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Collision and rebound of small droplets in an
incompressible continuum gas
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We study the head-on collision between two weakly deformable droplets, each of
radius a (in the range 10–150 µm), moving towards one another with characteristic
impact speeds ±U ′c. The liquid comprising the drop has density ρd and viscosity µd.
The collision takes place in an incompressible continuum gas with ambient density
ρg � ρd, ambient pressure p′∞ and viscosity µg � µd. The gas–liquid interface is
surfactant free with interfacial tension σ. The Weber number based on the drop
density, Wed ≡ ρdU

′2
c a/σ � 1 and the capillary number based on the gas viscosity,

Cag ≡ µgU
′
c/σ � 1. The Reynolds number characterizing flow inside the drops

satisfies Red ≡ aU ′cρd/µd � We
1/2
d and the Stokes number characterizing the drop

inertia, St ≡ 2Wed(9Cag)
−1 ≡ 2(ρdU

′
caµ

−1
g )/9 is O(1) or larger.

We first analyse a simple model for the rebound process which is valid when
St � 1 and viscous dissipation in both the gas and in the drop can be neglected.
We assume that the film separating the drops only serves to keep the interfaces
from touching by supplying a constant excess pressure 2σ/a. A singular perturbation
analysis reveals that when ln(We

−1/4
d ) � 1, rebound occurs on a time scale t′b =

2
3

1/2
πaWe

1/2
d ln1/2(We

−1/4
d )U ′−1

c . Numerical results for Weber numbers in the range

O(10−6)−O(10−1) compare very well to existing experimental and simulation results,
indicating that the approximate treatment of the bounce process is applicable for
Wed < 0.3.

In the second part of the paper we formulate a general theory that not only
models the flow inside the drop but also takes into account the evolution of the
gap width separating the drops. The drop deformation in the near-contact inner
region is determined by solving the lubrication equations and matching to an outer
solution. The resulting equations are solved numerically using a direct, semi-implicit,
matrix inversion technique for capillary numbers in the range 10−8 to 10−4 and
Stokes numbers from 2 to 200. Trajectories are mapped out in terms of Cag and the
parameter χ = (Wed/Cag)

1/2 so that St ≡ 2
9
χ2. For small Stokes numbers, the drops

behave as nearly rigid spheres and come to rest without any significant rebound.
For O(1) Stokes numbers, the surfaces deform noticeably and a dimple forms when
the gap thickness is approximately O(aCa

1/2
g ). The dimple extent increases, reaches

a maximum and then decreases to zero. Meanwhile, the centroids of the two drops
come to rest momentarily and then the drops rebound, executing oscillatory motions
before finally coming to rest. As the Stokes number increases with Cag held fixed,
more energy is stored as deformation energy and the maximum radial extent of the
dimple increases accordingly. For St � 1, no oscillations in the centroid positions
are observed, but the temporal evolution of the minimum gap thickness exhibits two
minima. One minimum occurs during the dimple evolution process and corresponds
to the minimum attained by the dimple rim. The second minimum occurs along the
axis of symmetry when the dimple relaxes, a tail forms and then retracts. A detailed
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analysis of the interface shapes, pressure profiles and the force acting on the drops
allows us to obtain a complete picture of the collision and rebound process.

1. Introduction
This paper addresses binary, head-on collisions between weakly deformable liquid

droplets in an incompressible gas. Our focus will be on small droplets with radii
in the range O(5) − O(100) µm. Collisions of such small droplets are encountered in
many interesting processes as diverse as rain drop formation (see for example, Fuchs
1964; Hidy & Brock 1970; Mason 1971; Brazier-Smith, Jennings & Latham 1972,
and references therein), spray combustion and painting, pressurized turbines and
aerosol coagulation (Friedlander 1977). For drops in this size range, the dominant
factor driving collision is usually drop inertia and the impact energy involved in the
collision is small compared with the surface energy associated with the gas–liquid
interfaces. The velocities, shape and separation of the approaching interfaces control
the hydrodynamic forces acting on the drops and determine the minimum possible
distance between the drops.

When two drops collide in a gas, they may bounce apart or they may come into
contact. A bounce occurs if the pressure in the gas film separating the drops deforms
the drop surfaces sufficiently to transform the drops’ kinetic energy into deformation
energy before the gas film becomes thin enough for lubrication breakdown to occur.
In this paper, we study droplet collisions that result in a bounce. The collisions are
assumed to take place in an incompressible, continuum gas and so the drops undergo-
ing collision cannot come into contact; the nature of the continuum lubrication force
prevents this from occurring. We also assume that the effects of inter-particle forces
such as the London–van der Waals dispersion forces are negligible. The viscosity
contrast between the liquid and the gas is large enough that the gas does not slip
at the interfaces. The interfaces are assumed to be tangentially immobile and this is
later shown to be a good assumption.

When two rigid spheres undergo relative motion in an incompressible, continuum
gas, the initial kinetic energy is dissipated by viscous forces in the gas. The force
resisting relative motion scales as O(h−1), h being the minimum gap separation. Thus,
the approach is asymptotically slow. Furthermore, since there is no mechanism for
energy storage, the spheres do not rebound. When two drops collide, however, the
deformation of the drop surface allows for a part of the initial kinetic energy to be
stored as deformation energy. This stored energy is then released when the drops slow
down and transformed back into the kinetic energy of the centres of mass of the
drops during the rebound process. We seek a simple theory to describe the bounce
phenomenon and the dynamics in the limit of moderate to large Stokes number and
small Weber number. By simultaneously including strong retarding viscous forces
and also surface deformation, our work provides a rational basis to understanding
and predicting collision outcomes.

The geometry of the binary encounter we study in this paper is depicted in
figures 1(a) and 1(b). Both drops have the same radius a, and their centroids move
with equal and opposite speeds W ′ (which equals U ′c when the collision begins)
along the line joining their centres. The liquid comprising the drop has density
ρd and viscosity µd. The collision takes place in an incompressible, continuum gas
which has ambient density ρg � ρd, ambient pressure p′∞ and viscosity µg � µd.
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Figure 1. Schematic sketch showing the geometry and relative orientation for drop–drop collision.
(a) The global geometry as viewed from a stationary reference frame whose origin, O1 is fixed on
the intersection of the plane of symmetry with the line joining the drop centroids. The figure shows
the origin of the accelerating reference frame, O2, fixed at the centroid of drop 2. (b) The local
geometry of the near contact region. The solid curves represent the deformed surfaces while the
dashed curve represents the interface position corresponding to a rigid drop.

The gas–liquid interface is surfactant-free and is characterized by interfacial tension
σ. The parameters that we expect to influence the collision process are the Weber
number based on the drop density, Wed ≡ aρ′dU ′2c /σ, the Weber number based on
the gas density, Weg ≡ aρ′gU ′2c /σ, the capillary number based on drop viscosity,
Cad ≡ µdU

′
c/σ, the capillary number based on gas viscosity, Cag ≡ µgU

′
c/σ, and

the Reynolds numbers based on the drop and gas properties, Red ≡ ρdU
′
ca/µd and

Reg ≡ ρgU
′
ca/µg . The collision dynamics is critically dependent on drop inertia,

characterized by the Stokes number St ≡ 2Wed(9Cag)
−1 which is the ratio of the

time over which the drops move through a distance of O(a) to the viscous relaxation
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Radius a 10 µm 100 µm
Ambient pressure p′∞ 1 atm 1 atm
Velocities U ′c 1 cm s−1 100 cm s−1

Gas capillary number Cag 2.5× 10−6 2.6× 10−4

Drop capillary number Cad 1.2× 10−4 1.3× 10−2

Drop Weber number Wed 1.4× 10−5 1.5
Gas Weber number Weg 1.4× 10−8 1.5× 10−3

Stokes number St 1.3 1.2× 103

Drop Reynolds number Red 10−1 102

Gas Reynolds number Reg 10−2 101

Table 1. Typical values of relevant dimensionless parameters for collisions of small water droplets
in atmospheric air. The surface tension used in these estimates is 70 dyn cm−1.

time based on the force exerted by the surrounding gas. Table 1 shows values of the
dimensionless numbers for water droplets moving in air at velocities comparable to
their terminal speeds. Note that in actual collisions, the velocity is set by external
forces and so is an independent parameter. Also, typical relative velocities are less
than the terminal velocities. We consider droplets of radius in the range a = 5–150 µm
and ranges of other parameters in typical applications are σ = 20–75 dyn cm−1, ρd ≈
1 g cm−3 and U ′c ≈ 5–100 cm s−1. Using these values we obtain Cag ∼ O(10−6–10−3),
Wed ∼ O(10−3–10−1) and St ∼ O(1–200).

Our theoretical analysis is conducted in the limits Wed � 1 and Cag � 1. The
Stokes number characterizing the drop inertia, St ≡ 2Wed(9Cag)

−1 is O(1) or larger.
The Reynolds number based on drop properties in all cases satisfies the inequality

Red � We
1/2
d . We show later that this criterion allows us to neglect viscous effects

inside the drop and treat the flow as potential flow driven by the impulsive nature
of the collision. The dynamics of the bounce is, to leading order, independent of the
drop Reynolds number.

Experimental studies at small and O(1) Weber numbers by Park (1970), Brazier-
Smith (1972), Spengler & Gokhale (1973), Bradley & Stow (1978), Ochs, Czys & Beard
(1980), Yao & Cai (1988), Ashgriz & Poo (1990) and Jiang, Umemura & Law (1992)
indicate that the head-on collision of two small droplets at high pressures (high gas
densities) result in rebound. Other experiments on off-centre binary droplet collisions
by Qian & Law (1994) also show that in a highly pressurized or a high viscosity gas,
collisions may result in rebound for sufficiently large impact velocities (Wed > 1). It is
thus of interest to obtain analytical estimates of the rebound time and the associated
energy loss in the complementary limit Wed � 1. Numerical investigations of drop
collisions using simulation techniques have also been available for some time.

Using a marker and cell method, Foote (1975) conducted simulations of a liquid
drop colliding with a wall and then rebounding. He included the effects of drop vis-
cosity and finite surface tension. However, in his simulations, the flow and dissipation
in the surrounding gas were not considered. Computations of drop collisions with
a solid wall using molecular dynamics have also been reported (see, for example,
Murad & Law 1999 and references therein). However, these investigations are more
or less for medium to high impact energies corresponding to Wed > 1. More recently,
Nobari, Jan & Tryggvason (1996) used simulations based on finite differences to
study head-on collisions of equal sized drops moving due to a constant force. Drop
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contacts were simulated artificially by removing the intervening layer at a prescribed
gap width.

The extent of drop deformation is set by the imbalance between the normal stress
exerted on the interface by the flow in the outside gas and the normal stress due to
flow inside the drop. Typically, Reg is O(1) or only moderately small and so inertial
effects in the gas are not insignificant. However, if Cag � Weg , or, equivalently,
the Stokes number St � 2ρd(9ρg)

−1, viscous effects dominate in the gas. When the
distance between the drop surfaces, h′ is comparable to or larger than a, the drops
interact very weakly and each drop experiences a force which is of the order of the
Stokes drag O(µgaU

′
c). For large Stokes numbers this is insufficient to prevent the

drops from approaching to distances h′ � a. In fact, the energy dissipated in this outer
trajectory motion is only a factor O(St−1) of the initial kinetic energy of the drop and
is negligible. Once the gap thins to very small widths, h′ � a, the radial flow out of the
gap leads to a viscous stress resulting in a large O(µgU

′
ca/h

′2) lubrication force that
resists drop motion and induces surface deformation. Note that the characteristic gap
thickness at which drop deformation becomes important is O(aCa

1/2
g ), as can be seen

by balancing the viscous force exerted by the gas with the capillary pressure O(σ/a).
The criterion for the neglect of inertia of the gas when the drops are first starting to
deform is RegCa

1/2
g � 1 which is satisfied for Cag � 1. The small capillary number

criterion implies that most of the deformation occurs only when the drops are nearly
contacting. The small Weber number criterion implies that the magnitude of this
deformation is small compared to the undeformed radius a, thus the drops remain
spherical to leading order until the separation becomes O(aCa

1/2
g ) � a. Therefore,

detailed analysis of the relative motion at small gap separations is sufficient to
determine the outcome of the collision process.

In the first part of the paper, we analyse collisions in the limits St � 1 and
Red � We

1/2
d . Under these conditions, viscous dissipation in the gas and in the drop

can be neglected. We assume that the film separating the drops only serves to keep
the interfaces from touching by supplying a constant external pressure 2σ/a. In the
second part of our study, we will formulate the general theory that also includes
the effects of the gas flow in the film separating the drops. The equations we obtain
are then solved numerically using a matrix inversion technique and the role played
by gas viscosity is investigated in detail. Wherever possible, we will compare our
theoretical and numerical results to existing simulation and experimental results for
droplet collisions.

2. Idealized model of the rebound process in an incompressible gas when
St� 1

Collisions at Weber numbers much less than unity occur frequently and it is natural
to investigate the rebound phenomena in the asymptotic limit, Wed � 1. Deformation
of the interface sets in when the normal component of the stress due to flow in the
drop is comparable to the rest state capillary stress due to interfacial tension. For
drop separations h′ 6 aCa

1/2
g , the lubrication pressure in the gap between the drops

becomes O(2σ/a) and the approaching surfaces deform considerably resulting in the
formation of a nearly flat region. This geometry effectively traps the cushion of gas
between the drops and prevents it from draining out of the gap. Clearly, the local rate
at which the gas drains from this inner region depends on the local deformation. For
small drop inertia, the energy stored due to deformation will be smaller or comparable
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to the energy expended in forcing the gas out of the intervening gap and the drops will
come to a stop and will rebound back to a very small extent. For St� 1, significant
deformation will occur as the surfaces tend to deform rather than push the gas out
and decrease the gap width. If the deformation is large enough, most of the initial
kinetic energy is stored rather than dissipated. When the drops come to a temporary
halt, the deformed surfaces will begin to relax. If this relaxation occurs on a time
scale much smaller than the time it takes for the gas film to drain significantly and
the viscous dissipation in the gas film is small then the drops will clearly undergo an
energetic rebound. We may make the idealized assumption that the dynamics of the
drop collision and rebound is independent of the rate at which the film drains and
that the gas film primarily serves to prevent the drops from touching. The collision
process itself, as far as the drops are concerned, is equivalent to a process where the
effects of the air film are mimicked using a constant local external gas pressure that
keeps the near contact region flat. In short, the gas in the gap effectively stays there,
cushioning the drops from physical contact. The assumptions made in this section
are all validated in the detailed calculations that include analysis of the flow in the
lubricating gas film that follows in § 3.

Simulations of an idealized two-drop collision and rebound were conducted by
Foote in 1975. Foote argued that the collision could be viewed as a combination
of a rebound process and a film drainage process. The rebound process was studied
under the assumption that the drops were prevented from touching by a constant
gas pressure that constrained the two drop surfaces to meet the axis of symmetry at
normal incidence (i.e. the contact angle was 180◦). The area of close contact was thus
nearly flat. The force acting on the drop obtained from this bounce analysis was used
as an input in the film drainage problem. Based on the time for the film to drain
significantly relative to the time for the drop deformation to relax, the drops could
touch or bounce. Marker and cell techniques were used to solve the Navier–Stokes
equations inside the drop. The flow in the surrounding gas was not considered and
the simulations were conducted for Weber numbers Wed ∼ O(0.1)–O(10). Foote’s
results agree with previous experimental observations of drop collisions ending in
rebound. The idealized model of the rebound process we consider is the same as
that simulated by Foote. Our analytical results for Wed � 1 complement Foote’s
simulations for Wed ∼ O(1) and provide us with quantitative details of the flow and
rebound dynamics. Comparison to Foote’s results indicates that the analytical theory
is valid for Weber numbers of up to 0.3. We will also compare our predictions with
experimental results by Park (1970) on water droplets colliding in humidified nitrogen
at atmospheric pressure and observations of drops colliding with an air–water planar
interface by Jayaratne & Mason (1964).

The scalings for the bounce time derived in this section can also be used to predict
the collision and bounce of small liquid droplets with hot rigid walls well above
the Leidenfrost temperature. The Leidenfrost temperature is the wall temperature
at which the total evaporation time of a droplet is the longest. The Leidenfrost
temperature has long been taken as the criterion to identify characteristic regimes
for hydrodynamic impact patterns for droplets impinging on a heated wall and
is also sometimes considered as the lowest boundary of the non-wetting impact.
Experimental observations by Karl & Frohn (2000) and Yao & Cai (1988) using high-
speed video photography show that collisions of small droplets of radii O(10–100) µm
with rigid walls at Wed ∼ O(1) are almost elastic, with the drop undergoing very
small deformations. Since the collision occurs above the Leidenfrost temperature, the
liquid does not wet the wall at small enough velocities and the vaporization of some
of the liquid comprising the drop may be neglected.
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Figure 2. Schematic sketch showing the geometry and relative orientation for the idealized
drop–drop collision. The area of near-contact is approximated by a flat region whose radial
extent varies with time. The drop separation in this dimple region is assumed to be constant and
very small compared with the characteristic magnitude of the drop interface deformation.

2.1. Governing equations and scaling results

Owing to the cylindrical geometry and symmetry inherent in the collision orientation,
we choose to study the effects of the collision on drop 1. We consider a spherical
coordinate system that is fixed in space and time in the interior of drop 1, such that
the origin lies at a distance a from the plane of symmetry along the line of centres,
as illustrated in figure 2. Thus, as the drop collision proceeds, the centres of mass of
each drop move relative to this fixed origin. We neglect flow in the gas completely, so
neither the density nor the viscosity of the gas play any role. The only dimensionless
parameters that affect the dynamics are the Weber and Reynolds numbers based on
drop properties, namely, Wed and Red. The main quantities of interest are the time
scale over which the drops bounce and the extent of the flat radial dimple region as
a function of time.

