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Abstract: When placed upside down a liquid surface is known to destabilize above a certain 

size. However, vertical shaking can have a dynamical stabilizing effect. These oscillations can 

also make air bubbles sink in the liquid when created below a given depth. Here, we use these 

effects to levitate large volumes of liquid above an air layer. The loaded air layer acts as a 

spring-mass oscillator which resonantly amplifies the shaking amplitude of the bath. We 

achieve stabilization of half a liter of liquid with up to 20 cm width. We further show that the 

dynamic stabilization creates a symmetric Archimedes’ principle on the lower interface as if 

gravity was inverted. Hence, immersed bodies can float upside down under the levitated liquid. 
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Maintaining a liquid upside-down is challenging as it inevitably tends to fall or trickle. 

However, various situations for which the liquid can be sustained are known. In the case of a 

limited surface size, capillary forces have a stabilizing effect (1–3). Alternatively, for large but 

thin liquid layers suspended under a plate, the wetting counterbalances the gravity (4, 5). In the 

latter case, the liquid interface does not stay flat but is destabilized in a regular pattern of 

hanging droplets. This instability driven by gravity is known as the Rayleigh-Taylor instability 

(6, 7). It occurs at the interface between two fluids whenever a denser one is placed over a 

lighter one. Several approaches have been used to stabilize the liquid layer such as temperature 

gradients (8), electric (9) or magnetic fields (10), rotational motion (11) and vertical vibrations 

(12–14). In the latter case, the amplitude of the vibration needs to be increased with the surface 

size. The maximum amplitude is set by the triggering of another instability called the Faraday 

instability which tends to destabilize fluid surfaces above a certain acceleration threshold (15, 

16). However, this threshold can be raised by increasing the fluid viscosity (17). Hence, the 

upside-down liquid volume can be large provided the viscosity is properly chosen.  

The vertical vibration of a fluid induces also other unexpected behavior when air bubbles are 

introduced in the fluid. Below a certain depth in the liquid, the bubbles are observed to sink 

defying the well-known Archimedes’ principle (18–20). This effect has been studied for 

industrial applications in gas holdup and mixing in bubble column reactors (21).  

Here, we study the effect of vibrations on the buoyancy of bodies immersed in levitating liquid 

layers. We first show that arbitrary large volume of liquids with surfaces larger than 10x10 cm2 

and half liter volume can be sustained on an air layer. The latter is produced by injecting more 

air into sinking bubbles to entirely fill the container surface. We then demonstrate that the 

vibrations endow the liquid with an upside-down buoyant (or Archimedes) force which allows 

objects to float under the liquid layer. 



 

Figure 1: Sinking bubbles in a shaken liquid bath. (A) Experimental setup composed 

of a Plexiglas container of various sizes (up to 20 cm in width) attached on a vertically 

oscillating shaker with amplitude 𝐴 and frequency 𝜔/2𝜋. The liquid is either glycerol or 

silicon oil with high viscosity (typically 0.5 Pa.s). The bubbles are created by injecting 

air with a syringe through a long needle immersed at depth 𝑑 into the liquid. (B) 

Evolution of the critical sinking depth 𝑑∗ as a function of the shaking amplitude 𝐴. Data 

are fitted by an invert quadratic scaling 𝑐/𝐴2 with 𝑐 = 5.5 mm3. (C) Schematics and 

image sequence of an ascending and descending bubble produced respectively above and 

below the critical sinking depth 𝑑∗ (see Supplementary Movie S1). 

A Plexiglas tank fixed on a shaker is vibrated vertically at frequency 𝜔/2𝜋 with an amplitude 

𝐴 (Fig. 1A). The tank is filled with silicon oil or glycerol with high viscosity (typically ranging 

from 0.2 Pa.s to 1 Pa.s) to increase Faraday instability threshold (13). Air bubbles are created 

at various depths d using a long needle connected to a syringe. Bubbles are observed to sink 

when placed below a critical depth 𝑑∗, while they reach the upper surface if created above 𝑑∗ 



