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PREFACE TO THE ENGLISH EDITION

The present book deals with fluid mechanics, i.e. the theory of the motion of

liquids and gases.

The nature of the book is largely determined by the fact that it describes

fluid mechanics as a branch of theoretical physics, and it is therefore markedly
different from other textbooks on the same subject. We have tried to develop

as fully as possible all matters of physical interest, and to do so in such a way
as to give the clearest possible picture of the phenomena and their interrela-

tion. Accordingly, we discuss neither approximate methods of calculation in

fluid mechanics, nor empirical theories devoid of physical significance. On
the other hand, accounts are given of some topics not usually found in text-

books on the subject: the theory of heat transfer and diffusion in fluids;

acoustics; the theory of combustion; the dynamics of superfluids; and
relativistic fluid dynamics.

In a field which has been so extensively studied as fluid mechanics it was
inevitable that important new results should have appeared during the several

years since the last Russian edition was published. Unfortunately, our

preoccupation with other matters has prevented us from including these

results in the English edition. We have merely added one further chapter,

on the general theory of fluctuations in fluid dynamics.

We should like to express our sincere thanks to Dr Sykes and Dr Reid

for their excellent translation of the book, and to Pergamon Press for their

ready agreement to our wishes in various matters relating to its publication.

Moscow L. D. Landau
E. M. Lifshitz



NOTATION

p density

p pressure

T temperature

s entropy per unit mass

e internal energy per unit mass

w = e +pjp heat function (enthalpy)

7 = cvjcv ratio of specific heats at constant pressure and constant

volume

rj dynamic viscosity

v = rjjp kinematic viscosity

k thermal conductivity

X = KJpCp thermometric conductivity

R Reynolds number
c velocity of sound

M ratio of fluid velocity to velocity of sound



CHAPTER I

IDEAL FLUIDS

§1. The equation of continuity

Fluid dynamics concerns itself with the study of the motion of fluids

(liquids and gases). Since the phenomena considered in fluid dynamics are

macroscopic, a fluid is regarded as a continuous medium. This means that

any small volume element in the fluid is always supposed so large that it still

contains a very great number of molecules. Accordingly, when we speak

of infinitely small elements of volume, we shall always mean those which are

"physically" infinitely small, i.e. very small compared with the volume of

the body under consideration, but large compared with the distances between

the molecules. The expressions fluid particle and point in a fluid are to be

understood in a similar sense. If, for example, we speak of the displacement

of some fluid particle, we mean not the displacement of an individual mole-

cule, but that of a volume element containing many molecules, though still

regarded as a point.

The mathematical description of the state of a moving fluid is effected by
means of functions which give the distribution of the fluid velocity

v = v(x, y, z, t) and of any two thermodynamic quantities pertaining to

the fluid, for instance the pressure p(x, y, z, t) and the density p(x, y, z, t).

As is well known, all the thermodynamic quantities are determined by the

values of any two of them, together with the equation of state; hence, if

we are given five quantities, namely the three components of the velocity v,

the pressure p and the density p, the state of the moving fluid is completely

determined.

All these quantities are, in general, functions of the co-ordinates x, y, z
and of the time t. We emphasise that v(x, y, z

y
t) is the velocity of the

fluid at a given point (x, y, z) in space and at a given time t , i.e. it refers to

fixed points in space and not to fixed particles of the fluid ; in the course of

time, the latter move about in space. The same remarks apply to p and p.

We shall now derive the fundamental equations of fluid dynamics. Let
us begin with the equation which expresses the conservation of matter.

We consider some volume Vq of space. The mass of fluid in this volume
is / p d V, where p is the fluid density, and the integration is taken over the

volume Vo. The mass of fluid flowing in unit time through an element df

of the surface bounding this volume is pv • df ; the magnitude of the vector

df is equal to the area of the surface element, and its direction is along the

normal. By convention, we take df along the outward normal. Then p\ • df
is positive if the fluid is flowing out of the volume, and negative if the flow

1



2 Ideal Fluids §2

is into the volume. The total mass of fluid flowing out of the volume Vq

in unit time is therefore

<j> pv»df,

where the integration is taken over the whole of the closed surface surround-

ing the volume in question.

Next, the decrease per unit time in the mass of fluid in the volume Vq

can be written

8t

Equating the two expressions, we have

d

~dt

!

8 .

pdV.

fpdF = - (jjpv.df. (1.1)

The surface integral can be transformed by Green's formula to a volume

integral:

(J)
p v* df = div (pv) dV.

Thus

dp

J[^
+ div(pv)]dF=0.

Since this equation must hold for any volume, the integrand must vanish,

i.e.

This is the equation of continuity. Expanding the expression div (pv), we
can also write (1.2) as

dp/dt+ div (pv) = 0. (1.2)

ntinuity. Expanding the expression div (pv), we

dpjdt+p div v+vgradp = 0. (1.3)

The vector

J = pv (1.4)

is called the mass flux density. Its direction is that of the motion of the

fluid, while its magnitude equals the mass of fluid flowing in unit time

through unit area perpendicular to the velocity.

§2. Euler's equation

Let us consider some volume in the fluid. The total force acting on this

volume is equal to the integral

- jpdf



§2 Euler's equation 3

of the pressure, taken over the surface bounding the volume. Transforming

it to a volume integral, we have

- <j)/>df = - j gradpdV.

Hence we see that the fluid surrounding any volume element dV exerts

on that element a force -dVgradp. In other words, we can say that a

force — gradp acts on unit volume of the fluid.

We can now write down the equation of motion of a volume element in

the fluid by equating the force -gmdp to the product of the mass per unit

volume (/>) and the acceleration dvjdt:

p dvjdt = -grad/>. (2.1)

The derivative dv/dt which appears here denotes not the rate of change

of the fluid velocity at a fixed point in space, but the rate of change of the

velocity of a given fluid particle as it moves about in space. This derivative

has to be expressed in terms of quantities referring to points fixed in space.

To do so, we notice that the change dv in the velocity of the given fluid

particle during the time dt is composed of two parts, namely the change

during d* in the velocity at a point fixed in space, and the difference between

the velocities (at the same instant) at two points dr apart, where dr is the

distance moved by the given fluid particle during the time dt. The first

part is (dv/dt)dt
f
where the derivative dv/dt is taken for constant x, y, z,

i.e. at the given point in space. The second part is

dv dv dv t%
dx— + dv— + dz— = (dr-grad)v.

dx dy dz

Thus

dv = (dv/d*)d* + (dr-grad)v,

or, dividing both sides by dt,

— = — +(vgrad)v. (2.2)

dt dt
K

Substituting this in (2.1), we find

dv 1— + (v«grad)v = gradp. (2.3)

dt p

This is the required equation of motion of the fluid; it was first obtained

by L. Euler in 1755. It is called Euler's equation and is one of the funda-

mental equations of fluid dynamics.

If the fluid is in a gravitational field, an additional force />g, where g

is the acceleration due to gravity, acts on any unit volume. This force
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must be added to the right-hand side of equation (2.1), so that equation (2.3)

takes the form

— + (v.grad)v = - 5 L + g . (2 .4)
ot p

In deriving the equations of motion we have taken no account of processes
of energy dissipation, which may occur in a moving fluid in consequence of
internal friction (viscosity) in the fluid and heat exchange between different

parts of it. The whole of the discussion in this and subsequent sections of

this chapter therefore holds good only for motions of fluids in which thermal
conductivity and viscosity are unimportant; such fluids are said to be ideal.

The absence of heat exchange between different parts of the fluid (and
also, of course, between the fluid and bodies adjoining it) means that the
motion is adiabatic throughout the fluid. Thus the motion of an ideal

fluid must necessarily be supposed adiabatic.

In adiabatic motion the entropy of any particle of fluid remains constant
as that particle moves about in space. Denoting by s the entropy per unit
mass, we can express the condition for adiabatic motion as

dsjdt = 0, (2.5)

where the total derivative with respect to time denotes, as in (2.1), the rate

of change of entropy for a given fluid particle as it moves about. This
condition can also be written

ds/dt+v-grads *= 0. (2.6)

This is the general equation describing adiabatic motion of an ideal fluid.

Using (1.2), we can write it as an "equation of continuity" for entropy:

d(ps)jdt+div(psv) = 0. (2.7)

The product psv is the "entropy flux density".

It must be borne in mind that the adiabatic equation usually takes a much
simpler form. If, as usually happens, the entropy is constant throughout
the volume of the fluid at some initial instant, it retains everywhere the same
constant value at all times and for any subsequent motion of the fluid.

In this case we can write the adiabatic equation simply as

s = constant, (2.8)

and we shall usually do so in what follows. Such a motion is said to be
isentropic.

We may use the fact that the motion is isentropic to put the equation of

motion (2.3) in a somewhat different form. To do so, we employ the
familiar thermodynamic relation

dw = Tds+ Vdp,

where w is the heat function per unit mass of fluid (enthalpy), V = \jp
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is the specific volume, and T is the temperature. Since s = constant, we

have simply

dzv = Vdp = dp/p,

and so (grad p)jp = grad w. Equation (2.3) can therefore be written in

the form

dv/d*+ (vgrad)v = -gradw. (2.9)

It is useful to notice one further form of Euler's equation, in which it in-

volves only the velocity. Using a formula well known in vector analysis,

| gradv* = vxcurlv+(v»grad)v,

we can write (2.9) in the form

8v/dt+%gradv2 -YXC\irlv = -gradw. (2.10)

If we take the curl of both sides of this equation, we obtain

8—(curlv) = curl (v x curlv), (2.11)
8t

which involves only the velocity.

The equations of motion have to be supplemented by the boundary con-

ditions that must be satisfied at the surfaces bounding the fluid. For an

ideal fluid, the boundary condition is simply that the fluid cannot penetrate

a solid surface. This means that the component of the fluid velocity normal

to the bounding surface must vanish if that surface is at rest:

v» = 0. (2.12)

In the general case of a moving surface, vn must be equal to the correspond-

ing component of the velocity of the surface.

At a boundary between two immiscible fluids, the condition is that the

pressure and the velocity component normal to the surface of separation

must be the same for the two fluids, and each of these velocity components

must be equal to the corresponding component of the velocity of the

surface.

As has been said at the beginning of §1, the state of a moving fluid is

determined by five quantities : the three components of the velocity v and,

for example, the pressure p and the density p. Accordingly, a complete

system of equations of fluid dynamics should be five in number. For an

ideal fluid these are Euler's equations, the equation of continuity, and

the adiabatic equation.

PROBLEM
Write down the equations for one-dimensional motion of an ideal fluid in terms of the

variables a, t, where a (called a Lagrangian variable^) is the * co-ordinate of a fluid particle

at some instant t = t .

t Although such variables are usually called Lagrangian, it should be mentioned that the equations

of motion in these co-ordinates were first obtained by Euler, at the same time as equations (2.3).
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Solution. In these variables the co-ordinate * of any fluid particle at any instant is re-
garded as a function of t and its co-ordinate a at the initial instant: x = x(a, t). The condition
of conservation of mass during the motion of a fluid element (the equation of continuity)
is accordingly written p dx = p da, or

8x\
P'
\Sa/L

where p {a) is a given initial density distribution. The velocity of a fluid particle is, by
definition, y = (dx[dt)a , and the derivative (8vjdt)a gives the rate of change of the velocity
of the particle during its motion. Euler's equation becomes

/8v\

and the adiabatic equation is

dv\ 1 /dp\

8t

J

a po \da)t

{ds/dt)a = 0.

§3. Hydrostatics

For a fluid at rest in a uniform gravitational field, Euler's equation (2.4)
takes the form

gradp = pg. (3.1)

This equation describes the mechanical equilibrium of the fluid. (If there
is no external force, the equation of equilibrium is simply gradp = 0,
i.e. p = constant; the pressure is the same at every point in the fluid.)

Equation (3.1) can be integrated immediately if the density of the fluid

may be supposed constant throughout its volume, i.e. if there is no signi-

ficant compression of the fluid under the action of the external force. Taking
the -sr-axis vertically upward, we have

dp/dx = dpjdy = 0, Bpjdz = -pg.

Hence

P — —pgz+ constant.

If the fluid at rest has a free surface at height h, to which an external pressure

po, the same at every point, is applied, this surface must be the horizontal
plane z = h. From the condition^) = p for z = h, we find that the constant
is po+ pgh

y
so that

p=po+ Pg(h-z). (3.2)

For large masses of liquid, and for a gas, the density p cannot in general
be supposed constant; this applies especially to gases (for example, the
atmosphere). Let us suppose that the fluid is not only in mechanical
equilibrium but also in thermal equilibrium. Then the temperature is the
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same at every point, and equation (3.1) may be integrated as follows. We
use the familiar thermodynamic relation

d<D = -sdT+Vdp,

where <X> is the thermodynamic potential per unit mass. For constant tem-

perature

d0> = Vdp = dpip.

Hence we see that the expression (grad p)jp can be written in this case as

grad O, so that the equation of equilibrium (3.1) takes the form

grad$ = g.

For a constant vector g directed along the negative sr-axis we have

g = -grades).

Thus

grad(0+#sr) = 0,

whence we find that throughout the fluid

<!?+gz = constant; (3.3)

gz is the potential energy of unit mass of fluid in the gravitational field.

The condition (3.3) is known from statistical physics to be the condition

for thermodynamic equilibrium of a system in an external field.

We may mention here another simple consequence of equation (3.1).

If a fluid (such as the atmosphere) is in mechanical equilibrium in a gravi-

tational field, the pressure in it can be a function only of the altitude z

(since, if the pressure were different at different points with the same alti-

tude, motion would result). It then follows from (3.1) that the density

1 dp

gdz

is also a function of z only. The pressure and density together determine

the temperature, which is therefore again a function of z only. Thus, in

mechanical equilibrium in a gravitational field, the pressure, density and

temperature distributions depend only on the altitude. If, for example, the

temperature is different at different points with the same altitude, then

mechanical equilibrium is impossible.

Finally, let us derive the equation of equilibrium for a very large mass of

fluid, whose separate parts are held together by gravitational attraction

—

a star. Let <£ be the Newtonian gravitational potential of the field due to

the fluid. It satisfies the differential equation

A<f> = 47rG/>, (3.5)
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where G is the Newtonian constant of gravitation. The gravitational accelera-
tion is -grad

<f>,
and the force on a mass p is ~ P grad <f>.

The condition
of equilibrium is therefore

gradp = -pgrad<f>.

Dividing both sides by P , taking the divergence of both sides, and using
equation (3.5), we obtain

div|-gradpj = -4ttGp . (3.6)

It must be emphasised that the present discussion concerns only mechanical
equilibrium; equation (3.6) does not presuppose the existence of complete
thermal equilibrium.

If the body is not rotating, it will be spherical when in equilibrium,
and the density and pressure distributions will be spherically symmetrical.
Equation (3.6) in spherical co-ordinates then takes the form

1 d / r2 dp \

§4. The condition that convection is absent

A fluid can be in mechanical equilibrium (i.e. exhibit no macroscopic
motion) without being in thermal equilibrium. Equation (3.1), the condi-
tion for mechanical equilibrium, can be satisfied even if the temperature is
not constant throughout the fluid. However, the question then arises of
the stability of such an equilibrium. It is found that the equilibrium is
stable only when a certain condition is fulfilled. Otherwise, the equilibrium
is unstable, and this leads to the appearance in the fluid of currents which
tend to mix the fluid in such a way as to equalise the temperature. This
motion is called convection. Thus the condition for a mechanical equilibrium
to be stable is the condition that convection is absent. It can be derived as
follows.

Let us consider a fluid element at height z, having a specific volume
V(p, s), where p and s are the equilibrium pressure and entropy at height
z. Suppose that this fluid element undergoes an adiabatic upward displace-
ment through a small interval g; its specific volume then becomes V(p\ s),

where p' is the pressure at height z+ £. For the equilibrium to be stable, it

is necessary (though not in general sufficient) that the resulting force on
the element should tend to return it to its original position. This means
that the element must be heavier than the fluid which it "displaces" in its

new position. The specific volume of the latter is V(p\ s'), where s' is the
equilibrium entropy at height z+$. Thus we have the stability condition

V(p',s')-V(p',s)>0.
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Expanding this difference in powers of s'-s = gdsjdz, we obtain

> 0. (4.1)
/ 8V \ ds

\ 8s Jp dzdz

The formulae of thermodynamics give

8V\ T I 8V

p Cp \ 8 1 J p

where cv is the specific heat at constant pressure. Both cp and T are positive,

(v)-fO-\ 8s 1 v Cp \ 81 ) p

it at

so that we can write (4.1) as

(^)^>0. (4.2)
\8Tlpdz

The majority of substances expand on heating, i.e. {8V]8T)V > 0. The

condition that convection is absent then becomes

ds/dz > 0, (4.3)

i.e. the entropy must increase with height.

From this we easily find the condition that must be satisfied by the

temperature gradient dTjdz. Expanding the derivative dsjdz, we have

ds _ / 8s \ dT /8s\ #_£p^_/j^\ ^ >0
dz

=
\~8f)p~dz~

+
\8pl T dz~ T

7
dz \8T/pdz

>

Finally, substituting from (3.4) dpjdz = -g\V, we obtain

dT gT / 8V\

dz CpV \ 8T Jp

Convection can occur if the temperature falls with increasing height and the

magnitude of the temperature gradient exceeds (gTlcpV)(dV/8T)p.

If we consider the equilibrium of a column of a perfect gas, then

(T/V)(8V/8T)p = 1,

and the condition for stable equilibrium is simply

dTjdz > -gjcp. (4.5)

§5. Bernoulli's equation

The equations of fluid dynamics are much simplified in the case of steady

flow. By steady flow we mean one in which the velocity is constant in time

at any point occupied by fluid. In other words, v is a function of the co-

ordinates only, so that dvj8t = 0. Equation (2.10) then reduces to

|grada2-vxcurlv = -gradw. (5.1)

We now introduce the concept of streamlines. These are lines such that
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the tangent to a streamline at any point gives the direction of the velocity
at that point; they are determined by the following system of differential
equations

:

dx dy dz

VX Vy Vz ^ ' '

In steady flow the streamlines do not vary with time, and coincide with the
paths of the fluid particles. In non-steady flow this coincidence no longer
occurs: the tangents to the streamlines give the directions of the velocities
of fluid particles at various points in space at a given instant, whereas the
tangents to the paths give the directions of the velocities of given fluid
particles at various times.

We form the scalar product of equation (5.1) with the unit vector tangent
to the streamline at each point; this unit vector is denoted by 1. The pro-
jection of the gradient on any direction is, as we know, the derivative in that
direction. Hence the projection of grad to is dtofdl. The vector vxcurl v
is perpendicular to v, and its projection on the direction of 1 is therefore
zero.

Thus we obtain from equation (5.1)

8

-jfiv*
+ v>) = 0.

It follows from this that \v2+w is constant along a streamline:

%v2+w = constant.
(5 #3)

In general the constant takes different values for different streamlines.
Equation (5.3) is called Bernoulli's equation.

If the flow takes place in a gravitational field, the acceleration g due to
gravity must be added to the right-hand side of equation (5.1). Let us take
the direction of gravity as the *-axis, with z increasing upwards. Then the
cosine of the angle between the directions of g and 1 is equal to the derivative
— dsr/d/, so that the projection of g on 1 is

-gdzfdl.

Accordingly, we now have

8
—(iv2+ w+gz) = 0.

Thus Bernoulli's equation states that along a streamline

%v2+zo+gz = constant.
(5.4)

§6. The energy flux

Let us choose some volume element fixed in space, and find how the
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energy of the fluid contained in this volume element varies with time.

The energy of unit volume of fluid is

%pv2 +pe,

where the first term is the kinetic energy and the second the internal energy,

€ being the internal energy per unit mass. The change in this energy is

given by the partial derivative

d
—$pvz+ pe).

dt

To calculate this quantity, we write

d dp dv
—(W) = i^

2^ + pV-—

,

8f dt dt

or, using the equation of continuity (1.2) and the equation of motion (2.3),

o

—(ipv2) = -^2div(pv)-v.grad/>-pv-(v.grad)v.
dt

"

In the last term we replace v • (v • grad)v by \v • grad v\ and grad/> by

p grad zv-pT grad s (using the thermodynamic relation dw = Tds

+

(l/p)d/>),

obtaining

pi

—Qpv2
) = -|a2 div(pv)-pv.grad(^2+ «0+p:Zv.grad*.

dt

In order to transform the derivative d(pe)ldt, we use the thermodynamic

relation

de = Tds-pdV = Tds+(plP
2)dp.

Since €+pjp = e+pV is simply the heat function w per unit mass, we find

d[p€) = edp+ pde = zvdp+pTds,

and so

J^Z _ wJL + pT— = -zo div (pv)-pTv*grad s.

dt dt dt

Here we have also used the general adiabatic equation (2.6).

Combining the above results, we find the change in the energy to be

—Qpv^+pe) = -(^2 +w)div(/>v)-/>v.grad(^2+w),
dt

or, finally,

p*—(ipv2+ pe) = -div[pv(|©2+w)]. (6.1)

dt
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In order to see the meaning of this equation, let us integrate it over some
volume

:

—
J

(ipv2+ Pe)dV= -
J

div[pv$v2+ w)]dV,

or, converting the volume integral on the right into a surface integral,

—
J

(iPv2+pe)dV = - j>pv$v*+w).df. ^
The left-hand side is the rate of change of the energy of the fluid in some

given volume. The right-hand side is therefore the amount of energy
flowing out of this volume in unit time. Hence we see that the expression

pv{\v*+ w)
(6<3 )

may be called the energy flux density vector. Its magnitude is the amount of
energy passing in unit time through unit area perpendicular to the direction
of the velocity.

The expression (6.3) shows that any unit mass of fluid carries with it during
its motion an amount of energy w+ %v\ The fact that the heat function w
appears here, and not the internal energy e, has a simple physical signifi-
cance. Putting w = e+plp, we can write the flux of energy through a closed
surface in the form

- j>pv(±v2+ e)-df- jpvdf.

The first term is the energy (kinetic and internal) transported through the
surface in unit time by the mass of fluid. The second term is the work done
by pressure forces on the fluid within the surface.

§7. The momentum flux

We shall now give a similar series of arguments for the momentum of the
fluid. The momentum of unit volume is pv. Let us determine its rate of
change, 8(pv)/dt. We shall use tensor notation.f We have

8 dvt 8p
-(^) =

/)
__ + _^

aJ Jhe La
?
n S

"f
xes

*' *' - take the v
f
Iues 1. 2, 3, corresponding to the components of vectorsand tensors along the axes x, y, z respectively. We shall write sums of the type A • B = A.B,+AB +

a
~ ~f^ *n the

.

form AfBt simply, omitting the summation sign. We shall use a similar pro-cedure in all products involving vectors or tensors: summation over the values 1, 2, 3 is always under-stood when a Latin suffix appears twice in any term. Such suffixes are sometimes called dummy
suffixes In working with dummy suffixes it should be remembered that any pair of such suffixes maybe replaced by any other like letters, since the notation used for suffixes that take all possible valuesobviously does not affect the value of the sum.
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Using the equation of continuity (1.2) (with div(pv) written in the form

d{pvk)jdxk)

dp d(pvk)

dt dxk
'

and Euler's equation (2.3) in the form

dv{ dvi 1 dp
= —Vk ,

dt dxjc p dxt

we obtain

d dvt dp d(pvk)
(pVi) = —pvk Vi—

dV dxk dxt dxk

= -— - —ipViVk).
dxi dxk

We write the first term on the right in the formf

dp dp
—— = oik

-—

,

dxi dxk

and finally obtain

d dU ik

where the tensor Uik is defined as

Ilta = p8ik +pvivk . (7.2)

This tensor is clearly symmetrical.

To see the meaning of the tensor 11^, we integrate equation (7.1) over some

volume

:

dt]
H

J dxk

The integral on the right is transformed into a surface integral by Green's

formula :%

j (pvtdV= -j>Uik dfk . (7.3)

t 8,* denotes the unit tensor, i.e. the tensor with components which are unity for i
;
= k and zero

for »' 4= k. It is evident that hi]cAk = Ait where At is any vector. Similarly, if Am is a tensor of rank

two, we have the relations BaAia = An, BaAa = A iit and so on.

J The rule for transforming an integral over a closed surface into one over the volume bounded

by that surface can be formulated as follows: the surface element d/f must be replaced by the operator

dV • 8/dxi, which is to be applied to the whole of the integrand.
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The left-hand side is the rate of change of the *th component of the
momentum contained in the volume considered. The surface integral on
the right is therefore the amount of momentum flowing out through the
bounding surface in unit time. Consequently, U ikdfk is the rth component
of the momentum flowing through the surface element d/. If we write d/*
in the form nk d/, where d/is the area of the surface element, and n is a unit
vector along the outward normal, we find that Yliknk is the flux of the tth
component of momentum through unit surface area. We may notice that,
according to (7.2), Iliknk = pnt+ PViVknk . This expression can be written
in vector form

pn+ Pv(vn). (7.4)

Thus Tlik is the jth component of the amount of momentum flowing in
unit time through unit area perpendicular to the a^-axis. The tensor U ik
is called the momentum flux density tensor. The energy flux is determined by
a vector, energy being a scalar; the momentum flux, however, is determined
by a tensor of rank two, the momentum itself being a vector.
The vector (7.4) gives the momentum flux in the direction of n, i.e.

through a surface perpendicular to n. In particular, taking the unit vector
n to be directed parallel to the fluid velocity, we find that only the longitu-
dinal component of momentum is transported in this direction, and its
flux density is p+ pv2

. In a direction perpendicular to the velocity, only the
transverse component (relative to v) of momentum is transported, its flux
density being just p.

§8. The conservation of circulation

The integral

T = jvdl

taken along some closed contour, is called the velocity circulation round that
contour.

Let us consider a closed contour drawn in the fluid at some instant.
We suppose it to be a "fluid contour", i.e. composed of the fluid particles
that lie on it. In the course of time these particles move about, and the
contour moves with them. Let us investigate what happens to the velocity
circulation. In other words, let us calculate the time derivative

Tt§
v-dl.

We have written here the total derivative with respect to time, since we are
seeking the change in the circulation round a "fluid contour" as it moves
about, and not round a contour fixed in space.

To avoid confusion, we shall temporarily denote differentiation with respect
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to the co-ordinates by the symbol S, retaining the symbol d for differentia-

tion with respect to time. Next, we notice that an element dl of the length

of the contour can be written as the difference Sr between the radius vectors

r of the points at the ends of the element. Thus we write the velocity cir-

culation as § v • or. In differentiating this integral with respect to time, it

must be borne in mind that not only the velocity but also the contour itself

(i.e. its shape) changes. Hence, on taking the time differentiation under the

integral sign, we must differentiate not only v but also Sr:

d r f dv r dSr— * v«Sr = (b — «Sr+ <bv——

.

dtj 7 dt 7 dt

Since the velocity v is just the time derivative of the radius vector r,

we have

v.^ = v.S— = v-Sv = S(i*2).
dt dt

^

The integral of a total differential along a closed contour, however, is zero.

The second integral therefore vanishes, leaving

d r w r dv— d) v«or = d) ——or.
dt 7 7 dt

It now remains to substitute for the acceleration dv[dt its expression

from (2.9):

dv/dt = — gradw.

Using Stokes' formula, we then have

since curl grad w = 0. Thus, going back to our previous notation, we

findf

or

<j>vdl = constant. (8-1)

We have therefore reached the conclusion that, in an ideal fluid, the velocity

circulation round a closed "fluid" contour is constant in time {Kelvin's

theorem or the law of conservation of circulation).

It should be emphasised that this result has been obtained by using Euler's

equation in the form (2.9), and therefore involves the assumption that the

t This result remains valid in a uniform gravitational field, since in that case curl g = 0.
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flow is isentropic. The theorem does not hold for flows which are not
isentropic.f

§9. Potential flow

From the law of conservation of circulation we can derive an important
result. Let us at first suppose that the flow is steady, and consider a stream-
line of which we know that to = curl v (the vorticity) is zero at some
point. We draw an arbitrary infinitely small closed contour to encircle the
streamline at that point. By Stokes' theorem, the velocity circulation round
any infinitely small contour is equal to curl v . df, where df is the element of
area enclosed by the contour. Since the contour at present under considera-
tion is situated at a point where to = 0, the velocity circulation round it is
zero. In the course of time, this contour moves with the fluid, but always
remains infinitely small and always encircles the same streamline. Since
the velocity circulation must remain constant, i.e. zero, it follows that o
must be zero at every point on the streamline.

Thus we reach the conclusion that, if at any point on a streamline to = 0,
the same is true at all other points on that streamline. If the flow is not
steady, the same result holds, except that instead of a streamline we must
consider the path described in the course of time by some particular fluid
particle; J we recall that in non-steady flow these paths do not in general
coincide with the streamlines.

At first sight it might seem possible to base on this result the following
argument. Let us consider steady flow past some body. Let the incident
flow be uniform at infinity; its velocity v is a constant, so that co s on all
streamlines. Hence we conclude that to is zero along the whole of every
streamline, i.e. in all space.

A flow for which to = in all space is called a potentialflow or irrotational
flow, as opposed to rotational flow, in which the vorticity is not everywhere
zero. Thus we should conclude that steady flow past any body, with a
uniform incident flow at infinity, must be potential flow.

Similarly, from the law of conservation of circulation, we might argue
as follows. Let us suppose that at some instant we have potential flow
throughout the volume of the fluid. Then the velocity circulation round any
closed contour in the fluid is zero.ff By Kelvin's theorem, we could then
conclude that this will hold at any future instant, i.e. we should find that, if

t Mathematically, it is necessary that there should be a one-to-one relation between/) and p (which
tor isentropic flow is s(p, p) - constant); then -(1/p) grad/> can be written as the gradient of some
function, a result which is needed in deriving Kelvin's theorem.

J To avoid misunderstanding, we may mention here that this result has no meaning in turbulent
flow (cf. Chapter III). We may also remark that a non-zero vorticity may occur on a streamline after
the passage of a shock wave. We shall see that this is because the flow is no longer isentropic, and the
law of conservation of circulation cannot then be derived (§106).
tt Here we suppose for simplicity that the fluid occupies a simply-connected region of space The

same final result would be obtained for a multiply-connected region, but restrictions on the choice of
contours would have to be made in the derivation.
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there is potential flow at some instant, then there is potential flow at all

subsequent instants (in particular, any flow for which the fluid is initially

at rest must be a potential flow). This is in accordance with the fact that,

if to = 0, equation (2.11) is satisfied identically.

In fact, however, all these conclusions are of only very limited validity.

The reason is that the proof given above that to = all along a streamline

is, strictly speaking, invalid for a line which lies in the surface of a solid

body past which the flow takes place, since the presence of this surface makes

it impossible to draw a closed contour in the fluid encircling such a stream-

line. The equations of motion of an ideal fluid therefore admit solutions for

which separation occurs at the surface of the body: the streamlines, having

followed the surface for some distance, become separated from it at some

point and continue into the fluid. The resulting flow pattern is characterised

by the presence of a "surface of tangential discontinuity" proceeding from

the body; on this surface the fluid velocity, which is everywhere tangential

to the surface, has a discontinuity. In other words, at this surface one layer

of fluid "slides" on another. Fig. 1 shows a surface of discontinuity which

separates moving fluid from a region of stationary fluid behind the body.

Fig. 1

From a mathematical point of view, the discontinuity in the tangential velocity

component corresponds to a surface on which the vorticity is non-zero.

When such discontinuous flows are included, the solution of the equations

of motion for an ideal fluid is not unique : besides continuous flow, they admit

also an infinite number of solutions possessing surfaces of tangential dis-

continuity starting from any prescribed line on the surface of the body

past which the flow takes place. It should be emphasised, however, that

none of these discontinuous solutions is physically significant, since tangen-

tial discontinuities are wholly unstable, and therefore the flow would in fact

become turbulent (see Chapter III).

The actual physical problem of flow past a given body has, of course, a

unique solution. The reason is that ideal fluids do not really exist; any

actual fluid has a certain viscosity, however small. This viscosity may have

practically no effect on the motion of most of the fluid, but, no matter how
small it is, it will be important in a thin layer of fluid adjoining the body.
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The properties of the flow in this boundary layer decide the choice of one out
of the infinity of solutions of the equations of motion for an ideal fluid.
It is found that, in the general case of flow past bodies of arbitrary form,
solutions with separation must be rejected; separation, if it occurred, would
result in turbulence.

In spite of what we have said above, the study of the solutions of the
equations of motion for continuous steady potential flow past bodies is in
some cases meaningful. Although, in the general case of flow past bodies of
arbitrary form, the actual flow pattern bears almost no relation to the pattern
of potential flow, for bodies of certain special ("streamlined"—§46) shapes
the flow may differ very little from potential flow; more precisely, it will be
potential flow except in a thin layer of fluid at the surface of the body and in
a relatively narrow "wake" behind the body.
Another important case of potential flow occurs for small oscillations of

a body immersed in fluid. It is easy to show that, if the amplitude a of the
oscillations is small compared with the linear dimension / of the body
(a <^ /), the flow past the body will be potential flow. To show this, we esti-

mate the order of magnitude of the various terms in Euler's equation

dv/dt+(vgrad)v = — gradw.
The velocity v changes markedly (by an amount of the same order as the

velocity u of the oscillating body) over a distance of the order of the dimen-
sion / of the body. Hence the derivatives of v with respect to the co-ordinates
are of the order of u\l. The order of magnitude of v itself (at fairly small
distances from the body) is determined by the magnitude of u. Thus we
have (v • grad)v ~ u2/l. The derivative dvjdt is of the order of <ou, where
o> is the frequency of the oscillations. Since w ~ uja, we have dvjdt ~ u2/a.
It now follows from the inequality a <^l that the term (v • grad)v is small
compared with dvjdt and can be neglected, so that the equation of motion
of the fluid becomes dvjdt = -grad zo. Taking the curl of both sides, we
obtain d(curl v)jdt = 0, whence curl v = constant. In oscillatory motion,
however, the time average of the velocity is zero, and therefore curl v
= constant implies that curl v = 0. Thus the motion of a fluid executing
small oscillations is potential flow to a first approximation.
We shall now obtain some general properties of potential flow. We first

recall that the derivation of the law of conservation of circulation, and there-
fore all its consequences, were based on the assumption that the flow is

isentropic. If the flow is not isentropic, the law does not hold, and therefore,

even if we have potential flow at some instant, the vorticity will in general
be non-zero at subsequent instants. Thus only isentropic flow can in fact

be potential flow.

According to Stokes' theorem,

<pv«dl = <j>curlv»df,

where the integral on the right is taken over a surface bounded by the contour



§9 Potentialflow 19

in question. Hence we see that, in potential flow, the velocity circulation

round any closed contour is zero:

£vdl = 0. (9.1)

It follows from this that, in particular, closed streamlines cannot exist in

potential flow.f For, since the direction of a streamline is at every point

the direction of the velocity, the circulation along such a line can never be

zero.

In rotational motion the velocity circulation is not in general zero. In

this case there may be closed streamlines, but it must be emphasised that the

presence of closed streamlines is not a necessary property of rotational

motion.

Like any vector field having zero curl, the velocity in potential flow can

be expressed as the gradient of some scalar. This scalar is called the velocity

potential', we shall denote it by
(f>:

v = grad<£. (9.2)

Writing Euler's equation in the form (2.10)

0v/d*+|grada2-vxcurlv = -gradw

and substituting v = grad
<f>,

we have

grad I — + \v2+w I = 0,

whence

d<f>!dt+^v2+w =f(t), (9.3)

where f(t) is an arbitrary function of time. This equation is a first integral

of the equations of potential flow. The function /(*) in equation (9.3) can

be put equal to zero without loss of generality. For, since the velocity is

the space derivative of <j>, we can add to
<f>
any function of the time; replacing

by
<f>
+ $f(t)dt, we obtain zero on the right-hand side of (9.3).

For steady flow we have (taking the potential cf> to be independent of time)

dcf>jdt = 0, f{t) = constant, and (9.3) becomes Bernoulli's equation:

\v2+w = constant. (9.4)

It must be emphasised here that there is an important difference between the

Bernoulli's equation for potential flow and that for other flows. In the

general case, the "constant" on the right-hand side is a constant along any

given streamline, but is different for different streamlines. In potential flow,

t This result, like (9.1), may not be valid for motion in a multiply-connected region of space.

In potential flow in such a region, the velocity circulation may be non-zero if the closed contour

round which it is taken cannot be contracted to a point without crossing the boundaries of the region.
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however, it is constant throughout the fluid. This enhances the importance
of Bernoulli's equation in the study of potential flow.

§10. Incompressible fluids

In a great many cases of the flow of liquids (and also of gases), their
density may be supposed invariable, i.e. constant throughout the volume of
the fluid and throughout its motion. In other words, there is no noticeable
compression or expansion of the fluid in such cases. We then speak of
incompressible flow.

The general equations of fluid dynamics are much simplified for an
incompressible fluid. Euler's equation, it is true, is unchanged if we put
p = constant, except that p can be taken under the gradient operator in
equation (2.4)

:

— + (v-grad)v = -grad/ -
j +g. (10.1)

The equation of continuity, on the other hand, takes for constant p the
simple form

div v = 0. (10.2)

Since the density is no longer an unknown function as it was in the general
case, the fundamental system of equations in fluid dynamics for an incom-
pressible fluid can be taken to be equations involving the velocity only
These may be the equation of continuity (10.2) and equation (2.11):

8— (curlv) = curl <Vx curl v). (10.3)

Bernoulli's equation can be written in a simpler form for an incompressible
fluid. Equation (10.1) differs from the general Euler's equation (2.9) in that
it has grad {pip) in place of grad w. Hence we can write down Bernoulli's
equation immediately by simply replacing the heat function in (5.4) by pjp:

%v2+p/p+gz = constant. (10.4)

For an incompressible fluid, we can also write pjp in place of w in the
expression (6.3) for the energy flux, which then becomes

{v + >\pv\&*+-y (io.5)

For we have, from a well-known thermodynamic relation, the expression
de = Tds-pdV for the change in internal energy; for s = constant and
V ~ \Jp = constant, de = 0, i.e. e = constant. Since constant terms in
the energy do not matter, we can omit e in zv = e+pjp.
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The equations are particularly simple for potential flow of an incom-

pressible fluid. Equation (10.3) is satisfied identically if curl v = 0. Equa-

tion (10.2), with the substitution v = grad
<f>,

becomes

A<£ = 0, (10.6)

i.e. Laplace's equation^ for the potential
<f>.

This equation must be supple-

mented by boundary conditions at the surfaces where the fluid meets solid

bodies. At fixed solid surfaces, the fluid velocity component vn normal to

the surface must be zero, whilst for moving surfaces it must be equal to the

normal component of the velocity of the surface (a given function of time).

The velocity vn , however, is equal to the normal derivative of the potential

<f>
: vn = 8<f>ldn. Thus the general boundary conditions are that dj>\dn is

a given function of co-ordinates and time at the boundaries.

For potential flow, the velocity is related to the pressure by equation (9.3).

In an incompressible fluid, we can replace zo in this equation by pjp

:

a+iat+w+p/p = /(')• (10.7)

We may notice here the following important property of potential flow of

an incompressible fluid. Suppose that some solid body is moving through

the fluid. If the result is potential flow, it depends at any instant only on

the velocity of the moving body at that instant, and not, for example, on its

acceleration. For equation (10.6) does not explicitly contain the time, which

enters the solution only through the boundary conditions, and these contain

only the velocity of the moving body.

Fig. 2

From Bernoulli's equation, %v2+plp = constant, we see that, in steady

flow of an incompressible fluid (not in a gravitational field), the greatest

pressure occurs at points where the velocity is zero. Such a point usually

occurs on the surface of a body past which the fluid is moving (at the point

O in Fig. 2), and is called a stagnation point. If u is the velocity of the

t The velocity potential was first introduced by Euler, who obtained an equation of the form
(10.6) for it; this form later became known as Laplace's equation.
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incident current (i.e. the fluid velocity at infinity), and po the pressure at

infinity, the pressure at the stagnation point is

pmzx = po+ lpuK (10.8)

If the velocity distribution in a moving fluid depends on only two co-

ordinates (x and y, say), and the velocity is everywhere parallel to the

ry-plane, the flow is said to be two-dimensional or plane flow. To solve

problems of two-dimensional flow of an incompressible fluid, it is sometimes
convenient to express the velocity in terms of what is called the stream

function. From the equation of continuity divv = dvxjdx+dvy/dy = we
see that the velocity components can be written as the derivatives

vx = difjjdy, vy =- di/jjdx (10.9)

of some function ip(x, y), called the stream function. The equation of con-
tinuity is then satisfied automatically. The equation that must be satisfied

by the stream function is obtained by substituting (10.9) in equation (10.3).

We then obtain

d 8ib 8 8ib 8

* A
*-

a7a7 A*
+^ A*

= °- (1<U0)

If we know the stream function we can immediately determine the form of

the streamlines for steady flow. For the differential equation of the stream-

lines (in two-dimensional flow) is dxjvx = dyjvy or vy dx— vx dy =
;

it expresses the fact that the direction of the tangent to a streamline is the

direction of the velocity. Substituting (10.9), we have

difj 8i[i—dx H dy = d^r = 0,
dx dy

whence j/t == constant. Thus the streamlines are the family of curves obtained

by putting the stream function \p{x, y) equal to an arbitrary constant.

If we draw a curve between two points A and B in the ary-plane, the mass
flux Q across this curve is given by the difference in the values of the stream

function at these two points, regardless of the shape of the curve. For, if

vn is the component of the velocity normal to the curve at any point, we have

B B B

Q = p fvn dl = p j> (-vy dx+vx dy) = p \
dip,

A A A

or

Q = Mb-Ia). (10.11)

There are powerful methods of solving problems of two-dimensional poten-

tial flow of an incompressible fluid past bodies of various profiles, involving
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the application of the theory of functions of a complex variable.f The basis

of these methods is as follows. The potential and the stream function are

related to the velocity components by

vx = dcf>/dx = difi/dy, vy = 8<f>jdy = - dip/dx.

These relations between the derivatives of <j> and ijj, however, are the same,

mathematically, as the well-known Cauchy-Riemann conditions for a complex
expression

w =
<f>
+ irfi (10.12)

to be an analytic function of the complex argument z = x+iy. This means
that the function w(z) has at every point a well-defined derivative

dw d<f> dift—— = \- i— = vx—Wy. (10.13)
dz 8x 8x

y v '

The function to is called the complex potential, and dwfdz the complex velocity.

The modulus and argument of the latter give the magnitude v of the velocity

and the angle 6 between the direction of the velocity and that of the #-axis

:

dzvjdz = ve-*°. (10.14)

At a solid surface past which the flow takes place, the velocity must be
along the tangent. That is, the profile contour of the surface must be a

streamline, i.e. ^ = constant along it; the constant may be taken as zero,

and then the problem of flow past a given contour reduces to the deter-

mination of an analytic function tv(z) which takes real values on the contour.

The statement of the problem is more involved when the fluid has a free

surface ; an example is found in Problem 9.

The integral of an analytic function round any closed contour C is well

known to be equal to 2-rri times the sum of the residues of the function at its

simple poles inside C; hence

<J>

w'dz = 2rri^ Afo

k

where Ak are the residues of the complex velocity. We also have

<j> w' dz = <x> (vx— ivy)(dx+ idy)

=
<j> (vx dx+

v

y dy) + ij> (vx dy—

v

y dx).

f A more detailed account of these methods and their various applications is given by N. E. Kochin,
I. A. Kibel' and N. V. Roze, Theoretical Hydromechanics (Teoreticheskaya gidromekhanika), Part 1,

4th ed., Moscow 1948; L. I. Sedov, Two-dimensional Problems of Hydrodynamics and Aerodynamics
(Ploskie zadachi gidrodinamxki i a'erodinamiki), Moscow 1950.
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The real part of this expression is just the velocity circulation V round
the contour C. The imaginary part, multiplied by p, is the mass flux across

C; if there are no sources of fluid within the contour, this flux is zero and
we then have simply

r = 2in^Ak ; (10.15)

all the residues Ajc are in this case purely imaginary.

Finally, let us consider the conditions under which the fluid may be
regarded as incompressible. When the pressure changes adiabatically by
Ap, the density changes by Ap = {dpjdp) 8 Ap. According to Bernoulli's

equation, however, Ap is of the order of pv2 in steady flow. Thus Ap ~
{dpjdp) s pv2

. We shall show in §63 that the derivative (8pjdp) s is the square

of the velocity c of sound in the fluid, so that Ap ~ pv2jc2 . The fluid may be
regarded as incompressible if Ap/p <^ 1. We see that a necessary condition

for this is that the fluid velocity should be small compared with that of

sound

:

v <£ c. (10.16)

However, this condition is sufficient only in steady flow. In non-steady

flow, a further condition must be fulfilled. Let t and / be a time and a length

of the order of the times and distances over which the fluid velocity undergoes
significant changes. If the terms dvjdt and (l//>) gradp in Euler's equation

are comparable, we find, in order of magnitude, vjr ~ Apjlp or Ap ~ Ipvjr,

and the corresponding change in p is Ap ~ Ipvjrc2 . Now comparing the terms

dp/dt and p div v in the equation of continuity, we find that the derivative

dpjdt may be neglected (i.e. we may suppose p constant) if Apjr <^ pvjl,

or

t > Ijc. (10.17)

If the conditions (10.16) and (10.17) are both fulfilled, the fluid may be

regarded as incompressible. The condition (10.17) has an obvious meaning:

the time Ijc taken by a sound signal to traverse the distance / must be small

compared with the time t during which the flow changes appreciably, so

that the propagation of interactions in the fluid may be regarded as instan-

taneous.

PROBLEMS

Problem 1. Determine the shape of the surface of an incompressible fluid subject to a

gravitational field, contained in a cylindrical vessel which rotates about its (vertical) axis with
a constant angular velocity fi.

Solution. Let us take the axis of the cylinder as the ar-axis. Then vx = —yCl, v y = *Q,
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vz = 0. The equation of continuity is satisfied identically, and Euler's equation (10.1)

gives

p ox p ay p oz

The general integral of these equations is

p/p = %Q.2(x2+y2)—gz+ constant.

At the free surface p = constant, so that the surface is a paraboloid:

z = &2(x2+y2
)/gt

the origin being taken at the lowest point of the surface.

Problem 2. A sphere, of radius R, moves with velocity u in an incompressible ideal fluid.

Determine the potential flow of the fluid past the sphere.

Solution. The fluid velocity must vanish at infinity. The solutions of Laplace's equation

A <f>
= which vanish at infinity are well known to be ljr and the derivatives, of various orders,

of 1/r with respect to the co-ordinates (the origin is taken at the centre of the sphere). On
account of the complete symmetry of the sphere, only one constant vector, the velocity u,

can appear in the solution, and, on account of the linearity of both Laplace's equation and
the boundary condition,

<f>
must involve u linearly. The only scalar which can be formed

from u and the derivatives of 1/r is the scalar product u • grad(l/r). We therefore seek ^
in the form

<f>
= A.grad(l/r) = -(A.n)/r2,

where n is a unit vector in the direction of r. The constantA is determined from the condition

that the normal components of the velocities v and u must be equal at the surface at the

sphere, i.e. vn = u*n for r = R. This condition gives A = iuR3
, so that

The pressure distribution is given by equation (10.7)

:

P = po-^pv2
-p8<f>Jdt,

where p is the pressure at infinity. To calculate the derivative 8<f>[8t, we must bear in mind
that the origin (which we have taken at the centre of the sphere) moves with velocity u.

Hence

d<f>/dt = (d(f>/du)-u-wgrad(f).

The pressure distribution over the surface of the sphere is given by the formula

P = po+$pu2(9 cos2 d-5)+ipRn'du/dt,

where 6 is the angle between n and u.

Problem 3. The same as Problem 2, but for an infinite cylinder moving perpendicular to

its axis.f

t The solution of the more general problems of potential flow past an ellipsoid and an elliptical

cylinder may be found in: N. E. Kochin, I. A. Kibel' and N. V. Roze, Theoretical Hydromechanics
(Teoreticheskaya gidromekhanika), Part 1, 4th ed., pp. 265 and 355, Moscow 1948; H. Lamb, Hydro-
dynamics, 6th ed., §§103-116, Cambridge 1932.
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Solution. The flow is independent of the axial co-ordinate, so that we have to solve
Laplace's equation in two dimensions. The solutions which vanish at infinity are the first
and higher derivatives of log r with respect to the co-ordinates, where r is the radius vector
perpendicular to the axis of the cylinder. We seek a solution in the form

<£ = A«gradlogr = A»n/r,

and from the boundary conditions we obtain A = —B?u, so that

R2 R2

9= u«n, v = -~[2n(u.n)-u].

The pressure at the surface of the cylinder is given by the formula

P = A>+|pw2(4 cos2 d-3)+ p Rn-duJdt.

Problem 4. Determine the potential flow of an incompressible ideal fluid in an ellipsoidal
vessel rotating about a principal axis with angular velocity Q, and determine the total angular
momentum of the fluid.

Solution. We take Cartesian co-ordinates x, y, z along the axes of the ellipsoid at a given
instant, the z-axis being the axis of rotation. The velocity of points in the vessel is

u = SI x r,

so that the boundary condition v n = d<$>\dn = «„ is

d$\dn = Q(xny—ynx),

or, using the equation of the ellipsoid x2/a2 +y2
Jb

2 +z2/c2 = 1,

x d(f>

a2 8x b2 dy

The solution of Laplace's equation which satisfies this boundary condition is

a2-b2

*
= Q

a^b
2Xy ' (1)

The angular momentum of the fluid in the vessel is

M = p
J

(xvy-yvx)dV.

Integrating over the volume V of the ellipsoid, we have

QpV (cfi-b2
)
2

y d9 z 89 / 1 1 \

b2 dy c2 8z
J

\ b2 a2 J

M =
a2+b2

Formula (1) gives the absolute motion of the fluid relative to the instantaneous position
of the axes x, y, z which are fixed to the rotating vessel. The motion relative to the vessel
(i.e. relative to a rotating system of co-ordinates *, y, z) is found by subtracting the velocity
SiXr from the absolute velocity; denoting the relative velocity of the fluid by v', we have

d9 ^ 2Q.a2
,

2Q&2
v x = _ + ya = v, v ' = - v v'z = o.

dx a2 + b2 a2+ b2

The paths of the relative motion are found by integrating the equations x = v'x , y = v'y ,

and are the ellipses xs/az+y2/b2 = constant, which are similar to the boundary ellipse.
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Problem 5. Determine the flow near a stagnation point (Fig. 2).

Solution. A small part of the surface of the body near the stagnation point may be
regarded as plane. Let us take it as the ary-plane. Expanding

<f>
for *, y, z small, we have

as far as the second-order terms

<j> = ax+by+cz+Ax2+By2+ Cz2+Dxy+ Eyz+Fzx;

a constant term in
<f>

is immaterial. The constant coefficients are determined so that
<f>

satisfies

the equation A^ = and the boundary conditions v t = d<f>/dz = for z — and all x, y,

d<f>Jdx = d<f>/dy — 0fotx=y = z = (the stagnation point). This gives a = b = c = 0;
C = —A —B, E = F = 0. The term Dxy can always be removed by an appropriate rotation

of the * and y axes. We then have

<f>
= Ax2+ By2-(A + B)z2

. (1)

If the flow is axially symmetrical about the s-axis (symmetrical flow past a solid of revo-
lution), we must have A = B, so that

<f>
= A{x2+y2-2z2

).

The velocity components are vx = 2Ax, v v = 2Ay, v z = —\Az. The streamlines are given
by equations (5.2), from which we find x2z = clt y

2z = cit i.e. the streamlines are cubical

hyperbolae.

If the flow is uniform in the y-direction (e.g. flow in the #-direction past a cylinder with
its axis in the y-direction), we must have B = in (1), so that

<f>
= A{x2 -z*).

The streamlines are the hyperbolae xz = constant.

Problem 6. Determine the potential flow near an angle formed by two intersecting

planes.

Solution. Let us take polar co-ordinates r, 6 in the cross-sectional plane (perpendicular
to the line of intersection), with the origin at the vertex of the angle ; 6 is measured from one
of the arms of the angle. Let the angle be a radians ; for a < it the flow takes place within
the angle, for a > v outside it. The boundary condition that the normal velocity component
vanishes means that 8<f>l8B = for 6 = and = a. The solution of Laplace's equation
satisfying these conditions can be written!

<f>
= Arn cos nd, n — ir/a,

so that

vr = nAr11
-1 cos nd, vd = — nArn smnd.

For « < 1 (flow outside an angle; Fig. 3), vr becomes infinite as l/r1_n at the origin. For
n > 1 (flow inside an angle; Fig. 4), vT becomes zero for r = 0.

The stream function, which gives the form of the streamlines, is tjt = Arn sin nd. The
expressions obtained for <j> and ^ are the real and imaginary parts of the complex potential
to = Az n

.

Problem 7. A spherical hole of radius a is suddenly formed in an incompressible fluid

filling all space. Determine the time taken for the hole to be filled with fluid (Rayleigh
1917).

Solution. The flow after the formation of the hole will be spherically symmetrical, the

t We take the solution which involves the lowest positive power of r, since r is small.
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velocity at every point being directed to the centre of the hole. For the radial velocity
»,s»<0we have Euler's equation in spherical polar co-ordinates

:

dv dv 1 dp— + v— = -.

dt dr p dr
(1)

The equation of continuity gives

rh) = F(t), (2)

where F(t) is an arbitrary function of time; this equation expresses the fact that, since the
fluid is incompressible, the volume flowing through any spherical surface is independent of
the radius of that surface.

Fig. 3

Fig. 4

Substituting v from (2) in (1), we have

F'(t) dv 1 dp—— + v— =
8r p 8r

Integrating this equation over r from the instantaneous radius R = R(t) < a of the hole to
infinity, we obtain

F'(t) po

R P
(3)

where V = dR(t)!dt is the rate of change of the radius of the hole, and p is the pressure at
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infinity; the fluid velocity at infinity is zero, and so is the pressure at the surface of the hole.

From equation (2) for points on the surface of the hole we find

F{i) = RHt)V{t\

and, substituting this expression for F(t) in (3), we obtain the equation

3F2 dF2 p

Integrating with the boundary condition V = for R — a (the fluid being initially at rest),

we have

dR _

Hence we have for the required total time for the hole to be filled

dt V [_ 3p \R3 /.

/ 3P r dR
T ~ J 2^} ^/[{ajRf-\]

This integral reduces to a beta function, and we have finally

V 2pQ r(i/3) V po

Problem 8. A sphere immersed in an incompressible fluid expands according to a given
law R = R(t). Determine the fluid pressure at the surface of the sphere.

Solution. Let the required pressure be P(t). Calculations exactly similar to those of
Problem 7, except that the pressure at r = R is P(t) and not zero, give instead of (3) the
equation

R * p p

and accordingly instead of (4) the equation

P 2 dR'

Bearing in mind the fact that V = dR/dt, we can write the expression for P(t) in the form

i
rd2(i?2) /cLR\2-|

Problem 9. Determine the form of a jet emerging from an infinitely long slit in a plane
wall.

Solution. Let the wall be along the *-axis in the xy-plane, and the aperture be the
segment —\a < x < \a of that axis, the fluid occupying the half-plane y > 0. Far from the
wall [y -* co) the fluid velocity is zero, and the pressure is p , say.

At the free surface of the jet (BC and B'C in Fig. 5a) the pressure p = 0, while the velocity
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takes the constant value vx = V(2po/p)> by Bernoulli's equation. The wall lines are stream-
lines, and continue into the free boundary of the jet. Let ip be zero on the line ABC; then,
on the line A'B'C, tft = —Q/p, where Q = pa^ is the rate at which the fluid emerges in
the jet (alt vx being the jet width and velocity at infinity). The potential

<f> varies from — oo
to + oo both along ABC and along A'B'C; let

<f>
be zero at B and B'. Then, in the plane of

the complex variable w, the region of flow is an infinite strip of width Qjp (Fig. 5b). (The
points in Fig. 5b, c, d are named to correspond with those in Fig. 5a.)

c,c

8

(c)

®

->o3£

I* ® ©

C

(b)

l-Q/p

\B

-<£ / B' Cjc' B A
=*1

| "l

r

(d)

Fig. 5

We introduce a new complex variable, the logarithm of the complex velocity:

f 1 da; "] v±

(1)

here v1e
iin is the complex velocity of the jet at infinity. On A'B' we have 6 = 0; on AB,

9 ~ —t; on BC and B'C, v = vu while at infinity in the jet = \ir. In the plane of the
complex variable £, therefore, the region of flow is a semi-infinite strip of width n in the
right half-plane (Fig. 5c). If we can now find a conformal transformation which carries the
strip in the to-plane into the half-strip in the £-plane (with the points corresponding as in
Fig. 5), we shall have determined w as a function of dzo/ds, and zv can then be found by a
simple quadrature.

In order to find the desired transformation, we introduce one further auxiliary complex
variable, u, such that the region of flow in the M-pIane is the upper half-plane, the points
B and B' corresponding to u = ±1, the points C and C" to u — 0, and the infinitely distant

points A and A' to u = ± oo (Fig. 5d). The dependence of v) on this auxiliary variable is

given by the conformal transformation which carries the upper half of the u-plane into the
strip in the w-plane. With the above correspondence of points, this transformation is

to = lOgtt.

fm
(2)

In order to find the dependence of £ on u, we have to find a conformal transformation of the
half-strip in the £-plane into the upper half of the u-plane. Regarding this half-strip as a
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triangle with one vertex at infinity, we can find the desired transformation by means of the

well-known Schwarz-Christoffel formula; it is

£ = — *sin-1 #. (3)

Formulae (2) and (3) give the solution of the problem, since they furnish the dependence of

dzo/dz on to in parametric form.

Let us now determine the form of the jet. On BC we have to —
<f>, £ = i($n+0), while u

varies from 1 to 0. From (2) and (3) we obtain

<f>
= --^log(-cos0), (4)

prr

and from (1) we have

d(f}jdz = vie-i0,

or

d* = dx+ i dy = —e^ d<f> = -V tanfl dd,
Vl IT

whence we find, by integration with the conditions y — 0,x = ia for 9 — —n, the form ofthe
jet, expressed parametrically. In particular, the compression of the jet is aja = 7r/(2+w)
= 0-61.

§11. The drag force in potential flow past a body

Let us consider the problem of potential flow of an incompressible ideal

fluid past some solid body. This problem is, of course, completely equivalent

to that of the motion of a fluid when the same body moves through it. To
obtain the latter case from the former, we need only change to a system of

co-ordinates in which the fluid is at rest at infinity. We shall, in fact, say in

what follows that the body is moving through the fluid.

Let us determine the nature of the fluid velocity distribution at great

distances from the moving body. The potential flow of an incompressible

fluid satisfies Laplace's equation,
/\<f>

= 0. We have to consider solutions

of this equation which vanish at infinity, since the fluid is at rest there.

We take the origin somewhere inside the moving body; the co-ordinate

system moves with the body, but we shall consider the fluid velocity distri-

bution at a particular instant. As we know, Laplace's equation has a solution

1/r, where r is the distance from the origin. The gradient and higher space

derivatives of 1/r are also solutions. All these solutions, and any linear

combination of them, vanish at infinity. Hence the general form of the

required solution of Laplace's equation at great distances from the body is

a 1

<f>
= h A«grad- + ...

,

r r

where a and A are independent of the co-ordinates; the omitted terms con-
tain higher-order derivatives of 1/r. It is easy to see that the constant a
must be zero. For the potential

<f>
= —ajr gives a velocity

v = — grad(a/r) = ar/rs .

Let us calculate the corresponding mass flux through some closed surface,
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say a sphere of radius R. On this surface the velocity is constant and equal
to a/R2

; the total flux through it is therefore p{a\R2)^R2 = Ampa. But the
flux of an incompressible fluid through any closed surface must, of course,
be zero. Hence we conclude that a = 0.

Thus <j> contains terms of order \jr2 and higher. Since we are seeking the
velocity at large distances, the terms of higher order may be neglected, and
we have

<f>
= A-grad(l/r) = -A-n/r2

, (11.1)

and the velocity v = grad
<f>

is

v = (A-grad) grad- = -^ '-

, (11.2)
r r3

where n is a unit vector in the direction of r. We see that at large distances

the velocity diminishes as l/r3. The vector A depends on the actual shape
and velocity of the body, and can be determined only by solving completely
the equation A<f> = at all distances, taking into account the appropriate
boundary conditions at the surface of the moving body.

The vector A which appears in (11.2) is related in a definite manner to

the total momentum and energy of the fluid in its motion past the body.
The total kinetic energy of the fluid (the internal energy of an incompressible
fluid is constant) is E = % fpv2dV, where the integration is taken over all

space outside the body. We take a region of space V bounded by a sphere of

large radius R, whose centre is at the origin, and first integrate only over
V, later letting R tend to infinity. We have identically

jv2 dV = ju2 dV+ j (v+u).(v-u)dV,

where u is the velocity of the body. Since u is independent of the co-ordinates,

the first integral on the right is simply u2(V- V ), where V is the volume of

the body. In the second integral, we write the sum v+uas grad
(<f>
+ u . r)

;

using the facts that div v = (equation of continuity) and div u = 0, we
have

j* v2 dV = u\V- Vo)+ j div [(<£+ u-r)(v- u)]dF.

The second integral is now transformed into an integral over the surface S
of the sphere and the surface So of the body :

jv2 dV = u2(V-V )+ j> (^+u.r)(v-u).df.
s+sa

On the surface of the body, the normal components of v and u are equal by
virtue of the boundary conditions ; since the vector df is along the normal
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to the surface, it is clear that the integral over So vanishes identically. On
the remote surface S we substitute the expressions (11.1), (11.2) for

<f>
and v,

and neglect terms which vanish as R -> oo. Writing the surface element

on the sphere S in the form df = nR2do, where do is an element of solid angle,

we obtain

jv*dV = u?(±ttB?-Vo)+
J"

[3(A.n)(u.n)-(u.n)2fl3]do.

Finally, effecting the integration! and multiplying by \p> we obtain the

following expression for the total energy of the fluid

:

E = £p(4ttA.u- V u*). (11.3)

As has been mentioned already, the exact calculation of the vector A
requires a complete solution of the equation /\<f>

= 0» taking into account the

particular boundary conditions at the surface of the body. However, the

general nature of the dependence of A on the velocity u of the body can be

found directly from the facts that the equation is linear in
<f>,

and the boundary

conditions are linear in both
<f>
and u. It follows from this that A must be a

linear function of the components of u. The energy E given by formula

(11.3) is therefore a quadratic function of the components of u, and can be

written in the form

E = \mikUiUk, (11.4)

where m^ is some constant symmetrical tensor, whose components can be

calculated from those of A; it is called the induced-mass tensor.

Knowing the energy E, we can obtain an expression for the total momentum
P of the fluid. To do so, we notice that infinitesimal changes in E and P
are related byJ dE = u • dP; it follows from this that, if E is expressed in

t The integration over o is equivalent to averaging the integrand over all directions of the vector

n and multiplying by 4w. To average expressions of the type (A • n)(B • n)= ^4,«tJBfcWfc, where A, B

are constant vectors, we notice that the mean values tiittje form a symmetrical tensor, which can be

expressed in terms of the unit tensor S«: w,w* = aS,*. Contracting with respect to the suffixes i

and k, and remembering that «*»!< = 1, we find that a = \. Hence

(A-nXB.n) = VfaAtB* = £A- B.

X For, let the body be accelerated by some external force F. The momentum of the fluid will thereby

be increased; let it increase by dP during a time df. This increase is related to the force by dP = F df,

and on scalar multiplication by the velocity u we have u • dP = F • u df, i.e. the work done by the

force F acting through the distance u df, which in turn must be equal to the increase dE in the energy

of the fluid.

It should be noticed that it would not be possible to calculate the momentum directly as the integral

pv dV over the whole volume of the fluid. The reason is that this integral, with the velocity v
distributed in accordance with (11.2), diverges, in the sense that the result of the integration, though

finite, depends on how the integral is taken: on effecting the integration over a large region, whose

dimensions subsequently tend to infinity, we obtain a value depending on the shape of the region

(sphere, cylinder, etc.). The method of calculating the momentum which we use here, starting from

the relation u • dP = dE, leads to a completely definite final result, given by formula (11.6), which

certainly satisfies the physical relation between the rate of change of the momentum and the forces

acting on the body.
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the form (11.4), the components of P must be

Pi = mikuk . (H.5)

Finally, a comparison of formulae (11.3), (11.4) and (11.5) shows that P
is given in terms of A by

P = 4ttPA- p Vo\i. (11.6)

It must be noticed that the total momentum of the fluid is a perfectly definite
finite quantity.

The momentum transmitted to the fluid by the body in unit time is dP/d*.
With the opposite sign it evidently gives the reaction F of the fluid, i.e. the
force acting on the body

:

F = -dP/d*. (H.7)

The component of F parallel to the velocity of the body is called the drag
force, and the perpendicular component is called the lift force.

If it were possible to have potential flow past a body moving uniformly
in an ideal fluid, we should have P = constant, since u = constant, and so
F = 0. That is, there would be no drag and no lift; the pressure forces
exerted on the body by the fluid would balance out (a result known as
d'Alemberfs paradox). The origin of this paradox is most clearly seen by
considering the drag. The presence of a drag force in uniform motion of a
body would mean that, to maintain the motion, work must be continually
done by some external force, this work being either dissipated in the fluid or
converted into kinetic energy of the fluid, and the result being a continual
flow of energy to infinity in the fluid. There is, however, by definition
no dissipation of energy in an ideal fluid, and the velocity of the fluid set in
motion by the body diminishes so rapidly with increasing distance from the
body that there can be no flow of energy to infinity.

However, it must be emphasised that all these arguments relate only to
the motion of a body in an infinite volume of fluid. If, for example, the
fluid has a free surface, a body moving uniformly parallel to this surface will
experience a drag. The appearance of this force (called wave drag) is due to
the occurrence of a system of waves propagated on the free surface, which
continually remove energy to infinity.

Suppose that a body is executing an oscillatory motion under the action
of an external force f. When the conditions discussed in §10 are fulfilled,

the fluid surrounding the body moves in a potential flow, and we can use the
relations previously obtained to derive the equations of motion of the body.
The force f must be equal to the time derivative of the total momentum of
the system, and the total momentum is the sum of the momentum Mvl
of the body (M being the mass of the body) and the momentum P of the fluid

:

Mdu/d*+dP/d* = f.



§1

1

The drag force in potentialflow past a body 35

Using (11.5), we then obtain

M dui/dt+ mac dujc/dt = /*,

which can also be written

^(M8ik+mik)=fi . (11.8)
at

This is the equation of motion of a body immersed in an ideal fluid.

Let us now consider what is in some ways the converse problem. Suppose

that the fluid executes some oscillatory motion on account of some cause

external to the body. This motion will set the body in motion also.f We
shall derive the equation of motion of the body.

We assume that the velocity of the fluid varies only slightly over distances

of the order of the dimension of the body. Let v be what the fluid velocity

at the position of the body would be if the body were absent; that is, v is the

velocity of the unperturbed flow. According to the above assumption, v

may be supposed constant throughout the volume occupied by the body.

We denote the velocity of the body by u as before.

The force which acts on the body and sets it in motion can be determined

as follows. If the body were wholly carried along with the fluid (i.e. if

v = u), the force acting on it would be the same as the force which would act

on the liquid in the same volume if the body were absent. The momentum of

this volume of fluid is pVo\, and therefore the force on it is pVo dv/d*.

In reality, however, the body is not wholly carried along with the fluid;

there is a motion of the body relative to the fluid, in consequence of which

the fluid itself acquires some additional motion. The resulting additional

momentum of the fluid is mik{uk-vk), since in (11.5) we must now replace u

by the velocity u-v of the body relative to the fluid. The change in this

momentum with time results in the appearance of an additional reaction

force on the body of -mik d{uk-vk)\dt. Thus the total force on the body is

pVo— mik—(uk-vk).
dt dt

This force is to be equated to the time derivative of the body momentum.

Thus we obtain the following equation of motion:

d dvi d
—(Mui) = pV — mik—(uk-vk).
dt dt dt

Integrating both sides with respect to time, we have

Mui = pVoVi-mik(uk-vk),
or

(MSik+mik)uk = (mik+ pVo8ik)vk . (11.9)

f For example, we may be considering the motion of a body in a fluid through which a sound wave

is propagated, the wavelength being large compared with the dimension of the body.
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We put the constant of integration equal to zero, since the velocity u of
the body in its motion caused by the fluid must vanish when v vanishes.
The relation obtained determines the velocity of the body from that of the
fluid. If the density of the body is equal to that of the fluid (M = PV ),we have u = v, as we should expect.

PROBLEMS

sin°p
UT
i?
N

* ?
omparinS

f
("-1

) ^th the expression for * for flow past a sphere obtained in
$1U, Problem 2, we see that

where R is the radius of the sphere. The total momentum transmitted to the fluid bv the
sphere is, according to (11.6), P = firpJPu, so that the tensor mt1c is

•

P™.™ 1 . Obtain
i
the equation of motion for a sphere executing an oscillatory motion

in an ideal fluid, and for a sphere set in motion by an oscillating fluid.

he expression i

A = IRSvl,

The total mon
pF?u, so that

Wik = frrpR3 8nc.

The drag on the moving sphere is

F = -frrpl&du/dt,

and the equation of motion of the sphere oscillating in the fluid is

i^ipo+ip)^. = f,

where Po is the density of the sphere. The coefficient of du/dtis the virtual mass ofthe sphere •

it consists of the actual mass of the sphere and the induced mass, which in this case is half
the mass of the fluid displaced by the sphere.

If the sphere is set in motion by the fluid, we have for its velocity, from (1 1.9),

3p
u = v.

p + 2po

If the density of the sphere exceeds that of the fluid (Po >/>),«< v, i.e. the sphere "lagsbehind the fluid; if Po < p, on the other hand, the sphere "goes ahead".

Problem 2. Express the moment of the forces acting on a body moving in a fluid interms of the vector A.

Solution As we know from mechanics, the moment M of the forces acting on a body is

iT™£ sa T lt8
e
/f«ran«Wtt function (in this case, the energy E) by the relation

7 .

' d
'
where S0 ls the vector of an infinitesimal rotation of the body, and &E is the

resulting change in E. Instead of rotating the body through an angle W (and correspondingly
changing the components mic), we may rotate the fluid through an angle -80 relative to thebody (and correspondingly change the velocity u). We have Su = — 80xu, so that

8E= P-Su = -SS-uxP.
Using the expression (11.6) for P, we then obtain the required formula:

M = -uxP = 4ttPA x u.

§12. Gravity waves

The free surface of a liquid in equilibrium in a gravitational field is a plane.
If, under the action of some external perturbation, the surface is moved
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from its equilibrium position at some point, motion will occur in the liquid.

This motion will be propagated over the whole surface in the form of waves,
which are called gravity waves, since they are due to the action of the gravita-

tional field. Gravity waves appear mainly on the surface of the liquid,

they affect the interior also, but less and less at greater and greater depths.

We shall here consider gravity waves in which the velocity of the moving
fluid particles is so small that we may neglect the term (v • grad)v in compari-
son with dvjdt in Euler's equation. The physical significance of this is easily

seen. During a time interval of the order of the period t of the oscillations

of the fluid particles in the wave, these particles travel a distance of the order

of the amplitude a of the wave. Their velocity is therefore of the order of

afr. It varies noticeably over time intervals of the order of t and distances

of the order of A in the direction of propagation (where A is the wavelength).

Hence the time derivative of the velocity is of the order of v/t, and the space
derivatives are of the order of vj\. Thus the condition (v • grad)v <^ dvjdt

is equivalent to

1 (a\ 2 a \

A \t/ t r

or

a < A, (12.1)

i.e. the amplitude of the oscillations in the wave must be small compared with
the wavelength. We have seen in §9 that, if the term (v«grad)v in the

equation of motion may be neglected, we have potential flow. Assuming the

fluid incompressible, we can therefore use equations (10.6) and (10.7).

The term \v2 in the latter equation may be neglected, since it contains the
square of the velocity; putting f(t) = and including a term pgz on account
of the gravitational field, we obtain

P = -pgz-pd+Jdt. (12.2)

We take the -sr-axis vertically upwards, as usual, and the ry-plane in the

equilibrium surface of the fluid.

Let us denote by £ the z co-ordinate of a point on the surface; £ is a func-
tion of x, y and t. In equilibrium £ = 0, so that £ gives the vertical displace-

ment of the surface in its oscillations. Let a constant pressurepo (for example,
the atmospheric pressure) act on the surface. Then we have at the surface,

by (12.2),

Po = —pgl— ptyjdt.

Instead of the potential <j>, we can use a potential <j>' = </>+ (pojp)t\ this makes
no difference, since v = grad

<f>
= grad

<f>'.
The term p is removed from

the above equation, however, and on dropping the prime we obtain the
condition at the surface as

gt+(d<f>jdt)z^ = 0. (12.3)

Since the amplitude of the wave oscillations is small, the displacement I
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is small. Hence we can suppose, to the same degree of approximation, that
the vertical component of the velocity of points on the surface is simply the
time derivative of £:

But v z = 8<f>/8z, so that

W/9*)z-t = dt/dt.

Substituting £ from (12.3) we have

\8z gdfl/^

Since the oscillations are small, we can take the value of the parenthesis
at z = instead of z = £. Thus we have finally the following system of
equations to determine the motion in a gravitational field:

A<f> = 0, (12.4)

(86 1 8U\
h^-dr =°- (12.5)
\8z g 8t2 7 Z=0

v }

We shall here consider waves on the surface of a fluid whose area is un-
limited, and we shall also suppose that the wavelength is small in comparison
with the depth of the fluid; we can then regard the fluid as infinitely deep.
We shall therefore omit the boundary conditions at the sides and bottom.

Let us consider a gravity wave propagated along the #-axis and uniform
in the ^-direction; in such a wave, all quantities are independent of y. We
shall seek a solution which is a simple periodic function of time and of the
co-ordinate x, i.e. we put

<f>
= f(z) cos (kx— cot).

Here <o is what is called the circular frequency (we shall say simply the

frequency) of the wave; l-njoa is the period of the motion at a given point;

k is called the wave number; A = 2-njk is the wavelength, i.e. the period of the
motion along the x-axis at a given time.

Substituting in the equation

8U 8%
A<^ = —- + —- = 0,

8x2 8z2

we have

d2//d#2-#2f = o.

This equation has the solutions eks and e~kz. We must take the former,

since the latter gives an unlimited increase of
<f>

as we go into the interior of
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the fluid (we recall that the fluid occupies the region z < 0). Thus we obtain

for the velocity potential

<f>
= Aekz cos (kx- cot). (12.6)

We have also to satisfy the boundary condition (12.5). Substituting (12.6),

we obtain

k-afi/g = 0,

or

ft>2 = kg. (12.7)

This gives the relation between the wave number and the frequency of a
gravity wave.

The velocity distribution in the moving fluid is found by simply taking

the space derivatives of
<f>

:

vx = - Akekz sin (kx- cot), vz = Akekz cos (kx- cot). (12.8)

We see that the velocity diminishes exponentially as we go into the fluid.

At any given point in space (i.e. for given x, z) the velocity vector rotates

uniformly in the ##-plane, its magnitude remaining constant and equal to

Akehz
.

Let us also determine the paths of fluid particles in the wave. We tem-
porarily denote by x, z the co-ordinates of a moving fluid particle (and not
of a point fixed in space), and by *o, %o the values of re and z at the equilibrium
position of the particle. Then vx = d#/d*, v z = dz/dt, and on the right-

hand side of (12.8) we may approximate by writing xo, zq in place of x, z,

since the oscillations are small. An integration with respect to time then
gives

k
x—xo= —A—ekzo cos (kxo— cot),

CO

k
(12 -9)

z-zq = -A—ekzo sin (kx - cot).

CO

Thus the fluid particles describe circles of radius (Akjco)eh^ about the points

(*o, #o); this radius diminishes exponentially with increasing depth.
The velocity of propagation U of the wave is, as we shall show in §66,

U = Bwjdk. Substituting here <o = \/(kg), we find that the velocity of pro-
pagation of gravity waves on an unbounded surface of infinitely deep fluid

is

u = W(g/k) = M£A/27r).
v
i2.i0)

It increases with wavelength.
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PROBLEMS

Problem 1. Determine the velocity of propagation of gravity waves on an unbounded
surface of fluid of depth h.

Solution. At the bottom of the fluid, the normal velocity component must be zero,
i.e. v z = 8<f>ldz = for z = —h. From this condition we find the ratio of the constants
A and B in the general solution

<f>
= [Aekz +Be-te]cos(kx-cot).

The result is

<f>
= A cos(kx— cot) cosh. k(z+h).

From the boundary condition (12.5) we find the relation between k and to to be

co2 — gk tanh kh.

The velocity of propagation of the wave is

1
/ s r , ,, kh -\—— tanhM + .

V k tanh kh |_ cosh2 kh J

For M> 1 we have the result (12.10), and for kh < 1 the result (13.10) (see below).

u =
2

Problem 2. Determine the relation between frequency and wavelength for gravity waves
on the surface separating two fluids, the upper fluid being bounded above by a fixed horizontal
plane, and the lower fluid being similarly bounded below. The density and depth of the
lower fluid are p and h, those of the upper fluid are p' and h', and p > />'.

Solution. We take the «y-plane as the equilibrium plane of separation of the two fluids.

Let us seek a solution having in the two fluids the forms

<f>
= A cosh k{z+h) cos(kx— cot),

4>' = B cosh. k(z—h')cos(kx— cot),

so that the conditions at the upper and lower boundaries are satisfied; see the solution to
Problem 1. At the surface of separation, the pressure must be continuous; by (12.2), this
gives the condition

8<f> 8cf)'

Pgt+P— = Pgt+p'—- for z = £,
ot ot

i =^(p'i- t̂
)- (2)

Moreover, the velocity component v z must be the same for each fluid at the surface of separa-
tion. This gives the condition

8<f>/8z = dtfjdz for z = 0. (3)

Now Vz = 8<f>/8z ~ dtjet and, substituting (2), we have

86 82
<f>'

82cf>

5(P-P')- = P'^--^. (4)

Substituting (1) in (3) and (4) gives two homogeneous linear equations for A and B, and the



§12 Gravity waves 41

condition of compatibility gives

2
kg(p-p')

CO* =
p coth.kh-\-p coihhh'

For kh^> 1, kh'^> 1 (both fluids very deep),

p-p
,2 =

p + p

while for kh <^ 1, kh' <^ 1 (long waves),

g{p-p')hh'
= k /

g{p-py

V ph' + p',ph' + p'h

Problem 3. Determine the relation between frequency and wavelength for gravity waves

propagated simultaneously on the surface of separation and on the upper surface of two fluid

layers, the lower (of density p) being infinitely deep, and the upper (of density p') being of

depth h' and having a free upper surface.

Solution. We take the ary-plane as the equilibrium plane of separation of the two fluids.

Let us seek a solution having in the two fluids the forms

= Aekz cos(&v- cot),

(f)'
= [Be~kz+Cekz

] cos(kx- cot).

At the surface of separation, i.e. for z = 0, we have the conditions (see Problem 2)

8$ af 8* ,s*f a^- = ^. S{P-P}^ = P-^-^ (2)

and at the upper surface, i.e. for z = h', the condition

dz g dtz

The first equation (2), on substitution in (1), gives A — C—B, and the remaining two con-

ditions then give two equations for B and C; from the condition of compatibility we obtain a

quadratic equation for o>2, whose roots are

CO"
2 = &£ ,

CO* = kg.S
p+p

' + (p-p')e-2M> *

For h' -* oo these roots correspond to waves propagated independently on the surface of

separation and on the upper surface.

Problem 4. Determine the possible frequencies of oscillationf (stationary waves) of a

fluid of depth h in a rectangular tank of width a and length b.

Solution. We take the * and y axes along two sides of the tank. Let us seek a solution

in the form of a stationary wave:

(f>
= f(x,y) cosh k(z+ h) cos cot.

t See §68.
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We obtain for/the equation

32f 82f
dx2 dy2

and the condition at the free surface gives, as in Problem 1, the relation

co2 = gk tanh kh.

We take the solution of the equation for/ in the form

/ = cos/w cos qy, p2 + q
2 = k2 .

At the sides of the tank we must have the conditions

vx = d<t>jdx = for x = 0, a;

vy = 8<f>/dy = for y = 0, b.

Hence we find p — mirfa, q = nn/b, where m, n are integers. The possible values of k%

are therefore

k2 = 7T
2
l — + —U2 b2 J

§13. Long gravity waves

Having considered gravity waves of length small compared with the depth
of the fluid, let us now discuss the opposite limiting case of waves of length
large compared with the depth. These are called long waves.
Let us examine first the propagation of long waves in a channel. The

channel is supposed to be along the #-axis, and of infinite length. The
cross-section of the channel may have any shape, and may vary along its

length. We denote the cross-sectional area of the fluid in the channel by
S = S(x, t). The depth and width of the channel are supposed small in
comparison with the wavelength.

We shall here consider longitudinal waves, in which the fluid moves along
the channel. In such waves the velocity component vx along the channel is

large compared with the components vy, v z .

We denote vx by v simply, and omit small terms. The ^-component of
Euler's equation can then be written in the form

d<v 1 dp

8t p dx

and the ^-component in the form

1 dp

p dz

we omit terms quadratic in the velocity, since the amplitude of the wave is
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again supposed small. From the second equation we have, since the pressure

at the free surface (z = £) must be po,

P =#)+#>(£-4
Substituting this expression in the first equation, we obtain

dvjdt = -gdlfdx. (13.1)

The second equation needed to determine the two unknowns v and £ can

be derived similarly to the equation of continuity; it is essentially the equation

of continuity for the case in question. Let us consider a volume of fluid

bounded by two plane cross-sections of the channel at a distance dx apart.

In unit time a volume (Sv)x of fluid flows through one plane, and a volume
(Sv)x+ax through the other. Hence the volume of fluid between the two
planes changes by

8(Sv)
(Sv)x+Ax -(Sv)x = —

—

dx.
ox

Since the fluid is incompressible, however, this change must be due simply to

the change in the level of the fluid. The change per unit time in the volume
of fluid between the two planes considered is (dSJdt)dx. We can therefore

write

8S 8(Sv)
dx = dx,

dt dx
or

dS 8(Sv)— + -—- = 0. (13.2)
8t dx

This is the required equation of continuity.

Let .So be the equilibrium cross-sectional area of the fluid in the channel.

Then S = So+S', where S' is the change in the cross-sectional area caused

by the wave. Since the change in the fluid level is small, we can write S'

in the form ££, where b is the width of the channel at the surface of the fluid.

Equation (13.2) then becomes

81 8(S v)
b± + JlAjL = o. (13.3)
8t 8x

Differentiating (13.3) with respect to t and substituting 8v\8t from (13.1),

we obtain

8H g d I 8l\ _
~8&~bl)x\ °!hc)

~
^ '

'

If the channel cross-section is the same at all points, then So = constant

and

8H gS e2£-1 _ *_!? _± = o. (13.5)
8& b 8x2

v J

This is called a wave equation: as we shall show in §63, it corresponds to



44 Ideal Fluids §14

the propagation of waves with a velocity U which is independent of frequency
and is the square root of the coefficient of 82£/8x2 . Thus the velocity of propa-
gation of long gravity waves in channels is

U = V(gSo/b). (13.6)

In an entirely similar manner, we can consider long waves in a large tank,
which we suppose infinite in two directions (those of x and y). The depth
of fluid in the tank is denoted by h. The component v z of the velocity is now
small. Euler's equations take a form similar to (13.1):

8vx dl dvy 81

The equation of continuity is derived in the same way as (13.2) and is

8h 8{hvx) dihvy)

8t dx 8y

We write the depth h as h +£, where h is the equilibrium depth. Then

$t d(hovx) 8(hovy)

Let us assume that the tank has a horizontal bottom (ho = constant).
Differentiating (13.8) with respect to t and substituting (13.7), we obtain

TF- gh
[l*

+
w)- ' (13 '9)

This is again a (two-dimensional) wave equation; it corresponds to waves
propagated with a velocity

U = V(gfy- (13.10)

§14. Waves in an incompressible fluid

There is a kind of gravity wave which can be propagated inside an incom-
pressible fluid. Such waves are due to an inhomogeneity of the fluid caused
by the gravitational field. The pressure (and therefore the entropy s) neces-
sarily varies with height; hence any displacement of a fluid particle in height
destroys the mechanical equilibrium, and consequently causes an oscillatory
motion. For, since the motion is adiabatic, the particle carries with it to its

new position its old entropy s, which is not the same as the equilibrium value
at the new position.

We shall suppose below that the wavelength is small in comparison with
distances over which the gravitational field causes a marked change in density;
and we shall regard the fluid itself as incompressible. This means that we
can neglect the change in its density caused by the pressure change in the
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wave. The change in density caused by thermal expansion cannot be neglec-

ted, since it is this that causes the phenomenon in question.

Let us write down a system of hydrodynamic equations for this motion.

We shall use a suffix to distinguish the values of quantities in mechanical

equilibrium, and a prime to mark small deviations from those values. Then
the equation of conservation of the entropy s = sq+s' can be written, to

the first order of smallness,

ds'ldt+vgradso = 0, (14.1)

where so, like the equilibrium values of other quantities, is a given function

of the vertical co-ordinate z.

Next, in Euler's equation we again neglect the term (v • grad)v (since

the oscillations are small); taking into account also the fact that the equili-

brium pressure distribution is given by grad po = pog, we have to the same

accuracy

dv grad/) grad/>' grad/>o
,

St p po p
2

Since, from what has been said above, the change in density is due only to

the change in entropy, and not to the change in pressure, we can put

\ &sq fp

and we then obtain Euler's equation in the form

*.«(*•) ,_**£. (14.2)
dt po\ dso fp po

We can take po under the gradient operator, since, as stated above, we always

neglect the change in the equilibrium density over distances of the order of a

wavelength. The density may likewise be supposed constant in the equation

of continuity, which then becomes

div v = 0. (14.3)

We shall seek a solution of equations (14-1)—(14.3) in the form of a plane

wave:

v = constant x eUk-r~ut
\

and similarly for s' and />'. Substitution in the equation of continuity (14.3)

gives

vk = 0, (14.4)

i.e. the fluid velocity is everywhere perpendicular to the wave vector k (a

transverse wave). Equations (14.1) and (14.2) give

teas —
1 / 8P0 \ ,

ik
,= v«gradso> —iosw = — I I s g p .

po \ «fro 1 v po
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The condition v • k = gives with the second of these equations

** -(£)/*
and, eliminating v and s' from the two equations, we obtain the desired
relation between the wave vector and the frequency,

1 / dp \ ds

Here and henceforward we omit the suffix zero to the equilibrium values of
thermodynamic quantities; the #-axis is vertically upwards, and 6 is the
angle between this axis and the direction of k. If the expression on the right
of (14.5) is positive, the condition for the stability of the equilibrium distribu-
tion s(z) (the condition that convection is absent—see §4) is fulfilled.

We see that the frequency depends only on the direction of the wave
vector, and not on its magnitude. For 6 = we have w = 0; this means
that waves of the type considered, with the wave vector vertical, cannot
exist.

If the fluid is in both mechanical equilibrium and complete thermodynamic
equilibrium, its temperature is constant and we can write

^1 _ /
8s

\
dP _ (

6s
\

dz~ \dp) T dz
Pg
\dpJ T

'

Finally, using the well-known thermodynamic relations

\8p) T p\dT)p
* \ds)P CpKdTjp

where cp is the specific heat per unit mass, we find

/ T g I dp \

In particular, for a perfect gas,

m
~vbo siaS-

<i4-7>



CHAPTER II

VISCOUS FLUIDS

§15. The equations of motion of a viscous fluid

Let us now study the effect of energy dissipation, occurring during the

motion of a fluid, on that motion itself. This process is the result of the

thermodynamic irreversibility of the motion. This irreversibility always

occurs to some extent, and is due to internal friction (viscosity) and thermal

conduction.

In order to obtain the equations describing the motion of a viscous fluid,

we have to include some additional terms in the equation of motion of an ideal

fluid. The equation of continuity, as we see from its derivation, is equally

valid for any fluid, whether viscous or not. Euler's equation, on the other

hand, requires modification.

We have seen in §7 that Euler's equation can be written in the form

dt dxic

where II <* is the momentum flux density tensor. The momentum flux

given by formula (7.2) represents a completely reversible transfer of momen-
tum, due simply to the mechanical transport of the different particles of fluid

from place to place and to the pressure forces acting in the fluid. The viscosity

(internal friction) is due to another, irreversible, transfer of momentum from

points where the velocity is large to those where it is small.

The equation of motion of a viscous fluid may therefore be obtained by
adding to the "ideal" momentum flux (7.2) a term — o'ac which gives the

irreversible "viscous" transfer of momentum in the fluid. Thus we write

the momentum flux density tensor in a viscous fluid in the form

Ilifc = pSik+pviVjc-a'ik = — Pffc+pOiZfe. (15.1)

The tensor

<*ik = —pbik+o'ik (15.2)

is called the stress tensor, and o'tk the viscosity stress tensor, 0% gives the part

of the momentum flux that is not due to the direct transfer of momentum
with the mass of moving fluid.f

The general form of the tensor a'ik can be established as follows. Processes

f We shall see below that a'a contains a term proportional to Sa, i.e. of the same form as the
term pSa. When the momentum flux tensor is put in such a form, therefore, we should specify what
is meant by the pressure p; see the end of §49.

47
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of internal friction occur in a fluid only when different fluid particles move
with different velocities, so that there is a relative motion between various

parts of the fluid. Hence a'ijc must depend on the space derivatives of the

velocity. If the velocity gradients are small, we may suppose that the momen-
tum transfer due to viscosity depends only on the first derivatives of the velo-

city. To the same approximation, o'oc may be supposed a linear function of

the derivatives dvt/dxk. There can be no terms in o'ac independent of

dvijdxjc, since a'ik must vanish for v — constant. Next, we notice that o'tk

must also vanish when the whole fluid is in uniform rotation, since it is clear

that in such a motion no internal friction occurs in the fluid. In uniform rota-

tion with angular velocity SI, the velocity v is equal to the vector product

ftxr. The sums

8vt dvjc

dxjc Sxt

are linear combinations of the derivatives dvi/dxic, and vanish when v = Slxr.

Hence o'ik must contain just these symmetrical combinations of the deriva-

tives dvi/dxjc.

The most general tensor of rank two satisfying the above conditions is

/ dvt 8vk \ 8vt

a a = a -— + —- +b—-8ik ,

\ OXjc OXi / oxi

where a and b are independent of the velocity.f It is convenient, however,

to write this expression in a slightly different form, in which a and b are

replaced by other constants:

o i* = t] — +— - |8«r— 1 +£8o—. (15.3)
\ OXjc OXi OX\ I OXl

The expression in parentheses has the property of vanishing on contraction

with respect to i and k. The constants r\ and £ are called coefficients of viscosity.

As we shall show in §§16 and 49, they are both positive:

•n
> 0, £ > 0. (15.4)

The equations of motion of a viscous fluid can now be obtained by simply

adding the expressions da'ujdxie to the right-hand side of Euler's equation

/ 8vt dvi \ dp

P\ 1" V]c = —
*\ 8t dxjcf 8xi

Thus we have

/ dvi dvi \
P h Vic

\ 8t dxjcf

dp 8 1/ 8vi 8vjc 8vi\\ 8 / dvt \

= -— +—U — +— -P**— ) +—U— • (15.5)
8xi 8xjc \ \ dxjc 8xi 8xi J ) dxt \ 8xi J

f In malang this statement we use the fact that the fluid is isotropic, as a result of which its proper-

ties must be described by scalar quantities only (in this case, a and b).
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This is the most general form of the equations of motion of a viscous fluid.

The quantities rj and £ are functions of pressure and temperature. In

general, p and T, and therefore rj and £, are not constant throughout the

fluid, so that v\ and £ cannot be taken outside the gradient operator.

In most cases, however, the viscosity coefficients do not change noticeably

in the fluid, and they may be regarded as constant. We then have

Sff'a; _ / &Vi 8 8vk 2 d dvi\ a dvi

dxjc \ dxjcdxic dxi dxjc 3 dx\ dxi / dx% dxi

82Vi d dvi

OXlJOXic OXi OXi

But

dvi/dxi = divv, d^i/dx^xjc == A»<-

Hence we can write the equation of motion of a viscous fluid, in vector form,

p\ f- (v«grad)v = -grad/> + i7Av+ (£+ |^)graddivv. C15.6)

If the fluid may be regarded as incompressible, div v = 0, and the last

term on the right of (15.6) is zero. Thus the equation of motion of an

incompressible viscous fluid is

dv 1 7)

h (v«grad)v = gradp + -Av. (15.7)
dt p p

This is called the Navier-Stokes equation. The stress tensor in an incom-

pressible fluid takes the simple form

(dv{ dvjc \

h—— I. (15.8)
CXlc OXi I

We see that the viscosity of an incompressible fluid is determined by only

one coefficient. Since most fluids may be regarded as practically incompres-

sible, it is this viscosity coefficient t] which is generally of importance. The
ratio

v = vIp (15.9)

is called the kinematic viscosity (while rj itself is called the dynamic viscosity).

We give below the values of ?) and v for various fluids, at a temperature of

20° C:
r\ (g/cm sec) v (cm2/sec)

Water 0-010 0-010

Air 0-00018 0-150

Alcohol 0-018 0-022

Glycerine 8-5 6-8

Mercury 0-0156 0-0012
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It may be mentioned that the dynamic viscosity of a gas at a given tempera-
ture is independent of the pressure. The kinematic viscosity, however, is

inversely proportional to the pressure.

The pressure can be eliminated from the Navier-Stokes equation in the
same way as from Euler's equation. Taking the curl of both sides of equation
(15.7), we obtain, instead of equation (2.11) as for an ideal fluid,

8—(curl v) = curl (vx curlv) + vA(curlv). (15.10)

We must also write down the boundary conditions on the equations of
motion of a viscous fluid. There are always forces of molecular attraction
between a viscous fluid and the surface of a solid body, and these forces have
the result that the layer of fluid immediately adjacent to the surface is brought
completely to rest, and "adheres" to the surface. Accordingly, the boundary
conditions on the equations of motion of a viscous fluid require that the fluid
velocity should vanish at fixed solid surfaces:

v = 0. (15.11)

It should be emphasised that both the normal and the tangential velocity
component must vanish, whereas for an ideal fluid the boundary conditions
require only the vanishing of vn.f

In the general case of a moving surface, the velocity v must be equal to
the velocity of the surface.

It is easy to write down an expression for the force acting on a solid
surface bounding the fluid. The force acting on an element of the surface is

just the momentum flux through this element. The momentum flux through
the surface element df is

nW/& = (pvivjc— oi]c)6f}c.

Writing &fk in the form d/& = tik df, where n is a unit vector along the normal,
and recalling that v = at a solid surface, $ we find that the force P acting
on unit surface area is

Pi = -OiWUc = pni-a'iknk . (15.12)

The first term is the ordinary pressure of the fluid, while the second is the
force of friction, due to the viscosity, acting on the surface. We must em-
phasise that n in (15.12) is a unit vector along the outward normal to the fluid,

i.e. along the inward normal to the solid surface.

If we have a surface of separation between two immiscible fluids, the
conditions at the surface are that the velocities of the fluids must be equal

f We may note that, in general, Euler's equations cannot be satisfied with the boundary condi-
tion v = 0.

X In determining the force acting on the surface, each surface element must be considered in a
frame of reference in which it is at rest. The force is equal to the momentum flux only when the
surface is fixed.
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and the forces which they exert on each other must be equal and opposite.

The latter condition is written

«l,fc oi,tt+ «2,t 02, tk = 0,

where the suffixes 1 and 2 refer to the two fluids. The normal vectors ni and

112 are in opposite directions, i.e. »i f
< = — »2,* = »*, so that we can write

»< 01, ik = ni ai,ik- (15.13)

At a free surface of the fluid the condition

(Jikfik = a'iknic—pni = (15.14)

must hold.

We give below, for reference, expressions for the components of the stress

tensor and the Navier-Stokes equation in cylindrical and spherical co-

ordinates. In cylindrical co-ordinates r,
<f>,

z the components of the stress

tensor are

8vr /l 8vr 8v^ V6 \^=-^ + 2,—, ^ = ^__ + ___j,

l\ dvt vr \ I 8v$ 1 8vz \

8vz I 8vz 8vr \
a. --,+2^, ,„.„(_ + _). (15.15)

The three components of the Navier-Stokes equation and the equation of

continuity are

8vr 8vr v6 8vr 8vr vs
2

+ vr + ——- + vz
—

8t 8r r
8(f>

8z r

\8p t 82vr 1 82vr 82vr 1 8vr 2 8v$ vr \

p 8r \ 8r2 ~r* 8<f>
2 8z2 r~8~r

~~
~^~8~I~"r2 )'

8V4 8v^ v* dv, to* v^
8t 8r r

8(f>
8z r

1 dp /82v6 1 82v# 8*vt 1 ty 2 dvr v+\

pr
8<f>

\8r2 r2
8<f>

2 8z2 r 8r r2
8<f>

r2 V
8vz 8vz Vx 8vz 8vz

1- vr h ——- + vz
8t 8r r 8$ 8z

1 8p / 82vz 1 82vz 82vz 1 8vz \= \- v \
1 1 1 I

P 8z \ 8r2 r2 8<j>
2 8z2 r 8r V

8vr 1 dv+ 8vz vr ,---,*— + - +— + _ = o. (15.16)
8r r 8j> 8z r

J
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In spherical co-ordinates r, <£, 9 we have for the stress tensor

8vr

8r

°M = -P+ 2V (

—— -— + — + ,

\ r sin 8<p r r ]

~ V
\r 86

+
~8r~~7) y

"" ^Usin^
8<f> r 89 r F

(dVj 1 d*,r w .\

\ dr r sm 9
8<f>

r I

while the equations of motion are

8vr 8vr v 8vr vA 8vr v^+vJ
1- vr 1 1 - L.

8t dr r 86 rsin9
8<f> r

\8p rl= + v \-
p 8r lr

Oaa = —

<JrO

\8p pi 82(rvr) 1 82vr 1 82vr cot 6 8vr

p 8r lr 8r2 r2 86* r2 sin2 9
8<f>

2 r2 89

2 8ve8vo_ 2 8v4 2vr 2cot0 1

89
~

r2 sin9^~~r^ r^~ T
8v 8ve vd dve v* 8v vrve vA

2 cot6
+ vr 1 1

^ j.
" *

8t 8r r 89 rsin0
8(f> r

— d
JL J 1 8^rv^ 1 g% 1 82v cot9 8ve

pr 89
V
[r 8r2 r2 89* r2 sin2 9 8<j>

2
+

r2 ~8~9

2 cos 9 8v$ 2 8vr ve

r2 sin2 9
8<f>

r2 89 r2 sin2 9 ]•

8v
4> ,

dv
<i> ,

*>0 &># V, 8v, VrV, VeV,COt9

8t 8r r 89 r sin9
8<f> r r

^__J g/> ri ^2K) i a% l a%
pr sin 9 8<f>

V
[r 8r2 r2 802 r2 sin2 9 8<j?

+

cot 9 8v
4>

2 8vr 2cos0 8ve v^

r2 89 r2 sin9
8<f>

r2 sin2 9
8<f>

r2 sin2 9 ]
8vr 1 8ve 1 8v& 2vr vg cot9— + - ~- + —^~a -~ +— + = 0. (15.18)
8r r 89 rsm9 8j> r r

J
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Finally, we give the equation that must be satisfied by the stream function

*fj(x,y) in two-dimensional flow of an incompressible viscous fluid. It is

obtained by substituting vx = difj/dy, vy = -8tf,]dx, v z = in equation

(15.10):

8
(ai\ # g(A»A)

, H g(A0)

^Alfl) -Yx -^- + Vy-^r- v^ = ()
-

(15 ' 19)

§16. Energy dissipation in an incompressible fluid

The presence of viscosity results in the dissipation of energy, which is

finally transformed into heat. The calculation of the energy dissipation is

especially simple for an incompressible fluid.

The total kinetic energy of an incompressible fluid is

£kin = |pjVdF.

We take the time derivative of this energy, writing 8(%pv2)ldt = pvtdvijdt

and substituting for 8v\\8t the expression for it given by the Navier-Stokes
equation

:

dvi _ dvi 1 dp 1 da'ik

The result is

8t dxjc p 8x% p dxjc

d
1

da'—(wv2) = -pv«(vgrad)v-v«grad/>+^
dt

°
dxk

= -
/
,(v.grad)(i^ + ^) + div(v.a')-cT^—

.

\ p I oxk

Here v • a' denotes the vector whose components are Vio'uc- Since div v =
for an incompressible fluid, we can write the first term on the right as a

divergence

:

-(1^2) = _ div
^
v^2 + t^j _v .

<J

-o'i^. (16.1)

The expression in brackets is just the energy flux density in the fluid:

the term pv$v2 +pjp) is the energy flux due to the actual transfer of fluid

mass, and is the same as the energy flux in an ideal fluid (see (10.5)). The
second term, v • o\ is the energy flux due to processes of internal friction.

For the presence of viscosity results in a momentum flux a'a; a transfer

of momentum, however, always involves a transfer of energy, and the
energy flux is clearly equal to the scalar product of the momentum flux

and the velocity.
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If we integrate (16.1) over some volume V, we obtain

d

Yt
UPv*dV= - L Lv/i^ + ^-v.o'j.df- ( a'ik—dV. (16.2)

The first term on the right gives the rate of change of the kinetic energy of

the fluid in V owing to the energy flux through the surface bounding V.

The integral in the second term is consequently the decrease per unit time
in the kinetic energy owing to dissipation.

If the integration is extended to the whole volume of the fluid, the surface

integral vanishes (since the velocity vanishes at infinity-]-), and we find the

energy dissipated per unit time in the whole fluid to be

Ekin = — cr'oc dV.
J dxjc

In incompressible fluids, the tensor cr'a is given by (15.8), so that

dvi dvi 1 dvi dvjc \a ik = 7]
(

1 J.
dxjc 8xk \ dxjc 8xi 1

It is easy to verify that this expression can be written

/ 8vj dvk \ 2

\ dxk dxt I

Thus we have finally for the energy dissipation in an incompressible fluid

•
, C ( dvi dvk \

2

^--HU +id dF- (16-3)

The
<
dissipation leads to a decrease in the mechanical energy, i.e. we must

have Ekia < 0. The integral in (16.3), however, is always positive. We
therefore conclude that the viscosity coefficient rj is always positive.

PROBLEM
Transform the integral (16.3) for potential flow into an integral over the surface bounding

the region of flow.

Solution. Putting dvt/8xk — dvkldxt and integrating once by parts, we find

^=- 2
"J(£)

v =- 2"J-£^

E'kin = — t)
J
grada2 «df.

t We are considering the motion of the fluid in a system of co-ordinates such that the fluid is at

rest at infinity. Here, and in similar cases, we speak, for the sake of definiteness, of an infinite volume
of fluid, but this implies no loss of generality. For a fluid enclosed in a finite volume, the surface
integral again vanishes, because the normal velocity component at the surface vanishes.
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§17. Flow in a pipe

We shall now consider some simple problems of motion of an incom-
pressible viscous fluid.

Let the fluid be enclosed between two parallel planes moving with a

constant relative velocity u. We take one of these planes as the #;sr-plane,

with the #-axis in the direction of u. It is clear that all quantities depend only

on y, and that the fluid velocity is everywhere in the ^-direction. We have
from (15.7) for steady flow

dpjdy = 0, d2v/dy2 = 0.

(The equation of continuity is satisfied identically.) Hence p = constant,

v = ay+b. For y — and y = h{h being the distance between the planes)

we must have respectively v = and v = u. Thus

v = yu/h. (17.1)

The fluid velocity distribution is therefore linear. The mean fluid velocity,

defined as

1

h

V =
h J

V dy'

is

v = \u. (17.2)

From (15.12) we find that the normal component of the force on either plane

is just p, as it should be, while the tangential friction force on the plane

y = is

vxy = -q dv/dy = rju/h; (17.3)

the force on the plane y = h is — rjujk.

Next, let us consider steady flow between two fixed parallel planes in the

presence of a pressure gradient. We choose the co-ordinates as before;

the ff-axis is in the direction of motion of the fluid. The Navier-Stokes

equations give, since the velocity clearly depends only on y,

d2v 1 dp dp

dy2 r] 8x dy

The second equation shows that the pressure is independent of y, i.e. it

is constant across the depth of the fluid between the planes. The right-hand

side of the first equation is therefore a function of x only, while the left-hand

side is a function ofy only; this can be true only if both sides are constant.

Thus dpjdx — constant, i.e. the pressure is a linear function of the co-ordi-

nate x along the direction of flow. For the velocity we now obtain

1 dp
v = — —y

2+ ay+b.
2?7 dx
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The constants a and b are determined from the boundary conditions, v =
for y = and jy = h. The result is

°=-^SiA2-0v-W]. (17.4)

Thus the velocity varies parabolically across the fluid, reaching its maximum
value in the middle. The mean fluid velocity (averaged over the depth of the
fluid) is again

1
h

on calculating this, we find

h* dp

We may also calculate the frictional force axy = r}(dv/dy)y= acting on one
of the fixed planes. Substitution from (17.4) gives

oxy = -\h dp/dx. (17.6)

Finally, let us consider steady flow in a pipe of arbitrary cross-section
(the same along the whole length of the pipe, however). We take the axis of
the pipe as the ff-axis. The fluid velocity is evidently along the *-axis at all

points, and is a function of y and z only. The equation of continuity is

satisfied identically, while the y and z components of the Navier-Stokes
equation again give dpjdy = dp/dz = 0, i.e. the pressure is constant over
the cross-section of the pipe. The ^-component of equation (15.7) gives

d"h) 8zv 1 dp

Qy2 Qz2 yj dx

Hence we again conclude that dp/dx = constant; the pressure gradient may
therefore be written - Ap//, where Ap is the pressure difference between the
ends of the pipe and / is its length.

Thus the velocity distribution for flow in a pipe is determined by a two-
dimensional equation of the form A v = constant. This equation has to be
solved with the boundary condition v = at the circumference of the cross-
section of the pipe. We shall solve the equation for a pipe of circular cross-

section. Taking the origin at the centre of the circle and using polar co-
ordinates, we have by symmetry v = v(r). Using the expression for the
Laplacian in polar co-ordinates, we have

1 d / dv\ Ap

r dr \ dr J rjl
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Integrating, we find

Ap
v= -r2+ alogr+ b. (17.8)

The constant a must be put equal to zero, since the velocity must remain

finite at the centre of the pipe. The constant b is determined from the re-

quirement that v = for r = R, where R is the radius of the pipe. We then

find

v = -L{R2-r*). (17.9)

Thus the velocity distribution across the pipe is parabolic.

It is easy to determine the mass Q of fluid passing each second through

any cross-section of the pipe (called the discharge). A mass p • 2tttv dV

passes each second through an annular element litr dr of the cross-sectional

area. Hence

R

Q = 2np I rvdr.

Using (17.9), we obtain

ttA/>

Q = -£T&. (17.10)

The mass of fluid is thus proportional to the fourth power of the radius of the

pipe (Poiseuille's formula).

PROBLEMS

Problem 1. Determine the flow in a pipe of annular cross-section, the internal and external

radii being Rlt i?8.

Solution. Determining the constants a and b in the general solution (17.8) from the con-
ditions that v = for r — Rt and r = Rtt we find

V =
AM„, • .

R*-Ri*r R2*-Ri* r 1
lR2

2_ r2 +—t —log— .

L log(i?2/i?i)
g£2 J

The discharge is

nAp [ (R22 -Ri2
)
2 !

Q = —— #24-#i4 -— —
^ 8v L loRiRtlRi) Jlog(Rt/Ri)

Problem 2. The same as Problem 1, but for a pipe of elliptical cross-section.

Solution. We seek a solution of equation (17.7) in the form v = Ayi+Bza +C. The
constants A, B, C axe determined from the requirement that this expression must satisfy

the boundary condition » = 0on the circumference of the ellipse (i.e. Ayi+Bzi+C =
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must be the same as the equation y*la*+z*/b2 = 1, where a and b are the semi-axes of the
ellipse). The result is

Ap a2b2
V =

The discharge is

Q =

2r;l a*

irAp a%^

4vl a*+ b*

Problem 3. The same as Problem 1, but for a pipe whose cross-section is an equilateral
triangle of side a.

Solution. The solution of equation (17.7) which vanishes on the bounding triangle is

Ap 2

where hu ha, ha are the lengths of the perpendiculars from a given point in the triangle to its
three sides. For each of the expressions A/»i, AAj, M» (where A = 82l8xa+ 82

l8y
2
) is

zero; this is seen at once from the fact that each of the perpendiculars hlt ht , ha may be taken
as the axis of y or z, and the result of applying the Laplacian to a co-ordinate is zero. We
therefore have

A(fah2h3) = 2{hi gradVgradA3 +/t2 gradA3 .gradAi +
+fa gradArgrad A2).

But gradAj - n», gradA2 = n2 , gradAj = nS) where n^ n2 , ns are unit vectors along
the perpendiculars hlt h2t ha . Any two ofnlt ns , n8 are at an angle 2tt/3, so that grad hx . grad hi= ni-nj = cos (2tt/3) = — £, and so on. We thus obtain the relation

Aihfahs) = -{hi + h2 + hz) = -JV3«,
and we see that equation (17.7) is satisfied. The discharge is

V3a4 A/>

=
32(M

Problem 4. A cylinder of radius i?x moves with velocity u inside a coaxial cylinder of
radius Rit their axes being parallel. Determine the motion of a fluid occupying the space
between the cylinders.

Solution. We take cylindrical co-ordinates, with the z-axis along the axis of the cylinders.
The velocity is everywhere along the sr-axis and depends only on r (as does the pressure):
v z — v(r). We obtain for v the equation

1 d / dv\

r dr\ dr/

the term (vgrad)v = v 8v/8z vanishes identically. Using the boundary conditions v = u
for r — JRj and v = for r — R2 , we find

log(r/Ua)
v = u-

logCRi/lfc)

The frictional force per unit length of either cylinder is 277r^//log(i?2/JR1).
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Problem 5. A layer of fluid of thickness h is bounded above by a free surface and below

by a fixed plane inclined at an angle a to the horizontal. Determine the flow due to gravity.

Solution. We take the fixed plane as the *y-plane, with the *-axis in the direction of

flow (Fig. 6). We seek a solution depending only on z. The Navier-Stokes equations with

Vx — v{z) in a gravitational field are

d2v dp
r)— + pg sin* = 0, — + p£cosa = 0.

dz2 dz

At the free surface (z = h) we must have axt = ydv/dz = 0, azt = —p = —po (.Po being

the atmospheric pressure). For z = we must have v = 0. The solution satisfying these

conditions is

pg sin a
p = po+pg(h- z) cos a, v = — z(2h- z).

It]

The discharge, per unit length in the y-direction, is

pgh3 sin a
vdz = .=

pJ

Fig. 6

Problem 6. Determine the way in which the pressure falls along a tube of circular cross-

section in which a viscous perfect gas is flowing isothermally (bearing in mind that the

dynamic viscosity t\ of a perfect gas is independent of the pressure).

Solution. Over any short section of the pipe the gas may be supposed incompressible,

provided that the pressure gradient is not too great, and we can therefore use formula

(17.10), according to which

<fr =
SrjQ

dx TTpR*

Over greater distances, however, p varies, and the pressure is not a linear function of *.

According to the equation of state, the gas density p = mplkT, where m is the mass of a

molecule and k is Boltzmann's constant, so that

dp _ SrjQkT 1

dx irmR* p
(The discharge Q of the gas through the tube is obviously the same, whether or not the gas

is incompressible.) From this we find

where p2, pi are the pressures at the ends of a section of the tube of length /.
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§18. Flow between rotating cylinders

Let us now consider the motion of a fluid between two infinite coaxial

cylinders of radii Rlf R2 (R2 > i?i), rotating about their axis with angular
velocities Qlf Q2. We take cylindrical co-ordinates r,

<f>,
z, with the s-axis

along the axis of the cylinders. It is evident from symmetry that

vz = vr = 0, V4 = v(r), p = p(r).

The Navier-Stokes equation in cylindrical co-ordinates gives in this case two
equations

:

dp/dr = pv2/r, (18.1)

d2v 1 dv v

dr2 r dr r2

The latter equation has solutions of the form rn \ substitution gives n = ± 1,

so that

b
v = ar + -.

r

The constants a and b are found from the boundary conditions, according to

which the fluid velocity at the inner and outer cylindrical surfaces must be
equal to that of the corresponding cylinder: v = Ri&i for r = i?i, v = R2O.2

for r = R2 . As a result we find the velocity distribution to be

n2^22-^i^1
2 (ni-Q2)#iW 1

" " Rf-Rf '
+

W-RP ? (18 '3>

The pressure distribution is then found from (18.1) by straightforward

integration.

For Qi = &2 = & we have simply v = Dr, i.e. the fluid rotates rigidly

with the cylinders. When the outer cylinder is absent (D.2 = 0, R2 = 00)

we have v = D.iRi2/r.

Let us also determine the moment of the frictional forces acting on the

cylinders. The frictional force acting on unit area of the inner cylinder is

along the tangent to the surface and, from (15.12), is equal to the component
a'r$ of the stress tensor. Using formulae (15.15), we find

o (Q1-Q2)R22— —2rt .

' RJ-Rf

The force acting on unit length of the cylinder is obtained by multiplying
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by 2irRi, and the moment M\ of that force by multiplying the result by R\.

We thus have

WQi-Q2)fliW*-- *-*. (18 '4)

The moment M2 of the forces acting on the inner cylinder is clearly — Mi.f
The following general remark may be made concerning the solutions of the

equations of motion of a viscous fluid which we have obtained in §§17 and 18.

In all these cases the non-linear term (v • grad)v in the equations which
determine the velocity distribution is identically zero, so that we are actually

solving linear equations, a fact which very much simplifies the problem.

For this reason all the solutions also satisfy the equations of motion for an

incompressible ideal fluid, say in the form (10.2) and (10.3). This is why
formulae (17.1) and (18.3) do not contain the viscosity coefficient at all.

This coefficient appears only in formulae, such as (17.9), which relate the

velocity to the pressure gradient in the fluid, since the presence of a pressure

gradient is due to the viscosity; an ideal fluid could flow in a pipe even if

there were no pressure gradient.

§19. The law of similarity

In studying the motion of viscous fluids we can obtain a number of impor-
tant results from simple arguments concerning the dimensions of various

physical quantities. Let us consider any particular type of motion, for

instance the motion of a body of some definite shape through a fluid. If the

body is not a sphere, its direction of motion must also be specified : e.g. the

motion of an ellipsoid in the direction of its greatest or least axis. Alternatively,

we may be considering flow in a region with boundaries of a definite form
(a pipe of given cross-section, etc.).

In such a case we say that bodies of the same shape are geometrically similar;

they can be obtained from one another by changing all linear dimensions in

the same ratio. Hence, if the shape of the body is given, it suffices to specify

any one of its linear dimensions (the radius of a sphere or of a cylindrical

pipe, one semi-axis of a spheroid of given eccentricity, and so on) in order
to determine its dimensions completely.

We shall at present consider steady flow. If, for example, we are discussing

flow past a solid body (which case we shall take below, for definiteness), the

velocity of the main stream must therefore be constant. We shall suppose
the fluid incompressible.

Of the parameters which characterise the fluid itself, only the kinematic

f The solution of the more complex problem of the motion of a viscous fluid in a narrow space
between cylinders whose axes are parallel but not coincident may be found in: N. E. Kochin, I. A.
Kibel' and N. V. Roze, Theoretical Hydromechanics (Teoreticheskaya gidromekhanika), Part 2, 3rd
ed., p. 419, Moscow 1948; A. Sommerfeld, Mechanics of Deformable Bodies, §36, Academic Press,
New York 1950.
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viscosity v = rj/p appears in the equations of hydrodynamics (the Navier-
Stokes equations); the unknown functions which have to be determined by
solving the equations are the velocity v and the ratio pip of the pressure

p to the constant density p. Moreover, the flow depends, through the
boundary conditions, on the shape and dimensions of the body moving
through the fluid and on its velocity. Since the shape of the body is supposed
given, its geometrical properties are determined by one linear dimension,
which we denote by /. Let the velocity of the main stream be u. Then any
flow is specified by three parameters, v, u and /. These quantities have the
following dimensions

:

v = cm2/sec, / = cm, u = cm/sec.

It is easy to verify that only one dimensionless quantity can be formed from
the above three, namely uljv. This combination is called the Reynolds
number and is denoted by R:

R = puljrj = uljv. (19.1)

Any other dimensionless parameter can be written as a function of R.
We shall now measure lengths in terms of /, and velocities in terms of u,

i.e. we introduce the dimensionless quantities r//, v/w. Since the only
dimensionless parameter is the Reynolds number, it is evident that the velocity
distribution obtained by solving the equations of incompressible flow is

given by a function of the form

v = «f(r//, R). (19.2)

It is seen from this expression that, in two different flows of the same type
(for example, flow past spheres of different radii by fluids of different vis-

cosities), the velocities vju are the same functions of the ratio x\l if the Reynolds
number is the same for each flow. Flows which can be obtained from
one another by simply changing the unit of measurement of co-ordinates and
velocities are said to be similar. Thus flows of the same type with the same
Reynolds number are similar. This is called the law of similarity (O. Rey-
nolds 1883).

A formula similar to (19.2) can be written for the pressure distribution in
the fluid. To do so, we must construct from the parameters v

y
I, u some

quantity with the dimensions of pressure divided by density; this quantity
can be w2

, for example. Then we can say thatp/pu2 is a function of the dimen-
sionless variable r// and the dimensionless parameter R. Thus

p = /o«2/(r//, R). (19.3)

Finally, similar considerations can also be applied to quantities which
characterise the flow but are not functions of the co-ordinates. Such a
quantity is, for instance, the drag force F acting on the body. We can say
that the dimensionless ratio of F to some quantity formed from v, «, /, p
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and having the dimensions of force must be a function of the Reynolds num-
ber alone. Such a combination of v> u, I, p can be pu2l2, for example. Then

F = pu*Pf(R). (19.4)

If the force of gravity has an important effect on the flow, then the latter

is determined not by three but by four parameters, /, u, v and the acceleration

g due to gravity. From these parameters we can construct not one but two
independent dimensionless quantities. These can be, for instance, the Rey-
nolds number and the Froude number, which is

F = u*llg. (19.5)

In formulae (19.2)-(19.4) the function /will now depend on not one but two
parameters (R and F), and two flows will be similar only if both these num-
bers have the same values.

Finally, we may say a little regarding non-steady flows. A non-steady flow
of a given type is characterised not only by the quantities v, w, / but also

by some time interval t characteristic of the flow, which determines the rate

of change of the flow. For instance, in oscillations, according to a given law,

of a solid body, of a given shape, immersed in a fluid, t may be the period of
oscillation. From the four quantities v, u, /, r we can again construct two
independent dimensionless quantities, which may be the Reynolds number
and the number

S = ut/1, (19.6)

sometimes called the Strouhal number. Similar motion takes place in these
cases only if both these numbers have the same values.

If the oscillations of the fluid occur spontaneously (and not under the action

of a given external exciting force), then for motion of a given type S will be
a definite function of R:

S=/(R).

§20. Stokes' formula

The Navier-Stokes equation is considerably simplified in the case of flow
at small Reynolds numbers. For steady flow of an incompressible fluid, this

equation is

(v.grad)v= -(l//>)grad/>+ (V/°)Av.

The term (v • grad)v is of the order of magnitude of w2//, u and / having the
same meaning as in §19. The quantity (rj/p) Av is of the order of magnitude
of rju[pl2 . The ratio of the two is just the Reynolds number. Hence the term
(v • grad)v may be neglected if the Reynolds number is small, and the
equation of motion reduces to a linear equation

*?Av-grad/> = 0. (20.1)
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Together with the equation of continuity

div v = (20.2)

it completely determines the motion. It is useful to note also the equation

A curlv = 0, (20.3)

which is obtained by taking the curl of equation (20.1).

As an example, let us consider rectilinear and uniform motion of a sphere
in a viscous fluid. The problem of the motion of a sphere, it is clear, is

exactly equivalent to that of flow past a fixed sphere, the fluid having a
given velocity u at infinity. The velocity distribution in the first problem is

obtained from that in the second problem by simply subtracting the velocity
u; the fluid is then at rest at infinity, while the sphere moves with velocity
-u. If we regard the flow as steady, we must, of course, speak of the flow
past a fixed sphere, since, when the sphere moves, the velocity of the fluid at

any point in space varies with time.

Thus we must have v = u at infinity; we write v = v'-f u, so that v'

is zero at infinity. Since div v = div v' = 0, v' can be written as the curl of
some vector : v = curl A+ u. The curl of a polar vector is well known to be
an axial vector, and vice versa. Since the velocity is an ordinary polar vector,

A must be an axial vector. Now v, and therefore A, depend only on the radius
vector r (we take the origin at the centre of the sphere) and on the parameter
u; both these vectors are polar. Furthermore, A must evidently be a linear

function of u. The only such axial vector which can be constructed for a

completely symmetrical body (the sphere) from two polar vectors is the
vector product rxu. Hence A must be of the form /'(r)nxu, where f(r)
is a scalar function of r, and n is a unit vector in the direction of the radius
vector. The productf(r)n can be written as the gradient, grad /(»-), of some
function /(r), so that the general form ofA is grad/xu. Hence we can write
the velocity v' as

v' = curl [grad/xu].

Since u is a constant, grad/xu = curl(/u), so that

v = curl curl (/u) + u. (20.4)

To determine the function /, we use equation (20.3). Since

curlv = curl curl curl(/u) = (grad div- A)curl(/u)

= -A curl(/u),

(20.3) takes the form A 2 curl (Ju) = 0, or, since u = constant,

A 2(grad/xu) = (A2 grad/)xu = 0.

It follows from this that

A2 grad/ = 0. (20.5)
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A first integration gives

A 2/ = constant.

It is easy to see that the constant must be zero, since the velocity v must
vanish at infinity, and so must its derivatives. The expression A2/ contains

fourth derivatives of /, whilst the velocity is given in terms of the second
derivatives of/. Thus we have

1 d
A 2/=-

Hence

1 d / d \

r* dr\ or J

A/= 2a/r+ A.

The constant A must be zero if the velocity is to vanish at infinity. From
A/ = 2a/r we obtain

f=ar+b/r. (20.6)

The additive constant is omitted, since it is immaterial (the velocity being
given by derivatives of/).

Substituting in (20.4), we have after a simple calculation

u+n(u«n) 3n(u«n)-u
v = M-a - - + b . (20.7)

r r3

The constants a and b have to be determined from the boundary conditions

:

at the surface of the sphere (r = R), v = 0, i.e.

u+ n(u»n) 3n(u«n) — u
\x-a + b— = 0.

R R?

Since this equation must hold for all n, the coefficients of u and n(u • n)
must each vanish

:

a b a 3b— + — -1 = 0, + — = 0.
R R? R R?

Hence a = fi?, b = %R3
. Thus we have finally

f=lRr+lR?lr, (20.8)

„ u+ n(u«n) u-3n(u«n)
v = - f# i L - IR* S L + u> (20.9)

r r3

or, in spherical components,

3R R3r 3R ft*!
Vr = U COS 1 1

,

L 2r 2r3j'

. A r 3R R3-]
g — —u sin 1 .9

L 4r 4r3j

(20.10)
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This gives the velocity distribution about the moving sphere. To determine
the pressure, we substitute (20.4) in (20.1):

gradp = -qAv = yjAcurl curl (/u)

= VA(grad div (/u) - uA/).
But A2/ =0, and so

gradp = grad[7jAdiv(/u)] = gradfru-grad A/).
Hence

/> = rju .grad Af+po, (20. 1 1)

where />o is the fluid pressure at infinity. Substitution for /leads to the final
expression

u*n
P = Po - h-^-R. (20.12)

Using the above formulae, we can calculate the force F exerted on the
sphere by the moving fluid (or, what is the same thing, the drag on the sphere
as it moves through the fluid). To do so, we take spherical co-ordinates with
the polar axis parallel to u; by symmetry, all quantities are functions only of
r and of the polar angle 0. The force F is evidently parallel to the velocity u.
The magnitude of this force can be determined from (15.12). Taking from
this formula the components, normal and tangential to the surface, of the
force on an element of the surface of the sphere, and projecting these compo-
nents on the direction of u, we find

F = j>(-p cos 6+ a'rr cos - a rd sin 0)d/, (20. 13)

where the integration is taken over the whole surface of the sphere.
Substituting the expressions (20.10) in the formulae

dr \r 86 dr r /

(see (15.17)), we find that at the surface of the sphere

o'rr = 0, a're = - (3r)/2R)u sin 0,

while the pressure (20.12) is p = p -(3Vl2R)u cos 0. Hence the integral
(20.13) reduces to F = (3?/w/2#) § d/, or, finally,f

F = 67TRr)u.
(20.14)

This formula (called Stokes' formula) gives the drag on a sphere moving

f
f T^on ^7 to

u
some later applications, we may mention that, if the calculations are done withformula (20.7) for the velocity (the constants a and b being undetermined), we find

F = 87rarju. (20.14a)
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slowly in a fluid. We may notice that the drag is proportional to the first

powers of the velocity and linear dimension of the body.f

This dependence of the drag on the velocity and dimension holds for

slowly-moving bodies of other shapes also. The direction of the drag on a

body of arbitrary shape is not the same as that of the velocity; the general

form of the dependence of F on u can be written

Ft = flan* (20.15)

where aue is a tensor of rank two, independent of the velocity. It is important

to note that this tensor is symmetrical {am — aid), a result which holds in the

linear approximation with respect to the velocity, and is a particular case of

a general law valid for slow motion accompanied by dissipative processes.!

The solution that we have just obtained for flow past a sphere is not

valid at great distances from it, even if the Reynolds number is small. In

order to see this, we estimate the magnitude of the term (v • grad)v, which

we neglected in (20.1). At great distances the velocity is u. The derivatives

of the velocity at these distances are seen from (20.9) to be of the order of

uR/r2
. Thus (v • grad)v is of the order of u2R/rz . The terms retained in

equation (20.1), for example (l//>) grad/>, are of the order r]Rujprz (cf. (20.12)).

The condition

u-qR/prZ > uWlr2

holds only at distances r <^ vju, where v = rjjp. At greater distances, the

terms we have omitted cannot legitimately be neglected, and the velocity

distribution obtained is incorrect.

To obtain the velocity distribution at great distances from the body,

we have to take into account the term (v-grad)v omitted in (20.1). Since

the velocity v is nearly equal to u at these distances, we can put approximately

U'grad in place of v»grad. We then find for the velocity at great distances

the linear equation

(u-grad)v = -(l//o) grad/>+ vAv (20.16)

(C. W. Oseen, 1910).

We shall not pause to give here the solution of this equation for flow

f The drag can also be calculated for a slowly-moving ellipsoid of any shape. The corresponding

formulae are given by H. Lamb, Hydrodynamics, 6th ed., §339, Cambridge 1932. We give here the

limiting expressions for a plane circular disk of radius R moving perpendicular to its plane

:

F = \(yrjRu

and for a similar disk moving in its plane:

F = 32r)Ruj3.

X See, for instance, Statistical Physics, §120, Pergamon Press, London 1958.
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past a sphere,f but merely mention that the velocity distribution thus
obtained can be used to derive a more accurate formula for the drag on the
sphere, which includes the next term in the expansion of the drag in powers
of the Reynolds number uRJv. This formula isJ

F = (m^uRl 1 + -_ I.
(20.17)

Finally, we may mention that, in solving the problem of flow past an
infinite cylinder with the main stream perpendicular to the axis of the
cylinder, Oseen's equation has to be used from the start; in this case, equation
(20.1) has no solution which satisfies the boundary conditions at the surface
of the cylinder and at the same time vanishes at infinity. The drag per unit
length of the cylinder is found to be

4tttjU=
h-y-log(uR/4vy <

20 - 18)

where y = 0-577 is Euler's constant.

PROBLEMS
Problem 1 Determine the motion of a fluid occupying the space between two concentric

spheres of radii Rlt Rz (R2 > RJ, rotating uniformly about different diameters with angular
velocities Rlt fi2 ;

the Reynolds numbers <W/", iW/" are small compared with unity.

Solution On account of the linearity of the equations, the motion between two rotating
spheres may be regarded as a superposition of the two motions obtained when one sphere is
at rest and the other rotates. We first put fia = 0, i.e. only the inner sphere is rotating. It
is reasonable to suppose that the fluid velocity at every point is along the tangent to a circlem a plane perpendicular to the axis of rotation with its centre on the axis. On account of
the axial symmetry, the pressure gradient in this direction is zero. Hence the equation of
motion (20.1) becomes Av = 0. The angular velocity vector H, is an axial vector Argu-
ments similar to those given previously show that the velocity can be written as

v = curl[/(r)fti] = grad/x fli.

The equation of motion then gives grad A/X Six = 0. Since the vector gradA / is parallel
to the radius vector, and the vector product rXfi, cannot be zero for given Sit and arbitrarv
r, we must have grad A/ = 0, so that

A/= constant.

\ AI/
ietai

,

Ied account of the calculations for a sphere and a cylinder is given by N E Kochin
I. A. Kibel and N. V. Rozb, Theoretical Hydromechanics (Teoreticheskaya gidromekhanika), Part 2,

brid

C

e 1932
aPtei" §§25~26, Moscow 1948

5
H

-
Lamb, Hydrodynamics, 6th ed., §§342-3, Cam-

X At first sight it might appear that Osben's equation, which does not correctly give the velocity
distribution near the sphere, could not be used to calculate the correction to the drag. In fact however
the contribution to F due to the motion of the neighbouring fluid (where u< vlr) must be expanded inpowers of the vector u. The first non-zero correction term in F arising from this contribution isthen proportional to «2u, i.e. is of the second order with respect to the Reynolds number: it therefore
does not affect the first-order correction in formula (20.17). Further corrections to Stokes' formula
cannot be calculated from Oseen's formula.
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Integrating, we find

f=arZ + -, v=
(
— -2a|fiixr.

The constants a and 6 are found from the conditions that v = for r = R2 and v = u
for r = Ru where u = Sixxr is the velocity of points on the rotating sphere. The result is

_ fli3J?23 / 1 1 \

#23-#l3
I 7»

" 5^ j^ X r "

The fluid pressure is constant (p = p ). Similarly, we have for the case where the outer
sphere rotates and the inner one is at rest (i^ = 0)

V =

R2s-R

\P = Po)-

i is at res

R^R2
38/1 1 \

»

13\ jR1
3 r3)R2

3-Ri
In the general case where both spheres rotate, we have

V = RM2
3

'*[(*- h)* xt+
(-h-h)* XiR2*-R

If the outer sphere is absent (R2 = 00, Q2
= 0), i.e. we have simply a sphere of radius R

rotating in an infinite fluid, then

V = (#3/r3) Sl xr
Let us calculate the moment of the frictional forces acting on the sphere in this case. If we
take spherical co-ordinates with the polar axis parallel to SI, we have vr = v&

= 0, v6
— v= (R3 £l/r2) sin 0. The frictional force on unit area of the sphere is

/
/ 8v v\

a r4> = 7][ =— 3r]Q, sin 6.

The total moment on the sphere is

M = j o'H Rsmd- 2ttR? sin 66,

whence we find

M= -SirrjRSQ.

If the inner sphere is absent, v = £l2X r, i.e. the fluid simply rotates rigidly with the sphere
surrounding it.

Problem 2. Determine the velocity of a spherical drop of fluid (of viscosity •>?') moving
under gravity in a fluid of viscosity 17 (W. Rybczynski 1911).

Solution. We use a system of co-ordinates in which the drop is at rest. For the fluid
outside the drop we again seek a solution of equation (20.5) in the form (20.6), so that the
velocity has the form (20.7). For the fluid inside the drop, we have to find a solution which
does not have a singularity at r = (and the second derivatives of/, which determine the
velocity, must also remain finite). This solution is
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and the corresponding velocity is

v = -^u4-£r2[n(u.n)-2u].

At the surface of the spheret the following conditions must be satisfied. The normal velocity

components outside (vg) and inside (v<) the drop must be zero:

Vi,r = Ve
tr = 0.

The tangential velocity component must be continuous:

Vl,d = Ve,6>

as must be the component aT$ of the stress tensor

:

&i,r8 = ae,ro-

The condition that the stress tensor components arr are equal need not be written down;
it would determine the required velocity u, which is more simply found in the manner shown
below. From the above four conditions we obtain four equations for the constants a, b,A, B,
whose solutions are

a = R
2ri+ 3ri

'

. t = R> 1'
.. . A--B*- V

4(l+l')' 4{,+V)' 2(1+1')

By (20.14a), we have for the drag

F = 2TTWt]R{h] + 3r)')/(ri + r)').

As i\ -* oo Ccorresponding to a solid sphere) this formula becomes Stokes' formula. In the

limit -q' -* (corresponding to a gas bubble) we have F = AtrwqR, i.e. the drag is two-thirds

of that on a solid sphere.

Equating F to the force of gravity on the drop, %nRz
{p— p')g, we find

2R^{p-p')(r
)
+ rj')

u = .

3rj(2rj + 3r)')

Problem 3. Two parallel plane circular disks (of radius R) lie one above the other a small

distance apart; the space between them is filled with fluid. The disks approach at a constant

velocity «, displacing the fluid. Determine the resistance to their motion (O. Reynolds).

Solution. We take cylindrical co-ordinates, with the origin at the centre of the lower disk,

which we suppose fixed. The flow is axisymmetric and, since the fluid layer is thin, pre-

dominantly radial: v z <^.vr , and also 8vr/8r <^.8vT/dz. Hence the equations of motion

become

d*vr dp 8p
1

dz* 8r dz
'

lM +^ = 0) (2)
r dr dz

f We may neglect the change of shape of the drop in its motion, since this change is of a higher

order of smallness. However, it must be borne in mind that, in order that the moving drop should

in fact be spherical, the forces due to surface tension at its boundary must exceed the forces due to

pressure differences, which tend to make the drop non-spherical. This means that we must have

•qujR <^ a.jR, where a is the surface-tension coefficient, or, substituting u~ R^gpj-q,

R < V(*!pg)-
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with the boundary conditions

at* =

at z = h

atr = R

vr — vz = 0;

vr = 0, vz = —u\

P = po,

where h is the distance between the disks, and po the external pressure. From equations (1)
we find

1 dp

Integrating equation (2) with respect to z, we obtain

1 d r A3 a / dp \
u = I rvr az = \r— I,

rdrj \Znrdr\&)
o

whence
3inu

P=Po + -^(R2 -r*).

The total resistance to the moving disk is

F = 3irr)uR*/2hK

§21. The laminar wake

In steady flow of a viscous fluid past a solid body, the flow at great distances

behind the body has certain characteristics which can be investigated inde-

pendently of the particular shape of the body.

Let us denote by U the constant velocity of the incident current; we take

the direction of U as the *-axis, with the origin somewhere inside the body.
The actual fluid velocity at any point may be written U+v; v vanishes at

infinity.

It is found that, at great distances behind the body, the velocity v is

noticeably different from zero only in a relatively narrow region near the

#-axis. This region, called the laminar zvake,f is reached by fluid particles

which move along streamlines passing fairly close to the body. Hence the

flow in the wake is essentially rotational. On the other hand, the viscosity has
almost no effect at any point on streamlines that do not pass near the body,
and the vorticity, which is zero in the incident current, remains practically

zero on these streamlines, as it would in an ideal fluid. Thus the flow at

great distances from the body may be regarded as potential flow everywhere
except in the wake.

We shall now derive formulae relating the properties of the flow in the

wake to the forces acting on the body. The total momentum transported by
the fluid through any closed surface surrounding the body is equal to the

t In contradistinction to the turbulent wake; see §36.
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integral of the momentum flux density tensor over that surface, <j> Hadfjc.

The components of the tensor II $& are

n« = p&ik+ p(Ui+Vi)(Uic+vk).

We write the pressure in the form p = po+p\ where po is the pressure at

infinity. The integration of the constant term poSac+ pUtUjc gives zero,

since the vector integral | df over a closed surface is zero. The integral

Ui <j> pvjcdfk also vanishes : since the total mass of fluid in the volume con-

sidered is constant, the total mass flux <j> pv«df through the surface surround-

ing the volume must be zero. Finally, the velocity v far from the body is

small compared with U. Hence, if the surface in question is sufficiently far

from the body, we can neglect the term pvwk in 11^ as compared with

pUjcVi. Thus the total momentum flux is

<j> (p'Sik+ pUjcViWk-

Let us now take the fluid volume concerned to be the volume between two

infinite planes x = constant, one of them far in front of the body and the

other far behind it. The integral over the infinitely distant "lateral" surface

vanishes (since p' — v = at infinity), and it is therefore sufficient to inte-

grate only over the two planes. The momentum flux thus obtained is

evidently the difference between the total momentum flux entering through

the forward plane and that leaving through the backward plane. This

difference, however, is just the quantity of momentum transmitted to the body

by the fluid per unit time, i.e. the force F exerted on the body.

Thus the components of the force F are

^ =
( J7 - \\)(p'+ PUvx)dydz,

F
^
=

( J7 - j

S

)pUvydydz
>

F* = ( j f
~ j j )pUvz dydz,

where the integration is taken over the infinite planes x = x± (far behind the

body) and x = X2 (far in front of it). Let us first consider the expression for

Fx .

Outside the wake we have potential flow, and therefore Bernoulli's equation

p+%p(U+v)2 = constant = p +%pU2

holds, or, neglecting the term \pv2 in comparison with />U«v,

p' = -
PUvx .
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We see that in this approximation the integrand in Fx vanishes everywhere

outside the wake. In other words, the integral over the plane x = #2 (which

lies in front of the body and does not intersect the wake) is zero, and the

integral over the plane x = xi need be taken only over the area covered by
the cross-section of the wake. Inside the wake, however, the pressure change
p' is of the order of pv2 , i.e. small compared with pUvx. Thus we reach the

result that the drag on the body is

Fx = -
PUJjvx dydz, (21.1)

where the integration is taken over the cross-sectional area of the wake far

behind the body. The velocity vx in the wake is, of course, negative: the

fluid moves more slowly than it would if the body were absent. Attention is

called to the fact that the integral in (21.1) gives the amount by which the

discharge through the wake falls short of its value in the absence of the body.