For gap separations of O(a) and St� 1, the force exerted by the gas is small and
causes negligible deformation. The deformation only becomes significant when the

separation becomes O(aκ) (we show later in this paper that κ ∼ O(Ca
1/2
g )). For drop

separations much greater than O(aκ), the drops may thus be considered spherical. As
the surfaces approach, the fluid in the film drains owing to the radial flow induced
in the gap thus exerting a normal force resisting drop motion. When the separation
becomes O(aκ), the confined air film leads to a strong localized pressure that flattens
the approaching surfaces. Let the centre of mass speed of each drop at a separation
of O(aκ) be U ′c. The kinetic energy is thus O(ρda

3U ′2c ) = O(Wedσa
2). Since viscous

dissipation in the gas is negligible, most of this initial kinetic energy of the drops is
stored as surface deformation energy during the course of collision. At some point
in the collision process, the centres of mass of the drops reverse their direction of
motion and the drops begin to rebound. The deformation energy is transformed back



152 A. Gopinath and D. L. Koch

into kinetic energy and the rebound process is complete when the drops are again
separated by a distance large compared to O(aκ).

For the deformation energy to balance the O( 4
3
πρda

3U ′2c ) initial kinetic energy, the

characteristic magnitude of the interface deformation should scale as O(aWe
1/2
d ). The

pressure exerted in the dimple region is 2σ/a. The time scale for the drops to translate
through a distance of O(a) is O(a/U ′c) whereas the time for the deformation to relax

is much smaller being O(aWe
1/2
d U ′−1

c ). This is also the time over which the centre of
mass velocity changes sign and the rebound occurs. Balancing the overall force with
the rate at which the centre of mass velocity changes indicates that the radial extent
of the dimple scales as O(aWe

1/4
d ). This scaling is thus consistent with the O(aWe

1/2
d )

deformation and the O(aWe
1/2
d ) distance the centroid of the drops translate through

during the bounce.
The flow field inside the drop may be described by the Navier–Stokes equation

supplemented with the criterion that the velocity field is divergence free. We scale
all lengths with the undeformed drop radius a, drop velocity with the characteristic

velocity of approach when collision begins, U ′c and time with aWe
1/2
d U ′−1

c . For colli-
sions of interest, drop Reynolds numbers are usually greater than one and the Weber
number is very small, so viscous effects are negligible. Furthermore, since St� 1, we
anticipate that the dynamic pressure in the drop will scale as O(ρdU

′2
c We

−1/2
d ) and use

this as the characteristic deformation-induced dynamic pressure. The Navier–Stokes
equation for the fluid velocity u and pressure pd in the drops reads:

∂ud
∂t

+We
1/2
d ud · ∇ud = −∇pd +

We
1/2
d

Red
∇2ud +

We
1/2
d

Fr
g (2.1)

where in equation (2.1), Fr ≡ U ′2c /ag is the Froude number and g is the unit
vector along which gravity (of magnitude g) acts. In most collisions of interest,
We

1/2
d /Red � 1, i.e. the O(a2ρd/µd) time scale for viscous diffusion of momentum in

the drop is much larger than the O(aWe
1/2
d /U ′c) bounce time. The Froude number

is typically large for these collisions because the fluid acceleration is greater than g
during most of the collision. Taking the terminal velocity as a typical relative velocity
indicates that the Froude number is large whenever the Stokes number is large. Thus,
we will neglect gravity in our analysis, i.e. we set the Froude number to infinity. Since
the gravity term is absent and the viscous term is typically negligible compared to the
inertia terms, the equation of motion reduces to the unsteady, linear form:

∂ud
∂t

= −∇pd. (2.2)

The pressure gradient generated in the drop due to the impulsive nature of the
collision is balanced by drop inertia. Note that all velocities, forces and position
vectors are measured in the stationary inertial reference frame.

The fluid in the drop undergoes inviscid impulsive motion owing to the deformation
of the bounding surface. This deformation produces instantaneous pressure gradients
which cause instantaneous changes in the fluid velocity. The initial state is assumed
to be an undeformed drop so that the initial vorticity is everywhere zero. The traction
generated by the ambient gas on the drop surface is a source of vorticity. When
Red � 1, the effect of these tangential stresses is confined to a very small boundary
layer of O(aRe

−1/2
d We

1/4
d ) close to the surface during the O(aWe

1/2
d U ′−1

c ) time it takes
for the bounce to occur. Thus, we may assume that the flow in the interior of the drop
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is irrotational. Furthermore, the pressure drop across this boundary layer generated
due to viscous effects is small compared to that generated by the impulsive motion of
the drop. Equation (2.1) also indicates that the viscous terms are in fact less important
than the nonlinear inertial terms when Red � We

1/2
d . Consequently, we expect drop

viscosity to have negligible effects on the rebound process.
In the analysis that follows, we will assume that there is a localized pressure of

O(2σ/a) acting over a flat region of angular extent α. Thus, the gas pressure can be
written as

p′g = p′∞ + 2
σ

a
H(α− θ),

H(z) being the Heaviside step function. Equation (2.2) allows us to write the pressure
inside the drop in the form:

p′d = p′∞ + 2
σ

a
+ A′(t)− ρd

(
∂φ′

∂t′

)
s

,

where A′(t) is a function of time. The O(aWe
1/2
d ) surface deformation is caused by the

localized pressure 2σ/a acting in the region around the centreline. Initially, when the
undeformed drops begin their approach, the angular extent of the dimple region, α,
is zero. As the drops come closer, the pressure flattens an increasing portion of the
surface and hence the radial extent will evolve with time.

We now write the velocity field as the gradient of a potential function, φ which
satisfies Laplace’s equation,

ud = ∇φ.
Thus,

∇2φ = 0, (2.3)

owing to the incompressibility of the fluid in the drop. To see this, we note that there
are no sources of mass or momentum inside the drop. Equation (2.3) also implies
that ∫

Vd

∇2φ dVd = 0 =

∫
Ad

((∇φ)s · ns) dAd

where Vd and Ad stand for the volume and surface of the drop, respectively. As far
as the fluid inside the drop is concerned, the flat dimple region looks like a point
since its radial extent is only O(aWe

1/4
d ) compared to the O(a) extent of the drop.

The development of the flat region displaces a mass of fluid that is O(ρda
3Wed). This

is an O(Wed) fraction of the total mass of the drop. In the analysis that follows, we
will enforce the volume constraint in the drop to O(We

1/2
d ) with errors of O(Wed) and

so the effects of this flat region can be neglected in formulating the equation for the
velocity potential in the drop. We also note that the near-contact region is assumed
to remain flat. Hence, as the centroids of the drops become closer to each other, in
order to keep the volume constant, the drops bulge at their equators.

Without loss of generality, we may set the constant A′(t) to zero for all time. This
is permitted since φ and dφ/dt are defined to arbitrary constants which may be
chosen to make A′(t) zero. This result is also obtained by matching φ in the outer
and inner regions. The most general solution for the velocity potential is thus a linear
superposition of growing spherical harmonics. Note that φ and its derivatives have
to be finite at the origin of the spherical coordinate system. The boundary conditions
that must be imposed are the kinematic condition at the drop interface,

(∇φ)s · ns = U s · ns, (2.4)
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where ns is the outward unit normal at the drop surface (represented by s). This
imposes the constraint that the interface is a material surface and fluid elements on
the interface remain on it at all times. Since the only normal stresses are due to the
liquid and gas pressures, the normal stress balance reduces to the Young–Laplace
equation,

(p′d − p′g)s = σ(∇′ · n′)s. (2.5)

Let r∗ be the position vector of a point as measured from the fixed origin (in the
interior of drop 1) and η = cos θ. Then we have,

r∗s (η, t) = aR(η, t) = a[1 +We
1/2
d H(η, t)].

The expression on the right-hand side of equation (2.5), i.e. the curvature term
representing the pressure drop across the interface due to surface tension, may then
be written in dimensionless form as:

ΥR =
−([(1− η2)Rη]η − 2R)R + η(1− η2)[R3

ηR
−1] + 3(1− η2)(Rη)

2

[R2 + (1− η2)(Rη)2]3/2
,

the subscripts η denoting differentiation with respect to η. Substituting the expression
for R we obtain the much simplified linearized form for the curvature term valid for
small deformations:

ΥoH = −2H− d

dη

[
(1− η2)

dH
dη

]
.

The axisymmetric collision geometry and the structure of the operator Υo indicate
that we can write H as (see Appendix A):

H(η, t) =

∞∑
k=0

Dk(t)Pk(η), (2.6)

where η = cos θ and Pk(η) is the Legendre function of order k. Imposition of
the constraint that the drop volume is constant at all times, shows that the mode
corresponding to a uniform volumetric change, Do(t) = 0. Also, the velocity of the
centre of mass of the drop is given by dD1/dt and the rate at which this changes is
related to the overall force acting on the drop.

The size of the transition region intermediate between the dimple and outer regions
may be estimated easily as O(aCa

1/4
g ). For the inner region to be approximately flat,

we require that the O(a2 sin2 α/κ) radius of curvature of the dimple be much larger
than a. Finally, we note that the area of the transition region over which the curvature
changes from infinity to a value of O(a−1) is given by O(aCa

1/4
g ) and is much less than

the O(aWe
1/4
d ) size of the flat region.

Geometric considerations indicate that the area of closest approach may be ap-
proximated as a circle and so α, the half-angle subtended by the flat region at the
drop centre, is given by:

1 +We
1/2
d

∞∑
k=1

Dk(t)Pk(cos α) = (cos α)−1. (2.7)

Let er and eθ be the unit surface vectors along the radial and tangential directions,
respectively. Using, ns ≈ er + O(We

1/2
d )eθ , we can write the radius of curvature as:

(∇′ · n′)s =
2

a
+

1

a
We

1/2
d

∞∑
k=1

(k2 + k − 2)Dk(t)Pk(η).
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The solution for φ valid away from the inner flat region which satisfies the symmetry
conditions and is bounded for all points within the drop is given by

φ =

∞∑
k=0

Bk(r
∗)kPk(η). (2.8)

Substituting (2.6) and (2.8) in the kinematic condition (2.4), and using the orthog-
onality properties of Legendre polynomials gives us one relationship between Bk(t)
and Dk(t) valid for k > 1:

dDk
dt

= kBk. (2.9)

The second equation relating the two sets of unknown coefficients can be obtained by
substituting the expansions for the deformation and velocity potential in the normal
stress boundary condition. This gives us the Young–Laplace equation of the form
(k > 1):

dBk
dt

= −We
−1/2
d [Pk−1(cos α)−Pk+1(cos α)]− [k(k + 1)− 2]Dk. (2.10)

Equations (2.9) and (2.10) along with equation (2.7) for the extent of the inner region
serve to define the problem fully. Thus, the force in the inner region drives a potential
flow inside the drop which then controls surface deformation and the extent of the
flat region.

Tsao & Koch (1994) studied the rebound process for low-Weber-number, high-
Reynolds-number bubbles colliding in a liquid to which ionic salts have been added.
The addition of dissociating salts creates a strong hydration repulsive force that acts
when the bubbles are nearly touching and keeps the near-contact interfaces separated
(thus this repulsive force is analogous to the force exerted by the pressure in the
gas film). The inertia of the liquid outside the bubbles was taken into consideration
and the flow outside the bubbles was modelled using potential flow theory. The
qualitative behaviour of the drop bounce is similar to that of the bubble bounce, in
fact, when ln(We

1/4
d ) � 1, the analytical expressions for the bouncing times and the

radial extent of the dimple region are the same. This is essentially due to the potential
flow formulation.

As Wed → 0, we anticipate that more modes must be included for accurate
numerical resolution of the deformation. Combining equations (2.9) and (2.10) gives
us the following second-order differential equation for Dk(t):

d2Dk

dt2
= −k[k(k + 1)− 2]Dk − kWe

−1/2
d [Pk−1(cos α)−Pk+1(cos α)], (2.11)

for k > 1. Analysis of the k � 1 modes shows that for 1� k � α−1,

Dk ≈ −We
−1/2
d

[
2k + 1

2k2

(
α2 − α4

12

)
− k(k + 1)(2k + 1)

16k2
α4

]
, (2.12)

and for k � α−1

Dk ≈ −We
−1/2
d

k5/2

(
8 sin α

π

)1/2

sin[(k + 1
2
)α− 1

4
π]. (2.13)

Thus, for a fixed value of the Weber number, kα � 1, Dk ∼ k−1 and for kα � 1, Dk
decays faster than O(We

−1/2
d sin α1/2k−5/2). Note that when k ∼ O(α−1), the deformation
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Dk is O(α). We would need to keep terms k ∼ O(We
−1/4
d ) to describe the deformation

close to the inner region. Equation (2.11) indicates that higher-order deformation
modes have a leading O(k−2) component that is in quasi-equilibrium with the forcing
pressure, namely, the [Pk−1(cos α)−Pk+1(cos α)] term. These modes also have a small
O(k−3) component that oscillates with a large O(k3/2/2π) frequency. For very small
Weber numbers, the time scale of the bounce is much larger than the period of
oscillation of these high-frequency components and hence the large modes of surface
deformation are essentially in equilibrium with the driving force.

We note that the initial-value problem of determining the droplet deformation
and the evolution of the interface shape with time is, in principle, solvable using
a known set of eigenvalues and the associated normal modes for each value of
the Weber number. The deformation can be written as a linear superposition of
the corresponding non-degenerate eigenvalues. Clearly, in the case of zero net force
(i.e. the dimple extent is always zero), the free-surface oscillations are solely due to
capillary effects with the net surface energy being conserved.

2.2. Analytical solutions when ln(We
−1/4
d )� 1

The equations described in the previous section are obtained by neglecting higher-
order terms thus leading to algebraic errors of O(We

1/4
d ). A completely analytical

approach, albeit with larger logarithmic errors is possible when ln(We
−1/4
d ) � 1.

However, comparison of results obtained by this asymptotic analysis to the exact
numerical and simulation results shows the approximate theory to be valid over a
surprisingly large range of Weber numbers.

Expressions (2.6) and (2.12) indicate that the sum of the deformation modes

1� k �We
−1/4
d gives a logarithmic term of O(ln(We

−1/4
d )) for the scaled deformation.

In other words, as the Weber number becomes asymptotically small, the length scale
of the translational mode is different from that of the other surface deformation
modes by a logarithmic factor. Thus, the flow driven by deformation modes can be
neglected when compared to that driven by the primary translational mode. The main
variable controlling the dynamics is the instantaneous force acting on the drop that
tends to change its centre of mass velocity. In view of these observations, we now
rewrite the equation for the position vector on the drop surface as follows:

rs(η, t) = 1 + δ1D
∗
1(t)P1(η) + δ2

∞∑
k=2

D∗k(t)Pk(η). (2.14)

Here, δ1 and δ2 are small parameters which were assumed to be equal to We
1/2
d in

our previous analysis. Consider the energy balance that describes the conversion of
initial kinetic energy of the drop into deformation energy. The total energy stored as
surface deformation energy is the area integral of the sum of the deformation modes.
For all the initial kinetic energy to be stored as deformation energy, this area integral
should be O(Wed). A rough argument assuming that all modes scale similarly would
indicate that deformation modes are O(We

1/2
d ), thus giving the O(Wed) estimate for

the energy stored as deformation energy. For asymptotically small Weber numbers,
the equations obtained previously indicate that the sum of modes k � 1 gives a

term that is O(ln(We
−1/4
d )) larger than expected. This means the magnitude of these

higher modes should be O([Wed/ ln(We
−1/4
d )]1/2) instead of We

1/2
d to obtain the correct

global energy scaling. We thus see that to leading order, δ1/δ2 ∼ ln(We
−1/4
d ) � 1.

Equating the inertia of the drop to the net force exerted by the localized pressure
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gives δ1δ2 = Wed. Analytical expressions for δ1 and δ2 can be obtained by combining
the scaling from the force balance with the scaling from the surface energy balance.
This yields

δ1 = We
1/2
d ln1/2 We

−1/4
d

[
1 + O

(
ln1/2 ln1/4 We

−1/4
d

ln1/2 We
−1/4
d

)]
.

and

δ2 =
We

1/2
d

ln1/2 We
−1/4
d

[
1 + O

(
ln1/2 ln1/4 We

−1/4
d

ln1/2 We
−1/4
d

)]
.

