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PREFACE TO THE FIRST ENGLISH EDITION

The present volume of our Theoretical Physics deals with the theory of

elasticity.

Being written by physicists, and primarily for physicists, it naturally

includes not only the ordinary theory of the deformation of solids, but also

some topics not usually found in textbooks on the subject, such as thermal

conduction and viscosity in solids, and various problems in the theory of

elastic vibrations and waves. On the other hand, we have discussed only

very briefly certain special matters, such as complex mathematical methods
in the theory of elasticity and the theory of shells, which are outside the scope

of this book.

Our thanks are due to Dr. Sykes and Dr. Reid for their excellent trans-

lation of the book.

Moscow L. D. Landau
E. M. Lifshitz

PREFACE TO THE SECOND ENGLISH EDITION

As well as some minor corrections and additions, a chapter on the macro-

scopic theory of dislocations has been added in this edition. The chapter has

been written jointly by myself and A. M. Kosevich.

A number of useful comments have been made by G. I. Barenblatt, V. L.

Ginzburg, M. A. Isakovich, I. M. Lifshitz and I. M. Shmushkevich for the

Russian edition, while the vigilance of Dr. Sykes and Dr. Reid has made it

possible to eliminate some further errors from the English translation.

I should like to express here my sincere gratitude to all the above-named.

Moscow E. M. Lifshitz



NOTATION

p density of matter

u displacement vector

1 / dut duiA
uuc = -I 1 1 strain tensor

2\dxjc dxi

aoe stress tensor

K modulus of compression

/x modulus of rigidity

E Young's modulus

a Poisson's ratio

c% longitudinal velocity of sound

ct transverse velocity of sound

Ci and Ct are expressed in terms of K, ju, or of E, a by formulae given in

§22.

The quantities K, p, E and a are related by

E = 9KfMl(3K+fi)

a = (3K-2fM)l2(3K+tJL)

K= EI3(l-2o)

fi = £"/2(l+a)



CHAPTER I

FUNDAMENTAL EQUATIONS

§1. The strain tensor

The mechanics of solid bodies, regarded as continuous media, forms the

content of the theory of elasticity.]

Under the action of applied forces, solid bodies exhibit deformation to

some extent, i.e. they change in shape and volume. The deformation of a

body is described mathematically in the following way. The position of any

point in the body is defined by its radius vector r (with components x\ = x,

x2
= y, xz = z) in some co-ordinate system. When the body is deformed,

every point in it is in general displaced. Let us consider some particular

point; let its radius vector before the deformation be r, and after the deforma-

tion have a different value r' (with components x'i). The displacement of

this point due to the deformation is then given by the vector r' - r, which we

shall denote by u:

Ui = x'i— Xi. (1-1)

The vector u is called the displacement vector. The co-ordinates x'i of the

displaced point are, of course, functions of the co-ordinates Xi of the point

before displacement. The displacement vector Ui is therefore also a function

of the co-ordinates Xi. If the vector u is given as a function of Xi, the defor-

mation of the body is entirely determined.

When a body is deformed, the distances between its points change. Let

us consider two points very close together. If the radius vector joining them

before the deformation is dxt, the radius vector joining the same two points

in the deformed body is dx'i = dxt + dm. The distance between the points

is d/ = -v/(d*i
2 + d#22 + dff3

2
) before the deformation, and dl' = \/(dx'i2 +

+ dx'22 +dx's2) after it. Using the general summation rule,J we can write

d/2 = dxi2 , dl'2 = dx'i2 = (dxi + dui)2 . Substituting dm = (dmldxk)dxk,we

can write

dm . . dm dm ,

dl'2 = d/2 + 2 dxt dxk+ dxk dxi.
dxk dxk dxi

Since the summation is taken over both suffixes i and k in the second term

on the right, we can put (dmldxk)dxidxk = {dukjdxi)dxidxk . In the third

t The basic equations of elasticity theory were established in the 1 820's by Cauchy and by Poisson.

| In accordance with the usual rule, we omit the sign of summation over vector and tensor suffixes.

Summation over the values 1 , 2, 3 is understood with respect to all suffixes which appear twice in a

given term.

I* 1



2 Fundamental Equations §1

term, we interchange the suffixes i and /. Then dZ'2 takes the final form

d/'2 = dP + 2uik dxt dxk , (1.2)

where the tensor utk is defined as

1 / dui dujc dui dui \

2\dxk dxt dxt dxjc)

These expressions give the change in an element of length when the body is

deformed.

The tensor u\k is called the strain tensor. We see from its definition that

it is symmetrical, i.e.

Uik = uki . (1.4)

This result has been obtained by writing the term 2(dui/dxk)dxi dxk in d/'2

in the explicitly symmetrical form

/ But duk\

\ dxk oxi I

Like any symmetrical tensor, Ufk can be diagonalised at any given point.

This means that, at any given point, we can choose co-ordinate axes (the

principal axes of the tensor) in such a way that only the diagonal components

«n, "22, «33 of the tensor u\k are different from zero. These components, the

principal values of the strain tensor, will be denoted by m (1)
, m (2)

, m (3)
. It should

be remembered, of course, that, if the tensor uik is diagonalised at any point

in the body, it will not in general be diagonal at any other point.

If the strain tensor is diagonalised at a given point, the element of length

(1.2) near it becomes

dZ'2 = (Sac+ 2uuc) dxt dxk

= (1 + 2M<i>) d*i2 + (1 + 2w<2>) d*22 + (1 + 2m«») dx32 .

We see that the expression is the sum of three independent terms. This

means that the strain in any volume element may be regarded as composed
of independent strains in three mutually perpendicular directions, namely
those of the principal axes of the strain tensor. Each of these strains is a

simple extension (or compression) in the corresponding direction : the length

d#i along the first principal axis becomes dx\ = -\/(l+2ua)) dx\, and simi-

larly for the other two axes. The quantity \/{\ + 2u (i)
) — 1 is consequently

equal to the relative extension (dx'i— dxi)[dxt along the ith principal axis.

In almost all cases occurring in practice, the strains are small. This means
that the change in any distance in the body is small compared with the

distance itself. In other words, the relative extensions are small compared
with unity. In what follows we shall suppose that all strains are small.

If a body is subjected to a small deformation, all the components of the

strain tensor are small, since they give, as we have seen, the relative changes

in lengths in the body. The displacement vector Ui, however, may
sometimes be large, even for small strains. For example, let us consider a

long thin rod. Even for a large deflection, in which the ends of the rod move



§1 The strain tensor 3

a considerable distance, the extensions and compressions in the rod itself

will be small.

Except in such special cases, f the displacement vector for a small defor-

mation is itself small. For it is evident that a three-dimensional body (i.e.

one whose dimension in no direction is small) cannot be deformed in such a

way that parts of it move a considerable distance without the occurrence of

considerable extensions and compressions in the body.

Thin rods will be discussed in Chapter II. In other cases m is small for

small deformations, and we can therefore neglect the last term in the general

expression (1.3), as being of the second order of smallness. Thus, for small

deformations, the strain tensor is given by

_ 1 tM duk\

2\dxic dxil

The relative extensions of the elements of length along the principal axes of

the strain tensor (at a given point) are, to within higher-order quantities,

VXl +2u (i))— 1 & u (i)
, i.e. they are the principal values of the tensor tin.

Let us consider an infinitesimal volume element dV, and find its volume

dV after the deformation. To do so, we take the principal axes of the strain

tensor, at the point considered, as the co-ordinate axes. Then the elements of

length d^i, d*2, dx$ along these axes become, after the deformation, d#'i

= (l+w (1)
) d#i, etc. The volume dV is the product d#i da^ d#3, while dV'

is dx\ dx'2 dx'z . Thus dV = dV{\ + u<-»)(l + w (2))(l + m (3)
). Neglecting higher-

order terms, we therefore have dV = dF(l+« (1)+ M (2) + M (3)
). The sum

M(D -|- w (2)+ M (3) of the principal values of a tensor is well known to be invariant,

and is equal to the sum of the diagonal components uu =Mn + M22+«33 in

any co-ordinate system. Thus

dV = dV(l + uu). (1.6)

We see that the sum of the diagonal components of the strain tensor is the

relative volume change {dV— dV)jdV.

It is often convenient to use the components of the strain tensor in spherical

or cylindrical co-ordinates. We give here, for reference, the corresponding

formulae, which express the components in terms of the derivatives of the

components of the displacement vector in the same co-ordinates. In spherical

co-ordinates r, 6,
(f>,

we have

dur 1 due ur 1 du* ue ur

urr = —, uee = -—-+—-, uH = —^-—-+— cot0+—

,

dr r do r r sin o of r r

Y r\dd Y
J r si]

dUg BUg Ug 1 Bur > (1.7)
2ure = — +-

sin0 9^' dr r r dd

1 dur dUs, Ux
2ufr = H -•

r sin 9 d<f> dr r

t Which include, besides deformations of thin rods, those of thin plates to form cylindrical surfaces.
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In cylindrical co-ordinates r,
(f>,

z,

dur 1 duf ur duz
urr = -r— , «^ = - —7- H , uzz = ——

,

or yr
r d<f> r dz

1 duz duA dur duz
2«„ = -—+—*, 2urz = -^+ -^-

f } (1.8)
r 30 d# 3s- 3r

aw, W, 1 dur

or r r dtp

1

§2. The stress tensor

In a body that is not deformed, the arrangement of the molecules corre-

sponds to a state of thermal equilibrium. All parts of the body are in mechani-
cal equilibrium. This means that, if some portion of the body is considered,

the resultant of the forces on that portion is zero.

When a deformation occurs, the arrangement of the molecules is changed,

and the body ceases to be in its original state of equilibrium. Forces there-

fore arise which tend to return the body to equilibrium. These internal

forces which occur when a body is deformed are called internal stresses. If

no deformation occurs, there are no internal stresses.

The internal stresses are due to molecular forces, i.e. the forces of inter-

action between the molecules. An important fact in the theory of elasticity is

that the molecular forces have a very short range of action. Their effect

extends only to the neighbourhood of the molecule exerting them, over a

distance of the same order as that between the molecules, whereas in the

theory of elasticity, which is a macroscopic theory, the only distances con-

sidered are those large compared with the distances between the molecules.

The range of action of the molecular forces should therefore be taken as zero

in the theory of elasticity. We can say that the forces which cause the internal

stresses are, as regards the theory of elasticity, "near-action" forces, which act

from any point only to neighbouring points. Hence it follows that the forces

exerted on any part of the body by surrounding parts act only on the surface

of that part.

The following reservation should be made here. The above asserioon is

not valid in cases where the deformation of the body results in macroscopic

electric fields in it (pyroelectric and piezoelectric bodies). We shall not discuss

such bodies in this book, however.

Let us consider the total force on some portion of the body. Firstly, this

total force is equal to the sum of all the forces on all the volume elements in

that portion of the body, i.e. it can be written as the volume integral jTdV,
where F is the force per unit volume and FdFthe force on the volume element

dV. Secondly, the forces with which various parts of the portion considered

act on one another cannot give anything but zero in the total resultant force,

since they cancel by Newton's third law. The required total force can there-

fore be regarded as the sum of the forces exerted on the given portion of the
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body by the portions surrounding it. From above, however, these forces act

on the surface of that portion, and so the resultant force can be represented

as the sum of forces acting on all the surface elements, i.e. as an integral

over the surface.

Thus, for any portion of the body, each of the three components jFfdV
of the resultant of all the internal stresses can be transformed into an integral

over the surface. As we know from vector analysis, the integral of a scalar

over an arbitrary volume can be transformed into an integral over the surface

if the scalar is the divergence of a vector. In the present case we have the

integral of a vector, and not of a scalar. Hence the vector Ft must be the

divergence of a tensor of rank two, i.e. be of the form

Ft = doac/dxjc. (2.1)

Then the force on any volume can be written as an integral over the closed

surface bounding that volume :f

IV, dV = f^ dV = Lik d/fc, (2.2)

where d/< are the components of the surface element vector df, directed (as

usual) along the outward normal.J
The tensor aw is called the stress tensor. As we see from (2.2), aacdfjc is the

tth component of the force on the surface element df. By taking elements

of area in the planes of xy, yz, zx, we find that the component am of the stress

tensor is the ith. component of the force on unit area perpendicular to the

x*-axis. For instance, the force on unit area perpendicular to the ar-axis,

normal to the area (i.e. along the #-axis) is <txx , and the tangential forces

(along the y and z axes) are ayx and azx .

The following remark should be made concerning the sign of the force

oikdfk. The surface integral in (2.2) is the force exerted on the volume
enclosed by the surface by the surrounding parts of the body. The force

which this volume exerts on the surface surrounding it is the same with the

opposite sign. Hence, for example, the force exerted by the internal stresses

on the surface of the body itself is —fontdfk, where the integral is taken over

the surface of the body and df is along the outward normal.

Let us determine the moment of the forces on a portion of the body. The
moment of the force F can be written as an antisymmetrical tensor of rank

two, whose components are FiXk — FjcXi, where xi are the co-ordinates of the

t The integral over a closed surface is transformed into one over the volume enclosed by the
surface by replacing the surface element d/4 by the operator dVd/dxi.

J Strictly speaking, to determine the total force on a deformed portion of the body we should
integrate, not over the old co-ordinates xt , but over the co-ordinates x'

t of the points of the deformed
body. The derivatives (2.1) should therefore be taken with respect to x't . However, in view of the
smallness of the deformation, the derivatives with respect to x( and x\ differ only by higher-order
quantities, and so the derivatives can be taken with respect to the co-ordinates xt .
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point where the force is applied.f Hence the moment of the forces on the

volume element dV is (FiXk—FkXi)dV, and the moment of the forces on the

whole volume is Mik = J(FiXk—FkXi)dV. Like the total force on any volume,

this moment can be expressed as an integral over the surface bounding the

volume. Substituting the expression (2.1) for Fi, we find

Mik = (—

—

xk —xA dV
J \ dxi oxi ]

rd(auXjc-okiXi) C( dxk dxt \=
; dv~ au

i>
°klv~ dv-

J oxi J \ dxi dxi

!

In the second term we use the fact that the derivative of a co-ordinate with

respect to itself is unity, and with respect to another co-ordinate is zero

(since the three co-ordinates are independent variables). Thus dxkjdxi = 8k i,

where Sfcz is the unit tensor; the multiplication gives CT^Sfc/ = atk , akion = <?ki-

In the first term, the integrand is the divergence of a tensor; the

integral can be transformed into one over the surface. The result is

Mac = §(cTuxk- ajciXi)dfi+ S(crjci - oik)dV. IfMik is to be an integral over the

surface only, the second term must vanish identically, i.e. we must have

&ik = <*ki- (2.3)

Thus we reach the important result that the stress tensor is symmetrical.

The moment of the forces on a portion of the body can then be written

simply as

Mik = j(FiXk-Fkxt) dV = j((TUxk- akiXi) dfi . (2.4)

It is easy to find the stress tensor for a body undergoing uniform com-

pression from all sides {hydrostatic compression). In this case a pressure of

the same magnitude acts on every unit area on the surface of the body, and its

direction is along the inward normal. If this pressure is denoted by />, a force

—pdfi acts on the surface element dfi. This force, in terms of the stress

tensor, must be cxikdfk . Writing —pdfi = —p8ikdfk , we see that the stress

tensor in hydrostatic compression is

f^ik = -poik- (2.5)

Its non-zero components are simply equal to the pressure.

In the general case of an arbitrary deformation, the non-diagonal com-

ponents of the stress tensor are also non-zero. This means that not only a

normal force but also tangential (shearing) stresses act on each surface

element. These latter stresses tend to move the surface elements relative to

each other.

f The moment of the force F is denned as the vector product FXr, and we know from vector

analysis that the components of a vector product form an antisymmetrical tensor of rank two as written

here.
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In equilibrium the internal stresses in every volume element must balance,

i.e. we must have Ft = 0. Thus the equations of equilibrium for a deformed

body are

dcTiicjdxjc = 0. (2.6)

If the body is in a gravitational field, the sum F + />g of the internal stresses

and the force of gravity (pg per unit volume) must vanish
; p is the densityf and

g the gravitational acceleration vector, directed vertically downwards. In

this case the equations of equilibrium are

daikldxk +pgi = 0. (2.7)

The external forces applied to the surface of the body (which are the usual

cause of deformation) appear in the boundary conditions on the equations of

equilibrium. Let P be the external force on unit area of the surface of the

body, so that a force P d/ acts on a surface element d/. In equilibrium, this

must be balanced by the force — aw d/& of the internal stresses acting on that

element. Thus we must have Pi df— ai1c dfk = 0. Writing d/fc = tik df,

where n is a unit vector along the outward normal to the surface, we find

(Wit = Pi. (2.8)

This is the condition which must be satisfied at every point on the surface of

a body in equilibrium.

