply,

ρn =
1

V

∑
q

[〈a†qaq〉 − 〈b
†
qbq〉], (7.50)

where the averages are taken with Hψ − µnρn. At finite temperatures one
obtains

ρn = 2

∫
dq

(2π)2
[f(E1(q)− µn)− f(E1(q) + µn)], (7.51)

where f(E) are Fermi functions, and the factor of 2 is from the spin sum.
Finally, upon differentiating with respect to µn and performing the mo-
mentum integral one extracts the desired result for the low temperature
superfluid stiffness:

Ks(T ) = K
0
s − c

vF

v∆
kBT, (7.52)

with the dimensionless constant c = (ln 2/2π).

8 Vortices

8.1 hc/2e versus hc/e vortices

Having successively incorporated phase fluctuations into the effective low
energy description of the dx2−y2 state, we now turn to a more interesting
task – quantum disordering the superconductivity to obtain the nodal liq-
uid phase, a novel Mott insulator. The superconductivity is presumed to be
destroyed by strong quantum fluctuations of the order parameter phase ϕ
driven by vortex excitations. In two-dimensions vortices are simply whorls
of current swirling around a core region. But in a superconductor the circu-
lation of such vortices is quantized, since upon encircling the core the phase
ϕ can only change by integer multiples of 2π. Inside the core of a vortex the
magnitude of the complex order parameter |∆̃| vanishes, but is essentially
constant outside. In the superconducting phase, the size of the core is set
by the coherence length - roughly 10 Å in the Cuprate materials. Such
vortices are thus tiny “point-like” objects, with a truly microscopic size in
the Cuprate materials.
The “elementary” vortex has a phase winding of ±2π. When a super-

conductor is placed in an external magnetic field, the currents circulating
around the core of a vortex tend to screen out the magnetic field, except
within a region of the penetration length, λ, from the vortex core. (In the
cuprate materials λ is in the range of a thousand angströms.) In addition
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to the circulation, the total magnetic flux near a vortex is quantized – in
units of the flux quantum hc/2e. An “elementary” vortex quantizes pre-
cisely hc/2e of magnetic flux, and will thus henceforth be referred to as an
hc/2e vortex. As we shall argue [15], to obtain the nodal liquid phase it will
be necessary to “liberate” double-strength hc/e vortices, keeping the hc/2e
vortices “confined”.

Generally, the position of these “point-like” vortices can change with
time, and their dynamics requires a quantum mechanical description. Thus
a collection of many vortices can be viewed as a many body system of “point-
like” particles. Since positive (+1) and negative (−1) circulation vortices
can annihilate – and disappear (just as for real elementary particles like
electrons and positrons), they behave as “relativistic” particles. There is
a conserved vortex “charge” in this process, namely the total circulation,
and an associated current. Since the Cooper pairs are Bosons, one antici-
pates that the “dual particles” – the vortices – are also Bosonic forming a
relativistic Boson system, and this is indeed the case [39].

However, in the superconducting phase at zero temperature there are
no vortices present – this phase constitutes a “vacuum” of vortices. More
precisely, due to quantum fluctuations vortices are present as short-lived
“virtual” fluctuations, popping out of the “vacuum” in the form of small
tightly bound (neutral) pairs. For the low energy properties of the super-
conductor these fluctuations can be largely ignored. But what happens if
these virtual pairs unbind into a proliferation of free mobile vortices? Vortex
motion is very effective at scrambling the phase ϕ of the superconducting
order, so that mobile vortices will in fact destroy the superconductivity.
Since the vortices are Bosonic, once they are free and mobile they will
“Bose condense”, at least at zero temperature. One thereby obtains a non-
superconducting insulating state, with the “vortex-condensate” serving as
an appropriate order parameter. As we shall see, it will be extremely con-
venient to pass to a “dual” representation [39, 40] in which the vortices are
the basic “particles” – rather than the Cooper pairs.