The extent of the inner flat region is obtained from force balance arguments and is

O(δ
1/2
2 ). Re-scaling the time for the bounce by aU ′−1

c δ1 and using (2.8) and (2.14) in
(2.4) we obtain:

dD∗1
dt∗

= B1,
δ2

δ1

dD∗k
dt∗

= kBk (∀ k > 2). (2.15)

The deformation modes 1 � k � α−1(t∗) are in quasi-steady equilibrium with the
forcing in the inner region and are given by:

D∗k(t∗) ≈ −α
2∗(t∗)
k

+ O

(
1

k2

)
, (2.16)

where, α∗ is the scaled radial extent of the inner region written thus:

α∗(t∗) = α(t∗)
[
We

δ1

]−1/2

= α(t∗)δ
−1/2
2

An overall force balance on the drop gives

d2D∗1
dt2∗

=
dB1

dt∗
= − 3

2
α2
∗(t∗). (2.17)

The same result can be obtained by simplifying the normal stress balance, namely,
the Young–Laplace equation. The radial extent of the inner region is coupled directly
to the translational mode since the other modes of fluid motion driven by the
deformation are small in the limit Wed → 0. The fluid motion inside is primarily
controlled by the local applied pressure (forcing). In the limit of small α, the radial
extent is determined to leading order by the translation mode and also the sum of
higher-order modes. Indeed, a Taylor series expansion of (2.7) for small α indicates
that:

α2
∗(t∗) = D∗1(t∗). (2.18)

The contribution from modes k � 1 is as important as that from the k = 1 mode,
but much larger than that from other k ∼ O(1) modes. The bounce time defined as
the time it takes for the drops to rebound back to their initial separation is given by

t′b = π
√

2
3
aU ′−1

c δ1. (2.19)

Using the initial conditions for the deformation and flow modes, we obtain the
functional forms for B1 and D∗1:

B1(t∗) = cos

(√
3
2
t∗
)
, D∗1(t∗) =

√
2
3

sin

(√
3
2
t∗
)

(2.20)
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Thus,

D′1,max ≈
√

2
3
aWe

1/2
d ln1/2 (We

−1/4
d ). (2.21)

The total dimensional force, F ′(t′), acting on the drop from the 2σ/a pressure acting
over the flat region of radial extent α(t∗) is:

F ′(t′) = 2πρdU
′
c2a

2δ−1
1 α2

∗(t
′) ∼ O

(
2
σ

a
a2δ1

)
. (2.22)

Clearly, in this asymptotic limit, the maximum force occurs when the flat region has
the maximum radial extent. We also note that the localized force is assumed to be
independent of the drop velocity. As the collision proceeds, the initial kinetic energy
of the drop is converted to the surface deformation energy, kinetic energy of the fluid
and work done against the force. However, in the limit ln(We

−1/4
d ) � 1, the force

is approximately simple harmonic in nature and is hence conservative. This leading-
order approximation indicates that all the energy expended in deforming the surface
is converted back to the kinetic energy of the drop when the collision is complete.
This, however, is only an approximation as the rebound process and approach are
not symmetric when k ∼ O(1) modes are considered and this asymmetry becomes
more pronounced as the Weber number increases. The kinetic energy at time t = 0 is
2
3
πρda

3U ′2c . At any arbitrary time during the approach or rebound, the kinetic energy
in the fluid is given by:

E ′KE = 1
2
ρd

∫
V ′d

(∇′φ′)2 dV ′. (2.23)

Using the analytical expressions obtained in this section, we can write

E ′KE(t∗)
E ′KE(0)

= cos2

(√
3
2
t∗
)
. (2.24)

2.3. Numerical results and comparison with existing simulations and experiments

The first-order differential equations (2.9) and (2.10) in conjunction with the algebraic
equation (2.7) can be solved simultaneously to obtain the deformation and fluid
modes. We start the collision when the drops are separated by a distance equal to 2a.
The initial conditions are taken to be:

Dk>1(t = 0) = 0, Bk>2(t = 0) = 0, B1(t = 0) = 1.

The dimensionless centre-to-centre distance between the drops at any instant in time

is given by 2(1−We
1/2
d D1(t)).

Numerical solutions were obtained as follows. We chose a value of N∗ and retained
terms 1 6 k 6 N∗ in the expansions to obtain a finite system of equations for
the unknown coefficients. The resulting equations were solved by a second-order
predictor–corrector method. The value of N∗ was varied until convergent results
(within variations of 1%) were obtained for the variables of interest. The temporal
evolution of the drop deformation, fluid motion and dimple extent was followed.
Finally, the calculations were terminated when the drop reached its initial position,
i.e. the drops were separated by a distance equal to 2a. This procedure was repeated
for various values of the Weber number.

The equations for Dk indicate that a very large number of nodes k ∼ O(We
−1/4
d )

are required to resolve accurately the deformation and fluid flow inside the drop.
As Wed → 0, we would need to solve a very large and stiff set of nonlinear
equations. In order to avoid this, we use expressions (2.12) and (2.13) to simplify
the numerical solution. We split the set of equations into two sets: the first for
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1 6 k 6 N =∼ O(We
−1/4
d ) and the other for k > N. For the latter equations, we

use the asymptotic expressions for Dk presented earlier while explicitly solving for
the deformation modes for 1 6 k 6 N. This procedure was used to obtain results for
Weber numbers less than 10−4. For Weber numbers O(10−4)–O(10−3), we used the
asymptotic expressions and also solved the system using a large number of modes.
Both methods yield identical results.

The radial flow in the drop induced by the flattening of the near-contact surfaces
causes the surface to oscillate. This leads to disturbances that propagate to the top of
the drop. The whole drop deforms to an O(aWe

1/2
d ) extent and the surface oscillates

as the collision proceeds. The top of the drop also undergoes flattening and attains a
large curvature. This may be seen from figure 3(a) which shows the shape of drop 1
when the dimple is at its maximum extent for a Weber number of 10−3. The drop
is seen to be spheroidal with a bulging centre. Small Weber number drops undergo
nearly elastic collisions. Thus, at lower Weber numbers, we would expect that the
surface deformation resulting from the radial flow occurring owing to the collision
has time to propagate along the surface as a capillary wave and thus result in long
wavelength surface disturbances. The rebound occurs owing to the relaxation of the
drop deformation and owing to the large pressure gradient that develops across
the interior of the drop. Our results indicate that at larger impact speeds, drops of
the same radii undergo a larger deformation. They reach their maximum deformation
sooner and also the time for bounce decreases. We observe that the time scale of
the bounce is very close to twice the time needed for the drop to attain its state
of minimum kinetic energy. For collisions characterized by O(1) Wed, Wachters &
Westerling (1966) find that rebound can take significantly longer owing to the long
time necessary for the deformed shape the drop attains to relax, relative to the time
for the deformation from an initial spherical shape. This tendency persists for the
case of small Weber number. As the surface deformation leads to surface oscillations,
the period of the lowest mode of oscillation is the Rayleigh mode characterized by
the Rayleigh time scale, τR ∼ O(aU ′−1

c We
1/2
d ). Foote’s numerical results showed that

this was indeed the case but his calculations also indicated that the time scale of
the bounce divided by the Rayleigh time scale seemed to diverge as Wed → 0; our
analysis in § 2.2 predicts that the sum of the deformation modes leads to a logarithmic
factor that accounts for the divergence.

Consider the temporal behaviour of the centre of mass velocity. The drops initially
have velocities ±1. As the drops move towards each other owing to inertia, they also
decelerate owing to the external force from the near-contact region. The centroid
velocity keeps decreasing as more of the initial kinetic energy is transformed into
deformation energy. The magnitude of the fluid motion keeps increasing too until
at some point the centre of mass velocity, Ucom = 0. However, the external force
continues to act and the motion of the drops reverses. As the drops rebound, Ucom

increases until finally the drops rebound back to their initial positions. We note
that (2.20) predicts that the velocity will be zero at a scaled time of 0.5 reflecting
the symmetric nature of the collision process in the limit of zero Weber number.
The effects of finite Weber number, however, render the collision process asymmetric
and hence the actual time when Ucom goes to zero is slightly different from 0.5 (for
example, when Wed = 10−3, the sign reversal happens at a dimensionless time of
approximately 0.52). In addition, even when the collision is complete, the magnitude
of the centre of mass velocity is less than 1, indicating that some of the initial energy
is not recoverable. The same qualitative picture is obtained from a consideration of
the kinetic energy associated with the fluid modes EKE = E ′KE(ρda

3U ′2c )−1. The drops
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Figure 3. (a) The shape of drop 1 when the flat dimple region attains its maximum radial extent.
The Weber number is 10−3. The radial distances from the fixed origin (in drop 1) to the interface
are scaled by a. The solid curve is the actual drop shape while the dashed curve represents the
undeformed drop. Only half of the domain is shown since the shape is axisymmetric. (b) The scaled
bounce time, tb, as a function of the Weber number. •, our numerical results; ×, Foote’s simulation
results. The dashed and the solid curves represent asymptotic expansions valid for small Weber
number. �, results from experiments by Park (1970); �, experimental results from Jayaratne &
Mason (1964). (c) Scaled maximum extent of the flat dimple region as a function of the Weber

number, Wed. The solid line is the asymptotic expression valid when ln(We
−1/4
d )� 1. •, numerical

results obtained from solving the equations in the previous section. ×, Foote’s simulation values.

remain deformed and undergo shape oscillations even when they have rebounded
back to their initial separations. Our results also show that the minimum values of
the the kinetic energy and |Ucom| are attained at different times.

The main variables predicted from this potential flow analysis that can be compared
to existing simulations by Foote (1975), and experiments by Jayaratne & Mason (1964)
and Park (1970) are the time scales over which the drop bounce occurs (or equivalently
the total time of apparent contact) and the maximum extent of the flat dimple region.
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Figure 3(b) shows the dimensionless bounce time for the drop collision as a function
of the Weber number. The filled circles are results of our numerical computations and
the crosses are results from Foote’s simulations. We see that the two are in very good
agreement in the region where they overlap. Our analysis gives very good results up
to Weber numbers of 0.2–0.3. The solid line is the asymptotic result given by

tb = π
√

2
3

ln1/2(We
−1/4
d ), (2.25)

and the dashed line is the improved asymptote obtained from equation (2.19). Our
theory predicts a monotonic decrease in the scaled bounce time whereas experiments
and exact simulations show that the bounce time reaches a minimum and then
increases. The diamonds are Park’s results for collision of two equal sized water
droplets in air. We see that there is good agreement with our predictions for the
bounce time in the range of moderately small Weber number of O(0.1). The squares
are Jayaratne & Mason’s results for the rebound of a water droplet from a plane
air–water interface.

Figure 3(c) is a plot of the scaled maximum extent of the flat dimple region, αmax,
as a function of the Weber number. Again, the solid line is the asymptotic expression

valid when ln(We
−1/4
d )� 1:

αmax =

[
2Wed

3 ln(We
−1/4
d )

]1/4

(2.26)

and the filled circles are numerical results obtained from solving the equations in the
previous section. The crosses represent Foote’s simulation values. Excellent agreement
is seen for values of the Weber number up to 0.2. As the Weber number goes to zero,
the force required to cause the deformation decreases. The sum of the deformation
modes of the drop surface is logarithmically larger than the mode due to translation:
hence, the width of the dimple region decreases by a similar factor to keep the energy
constant. This also means that the work done against the constant external pressure
also decreases as more energy is stored as reversible surface energy. Thus, as the
Weber number goes to zero, the scaled dimple extent goes to zero too.

An estimate of the net energy transferred to deformation modes at the end of
the rebound process may be obtained by calculating the difference in the centre of
mass velocity before and after collision (when D1 equals zero). Figure 4 shows us
the fractional loss in the centre of mass momentum, L of the drop as a function
of the Weber number. As Wed → 0, the value of L tends to zero too because the
bouncing process becomes perfectly elastic A visual curve fit over Weber numbers
in the range O(10−4–10−1) indicates that L ∼ 0.1We0.22

d . As the Weber number
goes to zero (for values smaller than say 10−5), L tends to zero faster than that
predicted by this approximate curve fit. Karl & Frohn (2000) and Yao & Cai (1988)
analysed published experimental data on bouncing of water and ethanol drops of
radii 90–210 µm microns from heated walls above the Leidenfrost temperature. They
concluded that the momentum loss in the collision was a weak function of Red
for Wed 6 25. This observation is consistent with Foote’s simulation results that
show that Wed plays a more important role than Red in the rebound process. The
momentum loss, as determined by these investigators is given by the scaling law
L ∼ 0.29We0.257

d for Wed > 1 and is plotted as a dashed curve in the same figure.
The increase in the exponent as the Weber number increases can be attributed to
the following. We are neglecting viscous dissipation in the gas as well as in the drop,
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Figure 4. Momentum loss due to residual energy in deformation and fluid modes as a function
of Weber number. ◦, our numerical results; —–, the power law fit to our numerical results

(We
1/2
d /Red → 0); -- -- --, the fit to experimental data proposed by Karl & Frohn (2000).

and our scaling will be a lower bound on the actual energy loss. Furthermore, as the
Weber number increases, more energy is channelled into surface oscillations owing
to the large deformations that occur and hence the velocity of the centre of mass
after rebound is likely to be less. Note that the approximate curve fit for large Wed
completely neglects the dissipation in the gas film due to gas viscosity. Our model
also does not take this into consideration, but it is likely that the experiments used
to obtain the fit were affected by the gas.

Before concluding this section, we would like to briefly revisit equation (2.5) in
light of the observations made regarding the propagation of surface disturbances on
the drop surface. Equation (2.5) assumes a quasi-static response of the surface to
the pressure. For small Weber numbers, we expect that the surface waves excited
due to the localized force have time to propagate and move away before very short
wavelengths and singularities in curvature can develop. For a freely oscillating drop
in the absence of external forces, the frequency for the kth mode of oscillation (k > 2)
is given by the equation ω2(k) = k(k − 1)(k + 2)σ(ρda

3)−1. The slowest oscillatory
mode (with the smallest frequency) is the k = 2 mode. Even, as in the case we have
just studied, when surface oscillations are excited by localized forces, the leading
(and slowest) mode of oscillation is the k = 2 for which the frequency is given by
ωmin = (8σ/ρda

3)1/2.

2.4. First effects of drop viscosity –We
1/2
d /Red � 1

In the potential flow analysis, viscous effects in the drop are neglected and hence there
is no dissipative mechanism to dampen surface oscillations and velocity fluctuations
due to the collision. In actual collisions, even though viscous effects might not be very
important during the short time the drops are in near-contact, they will eventually
become important as the drops move away.
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2.4.1. Viscous dissipation due to the primary, inviscid flow

An estimate of the rate of viscous dissipation due to the primary potential flow may
be made easily. Analysis indicates that the rate of energy dissipated due to viscosity
in the drop is given by:

Πvis =

[
−µd

∫
Vdrop

(∇′u′d : ∇′u′d)dV′
]

= −U
′3
c ρda

2

Red
$, (2.27)

where,

$ = 2π

∫ π

0

sin θ dθ

∫ 1

0

(∇ud :∇ud)r2 dr + 2πWe
1/2
d

∫ π

0

sin θ dθ

∫ H(η,t)

0

(∇ud :∇ud) dy,

where y = (r−1)We
−1/2
d . The expressions for ud and the drop deformation in the above

equation are as given by (2.3) and (2.6). A simple scaling argument indicates that

the net viscous dissipation over the bounce time is roughly O(ρdU
′2
c a

3We
1/2
d Re−1

d ). A
more exact analysis using equation (2.27) and the properties of Legendre polynomials

indicates that in the limit ln(We
−1/4
d )� 1, $ ∼ O(ln−2(We

−1/4
d )).

2.4.2. First effects of drop viscosity on rebound process when We
1/2
d � Red

The first effects of drop viscosity for small values of We
1/2
d /Red may be incorporated

into the potential flow analysis done in the previous section by including a dissipative
force in the momentum equation for the fluid modes. Consider the rate at which the
total energy contained in the fluid modes is dissipated by drop viscosity. Owing to the
linear nature of the governing equations, the viscous dissipation for each mode k can
be calculated independently of other modes. The balance for each mode is given by:

ρdU
′3
c a

2We
−1/2
d

(
dBk
dt

)
vis

= −µdaU ′2c (k − 1)(2k + 1)Bk, (2.28)

where the subscript vis indicates that this balance does not take into account the
energy generated due to the force in the inner flat region. (Physically, this equation
is obtained by analysis of the total kinetic energy of the drop associated with the
velocity modes Bk . The effects of viscous dissipation are represented via a fictitious
force that leads to a decrease in the total kinetic energy of the fluid motions in
the drop.) The modified rate at which the velocity modes change due to inclusion
of viscous effects can now be obtained by incorporating this energy loss term into
equation (2.10) to get,

dBk
dt

= −We
−1/2
d [Pk−1(cos α)−Pk+1(cos α)]− [k(k+1)−2]Dk−We

1/2
d

Red
(k−1)(2k+1)Bk.

(2.29)

We note that this scaling for the energy loss is consistent with the O(We
1/2
d /Red)

term we neglected in the Navier–Stokes equation. Thus, we find that higher-order
modes, which also have higher frequencies and smaller amplitudes, are dissipated
faster. In fact, equation (2.29) indicates that the amplitude Bk of the kth mode in
the absence of any energy inputs would decrease exponentially over a time scale
O[(k − 1)−1(2k + 1)−1RedaU

′−1
c ]. Clearly, even for the k = 2 mode, viscous decay

occurs over a time scale that is O(We
−1/2
d Re−1

d ) larger than the time over which the
bounce occurs.
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In obtaining equations (2.28) and (2.29), we assumed that the governing equations
for the fluid velocity were linear. Thus, the analysis is strictly applicable when the
viscous effect acts as a small perturbation to the inviscid base state, i.e. We

1/2
d /Red � 1

and the viscous term is more important than the nonlinear term. Of course, in
most cases of interest (as shown in table 1), the Reynolds number is in the range
O(0.1) − O(10) so this simple analysis is expected to give a reasonably qualitative
picture of the effects of drop viscosity. It is interesting, however, to note that nonlinear
inertial effects are predicted to be more important than viscous effects for moderate
and large Reynolds numbers. This is indeed observed to be the case in experiments
and also in Foote’s simulations where the dynamics of the rebound was found to be
relatively insensitive to the drop Reynolds number.

Figure 5(a) shows the centre of mass velocity B1 as a function of dimensionless
time for Red = 0.5, 2 and 20 and a Weber number of 10−2. As the Reynolds number
decreases, more of the initial kinetic energy is dissipated and hence the drop speed
when the rebound process ends follows a decreasing trend. The rebound times increase
with decreasing Red. This is likely to be due to the decrease in the centre of mass
velocity compared to the truly inviscid case. However, the magnitude of the change
is very small for the range of Reynolds numbers considered. At t = 0, the distance
between the drops’ centroids is 2a. As the collision progresses this distance decreases,
indicating that if the drops were rigid spheres, they would overlap, i.e. the distance
between their centres of mass would be less than 2a. We define the magnitude of the
difference between the centroid to centroid distance and 2a as the overlap thickness.
Figure 5(b) shows plots of the rebound time (solid line) and the maximum overlap
thickness (dashed line), as functions of Red for Wed = 10−2. Both the rebound times
and the overlap thickness are normalized with the corresponding values obtained in
the limit Red → ∞. We find that the degree of maximum overlap decreases slightly
as the Reynolds number decreases. This may be attributed due to increasing viscous
dissipation leading to a reduction in the energy available to overcome the force
resisting the relative approach of the drops. As mentioned before, the bounce time
increases as viscous effects become more important owing to the decrease in the centre
of mass velocity. As Red decreases, dissipation becomes important. Consequently, the
net energy available to do work against the constant pressure also decreases.