Let us now consider the force (whose components are Fy , Fz) which tends

to move the body transversely. This force is called the lift. Outside the

wake, where we have potential flow, we can write vy = 8<f>jdy, v z = dc/>J8z;

the integral over the plane x = X2, which does not meet the wake, is zero:

8<
f> , /x f f d(

f>

dy

since <j> = at infinity. We therefore find for the lift

Fy = -pUJj vy dy dz, Fz = -
PU jj vz dy dz. (21.2)

The integration in these formulae is again taken only over the cross-sectional

area of the wake. If the body has an axis of symmetry (not necessarily

complete axial symmetry), and the flow is parallel to this axis, then the flow

past the body has an axis of symmetry also. In this case the lift is, of course,

zero.

Let us return to the flow in the wake. An estimate of the magnitudes of

various terms in the Navier-Stokes equation shows that the term »>A v can

in general be neglected at distances r from the body such that rUjv > 1

(cf. the derivation of the opposite condition at the beginning of §20) ; these

are the distances at which the flow outside the wake may be regarded as

potential flow. It is not possible to neglect that term inside the wake even
at these distances, however, since the transverse derivatives 82vfdy2, dfyjdz2

are large compared with dfy/dx2 .

The term (v«grad)v in the Navier-Stokes equation is of the order of mag-
nitude (U+v)dvjdx ~ Uvjx in the wake. The term vAv is of the order

of vd2v[dy2 ~ w/Y2
, where Y denotes the width of the wake, i.e. the order

of magnitude of the distances from the #-axis at which the velocity v falls

off markedly. If these two magnitudes are comparable, we find

Y ~ ^(vxlU). (21.3)
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This quantity is in fact small compared with x, by the assumed condition

Uxjv > 1. Thus the width of the laminar wake increases as the square root

of the distance from the body.

In order to determine how the velocity decreases with increasing x in the

wake, we return to formula (21.1). The region of integration has an area of

the order of Y2
. Hence the integral can be estimated as Fx ~ pUvY2

,

and by using the relation (21.3) we obtain

v ~ Fzlpvx. (21.4)

PROBLEMS

Problem 1. Determine the flow in the laminar wake when there is both drag and lift.

Solution. Writing the velocity in the Navier-Stokes equation in the form U+v and
omitting terms quadratic in v (far from the body) we obtain

— = -gra y-\+ vy— +—yy

df

we have also neglected the term 82v/8x2 in Av. We seek a solution in the form v = v1+va>

where vx satisfies

dvi /d2vi 82vi\
U— = v + .

dx \ dy2 dz2 )

The term v2 , which appears because of the term —grad(p/p) in the original equation, may be
taken as the gradient grad O of some scalar. Since the derivatives with respect to x, far from
the body, are small in comparison with those with respect to y and z, we may to the same
approximation neglect the term 8Q>ldx in vx, i.e. take vx = vix .

Thus we have for vx the equation

dvx / d*vx d*vx \U = v - + r- .

dx \ dy2 dz2 J

This equation is formally the same as the two-dimensional equation of heat conduction, with
x/U in place of the time, and the viscosity v in place of the thermometric conductivity.

The solution which decreases with increasing y and z (for fixed *) and gives an infinitely

narrow wake as * -» (in this approximation the dimensions of the body are regarded as

small) is (see §51)

F-r 1

Vx= £_ _e-l7<y
,+*,>/4r*

(1)
Artpv X

The constant coefficient in this formula is expressed in terms of the drag by means of

formula (21.1), in which the integration over y and z may be extended to ±oo on account

of the rapid decrease of vx . If we replace the Cartesian co-ordinates by spherical co-ordinates

r, 9, <f>
with the polar axis along the *-axis, then the region of the wake (V(y

2+ J8*) <^*)
corresponds to 9 <^ 1. In these co-ordinates formula (1) becomes

ATrpv r

The term dQ>/dx (with O given by formula (3) below), which we have omitted, would give

a term in vx which diminishes more rapidly, as 1/r2 .
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viv and vlz must have the same form as (1). We take the direction of the lift as the y-axis

(so that Ft = 0). According to (21.2) we have, since O — at infinity,

oo oo

J J Myd«-JJ («* + —)*>&
—oo —oo

= jj viy dydz = - FyjpU,

jjvudydz = 0.

Determining the constants in viy and v\t from these conditions, we find

Fv i , , ao 8®
vy = -e- m^Vtox + 1

VgSS —

.

(2)
Airpv x By Bz

To determine the function O we proceed as follows. By the equation of continuity,

div v « dvy/dy+ dvzldz = 0;

substituting (2), we have

\ dy* dz2 / By

Differentiating this equation with respect to * and using the equation satisfied by vly , we
obtain

/a2 82 \8® a / dviy \

\ By2 Bz2 ) Bx ~ By\ Bx J

---(
Hence

a2 a2 \ dviy
+— \ .

ay2 Bz2 1 By

BQ> v Bviy

Bx U By

Finally, substituting the expression for viy and integrating with respect to x, we have

Fv V
<I> =

"
Te-utf+zv&x- 1], (3)

27TpU y2+ z2

The constant of integration is chosen so that G> remains finite when y = z = 0. In spherical

co-ordinates (with the azimuthal angle
<f>
measured from the xy-plane)

Fv cos 6

It is seen from (2) and (3) that vy and v z , unlike vx , contain terms which decrease only as 1/02

as we move away from the "axis" of the wake, as well as those which decrease exponen-
tially with 6 (for a given r).

The qualitative results (21.3) and (21.4) are, as we should expect, in agreement with the
above formulae. If there is no lift, the flow in the wake is axially symmetrical.
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Problem 2. Determine the flow outside the wake far from the body.

Solution. Outside the wake we assume potential flow. Since we are interested only in
the terms in the potential <E> which decrease least rapidly with distance, we seek a solution of
Laplace's equation A$ = as a sum of two terms:

a cos<£

r r

of which the first is centrally symmetric and belongs to the force Fx , while the second is
symmetrical about the xy-plane and belongs to the force Fv .

Using the expression for A® in spherical co-ordinates, we obtain for the function
/(#) the equation

— (sin0— )
dd\ del

J
» _£_ = o.

sin 6

The solution of this equation finite as 6 -> n is/ = b cot £0. The coefficient b must be deter-
mined so as to give the correct value of Fy . It is simpler, however, to use the fact that in the
range V( v/Ur) <^ 8 <^ 1 this part of <S> must be the same as the expression

o =
Fy C0S ^

TmpU r6
'

obtained from formula (3'), Problem 1, for O in the wake. Hence b = FJAnpU.
To determine the coefficient a, we notice that the total mass flux through a sphere S of

large radius r equals zero, as for any closed surface. The rate of inflow through the part S
of 5 intercepted by the wake is

- JJvxdydz = FxjpU.
S

Hence the same quantity must flow out through the rest of the surface of the sphere, i.e. we
must have

<f
vdf= FX/P U.

s-s

Since S is small compared with S, we can put

j>vd{ = ^gradO-df = -Ana = FxjP U,
s s

whence a = —FxftnpU.
The complete solution is given by the sum of these two expressions

:

1

which gives the flow everywhere outside the wake far from the body. The potential dimini-
shes with increasing distance as 1/r; the velocity v, therefore, diminishes as 1/r2 . If there is

no lift, the flow outside the wake is spherically symmetrical.

§22. The viscosity of suspensions

A fluid in which numerous fine solid particles are suspended (forming a
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suspension) may be regarded as an homogeneous medium if we are concerned

with phenomena whose characteristic lengths are large compared with the

dimensions of the particles. Such a medium has an effective viscosity r\

which is different from the viscosity rjo of the original fluid. The value of rj

can be calculated for the case where the concentration of the suspended

particles is small (i.e. their total volume is small in comparison with that

of the fluid). The calculations are relatively simple for the case of spherical

particles (A. Einstein, 1906).

It is necessary to consider first the effect of a single solid globule, immersed

in a fluid, on flow having a constant velocity gradient. Let the unperturbed

flow be described by a linear velocity distribution

vot = a-ikX/c, (22.1)

where a^ is a constant symmetrical tensor. The fluid pressure is constant:

Po = constant,

and in future we shall take po to be zero, i.e. measure only the deviation

from this constant value. If the fluid is incompressible (div vo = 0), the

sum of the diagonal elements of the tensor a^ must be zero

:

am = 0. (22.2)

Now let a small sphere of radius R be placed at the origin. We denote

the altered fluid velocity by v = vo+ Vi ; vi must vanish at infinity, but near

the sphere vi is not small compared with Vo. It is clear from the symmetry

of the flow that the sphere remains at rest, so that the boundary condition is

v = for r = R.

The required solution of the equations of motion (20.1) to (20.3) may be

obtained at once from the solution (20.4), with the function/given by (20.6),

if we notice that the space derivatives of this solution are themselves solutions.

In the present case we desire a solution depending on the components of the

tensor a^ as parameters (and not on the vector u as in §20). Such a solution

is

vi = curl curl [(ocgrad)/], p = rjoCLwd2 Afjdxidxn,

where (a »grad)/ denotes a vector whose components are oLnfifjdxjc. Expand-

ing these expressions and determining the constants a and b in the function

/ = ar+ bjr so as to satisfy the boundary conditions at the surface of the

sphere, we obtain the following formulae for the velocity and pressure

:

5/RS R*\ #5
vu = - — WkVUnm -ocm;%, (22.3)

2 \ r4 rl l r4

p = - 5-170—-(x-ikninjc, (22A)
r3

where n is a unit vector in the direction of the radius vector.
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Returning now to the problem of determining the effective viscosity of a
suspension, we calculate the mean value (over the volume) of the momentum
flux density tensor 11^, which, in the linear approximation with respect
to the velocity, is the same as the stress tensor — att :

*» = (1/V) j <jik dV.

The integration here may be taken over the volume V of a sphere of large
radius, which is then extended to infinity.

First of all, we have the identity

/ dvt dvk \
°ik = yo — + —- I -pSik+

\ OXjc OXi I

f /(•*-*(£ + 5)^K (22 -5)+

The integrand on the right is zero except within the solid spheres; since

the concentration of the suspension is supposed small, the integral may be
calculated for a single sphere as if the others were absent, and then multiplied
by the concentration c of the suspension (the number of spheres per unit
volume). The direct calculation of this integral would require an investi-

gation of internal stresses in the spheres. We can circumvent this difficulty,

however, by transforming the volume integral into a surface integral over an
infinitely distant sphere, which lies entirely in the fluid. To do so, we note
that the equation of motion daujdxi = leads to the identity

<*ik = 8(cruXk)ldxi;

hence the transformation of the volume integral into a surface integral gives

<*ik

I dvi dvk \ r
= ^o(— +— l+cd) {auXkdfi-Tjo^idfk+ vjcdfi)}.

We have omitted the term in p, since the mean pressure is necessarily zero

;

p is a scalar, which must be given by a linear combination of the components
onijc, and the only such scalar is ecu = 0.

In calculating the integral over a sphere of very large radius, only the
terms of order 1/r2 need be retained in the expression (22.3) for the velocity.

A simple calculation gives the value of the integral as

cr]o • 207rRs{5a.imninjcninm —aan]cni},

where the bar denotes an average with respect to directions of the unit vector
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n. Effecting the averaging,j- we finally have

(dVi dvjc \
1

I + 577o«» '%ttRzc. (22.6)
oxjc 8xi J

The ratio of the second term to the first determines the required relative

correction to give the effective viscosity of the suspension. If we are in-

terested only in corrections of the first order of smallness, we can take the

first term as 2^oa«Ar- We then obtain for the effective viscosity of the suspen-

sion

r) = r}0(l+m> (22.7)

where
<f>
= &nRzc is the small ratio of the total volume of the spheres to

the total volume of the suspension.

§23. Exact solutions of the equations of motion for a viscous fluid

If the non-linear terms in the equations of motion of a viscous fluid do

not vanish identically, the solving of these equations offers great difficulties,

and exact solutions can be obtained only in a very small number of cases.

Furthermore, it has not yet proved possible to carry out a complete investi-

gation of the steady flow of a viscous fluid in all space round a body in the

limit of very large Reynolds numbers. Although, as we shall see, such

a flow does not in practice remain steady, the solution of the problem would

nevertheless be of great methodological interest.$

We give below examples of exact solutions of the equations of motion for

a viscous fluid.

(1) An infinite plane disk immersed in a viscous fluid rotates uniformly

about its axis. Determine the motion of the fluid caused by this motion of

the disk (T. von KArman, 1921).

We take cylindrical co-ordinates, with the plane of the disk as the plane

z = 0. Let the disk rotate about the #-axis with angular velocity Q. We
consider the unbounded volume of fluid on the side z > 0. The boundary

conditions are

*V = 0, »* = Qr, vz = for z = 0,

vr = 0, ^ = for z = oo.

t The required mean values of products of components of the unit vector are symmetrical tensors,

which can be formed only from the unit tensor S,*. We then easily find

ntfljc = hoc,

ninicmnm = Tt(8ik$lm+ 8il$km+ $im$ki)-

X The "vanishing viscosity" theory of Oseen is concerned with this problem; it is unsatis-

factory, since it is based on an unjustified simplification of the Navier-Stokes equations. Prandtl's
boundary-layer theory (see §39) does not solve the problem throughout the volume of the fluid.
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The axial velocity vz does not vanish as z -> oo, but tends to a constant nega-
tive value determined by the equations of motion. The reason is that,

since the fluid moves radially away from the axis of rotation, especially near
the disk, there must be a constant vertical flow from infinity in order to

satisfy the equation of continuity. We seek a solution of the equations of

motion in the form

(23.1)

vr = rQF(z!); ^ = rQG(*i); vz = i/(yQ)H(xi);

p — —pv£lP(zi) y where z\ = -\/(Q/v)z.

In this velocity distribution, the radial and azimuthal velocities are propor-
tional to the distance from the axis of rotation, while vz is constant on each
horizontal plane.

Substituting in the Navier-Stokes equation and in the equation of con-

tinuity, we obtain the following equations for the functions F, G, H and P:

F2_ G*+F'H = F", 2FG+ G'H = G",
(23 2^

HH' = P'+H", 2F+H' = 0;
V

'

'

the prime denotes differentiation with respect to z\. The boundary conditions

are

F = 0, G = 1, H = for *i = 0.

(23.3)
F = 0, G = for ^i = oo.

v }

We have therefore reduced the solution of the problem to the integration of a

system of ordinary differential equations in one variable ; this can be achieved

numerically.f Fig. 7 shows the functions F, G and —H thus obtained.

t The numerical integration has also been carried out for another similar problem, in which the
fluid rotates uniformly at infinity and the disc is at rest (U.T. Bodewadt, Zeitschrift fur angeviandte

Mathematik und Mechanik 20, 241, 1940).
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The limiting value of H as zi -> oo is -0-886; in other words, the fluid

velocity at infinity is flz(oo) = — Q-886\/(vQ).

The frictional force acting on unit area of the disk perpendicularly to the

radius is a
z<f)
= rj{dv^dz) z=Q. Neglecting edge effects, we may write the

moment of the frictional forces acting on a disk of large but finite radius R as

R
M = 2 j 2rrr2 aH Ar = 7r#W0^3)G'( )-

o

The factor 2 in front of the integral appears because the disk has two sides

exposed to the fluid. A numerical calculation of the function G leads to

the formula

M = - 1-94JRW("Q8
)- (

23 -4)

(2) Determine the steady flow between two plane walls meeting at an

angle a (Fig. 8 shows a cross-section of the two planes); the fluid flows

out from the line of intersection of the planes (G. Hamel, 1916).

Fig. 8

We take cylindrical co-ordinates r, z,
<f>,

with the z-axis along the line of

the intersection of the planes (the point O in Fig. 8), and the angle <£ measured

as shown in Fig. 8. The flow is uniform in the ^-direction, and we naturally

assume it to be entirely radial, i.e.

i>4 = Vz = 0, vr = v(r,
<f>).

The equations (15.16) give

dv 1 dp I d2v 1 d2v 1 dv v \
*,_.= L + J— + + -, (23.5)
8r pdr \ dr2 r d<f> r dr r2 /

1 dp 2v dv ,_ , x--£ + ^^r ' (23 -6)
pr d<f> r* d<j>

d(rv)jdr = 0.

It is seen from the last of these that rv is a function of
<f>

only. Introducing

the function

u(<f>) = rvl6v, (23.7)
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we obtain from (23.6)

1 dp \2v* du

pd<j>~ r2 d<j>'

whence

p 12l/2

§23

ft

Substituting this expression in (23.5), we have

dhi 1_ + 4„+ 6«s = —,*/<(,),

from which we see that, since the left-hand side depends only on <£ and the

right-hand side only on r, each must be a constant, which we denote by 2C\.
Thus /'(*) = 12v2Ci/r3 , whence /(r) = -6v2Ci/r2+ constant, and we have
for the pressure

p 6v2
- = —r-(2u- d)+ constant. (23 .8)
p rz

For u(<f>) we have the equation

m" + 4m+ 6«2 = 2Ci,

which, on multiplication by u' and one integration, gives

|m'2+ 2m2+ 2w3_2Cim-2C2 = 0.

Hence we have

24 = ± + C3 , (23.9)

which gives the required dependence of the velocity on
<f>;

the function u(<f>)

can be expressed in terms of elliptic functions. The three constants Ci, C2,

Cz are determined from the boundary conditions

«(±i<x) = (23.10)

and from the condition that the same mass Q of fluid passes in unit time
through any cross-section r = constant:

a/2 a/2

J

vrd<f> = 6vp
J

-a/2 -a/2

Q = p j vrdt = 6vP j ud<f>. (23.11)

Q may be either positive or negative. If Q > 0, the line of intersection

of the planes is a source, i.e. the fluid emerges from the vertex of the angle

:

this is called flow in a diverging channel. If Q < 0, the line of intersection is
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a sink, and we have flow in a converging channel. The ratio \Q\jvp is dimen-

sionless and plays the part of the Reynolds number in the problem considered.

Let us first discuss converging flow (Q < 0). To investigate the solution

(23.9)-(23.11) we make the assumptions, which will be justified later, that

the flow is symmetrical about the plane
<f>
= (i.e. u(<f>) = u(— <f>)),

and that

the function u(4>) is everywhere negative (i.e. the velocity is everywhere

towards the vertex) and decreases monotonically from u = at <j> = ± fa

to u = — «o < at 4> = 0, so that uq is the maximum value of \u\. Then
for u = —wo we must have dufd</> = 0, whence it follows that u = — #o

is a zero of the cubic expression under the radical in the integrand of (23.9).

We can therefore write

— uz—u2+Ciu+C2 = (u+ uo){— u2 -(l-uo)u + q} f

where q is another constant. Thus

u
C dw

26 = + -, (23.12)^ "J V\(u+ u ){-u*-a-uo)u+ q\yV[(M+ «o){- m2- (1 - mo)w+ q}]

'

the constants uq and q being determined from the conditions

o

a= f

-«,

du

J VKu

V[(«+ «o){- m2- (1 - u )u+ q}]

'

(23.13)

udu

\/[(u+ u ){- m2- (1 - u )u+ q}]
1*0

Fig. 9

(R = \Q\jvp)\ the constant q must be positive, since otherwise these integrals

would be complex. The two equations just given may be shown to have

solutions uq and q for any R and a < it. In other words, convergent sym-
metrical flow (Fig. 9) is possible for any aperture angle a and any Reynolds
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number. Let us consider in more detail the flow for very large R. This
corresponds to large uq. Writing (23.12) (for <j> > 0) as

j
r d«

2(|a-<£) = ,

J \Z[(u + uo){-u2 -(l-u )u+ q}]

we see that the integrand is small throughout the range of integration if \u
\

is not close to uq. This means that \u
|
can differ appreciably from uq only

for
<f>

close to ±^a, i.e. in the immediate neighbourhood of the walls.f

In other words, we have u « constant = — uq for almost all angles
<f>,

and
in addition uq = R/6a, as we see from equations (23.13). The velocity v

itself is \Q |/potr, giving a non-viscous potential flow with velocity independent

of angle and inversely proportional to r. Thus, for large Reynolds numbers,

the flow in a converging channel differs very little from potential flow of

an ideal fluid. The effect of the viscosity appears only in a very narrow layer

near the walls, where the velocity falls rapidly to zero from the value cor-

responding to the potential flow (Fig. 10).

Fig. 10

Now let Q > 0, so that we have divergent flow. At first we again suppose

that the flow is symmetrical about the plane <j> = 0, and that u{<j>) (where

now u > 0) varies monotonically from zero at cf>
= ± |a to uq > at <j> = 0.

Instead of (23.13) we now have

-/
«0

,

QU

V[(«o - u){u2+ (1 + uq)u+ q}]

'

(23.14)

r udu

J vT(Mo— u){u2+ (l + uo)u+ q}]

f The question may be asked how the integral can cease to be small, even if u 7H — u . The answer
is that, for u very large, one of the roots of —w2 —(1 —w )u+g = is close to —u , so that the radicand

has two almost coincident zeros, the whole integral therefore being "almost divergent" at u = —u .
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If we regard u as given, then a increases monotonically as q decreases, and

takes its greatest value for q = 0:

du
CCmax

r du

J a/\u(uo-u)(u-\/[u(uq- u)(u + UQ+ 1)]

Fig. 11

It is easy to see that for given q, on the other hand, a is a monotonically

decreasing function of uq. Hence it follows that uq is a monotonically de-

creasing function of q for given a, so that its greatest value is for q =
and is given by the above equation. The maximum R = Rmax corresponds

to the maximum wo- Using the substitutions k2 = uol(l + 2uo), u = uq cos2 x,

we can write the dependence of Rmax on a in the parametric form

axC Q-X

a = 2V(l-2tf) ————

,

J y\l— kz sm*x)

1-&2 12
Rmax = — 6a- —— +

tt/2

(23.15)

1-2*2 V(l-2£2
)

\/(l — k2 sin2 x)dx.

Thus symmetrical flow, everywhere divergent (Fig. 11a), is possible for a

given aperture angle only for Reynolds numbers not exceeding a definite

value. As a -> tr (k -> 0), Rmax -> 0; as a -> (k -> l/\/2)> Rmax tends to

infinity as 18-8/a.

For R > Rmax the assumption of symmetrical flow, everywhere divergent,

is unjustified, since the conditions (23.14) cannot be satisfied. In the range

of angles — |a <
<f> ^ \on the function u(<f>) must now have maxima or

minima. The values of u(<f>) corresponding to these extrema must again be

zeros of the polynomial under the radical sign. It is therefore clear that

the trinomial u2+ (l+Uo)u+ q (with uq > 0, q > 0) must have two real

negative roots in the range mentioned, so that the radicand can be written

{uq— u)(u+uo')(u+uo"), where uq > 0, uq' > 0, uq" > 0; we suppose
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wo' < «o". The function u{<j>) can evidently vary in the range mo > u ^ — uq\

u = uo corresponding to a positive maximum of u(<f>), and u — -«o' to a

negative minimum. Without pausing to make a detailed investigation of the

solutions obtained in this way, we may mention that for R > Rmax a solution

appears in which the velocity has one maximum and one minimum, the flow

being asymmetric about the plane
<f>
= (Fig. lib). When R increases fur-

ther, a symmetrical solution with one minimum and two maxima appears

(Fig. lie), and so on. In all these solutions, therefore, there are regions of

both outward and inward flow (though of course the total discharge Q
is positive). As R -> oo the number of alternating minima and maxima
increases without limit, so that there is no definite limiting solution. We
may emphasise that in divergent flow as R-> oo the solution does not,

therefore, tend to the solution of Euler's equations as it does for convergent

flow. Finally, it may be mentioned that, as R increases, the steady divergent

flow of the kind described becomes unstable soon after R exceeds Rmax>

and in practice a non-steady or turbulent flow occurs (Chapter III).

(3) Determine the flow in a jet emerging from the end of a narrow tube

into an infinite space filled with the fluid—the submerged jet (L. Landau,
1943).

We take spherical co-ordinates r, 6,
<f>,

with the polar axis in the direction

of the jet at its point of emergence, and with this point as origin. The flow is

symmetrical about the polar axis, so that v^ = and vdl vr are functions of r

and 6 only. The same total momentum flux (the "momentum of the jet")

must pass through any closed surface surrounding the origin (in particular,

through an infinitely distant surface). For this to be so, the velocity must be

inversely proportional to r, so that

vr = F(d)fr, ve = f(d)[r, (23.16)

where F and / are some functions of 6 only. The equation of continuity is

1 d{r*vr) 1 d
+ — (vg sin 6) = 0.

r2 dr r sin 6 88

Hence we find that

F(d) = -dfldd-fcot9. (23.17)

The components II r^, 11^ of the momentum flux density tensor in the jet

vanish identically by symmetry. We assume that the components 11^
and 11^ also vanish; this assumption is justified when we obtain a solution

satisfying all the necessary conditions. Using the expressions (15.17) for

the components of the tensor o%, and formulae (23.16), (23.17), we easily

see that the relation

sin2 lire = - ^[sin2 0(II^-rU)]

holds between the components of the momentum flux density tensor in the



§23 Exact solutions of the equations of motion for a viscous fluid 87

jet. Hence it follows that U re = 0. Thus only the component II rr is non-

zero, and it varies as 1/r2 . It is easy to see that the equations of motion

dUijcjdXk = are automatically satisfied.

Next, we write

(n*-n*)/p = (p+2vfcote-2vf)ir2 = o,

or

d(l//)/d0+(l//)cot0+l/2i> = 0.

The solution of this equation is

/= -2i/sin0/(^-cos0), (23.18)

and then we have from (23.17)

[
A2- 1

\F = 2v 1 . (23.19)
l(,4-cos0)2 /

v
'

The pressure distribution is found from the equation

IWP = Plp+f(f+2vcote)lr* = 0,

which gives

4pv2(^cos0-l)

rz(A— cos 0)
2

The constant A can be found in terms of the momentum of the jet, i.e. the

total momentum flux in it. This flux is equal to the integral over the surface

of a sphere

n

P =
<J>

n„. cosfld/ = 2tt f r^Urr cos0sin0 d0.

The value of II rr is given by

( (A*-l)* A \

{ (A-cosd)*
~ A-cosdy

1 4^2
(

(A2- 1)
2 A

p r2 l(^4-cos0)4 ^4-cos0f

and a calculation of the integral gives

P =16^(1+_J__^ log^±ij. (23 .21)

Formulae (23.16)-(23.21) give the solution of the problem.f

t The solution here obtained is exact for a jet regarded as emerging from a point source. If the
finite dimensions of the tube mouth are taken into account, the solution becomes the first term of an
expansion in powers of the ratio of these dimensions to the distance r from the mouth of the tube.
This is why, if we calculate from the above solution the total mass flux through a closed surface sur-
rounding the origin, the result is zero. A non-zero total mass flux is obtained when further teuns
in the above-mentioned expansion are considered; see Yu. B. Rumer, Prikladnaya matematika i

mekhanika 16, 255, 1952.

The submerged laminar jet with a non-zero angular momentum has bee ndiscussed by L. G.
LoItsyanskiI (ibid. 17, 3, 1953).
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The streamlines are determined by the equation drfvr = rd0/ve , integration

of which gives r sin2 6j{A — cos 6) = constant. Fig. 12 shows the streamlines

in the jet (for A > 1).

Fig. 12

Let us consider two limiting cases, a weak jet (small momentum P) and a

strong jet (large P). As P -> 0, the constant A tends to infinity: from (23.21)

we have P = l&n-v2pjA. For the velocity in this case we have

vd = —P sin 6j&TTvpr, vr = P cos QjAm>pr.

As P -> oo (strong jetf), A tends to unity: (23.21) gives A — l + |a2, where

a = 32ttv2p/3P. For large angles (0 ~ 1), the velocity is given by

v6 = — (2v/r) cotffl, vr = —2v/r,

but for small angles (0 ~ a) we have

^ = _4^/(a2+ ^8), »r = 8va2/(a2+02
)
2

.

§24. Oscillatory motion in a viscous fluid

When a solid body immersed in a viscous fluid oscillates, the flow thereby

set up has a number of characteristic properties. In order to study these,

it is convenient to begin with a simple but typical example. Let us suppose

that an incompressible fluid is bounded by an infinite plane surface which

executes a simple harmonic oscillation in its own plane, with frequency w.

We require the resulting motion of the fluid. We take the solid surface as the

yz-iplane, and the fluid region as x > ; the jy-axis is taken in the direction

of the oscillation. The velocity u of the oscillating surface is a function of

time, of the form A cos (atf+ <x). It is convenient to write this as the real

part of a complex quantity:

u = re(uoe~ia)t
),

where the constant uq = Ae- i0L
is in general complex, but can always be made

real by a proper choice of the origin of time.

t However, it must be borne in mind that the flow in a sufficiently strong jet is actually turbulent

(§35).
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So long as the calculations involve only linear operations on the velocity

k, we may omit the sign re and proceed as if u were complex, taking the real

part of the final result. Thus we write

Uy = u = uo e"K (24.1)

The fluid velocity must satisfy the boundary condition v = u for x = 0,

i.e. vx = v2 = 0, vy = u.

It is evident from symmetry that all quantities will depend only on the

co-ordinate x and the time t . From the equation of continuity div v =
we therefore have dvx/8x = 0, whence vx = constant = zero, from the

boundary condition. Since all quantities are independent of the co-ordinates

y and z, we have (v«grad)v = vx dyjdx, and since vx is zero it follows that

(v«grad)v = identically. The equation of motion (15.7) becomes

dv/dt = -(ljP)gradp+ vAv. (24.2)

This is a linear equation. Its ^-component is dpjdx = 0, i.e. p = constant.

It is further evident from symmetry that the velocity v is everywhere in

the ^-direction. For vy = v we have by (24.2)

dvjdt = vd^vjdx2
, (24.3)

that is, a (one-dimensional) heat conduction equation. We shall look for a

solution of this equation which is periodic in x and t, of the form

with a complex amplitude Mo, so that v = u for x = 0. Substituting in

(24.3), we find toy = vk2, whence

k = V(ioilv) = ± (*'+WW2*)*

so that the velocity v is

v _ u e-V(M/2v)z eiW(u/2v)x-o)f}- (24.4)

we have taken k to have a positive imaginary part, since otherwise the velocity

would increase without limit in the interior of the fluid, which is physically

impossible.

The solution obtained represents a transverse wave: its velocity vy — v

is perpendicular to the direction of propagation. The most important pro-

perty of this wave is that it is rapidly damped in the interior of the fluid

:

the amplitude decreases exponentially as the distance x from the solid

surface increases.

f

Thus transverse waves can occur in a viscous fluid, but they are rapidly

damped as we move away from the solid surface whose motion generates the

waves.

The distance S over which the amplitude falls off by a factor of e is called

the depth ofpenetration of the wave. We see from (24.4) that

S = V(2v/w). (24.5)

t Over a distance of one wavelength the amplitude diminishes by a factor of c2"
- K 540.
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The depth of penetration therefore diminishes with increasing frequency, but
increases with the kinematic viscosity of the fluid.

Let us calculate the frictional force acting on unit area of the plane oscil-

lating in the viscous fluid. This force is evidently in the ^-direction, and is

equal to the component axy = v\dvy\dx of the stress tensor; the value of the

derivative must be taken at the surface itself, i.e. at x = 0. Substituting

(24.4), we obtain

°xy = Vd^pX*- !)«• (24.6)

Supposing Mo real and taking the real part of (24.6), we have

<*xy = —-\/(co7]p)uoCos(cot+ l7r).

The velocity of the oscillating surface, however, is u = uq cos cot. There
is therefore a phase difference between the velocity and the frictional force.f

It is easy to calculate also the (time) average of the energy dissipation

in the above problem. This may be done by means of the general formula

(16.3); in this particular case, however, it is simpler to calculate the required
dissipation directly as the work done by the frictional forces. The energy
dissipated per unit time per unit area of the oscillating plane is equal to the

mean value of the product of the force axy and the velocity uy = u:

- ozyu = i«o
2
\/(£OM?/>)- (24.7)

It is proportional to the square root of the frequency of the oscillations,

and to the square root of the viscosity.

An explicit solution can also be given of the problem of a fluid set in

motion by a plane surface moving in its plane according to any law u = u(t).

We shall not pause to give the corresponding calculations here, since the

required solution of equation (24.3) is formally identical with that of an
analogous problem in the theory of thermal conduction, which we shall

discuss in §52 (the solution is formula (52.15)). In particular, the frictional

force on unit area of the surface is given by

°xy
yrjp r du(r) dr

7J^^) : (24 '8)

cf. (52.16).

t For oscillations of a half-plane (parallel to its edge) there is an additional frictional force due to

edge effects. The problem of the motion of a viscous fluid caused by oscillations of a half-plane, and
also the more general problem of the oscillations of a wedge of any angle, can be solved by a class of
solutions of the equation A/+&2/ *= 0, used by A. Sommehfeld in the theory of diffraction by a wedge;
see, for instance, M. von Laue, Interferenz und Beugung elektromagnetischer Wellen (Interference
and diffraction of electromagnetic waves), Handbuch der Experimentalphysik 18, 333, Akademische
Verlagsgesellschaft, Leipzig 1928.

We give here, for reference, only one result: the increase in the frictional force on a half-plane,

arising from the edge effect, can be regarded as the result of increasing the area of the half-plane by
moving the edge a distance JS = -\Z(vj2to).
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Let us now consider the general case of an oscillating body of arbitrary

shape. In the case of an oscillating plane considered above, the term

(v»grad)v in the equation of motion of the fluid was identically zero. This

does not happen, of course, for a surface of arbitrary shape. We shall assume,

however, that this term is small in comparison with the other terms, so that

it may be neglected. The conditions necessary for this procedure to be valid

will be examined below.

We shall therefore begin, as before, from the linear equation (24.2).

We take the curl of both sides; the term curlgradp vanishes identically,

giving

2(curlv)/3* = vAcurlv, (24.9)

i.e. curl v satisfies a heat conduction equation. We have seen above, however,

that such an equation gives an exponential decrease of the quantity which

satisfies it. We can therefore say that the vorticity decreases towards the

interior of the fluid. In other words, the motion of the fluid caused by the

oscillations of the body is rotational in a certain layer round the body, while

at larger distances it rapidly changes to potential flow. The depth of penetra-

tion of the rotational flow is of the order of 8 ~ -^(vjcj).

Two important limiting cases are possible here: the quantity 8 may be

either large or small compared with the dimension of the oscillating body.

Let / be the order of magnitude of this dimension. We first consider the case

8 > /; this implies that 12oj <^ v. Besides this condition, we shall also suppose

that the Reynolds number is small. If a is the amplitude of the oscillations,

the velocity of the body is of the order of aco. The Reynolds number for the

motion in question is therefore cual/v. We therefore suppose that

Pa> <^ v, waljv < 1. (24.10)

This is the case of low frequencies of oscillation, which in turn means that

the velocity varies only slowly with time, and therefore that we can neglect

the derivative dvfdt in the general equation of motion. The term (v»grad)v,

on the other hand, can be neglected because the Reynolds number is small.

The absence of the term dv]dt from the equation of motion means that the

flow is steady. Thus, for 8 > /, the flow can be regarded as steady at any
given instant. This means that the flow at any given instant is what it would
be if the body were moving uniformly with its instantaneous velocity. If,

for example, we are considering the oscillations of a sphere immersed in the

fluid, with a frequency satisfying the inequalities (24.10) (/ being now the

radius of the sphere), then we can say that the drag on the sphere will be that

given by Stokes' formula (20.14) for uniform motion of the sphere at small

Reynolds numbers.

Let us now consider the opposite case, where / > 8. In order that the

term (v«grad)v should again be negligible, it is necessary that the amplitude
of the oscillations should be small in comparison with the dimensions of the

body:

Pco >v, a<$l; (24.11)



92 Viscous Fluids §24

in this case, it should be noticed, the Reynolds number need not be small.

The above inequality is obtained by estimating the magnitude of (v«grad)v.
The operator (v»grad) denotes differentiation in the direction of the velocity.

Near the surface of the body, however, the velocity is nearly tangential. In
the tangential direction the velocity changes appreciably only over distances

of the order of the dimension of the body. Hence

(v-grad)v ~ v2jl ~ a2a>2/l,

since the velocity itself is of the order of am. The derivative d\jdt, however,

is of the order of vco ~ aco2 . Comparing these, we see that

(v^grad)v 4 d\\dt

if a < /. The terms dvjdt and vAv are then easily seen to be of the same
order.

We may now discuss the nature of the flow round an oscillating body when
the conditions (24.11) hold. In a thin layer near the surface of the body
the flow is rotational, but in the rest of the fluid we have potential flow.f

Hence the flow everywhere except in the layer adjoining the body is given

by the equations

curlv = 0, div v = 0. (24.12)

Hence it follows that Av = 0, and the Navier-Stokes equation reduces to

Euler's equation. The flow is therefore ideal everywhere except in the

surface layer. Since this layer is thin, in solving equations (24.12) to deter-

mine the flow of the rest of the fluid we should take as boundary conditions

those which must be satisfied at the surface of the body, i.e. that the fluid

velocity is equal to that of the body. The solutions of the equations of motion

for an ideal fluid cannot satisfy these conditions, however. We can require

only the fulfilment of the corresponding condition for the fluid velocity

component normal to the surface.

Although equations (24.12) are inapplicable in the surface layer of fluid,

the velocity distribution obtained by solving them satisfies the necessary

boundary condition for the normal velocity component, and the actual

variation of this component near the surface therefore has no significant

properties. The tangential component would be found, by solving the equa-

tions (24.12), to have some value different from the corresponding velocity

component of the body, whereas these velocity components should be equal

also. Hence the tangential velocity component must change rapidly in the

surface layer. The nature of this variation is easily determined. Let us

consider any portion of the surface of the body, of dimension large compared

f For oscillations of a plane surface not only curl v but also v itself decreases exponentially with

characteristic distance 8. This is because the oscillating plane does not displace the fluid, and there-

fore the fluid remote from it remains at rest. For oscillations of bodies of other shapes the fluid is

displaced, and therefore executes a motion where the velocity decreases appreciably only over distances

of the order of the dimension of the body.
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with S, but small compared with the dimension of the body. Such a portion

may be regarded as approximately plane, and therefore we can use the re-

sults obtained above for a plane surface. Let the #-axis be directed along

the normal to the portion considered, and the ^y-axis parallel to the tangential

velocity component of the surface there. We denote by vy the tangential

component of the fluid velocity relative to the body; vy must vanish on the

surface. Lastly, let voe~ia)t be the value of vy found by solving equations

(24.12). From the results obtained at the beginning of this section, we can

say that in the surface layer the quantity vy will fall off towards the surface

according to the law

Vy = VQe-t»4[l-er0--O*vW2r)] m (24.13)

Finally, the total amount of energy dissipated in unit time will be given by
the integral

ikin = -W(blP°>) j> bo|
2 d/ (24.14)

taken over the surface of the oscillating body.

In the Problems at the end of this section we calculate the drag on various

bodies oscillating in a viscous fluid. Here we shall make the following general

remark regarding these forces. Writing the velocity of the body in the complex
form u = uoe-iwt , we obtain a drag F proportional to the velocity u, and also

complex: F = /?«, where f3= fii + ife is a complex constant. This expression

can be written as the sum of two terms with real coefficients

:

F = (pi+ ife)u = fau-feujco, (24.15)

one proportional to the velocity u and the other to the acceleration u.

The (time) average of the energy dissipation is given by the mean product
of the drag and the velocity, where of course we must first take the real

parts of the expressions given above, i.e. u = \{uoe~i<at+ uo*eio>t
),

F = l{uofie-
iwt + uo*p*ei0it

). Noticing that the mean values of e±Zia)t are

zero, we have

Fu = l(P+P>)H 2 = ifrM 2
- (24.16)

Thus we see that the energy dissipation arises only from the real part of /?;

the corresponding part of the drag (24.15), proportional to the velocity, may
be called the dissipative part. The other part of the drag, proportional to

the acceleration and determined by the imaginary part of /?, does not involve

the dissipation of energy and may be called the inertial part.

Similar considerations hold for the moment of the forces on a body execut-

ing rotary oscillations in a viscous fluid.

PROBLEMS

Problem 1. Determine the frictional force on each of two parallel solid planes, between
which is a layer of viscous fluid, when one of the planes oscillates in its own plane.
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Solution. We seek a solution of equation (24.3) in the formf

v = (A sinkx+B coskx)e~i<ot
,

and determine A and B from the conditions v = u = M e~i&" for * = and v — for

x — h, where h is the distance between the planes. The result is

sin k(h— x)
V = u-

sinkh

The frictional force per unit area on the moving plane is

Plx = rj(dv/dx)x=0 = —rjkucotkh,

while that on the fixed plane is

P<lx = — 7}(8vldx)x=h = f\hi cosec kh,

the real parts of all quantities being understood.

Problem 2. Determine the frictional force on an oscillating plane covered by a layer of

fluid of thickness h, the upper surface being free.

Solution. The boundary condition at the solid plane is v = u for * = 0, and that at the

free surface is axy = rjdv/dx = for x = h. We find the velocity

COS k(h— x)
V = u .

coskh

The frictional force is

Px = 7)(dvjdx)x=^o — yku tan kh.

Problem 3. A plane disk of large radius R executes rotary oscillations of small amplitude

about its axis, the angle of rotation being = 8 cos <at, where & <^ 1 . Determine the moment
of the frictional forces acting on the disk.

Solution. For oscillations of small amplitude the term (v.grad)v in the equation of

motion is always small compared with 8v/8t, whatever the frequency to. If R ^> 8, the disk

may be regarded as infinite in determining the velocity distribution. We take cylindrical

co-ordinates, with the jar-axis along the axis of rotation, and seek a solution such that

Vr = Vt = 0, v* = v = rQ(s, t). For the angular velocity Q(z, t) of the fluid we obtain the

equation

BQjdt = vdm/dz2 .

The solution of this equation which is — w6 Q sin tot for z = and zero for z = oo is

Q = - <od e~z/s sin(wt - z/8).

The moment of the frictional forces on both sides of the disk is

R
M = 2 f r'27rrr)(dvldz)s=>odr = wOvn^/(u)prq)R* cos(arf-iir).

t In all the Problems to this section S denotes the quantity (24.5):

8 = V(2vh)> and k = (l + i)IS.
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Problem 4. Determine the flow between two parallel planes when there is a pressure

gradient which varies harmonically with time.

Solution. We take the war-plane half-way between the two planes, with the w-axis parallel

to the pressure gradient, which we write in the form

-(l/p)dp/dx = ae~i(at
.

The velocity is everywhere in the ^-direction, and is determined by the equation

dv/dt = ae-M+vdHldy*.

The solution of this equation which satisfies the conditions v — for y = ±JA is

COS Ay

COS^M.

The mean value of the velocity over a cross-section is

2

ia r cos Ay 1
v = —e-itot

\
1 — .

co I cosiMj

ia l I \
v = —e~ia>t 1 tanAM .

co \ kh * /

For h/8 <^ 1 this becomes

v « ae-t^h2112v,

in agreement with (17.5), while for hjh ^> 1 we have

v x (ia/co)e~i<at
,

in accordance with the fact that in this case the velocity must be almost constant over the
cross-section, varying only in a narrow surface layer.

Problem 5. Determine the drag on a sphere of radius R which executes translatory oscil-

lations in a fluid.

Solution. We write the velocity of the sphere in the form u = u c
_*<u '. As in §20, we

seek the fluid velocity in the form v = e~ib)t curl curl/u , where / is a function of r only
(the origin is taken at the instantaneous position of the centre of the sphere). Substituting in

(24.9) and effecting transformations similar to those of §20, we obtain the equation

Aa/+(M>W A/=0
(instead of the equation A 2/ = in §20). Hence we have

A/ = constant x eikr/r,

the solution being chosen which decreases exponentially with r. Integrating, we have

df[dr = [ae^r(r-lfik)+ b]lr^; (1)

the function/ itself is not needed, since only the derivatives/ ' and/ " appear in the velocity.

The constants a and b are determined from the condition that v = u for r = R, and are
found to be

3R / 3 3 \
a = - —e-i**, b = -W[\ . (2)

lik
¥

\ ikR k*R*I
K)

It may be pointed out that, at large distances {R ^> 8), a -> and b -> —\R*t the values for
potential flow obtained in §10, Problem 2; this is in accordance with what was said in §24.
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The drag is calculated from formula (20.13), in which the integration is over the surface
of the sphere. The result is

/ R \ I 2R \ du
F = 6^1 + - )u+ 3iTRW(2rip/co)(l +—

J

—

.

(3)

For to = this becomes Stokes' formula, while for large frequencies we have

du
F = %ttPR* + 2>TTR^(2r}Poi)u.

dt

The first term in this expression corresponds to the inertial force in potential flow past a

sphere (see §11, Problem 1), while the second gives the limit of the dissipative force.

Problem 6. Determine the drag on a sphere moving in an arbitrary manner, the velocity

being, given by a function u{t).

Solution. We represent u(t) as a Fourier integral

:

f ! f
M(0 = u^e-^tdco, uu = — u{r)eib>T dr.

J 2tt J—oo —oo

Since the equations are linear, the total drag may be written as the integral of the drag forces

for velocities which are the separate Fourier components u
(t)
e~iwt ] these forces are given by

(3) of Problem 5, and are

Noticing that (du/dt)^ = —icou^, we can rewrite this as

( 6v 3V(2v) 1 +M

On integration over to, the first and second terms give respectively u(t) and u(t). To integrate

the third term, we notice first of all that for negative co this term must be written in the

complex conjugate form, (1 +i)j\/co being replaced by (1 —*)/'VMi tms is because formula

(3) of Problem 5 was derived for a velocity u — u e~i<Jt with to > 0, and for a velocity

«„£*«' we should obtain the complex conjugate. Instead of an integral over w from — oo

to + oo, we can therefore take twice the real part of the integral from to oo. We write

oo, . , . oo oo

2iel(l+i)
K-^ da) = -re (1 + -^- dwdr

-oo

oo oo oo

1 i r r u(t) e-ib*t-r) r /• u(t) eft**-**

--re (1+0 -^- dcodr+ (l + -^ dcodi
IT \ J J \/CO J J -S/Oi

-oo *

t 00

Vtt \ J V(t-r) J V(t-0 J

N IT J

—oo

t

U(r)

V(t-r-\
-dr.
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Thus we have finally for the drag

i\du 3vu 3 iv rdu dr )

f=2lrpi?3{__ +_ + _y-j_ j.
(1)

—oo

Problem 7. Determine the drag on a sphere which at time t = begins to move with a

uniform acceleration, u = at.

Solution. Putting, in formula (1) of Problem 6, u = for t < and u = at for t >
we have for t >

rl 3vt 6 /tvi
F = 2.pfi3«[- +- + -

A/-J.

Problem 8. The same as Problem 7, but for a sphere brought instantaneously into uniform

motion.

Solution. We have u = for t < and u = u for t > 0. The derivative dujdt is

zero except at the instant t = 0, when it is infinite, but the time integral of du/dt is finite,

and equals « . As a result, we have for all t >[D -i

1 + —-—- +&rpR3U 8(t),

V(irrt) J

where B(t) is the delta function. For t -> oo this expression tends asymptotically to the value

given by Stokes' formula. The impulsive drag on the sphere at t = is obtained by integrat-

ing the last term and is %irpR3u .

Problem 9. Determine the moment of the forces on a sphere executing rotary oscillations

about a diameter in a viscous fluid.

Solution. For the same reasons as in §20, Problem 1, the pressure-gradient term can be

omitted from the equation of motion, so that we have dv/dt = v A v. We seek a solution in

the form v = curl/£2 <ri6' t
> where SI = Sl e~ib)t is the angular velocity of rotation of the

sphere. We then obtain for/, instead of the equation A/ = constant,

A/+ k2f — constant.

Omitting an unimportant constant term in the solution of this equation, we find/ = aeikrlr

taking the solution which vanishes at infinity. The constant a is determined from the boundary

condition that v = SI X r at the surface of the sphere. The result is

i?3 / R\ 3 l-ikr
,, x

/ = eik(r-R) v = (SI xr) — z—

^

Wr_iJ)
,

where R is the radius of the sphere. A calculation like that in §20, Problem 1, gives the fol-

lowing expression for the moment of the forces exerted on the sphere by the fluid:

&r 3 + 6R/8+ 6(K/8)2+ 2(i?/3)s- 2«(R/S)2(1 +JJ/8)M ~ ~T^ l + 2*/8+2(W
'

For co -> (i.e. S -> oo), we obtain M = — 8itt)R3Q, corresponding to uniform rotation

of the sphere (see §20, Problem 1). In the opposite limiting case RI8> 1, we find

4a/2M = -^--ir2?V0v>G>)(* - 1)Q -
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This expression can also be obtained directly: for S <^ R each element of the surface of the
sphere may be regarded as plane, and the frictional force acting on it is found by substituting
a = OR sin in formula (24.6).

Problem 10. Determine the moment of the forces on a hollow sphere filled with viscous
fluid and executing rotary oscillations about a diameter.

Solution. We seek the velocity in the same form as in Problem 9. For/ we take the solu-
tion (a/r) sin kr, which is finite everywhere within the sphere, including the centre. Deter-
mining a from the boundary condition, we have

R \ 3 krcoskr—sinkr
v = (Hxr)l-= (ftxr)(-

/ kR coskR— sinkR

'

A calculation of the moment of the frictional forces gives the expression

k2R* sinkR+ 3kR cos kR- 3 sinkRM = l7rr)R
3Q-

kRcoskR—sinkR

The limiting value for S > 1 is of course the same as in the preceding problem. If
R/S <^1 we have

R2coI R?co \

The first term corresponds to the inertial forces occurring in the rigid rotation of the whole
fluid.

§25. Damping of gravity waves

Arguments similar to those given above can be advanced concerning the

velocity distribution near the free surface of a fluid. Let us consider oscil-

latory motion occurring near the surface (for example, gravity waves).

We suppose that the conditions (24.11) hold, the dimension / being now re-

placed by the wavelength A:

A2w > v, a<£\; (25.1)

a is the amplitude of the wave, and w its frequency. Then we can say that

the flow is rotational only in a thin surface layer, while throughout the rest

of the fluid we have potential flow, just as we should for an ideal fluid.

The motion of a viscous fluid must satisfy the boundary conditions (15.14)

at the free surface; these require that certain combinations of the space

derivatives of the velocity should vanish. The flow obtained by solving the

equations of ideal-fluid dynamics does not satisfy these conditions, however.

As in the discussion of% in the previous section, we may conclude that the

corresponding velocity derivatives decrease rapidly in a thin surface layer.

It is important to notice that this does not imply a large velocity gradient as

it does near a solid surface.

Let us calculate the energy dissipation in a gravity wave. Here we must
consider the dissipation, not of the kinetic energy alone, but of the mechanical

energy Emech , which includes both the kinetic energy and the potential
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energy in the gravitational field. It is clear, however, that the presence or

absence of a gravitational field cannot affect the .energy dissipation due to

processes of internal friction in the fluid. Hence Emech is given by the same

formula (16.3):

J \ OXjc OXi l

In calculating this integral for a gravity wave, it is to be noticed that, since

the volume of the surface region of rotational flow is small, while the velocity

gradient there is not large, the existence of this region may be ignored, unlike

what was possible for oscillations of a solid surface. In other words, the inte-

gration is to be taken over the whole volume of fluid, which, as we have seen,

moves as if it were an ideal fluid.

The flow in a gravity wave for an ideal fluid, however, has already been

determined in §12. Since we have potential flow,

dvijdxk = d2<f>/dxjcdxi = Bvjt/dxu

so that

A— -a*
J'(^k)

dV-

The potential
<f>

is of the form

<j> = <f>ocos(kx—o)t+ (x.)e~
kz

.

We are interested, of course, not in the instantaneous value of the energy

dissipation, but in its mean value £mech with respect to time. Noticing that

the mean values of the squared sine and cosine are the same, we find

•Cmech = -8^4 (<jfidV. (25.2)

The energy Emech itself may be calculated for a gravity wave by using a

theorem of mechanics that, in any system executing small oscillations (of

small amplitude, that is), the mean kinetic and potential energies are equal.

We can therefore write Emeeh simply as twice the kinetic energy:

£mech = P jv*dV = pj (d<f>ldxi)2 dV,

whence

Em** = 2p& JP dV. (25.3)

The damping of the waves is conveniently characterised by the damping

coefficient y, defined as

y =
|
Emech \l2EmeCh* (25.4)
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In the course of time, the energy of the wave decreases according to the law

^mech
= constant x e~2n ; since the energy is proportional to the square of

the amplitude, the latter decreases with time as e~n .

Using (25.2), (25.3), we find

y = 2vk2 . (25.5)

Substituting here (12.7), we obtain the damping coefficient for gravity waves
in the form

y = 2vcD*lg*. (25.6)

PROBLEMS

Problem 1. Determine the damping coefficient for long gravity waves propagated in a
channel of constant cross-section; the frequency is supposed so large that y/ivloS) is small
compared with the depth of the fluid in the channel.

Solution. The principal dissipation of energy occurs in the surface layer of fluid, where
the velocity changes from zero at the boundary to the value v = v e~im which it has in the
wave. The mean energy dissipation per unit length of the channel is by (24.14) Hv^^/i^pcolS),
where / is the perimeter of the part of the channel crossjsection occupied by the fluid. The
mean energy of the fluid (again per unit length) is Spv2 — iSp\vo\a

, where S is the cross-
sectional area of the fluid in the channel. The damping coefficient is y = l-\Z(vcx)/SS2).
For a channel of rectangular section, therefore,

2h + a

where a is the width and h the depth of the fluid.

Problem 2. Determine the flow in a gravity wave on a very viscous fluid.

Solution. The calculation of the damping coefficient as shown above is valid only when
this coefficient is small, so that the motion may be regarded as that of an ideal fluid to a first

approximation. For arbitrary viscosity we seek a solution of the equations of motion

/ d*Vx d*Vx \ 1 dp

\ dx2 dz2 J p dx'

dvz _ I 82vz 82vz \ I dp

~dt ~ V
[~8x^'

+
~8z2 ') "p^

- ^

dvx dvz—- + —-=
dx dz

(1)

which depends on t and * as e-i(0t+ikx
, and diminishes in the interior of the fluid (z < 0).

We find

ik
vx = e

-io)t+ikx (Aekz+Be!mz), vz = e~M+ikx(-iAekz Bemz),m
p/p = e-io>t+ikx coAekzjk—gz, where m = ^(hP— ico/v).

The boundary conditions at the fluid surface are

(dvx dvz \
1 = for z = I.

dz dx J
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In the second condition we can immediately put z = instead of z = £. The first condition,

however, should be differentiated with respect to t, after which we replace gdlldt by gv z

and then put z = 0. The condition that the resulting two homogeneous equations for A
and B are compatible gives

This equation gives w as a function of the wave number k; <o is complex, its real part giving

the frequency of the oscillations and its imaginary part the damping coefficient. The solu-

tions of equation (2) that have a physical meaning are those whose imaginary parts are nega-

tive (corresponding to damping of the wave); only two roots of (2),meet this requirement.

If vk2 < V(gk) (the condition (25.1)), then the damping coefficient is small, and (2) gives

approximately a> = ± V(gk)-i.2vk2
, a result which we already know. In the opposite limit-

ing case vk2> V(ik), equation (2) has two purely imaginary roots, corresponding to damped

aperiodic flow. One root is to = -igl2vk, while the other is much larger (of order vk2
),

and therefore of no interest, since the corresponding motion is strongly damped.



CHAPTER III

TURBULENCE

§26. Stability of steady flow

In solving the equations of steady flow for a viscous fluid, it is often necessary
to make certain approximations on account of mathematical difficulties.
The validity of these approximate solutions is, of course, restricted, Such,
for instance, is the solution of the problem of flow past a sphere given in
§20, which is valid only for small Reynolds numbers.
In principle, however, there must be an exact stationary solution of the

equations of fluid dynamics for any problem with given steady external
conditions; such exact solutions have been considered in §§17, 18 and 23.
These solutions formally hold for all Reynolds numbers.
Yet not every solution of the equations of motion, even if it is exact,

can actually occur in Nature. The flows that occur in Nature must not only
obey the equations of fluid dynamics, but also be stable. For the flow to be
stable it is necessary that small perturbations, if they arise, should decrease
with time. If, on the contrary, the small perturbations which inevitably occur
in the flow tend to increase with time, then the flow is absolutely unstable.
Such a flow unstable with respect to infinitely small perturbations cannot
exist.

The mathematical investigation of the stability of a given flow with respect
to infinitely small perturbations will proceed as follows. On the steady
solution concerned (whose velocity distribution is v (x,y

y
z), say), we

superpose a non-steady small perturbation vi (x, y, z, t), which must be
such that the resulting velocity v = v + vi satisfies the equations of motion.
The equation for vi is obtained by substituting in the equations

Sv firad p— + (v-grad)v = + „Av, divv =
ot p

the velocity and pressure v = v + vi,p = p +ph where the known functions
vo and po satisfy the unperturbed equations

grad/>o
(vo-grad)vo = + i>Av , divv = 0.

P

Omitting terms above the first order in vi, we obtain

dvi
+ (v • grad)vi + (vi •grad)vo

8t

gradpi
+ vAvi, divvi = 0. (26.1)

P

The boundary condition is that vi vanishes on fixed solid surfaces.

102
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Thus vi satisfies a system of linear differential equations, with coefficients

that are functions of the co-ordinates only, and not of the time. The general

solution of such equations can be represented as a sum of particular solutions

in which vi depends on time as e~ia,t
. The "frequencies" to of the perturba-

tions are not arbitrary, but are determined by solving the equations (26.1)

with the appropriate boundary conditions. The "frequencies" are in general

complex. If there are w whose imaginary parts are positive, e~i0it will

increase indefinitely with time. In other words, such perturbations, once

having arisen, will increase, i.e. the flow is unstable with respect to such

perturbations. For the flow to be stable it is necessary that the imaginary

part of any possible "frequency" a> is negative. The perturbations that arise

will then decrease exponentially with time.

Such a mathematical investigation of stability is extremely complicated,

however. The theoretical problem of the stability of steady flow past bodies

of finite dimensions has not yet been solved. It is certain that steady flow is

stable for sufficiently small Reynolds numbers. The experimental data

seem to indicate that, when R increases, it eventually reaches a value Rcr

(the critical Reynolds number) beyond which the flow is unstable with respect

to infinitesimal disturbances. For sufficiently large Reynolds numbers

(R > Rcr), steady flow past solid bodies is therefore impossible. The

critical Reynolds number is not, of course, a universal constant, but takes a

different value for each type of flow. These values appear to be of the order

of 10 to 100; for example, in flow across a cylinder undamped non-steady

flow has been observed for R = udjv = 34, d being the diameter of the

cylinder. Exact measurements of RCr, however, have not been made.

§27. The onset of turbulence

Let us now consider the nature of the non-steady flow which is established

as a result of the absolute instability of steady flow at large Reynolds numbers.

We begin by examining the properties of this flow at Reynolds numbers only

slightly greater than Rcr. For R < Rcr the imaginary parts of the complex

"frequencies" <o = a>i+ iyi for all possible small velocity perturbations are

negative (yi < 0). For R = Rcr there is one frequency whose imaginary part

is zero. For R > Rer the imaginary part of this frequency is positive, but,

when R is close to Rcr , yi is small in comparison with the real part wi.f

The function vi corresponding to this frequency is of the form

Vl = A(t)f(x,y,z), (27.1)

where f is some complex function of the co-ordinates, and the complex

"amplitude" A(t) is$

A(t) = constant KePter*^*. (27.2)

t It must be borne in mind that the set (or spectrum) of all possible frequencies for a given type

of flow includes both separate isolated values (the discrete spectrum) and the whole of various fre-

quency ranges (the continuous spectrum). However, it can be seen that the frequencies with positive

imaginary parts in which we are interested occur, in general, Only in the discrete spectrum.

J As usual, we understand the real part of (27.2).
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This expression for A(t) is actually valid, however, only during a short

interval of time after the disruption of the steady flow; the factor ey^ increases

rapidly with time, whereas the method of determining vi given in §26,

which leads to expressions like (27.1) and (27.2), applies only when jvij

is small. In reality, of course, the modulus \A
|
of the amplitude of the non-

steady flow does not increase without limit, but tends to a finite value.

For R close to RCr (we always mean, of course, R > Rcr), this finite value is

small, and can be determined as follows.

Let us find the time derivative of the squared amplitude \A
|

2
. For very

small values of t, when (27.2) is still valid, we have d|^|2/di = 2yi|^|2 .

This expression is really just the first term in an expansion in series of powers
of A and A*. As the modulus \A

|
increases (still remaining small), sub-

sequent terms in this expansion must be taken into account. The next

terms are those of the third order in A. However, we are not interested in

the exact value of the derivative d|.4|2/d/, but in its time average, taken

over times large compared with the period 2ttJo}\ of the factor g-^i*; we
recall that, since coi > yi, this period is small compared with the time 1/yi

required for the amplitude modulus \A
|
to change appreciably. The third-

order terms, however, must contain the periodic factor, and therefore vanish

on averaging.f The fourth-order terms include one which is proportional

to A2A*2 = \A
|

4 and which clearly does not vanish on averaging. Thus we
have as far as fourth-order terms

d\Ap/dt = 2n\A\*-K\A\*. (27.3)

where a may be either positive or negative.

Let us suppose that a is positive. J We have not put bars above \A\ 2

and \A
|

4
, since the averaging is only over time intervals short compared with

1/yi. For the same reason, in solving the equation we proceed as if the bar

were omitted above the derivative also. The solution of equation (27.3) is

1/|^4|
2 = a/2yi + constantxr2M

Hence it is clear that \A
|

2 tends asymptotically to a finite limit:

|^|
2max = 2yi/a. (27.4)

The quantity y\ is some function of the Reynolds number. Near Rcr it

can be expanded as a series of powers of R—

R

cr. But yi(RCr) = 0, by
the definition of the critical Reynolds number. Hence the zero-order term

in the expansion is zero, and we have to the first order y\ = constant x

(R—

R

Cr). Substituting this in (27.4), we see that the modulus \A\ of the

amplitude is proportional to the square root of R—

R

cr :

|^|max~ V(R-Rcr). (27.5)

f Strictly speaking, the third-order terms give, on averaging, not zero, but fourth-order terms,

which we suppose included among the fourth-order terms in the expansion.

J This seems to be true for ordinary flow past bodies.
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Let us summarise these results. The absolute instability of the flow for

R > Rcr leads to the appearance of a non-steady periodic flow. For R close

to Rcr the latter flow can be represented by superposing on the steady flow

vo (x, y, z) a periodic flow vi{x, y, z, t)
y
with a small but finite amplitude

which increases with R proportionally to the square root of R-Rer - The

velocity distribution in this flow is of the form

vi = f(*,v,*>-*KW, (27.6)

where f is a complex function of the co-ordinates, and pi is some initial

phase. For large R-Rcr , the separation of the velocity into v and vi is

no longer meaningful. We then have simply some periodic flow with fre-

quency oji. If, instead of the time, we use as an independent variable the

phase <£i s uit+pi, then we can say that the function v(#, y, *, <£i) is a

periodic function of <£i, with period 2tt. This function, however, is no

longer a simple trigonometrical function. Its expansion in Fourier series

V

(where the summation is over all integers p, positive and negative) includes

not only terms with the fundamental frequency a>i, but also terms whose

frequencies are integral multiples of coi.

The following important property of this non-steady flow should also be

mentioned. Equation (27.3) determines only the modulus of the time factor

A(t), and not its phase. The phase <fc
= ant+ fii of the periodic flow remains

essentially indeterminate, and depends on the particular initial conditions

which happen to occur at the instant when the flow begins. The initial

phase ft can have any value, depending on these conditions. Thus the

periodic flow under consideration is not uniquely determined by the given

steady external conditions in which the flow takes place. One quantity—the

initial phase of the velocity—remains arbitrary. We may say that the flow

has one degree of freedom, whereas steady flow, which is entirely determined

by the external conditions, has no degrees of freedom.

Let us now consider the phenomena which occur when the Reynolds

number increases further. When this happens, a time finally comes when the

periodic flow discussed above in turn becomes unstable. The investigation of

this instability would proceedf similarly to the method given above for

determining the instability of the original steady flow. The part of the un-

perturbed flow is now taken by the periodic flow v (x, y, z, t) (with frequency

wi), and in the equations of motion we substitute v = v + v2 ,
where v2

is a small correction. For v2 we again obtain a linear equation, but the co-

efficients are now functions of time as well as of the co-ordinates, being

t But has not been carried out even for particular cases, on account of the exceptional mathematical

difficulties.
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periodic in time with period 2tt/coi. The solution of such an equation must
be sought in the form v2 = U(x, y, z, t)er^\ where II(tf, y, zf t) is a periodic
function of time, with period 2tt/o>1 . The instability again occurs when a fre-
quency cu = io2+ iy2 appears such that the imaginary part y2 is positive, and
the corresponding real part o>2 then determines the new frequency which
appears.

The result, therefore, is that a quasi-periodic flow appears, characterised
by two different periods. Just as the flow had one degree of freedom after
the appearance of the first periodic flow, so it now involves two arbitrary
quantities (phases), i.e. it has two degrees of freedom.
When the Reynolds number increases still further, more and more new

periods appear in succession. The range of Reynolds numbers between
successive appearances of new frequencies diminishes rapidly in size. The
new flows themselves are on a smaller and smaller scale. This means that
the order of magnitude of the distances over which the velocity changes
appreciably is the smaller, the later the flow in question appears.
For R > Rcr ,

therefore, the flow rapidly becomes complicated and con-
fused. Such a flow is said to be turbulent; its properties will be investigated
in detail in the following sections. In contradistinction to turbulent flow,
the regular flow, in which the fluid moves as it were in layers with different
velocities, is said to be laminar.

We can write down the general form of a function v(x, y, z, t) whose time
dependence is given by some number n of different frequencies w

} (j = 1,

2, ..., «). Instead of one phase fa = a>i*+ft, we now have n different phases

fa = wjt+Pj. The function v may be regarded as a function of these phases
(and of the co-ordinates), and is periodic in each of them, with period 2tt.

Such a function can be written as a series:

v(x,y,z,t)= £ ^....Pni^yy^expl-if^p^l (27.8)
Pi'Pv-Pn i=l

the summation being taken over all integrals ph p2 , ..., pn . This is a generali-
sation of formula (27.7). We may notice that the choice of the fundamental
frequencies o>i, ..., con is, as we see from (27.8), itself not unique; we could
equally well take any n independent linear combinations of co

t
with integral

coefficients.f

A flow described by a formula such as (27.8) has n degrees of freedom;
it involves n arbitrary initial phases

/fy.
As the Reynolds number increases,

both the number of frequencies and the number of degrees of freedom
increase. In the limit as R tends to infinity, the number of degrees of free-
dom also increases indefinitely.

t These linear combinations must be such that from them we can form all possible numbers
S Pity. It is easy to see that, for this to be so, the determinant of the transformation coefficients
relating the old and new frequencies must be unity.
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It must be borne in mind that, since the velocity is a periodic function of

the phases, with period 2tt, the states whose phases differ only by an integral

multiple of 2rr are physically indistinguishable. In other words, we can

say that all the essentially different values of each phase lie in the range

s% fa ^ 277. Let us consider any two phases ^i = <oit+pia.ndfa = o>2*+/?2.

Suppose that, at some instant, fa has the value a. Then, by what we have

just said, fa will have values equivalent to a at all instants t = (a- ft.+ 27rr)/a>i,

where r is any integer. At these instants the phase fa will have the values

fa = a>2(a-jSi)/ft>i+j82+ 277TG)2/c<;i.

The different frequencies are generally incommensurable, so that co2/o>i

is an irrational number. If we reduce each value of fa to the range to 2tt

by subtracting the appropriate integral multiple of 2tt, we therefore obtain,

as r goes from to oo, values for fa which are arbitrarily close to any given

number in that range. In other words, in the course of a sufficiently long time

fa and fa will simultaneously be arbitrarily close to any given pair of values.

The same is obviously true of all the phases. Thus turbulent motion has

a certain quasi-periodic property: in the course of a sufficiently long time the

fluid passes through states arbitrarily close to any given state, determined by

any possible choice of simultaneous values of the phases fa.

We have introduced the concept of the critical Reynolds number as being

the value of R at which instability of steady flow, in the sense described above,

first occurs. The critical Reynolds number can, however, be regarded from

a somewhat different point of view. For R < Rcr there are no stable non-

steady solutions of the equations of motion that are not damped in time.

After the critical value has been reached, a stable non-steady solution appears,

which will actually occur in a moving fluid.

As far as experimental investigations of the flow past ordinary finite

bodies are concerned, the two definitions of Rcr seem to be the same. Logi-

cally, however, this need not be so, and cases could in principle occur where

there are two different critical values: one above which non-steady flow

can occur without being damped, and another above which steady flow

becomes absolutely unstable. The second must obviously be greater than

the first. However, since there is at present no indication that such cases of

instability actually exist, we shall not pause to investigate them more closely.f

§28. Stability of flow between rotating cylinders

To investigate the stability of steady flow between two rotating cylinders

(§18) in the limit of very large Reynolds numbers, we can use a simple method

like that used in §4 to derive the condition for mechanical stability of a fluid

at rest in a gravitational field (Rayleigh, 1916). The principle of the method

is to consider any small element of the fluid and to suppose that this element

t We are not here concerned with (e.g.) flow in a pipe, where the loss of stability has unusual

properties (see §29).
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is displaced from the path which it follows in the flow concerned. As a result
of this displacement, forces appear which act on the displaced element. If
the original flow is stable, these forces must tend to return the element to
its original position.

Each fluid element in the unperturbed flow moves in a circle r = constant
about the axis of the cylinders. Let fju(r) = tnr2<j> be the angular momentum
of an element of mass m, <j> being the angular velocity. The centrifugal
force acting on it is y?\mrz \ this force is balanced by the radial pressure
gradient in the rotating fluid. Let us now suppose that a fluid element at a
distance r from the axis is slightly displaced from its path, being moved to
a distance r > r from the axis. The angular momentum of the element
remains equal to its original value

fj.
= /i(r ). The centrifugal force acting

on the element in its new position is therefore /xo
2/wr3 . In order that the

element should tend to return to its initial position, this force must be less
than the equilibrium value /x2/wr3 which is balanced by the pressure gradient
at the distance r. Thus the necessary condition for stability is /x2 -/x 2 > 0.
Expanding /x(r) in powers of the positive difference r-r , we can write this
condition in the form

ndfi/dr > 0. (28.1)

According to formula (18.3), the angular velocity <j> of the moving fluid

particles is

_ Q2R22-niRi2 (Qi-n2)Ri2R22 1

R2
2~Ri2

+
R2

2-Ri2 r2*

Calculating //, = mr2
<f>

and omitting factors which are certainly positive,

we can write the condition (28.1) as

(Q2#22-ai#i2
>£ > 0. (28.2)

The angular velocity
<f>

varies monotonically from Qi on the inner cylinder
to Q2 on the outer cylinder. If the two cylinders rotate in opposite directions,
i.e. if £li and Q2 have opposite signs, the function (/> changes sign between the
cylinders, and its product with the constant number D2i22

2 -^ii?i2 cannot
be everywhere positive. Thus in this case (28.2) does not hold at all points
in the fluid, and the flow is unstable.

Now let the two cylinders be rotating in the same direction; taking this

direction of rotation as positive, we have Qi > 0, Q2 > 0. Then </> is every-
where positive, and for the condition (28.2) to be fulfilled it is necessary that

Q2i?2
2 > Q1.R12 . (28.3)

If Q2R22 < Q.1R12 the flow is unstable. For example, if the outer cylinder is

at rest (Q2 = 0), while the inner one rotates, then the flow is unstable. If,

on the other hand, the inner cylinder is at rest (Qi = 0), the flow is stable.

It must be emphasised that no account has been taken, in the above argu-
ments, of the effect of the viscous forces when the fluid element is displaced.
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The method is therefore applicable only for small viscosities, i.e. for large R.

To investigate the stability of the flow for any R, it is necessary to follow

the general method, starting from equations (26.1) (G. I. Taylor, 1923).

In the present case the unperturbed velocity distribution vo depends only on

the (cylindrical) radial co-ordinate r, and not on the angle
<f>

or the axial

co-ordinate z. Thus we have for the perturbation vi a system of linear

equations with coefficients which contain neither the time nor the co-ordinates

<f>
and z. We may seek solutions of these equations in the form

Vl _ eiVcz-<ot)f(r) f
(28.4)

the direction of the vector f being arbitrary; this solution depends on z

through the periodic factor eikz, and the wave number k determines the

periodicity of the perturbation in the z-direction. The possible frequencies

co, obtained by solving the equations with the necessary boundary conditions

in a plane perpendicular to the axis (vi = for r = Ri and r = R2), will

then be functions of k, involving R as a parameter: co = co(k, R). The

point where instability appears is determined by the value of R for which the

function y\ = im co first becomes zero for some k. For R < RCr, the func-

tion yi(k, R) is always negative, but for R > Rcr we have y1 > in some range

of k. Let kcr be the value of k for which yi = when R = Rcr - The cor-

responding function (28.4) gives the nature of the flow which occurs (super-

posed on the original flow) in the fluid at the instant when the original flow

ceases to be stable; it is periodic along the axis of the cylinders, with wave-

length 277/&cr.t

As well as solutions of the form (28.4), which are independent of the angle

<f>,
the system of equations under consideration has also solutions for which

vi contains a factor e'
m*, m being an integer. We are, however, interested

only in the solution which corresponds to the first appearance of instability.

The solutions with m # have never been studied in this respect. It is

nevertheless natural to suppose that instability occurs first of all with respect

to perturbations with m = 0, a supposition which is entirely confirmed by

experimental results.

It should also be borne in mind that, even for a given k, the solution of the

form (28.4) is not unique. In general, a number of solutions with different

values of co correspond to a given k. Again we are interested only in the one

which gives the smallest value of RCr-

It is found that a purely imaginary function co(k) corresponds to the solu-

tion which gives the smallest Rcr . Hence, when k = kcx, not only im co

but co itself is zero. This means that the first instability of the steady flow

between rotating cylinders leads to the appearance of another flow which is

also steady.

t For R slightly greater than Rcr there is not one value of k, but a whole range, for which im a> > 0.

However, it should not be thought that the resulting flow will be a superposition of flows with various

periodicities. In reality, for each R a flow of definite periodicity occurs which stabilises the total

flow. This periodicity, however, cannot be determined from the linearised equations (26.1).
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On account of the great complexity of the calculation,! numerical results
have been obtained only for the case where the space between the cylinders
is narrow {R2-R\ <^ R2). Fig. 13 shows an example of the curve separating
the regions of unstable (shaded) and stable flow. The right-hand branch of
the curve, corresponding to rotation of the two cylinders in the same direc-
tion, is asymptotic to the line Q2#22 = Hii?i2 . When the Reynolds number
increases, for a given type of flow, the two numbers Cltf/jv and Q2#22/v

increase by equal factors. In Fig. 13 this corresponds to a movement upwards
along a line through the origin having a given slope. In the right-hand part
of the diagram (Di and Q2 both positive), such lines for which a2R22l&iRi2 > 1

do not meet the curve which bounds the region of instability. If, on the other
hand, Q2.R2

2/fti.Ri2 < 1, then for sufficiently large Reynolds numbers we
enter the region of instability, in accordance with the condition (28.3).

Fig. 13

In the left-hand part of the diagram (Qi and Q2 of opposite signs), any line
through the origin eventually meets the curve, i.e. the flow can become un-
stable for any value of the ratio £l2R22l&iRi2 , again in agreement with the
results obtained above. For Q2 = (when only the inner cylinder rotates),

instability sets in when

Oi = A\-Zvlhy/{hR2\ (28.5)

where h = R2-Ri.
The stability of the flow in the unshaded part of Fig. 13 does not mean,

however, that the flow actually remains steady no matter how large R be-
comes. Experiment shows that there is a limit beyond which stable non-
steady flow becomes possible. In this region the steady flow is "metastable"

:

it is stable with respect to small perturbations, but unstable with respect to
larger perturbations. If, owing to such perturbations, non-steady flow occurs
in some region along the cylinders, it will subsequently "displace" the laminar
flow in all space. This non-steady flow has, as soon as it appears, a large
number of "degrees of freedom" (in the sense explained in §27), i.e. it is

fully developed turbulence.

t Further details may be found in the book by C. C. LtN, The Theory of Hydrodynamic Stability,
Cambridge 1955.
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In the shaded part of Fig. 13, the flow again becomes turbulent for

sufficiently large R, but there are, it seems, very few data concerning the

way in which it appears.

A limiting case of the flow between rotating cylinders, corresponding to

large radii and small h = R2-R1, is flow between two parallel planes in

relative motion (see §17). This flow is stable with respect to infinitely

small perturbations for any value of R = Uhjv, where U is the relative

velocity of the planes. Stable turbulent motion becomes possible, however,

for values of R greater than about 1500.

§29. Stability of flow in a pipe

The steady flow in a pipe discussed in §17 loses its stability in an unusual

manner. Since the flow is uniform in the ^-direction (along the pipe), the

unperturbed velocity distribution vo is independent of x. Similarly to the

procedure in §28, we can therefore seek solutions of equations (26.1) in the

form

Vl = ««*»-*> f[y,*). (29.1)

Here also there is a value R = Rcr for which yi = im w first becomes zero

for some value of k. It is of importance, however, that the real part of the

function co(k) is not now zero.

R>R£

R=R C

R<R«

Fig. 14

For values of R only slightly exceeding Rcr, the range of values of k for

which yi(k) > is small and lies near the point for which yi(k) is a maximum,

i.e. dyi/dk = (as seen from Fig. 14). Let a slight perturbation occur in

some part of the flow; it is a wave packet obtained by superposing a series of

components of the form (29.1). In the course of time, the components for

which y\(k) > will be amplified, while the remainder will be damped.

The amplified wave packet thus formed will also be carried downstream with

a velocity equal to the group velocity dcojdk of the packet; since we are now

considering waves whose wave numbers lie in a small range near the point

where dyijdk = 0, the quantity dco/dk « dcoi[dk is real, and is therefore the

actual velocity of propagation of the packet.
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This downstream displacement of the perturbations is very important, and
causes the loss of stability to be totally different from that described in §28.
We have seen that, for flow between rotating cylinders with R > Rcr

(when there are frequencies with im o> > 0), the original steady flow is no
longer possible, since even small perturbations are increased to a finite

amplitude. For flow in a pipe, however, the amplification of the perturbation
is accompanied by its displacement downstream ; if we consider the flow at a
given point in the pipe, it is found that the perturbation there is not amplified,

but damped. It must also be borne in mind that, since in reality we have
pipes of finite length, however great, any perturbation may be carried out of
the pipe before it disrupts the laminar flow. Thus, even for R > Rcr , steady
flow in a pipe is effectively stable with respect to small perturbations, and can
in principle take place for values of R considerably exceeding Rcr .

Since the perturbations increase with the co-ordinate x (downstream),
and not with time at a given point, it is reasonable to investigate this type of
instability as follows. Let us suppose that, at a given point, a continuously
acting perturbation with a given frequency co is applied to the flow, and
examine what will happen to this perturbation as it is carried downstream.
Inverting the function o> = a)(k), we find what wave number k corresponds
to the given (real) frequency co. If im k < 0, the factor eikx increases with
x, i.e. the perturbation is amplified downstream. The curve in the tuR-plane
given by the equation im k(o), R) = defines the region of stability, and
separates, for each R, the frequencies of perturbations which are amplified
and damped downstream.

The actual calculations are extremely complicated. A complete investi-

gation has been made only for flow between two parallel planes (C. C. Lin,

1946).f However, it is reasonable to suppose that the results will be quali-

tatively the same for flow in a circular pipe.

The limiting curve for flow between two planes is schematically shown in

Fig. 15. The shaded area within the curve is the region of instability. As
R -> oo, both branches of the curve are asymptotic to the R-axis.J For
the smallest value of R at which undamped perturbations are possible we
find by calculations Rcr « 7700, R being defined as Uhjv, with h the distance

between the planes and U the fluid velocity averaged across this distance.

Thus, for any frequency between zero and a certain maximum value, there

is a finite range of R values for which perturbations with the frequency con-
cerned will be amplified. It is interesting to note that a small but finite

viscosity of the fluid has, in a sense, a destabilising effect in comparison with
the situation for a strictly ideal fluid. For, when R -> oo, perturbations with
any finite frequency are damped, but when a finite viscosity is introduced we
eventually reach a region of instability; a further increase in the viscosity

(decrease in R) finally brings us out of this region.

f A detailed account is given by C. C. Lin, The Theory of Hydrodynamic Stability, Cambridge 1955.

{ The asymptotic equations of the two branches for large R are a>A/C7=50/Ra/l1
, coh/U = 11-2/R3/ 7

.
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These calculations, however, do not answer the question whether, for

sufficiently large R, flow in a pipe does not also exhibit true instability with

respect to infinitely small perturbations, i.e. instability resulting in the

amplification of perturbations with time at a given point. We shall outline

the mathematical significance of such an instability. Let us consider some

small perturbation which occurs at time t = in a finite region. Expanding

it as a Fourier integral with respect to x, we can write it as

l\M)eik{x-^dk>

where f(x) is a function describing the initial perturbation. In the course of

time, each Fourier component of the perturbation will vary as e ia>t
,
with a

frequency u> = a>{k, R), so that the whole perturbation at time t will be given

by the integral

\(f(tj)emx-®-i0)t d{;dk.

Since f(x) is zero except in a finite region, x- | has a finite range of values.

Hence the behaviour of the integral for large t is essentially determined by

the behaviour of the integral

f e-iaUc)tdk.

If this integral tends to infinity with t
f
the flow is in fact absolutely unstable.

Fig. IS

No such investigation has yet been made, even for a particular case.

However, the experimental results concerning flow in pipes give reason to

suppose that there is no true instability with respect to arbitrarily small

perturbations for any R. This is indicated by the fact that, the more care-

fully perturbations at the entrance to the pipe are prevented, the larger the

Reynolds numbers for which laminar flow can be observed.f

t Laminar flow has actually been observed up to R« 50,000, where R = Ud[v, d being the diameter

of the pipe and U the mean velocity over its cross-section.
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However, the experimental results also show that there is another critical
Reynolds number (which we denote by Rc/); this determines the limit
beyond which stable non-steady flow can exist (cf. the end of §27). If, in
any section of the pipe, turbulent flow occurs, then for R < Rcr

' the turbulent
region will be carried downstream and will diminish in size until it disappears
altogether; if, on the other hand, R > Rcr ', the turbulent region will extend
in the course of time to include more and more of the flow. If perturbations
of the flow occur continually at the entrance to the pipe, then for R < Rcr

'

they will be damped out at some distance down the pipe, no matterhow strong
they are initially. If, on the other hand, R > Rcr ', the flow becomes turbulent
throughout the pipe, and this can be achieved by perturbations which are the
weaker, the greater R.f Thus laminar flow in a pipe with R > Rcr

'
is

metastable, being unstable with respect to perturbations of finite intensity;
the necessary intensity is the smaller, the greater R.
As has been mentioned at the end of §28, non-steady flow arising by the

disruption of metastable laminar flow is already fully-developed turbulence.
In this sense the appearance of turbulence in a pipe is essentially different
from the appearance of turbulence owing to the absolute instability of steady
flow past finite bodies. In the latter case non-steady flow seems to appear
in a continuous manner as we pass through Rcr, the number of degrees of
freedom increasing gradually (as explained in §§26 and 27). For flow in a
pipe, however, turbulence appears discontinuously. This difference causes,
in particular, the different dependence of the drag on the Reynolds number
in the two cases. For example, if we consider the motion of any body in a
fluid, the drag force F on it is continuous at R = Rcr, where steady flow
becomes absolutely unstable. At this point the curve F = F(R) can have
only a bend corresponding to the change in the nature of the flow. For
flow in a pipe, on the other hand, there are essentially two different laws of
drag for R > Rcr : one for steady flow, and the other for turbulent flow.
The drag is discontinuous for whatever value of R marks the transition from
one type of flow to the other.

§30. Instability of tangential discontinuities

Flows in which two layers of incompressible fluid move relative to each
other, one "sliding" on the other, are absolutely unstable if the fluid is ideal;

the surface of separation between these two fluid layers would be a surface of
tangential discontinuity, on which the fluid velocity tangential to the surface
is discontinuous. We shall see below (§35) what is the actual nature of the
flow resulting from this instability; here we shall prove the above statement.

If we consider a small portion of the surface of discontinuity and the flow
near it, we may regard this portion as plane, and the fluid velocities vi and
V2 on each side of it as constants. Without loss of generality we can suppose

t For a pipe of circular cross-section Rcr
' lies between 1600 and 1700. For flow between parallel

planes, turbulent flow has been observed from R = 1400 upwards.
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that one of these velocities is zero ; this can always be achieved by a suitable

choice of the co-ordinate system. Let V2 = 0, and vi be denoted by v

simply ; we take the direction of v as the ff-axis, and the s-axis along the normal

to the surface.

Let the surface of discontinuity receive a slight perturbation, in which all

quantities—the co-ordinates of points on the surface, the pressure, and the

fluid velocity—are periodic functions, proportional to ei{kx
~°>t)

. We consider

the fluid on the side where its velocity is v, and denote by v' the small change

in the velocity due to the perturbation. According to the equations (26.1)

(with constant vo = v and v — 0), we have the following system of equations

for the perturbation v' :

dv' grad^)'
diw' = 0, + (v.grad)v' =

.

8t p

Since v is along the #-axis, the second equation can be rewritten

dv' eV gradp'
f- v =

. (JU.l)
dt dx p

If we take the divergence of both sides, then the left-hand side gives zero by

virtue of diw' = 0, so that p' must satisfy Laplace's equation:

AP' = 0. (30.2)

Let £ = Z,(x> t) be the displacement in the sr-direction of points on the

surface of discontinuity, due to the perturbation. The derivative dt,\dt

is the rate of change of the surface co-ordinate £ for a given value of x.

Since the fluid velocity component normal to the surface of discontinuity

is equal to the rate of displacement of the surface itself, we have to the

necessary approximation

dl\dt = v'z-vdt/dx, (30.3)

where, of course, the value of v'z on the surface must be taken.

We seek p' in the form p' = f(z) *«**-«*>. Substituting in (30.2), we
have for f(z) the equation d2//ds2- k2f = 0, whence / = constant xe**2 .

Suppose that the space on the side under consideration (side 1) corresponds to

positive values of z. Then we must take/ = constant xr*z
, so that

p' = constant x «***-**> <r*z . (30.4)

Substituting this expression in the ^-component of equation (30.1), we findf

v'z = kp'xjip^kv-oi). (30.5)

The displacement £ may also be sought in a form proportional to the same

exponential factor et(Jex
~cot

\ and we obtain from (30.3) v' z = i£(kv— a).

t The case kv = co, though possible in principle, is not of interest here, since instability can arise

only from complex frequencies to, not from real a).
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This gives, instead of (30.5),

P'l = -tPi{kv-a>flk. (30.6)

The pressurep\ on the other side of the surface is given by a similar formula,
where now v = and the sign is changed (since in this region z < 0, and all

quantities must be proportional to ekz, not e~kz). Thus

p'2 = faafijk. (30.7)

We have written different densities p\ and p2 in order to include the case

where we have a boundary separating two different immiscible fluids.

Finally, from the condition that the pressures p\ and p\ are equal on
the surface of discontinuity, we obtain pi(kv — co)2 = — p2a)

2
, from which

the desired relation between co and k is found to be

Pi± W(pm)
,on ox

o) = kv . (30.8)
P1+P2

We see that o> is complex, and there are always co having a positive imagi-
nary part. Thus tangential discontinuities are unstable, even with respect

to infinitely small perturbations. In this form the result is true for very
small viscosities, i.e. for very large R. In this case it is meaningless to

distinguish instability of the type that is "carried along" from true absolute

instability, since, as k increases, the imaginary part of o> increases without
limit, and hence the "amplification coefficient" of the perturbation as it is

carried along may be as large as we please.

When finite viscosity is taken into account, the tangential discontinuity is

no longer sharp; the velocity changes from one value to another across a

layer of finite thickness. The problem of the stability of such a flow is

mathematically entirely similar to that of the stability of flow in a laminar
boundary layer with a point of inflexion in the velocity profile (§41). The
experimental results indicate that instability sets in very soon.

§31. Fully developed turbulence

Turbulent flow at fairly large Reynolds numbers is characterised by the

presence of an extremely irregular variation of the velocity with time at each
point. This is called fully developed turbulence. The velocity continually

fluctuates about some mean value, and it should be noted that the amplitude
of this variation is in general not small in comparison with the magnitude of

the velocity itself. A similar irregular variation of the velocity exists between
points in the flow at a given instant. The paths of the fluid particles in turbu-

lent flow are extremely complicated, resulting in an extensive mixing of the

fluid.

As has been mentioned in the previous section, turbulent flow has a very
large number of degrees of freedom. The values of the initial phases fa
corresponding to these degrees of freedom are determined by the initial
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conditions of the flow. The specification of the exact initial conditions

which would determine the value of so many quantities is, however, so un-

realistic that even to put the problem in this form is physically meaningless.

The position here is similar to what would happen if we attempted to

consider the motion of all the molecules forming a macroscopic body, using

the equations of mechanics; here again the problem of specifying the initial

conditions which determine the initial values of the co-ordinates and velocities

of all the molecules, and then integrating the equations of motion, is physically

meaningless. The analogy extends further. A macroscopic body, regarded

as composed of individual molecules, has an enormous number of degrees

of freedom. An exact microscopic description of the state of the body would

involve a determination of the co-ordinates and velocity of every particle

composing it. The exact manner in which these quantities vary with time

depends on their values at the initial instant. However, owing to the extreme

complexity and irregularity of the motion of the molecules, we may suppose

that, over a sufficiently long interval of time, the velocities and co-ordinates of

the molecules take all possible sets of values, so that the effect of the initial

conditions is smoothed out and disappears. This, as is well known, makes

possible a statistical discussion of macroscopic bodies.

A similar situation occurs in turbulent flow. For an exact description of

the time variation of the velocity distribution in the moving fluid, the values

of all the initial phases /?/ would have to be given; the values of all the phases

<f>j
= ajjt + fa at every instant would then be known. We have seen that, what-

ever the initial phases
/fy,

over a sufficiently long interval of time the fluid

passes through states arbitrarily close to any given state, defined by any

possible choice of simultaneous values of the phases
<f>j.

Hence it follows that,

in the consideration of turbulent flow, the actual initial conditions cease to

have any effect after sufficiently long intervals of time. This shows that the

theory of turbulent flow must be a statistical theory. No complete quantitative

theory of turbulence has yet been evolved. Nevertheless, several very impor-

tant qualitative results are known, and the following sections give an account

of these.

We introduce the concept of the mean velocity, obtained by averaging over

long intervals of time the actual velocity at each point. By such an averaging

the irregular variation of the velocity is smoothed out, and the mean velocity

varies smoothly from point to point. In what follows we shall denote the mean

velocity by u = v. The difference v' = v— u between the true velocity

and the mean velocity varies irregularly in the manner characteristic of tur-

bulence ; we shall call it the fluctuating part of the velocity.

Let us consider in more detail the nature of this irregular motion which is

superposed on the mean flow. This motion may in turn be qualitatively

regarded as the superposition of turbulent eddies of different sizes ; by the size

of an eddy we mean the order of magnitude of the distances over which the

velocity varies appreciably. As the Reynolds number increases, large eddies

appear first; the smaller the eddies, the later they appear. For very large
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Reynolds numbers, eddies of every size from the largest to the smallest are

present. An important part in any turbulent flow is played by the largest

eddies, whose size is of the order of the dimensions of the region in which the

flow takes place ; in what follows we shall denote by / this order of magnitude

for any given turbulent flow. These large eddies have the largest amplitudes.

The velocity in them is comparable with the variation of the mean velocity

over the distance /; we shall denote by Am the order of magnitude of this

variation.-)- The frequencies corresponding to these eddies are of the order

of ujl, the ratio of the mean velocity u (and not its variation Am) to the dimen-

sion /. For the frequency determines the period with which the flow pattern

is repeated when observed in some fixed frame of reference. Relative to such

a system, however, the whole pattern moves with the fluid at a velocity of the

order of w.

The small eddies, on the other hand, which correspond to large frequencies,

participate in the turbulent flow with much smaller amplitudes. They may
be regarded as a fine detailed structure superposed on the fundamental large

turbulent eddies. Only a comparatively small part of the total kinetic energy

of the fluid resides in the small eddies.

From the picture of turbulent flow given above, we can draw a conclusion

regarding the manner of variation of the fluctuating velocity from point to

point at any given instant. Over large distances (comparable with /), the

variation of the fluctuating velocity is given by the variation in the velocity

of the large eddies, and is therefore comparable with Am. Over small

distances (compared with /), it is determined by the small eddies, and is

therefore small (compared with Am)4 The same kind of picture is obtained if

we observe the variation of the velocity with time at any given point. Over

short time intervals (compared with T ~ l/u), the velocity does not vary

appreciably; over long intervals, it varies by a quantity of the order of Am.

The length / appears as a characteristic dimension in the Reynolds number
R, which determines the properties of a given flow. Besides this Reynolds

number, we can introduce the qualitative concept of the Reynolds numbers

for turbulent eddies of various sizes. If A is the order of magnitude of the

size of a given eddy, and v\ the order of magnitude of its velocity, then

the corresponding Reynolds number is defined as R^ ~ v\^lv - This number
is the smaller, the smaller the size of the eddy.

For large Reynolds numbers R, the Reynolds numbers R\ of the large

eddies are also large. Large Reynolds numbers, however, are equivalent to

small viscosities. We therefore conclude that, for the large eddies which are

the basis of any turbulent flow, the viscosity is unimportant and may be

t We are speaking here of the order of magnitude, not of the mean velocity itself, but of its variation

(over distances of the order of /)> since it is this variation Au which characterises the velocity of the

turbulent flow. The mean velocity itself can have any magnitude, depending on the frame of reference

used.

It may also be mentioned that experimental results indicate that the size of the largest eddies is

actually somewhat less than I, and their velocity is somewhat less than Am.

J But large compared with the variation of the mean velocity over these small distances.
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equated to zero, so that the motion of these eddies obeys Euler's equation. In

particular, it follows from this that there is no appreciable dissipation of

energy in the large eddies.

The viscosity of the fluid becomes important only for the smallest eddies,

whose Reynolds number is comparable with unity. We denote the size of

these eddies by A
, which we shall determine in the next section. It is in

these small eddies, which are unimportant as regards the general pattern of

a turbulent flow, that the dissipation of energy occurs.

We thus arrive at the following conception of energy dissipation in turbu-

lent flow. The energy passes from the large eddies to smaller ones, practi-

cally no dissipation occurring in this process. We may say that there is

a continuous flow of energy from large to small eddies, i.e. from small to

large frequencies. This flow of energy is dissipated in the smallest eddies,

where the kinetic energy is transformed into heat.f

Since the viscosity of the fluid is important only for the smallest eddies,

we may say that none of the quantities pertaining to eddies of sizes A > Ao

can depend on v (more exactly, these quantities cannot be changed if v

varies but the other conditions of the motion are unchanged). This circum-

stance reduces the number of quantities which determine the properties of

turbulent flow, and the result is that similarity arguments, involving the dimen-

sions of the available quantities, become very important in the investigation

of turbulence.

Let us apply these arguments to determine the order of magnitude of the

energy dissipation in turbulent flow. Let e be the mean dissipation of

energy per unit time per unit mass of fluid.} We have seen that this

energy is derived from the large eddies, whence it is gradually transferred to

smaller eddies until it is dissipated in eddies of size ~ Ao. Hence, although

the dissipation is ultimately due to the viscosity, the order of magnitude of e

can be determined only by those quantities which characterise the large

eddies. These are the fluid density p, the dimension / and the velocity

Am. From these three quantities we can form only one having the dimensions

of e, namely erg/g sec = cm2/sec3 . Thus we find

e ~ (Am)3//, (31.1)

and this determines the order of magnitude of the energy dissipation in turbu-

lent flow.

In some respects a fluid in turbulent motion may be qualitatively described

as having a "turbulent viscosity" j/
turb

which differs from the true kinematic

viscosity v. Since v
turb

characterises the properties of the turbulent flow,

its order of magnitude must be determined by p, Aw and /. The only quantity

that can be formed from these and has the dimensions of kinematic viscosity

t For a steady state to be maintained, it is of course necessary that external energy sources should
be present which continually supply energy to the large eddies.

X In this chapter e denotes the mean dissipation of energy, and not the internal energy of the
fluid.
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is /Am, and therefore

vturb ~ /Aw. (31.2)

The ratio of the turbulent viscosity to the ordinary viscosity is consequently

vtuTblv ~ R> *-e « i* ^creases with the Reynolds number.

f

The energy dissipation e is expressed in terms of v
turb

by

e - vturb(AM//)2 (31.3)

in accordance with the usual definition of viscosity. Whereas v determines

the energy dissipation in terms of the space derivatives of the true velocity,

v
turb

relates it to the gradient (~ Aw//) of the mean velocity.

We may also apply similarity arguments to determine the order of mag-
nitude Ap of the variation of pressure over the region of turbulent flow.

The only quantity having the dimensions of pressure which can be formed

from p, I and Aw is p(Au)2
. Hence we must have

Ap ~ P(Au)K (31.4)

§32. Local turbulence

Let us now consider the properties of the turbulence as regards eddy sizes

A which are small compared with the fundamental eddy size /. We shall

refer to these properties as local properties of the turbulence. We shall

consider fluid that is far from all solid surfaces (more precisely, that is at

distances from them large compared with A).

It is natural to assume that such small-scale turbulence, far from solid

bodies, is isotropic. This means that, over regions whose dimensions are

small compared with /, the properties of the turbulent flow are independent

of direction ; in particular, they do not depend on the direction of the mean
velocity. It must be emphasised that here, and everywhere in the present

section, when we speak of the properties of the turbulent flow in a small region

of the fluid, we mean the relative motion of the fluid particles in that region,

and not the absolute motion of the region as a whole, which is due to the larger

eddies.

It is found that several very important results concerning the local pro-

perties of turbulence can be obtained immediately from similarity arguments.

These results are due to A. N. Kolmogorov and to A. M. Obukhov (1941).

To obtain them, we shall first determine which parameters can be involved in

the properties of turbulent flow over regions small compared with / but large

compared with the distances Xq at which the viscosity of the fluid begins to be

important. It is these intermediate distances which we shall discuss below. The

f In reality, however, a fairly large numerical coefficient should be included. This is because, as

mentioned above, / and Am may differ quite considerably from the actual scale and velocity of the

turbulent flow. The ratio nurb/" may be more accurately written vturb/y~ R/R<sr> which formula

takes into account the fact that vturb and v must in reality be comparable in magnitude not for R~ 1,

but for R~ Rcr .
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parameters in question are the fluid density p and another quantity charac-

terising any turbulent flow, the energy e dissipated per unit time per unit mass

of fluid. We have seen that e is the "energy flux" which continually passes

from larger to smaller eddies. Hence, although the energy dissipation is

ultimately due to the viscosity of the fluid and occurs in the smallest eddies,

the quantity € is determined by the properties of larger eddies. It is natural

to suppose that (for given p and e) the local properties of the turbulence are

independent of the dimension / and velocity Am of the flow as a whole. The
fluid viscosity v also cannot appear in any of the quantities in which we are

at present interested (we recall that we are concerned with distances A > Ao).

Let us determine the order of magnitude v\ of the turbulent velocity varia-

tion over distances of the order of A. It must be determined only by p, e

and, of course, the distance A itself. From these three quantities we can

form only one having the dimensions of velocity, namely (eA)*. Hence we
can say that the relation

vx ~ (eA)* (32.1)

must hold. We thus reach a very important result : the velocity variation over

a small distance is proportional to the cube root of the distance {Kolmogorov

and Obukhov's law). The quantity v\ may also be regarded as the velocity

of turbulent eddies whose size is of the order of A.f

Let us now put the problem somewhat differently, and determine the order

of magnitude v7 of the velocity variation at a given point over a time interval

t which is short compared with the time T ~ lju characterising the flow as

a whole. To do this, we notice that, since there is a net mean flow, any given

portion of the fluid is displaced, during the interval t, over a distance of

the order of ru, u being the mean velocity. Hence the portion of fluid which
is at a given point at time t will have been at a distance ru from that point

at the initial instant. We can therefore obtain the required quantity vr by
direct substitution of ru for A in (32.1):

vT ~ (era)*. (32.2)

Thus the velocity variation over a time interval t is proportional to the cube
root of the interval.

t The variation vx of the velocity over small distances is fundamentally the variation in the fluc-

tuating part of the velocity; the variation of the mean velocity over small distances is small compared
with the variation of the fluctuating velocity over those distances.

The relation (32.1) may be obtained in another way by expressing a constant quantity, the dis-

sipation e, in terms of quantities characterising the eddies of size A; e must be proportional to the
squared gradient of the velocity vx and to the appropriate turbulent viscosity coefficient

fturb.A ~ CA^

(cf. (31.2), (31.3)):

€ ~ "turb,A(WA)
2 ~ *>A

3/A,

whence we obtain (32.1).
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The quantity vT must be distinguished from vr\ the variation in velocity

of a portion of fluid as it moves about. This variation can evidently depend
only on p and e, which determine the local properties of the turbulence, and
of course on t itself. Forming the only combination of p, e and t that has
the dimensions of velocity, we obtain

vT
' ~ (er)*. (32.3)

Unlike the velocity variation at a given point, it is proportional to the square
root of t, not to the cube root. It is easy to see that, for r small compared
with T, vT ' is always less than vr.\
Using the expression (31.1) for e, we can rewrite (32.1) as

vx ~ Am(A//)*. (32.4)

Similarly, we can write vT as

vT ~ A^r/T)*, (32.5)

where T ~ Iju.

Let us now find at what distances the fluid viscosity begins to be important.

These distances Ao also determine the order of magnitude of the size of the

smallest eddies in the turbulent flow (called the "internal scale" of the tur-

bulence, in contradistinction to the "external scale" /). To determine A
,

we form the Reynolds number RA ~ vx \jv\ using (32.4), we obtain

RA
~ Am-A4/3/v/i/3.

Introducing the Reynolds number R ~ /Am/i/ for the flow as a whole, we
can rewrite this as RA ~ R(X/lf. The order of magnitude of A is that for

which RA ~ 1. Hence we find

Ao - //R*. (32.6)

The same expression can be obtained by forming from />, e and v the only

combination having the dimensions of length, namely Ao ~ (i^/e)*, and expres-

sing e in terms of Am and / by means of (31.1).

Thus the internal scale of the turbulence is inversely proportional to Rf
.

For the corresponding velocity we have

vXa - Am/R*; (32.7)

this also decreases when R increases. Finally, the order of magnitude of the

frequencies corresponding to eddies of this size is too ~ w/Ao or

coo ~ kR*/J. (32.8)

This gives the order of magnitude of the upper end of the frequency spectrum
of the turbulence; the lower end is at frequencies of the order of «//. Thus
the frequency range increases with Reynolds number as R*.

f The inequality v ' <^ v has in essence been assumed in the derivation of (32.2).
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Similar arguments enable us to determine the order of magnitude of the

number of degrees of freedom of a turbulent flow. Let us denote by n the

number of degrees of freedom per unit volume of the fluid ; n has the dimen-

sions 1/cm3 . This number can depend only on p, e and also the viscosity v,

since the latter determines the lower limit of the sizes of the turbulent eddies.

From these three quantities we can form only one having the dimensions

1/cm3 , namely (e/v3)*; this is just 1/Ao3, a result which might have been expec-

ted. Thus we have

n ~ 1/Ao3 ~ R9/4
//
3

. (32.9)

The total number N of degrees of freedom is obtained by multiplying n

by the volume of the region of turbulent flow, which is of the order of Z3 :f

N - R9/4. (32.10)

Finally, let us consider the properties of the flow in regions whose dimen-

sion A is small compared with Ao. In such regions the flow is regular and its

velocity varies smoothly. Hence we can expand vx in a series of powers of

A and, retaining only the first term, obtain vx = constant x A. The order of

magnitude of the constant is vx /Ao, since for A ~ Ao we must have vx ~ vx •

Substituting (32.6) and (32.7)' we find

vx ~ Am-R*A//. (32.11)

This formula may also be obtained directly by equating two expressions for

the energy dissipation e: the expression (Am)3// (31.1), which determines e

in terms of quantities characterising the large eddies, and the expression

v(wA/A)
2

, which determines e in terms of the velocity gradient (~ vx[\)
for the eddies in which the energy dissipation actually occurs.

PROBLEM

Two fluid particles are at a small distance \ (^> A ) apart. Determine the order of magnitude
of the time t required for the particles to move apart to a distance ^2 (Ax <^ Aj <^ /).

Solution. If A ^> A , we have from dimensional considerations dX/dt <~" (cA)*. Integrating

this and using the fact that Ag ^> Xlt we find t ~ (V/e)*.

§33. The velocity correlation

Formula (32.1) determines qualitatively the correlation of velocities in

local turbulence, i.e. the relation between the velocities at two neighbouring

points. Let us now introduce quantities which will serve to characterise this

t Formulae (32.6)-(32.10) determine how the corresponding quantities vary with the Reynolds
number. Quantitatively, however, it must be borne in mind that a considerable numerical factor

may actually appear in all these formulae. The number of degrees of freedom, for example, must be
of the order of unity not for R <-w 1, but for R^ Rcr . Hence we must write the ratio R/RCT in place

of R in (32.10):

N ~ (R/Rcr)
9/4

.
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correlation quantitatively.4. These may be, for instance, the components of

the tensor

Boc = (»2i-«>u)(»2*-«>i*)» (33.1)

where V2 and vi are the fluid velocities at two neighbouring points, and the

bar denotes an average with respect to time.J The radius vector from point 1

to point 2 will be denoted by r; we suppose its magnitude r small compared
with / (but not necessarily large compared with the internal scale of turbulence

Ao).

Since local turbulence is isotropic, the tensor J5^ cannot depend on any
direction in space. The only vector that can appear in the expression for Bat
is the radius vector r. In other words, Bm can contain, apart from the absolute

magnitude r of r, only the unit tensor 8^ and the unit vector n in the direction

of r. The most general form of such a tensor of rank two is

Bik = A(r)hik + B{r)nink . (33.2)

We take the co-ordinate axes so that one of them is in the direction of n,

denoting the velocity component along this axis by vr and the component
perpendicular to n by vt. The component Brr is then the mean square

relative velocity of two neighbouring fluid particles along the line joining

them. Similarly, Btt is the mean square transverse velocity of one particle

relative to the other, while Brt is the mean value of the product of these two
velocity components. Since nr = 1, n t = 0, we have from (33.2)

Brr = A + B, Btt = A, Brt=0 (33.3)

Let us now derive a relation between Brr and Btt. To do so, we first

notice that the velocity variation over small distances is mainly due to the

small eddies. The properties of the local turbulence do not depend on the

large eddies that are superposed on it. Hence, to calculate the tensor Buc,

it suffices to take the particular case of completely isotropic and homogeneous
turbulent flow, in which the mean fluid velocity is zero.ff Expanding the

parentheses in (33.1), we have

Bik = VuVi]e+ V2iV2k— ViiV2k— VMV2i.

t The results given in this section are due to T. von Karman and L. Howarth (1938) and to A.
N. Kolmogorov (1941). Similar relations for the temperature fluctuations in a non-uniformly heated
turbulent flow are given later (see §54, Problems 3 and 4).

J If there were no correlation between the velocities at the points 1 and 2, the mean values of the
products in (33.1) would reduce to products of the mean value of each factor separately, and would
therefore be zero.

ft Such a flow can be imagined as that of a fluid subjected to strong agitation and then left to itself.

Of course, the flow will certainly decay with time. The averaging in formula (33.1) must then, strictly

speaking, be taken not as an averaging over time but as one over all possible positions of the points

1 and 2 (for a given distance r between them) at a given instant.
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Since the flow is completely homogeneous and isotropic, we have vnvik

= V2tV2k, and vuV2k = vikV2t- Thus

Boc = 2vuvijc-2vuV2k- (33.4)

We differentiate this expression with respect to the co-ordinates of point 2:

dBijcfdx2k = —2vudv2kl8x2k-

By the equation of continuity, however, 8v2kl&X2k = 0, so that dBijddx2k = 0.

Since But is a function only of the components xt = X2i— xu of the vector

r, differentiation with respect to X2k is equivalent to differentiation with

respect to Xk> Substituting (33.2), we have after a simple calculation

A' + B' -\-2B\r = 0, the prime denoting differentiation with respect to r.

Substituting (33.3), we can write this as B'

'

rr + 2(Brr— Btt)jr = 0, whence

we have finally the general relation between Brr and Btt:

2rBtt = d(r*Brr)ldr. (33.5)

At distances r large compared with Ao, the velocity difference is propor-

tional to r*, according to (32.1). The components of the tensor Bue for such

r are therefore proportional to rf . Substituting in (33.5) Brr = constant xrf
,

Btt = constant xrs
, we obtain the simple relation

Btt = mr . (33.6)

For distances r small compared with Ao, the velocity difference is propor-

tional to r, and therefore Brr and Btt are proportional to r2 . Formula (33.5)

then gives the relation

Btt = 2Brr . (33.7)

At these distances (r <t Ao), Btt and Brr can also be separately expressed in

terms of the mean energy dissipation e. We write Brr = ar2 , where a is.

constant, and combine (33.2), (33.3), (33.4), obtaining

»u»2* = viiOus- ar28ijc+%ar2nink.

Differentiating this relation, we find

dvu dv2i _ dvu di)2i

dxu d%2i dx±i &X2i

Since this holds for arbitrarily small r, we can put xu = X2t, whence

foi\
., - foi dvi

I I = 15a, = 0.
\ dxi / 8xi dxi

According to the general formula (16.3), however, we have for the mean
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energy dissipation

n
/ dvt dvi \ 2 [7 dvt

\2 dvi dvi 1
e = \v[ + = v][ + = 15av,

\ dxi dxi / L\ dxi 1 Bxi dxi J

whence a = ej!5v. We therefore obtain the following relations giving Brr

and Bu in terms of the mean energy dissipation :f

Bt = rW2M Brr = tW2/v. (33.8)

We may also discuss the triple correlation

Buci = {v2i- vu)(vzk-vlk)(v2i-vu). (33.9)

We shall again suppose that the flow is completely homogeneous and iso-

tropic. Let us first consider the auxiliary tensor vuvikV2i. This tensor is

symmetrical in the suffixes i and k, and by virtue of the isotropy it must,

like Btk, be expressible in terms of «j and S^. The most general form of such

a tensor is

«ii*>i*0» = C(r)8ikni+D(r)(8nnk+Skflii) + F(r)ninkni. (33.10)

Differentiating with respect to xzu we have by the equation of continuity

dvzi
—(vuVlkV2l) = *>li*>lfc-— = 0.
0X21 OX2\

Substituting the expression for vuvikV2i, we have after a simple calculation

(here omitted) two equations:

d[r*(3C+2D+ F)]ldr = 0,

C'+ 2(C+D)/r = 0.

Integration of the former gives 3C+2D+F = constant/r2 . For r = the

functions C, D and F must remain finite. We must therefore put the constant

equal to zero, so that 3C+2D+F = 0. From the two equations thus ob-

tained we find

D = -(C+irC), F = rC'-C. (33.11)

We now expand the parentheses in (33.9). It is easy to see that, by virtue of

t It might be thought that a possibility exists in principle of obtaining a universal formula, appli-

cable to any turbulent flow, which should give Brr and Btt for all distances r that are small compared
with /. In fact, however, there can be no such formula, as we see from the following argument. The
instantaneous value of (w2t-

— vu) (v2k —vm) might in principle be expressed as a universal function

of the energy dissipation e at the instant considered. When we average these expressions, however,
an important part will be played by the law of variation of e over times of the order of the periods

of the large eddies (of size <*~> I), and this law is different for different flows. The result of the averaging

therefore cannot be universal.
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the isotropy of the flow, the mean values vuVikVu and V2iV2kV2i are zero.

For all three velocities in these products are taken at the same point; the

only tensor in terms of which the tensor ViVtfvi could be expressed is therefore

hoc. It is, however, impossible to construct a symmetrical tensor of rank

three from unit tensors. Such mean values as vuvikV2i and t>2i^2fc^iz> on
the other hand, are equal in magnitude and opposite in sign, since the vector

ni in (33.10) changes sign when points 1 and 2 are interchanged. The
result is

Bikl= 2(viiV1]cV2l + V\iV21cVli + VziWcVll).

Substituting (33.10) and (33.11), we have the expression

Bm =2(rC + C)(8ikm + 8unk + 8kim) + 6{rC -G)tynm- (33.12)

Again taking one of the co-ordinate axes parallel to n, we obtain the com-
ponents of the tensor Bm". Brrr = — 12C, Brtt = —2(C+rC), Brrt = But
= 0. Hence we see that the relation

6Bm = d(rBrrr)ldr (33.13)

holds between the non-zero components Brtt and Brrr .

Finally, it is also possible to find a relation between the components of

the tensors Bik and Bm. To do so, we calculate the derivative d(vuV2k)ldt,

recalling that a completely homogeneous and isotropic flow necessarily

decays with time. Expressing the derivatives dvu/dt and dvzkjdt by means
of the Navier-Stokes equation, we obtain

d d d 8 /PiV2k\
-~iVuV2k) = - (VliVuV2k) - (VuV2kV2l) ~ ~ I

-
at dxu 0x21 ox\% \ a I

d I P2V\% \- +vAl(ai#>2fc)+ vA2(t>li«>2&).
OX2k \ P '

In using the properties ofhomogeneity and isotropy, it must be borne in mind
that the sign of r changes when the points 1 and 2 are interchanged, and
therefore the sign of the (first) space derivatives must be changed. The first

two terms are therefore equal, and so are the last two terms. The third and

fourth terms are zero. For, by virtue of the isotropy, the mean value p\V2k

must be of the form f(r)rik. The divergence d(piV2k)I^X2k = pi 8®2kldx2k is

zero. But the only centrally symmetric vector whose divergence is every-

where zero is a constant times (l[r2)nk. Such a vector would become infinite

for r = 0, which is impossible. The constant must therefore be zero.

Thus

— (viiV2k) = - 2-— (vuviMk) + 2v/\ivuv2k- (33. 14)
ot dxu
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Here we must substitute, in accordance with the formulae derived above,

VliV2k = ^2i^2&— i-Bflfc,

(33.15)

— Ts(rBrrr' — Brr^fiitijcni.

In the former expression we replace V2iV2k by iv2 Sue, using the complete
homogeneity and isotropy of the flow:

»u*>2* = i«
a 8tt-&Btt . (33.16)

The time derivative of the kinetic energy per unit mass \v2 is just the energy

dissipation -e; hence d(%v2)ldt = -§e. A simple, though lengthy, calcula-

tion gives the equation

_2- 1 dBrr 1 d^Brrr) v d [ dB^

2 dt ~ 6r* dr r* Hr Kr)- (33 - 17)

Since r is supposed small, we can with sufficient accuracy put r = on the

left-hand side, i.e. neglect 8Brr/dt in comparison with e. Multiplying the

resulting equation by r4 , integrating over r, and using the fact that the cor-

relation functions vanish for r = 0, we obtain the following relation between

Brr and Brrr'

Brrr= -Ur+ 6vdBrr/dr. (33.18)

The relation (33.18), like (33.13), holds for r either greater or less than Ao.

For r > Ao, the viscosity term is small, and we have simply

Brrr = -fer. (33.19)

If r <^ Ao, we can substitute the expression (33.8) for Brr in (33.18), obtaining

Brrr = 0; this is because Brrr in this case must be of the third order in r,

and so the first-order terms must cancel.f

§34. The turbulent region and the phenomenon of separation

Turbulent flow is in general rotational. However, the distribution of the

vorticity o>(= curl v) in the fluid has certain peculiarities in turbulent flow

(for very large R): in "steady" turbulent flow past bodies, the whole volume
of the fluid can usually be divided into two separate regions. In one of these

the flow is rotational, while in the other the vorticity is zero, and we have

t The ratio
|
BrrrlB„\ must have constant values in the ranges /^> r ^> A and r <^ A . The ex-

perimental results show that in fact this quantity is approximately constant for all r, being about 0-4.
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potential flow. Thus the vorticity is non-zero only in a part of the fluid

(though not in general only in a finite part).

That such a limited region of rotational flow can exist is a consequence of

the fact that turbulent flow may be regarded as the motion of an ideal fluid,

satisfying Euler's equations.! We have seen (§8) that, for the motion of an

ideal fluid, the law of conservation of circulation holds. In particular, if

at any point on a streamline co = 0, then the same is true at every point

on that streamline. Conversely, if at any point on a streamline co =£ 0,

then co does not vanish anywhere on the streamline. Hence it is clear that

the existence of limited regions of rotational and irrotational flow is compatible

with the equations of motion if the region of rotational flow is such that

the streamlines within it do not penetrate into the region outside it. Such a

distribution of co will be stable, and the vorticity will remain zero beyond

the surface of separation.

One of the properties of the region of rotational turbulent flow is that the

exchange of fluid between this region and the surrounding space can occur in

only one direction. The fluid can enter this region from the region of potential

flow, but can never leave it.

We should emphasise that the arguments given here cannot, of course, be

regarded as affording a rigorous proof of the statements made. However,

the existence of limited regions of rotational turbulent flow seems to be

confirmed by experiment.

The flow is turbulent both in the rotational and in the irrotational region.

The nature of the turbulence, however, is totally different in the two regions.

To elucidate the reason for this difference, we may point out the following

general property of potential flow, which obeys Laplace's equation A<£ = 0.

Let us suppose that the flow is periodic in the ry-plane, so that
<f>

involves

x and y through a factor of the form eiJcix+ik2y. Then

320/0*2+ #ty/0y* = -(k1
2 + k2

2
)<f>
= -&<(>,

and, since the sum of the second derivatives must be zero, the second deriva-

tive of cf> with respect to z must equal
<f>

multiplied by a positive coefficient:

d2cf>l8z2 =k2
cf>. The dependence of

<f>
on z is then given by a damping factor

of the form e~kz for 2 > (the unlimited increase given by ekz is clearly

impossible). Thus, if the potential flow is periodic in some plane, it must be

damped in the direction perpendicular to that plane. Moreover, the greater

k\ and &2 (i.e. the smaller the period of the flow in the ry-plane), the more

rapidly the flow is damped along the sr-axis. All these arguments remain

qualitatively valid in cases where the motion is not strictly periodic, but has

only some periodic quality.

From this the following result is immediately obtained. Outside the region

of rotational flow, the turbulent eddies must be damped, and must be so

f The applicability of these equations to turbulent flow ends at distances of the order of A . The
sharp boundary between rotational and irrotational flow is therefore defined only to within such

distances.
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the more rapidly, the smaller their size. In other words, the small eddies do
not penetrate very far into the region of potential flow. Consequently, only
the largest eddies are important in this region; they are damped at distances

of the order of the (transverse) dimension of the rotational region, which is

just the external scale of turbulence in this case. At distances greater than
this dimension there is practically no turbulence, and the flow may be re-

garded as laminar.

We have seen that the energy dissipation in turbulent flow occurs in the
smallest eddies; the large eddies do not involve appreciable dissipation,

which is why Euler's equation is applicable to them. From what has been said

above, we reach the important result that the energy dissipation occurs mainly
in the region of rotational turbulent flow, and hardly at all outside that region.

Bearing in mind all these properties of the rotational and irrotational

turbulent flow, we shall henceforward, for brevity, call the region of rotational

turbulent flow simply the region of turbulent flow or the turbulent region.

In the following sections we shall discuss the form of this region in various
cases.

The turbulent region must be bounded in some direction by part of the
surface of the body past which the flow takes place. The line bounding this

part of the surface is called the line of separation. From it begins the surface
of separation between the turbulent fluid and the remainder. The formation
of a turbulent region in flow past a body is called the phenomenon of separa-

tion.

The form of the turbulent region is determined by the properties of the
flow in the main body of the fluid (i.e. not in the immediate neighbourhood
of the surface). A complete theory of turbulence (which does not yet exist)

would have to make it possible, in principle, to determine the form of this

region by using the equations of motion for an ideal fluid, given the position

of the line of separation on the surface of the body. The actual position

of the line of separation, however, is determined by the properties of the flow
in the immediate neighbourhood of the surface (known as the boundary
layer), where the viscosity plays a vital part (see §40).

§35. The turbulent jet

The form of the turbulent region, and some other basic properties of it,

can be established in certain cases by simple similarity arguments. These
cases include, among others, various kinds of free turbulent jet in a space
filled with fluid (L. Prandtl, 1925).

As a first example, let us consider the turbulent region formed when a

flow is "separated" at an angle formed by two infinite intersecting planes

(shown in cross-section in Fig. 16). For laminar flow (Fig. 3, §10), the flow
along one side of the angle (AO, say) would turn smoothly and flow along

the other side away from the angle (OB). In turbulent flow, the pattern is

totally different.

The flow along one side of the angle now does not turn on reaching the
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vertex, but continues in its former direction. A flow appears along the

other side in the direction BO. The two flows "mix" in the turbulent

regionjf the boundaries of this region are shown, dashed, in cross-section

in Fig. 16. The origin of this region can be seen as follows. Let us imagine

a flow in which a uniform stream along AO continues in the same direction,

occupying the whole space above the plane AO and its continuation into the

fluid to the right, while the fluid below this plane is at rest. In other words,

we have a surface of separation (the planeAO produced) between fluid moving

with constant velocity and stationary fluid. Such a surface of discontinuity,

however, is unstable, and cannot exist in practice (see §30). This instability

leads to mixing and the formation of a turbulent region. The flow along

BO arises because fluid must enter the turbulent region from below.

777777777777777^^^ V^ *

Let us determine the form of the turbulent region. We take the ar-axis

in the direction shown in Fig. 16, the origin being at O. We denote by

Yi and Y% the distances from the xz-plane to the upper and lower boundaries

of the turbulent region, and require to determine Y± and Y^ as functions of x.

This can easily be done from similarity considerations. Since the planes

are infinite in all directions, there are no constant parameters at our disposal

having the dimensions of length. Hence it follows that Fi, Yi can only be

directly proportional to the distance x:

Yi = a;tanai, Y% = #tana2. (35.1)

The proportionality coefficients are simply numerical constants; we write

them as tan <xi, tan a2, so that <xi and <X2 are the angles between the two

boundaries of the turbulent region and the a?-axis. Thus the turbulent region

is bounded by two planes intersecting along the vertex of the angle.

The values of <xi, <X2 depend only on the size of the angle, and not, for

example, on the velocity of the main stream. They cannot be calculated

f We recall that, outside the turbulent region, there is irrotational flow which gradually becomes

laminar as we move away from the boundaries of this region.
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theoretically; the experimental results for flow round a right angle are

ai = 5°, a2 = 10°.f
The velocities of the flows along the two sides of the angle are not the

same; their ratio is a definite number, again depending only on the size of

the angle. When the angle is not close to it, one of the velocities is considerably

the greater, namely that of the main stream, which is in the same direction

(AO) as the turbulent region. For example, in flow round a right angle, the

velocity along the plane AO is thirty times that along BO.
We may also mention that the difference between the fluid pressures on

the two sides of the turbulent region is very small. For example, in flow round
a right angle it is found that p± —p% = 0-003p£/i2 , where JJ\ is the velocity

of the main stream (along AO), p\ the pressure in that stream, and p2 the

pressure in the stream along BO.
In the limiting case of flow round an angle of 2xr, we have simply the

edge of a plate with fluid moving along both sides. The angle ai + a2 of the

turbulent region is zero, i.e. there is no turbulent region; the velocities of the

flows along the two sides of the plate become equal. As the angle AOB
increases, a point is reached when the plane BO forms the lower boundary of

the turbulent region; the angle AOB is by then obtuse. As the angle increases

further, the turbulent region continues to be bounded by the plane BO on
one side. Here we have simply a separation, with the line of separation along

the vertex of the angle. The angle of the turbulent region remains finite.

As a second example, let us consider the problem of a turbulent jet of

fluid issuing from the end of a narrow tube into an infinite space filled with

the same fluid. The problem of laminar flow in such a "submerged jet" has

been solved in §23. At distances (the only ones we shall consider) large

compared with the dimensions of the mouth of the tube, the jet is axially

symmetrical, whatever the actual shape of the opening.

Let us determine the form of the turbulent region in the jet. We take

the axis of the jet as the #-axis, and denote by R the radius of the turbulent

region; we require to determine R as a function of x (which is measured

from the end of the tube). As in the previous example, this function is easily

determined directly from similarity considerations. At distances large

compared with the dimensions of the mouth of the tube, the actual shape and

size of the opening cannot affect the form of the jet. Hence we have at our

disposal no characteristic parameters of the dimensions of length. It therefore

follows as before that R must be proportional to x:

R = x tan a, (35.2)

where the numerical constant tan a is the same for all jets. Thus the turbulent

f Here, and elsewhere, we speak of experimental data on the velocity distribution in a transverse

cross-section of the turbulent jet, reduced by means of calculations (W. Tollmien 1926) based on
the mixing-length theory (see the final note to the present section). This theory contains an arbitrary

constant, whose value is chosen so as to obtain the best possible agreement with experiment.
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region is a cone; the experimental value of the angle 2a is 25 to 30 degrees

(Fig. 17).f

The (time average) velocity distribution in a cross-section of the jet has

the following properties. The flow is principally along the jet. The longitudi-

nal velocity component falls off rapidly away from the axis of the jet; it be-

comes fwo ("0 being the velocity on the axis) at a distance of only 0-351?

from the axis, and at the boundary of the turbulent region it is of the order of

0-01 mo- The transverse velocity component is approximately uniform in order

of magnitude over the cross-section of the turbulent region, and at the

boundary of this region it is about -0-025 « , being there directed into the

jet. This transverse component causes a flow into the turbulent region. The

velocity distribution outside the turbulent region (for a given angle a) can

be determined theoretically (see Problem 1).

//
Fig. 17

The velocity in the jet also falls off as we move away from the mouth of

the tube. The law of this decrease is easily found. To do so, we use the

following method. The total flux of momentum through a spherical surface

centred at the tube mouth must be independent of the radius of the surface.

The momentum flux density in the jet is of the order of pu2 ,
where u is

of the order of some mean velocity in the jet; this is the only quantity of the

right dimensions that can be formed from the fluid density p, the velocity u,

and the distance x. The area of the part of the jet cross-section where u is

appreciably different from zero is of the order ofR2
. Hence the total momen-

tum flux is of the order of pu2R2
. Equating this to a constant and putting

R = constant xx, we obtain

u ~ constant/*, (35.3)

i.e. the velocity diminishes inversely as the distance from the mouth of the

tube.

t Some dependence of the constant a on the initial conditions (velocity profile) in the tube mouth

is observed experimentally. It is reasonable to suppose that this dependence is due to the effect of

the finite dimensions of the opening, an effect which would disappear at greater distances.
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The amountQ of fluid which passes per unit time through a cross-section of

the turbulent region of the jet is of the order of the product of its area ( ~ R2
)

and the mean velocity u. Substituting, we findf

Q = Bx. (35.4)

Thus the discharge through a cross-section of the turbulent region in-

creases with x, i.e. some fluid is, as it were, entrained in the turbulent
region. $ The constant which appears in (35.4) may be determined as follows.

At distances of the order of the dimensions of the tube mouth, Q must be-
come the amount Q of fluid emitted from the tube per unit time, which is

fixed for any particular jet. Hence we see that B ~ Qo/a, where a gives the

transverse dimension of the tube mouth (e.g. the radius, if the opening is

circular). Thus we can write

B = cQola, (35.5)

where c is a numerical constant which depends only on the form of the open-
ing. If the latter is circular, c is found by experiment to be about 1 -5.

The flow in any section of the length of the jet is characterised by the

Reynolds number for that section, defined as uR[v. By virtue of (35.2)

and (35.3), however, the product uR is constant along the jet, so that the
Reynolds number is the same for all such sections. It can be taken, for

instance, as Bjpv. The constant B which appears here is the only parameter
which determines the flow in the jet. When the "strength" Q of the jet

increases (the value of a remaining constant), the Reynolds number Bjpv
eventually reaches a critical value, after which the flow simultaneously

becomes turbulent along the whole length of the jet.ff

t If two variable quantities which vary within wide limits are always of the same order of mag-
nitude, then they must be proportional. Hence, in this case (and in similar cases), we can write
precisely Q = constant X a; in place of Q— constant X x.

% The total mass flux through any infinite plane across the jet is infinite, i.e. a jet issuing into an
infinite space carries with it an infinite amount of fluid.

ft In order to make more detailed calculations for various kinds of turbulent flow, it is customary
to employ certain "semi-empirical" theories, based on assumptions concerning the dependence of the
turbulent viscosity coefficient on the gradient of the mean velocity. For example, in Prandtl's theory
it is assumed that (for plane flow)

Vturb = l
2
\8uxldy\,

where the dependence of / (called the mixing length) on the co-ordinates is chosen in accordance
with the results of similarity arguments; for instance, in free turbulent jets we put I = ex, c being an
empirical constant. Such theories usually give good agreement with experiment, and are therefore
useful for interpolatory calculations. However, it is not possible to give universal values to the em-
pirical constants which characterise each theory; for example, the value of the ratio of the mixing
length I to the transverse dimension of the turbulent region has to be chosen differently in various
particular cases. It should also be mentioned that good agreement with experimental results can be
obtained with various expressions for the turbulent viscosity.

A more detailed account of these theories is given by L. G. LoItsyanskiI, Aerodynamics of Boundary
Layers (Aerodinamika pogranichnogo sloya), Moscow 1941; G. N. Abramovich, Free Turbulent Jets
of Liquids and Gases (Turbulentnye svobodnye strui zhidkostei i gazov), Moscow 1948; H. Schuchting,
Boundary Layer Theory, Pergamon Press, London 1955.
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PROBLEMS

Problem 1. Determine the mean flow in the jet outside the turbulent region.

Solution. We take spherical co-ordinates r, 6, $, with the polar axis along the axis of the

jet, and the origin at its point of emergence. Because the jet is axially symmetrical, the

component u^ of the mean velocity is zero, while ug and ur are functions only of r and 6.

The same arguments as were used in the problem of the laminar jet (§23) show that ug and

ur must be of the forms ug — f(0)/r, ur — F(0)Jr. Outside the turbulent region we have

potential flow, i.e. curl u = 0, so that 8ur/d9— 8(rue)/8r = 0. But rug is independent of r,

so that BurJdO = (1/r) dF/dd = 0, whence F = constant = —b, say, or

ur = -bjr. (1)

From the equation of continuity,

Id Id
(r^ur) +—— —iug sin0) = 0,

r2 dr r sin 9 do

we then obtain

constant— b cos 6

J
sin0

The constant of integration must be —b if the velocity is not infinite for d — it (it does not

matter that / is infinite for = 0, since the solution in question refers only to the space

outside the turbulent region, whereas B — lies inside that region). Thus

6(1 + cos 6) b
ue
= r-7— = - -cotJ0. (2)

r sin 6 r

The component of the velocity in the direction of the jet (ux) and its absolute magnitude are

b b cos 6 b
ux = - = , u =

. . (3)
r x r sin$0

The constant b can be related to the constant B in (35.4). Let us consider a segment of the

cone formed by the turbulent region, bounded by two infinitely close cross-sections of the

cone. The mass of fluid entering this segment per unit time is dO = —litrp sin a . ugdr

= 2irbp(l +cos a)dr, while from formula (35.4) we have dQ = B dx = B cos a dr. Com-
paring the two expressions, we obtain

B cos a
5 = . (4)

27rp(l + cosa)

At the boundary of the turbulent region, the velocity u is directed into this region, making

an angle \(ir—a.) with the positive direction of the ar-axis. _
Let us compare the mean velocity ux inside the turbulent region (defined as uz =

Qj-rrpR2 = Bjirpx tan2a) with the velocity (uz)pot at the boundary of the region. Taking the

first equation (3) with 9 = a, we find

(ux)Potlux = 4(1
- cos a)'

For a = 12°, this ratio is 0-011, i.e. the velocity at the boundary of the turbulent region is

small compared with the mean velocity inside the region.
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Problem 2. Determine the law of variation of size and velocity in a submerged turbulent
jet issuing from an infinitely long thin slit.

Solution. By the same reasoning as for the axial jet, we conclude that the turbulent
region is bounded by two planes intersecting along the slit, i.e. the half-width of the jet is

Y = x tan a. The momentum flux in the jet (per unit length of the slit) is of the order of
pu2 Y. The dependence of the mean velocity u on * is therefore given by u = constant/V*-
The discharge through a cross-section of the turbulent region is Q ~ pu Y, whence Q = con-
stant X \/x. The experimental data give a value of 25° to 33° for the angle 2a of a plane-
parallel jet (cf. the third footnote to this section).

§36. The turbulent wake

For Reynolds numbers considerably above the critical value, in flow past
a solid body, a long region of turbulent flow is formed behind the body. This
is called the turbulent wake. At distances large compared with the dimension
of the body, simple arguments enable us to determine the form of this wake
and the way in which the fluid velocity decreases there (L. Prandtl, 1926).
As in the investigation of the laminar wake in §21, we denote by U the

velocity of the incident stream, and take the direction of U as the #-axis.

The fluid velocity at any point, averaged over the turbulent fluctuations, is

written as U+u. Denoting by a some mean width of the wake, we shall

find a as a function of x. If there is no lift, then at large distances from the
body the wake is axially symmetrical and circular in cross-section ; in this case,

a may be the radius of the wake. If a lift force is present, a direction is

selected in the j#-plane, and the wake is not axially symmetrical at any distance
from the body.

The longitudinal fluid velocity component in the wake is of the order of
U, while the transverse component is of the order of some mean value u
of the turbulent velocity. The angle between the streamlines and the *-axis
is therefore of the order of u\ U. The boundary of the wake is, as we know, the
boundary beyond which the streamlines of the rotational turbulent motion
cannot pass. Hence it follows that the angle between the boundary of the
wake and the #-axis is also of the order of ujU. This means that we can write

dajdx ~ uJU. (36.1)

Next we use formulae (21.1), (21.2), which determine the forces on the
body in terms of integrals of the fluid velocity in the wake (the velocity now
being interpreted as its mean value). The region of integration in these
integrals is of the order of a2 . Hence an estimate of the integral gives

F ~ pUua2
, where F is of the order of the drag or the lift. Thus

u ~ F/pUa*. (36.2)

Substituting in (36.1), we find dajdx ~ F/pU2a2 , from which we have by
integration

a ~ {Fx\pTJ2)K (36.3)

Thus the width of the wake increases as the cube root of the distance from
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the body. For the velocity u, we have from (36.2) and (36.3)

u ~ (FU/px*)*, (36.4)

i.e. the mean fluid velocity in the wake is inversely proportional to xK

The flow in any cross-section of the wake is characterised by the Reynolds

number R ~ aujv. Substituting (36.2) and (36.3), we obtain

R ~ FjvpUa ~ {pifPUxiPf.

We see that this number is not constant along the wake, unlike what we found

for the turbulent jet. At sufficiently large distances from the body, R becomes

so small that the flow in the wake is no longer turbulent. Beyond this point

we have the laminar wake, whose properties have been investigated in §21.

In §21, Problem 2, formulae have been obtained which describe the flow

outside the wake and far from the body. These formulae hold for flow

outside the turbulent wake as well as outside the laminar wake.

We may mention here some general properties of the velocity distribution

round the body. Both inside and outside the turbulent wake, the velocity

(by which we always mean u) decreases away from the body. However, the

longitudinal velocity ux falls off more rapidly (~ \\x2) outside the wake

than inside it. Far from the body, therefore, we may suppose ux to be

zero outside the wake. We may say that ux falls from some maximum value

on the axis of the wake to zero at the boundary of the wake. The transverse

components %, u z at the boundary are of the same order of magnitude as

they are inside the wake, diminishing rapidly as we move away from the

wake at a given distance from the body.

§37. Zhukovskii's theorem

The velocity distribution round a body, described at the end of the last

section, does not hold for exceptional cases where the thickness of the wake

formed behind the body is very small compared with its width. A wake

of this kind is formed in flow past bodies whose thickness (in the ^-direction)

is small compared with their width (in the ^-direction) ; the length (in the

direction of flow, the ^-direction) may be of any magnitude. That is, we are

considering flow past bodies whose cross-section transverse to the flow is

very elongated. These bodies include, in particular, wings, i.e. bodies whose

width, or span, is large in comparison with their other dimensions.

It is clear that, in such a case, there is no reason why the velocity com-

ponent uy perpendicular to the plane of the turbulent wake should fall off

appreciably at distances of the order of the thickness of the wake. On the

contrary, this component will now be of the same order of magnitude inside

the wake and at considerable distances from it, of the order of the span.

Here, of course, we assume that the lift is not zero, since otherwise the trans-

verse velocity practically vanishes.
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Let us consider the vertical lift force Fy resulting from such a flow.
According to formula (21.2), it it given by the integral

Fy = -
PUJjuy dydz, (37.1)

where, on account of the nature of the distribution of uy , the integration
must now be taken over the whole transverse plane. Furthermore, since the
thickness of the wake (in the ^-direction) is small, while the velocity uy
inside the wake is not large compared with its value outside, we can with
sufficient accuracy take the integration over y to be over the region outside
the wake, writing

Vx

J
uy Ay « J

uy dy+ \uy dy,

—oo yt —oo

where y1 and y2 are the co-ordinates of the boundaries of the wake (Fig. 18).

-£ !/

\ 7/2

\ /I

Fig. 18

Outside the wake, however, we have potential flow, and uy = d<f>/dy;

bearing in mind that
<f>
= at infinity, we therefore obtain

j Uydy =
<f>2 -<f>i,

where $2 and $1 are the values of the potential on the two sides of the wake.
We may say that <f>2-<f>i is the discontinuity of the potential at the surface of
discontinuity which may be substituted for a thin wake. The derivative

Uy = dtfajdy must remain continuous. A discontinuity in the velocity com-
ponent normal to the surface of the wake would mean that some quantity of
fluid flows into the wake; in the approximation in which the thickness of the
wake is neglected, however, this inflow must be zero. Thus we replace the
wake by a surface of tangential discontinuity. Next, in the same approxima-
tion, the pressure also must be continuous at the wake. Since the variation
of the pressure is given in the first approximation, according to Bernoulli's

equation, by pUux = pU d<j>Jdx, it follows that the derivative dtjyjdx must
also be continuous. The derivative d(j>jdz (the velocity along the wing) is

in general discontinuous, however.
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Since the derivative d<f>jdx is continuous, the discontinuity fa-<f>i depends

only on z, and not on the co-ordinate x along the wake. Thus we have

the following formula for the lift:

Fy = -puffa-toP*- (37 -2)

The integration over z may be taken over the width of the wake (of course,

<j>2— (f)i
= outside the wake).