Consider first unbinding and condensing the “elementary” hc/2e vor-
tices [15]. When a Cooper pair is taken around such a vortex it’s wave
function acquires a ±2π phase change. Likewise, when an hc/2e vortex is
taken around a Cooper pair, the vortex wavefunction acquires the 2π phase
change. Thus, hc/2e vortices “see” Cooper pairs as a source of “dual flux”,
each carrying one unit. (This notion can be made precise by performing
a duality transformation – see below and the Appendix.) For a Hubbard
model of electrons at half-filling, on average there is one-half of a Cooper pair
per site, as seen explicitly in the effective lattice Cooper pair Hamiltonian,
equation (7.9), which has offset charge n0 = 1/2. Thus, these elementary
vortices “see” a dual “magnetic field”, with one-half of a dual flux-quantum
per plaquette. When the hc/2e vortices unbind and condense, they will
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quantize this dual flux, in precisely the same way that the condensation of
Cooper pairs in a real superconductor will quantize an applied magnetic field
– forming an Abrikosov flux-lattice (if Type II). The analog of the Abrikosov
flux-lattice for the hc/2e vortex condensate is an ordered lattice of Cooper
pairs. In this “crystal” state at half-filling, the Cooper pairs will prefer-
entially sit on one of the two equivalent sub-lattices of the square lattice.
This state can be described as a commensurate charge-density-wave with
ordering wavevector (Q = π, π), which spontaneously breaks the discrete
symmetry under translation by one lattice spacing. Such ordering implies a
considerable degree of double occupancy for the electrons, and thus seems
most reasonable for a Hubbard type model with an attractive on-site in-
teraction (negative u). In the Cuprate materials there is a strong on-site
repulsion, and moreover there is no evidence for “charge-ordering” near Q.
Thus, for a description of the pseudo-gap regime in the Cuprate materials,
we can rule out the hc/2e vortex-condensate on phenomenological grounds.

Instead, we consider the possibility of unbinding and condensing double-
strength hc/e vortices, keeping the elementary hc/2e vortices confined [15].
When an hc/e vortex is taken around a Cooper pair it acquires a 4π phase
change. A 2π phase change corresponds to taking such an hc/e vortex
around “half” of a Cooper pair – which has charge e. Thus, a conden-
sation of hc/e vortices should correspond to a “crystal” of such charge
e objects. But at half-filling with charge e per lattice site, this should
correspond to a state without charge ordering or translational symmetry
breaking. As we shall see, for a dx2−y2 superconductor the resulting hc/e
“vortex-condensate” gives a description of the nodal liquid phase.

This procedure – keeping the elementary hc/2e vortices confined and
only liberating the hc/e vortices – is responsible for the remarkable prop-
erties of the nodal liquid [15]. To see why, consider first the Berry’s phase
term in equation (7.3). With only hc/e vortices present, the Cooper pair
phase, ϕ, only winds by integer multiples of 4π – not 2π. At half-filling
(with n0 = 1/2) the Berry’s phase term will not contribute to the partition
function (see Eq. (7.7)) and can thus be dropped entirely in the description
of the nodal liquid. This can be implemented by defining a new phase field:

φ = ϕ/2, (8.1)

and only allowing vortices in φ(x) with circulation 2π times an integer. This
restriction precludes hc/2e vortices, and guarantees that the field

b = eiφ, (8.2)

is single-valued. As an operator, b creates a spinless excitation with charge
e. When re-written in terms of φ, the effective Lagrangian for a d-wave
superconductor with quantum phase fluctuations (from Eqs. (7.35, 7.36))
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becomes L = Lφ + Lint + Lψ with

Lφ + Lint =
1

2
κµ(∂µφ−Aµ + κ

−1
µ Jµ)

2, (8.3)

and Lψ given in equation (7.28). The Berry’s phase term has been dropped,
since it plays no role when exp(iφ) is a single valued field. Here, we have
absorbed a factor of two into κµ and also completed the square with the
nodon current, Jµ, dropping order J

2
µ terms which are irrelevant as discussed

after equation (7.43). Notice that the coefficient of Aµ is one – as expected
for a charge e operator exp(iφ). By precluding hc/2e vortices, we see the
emergence of a new bosonic field, exp(iφ), with exotic quantum numbers –
charge e but spin zero – which will be referred to as a “holon”. This is the
first hint of spin-charge separation [41–43] in the nodal liquid.
As we shall see, another remarkable consequence of precluding hc/2e

vortices, is that the charge neutral spin one-half nodons survive under hc/e
vortex condensation into the nodal liquid. To see why this is not the case
if elementary hc/2e vortices are condensed [15] (as in the charge-density-
wave), it is very instructive to consider the transformation which relates the
nodons to the d-wave quasiparticles, equation (7.26), which can be written
in terms of the new field φ (= ϕ/2) as:

ψ = exp(−iτzφ)Ψ. (8.4)

In the presence of vortices, the nodon field ψ only remains single-valued
if hc/2e vortices are excluded (so that exp(±iφ) is single valued). Indeed,
when a nodon is taken around an hc/2e vortex, it’s wavefunction changes
sign, since φ winds by π. This implies a very strong and long-ranged “sta-
tistical” interaction between nodons and hc/2e vortices. If hc/2e vortices
proliferate and condense, it will clearly be very difficult for the nodons to
propogate coherently. In fact, we have argued recently [15] that in this case
the nodons are bound (actually “confined”) to the holons, leaving only the
electron in the spectrum of the charge-density-wave.