Consider now the temporal evolution of α(t) when drop viscosity is neglected. The
higher-order deformation modes k � 1 are comprised of a quasi-steady part that
is in equilibrium with the applied force and a smaller, high-frequency component
that has a small O(2π/k3/2) period. Owing to the coupling between the deformation
modes and the extent of the dimple, as reflected in equation (2.7), these surface
fluctuations cause oscillations in α too. For extremely small values of the Weber
number (say, 10−5), the modes that control the dimple area are the k = 1 and
k � 1 modes. Thus the magnitude of the oscillations in α for Wed = 10−5 are
smaller and have a higher frequency. For the relatively larger Weber number of
10−3, the area of the dimple region is controlled by modes that are O(10) and so
the time scale for the bounce is comparable to the time scale characterizing the
oscillatory behaviour of these modes. A clearer picture of dissipative effects of drop
viscosity on the deformation is seen in figure 6 which shows the temporal evolution
of the radial extent of the dimple as a function of time for a Weber number,
Wed = 10−2. The higher-order deformation modes oscillate with smaller amplitude
and larger frequency. When viscosity is introduced, the dissipative mechanism causes
a dampening of the oscillations. Equations (2.28) and (2.29) indicate that one may
expect rapid suppression of the large-frequency, small-amplitude oscillations. The
smoothing effect increases as the Reynolds number decreases, as is expected.
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Figure 5. First effects of viscous dissipation for Wed = 10−2: (a) the temporal evolution of the
centre of mass velocity for Red = 0.5, 2 and 20 (denoted by numbers 3, 2 and 1, respectively);
(b) the normalized rebound times and the maximum overlap thickness as functions of Red.

3. Effects of flow and viscous dissipation in the gas film on the collision
dynamics

In the previous section, we neglected flow and thus viscous dissipation in the gas
film separating the drops. Furthermore, we assumed that the thickness of the thin
film did not change much in the time over which the rebound occurred. In this
section, we use matched asymptotic techniques to obtain the equations governing the
evolution of the gap between the drops and the deformation of the drop interfaces.
The inner region in the vicinity of near contact is analysed first. We show that in
order to complete the formulation, the flow and deformation in the entire drop has to
be evaluated. Using a matching technique valid in the limit ln(We

−1/4
d ) > 1, we obtain

the complete set of equations which are then solved numerically to obtain a detailed
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pronounced oscillations), respectively.

description of the approach and rebound process. The results we obtain also allow
us to test the validity of the assumptions made in § 2.

3.1. Outer trajectory analysis

A proper transition should be made from the solution for the outer trajectory
starting from separations of O(a) where lubrication effects are not present to the
solutions of the thin film lubrication equations at close contact. In order to initiate
these lubrication calculations, we need asymptotically correct initial deformation
and rate of deformation values that take into account deformation prior to the
establishment of the lubrication flow. We can show, using a scaling analysis, that
when Ca

1/2
g � 1, the initial deformation is O(aCag). Since the deformation during the

rebound process is O(aWe
1/2
d ), the asymptotically correct initial conditions are thus

zero initial deformation. It can also be shown that the rates of deformation are zero
to leading order. More details can be found in Appendix A.

3.2. Analysis of close contact motion

3.2.1. Analysis of the inner lubrication region

The geometry and orientation of the two-sphere head-on collision is as shown in
figure 1. At small separations, h′ � a the flow of the gas in the small intervening
gap is viscous and almost unidirectional. The motion of two spherical drops of radii
a separated by a distance h′ and moving with a relative speed 2U ′c induces a pres-
sure in the gap that is O(µgU

′
ca/h

′2) if h′U ′cρgµ−1
g � 1 and the gas is incompressible

and a continuum in nature. Significant deformation of the interface occurs when
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this lubrication pressure balances the capillary pressure 2σ/a. For an incompress-
ible, continuum gas, the characteristic gap width, l, at which deformation becomes
important is thus l ≡ aCa

1/2
g . Note that since Cag � 1, deformation effects become

important only when the gap is small enough that a lubrication type analysis applies.
Furthermore, we find that the Reynolds number based on l is much less than one, so
that the flow of the gas is governed by the Stokes equations. Since we are interested
in effects of deformation, we choose l as our characteristic axial length scale. The
characteristic radial length scale in the region of close contact is taken to be (al)1/2.
We choose the initial velocity U ′o when the lubrication calculations are started as our
characteristic axial velocity scale. Since St > 1, this choice allows us to relate our
theoretical predictions with simulation and experimental results that are formulated
in terms of the velocity prior to the collision process. Velocities in the radial direction
are scaled by U ′c(a/l)1/2. As the drops come closer, the surfaces deform and this pro-
cess leads to energy being stored as deformation energy. For large Stokes numbers,
it is reasonable to expect that the energy stored in the deformation modes will be of
the order of the initial kinetic energy of the drop, O(ρdU

′2
c a

3) = O(a2σWed). Thus, the
surface of the drop is expected to deform by an O(aWe

1/2
d ) amount, and we choose

to scale the deformation with this length scale. The time scale of the collision process
is very small and the characteristic acceleration of the centre of mass of each drop
will be O(U ′2c We

−1/2
d a−1), and much greater than the acceleration due to gravity and

so gravity effects on the total force can be ignored for most of the collision. For
strongly or moderately bouncing drops, the collision and bounce time is expected to
be approximately the time it takes for the centre of mass of the drop to travel a
vertical distance of the order of the deformation, and so we choose aWe

1/2
d U

′−1
c as a

characteristic time. The characteristic pressure, pc, used in the scalings is σ/a.
The drop surface can be considered tangentially immobile for calculating the gas

flow field, if the tangential velocity of the fluid inside the drop induced due to radial
motion of the gas in the gap is small compared to the radial gas velocity. If the gap
thickness at any instant in time is h′, the characteristic size of the region inside the
drop (in the lubrication region) over which gradients of flow and pressure occur is
O([ah′]1/2). When h′ ∼ O(aµ2

gµ
−2
d ), the radial flow of the gas will cause the interface

to move tangentially with velocity of the order of the radial gas velocity. For gap
thicknesses larger than this, the drop surfaces are tangentially immobile to leading
order (Davis, Schonberg & Rallision 1989). Once strong deformation sets in, the
characteristic spatial extent in the lubrication region over which large gradients in
the drop exist is O(aWe

1/4
d ) for St� 1. However, the minimum gap width will still be

O(aCa
1/2
g ), and so as long as Cag � (µg/µd)

4, the drop interfaces can be considered
tangentially immobile insofar as the gas flow in the thin film is considered. For
water droplets in air, the viscosity contrast µd/µg is about 100. Taking aCa

1/2
g as the

characteristic gap thickness we find that for capillary numbers of O(10−3–10−6) the
criterion derived above is satisfied. We note that at gap separations of O(aCa

1/2
g ),

the deformation-induced drop pressure in the lubrication region is O(ρdU
′2
c Ca

1/4
g ).

The pressure generated by the viscous term due to the induced tangential velocity

is O(µdU
′
cCa

−1/4
g /a). Both these terms are much smaller than the pressure in the gas

that is of O(σ/a) if We
3/4
d � 1 and Ca

3/4
g � 1. For Ca

1/2
g µd/µg = O(1), the tangential

velocity at h′ = O(aCa1/2) is of the order of U ′c. For smaller capillary numbers, the

tangential interface velocity is O(U ′c) at separations larger than O(aCa
1/2
g ). Even then,

as far as the gas is concerned, the O(U ′c) tangential velocity is still a factor Ca
1/4
g

smaller than the mean radial velocity of the gas and hence in order to calculate the
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velocity field and pressure in the gap, we can assume zero tangential velocity at the
surface.

We will show later on that the flow inside the drop is potential flow, the viscous
terms being negligible for Red �We

1/2
d . In most cases, Red � 1, so that viscous effects

are confined to a thin boundary layer near the surface of the drop where the tangential
velocity adjusts from the value obtained based on the solution of the gas flow to the
value given by the potential flow solution. The gas flow in the outer region may be
neglected to leading order, and so the tangential velocity of the interface induced by
the outer gas flow is small. In the O(aWe

1/2
d U ′−1

c ) time it takes for the collision to
occur, the boundary layer that develops in the lubrication region, penetrates into the
drop to an extent given by a(Cag/St)

1/4(µd/µg)
1/2. The boundary layer is confined

to the lubrication region as long as the Stokes number, St1/4 � (Ca
1/2
g µdµ

−1
g )1/2. The

normal interface stress resulting from this boundary layer is small compared with
the flow induced drop pressure. Thus, as far as the flow inside the drop in the outer
region is considered, we may model the interface as a stress-free, mobile interface.

We do not include any inter-particle attractive forces and also assume that there
are no surfactants on the interfaces that give rise to surface tension gradients or
repulsive forces. In addition, we also neglect the absorption of gas by the drop. Using
Henry’s law, we can estimate the fractional amount of gas in the gap that is absorbed
during the collision process as O(Dgcst

′
c(ah

′cg)−1) and this is typically of the order of
10−5 or so. Here, Dg is the gas diffusion coefficient, cs is the molar concentration of
the gas on the surface, c is the molar concentration of the gas in the gap, h′ is a
typical gap width during the collision process that lasts for a time t′c.

In the near contact region (see figure 1b), the two undeformed spheres can be
approximated by paraboloids. The gap extends in the z-direction from H ′1 to H ′2 =
−H ′1, where,

H ′1 = − 1
2
H ′ = −

(
h′ +

1

2

r′2

a
+ D′

)
, (3.1)

D′ being the deformation in the z-direction measured as indicated in the figure. The
centres of mass of the spheres move towards one another with speeds U ′1 and U ′2,
where, −U ′1 = U ′2 = W ′. The flow of the gas in the gap when the gas behaves as
a continuum incompressible fluid is governed by the continuity equation which in
scaled form reads:

1

r

∂

∂r
(rur) +

∂uz

∂z
= 0. (3.2)

The rate at which the centre of mass of drop 2 moves is given by:(
Cag

Wed

)1/2
dh

dt
= W. (3.3)

In the lubrication region, the unit normals to the two surfaces are in the z-direction
(to leading order) and, hence, we can write expressions for the rates at which the
interfaces move:(

Cag

Wed

)1/2
∂H1

∂t
= uz(H1),

(
Cag

Wed

)1/2
∂H2

∂t
= uz(H2). (3.4)

To obtain an equation for the pressure in the gap, we integrate the scaled continuity
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equation over the inter-sphere gap and use equations (3.3) and (3.4):

1

r

∂

∂r
(rj) + 2W + 2

∂D

∂t
= 0. (3.5)

Here, j is the dimensionless fluid flux per unit circumference out of the gap and is
defined as:

j =

∫ H2

H1

ur dz. (3.6)

To obtain an equation for the flux, we must scale the momentum equations and con-

sider the relative magnitude of the different terms. Since Rel ≡ (aµ−1
g U

′
cρgCa

1/2
g )� 1

and typical values of Rel(Cag/Wed)
1/2 are very small, the equation for the radial

pressure gradient reduces to a simple form:

−∂pg
∂r

+
∂2ur

∂z2
= 0.

In the limit of small Rel � 1 and for weakly deforming drops, the pressure gradient
along the gap develops owing to radial motion of the gas out of the gap. Scale
arguments indicate that ∂p′g/∂z′, is small compared to radial variations in the pressure.
Using this, the momentum equations can be solved for the radial velocity of the gas.
We obtain,

ur =
1

12

∂pg

∂r
[z2 − (H1 +H2)z +H1H2].

From this, we can obtain the following expression for the flux valid for continuum
flow:

j = −H
3

12

∂pg

∂r
. (3.7)

The pressure field satisfies (∂pg/∂r)r=0 = 0 and pg → p∞ for max[1, (Wed/Cag)
1/4]� r.

For very large values of the Stokes number, the characteristic radial extent of the

lubrication region scales as aWe
1/4
d . In deriving these governing equations, we have

used aCa
1/4
g as the radial scale. An overall force balance on the drop is obtained by

integrating the pressure over the drop surface and this force determines the rate at
which the velocity of the centre of mass changes:

dW

dt
=

3

2

(
Cag

Wed

)1/2 ∫ r∞

0

(pg − p∞)r dr. (3.8)

The shape of the air–drop interface is determined by the balance between the exterior
(gas) and interior (drop) pressures at the interface and the capillary pressure which is
a consequence of the finite interfacial tension and the curvature of the interface. The
stress balance at interface Si of drop i may be written in the form:

p′d,i − p′g − 2µg(ni · e ′ · ni) + 2µd(ni · E ′i · ni) = ±σ(∇′ · ni), (3.9)

p′d is the dimensional drop pressure, while e ′ and E ′ represent the traceless, symmetric
parts of the viscous stress tensor in the gas and in the drop, respectively. The unit
normals ±n are chosen such that the pressure inside each non-deformed drop is
greater than that outside by the quantity 2σ/a. Equation (3.9) is valid at all points on
the drop surfaces. In the inner region, however, the two interfaces are nearly planar
and parallel to the z = 0 plane and this permits considerable simplification. The
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following equation for the deformation of the surface of drop 2 is easily obtained:

1

r

∂

∂r

(
r
∂D

∂r

)
=

(
Cag

Wed

)1/2 [
p∞ − pg + a

p′d,c
σ
Ps

]
, (3.10)

where, the drop pressure at the interface (p′d)s has been written as p′o + 2σ/a+ p′d,cPs.
In equation (3.10), p′d,c is a characteristic fluid pressure induced due to the drop
motion and Ps is the dynamic drop pressure evaluated at the interface. For St > 1,
the radial extent of the region inside the drop where strong flow gradients are

induced is O(aWe
1/4
d ). Since the collision takes place on a time scale O(aWe

1/2
d /U ′c),

the characteristic pressure p′d,c in the inner region is O(ρdU
′2
c We

−1/4
d ). In order to be

able to neglect Ps, we want p′d,c � 2σ/a. This criterion gives the condition, We
3/4
d � 1.

Thus, we find that the deformation in the lubrication region is determined by a
balance between the gas pressure in the gap and surface tension forces. In any case,
viscous pressure gradients in the drop due to deformation-induced flow in the gap
can be neglected if µdµ

−1
g Cag < 1.

Multiplying (3.10) by r and integrating over r using the symmetry condition
∂D/∂r = 0 at r = 0 we obtain:

r
∂D

∂r
= −2

3

dW

dt
−
(
Cag

Wed

)1/2 [∫ r∞

r

(p∞ − pg)r∗ dr∗
]
. (3.11)

Thus, we obtain the following asymptotic behaviour of D(r, t) as r → r∞:

D(r) ≈ −2

3

dW

dt
ln r + f(t) + O

((
Cag

Wed

)1/2
ln r

r2

)
. (3.12)

In the limit max[Cag,Wed] � 1, we may replace r∞ in the above equations by
infinity without loss of generality. The logarithmic divergence of the deformation
indicates that the entire drop deforms and not just the near-contact regions. This may
be contrasted with inertia driven elastohydrodynamic collisions between deformable
solid spheres where the deformation is confined only to the lubrication region and
hence analysis of the near-contact region alone provides a description of the collision
dynamics. Our analysis shows that for deformable drops undergoing a collision, such
a local analysis is not sufficient and the deformation of the entire drop has to be
considered. However, drop–drop collisions are similar to buoyancy driven collisions
of a deformable drop with a rigid or deformable air–water interface. In the latter case,
the deformation of the drop and the interface are of the same order. The time scale
for the drop bounce is determined by the rate at which the deformation throughout
the drop relaxes. Thus, the flow and deformation in the inner region is fully coupled
to the flow inside the drop. The divergence of the deformation contrasts with the
asymptotic behaviour of the gas pressure for very large values of r which is as follows:

pg − p∞ ≈ 2
d2W

dt2
ln r

r4
−
(

1

2

d2W

dt2
+ 3W + 3

df

dt

)
1

r4
. (3.13)

3.2.2. Outer problem for the drop deformation

When r′ � r′∞, the pressure p′g is approximately equal to the bulk value p′∞.
Consequently, when the curvature of the interface becomes important, the gas pressure
has nearly decayed to its bulk value and we expect the extent of deformation to be
determined by a balance between the surface tension (capillary) pressure and the
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pressure induced inside the drop owing to the flow set up by the deformation in the
lubrication region. This balance will occur if the characteristic dynamic pressure in
the drop is much greater than the characteristic gas pressure outside the drop. Far
from the lubrication region, we expect the characteristic gas pressure to scale like
O(µgU

′
c/a) and we will find later that the dynamic pressure in the drop scales like

O(ρdU
′2
c We

−1/2
d ). So, as long as Cag �We

1/2
d , the effects of gas flow in the outer region

can be neglected. As seen from the outer region, the inner lubrication region shrinks
to a point. All details of the pressure profile are lost and the only relevant information
that is transmitted to the outer region is some sort of averaged information. These
observations motivate a simpler treatment of the deformation in the outer region.

It is convenient to use a coordinate system that readily allows us to decouple
the gap thickness from the drop deformation. So we now choose a new spherical
coordinate system (r∗, θ, φ) with origin at the centre of mass of drop 2, as shown in
figure 1(a). This origin, O2, is thus accelerating in a reference frame that is fixed at
O1 as shown in figure 1. The spherical coordinate system has its polar axis oriented in
the direction of the acceleration (line of centres) so that the fluid velocity and droplet
deformation in either reference frame is symmetric with respect to the polar axis i.e.
∂(.)/∂φ = 0. The droplet surface is at all times during the collision process assumed
to be slightly perturbed from its equilibrium value R′ = a.

As seen in the accelerating reference frame, there exists a static pressure gradient in
the gas and in the drop that results from the pseudo-force needed to keep the centre
of mass stationary. We retain this force in the momentum balance for the liquid in
the drop since it is of the same order as the leading order inertia terms. In the gas,
this induces a pressure that is at most O(ρgaU

′2
c We

−1/2
d ) on the surface of the drop

and this may be neglected compared to the much larger O(ρdaU
′2
c We

−1/2
d ) dynamic

pressure induced in the drop. In addition, this O(ρgaU
′2
c We

−1/2
d ) pressure term is

smaller than the O(σ/a) pressure that develops in the lubrication region during the
bouncing process. Consequently, the gas pressure in this non-inertial frame is the
same as that in the stationary reference frame to leading order.