We shall derive also a formula giving the mean value of the stress tensor

in a deformed body. To do so, we multiply equation (2.6) by xjc and integrate

over the whole volume:

——xjc dV = -\ - dV- an—- dV = 0.

J oxi J oxi J oxi

The first integral on the right is transformed into a surface integral; in the

second integral we put dxjc/dxi = 8m. The result is §auxjc d/i — jaw dV = 0.

Substituting (2.8) in the first integral, we find §PiXjc df = JV^ dV = Vdnc,

where V is the volume of the body and d^ the mean value of the stress tensor.

Since a^ = ajd, this formula can be written in the symmetrical form

am = (1/2F) j (PiXk +Pkxi) df. (2. 9)

Thus the mean value of the stress tensor can be found immediately from the

external forces acting on the body, without solving the equations of equili-

brium.

t Strictly speaking, the density of a body changes when it is deformed. An allowance for this
change, however, involves higher-order quantities in the case of small deformations, and is therefore
unimportant.
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§3. The thermodynamics of deformation

Let us consider some deformed body, and suppose that the deformation

is changed in such a way that the displacement vector m changes by a small

amount dm; and let us determine the work done by the internal stresses in

this change. Multiplying the force Fi = dcrikldxjc by the displacement Sw$ and

integrating over the volume of the body, we have J8R dV = ftdaikjdxkjSui dV,

where 8R denotes the work done by the internal stresses per unit volume.

We integrate by parts, obtaining

8RdV = koikhuidfjc— <*ik—— dV.

By considering an infinite medium which is not deformed at infinity, we
make the surface of integration in the first integral tend to infinity; then

aijc = on the surface, and the integral is zero. The second integral can,

by virtue of the symmetry of the tensor cm, be written

C 1 r I dhui dhujA

J Z.J \ UXfc UA% J

- _if hi— dUk
\ dV

2J \dxjc dxi/

= — vik&Uik dV.

Thus we find

SR = —oikhuoc. (3.1)

This formula gives the work SR in terms of the change in the strain tensor.

If the deformation of the body is fairly small, it returns to its original

undeformed state when the external forces causing the deformation cease

to act. Such deformations are said to be elastic. For large deformations, the

removal of the external forces does not result in the total disappearance of the

deformation ; a residual deformation remains, so that the state of the body is

not that which existed before the forces were applied. Such deformations

are said to be plastic. In what follows we shall consider only elastic defor-

mations.

We shall also suppose that the process of deformation occurs so slowly

that thermodynamic equilibrium is established in the body at every instant,

in accordance with the external conditions. This assumption is almost always

justified in practice. The process will then be thermodynamically reversible.

In what follows we shall take all such thermodynamic quantities as the

entropy S, the internal energy $, etc., relative to unit volume of the body,f

f The following remark should be made here. Strictly speaking, the unit volumes before and after

the deformation should be distinguished, since they in general contain different amounts of matter.

We shall always relate the thermodynamic quantities to unit volume of the undeformed body, i.e.

to the amount of matter therein, which may occupy a different volume after the deformation. Accord-
ingly, the total energy of the body, for example, is obtained by integrating £ over the volume of the

undeformed body.
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and not relative to unit mass as in fluid mechanics, and denote them by the

corresponding capital letters.

An infinitesimal change d& in the internal energy is equal to the difference

between the heat acquired by the unit volume considered and the work dR

done by the internal stresses. The amount of heat is, for a reversible process,

TdS, where T is the temperature. Thus d£ = TdS-dR; with dR given

by (3.1), we obtain

d£ = TdS+aik duik . (3.2)

This is the fundamental thermodynamic relation for deformed bodies.

In hydrostatic compression, the stress tensor is aik = —phk (2.5). Then

one duac = -phk dune = -p duu. We have seen, however (cf. (1.6)), that the

sum uu is the relative volume change due to the deformation. If we consider

unit volume, therefore, uu is simply the change in that volume, and dun is

the volume element dV. The thermodynamic relation then takes its usual form

te = TdS-pdV.

Introducing the free energy of the body, F = S— TS, we find the form

dF = -SdT+aik duik (3.3)

of the relation (3.2). Finally, the thermodynamic potential $ is defined as

<J> = £-TS-oikuik = F-aikuik . (3.4)

This is a generalisation of the usual expression O = <f— TS+pV.-f Substi-

tuting (3.4) in (3.3), we find

dd> = -SdT-uik d(jik . (3.5)

The independent variables in (3.2) and (3.3) are respectively S, uik and

T, Uik . The components of the stress tensor can be obtained by differentiating

S or F with respect to the components of the strain tensor, for constant

entropy S or temperature T respectively:

aik = (d<?lduik)s = {dFjduik) T - (3.6)

Similarly, by differentiating <1> with respect to the components <jik , we can

obtain the components u\k :

uik = -(d^ldaik) T . (3.7)

t For hydrostatic compression, the expression (3.4) becomes <b= F+ puit = F+ p(V —V ),

where V —V is the volume change resulting from the deformation. Hence we see that the definition

of used here differs by a term —pV from the usual definition O = F+ pV.
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§4. Hooke's law

In order to be able to apply the general formulae of thermodynamics to

any particular case, we must know the free energy F of the body as a function

of the strain tensor. This expression is easily obtained by using the fact that

the deformation is small and expanding the free energy in powers of w^Jfc- We
shall at present consider only isotropic bodies. The corresponding results

for crystals will be obtained in §10.

In considering a deformed body at some temperature (constant throughout
the body), we shall take the undeformed state to be the state of the body in the

absence of external forces and at the same temperature ; this last condition is

necessary on account of the thermal expansion (see §6). Then, for ua = 0,

the internal stresses are zero also, i.e. a^ = 0. Since ow = dFjdutk, it

follows that there is no linear term in the expansion of F in powers of uac.

Next, since the free energy is a scalar, each term in the expansion of F
must be a scalar also. Two independent scalars of the second degree can be
formed from the components of the symmetrical tensor m^: they can be
taken as the squared sum of the diagonal components (uu2) and the sum of

the squares of all the components (uac2). Expanding F in powers of «^» we
therefore have as far as terms of the second order

F = Fo+%\uu2+ iJLUik
2

. (4.1)

This is the general expression for the free energy of a deformed isotropic

body. The quantities A and [m are called Lame coefficients.

We have seen in §1 that the change in volume in the deformation is given

by the sum uu. If this sum is zero, then the volume of the body is unchanged
by the deformation, only its shape being altered. Such a deformation is

called a pure shear.

The opposite case is that of a deformation which causes a change in the

volume of the body but no change in its shape. Each volume element of the

body retains its shape also. We have seen in §1 that the tensor of such a

deformation is uac = constant x S^. Such a deformation is called a hydro-

static compression.

Any deformation can be represented as the sum of a pure shear and a

hydrostatic compression. To do so, we need only use the identity

mk = (uuc-$8ikUii) + %8ikuu. (4.2)

The first term on the right is evidently a pure shear, since the sum of its

diagonal terms is zero (8u = 3). The second term is a hydrostatic compres-

sion.

As a general expression for the free energy of a deformed isotropic body,

it is convenient to replace (4.1) by another formula, using this decomposition

of an arbitrary deformation into a pure shear and a hydrostatic compression.

We take as the two independent scalars of the second degree the sums of the
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squared components of the two terms in (4.2). Then F becomesf

F = 11(11*- \hmif+Wm*. (4.3)

The quantities K and ju. are called respectively the bulk modulus or modulus of

hydrostatic compression (or simply the modulus of compression) and the shear

modulus or modulus of rigidity. K is related to the Lame coefficients by

K = A+ foi. (4.4)

In a state of thermodynamic equilibrium, the free energy is a minimum.

If no external forces act on the body, then F as a function of uw must have a

minimum for uac - 0. This means that the quadratic form (4.3) must be

positive. If the tensor uilc is such that uu = 0, only the first term remains

in (4.3) ; if, on the other hand, the tensor is of the form u* = constant x S^,

then only the second term remains. Hence it follows that a necessary (and

evidently sufficient) condition for the form (4.3) to be positive is that each

of the coefficients K and ju, is positive. Thus we conclude that the moduli of

compression and rigidity are always positive:

K > 0, ft > 0. (4.5)

We now use the general thermodynamic relation (3.6) to determine the

stress tensor. To calculate the derivatives dFjduijc, we write the total differ-

ential dF (for constant temperature)

:

dF = Kuu dun+ 2p{uui- \uiihoc) d(uijc - Iuu^m).

In the second term, multiplication of the first parenthesis by oik gives zero,

leaving dF = Kuu duii + 2[4iHk-%uu8ik) &Uik, or writing dun = 8ik duac,

dF = [Kuuhuc + l^uuc-^uiihijc)] duik .

Hence the stress tensor is

Gilc
= Kuuhi]c + 2^{uiic-\8iicUii). (4.6)

This expression determines the stress tensor in terms of the strain tensor for

an isotropic body. It shows, in particular, that, if the deformation is a pure

shear or a pure hydrostatic compression, the relation between a* and uac is

determined only by the modulus of rigidity or of hydrostatic compression

respectively.

It is not difficult to obtain the converse formula which expresses uac in

terms of 0%. To do so, we find the sum an of the diagonal terms. Since this

sum is zero for the second term of (4.6), we have an = 3Kuu, or

uu = oiifiK. (4.7)

f The constant term F is the free energy of the undeformed body, and is of no further interest.

We shall therefore omit it, for brevity, taking F to be only the free energy of the deformation (the

elastic free energy, as it is called).
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Substituting this expression in (4.6) and so determining uik , we find

utjc = Sikaiij9K+(aik -l8ikaii)/2fiy (4.8)

which gives the strain tensor in terms of the stress tensor.

Equation (4.7) shows that the relative change in volume (uu) in any
deformation of an isotropic body depends only on the sum au of the diagonal
components of the stress tensor, and the relation between uu and <ru is

determined only by the modulus of hydrostatic compression. In hydrostatic
compression of a body, the stress tensor is aik = -p8ik . Hence we have
in this case, from (4.7),

uu = -p/K. (4.9)

Since the deformations are small, uu and p are small quantities, and we can
write the ratio uu/p of the relative volume change to the pressure in the
differential form (l/V)(dVfdp)T. Thus

JL_ 1
(
dV

\

~K~ ~ V\dp) t

The quantity \\K is called the coefficient of hydrostatic compression (or simply
the coefficient of compression).

We see from (4.8) that the strain tensor Uik is a linear function of the stress

tensor Oik . That is, the deformation is proportional to the applied forces.

This law, valid for small deformations, is called Hooke's law.f
We may give also a useful form of the expression for the free energy of a

deformed body, which is obtained immediately from the fact that F is quad-
ratic in the strain tensor. According to Euler's theorem, UikdFjduik — 2F,
whence, since dF\duik = oiki we have

F = \oikui1c . (4.10)

If we substitute in this formula the ua as linear combinations of the

components oiky the elastic energy will be represented as a quadratic function

of the aik . Again applying Euler's theorem, we obtain crikdF/daik = 2F, and
a comparison with (4.10) shows that

uik = dFjdaik . (4.11)

It should be emphasised, however, that, whereas the formula o% = dF/duac
is a general relation of thermodynamics, the inverse formula (4.11) is applic-

able only if Hooke's law is valid.

f Hooke's law is actually applicable to almost all elastic deformation. The reason is that deforma-
tions usually cease to be elastic when they are still so small that Hooke's law is a good approximation.
Substances such as rubber form an exception.
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§5. Homogeneous deformations

Let us consider some simple cases of what are called homogeneous deforma-

tions, i.e. those in which the strain tensor is constant throughout the volume

of the body. For example, the hydrostatic compression already considered

is a homogeneous deformation.

We first consider a simple extension (or compression) of a rod. Let the

rod be along the #-axis, and let forces be applied to its ends which stretch it

in both directions. These forces act uniformly over the end surfaces of the

rod ; let the force on unit area be p.

Since the deformation is homogeneous, i.e. uuc is constant through the

body, the stress tensor o% is also constant, and so it can be determined at once

from the boundary conditions (2.8). There is no external force on the sides

of the rod, and therefore o-^«& = 0. Since the unit vector n on the side of the

rod is perpendicular to the #-axis, i.e. n z = 0, it follows that all the com-
ponents aw except ozz are zero. On the end surface we have aztni = p, or

ozz = P-

From the general expression (4.8) which relates the components of the

strain and stress tensors, we see that all the components uuc with i ^ k are

zero. For the remaining components we find

1/1 1 \ 1/ 1 1\
uxx = uyy - --(_ - _jp, uzz = 3(3^

+ -)* (5-1)

The component uzz gives the relative lengthening of the rod. The coeffi-

cient ofp is called the coefficient of extension, and its reciprocal is the modulus

of extension or Young's modulus, E:

uzz = pJE, (5.2)

where

E = 9Kfjil(3K+fji). (5.3)

The components uXx and uyy give the relative compression of the rod in the

transverse direction. The ratio of the transverse compression to the longi-

tudinal extension is called Poisson's ratio, cr:j-

uxx = -<yuzz , (5.4)

where

o = %(3K-2H,)/(3K+ H,). (5.5)

f The use of a to denote Poisson's ratio and a^ to denote the components of the stress tensor can-
not lead to ambiguity, since the latter always have suffixes.
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Since K and p are always positive, Poisson's ratio can vary between - 1

(for K = 0) and J (for p = 0). Thus f

- 1 < <t < i. (5.6)

Finally, the relative increase in the volume of the rod is

m = pllK. (5.7)

The free energy of a stretched rod can be obtained immediately from formula

(4.10). Since only the component azz is not zero, we have F = \azzuzz ,

whence

F = p2/2E. (5.8)

In what follows we shall, as is customary, use E and a instead of K and p.

Inverting formulae (5.3) and (5.5), we havej

p = E/2(l + cx), K = 5/3(1 -2a). (5.9)

We shall write out here the general formulae of §4, with the coefficients

expressed in terms ofE and a. The free energy is

y-^+ i^)' (5 - 10)

The stress tensor is given in terms of the strain tensor by

E t a
Vik

Conversely,
1 + a

Uik +
l-2a

mSik\

Uik = [( 1 + a )aw - oaiiSuc] IE.

(5.11)

(5.12)

Since formulae (5.11) and (5.12) are in frequent use, we shall give them also

in component form

:

E \

&xx = tt-—rz
—^r-z[(l- a)

uxx+ o(uyy + uzz)],

fyy

&ZZ

oXy

(l+a)(l-2a)
u

E

(l+a)(l-2a)

E

(l+a)(l-2a)

E
Uxy, &xz =

[(1 - a)uyy + a(uxx + Uzz)],

[(1 - a)UZZ+ 0(UXX+ Uyy)],

E E

1+CT 1 + a
uxtt ayz

1+a
UyZ ,

(5.13)

t In practice, PoiSSON's ratio varies only between and i. There are no substances known for

which a < 0, i.e. which would expand transversely when stretched longitudinally. It may be men-
tioned that the inequality a > corresponds to A > 0, where A is the Lame coefficient appearing

in (4.1); in other words, both terms in (4.1), as well as in (4.3), are always positive in practice, although

this is not thermodynamically necessary. Values of a close to i (e.g. for rubber) correspond to a

modulus of rigidity which is small compared with the modulus of compression.

t The second Lame coefficient is A = Eaj{\ — 2a)(14-a).
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and conversely

1

UXz = —\?xx— o-

(o'j/2/ + o'zz)].

uvv — ~^;\.ayy~

<

T(crzx+ &zz)]>
hi

15

Uzz = —[crZz— cr(oxx+Vyy)]>
hi

( (5-14)

UXy
1 + a

E
-aXy, UXz —

1 + a

E -<7xZt UyZ —
1 + a

~E
~ayz'

Let us now consider the compression of a rod whose sides are fixed in

such a way that they cannot move. The external forces which cause the

compression of the rod are applied to its ends and act along its length, which
we again take to be along the #-axis. Such a deformation is called a

unilateral compression. Since the rod is deformed only in the ^-direction,

only the component uzz of m^ is not zero. Then we have from (5.11)

E
oXx — ayy —

(l + a)(l-2cr)
UZZ> &ZZ —

27(1 -Or)

(l + o)(l-2o)
uzz .