(see snapshots Fig. 1C and Supplementary Movie S1). This behavior which defies standard 

buoyancy can be understood by a simple model taking into account the kinetic force exerted 

on the bubble in the oscillating bath (18, 20). In a still bath, the buoyant force results from the 

difference in pressure between the top and bottom of the bubbles. This creates a constant 

upward force given by 𝐹 = 𝜌l𝑉𝑔 with 𝑔 the gravity acceleration, 𝑉 the volume of the body and 

𝜌l the density of the fluid. In the oscillating bath, the effective gravity is modulated following 

𝑔eff(𝑡) = 𝑔 + 𝛾exc(𝑡) with 𝛾exc
(𝑡) = −𝐴𝜔2 cos(𝜔𝑡) the bath acceleration. In addition, in the 

case of an air bubble at depth 𝑑, the pressure modulation induces a volume modulation 𝑉(𝑡) 

which can be considered isothermal and quasi-static for the low frequencies used (typically 

100 Hz). The volume oscillations satisfy 𝑉(𝑡) = 𝑉0𝑃0/𝑃(𝑡) with 𝑃(𝑡) the gas pressure 

satisfying 𝑃(𝑡) = 𝑃atm + 𝜌l𝑔eff(𝑡)ℎ with 𝑃atm being the atmospheric pressure and the index 0 

standing for the values at rest. When one averages the force 𝐹 = 𝜌l𝑉(𝑡)𝑔eff(𝑡)  over one 

oscillation period, an additional sinking force, (also called the Bjerknes force (22)) arises. 

Below a critical depth 𝑑th
∗ ≈ 2𝑔𝑃0/(𝜌l𝐴

2𝜔4) corresponding to the equilibrium, the bubbles 

sink (18–20). Figure 1B shows 𝑑∗ as a function of the shaking amplitude 𝐴 in good agreement 

with an adjusted inverted quadratic scaling 1/𝐴2. The very existence of such a depth results 

from the 𝜋-shift between the volume oscillations and the effective gravity ones.  



 

Figure 2: Levitating liquid layer stabilized by Kapitza effect. (A) Image sequence of 

the creation of the air layer obtained by blowing air at the bottom of the oscillating liquid 

bath through a needle. The sinking bubble grows until it completely fills the bottom of 

the bath (see Supplementary Movie S2). (B) Schematics of the spring-mass systems 

composed of the air layer loaded with the levitating liquid. (C) Enhancement of the liquid 

layer vertical amplitude 𝐴l/𝐴  and (D) relative phase shift 𝜙l − 𝜙 of the liquid 

oscillations compared with that of the shaker as a function of the excitation frequency 

𝜔/2𝜋. Inset: image of Faraday instability triggered on the two opposite surfaces of the 

levitating liquid layer of silicon oil (see Supplement Movie S3). The experimental data 

(full circles) are fitted with the mass-spring model with fitting parameters 𝜔/2𝜋 = 103 

Hz and 𝛤 = 0.04 (dashed line, see Supplementary Text for details). (E) Colorized three-

quarter views of the oscillating containers with one and two levitating liquid layers of 



silicon oil (see Supplementary Movies S4). (F) Threshold excitation velocity 𝐴l𝜔 for 

Kapitza stabilization of the liquid layer as a function of the length 𝐿 of the container: 

experimental data (circles) and model 𝐴l𝜔 = √𝑔𝐿/𝜋 (dashed line). Side views of the 

levitating bath in a 2 cm and 18 cm wide container are presented below (see 

Supplementary Movie S5).  

The bubbles can be expanded by injecting air to completely fill the surface of the container, 

creating an air layer trapped below a levitating liquid layer (see the time sequence of Fig. 2A 

and Supplementary Movie S2) (18). The lower interface is stabilized by the vertical shaking 

preventing the release of the trapped air layer. This air layer is acting as a vertical spring loaded 

with the liquid mass placed upon it and driven by the shaker (Fig. 2B). It can be modeled as a 

driven damped harmonic oscillator 𝑧̈ + 2𝛤𝜔res𝑧̇ + 𝜔res
2 𝑧 = 𝐴𝜔2cos(𝜔𝑡) with 𝜔res the 

resonance frequency of the air layer and 𝛤 the damping ratio due to the shearing induced by 

the relative motion between the levitating liquid layer and the bath walls (see Supplementary 