Let the centre of mass undergo an acceleration

A′com(t′) =
dW ′

dt′
ez

at any instant in time t′, ez being the unit vector in the z′-direction along the line
of centres. In the accelerating reference frame, the flow inside the drop is governed
by the Navier–Stokes equations with a term to account for the pseudo-force due to
the acceleration. Since we are interested in spatial length scales of O(a) (far from the
lubrication region), we scale all spatial gradients by 1/a. Fluid velocity u′d is scaled
with U ′c and time t′ is scaled by aWed

1/2/U ′c. The scaled Navier–Stokes equation then
reads:

∂ud

∂t
+We

1/2
d ud · ∇ud +

p′d,c
a
∇P =

We
1/2
d

Red
∆ud +

We
1/2
d

Frd

g

g
− aA′comWe

1/2
d

U ′2c
ez. (3.14)

As in § 2, we consider drops for which We
1/2
d � 1, Frd = U ′2c /ag � 1 and We

1/2
d /Red ≡

µd/(ρ
′
daσ)1/2 � 1. The large Froude number limit implies that gravity effects may be

neglected during the collision process. An examination of the scalings shows that

A′com =

(
U ′2c

aWe
1/2
d

)
dW

dt
,
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and hence the centre of mass acceleration term is also O(1), like the inertia term.
Balancing the pressure gradients with inertia gives us the following scaling for the
dynamic pressure, p′d,c ∼ O(ρdU

′2
c We

1/2
d ). The approximate form of the equation of

motion during the collision process attains the form,

∂ud
∂t

= −∇pd = −∇P − dW

dt
ez, (3.15)

and is similar to equation (2.2). Here, P is the dynamic pressure satisfying the
condition P → 0 as ud → 0. This equation represents the impulsive motion of the
fluid in the short duration of the collision process.

Let the surface of the drop as measured from the centre of mass of the drop be
given by

r∗s = a(1 +We
1/2
d D), D(θ, t) =

∞∑
k=0

Lk(t)Pk(cos θ). (3.16)

The k = 0 mode corresponds to a volumetric pulsation whereas the k = 1 mode
corresponds to the motion of the centre of mass relative to the centre of the coordinate
system. Imposing the constraint of constant drop volume due to the incompressibility
of the fluid and also the condition that the centre of mass lies at the origin of the
coordinate system, we find both Lo and L1 to be zero for all time. The relative
errors incurred while imposing the constant volume and centre of mass conditions
are O(Wed) and are small compared to the terms retained. Note that the volume
of the inner dimple region is O(Wed) and thus details of the dimple shape can be
neglected in imposing the constant volume constraint. Since vorticity effects may be
neglected and the fluid is incompressible, the velocity may be written as the gradient
of a velocity potential that satisfies Laplace’s equation in the interior of the drop,

ud = ∇φ, ∆φ = 0. (3.17)

Equation (3.17) presupposes that the potential at the origin (the inner region) is
bounded and there is no source of mass/momentum to leading order. A local
analysis of the liquid flow in the inner lubrication region shows that this is indeed the

case. The characteristic length scale in this region is O(aWe
1/4
d ) and the characteristic

velocities are O(U ′c). Viscous effects can be neglected compared to inertial effects and

so the characteristic pressure is O(ρdU
′2
c We

−1/4
d ), a factor O(We

1/4
d ) smaller than the

characteristic pressure in the outer region. The pressure gradients, however, have the
same magnitudes as expected. The characteristic velocity potential in the inner region
is thus O(aU ′cWe

1/4
d ), also a factor O(We

1/4
d ) smaller than the value in the outer region.

Thus, the velocity potential in the inner lubrication region is small and bounded. This
implies that there cannot be a source term on the right-hand side of the Laplace
equation for φ, namely, equation (3.17), since such a source term would imply that
φ is singular at some point inside the drop region. In addition, we note that since φ
has to be bounded, we can choose to express both D and φ as a linear superposition
of any complete set of basis functions. We choose the Legendre polynomials as our
basis functions for convenience.

The governing equations (3.15) and (3.17) are similar to that obtained previously
for the idealized bounce problem in § 2. We now write the solution to (3.17) in a form
similar to (2.8),

φ =

∞∑
k=0

Bk(t)(r
∗)kPk(cos θ). (3.18)
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Here, r∗ is the scaled radial position as measured from the centre of mass and θ is
the angular position as measured in this new coordinate system. Clearly, both Bo and
B1 are zero, owing to the choice of our reference frame.

The dynamic pressure inside the drop can now be written as:

P = −∂φ
∂t

+
dW

dt
r cos θ,

with the rate of change of velocity given by (3.8). Incorporating the expansions for
the deformation and velocity potential in the kinematic interface condition, (2.4), we
obtain the following equations relating the two sets of coefficients:

dLk

dt
= kBk, k > 2. (3.19)

Here, we used the fact that U s is the velocity of the fluid relative to the centre of
mass velocity evaluated at the particle surface.

The formulation of the problem, as stated above, allows us to obtain another
relationship between the pressure inside the drop and the external pressure acting on
the drop. By Newton’s law we can write,

MA′com(t′) =MA′com(t′)ez = −
∫
Ad

(p′g − p′∞)ns dAd

= −
∫
Ad

(p′g − p′∞)(ns · ez)ez dAd, (3.20)

where ns is the outward unit normal at a differential surface area dAd of the drop
surface, ez is the unit normal along the z-direction and M is the constant mass of
the drop. A simple rearrangement of terms and simplification shows that equations
(3.8) and (3.20) are exactly identical as Wed → 0. Balancing the capillary pressure due
to the curvature with the pressure drop across the interface we obtain the following
equation,

2D+
d

dη

[
(1− η2)

dD
dη

]
= We

−1/2
d (pg − p∞) +

∂φ

∂t
− dW

dt
η + O(We

1/2
d D).

Using the fact that D is expressible as a linear superposition of Legendre modes, the
above equation can be rewritten as:

∞∑
k=2

dBk
dt
Pk(η) =

dW

dt
P1(η)−We

−1/2
d (pg − p∞)−

∞∑
k=2

(k2 + k − 2)LkPk(η). (3.21)

Multiplying (3.21) by Pm(η) and integrating over η from −1 to +1 we obtain (for
k > 2):

dBk
dt

= −(k2 + k − 2)Lk − 2k + 1

2
We

−1/2
d

∫ 1

−1

(pg − p∞)Pk(η) dη. (3.22)

Note that for this equation to be consistent with the expansions assumed for φ and
D we need:

dW

dt
= 3

2
We

−1/2
d

∫ 1

−1

(pg − p∞)P1(η) dη.

It can be easily checked that this equation is satisfied in the limit Wed → 0. In
addition, we also require that the zeroth Legendre moment of the scaled excess gas
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pressure be zero, i.e.∫ 1

−1

(pg − p∞)P0(η) dη =

∫ 1

−1

(pg − p∞)η dη = 0.

This equation is satisfied since the component of the excess pressure that is inde-
pendent of the angular variable and constant is identically zero. Equations (3.19)
and (3.22), when solved simultaneously with appropriate initial conditions, yield the
deformation and velocity profiles. The viscous dissipation in the drop both in the
inner and outer regions has been neglected.

3.2.3. Matching and calculation of the unknown function f(t)

In order to obtain a uniformly valid description of the drop deformation we
functionally match the inner and outer solutions for the deformation and thus obtain
f(t). The matching region in terms of the angular variable θ (or in terms of r) satisfies
max(Ca

1/4
g ,We

1/4
d )� sin θ � 1, that is, max(1, St1/4)� r � Ca

−1/4
g . For a separation

of scales to exist, the asymptotic theory we developed is thus restricted to the range
of Stokes numbers St � Ca−1

g , i.e. Wed � 1 and is consistent with the assumptions
made. Seen from the outer region, the inner and matching regions tend to the origin
r = 0 in the limit of vanishing capillary and Weber numbers. Rewriting equation
(3.22) and using the fact that points in the inner region correspond to very small
values of θ, we obtain:

dBk
dt

= −(k2 + k − 2)Lk

−2k + 1

4π

a

σ

We−1/2

a2

[
2π

∫ r′∞

0

(p′g − p′∞)Pk

(
1− 1

2

r′2

a2

)(
1− 1

2

r′2

a2

)−1

r′ dr′
]
.

Taking the leading expansion of the integrand, we obtain (see Appendix A):

dBk
dt

= −(k2 + k − 2)Lk − 2k + 1

3

dW

dt
. (3.23)

Equations (3.19) and (3.23) together with appropriate initial conditions are sufficient
to determine the values ofLk for all time. Combining the two gives us a second-order
equation for Lk which can be solved exactly. The solution is as follows:

Lk(t) = sin(ωt)c1(k) + cos(ωt)c2(k)− 2k2 + k

3ω

∫ t

0

[
dW (t′)

dt′
cos(ωt′) sin(ωt)

]
dt′

−2k2 + k

3ω

∫ t

0

[
dW (t′)

dt
sin(ωt′) cos(ωt) dt′

]
, (3.24)

where, ω(k) = (k3 + k2 − 2k)1/2. The first two terms on the right hand-side represent
undamped free surface oscillations corresponding to capillary waves on the surface
of the drop. The constants in these two terms, c1(k) and c2(k) are to be determined
from the initial conditions when the force acting on the drop is zero (namely, at

large separations). We note that the deformation has been scaled by aWe
1/2
d . At large

separations, the deformation of the drop is typically O(aCag) and hence Lk(t = 0) ∼
O[(Cag/St)

1/2]� 1. Thus, suitable initial conditions valid when Ca
1/2
g � 1 and St > 1

are Lk = 0 and dLk/dt = 0 at t = 0. The third and fourth terms on the right-hand
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side of (3.24) represent the direct effect of the force and also the wavelike deformation
created owing to the forcing. These expressions have a component that is in phase
with the forcing and an oscillatory component that is out of phase. Analysis of (3.24),
or equivalently analysis of equations (3.19) and (3.23) in the limit of large n, indicates
that the deformation modes for large n go as:

Lk(k � 1) ≈ −2

3

dW

dt

1

k
+ O

(
dW

dt
k−2

)
. (3.25)

Thus, the large deformation modes behave as in the idealized problem dealt with in
§ 2 and are in quasi-static equilibrium with the forcing.

Rewriting the expression for the deformation given by the lubrication asymptote
and equating it to the deformation given by the Legendre expansion, we obtain:

−D(θ) =
1

3

dW

dt
ln(Ca−1/2

g ) +
2

3

dW

dt
ln(sin θ)− f(t) = D(θ) =

∞∑
k=2

LkPk(cos θ). (3.26)

We now write the sum over all modes as follows using the fact that for large k, we
may replace the summation by an integral:

∞∑
k=2

LkPk(η) =

Nc∑
k=2

LkPk(η) +

∫ c(sin θ)−1

Nc

LkPk(η) dk +

∫ ∞
c(sin θ)−1

LkPk(η) dk, (3.27)

where c is an O(1) constant, η = cos θ and Nc is a cutoff number that satisfies:

1� Nc � c(sin θ)−1.

To evaluate the integrals and obtain a closed form expression for f(t) we must
substitute analytical forms for the Legendre polynomials in (3.27). The following
expressions for the Legendre polynomials are very accurate (see Tsao & Koch 1994)

Pk(cos θ) ≈ 1− 1
2
(k2 + k)(1− cos θ) + 1

16
(k2 − 1)(k2 + 2k)(1− cos θ)2, (k sin θ)4 6 64

Pk(cos θ) ≈ cos(kθ + 1
2
θ) + sin(kθ + 1

2
θ)√

πk sin θ
, (k sin θ)4 > 64

and we use these expressions. This corresponds to choosing the value c = 81/2. In order
to complete the matching procedure we must show that the sum of the deformation
modes has a term that diverges as ln(sin θ). Substituting these asymptotic expressions
for Pk in (3.27) and simplifying the resulting integrals in the limit θ → 0, we find
that, indeed, in the limit θ → 0 the logarithmically divergent terms match and f(t)
is completely specified once the next O(1) term is evaluated. After some algebraic
manipulations we finally obtain

f(t) =
dW

dt

[
2
3

ln

(
Ca
−1/4
g

Nc

)
+ 0.100 . . .

]
−

Nc∑
k=2

Lk. (3.28)

The final expression for f(t) is actually independent of Nc provided that Nc lies in
the range of values mentioned above.

A brief note on the errors involved and the range of applicability of this analytical
matching result is in order. The leading term in the sum of the deformation modes
is O(ln(sin θ)). Since the matching region is beyond the dimple region, this leading



176 A. Gopinath and D. L. Koch

term is typically O(ln(We
−1/4
d )). The higher-order corrections are thus typically O(1),

O(We
1/4
d ) and so on. When ln(We

−1/4
d ) � 1, the neglect of higher-order terms leads

to negligible error and the analytical expression for f(t) is quite accurate. However,
when the Weber number is not so small, the higher-order terms cannot be neglected
and a numerical matching has to be performed. The use of the simple analytical form
(3.28) can, in such cases, lead to inaccurate and unphysical solutions.

3.3. Collisions of a droplet with a rigid planar wall

A situation encountered in many physical applications is collision of droplets with
rigid planar walls. One example is high-pressure sprays where the drops are sur-
rounded by a pressurized gas. We can use an analysis similar to that presented thus
far to study the rebound dynamics of the colliding drops in the limit of low impact
energy. In fact, the drop–drop collision may be regarded as a drop–wall collision (the
wall being rigid) with a zero stress condition, instead of perfect stick conditions at
the wall. Mathematically, instead of imposing the condition that the velocity be zero
at the wall, we would need to impose the condition that the derivative of the velocity
is zero at the wall. Note that we could equivalently use the method of images to
formulate the governing equations appropriate for the Stokes flow in this case.

Let the rigid wall be coincident with the z = 0 plane (figure 1a) and consider drop
2 with undeformed radius a as the drop undergoing a normal head-on collision with
the wall. We make the scalings as in the drop–drop case. The expression for the gap
in the near-contact region is now given by:

Hdw = h+ 1
2
r2 +

(
Wed

Cag

)1/2

D. (3.29)

The equations for the flux j, the centre of mass velocity W and the equation for
the deformation D are the same as before. The boundary conditions and the large r
behaviour of D are identical to those obtained for the droplet collision problem. The
only difference is in the equation for the evolution of the gap size Hdw which has the
form:

W +
∂D

∂t
=

1

12

1

r

∂

∂r

(
rH3

dw

∂pg

∂r

)
. (3.30)

Comparison to the drop–drop case shows that the numerical factor multiplying the
right-hand side of (3.30) is different from that in (3.5). This reflects the fact that
only the drop–gas interface can deform and thus has a non-zero normal velocity
component. In fact, a suitable rescaling of the variables and the initial conditions
renders the two equations for the gap evolution identical. The above equations imply
that for large values of r, the pressure profile is given by the following asymptotic
relationship

pg(r � 1) ∼ −12

r4

(
W +

∂D

∂t

)
.

4. Results and discussion
The equations for the gap thickness and the deformation given by (3.5) and

(3.10) form a coupled nonlinear elliptic–parabolic system of equations. The boundary
condition on H , i.e. (3.12), introduces further complications in the attempt to find a
suitable convergent and accurate numerical scheme. This is because the deformation
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in the outer region depends on the force acting on the drop and hence the matching
constant f(t) is also an unknown quantity. Explicit methods to solve the equations in
the incompressible limit and for finite β are not very useful since the stability limit on
the maximum allowable time step ∆t is seen to scale as (∆r)4. Thus, for ∆r ∼ O(10−2)
the minimum time increment will be O(10−8) and prohibitively small. An adaptation
of the predictor–corrector scheme outlined in our paper for rigid particles (Gopinath,
Chen & Koch 1997) showed that this requirement for the largest possible time step
for obtaining stable solutions was indeed true. This is, in fact, not surprising since the
equations we are trying to solve constitute a set of stiff thin-film equations. The simple
predictor–corrector method based on the trapezoidal rule was seen to be second-order
accurate in time, but it had roughly the stability of the explicit Euler method, i.e.
(∆t)min < (∆r)4. Since explicit schemes did not give good results, implicit schemes were
then tried. The completely implicit, iterative scheme used by Davis, Serayssol & Hinch
(1986) and also by Yiantsios & Davis (1990) was tried. To guarantee convergence
for very strong deformations, under-relaxation had to be used because of the inverse
non-evolutional order of operations employed. This method was seen to work well
for O(1) values of the Stokes number. However, for large Stokes numbers, a very
small value of the under-relaxation parameter was required and a prohibitively large
number of iterations was required to obtain accurate results. Consequently, we used
a semi-implicit direct, matrix method based on the algorithm described in Rother,
Zinchenko & Davis (1997). This allowed us to obtain stable, accurate solutions using a
reasonable number of grid points without resorting to extremely small time steps. The
iterative scheme was used to validate and check the accuracy of the matrix inversion
results. Details of the numerical algorithm and the code are given in Appendix B.