8.2 Duality

We now consider implementing the procedure of unbinding and condensing
hc/e vortices in the dx2−y2 superconductor. To this end, it is extremely
convenient to pass to the “dual” representation [39, 40] in which the vor-
tices are the basic “particles”, rather than the Cooper pairs. The most
straightforward way to incorporate hc/e vortices is by placing the (single-
valued) field exp(iφ) on the sites of a lattice [39], so that vortices can exist
in the plaquettes. A lattice duality transformation can be implemented in
which the phase φ is replaced by a dual field, θ, which is the phase of a
vortex complex field, Φ ∼ eiθ. In a Hamiltonian description, Φ and Φ† can
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be viewed as vortex quantum field operators – which destroy and create
hc/e vortices. On a 2 + 1-dimensional Euclidian space-time lattice, the ap-
propirate model corresponding to the phase Lagrangian equation (8.3) is
essentially a classical 3d-xy model with an effective gauge field:

Aeffµ = Aµ − κ
−1
µ Jµ. (8.5)

The lattice duality transformation for the 3d-xy model with gauge field is
implemented in some detail in the Appendix. An alternative method which
we sketch below, involves implementing the duality transformation directly
in the continuum [40].
To this end we introduce a vortex 3-current, jvµ, which satisfies,

jvµ = εµνλ∂ν∂λφ. (8.6)

In the presence of hc/e vortices, φ is multi-valued, ∂µφ is not curl-free,
and jvµ is non-vanishing. Even in the dual vortex representation the total
electrical charge must be conserved. This can be achieved by expressing the
total electrical 3-current (in units of the electron charge e) as a curl,

J totµ = εµνλ∂νaλ, (8.7)

where we have introduced a “fictitious” dynamical gauge field, aµ. (In the
Appendix the electrical 3-current is expressed as a lattice curl of aµ.) Upon
combining equation (7.38) with (8.6) and (8.7), one can eliminate the phase
field, φ, and relate aµ to the vortices:

jvµ = εµνλ∂ν [κ
−1
λ ελαβ∂αaβ +Aλ − κ

−1
λ Jλ], (8.8)

where Jµ is the quasiparticle 3-current defined earlier in equations (7.30-
7.31).
In this continuum approach to duality, a dual description is obtained

by constructing a Lagrangian, LD, depending on aµ, Jµ and jvµ, whose
equation of motion, obtained by differentiating the action with respect to
aµ, leads to the above equation. It is convenient to first express the vortex
3-current in terms of a complex field, Φ, which can be viewed as an hc/e
vortex destruction operator. The dual Lagrangian is constructed to have
an an associated U(1) invariance under Φ → eiαΦ, which guarantees that
jvµ is indeed conserved. When an hc/e vortex is taken around a Cooper
pair it aquires a 4π phase change (2π around a charge e “holon”). In the
dual representation the vortex wavefunction Φ should acquire a 4π phase
change (or 2π for a “holon”). This can be achieved by minimally coupling
derivatives af Φ to the “fictitious” vector potential aµ.
The appropriate dual Lagrangian can be conveniently decomposed as

LD = Lψ+Lv+La, where Lψ is given in equation (7.28). The vortex piece
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has the Ginzburg-Landau form [44],

Lv =
κµ

2
|(∂µ − iaµ)Φ|

2 − VΦ(|Φ|), (8.9)

as constructed explicitly with lattice duality in the Appendix. The vortex
3-current, following from jvµ = −∂Lv/∂aµ, is

jvµ = κµIm[Φ
∗(∂µ − iaµ)Φ]. (8.10)

For small |Φ| (appropriate close to a second order transition) one can expand
the potential as, VΦ(X) = rΦX

2 + uΦX
4. The remaining piece of the dual

Lagrangian is

La =
1

2κ0
(e2j − b

2) + aµεµνλ∂ν(Aλ − κ
−1
λ Jλ), (8.11)

with dual “magnetic” and “electric” fields: b = εij∂iaj and ej = v
−1
c (∂ja0−

∂0aj). It can be verified that the dual Lagrangian has the desired property
that equation (8.8) follows from the equation of motion δSD/δaµ = 0.