Text). In the laboratory frame, the normalized oscillation amplitude 𝐴l(𝜔)/𝐴 and its associated 

relative phase 𝜙l
(𝜔) − 𝜙 compared to the shaker clearly show the expected resonance behavior 

(Fig 2C and 2D). The air layer thus enables the enhancement of the excitation amplitude of the 

shaker by more than one order of magnitude. Near the resonance, the amplitude is high enough 

to excite the Faraday instability on both sides of the fluid layer (see inset Fig. 2C and 

Supplementary Movie S3). This resulting “rain” emitted from the lower interface induces a 

thinning of the fluid layer which can be avoided by simply reducing the excitation amplitude. 

Provided the spring-mass oscillation is properly tuned, there is no restriction in the number of 

sustained levitating layers which can be piled up (see Fig. 2E and Supplementary Movie S4). 

The vertical vibrations have a stabilizing effect on the lower fluid interface. This can be 

interpreted as a Kapitza effect which consists of a dynamical stabilization of an inverted 

pendulum by vertical shaking (23, 24). Solving the Bernoulli equation for the fluid shows that 

the interface height 𝜁(𝑘) at the spatial wavenumber 𝑘 behaves as an inverted pendulum. The 

spatial mode satisfies 𝜁̈ + [𝜔0(𝑘)2 +
𝐴𝑙

2𝑘2

2
𝜔2] 𝜁 = 0 with 𝜔0(𝑘)2 = −𝑔𝑘 +  (𝛾𝑘3)/𝜌l is the 

gravito-capillary dispersion relation with inverted gravity. Without vibrations, the oscillator is 

unstable for small enough 𝑘 (𝜔0(𝑘)2 < 0) leading to the Rayleigh-Taylor instability while 

large wave numbers are stabilized by capillarity. The last term in the equation arises from the 

modulation of the effective gravity. In gravitational regime, the stabilization is reached for 

wavenumbers satisfying 𝑘 > 2𝑔/𝐴l
2𝜔2 (see Supplementary Text). The limited size 𝐿 for the 



bath sets a limit to the observed excitable wavenumber 𝑘 > 2𝜋/𝐿 (only anti-symmetric modes 

satisfying volume conservation are considered). The stability if the interface stability is thus 

obtained for oscillating velocities 𝐴𝑙𝜔 > √𝑔𝐿/𝜋. Although there seems to be no size limit for 

stabilization, viscosity must always be high enough to prevent the Faraday instability to occur 

(see inset Fig. 2C). Figure 2E shows the oscillating velocity 𝐴l𝜔 needed to stabilize baths with 

lengths 𝐿 up to 18 cm (insets show views of levitating layers for 𝐿 = 2 cm and 𝐿 = 18 cm, see 

Supplementary Movie S5). 

 

 

Figure 3: Archimedes’ principle over and under a levitating liquid layer. (A) 

Schematics of the force balance at the two opposed interfaces with buoyant force 

cancelling the weight of immersed bodies. (B) Typical profile of the static potential along 

the vertical direction 𝑧 neglecting the dynamical effects. Two equilibrium positions 

appear at each interface, the lower one being unstable. Insets: close up of the potential 

near the equilibrium positions with the addition of the dynamical stabilizing effect (red 



line, see Supplementary Text). (C) Side views of 2 cm diameter plastic spheres floating 

upwards and downwards with lower (left) and higher density (right). (D) Equilibrium 

positions for 2 cm diameter spheres with various masses as a function of the immersed 

volume at the upper (squares) and lower interface (diamonds). Circles are equilibrium 

positions obtained without shaking. The dashed line is given by the Archimedes’ 

principle with 𝜌l = 1.1 kg/L for glycerol. (F) Boats floating over and under a levitated 

liquid layer (see Supplementary Movie S6). 