We present numerical results for Capillary numbers, Cag = 10−8–10−5. These
values are small enough that meaningful comparisons can be made with the idealized
problem solved in § 2. At the same time, they represent physically meaningful values
representative of real collisions. The Stokes numbers we study range from 2 to
200. Equations (3.3)–(3.11) indicate that the natural dimensionless quantity that
enters as an independent scaling parameter is not the Stokes number, but rather
(Wed/Cag)

1/2 = χ. We present most of our results in terms of Cag and χ. The Stokes
number is simply 2χ2/9. All values of Cag that we consider are small enough for
the lubrication calculations to be started assuming nearly undeformed spheres. In
order to obtain estimates of the deformation prior to the development of lubrication
flow, the deformation and pressure profiles for some values of St and Cag = 10−6

were calculated using the outer trajectory analysis of § 3.1. These calculations were
started at an initial centre to centre distance of 3a and continued until h = 20, after
which the lubrication equations were used. We found that in all cases, so long as
Ca
−1/2
g � 1, ignoring this initial deformation and instead using the deformed profile

obtained from a regular perturbation analysis of the lubrication equations did not
change our results significantly. All our calculations were started using the initial
condition h(t = 0) = 15 and W (t = 0) = −1. The initial deformation of the spheres
is small in all the cases we considered and hence we used the undeformed parabolic
profiles as the initial interface shapes in our trajectory calculations. Consequently, the
initial condition for the fluid and deformation modes in the outer region wereLk = 0
and dLk/dt = 0 for k > 2 at t = 0. We will compare our analysis and results with
existing theoretical results for two classes of problems that have similarities to inertia
driven drop collisions. One is buoyancy-driven coalescence of slightly deformable
drops in a viscous liquid, which has been investigated in various papers over the last
few years. In this case, there are no inertial effects and the force driving the drops
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together is determined by the orientation of the drops relative to the gravity† vector.
Effects of particle inertia have also been investigated in so-called elastohydrodynamic
(Davis et al. 1986; Serayssol & Davis 1986; Barnocky & Davis 1989) collisions of
solid deformable particles in an ambient liquid. Studies demonstrating the influence
of pressure-dependent liquid density and viscosity on the dynamics of low-Reynolds-
number collisions of elastic and rigid spheres indicate that there is significant coupling
between the equations describing the fluid dynamics in the gap and the elastic solid
mechanics in the particles. These studies show that a dimple is formed on the sphere
surface during the collision process and the spheres rebound without coming into
contact. In fact, for Stokes numbers larger than a critical value, the spheres were seen
to bounce back to their initial separations.

We perform calculations of two types. In one type, the Capillary number Cag is held
fixed and the Stokes number is varied. This is equivalent to varying the Weber number
at fixed Capillary number. Since the dynamical trajectory calculations are mapped in
terms of scaled time, it should be remembered that to obtain the dimensional time
we must multiply by aWe

1/2
d U ′−1

c . A decrease in the scaled time owing to an increase
in χ does not necessarily mean a decrease in dimensional time. We also perform
some calculations keeping χ fixed, but varying the Capillary number. In this case too,
the Weber number changes and conversion to dimensional times should be made
accordingly.

4.1. Small deformation results

For a fixed and small value of the Capillary number, a larger fraction of the initial
energy is stored as deformation energy as the Stokes number increases. This trend is
almost independent of Cag as long as Cag � 1. Thus, for small Stokes numbers, we
anticipate that the extent of deformation is small and the drops behave as nearly rigid
spheres. This rigid sphere behaviour is seen for drops which do not have sufficient
energy to come to within an O(aCag) distance of each other. Figure 7 is a plot
of the minimum distance between the spheres Hmin (the solid line) as a function of
scaled time t. For all the results shown, the Capillary number Cag is 10−6. Profiles
are shown for χ = 0.25–1.5. If the drops were truly rigid, incompressible lubrication
theory predicts that the minimum distance would be:

Hinc
min = Hinc

min(t = 0) exp(− 8
9
χ2) = 2h(t = 0) exp(− 8

9
χ2), (4.1)

and these values are shown as filled circles on the same graph. We find that for
χ = 0.25 and 0.5, the drops indeed behave as nearly rigid spheres. For χ = 1.0 and
1.5, we find that the drops actually come to a halt at a separation that is lower than
that predicted by equation (4.1).

At small St and at fixed and small but non-zero value of Cag , the drop surface
deforms slightly and this allows a larger gap and less energy dissipation during the
approach. The effect should vanish as Cag goes to zero. We find that for χ > 2,
the minimum distance of approach is greater than that predicted for rigid spheres

† In studies by Rother et al. (1997) and Yiantsios & Davis (1990), the evolution of the buoy-
ancy-driven drop is traced from a relatively undeformed state until a dimple forms and a long-time
quasi-steady pattern is established. The constant buoyancy force and negligible drop inertia imply
that the long time drop deformation and dimple behaviour are independent of initial conditions.
Owing to the quasi-steady nature of the flow and deformation profiles that develop, we can employ
a singular perturbation analysis, using fractional powers of inverse time as the small parameter, to
obtain scaling relationships for the drop temporal evolution of the gap thickness and dimple extent.
This approach is, however, ruled out when effects of drop inertia cannot be neglected.
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Figure 7. Small deformation results: temporal evolution of the minimum gap thickness, Hmin(t), for
Cag = 10−6 and χ (from top to bottom) of 0.25, 0.5, 1.0 and 1.5. •, Predictions of rigid sphere
theory given by equation (4.1).

owing to stronger surface deformation. Figure 8 shows the variation of the minimum
gap thickness as a function of the centre of mass velocity, W . The solid curves are
our numerical results. The Capillary number Cag = 10−6 and χ (for curves from top
to bottom) is 0.5, 1.0, 1.5 and 2.0. The dashed curves are predictions of lubrication
theory for a rigid sphere collision:

W = −1 +
9

8χ2
ln

(
h(t = 0)

h(t)

)
. (4.2)

Note that for a rigid sphere, Hmin(t) = 2h(t). Also, equation (4.2) indicates that the
minimum gap thickness is reached when the velocity (and consequently the force)
goes to zero. We see that, as before, for χ = 0.5 and 1.0, the drops behave as nearly
rigid spheres and for these values of χ, the velocity goes to zero as the force becomes
zero. For χ = 1.5, slight effects of surface deformation are seen and the results begin
to deviate from the rigid sphere result. In all these three cases, the spheres come to a
rest at separations greater than one. For χ = 2, the results deviate significantly from
the rigid sphere results. The minimum distance between the spheres is reached not
when the spheres come to a halt, but rather during the approach process at t ≈ 15. A
reasonably large fraction of the initial energy is stored as surface deformation energy.
This energy when released causes the drops to bounce back significantly and finally
come to rest at an equilibrium dimensionless separation of approximately 0.85 which
is slightly less than that predicted by equation (4.1). The oscillatory behaviour of the
centre of mass velocity and position is also well illustrated in the same figure.

4.2. Collision and rebound dynamics for moderate and large Stokes numbers

For small deformations (h� 1) we can use a regular perturbation analysis to obtain
the following expressions valid during the initial stages of approach:

pg(r, t) ≈ − 3W

(2h+ r2)2
, (4.3)
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Figure 8. Small deformation results: variation of the minimum gap thickness as a function of the
centre of mass velocity, W . The capillary number Cag = 10−6 and χ (from top to bottom) is 0.5, 1.0,
1.5 and 2.0. The solid curves are our numerical results and the dashed line corresponds to equation
(4.2).

dW

dt
≈ −9W

8χh
, (4.4)

D(r, t) ≈ 3W

8χh
ln(2h+ r2) + f(t). (4.5)

Equation (4.2) indicates that collisions between drops with χ much greater than
approximately (9 ln (h(t = 0))/8)1/2 will lead to a rebound. This is consistent with our
calculations which indicate that for χ > 2, the drops deform strongly and a significant
portion of the initial kinetic energy is stored as deformation energy.

In order to illustrate clearly the interesting aspects of the collision process, we
examine in detail two cases corresponding to χ = 3 (St = 2) and χ = 20 (St ≈ 88.8).
For both of these, Cag = 10−6 and the initial conditions were, as before, h(t = 0) = 15
and W (t = 0) = −1. Thus, χ is changed by changing Wed. The initial deformation was
set to zero and the temporal evolution of the pressure, deformation, gap thickness,
centre of mass velocity and scaled force was analysed. An examination of these
variables in conjunction provides a composite and complete picture of the approach
and rebound process.

Consider first the collision dynamics for χ = 3 illustrated in figure 9. The drops

start with a minimum separation of 30(aCa
1/2
g ) and a relative velocity of 2U ′c directed

towards each other. As the drops approach, the gas in the intervening film resists
the relative motion of the drops and generates a force that decelerates the centroids.
The deformation during the initial stages of approach when h � 1 is negligible and
hence the evolution of the gap, the force on the drops and the pressure profiles
generated follow trends predicted by equations (4.3)–(4.5). The deformation and
the flow generated in the interior of the drops are small for 0 < t < 6, t being
the scaled time. The decrease in the kinetic energy of the centroids is mostly due
to viscous dissipation in the gas film. Both the minimum gap thickness and the
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Figure 9. Plots of (a) minimum gap thickness, Hmin (solid line) and the centreline separation,
H(r = 0, t) (dashed line), (b) centre of mass velocity, W (t), and (c) the centreline pressure
pg(1) = pg(r = 0, t) for the duration of the collision. Also shown are (d ) pressure profiles, pg(r, t),
and (e) gap profiles, H(r, t), at various instants. The curves correspond to profiles at dimensionless
times (i) t = 6, (ii) 7, (iii) 8.5, (iv) 11.5 and (v) 13. The capillary number is Cag = 10−6 and χ = 3.

maximum pressure occur at the centreline. The gap thickness and pressure profiles
are monotonic functions of r. At time t ≈ 6, the near-contact region around r = 0
begins to flatten considerably. The minimum gap thickness is approximately 1.3.
Instead of causing an increased radial flux away from the centreline, the relative
motion of the drops causes rapid deformation of the drop interfaces. This behaviour
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is similar to the near contact motion of rigid spheres in a compressible gas where the
gas tends to compress rather than flow out of the gap. The tendency of the drops to
deform manifests itself in the decreased rate at which the minimum gap thickness Hmin

decreases. The rate of change of the force begins to decrease and both the velocity
and the force profiles exhibit points of inflection. The pressure profiles begin to show
a characteristic inner region where the gas pressure is O(1) and an outer region where
the pressure is much less than 1. In the outer region, the pressure and deformation
are given by the asymptotic forms (3.12) and (3.13). The decreasing gap separation
causes the pressure and deformation to become more localized, as is evident from the
steepening of the profiles in figures 9(d ) and 9(e) at t = 7. A dimple begins to form at
a dimensionless time of t ≈ 8.2 and the minimum gap separation occurs at the rim of
the dimple rather than at r = 0. At this point, the centreline pressure is approximately
2 indicating that the pressure in the dimple area close to r = 0 is p′∞+2σ/a to leading
order. The formation of the dimple causes a larger curvature at the rim compared
to the centreline and consequently, the gas film thins faster at the rim owing to the
relatively larger pressure gradient. Thus, Hmin decreases faster than H(r = 0, t). Most
of the total force acting on the drops comes from the O(1) pressure in the dimple
region. Note, however, that the centre of mass velocities have, by this time, reversed
sign so that the centroids are actually moving away from each other even though the
near-contact regions are moving towards one another. An examination of the global
drop deformation indicates that the drops become flattened at the end (around θ = π)
and bulge out at the equator (around θ = 1

2
π) at this time. The dimple meanwhile

increases in extent and reaches a maximum radial width of approximately 0.46 at
t ≈ 9.9. Note that although the film thickness remains approximately O(aCa

1/2
g ), the

centroid to centroid distance becomes less than 2a by an amount O(aWe
1/2
d ). As the

dimple width begins to decrease, a larger fraction of the initial kinetic energy that is
stored has been channelled back into the energy corresponding to the translational
mode, i.e. the centre of mass speed increases. The motion of the drops away from
each other causes the interfaces beyond the dimple region to peel away from the
plane of symmetry corresponding to z = 0. This motion occurs rather rapidly and
leads to an adverse pressure gradient and a pressure that is less than the ambient
pressure over the region beyond the dimple rim. Thus, at time t = 11.5, the pressure
profile is non-monotonic. It has two extrema, a maximum positive value at r = 0 and
a minimum negative value just beyond the dimple. As the dimple shrinks, the force
acting on the drops decreases and the radial region over which pg > p∞ decreases.
The centreline pressure is still of the order of 2. The radial flux out of the centreline
region causes the separation at r = 0 to decrease with time and a tail to form. This tail
then pushes into the gap, resulting in a minimum film thickness with respect to time
(primary minimum, H∗min) that occurs at t ≈ 12.2. Meanwhile, when t ≈ 12, the dimple
vanishes and the minimum film thickness once again occurs at r = 0. The excess gas
pressure at all points in the gap now rapidly becomes less than p′∞. This causes a flux
of gas into the gap which together with the relaxation of the surface deformation
causes the tail to retract back in a very short period of time. In fact, the tail formation
and retraction occurs in a short time interval that is ∆t ≈ 0.8, compared to the time
∆t ≈ 6 for which the dimple exists. By this time, the centre of mass velocity starts to
decrease quite rapidly owing to the large negative force acting on each of the drops.
As the drops move away from each other, the interplay and exchange of energy
between the deformation and the translational modes causes the centroids to execute
an oscillatory behaviour. In this case, we see that the residual energy remaining after
the drops have rebounded back to beyond Hmin = 2 is rapidly dissipated. Eventually,
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the drops come to a rest at a dimensionless separation of approximately 3.5. Thus,
this entire collision process may be considered one with an effective coefficient of
restitution of zero since all the initial kinetic energy is dissipated and the drops do
not rebound back to their initial separations. The net force acting on the drops slowly
increases from zero at t = 0 and reaches a positive maximum at t ∼ 7.8, after which
it decreases. The force then becomes negative at t ∼ 10.2 decreases further due to the
negative pressure gradient in the thin gap, attains a negative minimum at t ∼ 12.3
and then slowly increases to zero with pronounced oscillations as the drops come to
a stop.

In order to investigate the dynamics at large Stokes numbers, we conducted
trajectory calculations for the case where χ = 20 and the capillary number was 10−6.
The initial conditions were the same as for the χ = 3 case, i.e. h(t = 0) = 15 and
W (t = 0) = −1, and the initial profiles were those for rigid spheres. Figure 10 shows
the temporal evolution of various quantities during the entire collision process. In
this case, we terminated our calculations when the drops rebounded back to their
initial separation. For small times, the dynamical behaviour was predicted well by the
small deformation equations, namely (4.3)–(4.5). We expect that the initial approach
before deformation is important, is faster than for the χ = 3 case and that the
drops approach to within an O(aCa

1/2
g ) distance of each other in an O(aCa

1/2
g U−1

c )
time owing to negligible viscous dissipation in the gas film. In terms of scaled time,
the initial approach occurs in a time of O(χ−1) for χ � 1. The force acting on the
drops during the initial stages is quite small and causes negligible deformation. The
increasing centreline pressure eventually causes flattening of the surface around r = 0.
A rather rapid increase in the centreline pressure occurs around t ≈ 0.8. The value
of h becomes zero at this point indicating that if the drops were rigid they would
have overlapped at this point. The centreline pressure begins to increase rapidly.
At t ≈ 0.99, a dimple forms. The pressure at the centreline is slightly more than 2
at this point but the profile is still evolving. Once the dimple forms, the centreline
separation remains almost constant and changes very slowly. The separation at the
rim, on the other hand, decreases at a significantly faster rate owing to the large
local pressure gradient in the gas and a smaller radius of curvature. The pressure
and deformation profiles indicate that the force on the drop increases mainly due to
the lateral spreading of the dimple. The centreline pressure remains almost constant,
but the motion of the drop squashes the near-contact surface thus leading to an
increase in dimple radius. The radial pressure profiles tend to a step shape with a
near constant value in the dimple and with a sharp gradient at the rim. Beyond the
dimple, the pressure drops extremely rapidly to the asymptotic value given by (3.13).
Meanwhile, h reaches a minimum value of about −27.2 at t ≈ 2.92. The centroids
of the drops then begin to move away from each other. The minimum separation,
however, continues to decrease and the dimple continues to spread attaining its
maximum radial extent of about 3.03 at approximately t = 3.3. After this, the dimple
width begins to decrease causing the force to decrease proportionately. The film
thickness at the rim reaches a minimum with respect to time at approximately t = 3.7
and then begins to increase. The gap profile at this point (t ≈ 3.7) clearly shows the
large radius of curvature in the interior of the dimple. This minimum, which we did
not observe in the χ = 3 case, we term the secondary minimum and denote by H∗∗min.
The drops now begin to move apart slightly as the dimple relaxes by shrinking, the
interfaces beyond the rim gradually peeling away from each other. An interesting
phenomenon then occurs. The film thickness at the centreline begins to decrease while
the film thickness at the rim begins to increase. This causes the centreline pressure
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Figure 10. Plots of (a) minimum gap thickness, Hmin, (solid line) and the centreline separation,
H(r = 0, t), (dashed line) (b) centre of mass velocity, W (t), and (c) the centreline pressure
pg(1) = pg(r = 0, t) for the duration of the collision. Also shown are (d ) pressure profiles, pg(r, t),
and (e) gap profiles, H(r, t), at various instants. The curves correspond to profiles at dimensionless
times (i) t = 1, (ii) t = 3.7 and (iii) t = 5. Curve (iv) in the pressure plot corresponds to t = 5.3 and
in the gap thickness plot corresponds to t = 5.375. The capillary number is Cag = 10−6 and χ = 20.

to increase while the pressure beyond the rim begins to attain values less than the
ambient pressure (see profiles at t ≈ 5). The front separating regions of positive excess
gas pressure from the negative region rapidly moves towards the centreline leading to
a force that becomes negative – from this point on, viscous effects begin to dominate.
The dimple completely relaxes by t ≈ 5.37; approximately the same time at which
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Figure 11. The temporal evolution of the minimum film thickness, Hmin(t), for various values of
the scaled Stokes number χ and for a Capillary number of 10−6. The curves from right to left
correspond to (i) χ = 3, (ii) 4, (iii) 8 and (iv) 20, respectively. As χ increases, the dimple formation
becomes more pronounced and the secondary minimum that occurs during the dimple evolution
process becomes smaller than the primary minimum that occurs when the tail begins to retract.

the centreline excess pressure becomes negative. Curve (iv) in the pressure profile
plot illustrates clearly the small region of positive pressure followed by the region
of negative pressure. The tail formation at r = 0 occurs because of the flux of gas
out of the centreline region. The tail retraction occurs once the pressure in all of the
lubrication region is less than ambient.