9 Nodal liquid phase

In this section we employ the dual representation of the dx2−y2 supercon-
ductor to analyze the quantum disordered phase - the nodal liquid. The dual
representation comprises a complex vortex field, which is minimally coupled
to a gauge field, as well as a set of neutral nodon fermions. Without the
nodons and in imaginary time, the dual Lagrangian is formally equivalent to
a classical three-dimensional superconductor at finite temperature, coupled
to a fluctuating electromagnetic field. To disorder the d-wave superconduc-
tor, we must order the dual “superconductor” – that is, condense the hc/e
vortices. The nature of the resulting phase will depend sensitively on dop-
ing, since upon doping, the dual “superconductor” starts seeing an applied
“magnetic field”. Below, we first consider the simpler case of half-filling. We
then turn to the doped case, where two scenarios are possible depending on
whether the dual “superconductor” is Type I or Type II [44].

9.1 Half-filling

Specialize first to the case of electrons at half-filling, with particle-hole sym-
metry. In the dual representation, the “magnetic field”, b, is equal to the
deviation of the total electron density from half-filling. Thus at half-filling
〈b〉 = 0 and the dual Ginzburg-Landau theory is in zero applied field. The
quantum disordered phase corresponds to condensing the hc/e vortices, set-
ting 〈Φ〉 = Φ0 6= 0. In this dual Meissner phase the vortex Lagrangian
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becomes

Lv =
1

2
κµΦ

2
o(a
t
µ)
2, (9.1)

where at represents the transverse piece of aµ. It is then possible to in-
tegrate out the field aµ which now enters quadratically in the Lagrangian.
Equivalently, aµ can be eliminated using the equation of motion which fol-
lows from δSD/δaµ = 0. The full Lagrangian in the nodal liquid phase is
then

Lnl = Lψ +AµIµ +
ε0

2
E2j −

B2

2µ0
+O
[
(∂J)2

]
, (9.2)

where we have introduced the physical magnetic and electric fields: B =
εij∂iAj and Ej = ∂jA0−∂tAj . The last two terms describe a dielectric, with
magnetic permeability µ0 = κ0Φ

2
0 and dielectric constant ε0 = (µ0v

2
c )
−1,

with the sound velocity entering, rather than the speed of light. The ex-
ternal electromagnetic field is coupled to the 3-current Iµ, which can be
expressed as a bi-linear of the nodon fermions as,

Iµ =
ε0

κ20v
2
c

[κν∂
2
νJµ − κµ∂µ(∂νJν)]. (9.3)

Notice that this 3-current is automatically conserved: ∂µIµ = 0.
The order (∂J)2 terms which we have not written out explicitly are quar-

tic in the fermion fields, and also involve two derivatives. Since Lψ describes
Dirac fermions in 2+ 1 space-time dimensions, these quartic fermion terms
are highly irrelevant, and rapidly vanish under the rescaling transforma-
tion in equation (7.43). Thus, the low energy description of the nodal liquid
phase is exceedingly simple. It consists of four neutral Dirac fermion fields –
two spin polarizations (α = 1, 2) for each of the two pairs of nodes. Despite
the free fermion description, the nodal liquid phase is highly non-trivial
when re-expressed in terms of the underlying electron operators. Indeed,
the ψ fermion operators are built from the quasiparticle operators Ψ in
the d-wave superconductor, but are electrically neutral, due to the “gauge
transformation” in equation (7.26).
In addition to the gapless nodons, one expects exotic charged excita-

tions at finite energy in the nodal liquid. To see this, imagine applying an
external dual “magnetic field” to the Ginzburg-Landau “superconductor”,
which corresponds to a non-zero chemical potential for the electrons. Being
in the Meissner state, this “field” will be screened out, so that the inter-
nal field, b, which corresponds to deviations in the electron charge density
from half-filling, will vanish. Clearly, this corresponds to a Mott insula-
tor [45] with the Mott gap being proportional to the dual critical field. In a
Type II superconductor, an internal magnetic field will be “quantized” into
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flux-tubes carrying a quantum of flux [44]. For the dual Ginzburg-Landau
theory, this corresponds to a quantization of electric charge, with a flux
tube corresponding to charge e. Thus, in the nodal liquid one expects the
presence of gapped finite energy excitations with charge e. These “holon”
excitations are exotic since they carry no spin. The holon is the basic topo-
logical excitation that can be created in the hc/e vortex-condensate. The
existence of a spin one-half neutral nodon excitation and a spinless charge
e holon excitation in the nodal liquid, is a dramatic demonstration of spin-
charge separation [41–43]. The excitations in the nodal liquid have the same
quantum numbers as in the spin-charge separated gauge theories [46], but
are weakly interacting, rather than strongly coupled by a gauge field.