Again denoting the compressing force by p (a zz = p, which is negative for

a compression), we have

Uzz = />(1 + a)(l - 2a)lE(l - a). (5.15)

The coefficient ofp is called the coefficient of unilateral compression. For the

transverse stresses we have

°xx = Oyy = />a/(l — o).

Finally, the free energy of the rod is

F = />2(1 + CT)(l _ 2a)/2E(l - a).

(5.16)

(5.17)

§6. Deformations with change of temperature

Let us now consider deformations which are accompanied by a change in

the temperature of the body; this can occur either as a result of the deforma-
tion process itself, or from external causes.

We shall regard as the undeformed state the state of the body in the absence
of external forces at some given temperature To. If the body is at a tempera-
ture T different from To, then, even if there are no external forces, it will in

general be deformed, on account of thermal expansion. In the expansion of

the free energy F(T), there will therefore be terms linear, as well as quadratic,

in the strain tensor. From the components of the tensor uac, of rank two,
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we can form only one linear scalar quantity, the sum uu of its diagonal com-

ponents. We shall also assume that the temperature change T—Tq which

accompanies the deformation is small. We can then suppose that the coeffi-

cient of uu in the expansion of F (which must vanish for T = To) is simply

proportional to the difference T— To. Thus we find the free energy to be

(instead of (4.3))

F(T) = Fo{T)-K*{T- Toyn+niuijc-^ncUnY +Wm2
, (6.1)

where the coefficient of T—Tq has been written as — Ktx.. The quantities

/Lt, K and a can here be supposed constant; an allowance for their tempera-

ture dependence would lead to terms of higher order.

Differentiating F with respect to um, we obtain the stress tensor:

aik = -KatT-To^iK + KunSiit+ lrfuik-iSiKUH). (6.2)

The first term gives the additional stresses caused by the change in tempera-

ture. In free thermal expansion of the body (external forces being absent),

there can be no internal stresses. Equating a^ to zero, we find that uik is of

the form constant x §*&, and

uu = <x(T— T ). (6.3)

But uu is the relative change in volume caused by the deformation. Thus a

is just the thermal expansion coefficient of the body.

Among the various (thermodynamic) types of deformation, isothermal and

adiabatic deformations are of importance. In isothermal deformations, the

temperature of the body does not change. Accordingly, we must put T = To

in (6.1), returning to the usual formulae; the coefficients K and //, may there-

fore be called isothermal moduli.

A deformation is adiabatic if there is no exchange of heat between the

various parts of the body (or, of course, between the body and the surround-

ing medium). The entropy S remains constant. It is the derivative — dFjdT

of the free energy with respect to temperature. Differentiating the expression

(6.1), we have as far as terms of the first order in utk

S(T) = S {T)+ Kauu. (6.4)

Putting S constant, we can determine the change of temperature T—T due

to the deformation, which is therefore proportional to uu. Substituting this

expression for T- T in (6.2), we obtain for aik an expression of the usual

kind,

oik = Ka,aUiiSik+ 2[j,(uik-^SikUii) t (6.5)

with the same modulus of rigidity \x. but a different modulus of compression

Kad. The relation between the adiabatic modulus K&A and the ordinary

isothermal modulus K can also be found directly from the thermodynamic

formula

/ dV\ _ (W\ T(dVldT)j?

\ dp i s \ dp / t Cp
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where Cp is the specific heat per unit volume at constant pressure. If V is

taken to be the volume occupied by matter which before the deformation

occupied unit volume, the derivatives dVjdT and dVjdp give the relative

volume changes in heating and compression respectively. That is,

(dV/dT)p = a, (dVldp)s = -1/JT.d, (dVldp) T = -1(K.

Thus we find the relation between the adiabatic and isothermal moduli to be

l/JSTad = 1/K- TaPICp, juad = H- (6-6)

For the adiabatic Young's modulus and Poisson's ratio we easily obtain

E o+ ET**I9Cp
E&

*
=
\-ET^\9Cp

Cad " 1-ET«*I9CP
- {bJ)

In practice, ETa.2jCp is usually small, and it is therefore sufficiently accurate

to put

£ad = E+ E2T<x?j9Cp , crad = a+ (1 + o)ETa?l9Cp . (6.8)

In isothermal deformation, the stress tensor is given in terms of the

derivatives of the free energy

:

aik = (dF/duacJT'

For constant entropy, on the other hand, we have (see (3.6))

aw = {d$lduac)s,

where & is the internal energy. Accordingly, the expression analogous to

(4.3) determines, for adiabatic deformations, not the free energy but the in-

ternal energy per unit volume

:

£ = \K&mi2 +KUM~\mhkf. (6.9)

§7. The equations of equilibrium for isotropic bodies

Let us now derive the equations of equilibrium for isotropic solid bodies.

To do so, we substitute in the general equations (2.7)

doijc/dxjc+ pgi =

the expression (5.11) for the stress tensor. We have

daw Ea dun E duik
+

dxic (1 + ct)(1-2ct) dxi 1 + ct dxic

Substituting

l / dut du]c\

2\dx]c dx
t

i
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we obtain the equations of equilibrium in the form

E dZUi E d*ui

2(1 + a) dxk* 2(1 + ct)(1 - 2a) dxt dxt

These equations can be conveniently rewritten in vector notation. The
quantities dhii/dxjc2 are components of the vector A u > and dui/dxi = div u.

Thus the equations of equilibrium become

1 J jm 2(1 + a)AU+-T- grad div u = -pg . (7.2)
1 — La h.

It is sometimes useful to transform this equation by using the vector identity

grad div u = Au+ curl curl u. Then (7.2) becomes

1-2(7
grad div u curl curl u

2(1 -a)

(l + c,)(l-2a)
=

" PS
E(l-«)

(7 '3)

We have written the equations of equilibrium for a uniform gravitational

field, since this is the body force most usually encountered in the theory of

elasticity. If there are other body forces, the vector pg on the right-hand

side of the equation must be replaced accordingly.

A very important case is that where the deformation of the body is caused,

not by body forces, but by forces applied to its surface. The equation of

equilibrium then becomes

(1 - 2a)A u+ grad div u = (7.4)

or

2(1 - a) grad div u- (1 - 2a) curl curl u = 0. (7.5)

The external forces appear in the solution only through the boundary con-

ditions.

Taking the divergence of equation (7.4) and using the identity

div grad = A>
we find

A div u = 0, (7.6)

i.e. div u (which determines the volume change due to the deformation) is a

harmonic function. Taking the Laplacian of equation (7.4), we then obtain

AAu = 0, (7.7)

i.e. in equilibrium the displacement vector satisfies the biharmonic equation.

These results remain valid in a uniform gravitational field (since the right-

hand side of equation (7.2) gives zero on differentiation), but not in the

general case of external forces which vary through the body.
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The fact that the displacement vector satisfies the biharmonic equation

does not, of course, mean that the general integral of the equations of equili-

brium (in the absence of body forces) is an arbitrary biharmonic vector; it

must be remembered that the function u(x, y, z) also satisfies the lower-

order differential equation (7.4). It is possible, however, to express the general

integral of the equations of equilibrium in terms of the derivatives of an

arbitrary biharmonic vector (see Problem 10).

If the body is non-uniformly heated, an additional term appears in the

equation of equilibrium. The stress tensor must include the term

-Ka(T-T )Sik

(see (6.2)), and daijcjdxjc accordingly contains a term

-KoidT/dxi^ -[E*l3(l-2<j)]dTldxi.

The equation of equilibrium thus takes the form

— - grad div u curl curl u = a grad T. (7.8)
1 + a 2(1 + a)

Let us consider the particular case of a plane deformation, in which one

component of the displacement vector (u z) is zero throughout the body,

while the components ux , uy depend only on x and y. The components

u ZZ) Uxz, uyz of the strain tensor then vanish identically, and therefore so do

the components crxz , oyz of the stress tensor (but not the longitudinal stress

<T ZZ , the existence of which is implied by the constancy of the length of the

body in the jsr-direction). f

Since all quantities are independent of the co-ordinate z, the equations of

equilibrium (in the absence of external body forces) doikjdxjc = reduce in

this case to two equations

:

doXz daxy _ dvyx doyy _ ,_ ~.

dx dy dx dy

The most general functions axx , axy , ayy satisfying these equations are of

the form

°zx = &x\ty\ °xy = -&xjdxdy, ayy = d2x/dx2 , (7.10)

where x is an arbitrary function of x and y. It is easy to obtain an equation

which must be satisfied by this function. Such an equation must exist, since the

three quantities axx , axy , ayy can be expressed in terms of the two quantities

ux , uy , and are therefore not independent. Using formulae (5.13), we find,

for a plane deformation,

oxx+ oyy = E(uxx+ Uyy)l(l + cr)(l - 2a).

t The use of the theory of functions of a complex variable provides very powerful methods of

solving plane problems in the theory of elasticity. See N. I. Muskhelishvili, Some Basic Problems

of the Mathematical Theory of Elasticity, 2nd English ed., P. Noordhoff, Groningen 1963.
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But

dux duy
Vxx+Vyy = AX> Uxx+ Uyy = — 1 = dlVU,

ox By

and, since by (7.6) div u is harmonic, we conclude that the function x satisfies

the equation

AAx = 0, (7.11)

i.e. it is biharmonic. This function is called the stress function. When the
plane problem has been solved and the function x is known, the longitudinal
stress ozz is determined at once from the formula

<*zz = oE(uxx+ uyy)l(l + cr)(\-2a) = a(axx+ ayy),

or

<yzz =°Ax- (7.12)

PROBLEMS
Problem 1. Determine the deformation of a long rod (of length /) standing vertically in a

gravitational field.

Solution. We take the 2-axis along the axis of the rod, and the xy-plane in the plane of
its lower end. The equations of equilibrium are doxi/dxt = doytjdxi = 0, da zi/dx{ = pg.
On the sides of the rod all the components atu except azz must vanish, and on the upper
end (z = I) axz = ayz = alz = 0. The solution of the equations of equilibrium satisfying
these conditions is azz = — pg(l-z), with all other am zero. From one we find «<» to be
uXx = uyy = opg(l—z)jE, uzz = —pg(l—z)/E, uXy — uxt = uyt = 0, and hence by inte-
gration we have the components of the displacement vector, ux — opg(l—z)x/E, Uy ==

oPg(l-z)y/E, u z = -(pg/2E){l2 -(l-z) 2 -o(x2 +y*)}. The expression for u z satisfies the
boundary condition u z = only at one point on the lower end of the rod. Hence the solution
obtained is not valid near the lower end.

Problem 2. Determine the deformation of a hollow sphere (of external and internal radii
R2 and i?2) with a pressure p x inside and p2 outside.

Solution. We use spherical co-ordinates, with the origin at the centre of the sphere.
The displacement vector u is everywhere radial, and is a function of r alone. Hence curl u=0,
and equation (7.5) becomes grad div u = 0. Hence

1 d(r*u)
div u = — = constant = 3a,

r2 dr

or u = ar+bjr*. The components of the strain tensor are (see formulae (1.7)) u„ == a—2b/r3
,

uee = «00 = a+b/r*. The radial stress is

E E 2E b
&rr = — — —A{\ — a)Urr+ 2aUee} = —a

(l + cr)(l-2(7)
lv ' w l-2a l + o-r3

The constants a and b are determined from the boundary conditions: a„ = —p x at r — Ru
and o„ — —pi at r — i?g. Hence we find

- P1R1*-P2R# 1 ~ 2a
h _

Rl3R23(pl-p2) 1 + ct

R2
3-Ri3

' E ' " i^-fli3 '~2E'
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For example, the stress distribution in a spherical shell with a pressure pi=* p inside and

p2
= outside is given by

pR?l Ra3\ pR$ I Rs? \

For a thin spherical shell of thickness h — R2 —Rj, <^ R we have approximately

u = pR2(l - a)l2Eh, aee = oH = IpRjh, orr = \p,

where a„ is the mean value of the radial stress over the thickness of the shell.

The stress distribution in an infinite elastic medium with a spherical cavity (of radius R)
subjected to hydrostatic compression is obtained by putting i?x = R, i^ = oo, p x

= 0,

Ps = p:

/i
RZ

\ I R3
\

°rr = -P\\ ~ —j, o„ = o„ = -p\\+—y

At the surface of the cavity the tangential stresses aee = a^ = —3p/2, i.e. they exceed the
pressure at infinity.

Problem 3. Determine the deformation of a solid sphere (of radius R) in its own gravi-
tational field.

Solution. The force of gravity on unit mass in a spherical body is —gt/R. Substituting
this expression in place of g in equation (7.3), we obtain the following equation for the radial
displacement:

E{\-a) d/ld(r2«)- a) d / 1 d(r%) \ r

-2a)M72 dr /

= P8
R'(l + <r)(l-2a)

The solution finite for r — which satisfies the condition arr = for r — R is

#>fl(l-2a)(l + <r) /3-a r2
u = r

105(1 -a)

IS- a r* \

It should be noticed that the substance is compressed (urr < 0) inside a spherical surface of
radius i?\/{(3— <0/3(l +a)} and stretched outside it (urr > 0). The pressure at the centre of
the sphere is (3 —a)gpRj10(1 —o).

Problem 4. Determine the deformation of a cylindrical pipe (of external and internal radii
jR8 and i?i), with a pressure p inside and no pressure outside.f

Solution. We use cylindrical co-ordinates, with the ar-axis along the axis of the pipe.
When the pressure is uniform along the pipe, the deformation is a purely radial displacement
wr = u(r). Similarly to Problem 2, we have

1 d(m)
div u = — = constant = 2a.

r dr

Hence u = ar+bjr. The non-zero components of the strain tensor are (see formulae (1.8))

Mr, = dtt/dr = a—b/r2
, u^ = u/r = a+b/r*. From the conditions a„ = at r = Rt ,

and o„ = —p at r = Rlt we find

pR? (l + g)(l-2or) pR^RJ l + o-

a ~R2
2 -Ri*' E ' ~ R2*-R!* '~E~'

t In Problems 4, 5 and 7 it is assumed that the length of the cylinder is maintained constant, so
that there is no longitudinal deformation.



22 Fundamental Equations §7

The stress distribution is given by the formulae

azz = 2paR^/(R2
z -Riz

).

Problem 5. Determine the deformation of a cylinder rotating uniformly about its axis.

Solution. Replacing the gravitational force in (7.3) by the centrifugal force pftV (where

ft is the angular velocity), we have in cylindrical co-ordinates the following equation for the

displacement uf = u(r):

?(l- g) £/ljM\ _
a)(l-2a)dr\r dr J

H
E(l-a) d/1 d(ru)

(1 + o-)(1-2(t) dr\r dr ,

The solution which is finite for r = and satisfies the condition a„ = for r = R is

" = —sm^rr[{)l
Problem 6. Determine the deformation of a non-uniformly heated sphere with a spherically

symmetrical temperature distribution.

Solution. In spherical co-ordinates, equation (7.8) for a purely radial deformation is

d/1 d(r^u)\ l + o- dr

dr\r2 dr / 3(1 -a) dr

The solution which is finite for r = and satisfies the condition a„ — for r = R is

v '

The temperature T(r) is measured from the value for which the sphere, if uniformly heated,

is regarded as undeformed. In the above formula the temperature in question is taken as that

of the outer surface of the sphere, so that T(R) = 0.

Problem 7. The same as Problem 6, but for a non-uniformly heated cylinder with an

axially symmetrical temperature distribution.

Solution. We similarly have in cylindrical co-ordinates

v ' o

Problem 8. Determine the deformation of an infinite elastic medium with a given tempera-

ture distribution T(x, y, z) which is such that the temperature tends to a constant value To

at infinity, there being no deformation there.