Figures 9 and 10 provide details of the collision process for two values of the
Stokes number. The dynamical behaviour is seen to be strikingly different and it is
of interest to enquire into the transition from the O(1) to the St � 1 behaviour. Of
particular relevance is the evolution of the minimum film thickness – the variation in
the primary and secondary minima as the Stokes number (or equivalently χ) changes
and their relative magnitudes. Figure 11 is a plot of Hmin(t) for trajectory calculations
with Cag = 10−6. The profiles (from right to left) correspond to increasing Stokes
numbers. We see that for χ = 3, there is no evidence of a secondary minimum. As the
Stokes number increases, the dimple formation becomes more evident as indicated
by the formation of an inflection point at t ≈ 9 for χ = 4. For larger Stokes numbers
(curves (iii) and (iv)), the dimple evolution process is very easily identified. The plots
indicate that the primary minimum (the sole minimum for small Stokes numbers)
actually increases as the Stokes number increases. The secondary minimum, on the
other hand, decreases as the Stokes number increases. Also, we see that the ratio of
the time scale over which the tail retraction occurs to the time scale over which the
dimple evolves becomes increasingly large as the Stokes number increases. Although
not shown in the figure, our numerical results also indicate that for sufficiently large
values of χ, the secondary minimum corresponds to a smaller gap thickness than the
primary minimum.

Figure 12 shows the manner in which the dimple extent changes during the course
of the collision for four values of χ. The Capillary number is set constant at 10−6.
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spacing between the symbols gives an idea of the temporal resolution of the results.

The onset of dimple formation takes place at a later scaled time for smaller values of
χ. We expect that the smaller inertia leads to larger dissipation of the initial kinetic
energy prior to deformation. This, in turn, results in a correspondingly smaller rate of
increase in the centreline pressure. The dimple widths have been scaled with aCa

1/4
g

and hence the maximum in these profiles increases as O(χ1/2) with increasing χ. The
scaled time for which the dimple exists seems to be almost constant for the different
Stokes numbers shown in the figure. This will be discussed in greater detail in the
following subsection. The profiles clearly illustrate how the fraction of the initial
energy dissipated due to viscous effects increases as the Stokes number decreases.
Also, we see that the asymmetry between dimple formation and dimple relaxation
becomes more pronounced as χ increases. This is in accordance with the results of
§ 2 where we found that as the Weber number increased from zero, the collision and
rebound took different times. Evidently, this effect persists for non-zero values of the
capillary number.

4.3. Effects of varying capillary number on the rebound phenomena

Until now we have studied the Stokes number dependence of the collision process for
a fixed value of the capillary number. The governing equations (3.5), (3.7), (3.10), (3.19)
and (3.22) do not contain the capillary number explicitly as a parameter. However,
the expression for f(t) has a term that depends on ln(Cag) and thus it is of interest to
study the variation in the results as the capillary number increases from zero. We first
consider the minimum gap thickness at which the dimple forms, shown in figure 13(a)
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Figure 13. Values of (a) the minimum film thickness, Hmin, and (b) the centre of mass velocity, W ,
when the dimple forms. �, Cag = 10−8; �, 10−7; ◦, 10−6; 4, 10−5; ×, Cag = 10−4.

for capillary numbers spanning four decades from 10−8 to 10−4. For a fixed value of χ,
as Cag increases, so does Hmin. For a fixed value of Cag as χ (or St increases) so does
Hmin. Finally, as χ increases, the variation in Hmin as the capillary number changes
becomes slightly larger; our calculations seem to suggest, however, that these values
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Figure 14. Plot of the total scaled time taken by the drops to rebound back to their initial

separation of 30(aCa
1/2
g ) starting from t = 0. �, Cag = 10−8; �, 10−7; ◦, 10−6; 4, 10−5.

tend to asymptote to constants as the Stokes number increase. Figure 13(b) shows
that, for small Stokes numbers (say χ = 3), the centre of mass velocity is positive
when the dimple forms, i.e. the drops have already started the rebound process. Thus,
the areas of near-contact are moving towards one another while the rear of the drops
are receding from each other. The value of the centre of mass velocity when the
dimple forms is very weakly dependent on the capillary number – in fact, the collapse
for the wide range of Cag we consider is quite remarkable. As χ increases, the value
of W tends to −1, the deviation from this value is seen to be approximately O(χ−2)
in accordance with the behaviour predicted by the equations for small deformation.
Thus, for large Stokes numbers, the small deformation that occurs prior to the dimple
formation leads to negligible energy storage. Figure 14 shows the total time (scaled
by aWe

1/2
d U−1

c ) taken by the drops to rebound back to their initial separation of

30(aCa
1/2
g ) starting from t = 0. The calculations are for capillary numbers of 10−8,

10−7, 10−6 and 10−5. We note that the spread in values increases as the Stokes
number increases. Also, at very small values of χ (say 4), collisions characterized by
the largest value of Cag (10−5) take the longest scaled time. However, as χ increases,
this trend is reversed. At χ = 24, the smallest capillary number drops (Cag = 10−8)
take the longest scaled time to complete the collision process. This result is consistent
with our idealized bounce calculations where we found that small Weber numbers
result in larger scaled bounce times. For small Stokes numbers, the effects of viscous
dissipation play an important role and modify this trend.

Figure 15 shows the variation with changing χ in the values of the primary and
secondary minimum for two values of the capillary number (10−8 and 10−6). As χ
increases from small values, the secondary minimum H∗∗min monotonically decreases
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while the primary minimum H∗min increases first, reaches a minimum and then seems
to decrease very slowly. Additional calculations for χ in the range 30–40 indicate
that the tail minimum H∗min remains almost constant and changes by a very small
amount compared to the change in the dimple minimum (H∗∗min). Figure 15 clearly
indicates that for χ � 1, H∗∗min will become comparable to or less than H∗min. This
transition occurs at a critical Stokes number that depends on Cag . Note also that, the
smaller the capillary number, the smaller the values of the minima. Rescaling the flux
equation (3.5) indicates that the solutions to the equation depend on χ1/2 ∼ O(St1/4)
and hence the rather slow decrease in the dimple minimum as χ increases. Clearly,
H∗∗min decreases as χ increases owing to the inertia effect, that is, the drop centroids can
come closer for larger Stokes numbers. We also note that the difference in H∗∗min due
to varying the capillary number is seen to decrease as the Stokes number increases,
indicating that the Weber number effect is more important insofar as the bounce
dynamics goes.

4.4. Coefficients of restitution, bounce times and dimple widths – comparison to
idealized bounce problem of § 2.

In § 2, we studied an idealized bounce problem where dissipation in the gas film was
neglected. In other words, the results we obtained correspond to the limit µg → 0, i.e.
Cag → 0. In this context, the constant 2σ/a pressure that prevented the near-contact
regions from touching is a disjoining force that we specify as acting on the drops. It
is illuminating to compare the values for the scaled bounce time, maximum dimple
width and coefficients of restitution for small but finite values of Cag with the zero
capillary number limit.

Let us define a modified bounce time, Td, as the scaled time for which the dimple
exists. In other words, Td = (scaled time to dimple relaxation) – (scaled time to dimple
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formation). This allows us to correct for the dynamics of the initial trajectory, which
in the limit of St � 1, takes a very short O(aCa

1/2
g U−1

c ) time compared to the much
greater O(aWe

1/2
d U−1

c ) time for the dimple to evolve. Furthermore, tail formation and
retraction in the limit St� 1 takes place over a time period that is much smaller than
Td. Thus, Td is approximately the scaled time for which the centres of the two droplets
are closer than 2a for St� 1. Figure 16 shows the Weber number dependence of Td
for Cag varying from 10−8 to 10−5. The limit of zero viscous dissipation is shown as a
dashed curve. For fixed Cag , the time Td increases from zero as χ (or equivalently, the
Weber number), increases from zero. The comparative strengths of viscous dissipation
and surface deformation dictate the time for which the dimple exists and control the
rate of drainage of the gas in the thin film. Consider the results for Cag = 10−8

denoted by diamonds. For Weber numbers smaller than approximately 10−6, the
bounce times are smaller than those predicted by the zero capillary number theory.
For small Stokes numbers, most of the initial kinetic energy is dissipated in the
gas film; consequently, the energy available for surface deformation is reduced. We
could try to correct for this effect by using the Stokes number based on the velocity
when the dimple first forms. In addition, the dimple that eventually forms is not very
pronounced and relaxes quickly. As χ increases, the drops deform rather than force
the gas out of the gap and the gap separation remains almost constant over the time
the dimple evolves. Thus, for large Stokes number we expect Td to approach and
follow the dashed line. For a fixed Weber number, the smaller the Stokes number,
the smaller the capillary number and so the dimple formation takes place at smaller
separations. Thus the smaller film thickness at the rim of the dimple leads to a larger
resistance to change in the film thickness.

Figure 17 shows the maximum dimple width scaled with the undeformed drop
radius a as a function of Wed for different values of Cag . The dashed line is the
limiting result corresponding to zero capillary number and provides an upper bound
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to the energy that can be stored as reversible deformation energy. We note that the
results for small and finite capillary numbers tend to the zero capillary number limit
as the Weber number increases from zero. The range of Weber number over which
this agreement is seen increases as Cag → 0.

A variable that is usually of most interest in practical applications is the net energy
loss in the collision characterized by the coefficient of restitution. In collisions of rigid
spheres all the initial energy is dissipated and no rebound occurs. In our previous work
(Gopinath et al. 1997), we found that rigid spheres colliding in a weakly compressible
gas exhibited a rebound for a small range of Stokes numbers. The drops rebound to
a much larger extent with almost no loss of energy for St � 1 (χ � 1) and, in fact,
rebound back beyond their initial separation. This behaviour is more in line with what
is observed in elasto-hydrodynamic collisions of weakly elastic solid spheres in a liquid.

Figure 18 shows the scaled centre of mass speed when the rebound is complete,
i.e. when the drops rebound back to their initial separation. The variable plotted
is thus |W ′/W ′(t = 0)| and can be considered the coefficient of restitution for the
collision process. We show results of our numerical experiments for two sets of
data – the unfilled symbols represent calculations for drop–drop collisions and the
filled symbols represent results for a drop colliding with a rigid, planar surface. For
both drop–drop and drop–surface calculations, the initial conditions were h(t = 0) =
15 and W (t = 0) = −1. Also, the drops were assumed to be undeformed at t = 0.
First, we observe that the dependence on the capillary number is rather weak. In fact,
it is only for large values of χ that the data sets for different Cag seem to deviate
from one another. For a finite capillary number and χ ∼ O(1), a large fraction of
the initial energy is dissipated by viscous effects and the coefficient of restitution is
small. The effects of dissipation becomes less important as χ increases, indicating
that surface deformation is an efficient mechanism to store a large fraction of the
initial energy. Note also that for χ � 1, smaller capillary numbers lead to larger
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Figure 18. Final scaled rebound speeds, (effective coefficient of restitution) as a function of
χ = (Wed/Cag)

1/2 for drop–drop (unfilled symbols) and drop–rigid surface (filled symbols) collisions.
�, Cag = 10−8; �, 10−7; ◦, 10−6; ., 10−5.

scaled rebound velocities, i.e. deformation effects dominate viscous effects. For all the
capillary numbers considered, rebound to the initial separation occurred so long as
χ > 3. For smaller Stokes numbers, the drops came to a rest after executing damped
oscillations. The results for drops colliding with a rigid surface (filled symbols and
same notation) illustrate the increased dissipation that occurs owing to the no-slip
condition at the rigid surface. For drop–drop collision, this is replaced by a plane
of symmetry with a no-stress condition and hence the dissipation is less. As the
Stokes number increases this difference in the boundary condition plays less of a
role in determining the time scale of the bounce and the coefficient of restitution.
Comparison of these results with the energy loss in the idealized collision process of
§ 2 indicates that even in the limit Cag � 1, viscous dissipation cannot be neglected
for St 6 O(1).

In the model we have developed and used, the near-contact deformed surfaces
are assumed to have a large radius of curvature so that the lubrication, thin-film
equations apply. For the Stokes numbers considered in this paper, the lubrication
assumption was indeed satisfied for the duration of the collision and rebound process.
Our numerical results, however, do indicate that there is a possibility that this might
not be valid, albeit for a very short period of time during the tail retraction period
when the curvature at r = 0 becomes very large. However, the total time this
phenomenon takes is negligible compared to the time over which the dimple evolves
and the energy dissipation during this time period is expected to be small. Since
the collision is assumed to occur in an incompressible continuum gas, the gross
dynamical quantities, namely, the force and velocity, will not change very much in
this time period.
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5. Concluding remarks

In this paper, we analysed the head-on collision and subsequent rebound of two
weakly deformable droplets in an incompressible continuum gas. Our results are
applicable when the Weber number based on the drop density Wed ≡ ρdU ′2

c a/σ � 1
and the capillary number based on the gas viscosity Cag ≡ µgU

′
c/σ � 1.

The Reynolds number based on drop properties Red ≡ aU ′cρd/µd �We
1/2
d .

In the first part of the paper, we analysed an idealized model of the bounce process
valid when viscous dissipation in the gas and in the drop can be ignored. We assumed
that the only effect of the gas was to supply a constant disjoining pressure to keep
the drop interfaces from touching. Such a description is valid provided that the rate
of film drainage is so slow that in the time it takes for the drops to rebound, the film
thickness remains almost constant. For very small Weber numbers, we used singular
perturbation methods to obtain a fully analytic description of the rebound process.
Expressions for the rebound times and the extent over which surface flattening occurs
were seen to match extremely well with exact simulations and available experimental
data.

In the second part of the paper, we obtained the set of equations that provided
a more complete picture of the collision process. The analysis took into account the
flow in the drop and also in the thin gap separating the drops. These equations were
then solved numerically using a semi-implicit, direct, matrix inversion technique. The
effects of viscous dissipation due to the flow of the gas out of the gap was studied in
detail by varying the capillary number Cag . For large Stokes numbers and in the limit
Cag � 1, our calculations present the following picture of the approach and rebound

process. (i) During the initial approach when h′ � O(aCa
1/2
g ), the drops approach

each other with negligible deformation. The minimum gap thickness occurs at the
centreline. (ii) When the minimum gap thickness becomes O(aCa

1/2
g ), the interfaces

in the inner region begin to flatten and deform significantly. A dimple then forms.
The film thickness at the rim decreases faster than the gap thickness at the centre
of the dimple. Meanwhile, the centre of mass velocity of the drop decreases with
time as a part of the initial kinetic energy is channelled into deformation energy,
a part is stored in the pressure and velocity fields in the interior of the drop and
the remainder is dissipated due to gas viscosity. (iii) The centroids of the drops
come to rest momentarily and then reverse direction as the rebound process begins.
Meanwhile, the minimum gap thickness that occurs at the dimple rim increases as the
dimple reaches its maximum extent and begins to shrink. By this time, most of the
deformation energy is converted back to the kinetic energy associated with the centre
of mass motion. (iv) The edges of the dimple peel away as the drops recede. The
minimum gap thickness occurs at the centreline and a tail forms. The rapid motion
of the interfaces causes the pressure beyond the rim of the dimple to fall below
the ambient value. The flux of gas out of the dimple that develops combined with
surface oscillations cause the thickness at the tip of the tail to decrease with time.
The centreline separation reaches a minimum and then increases rapidly as the tail
retracts. This retraction takes place over a time scale that is very small compared to
the time over which the dimple evolves and relaxes. (v) Once retraction is complete,
the drops move away from each other. The velocity of the centre of mass of each
drop increases, reaches a maximum and then decreases as viscous dissipation becomes
important in the final stages of rebound.

Studies on elastohydrodynamic collisions of deformable solid spheres in an in-
compressible liquid by Davis and co-workers (Davis et al. 1986; Serayssol & Davis
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1986) showed that two dimensionless parameters influenced the dynamical character
of the collision process – an elasticity parameter that characterizes the tendency of the
spheres to deform and the Stokes number. For small Stokes numbers, deformation as
well as the rebound height was seen to increase as the Stokes number increased. Also,
the spheres underwent damped oscillations before finally coming to rest. For Stokes
numbers larger than a critical value dictated by the length scale at which deformation
became important, the spheres rebounded very strongly. The minimum gap thickness
attained scaled by the characteristic length scale at which elastic deformation became
important tended to a constant as St → ∞. Most of the initial energy was stored
as reversible elastic strain energy and was released during the rebound. In the time
period over which the rebound occurred, the gap thickness and the pressure in the
gap remained nearly constant. Thus, although the equations governing the elastic de-
formation of a solid body are very different from those governing the deformation of
a liquid–gas interface, we find that the dynamical behaviour is similar to what we ob-
serve in collisions between drops. One main difference is that in a drop–drop collision,
the whole drop surface deforms: the elastic spheres undergo localized deformation in
the region of close contact only.

We considered Stokes numbers of up to 200 in this analysis. Our results indicate
that both H∗∗min and H∗min vary extremely slowly with the Stokes number in the limit
St→ ∞. In fact, the results plotted in figure 15 indicate that H∗∗min scales as χa where
the exponent a is about −0.5 when χ ∼ 20–30. The Stokes number dependence of the
primary minimum exhibits an even weaker dependence on the Stokes number.

The collision orientation we studied was axisymmetric about the line joining the
centroids of the drops. Since the gas film exerts only resisting forces and no inter-
particle attractive forces are present, we do not expect to have unbounded growth
of randomly induced surface oscillations. Based on the physics of the problem, it is
reasonable to expect that the gas film will be stable to random perturbations – axial
and transverse.