This formula can be put in a somewhat different form. To do so, we notice

that, using well-known properties of an integral of the gradient of a scalar,

we can write the difference fa-fa as a contour integral

& grade/) -dl = <j> (uy dy+ux dx),

taken along a contour which starts from the point yi, encircles the body, and

ends at the pointy2 , thus passing at every point through the region of potential

flow. Since the wake is thin we can, without changing the integral except by

quantities of higher order, close this contour by means of the short segment

from y% to y\. Denoting by T the velocity circulation round the closed

contour C enclosing the body (Fig. 18), we have

T = <JJu.dl = ^2-^1, (37.3)

and for the lift force the formulaf

Fy = -pUJTdz. (37.4)

The relation between the lift and the circulation given by this formula

constitutes Zhukovskii's theorem, first derived by N. E. Zhukovskii in 19064

PROBLEMS

Problem 1 . Determine the manner of widening of the turbulent wake formed in transverse

flow past a cylinder of infinite length.

Solution. The drag/x per unit length of the cylinder is of the order of pUu Y. Combining

this with the relation (36.1), we find the width Y of the wake to be

Y = AVixfcJpU*), (1)

where A is a constant. The mean velocity u in the wake falls off in accordance with

u ~ Vifxlpx). The Reynolds number R ~ Yufv ~fx}pUv is independent of x, and there

is therefore no laminar wake.

t The sign of the velocity circulation is always chosen to be that obtained for a counter-clockwise

path. The sign in formula (37.3) also depends on the chosen direction of flow. We always suppose

that the flow is in the positive direction of the #-axis (from left to right).

% Cf. §46 for the application of this theorem to streamlined wings.
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We may mention that, according to experimental results, the constant coefficient in (1)
is A = -93 (Y being the half-width of the wake ; if Y is taken as the distance at which the
velocity ux falls to half its maximum value (at the centre of the wake), then A — 0-41).

Problem 2. Determine the flow outside the wake formed in transverse flow past a body
of infinite length.

Solution. Outside the wake we have potential flow; we shall denote the potential by <b
to distinguish it from the angle

<fi
in the system of cylindrical co-ordinates which we take,

with the z-axis along the length of the body. As in §21, Problem 2, we conclude that we must
have

cfu-df = jgjrad<!>'df = fx/pU,

where now the integration is over the surface of a cylinder of large radius and unit length with
its axis in the a-direction, andfx is the drag per unit length of the body. The solution of the
two-dimensional Laplace's equation A * = that satisfies this condition is O = (fxJ2npU) log r
Next, we have for the lift, by formula (37.2), /„ = pU^-O,). The solution of Laplace's
equation that diminishes least rapidly with distance and has a discontinuity on the plane
I = is <D = constant X <f>\ since 4>2~<t>i = 2tt, the constant is -fyjlirpU. The flow is given
by the sum of these two solutions, i.e.

The cylindrical components of the velocity u are

ur = d<b\dr = UllirpUr, U<f>
= (l/r)a<J>/c# = -/y/2*y>tfr. (2)

The velocity u is at a constant angle tan-1 (fyjfx) to the r-direction.

Problem 3. Determine the manner of bending of the wake behind a body of infinite length
when there is a lift force.

Solution. If there is a lift force, the wake (regarded as a surface of discontinuity) is curved
in the ary-plane. The function y = y(x) which determines this is given by the equation
dxJ(ux+ U) = djy/tty. Substituting, by (2) of Problem 2, uy « -fyll-npVx and neglecting
ux in comparison with U, we obtain

dy/dx = -fyllirpUtx,

whence

y = constant-(fy/27rpU
2
) log x.

§38. Isotropic turbulence

We have already mentioned in §33 the particular case of turbulent flow
that is completely homogeneous and isotropic, the mean velocity being zero
throughout the fluid. Such a flow may be imagined as that of a fluid which is

vigorously stirred and then left to itself. The motion decays with time, of
course.

The further investigation of isotropic turbulence, and in particular the
determination of the manner of its decay with time, is based on a conservation
law first derived by L. G. Loitsyanskii (1939). This law, which holds only
for isotropic turbulence, is a consequence of the general law of conservation of
angular momentum, and may be derived as follows.



§38 Isotropic turbulence 141

Let us isolate some fairly large volume in an unbounded fluid, and consider

the total fluid angular momentum M contained in this volume. M has some

random value, which is not in general zero. On account of the interaction with

the surrounding regions, M does not remain strictly constant. However,

since the interaction is a surface effect, it is clear that the time T during which

M varies appreciably must increase with the dimension L of the volume

selected. The time T and the dimension L may be arbitrarily large, and in

this sense the angular momentum M is conserved.

For convenience in what follows, we suppose that the chosen volume of

fluid is enclosed in a vessel with fixed solid walls; it is evident that the boun-

dary conditions at the surface of a very large volume cannot have any effect

on the volume properties of the flow, in which we are interested.

According to the general definition, the tensor Mm, which is the total

angular momentum, is equal to the integral

p
J

(xiVk-

x

kVi)dV

taken over the whole volume. We transform this integral as follows

:

f xkVidV = f (xiXkvi)dV- f xtxt—dV- f XiVkdV.
J J dxi J oxi J

The first integral on the right-hand side, on being converted into a surface

integral, is seen to be zero, since the normal velocity component at the walls

bounding the fluid is zero, so that vjtdfy = v-nd/ = 0. The second integral

is zero if the fluid is incompressible (div v = 0). Thus

and we can write

j xkVidV = —
J

xivjcdV,

Mm = 2/>
J
XiVkdV.

The sum of the squared components of Ma is equal to twice the squared

absolute magnitude of the angular momentum vector

M = p j
r xvdF.

We therefore have

Af2 = 2/>
2
[

J*
XiVkdVf.

The squared integral can be written as a double integral:

M* = 2p2
J*J*

Xix'iVw'kdVdV.
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Finally, we notice that this expression may be rewritten

m = -P2
// (xi-x't)2 Vkv'kdVdV; (38.1)

the integrals containing the squares xt2 and x\2 vanish, since

// x'^vkv'k dVAV' =
J x'WkdV j vk dV, and jvkdV =

because the total linear momentum of an incompressible fluid in a fixed

vessel is zero.

The factor vkv'k = vv' in the integrand of (38.1 is the scalar product
of the velocities at two points having co-ordinates ^)and x'k , at a distance
r = VK**-*'*)2

] apart. We average this product over all positions of
the points xk and x'k (for given r) in the volume concerned: this averaging
is the same as the one used in §33 in defining the correlation functions. Since

the flow is isotropic, the quantity v^v' is a function of r only. It falls off

rapidly with increasing r, since the velocities of the turbulent flow at two
points a great distance apart may be supposed statistically independent:
the mean value of their product then reduces to the product of the mean values
of the individual velocities, which is zero (the mean velocity being everywhere
zero in the flow under consideration).

Effecting this averaging under the integral sign in (38.1), we find

= P
2 jfdV, where / = - JvV r2 dV. (38.2)M2

The integrand in / diminishes rapidly with increasing r, so that the integral

converges; this means that, as the dimension L of the region tends to infinity,

/ tends to a finite limit. Since the flow is homogeneous,! the quantity /
is constant everywhere in the fluid, and we can write simply M2 = p

2/V.
We may point out that the angular momentum is thus found to increase as the
square root of the volume of moving fluid, and not proportionally to the
volume. This is because the total angular momentum is the sum of a large

number of statistically independent components (the angular momenta of
various small portions of the fluid) whose mean values are not zero.

Thus we conclude that, for isotropic turbulence, the constancy ofM implies
the condition

fv-v'r
2dV = constant. (38.3)

This is LoltsyanskiVs law.%

t Throughout the region, except for a very small part near the surface.

% Doubts have recently been expressed more than once concerning the applicability of the con-
servation law (38.3), on account of the behaviour of the velocity correlation at very large distances;
for example, if this correlation does not decrease sufficiently rapidly, the integral (38.3) may diverge.
The whole subject seems to be as yet somewhat unclear.
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The integrand in (38.3) is noticeably different from zero in a region whose

dimensions are of the order of the scale / of the turbulence (the volume of

the region ~ Z3), and is there of the order of v2l2 . Hence we have from

(38.3)

v2 l5 _ constant. (38.4)

Using this relation, we can determine the manner of the time decay of

isotropic turbulence. To do so, we estimate the time derivative of the kinetic

energy of unit volume of the fluid. On the one hand, it may be written as

being of the order of pv2jt. On the other hand, it must equal the energy

dissipated in unit volume per unit time. According to formula (31.1),

pe ~ pv*]l (the characteristic velocity here being v). If the two expressions

are comparable, we find

/ - vt. (38.5)

Substituting (38.5) in (38.4), we see that

v = constant/t5/7 . (38.6)

Thus the velocity in isotropic turbulence decays with time inversely as

*5/7 . For / we have

/= constant xt2", (38.7)

i.e. the external scale of the turbulence increases as t211 (A. N. Kolmogorov,

1941).

According to formulae (38.6) and (38.7), the Reynolds number R ~ vl/v

decreases as t~3n , and after a sufficient time it becomes so small that the

viscosity begins to be important. The energy dissipation is then determined,

on the one hand, by the usual formula (16.3), which gives

/ dvi dvic \
2 w2

* = M T~ + -r-
\ dxjc dxt 1 I

2

and, on the other hand, by e ~ v2/t. Comparing, we obtain

/ ~ VH (38 -8)

and then from (38.4) we have

v = constant/^/4. (38.9)

These formulae, which are due to M. D. Millionshchikov (1939), give

the manner of decay of isotropic turbulence in the final period, when the

effect of the viscosity becomes predominant.

Isotropic turbulent flow can be brought about by passing a stream through

a grid having a large number of regularly spaced openings. We denote by U
the velocity of the original flow, taking the #-axis in the direction of U, and

the true velocity by U+v, so that v is the velocity of the turbulent flow

in which we are interested. If we introduce a frame of reference moving
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with velocity U, then relative to this frame the fluid executes a turbulent
flow with velocity v. As we move away from the grid, the averaged turbulent

flow (with velocity u = v) decays faster than the fluctuating flow. This is

because the averaged flow has a scale of the order of the dimension a of the
grid openings, and these, as we shall see, are small in comparison with the
scale of the fluctuating flow. Consequently, at sufficiently large distances x
from the grid, the averaged velocity u is almost zero, and the turbulent

velocity v is just the fluctuating velocity. At such distances the turbulence
may be regarded as completely isotropic over regions small compared with *
(though not necessarily small compared with the external scale of the tur-

bulence). The time decay of the turbulence in the moving frame of reference

corresponds to a decay with increasing distance from the grid in the original

stationary frame. The manner of this decay is given by the formulae derived
above, in which we need only replace / by xjU. Bearing in mind that, at

distances from the grid of the order of a (the dimension of the openings),

we must have / ~ a, we can rewrite formula (38.7) as / ~ a{xja)2n . For the

velocity we have by (38.5), v ~ lUjx, whence v ~ U{ajx)$n .

PROBLEM

Using equation (33.17), obtain for isotropic turbulence the quantitative law of decay of

the quantities vriVr2 in the period when viscosity is important (L. G. LoiTSYANSKii, M. D.
MILLIONSHCHIKOV).

Solution. In this case we can neglect the Brrr term in (33.17), as being of a higher order
in the (small) velocity. Introducing the quantity

2v 8 I 8brr\
- — — (r4—: = o.

r4 8r \ 8r J

brr = VriVr2 = %V2-\Br

(see (33.16)), we obtain for it the equation

8brr 2v 8 / _8br

~8t

The solution of this equation that is of interest is

brr = constant xe-rV8"Vi5/2 ;

cf. the analogous solution (51.6) of the equation of heat conduction. This gives the asymp-
totic form of the function brr for initial conditions such that brr is any function which de-
creases sufficiently rapidly with increasing r (just as (51.6) gives the asymptotic law of pro-
pagation of heat which at the initial instant is concentrated in a small region of space).



CHAPTER IV

BOUNDARY LAYERS

§39. The laminar boundary layer

We have several times mentioned the fact that very large Reynolds numbers

are equivalent to very small viscosities, and consequently a fluid may be

regarded as ideal if R is large. However, this approximation can never be

used when the flow in question occurs near solid walls. The boundary con-

ditions for an ideal fluid require only the normal velocity component to vanish;

the component tangential to the surface in general remains finite. For a

viscous fluid, however, the velocity at a solid wall must vanish entirely.

From this we can conclude that, for large Reynolds numbers, the decrease

of the velocity to zero occurs almost exclusively in a thin layer adjoining the

wall. This is called the boundary layer, and is thus characterised by the pres-

ence in it of considerable velocity gradients. The flow in the boundary layer

may be either laminar or turbulent. In this section we shall consider the

properties of the laminar boundary layer. The boundary of the layer is not,

of course, sharp ; the transition from the laminar flow in it to the main stream

of fluid is continuous.

The rapid decrease of the velocity in the boundary layer is due ultimately

to the viscosity, which cannot be neglected even if R is large. Mathemati-

cally, this appears in the fact that the velocity gradients in the boundary

layer are large, and therefore the viscosity terms in the equations of motion,

which contain space derivatives of the velocity, are large even if v is smalL

The mathematical theory of the boundary layer is due to L. Prandtl.

Let us derive the equations of motion of the fluid in a laminar boundary

layer. For simplicity, we consider two-dimensional flow along a plane por-

tion of the surface. This plane is taken as the xsr-plane, with the #-axis in

the direction of flow. The velocity distribution is independent of z, and the

velocity has no ^-component.

The exact Navier-Stokes equations and the equation of continuity are then

dvx dvx I dp / d*vx d*vx \

Vx 1- Vv = h V\ 1 —
, (39.1)x

dx Ijy pSx \ 8x* 8y* J
K

8Vy 8Vy \dp (d*Vy 8*Vy\

x
dx *ly pSy \ 8x* 8y* I

V

8?)r 8vv_1 + _Z = o. (39.3)
dx dy

145
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The flow is supposed steady, and the time derivatives are therefore omitted.
Since the boundary layer is thin, it is clear that the flow in it takes place

mainly parallel to the surface, i.e. the velocity vy is small compared with vx
(as is seen immediately from the equation of continuity).

The velocity varies rapidly along the y-axis, an appreciable change in it

occurring at distances of the order of the thickness S of the boundary layer.

Along the #-axis, on the other hand, the velocity varies slowly, an appreciable
change in it occurring only over distances of the order of a length / charac-
teristic of the problem (the dimension of the body, say). Hence the y-deriva-
tives of the velocity are large in comparison with the ^-derivatives. It follows
that, in equation (39.1), the derivative 82vx/dx2 may be neglected in compari-
son with d2vx\dy2 \ comparing (39.1) with (39.2), we see that the derivative
dp

I
By is small in comparison with dpjdx (the ratio being of the same order

as Vyjvx). In the approximation considered we can put simply

tylty = 0, (39.4)

i.e. suppose that there is no transverse pressure gradient in the boundary
layer. In other words the pressure in the boundary layer is equal to the pres-
sure p(x) in the main stream, and is a given function of x for the purpose of
solving the boundary-layer problem. In equation (39.1) we can now write,

instead of dpjdx, the total derivative dp(x)/dx; this derivative can be ex-
pressed in terms of the velocity U(x) of the main stream. Since we have
potential flow outside the boundary layer, Bernoulli's equation, p+ ^pU2

= constant, holds, whence {\jp)dpjdx = - UdJJjdx.

Thus we obtain the equations of motion in the laminar boundary layer in
the form

dvx 8vx d2vx 1 dp
vx H vy v =

8x dy dy2 p dx

dU
= U-

,

dx' (39.5)

dvx dvy
+ —- = 0.

dx dy

It can easily be shown that these equations, though derived for flow along a
plane wall, remain valid in the more general case of any two-dimensional flow
(transverse flow past a cylinder of infinite length and arbitrary cross-section).

Here x is the distance measured along the circumference of the cross-section

from some point on it, andy is the distance from the surface.

Let Uo be a velocity characteristic of the problem (for example, the
velocity of the main stream at infinity). Instead of the co-ordinates x, y
and the velocities vx , vy , we introduce the dimensionless variables x', y',

v'x , v'y :

x = lx', y = ///-v/R, vx= Uqv'x , vy= Uov'y/^R (39.6)
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(and correspondingly U = UoU'), where R = UqIJv. Then the equations

(39.5) take the form

, fa'x ,
fa'y 8V, &U'

(39.7)
dv'x fa'y

+—- = 0.
dx' by'

These equations (and the boundary conditions on them) do not involve the

viscosity. This means that their solutions are independent of the Reynolds

number. Thus we reach the important result that, when the Reynolds number

is changed, the whole flow pattern in the boundary layer simply undergoes

a similarity transformation, longitudinal distances and velocities remaining

unchanged, while transverse distances and velocities vary as lfs/K.

Next, we can say that the dimensionless velocities v'x , v'y obtained by

solving equations (39.7) must be of the order of unity, since they do not

depend on R. The same is true of the thickness 8 of the boundary layer in

terms of the co-ordinates x'
y
y'. From formulae (39.6) we can therefore

conclude that

Vy ~ Ob/VR. (
39 «8)

i.e. the ratio of the transverse and longitudinal velocities is inversely propor-

tional to \/R, and that

S ~ //VR, (39.9)

i.e. the thickness of the boundary layer diminishes with increasing Reynolds

number as l/y^R-

Let us apply the equations for the boundary layer to the case of plane-

parallel flow along a flat plate. Let the plane of the plate be the xz half-plane

with x > (the leading edge of the plate thus being the line * = 0). We
suppose the plate to extend indefinitely in the positive ^-direction. The

velocity of the main stream in this case is evidently constant (U = constant).

The equations (39.5) become

fax fax &*>x fax
,

fay
n mim

vx— + vy = v—-, +— = 0. (39.10)
dx dy By* dx dy

The boundary conditions at the surface of the plate are that both velocity

components should vanish: vx = vy = for y = 0, x ^ 0. As we move

away from the plate, the velocity must approach asymptotically the velocity

U of the incident flow, i.e. vx = U for y -> ± oo. In the solution of the

equations for the boundary layer, as we have seen, vxjU and vy<s/{HUv) can

be functions only of x' = xjl and y' = y\/(Ullv). In the problem under

consideration, however, the plate is infinite in extent and there are no charac-

teristic lengths /. Hence vxjU can depend only on a combination of x' and y'
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which does not involve /, namely y'j\/x' = y-\Z(Ufvx). Similarly, the product

v'yVx ' must be a function ofy /\/x'. Thus we can seek a solution in the form

** = Uf[yV(Ulvx)l vy = ViUvlxfilyy/iU/vx)], (39.11)

where/ and /i are some dimensionless functions. Using the second equation

(39.10), we can express /i in terms of/. The problem thus reduces to the

determination of a single function / of a single variable | = y\/{UJvx).\
In what follows we shall be interested only in the distribution of the

longitudinal velocity vx (since vy is small). We can draw an important

conclusion from formula (39.11) without even determining the function/.

The velocity vx increases from zero at the surface of the plate to a definite

fraction of Ufor a given value of the argument of/, i.e. for yy/{ U/vx) = any
given constant. Hence we can conclude that the thickness of the boundary
layer in flow along a plate is given in order of magnitude by

8 ~ V(vx/U). (39.12)

Thus, as we move away from the edge of the plate, 8 increases as the square

root of the distance from the edge.

The function / can be determined by numerical integration. A graph of

this function is shown in Fig. 19. We see that / tends very rapidly to its

limiting value of unity. J

The frictional force on unit area of the surface of the plate is

oxy = 7]{dvxjdy)y=Q.

A numerical calculation gives

oxy = 0-332V(^C/3
/^). (39.13)

If the plate is of length / (in the x-direction), then the total frictional force

on it per unit length in the ^-direction is

i

F = 2 aXydx.

o

The factor 2 is due to the fact that the plate has two sides exposed to the

t It is easily shown that, if the function <£(£) is such that/(£) =
<f>'(£), then/1(f) = 4(£<£'—

<f>),

while
(f>

satisfies the equation <fxf>"+2<l>'" = 0, with the boundary conditions <j> = </>' = for £ = 0,
</>' = 1 for £ = oo.

X The "displacement thickness" 8*, sometimes used to characterise the thickness of the boundary
layer, is defined by

00

j (U-vx)dy = US*.

o

It is equal to 1*72 \/(vx/U).
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fluid. Substituting (39.13), we have

F = 1-328VMC/8
) (

39 - 14)

(H. Blasius, 1908). We may point out that the frictional force is proportional

to the f power of the velocity of the main stream. Formula (39.14) can be

applied only to fairly long plates, for which the Reynolds number Uljv is

fairly large. The force is customarily expressed in terms of the drag coefficient,

defined as the dimensionless ratio

C = FfoW.Zl. (39.15)

By (39.14), this quantity, for laminar flow along a plate, is inversely pro-

portional to the square root of the Reynolds number:

C = 1-328/VR. C39 - 1 ^)

The quantitative formulae obtained above relate, of course, only to flow

along a flat plate. The qualitative results, however, such as (39.8) and (39.9),

hold for flow past bodies of any shape; in such cases / is the dimension of

the body in the direction of flow.

1-0

0-8

0-6

0-4

0-2

3 4 5

Fig. 19

We may make special mention of two cases of the boundary layer. If we
have a plane disk, of large radius, rotating in the fluid about an axis perpen-

dicular to its plane, then to estimate the thickness of the boundary layer we
must replace U in (39.12) by Q.x, where Q is the angular velocity of rotation.

We then find

S ~ -\/(v/Q). (39.17)

We see that the thickness of the boundary layer may be regarded as a constant

over the surface of the disk, in accordance with the exact solution of this

problem obtained in §23. The magnitude of the frictional forces on the disk,

as obtained from the equations for the boundary layer, is of course (23.4),

since this formula is exact and therefore holds for laminar flow with any

value of R.
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Finally, let us consider the laminar boundary layer formed at the walls of

a pipe near the point of entry of fluid. The fluid usually enters the pipe with

a velocity distribution which is almost constant over the cross-section, and
the velocity falls to zero entirely within the boundary layer. As we move
away from the entrance to the pipe, the fluid layers nearer the axis are re-

tarded. Since the mass of fluid that passes each cross-section is the same, the

inner part of the stream, where the velocity is still uniform, must be
accelerated as its diameter is reduced. This continues until a Poiseuille

velocity distribution is asymptotically reached; this distribution is thus found
only at some distance from the entrance to the pipe. It is easy to determine

the order of magnitude of the length / of the "inlet section". It is given by the

fact that, at a distance / from the entrance, the thickness of the boundary
layer is of the same order of magnitude as the radius a of the pipe, so that the

boundary layer fills almost the whole cross-section. Putting in (39.12)

x ~ / and S ~ a, we obtain

/ ~ a2 Ujv ~ aR. (39.18)

Thus the length of the inlet section is proportional to the Reynolds number,f

PROBLEMS

Problem 1 . Determine the thickness of the boundary layer near a stagnation point (see §10).

Solution. Near the stagnation point the fluid velocity (outside the boundary layer) is

proportional to the distance x from that point, so that we can put U — ex. By estimating the
magnitudes of the terms in the equations (39.5) we find S ~ \/(v/c). Thus the thickness of
the boundary layer near the stagnation point is finite (and, in particular, does not vanish at

the stagnation point itself).

Problem 2. Determine the flow in the boundary layer in a converging channel between
two non-parallel planes (K. Pohlhausen, 1921).

Solution. Considering the boundary layer along one of the planes, we measure the co-
ordinate x along that plane from the point O (Fig. 8, §23). For an ideal fluid we should have
the velocity U = Qfoucp ; the corresponding pressure gradient is, by Bernoulli's equation, given
by

Id* d O2

-T"= --(|C/2)= *
p dx dx a2#3/o2

It is easy to see that vx and vy must be sought in the form

vx = (Qlpooc)f(y/x), vy = {Qlp«x)fi(ylx).

From the equation of continuity we obtainft = (y/x)f, and the first equation (39.5) then gives

for the function /

(W0/"=l-/2,
where the prime denotes the differentiation of/ with respect to its argument £ = y/x. The

f We shall not discuss the theory of the boundary layer for a compressible fluid, which is, of course,

considerably more complicated than that for an incompressible fluid. An account of this theory may
be found in: N. E. Kochin, I. A. Kibel' and N. V. Roze, Theoretical Hydromechanics (Teoreticheskaya

gidromekhanika), Part 2, 3rd ed., Chapter II, §§35, 36, Moscow 1948; H. Schlichting, Boundary
Layer Theory, Pergamon Press, London 1955; L. Howarth ed., Modern Developments in Fluid
Dynamics: High Speed Flow, vol. 1, Oxford 1953.
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boundary conditions are /(0) = 0, /(co) = 1 (since we must have (vx)y=f> = 0, (vx)y=(o
= Qlpcuc). A first integral of the equation is

(vap/20)/'2 =/-£/3+ constant.

Since /tends to unity as y -* oo, we see that/' tends to a definite limit, which can only be
zero. The constant being thereby determined, we find

(mp/2£)/'2 = _K/-l)2(/+2).

Since the right-hand side is always negative for ^ / < 1, we must have Q < 0. That is,

a boundary layer of the type in question is formed only by flow in a converging channel
(and only at large Reynolds numbers R = \Q\/vp), and not by flow in a diverging channel, in

accordance with the results of §23. Integrating again, we have finally

/ = 3 tanh2[log(V2+VV +fl/W2")] - 2-

§40. Flow near the line of separation

In describing the line of separation (§34) we have already mentioned that

the actual position of this line on the surface of the body is determined by the

properties of the flow in the boundary layer. We shall see below that, from a

mathematical point of view, the line of separation is a line whose points

are singular points of the solutions of (PrandtPs) equations of motion in the

boundary layers. The problem is to determine the properties of these solu-

tions near such a line of singularities.!

We know already that, from the line of separation, there begins a surface

which extends into the fluid and marks off the region of turbulent flow. The
flow is rotational throughout the turbulent region, whereas in the absence of

separation it would be rotational only in the boundary layer, where the vis-

cosity is important; the vorticity would be zero in the main stream. Hence
we can say that separation causes the vorticity to "penetrate" from the boun-
dary layer into the fluid. By the conservation of circulation, however,

this "penetration" can occur only by the direct mixing of fluid moving near

the surface (in the boundary layer) with the main stream. In other words, the

flow in the boundary layer must be separated from the surface of the body, the

streamlines consequently leaving the surface layer and entering the interior

of the fluid. This phenomenon is therefore called separation or separation of
the boundary layer.

The equations of motion in the boundary layer lead, as we have seen, to the

result that the tangential velocity component (vx) in the boundary layer is

large compared with the component (%) normal to the surface of the body.

This relation between vx and vy derives from our basic assumptions regarding

the nature of the flow in the boundary layer, and must necessarily be found
wherever Prandtl's equations have physically meaningful solutions. Mathe-
matically, it is found at all points not lying in the immediate neighbourhood
of singular points. But if vy <^ vx it follows that the fluid moves along the

f The treatment of the problem given here, due to L. D. Landau, is somewhat different from
that usually given.
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surface of the body, and moves away from the surface only very slightly,

so that there can be no separation. We therefore reach the conclusion that

separation can occur only on a line whose points are singularities of the

solution of PrandtPs equations.

The nature of these singularities also follows immediately. For, as we
approach the line of separation, the flow deviates from the boundary layer

towards the interior of the fluid. In other words, the normal velocity com-
ponent ceases to be small compared with the tangential component, and is

now of at least the same order of magnitude. We have seen (cf. (39.8))

that the ratio vyjvx is of the order of Ij-y/R, so that an increase of vy to the

point where vy ~ vx means an increase by a factor of y'R. Hence, for suffi-

ciently large Reynolds numbers (which, of course, we are considering)

we may suppose that vy increases by an infinite factor. If we use Prandtl's

equations in dimensionless form (see (39.7)), the situation just described is

formally equivalent to an infinite value of the dimensionless velocity v'y
on the line of separation.

In order to simplify the subsequent discussion a little, we shall consider

the two-dimensional problem of transverse flow past a body of infinite length.

As usual, x is the co-ordinate along the surface in the direction of flow, while

y is the distance from the surface of the body. Instead of a line of separation,

we now have a point of separation, namely the intersection of the line of

separation with the xy-plane; in the co-ordinates used, this is the point

x = constant s xo, y = 0. Let x < xo be the region in front of the point

of separation.

According to the above results, we have for allf y

vy(xo,y) = oo. (40.1)

In Prandtl's equations, however, vy is a kind of parameter, which is usually

of no interest (on account of its smallness) in investigating the flow in the

boundary layer. Hence it is necessary to ascertain the properties of the func-

tion vy near the line of separation.

It is clear from (40.1) that, for x = xo, the derivative dvyJ8y also becomes
infinite. From the equation of continuity, dvx\dx-\-dvy\dy = 0, it then fol-

lows that (dvx/8x)x==Xo is infinite, or dxjdvx = 0, where x is regarded as a

function of vx and y. We denote by ©o(y) the value of the function vx(x, y)
for x = xq: vo(y) = vx(xq, y). Near the point of separation, the differences

vx— vo and xq— x are small, and we can expand xq — x in powers of vx— vo

(for a given y). Since (dx/dvx)v=v<) = 0, the first-order term in this expansion

must vanish identically, and we have as far as terms of the second order

xo-x =f(y)(vx-v )
2

, or

v% = My) + *{y)V(xo- x)> (40.2)

f Except y = 0, where we must always have vy — in accordance with the boundary conditions

at the surface of the body.
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where a = Ijy/f is some function of y alone. Putting now

foy _ dvx _ afcy)

dy &v 2\/(#o— #)

and integrating, we have for vy

vy = Ky)!V(xo-x)> (40-3)

where

is another function of _y.

Next, we use the first equation (39.5):

dvx &vx d*vx 1 dp
a^ + vy = v— —

.

(40.4)
dx dy dy2 p dx

The derivative dzvxjdy2 does not become infinite for x = xo, as we see

from (40.2). The same is true of dp/cbc, which is determined by the flow

outside the boundary layer. Both terms on the left-hand side of equation

(40.4) become infinite, however. In the first approximation we can therefore

write for the region near the point of separation vxdvxjdx-hvydvxjdy = 0.

Substituting dvxjdx = — dvy/dy, we can rewrite this as

8vy dvx d
Vy-— = Vx2- (-)-o-

By dy 8y \ vx I

Since the velocity vx does not in general vanish for x = xo, it follows that

8(vylvx)Jdy = 0, i.e. the ratio vyjvx is independent of y. From (40.2) and

(40.3), we have to within terms of higher order

v% woOOVfao-*)

If this is a function of x alone, we must have fi(y) = %Avo(y), where A is a

numerical constant. Thus

Vy . **>
, (40.5)

2-y/(x — x)

Finally, noticing that a and /S in (40.2) and (40.3) obey the relation a = 2j8',

we obtain en — A dvojdy, so that

vx = v {y) + A(dv ldy)\Z(x - x). (40.6)

Formulae (40.5) and (40.6) determine vx and vy as functions of x near

the point of separation. We see that each can be expanded in this region in

powers of \^{xq— x), the expansion of vy beginning with the —1 power, so
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that vy becomes infinite as (#0— x)~l for x -> xq. For x > xq, i.e. beyond
the point of separation, the expansions (40.5) and (40.6) are physically

meaningless, since the square roots become imaginary; this means that the

solutions of Prandtl's equations which give the flow up to the point of

separation cannot meaningfully be continued beyond that point.

From the boundary conditions at the surface of the body, we must always

have vx = vy = for y = 0. We therefore conclude from (40.5) and (40.6)

that

v (0) = 0, (dvoldy)y=0 = 0. (40.7)

Thus we have the important result (due to Prandtl) that, at the point of

separation itself (x = xo, y = 0), not only the velocity vx but also its first

derivative with respect to y is zero.

It must be emphasised that the equation dvx/dy = on the line of separa-

tion holds only when vy becomes infinite for that value of x. If the constant

A in (40.5) happens to be zero, so that vv{xq, y) # 00, then the point x = xq,

y = at which the derivative 8vx/8y vanishes would have no other particular

properties, and would not be a point of separation. A can vanish, however,

only by chance, and such an event is therefore unlikely. In practice a point

on the surface of the body at which dvxjdy = is always a point of separation.

If there is no separation at the point x = xo (i.e. if A = 0), then for

x > xq we have (8vx/dy)y=o < 0, i.e. vx becomes negative (of increasing

absolute magnitude) as we move away from the surface, y being still small.

That is, the fluid beyond the point x = xq moves, in the lower parts of the

boundary layer, in the direction opposite to that of the main stream ; there is a

"back-flow" of fluid at this point. It must be emphasised that from such

arguments we cannot conclude that there is necessarily a point of separation

where dvxjdy = 0; the whole flow pattern with the "back-flow" might lie

(as it does for A = 0) entirely within the boundary layer and not enter the

main stream, whereas it is characteristic of separation that the flow enters

the main body of the fluid.

It has been shown in the previous section that the flow pattern in the boun-
dary layer is similar for different Reynolds numbers, and, in particular the

scale in the ^-direction remains unchanged. It follows from this that the

value #0 of the co-ordinate x for which the derivative {dvxjdy)y=o is zero is

the same for all R. Thus we have the important result that the position of

the point of separation on the surface of the body is independent of the

Reynolds number (so long as the boundary layer remains laminar, of course

;

see §45).

Let us also ascertain the properties of the pressure distribution p(x)

near the point of separation. For y = the left-hand side of equation (40.4)

is zero together with vx and vy , and there remains

v(^/^2)h = (Vp)dpldx. (40.8)

It is clear from this that the sign of dpfdx is the same as that of (d2vx]dyz)y=o.
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When (dvxldy)y=o > we can say nothing regarding the sign of the second

derivative. However, since vx is positive and increases away from the wall

(in front of the point of separation), we must always have (d2%/#y2
)2/=o >

at x = xo itself, where dvx/dy = 0. Hence we conclude that

(dp/dx)x=Xa > 0, (40.9)

i.e. the fluid near the point of separation moves from the lower pressure to the

higher pressure. The pressure gradient is related to the gradient of the

velocity U(x) outside the boundary layer by (l/p)dp/d# = — U dU/dx.

Since the positive direction of the axis is the same as the direction of the

main stream, U > 0, and therefore

(dU/dx)x=Xa < 0, (40.10)

i.e. the velocity U decreases in the direction of flow near the point of separa-

tion.

From the results obtained above we can deduce that there must be separa-

tion somewhere on the surface of the body. For there is on both the front and

the back of the body a point (the stagnation point) at which the fluid velocity

is zero for potential flow of an ideal fluid. Consequently, for some value of x,

the velocity U(x) must begin to decrease, and finally it becomes zero. It is

clear, however, that the fluid moving over the surface of the body is retarded

the more strongly, the closer it is to the surface (i.e. the smaller is y). Hence,

before the velocity U(x) is zero at the outer limit of the boundary layer, the

velocity in the immediate neighbourhood of the surface must be zero. Mathe-

matically, this evidently means that the derivative dvx/dy must always vanish

(and therefore there must be separation) for some x less than the value for

which U(x) = 0.

In flow past bodies of any form the calculations can be carried out in an

entirely similar manner, and they lead to the result that the derivatives

dvx[dy, dvz/dy of the two velocity components vx and v z tangential to the

surface of the body vanish on the line of separation (the jy-axis, as before,

is along the normal to the portion of the surface considered).

We may give a simple argument which demonstrates the necessity of separa-

tion in cases where the fluid would otherwise have a rapid increase of pressure

(and therefore a rapid decrease in the velocity U) in the direction of its flow

past the body. Over a small distance A.x = x%— xi, let the pressure p
increase rapidly from/>i top2 (j>2 > Pi)- Over the same distance A#, the fluid

velocity U outside the boundary layer falls from its initial value U\ to a

considerably smaller value TJi determined by Bernoulli's equation:

i(Ul2-U22)=(p2-pl){p.

Since p is independent of y, the pressure increase p<i —p± is the same at all

distances from the surface. If the pressure gradient dpfdx ~ (j>2—pi)l^x

is sufficiently high, the termvd^^dy2 involving the viscosity may be omitted

from the equation of motion (40.4) (if, of course, y is not small). Then, to
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estimate the change in the velocity v in the boundary layer, we can use

Bernoulli's equation, putting %{v22— vi
2
) = — (P2—pi)lp, or, from the

equation previously obtained, V22 = v±2— (U12— U22
). The velocity v\ in

the boundary layer is less than that of the main stream, and we can select

a value of y for which vi2 < Ui2— U22
. The velocity V2 is then imaginary,

showing that Prandtl's equations have no physically significant solutions.

In fact, there must be separation in the distance Ax, as a result of which the

pressure gradient is reduced.

An interesting case of the appearance of separation is given by flow at an

angle formed by two intersecting solid surfaces. For laminar potential flow

outside an angle (Fig. 3), the fluid velocity at the vertex of the angle would
become infinite (see §10, Problem 6), increasing in the stream approaching the

vertex and diminishing in the stream leaving the vertex. In reality, the rapid

decrease in velocity (and corresponding increase in pressure) beyond the

vertex would lead to separation, the line of separation being the line of

intersection of the surfaces. The resulting flow pattern is that discussed in

§35.

In laminar flow inside an angle (Fig. 4), the fluid velocity is zero at the

vertex. In this case the velocity diminishes (and the pressure increases) in

the flow approaching the vertex. The result is in general the appearance of

separation, the line of separation being upstream from the vertex of the angle.

PROBLEM

Determine the least possible increase Ap in the pressure which can occur (in the main
stream) over a distance Ax and cause separation.

Solution. Let y be a distance from the surface of the body at which, firstly, Bernoulli's

equation can be applied and, secondly, the squared velocity v2
(y) in the boundary layer is

less than the change
|
A[/2

| in the squared velocity outside that layer. For v(y) we can write,

in order of magnitude, v(y) K y dv/dy ~ Uy/S, where S ^ \/(vlJU) is the width of the

boundary layer and I the dimension of the body. Equating, in order of magnitude, the two
terms on the right-hand side of equation (40.4), we find

(l/p)A^/Ax ~ w(y)ly2 ~ vUjBy.

From the condition

v2 = \AU2
\

= {2jp)Ap we have U2y2
l8

2 ~ Apjp.

Eliminating y, we finally obtain

Ap ~ PU2(Axll)K

§41. Stability of flow in the laminar boundary layer

Laminar flow in the boundary layer, like any other laminar flow, becomes to

some extent unstable at sufficiently large Reynolds numbers. The manner

of the loss of stability in the boundary layer is similar to that which occurs for

flow in a pipe (§29).

The Reynolds number for flow in the boundary layer varies over the surface
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of the body. For example, in flow along a plate we could define the Reynolds

number as Ra; = Uxjv, where x is the distance from the leading edge of the

plate, and U the fluid velocity outside the boundary layer. A more suitable

definition for the boundary layer, however, is one in which the length para-

meter directly characterises the thickness of the layer; such, for instance, is the

"displacement thickness" S* (see the second footnote to §39). We then

have R§* = U8*jv. Since the dependence of the boundary-layer thickness

on the distance x is given by formula (39.12), it is clear that R§* ~ V^-t
Because the change of the layer thickness with distance is comparatively

slow, it may be neglected in investigating the stability of flow in a small

portion of the layer, and we may consider a rectilinear two-dimensional flow,

with a velocity profile which does not vary along the ^-axis.J Then, from a

mathematical point of view, the problem is entirely analogous to that of

the stability of flow between two parallel planes, discussed in §29. The only

difference is in the form of the velocity profile; instead of a symmetrical

profile with v = on both sides, we now have an unsymmetrical profile in

which the velocity changes from zero at the surface of the body to some

given value U, the velocity of the flow outside the boundary layer. The
investigation leads to the following results (Lin, 1945 ; see C. C. Lin, The

Theory of Hydrodynamic Stability, Cambridge 1955).

The form of the limiting curve of stability in the coR-plane (see §29)

depends on the form of the velocity profile in the boundary layer. If the

velocity profile has no point of inflexion, and the velocity vx increases

monotonically with the curve vx = vx{y) everywhere convex upwards (Fig.

20a), then the boundary of the stable region is completely similar in form to

that which is obtained for flow in a pipe: there is a minimum value R = Rcr

at which amplified perturbations first appear, and for R -> oo both branches

of the curve are asymptotic to the axis of abscissae (Fig. 21a). For the velocity

profile which occurs in the boundary layer on a flat plate, the critical Reynolds

number is found by calculation to be R§*,cr ~ 420.ft

A velocity profile of the kind shown in Fig. 20a cannot occur if the fluid

velocity outside the boundary layer decreases downstream. In this case the

velocity profile must have a point of inflexion. For, let us consider a small

portion of the surface, which we may regard as plane, and let x be again the

co-ordinate in the direction of flow, and y the distance from the wall. From

(40.8) we have

v(d2vxlfy
2
)y=o = (llp)dpldx = -UdU/dx,

whence we see that, if U decreases downstream (dUjdx < 0), we must have

d^x/dy2 > near the surface, i.e. the curve vx = Vx(y) is concave upwards.

As y increases, the velocity vx must tend asymptotically to the finite limit U.

t For example, in a laminar boundary layer on a flat plate R^» = 1
-72\/R:r.

j In doing so, of course, we pass over the question of the effect which the curvature of the surface

may have on the stability of the boundary layer.

ft For R»* -> oo, co tends to zero, on the two branches I and II of the limiting curve, as R^*-* and
R^*-1 / 5 respectively.
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It is then clear from geometrical considerations that the curve must become
convex upwards, and therefore must have a point of inflexion (Fig. 20b).

In this case the form of the curve defining the stable region is slightly changed

:

the two branches have different asymptotes for R - oo, one tending to the

axis of abscissae and the other to a finite non-zero value of o> (Fig. 21b).

The presence of a point of inflexion also reduces considerably the value of Rcr .

The fact that the Reynolds number increases along the boundary layer

makes the behaviour of the perturbations as they are carried downstream

somewhat unusual. Let us consider flow along a flat plate, and suppose that a

perturbation of given frequency co occurs at some point in the boundary

layer. Its propagation downstream corresponds to a movement in Fig. 21a

to the right along a horizontal line a> = constant. The perturbation is at

first damped : then, on reaching branch I of the stability curve, it begins to

be amplified. This continues until branch II is reached, whereupon the

perturbation is again damped. The total "amplification coefficient" for the

perturbation during its passage through the region of instability increases

very rapidly as this region moves towards large R (i.e. as the corresponding

horizontal segment between branches I and II moves downwards).

These results, however, do not answer the question whether true absolute

instability occurs in the laminar boundary layer for sufficiently large R

—

that is, instability due to the amplification in time of perturbations at a given

point (see §29). As with flow in a pipe, no such investigation has yet been

made.
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The experimental results for flow along a flat plate show that the point
where turbulence appears in the boundary layerf depends to a considerable
extent on the intensity of the perturbations in the main stream. For marked
perturbations, the boundary layer was observed to become turbulent for

Rs* » 560. As the intensity of the perturbations diminishes, the onset of
turbulence is postponed to higher values of R s«, which seem to tend to a
finite limit of about 3000.

It is possible that the existence of the limit indicates the presence of true
absolute instability for sufficiently high values of R. On the other hand,
it may be that, because of the extremely rapid increase of the "amplification
coefficient" with R, the "displacement" instability ofthe kind described above
may give the appearance of true instability.

§42. The logarithmic velocity profile

Let us consider plane-parallel turbulent flow along an unbounded plane

t Because the Reynolds number varies along the plate, the whole boundary layer does not become
turbulent immediately, but only the part where R^» exceeds a certain value. For a given incident
velocity, this means that turbulence begins at a definite distance from the leading edge; as the velocity
increases, this distance approaches zero.
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surface; the term "plane-parallel" applies, of course, to the time average of the

flow.f We take the direction of the flow as the ar-axis, and the plane of the

surface as the xsr-plane, so thaty is the distance from the surface. The y and
z components of the mean velocity are zero: ux = u, uy = u z = 0. There
is no pressure gradient, and all quantities depend on y only.

We denote by a the frictional force on unit area of the surface ; this force is

clearly in the ^-direction. The quantity o- is just the momentum trans-

mitted by the fluid to the surface per unit time; it is the constant flux of

the ^-component of momentum, which is in the negative jy-direction, and
gives the amount of momentum transmitted from the layers of fluid remote
from the surface to those nearer it.

The existence of this momentum flux is due, of course, to the presence of a

gradient, in the jy-direction, of the mean velocity u. If the fluid moved
with the same velocity at every point, there would be no momentum flux.

The converse problem can also be stated: given some definite value of a,

what must be the motion of a fluid of given density p to give rise to a momen-
tum flux a? For large Reynolds numbers, the viscosity v is, as usual, unim-
portant; it becomes important only for small distances y (see below). Thus
the value of the velocity gradient dujdy at each point must be determined by
the constant parameters p, a and, of course, the distance y itself. The
dimensions of these quantities are respectively g/cm3

,
g/cm sec2 and cm.

The dimensions of the derivative dujdy are 1/sec. The only combination

of p, a and y that has the right dimensions is Vi^lpy
2
)- Hence we must have

dujdy = vWrifty. (42.1)

where b is a numerical constant ; b cannot be calculated theoretically, and
must be determined experimentally. It is found to bej

b = 0417. (42.2)

We introduce the more convenient notation v% = ^{crjp), so that

a = /w#
2

. (42.3)

The quantity v% has the dimensions cm/sec and acts as a characteristic velocity

for the turbulent flow considered; then (42.1) becomes dujdy = v%jby,

whence

« = (»#/*)(log^+ c). (42.4)

where c is a constant of integration. To determine this constant we cannot

use the ordinary boundary conditions at the surface, since for y = the first

term in (42.4) becomes infinite. The reason for this is that the above expres-

sion is really inapplicable at very small distances from the surface, since the

effect of the viscosity then becomes important, and cannot be neglected.

f The results given in §§42-44 are due to T. von Karman and L. Prandtl.

j The value of this constant, and of one in formula (42.8) below, are obtained from measurements
of the velocity distribution near the walls of a pipe in which there is turbulent flow.
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There are also no conditions at infinity, since for y = oo the expression

(42.4) again becomes infinite. This is because, in the idealised conditions

which we have imposed, the surface is unbounded, and its influence therefore

extends to infinitely great distances.

Before determining the constant c, we may first point out the following

important property of the flow considered: contrary to what usually happens,

it has no characteristic constant parameters of length which might give the

external scale of the turbulence. This scale is therefore determined by the

distance y itself: the scale of turbulent flow at a distance j from the surface is

of the order ofy. The fluctuating velocity of the turbulence is of the order ofvm .

This also follows at once from dimensional arguments, since v% is the only

quantity having the dimensions of velocity which can be formed from the

quantities or, p, y at our disposal. It should be emphasised that, whereas the

mean velocity decreases with y, the fluctuating velocity remains of the same

order of magnitude at all distances from the surface. This result is in accor-

dance with the general rule that the order of magnitude of the fluctuating

velocity is determined by the variation Am of the mean velocity (§31). In

the present case, there is no characteristic length / over which the variation

of the mean velocity could be taken; Am must now be defined, reasonably,

as the change in u when the distance y changes appreciably. According to

(42.4), such a change in y causes a change in the velocity u that is just of the

order of vm .

At sufficiently small distances from the surface, the viscosity of the fluid

begins to be important; we denote the order of magnitude of these distances

by yo, which can be determined as follows. The scale of the turbulence at

these distances is of the order of yo, and the velocity is of the order of vm .

Hence the Reynolds number which characterises the flow at distances of the

order of jo is R ~ v^yolv. The viscosity begins to be important when R
becomes of the order of unity. Hence we find that

yo ~ vjvmt (42.5)

and this determines yo.

At distances from the surface small compared with yo, the flow is deter-

mined by ordinary viscous friction. The velocity distribution here can be

obtained directly from the usual formula for viscous friction : a = pv dujdy,

whence

u = ayjpv = vm
2y/v. (42.6)

Thus, immediately adjoining the wall, there is a thin layer of fluid in which

the mean velocity varies linearly with y; the velocity is small throughout

this layer, varying from zero at the surface itself to values of the order of

vm for y ~ yo. We shall call this layer the viscous sublayer.

It must be emphasised that the flow here is turbulent, and in this respect

the customary name "laminar sublayer" is unsuitable. The resemblance to

laminar flow lies only in the fact that the mean velocity is distributed accord-

ing to the same law as the true velocity would be for laminar flow under the
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same conditions. There is, of course, no sharp boundary between the viscous
sublayer and the remainder of the flow, and the concept of the viscous sub-
layer is therefore to some extent qualitative.

The longitudinal component v'x of the fluctuating velocity in the viscous
sublayer is of the same order of magnitude as the mean velocity, and in
particular is proportional to y (~ v^yjy ). It therefore follows from the
equation of continuity that the derivative dv'yjdy = - dv'xJdx is proportional
to y, and so the transverse component v'y of the fluctuating velocity varies as

y2
(~ v*y

2
ly<?)' Next, it follows from the linearity of the equations of motion

in the viscous sublayer (the non-linear terms being there small compared with
the viscosity terms) that the periods of the turbulent eddies are the same
throughout the thickness of the sublayer. Multiplying these periods by the
fluctuating velocity, we find that the longitudinal distances traversed by the
fluid particles in their fluctuating motion are proportional to y, in order of
magnitude, and the transverse distances are proportional to y*(~ y2

/yo)-
We shall not be further interested in the flow in the viscous sublayer.

Its presence has to be taken into account only in making the appropriate
choice of the constant of integration in (42.4). This constant must be chosen
so that the velocity becomes of the order of vm at distances of the order ofyo.
For this to be so, we must take c = -log^o, so that u = (vjb) log(y[y ), or

u = (vmfb) log(yv#/v). (42.7)

This formula determines (for a certain range ofy) the velocity distribution in
the turbulent stream which flows along the surface. This distribution is

called the logarithmic velocity profile.

The argument of the logarithm in formula (42.7) should include a numeri-
cal coefficient. However, in the formulae which we shall derive we shall

require only "logarithmic" accuracy. This means that the argument of the
logarithm is supposed large, and we neglect not only terms proportional to
lower powers of the argument but also those involving the logarithm to lower
powers than in the principal term. The introduction of a small numerical
coefficient in the argument of the logarithm in (42.7) is equivalent to adding
a term of the form constant xvm , where the constant is of the order of unity;
this term does not contain the logarithm, and therefore we neglect it. How-
ever, it must be borne in mind that the argument of the logarithm in the
formulae derived here is not so large that its logarithm is also very large, and
so the accuracy of the formulae is not very high.

These formulae can be made more exact by introducing a numerical
coefficient in the argument of the logarithm, or, what is the same thing, adding
a constant to the logarithm. These constants, however, cannot be calculated
theoretically, and have to be determined from experimental results. For
example, a more exact formula for the velocity distribution can be written
in the form

u = z;#[240 log0w#/v)+ 5-84]. (42.8)
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It is not difficult to determine the energy dissipation e per unit mass of

fluid, a is the mean value of the component Ilgy of the momentum flux

density tensor IItt = pvtvk- r)(dvtldxk+ dvk\dxi). Outside the viscous sub-

layer, the viscosity term may be omitted, so that a = pvxvy . Introducing

the fluctuating velocity v', we can write vx = u + v'x ; the velocity vy is

itself the fluctuating velocity v'y , since its mean value is zero. The result is

O = pVXVy = pV'Xv'y+ pUV'y = pv'XV'y.

Next, the energy flux density in the y-direction is (p+ $pv2)vy, the viscosity

term being again omitted. Putting in the second term

v* = (u+v'xf+v'tpWf

and averaging, we obtain

pv'y+ lp(v'X
2v'y+ V'y*+ v'gV y)+ p UV'Wy.

Here only the last term need be retained. The reason is that the fluctuating

velocity is of the order of ©# , and hence, to logarithmic accuracy, it is small

compared with «. The turbulent fluctuations of the pressure p are of the

order of pvm
2 (cf. (31.4)), and so we can, to the same accuracy, neglect the

corresponding term in the energy flux. Thus we have for the mean energy

flux density puv'xv'y = ua. As we approach the surface, this flux decreases,

because the energy is dissipated. The decrease in the energy flux density

on approaching the surface by a distance d> is <r(dw/dy)d>. This is the amount

of energy converted into heat in a fluid layer of thickness dy and of unit area.

Hence we conclude that the energy dissipation per unit mass is (ojp)Auj6y,

or

e = vflby = {ajpflby. (42.9)

§43. Turbulent flow in pipes

Let us now apply the above results to turbulent flow in a pipe. Near the

walls of the pipe (at distances small compared with its radius a), the surface

may be approximately regarded as plane, and the velocity distribution must

be given by formula (42.7) or (42.8). Since the function logjy varies only

slowly, we can use formula (42.7) to logarithmic accuracy to give the mean

velocity U of the flow in the pipe ifwe replacey in that formula by a :

U = (v*/b)\og(avM. (43.1)

By U we mean the volume of fluid that passes through a cross-section of the

pipe per unit time, divided by the cross-sectional area: U = Qlpna2 .

In order to relate the velocity U to the pressure gradient Apjl which

maintains the flow (A/> being the pressure difference between the ends of

the pipe, and / its length), we notice that the force on a cross-section of the
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flow is 7ra2 Ap. This force overcomes the friction at the walls. Since the
frictional force per unit area of the wall is a = pvm

2
, the total frictional force

is Tmalpv^. Equating the two forces, we have

Ap/l = 2pvm*/a. (43.2)

Equations (43.1) and (43.2) determine, through the parameter vm , the relation

between the velocity of flow in the pipe and the pressure gradient. This
relation is called the resistance law of the pipe. Expressing vm in terms of
Ap// by (43.2), and substituting in (43.1), we obtain the resistance law in the
form

U = V(a&Pl2b*pl) log[(a/vW(a&pl2Pl)]. (43.3)

In this formula it is customary to introduce what is called the resistance

coefficient of the pipe, a dimensionless quantity defined as

laLpll
A = —

.

(43.4)

The dependence of A on the dimensionless Reynolds number R = 2aU/v is

given in implicit form by the equation

1/VA = 0-85 log(RVA)-0-55. (43.5)

We have here substituted for b the value (42.2) and added to the logarithm
an empirically determined constant.^ The resistance coefficient determined
by this formula is a slowly decreasing function of the Reynolds number.
For comparison, we give the resistance law for laminar flow in a pipe. Intro-

ducing the resistance coefficient in formula (17.10), we obtain

A = 64/R. (43.6)

In laminar flow the resistance coefficient diminishes with increasing Reynolds
number more rapidly than in turbulent flow.

Fig. 22 shows a logarithmic graph of A as a function of R. The steep

straight line corresponds to laminar flow (formula (43.6)), and the less

steep curve (which is almost a straight line also) to turbulent flow. The
transition from the first line to the second occurs, as the Reynolds number
increases, at the point where the flow becomes turbulent; this may occur
for various Reynolds numbers, depending on the actual conditions (the

intensity of the perturbations ; see §29). The resistance coefficient increases

abruptly at the transition point.

t The coefficient of the logarithm in this formula is given to correspond with that in formula
(42.8) for the logarithmic velocity profile. Only in this case does formula (43.5) have the theoretical
significance of being a limiting formula for turbulent flow at sufficiently large values of the Reynolds
number. If the values of the two constants appearing in formula (43.5) are chosen arbitrarily, it can
only be a purely empirical formula for the dependence of A on R. In that case, however, there would
be no reason to prefer it to any other simpler empirical formula which adequately represents the
experimental results.
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So far we have assumed that the wall surface is fairly smooth. If it is

rough, the formulae obtained above may be somewhat changed. As a measure

of the roughness of the wall, we can take the order of magnitude of the

projections, which we shall denote by d. The relative magnitudes of d

and the thickness yo of the sublayer are of importance. Ifyo is large compared

with d, the roughness is unimportant; this is what is meant by saying that

the surface is fairly smooth. If yo and d are of the same order of magnitude,

no general formulae can be obtained.

In the opposite limiting case of extreme roughness (d > yo), some general

relations can again be established. In this case we clearly cannot speak of a

viscous sublayer. Turbulent flow occurs around the projections from the

surface, and this flow is characterised by the quantities p,cr,d; the viscosity v,

as usual, cannot appear directly. The velocity of this flow is of the order of

magnitude of v#, the only quantity at our disposal having the dimensions of

velocity. Thus we see that, in flow along a rough surface, the velocity

becomes small (~ v#) at distances y ~ d, instead of v ~ yo as for flow

along a smooth surface. Hence it is clear that the velocity distribution is given

by a formula which is obtained from (42.7) by substituting d for v/v*. Thus

u = (v*lb)log(yld). (43.7)

The formulae for flow in a pipe must be changed similarly. It is sufficient

simply to replace vjvm in them by d. For the resistance law we have, instead of

(43.3), the formula

U = ^{akpjltfpl) log(a/d). (43.8)

The argument of the logarithm is now a constant, and does not involve the

pressure gradient as (43.3) did. We see that the mean velocity is now simply

proportional to the square root of the pressure gradient in the pipe. If we

introduce the resistance coefficient, (43.8) becomes

A = 8&2/log2(a/i) = 14/log2(a/</), (43.9)

i.e. A is a constant and does not depend on the Reynolds number.
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§44. The turbulent boundary layer

The fact that we have obtained a logarithmic velocity distribution which
formally holds in all space for plane-parallel turbulent flow is due to our
having considered flow along a surface of infinite area. In flow along the

surface of a finite body, only the motion at short distances from the surface

—

in the boundary layer—has a logarithmic profile.f We may mention also that

a turbulent boundary layer can exist both under a fluid moving turbulently

in the main stream and under a laminar flow.

The decrease in the mean velocity, both in the turbulent and in the

laminar boundary layer, is due ultimately to the viscosity of the fluid. The
effect of the viscosity appears in the turbulent boundary layer in a rather

unusual manner, however. The manner of variation of the mean velocity in

the layer does not itself depend directly on the viscosity; the viscosity appears
in the expression for the velocity gradient only in the viscous sublayer. The
total thickness of the boundary layer, however, is determined by the viscosity,

and vanishes when the viscosity is zero (see below). If the viscosity were
exactly zero, there would be no boundary layer.

Let us apply the results of §43 to a turbulent boundary layer formed in

flow along a thin flat plate, such as was discussed in §39 with respect to

laminar flow. At the boundary of the turbulent layer, the fluid velocity is

almost equal to the velocity of the main stream, which we denote by U.
To determine this velocity at the boundary we can, however, use formula

(42.7) with logarithmic accuracy, putting the thickness 8 of the boundary
layer instead ofy. Equating the two expressions, we obtain

U = (v*/b)log(v*8/v). (44.1)

Here U is a constant parameter for a given flow; the thickness 8, however,
varies along the plate, and vm is therefore also a slowly varying function of x.

Formula (44.1) is inadequate to determine these functions; we need some
other equation, relating v% and 8 to x.

To obtain this, we use the same arguments as in deriving formula (36.3)

for the width of the turbulent wake. As there, the derivative d8/dx must
be of the order of the ratio of the velocity along the jy-axis to that along

the ar-axis at the boundary of the layer. The latter velocity is of the order

of U, while the former is due to the fluctuating velocity, and is therefore

of the order of vm . Thus dSjdx ~ v%/U, whence

8 ~ v*xjU. (44.2)

t The thickness of the boundary layer increases along the surface of the body in the direction
of flow, according to a law which we shall determine below. This explains why, for flow in a pipe,
the logarithmic profile holds for the whole cross-section of the pipe. The thickness of the boundary
layer at the wall of the pipe increases away from the point of entry of the fluid. At some finite distance
from this point, the boundary layer fills almost the whole cross-section of the pipe. Hence, if we
suppose the pipe sufficiently long and ignore its inlet section, the flow in the whole pipe will be of
the same kind as in the turbulent boundary layer. We may recall that a similar situation occurs for
laminar flow in a pipe. Such a flow obeys Poiseuille's formula for all Reynolds numbers. In Poiseuille

flow the viscosity is important at all distances from the walls, and its effect is never limited to a thin
layer adjoining them.
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Formula (44.1) and (44.2) together determine vm and 8 as functions of the

distance x.f These functions, however, cannot be written explicitly. We
shall express 8 in terms of an auxiliary quantity. Since v# is a slowly varying

function of x, it is seen from (44.2) that the thickness of the layer varies

essentially as x. We may recall that the thickness of the laminar boundary

layer increases as \/x
y
i.e. more slowly than that of the turbulent boundary

layer.

Let us determine the dependence on x of the frictional force cr acting

on unit area of the plate. This dependence is given by two formulae

:

a = Pv*
2

, U = {vmjb) Xogip^xjUv).

The latter is obtained by substituting (44.2) in (44.1), and is valid to logarith-

mic accuracy. We introduce a drag coefficient c (referred to unit area of the

plate), defined as the dimensionless ratio

c = 2ajPW = 2{vJU)2
. (44.3)

Then, eliminating v# from the two equations given, we obtain the following

equation, which gives (to logarithmic accuracy) c as an implicit function of x :

V(2#7<0 = log(cRs), Rx = Ux/v. (44.4)

To increase the accuracy of this formula, we may add an empirical numerical

constant to the logarithm. Such a formula is,

l/y/c = 1-7 log(cRx)+ 3-0. (44.5)

The drag coefficient c given by this formula is a slowly decreasing function

of the distance x.

Finally, let us express the thickness of the boundary layer in terms of the

function c(x). We have vm = \/(alp) = UVfa)- Substituting in (44.2), we

find

8 = constant x x\/c. (44.6)

This formula may be written with the equality sign, of course, only in cases

of a turbulent boundary layer under a laminar flow, when 8 has an exact

significance (the turbulent region being, as always, sharply distinct from

the laminar region). The constant factor in (44.6) has to be determined from

experimental results.

PROBLEMS

Problem 1. Determine from formula (44.5) the total force acting on the two sides of the

plate.

Solution. The required force per unit length of the edge of the plate is

I

= 2 f or dx,

t If there is a laminar boundary layer of considerable extent on the plate, then x must, strictly

speaking, be reckoned as approximately the distance from the point where the laminar layer becomes

turbulent.
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where / is the length of the plate. Introducing in place of F the drag coefficient

C = F/ipW.21,

we find

1 rC = - cdx.
* o

If we take only terms containing the logarithm to the highest (first) power, then the above
integral is simply c(Z), the value of c for x = I. In order to obtain a more exact value for C,
corresponding to formula (44.5), we must effect the integration taking account of terms of
the next order, which contain the logarithm to the zero power. To do so, we write

f , I f
dc

\ cdx = [#c] — x—dx.

o o "*

The derivative dcfdx is calculated by means of formula (44.5), which we write in the form
c = IfA2 log2Bxc, obtaining to the necessary accuracy

2 r 2 1

C = c(l) + = c(l)\l + ,

and so

V V 5 nA \og{BlCje).

Substituting the values ofA and B from (44.5), we obtain the following formula, which gives

the total drag coefficient C as a function of the Reynolds number R = Ulfv:

1/VC= l-71og(CR)+l-3.

For large R, the drag coefficient given by this formula decreases as 1/log2 R. For the laminar

boundary layer, C decreases as 1/VR (see (39.16)), i.e. more rapidly. Thus we can say that,

for large Reynolds numbers, the frictional force in a turbulent boundary layer is greater than
in a laminar one.

Problem 2. Determine the drag coefficient of a rough plate as a function of the Reynolds
number, for a turbulent boundary layer.

Solution. Substituting in place of the thickness y (^ vjv*) of the laminar sublayer the

dimension d of the projections, we obtain from (44.1) and (44.2) U = (vjb) log(xvJUd).
Introducing the drag coefficient c, we hence have 0-59J\/c = log(x\/cld). Similarly, the

total drag coefficient for the plate is (again to logarithmic accuracy) 0-59/t/C = log(l\/Cfd).

We may point out that the drag coefficient for a rough plate is independent of the Reynolds
number.

§45. The drag crisis

From the results obtained in the previous sections we can draw important

conclusions concerning the law of drag for large Reynolds numbers, i.e. the

relation between the drag force acting on the body and the value of R when
the latter is large.
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The flow pattern for large R (the only case we shall discuss) has already

been described, and is as follows. Throughout the main body of the fluid

(i.e. everywhere except in the boundary layer, which does not here concern

us) the fluid may be regarded as ideal, with potential flow everywhere

except in the turbulent wake. The width of the wake depends on the position

of the line of separation on the surface of the body. It is important to note

that, although this position is determined by the properties of the boundary

layer, it is found to be independent of the Reynolds number, as we have seen

in §40. Thus we can say that the whole flow pattern for large Reynolds

numbers is almost independent of the viscosity, i.e. of R (so long as the boun-

dary layer remains laminar; see below).

Hence it follows that the drag also must be independent of the viscosity.

There remain at our disposal only three quantities: the velocity U of the

main stream, the fluid density p and the dimension / of the body. From these

we can construct only one quantity having the dimensions of force, namely

pTJH2 . Instead of the squared linear dimension of the body I2 , we introduce,

as is customarily done, the proportional quantity S, the area of a cross-section

transverse to the direction of flow, putting

F = constant x PU2S, (45.1)

where the constant is a number depending only on the shape of the body.

Thus the drag must be (for large R) proportional to the cross-sectional area

of the body and to the square of the main-stream velocity. We may recall

for comparison that, for very small R (^ 1), the drag is proportional to the

linear dimension of the body and to the velocity itself (F ~ vplU; see §20).f

It is customary, as we have said, to introduce, in place of the drag force

F, the drag coefficient C defined by C = FJlpU2S. This is a dimensionless

quantity, and can depend only on R. Formula (45.1) becomes

C = constant, (45.2)

i.e. the drag coefficient depends only on the shape of the body.

The above behaviour of the drag force cannot continue to arbitrarily

large Reynolds numbers. The reason is that, for sufficiently large R, the

laminar boundary layer (on the surface of the body as far as the line of separa-

tion) becomes unstable and hence turbulent. However, the whole boundary

layer does not become turbulent, but only some part of it. The surface of the

body may therefore be divided into three parts : at the front there is a laminar

boundary layer, then a turbulent layer, and finally the region beyond the

line of separation.

The onset of turbulence in the boundary layer has an important effect

on the whole pattern of flow in the main stream. It leads to a considerable

displacement of the line of separation towards the rear of the body (i.e.

t The flow past a bubble of gas is a special case, where the drag remains proportional to U even

for large R; see Problem.
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downstream), so that the turbulent wake beyond the body is contracted, as

shown in Fig. 23, where the wake region is shaded.f The contraction of the
turbulent wake leads to a reduction of the drag force. Thus the onset of
turbulence in the boundary layer at large Reynolds numbers is accompanied
by a decrease in the drag coefficient, which falls off by a considerable factor

over a relatively narrow range of Reynolds numbers near 105. We shall call

this phenomenon the drag crisis. The decrease in the drag coefficient is so great
that the drag itself, which for constant C is proportional to the square of the
velocity, actually diminishes with increasing velocity in this range of Reynolds
numbers.

Fig. 23

It may be mentioned that the degree of turbulence in the main stream
affects the drag crisis; the greater the incident turbulence, the sooner the
boundary layer becomes turbulent (i.e. the smaller is R when this happens).
The decrease in the drag coefficient therefore begins at a smaller Reynolds
number, and extends over a wider range of R.

Figs. 24 and 25 give experimentally obtained graphs showing the drag
coefficient as a function of the Reynolds number R = Udjv for a sphere;
Fig. 24 is plotted logarithmically. For very small R ( <^ 1), the drag coefficient

decreases according to C = 24/R (Stokes' formula). The decrease in C
continues more slowly as far as R « 5 x 103 , where C reaches a minimum,
beyond which it increases somewhat. In the range of Reynolds numbers
2 x 104 to 2 x 105, the law (45.2) holds, i.e. C is almost constant. The drag
crisis occurs for R between 2 x 105 and 3 x 105, and the drag coefficient

diminishes by a factor of 4 or 5.

For comparison, we may give an example of flow in which there is no
critical Reynolds number. Let us consider flow past a flat disk in the direction

perpendicular to its plane. In this case the location of the separation is obvious
from purely geometrical considerations: it is clear that separation occurs at

the edge of the disk and does not move from there. Hence, as R increases, the

f For example, in transverse flow past a long cylinder, the onset of turbulence in the boundary
layer moves the point of separation from 95° to 60° (where the azimuthal angle on the cylinder is

measured from the direction of flow).
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drag coefficient of the disk remains constant, and there is no drag

crisis.

It must be borne in mind that, for the high velocities at which the

drag crisis occurs, the compressibility of the fluid may begin to have

a noticeable effect. The parameter which characterises the extent of this

effect is the Mack number M = U/c, where c is the velocity of sound; if

M < 1, the fluid may be regarded as incompressible (§10). Since, of the

two numbers M and R, only one contains the dimension of the body, these

two numbers can vary independently.
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The experimental data indicate that the compressibility has in general

a stabilising effect on the flow in the laminar boundary layer. When M
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increases, the critical value of R increases. For example, when M for a

sphere changes from 0-3 to 0-7, the drag crisis is postponed from
R« 4xl0 5 toR« 8x105.

We may also mention that, when M increases, the position of the point
of separation in the laminar boundary layer moves upstream, towards the
front of the body, and this must lead to some increase in the drag.

PROBLEM

Determine the drag force on a gas bubble moving in a liquid at large Reynolds numbers
(V. G. Levich 1949).

Solution. At the boundary between the liquid and the gas the tangential fluid velocity
component does not vanish, but its normal derivative does (we neglect the viscosity of the
gas). Hence the velocity gradient near the boundary will not be particularly high, and there
will be no boundary layer in the sense of §39 ; there will therefore be no separation over almost
the whole surface of the bubble. In calculating the energy dissipation from the volume integral

(16.3) we can therefore use in all space the velocity distribution corresponding to potential
flow past a sphere (§10, Problem 2), neglecting the surface layer of liquid and the very narrow
turbulent wake. Using the formula obtained in §16, Problem, we find

£kin = —q (7— )
27r#2 sin0d0 = -\2irqRU2

.

Hence we see that the required dissipative drag isf -F = \2tttjRU.

§46. Flow past streamlined bodies

The question may be asked what should be the shape of a body (of a given

cross-sectional area, say) for the drag on it resulting from motion in a fluid

to be as small as possible. It is clear from the above that, for this to be so,

the separation must be as far back as possible: the separation must occur

near the rear end of the body, so that the turbulent wake is as narrow as

possible. We know already that the appearance of separation is facilitated by
the presence of a rapid downstream increase in the pressure along the body.

Hence the body must have a shape such that the variation in pressure along

it, where the pressure is increasing, takes place as slowly and smoothly as

possible. This can be achieved by giving the body a shape elongated in the

direction of flow, tapering smoothly to a point downstream, so that the flows

along the two sides of the body meet smoothly without having to go round any
corners or turn through a considerable angle from the direction of the

main stream. At the front end the body must be rounded ; if there were an

angle here, the fluid velocity at its vertex would become infinite (see §10,

Problem 6), and consequently the pressure would increase rapidly down-
stream, with separation inevitably resulting.

All these requirements are closely satisfied by shapes of the kind shown
in Fig. 26. The profile shown in Fig. 26b may be, for example, the cross-

section of an elongated solid of revolution, or the cross-section of a body with

f The range of applicability of this formula is actually not large, since, when the velocity increases

sufficiently, the bubble ceases to be spherical.
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a large "span" (we conventionally call such a body a wing). The cross-

sectional profile of a wing may be unsymmetrical, as in Fig. 26a. In flow

past a body of this shape, separation occurs only in the immediate neighbour-

hood of the pointed end, and consequently the drag coefficient is relatively

small. Such bodies are said to be streamlined.

Fig. 26

The direct friction of the fluid on the surface in the boundary layer is

important in the drag on streamlined bodies. This effect for non-streamlined

bodies (which were considered in the previous section) is relatively small and

therefore, in practice, of no significance. In the opposite limiting case of

flow parallel to a flat disk, the effect becomes the only source of drag (§39).

In flow past a streamlined wing inclined to the main stream at a small

angle a, called the angle of attack (Fig. 26), a large lift force Fy is developed,

while the drag Fx remains small, and the ratio Fy\Fx may therefore reach

large values (~ 10-100). This continues, however, only while the angle

of attack is small ( < 10°). For larger angles the drag rises very rapidly, and

the lift decreases. This is explained by the fact that, at large angles of attack,

the body ceases to be streamlined : the point of separation moves a considerable

way towards the front of the body, and the wake consequently becomes

wider. It must be borne in mind that the limiting case of a very thin body, i.e.

a flat plate, is streamlined only for a very small angle of attack; separation

occurs at the leading edge of the plate when it is inclined at even a small

angle to the main stream.

The angle of attack a is, by definition, measured from the position of the

wing for which the lift force is zero. For small angles of attack, we can

expand the lift as a series of powers of a. Taking only the first term, we can

suppose that the force Fy is proportional to a. Next, by the same dimensional

arguments as for the drag force, the lift must be proportional to pU2
. Intro-

ducing also the span lz of the wing, we can write

Fy = constant x pU2cdxlz ,
(46.1)

where the numerical constant depends only on the shape of the wing and not,

in particular, on the angle of attack. For very long wings, the lift may be
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supposed proportional to the span, in which case the constant depends only
on the shape of the cross-section of the wing.

Instead of the lift on the wing, the lift coefficient is often used; it is defined
as

Cy = FylipU%lz . (46.2)

For very long wings, according to what was said above, the lift coefficient is

proportional to the angle of attack, and depends on neither the velocity nor
the span

:

Cy = constant x a. (46.3)

To calculate the lift on a streamlined wing by means of Zhukovskii's
formula, it is necessary to determine the velocity circulation Y. This is

done as follows. We have potential flow everywhere outside the wake. In
the present case, the wake is very thin, and occupies on the surface of the
wing only a very small area near its pointed trailing edge. Hence, to determine
the velocity distribution (and therefore the circulation T), we can solve the
problem of potential flow of an ideal fluid round a wing. The existence of the
wake is taken into account by the presence of a tangential discontinuity,

extending into the fluid from the sharp trailing edge of the wing, where the
potential has a discontinuity <j>2— <j>\ = Y. As has been shown in §37, the
derivative d<f>fdz also has a discontinuity on this surface, while the derivatives

d<f>jdx and d<f>[dy are continuous. For a wing of finite span, the problem in

this form has a unique solution. The finding of the exact solution is very
complicated, however. The problem has been solved by N. E. KocHiNf
for a wing in the form of a circular disk inclined at a small angle of attack.

If the wing is very long (and has a uniform cross-section), then, regarding
it as infinite in the ^-direction, we may regard the flow as two-dimensional
(in the xy-plane). It is evident from symmetry that the velocity v z = d<f>jdz

along the wing must be zero. In this case, therefore, we must seek a solution

in which only the potential has a discontinuity, its derivatives being con-
tinuous; in other words, there is no surface of tangential discontinuity,

and we have simply a many-valued function <f>(x, y), which receives a finite

increment Y when we go round a closed contour enclosing the profile of the

wing. In this form, however, the problem of two-dimensional flow has no
unique solution, since it admits solutions for any given discontinuity of the

potential. To obtain a unique result, we must require the fulfilment of

another condition, first formulated by S. A. Chaplygin in 1909.

This condition, called the Zhukovskii-Chaplygin condition, consists in

requiring that the fluid velocity does not become infinite at the sharp trailing

edge of the wing; in this connection we may recall that, when an ideal fluid

flows round an angle, the fluid velocity in general becomes infinite, according

to a power law, at the vertex of the angle (§10, Problem 6). We can say that

t Prikladnaya matematika i mekhamka 4, 3, 1940; 9, 13, 1945.
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the condition stated implies that the jets coming from the two sides of the

wing must meet smoothly without turning through an angle. When this

condition is fulfilled, of course, the solution of the problem of potential flow

gives a pattern very like the true one, where the velocity is everywhere finite

and separation occurs only at the trailing edge. The solution now becomes
unique and, in particular, the circulation T needed to calculate the lift force

has a definite value.

§47. Induced drag

An important part of the drag on a streamlined wing (of finite span) is

formed by the drag due to the dissipation of energy in the thin turbulent wake.
This is called the induced drag.

It has been shown in §21 how we may calculate the drag force due to the

wake by considering the flow far from the body. Formula (21.1), however,
is not applicable in the present case. According to that formula, the drag is

given by the integral of vx over the cross-section of the wake, i.e. the discharge

through the wake. On account of the thinness of the wake beyond a stream-

lined wing, however, the discharge is small in the present case, and may be
neglected in the approximation used below.

As in §21, we write the force Fx as the difference between the total fluxes

of the ^-component of momentum through the planes x = x\ and x = #2

passing respectively far behind and far in front of the body. Writing the

three velocity components as U+vx, vy, vz , we have for the component Yixx
of the momentum flux density the expression Uxx = p + p(U+vx)2 , so that

the drag force is

F* = ( 1/ " 17 )[P+ p(U+Vx)2]dydz. (47.1)

x=xt x=xx

On account of the thinness of the wake, we can neglect, in the integral over
the plane x = x±, the integral over the cross-section of the wake, and so

integrate only over the region outside the wake. In that region, however,
we have potential flow, and Bernoulli's equation /> + |p(U+v)2 = pQ+ %pU2

holds, whence

p = po-pUvx -%p(vx2 +vyz+vz
2
). (47.2)

Here we cannot neglect the quadratic terms as we did in §21, since it is these

terms which determine the required drag force in the case under considera-
tion. Substituting (47.2) in (47.1), we obtain

F* = ( // ~ // )lPo+pU2+pUvx +±P(vxZ-V-«fc2)]dyd*.

x=xt x=xt

The difference of the integrals of the constant po+ pU2 is zero; the difference
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of the integrals of pUvx is likewise zero, since the mass fluxes

jjpvxdydz

through the front and back planes must be the same (we neglect the discharge

through the wake in the approximation here considered). Next, if we take

the plane x = x% sufficiently far in front of the body, the velocity v on this

plane is very small, so that the integral of \p{vx2— vy
2— vz2) over this plane

may be neglected. Finally, in flow past a streamlined wing, the velocity vx
outside the wake is small compared with vy and v z . Hence we can neglect vx2

compared with vy
2+ vz2 in the integral over the plane x = x\. Thus we obtain

Fx = h jj (vy
2+vz

2)dydz, (47.3)

where the integration is over a plane x = constant lying at a great distance

behind the body, the cross-section of the wake being excluded from the region

of integration.-f

The drag on a streamlined wing calculated in this way can be expressed in

terms of the velocity circulation Y which determines the lift also. To do
this, we first of all notice that, at sufficiently great distances from the body,
the velocity depends only slightly on the co-ordinate x, and so we can regard

vv{y> %) an(l vz(y, %) as the velocity of a two-dimensional flow, supposed
independent of x. It is convenient to use as an auxiliary quantity the stream

function (§10), so that vz = difjjdy, vy = -dxjsjdz. Then

->!![{$)'*(& dydz,

where the integration over the vertical co-ordinate y is from + oo to ji
and from y% to — oo, where y\ and y^ are the co-ordinates of the upper and
lower boundaries of the wake (see Fig. 18, §37). Since we have potential flow

(curlv = 0) outside the wake, d2ip{dy2+ d2^jdz2 = 0. Using the two-

dimensional Green's formula, we thus find

Fx = -lp§<fj{dil>{dn)dl,

where the integral is taken along a contour bounding the region of integration

in the original integral, and djdn denotes differentiation in the direction of the

outward normal to the contour. At infinity ift = 0, and so the integral is taken

t To avoid misunderstanding we should point out the following. Formula (47.3) may give the im-
pression that the velocities vy, v z do not decrease in order of magnitude as x increases. This is true
so long as the thickness of the wake is small compared with its width, as we have assumed in deriving
formula (47.3). At very large distances behind the wing, the wake finally becomes so thick that it

becomes approximately circular in cross-section. At this point, formula (47.3) is invalid, and %,
vz diminish rapidly with increasing x.
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round the cross-section of the wake by the yz-ptene, giving

Here the integration is over the width of the wake, and the difference in the

brackets is the discontinuity of the derivative 8iff/8y across the wake. Since

8ifsf8y = vz = 8<f)l8z, we have

\8y) 2 Uj/i \8z/ 2 \8zJ1 dz'

so that

F* = ipJ#dr/d*)d*.

Finally, we use a formula from potential theory,

*--=J[(S).-(S)J—*

where the integration is along a plane contour, r is the distance from dl

to the point where iff is to be found, and the expression in brackets is the

given discontinuity of the derivative of iff in the direction normal to the

contour.-)- In our case the contour of integration is a segment of the #-axis,

so that we can write the value of the function ip(y
y
z) on the sr-axis as

**>4[(E-(i),H-''"'

= _IW log |,_^<.
2ttJ dz'

Si '

Finally, substituting this in Fx , we obtain the following formula for the

induced drag:

4tJJ

' 'dl» dr(ar')
, , /1J A , ,AnA ^———— log \z-z'\dzdz' (47A)

. . dz dz'

(L. Prandtl, 1918). The span of the wing is here denoted by lz = /, and

the origin of z is at one end of the wing.

If all the dimensions in the ^-direction are increased by some factor (r

t This formula gives, in two-dimensional potential theory, the potential due to a charged plane

contour with a charge density

[(8iffl8n)2-(diPldn)1]/2'jT.
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remaining constant), the integral (47.4) remains constant,f This shows that

the total induced drag on the wing remains of the same order of magnitude
when its span is increased. In other words, the induced drag per unit length

of the wing decreases with increasing length. $ Unlike the drag, the total

lift force

Fy = -
PU JFdz (47.5)

increases almost linearly with the span of the wing, and the lift per unit length

is constant.

The following method is convenient for the actual calculation of the inte-

grals (47.4) and (47.5). Instead of the co-ordinate z, we introduce a new
variable 0, defined by

* = |/(l-cos0) (0 < 6 ^ tt). (47.6)

The distribution of the velocity circulation is written as a Fourier series:

T = -2UI £ An smnd. (47.7)

The condition that T = at the ends of the wing (z = and /, or 6 =
and it) is then fulfilled.

Substituting the expression (47.7) in (47.5) and effecting the integration

(using the orthogonality of the functions sin and sin n6 for n ^ 1), we
obtain Fy = \pU2

-nl
2A\. Thus the lift force depends only on the first

coefficient in the expansion (47.7). For the lift coefficient (46.2) we have

Cy = ttA^i, (47.8)

where we have introduced the ratio A = l\lx of span to width of the wing.
To calculate the drag, we rewrite formula (47.4), integrating once by parts

:

p } r , s
dlY*') dz'dz

o o

t To avoid misunderstanding, we should mention that it does not matter that the logarithm in
the integrand is increased by a constant when the unit of length is changed. For the integral which
differs from that in (47.4) by having a constant instead of log |«— «'| is zero, since

j (dr/dz)dz = r,

and the definite integral is zero because T vanishes at the edges of the wake.

% In the limit of infinite span, the induced drag per unit length is zero. In reality, a small amount
of drag remains, determined by the discharge through the wake (i.e. the integral //»* dy dz), which
we have neglected in deriving formula (47.3). This drag includes both the frictional drag and the
remaining part due to dissipation in the wake.
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It is easily seen that the integral over z' must be taken as a principal value.

An elementary calculation, with the substitution (47.7),f leads to the following

formula for the induced drag coefficient

:

Cx = ttX J^nAn2. (47.10)

The drag coefficient for a wing is defined as

Cx = Fxl\PUnxlz , (47.11)

being referred, like the lift coefficient, to unit area in the xsr-plane.

PROBLEM
Determine the least value of the induced drag for a given lift and a given span l z — I.

Solution. It is clear from formulae (47.8) and (47.10) that the least value of Cx for given

Cy (i.e. for given Ay) is obtained if all An for n ^ 1 are zero. Then

C^min = Cy^jirX. (1)

The distribution of velocity circulation over the span is given by the formula

T= -~UlxCy^[z{l-z)]. (2)
TTL

If the span is sufficiently large, then the flow round any cross-section of the wing is approxi-

mately two-dimensional flow round a wing of infinite length and the same cross-section.

In this case we can say that the circulation distribution (2) is obtained for a wing whose shape

in the ara-plane is an ellipse with semi-axes \l% and \l.

§48. The lift of a thin wing

The problem of calculating the lift force on a wing amounts, by Zhukovskii's

theorem, to that of finding the velocity circulation I\ A general solution of

the latter problem can be given for a thin streamlined wing of infinite span,

the cross-section being the same at every point. { The elegant method of

t In integrating over z' we need the integral

cos«0' 7rsin«0
dd' ='f - •

J cos 6' — cos 6 sin 8

In integrating over z we use the fact that

sin nd sin md d# = \tt (m = n),

o

= (m ^ n).

J A more detailed account of the theory of two-dimensional incompressible flow past a wing is

given by N. E. Kochin, I. A. Kibel* and N. V. Roze, Theoretical Hydromechanics {Teoreticheskaya

gidromekhanika), Part 1, 4th ed., Moscow 1948; L. I. Sedov, Two-dimensional Problems of Hydro-
dynamics and Aerodynamics (Ploskie zadachi gidrodinamiki i aerodinamiki), Moscow 1950.
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solution given below is due to M. V. Keldysh and L. I. Sedov (1939).

Let y = £i(x) and y = ^(x) be the equations of the lower and upper parts

of the cross-sectional profile (Fig. 27). We suppose this profile to be thin, only

slightly curved, and inclined at a small angle of attack to the main stream

(the #-axis); that is, both £i, £2 themselves and their derivatives £1', £2'

are small, i.e. the normal to the profile contour is everywhere almost parallel

Fig. 27

to the j-axis. Under these conditions, we may suppose the perturbation v
in the fluid velocity, caused by the presence of the wing, to be everywheref
small compared with the main-stream velocity U. The boundary condition

at the surface of the wing is vy/U = £' for y = £. By virtue of the assump-
tions made, we can suppose this condition to hold for y = 0, and not for

y — £. Then we must have on the axis of abscissae between x = and
x == ix == a

vy = Ut,2\x) for y -»0+ , vy = U&(x) for y ->0-. (48.1)

In order to apply the methods of the theory of functions of a complex
variable, we introduce the complex velocity dwfdz = vx— ivy (cf. §10),

which is an analytic function of the variable z = x+iy. In the present case

this function must satisfy the conditions

im(dw/dz) = — U£,2'(x) for y ~+ +

,

im(d«;/d*) = - Z7£i'(«) for y ->0-, ^^
on the segment (0, a) of the axis of abscissae.

To solve the above problem, we first represent the required velocity

distribution v(x,y) as a sum v = v++ v~ of two distributions having the

following symmetry properties:

©-*(*, ~y) = v-x{x,y), v-y(x, -y) = -v~y{xy y),

v+x(x, -y) = -v+x(x,y) }
v+y(x, -y) = v+y(x,y).

These properties of the separate distributions v~ and v+ do not violate the

equation of continuity or that of potential flow, and, since the problem is

linear, the two distributions may be sought separately.

t Except in a small region near the rounded leading edge of the wing.
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(48.4)

The complex velocity is correspondingly represented as a sum

to' = zo'++ w'_,

and the boundary conditions on the segment (0, a) for the two terms of the

sum are

[imw'+]y^0+ = [imw'+] y-+o- = -W(£i+&)>
[im w'_] y^o+ = - [im w'_]y^o_ = \ U(U' - £2')-

The function zo'_ can be determined at once by Cauchy's formula:

w -{*) = -^-.ty-,
d£

Z7rt J <;— z
L

where the integration in the plane of the complex variable £ is along a circle

L of small radius centred at the point £ = z (Fig. 28). The contour L can

Fig. 28

be replaced by a circle C" of infinite radius and a contour C traversed clock-

wise ; the latter can be deformed into the segment (0, a) twice over. The
integral along C is zero, since w'(z) vanishes at infinity. The integral

along C gives

to _ =
U r&'(0-£i'(0

! £-*
<l|. (48.5)

Here we have used the boundary values (48.4) of the imaginary part of «/_

on the segment (0, a), and the fact that, by the symmetry conditions (48.3),

the real part of «/_ is continuous across this segment.

To find the function «?'+ , we have to apply Cauchy's formula, not to this

function itself, but to the product w'+(z)g(z), where g(z) = s/[zj{z— a)]>

and the square root is taken with the plus sign for z — x > a. On the

segment (0, a) of the real axis, the function g(z) is purely imaginary and dis-

continuous :g(x+i0) = —g(x— iO) = — i^[xj{a— x)]. It is clear from these

properties of the function g(z) that the imaginary part of the product gio'+
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is discontinuous across the segment (0, a), while the real part is continuous,

as with the function w'_. Hence we have, exactly as in the derivation of

formula (48.5),

U
f &'(fl+ &'(fl

«> +(*)£(*) = -z- 1
g(£+i0)dl

Lit J S~Z

Collecting the above expressions, we have the following formula for the

velocity distribution in flow past a thin wing:

:d£-^ = _ _^_ /fZf f &'(fl +&'(!) /_jr_

d# 2irt'V # J £-# N a-£
o

"f*'<fl-*'®«.
(48.6)

Near the rounded leading edge (i.e. for z -> 0), this expression in general

becomes infinite, the approximation used above being invalid in this region.

Near the pointed trailing edge (i.e. for z -> a), the first term in (48.6) is

finite, but the second term becomes infinite, though only logarithmically,f
This logarithmic singularity is due to the approximation used, and is removed
by a more exact treatment; there is no power-law divergence at the trailing

edge, in accordance with the Zhukovskii-Chaplygin condition. The fulfilment

of this condition is achieved by an appropriate choice of the function g(z)

used above.

Formula (48.6) immediately enables us to determine the velocity circulation

T round the wing profile. According to the general rule (see §10), T is

given by the residue of the function w'{z) at its simple pole z = 0. The
required residue is easily found as the coefficient of \jz in an expansion of

to\z) in powers of \\z about the point at infinity: dzojdz = rj2Triz+...
,

and r is given by the simple formula

a

r= uj(K+&)J^-&. (48.7)

o

We may point out that only the sum of the functions £i and £2 appears here.

The lift force is unchanged if the thin wing is replaced by a bent plate whose
shape is given by the function |(£i+ £2).

For example, for a wing in the form of a thin plate of infinite length,

inclined at a small angle of attack a, we have £1 = £2 = a(a— x), and for-

mula (48.7) gives F — —ircnaU. The lift coefficient for such a wing is

Cy = -pXJTjyWa = 2™.

t This divergence disappears if £x and £2 vanish as (a —x)k, k > 1, near the trailing edge, i.e. if the

point at the trailing edge is a cusp.



CHAPTER V

THERMAL CONDUCTION IN FLUIDS

§49. The general equation of heat transfer

It has been mentioned at the end of §2 that a complete system of equations

of fluid dynamics must contain five equations. For a fluid in which processes

of thermal conduction and internal friction occur, one of these equations is,

as before, the equation of continuity, and Euler's equations are replaced by
the Navier-Stokes equations. The fifth equation for an ideal fluid is the

equation of conservation of entropy (2.6). In a viscous fluid this equation

does not hold, of course, since irreversible processes of energy dissipation

occur in it.

In an ideal fluid the law of conservation of energy is expressed by
equation (6.1):

a—($pv2+ pe) = -diy\fiv(^v2+ w)].
ot

The expression on the left is the rate of change of the energy in unit volume of

the fluid, while that on the right is the divergence of the energy flux density.

In a viscous fluid the law of conservation of energy still holds, of course:

the change per unit time in the total energy of the fluid in any volume must
still be equal to the total flux of energy through the surface bounding that

volume. The energy flux density, however, now has a different form.

Besides the flux p\(^v2+ zo) due to the simple transfer of mass by the motion
of the fluid, there is also a flux due to processes of internal friction. This
latter flux is given by the vector v»o', with components (;<</{* (see §16).

There is, moreover, another term that must be included in the energy flux.

If the temperature of the fluid is not constant throughout its volume, there

will be, besides the two means of energy transfer indicated above, a transfer of
heat by what is called thermal conduction. This signifies the direct molecular
transfer of energy from points where the temperature is high to those where
it is low. It does not involve macroscopic motion, and occurs even in a fluid

at rest.

We denote by q the heat flux density due to thermal conduction. The
flux q is related to the variation of temperature through the fluid. This
relation can be written down at once in cases where the temperature gradient

in the fluid is not large; in phenomena of thermal conduction we are almost
always concerned with such cases. We can then expand q as a series of powers
of the temperature gradient, taking only the first terms of the expansion. The
constant term is evidently zero, since q must vanish when grad T does so.

Thus we have

q = -/cgradT. (49.1)

183
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The constant k is called the thermal conductivity. It is always positive, as

we see at once from the fact that the energy flux must be from points at a

high temperature to those at a low temperature, i.e. q and grad T must be
in opposite directions. The coefficient k is in general a function of tempera-
ture and pressure.

Thus the total energy flux in a fluid when there is viscosity and thermal

conduction is p\{\v2+ w)-\»a' - k grad T. Accordingly, the general law

of conservation of energy is given by the equation

d—(%pv2+ pe) =» - div[pv(%v2+ w)-v • a'- k grad T] . (49.2)

This equation could be taken to complete the system of fluid-mechanical

equations of a viscous fluid. It is convenient, however, to put it in another

form by transforming it with the aid of the equations of motion. To do so, we
calculate the time derivative of the energy in unit volume of fluid, starting

from the equations of motion. We have

d dp by de dp

Substituting for dpjdt from the equation of continuity and for dw\dt from
the Navier-Stokes equation, we have

d—(|p^
2 +pe) = —$v2 di\(pv) —pv»grad^2—v»grad/>+

dt

+ vi-— + p— - e div(pv).
cxjc at

Using now the thermodynamic relation de = Tds—p dV = Tds+(plp2)dp,

we find

de ds P dp ds p— =T— + ——=T — div(pv).
dt dt p

2 dt et p
2 v '

Substituting this and introducing the heat function w = e+p[p, we obtain

d—(Ipv2+ pe) — — (%v2+ w) div(pv) — pv •grad^w2—v •grad/)+
dt

ds da ilc

+pT Wi .

dt dxjc

Next, from the thermodynamic relation dw = Tds+dp/p we have

grad/) = p grad tv— p

T

grad s. The last term on the right of the above

equation can be written

da iv- d dvi di)*

= ——
(vio'iie) - cr'ac-— = div(va')-ff'i

dxic dxjc dxjc dxjc
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Substituting these expressions, and adding and subtracting div(/c grad T),

we obtain

d—(%pv2 +pe) == — div[pv(%v2+ w)— v»o'— KgradT]+
dt

I ds \ dvi
+PT[ — + vgrad* - a'ik

—- - div(ic grad T). (49.3)
\ dt / dxjc

Comparing this expression for the time derivative of the energy in unit

volume with (49.2), we have

/ ds \ dvi
pTI — + vgrads = a'ilc

—- + div(* grad T). (49.4)
\ 8t I dxjc

This equation is called the general equation of heat transfer. If there is no

viscosity or thermal conduction, the right-hand side is zero, and the equation

of conservation of entropy (2.6) for an ideal fluid is obtained.

The following interpretation of equation (49.4) should be noticed. The
expression on the left is just the total time derivative ds/dt of the entropy,

multiplied by pT. The quantity ds/dt gives the rate of change of the entropy

of a unit mass of fluid as it moves about in space, and T ds/dt is therefore

the quantity of heat gained by this unit mass in unit time, so that pT dsjdt

is the quantity of heat gained per unit volume. We see from (49.4) that

the amount of heat gained by unit volume of the fluid is therefore

v'ik dvildxic+ div(K grad T).

The first term here is the energy dissipated into heat by viscosity, and the

second is the heat conducted into the volume concerned.

We expand the term a'acdvijdxk in (49.4) by substituting the expression

(15.3) for o'ik . We have

dvi dvi / dvi dvjc dvi \ dvi dvi

a'ik = f] ( 1 I§ik I + LfT^ik——

•

dxjc dxjc \dxjc 8xi oxi 1 dxjc oxi

It is easy to verify that the first term may be written as

dvi dvjc ^ dvi\'

and the second is

\ dxjc dxt dxi /

dvi dvi dvi dvi

OXlc OXl OXi OX\

Thus equation (49.4) becomes

ds \ I dvi dvjc dvi \
2

- + vgrads = div(K grad T)+±v —- + —- - fSi&—- +
at I \ dxjc oxi oxi I

+ £(divv)2 . (49.5)
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The entropy of the fluid increases as a result of the irreversible processes
of thermal conduction and internal friction. Here, of course, we mean not the
entropy of each volume element of fluid separately, but the total entropy of the
whole fluid, equal to the integral

J*
psdV.

The change in entropy per unit time is given by the derivative

d[ j PsdV]Jdt = j [8{ps)/dt]dV.

Using the equation of continuity and equation (49.5) we have

8(Ps) 8s 8P 1

+ s— = -s div(pv)-pvgrads H div(/c grad T) +
8t 8t 8t

° T

7) I 8vt 8vk 8vi\* I

The first two terms on the right together give -div(psv). The volume
integral of this is transformed into the integral of the entropy flux psv
over the surface. If we consider an unbounded volume of fluid at rest at

infinity, the bounding surface can be removed to infinity; the integrand in the

surface integral is then zero, and so is the integral itself. The integral of

the third term on the right is transformed as follows:

Assuming that the fluid temperature tends sufficiently rapidly to a constant

value at infinity, we can transform the first integral into one over an infinitely

remote surface, on which grad T = and the integral therefore vanishes.

The result is

d f C K(gradT)2 r r> / 8vi 8vk 8vi\ 2

+ f—(divv)2dF. (49.6)

The first term on the right is the rate of increase of entropy owing to thermal

conduction, and the other two terms give the rate of increase due to internal

friction. The entropy can only increase, i.e. the sum on the right of (49.6)

must be positive. In each term, the integrand may be non-zero even if the

other two integrals vanish. Hence it follows that the second viscosity

coefficient £ is positive, as well as k and 77, which we already know are positive.

It has been tacitly assumed in the derivation of formula (49.1) that the

heat flux depends only on the temperature gradient, and not on the pressure

gradient. This assumption, which is not evident a priori, can now be justified
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as follows. If q contained a term proportional to grad/>, the expression

(49.6) for the rate of change of entropy would include another term having
the product grad/>*grad T in the integrand. Since the latter might be either

positive or negative, the time derivative of the entropy would not necessarily

be positive, which is impossible.

Finally, the above arguments must also be refined in the following respect.

Strictly speaking, in a system which is not in thermodynamic equilibrium,

such as a fluid with velocity and temperature gradients, the usual definitions

of thermodynamic quantities are no longer meaningful, and must be modified.

The necessary definitions are, firstly, that p, e and v are defined as before:

p and pe are the mass and internal energy per unit volume, and v is the

momentum of unit mass of fluid. The remaining thermodynamic quantities

are then defined as being the same functions of p and e as they are in

thermal equilibrium. The entropy s = s(p, e), however, is no longer the true

thermodynamic entropy: the integral

/'
sdV

will not, strictly speaking, be a quantity that must increase with time. Never-
theless, it is easy to see that, for small velocity and temperature gradients, $

is the same as the true entropy in the approximation here used. For, if there

are gradients present, they in general lead to additional terms (besides

s(p, e)) in the entropy. The results given above, however, can be altered only
by terms linear in the gradients (for instance, a term proportional to the scalar

div v). Such terms would necessarily take both positive and negative values.

But they ought to be negative definite, since the equilibrium value $ = s(p, e)

is the maximum possible value. Hence the expansion of the entropy in powers
of the small gradients can contain (apart from the zero-order term) only
terms of the second and higher orders.

Similar remarks should have been made in §15 (cf. the first footnote to that

section), since the presence of even a velocity gradient implies the absence of

thermodynamic equilibrium. The pressure p which appears in the expression

for the momentum flux density tensor in a viscous fluid must be taken to be
the same function p = p(p, e) as in thermal equilibrium. In this case p
will not, strictly speaking, be the pressure in the usual sense, viz. the normal
force on a surface element. Unlike what happens for the entropy (see

above), there is here a resulting difference of the first order with respect to

the small gradient; we have seen that the normal component of the force

includes, besides p, a term proportional to div v (in an incompressible fluid,

this term is zero, and the difference is then of higher order).

Thus the three coefficients 17, £, k which appear in the equations of
motion of a viscous conducting fluid completely determine the fluid-mechani-

cal properties of the fluid in the approximation considered (i.e. when the
higher-order space derivatives of velocity, temperature, etc. are neglected).

The introduction of any further terms (for example, the inclusion in the mass
flux density of terms proportional to the gradient of density or temperature)
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has no physical meaning, and would mean at least a change in the definition

of the basic quantities; in particular, the velocity would no longer be the

momentum of unit mass of fluid.

f

§50. Thermal conduction in an incompressible fluid

The general equation of thermal conduction (49.4) or (49.5) can be con-

siderably simplified in certain cases. If the fluid velocity is small compared
with the velocity of sound, the pressure variations occurring as a result of

the motion are so small that the variation in the density (and in the other

thermodynamic quantities) caused by them may be neglected. However, a

non-uniformly heated fluid is still not completely incompressible in the

sense used previously. The reason is that the density varies with the tem-

perature; this variation cannot in general be neglected, and therefore, even

at small velocities, the density of a non-uniformly heated fluid cannot be

supposed constant. In determining the derivatives of thermodynamic
quantities in this case, it is therefore necessary to suppose the pressure con-

stant, and not the density. Thus we have

8s I 8s \ 8T I 8s \

It
=
\8f)v ~8~t

y
gra Sz=

l"ar/ p
gra

'

and, since T(ds/8T)p is the specific heat at constant pressure cpy we obtain

T8sj8t = cp8T/8t, Tgrads = cp grad T. Equation (49.4) becomes

/ 8T \ 8vi
pcp \

+ vgrad T = div(« grad T) + a'ik . (50.1)
\ 8t / 8xjc

If the density is to be supposed constant in the equations of motion for

a non-uniformly heated fluid, it is necessary that the fluid velocity should be

small compared with that of sound, and also that the temperature differences

in the fluid should be small. We emphasise that we mean the actual values of

the temperature differences, not the temperature gradient. The fluid may
then be supposed incompressible in the usual sense ; in particular, the equation

of continuity is simply div v = 0. Supposing the temperature differences

small, we neglect also the temperature variation of r), k and cp , supposing

them constant. Writing the term o'yc dvt/dxjc as in (49.5), we obtain the

t Worse still, the inclusion of such terms may violate the necessary conservation laws. It must
be borne in mind that, whatever the definitions used, the mass flux density j must always be the

momentum of unit volume of fluid. For j is denned by the equation of continuity,

dP/8t+ div} = 0;

multiplying this by r and integrating over the fluid volume, we have

d(j PrdV)/dt = jjdV,

and since the integral Jpr dV determines the position of the centre of mass, it is clear that the integral

J"
j dV is the momentum.
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equation of heat transfer in an incompressible fluid in the following com-

paratively simple form:

8T v I dvi dvir\ 2— + v.gradr = xAr+— — +— ), (50.2)

where v — f\\p is the kinematic viscosity, and we have written k in terms of

the thermometric conductivity, defined as

x = Klpcp . (50.3)

The equation of heat transfer is particularly simple for an incompressible

fluid at rest, in which the transfer of energy takes place entirely by thermal

conduction. Omitting the terms in (50.2) which involve the velocity, we have

simply

8T/dt = x^ T- (50.4)

This equation is called in mathematical physics the equation of thermal

conduction or Fourier's equation. It can, of course, be obtained much more
simply without using the general equation of heat transfer in a moving
fluid. According to the law of conservation of energy, the amount of heat

absorbed in some volume in unit time must equal the total heat flux into this

volume through the surface surrounding it. As we know, such a law of

conservation can be expressed as an "equation of continuity" for the amount of

heat. This equation is obtained by equating the amount of heat absorbed in

unit volume in unit time to minus the divergence of the heat flux density.

The former is pcp dTjdt; we must take the specific heat cp , since the pressure

is of course constant throughout a fluid at rest. Equating this to — div q
= kAT, we have equation (50.4).

It must be mentioned that the applicability of the thermal conduction

equation (50.4) to fluids is actually very limited. The reason is that, in

fluids in a gravitational field, even a small temperature gradient usually

results in considerable motion (convection; see §56). Hence we can actually

have a fluid at rest with a non-uniform temperature distribution only if the

direction of the temperature gradient is opposite to that of the gravitational

force, or if the fluid is very viscous. Nevertheless, a study of the equation

of thermal conduction in the form (50.4) is very important, since processes of

thermal conduction in solids are described by an equation of the same form.

We shall therefore consider it in more detail in §§51 and 52.

If the temperature distribution in a non-uniformly heated medium at rest

is maintained constant in time (by means of some external source of heat),

the equation of thermal conduction becomes

AT=0. (50.5)

Thus a steady temperature distribution in a medium at rest satisfies Laplace's

equation. In the more general case where k cannot be regarded a constant,

we have in place of (50.5) the equation

div(/c grad T) = 0. (50.6)
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If the fluid contains external sources of heat (for example, heating by
an electric current), the equation of thermal conduction must correspondingly
contain another term. Let Q be the quantity of heat generated by these
sources in unit volume of the fluid per unit time; Q is, in general, a function
of the co-ordinates and of the time. Then the heat balance equation, i.e.

the equation of thermal conduction, is

Pcp dT/dt= kAT+Q. (50.7)

Let us write down the boundary conditions on the equation of thermal
conduction which hold at the boundary between two media. First of all, the

temperatures of the two media must be equal at the boundary:

7i = T2 . (50.8)

Furthermore, the heat flux out of one medium must equal the heat flux

into the other medium. Taking a co-ordinate system in which the part of the

boundary considered is at rest, we can write this condition as/ci grad 2V df
= k2 grad T2 • df for each surface element df. Putting grad T» df = (dTjdrfdf,
where BTjdn is the derivative of T along the normal to the surface, we obtain

the boundary condition in the form

/ci 07i/a» = K2 8T2l8n. (50.9)

If there are on the surface of separation external sources of heat which
generate an amount of heat £)

(s) on unit area in unit time, then (50.9) must
be replaced by

K1 dT1l8n-K2 dT2ldn = £)<«>. (50.10)

In physical problems concerning the distribution of temperature in the

presence of heat sources, the strength of the latter is usually given as a

function of temperature. If the function Q{T) increases sufficiently rapidly

with T, it may be impossible to establish a steady temperature distribution

in a body whose boundaries are maintained in fixed conditions (e.g. at a given

temperature). The loss of heat through the outer surface of the body is

proportional to some mean value of the temperature difference T— To between
the body and the external medium, regardless of the law of heat generation

within the body; it is clear that, if the generation of heat increases sufficiently

rapidly with temperature, the loss of heat may be inadequate to achieve an
equilibrium state.

The impossibility of establishing a steady thermal state forms the basis of

the thermal theory of explosions developed by N. N. Semenov (1928): if the

rate of an exothermic combustion reaction increases sufficiently rapidly with

temperature, the impossibility of a steady distribution leads to a rapid

non-steady ignition of the substance and an acceleration of the reaction into a

thermal explosion. A quantitative theory, for the case where the heat
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generation is an exponential function of temperature, has been given by
D. A. Frank-Kamenetski! (see Problem l).f

PROBLEMS

Problem 1. Heat sources of strength Q = Q tte
cciT-TJ per unit volume are distributed in a

layer of material bounded by two parallel infinite planes, which are kept at a constant tem-
perature T . Find the condition for a steady temperature distribution to be possible.

Solution. The equation for steady heat conduction is here

K&Tldx* = -£oC«<ZMr.),

with the boundary conditions T = T for x = and x = 21 (21 being the thickness of the
layer). We introduce the dimensionless variables r = ct(T—T ) and £ = xjl. Then

t"+ A<* = 0, A = £ aZ2//o

Integrating this equation once (after multiplying by 2t'), we find

t'2 = 2\{e^-e%

where t is a constant, which is evidently the maximum value of t; by symmetry, this value
must be attained half-way through the layer, i.e. for £ — 1. Hence a second integration, with
the condition t = for £ = 0, gives

1 r &r r

V(2A) J V^-er)
=

J
df==1 '

Effecting the integration, we have

e~*T. cosh-Mr
. = \Z(i*). (1)

The function A(t ) determined by this equation has a maximum A = Acr for a definite value
To — To.or>" if A > ACT, there is no solution satisfying the boundary conditions.^ The numerical
values are A„ = 0-88, T0>cr = 1 '2.ft

Problem 2. A sphere is immersed in a fluid at rest, in which a constant temperature
gradient is maintained. Determine the resulting steady temperature distribution in the fluid
and the sphere.

Solution. The temperature distribution satisfies the equation AT = in all space, with
the boundary conditions

7i = T2 , /ci dTxjdr = k2 dT2/dr

for r = R (where R is the radius of the sphere
; quantities with the suffixes 1 and 2 refer to

the sphere and the fluid respectively), and grad T = A at infinity, where A is the given

f The rate of explosive combustion reactions, and therefore the rate of heat generation, depend
on temperature roughly as e

- vlBT
, the constant U being large. Frank-KamenetskiI has shown that,

to investigate the conditions for a thermal explosion to occur, we must consider the course of the
reaction when the ignition of the substance is comparatively slow, and therefore replace e~u lBT by
e-uvir, e v(T-Ttt

)iRTa *
y where T is the external temperature. A more detailed discussion is given in the

book by D. A. Frank-KamenetskiI, Diffusion and Heat Exchange in Chemical Kinetics Princeton
1955.

% Only the smaller of the two roots of equation (1) for A < Acr corresponds to a stable temperature
distribution.

ff The corresponding values for a spherical region (of radius Z) are Acr — 3-32, T0>Cr
— 1-47, and for

an infinite cylinder Acr = 2- 00, T0lCr = 1-36.
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temperature gradient. By the symmetry of the problem, A is the only vector which can
determine the required solution. Such solutions of Laplace's equation are constant

X

At
and constant XA • grad(l /r). Noticing also that the solution must remain finite at the centre
of the sphere, we seek the temperatures Tx and T2 in the forms

7i = ClA.r, T2 = c2A.r/r3+A.r.

The constants ct and c2 are determined from the conditions for r = R, the result being

3/C2 I" K2— K1 / R \ 31
Ti = '- »-['££(')>«K±+ 2/C2

§51. Thermal conduction in an infinite medium
Let us consider thermal conduction in an infinite medium at rest. The

most general problem of this kind is as follows. The temperature distribution

is given in all space at the initial instant t = :

T = To(x,y,z) for t = 0,

where To is a given function of the co-ordinates. It is required to determine

the temperature distribution at all subsequent instants.

We expand the required function T as a Fourier integral with respect to

the co-ordinates:

T = j 7k(*)exp(*-k.r)d3k, d3k = <\kxdkydkz, (51.1)

where the expansion coefficients are given by

n{t) = (2tt)-3
J
r(^/,s',*) exP(-^"-rW', dV = dx'&y'&z'.

Substituting the expression (51.1) in equation (50.4), we obtain

dTk
f l--^- + &2xrjexp(*-k.r)d3k = 0,

whence

dTJdt+kzxTk = 0.

This equation gives Tk as a function of time

:

Tk = exp(—k2xt)T0k .

Substituting this in (51.1), we find

T =
J"
r0kexp(-#y) exp(/k.r)d3k. (51.2)

Since we must have T = To(x, y, z) for / = 0, it is clear that the

Tok are the expansion coefficients of the function To(x, y, z) as a Fourier

integral:

T0k = (2tt)-3
J
r (^/,*')exp(-tk.r')dF.
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Finally, substituting this in (51.2), we obtain

T = (2tt)-3
JJ

T (x',y',z') exp(-^) exp\ik.(r-r')]dV &k.

The integral over k is the product of three simple integrals, each of the form

00 00

J

exp(— kx2xt) exp [ikx(x— x')]dkx =
J

exp( — kx2xt) cos kx(x —x') dkx ;

—00 —00

the similar integral with sin in place of cos is zero, since the sine function

is odd. Using the formula

00

I

exp( — ax2) cos /tod*; = \/(7T/a) exP(
—

/?
2/4a) (a > 0),

—oo

we have finally

T(x,y,z,t) = ——-JV (*', /, *') x

exp{- [{x- x'f + (y -y'f+ (z- z'f]l4xt} dV. (51.3)

This formula gives the complete solution of the problem ; it determines the

temperature distribution at any instant in terms of the given initial distri-

bution.

If the initial temperature distribution is a function of only one co-ordinate,

x, then we can integrate over y' and z' in (51.3) and obtain

T(x, t) = —-— T 7o(*') exp[-(*-*')2
/4x'] d*'. (51.4)VW) -oo

At time t = 0, let the temperature be zero in all space except for an infinitely

thin layer at the plane x = 0, where it is infinite in such a way that the total

quantity of heat (proportional to $To(x)dx) is finite. Such a distribution can

be represented by a delta function: To(x) = constant x8(x). The integration

in formula (51.4) then amounts to replacing x' by zero, the result of which is

1

T(x, t) = constant x exp(- #2/4x*)- (51.5)

Similarly, if at the initial instant a finite quantity of heat is concentrated

at a point (the origin), the temperature distribution at subsequent instants

is given by the formula
1

T(r, t) = constant x——-exp(- r2/4xt), (51.6)
S{7Txty

where r is the distance from the origin. In the course of time, the temperature
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at the point r = decreases as H. The temperature in the surrounding
space rises correspondingly, and the region where the temperature is appre-
ciably different from zero expands (Fig. 29). The manner of this expansion
is determined principally by the exponential factor in (51.6). We see that
the order of magnitude / of the dimension of this region is given by I2fat ~ 1,

whence

i ~ V(xt),

i.e. / increases as the square root of the time.

(51.7)

Formula (51.7) can also be interpreted in a somewhat different way. Let /

be the order of magnitude of the dimension of a body. Then we can say that,

if the body is heated non-uniformly, the order of magnitude r of the time
required for the temperature to become more or less the same throughout
the body is

r ~ J
2
/*. (51.8)

The time t, which may be called the relaxation time for thermal conduction,
is proportional to the square of the dimension of the body, and inversely

proportional to the thermometric conductivity.

The thermal conduction process described by the formulae obtained above
has the property that the effect of any perturbation is propagated instan-

taneously through all space. It is seen from formula (51.5) that the heat
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from a point source is propagated in such a manner that, even at the next

instant, the temperature of the medium is zero only at infinity. This property

holds also for a medium in which the thermometric conductivity x depends on

the temperature, provided that x does not vanish anywhere. If, however, x
is a function of temperature which vanishes when T = 0, the propagation of

heat is retarded, and at each instant the effect of a given perturbation extends

only to a finite region of space (we suppose that the temperature outside this

region can be taken as zero). This result, as well as the solution of the

following Problems, is due to Ya. B. Zel'dovich and A. S. Kompaneets

(1950).

PROBLEMS

Problem 1. The specific heat and thermal conductivity of a medium vary as powers of the

temperature, while its density is constant. Determine the manner in which the tempera-

ture tends to zero near the boundary of the region which, at a given instant, has received

heat propagated from an arbitrary source (the temperature outside that region being zero).

Solution. If k and cP vary as powers of the temperature, the same is true of the thermo-

metric conductivity x and of the heat function

ZO = j CpdT

(we omit a constant in w). Hence we can put x — aWn
, where we denote by W = pw the

heat function per unit volume. Then the thermal conduction equation

pcp BTjdt = div(*c grad T)

becomes

dW/dt = a di\(Wn grad W). (1)

During a short interval of time, a small portion of the boundary of the region may be

regarded as plane, and its rate of displacement in space, v, may be supposed constant. Accord-

ingly, we seek a solution of equation (1) in the form W = W(x —vt), where x is the co-ordinate

in the direction perpendicular to the boundary. We have

-vdWjdx = ad(W« dW/dx)ldx, (2)

whence we find, after two integrations, that W vanishes as

W ~ |*|i/»
(3)

where \x\ is the distance from the boundary of the heated region. This also confirms our

conclusion that, if n > 0, the heated region has a boundary outside which W and T are

zero. If n < 0, then equation (2) has no solution vanishing at a finite distance, i.e. the heat

is distributed through all space at every instant.

Problem 2. A medium like that described in Problem 1 has, at the initial instant, an amount
of heat Q per unit area concentrated on the plane * = 0, while T = everywhere else. Deter-

mine the temperature distribution at subsequent instants.

Solution. In the one-dimensional case, equation (1) of Problem 1 is

dw a / 8W\
= a—\Wn . (1)

dt dx\ 8x ]

From the parameters Q and a and variables * and t at our disposal, we can form only one

dimensionless combination,

£ = x/(Qnat)W+M; (2)
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Q and a have the dimensions erg/cm8 and (cma/sec)(cm 3/erg)». Hence the required function
W(x, t) must be of the form

^=(22M1/(2+»m (3)

where the dimensionless function /(0 is multiplied by a quantity having the dimensions
erg/cm3

. With this substitution, equation (1) gives

d / d/\ dY

This ordinary differential equation has a simple solution which satisfies the conditions of the
problem, namely

f(i) = [M&2-|2
)/(2+ n)]i/»,

(4)

where £ is a constant of integration.

For n > 0, this formula gives the temperature distribution in the region between the planes
x = ±* corresponding to the equation £ = ±$ ; outside this region, W = 0. Hence it

follows that the heated region expands with time in a manner given by x = constant X i
x/(2+»).

The constant £ is determined by the condition that the total amount of heat is constant:

Xo £o

Q- j Wdx = Q J7(fld£ (5)
—#0 ~~So

whence we have

=
(2+^21-* r»(j+i/*»)

n7Tn/2 r»(l/w) ' w
For n — — v < 0, we write the solution in the form

Here the heat is distributed through all space, and at large distances W decreases as x~ilv
.

This solution is valid only for v < 2 ; for v > 2, the normalisation integral (5) (which now
extends to ± oo) diverges, which means physically that the heat is conducted instantaneously
to infinity. For v < 2, the constant £ in (7) is given by

2(2-„k/2 r-(i/y-j)
h =—;

—

j^m- W
Finally, for n -> we have £ -»- 2/V«, and the solution given by formula (3) of Problem 1

(1), and (4) is
'

( Q l x2 \
1/n

\ ow -feferw 1

= 2^br*-«
in agreement with formula (51.5).

§52. Thermal conduction in a finite medium
In problems of thermal conduction in a finite medium, the initial tempera-

ture distribution does not suffice to determine a unique solution, and the
boundary conditions at the surface of the medium must also be given.



§52 Thermal conduction in a finite medium 197

Let us consider thermal conduction in a half-space (x > 0), beginning

with the case where a given constant temperature is maintained on the

bounding plane x = 0. We may arbitrarily take this temperature as zero.

At the initial instant, the temperature distribution throughout the medium is

given, as before. The boundary and initial conditions are therefore

T = for * = 0; T = T (x,y,z) for t = and * > 0. (52.1)

The solution of the thermal conduction equation with these conditions can,

by means of the following device, be reduced to the solution for a medium
infinite in all directions. We imagine the medium to extend on both sides of

the plane x = 0, the temperature distribution for t = and x < being

given by — To. That is, the temperature distribution at the initial instant

is given in all space by an odd function of x :

?o( - x, y, z)= - T (x,y, z). (52.2)

It follows from equation (52.2) that 7o(0, y, z) = — 7o(0, y, z) = 0, i.e. the

necessary boundary condition (52.1) is automatically satisfied for t = 0,

and it is evident from symmetry that it will continue to be satisfied for all t.

Thus the problem is reduced to the solution of equation (50.4) in an

infinite medium with an initial function To(x,y, z) which satisfies (52.2),

and without boundary conditions. Hence we can use the general formula

(51.3),. We divide the range of integration over x' in (51.3) into two parts,

from — oo to and from to oo. Using the relation (52.2), we then have

OO OO 00

r(w<) = iiiJJI r°(W):
—oo—oo

{exp[-(x—x'f/4xt]-exp[-(x+x')2
l4xt]} x

exp{- [(y-y'f+ (z- z'f]l4xt] oV Ay' dz'. (52.3)

This formula gives the solution of the problem, since it determines the tem-

perature throughout the medium, i.e. for all x > 0.

If the initial temperature distribution is a function of x only, formula

(52.3) becomes

1 °°

T(*'') = ^TTT^ \
71o(^){exp[-(^-^)2/4^] _eXp[_^+ ^)2/4^]}d^.

(52.4)

As an example, let us consider the case where the initial temperature is a

given constant everywhere except at x = 0. Without loss of generality, this

constant may be taken as — 1. The temperature on the plane x = is always

zero. The appropriate solution is obtained at once by substituting
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Tq{x) = — 1 in (52.4). The integral in (52.4) is the sum of two integrals, in

each of which we change the variables as in £ = (x'— x)/2^(xt). We then
obtain for T(x, t) the expression

T{x,t) = Kerf[-*/2V(*0]-erf[*/2V(xO]}>

where the function erf x is defined as

2 r ,

erf# = £~^d£,
\f-n J

(52.5)

and is called the error function (we notice that erf oo = 1). Since erf ( — x)

— — erf x, we have finally

T{x
y
t) = - erf [x/2V(xt)]. (52.6)

Fig. 30 shows a graph of the function erf x. The temperature distribution

becomes more uniform in space in the course of time. This occurs in such a
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Fig. 30

way that any given value of the temperature "moves" proportionally to \/t.

This last result is obviously true. For the problem under consideration is

characterised by only one parameter, the initial temperature difference Tq

between the boundary plane and the remaining space; in the above discussion,

this difference was arbitrarily taken as unity. From the parameters To
and x and variables x and t at our disposal we can form only one dimension-

less combination, xj^/{xf)'y hence it is clear that the required temperature

distribution must be given by a function of the form T = To/(a:/\/(xO)'

Let us now consider a case where the surface bounding the medium is a

thermal insulator. That is, there is no heat flux at the plane x = 0, so that

we must have dTjdx = 0. We thus have the following boundary and initial
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conditions

:

dT/dx = for x = 0; T = T (x,y,z) for t = 0, * > 0. (52.7)

To find the solution we proceed as in the previous problem. That is, we again

imagine the medium to extend on both sides of the plane x = 0, the initial

temperature distribution being this time symmetrical about the plane. In
other words, we now suppose that To(x, y, z) is an even function of x:

T (- x,y, z) = T (x,y, z). (52.8)

Then dT (x,y, z)\Bx = -dT (-x,y, z)/dx, and dTQjdx = for x = 0. It

is evident from symmetry that this condition will continue to be satisfied

for all t.

Repeating the calculations given above, but using (52.8) in place of (52.2),

we have the general solution of the problem in the form

00 00 00

r(w) = i^/J7 r°^>
—oo—oo

{exp[- (x' - xf/4xt] + exp[- (*' + xfjAxt]} x

exp{- [(/ -yf+ (z'- zf]l4xt} dx' dy'dz'. (52.9)

If To is a function of x only, then

T(*>t) = 2^—^ J
^'){exp[-(^-^/4^] + exp[-(^+ ^/4^]}d^'.

(52.10)

Let us now consider problems with boundary conditions of a different type,
which also enable the equation of thermal conduction to be solved in a general
form. Let a heat flux (a given function of time) enter a medium through its

bounding plane x = 0. The boundary and initial conditions are

-k8T/8x = q(t) for * = 0; T == for t = - oo, x > 0, (52.11)

where q(t) is a given function.

We first solve an auxiliary problem, in which q(t) = 8(t). It is easy to
see that this problem is physically equivalent to that of the propagation of
heat in an infinite medium from a point source which generates a given
amount of heat. For the boundary condition - kBTjBx = 8(t) for x =
signifies physically that a unit of heat enters through each unit area of the
plane x = at the instant t = 0. In the problem where the condition is

T — 28(x)lpcP for t = 0, an amount of heat

J
pcp Tdx = 2

is concentrated on this area at time t = 0; half of this is then propagated in
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the positive ^-direction, and the other half in the negative ^-direction.

Hence it is clear that the solutions of the two problems are identical, and we
find from (51.5) kT(x, t) = V(xH) exp( -*a/4tf)-

Since the equations are linear, the effects of the heat entering at different

moments are simply additive, and therefore the required general solution of
the equation of thermal conduction with the conditions (52.11) is

t

kT(x, t)=
j
y_A_

?(
T) exp[-*2/4x(*_ T)] dr. (52.12)

—oo

In particular, the temperature on the plane x = varies according to

t

Kr(o-<)= jy^(T)dT
-

(52- i3)

—oo

Using these results, we can obtain at once the solution of another problem,
in which the temperature T on the plane x = is a given function of time:

T = TQ(t) for x = 0; T = for t = - oo, x > 0. (52.14)

To do so, we notice that, if some function T(x, t) satisfies the equation of

thermal conduction, then so does its derivative dT/dx. Differentiating

(52.12) with respect to x, we obtain

t

8T(x, t) p xi{r)— K = l2VrXrWa'*-*W-r)]dr.
8x J 2VI>x(*-t)3

]
—oo

This function satisfies the equation of thermal conduction and (by (52.11))

its value for x = is q(t); it therefore gives the required solution of the

problem whose conditions are (52.14). Writing T(x, t) instead of — icdT/dx,

and To(t) instead of q(t), we thus have

t

T^ f
> = TTT^ \ TT^Pt-*8/^'-^^ (52.15)

—oo

The heat flux q = — kBT/Bx through the bounding plane x = is found by
a simple calculation to be

t

k r dr (T) dr

—00

This formula is the inverse of (52.13).
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The solution is easily obtained for the important problem where the

temperature on the bounding plane x = is a given periodic function of

time: T = Toe~ib)t for x = 0. It is clear that the temperature distribution

in all space will also depend on the time through a factor e~M . Since the

one-dimensional equation of thermal conduction is formally identical with

the equation (24.3) which determines the motion of a viscous fluid above an

oscillating plane, we can immediately write down the required temperature

distribution by analogy with (24.4)

:

T = T exp[-*V(W2x)] exp{i[xV{(o(2x)-cot]}. (52.17)

We see that the oscillations of the temperature on the bounding surface are

propagated from it as thermal waves which are rapidly damped in the interior

of the medium.

Another kind of thermal-conduction problem comprises those concerning

the rate at which the temperature is equalised in a non-uniformly heated

finite body whose surface is maintained in given conditions. To solve these

problems by general methods, we seek a solution of the equation of thermal

conduction in the form T = Tn(x, y, z)e~^nt
y
with Xn a constant. For the

function Tn we have the equation

xATn = -An7V (52.18)

This equation, with given boundary conditions, has non-zero solutions only

for certain \n , its eigenvalues. All the eigenvalues are real and positive,

and the corresponding functions Tn(x,y, z) form a complete set of orthogonal

functions. Let the temperature distribution at the initial instant be given by
the function To(x, y, z). Expanding this as a series of functions Tn ,

T (x,y,z) = ^cnTn(x,y,z),

we obtain the required solution in the form

T(x, y, z, t) = ^cnTn(x,y, z) exp(-Xnt). (52.19)

The rate of equalisation of the temperature is evidently determined by the

term corresponding to the smallest An , which we call Ai. The "equalisation

time" may be defined as t = 1/Ai.

PROBLEMS

Problem 1. Determine the temperature distribution around a spherical surface (of radius

R) whose temperature is a given function T (t) of time.

Solution. The thermal-conduction equation for a centrally symmetrical temperature distri-

bution is, in spherical co-ordinates, dTJdt = (x/r)3
8(rr)/^r2 . The substitution rT(r, t)

= F(r, t) reduces this to dF/dt = xd^FIdr*, which is the ordinary one-dimensional thermal-
conduction equation. Hence the required solution can be found at once from (52.15), and is

R(r~R) r T (r)

2rVM J (t-ry
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Problem 2. The same as Problem 1, but for the case where the temperature of the spherical
surface is T e~<wt.

Solution. Similarly to (52.17), we obtain

T = T exp(-icot)(Rlr) exp[-(l-i)(r-RW(co/2x)].

Problem 3. Determine the temperature equalisation time for a cube of side a whose
surface is (a) maintained at a temperature T = 0, (b) an insulator.

Solution. In case (a) the smallest value of A is given by the following solution of equation
(52.18):

T\ = sm(7Tx/a) s'mfry/a) s\n{iTzJa)

(the origin being at one corner of the cube), when r = 1/AX «= az
J3w*x- In case (b) we have

Z1

! = cos(7rxJa) (or the same function of y or z), when r = a2Jn2
x-

Problem 4. The same as Problem 3, but for a sphere of radius R.

Solution. The smallest value of A is given by the centrally symmetrical solution of (52.18)
Ti = (1/r) sin kr; in case (a), k — nJR, and r = l/xk* = R2

Jx**- In case (b) k is the
smallest non-zero root of the equation kR = tan kR, whence we find kR = 4-493 and
t = 0-050 R*/X-

§53. The similarity law for heat transfer

The processes of heat transfer in a fluid are more complex than those in

solids, because the fluid may be in motion. A heated body immersed in a
moving fluid cools considerably more rapidly than one in a fluid at rest, where
the heat transfer is accomplished only by conduction. The motion of a
non-uniformly heated fluid is called convection.

We shall suppose that the temperature differences in the fluid are so small
that its physical properties may be supposed independent of temperature,
but are at the same time so large that we can neglect in comparison with them
the temperature changes caused by the heat from the energy dissipation

by internal friction (see §55). Then the viscosity term in equation (50.2) may
be omitted, leaving

ar/S/+vgrad T = XAT, (53.1)

where x = KJpcP is the thermometric conductivity. This equation, together

with the Navier-Stokes equation and the equation of continuity, completely
determines the convection in the conditions considered.

In what follows we shall be interested only in steady convective flow.f

Then all the time derivatives are zero, and we have the following fundamental
equations

:

v.gradr = xAT, (53.2)

(v»grad)v = -grad(p/p) + vAv, divv = 0. (53.3)

t In order that the convection should be steady, it is, strictly speaking, necessary that the solid
bodies adjoining the fluid should contain sources of heat which maintain these bodies at a constant
temperature.
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This system of equations, in which the unknown functions are v, T and pfp,

contains only two constant parameters, v and x- Furthermore, the solution

of these equations depends also, through the boundary conditions, on some

characteristic length /, velocity U, and temperature difference T\— To.

The first two of these are given by the dimension of the solid bodies which

appear in the problem and the velocity of the main stream, while the third

is given by the temperature difference between the fluid and these bodies.

In forming dimensionless quantities from the parameters at our disposal,

the question arises of the dimensions to be ascribed to the temperature. To
resolve this, we notice that the temperature is determined by equation (53.2),

which is linear and homogeneous in T. Hence the temperature can be multi-

plied by any constant and still satisfy the equations. In other words, the unit

of measurement of temperature can be chosen arbitrarily. The possibility

of this transformation of the temperature can be formally allowed for by

giving it a dimension of its own, unrelated to those of the other quantities.

This can be measured in degrees, the usual unit of temperature.

Thus convection in the above-mentioned conditions is characterised by

five parameters, whose dimensions are v = x = cm2/sec, U = cm/sec,

/ = cm, 7i— To = deg. From these we can form two independent dimen-

sionless combinations. These may be the Reynolds number R = Uljv

and the Prandtl number, defined as

P = vlx. (53.4)

Any other dimensionless combination can be expressed in terms of R and P.f

The Prandtl number is just a constant of the material, and does not depend

on the properties of the flow. For gases it is always of the order of unity.

The value of P for liquids varies more widely. For very viscous liquids, it

may be very large. The following are values of P at 20°C for various

substances

:

Air 0-733

Water 6-75

Alcohol 16-6

Glycerine 7250

Mercury 0-044

As in §19, we can now conclude that, in steady convection (of the type

described), the temperature and velocity distributions are of the form

T-Tq It \ v It \

lwr /(?
R4 u

= t(-A (53 -5)

The dimensionless function which gives the temperature distribution depends

on both R and P as parameters, but the velocity distribution depends only on

R, since it is determined by equations (53.3), which do not involve the con-

ductivity. Two convective flows are similar if their Reynolds and Prandtl

numbers are the same.

t The Peclet number is sometimes used; it is defined as UlJx = RP.
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The heat transfer between solid bodies and the fluid is usually characterised

by the heat transfer coefficient a, defined by

a = ^/(Ti-r ), (53.6)

where q is the heat flux density through the surface and T\- To is a charac-
teristic temperature difference between the solid body and the fluid. If

the temperature distribution in the fluid is known, the heat transfer coefficient

is easily found by calculating the heat flux density q = - K8Tjdn at the
boundary of the fluid (the derivative being taken along the normal to the
surface).

The heat transfer coefficient is not a dimensionless quantity. A dimension-
less quantity which characterises the heat transfer is what is called the Nusselt
number :f

N = oJ/k. (53.7)

It follows from similarity arguments that, for any given type of convective
flow, the Nusselt number is a definite function of the Reynolds and Prandtl
numbers only:

N=/(R,P). (53.8)

This function is very simple for convection at sufficiently small Reynolds
numbers. These correspond to small velocities. Hence, in the first approxi-
mation, we can neglect the velocity term in equation (53.2), so that the
temperature distribution is determined by the equation AT = 0, i.e. the

ordinary equation of steady thermal conduction in a medium at rest. The heat

transfer coefficient can then depend on neither the velocity nor the viscosity

and so we must have simply

N = constant, (53.9)

and in calculating the constant the fluid may be supposed at rest.

PROBLEM

Determine the temperature distribution in a fluid moving in Poiseuille flow along a pipe
of circular cross-section, when the temperature of the walls varies linearly along the pipe.

Solution. The conditions of the flow are the same at every cross-section of the pipe, and
we can look for the temperature distribution in the form T — Az+f(r), where Az is the wall
temperature; we use cylindrical co-ordinates, with the x-axis along the axis of the pipe.
For the velocity we have, by (17.9), v z = v = 2vm{\ —r2jR2

), where vm is the mean velocity.

Substituting in (53.2) we find

1 d / d/\ 2VmA1 d/d/X IVmAV /,yn
rdr\dr) x |_ \R/1'

The solution of this equation which is finite for r = and zero for r = R is

VmAr2

f(r) =
2X [-(iHGH-

f The dimensionless "heat transfer number", denned as Kh » ccjpcpU = N/RP, is also used.
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The heat flux density is

q = K[dT/dr]R = \pcvvmRA.

It is independent of the thermal conductivity.

§54. Heat transfer in a boundary layer

The temperature distribution in a fluid at very high Reynolds numbers

exhibits properties similar to those of the velocity distribution. Very large

values of R are equivalent to a very small viscosity. But since the number
P = vfx is not small, the thermometric conductivity x must be supposed

small, as well as v. This corresponds to the fact that, for sufficiently high

velocities, the fluid may be approximately regarded as an ideal fluid, and in

an ideal fluid both internal friction and thermal conduction are absent.

This viewpoint, however, must again be abandoned in a boundary layer,

since neither the boundary condition of no slip nor that of equal temperatures

would be satisfied. In the boundary layer, therefore, there occurs both a

rapid decrease of the velocity and a rapid change of the fluid temperature to a

value equal to the temperature of the solid surface. The boundary layer is

characterised by the presence of large gradients of both velocity and tem-

perature.

It is easy to see that, in flow past a heated body (with R large), the

heating of the fluid occurs almost exclusively in the wake, while outside the

wake the fluid temperature does not change. For, when R is large, the pro-

cesses of thermal conduction in the main stream are unimportant. Hence the

temperature varies only in the region reached by fluid that has been heated

in the boundary layer. We know (see §34) that the streamlines from

the boundary layer enter the main stream only beyond the line of separation,

where they go into the region of the turbulent wake. From the wake, however,

the streamlines do not emerge at all. Thus the fluid which flows past the

surface of the heated body in the boundary layer goes entirely into the wake

and remains there. We see that the heat becomes distributed through the

regions where the vorticity is non-zero.

In the turbulent region itself, a very considerable exchange of heat occurs,

which is due to the intensive mixing of the fluid characteristic of any turbulent

flow. This mechanism of heat transfer may be called turbulent conduction and

characterised by a coefficient Ktuih , in the same way as we introduced the

turbulent viscosity vtmb in §31. The turbulent thermometric conductivity

is defined, in order of magnitude, by the same formula as vturb (31.2):

Xturb ~ l^u.

Thus the processes of heat transfer in laminar and in turbulent flow are

fundamentally different. In the limiting case of very small viscosity and

thermal conductivity, in laminar flow, the processes of heat transfer are

absent, and the fluid temperature is constant at every point in space. In

turbulent flow, however, even in the same limiting case, heat transfer occurs

and rapidly equalises the temperatures in various parts of the stream.
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It should be mentioned that, when we speak of the temperature of a fluid in

turbulent motion, we mean the time average of the fluid temperature. The
actual temperature at any point in space undergoes very irregular variations

with time, similar to those of the velocity.

Let us begin by considering heat transfer in a laminar boundary layer.

The equations of motion (39.10) are unaltered. A similar simplification

must now be performed for equation (53.2). Written explicitly, this equation
is (since all quantities are independent of the co-ordinate z)

dT 8T /d*T d*T\
Vx

~fa
+Vy

~dy
~ X\lw

+
~df}'

On the right-hand side we may neglect the derivative 82TJdx2 in comparison
with 82T/dy2, leaving

BT dT d*T
vx-— + vy = x—-. (54.1)

dx 8y
A
dy*

v '

By comparing this equation with the first of (39.10) we see that, if the

Prandtl number is of the order of unity, then the order of magnitude 8 of the

thickness of the layer in which the velocity vx decreases and the temperature
T varies will again be given by the formulae obtained in §39, i.e. it will be
inversely proportional to <\/R. The heat flux q = - KdTJdn is equal, in

order of magnitude, to k{T\- T )/8. Hence we conclude that q, and therefore

the Nusselt number, are proportional to -\/R. The dependence of N on P
is not determined. Thus we have

N = VR/(P). (54.2)

From this it follows, in particular, that the heat transfer coefficient a is

inversely proportional to the square root of the dimension / of the body.

Let us now consider heat transfer in a turbulent boundary layer. Here it

is convenient, as in §42, to take an infinite plane-parallel turbulent stream

flowing along an infinite plane surface. The transverse temperature gradient

dT/dy in such a flow can be determined from the same kind of dimensional

argument as we used to find the velocity gradient du/dy. We denote by q
the heat flux density along the jy-axis caused by the temperature gradient.