Solution. Equation (7.8) has an obvious solution for which curl u = and

div u = <x(l + o)[T(x, y, z)- T J/3(1 - a).
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The vector u, whose divergence is a given function defined in all space and vanishing at

infinity, and whose curl is zero identically, can be written, as we know from vector analysis,

in the form

u(x, y, z) = - — grad dV
,

4n J r

where

r = ^{(X
- X>)2+ (y-y')2+ (z-z')2

}.

We therefore obtain the general solution of the problem in the form

a(l+a) ^CT'-Tq
u = —

127T(1-Cr)

-a) CI -To_jL grad
°
dV', (1)

— cr) J r

wHere T' == T(x', y\ z').

If a finite quantity of heat q is evolved in a very small volume at the origin, the temperature

distribution can be written T—T = (qlC)S(x)S(y)8(z), where C is the specific heat of the

medium. The integral in (1) is then qlCr, and the deformation is given by

a(l + a)q T
u =

12tt(1 -a)C r3

Problem 9. Derive the equations of equilibrium for an isotropic body (in the absence of

body forces) in terms of the components of the stress tensor.

Solution. The required system of equations contains the three equations

daaddXk = (1)

and also the equations resulting from the fact that the six different components of k<* are

not independent quantities. To derive these equations, we first write down the system of

differential relations satisfied by the components of the tensor «<*. It is easy to see that the

quantities

1 / dUi dujc\

2\dxjc dxil

satisfy identii ally the relations

d2Uik d2uim d2uu d2ujeT
•+ . . = —— +

dxidxm dxfdxjc dxjcdxm dx%dxi

Here there are only six essentially different relations, namely those corresponding to the fol-

lowing values of i, k, I, m : 1122, 1133,2233, 1123, 2213,3312. All these are retained if the above
tensor equation is contracted with respect to / and m :

d2Utt _ d2Uu d2Ukl

dxidxjc dxjcdxi dxidxi

Substituting here unc in terms of o,a: according to (5.12) and using (1), we obtain the re-

quired equations:

(l + o)AcTik+—^- = 0. (3)
OXfOXjc

These equations remain valid in the presence of external forces constant throughout the body.
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Contracting equation (3) with respect to the suffixes i and k, we find that A<*ii = 0, i.e.

<tji is a harmonic function. Taking the Laplacian of equation (3), we then find that AA"<* = 0,

i.e. the components ant are biharmonic functions. These results follow also from (7.6)

and (7.7), since aw and unc are linearly related.

Problem 10. Express the general integral of the equations of equilibrium (in the absence

of body forces) in terms of an arbitrary biharmonic vector (B. G. Galerkin 1930).

Solution. It is natural to seek a solution of equation (7.4) in the form

u = Af+A grad div f.

Hence div u = (1 +A) div Af. Substituting in (7.4), we obtain

(l-2a)AAf+[2(l-(r)^ + l] grad div Af= 0.

From this we see that, if f is an arbitrary biharmonic vector (A Af = 0)> then

u = Af - — r grad divf.
2(1 - a)

Problem 1 1 . Express the stresses a„, a^, ar$ for a plane deformation (in polar co-ordinates

r, <j>) as derivatives of the stress function.

Solution. Since the required expressions cannot depend on the choice of the initial line

of
<f>,

they do not contain <f>
explicitly. Hence we can proceed as follows : we transform the

Cartesian derivatives (7.10) into derivatives with respect to r,
<f>,

and use the results that

a„ = (axs^.o, oH = (atfy)^_ , <^ = (<^i/)0=o, the angle <f>
being measured from the *-axis.

Thus

arr =
~rJr

+^W °
H ~ dr2 ' ^ ~ dr \r dV

Problem 12. Determine the stress distribution in an infinite elastic medium containing

a spherical cavity and subjected to a homogeneous deformation at infinity.

Solution. A general homogeneous deformation can be represented as a combination of a

homogeneous hydrostatic extension (or compression) and a homogeneous shear. The former

has been considered in Problem 2, so that we need only consider a homogeneous shear.

Let <7ij;
(0) be the homogeneous stress field which would be found in all space if the cavity

were absent: in a pure shear a«<°> = 0. The corresponding displacement vector is denoted

by u<°>, and we seek the required solution in the form u = uC'+u'1
', where the function u<*>

arising from the presence of the cavity is zero at infinity.

Any solution of the biharmonic equation can be written as a linear combination of centrally

symmetrical solutions and their spatial derivatives of various orders. The functions r\

r, 1, 1/r are independent centrally symmetrical solutions. Hence the most general form of a

biharmonic vector u(1>
, depending only on the components of the constant tensor anew

as parameters and vanishing at infinity, is

Uia) = A(m«»—[-)+Bokl
«» - )+CakP r. (1)

dxk \r) dxidxkdxi\rj dxidxkdxi

Substituting this expression in equation (7.4), we obtain

{1_2a)^+4- L̂ = [2(l-2cr)C+(A + 2C)]okl«» l\ I = 0,
v

dx? dxt dxi dxidxkdxi r

whence A = —4C(1 — a). Two further relations between the constants A, B, C are obtained

from the condition at the surface of the cavity: (<7,-fc< >+ <r<*:(1))rt* = for r = R (R being the
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radius of the cavity, the origin at its centre, and n a unit vector parallel to r). A somewhat

lengthy calculation, using (1), gives the following values:

B = Ci?2/5, C = 5#3(1 + a)j2E(7- 5 a).

The final expression for the stress distribution is

5(l-2a)/ JR\s 3 jr^I 5(\-2a)/R\A 3 (R\*\

l

1+J
^r(7) +7^l7)

)

+

15 /R\ 3
( /R\ 2

\

+—-—(— ) CT-(~ ) \(oii
(0)nkni+okPnini) +

15 /R\*l /R\ 2
\ ,ns

+
2(7^)(T)

3

(

1 - 2CT-(7)

2

|

8" <'iAB-

In order to obtain the stress distribution for arbitrary one*- ) (not a pure shear), ao:(0) in

this expression must be replaced by ct,*(0)— £§<& ff»(0) , and the expression

r R3 l

corresponding to a deformation homogeneous at infinity (cf. Problem 2) must be added. We
may give here the general formula for the stresses at the surface of the cavity:

15 l

aik = -—

—

{(1 - (y){(Tik
i0)- crtPmnjc- aki

i0)nini)+
7— 5cr l

5CT-1
)+ vimmninmnink- crcW *^^*+—— <Jii

{0)
(8ik -nm) \.

Near the cavity, the stresses considerably exceed the stresses at infinity, but this extends

over only a short distance (the concentration of stresses). For example, if the medium is

subjected to a homogeneous extension (only o lzW different from zero), the greatest stress

occurs on the equator of the cavity, where

27- 15a

§8. Equilibrium of an elastic medium bounded by a plane

Let us consider an elastic medium occupying a half-space, i.e. bounded
on one side by an infinite plane, and determine the deformation of the
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medium caused by forces applied to its free surface.f The distribution of

these forces need satisfy only one condition: they must vanish at infinity in

such a way that there is no deformation at infinity. In such a case the equa-

tions of equilibrium can be integrated in a general form.

The equation of equilibrium (7.4) holds throughout the space occupied

by the medium:

graddivu+ (l-2cr)Au = 0. (8.1)

We seek a solution of this equation in the form

u = f+grad<£, (8.2)

where <£ is some scalar and the vector f satisfies Laplace's equation:

Af=0. (8.3)

Substituting (8.2) in (8.1), we then obtain the following equation for
<f>:

2(l-a)A<£ = -divf. (8.4)

We take the free surface of the elastic medium as the #y-plane; the medium

is in z > 0. We write the functions fx and fy as the ^-derivatives of some

functions gx and gy :

fx = dgxfiz* fy = dgy/dz- (8-5)

Since fx and fy are harmonic functions, we can always choose the functions

gx and gy so as to satisfy Laplace's equation

:

Ag* = 0, Agy = 0. (8.6)

Equation (8.4) then becomes

2(1-.)A^= --(—+—+/,).

Since gx , gy and fz are harmonic functions, we easily see that a function

<j> which satisfies this equation can be written as

where i/j is again a harmonic function:

A«A = o. (8 -8)

| The most direct and regular method of solving this problem is to use Fourier's method on

equation (8.1). In that case, however, some fairly complicated integrals have to be calculated. The

method given below is based on a number of artificial devices, but the calculations are simpler.



z-0

= -2(1 + a)Pz[E. (8.10)

z =
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Thus the problem of determining the displacement u reduces to that

of finding the functions gXy gyy fz , iff, all of which satisfy Laplace's equation.

We shall now write out the boundary conditions which must be satisfied at

the free surface of the medium (the plane z = 0). Since the unit outward

normal vector n is in the negative ^-direction, it follows from the general

formula (2.8) that aiz = -Pt . Using for aik the general expression (5.11) and

expressing the components of the vector u in terms of the auxiliary quantities

gx> gy , fz and «/r, we obtain after a simple calculation the boundary conditions

r d2gx-\ Vdl l-2ar _ 1 /dgz
[

dgv\ +2
#j-

L 5*2 J z« o

+
ldx[ 2(1 - of* 2(1 - a) \ dx dy) dz).

= -2(1 +*)PX/E, (8.9)

La^2 Jz-o Uvl2(l-ar 2(l-ff)U* 3y/ aWJz=o

= -2(l + a)P
2,/£

,

,

[K'-(t4') rf3
The components Px , Py , Pz of the external forces applied to the surface are

given functions of the co-ordinates x and y, and vanish at infinity.

The formulae by which the auxiliary quantitiesgX} gy,fz and \jj were defined

do not determine them uniquely. We can therefore impose an arbitrary

additional condition on these quantities, and it is convenient to make the

quantity in the braces in equations (8.9) vanish :f

dy

Then the conditions (8.9) become simply

raagfc-i _ 2(l + o) ra^-l _ 2(l + a) p

La^Lo * *' L"^"J z=o~ £ ^
Equations (8.l0)-(8.l2) suffice to determine completely the harmonic

functions gx , gy , fz and ifj.

For simplicity, we shall consider the case where the free surface of an

elastic half-space is subjected to a concentrated force F, i.e. one which is

applied to an area so small that it can be regarded as a point. The effect of

this force is the same as that of surface forces given by P = FS(x)8(y), the

origin being at the point of application of the force. If we know the solution

for a concentrated force, we can immediately find the solution for any force

distribution P(#, y). For, if

Ui = Gik(x,y, z)Fk (8.13)

f We shall not prove here that this condition can in fact be imposed; this follows from the absence

of contradiction in the result.

(i
- 2^-(S+l!

)
+4(1 - <7)S= o

-
(8 -n)

(8.12)
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is the displacement due to the action of a concentrated force F applied at

the origin, then the displacement caused by forces T*{x,y) is given by the

integralf

Ui = fJG«(*-*\ y-y\ z)Pk(x', y') dx' d/. (8.14)

We know from potential theory that a harmonic function / which is zero

at infinity and has a given normal derivative df/dz on the plane z = is

given by the formula
1 rr\df(x\y\z)l dx'dy'

f(x, y, z) = ,

2ttJ J L dz Jz= o r

where
r = \/{(x— x')2 + (y—y')2 + z2}.

Since the quantities dgx/dz, dgyjdz and that in the braces in equation (8.10)

satisfy Laplace's equation, while equations (8.10) and (8.12) determine the

values of their normal derivatives on the plane z = 0, we have

/,_ &t+ ^L\J± . i±f
f
[**<>?> u d/

\ 8* 9y / dz ttE J J r

\ + a F
t

tE r

dgx l + o Fx dgy 1+ff Fy

dz ttE
'

r' dz ttE r'

(8.15)

(8.16)
r oz ttCj r

where now r = ^(x2+y2+ z2).
The expressions for the components of the required vector u involve the

derivatives of gXi gy with respect to x, y, z, but not gx , gy themselves. To
calculate dgxjdx, dgyjdy, we differentiate equations (8.16) with respect to

x and y respectively

:

d2gx _ _l + a F^ d2gy =
1 + or Fyy

dxdz ttE r3 ' dydz ttE r3

Now, integrating over z from oo to z, we obtain

dgx 1+ a Fxx

dx ttE
'
r(r+ z)'

dgy 1 + a Fpy
(8.17)

dy ttE r{r+ z)

We shall not pause to complete the remaining calculations, which are

elementary but laborious. We determinefz and diff/dz from equations (8.11),

t In mathematical terms, Gw is the Green's tensor for the equations of equilibrium of a semi-infinite

medium.
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(8.15) and (8.17). Knowing di/jjdz, it is easy to calculate dtfjjdx and difjjdy by

integrating with respect to z and then differentiating with respect to x and y.

We thus obtain all the quantities needed to calculate the displacement vector

from (8.2), (8.5) and (8.7). The following are the final formulae:

l + <r( xz (l-2,r)*-| 2(l-a)r+z
—\r z -\ v x -r

r3 r(r+ z) J r(r+ z)

\2r(ar+ z) + z2]x
)

r6{r+ z)* )

Uy _ Ltfff^ - (1-2^1 2(1- CT),+ , I

+

(r+ #) J
" r(r+ z)

[2r(ar+ z) + z2
]y

r3(r+ z)2
(xFx+yFy)\,

1 + erf r2(l — CT) z2i r 1-2ct zi
)

In particular, the displacement of points on the surface of the medium is

given by putting z = 0:

1 + cr 1

ux

Uu =

(l-2o>: lax \

-Fz+ 2(l-a)Fx+-—(xFx +yFy)\,
2ttE r\r r2 )

1 + alf (1-2ct)v lay
\—-.- - -^ ^Fz+ 2(l-a)Fy+ -/(xFx+yFy)\,

2ttE r{ r r2 j

(8.19)

»* = "T^-- k 1 " "X^+O ~ 2ct
) " («^r+^y)

PROBLEM
Determine the deformation of an infinite elastic medium when a force F is applied to a

small region in it. t

Solution. If we consider the deformation at distances r which are large compared with

the dimension of the region where the force is applied, we can suppose that the force is

applied at a point. The equation of equilibrium is (cf. (7.2))

Au+
1

l-2o-
grad div u =

2(1 + a)

E
Fo(r), (1)

where 8(r) = S(x)8(y)8(z), the origin being at the point where the force is applied. We seek

the solution in the form u = Uo+Ux, where u„ satisfies the Poisson-type equation

A«o = -
2(1

J~

g)
Fo(r).

E
(2)

f The corresponding problem for an arbitrary infinite anisotropic medium has been solved by
I. M. Lifshitz and L. N. RozentsveIg (Zhttrnal experimental'not i teoreticheskoi fiziki 17, 783, 1947).



30 Fundamental Equations §9

We then have for ui the equation

grad div ui + (l — 2o)/\vl\ = — grad div un. (3)

The solution of equation (2) which vanishes at infinity is uo = (1 + o)F/2nEr. Taking the

curl of equation (3), we have A curl ui = 0. At infinity we must have curl ui = 0. But a

function harmonic in all space and zero at infinity must be zero identically. Thus curl ui = 0,

and we can therefore write ui = grad^. From (3) we obtain grad {2(1 — a)A^+ div uo} = 0.

Hence it follows that the quantity in braces is a constant, and it must be zero at infinity; we
therefore have in all space

dlVUo 1 + ct /1\
£</, = = F- grad (-).r

2(1 -a) 4ttE(1-ct)
&

\rf

If i/i is a solution of the equation A«A = l/r > then

1 + CT

6 = F« grad ib.Y
4ttE(1-o)

Taking the solution iff = \r, which has no singularities, we obtain

1 + ct (F.n)n-F
ui = grad </> = —— ,

57r.c(l — ct) r

where n is a unit vector parallel to the radius vector r. The final result is

1 + CT (3-4<r)F+n(n.F)

$7rE(l-a) r

On putting this formula into the form (8.13) we obtain the Green's tensor for the equa-

tions of equilibrium of an infinite isotropic medium:!

1 + CT 1

87tE(1 — ct) r

1 Hk 1 d*r

47Tfil r 4(1 — ct) dxfdxjc

§9. Solid bodies in contact

Let two solid bodies be in contact at a point which is not a singular point

on either surface. Fig. la shows a cross-section of the two surfaces near

the point of contact O. The surfaces have a common tangent plane at O,

which we take as the xy-plane. We regard the positive ^-direction as being

into either body (i.e. in opposite directions for the two bodies) and denote

the corresponding co-ordinates by z and z'.

f The fact that the components of the tensor Gxk are first-order homogeneous functions of the co-

ordinates x, y, z is evident from arguments of homogeneity applied to the form of equation (1), where
the left-hand side is a linear combination of the second derivatives of the components of the vector u,

and the right-hand side is a third-order homogeneous function (S(ar) = a _3 S(r)).