As mentioned before, collisions occurring in a continuum incompressible gas cannot
end in contact due to the nature of the resisting lubrication force. Two physically
relevant mechanisms causing lubrication breakdown are compressibility of the gas
and/or non-continuum effects. Compressibility effects will become important when
the pressure drop along the gap becomes comparable to the outside ambient pressure.
Consider the case of a collision between two identical rigid spheres moving towards
each other with equal speeds. Using the scaling of the pressure for incompressible
lubrication flow, p′ = O(µgU

′
ca/h

′2), h′ being the minimum gap thickness, we can
obtain an estimate of the relevant length, hc, at which compressibility effects become
important. This is given by h′c ≡ (2µgU

′
ca/p

′∞)1/2 where p′∞ is the ambient pressure.
When the particle separation is comparable to or smaller than h′c the relative motion
of the surfaces will cause the gas to compress rather than flow out (Gopinath et al.
1997). Alternatively, when the gap between the particles becomes comparable to the
mean free path of the molecules, λo, the description of the gas as a continuum breaks
down and non-continuum effects have to be taken into account. For example, the
mean free path of air molecules is approximately 0.05µm and colliding drops would
approach to distances smaller than this value. The Navier–Stokes equation is then
inadequate to represent the gas flow. We have to use the Boltzmann equation which
governs the evolution of the probability density of the gas. If the colliding drops have
infinite surface tension (rigid spheres) lubrication breakdown will allow contact to
occur in finite time provided the drops have sufficient energy as shown in studies by
(Sundararajakumar & Koch 1996; Gopinath et al. 1997). When drop deformation is



Collision and rebound of small droplets in a gas 195

taken into consideration we see clearly that the collision outcome is determined by
the relative importance of two competing effects – drop deformation which tends to
store energy and cause rebound, and lubrication breakdown mechanisms that allow
for contact to occur. In a subsequent publication, we will explore these in detail using
a formulation similar to that presented in this paper.

This work was supported by the US Environmental Protection Agency under grant
number R827115. The authors would like to thank Dr Alexander Zinchenko for help
with his thin film code and also for very useful and interesting discussions.

Appendix A. Scaling arguments used in the derivation of governing
equations

A.1. Validation of basis function expansion

Examination of the linear operator Υo shows that if H = Hsol is a solution to the
operator equation ΥoH = ψ(η, t) then so is H =Hsol + γ1(t)η + γ2(t)F(− 1

2
, 1, 1

2
, η2),

γ1(t) and γ2(t) being appropriately chosen functions of time. Here F(− 1
2
, 1, 1

2
, η2) is a

generalized hypergeometric function and is logarithmically singular at η = ±1. We
note now that since there are no sinks or sources of mass or momentum in the drop,
the velocity potential φ has to be bounded at all points in the drop interior. The
kinematic interface condition combined with the Laplace equation for the velocity
potential suggests that the rate at which deformation occurs should also be bounded
at points on the drop surface. At the point diametrically opposite to the point of
close contact, i.e. at η = −1, the drop deformation should be small and bounded.
Since we have specified that the interface be flat over the region θ = 0 to θ = α,
the matching is actually carried out at the edge of the dimple, namely, at η = cos α
where F(− 1

2
, 1, 1

2
, η2) is bounded. In addition, at the start of the collision process,

i.e. at t = 0, the dimple extent is zero and so the drops are exactly spherical correct
to O(We

1/2
d ). These conditions, together with the criterion that the velocity potential

should be bounded, allow us to writeH as a linear superposition of a set of complete
and bounded basis functions. The regular parts of the homogeneous solutions can
then be rewritten in terms of these basis functions too.

A.2. Outer trajectory scaling

The outer trajectory calculations are started when the drops are separated by a
distance equal to O(a) and are undeformed. At inter-drop distances of O(a), the gas
flow around the drops is governed by the Stokes equations provided St < O(ρd/ρg).
As the drops converge, the dynamic pressure that is created in the gas scales roughly
as O(µgU

′
c/a). For St � 1, the centre of mass speeds do not change much in the

time it takes for the separation to reduce to a value that marks the beginning of
the lubrication regime. The centre of mass velocity of the drops relaxes on a viscous
timescale τv ∼ 2ρda

2(9µg)
−1. The characteristic magnitude of the deformation induced

velocities is uf � U ′c and this velocity evolves over a time scale τc ∼ O(a/U ′c) � τv .
Because the governing equations for Stokes flow are quasi-steady and linear, the
pressure and the velocity fields set up in the gas at any given time are completely
determined by instantaneous velocities and position of the interfaces. To leading
order, the deformation of the surface is small compared to the radius a and may be
neglected. Similarly, the velocity of each drop–gas interface is approximately equal to
the velocity of the centroid of the corresponding drop. The deformation in the outer
trajectory becomes important only for moderately small or O(1) values of Ca

1/2
g ;
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in these cases, we can neglect any induced tangential velocity of the surfaces. The
pressure and velocity fields in the gas can be obtained by solving for the flow around
two rigid spheres moving towards each other with specified velocities. These velocities
are in turn determined by the overall hydrodynamic force acting on the drops.

We write the drop velocity as u′d(r′, t′) = u′cm(t′) + u′f(r′, t′) where u′cm(t′) ∼ O(U ′c)
and u′f � u′cm(t′). The part u′f(r′, t′) is the deformation induced velocity and is small
compared to the centre of mass velocity. Then,

ρd
∂u′cm
∂t′
∼ O

(
ρd
U ′c
τv

)
, ρd

∂u′f
∂t′
∼ O

(
ρd
U ′c
τv

τv

τc

uf

U ′c

)
, ρdu

′
cm · ∇′u′f ∼ O

(
ρd
U ′c
τv

τv

τc

uf

U ′c

)

ρdu
′
f · ∇′u′f ∼ O

(
ρd
U ′c
τv

τv

τc

(
uf

U ′c

)2
)
, µd∆

′u′f ∼ O
(
ρd
U ′c
τv

τv

τc

uf

U ′c
Re−1

d

)
.

When Red � 1, the viscous term can be neglected in comparison to other terms. The
Stokes number, St ∼ τc/τv > 1. For Red � 1 and St � 1, the flow induced in the
drop due to deformation and surface stress is less than the centre of mass speed,
namely, uf/U

′
c � 1, the nonlinear quadratic inertial term u′f · ∇′u′f may be neglected.

For Stokes numbers 1� St� Ca−1
g , the capillary pressure balances the external gas

pressure O(µgU
′
c/a); thus, the deformation is O(aCag) and uf ∼ O(U ′cCag)� U ′c. For

the dynamic drop pressure to be of the same order as this gas pressure, we require
that p′d = p′o +2σ/a+O(aρdU

′
cτ
−1
v ) and the governing equation then attains the simple

form:

ρd
∂u′cm
∂t′

+ ∇′p′d = 0.

This equation applies even for moderately large or O(1) drop Reynolds numbers.
When St ∼ O(1) and for moderately small capillary numbers say, Cag ∼ O(0.1), we
expect that the induced flow occurring inside the drop should be included in our
analysis. Scaling time with tc and the dynamic pressure with µgU

′
c/a we obtain:

Wed

Cag

(
ducm
dt

)
+Wed

[
∂uf
∂t

+ ucm · ∇uf
]

= −∇Pd.

Here, we have assumed (subject to verification) that uf = U ′cCag . Note that the net
force on each drop scales like O(µgU

′
ca). The first term on the left-hand side is actually

O(1) whereas the other terms on the left-hand side are O(Wed) < 1. Thus, as long
as St > O(1) and Wed < 1, the main contribution to the pressure gradient in the
drop comes from the net force acting on the drop and we need not consider the flow
inside the drop to calculate the deformation to leading order – just the net force acting
on the drop due to the gas outside will suffice. The correction to the leading-order
O(1) term becomes increasingly important and uf becomes of the order of U ′c. As a
check of consistency, we note that for Wed 6 1, the deformation is O(aCag) and the
characteristic velocity is indeed O(U ′cCag) as is assumed in the scaling.

A.3. Alternative derivation of outer equations

In deriving equation (3.23) we have neglected higher-order terms that vanish as
Cag → 0. An additional condition that results is that r2(Cag/Wed)

1/2 � 1 +
ln[r2(Cag/Wed)

1/2]/2. A physical interpretation of this criterion is that the defor-
mation at the outer edge of the lubrication layer and in the matching region, should
be small compared to the undeformed radius. We may also derive equation (3.23) in
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a manner comparable to the analysis in § 2. We consider a mean constant pressure of
value equal to 4

3
ρdU

2
cWe

−1/2
d (sin α)−2dW/dt acting over a flat region of radial extent

(a sin α). Using this step function form for the pressure profile in (3.22), we can write
down the rate at which the velocity in the drop changes. In the limit α → 0, we
find, as expected, that only the net force acting in the inner region determines the
deformation in the outer region and details of the deformation in the inner region
are not important.

Appendix B. Numerical methodology
B.1. Numerical scheme and discretization

The first order, implicit (backward) Euler scheme for the time derivative and central
differences for the radial derivative were used to solve the equations. The implicit
time-stepping scheme renders the numerical computation stable whereas the central
differencing adopted allows for second-order accuracy in space.

First, we discretize the equations at points ri; i = 1, 2, . . . , N + 1 where rN+1 is the
last grid point selected such that the asymptotic form for the deformation is satisfied.
Then, given the gap profile Hn, pressure png , force Fn, velocity Wn and hn at the nth
time level, the equation for the flux, namely (3.5), was made semi-implicit and linear
in Hn+1 and pn+1

g thus:

1

r

∂

∂r

[
r(H3)n

(
∂pg

∂r

)n+1
]

= 24Qn+1 = 24
1

χ

(Yn+1 −Yn

dt

)
, (B 1)

where

Yn+1 = hn+1 + χDn+1 = hn+1 +

(
Wed

Cag

)1/2

Dn+1, (B 2)

Qn+1 = Wn+1 +

(
dD

dt

)n+1

=
1

χ

(
dY
dt

)n+1

, (B 3)

so that

Hn+1 = 2Yn+1 + r2. (B 4)

The time rates of change of h and W are given by:(
dh

dt

)n+1

=
hn+1 − hn

dt
= χWn+1 (B 5)

and (
dW

dt

)n+1

=
3

2χ

∫ r∞

0

pn+1
g r dr =

Wn+1 −Wn

dt
. (B 6)

We have set the pressure at infinity, p∞, to be zero for convenience and we also
take the limit r∞ → ∞ when evaluating the force. The Young–Laplace equation is
evaluated thus:

1

r

∂

∂r

(
r
∂Y
∂r

)n+1

= −pn+1
g . (B 7)

This procedure parallels that used in the paper by Rother et al. (1997) and is similar
to the linearization process advocated by Lees (1966). In addition, the equations for



198 A. Gopinath and D. L. Koch

Lk and Bk are differenced as (for k > 2)(
dLk

dt

)n+1

=
Ln+1

k −Ln
k

dt
= kBn+1

k , (B 8)

(
dBk
dt

)n+1

=
Bn+1
k − Bnk

dt
= −(k2 + k − 2)Ln+1

k − 2k + 1

3

(
dW

dt

)n+1

. (B 9)

The boundary conditions on the variables pg and Y are given by:

pn+1
g (rN+1) =

−3

r4
N+1

Qn+1(rN+1) (B 10)

and

Yn+1(rN+1) = hn+1 + χDn+1(rN+1), (B 11)

where

Dn+1(rN+1) = −2

3

(
dW

dt

)n+1

ln(rN+1) + fn+1(t), (B 12)

and the constant fn+1 is evaluated using (3.27) and (3.28). Now integrating (B 1) twice
over r, using the symmetry condition at r = 0 and equation (B 10), changing the order
of integration and finally discretizing using the trapezoidal rule we obtain a matrix
equation relating pn+1

g to Qn+1 of the form pn+1
g = E ·Qn+1. Similarly, integrating (B 7)

twice over r, imposing the symmetry condition at the origin and using the matrix form
for the pressure we obtain an equation for Y n+1 in terms of Yn+1(r = 0, t) and pn+1

g .
Here, the elements of pn+1

g , Qn+1 and Y n+1 are values of pg , Q and Y at grid points
ri, i = 1, 2, . . . , N + 1 where the last grid point is rN+1. Using these matrix equations,
we finally obtain a matrix equation for Qn+1:

S ·Qn+1 = −Y n +Yn+1(r = 0, t)1, (B 13)

where S is obtained by substituting the matrix form of (B 1) into the matrix form of
(B 7). Note that Yn+1(r = 0, t) is as yet unknown. The solution to (B 13) is written as
Qn+1 = Qn+1

1 +Yn+1(r = 0, t)Qn+1
2 where

S ·Qn+1
1 = −Y n, S ·Qn+1

2 = 1. (B 14)

These equations may then be used to obtain an algebraic equation for the unknown
gap width Yn+1(r = 0, t). This, when known, can be substituted back to find Qn+1 and
hence Yn+1, pn+1

g ,Wn+1, Fn+1, hn+1 and Hn+1. It should be pointed out that the direct
semi-implicit scheme has some similarities to the three-level scheme proposed by Lees
(1966) to solve quasi-linear parabolic equations. The algorithm proposed by Rother
et al. achieves linearization of the governing equations in a similar manner; however,
because backward (implicit) Euler differencing is used for the time derivatives and
central differences for the space derivatives, the complicated boundary condition on
the gap thickness at large r can be implemented easily.

The accuracy of the numerical method was checked by comparing the solutions
obtained at different values of ∆t and ∆r. Varying ∆t allows us to test the temporal
accuracy of the solutions while varying ∆r allows us to probe the effect of grid
resolution. In our calculations, the last grid point was chosen such that the asymptotic
expression for the deformation was readily satisfied. We used a mesh with a fixed
number of grid points but varying grid size in order to make sure that deformation
and pressure gradients were resolved accurately. The mesh contracted as the drops
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came closer to one another and expanded as the drops receded from each other. The
mesh size was made constant as soon as the dimple formed and remained constant
until the dimple vanished. Most calculations were carried out with 251 grid points.
Calculations with 151–601 grid points showed nearly identical results with variations
in rebound times and minimum gap thickness of less than 2%. The cutoff value for
the last grid point was calculated as rsc[Hmin(t)/2]1/2 where rsc is a scaling coefficient.
Most calculations used rsc = 20 so that the last point was sufficiently larger than the
maximum dimple width. Values of rsc in the range 10–30 resulted in the same values
of all dynamical quantities. We note that the pressure decays very rapidly beyond the
dimple and hence the cutoff radius does not have to be much larger than the dimple
extent. Typical values of the time increment ∆t used ranged from 10−1/5–10−2/5.
In all cases, we made sure that converged results were obtained. A small time step
was used in the tail formation and retraction step so that the fast dynamics of tail
retraction could be adequately captured. Finally, the cutoff number for the outer
modes we used were Nc = 3–4 for χ ∼ O(1) and Nc = 5–7 for χ� 1.

B.2. Validation of numerical code: application to collision of a deformable drop with a
rigid wall owing to the action of a constant force

In order to validate the numerical code and test its accuracy and convergence
properties, we analysed the buoyancy driven collision of a deformable drop with a
rigid flat wall in the presence of a gas. This corresponds to zero Stokes number (no
drop inertia) and a constant body force. Numerical results for the film thickness and
pressure profiles obtained from our code were compared with those obtained by a
completely different method by Yiantsios & Davis (1990). The equations we solve (in
dimensionless form) are:

1

r∗
∂

∂r∗

[
r∗H∗3

(
∂p∗

∂r∗

)]
=
∂Y ∗

∂t∗
(B 15)

1

r∗
∂

∂r∗

(
r∗
∂Y ∗

∂r∗

)
= −p∗ (B 16)

and
2

3
=

∫ ∞
0

p∗r∗dr∗, (B 17)

with

H∗ = Y ∗ + 1
3
r∗2. (B 18)

Here, p∗ is the scaled gas pressure and H∗ is the scaled gap thickness. Flow of the
liquid inside the drop may be neglected in this case. In this case too, we find that for
large r∗, the deformation diverges as ln r∗ and the O(1) constant required to determine
the deformation far from the lubrication region is obtained from equation (B 17).

In accordance with the initial conditions used by Yiantsios & Davis, we started our
calculations with Y ∗ = 20 and traced the trajectory of the drop over several decades
in time. We used a contracting mesh with 200 grid points and a dimensionless step size
dt∗ = 10−1. The results using a step size dt∗ = 10−2 and 400 grid points do not change
the solution values significantly. Our results for the deformation and pressure profiles
at various instants in time compared extremely well with the graphs in Yiantsios &
Davis. Figure 19(a) illustrates the validity and accuracy of our calculations compared
to Yiantsios & Davis. The two solid lines show the variation of the scaled centreline
gap separation, H∗(r∗ = 0, t∗), and the minimum gap thickness, H∗min(t∗), respectively.
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Figure 19. (a) Temporal evolution of the minimum gap width and the centreline gap width for zero
inertia drops colliding due to the action of a constant force (b) Profiles of the pressure in the gas
film at various instants in time illustrating dimple evolution. Note the steepening of the pressure
profile leading to a sharper pressure gradient at the rim as time increases.

The line with short dashes is a regular perturbation, asymptotic solution valid for small
deformations (small times) and the line with long dashes is the long-time asymptotic
solution for the minimum gap thickness, H∗min, representing the quasi-steady approach
of the drop interfaces. This long-time asymptote is given by,

H∗min(t
∗) ∼ 0.4897 . . . ( 3

16
)1/2t∗−1/2.

The solid circles and the crosses are numerical results obtained by Yiantsios &
Davis using an iterative nonlinear solver. These values were obtained from a visual
examination of the graphs in their paper. Note that at short times, a dimple is not
formed and so the minimum gap thickness occurs at r∗ = 0. However, at t∗ ≈ 10.0,
a dimple forms and the minimum gap width occurs not at r∗ = 0, but at the rim of
the dimple. Figure 19(b) shows the pressure profiles in the gap when H∗min = 1.0, 0.10
and 0.05. These pressure profiles match those in Yiantsios & Davis. As the drops
come closer, the dimple radius keeps increasing with time and the pressure in the
dimple also increases. The pressure gradient at the rim of the dimple becomes larger
at the same time. For very large times, the nearly constant pressure in the dimple and
the radial extent of the dimple region may be obtained by balancing the lubrication
force with the external driving force causing the collision. Calculations indicate that
for the initial conditions we adopted, the dimple reaches slightly more than 93% of
its maximum extent by a dimensionless time t∗ ≈ 75, a value that agrees with that
reported by Yiantsios & Davis. In fact, all our numerical results for the pressure and
deformation profiles and the temporal evolution of the dimple radius also match very
well with the results of Yiantsios & Davis.
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