
Universal Behavior of the Initial Stage of Drop Impact

Evert Klaseboer,1,* Rogerio Manica,1,† and Derek Y. C. Chan1,2,3,‡
1Institute of High Performance Computing, 1 Fusionopolis Way, 138632 Singapore, Singapore
2Department of Mathematics and Statistics, University of Melbourne, Parkville 3010, Australia

3Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn 3122, Australia
(Received 14 May 2014; published 4 November 2014)

During the early stages of the impact of a drop on a solid surface, pressure builds up in the intervening
thin lubricating air layer and deforms the drop. The extent of the characteristic deformation is determined
by the competition between capillary, gravitational, and inertial forces that has been encapsulated in a
simple analytic scaling law. For millimetric drops, variations of the observed deformation with impact
velocity V exhibit a maximum defined by the Weber and Eötvös numbers: We ¼ 1þ Eo. The deformation
scales as V1=2 at the low-velocity capillary regime and as V−1=2 at the high-velocity inertia regime,
in excellent agreement with a variety of experimental systems.
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The systematic study of drop impact phenomena has a
long history [1], with recent experimental [2] and theo-
retical [3–5] effort focused on the spreading dynamics of
the drop. For instance, understanding drop impact phe-
nomena is vital in the application of insecticides and
fertilizers in agriculture [6,7]. The improving capabilities
of high-speed video recording provided renewed impetus in
the subject, allowing the role of the thin air layer trapped
between the drop and the target solid to be elucidated under
well controlled conditions [8–13]. A recent study of direct
observations of the initial drop deformation at impact using
high-speed interferometry [14] reported that at a fixed drop
size, the extent of dimple deformation upon impact exhibits
a maximum as a function of impact velocity. Such a dimple
is the precursor to the entrapment of a small air bubble
under the center of the impacting drop that can be
undesirable in some applications [2]. With a ratio of
∼1000 or more between the drop and bubble size, the
challenges in detailed modeling are formidable [3,15].
Here, we show that this dimple formation is a part of a

unified phenomenon that results from the competition
between capillary, inertial, and to a lesser extent, gravita-
tional forces. Indeed, results from currently available
experimental range of impact velocities from around
20 μm=s to 3 m=s can be captured accurately by a simple
and physically perspicuous analytic formula. Furthermore,
dimple formation in bubble-surface collisions as well as
drop-drop and drop-surface collision dynamics can also be
described quantitatively by the same model under the same
theoretical framework. But when inertial effects are dom-
inant, the scaling behavior with impact velocity of V−1=2 is
different from that of the V−2=3 velocity proposed earlier
[14,16]. The difference lies in the estimates of the pressure
at the bottom of the drop at impact.
Model.—Our analysis uses a model in which a spherical

drop of radius R, falling under constant gravity g onto a

horizontal solid surface is treated as an inviscid fluid of
density ρin, whose dynamics are described by the Bernoulli
equation. The deformation of the drop against a constant
surface tension σ is governed by the normal stress balance,
whereas the dynamics of the thin viscous air film of
viscosity μout trapped between the bottom of the drop
and the target solid is described by incompressible Stokes-
Reynolds lubrication theory because the characteristic film
Reynolds number is small. Otherwise, outside this film, the
air is assumed to have constant pressure po; that is, we omit
flow and hydrostatic effects in the air because of its small
density and viscosity. Detailed derivations of these gov-
erning equations can be found in the Supplemental Material
[17]. At impact, we approximate the pressure pB along the
bottom of the drop including the stagnation pressure,
estimated using the Bernoulli equation (see Fig. 1) [17,18]

pB ≃ po þ
2σ

RT
þ 1

2
ρinV2 þ ρingzB ð1Þ

where RT is the mean radius of curvature at the top apex of
the drop at the initial stage of impact and can be assumed to
be equal to the drop radius R.
The spatial variation of the thickness h of the air film

between the bottom of the drop and the solid surface is
given by the normal stress balance. For an axisymmetric
drop and film, hðr; tÞ is given by (see Fig. 1)