This property remains valid in the general case of an arbitrary anisotropic medium.
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Near a point of ordinary contact with the acy-plane, the equation of the

surface can be written

z = K
afi
x^

fii
(9.1)

where summation is understood over the values 1, 2, of the repeated suffixes

a, j8 (xi = x, x2 = y), and K
afi

is a symmetrical tensor of rank two, which

characterises the curvature of the surface: the principal values of the tensor

Kap are l/2Ri and 1/2^2, where Ri and R2 are the principal radii of curvature

of the surface at the point of contact. A similar relation for the surface of

the other body near the point of contact can be written

Z' = K'apXJCfi. (9-2)

Let us now assume that the two bodies are pressed together by applied

forces, and approach a short distance A.f Then a deformation occurs near

the original point of contact, and the two bodies will be in contact over a

small but finite portion of their surfaces. Let u z and u'z be the components

(along the * and z' axes respectively) of the corresponding displacement

vectors for points on the surfaces of the two bodies. The broken lines

Fig. 1

in Fig. lb show the surfaces as they would be in the absence of any deforma-

tion, while the continuous lines show the surfaces of the deformed bodies; the

letters z and z' denote the distances given by equations (9.1) and (9.2). It

is seen at once from the figure that the equation

(z+ uz) + (z'+ u'z) = h,

or

(*«*+*'«*)*«**+««+ «'« = n
>

(9.3)

f This contact problem in the theory of elasticity was first solved by H. Hertz.
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holds everywhere in the region of contact. At points outside the region of
contact, we have

z+ z' + uz +u'z < h.

We choose the x andj> axes to be the principal axes of the tensor K
afi
+ K

afi
.

Denoting the principal values of this tensor by A and B,-\ we can rewrite
equation (9.3) as

Ax*+ By2+ uz+ u'z = h. (9.4)

We denote by P z{x, y) the pressure between the two deformed bodies at

points in the region of contact; outside this region, of course Pz = 0. To
determine the relation between Pz and the displacements u z> u'z , we can
with sufficient accuracy regard the surfaces as plane and use the formulae
obtained in §8. According to the third of formulae (8.19) and (8.14), the
displacement uz under the action of normal forces Pz(x, y) is given by

~
ttE J J"

uz = -^-\\-^-dx'dy,

Mz =
-^-JJ-T— dxdy

>

where a, a' and E, E' are the Poisson's ratios and the Young's moduli of the
two bodies. Since Pz = outside the region of contact, the integration ex-
tends only over this region. It may be noted that, from these formulae, the
ratio u z\u' z is constant:

uz\u'z = (1 - CT2)£'/(1 - CT'2)£. (9.6)

The relations (9.4) and (9.6) together give the displacements u Zi u'z at every
point of the region of contact (although (9.5) and (9.6), of course, relate to

points outside that region also).

Substituting the expressions (9.5) in (9.4), we obtain

l/l-o* l-<x'2\ r rPz(x',y')

-I——+—jp— )

j j r
dx' d/ = h-Ax*-By2. (9.7)

t The quantities A and B are relaced to the radii of curvature i?1( R2 and R\, R't by

2(A + B) = —+—+—+—,V
' R! R2 R\ R'2

/ 1 1 \
2 / 1 1 \2

T
\Ri i?2 /U'i rJ'

where
<f>

is the angle between the normal sections whose radii of curvature are Rt and R\.
The radii of curvature are regarded as positive if the centre of curvature lies within the body con-

cerned, and negative in the contrary case.
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This integral equation determines the distribution of the pressure P z over

the region of contact. Its solution can be found by analogy with the following

results of potential theory. The idea of using this analogy arises as follows:

firstly, the integral on the left-hand side of equation (9.7) is of a type com-

monly found in potential theory, where such integrals give the potential of a

charge distribution; secondly, the potential inside a uniformly charged

ellipsoid is a quadratic function of the co-ordinates.

If the ellipsoid x2
la

2+y2jb2+ z2
lc

2 = 1 is uniformly charged (with volume

charge density p), the potential in the ellipsoid is given by

<Kx> y> z)

00

n x2 y2 z2 \ d£
= irpabcj

|1
-— - -^j - J^r] V{{a2 + i){b2 + £){c

2 + t)}

'

o

In the limiting case of an ellipsoid which is very much flattened in the

z-direction (c -> 0), we have

00

Hx,y) = «pabcj{l -JL-- _^j ;

in passing to the limit c -> we must, of course, put z = for points inside

the ellipsoid. The potential <j>{x, y, z) can also be written as

,_ c c c p dx ' dy' dz
'

mytZ) ~ J J J v{(^-^)2 +(^-y)2 +(^-^)2
}

,

where the integration is over the volume of the ellipsoid. In passing to the

limit c ->0, we must put z = z' = in the radicand; integrating over z'

between the limits

±c^{\-(x'2\a2)-{y'2\b2)\

we obtain

r rdx' dy' 1/ x'2 y'2 \

where

r= V{{x-x')2 + {y-y'Y},

and the integration is over the area inside the ellipse

x'2ja2+y'2jb2 = 1.
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Equating the two expressions for <f>(x, v), we obtain the identity

r rdx' dy' If x'2 y'2 \

J J ~~r V \ ~a~2 W)

Comparing this relation with equation (9.7), we see that the right-hand
sides are quadratic functions of x and y of the same form, and the left-hand
sides are integrals of the same form. We can therefore deduce immediately
that the region of contact (i.e. the region of integration in (9.7)) is bounded
by an ellipse of the form

x2 y2

and that the function Pz(x, y) must be of the form

Pfay) = constant x^(l - *- -
£).

Taking the constant such that the integral jjPz dx dy over the region of
contact is equal to the given total force F which moves the bodies together,

we obtain

'^-zWf 1 -*-£)• (9 ' 10)

This formula gives the distribution of pressure over the area of the region of

contact. It may be pointed out that the pressure at the centre of this region

is f times the mean pressure FjTrab.

Substituting (9.10) in equation (9.7) and replacing the resulting integral

in accordance with (9.8), we obtain

00

FDr/ x2 y2 \

-ft
1 -*rr£i) "fMc+flc+flo

= h-Ax2-By\

where

4\ E
+

E' )'

This equation must hold identically for all values of x and y inside the
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ellipse (9.9) ; the coefficients of x and y and the free terms must therefore be

respectively equal on each side. Hence we find

FDr d|
1 g

(9.11)
tu r

TT J V{(<*
2+ Z)(b2+m'

FDr dgbD r
A = — -

77 J (d

B
FDr d£bu r

IT J I(b2 + i)V{(a2+ZW +m
Equations (9.12) determine the semi-axes a and b of the region of contact

from the given force F {A and B being known for given bodies). The
relation (9.11) then gives the distance of approach h as a function of the force

F. The right-hand sides of these equations involve elliptic integrals.

Thus the problem of bodies in contact can be regarded as completely

solved. The form of the surfaces (i.e. the displacements u z , u'z) outside the

region of contact is determined by the same formulae (9.5) and (9.10); the

values of the integrals can be found immediately from the analogy with the

potential outside a charged ellipsoid. Finally, the formulae of §8 enable us to

find also the deformation at various points in the bodies (but only, of course,

at distances small compared with the dimensions of the bodies).

Let us apply these formulae to the case of contact between two spheres of

radii R and R'. Here A = B = 1/2R+1/2R'. It is clear from symmetry
that a = b, i.e. the region of contact is a circle. From (9.12) we find the

radius a of this circle to be

a = Fii3{DRR'l(R+ R')}V3. (9.13)

h is in this case the difference between the sum R+ R' and the distance be-

tween the centres of the spheres. From (9.10) we obtain the following

relation between F and h

:

h _ F^Jz^l+l)]
1'3

. (9.14)

It should be noticed that h is proportional to Fm ; conversely, the force F
varies as h3/2 . We can write down also the potential energy U of the spheres

in contact. Since —F= —dU/dh, we have

2 / RR'
U = #5/2

—

SD

I RR'

JrTW <9 - 15 >

Finally, it may be mentioned that a relation of the form h = constant x F2/3
,

or F = constant x A3/2 , holds not only for spheres but also for other finite
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bodies in contact. This is easily seen from similarity arguments. If we make
the substitution

a2 -> oca2, b2 -> <xb2 , F -> a3/2 F,

where a is an arbitrary constant, equations (9.12) remain unchanged. In
equation (9.11), the right-hand side is multiplied by a, and so h must be
replaced by aJi if this equation is to remain unchanged. Hence it follows

that F must be proportional to h3/2 .

PROBLEMS
Problem 1. Determine the time for which two colliding elastic spheres remain in contact.

Solution. In a system of co-ordinates in which the centre of mass of the two spheres is

at rest, the energy before the collision is equal to the kinetic energy of the relative motion
£/«>*> where v is the relative velocity of the colliding spheres and /x = mjW^/Cwii+wia) their

reduced mass. During the collision, the total energy is the sum of the kinetic energy, which
may be written £/Jt8

, and the potential energy (9.15). By the law of conservation of energy
we have

(dh\ 2
.„,„ , 4 / RR'lahY 4 /J— +kh5/2 = u.v2, k = — Ar

\dt)
r

5ZW-R + R'

The maximum approach h of the spheres corresponds to the time when their relative velocity

h = 0, and is h = {nlk)*'W*.
The time t during which the collision takes place (i.e. h varies from to h and back) is

h„ i

dx
T

Jv(»2-^/2//x) Uv JV(*>
2- Mfi'*/p) \ k2v] J V(i - *2/5)

'

or

51X9/10) IW l#W '

By using the statical formulae obtained in the text to solve this problem, we have neglected

elastic oscillations of the spheres resulting from the collision. If this is legitimate, the velocity

v must be small compared with the velocity of sound. In practice, however, the validity of

the theory is limited by the still more stringent requirement that the resulting deformations

should not exceed the elastic limit of the substance.

Problem 2. Determine the dimensions of the region of contact and the pressure distri-

bution when two cylinders are pressed together along a generator.

Solution. In this case the region of contact is a narrow strip along the length of the

cylinders. Its width 2a and the pressure distribution across it can be found from the formulae
in the text by going to the limit bja -* oo. The pressure distribution will be of the form
Pz(x) = constant X \/(l —x3

la
2
), where x is the co-ordinate across the strip; normalising

the pressure to give a force F per unit length, we obtain

IFIF II x*\

Substituting this expression in (9.7) and effecting the integration by means of (9.8), we have

4DF f df 8DF
A = i3tt J (a2 + £)

3/2| 3-rra2
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One of the radii of curvature of a cylindrical surface is infinite, and the other is the radius

of the cylinder; in this case, therefore, A = 1/2R+112R', B = 0. We have finally for the

width of the region of contact

16DF RR'I/16DF RR' \

a=
VI 3tt

' R+ R')

§10. The elastic properties of crystals

The change in the free energy in isothermal compression of a crystal is, as

with isotropic bodies, a quadratic function of the strain tensor. Unlike what

happens for isotropic bodies, however, this function contains not just two

coefficients, but a larger number of them. The general form of the free energy

of a deformed crystal is

F = ^iklmUikUim, (10.1)

where XiJcim is a tensor of rank four, called the elastic modulus tensor. Since

the strain tensor is symmetrical, the product uacUim is unchanged when the

suffixes i, k, or /, m, or /, / and k, m, are interchanged. Hence we see that the

tensor Xmm can be defined so that it has the same symmetry properties:

Xiklm = Xmm = ^ikml — hmik> (10.2)

A simple calculation shows that the number of different components of a

tensor of rank four having these symmetry properties is in general 21.

In accordance with the expression (10.1) for the free energy, the stress

tensor for a crystal is given in terms of the strain tensor by

one = dFjdUije — XikimUim't (10.3)

cf. also the last footnote to this section.

If the crystal possesses symmetry, relations exist between the various

components of the tensor Xikim , so that the number of independent com-

ponents is less than 21.

We shall discuss these relations for each possible type of macroscopic

symmetry of crystals, i.e. for each of the crystal classes, dividing these into the

corresponding crystal systems.

(1) Triclinic system. Triclinic symmetry (classes C\ and C*) does not place

any restrictions on the components of the tensor Xikim, and the system of co-

ordinates may be chosen arbitrarily as regards the symmetry. All the 21

moduli of elasticity are non-zero and independent. However, the arbitrariness

of the choice of co-ordinate system enables us to impose additional conditions

on the components of the tensor Xikim- Since the orientation of the co-ordinate

system relative to the body is defined by three quantities (angles of rotation),

there can be three such conditions; for example, three of the components may
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be taken as zero. Then the independent quantities which describe the elastic

properties of the crystal will be 18 non-zero moduli and 3 angles defining the
orientation of the axes in the crystal.

(2) Monoclinic system. Let us consider the class Cs ; we take a co-ordinate
system with the *y-plane as the plane of symmetry. On reflection in this

plane, the co-ordinates undergo the transformation x -> x, y -+y, z -> — z.

The components of a tensor are transformed as the products of the corres-

ponding co-ordinates. It is therefore clear that, in the transformation men-
tioned, all components Xik im whose suffixes include z an odd number of
times (1 or 3) will change sign, while the other components will remain un-
changed. By the symmetry of the crystal, however, all quantities characterising
its properties (including all components Xiicim) must remain unchanged on
reflection in the plane of symmetry. Hence it is evident that all components
with an odd number of suffixes z must be zero. Accordingly, the general
expression for the elastic free energy of a crystal belonging to the monoclinic
system is

* — iXxxxxuxx +2^yyyyuyy + 2^zzzzUzz
2 + XxxyyUxxUyy + XXxZZUxxUzz+

+ AyyzzUyyUzz+ 2XXyxyUXy
2 + 2XxzxzUxz2+ 2XyzyzUyz2 + 2\XxxyUxxUxy+

+ 2XyyyxUyyUyx+ 2XxyZZUXyUzz+ 4XZZyzUxZUyz . ( 1 0.4)

This contains 13 independent coefficients. A similar expression is obtained
for the class C2, and also for the class C^n, which contains both symmetry
elements (C2 and an). In the argument given, however, the direction of only
one co-ordinate axis (that of z) is fixed ; those of x and y can have arbitrary

directions in the perpendicular plane. This arbitrariness can be used to make
one coefficient, say Xxyzz , vanish by a suitable choice of axes. Then the 13

quantities which describe the elastic properties of the crystal will be 12 non-
zero moduli and one angle defining the orientation of the axes in the xy-plane.

(3) Orthorhombic system. In all the classes of this system (Czv , D 2 , £>2ft) the

choice of co-ordinate axes is determined by the symmetry, and the expression

obtained for the free energy is the same for each class.

Let us consider, for example, the class D^n', we take the three planes of

symmetry as the co-ordinate planes. Reflections in each of these planes are

transformations in which one co-ordinate changes sign and the other two
remain unchanged. It is evident therefore that the only non-zero components

X-ikim are those whose suffixes contain each of x, y, z an even number of times

;

the other components would have to change sign on reflection in some plane

of symmetry. Thus the general expression for the free energy in the ortho-

rhombic system is

F — \XxxxxUxz +2*yyyyUyy +^XzzzzUzz2 + XXxyyUXxUyy+ XxxzzUxxUzz+
+ XyyZZUyyUZZ+ 2XXyxyUXy

2 + 2XXZXZUXZ%+ 2XyZyZUyz
2

. (10.5)

It contains nine moduli of elasticity.
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(4) Tetragonal system. Let us consider the class C4t,; we take the axis C4

as the #-axis, and the x and y axes perpendicular to two of the vertical

planes of symmetry. Reflections in these two planes signify transformations

x -> — x, y -+y, z ->z

and

x -> x, y -> —y, z-+z;

all components Xikim with an odd number of like suffixes therefore vanish.

Furthermore, a rotation through an angle £tt about the axis C4 is the trans-

formation

x -+y, v -> —x, z -+z.