This flux is a constant (independent of y), like the momentum flux a, and
can likewise be regarded as a given parameter which determines the proper-

ties of the flow. Furthermore, we have as parameters also the density p and
the specific heat cp per unit mass. Instead of a we use as parameter vm \

q and cv have the dimensions erg/cm2 sec = g/sec3 and erg/g deg = cm2/sec2

deg. The viscosity and thermal conductivity cannot appear explicitly in

dT\dy when R is sufficiently large.

Because of the homogeneity of the equations as regards the temperature,

already mentioned in §53, the temperature can be changed by any factor

without violating the equations. When the temperature is changed in this

way, however, the heat flux must change by the same factor. Hence q and T
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must be proportional. From q, vm p, cv and y we can form only one quantity

proportional to q and having the dimensions deg/cm, namely qjpCp vm y.

Thus we must have dT/dy = ^qjbpcvvmy, where /? is a numerical constant

which must be determined by experiment, j* Hence

T = (Pq/bpcpvm)(\ogy+ c). (54.3)

Thus the temperature, like the velocity, varies logarithmically. The constant

of integration c which appears here must be determined from the conditions

in the viscous sublayer, as in the derivation of (42.7). The temperature diff-

erence between the fluid at a given point and the wall (which we arbitrarily

take to be at zero temperature) is composed of the temperature change across

the turbulent layer and that across the viscous sublayer. The logarithmic

law (54.3) is determined by only the first of these. Hence, if we write (54.3)

in the form T = (Pqlbpcpvm)[log(yvJv)+ constant], including in the argument

of the logarithm a factor equal to the thickness yo, then the constant (multi-

plied by the coefficient in parentheses) must be the change in temperature

across the viscous sublayer. This change, of course, depends on the coeffi-

cients v and x also. Since the constant is dimensionless, it must be some

function of P, which is the only dimensionless combination of the quantities

v, x, p, v# and cv (q cannot appear, since T must be proportional to q, which

already occurs in the coefficient). Thus we find the temperature distribution

to be

T = (pqlbpcpv*)[log(vvJv) +/(P)]. (54.4)

Using this formula, we can calculate the heat transfer for turbulent flow in a

pipe, along a flat plate, etc. We shall not pause to do this here.

PROBLEMS

Problem 1 . Determine the limiting form of the dependence of the Nusselt number on the

Prandtl number in a laminar boundary layer when P and R are large.

Solution. For large P, the distance 8' over which the temperature changes is small

compared with the thickness 8 of the layer in which the velocity vx diminishes. 8' may be
called the thickness of the temperature boundary layer. The order of magnitude of 8' may
be obtained from an estimate of the terms in equation (54.1). Over the distance from y —
to y f-j 8', the temperature varies by an amount of the order of the total temperature diff-

erence Tr—

T

between the fluid and the solid body, while the velocity vx varies over this

distance by an amount of the order of C/S'/S (since the total change, of the order of U, occurs

over a distance 8). Hence, for y <->' 8', the terms in equation (54.1) are, in order of magnitude,

xd2T/dyZ ~ x(Ti- 7o)/S'2 and vx dT/dx ~ C/S'(Ti- T )//S.

If the two expressions are comparable, we have S'3 "~ x/S/t7. Substituting 8 ~ l\V-R,
we obtain 8' ~ Z/Rip* ^/ S/Pi. Thus, for large P, the thickness of the temperature boundary
layer decreases, relative to that of the velocity boundary layer, inversely as the cube root of P.

f Here b is the constant appearing in the logarithmic velocity profile (42.4). With this definition,

P is the ratio vtart>/xturb> where rturb and xturb are the coefficients in q = pcPxturbdT/dy,
a = pvtnrbdtt/dy. From simultaneous determinations of the velocity and temperature profiles in

pipes and in flow along flat plates,/? is found to be about 0-7. We should mention that similar measure-
ments in the turbulent wake behind a heated body give a value of about 0- 5 for the ratio vturb/xturb in

a free turbulent flow.
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The heat flux q = — KdTJdy ~ k(Tx-T )jo", and the required limiting law of heat transfer
is found to bef

N = constant x R*P*.

Problem 2. Determine the limiting form of the function /(P), in the logarithmic tempera-
ture distribution (54.4), for large values of P.

Solution. According to what was said in §42, the transverse velocity in the viscous sub-
layer is of the order of v*(yfy )

2
, while the scale of the turbulence is of the order of y*fy .

The turbulent thermometric conductivity xturb is therefore of the order of

»*.yoCv/yo)
4 ~ v(ylyo)4

(where we have used the relation (42.5)); xturb is comparable in magnitude with the ordinary
coefficient x at distances of the order of yr ~ yoP

-
*. Since xturb increases very rapidly with y,

it is clear that most of the temperature change in the viscous sublayer occurs over distances
from the wall of the order of yu and may be supposed proportional to ylf being in order of
magnitude qyjk ~ qy fkP* ~ qP*/pcPv*. Comparing with formula (54.4), we see that the
function/(P) is a numerical constant times P*.J

Problem 3. Determine the temperature differences T^ in a non-uniformly heated turbulent
fluid over distances A which are small compared with the external scale of the turbulence
(A. M. Obukhov 1949).

Solution. The equalisation of temperature in a non-uniformly heated turbulent fluid
occurs similarly to the dissipation of mechanical energy. Turbulent eddies of size A^> A
(where A is the internal scale of the turbulence) lead to an equalisation of temperature by
purely mechanical mixing of fluid particles which are at different temperatures. Consider-
able true temperature gradients in regions of size A ~ A , on the other hand, are equalised
by dissipative thermal conduction.

The dissipation by thermal conduction (increase of entropy) is determined by the quantity
x(grad TflT* (see (49.6)); supposing the turbulent fluctuations of temperature to be rela-
tively small, we can replace T2 in the denominator by a constant, the square of the mean
temperature. According to the method described in §32 (see the first footnote to that section),
we write Xturb (7a/A)2 = constant. Substituting vturb,A ~ »Wb,A ~ ~^x> *>A ~ (**)* (see

(32.1)), we find the required relation to be T^ ~ A*. Thus for A^> A the temperature fluc-

tuations, like the velocity fluctuations, are proportional to the cube root of the distance.
At distances A <^ A , however, by the same arguments as for the velocity, the differences T^
are simply proportional to A.

Problem 4. Derive a relation between the local correlation functions

BTT = (T2- 7i)2, BiTT = (v2i-vu)(T2 - Ti)2

in a non-uniformly heated turbulent flow (A. M. Yaglom 1949).

Solution. The calculations are similar to those used in deriving formula (33.18). From

t For the values of the thermal conductivity actually found, the Prandtl number does not reach
the values for which this limiting law holds. Such laws can, however, be applied to convective diffu-
sion; this obeys the same equations as convective heat transfer, but with the temperature replaced by
the concentration of the solute, and the heat flux by the flux of solute, the "diffusion Prandtl number"
being defined as Po = v/D, where D is the diffusion coefficient. For example, for solutions in water
and similar liquids, Pj> reaches values of the order of 103

, while for very viscous solvents it is 10* or
more.

J The calculation of the constant in this formula for various particular cases is facilitated by the fact

that, by virtue of the inequality S' <^ S, we need take only the first terms of an expansion, in powers of

y, of the fluid velocity components in integrating equation (54.1) across the temperature boundary
layer. Calculations for convective diffusion in various particular cases are given by V. G. Levich,
Physico-chemical Hydrodynamics {Fiziko-khimicheskaya gidrodinamika) , Moscow 1952.
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the equations

dT dT dvi n— + vi— = x&T, — =
dt dxi oxi

we find

d
-(7i T2) = -2—(wT! T2)+ 2xAi(T1 T2).
Ot OX\i

On the left-hand side we put r = r2—ru and on the right we express the mean values in terms

of the correlation functions, using the homogeneity and isotropy of the flow:

a— l d—

T

2 = ---

—

Bitt-xAiBtt-
ot 2 ox\i

Writing BtTT = «< Bttt and changing to derivatives with respect to r, we obtain an equation

which, on integration over r, gives the required relation

BrTT— 2xdBTTldr = —&<(>>

where

4> = -d(T*)\dt = -8(T-T)2
ldt.

Using the results of Problem 3, we then find that, for r^> A , Bttt = — ir<f>, while for

r <^ A we have Btt = r2<f>/9x-

§55. Heating of a body in a moving fluid

A thermometer immersed in a fluid at rest indicates a temperature equal to

that of the fluid. If the fluid is in motion, however, the thermometer indicates

a somewhat higher temperature. This is because the fluid brought to rest

at the surface of the thermometer is heated by internal friction.

The general problem may be formulated as follows. A body of arbitrary

shape is immersed in a moving fluid ; thermal equilibrium is established after

a sufficient length of time, and it is required to determine the temperature

difference T\— To then existing between the body and the fluid.

The solution of this problem is given by equation (50.2), in which, however,

we cannot now neglect the term containing the viscosity as we did in (53.1);

it is this term which is responsible for the effect under consideration. Thus
we have for a steady state

vgrad r = xAr + _(_! + -_±
. (55.1)

ZCp \ OXjc OX{ ]

This must be supplemented by the equations of motion (53.3) of the fluid

itself and also, strictly speaking, by the equation of thermal conduction in the

body. In the limiting case where the body has a sufficiently small thermal

conductivity, we can neglect the latter and suppose the temperature at any

point on the surface of the body to be simply equal to the fluid temperature

at that point, obtained by solving equation (55.1) with the boundary condition
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dTjdn = 0, i.e. the condition that there is no heat flux through the surface of
the body. In the opposite limiting case where the body has a sufficiently

large thermal conductivity, we can use the approximate condition that the
temperature should be the same at every point of its surface; the derivative
dTjdn will not then in general vanish over the whole surface, and we must
require only that the total heat flux through the surface of the body (i.e. the
integral of BT/dn over the surface) should be zero. In both these limiting cases
the thermal conductivity of the body does not appear explicitly in the solution
of the problem, and we shall suppose in what follows that one of these cases

holds.f

Equations (55.1) and (53.3) contain the constant parameters x> v and cv ,

and their solutions involve also the dimension / of the body and the velocity

U of the main stream. (The temperature difference Ti-T is not now an
arbitrary parameter, but must itself be determined by solving the equations.)
From these parameters we can construct two independent dimensionless
quantities, which we take to be R and P. Then we can say that the required
temperature difference 7i- To is equal to some quantity having the dimensions
of temperature (which we take to be U2jcv), multiplied by a function of R and
P:

r1-r = (^/c3,)/(R,p). (55.2)

It is easy to determine the form of this function for very small Reynolds
numbers, i.e. for sufficiently small velocities U. In this case the term
V'grad T in (55.1) is small compared with xAT, so that this equation be-
comes

XAT= -
ZCp

The temperature and velocity vary considerably over distances of the order
of /. Hence an estimate of the two sides of equation (55.3) gives x(T\- T )/l2

~vU2/cpl2, or Ti-T ~ vU2
Jxcp . Thus we conclude that, for small R,

7i- To = constant x PU2/cp , (55.4)

where the numerical constant depends on the shape of the body. It should
be noticed that the temperature difference is proportional to the square of

the velocity U.

Some general conclusions concerning the form of the function /(P, R) in

(55.2) can be drawn in the opposite limiting case of large R, when the velocity

and the temperature vary only in a narrow boundary layer. Let 8 and S' be
the distances over which the velocity and temperature respectively vary; 8

and 8' differ by a factor depending on P. The amount of heat evolved in

unit area of the boundary layer in unit time owing to the viscosity of the fluid

t I. A. Kibel' has obtained an exact solution for the rotation of a heated disk in a viscous fluid, simi-
lar to the solution given in §23 for a constant temperature; see Prikladnaya matematika i mekhanika 11,

611, 1947.



§55 Heating of a body in a moving fluid 211

is the integral of \vp{dvijdx]c-\-dvjcjdxi)2 over the thickness of the layer

(see (16.3)). This integral is of the order of vp(U2jB2)8 — vpU2
j8. The same

amount of heat must be lost to the body, and it is therefore equal to the heat

flux q =» — KdTjdn ~ xcvp{Ti— 7o)/o". Comparing the two expressions, we
find

T1-T = (U2
lcp)f(P). (55.5)

Thus, in this case, the function/is independent of R, but its dependence on

P remains undetermined.

PROBLEMS

Problem 1. Determine the temperature distribution in a fluid moving in Poiseuille flow

in a pipe of circular cross-section whose walls are maintained at a constant temperature T .

Solution. In cylindrical co-ordinates, with the ar-axis along the axis of the pipe, we have
v z — v = 2vm[l — (r/R)*\, where vm is the mean velocity of the flow. Substitution in (55.3)

gives the equation

1 d / dT\ \6vm2 „
1 r I

= r2.

r dr \ dr J R* xcv
The solution finite at r = and equal to T for r = R is

r-r„ = ^[i-(-L)]
4

.

Problem 2. Determine the temperature difference between a solid sphere and a fluid

moving past it at small Reynolds numbers. The thermal conductivity of the sphere is

supposed large.

Solution. We take spherical co-ordinates r, 8, <f>,
with the origin at the centre of the sphere

and the polar axis in the direction of the velocity of the main stream. Calculating the com-
ponents of the tensor dvildxk+dvk/dxi by means of formulae (15.17) and (20.9), we obtain

equation (55.3) in the form

1 d / „dT\ 1 d /1 -(
r* 8r\

rz I + ( sin0-
dr J r*smd dd\ 86/

= -A(Rlry [cos20{3 - 6(i?/r)2+ 2(i?/r)4} + (R/r)*]
,

where A = 9«aP/4c„. We look for T(r, 0) in the form T =f(r) cos2 +g(r), and, separating

the part which depends on 9, find two equations for/and g:

r2f"+ 2rf-6f = -A[3{R/r)2 -6(R/ry+2(Rlr)%

r2g" + Irg'+ 2/ = - A(R/r)*.

From the first we obtain

/ = A[^R/r)2 + (R/rY-MRIr)6
] + ci(Rlrf;

the term of the form constant X r2 is omitted, since it does not vanish at infinity. The second
equation then gives

g = -lAB(Rlr)2+ i(RlrY+MRIr)6]-MR/rf+c2 Rlr+C3.

The constants cu c2 , ca are determined from the conditions

T= constant and f (dT/dr)r* sin0d0 =
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for r = R, which are equivalent to/(JR) = and g'(R)+\f'(R) = 0; also T = T at infinity.

Thus cx = —5.4/3, c2 = 2.4/3, c8 = T . The temperature difference between Tt
= T(i?)

and T is found to be Ta—T = 5u2P/8cP . It may be noted that the temperature distribution

obtained actually satisfies the condition dT/dr — for r = R, i.e. / '(R) = £'(.R) = 0.

Hence it is also the solution of the same problem for a sphere of small thermal conductivity.

§56. Free convection

We have seen in §3 that, if there is mechanical equilibrium in a fluid in a

gravitational field, the temperature distribution can depend only on the alti-

tude z: T = T(z). If the temperature distribution does not satisfy this

condition, but is a function of the other co-ordinates also, then mechanical

equilibrium in the fluid is not possible. Furthermore, even if T = T(z),

mechanical equilibrium may still be impossible if the vertical temperature

gradient is directed downwards and its magnitude exceeds a certain value (§4).

The absence of mechanical equilibrium results in the appearance of internal

currents in the fluid, which tend to mix the fluid and bring it to a constant

temperature. Such motion in a gravitational field is called free convection.

Let us derive the equations describing this convection. We shall suppose

the fluid incompressible. This means that the pressure is supposed to vary

only slightly through the fluid, so that the density change due to changes in

pressure may be neglected. For example, in the atmosphere, where the pres-

sure varies with height, this assumption means that we shall not consider

columns of air of great height, in which the density varies considerably over

the height of the column. The density change due to the non-uniform heating

of the fluid, of course, can not be neglected ; it results in the forces which

bring about the convection.

We write the variable temperature T(x, y, z, t) in the form T = To+ T',

where To is some constant mean temperature from which the variation T' is

reckoned. We shall suppose that 7" is small compared with To.

We write the fluid density also in the form p = p + p, with po a constant.

Since the temperature variation 7" is small, the resulting density change p
is also small, and we can write

p' = (8pol8T)p T
f = -pojSr. (56.1)

Here /? = —(l/p)dpJ8T is the thermal-expansion coefficient of the fluid.

In the pressure p = po+p', Po is not constant. It is the pressure cor-

responding to mechanical equilibrium, when the temperature and density are

constant and equal to To and po respectively. It varies with height according

to the hydrostatic equation

Po = Pog*^+ constant. (56.2)

We start by transforming the Navier-Stokes equation, which has, in the

presence of a gravitational field, the form

8v/d*+ (v»grad)v = -(l//>)gradp + vAv+g;

this is obtained by adding the force g per unit mass to the right-hand side
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of equation (15.7). We now substitute p = po+p\ p = po+p; to the first

order of small quantities, we have

grad^> grad/> gradp' grad^>—-— = + p
'

t

P po po po*

or, substituting (56.1) and (56.2),

grad/> grad/>'- - = g + - - + gT%
P po

With this expression, the Navier-Stokes equation gives

Sv/^+(v.grad)v= -(l//>)grad/>' + vAv-j8rg, (56.3)

where the suffix has been dropped from p . In the thermal conduction equa-
tion (50.2), the viscosity term can be shown to be small in free convection
compared with the other terms, and may therefore be omitted. We thus
obtain

dT'/dt+vgrad T = XAT*. (56.4)

Equations (56.3) and (56.4), together with the equation of continuity
div v = 0, form a complete system of equations governing free convection.
For steady flow, the equations of convection become

(v.grad)v= -(l//>)grad£'-j8rg+ vAv, (56.5)

v.gradT' = XAT', (56.6)

divv = 0. (56.7)

This system of five equations for the unknown functions v, p'[p and V
contains three parameters, v, x and fig. Moreover, the solution will involve
a characteristic length / and the temperature difference Ti - T between the
solid body and the fluid at a great distance. There is here no characteristic

velocity, since there is no flow due to external forces, and the whole motion
of the fluid is due to its non-uniform heating.

Thus steady free convection in a gravitational field is characterised by
five parameters, which have the following dimensions: x = v = cm2/sec,

Ti—Tq = deg, / = cm, fig = cm/sec2 deg. From these we can form two
independent dimensionless quantities, which we take to be the Prandtl
number P = v/x and the Grashof number

G = ^(T1-T )I^. (56.8)

The similarity law for free convection is therefore

v = (v//)f(r//, G), T = (Ti- 7o)/(r//, P, G). (56.9)

Two flows are similar if their Prandtl and Grashof numbers are the same.
Convective heat transfer caused by gravity is again characterised by the
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Nusselt number, which is now a function of P and G only:

N=/(P,G). (56.10)

The value of the Grashof number is an important characteristic of con-

vective flow. When G is sufficiently small, the free convection is unimportant

in the heat transfer in the fluid, which is then due mainly to ordinary con-

duction.

Convective flow may be either laminar or turbulent. There is no Reynolds

number for free convection (since there is no characteristic velocity para-

meter), and the onset of turbulence is determined by the Grashof number

:

the convection becomes turbulent when G is very large.

A very curious case of convection is the flow which occurs in a fluid between

two infinite horizontal planes at different temperatures, that of the lower plane

(T2) being greater than that of the upper plane (Ti). If the temperature

difference T% — T\ is small, the fluid remains at rest and there is pure thermal

conduction, the fluid temperature and density being functions only of the

vertical co-ordinate z; the density increases upward. If the difference T2—T1
exceeds a certain critical value, however, which depends on the distance /

between the planes, such a state becomes unstable and steady convection

occurs. The onset of instability can be determined theoretically (see Problem

5). The critical value of the difference T%— T\ appears as a factor in the

product

GP = ^Z3(r2 -Ti)/vX . (56.11)

In a layer of fluid between two solid planes at constant temperatures, con-

vection must occur if GP > 1710. If the upper surface is free, but still at a

constant temperature, then convection occurs for GP > HOO.f
The convective flow which occurs is somewhat unusual. Since the fluid is

unbounded in the horizontal plane, it is evident that the flow must be periodic

in that plane. In other words, the space between the bounding planes must be

divided into similar right prisms in each of which the fluid moves in a similar

way. The horizontal cross-sections of these prisms form a network in the

horizontal plane. The theoretical determination of the nature of this network

is very difficult, but experimental results seem to indicate that there is a

hexagonal pattern with cells in the form of hexagonal prisms, the fluid moving

up in the middle and down at the edges, or else vice versa.

For very large values of G, the steady convection in turn becomes unstable

;

turbulence sets in for G ~ 50,000.

Another similar case of instability is that of convection in a vertical

cylindrical pipe along which a constant temperature gradient is maintained.

t These conditions (for a given difference T2 — Tt) are always fulfilled if / is sufficiently large. To
avoid misunderstanding, we should mention that we are speaking here of values of / for which the

variation in the fluid density under the action of gravity is unimportant. Hence the above criteria

cannot.be applied to gas columns of great height. In this case we have to use the criterion derived in

§4, from which we see that convection need not occur for a column of any height if the temperature

gradient is small enough.
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Here again there is a critical value of the product GP beyond which the fluid

at rest is unstable; see Problem 6.

PROBLEMS
Problem 1. Determine the Nusselt number for free convection on a flat vertical plate.

It is assumed that the velocity and the temperature difference T = T—T (where T is

the fluid temperature at infinity) are appreciably different from zero only in a thin boundary
layer adjoining the surface of the plate (K. PohlhaUsen).

Solution. We take the origin on the lower edge of the plate, the *-axis vertical, and the
y-axis perpendicular to the plate. The pressure in the boundary layer does not vary along the
}>-axis (cf. §39), and therefore is everywhere equal to the hydrostatic pressure p (x), i.e.

p' = 0. With the usual accuracy of boundary-layer theory, equations (56.5)-(56.7) become

ay
=^ + ^-r„), (i)

BT BT B*T
. \- Vy = ^

—

Bx By By
+ *«r£: = xzi. (2)

Bvx Bvy

with the boundary conditions vx = vy = and T = T± for y = (Tx being the temperature
of the plate), vx = and T = T for y = oo. These equations can be converted into ordinary
differential equations by introducing as the independent variable

€ = Cyjx\ C = \MTi- ?o)/4v2]*. (4)
We put

vx = AvCW^'^l T-T = (T1- ro)0(£). (5)

Then (3) gives vy = vCx-h({<f>'-3<f>), and (1) and (2) give equations for
<f>
and 0:

41" + 3cfxf>"-24'2+ d = 0, 6" + 3P<£0' = 0, (6)

with the boundary conditions #0) = f(0) = 0, 6(0) = 1, f(oo) = 0, «(oo) = 0. It follows
from (4) and (5) that the thickness of the boundary layer is of the order S ~ xiJC. The con-
dition for the solution to be valid is therefore S < / (where I is the height of the plate), or
G* ^> 1. The total heat flux per unit area of the plate is

The Nusselt number is N =/(P)G*, where the function /(P) is determined by solving the
equations (6).

Problem 2. A hot turbulent submerged jet of gas is bent round by a gravitational field : find
its shape (G. N. Abramovich 1938).

Solution. Let T be some mean value (over the cross-section of the jet) of the temperature
difference between the jet and the surrounding gas, u some mean velocity of the gas in the
jet, and / the distance along the jet from its point of entry; I is supposed large compared with
the dimensions of the aperture by which the jet enters. The condition of constant heat flux
Q along the jet is Q ~ pc^TuR^- = constant and, since the radius of a turbulent jet is pro-
portional to / (cf. §35), we have

T'ul2 = constant ~ Q/pCp] (1)
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we notice that, in the absence of the gravitational field, u f* \jl (see (35.3)) and it then follows

from (1) that T ~ 1/Z.

The momentum flux vector through the cross-section of the jet is proportional to pu2R2n
~ gu2

l
2n, where n is a unit vector along the jet. Its horizontal component is constant along

the jet:

m2/2 cos 6 = constant, (2)

id the horizontal, while the chang

et. This force is proportional to

ppgT'R* ~ ppgT'l* ~ feQlcp.

where 8 is the angle between n and the horizontal, while the change in the vertical component
is due to the "lift force" on the jet. This force is proportional to

Hence we have

d(Z2w2 sin 0)/dZ - PgQIpcpU. (3)

It then follows from (2) that d(tan 0)/dl = constant X / cos* 0, whence we obtain finally

/
dd

= constant x I2
, (4)

cos5/2

where O gives the direction of the emergent jet.

In particular, if does not vary appreciably along the jet, (4) gives 0— O = constant X/2
.

This means that the jet is a cubical parabola, in which the deviation d from a straight line is

d = constant X I
3
.

Problem 3. A turbulent jet of heated gas (i.e. one with a large Grashof number) rises from

a fixed hot body. Determine the variation of the velocity and temperature in the jet with

height (Ya. B. Zel'dovich 1937).

Solution. As in the preceding case, the radius of the jet is proportional to the distance

from its source, and we have, analogously to (1) of Problem 2, T'uz2 = constant, and instead

of (3) d(z2u2)Jdz = constant/w, where z is the height above the body, supposed large compared

with the dimension of the body. Integrating, we find u ~ z~*, and for the temperature

r ~z-s '\

Problem 4. The same as Problem 3, but for a laminar convective jet rising freely (Ya.

B. Zel'dovich 1937).

Solution. Together with the relation T'uR2 = constant, which expresses the constancy

of the heat flux, we have u2
fz ~ vu/R2 ~ PgT', which follows from equation (56.5). From

these relations we find the following variation of the radius, velocity and temperature with

height: R ~ ^z, u = constant, T ~ 1/z. It may be noticed that the number G ~ T'R3

~ \/z, i.e. increases with height, and the jet must therefore become turbulent at a certain

altitude.

Problem 5. Derive the equations governing the onset of steady convection between two

horizontal planes maintained at given temperatures (Rayleigh 1916).

Solution. A perturbation proportional to e~iu>t is applied to a fluid at rest with a constant

vertical temperature gradient dT/dz = —A < 0. The state of rest is unstable if there is any

possible value of to whose imaginary part is positive. Hence the onset of instability is deter-

mined by the appearance of a solution for which the imaginary part of w is zero. In this case

we are concerned with the appearance of steady convection as a result of instability; hence

we must seek solutions for which the real part of w is also zero, that is, solutions independent

of time.

In equations (56.5)-(56.7), the velocity v of the perturbing motion and the resulting pressure

variation p' are small quantities. We write the temperature as T = —Az+r, where the
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perturbation t is small ; we suppose the pressure variation resulting from the constant tem-
perature gradient to be included in p . Then we find, omitting second-order terms,

vAv = gjcad(p'lp)+pTg,

xAr = -AvZt divv = 0. *
'

Eliminating v and p'/p, we obtain an equation for t:

where y = V$gA\vx — GP, and Z is the distance between the planes.

The boundary conditions on equations (1) at a solid surface are t = 0, v z — 0, 8v z\8z — 0.

The last of these follows from the equation of continuity, since we must have vx = vy =
for all x and y. By the second equation (1), the conditions on v z can be replaced by conditions
on higher derivatives of t, c 2 being replaced by 82rj8z2

.

We look for t in the form eik
'Tf(z), where k is a vector in the xy-plane, and obtain for f(z)

the equation

d2 \3 yk21 d* \
3 y&

The general solution of this equation is a linear combination of the functions cosh((iz/l)

and sinh^z/l), where n
2 = k2

l
2 —y*(klfty\ with the three different values of ^/\. The

coefficients are determined by the boundary conditions, which lead to a system of algebraic
equations; the compatibility condition then determines the function kl(y). The inverse
function y = y(kl) has a minimum for some value of kl; the corresponding y = GP deter-
mines the required criterion for the appearance of instability, and the value of k determines
the periodicity in the xy-plane, but not the symmetry, of the resulting motion, f

Problem 6. Determine the onset of steady convection in a fluid at rest in a vertical cylin-
drical pipe along which a constant temperature gradient is maintained (G. A. Ostroumov
1946).

Solution. We seek a solution of the equations (1) of Problem 5 in which the convective
velocity v is everywhere parallel to the axis of the pipe (the .s-axis), and the flow pattern does
not vary along this axis, i.e. v z = v, r and dp'ldz depend only on the co-ordinates xand y.
Then the equations become Bp'Jdx = 0, dp'IBy = 0, vA 2v = —PgT+(l[P)dp'ldz, xA 8t
= —Av, where A 2 = d2/8x2+ 82

j8y
2

. The first two equations show that dp'fdz = constant,
and, eliminating t from the other equations, we have

where we have again put y = AR^g/xv = GP, and R is the radius of the pipe. At the surface
of the pipe we must have v = and the heat flux continuous. Moreover, the total mass flux
through a cross-section of the pipe must be zero.

Equation (1) has solutions of the form Jn(kr) cos rt(f> and In(kr) cos n<f>, where Jn and In
are Bessel functions of real and imaginary argument respectively, r and <j> are polar co-ordi-
nates in the cross-section, and kR = y*. The onset of convection corresponds to the solution
for which y is least. It is found that this is the solution with n = 1

:

v = vocostUiikry^kty-hikrViikR)],

r = voiv&l^costtMkrWkiq + hikrViikR)].

f A detailed account of the calculations is given by A. Pellew and R. V. Southwell, Proceedings
of the Royal Society A176, 312, 1940.
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The pressure gradient dp'Jdz does not appear. The condition v = for r — R is satisfied

identically, and the total mass flux through the cross-section of the pipe is zero. In the

limiting case of thermally insulating walls, we must have also drjdr = for r = R, or

JojkR) IojkR) _ 2

j!(kR)
+

h(kR) kR

The smallest root of this equation gives the required critical value of y = (kR)* = 67-4.

In the opposite limiting case of walls of infinite thermal conductivity, we must have t =
for r = R; thenJi(kR) = 0, whence the critical value is y = 215*8.f

t For a more detailed discussion see G. A. Ostroumov, Free Convection in a Confined Medium
(Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi), Moscow 1952.



CHAPTER VI

DIFFUSION

§57. The equations of fluid dynamics for a mixture of fluids

Throughout the above discussion it has been assumed that the fluid is

completely homogeneous. If we are concerned with a mixture of fluids

whose composition is different at different points, then the equations of
fluid dynamics are considerably modified.

We shall discuss here only mixtures with two components. The com-
position of the mixture is described by the concentration c, defined as the
ratio of the mass of one component to the total mass of the fluid in a given
volume element.

In the course of time, the distribution of the concentration through the
fluid will in general change. This change occurs in two ways. Firstly, when
there is macroscopic motion of the fluid, any given small portion of it moves
as a whole, its composition remaining unchanged. This results in a purely
mechanical mixing of the fluid; although the composition of each moving
portion of it is unchanged, the concentration of the fluid at any point in space
varies with time. If we ignore any processes of thermal conduction and inter-

nal friction which may also be taking place, this change in concentration is a
thermodynamically reversible process, and does not result in the dissipation

of energy.

Secondly, a change in composition can occur by the molecular transfer of
the components from one part of the fluid to another. The equalisation of the
concentration by this direct change of composition of every small portion of
fluid is called diffusion. Diffusion is an irreversible process, and is, like

thermal conduction and viscosity, one of the sources of energy dissipation in a
mixture of fluids.

We denote by p the total density of the fluid. The equation of continuity
for the total mass of the fluid is, as before,

8Pl8t+ div(pv) = 0. (57.1)

It signifies that the total mass of fluid in any volume can vary only by the
movement of fluid into or out of that volume. It must be emphasised that,

strictly speaking, the concept of velocity itself must be redefined for a mixture
of fluids. By writing the equation of continuity in the form (57.1), we have
defined the velocity, as before, as the total momentum of unit mass of fluid.

The Navier-Stokes equation (15.5) is also unchanged. We shall now derive
the remaining equations of fluid dynamics for a mixture of fluids.

In the absence of diffusion, the composition of any given fluid element
would remain unchanged as it moved about. This means that the total

219
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derivative dcjdt would be zero, i.e. the equation dc/dt = dc/dt+v-grad c =
would hold. This equation can be written, using (57.1), as

d(pc)ldt+ div(pcv) = 0,

i.e. as an equation of continuity for one of the components of the mixture

(pc being the mass of that component in unit volume). In the integral form

— pcdV = — (b pcv-df

it shows that the rate of change of the amount of this component in any

volume is equal to the amount of the component transported through the

surface of that volume by the motion of the fluid.

When diffusion occurs, besides the flux pcv of the component in question

as it moves with the fluid, there is another flux which results in the transfer

of the components even when the fluid as a whole is at rest. Let i be the

density of this diffusion flux, i.e. the amount of the component transported

by diffusion through unit area in unit time.f Then we have for the rate of

change of the amount of the component in any volume

— pcdV = — (ppcv'df— (|)i»df,

or, in differential form,

d{pc)\dt = - div(pcv) - div i. (57.2)

Using (57.1), we can rewrite this "equation of continuity" for one component

in the form

p(dcjdt+vgrade) = -divi. (57.3)

To derive another equation, we repeat the arguments given in §49, bearing

in mind that the thermodynamic quantities for the fluid are now functions of

the concentration also. In calculating the derivative 8(%pv2+ pe)jdt (in §49)

by means of the equations of motion, we had to transform the terms pdejdt

and — v-gradp. This transformation must now be modified, because the

thermodynamic identities for the energy and the heat function now contain an

additional term involving the differential of the concentration:

dc = Tds+(plpZ)dp + fj,dc,

dw = Tds+ (l[p)dp+fidc,

f The sum of the flux densities for the two components must be pv. If the flux density for one

component is pev+i, that for the other component is therefore p(l —c)v— i.
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where p. is an appropriately denned chemical potential of the mixture.f

Accordingly, an additional term p/idc/dt appears in the derivative pde/dt.

Writing the second thermodynamic relation in the form

dp = pdw—pTds—pfxdc,

we see that the term —vgradp will contain an additional term ppv-grad c.

Thus we must add pp{dcJdt+ \- grade) to the expression (49.3). By
equation (57.3), this can be written -p. div i. The result is

d
—(ipv2 +pe) = — div\pv(lv2+ w)—v»o' + q] +
8t

(8s \ dvt
+pT\ — + vgrads) - a'ik h divq-ju, divi. (57.4)

\ dt 1 dxic

We have replaced - k grad T by a heat flux q, which may depend not only

on the temperature gradient but also on the concentration gradient (see the

next section). The sum of the last two terms on the right can be written

divq— jLtdivi = div(q— jui)+i-grad^.

The expression p\(%v2 + w) — v«a' + q which is the operand of the diver-

gence operator in (57.4) is, by the definition of q, the total energy flux in

the fluid. The first term is the reversible energy flux, due simply to the

movement of the fluid as a whole, while the sum — vo' + q is the irreversible

flux. When there is no macroscopic motion, the viscosity flux v«o' is zero,

and the thermal flux is simply q.

The equation of conservation of energy is

8
—Upv2 +pe)= -div[pv(|t;2+ ro)-v.o' + q]. (57.5)

Subtracting from (57.4), we obtain the required equation

8s
_ , \ , 3©<

8xjc

which is a generalisation of (49.4).

(8s \ dvt

PT \ ~Z + v'Srad * = a
'

ik
~o

div(q-ju)-i.grad/A, (57.6)
\ ot J dxic

t It is known from thermodynamics that, for a mixture of two substances, the thermodynamic
identity is

de = Tds—pdV+fiidni+p,2dn2,
where nlt n^ are the numbers of particles of the two substances in 1 g of the mixture, and (j.lt ^ are
the chemical potentials of the substances. The numbers nv n^ satisfy the relation «1OT1+n2OT2

= 1,
where m1 and n^ are the masses of the two kinds of particle. If we introduce as a variable the
concentration c = n^mx , we have

de= Tds-pdV+(^-^)dc.
\m\ mil

Comparing this with the relation given in the text, we see that the chemical potential fi is related
to fa and /ig by

_ pi H>2

mi 7»2
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We have thus obtained a complete system of equations of fluid mechanics

for a mixture of fluids. The number of equations in this system is one more
than for a single fluid, since there is one more unknown function, namely the

concentration. The equations are the equation of continuity (57.1), the

Navier-Stokes equations, the "equation of continuity" (57.2) for one com-
ponent, and equation (57.6), which determines the change in entropy.

It must be noticed that equations (57.2) and (57.6) as they stand determine

only the form of the corresponding equations of fluid dynamics, since they

involve the undetermined fluxes i and q. These equations become determi-

nate only when i and q are replaced by expressions in terms of the gradients

of concentration and temperature. The corresponding expressions will be
obtained in §58.

For the rate of change of the total entropy of the fluid, a calculation entirely

similar to that of §49, but using (57.6) in place of (49.4), gives the result

1 J„dF - -
J
^yV J^dr+ ..., (57.7)

where we have omitted, for brevity, the viscosity terms.

§58. Coefficients of mass transfer and thermal diffusion

The diffusion flux i and the heat flux q are due to the presence of con-

centration and temperature gradients in the fluid. It should not be thought,

however, that i depends only on the concentration gradient and q only on the

temperature gradient. On the contrary, each of these fluxes depends, in

general, on both gradients.

If the concentration and temperature gradients are small, we can suppose

that i and q are linear functions of grad fi and grad T.-f Accordingly,

we write i and q as

i= -agrad/A-jSgradT, q= -S grad[M-y grad T+fxi.

There is a simple relation between the coefficients /? and 8, which is a

consequence of a symmetry principlefor the kinetic coefficients. This symmetry
principle is as follows.!

Let us consider some closed system, and let xi, X2, ... be some quantities

characterising the state of the system. Their equilibrium values are deter-

mined by the fact that, in statistical equilibrium, the entropy S of the whole

system must be a maximum, i.e. we must have Xa = for all a, where Xa

denotes the derivative

Xa = -dSldxa . (58.1)

We assume that the system is in a state near to equilibrium. This means that

t The fluxes q and i are independent of the pressure gradient (for given grad fx and grad T), for

the same reason as that given with regard to q in §49.

X See Statistical Physics, §119, Pergamon Press, London 1958.
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all the xa are very little different from their equilibrium values, and the

Xa are small. Processes will occur in the system which tend to bring it into

equilibrium. The quantities xa are functions of time, and their rate of change

is given by the time derivatives xa ; we express the latter as functions of Xa ,

and expand these functions in series. As far as terms of the first order we have

xa = - ^2yabXb . (58.2)

b

The symmetry principle for the kinetic coefficients states that the yab (called

the kinetic coefficients) are symmetrical with respect to the suffixes a and b

:

Yab = 7ba- (58.3)

The rate of change of the entropy S is

S= -T,Xa xa . (58.4)

Now let the xa themselves be different at different points of the system, i.e.

each volume element have its own values of the xa . That is, we suppose the xa
to be functions of the co-ordinates. Then, in the expression for S, besides

summing over a we must integrate over the volume of the system:

S = - (^Xa xa dV. (58.4a)
J a

It is usually true that the values of the xa at any given point depend only on

the values of the Xa at that point. In this case we can write down the

relation between xa and Xa for each point in the system, and obtain the same
formulae as previously.f

In the problem under consideration we take as the xa the components of

the vectors i and q— [A. Then we see from a comparison of (57.7) and (58.4a)

that the Xa are respectively the components of the vectors (l/T)grad/j

and (1/T2) grad T. The kinetic coefficients yab are the coefficients of these

vectors in the equations

i--^(!^)-/^J=JI).

q-,i=-ar(^)-yr*(i^).

By the symmetry of the kinetic coefficients, we must have /ST2 = 8T, or

8 = (3T. This is the required relation.

t Strictly speaking, in order to apply the relations obtained for a discrete set of quantities to a

continuous distribution, we should write the integral (58.4a) as a sum over small but finite

regions AV of the body (cf. §132); then the definition of the coefficients yab also involves AV. In
the present case, however, this procedure is unnecessary, since we use only the symmetry of the
kinetic coefficients, and not their actual values.
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We can therefore write the fluxes i and q as

i = -a grad/*-£ grad T,

q = _j8r grad/*-y grad T+/>ti,

with only three independent coefficients a, /?, y. It is convenient to eliminate

grad ju from the expression for the heat flux, replacing it by i and grad T.

Then we have

i = -agrad^-jSgradr, (58.6)

q = (^+j8T/a)i- k grad T, (58.7)

where

K = y-p2T/oL. (58.8)

If the diffusion flux i is zero, we have pure thermal conduction. For this

to be so, T and p must satisfy the equation a grad ju+ fi
grad T = 0, or

adj^+^dT = 0. The integration of this equation gives a relation of the

form/(c, T) — which does not contain the co-ordinates explicitly. (The

chemical potential is a function of the pressure, as well as of c and T, but in

equilibrium the pressure is constant.) This relation determines the depen-

dence of the concentration on the temperature which must hold if there is

no diffusion flux. Moreover, for i = we have from (58.7)

q = — k grad T,

so that k is just the thermal conductivity.

Let us now change to the usual variables p, T and c. We have

grad/z = (dpi dc)v .Tgrad c+ {d[xj'8T)C>Pgrad T+ (dfi/ dp)cT gradp.

In the last term we can replace the derivative (dpjdp) CtT by (dVjdc)Pt T,

where V is the specific volume.f Substituting in (58.6) and (58.7), and putting

p \ dc / T,p
(58.9)

PkTDIT = v.(dpjdT)CtV+p y

kP = p(dVldc)PiTl(dpldc)p T, (58.10)

we obtain

i = -
PD[gradc+(k TIT) grad T+(kp/p) grad/>], (58.11)

q = [k T(Spl8c)p , T- T(8pldT)p ,c
+p]i- k grad T. (58.12)

The coefficient D is called the diffusion coefficient or mass transfer coefficient]

f The equality of these two derivatives follows from the thermodynamic identity

d<f> = -sdT+Vdp + pdc,

where
<f>

is the thermodynamic potential per unit mass;

(dpjdp)c>T = dmdp 8c = (8VI8c)PfT .
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it gives the diffusion flux when only a concentration gradient is present.

The diffusion flux due to the temperature gradient is given by the thermal

diffusion coefficient UtD\ the dimensionless quantity Ay is called the thermal

diffusion ratio.

The last term in (58.11) need be taken into account only when there is a

considerable pressure gradient in the fluid (caused by an external field, say).

The coefficient kpD may be called the barodiffusion coefficient. It should

be noticed that, by formula (58.10), the dimensionless quantity kp is entirely

determined by thermodynamic properties alone.

In a single fluid there is, of course, no diffusion flux. Hence it is clear that

kr and kp must vanish in each of the two limiting cases c = and c = 1.

The condition that the entropy must increase places certain restrictions on

the coefficients in formulae (58.6) and (58.7). Substituting these formulae

in the expression (57.7) for the rate of change of the entropy, we find

8 r f /c(gradT)2 C i2 , „ n *„

Hence it is clear that, besides the condition k > which we already know,

we must have also a > 0. Bearing in mind that the derivative (d[Mldc)PtT
is always positive,f we therefore find that the diffusion coefficient must be

positive : D > 0. The quantities &t and kp , however, may be either positive

or negative.

We shall not pause to write out the lengthy general equations obtained by

substituting the above expressions for i and q in (57.3) and (57.6). We
shall take only the case where there is no significant pressure gradient, while

the concentration and temperature of the fluid vary so little that the coeffi-

cients in the expressions (58.11) and (58.12) may be supposed constant,

although they are in general functions of c and T. Furthermore, we shall

suppose that there is no macroscopic motion in the fluid except that which

may be caused by the temperature and concentration gradients. The velocity

of this motion is proportional to the gradients, and the terms in equations

(57.3) and (57.6) which involve the velocity are therefore quantities of the

second order, and may be neglected. The term — i«grad y. in (57.6) is also of

the second order. Thus we have pdcjdt+ div i = 0, pTds/dt+ div(q— fii) = 0.

Substituting for i and q the expressions (58.11) and (58.12) (without the

term in gradp), and transforming the derivative dsjdt as follows:

J

8s I ds \ 8T I 8s \ 8c cp 8T I 8\i \ 8c

Yt~ \~8f) CtV ~8t \~8c ) T,p^t
~

~f ~8t
~

\~8T

)

Pte 8t

t See Statistical Physics, §95.

j For

{8sj8c)PtT = -d^/dcST = -(dfj,l8T)p>c .
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we obtain after a simple calculation

dc/dt = D[Ac+(k T/T)ATl (58.14)

dT/dt - (kT/cp)(dfM/dc)PiT 8c/dt = xA

7

1

. (58.15)

This system of linear equations determines the temperature and concentra-
tion distributions in the fluid.

There is a particularly important case where the concentration is small.

When the concentration tends to zero, the diffusion coefficient tends to a

finite constant, but the thermal diffusion coefficient tends to zero. Hence
kr is small for small concentrations, and we can neglect the term krA T
in (58.14), which then becomes the diffusion equation

dc/dt = DAc- (58.16)

The boundary conditions on the solution of (58.16) are different in

different cases. At the surface of a body insoluble in the fluid the normal
component of the diffusion flux i = — pD grad c must vanish, i.e. we
must have dc/8n = 0. If, however, there is diffusion from a body which
dissolves in the fluid, equilibrium is rapidly established near its surface,

and the concentration in the fluid adjoining the body is the saturation

concentration Co', the diffusion out of this layer takes place more slowly

than the process of solution. The boundary condition at such a surface is

therefore c = cq. Finally, if a solid surface absorbs the diffusing substance

incident on it, the boundary condition is c — 0; an example of such a case is

found in the study of chemical reactions at the surface of a solid.

Since the equations of pure diffusion (58.16) and of thermal conduction

(50.4) are of exactly the same form, we can immediately apply all the formulae
derived in §§51 and 52 to the case of diffusion, simply replacing T by c and

X by D. The boundary condition for a thermally insulating surface corres-

ponds to that for an insoluble surface, while a surface maintained at a constant

temperature corresponds to a soluble surface from which diffusion takes place.

In particular, we can write down, by analogy with (51.6), the following

solution of the diffusion equation

:

M
C{r) =

J^Dif
tM~r2lm ' (58 - 17)

This gives the distribution of the solute at any time, if at time t = it is

all concentrated at the origin (M being the total amount of the solute).

PROBLEM

Determine the barodiffusion coefficient for a mixture of two perfect gases.

Solution. We have for the specific volume V = kT^+n^Jp (the notation is that used
in the second footnote to §57), and the chemical potentials aret

j"l = fl{p, T) + kT log[m/(»i + W2)],

/*2 = flip, r) + ^riog[w2/(wi + «2)].

f See Statistical Physics, §92.
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The numbers nx and n2 are expressed in terms of the concentration of the first component by

nimi = c, n2ms — 1 —c. A calculation using formula (58.10) gives

rl-c C 1

kp = (m2-mi)c(l-c)\ + — .

L «*2 mi]

§59. Diffusion of particles suspended in a fluid

Under the influence of the molecular motion in a fluid, particles suspended

in the fluid move in an irregular manner (called the Brownian motion).

Let one such particle be at the origin at the initial instant. Its subsequent

motion may be regarded as a diffusion, in which the concentration is repre-

sented by the probability of finding the particle in any particular volume

element. To determine this probability, therefore, we can use the solution

(58.17) of the diffusion equation. The possibility of this procedure is due to

the fact that, for diffusion in weak solutions (i.e. when c <4 1, which is when

the diffusion equation can be used in the form (58.16)), the particles of the

solute hardly affect one another, and so the motion of each particle can be

considered independently.

Let w(r, t)6r be the probability of finding the particle at a distance between

r and r+ dr from the origin at time t. Putting in (58.17) Mjp = 1 and

multiplying by the volume 47rr2dr of the spherical shell, we find

w(
r

>Wr = ^tWn exP( " r^Dt) r2 dr ' (59>1)

Let us determine the mean square distance from the origin at time t.

We have

00

r2 = j r^w(r,t)dr. (59.2)

o

The result, using (59.1), is

^ = 6Dt. (59.3)

Thus the mean distance travelled by the particle during any time is propor-

tional to the square root of the time.

The diffusion coefficient for particles suspended in a fluid can be cal-

culated from what is called their mobility. Let us suppose that some constant

external force f (the force of gravity, for example) acts on the particles. In a

steady state, the force acting on each particle must be balanced by the drag

force exerted by the fluid on a moving particle. When the velocity is small,

the drag force is proportional to it and is v[b, say, where b is a constant.

Equating this to the external force f, we have

v = bt, (59.4)

i.e. the velocity acquired by the particle under the action of the external force
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is proportional to that force. The constant b is called the mobility, and can
in principle be calculated from the equations of fluid dynamics. For example,
for spherical particles of radius R, the drag force is 6ttt)Rv (see (20.14)),
and therefore the mobility is

b = 1I6tt7]R. (59.5)

For non-spherical particles, the drag depends on the direction of motion;
it can be written in the form aacVjc, where aw is a symmetrical tensor (see

(20.15)). To calculate the mobility we have to average over all orientations

of the particle; if a\, az, a% are the principal values of the symmetrical tensor

ciik, then we have

b = - — + — + —. (59.6)
3\ai a2 as/

The mobility b is simply related to the diffusion coefficient D. To derive
this relation, we write down the diffusion flux i, which contains the usual
term — pD grad c due to the concentration gradient (we suppose the tem-
perature constant), and also a term involving the velocity acquired by the
particle owing to the external forces. This latter term is evidently pcv.

Thus

i = - PD grad c+ PcMy (59.7)

where we have used the expression (59.4). In a state of thermodynamic
equilibrium, there is no diffusion, and the flux i must be zero. The equili-

brium distribution of the concentration of particles suspended in a fluid,

in an external field, is determined by Boltzmann's formula, according to

which c = constant xrp/w , U being the potential energy of the particle

in the external field. Since f = — grad U, we find the equilibrium concen-
tration gradient to be grad c = cf/kT. Substituting this in (59.7) and equat-
ing i to zero, we have

D = kTb. (59.8)

This is Einstein's relation between the diffusion coefficient and the mobility.

Substituting (59.5) in (59.8), we find the following expression for the

diffusion coefficient for spherical particles:

D = kT/67T7]R. (59.9)

Besides the translatory Brownian motion and diffusion of suspended par-

ticles, we may consider also their rotary Brownian motion and diffusion. Just
as the translatory diffusion coefficient is calculated in terms of the drag
force, so the rotary diffusion coefficient can be expressed in terms of the

forces on a particle executing a rotary movement in the fluid.f

t If (non-spherical) particles are suspended in a plane-parallel stream with a transverse velocity
gradient, a definite distribution of the particles as regards their orientation in space is established as
a result of the simultaneous action of the orienting forces of fluid dynamics and the disorienting
Brownian motion. For the solution of this problem for ellipsoidal particles, see A. Peterlin and H. A.
Stuart, Zeitschriftfur Physik 112, 1, 1939.
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PROBLEMS

Problem 1. Particles execute Brownian motion in a fluid bounded on one side by a plane

wall; particles incident on the wall "adhere" to it. Determine the probability that a particle

which is at a distance xQ from the wall at time t = will have "adhered" to it after a time t.

Solution. The probability distribution zo(x, t) (where x is the distance from the wall)

is determined by the diffusion equation, with the boundary condition w = for x =
and the initial condition w = §(x—x ) for t = 0. Such a solution is given by formula (52.4)

when T is replaced by vi, x by D, and T (x') in the integrand by S(*'—x ). We then obtain

«<*>') = -TTT^-zrT{^p[-(x-xofl4Dt]-exp[-(x+xofl4Dt]}.
2s/\TTDt)

The probability of "adhering" to the wall per unit time is given by the diffusion flux Ddw/Bx

for x = 0, and the required probability W(t) over the time t is

Substituting for to, we find

W{t) = D^[dwldx]x= &t.

W{t) = l-erf[* /2vW]-

Problem 2. Determine the order of magnitude of the time t during which a particle

suspended in a fluid turns through a large angle about its axis.

Solution. The required time t is that during which a particle in Brownian motion moves

over a distance of the order of its linear dimension a. According to (59.3) we have t r*s a2/D,

and by (59.9) D ~ kT/ija. Thus t ~ 7]a
slkT.



CHAPTER VII

SURFACE PHENOMENA

§60. Laplace's formula

In this chapter we shall study the phenomena which occur near the surface
separating two continuous media (in reality, of course, the media are separated
by a narrow transitional layer, but this is so thin that it may be regarded as
a surface). If the surface of separation is curved, the pressures near it in the
two media are different. To determine the pressure difference (called the
surface pressure), we write down the condition that the two media are in
thermodynamic equilibrium together, taking into account the properties of
the surface of separation.

Let the surface of separation undergo an infinitesimal displacement.
At each point of the undisplaced surface we draw the normal. The length of
the segment of the normal lying between the points where it intersects the
displaced and undisplaced surfaces is denoted by S£. Then a volume element
between the two surfaces is S£d/, where d/ is a surface element. Let pi
and/>2 be the pressures in the two media, and let S£ be reckoned positive if

the displacement of the surface is towards medium 2 (say). Then the work
necessary to bring about the above change in volume is

j (-Pi+p2)8ldf.

The total work 8R done in displacing the surface is obtained by adding to
this the work connected with the change in area of the surface. This part of
the work is proportional to the change S/in the area of the surface, and is aS/,

where a is called the surface-tension coefficient.^ Thus the total work is

8R = - j (p1 -p2)8tdf+ a.8f (60.1)

The condition of thermodynamic equilibrium is, of course, that 8R is zero.

Next, let Ri and R% be the principal radii of curvature at a given point of
the surface; we reckon R\ and R2 as positive if they are drawn into medium 1.

Then the elements of length d/i and d/2 on the surface in its principal sections

receive increments (S£/i?i)d/i and (S£/i?2)d/2 respectively when the surface

undergoes an infinitesimal displacement; here d/i and d/2 are regarded as

f For an air-water interface a =72-5 erg/cm2 at 20° C; for air and paraffin a = 24 at 20° C.
The surface tension of liquid metals is very large; for instance, at an air-mercury interface a = 547
at 175° C; for air and liquid platinum a = 1820 at 2000° C. The surface tension between liquid
helium and its vapour is very small, a =0-24 at —270° C.

230
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elements of the circumference of circles with radii JRi and R2. Hence the

surface element d/ = d/id/2 becomes, after the displacement,

d/i(l + 8£/12i)d&(l + 8£/122) « d/id&(l + 8£/22i+ 8(7*2),

i.e. it changes by S£d/(l/2?i+l/l?2)- Hence we see that the total change in

area of the surface of separation is

s/=Mrt) d/- (60 -2)

Substituting these expressions in (60.1) and equating to zero, we obtain

the equilibrium condition in the form

J«K^-(s + i)K-°-

pi

This condition must hold for every infinitesimal displacement of the surface,

i.e. for all S£. Hence the expression in braces must be identically equal to

zero:

-»-'(k
+
k)-

(60 -3)

This is Laplace's formula, which gives the surface pressure. We see that,

if Ri and R2 are positive, pi—/>2 > 0. This means that the pressure is greater

in the medium whose surface is convex. If Ri = R2 — 00, i.e. the surface

of separation is plane, the pressure is the same in either medium, as we
should expect.

Let us apply formula (60.3) to investigate the mechanical equilibrium of

two adjoining media. We assume that no external forces act, either on the

surface of separation or on the media themselves. Using formula (60.3), we
can then write the equation of equilibrium as

1 1
1 = constant. (60.4)

Ri R2

Thus the sum of the curvatures must be a constant over any free surface of

separation. If the whole surface is free, the condition (60.4) means that it

must be spherical (for instance, the surface of a small drop, for which the

effect of gravity may be neglected). If, however, the surface is supported

along some curve (for instance, a film of liquid on a solid frame), its shape is

less simple.

When the condition (60.4) is applied to the equilibrium of thin films

supported on a solid frame, the constant on the right must be zero. For the

sum 1/Ri+ l/i?2 must be the same everywhere on the free surface of the film,

while on opposite sides of the film it must have opposite signs, since, if one
side is convex, the other side is concave, and the radii of curvature are the

same with opposite signs. Hence it follows that the equilibrium condition



232 Surface Phenomena §60

for a thin film is

k +
k=°- <60 -5 >

Let us now consider the equilibrium condition on the surface of a medium
in a gravitational field. We assume for simplicity that medium 2 is simply
the atmosphere, whose pressure may be regarded as constant over the surface,

and that medium 1 is an incompressible fluid. Then we havep2 = constant,

while pi, the fluid pressure, is by (3.2) pi = constant- pgz, the co-ordinate
z being measured vertically upwards. Thus the equilibrium condition
becomes

1 1 gpz— + —- H = constant. (60.6)
Ri R% a

It should be mentioned that, to determine the equilibrium form of the
surface of the fluid in particular cases, it is usually convenient to use the
condition of equilibrium, not in the form (60.6), but by directly solving the
variational problem of minimising the total free energy. The internal free

energy of an incompressible fluid depends only on the volume of the fluid, and
not on the shape of its surface. The latter affects, firstly, the surface free

energy J a d/ and, secondly, the energy in the external field (gravity), which
*s gP J z dV. Thus the equilibrium condition can be written

a
J
df+gp

J
zdV = minimum. (60.7)

The minimum is to be determined subject to the condition

f dV = constant, (60.8)

which expresses the fact that the volume of the fluid is constant.

The constants a, p and g appear in the equilibrium conditions (60.6)

and (60.7) only in the form cc/gp. This ratio has the dimensions cm2
. The

length

a = VV*lgp) (60.9)

is called the capillary constant for the substance concerned.f The shape of

the fluid surface is determined by this quantity alone. If the capillary

constant is large compared with the dimension of the medium, we may
neglect gravity in determining the shape of the surface.

In order to find the shape of the surface from the condition (60.4) or

(60.6), we need formulae which determine the radii of curvature, given the

shape of the surface. These formulae are obtained in differential geometry,

t For water (e.g.), a = 0-122 cm at 20° C.
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but in the general case they are somewhat complicated. They are consider-

ably simplified when the surface deviates only slightly from a plane. We shall

derive the appropriate formula directly, without using the general results of

differential geometry.

Let z = £(#, y) be the equation of the surface ; we suppose that £ is every-

where small, i.e. that the surface deviates only slightly from the plane z = 0.

As is well known, the area / of the surface is given by the integral

or, for small £, approximately by

The variation bf is

'-JK(2H( 8y
dxdy. (60.10)

)dx ay.
8y dy )

8% 8%
+ \8ldxdy.

(60.11)

8x 8x

Integrating by parts, we find

s
'=-J"(2

Comparing this with (60.2), we obtain

1 1 _ / 8^ 8%

#i
+
jfo~ ~\~8x~^~8f

This is the required formula; it determines the sum of the curvatures of a

slightly curved surface.

When three adjoining media are in equilibrium, the surfaces of separation

are such that the resultant of the surface-tension forces is zero on the common
line of intersection. This condition implies that the surfaces of separation

must intersect at angles (called angles of contact) determined by the values of

the surface-tension coefficients.f

Finally, let us consider the question of the boundary conditions that must

be satisfied at the boundary between two fluids in motion, when the surface-

tension forces are taken into account. If the latter forces are neglected, we
have at the boundary between the fluids flj^a^.i* — vi,ik) = 0, which expresses

the equality of the forces of viscous friction on the surface of each fluid.

When the surface tension is included, we have to add on the right-hand

side a force determined in magnitude by Laplace's formula and directed

along the normal

:

Wfto^ift— nicotic
(

X l

= a — + —
\Ri R2

(60.12)

t See, for instance, Statistical Physics, §145, Pergamon Press, London 1958.
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This equation can also be written

(Pi-p2)tii = (a'1>ik- ff'2>tt)%+ a —- + — )m. (60.13)

If the two fluids are both ideal, the viscous stresses a'tk are zero, and we return
to the simple equation (60.3).

The condition (60.13), however, is still not completely general. The reason
is that the surface-tension coefficient a may not be constant over the surface
(for example, on account of a variation in temperature). Then, besides the
normal force (which is zero for a plane surface), there is another force
tangential to the surface. Just as there is a volume force -grad/> per unit
volume (see §2) in cases where the pressure is not uniform, so we have here a
tangential force f, = grad a per unit area of the surface of separation. In
this case we take the positive gradient, because the surface-tension forces
tend to reduce the area of the surface, whereas the pressure forces tend to
increase the volume. Adding this force to the right-hand side of equation
(60.13), we obtain the boundary condition

T / l 1 \1 doc

|/>i-Z>2-a^— + —J^m = (ff'iiirnttK+-; (60.14)

the unit normal vector n is directed into medium 1. We notice that this
condition can be satisfied only for a viscous fluid: in an ideal fluid, a'iJc

=
and the left-hand side of equation (60.14) is a vector along the normal,
while the right-hand side is in this case a tangential vector. This equality
cannot hold, except of course in the trivial case where both sides are zero.

PROBLEMS

Problem 1. Determine the shape of a film of liquid supported on two circular frames
with their centres on a line perpendicular to their planes, which are parallel; Fig. 31 shows a
cross-section of the film.

Solution. The problem amounts to that of finding the surface having the smallest area
that can be formed by the revolution about the line r = of a curve r — r(z) which passes
between two given points A and B. The area of a surface of rotation is

7m

/dr\2-

>->-NHl)Y
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It is well known that the minimum of an integral of the form

J
L(x, x) dt

is given by the equation L— x dL/dx = constant. In the present case this leads to

r = ClV[l + (drldzf],

whence we have by integration r = cx cosh[(«—

c

2)/cj. Thus the required surface (called a

catenoid) is that formed by the revolution of a catenary. The constants cx and c2 must be

chosen so that the curve r{z) passes through the given points A and B. The value of c2

depends only on the choice of the origin of z. For the constant clf however, two values are

obtained, of which the larger must be chosen (the smaller does not give a minimum of the

integral).

When the distance h between the frames increases, it reaches a value for which the equation

for the constant cx no longer has a real root. For greater values of h, only the shape consisting

of one film on each frame is stable. For example, for two frames of equal radius R the catenoid

form is impossible for a distance h between the frames greater than 1 -33.R.

Problem 2. Determine the shape of the surface of a fluid in a gravitational field and

bounded on one side by a vertical plane wall. The angle of contact between the fluid and the

wall is 6 (Fig. 32).

z

l

Fig. 32

Solution. We take the co-ordinate axes as shown in Fig. 32. The plane x = is the plane

of the wall, and z = is the plane of the fluid surface far from the wall. The radii of curvature

of the surface z = z(x) are Rx
= oo, R2 = -(1 +z'2

)
iJz", so that equation (60.6) becomes

2z

a* (1 + *'2)*

= constant, (1)

where a is the capillary constant. For * = oo we must have z = 0, 1/R2 = 0, and the constant

is therefore zero. A first integral of the resulting equation is

1
= A-—

.

(2)

V(l + *'2
)

a'

From the condition at infinity (z = z' = for * = oo) we have A = 1. A second integration

gives

a . V2«
+ •y(»-S)

+ Xq.

The constant * must be chosen so that, at the surface of the wall (x = 0), we have

z' — —cot 9 or, by (2), z = h, where h = ay/{\—sin 0) is the height to which the fluid

rises at the wall itself.
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Problem 3. Determine the shape of the surface of a fluid rising between two parallel
vertical flat plates (Fig. 33).

Fig. 33

Solution. We take the ys-plane half-way between the two plates, and the ay-plane to
coincide with the fluid surface far from the plates. In equation (1) of Problem 2, which gives
the condition of equilibrium and is therefore valid everywhere on the surface of the fluid
(both between the plates and elsewhere), the conditions at x = oo again give the constant as
zero. In the integral (2), the constant A is now different according as \x\ > id or Ixl < id
(the function *(*) having a discontinuity for |x| = id). For the space between the plates,
the conditions are z = for x = and *' = cot B for x = id, where $ is the angle of contact.
According to (2) we have for the heights z = *(0) and xx

= z(id): z = ax/(A-l)
Zi = aV(A—sm 0). Integrating (2), we obtain

So

(A-z2/a*)dz

V[l-(-4-#2
/«2)

2
]

aV(A-cos gy=z

= \a
\

cos i dg

V(A-cos£y

where ^is a new variable related to z by z = a y/(A -cos i). This is an elliptic integral, and
cannot be expressed in terms of elementary functions. The constant A is found from the
condition that z — zt for x = \d, or

in-6

..;
cos f d£

V(^-cos£)'

The formulae obtained above give the shape of the fluid surface in the space between the
plates. As d -*• 0, A tends to infinity. Hence we have for d <^ a

VA

tn—u

cos£d£ = ——cos0,
J \/A

or A = (a2/d2
) cos2

0. The height to which the fluid rises is z X zt X (a2/d) cos 9; this
formula can also be obtained directly, of course.

Problem 4. A thin non-uniformly heated layer of fluid rests on a horizontal plane solid
surface; its temperature is a given function of the co-ordinate x in the plane, and (because
the layer is thin) may be supposed independent of the co-ordinate z across the layer. The
non-uniform heating results in the occurrence of a steady flow, and its thickness £ con-
sequently varies in the x-direction. Determine the function C(x).

Solution. The fluid density p and the surface tension a are, together with the temperature
known functions of x. The fluid pressure p = Po+ pgtf-z), where p is the atmospheric
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pressure (the pressure on the free surface) ; the variation of pressure due to the curvature of the

surface may be neglected. The fluid velocity in the layer may be supposed everywhere parallel

to the »-axis. The equation of motion is

rjd^/dz2 = dpjdx = g[d(p£)ldx-zdPldx]. (1)

On the solid surface (z = 0) we have v = 0, while on the free surface (z = £) the boundary

condition (60.14) must be fulfilled; in this case it is rj[dv/dz] z<=z
= da/dx. Integrating equa-

tion (1) with these conditions, we obtain

ijv = gz(i;-lz)d(pi;)ldx-igz(3P-zZ)dpldx-zdoLldx. (2)

Since the flow is steady, the total mass flux through a cross-section of the layer must be

zero

:

jvdz = 0.

Substituting (2), we find

dt2 dp 1 da
In + ££2_L

t

dx dx g dx
3A

which determines the function £(x). Integrating, we obtain

gt2 = 3/>-*[f/r-*da+ constant]. (3)

If the temperature (and therefore p and a) varies only slightly, then (3) can be written

P = Wpolp)*+ %*-«o)lf>g,

where £ is the value of £ at a point where p = p ^d a = ao-

§61. Capillary waves

Fluid surfaces tend to assume an equilibrium shape, both under the action

of the force of gravity and under that of surface-tension forces. In studying

waves on the surface of a fluid in §§12 and 13, we did not take the latter forces

into account. We shall see below that capillarity has an important effect on

gravity waves of small wavelength.

As in §12, we suppose the amplitude of the oscillations small compared

with the wavelength. For the velocity potential we have as before the equa-

tion A^ = 0. The condition at the surface of the fluid is now different,

however: the pressure difference between the two sides of the surface is

not zero, as we supposed in §12, but is given by Laplace's formula (60.3).

We denote by I the z co-ordinate of a point on the surface. Since £ is

small, we can use the expression (60.11), and write Laplace's formula as

\ dx2 By2

Here p is the pressure in the fluid near the surface, and po is the constant

external pressure. For p we substitute, according to (12.2),

P = -pgl-pm^t,
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obtaining

Pgt+p— - a +— =0;
dt \dx* dyZJ

for the same reasons as in §12, we can omit the constant p if we redefine
<f>.

Differentiating this relation with respect to t, and replacing dt,\dt by tyjdz,
we obtain the boundary condition on the potential

<f>:

d<f> 8U d / 8U d24>\

'^ +^-"&(^ +vH for * =0 - (6U)

Let us consider a plane wave propagated in the direction of the #-axis.
As in §12, we obtain a solution in the form

<f>
= Aekz cos(kx-cot). The

relation between k and o> is now obtained from the boundary condition
(61.1), and is

co2 =gk+ xkZjp. (61.2)

We see that, for long wavelengths such that k ^ V{gpl<*), or k ^ \\a
(where a is the capillary constant), the effect of capillarity may be neglected,
and we have a pure gravity wave. In the opposite case of short wavelengths,
the effect of gravity may be neglected. Then

o>2 = ajfi/p,
(61 3 )

Such waves are called capillary waves or ripples. Intermediate cases are
referred to as capillary gravity waves.

Let us also determine the nature of the oscillations of a spherical drop of
incompressible fluid under the action of capillary forces. The oscillations

cause the surface of the drop to deviate from the spherical form. As usual, we
shall suppose the amplitude of the oscillations to be small.

We begin by determining the value of the sum l/i?i+ 1/R2 for a surface
slightly different from that of a sphere. Here we proceed as in the derivation
of formula (60.11). The area of a surface given in spherical co-ordinatesf
r, 6,

<f>
by a function r = r{6,

<f>)
is

T

A spherical surface is given by r = constant = R (where R is the radius
of the sphere), and a neighbouring surface by r = R+£, where £ is small.
Substituting in (61.4), we obtain

''m^m^Q' sin0d0d^.

t In the remainder of this section </> denotes the azimuthal angle, and we denote the velocity
potential by tfi.
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Let us find the variation 6/ in the area when £ changes. We have

2
f H dl dhl 1 dl Bht,

)

bf = \{2(R+mt + ——- + -—- sin0d0d<£.J
J J I

K }
36 dd sin20 d<f> d<f> I

Y

Integrating the second term by parts with respect to 0, and the third by

parts with respect to </>, we obtain

rVr 13/ an 1 a2n
8f= 2CR+ £) sin0— -^— -J3£sin0d0d<£J

J J\
K

' sin0 dd\ 86 sin20 ^2 J

If we divide the expression in braces by R(R+ 2Q, the resulting coefficient

of S£S/ « 8£R(R+ 2£) sin dddd<f> in the integrand is, by formula (60.2),

just the required sum of the curvatures, correct to terms of the first order in £.

Thus we find

± + ± = !_?£_l(_i-f£ + _L!(si„^)l. (6i.5)

Rx R2 R R2 #2 lsin20 d<p sin0 dd \ ddl)

The first term corresponds to a spherical surface, for which JRi = R% = R.

The velocity potential if/ satisfies Laplace's equation A^ = 0, with a

boundary condition atr = R like that for a plane surface:

dip (2 21 l r l a / an l a^-n
pJL + J sin0— +-— — \\+po = 0.P
a* 1/2 /?2 /?2Lsin0a0\ 50/ sin20 a^2jj

The constant po+ 2«.jR can again be omitted; differentiating with respect to

time and putting dlfdt = vr = a«/»/ar, we have finally the boundary condition

on^:

P
dp RH dr arLsin0a0\ 30 J sin2 d<f>*]\

for r = R. (61.6)

We shall seek a solution in the form of a stationary wave: tp = er+tflr, 0, ^),

where the function /satisfies Laplace's equation, A/ = 0. As is well known,

any solution of Laplace's equation can be represented as a linear combination

of what are called volume spherical harmonic functions r lYlm(9, <f>),
where

Ylm(d,<f>) are Laplace's spherical harmonics: Ylm(d, <f>)
= P,w(cos 6)eim<t>.

Here P,m(cos 0) = sinm dmPi (cos 0)/d (cos 0)
m is what is called an associated

Legendre function, Pi (cos 0) being the Legendre polynomial of order /. As

is well known, / takes all integral values from zero upwards, while m takes the

values 0, ±1, ±2, ..., ±1
Accordingly, we seek a particular solution of the problem in the form

tf,
= Ae-i(0t rl Pim (cos dy™*. (61.7)
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The frequency co must be such as to satisfy the boundary condition (61.6).
Substituting the expression (61.7) and using the fact that the spherical har-
monics Ylm satisfy

1 3 / . JYim\ 1 8*Yim
sin0 dd\ 86/ sin2 302

we find (cancelling ift)

pa> + fo[2-l(l+l)]IR? = 0,

or

o? = o/(/-l)(/+2)/p/28. (61.8)

This formula gives the eigenfrequencies of capillary oscillations of a
spherical drop. We see that it depends only on /, and not on m. To a given /,

however, there correspond 21+ 1 different functions (61.7). Thus each
of the frequencies (61.8) corresponds to 21+ 1 different oscillations. Inde-
pendent oscillations having the same frequency are said to be degenerate;
in this case we have (21+ l)-fold degeneracy.

The expression (61.8) vanishes for / = and / = 1. The value / =
would correspond to radial oscillations, i.e. to spherically symmetrical pulsa-
tions of the drop; in an incompressible fluid such oscillations are clearly

impossible. For / = 1 the motion is simply a translatory motion of the drop
as a whole. The smallest possible frequency of oscillations of the drop cor-
responds to / = 2, and is

wmin = V(8a//>#3). (61.9)

A peculiar wave motion due to surface tension is observed when a thin
layer of viscous fluid flows down a vertical wall. P. L. Kapitza has shown that
these waves must be due to an instability of the original flow that sets in at

comparatively small Reynolds numbers.f

PROBLEMS

Problem 1. Determine the frequency as a function of the wave number for capillary
gravity waves on the surface of a fluid of depth h.

Solution. Substituting in the condition (61.1) <j> = A cos(kx-o)t) cosh k(z+h) (cf. §12,
Problem 1), we obtain co2 = (gk+a.k3

Jp) tanh kh. For tt>lwe return to formula (61.2)',

while for long waves (kh <^ 1) we have to
2 = ghk2 + a.hkiJp.

Problem 2. Determine the damping coefficient for capillary waves.

Solution. Substituting (61.3) in (25.5), we find y = 2vk
2
/p = 2i?w4/ 3/p

1/3a2/s.

Problem 3. Find the condition for the stability of a horizontal tangential discontinuity in a
gravitational field, taking account of surface tension (the fluids on the two sides of the sur-
face of discontinuity being supposed different).

Solution. Let U be the velocity of the upper fluid relative to the lower. On the original
flow we superpose a perturbation periodic in the horizontal direction, and seek the velocity

t See P. L. Kapitza, Zhurnal eksperimental'nol i teoreticheskoi fiziki 18, 3, 1948.
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potential in the form

<f>
= Aekz COs(&tf— 0)t) in the lower fluid,

<£' = A'e~kz COS(&V— COt)+ Ux in the upper fluid.

For the lower fluid we have on the surface of discontinuity v z = d<j>Jdz = d£/d£, where t, is a

vertical co-ordinate in the surface of discontinuity, and for the upper fluid

v
'

z = dtffdz = Udydx+dt/dt.

The condition of equal pressures in the two fluids at the surface of discontinuity is

P d4>ldt+pgl-*Ptld& = P'd<f>'ldt+ P'gt:+ip\v'
2-U 2

);

only terms of the first order in A' need be retained in expanding the expression v'*—U2
.

We seek the displacement £ in the form t, = asin(kx— cat). Substituting
<f>, <f>'

and £ in

the above three conditions for z — 0, we obtain three equations from which a, A and A'

can be eliminated, leaving

tyU l\kg{p- P') tfpp'UZ a&
CO = l + I\

kg(p-P) Wpp'U*
|

a#» I

/
±
VL p+p {p+pf p+p yp+p

In order that this expression should be real for all k, it is necessary that

VA ^ 4*g(p-p')(p+p'ripy
2

.

If this condition does not hold, there are complex a> with a positive imaginary part, and the

motion is unstable.

§62. The effect of adsorbed films on the motion of a liquid

The presence on the surface of a liquid of a film of adsorbed material may

have a considerable effect on the hydrodynamical properties of the surface.

The reason is that, when the shape of the surface changes with the motion of

the liquid, the film is stretched or compressed, i.e. the surface concentration

of the adsorbed substance is changed. These changes result in the appearance

of additional forces which have to be taken into account in the boundary

conditions at the free surface.

Here we shall consider only adsorbed films of substances which may be

regarded as insoluble in the liquid. This means that the substance is entirely

on the surface, and does not penetrate into the liquid. If the adsorbed

substance is appreciably soluble, it is necessary to take into account the

it diffusion of between the surface film and the volume of the liquid when the

concentration of the film varies.

When the adsorbed material is present, the surface-tension coefficient a

is a function of the surface concentration of the material (the amount of it

per unit surface area), which we denote by y. If y varies over the surface,

then the coefficient a is also a function of the co-ordinates in the surface.

The boundary condition at the surface of the liquid therefore includes

a tangential force, which we have already discussed at the end of §60 (equation

(60.14)). In the present case, the gradient of a can be expressed in terms of

the surface concentration gradient, so that the tangential force on the surface is

ft = (3a/dy)grady. (62.1)
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It has been mentioned in §60 that the boundary condition (60.14), in which
this force is taken into account, can be satisfied only for a viscous fluid.

Hence it follows that, in cases where the viscosity of the liquid is small, and
unimportant as regards the phenomenon under consideration, the presence
of the film can be ignored.

To determine the motion of a liquid covered by a film we must add to the
equations of motion, with the boundary condition (60.14), a further equation,
since we now have another unknown quantity, the surface concentration y.
This further equation is an "equation of continuity", expressing the fact that
the total amount of adsorbed material in the film is unchanged. The actual
form of the equation depends on the shape of the surface. If the latter is

plane, then the equation is evidently

dyldt+ 8(yvx)/8x+ 8(yvy)/8y = 0, (62.2)

where all quantities have their values at the surface (taken as the ay-plane).
The solution of problems of the motion of a liquid covered by an adsorbed

film is considerably simplified in cases where the film may be supposed
incompressible, i.e. we may assume that the area of any surface element of the
film remains constant during the motion.
An example of the important hydrodynamic effects of an adsorbed film is

given by the motion of a gas bubble in a viscous liquid. If there is no film
on the surface of the bubble, the gas inside it moves also, and the drag force
exerted on the bubble by the liquid is not the same as the drag on a solid
sphere of the same radius (see §20, Problem 2). If, however, the bubble is

covered by a film of adsorbed material, it is clear from symmetry that the
film remains at rest when the bubble moves. For a motion in the film could
occur only along meridian lines on the bubble surface, and the result would be
that material would continually accumulate at one of the poles (since the
adsorbed material does not penetrate into the liquid or the gas); this is

impossible. Besides the velocity of the film, the gas velocity at the surface
of the bubble must also be zero, and with this boundary condition the gas
in the bubble must be entirely at rest. Thus a bubble covered by a film moves
like a solid sphere and, in particular, the drag on it (for small Reynolds
numbers) is given by Stokes' formula. This result is due to V. G. Levich,
who also gave the solutions to the following Problems.f

PROBLEMS

Problem 1. Two vessels are joined by a long deep channel of width a and length / with
plane parallel walls. The surface of the liquid in the system is covered by an adsorbed film,
and the surface concentrations yx and y2 of the film in the two vessels are different. There
results a motion near the surface of the liquid in the channel. Determine the amount of
film material transported by this motion.

Solution. We take the plane of one wall of the channel as the xz-plane, and the surface
of the liquid as the #y-plane, so that the *-axis is along the channel; the liquid is in the region

t For a more detailed account see V. G. Levich, Physico-chemical Hydrodynamics (Fiziko-
khimicheskaya gidrodinamika), Moscow 1952.
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z < 0. There is no pressure gradient, so that the equation of steady flow is (cf. §17)

d2v d2v
+ = o, (1)

dy* 3*2

where v is the liquid velocity, which is evidently in the ac-direction. There is a concentration

gradient dy/d* along the channel. At the surface of the liquid in the channel we have the

boundary condition

7) dvjdz = doc/dx for z = 0. (2)

At the channel walls the liquid must be at rest, i.e.

V = for y = and y = a. (3)

The channel depth is supposed infinite, and so

V = for Z -> — 00. (4)

Particular solutions of equation (1) which satisfy the conditions (3) and (4) are

vn — constant X exp[(2« + l)iTz[a] sin(2»+l)7ry/a,

with n integral. The condition (2) is satisfied by the sum

4a da^ exp[(2«+l)7r#/a] sm{2n+ \)iryja

yS^ (2« + l)2

'

The amount of film material transferred per unit time is

f 8a2 /^ 1 \ da

the motion being in the direction of a increasing. The value of Q must obviously be constant

along the channel. Hence we can write

da If da l?1

,

y— = constant = - y—dx= - yd<x,
dx I J dx I J

«s

where ax
= a(yx), <% == a(y2), and we assume that ax > a^ Thus we have finally

8a2 /^ 1 \ f a2 f
1

Q = ( > y da = 0-27— y da.
T
?
/7r3\^(2«+l)3/ J

Y
r)lj

r

Problem 2. Determine the damping coefficient for capillary waves on the surface of a

liquid covered by an adsorbed film.

Solution. If the viscosity of the liquid is not too great, the stretching (tangential) forces

exerted on the film by the liquid are small, and the film may therefore be regarded as in-

compressible. Accordingly, we can calculate the energy dissipation as if it took place at a
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solid wall, i.e. from formula (24.14). Writing the velocity potential in the form

eh = J)q gikx—iat g—kz

we obtain for the dissipation per unit area of the surface

T
En.m = - ^{lp-t]0))\hj>o\2 .

The total energy (also per unit area) is

e = p\^dz = y\k^ik.

The damping coefficient is (using (61.3))

0,7/<y/2 £7/4^1/2^/4

2^2<x.vsp
1/6 ~ 2V2p3'4 '

The ratio of this quantity to the damping coefficient for capillary waves on a clean surface
(§61, Problem 2) is (a/>/£i?2)

l/4
/4V2, and is large compared with unity unless the wavelength

is extremely small. Thus the presence of an adsorbed film on the surface of a liquid leads to
a marked increase in the damping coefficient.

7 =



CHAPTER VIII

SOUND

§63. Sound waves

We proceed now to the study of the flow of compressible fluids, and begin

by investigating small oscillations; an oscillatory motion of small amplitude

in a compressible fluid is called a sound wave. At each point of the fluid,

a sound wave causes alternate compression and rarefaction.

Since the oscillations are small, the velocity v is small also, so that the term

(v«grad)v in Euler's equation may be neglected. For the same reason, the

relative changes in the fluid density and pressure are small. We can write

the variables p and p in the form

p=po+p'> p = po+p, (63.1)

where po and po are the constant equilibrium density and pressure, and p
and/>' are their variations in the sound wave (p <^ po, p' -4 Po). The equation

of continuity dpldt+div(pv) = 0, on substituting (63.1) and neglecting small

quantities of the second order (/>', p' and v being of the first order), becomes

dp'/dt+podivv = 0. (63.2)

Euler's equation

3v/3*+ (vgrad)v = -(l/p)gradp

reduces, in the same approximation, to

0v/0*+(l/po)gradp' = 0. (63.3)

The condition that the linearised equations of motion (63.2) and (63.3)

should be applicable to the propagation of sound waves is that the velocity

of the fluid particles in the wave should be small compared with the velocity

of sound: v <^ c. This condition can be obtained, for example, from the

requirement that p' <^ po (see formula (63.12) below).

Equations (63.2) and (63.3) contain the unknown functions v, p' and p'

.

To eliminate one of these, we notice that a sound wave in an ideal fluid is,

like any other motion in an ideal fluid, adiabatic. Hence the small change

p' in the pressure is related to the small change p' in the density by

p' = (dp!dPo)sp
f

. (63.4)

Replacing p according to this equation in (63.2), we find

dp'l8t+po(dpldp )s divv = 0. (63.5)

The two equations (63.3) and (63.5), with the unknowns v and p', give a

complete description of the sound wave.

9 245
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In order to express all the unknowns in terms of one of them, it is con-

venient to introduce the velocity potential by putting v = grad
<f>.

We
have from equation (63.3)

p' = -ptyjdt, (63.6)

which relates p' and
(f>

(here, and henceforward, we omit for brevity the

suffix inpo and po). We then obtain from (63.5) the equation

dmdt2-c*A<f> = 0, (63.7)

which the potential
<f>

must satisfy; here we have introduced the notation

c = Vilify)*. (63.8)

An equation of the form (63.7) is called a wave equation. Applying the

gradient operator to (63.7), we find that each of the three components of the

velocity v satisfies an equation of the same form, and on differentiating

(63.7) with respect to time we see that the pressure p' (and therefore p)
also satisfies the wave equation.

Let us consider a sound wave in which all quantities depend on only one

co-ordinate (x, say). That is, the flow is completely homogeneous in the

ys-plane. Such a wave is called a. plane wave. The wave equation (63.7)

becomes

8P4>/dx*-(llc*)dmdt* = 0. (63.9)

To solve this equation, we replace x and t by the new variables £ = x— ct,

t] = x+ct. It is easy to see that in these variables (63.9) becomes
d2(f>ldir]dg = 0. Integrating this equation with respect to £, we find

8<f>jdr) = F(rf), where F(rj) is an arbitrary function of 17. Integrating again,

we obtain
<f>
= /i(£) +/2(i?)i where /1 and fa are arbitrary functions of their

arguments. Thus

<f> =fi(x-ct)+f2(x+ct). (63.10)

The distribution of the other quantities (p', />', v) in a plane wave is given by
functions of the same form.

For definiteness, we shall discuss the density, p = fi(x—ct)+f2(x+ct).

For example, let/2 = 0, so that p = fi(x—cf). The meaning of this solution

is evident: in any plane x = constant the density varies with time, and at any

given time it is different for different x, but it is the same for co-ordinates x
and times t such that x—ct= constant, or x = constant+ ct. This means
that, if at some instant t — and at some point the fluid density has a certain

value, then after a time t the same value of the density is found at a distance

ct along the #-axis from the original point. The same is true of all the other

quantities in the wave. Thus the pattern of motion is propagated through

the medium in the ^-direction with a velocity c; c is called the velocity of

sound.

Thus/i(«— ct) represents what is called a travelling plane wave propagated

in the positive direction of the #-axis. It is evident that/^+c*) represents

a wave propagated in the opposite direction.
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Of the three components of the velocity v = grad in a plane wave, only

vx — d^Jdx is not zero. Thus the fluid velocity in a sound wave is in the

direction of propagation. For this reason sound waves in a fluid are said to

be longitudinal.

In a travelling plane wave, the velocity vx — v is related to the pressure p'

and the density p in a simple manner. Putting
<f>
= f(x—ct), we find

v — d<f>Jdx = f'(x—ci) and p' — — pd<j>jdt = pcf'{x—ct). Comparing the

two expressions, we find

v = p'/pc. (63.11)

Substituting here from (63.4) p' = c2p, we find the relation between the

velocity and the density variation

:

v = cp'/p. (63.12)

We may mention also the relation between the velocity and the temperature

oscillations in a sound wave. We have 7" = {dT\dp\p' and, using the well-

known thermodynamic formula (dT[dp)s = (Tlcp)(dV/dT)p and formula

(63.11), we obtain

T = tfTv/cp, (63.13)

where /? = {\jV){dVjdT)p is the coefficient of thermal expansion.

Formula (63.8) gives the velocity of sound in terms of the adiabatic

compressibility of the fluid. This is related to the isothermal compressibility

by the thermodynamic formula

(dp/dp), = (cPlcv)(8pldp) T . (63.14)

Let us calculate the velocity of sound in a perfect gas. The equation of state

ispV = pip = RT/p., where R is the gas constant and p. the molecular weight.

We obtain for the velocity of sound the expression

c = V(yRT/p,), (63.15)

where y denotes the ratio Cp\cv.\ Since y usually depends only slightly on the

temperature, the velocity of sound in the gas may be supposed proportional

to the square root of the temperature. For a given temperature it does not

depend on the pressure.

What are called monochromatic waves are a very important case. Here all

quantities are just periodic (harmonic) functions of the time. It is usually

convenient to write such functions as the real part of a complex quantity (see

the beginning of §24). For example, we put for the velocity potential

<f>
= re[<f>o(x,y,z)e-^l (63.16)

where w is the frequency of the wave. The function <£o satisfies the equation

Ah +Mc^o = 0, (63.17)

which is obtained by substituting (63.16) in (63.7).

t It is useful to note that the velocity of sound in a gas is of the same order of magnitude as the
mean thermal velocity of the molecules.
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Let us consider a monochromatic travelling plane wave, propagated in the

positive direction of the #-axis. In such a wave, all quantities are functions

oi x—ct only, and so the potential is of the form

cf>
= re{^4 exp[-ico(t-x/c)]}

y (63.18)

where A is a constant called the complex amplitude. Writing this as A = aei<x

with real constants a and a, we have

(f>
= acos(coxlc—cot + <x). (63.19)

The constant a is called the amplitude of the wave, and the argument of the

cosine is called the phase. We denote by n a unit vector in the direction of

propagation. The vector

k = (o)/c)n = (27r/A)n (63.20)

is called the wave vector. In terms of this vector (63.18) can be written

<j> = re{A exp[)'(k.r- cot)]}. (63.21)

Monochromatic waves are very important, because any wave whatsoever

can be represented as a sum of superposed monochromatic plane waves

with various wave vectors and frequencies. This decomposition of a wave

into monochromatic waves is simply an expansion as a Fourier series or inte-

gral (called also spectral resolution). The terms of this expansion are called

the monochromatic components or Fourier components of the wave.

PROBLEMS

Problem 1 . Determine the velocity of sound in a nearly homogeneous two-phase system

consisting of a vapour with small liquid droplets suspended in it (a "wet vapour"), or a liquid

with small vapour bubbles in it. The wavelength of the sound is supposed large compared
with the size of the inhomogeneities in the system.

Solution. In a two-phase system, p and T are not independent variables, but are related

by the equation of equilibrium of the phases. A compression or rarefaction of the system is

accompanied by a change from one phase to the other. Let x be the fraction (by mass) of

phase 2 in the system. We have

S = (l-x)Si + XS2y

V = (l-x)Vi +xV2 ,

(

where the suffixes 1 and 2 distinguish quantities pertaining to the pure phases 1 and 2. To
calculate the derivative (dV/dp)„ we transform it from the variables p, s to p, x, obtaining

(8V/8p), = (dV/8p)x—(dVjdx) ]>(dsldp)xK8sldx)]>
. The substitution (1) then gives

l!L\ = J^_^zZl^1 +(1_4^l_-^zZl^1. (2)
\ dp I s L dp s2 -si dp J L dp s2 -si dp J

The velocity of sound is obtained from (1) and (2), using formula (63.8).

Expanding the total derivatives with respect to the pressure, introducing the latent heat

of the transition from phase 1 to phase 2 (q = T(s2—sx)), and using the Clapeyron-Clausius

equation for the derivative dp/dT along the curve of equilibrium (dp/dT = p/T(V2— Vi)),

we obtain the expression in the first brackets in (2) in the form

/ 8V2 \ 2T I dV2 \ Tcj?

(-wi
+r(^i{V2- Vl)-^- Vl)K

The second bracket is transformed similarly.
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Let phase 1 be the liquid and phase 2 the vapour; we suppose the latter to be a perfect

gas, and neglect the specific volume Vt in comparison with Vz . If * <^ 1 (a liquid containing

some bubbles of vapour), the velocity of sound is found to be

c = qppVxIRTy/ifaT), (3)

where jR is the gas constant and p the molecular weight. This velocity is in general very

small ; thus, when vapour bubbles form in a liquid {cavitation), the velocity ofsound undergoes
a sudden sharp decrease.

If 1 —x <^ 1 (a vapour containing some droplets of liquid), we obtain

1 ix, 2 CV,T

c2 RT q q*
v

'

Comparing this with the velocity of sound in the pure gas (63.15), we find that here also the

addition of a second phase reduces the value of c, though by no means so markedly.

As * increases from to 1 , the velocity of sound increases monotonically from the value (3)

to the value (4). For # = and * = 1 it changes discontinuously as we go from a one-phase
system to a two-phase system. This has the result that, for values of x very close to zero or

unity, the usual linear theory of sound is no longer applicable, even when the amplitude of

the sound wave is small; the compressions and rarefactions produced by the wave are in

this case accompanied by a change between a one-phase and a two-phase system, and the

essential assumption of a constant velocity of sound no longer holds good.

Problem 2. Determine the velocity of sound in a gas heated to such a high temperature

that the pressure of equilibrium black-body radiation becomes comparable with the gas

pressure.

Solution. The pressure is p = nkT+iakT4
, and the entropy is

s = (klm)\og(T*/n)+ akT3ln.

In these expressions the first terms relate to the particles, and the second terms to the radia-

tion; n is the number density of particles, m their mass, k Boltzmann's constant, and
a = 4ir2k?l45h3c3.\ The density of matter is not affected by the black-body radiation, so that

P = mn. The velocity of sound, denoted here by w to distinguish it from that of light, is

d(p,s) d(pyS) i
d(P,s)

u2 = /
d(p,s) d(n,T)l d(n,T)

where the derivatives have been written in Jacobian form. Evaluating the Jacobians, we have

SkT r 2*276 -,

m2 = 1+ .

3m L 5n(n + 2aT3)\

§64. The energy and momentum of sound waves

Let us derive an expression for the energy of a sound wave. According to

the general formula, the energy in unit volume of the fluid is pe+ ^pv2 .

We now substitute p = po + p', e = eo+ e', where the primed letters denote

the deviations of the respective quantities from their values when the fluid

is at rest. The term %pv2 is a quantity of the third order. Hence, if we take

only terms up to the second order, we have

poco+p —— + ip
2——- + ipov2 .

opo Opo*

f See, for instance, Statistical Physics, §60, Pergamon Press, London 1958.



250 Sound §64

The derivatives are taken at constant entropy, since the sound wave is adiaba-

tic. From the thermodynamic relation de = Tds—pdV = Tds+(p}p2)dp we
have [d(p€)fdp] s = c+pjp = w, and the second derivative is

[82(pe)l8p]s = (8w/8p)s = (dw/dp)s (8pldp)s = c*\p.

Thus the energy in unit volume of the fluid is

/>o*o+ wop' + hc2p
2
/p + Ipov2 .

The first term (/»oeo) in this expression is the energy in unit volume when
the fluid is at rest, and does not relate to the sound wave. The second term
(toop) is the change in energy due to the change in the mass of fluid in unit

volume. This term disappears in the total energy, which is obtained by
integrating the energy over the whole volume of the fluid: since the total mass
of fluid is unchanged, we have

jpdV=j Po dV, or j p' dV = 0.

Thus the total change in the energy of the fluid caused by the sound wave is

given by the integral

f (ip0V*+ fr2p'2/p )dV.

The integrand may be regarded as the density E of sound energy:

E = Jpooa+fcya/po. (64.1)

This expression takes a simpler form for a travelling plane wave. In such

a wave p = po v\c (see (63.12)), and the two terms in (64.1) are equal, so that

E = p vz . (64.2)

In general this relation does not hold. A similar formula can be obtained only

for the (time) average of the total sound energy. It follows immediately from

a well-known general theorem of mechanics, that the mean total potential

energy of a system executing small oscillations is equal to the mean total

kinetic energy. Since the latter is, in the case considered,

ijpo^dr,

we find that the mean total sound energy is

j EdV = j potfdV. (64.3)

If a non-monochromatic wave is represented as a series of monochromatic

waves, the mean energy is equal to the sum of the mean energies of the

monochromatic components. For, if v is represented as a sum of terms of
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1

various frequencies, v2 will contain both the square of each term and the

products of terms of different frequencies. These products contain factors of

the form «*<"-*»'>', which are periodic functions of time. But the mean value

of a periodic function is zero, and these terms therefore vanish. Thus the

mean energy contains only terms in the mean squares of the monochromatic

components.

Next, let us consider some volume of a fluid in which sound is propagated,

and determine the mean flux of energy through the closed surface bounding

this volume. The energy flux density in the fluid is, by (6.3), pv(£v2 +w).

In the present case we can neglect the term in v2
y
which is of the third order.

Hence the mean energy flux density in the sound wave is pzov. Substituting

w = wo+ w', we have pwv = zoopv+pw'v. For a small change w' in the

heat function we have w' = (dzv/dp)s p'. Since {dwjdp)8 = 1/p, it follows that

to' = p'jp and pzov = zoopv+p'v. The total energy flux through the surface

in question is

<j> (wopv+'pv)'df.

However, since the total quantity of fluid in the volume considered is un-

changed on the average, the time average of the mass flux through the closed

surface must be zero. Hence the energy flux is simply

(U'vdf.

We see that the mean sound energy flux is represented by the vector

q = ~pv. (64.4)

It is easy to verify that the relation

dE/dt+ div(p'v) = (64.5)

holds. In this form the equation gives the law of conservation of the sound

energy, with the vector q = p'v taking the part of the sound energy flux.

Thus the expression is valid not only for the mean flux but also for the flux

at any instant.

In a travelling plane wave the pressure variation is related to the velocity

by P' — cPoV' Introducing the unit vector n in the direction of propagation

of the wave (which is the same as the direction of the velocity v), we obtain

q = cpov2n, or

q = cEn. (64.6)

Thus the energy flux density in a plane sound wave equals the energy density

multiplied by the velocity of sound, a result which was to be expected.

Let us now consider a sound wave which, at any given instant, occupies a

finite region of spacef (a wave packet), and determine the total momentum of

f Nowhere bounded by solid walls.
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the fluid in the wave. The momentum of unit volume of fluid is equal to the

mass flux density j = p\. Substituting p = po+ p', we have j = pov+p'v.
The density change is related to the pressure change by p = p'jc2 . Using

(64.4), we therefore obtain

j = pov+q/c*. (64.7)

Since we have potential flow in a sound wave, we can write v = grad <£ ; it

should be emphasised that this result is not a consequence of the approxi-

mations made in deriving the linear equations of motion in §63, since a solu-

tion such that curl v = is an exact solution of Euler's equations. We
therefore havej = po grad + q/c2 . The total momentum in the wave equals

the integral J j dV over the volume occupied by the wave. The integral of

grad
<f>

can be transformed into a surface integral,

j grad<f>dV = j><f>df,

and is zero, since
<f>

is zero outside the volume occupied by the wave. Thus the

total momentum of the wave is

JjdF = (1/^2) j qdF. (64.8)

This quantity is not, in general, zero. The existence of a non-zero total

momentum means that there is a transfer of matter. We therefore conclude

that the propagation of a sound-wave packet is accompanied by the transfer

of fluid. This is a second-order effect (since q is a second-order quantity).

Finally, let us calculate the mean value of the pressure change p' in a

sound wave. In the first approximation, corresponding to the usual linearised

equations of motion, p' is a function which periodically changes sign, and the

mean value of />' is zero. This result, however, ceases to hold if we go to

higher approximations. If we take only second-order quantities, p' can be

expressed in terms of quantities calculated from the linear sound equations, so

that it is not necessary to solve directly the non-linear equations of motion

obtained when terms of higher order are taken into account.

We start from Bernoulli's equation : to+ \v2+ d<j>jdt = constant, and average

it with respect to time. The mean value of the time derivative d$\dt is zero.f

Putting also to = too + w' and including too in the constant, we obtain

to'+ \v2 = constant. We suppose that the wave is propagated in an infinite

volume of fluid but is damped at infinity, i.e. v, to', etc. are zero at infinity.

t By the general definition of the mean value, we have for the mean derivative of any function /(*)

T
1 fd/

d//d* = lim —dt = hm•"
r-*. 2T J dt r-»»

f(T)-f{-T)

IT
T

If the function /(*) remains finite for all t , the limit is zero, so that d//d* = 0.
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Since the constant is the same in all space, it must evidently be zero, so that

^+1^2 = o. (64.9)

We next expand zv' in powers of p', and take only the terms up to the second

order

:

to' = {dw\dp)sp' +\{d2w\dp2
)s
p'2

\

since (ckvjdp)s = 1/p, we have

p' p'2 / dp \ p' p'2

w' =
po 2po

2 \8p/ s po 2c2po
2

Substituting this in (64.9) gives

y= -Ip^+^Jlpoc2 = -ipo^+ P^^/lpo, (64.10)

which determines the required mean value. The expression on the right is a

second-order quantity, and is calculated by using the />' and v obtained from

the solution of the linearised equations of motion. The mean density is

J' = {dp\dp*)s p' +\{d2p\dp*2
)sJ2

. (64.11)

If the wave may be regarded as a travelling plane wave in the volume

concerned, then v = cp'fpo, so that v2 = c2p'2lpo
2

, and the expression

(64.10) is zero, i.e. the mean pressure variation in a plane wave is an effect

of higher order than the second. The density variation p = %(d2pldpo2)a P'
2

is not zero, however. (We may mention that the derivative (d2p[dpo2)s is in

fact always negative, and therefore p < in a travelling wave.) In the same
approximation, we have for the mean value of the momentum flux density

tensor in a travelling plane wave p8i]c+ pvivjc = po&ik+ ptfViVjc. The first term

is the equilibrium pressure and does not relate to the sound wave. In the

second term, we introduce the unit vector n in the direction of v (the same
as the direction of propagation of the wave), and, using (64.2), obtain for the

momentum flux density in a sound wave

U ik = Entnk . (64.12)

If the wave is propagated in the ^-direction, only the component UXx = E
is not zero. Thus, in this approximation, there is in the plane sound wave only

an ^-component of the mean momentum flux, and this is transmitted in the

^-direction.

§65. Reflection and refraction of sound waves

When a sound wave is incident on the boundary between two different fluid

media, it undergoes reflection and refraction. This means that, in addition to
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the incident wave, two more appear; one (the reflected wave) is propagated

back into the first medium from the surface of separation, and the other (the

refracted wave) is propagated into the second medium. Consequently, the

motion in the first medium is a combination of two waves (the incident and
the reflected), whereas in the second medium there is only one, the refracted

wave.

The relation between these three waves is determined by the boundary
conditions at the surface of separation, which require the pressures and normal
velocity components to be equal.

Let us consider the reflection and refraction of a monochromatic longitudi-

nal wave at a plane surface separating two media, which we take as the yz-

plane. It is easy to see that all three waves have the same frequency co and
the same components kv , k z of the wave vector, but not the same component
kx perpendicular to the plane of separation. For, in an infinite homogeneous
medium, a monochromatic wave with constant k and a> satisfies the equations

of motion. The presence of a boundary introduces only some boundary con-

ditions, which in the case considered apply at x = 0, i.e. do not depend on

the time or on the co-ordinates y, z. Hence the dependence of the solution

on t, y and z remains the same in all space and time, i.e. o>, ky, and k z are

the same as in the incident wave.

From this result we can immediately derive the relations which give the

directions of propagation of the reflected and refracted waves. Let the plane

of the incident wave be the ry-plane. Then k z = in the incident wave, and

the same must be true of the reflected and refracted waves. Thus the direc-

tions of propagation of the three waves are coplanar.

Let 8 be the angle between the direction of propagation of the wave and

the ar-axis. Then, from the equality of ky = (oi/c) sin for the incident

and reflected waves, it follows that

h = 0i', (65.1)

i.e. the angle of incidence d\ is equal to the angle of reflection #i'. From a

similar equation for the incident and refracted waves it follows that

sin#i/sin02 = £1/^2. (65.2)

which relates the angle of incidence Q\ to the angle of refraction 9% (c\ and c%

being the velocities of sound in the two media).

In order to obtain a quantitative relation between the intensities of the

three waves, we write the respective velocity potentials as

<f>i
— Aiexp[ico{(x/ci) cosdi + (yJci) sindi— t}],

<f>i
= A\ exp[/ct){(— x\c\) cosdi + {yjci) sin0i— *}],

<f>2 = ^2exp[/cy{(«r/c2)cos^2+ (j/^2)sin^2— *}]•

On the surface of separation (x = 0) the pressure (p — —pdtf>jdt) and the



§65 Reflection and refraction of sound waves 255

normal velocities (vx = d<f>ldx) in the two media must be equal; these con-

ditions lead to the equations

cos 6i M , v
cos 62 m

px{Ax+ A{) = p2A2y {Ax
- At!) = A2 .

C\ C2

The reflection coefficient R is defined as the ratio of the (time) average energy

flux densities in the reflected and incident waves. Since the energy flux

density in a plane wave is cpv2 , we have R = cipivi 2lapivi2 = |^4i'|
2
/|^i| 2

.

A simple calculation gives

\ />2 tan 02

+

pi tan 0i /

The angles 0\ and 2 are related by (65.2); expressing 2 in terms of 0i, we

can put the reflection coefficient in the form

f p2C2 COS 0! - piVJC!2- C2
2 sin2 0^1 2

[ p2c2 cos 0! +piV(ci2- c2
2 sin2 0i)

J

For normal incidence (#i = 0), this formula gives simply

R = (^Zf^)\ (65.5)
\P2C2+ PlCl/

For an angle of incidence such that

pl
2
(Cl

2 -C22
)

the reflection coefficient is zero, i.e. the wave is totally refracted. This can

happen if c\ > C2 but p2c2 > pici, or if both inequalities are reversed.

PROBLEM

Determine the pressure exerted by a sound wave on the boundary separating two fluids.

Solution. The sum of the total energy fluxes in the reflected and refracted waves must

equal the incident energy flux. Taking the energy flux per unit area of the surface of separa-

tion, we can write this condition in the form CxE-^cos 0x = c^'cos ^1 +tr2JE
,

s cos Zt where

Elt Ei and Et are the energy densities in the three waves. Introducing the reflection coefficient

R = Ei/Eu we therefore have

— C\ cos 01 —
C2 COS 02

The required pressure p is determined as the ^-component of the momentum lost per unit

time by the sound wave (per unit area of the boundary). Using the expression (64.12) for

the momentum flux density tensor in a sound wave, we find

p = Ei cosWx+ Ek' cos20!-E2 cos2 2 .

Substituting for E2 , introducing R and using (65.2), we obtain

p = Ex sin 0i cos 0i[(l + R) cot 0i- (1 - R) cot 2].
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For normal incidence {61 = 0), we find, using (65.5),

^ I"
Pl

2d2
+P2

2C22 - 2p1p2C1
2l

L (j>lCl+p2C2)2 J'

§66. Geometrical acoustics

A plane wave has the distinctive property that its direction of propagation
and its amplitude are the same in all space. An arbitrary sound wave, of
course, does not possess this property. However, cases can occur where a
sound wave that is not plane may still be regarded as plane in any small
region of space. For this to be so it is evidently necessary that the amplitude
and the direction of propagation should vary only slightly over distances of
the order of the wavelength.

If this condition holds, we can introduce the idea of rays, these being lines

such that the tangent to them at any point is in the same direction as the
direction of propagation; and we can say that the sound is propagated along
the rays, and ignore its wave nature. The study of the laws of propagation
of sound in such cases is the task of geometrical acoustics. We may say that

geometrical acoustics corresponds to the limit of small wavelengths, A -» 0.

Let us derive the basic equation of geometrical acoustics, which determines
the direction of the rays. We write the wave velocity potential as

<f>
= aeW. (66.1)

In the case where the wave is not plane but geometrical acoustics can be
applied, the amplitude a is a slowly varying function of the co-ordinates and
the time, while the wave phase ift is "almost linear" (we recall that in a plane

wave ifs = k»r— wt+a., with constant k and co). Over small regions of space

and short intervals of time, the phase ip may be expanded in series; up to

terms of the first order we have

tfi = ifjo+ r-gradip+tdipjdt.

In accordance with the fact that, in any small region of space (and during

short intervals of time), the wave may be regarded as plane, we define the

wave vector and the frequency at each point as,

k = dt/tjdr = grad«/r, co = -di/i/dt. (66.2)

The quantity if/ is called the eikonal.

In a sound wave we have w2jc2 = k2 = kx2+ky
2+ k g

2
. Substituting (66.2),

we obtain the basic equation of geometrical acoustics

:

If the fluid is not homogeneous, the coefficient 1/c2 is a function of the co-

ordinates.
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As we know from mechanics, the motion of material particles can be

determined by means of the Hamilton-Jacobi equation, which, like (66.3),

is a first-order partial differential equation. The quantity analogous to ift

is the action S of the particle, and the derivatives of the action determine the

momentum p = dSfdr and the Hamilton's function (the energy) of the particle

H = - dSjdt\ these formulae are similar to (66.2). We know, also, that the

Hamilton-Jacobi equation is equivalent to Hamilton's equations

p = - dH/dr, v = r = dH/dp.

From the above analogy between the mechanics of a material particle and

geometrical acoustics, we can write down similar equations for rays:

k = -dcoldr, i = dco/dk. (66.4)

In a homogeneous isotropic medium co = ck with c constant, so that k = 0,

r = en (n being a unit vector in the direction of k), i.e. the rays are propagated

in straight lines with a constant frequency to, as we should expect.

The frequency, of course, remains constant along a ray in all cases where

the propagation of sound occurs under steady conditions, i.e. the properties of

the medium at each point in space do not vary with time. For the total time

derivative of the frequency, which gives its rate of variation along a ray, is

dcofdt = dcoldt+ r-dcjjdr+k-dcoldk. On substituting (66.4), the last two

terms cancel, and in a steady state dcofdt = 0, so that dcofdt = 0.

In steady propagation of sound in an inhomogeneous medium at rest

co = ck, where c is a given function of the co-ordinates. The equations

(66.4) give

r = en, k = -k grade. (66.5)

The magnitude of the vector k varies along a ray simply according to k = cofc

(with co constant). To determine the change in direction of n we put

k = conic in the second of (66.5): con/e- (con/e2)(r
.
grade) = -k grade,

whence dn/d* = -grade+ n(n« grade). Introducing the element of length

along the ray dl — c dt, we can rewrite this equation

dn/d/ = - (1/e) grade+ n(n-grade)/e. (66.6)

This equation determines the form of the rays; n is a unit vector tangential

to a ray.f

If equation (66.3) is solved, and the eikonal iff is a known function of

co-ordinates and time, we can then find also the distribution of sound inten-

sity in space. In steady conditions, it is given by the equation div q =

(q being the sound energy flux density), which must hold in all space except

t As we know from differential geometry, the derivative dn/d/ along the ray is equal to N/R, where

N is a unit vector along the principal normal and R is the radius of curvature of the ray. The expres-

sion on the right-hand side of (66.6) is, apart from a factor 1/c, the derivative of the velocity of sound

along the principal normal; hence we can write the equation as l/ic = -(l/c)N«grad c. The rays

bend towards the region where c is smaller.



258 Sound §66

at sources of sound. Putting q = cEn, where E is the sound energy density
(see (64.6)), and remembering that n is a unit vector in the direction of
k = grad ifj, we obtain the equation

6iv(cE grad 0/|grad 0|) = 0, (66.7)

which determines the distribution of E in space.

The second formula (66.4) gives the velocity of propagation of the waves
from the known dependence of the frequency on the components of the
wave vector. This is a very important formula, which holds not only for
sound waves, but for all waves (for example, we have already applied it to
gravity waves in §12). We shall give here another derivation of this formula,
which puts in evidence the meaning of the velocity which it defines. Let us
consider a wave packet, which occupies some finite region of space. We
assume that its spectral composition includes monochromatic components
whose frequencies lie in only a small range; the same is true of the compo-
nents of their wave vectors. Let to be some mean frequency of the wave
packet, and k a mean wave vector. Then, at some initial instant, the wave
packet is described by a function of the form

cf> = exp(zk.r)/(r). (66.8)

The function /(r) is appreciably different from zero only in a region which is

small (though it is large compared with the wavelength \jk). Its expansion as
a Fourier integral contains, by the above assumptions, components of the
form exp(av Ak), where Ak is small.

Thus each monochromatic component is, at the initial instant,

<£k = constantx exp[Y(k+ Ak) • r]

.

(66.9)

The corresponding frequency is <o(k+ Ak) (we recall that the frequency is a

function of the wave vector). Hence the same component at time t has the
form

<f>k = constantx exp[Y(k+ Ak) • r— ico(k+ Ak)*].

We use the fact that Ak is small, and expand w(k+ Ak) in series, taking
only the first twO terms: co(k+ Ak) = <x)+ (dco/8k)'^k, where co = co(k) is

the frequency corresponding to the mean wave vector. Then
<f>k becomes

<f>k = constant x exp|>'(k- r- cot)] exp|YAk' (r- tdco/dk)]. (66. 10)

If we now sum all the monochromatic components, with all the Ak that

occur in the wave packet, we see from (66.9) and (66.10) that the result is

<f>
= exp[*(k •r- cot)]f(r- tdco/dk), (66.11)

where/is the same function as in (66.8). A comparison with (66.8) shows that,

after a time t, the amplitude distribution has moved as a whole through a

distance tdcojdk; the exponential coefficient of /in (66.11) affects only the
phase. Consequently, the velocity of the wave packet is

U = dcojdk. (66.12)
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This formula gives the velocity of propagation for any dependence of co

on k.f When a) = ck, with c constant, it of course gives the usual result

U = ojjk = c. In general, when co(k) is an arbitrary function, the velocity

of propagation is a function of the frequency, and the direction of propaga-

tion may not be the same as that of the wave vector.

PROBLEM

Determine the altitude variation in the amplitude of sound propagated in an isothermal

atmosphere under gravity.

Solution. In an isothermal atmosphere (regarded as a perfect gas) the velocity of sound

is constant. The energy flux density evidently decreases along a ray in inverse proportion

to the square of the distance r from the source: cpv* ~ 1/r2 . Hence it follows that the ampli-

tude ofthe velocity fluctuations in the sound wave varies along a ray inversely as r\/ P
',
according

to the barometric formula, p ~ exp(- figz/RT), where z is the altitude, ft the molecular weight

of the gas and R the gas constant.

§67. Propagation of sound in a moving medium

The relation w = ck between the frequency and the wave number is valid

only for a monochromatic sound wave propagated in a medium at rest. It is

not difficult to obtain a similar relation for a wave propagated in a moving

medium (and observed in a fixed system of co-ordinates).

Let us consider a homogeneous flow of velocity u. We take a fixed system

K of co-ordinates x, y, z, and also a system K' of co-ordinates x\ y\ z'

moving with velocity u relative to K. In the system K! the fluid is at rest,

and amonochromaticwave has the usual form cf>
= constant x exp[/(k«r' - kct)].

The radius vector r' in the system K' is related to the radius vector r in

the system K by r' = r-ut. Hence, in the fixed system of co-ordinates, the

wave has the form <j> = constant x exp{*[k«r - (kc + k»u)*]}. The coeffici-

ent of t in the exponent is the frequency w of the wave. Thus the frequency

in a moving medium is related to the wave vector k by

a, = ck+ wk. (67.1)

The velocity of propagation is

dco/dk = ck/k+ u; (67.2)

this is the vector sum of the velocity c in the direction of k and the velocity

u with which the sound is "carried along" by the moving fluid.

Using formula (67.1), we can investigate what is called the Doppler effect:

t The velocity defined by (66.12) is called the group velocity of the wave, and the ratio ufk the

phase velocity. However, it must be borne in mind that the phase velocity does not correspond to

any actual physical propagation.

Regarding the derivation given here it should be emphasised that the motion of the wave packet

without change of form (i.e. without change in the spatial distribution of the amplitude), expressed

by (66.11), is approximate, and results from the assumption that the range Ak is small. In general,

when U depends on <a, a wave packet is "smoothed out" during its propagation, and the region of

space which it occupies increases in size. It can be shown that the amount of this smoothing out

is proportional to the squared magnitude of the range Ak of the wave vectors which occur in the

composition of the wave packet.
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the frequency of sound, as received by an observer moving relative to the
source, is not the same as the frequency of oscillation of the source.

Let sound emitted by a source at rest (relative to the medium) be received
by an observer moving with velocity u. In a system K' at rest relative to the
medium we have k = o> /c, where o> is the frequency of oscillation of the
source. In a system K moving with the observer, the medium moves with
velocity -u, and the frequency of the sound is, by (67.1), a) = ck-u>k.
Introducing the angle 6 between the direction of the velocity u and that of
the wave vector k, and putting k = wqJc, we find that the frequency of the
sound received by the moving observer is

at = co [l-(u/c) cos 6]. (67.3)

The opposite case, to a certain extent, is the propagation in a medium at

rest of a sound wave emitted from a moving source. Let u be now the velocity
of the source. We change from the fixed system of co-ordinates to a system K'
moving with the source; in the system K', the fluid moves with velocity -u.
In K', where the source is at rest, the frequency of the emitted sound wave
must equal the frequency a> of the oscillations of the source. Changing the
sign of u in (67.1) and introducing the angle 6 between the directions of u
and k, we have o> = ck[l-(u/c) cos ff]. In the original fixed system K,
however, the frequency and the wave vector are related by to = ck. Thus we
find

w = a>o/[l-(ujc) cos 6]. (67.4)

This formula gives the relation between the frequency co of the oscillations

of a moving source and the frequency w of the sound heard by an observer
at rest.

If the source is moving away from the observer, the angle 6 between its

velocity and the direction to the observer lies in the range \n < 6 ^ it,

so that cos 6 < 0. It then follows from (67.4) that, if the source is moving
away from the observer, the frequency of the sound heard is less than co .

If, on the other hand, the source is approaching the observer, then
^ 8 < \n, so that cos 6 > 0, and the frequency to > o> increases with

u. For u cos 6 > c, according to formula (67.4) co becomes negative, which
means that the sound heard by the observer actually reaches him in the
reverse order, i.e. sound emitted by the source at any given instant arrives

earlier than sound emitted at previous instants.

As has been mentioned at the beginning of §66, the approximation of
geometrical acoustics corresponds to the case of small wavelengths, i.e. large

magnitudes of the wave vector. For this to be so the frequency of the sound
must in general be large. In the acoustics of moving media, however, the
latter condition need not be fulfilled if the velocity of the medium exceeds
that of sound. For in this case k can be large even when the frequency is

zero; from (67.1) we have for co = the equation

ck= -u-k, (67.5)
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and this has solutions if u > c. Thus, in a medium moving with supersonic

velocities, there can be steady small perturbations described (if k is sufficiently

large) by geometrical acoustics. This means that such perturbations are

propagated along rays.

Let us consider, for example, a homogeneous supersonic stream moving
with constant velocity u, whose direction we take as the #-axis. The vector

k is taken to lie in the ry-plane, and its components are related by

(M
2_ C2)^2 = c2ky^ (67.6)

which is obtained by squaring both sides of equation (67.5). To determine the

form of the rays, we use the equations of geometrical acoustics (66.4),

according to which x = 8wldkx,y = dcojdky. Dividing one of these equations

by the other, we have dyjdx = (8a)l8ky)l(8o)l8kx). This relation, however,

is, by the rule of differentiation for implicit functions, just the derivative

— dkxjdky taken at a constant frequency (in this case zero). Thus the equation

which gives the form of the rays from the known relation between kx and ky is

dyjdx = —dkxjdky. (67.7)

Substituting (67.6), we obtain

dyfdx = ±cJ-\/{u2— c2).

For constant u this equation represents two straight lines intersecting the

#-axis at angles ± a, where sin a = cju.

We shall return to a detailed study of these rays in gas dynamics, where they

are very important; see in particular §§79, 96 and 109.

PROBLEMS

Problem 1. Derive an equation giving the form of sound rays propagated in a steadily

moving homogeneous medium with a velocity distribution u(x, y, z), when u <^ c every-

where, f

Solution. Substituting (67.1) in (66.4), we obtain the equations of propagation of the

rays in the form

k = — (k'grad)u—kx curlu, r = v = ck/k+ u.

Using these equations, and also

dufdt = du/dt+ (v'grad)u = (vgrad)u a (c/£)(k«grad)u,

we calculate the derivative d(kv)fdt, retaining only terms as far as the first order in u. The
result is d(kv)ldt = —kvnX curlu, where n is a unit vector in the direction of v. But
d(kv)/dt = nd(kv)/dt+kv dnfdt. Since n and dn/dt are perpendicular (because n2 = 1,

and therefore n«n = 0), it follows from the above equations that n = —nXcurl u. Intro-

ducing the element of length along the ray dl = c dt, we can write finally

dn/dl = - n X curl u/c. (1)

This equation determines the form of the rays ; n is a unit tangential vector (and is no longer

in the same direction as k).

t It is assumed that the velocity u varies only over distances large compared with the wavelength
of the sound.
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Problem 2. Determine the form of sound rays in a moving medium with a velocity distri-

bution ux = u(z), uy = u t = 0.

Solution. Expanding equation (1), Problem 1, we find dnx/dl = (n z[c)du/dz, dny/dl = 0;
the equation for n z need not be written down, since na = 1. The second equation gives

ny = constant e= %)0 . In the first equation we write n z = dzjdl, and then we have by inte-

gration nx = nXt0 +u(z)lc These formulae give the required solution.

Let us assume that the velocity u is zero for z = and increases upwards (du/dz > 0).

If the sound is propagated "against the wind" (nx < 0), its path is curved upwards; if it is

propagated "with the wind" (nx > 0), its path is curved downwards. In the latter case a

ray leaving the point z = at a small angle to the x-axis (i.e. with nm ,
close to unity) rises

only to a finite altitude z = 2max , which can be calculated as follows. At the altitude zmAX
the ray is horizontal, i.e. n z = 0. Hence we have

»z
2+%2 « nXt o

2+ nyfi
2+ 2nx oulc = 1,

so that 2nx,ou(zm&z)lc = w z ,o
2
, whence we can determine 2max from the given function u(z)

and the initial direction n of the ray.

Problem 3. Obtain the expression of Fermat's principle for sound rays in a steadily moving
medium.

Solution. Fermat's principle is that the integral

cfk-dl,

taken along a ray between two given points, is a minimum; k is supposed expressed as a
function of the frequency to and the direction n of the ray.f This function can be found by
eliminating v and k from the relations <o = ck+wh. and vn = ck/k+u. Fermat's principle

then takes the form

S^{V[(t2 -«2)d/2+(u.dl)2]-U.dl}/(c2- tt2) = 0.

In a medium at rest, this integral reduces to the usual one, j dljc.

§68. Characteristic vibrations

Hitherto we have discussed only oscillatory motion in infinite media, and
we have seen, in particular, that in such media waves of any frequency can be

propagated.

The situation is very different when we consider a fluid in a vessel of finite

dimensions. The equations of motion themselves (the wave equations) are

of course unchanged, but they must now be supplemented by boundary

conditions to be satisfied at the solid walls or at the free surface of the fluid.

We shall consider here only what are called free vibrations, i.e. those which

occur in the absence of variable external forces. Vibrations occurring as a

result of external forces are called forced vibrations.

The equations of motion for a finite fluid do not have solutions satisfying

the appropriate boundary conditions for every frequency. Such solutions

exist only for a series of definite frequencies <o. In other words, in a medium
of finite volume, free vibrations can occur only with certain frequencies.

These are called the characteristic frequencies of the fluid in the vessel

concerned.

The actual values of the characteristic frequencies depend on the size and

f See The Classical Theory of Fields, §7-1, Addison-Wesley Press, Cambridge (Mass.) 1951.
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shape of the vessel. In any given case there is an infinite number of charac-

teristic frequencies. To find them, it is necessary to examine the equations

of motion with the appropriate boundary conditions.

The order of magnitude of the first (i.e. smallest) characteristic frequency

can be seen at once from dimensional considerations. The only parameter
having the dimensions of length which appears in the problem is the linear

dimension / of the body. Hence it is clear that the wavelength Ai correspond-

ing to the first characteristic frequency must be of the order of /, and the order

of magnitude of the frequency cui itself is obtained by dividing the velocity

of sound by the wavelength. Thus

Ai - /, oil ~ c\l. (68.1)

Let us ascertain the nature of the motion in characteristic vibrations.

If we seek a solution of the wave equation for the velocity potential (say)

which is periodic in time, of the form <j>
— <j>q{x, y, z)e~i<ot

, then we have for

<f>o the equation

A<h+ («>
2
lc

2
)<h = 0. (68.2)

In an infinite medium, where no boundary conditions need be applied, this

equation has both real and complex solutions. In particular, it has a solution

proportional to eik
'T

, which gives a velocity potential of the form

<j> = constant xexp[i(k'r—cot)].

Such a solution represents a wave propagated with a definite velocity—

a

travelling wave.

For a medium of finite volume, however, complex solutions cannot in

general exist. This can be seen as follows. The equation satisfied by
<f>Q

is real, and the boundary conditions are real also. Hence, if <f>o(x, y, z) is a

solution of the equations of motion, the complex conjugate function <f>o*

is also a solution. Since, however, the solution of the equations for given

boundary conditions is in general uniquef apart from a constant factor, we
must have <£o* = constant x <£o, where the constant is complex and its

modulus is clearly unity. Thus <f>o must be of the form <f>o
= f(x, y, z)e~ia-,

the function / and the constant a being real. The potential
<f>

is thus of the

form (taking the real part of (f>oe~
iwt

)

<f>
= f{x>y> %) cos(cot+ <x), (68.3)

i.e. it is the product of some function of the co-ordinates and a simple periodic

function of the time.

This solution has properties entirely different from those of a travelling

wave. In the latter, where
<f>
= constant xcos(k«r— «j^+ a), the phase

k«r— cot +<x of the oscillations at different points in space is different at any

given instant, except only at points for which k • r differs by an integral

f This may not be true when the vessel is highly symmetrical in form (e.g. a sphere).
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multiple of the wavelength. In the wave represented by (68.3), all points are

oscillating in the same phase tot+ at. at any given instant. Such a wave is

obviously not "propagated" ; it is called a stationary wave. Thus the charac-

teristic vibrations are stationary waves.

Let us consider a stationary plane sound wave, in which all quantities are

functions of one co-ordinate only (x, say) and of time. Writing the general

solution of 82<f>ojdx2+ 2
co(f)olc

2 = in the form <f>o
= a cos(a»*/c+/S), we have

<f>
= a cos(cor+a) cos(cox/c+l3). By an appropriate choice of the origins

of x and t, we can make a and /S zero, so that

<f>
= a cos cot cos cox/c. (68.4)

For the velocity and pressure in the wave we have

v = 8(f>Jdx = — (aco/c) cos cot sin cox/c
;

p' = —p 8<f>/8t = pco sin cot cos cox/c.

At the points x = 0, ire/to, 2,-nc/to, ..., which are at a distance ttc/co = £A

apart, the velocity v is always zero ; these points are called nodes of the velocity.

The points midway between them (x = ttc/Ico, Zttc/2co, ...) are those at

which the amplitude of the time variations of the velocity is greatest. These

are called antinodes. The pressure p' evidently has nodes and antinodes in

the reverse positions. Thus, in a stationary plane wave, the nodes of the

pressure are the antinodes of the velocity, and vice versa.

An interesting case of characteristic vibrations is that of the vibrations of

a gas in a vessel having a small aperture (a resonator). In a closed vessel the

smallest characteristic frequency is, as we know, of the order of c/l, where /

is the linear dimension of the vessel. When there is a small aperture, however,

new characteristic vibrations of considerably smaller frequency appear.

These are due to the fact that, if there is a pressure difference between the

gas in the vessel and that outside, this difference can be equalised by the

motion of gas into or out of the vessel. Thus oscillations appear which

involve an exchange of gas between the resonator and the outside medium.

Since the aperture is small, this exchange takes place only slowly, and hence

the period of the oscillations is large, and the frequency correspondingly

small (see Problem 2). The frequencies of the ordinary vibrations occurring

in a closed vessel are practically unchanged by the presence of a small aper-

ture.

PROBLEMS

Problem 1 . Determine the characteristic frequencies of sound waves in a fluid contained

in a cuboidal vessel.

Solution. We seek a solution of the equation (68.2) in the form

</>q = constant x cos qx cos ry cos sz,

where q
2 +ri +s* = w2/c2 . At the walls of the vessel we have the conditions vx = d<f>/dx =

for x = and a, d<f>[dy = for y = and b, 8<f>/dz = for z = and c, where a, b, c are

the sides of the cuboid. Hence we find q — m-nla, r = nn/b, s = p-n\c, where m, n, p are

any integers. Thus the characteristic frequencies are

co2 = c27T2(m2/a2+n2/b2+p2/c2).
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Problem 2. A narrow tube of cross-sectional area S and length / is fixed to the aperture of

a resonator. Determine the characteristic frequency.

Solution. Since the tube is narrow, in considering oscillations accompanied by the

movement of gas into and out of the resonator we can suppose that only the gas in the tube

has an appreciable velocity, while the gas in the vessel is almost at rest. The mass of gas in

the tube is Spl, and the force on it is S(p —p), where p and p are the gas pressures inside and

outside the resonator respectively. Hence we must have Spiv = S(p—p ), where v is the

gas velocity in the tube. The time derivative of the pressure is given by p = c
2
p, and the

decrease per unit time in the gas density in the resonator (—p) can be supposed equal to the

mass of gas leaving the resonator per unit time (Spv) divided by the volume V of the resonator.

Thus we have£ «= —c^SpvfV, whence

/>"= -c2SpvjV = -c*S(p-p )llV.

This equation gives p—po = constant X cos to t, where the characteristic frequency

(o — c\Z{SjlV). This is small compared with cjL (where L is the linear dimension of the

vessel), and the wavelength is therefore large compared with L.

In solving this problem we have supposed that the linear amplitude of the oscillations of

gas in the tube is small compared with its length /. If this were not so, the oscillations would

be accompanied by the outflow of a considerable fraction of the gas in the tube, and the linear

equation of motion used above would be inapplicable.

§69. Spherical waves

Let us consider a sound wave in which the distribution of density, velocity,

etc., depends only on the distance from some point, i.e. is spherically sym-

metrical. Such a wave is called a spherical wave.

Let us determine the general solution of the wave equation which represents

a spherical wave. We take the wave equation for the velocity potential:

/\<f>
— (llc2)d2<f>jdt2 = 0. Since ^ is a function only of the distance r from the

centre and of the time t
y
we have, using the expression for the Laplacian in

spherical co-ordinates,

82
(f>

1 d l 86 \-Z = C2
(
r2_Z . (69.1)

dt2 r2 dr \ dr J

We seek a solution in the form
<f>
= /(r, t)jr. Substituting, we have after

a simple calculation the following equation for /: d2fjdt2 = c2d2fjdr2 . This is

just the ordinary one-dimensional wave equation, with the radius r as

the co-ordinate. The solution of this equation is, as we know, of the form

f = fi(ct—r)+f2(ct+r), where /i and f2 are arbitrary functions. Thus the

general solution of equation (69.1) is of the form

^.^=!)
+
^+o

(69 .2)
r r

The first term is an outgoing wave, propagated in all directions from the origin.

The second term is a wave coming in to the centre. Unlike a plane wave,

whose amplitude remains constant, a spherical wave has an amplitude which

decreases inversely as the distance from the centre. The intensity in the wave

is given by the square of the amplitude, and falls off inversely as the square of

the distance, as it should, since the total energy flux in the wave is distributed

over a surface whose area increases as r2 .



266 Sound §69

The variable parts of the pressure and density are related to the potential

by p' = —pd(j>jdt, p = —{pjc2)d<j>Jdt, and their distribution is determined by
formulae of the same form as (69.2). The (radial) velocity distribution, how-
ever, being given by the gradient of the potential, is of the form

v =y- f)

;

/a(rf+f)

).
(69.3)

If there is no source of sound at the origin, the potential (69.2) must remain

finite for r = 0. For this to be so we must have/i(c£) = —fact), i.e.
<f>

is

of the form

f(ct-r)-f(ct+r)
<f>
= (69.4)

r

(a stationary spherical wave). If there is a source at the origin, on the other

hand, the potential of the outgoing wave from it is
<f>
= f(ct—r)/r; it need

not remain finite at r = 0, since the solution holds only for the region

outside sources.

A monochromatic stationary spherical wave is of the form

sinkr
<£ = Ae~M , (69.5)

r

where k = wjc. An outgoing monochromatic spherical wave is given by

<f>
= Ae^-^lr. (69.6)

It is useful to note that this expression satisfies the differential equation

A<f> + &<j> = -^rAe-^B(r), (69.7)

where on the right-hand side we have the delta function S(r) = 8(x)B(y)8(z).

For S(r) = everywhere except at the origin, and we return to the homo-
geneous equation (69.1); and, integrating (69.7) over the volume of a small

sphere including the origin (where the expression (69.6) reduces to Ae^^/r)

we obtain — 4irAe~i<ot on each side.

Let us consider an outgoing spherical wave, occupying a spherical shell

outside which the medium is either at rest or very nearly so ; such a wave can

originate from a source which emits during a finite interval of time only, or

from some region where there is a sound disturbance (cf. the end of §71,

and §73, Problem 4). Before the wave arrives at any given point, the potential

is <j> = 0. After the wave has passed, the motion must die away; this means

that
<f>
must become constant. In an outgoing spherical wave, however, the

potential is a function of the form <j> = f(ct— r)/r; such a function can tend

to a constant only if the function / is zero identically. Thus the potential

must be zero both before and after the passage of the wave.f From this we

t Unlike what happens for a plane wave, after whose passage we can have ^ = constant =£
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can draw an important conclusion concerning the distribution of conden-

sations and rarefactions in a spherical wave.

The variation of pressure in the wave is related to the potential by

p' = — pd<f}{dt. From what has been said above, it is clear that, if we integrate

p' over all time for a given r, the result is zero

:

00

JVd* = 0. (69.8)

—00

This means that, as the spherical wave passes through a given point, both

condensations (p' > 0) and rarefactions (/>' < 0) will be observed at that

point. In this respect a spherical wave is markedly different from a plane

wave, which may consist of condensations or rarefactions only.

A similar pattern will be observed if we consider the manner of variation of

p' with distance at a given instant; instead of the integral (69.8) we now
consider another which also vanishes, namely

00

jrp'dr = 0. (69.9)

o

PROBLEMS

Problem 1. At the initial instant, the gas inside a sphere of radius a is compressed so that

p' = constant = A; outside this sphere, p' = 0. The initial velocity is zero in all space.

Determine the subsequent motion.

Solution. The initial conditions on the potential are
<f>
— for t = 0, and r < a or

r > a; <j>
= F(r) for t = 0, where F(r) = for r > a and F(r) = -c2A/p for r < a. We

seek $ in the form

xi * f{ct-r)-f{ct+ r)

r

From the initial conditions we obtain /(—r)—/(r) = 0,f'(—r)—f'(r) = rF(r)jc. From the

first equation we have f'(—r)+f'(r) = 0, which together with the second equation gives

/'(r) = —/'(—*)— —rF(r)/2c. Finally, substituting the value of F(r), we find the following

expressions for the derivative /'(f) and the function /(f) itself:

for ||| > a, /'(*) = 0, fit) = 0;

for III < a, /'(|) = cZbfo, /(|) = <|2_ a2)A/4/>j

which give the solution of the problem. If we consider a point with r > a, i.e. outside the

region of the initial compression, we have for the density

for t < (r— a)jc, p = 0;

for (r-a)/c < t < (r+ a)jc, p = %(r-ct)&{r;

for t > (r+a)lc, p = 0.

The wave passes the point considered during a time interval 2a/c; in other words, the wave
has the form of a spherical shell of thickness 2a, which at time t lies between the spheres of

radii ct—a and ct+a. Within this shell the density varies linearly; in the outer part (r > ct),

the gas is compressed (p' > 0), while in the inner part (r < ct) it is rarefied (p' < 0).



268 Sound §70

Problem 2. Determine the characteristic frequencies of centrally symmetrical sound
oscillations in a spherical vessel of radius a.

Solution. From the boundary condition d<j>jdr = for r = a (where
<f>

is given by (69.5))
we find tan ka = ha, which determines the characteristic frequencies. The first (lowest)
frequency is a>x = 4*49 c\a.

§70. Cylindrical waves

Let us now consider a wave in which the distribution of all quantities is

homogeneous in some direction (which we take as the ar-axis) and has com-
plete axial symmetry about that direction. This is called a cylindrical wave,

and in it we have
<f>
= <f>(R, t), where R denotes the distance from the #-axis.

Let us determine the general form of such an axisymmetric solution of the

wave equation. This can be done by starting from the general spherically

symmetrical solution (69.2). R is related to r by r2 = R2 + z2, so that
<f> as

given by formula (69.2) depends on z when R and t are given. A function

which depends on R and t only and still satisfies the wave equation can be
obtained by integrating (69.2) over all z from — oo to oo, or equally well

from to oo. We can convert the integration over z to one over r. Since

z = -\/(r2 -i?2
), dz = r drj<\/(r2— R.2). When z varies from to oo, r

varies from R to oo. Hence we find the general axisymmetric solution to be

r fi(ct-r) r fa(ct+ r)
t

j, = jL± f_dr+ — —dr
y (70.1)

V(r*-R2
) J ^/(r2-R2

)

where f\ and fa are arbitrary functions. The first term is an outgoing cylin-

drical wave, and the second an ingoing one.

Substituting in these integrals ct±r — g, we can rewrite formula (70.1) as

ct-R

(• m*
+ f mw

, (702)

-oo ct+R

We see that the value of the potential at time t in the outgoing cylindrical

wave is determined by the values of fa at times from — oo to t— Rjc;

similarly, the values of fa which affect the ingoing wave are those at times

from t + RIc to infinity.

As in the spherical case, stationary waves are obtained when/i(£) = —fa(£).
It can be shown that a stationary cylindrical wave can also be represented in

the form

ct+R

9
J V[R2-(t-ctf]

(
'

ct-R

where F(g) is another arbitrary function.
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Let us derive an expression for the potential in a monochromatic cylindrical

wave. The wave equation for the potential <f)(R, t) in cylindrical co-ordinates

is

R 8R\ 8R/ c*

8U— = 0.

dp

In a monochromatic wave
<f>
= e-*w</(i?), and we have for the function /(i?)

the equation/" +/'/!?+

A

2/ = 0. This is Bessel's equation of order zero.

In a stationary cylindrical wave,
<f>
must remain finite for R = 0; the appro-

priate solution isJo(kR), whereJo is a Bessel function of the first kind. Thus,

in a stationary cylindrical wave,

<f>
= Ae-i»J (kR). (70.4)

For R — the function Jo tends to unity, so that the amplitude tends to the

finite limit A. At large distances R, Jo may be replaced by its asymptotic

expression, and <£ then takes the form

<k = A / i-V-***. (70.5)

The solution corresponding to a monochromatic outgoing travelling wave is

<£ = Ae-***H<P(kR) y
(70.6)

where Ho {1) is the Hankel function of the first kind, of order zero. For

R -> this function has a logarithmic singularity:

<f> £ (2^/tt) log(£i?)<?-K (70.7)

At large distances we have the asymptotic formula

i2exp[i(kR-a>t~-frr)]

V(kR)

We see that the amplitude of a cylindrical wave diminishes (at large distances)

inversely as the square root of the distance from the axis, and the intensity

therefore decreases as ljR. This result is obvious, since the total energy

flux is distributed over a cylindrical surface, whose area increases propor-

tionally to R as the wave is propagated.

A cylindrical outgoing wave differs from a spherical or plane wave in the

important respect that it has a forward front but no backward front: once the

sound disturbance has reached a given point, it does not cease, but diminishes

comparatively slowly as t -> oo. Suppose that the function /i(£) in the

first term of (70.2) is different from zero only in some finite range

h < £ < h- Then, at times such that ct > R+ &> we have

S2 Mm
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As t -> oo, this expression tends to zero as

=
Vt j*

1®6**

Si

i.e. inversely as the time.

Thus the potential in an outgoing cylindrical wave, due to a source which
operates only for a finite time, vanishes, though slowly, as t -> oo. This
means that, as in the spherical case, the integral of p' over all time is zero:

00

fp'dt = 0. (70.9)

—oo

Hence a cylindrical wave, like a spherical wave, must necessarily include both
condensations and rarefactions.