2σ

RB
¼ σ

r
∂
∂r

�
r
∂h
∂r

�
¼ pB − pf: ð2Þ

From Eqs. (1) and (2), the excess pressure, pf − po that
drives the lubricating flow is

pf − po ¼
2σ

RT
−
2σ

RB
þ 1

2
ρinV2 þ ρingzB ð3Þ
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with pf → po outside the film. As the typical film thick-
ness is on the order of μm, we may omit intermolecular
forces (e.g., van der Waals attraction) between the drop and
the solid surface during the initial stage of drop impact.
Because of viscous drainage of the air layer of viscosity

μout between the bottom of the drop and the surface, the
time evolution of the thickness of this axisymmetric film is
governed by the Stokes-Reynolds lubrication equation [19]

∂h
∂t ¼

1

12μout

1

r
∂
∂r

�
rh3

∂pf

∂r
�

ð4Þ

where we have assumed that the immobile boundary
condition holds at the drop surface because the drop
viscosity is much higher than the air viscosity [20].
However, surface active agents can also give rise to an
immobile boundary condition [21]. This equation is valid if
the film Reynolds number: Ref ¼ ρoutVðHRÞ1=2=μout ≪ 1,
based on the radial dimension r ∼ ðHRÞ1=2, with H the
characteristic film thickness and V the characteristic impact
velocity.
Equations (1), (2), and (4) constitute the model that

governs drop dynamics at impact.
Scaling analysis.—From Eq. (3) we see that the char-

acteristic film pressure P has combined contributions from
surface tension, gravity, and fluid inertia

P≃ σ

R
þ ρinV2 þ ρingR: ð5Þ

From Eq. (4), with r ∼
ffiffiffiffiffiffiffiffi
HR

p
, we obtain

V ∼
1

μout

H3

ðHRÞP: ð6Þ

On eliminating P between Eqs. (5) and (6), we have the
desired result for the variations of the scaling for the air gap
H, between the drop and the substrate cast in terms of the
capillary number Ca ¼ μoutV=σ, the Eötvös (or Bond)
number Eo ¼ ρingR2=σ [22], the Stokes number St ¼
ρinVR=μout, and the Weber number We ¼ ρinRV2=σ,
reflecting the competition between capillary, gravitational,
and inertial forces subsumed in a composite dimensionless
number, K,

H
R
∼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Caþ Stþ Eo=Ca

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ca
1þWeþ Eo

r
≡ ffiffiffiffi

K
p

:

ð7Þ
For millimetric drops of water or organic liquids
Eo=Ca ∼ 0.1, so even though drop impact is driven by
gravity, its effect on deforming the drop during motion is
small. For low-impact velocities where We ≪ 1, the
characteristic film thickness scales as H=R ∼ Ca1=2,
whereas for high-impact velocities with We ≫ 1,
H=R ∼ St−1=2. The transition between the low- and high-
impact velocity regimes is embodied in Eq. (7).
Following earlier work on the modeling of quasistatic

drop impact, we can scale equations (1), (2), and (4) into
nondimensional form, denoted by quantities with an
overbar, using the scalings p ¼ Pp̄, h ¼ ð ffiffiffiffiffiffiffi