Hence we have

Xxxxx = "yyyyy XXxzz — Ayyzz> XXzxz = Ayzyz-

The remaining transformations in the class Civ do not give any further

conditions. Thus the free energy of crystals in the tetragonal system is

F =» %\xxxx(Uxx
2 + Uyy2) + &zzzzUzz

2 + hzxzz(UxzUzz+ UyyUzz) +

+ ^xxyyUxxUyy+ 2XXyxyUXy
2+ 1\Xzxz{Uxz

2 + %z2
)- (10.6)

It contains six moduli of elasticity.

A similar result is obtained for those other classes of the tetragonal system

where the natural choice of the co-ordinate axes is determined by symmetry

(I>2d> £>4, D^h). In the classes C4 , S4 , Cih , on the other hand, only the choice

of the s-axis is unique (along the axis C4 or 54). The requirements of symmetry

then allow a further component XXXxy = -Xyyyx in addition to those which

appear in (10.6). These components may be made to vanish by suitably

choosing the directions of the x and y axes, and F then reduces to the form

(10.6).

(5) Rhotnbohedral system. Let us consider the class C3v ; we take the third-

order axis as the sr-axis, and the j-axis perpendicular to one of the vertical

planes of symmetry. In order to find the restrictions imposed on the com-

ponents of the tensor Xilcim by the presence of the axis C3 , it is convenient

to make a formal transformation using the complex co-ordinates £ = x + iy,

r\ = x— iy, the z co-ordinate remaining unchanged. We transform the

tensor Xium to the new co-ordinate system also, so that its suffixes take the

values I, 77, z. It is easy to see that, in a rotation through 2^/3 about the

axis C3, the new co-ordinates undergo the transformation £ -> £e2nt/3
,

rj _> ^e
-2^f/3

?
z ->z. By symmetry only those components Xucim which are

unchanged by this transformation can be different from zero. These com-

ponents are evidently the ones whose suffixes contain £ three times, or r\

three times (since (^2^/3)3 = e2ni = i)
?
Gr £ and r\ the same number of times

(since e2^/3e-2rf/3 = j^ i>e . XZZZZ} X
g7liv ^uw *£?**» ^£*vz> ^Hl*> ^w«-
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Furthermore, a reflection in the symmetry plane perpendicular to the jy-axis
gives the transformation x -> x, y -> -y, z -> z, or f -> rj, 77 -> £. Since
*££*z becomes A^z in this transformation, these two components must be
equal. Thus crystals of the rhombohedral system have only six moduli of
elasticity. In order to obtain an expression for the free energy, we must form
the sum \,\iicimUiicUim, in which the suffixes take the values £, t], z; since F
is to be expressed in terms of the components of the strain tensor in
the co-ordinates x, y, z, we must express in terms of these the components
in the co-ordinates £, rj, z. This is easily done by using the fact that the
components of the tensor uik transform as the products of the corresponding
co-ordinates. For example, since

£
2 = (x+iy)2 = x2—y2+ 2ixy,

it follows that

u
ii
= u%%— uyy "f" 2iuXy.

Consequently, the expression for F is found to be

F = &ZZZzUZZ2+ 2A
iviv

(uzx+U1/V)
2+ A^

vv
{(uXa; -Uyy)2+ 4uXy

2
}+

+ 2X^zz(Uzz+ Uyy)uZZ+ A\Zrlz{uXz
2+ Uyz2) +^^z{(uxx- Uyy)uxz- 2uXyUyz}.

(10.7)

This contains 6 independent coefficients. A similar result is obtained for the
classes D3 and DM , but in the classes C3 and ^6, where the choice of the x and 3/

axes remains arbitrary, requirements of symmetry allow also a non-zero value
of the difference X

i^z-X 7j1j7jZ . This, however, can be made to vanish by a
suitable choice of the x and y axes.

(6) Hexagonal system. Let us consider the class Cq; we take the sixth-

order axis as the sr-axis, and again use the co-ordinates $ = x+iy> r\ = x— iy.

In a rotation through an angle \n about the #-axis, the co-ordinates £, r\

undergo the transformation £ -> ge^'3 , r\ -> rje-^3 . Hence we see that only
those components Amm are non-zero which contain the same number of
suffixes i and r\. These are Azzzz , \ gv gv A

£f„, X gr)ZZ , X gZrjZ . Other symmetry
elements in the hexagonal system give no further restrictions. There are
therefore only five moduli of elasticity. The free energy is

F = %XzzzzUZZ2+ 2X
Ev £v

(UXX+ Uyy)2+ X
iivv

[(uXX -Uyy)2+ 4uXy
2
] +

+ 2X^ZZUZZ(UXX+ Uyy) + iXiZvZ(uxz
2+ Uyz2). (10.8)

It should be noticed that a deformation in the ry-plane (for which uxx ,

Uyy and uxy are non-zero) is determined by only two moduli of elasticity,

as for an isotropic body; that is, the elastic properties of a hexagonal crystal

are isotropic in the plane perpendicular to the sixth-order axis.

For this reason the choice of axis directions in this plane is unimportant and
does not affect the form of F. The expression (10.8) therefore applies to all

classes of the hexagonal system.
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(7) Cubic system. We take the axes along the three fourth-order axes of

the cubic system. Since there is tetragonal symmetry (with the fourth-order

axis in the ^-direction), the number of different components of the tensor

hklm is limited to at most the following six: Xxxxx, ^zzzz, ^xxzz, ^xxyy, ^xyxy,

^xzxz' Rotations through far about the x and y axes give respectively the

transformations x -> x, y -> — z, z ->y, and x -> z, y -» y, z -> — x. The
components listed are therefore equal in successive pairs. Thus there remain

only three different moduli of elasticity. The free energy of crystals of the

cubic system is

** = 2^XXXX\UXX +Uyy + Uzz ) + AXXyy[UxxUyy-\- UXXUZZ~\~ Uyytlzz)+

+ 2\zyXy(llxy
2 + UXZ2+ UyZ2). (10.9)

We may recapitulate the number of independent parameters (elastic moduli

or angles defining the orientation of axes in the crystal) for the classes of the

various systems

:

Triclinic 21

Monoclinic 13

Orthorhombic 9

Tetragonal (C4, S4, Cm) 7

Tetragonal (C4v , D2d, #4, D4h) 6

Rhombohedral (C3, 56) 7

Rhombohedral (C^v, D3, Dsa) 6

Hexagonal 5

Cubic 3

The least number of non-zero moduli that is possible by suitable choice of

the co-ordinate axes is the same for all the classes in each system

:

Triclinic 18

Monoclinic 12

Orthorhombic 9

Tetragonal 6

Rhombohedral 6

Hexagonal 5

Cubic 3

All the above discussion relates, of course, to single crystals. Polycrystalline

bodies whose component crystallites are sufficiently small may be regarded

as isotropic bodies (since we are concerned with deformations in regions

large compared with the dimensions of the crystallites). Like any isotropic

body, a polycrystal has only two moduli of elasticity. It might be thought at

first sight that these moduli could be obtained from those of the individual

crystallites by simple averaging. This is not so, however. If we regard the

deformation of a polycrystal as the result of a deformation of its component
crystallites, it would in principle be necessary to solve the equations of
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equilibrium for every crystallite, taking into account the appropriate boun-
dary conditions at their surfaces of separation. Hence we see that the relation

between the elastic properties of the whole crystal and those of its component
crystallites depends on the actual form of the latter and the amount of correla-

tion of their mutual orientations. There is therefore no general relation

between the moduli of elasticity of a polycrystal and those of a single crystal

of the same substance.

The moduli of an isotropic polycrystal can be calculated with fair accuracy

from those of a single crystal only when the elastic properties of the single

crystal are nearly isotropic.f In a first approximation, the moduli of elasticity

of the polycrystal can then simply be put equal to the "isotropic part" of the

moduli of the single crystal. In the next approximation, terms appear which
are quadratic in the small "anisotropic part" of these moduli. It is found%
that these correction terms are independent of the shape of the crystallites

and of the correlation of their orientations, and can be calculated in a general

form.

Finally, let us consider the thermal expansion of crystals. In isotropic

bodies, the thermal expansion is the same in every direction, so that the

strain tensor in free thermal expansion is (see §6) um = $<x.(T— Tb)S$fc, where
a is the thermal expansion coefficient. In crystals, however, we must put

uik = \*ik{T-T ) t (10.10)

where a^ is a tensor of rank two, symmetrical in the suffixes i and k. Let us

calculate the number of independent components of this tensor in crystals

of the various systems. The simplest way of doing this is to use the result of

tensor algebra that to every symmetrical tensor of rank two there corresponds

a tensor ellipsoid.^ It follows at once from considerations of symmetry that,

for triclinic, monoclinic and orthorhombic symmetry, the tensor ellipsoid has

three axes of different length. For tetragonal, rhombohedral and hexagonal

symmetry, on the other hand, we have an ellipsoid of revolution (with its

axis of symmetry along the axes C4, C3 and C§ respectively). Finally, for cubic

symmetry the ellipsoid becomes a sphere. An ellipsoid of three axes is

determined by three quantities, an ellipsoid of revolution by two, and a

sphere by one (the radius). Thus the number of independent components

of the tensor a^ in crystals of the various systems is as follows: triclinic,

monoclinic and orthorhombic, 3 ; tetragonal, rhombohedral and hexagonal, 2

;

cubic, 1.

Crystals of the first three systems are said to be biaxial, and those of the

second three systems uniaxial. It should be noticed that the thermal expan-

sion of crystals of the cubic system is determined by one quantity only, i.e.

they behave in this respect as isotropic bodies.

t For a "nearly isotropic" cubic crystal (e.g.), the difference XXxxx~

X

Xxyy— 2XXyxv must be small.

t I. M. Lifshitz and L. N. RozentsveIg, Zhurnal eksperimental'noii teoreticheskoifiziki 16, 967, 1946.

§ Determined by the equation «ikX{Xic — 1.
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PROBLEM
Determine the Young's modulus of a cubic crystal as a function of direction.

Solution. We take the axes of co-ordinates along the three axes of the fourth order. Let
the axis of a rod cut from the crystal be in the direction of the unit vector n. The stress

tensor one in the extended rod must satisfy the following conditions: when one is multiplied
by n { , the resulting extension force must be parallel to n (condition at the ends of the rod)

;

when it is multiplied by a vector perpendicular to n, the result must be zero (condition on the
sides of the rod). Such a tensor must be of the form one = />«<«*, where p is the extension
force per unit area of the ends of the rod. Calculating the components one by means of the
expression (10.9) for the free energy! and comparing them with the formulae one = ptiitik,

we find the components of the strain tensor to be

(ci + 2c2)nx
2-c2

uxx = p- r—, uxy = pnxnyl2cz,
{ci-C2)(ci+ 2c2)

and similarly for the remaining components. Here we have put Xxxxx = clt Xxxyy = ct ,

Axyxy — Cg.

The relative longitudinal extension of the rod is u = (dl'—dl)ldl, where dl' is given by
formula (1.2) and dxjdl — nt . For small deformations this gives u — Uijcmnjc. The Young's
modulus is determined by the coefficient of proportionality in p = Eu, and is

*- fcrSfcrfi - ^((w+^+w)]"
1

.

E has extremum values in the directions of the edges (i.e. of the co-ordinate axes) and of the
spatial diagonals of the cube.

f In calculating <r,fc, the following fact must be borne in mind. If we effect the calculation, not
directly from the formulae auc = KkimUm, but by differentiation of the expression for the free energy
with respect to the components of the tensor unc, the derivatives with respect to mk with i ^ k give
twice the values of the corresponding components o.-fc. This is because the expressions aa = dFjduuc
are meaningful only as indicating that dF = one dw.fc; in the sum <r<k du<jfc, however, the term in the
differential dune for each component with i ^ k of the symmetrical tensor «<& appears twice.



CHAPTER II

THE EQUILIBRIUM OF RODS AND PLATES

§11. The energy of a bent plate

In this chapter we shall study some particular cases of the equilibrium of

deformed bodies, and we begin with that of thin deformed plates. When we
speak of a thin plate, we mean that its thickness is small compared with its

dimensions in the other two directions. The deformations themselves are

supposed small, as before. In the present case the deformation is small if the

displacements of points in the plate are small compared with its thickness.

The general equations of equilibrium are considerably simplified when
applied to thin plates. It is more convenient, however, not to derive these

simplified equations directly from the general ones, but to calculate afresh

the free energy of a bent plate and then vary that energy.

When a plate is bent, it is stretched at some points and compressed at

others: on the convex side there is evidently an extension, which decreases

as we penetrate into the plate, finally becoming zero, after which a gradually

increasing compression is found. The plate therefore contains a neutral

surface, on which there is no extension or compression, and on opposite sides

of which the deformation has opposite signs. The neutral surface clearly

lies midway through the plate.

Fig. 2

We take a co-ordinate system with the origin on the neutral surface and the

sr-axis normal to the surface. The xy-plane is that of the undeformed plate.

We denote by £ the vertical displacement of a point on the neutral surface,

i.e. its z co-ordinate (Fig. 2). The components of its displacement in the

xy-plane are evidently of the second order of smallness relative to £, and can

therefore be put equal to zero. Thus the displacement vector for points on the

neutral surface is

ux®> = uy^ = 0, «z<°> = i{x,y). (11.1)

44
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For further calculations it is necessary to note the following property of

the stresses in a deformed plate. Since the plate is thin, comparatively small

forces on its surface are needed to bend it. These forces are always consider-

ably less than the internal stresses caused in the deformed plate by the ex-

tension and compression of its parts. We can therefore neglect the forces P<

in the boundary condition (2.8), leaving a^n^ = 0. Since the plate is only

slightly bent, we can suppose that the normal vector n is along the #-axis.

Thus we must have on both surfaces of the plate axz = ayz = azz = 0. Since

the plate is thin, however, these quantities must be small within the plate

if they are zero on each surface. We therefore conclude that the components

axz , ayz , azz are small compared with the remaining components of the stress

tensor everywhere in the plate. We can therefore equate them to zero and

use this condition to determine the components of the strain tensor.

By the general formulae (5.13), we have

E E
oZx = ~ uzxy azy = - uzyi

l + cr l + o

E
°zz = Ti
—^—^rrft 1 ~ CT)"zz+ a

(
u*x+ uvv)}-

{l + a)[l — Za)

(11.2)

Equating these expressions to zero, we obtain 8ux/8z — — 8uz/8x,

duyfdz = —8uz/dy, uzz = — o(uXx+ uyy)j(\ — o). In the first two of these

equations uz can, with sufficient accuracy, be replaced by £(x, y):dux/dz =
— dt,/dx, duyjdz = — dt,jdy> whence

ux = —zd^/dx, uy = — zdt,ldy. (11.3)

The constants of integration are put equal to zero in order to make

ux = uy = for z = 0.

Knowing ux and uy , we can determine all the components of the strain

tensor

:

uxx = —zd^/dx2
, Uyy — —zd2Hdy2

, uxy = — zd^jdxdy^

a (d% &l\ (11.4)
uxz = uyz = 0, lta ._^_+_j.

We can now calculate the free energy F per unit volume of the plate, using

the general formula (5.10). A simple calculation gives the expression

EF= z*—
1 +
4 w^+£?£)

2

+ r^r-^i). (11 .5)
crl2(l-<7)\a*2 dy*J [\dxdyl dx*dy*\l

V
'

The total free energy of the plate is obtained by integrating over the volume.

The integration over z is from — \h to + \h
t
where h is the thickness of the
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plate, and that over x, y is over the surface of the plate. The result is that
the total free energy F

pl
= J*F dV of a deformed plate is

Pl

24(l-o2)j)l\dx2
+
dy2)

+

+2(, -')(®
,

-55)] d'*" (n -6)

the element of area can with sufficient accuracy be written as dx dy simply,
since the deformation is small.

Having obtained the expression for the free energy, we can regard the plate

as being of infinitesimal thickness, i.e. as being a geometrical surface, since
we are interested only in the form which it takes under the action of the
applied forces, and not in the distribution of deformations inside it. The
quantity £ is then the displacement of points on the plate, regarded as a surface,

when it is bent.

§12. The equation of equilibrium for a plate

The equation of equilibrium for a plate can be derived from the condition
that its free energy is a minimum. To do so, we must calculate the variation

of the expression (11.6).

We divide the integral in (11.6) into two, and vary the two parts separately.