§71. The general solution of the wave equation

We shall now derive a general formula giving the solution of the wave
equation in an infinite fluid for any initial conditions, i.e. giving the velocity

and pressure distribution in the fluid at any instant in terms of their initial

distribution.

We first obtain some auxiliary formulae. Let <f>(x, y, z, t) and i[j(x, y, z, t)

be any two solutions of the wave equation which vanish at infinity. We
consider the integral

/=/ («^-#)dF,

taken over all space, and calculate its time derivative. Since
<f>
and ifj satisfy

the equations A<f>-$lc2 = and A«A~$/c2 = 0, we have

dl/dt = j {<f4-^)dV = c* j (M«A-M<£)dF

= c2
J

div(<£ grad ifj
—

if/ grad <f>)dV.

The last integral can be transformed into an integral over an infinitely distant

surface, and is therefore zero. Thus we conclude that dljdt = 0, i.e. J is

independent of time :

f {<j4- #)dV = constant. (71.1)

Next, let us consider the following particular solution of the wave
equation :

4> = 8[r-c{to-t)]lr (71.2)

(where r is the distance from some given point O, to is some definite instant,
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and 8 denotes the delta function), and calculate the integral of ifj over all

space. We have

00 00

j lfsdV =
J*

if*-4irr2 dr = 4tt j rS[r-c(t -t)]dr.

o o

The argument of the delta function is zero for r = c(to— t) (we assume that

*o > *)• Hence, from the properties of the delta function, we find

jt/,dV = +nc(to-t). (71.3)

Differentiating this equation with respect to time, we obtain

ffdV = -4ttc. (71.4)

We now substitute for «/r, in the integral (71.1), the function (71.2), and

take
<f>

to be the required general solution of the wave equation. According

to (71.1), J is a constant; using this, we write down the expressions for /

at the instants t = and t = to, and equate the two. For t = to the two

functions t[t and
if,

are each different from zero only for r = 0. Hence, on

integrating, we can put r = in
(f>
and

(f>
(i.e. take their values at the point O),

and take
<f>
and

<f>
outside the integral:

I = <f>{x,y, zy
t ) j 4 &V- <f>{x,y, z, t ) j tfi dV,

where x
t y, z are the co-ordinates of O. According to (71.3) and (71.4),

the second term is zero for t — to, and the first term gives

I = - 47TC(j}(x
> y, z y to).

Let us now calculate /for t = 0. Putting = dif/Jdt = —dtpjdtoy and

denoting by <£o the value of the function
<f>

for t = 0, we have

/= _ (L^ + ^AdV^ --£- (foiftt-odV- f^MidF.

We write the element of volume as dV = r2drdo, where do is an element of

solid angle, and then we obtain, by the properties of the delta function,

J
foifft-odV =

j
cf>orh(r-cto)drdo = ct j <f>Q r=cU do\

the integral of <£o«A is similar. Thus

a

dt
(cto <£o,r-ct<,do)— Ct <f>0,r=ct do.
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Finally, equating the two expressions for / and omitting the suffix zero in to,

we obtain

<l>(x,y, *> = 7- -7-C h,r=ct do) + 1\
<f>0t r==ct do . (71.5)

This formula, called Poisson's formula, gives the spatial distribution of

the potential at any instant in terms of the distribution of the potential and
its time derivative (or, equivalently, in terms of the velocity and pressure

distribution) at some initial instant. We see that the value of the potential

at time t is determined by the values of <j> and (j> at time t = on the surface

of a sphere centred at O, of radius ct.

Let us suppose that, at the initial instant, <f>o and <j>o are different from zero

only in some finite region of space, bounded by a closed surface C (Fig. 34).

Fig. 34

We consider the values of
<f>

at subsequent instants at some point O. These
values are determined by the values of <£o and <£o at a distance ct from O.

The spheres of radius ct pass through the region within the surface C only

for djc < t ^ Djc, where d and D are the least and greatest distances from
the point O to the surface C. At other instants, the integrands in (71.5)

are zero. Thus the motion at O begins at time t = djc and ceases at time

t = Djc. The wave propagated from the region inside C has a forward

front and a backward front. The motion begins when the forward front

arrives at the point in question, while on the backward front particles pre-

viously oscillating come to rest.

PROBLEM

Derive the formula giving the potential in terms of the initial conditions for a wave depend-
ing on only two co-ordinates, * and y.

Solution. An element ofarea of a sphere ofradius ct can be written d/ = c2t2do, where do
is an element of solid angle. The projection of d/on the xy-plane is d* dy = df-\/[(ct)

2— p
s
]fct,

where p is the distance of the point x, y from the centre of the sphere. Comparing the two
expressions, we can write do = da: dy/c£\/[(c£)2~P2

]- Denoting by x, y the co-ordinates of

the point where we seek the value of ^, and by i, 17 the co-ordinates of a variable point in the

region of integration, we can therefore replace do in the general formula (71.5) by
d£ dt]/ct\/[(ct)2—(x— i)

2 —(y—
i?)

2
], doubling the resulting expression because d* dy is the
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projection of two elements of area on opposite sides of the #y-plane. Thus

V[(ct)2-(x-o2 -(y-v)2
]

IttC J J

+

^o(£*?)d£d7?

2ncJJ V[(ct)2-(x-02 -(y-n)2]'

where the integration is over a circle centred at O, of radius ct. If <j> and
<f>

are zero except

in a finite region C of the xy-plane (or, more exactly, except in a cylindrical region with its

generators parallel to the s-axis), the oscillations at the point O (Fig. 34) begin at time

t = djc, where d is the least distance from O to a point in the region. After this time, however,

circles of radius ct > d centred at O will always enclose part or all of the region C, and <f>

will tend only asymptotically to zero. Thus, unlike three-dimensional waves, the two-

dimensional waves here considered have a forward front but no backward front (cf. §70).

Reflected wave

Fig. 35

§72. The lateral wave

The reflection of a spherical wave from the surface separating two media

is of particular interest in that it may be accompanied by an unusual pheno-

menon, the appearance of a lateral wave.

Let Q (Fig. 35) be the source of a spherical sound wave in medium 1, at a
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distance / from the infinite plane surface separating media 1 and 2. The
distance / is arbitrary, and need not be large compared with the wavelength A.

Let the densities of the two media be pi, pz, and the velocities of sound in

them ci, cz. We suppose first that c\ > ci ; then, at distances from the source
large compared with A, the motion in medium 1 will be a superposition of
two outgoing waves. One of these is the spherical wave emitted by the source
(the direct wave) ; its potential is

<£i° = eMr/r, (72.1)

where r is the distance from the source, and the amplitude is arbitrarily taken
to be unity. We shall, for brevity, omit the factor e~t<ot from all expressions

in the present section.

Fig. 36

The wave surfaces of the second (reflected) wave are spheres centred at Q\
the image of the source Q in the plane of separation; this is the locus of

points P reached at a given time by rays which leave Q simultaneously and
are reflected from the plane in accordance with the laws of geometrical acou-
stics (in Fig. 36, the ray QAP with angles of incidence and reflection 6 is

shown). The amplitude of the reflected wave decreases inversely as the

distance r' from the point Q' (which is sometimes called an imaginary

source), but depends also on the angle 6, as if each ray were reflected with the

coefficient corresponding to the reflection of a plane wave at the given angle

of incidence 6. In other words, at large distances the reflected wave is given

by the formula

, =
*** r p2g2

-mV(gl
2- g22 sin2g) -|

r' Lp2t2 + piV(^i2-^2 sin26l)J'
K '

j

cf. formula (65.4) for the reflection coefficient for a plane wave. This formula,

which is clearly valid for large r', can be rigorously derived by the method
shown below.

A more interesting case is that where c\ < c<l. Here, besides the ordinary

reflected wave (72.2), another wave appears in the first medium. The
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chief properties of this wave can be seen from the following simple con-

siderations.

The ordinary reflected ray QAP (Fig. 36) obeys Fermat's principle in the

sense that it is the quickest path from Q to P, among paths lying entirely in

medium 1 and involving a single reflection. When c\ < C2, however, Fermat's

principle is also satisfied by another path, where the ray is incident on the

boundary at the critical angle of total internal reflection #o (sin #o = ^1/^2),

then is propagated in medium 2 along the boundary, and finally returns to

medium 1 at the angle do. The path is QBCP in Fig. 36, and it is evident

that 9 > 6q. It is easy to see that this path also has the extremal property:

the time taken to traverse it is less than for any other path from Q to P lying

partly in medium 2.

The geometrical locus of points P reached at the same time by rays which

simultaneously leave Q along the path QB, and then return to medium 1 at

various points C, is evidently a conical surface whose generators are perpen-

dicular to lines drawn from the imaginary source Q' at an angle 6q.

Thus, if c\ < C2, together with the ordinary reflected wave, which has

a spherical front, there is propagated in medium 1 another wave, which has a

conical front extending from the plane of separation (where it meets the

refracted wave front in medium 2) to the point where it touches the spherical

front of the reflected wave ; this occurs along the line of intersection with a

cone of semi-angle #o and axis QQ' (Fig. 35). This conical wave is called the

lateral wave.

It is easy to see by a simple calculation that the time along the path QBCP
(Fig. 36) is less than along the path QAP to the same point P. This means
that a sound signal from the source Q reaches an observer at P first as the

lateral wave, and only later as the ordinary reflected wave.

It must be borne in mind that the lateral wave is an effect of wave acoustics,

despite the fact that it allows the above simple interpretation in terms of the

concepts of geometrical acoustics. We shall see below that the amplitude of

the lateral wave tends to zero in the limit A -> 0.

Let us now make a quantitative calculation. The propagation of a mono-
chromatic sound wave from a point source is described by equation (69.7)

:

A<f>+ k*<f> = -47rS(r-l), (72.3)

where k = wjc and 1 is the radius vector of the source. The coefficient

of the delta function is chosen so that the direct wave has the form (72.1).

In what follows we take a system of co-ordinates with the ry-plane as the

plane of separation and the #-axis along QQ', with the first medium in z > 0.

At the surface of separation the pressure and the ^-component of the velocity,

or (equivalently)
p<f>

and d(f>/dz, must be continuous.

Using the general Fourier method, we obtain the solution in the form

co 00

<f>
= j j <f>K(z) txp[i(Kxx+ Kyy)] &KX &Ky, (72.4)
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where

1
00 00

^*) =
4^2 J J

^expt-'Va^+^Ky)]^^. (72 -5 )

—oo —oo

From the symmetry relative to the xy-plane it is evident that <£K can depend
only on the quantity \k\ = \/(kx2 + kv

2
). Using the well-known formula

1 r

Jo(u) = — cos(w sin <£)d<£,

2tt J
o

we can therefore write (72.4) as

<f>
= 2tt j<f>K(z)J (KR)K dK, (72.6)

o

where R = -\/(x2+y2
) is the cylindrical co-ordinate (the distance from the

jsr-axis). It is convenient for the subsequent calculations to transform this

formula into one in which the integral is taken from — oo to oo, expressing

the integrand in terms of the Hankel function Hq {1 \u). The latter has a

logarithmic singularity at the point u = 0; if we agree to go from positive

to negative real u by passing above the point u = in the complex w-plane,

then Ho (1)(-u) = H ^\uein) = Ho (1\u)-2J (u). Using this relation, we
can rewrite (72.6) as

<f>
= 7t

J <f>K(z)Ho
a\KR)K die. (72.7)

—00

From equation (72.3) we find for the function j>K the equation

d*2

/ co2 \ 1

-(k2 --)^= --8(*-/). (72.8)

The delta function on the right-hand side of the equation can be eliminated

by imposing on the function
<f>K(z) (satisfying the homogeneous equation)

the boundary conditions at z = I:

[d^/d^-[d^/d^_= -1/77.

The boundary conditions at z = are

l>^]o+-[>^]o- = 0,

[d<^d*]o+ -[d4/d*]o- = 0.
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We seek a solution in the form

<f>K = Ae-W for z > I, \

<f>K = Be-^ + Ce^ for / > z > 0,
[

(72.11)

<f>K
= De^z for > z. J

Here

^2 = K2-k^, [M22 = K2-k2
2 (ki = Qi\c\, k2 = C0/C2),

and we must put

u, = +VU2-A2)for k > k,^ VV }
(72.12)

/x = — i-\/(k2— k2) for k < k.

The first of these is necessary so that <j> should not increase without limit as

z -> oo, and the second so that
<f>

should represent an outgoing wave. The
conditions (72.9) and (72.10) give four equations which determine the co-

efficients A, B, C and D. A simple calculation gives

B = c^w-pm c =
e l/l1

D=C ^1_, A = B+ Ce2^.
/*lp2+ )U,2pi

(72.13)

For p2 = pi, c2 = c\ (i.e. when all space is occupied by one medium),

B is zero and A = Ce21^ ; the corresponding term in
<f>

is evidently the dire ct

wave (72.1), and the reflected wave in which we are interested is therefore

oo

cf>i' = tt j B(K)e-^W»(KR)KdK. (72.14)

—oo

In this expression the path of integration has to be specified. It passes

above the singular point k = (in the complex /c-plane), as we have already

mentioned. The integrand also has singular points (branch points) at

k = ±ki, ± k2 , where m or \i2 vanishes. In accordance with the conditions

(72.10), the contour must pass below the points +ki, +k2 , and above the

points — ki, —k2 .

Let us investigate the resulting expression for large distances from the

source. Replacing the Hankel function by its well-known asymptotic

expression, we obtain

<£i' =
f

f"lp2~^2pl /JL^pi-fr+^ + iKRidK. (72.15)
J M^1P2 + f*2pl) N Li-nR

Fig. 37 shows the path of integration C for the case c\ > c%. The integral can

be calculated by means of the saddle-point method. The exponent

i[(z+ l)\/(ki2— k2) + kR] has an extremum at the point where

k/V(&i2-k2
) = R/(z+ l) = r' sind/r' cosd = tanfl,
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i.e. k = k\ sin #, where 6 is the angle of incidence (see Fig. 35). On changing

to the path of integration C" which passes through this point at an angle of

7r/4 to the axis of abscissae, we obtain formula (72.2).

Fig. 37

In the case ci < c^ (i.e. h\ > £2), the point k = k\ sin 6 lies between

&2 and ki if sin 6 > hi\k\ = c\\c^ — sin do, i-e. if 6 > 6q (Fig. 38). In this

case the contour C" must make a loop round the point kz, and we have,

besides the ordinary reflected wave (72.2), a wave <f>i" given by the integral

(72.15) taken around the loop, which we call C" . This is the lateral wave.

The integral is easily calculated if the point &i sin 9 is not close to hi, i.e.

if the angle 6 is not close to the internal-reflection angle 0o«t

Fig. 38

Near the point k = &2, ft2 is small ; we expand the coefficient of the expo-

nential in the integrand of (72.15) in powers of fi2. The zero-order term has

no singularity at k = k%, and its integral round C" is zero. Hence we have

#>= _ f^L /_^Xp[_(*+/)/
,1+ ;,fjR]dK.

J MrP2 V 2&77T
c

(72.16)

Expanding the exponent in powers of k— k% and integrating round the loop

t For an investigation of the lateral wave for all values of d, see L. Brekhovskikh, Zhurnal tekh-

nicheskoi fiziki 18, 455, 1948. This paper gives also the next term in the expansion of the ordinary

reflected wave in powers of XjR. We may mention here that, for angles d close to (in the case

c1 < c2), the ratio of the correction term to the leading term falls off with distance as (A/i?)i, and
not as X/R.
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C", we have after a simple calculation the following expression for the poten-

tial of the lateral wave

:

<k
" = 2*Pifoexp[iftir'cos(e -fl)]

^ r'a/o^iVtcos^osin^sinS^o-^)]'
'

In accordance with the previous results, the wave surfaces are the cones

r' cos(d—9o) = R sin 6o+ (z+l) cos do = constant. In a given direction, the

wave amplitude decreases inversely as the square of the distance r'. We see

also that this wave disappears in the limit A -> 0. For -> do, the expres-

sion (72.17) ceases to be valid; in actual fact, the amplitude of the lateral

wave in this range of 6 decreases with distance as r'
-5/4

.

§73. The emission of sound

A body oscillating in a fluid causes a periodic compression and rarefaction

of the fluid near it, and thus produces sound waves. The energy carried

away by these waves is supplied from the kinetic energy of the body. Thus
we can speak of the emission of sound by oscillating bodies.

f

In the general case of a body of arbitrary shape oscillating in any manner,
the problem of the emission of sound waves must be solved as follows. We
take the velocity potential

<f>
as the fundamental quantity; it satisfies the wave

equation

A^-G/^W/3'2 = 0- (73.1)

At the surface of the body, the normal component of the fluid velocity must
be equal to the corresponding component of the velocity u of the body:

8<f>/8n = un . (73.2)

At large distances from the body, the wave must become an outgoing spherical

wave. The solution of equation (73.1) which satisfies these boundary con-

ditions and the condition at infinity determines the sound wave emitted by
the body.

Let us consider the two boundary conditions in more detail. We suppose
first that the frequency of oscillation of the body is so large that the length

of the emitted wave is very small compared with the dimension / of the body:

A < I (73.3)

In this case we can divide the surface of the body into portions whose dimen-
sions are so small that they may be approximately regarded as plane, but
yet are large compared with the wavelength. Then we may suppose that each

f In what follows we shall always suppose that the velocity u of the oscillating body is small com-
pared with the velocity of sound. Since u~ aco, where a is the linear amplitude of the oscillations,

this means that a <^ A.

The amplitude of the oscillations is in general supposed small in comparison with the dimensions
of the body also, since otherwise we do not have potential flow near the body (cf. §9). This con-
dition is unnecessary only for pure pulsations, when the solution (73.7) used below is really a direct
deduction from the equation of continuity.
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such portion emits a plane wave, in which the fluid velocity is simply the

normal component un of the velocity of that portion of the surface. But the

mean energy flux in a plane wave is (see §64) cpv2 , where v is the fluid velocity

in the wave. Putting v — un and integrating over the whole surface of the

body, we reach the result that the mean energy emitted per unit time by
the body in the form of sound waves, i.e. the total intensity of the emitted

sound, is

I = cP j>unzdf. (73.4)

It is independent of the frequency of the oscillations (for a given velocity

amplitude).

Let us now consider the opposite limiting case, where the length of the

emitted wave is large compared with the dimension of the body:

A > I (73.5)

Then we can neglect the term (llc2)d2<f>[dt2 , in the general equation (73.1),

near the body (at distances small compared with the wavelength). For this

term is of the order of cd2^/c2 ~ (f>[X
2

, whereas the second derivatives with

respect to the co-ordinates are, in this region, of the order of </>//
2

.

Thus the flow near the body satisfies Laplace's equation, A<£ = 0. This

is the equation for potential flow of an incompressible fluid. Consequently

the fluid near the body moves as if it were incompressible. Sound waves

proper, i.e. compression and rarefaction waves, occur only at large distances

from the body.

At distances of the order of the dimension of the body and smaller, the

required solution of the equation /\<j> = cannot be written in a general form,

but depends on the actual shape of the oscillating body. At distances large

compared with /, however (though still small compared with A, so that the

equation /\<j> = remains valid), we can find a general form of the solution

by using the fact that
<f>
must decrease with increasing distance. We have

already discussed such solutions of Laplace's equation in §11. As there,

we write the general form of the solution as

cj> = -(a/r)+A.grad(l/r), (73.6)

where r is the distance from an origin anywhere inside the body. Here, of

course, the distances involved must be large compared with the dimension

of the body, since we cannot otherwise restrict ourselves to the terms in <j>

which decrease least rapidly as r increases. We have included both terms in

(73.6), although it must be borne in mind that the first term is sometimes

absent (see below).

Let us ascertain in what cases this term — a/r is non-zero. We found

in §11 that a potential —a\r results in a non-zero value Airpa of the mass flux

through a surface surrounding the body. In an incompressible fluid, how-

ever such a mass flux can occur only if the total volume of fluid enclosed within
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the surface changes. In other words, there must be a change in the volume

of the body, as a result of which the fluid is either expelled from or "sucked

into" the volume of space concerned. Thus the first term in (73.6) appears

in cases where the emitting body undergoes pulsations during which its

volume changes.

Let us suppose that this is so, and determine the total intensity of the

emitted sound. The volume Aira of the fluid which flows through the closed

surface must, by the foregoing argument, be equal to the change per unit time

in the volume V of the body, i.e. to the derivative dVjdt (the volume V
being a given function of the time) : 4rra = V. Thus, at distances r such

that / <^ r <^ A, the motion of the fluid is given by the function
<f>
= — V(t)\$Trr.

At distances r > A, however (i.e. in the "wave region"),
<f>
must represent an

outgoing spherical wave, i.e. must be of the form

ftt-rlc)
4> = -- l-l. (73.7)

r

Hence we conclude at once that the emitted wave has, at all distances large

compared with /, the form

V(t-rlc)
<f>
= ~ K

' \ (73.8)
477T

which is obtained by replacing the argument t of (tV) by t—rjc.

The velocity v = grad cf> is directed at every point along the radius

vector, and its magnitude is v = d<f>jdr. In differentiating (73.8) for distances

r > A, only the derivative of the numerator need be taken, since differentiation

of the denominator would give a term of higher order in 1/r, which we neglect.

Since W{t-r\c)]dr = -(l/c)F(*-r/c), we obtain

v = V(t-r/c)n/4iTcr, (73.9)

where n is a unit vector in the direction of r.

The intensity of the sound is given by the square of the velocity, and is

here independent of the direction of emission, i.e. the emission is isotropic.

The mean value of the total energy emitted per unit time is

I = pc jtfdf = (P/16c7T
2
) j (72/r2)d/,

where the integration is taken over a closed surface surrounding the origin.

Taking this surface to be a sphere of radius r, and noticing that the integrand

depends only on the distance from the origin, we have finally

/ = pV
2
/4ttc. (73.10)

This is the total intensity of the emitted sound. We see that it is given by

the squared second time derivative of the volume of the body.
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If the body executes harmonic pulsations of frequency to, the second time

derivative of the volume is proportional to the frequency and velocity

amplitude of the oscillations, and its mean square is proportional to the

square of the frequency for a given velocity amplitude of points on the surface

of the body. For a given amplitude of the oscillations, however, the velocity

amplitude is itself proportional to the frequency, so that the intensity of

emission is proportional to co4 .

Let us now consider the emission of sound by a body oscillating without

change of volume. Only the second term then remains in (73.6) ; we write it

<f>
= div[A(t)[r]. As in the preceding case, we conclude that the general

form of the solution at all distances r p I is
<f>
— div[A(£— r/c)jr]. That

this expression is in fact a solution of the wave equation is seen immediately,

since the function A(t—r/c)/r is a solution, and therefore so are its derivatives

with respect to the co-ordinates. Again differentiating only the numerator,

we obtain (for distances r > A)

<f>
= -A(t-rjc)-nlcr. (73.11)

To calculate the velocity v = grad</>, we need again differentiate only A.
Hence we have, by the familiar rules of vector analysis for differentiation

with respect to a scalar argument,

A(/-r/c)-n
v = — ^grad(.-I),

cr

and, substituting gTad(t-rjc) = -(l/<:)gradr = -n/c, we have finally

v = n(n-A)/c2r. (73.12)

The intensity is now proportional to the squared cosine of the angle between
the direction of emission (i.e. the direction of n) and the vector A; this is

called dipole emission. The total emission is given by the integral

c3 J r

We again take the surface of integration to be a sphere of radius r, and use

spherical co-ordinates with the polar axis in the direction of the vector A.

A simple integration gives finally for the total emission per unit time

/=^A2. (73.13)

The components of the vector A are linear functions of the components of

the velocity u of the body (see §11). Thus the intensity is here a quadratic

function of the second time derivatives of the velocity components.

If the body executes harmonic oscillations of frequency to, we conclude

(reasoning as in the previous case) that the intensity is proportional to co4
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for a given value of the velocity amplitude. For a given linear amplitude of

the oscillations of the body, the velocity amplitude is proportional to the

frequency, and therefore the intensity is proportional to w6
.

In an entirely similar manner we can solve the problem of the emission of

cylindrical sound waves by a cylinder of any cross-section pulsating or

oscillating perpendicularly to its axis. We shall give here the corresponding

formulae, with a view to later applications.

Let us first consider small pulsations of a cylinder, and let S = S(t) be

its (variable) cross-sectional area. At distances r from the axis of the cylinder

such that / < r 4. A, where / is the transverse dimension of the cylinder,

we have similarly to (73.8)

<f>
= [S(t)l27T]\ogfr y (73.14)

where /(i) is a function of time, and the coefficient of log/r is chosen so as to

obtain the correct value for the mass flux through a coaxial cylindrical surface.

In accordance with the formula for the potential of an outgoing cylindrical

wave (the first term of formula (70.2)), we now conclude that at all distances

r > / the potential is given by

t-rlc
c_ r ^t)df

^
Jo V[c2(t-t'f-r2]'

K
' '

As r -> the leading term of this expression is the same as (73.14), and

the function f(t) in the latter equation is automatically determined (we

suppose that the derivative S(t) tends sufficiently rapidly to zero as t -> — oo).

For very large values of r, on the other hand (the "wave region"), the values

oi t—t' ~ rjc are the most important in the integral (73.15). We can there-

fore put, in the denominator of the integrand,

(t-tf-i*l<* « (2r/c)(*-*'-r/c),

obtaining

c *"f S(t')dt'£= Li
. (73.16)

Finally, the velocity v = d<f>/dr. To effect the differentiation, it is con-

venient to substitute t— t'— rjc = £:

6= -- I
C

1
fo-^-fl

df-

the limits of integration are then independent of r. The factor l/-v/r in

front of the integral need not be differentiated, since this would give a term
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of higher order in 1/r. Differentiating under the integral sign and then

returning to the variable t', we obtain

t-r/c

S(t')dt'
v =

r S(f)dt'—
. (73.17)WW i Vi<t-t')-r]

The intensity is given by the product iTrrpcv2 . It should be noticed that here,

unlike what happens for the spherical case, the intensity at any instant is

determined by the behaviour of the function S(t) at all times from — oo

to t— rjc.

Finally, for translatory oscillations of an infinite cylinder in a direction

perpendicular to its axis, the potential at distances r such that / <^ r <^ A

has the form

<f>
= div(A logfr), (73.18)

where A(t) is determined by solving Laplace's equation for the flow of an

incompressible fluid past a cylinder. Hence we again conclude that, at all

distances r > /,

t-r/c

r Alt' )dr

<f>
= -div — . (73.19)

In conclusion, we must make the following remark. We have here entirely

neglected the effect of the viscosity of the fluid, and accordingly have sup-

posed that there is potential flow in the emitted wave. In reality, however, we
do not have potential flow in a fluid layer of thickness ~ \/(vJco) round the

oscillating body (see §24). Hence, if the above formulae are to be applicable,

it is necessary that the thickness of this layer should be small in comparison

with the dimension / of the body:

VWco) < /• (73.20)

This condition may not hold for small frequencies or small dimensions of

the body.

PROBLEMS

Problem 1. Determine the total intensity of sound emitted by a sphere executing small

(harmonic) translatory oscillations of frequency on, the wavelength being comparable in

magnitude with the radius R of the sphere.

Solution. We write the velocity of the sphere in the form u = u e~i(Ot
; then <f>

depends
on the time through a factor e~ib)t also, and satisfies the equation A<f>+k2

<f>
— 0, where k = tojc.

We seek a solution in the form <j> = u • grad/(r), the origin being taken at the instantaneous

position of the centre of the sphere. For / we obtain the equation u • grad(Af+k2
f) = 0,

whence Af+k2f = constant. Apart from an unimportant additive constant, we therefore

have / = AeikT
lr. The constant A is determined from the condition 8<f>/dr = ur for r = R,

and the result is

/R\3 ikr-1
d> = wreik(r-R)

i — .r
\ r I 2-2ikR-k2R2



§73 The emission of sound 285

Thus we have dipole emission. At fairly large distances from the sphere, we can neglect

unity in comparison with ikr, and
<f>

takes the form (73.11), the vector A being

ia>

A = -ueik(r- R)R3-

2-2ikR-k*R2

Noticing that (re A) 2 = i|A|
2

, we obtain for the total emission, by (73.13),

2ttP , ,

i?6eo4

=—

N

3c3' ' 4+ (coR/cy

For toRfc <^ 1, this expression becomes / = irpR 6 \u
\

2
co

4
l6c 6

, a result which could also be

obtained by directly substituting in (73.13) the expression A = £Rsu from §11, Problem 1.

For o>i?/c^> 1 we have 1 = 27rpci?2 |u
|

2
/3, corresponding to formula (73.4).

The drag force acting on the sphere is obtained by integrating over the surface of the

sphere the component of the pressure forces (p' — — p(^')r=fe) in the direction of u, and is

4tt -kW3+ i(2+k2R*)
F = —pcoR3u ;

see the end of §24 concerning the meaning of a complex drag force.

Problem 2. The same as Problem 1, but for the case where the radius R of the sphere is

comparable in magnitude with V( •'/<")» whilst A^> R.

Solution. If the dimension of the body is small compared with \/( ''/<«»)> then the emitted

wave must be investigated not from the equation A ^ = 0, but from the equation of motion
of an incompressible viscous fluid. The appropriate solution of this equation for a sphere is

given by formulae (1) and (2) in §24, Problem 5. At great distances the first term in (1),

which diminishes exponentially with r, may be omitted. The second term gives the velocity

v = —i(u # grad)grad(l/r). Comparison with (73.6) shows that

A = -bu = lR3[l-3l(i-l)K-3/2iK2]\i,

where #c = Ry/(u>l2v), i.e. A differs from the corresponding expression for an ideal fluid

by the factor in brackets. The result is

ttdR* / 3 9 9 9 \,
,

I = J—a>M 1+- + + + uo p.

For k ^> 1 this becomes the formula given in Problem 1 , while for ic^lwe obtain

/ = 3ttPR2vV\uo\ 2
I2(?,

i.e. the emission is proportional to the second, and not the fourth, power of the frequency.

Problem 3. Determine the intensity of sound emitted by a sphere executing small (har-

monic) pulsations of arbitrary frequency.

Solution. We seek a solution of the form
<f>
= {aujr)eik^r

~Ki
, R being the equilibrium

radius of the sphere, and determine the constant a from the condition [d4>Jdr]r=R = u
= u e~i0)t (where u is the radial velocity of points on the surface of the sphere):

a = R2l{ikR-\).

The intensity is I = 27rpc|u
|

2#!-R
4
/(l +k2Ri

). For kR < 1, / = 2irP a)
2Ri \u

\

2
/c, in accor-

dance with (73.10), while for kR ^> 1, / = 2npcR2
\u

\

2
, in accordance with (73.4).

Problem 4. Determine the nature of the wave emitted by a sphere (of radius R) executing

small pulsations, when the radial velocity of points on the surface is an arbitrary function

u(t) of the time.
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Solution. We seek a solution in the form
<f> =f(t')Jr, where t' = t—{r—R)jc, and deter-

mine / from the boundary condition d<f>j8r = u(t) for r = R. This gives the equation

dfJdt+cf(t)JR = —Rcu(t). Solving this linear equation and replacing t by t' in the solution,

we obtain

„ t
cR r

<f,(r, t') = e-<*/R u{t)(*»/R&t. (1)

—oo

If the oscillations of the sphere cease at some instant, say t — (i.e. u(j) = for r > 0),

then the potential at a distance r from the centre will be of the form
<f>
= constant X e~e'ls

after the instant t = (r—R)Jc, i.e. it will diminish exponentially.

Let T be the time during which the velocity u(t) changes appreciably. If T ^> Rjc, i.e. if

the wavelength of the emitted waves A ~ cT^> R, then we can take the slowly varying factor

«(t) outside the integral in (1), replacing it by u(t'). For distances r^> R, we then obtain

<f>
= -~(R2Jr)u(t—rjc), in accordance with formula (73.8). If, on the other hand, T <^.RJc,

we obtain in a similar manner

cR C
$ = w(

T)dT , v = 8^18r = {Rlr)u{t'),

—oo

in accordance with formula (73.4).

Problem 5. Determine the motion of an ideal compressible fluid when a sphere of radius

R executes in it an arbitrary translatory motion, with velocity small compared with that of

sound.

Solution. We seek a solution in the form

$ = div[f(*>], (1)

where r is the distance from the origin, taken at the position of the centre of the sphere at

the time t' = t—(r—R)/c; since the velocity u of the sphere is small compared with the

velocity of sound, the movement of the origin may be neglected. The fluid velocity is

„ aa 3(f.n)n-f
t

3(f'.n)n-f'
,
(f".n)n

v = grad^ = + +
, (2)

where n is a unit vector in the direction of r, and the prime denotes differentiation with

respect to the argument of f. The boundary condition is vr = u • n for r — R, whence
f"(t)+(2clR)f'(t)+(2c*IR2

)f(t) = Rc2u(t). Solving this equation by variation of the para-

meters, we obtain for the function f(t) the general expression

*
( \

f(t) = cR*e-*i* fu(T)sin-^—IV/-Rc1t. (3)

—00

In substituting in (1), we must replace t by t'. The lower limit is taken as — oo so thatf

shall be zero for t = — oo.

Problem 6. A sphere of radius i? begins at time t = to move with constant velocity u .

Determine the sound intensity emitted at the instant when the motion begins.

Solution. Putting in formula (3) of Problem 5 u(t) = for t < and u(t) = u for

t > 0, and substituting in formula (2) (retaining only the last term, which decreases least

rapidly with r), we find the fluid velocity far from the sphere

:

v = — n(n«uo)
\/2R l ct' \

er<*iR sin I M,
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where t' > 0. The total intensity diminishes with time according to

I = (87rl3)cpR2 uo2 e-^'/Rsmz(ct'IR-i7r).

The total amount of energy emitted is iTrpi?
3u 2

.

Problem 7. Determine the intensity of sound emitted by an infinite cylinder, of radius R,

executing harmonic pulsations of wavelength A ^> R.

Solution. According to formula (73.14), we find first of all that, at distances r <^ A

(in Problems 7 and 8 r is the distance from the axis of the cylinder), the potential is

<f>
= Ru log kr, where u = uae~

im is the velocity of points on the surface of the cylinder.

From a comparison with formulae (70.7) and (70.8), we now find that at large distances the

potential is of the form 4> = —Ru^{iirl2kr)eikr. The velocity is therefore

v = Ru^/(7rk/2ir)neikr,

where n is a unit vector perpendicular to the axis of the cylinder, and the intensity per unit

length of the cylinder is / = $n2po>R2u 2
.

Problem 8. Determine the intensity of sound emitted by a cylinder executing harmonic

translatory oscillations in a direction perpendicular to its axis.

Solution. At distances r <^ A we have <j> — —div(i?2u log kr) ; cf. formula (73.18) and

§10, Problem 3. Hence we conclude that at large distances

<j> = ^V^^divC^^u/Vr) = -R2 u.n^/(7Tkl2ir)eMr
t

whence the velocity is v = —kR2\/(inkl2r)n(vfn)eikr. The intensity is proportional to the

squared cosine of the angle between the directions of oscillation and emission. The total

intensity is J = (7r2/4c2)pa)3i2
4 |u

|

2
.

Problem 9. Determine the intensity of sound emitted by a plane surface whose temperature

varies periodically with frequency o» <^ e2
/x» where x is the thermometric conductivity of the

fluid.

Solution. Let the variable part of the temperature of the surface be T/

9e~
i<ot

. These

temperature oscillations cause a damped thermal wave in the fluid (52.17):

T' = T,

oe-i<ote~a-i)^ <-b>/2x)x
i

and the fluid density therefore oscillates also: />' = (dp\dT)vT = —pPT', where P is the

coefficient of thermal expansion. This, in turn, results in the occurrence of a motion deter-

mined by the equation of continuity: p dv/dx = —dp'jdt = —imp^T'. At the solid surface

the velocity vx = v = 0, and far from the surface it tends to the limit

00
^

v = -imp f T'dx = -^Lp^ajfiT'oer**

o

This value is reached at distances ,^JV(xl <0)> which are small compared with c/to, and we
thus have a boundary condition on the resulting sound wave. Hence we find the intensity

per unit area of the surface to be / = icp^2wx\T/

e \

2
.

Problem 10. A point source emitting a spherical wave is at a distance / from a solid wall

which totally reflects sound and bounds a half-space occupied by fluid. Determine the ratio

of the total intensity of sound emitted by the source to that which would befound in an infinite

medium, and the dependence of the intensity on direction for large distances from the source.

Solution. The sum of the direct and reflected waves is given by a solution of the wave
equation such that the normal velocity component vn — 3<f>/dn is zero at the wall. Such a

solution is

oikr pikr'- + —)-<»
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(we omit the constant factor, for brevity), where r is the distance from the source O (Fig.

39), and r' is the distance from a point O' which is the image of O in the wall. At large dis-
tances from the source we have r' 7H r— 21 cos 0, so that

ei(kr— <ot)

(f)
= (l-f e-2ta?cos<?).

r

The dependence of the intensity on direction is given by a factor cos2
(&/ cos 0).

To determine the total intensity, we integrate the energy flux q = p'v = —
p<£ grad 4

(see (64.4)) over the surface of a sphere of arbitrarily small radius, centred at O. This gives
2irpk<*>{\ +[l/2&/] sin 2kl). In an infinite medium, on the other hand, we should have simply a
spherical wave <p = ei(*r-«t)/r> with a total energy flux 2irpka>. Thus the required ratio of
intensities is 1 +(l/2kl) sin 2kl.

36e-
/
-^-/--^.

Fig. 39

Problem 11. The same as Problem 10, but for a fluid bounded by a free surface.

Solution. At the free surface the condition p' = — p4> = must hold; in a monochro-
matic wave this is equivalent to ^ = 0. The corresponding solution of the wave equation is

oikr t>ikf

\g—io>t

(gtKr ei/cr \

At large distances from the source, the intensity is given by a factor sin2(kl cos 8). The re-

quired ratio of intensities is 1 —(\j2kl) sin 2kl.

§74. The reciprocity principle

In deriving the equations of a sound wave in §63, it was assumed that the

wave is propagated in a homogeneous medium. In particular, the density

po of the medium and the velocity of sound in it, c, were regarded as constants.

In order to obtain some general relations applicable for an arbitrary inhomo-
geneous medium, we shall first derive the equation for the propagation of

sound in such a medium.

We write the equation of continuity in the form dpjdt+pdivv = 0.

Since the propagation of sound is adiabatic, we have

dt \8plsdt c* dt c*\dt * F
]

and the equation of continuity becomes #p/d*+ v«grad/> + pc2 div v = 0.

As usual, we put p — po+ p', where po is now a given function of the

co-ordinates. In the equation p = po +p', however, we must put as before
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po = constant, since the pressure must be constant throughout a medium in

equilibrium (in the absence of an external field, of course). Thus we have to

within second-order quantities dp'/dt+poc2 div v = 0.

This equation is the same in form as equation (63.5), but the coefficient

poc2 is a function of the co-ordinates. As in §63, we obtain Euler's equation

in the form dvjdt = -(1/po) gradp'. Eliminating v, and omitting the

suffix in po, we finally obtain the equation of propagation of sound in an

inhomogeneous medium:

&&L-1-2L-0. (74,)

p pcl ct*

If the wave is monochromatic, with frequency w, we have p' = — co2/>',

so that

d
.

v
grad/

+ ^, = o (742)
P P&

Let us consider a sound wave emitted by a pulsating source of small

dimension; we have seen in §73 that the emission is isotropic. We denote by

A the point where the source is, and by pjfi) the pressure p' at a point B
in the emitted wave.f If the same source is placed at B, it produces at A
a pressure which we denote by Pb(A). We shall derive the relation between

pA(B) and pB(A).
To do so, we use equation (74.2), applying it first to the sound from a

source at A and then to the sound from a source at B:

eradp'A (o2
, n ,.

gradp'B co2

div« L± + p'A = 0, div-2 — + —Tp's = 0.

P pc2 p pr

We multiply the first equation by p'# and the second by p'a and subtract.

The result is

,
gra&pA . ,. gradp's

p'B div p a div

P P

_ di
/ P'b g™&P'A P'a gradp'e \ = Q
\ P P I

We integrate this equation over the volume between an infinitely distant

closed surface C and two small spheres Ca and Cb which enclose the points

A and B respectively. The volume integral can be transformed into three

surface integrals, and the integral over C is zero, since the sound field vanishes

at infinity. Thus we obtain

r ^ *«£*__, VWb\ m _ i (74 .3)

t The dimension of the source must be small compared with the distance between A and B and

with the wavelength.
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Inside the small sphere CA , the pressure p'A in the wave from a source
at A falls off rapidly with the distance from A, and the gradient gradp'A
is therefore large. The pressure p'B due to a source at B is a slowly varying
function of the co-ordinates in the region near the point A, which is at a
considerable distance from B, so that the gradient gradp'B is relatively small.
When the radius of the sphere CA is sufficiently small, therefore, we can
neglect the integral

j(p'A/p)gradp'B -d£

over CA in comparison with

J(P'b/p) gradp'A .df,

and in the latter the almost constant quantity p'B can be taken outside the
integral and replaced by its value at the point A. Similar arguments hold for
the integrals over the sphere CB , and as a result we obtain from (74.3) the
relation

But (l[p)gradp' = -dvfdt, and this equation can therefore be rewritten

a

cA

The integral

p'B(A)—j>vA .df = p'A(B)j-j>vB .df.

<fv^.df

over CA is the volume of fluid flowing per unit time through the surface of
the sphere CA , i.e. it is the rate of change of the volume of the pulsating
source of sound. Since the sources at A and B are identical, it is clear that

fv^.df=fvB .df,

and consequently

p'A{B) = p'B{A). (74.4)

This equation constitutes the reciprocity principle : the pressure at B due
to a source at A is equal to the pressure at A due to a similar source at B.
It should be emphasised that this result holds, in particular, for the case
where the medium is composed of several different regions, each of which
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is homogeneous. When sound is propagated in such a medium, it is reflected

and refracted at the surfaces separating the various regions. Thus the reci-

procity principle is valid also in cases where the wave undergoes reflection

and refraction on its path from A to B.

PROBLEM

Derive the reciprocity principle for dipole emission of sound by a source which oscillates

without change of volume.

Solution. In this case the integral

^V^-df

over CA is zero identically, and the next approximation must be taken in calculating the

integrals in (74.3). To do so, we write, as far as the first-order terms,

P'b = p'^+ T-ffradp's,

where r is the radius vector from A. In the integral

,
grad^

,
grade's

\ Ar
(1)f^*^-,j£±t>yn

the two terms are now of the same order of magnitude. Substituting here for p'B the above

expansion, and using the fact that the integral

j>(llP)gradp'A >d£

over Ca is now zero, we obtain

<b (r- grade's) p a j

Next, we take the almost constant quantity gradp'B = -pvB outside the integral, replacing

it by its value at A :

CA
P

where pa is the density of the medium at the pointA To calculate this integral, we notice

that near a source the fluid can be supposed incompressible (see §73), and hence we can write

for the pressure inside the small sphere Ca, by (11.1), P'a = -p+ = pA-r/r3
. In a mono-

chromatic wave v = —icov, A = —itoA; introducing also the unit vector tla in the direction

of the vector A for a source at A, we find that the integral (1) is proportional to pAvB(A) • n^.

Similarly, the integral over the sphere CB is proportional to — pbva(B) •

n

Bl with the same

factor of proportionality. Equating the sum to zero, we find the required relation

PA^B(A)'nA = pBVA{B)-nB ,

which expresses the reciprocity principle for dipole emission of sound.

§75. Propagation of sound in a tube

Let us now consider the propagation of a sound wave in a long narrow tube.

By a "narrow" tube we mean one whose width is small compared with the
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wavelength. The cross-section of the tube may vary along its length in both
shape and area. It is important, however, that this variation should occur
fairly slowly: the cross-sectional area S must vary only slightly over distances
of the order of the width of the tube.

Under these conditions we can suppose that all quantities (velocity,
density, etc.) are constant over any transverse cross-section of the tube. The
direction of propagation of the wave can be supposed to coincide with that of
the axis of the tube at all points. The equation for the propagation of such
a wave is most conveniently derived by a method similar to that used in §13
in deriving the equation for the propagation of gravity waves in channels.

In unit time a mass Spv of fluid passes through a cross-section of the tube.
Hence the mass of fluid in the volume between two transverse cross-sections
at a distance dx apart decreases in unit time by

{SPv)x+&x -{Spv)x = [d(SPv)/8x]dx,

the co-ordinate x being measured along the axis of the tube. Since the volume
between the two cross-sections remains constant, the decrease must be due
only to the change in density of the fluid. The change in density per unit time
is dp/dt, and the corresponding decrease in the mass of fluid in the volume
S dx between the two cross-sections is -S{8pj8t)dx. Equating the two
expressions, we obtain

S8p/8t = -8(Spv)ldx, (75.1)

which is the "equation of continuity" for flow in a pipe.

Next, we write down Euler's equation, omitting the term quadratic in the
velocity:

dv/dt= -(l/p)8p/8x. (75.2)

We differentiate (75.1) with respect to time, regarding p on the right-hand
side as independent of time, since the differentiation of p gives a term which
involves v dp/dt = v dpjdt and is therefore of the second order of smallness.
Thus S 82p\8t2 = - 8{Sp8vj8t)J8x. Here we substitute the expression (75.2)
for 8v/8t, and express the derivative of the density on the left-hand side in
terms of the derivative of the pressure by p = (8p[8p)p = p/c2 .

The result is the following equation for the propagation of sound in a
tube:

1 8 I dp\ 1 82p

In a monochromatic wave p depends on time through a factor e_iw', and
(75.3) becomes

1 8 l 8p\

-sTx \

S
£)

+k2p = (i -

<75 '4>

where k — co/c is the wave number.f

f Here, and in the Problems, p denotes the variable part of the pressure, which we have previ-
ously denoted by p'.
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Finally, let us consider the problem of the emission of sound from the
open end of a tube. The pressure difference between the gas in the end of
the tube and that in the space surrounding the tube is small compared with the
pressure differences within the tube. Hence the boundary condition at the
open end of the tube is, with sufficient accuracy, that the pressure p should
vanish. The gas velocity v at the end of the tube is not zero ; let its value be
vq. The product Svq is the volume of gas leaving the tube per unit time.
We can now regard the open end of the tube as a "source" of gas of strength

Svq. The problem of the emission from a tube thus becomes equivalent to
that of the emission by a pulsating body, which is solved by formula (73.10).
In place of the time derivative Voi the volume of the body we must now put
Svo. Thus the total intensity of the sound emitted is

/ = pS^IAttc. (75.5)

PROBLEMS
Problem 1. Determine the transmission coefficient for sound passing from a tube of cross-

section Sx into one of cross-section S2 .

Solution. In the first tube we have two waves, the incident wave p x
— a1e

iikx~ a>t) and
the reflected wave p x

' = a{

'

e-M*+<»t) . In the second tube we have the transmitted wave
p2 = a2e^

kx-m\ At the point where the tubes join (x = 0), the pressures must be equal,
and so must the volumes Sv of gas passing from one tube to the other per unit time. These
conditions give aj+fli" = <h, S1(a1-a1

') = S2a2 , whence a2
= 2a151/( (S

,

1+ 4S2). The ratio D
of the energy flux in the transmitted wave to that in the incident wave is

D = S2pc\^\zjSiPc\^\z = S2|^/£iM2
or

4SlS2 , /S2-Si\ 2

D =
\s*+sj

Problem 2. Determine the amount of energy emitted from the open end of a cylindrical
tube.

Solution. In the boundary condition p = at the open end of the tube, we can approxi-
mately neglect the emitted wave (we shall see that the intensity emitted from the end of the
tube is small). Then we have the condition p x

= —p x\ where p t andpi are the pressures in
the incident wave and in the wave reflected back into the tube ; for the velocities we have
correspondingly vt = Vy, so that the total velocity at the end of the tube is v = Vx+v^ = 2vt .

The energy flux in the incident wave is cSpv} = icSpv^. Using (75.5), we obtain for the
ratio of the emitted energy to the energy flux in the incident wave D = Su)2/nc2

. For a
tube of circular cross-section (radius R) we haveD = i?aw2/c2 . Since, by hypothesis R<€clo>
it follows that D<1. » \ / ,

Problem 3. One of the ends of a cylindrical pipe is covered by a membrane which executes
a given oscillation and emits sound ; the other end is open. Determine the way in which sound
is emitted from the tube.

Solution. In the general solution

p = (aeikx+ J)e-i1cxy-iut

we determine the constants a and b from the conditions v = u = M e_i&", the given velocity
of the membrane, at the closed end (x = 0), and p = at the open end (x = /). These give
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aelke+be~m = 0, a—b = cpu . Determining a and b, we find the gas velocity at the open
end of the tube to be v — w/cos kl. If the tube were absent, the intensity of the sound emitted

by the oscillating membrane would be given by the mean square <S
2
Itt|

2 = 52w2
|m|

2
, according

to formula (73.10) with Su in place of V; S is the cross-sectional area of the membrane.
The emission from the end of the tube is proportional to S2 \v

\

2 a)2 . Defining the "amplifi-

cation coefficient" of the pipe as A = Sa
\v \*/Sa

\u[*, we obtain A — 1/cos2
kl. This becomes

infinite for frequencies of oscillation of the membrane equal to the characteristic frequencies
of the tube {resonance) ; in reality, of course, it remains finite because of effects which we have
neglected (such as friction due to the emission of sound).

Problem 4. The same as Problem 3, but for a conical tube, with the membrane covering
the smaller end.

Solution. The cross-section of the tube is S = SqX2
; let the values of the co-ordinate x

which correspond to the smaller and larger ends be xlt x2 , so that the length of the tube is

/ = x2 —Xi. The general solution of equation (75.4) is p = (l/x)(aeilcx +be~ikx)e~im ; a and b
are determined from the conditions v = u for x = Xi and p = for * = x2 . The amplifica-

tion coefficient is found to be

SoX22 \v2\
2 k2Xi2

A
Sox±2

1
u

|

2 (sin kl+ kxi cos kl)2

Problem 5. The same as Problem 3, but for a tube whose cross-section varies exponen-
tially along its length: S = Soexx.

Solution. Equation (75.4) becomes d
2pl8x2 +adpjdx+k2p = 0, whence

p = e-\*x(aeimx+ be-imxy-iuit
t

with m = -\/{k2 —\a.2
). Determining a and b from the conditions v = u for x = and p —

for x = /, we find the amplification coefficient

Soeal \vq\
2 eal

So\u\ 2 [£(a/m) sinm^+ cosm^]
2

for k > $a and

[|-(a/m') sinh m'l+ cosh m'Vf
V KZ h

for k < ^a.

§76. Scattering of sound

If there is some body in the path of propagation of a sound wave, then the

sound is scattered: besides the incident wave there appear other (scattered)

waves, which are propagated in all directions from the scattering body. The
scattering of a sound wave occurs simply on account of the presence of the

body in its path. In addition, the incident wave causes the body itself to move,

and this in turn brings about additional emission of sound by the body, i.e.

further scattering. If, however, the density of the body is large compared
with that of the medium in which the sound is propagated, and its compres-

sibility is small, then the scattering due to the motion of the body forms only a

small correction to the main scattering caused by the mere presence of the

body. In what follows we shall neglect this correction, and therefore suppose

the scattering body immovable.
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We assume that the wavelength A of the sound is large compared with the

dimension / of the body; to calculate the properties of the scattered wave,

we can then use formulae (73.8) and (73.11).j- In doing so, we regard the

scattered wave as being emitted by the body; the only difference is that,

instead of a motion of the body in the fluid, we now have a motion of the fluid

relative to the body. The two problems are clearly equivalent.

For the potential of the emitted wave we have obtained the expression

<f>
= — VjAttt— A* rjcr2 . In this formula V was the volume of the body.

In the present case, however, the volume of the body itself remains unchanged,

and V must be taken not as the rate of change of the volume of the body, but

as the volume of fluid which would enter, per unit time, the volume Vq

occupied by the body if the body were absent. For, in the presence of the

body, this volume of fluid does not penetrate into Vq, which is equivalent to

the emission of the same volume of fluid from Vq. The coefficient of 1/477T

in the first term of
<f>
must, as we have seen in §73, be just the volume of fluid

emitted from the origin per unit time. This volume is easily found. The
change per unit time in the mass of fluid in a volume equal to that of the body
is Vop, where p gives the rate of change of the fluid density in the incident

sound wave (since the wavelength is large compared with the dimension

of the body, the density p may be supposed constant over distances of the

order of this dimension; hence we can write the rate of change of the mass of

fluid in Vq as Vop simply, where p is the same throughout the volume Vq).

The change in volume corresponding to a mass change Vop is evidently

Vopfp. Thus V in the expression for
(f>
must be replaced by Vop/p. In an

incident plane wave, the variable part p of the density is related to the velocity

by p = pv/c; hence p = p' = pvfc, and we can replace Vopfp by Vqvjc.

When the body moves in the fluid, the vector A is determined by formulae

(11.5), (11.6): AnpAi = miicUk+ pVoUi. We must now replace the velocity

u of the body by the reversed velocity v of the fluid in the incident wave which
it would have at the position of the body if the latter were absent. Thus

At = —milc V]clATTp—VoViJ^TT. (76.1)

We finally obtain for the potential of the scattered wave

0sc= -Vov\\Trcr-k*T\cr\ (76.2)

the vector A being given by formula (76.1). Hence we have for the velocity

distribution in the scattered wave

vsc = Vq vnl47rrc2+ n(n •A)frc2 (76.3)

(see §73), n being a unit vector in the direction of scattering.

The mean amount of energy scattered per unit time into a given solid angle

element do is given by the energy flux, which is cpvSc2r2do. The total scat-

tered intensity 7Sc is obtained by integrating this expression over all directions.

f At the same time, the dimension of the body must be large in comparison with the displacement
amplitude of fluid particles in the wave, since otherwise the fluid is not in general in potential flow.
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The integration of twice the product of the two terms in (76.3) gives zero,

since this product is proportional to the cosine of the angle between the

direction of scattering and the direction of propagation of the incident wave,

and there remains (cf. (73.10) and (73.13))

The scattering is generally characterised by what is called the effective

cross-section do-, which is the ratio of the (time) average energy scattered into

a given solid-angle element to the mean energy flux density in the incident

wave. The total effective cross-section a is the integral of da over all directions

of scattering, i.e. it is the ratio of the total scattered intensity to the incident

energy flux density, and evidently has the dimensions of area.

The mean energy flux density in the incident wave is cp\2 . Hence the

differential effective scattering cross-section is (cpvSc2/c/>v2)r2do, i.e.

do = (v^2/v2)r2do. (76.5)

The total effective cross-section is

V 2 V2" 4tt A*
a = t= +— •=. (76.6)

477-c4 v2 3c4 V2
v '

For a monochromatic incident wave, the mean square second time derivative

of the velocity is proportional to the fourth power of the frequency. Thus the

effective cross-section for the scattering of sound by a body which is small

compared with the wavelength is proportional to oA.

Finally, let us briefly discuss the opposite limiting case, where the wave-

length of the scattered sound is small compared with the dimension of the

body. In this case all the scattering, except for the scattering through

very small angles, amounts to simple reflection from the surface of the body.

The corresponding part of the total effective scattering cross-section is clearly

equal to the area S of the cross-section of the body by a plane perpendicular

to the direction of the incident wave. The scattering through small angles

(of the order of A//), however, constitutes diffraction from the edges of the

body. We shall not pause here to expound the theory of this phenomenon,

which is entirely analogous to that of the diffraction of light.f We shall only

mention that, by Babinet's principle, the total intensity of diffracted sound

is equal to the total intensity of reflected sound. Hence the diffraction

part of the effective scattering cross-section is also equal to S, and the total

cross-section is therefore 2S.

PROBLEMS

Problem 1 . Determine the effective cross-section for the scattering of a plane sound wave
by a solid sphere of radius R small compared with the wavelength.

t See The Classical Theory of Fields, §§7-7 to 7-9.
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Solution. The velocity at a given point in a plane wave is v = a cos wt. In the case of a

sphere (see §11, Problem 1), the vector A is —£R3v. For the differential effective cross-section

we obtain

da = (1-f COS 0)2 do,
9c4

where 8 is the angle between the direction of the incident wave and the direction of scattering.

The scattered intensity is greatest in the direction 8 = -n, which is opposite to the direction

of incidence. The total effective cross-section is

a = (77r/9)(JR3G>2/c2)2. (1)

Here (and also in Problems 3 and 4 below) it is assumed that the density p of the sphere

is large compared with the density p of the gas ; if this were not so, it would be necessary

to take account of the movement of the sphere by the pressure forces exerted on it by the

oscillating gas.

Problem 2. Determine the effective cross-section for the scattering of sound by a drop of

fluid, taking into account the compressibility of the fluid and the motion of the drop caused

by the incident wave.

Solution. When the pressure of the gas surrounding the drop changes adiabatically by />',

the volume of the drop is reduced by (V lp )(dp<>lc>p)sp', where p is the density of the drop.

But (dp/dpo), is the square of the velocity of sound c in the fluid, and the pressure change in a

plane wave is related to the velocity by p' = vcp, where p is the density of the gas. Thus
the decrease in the volume of the drop is V vcpjc 2

p per unit time. In the expressions (76.2)

and (76.3), we must now replace V vjc by the difference V {vlc—vcpjc 2
p^). Moreover, in

the expression for A we must replace —v by the difference u— v, where u is the velocity

acquired by the drop as a result of the action of the incident wave. For a sphere we have, using

the results of §11, Problem 1, A = /?3v(P_ Po)/(2po+ P)- Substituting these expressions, we
have the effective cross-section

co*R«l/ c*p \ po-p )*

do- = {II — 3 cos 9
9c4 \\ c 2p / 2po+p

The total effective cross-section is

4rrftAR6 // <fip \2 3(/> -/>)2

I \ Cn2po /

+
9c* \\ coW (2p +p)2)

Problem 3. Determine the effective cross-section for the scattering of sound by a solid

sphere of radius R small compared with \/(vjw). The specific heat of the sphere is supposed

so large that its temperature can be regarded as a constant.

Solution. In this case we have to take into account the effect of the gas viscosity on the

motion of the sphere, and the vector A must be modified as shown in §73, Problem 2. For

RV(<oJv) < 1 we have A = —3iRvvJ2o).

The thermal conductivity of the gas also results in scattering of the same order. Let

TV-'6" be the temperature variation at a given point in the sound wave. The temperature

distribution near a sphere is (see §52, Problem 2)

(for r = R we must have T' = 0). The amount of heat transferred from the gas to the sphere

per unit time is (for RVHx) < 1) 9 = 4irRzk[&TI&r\r=R = 4nR KT&-**>*. This transfer

of heat results in a change in the volume of the gas, which can be taken to affect the scattering

like a corresponding effective change in the volume of the sphere, V — —AirRxfiT'Qe~
im

= —AirRx{y— l)v/c, where ]8 is the coefficient of thermal expansion of the gas and y = cp/cv ;

we have used also formulae (63.13) and (77.2).
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Taking account of both effects, we obtain the differential effective scattering cross-section

da = (a)Rlc*)*\x(y- 1) - \v cos df do.

The total effective cross-section is

a = 477(ft>JR/c2
)
2
[x

2(y-l)2+ |v2].

These formulae are valid only if the Stokes frictional force is small compared with the
inertia force, i.e. tjR <^ Mco, where M = 4irR3

p /3 is the mass of the sphere ; otherwise, the
movement of the sphere by viscosity forces becomes important.

Problem 4. Determine the mean force on a solid sphere which scatters a plane sound wave
(A>#).

Solution. The momentum transmitted per unit time from the incident wave to the sphere,
i .e. the required force, is the difference between the momentum in the incident wave and the

total momentum flux in the scattered wave. From the incident wave an energy flux acE
is scattered, where E is the energy density in the incident wave ; the corresponding momen-
tum flux is obtained by dividing by c, and is therefore oE . In the scattered wave, the momen-
tum flux into the solid angle element do is Escr

2do = E da; projecting this on the direction
of propagation of the incident wave (which is obviously the direction of the required force),

and integrating over all angles, we obtain

Eq COS 6 da.

Thus the force on the sphere is

F = Eo J(l-cos0)da.

Substituting for da from Problem 1, we obtain F = UircoWE^fic*.

§77. Absorption of sound

The existence of viscosity and thermal conductivity results in the dissipa-

tion of energy in sound waves, and the sound is consequently absorbed,

i.e. its intensity progressively diminishes. To calculate the rate of energy

dissipation i£mech> we use the following general arguments. The mechanical

energy is just the maximum amount of work that can be done in passing

from a given non-equilibrium state to one of thermodynamic equilibrium.

As we know from thermodynamics,^ the maximum work is obtained when the

transition is reversible (i.e. without change of entropy), and is then

#mech = Bq — E(S), where Eo is the given initial value of the energy, and
E(S) is the energy in the equilibrium state with the same entropy S as the

system had initially. Differentiating with respect to time, we obtain

$mech = —£(S) = -(dEIdS)S. The derivative of the energy with respect

to the entropy is the temperature. Hence dE/dS is the temperature which
the system would have if it were in thermodynamic equilibrium (with the

given value of the entropy). Denoting this temperature by To, we therefore

have .Cmech — — TqS.

t See, for instance, Statistical Physics, §19.
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We use for 3 the expression (49.6), which gives the rate of change of the

entropy due to both thermal conduction and viscosity. Since the temperature

T varies only slightly through the fluid, and differs little from To, it can be

taken outside the integral, and To can be written as T simply:

k r f / OVi uVk OVi \
*

&-- -
Y /(«n«ID.dF- i,J(- +--» ^) ir-

-^J(divv)2dr. (77.1)

This formula generalises formula (16.3) to the case of a compressible fluid

which conducts heat.

Let the #-axis be in the direction of propagation of the sound wave. Then

vx = v cos(kx-wt), vy = v z = 0. The last two terms in (77.1) give

-to +Q\(^\W = -Wto+ frx? jsm*(kx-a>t)dV.

We are, of course, interested only in the time average; taking this average,

we have -&2(ji?+ £) . |^o2^o, where Vq is the volume of the fluid.

Next we calculate the first term in (77.1). The deviation V of the tem-

perature in the sound wave from its equilibrium value is related to the

velocity by formula (63.13), so that the temperature gradient is

dTjdx = {^cTjcp)dvjdx = -(pcTlcp)voksm(kx-cot).

For the time average of the first term in (77. 1) we obtain - KC2T(Pvo2k2 Vol2cp
2

.

Using the well-known thermodynamic formulae

cp-cv = W(dp\dP) T = T^{cv\cv\dp\dP)s
= TpWcv/cp , (77.2)

we can rewrite this expression as — \k(\jcv — \jcp)k
2vo2Vo.

Collecting the above results, we find the mean value of the energy dissi-

pation :

imech= -lVo[(^+ + K(l/^-iy. (77.3)

The total energy of the sound wave is

E = \pvoW . (77.4)

The damping coefficient derived in §25 for gravity waves gives the manner

of decrease of the intensity with time. For sound, however, the problem is

usually stated somewhat differently: a sound wave is propagated through a

fluid, and its intensity decreases with the distance x traversed. It is evident

that this decrease will occur according to a law e~2yx> and the amplitude will

decrease as e~yx, where the absorption coefficient y is defined by

y = l^mechl/2^. (77.5)
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Substituting here (77.3) and (77.4), we find the following expression for the
sound absorption coefficient:

r-^lto+o+ii-i)]- (77 -6)

We may point out that it is proportional to the square of the frequency of

the sound.f

This formula is applicable so long as the absorption coefficient determined
by it is small: the amplitude must decrease relatively little over distances of

the order of a wavelength (i.e. we must have ycjco <^ 1). The above deriva-

tion is essentially founded on this assumption, since we have calculated

the energy dissipation by using the expression for an undamped sound wave.
For gases this condition is in practice always satisfied. Let us consider, for

example, the first term in (77.6). The condition ycjco <^ 1 means that

vcojc2 <^ 1. It is known from the kinetic theory of gases, however, that the

viscosity coefficient v for a gas is of the order of the product of the mean
free path / and the mean thermal velocity of the molecules; the latter is of

the same order as the velocity of sound in the gas, so that v ~ Ic. Hence we
have

vco/c2 ~ lco/c ~ //A <^ 1, (77.7)

since we know that / <^ A. The thermal-conduction term in (77.6) gives the

same result, since x ~ v -

In liquids, the condition of small absorption is always fulfilled when the

problem of sound absorption, as stated here, is significant at all. The absorp-

tion over one wavelength can become large only if the viscosity forces

are comparable with the pressure forces which occur when the substance is

compressed. In these conditions, however, the Navier-Stokes equation itself

(with the viscosity coefficients independent of frequency) becomes invalid

and a considerable dispersion of sound, due to processes of internal friction,

occurs. %

For absorption of sound, the relation between the wave number and the

frequency can evidently be written

k = co/c+iaco2
, (77.8)

where a denotes the coefficient of a>2 in the absorption coefficient y = aco2 .

t M. A. Isakovich has shown that there must be a special absorption when sound is propagated
in a two-phase system (an emulsion). Because of the different thermodynamic properties of the two
components, their temperature changes during the passage of the sound wave will in general be
different. The resulting heat exchange between the components leads to an additional absorption of
sound. On account of the relative slowness of this heat exchange, a considerable dispersion of the

sound takes place comparatively quickly. For detailed calculations see M. A. Isakovich, Zhurnal
experimental'noi i teoreticheskoi fiziki 18, 907, 1948.

J A special case where strong absorption is possible but can be discussed by the usual methods is

that of a gas with a thermal conductivity which is unusually large compared with its viscosity, on
account of effects such as radiative transfer at very high temperatures (see Problem 3).
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It is easy to see from this how the equation for a travelling sound wave must

be modified in order to take absorption into account. To do so, we notice that,

in the absence of absorption, the differential equation for (say) the pressure

p' = p'{x-ct) can be written dp'fix = -{\jc)dp'jdt. The equation whose

solution is ei(kx
~wt

\ with k given by (77.8), must clearly be

v = _r_v
+ a
?v

(77 .9)
dx c 8t dt2

If we replace t by t + x/c, this equation becomes

dp'fix = adty'ldT*,

i.e. a one-dimensional equation of thermal conduction.

The general solution of this equation can be written (see §51)

p'(x,r) = I f/o(r')exp[-(r'-T)2/te]dT', (77.10)

where p'o(r) = p'(0, r). If the wave is emitted during a finite time interval,

this expression becomes, at sufficiently large distances from the source,

p'(x, r) = „ I exp( - r2/te)
f
p'o{r') dr'. (77.1 1)

2y(7rax) J

In other words, the wave profile at large distances is Gaussian. Its "width"

is of the order of <\/(ax), i.e. it increases as the square root of the distance

travelled by the wave, while the amplitude falls off inversely as y/x. Hence

we at once conclude that the total energy of the wave decreases as l/y/x.

It is easy to derive analogous formulae for spherical waves; to do so, we

must use the fact that for such a wave

jp'dt =

(see §69). Instead of (77.11) we now have

1 d exp(-T2/4«r)
p'(r, t) = constant x

r dr \/r

or

T
p'(r,r) = constantx—exp(-r2/4ar). (77.12)

fZ

Strong absorption must occur when a sound wave is reflected from a solid

wall (K. F. Herzfeld, 1938; B. P. Konstantinov, 1939). The reason for

this is the following. In a sound wave not only the density and the pressure,

but also the temperature, undergo periodic oscillations about their mean values.

Near a solid wall, therefore, there is a periodically fluctuating temperature

difference between the fluid and the wall, even if the mean fluid temperature is
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equal to the wall temperature. At the wall itself, however, the temperatures
of the wall and the adjoining fluid must be the same. As a result, a large

temperature gradient is formed in a thin boundary layer of fluid, where the

temperature changes rapidly from its value in the sound wave to the wall

temperature. The presence of large temperature gradients, however, results

in a large dissipation of energy by thermal conduction. For a similar reason,

the fluid viscosity leads to strong absorption of sound when the wave is

incident in an oblique direction. In this case the fluid velocity in the wave
(in the direction of propagation) has a non-zero component tangential to the

surface. At the surface itself, however, the fluid must completely "adhere".

Hence a large tangential-velocity gradientf must occur in the boundary layer

of fluid, resulting in a large viscous dissipation of energy (see Problem 1).

PROBLEMS

Problem 1. Determine the fraction of energy that is absorbed when a sound wave is

reflected from a solid wall. The density of the wall is supposed so large that the sound does
not penetrate it, and the specific heat so large that the temperature of the wall may be supposed
constant.

Solution. We take the plane of the wall as the plane x = 0, and the plane of incidence as
the xy-plane. Let the angle of incidence (which equals the angle of reflection) be 0. The
change in density in the incident wave at any given point on the surface (x = y = 0, say)
is p\ = Ae*~i(ot

. The reflected wave has the same amplitude, so that p\ = p\ at the wall.

The actual change in the fluid density, since both waves (incident and reflected) are propaga-
ted simultaneously, is p' = 2Ae~tu>t

. The fluid velocity in the wave is given by vx = cp'iajp,
v2 = cp'jckjp. The total velocity on the wall, v = Vi+v2 , is therefore v = vv = 2A sin x
ce-iut/p (or, more precisely, this is what the velocity is found to be when the correct boundary
conditions at the wall in the presence of viscosity are not applied). The actual variation of the
velocity vy along the wall is determined by formula (24.13), and the energy dissipation due to
viscosity by formula (24.14), in which the above expression for v must be substituted for

v e~ia,t
.

The deviation T" of the temperature from its mean value (which is the temperature of the
wall), if calculated without using the correct boundary conditions at the wall, would be found
to be (see (63.13)) T — 2AciT^e-ib)ttcvp. In reality, however, the temperature distribution is

determined by the equation of thermal conduction, with the boundary condition T" = for

# = 0, and is accordingly given by a formula entirely similar to (24.13).

On calculating the energy dissipation due to thermal conduction as the first term in formula
(77.1), we obtain for the total energy dissipation per unit area of the wall

•femech
— [Vx(^-l) + Vvsin^].

P
The mean energy flux density incident on unit area of the wall from the incident wave is

cpVi2 cos =*= (caA2
/2p) cos 0. Hence the fraction of energy absorbed on reflection is

2V(2co)
jvVsin204Vx(— -lYI.

c cos 6 L \ cv

This expression is valid only if its value is small (since in deriving it we have supposed the
amplitudes of the incident and reflected waves to be the same). This condition means that

the angle of incidence must not be too near Jir.J

t The normal velocity component is zero at the boundary because of the boundary conditions,
whether or not viscosity is present.

J A calculation of the absorption of sound on reflection at any angle is given by B. P. Konstantinov,
Zhurnal tekhnicheskol fiziki 9, 226, 1939.
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Problem 2. Determine the coefficient of absorption of sound propagated in a cylindrical

pipe.

Solution. The main contribution to the absorption is due to the presence of the walls.

The absorption coefficient y is equal to the energy dissipated at the walls per unit time and

per unit length of the pipe, divided by twice the total energy flux through a cross-section of the

pipe. A calculation entirely similar to that given in Problem 1 leads to the result

[
v,+ vx(;-i)].

's/co

7=
y/2Rc

where R is the radius of the pipe.

Problem 3. Find the dispersion relation for sound propagated in a medium of very high

thermal conductivity.

Solution. In the presence of a large thermal conductivity the flow in a sound wave is not

adiabatic. Hence, instead of the condition of constant entropy, we now have

s=kAT'IpT, (1)

which is the linearised form of equation (49.4) without the viscosity terms. As a second equa-

tion we take

P = AP', (2)

which is obtained by eliminating v from equations (63.2) and (63.3). Taking as the funda-

mental variables p' and T", we write p' and s' in the form

p' = (dpldT)pT'+(8pldp)T p', s' = (dsldT)p T+ (8sldp) Tp\

We substitute these expressions in (1) and (2), and then seek T and p' in a form proportional

to ei{
~
kx~m)

. The compatibility condition for the resulting two equations for p' and T can

(by using various relations between the derivatives of thermodynamic quantities) be brought

to the form

(or ico\

ct2 X i

toy
*4_*2 +_+—=<>, (3)

XCs
2

which gives the required relation between k and <a. We have here used the notation

cs
2 = (8pldp)s, ct2 = (dpl8p)T = cs

2
/y,

where y = cjcv is the ratio of specific heats.

In the limiting case of small frequencies (w <^ c2/x)» equation (3) gives

CO C02y / 1 1 \

k = — + i—^l ,

Cs 2cs \Ct2 Cs
2

J

which corresponds to the propagation of sound with the ordinary "adiabatic" velocity ct

and a small absorption coefficient which is the second term in (77.6). This is as it should be,

since the condition to <^ c2/x means that, during one period, heat can be transmitted only over

a distance r>JV(xI Wl) (cf. (51.7)) which is small compared with the wavelength c/co.

In the opposite limiting case of large frequencies, we find from (3)

co ct
k = — + i-—-(cs

2-cT2).
cT 2xcs

2

In this case the sound is propagated with the "isothermal" velocity ct, which is always less
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than cs . The absorption coefficient is again small compared with the reciprocal of the wave-
length, and is independent of the frequency and inversely proportional to the thermal con-
ductivity, f

Problem 4. Determine the additional absorption, due to diffusion, of sound propagated
in a mixture of two substances (I. G. Shaposhnikov and Z. A. Gol'dberg 1952).

Solution. The mixture contains an additional source of absorption of sound because the
temperature and pressure gradients occurring in the sound wave result in irreversible pro-
cesses of thermal diffusion and barodiffusion (but there is evidently no mass-concentration
gradient, and therefore no mass transfer). This absorption is given by the term

(llTPD)(dn/8C)PtT j i*dV

in the rate of change of entropy (58.13) ; we here denote the concentration by Cto distinguish
it from c, the velocity of sound. The diffusion flux is

i = -
PD[(k T/T) grad T+ (kp/p) gradp],

with k„ given by (58.10). A calculation similar to that given in §77, using various relations

between the derivatives of thermodynamic quantities, leads to the result that there must be
added to the expression (77.6) for the absorption coefficient a term

Da2 it dp
\ kT l dp \ l dfi \ )

2

yD
_ II I I II II

2cp
2 (8ix/8C)Pi

Problem 5. Determine the effective cross-section for the absorption of sound by a sphere
of radius small compared with •

v
/
('V a,)•

Solution. The total absorption is composed of the effects of the viscosity and thermal
conductivity of the gas. The former is given by the work done by the Stokes frictional force
when gas moving in a sound wave flows round a sphere ; as in §76, Problem 3, it is assumed that
the sphere is not moved by this force. The effect of conductivity is given by the amount of
heat q transferred from the gas to the sphere per unit time ( §76, Problem 3) : the energy dissi-

pation when an amount of heat q is transferred, the temperature difference between the gas
(far from the sphere) and the sphere being T, is qT'jT. The total effective absorption cross-
section is found to be

2ttR

c H^- 1

)]

§78. Second viscosity

The second viscosity coefficient £ (which we shall call simply the second

viscosity) is usually of the same order of magnitude as the viscosity coefficient

7], There are, however, cases where £ can take values considerably exceeding

rj. As we know, the second viscosity appears in processes which are accom-
panied by a change in volume (i.e. in density) of the fluid. In compression

or expansion, as in any rapid change of state, the fluid ceases to be in thermo-
dynamic equilibrium, and internal processes are set up in it which tend to

f The second root of equation (3), which is quadratic in k2
, corresponds to "thermal waves" which

are rapidly damped with increasing x. In the limit a>x <^ c2 this root gives

* = V(Wx) = (i+0V(W2x),
in agreement with (52.17). In the case cax ^> c2 we have

k = (1 +i)\/(cocv/2xcp).
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restore this equilibrium. These processes are usually so rapid (i.e. their relaxa-

tion time is so short) that the restoration of equilibrium follows the change

in volume almost immediately unless, of course, the rate of change of volume

is very large.

It may happen, nevertheless, that the relaxation times of the processes of

restoration of equilibrium are long, i.e. they take place comparatively slowly.

For instance, if we are concerned with a liquid or gas which is a mixture of

substances between which a chemical reaction occurs, there is a state of chemi-

cal equilibrium, characterised by the concentrations of the substances in

the mixture, for any given density and temperature. If, for example, we
compress the fluid, the state of equilibrium is destroyed, and a reaction

begins, as a result of which the concentrations of the substances tend to take

the equilibrium values corresponding to the new density and temperature.

If this reaction is not rapid, the restoration of equilibrium occurs relatively

slowly and does not immediately follow the compression. The latter process

is then accompanied by internal processes which tend towards the equilibrium

state. But the processes which establish equilibrium are irreversible; they

increase the entropy, and therefore involve energy dissipation. Hence, if the

relaxation time of these processes is long, a considerable dissipation of energy

occurs when the fluid is compressed or expanded, and, since this dissipation

must be determined by the second viscosity, we reach the conclusion that

£ is large.f

The intensity of the dissipative processes, and therefore the value of £,

depend of course on the relation between the rate of compression or expansion

and the relaxation time. If, for example, we have compression or expansion

due to a sound wave, the second viscosity will depend on the frequency of the

wave. Thus the second viscosity is not just a constant characteristic of the

material concerned, but depends on the frequency of the motion in which it

appears. The dependence of £ on the frequency is called its dispersion.

The following general method of discussing all these phenomena is due to

L. I. Mandel'shtam and M. A. Leontovich (1937). Let £ be some physical

quantity characterising the state of a body, and |o its value in the equilibrium

state; |o is a function of density and temperature. For instance, in fluid mix-

tures | may be the concentration of one component, and then |o is the con-

centration in chemical equilibrium.

If the body is not in equilibrium, £ will vary with time, tending to the value

|o- In states close to equilibrium the difference £— £o is small, and we can

expand the rate of change £ of £ in a series of powers of this difference.

The zero-order term is absent, since £ must be zero in the equilibrium state,

i.e. when £ = £o- Hence, as far as the first-order term, we have

£= -(£-&)/t. (78.1)

The proportionality coefficient must be negative, since otherwise £ would not

f A slow process which results in a large £ is often the transfer of energy from translator/ degrees

of freedom of a molecule to vibrational (intramolecular) degrees of freedom.
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tend to a finite limit. The positive constant t is of the dimensions of time,

and may be regarded as the relaxation time for the process in question; the
greater is t, the more slowly the approach to equilibrium takes place.

In what follows we shall consider processes in which the fluid is subjected
to a periodic adiabaticf compression and expansion, so that the variable part
of the density (and of the other thermodynamic quantities) depends on the
time through a factor e-i<ot

; we are considering a sound wave in the fluid.

Together with the density and other quantities, the position of equilibrium
also varies, so that £ can be written as £ = £oo+fo', where £00 is the
constant value of £ corresponding to the mean density, and £o' is a periodic

part, proportional to e~iut . Writing the true value £ in the form g = £ o+ I',

we conclude from equation (78.1) that £' also is a periodic function of time,

related to £o' by

£' = So'Kl-ian). (78.2)

Let us calculate the derivative of the pressure with respect to the density
for the ptocess in question. The pressure must now be regarded as a function
of the density and of the value of £ in the state concerned, and also of the
entropy, which we suppose constant and, for brevity, omit. Then

dpidp = (dpldp\+(dpldt)p 8£/dP .

In accordance with (78.2), we substitute here

% %' 1 a&' 1 a&

obtaining

dp dp I — tear dp 1 — icoT dp

»._L|(*) +(»)*.U»)].
dp l-ton\\dp/

i
\d£/

p
dp \8pf

s
l

The sum (dpl8p)g + (dpld$)
pd(joldp

is just the derivative ofp with respect to

p for a process which is so slow that the fluid remains in equilibrium; denoting
it by (dp}dp)m , we have finally

(78.3)
dp 1 — iorr |_ \ dp}eq \ dp J g_

Next, let po be the pressure in a state of thermodynamic equilibrium;

Po is related to the other thermodynamic quantities by the equation of state

of the fluid, and is entirely determined when the density and entropy are

given. The pressure p in a non-equilibrium state, however, differs from po,
and is a function of £ also. If the density is adiabatically increased by 8p,

the equilibrium pressure changes by Spo = {dpjdp)eqhp i
while the total

increase in the pressure is (dp/8p)Sp, with dp/dp given by formula (78.3).

t The change in the entropy (in states close to equilibrium) is of the second order of smallness.
Hence, to this order of accuracy, we can speak of an adiabatic process.
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Hence the difference p —/>o between the true pressure and the equilibrium

pressure, in a state where the density is p + 8p, is

I dp \dp /eqj 1 — icor \_\ dp / eq \ dp / ^J

We are here interested in the density changes due to the motion of the

fluid. Then 8p is related to the velocity by the equation of continuity,

which we write in the form d(8p)jdt+p div v = 0, where d/dt denotes the

total time derivative. In a periodic motion we have d(8p)/dt = — ico8p,

and therefore 8p = (pjico) div v. Substituting this expression in (78.3a),

we obtain

P-Po = t^t-(co2-cJ) divv, (78.4)
1— 10)T

where we have used the notation

co
2 = (dpldp)^ cj = (dpldP)g , (78.5)

the significance of which will be explained below.

In order to relate these expressions to the viscosity of the fluid, we write

down the stress tensor aye. In this tensor the pressure appears in the term
—

p8iic. Subtracting the pressure po determined by the equation of state, we
find that in a non-equilibrium state o^ contains an additional term

rp
-{p-po)8ik = —L

.

—(cj-co^ucdivv.
\—l(DT

Comparing this with the general expression (15.2) and (15.3) for the stress

tensor, in which div v appears in the term £ div v, we conclude that the

presence of slow processes tending to establish equilibrium is macroscopically

equivalent to the presence of a second viscosity given by

t = Tp(cJ-c *)l(l-icoT). (78.6)

These processes do not affect the ordinary viscosity 7). For processes so slow

that cot <^ 1, £ is

£o = tP(cJ-c 2); (78.7)

it increases with the relaxation time r, in accordance with what was said

above. For large frequencies, £ depends on the frequency, i.e. it exhibits

dispersion.

Let us now consider the question of how the presence of processes with

large relaxation times (for definiteness, we shall speak of chemical reactions)

affects the propagation of sound in a fluid. To do so, we might start from

the equation of motion of a viscous fluid, with £ given by formula (78.6).

It is simpler, however, to consider a motion in which viscosity is neglected

but the pressure p is given by the above formulae instead of by the equation

of state. The general relations which we obtained in §63 then remain formally

applicable. In particular, the wave number and the frequency are still



308 Sound §78

related by k = co/c, where c = ^/(dpjdp), and the derivative dp/dp is now
given by (78.3) ; the quantity c, however, no longer denotes the velocity of

sound, being complex. Thus we obtain

k = coV[(1-^)/(c 2 -Coo2 *wt)]. (78.8)

The "wave number" given by this formula is complex. The meaning of

this fact is easily seen. In a plane wave, all quantities depend on the co-

ordinate x (the #-axis being in the direction of propagation) through a factor

eikx . Writing k in the form k = ki + ik2 with k\, k2 real, we have eikx =
ei\x e-Jc2x

t
i#e besides the periodic factor eikix we have a damping factor e~k2

x

(&2 mustj of course, be positive). Thus the complex nature of the wave
number formally expresses the fact that the wave is damped, i.e. there is

absorption of sound. The real part of the complex wave number gives the

variation in phase of the wave with distance, and the imaginary part is the

absorption coefficient.

It is not difficult to separate the real and imaginary parts of (78.8). In
the general case of arbitrary co the expressions for k\ and k2 are rather cum-
bersome, and we shall not write them out here. It is important that k\

is a function of the frequency (as is £2)- Thus, if chemical reactions can occur
in the fluid, the propagation of sound at sufficiently high frequencies is

accompanied by dispersion.

In the limiting case of low frequencies (cot <^ 1), formula (78.8) gives

to a first approximation k = cojco, corresponding to the propagation of sound
with velocity cq. This is as it should be, of course: the condition cot <4 1

means that the period 1/co of the sound wave is large compared with the

relaxation time, i.e. the establishment of chemical equilibrium follows the

variations of density in the sound wave, and the velocity of sound is deter-

mined by the equilibrium value of the derivative dp/dp. In the second approxi-

mation We have

co ico2T
k = - + -—(cJ-co*), (78.9)

CO lC{f

i.e. damping occurs, with a coefficient proportional to the square of the fre-

quency. Using (78.7), we can write the imaginary part of k in the form
k% = co2 £o/2pco3 ; this agrees with the ^-dependent part of the absorption

coefficient y as given by (77.6), which was obtained without taking account

of the dispersion.

In the opposite limiting case of high frequencies (cot > 1), we have

in the first approximation k = cojc^, i.e. the propagation of sound with

velocity c ro—again a natural result, since for cot p 1 we can suppose that

no reaction occurs during a single period, and the velocity of sound must
therefore be determined by the derivative (dpjdp)g taken at constant concen-

tration. The second approximation gives

k = - + i^—±. (78.10)
c^ 2tc*
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The damping coefficient is independent of the frequency. As we go from

co <^ 1/r to o) ^> 1/t, this coefficient increases monotonically to the constant

value given by formula (78.10). It should be noted that the quantity A2/&i,

which represents the amount of absorption over a distance of one wavelength,

is small in both limiting cases {fa\k\ < 1) ; it has a maximum at some inter-

mediate frequency, namely co = -v/OVO/7"-

It is seen from (78.7) (e.g.) that

Coo > co, (78.11)

since we must have £ > 0. The same result can be obtained by simple

arguments based on Le Chatelier's principle. Let us suppose that the

volume of the system is reduced, and the density increased, by some external

agency. The system is thereby brought out of equilibrium, and according

to Le Chatelier's principle processes must begin which tend to reduce the

pressure. This means that dp/dp will decrease, and, when the system returns

to equilibrium, the value of dpidp = c2 will be less than in the non-equili-

brium state.

In deriving all the above formulae we have assumed that there is only a

single slow internal process of relaxation. Cases are also possible where

several different such processes occur simultaneously. All the formulae can

easily be generalised to cover such cases. Instead of a single quantity £,

we now have several quantities £i, £2, ... which characterise the state of the

system, and a corresponding series of relaxation times ti, T2, .... We choose

the quantities £w in such a way that each of the derivatives |n depends

only on the corresponding |», i.e. so that

in = -tf»-f«o)/T„. (78.12)

Calculations entirely similar to the above then give

& = cJ+J^ anl(l-icoTn), (78.13)

n

where c ro
2 = {dpjdp)^ and the constants an are

an = (Bpld€nW£nldp)e+ (78 - 14)

If there is only one quantity £, formula (78.13) becomes (78.3), as it should.



CHAPTER IX

SHOCK WAVES

§79. Propagation of disturbances in a moving gas

When the velocity of a fluid in motion becomes comparable with or exceeds

that of sound, effects due to the compressibility of the fluid become of prime
importance. Such motions are in practice met with in gases. The dynamics
of high-speed flow is therefore usually called gas dynamics.

It should be mentioned first of all that, in gas dynamics, the Reynolds
numbers involved are almost always very large. For the kinematic viscosity

of a gas is, as we know from the kinetic theory of gases, of the order of the

mean free path / of the molecules multiplied by the mean velocity of their

thermal motion; the latter is of the same order as the velocity of sound, so that

v ~ cl. If the characteristic velocity in a problem of gas dynamics is also of

the order of c, then the Reynolds number R ~ Lc\v ~ Ljl, i.e. it is deter-

mined by the ratio of the dimension L to the mean free path /, which we know
is very large.f As always occurs when R is very large, the viscosity has an
important effect on the motion of the gas only in a very small region, and in

what follows we shall (except where the contrary is specifically stated) regard

the gas as an ideal fluid.

The flow of a gas is entirely different in nature according as it is subsonic

or supersonic, i.e. the velocity is less than or greater than that of sound.

One of the most important distinctive features of supersonic flow is the fact

that there can occur in it what are called shock waves, whose properties we
shall examine in detail in the following sections. Here we shall consider

another characteristic property of supersonic flow, relating to the manner of

propagation of small disturbances in the gas.

If a gas in steady motion receives a slight perturbation at any point, the

effect of the perturbation is subsequently propagated through the gas with

the velocity of sound (relative to the gas itself). The rate of propagation of

the disturbance relative to a fixed system of co-ordinates is composed of

two parts: firstly, the perturbation is "carried along" by the gas flow with

velocity v and, secondly, it is propagated relative to the gas with velocity c

in any direction n. Let us consider, for simplicity, a uniform flow of

gas with constant velocity v, subjected to a small perturbation at some
point O (fixed in space). The velocity v+cn with which the perturbation

is propagated from O (relative to the fixed system of co-ordinates) has

different values for different directions of the unit vector n. We obtain

f We shall not consider the problem of the motion of bodies in very rarefied gases, where the

mean free path of the molecules is comparable with the dimension of the body. This problem is in

essence not one of fluid dynamics, and must be examined by means of the kinetic theory of gases.

310
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all its possible values by placing one end of the vector v at the point O
and drawing a sphere of radius c centred at the other end. The vectors from
O to points on this sphere give the possible magnitudes and directions of the

velocity of propagation of the perturbation. Let us first suppose that v < c

.

Then the vector v+ cn can have any direction in space (Fig. 40a). That
is, a disturbance which starts from any point in a subsonic flow will eventually

reach every point in the gas. If, on the other hand, v > c, the direction of the

vector v+ cn can lie, as we see from Fig. 40b, only in a cone with its vertex at

O, which touches the sphere with its centre at the other end of the vector v.

If the aperture of the cone is 2a, then, as is seen from the figure,

sin a = cjv. (79.1)

Fig. 40

Thus a disturbance starting from any point in a supersonic flow is propagated

only downstream within a cone whose aperture is the smaller, the smaller the

ratio cjv. A disturbance starting from O does not affect the flow outside

this cone.

The angle a determined by equation (79.1) is called the Mach angle.

The ratio v/c itself, which often occurs in gas dynamics, is the Mach numberM

:

M = v/c. (79.2)

The surface bounding the region reached by a disturbance starting from a

given point is called the Mach surface or characteristic surface.

In the general case of an arbitrary steady flow, the Mach surface is not a

cone throughout the volume. However, it can be asserted that, as before, this

surface cuts the streamline through any point on it at the Mach angle. The
value of the Mach angle varies from point to point with the velocities v and c.

It should be emphasised here, incidentally, that, in flow with high velocities,

the velocity of sound is different at different points : it varies with the ther-

modynamic quantities (pressure, density, etc.) of which it is a function.

f

The velocity of sound as a function of the co-ordinates is sometimes called

the local velocity of sound.

t In the discussion of sound waves given in Chapter VIII, the velocity of sound could be regarded
as constant.
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The properties of supersonic flow described above give it a character quite

different from that of subsonic flow. If a subsonic gas flow meets any

obstacle (if, for instance, it flows past a body), the presence of this obstacle

affects the flow in all space, both upstream and downstream; the effect

of the obstacle is zero only asymptotically at an infinite distance from it.

A supersonic flow, however, is incident "blindly" on an obstacle; the effect

of the latter extends only downstream,f and in all the remaining part of

space upstream the gas flows as if the obstacle were absent.

In the case of steady plane flow of a gas, the characteristic surfaces can be

replaced by characteristic lines (or simply characteristics) in the plane of the

flow. Through any point O in this plane there pass two characteristics (AA'
and BB' in Fig. 41), which intersect the streamline through this point at the

Mach angle. The downstream branches OA and OB of the characteristics

maybe said to leave the point O; they bound the region AOB of the flow

where perturbations starting from O can take effect. The branches B'O
and A'O may be said to reach the point O; the region A'OB' between them
is that which can affect the flow at O.

The concept of characteristics (surfaces in the three-dimensional case)

has also a somewhat different aspect. They are rays along which disturbances

are "propagated" which satisfy the conditions of geometrical acoustics. If,

for example, a steady supersonic gas flow meets a fairly small obstacle, then a

steady perturbation of the gas flow will be found along the characteristics

which leave this obstacle. The same result was reached in §67 from a study

of the geometrical acoustics of moving media.

When we speak of a perturbation of the state of the gas, we mean a slight

change in any of the quantities characterising its state : the velocity, pressure,

t To avoid misunderstanding, we should mention that, if a shock wave is formed in front of the

obstacle, this region is somewhat enlarged (see §114).
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density, etc. The following remark should be made on this point. Pertur-

bations in the values of the entropy of the gas (for constant pressure) and of

its vorticity are not propagated with the velocity of sound. These perturba-

tions, once having arisen, do not move relative to the gas; relative to a fixed

system of co-ordinates they move with the gas at the velocity appropriate to

each point. For the entropy, this is an immediate consequence of the law of

conservation (in an ideal fluid),

ds/dt = ds/dt+v-grads = 0,

which shows that the entropy of any given volume element in the gas remains

constant as the element moves about, i.e. each value of s moves with the

point to which it belongs. The same result for the vorticity follows from the

conservation of circulation.

Thus we can say that, for perturbations of entropy and vorticity, the

characteristics are the streamlines. This, of course, does not affect the general

validity of the statements made above about regions of influence, since

they were based only on the existence of a maximum velocity of propagation

(that of sound) of disturbances relative to the gas itself.

§80. Steady flow of a gas

We can obtain immediately from Bernoulli's equation a number of general

results concerning adiabatic steady flow of a gas. The equation is, for steady

flow, w+ \v2 = constant along each streamline; if we have potential flow,

then the constant is the same for every streamline, i.e. at every point in the

fluid. If there is a point on some streamline at which the gas velocity is zero,

then we can write Bernoulli's equation as

w+±v2 = wo, (80.1)

where wq is the value of the heat function at the point where v = 0.

The equation of conservation of entropy for steady flow is v«grads
= vdsjdl = 0, i.e. 5 is constant along each streamline. We can write this in a

form analogous to (80.1):

s = s . (80.2)

We see from equation (80.1) that the velocity v is greater at points where
the heat function w is smaller. The maximum value of the velocity (on

the streamline considered) is found at the point where w is least. For con-

stant entropy, however, we have dw = dpjp\ since p > 0, the differentials

dw and dp have like signs, and therefore w and p vary in the same sense.

We can therefore say that the velocity increases along a streamline when the

pressure decreases, and vice versa.

The smallest possible values of the pressure and the heat function (in

adiabatic flow) are obtained when the absolute temperature T = 0. The
corresponding pressure is p = 0, and the value of w for T = can be
arbitrarily taken as the zero of energy; then w = for T = 0. We can
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now deduce from (80.1) that the greatest possible value of the velocity (for

given values of the thermodynamic quantities at the point where v = 0) is

%ax = V(2wo). (80.3)

This velocity can be attained when a gas flows steadily out into a vacuum.f
Let us now consider how the mass flux density j = pv varies along a

streamline. From Euler's equation (vgrad)v = -(l//>)grad/>, we find

that the relation v dv = dpjp between the differentials dv and dp holds
along a streamline. Putting dp = c2dp, we have

dp/dv = —pvjc2

and, substituting in d(pv) = p dv + v dp, we obtain

d(pv){dv = p(l—v2/c2).

(80.4)

(80.5)

tf.
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From this we see that, as the velocity increases along a streamline, the

mass flux density increases as long as the flow remains subsonic. In the super-

sonic range, however, the mass flux density diminishes with increasing

velocity, and vanishes together with p when v — vma,x (Fig- 42). This im-

portant difference between subsonic and supersonic steady flows can be simply

interpreted as follows. In a subsonic flow, the streamlines approach in the

direction of increasing velocity. In a supersonic flow, however, they diverge

in that direction.

The flux j has its maximum value j+ at the point where the gas velocity is

equal to the local velocity of sound

:

j* = p*c*, (80.6)

where the asterisk suffix indicates values corresponding to this point. The

t In reality, of course, when there is a sharp fall in temperature the gas must condense and form a

two-phase "fog". This, however, does not essentially affect the results given.
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velocity v* = c# is called the critical velocity. In the general case of an arbi-

trary gas, the critical values of quantities can be expressed in terms of their

values at the point v = 0, by solving the simultaneous equations

s* = % «># + |c*2 = w . (80.7)

It is evident that, whenever M = vjc < 1, we have also vfc* < 1, and

if M > 1 then vjc^ > 1. Hence the ratio M* = v\c% serves in this case as a

criterion analogous to M, and is more convenient, since c% is a constant,

unlike c, which varies along the stream.

In applications of the general equations of gas dynamics, the case of a

perfect gas is of particular importance. For a perfect gas we know from

thermodynamics all the relations between the various thermodynamic

quantities, and these relations are very simple. This makes it possible to give

a complete solution of the equations of gas dynamics in many cases.

We shall give here, for reference, the relations between the various thermo-

dynamic quantities for a perfect gas, since they will often be needed in what

follows. We shall always assume (unless otherwise stated) that the specific

heat of a perfect gas is independent of temperature.

The equation of state for a perfect gas is

pV = pip = RT/p, (80.8)

where R = 8-314 xlO7 erg/deg is the gas constant, and /x the molecular

weight of the gas. The velocity of sound in a perfect gas is, as shown in §63,

given by

c* = yRT/fi = yp/p, (80.9)

where we have introduced the constant ratio of specific heats y = cvJcv ,

which always exceeds unity; for monatomic gases y = 5/3, and for diatomic

gases y — 7/5, at ordinary temperatures.

The internal energy of a perfect gas is, apart from an unimportant additive

constant,

c = cvT = pV\iy- 1) = c*ly{y- 1). (80.10)

For the heat function we have the analogous formulae

to = CpT = ypV/(y- 1) = c^{y- 1). (80.11)

Here we have used the well-known relation cp— cv = R/p,. Finally, the

entropy of the gas is

s = cv log(plPr) = cv log(pVr/p). (80.12)

Let us now investigate steady flow, applying the general relations pre-

viously obtained to the case of a perfect gas. Substituting (80.11) in (80.3),

we find that the maximum velocity of steady flow is

%ax = coV[2/(y-l)l (80.13)
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For the critical velocity we obtain from the second equation (80.7)

+ \c£ = Wq =
y-\ y-\

whencej*

c* = W[2/(y+l)]. (80.14)

Bernoulli's equation (80.1), after substitution of the expression (80.11)

for the heat function, gives the relation between the temperature and the

velocity at any point on the streamline ; similar relations for the pressure and
density can then be obtained directly by means of Poisson's adiabatic equa-
tion:

(80.15)

Thus

p = Po(777o)i/Cr-i), p =

we obtain the important results

r-r.[i-«y-i)J-r.(i-r

r v2 -i l/(r-D /

p = po[i-Kr-i)^-J =po(i

/>=/»o[i-Kr-i)-^-J =Po(i

Po(p/po)y.

-1 V2
\

•

+ i c.*r

y—\ v2

y+i a
y— 1 v2

y+\ c 2

\l/(y-l)

) •

.)•-]

(80.16)

It is sometimes convenient to use these relations in a form which gives the

velocity in terms of other quantities

:

^ = iLALf,_(£pn . ^th-iJLfX (8o.i7)
y-1 po L \po/ J y—lpol \ po 1 J

We may also give the relation between the velocity of sound and the

velocity v

:

C2 = co
2 -±(y- \)v2 = ±(y+ l)*.a -i(y- l)^2 . (80.18)

Hence we find that the numbers M and M* are related by

y+1
M*2 = L .

; (80.19)
y-l+2/M2' V ;

when M varies from to oo, M*2 varies from to (y+ l)/(y— 1).

Finally^ we may give expressions for the critical temperature, pressure and

density: they are obtained by putting v = c% in formulae (80.16)$:

f Fig. 42 shows the ratio jlj# as a function of vjc^ for air (y = 1-4, fmax = 2-45^).

J For air, e.g., (y = 1-4)

c* = 0-913co, p* = 0-528/>o, />* = 0-634/j , Tm = 0-833T .
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T* = 27o/(y+l),

/ 2 \r/(r-i)

/>* = po ——

-

\y+l

(80.20)

In conclusion, it should be emphasised that the results derived above are

valid only for flow in which shock waves do not occur. When shock waves are

present, equation (80.2) does not hold ; the entropy of the gas increases when
a streamline passes through a shock wave. We shall see, however, that

Bernoulli's equation (80.1) remains valid even when there are shock waves,

since w+ %v2 is a quantity which is conserved across a surface of discon-

tinuity (§82); formula (80.14), for example, therefore remains valid also.

PROBLEM

Express the temperature, pressure and density along a streamline in terms of the Mach
number.

Solution. Using the formulae obtained above, we find

T /T = 1 +Ky- 1)M2
, po/p = [1 +1(7- l)M2]7/(7-i),

poIp = [l+Mr-^M2
]
1^-1).

§81. Surfaces of discontinuity

In the preceding chapters we have considered only flows such that all

quantities (velocity, pressure, density, etc.) vary continuously. Flows are

also possible, however, for which discontinuities in the distribution of these

quantities occur.

A discontinuity in a gas flow occurs over one or more surfaces ; the quan-

tities concerned change discontinuously as we cross such a surface, which is

called a surface of discontinuity. In non-steady gas flow the surfaces of dis-

continuity do not in general remain fixed; here it should be emphasised,

however, that the rate of motion of these surfaces bears no relation to the

velocity of the gas flow itself. The gas particles in their motion may cross a

surface of discontinuity.

Certain boundary conditions must be satisfied on surfaces of discontinuity.

To formulate these conditions, we consider an element of the surface and use

a co-ordinate system fixed to this element, with the #-axis along the normal.f

Firstly, the mass flux must be continuous : the mass of gas coming from
one side must equal the mass leaving the other side. The mass flux through

the surface element considered is pvx per unit area. Hence we must have

pivix = P2V2x, where the suffixes 1 and 2 refer to the two sides of the surface

of discontinuity.

f If the flow is not steady, we consider an element of the surface during a short interval of time.
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The difference between the values of any quantity on the two sides of

the surface will be denoted by enclosing it in square brackets; for example,
[pvx] == piviz— p2V2z, and the condition just derived can be written

[f>vx] = 0. (81.1)

Next, the energy flux must be continuous. The energy flux is given by
(6.3). We therefore obtain the condition

[pvafttP+ w)] = 0. (81.2)

Finally, the momentum flux must be continuous, i.e. the forces exerted

on each other by the gases on the two sides of the surface of discontinuity

must be equal. The momentum flux per unit area is (see §7) pm + pViVtfik.

The normal vector n is along the rc-axis. The continuity of the ^-component
of the momentum flux therefore gives the condition

Ip+pvJ] = 0, (81.3)

while that of the y and z components gives

IpVaPy] = 0, \pvxvz] = 0. (81.4)

Equations (81.1)—(81.4) form a complete system of boundary conditions

at a surface of discontinuity. From them we can immediately deduce the

possibility of two types of surface of discontinuity.

In the first type, there is no mass flux through the surface. This means
that pivix = p$V2x = 0. Since pi and p2 are not zero, it follows that v\x
= V2x = 0. The conditions (81.2) and (81.4) are then satisfied, and the con-

dition (81.3) gives pi = P2. Thus the normal velocity component and the

gas pressure are continuous at the surface of discontinuity:

vix = v2x = 0, \p] = 0, (81.5)

while the tangential velocities vy , v z and the density (as well as the other

thermodynamic quantities except the pressure) may be discontinuous by any

amount. We call this a tangential discontinuity.

In the second type, the mass flux is not zero, and v\x and V2x are therefore

also not zero. We then have from (81.1) and (81.4)

[vy] = 0, [vz] = 0, (81.6)

i.e. the tangential velocity is continuous at the surface of discontinuity.

The pressure, the density (and the other thermodynamic quantities) and the

normal velocity, however, are discontinuous, their discontinuities being

related by (81.1)— (81.3). In the condition (81.2) we can cancel pvx by

(81.1), and replace v2 by vx2 since vy and v z are continuous. Thus the

following conditions must hold at the surface of discontinuity in this case

:

b*>x] = 0, \

[W + «7] = 0, (81.7)

[p+ pvx*] = 0. J

A discontinuity of this kind is called a shock wave, or simply a shock.
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If we now return to the fixed co-ordinate system, we must everywhere

replace vx by the difference between the gas velocity component vn normal

to the surface of discontinuity and the velocity u of the surface itself, which is

defined to be normal to the surface

:

vx = vn — u. (81.8)

The velocities v and « are taken in the fixed system. The velocity v% is

the velocity of the gas relative to the surface of discontinuity; we can also

say that — vx = u— vn is the rate of propagation of the surface relative to

the gas. It should be noticed that, if vx is discontinuous, this velocity has

different values relative to the gas on the two sides of the surface.

We have already discussed (in §30) tangential discontinuities, at which the

tangential velocity component is discontinuous, and we showed that, in an

incompressible fluid, such discontinuities are absolutely unstable and must

result in a turbulent region. A similar investigation for a compressible fluid

shows that the same instability occurs, for any velocities.

A particular "degenerate" case of tangential discontinuity is that where the

velocity is continuous, but not the density (and therefore the other thermo-

dynamic quantities, except the pressure). The above remarks on instability

do not relate to discontinuities of this kind.

§82. The shock adiabatic

Let us now investigate shock waves in detail. We have seen that, in this

type of discontinuity, the tangential component of the gas velocity is con-

tinuous. We can therefore take a co-ordinate system in which the surface

element considered is at rest, and the tangential component of the gas velocity

is zero on both sides.f Then we can write the normal component vx as v

simply, and the conditions (81.7) take the form

pivi = p2v2 =j, (82.1)

pi + pivi2 = pz + P2^22, (82.2)

Wl + |©l2 = W2+ |^22, (82.3)

where j denotes the mass flux density at the surface of discontinuity. In

what follows we shall always take j positive, with the gas going from side 1

to side 2. That is, we call gas 1 the one into which the shock wave moves,

and gas 2 that which remains behind the shock. We call the side of the shock

wave towards gas 1 the front of the shock, and that towards gas 2 the back.

We shall derive a series of relations which follow from the above condi-

tions. Using the specific volumes V\ = l//>i, V2 = I//02, we obtain from

(82.1)

vi = jVlt v2 = jV2 (82.4)

t This co-ordinate system is used everywhere in §§82-85, 87, 88.

A shock wave at rest is called a compression discontinuity. If the shock is perpendicular to the

direction of flow, we have a normal shock, otherwise an oblique shock.
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and, substituting in (82.2),

pi+pVi = p2+j2V2 ,

§82

(82.5)

or

j
2 = (p2-pi)l(V1-V2). (82.6)

This formula, together with (82.4), relates the rate of propagation of a shock
wave to the pressures and densities of the gas on the two sides of the surface.

Fig. 43

Since p is positive, we see that either p% > pi, V\ > V2, or p% < pi,

V\ < V2', we shall see below that only the former case can actually occur.

We may note the following useful formula for the velocity difference

©1— ^2. Substituting (82.6) in V1— V2 = j{V\— V2), we obtainf

Vl -V2 = V[(p2-piWi-V2)]. (82.7)

Next, we Write (82.3) in the form

^l+i/W = W2 +hpV2
2 (82.8)

and, substituting/2 from (82.6), obtain

W!-w2 + !(Vx + V2){p2 -pi) = 0. (82.9)

If we replace the heat function why e+pV, where e is the internal energy, we
can write this relation as

ei-e2 +l(V1-V2){pi+p2) = 0. (82.10)

These relations hold between the thermodynamic quantities on the two sides

of the surface of discontinuity.

For given p±, V\, equation (82.9) or (82.10) gives the relation between p2
and V2 . This relation is called the shock adiabatic or the Hugoniot adiabatic

(W. J. M. Rankine, 1870; H. Hugoniot, 1889). It is represented graphically

in the^F-plane (Fig. 43) by a curve passing through the given point (pi, V{)

f Here we write the positive square root, since, as we shall see later (§84) we must have vx
—v2 > 0.
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(for pi = p2, Vi = V2 we have also ei = e2 , so that (82.10) is satisfied identi-

cally). It should be noted that the shock adiabatic cannot intersect the vertical

line V = V\ except at (pi, Vi). For the existence of another intersection

would mean that two different pressures satisfying (82.10) correspond to the

same volume. For V\ - V2 , however, we have from (82.10) also ei = e2 ,

and when the volumes and energies are the same the pressures must be the

same. Thus the line V = V\ divides the shock adiabatic into two parts,

each of which lies entirely on one side of the line. Similarly, the shock

adiabatic meets the horizontal line p = pi only at the point {pi, Vi).

ba

Fig. 44

Let aa' (Fig. 44) be the shock adiabatic through the point (pi, Vi) as a

state of gas 1. We take any point (p2, V2) on it and draw through that point

another adiabatic bb', for which (p2 , V2) is a state of gas 1. It is evident that

the pair of values (pi, Vi) satisfies the equation of this adiabatic also. The

adiabatics aa' and bb' therefore intersect at the two points (pi, Vi) and (p2 ,

V2). It must be emphasised that the adiabatics are not identical, as would

happen for Poisson adiabatics through a given point. This is a consequence

of the fact that the equation of the shock adiabatic cannot be written in the

form /(p, V) = constant, where / is some function, whereas the Poisson

adiabatic, for example, can be written s(p, V) — constant. The Poisson

adiabatics for a given gas form a one-parameter family of curves, but the

shock adiabatic is determined by two parameters, the initial values pi and

V\. This has also the following important result: if two (or more) successive

shock waves take a gas from state 1 to state 2 and from there to state 3, the

transition from state 1 to state 3 cannot in general be effected by the passage

of any one shock wave.

For a given initial thermodynamic state of the gas (i.e. for given pi and

Vi), the shock wave is defined by only one parameter; for instance, if the

pressure p2 behind the shock is given, then Vi is determined by the Hugoniot

adiabatic, and the flux density; and the velocities v\ and v2 are then given by

formulae (82.4) and (82.6). It should be mentioned, however, that we are
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here considering the shock wave in a co-ordinate system in which the gas is

moving normal to the surface. If the shock wave may be situated obliquely
to the direction of flow, another parameter is needed; for example, the value
of the velocity component tangential to the surface.

The following convenient graphical interpretation of formula (82.6)
may be mentioned. If the point (ply Vi) on the shock adiabatic (Fig. 43)
is joined by a chord to any other point (p2 , V2) on it, then (p2 -pi)l(V2 -Vi)
= -j2 is Just the slope of this chord relative to the axis of abscissae. Thus;',
and therefore the velocity of the shock wave, are determined at each point
of the shock adiabatic by the slope of the chord joining that point to the
point (pi,; Fi).

Like the other thermodynamic quantities, the entropy is discontinuous at
a shock wave. By the law of increase of entropy, the entropy of a gas can
only increase during its motion. Hence the entropy s2 of the gas which has
passed through the shock wave must exceed its initial entropy s± :

*2 > si. (82.11)

We shall see below that this condition places very important restrictions on
the manner of variation of all quantities in a shock wave.
The following fact should be emphasised. The presence of shock waves

results in an increase in entropy in those flows which can be regarded as
motions of an ideal fluid in all space, the viscosity and thermal conductivity
being zero. The increase in entropy signifies that the motion is irreversible,

i.e. energy is dissipated. Thus the discontinuities are a means by which
energy can be dissipated in the motion of an ideal fluid. It follows that
d'Alembert's paradox (§11) does not arise when bodies move in an ideal fluid

in such a way as to cause shock waves. In such cases there is a drag force.

The true mechanism by which the entropy increases in shock waves lies,

of course, in dissipative processes occurring in the very thin layers which
actual shock waves are (see §87). It should be noticed, however, that the
amount of this dissipation is entirely determined by the laws of conservation
of mass, energy and momentum, when they are applied to the two sides of
such layers; the width of the layers is just such as to give the increase in en-
tropy required by these conservation laws.

The increase in entropy in a shock wave has another important effect on
the motion

: even ifwe have potential flow in front of the shock wave, the flow
behind it is in general rotational. We shall return to this matter in §106.

§83. Weak shock waves

Let us consider a shock wave in which the discontinuity in every quantity
is small; we call this a weak shock wave. We transform the relation (82.9)
by expanding in powers of the small differences *2-*i and p2 -pi. We
shall see that the first- and second-order terms in p2—pi then cancel; we
must therefore carry the expansion with respect top2 -pi as far as the third
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order. In the expansion with respect to $2 - *i, only the first-order terms need

be retained. We have

W2-W1 = (dw/dsi)p(s2-si) + (dwl8pi)s(p2-pi)+

+ ftdholdpflfa -pif +U^ldPi
3
)s{p2 -pi)3 .

By the thermodynamic identity dw = T ds+ V dp we have for the derivatives

(dzv/ds)p = T, {dwldp)s = V.

Hence

W2 — »i = Ti(s2-si)+Vi(p2-pi) +

+wvidpdfa -pi)2+ \{&v\dpf)s(p>2 -pif.

The volume Vz need be expanded only with respect top2—pi, since the second

term of equation (82.9) already contains the small difference p2 —pi, and an

expansion with respect to $2 — si would give a term of the form ($2— si)(p2 —pi)>

which is of no interest. Thus

Vt-Vi = (dVldpdsipz-pj+^V/dp^fo-piY.

Substituting this expansion in (82.9), we obtain

1 I dW \

^-mm)*-**- (83,1)

Thus the discontinuity of entropy in a weak shock wave is of the third order

of smallness relative to the discontinuity of pressure.

In all cases that have been investigated, the compressibility —(dVjdp)s

decreases with increasing pressure, i.e. the second derivative

(dW\dp*)s > 0. (83.2)

It should be emphasised, however, that this is not a thermodynamic relation,

and cannot be derived by thermodynamic arguments. It is therefore possible

in principle that the derivative might be negative. We shall find several times

in what follows that the sign of the derivative (d2VI8p2
)s

is very important

in gas dynamics. In future we shall assume it to be positive-!

Let us draw through the point 1 (pi, Vi) in the pV-plane two curves, the

shock adiabatic and the Poisson adiabatic. The equation of the latter is

s2 — si = 0. By comparing this with the equation (83.1) of the shock adiabatic

near the point 1, we see that the two curves have contact of the second order at

this point, both the first and the second derivatives being equal. In order to

decide the relative position of the two curves near the point 1, we use the

fact that, according to (83.1) and (83.2), we must have s2 > si on the shock

adiabatic for p2 > pi, while on the Poisson adiabatic S2 = *h The abscissa

of a point on the shock adiabatic must therefore exceed that of a point on

t For a perfect gas (0*F/fip*)g = (y+l)^/v2
/
>2

* This expression can be most simply obtained by
differentiating Poisson's adiabatic equation pVY = constant.
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tfye Poisson adiabatic having the same ordinate p^. This follows at once
from the fact that, by the well-known thermodynamic formula (dV\ds)v
— {Tjcv)(dVjdT)v , the entropy increases with the volume at constant
pressure for all substances which expand on heating, i.e. which have {dV\dT)v
positive. We can similarly deduce that, for p2 < pi, the abscissa of a point

on the Poisson adiabatic exceeds that of the corresponding point on the shock
adiabatic. Thus, near the point of contact, the two curves lie as shown in

Fig. 45 (HH' being the shock adiabatic and PP' the Poisson adiabatic)f,

both being concave upwards, by (83.2).

Fig. 45

For small p2-pi and V2-V1, formula (82.6) can be written, in the first

approximation, as j
2 = —{dpjdV)s (we take the derivative for constant

entropy, since the tangents to the two adiabatics at the point 1 coincide).

The velocities v\ and V2 are, in the same approximation, equal

:

Vl = v2 = v = jV = V[- V2(dp/dV)s] = V(8P/dp)s.

This is just the velocity of sound c. Thus the rate of propagation of weak
shock waves is, in the first approximation, the velocity of sound

:

v = c. (83.3)

From the properties of the shock adiabatic near the point 1 derived above
we can deduce a number of important consequences. Since we must have

$2 > $i in a shock wave, it follows Xh.2A.p2 > pi, i.e. the point 2 (j>2, V2) must
lie above the point 1. Moreover, since the chord 12 has a greater slope than

the tangent to the adiabatic at the point 1 (Fig. 43), and the slope of the

tangent is equal to the derivative (dp/dVi)Sl , we have p > -(dpjdVi)Sl .

Multiplying both sides of this inequality by Vi2 , we find

j2 Vl2 = Vl2 > _ VftdpldVi)* = (dpjdpi)Sl
= Cl2 ,

where c\ is the velocity of sound corresponding to the point 1. Thus v\ > c\.

t If (dVjdT)p is negative, the relative position is reversed.
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Finally, from the fact that the chord 12 has a smaller slope than the tangent

at the point 2, it follows in like manner that v2 < c2 .-\

§84. The direction of variation of quantities in a shock wave

The results of §83 show that, if the derivative (d2Vldp2)s is assumed

positive, it can be demonstrated very simply that for weak shocks the con-

dition of increasing entropy (s2 > $i) necessarily means that

p2 > pi, (84.1)

vi > c\, v2 < C2. (84.2)

From the remark made concerning (82.6) it follows that, if p2 > pi, then

Vi > V2 ,
(84.3)

and, since v±jVi = v2jV2 = j, also

©i > v2 . (84.4)

We shall now show that all these inequalities actually hold (still on the

assumption that (d2Vldp2)s is positive) for shock waves of any intensity.

We shall therefore conclude, in particular, that, when gas passes through a

shock wave, it is compressed, the pressure and density increasing (E. Jouguet,

1904; G. ZemplEn, 1905)4 This means, graphically, that only the upper

branch of the shock adiabatic (above the point 1) has any real significance;

shock waves corresponding to points on the lower branch cannot exist. We
may also mention the following important result which can be derived from

the inequalities (84.2). Since a shock wave moves relative to the gas in front

of it with a velocity vi > c\, it is clear that no perturbation starting from

the shock wave can penetrate into that gas. In other words, the presence of

the shock has no effect on the state of the gas in front of it.

We shall now prove these statements, beginning with a preliminary

calculation. We differentiate the relations (82.5) and (82.8) with respect

to the quantities pertaining to gas 2, assuming the state of gas 1 to be un-

changed. This means that pi, V± and wi are regarded as constants, while

pi, V2 , W2 and also^ (which depends on £2 and V2) are differentiated. From

(82.5) we obtain

Fid(j2) = dp2 +j*dV2+V2d(P),

or

dp2 +j2 dV2 = ( Vi - V2)d(j
2
), (84.5)

t It can easily be shown in the same way that, when the derivative (82V/dp2
)s is negative, the con-

dition s2 > jx for weak shock waves implies that p2 < />x , while the velocities again satisfy vt > clt

v2< c2 .

{ If we change to a co-ordinate system in which gas 1 (in front of the shock wave) is at rest, and
the shock is moving, then the inequality vt > v2 means that the gas behind the shock wave moves
(with velocity vt —v2) in the same direction as the shock itself.
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and from (82.8)

dw2+p V2 dV2 = Wi2 - V2
2)d{j2

) y

or, expanding the differential dw2 ,

T2ds2 + V2dp2 +j2V2dV2 = i(V^- V2
2)d(j2).

Substituting this equation in (84.5), we obtain

T2ds2 = i(V1-V2fd(P).

Hence we see that

d(j2)/d*2 > 0,

i.e. j
2 increases with s2 .

§84

(84.6)

(84.7)

>

Fig. 46

We now show that there can be no point on the shock adiabatic at which it

touches any line drawn from the point 1 (such as the point O is in Fig. 46).

At such a point the slope of the chord from the point 1 is a minimum, and/2

has a corresponding maximum, so that d(j2)jdp2 = 0. We see from (84.6)
that in this case we also have ds2Jdp2 = 0. Next, substituting in (84.5) the

differential dV2 in the form dV2 = (dV2fdp2)Si dp2+ (dV2lds2)P2 ds2 and ds2
in the form given by (84.6), and dividing by dp2 , we obtain

\ fy2 Is,
J

\ T2 \ 8s2 )J dp2

Hence it follows that, for d(j2)/dp2 = 0, we must have

Wf{W2\dp2)Sl = \-v2
2\c2

2 = 0,

i.e. v2 — c%\ conversely, if v2 = c2 , it follows that d(J2)jdp2 = O.f
Thus, of the three equations

d(p)fdp2 = 0, ds2/dp2 = 0, v2 = c2 , (84.8)

each implies the other two and all three would hold at the point O (Fig. 46).

t The expression in the braces can vanish only by chance, and this possibility is therefore
unlikely.
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Finally, we have for the derivative ofj
2(dV2/dp2)s2

= — z>22/f22 at the point O

dp2 \ c2
2 J

J
\ dp2*/ S2

'

On account of the assumption that (d2 Vjdp2
)s

is positive, we therefore have

at O
d(v2lc2)ldp2 < 0. (84.9)

It is now easy to show that such a point cannot exist on the shock adiabatic.

At points just above the point 1, ^2/^2 < 1 (see the end of §83). The equation

V2JC2 = 1 can therefore be satisfied only by an increase in ^2/^2 ; that is, at O
we should necessarily have d(v2/c2)ldp2 > 0, whereas by (84.9) the converse

is true. In an entirely similar manner, we can show that the ratio ^2/^2 also

cannot become equal to unity on the part of the shock adiabatic below the

point 1.

From the impossibility of the existence of a point such as O, which has

just been demonstrated, we can at once deduce from the graph of the shock

adiabatic that the slope of the chord from the point 1 (/>i, Vi) to the point 2

(p2, V2) decreases as we move up the curve, and/2 correspondingly increases.

From this property of the shock adiabatic and the inequality (84.7) it follows

immediately that the necessary condition S2 > si implies that P2 > P\ also.

It is also easy to see that, on the upper part of the shock adiabatic, the

inequalities V2 < C2, v\ > c\ hold. The former follows at once from the fact

that it holds near the point 1, and the ratio ^2/^2 can never become equal to

unity. The second inequality follows from the fact that every chord from the

point 1 to a point 2 above it is steeper than the tangent to the adiabatic at the

point 1, since the curve cannot behave as shown in Fig. 46.

The condition $2 > s\ and all three inequalities (84.1), (84.2) are therefore

satisfied on the upper part of the shock adiabatic. On the lower part, however,

none of these conditions holds. They are consequently equivalent, and if one

is satisfied so are all the others.

In the preceding discussion we have everywhere assumed that the deriva-

tive (d2Vjdp2)s is positive. If this derivative could change sign, it would no
longer be possible to draw from the necessity of $2 > *i any general conclu-

sions concerning inequalities for the other quantities. It is important,

however, that the inequalities (84.2) for the velocities can be obtained by
quite different arguments, which show that shock waves in which those

inequalities do not hold cannot exist, even if their existence would not

be disproved by the purely thermodynamic arguments given above.

The reason is that we have still to discuss the subject of he stability of shock

waves. Let us suppose that a shock wave at rest is subjected to an infinite-

simal displacement in a direction (say) perpendicular to its plane. It can be

shown that the result of such a displacement is that the shock wave is con-

tinually accelerated in some direction, and it is clear that this demonstrates

the absolute instability of such a wave and the impossibility of its existence.



328 Shock Waves §84

The displacement of the shock wave is accompanied by infinitesimal

perturbations in the gas pressure, velocity, etc. on both sides of the surface

of discontinuity. These perturbations near the shock are then propagated
away from it with the velocity of sound (relative to the gas) ; this, however,
does not apply to the perturbation in the entropy, which is transmitted only
with the gas itself. Thus an arbitrary perturbation of the type in question can
be regarded as consisting of sound disturbances propagated in gases 1 and 2
on both sides of the shock wave, and a perturbation of the entropy; the latter,

which moves with the gas, will evidently occur only in gas 2 behind the shock.

In each of the sound disturbances, the changes in the various quantities are

related by certain formulae which follow from the equations of motion (as

in any sound wave, §63), and therefore any such disturbance is specified

by only one parameter.

1'1>C, /2<C2 "l< Cl

VZ< C2

Fig. 47

Let us now compute the number of possible sound disturbances. It

depends on the relative magnitudes of the gas velocities v\, vi and the sound
velocities c\, c^. We take the direction of motion of the gas (from 1 to 2)

as the positive direction of the x-axis. The rate of propagation of the distur-

bance in gas 1 relative to the stationary shock wave is u± = v±±ci, and in

gas 2 it is 14,2 = ^2 ± £2- Since these disturbances must be propagated away from
the shock wave, it follows that u\ < 0, m > 0.

Let us suppose that v\> c\, vi < c^. Then it is clear that both values

u\ = v\± c\ are positive, while only v%+ c% of the two values of ui is positive.

This means that the sound disturbances in which we are interested cannot

exist in gas 1, while in gas 2 there can be only one, which is propagated relative

to the gas with velocity c^. The calculation in other cases is similar.

The result is shown in Fig. 47, where each arrow corresponds to one sound

disturbance, propagated relative to the gas in the direction shown by the

arrow. Each sound disturbance is defined, as stated above, by one parameter.

Furthermore, in all four cases there are two other parameters, one determining

the entropy perturbation propagated in gas 2 and one determining the dis-

placement of the shock wave. For each of the four cases in Fig. 47, the
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number in a circle shows the total number of parameters, thus obtained,

which define an arbitrary perturbation arising from the displacement of the

shock wave.

The number of boundary conditions which must be satisfied by a pertur-

bation on the surface of discontinuity is three (the continuity of the mass,

energy and momentum fluxes). The solution of the stability problem is

effected by prescribing the displacement of the shock wave (and therefore the

perturbations in all the other quantities) in a form proportional to ent , and

determining the possible values of Q by means of the boundary conditions;

the existence of real positive values of Q indicates absolute instability. In

all except the first of the cases shown in Fig. 47, the number of parameters

available exceeds the number of equations given by the boundary conditions

at the discontinuity. In these cases, therefore, the boundary conditions

admit any (and therefore any positive) value of O, and the shock wave is

absolutely unstable. In the one case v\ > c\, V2 < c%, however, the number of

parameters just equals the number of equations, and these therefore give a

definite value of Q.. It is evident, without writing down the equations, that

this value must be Q, = 0, since the problem contains no parameter of the

dimensions sec-1 which could determine a value of Q. different from zero but

not arbitrary. There is therefore no such instability in this case.

Thus we see that the inequalities (84.2) for the velocity of the shock

wave are necessary for the shock to exist, whatever the thermodynamic

properties of the gas.

In order to decide the stability of shock waves for which the condition

(84.2) is satisfied, we should have to investigate also the other possible modes

of instability. One of these is instability with respect to perturbations of the

kind considered in §30 (characterised by periodicity in the direction parallel

to the surface of discontinuity and forming "ripples" on this surface). We
shall not perform the calculations here, but merely mention that shock waves

are almost always stable with respect to such perturbations. Instability can

occur only for certain very special forms of the shock adiabatic, which seem

hardly ever to occur in Nature; they all require that the derivative (d2Vjdp2
)8

should be of variable sign.j-

A shock wave might also, in principle, be unstable with respect to break-

up into more than one surface of discontinuity. This problem has not been

adequately investigated, but such instabilities may likewise occur only for

certain very special types of shock adiabatic.

§85. Shock waves in a perfect gas

Let us apply the general relations obtained in the previous sections to

shock waves in a perfect gas. The heat function of a perfect gas is given by

the simple formula w = ypVI(y—l). Substituting this expression in (82.9),

f See S. P. D'yakov, Zhurnal eksperimental'noi i teoreticheskoi fiziki 27, 288, 1954; V. M.
Kontorovich, ibid. 33, 1525, 1957; Soviet Physics JETP 6 (33), 1179, 1958.
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we have after a simple transformation

Yl_ = (r+l)j>i + (y-l)j>2

V± (y-l)p1 + (y+l)p2
' (85.1)

Using this formula, we can determine any of the quantities ph Vly p2 , V2
from the other three. The ratio V2\V\ is a monotonically decreasing function
of the ratiop2/ph tending to the finite limit (y- l)/(y+ 1). The curve showing
p2 as a function of V2 for given ph V\ (the shock adiabatic) is represented in
Fig. 48. It is a rectangular hyperbola with asymptotes V2\V\ = (y- l)/(y+ 1),

pz/pi = - (y- l)/(y+ 1). As we know, only the upper part of the curve, above
the point V2jVi = p2\p\ — 1, has any real significance; it is shown in Fig. 48
(for y — 1 -4) by a continuous line.

For the ratio of the temperatures on the two sides of the discontinuity

we find, from the equation of state for a perfect gas T2\T\ = p2V2\p\V\ y

that

72

7\

Pi (y+l)/>i+ (y-l)/>2
(85.2)

p! (y-l)pi + (y+l)p2

For the flux density; we obtain from (82.6) and (85.1)

i
2 = {(y- l)/>i + (y+ l)fr}/2Fi, (85.3)

and then for the velocities of propagation of the shock wave relative to the

gas before and behind it

^i2 = ^i{(y-i)/>i+(y+l)M

*22 = Wi(v+ l)/»i + (y-lW2/{(y- l)/>i+(y+ l)/>2 }.

(85.4)
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We may derive limiting results for very strong shock waves, in which p%

is very large compared with^i.f From (85.1) and (85.2) we have

v2lv1 = P1iP2 = (y-i)i(y +i), ra/ri = (y-iMy+i)fr- (85 -5)

The ratio T%\T\ increases to infinity with pzjpi, i.e. the temperature discon-

tinuity in a shock wave, like the pressure discontinuity, can be arbitrarily

great. The density ratio, however, tends to a constant limit; e.g., for a

monatomic gas the limit is pi — 4/>i, and for a diatomic gas p2 = 6pi. The

velocities of propagation of a strong shock wave are

oi = VWy+ifaVi}* V* = V(i(y- i)W/(y+ 1»- (85.6)

They increase as the square root of the pressure p^.

Finally, we may give some formulae useful in applications, which express

the ratios of densities, pressures and temperatures in a shock wave in terms of

the Mach number Mi = v\\c\. These formulae are easily derived from the

foregoing results

:

P2IP1 = t*/t* = (y+ l)Mi*/{(y- l)Mi* + 2}, (85.7)

p2/Pl = 2yMi2/(y+ 1)- (y- l)/(y+ 1), (85.8)

Ta/Ti = {2yM12-(y- l)}{(y- l)Mi2+ 2}/(y+ l)2Mi. (85.9)

The Mach number M2 is given in terms of Mi by

M2
2 = (2+ (y~l)Mi2}/{2yMi2-(y-l)}. (85.10)

PROBLEMS

Problem 1. Derive the formula vxv2
= c*2 , where c* is the critical velocity.

Solution. Since to+^v2
is continuous at a shock wave, we can define a critical velocity

which is the same for gases 1 and 2 by

yp1 .12 yP2 ,i2 r+1 2
* >

(y-l)pi (y~l)p2 2(y-l)

cf. (80.7). Determining p2lp2 and Pifpi from these equations and substituting in

p2 p\
Vl— V* =

P2V2 piVl

(obtained by combining (82.1) and (82.2)), we obtain

y+1 / r.2

-(t>i-i*)(l-— ) =0.
2y \ V1V2 -

Since vt # v2 , this gives the required relation.

Problem 2. Determine the value of the ratio p2/Pi, for given temperatures Tu T2 at a dis-

continuity in a perfect gas with a variable specific heat.

t It is necessary that not only p2 ^> px but p2 ^> (y+ l)/>i/(y — !)•
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Solution. In the general case of a perfect gas with variable specific heat, we can say only
that u) (like e) is a function of temperature alone, and that p, Fand Tare related by the equa-
tion of state pV = RTIvl. Solving equation (82.9) for pjpu we obtain

Pi RT ' 2ft WU i?ft 2ft J
+

ft /'

where Wi =* w(2,

1), w2 = w(T2).

Problem 3
.
A plane sound wave meets normally a shock wave in a perfect gas. Determine the

intensity of sound transmitted by the shock wave (D. I. Blokhintsev, 1945). f
Solution. Since a shock wave is propagated with supersonic velocity relative to the gas

in front of it, no sound wave can be reflected from it. In gas 2, behind the discontinuity, an
ordinary lsentropic transmitted sound wave is propagated, and also a perturbation of the
entropy (at constant pressure), which is propagated with the moving gas itself.
We consider the process in a co-ordinate system in which the shock wave is at rest, and the

gas moves through it in the positive direction of the a;-axis, the incident sound wave being
propagated in this direction also. The perturbations on the two sides of the discontinuity are
related by conditions obtained by varying the boundary conditions (82.1)-(82.3). As a result
of the sound disturbance, the shock wave also begins to oscillate; denoting its oscillatory
velocity by 8u, we must write the change in the velocities vu v2 in the boundary conditions
as 8vj_— 8u, 8v2

— 8u. ThusJ

ViSpi+pxfivi-Sll) = V2 8p2 +p2(8v2-8u),

Spi+vi2 8p1+ 2p1 v1(8v1 -8u) = 8p2+v22 8p2+ 2p2vz{8v2-8u),

8w1 +v1(8vi-8u) = 8zv2 +V2(8v2-8u).

In the incident sound wave we have

$Si = 0, S^i = (Ci/p{)8pi = 8pi/dpi, 8W! = 8pilP1 .

The perturbation in medium 2 is composed of the sound wave and the "entropy wave",
which we denote by one and two primes respectively:

S*2' =* 0, 8V = (C2/p2)8p2 = 8p2'/c2p2, 8w2 = 8p2'[p2 ,

8p2
r
' = 0, 8v2" = 0, 8zv2" = T28S2" = -C2*8P2"lp2{y-\)

(for a perfect gas (dsjdp)^ — —cjp).
These relations enable us to express all quantities in the transmitted waves in terms of the

corresponding quantities in the incident wave. The ratio of pressures in the sound waves is
found to be

8p2 ' Mi + 1 /2(y-l)M1M2
2(Mi2-l)-(Mi-f-l)[(y-l)Mi2 + 2]

8p! M2 + 1 I 2(r- l)M22(Mi2 - 1) - (M2 + l)[(y- l)Mi2 + 2]

For a weak shock wave (p2 —pi <^Pi) we find

8P2 . y+1 p2~Pl« 1 H
,

8pl 2y />!

f The solution of the more general problem of oblique incidence of sound on a shock wave in an
arbitrary medium is given by V. M. Kontorovich, Zhurnal experimental'noi i teoreticheskoi fiziki
33, 1527, 1957; Soviet Physics JETP 6 (33), 1180, 1958.

J We here denote the variable parts of quantities by 8 instead of the usual prime.
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and in the opposite limiting case of a strong shock wave

8p2 1 p2

SpT ~ y+V[2y(y-l)] pi

In both cases the pressure amplitude in the transmitted wave is greater than that in the

incident wave.

§86. Oblique shock waves

Let us consider a steady shock wave, and abandon the system of co-

ordinates used hitherto, in which the gas velocity is perpendicular to the shock

surface element considered. The streamlines can intersect the surface of

such a shock wave at any angle,f and in doing so are "refracted" : the tan-

gential component of the gas velocity is unchanged, while the normal com-

ponent is, according to (84.4), diminished: v\ t = ®2t, ^i» > ^2». It is there-

fore clear that the streamlines "approach" the shock wave as they pass through

it (cf. Fig. 49). Thus the streamlines are always refracted in a definite direc-

tion in passing through a shock wave.

Fig. 49

The motion behind a shock wave may be either subsonic or supersonic

(only the normal velocity component need be less than the velocity of sound

C2) ; the motion in front of it is necessarily supersonic. If the gas flow on

both sides is supersonic, every disturbance must be propagated along the

surface in the direction of the tangential component of the gas velocity. In

this sense we can speak of the "direction" of a shock wave, and distinguish

shock waves leaving and reaching any point (as we did for characteristics, the

motion near which is always supersonic; see §79). If the motion behind the

shock is subsonic, there is strictly no meaning in speaking of its "direction",

since perturbations can be propagated in all directions on its surface.

We shall derive a relation between the two components of the gas velocity

after it has passed through an oblique shock wave, supposing that we have a

perfect gas. We take the direction of the gas velocity vi in front of the shock

as the #-axis; let
<f>
be the angle between the shock and the #-axis (Fig. 49).

f The only restriction is that the normal velocity component vln exceeds cx .
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The continuity of the velocity component tangential to the shock means that
vi cos

<f>
*= V2x cos

<f>
+ V2y sin

<f>,
or

tan<£ = (vi-V2X)jvzy. (86.1)

Next we use formula (85.7), in which v\ and v2 denote the velocity components
normal to the plane of the shock wave and must be replaced by vi sin

(f>
and

V2x sin
<f>
— vzy cos <£, so that

V2x sin^ — V2y cos<f> y—\

v\ sin
<f>

+
2d2

y+1 (y+ l)^i2 sin2 </>

(86.2)

Fig. 50

We can eliminate the angle § from these two relations. After some simple
transformations, we obtain the following formula which determines the re-
lation between v2x and v2y (for given vi and c{)

:

V2y
2 = (V1 -V2X)

2
2(V1 -C1*lv1)l(y+l)-foi - V2x)

Vi - V2X+ 2ci2/(y+ 1 )V!
(86.3)

This formula can be more intelligibly written by introducing the critical

velocity. According to Bernoulli's equation and the definition of the critical

velocity, we have m+W = ^i2 + ci
2/(y-l) = (y+l>v72(y-l) (see §85,

Problem 1), whence

c**= [(y-l)^2 + 2tl2]/(r +l).

Using this in (86.3), we obtain

V2y
2 = (Vl-V2x)2~

VlV2x-C*2

(86.4)

(86.5)
2vi2/(y+ 1 ) - v±V2x+ C*2

Equation (86.5) is called the equation of the shock polar. Fig. 50 shows a

praph of the function V2y{v2x)\ it is a cubic curve, called a strophoid. It

crosses the axis of abscissae at the points P and Q, corresponding to V2x
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= c^\v\ and v%x = »i«t A line (OS in Fig. 50) drawn from the origin at an

angle x to the axis of abscissae gives, by the length of the segment between O
and the point where it intersects the shock polar, the gas velocity behind a

discontinuity which turns the stream through an angle x- There are two such

intersections (A, B), i.e. two different shock waves correspond to a given

value of X- The direction of the shock wave also can be immediately deter-

mined from the shock polar: it is given by the direction of the perpendicular

from the origin to the line QB or QA (Fig. 50 shows the angle for a shock

corresponding to the point B). As % decreases, the point A approaches P,

corresponding to a normal shock
{<f>
= \tt) with V2 = c^-\v\. The point B

approaches Q\ the intensity of the shock (velocity discontinuity) tends

to zero, and the angle cf> tends, as it should, to the Mach angle a =
sin-1 (cijvi)\ the tangent to the shock polar at Q makes an angle £77+ a with

the axis of abscissae.

From the shock polar we can immediately derive the important result that

the angle of deviation x of the stream at the shock wave cannot exceed a certain

maximum value xmax, corresponding to the tangent from O to the curve.