9.1.1 Spin response

Although the nodons are electrically neutral they do carry spin, so the low-
energy spin response in the nodal liquid can be computed from the Dirac
Lagrangian Lψ. Moreover, since Lψ was not altered under the duality trans-
formation, the spin properties of the nodal liquid are essentially identical to
those in the dx2−y2 superconducting phase. As a simple example, consider
the uniform magnetic spin susceptibility, χ. The uniform part of the elec-
tron spin operator is given as the conserved spin density in equation (7.41):

S(x) =
1

2
ψ†ja(x)σψja(x). (9.4)

Being bi-linear in nodon operators spin correlation and response functions
can be readily computed from the free nodon theory. For example, the
uniform spin susceptibility is given by

χ =

∫ ∞
0

dE(−∂f/∂E)ρn(E), (9.5)

where the nodon density of states is ρn(E) = (const)E/vFv∆, and f(E) is
a Fermi function. One finds χ ∼ T/vFv∆. There are also low energy spin
excitations at wavevectors which span between two different nodes. The
associated spin operators can be obtained by re-expressing the electron spin
operator,

Sq =
1

2

∑
k

c†k+qσck, (9.6)

in terms of the nodons. For example, the staggered magnetization operator,
Sπ , is found to be

Sπ =
1

2

[
ψ†(τyσσy)ψ† + h.c.

]
. (9.7)
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Notice that this operator is actually “anomalous” in terms of the conserved
nodon charge.
In addition to carrying spin, the nodons carry energy, and so will con-

tribute to the thermal transport. In the absence of scattering processes
(such as Umklapp) the finite temperature nodon thermal conductivity is
infinite. In practive, impurities will scatter the nodons and lead to a fi-
nite thermal conductivity. In fact, impurity scattering should also play an
important role in modifying the spin response of the nodal liquid.

9.1.2 Charge response

The electrical charge properties of the nodal liquid are of course very differ-
ent than in the superconductor. To see this, imagine changing the chemical
potential away from µ = 0 which corresponds to applying an external “mag-
netic” field to the dual Ginzburg-Landa theory: Lµ = −µb. Being in the
“Meissner” phase, the electron density will stay “pinned” at half-filling for
µ ≤ µc, with µc the Ginzburg-Landau critical field. Despite the presence
of this charge gap, there are low energy current fluctuations in the nodal
liquid. Indeed, in this phase the electrical current operator is Iµ, which is
bi-linear in the nodon fermions, ψ. To compute the electrical conductivity
in the nodal liquid requires computing a two-point correlator of Iµ at zero
wavevector (say in the x−direction) Ix(q = 0) = (ε0/κov2s )∂

2
t Jx(q = 0). But

notice that Jx(q = 0) is proportional to a globally conserved nodon charge,

since Jx(x) = (vF/2)ψ
†
1ψ1. Thus, when the nodon number is conserved

one has Ix(q = 0) = 0, and the nodons do not contribute to the electrical
conductivity. When impurity (or Umklapp) scattering is present, however,
the nodon number is no longer conserved, and the nodons will contribute
to the real part of the electrical conductivity, but only at finite frequencies.
It is instructive to briefly consider the behavior of the electron Green’s

function, which can be accessed in photo-emission and tunneling experi-
ments. The electron operator cα(x) can be decomposed as a product of
nodon and holon operators. For example, near the node at Kj one can
write,

cα(x) = e
iKj ·xeiφ(x)ψj1α(x) + ... (9.8)

where ψ is a nodon operator and exp(iφ) can be interpreted as a holon de-
struction operator. In the nodal liquid phase, the electron Green’s function,
G(x, t) = 〈c†(x, t)c(0, 0)〉 factorizes as,

G(x, t) = eiKj ·x〈e−iφ(x,t)eiφ(0,0)〉Gn(x, t), (9.9)

where the nodon Green’s function is,

Gn(x, t) = 〈ψ
†
j1α(x, t)ψj1α(0, 0)〉 · (9.10)
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Although Gn(x, t) decays as a power law |x|−2 and t−2, since creating a
holon costs a finite energy the holon Green’s function is expected to be
short-ranged, decaying exponentially in space and time. This indicates a
gap in the electron spectral function at the Fermi energy.

9.2 Doping the nodal liquid

We briefly discuss the effects of doping charge into the nodal liquid phase.
In a grand canonical ensemble this is achieved by changing the chemical po-
tential, µ = A0. In the dual Ginzburg-Landau description of the vortices, a
chemical potential acts as an applied dual field, as seen from equation (8.11),
since

Lµ = −µb. (9.11)

The dual magnetic field, b = εij∂iaj , is the total electric charge in units of
e. Provided the applied dual field, µ, is smaller than the critical field (µc) of
the Ginzburg-Landau theory, the dual superconductor stays in the Meissner
phase – which is the nodal liquid phase at half-filling. But for µ ≥ µc dual
flux will penetrate the Ginzburg-Landau superconductor, which corresponds
to doping the nodal liquid. The form of the dual flux penetration will depend
critically on whether the dual Ginzburg-Landau theory is Type I or Type
II. Within a mean-field treatment this is determined by the ratio of the
dual penetration length, λv, to the dual coherence length, ξv (where the
subscript v denotes vortices). In particular, Type II behavior is expected
if λv/ξv ≥ 1/