The first integral can be written in the form J(A £)
2 d/, where d/ = da? dy

is a surface element and A = d2Jdx2+ d2jdy2 is here (and in §§13, 14) the
two-dimensional Laplacian. Varying this integral, we have

8hj(A0*df= JAZA^df

= J*A£ div graded/

= Jdiv (A £ grad S£) d/- Jgrad S£ • grad A £ d/.

All the vector operators, of course, relate to the two-dimensional co-ordinate

system (x, y). The first integral on the right can be transformed into an
integral along a closed contour enclosing the plate :f

Jdiv(AC gradSQ d/ = j> A£(n . gradS£) 61

r 2S£
= <fA£-^d/,

J on

where djdn denotes differentiation along the outward normal to the contour.

t The transformation formula for two-dimensional integrals is exactly analogous to the one for three
dimensions. The volume element dV is replaced by the surface element d/ (a scalar), and the surface
element df is replaced by a contour element dl multiplied by the vector n along the outward normal to
the contour. The integral over df is converted into one over dl by replacing the operator dfd/dxt by
fit dl. For instance, if ^ is a scalar, we have J grad <t> df = $ <£n dl.
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In the second integral we use the same transformation to obtain

Jgrad8£ . grad A£ d/ = jdiv(S£ grad AC) d/- JS£A2£ d/

47

= fa(n • grad A£) d/- J8£A
2£ d/

?A^

dn
JB^dl-faAHdf

Substituting these results, we find that

^J(A0
2 d/= JHAHdf-j8^dl+j>A^-dl. (12.1)

The transformation of the variation of the second integral in (11.6) is

somewhat more lengthy. This transformation is conveniently effected in

^U".

Fig. 3

components, and not in vector form. We have

J Wdxdy/ dx2 dy2 )

J

It
= 2

d% d2bt, d% d2S£ d28£ dH

dx2 dy2dxdy dxdy dx2 dy2

The integrand can be written

d/.

a /dS£ dH B8CdH\

dx dy2/

d /3S£ d2C a§£ dH\

dx\ dy dxdy dx dy2} ' dy\ dx dxdy dy dx2)'

i.e. as the (two-dimensional) divergence of a certain vector. The variation

can therefore be written as a contour integral:

J Wdxdy/ dx2 dy2 ) J \dx dxdy dy dx2 )

J \ dy dxdy dx dy2 )

+

(12.2)
dy dxdy

where 6 is the angle between the #-axis and the normal to the contour (Fig. 3).



48 The Equilibrium of Rods and Plates §12

The derivatives of S£ with respect to x and y are expressed in terms of

its derivatives along the normal n and the tangent 1 to the contour

:

B a a— = cos — — sin —
Bx Bn dl

a . a a— = sin0 l-cos0—

.

By Bn dl

Then formula (12.2) becomes

J WdxdyJ dx2 By2 )

r B8C( B% B2l B%\
= Ad/— 2 sin cos —- -sin20—- -cos20—- +

J Bn { BxBy Bx2 By2)

r B8U I B% BH\ BH )

+ <hdl—- sin0cos0 — + (coS20- sin20)—- .

J Bl { \ By2 Bx2/ BxBy)

The second integral may be integrated by parts. Since it is taken along a

closed contour, the limits of integration are the same point, and we have

simply

r 9 ( / b2i a2£\ a2£ \-^ 8i;-|sin*cos*(- - _) + (co*-.uW>—}.

Collecting all the above expressions and multiplying by the coefficients

shown in formula (11.6), we obtain the following final expression for the

variation of the free energy:

Eh3 I r

r [BAl Bl [B2
l B2t\

B2t\
+ (cos20-sin20)

BxBy)
.

+ |_Jldz(A£+ (l-<7)(2sin0cos0
J Bn { \ BxByBxBy

B2£\\\
— sin2 cos2

"
-«))). (12.3)

Bx2 By2)

In order to derive from this the equation of equilibrium for the plate, we
must equate to zero the sum of the variation 8F and the variation 8U of the

potential energy of the plate due to the external forces acting on it. This

latter variation is minus the work done by the external forces in deforming the
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plate. Let P be the external force acting on the plate, per unit areaf and

normal to the surface. Then the work done by the external forces when the

points on the plate are displaced a distance S£ is JPS£ d/. Thus the condition

for the total free energy of the plate to be a minimum is

SFpl -J>S£d/=0. (12.4)

On the left-hand side of this equation we have both surface and contour

integrals. The surface integral is

The variation 8£ in this integral is arbitrary. The integral can therefore

vanish only if the coefficient of S£ is zero, i.e.

Eh*
AH-P = 0. (12.5)

12(1 -a2
)

This is the equation of equilibrium for a plate bent by external forces acting

on itJ.

The boundary conditions for this equation are obtained by equating to

zero the contour integrals in (12.3). Here various particular cases have to be

considered. Let us suppose that part of the edge of the plate is free, i.e. no
external forces act on it. Then the variations S£ and hdljdn on this part of

the edge are arbitrary, and their coefficients in the contour integrals must be
zero. This gives the equations

H(1-ct)— COS0SU10 +
dn dl{ \ dx2 dy2/

+ (sin20-cos20)—- = 0, (12.6)
dxdy)

( d2l d2l d2t\
A£+(l-cr) 2 sin cos 0-^- -sin20—- -cos20—- = 0, (12.7)

I dxdy dx2 dy2 )

which must hold at all free points on the edge of the plate.

The boundary conditions (12.6) and (12.7) are very complex. Considerable

simplifications occur when the edge of the plate is clamped or supported. If

it is clamped (Fig. 4a), no vertical displacement is possible, and moreover no

f The force P may be the result of body forces (e.g. the force of gravity), and is then equal to the
integral of the body force over the thickness of the plate.

X The coefficient D = Eh3jl2(l —a9) in this equation is called the fiexural rigidity or cylindrical

rigidity of the plate.



50 The Equilibrium of Rods and Plates §12

bending is possible at the edge. The angle through which a given part of the

edge turns from its initial position is (for small displacements £) the derivative

dt,Jdn. Thus the variations S£ and Sd£/dn must be zero at clamped edges, so

that the contour integrals in (12.3) are zero identically. The boundary con-

ditions have in this case the simple form

I = 0, dijdn = 0. (12.8)

The first of these expresses the fact that the edge of the plate undergoes no
vertical displacement in the deformation, and the second that it remains

horizontal.

m(b)

Fig. 4

It is easy to determine the reaction forces on a plate at a point where it

is clamped. These are equal and opposite to the forces exerted by the plate

on its support. As we know from mechanics, the force in any direction is

equal to the space derivative, in that direction, of the energy. In particular,

the force exerted by the plate on its support is given by minus the derivative

of the energy with respect to the displacement £ of the edge of the plate, and

the reaction force by this derivative itself. The derivative in question, how-
ever, is just the coefficient of S£ in the second integral in (12.3). Thus the

reaction force per unit length is equal to the expression on the left of equation

(12.6) (which, of course, is not now zero), multiplied by Ehzjl2(l — a2).
Similarly, the moment of the reaction forces is given by the expression on

the left of equation (12.7), multiplied by the same factor. This follows at

once from the result of mechanics that the moment of the force is equal to

the derivative of the energy with respect to the angle through which the

body turns. This angle is dt,/dn, so that the corresponding moment is given

by the coefficient of BSl/dn in the third integral in (12.3). Both these expres-

sions (that for the force and that for the moment) can be very much simplified

by virtue of the conditions (12.8). Since £ and dt,jdn are zero everywhere on

the edge of the plate, their tangential derivatives of all orders are zero also.

Using this and converting the derivatives with respect to x andjy in (12.6)

and (12.7) into those in the directions of n and 1, we obtain the following

simple expressions for the reaction force F and the reaction moment M:

Eh^ [dK dd a2nF= —-+ , (12.9)
12(l- CT2)La«3 d/ drfil

Eh* 32£M = 1. (12.10)
12(l-cr2)d«2

v
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Another important case is that where the plate is supported (Fig. 4b),

i.e. the edge rests on a fixed support, but is not clamped to it. In this case

there is again no vertical displacement at the edge of the plate (i.e. on the

line where it rests on the support), but its direction can vary. Accordingly,

we have in (12.3) S£ = in the contour integral, but dS£/d» # 0. Hence

only the condition (12.7) remains valid, and not (12.6). The expression on the

left of (12.6) gives as before the reaction force at the points where the plate is

supported ; the moment of this force is zero in equilibrium. The boundary

condition (12.7) can be simplified by converting to the derivatives in the direc-

tion ofn and 1 and using the fact that, since £ = everywhere on the edge, the

derivatives dljdl and d2 £/d/2 are also zero. We then have the boundary

conditions in the form

dK dd dl
£ = , —+ a - = 0. (12.11)

dn2 dl dn

PROBLEMS
Problem 1 . Determine the deflection of a circular plate (of radius R) with clamped edges,

placed horizontally in a gravitational field.

Solution. We take polar co-ordinates, with the origin at the centre of the plate. The force

on unit area of the surface of the plate is P = phg. Equation (12.5) becomes A a
£ = 64j3,

where j8 = 3pg(l—o*)J16htE; positive values of £ correspond to displacements downward.
Since £ is a function of r only, we can put A = r~l d(rd/dr)/dr. The general integral is

£ = j3r*+ar3+b+cr*log(r/R)+dlog(rlR). In the case in question we must put d — 0,

since log(r[R) becomes infinite at r — 0, and c = 0, since this term gives a singularity in

A £ at r — (corresponding to a force applied at the centre of the plate; see Problem 3). The
constants a and b are determined from the boundary conditions £ = 0, d£/dr = for r — R.

The result is £ = j3(.R»-ra)*.

Problem 2. The same as Problem 1, but for a plate with supported edges.

Solution. The boundary conditions (12.11) for a circular plate are

d% o-d£
£ = 0, —-+—- = 0.

dr2 r dr

The solution is similar to that of Problem 1, and the result is

'5 + a/5 + cr \
£ = j8(#2_ r2)| R2-r*\.

Problem 3. Determine the deflection of a circular plate with clamped edges when a force

/ is applied to its centre.

Solution. We have A a
£ = everywhere except at the origin. Integration gives

£ = ar2+ b + cr*log(rlR),

the log r term again being omitted. The total force on the plate is equal to the force / at its
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centre. The integral of A 2
£ over the surface of the plate must therefore be

12(1 -cr2)„ f 12(1-0^)
2tt rA2£ dr = —

i

if.

J Eh?
J

o

Hence c = 3(1— o^f/lirEh3
. The constants a and b are determined from the boundary

conditions. The result is

3/(1 - ct2)

Problem 4. The same as Problem 3, but for a plate with supported edges.

Solution.

£ =
3/(l-<T2

)f-3 + o-_
o _ o , #

4ttM3

r3 + o- in
(R*-r*)-2r*log— \.

Ll + o- r J

Problem 5. Determine the deflection of a circular plate suspended by its centre and in a
gravitational field.

Solution. The equation for £ and its general solution are the same as in Problem 1.

Since the displacement at the centre is { = 0, we have c = 0. The constants a and b are
determined from the boundary conditions (12.6) and (12.7), which are, for circular symmetry,

dA£ d/d2£ ld£\
n

d2£ ad£
= — —+-— = 0, —-+-— = 0.

r dr/ ' dr2 r drdr dr\dr2

The result is

R 3 + ctr R 3 + a!
I = 0r2 r2+ 8#2 1og—+2ZP .

L r 1 + o-J

Problem 6. A thin layer (of thickness h) is torn off a body by external forces acting against

surface tension forces at the surface of separation. With given external forces, equilibrium is

established for a definite area of the surface separated and a definite shape of the layer

removed (Fig. 5). Derive a formula relating the surface tension to the shape of the
layer removed.

f

Fig. 5

Solution. The layer removed can be regarded as a plate with one edge (the line of separa-

tion) clamped. The bending moment on the layer is given by formula (12.10). The work
done by this moment when the length of the separated surface increases by 8* is

MdSC/dx = MSxdH/dx2

(the work of the bending force F itself is a second-order quantity). The equilibrium condition

is that this work should be equal to the change in the surface energy, i.e. to 2a.hx, where a is

| This problem was discussed by I. V. Obreimov (1930) in connection with a method which he
developed for measuring the surface tension of mica. The measurements which he made by this

method were the first direct measurements of the surface tension of solids.
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the surface-tension coefficient, the factor 2 allowing for the creation of two free surfaces by

the separation. Thus

Eh* / 32£\ 2

o8)!"24(1 - a2)\dxV

§13. Longitudinal deformations of plates

Longitudinal deformations occurring in the plane of the plate, and not

resulting in any bending, form a special case of deformations of thin plates.

Let us derive the equations of equilibrium for such deformations.

If the plate is sufficiently thin, the deformation may be regarded as uniform

over its thickness. The strain tensor is then a function of x and y only (the

;cy-plane being that of the plate) and is independent of z. Longitudinal

deformations of a plate are usually caused either by forces applied to its edges

or by body forces in its plane. The boundary conditions on both surfaces of

the plate are then atknjc = 0, or, since the normal vector is parallel to the

ar-axis, atz = 0, i.e. axz = ayz = azz = 0. It should be noticed, however,

that in the approximate theory given below these conditions continue to

hold even when the external tension forces are applied to the surfaces of the

plate, since these forces are still small compared with the resulting longi-

tudinal internal stresses (<jxx , &yy, <*xy) in the plate. Since they are zero at

both surfaces, the quantities axz , ayz , azz must be small throughout the

thickness of the plate, and we can therefore take them as approximately zero

everywhere in the plate.

Equating to zero the expressions (11.2), we obtain the relations

UZZ = - 0(UZX+ Uyy)l{\- a), UXZ = UyZ = 0. (13-1)

Substituting in the general formulae (5.13), we obtain for the non-zero com-
ponents of the stress tensor

E "

axx — ~ 7\uxx+ aUyy)t
1 — CT

Z

E
aVV = Z -AUyy+OUxx), > (13.2)

1— O*

E
°xy = ~ uxy-

1 + or

It should be noticed that the formal transformation

E -> E/(l - a2), a -> a/(l - a) (13.3)

converts these expressions into those which give the relation between the

stresses axx , axy , ayy and the strains uxx , uyy , uzz for a plane deformation

(formulae (5.13) with uzz = 0).

Having thus eliminated the displacement u Zy we can regard the plate as a

two-dimensional medium (an "elastic plane"), of zero thickness, and take



54 The Equilibrium of Rods and Plates §13

the displacement vector u to be a two-dimensional vector with components
ux and Up. If Px and Py are the components of the external body force per

unit area of the plate, the general equations of equilibrium are

\ ox ay J

(dayx doyy\

\ ox oy I

Substituting the expressions (13.2), we obtain the equations of equilibrium in

the form

J 1 d2ux 1 82ux 1 d2Uy\
Ehl h H ) +Px = 0,

ll-cx2 dx2 2(1 + a) dy2 2(1 -a) dxdyj

I 1 d2uv 1 d2uv 1 d2ux \

Ehl -+ —+ -\ + Py = 0.
ll-a2 By2 2(1 + a) dx2 2(1 -a) dxdyj

(13.4)

These equations can be written in the two-dimensional vector form

grad divu-^1 - <*) curl curlu = - (1 - o2)F/Eh, (13.5)

where all the vector operators are two-dimensional.

In particular, the equation of equilibrium in the absence of body forces is

grad divu— 1(1 — a) curl curlu = 0. (13.6)

It differs from the equation of equilibrium for a plane deformation of a body

infinite in the ^-direction (§7) only by the sign of the coefficient (in accordance

with (13.3)).f As for a plane deformation, we can introduce the stressfunction

defined by

<?xx = d2X/dy
2

, oxy = - d2x/dxdy, ayy = d2X/dx
2

, (13.7)

whereby we automatically satisfy the equations of equilibrium in the form

daxx duxy dayx dayy
1 = (J, 1 = u.

dx dy dx dy

The stress function, as before, satisfies the biharmonic equation, since for

Ax we have

A% = oxx+o-yy = E(uxx + Uyy)l(l - a) = {£/(l-cr)}divu;

this differs only by a factor from the result for a plane deformation.

It may be pointed out that the stress distribution in a plate deformed by

given forces applied to its edges is independent of the elastic constants of the

f A deformation homogeneous in the ^-direction for which azx = azv = azz = everywhere is

sometimes called a state of plane stress, as distinct from a plane deformation, for which u zx = u zy =
u tz = everywhere.
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material. For these constants appear neither in the biharmonic equation

satisfied by the stress function, nor in the formulae (13.7) which determine

the components o% from that function (nor, therefore, in the boundary

conditions at the edges of the plate).