This quantity is, of course, a function of the Mach number Mi = vijci,

but we shall not give the expression for it, which is very cumbersome. For

Mi = 1, xmax = 0; as Mi increases, xmax increases monotonically, and tends

to a finite limit as Mi ->• 00. It is easy to discuss the two limiting cases.

If the velocity v\ is near to c+, then V2 is so also, and the angle x is small;

the equation (86.5) of the shock polar can then be written in the approximate

formj

x2 = (y+l)(v1 -v2)
2 (v1 +V2-2cm)l2cJ, (86.6)

where we have put v%x ~ ^2, V2y ~ c*x in view of the smallness of x- Hence

we easily findff

W(y+l) ("i ,\« V2 ,„ n, ,s
, 7,^--WJ-W.- 1

)

=
3V3(y+D

(Ml-1) - (86 '7)

In the opposite limiting case Mi = 00 (i.e. Mi* = V[(y+l)/(7— l)])> tne

shock polar degenerates to a circle which meets the axis of abscissae at the

points c^[(y— l)/(y+ 1)] and c^y/fty+ l)/(y— 1)]. It is easy to see that we
then have

Xmax = sin-i(l/y); (86.8)

f The strophoid actually continues in two branches from the point v2x = vx (which is a double

point) to infinite f2j/> these are not shown in Fig. 50. They have a common asymptote

vzx = c*2lvi + 2vi((y+l).

The points on these branches have no physical significance; they would give values for v2x and V2y

such that v2Jvln > 1, which is impossible.

J It is easily seen that equation (86.6) holds also for any (non-perfect) gas, provided that (y+1)
is replaced by 2a* (95.2).

If It may be noted that this dependence of Xmax on Mx
— 1 is in agreement with the general simi-

larity law (118.7) for transonic flow.
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for air this is 45-6°. Figure 51 shows a graph of xmax as a function of Mi for
air; the Upper curve is a similar graph for flow past a cone (see §105).
The circle v% = c* cuts the axis of abscissae between the points P and

Q (Fig- 50), and therefore divides the shock polar into two parts correspond-
ing to subsonic and supersonic gas velocities behind the discontinuity. The
point where this circle crosses the polar lies to the right of, but very close to,

the point C; the whole segment PC therefore corresponds to transitions to
subsonic velocities, while CQ (except for a very small segment near C)
corresponds to transitions to supersonic velocities.

Fig. 51

For given Mi and </>, the pressure change in the shock wave is given by

p2 2yMi2 sin2 <i-(y-l)

T =
1 /n ; <

86 -9)

Pi (y+i)

this is formula (85.8) with Misin<£ in place of Mi. This ratio increases

monotonically when the angle
<f>

increases from its smallest value sin-1(l/Mi)
(when P2IP1 = 1) to \n, i.e. as we move along the shock polar from Q to P.

The two shock waves determined by the shock polar for a given deviation

angle x are often said to belong to the weak and strong families. A shock
wave of the strong family (the segment PC of the polar) is strong (the ratio

P2IP1 is large), makes a large angle
<f>

with the direction of the velocity vi,

and converts the flow from supersonic to subsonic. A shock wave of the weak
family (the segment QC) is weak, is inclined at a smaller angle to the stream,

and almost always leaves the flow supersonic.

PROBLEMS
Problem 1 . Derive the formula giving the angle of deviation x of the velocity in an oblique

shock wave (in a perfect gas) in terms of Mi = vjc^ and the angle ^ between the shock
wave and the direction of the velocity vx (Fig. 49)

:

cotx = tan^
|.2(Mi2sin2«i-l) J2(Mr
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Problem 2. Derive the formula giving the number M2 = vjc2 in terms of Mx and <£:

2+ (y-l)Mi2 2Mi2 cos2<£
M22 = , . - .

— +
2yMi2 sin2

<f>
- (y- 1) 2+ (y- l)Mi2 sin2<£

§87. The thickness of shock waves

Hitherto we have regarded shock waves as geometrical surfaces of zero

thickness. We shall now consider the structure of actual surfaces of dis-

continuity, and we shall see that shock waves in which the discontinuities

are small are in reality transition layers of finite thickness, the thickness

diminishing as the magnitude of the discontinuities increases. If the dis-

continuities are not small, the change occurs so sharply that the concept of

thickness is meaningless.

To determine the structure and thickness of the transition layer we must

take account of the viscosity and thermal conductivity of the gas, which we

have hitherto neglected.

The relations (82.1)-(82.3) for a shock wave were obtained from the

constancy of the fluxes of mass, momentum and energy. If we consider a

surface of discontinuity as a layer of finite thickness, these conditions must be

written, not as the equality of the quantities concerned on the two sides of

the discontinuity, but as their constancy throughout the thickness of the

layer. The first condition, (82.1), is unchanged:

pv =j= constant. (87.1)

In the other two conditions additional fluxes of momentum and energy, due

to internal friction and thermal conduction, must be taken into account.

The momentum flux density (in the x-direction) due to internal friction is

given by the component — &

'

xx of the viscosity stress tensor ; according to the

general expression (15.3) for this tensor, we have a xx — ON + Qjdvjdx.

The condition (82.2) then becomes

p+pv2—
(jft + Qdv/dx = constant.

As in §82, we introduce the specific volume V in place of the velocity v = jV.

Since j = constant, dvjdx = jdVjdx, so that

P +j2 V— (f77 + £)/ dVjdx = constant.

At great distances from the shock wave, the thermodynamic quantities are

constants, i.e. they are independent of x; in particular, dVjdx = 0. We
denote by a suffix 1 the values of quantities far in front of the shock wave.

Then we can put the constant equal to Pi+j2 Vi, obtaining

p-pi+P(V- V^-^rj + QjdV/dx = 0. (87.2)

Next, the energy flux density due to thermal conduction is — k dTjdx. That

due to internal friction is —a'XiVi or, since the velocity is along the #-axis,

— o'xxv = —(£rj+£)vdv/dx. Thus the condition (82.3) can be written

pv{w-\-\v2) — {%-q + Qv dvjdx— k dTjdx = constant.
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Again putting v = jV, we can obtain the final form

v>+$pV*-j($r} + QVdV/6x-(Klj)dT/dx = wi +i/W- (87.3)

We shall here consider shock waves in which all the discontinuities are
small. Then all the differences V— Vi, p—pi, etc. between the values inside

and outside the transition layer are also small. In (87.2) we expand V-V\
in powers oip—pi and s— si, taking the pressure and entropy as the indepen-
dent variables. It is seen from the relations obtained below that 1/S (where
S is the thickness of the discontinuity) is of the first order in p —pi, and the
difference s— s± is of the second order.f Hence we can write, neglecting quan-
tities of the third order,

F-Fi = (dVldp)s{p-p1)+^8Wl8p^s{p-p1f + (8V/8s)p(s-s1).

The values of all the coefficients are, of course, taken outside the transition

layer (i.e. for p = ph s = s{). Substituting this expansion in (87.2), we
obtain

[1 + (dV/8p)sp](p -Pl ) + ij2^2V/8p2
)s (p _pi)2 + (8V/8s)p (s- S1)P

= (tn + QjdV/dx.

The derivative dF/dx can be written

dV _ / 8V \ dp / 8V\ ds

dx \ dp J s dx \ 8s Jp dx

Differentiation with respect to x increases the order of smallness by one,

since 1/8 is of the first order; the derivative dp/dx is therefore of the second
order, and ds/dx of the third order. The term in ds/dx can therefore be omit-
ted. Thus the condition (87.2) becomes

[l^Vl^splip-p^HPi^V/Sp^ip-p^+ idV/Ss^is-s^P

= (ft + Z>){Wl8p)s (dp/dx)j. (87.4)

Next, we multiply each term of (87.2) by \{V+ V\) and subtract from
equation (87.3). The result is

ito-t0l)-\{p-p1yy+ Vj-iM-n+ZW- v1)^--
K
- ^- =0.

dx j ax

The third term, which contains the product (V—V\) dVjdx, is of the third

order, and may be omitted

:

(w-wi)-i(p-^)i)(F+ri)-(/c/;")dT/dx = 0.

The first two terms are just the expression which we expanded in powers of

p—pi smds—si in deriving formula (83.1). The first- and second-order terms
in p —p\ in this expansion are zero, and we have as far as terms of the second

t The total entropy discontinuity s2 — sx is, as we have seen in §83, of the third order relative to

the pressure discontinuity p2 —pi> whereas s— Sj is of only the second order in p—px . The reason is

that, as we shall show below, the pressure in the transition layer varies monotonically from px to p2 ,

whereas the entropy does not vary monotonically; it has a maximum within the layer.
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order just T(s-s{). The derivative dTjdx can be written

dT _ / dT\ dp l 8T\ ds ^ / dT \ dp

dx \ dp J s dx \ ds / „ dx \ dp / s dx

The result is

""-^-jUlsr (87 -5)

Substituting this expression for s— si in (87.4), we find

"(-J),»-
w"+

['
t
(f)/]

<'-w

-(-y(?l(f).*;»©.)& <«">

The flux j is, in the first approximation, j = vjV « c/F (see (83.3)).

This expression can be substituted on the right-hand side of (87.6), but it

will not serve on the left-hand side; further terms have to be included

in^2
. These terms could be obtained from (87.2), for instance. It is simpler,

however, to argue as follows. At great distances on both sides of the surface

of discontinuity, the right-hand side of (87.6) is zero, since dpjdx is zero.

At such distances the pressure is p\ or />2- That is, we can say that the

quadratic in p on the left of (87.6) has the zeros p\ and p2. By a well-known

theorem of algebra, it can therefore be written as the product (p —pi)(p —p?)
multiplied by the coefficient ofp2

, ^j
2(d2Vldp2)s .

Thus we have the following differential equation for the function p(x) :f

\ I dW\ V3
{ k I dT \ / 8V \ n \ dp

From the thermodynamic formulae for derivatives, {dV\ds)v = (dTjdp)s ; it is

easy to see that the coefficient of — dp/dx on the right-hand side of the above

equation is 2V2a, where a is related to the sound-absorption coefficient y
(77.6) by y = aco2 . Thus

dp 1 1 d2V\

s--4»^M.»-^-w -

(87 -7)

Integration gives

\V2a r dp
x = —

J (P-:(d*V/dp2
)s J (p-Pl)(p-p2)

4aV2 p -i(p2+pi)
tanh-1 h constant.

i(p2-pi)(d2V/dp2
)s &P2-P1)

t In considering a weak shock wave we can regard the viscosity and the thermal conductivity as

constants.
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Putting the constant equal to zero, we have

P ~ KP2 +pi) = I(p2 -pi) tanh(*/S), (87.8)

where

3 = 8aV2/(p2 -pi)(d2V/dp2
)s . (87.9)

This gives the manner of variation of the pressure between the values p\
and pi which it takes at great distances on the two sides of the shock wave.
The point x — corresponds to the median value of the pressure, i(j>i+P2)-
For x ->; ±oo, the pressure tends asymptotically to p\ and p2. Almost
the whole change from p\ to p2 occurs over a distance of the order of S,

which may be called the thickness of the shock wave. We see that this is the

less, the stronger the shock, i.e. the greater the pressure discontinuity.

The variation of the entropy across the discontinuity is obtained from
(87.5) and (87.8)

k i 8T\ i dW \ 1

J- Sl = T6^^(^) s (^i-)^-^^^P)- (
87 - 10>

From this we see that the entropy does not vary monotonically, but has a

maximum inside the shock, at x = 0. For x = ± oo this formula gives

s = si in either case; this is because the total entropy change $2— si is of the

third order inp^—pi (cf. (83.1)), whereas s— si is of the second order.

Formula (87.8) is quantitatively valid only for sufficiently small differences

p2—pi- We can, however, use (87.9) qualitatively to determine the order of

magnitude of the thickness in cases where the difference p2~Pi is of the

same order of magnitude as pi and p2 themselves. The velocity of sound in

the gas is of the same order as the thermal velocity v of the molecules. The
kinematic viscosity is, as we know from the kinetic theory of gases, v ~ h
~ Ic, where / is the mean free path of the molecules. Hence a ~ Ijc2 ; an

estimate of the thermal-conduction term gives the same result. Finally,

(d2Vjdp2
)s
~ Vjp2 , and pV ~ c2 . Using these relations in (87.9), we obtain

8 ~/. (87.11)

Thus the thickness of a strong shock is of the same order of magnitude as the

mean free path of the gas molecules.f In macroscopic gas dynamics, however,

where the gas is treated as a continuous medium, the mean free path must be

taken as zero. It follows that the methods of gas dynamics cannot strictly be

used alone to investigate the internal structure of strong shock waves.

A considerable increase in the thickness of a shock wave may be caused by
the presence in the gas of comparatively slow relaxation processes (slow

chemical reactions, a slow energy transfer between different degrees of free-

dom of the molecule, and so on). This topic has been discussed by Ya. B.

Zel'dovich (1946).

t A strong shock wave causes a considerable increase in temperature; / denotes the mean free

path for some mean temperature of the gas in the shock.
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Let t be of the order of magnitude of the relaxation time. Both the

initial and the final states of the gas must be states of complete equilibrium;

it is therefore immediately clear that the total thickness of the shock wave will

be of the order of tz>i, the distance traversed by the gas in the time t. It

is also found that, if the shock strength is above a certain limit, its structure

becomes more complex; this may be seen as follows.

p2

Fig. 52

In Fig. 52 the continuous curve shows the shock adiabatic drawn through a

given initial point 1, on the assumption that the final states of the gas are

states of complete equilibrium; the slope of the tangent at the point 1 gives

the "equilibrium" velocity of sound, denoted in §78 by cq. The dashed curve

shows the shock adiabatic through the same point 1, on the assumption that

the relaxation processes are "frozen" and do not occur. The slope of the

tangent to this curve at the point 1 gives the velocity of sound denoted in

§78 by <v
If the velocity of the shock wave is such that Co < v± < c^, the chord

12 lies as shown in Fig. 52 (the lower chord). In this case we have a simple
increase in the shock thickness, all intermediate states between the initial

state 1 and the final state 2 being represented in the pV-plane by points on
the segment 12.-)-

If, however, v\> c^, the chord takes the position 11 '2'. No point lying

between 1 and 1' corresponds to any actual state of the gas ; the first real point

(after 1) is 1', which corresponds to a state in which the relaxation equili-

brium is no different from that in state 1. The compression of the gas from
state 1 to state V occurs discontinuously, and afterwards (over distances

~ v\r) it is gradually compressed to the final state 2'

t This follows from the fact that (neglecting ordinary viscosity and thermal conduction) all the
states through which the gas passes satisfy the equations of conservation of mass, pv = j = constant,
and of momentum, p-\-pV = constant (cf. the similar but more detailed discussion in §121).

12
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§88. The isothermal discontinuity

The discussion of the structure of a shock wave in §87 involves the assump-

tion that the viscosity and thermal conductivity are of the same order of

magnitude, as is usually the case. The case where x > v is als° possible,

however. If the temperature is sufficiently high, additional heat is transferred

by thermal radiation in equilibrium with the matter. Radiation has a much
smaller effect on the viscosity (i.e. the momentum transfer), and so v may
be small compared with x- We shall now see that this inequality leads to a

very important difference in the structure of the shock wave.

Neglecting terms in the viscosity, we can write equations (87.2) and (87.3),

which determine the structure of the transition layer, as

p+PV = p1+jWlf (88.1)

J rp

- = w+ lj2V2_ Wl _lj2Vl2.
(88-2)

j dx

The right-hand side of (88.2) is zero only at the boundaries of the layer.

Since the temperature behind the shock wave must be higher than that in

front of it, it follows that we have

dT/dx > (88.3)

everywhere in the transition layer, i.e. the temperature increases monotoni-

cally.

All quantities in the layer are functions of a single variable, the co-ordinate

x, and therefore are functions of one another. Differentiating (88.1) with

respect to V, we obtain

\ dTJvdV \8VJt

The derivative (dpjdT)v is always positive in gases. The sign of the derivative

dTfdV is therefore the reverse of that of the sum (dpjdV)T +j2
- In state 1 we

have j
2 < —(dpidVil)s (since ^i > c{), and, since the adiabatic compressibility

is always less than the isothermal compressibility,; 2 > — {dp\jdVi)T. On side

1, therefore, dT\]dV\ < 0. If this derivative remains negative everywhere in

the transition layer, then, as the gas is compressed (V decreasing), the

temperature increases monotonically, in accordance with (88.3), from side 1

to side 2, In other words, we have a shock wave whose thickness is much

increased by the high thermal conductivity (possibly to such an extent that

even to call it a shock wave is mere convention).

If, however, the shock is so strong that

P < -(8p2ldV2)T, (88.4)

then we have in state 2 d^/dF^ > 0, so that the function T{V) has a maxi-

mum somewhere between V\ and Vi (Fig. 53). It is clear that the transition
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from state 1 to state 2, with V changing continuously, then becomes im-
possible, since the inequality (88.3) can not be satisfied everywhere.

Consequently, we have the following pattern of transition from the initial

state 1 to the final state 2. First comes a region where the gas is gradually

compressed from the specific volume V\ to some V (the value for which
T(V) = T2 for the first time; see Fig. 53); the thickness of this region is

determined by the thermal conductivity, and may be considerable. The
compression from V to V2 then occurs discontinuously, the temperature
remaining constant at T2 . This may be called an isothermal discontinuity.

Fig. 53

Let us determine the variation of the pressure and density in an isothermal

discontinuity, assuming that we have a perfect gas. The condition of con-
tinuity of momentum flux (88.1), applied to the two sides of the discontinuity,

gives p'+jW = p2+j2V2 . For a perfect gas V = RTj^p; since T = T2 ,

we have

, j
2RT2 pRT2

P' +—— = P2 +
J——.

\xp fip2

This quadratic equation for p' has the solutions p' = p2 (trivial) and

p' =pRT2/H,p2=pV2 . (88.5)

We can express;*2 in the form (82.6), obtaining p' = (p2 -pi)V2l(Vi- V2\
and, substituting V2fVi from (85.1), we have

/»' = |[(r+i)/»i+(y-i)M (88.6)

Since we must have p2 > p', we find that an isothermal discontinuity occurs
only when the ratio of the pressures p2 and pi satisfies

P2/P1 > (y+l)/(3-y) (88.7)

(Rayleigh 1910). This condition can, of course, be obtained directly from
(88.4).
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Since, for a given temperature, the gas density is proportional to the

pressure, the density ratio in an isothermal discontinuity is equal to the

pressure ratio;

P'lf* = V2IV = p'lpz. (88.8)

§89. Weak discontinuities

Besides surface discontinuities, at which the quantities p, p, v etc. are

discontinuous, we can also have surfaces at which these quantities, though

remaining continuous, are not regular functions of the co-ordinates. The
irregularity may be of various kinds. For example, the first spatial derivatives

of p, p, v etc. may be discontinuous on a surface, or these derivatives may
become infinite; or higher derivatives may behave in the same manner.

We call such surfaces weak discontinuities, in contrast to the strong discon-

tinuities (shock waves and tangential discontinuities), in which the quantities

p, p, v, ... themselves are discontinuous.

It is easy to see from simple considerations that weak discontinuities are

propagated relative to the gas (on either side of the surface) with the velocity

of sound. For, since the functions />, p, v, ... themselves are continuous,

they can be "smoothed" by modifying them only near the surface of dis-

continuity, and only by arbitrarily small amounts, in such a way that the

smoothed functions have no singularity. The true distribution of the

pressure, say, can thus be represented as a superposition of a perfectly smooth

function po, free from all singularities, and a very small perturbation p'

of this distribution near the surface of discontinuity; and the latter, like any

small perturbation, is propagated, relative to the gas, with the velocity of

sound.

It must be emphasised that, for a shock wave, the smoothed functions would

differ from the true ones by quantities which in general are not small, and

the foregoing arguments are therefore invalid. If, however, the discon-

tinuities in the shock wave are sufficiently small, those arguments are again

applicable, and such a shock wave is propagated with the velocity of sound,

a result which was obtained by another method in §83.

If the flow is steady in a given co-ordinate system, then the surface of dis-

continuity is at rest in that system, and the gas flows through it. The gas

velocity component normal to the surface must equal the velocity of sound.

If we denote by a the angle between the direction of the gas velocity and the

tangent plane to the surface, then vn = v sin a = c, or sin a = c\v, i.e. a

surface of weak discontinuity intersects the streamlines at the Mach angle.

In other words, a surface of weak discontinuity is one of the characteristic

surfaces, a result which is entirely reasonable if we recall the physical signi-

ficance of the latter : they are surfaces along which small perturbations are

propagated (see §79). It is clear that, in steady flow of a gas, weak discon-

tinuities can occur only at velocities not less than that of sound.
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Weak discontinuities differ fundamentally from strong ones in the manner
of their occurrence. We shall see that shock waves can be formed as a direct

result of the gas flow, the boundary conditions being continuous (for instance,
the formation of shock waves in a sound wave, §95). In contrast to this, weak
discontinuities cannot occur spontaneously; they are always the result of
some singularity of the initial or boundary conditions of the flow. These
singularities may be of various kinds, like the weak discontinuities themselves.
For example, a weak discontinuity may occur on account of the presence of
angles on the surface of a body past which the flow takes place; in this case
the first spatial derivatives of the velocity are discontinuous. A weak dis-

continuity is also formed when the curvature of the surface of the body is

discontinuous, without there being an angle; in this case the second spatial

derivatives of the velocity are discontinuous, and so on. Finally, any sin-

gularity in the time variation of the flow results in a non-steady weak dis-

continuity.

The gas velocity component tangential to the surface of a weak discon-
tinuity is always directed away from the point (e.g. an angle on the surface
of a body) from which the perturbation begins which causes the discontinuity;

we shall say that the discontinuity begins from this point. This is an example
of the fact that, in a supersonic flow, perturbations are propagated down-
stream.

The presence of viscosity and thermal conduction results in a finite

thickness of a weak discontinuity, which is therefore in reality a transition

layer, like a shock wave. The thickness of the latter, however, depends only
on its strength and is constant in time, whereas the thickness of a weak
discontinuity increases with time after its formation. It is easy to determine
the law governing this increase. To do so, we again use the remark made at

the beginning of this section, that the motion of any part of the surface of a
weak discontinuity follows the same equations as the propagation of any weak
perturbation in the gas. When viscosity and thermal conduction occur, a
perturbation which is initially concentrated in a small volume (a "wave
packet") expands as it moves in the course of time; the manner of this expan-
sion has been determined in §77. We can therefore conclude that the thick-
ness S of a weak discontinuity is of the order of

8 ~ V(act), (89.1)

where t is the time from the formation of the discontinuity and a the co-
efficient of the squared frequency in the sound absorption coefficient. If
the discontinuity is at rest, then the time t must be replaced by Ijc, where
/ is the distance from the point where the discontinuity starts (e.g. for a weak
discontinuity starting from an angle on the surface of a body, / is the distance
from the vertex of the angle); consequently 8 ~ -\/(al). Thus the thickness
of a weak discontinuity increases as the square root of the time from its

formation or of the distance from its starting-point.

To conclude this section, we should make the following remark, analogous
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to the one at the end of §79. We stated there that, among the various per-

turbations of the state of a gas in motion, perturbations of entropy (at con-

stant pressure) and vorticity are distinct in their properties. Such pertur-

bations do not move relative to the gas, and are not propagated with the velocity

of sound. Hence the surfaces at which the entropy and vorticityf are weakly

discontinuous are at rest relative to the gas, and move with it relative to a

fixed system of co-ordinates. Such discontinuities may be called weak

tangential discontinuities; they pass through streamlines, and are in this respect

entirely analogous to the strong tangential discontinuities.

t A weak discontinuity of the vorticity implies a weak discontinuity of the velocity component

tangential to the surface of discontinuity; for example, the normal derivatives of the velocity may

be discontinuous.



CHAPTER X

ONE-DIMENSIONAL GAS FLOW

§90. Flow of gas through a nozzle

Let us consider steady flow of a gas out of a large vessel through a tube of

variable cross-section (a nozzle). We shall suppose that the gas flow is

uniform over the cross-section at every point in the tube, and that the velocity

is along the axis of the tube. For this to be so, the tube must not be too wide,

and its cross-sectional area S must vary fairly slowly along its length. Thus
all quantities characterising the flow will be functions only of the co-ordinate

along the axis of the tube. Under these conditions we can apply the relations

obtained in §80, which are valid along streamlines, directly to the variation

of quantities along the axis.

The mass of gas passing through a cross-section of the tube in unit time

(the discharge) is Q = pvS\ this must evidently be constant along the tube:

Q = Spv = constant. (90.1)

The linear dimensions of the vessel are supposed very large in comparison
with the diameter of the tube. The velocity of the gas in the vessel may there-

fore be taken as zero, and accordingly all quantities with the suffix in the

formulae of §80 will be the values of those quantities in the vessel.

We have seen that the flux densityj = pv cannot exceed a certain limiting

valuej\. It is therefore clear that the possible values of the total discharge Q
have (for a given tube and a given state of the gas in the vessel) an upper
limit £max , which is easily determined. If the value jm of the flux density

were reached anywhere except at the narrowest point of the tube, we should
have j > /„. for cross-sections with smaller S, which is impossible. The
valued = jx can therefore be attained only at the narrowest point of the tube;

let the cross-sectional area there be Smin. Then the upper limit to the total

discharge is

£max = p.©.Snin = V(^0/>o)[2/(y+ l)]a+r)/2(y-l)/S
'

mln . (QQ.2)

Let us first consider a nozzle which narrows continually towards its outer

end, so that the minimum cross-sectional area is at that end (Fig. 54). By
(90.1), the flux densityj increases monotonically along the tube. The same is

true of the gas velocity v, and the pressure accordingly falls monotonically.

The greatest possible value ofj is reached if v attains the value c just at the

outer end of the tube, i.e. if v\ — c\ = v* (the suffix 1 denotes quantities

pertaining to the outer end). At the same time, p\= p*.
Let us now follow the change in the manner of outflow of the gas when the

external pressure pe diminishes. When this pressure decreases from po, the

347
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pressure inside the vessel, to />*, the pressure pi at the outer end of the tube

decreases also, and the two pressures pi andp e remain equal; that is, the whole

of the pressure drop from p to p e occurs in the nozzle. The velocity vi

with which the gas leaves the tube, and the total discharge Q = j\Smin ,

increase monotonically, however. For pe
= p* the velocity becomes equal to

the local velocity of sound, and the discharge reaches the value Qm&x . When
the external pressure decreases further, the pressure pi remains constant

at p*, and the fall of pressure from p* to pe
occurs outside the tube, in the

surrounding medium. In other words, the pressure drop along the tube

cannot be greater than from_p to/)*, whatever the external pressure. For air

(p* = 0-53p ), the maximum pressure drop is 047/> . The velocity at the

end of the tube and the discharge also remain constant for pe
< p*. Thus the

gas cannot acquire a supersonic velocity in flowing through a nozzle of this

kind.

Fig. 54

'£&//////<

Fig. 55

If we consider only the flow in the immediate neighbourhood of the end of

the tube, the motion of the gas after leaving the tube is essentially flow round

an angle, the vertex of which is the edge of the tube mouth; we shall discuss

this flow in detail in §104.

The impossibility of achieving supersonic velocities by flow through a

continually narrowing nozzle is due to the fact that a velocity equal to the

local velocity of sound can be reached only at the very end of such a tube. It

is clear that a supersonic velocity can be attained by means of a nozzle which

first narrows and then widens again (Fig. 55). This is called a de Laval

nozzle.



§90 Flow ofgas through a nozzle 349

The maximum flux density j%, if reached, can again occur only at the

narrowest cross-section, so that the discharge cannot exceed Smi3J^. In the

narrowing part of the nozzle, the flux density increases (and the pressure

falls); the curve in Fig. 56 shows j as a functionf of^>, and the variation just

described corresponds to the interval from c to b. If the maximum flux

density is reached at the cross-section Smln (the point b in Fig. 56), the pres-

sure continues to diminish in the widening part of the nozzle, while^' begins to

decrease also, corresponding to the segment ba of the curve. At the outer

end of the tube; takes a definite value,

/

lmax = /* SmlJSh and the pressure

has the corresponding value, denoted in Fig. 56 by^i', at some point d on the

curve. If, however, only some point e is reached at the cross-section Smln ,

the pressure increases in the widening part of the nozzle, corresponding to a

return down the curve from e towards c. At first sight it might appear that we
might pass discontinuously from cb to ab, without going through the point b,

by the formation of a shock wave. This, however, is impossible, since the

gas "entering" the shock wave cannot have a subsonic velocity.

Bearing in mind these results, let us now investigate the manner of variation
in the outflow when the external pressurep e is gradually increased. For small
pressures, from zero to pi, the pressure p* and velocity v* = c* are reached
at the cross-section ,Smin . In the widening part of the nozzle the velocity
continues to increase, so that there results a supersonic flow of the gas, and
the pressure accordingly continues decreasing, reaching the value pi at

the outer end of the tube, whatever the pressure pe . The pressure falls from
pi top e outside the nozzle, in the rarefaction wave which leaves the edge of
the tube mouth (see §104).

When pe exceeds pi, an oblique shock wave leaves the edge of the tube
mouth, compressing the gas from pi to p e (§104). We shall see, however,
that a steady shock wave can leave a solid surface only if its intensity is not too

f According to formulae (80.15-80.17), the dependence is

-(s)
2y

y-1
popo[-(

.(y-l)/y

po) II
'

11*.
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great (§103). Hence, when the external pressure increases further, the shock

wave soon begins to move into the nozzle, with separation occurring in front

of it on the inner surface of the tube. For some value of p e the shock wave

reaches the narrowest cross-section and then disappears; the flow becomes

everywhere subsonic, with separation on the walls of the widening part of

the nozzle. All these complex phenomena are, of course, three-dimensional.

PROBLEM

A small amount of heat is supplied over a short segment of a tube to a perfect gas in steady

flow in the tube. Determine the change in the gas velocity when it passes through this seg-

ment.

Solution. Let Sq be the amount of heat supplied per unit time, S being the cross-sectional

area of the tube at the segment concerned. The mass flux densityj = pv and the momentum

flux density p+jv are the same on both sides of the heated segment; hence A/> = —jAy,
where A denotes the change in a quantity in passing through the segment. The difference in

the energy flux density (w+fr^j is q. Writing to = y/>/(y-l)p = ypvl(y-\)j, we obtain

(supposing Av and Ap small) vjAv+ y(pAv+vAp)f(y-l) = q. Eliminating Ap, we find

A„ _ (y—l)q/p(c2—v 2
). We see that, in subsonic flow, the supply of heat accelerates the

flow (Av > 0), while in supersonic flow it retards it.

Writing the gas temperature asT= ftpJRp = p-pv/Rj (R being the gas constant), we find

For supersonic flow, this expression is always positive, and the gas temperature is increased

;

for subsonic flow, however, AT may be either positive or negative.

§91. Flow of a viscous gas in a pipe

Let us consider the flow of a gas in a pipe (of constant cross-section) so

long that the friction of the gas against the walls, i.e. the viscosity of the gas,

cannot be neglected. We shall suppose the walls to be thermally insulated, so

that there is no heat exchange between the gas and the surrounding medium.

For gas velocities of the order of or exceeding the velocity of sound (the

only case we shall discuss here), the gas flow in the pipe is, of course, turbulent

if the radius of the pipe is not small. The turbulence of the flow is important,

as regards our problem, only in one respect: we have seen in §43 that, in

turbulent flow, the (mean) velocity is practically the same almost everywhere

in the cross-section of the pipe, and falls rapidly to zero very close to the

walls. We shall therefore suppose that the gas velocity v is a constant over

the cross-section, and define it so that the product Spv (S being the cross-

sectional area) is equal to the total discharge through the cross-section.

Since the total discharge Spv is constant along the pipe, and S is assumed

constant, the mass flux density must also be constant:

j = pv — constant. (91.1)

Next, since the pipe is thermally insulated, the total energy flux carried by

the gas through any cross-section must also be constant. This flux is

Spv(w+ ^v2'), and by (91.1) we have

w +%v2 = w+^V2 = constant. (91.2)



§91 Flow of viscous gas in a pipe 351

The entropy s of the gas does not, of course, remain constant, but increases

as the gas moves along the pipe, because of the internal friction. If x is

the co-ordinate along the pipe, with x increasing downstream, we can write

dsjdx > 0. (91.3)

We now differentiate (91.2) with respect to x. Since dzv = Tds+ Vdp, we
have

ds dp dV
TT +VT + J2V-J-

=
-

dx dx dx

Next, substituting

dV

dx

we obtain

/ dV\ dp / 8V\ ds
=

\~di) s dx
+
\17)p dx'

(91 *4)

h'^Js-^h^JS (9L5)

By a well-known formula of thermodynamics, (dV/ds)p = (TJcp)(dVI8T)p.

The coefficient of thermal expansion is positive for gases. We therefore

conclude, using (91.3), that the left-hand side of (91.5) is positive. The sign

of the derivative dpjdx is therefore that of -[l+j2(dVldp)s] = (vjcf-\.
We see that

dp/d*§0 for v$c. (91.6)

Thus, in subsonic flow, the pressure decreases downstream, as for an in-

compressible fluid. For supersonic flow, however, it increases.

We can similarly determine the sign of the derivative dvjdx. Since

j = vjV = constant, the sign of da/cbc is the same as that of dVJdx. The
latter can be expressed in terms of the positive derivative dsjdx by means of

(91.4) and (91.5). The result is that

dvjdx^O for v$c, (91.7)

i.e. the velocity increases downstream for subsonic flow and decreases for

supersonic flow.

Any two thermodynamic quantities for a gas flowing in a pipe are functions

of one another, independent of (inter alia) the resistance law for the pipe.

These functions depend on the constant j as a parameter, and are given by
the equation w+ %j

2V2 = constant, which is obtained by eliminating the velo-

city from the equations of conservation of mass and energy for the gas.

Let us ascertain the nature of the curves giving, for example, the entropy

as a function of pressure. Rewriting (91.5) in the form

ds (vjc)2— 1

dp T+jW(dVfds)p
'

we see that, at the point where v = c, the entropy has an extremum. It is easy
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to see that s has a maximum. For the second derivative of s with respect to

p at this point is

rd%

Ldp2 J V=C

]W{?W\dp*)s

<0;
T+pV(dVl8s)p

we assume, as usual, that the derivative {d2Vjdp2
)s

is positive.

The curves giving $ as a function of p (called Fanno lines) are therefore as

shown in Fig. 57. The region of subsonic velocities lies to the right of the

maximum, and that of subsonic velocities to the left. When the parameter j
increases, we go to lower curves. For, differentiating equation (91.2) with

respect to j for constant p, we have

ds _ jV*

d/
=
" T+jW(dV/ds)p

< 0.

Fig. 57

We can draw an interesting conclusion from the above results. Let the gas

velocity at the entrance to the pipe be less than that of sound. The entropy

increases downstream, and the pressure decreases; this corresponds to a

movement along the right-hand branch of the curve s = s(p), from B to-

wards O (Fig. 57). This can, however, continue only until the entropy reaches

its maximum value. A further movement along the curve beyond O (i.e. into

the region of supersonic velocities) is not possible, since the entropy of the

gas would have to decrease as it moved along the pipe. The transition be-

tween the branches BO and OA cannot even be effected by a shock wave,

since the gas entering a shock wave cannot move with subsonic velocity.

Thus we conclude that, if the gas velocity at the entrance to the pipe is less

than that of sound, the flow remains subsonic everywhere in the pipe. The
gas velocity becomes equal to the local velocity of sound only at the other end

of the pipe, if at all (it does so if the pressure of the external medium into

which the gas issues is sufficiently low).
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In order that the gas should have supersonic velocities in the pipe, its

velocity at the entrance must be supersonic. By the general properties of

supersonic flow (the impossibility of propagating disturbances upstream),

the flow will then be entirely independent of the conditions at the outlet of

the pipe. In particular, the entropy will increase along the pipe in a quite

definite manner, and its maximum value will be attained at a definite distance

x = h from the entrance. If the total length / of the pipe is less than 4, the

flow is supersonic throughout the pipe (corresponding to movement on the

branch AO from A towards O). If, on the other hand, / > lk , the flow cannot
be supersonic throughout the pipe, nor can there be a smooth transition to

subsonic flow, since we can move along the branch OB only in the direction

shown by the arrow. In this case, therefore, a shock wave must necessarily

be formed, which discontinuously changes the flow from supersonic to sub-
sonic. The pressure is thereby increased, and we pass from the branch AO
to BO without going through the point O. The flow is entirely subsonic

beyond the discontinuity.

§92. One-dimensional similarity flow

An important class of one-dimensional non-steady gas flows is formed by
flows occurring in conditions where there are characteristic velocities but
not characteristic lengths. The simplest example of such a flow is given by
gas flow in a semi-infinite cylindrical pipe terminated by a piston, when the

piston begins to move with constant velocity.

Such a flow is defined by the velocity parameter and by parameters which
give, say, the gas pressure and density at the initial instant. We can, however,
form no combination of these parameters which has the dimensions of length

or time. It therefore follows that the distributions of all quantities can depend
on the co-ordinate x and the time t only through the ratio xft,which has the

dimensions of velocity. In other words, these distributions at various in-

stants will be similar, differing only in the scale along the x-axis, which in-

creases proportionally to the time. We can say that, if lengths are measured
in a unit which increases proportionally to t, then the flow pattern does not
change. When the flow pattern is unchanged with time if the scale of length

varies appropriately, we speak of a similarity flow.

The equation of conservation of entropy for a flow which depends on only
one co-ordinate, *, is dsjdt+ Vx ds/dx = 0. Assuming that all quantities

depend only on £ = xjt, and noticing that in this case d/dx = (l/f)d/df,

djdt = -(£/*)d/d£, we obtain (vx- £) s' = (the prime denoting differen-

tiation with respect to £). Hence s' = 0, i.e. s = constantf ; thus similarity

flow in one dimension must be isentropic. Likewise, from the y and z com-
ponents of Euler's equation: dvyldt+ vx dvyjdx = 0, dvz/dt+ vx dvz/dx = 0,

we find that vy and vz are constants, which we can take as zero without loss

of generality.

t The assumption that vx — £ = would contradict the other equations of motion; from (92.3)
we should have vx = constant, contrary to hypothesis.
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Next, the equation of continuity and the ^-component of Euler's equation

are

dp dv dp

£ +T +V =
' (92<1)

dt ox ox

dv dv 1 dp
+V= __Z

; (92.2)
dt ox p ox

here and henceforward we write vx as v simply. In terms of the variable $,

these equations become

(v-€)p'+pv' = 0, (92.3)

(
V -Qv> = -p'jP = -cy/p. (92.4)

In the second equation we have putp' = {dp\dp)s p = c2p', since the entropy

is constant.

These equations have, first of all, the trivial solution v = constant,

p = constant, i.e. a uniform flow of constant velocity. To find a non-trivial

solution, we eliminate p and v' from the equations, obtaining (v— £)
2 = c2

y

whence | = v± c. We shall take the plus sign:

x\t = v + c; (92.5)

this choice of sign means that we take the positive #-axis in a definite direction,

selected in a manner shown later. Finally, putting v— £ = — c in (92.3),

we obtain cp = pv', or pdv = cdp. The velocity of sound is a function of

the thermodynamic state of the gas; taking as the fundamental thermodyna-

mic quantities the entropy s and the density />, we can represent the velocity

of sound as a function c(p) of the density, for any given value of the constant

entropy. With c understood as such a function, we can write

v = j cdp/p = j dpjcp. (92.6)

This formula can also be written

v = j ^/(-dpdV), (92.7)

in which the choice of dependent variable remains open.

Formulae (92.5) and (92.6) give the required solution of the equations of

motion. If the function c(p) is known, then the velocity v can be calculated

as a function of density from (92.6). Equation (92.5) then determines the

density as an implicit function of xjt, and so the dependence of all the other

quantities on xjt is determined also.

We can derive some general properties of the solution thus obtained.

Differentiating equation (92.5) with respect to x, we have

dp d(v+ c)

t— \ = 1. (92.8)
dx dp
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For the derivative of v+ c we have, by (92.6),

d(v+ c) c dc 1 d(pc)

dp p dp p dp

But

Pc = pvWp) = W(-W;
differentiating, we have

dOoc)/dp = &l(pc)ldp = lp*(*(d*VldpP)8 . (92.9)

Thus

d(© + c)/dp = y2c%8W/dp^)s > 0. (92.10)

It therefore follows from (92.8) that dp/dx > for t > O.f Since dp/dx

= c2 dp/dx, we conclude that dp/&* > also. Finally, we have dvjdx

= (c/p)dp/dx, so that dvjdx > 0. The inequalities

8p/8x > 0, dp/dx > 0, dv/dx > (92.11)

therefore hold.

The meaning of these inequalities becomes clearer if we follow the variation

of quantities, not along the x-axis for given t, but with time for a given gas

element as it moves about. This variation is given by the total time deriva-

tive ; for the density, for example, we have, using the equation of continuity,

dp/dt = dp/dt+v dp/dx = —p dv/dx. By the third inequality (92.11),

this quantity is negative, and therefore so is dp/dt:

dp/dt < 0, dp/dt < 0. (92.12)

Similarly (using Euler's equation (92.2)) we can see that dv/dt < 0; this,

however, does not mean that the magnitude of the velocity diminishes with

time, since v may be negative.

The inequalities (92.12) show that the density and pressure of any gas

element decrease as it moves. In other words, the gas is continually rarefied

as it moves. Such a flow may therefore be called a non-steady rarefaction

wave.

A rarefaction wave can be propagated only a finite distance along the #-axis

;

this is seen from the fact that formula (92.5) would give an infinite velocity

for x -> + oo, which is impossible.

Let us apply formula (92.5) to a plane bounding the region of space occupied

by the rarefaction wave. Here x/t is the velocity of this boundary relative to

the fixed co-ordinate system chosen. Its velocity relative to the gas itself is

(x/t) — v and is, by (92.5), equal to the local velocity of sound. This means
that the boundaries of a rarefaction wave are weak discontinuities. The

t There is no meaning for times t < in the similarity flow here considered. Such a flow can
occur only because of some singularity in the initial conditions (t = 0) of the flow at the point x = 0,

and therefore takes place only for t > (in our example, the piston velocity changes discontinuously
at t - 0. See also §93).
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similarity flow in different cases is therefore made up of rarefaction waves and

regions of constant flow, separated by surfaces of weak discontinuity. -
]-

The choice of sign in (92.5) is now seen to correspond to the fact that these

weak discontinuities are assumed to move in the positive ^-direction relative

to the gas. The inequalities (92.11) arise from this choice, but the inequalities

(92.12), of course, do not depend on the direction of the #-axis.

r
-J

m !

I

I

j

IT

Fig. 58

We are usually concerned, in actual problems, with a rarefaction wave

bounded on one side by a region where the gas is at rest. Let this region (I

in Fig. 58) be to the right of the rarefaction wave. Region II is the rarefaction

wave, and region III contains gas moving with constant velocity. The arrows

in the figure show the direction of motion of the gas, and of the weak dis-

continuities bounding the rarefaction wave; the discontinuity a always

moves into the gas at rest, but the discontinuity b may move in either direction,

depending on the velocity reached in the rarefaction wave (see Problem 2).

We may give explicitly the relations between the various quantities in such a

rarefaction wave, assuming that we have a perfect gas. For an adiabatic

process pTll(1~y) = constant. Since the velocity of sound is proportional to

\/T, we can write this relation as

P = po{chf'^\ (92.13)

Substituting this expression in the integral (92.6), we obtain

2 f 2
v = dc = -(c-co);

y—l

J

y—

1

the constant of integration is chosen so that c = Co for v = (we use the

suffix to refer to the point where the gas is at rest). We shall express all

quantities in terms of v, bearing in mind that, with the above situation of the

various regions, the gas velocity is in the negative ^-direction, i.e. v < 0.

Thus

c = cQ -\{y-\)\v\, (92.14)

which determines the local velocity of sound in terms of the gas velocity.

Substituting in (92.13), we find the density to be

P = Po[l-¥y-l)\v\lco]Wy-», (92.15)

f There may also, of course, be regions of constant flow separated by shock waves.
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and similarly the pressure is

P = Mi -\{y~ i)M M)]
2^-1*. (92.16)

Finally, substituting (92.14) in formula (92.5), we obtain

2 / x

M = 7 Ko - -
1

' y+l\ t

(92.17)

which gives a as a function of # and t.

The quantity c cannot be negative, by definition. We can therefore draw

from (92.14) the important conclusion that the velocity must satisfy the

inequality

M <2* /(y-l); (
92 - 18)

when the velocity reaches this limiting value, the gas density (and also/) and

c) becomes zero. Thus a gas originally at rest and expanding non-steadily

in a rarefaction wave can be accelerated only to velocities not exceeding

2*o/(y-l).
. . r L . • • ,

We have already mentioned, at the beginning of this section, a simple

example of similarity flow, namely that which occurs in a cylindrical pipe in

which a piston begins to move with constant velocity. If the piston moves out

of the pipe, it creates a rarefaction, and a rarefaction wave of the kind des-

cribed above is formed. If, however, the piston moves inwards, it compresses

the gas in front of it, and the transition to the original lower pressure can occur

only in a shock wave, which is in fact formed in front of a piston moving for-

ward in a pipe (see the following Problems)-!

PROBLEMS

Problem 1. A perfect gas occupies a semi-infinite cylindrical pipe terminated by a

piston. At an initial instant the piston begins to move into the pipe with constant velocity U.

Determine the resulting flow.

Solution A shock wave is formed in front of the piston, and moves along the pipe.

At the initial instant this shock and the piston are coincident, but at subsequent instants the

shock is ahead of the piston, and a region of gas lies between them (region 2). In front or

the shock wave (region 1), the gas pressure is equal to its initial value pu and its velocity

relative to the pipe is zero. In region 2, the gas moves with constant velocity, equal to the

velocity U of the piston (Fig. 59). The difference in velocity between regions 1 and 2 is

therefore also U, and, by formulae (82.7) and (85.1), we can write

u= V[(p2-piWi-v2)]

= (p2-piW{2Vil[(y-l)Pi + (y+^)p2]y

t We may mention also an analogous similarity flow in three dimensions: the centrally symmetrical

sas flow caused by a uniformly expanding sphere. A spherical shock wave, expanding with constant

velocity is formed in front of the sphere. Unlike what happens in the one-dimensional case, the

velocity of the gas between the sphere and the shock is not constant; the equation which determines

it as a function of the ratio r\t (and therefore the rate of propagation of the shock wave) cannot be

m
TwfptoWemha^been discussed by L. I. SedoV (1945; see his book Similarity and Dimensional

Methods in Mechanics, Cleaver-Hume Press, London 1959) and by G. I. Taylor, Proceedings of the

Royal Society, A186, 273, 1946.
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Hence we find the gas pressure pz between the piston and the shock wave to be given by

(y+ l)2f/2— X T "
1 / 1 -t-

Pi 4c,2 Cl \6a*

Knowing p2 , we can calculate, from formulae (85.4), the velocity of the shock wave relative
to the gas on each side of it. Since gas 1 is at rest, the velocity of the shock relative to it is
equal to the rate of propagation of the shock in the pipe. If the x co-ordinate (along the pipe)
is measured from the initial position of the piston (the gas being on the side x > 0), we find
the position of the shock wave at time t to be

while the position of the piston is x = Ut.

tU

Fig. 59

(a) ^
2 3

-U
(fo-^0) f

Problem 2. The same as Problem 1, but for the case where the piston moves out of the
pipe with velocity U.

Solution. The piston adjoins a region of gas (region 1 in Fig. 60a) which moves in the
negative ^-direction with constant velocity — U, equal to the velocity of the piston. Then
follows a rarefaction wave (2), in which the gas moves in the negative ^-direction, its velocity
varying linearly from —U to zero according to (92.17). The pressure varies according to
(92.16) from p x

= £ [l_£(y _l)£//Co]2y/ (y-i) in gas j to Po in the gas 3> which fg &t res^
The boundary of regions 1 and 2 is given by the condition v — —U; according to (92.17),
we have x = [c —}(y+l)U]t = (c—U)t, where c is the velocity of sound in gas 1. At the
boundary of regions 2 and 3, v = 0, whence * = c t. Both boundaries are weak discon-
tinuities

; the second is always propagated to the right (i.e. away from the piston), but the first
may be propagated either to the right (as shown in Fig. 60a) or to the left (if the piston
velocity U > 2c /(y+l)).
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The flow pattern just described can occur only if U < 2c /(y— 1). If U > 2c„/(y— 1), a

vacuum is formed in front of the piston (the gas cannot follow the piston), which extends

from the piston to the point x = -2c «/(y-l) (region 1 in Fig. 60b). At this point,

v = -2c /(y-l); then follow region 2, in which the velocity decreases to zero at the point

x = c t, and region 3, where the gas is at rest.

Problem 3. A gas occupies a semi-infinite cylindrical pipe (x > 0) terminated by a valve.

At time t = 0, the valve is opened, and the gas flows into the external medium, the pressure

pe in which is less than the initial pressure p in the pipe. Determine the resulting flow.

Fig. 61

Solution. Let —ve be the gas velocity which corresponds to the external pressure pe

according to formula (92.16); for * = and t > 0, we must have v = -ve . If

ve < 2c /(y+l), the velocity distribution shown in Fig. 61a results. For ve = 2c /(y+l)

(corresponding to a rate of outflow equal to the local velocity of sound at the end of the pipe

:

this is easily seen by putting v = c in formula (92.14)), the region of constant velocity vanishes

and the pattern shown in Fig. 61b is obtained. The quantity 2c /(y+ l) is the greatest

possible rate of outflow from the pipe in the conditions stated. If the external pressure pe

is such that __„ . . /1N

pe </>o[2/(y + l)]2>' /(^1)
, (1)

the corresponding velocity exceeds 2c /(y+l). In reality, the pressure at the pipe outlet

would still be equal to the limiting value (the right-hand side of (1)), and the rate of outflow

would be 2c„/(y+l); the remaining pressure drop (to pe) occurs in the external medium.

Problem 4. An infinite pipe is divided by a piston, on one side of which (x < 0) there is,

at the initial instant, gas at pressure p , and on the other side a vacuum. Determine the motion

of the piston as the gas expands.

Solution. A rarefaction wave is formed in the gas ; one of its boundaries moves to the right

with the piston, and the other moves to the left. The equation of motion of the piston is

mdU/dt = po[\-\{y-\)UjcQfy^^\
where U is the velocity of the piston and m its mass per unit area. Integrating, we obtain

™-SH'^](y+l)po-\^-my+1) \

Problem 5. Determine the flow in an isothermal similarity rarefaction wave.

Solution. The isothermal velocity of sound is ct = V(dp/dp)T = V(RTffi), and for

constant temperature ct = constant = cto- According to (92.5) and (92.6), we therefore

v = c To log(p/po) = c T^og{pjpo) = (xji)-c Tt .
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§93. Discontinuities in the initial conditions

One of the most important reasons for the occurrence of surfaces of dis-
continuity in a gas is the possibility of discontinuities in the initial conditions.
These conditions (i.e. the initial distributions of velocity, pressure, etc.)
may in general be prescribed arbitrarily. In particular, they need not be
everywhere continuous, but may be discontinuous on various surfaces. For
example, if two masses of gas at different pressures are brought together at
some instant, their surface of contact will be a surface of discontinuity of the
initial pressure distribution.

It is of importance that the discontinuities of the various quantities in the
initial conditions (or, as we shall say, in the initial discontinuities) can have
any values whatever; no relation between them need exist. We know, how-
ever, that certain conditions must hold on stable surfaces of discontinuity in a
gas; for instance, the discontinuities of density and pressure in a shock wave
are related by the shock adiabatic. It is therefore clear that, if these conditions
are not satisfied in the initial discontinuity, it cannot continue to be a dis-
continuity at subsequent instants. Instead, the initial discontinuity in general
splits into several discontinuities, each of which is one of the possible types
(shock wave, tangential discontinuity, weak discontinuity) ; in the course of
time, these discontinuities move apart. A general discussion of the behaviour
of an arbitrary discontinuity has been given by N. E. Kochin (1926).
During a short interval of time after the initial instant t = 0, the discon-

tinuities formed from the initial discontinuity do not move apart to great
distances, and the flow under consideration therefore takes place in a relatively
small volume adjoining the surface of initial discontinuity. As usual, it

suffices to consider separate portions of this surface, each of which may be
regarded as plane. We need therefore consider only a plane surface of
discontinuity, which we take as the yz-plzne. It is evident from symmetry
that the discontinuities formed from the initial discontinuity will also be plane,
and perpendicular to the *-axis. The flow pattern will depend on the co-
ordinate x only (and on the time), so that the problem is one-dimensional.
There being no characteristic parameters of length and time, we have a
similarity problem, and the results obtained in §92 can be used.
The discontinuities formed from the initial discontinuity must evidently

move away from their point of formation, i.e. away from the position of the
initial discontinuity. It is easy to see that either one shock wave, or one pair
of weak discontinuities bounding a rarefaction wave, can move in each direc-
tion (the positive and negative ^-direction). For, if there were, say, two shock
waves formed at the same point at time t = and both propagated in the
positive x-direction, the leading one would have to move more rapidly than
the other. According to the general properties of shock waves, however, the
leading shock wave must move, relative to the gas behind it, with a velocity
less than the velocity of sound c in that gas, and the following shock must
move, relative to the same gas, with a velocity exceeding c (c being a constant
in the region between the shock waves), i.e. it must overtake the other. For
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the same reason, a shock wave and a rarefaction wave cannot move in the same

direction; to see this, it is sufficient to notice that weak discontinuities move

with the velocity of sound relative to the gas on each side of them. Finally,

two rarefaction waves formed at the same time cannot become separated,

since the velocities of their backward fronts are the same.

As well as shock waves and rarefaction waves, a tangential discontinuity

must in general be formed from an initial discontinuity. Such a discontinuity

must occur if the transverse velocity components vy , v z are discontinuous in

the initial discontinuity. Since these velocity components do not change in a

shock or rarefaction wave, their discontinuities always occur at a tangential

discontinuity, which remains at the position of the initial discontinuity; on

each side of this discontinuity, vy and v z are constant (in reality, of course,

the instability of a tangential velocity discontinuity causes its gradual smooth-

ing into a turbulent region).

A tangential discontinuity must occur, however, even if vy and v z are

continuous at the initial discontinuity (without loss of generality, we can, and

shall, assume that they are zero). This is shown as follows. The discon-

tinuities formed from the initial discontinuity must make it possible to go from

a given state 1 of the gas on one side of the initial discontinuity to a given state

2 on the other side. The state of the gas is determined by three independent

quantities, e.g. p, p and vx = v. It is therefore necessary to have three arbi-

trary parameters in order to go from state 1 to an arbitrary state 2 by some

choice of the discontinuities. We know, however, that a shock wave, per-

pendicular to the stream, propagated in a gas whose thermodynamic state is

given, is completely determined by one parameter (§82). The same is true of

a rarefaction wave; as we see from formulae (92.14)-(92.16), when the state

of the gas entering a rarefaction wave is given, the state of the gas leaving it is

completely determined by one parameter. We have seen, moreover, that at

most one wave (rarefaction or shock) can move in each direction. We therefore

have at our disposal only two parameters, which are not sufficient.

The tangential discontinuity formed at the position of the initial discon-

tinuity furnishes the third parameter required. The pressure is continuous

there, but the density (and therefore the temperature and entropy) is not.

The tangential discontinuity is stationary with respect to the gas on both sides

of it and the arguments about the "overtaking" of two waves propagated in the

same direction therefore do not apply to it.

The gases on the two sides of the tangential discontinuity do not mix,

since there is no motion of gas through a tangential discontinuity; in all the

examples given below, these gases may be different substances.

Fig. 62 shows schematically all possible types of break-up of an initial

discontinuity. The continuous line shows the variation of the pressure along

the #-axis; the variation of the density would be given by a similar line, the

only difference being that there would be a further jump at the tangential

discontinuity. The vertical lines show the discontinuities formed, and the

arrows show their direction of propagation and that of the gas flow. The
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co-ordinate system is always that in which the tangential discontinuity is at
rest, together with the gas in the regions 3 and 3' which adjoin it. The pres-
sures, densities and velocities of the gases in the extreme left-hand (1) and
right-hand (2) regions are the values of these quantities at time t = on each
side of the initial discontinuity.

3 3

2

1— -*

*~S+TS^
, %

(a)

3- 3'
4/|

1
•"• **"

!

—
I-*-S^_TR_

(b)

1

3'

r !

-
1 • '

—i—i i_

1+ R^.TR
(c)

Z-W?
r "*

(d)

Shock wave

Tangential discontinuity

- Weak discontinuity

Fig. 62

In the first case, which we write I -> S^ TS_* (Fig. 62a), the initial dis-

continuity / gives two shock waves S, propagated in opposite directions,
and a tangential discontinuity T between them. This case occurs when two
masses of gas collide with a large relative velocity.

In the case / -> fi_ TR_> (Fig. 62b), a shock wave is propagated on one
side of the tangential discontinuity, and a rarefaction wave R on the other
side. This case occurs, for instance, if two masses of gas at relative rest

(v2— V! = 0) and at different pressures are brought into contact at the initial



§93 Discontinuities in the initial conditions 363

instant. For, of all the cases shown in Fig. 62, the second is the only one in

which gases 1 and 2 are moving in the same direction, and so the equation

vi — v2 is possible.
.

In the third case (/ -> i?_ TR^, Fig. 62c), a rarefaction wave is propagated

on each side of the tangential discontinuity. If gases 1 and 2 separate with a

sufficiently great relative velocity v2-vx , the pressure may decrease to zero

in the rarefaction waves. We then have the pattern shown in Fig. 62d; a

vacuum 3 is formed between regions 4 and 4'.

We can derive the analytical conditions which determine the manner in

which the initial discontinuity breaks up, as a function of its parameters. We

shall suppose in every case that£2 > pi, and take the positive ^-direction from

region 1 to region 2 (as in Fig. 62).

Since the gases on the two sides of the initial discontinuity may be ot

different substances, we shall distinguish them as gases 1 and 2.

(1) / -* S<_TS^. If pz = pz', Vz and Vz' are the pressures and specific

volumes in the resulting regions 3 and 3', then we havepz>pz> pi, and the

volumes Vz and VZ
' are the abscissae of the points with ordinate pz on the

shock adiabatics through (plf Vi) and (p2 , V2) respectively. Since the gases

in regions 3 and 3' are at rest in the co-ordinate system chosen, we can use

formula (82.7) to give the velocities vx and v2 ,
which are in the positive and

negative ^-directions respectively:

vi = Vlipz-piWi- v*)l v2
= - V[(p8-^2)(^2- Vz')].

The least value of pz, for given pi and p2 , which does not contradict the initial

assumption (p3 > p2 > pi) is pi- Since, moreover, the difference ^ - c* is a

monotonically increasing function of pz , we find the required inequality

vi-v2 > Vm-pi)(Vi- V')], (93.1)

where V denotes the abscissa of the point with ordinate p2 on the shock

adiabatic for gas 1 through (/>i, Vi). Calculating V from formula (85.1) (in

which V2 is replaced by V), we obtain the condition (93.1) for a perfect gas

in the form

V!-V2 > (P2-/>i)V(2M(n-i)/>i + (n+ i)KI}- (
93 -2)

It should be noted that the limits placed by (93.1) and (93.2) on the possible

values of the velocity difference v1-v2 clearly do not depend on the co-ordi-

nate system chosen.

(2) / -> S^TR^. Here^i <pz =pz'<P* For the gas velocitym region 1

we again have

*>i = y/[{pz-piWi-Vz)l

and the total change in velocity in the rarefaction wave 4 is, by (92.7),

Pi

v2
=

J
V(-#dF).

P*
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For given px and p2 , p3 can lie between them. Replacing pz in the difference
vz-vx by pi and then by p2 , we obtain the condition

- j V(-dpdV) < V!-v2 < V[(pz-pi){Vi-V')]. (93.3)

Here V has the same significance as in the previous case; the upper limit of
the difference V! - v2 must be calculated for gas 1, and the lower limit for gas 2.
For a perfect gas we have

2c2 r /p1 \(y.-i)/2y,i

< (P2 -pi)V{2Vi/[(n - l)^i + (yi + l)pz]}, (93.4)

where c2 = ^/(y2p2V2) is the velocity of sound in gas 2 in the state (p2 , V2).

(3) / -> R^TR^. Here p2 >

p

1 >p3 = pz > > 0. By the same method we
find the following condition for this case to occur:

-
j V(-dpdV)- J

V(-dpdV) < vx -v2 < - j ^/(-dpdV). (93.5)

The first integral in the first member is calculated for gas 1, and the others
for gas 2. For a perfect gas we find

2ci 2c2 2c2 r / px \ (ys-i)/2y2 -i

7 -<V!-v2 < h_(£_ I (93.6)yi-1 y2 -\ 72-1 L \p2 ] y K
'

where c± = Vinpi^i), c2 = V(72p2V2). If

2c± 2c2
vi-v2 < -, (93.7)

yi-1 y2-l

a vacuum is formed between the rarefaction waves (/ -> R+_ VRJ).
The problem of a discontinuity in the initial conditions includes that

of various collisions between plane surfaces of discontinuity. At the instant of
collision, the two planes coincide, and form some initial discontinuity, which
then leads to one of the patterns described above. The collision of two shock
waves, for instance, results in two other shock waves, which move away
from the tangential discontinuity remaining between them : S^S*. -» S+. TS^.
When one shock wave overtakes another, there are two possibilities: S_*S^
-> S±_ TS_> and S_>S^ -> R^ TS^. In either case a shock wave continues in the
same direction.

The problem of the reflection and transmission of shock waves by a tan-
gential discontinuity (boundary of two media) also comes under this heading.
Here two cases are possible: S^T-+S<.TS_ and S^T->R+_TS_+. The wave
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transmitted into the second medium is always a shock (see also the following

Problems)-!

PROBLEMS

Problem 1. A plane shock wave is reflected from a rigid plane surface. Determine the gas

pressure behind the reflected wave (S. V. Izmailov 1935).

* 1

Fig. 63

/,

Solution When a shock wave is incident on a rigid wall, a reflected shock wave is pro-

pagated away from the wall. We denote by the suffixes 1, 2 and 3 respectively quantities

pertaining to the undisturbed gas in front of the incident shock, the gas behind this shock

(which is also the gas in front of the reflected shock) and the gas behind the reflected shock;

see Fig. 63, where the arrows indicate the direction of motion of the shock waves and of the

gas itself. The gas in regions 1 and 3, which adjoin the wall, is at rest relative to the wall.

The relative velocity of the gases on the two sides of the discontinuity is the same in both

the incident and the reflected shock wave, and equal to the velocity of gas 2. Using formula

(82.7) for the relative velocity, we therefore have (p2
—£i)(I/i—V2) = (p 3—p2)(.V2—V3). The

equation of the shock adiabatic (85.1) for each shock gives

Yl (y+l)/>i+(y-l)/>2 Yl
v2

(y+l)/>2+(y-l)/*

(y-l)/>i + (y+l)/>2 V2 (y-l)p2 + (y+l)^3

We can eliminate the specific volumes from these three equations, and the result is

(/>3-/>2)
2[(y+l)£i + (y-l)/>2] = (p2-£i)2[(y+l)/>3+(y-l)M

This is a quadratic equation for p3, which has the trivial root p 3 = pi, cancelling p3—pu
we obtain

p3_ =
(3y-l)j>2-(y-l)j>i

P2
~ (y-l)/>2-(y+l)^i'

which determines p3 from p x and pt . In the limiting case of a very strong incident shock,

p 3
= (3y-l)£2/(y-l), while for a weak shock p3-p2 = Pz-pi, corresponding to the sound-

wave approximation.

Problem 2. Find the condition for a shock wave to be reflected from a plane boundary

between two gases.

| For completeness we should mention that, when a shock wave collides with a weak discontinuity

(a problem which is not of the similarity type considered here), the shock wave continues to be

propagated in the same direction, but behind it there remain a weak discontinuity of the original

kind and a weak tangential discontinuity (see the end of §89).
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Solution. Let p^ = pr , Vu V2', be the pressures and specific volumes of the two media
before the incidence of the shock wave (propagated in gas 2), at their surface of separation,
and p2 ,V2 the values behind the shock wave. The condition for the reflected wave to be a
shock wave is given by the inequality (93.2), in which we must now put

Vl -v2 = V[(p2-p2')(V2'-V2)].

srms of the ratio of pressures p2/pi i

Expressing all quantities in terms of the ratio of pressures p%\p x and the initial specific volumes
Vu Vr , we obtain

(yi + l)p2lpi + (n- 1) (Y2+l)p2lpi+(n- 1)

§94. One-dimensional travelling waves

In discussing sound waves in §63, we assumed the amplitude of oscillations
in the wave to be small. The result was that the equations of motion were
linear and were easily solved. A particular solution of these equations is any
function of x±ct (a plane wave), corresponding to a travelling wave whose
profile moves with velocity c, its shape remaining unchanged; by the profile
of a wave we mean the distribution of density, velocity, etc., along the direc-
tion of propagation. Since the velocity v, the density p and the pressure p
(and the other quantities) in such a wave are functions of the same quantity
x±ct

y
they can be expressed as functions of one another, in which the co-

ordinates and time do not explicitly appear (p = p(p), v = v(p), and so on).

When the wave amplitude is not necessarily small, these simple relations
do not hold. It is found, however, that a general solution of the exact equa-
tions of motion can be obtained, in the form of a travelling plane wave which is

a generalisation of the solution f(x ± ct) of the approximate equations valid
for small amplitudes. To derive this solution, we shall begin from the require-
ment that, for a wave of any amplitude, the velocity can be expressed as a
function of the density.

In the absence of shock waves the flow is adiabatic. If the gas is homo-
geneous at some initial instant (so that, in particular, s = constant), then
s = constant at all times, and we shall assume this in what follows.

In a plane sound wave propagated in the ^-direction, all quantities depend
on x and t only, and for the velocity we have vx = v, vy = v z = 0. The
equation of continuity is 8p]8t+8(pv)[8x = 0, and Euler's equation is

8v 8v 1 8p— + v— + - — = 0.
8t 8x p 8x

Using the fact that v is a function of p only, we can write these equations
as

8p d(pv) 8p

8v I 1 d*\ 8v— + \v +-f- — = 0. (94.2)
8t \ pdv/8x K

'
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Since
dpjdt (dx\

dp/dx
~ \dt)\

we have from (94.1)

(

and similarly from (94.2)

8x \ d(ov) dv

dt/
p

dp dp

(

d
_l) =v +\% (94.3)

\8t/ v p dv

Since the value of p uniquely determines that of v, the derivatives for con-

stant p and constant v are the same, i.e. (dx\dt)
p
= (dxjdt)v ,

so that p dvldp

= (1/p) dpldv. Putting dpjdv = (dj>/dp)(d/>/d«>) = ^dp/dv, we obtain dvjdp

= ± cjp, whence

r- + f%-±f£ (94-4)

This gives the general relation between the velocity and the density or pressure

in the wave.f

Next, we can combine (94.3) and (94.4) to give (Bxjdt)v = v+ {\jp)dpldv

= v ± c(v), or, integrating,

x= t[v±c(v)]+f(v), (94.5)

where f{v) is an arbitrary function of the velocity, and c{v) is given by (94.4).

Formulae (94.4) and (94.5) give the required general solution (B. Riemann,

1860). They determine the velocity (and therefore all other quantities) as

an implicit function of x and t, i.e. the wave profile at every instant. For

any given value of v, we have * = at+ b, i.e. the point where the velocity

has a given value moves with constant velocity; in this sense, the solution

obtained is a travelling wave. The two signs in (94.5) correspond to waves

propagated (relative to the gas) in the positive and negative ^-directions.

The flow described by the solution (94.4) and (94.5) is often called a

simple wave, and we shall use this expression below. It should be noticed

that the similarity flow discussed in §92 is a particular case of a simple wave,

corresponding to f(v) = in (94.5).

We can write out explicitly the relations for a simple wave in a perfect

gas; for definiteness, we assume that there is a point in the wave for which

v = 0, as usually happens in practice. Since formula (94.4) is the same as

(92.6), we have by analogy with formulae (92.14)-(92.16)

c = c ±l(y-l)v, (94.6)

P = Po(i±Kr-i)^o)2/<y-1)
,

(947)
/»=Mi±l(r-iW^o)2^-1)

.

t In a wave of small amplitude we have p = Po+p, and (94.4) gives in the first approximation

v = Cop'lpo (where c = c(p )), i.e. the usual formula (63.12).
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Substituting (94.6) in (94.5), we obtain

x=t(± c +i(y+ l)v)+f(v). (94.8)

It is sometimes convenient to write this solution in the form

v = F[x-(±c + i(y+l)v)t], (94.9)

where F is another arbitrary function.

From formulae (94.6) and (94.7) we again see (as in §92) that the velocity
in a direction opposite to that of the propagation of the wave (relative to the
gas itself) is of limited magnitude; for a wave propagated in the positive
^-direction we have

-v ^ 2c /(y-l). (94.10)

A travelling wave described by formulae (94.4) and (94.5) is essentially
different from the one obtained in the limiting case of small amplitudes.
The velocity of a point in the wave profile is

u = v±c\ (94.11)

it may be conveniently regarded as a superposition of the propagation of a
disturbance relative to the gas with the velocity of sound and the movement
of the gas itself with velocity v. The velocity u is now a function of the
density, and therefore is different for different points in the profile. Thus,
in the general case of a plane wave of arbitrary amplitude, there is no definite
constant "wave velocity". Since the velocities of different points in the wave
profile are different, the profile changes its shape in the course of time.

Let us consider a wave propagated in the positive ^-direction, for which
« = v+ c. The derivative of v+ c with respect to the density has been cal-
culated in §92; see (92.10). We have seen that du/dp > 0. The velocity of
propagation of a given point in the wave profile is therefore the greater, the
greater the density. If we denote by c the velocity of sound for a density
equal to the equilibrium density p , then in compressions p > p and c> c

,

while in rarefactions p < p and c < c .

The inequality of the velocity of different points in the wave profile causes
its shape to change in the course of time: the points of compression move
forward and those of rarefaction are left behind (Fig. 64b). Finally, the
profile may become such that the function p{x) (for given t) is no longer
one-valued; three different values of p correspond to some x (the dashed
line in Fig. 64c). This is, of course, physically impossible. In reality,

discontinuities are formed where p is not one-valued, and p is consequently
one-valued everywhere except at the discontinuities themselves. The wave
profile then has the form shown by the continuous line in Fig. 64c. The
surfaces of discontinuity are thus formed at points a wavelength apart.
When the discontinuities are formed, the wave ceases to be a simple wave.

The cause of this can be briefly stated thus: when surfaces of discontinuity
are present, the wave is "reflected" from them, and therefore ceases to be a
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wave travelling in one direction. The assumption on which the whole

derivation is based, namely that there is a one-to-one relation between the

various quantities, consequently ceases to be valid in general.

The presence of discontinuities (shock waves) results, as was mentioned in

§82, in the dissipation of energy. The formation of discontinuities therefore

leads to a marked damping of the wave. This is evident from Fig. 64. When
the discontinuity is formed, the highest part of the wave profile is cut off.

In the course of time, as the profile is bent over, its height becomes less, and

the profile is "smoothed" to one of smaller amplitude, i.e. the wave is damped.

Fig. 64

It is clear from the above that discontinuities must ultimately be formed

in every simple wave which contains regions where the density decreases in the

direction of propagation. The only case where discontinuities do not occur

is a wave in which the density increases monotonically in the direction of

propagation (such, for example, is the wave formed when a piston moves

out of an infinite pipe filled with gas; see the Problems at the end of this

section).

Although the wave is no longer a simple one when a discontinuity has been

formed, the time and place of formation of the discontinuity can be deter-

mined analytically. We have seen that the occurrence of discontinuities is

mathematically due to the fact that, in a simple wave, the quantities/), p and v

become many-valued functions of x (for given t) at times greater than a
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certain definite value t , whereas for t < to they are one-valued functions.

The time *o is the time of formation of the discontinuity. It is evident from
geometrical considerations that, at the instant t , the curve giving, say, v
as a function of * becomes vertical at some point x = xo, which is the point
where the function is subsequently many-valued. Analytically, this means
that the derivative (8vjdx)

t
becomes infinite, and (Bxjdv)

t
becomes zero. It

is also clear that, at the instant to, the curve v = v(x) must lie on both
sides of the vertical tangent, since otherwise v(x) would already be many-
valued. In other words, the point x = x must be, not an extremum of the
function x(v), but a point of inflexion, and therefore the second derivative

(d2xldv% must also vanish. Thus the place and time of formation of the
shock wave are determined by the simultaneous equations

(dx/dv) = 0, (82x[dv2)t
= 0. (94.12)

For a perfect gas these equations are

* = -2/»/(y+l), /» = 0, (94.13)

where f(v) is the function appearing in the general solution (94.8).

These conditions require modification if the simple wave adjoins a gas at

rest and the shock wave is formed at the boundary. Here also the curve
v = v{x) must become vertical, i.e. the derivative (dx[8v)

t
must vanish, at

the time when the discontinuity occurs. The second derivative, however,
need not vanish; the second condition here is simply that the velocity is

zero at the boundary of the gas at rest, so that (dxjdv)
t
= for v = 0. From

this condition we can obtain explicit expressions for the time and place of

formation of the discontinuity. Differentiating (94.5), we obtain

*= -/'(0)K *= ±c *+/(0), (94.14)

where ao is the value, for v = 0, of the quantity a defined by formula (95.2).

For a perfect gas

*= -2/'(0)/(y+l). (94.15)

PROBLEMS

Problem 1 . A perfect gas is in a semi-infinite cylindrical pipe (x > 0) terminated by a piston.
At time t — the piston begins to move with a uniformly accelerated velocity U = ±at.
Determine the resulting flow.

Solution. If the piston moves out of the pipe (U = — at), the result is a simple rare-
faction wave, whose forward front is propagated to the right, through gas at rest, with
velocity c ; in the region x > c t the gas is at rest. At the surface of the piston, the gas and
the piston must have the same velocity, i.e. we must have v = —at for x = —%at2

(t > 0).

This condition gives for the function /(*>) in (94.8)

f(-at) = -cot+ %yat*.

Hence we have

*-|>o+Ky +1X1* =/(*>)

= covJa+\yv2lat
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whence

-v = [co+Kr+ iKI/y- V(h+Ky+ iKI2 -2«y(<;o*-*)}/y. (l)

This formula gives the change in velocity over the region between the piston and the forward

front x = c t of the wave (Fig. 65a) during the time interval t = to t = 2c l(y—l)a.

The gas velocity is everywhere to the left, like that of the piston, and decreases monotonically

in magnitude in the positive ^-direction; the density and pressure increase monotonically in

that direction. For t > 2cJ(y—l)a, the inequality (94.10) does not hold for the piston

velocity, and so the gas can no longer follow the piston. A vacuum is then formed in a region

adjoining the piston, beyond which the gas velocity decreases from —2c /(y— 1) to zero

according to formula (1).

If the piston moves into the pipe (U = at), a simple compression wave is formed; the

corresponding solution is obtained by merely changing the sign of a in (1) (Fig. 65b). It is

valid, however, only until a shock wave is formed ; the time when this happens is determined

from formula (94.15), and is

t = 2cQja{y+\).

Problem 2. The same as Problem 1, but for the case where the piston moves in any

manner.

Solution. Let the piston begin to move at time t = according to the law x — X(t)

(with X(0) = 0); its velocity is U = X'{t). The boundary condition on the piston (v = U
for x = X) gives v = X'(t),f(v) = X(t)-t[c +Uy+ l)X'it)]. If we now regard t as a para-

meter, these two equations determine the function f(v) in parametric form. Denoting the

parameter by t, we can write the solution as

v = X\r), x = X{T) + {t-T)[c +\{y+\)X\T)l (1)

which determines, in parametric form, the required function v(t, x) in the simple wave which

is caused by the motion of the piston.

Problem 3. Determine the time and place of formation of the shock wave when the piston

(Problem 1) moves according to the law U = atn (m > 0).

Solution. If a < 0, i.e. the piston moves out of the pipe, a simple rarefaction wave

results, in which no shock wave is formed. We therefore assume that a > 0, i.e. the piston

moves into the pipe, causing a simple compression wave.



372 One-dimensional Gas Flow §95

When the function v(x, t) is given by the parametric formulae (1) (Problem 2), and
X = aTn+1jn+ l, the time and place of formation of the shock wave are given by the
equations

(8x \—
I
= -CO + |^-lflW(y+l)-lflT«[y-l +W(y+ l)] = 0,

/ 82x \
' '

i-^J = itTn-2an(n-l)(y+l)-^anrn-i[y-l+n(y+l)] = 0,

where the second equation must be replaced by t = if we are concerned with the formation
of a shock wave at the forward front of the simple wave.
For n = 1 we find t = 0, t = 2c /a(y+ l), i.e. the shock wave is formed at the forward

front at a finite time after the motion begins, in accordance with the results of Problem 1.

For n < 1, the derivative 8x/8t is of varying sign (and therefore the function v(x) for given
t is many-valued) for any t > 0. This means that a shock wave is formed at the piston as
soon as it begins to move.

For n > 1 the shock wave is formed, not at the forward front of the simple wave, but at

some intermediate point given by (1). Having determined r and t from (1), we can then
find the place of formation of the discontinuity from (1) of Problem 2. The result is

\ a I y+lln-r J

„ /2co\ 1/re r y n-ll 1
* = 2cq\ 1 —

.

\ a J Ly+1 »+ 1 J (n-l)<»-i>/»[y-l + n(y +l)]i/»

§95. Formation of discontinuities in a sound wave
A travelling plane sound wave, being an exact solution of the equations of

motion, is also a simple wave. We can use the general results obtained in §94
to derive some properties of sound waves of small amplitude in the second
approximation (the first approximation being that which gives the ordinary

linear wave equation).

We must notice first of all that a discontinuity must ultimately appear in

each wavelength of a sound wave. This leads to a very marked damping of

the wave, as shown in §94. It must be remarked, however, that this happens
only for a sufficiently strong sound wave ; a weak sound wave is damped by
the usual effects of viscosity and thermal conduction before the effects of

higher order in the amplitude can develop.

The distortion of the wave profile has another effect also. If the wave
is purely harmonic at some instant, it ceases to be so at later instants, on
account of the change in shape of the profile. The motion, however, remains

periodic, with the same period as before. When the wave is expanded in a

Fourier series, terms with frequencies nco (n being integral and co being the

fundamental frequency) appear, as well as that with frequency co. Thus the

distortion of the profile as the sound wave is propagated may be regarded as

the appearance in it of higher harmonics in addition to the fundamental
frequency.



§95 Formation of discontinuities in a sound wave 373

The velocity u of points in the wave profile (the wave being propagated in

the positive ^-direction) is obtained, in the first approximation, by putting in

(94.11) v = 0, i.e. u = cq, corresponding to the propagation of the wave

with no change in its profile. In the next approximation we have

u = co+ p' du/dpo = co+(du/dp )povjco,

or, using the expression (92.10) for the derivative dujdp,

u = co+ ao^, (95.1)

where we have put for brevity

a = (c*l2V*)(&Vldp)s. (95.2)

For a perfect gas, a = ^(y+l), and formula (95.1) agrees with the exact

formula (see (94.8)) for the velocity u.

In the general case of arbitrary amplitude, the wave is no longer simple

after the discontinuities have appeared. A wave of small amplitude, however,

is still simple in the second approximation even when discontinuities are

present. This can be seen as follows. The changes in velocity, pressure and

specific volume in a shock wave are related by #2—^1 = VKP2—Pi)(Vi— V2)].

The change in the velocity v over a segment of the #-axis in a simple wave is

v2 -v! =
J
^(-8V/dp)dp.

Pi

A simple calculation, using an expansion in series, shows that these two

expressions differ only by terms of the third order (it must be borne in mind
that the change in entropy at a discontinuity is of the third order of smallness,

while in a simple wave the entropy is constant). Hence it follows that, as far

as terms of the second order, a sound wave on either side of a discontinuity in

it remains simple, and the appropriate boundary condition is satisfied at the

discontinuity itself. In higher approximations this is no longer true, on

account of the appearance of waves reflected from the surface of discontinuity.

Let us now derive the condition which determines the location of the dis-

continuities in a travelling sound wave (again in the second approximation).

Let u be the velocity of the discontinuity relative to a fixed co-ordinate

system, and v\, v% the velocities of the gases on each side of it. Then the

condition that the mass flux is continuous is pi(^i— u) = ^2(^2— u), whence

u — {p\v\— p2P2)\(pi— p%). As far as the second-order terms, this is equal to

the derivative d(pv)ldp at the point where v is equal to \{vi+ V2)

:

u = [d(pv)/dp] v=i(Vl+Vt) .

Since, in a simple wave, d{pv)jdp = v + c, we have, by (95.1),

u = co+ i<x(^i+^2)- (95.3)

From this we can obtain the following simple geometrical condition which

determines the position of the shock wave. In Fig. 66 the curve shows the

velocity profile corresponding to the simple wave ; let ae be the discontinuity.

13
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The difference of the shaded areas abc and cde is the integral

{x~xq)6v

taken along the curve abcde. In the course of time, the wave profile moves

;

v2

*0

Fig. 66

let us calculate the time derivative of the above integral. Since the velocity

dx/dt of points in the wave profile is given by formula (95.1), and the velocity

dxojdt of the discontinuity by (95.3), we have

dt

V* V% Vt

J
(x—xo)d?; = ol{ J vdv—%(vi+V2)

J
dv} = 0;

in differentiating the integral, we must notice that, although the limits of

integration v\ and V2 also vary with time, x—xo always vanishes at the limits,

and so we need only differentiate the integrand.

Thus the integral
J*
(x— #o)dz> remains constant in time. Since it is zero at

the instant when the shock wave is formed (the points a and e then coin-

ciding), it follows that we always have

I (x— #o)dz> = 0. (95.4)

abcde

Geometrically this means that the areas abc and cde are equal, a condition

which determines the position of the discontinuity.

Let us consider a single one-dimensional compression pulse, in which a

shock wave has already been formed, and ascertain how this shock will finally

be damped. By so doing, we also find the law of damping of any plane shock

wave after it has been propagated for a sufficiently long time.

In the later stages of its propagation, a sound pulse containing a shock

wave will have a triangular velocity profile. Let the profile be given at some
instant (which we take as t = 0) by the triangle ABC (Fig. 67a). If the

points in this profile move with the velocities (95.1), we obtain after time /
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a profile A'B'C (Fig. 67b). In reality, the discontinuity moves to E, and

the actual profile will be A'DE. The areas DB'F and C'FE are equal, by

(95.4), and therefore the area A'DE of the new profile is equal to the area

ABC of the original profile. Let / be the length of the sound pulse at time t,

and Av the velocity discontinuity in the shock wave. During time t> the point

B moves a distance cutAvo relative to C; the tangent of the angle B'A'C is

therefore A^ /(/o+ cutAvo), and we obtain the condition of equal areas ABC
and A'DE in the form

whence

IqAvq = Z2 A^ /(/o+ a/A^o),

/ = /oVU + aA^/A)],

Av = Avol^[l + oLAvotjlo]. (95.5)

(a)
Avn

Fig. 67

For t -> oo the intensity of the shock wave diminishes asymptotically with

time as \\*Jt (or, what is the same thing, with distance as Ify/x). The
total energy of a travelling sound pulse (per unit area of its front) is

E = po j v2 dx = EolV[l + aA*; tj% (95.6)

where Eo is the energy at time t = 0. For t -> oo the energy also tends to

zero as Ij-y/t.

If we have a spherical outgoing sound wave, any small section of it can be

regarded as plane at sufficiently large distances r from the origin. The
velocity of any point in the wave profile is then given by formula (95.1). If,

however, we wish to use this formula to follow the motion of any point in the

wave profile over long intervals of time, we must take into account the fact

that the amplitude of a spherical wave falls off inversely as the distance r,

even in the first approximation. This means that, at any given point in the

profile, v is not constant, as it is for a plane wave, but decreases as 1/r. If



376 One-dimensional Gas Flow §95

vq is the value of v (for a given point in the profile) at a (large) distance yq,

we can put v = vorofr. Thus the velocity u of points in the wave profile is

u — co+(x.voro[r. The first term is the ordinary velocity of sound, and cor-

responds to movement of the wave without change in the shape of the profile

(apart from the general decrease of the amplitude as \fr). The second term
results in a distortion of the profile. The amount 8r of this additional move-
ment of points in the profile during a time t = (r — yq)Jc is obtained by multi-

plying by drjCQ and integrating from yq to r ; this gives

8y = (ccvoYolco)log(YJYo). (95.7)

Thus the distortion of the profile of a spherical wave increases as the logarithm

of the distance, i.e. much more slowly than for a plane wave, where the dis-

tortion Sx increases as the distance x traversed by the wave.

Fig. 68

The distortion of the profile ultimately leads to the formation of dis-

continuities in it. Let us consider shock waves formed in a single spherical

sound pulse which has reached a large distance from the source (the origin).

The spherical case is distinguished from the plane case primarily by the fact

that the region of compression must be followed by a region of rarefaction

;

the excess pressure and the velocity of the gas particles in the wave must both

change sign (see §69). The distortion of the profile results ultimately in the

formation of two shock waves: one in the region of compression, and the

other in the region of rarefaction (Fig. 68).f In the leading shock wave, the

pressure increases discontinuously, then gradually decreases into a rarefac-

tion, then again increases discontinuously in the second shock (but not to

its unperturbed value, which is reached only asymptotically behind this

shock).

The manner of the final damping of the shock waves with time (or, what
is the same thing, with the distance r from the source) is easily found in

exactly the same way as for the plane case discussed above. Using the result

(95.7), we find that, at sufficiently large distances, the thickness / of the sound

f It should be mentioned that, since there is always ordinary damping (due to viscosity and
thermal conduction) when sound is propagated in the gas, the slowness of the distortion in a spherical

wave may have the result that it is damped before discontinuities can be formed.
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pulse (the distance between the two discontinuities) increases as log*(r/a),

instead of as \/x for the plane case ; a is some constant length. The intensity

of the leading shock wave is damped according to rAv ~ log~
¥
(r/a), or

A© ~ lfr \ogi(r/a). (95.8)

Finally, let us consider the cylindrical case. The general decrease in the

amplitude of an outgoing sound wave occurs in inverse proportion to yV,

where r is the distance from the axis. Repeating the arguments given for the

spherical case, we now find the velocity u of points in the wave profile to be

u = co+ a.vo\/(rolr), and so the displacement Sr of points in the profile,

between ro and r is

Sr = 2a(volco)\/ro(<\/r- ^/r ). (95.9)

Fig. 69

The cylindrical propagation of a compression pulse must be accompanied,

as in the spherical case, by a rarefaction of the gas behind the compression.

Two shock waves must therefore be formed in this case also. By the same

method, we find the ultimate law of increase of the thickness of the pulse

:

/ ~ r% and the ultimate law of damping of the intensity of the shock wave

:

y/rAv ~ r_i, or

Av ~ r-S. (95.10)

The formation of discontinuities in a sound wave is an example of the

spontaneous occurrence of shock waves in the absence of any singularity in

the external conditions of the flow. It must be emphasised that, although a

shock wave can appear spontaneously at a particular instant, it cannot dis-

appear in the same manner. Once formed, a shock wave decays only asymp-

totically as the time becomes infinite.

PROBLEMS

Problem 1. At the initial instant, the wave profile consists of an infinite series of "teeth",

as shown in Fig. 69. Determine how the profile and energy of the wave change with time.

Solution. It is evident that, at subsequent instants, the wave profile will be of the same

form, with / unchanged but the height vt less than v . Let us consider one "tooth" : at time

t — 0, the ordinate through the point where v — vt cuts off a part vtljv of the base of the

triangle. During a time t, this point moves forward a distance ocvtf. The condition that the

base of the triangle is unchanged in length is vtl lv +a.tvt = l , whence vt — *> /(l +ctv t/l ).

As t -* oo, the wave amplitude diminishes as \jt. The energy is E = -E /(l +<zv t]loy, i.e. it

diminishes as ljt2 for t -> co.
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Problem 2. Determine the intensity of the second harmonic formed by the distortion of

the profile of a monochromatic spherical wave.

Solution. Writing the wave in the form rv — A cos(kr—tot), we can allow for the distor-

tion, in the first approximation, by adding Sr to r on the right-hand side of this equation, and
expanding in powers of Sr. This gives, by (95.7),

rv — A cos(kr—cQt) — (oLk/2co)A2 log(r/ro) sin 2(kr— cot);

here r must be taken as a distance at which the wave can still be regarded, with sufficient

accuracy, as strictly monochromatic. The second term in this formula is the second harmonic
in the spectral resolution of the wave. Its total (time average) intensity I% is

h = (aP&l&rcoSpo) log2(r/r )/i
2

,

where 1^ = IttCqPqA 2
is the intensity of the first harmonic.

§96. Characteristics

The definition of characteristics, given in §79, as lines along which small

disturbances are propagated (in the approximation of geometrical acoustics) is

of general validity, and is not restricted to the plane steady supersonic flow

discussed in §79.

For one-dimensional non-steady flow, we can introduce the characteristics

as lines in the art-plane whose slope dxjdt is equal to the velocity of propaga-

tion of small disturbances relative to a fixed co-ordinate system. Disturbances

propagated relative to the gas with the velocity of sound, in the positive or

negative ^-direction, move relative to the fixed co-ordinate system with

velocity v±c. The differential equations of the two families of characteristics,

which we shall call C+ and C_, are accordingly

(dx/dt)+ = v+ c, (dx/dt)- = v-c. (96.1)

Disturbances transmitted with the gas are propagated in the atf-plane along

characteristics belonging to a third family Co, for which

(d*/d*)o = v. (96.2)

These are just the "streamlines" in the atf-plane; cf. the end of §79.f It

should be emphasised that, for characteristics to exist, it is no longer necessary

for the gas flow to be supersonic. The "directional" propagation of distur-

bances, as evidenced by the characteristics, is here simply due to the causal

relation between the motions at successive instants.

As an example, let us consider the characteristics of a simple wave. For a

wave propagated in the positive ^-direction we have, by (94.5), x = t(v + c)+
+f(v). Differentiating this relation, we have

dx = (v+ c)dt+ [t+ tc'(v)+f\v)]dv.

Along a characteristic C+ , we have dx = {v+ c)dt ; comparing the two equa-

tions, we find that along such a characteristic [t+ tc'(v)+f'(v)]dv = 0. The

t The same equations (96.1) and (96.2) determine the characteristics for non-steady spherically

symmetrical flow, if x is replaced by the radial co-ordinate r (the characteristics now being lines in

the ri-plane).
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expression in brackets cannot vanish identically, and therefore dv = 0, i.e.

v = constant. Thus we conclude that, along any characteristic C+ , the velo-

city is constant, and therefore so are all other quantities. The same property

holds for the characteristics C- in a wave propagated to the left. We shall see

in §97 that this is no accident, but is a mathematical consequence of the nature

of simple waves.

From this property of the characteristics C+ for a simple wave, we can in

turn conclude that they are a family of straight lines in the atf-plane; the

velocity is constant along the lines x = t[v+ c(v)] +f(v) (94.5). In particular,

for a similarity rarefaction wave (a simple wave with f(v) = 0), these lines

form a pencil through the origin in the art-plane. For this reason, a similarity

simple wave is sometimes said to be centred.

Fig. 70

Fig. 70 shows the family of characteristics C+ for the simple rarefaction

wave formed when a piston moves out of a pipe with acceleration. It is a family

of diverging straight lines, which begin from the curve x = X(t) giving the

motion of the piston. To the right of the characteristic x = c$t lies a region

of gas at rest, where the characteristics become parallel.

Fig. 71 is a similar diagram for the simple compression wave formed when a

piston moves into a pipe with acceleration. In this case the characteristics are

converging straight lines, which eventually intersect. Since every charac-

teristic has a constant value of v, their intersection shows that the function

v(x, t) is many-valued, which is physically meaningless. This is the geo-

metrical interpretation of the result obtained in §94: a simple compression

wave cannot exist indefinitely, and a shock wave must be formed in it. The
geometrical interpretation of the conditions (94.12), which determine the

time and place of formation of the shock wave, is as follows. The intersecting

family of rectilinear characteristics has an envelope, which, for a certain

least value of t, has a cusp ; this gives the instant at which many-valuedness

first occurs. Every point in the region between the two branches of the en-

velope is on three characteristics C+ . If the equations of the characteristics
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are given in the parametric form x = x(v), t = t(v), the position of the cusp

is given by equations (94.12).f
We shall now indicate briefly how the physical definition, given above, of

the characteristics as lines along which disturbances are propagated corre-

sponds to the mathematical sense of the word in the theory of partial diff-

erential equations. Let us consider a partial differential equation of the form

dU 8U d2d>A— + IB—- + C—- + D = 0,
dx2 dx dt 8t2

(96.3)

Envelope

Fig. 71

which is linear in the second derivatives; the coefficients A, B, C, D can be

any functions, both of the independent variables x, t and of the unknown
function ^ and its first derivatives. $ Equation (96.3) is of the elliptic type if

B2 —AC < everywhere, and of the hyperbolic type if B2 —AC > 0. In

the latter case, the equation

Adt2-2Bdxdt+Cdx2 = 0, (96.4)

or

dx/dt =[B± V(B2-AC)]/C, (96.5)

determines two families of curves in the xt-plane, the characteristics (for a

given solution <f>(x, t) of equation (96.3)). We may point out that, if the co-

efficients A, B, C are functions only of x and t, then the characteristics are

independent of the particular solution </>.

Let a given flow correspond to some solution
<f>
—

<f>o(x, t) of equation

(96.3), and let a small perturbation <£i be applied to it. We assume that this

perturbation satisfies the conditions for geometrical acoustics to be valid:

it does not greatly affect the flow (<£i and its first derivatives are small), but

f The particular case where the shock wave occurs at the boundary of the gas at rest corresponds
to that where one branch of the envelope is part of the characteristic x = c t.

J The velocity potential satisfies an equation of this form in one-dimensional non-steady flow.
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varies considerably over small distances (the second derivatives of
<f>i

are

relatively large). Putting in equation (96.3) <f>
= fo + fa, we then obtain

for
<f>\

the equation

d^d>! dUi dtfa

dx2 dx dt dt2

with <j> =
<f>

in the coefficients A, B, C. Following the method used in

changing from wave optics to geometrical optics, we write <f>i
= ae^

t
where

the function iff (the eikonal) is large, and obtain

^)Wi^ + C(^)
2

= 0. (96.6)

\ 8x / dx dt \dtl

The equation of ray propagation in geometrical acoustics is obtained by

equating dxjdt to the group velocity: dx[dt = dcojdk, where k = tyjdx,

co^-difjjdt. Differentiating the relation Ak?-2Bkco + Cco2 = 0, we

obtain dxjdt = (Ba)-Ak)fcCa>-Bk), and, eliminating k\oi by the same

relation, we again arrive at equation (96.5).

PROBLEM

Find the equation of the second family of characteristics in a centred simple wave.

Solution. In a centred simple wave propagated into gas at rest to the right of it, we have

xjt = v+c = c +Ur+l)v. The characteristics C+ form the pencil * = constant Xt. The

characteristics C_, on the other hand, are determined by the equation

dx 3 — y x 4— = V — C = 7 7^0-

dt y+1 t y+l

Integrating, we find

2 y+l ft \<3-7>/<r+D

x = -cot H -com — 1 ,

y— 1 y—\ \ to /

where the constant of integration has been chosen so that the characteristic C_ passes through

the point * = c t , t = 1 on the characteristic C+ (x = c t) which is the boundary between

the simple wave and the region at rest.

The "streamlines" in the xf-plane are given by the equation

dx 2

whence

dx 2 / X \

dt y+l\t J

2 y+l It \
2/(t+1)

x — -cot -\ -co^ol — 1

1 / *

'

-coto\ —
1 \ to,y—\ y—\ \ to I

§97. Riemann invariants

An arbitrary small disturbance is in general propagated along all three

characteristics (C+ , C-, Co) leaving a given point in the atf-plane. However,

an arbitrary disturbance can be separated into parts each of which is pro-

pagated along only one characteristic.
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Let us first consider isentropic gas flow. We write the equation of con-

tinuity and Euler's equation in the form

dp dp dv~ + v— + pc*~ = 0,
dt dx dx

dv dv 1 dp— + v— + -— = 0;
dt dx p dx

in the equation of continuity we have replaced the derivatives of the density

by those of the pressure, using the formulae

dp

dt \dp/ s

Dividing the first equation by ± pc and adding it to the second, we obtain

dv 1 dp (dv 1 dp— ± -+ — ±
dt pc dt \ dx pc dx

We now introduce as new unknown functions

I dp \ dp 1 dp dp 1 dp

~ \dp) s dt~ c2 dt' dx
~

c2 dx

)(v±c) = 0. (97.1)

J+ = v+jdplpc, J- = v-jdplPc, (97.2)

which are called Riemann invariants. It should be remembered that, in

isentropic flow, p and c are definite functions of p, and the integrals on the

right-hand sides are therefore definite functions. For a perfect gas

J+ = v+ 2cl(y-l), J- = v-2cl(y-l). (97.3)

In terms of these quantities, the equations of motion take the simple form

Yd d 1 X d d 1

fc+^d-^ ' [»
+ <"-w--°- <

97 -4)

The differential operators acting on J+ and /_ are just the operators of

differentiation along the characteristics C+ and C- in the atf-plane. Thus we
see that /+ and /_ remain constant along each characteristic C+ or C- re-

spectively. We can also say that small perturbations of J+ are propagated

only along the characteristics C+ , and those of/- only along C—
In the general case of anisentropic flow, the equations (97.1) cannot be

written in the form (97.4), since dpfpc is not a perfect differential. These

equations, however, still permit the separation of perturbations propagated

along characteristics of only one family. For such perturbations are those

of the form Sv ± Spjpc, where 8v and Sp are arbitrary small perturbations

of the velocity and pressure. In order to obtain a complete system of equa-

tions of motion, the equations (97.1) must be supplemented by the adiabatic

equation
Yd dl

[«
+ "d'- ' (97 -5)

which shows that perturbations 8s are propagated along the characteristics Co-
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An arbitrary small perturbation can always be separated into independent

parts of the three kinds mentioned.

A comparison with formula (94.4) shows that the Riemann invariants (97.2)

are the quantities which, in simple waves, are constant throughout the region

of the flow at all times :/- is constant in a simple wave propagated to the right,

and J+ in one travelling to the left. Mathematically, this is the fundamental

property of simple waves, from which follows, in particular, the property

mentioned in §96: one family of characteristics consists of straight lines. For

example,l et the wave be propagated to the right. Each characteristic C+ has

a constant value of

/

+ and, furthermore, a constant value of/-, which value is

the same everywhere. Since both /+ and /_ are constant, it follows thaty
and/» are constant (and therefore so are all the other quantities), and we obtain

the property of the characteristics C+ deduced in §96, which in turn shows

that they are straight lines.

1 Simplewave

2 Constant flow

Fig. 72

If the flow in two adjoining regions of the art-plane is described by two

analytically different solutions of the equations of motion, then the boundary

between the regions is a characteristic. For this boundary is a discontinuity

in the derivatives of some quantity, i.e. it is a weak discontinuity, and there-

fore must necessarily coincide with some characteristic.

The following property of simple waves is of great importance in the theory

of one-dimensional isentropic flow. The flow in a region adjoining a region of

constant flow (in which v = constant, p = constant) must be a simple wave.

This statement is very easily proved. Let the region 1 in the atf-plane be

bounded on the right by a region (2) of constant flow (Fig. 72). Both in-

variantsJ+ and/- are evidently constant in the latter region, and both families

of characteristics are straight lines. The boundary between the two regions

is a characteristic C+ , and the lines C+ in one region do not enter the other

region. The characteristics C- pass continuously from one region to the other,

and carry the constant value of /_ into region 1 from region 2. Thus J- is

constant throughout region 1 also, so that the flow in the latter is a simple

wave.



384 One-dimensional Gas Flow §97

The ability of characteristics to "transmit" constant values of certain

quantities throws some light on the general problem of initial and boundary
conditions for the equations of fluid dynamics. In particular cases of
physical interest, there is usually no doubt about the choice of these condi-
tions, which is dictated by physical considerations. In more complex cases,

however, mathematical considerations based on the general properties of
characteristics may be useful.

1 quantity 2 quantities Iquantity 1 quantity 2 quantities 2 quantities

Ia

Fig. 73

For definiteness, we shall discuss a one-dimensional isentropic gas flow.

Mathematically, a problem of gas dynamics usually amounts to the deter-

mination of two unknown functions (for instance, v and p) in a region of the

atf-plane lying between two given curves {OA and OB in Fig. 73a), on which
the boundary conditions are known. The problem is to find how many
quantities can take given values on these curves. In this respect it is very
important to know how each curve is situated relative to the directions (shown
by arrows in Fig. 73) of the two characteristics C+ and C_ leavingf each
point of it. Two cases can occur: either both characteristics lie on the same
side of the curve, or they do not. In Fig. 73 a, the curve OA belongs to the

first case and the curve OB to the second. It is clear that, for a complete
determination of the unknown functions in the region AOB, the values of

two quantities must be given on the curve OA (e.g. the two invariants /+
and /_), and those of only one quantity on OB. For the values of the second
quantity are "transmitted" to the curve OB from the curve OA by the charac-

teristics of the corresponding family, and therefore cannot be given arbi-

trarily.! Similarly, Figs. 73b and c show cases where one and two quantities

respectively are given on each bounding curve.

It should also be mentioned that, if the bounding curve coincides with a

characteristic, two independent quantities cannot be specified on it, since

t In the art-plane, the characteristics leaving a given point are those which go in the direction of
t increasing.

J An example of this case may be given as an illustration : the gas flow when a piston moves into or
out of an infinite pipe. Here we are concerned with finding a solution of the equations of gas dynamics
in the region of the art-plane lying between two lines, the positive a>axis and the line x = X(t) which
gives the movement of the piston (Figs. 70, 71). On the first line the values of two quantities are
given (the initial conditions v = 0, p = p for t = 0), and on the second line those of one quantity
(v = u, where u(t) is the velocity of the piston).
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their values are related by the condition that the corresponding Riemann

invariant is constant.

The problem of specifying boundary conditions for the general case of

anisentropic flow can be discussed in an entirely similar manner.

Finally, we may make the following remark. We have everywhere above

spoken of the characteristics of one-dimensional flow as lines in the xt-plane.

The characteristics can, however, also be defined in the plane of any two

variables describing the flow. For example, we can consider the characteris-

tics in the w-plane. For isentropic flow, the equations of these characteristics

are given simply by /+ = constant, J- = constant, with various constants

on the right; we call these characteristics V+ and T_. For a perfect gas these

are, by (97.3), two families of parallel lines (Fig. 74).

Fig. 74

It should be noted that these characteristics are entirely determined by

the properties of the gas, and do not depend on any particular solution of the

equations of motion. This is because the equation of isentropic flow in the

variables v, c is (as we shall see in §98) a linear second-order partial differen-

tial equation with coefficients which depend only on the independent vari-

ables.

The characteristics in the xt and vc planes are transformations of one

another involving the particular solution of the equations of motion. The

transformation need not be one-to-one, however. In particular, only one

characteristic in the w-plane corresponds to a given simple wave, and all the

characteristics in the atf-plane are transformed into it. For a wave travelling

to the right (e.g.), it is one of the characteristics T_; the characteristics C_

are transformed into the line T-, and the characteristics C+ into its various

points.

PROBLEM

Find the general solution of the equations of one-dimensional isentropic flow of a perfect

gas with y = 3.

Solution. For y = 3 we have J±= v±c, and equations (97.4) have the general integral

x = (v+ c)t+fi(v+ c),

x = (v— c)t+fz(v— c),

where

/

x and/2 are arbitrary functions. These two equations implicitly determine the required
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functions v(x, t) and c(x, t), and therefore all other quantities. We may say that, in this case,
the two quantities v±c are propagated independently as two simple waves which do not
interact.

§98. Arbitrary one-dimensional gas flow

Let us now consider the general problem of arbitrary one-dimensional
isentropic gas flow (without shock waves). We shall first show that this
problem can be reduced to the solution of a linear differential equation.
Any one-dimensional flow (i.e. a flow depending on only one spatial co-or-

dinate) must be a potential flow, since any function v(x, t) can be written
as a derivative: v(x, t) = dcf>{x, t)/dx. We can therefore use, as a first integral
of Euler's equation, Bernoulli's equation (9.3): d<j>jdt+\v2+w = 0. From
this, we find the differential

8<f> dd>

d<f> = —dx + —dt
8x dt

= vdx-(\v2 + w)dt.

Here the independent variables are x and t; we now change to the independent
variables v and w. To do so, we use Legendre's transformation; putting

d<j> = d(xv)-xdv-d[t(w+ ±v2)] + td(w+lv2
)

and replacing
<f>
by a new auxiliary function

X =
<l>
— xv+ t(w+%v2

),

we obtain

dx = -xdv+ td(zo+%v2) = tdw+ (vt-x)dv>

where x is regarded as a function of v and w. Comparing this relation with
the equation d* = (dxldw)dw+ (dxldv)dv, we have t = dx[dw, vt-x
= dx/dv, or

t = dx/dw, x = vdx/dw-dxldv. (98.1)

If the function xfa, «>) is known, these formulae determine v and to as
functions of the co-ordinate x and the time t.

We now derive an equation for X - To do so, we start from the equation
of continuity, which has not yet been used:

dp 8 dp dp dv— + —{pv) = — + v— + p— = 0.
dt dx

K

dt dx
H
dx

We transform this equation to one in terms of the variables v, to. Writing
the partial derivatives as Jacobians, we have

d(p,x) d(t,p) d(t,v)
h v f- p = 0.

d(t,x) d(t,x)
H
d(t,x)
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or, multiplying by d(t, x)jd(w, v),

d(p,x) 8(t,p) d(t,v)
1- V h p = U.

d(w,v) d(w,v) d(zv,v)

To expand these Jacobians we must use the following result. According to

the equation of state of the gas, p is a function of any two other independent

thermodynamic quantities; for example, we may regard p as a function of w
and s. If s = constant, we have simply p = p(w), and the density is inde-

pendent of v. Expanding the Jacobians, we therefore have

dp 8x dp dt 8t

dw dv dw dv dw

Substituting here the expressions (98.1) for t and x, we obtain

p dw \ dw dv2 ) dw2

Ifs = constant, we have dw = dp/p, whence dwjdp = 1/p. We can therefore

write dp/dro = (dp/d»(dp/dw) = p\c2 . We finally have for x the equation

c
*x_*x

+
eL= (98 .2)

8w2 dv2 dw

here the velocity of sound c is to be regarded as a function of w. The problem

of integrating the non-linear equations of motion has thus been reduced

to that of solving a linear equation.

Let us apply this result to the case of a perfect gas. We have c2 = (y- \)w,

and the fundamental equation (98.2) becomes

(y
_ 1)K^_£^ +^ = 0. (98.3)

v/ ;
dw2 dv2 dw

This equation has an elementary general integral if (3-y)/(y- 1) is an even

integer

:

(3_ y)/(y _l) = 2«, or y = (3 + 2«)/(2«+l), w = 0,1,2,.... (98.4)

This condition is satisfied by monatomic (y = I, n = 1) and diatomic

(y = 7
1
n = 2) gases. Expressing y in terms of n, we can rewrite (98.3) as

2 ^_f* +^ = . (98.5)
2n+l dw2 dv2 dw

We denote by xn a function which satisfies this equation for a given n

For the function xo we have

d2Xo d2Xo dXo
2w — H = U.

dw2 dv2 dw
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Introducing in place of to the variable u = \/(2w), we obtain

This is just the ordinary wave equation, whose general solution is

Xo = fi(u+v)+f2(u-v),

/i and/2 being arbitrary functions. Thus

Xo = /i[V(2«>) +v] +f2[V(2to)-v]. (98.6)

We shall now show that, if the function Xn is known, the function Xn+i
can be obtained by differentiation. For, differentiating equation (98.5) with
respect to w, we easily find

2 &2 /8Xn \ 2n+ 3 d / dXn \ d2 / dx^f-+^T7-f -TT^ =0.2n+l dw2
\ dw J 2n+l dw \ dw I dv2 \dw)

Putting v = v'V[(2n+ 1)/(2«+ 3)], we have for dXn\dw the equation

2n + 3 dw2
\ dw J dw\dw) 8v'2 \ dw / '

which is equation (98.5) for the function Xn+\ (w, v'). Thus we conclude that

( >\
d

t ^
d

I /2«+l\
Xn+1 («,« ) =— *,(»,,,) =—Xn(^y—)• (98.7)

Using this formula n times and taking Xo from (98.6), we find that the
general solution of equation (98.5) is

Qn

X = -^^^2
(2n+1^ +v

'i
+MV[2(2n+l)w]-v]},

or

3"-1
f
F1[V[2{2n+l)w]+v] +F2[V[2(2n+l)w]-v])

x = ^( ^ ~J—i
}' (

98 -8
)

where Fi and F2 are again two arbitrary functions.

If we express w in terms of the velocity of sound by w = c2l(y-l)
= %{2n+ l)c2

, the solution (98.8) becomes

*

=

ay ]Hc +
^ti)

+ h-2^t))- <98 -9)

The expressions c± v((2n+ 1) = c± £(y- l)v which are the arguments of the
arbitrary functions are just the Riemann invariants (97.3), which are constant
along the characteristics.
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In applications it is often necessary to calculate the values of the function

x{v, c) on a characteristic. The following formulaf is useful for this purpose

:

with ±vj(2n+l) = c + a (a being an arbitrary constant).

Let us now ascertain the relation between the general solution just found

and the solution of the equations of gas dynamics which describes a simple

wave. The latter is distinguished by the property that in it v is a definite

function of to: v = v(w), and therefore the Jacobian A = d(v, w)jd(x, t)

vanishes identically. In transforming to the variables v and zo, however, we
divided the equation of motion by this Jacobian, and the solution for which
A = is therefore "lost". Thus a simple wave cannot be directly obtained

from the general integral of the equations of motion, but is a special integral

of these equations.

To understand the nature of this special integral, we must observe that it

can be obtained from the general integral by a certain passage to a limit,

which is closely related to the physical significance of the characteristics as

the paths of propagation of small disturbances. Let us suppose that the region

of the vw-plane in which the function x(v, w) is not zero becomes a very narrow

strip along a characteristic. The derivatives of x in the direction transverse

to the characteristic then take a very wide range of values, since x diminishes

very rapidly in that direction. Such solutions x(v -> w) °f the equations of

motion must exist. For, regarded as a perturbation in the ^zu-plane, they

satisfy the conditions of geometrical acoustics, and are therefore non-zero

along characteristics, as such perturbations must be.

It is clear from the foregoing that, for such a function x, the time t — dx[8w
will take an arbitrarily large range of values. The derivative of x along the

characteristic, however, is finite. Along a characteristic (for instance, a

characteristic V-) we have

d/_ 1 dp da; 1 da?

dv pc dtv dv c dv

t It is most simply derived by using Cauchy's theorem in the theory of functions of a complex
variable. For an arbitrary function F(c-{- u) we have

/ d \»-i F(c+ u) nm_j d \n~i F(c+ u)
= 2»-i[—

cdc l c \ dc* I c

2mi J y/z{z-c*y
where the integral is taken along a contour in the complex jar-plane which encloses the point z — c2 .

Putting now u = c-\-a and substituting in the integral s/z = 2£ — c, we obtain

1 (n-l)l /^+ a)

2"-1 7mi J C
n(C-c)n

where the contour of integration encloses the point £ = c; again applying Cauchy's theorem, we
have the result (98.10).



390 One-dimensional Gas Flow §98

The derivative of x with respect to v along a characteristic, which we denote
by —f(v)> is therefore

^ = ^ + _^.^ = ^ + C^L = _f( \

dv dv dw dv dv dw
~

Expressing the partial derivatives of x in terms of x and t by (98.1), we
obtain the relation x = (v + c)t+f(v) y

i.e. the equation (94.5) for a simple

wave. The relation (94.4), which gives the relation between v and cina
simple wave, is necessarily satisfied, since/- is constant along a characteristic

r_.

We have shown in §97 that, if the solution of the equations of motion
reduces to constant flow in some part of the atf-plane, then there must be a

simple wave in the adjoining regions. The motion described by the general

solution (98.8) must therefore be separated from a region of constant flow (in

particular, a region of gas at rest) by a simple wave. The boundary between
the simple wave and the general solution, like any boundary between two
analytically different solutions, is a characteristic. In solving particular

problems, the value of the function x(w> v) on this boundary characteristic

must be determined.

The "joining" condition at the boundary between the simple wave and the

general solution is obtained by substituting the expressions (98.1) for x and
t in the equation of the simple wave x — (v±c)t+f(v); this gives

— ± c^- +f(v) = 0.
dv dw

Moreover, in a simple wave (and therefore on the boundary characteristic),

we have dv = ± dpfpc = ± dwfc, or ± c = dw\dv. Substituting this in the

above condition, we obtain

8X dx dw dx— +T -7- +f(?) = — +f(v) = 0,
dv dw av dv

or, finally,

X = - J>)d*, (98.11)

which determines the required boundary value of x . In particular, if the

simple wave has a centre at the origin, i.e. if f(v) s 0, then x = constant;

since the function x is defined only to within an additive constant, we can

without loss of generality take x — on the boundary characteristic.

PROBLEMS

Problem 1. Determine the resulting flow when a centred rarefaction wave is reflected

from a solid wall.

Solution. Let the rarefaction wave be formed at the point x = at time t = 0, and
propagated in the positive ^-direction ; it reaches the wall after a time t = l/c , where / is
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the distance to the wall. Fig. 75 shows the characteristics for the reflection of the wave.
In regions 1 and 1' the gas is at rest; in region 3 it moves with a constant velocity v = — C/.f

Region 2 is the incident rarefaction wave (with rectilinear characteristics C+), and region 5

is the reflected wave (with rectilinear characteristics C_). Region 4 is the "region of inter-

action", in which the solution is required ; the linear characteristics become curved on entering
this region. The solution is entirely determined by the boundary conditions on the segments
ab and ac. On ab (i.e. on the wall) we must have v = for x = I; by (98.1), we hence obtain
the condition dx\dv = — / for v = 0. The boundary ac with the rarefaction wave is part of
a characteristic C_, and we therefore have c—$(y— l)v = c—v/(2n+ l) = constant; since,

at the point a, v = and c — c , the constant is c . On this boundary x must be zero, so
that we have the condition x — for c—v/(2n+ l) = c . It is easily seen that a function of
the form (98.9) which satisfies these conditions is

/(z«+iw d \
n-in I"/ V Y l n

)

a)

and this gives the required solution.

Fig. 75

The equation of the characteristic ac is (see §96, Problem)

* = -(2n+ l)c t+ 2(n+ l)/(fc //)
(2n+1)/2(n+1)

.

Its intersection with the characteristic Oc

xjt = c -i{y+l)U = c -2(n+l)Ul{2n+l)

determines the time at which the incident wave disappears

:

/(2»+l)»+l£ w

U. =
[(2n+ iy -C/]»+i'

In Fig. 75 it is assumed that U < 2c [(y+l); in the opposite case, the characteristic Oc
is in the negative ar-direction (Fig. 76). The interaction of the incident and reflected waves
then lasts for an infinite time (not, as in Fig. 75, for a finite time).

f If the rarefaction wave is due to a piston which begins to move out of a'pipe at a constant velocity,
then U is the velocity of the piston.
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The function (1) also describes the interaction between two equal centred rarefaction waves
which leave the points x = and x = 21 at time t = and are propagated towards each other

;

this is evident from symmetry (Fig. 77).

Fig. 76

Fig. 77

Problem 2. Derive the equation analogous to (98.3) for one-dimensional isothermal flow

of a perfect gas.

Solution. For isothermal flow, the heat function w in Bernoulli's equation is replaced by

[X =
J*

dp/p = CT2
j dp/p = ct2 logp,

where ctz = {dp\dp)T is the square of the isothermal velocity of sound. For a perfect gas

ct = constant. Taking the quantity ju. (instead of w) as an independent variable, we obtain,

by the same method as in the text, the following linear equation with constant coefficients

:

9
d2X

,

dX d2X n

d/j? dfj, dv2

§99. The propagation of strong shock waves

Let us consider the propagation of a spherical shock wave of great intensity

resulting from a strong explosion, i.e. from the instantaneous release of a
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large quantity of energy (which we denote by E) in a small volume ; we sup-

pose that the shock is propagated through a perfect gas (L. I. Sedov, 1946).

We shall consider the wave at relatively small distances from the source, so

that the amplitude is still large. These distances are, nevertheless, supposed

large in comparison with the dimensions of the source; this enables us to

assume that the energy E is generated at a single point (the origin).

If the shock wave is strong, the pressure discontinuity in it is very large.

We shall suppose that the pressure p% behind the discontinuity is so large,

compared with the pressure p\ of the undisturbed gas in front of it, that

PzlPi > (y+l)/(y— !)• This means that we can everywhere neglect pi in

comparison with /% and the density ratio pzjpi is equal to its limiting value

(y+l)/(y-l);see§85.

Thus the gas flow pattern is entirely determined by two parameters: the

initial gas density pi, and the quantity of energy E generated in the explosion.

From these parameters and the two independent variables (the time t and

the radial co-ordinate r), we can form only one dimensionless combination,

which we write as

i = r(P1
/^)i/5. (99.1)

Consequently, we have a certain type of similarity flow.

We can say, first of all, that the position of the shock wave itself at every

instant must correspond to a certain constant value go of the dimensionless

quantity £. This gives at once the manner in which the shock wave moves

with time; denoting by ro the distance of the shock from the origin, we have

ro = &(£*2//>i)1/5 . (99.2)

From this we find the rate of propagation of the shock wave (relative to the

undisturbed gas, i.e. relative to a fixed co-ordinate system):

mi = drojdt = 2r jSt. (99.3)

It diminishes with time as t~*.

The gas pressure p2, the density p% and the velocity V2 = «i— «2 (relative

to a fixed co-ordinate system) just behind the discontinuity can be expressed

in terms of «i by means of the formulae derived in §85. According to (85.5)

and (85.6),f we have

v2 = 2wi/(y+ 1), pz = pi(y+ l)/(y- 1), p2 = 2p1u1*j(y+ 1). (99.4)

The density is constant in time, while V2 and p^ diminish as f~s and t'*

respectively. We may also note that the pressurep2 due to the shock increases

with the total energy of the explosion as E*.

Let us next determine the gas flow throughout the region behind the shock.

t We here denote by aj and Ug the velocities of the shock wave, relative to the gas, given by for-

mulae (85.6).
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Instead of the gas velocity v, the density p, and the pressure p, we introduce

dimensionless variables v\ p', p\ defined by

4 r y+1 8pi r2

-V, P = Pl
Y—-p', p= * ^ -p'. (99.5)

5(y+l) * ' * * y-V * 25(y+l) *2

The quantities z/, p' andp' can be functions only of the dimensionless variable

£ . On the surface of discontinuity (i.e. for $ = ft) they must have the values

V ' = p' = p' = 1 for | = ft. (99.6)

The equations of centrally-symmetrical adiabatic gas flow are

dv 8v 1 dp dp d{pv) 2pv
1- v— =

, — + + = 0,
dt or p dr dt dx r

(99.7)

Id 8 \ p__ + *;_ log— = 0.

\dt 8r p?

The last equation is the equation of conservation of entropy, with the ex-

pression (80.12) for the entropy of a perfect gas substituted. After substitut-

ing (99.5), we obtain a set of ordinary differential equations for the functions

v\ p and p'. The integration of these equations is facilitated by the fact that

one integral can be obtained immediately, using the following arguments.

The fact that we have neglected the pressure pi of the undisturbed gas

means that we neglect the original energy of the gas in comparison with the

energy E which it acquires as a result of the explosion. It is therefore clear

that the total energy of the gas within the sphere bounded by the shock

wave is constant and equal to E. Furthermore, since we have a similarity

flow, it is evident that the energy of the gas inside any sphere of a smaller

radius, which increases with time in such a way that f = any constant (not

only ft), must remain constant; the radial velocity of points on this sphere

is vn = 2r/5* (cf. (99.3)).

It is easy to write down the equation which expresses the constancy of this

energy. On the one hand, an amount of energy d*. 4nr2pv(zo+%v2) leaves

the sphere (whose area is 4nr2) in time dt. On the other hand, the volume of

the sphere is increased in that time by dt . vn . 47rr2 , and the energy of the gas

in this extra volume is d£ . 4rrr2pvn(e+%v2
). Equating the two expressions,

putting € = plp(y— 1) and w = ye, and introducing the dimensionless func-

tions by (99.5), we obtain

p' (y+l-2a>'2

~ =^ T-'
(99 '8>

p Zyv —y— 1

which is the required integral. It automatically satisfies the boundary

condition (99.6) at the surface of discontinuity.

When the integral (99.8) is known, the integration of the equations is
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elementary though laborious. The second and third equations (99.7) give

dv' l y+l\dlog//

dlog£ \ 2 /dlog£
(99.9)

d / P'\ ^ 5(y + \)-4v'

dlogi \°g p'r) 2v'-(y+l)'

From these two equations we can express the derivatives d^'/d log £ and
d log p'/dv', by means of (99.8), as functions of v' only, and then an integra-

tion with the boundary conditions (99.6) gives

\l)
=

*
L TTy J [—y^-\ •

V2yv'-y-l -]".[ 5(y+l)-2(3y-l)fl' l
v
*[ y+ 1 -2v' y*

* - L-^r-J L t^ J [~v=r~\ •

13y2_7y+12 5(y-l) 3
^1 = 77! 777^—77> v2 = —-——» »* =

(3y-l)(2y+l)' 2y+l
'

2y+l'

13y2-7y+12 1

"4 SB 7^ 77^ 7777; 77» "5
(2-y)(3y-l)(2y+l)' y-2'

(99.10)

Formulae (99.8) and (99.10) give the complete solution of the problem. The
constant £o is determined by the condition

E ~]( !r + £i)M'*r
>

which states that the total energy of the gas is equal to the energyE of the

explosion. In terms of the dimensionless quantities, this condition becomes

Iq5
25(

3

2-1) J (^
V2+^W = 1. (99.11)

For instance, for air (y = f) this constant is £o = 1*033.

The ratios v\vi and pjpz as functions of rjrQ = f/£ are easily seen from the
above formulae to tend to zero as rjro -> 0, in the manner

vfa ~ r/r
, plp2 ~ (r/rofKv-U; (99.12)

the ratio of pressures pjpz, however, tends to a constant, and the ratio of

temperatures therefore tends to infinity.
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Fig. 78 shows the quantities vjv%, pjp2 and p/p2 as functions of r/ro for

air (y = 14). The very rapid decrease of the density into the sphere is

noticeable: almost all the gas is in a relatively thin layer behind the shock

wave. This is, of course, due to the fact that the gas on the surface of greatest

radius (ro) has a density six times the normal density,f

1-0

v/v2X J \

0'5

p/p 2 y/__^y \

P/P2J

0-5

Fig. 78

1-0

§100. Shallow-water theory

There is a remarkable analogy between gas flow and the flow in a gravita-

tional field of an incompressible fluid with a free surface, when the depth of

the fluid is small (compared with the characteristic dimensions of the problem,

such as the dimensions of the irregularities on the bottom of the vessel).

In this case the vertical component of the fluid velocity may be neglected

in comparison with its velocity parallel to the surface, and the latter may be

regarded as constant throughout the depth of the fluid. In this {hydraulic)

approximation, the fluid can be regarded as a "two-dimensional" medium
having a definite velocity v at each point and also characterised at each point

by a quantity h, the depth of the fluid.

The corresponding general equations of motion differ from those obtained

in §13 only in that the changes in quantities during the motion need not be

assumed small, as they were in §13 in discussing long gravity waves of small

amplitude. Consequently, the second-order velocity terms in Euler's equa-

tion must be retained. In particular, for one-dimensional flow in a channel,

f The results of calculations for other values of y are given by L. I. Sedov, Similarity and Dimen-
sional Methods in Mechanics, Chapter IV, §11, Cleaver-Hume Press, London 1959. The
corresponding problem with cylindrical symmetry is also discussed.
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depending only on one co-ordinate x (and on the time), the equations are

8h 8{vh)— + -±J- = 0,
8t dX

(100.1)
dv 8v 8h

1- v— = —g—

;

8t 8x 8x

the depth h is here assumed constant across the channel.

Long gravity waves are, in a general sense, small perturbations of the flow

now under consideration. The results of §13 show that such perturbations

are propagated relative to the fluid with a finite velocity, namely

C = y/(gh). (100.2)

This velocity here plays the part of the velocity of sound in gas dynamics.

Just as in §79, we can conclude that, if the fluid moves with velocities v < c

{streaming flow), the effect of the perturbations is propagated both upstream

and downstream. If the fluid moves with velocities v > c {shooting flow),

however, the effect of the perturbations is propagated only into certain regions

downstream.

The pressure/) (reckoned from the atmospheric pressure at the free surface)

varies with depth in the fluid according to the hydrostatic law/) = pg{h—z),

where z is the height above the bottom. It is useful to note that, if we intro-

duce the quantities

h

p = Ph, p = jpdz = \pgh* = gpfr, (100.3)

o

then equations (100.1) become

85 8{vp) 8v dv 1 8b
-£ + -^ =0, — + v— = - - /, (100.4)
8t 8x 8t 8x p 8x

which are formally identical with the equations of adiabatic flow of a perfect

gas with y = 2 {p ~ p~2). This enables us to apply immediately to shallow-

water theory all the results of gas dynamics for flow in the absence of shock

waves. If shock waves are present, however, the results of shallow-water

theory differ from those of perfect-gas dynamics.

A "shock wave" in a fluid in a channel is a discontinuity in the fluid height

h
s
and therefore in the fluid velocity v (what is called a hydraulic jump).

The relations between the values of the quantities on the two sides of the

discontinuity can be obtained from the conditions of continuity of the fluxes

of mass and momentum. The mass flux density (per unit width of the

channel) is/ = pvh. The momentum flux density is obtained by integrating

p -f pv* over the depth of the channel, and is

f (p+pv2)dz = \pgh2 + pv2h.
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The conditions of continuity therefore give two equations:

vifa = v2h2 , (100.5)

»i
2Ai+W = v22h2 + ±gh2

2
. (100.6)

These give the relations between the four quantities vi, v2 , hi, h2 , two of which
can be specified arbitrarily. Expressing the velocities vi and v2 in terms of

the heights h\ and h2 , we obtain

*>i
2 = &h2(hi+h2)lhi, v22 = ighi(hi+ h2)/h2 . (100.7)

The energy fluxes on the two sides of the discontinuity are not the same, and
their difference is the amount of energy dissipated in the discontinuity per
unit time. The energy flux density in the channel is

n

q =
J

( - + frApvdz = ij(gh+v2
).

Using (100.7), we find the difference to be

qi-q2 = gj(hi2 + h2
2)(h2 -hi)/4hih2 .

Let the fluid move through the discontinuity from side 1 to side 2. Then the

fact that energy is dissipated means that qi— q2 > 0, and we conclude that

h2 > hu (100.8)

i.e. the fluid moves from the smaller to the greater height. We then can
deduce from (100.7) that

vi > ci = V(gh), v2 < c2 = VW, (100.9)

in complete analogy to the results for shock waves in gas dynamics. The
inequalities (100.9) could also be derived as the necessary conditions for the

discontinuity to be stable, as in §84.



CHAPTER XI

THE INTERSECTION OF
SURFACES OF DISCONTINUITY

§101. Rarefaction waves

The line of intersection of two shock waves is, mathematically, a singular

line of two functions describing the gas flow. The vertex of an acute angle on

the surface of a body past which the gas flows is always such a singular line.

It is found that the gas flow near the singular line can be investigated in a

general manner (L. Prandtl and T. Meyer, 1908).

In considering the region near a small segment of the singular line, we may
regard the latter as a straight line, which we take as the #-axis in a system of

cylindrical co-ordinates r, </», z. Near the singular line, all quantities depend

considerably on the angle </>, but their dependence on the co-ordinate r

is only slight, and for sufficiently small r it can be neglected. The dependence

on the co-ordinate z is also unimportant; the change in the flow pattern over

a small segment of the singular line may be neglected.

Thus we have to investigate a steady flow in which all quantities are func-

tions of
<f>

only. The equation of conservation of entropy, v«grad$ = 0,

gives v$ dy/d<£ = 0, whence $ = constant,f i.e. the flow is isentropic. In

Euler's equation we can therefore replace grad pjp by grad to: (vgrad)v
= — grad zv. In cylindrical co-ordinates, we have three equations

:

^^V_V_ VfdVf VfVj, l^da; dvz _
r d<f> r

'

r d<f> r r d<f>' d<f>

From the last of these we have v z = constant, and without loss of generality

we can put v z = 0, regarding the flow as two-dimensional; this is simply a

matter of suitably defining the velocity of the co-ordinate system along the

2-axis. The first two equations can be written

^ = d«v/<ty, (101.1)

dv$ \ \ dp dw

d(f> / p d<f> d<f>

Substituting (101.1) in (101.2), we have

dvf dvr dw
V,f

d4
+ Vr

d$
= ~ d0

'

t If »* = 0, we easily deduce from the equations of motion given below that vr — 0, vt ^ 0. Such
a flow would correspond to the intersection of surfaces of tangential discontinuity (with a discontinuous
velocity vt), and is of no interest, since such discontinuities are unstable.

399
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or, integrating,

w+ hiv^+Vr2
) = constant. (101.3)

We may notice that equation (101.1) implies that curl v = 0, i.e. we have

potential flow, as a result of which Bernoulli's equation (101.3) holds.

Next, the equation of continuity, div(pv) = 0, gives

Using (101.2), we obtain

(?-)('-<)-*

/4 A
Fig. 79

The derivative dp[dp, or more correctly (dp/d/>)s , is just the square of the

velocity of sound. Thus

(IHf 1 -?)-- ^
This equation can be satisfied in either of two ways. Firstly, we may have

dv^jdcji+Vr = 0. Then, from (101.2), p — constant and p = constant, and

from (101.3) we find that v2 = vr
2+ v^2 = constant, i.e. the velocity is constant

in magnitude. It is easy to see that in this case the velocity is constant in

direction also. The angle x between the velocity and some given direction in

the plane of the motion is (Fig. 79)

x = <£ + tan-i(V^)- (10L6)

Differentiating this expression with respect to <j> and using formulae (101.1)

and (101.2), we easily obtain

dx/d«£ = -(vrlpv^dpldc/,. (101.7)

Since p = constant, it follows that x = constant. Thus, if the first factor

in (101.5) is zero, we have the trivial solution of a uniform flow.
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^

. (101.9)
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Secondly, equation (101.5) can be satisfied by putting X — v^jc* = 0,

i.e. Vf = ±c. The radial velocity is given by (101.3). Denoting the constant

in that equation by wq, we find that

«V
= ±c, vr = ±\Z[2(w -w)-c2

].

In this solution, the velocity component v^ perpendicular to the radius

vector is equal to the local velocity of sound at every point. The total velocity

v = V(*V
2+ ^r

2
) therefore exceeds that of sound. Both the magnitude and

the direction of the velocity are different at different points. Since the velocity

of sound cannot vanish, it is clear that the function v^,(<f>), which is continuous,

must everywhere be + c, or else everywhere — c. By measuring the angle
<f>

in the appropriate direction, we can take v^ = c. We shall see below that the

choice of the sign of vr follows from physical considerations, and that the

plus sign must be taken. Thus

«V
= c, vr = V[2(m-w)-c*]. (101.8)

From the equation of continuity (101.4) we have d<f> = — d(pv^)fpvr . Sub-

stituting (101.8) and integrating, we have

d(pc)

p\/[2(zvo-w)-c2 ]

If the equation of state of the gas and the adiabatic equation are known (we

recall that s is constant), this formula can be used to determine all quantities

as functions of the angle
<f>.

Thus formulae (101.8) and (101.9) completely

determine the gas flow.

Let us now study in more detail the solution which we have obtained.

First of all, we notice that the straight lines
<f>
= constant intersect the stream-

lines at every point at the Mach angle (whose sine is v^jv = cfv), i.e. they

are characteristics. Thus one family of characteristics (in the ry-plane)

is a pencil of straight lines through the singular point, and has an important

property in this case: all quantities are constant along each characteristic.

In this respect the solution concerned plays the same part in the theory of

steady two-dimensional flow as does the similarity flow discussed in §92

in the theory of non-steady one-dimensional flow. We shall return to this

point in §107.

It is seen from (101.9) that (pc)' < 0, the prime denoting differentiation

with respect to
<f>.

Putting (pc)' = pd(pc)jdp and noticing that the derivative

d(pc)jdp is positive (see (92.9)), we find that p < 0, and therefore so are the

derivatives p' = c2p and zv' = p'jp. Next, from the fact that w' is negative

it follows that the velocity v = \/\2{v)q— w)] increases with
<f>.

Finally,

from (101.7), x > 0. Thus we have

dp/d<p < 0, dp/dcf> < 0, dv/dcf> > 0, dx/d<£ > 0. (101.10)

In other words, when we go round the singular point in the direction of flow,

the density and pressure decrease, while the magnitude of the velocity in-

creases and its direction rotates in the direction of flow.
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The flow just described is often called a rarefaction wave, and we shall

use this name in what follows.

It is easy to see that a rarefaction wave cannot exist throughout the region

surrounding the singular point. For, since v increases monotonically with
<f>,

a complete circuit round the origin (i.e. a change of <j> by 2tt) would give a

value for v different from the initial one, which is impossible. For this reason,

the actual pattern of flow round the singular line must be composed of a

series of sectors separated by planes <j> = constant which are surfaces of

discontinuity. In each of these regions we have either a rarefaction wave or a

flow with constant velocity. The number and nature of these regions for

various particular cases will be established in the following sections . Here we
shall simply mention that the boundary between a rarefaction wave and a

uniform flow must be a weak discontinuity: it cannot be a tangential

discontinuity (of vr), since the normal velocity component v^ = c does not
vanish on it. Nor can it be a shock wave, since the normal velocity component
v^ must be greater than the velocity of sound on one side of such a dis-

continuity and smaller on the other side, whereas in our problem we always
have Vq = c on one side of the boundary.

An important conclusion can be drawn from the foregoing. Disturbances
which cause weak discontinuities evidently leave the singular line (the #-axis)

and are propagated away from it. This means that the weak discontinuities

bounding the rarefaction wave must be ones which leave this line, i.e. the

velocity component vr tangential to the weak discontinuity must be positive.

This justifies the choice of the sign of vr made in (101.8).

Let us now apply these formulae to a perfect gas. In such a gas

w ~ c2l(v~ 1)> while the equation of the Poisson adiabatic can be written

pC
-2/(y-D = constant, ^c-2y/(r-i) - constant; (101.11)

cf. (92.13). Using these formulae, we can put the integral (101.9) in the form

fy+1 r dc—JS!y-\ J V(c*2-c2)'

where c# is the critical velocity (see (80.14)). Hence

rr>«s~J-—
<f>
=

/ cos-1 h constant,
Vy-1 c*

or, if we measure <j> in such a way that the constant is zero,

^ = c = cm cos V[(y- l)/(y+ l)tf. (101.12)

According to formula (101.8) we therefore have

^ = y^r* sinV^- <10U3 >

Next, using the Poisson adiabatic equation in the form (101.11), we can find
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the pressure as a function of the angle
<f>

:

(Y-l
p = pm cogyHr -i) /^.Vy+r

Finally, we have for the angle x (101.6)

-1 /y-l
-cot /

y+1 Vy+
the angles x and

<f>
being measured from the same initial line.
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Since we must have vr > 0, c> 0, the angle
<f>

in these formulae can vary

only between and <^nax, where

<?W = W[(y+l)/(y-l)]- (101.16)

This means that the rarefaction wave can occupy a sector whose angle does
not exceed <£max; for a diatomic gas (air, for example), this angle is 219-3°.

When <j> varies from to <£max, the angle x varies from \n to <£maX . Thus the

direction of the velocity in the rarefaction wave can turn through an angle

not exceeding <£max-ih- (= 129-3° for air).

For
<f>
= ^max the pressure is zero. In other words, if the rarefaction wave

occupies the maximum angle, the weak discontinuity on one side is a boundary
with a vacuum, and is, of course, a streamline; we have v$ = c = 0,

vr - v = V[(y+l)/(y-l)]c# = ^max, i.e. the velocity is radial and attains

its limiting value ©max (see §80).

Fig. 80 shows graphs of pip*, cjv and x as functions of the angle
<f>

for

air (y = 1-4).
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It is useful to note the form of the curve in the ©a^-plane defined by
formulae (101.12) and (101.13) (called the velocity hodograph). It is an arc of

an epicycloid between circles of radii v = c# and v = c%-\Z[(y+l)l(y— 1)]

= *>max (Fig. 81).

Fig. 81

PROBLEMS

Problem 1 . Determine the form of the streamlines in a rarefaction wave.

Solution. The equation of the streamlines for two-dimensional flow is, in polar co-

ordinates, dr/vr = rd<£/w<£. Substituting (101.12) and (101.13) and integrating, we obtain

r = r cos-(r+i)/(y-i)^/[(y-l)/(y+ l)]^

These streamlines form a family of similar curves concave toward the origin, which is the

centre of similarity.

Problem 2. Determine the maximum possible angle between the weak discontinuities

bounding a rarefaction wave, for given values vu cx of the gas velocity and the velocity of

sound at one discontinuity.

Solution. The angle <j> corresponding to the first discontinuity is, by (101.12),

<f>l
= y+1 C\

COS"
y-1 c*

The value of
<f>2 is <f>m&x, so that the angle required is

y+1
fc-*1

=
Jhri

sin" -ifl

The critical velocity c* is given in terms of vx and cx by Bernoulli's equation

:

ZOi+ ivi2 =
c?

>- 1
+w = 7+1

2(7-1)'

The maximum possible angle through which the gas velocity can turn in a rarefaction wave
is accordingly, by (101.15), the difference Xmax = x(«£i)

—
xifa)'-

Xmax
y+1 . , C\ . Ci— sin-1 sin-1—

.

y—

1

c# vi
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As a function of v-Jcx , Xmax is greatest for v^Cx = 1

:

(y+1

y-\
i i i

y+1
1Xmax = fw / - - 1

For vt/ci -> oo, Xmax tends to zero:

Xmax
2 Ci

y— 1 V\

§102. The intersection of shock waves

Shock waves can intersect along a line. In considering the flow near a small

segment of this line, we can assume that it is a straight line, and that the sur-

faces of discontinuity are planes. It is therefore sufficient to discuss the inter-

section of plane shock waves.