2K
p

RÞh̄,
r ¼ ð23=4K1=4RÞr̄, and t ¼ ð ffiffiffiffiffiffiffi

2K
p

R=VÞt̄. The scaled
Stokes-Reynolds equation (4) becomes

∂h̄
∂ t̄ ¼

1

12r̄
∂
∂r̄

�
r̄h̄3

∂p̄f

∂r̄
�
; ð8Þ

and the scaled equation (2) is

1

2r̄
∂
∂r̄

�
r̄
∂h̄
∂r̄

�
¼ p̄B − p̄f: ð9Þ

Klaseboer et al. [23] observed that for slow, quasistatic
collisions (We ≪ 1, Eo ≪ 1 and so p̄B ≃ 2), the resulting
universal form of Eqs. (8) and (9), with boundary condition
dh=dt ¼ −V (i.e., dh̄=dt̄ ¼ −1), no longer depends on any
physical parameter and reported that the film thickness at
which a dimple first develops is given by h̄d ≈ 0.4 or
hd=R ≈ 0.4ð2CaÞ1=2. In Fig. 2, we see that this relation
holds for quasistatic collisions in a variety of experimental
systems in the literature: ethanol drops in air against a glass
surface [14], mercury drop in water against a mica surface
[24], bubble in water against a glass surface for immobile
[25,26] and mobile [27] film drainage, in which for mobile
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FIG. 1 (color online). Schematic of the drop or bubble
impacting on a horizontal solid surface. Assuming the pressure
above the drop is po, a pressure jump of 2σ=RT will occur when
we cross the boundary on top. Since the bottom of the drop hardly
moves, but the top still approaches with velocity V, a stagnation
pressure ρinV2=2 will build up in the bottom part of the drop.
Alternatively, going around the drop then inside the film will lead
to a film pressure pf. Finally, pf and pB are related through the
normal stress balance (the pressure difference between two sides
of the interface is the product of the surface tension and the total
curvature).
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films, the numerical factor 12 in Eq. (4) is replaced by 3.
For the different combinations of two liquid drops in
another immiscible liquid, the relationship differs by a
numerical factor: hd=R ≈ 0.4Ca1=2 [23,28]. Details of all
the different experimental systems are summarized in the
Supplemental Material [17]. With the exception of ethanol
drops in air against glass, there is good universal agreement
with the predicted Ca1=2 behavior.
Two factors account for deviations of the data for ethanol

drops in air impacting on a glass surface from the Ca1=2

scaling law in Fig. 2. The experimental results is actually
the central thickness just prior to film rupture and is,
therefore, smaller than the film thickness at which the
dimple first develops. Also at higher Ca, the drop velocities
are up to 3 m=s, corresponding to Stokes number St ∼ 105,
well beyond the quasistatic collision regime [14]. Thus, the
scaling in Eq. (7) suggest the more general relationship
would hold at both low- and high-impact velocities

hd
R

¼ 0.4ð2KÞ1=2 ¼ 0.4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ca

1þWeþ Eo

r
: ð10Þ

Within measurement variations, the prediction based on
Eq. (10) is in agreement with the ethanol drop data [14] at
all impact velocities (Fig. 3).
The physical origin of the maximum in hd=R as a

function of velocity can be understood from the normal
stress balance (2). At small impact velocities, inertial
effects are small and the pressure pB at the bottom of
the drop can be approximated by 2σ=R, the Laplace
pressure of the undeformed drop. The development of a
dimple corresponds to an inversion of the curvature of the
film, and that occurs when the pressure in the film pf

exceeds pB. Thus, hd exhibits a universal dependence on

the capillary number Ca as seen in Fig. 2. As the impact
velocity increases, pB increases due to the stagnation
pressure contribution 1

2
ρinV2, and this has a similar effect

to increasing the Laplace pressure of the drop or the
effective interfacial tension, making the drop more difficult
to deform. This, therefore, accounts for the decrease in hd at
higher impact velocities seen in Fig. 3. As we shall see, this
physical interpretation provides the basis for obtaining an
accurate approximate solution.
Beyond the maximum in Fig. 3, hd scales with the

velocity as V−1=2 or as St−1=2. Earlier theoretical arguments
have suggested instead a St−2=3 scaling [14,16]. The
difference is due to the choice of the pressure scale inside
the drop at impact. Our pressure scale of Eq. (1) is the well-
known stagnation pressure since the bottom of the drop has
effectively decelerated to zero velocity at impact whereas
the scaling in Ref. [14] is based on an assumed scaling of
the velocity potential at the bottom of the drop. The
numerical evidence adduced to support the St−2=3 scaling
was from solutions of governing equations that are different
from the equations used here [14]. In any case, the available
experimental data do not extend to a high enough impact
velocity to differentiate between a St−1=2 or St−2=3 depend-
ence. This open question requires further experiments for
resolution.
Point mass model.—In the quasistatic low-velocity limit,