√
2, and Type I behavior otherwise. In the Ginzburg-Landau

description λv determines the size of a dual flux tube, which is essentially
the size of a Cooper pair. We thus expect that λv will be roughly equal to
the superconducting coherence length, ξ, which is perhaps 10− 15 Å in the
cuprates. On the other hand, ξv is the size of the “vortex-core” in the dual
vortex field, and presumably can be no smaller than the microscopic crystal
lattice spacing, ξv ≥ 3− 5 Å. This reasoning suggest that λv/ξv is probably
close to unity in the cuprates, so that either Type I or Type II behavior
might be possible – and could be material dependent. We first consider such
Type II doping, returning below to the case of a Type I Ginzburg-Landau
theory.

9.2.1 Type II behavior

The phase diagram of a clean three-dimensional Type II superconductor is
well understood [44]. Above the lower critical field, Hc1, flux tubes pen-
etrate, and form an Abrikosov flux lattice – usually triangular. As the
applied field increases the flux tubes start overlapping, when their separa-
tion is closer than the penetration length. Upon approaching the upper
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critical field Hc2 their cores start overlapping, the Abrikosov flux lattice
disappears, and the superconductivity is destroyed.

These results hold equally well for our dual Ginzburg-Landau supercon-
ductor, except that now the direction parallel to the applied field is actually
imaginary time. Moreover, the Ginzburg-Landau order parameter describes
quantum (hc/e) vortices, and the penetrating flux tubes are spinless charge
e holons. Upon doping the nodal liquid with µ > µc1, charge is added
to the 2d system, which corresponds to the penetration of dual magnetic
flux. In this dual transcription, the resulting Abrikosov flux-lattice phase
is a Wigner crystal of holons, with one holon per real space unit cell of the
lattice. Upon further doping, at µ = µc2, the crystal of holons melts, and
they condense – this is the d-wave superconductor.

In the holon Wigner crystal phase, translational symmetry is sponta-
neously broken. However, in a real material the Wigner crystal will have
a preferred location, determined by impurities and perhaps crystal fields,
which will tend to pin and immobilize the crystal. The resulting phase
should be an electrical insulator.

A striking and unusual feature of the holon Wigner crystal is that it co-
exists with the nodal liquid. We thereby arrive at a description of a rather
remarkable new phase of matter. A Wigner crystal of doped holons co-exists
with neutral gapless fermionic excitations – the nodons. In this co-existing
phase, low energy spin and thermal properties will be dominated by the
nodons. The behavior will be qualitatively similar to that in the undoped
nodal liquid phase. It is possible that this phase underlies the physics of
the pseudo-gap region of the high Tc cuprates.

9.2.2 Type I behavior

In a Type I superconductor, the applied field is expelled until the criticalHc
is exceeded [44]. At this point there is a first order phase transition from the
Meissner phase with all the flux expelled, to a normal metal phase in which
(essentially) all the field penetrates. If our dual Ginzburg-Landau theory is I
Type I, then analogous properties are expected. Specifically, as the chemical
potential increases, the dual field – which is the holon density – remains at
zero until a critical chemical potential µc is reached. At this point there
is a first order phase transition, between the nodal liquid phase at half-
filling, and a d-wave superconductor at finite doping, xc. At fixed doping
x < xc, phase separation is impeded by long-ranged Coulomb interactions
between the holons. The system will break apart into co-existing “micro-
phases” of nodal liquid and d-wave superconductor. The configuration of the
“micro-phases” will be determined by a complicated competition between
the Coulomb energy and the (positive) energy of the domain walls. In
practice, impurities will also probably play a very important role.
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9.3 Closing remarks