The line of intersection of two discontinuities is, mathematically, a singular

line, as has already been mentioned at the beginning of §101. The flow

pattern near this line consists of a number of sectors, in each of which we have

either uniform flow or a rarefaction wave of the kind described in §101.

It is possible to give a general classification of the possible types of intersec-

tion of surfaces of discontinuity (L. Landau 1944).

First of all, we must make the following remark. If the gas flow on both

sides of a shock wave is supersonic, then (as mentioned at the beginning of

§86) we can speak of the "direction" of the shock wave, and accordingly

distinguish shock waves leaving the line of intersection from those reaching it.

In the former case, the tangential velocity component is directed away from
the line of intersection, and we can say that the disturbances which cause the

discontinuity leave this line. In the latter case, the perturbations leave a

point not on the line of intersection.

If the flow on one side of the shock wave is subsonic, then disturbances are

propagated in both directions along its surface, and the "direction" of the

shock has, strictly, no meaning. In the arguments given below, however,

what is important is that disturbances leaving the point of intersection can be
propagated along such a discontinuity. In this sense, such shock waves play

the same part in the following discussion as the purely supersonic shocks

which leave the intersection, and we shall include both kinds in the term
"shocks which leave the intersection".

Figs. 82-86 show the flow patterns in a plane perpendicular to the line of

intersection. We can assume, without loss of generality, that the flow occurs

in this plane. The velocity component parallel to the line of intersection

(which lies in all the planes of discontinuity) must be the same in all regions

round the line of intersection, and can therefore be made to vanish by an
appropriate choice of the co-ordinate system.

It is easy to see that there can be no intersection of shock waves in which no
shock reaches the intersection. For instance, in the intersection of two shock
waves leaving the intersection, shown in Fig. 82a, the streamlines of the flow

14
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incident from the left would deviate in opposite directions, whereas the

velocity should be constant throughout region 2, and this difficulty cannot be

overcome by adding any further discontinuities in region 2.f Similarly, we
can see that the intersection of a shock wave and a rarefaction wave both

leaving the intersection, shown in Fig. 82b, is impossible; although the

velocity in region 2 can be constant in direction, the pressure cannot be con-

stant, since it increases in a shock wave but decreases in a rarefaction wave.

Shock Weak Tangential Streamline
wave discontinuity discontinuity

Fig. 82

Next, since the intersection cannot affect shock waves reaching it, the

simultaneous intersection (along a common line) of more than two such waves,

which are due to other causes, would be an improbable coincidence. Thus
only one or two shock waves can reach the intersection.

The following fact is very important. The gas flowing past a point of

intersection can pass through only one shock or rarefaction wave leaving this

point. For example, let the gas pass through two successive shock waves

leaving the point O, as shown in Fig. 82c. Since the normal velocity com-

ponent V2n behind the shock Oa is less than C2, the velocity component in

region 2 normal to the shock Ob must also be less than c%, in contradiction to

a fundamental property of shock waves. Similarly, we can see that the gas

cannot pass through two successive rarefaction waves, or a shock wave and a

rarefaction wave, leaving the point O.

These arguments evidently cannot be extended to shock waves reaching the

point of intersection.

We can now proceed to enumerate the possible types of intersection. Fig.

83 shows an intersection involving one shock wave Oa reaching it and two

shock waves Ob, Oc leaving it. This case may be regarded as the splitting of

one shock wave into two.J It is easy to see that, besides the two shock waves

t In order not to encumber the discussion with repetitive arguments, we shall not give similar

considerations for cases where there are regions of subsonic flow and the shock leaving the inter-

section is actually a shock wave bounded by a subsonic region.

% It should be noticed that a shock wave cannot divide into a shock and a rarefaction wave; it is

easily seen that the changes in the pressure and the direction of the velocities in the two waves leaving

cannot be reconciled.
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leaving, there must be formed a tangential discontinuity Od lying between
them, which separates the gas flowing through Ob from that flowing through

Oc.f For the shock Oa is due to other causes, and is therefore completely

defined. This means that the thermodynamic quantities (p and p, say) and
the velocity v have given values in regions 1 and 2. There remain at our dis-

posal, therefore, only two quantities (the angles giving the directions of the

discontinuities Ob and Oc) with which to satisfy, in general, four conditions

(the constancy of p, p and two velocity components) in the region 3-4,

which would have to be satisfied in the absence of the tangential discon-

tinuity Od. The addition of the latter, however, reduces the number of

conditions to two (the constancy of the pressure and of the direction of the

velocity).

Fig. 83

An arbitrary shock wave, however, cannot divide in this manner. A shock
wave reaching the intersection is defined by two parameters (for a given
thermodynamic state of gas 1), say the Mach number Mi of the incident

stream and the ratio of pressures pi[p2- It can divide in two only in a certain

region in the plane of these two parameters.^

Intersections involving two shock waves reaching them can be regarded as

"collisions" of two shocks due to other causes. Here two essentially different

cases are possible, as shown in Fig. 84.

In the first case, the collision of two shock waves results in two other
shock waves leaving the point of intersection. If all the necessary conditions

t As usual, the tangential discontinuity in reality becomes a turbulent region.

% The determination of this region involves very laborious algebraic calculations. The results that
have been published (see, for example, R. Courant and K. O. Friedrichs, Supersonic Flow and
Shock Waves, Interscience, New York 1948), unfortunately, are largely invalidated by the fact that
they make no distinction between shock waves reaching and leaving the intersection. The ternary
configurations therefore include also those where two shock waves reach the intersection and one
leaves it. This, however, is the intersection of two shocks due to other causes, and therefore reaching
the point of intersection with given values of all parameters. Their "fusion" into one shock is possible
only when these arbitrary parameters are related in a certain way, and this would be an improbable
coincidence.
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are to be fulfilled, a tangential discontinuity must again be formed, and it

must lie between the two resulting shock waves.

In the second case, instead of two shock waves, there are formed one shock

wave and one rarefaction wave.

Fig. 84

Two colliding shock waves are defined by three parameters (for instance,

Mi and the ratios p\jp2, Pijpz)- The types of intersection just described are

possible only for certain ranges of values of these parameters. If the values

of the parameters do not lie in these regions, the collision of the shock waves

must be preceded by their breaking up.

Fig. 85 shows the reflection of a shock wave from the boundary between

gas in motion and gas at rest. Region 5 contains gas at rest, separated from

the gas in motion by a tangential discontinuity. In the two regions 1 and 4

adjoining it, the pressure must be the same and equal top$. Since the pressure

increases in a shock wave, it is clear that the shock wave must be reflected

from the tangential discontinuity as a rarefaction wave 3, which reduces the

pressure to its initial value.

Finally, we may briefly discuss the intersection of a shock wave with a weak

discontinuity arriving from an external source. Here two cases can occur,
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according as the flow behind the shock wave is supersonic or subsonic. In
the former case (Fig. 86a), the weak discontinuity is "refracted" at the shock
wave into the space behind the latter; the shock itself is not refracted at the

intersection, but has a singularity of a higher order, like that at a weak dis-

continuity. Moreover, the entropy change in the shock wave must cause
behind it a "weak tangential discontinuity", at which the derivatives of the

entropy are discontinuous.

Fig. 85

Weak
tangential

discontinuity

Weak
discontinuity

Fig. 86

If, however, the flow becomes subsonic behind the shock wave, the weak
discontinuity cannot penetrate into this region, and it ceases at the point of
intersection (Fig. 86b). The latter is now a singular point; it can be shown
that the velocity distribution behind the shock wave has a logarithmic sin-

gularity at this point. Furthermore, as in the previous case, a weak tangential

discontinuity of the entropy must occur behind the shock wave.f

t A detailed qualitative and quantitative analysis of the possible types of intersection of shock waves
with weak discontinuities is given by S .P. D'yakov, Zhurnal experimental'noli teoreticheskoifiziki 33
948, 962, 1957; Soviet Physics JETP 6 (33), 729, 739, 1958; Doklady Akademii Nauk SSSR 99
921, 1954.
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§103. The intersection of shock waves with a solid surface

An important part in the phenomenon of steady intersection of shock waves

with the surface of a body is played by their interaction with the boundary

layer. This interaction is very complex, and has not yet been sufficiently

investigated, either experimentally or theoretically. However, simple general

arguments enable us to obtain some important results, which we shall now
expound,f
The pressure is discontinuous in a shock wave, and increases in the direc-

tion of motion of the gas. Hence, if the shock wave intersects the surface,

there must be a finite increment of pressure over a very short distance near

the place of intersection, i.e. there must be a very large positive pressure

gradient. We know, however, that such a rapid increase in pressure cannot

occur near a solid wall (see the end of §40) ; it would cause separation, and the

pattern of flow round the body is changed in such a way that the shock wave

moves away to a sufficient distance from the surface.

These arguments, however, do not apply when the shock wave is weak.

It is clear from the proof given at the end of §40 that the impossibility of

a positive pressure discontinuity at the boundary layer is a consequence of

the assumption that this discontinuity is large: it must exceed a certain

limit depending on the value of R, which diminishes when R increases.J

Thus we reach the following important conclusions. The steady inter-

section of strong shock waves with a solid surface is impossible. A solid

surface can intersect only weak shock waves, and the limiting intensity is the

smaller, the greater R. The maximum permissible intensity of the shock wave

also depends on whether the boundary layer is laminar or turbulent. If the

boundary layer is turbulent, the onset of separation is retarded (§45). In a

turbulent boundary layer, therefore, stronger shock waves can leave the

surface of the body than in a laminar boundary layer.ff

To avoid misunderstanding, it should be emphasised that these arguments

rely on the fact that the boundary layer exists in front of the shock wave

(i.e. upstream of it). The results obtained therefore relate, in particular, to

shock waves which leave the trailing edge, but not to those which leave the

leading edge, of the body; the latter can occur, for instance in flow past an

acute-angled wedge, a case which is discussed in detail in §104. In the latter

case the gas reaches the vertex of the angle from outside, i.e. from a region

in which there is no boundary layer. It is therefore clear that the present

f The boundary layer necessarily contains a subsonic part adjoining the surface, into which the

shock wave cannot penetrate. In speaking of the intersection, we ignore this fact, which does not affect

the following discussion.

% In §40, Problem, we have determined the smallest pressure change Ap over a distance Ax which

can cause separation in a laminar boundary layer. In the present application, we are concerned with

the pressure change over a distance of the order of the thickness 8 of the boundary layer, and obtain

the following law governing the decrease of Ap when the Reynolds number increases

:

*PlP ~ l/R** ~ l/R#f
.

ft The existing published data do not enable us to specify the maximum permissible intensity.
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arguments do not deny that shock waves can occur which leave the vertex of

such an angle.

In subsonic flow, separation can occur only when the pressure in the main
stream increases downstream along the surface. In supersonic flow, however,

it is found that separation can occur even when the pressure decreases down-
stream. Such a phenomenon can occur by the combination of a weak shock
wave with a separation, the pressure increase necessary for separation taking

place in the shock wave ; the pressure may either increase or decrease down-
stream in the region in front of the shock wave.

Fig. 87

The data at present existing do not enable us to give a detailed picture of the

complex phenomena involved in the "reflection" of a shock wave from the

subsonic part of a boundary layer (or from the turbulent region beyond the

line of separation). An important part in these phenomena must be played

by the fact that the disturbances due to the shock wave can be propagated

both upstream and downstream through the subsonic part of the boundary
layer, and can cause further discontinuities in it. In particular, the formation

of another weak shock wave upstream may result in separation, which "dis-

places" a strong shock wave incident on the surface from outside. In Fig.

87, the line a is the incident shock wave, and b the shock wave formed up-
stream, which causes separation at the point O. When the incident shock is

"reflected" from the subsonic part of the turbulent region, we should expect,

in particular, that a rarefaction wave would be formed.

All the above discussion relates only to a steady intersection, with the shock
wave and the body at relative rest. Let us now consider non-steady intersec-

tions, when a moving shock wave is incident on a solid body, so that the line

of intersection moves on the surface. Such an intersection is accompanied by
reflection of the shock wave: besides the incident wave, a reflected wave
leaving the body is formed.

We shall examine the phenomenon in a system of co-ordinates which moves
with the line of intersection; in this system the shock waves are steady.

The simplest type of reflection occurs when the reflected wave leaves the line

of intersection itself; this is called regular reflection (Fig. 88). If the angle of

incidence ai and the intensity of the incident shock are given, the flow in

region 2 is uniquely determined. The gas velocity in the reflected shock must
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be turned through an angle such that it is again parallel to the surface. When
this angle is given, the position and intensity of the reflected shock are ob-

tained from the equation of the shock polar. For a given angle, the shock

polar determines two different shock waves, those of the weak and strong

families (§86). Experimental results show that in fact the reflected shock

always belongs to the weak family, and we shall assume this in what follows.

It should be pointed out that, when the intensity of the incident shock tends

to zero, the intensity of the reflected shock
v

then tends to zero also, and the

angle of reflection <X2 tends to the angle of incidence oci, as we should expect in

accordance with the acoustic approximation. In the limit ai -> 0, the

reflected shock of the weak family passes continuously into the shock ob-

tained when a shock wave is incident "frontally" (§93. Problem 1).

3
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Fig. 88

The mathematical calculations for regular reflection (in a perfect gas) offer

no difficulty in principle, but the algebra is extremely laborious. Here we
shall give only some of the results.^

It is clear from the general properties of the shock polar that regular

reflection is not possible for arbitrary values of the parameters of the incident

wave (the angle of incidence ai and the ratio pi\p\). For a given ratio P2JP1

there is a maximum possible angle ai&,J and for ai > <xifc regular reflection

is impossible. As p^jpi -> oo, the maximum angle tends to sin-1(l/y)

(= 40° for air). As p2Jpi -» 1, «i& tends to 90°, i.e. regular reflection is

possible for any angle of incidence. Fig. 89 shows ai^ as a function of Pijpz

for air.

The angle of reflection <*2 is not in general the same as the angle of incidence.

There is a value a* of the angle of incidence such that, if ai < a#,the angle

of reflection <X2 < ai; if ai> a*, on the other hand, <*2 > ai. The value of

a* is % cos-1 l(y— 1) (= 39-2° for air); it does not depend on the intensity

of the incident wave.

t A more detailed account of the reflection of shock waves is given by R. Courant and K. O.

Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York 1948, and by W. Bleakney

and A. H. Taub, Reviews of Modern Physics 21, 584, 1949.

The solution of complex problems concerning the regular reflection of a shock wave at almost nor-

mal incidence on the vertex of an angle close to 180°, and the diffraction of a shock wave at glancing

incidence on the vertex of a similar angle, has been given by M. J. Lighthill (Proceedings of the

Royal Society A198, 454, 1949; 200, 554, 1950).

J This is the value of the angle of incidence for which the strong and weak reflected shocks

coincide.
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For ai > auk regular reflection is impossible, and the incident shock wave
must break up at a distance from the surface, so that we have the pattern shown
in Fig. 90, with three shock waves, and a tangential discontinuity leaving the

point where the incident shock wave divides.
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Fig. 90

§104. Supersonic flow round an angle

In investigating the flow near the vertex of an angle on the surface, it is

again sufficient to consider small portions of the vertex and suppose it

straight, the angle being formed by two intersecting planes. We shall speak

of flow outside an angle if the angle is greater than 7r, and of flow inside an

angle if it is less than it.

Subsonic flow past an angle is not essentially different from the flow of an

incompressible fluid. Supersonic flow, however, is entirely different; an

important property of it is the occurrence of discontinuities leaving the vertex

of the angle.

Let us first consider the possible flow patterns when a supersonic gas

stream reaches the vertex along one of the sides of the angle. In accordance

with the general properties of supersonic flow, the stream remains uniform
up to the vertex. The turning of the stream into the direction parallel to
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the other side of the angle occurs in a rarefaction wave leaving the vertex,

and the flow pattern consists of three regions separated by weak discon-

tinuities {Oa and Ob in Fig. 91): the uniform gas stream 1 moving along

the side AO is turned into the rarefaction wave 2 and then moves, again

with constant velocity, along the other side of the angle. It should be

noticed that no turbulent region is formed; in a similar flow of an incom-

pressible fluid, on the other hand, a turbulent region must be formed, with

a line of separation at the vertex of the angle (Fig. 16, §35).

0/>
7777777777777777777,

(a)

0/
^77777777777777777^^

(b)

Let v\ be the velocity of the incident stream (1 in Fig. 91), and c\ the

velocity of sound in it. The position of the weak discontinuity Oa is deter-

mined immediately from the Mach number Mi = v\\c\ by the condition

that it intersects the streamlines at the Mach angle. The changes in velocity

and pressure in the rarefaction wave are determined by formulae (101.12)-

(101.15); all that is needed is the direction from which the angle </> in these

formulae is to be measured. The straight line <j> = corresponds to

v = c = c*; for Mi > 1, there is in fact no such line, since vjc > 1 every-

where. However, if the rarefaction wave is imagined to be formally extended

into the region to the left of Oa, we can use formula (101.12), and we find
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that the discontinuity Oa must correspond to a value of
<f>

given by

ly+1A A+1
-l

Cl

<f>l
=

/ rcos i—

,

Vy-1 c*

and that
<f>
must increase from Oa to 03. The position of the discontinuity Ob

is determined by the fact that the direction of the velocity becomes parallel to

the side OB of the angle.

/ 2

1

777777777777777777.

1

777777777777777777,

Fig. 92 Fig. 93

The angle through which the stream turns in the rarefaction wave cannot

exceed the value ^max determined in §101, Problem 2. If the angle /? round
which the flow occurs is less than it— xmax> the rarefaction wave cannot turn

the stream through the necessary angle, and we have the flow pattern shown
in Fig. 91b. The rarefaction in the wave 2 then proceeds to zero pressure

(reached on the line Ob\ so that the rarefaction wave is separated from the

wall by a vacuum (region 3).

The flow pattern described above is not the only possible one, however.

Figs. 92 and 93 show patterns in which a region of gas at rest adjoins the

second side of the angle, this region being separated from the moving gas by
a tangential discontinuity; as usual, this becomes a turbulent region, so that

the case considered corresponds to the presence of separation.f The stream

is turned through a certain angle in a rarefaction wave (Fig. 92) or in a shock
wave (Fig. 93). The latter case, however, is possible only if the shock wave is

not too strong (in accordance with the general considerations given in §103).

Which of these flow patterns will occur in any particular case depends in

general on the conditions far from the angle. For instance, when gas flows

out of a nozzle (the vertex of the angle being here the edge of the outlet), the

relation between the pressure p\ of the outgoing gas and the pressure p e of

the external medium is of importance. Ifp e < pi, the flow is of the type shown
in Fig. 92; the position and angle of the rarefaction wave are then determined

f According to experimental results, the compressibility of the gas somewhat diminishes the
angle of the turbulent region resulting from the tangential discontinuity.
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by the condition that the pressure in regions 3 and 4 is equal to p e . The
smaller p e , the greater the angle through which the stream must be turned.

If, however, the angle /? (Fig. 92) is large, the gas pressure cannot reach the

required value p e ; the direction of the velocity becomes parallel to the side

OB of the angle before the pressure falls to p e . The flow near the edge of the

outlet will then be as shown in Fig. 90. The pressure near the outer side

OB of the outlet is entirely determined by the angle /5, and does not depend
on the pressure p e \ the final decrease of the pressure to p e occurs only at a

distance from the outlet.

77777777777777-'
"

Fig. 94

If p e > pi, on the other hand, the flow round the edge of the outlet is of

the type shown in Fig. 93, with a shock wave which leaves the edge and raises

the pressure from^i to p e . This is possible, however, only if the difference

between pe and p\ is not too large, i.e. the shock wave is not too strong;

otherwise there is separation at the inner surface of the nozzle, and the shock

wave moves into the nozzle, in the manner described in §90.

Next, let us consider flow inside an angle. In the subsonic case such a flow

is accompanied by separation at a point ahead of the vertex (see the end of

§40). For a supersonic incident flow, however, the change in direction may
be effected by a shock wave leaving the vertex (Fig. 94). Here it must again

be mentioned that such a simple separationless flow pattern is possible only

if the shock wave is not too strong. Its intensity increases with the angle %
through which the stream is turned, and we can therefore say that separation-

less flow is possible only when % is not too large.

Let us now consider the flow pattern which results when a free supersonic

stream is incident on the vertex of an angle (Fig. 95). The stream is turned

into directions parallel to the sides of the angle by shock waves leaving the

vertex. As has been shown in §103, this is the exceptional case where a shock

wave of arbitrary intensity can leave a solid surface.

If we know the velocities vi and c\ in the incident stream, we can deter-

mine the positions of the shock waves and the gas flow in the regions behind

them. The direction of the velocity V2 must be parallel to the side OA of the

angle : V2yfv2X = tan x- Thus V2 and the angle
<f>

giving the position of the

shock wave can be determined immediately from the shock polar, using a

chord through the origin at the known angle x to the axis of abscissae (Fig.

50), as explained in §86. We have seen that, for a given x> the shock polar

gives two different shock waves, with different values of
<f>.

One of these
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(corresponding to the point B in Fig. 50) is the weaker, and in general leaves

the flow supersonic; the other, stronger, shock renders the flow subsonic.

In the present case of flow past an angle on a finite solid surface,f we must
always take the former, i.e. the weak shock. It should be borne in mind that

this choice is really decided by the conditions of the flow far from the angle.

Fig. 95

In flow past a very acute angle (x small), the resulting shock wave must
obviously be very weak. It is natural to suppose that, as the angle increases,

the intensity of the shock increases monotonically ; this corresponds to a

movement along the arc QC of the shock polar (Fig. 50), from Q towards C.
We have also seen in §86 that the angle through which the velocity vector is

turned in a shock wave cannot exceed a certain value Xmax, which depends
on Mi. The flow pattern described above is therefore impossible if either of

the sides of the angle makes an angle greater than xmax with the direction of
the incident stream. In this case the gas flow near the angle must be sub-
sonic; this is achieved by the appearance of a shock wave somewhere in front

of the angle (see §114). Since xmax increases monotonically with Mi, we can
also say that, for a given value of the angle x, Mi for the incident stream must
be greater than a certain value Mi min .

Finally it may be mentioned that, if the sides of the angle are situated,

relative to the incident stream, as shown in Fig. 96, then a shock wave is of
course formed on only one side of the angle ; the stream is turned on the other
side by a rarefaction wave.

PROBLEM

Determine the position and intensity of the shock wave in flow past a very small angle
(X <^ 1) for very large values of M: ( > 1/x).

t The purely formal problem of flow past a wedge formed by the intersection of two infinite planes
is of no physical interest.
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Solution. For x "^ 1 > the shock polar gives two values of
<f>,

one close to zero and the other
close to \tt. The weak shock which we require corresponds to the former value, which is

Kr+l)x; see §86, Problem 1. The ratio of pressures is, by (86.9), p^px = JyCy+^MiV-
The value of M behind the shock is

1M2 = -

X \J y(y-l)'

i.e. it is still large compared with unity, but not large compared with 1/x-

Fig. 96

§105. Flow past a conical obstacle

The problem of steady supersonic flow near a pointed projection on the

surface of a body is three-dimensional, and is very much more complicated

than that of flow past an angle with a line vertex. No complete general in-

vestigation of the former problem has yet been made. The only problem

that has been completely solved is that of axially symmetric flow past a pro-

jecting point, and we shall discuss this case.

Near its vertex, an axially symmetric projection can be regarded as a right

cone of circular cross-section, and so the problem consists in investigating the

flow of a uniform stream past a cone whose axis is in the direction of inci-

dence. The flow pattern is qualitatively as follows.

As in the analogous problem of flow past a two-dimensional angle, a shock

wave must be formed (A. Busemann 1929), and it is evident from symmetry

that this shock is a conical surface coaxial with the cone and having the same

vertex (Fig. 97 shows the cross-section of the cone by a plane through its

axis). Unlike what happens in the two-dimensional case, however, the shock

wave does not turn the gas velocity through the whole angle x necessary for

the gas to flow along the surface of the cone (2^ being the vertical angle of the

cone). After passing through the surface of discontinuity, the streamlines

are curved, and asymptotically approach the generators of the cone. This

curvature is accompanied by a continuous increase in density (besides the

increase which occurs at the shock itself) and by a corresponding decrease in

the velocity. Immediately behind the shock wave, the velocity is in general

still supersonic (as in the two-dimensional case, it is determined by the

"supersonic" part of the shock polar), but on the surface of the cone it
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may become subsonic. As in the two-dimensional case, for every value of

the Mach number Mi = vijc\ for the incident stream, there is a limiting value

Xmax for the angle of the cone, above which this type of flow becomes impos-

sible.

The conical shock wave intersects all streamlines in the incident flow at

the same angle, and is therefore of constant intensity. Hence it follows (see

§106) that we have isentropic potential flow behind the shock wave also.

Fig. 97

From the symmetry of the problem and its similarity properties (there are

no characteristic constant lengths in the conditions imposed), it is evident

that the distribution of all quantities (velocity, pressure) in the flow behind

the shock wave will depend only on the angle 6 which the radius vector from

the vertex of the cone to the point considered makes with the axis of the cone

(the #-axis in Fig. 97). Accordingly, the equations of motion are ordinary

differential equations; the boundary conditions on these equations at the

shock wave are determined by the equation of the shock polar, while those

at the surface of the cone are that the velocity should be parallel to the

generators. These equations, however, cannot be integrated analytically, and

have to be solved numerically. We refer the reader elsewheref for the results

of the calculations, and merely give the curve (Fig. 51, §86) which shows the

maximum possible angle xmax as a function of Mi. We may also mention

that, as Mi -> 1, the angle xmax tends to zero:

Xmax = constantx V[(Mi-l)/(y+l)], (105.1)

t For example, N. E. Kochin, I. A. Kibel* and N. V. Roze, Theoretical Hydromechanics (Teoretich-

eskaya gidromekhanika), Part 2, 3rd ed., p. 193, Moscow 1948; L. Howarth ed., Modern Developments

in Fluid Dynamics: High Speed Flow, vol, 1, ch. 5, Oxford 1953.
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as may be deduced from the general law of transonic similarity (118.11);
the constant is independent both of Mi and of the gas involved.

An analytical solution of the problem of flow past a cone is possible only
in the limit of small vertical angles. It is evident that in this case the gas
velocity nowhere differs greatly from the velocity vi of the incident stream.

Denoting by v the small difference between the gas velocity at the point
considered and vi, and using its potential

<f>,
we can apply the linearised

equation (106.4); if we take cylindrical co-ordinates x, r, co with the polar

axis along the axis of the cone (co being the polar angle), this equation

becomes

or, for an axially symmetric solution,

1 8 / 86 \ 826

r 8r\ 8r / 8x2

where

|5= V(*2 -l)- (105.4)

In order that the velocity distribution should be a function of 6 only, the

potential must be of the form 6 — xf{£)> where g = rjx = tan 0. Sub-
stituting this, we obtain for the function /(£) the equation

£(l-/*W"+/ f

= 0,

of which the solution is elementary. The trivial solution / = constant

corresponds to a uniform flow; the other solution is

/ = constant x |y(l -PH2
) - cosh~i(l/^)].

The boundary condition on the surface of the cone (i.e. for f = tan x ~ x)
is

vrl{vi+vx) « (l/©i)S0/0r = x (105.5)

or/ ' = vix- Hence the constant is vix2 , and we have the following expression

r the potential in the region x > fir :f

<f>
= vlx*[y/{pP- £2r2) _ x co&h-i(x/pr)]. (105.6)

It should be noticed that cf> has a logarithmic singularity for r -+ 0.

We can now find the velocity components

:

vx = — vix2 cosh
-1

(x IBr),
K

(105.7)
vr = (vix2/r)\/(x

2 — 62r2).

The pressure on the surface of the cone is calculated from formula (106.5);

t In this approximation, the cone x = ]3r is a surface of weak discontinuity.
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since <j> has a logarithmic singularity for r -> 0, the velocity vr on the surface

of the cone (i.e. for small r) is large compared with vx > and therefore we need

retain only the term in vr2 in the formula for the pressure. The result is

P-Pi = />i^iV[log(2//?x)-i]. (105.8)

All these formulae, which have been derived by means of a linearised theory,

cease to be valid for large Mi, comparable with 1/x (see §119).

The flow past a cone of arbitrary cross-section (the angle of attack being

not necessarily zero) is a similarity flow, like the symmetrical flow past a

circular cone. It has no characteristic length parameters, and so the velocity

distribution can be a function only of the ratios yjx, zjx of the co-ordinates,

i.e. it is constant along any straight line through the origin (the vertex of the

cone). Such similarity flows are called conical flows.f

PROBLEM

Determine the flow past a cone of small vertical angle 2x placed at a small angle of attack a

(C. Ferrari 1937)4
Solution. We take the axis of the cone (not the direction of the main stream) as the #-axis

;

the linearised equation (105.2) for the potential is unchanged if higher-order quantities

('—< a<f>) are neglected, and the potential determines the gas velocity as V] +grad
<f>.

The boun-

dary condition on the surface of the cone is

v\ sin a cos co+ vr 1
8<f>x a cos co -\ & x-

v\ cosa+^s vi 8r

We seek
<f>

as a sum

:

<f>
= <p> (x, r)+ cos co • <P (x, r), (1)

where <£
(1 > is the expression (105.6), and <f>

(2) satisfies the boundary condition 8<f>
{i)
l8r = —i^a.

The function <f>^ can be written as rf(r/x) and, substituting r/cos to in equation (105.2), we
obtain for/ the equation

f/"(^2-l)+/'(2^2-3) = 0.

The trivial solution / = constant corresponds to a uniform stream incident (with velocity

i>xa) in a direction perpendicular to the axis of the cone ; the other solution leads to

<P = vtfxMWfrWix2-

P

2r2)- fir cosh-i(xlpr)].

The gas velocity is Vj+v'^+v* 2
), where v(2

> = grad <f>W and v(1) is given by formulae

(105 .7). The pressure is calculated from the formula

p —pi = — Jpi{(^i cos a+ 8<f>/dx)
2+

+ (vi sin a cos co+ 8(f>Jdr)
2+ ( — v\ sin a sin co + 8</>/r 8co)2— v\

2
}

in whi ch the second-order terms in a and x must be retained. The pressure on the surface

of the cone is found to be given by

P-Pi = PiVi*{x
2 \og{2lpx)-\{x

2+ «.
2)-

— lax cos w+ a2 cos 2co).

f A detailed account of various problems concerning these flows is given by E. Carafoli, High
Speed Aerodynamics {Compressible Flow), Pergamon Press, London 1958.

J The solution of the same problem for any thin solid of revolution is given by F. I. Frankl'
and E. A. Karpovich, Gas Dynamics of Thin Bodies, §2-7, Interscience, New York 1953.



CHAPTER XII

TWO-DIMENSIONAL GAS FLOW

§106. Potential flow of a gas

In what follows we shall meet with many important cases where the flow of

a gas can be regarded as potential flow almost everywhere. Here we shall

derive the general equations of potential flow and discuss the question of their

validity.

After passing through a shock wave, potential flow of a gas usually becomes
rotational flow. An exception, however, is formed by cases where a steady

potential flow passes through a shock wave whose intensity is constant over
its area; such, for example, is the case where a uniform stream passes through
a shock wave intersecting every streamline at the same angle,f The flow

behind the shock wave is then potential flow also. To prove this, we use
Euler's equation in the form

|grada2 -vxcurlv = -(1/p) grad/>

(cf. (2.10)), or

grad(w

+

%v2)-vxcurlv= T grad s,

where we have used the thermodynamic identity dzo = Tds+ dp/p. In
potential flow, however, w+ %v2 = constant in front of the shock wave, and
this quantity is continuous at the shock; it is therefore constant everywhere
behind the shock wave, so that

vxcurlv = -Tgrads. (106.1)

The potential flow in front of the shock wave is isentropic. In the general

case of an arbitrary shock wave, for which the discontinuity of entropy varies

over its surface, grad s # in the region behind the shock, and curl v is

therefore also not zero. If, however, the shock wave is of constant intensity,

then the discontinuity of entropy in it is constant, so that the flow behind the

shock is also isentropic, i.e. grad s = 0. From this it follows that either

curl v = or the vectors v and curl v are everywhere parallel. The latter,

however, is impossible; at the shock wave, v always has a non-zero normal
component, but the normal component of curl v is always zero (since it is

given by the tangential derivatives of the tangential velocity components,
which are continuous).

Another important case where potential flow continues despite the shock

wave is that of a weak shock. We have seen (§83) that in such a shock wave

f We have already met with this situation in connection with supersonic flow past a wedge or
cone (§§104, 105).

422
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the discontinuity of entropy is of the third order relative to the discontinuity

of pressure or velocity. We therefore see from (106.1) that curl v behind the

shock is also of the third order. This enables us to assume that we have
potential flow behind the shock wave, the error being of a high order of small-

ness.

We shall now derive the general equation for the velocity potential in an
arbitrary steady potential flow of a gas. To do so, we eliminate the density

from the equation of continuity div(/>v) = p div v+ vgrad p = 0, using Euler's

equation

(v-grad)v = -(l/p)grad/> = -(c2//>)grad/>

and obtaining

c2 divv—v«(v«grad)v = 0.

Introducing the velocity potential by v= grad <f>
and expanding in components,

we obtain the equation

{c2 -^)<f>xX+ {c2 -^)<j>yy+{c2-^)4>zz
-

f lUo.Z)
—

2(<f>X<f>y(l>Xy+<f>y<f>Zff>yz +<f)z<l)X<f)zx) — 0,

where the suffixes here denote partial derivatives. In particular, for two-
dimensional flow we have

(c2-
<f>X

2
)<f>XX+ (c2-

<f>y
2
)cf>yy~ 2cf>x<f>y<f>xy = 0. (106.3)

In these equations, the velocity of sound must itself be expressed in terms of

the velocity ; this can in principle be done by means of Bernoulli's equation,

to+ \v2 = constant, and the isentropic equation, s = constant. For a perfect

gas, c as a function of v is given by formula (80.18).

Equation (106.2) is much simplified if the gas velocity nowhere differs

greatly in magnitude or direction from that of the stream incident from
infinity.-)- This implies that the shock waves (if any) are weak, and so the

potential flow is not destroyed.

As in similar cases previously, we denote by v the small difference between
the gas velocity at a given point and that of the main stream. Denoting the

latter by vi, we therefore write the total velocity as vi + v. The potential

<f>
is taken to mean that of the velocity v: v = grad

<f>.
The equation for this

potential is obtained from (106.2) by substituting
(f> -xfy+ xvi; we take the

#-axis in the direction of the vector vi. We then regard ^ as a small quantity,

and omit all terms of order higher than the first, obtaining the following

linear equation:

826 82<t> 82J>

where Mi = vijci; the velocity of sound is, of course, given its value at

infinity.

t One such case was discussed in §105 (flow past a narrow cone), and others will be found in con-
nection with gas flow past arbitrary thin bodies.
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The pressure at any point is determined in terms of the velocity in the
same approximation, by a formula which can be obtained as follows. We
regard p as a function of w (for given s), and use the fact that {dw\dp)s = 1/p,
writing p —pi « (dpldw)s(w— wi) = pi(w-w{). From Bernoulli's equation
we have

w-wi= _i[(Vl +v)2 -vi2
] « -KV+^2)-^i%,

so that

p-pi = -pivivx-ipi(vy
2 +vz

2
). (106.5)

In this expression the term in the squared transverse velocity must in general

be retained, since, in the region near the #-axis (and, in particular, on the
surface of the body itself), the derivatives 8<f>Jdy y dtfrjdz may be large com-
pared with d<j>Jdx.

Equation (106.4), however, is not valid if the number Mi is very close to

unity {transonic flow), so that the coefficient of the first term is small. It is

clear that, in this case, terms of higher order in the ^-derivatives of <£ must
be retained. To derive the corresponding equation, we return to the original

equation (106.2); when the terms which are certainly small are neglected,

this becomes

*<j>xx + <t>yy + 4>zz = 0. (106.6)(-S)
In the present case, the velocity vx = v, and the velocity of sound c is

close to the critical velocity c* (v now denoting the total velocity). We can
therefore put c-c* = (v-c*) {dcjdv)v=Cif , or c-v = {c*-v)[\-(dcjdv)v=c^.
Using the fact that, for v = c = c^, we have by (80.4) dpjdv = —p]c, we
put (for v = c*)

dc dc dp p dc

dv dp dv c dp

so that

c-v = [(c*-v)/c]d(pc)/dp = a*(c*-z>). (106.7)

We have here used the expression (92.9) for the derivative d(pc)jdp, while a*

denotes the value of a (95.2) for v = c*; for a perfect gas, a is constant, so

that a* = a = l(y+ 1). To the same accuracy, this equation can be written

as

v/c-1 = a*(©/c*-l). (106.8)

This gives the general relation between the Mach numbers M and M% in

transonic flow.

Using this formula, we can put

^2

~ v2

2(1-^*2^(1-;)



§107 Steady simple waves 425

Finally, we introduce a new potential by the substitution <j> -+Cx(x+ <j>), so

that

^ = ^_l, *_f* *_* (106.9)
&c r* dy c* dz c*

Substituting these formulae in (106.6), we obtain the following final equation

for the velocity potential in a transonic flow (with the velocity everywhere

almost parallel to the #-axis)

:

dd> cN> 8U dU
2a*— -L = -L + -L. (106.10)

8x dx2 dy2 dz2

The properties of the gas appear here only through the constant a*. We shall

see later that this constant governs the entire dependence of the properties of

transonic flow on the nature of the gas.

The linearised equation (106.4) becomes invalid also in another limiting

case, that of very large values of Mi : however, the appearance of strong shock

waves has the result that potential flow cannot actually occur for such

values of Mi (see §119).

§107. Steady simple waves

Let us determine the general form of those solutions of the equations of

steady two-dimensional supersonic gas flow which describe flows in which

there is a uniform plane-parallel stream at infinity, which then turns through

an angle as it flows round a curved profile. We have already met a particular

case of such a solution in discussing the flow near an angle ; the flow considered

was essentially a plane-parallel one along one side of the angle, which turned

at the vertex of the angle. In this particular solution all quantities (the two

velocity components, the pressure and the density) were functions of only

one variable, the angle
<f>.

Each of these quantities could therefore be expres-

sed as a function of any other. Since this solution must be a particular case

of the required general solution, it is natural to seek the latter on the assump-

tion that each of the quantities p, p, vx , vy (the plane of the motion being

taken as the ry-plane) can be expressed as a function of any other. This

assumption is, of course, a very considerable restriction on the solution of

the equations of motion, and the solution thus obtained is not the general

integral of those equations. In the general case, each of the quantities p,

P* Vx> Vy> which are functions of the two co-ordinates x, y, can be expressed

as a function of any two of them.

Since we have a uniform stream at infinity, in which all quantities, and in

particular the entropy s, are constants, and since in steady flow of an ideal

fluid the entropy is constant along the streamlines, it is clear that s = constant

in all space if there are no shock waves in the gas, as we shall assume.
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Euler's equations and the equation of continuity are

dvx dvx 1 dp dvy 8vv 1 dp
vx— \- Vy—— = , vx h vv =

;

dx dy pdx dx
V
dy p dy'

d d

-rip®*) + —fay) = 0.
dx dy

Writing the partial derivatives as Jacobians, we can convert these equations
to the form

8
(
vx,y) 8(vx,x) 1 d(p,y)

VX Vy =
,

d{x,y) d(x,y) p d(x,y)

d(vyy y) d(vy,x) 1 8(p,x)
vx Vy =

;

d(x,y) d{x,y) p d(x,y)

d(pvx,y) d{pvyi x)

8(x,y) 8(x,y)

We now take (say) x and p as independent variables. In order to effect this

transformation, we need only multiply the above equations by d(x, y)jd{x, p),
obtaining the same equations except that 8(x,p) replaces d(x,y) in the
denominator of each Jacobian. We now expand the Jacobians, bearing in

mind that all the quantities />, vx , vy are assumed to be functions ofp but not
of x, so that their partial derivatives with respect to x are zero. We then
obtain

/ ty\ dvx 1 dy / dy\ dvy 1

r*-^/ #
= -

P Vx \

Vy- v
*Tx) -& = -

?

\ dx) dp ^\ dp dx dp)

Here dy\dx denotes (dyjdx)p . All the quantities in these equations except
dyjdx are functions ofp only, by hypothesis, and x does not appear explicitly.

We can therefore conclude, first of all, that dyjdx also is a function ofp only:

(dyjdx)p = fi{p), whence

y = xfi(p)+f2(p), (107.1)

where /2(/>) is an arbitrary function of the pressure.

No further calculations are necessary if we use the particular solution,

already known, for a rarefaction wave in flow past an angle (§§101, 104).

It will be recalled that, in this solution, all quantities (including the pressure)

are constants along any straight line (characteristic) through the vertex of

the angle. This particular solution evidently corresponds to the case where the

arbitrary function f2(p) in the general expression (107.1) is identically zero.

The function f±(p) is determined by the formulae obtained in §101.
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Equation (107.1) for various constant/) gives a family of straight lines in

the ry-plane. These lines intersect the streamlines at every point at the Mach

angle. This is seen immediately from the fact that the lines y = xfi(p) in

the particular solution with/2 = have this property. Thus one of the fami-

lies of characteristics (those leaving the surface of the body) consists, in the

general case, of straight lines along which all quantities remain constant;

these lines, however, are no longer concurrent.

The properties of the flow described above are, mathematically, entirely

analogous to those of one-dimensional simple waves, in which one family of

characteristics is a family of straight lines in the xt-plane (see §§94, 96, 97).

'////V////////V//V/V////-

Fig. 98

Hence the class of flows under consideration occupies the same place in the

theory of steady (supersonic) two-dimensional flow as do simple waves in

non-steady one-dimensional flow. On account of this analogy, such flows

are also called simple waves; in particular, the rarefaction wave which cor-

responds to the case/2 = is called a centred simple wave.

As in the non-steady case, one of the most important properties of steady

simple waves is that the flow in any region of the #y-plane bounded by a

region of uniform flow is a simple wave (cf. §97).

We shall now show how the simple wave corresponding to flow round a

given profile can be constructed. Fig. 98 shows the profile in question;

to the left of the point O it is straight, but to the right it begins to curve. In

supersonic flow the effect of the curvature is, of course, propagated only

downstream of the characteristic OA which leaves the point O. Hence the flow

to the left of this characteristic is uniform; we denote by the suffix 1 quanti-

ties pertaining to this region. All the characteristics there are parallel and at

an angle to the *-axis which is equal to the Mach angle ax = sin-1(ci/*;i).

In formulae (101.12)-(101.15), the angle
<f>
of the characteristics is measured

from the line on which v = c = C*. This means (cf. §104) that the charac-

teristic OA must have a value of <£ given by

x /^+1 -i
Cl

h = /—rcos 1—

,
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and the angle
<f>

is to be measured from OA' (Fig. 98). The angle between
the characteristics and the #-axis is then 0*-^, where

<f>*
= ai+ ^x. Accord-

ing to formulae (101.12)-(101.15), the velocity and pressure are given in
terms of (j> by

vx = v cos 9, vy = v sin0, (107.2)

*2
= '41 +^ sinV^]' (107.3)

6 = ^-^tan-i(ygcoty^), (107.4)

p = p* cos2r/(r-D j^—6. (107.5)
V y+ 1

The equation of the characteristics can be written

y = xtan((f>*-cf>) + F(cf>). (107.6)

The arbitrary function F(<f>) is determined as follows when the form of the
profile is given. Let the latter be Y = Y(X), where X and Y are the co-
ordinates of points on it. At the surface, the gas velocity is tangential, i.e.

tan0 = dY/dX. (107.7)

The equation of the line through the point (X, Y) at an angle
<f>m -<f> to the

x-axis is

y-Y = {x-X) tan(<£# -<£).

This equation is the same as (107.6) if we put

F(<f>) = Y-XtanO^-^). (107.8)

Starting from the given equation Y = Y(X) and equation (107.7), we express

the form of the profile in parametric equations X = X(6), Y = Y(6), the
parameter being the inclination 6 of the tangent. Substituting 6 in terms of

<f>

from (107.4), we obtain X and Fas functions of
<f>;

finally, substituting these
in (107.8), we obtain the required function F((f>).

In flow past a convex surface, the angle 6 between the velocity vector
and the x-axis decreases downstream (Fig. 98), and the angle <£*-0 between
the characteristic and the x-axis therefore decreases monotonically also (we
always mean the characteristic leaving the surface). For this reason, the

characteristics do not intersect (in the region of flow, that is). Thus, in the

region downstream of the characteristic OA (which is a weak discontinuity),

we have a continuous (no shock waves) and increasingly rarefied flow.

The situation is different in flow past a concave profile. Here the inclina-

tion 6 of the tangent increases downstream, and therefore so does the inclina-

tion of the characteristics. Consequently, the characteristics intersect in the
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region of flow. On different non-parallel characteristics, however, all

quantities (velocity, pressure, etc.) have different values. Thus all these

quantities become many-valued at points where characteristics intersect,

which is physically impossible. We have already met a similar phenomenon

in connection with a non-steady one-dimensional simple compression wave

(§94). As in that case, it signifies that in reality a shock wave is formed.

The position of the discontinuity cannot be completely determined from the

solution under consideration, since this was derived on the assumption that

there are no discontinuities. The only result that can be obtained is the

place where the shock wave begins (the point O in Fig. 99, where the shock

is shown by the continuous line OB). It is the point of intersection of charac-

teristics whose streamline lies nearest to the surface of the body. On stream-

lines passing below O (i.e. nearer to the surface) the solution is everywhere

one-valued; its many-valuedness "begins" at O. The equations for the co-

ordinates #o, yo of this point can be obtained in the same way as the cor-

responding equations which determine the time and place of formation of

the discontinuity in a one-dimensional non-steady simple wave. If we regard

the inclination of the characteristics of a function of the co-ordinates (x, y)

of points through which they pass, then this function becomes many-valued

when x and y exceed certain values xq, yo. In §94 the situation was the same

in relation to the function v(x, t), and so we need not repeat the arguments

used there, but can write down immediately the equations

{py\H)x = 0, {&y\m* = 0, (107.9)

which now determine the place of formation of the shock wave. Mathemati-

cally, this point is a cusp on the envelope of the family of straight charac-

teristics (cf. §96).

In flow past a concave profile, the simple wave exists along streamlines

passing above O as far as the points where these lines intersect the shock

wave. The streamlines passing below O do not intersect the shock wave at

all, but we cannot conclude from this that the solution in question is valid

at all points on these streamlines. The reason is that the shock wave has a
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perturbing effect even on the gas which flows along these streamlines, and so

alters the flow from what it would be in the absence of the shock wave. By
a property of supersonic flow, however, these perturbations reach only the

gas downstream of the characteristic OA (of the second family) which leaves

the point where the shock wave begins. Thus the solution under considera-

tion is valid everywhere to the left of AOB. The line OA itself is a weak
discontinuity. We see that there cannot be a continuous (no shock waves)
simple compression wave everywhere in flow past a concave surface, which
would correspond to the simple rarefaction wave in flow past a convex surface.

The shock wave formed in flow past a concave profile is an example of a

shock which "begins" at a point inside the stream, away from the solid walls.

The point where the shock begins has some general properties, which may be
noted here. At the point itself the intensity of the shock wave is zero, and
near the point it is small. In a weak shock wave, however, the discontinuities

of entropy and vorticity are of the third order of smallness, and so the change
in the flow on passing through the shock differs from a continuous potential

isentropic change only by quantities of the third order. Hence it follows

that, in the weak discontinuities which leave the point where the shock wave
begins, only the third derivatives of the various quantities can be discontinu-

ous. There will in general be two such discontinuities : a weak discontinuity

coinciding with the characteristic, and a weak tangential discontinuity coin-

ciding with the streamline (see the end of §89).

§108. Chaplygin's equation: the general problem of steady two-
dimensional gas flow

Having dealt with steady simple waves, let us now consider the general

problem of an arbitrary steady plane potential flow. We assume that the flow

is isentropic and contains no shock waves.

As was first shown by S. A. Chaplygin in 1902, it is possible to reduce
this problem to the solution of a single linear partial differential equation.

This is achieved by means of a transformation to new independent variables,

the velocity components vx , vy ; this transformation is often called the hodo-

graph transformation, the ^%-plane being called the hodograph plane and the

xy-plane the physical plane.

For potential flow we can replace Euler's equations by their first integral,

Bernoulli's equation:

w+&2 = w . (108.1)

The equation of continuity is

T&*) + TV*) = 0. (108.2)
dx By

For the differential of the velocity potential
<f>
we have d<j> = vxdx+vydy.

We transform from the independent variables x, y to the new variables vx , vy
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by Legendre's transformation, putting

d<f> = d(xvx)-xdvx+ d(yvy)-ydvy ,

introducing the function

d> = -cff + xvz+yvy, (108.3)

and obtaining

d<I> = xdvx +ydvy,

where <1> is regarded as a function of vx and vy . Hence

x = d<bldvx , y = dQjdvy. (108.4)

It is more convenient, however, to use, not the Cartesian components of the

velocity, but its magnitude v and the angle 9 which it makes with the a:-axis

:

•vx = vcosd, Vy = vsin6. (108.5)

The appropriate transformation of the derivatives gives, instead of (108.4),

3<J> sin0 8® .
S<D cos0 dd> /ino , x

x = cos e- —
, y = sin0—- + —

. (108.6)

8v v dQ 8v v 86

The relation between the potential <p and the function O is given by the

simple formula

<£ = -®+vd®ldv. (108.7)

Finally, in order to obtain the equation which determines the function

0(a, 0), we must transform the equation of continuity (108.2) to the new

variables. Writing the derivatives as Jacobians:

d{pwx,y) d(pvy,x) _
8(x,y) d(x,y)

multiplying by d(x
}
y)]d(v, 6) and substituting (108.5), we have

8(pv cos 0, y) 8{pv sin 6, x) _
8(v,6) d(v, 0)

To expand these Jacobians, we must substitute (108.6) for x and y. Further-

more, since the entropy s is a given constant, if we express the density as a

function of s and zv and substitute to = Wq - %v2 we find that the density can

be written as a function of v only: p = p(v). We therefore obtain, after a

simple calculation, the equation

d(pv) I 8® 1 S2<X> \ 32$
-Jl-L { + + pv

—— = 0.

dv \8v v 862 J dv2

According to (80.5),

d(pv) / v* \
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and so we have finally Chaplygin's equation for the function <!>(#, 6)

:

62 <J> v2 82<& 3<X>

+ 7-^5 -^- + ^^T = °- (108.8)
£02 1-^2 &,2 ^

Here the velocity of sound is a known function c(v), determined by the
equation of state of the gas together with Bernoulli's equation.

The equation (108.8), together with the relations (108.6), is equivalent to
the equations of motion. Thus the problem of solving the non-linear equa-
tions of motion is reduced to the solution of a linear equation for the function
®(v, 6). It is true that the boundary conditions on this equation are non-
linear. These conditions are as follows. At the surface of the body, the gas
velocity must be tangential. Expressing the equation of the surface in the
parametric form X = X(6), Y = Y(0) (as in §107), and substituting X and
Y in place of x and y in (108.6), we obtain two equations, which must be
satisfied for all values of 0; this is not possible for every function ®(v, 6).

The boundary condition is, in fact, that these two equations are compatible
for all 6, i.e. one of them must be deducible from the other.

The satisfying of the boundary conditions, however, does not ensure that

the resulting solution of Chaplygin's equation determines a flow that is

actually possible everywhere in the physical plane. The following condition
must also be met: the Jacobian A = 8(x,y)jd(d, v) must nowhere be zero,

except in the trivial case when all its four component derivatives vanish.

It is easy to see that, unless this condition holds, the solution becomes com-
plex when we pass through the line (called the limiting line) in the xy-plane
given by the equation A = O.f For, let A = on the line v = v (6), and
suppose that (dyjdd)v ^ 0. Then we have

-a(-\ -
8(x,y) 8{v,d)

-
d^ y) = (

8x
\ =0

\8yJ v 8(v,d) d(v,y) 8{v,y) \8v! y

Hence we see that, near the limiting line, v is determined as a function of x
(for given y) by

x— xq — %(d2xldv2)y (v — vo)2 ,

and v becomes complex on one side or the other of the limiting line. J
It is easy to see that a limiting line can occur only in regions of supersonic

flow. A direct calculation, using the relations (108.6) and equation (108.8),

gives

1

A = -
v

e2d> l ao>\ 2 v2 i»
+

86dv v 89 J \-v2\c2 \ 8v2
(108.9)

t There is no objection to a passage through points where A becomes infinite. If 1/A = on some
line, this merely means that the correspondence between the xy and vQ planes is no longer one-to-
one : in going round the xy-plane, we cover some part of the w#-plane two or three times.

X This result clearly remains valid even if (8
2xl8v2)y vanishes with A but {dxjdv)y again changes

sign for v = v , i.e. the difference x—x is proportional to a higher even power of v— vq.
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It is clear that, for v ^ c, A > 0, and A can become zero only if v > c.

The appearance of limiting lines in the solution of Chaplygin's equation

indicates that, under the given conditions, a continuous flow throughout the

region is impossible, and shock waves must occur. It should be emphasised,

however, that the position of these shocks is not the same as that of the

limiting lines.

In §107 we discussed the particular case of steady two-dimensional super-

sonic flow (a simple wave), which is characterised by the fact that the velocity

in it is a function only of its direction: v — v(6). This solution cannot be

obtained from Chaplygin's equation, since 1/A = 0, and the solution is

"lost" when the equation of continuity is multiplied by the Jacobian A in the

transformation to the hodograph plane. The situation is exactly analogous

to that found in the theory of non-steady one-dimensional flow. The re-

marks made in §98 concerning the relation between the simple wave and the

general integral of equation (98.2) are wholly applicable to the relation be-

tween the steady simple wave and the general integral of Chaplygin's equation.

The fact that the Jacobian A is positive in subsonic flow enables us to

demonstrate an interesting theorem due to A. A. Nikol'skii and G. I.

Taganov (1946). We have identically

1 _ 8(0, v) _ 8(6, v) 8(x,v)

A 8(x,y) 8(x,v) 8(x,y)

or

A \8x/ v \dyj

In a subsonic flow A > 0, and we see that the derivatives (ddjdx)v and

(dvjdy)x have the same sign. This has a simple geometrical significance : if

we move along a line v = constant = vq, with the region v < vo to the right,

the angle 6 increases monotonically, i.e. the velocity vector turns always

counterclockwise. This result holds, in particular, for the line of transition

between subsonic and supersonic flow, on which v = c = c%.

In conclusion, we may give Chaplygin's equation for a perfect gas, writing

c explicitly in terms of v :

Q2® l- (y -l)„2/(y+1K2 £2$ g<J>

+ v2 V v = 0. (108.11)

_ = |
- ( _ . (108.10)

862 \-v2\c*2 8v2 8v

This equation has a family of particular integrals expressible in terms of

hypergeometric functions.-]"

§109. Characteristics in steady two-dimensional flow

Some general properties of characteristics in steady (supersonic) two-

dimensional flow have already been discussed in §79. We shall now derive

t See, for instance, L. I. Sedov, Two-dimensional Problems of Hydrodynamics and Aerodynamics

(Ploskie zadachi gidrodinamiki i aerodinamiki), Moscow 1950.



434 Two-dimensional Gas Flow §109

the equations which give the characteristics in terms of a given solution of the
equations of motion.

In steady two-dimensional supersonic flow there are, in general, three
families of characteristics. All small disturbances, except those of entropy
and vorticity, are propagated along two of these families (which we call the
characteristics C+ and C_); disturbances of entropy and vorticity are pro-
pagated along characteristics (C ) of the third family, which coincide with
the streamlines. For a given flow, the streamlines are known, and the problem
is to determine the characteristics belonging to the first two families.
The directions of the characteristics C+ and C_ passing through each point

in the plane lie on opposite sides of the streamline through that point, and make
with it an angle equal to the local value of the Mach angle a (Fig. 41, §79).
We denote by m the slope of the streamline at a given point, and by m+> m-
the slopes of the characteristics C+ , C_. Then we have

whence

m+— mo

1 + motn+

m-—niQ
= tana, — =

1 + mom-

mo + tan a

1 + mo tan a

— tan a,

the upper signs everywhere relate to C+ and the lower to C_. Substituting
m = Vyjvx, tana = cj^{v2-c2

) and simplifying, we obtain the following
expression for the slopes of the characteristics

:

/ dy\ vxvy ± c\/(v2 - c2)

If the velocity distribution is known, this is a differential equation which
determines the characteristics C+ and C-.f

Besides the characteristics in the xy-plane, we may consider those in the
hodograph plane, which are especially useful in the discussion of isentropic
potential flow; we shall take this case in what follows. Mathematically, these
are the characteristics of Chaplygin's equation (108.8), which is of hyperbolic
type for v > c. Following the general method familiar in mathematical
physics (see §96), we form from the coefficients the equation of the charac-
teristics :

dv*+ dd2v2/(l-v2
lc*) = 0,

or

/d0\ 1 \iv2 \

Ur^Jh- 1
)-

(m2)

t Equation (109.1) also determines the characteristics for steady axially symmetric flow if v„ and
y are replaced by vT and r, where r is the cylindrical co-ordinate (the distance from the axis
ofsymmetry, which is the *-axis); it is clear that the derivation is unchanged if we consider, instead of
the acy-plane, an xr-plane through the axis of symmetry.
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The characteristics given by this equation do not depend on the particular

solution of Chaplygin's equation considered, because the coefficients in that

equation are independent of O. The characteristics in the hodograph plane

are a transformation of the characteristics C+ and C- in the physical plane,

and we call them respectively the characteristics V+ and T_, in accordance

with the signs in (109.2).

The integration of equation (109.2) gives relations of the form J+(v, d)

= constant, J-(v, 6) = constant. The functions /+ and /_ are quantities

which remain constant along the characteristics C+ and C- (i.e. Riemann

invariants). For a perfect gas, equation (109.2) can be integrated explicitly.

Fig. 100

There is, however, no need to go through the calculations, since the result

can be seen from formulae (107.3) and (107.4). For, according to the general

properties of simple waves (see §97), the dependence of v on 6 for a simple

wave is given by the condition that one of the Riemann invariants is constant

in all space. The arbitrary constant in formulae (107.3) and (107.4) is
<f>+;

eliminating the parameter
<f>
from these formulae, we obtain

jt-e±[*r*J[to+ l)(l-g)]-

The characteristics in the hodograph plane are a family of epicycloids,

occupying the space between two circles of radii v = C* and v =
V[(y+i)/(y-i)]^(Fig.ioo).

For isentropic potential flow, the characteristics T+ , T_ have the following

important property: the families T+ , T~ are orthogonal to the families C_,
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C+ respectively (it is assumed that the co-ordinate axes of * and y are trans-

formed parallel to those of vx and vy).f
To prove this, we start from equation (106.3) for two-dimensional potential

flow, which is of the form

82
<f>

82
<f>

82
<f>

8x2 8xdy dy2

with no free term. The slopes m± of the characteristics C+ are the roots of
the quadratic

Am2-2Bm+C = 0.

Let us consider the expression dvx+dx~+ dvy
+dy~, in which the velocity

differentials are taken along the characteristics T+ , and the co-ordinate

differentials along C-. We have, identically,

dvx+ dx~+ dvy+dy-

82
<f>

82
<f>

82
<f>= —rd*+d*- + —

—

(dx+dy-+ dx-dy+) +—d>+d>-
ox* dxdy 8y2

Dividing by d*+d#- we obtain as the coefficients of 82cf>[dxdy and 82(f>/8y
2

respectively m+ +m__ = 2BJA and m+m_ = CJA. It is then clear that the

expression is zero, by (109.4). Thus

dvx
+dx~+ dvy+dy- = dv+.dr- = 0.

Similarly, dv~»dr+ = 0. These equations are equivalent to the result stated.

§110. The Euler-Tricomi equation. Transonic flow

The investigation of the properties of the flow resulting from the transition

between subsonic and supersonic flow is of fundamental interest. Steady
flows in which this transition occurs are called mixed or transonic flows,

and the surface where the transition occurs is called the transitional or sonic

surface.

Chaplygin's equation is particularly useful in investigating the flow near
the transition, since it is much simplified there. At the boundary where the

transition occurs v = c = c# , and near it (in the transonic region) the

differences v— c and v — c* are small; they are related by (106.8):

(fl/0-1 =a*[(^*)-l].

Let us effect the corresponding simplification in Chaplygin's equation. The
third term in equation (108.8) is small compared with the second, which
contains 1 — <v

2\c2 in the denominator. In the second term we put approxi-

mately

V2 c*2 c*

\-v2\c2 2(1 -v[c) 2a*(l-*Vc*)

t This does not apply to the characteristics of axisymmetric flow in the #r-plane.
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Finally, replacing the velocity v by a new variable

r) = (2a*)*(s>-c*)/c*,

we obtain the required equation in the form

320 32<I>

drf
If

302
= 0.

437

(110.1)

(110.2)

An equation of this form is called in mathematical physics the Euler-Tricomi

equation.^ In the half-plane 17 > it is hyperbolic, but in 77 < it is elliptic.

Fig. 101

We shall discuss here some mathematical properties of this equation which
are important in connection with various physical problems.

The characteristics of equation (110.2) are given by the equation rjd^ — dd2

= 0, which has the general integral

6±&)* = C, (110.3)

where C is an arbitrary constant. This equation represents two families of

curves in the 7j0-plane, which are branches of semi-cubical parabolae in the

right half-plane with cusps on the 0-axis (Fig. 101).

In investigating the flow in a small region| of space, where the direction of

the gas velocity varies only slightly, we can always take the direction of the

ar-axis such that the angle 6 measured from it is small throughout the region

considered. The equations (108.6) which determine the co-ordinates x, y

t The application of this equation to the problem here considered is due to F. I. Fbankl' (1945).
The mathematical theory of equation (110.2) is given by F. Tricomi, Linear Equations of the Mixed
Type (Sulle equazioni lineari . . . di tipo misto), Memorie della Reale Accademia Nazionale dei Lincei,

classe di scienze fisiche, ser. 5, 14, 133, 1922.

J This phrase must not be taken literally, of course. The region concerned may be the neighbour-
hood of the point at infinity, i.e. the region at large distances from the body.

15
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from the function 0(i?, 6) are then much simplified also:f x = (2a#)*SO/2iy,

3; = 5O/50. In order to avoid the appearance of the factor (2a*)*, we shall

replace the co-ordinate x by x(2^)-^, and call the latter quantity x. Then

x = BQ/drj, y = 50/50. (110.4)

It is useful to note that, since it is so simply related to O, the function

y(r), 0) (but not x(r), 6)) also satisfies the Euler-Tricomi equation. Using
this fact, we can write the Jacobian of the transformation from the physical

plane to the hodograph plane as

'-S3—--—SMS" <•'«>

As has already been mentioned, the Euler-Tricomi equation has usually to

be applied to investigate the properties of the solution near the origin in the

?70-plane. In cases of physical interest, the origin is a singular point of

the solution. For this reason especial significance attaches to the family of

particular integrals of the Euler-Tricomi equation which possess certain

properties of homogeneity. These solutions are homogeneous in the variables

62 and T7
3

; such solutions must exist, since the transformation 2 -> ad2
,

7)3 ->o^3 leaves the equation (110.2) unchanged. We shall seek these solu-

tions in the form O = 92k f(g), £ = l-4i73/902 , where k is a constant, the

degree of homogeneity of the function O with respect to the transformation

mentioned. We have taken the variable £ so that it vanishes on the charac-

teristics which pass through the point 77 = 6 = 0. Making the above sub-

stitution, we obtain for the function /(£) the equation

ttl-£)f" + [%-2k-m-2k)]f'-k(k-i)f = 0.

This is a hypergeometric equation. Using the well-known expressions for the

two independent integrals of that equation, we find the required solution

(for 2k+ ± not integral):

/ 4^3\2fc+l/6 / 4^3X1

(110.6)

Using the relations between hypergeometric functions of arguments z, l/#,

1 — z, 1/(1 — z) and zj{\ — z), we can also put this solution in five other forms,

t We omit a factor 1/c. on the right-hand sides; this simply means that <b is replaced by c„<I>

which does not affect equation (110.2) and is.therefore always permissible.
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all of which are needed in various problems. We shall give two of these:

902 /

<D* = 02k AF^-k, -k+ %; |; z±.) +

r / 9^2 \

<h = rF\AF[-k, -k+ i; i; —
J
+

^ / 9^2 \i
+ 2^TF(-* + *» "* + *• - 4"i)Jj (

110 -8)

the constants A and 5 in formulae (110.6)-(110.8) are not the same, of

course. These expressions yield at once the following important property of

the functions O*, which is not evident from (1 10.6) : the lines rj = and =
are not singular lines (it is seen from (110.7) that, near rj = 0, O* can be
expanded in integral powers of rj, and from (110.8) the same is true of 6).

It is seen from the expression (110.6) that the characteristics, on the other

hand, are singular lines of the general (i.e. containing the two constants A
and E) homogeneous integral 0& of the Euler-Tricomi equation: if 2k+% is

not an integer, the factor (902 - 4?73)
2*+1/6 has branch points, while if 2k+£ is

an integer, one term of (110.6) is meaninglessf (or degenerates to the other
term if 2k+ a = 0), and must be replaced by the second independent solu-

tion of the hypergeometric equation, which in this case has a logarithmic

singularity.

The following relations hold between the integrals <&k with different values
of*:

<D& = fc-jfc-i/e^-Vp+i/e, (no.9)

Oa-i/2 = 8^/86. (110.10)

The first of these follows immediately from (110.6), and the second from the
fact that d®]cldd satisfies the Euler-Tricomi equation, and its degree of homo-
geneity is that of ®fc_i/2 . In these formulae O* means, of course, the general
expression, with two arbitrary constants.

In investigating the solution near the point rj = 6 = 0, we have to follow
its variation along a contour round this point. For example, let the function

<S>k (110.6) represent the solution at the point A near the characteristic

$ - 2^3/2 (Fig. 102), and suppose that we require the form of the solution
near the characteristic 6 = - f^3^ (at the point B). The passage from A to B
involves crossing the axis of abscissae, and 6 = is a singular line of the
hypergeometric functions in the expression (110.6), so that their argument is

infinite there. In order to go from A to B, therefore, it is necessary to trans-
form the hypergeometric functions into functions of the reciprocal argument

t We recall that the series F(a, /?; y; z) is meaningless for y = 0, -1, -2, ...
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902l(9d2— 4r)3), for which 6 = is not a singularity, and then change the sign

of 0, finally returning to the original argument by repeating the transforma-

tion. In this way we obtain the following transformation formulae for the

functions which appear in (110.6):

Fi->
Fi

2sin(2fc+ A)7r

-F2
F2 ->

r(-2&-i)r(-2&+t)
+ F* • 2-4*-1/3— -— -~\

F(-2k)T(-2k + %y

V(2k+ i)T(2k+ i)

(110.11)

2sin(2£ + i)7r

where F± and F% signify

+ p1
. 24A+1/3

r(2*+i)r(2*+i)'

Fi~\0\**F(-k, -k + i; -2k + i; 1-^),
(110.12)

F2 = \d\** 1 -
4rj

902

,3 |2ft+l/6

Fik + h k + %; 2ft + J; 1-
4^
902 )•

in which the moduli of and 1 — 4^3/902 are taken in the coefficients of the

hypergeometric functions.

i-iG. 102

We can similarly obtain transformation formulae for the passage from

A' to B' (Fig. 102) round the origin in the opposite direction. The calcula-

tions are more involved, since we have to pass through three singularities

of the hypergeometric function (one with = and two with 17 = 0; we
recall that the singularities of a hypergeometric function with argument z
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are z = 1 and z = oo). The final formulae are

sin(4&-AW r(-2k-±)T(-2k + i)
Fi -> -

. ;oi
'f-fl +F2 • 2-^+2/3 cos(2£ + i^-i !!ii ZIl

t

sm(2^ + i)7r ^
6;

r(-2*)r(-2* + f)

(110.13)

sin(4fc-iW r(2^+ i)r(2fe + |)

sm(2ft+ i)7r
V ^ r(2&+l)I\2fc + i)

As well as this family of homogeneous solutions there are, of course, other

families of particular integrals of the Euler-Tricomi equation. We may
mention here a family which results from a Fourier expansion in terms of 6.

If we seek O in the form

<*>» = gXv>±ive
> (110.14)

where v is an arbitrary constant, we obtain for the function gv the equation

gv
" + v2r]gv

= 0. This is the equation for the Airy function; its general

integral is

gJh) = VvZi(W/2
), (110.15)

where Z
l
is an arbitrary linear combination of Bessel functions of order \.

Finally, it is useful to bear in mind that the general integral of the Euler-
Tricomi equation may be written

*-J7(Qd*, £ = 23-3^+30, (110.16)

where/(Q is an arbitrary function and the integration in the complex ^-plane
is taken along any contour Cz at whose ends the derivative / '(£) has equal
values. For a direct substitution of (110.16) in the Euler-Tricomi equation
gives

82<& 82Q>
~ n-yp = 9

J
(*-rj*)f"(Qdz = 3

J
/"(Qd£

z

3[/'(0]cc - 0,

drj

i.e. the equation is satisfied.

§111. Solutions of the Euler-Tricomi equation near non-singular
points of the sonic surface

Let us now ascertain which solutions % correspond to cases where the gas
flow has no physical singularities (weak discontinuities or shock waves)
near the transition. To do this it is more convenient to start, not from
the Euler-Tricomi equation itself, but from the equation for the velocity
potential in the physical plane. This equation has been derived in §106;
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for a two-dimensional flow, equation (106.10) becomes, with the substitution

x -> x(2x
itt)

1^,

d<f> BU d2
<f>JL-JL^—L. (ni.i)

dx 8x2 By2

We recall that the potential $ in this equation is defined so that its derivatives

with respect to the co-ordinates give the velocity according to the equations

d<f>/dx = 7), 8<f>Jdy = 0. (111.2)

We may also note that the Euler—Tricomi equation can be obtained directly

from equation (111.1) by changing to the independent variables d,rj by

Legendre's transformation, with O = —
(f>
+ xr]+yd, or

cf,
= -<j>+ r)d®ldri + 9d<frld0. (111.3)

Taking the origin in the ry-plane at the point on the transition line whose

neighbourhood we are investigating, we expand <j> in powers of x and y. In

the general case, the first term of an expansion which satisfies equation (111.1)

is

tf>
= xyfa. (Hl-4)

Here = xja, 17 = y[a, so that

O = adrj. (111.5)

It is clear from the degree of homogeneity of this function that it corresponds

to one of the functions O5/6 ; this is the second term of the expression (110.7),

in which the hypergeometric function with k = 5/6 reduces to 1 simply:

^F(-i0;|;4r
?
3/9^) = ^.

If we wish to find the equation of the transition line in the physical

plane, the first term of the expansion does not suffice. The next term is of

degree 1, i.e. it corresponds to one of the functions Oi, namely the first term

in the expression (110.7), which reduces to a polynomial for k = 1:

W(-l, -i;
|; 4^/902) = 2+ ^3.

Thus the first two terms of the expansion of O are

0> = ^0+ 6(02 + ^3). (111.6)

Hence

x = ad+ brj2
,

y = ar] + 2bd.

The transition line (-q = 0) is the straight line y — Ibxja.

To find the equation of the characteristics in the physical plane we need only

the first term of the expansion. Substituting = xja, r\ = y\a in the equation

of the hodograph characteristics = ± f tfl2 , we obtain x = ± %y3/2IVa >

(111.7)
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i.e. again two branches of a semi-cubical parabola with a cusp on the tran-

sition line. This property of the characteristics is evident also from the fol-

lowing simple argument. At points on the transition line, the Mach angle

is \tt. This means that the tangents to the characteristics of the two families

coincide, so that there is a cusp (Fig. 103). The streamlines intersect the

transition line perpendicularly to the characteristics, and do not have singu-

larities there.

Streamline

Transition line

Fig. 103

The solution (111.6) is not applicable in the exceptional case where the

streamline is perpendicular to the transition line at the point considered.f

Near such a point the flow is evidently symmetrical about the #-axis. This

case requires special consideration, which has been given by F. I. Frankl'
and S. V. Fal'kovich (1945).

The symmetry of the flow means that, when the sign of y is changed, the

velocity vv changes sign and vx remains unchanged. That is, the potential
<f>

must be an even function of y, and the potential O an even function of 6.

The first terms in the expansion of $ in this case are therefore of the form

<f>
= ±ax2+ia2xy2 + ^aZy4; (111.8)

the relative order of smallness of x and y is not known a priori, so that all

three terms may be of the same order. Hence we find the following formulae
for the transformation from the physical plane to the hodograph plane:

rj = ax+^azy2
,

6 = a2xy + ^a3y3
.

(111.9)

t This would correspond to the case a
the Jacobian A vanishes on the line i) = 0.

in (111.6); the solution then ceases to hold, because
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Without explicitly solving these equations for x and y, we can easily see that

the degree of the function y(6, 17) is ^-. Hence the corresponding function

<J> has & = 1+1 = f, i.e. it is a particular case of the general integral 2/3 .

Eliminating x from equations (111.9), we obtain a cubic equation for the

function y{6, 77)

:

{ayf- Z-qay + Zd = 0. (111.10)

-=2T

Supersonic
region

-4 *

Fig. 104

For 9d2— 4173 > 0, i.e. throughout the region to the left of the hodograph
characteristics which pass through the point 77 = 6 = (including the whole

of the subsonic region 77 < 0; Fig. 104), this equation has only one real

root, which must be the function y(6, 77). In the region to the right of the

characteristics, all three roots are real, and we must take the one which is the

continuation of the real root in the region to the left.

The characteristics in the physical plane (which pass through the origin)

are obtained by substituting the expressions (111.9) in the equation 4?73

= 992 . This gives two parabolae

:

the characteristics 23 and 56: x = —^ay2
,

the characteristics 34 and 45 : x = ^ay2 .

(111.11)

The numbers show which two regions in the physical plane are separated by

the characteristic in question. The transition line (77 = in the hodograph

plane) is the parabola x = —\ay2 in the physical plane (Fig. 104). We may
notice the following property of the point where the transition line intersects

the axis of symmetry : four branches of characteristics leave this point, whereas

only two leave any other point on the transition line.
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Fig. 104 shows by corresponding numbers the regions of the hodograph

plane which correspond to the various regions of the physical plane. This

correspondence is not one-to-one ;f when we go completely round the origin

in the physical plane, the region between the two characteristics in the hodo-
graph plane is covered three times, as shown by the dashed line in Fig. 104,

which is twice "reflected" from the characteristics.

Since the function y{6, rj) itself satisfies the Euler-Tricomi equation,

it must be obtainable from the general integral <E>i/6 . Near the characteristic

23 in the physical plane, it is

1 /30 / 4t}3\

y --J-2
F(-h ^ * ! l -^)' (HU2)

the first term in (110.6) has no singularity on this characteristic. Continuing

this analytically to the neighbourhood of the characteristic 56 (by a path

through the subsonic region 1, i.e. by means of formulae (110.13)), we obtain

the same function there. Near the characteristics 34 and 45, however,

y(9, rj) is given by linear combinations of that function and

i.e. the second term of (110.6). These combinations are obtained by analy-

tical continuation, using formulae (110.11); here it must be borne in mind that

the square root in (1 1 1. 13) changes sign at each "reflection" from a hodograph
characteristic.

Mathematically, these results show that the functions <J>i/6 are linear com-
binations of the roots of the cubic equation

P-3r)f+ 30 = 0, (111.14)

i.e. they are algebraic functions.^ As well as Oi
7 6,

all the O& with

k = i±±n, » = 0,1,2,... (111.15)

reduce to algebraic functions; they are obtained from Oi/6 , according to

formulae (110.9) and (110.10), by successive differentiation, a remark due
to F. I. Frankl' (1947).

The functions <!>£ with

k = ±|«, k = $±$n, (111.16)

in which the hypergeometric function reduces to a polynomial,!t a^so reduce

t In accordance with the fact that A = oo on the characteristic x =\ay" in the physical plane;
see the first footnote to §108.

| It is not convenient in practice to use the explicit forms of these functions, which are obtained
from (111.14) by Cardan's formula.

ff Here it must be recalled that F(a, /? ; y ; z) reduces to a polynomial if a (or /?) is such that a — —*
or y—a «• — «.
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to algebraic functions ; e.g. for k = \n we have the first term of the expression

(110.6), and for k — — \n the second term.

These three families of algebraic functions O^ include, in particular, all

the functions which can be potentials O corresponding to flows having no

singularity in the physical plane. In such flows, all the terms in the expansion

of O near an asymmetric point on the transition line (the first two terms of

which are given by formula (111.6)) must have either k = £ + \n or k — 1 + \n.

The expansion of O near a symmetric point, however, which begins with a

term with k = § , can also contain functions with k = f+ \n.

§112. Flow at the velocity of sound

The simplified form of Chaplygin's equation (i.e. the Euler-Tricomi

equation) is of fundamental importance in the gas dynamics of steady flow

past bodies, since it must be used to investigate the basic qualitative pro-

perties of such flow. These include, in the first place, problems concerning

the formation of shock waves. For example, if a shock wave is formed in

subsonic flow (in a local supersonic region adjoining the surface of the bodyf),

it must terminate at a finite distance from the body, and the question arises

of the properties of its terminal point (see §113). Another similar problem

is that of the properties of a shock wave just formed near its intersection with

the surface. In both cases the shock wave is weak, i.e. it is in a transonic

region, and so the investigation must be performed by means of the Euler-

Tricomi equation.];

We shall discuss here another problem of theoretical importance, that of

the nature of steady two-dimensional flow past a body when the velocity

of the incident stream is exactly equal to the velocity of sound. We shall see, in

particular, that a shock wave must extend from the surface of the body to

infinity. From this we can draw the important conclusion that the shock wave

must first appear for a Mach number Moo which is certainly less than unity.

For, let us consider two-dimensional flow past a body ("wing") of infinite

span and arbitrary (not necessarily symmetrical) cross-section. Here we are

interested in the flow pattern at distances from the body which are large

compared with its dimension. For convenience we shall first describe the

results in a qualitative manner, and afterwards give a quantitative calculation.

In Fig. 105, AB and A'B' are transition lines, so that the subsonic region

lies to the left of them (upstream) ; the arrow shows the direction of the main

stream, which we shall take as the #-axis, with the origin anywhere near the

body. At a certain distance from the transition line we have shock waves

leaving the body (EF and E'F' in Fig. 105). It is found that the characteristics

leaving the body (between the transition line and the shock wave) can be

t The smallest Mach number Moo < 1 of the main stream for which the local value ofM anywhere

exceeds unity is sometimes called the critical Mach number.

J It should be recalled that, in a weak shock wave, the changes in the entropy and vorticity are

of a high order of smallness. In the first approximation, therefore, we can assume isentropic potential

flow on both sides of the discontinuity.
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divided into two groups. The characteristics in the first group meet the tran-

sition line and end there (that is to say, they are "reflected" from it as

characteristics which reach the body; Fig. 105 shows one such characteristic).

The characteristics in the second group end at the shock wave. The two

groups are separated by limiting characteristics, the only ones which go to

infinity and meet neither the transition line nor the shock wave (CD and CD'
in Fig. 105). Since disturbances (caused, for instance, by a change in the

shape of the body) which are propagated from the body along characteristics

of the first group reach the boundary of the subsonic region, it is clear that

the part of the supersonic region which lies between the transition line and

the limiting characteristic affects the subsonic region, but the flow to the right

of the limiting characteristics has no effect on the flow to the left: the flow

to the left is not affected by a disturbance of the flow to the right (such as a

Fig. 105

change in the profile to the right of C or C"). The flow behind the shock wave
has, as we know, no effect on the flow in front of it. Thus the whole flow

can be divided into three parts (to the left of DCC'D', between DCC'D' and

FEE'F', and to the right of FEE'F'), such that the flow in the second part

has no effect on that in the first, and the flow in the third part has no effect

on that in the second.

We shall now give a quantitative account (and verification) of the flow

pattern just described.

The origin in the hodograph plane (0 = 77 = 0) corresponds to an infinitely

distant region of the physical plane, and the hodograph characteristics

leaving the origin correspond to the limiting characteristics CD and CD'.
Fig. 106 shows the neighbourhood of the origin, the letters corresponding to

those in Fig. 105. The shock wave corresponds not to one line but to two lines

in the hodograph plane (corresponding to the gas flow on the two sides of the
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discontinuity); the region between these lines (shaded in Fig. 106) does not

correspond to any part of the physical plane.

We must ascertain, first of all, which of the general integrals <&% corres-

ponds to this case. If 0(0, rj) is of degree k, then the functions x = 50/5^
and y = dQ>jdd are homogeneous and of degree k— ± and k — \ respectively.

As and r) tend to zero we must, in general, reach infinity in the physical

plane (x and y tend to infinity). It is evident that, for this to be so, we must
have k < a. The limiting characteristics in the physical plane, however,

need not lie entirely at infinity, i.e. y = ± oo need not hold everywhere on
the curve 902 = 4^3 . In that case (for 2k+e < I), the second term in the

brackets in (110.6) must be zero. Thus the function 0(0, rf) must be given

by the first term of (110.6):

Fig. 106

The function y(d, 77) (which also satisfies the Euler—Tricomi equation) is

of the same form, but with k— \ instead of k.

If the expression (112.1) is valid near (e.g.) the upper characteristic

(0 = + f 77
3/2

), however, it will not be valid near the lower characteristic also

(6 = — fr)Z/2) for an arbitrary k < |. We must therefore require also that

the form (112.1) of the function 0(0, 17) is maintained on going round the

origin in the hodograph plane from one characteristic to the other through

the half-plane 77 < (the path A'B' in Fig. 102). This path corresponds to

a passage in the physical plane from distant points on one of the limiting

characteristics to distant points on the other, along a path which passes through

the subsonic region and therefore nowhere intersects the shock wave, at

which the flow is discontinuous. The transformation of the hypergeometric

function in (112.1) in going along such a path is given by the first formula

(110.13), and we must require that the coefficient of F% in this formula is

zero. This condition is fulfilled (for k < |) when k = £ — \n (n — 0, 1, 2, ...).
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Of these values, only one can be taken, namely

k = -*; (112.2)

it can be shown that all values of k with n > 1 give a transformation of

the hodograph plane into the physical plane which is not one-to-one (in going

once round the former we go more than once round the latter), and so the

physical flow is many-valued, which is of course impossible. The value

k = ^, on the other hand, gives a solution in which we do not go to infinity

in every direction in the physical plane when 6 and rj tend to zero; such a

solution is, evidently, likewise physically impossible.

For k = — ^ the coefficient of F\ on the right-hand side of formula (110.13)

is unity, i.e. the function O is unchanged when we go from one characteristic

to the other. This means that O is an even function of 0, and the co-ordinate

y = d<b\d6 is therefore an odd function. Physically, this means that, in the

first approximation here considered, the flow pattern at large distances from

the body is symmetrical about the plane y = 0, whatever the shape of the

body, and in particular whether there is a lift force or not.

Thus we have determined the nature of the singularity of 0(77, 6) at

the point 77 = 6 = 0. From this we can at once deduce the form of the

transition line, the limiting characteristics and the shock wave at great

distances from the body. Each of these lines must correspond to a definite

value of the ratio fl
2
/^

3 and, since O is of the form 9~m /(i?3/^
2
), we find from

formulae (110.4) that x ~ 0~4/3
, y ~ d~5/3 . Hence these lines are given by

equations of the form

x = constant xy*/5
, (112.3)

with various values of the constant. Along these lines, 6 and 17 decrease

according to

6 = constant x y~3/5
,

r; = constant x y~2/5
. (112.4)

These results are due to F. I. Frankl' (1947).

In what follows we shall, for definiteness, write the formulae with the signs

appropriate to the upper half-plane (y > 0).

We shall show how the coefficients in these formulae may be calculated.

The value k — — % is one of those for which the 0# reduce to algebraic

functions (see §111). The particular integral which determines O in the

present case can be written as <X> = \a\ dfldd, where a\ is an arbitrary positive

constant, and / is that root of the cubic equation

/3 -37y/+30 = O (112.5)

which is the real root for 902 — 4i73> 0. Hence

O = fadf/dd = -cn/liP-r)), (112.6)

and we have for the co-ordinates

x = dtyd-n = hn(f*+ ri)/(f*-vY>,

y = dO/dd = -atfUP—qf.
{ ' '
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These formulae can be put in a convenient parametric form by using as a
parameter s = / 2

/(/
2 -77). Then

xfy*'* = «ii/5(2s-l)/2*2/5,

^2/5 = ai2/5,l/5(,_l)
f (H2.8)

6^3/5 = 1^3/5^4/5 (3 _2s), J

which give, in parametric form, 77 and as functions of the co-ordinates.
The parameter s takes positive values from zero upwards (s = corresponding
to*= - 00, i.e. to the stream incident from infinity). In particular, the
value s = $ corresponds to x = 0, i.e. it gives the velocity distribution
for large y in a plane perpendicular to the #-axis and passing near the body.
The value s = 1 corresponds to the transition line (77 = 0), and s = *, as
is easily seen, to the limiting characteristic. The value of the constant «i
depends on the actual shape of the body, and can be determined only from an
exact solution of the problem in all space.

Formulae (112.8) relate only to the region in front of the shock wave.
The necessity for the shock to appear can be seen as follows. A simple
calculation from formula (110.5) gives for the Jacobian A the expression
ai2W 2-l)Kf 2 -v)3

- It is easy to see that A > (and does not vanish)
on the characteristics and everywhere to the left of them, corresponding to
the region upstream of the limiting characteristics in the physical plane. To
the right of the characteristics, however, A becomes zero, and so a shock
wave must appear in this region.

The boundary conditions at the shock wave which must be satisfied by the
solution of the Euler-Tricomi equation are as follows. Let 0i, 771 and 02, 172

be the values of and 77 on the two sides of the discontinuity. First of all,

they must correspond to the same curve in the physical plane, i.e.

x(6h 771) = x(d2 , 772), y(9h 771) = y(02 , 773). (1 12.9)

Next, the condition that the velocity component tangential to the discon-
tinuity is continuous (i.e. that the derivative of the potential

<f>
along the

discontinuity is continuous) is equivalent to the condition that the potential

itself is continuous :

<f>(di,m) = #02,172); (I12.10)

the potential
(f>

is determined from the function <X> by (111.3). Finally,

another condition can be obtained from the limiting form of the equation

(86.6) of the shock polar, which gives a relation between the velocity com-
ponents on the two sides of the discontinuity. Replacing the angle x m
(86.6) by 62-61, and introducing 771, 772 in place of v±, v2 , we obtain the rela-

tion

2(02 -0i)2 = (172 -171)
2
(172 + 171). (112.11)

In the present case, the solution of the Euler-Tricomi equation behind the
shock wave (the region between OF and OF' in the hodograph plane, Fig.
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106) is of the same form (112.5), (112.6), but of course with a different

constant coefficient (which we call — a%) in place of a±. The four simultaneous

equations (1 12.9)—(1 12.1 1) determine the ratio tf2/«i and relate the quan-

tities 771, #i, 772, #2- The solution of these equations is fairly complicated; it

gives the following results. The shock wave corresponds to the value

s = i(5\/3 + 8) = 2-78 of the parameter 5 in formulae (112.8), which give the

form of the shock and the velocity distribution on the forward side of

the discontinuity. In the region behind (downstream of) the shock, the

coefficient — a<z is negative, and/ 2
/(/

2 — 77) takes negative values. Using as the

parameter the positive quantity s = f 2/(r]—f 2
), we have instead of (112.8) the

formulae

a:/y4/5 = a2i/5(2s+l)/2s
2 /5, 7^2/5 = a22/5 *1/5(s+l),

(112.12)

where

a2/ai = (V3 + 1)/(V3-1) = 1'14,

and s takes values from i(5\/3 — 8) = 0-11 on the shock wave to zero at an

infinite distance downstream.

Fig. 107 shows graphs of rjy2 ' 5 and #y3/5 as functions of xy~i/5 , calculated

from formulae (112.8) and (112.12) (the constant a\ being arbitrarily taken

as unity).

§113. The intersection of discontinuities with the transition line

As a further example of the investigation of the properties of transonic

flow by means of the Euler—Tricomi equation, let us consider the reflection of

a weak discontinuity from the transition line (L. D. Landau and E. M.
Lifshitz, 1954).

We shall assume that the weak discontinuity incident on the transition

line (reaching the point of intersection) is of the ordinary type, formed (say)

by flow past an acute angle, i.e. the first spatial derivatives of the velocity are

discontinuous in it. It is "reflected" from the transition line as another weak
discontinuity, the nature of which, however, is unknown a priori and must
be determined by investigating the flow near the point of intersection. We
take this point as the origin in the .ry-plane, and the #-axis in the direction

of the gas velocity there, so that it corresponds to the origin in the hodograph

plane also.

Weak discontinuities coincide with characteristics, as we know. Let the

characteristic Oa in the hodograph plane (Fig. 108a) correspond to the

incident discontinuity. Since the co-ordinates x, y are continuous at the

discontinuity, the first derivatives O^, <bg must be continuous also. The
second derivatives of O, on the other hand, can be expressed in terms of the

first spatial derivatives of the velocity, and therefore must be discontinuous.
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Denoting the discontinuities of quantities by placing them in brackets, we
therefore have

on Oa [0>,] = [O,] = 0; [0M], [%v ], [0„] # 0. (113.1)

The functions <E> themselves in the regions 1 and 2 on each side of the
characteristic Oa must not have singularities on the characteristic. Such a
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Fig. 107

solution can be constructed from the second term in (110.6) with k = 11/12,

which is proportional to the square of the difference 1 — A-rjZfid2 (the other

independent solution ®i]/i2 has a singularity on the characteristic; see

below). The first derivatives of this function vanish on the characteristic,

and the second derivatives are finite. Furthermore, O can include those

particular solutions of the Euler—Tricomi equation which do not give singu-

larities of the flow in the physical plane. The solution of this kind which is of

the lowest degree in 6 and 77 is rjd (§111). Thus we seek O near the
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characteristic Oa and on either side of it in the forms

:

in region 1, d> = - Ayd—nB^O11 '* F($

in region 2, G> = - ,4^0-^011/6^(13, CT>

2> 12)

1

3; £),

3; 0,
(113.2)

where ^4, B, C are constants (which we shall show to be positive), and

£ = 1 — 4t73/902 ; on the characteristics, £ = 0.

A second characteristic in the hodograph plane {Ob in Fig. 108a) corres-

ponds to the weak discontinuity reflected from the transition line. The form

of the function O near this characteristic is obtained by analytical continua-

tion of the functions (113.2), using (110.11)-(110.13). For k = 11/12,

however, the function F\ is meaningless, and therefore we cannot use these

formulae directly. Instead, we must first put k = (ll/12)+ e, and then

let € tend to zero. Logarithmic terms then appear, in accordance with the

general theory of hypergeometric functions.

(a)

Incident ' Reflected

.

discontinuity discontinuity

(b)

Fig. 108

The calculation with (110.13) gives the following expression for the func-

tion O in region 3 near the characteristic Ob (we retain terms up to the

second order in £)

:

0> = -^07
?
+ J

B(-0)ii/6{£2 log|£|-lO8 + 41-U + 4-86£2}; (113.3)

in determining the nature of the singularity in the velocity distribution at

the reflected discontinuity, only the logarithmic term is actually important

(see below).

A similar transformation (using formula (110.11)) of the function <J> in

region 1 from the neighbourhood of the characteristic Oa to that of Ob
gives an expression similar to (113.3), with %C in place of B. The condition

that the co-ordinates x and y are continuous at the characteristic Ob therefore

gives

IB. (113.4)
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Next, we must verify that the Jacobian A (110.5) is positive, since it must
not vanish anywhere. Near the characteristic Oa, A can be calculated from
the functions (113.2), and is easily seen to be positive; the leading term
in A is A2

. Near the characteristic Ob, a calculation using (113.3) gives as the
leading term in A

A= -16(3/2)1/6^1/4 i g |£|.

As we approach the characteristic, the logarithm tends to - oo. The condi-
tion A > therefore gives AB > 0, i.e. A and B must have the same sign.

Finally, to determine the form of the transition line, we need an expression
for <I> near the upper and lower halves of the axis rj = 0. An expression
valid near the upper half is obtained by simply transforming the hyper-
geometric function in O (113.2) into hypergeometric functions of argument
1 - £ = 4t73/902 , which vanishes for 77 = 0. On calculating the numerical
values of the coefficients in this transformation and retaining only terms of the
lowest degrees in 77, we obtain

® = -Ar)d-18-6Bdwe. (113.5)

An analytical continuation into the region near the lower half of the axis gives

O = -Arj9- 18-6 V3B(-6)iVG; (113.6)

the calculations are similar to those used in deriving the transformation
formulae (110.13).

We can now determine the form of all the lines under consideration. On
the characteristics we have, omitting terms of higher order, x = O = - Ad,

y = <J>0 = -At\. We shall arbitrarily suppose that the upper characteristic

(0 > 0) corresponds to the weak discontinuity reaching the intersection.

Since the gas velocity is in the positive ^-direction, this discontinuity is the

one which reaches the intersection if it lies in the half-plane x < 0. Hence
it follows that the constant A, and therefore the constant B also, must be
positive. The equation of the line of discontinuity in the physical plane is

*= -%A-u*(-y)M (113.7)

The "reflected" discontinuity, which corresponds to the lower characteristic,

is given by the equation

x = f^-1/2 (-^3/2, (113.8)

i.e. the two discontinuities are the branches of a semi-cubical parabola with a

cusp on the transition line (Fig. 108b, in which the lines and regions are

marked in correspondence with those in Fig. 108a).

The equation of the transition line is obtained from the functions (113.5)

and (113.6). Effecting the differentiation with respect to 77 and 9, and then
putting 77 = 0, we obtain from (113.5) the equation of the part for which
6 > 0: * = -Ad, y = - V- . 19 -6B05/6, whence

y = -36-0B(-x/A)S'*. (113.9)
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This is the lower part of the transition line in Fig. 108b. Similarly, we
obtain from (113.6) the equation of the upper part of this line:

y = V3 .36-08(*W». (113.10)

Thus both discontinuities and both branches of the transition line have a

common tangent (the j-axis) at the point of intersection O. Near this point

the two branches of the transition line are on opposite sides of the y-zxis.

On the discontinuity which reaches O, the spatial derivatives of the velocity

are discontinuous; as a characteristic quantity we may consider the dis-

continuity of the derivative (8r)ldx)y . Using the fact that

drj\ d(r),y) %?l,y) I Kx*y) ®oe
(-) -
\ 8x1 y 8{x,y) 8(v,d)/ 8(7}, d) A

and formulae (113.2), (113.4), we obtain

[(8r
)ldx)yf

2
= 26-9^-1/4/^2 = 29-9B)-y)-u*lAV*. (113.11)

Thus this discontinuity increases as \y |

_1/4 as we approach the point of

intersection.

On the reflected weak discontinuity, the derivatives of the velocity are not

discontinuous, but the velocity distribution has a very curious singularity.

Calculating the co-ordinates x = O^ and y = ®q as functions of 77, 6 from

(113.3) (keeping only the first term in the braces), we can put the dependence
of 7) on x for given y near the reflected discontinuity in the parametric form

__ \y\
x-xq 1

1

.v

1 A 2V(^bl) M
(113.12)

1 £|yl 7/4

X-X = Iy|3/2£_5.7_J£! £log|£|,
3-vA4 ^7/4

where £ is the parameter and #0 = xo(y) is the equation of the discontinuity

in the physical plane.

The Euler—Tricomi equation can also be used in the problem of whether a

shock wave can terminate at its intersection with the transition line (the point

O in Fig. 109a, which the shock wave reaches')-). Near such a point the shock

wave is weak, i.e. the flow is transonic. The Euler—Tricomi equation,

however, apparently has no solution which could describe such a flow and
satisfy all the necessary conditions at the shock. Nor, apparently, do there

exist solutions which would correspond to the termination of both the shock

wave and the transition line at their point of intersection (Fig. 109b; the

shock wave does not then literally reach the point O, since the flow on one
side of it is subsonic). This means that the shock wave must either go to

t The "origin" of the shock wave may be at any point in a supersonic flow, and its properties can
be investigated without especial difficulty; cf. the end of §107.
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infinity or (if it was formed in a local supersonic region ; cf. the beginning of

§112) must curve as shown in Fig. 109c so as to be "leaving" with respect to

•4? Subsonic
N region

Supersonic | \
\

/Supersonic \
region

region

(a)

**»- Subsonic

Supersonic / ^9'°"
region

(b)

Shock wave

Transition line

Fig. 109

Supersonic Subsonic
region / region

(c)

both ends of itself. The transition line can terminate at a point of intersection

with a shock wave, but the intensity of the latter does not vanish there.



CHAPTER XIII

FLOW PAST FINITE BODIES

§114. The formation of shock waves in supersonic flow past bodies

Simple arguments show that, in supersonic flow past an arbitrary body, a

shock wave must be formed in front of the body. For the disturbances in the

supersonic flow caused by the presence of the body are propagated only

downstream. Hence a uniform supersonic stream incident on the body would

be unperturbed as far as the leading end of the body. The normal component

of the gas velocity would then be non-zero at the surface there, in contradic-

tion to the necessary boundary condition. The resolution of this difficulty

can only be the occurrence of a shock wave, as a result of which the gas

flow between it and the leading end of the body becomes subsonic.

Thus a shock wave is formed in front of the body when the incident flow

is supersonic, and this shock does not, in general, touch the body; it is often

called the bow wave. In front of the shock wave, the flow is uniform ; behind

it, the flow is modified and bends round the body (Fig. 110a). The surface

(b)

Fig. 110

of the shock wave extends to infinity, and at great distances from the body,

where the shock is weak, it intersects the incident streamlines at an angle

approaching the Mach angle.

The shock wave can touch the body only when the leading end of the latter

is pointed. The surface of discontinuity then has a point at the same place

(Fig. 110b); it must be borne in mind that, in asymmetric flow, part of this

surface may be a weak discontinuity.

457
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For a body of a given shape, however, this type of flow pattern is possible
only for velocities exceeding a certain limit; at lower velocities, the shock
wave is "detached" from the leading end of the body (see §§104, 105),
even if the latter is pointed.

Let us consider supersonic flow past a solid of revolution (in a direction
parallel to its axis), and determine the gas pressure at the rounded leading
end of the body (the stagnation point O in Fig. 110a). It is evident from
symmetry that the streamline which terminates at O intersects the shock
wave at right angles, so that the velocity component at A normal to the
surface of discontinuity is the same as the total velocity. The values of
quantities in the incident stream will be denoted, as usual, by the suffix 1,

and the values behind the shock wave at the point A by the suffix 2. The
latter are determined at once from formulae (85.7) and (85.8):

p2=Pl[2yM^-{y-\)]l{y+\),

2+ (y_l)M1
2 (y+l)Mi2

V2 = Cl~, 7^
' i°2 = PK(y+l)Mi

r r
2+(y-l)Mi2

The pressure po at the point O (where the gas velocity v = 0) can now be
obtained by means of the formulae which give the variation of quantities

along a streamline. We have (see §80, Problem)

r v-1 V22 VKy~1)

and a simple calculation gives

/y+1 \(y+D/(y-D Mi2

This determines the pressure at the leading end for a supersonic incident

flow (Mi > 1).

For comparison, we give the formula for the pressure at the stagnation

point obtained for a continuous adiabatic retardation of the gas, with no shock

wave (as would be true for a subsonic incident flow)

:

po =pi[l+Kr- l)Mi2]r/(r-D. (1 14.2)

For Mi = 1, the two formulae give the same value ofpo, but for Mi > 1 the

pressure given by formula (114.2) is always greater than the true pressure po
given by formula (114.1).f

t This statement is true generally, and does not depend on the assumption of a perfect gas. For,
when a shock wave is present, the entropy s of the gas at the point O is greater than slt whereas if

the shock wave were absent s would be equal to sv The heat function is in either case to = w^+^t)1
2

,

since the quantity w+^v2
is unchanged when a streamline intersects a normal compression dis-

continuity. From the thermodynamic identity Aw =* Tds+dp/p, it therefore follows that the deriva-
tive (dpl8s)w = —pT < 0, i.e. an increase in entropy when to remains constant involves a decrease
in pressure, whence the result follows.
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In the limit of very large velocities (Mi > 1), formula (114.1) gives

/v+ l\(y+l)/(y-l)

p == pJi_
j

y-iAr-DMA (114.3)

i.e. the pressure po is proportional to the square of the incident velocity.

From this result we can conclude that the total drag force on the body at

velocities large compared with that of sound is proportional to the square of

the velocity. It should be noticed that this is the same as the law governing

the drag force at velocities small compared with that of sound but yet so large

that the Reynolds number is large (see §45).

No complete investigation has yet been made of the basic properties of

supersonic flow past arbitrary bodies. Besides the fact that shock waves must

be formed, we can also say that there must be two successive shock waves at

large distances from the body (L. Landau 1945). For the disturbances caused

by the body at large distances are small, and can therefore be regarded as a

cylindrical sound wave outgoing from the #-axis (which passes through the

body parallel to the direction of flow) ; considering the flow, as usual, in a

co-ordinate system where the body is at rest, we have a wave in which the

time is represented by xjv\, and the rate of propagation by ci/\/(Mi2— 1)

(see §115). We can therefore apply immediately the results obtained in §95

for a cylindrical wave at large distances from the source. We thus arrive at

the following pattern of shock waves far from the body: in the first shock,

the pressure increases discontinuously, so that behind it there is a condensa-

tion; then follows a region where the pressure gradually decreases into a

rarefaction, after which the pressure again increases discontinuously in the

second shock. The intensity of the leading shock decreases as r-3/4 with

increasing distance from the body, and the distance between the two shocks

increases as r1/4 .

Let us now examine the appearance and development of the shock waves

as the number Mi gradually increases. A supersonic region first appears for

some value of Mi less than unity, as a region adjoining the surface of the body.

At least one shock wave occurs in this region. It is not known, however,

whether this shock must appear as soon as the supersonic region is formed,

or whether it appears for some greater value of Mi (still less than unity).

It is also unknown whether the shock leaves the surface of the body when it

is first formed (and is still very weak), or begins at some distance away. At
the boundary of the supersonic zone the shock wave terminates, of course

;

no investigation has yet been made of the properties of the shock wave near

the point where it terminates (as already mentioned at the beginning of §112).

As Mi increases, the supersonic region expands, and the length of the

shocks wave increases; for Mi = 1 it reaches infinity. This is the shock

wave whose existence for Mi = 1 has been demonstrated (for the two-

dimensional case) in §1 12 ; it follows also that the shock wave must first appear

for Mi < 1.
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As soon as Mi exceeds unity, another shock wave appears, the bow wave,
which intersects the whole of the infinitely wide incident stream of gas. For
Mi exactly unity, the flow in front of the body is entirely subsonic (§112).
For Mi > 1 but arbitrarily close to unity, therefore, the supersonic part of
the incident stream, and consequently the bow wave, are arbitrarily far in

front of the body. As Mi increases further, the bow wave gradually

approaches the body.

§115. Supersonic flow past a pointed body

The shape which a body must have in order to be streamlined in supersonic
flow, i.e. to be subject to as small a drag force as possible, is quite different

from the corresponding shape for subsonic flow. We may recall that, in the
subsonic case, streamlined bodies are those which are elongated, rounded
in front, and pointed behind. In supersonic flow past such a body, however,
a strong shock wave would be formed in front of it, leading to a considerable
increase in the drag. In the supersonic case, therefore, a long streamlined
body must be pointed at both ends, and the angle of the point must be small;

if the body is inclined to the direction of flow, the angle between them (angle

of attack) must also be small.

In steady supersonic flow past a body of this shape, the gas velocity is

nowhere very different in magnitude or direction from the incident velocity,

even near the body, and the shock waves formed are weak; the intensity of the
bow wave decreases with the angle at the front of the body. Far from the

body, the gas flow consists of outgoing sound waves. The main part of the

drag can be regarded as due to the conversion of kinetic energy of the moving
body into the energy of the sound waves which it emits. This drag, which
occurs only in supersonic flow, is called wave drag\\ it can be calculated

in a general form valid for any cross-section of the body (T. von KarmAn
1936).

The nature of the flow just described makes it possible to use the linearised

equation (106.4) for the potential:

8*<f> d*<f> 82
<f>

8y2 8z2 8x2

where we have introduced for brevity the positive constant

02 = (Vl2- Cl2yCl2. (
115>2

)

the #-axis is in the direction of the flow, the suffix 1 denotes quantities

pertaining to the incident stream, and 1/jS is just the tangent of the Mach angle.

Equation (115.1) is formally identical with the two-dimensional wave
equation with xjv\ representing the time and z>i/j8 the velocity of propagation

of the waves. This is no accident; the physical significance is that the gas

t The total drag is obtained by adding to the wave drag the forces due to friction and to separation
at the trailing end of the body.
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flow far from the body consists, as already mentioned, of outgoing sound

waves "emitted" by the body. If the gas at infinity is regarded as being at

rest, and the body as being in motion, the cross-section of the body at a

given point in space will vary with time, and the distance to which a distur-

bance is propagated at time t (i.e. the distance to the Mach cone) will increase

as vitj[S. Thus we shall have a two-dimensional emission of sound (propaga-

ted with velocity viffi) by the variable profile.

Using this "sonic analogy" as a guide, we can immediately write down the

required expression for the velocity potential of the gas, using formula (73.15)

for the potential of cylindrical sound waves emitted from a source (at distances

large compared with the dimension of the source) and replacing ct by #//?.

Let S(x) be the area of the cross-section of the body in a plane

perpendicular to the direction of flow (the #-axis), and / the length of the body

in that direction; we take the origin at the leading end of the body. Then

**>r)
--a; J v[<*-fl«-/*T

( ]

the lower limit is taken as zero, since S(x) s for x < (and for x > I).

Thus we have completely determined the gas flow at distances r from the

axis which are large compared with the thickness of the body.f Disturbances

leaving the body in a supersonic flow are, of course, propagated only into the

region behind the cone x— (3r = 0, whose vertex is at the leading end of the

body; in front of this cone we have simply <j> = (uniform flow). Between

the cones x— fir = and x— pr = /, the potential is determined by formula

(115.3); behind the latter cone (whose vertex is at the trailing end of the

body) the upper limit of the integral in (115.3) is evidently the constant /.

Both these cones are weak discontinuities, in the approximation considered;

in reality, they are weak shock waves.

The drag force acting on the body is just the ^-component of the momen-

tum carried away by the sound waves per unit time. We take a cylindrical

surface of large radius r and axis along the #-axis. The ^-component of the

momentum flux density through this surface is Uxr = pvr{vx+ «>i)

£ pi{d<j>jdr){vi+ d<j>jdx). On integration over the whole surface, the first

term gives zero, since the integral of pvr is the total mass flux through

the surface, which is zero. Thus

00 CO

Fx = -2nr [ Ilsrdtf = -Znrpx [ — —dx. (115.4)

J J 8r dx
—00 —oo

At large distances (in the "wave region"), the derivatives of the potential can

f For axial flow past an axially symmetric body, formula (115.3) is valid for all r up to the surface

of the body. In particular, we can derive from it formula (105.6) for flow past a narrow cone.
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be calculated as in §73 (see formula (73.17)), and we have

dr pdx~27T*J 2r J </(*-£-&)'

This expression is substituted in (115.4), and the squared integral is written
as a double integral; putting for brevity x-pr = X, we obtain

The integration over X can be effected; after changing the order of integra-
tion, the integral is from the greater of fi and £2 to infinity. We first take as
the upper limit a large but finite quantity L, which later tends to infinity.

Thus

2
l *»

F* = ~ P-~-
j
jS"(h)S"(i2)[log(i2 -^1)-\og4L]di1^2 .

The integral of the term containing the constant factor log 4L is zero, since
not only the area S(x) but also its derivative S'(x) vanishes at the pointed
ends of the body. We therefore have

2 -' *

rx = —

or

277
o o

i i

.2

jj
S"(h)S"(h) log^-^d^d^,

Fx = ~1^~ jJ
S"(^S"(^ lo^-^\d^ d^ ( 115 -5

)

This is the required formula for the wave drag on a thin pointed body.f
The order of magnitude of the integral is (S/Z2

)
2/2 , where S is some mean

cross-sectional area of the body. Hence Fx ~ piv^S^jl2 . The drag coefficient

for an elongated body may be conventionally defined, in terms of the square
of the length, as Cx = Fx^pivi2l2 . Then, in this case

Cx ~S2/l*; (115.6)

it is proportional to the square of the cross-sectional area.

t The lift (for a body not axially symmetric or a non-zero angle of attack) is zero in the approxi-
mation here considered.
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We may point out the complete formal analogy between formula (115.5)

and formula (47.4) for the induced drag on a thin wing; the function T(z) in

(47.4) is here replaced by the function viS'(x). On account of this analogy

we can use, to calculate the integral in (115.5), the method described at the

end of §47.

It should also be noticed that the wave drag given by formula (115.5) is

unchanged if the direction of flow is reversed: the integral is independent of

the direction in which the body extends. This property of the drag force is

characteristic of the linearised theory,f
Finally, let us briefly discuss the range of applicability of this formula.

This subject may be approached as follows. The amplitude of oscillation of

the gas particles in the sound waves "emitted" by the body is of the order of

magnitude of the thickness of the body, which we denote by 8. The velocity

of the oscillations is accordingly of the order of the ratio 8:(//©i) of the

amplitude S to the period ljv\ of the wave. The linear approximation for

the propagation of sound waves (i.e. the linearised equation for the potential),

however, always requires that the gas velocity should be small compared with

the velocity of sound, i.e. we must have vifp p v\hjl, or, what is in practice

the same,

Mi < 1/8. (115.7)

Thus the theory given above becomes inapplicable for values of Mi com-

parable with the ratio of length to thickness of the body.

It is also inapplicable, of course, in the opposite limiting case where Mi
is close to unity and the linearisation of the equations is invalid.

PROBLEM
Determine the form of the elongated solid of revolution which experiences the smallest

drag for a given volume V and length /.

Solution. On account of the analogy mentioned in the text, we introduce a variable 9

such that x = \l(\ —cos 9) (0 < 9 <; tt; the origin of x is at the leading end of the body);

and write the function /(x) = S'(x) as

00

/= - / ]T) -An sin nd;
71=2

the condition S = for x — and / means that only terms with n ^ 2 can appear in the sum.

The drag coefficient is then

00

tt=*2

The area S(x) and the total volume Fof the body are calculated from the function f(x) as

x I

S = jf(x)dx, V=
J
S(x)dx.

f It also holds in the theory of the wave drag on thin wings given in §117.
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A simple calculation gives V = irPA2l\6, i.e. the volume is determined by the coefficient
A2 alone. The minimum Fx is therefore reached if An = for n 5= 3. The result is

CXtmin = (128/7r)(r//3)2 = (97r/2)( 1Smax/Z2)2.

The cross-sectional area of the body is S = %PA2 sin
s
0, and the radius as a function of x is

therefore R(x) = V2(8/7r)(P73/4)
1/2[x(Z-x)]3/4 . The body is symmetrical about the plane

§116. Subsonic flow past a thin wing

Let us consider subsonic flow of a gas past a thin streamlined wing. As
for an incompressible fluid, a wing which is streamlined for subsonic flow
must be thin, pointed at the trailing edge, and rounded at the leading edge,
and the angle of attack must be small. We take the direction of flow as the
#-axis and the direction of the span as the z-axis.

The gas velocity nowherej differs greatly from the velocity vi of the
incident stream, so that we can use the linearised equation (106.4) for the
potential

:

&6 8U 8U

At the surface of the wing (which we call C), the velocity must be tangential

;

introducing a unit vector n along the normal to the surface, we can write this

condition as

/ d<j>\
8<f> 8<j>

\
Vl + 7"

)
nx + Tnv + Tnz = °-

\ dxl 8y 8z

Since the wing is flattened and the angle of attack is small, the normal n is

almost parallel to the jy-axis, so that \ny \
is almost unity, while nx and n z

are small. We can therefore neglect the second-order terms nxd<j>ldx and
n zd(f>ldz y

and replace ny by ± 1 (+ 1 on the upper surface of the wing and — 1

on the lower surface). Thus the boundary condition on equation (116.1) is

vinx ±d<j>l8y = 0. (116.2)

Since the wing is assumed thin, {tyfdy on its surface can be taken as the

limiting value for y -» 0.

The solution of equation (116.1) with the condition (116.2) can easily be
reduced to the solution of a problem of incompressible flow. To do so, we use

instead of the co-ordinates x, y, z the variables

x' = x, y' = jVCI-Mi2
), z' = *V(1-Mi2

). (116.3)

In these variables, equation (116.1) becomes

82<b 82<j> 8U

7^ +^ + 7^ = °- <
116 -4>

t Although R(x) vanishes at the ends of the body, R'(x) becomes infinite, i.e. the body is not
pointed; the approximation underlying the method is therefore not strictly applicable near the ends.

J Except in a small region near the leading edge of the wing, where there is a stagnation line.
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i.e. Laplace's equation. The surface of the body is replaced by another, C",

obtained by leaving unchanged the profiles of cross-sections by planes parallel

to the xy-plane, but reducing in the ratio ^(l-Mi2
) all dimensions in the

direction of the span (the ^-direction).

The boundary condition (116.2) then becomes

oy

and it can be reduced to the previous form by introducing in place of ^ a new
potential <j>'

:

tf,'
= fy/(l-Mi2

). (116.5)

We then have for
<f>'

Laplace's equation with the boundary condition

vinx ±d<f>'ldy' = 0, (116.6)

which must be satisfied for y' = 0.

Equation (116.4) with the boundary condition (116.6) is, however, the

equation which must be satisfied by the velocity potential of an incompres-

sible fluid flowing past the surface C". Thus the problem of determining

the velocity distribution in compressible flow past a wing with surface C is

equivalent to that of finding the velocity distribution in incompressible flow

past a wing with surface C".

Next, let us consider the lift force Fy acting on the wing. First of all,

we note that the derivation of Zhukovskii's formula (37.4) given in §37 is

entirely valid for a compressible fluid, since the variable density p of the

fluid can be replaced in that approximation by a constant p\. Thus

Fv = -pmJFdz, (116.7)

where the integration is taken along the span lz of the wing. From the rela-

tion (116.5) and the equality of the transverse profiles of the wings C and

C it follows that the velocity circulation Y in compressible flow past the

wing C is related to the circulation V in incompressible flow past the wing

C'by

V = IV(l-Mi2). (116.8)

Substituting this in (116.7) and changing to an integration over z' , we obtain

Fy = -
Pn*Jr'd*7(i-Mi8).

The numerator is the lift force on the wing C in an incompressible fluid.

Denoting it by F'y , we have

Fy = *y(l-Mi*). (116.9)
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Introducing the lift coefficients

Cy = FyWpW&xh, C'y = F'y\\piv?lxlz
'

(where lx ,
lz and lx , lz

' = /^(l-Mi2
) are the lengths of the wings C andC in the x and z directions), we can rewrite this equation as

Cy= Cy/VO-Mi*). (116.10)

For wings of large span (and constant profile), the lift coefficient in an
incompressible fluid is proportional to the angle of attack, and does not depend
on the length or width of the wing

:

C'y = constant x a, (116.11)

where the constant depends only on the shape of the profile (see §46). In
this case, therefore, (116.10) can be replaced by

Cv = Q0)/V(l-Mi2), (116.12)

where Cy and Cyo) are the lift coefficients for the same wing in compressible
and incompressible fluids respectively. Thus we have the rule that the lift

force acting on a long wing in a compressible fluid is 1/V(1 ~ Mi2
) times that

on the same wing (at the same angle of attack) in an incompressible fluid

<L. Prandtl 1922, H. Glauert 1928).

Similar relations can be obtained for the drag force. Together with
Zhukovskii's formula for the lift force, formula (47.4) for the induced drag
on a wing is also entirely applicable to compressible flow. Effecting the same
transformations (116.3) and (116.8), we obtain

FX = F'XIVV-M1*), (116.13)

where F'x is the drag on the wing C in an incompressible fluid. When the
span increases, the induced drag tends to a constant limit (§47). For suffi-

ciently long wings we can therefore replace F'x by Fx«» (the drag in an in

compressible fluid for the wing C). Then the drag coefficient is

Cx = Cyoya-M!2
). (116.14)

Comparing this with (116.12), we see that the ratio Cy
2ICx is the same for

compressible and incompressible fluids.

All the results given here are, of course, invalid for values of Mi close

to unity, since the linearised theory then becomes inapplicable.

§117. Supersonic flow past a wing

If a wing is streamlined in a supersonic stream, it must be pointed at both
ends, like the thin bodies discussed in §115.

Here we shall consider only the flow past a thin wing of very large span,

the profile being constant along the span. Regarding the span as infinite,

we have a two-dimensional gas flow (in the .ry-plane). Instead of equation
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(117.1)

(115.1), we now have for the potential the equation

-L-p-L = 0,
By2 Bx2

with the boundary condition

[d<f>l8y]y^±0 = +vinx , (117.2)

where the signs + on the right relate to the upper and lower surfaces of the

wing respectively. Equation (117.1) is a one-dimensional wave equation,

and its general solution is of the form cf> = fi(x— Py)+f2(x+(3y). The fact

that disturbances which affect the flow start from the body means that above

the wing (y > 0) we must have/2 = 0, so that cf> =fi(x— /Sy), and below the

wing (y < 0) <j> = f2(x+(3y). For definiteness, we shall consider the region

above the wing, where
<f>
= f(x—fiy). The function/ is determined from the

condition (117.2) by putting nx th — Z,2'{x), where y = Xzix) is the equation

of the upper part of the wing profile (Fig. Ilia). We have [^/^v]j/-^+o
= —f}f'(x) = vit,z'{x), whence/ = —vi&(x)ip. Thus the velocity distribu-

tion for y > is given by the potential

<Kx,y) = -Wflbix-fiy). (117.3)

Similarly we obtain, for y < 0,
<f>
= (vil(3)£,i(x+(ly), where y = £i(ff) is the

equation of the lower part of the profile. It should be noticed that the

potential, and therefore the other quantities, are constant along the straight

lines x ± (3y = constant (the characteristics), in accordance with the results

of §107, of which the solution just obtained is a particular case.
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The flow pattern is qualitatively as follows. Weak discontinuities {aAa'
and bBb' in Fig. 111b) leave the pointed leading and trailing edges.f In the
regions in front of the discontinuity aAa' and behind bBb' the flow is uniform,
but between them it is turned so as to go round the surface of the wing;
the flow here is a simple wave, and in the present linearised approximation
the characteristics are all parallel and inclined at the Mach angle of the
incident stream.

The pressure distribution is given by the formula p -pi = - p\vid<f>jdx\

the term in vy
2 in the general formula (106.5) can here be omitted, since vx

and vy are of the same order of magnitude. Substituting (117.3) and intro-

ducing the pressure coefficient Cp , we obtain in the upper half-plane Cv
= (p-pi)l%pivi2 = 2t,2'{x-(Sy)lp. In particular, the pressure coefficient on
the upper surface of the wing is

Cp2 = 2&(x)/p. (117.4)

Similarly, we find for the lower surface

Cpi = -2£i'(*)//5. (117.5)

It should be noted that the pressure at any point on the wing profile depends
only on the slope of the profile contour at that point.

Since the angle between the profile contour and the #-axis is always small,

the vertical component of the pressure force can be taken, with sufficient

accuracy, as the pressure itself. The resultant lift force on the wing is equal
to the difference of the pressures on the lower and upper surfaces. The lift

coefficient is therefore

1 f My

lx J plx

see Fig. Ill for the definition of lXt ly . We define the angle of attack a as

the angle between the chord AB through the ends of the profile (Fig. Ill) and
the tf-axis: a k, ly[lx , and obtain the following simple formula:

Cy = 4a/V(M!2-l) (H7.6)

{J. Ackeret 1925). We see that the lift force is determined by the angle of

attack, and does not depend on the form of the wing cross-section, unlike

what happens for subsonic flow (see formula (48.7)).

Let us next determine the drag force on the wing (i.e. the wave drag, which
is of the same nature as that on thin bodies ; see §115). To do so, we must take

the ^-component of the pressure force and integrate over the profile contour.

t This statement is valid only in the approximation used here. In reality we have not weak dis-
continuities but weak shock waves or narrow centred rarefaction waves, depending on the direction
in which the velocity is turned by them. For the profile shown in Fig. 111b, for example, Aa and
Bb' are rarefaction waves, while Aa' and Bb are shock waves.
The streamline leaving the trailing edge (B in Fig. 111b) is actually a tangential discontinuity

•of the velocity (which in practice becomes a narrow turbulent wake).
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The drag coefficient is then found to be

Cx = -—\ (£i'
a+ &/a)d*. (117.7)

ptx J

We put £i' = di— a, £2' = #2— a, where 0i(x) and 02(#) are the angles between

the upper and lower parts of the contour and the chord AB. The integrals

of di and 02 are evidently zero, and the result is therefore

Cx = [4**+ 2(^+^)]/V(Mi*-l); (H7.8)

the bar denotes an average with respect to x. For a given angle of attack, the

drag coefficient is seen to be least for a wing in the form of a flat plate (for

which 0i = 02= 0). In this case Cx = &Cy . If we apply formula (117.8)

to a rough surface, we find that the roughness may result in a considerable

increase in the drag, even if the height of the irregularities is small.f For

the drag is independent of the height of the irregularities if the mean slope of

the surface, i.e. the mean ratio of the height of the irregularities to the distance

between them, remains constant.

Finally, we may make the following remark. Here, as everywhere, when we
speak of a wing we imply that its edges are perpendicular to the flow. The
generalisation to the case of any angle y between the direction of flow and

the edge (the angle ofyaw) is quite obvious. It is clear that the forces on an

infinite wing of constant cross-section depend only on the component of the

incident velocity normal to its edges ; in an ideal fluid, the velocity component

parallel to the edges does not result in a force. The forces acting on a wing

at an angle of yaw other than \n in a stream with Mach number Mi are the

same as those on the same wing for y = \n in a stream with Mach number
Mi sin y. In particular, if Mi > 1 but Mi sin y < 1, the wave drag, which is

peculiar to supersonic flow, will not occur.

§118. The law of transonic similarity

The theory of supersonic and subsonic flow past thin bodies developed in

§§115—117 is not applicable to transonic flow, when the linearised equation for

the potential becomes invalid. In this case the flow pattern in all space is

given by the non-linear equation (106.10):

86 826 826 826
2a*— —t- = —L + —t (118.1)

8x 8x2 8y2 8z2

(or, for two-dimensional flow, by the equivalent Euler-Tricomi equation).

The solution of these equations for particular cases is very difficult, however.

The similarity rules which can be established for such flows, without finding

any particular solution, are therefore of great interest.

f But nevertheless greater than the thickness of the boundary layer.

16
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Let us first consider two-dimensional flow, and let

Y = 8f(xjl) (118.2)

be the equation which gives the shape of the thin contour past which the flow

takes place, / being its length (in the direction of flow) and 8 some charac-

teristic thickness (S <^ I). By varying the two parameters / and 8, we obtain

a family of similar contours.

The equation of motion is

86 du m>
2a*——L = _

L

(118.3)
dx 8x2 8y2

with the following boundary conditions. At infinity, the velocity equals the

velocity vi of the undisturbed stream, i.e.

86 86
-1 = 0, -f = Mi*-1 = (Mi-l)/a.; (118.4)
8y ox

see the definition of the potential 6, (106.9). On the profile, the velocity must
be tangential:

vyjvx « 86\8y = dY/dX = (8/i)/'(*/2); (118.5)

since the profile is thin, this condition can be imposed at y = 0.

We introduce dimensionless variables thus:

x = lx, y = /j/(0a*)i/3, 6 = (/^/s/a.^^,^); (118.6)

here 6 = 8jl gives the angular thickness of the wing or angle of attack.

Then

d<j> d2&~ 82<j>

dx dx2 dy2

with the following boundary conditions

:

8j>j8x = Ky
8<j>/dy = at infinity,

8<£/8y=f'(x)aty = 0,

where

K= (Mi-l)/(a*0)2/3. (118.7)

These conditions contain only one parameter, K. Thus we have obtained

the required similarity law: two-dimensional transonic flows with the same

value of K are similar, as is shown by formulae (118.6) (S. V. Fal'kovich

1947).

It should be noticed that the expression (118.7) involves only a single

parameter a* which characterises the properties of the gas itself. The
similarity law therefore determines also the similarity with respect to a

change in the gas.



§118 The law of transonic similarity 471

In the approximation here considered, the pressure is given by the formula

P~pi « — pivi{vx— vi). A calculation using the expressions (118.6) shows

that the pressure coefficient on the profile is of the form

p- Pl 02/3

Cp = £_£-i = p
^pm2 <x*1/3

(*?)•

The drag and lift coefficients are given by integrals along the contour of the

profile

:

1 £ dY
Cz = - q> Cp-^—dx,

I J dx

1

Cy = - (b Cp dx,

and are therefore of the formf

05/3 02/3

Cx = -rrMK), Cy =—3
fy{K). (118.8)

a*1/3 a*1/3

In an entirely similar manner, we can obtain the similarity law for a three-

dimensional thin body whose shape is given by equations of the form

Y = S/i(*/Z), Z = S/2(*/Z), (118.9)

with the two parameters 8 and / (8 < I). There is an important difference

from the two-dimensional case, because the potential has a logarithmic

singularity for y -> 0, z -> (see, for instance, the formulae for flow past

a narrow cone in §105). Hence the boundary condition at the #-axis must

determine, not the derivatives dcfijdy, d<f>jdz themselves, but the products

y d(f>[dy = YdY/dx, z d<j>jdz = ZdZ/dx, which remain finite. It is easy

to see that in this case the similarity transformation is

x = lx, y = (l/9*J)y, z = (//0a**)s,
<f>
= /0ty, (118.10)

the similarity parameter being

K= (Mi-l)/02a* (118.11)

(T. von KArmAn 1947). The pressure coefficient at the surface of the body is

found to be of the form Cp = 62P(K, x(l), and the drag coefficient is accord-

ingly!

Cx = 6*f{K). (118.12)

All these formulae hold, of course, for both small positive and small

negative values of Mi— 1. If Mi = 1 exactly, the similarity parameter

t The range of validity of these formulae is given by the condition
|
Mx

— 1 1 <^ 1 . The linearised

theory, however, corresponds to large K, i.e.
|
M — 1

1
^> 2/3

. In the range 1 ^>Mx
— 1 ^> 2/ 3

, formulae

(118.8) must therefore become the formulae (117.6)— (117.8) given by the linearised theory. This
means that, for large K, the functions/, and/j, must be proportional to K'1^.

J In the range 1 ^> Mx
— 1 ^> 2

, we must obtain the formula (115.6) given by the linearised theory,

according to which Cx ~ 4
; this means that the function f(K) tends to a constant as K increases.
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K = 0, and the functions in formulae (1 18.8) and (118.12) reduce to constants,

so that these formulae completely determine Cx and Cy as functions of

and a*, which represents the properties of the gas.

§119. The law of hypersonic similarity

The linearised theory is invalid for supersonic flow past thin bodies for

very large values of the Mach number Mi {hypersonic flow), as has already

been mentioned at the end of §106. A simple similarity rule which can be
established for this case (H. S. Tsien 1946) is therefore of interest.

The shock waves formed in such flow are at a small angle to the direction

of flow, of the order of the ratio 9 = 8/1 of thickness to length of the body.

These shocks are in general curved and also strong; the velocity discon-

tinuity in them is relatively small, but the pressure discontinuity (and

therefore the entropy discontinuity) is large. The gas flow is therefore not

in general potential flow.

We shall assume that the Mach number Mi is of the order of 1/0 or greater.

A shock wave reduces the local value of M, but the latter always remains of

the order of 1/0 (see §104, Problem), so that M is large everywhere.

We use the "sonic analogy" mentioned in §115: a three-dimensional

problem of steady flow past a thin body of variable cross-section S(x) is

equivalent to a two-dimensional problem of non-steady emission of sound

waves by a contour whose area varies with time according to the law S(vit) ;f

the velocity of sound is represented by ^i/y^Mi2 — 1), or, for large Mi,

by c\ simply. It should be emphasised that the only condition necessary for

the two problems to be equivalent is that the ratio 8JI should be small;

this enables us to regard small annular regions of the surface of the body as

cylindrical. For large Mi, however, the rate of propagation of the "emitted"

waves is comparable with the velocity of the gas particles in the waves (cf.

the end of §115), and the problem therefore has to be solved on the basis of

the exact (non-linearised) equations.

In this two-dimensional problem, the linear velocity of the source is of the

order of v\9\ the only other independent parameters of the problem are the

velocity of sound c\, the dimension 8 of the source, and the density pi.

J

From these we can form only one dimensionless combination,

K=M19, (119.1)

which is the similarity parameter.ff The scales of length for the co-ordinates

f For example, the problem of flow past a narrow cone is equivalent to that of the emission of

cylindrical sound waves by a uniformly expanding circular cylinder.

| We are considering, of course, not only the equations of motion of the gas, but also the boundary
conditions on them at the surface of the body and the conditions which must be satisfied at the

shock waves which are formed. We take the case of a perfect gas, so that the gas-dynamic properties

depend only on the dimensionless parameter y; the similarity rule obtained below, however, does

not determine the dependence of the flow on this parameter.

ff If Mx is not supposed large, we obtain a similarity rule with parameterK = d^iM^ — l). This

is of no interest, however, since for small Mx the linearised theory determines all quantities as func-

tions of this parameter.
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y, z and of time must be taken to have the appropriate dimensions, and be

formed from the same parameters, e.g. 8 and SjviO = ljv\. Returning to the

co-ordinate x, we find that vjc\ and Cp are functions of the dimensionless

variables xjl, y/8, z/8 and of the parameter K.

The drag coefficient for a thin body is easily found to be of the form

Cx = 0*f(K). (119.2)

The same similarity law is evidently obtained in the two-dimensional case

of flow past a thin wing of infinite span.

The drag and lift coefficients are found to be of the form

Cx = e%(K), Cy = 6%(K). (119.3)

PROBLEM
Determine the lift force on a flat wing of infinite span inclined at a small angle of attack a

to the direction of flow, for large values of the Mach number Mx (Mj $> 1/oc).

Solution. The flow pattern is as shown in Fig. 112: a shock wave and a rarefaction wave

leave each of the two edges of the plate, and the stream is turned in them through an angle a

in opposite directions.

Fig. 112

According to the sonic analogy, the problem of steady flow past such a plate is equivalent

to that of non-steady one-dimensional gas flow on each side of a piston moving with uniform

velocity ocui. In front of the piston a shock wave is formed, and behind it a rarefaction wave
(see §92, Problems 1 and 2). Using the results there obtained, we find the required lift force

as the difference of the pressures on the two sides of the plate. The lift coefficient is

2a2 r v-1 -| 2r/(r-i>

where K = aM2 . For K~^ 2/(y— 1), a vacuum is formed under the plate, and the second
term must be omitted. In the range 1 <^ Mj <^ 1/oc, this formula becomes Cy = 4<xjM.u
as given by the linearised theory, in accordance with the fact that both procedures are applic-

able in that range.



CHAPTER XIV

FLUID DYNAMICS OF COMBUSTION

§120. Slow combustion

The speed of a chemical reaction (measured, say, by the number of molecules

reacting in unit time) depends on the temperature of the mixture of gases in

which it occurs, increasing with the temperature. In many cases this de-

pendence is very marked.-)- The speed of the reaction may be so small at

ordinary temperatures that the reaction hardly occurs, even though the gas

mixture corresponding to a state of thermodynamic (chemical) equilibrium

would be one in which the reaction had occurred. When the temperature

rises sufficiently, the reaction proceeds rapidly. If it is endothermic, a con-

tinuous supply of heat from an external source is necessary for the reaction

to be maintained ; if the temperature is merely raised at the beginning of the

reaction, only a small amount of matter reacts, and thereby reduces the gas

temperature to a point where the reaction ceases. The situation is quite

different for a strongly exothermic reaction, where a considerable quantity

of heat is evolved. Here it is sufficient to raise the temperature at a single

point; the reaction which begins at that point evolves heat and so raises the

temperature of the surrounding gas, and the reaction, once having begun,

will extend to the whole gas. This is called slow combustion or simply

combustion of a gas mixture.J
The combustion of a gas mixture is necessarily accompanied by motion

of the gas. The process of combustion is therefore not only a chemical pheno-

menon but also one of gas dynamics. In general, the nature of the combustion

process has to be determined by a solution of simultaneous equations which

include both those of chemical kinetics for the reaction and those of gas

dynamics for the mixture concerned.

The situation is much simplified, however, in the very important case (the

one usually encountered) where the characteristic dimension / of the problem

is large (in a sense to be defined later). We shall see that, in such cases,

the problems of gas dynamics and chemical kinetics can be, to a certain

extent, considered separately.

The region of burnt gas (i.e. the region where the reaction is over and the

t The reaction rate usually depends exponentially on the temperature, being nearly proportional

to a factor of the form e~ulBT
, where U is a constant for any given reaction and is called the activation

energy. The greater U, the more strongly the reaction rate depends on the temperature.

J It should be borne in mind that, in a mixture capable of combustion, the spontaneous propa-

gation of the combustion may be impossible in certain circumstances. This limitation is due to heat

losses resulting from such factors as conduction through the walls of a pipe in which combustion

occurs, radiation losses, etc. For this reason combustion is not possible in pipes of very small radius,

for example.

474
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gas is a mixture of combustion products) is separated from the gas where

combustion has not yet begun by a transition layer, where the reaction is in

progress (the combustion zone orflame) ; in the course of time, this layer moves

forward, with a velocity which may be called the velocity of propagation of

combustion in the gas. The magnitude of this velocity depends on the amount

of heat transfer from the combustion zone to the cold gas mixture. The main

mechanism of heat transfer is ordinary conduction. The theory of this means

of propagation of combustion was first developed by V. A. Mikhel'son

(1890).

We denote by S the order of magnitude of the width of the combustion

zone. It is determined by the mean distance over which heat evolved in the

reaction is propagated during the time r for which the reaction lasts (at

the point concerned). The time r is characteristic of the reaction, and

depends only on the thermodynamic state of the gas undergoing combustion

(and not on the parameter /). If x is the thermometric conductivity of the

gas, we have (see (51.7))f

S ~ VGr). (120.1)

Let us now make more precise the above assumption : we shall assume that

the characteristic dimension is large compared with the width of the com-

bustion zone (/ > 8). When this condition holds, the problem of gas dynamics

can be considered separately. In determining the gas flow, we can neglect

the width of the combustion zone, regarding it as a surface which separates

the combustion products from the unburnt gas. On this surface (the flame

front) the state of the gas changes discontinuously, i.e. it is a surface of

discontinuity.

The velocity v\ of this discontinuity relative to the gas itself (in a direction

normal to the front) is called the normal velocity of the flame. In a time t,

the combustion is propagated through a distance of the order of S, and so

the flame velocity isj

V! ~ S/r ~ V(xM- (
120 -2)

The ordinary thermometric conductivity of the gas is of the order of the mean

free path of the molecules multiplied by their thermal velocity or, what is

the same thing, the mean free time rtT multiplied by the square of this velocity.

Since the thermal velocity of the molecules is of the same order as the velocity

of sound, we have v\jc ~ V(xlrc2) ~ V(Tfr/T)- Not every collision between

molecules results in a chemical reaction between them; on the contrary,

only a very small fraction of colliding molecules react. This means that

t To avoid misunderstanding, it should be mentioned that, when t depends markedly on the

temperature, a fairly large coefficient should appear in formula (120.1) if t is the value for the tem-
perature of the combustion products. The important fact for our purposes, however, is that 8 does

not depend on I.

J As an example, it may be mentioned that the flame velocity in a mixture of methane (6 per cent)

and air is only 5 cm/sec, whereas in detonating mixture (2H2+O2) it is 1000 cm/sec; the widths of

the combustion zones in these two cases are about 5X 10_z cm and 5X 10-4 cm respectively.
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Tfr <^ t, and therefore vi <4 c. Thus the flame velocity is, in this case, small

compared with the velocity of sound.f

On the surface of discontinuity which replaces the combustion zone, the

fluxes of mass, momentum and energy must be continuous, as at any dis-

continuity. The first of these conditions, as usual, determines the ratio of

the components, normal to the surface, of the gas velocities relative to the

discontinuity: pivi = p2^2, or

vifa = F1/F2, (
120 -3

)

where V\ and V2 are the specific volumes of the unburnt gas and the com-
bustion products. According to the general results obtained in §81 for arbi-

trary discontinuities, the tangential velocity component must be continuous

if the normal component is discontinuous. The streamlines are therefore

"refracted" at the discontinuity.

On account of the smallness of the normal velocity of the flame relative to

that of sound, the condition of continuity of the momentum flux reduces to

the continuity of pressure, and that for the energy flux reduces to the con-

tinuity of the heat function

:

pi = P2, wi = W2- (120.4)

In using these conditions, it must be remembered that the gases on the two

sides of the discontinuity under consideration are chemically different, and so

the thermodynamic quantities are not the same functions of one another.

For a perfect gas we have w\ = woi+c<piTi, w% — W02+CP2T2; the constant

terms cannot be put equal to zero as for a single gas (by an appropriate

choice of the zero of energy), since woi and W02 are different. We put «>oi— ^02
= q ; this is just the heat evolved (per unit mass) in the reaction, if the reac-

tion occurs at a temperature of absolute zero. Then we obtain the following

relations between the thermodynamic quantities for the unburnt gas (1)

and the burnt gas (2)

:

cV2 cP2 y2\yi-l) \ Cpili I

(120.5)

Since the flame has a definite normal velocity, independent of the gas

velocities themselves, the flame front has a definite form for steady com-

bustion in a moving gas. An example is the combustion of gas leaving the

end of a tube (a burner outlet). If v is the gas velocity averaged over the

cross-section of the tube, it is evident that v\S\ = vS, where S is the cross-

sectional area of the tube and Si the total surface area of the flame front.

If this situation is to be realised, it must be stable with respect to small

perturbations, and the question arises of the limits of this stability. The

t The diffusion of the components of the burning mixture also has a certain effect on the proga-

gation of combustion; this, however, does not alter the orders of magnitude of the flame velocity

and width.
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stability of the flame front can be investigated in a similar manner to that of

a tangential discontinuity in §30. Since the gas velocity is small compared

with that of sound, we can regard the gas as an incompressible ideal fluid,

the normal velocity of the flame front being taken as a given constant. Such an

investigation (see Problem 1) leads to the result that the flame front is

absolutely unstable, and the flame must therefore become turbulent (L.