evolution of the film profile hðr; tÞ can be found by solving
Eqs. (8) and (9) with p̄B ¼ 2, after eliminating the film
pressure p̄f. At finite drop impact velocities, p̄B in Eq. (9)
has to be found by solving the Laplace equation for the
velocity potential (Bernoulli equation) that describes poten-
tial flow in a moving domain that is the drop boundary
(Supplemental Material [17]). Here, we propose a simpli-
fication by treating the drop as point particle of mass
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FIG. 2 (color online). Comparison of the variation of dimple
height with capillary number for quasisteady drop impact. Details
of the experimental systems are given in the Supplemental
Material [17].
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FIG. 3 (color online). Variation of dimple height with drop
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with R ¼ 0.9 mm. The maximum occurs at We ¼ 1þ Eo.
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m ¼ 4πρinR3=3. The velocity of the drop is then described
by the following equation of motion as it approaches the
surface,

m
dU
dt

¼ mg −
π

2
R2CdρoutU2 − 2π

Z
∞

0

rpfdr: ð11Þ

The initial condition is U ¼ Uo, and the air drag on the
drop is described by the Schiller-Naumann [29] drag
coefficient Cd ¼ ð24=ReÞð1þ 0.15Re0.687Þ that depends
on the Reynolds number, Re ¼ 2RρoutU=μout. The drop
velocity provides a boundary condition to Eq. (8) in the
form ∂h=∂t ¼ −U at r ¼ rmax where h̄ ∼ r̄2. The point
mass equation of motion (11) is coupled to the normal
stress balance (2) and the Stokes-Reynolds (4) equations
via the pressure pB that we approximate by pB ≈
2σ=Rþ 1

2
ρinU2, after setting po ¼ 0 and omitting the small

gravitational contribution, ρingzB in Eq. (1).
In Fig. 4, we compare the film profile predicted by the

point mass model of Eq. (11) with and without the inertial
term. Since the time of the experimental film profile was
not reported in Ref. [10], we can compare the film shape
predicted by the model at the maximum radial extent. The
agreement is quite reasonable. Note that the film radius of
a ∼ 0.8 mm is comparable to the undeformed drop radius
of R ∼ 1.0 mm, indicative of significant deformation of the
drop. As a rough estimate, if we assume all the kinetic
energy of the incoming drop has all been expended to
increase the surface area of the drop that has deformed
under constant volume into a truncated sphere of radius
Rt > R, and with the base radius a, the value of a would be
comparable to the initial drop radius R.
Conclusions.—We have shown that the initial deforma-

tion characteristics for drop impact can be captured by a
simple analytic formula, Eq. (10), derived from scaling
arguments as a generalization of an earlier result [23] for
slow collisions. Quantitative comparison with a variety of

experiments suggests that this scaling has captured suc-
cessfully the competition between capillary, gravity, and
inertia forces. For a millimetric drop, gravitational effects
are not significant. Therefore, at low drop velocities,
capillary forces dominate and the deformation is deter-
mined by the capillary number Ca1=2 ¼ ðμoutV=σÞ1=2,
but at high velocities, inertia forces dominate and the
deformation is determined by the Stokes number St−1=2 ¼
ðρinVR=μoutÞ−1=2. This differs from the St−2=3 behavior
suggested earlier due to a different estimate of the pressure
at the bottom of the drop at impact. The transition between
these two regimes occurs when the Weber and Eövös
numbers satisfy We ¼ 1þ Eo. With the use of a point mass
model for the drop, the profile of the air film between the
base of the drop and the substrate can be predicted, thus
verifying that inertia at high impact velocities has the effect
of increasing the effective Laplace pressure of the drop or
increasing the effective surface tension, thereby reducing
the extent of drop deformation.
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