We now focus on the possibility of having objects floating at the inverted interface of the 

levitating fluid layer, i.e. upside-down floating. Archimedes’ principle states that the upward 

buoyant force exerted on an immersed body, whether fully or partially submerged, is equal to 

the weight of the displaced fluid. Although this may seem counterintuitive, the transpose 

symmetric position at the lower interface (see Fig 3A) also exhibits an upward buoyant force 

equal to the weight of displaced liquid. Figure 3B shows the typical potential exerted on a 

floating body without taking into account the dynamic effects (see supplementary materials for 

details). The two equilibrium positions associated with each interface are clearly visible. 

However, while the upper position is stable, the lower is not: pushing the body down would 

make it fall and up would make it float on the upright interface. Taking into account the 

dynamical effect, i.e. the time averaged effect of the oscillations, provides an additional 

stabilizing dynamical potential around the two equilibrium positions (see inset Fig. 3B and 

Supplementary Text). This leads to an extra stabilization of the upper equilibrium position and 

more spectacularly to the stabilization of the lower one provided high enough accelerations. It 

is thus possible to have floating bodies with varying density above and under the levitating 

liquid layers (see Figure 3C). The equilibrium positions satisfy the standard Archimedes’ 

principle on both interfaces, with symmetric equilibrium positions (Fig. 3D). Hence the 

vibration not only gives stability of the lower horizontal interface of a liquid but also permits a 

vertical stabilization of the unstable equilibrium position that a floater would experience on 

such interface. This dynamical “anti-gravity” enables boats to float on both interfaces (Fig. E, 

see Supplementary Movie S6) and even to sink upwards. 
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Supplementary Text 

 

Spring-mass model for the levitating liquid layer 

 

We consider a liquid layer maintained above a layer of air by shaking vertically. In the 

laboratory frame, the position of the bottom interface of the air layer moves with the container 

and satisfies 𝑧b(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙) with 𝐴, 𝜔 and 𝜙 being the amplitude, the angular 

frequency and the phase of the forcing. The position of the upper interface of the air layer is 

given by 𝑧l(t). The height of the air layer is thus given by 𝑧a(𝑡) = 𝑧l(𝑡) − 𝑧b(𝑡). This 

corresponds also to the relative motion of the upper interface, and thus of the levitating liquid 

layer relative to the container (see Figure S1).  

 

 
 

Fig. S1. Sketch of a levitating liquid layer with notations 

 

The air layer is considered as a perfect gas and its pressure 𝑃(𝑡) and volume 𝑉(𝑡) are assumed 

to verify: 

 

𝑃(𝑡)𝑉(𝑡)𝛽 = 𝑃0𝑉0
𝛽          (1) 

   

with 𝛽 being the polytropic index, 𝑃0 and 𝑉0 the static pressure and volume respectively. In 

addition, 𝑃0 = 𝑃atm + 𝑚𝑔/𝑆, 𝑚 being the mass of the levitating liquid layer and 𝑉0 = 𝑆ℎ0, ℎ0 

being the height of the air layer at rest. Depending on the transformation the value of 𝛽 can 

vary: 𝛽 = 1 for an isothermal process while 𝛽 is equal to the heat capacity ratio for an adiabatic 

one. 

 

For small oscillations observed experimentally around the mean height ℎ0, we can perform a 

Taylor expansion of eq. (1) and get the pressure in the gas as 

 

𝑃(𝑡) ≈  𝑃0(1 − 𝛽𝑧(𝑡)/ℎ0)         (2) 

 

With 𝑧(𝑡) = 𝑧a(𝑡) − ℎ0 ≪ ℎ0 for small oscillations. Writing the Newton’s law for the liquid 

layer, we obtain 

 

𝑚𝑧l̈ = −𝑚𝑔 − 𝑆𝑃𝑎𝑡𝑚 + 𝑆𝑃0(1 −
𝛽𝑧

ℎ0
) − 𝑐𝑧̇       (3)

  



 

with 𝑐 coming from damping. 

 

On the right hand side of the equation, the first term is the weight of the liquid layer, the second 

term results from the air pressure on both sides of the liquid layer and the third term is damping 

due to the relative motion between the container and the liquid.  