The theoretical framework described above gives a skeletal description of
the nodal liquid and, upon doping, the holon Wigner crystal. There are
many important issues which will need to be addressed in detail to see
if this novel Mott insulating phase gives a correct description of the low
temperature pseudo-gap regime in the cuprates. At very low doping the
cuprates are antiferromagnetic so it will clearly be necessary to incorporate
magnetism into the theoretical framework. Perhaps even more important is
assessing the role of impurities, which are expected to have rather dramatic
effects both on the holon Wigner crystal and the gapless nodons. Impurities
will tend to disorder the Wigner crystal and will scatter the nodons prob-
ably leading to a finite density of states and diffusive rather than ballistic
motion. Since the nodons carry spin but no charge, a rather exotic “spin
metal” phase is possible with a finite “spin conductivity” (but zero electrical
conductivity) even at zero temperature. It is also possible that the impuri-
ties will localize the nodons, perhaps leading to a random singlet phase or
a spin glass. An additional complication is that some materials might ex-
hibit phase separation upon doping (Type I rather than Type II behavior)
exhibiting micro-phase co-existence between the antiferromagnet and the
d-wave superconductor, preempting the nodal liquid phase. It clearly re-
mains as a future challenge to fully sort out the mysteries of the pseudo-gap
regime.
A more general theme of these notes is that novel spin liquid phases can

sometimes be more conveniently viewed as descendents of superconductors
– rather than the more traditional route via magnetism. One can imagine
quantum disordering other exotic superconducting phases besides the dx2−y2
state, to obtain new spin liquid phases. Perhaps some of these phases will
appear in other systems which exhibit finite angular momentum pairing,
such as 3−He and the heavy Fermion materials.
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Appendix

A Lattice duality

Duality plays a key role in understanding how to quantum disorder a su-
perconductor, both in 1 + 1 space-time dimensions (Sect. 5) and in 2 + 1
(Sect. 8). The key idea involves exchanging the order parameter phase φ for
vortex degrees of freedom. In 1 + 1 dimensions these are point-like space-
time vortices [31], whereas in 2 + 1 there are point like vortices in space
which propogate in time [39]. In Section 8 we chose to work directly in
the continuum in implementing the 2+ 1 duality transformation. However,
the physics of duality is perhaps more accessible when carried out on the
lattice. In this Appendix we show in some detail how lattice duality is im-
plemented in both 1 + 1 and 2 + 1 dimensions [31, 39]. For simplicity we
first Wick rotate to Euclidian space, and rescale imaginary time to set the
charge velocity to one. The appropriate lattice model is then simply a 2d
square lattice or 3d cubic lattice xy model. In the latter case, we also want
to include a gauge-field, A, which is a sum of the physical electromagnetic
field and the nodon current, as discussed in Section 8 – see equation (8.5).
The degrees of freedom which live on the sites of the square or cubic

lattice (denoted by a vector of integers ~x) are the phases φx ∈ [0, 2π]. As
usual, the gauge field lives on the links. Discrete lattice derivatives are
denoted by

4µφx = φx+µ − φx, (A.1)

where µ = x, y for the square lattice and µ = x, y, z for the cubic lattice
and x + µ denotes the nearest neighbor site to ~x in the µ̂ direction. The
gauge field is minimally coupled via,

4µφx →4µφx +A
µ
x . (A.2)

Consider the partition function,

Z =

∫ 2π
0

∏
x

dφxexp

[∑
x,µ

Vκ(4µφx)

]
. (A.3)

Here the periodic “Villain” potential Vκ is given by,

exp[Vκ(4φ)] =
∞∑

J=−∞

e−κJ
2/2eiJ4φ, (A.4)

with integer J . When κ � 1 only the terms with J = 0,±1 contribute
appreciably in the sum and this reduces to the more familiar form:

Vκ(4φ) = K cos(4φ), (A.5)
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with K = 2exp(−κ/2).
The partition function can thus be expressed as a sum over both φ and a

vector of integers, ~Jx, with components J
µ
x living on the links of the lattice:

Z =

∫ ∏
x

dφ
∑
[ ~J]

e−S ≡ Trφ, ~J e−S , (A.6)

with action

S = S0 +
∑
x

i(~4 · ~Jx)φx, (A.7)

S0 =
κ

2

∑
x

| ~Jx|
2. (A.8)

In this form the integration over φ can be explicitly performed giving

Z = Tr′~J e−S0 , (A.9)

where the prime on the trace indicates a divergenceless constraint at each
site of the lattice:

~4 · ~Jx = 0. (A.10)

In the presence of a gauge field there is an additional term in the action of
the form,

SA = i
∑
x

~Jx · ~Ax. (A.11)

It is thus clear that the integer of vectors ~J can be interpreted as a conserved
electrical current flowing on the links of the lattice. The divergenceless
constraint on this electrical 3-current can be imposed automatically by re-
expressing ~J as a curl of an appropriate dual field. Consider first the 2d
case.