Landau 1944). In this form the investigation is valid only for large Reynolds

numbers. When the viscosity of the gas is taken into account, however, it

cannot here result in a very large critical Reynolds number.

The experimental data, on the other hand, show that the "self-turbulence"

of the flame does not occur up to very large Reynolds numbers.f This

means that there must be other factors which stabilise the flame front and

postpone its becoming turbulent until very large Reynolds numbers are

reached. It is possible that the change in the normal velocity when the front

is deformed is of importance : where the front is concave, v\ increases (since

the heat transfer into the unburnt mixture in the concavity is improved),

while where it is convex v\ is reduced (Ya. B. Zel'dovich). This important

problem has not yet been resolved.J

<////////////////////////////////.

1

v,

b d

Fig. 113

A flame propagated in a mixture of combustible gases results in a motion

of the surrounding gas up to a considerable distance. The fact that a motion

of the gas must accompany combustion is evident from the fact that, because

of the difference between the velocities v± and V2, the combustion products

must move with velocity v± — V2 relative to the unburnt gas. In some cases

this motion results in the formation of shock waves. These shocks bear no
direct relation to the process of combustion, and their occurrence is due to

the necessity of satisfying the boundary conditions. Let us consider, for

example, combustion propagated from the closed end of a pipe. In Fig.

113, ab is the combustion zone. The gas in regions 1 and 3 is the original

unburnt mixture, while that in region 2 consists of combustion products.

The velocity v± with which the combustion zone moves relative to the gas 1

t In spherical propagation of combustion in free space the self-turbulence, if it occurs, does so
for R ~ 105 , the characteristic dimension being the radius of the spherical flame (Ya. B. Zel'dovich
and A. I. Rozlovskii 1947). When a gas burns in a pipe, the self-turbulence does not occur, being
preceded by the turbulence which appears, for large R, owing to the effect of the walls on the gas
flow which accompanies combustion (i.e. owing to the instability of laminar Poiseuille flow).

J There are special factors which stabilise the flame in the combustion of a gas evaporating from
the surface of a liquid (the reaction occurring in the gas itself, and not with any external substance
such as the oxygen in the air). In this case capillary forces and the gravitational field have a stabilising

effect (see Problem 2).
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in front of it is, from above, determined by the properties of the reaction and

the conditions of heat transfer, and must be regarded as given. The velocity

V2 with which the flame moves relative to gas 2 is then determined at once by

the condition (120.3). At the closed end of the pipe, the gas velocity must

vanish, and so the gas in region 2 will be at rest. Gas 1, therefore, must

move relative to the pipe with a constant velocity V2— v±. In the forward

part of the pipe, far from the flame, the gas is again at rest. This condition

can be satisfied only by the presence of a shock wave (cd in Fig. 113), in which

the gas velocity is discontinuous in such a way that gas 3 is at rest. From the

given discontinuity of velocity we can find the discontinuities in the other

quantities and the velocity of propagation of the shock itself. Thus we see

that the flame front acts as a piston on the gas in front of it. The shock wave

moves faster than the flame, so that the mass of gas set in motion increases

in the course of time.

For sufficiently large Reynolds numbers, the gas flow which accompanies

combustion in a pipe becomes turbulent, and this in turn affects the flame

which causes the motion. According to K. I. Shchelkin, the structure of

the combustion zone is then as follows. The turbulent eddies which are

large compared with the ordinary width S of the flame result in an irregular

curvature of the flame front. This curvature may be considerable, since the

stability of the front with respect to deformations is probably small, as men-

tioned above. The result is a comparatively wide combustion zone, con-

sisting of a narrow flame front which has been irregularly concertina'd. The

rate of combustion is then considerably increased, on account of the marked

increase in the total surface on which it occurs. It should be noted that this

picture is very different from what would occur if the flame were self-

turbulent: in that case the combustion zone would be a homogeneous region

in which turbulent eddies small compared with the pipe radius would effect

thorough mixing.

PROBLEMS

Problem 1. Investigate the stability of a plane flame front (propagated with a velocity

small compared with that of sound) with respect to infinitesimal disturbances.

Solution. We take the plane of discontinuity as the yz-plane, with the unperturbed

gas velocity in the positive ^-direction. On the flow with constant velocities vlt v2 (on the

two sides of the discontinuity) we superpose a perturbation periodic in the y-direction and in

time. From the equations of motion

diw' = 0, av73*+ (v.grad)v' = -(l/o)grad^' (1)

(v, p being either \lt ft or v2 , ft), we obtain as in §30 the equation

AP' = 0- (2)

On the surface of discontinuity (i.e. for *x0) the following conditions must be satisfied:

the equation of continuity of pressure

P'l = P'* (3)

the condition of continuity of the velocity component tangential to the surface

v\y+vi dC/dy = v'2y+v2 dtldy (4)

(where £(y, t) is the small displacement of the surface of discontinuity along the #-axis due
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to the disturbance), and the condition that the gas velocity normal to the surface of discon-

tinuity is unchanged,

v'iz- dtldt = v'2x- dljdt = 0. (5)

In the region x < (the unburnt gas 1), the solution of equations (1) and (2) can be written

v\x = Aeikv+kx-i01t
, v'ly = iAeikv+kx^lut

t

(6)
(ICO \

p\ = ApA vi M*itf-**-*«*.

In the region * > (the combustion products, gas 2), besides the solution of the form
constant x eiky

~kx~ib)t
, we must take into account another particular solution of equations (1)

and (2), in which the dependence on y and t is given by the same factor eikv
~iwt

. This solution

is obtained by putting p' = ; then the right-hand side of Euler's equation is zero, and the

resulting homogeneous equation has a solution in which v'x and v'y are proportional to

eiky-iwt+iwxiv. The reason why this solution need be taken into consideration only in gas 2,

and not in gas 1, is that our ultimate purpose is to determine whether frequencies <*> can

exist having positive imaginary parts ; for such o>, however, the factor eib)xlv increases without

limit with \x\ for x < 0, and so such a solution is not possible in region 1. Again choosing

appropriate values of the constant coefficients, we seek a solution for x > in the form

v'zx = ^giky—kx—io) _j. Qeiky—i<>)t+i<i>xlv% .

v\y = -iBeikv-kx-ib> -((o/kv2)Ceiky~ib,t+t<0X/v», 1 (7)

p'2 = -BP2[v2+ (i(olk)]eikv-kx
-tut

. >

Putting also

I = Deikv-l "t,
(8)

and substituting these expressions in the conditions (3)-(5), we obtain four homogeneous
equations for the coefficients A, B, C, D. A simple calculation (using the fact that

j e= pjvt
= pzV2) gives the following condition for these equations to be compatible:

Q.2(vi+V2) + 2Q.kviV2 + k2viV2(vi— V2) = 0, (9)

where fl = -t'co. If vx > v2 , this equation has either two negative real roots or two complex
conjugate roots with negative real parts. If vx < v2 , however, the roots are real and of opposite

signs. Thus, if v^ > v2 , we always have re O < and the motion is stable, but if vt < va

there are fl for which re O > 0, and the original motion is unstable. The density pg of the

combustion products is actually always less than the density pt of the unburnt gas, on account

of the considerable heating during combustion. Hence it follows, since pxVt = p2vif that

v2 > vu and we conclude that the flame front is unstable in the conditions considered.

Problem 2. Combustion occurs on the surface of a liquid, the reaction taking place in

vapour evaporating from the surface. Determine the stability condition in this case, taking

into account the effect of the gravitational field and capillary forces (L. D. Landau, 1944).

Solution. Let us consider the combustion zone in vapour near the liquid surface as a
surface of discontinuity, but now let this surface have a surface tension a. The calculations

are entirely similar to those of Problem 1, the only difference being that, instead of the

boundary condition (3), we now have p\—p\ = —<x-8i tJ8y
2
+(.Pi—P2)gtl medium 1 is the

liquid and medium 2 the burnt gas. The conditions (4) and (5) are unchanged. In place of

equation (9) we obtain

T gk(pi— p2)+ a.k3 ']

&2
(z>i+ ^2)+ 2Qfo,'ifl2+ k2(vi— V2) -\ : v±V2 = 0.

The stability condition in this case is that the roots of this equation should have negative
real parts, i.e. the free term must be positive for all k. This requirement gives the stability

condition,/4 < 4<xgp1
2
p2

2
/(Pi

—
P2)' Since the density of the gaseous combustion products is

small compared with that of the liquid (px ^> fa), the condition becomes in practice

j
4 < 4agpiP2

2
.
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Problem 3. Determine the temperature distribution in the gas in front of a plane flame.

Solution. In a system of co-ordinates moving with the front the temperature distribution

is steady, and the gas moves with velocity —vv The equation of thermal conduction,

v-gradT1 = -v^T/dx = x^2T/dx2
,

has the solution T = T e~vixlx, where T is the temperature on the flame front, the tempera-

ture far from the front being taken as zero.

§121. Detonation

In the type of combustion (slow combustion) described above, the pro-

pagation through the gas is due to the heating which results from the direct

transfer of heat from the burning gas to that which is still unburnt. Another

entirely different mechanism of propagation of combustion, involving shock

waves, is also possible. The shock wave heats the gas as it passes; the gas

temperature behind the shock is higher than in front of it. If the shock wave

is sufficiently strong, the rise in temperature which it causes may be sufficient

for combustion to begin. The shock wave will then "ignite" the gas mixture

as it moves, i.e. the combustion will be propagated with the velocity of the

shock, or much faster than ordinary combustion. This mechanism of propa-

gation of combustion is called detonation.

When the shock wave passes some point in the gas, the reaction begins at

that point, and continues until all the gas there is burnt, i.e. for a time

r which characterises the kinetics of the reaction concerned. It is therefore

clear that the shock wave will be followed by a layer moving with it in which

combustion is occurring, and the width of this layer is equal to the speed of

propagation of the shock multiplied by the time t. It is of importance that

the width does not depend on the dimensions of any bodies that are present.

When the characteristic dimensions of the problem are sufficiently large,

therefore, we can regard the shock wave and the combustion zone following

it as a single surface of discontinuity which separates the burnt and unburnt

gases. We call such a surface a detonation wave.

At a detonation wave the flux densities of mass, energy and momentum
must be continuous, and the relations (82.1)-(82.10) derived previously,

which follow from these continuity conditions alone, remain valid. In

particular, the equation

W1-W2+W1+ V2)(p2-Pi) = (121.1)

holds; the suffix 1 always pertains to the unburnt gas and the suffix 2 to the

combustion products. The curve of p2 as a function of V2 given by this

equation is called the detonation adiabatic. Unlike the shock adiabatic

considered earlier, this curve does not pass through the given initial point

(pi, V\). The fact that the shock adiabatic passes through this point is due

to the fact that w\ and w<z are the same functions of pi, V\ and p2, V2 respec-

tively, whereas this does not now hold, on account of the chemical difference

between the two gases. In Fig. 114 the continuous line shows the detonation

adiabatic. The ordinary shock adiabatic for the unburnt gas mixture is
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drawn (dashed) through the point (pi, Vi). The detonation adiabatic always

lies above the shock adiabatic, because a high temperature is reached in

combustion, and the gas pressure is therefore greater than it would be in the

unburnt gas for the same specific volume.

The previous formula (82.6) holds for the mass flux density:

;
2 = (P2-P1W1-V2), (121.2)

so that graphically; 2 is again the slope of the chord from the point (pi, Vi)

to any point (P2, V2) on the detonation adiabatic (for instance, the chord ac

in Fig. 114). It is seen at once from the diagram that/2 cannot be less than

\p\M

Fig. 114

the slope of the tangent aO. The flux j is just the mass of gas which is

ignited per unit time per unit area of the surface of the detonation wave;

we see that, in a detonation, this quantity cannot be less than a certain

limiting value /min (which depends on the initial state of the unburnt gas).

Formula (121.2) is a consequence only of the conditions of continuity of the

fluxes of mass and momentum. It therefore holds (for a given initial state of

the gas) not only for the final state of the combustion products, but also for all

intermediate states, in which only part of the reaction energy has been evolved.

In other words, the pressure p and specific volume V of the gas in any state

obey the linear relation

P = pi+PiVx-V), (121.3)

which is shown graphically by the chord ad. This result is of importance in

the theory of detonation; it was first stated by V. A. Mikhel'son (1890).

Let us now use a procedure developed by Ya. B. Zel'dovich (1940) to

investigate the variation of the state of the gas through the layer of finite

width which a detonation wave actually is. The forward front of the detona-

tion wave is a true shock wave in the unburnt gas 1. In it, the gas is compres-

sed and heated to a state represented by the point d (Fig. 1 14) on the shock
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adiabatic of gas 1. The chemical reaction begins in the compressed gas,

and as the reaction proceeds the state of the gas is represented by a point

which moves down the chord da; heat is evolved, the gas expands, and its

pressure decreases. This continues until combustion is complete and the

whole heat of the reaction has been evolved. The corresponding point is c,

which lies on the detonation adiabatic representing the final state of the com-
bustion products. The lower point b at which the chord ad intersects the

detonation adiabatic cannot be reached for a gas in which combustion is

caused by compression and heating in a shock wave.f

Thus we conclude that the detonation is represented, not by the whole of

the detonation adiabatic, but only by the upper part, lying above the point O
where this adiabatic touches the straight line aO drawn from the initial point a.

It has been shown in §84 that, at the point where d(j2)/dp2 = 0, i.e. where

the shock adiabatic touches the line from (pi, V\), the velocity ©2 is equal to

the corresponding velocity of sound c^ and v% < c% above that point. These
results have been obtained only from the conservation laws for the surface

of discontinuity, and are therefore entirely applicable to the detonation

wave also. On the ordinary shock adiabatic for a single gas there are no
points with d(/ 2)/dp2 = 0, as has been shown in §84. On the detonation

adiabatic, however, there is such a point, namely the point O. Since detona-

tion corresponds to the upper part only of the adiabatic, above the point O,

we conclude that

v2 ^ c2 , (121.4)

i.e. a detonation wave moves relative to the gas just behind it with a velocity

equal to or less than that of sound ; the equality v% — c% holds for a detonation

corresponding to the point O (called the Jouguet point).

%

The velocity of the detonation wave relative to gas 1 is always supersonic

(even for the point O)

:

V! > a. (121.5)

This is most simply seen directly from Fig. 114. The velocity of sound c\ is

given graphically by the slope of the tangent to the shock adiabatic for gas 1

(dashed curve) at the point a. The velocity v±, on the other hand, is given

by the slope of the chord ac. Since all the chords concerned are steeper than

the tangent, we always have v\ > c\. Moving with supersonic velocity, the

detonation wave, like a shock wave, does not affect the state of the gas in

front of it. The velocity v\ with which the detonation wave moves relative

to the unburnt gas at rest is the velocity of propagation of the detonation.

Since v\\V\ = vz/Vz = j, and V\ > Vz, it follows that v\ > vi. The

t For completeness, it should also be mentioned that a discontinuous transition from state e to

state b in another shock wave is also impossible, since the gas would have to cross such a shock from

high pressure to low pressure.

t It should be recalled that the velocities vlt 1% always signify the velocities normal to the surface

of discontinuity.
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difference v\-vz is evidently the velocity of the combustion products relative

to the unburnt gas. This difference is positive, i.e. the combustion products

move in the direction of propagation of the detonation wave.

We may note also the following. In §84 it was also shown that ds2[d(j2) > 0.

At the point where;'2 has a minimum, S2 therefore also has a minimum. This

point is O, and we conclude that it corresponds to the least value of the

entropy s2 on the detonation adiabatic. The entropy s2 also has an extremum

at O if we consider the change in state along the line ae (since the slopes of

the curve and the tangent at O are the same). This extremum, however, is a

maximum. For a displacement from e to O corresponds to the change of state

as the combustion reaction occurs in the compressed gas, and this is accom-

panied by the evolution of heat and an increase in entropy; a passage from

O to a, however, would correspond to the endothermic conversion of the

combustion products into the original gases, with a decrease in entropy.

If the detonation is caused by a shock wave which is produced by some

external source and is then incident on the gas, any point on the upper part

of the detonation adiabatic may correspond to the detonation. It is of parti-

cular interest, however, to consider a detonation which is due to the com-

bustion process itself. We shall see in §122 that, in a number of important

cases, such a detonation must correspond to the Jouguet point, so that the

velocity of the detonation wave relative to the combustion products just

behind it is exactly equal to the velocity of sound, while the velocity v± = jV\

relative to the unburnt gas has its least possible value. This result was put

forward as a hypothesis by D. L. Chapman (1899) and E. Jouguet (1905),

but its complete theoretical justification is due to Ya. B. Zel'dovich (1940).

Let us now derive the relations between the various quantities in a detona-

tion wave in a perfect gas. Substituting in the general equation (121.1) the

heat function in the form

w = zvo+ CpT = iv + ypVI(y-l),

we obtain

^-W2 - ^-Wi- Vxp2 + V2pi = 2q, (121.6)
y2—l yi— 1

where q = W01-W02 again denotes the heat of the reaction, reduced to the

absolute zero of temperature. The curve £2(^2) given by this equation is a

rectangular hyperbola. For P2IP1 -> 00, the ratio of densities tends to a finite

limit p2lpi = V1IV2 = (y2+l)/(y2-l); this is the greatest compression that

can be achieved in a detonation wave.

The formulae are much simplified in the important case of strong detonation

waves, which are obtained when the heat evolved in the reaction is large

compared with the internal heat energy of the original gas, i.e. q > cviTi.

In this case we can neglect the terms containing pi in (121.6), obtaining

P2(^V2-V1)=2q. (121.7)
\y2— 1 /
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Let us consider in more detail a detonation corresponding to the Jouguet
point, which is of particular interest, as we see from the above discussion. At
this point p = c2

2jV22 = y2pi]V2 . From this relation and (121.2) we can
express p2 and V2 in the form

P2 = (pi+i2
^i)/(y2 +l), V2 = y2(pi+j2V1)/j2(y2 +l). (121.8)

Substituting these expressions in equation (121.6) and replacing; by vi/Vi,
we have after a simple reduction the following quartic equation for the
velocity v± :

'Vl
i-2v1

2
[(y2

2 -l)q+(y22-y1)cvlT1]+y22(y1 -l)2cvl2T12 = 0,

where the temperaturehasbeen introduced by T = p V\{cv- cv) = pV/cv(y - 1).

Hencef

*i = V{h(Y2-l)[(Y2+l)q+(yi + Y2)cviT1]}+
+ VIK72 + l)[(y2 - l)q + (y2-Yi)cviT{\}. (121.9)

This formula determines the velocity of propagation of the detonation in
terms of the temperature T\ of the original gas mixture.

We can rewrite formulae (121.8) in the form

P2, =
vi2 + (n-tyviTi V2 _ y2bi2 + (yi-lKiri]

p\ (y2+l)(yi-lKi7V Vi (y2+lk'i2

(121.10)

Together with (121.9), they determine the ratios of pressure and density
between the combustion products and the unburnt gas at temperature T\.

The velocity v2 is calculated as v2 = V2v1/V1 , using formulae (121 9)
and (121.10). The result is

V2 = V{h(Y2- 1)[(V2+l)q+ (n + Y2)cviT1 ]}+
1

(121.11)
72—1

+—-;V{My2 + l)[(y2 - l)q+(y2-yi)cvlT1 ]}.
y2 +l

The difference vi-v2 , i.e. the velocity of the combustion products relative to
the unburnt gas, is

V!-v2 = V(2[(y2 - l^+(y2-yiKiT1]/(72 + 1)}. (121.12)

The temperature of the combustion products is calculated from the formula

cv2T2 = v2
2
ly2{y2 -\) (121.13)

(since v2 = c2).

t If x^-lpx^+q = 0, then

* = VlP±V(P2 -q)] = Vii(p+Vq)]±Vli(p-Vq)l
The two signs in this case correspond to the fact that two tangents can be drawn from the point a
to the detonation adiabatic: one upwards, as shown in Fig. 114, and the other downwards. The
upward tangent, in which we are interested, has the steeper slope, and we accordingly take the plus
sign.
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All these somewhat complex formulae are much simplified for strong

detonation waves. In this case the velocities are given by the simple formulae

V! = V[2(y22 -1)?], V!-V2 = *>l/(y2+l). (121.14)

The thermodynamic state of the combustion products is given by the for-

mulae

Vi/Vi = 72/(72+1), T2 = 2y2qlcv2(y2+l),

pi n _1 ^i^i (y2+l)ci2
'

(121.15)

a(p„^i)

Fig. 115

If we compare formulae (121.15) with the corresponding formulae (120.5)

for slow combustion, we notice that, in the limiting case q > cviTi, the ratio

of the temperatures of the combustion products after detonation and slow

combustion is T^et/T^com = 2y22/(y2+ 1). This ratio always exceeds unity

(since 72 > 1).

In all the foregoing arguments, which were based on Fig. 114, it has been

tacitly assumed that the chemical reaction of combustion is exothermic from

beginning to end (i.e. at all intermediate stages between the original unburnt

gas and the final combustion products). In the majority of cases this assump-

tion is justified. Reactions are, however, possible in principle which are

initially exothermic but endothermic in their final stages (Ya. B. Zel'dovich

and S. B. Ratner, 1941). The intermediate mixture for which heat is first

absorbed and not evolved then corresponds to an adiabatic lying above the

detonation adiabatic which corresponds to the state of the final combustion

products (Fig. 115).

32
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Any chord along which the state of the detonating mixture varies must
cross this intermediate adiabatic. The value jmin corresponding to the least

possible value of the velocity of propagation of combustion is therefore deter-

mined by the slope of the tangent aO' . Detonation waves with j >/min
correspond to points lying on the detonation adiabatic above the point b,

and V2 < C2. Ifj = /min , the state of the gas varies along the line ca from c

to O' and then further downwards to O, which replaces the ordinary Jouguet
point as the point corresponding to spontaneous detonation; here V2 > cz,

contrary to^the usual result.

PROBLEM

Determine the thermodynamic quantities for the gas immediately behind the shock wave
which is the forward front of a strong detonation wave corresponding to the Jouguet point

Solution. Immediately behind the shock wave we have unburnt gas, and its state is

represented by the point e where the tangent aO produced (Fig. 114) intersects the shock
adiabatic of gas 1, shown dashed. Denoting the co-ordinates of this point by (pi, Vi), we
have, firstly, by equation (85.1) for the shock adiabatic of gas 1,

Vi = (vi+l)pi+(n-l)pi

Vx (yi-l)pi + (n + l)pi'

and, secondly, (/>i
,
-/>1)/(F1-F1') =/2 = v^/Vi*- Taking vx from (121.14), we obtain

4(y22-l) q n -l
pi = pi—

—

—, Vi = Vx
——

,

7l
Z -i- CviTi yi+\

Ti
, _ q %22-l)

cvi (yi+1)2
'

The ratio of the pressure px to the pressure p2 behind the detonation wave is

Pl/p2 = 2(y2 +i)/(n+i).

§122. The propagation of a detonation wave

Let us now consider some actual cases of the propagation of detonation

waves in a gas initially at rest. We take first the case of detonation in a gas in a

pipe closed at one end (x = 0). The boundary conditions in this case are

that the gas velocity is zero both in front of the detonation wave (which does

not affect the state of the gas in front of it) and at the closed end of the pipe.

Since the gas acquires a non-zero velocity when the detonation wave passes,

the velocity must diminish in the region between the detonation wave and
the closed end of the pipe. In order to determine the resulting flow pattern, we
notice that in this case there is no length parameter which might characterise

the conditions of flow along the pipe (the ^-direction). We have seen in §92

that, in such cases, the gas velocity can change either in a shock wave (separat-

ing two regions where the velocity is constant) or in a similarity rarefaction

wave.
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Let us first assume that the detonation wave does not correspond to the

Jouguet point on the adiabatic. Then its velocity of propagation relative to

the gas behind it is vi < C2,. It is easy to see that, in this case, neither a shock

wave nor a weak discontinuity (the forward front of a rarefaction wave)

can follow the detonation wave. For the former would have to move, rela-

tive to the gas in front of it, with a velocity exceeding c%, and the latter with a

velocity equal to C2, and either would overtake the detonation wave. Thus,

on the above assumption, the velocity of the gas moving behind the detona-

tion wave cannot decrease, i.e. the boundary condition at x = cannot be

satisfied.

A
C Vy X

t
(c

/C
"l

X
t

(b)

Fig. 116

This condition can be satisfied only for a detonation wave corresponding to

the Jouguet point. Then V2 = ^2, and a rarefaction wave can follow the

detonation wave. It is formed at x = when the detonation begins, and its

forward front coincides with the detonation wave.

Thus we reach the important result that a detonation wave propagated in a

pipe, with the gas ignited at the closed end, must correspond to the Jouguet

point. It moves relative to the gas just behind it with a velocity equal to the

local velocity of sound. The detonation wave adjoins a rarefaction wave, in

which the gas velocity (relative to the pipe) falls monotonically to zero. The
point where the velocity becomes zero is a weak discontinuity. Behind this

discontinuity the gas is at rest (Fig. 116a).

Let us now consider a detonation wave propagated from the open end of a

pipe. The pressure of the gas in front of the detonation wave must be equal

to the original pressure, which clearly equals the external pressure. It is

evident that, in this case also, the velocity must decrease somewhere behind

the detonation wave. If the gas velocity were constant between the end of the

pipe and the detonation wave, it would follow that gas was being sucked

into the open end of the pipe from outside ; this would be impossible, since

the gas pressure in the pipe would be greater than the external pressure on
account of the pressure increase in a detonation wave. For the same reasons

as in the previous case, the detonation wave must correspond to the Jouguet
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point. The resulting flow pattern is shown diagrammatically in Fig. 116b.
Immediately behind the detonation wave is a similarity rarefaction wave, in

which the velocity decreases monotonically towards the end of the pipe,

changing sign at some point. This means that, in the end section of the pipe,

the gas moves towards the open end and flows out of it; the velocity with
which it leaves the pipe equals the local velocity of sound, and its pressure
exceeds the external pressure. We have seen in §90 that such a flow is pos-
sible.

Let us next consider a spherically symmetrical outgoing detonation wave
whose centre is the point where the gas is first ignited (Ya. B. Zel'dovich
1942). Since the gas must be at rest both in front of the detonation wave and
near the centre, the gas velocitymust decrease from the detonation wave towards
the centre. As with the flow in a pipe, there are no characteristic parameters
having the dimensions of length. The result must therefore be a similarity

flow, the co-ordinate x being replaced by the distance r from the centre.

Thus all quantities are functions only of the ratio r\t.

For centrally symmetrical flow (vr = v(r, t), v^ = v9 = 0), the equations
of motion are as follows. The equation of continuity is

Euler's equation is

8p 8(vp) 2vp— + -^-' + —- = 0;
8t 8r r

dv 8v 1 dp

8t 8r p 8r

and the equation of conservation of entropy is

8s 8s

8t 8r

Introducing the variable £ = rjt ( > 0) and assuming that all quantities

are functions of £ only, we obtain

(i-v)p'/P = v'+ 2v/£, (122.1)

(£-©)©' = p'/p, (122.2)

(i-vy = 0, (122.3)

the prime denoting differentiation with respect to f. We cannot have
v = £, since this contradicts the first equation. From the third equation,

therefore, s' = 0, i.e. s = constant. We can therefore write p' = {dpjdp)sp
= c2p', and equation (122.2) becomes

d-vy = cyjp. (122.4)

Substituting p'jp from (122.1), we obtain the relation

[-Z—T-t (122 '5)
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Equations (122.4) and (122.5) cannot be integrated analytically, but the pro-

perties of their solutions can be investigated.

The region where the gas flow is of the type considered is bounded, as we

shall see below, by two spheres, of which the outer is the surface of the

detonation wave itself, and the inner is the surface of a weak discontinuity,

where the velocity is zero.

Let us first examine the properties of the solution near the point where v

is zero. It is easy to see that, where v = 0, £ = c also

:

v = 0, € = c. (122.6)

For, when v tends to zero, log v -> — oo ; hence, when £ decreases to the

value corresponding to the inner boundary of the region in question, the

derivative d log v/dtj must tend to + oo. From (122.5), however, we have for

v =

dlogz;/d£ = 2c2/£(£
2 -c2).

This expression can tend to + oo only if £ -> c.

At the origin, the radial velocity must vanish, by symmetry. Thus there is

a region of gas at rest round the origin; this is the region inside the sphere

£ = co, where cq is the velocity of sound for the point where v = 0.

Let us ascertain the properties of the function v(£) near the point (122.6).

From (122.5) we have

2-

H

2?-']

As far as quantities of the first order (such as v, g-c and c-c ), we have

after a simple calculation ad(|-c )/dt; = (i-c )-(v + c-co). According to

(95.1) we have v + c—cq = ao^, where ao is a positive constant, the value of

(95.2) for v = 0, and we obtain the following linear first-order differential

equation for £— cq as a function of v:

z>d(!-c )/ds;-(£-co) = -^v -

The solution of this equation is

£— Co = olqv log(constant/a). (122.7)

This implicitly determines the function v(tj) near the point where v = 0.

We see that the inner boundary is a surface of weak discontinuity: the

velocity tends continuously to zero. The curve of v(tj) has a horizontal

tangent at this point (dz>/d£ = 0). The weak discontinuity involved is very

unusual: the first derivative is continuous, but all higher derivatives are

infinite (as is easily seen from (122.7)). The ratio r[t for v = is clearly

just the velocity of motion of the boundary relative to the gas ; according to

(122.6), it is equal to the local velocity of sound, as it should be for a weak

discontinuity.
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We have also for small v, by (122.7),

g-v-c = (tj-c )-(v+ c-c )

— ao^[log(constant/^)— 1].

For small v, this quantity is positive: |— v— c > 0. We shall show that the

difference (£— v) — c cannot change sign anywhere in the region of the flow

considered. Let us consider a point, if there is one, where

£-v = c, v^O. (122.8)

We see from (122.5) that the derivative v' must be infinite at this point, i.e.

d£/da = 0. (122.9)

The second derivative d2 £/da2 is shown by a simple calculation (using the

conditions (122.8) and (122.9)) to be d2 £jdv2 = -olq^Jcqv, which is not zero.

This means that £ as a function of v has a maximum at the point in question.

Thus the function v(£) exists only for £ less than the value corresponding to

the conditions (122.8), and this value is the other boundary of the region

considered. Since g— v — c can vanish only at the boundary of the region,

and £— v — c > for small v, we conclude that

£-v > c (122.10)

everywhere in the region.

It is now easy to see that the outer boundary of the region of the flow
considered must in fact be at the point where the conditions (122.8) hold.

To see this, we notice that the difference rjt~v, where r is the co-ordinate

of the boundary, is just the velocity of the boundary relative to the gas behind
it. A surface on which rjt—v> c, however, cannot be the surface of a

detonation wave (where we must have rjt — v ^ c). We therefore conclude
that the outer boundary of the region considered can only be the point where
(122.8) holds. On this boundary v falls discontinuously to zero, and the
velocity of the boundary relative to the gas just behind it is equal to the local

velocity of sound. This means that the detonation wave must correspond
to the Jouguet point on the detonation adiabatic.f

We thus have the following flow pattern for spherical propagation of a

detonation. The detonation wave, like that in a pipe, must correspond to the

Jouguet point. Immediately behind it is a spherical similarity rarefaction

wave, in which the gas velocity decreases to zero. The decrease is monotonic,
since, by (122.5), the derivative dz>/d£ can vanish only if v = also. The gas

pressure and density also decrease monotonically, since by (122.4) and
(122.10) the derivative/)' always has the same sign as v'. The curve giving v
as a function of rjt has a vertical tangent at the outer boundary (by (122.9))

and a horizontal tangent at the inner boundary (Fig. 117). The inner boun-
dary is a weak discontinuity, near which the dependence of v on rjt is given

t We may notice for completeness that v = constant is not a solution of the equations of centrally
symmetrical motion. Hence the detonation wave cannot be followed by a region of constant velocity.
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by equation (122.7). The gas within the sphere bounded by the weak dis-

continuity is at rest. The total mass of gas at rest is, however, very small

(cf. the remarks at the end of §99).

Thus, in all the typical cases of spontaneous one-dimensional propagation of

detonation which we have considered, the boundary conditions in the region

behind the detonation wave give a unique velocity for the latter, which

corresponds to the Jouguet point (the whole of the detonation adiabatic

below this point being excluded by the arguments of §121). The achievement,

in a pipe of constant cross-section, of a detonation corresponding to the part

of the adiabatic above the Jouguet pointf would require an artificial compres-

sion of the combustion products by a piston moving with a supersonic velocity

(see Problem 3).

Fig. 117

It should be emphasised, however, that these conclusions are not uni-

versally valid, and there are cases of propagation of a detonation where an

over-compressed detonation wave occurs spontaneously. In particular, an

over-compressed detonation wave is formed when an ordinary detonation

wave goes from a wide pipe into a narrow one (B. V. Aivazov and Ya. B.

Zel'dovich 1947). This phenomenon occurs because, when a detonation

wave reaches a narrowing of the pipe, it is partly reflected, and the pressure

of the combustion products moving from the wide part to the narrow part is

considerably increased (cf. Problem 4).

In the foregoing we have entirely neglected the heat losses which may

accompany the propagation of a detonation wave. As in the case of slow

combustion, these losses may render the propagation of the detonation

impossible. In the detonation of gas in a pipe, the source of the losses is

primarily the removal of heat through the walls of the pipe and the retarda-

tion of the gas by friction. A detonation in a thin rod of explosive is limited

mainly by the dispersal of the combustion products : when the rod is too thin

f Such detonation waves are sometimes said to be "over-compressed", since the gas is compressed

in them to higher pressures than in the "normal" detonation wave corresponding to the Jouguet

point.
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in comparison with the width of the combustion zone, part of the material is

dispersed before the reaction can occur, and the propagation of the detonation
is impossible (Yu. B. Khariton 1940).

Under conditions close to the limiting ones for the detonation to be
propagated, the curious phenomenon of spinning detonation is observed.
According to K. I. Shchelkin (1945), the shock wave propagated along the
pipe in a spinning detonation is no longer of the axially symmetrical (usually

almost plane) type, and rotates about the axis of the pipe as it moves along
it. The ignition of the gas as it passes through the shock occurs mainly at

an eccentrically situated and spirally moving bend in the shock wave front.

No quantitative theory of spinning detonation exists.

f

PROBLEMS
Problem 1. Determine the gas flow when a detonation wave is propagated from the closed

end of a pipe.

Solution. The velocity vx of the detonation wave relative to the gas at rest in front of it,

and its velocity v2 relative to the burnt gas just behind it, are given in terms of the temperature
Tx by formulae (121.11), (121.12). vx is also the velocity of the wave relative to the pipe, so
that its co-ordinate is x = vxt. The velocity (relative to the pipe) of the combustion products
at the detonation wave is v1—v2 . The velocity v2 equals the local velocity of sound. Since the
velocity of sound is related to the gas velocity v in a similarity rarefaction wave by
c = c + i(y— 1)*>, we have v2 = c + %(y2—l)^—v2), whence c = Ky2+ l)w2—1(72" l)*>i.
For a strong detonation wave we have, by (121.14), simply c = ^. The quantity c is

the velocity of the backward boundary of the rarefaction wave. The velocity varies linearly
between the two boundaries (Fig. 116a).

Problem 2. The same as Problem 1, but for a pipe with an open end.

Solution. The velocities vx and v2 are determined as in the previous case, and so c is

the same also. The rarefaction wave, however, now extends, not to the point where v = 0,
but to the end of the pipe (x = 0, Fig. 116b). We see from the formula x/t = v+c (92.5)
that the gas leaves the open end of the pipe with a velocity v — — c equal to the local velocity
of sound. Putting —v = c = c +£(y2— l)v, we therefore find the velocity of outflow to be
[—»] x=o = 2c /(y2 +l). For a strong detonation wave this velocity is Ui/(y2 +l).

Problem 3. The same as Problem 1, but for a detonation wave propagated in a pipe whose
end is closed by a piston which begins to move forward with a constant velocity U.

Solution. If U < vlt the velocity distribution in the gas is of the form shown in Fig. 1 18a.

The gas velocity decreases from vx—v2 at x/t = vx to U at x/t = c +l(y+l)U, with the same
value of c as before. Then follows a region in which the gas moves with constant velocity U.

If U > vly however, the detonation wave cannot correspond to the Jouguet point (since
the piston would overtake it). In this case we have an over-compressed detonation wave,
corresponding to a point on the adiabatic above the Jouguet point. It is determined by the
fact that the discontinuity of velocity in the detonation wave must equal the velocity of the
piston: i^—vs = U. Throughout the region between the detonation wave and the piston, the
gas moves with constant velocity U (Fig. 118b).

Problem 4. Determine the pressure at a perfectly rigid wall when a strong plane detonation
wave normally incident is reflected from it (K. P. Stanyukovich 1946).

Solution. When a detonation wave is incident on a wall, a reflected shock wave is formed
and propagated in the opposite direction, through the combustion products. The calcula-

tions are entirely similar to those in §93, Problem 1. With the same notation, we obtain the

t A qualitative discussion is given by Ya. B. Zel'dovich {Comptes rendus de VAcademie des

Sciences de VURSS 52, 147, 1946).
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relations

F2/Fi = y2/(y2 +l),

three relations

p2{Vl-V2) = (Pz-p2){V2-Vz),

Vz (y2+l)j>2 + (y2-l)j>3
>

Fa"
~~

(y2- 1)^>2 + (y2+ l)pz

'

here we have neglected p t in comparison with p2 , but p% and p3 are of the same order of

magnitude. Eliminating the volumes, we obtain a quadratic equation for p s ,
and must take

the root which is greater than pt :

Pz _ 5y2+l + V(17y2
2+ 3y2 +l)

pt 4y2

It should be noted that this quantity is almost independent of y2 ,
varying from 26 to 2-3 as y2

varies from 1 to <x>.

(a)

(b)

U *.

t

Fig. 118

§123. The relation between the different modes of combustion

It has been shown in §121 that detonation corresponds to points on the

upper part of the detonation adiabatic for the combustion process concerned.

Since the equation of this adiabatic is a consequence only of the conservation

laws for mass, momentum and energy (applied to the initial and final states

of the burning gas), it is clear that the points representing the state of the

reaction products must lie on the same curve for any other mode of com-

bustion in which the combustion zone can be regarded as a surface of dis-

continuity of some kind. Let us now ascertain the physical significance of

the remainder of the curve.

We draw through the point {pi, Vi) (point 1 in Fig. 119) vertical and hori-

zontal lines \A and \A\ and the two tangents 10 and 10' to the adiabatic.

The points A, A', O, O' where these lines intersect or touch the curve

divide the adiabatic into five parts. The part lying above O corresponds to

detonation, as we have said. We shall now consider the other parts of the

curve.

First of all, it is easy to see that the section AA' has no physical signifi-

cance. For we have on this section p2 > pi, V% > Vi, and so the mass flux

3= V[(p2-Pi)KVi- V*)] is imaginary.
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At the points of contact O and O', the derivative d(/2)/d/>2 is zero; it

has been shown in §84 that at such points we have ©2/^2 = 1 and d(z>2/c2)/d/>2

< 0. Hence it follows that above the points of contact ^2/^2 < 1, and below
them vz/c2 > 1. The relation between v\ and c\ is always easily found by
considering the slopes of the corresponding chords and tangents, as was done
in §121 for the part above O. The result is that the following inequalities hold
on the various sections of the adiabatic

:

(123.1)

above O vi > a, V2 < c2 ;

on AO vi > a, V2 > c2 ;

on A'O' vi < ci, V2 < c2 ;

below 0' vi < a, V2 > C2.

Fig. 119

At O and O', V2 = c%. As we approach A, the flux/, and therefore the velo-

cities vi, V2, tend to infinity. As we approach A\ however,/ and the velocities

vi, V2 tend to zero.

In §84 we have investigated the stability of a shock wave with respect to

infinitesimal displacements in the direction perpendicular to its plane, and
we have seen that the stability depends on the relation between the number
of parameters determining the perturbation and the number of boundary
conditions which the perturbations must satisfy at the surface of discon-

tinuity.

All these considerations can also be applied to the surfaces of discontinuity

here considered. In particular, the calculation made in §84 of the number of

parameters of the perturbation for each case (123.1), shown in Fig. 47,
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remains valid. The only difference is the following. In combustion without

detonation, the velocity of propagation is determined only by the properties

of the chemical reaction and by the conditions of heat transfer from the

combustion zone to the cold gas in front of it. This means that the mass flux

j through the combustion zone is a given quantity (more precisely, a given

function of the state of the unburnt gas 1), whereas in a shock or detonation

wave; can have any value. Hence it follows that, on a discontinuity which is

a zone of combustion without detonation, the number of boundary conditions

is one more than at a shock wave : the condition that ;' has a given value is

added. Thus there are altogether four conditions, and we now conclude in

the same manner as in §84 that the discontinuity is absolutely unstable only

in the case v\ < c\, v2 > c2 , which corresponds to points below O' on the

adiabatic. Consequently, this part of the curve does not correspond to any

mode of combustion that can be realised in practice.

The section A'O' of the adiabatic, on which both velocities v± and v2 are

subsonic, corresponds to the ordinary slow combustion. An increase in the

rate of propagation of combustion, i.e. in ;, corresponds to a movement from

A' (where; = 0) towards O'. The formulae (120.5) correspond to the point

A' (where p\ = p2), and are valid if; is sufficiently small, viz. if the velocity

of propagation is small compared with that of sound. The point O' corres-

ponds to the "most rapid" combustion of this type. We shall give the for-

mulae pertaining to this limiting case.

The point 0', like O, is a point of contact between the curve and the

tangent from the point 1. Hence the formulae relating to O' can be obtained

immediately from formulae (121.8)-(121.11) for O by appropriately changing

the signs (see the footnote to (121.9)). In formulae (121.9) and (121.11)

for vi and v2 we change the sign of the second radical, and the sign of the

expression (121.12) for v±-v2 is therefore changed also. Formulae (121.10)

are unchanged if vi is taken to have its new value. All these formulae are

much simplified if the heat of reaction is large {q > cv\T{). We then obtain

V! = y2piV!lV[2(y2
2 -l)ql v2 = V[%2- l)ql{Y2+W'^M)

pzjpi = l/(y2+l)> cv2T2 = 2q/y2(y2+ l).

The following remark must be made here. We have seen that, in slow

combustion in a closed pipe, a shock wave must be formed in front of the

combustion zone. For large velocities of propagation of combustion, this

shock wave is strong, and it may considerably affect the state of the gas

which enters the combustion zone. It is therefore, strictly speaking, useless

to investigate the change in the manner of combustion with increasing

velocity, the state pi, V\ of the unburnt gas remaining unchanged. In order

to reach the point O' we must create conditions of combustion in which no

shock wave is formed. This can be done, for instance, in combustion in a

pipe open at both ends, with a continuous removal of combustion products

at the rear end. The rate of removal must be such that the combustion

zone remains at rest, and so no shock wave is formed.



496 Fluid Dynamics of Combustion §124

When the transfer of heat is very efficient (for example, transfer by radia-

tion), the value of/ may in principle exceed that corresponding to the point

O'. The mode of combustion then resulting must correspond to points on
the section AO of the adiabatic, since combustion corresponding to a point
above O cannot in general occur spontaneously, for the same reasons as in

detonation.

Ordinary slow combustion may spontaneously change into detonation.

This transition occurs owing to an acceleration of the flame, accompanied
by an increase in the intensity of the shock wave preceding it, until the shock
becomes strong enough to ignite the gas passing through it. The mechanism
of this spontaneous acceleration of the name is not yet clear; it is possible

that turbulence of the flame caused by the walls of the pipe is important
(K. I. Shchelkin). It is also possible that steady propagation of a flame is

unstable when its front is curved by the friction of the gas against the walls

of the pipe (Ya. B. Zel'dovich).

In conclusion, we may call attention to the following general differences

(besides those contained in the inequalities (123.1)) between the modes of

combustion corresponding to the upper and lower parts of the adiabatic.

Above A we have p2 > pi, V% < V\> v% < v\. That is, the reaction products
have a pressure and density greater than that of the original gas, and move
behind the combustion front with velocity v\— vi. In the region below A,
however, the inequalities are reversed : pz < pi, Vi > V\> V2 > vi, and the
combustion products are less dense than the original gas.

§124. Condensation discontinuities

There is a formal similarity between detonation waves and what are called

condensation discontinuities; these occur, for instance, in the flow of a gas
containing supersaturated water vapour. The discontinuities are the result of
a sudden condensation of vapour occurring very rapidly in a very narrow
region, which can be regarded as a surface of discontinuity (condensation
discontinuity) separating the original gas from a gas containing condensed
vapour (a/og-). It should be emphasised that condensation discontinuities

are a distinct physical phenomenon, and do not result from the compression
of gas in an ordinary shock wave; the latter effect cannot lead to condensa-
tion, since the increase of pressure in the shock wave has less effect on the

degree of supersaturation than the increase of temperature. Condensation
discontinuities were first investigated theoretically by S. Z. BELEN'Kiif(1945).

Like combustion, the condensation of a vapour is an exothermic process.

The heat of reaction q is represented by the heat evolved per unit mass of gas

by the condensation of the vapour.f The condensation adiabatic which gives

/>2 as a function of V% for a given state pi, V\ of the original uncondensed gas

t The heat q is not, strictly speaking, the usual latent heat of condensation, since the process
occurring in the condensation zone includes not only the isothermal condensation of the vapour, but
also a general change in the gas temperature. However, if the degree of supersaturation is not too
small (a condition usually satisfied), the difference is unimportant.
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is of the same form as the combustion adiabatic shown in Fig. 119. The rela-

tions between the velocities of propagation of the discontinuity vi> V2 and the

velocities of sound c\, ci for the various parts of the condensation adiabatic

are given by the inequalities (123.1). However, not all the four cases enume-

rated in (123.1) can actually occur.

First of all, the question arises whether condensation discontinuities are

stable with respect to small perturbations in a direction perpendicular to the

surface. In this respect their properties are entirely similar to those of

combustion zones. We have seen (§123) that the difference in stability

between combustion zones and ordinary shock waves is due to the existence

of a further condition (that the flux; has a given value) which must be satisfied

at the surface. In the case of condensation discontinuities there is again a

further condition : the thermodynamic state of the gas 1 in front of the dis-

continuity must be one for which rapid condensation of the vapour begins.f

We therefore conclude immediately that the whole of the adiabatic below O',

for which v± < c\, v%> £2, is excluded, since it does not correspond to stable

discontinuities.

It is easy to see that discontinuities corresponding to the part above O,

for which vi > Ci, vi < C2, also cannot occur in practice. Such a discontinuity

would move with supersonic velocity relative to the gas in front of it, and so

its presence would have no effect on the state of that gas. Consequently,

the discontinuity would have to be formed along a surface determined by the

conditions of flow, namely the surface on which the necessary conditions for

the onset of rapid condensation would be fulfilled in continuous flow. The

velocity of the discontinuity relative to the gas behind it, on the other hand,

would be subsonic in this case. The equations of subsonic flow, however, in

general have no solution for which all quantities take prescribed values on a

given surface.X
Thus only two types of condensation discontinuity are possible: (1) super-

sonic discontinuities (the section AO of the adiabatic) for which

*>i > ci, v2 > C2, p2 > ph V* < Vi (124.1)

and the condensation involves a compression, (2) subsonic discontinuities

(the section AO' of the adiabatic), for which

vi < Ci, V2 < C2, p2 < pi, V2 > Vi (124.2)

and the condensation involves a rarefaction.

The value of the flux j increases monotonically along the section AO'
from A' (where j = 0) to O', and decreases monotonically along AO from A

t This condition gives a relation between the pressure and temperature of gas 1.

J Similar arguments hold in the case where the total velocity v2 (of which »a <c2 is the component

normal to the discontinuity) is supersonic.

To avoid misunderstanding, it should be mentioned that a condensation discontinuity with

vi > c\, »2 < cz may actually (for certain conditions of vapour content and shape of the surface

past which the flow occurs) be simulated by a true condensation discontinuity with v\ > c\,

V2> c%, closely followed by a shock wave which renders the flow subsonic.
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(where; = oo) to O. The range of values of; (and therefore the range of
values of the velocity v\ = jVi) between those corresponding to O and O' is

"forbidden", and cannot occur in a condensation discontinuity. The total

mass of condensed vapour is usually very small compared with the mass of
the original gas. We can therefore regard both gases 1 and 2 as perfect gases

;

for the same reason, the specific heats of the two gases may be supposed
equal. Then the value of v\ at the point O is determined by formula (121.9),
and its value at O' by the same formula with the sign of the second radical

changed; putting yi = y2 = y and a* = y(y- l)cvTh we find the forbidden
range of values of v\ to be

V[ci2+Kr2 -i)q]-V[i(r2
-i)<il < vi

< V[ci2 + i(7
2 -

!)<?] +\W- %]. (124.3)

PROBLEM
Determine the limiting values of the ratio of pressures p2/p t in a condensation discontinuity,

assuming that q/c^ <^ 1.

Solution. On the section A'O' of the condensation adiabatic (Fig. 119), the ratio pijp x

increases monotonically from O' to A', taking values in the range

i-M2(y-i)#+ih2
] <p2lpi < l.

On the section AO, this ratio increases from A to O, taking values in the range

l+y(y- l)g/ci2 ^ p2/pi ^ l+yVPCy-lMy+l)^].



CHAPTER XV

RELATIVISTIC FLUID DYNAMICS

§125. The energy-momentum tensor

The establishment of the relativistic equations of fluid motion is of funda-

mental importance. The necessity of allowing for relativistic effects may
be due not only to a large velocity of the macroscopic motion (comparable

with that of light), but also, as we shall see, to a large velocity of the micro-

scopic motion of the fluid particles.

We must first of all determine the form of the energy-momentum 4-tensor

Tug for a fluid in motion.f The momentum flux through an element df of the

surface of a body is just the force on that element. Hence Tap dffi is the

a-component of the force on a surface element.J Let us consider some

element of volume in the fluid, and use a frame of reference in which this

element is at rest (the "proper" frame). In such a frame Pascal's law holds:

the pressure exerted by a given portion of fluid is the same in all directions and

perpendicular to the area on which it acts. We can therefore write T
a/3

dff

= /><*/«> whenceff Ta/}
= pga/}

.

The components 7oa which give the momentum density are zero for a given

volume element in its proper frame. The component Too is the proper

internal energy density of the fluid, which we shall denote in this chapter by e.

Thus the energy-momentum tensor for a given portion of fluid is, in the

proper frame,

Ttk =

p

p

p

L e

(125.1)

It is now easy to find the expression for the energy-momentum tensor in

any frame. To do so, we introduce the fluid 4-velocity ul
. In the proper frame

of the element concerned, the 4-velocity components are ua = 0, u° = 1.

t The notation in this chapter corresponds to that used in chapters 10 and 11 of The Classical

Theory of Fields, Addison-Wesley Press, Cambridge (Mass.) 1951. The Latin affixes i, ft, I, ... take

the values 0, 1, 2, 3, *° = ct being the real time co-ordinate. The Greek affixes a, /?, y, ... take the

values 1, 2, 3. The metric tensor is given by the expression — ds2 = j^d^d** for the interval, the

Galilean values of the g<* being g^x = £22 ~ Ssa *= *> £00 = ~1-

% We may recall that, in Galilean co-ordinates, T00 = T00 = —T ° is the energy density, and
Ta °jc = —Toa/c = T°a/c is the momentum component density; the quantities Tap = T<*& -» Ta&
form the momentum flux density tensor.

•ff We write all expressions in the covariant form, since we shall use them when gravitational fields

are present, i.e. in the general theory of relativity.

499
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The expression for Tw which becomes (125.1) for these values of ul is

Tik = wiiiUjc+pgijc, (125.2)

where w = e+p is the heat function per unit volume.f This is the required

expression for the energy-momentum tensor.

The components Toe in three-dimensional form are

WVJV
cc
v

fi

wva to e+pv2jc2

1 cc0=-—- ——

,

^oo = ; rrT
_

/> =

(125.3)

c{\— v2/c2
)

1 — v2/c2 1 —v2\c2

The non-relativistic case is that of small velocities (v <^ c) and small

velocities of the internal (microscopic) motion of the fluid particles. In

passing to the limit it must be borne in mind that the relativistic internal

energy e includes the rest energy nmc2 of the fluid particles (m being the rest

mass of one particle). It must also be remembered that the particle density n
is referred to unit proper volume; in non-relativistic expressions, however,

the energy density is referred to unit volume in the laboratory frame, in

which the fluid element concerned is in motion. We must therefore put, in

the limit, mn -* py/(\ — v2jc2) « p — pv2\2c2 , where p is the ordinary non-
relativistic mass density. Both the non-relativistic energy density pe and the

pressure are small compared with pc2 .

We thus find that the limiting value of Too is pc2+ pe + \pv2 , i.e. it is

pc2 together with the non-relativistic energy density. The corresponding

limiting form of the tensor Ta/? is pvaVfl+p8ap, i.e. it coincides, as it should,

with the usual expression for the momentum flux density, which we have

denoted in §7 by II
a/ff

.

The relativistic momentum density — Taojc is at the same time the energy

flux density (divided by c2). This simple relation no longer holds, however,

in the non-relativistic limit, because the non-relativistic energy does not

include the rest energy. We have —Txojc ^ pvx + (va]c
2)(p<z+p+ \pv2).

Hence we see that the limiting value of the momentum density is just pva , as

it should be; for the energy flux density — cTao we have, omitting the

term pc2va , the expression (pe+P + %pv2)vay in agreement with the result

obtained in §6.

§126. The equations of relativistic fluid dynamics

The equations of motion are contained in

dTi^/dx* = 0, (126.1)

t In all the formulae in this chapter the thermodynamic quantities are taken to have their values

in the proper frame of the fluid element concerned. Such quantities as the internal energy, the heat

function, and the entropy are referred to unit proper volume and are denoted by e, w, a respectively.
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which expresses the laws of conservation of energy and momentum for the

physical system to which the tensor Toe pertains. Using the expression (125.2)

for Tik, we obtain the equations of fluid motion ; it is necessary, however, to

use also the law of conservation of numbers of particles, which is not contained

in (126.1).

Let us derive the equation of continuity, which expresses the fact that the

number of fluid particles is conserved. To do so, we use the particle flux

4-vector nl
. Its time component is the number density of particles, and the

three space components form the three-dimensional particle flux vector. It

is evident that the vector nl must be proportional to the 4-velocity ul
y
so that

nl = nu*, (126.2)

where n is a scalar ; it is clear from the definition of n that this scalar is just

the number density of particles in the frame in which the fluid volume

element concerned is at rest.f The equation of continuity is obtained by

simply equating to zero the 4-divergence of the flux vector:%

d(nu*)/dix* = 0. (126.3)

Let us now return to equation (126.1). Differentiating the expression

(125.2) for the energy-momentum tensor, we obtain

dTt
* d(wuk) dm dp n ,.,„, ^—1_ = UiS L + wuk-A + -JL = o. (126.4)

dxk dxk dxk dxl

We multiply this equation by ul
, i.e. project it on the direction of the 4-

velocity. Since mu1 = — 1, Uiduil8xk = 0, we find

d(zouk) dp
- — + uk— = 0.

dxk dxk

We can rewrite this equation as

8 t w \ 1 dp
nuk =

dxk \ n J n dxk
l
W

k\
!

I
—nuK I

\ n In
and, by virtue of the equation of continuity (126.3), obtain

L dxk \ n J n dxk \

But l/« is just the molecular volume of the substance, and tojn is its heat

function per particle. By the thermodynamic identity d(w/«) — dpjn = Td(ajn)

(where T is the temperature and a the entropy per unit proper volume),

f At very high temperatures, new particles (for instance, electron pairs) may be formed in the

substance, so that the total number of particles of all kinds is changed. In such cases n must be taken

as (e.g.) the number of electrons which would remain if all pairs were annihilated.

J Cf. the equation of continuity in electrodynamics {The Classical Theory of Fields, §4—4\
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we therefore have nTukd(ajn)J8xk = 0, or

d(afn)lds = 0, (126.5)

where the derivative is taken along the world line of the fluid element con-

cerned.

By the equation of continuity (126.3), equation (126.5) can also be written

as the vanishing of the 4-divergence of the entropy flux aul
:

8(aui)/8xi = 0. (126.6)

Both these equations show that the flow is adiabatic ; the energy-momentum
tensor (125.2) does not take account of processes of internal friction and
thermal conduction, i.e. we consider an ideal fluid.

We now project equation (126.1) on a direction perpendicular to ul
.

Such a projection ofthe vector 8Tikjdxk is evidently dTt
kldxk +UiUk dTkl[8xl

;

it gives zero on scalar multiplication by tit. A simple calculation leads to the

equation

duf dp dp
vmk~- =--£-- MfM*—

.

(126.7)
8xk dx* 8xk

The three space components of this equation are the relativistic generalisa-

tion of Euler's equation (the time component is a consequence of the other

three).

As an interesting application, let us consider the propagation of sound in

a substance having a relativistic equation of state (i.e. one in which the

pressure is comparable with the internal energy density, including the rest

energy). The equations of fluid dynamics for the sound waves can be linear-

ised; it is convenient to start from the equations of motion in the original

form (126.1), and not the equivalent form (126.6), (126.7). Substituting the

expressions (125.3) for the components of the energy-momentum tensor and
retaining only quantities of the same order of smallness as the wave amplitude,

we obtain the equations

8e'\8t = -wdivv, (w/c2)dv/8t = -grad/>\ (126.8)

where the prime denotes the variable parts of quantities. Eliminating v,

we find d2e'jdt2 = c2Ap'. Finally, putting e' = {dej8p)&Ap\ we obtain the

wave equation for p', with the velocity of sound

u = cy/{dplde)*A ', (126.9)

the suffix ad signifies that the derivative is taken for an adiabatic process,

i.e. for constant ajn. This formula differs from the corresponding non-
relativistic expression in that the mass density is replaced by e[c2 .

In the ultra-relativistic case, the equation of state for any substance is

p = \e. The velocity of sound is then u = cJ^/Z, which is less than the velocity

of light by a factor y/Z.



§126 The equations of relativistic fluid dynamics 503

Finally, let us discuss briefly the equations of fluid dynamics in the presence

of gravitational fields. They are obtained from equations (126.6) and (126.7)

by simply replacing the ordinary derivatives by the covariant ones

:

ivukUi-ic= -dpldxi-uiu^dpjdx1c
,

(au% = 0. (126.10)

From these equations we can derive the condition of mechanical equilibrium

in a gravitational field. In equilibrium, the field is static; we can take a

frame of reference in which the substance is at rest (wa = 0, u° = 1/V(
—

£oo))>

all quantities are independent of time, and the mixed components of the

metric tensor are zero (£oa = 0). The space components of equation (126.10)

then give

-«;ra0°w% = \{wjgm)dgmldx- = -dp\dx\

or

1 dp d

-TZ=~ T^logV(-^oo). (126.11)
w ox" ex*

This is the required equation of equilibrium. In the non-relativistic limit

w £ pc2 , —goo = l + 2(f>[c
2

(<f>
being the Newtonian gravitational potential),

and equation (126.11) becomes gradp = — p grad cf>, i.e. the usual equation

of hydrostatics.

PROBLEMS
Problem 1. Find the solution of the equations of relativistic fluid dynamics which

describes a one-dimensional non-steady simple wave.

Solution. In a simple wave, all quantities can be expressed as functions of any one of them

(see §94). Writing the equations of motion in the form

8T o ST i SToi dTn
+ = 0, + = 0, (1)

cdt 8x cdt dx

and supposing T o, T01 , Tn to be functions of one another, we obtain droodTn = (dT i)
2

-

Here we must substitute T00 = eu 2 +pu1
2

, T01 = tou ult Tu = «/i
2 +jp« *, using the fact

that «i
2—m 2 = —1; it is convenient to introduce a parameter i\ such that u = cosh •>?,

Mj = sinh T}. The result is

tanh-i(©/c) = ± (1/c)
J

(u/zo) de, (2)

where u is the velocity of sound. Next, from (1) we find dx/dt = cdToi/dToo, and a calcula-

tion of the derivative gives

t(v + u)
x= K ~ +/(0- (3)

1 ± uv/c2

Formulae (2) and (3) give the required solution.

Problem 2. Find the relativistic generalisation of Bernoulli's equation.

Solution. In steady flow, all quantities are independent of time. The space component

of equation (126.7) give

W V V— —-(vgrad)— — = -c2 gradp - —vgradp.
V ( 1 — v2jc2

) v ( 1 — v2
lc

2
)

1 —v^lc*
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Multiplying this equation scalarly by v/« and using the fact that, for constant entropy a/n,

we have d(ejn) = —pd(l/ri), we finally obtain

zvjn
v-gfrad = 0,s V(i-^2

)

whence it follows that the quantity

zv/n

V(i-^2/t2)

is constant along any streamline. For v <^ c this becomes the usual Bernoulli's equation

Plp+fa>3 = constant.

Problem 3. Find the relativistic generalisation of potential flow (I. M. Khalatnikov 1 954).

Solution. For isentropic flow we have a/n = constant, and therefore

d/cr\ 8 / W\ 1 8p

8xk \n) 8xk \ n / n 8xk

The equation of motion (126.7) then becomes

w dui 8 I w \

Uk 1- UiUk ( — I

n 8xk 8xk \ n /

8 I w \ 8

or uka>ik = 0, where

= Uk
8xk

8

oxK

(%) = - .£,(-)
\ n ] 8xi \n)

/ w \ 8 l w \

\ n J 8xi \n )'

The solutions of this equation which correspond to potential flow are those for which
«i& = 0, i.e.

ZV 8d>— Ui = -~• (1)
n 8xl

v '

In the non-relativistic limit this gives the usual condition v% = d4>/dxf
.

For a steady flow we obtain from (1) Bernoulli's equation: wuo/n is constant everywhere
in the fluid.

Problem 4. Obtain the equation of the shock adiabatic and the formulae for the gas
velocities in a shock wave in relativistic fluid dynamics (A. H. Taub 1948).

Solution. Let us consider the discontinuity in a frame in which it is at rest, and let the
a;

1-axis (the ac-axis) be perpendicular to its plane, i.e. in the direction of the gas velocity. The
conditions of continuity for the energy and momentum flux densities are

-[cT0x] = -c[zvu ux] = [aw/(l-©2/c2)] = 0, (1)

[Txx\ = [zvux*+p] = [wv*l{c*-tf)+p-\ = 0. (2)

From these conditions we easily obtain (putting v/c = tanh
<f>, ux = sinh

<f>,
u — — cosh <f>)

the following expressions for the gas velocities on the two sides of the shock wave

:

fli

= I (p2-pi)(e2 +pi) V2_
= I {pz-pi){ei+p2)

c V {e2-ei){e1 +p2
j' c N (^2-^1)^2+^1)'

where the suffixes 1 and 2 denote quantities pertaining to the two sides of the discontinuity.
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on the two sides is given by the relativi

vi-vz I (pz -pi)(e2- ei)

The relative velocity of the gas on the two sides is given by the relativistic law of addition of

velocities

:

^12 = j
{p2-pim-ei)

V (ei+p2)(e2+Pi)I-V1V2IC2 V (ei+p2){e2+pi)

In the non-relativistic limit we put e = mc2n — c2JV (V being the specific volume) and

neglect p in comparison with e. Formulae (3) and (4) then become (82.6) and (82.7). In the

ultra-relativistic case, p = \e, and we have from (3)

vi I 2e2 +ei vz _ I 3ei+ e2

~c ~ V 3(3ei+ e2y ~c
~ V 3(3e2+ ^1)'

As the shock wave increases in strength (e2 -> 00), vx tends to the velocity of light c, and t>2

to c/\/3.

To obtain the equation of the shock adiabatic, (1) and (2) must be supplemented by the

condition of continuity of the particle flux density:

["*] " [m^m] " a (5)

Eliminating the velocities from (1), (2) and (5), we obtain the required equation:

In the non-relativistic limit, this formula becomes (82.9).

§127. Relativistic equations for dissipative processes

The finding of the relativistic equations of fluid dynamics in the presence

of dissipative processes (viscosity and thermal conduction) amounts to

determining the form of the additional terms in the energy-momentum

tensor and in the particle flux density vector. Denoting these terms by t^

and vi respectively, we write

Toe = pgac+ wuiuk+

r

ik ,
( 1 27. 1

)

Hi = nui+ vi. (127.2)

The equations of motion are again contained in dTik\dxk = 0, tin1fix
1 = 0.

First of all, however, we must discuss more closely the concept of the

velocity ul itself. In relativistic mechanics, an energy flux necessarily in-

volves a mass flux. Hence, when there is (e.g.) a heat flux, the definition of

the velocity in terms of the mass flux density (as in non-relativistic fluid

dynamics) has no direct meaning. We now define the velocity by the condi-

tion that, in the proper frame of any given fluid element, the momentum of

the element is zero and its energy is expressible in terms of the other thermo-

dynamic quantities by the same formulae as when dissipative processes are

absent. This means that, in the proper frame, the components too and roa

of the tensor Tilc are zero ; since, in this frame, ux = also, we have (in any

frame) the tensor equation

rik u* = 0. (127.3)

A similar relation,

ntf = 0, (127.4)
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must hold for the vector v{, since the component n° of the particle flux

4-vector nl in the proper frame must, by definition, equal the particle number
density n.

The required form of the tensor t^ and the vector vi can be established

from the requirements of the law of increase of entropy. This law must be
contained in the equations of motion (in the same way as the condition of
constant entropy for an ideal fluid was obtained in §2 from these equations).

By simple transformations, using the equation of continuity, we easily obtain
the equation

JbTf 8 dvi St**
n*—— = - T—:(ctm*) + /a—: + u*-

8xk 8xl 8xi 8xk
'

where /* = («>- To)\n is the relativistic chemical potential. Finally, using the
relation (127.3), we can rewrite this equation as

[all1 v* = -vi
I
—

. (127.5)
8xi\ T J d**\T) T 8xk

K }

The expression on the left must be the 4-divergence of the entropy flux,

and that on the right the increase in entropy owing to dissipative processes.
Thus the entropy flux density 4-vector is

a* = aui-Qi/Ty, (127.6)

and tijc and vl must be linear functions of the gradients of velocity and thermo-
dynamic quantities, such as to make the right-hand side of equation (127.5)
necessarily positive. This condition, together with (127.3) and (127.4),
uniquely determines the form of the 4-tensor t« and the 4-vector vt

:

I 8^ 8uk dm 8uk \ 8ui
Tik = -^ + M + UkUlM + U^i)-tt-^^+ u

(̂127.7)

(127.8)
c\ to J Ldx* \ Tf 8xk \

Here 77 and £ are the two viscosity coefficients, and k the thermal conductivity,
taken in accordance with their non-relativistic definitions.

In particular, pure thermal conduction corresponds to an energy flux with
no particle flux. The condition of zero particle flux is nua + v* = ; the energy
flux density is then, as far as terms of the first order in the gradients,

rr, n CW KllT2 8 I LL

cT„° = czvu°u„ = v„ = 1—
8x«\T

"a.

n w
Using the thermodynamic identity

dQi/T) = -(w/nT2)dT+dp/nT,

we find the energy flux - /c[grad T-(T[zo)gradp]. We see that, in the
relativistic case of thermal conduction, the heat flux is proportional, not to

the temperature gradient simply, but to a certain combination of the tem-
perature and pressure gradients.



CHAPTER XVI

DYNAMICS OF SUPERFLUIDS

§128. Principal properties of superfluids

At temperatures close to absolute zero, quantum effects begin to be of

importance in the properties of fluids. There is in Nature only one substance

which remains fluid at absolute zero, namely helium ; all other fluids solidify

long before quantum effects become noticeable. At a temperature of 2-19°K,

liquid helium has a X-point (a second-order phase transition); at tem-

peratures below this point liquid helium (helium II) has a number of remark-

able properties, the most important of which is the superfluidity discovered

by P. L. Kapitza in 1938. This is the property of being able to flow without

viscosity in narrow capillaries or gaps.f

The theory of superfluids was developed by L. Landau (1941). We shall

discuss here only the part of the theory which gives a macroscopic description

of the dynamical properties of superfluids.

The basis of the dynamics of helium II is the following fundamental result

of the microscopic theory.J At temperatures other than zero, helium II

behaves as if it were a mixture of two different liquids. One of these is a

superfluid, and moves with zero viscosity along a solid surface. The other

is a normal viscous fluid. It is of great importance that no friction occurs

between these two parts of the liquid in their relative motion, i.e. no momen-

tum is transferred from one to the other.

It should, however, be most decidedly emphasised that regarding the

liquid as a mixture of normal and superfluid parts is no more than a con-

venient description of the phenomena which occur in a fluid where quantum

effects are important. Like any description of quantum phenomena in

classical terms, it falls short of adequacy. In reality, we ought to say that a

quantum fluid, such as helium II, can execute two motions at once, each of

which involves its own "effective mass" (the sum of the two effective masses

being equal to the total mass of the fluid). One of these motions is normal,

i.e. has the same properties as the motion of an ordinary viscous fluid, but

the other is the motion of a superfluid. The two motions occur without

any transfer of momentum from one to the other. We can, in a certain sense,

speak of the superfluid and normal parts of the fluid, but this does not mean

that the fluid can actually be separated into two such parts.

With careful note taken of these reservations concerning the true nature of

the phenomena in helium II, we can use the terms superfluid part and normal

f Only one isotope of helium, He4
, is a superfluid. The liquid isotope He3 does not become

superfluid.

J See Statistical Physics, §§66, 67, Pergamon Press, London 1958.
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part of the fluid to give a convenient concise description of these phenomena.
We shall, however, prefer to use the more exact terms superfluid flow and
normal flow, without associating them with the components of a "mixture of

two parts" of the fluid.

The concept of two kinds of flow enables us to give a simple explanation of

the main observed dynamical properties of helium II. The absence of vis-

cosity when helium II flows in a narrow passage is the result of frictionless

superfluid flow in the passage; we can say that the normal part remains in the

vessel, flowing much more slowly through the passage at a velocity in

accordance with its viscosity and the passage width. The measurement of the

viscosity of helium II from the damping of torsional oscillations of a disk

immersed in it, on the other hand, gives non-zero values ; the rotation of the

disk causes a normal flow near it, which brings the disk to rest by virtue of

the viscosity pertaining to that flow. Thus, in experiments on flow through a

capillary, the superfluid flow is observed, whereas in experiments on the

rotation of a disk in helium II the normal flow is observed. The existence of

these two flows is seen especially clearly when a cylindrical vessel filled with
helium II rotates about its axis. The walls of the rotating cylinder cause a

normal flow and carry with them only part of the fluid, the superfluid part

remaining at rest. Consequently, the total moment of inertia I of the rotating

vessel is less than the moment of inertia Iq calculated on the assumption that

the whole fluid rotates with the vessel, and a measurement of the ratio Ijh
enables us to find at once what parts of the fluid are normal and superfluid.

Besides the absence of viscosity, the superfluid flow has two other important
properties : it does not involve heat transfer, and it is always potential flow.

Both these properties also follow from the microscopic theory, according to

which the normal flow is actually the flow of an "excitation gas" (we may
recall that the collective thermal motion of the atoms in a quantum fluid

can be regarded as a system of excitations, which behave like quasi-particles

moving in the volume occupied by the fluid and have definite momenta
and energies).

The entropy of helium II is determined by the statistical distribution of the

elementary excitations. In any flow, therefore, in which the excitation gas is

at rest, there is no macroscopic transfer of entropy. This means that the

superfluid flow involves no entropy transfer, and therefore no heat transfer.

Hence it follows that a superfluid flow of helium II is thermodynamically
reversible, a result actually found.

The transfer of heat by the normal flow is the only mechanism of heat

transfer in helium II. It is therefore of the nature of convection, and is

fundamentally different from ordinary thermal conduction. Any difference

of temperature in helium II causes internal flow, both normal and superfluid;

the two flows may balance as regards mass transfer, so that no macroscopic
mass transfer occurs in the fluid.

In what follows we shall denote by vs and vn the velocities of the super-

fluid and normal flow respectively. The heat-transfer mechanism described
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above means that the entropy flux density is the product vnps of the velocity

vn and the entropy per unit volume (s being the entropy per unit mass).

The heat flux density is obtained by multiplying the entropy flux density

by T, i.e. it is

q = pTsvn . (128.1)

The potential flow of the superfluid part corresponds to the equation

curlvs = 0, (128.2)

which must hold at any instant throughout the volume of the fluid. This

property is the macroscopic expression of a property of the helium II energy

spectrum which underlies the microscopic theory of superfluidity: the ele-

mentary excitations which have long wavelengths (i.e. small momenta and

energies) are sound quanta or phonons. Hence the macroscopic superfluid

dynamics can include only sound vibrations, a result which follows from the

condition (128.2).

Since it is potential flow, a steady superfluid flow exerts no force on a

solid body (d'Alembert's paradox; see §11). The normal flow, on the other

hand, exerts a drag force. If the flow is such that the superfluid and normal

mass transfers balance, we have a very unusual flow: a force acts on a body

immersed in helium II, but there is no net mass transfer.

§129. The thermo-mechanical effect

The thermo-mechanical effect in helium II is as follows: when helium flows

out of a vessel through a narrow capillary, a rise in temperature occurs in the

vessel, and a cooling where the helium flows out of the capillary into another

vessel.f This phenomenon has the natural explanation that the flow into a

capillary is mainly superfluid, and therefore transfers no heat, so that the

heat remaining in the vessel is distributed over a smaller quantity of helium II.

In flow out of a capillary the opposite effect is seen.

It is easy to find the quantity of heat Q absorbed when unit mass of helium

enters a vessel through a capillary. The incoming fluid transfers no entropy.

If the helium in the vessel were to remain at its initial temperature T, an

amount of heat Ts would be needed, to compensate the decrease in entropy

per unit mass due to the addition of unit mass of helium of zero entropy.

This means that, when unit mass of helium enters a vessel containing helium

at temperature T, an amount of heat

Q = Ts (129.1)

is absorbed. Conversely when unit mass of helium leaves a vessel containing

helium at temperature T, an amount of heat Ts is evolved.

t A very slight thermo-mechanical effect must, strictly speaking, occur for any fluid; the anomaly

in helium II is the magnitude of the effect. The effect in ordinary fluids is an irreversible phenomenon

similar to the thermo-electric Peltier effect (and is actually observed in rarefied gases). Such an effect

occurs in helium II also, but is masked by another considerably larger effect described below, which

occurs only in helium II and is not an irreversible phenomenon like the Peltier effect.
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Let us now consider two vessels containing helium II at temperatures T\
and T2i connected by a narrow capillary. Since the superfluid can flow
freely along the capillary, mechanical equilibrium is rapidly established.
The superfluid, however, does not transfer heat, and so thermal equilibrium
(in which the temperature of the helium in the two vessels is the same) is

established considerably more slowly.

The condition of mechanical equilibrium is easily written down by using
the fact that this equilibrium is established for constant entropies s\, s2 of
the helium in the two vessels. If ei, e2 are the internal energies per unit
mass of helium at temperatures Th T2 , the condition of mechanical equilibrium
(minimum energy) effected by superfluid flow is (&=i/aiV)Sl = (d€2/dN)S2 ,

where N is the number of atoms in unit mass of helium. The derivative
(de/dN)

s is the chemical potential fi. We therefore obtain the equilibrium
condition

rfpi, Tx) = (M(p2 , T2), (129.2)

where pi and p2 are the pressures in the two vessels.

In what follows we shall understand by the chemical potential ju, not the
usual thermodynamic potential per particle (atom), but the thermodynamic
potential per unit mass of helium. These differ only by a constant factor,

the mass of a helium atom.

If the pressures pi,p2 are small, then, expanding in powers of the pressures
and recalling that {d[i\dp)T is the specific volume (which depends only slightly
on the temperature), we obtain

Ap— = ju(0, 7i)-/x(0, T2) = f sdT,

where Ap = p2 -pi. If the temperature difference AT = T2-Tx is also
small, then, expanding in powers of AT and recalling that (d(j,ldT)p = -s,
we obtain

Ap/AT = Ps. (129.3

Since s > 0, Ap/AT > 0. The relation (129.3) was first derived by H.
London (1939).

§130. The equations of superfluid dynamics

We shall now derive a complete system of equations describing micro-
scopically (phenomenologically) the flow of helium II. From the above
discussion, we are concerned with equations of motion which involve at
every point two velocities vs and vn , and not one as in ordinary fluid dynamics.
It is found that the required system of equations can be uniquely determined
simply from the requirements imposed by Galileo's relativity principle and
by the necessary conservation laws (using also the properties of the motion
expressed by equations (128.1) and (128.2)).
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It should be borne in mind that helium II actually ceases to be superfluid at

high velocities. We shall not discuss the nature of this phenomenon of critical

velocities, but merely note that its existence means that the equations of

superfluid dynamics for helium II are physically significant only when the

velocities vs and vn are not too large. Nevertheless, we shall first derive these

equations without making any assumptions concerning the velocities vs and

vn , since, if higher powers of the velocities are neglected, the equations cannot

be consistently derived from the conservation laws. The transition to the

physically significant case of small velocities will be made in the final equa-

tions.

We denote by j the mass flux density; this quantity is also the momentum

of unit volume (cf. the footnote to §49). We write

j = psVs + pnVn (130.1)

as a sum of the fluxes pertaining to the superfluid and normal flows. The

coefficients ps and pn may be called the superfluid and normal densities.

Their sum is the actual density p of helium II

:

P = ps+pn- (130.2)

The quantities ps and pn are, of course, functions of the temperature; pn

vanishes at absolute zero, where helium II becomes wholly superfluid,| while

ps vanishes at the A-point, where the liquid becomes wholly normal. It

should also be noted that pn and ps in general depend on the velocities

themselves

;

X only at small velocities can this dependence be neglected, and

pn , ps regarded as functions of the temperature (and pressure) only.

The density p and the flux j must satisfy the equation of continuity

dP/8t + divj = 0, (130.3)

which expresses the law of conservation of mass. The law of conservation

of momentum gives an equation

* + E^ = o, (130.4)
8t dxjc

where 11**; is the momentum flux density tensor.

We shall not at present consider dissipative processes. Then the flow is

reversible, and the entropy of the fluid is also conserved. Since the entropy

flux is psvn , we can write the law of conservation of entropy as

8{ps)/dt+ div(psvn) = 0. (130.5)

Equations (130.3)-(130.5) must be supplemented by an equation which

gives the time derivative of the velocity vs . This equation must be such that

t If the helium II contains an admixture (of the isotope He3
), then p„ is not zero even at 0°K.

j More precisely, on the velocity difference vn —v„ since the movement of the fluid as a whole with

velocity vt
= v„ cannot, of course, affect its thermodynamic properties.
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we have potential flow at all times; this means that the derivative of v8

must be the gradient of a scalar. We can write the equation as

dvs— + g?*6(W+p) = 0, (130.6)

where pu is some scalar.

Equations (130.4) and (130.6) become significant, of course, only when we
obtain values for the still undefined quantities n«t and //,. To do so, we must
use the law of conservation of energy and arguments based on Galileo's

relativity principle. The equations (130.3)-(130.6) must imply the law of
conservation of energy, which is expressed by an equation of the form

dEjdt+tivQ = 0, (130.7)

where E is the energy in unit volume of the fluid and Q.the energy flux

density. Galileo's relativity principle enables us to determine all quantities
as functions of one velocity (vs) and the given relative velocity v»— vs of the
two simultaneous motions.

We use both the original co-ordinate system K and a system K in which
the velocity of the superfluid flow of a given fluid element is zero. The
system K moves relative to the system K with a velocity equal to the super-
fluid velocity in the original system. The values of all quantities in the system
K are related to their values in K (which we distinguish by the suffix 0)
by the following transformation formulae of mechanics:!

J = pvs +jo,

E = ipvs
2 +j .vs+E ,

Q = (fc*>«
2 +jo •vs+E )vs+ %vs

2
} + n •vs+ Qo,

Rik = pVstVsk+ Vafjok+ Vskjot+IItHk.

(130.8)

Here IIo'V* denotes the vector whose components are Uom'Vsk'
In the system Ko, the fluid element considered executes only one motion,

a normal flow with velocity v»- vs . Hence the quantities j , E0> Qo and U0{k
can depend only on the difference v»-v«, and not on vn and vs separately;

in particular, the vectors j and Qo must be parallel to the vector vn-vs

(the mass flux j is simply p»(v»-v,)). Thus formulae (130.8) give the
dependence of the quantities concerned on vs for given vw — vs .

t These formulae are a direct consequence of Galileo's relativity principle, and therefore hold for
any particular system. They can be derived by considering, for instance, an ordinary fluid. The
momentum flux density tensor in ordinary fluid dynamics is II,* •= pViV]c+p8ac. The fluid velocity
v in the system K is related to the velocity v in K by v = v +u, where u is the relative velocity
of the two systems. Substituting in Hoc, we have

n^fc = P$ik + pV(KVok+ pZ'0iU)c+ pUiZok+ pliil/jc.

Putting Hoik = P%ik+ pvoiV k and j = pv , we obtain the transformation formula for the tensor
IIi* given in (130.8). The remaining formulae are obtained similarly.
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The energy E , as a function of p, s and the momentum jo per unit volume,

satisfies the thermodynamic identity

dE = 11 dp+ Td(Ps)+ (v»-vs) . dj ,
(130.9)

where /x is the (thermodynamic) chemical potential per unit mass. The first

two terms correspond to the usual thermodynamic identity for a fluid at

rest with constant volume (in this case unity), and the last term shows that

the derivative of the energy with respect to the momentum is the velocity.

We shall not give here the subsequent calculations, which are fairly labo-

rious, but give only their general outline. In the equation of conservation of

energy (130.7) we substitute E and Q from (130.8), calculating the derivative

dEojdt by means of the identity (130.9). We then eliminate all the time deri-

vatives (/>, vs , etc.) by means of the equations (130.3)-(130.6); the equation of

conservation of energy must then be satisfied identically. If we take into

account the fact that the fluxes Q , U0ik and the scalar p, in equation (130.6)

can depend only on the thermodynamic variables and the velocity v»-v«,

and not on their gradients (since we neglect dissipative processes), we find

that this identity can be achieved only if the quantities mentioned above are

chosen in a uniquely defined way.

It is found also that the scalar p. is the chemical potential (for which

reason we have denoted it by the same letter), and the final expressions for

the energy flux density and the momentum flux density tensor are

Q = {p.+W)}+ T/rfVn+/9»vn[v».(vtt -v,)], (130.10)

Uik = pnVniVnk+ PsVsWsk+P&ik, (130.11)

where
p= -Eo+TpS+ Hp+ pn{Vn-Vs)2 ' (130.12)

The expression for Hut is the natural generalisation of the formula n<*

= pViVjc+pSuc of ordinary fluid dynamics. The quantity p defined by

formula (130.12) can be naturally regarded as the fluid pressure,f

Equations (130.3)-(130 -6)» with J and Uik defined by (
130 - 10

)
and (130.11),

form the required complete system of equations of superfluid dynamics.J

These are very complex, largely because the quantities ps , />», p,, etc. which

appear in the equations are functions of the velocities (more precisely, of

the difference v„-v,). The form of these functions can in principle be

determined only from the microscopic theory.

t The usual thermodynamic definition of the pressure as the mean force actmg on unit ansa relates

to a medium at rest. In ordinary fluid dynamics, however, there is no ambiguity in the definition of

pressure (dissipative processes being neglected), since we can always take a co-ordinate system in

which the fluid volume element considered is at rest. In superfluid dynamics, however, we can

eliminate only one of the two simultaneous motions by a suitable choice of the co-ordinate system,

and so the usual definition of pressure cannot be applied.
, c • •

In a fluid entirely at rest, the definition (130.12) is of course the same as the ordinary definition,

since in that case w+ Tps-E = p by the definition of the chernical potential. _

t The system of equations can also be established in a general form for a mixture of helium II

with other substances (in practice, the isotope He3), for any concentrations. This is due to L M.

Khalatnikov (Zhurnal eksperimental'noi i teoreticheskoi fiztkt 23, 169, 1952).
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The equations are much simplified, however, in the physically interesting
case of small velocities-! In this case we can first of all neglect, as already
mentioned, the velocity dependence of Pn and ps ; then the expression (130.1)
for the flux j gives essentially the first terms in an expansion ofj in powers of
vs and \n . The expansion in powers of the velocities must also be made for
the other thermodynamic quantities appearing in the equations.
We take the pressure and temperature as independent thermodynamic

variables. The thermodynamic identity for the chemical potential is

d^ = - sdT+(l/p)dp-(Pn/p)(vn-v$).d(vn-vs);

this can be obtained by differentiating the expression (130.12) and using the
identity (130.9). Hence we see that the first two terms in the expansion of a
in powers of the velocity difference are

/x(/>, T,vn-vs) « fM(p, T)-±(Pn/p)(vn-vs)2, (130.13)

where the right-hand side contains the ordinary chemical potential fx(p T)
and density pip, T) of the fluid at rest. Differentiating with respect to tem-
perature and pressure, we find the corresponding expansions for entropy and
density

:

s{p, T,vn-vs) « s(p, T) + !(vw -v,)2—J»L\ (130.14)

p{p,T,vn-vs) « p{p,T) + y*{vn-vsfU P-l\. (130.15)
dp \ p J

These expressions are to be substituted in the dynamical equations, which
are then valid as far as second-order terms in the velocities.

Let us briefly consider the subject of the dissipative terms in the equations
of superfluid dynamics. The form of these terms is restricted only by the
conditions imposed by the law of increase of entropy and by the symmetry of
the kinetic coefficients. A detailed analysis, due to I. M. Khalatnikov,J
shows that there are five independent dissipation coefficients (instead of the
three coefficients tj, £, k for an ordinary fluid). Of these, one is the first
viscosity tj, due to the normal flow and entirely analogous to the viscosity of
an ordinary fluid. The momentum flux tensor n« and the quantity whose
gradient appears in (130.6) involve further terms proportional to divvn and
div[/)s(vn-vs)]; of the four proportionality coefficients, two are equal on
account of the symmetry of the kinetic coefficients, so that there are three
"second viscosities" &, £2 , &• Finally, the right-hand side of the entropy
equation (130.5) involves a term of the form (1/T) div (k grad T), with a
coefficient k which is formally analogous to the thermal conductivity of an
ordinary fluid, and also terms quadratic in the velocity gradients, which
result from the viscosity effect in heat transfer (cf. equation (49.5))'.

t That is, when the ratio of the velocities to the velocity of propagation of second sound ("see Sl3n
is a small quantity. \ z i

% See Zhurnal eksperimental'nol i teoreticheskol fiziki 23, 265, 1952.
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The boundary conditions on the equations of superfluid dynamics are as

follows. Firstly, the perpendicular component of the mass flux j must

vanish at any solid surface at rest. To determine the conditions on v», we

must recall that the normal flow is actually a flow of a thermal excitation gas.

In flow along a solid surface, the excitation quanta interact with the surface,

and this must be described macroscopically as the "adhesion" of the normal

fluid to the surface, as in ordinary viscous fluids. In other words, the tan-

gential component of the velocity v„ must be zero at a solid surface.

The component of \n perpendicular to the surface need not vanish, since

the excitation quanta can be absorbed or emitted by the surface, correspond-

ing simply to heat transfer between the fluid and the surface. The boundary

condition requires only that the heat flux perpendicular to the surface is

continuous. The temperature itself has a discontinuity at the boundary

which is proportional to the heat flux: AT = Kq, with a proportionality

coefficient which depends on the properties of both the fluid and the solid.

The occurrence of this discontinuity is due to the peculiar nature of heat

transfer in helium II. All the resistance to heat transfer between the solid

and the fluid is in the fluid adjoining the surface, since the convective propa-

gation of heat in the fluid meets with almost no resistance. Consequently,

the whole of the temperature drop which causes the heat transfer occurs at

the surface itself.

An interesting property of these boundary conditions is that the heat

exchange between the solid surface and the moving fluid results in tangential

forces on the surface. If the *-axis is perpendicular to the surface, and the

^-axis tangential, the tangential force per unit area is equal to the component

U Xy of the momentum flux tensor. Since we must have;^ = pnvnx+ PsVex

= on the surface, we find for this force the non-zero expression 11^

= PsVsxVsy+ PnVnxVny = PnVnx&ny-Vsy). We can write this in terms of the

heat flux q = PsTvn as Uxy = (pnlpsT)qx(vny-vsy), where qx is the heat

flux from the solid surface to the fluid, which is continuous at the surface.

In the absence of heat transfer between the solid surface and the fluid, the

component of vn perpendicular to the surface is also zero. The boundary

conditions jx
= and vn = (with the x-axis perpendicular to the surface)

are equivalent to vsx = and vn = 0. In this case, therefore, we obtain the

usual boundary conditions for an ideal fluid for vs , and those for a viscous

fluid for v».

Finally, let us consider motions of helium II for which it may be regarded

as incompressible, as usually happens in flow past bodies. We shall also

take into account the viscosity of the normal flow. To do so, we must add to

the tensor II«& a term which involves, as usual, the viscosity coefficient t] and

the spatial derivatives of the velocity vw :

/ font dvnk\ /1in1^
Uik = p8ik+psVstv8k+pnvnivnk -rj\-^— + -^-y (i-su-io;

The second viscosity coefficients do not appear for an incompressible fluid.
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The dissipative terms in the entropy equation are, in the case considered,
small quantities of higher order, and can be neglected. Assuming the den-
sities Pn , Ps and the entropy s to be constants, we obtain from equation (130.5)
div v„ = and from (130.3) div j = 0, so that div vs = div v„ = 0. Using
these equations and substituting (130.16) in (130.4), we obtain the equation

dvs dvn
Ps

~dt~
+ Pn

~dt
+ /,s(v«*Srad)v«+/»n(v»«grad)vfl

= -gradp+ vAvn . ^ *
'

Equation (130.6) remains unchanged.
Since the superfluid flow is potential flow, we can introduce the velocity

potential by vs = grad
<f>s and, since div vs = 0, the potential will satisfy

Laplace's equation

A^s = 0. (130.18)

Introducing
<f>s in equation (130.17) and putting (vs .grad)vs = grad lvs\ we

obtain

fan
Pn

~dt
+^Vn 'SradK+/}s grad^+ps grad(d<t>s/8t)

= -gmdp+ rjAVn.

We use as auxiliary quantities the "pressures" pn , ps of the normal and super-
fluid flows :

P = Po+pn+ps, (130.19)

where p is the pressure at infinity, and ps is defined by the usual formula
for an ideal fluid,

ps = -p8 8<f>s/dt-ysvs
2

.
( 1 30.20)

The equation for the velocity vn then becomes

— + (v„.grad)vn = gradpn + —Avn . (130.21)
Ct Pn pn

This equation is formally identical with the Navier-Stokes equation for a
fluid of density Pn and viscosity rj (and therefore kinematic viscosity rjlpn).
Thus the problem of the flow of incompressible helium II reduces to two

problems of ordinary fluid dynamics, one for an ideal fluid and the other for a
viscous fluid. The superfluid flow is determined by Laplace's equation
(130.18) with a boundary condition on the normal derivative dcf>s[dn, as in
the ordinary problem of potential flow of an ideal fluid past a body. The
normal flow is determined by the Navier-Stokes equation (130.21), with the
same boundary conditions on v„ (in the absence of heat exchange between
the surface and the fluid) as in ordinary flow of a viscous fluid. The pressure
distribution is then determined by formula (130.19).
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PROBLEMS

Problem 1 . A small temperature difference AT is maintained between the ends of a capillary

containing helium II. Determine the heat flux along the capillary.

Solution. According to formula (129.3), the pressure drop between the two ends of the

caoillary is Aft = psAT. This causes a normal flow whose mean (over the cross-section of

the capillary) velocity is vn - R^PlW (* being the radius and / the length of the capillary

andVtheViscosity of normal flow; cf. formula (17.10)). The total heat flux
:

tt psvn«R*

= nRtpWATISril. A superfluid flow occurs in the opposite direction, its velocity being

given by the condition of zero total mass transfer: v, = —pnvn[p».

Problem 2. Derive the formula for the temperature distribution in helium II in incom-

pressible flow.

Solution. Writing in equation (130.6) (with p given by (130.13)) v, -_grad * and

integrating, we obtain «p, T)+*«."-«p-/p)(v.-v.)-+W3f = constant. The changesof

temperature and pressure in an incompressible fluid are small and we have as far as terms

of the first order m~Mo - s(T-T )+(p-p )lP , where r. and p. are the temperature and

pressure at infinity. Substituting this expression in the above integral, and using pn and p„

we obtain

_ T9 _ nth- »-&.-*#].
ps LPn Ps JpS Lpn Ps

§131. The propagation of sound in a superfluid

Let us apply the equations of fluid dynamics for helium II to the propaga-

tion of sound in it. As usual, the velocities in the sound wave are supposed

small and the density, pressure and entropy almost equal to their constant

equilibrium values. Then we can linearise the equations, neglecting the

terms quadratic in the velocity in (130.11), (130.13) and (130.14), and regard

the entropy Ps as constant in the term div(p*v„) in (130.5) (since the term

already contains the small quantity v»). Thus the equations of fluid dynamics

become

dp/dt+ div} = 0, (131.1)

d(ps)ldt+psdivvn = 0, (131.2)

%ldt+gndp = 0, (131.3)

0v,/0*+ grad/* = 0. (131.4)

Differentiating (131.1) with respect to time and substituting (131.3), we

obtain

d2pjdt2 = Ap. (131.5)

By the thermodynamic identity dp, = -sdT+dpjp, we have gradp

= ps grad T+ p grad /*. Substituting gradp from (131.3) and grad p from

(131.4), we obtain

Pn—(v„-vs)+p5 grad T = 0.

ot
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1

We take the divergence of this equation, substituting for div(v„-vs) the
expression

{PjsPs) dsjdt, which follows from the equation

& _ 1 d{ps) s dp

dt p dt p dt

= -sdivvn+ (s/p)div}

=
(sPs/p) divivs-vn).

The result is

Psfdl* =
iPss2/pn)AT. (I3i.6)

Equations (131.5) and (131.6) determine the propagation of sound in a
superflmd. Since there are two equations, we see that there are two velocities
of propagation of sound.

We write s, p, p and T as s = s + s\ p = p0+p' y etc., where the primed
letters are the small changes in the corresponding quantities in the sound
wave, and those with the suffix zero (which we omit, for brevity) their
constant equilibrium values. Then we can write

and the equations (131.5) and (131.6) become

%> &p' dp d*T
AP' H =

dp dfi ^F ^ 8T dfi
'

ds d*p' ds &T Pss
2

1

r— T' —
dp dfi dT dfi Pn

^ ~ u '

f

We seek a solution of these equations in the form of a plane wave, in which
p and T are proportional to a factor e+o-x/u) (the velocity of sound being
here denoted by u). The condition of compatibility of the two equations

KT,P) \dT
+

Pn dp)
+

Pn
~ °'

where d(s, P)jd{T,p) denotes the Jacobian of the transformation from s, pto T, p. By a simple transformation, using the thermodynamic relations
this equation can be reduced to

'

l\dP J s Pncv J PnCv \dp) T
U

' (131 -7
^

Cv being the specific heat per unit mass. This quadratic equation in u* gives
the two velocities of propagation of sound in helium II. For p, = one
root is zero, and we obtain, as we should expect, only the ordinary velocity
of sound u = y/idpldp)s .

J
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The specific heats cv and cv of helium II are actually very nearly the same

at all temperatures (since the coefficient of thermal expansion is small).

By a well-known thermodynamic formula, the isothermal and adiabatic

compressibilities are then very nearly the same also: (dpjdp)T ~ {dp\dp)s-

Denoting the common value of cp and cv by c, and that of (#/>/#/>)t and

(dpldp)s by dp/dp, we obtain from equation (131.7) the following expressions

for the velocities of sound

:

"l = vWH "2 = V(Ts2
pslcPn). (131.8)

One of these, u\, is almost constant, while the other, U2, depends markedly

on temperature, vanishing with ps at the A-point.f

At very low temperatures, where nearly all the elementary excitations in the

fluid are phonons, the quantities pn , c and s are related byJ c — Is,

pn = cTpj3ui2 , and ps = p. Substituting these expressions in formula

(131.8) for W2, we find «2 = u\\y/Z. Thus, as the temperature tends to zero,

the velocities u\ and 1/2 tend to finite limits, and their ratio tends to -\/3.

In order to elucidate more clearly the physical nature of the two kinds of

sound wave in helium II, let us consider a plane sound wave (E. Lifshitz

1944). In such a wave, the velocities \n , vs and the variable parts T', p' of

the temperature and pressure are proportional to one another. We introduce

proportionality coefficients by

v» = avSy p' = bvSy T = cvs . (131.9)

A simple calculation, using equations (131.1)—(131.6), and working to the

necessary accuracy, gives for first sound

fo Ml2M22 PTU$
fli = 1 -\ , b± = pu±, c\ = , (131.10)

pss («i
2 - U22) c(ui2- M22)

and for second sound

ps ft> «12«22
,

/?/Otti
2
tt2

3

«2 —
1

> "2 = > C2 = — U2JS.

Pn pnS (ttl
2 -«22

)
s{Ul2 -U22

)

Here /? = —{\jp)dpjdT is the coefficient of thermal expansion; since it is

small, the quantities which involve /5 are small in comparison with those

which do not.

We see that, in a sound wave of the first type, \n ~ vs , i.e. to a first

approximation the fluid in any given volume element oscillates as a whole in

such a wave, the normal and superfluid parts moving together. This type of

wave clearly corresponds to an ordinary sound wave in an ordinary fluid.

t The problem of sound propagation in solutions of admixtures in helium II is discussed by
I. Ya. Pomeranchuk, Zhurnal experimental'noi i teoreticheskol fiziki 19, 42, 1949, for the case of

small concentrations, and by I. M. Khalatnikov, ibid. 23, 265, 1952, for arbitrary concentrations.

| See Statistical Physics, §§66, 67.
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In a wave of the second type, however, we have vn « — psVslPn, i-e. the

total flux density j = psvs + />»vw « 0. Thus, in a second-sound wave the

superfluid and normal parts move in opposition, the centre of mass of any
given volume element remaining at rest to a first approximation, and the

total mass flux being zero. Such a wave is evidently peculiar to superfluids.

There is another important difference between the two types of wave,

which is seen from formulae (131.10) and (131.11). In a sound wave of the

ordinary type, the amplitude of the pressure oscillations is relatively large,

while that of the temperature oscillations is small. In a second-sound
wave, however, the relative amplitude of the temperature oscillations is

large compared with that of the pressure oscillations. In this sense we can

say that second-sound waves are undamped temperature waves.f

In an approximation in which the thermal expansion is neglected, second-

sound waves are purely temperature oscillations (with j = 0), while first-

sound waves are pressure oscillations (with vs = vn). Accordingly, their

equations of motion are completely separable: in equation (131.6), we write

s' = cT'jT, obtaining d2T'jdt2 = u2
2 AT', and in equation (131.5) we write

p = p'dpidp, obtaining 82p'jdt2 = Ui2 /\p'.

The subject of the various methods of exciting sound waves in helium II

has been discussed by E. M. Lifshitz (1944). It is found (see the Problems)
that the usual mechanical means of exciting sound waves (oscillation of solid

bodies) is very unsuitable for creating second sound, the intensity of the

second sound emitted being negligible compared with that of the ordinary

sound. Other methods of exciting sound waves are possible in helium II,

however. Such is the emission of sound by solid bodies whose temperature
varies periodically; the intensity of the second sound emitted is then large

compared with that of the first sound, as we should expect in view of the

above-mentioned difference in the nature of the temperature oscillations.

PROBLEMS
Problem 1 . Determine the ratio of intensities of the first and second sound emitted by a

plane oscillating in a direction perpendicular to itself.

Solution. We seek the velocities vs (along the *-axis, which is perpendicular to the plane)
in the first and second sound waves in the forms

Vsl — AlCOSQ)(t— xlui), Vs2 = A2 COS Co(t— XIU2)

respectively. At the surface of the oscillating plane, the velocities vs and vn must be equal
to the velocity of the plane, which we denote by v cos cat. This gives the equations
Ax+A2 = v , a1A1+a2A2 = v , where the coefficients ax and a2 are given by (131.10) and
(131.11). The (time) average energy density in a sound wave in helium II is pevs

2+ pnVn'i

= iA\ps+ pna2
); the energy flux (intensity) is obtained by multiplying by the corresponding

velocity of sound u. The ratio of the intensities of the second and first sound waves is found
to be

h _ A2
2
(ps +pna2

2)u2 _ P
2Tu2

z

h Ai2
(ps+pnai

2)ui cu\

f They have, of course, no connection with the damped temperature waves in an ordinary ther-
mally conducting medium (§52).
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Here we have assumed that U* <^ uu which is valid down to very low temperatures. The ratio

is always small.

Problem 2. The same as Problem 1, but for a surface whose temperature varies periodically.

Solution. It is sufficient to use the boundary condition / = 0, which must hold at a fixed

surface. This gives ps(Ai+A2)+ pn(a1A1+azAi) = 0, whence

\A2IAi\ = (pnai+ ps)l(pna2+ ps) « s/pii22 .

The ratio of intensities is found to be IJIi = clT^u^. This is very large.

Problem 3. Determine the velocity of points on the profile of a one-dimensional travelling

second-sound wave of large amplitude, and the velocity of propagation of the discontinuities

which occur in the wave as a result of the deformation of the profile (I. M. Khalatnikov

1952).

Solution. In a one-dimensional travelling wave, all quantities (p, p, T, vg , vn) can be

expressed as functions of one parameter, which may be one of these quantities (cf. §94).

The velocity U of points on the wave profile is equal to the derivative cbc/df taken for a given

value of the parameter. The space and time derivatives of each quantity are related by

dfdt = — Ud/dx. The derivatives of quantities with respect to the parameter will be denoted

by adding primes.

Instead of the velocities v» and vn , it is convenient to use v — j/p and to = vn—vs , and

we take a co-ordinate system in which the velocity v is zero at the point considered. The
equations (130.3)-(130.6), with n (fc ,

/i, />, s given by (130.11), (130.13)-(130.15), lead to the

equations

_ u—p'- Up2— (—)ww'+pv' = 0, (1)
dp dp\p)

p' + lpsPntow'jp- Upv' = 0, (2)

[-Pu~ + «^W] JW+«^'+ ['•»- Hr]"'
=

°' (3)

[-^+^] r+
[

i+w%(7)k+

+ \pnU-^^\w'-[Up+ wpny = 0.

Here all terms above the second order of smallness have been omitted, and so have all terms

containing the thermal-expansion coefficient.

In a second-sound wave, the relative amplitude of the oscillations of p and v is small

compared with that of T and to; we can therefore also omit terms in top' and tov'. To deter-

mine U, it is sufficient to take equation (3) and the difference of equations (2) and (4) ; the

condition of compatibility of the two linear equations obtained for T and to' gives the quadra-

tic equation

PnU^ _ tfe ___ - 2s-
j
-P^ =

whence

llps sT 8pn \

U = U2 + W[ —I.
\ p pnc 01 J
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Here u% is the local velocity of second sound, which varies over the wave profile together with
the deviation ST of the temperature from its equilibrium value. Expanding u^ in powers of
8T, we obtain

3tt2 du2 pnU2
«2 = "20 +—ST = M20 + — «,,

01 ol ps

where u^ is the equilibrium value of Mg. We have finally

TT pssT d ux?c
U = u20+w—— —-log-—. 5

pc 01 1

When the wave profile changes sufficiently, discontinuities (in this case, discontinuities of
temperature) occur in it; cf. §§94, 95. The velocity of propagation of the discontinuity is

half the sum of the velocities U on the two sides of the discontinuity, i.e. it is

W1 + W2 ps sT d w2o3 c

" + ~2—,^-Trlog—

•

where, wlt to2 are the values of zo on the two sides of the discontinuity.
The coefficient of to in (5) may be either positive or negative. Correspondingly, the points

with large values of w may be either ahead of or behind those with small to, and the discon-
tinuity may be formed at either the forward or backward front of the wave (whereas,
ordinary sound wave, the shock wave always appears at the forward front).

an



CHAPTER XVII

FLUCTUATIONS IN FLUID DYNAMICS

§132. The general theory of fluctuations in fluid dynamics

The calculation of the root-mean-square fluctuations of density, temperature,

velocity etc. at each point in a fluid at rest requires no special discussion:

these fluctuations (in the classical, i.e. non-quantum, case) are given by the

usual formulae of thermodynamics, which are valid for fluctuations in any

medium in thermal equilibrium.!

A problem peculiar to fluid dynamics, however, is that of the time cor-

relations in the fluctuations of these quantities, and so is that of fluctuations

in a fluid in motion. The solution of these problems must include an allow-

ance for dissipative processes (viscosity and thermal conduction) in the fluid.

The construction of the general theory of fluctuations in fluid dynamics

amounts to setting up the "equations of motion" for the fluctuating quantities.

This can be done by introducing the appropriate additional terms in the gene-

ral equations of fluid dynamics.

The equations of fluid dynamics in the form

dPjdt+ 6iw{pv) = 0, (132.1)

dvi dp 8a'ijc

,>— = -— +—

,

(132.2)
8t dxi dxjc

pt(^ + vgrads) = fr'Jp- + ^) -divq, (132.3)

without any specific form of the stress tensor o'uc or the heat flux vector q,

simply express the conservation of mass, momentum and energy in the

moving fluid. They are therefore valid in this form for any motion, including

fluctuating changes in the state of the fluid. In that case />, p, v, etc. must be

understood as the sums of the values of the corresponding quantities in the

main motion of the fluid and their fluctuations ; the equations can, of course,

always be linearised with respect to the latter.

The general expressions (15.3) for the stress tensor and (49.1) for the heat

flux relate these quantities to the velocity and temperature gradients respec-

tively. In the presence of fluctuations, however, there are also spontaneous

local stresses and heat fluxes in the fluid, which are not related to the velocity

and temperature gradients; we denote these by s^ and g, and call them

t See Statistical Physics, §111, Pergamon Press, London 1958. Sections and formulae in this

book will be referred to by means of the prefix SP.
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524 Fluctuations in Fluid Dynamics §132

random quantities.f Thus we can writej

a ik = V\—— + ~ f°ik— I + t—~Oik + sik ,

\ oxjc oxi oxi J dxi

(132.4)

q = - k grad T+ g.

The problem is now to establish certain properties of sue and g, viz. their

mean squares and the correlation between their values at various points in

the fluid at various instants. This can be done by means of the general

formulae of fluctuation theory. For simplicity, we shall give the argument for

the case of non-quantised fluctuations which usually occurs in fluid mecha-
nics,ft and suppose that the coefficients of viscosity and thermal conduction
are independent of the frequency of the fluctuations, i.e. do not exhibit

dispersion.

In the general theory of fluctuations (SP §§110, 121) we have discussed a

discrete series of fluctuating quantities xi, #2, ..., whereas here we have a

continuous series (the values of p, p, v, ... at every point in the fluid). We
shall evade this unimportant difficulty in a purely formal manner, by dividing

the volume of the fluid into small but finite portions AF and taking some
mean values of the quantities in each portion; the passage to infinitesimal

portions will be made in the final formulae.

We shall take formulae (132.4) as the equations

xa = -^yabXb+ya (132.5)
b

of the general theory (see SP (121.9)), the quantities xa being the components
of the tensor o'm and of the vector q in each portion AV:

xa -> v'lk, qi. (132.6)

The random quantities sac and g are then the corresponding quantities ya :

Jfo -**«*, gi- (132.7)

The meaning of Xa is found, according to the general rules,, by using the

formula for the rate of change of the total entropy S of the fluid. As in §49,

we find from equation (132.3) that

- [f
a

'

ik
I

dVi

J I 2T \ dxjc dXi J T2

(for Sik = 0, g = this gives (49.6)) or, replacing the integral by a sum over

t In correspondence with the term random forces in the general theory of fluctuations.

J In this chapter we shall understand by T the temperature measured in energy units, i.e. Boltz-
mann's constant will be omitted.

ft This means that the frequencies w occurring in the fluctuations are assumed such that ho» <^ T;
see SP (109.2).
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the portions AF",

We must also have 3 = -SXai ; see (58.4). Substituting (132.6) and

comparing with (132.8), we find that the corresponding quantities Xa are

^_J_(i* +^W -4-^AF. (132.9)
2T\dxk dxi) T2 dan

It is now easy to find the coefficients y &, which give at once the required

correlations by

ya(h)yb(t2) = (yab+ybaW1 -t2); (132.10)

see SP (121.10a). The averaging is here taken in the usual statistical sense,

i.e. we average with respect to the probabilities of all values which the

quantities can have at the instants t\ and t2 \ it can also be written as an

average with respect to t\ or t2 for a given difference t\— t2 .

We note first of all that formulae (132.4) contain no terms which would

relate a'ik to the temperature gradient or q to the velocity gradient. This

means that the corresponding coefficients yab are zero, and by (132.10)

we have

sik(ri,ti)gi(rz,t2) = 0, (132.11)

i.e. the values of slk and gi are entirely uncorrelated (ri and r2 being the

co-ordinates of two points in the fluid).

Next, the coefficients relating qt to the values of (l/T2)(ST/^)Ar are

zero if these two quantities are taken in different volumes AF, and KT2SaclkV

if the same volume is involved. Hence we have

£f(n> h)gic(r2 , h) = if n # r2 ,

2kT2
gi(r,ti)gk(r,t2) = -^r8ik 8(t1 -t2).

Passing now to the limit AF -> 0, we can evidently write both these formulae

together as

#(n,*ik*e2,*2) = 2/cT2Sa; S(*i-*2)S(r1-r2). (132.12)

Finally, we can similarly obtain formulae for the correlation between the

components of the random stress tensor

:

Sik(th h)sim(^2, t2)

= 2T[r
]
(SilSkm+ SimSm) + ^-h)^t^m]^ri-r2)8(t1-t2). (132.13)
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Formulae (132.11)-(132.13) give the solution of the problem (L. D.
Landau and E. M. Lifshitz 1957).f
These formulae can be rewritten in terms of the Fourier time components

of the quantities concerned. The Fourier component of the fluctuating

quantity xa(t) is defined as

00 00

xaa, = (1/2tt)

J
xa(ty**dt t

xa{t) = f aw-^'dco; (132.14)

-00 —00

see SP §118. For the components yau) and y ba> thus defined we have

Jao>ybo>' = (l/27r)(ya6 + y&a)S(ft) + a/);

see SP (121.10). Thus, replacing 8(t1 -t2) by (l/2ir)8(w + a/), we obtain in-

stead of (132.11)-(132.13)

%,(riWr2) = 0, (132.15)

KT2
gtjritekvfa) =

8ik8(r1 -r2)B(co + co'), (132.16)
77

— (Tlir)[r)(8u8km+ Simhi) + (£- %y)8ik8im]8(ri - r2)8(co+ oj').

(132.17)

The generalisation of these formulae to the case of quantised fluctuations is

made by simply including a factor (fey/27
1

) coth(hco/2T) on the right-hand
sides of formulae (132.15)-(132.17); see SP (124.21). When the viscosity

and thermal conductivity exhibit dispersion, -q, £, « are complex functions
of the frequency. The corresponding generalisation of formulae (132.15)-

(132.17) is made by replacing -q, £, k by the real parts of the functions r)(co),

£,(co), k(co), as is easily demonstrated.

§133. Fluctuations in an infinite medium
The formulae obtained above give in principle the fluctuations in any

particular case. The problem is solved as follows. Regarding sue and g as

known functions of co-ordinates and time, we formally solve equations

(132.1)—(132.3) for v, p, ..., taking into account the appropriate boundary
conditions of fluid mechanics. We thus obtain v, p, ... as linear functional
of sac and g. Accordingly, any quantity quadratic (or bilinear) in v, p y

...

can be expressed in terms of quadratic functionals of s^ and g, and the

t To convert to the ordinary units of temperature measurement (degrees) we must replace T by
kT and k by ic/At, where k is Boltzmann's constant.
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mean values are calculated from formulae (132.11)—(132-13); the auxiliary

quantities sac and g do not appear in the final result.

As an illustration of the method just described, let us consider the fluc-

tuations of pressure in an infinite medium at rest, having a large second

viscosity £(co) which exhibits dispersion; the effects of ordinary viscosity

and thermal conduction are assumed negligible in comparison (as may

happen in the conditions described in §78).

The solution of equations (132.1)—(132.3) can be effected by expanding

all quantities (already Fourier-expanded with respect to time) as space

Fourier integrals ; for any quantity /(r) we put

00

/(r) = J/k exp(ik.r)dk,
dk = d^##Z) (133.1)

—00

where

A = -^JM exp(-;k.r)dF. (133.2)

The correlation functions for the Fourier components are found at once from

those for the quantities themselves. For instance, if

/(n)/(r2) = A8(n-r2), (133.3)

then

A/k< = 7^r-
6 J

J7(n)/(r2) exp[-;(k.r1+ k'.r2)] dFi dV2

= ff 3(ri-r2)exp[-z(k.r1 + k
,

.r2)3dFidF2

=— f exp[-/(k+k')T]dF,
(2tt)6J

FL V
' *

or, finally,

fifr = T^dKk+k'). (133-4)
(2tt)3

In particular, instead of formula (132.17), in which we retain (in this case)

only the term in £, we have

(sacUisimh* = —re £(a)).S(«) + OS(k+k'). (133.5)
07T4

Under the above conditions (small thermal conductivity) the effect of the

change in entropy on the change in pressure is relatively small ; the pressure
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fluctuations may therefore be regarded as adiabatic. Accordingly, we write
the linearised equation (132.1) as

1 dSp— h p divSv = 0,
co2 dt

r

where 8p, 8v are the fluctuations in pressure and velocity, p is the equili-

brium density, and c the velocity of sound calculated from the equilibrium
equation of state (§78). Taking the time and space Fourier components,
we have

- —S/U+pk-Svuk = 0. (133.6)

Similarly, equation (132.2) becomes

- mpipvi)^ = -kiSptk+iCWkik'Svrt+kkSa, (133.7)

where £(a>) may, for instance, be defined by formula (78.6).

To find 8pa)k , we multiply equation (133.7) scalarly by k:

- cop k • Svttk = - k28potk+ %k2(k • Svttk) + kthtsit,

and eliminate k.Svwk by means of (133.6). The result is

// °^
opu,k = kikksik \k2 - itj&

Finally, taking the product 8pa)k8pa)
,k, and averaging with the aid of

formula (133.6), we have

7V re £(ft>) . 8(co+ co')8(k+ k')

co

pco2

SPulfiPwk' =
8tt4 [cQ2 -(c^lk2)-ico{llp)][cQ2 -{co2lk2) + iw{t*lp)]

'

(133.8)

For example, if we substitute t,(co) from (78.6), we obtain

T rpc %coo2- c 2)8(co+ co')8(k

+

k')

To conclude, we shall show how the usual (classical) formula for the mean
square pressure fluctuation at a given point in the fluid can be derived from
(133.8). To simplify the calculations we shall assume that £ is independent
of ft),j-

Returning by formulae (132.14) and (133.2) from the Fourier expansions
to the functions 8p(rly ti), 8p(r2 , tz) themselves, and taking t± = *2 = t, we

f The (classical) result is actually independent of the form of the function £(a>) ; the only properties
of this function which are used in the derivation are ones which it must have in any case (see SP
§122).
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can write

8p(rh t)8p(r2,t)

oo oo oo oo

=
P

r
P

f S/>wkS/Vk<exp[-*(o> + a/)*] expj>'(k.ri+ k'.r2)]x

—oo —oo —oo —oo

dcodco'dkdk',

where we must substitute (133.8). One integration over frequency results

in replacing co + co' by zero in the integrand, owing to the factor 8(co + a/).

A second integration givesf

/

(cQ%Jp)d(a

[co
2- (a*/**) - (iW/0]W~ (w2/*

2
)+ («W/»)]

Thus

8p(r1} t)8p(r2,t) = |^ J*J
S(k+k') exp^k-n + k'-r^dkak'

7>co_2

= P7VS(r2 -n). (133.10)

This is the required result: averaging (133.10) over a small volume AF, we

obtain

= -t£^-
J

exp[ik.(n-ra)] dk

(8pf = pTtfjAV,

in agreement with a formula of thermodynamics, SP (111.11).

t The integration is easily effected, fori nstance, by means of the calculus of residues, taking the

path of integration as a large semicircle in the plane of the complex variable w.
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Activation energy, 474n.
Adiabatic flow, 4
Adsorbed films, effect of, on motion of

liquid, 241ff.

Amplitude, complex, 248
Angle

ideal potential flow near, 27
supersonic flow round, 413ff.
turbulent flow near, 130ff, 156

Antinodes, 264
Attack, angle of, 173

Barodiffusion coefficient, 225ff.
Bernoulli's equation

for ideal fluid, 10
for incompressible flow, 20f.

for potential flow, 19f.

relativistic, 503f.

Boundary layers, 18, 130, (IV) 145ff.
heat transfer in, 205ff.

laminar, 145ff.

in compressible fluid, 150n.
in converging channel, 150
in a pipe, 150
on a plate, 147ff.

stability of flow in, 156ff.

logarithmic velocity profile in, 159ff.

Prandtl's theory of, 79n., 145ff.

separation of, 151
in intersection of shock wave with sur-

face, 410
turbulent, 166ff.

on a plate, 166f.

Bow wave, 457
Brownian motion, 227ff.

Capillary constant, 232
Chaplygin's equation, 432

for perfect gas, 433
for transonic flow, 437

Characteristic lines, 312
Characteristics, 312, 378ff.

leaving a point, 312
reaching a point, 312
in steady two-dimensional flow, 312f.,

433ff, 442ff.

Characteristic surface, 311
Circulation, velocity, 14

law of conservation of, 1

5

Combustion
detonation, 480ff.

fluid dynamics of, (XIV) 474ff.
on liquid, 479
slow, 474ff.

turbulent, 478, 496
zone, 475

Compressible flow, 245ff. ; see Gas flow
Condensation adiabatic, 496f.
Condensation discontinuities, 496ff.
Conduction, thermal

equation of, 189
boundary conditions on, 190

in finite media, 196ff.

in fluids, (V) 183ff
in incompressible fluids, 188ff.

in infinite media, 192ff.

pure, 224
relaxation time for, 194
turbulent, 205

Conductivity
thermal, 184
thermometric, 189
turbulent, 205

Cone, gas flow past, 418ff.

Conical flows, 421
Contact, angles of, 233
Continuity, equation of, 2; see Equation

of continuity
Convection, 8, 202

in pipe, 214f., 217f.
between parallel planes, 214, 21 6f.

on vertical plate, 215
condition for absence of, 9
free, 212ff.

Converging channel, boundary layer in,

150
flow in, 8 Iff.

Critical velocity, 315
in superfluids, 511

Cross-section, effective, 296
for absorption of sound by sphere, 304
for scattering of sound
by drop, 297
by sphere, 297f.

total, 296
Cylinders, flow between rotating, 60f.

stability of, 107ff.

d'Alembert's paradox, 34, 322
Damping

coefficient, 99, 243f.
of gravity waves, 98ff.

530



Index 531

Detonation, 480ff.

adiabatic, 480
significance of, 493ff.

in pipe, 486ff., 492
spinning, 492
wave, 480

overcompressed, 491
in perfect gas, 483ff.

propagation of, 486ff.

reflection of, 492f.

stability of, 494f.

Diffraction, 296
Diffusion, (VI) 219ff.

in absorption of sound, 304
boundary conditions, 226
coefficient, 224

baro-, 225ff.

thermal, 225
flux, 220
ratio, thermal, 225
of suspended particles, 227ff.

Discharge, 57, 347

Discontinuities, 317ff.

boundary condition for, 318
compression, 319n.
condensation, 496ff.

contact, see tangential

initial, 360
break-up of, 36 Iff.

intersection of, (XI) 399ff.

isothermal, 343f.

shock-wave, 318; see Shock waves
in sound wave, 372ff., 521f.

surface, 317ff.

tangential, 17, 114, 318
collision with shock waves, 364f.

instability of, 114ff., 240f., 319
intersection of, 399n.
weak, 346

weak, 344ff.

intersection with shock wave,
408f.

intersection with transition line,

45 Iff.

Displacement thickness, 148n., 157
Diverging channel, flow in, 8 Iff.

Doppler effect, 259f.

Drag coefficient, 149, 167f., 179
Drag crisis, 170
Drag force, 34, 73

dissipative, 93
induced, 175ff.

inertial, 93
on oscillating bodies, 90ff.

at large Reynolds numbers, 170ff.

on slowly moving bodies, 66ff.

on wing, 466, 469, 473

Drag, wave, 34, 460ff.

Dummy suffixes, 12n.

Eddies, turbulent, 117
size of, 117

Eikonal, 256, 381
Energy dissipation

in absorption of sound, 298f.

in incompressible viscous fluid, 53f.,

90, 98f.

relativistic, 505f.

in superfluids, 514ff.

in turbulent flow, 119f., 163
Energy flux density

in ideal fluid, 12
relativistic, 500
in sound wave, 251

in viscous fluid, 184
Energy-momentum tensor, 499f.

Enthalpy, 4
Entropy flux density, 4
Equation of continuity, 2, 47

for component of mixture, 220
in cylindrical co-ordinates, 51

for entropy, 4
for film, 242
for flow in pipe, 292
for incompressible flow, 20
for laminar boundary layer, 146
for motion in a channel, 43, 397
relativistic, 501

for sound wave, 245
in spherical co-ordinates, 52

Equations of motion
for ideal fluid, Iff.

boundary conditions on, 5, 21

for incompressible flow, 20ff.

for laminar boundary layer, 146
for mixture of fluids, 219ff.

relativistic, 500ff.

for sound wave, 245
superfluid, 51 Off.

for viscous fluid, 48f., 184ff.

boundary conditions on, 50
exact solutions of, 79ff.

for incompressible flow, 49; see

Navier-Stokes equation
Error function, 198
Euler's equation

for ideal fluid, 3ff.

for incompressible flow, 20
relativistic, 502
for sound wave, 245
for viscous fluid, 48f.

for incompressible flow, 49; see

Navier-Stokes equation
Euler-Tricomi equation, 437

solutions of, 438ff.

Fanno lines, 352
Fermat's principle, for sound rays in

moving medium, 262
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Flame, 475ff.

front, 475
normal velocity of, 475

Films
adsorbed, 241ff.

equilibrium of, 23 If., 234f.
Fluctuating part of velocity, 117
Fluctuations in fluid dynamics, (XVII)

523ff.

general theory of, 523ff.

in infinite medium, 527ff.

Fluid
contour, 14
dynamics, 1

ideal, 4
particle, 1

point in, 1

Fourier's equation, 189
Frequency, 38, 103
Froude number, 63

Gas, combustion of, 474ff.

Gas dynamics, 31 Off.; see Gas flow
Gas flow

one-dimensional, (X) 347ff.

arbitrary, 386ff.

similarity, 353ff.

in travelling waves, 366ff.

past cone, 418ff.

past finite bodies, (XIII) 457ff.

potential, 422ff.

round angle, 413ff.

steady, 313ff.

through nozzle, 347ff.

two-dimensional, (XII) 422ff.

arbitrary (potential), 430ff.

in travelling waves, 425ff.

viscous, in pipe, 3 5Off.

See also Perfect gas
Gas, propagation of small disturbances

in, 31 Off.

Geometrical acoustics, 256ff., 380f.
in moving media, 259ff.

Grashof number, 213
Green's formula, 13n.
Group velocity, 259n.

Heat function, 4
Heat transfer

in boundary layers, 205ff.

coefficient, 204
general equation of, 185

for mixture of fluids, 221
in a moving fluid, 209ff.

number, 204n.
similarity law for, 202ff.

Helium, superfluid properties of, 507ff.

Hodograph plane, 430
Hodograph transformation, 430

Hugoniot adiabatic, 320
Hydraulic approximation, 396
Hydraulic jump, 397
Hydrostatics, 6ff.

Hypersonic flow, 472f.

Ideal flow, (I) Iff.

Incompressible flow
of ideal fluids, 20ff.

conditions for, 24
past a body, 3 Iff.

past a cylinder, 25f.

past a sphere, 25
of superfluids, 515ff.

of viscous fluids, 49ff.

Induced-mass tensor, 33
Irrotational flow, 16
Isentropic flow, 4

Jet

from slit, form of, 29ff.

submerged laminar, 86ff.

submerged turbulent, 132ff., 21 5f.

turbulent, 130ff.

Jouguet point, 482, 487, 490f.

Joukowski's hypothesis, see Zhukovskii
Chaplygin condition

Kelvin's theorem on circulation, 15
Kinetic coefficients, 223
symmetry principle for, 222f.

Kolmogorov and Obukhov's law, 121
Kutta-Joukowski theorem, see Zhukov

skii's theorem

Lagrangian variable, 5

A-point, 507
Laminar flow, 106
Lift coefficient, 174
Lift force, 34, 73
on thin wing, 179ff.

on wing, 138f., 173f., 465, 468, 473
Limiting line, 432
Logarithmic velocity profile, 162
Loftsyanskif's law, 142

Mach angle, 311
Mach number, 171, 311
Mach surface, 311
Mass flux density, 2
Mass transfer coefficient, 224
Metastable flow, 110, 114
Mixed flow, 436
Mixing-length theory, 132n.
Mobility of suspended particles, 227f.

Einstein's relation for, 228
Momentum flux density tensor

in ideal fluid, 14
relativistic, 500
in viscous fluid, 47



Index 533

Navier-Stokes equation, 49

in cylindrical co-ordinates, 51

for laminar boundary layer, 146

in spherical co-ordinates, 52

Nodes, 264
Normal flow (of superfluid), 508
Normal part (of superfluid), 507f.

Notation, xii

Nozzle, 347
de Laval, 348

Oscillations

degenerate, 240
in finite media, 262ff.

of a half-plane, 90n.

in an ideal fluid, 18

of a plane, 88f.

sound, 245ff., 279ff.

of a sphere, 36
of a spherical drop under capillary

forces, 238ff.

in a viscous fluid, 88ff.

Oseen's equation, 67f.

Peclet number, 203n.

Penetration, depth of, 89

Perfect gas
arbitrary one-dimensional flow of,

387ff.

detonation in, 483ff.

flow through heated tube, 350

flow in pipes, 357ff., 370ff.

shock waves in, 329ff.

steady flow of, 315ff.

thermodynamic relations for, 315

Phase velocity, 259n.

Physical plane, 430
Pipes

absorption of sound in, 303

detonation in, 486ff., 492
equation of continuity for flow in, 292

laminar boundary layer in, 150

(slow) combustion in, 477f.

laminar flow in, 55ff.

stability of, 11 Iff.

narrow, propagation of sound in, 29 Iff.

resistance coefficient for, 164

resistance law for, 164
similarity flow in, 353, 357ff.

characteristics for, 379f.

turbulent flow in, 163ff.

viscous gas flow in, 3 5Off.

Plane flow, 22

of gas, 425ff.

Plate, flow along

laminar, 147ff.

turbulent, 166f.

Poiseuille's formula, 57

Poisson's formula, 272
Potential flow

of gas, 422ff.

of ideal fluid, 16ff.

relativistic, 504
Prandtl number, 203

for diffusion, 208n.

Pressure coefficient, 468
Proper frame, 499

Random quantities, 524
Rarefaction waves

non-steady (one-dimensional), 355ff.

centred, 379, 390f.

isothermal, 359
steady (two-dimensional), 401ff., 427

centred, 427
form of streamlines in, 404

Rays, sound, 256
Reciprocity principle, 290

for dipole emission, 291

Reflection coefficient, 255

Relativistic fluid dynamics, (XV) 499ff.

of dissipative processes, 505f.

energy-momentum tensor, 499f

.

equations of motion, 500ff.

Resistance coefficient for pipe, 164

Resistance law for pipe, 164

Resonator, 264
Reynolds number, 62

critical, 103, 107; see also Drag crisis

in gas dynamics, 310

flow at small, 63ff.

for turbulent eddies, 118

Riemann invariants, 382ff., 435

Ripples, 238
Rotational flow, 16

Separation, 17, 130, 151

line of, 130
flow near, 151ff.

Shallow-water theory, 396ff.

Shock, see Shock wave
Shock adiabatic, 320

relativistic, 504f.

Shock polar, 334ff.

Shock waves, (IX) 31 Off.

back of, 319
boundary conditions at, 318

collision of, 364, 407ff.

with tangential discontinuities, 364f.

damping of, 374ff.

in detonation, 480ff.

front of, 319
intersection of, 399ff., 405ff.

with solid surface, 41 Off.

with transition line, 45 5f.

with weak discontinuity, 408f.



534 Index

Shock waves (cont.)

formed in flow past bodies, 429f.,

457ff.

formed in sound waves, 369f., 372ff.
in perfect gas, 329ff.

normal, 319n.
oblique, 319n., 332ff.

potential flow behind, 422f.
reflection of, 365f., 41 Iff.

regular, 411
relativistic, 504f.

stability of, 327ff.

strong, 392ff.

thickness of, 337ff.

variation of quantities in, 325ff.
weak, 322ff., 422f.
weak and strong families of, 336

Shooting flow, 397

Similarity

for flow past cone, 418ff.

for heat transfer, 202ff.

for hypersonic flow, 472f.
for one-dimensional gas flow, 353ff.,

379
in laminar boundary layer, 147
for transonic flow, 469ff.
in viscous flow, 6 Iff.

Sonic analogy, 461, 472
Sonic flow, 446ff.

Sonic surface, 436
Sound, (VIII) 245ff.

absorption of, 298ff.

coefficient of, 299f.

due to diffusion, 304
in pipe, 303
by sphere, 304
in two-phase system, 300n.
at wall, 301ff.

emission of, 279ff.

dipole, 282
by oscillating cylinder, 283f., 287
by oscillating sphere, 284ff.

from tube, 293
near wall, 287f.

first, 519ff.

propagation of
in gravitational field, 259
in moving medium, 259ff.

in superfluid, 517ff.

in tube, 29 Iff.

scattering of, 294ff.

by drop, 297
by sphere, 296ff.

second, 519ff.

velocity of, 246f.

at high temperatures, 249
local, 311
relativistic, 502f.

in two-phase system, 248f.

Sound waves, 245
cylindrical, 268ff.

monochromatic, 269
stationary, 268

damping of, 372ff.

direct, 274
discontinuities in, 372ff.

energy of, 249ff.

formation of shock waves in, 369f.,

372ff.

lateral, 273ff.

longitudinal, 247
mean pressure change in, 252f., 267,

270
monochromatic, 247f.
plane, 246

of arbitrary amplitude, 366ff.

monochromatic, 248
stationary, 264
travelling, 246f.

reflected, 254, 274
reflection and refraction of, 252ff.

refracted, 254
in second approximation, 372ff.

spherical, 265ff.

monochromatic, 266
reflection of, 273ff.

stationary, 266
stationary, 264
in superfluid, 517ff.

travelling, 263
Source, imaginary, 274
Span of wing, 137, 173
Spectrum

continuous, 103n.
discrete, 103n.

Stability

of flame, 476ff., 494f.
of flow in laminar boundary layer,

156ff.

of flow in pipe, 11 Iff.

of flow between rotating cylinders,

107ff.

of shock waves, 327ff.

of steady flow, 102f.

of tangential discontinuities, 114ff.

Stagnation point, 21
boundary layer near, 1 50
ideal flow near, 27

Steady flow, 9
of gases, 313ff., 427ff.

stability of, 102f.

Stokes' formula, 66
Stream function, 22, 53
Streaming flow, 397
Streamlined bodies, 173

flow past, 172ff., 460ff.

in supersonic flow, 460ff.

Streamlines, 9
in rarefaction wave, 404
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Stress tensor, 47
in incompressible fluid, 49

in cylindrical co-ordinates, 51

in spherical co-ordinates, 52

viscosity, 47
Strouhal number, 63
Subsonic flow, 310

past thin wing, 464ff.

Superfluid flow, 508
Superfluid part, 507
Superfluids, dynamics of, (XVI) 507ff.

equations of motion for, 51Off.

properties of, 507ff.

propagation of sound in, 517ff.

thermo-mechanical effect in, 509f.

Supersonic flow, 310
round angle, 4l3ff.

past conical obstacle, 418ff.

past bodies, 457ff.

past pointed bodies, 460ff.

past wing, 466ff.

Surface phenomena, (VII) 230ff.

Surface pressure, 230
Laplace's formula for, 231

Surface-tension coefficient, 230
Suspension, 77

diffusion of, 227ff.

viscosity of, 76ff.

Thermal theory of explosions, 190f.

Thermo-mechanical effect

in ordinary fluids, 509n.

in superfluids, 509f.

Transition line, 442ff.

intersection with discontinuities, 45 Iff.

intersection with shock waves, 455f.

Transitional surface, 436
Transonic flow, 424f., 436
Transonic similarity, law of, 469ff.

Turbulence, (III) 102ff.

analogy with statistical mechanics, 117

of flame, 477f.

fully developed, 116ff.

isotropic, 120, 140ff.

local, 120ff.

onset of, 103ff.

scales of, 122
small-scale, see local

Turbulent boundary layer, 166ff.

Turbulent conduction, 205

Turbulent flow, 106
in pipes, 163ff.

region of, 130
Turbulent jet, 130ff., 215f.

Turbulent region, 130
Turbulent viscosity, 119
Turbulent wake, 136f., 139f.

contraction of, 170
Two-dimensional flow, 22

of gas, 425ff.

Unit tensor, 13n.

Velocity
circulation, 14

conservation of, 15

complex, 23
correlation, 123ff.

triple, 126
hodograph, 404
potential, 19

Vibrations
characteristic, 262ff.

forced, 262
free, 262

Virtual mass, 36
Viscosity, 47ff.

coefficients of, 48ff., 186

dynamic, 49
kinematic, 49
second, 304f.

dispersion of, 305

of suspensions, 76ff.

turbulent, 119
"vanishing", 79n.

Viscous flow, (II) 47ff.

Viscous sublayer, 161

Vortex sheet, see Discontinuity, tan

gential

Vorticity, 16
in turbulent flow, 128f.

Wake
laminar, 7 Iff.

turbulent, 136f., 139f.

contraction of, 170
Wave

amplitude, 248
drag, 34, 460ff.

equation, 43, 246
general solution of, 272

length, 38
number, 38, 292, 308
packet, 251, 258, 345

phase, 248
profile, 366
vector, 248

Waves
bow, 457
capillary, 238
damping coefficient for, 240, 243f.

cylindrical, 268
detonation, see Detonation waves
Fourier components of, 248

gravity, 37ff.

capillary, 238
damping of, 98ff.

in incompressible fluid, 44ff.

long, 42ff.

lateral, 275
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Waves
longitudinal, 247
monochromatic, 247

components, 248
plane, 246

of arbitrary amplitude, 366ff.

stationary, 264
travelling, 246

rarefaction, see Rarefaction waves
shock, see Shock waves
simple one-dimensional (non-steady),

367f., 383
centred, 379, 390f.

characteristics for, 378f.
relativistic, 503

Waves (cont.)

simple two-dimensional (steady), 427
centred, 427

sound, see Sound waves
spectral resolution of, 248
spherical, 265
stationary, 264
thermal, 201, 304n.
travelling, 263

Wing, 137, 173, 179ff., 446, 464ff.

Yaw, angle of, 469

Zhukovskii-Chaplygin condition, 174
Zhukovskii's theorem, 139





COURSE OF THEORETICAL PHYSICS
by L D. LANDAU {Deceased) and E. M. LIFSHITZ

Institute of Physical Problems, USSR Academy of Sciences

The complete Course of Theoretical Physics by Landau and Lifshitz, recognized as two of the world's

outstanding physicists, is being published in full by Pergamon Press. It comprises nine volumes,

covering all branches of the subject; translations from the Russian are by leading scientists.

Typical of the many statements made by experts, reviewing the series, are the following :

"The titles of the volumes in this series cover a vast range of topics, and there seems to be little in

physics on which the authors are not very well informed. " Nature

"The remarkable nine-volume Course of Theoretical Physics . . . the clearness and accuracy of the

authors' treatment of theoretical physics is well maintained.

"

Proceedings of the Physical Society

Landau
Lifshitz

Of individual volumes, reviewers have written :

MECHANICS
"The entire book is a masterpiece of scientific writing. There is not a superfluous sentence and the

authors know exactly where they are going. ... It is certain that this volume will be able to hold its

own amongst more conventional texts in classical mechanics, as a scholarly and economic exposition

of the subject." Science Progress

QUANTUM MECHANICS (Non-relativistic Theory)
".

, . throughout the five hundred large pages, the authors' discussion proceeds with the clarity and

succinctness typical of the very best works on theoretical physics." Technology

FLUID MECHANICS
"The ground covered includes ideal fluids, viscous fluids, turbulence, boundary layers, conduction

and diffusion, surface phenomena and sound. Compressible fluids are treated under the headings of

shock waves, one-dimensional gas flow and flow past finite bodies. There is a chapter on the fluid

dynamics of combustion while unusual topics discussed are relativistic fluid dynamics, dynamics of

superfluids and fluctuations in fluid dynamics . . a valuable addition to any library covering the

mechanics of fluids," Science Progress

THE CLASSICAL THEORY OF FIELDS (Second Edition)

"This is an excellent and readable volume. It is a valuable and unique addition to the literature of

theoretical physics." Science

"The clarity of style, the concisement of treatment, and the originality and variety of illustrative problems

make this a book which can be highly recommended." Proceedings of the Physical Society

STATISTICAL PHYSICS
".

. . stimulating reading, partly because of the clarity and compactness of some of the treatments put

forward, and partly by reason of contrasts with texts on statistical mechanics and statistical thermo-

dynamics better known to English sciences. . . . Other features attract attention since they do not

always receive comparable mention in other textbooks." New Scientist

THEORY OF ELASTICITY
"I shall be surprised if this book does not come to be regarded as a masterpiece."

Journal of the Royal Institute of Physics (now the Physics Bulletin)

".
. . the book is well constructed, ably translated, and excellently produced."

Journal of the Royal Aeronautical Society

ELECTRODYNAMICS OF CONTINUOUS MEDIA
"Within the volume one finds everything expected of a textbook on classical electricity and magnetism,

and a great deal more. It is quite certain that this book will remain unique and indispensable for many
years to come." Science Progress

"The volume on electrodynamics conveys a sense of mastery of the subject on the part of the authors

which is truly astonishing." Nature
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