 

This can be rewritten as a damped harmonic oscillator with a sinusoidal forcing (as in the 

paper)  

 

𝑧̈ + 2𝛤𝜔res𝑧̇ + 𝜔res
2 𝑧 = −𝑧̈𝑏         (5) 

 

with the resonant frequency satisfying 𝜔res
2 = 𝛽𝑃0𝑆/𝑚ℎ0 and the damping ratio 𝛤 =

c

2𝑚𝜔res
 

Hence the motion of the liquid in the laboratory frame writes 𝑧l(𝑡) = 𝐴lcos (𝜔𝑡 + 𝜙l).  

 

We finally have, with 𝜔̂ = 𝜔/𝜔res, for the relative amplitude  

 

𝐴l

𝐴
= √

1+4𝛤2𝜔̂2

(1−𝜔̂2)2+4𝛤2𝜔̂2          (6) 

 

and for the relative phase 

 

𝜙𝑙 − 𝜙 = atan 2𝛤𝜔̂ − atan
2𝛤𝜔̂

1−𝜔̂2        (7) 

 

These expressions were used to produce the fits in Figure 2C and 2D respectively. We obtain 

for the damping ratio Γ ≈ 0.04 and for 𝜔res/2𝜋 ≈ 103 Hz. The experimental conditions gives 

ℎ0 ≈ 1.5 cm and the liquid layer height ℎl ≈ 2.5 cm. Using these values and the glycerol 

density 𝜌 = 1.1 kg/L, we can estimate 𝛽 ≈ 1.7. This value is slightly higher than expected, 

one would rather expect a value in the range 1 ≤ 𝛽 ≤ 1.4  between an isothermal 

transformation to an adiabatic one. 

 

 

Stabilization of an inverted liquid/air interface by vertical oscillations 

 

We focus our attention on the evolution of small perturbations at the interface of two 

incompressible and immiscible fluids. 𝜌up and 𝜌down are the densities of the upper and lower 

fluids respectively. The interface is placed at 𝑧 = 0 and the perturbations at position 𝒓 and time 

𝑡 in the horizontal plane are 𝜁(𝒓,t). 

It is convenient to study the interface deformations in the spatial Fourier space, 𝜁(𝒌) is the 

deformation at the spatial frequency 𝑘 = |𝒌| and in the direction 𝒌. 

Assuming the fluid velocities at the interface are small, it is possible to linearize Bernoulli’s 

equations and show that each interface deformation 𝜁(𝒌) behaves as a harmonic oscillator (24)  

𝜁̈(𝒌) + 𝜔0(𝑘)2𝜁(𝒌) = 0          (8) 

 



with the angular frequency 𝜔0(𝑘) satisfying the dispersion relation 𝜔0(𝑘)2 = −𝐴𝑔𝑘 +

𝛾𝑘3/(𝜌up + 𝜌down), 𝑔 the gravitational acceleration, 𝛾 the surface tension and 𝐴 = (𝜌up −

𝜌down)/(𝜌up + 𝜌down) is the Atwood number.  

We now consider the standard configuration with a liquid of density 𝜌l and the air interface 

above. Neglecting the density of air, 𝜔0(𝑘)2 = 𝑔𝑘 + 𝛾𝑘3/𝜌l which is the standard gravity-

capillary dispersion relation. In this case, both gravity effects and capillary ones are positive 

and thus stabilize the interface resulting in the propagation of waves along the interface. 

We now assume that the liquid stands above the air i.e. we turn the previous interface upside 

down. In this case the dispersion relation writes: 𝜔0(𝑘)2 = −𝑔𝑘 + 𝛾𝑘3/𝜌l. The effect of the 

gravity on the interface is reversed while capillarity is not affected. The gravity term is negative 

inducing a destabilization of the interface. 

For small wave vectors for which gravity effects dominate, 𝜔0(𝑘)2 < 0 so that a perturbation 

of the interface will exponentially increase in time and the liquid will eventually fall down. We 

recover here the well-known Rayleigh-Taylor instability that occurs when a heavier fluid is set 

above a lighter one. The most unstable mode occurs for the minimum (negative) value of 

𝜔0(𝑘)2 which is associated to the wavenumber 𝑘 = √𝜌𝑔/2𝛾. For large wave vectors, 

capillarity dominates and it has a stabilizing effect.  