A.1 Two dimensions

To guarantee divergenceless we set the current equal to the (2d) curl of a
scalar field, θx:

2πJµx = εµν4νθx, (A.12)

so that the action becomes

S0(θ) =
κ

8π2

∑
x,µ

(4µθx)
2. (A.13)
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To insure that ~J is an integer field, θ must be constrained to be 2π times an
integer. This additional constraint can be imposed by introduction of yet
another integer field, nx, which will be interpreted as the (space-time) vortex
density. The partition is thereby re-expressed as (dropping an unimportant
multiplicative constant),

Z̃ =

∫ ∞
−∞

∏
x

dθx
∑
[nx]

e−S , (A.14)

with

S = S0(θ) +
∑
x

[
κ̃

2
n2x + inxθx

]
. (A.15)

For κ̃ = 0 the summation over nx gives a sum of delta functions restricting
θx/2π to be integer. But we have softened this constraint, introducing a
vortex “core” energy κ̃ 6= 0.
At this stage one could perform the Gaussian integral over θ, to obtain

a logarithmically interacting plasma of (space-time) vortices. Alternatively,
for κ̃� 1 the summation over nx can be performed giving,

S = S0(θ)− u
∑
x

cos(θx), (A.16)

with u = 2exp(−κ̃/2). Upon taking the continuum limit, θx → θ(x), one
recovers the (Euclidian) sine-Gordon theory, S =

∫
d2xL with

L =
κ

8π2
(~∇θ)2 − u cos(θ). (A.17)

After Wick rotating back to real time and restoring the velocity this takes
the identical form to the dual Lagrangian considered for the 2-leg ladder in
Section 5.

A.2 Three dimensions

In three dimensions the divergenceless integer 3-current ~J can be written
as the curl of a vector field, ~a:

2π ~Jx = ~4× ~ax. (A.18)

As in 2d one imposes the integer constraint (softly) by introducing an integer
vortex field, in this case a 3-vector ~j, to express the partition function as,

Z̃ =

∫ ∞
−∞

∏
x

d~ax
∑
[~jx]

e−S, (A.19)
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with

S = S0(~a) +
∑
x

[
κ̃

2
|~jx|

2 − i~jx · ~ax

]
, (A.20)

S0(~a) =
κ

8π2

∑
x

|~4× ~ax|
2. (A.21)

The integer vector field ~j is the vortex 3-current, “minimally” coupled to ~a.
To see that the vortex 3-current is conserved, it is convenient to decompose
the vector field ~a into transverse and longitudinal pieces: ~a = ~at− ~4θ, with
θx a scalar field. The action becomes,

S = S0(~a) +
∑
x

[
κ̃

2
|~jx|

2 + i~jx · (~4θx − ~ax)

]
, (A.22)

where we have dropped the subscript “t” on ~a. The partition function
follows from integrating over both ~a and θ and summing over integer ~j.
Integrating over θ leads to the expected condition: ~4·~j = 0. Alternatively,
for κ̃ � 1 one can perform the summation over ~j to arrive at an action
depending on θ and ~a:

S = S0(~a)−K
∑
x,µ

cos(4µθx − a
µ
x), (A.23)

with K = 2exp(−κ̃/2).
In the presence of a gauge field Aµ there is an additional term in the

action of the form,

SA =
i

2π

∑
x

(~4× ~ax) · ~Ax, (A.24)

which follows directly from equations (A.11) and (A.18).
At this stage one can take the continuum limit, letting ~ax → ~a(x) and

θx → θ(x). Upon expanding the cosine for small argument one obtains
S =
∫
d3xL with (Euclidian) Lagrangian

L =
κ

8π2
(~∇× ~a)2 +

K

2
(~∇θ − ~a)2. (A.25)

In this dual representation, the vortex 3-current (which follows from ∂L/∂~a)
is given by ~jv = K(~∇θ−~a). Notice that the vortices are minimally coupled
to the “vector potential” ~a, whose curl equals the electrical 3-current. The
field θ can be interpreted as the phase of a vortex operator. In fact it
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is convenient to introduce such a complex vortex field before taking the
continuum limit:

eiθx → Φ(~x). (A.26)

The continuum limit can then be taking retaining the full periodicity of the
cosine potential. The appropriate vortex Lagrangian replacing the second
term in equation (A.25) is,

Lv =
K

2
|(~∇− i~a)Φ|2 + VΦ(|Φ|). (A.27)

The vortex current operator becomes,

~jv = KIm[Φ∗(~∇− i~a)Φ]. (A.28)

If the potential is expanded for small Φ as VΦ(X) = rΦX
2 + uΦX

4, the
full dual theory is equivalent to a Ginzburg-Landau theory for a classical
three-dimensional superconductor. Inclusion of the original gauge field Aµ

leads to an additional term in the dual Lagrangian:

LA =
i

2π
(~∇× ~a) · ~A. (A.29)

After Wick rotating back to real time and restoring the velocity, L + LA
becomes identical to the dual vortex Lagrangian in Equations (8.9) and
(8.11).
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