We are now focusing on dynamical stabilization induced by vertical vibrations of the fluid. 

We assume that the liquid is submitted to a vertical oscillation 𝐴lcos (𝜔𝑡). The acceleration of 

the liquid is then −𝐴l𝜔
2 cos(𝜔𝑡). The acceleration of the liquid can be interpreted as a 

modulation of the effective gravity 𝑔eff(𝑡) = 𝑔 − 𝐴l𝜔
2 cos(𝜔𝑡) in the accelerated frame. 

Eq. (8) can thus be modified using 𝑔eff and we obtain 

𝜁̈ + 𝜔0(𝑘)2𝜁 =  −𝑘𝐴l𝜔
2 cos(𝜔𝑡) 𝜁        (9) 

We now perform an analysis similar to the one used by Kapitza for the stabilization of the 

inverted pendulum shaken vertically (23). We decompose 𝜁 into a slow component 𝜁s and a 

fast one 𝜁f oscillating at 𝜔 so that 𝜁 =  𝜁s + 𝜁f. This decomposition is justified for 𝑘 modes 

satisfying |𝜔0(𝑘)| ≪ 𝜔. In this case, the evolution of the height 𝜁(𝒌) is slow compared to the 

modulation. For all unstable modes, this hypothesis is well verified in our experimental 

conditions. 

We can then expect that the vibration will induce a slow additional stabilizing effect on 𝜁s 

induced by a fast perturbation 𝜁f at angular frequency 𝜔. We denote with <.> the mean over 

one oscillation period. We have <𝜁f > = 0 and <𝜁s cos(𝜔𝑡) >= 0. Writing the equation of 

motion and keeping only terms oscillating at 𝜔 and first order term in 𝜁f gives 𝜁f̈ ≈

−𝑘𝐴l𝜔
2 cos(𝜔𝑡) 𝜁s so that 𝜁f ≈ 𝑘𝐴l cos(𝜔𝑡) 𝜁s. We now take the mean <.> of the evolution 

eq. (9) and get: 

𝜁s ̈ + 𝜔0(𝑘)2𝜁s =  −𝑘𝐴l𝜔
2 < cos(𝜔𝑡) 𝜁f > = −

𝑘2𝐴l
2

2
 𝜔2𝜁s    (10) 

Or equivalently 

 



𝜁̈ + [𝜔0(𝑘)2 +
𝐴𝐼

2𝑘2

2
𝜔2] 𝜁 = 0       (11) 

 

We recover here the equation given in the main text and find that the new dynamical term 

resulting from the vibration is positive and thus tends to stabilize the interface.  

This equation is valid as long as |𝜔0(𝑘)| ≪ 𝜔. For large wave vectors, |𝜔0(𝑘)| ≪ 𝜔 does not 

hold anymore, however these modes are stabilized by capillarity (𝜔0(𝑘)2 > 0). For the 

unstable modes with small 𝑘 for which 𝜔0(𝑘)2 < 0, the condition |𝜔0(𝑘)| ≪ 𝜔 can always be 

satisfied. The condition to stabilize a mode with a given 𝑘 is given by 𝑘 >
2𝑔

𝐴l
2 𝜔2

. 

Hence, for an interface of size 𝐿, the excitable wavenumbers satisfy  𝑘 > 𝜋/𝐿, and one has to 

apply an excitation velocity  𝐴l𝜔 > √2𝑔𝐿/𝜋.  

Note that in the experiments, the air layer trapped under the liquid tends to mute the anti-

symmetric modes on the interface (𝑘 = 𝜋𝑞/𝐿 with 𝑞 being an odd number). These modes do 

not conserve the volume of the air layer. The stability of an interface of length 𝐿 in this case 

should satisfy 𝐴l𝜔 > √𝑔𝐿/𝜋 as measured experimentally (see Fig. 2F). 

 

Dynamical stabilization of floating bodies at the lower and upper interface of a levitated 

oscillating liquid layer 

 

a. Buoyant force in the rest frame 

 

 
Fig. S2. Sketchs of the floating equilibrium on the upper interface (A) and on the 

inverted interface (B) 

 

We consider a body of mass 𝑚𝑏, volume 𝑉b and density 𝜌b = 𝑚b/𝑉b floating on a bath of 

liquid of higher density 𝜌l > 𝜌b. The capillary effects are neglected. 

 

The buoyant force is due to hydrostatic pressure in the liquid, and it satisfies 

 

𝑭buoy = − ∫ 𝑃𝑑𝑺
𝑆

= − ∫ 𝛁𝑃𝑑𝑉
𝑉

= 𝜌l𝑔𝑉im(𝑧G)     (12) 

 

With 𝑃 the pressure exerted on the body surface 𝑆, 𝑉 is the body volume and 𝑉im(𝑧G) is the 

immersed volume with the center of mass at vertical position 𝑧G (see Figure S2A). We consider 

that the immersed volume is fully characterized by 𝑧G i.e. it does not depend on the orientation 

of the body and the center of pressure coincides with the center of mass, or it is determined for 



a given body orientation if the center of pressure is different from the center of mass. In the 

latter case, the stable orientation is obtained for the center of pressure positioned above the 

center of mass. 

 

Newton’s second law applied to the floating body for the position of its center of mass 𝑧G 

gives 

 

𝑚b𝑧G̈ = −𝑚b𝑔 + 𝜌l𝑔𝑉im(𝑧G)       (13) 

  

At equilibrium, 𝑉im(𝑧G,eq) = 𝑚b/𝜌l       (14) 

 

If we now consider small displacements 𝑍 around this equilibrium position so that 𝑧𝐺 = 𝑧G,eq +

𝑍, we obtain 

 

𝑍̈ + 𝜔buoy
2 𝑍 = 0 with 𝜔buoy

2 = −
𝜌l𝑔

𝑚b
 
𝑑𝑉im

𝑑𝑧
(𝑧G,eq) > 0    (15)  

 

The position is stable and the floater oscillates around its equilibrium position. For a sphere of 

diameter 2 cm and of relative density 0.2 ≤ 𝜌b/𝜌l ≤ 0.8, one has typically 1 ≤ 𝜔A ≤ 10 rad/s. 

 

b. Dynamical effects on floating bodies on the vibrated liquid interface 

 

We now focus on the effect of an added vertical acceleration of the liquid with angular 

frequency 𝜔 and amplitude 𝐴 on the equilibrium position. In this case the liquid is submitted 

to an oscillating effective gravity 𝑔eff(𝑡) = 𝑔 − 𝐴𝜔2 cos(𝜔𝑡) with the proper choice of the 

time origin. 

 

In the low excitation frequency range used in the experiment (𝜔/2𝜋 < 150  Hz), the 

hydrostatic pressure in the liquid and the constant atmospheric pressure outside still holds. The 

buoyant force is thus given by eq. (12) using the effective gravity: 𝐹buoy = 𝜌l𝑔eff𝑉im(𝑧G). 

  

To write Newton’s second law, we assume that the floating body moves with the liquid and 

that there is no relative motion between the body and the surrounding liquid. This hypothesis 

is verified by experimental observations. Under this assumption, the equation of motion in the 

accelerated frame is given by eq. (13) using the effective gravity 

 

𝑚b𝑧G̈ = −𝑚b𝑔eff + 𝜌l𝑔eff𝑉im(𝑧G)       (16) 

 

The equilibrium position is the same as for the static liquid and is given by eq. (14) 

Following the previous analysis for small displacements 𝑍 around the equilibrium position, we 

obtain 

 

𝑍̈ + 𝜔buoy
2 𝑍 = 𝜔buoy

2 𝐴𝜔2

𝑔
cos (𝜔𝑡)𝑍       (17) 

 

We now assume that 𝜔buoy ≪ 𝜔 which is always verified in our experimental cases and we 

use Kapitza’s approach for the dynamical stabilization of an inverted pendulum using vertical 

shaking (1, 2). We decompose 𝑍 into a slow component 𝑍s and a fast one 𝑍f at the excitation 

frequency 𝜔 so that 𝑍 = 𝑍s + 𝑍f. Denoting <. > the mean value over the excitation period, the 



two components satisfy < 𝑍s cos(𝜔𝑡) >= 0 and < 𝑍f >= 0. Under these conditions, we find 

for the oscillating terms at 𝜔 at first order in 𝑍f (3) 

 

𝑍f
̈ = 𝜔buoy

2 𝐴𝜔2

𝑔
cos(𝜔𝑡) 𝑍s        (18) 

 

Hence,  

𝑍f = −𝜔buoy
2 𝐴

𝑔
cos(𝜔𝑡) 𝑍s        (19) 

 

Averaging eq. (17) over an excitation period and using eq. (19), we obtain 

 

𝑍s̈ + 𝜔buoy
2 𝑍s = −

𝜔buoy
4

2
(

𝐴𝜔

𝑔
)

2

𝑍s       (20) 

 

This gives 

 

𝑍s̈ + 𝜔buoy
2 (1 + 𝛼)𝑍s = 0 with 𝛼 =

𝜔buoy
2

2
(

𝐴𝜔

𝑔
)

2

     (21) 

 

The term 𝛼 is a dynamical term resulting from the non-zero correlation between the floating 

object motion and the modulated pressure due to the vibration. Since 𝛼 > 0, this term induces 

an additional stabilization of the equilibrium floating position (see Fig. 3B). 

 

c. Dynamical stabilization of floating bodies on the lower interface of a levitating liquid 

 

We consider the case of the lower interface in a levitating liquid layer (see Fig. S2B). The 

liquid layer is stabilized by vertical oscillations with an amplitude 𝐴 and an angular frequency 

𝜔. We assume that such an inverted interface exists and is stable regardless of its underlying 

stabilization mechanism induced by the vibration.  

 

We first focus on the existence of a static equilibrium at each interface. Under the hypothesis 

of a hydrostatic pressure in the liquid and a constant pressure in the trapped air layer, the static 

equation (13) still applies. Two equilibrium positions can thus be found for a floating body, 

both satisfying eq. (14). The standard equilibrium on the upper interface and another 

equilibrium on the lower interface (see Fig. 3B). 

 

As an object is moved through the lower interface, its immersed volume 𝑉im varies from the 

entire body volume to zero (when entirely in the air layer). Hence, the symmetric equilibrium 

positions on the two interfaces satisfying 𝑉im(𝑧G,eq) = 𝑚b/𝜌l are equilibrium positions.  

 

However, for the lower interface, this position is not stable, pushing the body slightly upward, 

increases the immersed volume and results in a net upward force while pushing the body 

downward reduces the immersed volume and makes the body fall.   

 

This originates from the positive sign of  
𝑑𝑉im

𝑑𝑧
> 0 for the lower interface which results in a 

negative sign for 𝜔buoy
2 = −

𝜌l𝑔

𝑚b
 
𝑑𝑉im

𝑑𝑧
(𝑧G,eq) < 0. 

 



Taking into account the vertical oscillations and following the same approach as in the previous 

section leads to the same eq. (16). For small displacements 𝑍 around the lower equilibrium 

position with a fast dynamics 𝑍f and a slow one 𝑍s, one obtains 

  

𝑍s̈ + 𝜔buoy
2 (1 + 𝛼)𝑍s = 0  with  𝛼 =

𝜔buoy
2

2
 (

𝐴𝜔

𝑔
)

2

    (22) 

 

However, now 𝜔buoy
2 < 0 and thus 𝛼 < 0.  

 

The equilibrium is stable if  𝜔buoy
2 (1 + 𝛼) > 0 which is possible if 𝛼 < −1. 

 

One obtains the following stability condition for the amplitude of the forcing velocity 

 

𝐴𝜔 >
√2𝑔

|𝜔buoy|
          (23) 

 

Note that for objects with a non-coincident center of pressure and center of mass, the former 

should always be above the latter for stability. However, experimentally an equilibrium is 

easily found even in the opposite orientation of the body (see Fig. 3E). 

      

 

 