PROBLEMS
Problem 1 . Determine the deformation of a plane disc rotating uniformly about an axis

through its centre perpendicular to its plane.

Solution. The required solution differs only in the constant coefficients from the solution

obtained in §7, Problem 5, for the plane deformation of a rotating cylinder. The radial

displacement ur = u(r) is given by the formula

u = r
8E

/3 + o- \

(tt/
2-4

This is the expression which gives that of §7, Problem 5, if the substitution (13.3) is made.

Problem 2. Determine the deformation of a semi-infinite plate (with a straight edge)
under the action of a concentrated force in its plane, applied to a point on the edge.

-. .^- \

Fig. 6

Solution. We take polar co-ordinates, with the angle
<f>
measured from the direction of

the applied force; it takes values from —(Jw+a) to frr— a, where a is the angle between the
direction of the force and the normal to the edge of the plate (Fig. 6). At every point of the
edge except that where the force is applied (the origin) we must have a^ = <r

r
a = 0. Using

the expressions for a^ and ar^ obtained in §7, Problem 11, we find that the stress function
must therefore satisfy the conditions

dx 1 dx—— = constant, --—- = constant, for
<f>
= -(£?!+ a), (£77- -a).

or r d(f)

Both conditions are satisfied if x = rf(<f>). With this substitution, the biharmonic equation

fl d / d\ a2 \2

[rlh-X ~dr)
+
~d^)

X =

gives solutions for f(<f>) of the forms sin 4>, cos <f>, <f> sin <f>, <f>
cos <j>. The first two of these lead to

stresses which are zero identically. The solution which gives the correct value for the force
applied at the origin is

X = -(Flir)rtf, sincf>, arr = -{IFIttt) cos«£, ct^ = aH = 0, (1)

where F is the force per unit thickness of the plate. For, projecting the internal stresses on
directions parallel and perpendicular to the force F, and integrating over a small semicircle
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centred at the origin (whose radius then tends to zero), we obtain

J
urrr COS (j> d<f> = —F,

arrr sin <j> d<f> = 0,

i.e. the values required to balance the external force applied at the origin.

Formulae (1) determine the required stress distribution. It is purely radial: only a radial

compression force acts on any area perpendicular to the radius. The lines of equal stress are

the circles r = d cos
<f>,

which pass through the origin and whose centres lie on the line of

action of the force F (Fig. 6).

The components of the strain tensor are u„ = o„\E, u^ = — aarr/E, ur^ = 0. From these

we find by integration (using the expressions (1.8) for the components mic in polar co-

ordinates) the displacement vector

:

IF (l-o)F
ur = \og(r/a) cos j>

(f>
sin

<f>,

7tE 7tE

2oF 2F
t , x .

#

(l-a)F
uA = ——sin

<f)
H log(r/«) sin <j> -\ (sin ^ — <f>

cos <j>).

rE TT.E tE

Here the constants of integration have been chosen so as to give zero displacement (trans-

lation and rotation) of the plate as a whole : an arbitrarily chosen point at a distance a from the

origin on the line of action of the force is assumed to remain fixed.

Using the solution obtained above, we can obtain the solution for any distribution of forces

acting on the edge of the plate (cf. §8). It is, of course, inapplicable in the immediate neigh-

bourhood of the origin.

Fig. 7

Problem 3. Determine the deformation of an infinite wedge-shaped plate (of angle 2a)

due to a force applied at its apex.

Solution. The stress distribution is given by formulae which differ from those of Problem

2 only in their normalisation. If the force acts along the mid-line of the wedge (Fi in Fig. 7),

we have a„ = —(Fi cos <£)/K«+i sin 2a), ar^ = a^ = 0. If, on the other hand, the force

acts perpendicular to this direction (Ft in Fig. 7), then

arr = — (Fz cos 4>)jr{a— \ sin 2a).

In each case the angle <f>
is measured from the direction of the force.

Problem 4. Determine the deformation of a circular disc (of radius R) compressed by two

equal and opposite forces Fh applied at the ends of a diameter (Fig. 8).

Solution. The solution is obtained by superposing three internal stress distributions.
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Two of these are

oVr* == -(IFIirrdcosfa, craV^i = o{1)Mi = °>

o®W. = -(2F/77T2) COS 02, aP>r* = *(2W, = 0,

where n, & and r2 , <f>2 are the polar co-ordinates of an arbitrary point P with origins at A
and B respectively. These are the stresses due to a normal force F applied to a point on the

edge of a half-plane; see Problem 2. The third distribution, o(*Uk = (F/wi?)8<*, is a uniform

extension of definite intensity. For, if the point P is on the edge of the disc, we have

rx — 2R cos 4>i, *t = 2R cos ^, so that c^V/, = <*wrtrt
= —F/irR. Since the directions of

rx and r2 at this point are perpendicular, we see that the first two stress distributions give

a uniform compression on the edge of the disc. These forces can be just balanced by the

uniform tension given by the third system, so that the edge of the disc is free from stress, as it

should be.

Fig. 8

Problem 5. Determine the stress distribution in an infinite sheet with a circular aperture

(of radius R) under uniform tension.

Solution. The uniform tension of a continuous sheet corresponds to stresses o^xx = T,

ff(0)v» = <*wxy = 0, where T is the tension force. These in turn correspond to the stress

function x(0) — \Ty* = %Tr* sin2^ = J7V*(1 —cos 2<f>). When there is a circular aperture

(with the centre as the origin of polar co-ordinates r, <f>), we seek the stress function in the

form x = X(0)+X(I)
, X(1) =f(.ir)+F(r) cos 2<f>. The integral of the biharmonic equation which

is independent of
<f>

is of the form /(r) = ar* log r+br'+c log r, and in the integral pro-

portional to cos 2<f> we have F(r) = d^+ei^+glr2
. The constants are determined by the

conditions o^Uk = for r = oo and arr = c
f^ = for r = R. The result is

x
(i) = iTR^-logr+ (l - |L)

cos2^J,

and the stress distribution is given by

3i?2x—
J

cos 20},

o*-»r{i+--(i+—Jco.2*J,

0^.-17(1+—-—) sin 2f

In particular, at the edge of the aperture we have <*
K

o^q = 3T, i.e. three times the stress at infinity (cf. §?, Problem 12)"ft"

T(l —2 cos 24), and for
<f>
= ±frr,
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§14. Large deflections of plates

The theory of the bending of thin plates given in §§11-13 is applicable only

to fairly small deflections. Anticipating the result given below, it may be

mentioned here that the condition for that theory to be applicable is that the

deflection £ is small compared with the thickness h of the plate. Let us now
derive the equations of equilibrium for a plate undergoing large deflections.

The deflection £ is not now supposed small compared with h. It should be

emphasised, however, that the deformation itself must still be small, in the

sense that the components of the strain tensor must be small. In practice,

this usually implies the condition £ <^ /, i.e. the deflection must be small

compared with the dimension / of the plate.

The bending of a plate in general involves a stretching of it.f For small

deflections this stretching can be neglected. For large deflections, however,

this is not possible ; there is therefore no neutral surface in a plate undergoing

large deflections. The existence of a stretching which accompanies the

bending is peculiar to plates, and distinguishes them from thin rods, which

can undergo large deflections without any general stretching. This property

of plates is a purely geometrical one. For example, let a flat circular plate be

bent into a segment of a spherical surface. If the bending is such that the

circumference of the plate remains constant, its diameter must increase. If the

diameter is constant, on the other hand, the circumference must be reduced.

The energy (11.6), which may be called the pure bending energy, is only

the part of the total energy which arises from the non-uniformity of the

tension and compression through the thickness of the plate, in the absence

of any general stretching. The total energy includes also a part due to this

general stretching; this may be called the stretching energy.

Deformations consisting of pure bending and pure stretching have been

considered in §§11-13. We can therefore use the results obtained in these

sections. It is not necessary to consider the structure of the plate across its

thickness, and we can regard it as a two-dimensional surface of negligible

thickness.

We first derive an expression for the strain tensor pertaining to the stretch-

ing of a plate (regarded as a surface) which is simultaneously bent and

stretched in its plane. Let u be the two-dimensional displacement vector

(with components ux , uy) for pure stretching; £, as before, denotes the trans-

verse displacement in bending. Then the element of length d/ = y^dx2 + dy2
)

of the undeformed plate is transformed by the deformation into an element

dl', whose square is given by d/'2 = (dx+ dux)
2 + (dy + duy)

2 + dl2
. Putting

here dux = (dux/dx) dx+ (dux/dy) dy, and similarly for duy and d£, we
obtain to within higher-order terms d/'2 = dl2 + 2u

afi
dx

0l
dx

fi
, where the

two-dimensional strain tensor is defined as

i/dua duB\ i dt, dt
— (

—

-+—-1+ • (14.1)
2\dxs dxj 2dxa dx#

u,*B

f An exception is, for instance, the bending of a flat plate into a cylindrical surface.
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(In this and the following sections, Greek suffixes take the two values x and_y

;

as usual, summation over repeated suffixes is understood.) The terms quad-

ratic in the derivatives of ua are here omitted; the same cannot, of course, be

done with the derivatives of £, since there are no corresponding first-order

terms.

The stress tensor <r
a/?

due to the stretching of the plate is given by formula

(13.2), in which u
afi

must be replaced by the total strain tensor given by

formula (14.1). The pure bending energy is given by formula (11.6), and can

be written J Yi(£) dx dy, where *Fi(£) denotes the integrand in (11.6). The

stretching energy per unit volume of the plate is, by the general formulae,

\u
afi
aap . The energy per unit surface area is obtained by multiplying by h,

so that the total stretching energy can be written JT2(«a/f) d/, where

T2 = \hu^a^. (14.2)

Thus the total free energy of a plate undergoing large deflections is

FPi= j{Ti(0+T2(Wa/?)}d/. (14.3)

Before deriving the equations of equilibrium, let us estimate the relative

magnitude of the two parts of the energy. The first derivatives of £ are of

the order of £//, where / is the dimension of the plate, and the second deriva-

tives are of the order of £/Z2 . Hence we see from (11.6) that Ti ~ M3
£
2
//
4

.

The order of magnitude of the tensor components u
afi

is £
2
//
2

, and so

T2 ~ £A£4//4 . A comparison shows that the neglect ofT2 in the approximate

theory of the bending of plates is valid only if £
2 <^ A2 .

The condition of minimum energy is 8F+ SU = 0, where U is the poten-

tial energy in the field of the external forces. We shall suppose that the

external stretching forces, if any, can be neglected in comparison with the

bending forces. (This is always valid unless the stretching forces are very

large, since a thin plate is much more easily bent than stretched.) Then we

have for 8U the same expression as in §12: 8U = -J"PS£ d/, where P is the

external force per unit area of the plate. The variation of the integral J Ti d/

has already been calculated in §12, and is

r ew r

The contour integrals in (12.3) are omitted, since they give only the boundary

conditions on the equation of equilibrium, and not that equation itself, which

is of interest here.

Finally, let us calculate the variation of the integral JY2 d/. The variation

must be taken both with respect to the components of the vector u and with

respect to £. We have

r raT2
SPF2 d/= —Su^df.
J J oua

The derivatives of the free energy per unit volume with respect to uxp are
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a
a/} ; hence d^l^Uafi = ha

afi. Substituting also for ua/} the expression (14.1),

we obtain

8JV2 df=hj*a/i
8ua0 df

r (B8ua dhuB dt, 3S£ 3S£ d£\
= pUJ—-+—-+——+— —4/;

J l dxo dxg, dxa dxo dxa dxj

or, by the symmetry of aa/? ,

(d8ua dSC 3£

Cg 0X0

Integrating by parts, we obtain

da^
.
3/ 3£

*0

8 [V2 d/ = h LJ^l+^L £-} d/.

J J I oa^ 3*^ 3#J

ts, we obtain

8 |V2 d/ = -h f|^8«a
+J-( ff JL\ 8(;\ d/.

The contour integrals along the circumference of the plate are again omitted.

Collecting the above results, we have

8Fvl+8U = (U AH-h— (oaS-^\-p)8t,-h-^8u} d/ = 0.P
JLll2(l-o*) dxA^dxJ I dxB

a
l

J

In order that this relation should be satisfied identically, the coefficients of

81 and 8ux must each be zero. Thus we obtain the equations

M3 3 / 3£
AH-h— '

12(1 -a2
)

dx

do^dx, = 0. (14.5)

The unknown functions here are the two components uXl uy of the vector

u and the transverse displacement £. The solution of the equations gives both

the form of the bent plate (i.e. the function £(#, y)) and the extension resulting

from the bending. Equations (14.4) and (14.5) can be somewhat simplified

by introducing the function x related to a
afi

by (13.7). Equation (14.4) then

becomes

/32v 32£ 32v 32£ 32v 32£ \
-hi—£—+——- 2—*-— I =P. (14.6)

\ 3V2 dx2 dx2 dy2 dxdy dxdyf

EW> (d2x d2£ d2X dH &X d2£

12(1 — a2) \ dy2 dx2 dx2 dy2 dxdy dxdy/

Equations (14.5) are satisfied automatically by the expressions (13.7). Hence
another equation is needed ; this can be obtained by eliminating ua from the

relations (13.7) and (13.2).

To do this, we proceed as follows. We express w
a/ff

in terms ofa
a/? , obtaining

from (13.2)

UXX = (VXX— 0-Oyy)IE, Uyy — {Oyy— OOXX)/E, UXy = (1 + <j)(JXy/E.
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Substituting here the expression (14.1) for ua/s , and (13.7) for oap, we find

the equations

dx
+
2\dx) ~ E\dy2 ° dx2)'

dy
+
2\dy) E\dx2 ° dy

2)'

dux duy d^dt, _ 2(1 + a) d2x

dy dx dx dy E dxdy

We take d2jdy2 of the first, d2/dx2 of the second, — d2/dxdy of the third, and
add. The terms in ux and uy then cancel, and we have the equation

2
jdH d% i d2£\ 2

\ _
\ dx2 dy2 \dxdyl )

Equations (14.6) and (14.7) form a complete system of equations for large

deflections of thin plates (A. Foppl 1907). These equations are very compli-

cated, and cannot be solved exactly, even in very simple cases. It should be

noticed that they are non-linear.

We may mention briefly a particular case of deformations of thin plates,

that of membranes. A membrane is a thin plate subject to large external

stretching forces applied at its circumference. In this case we can neglect

the additional longitudinal stresses caused by bending of the plate, and
therefore suppose that the components of the tensor cr

a/? are simply equal to

the constant external stretching forces. In equation (14.4) we can then

neglect the first term in comparison with the second, and we obtain the

equation of equilibrium

hcra,~?^-+P=0 t (14.8)

with the boundary condition that £ = at the edge of the membrane. This
is a linear equation. The case of isotropic stretching, when the extension of

the membrane is the same in all directions, is particularly simple. Let T be
the absolute magnitude of the stretching force per unit length of the edge of

the membrane. Then ha
afi
= T8

afi
, and we obtain the equation of equili-

brium in the form

TAt+P = 0. (14.9)

PROBLEMS
Problem 1. Determine the deflection of a plate as a function of the force on it when

Solution. An estimate of the terms in equation (14.7) shows that x ~ EC*. For { ^> h,

the first term in (14.6) is small compared with the second, which is of the order of magnitude
htxll* ~ EH*11* (I being the dimension of the plate). If this is comparable with the external
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force P, we have £ ~ (llP{Eh)l. Hence, in particular, we see that £ is proportional to the

cube root of the force.

Problem 2. Determine the deformation of a circular membrane (of radius R) placed

horizontally in a gravitational field.

Solution. We have P = pgh; in polar co-ordinates, (14.9) becomes

r dr \ or!

1 d / d£\ Pgh_

T'

The solution finite for r — and zero for r = R is £ = pgh(R2 —r2)/4T.

§15. Deformations of shells

In discussing hitherto the deformations of thin plates, we have always

assumed that the plate is flat in its undeformed state. However, deformations

of plates which are curved in the undeformed state (called shells) have

properties which are fundamentally different from those of the deformations

of flat plates.

The stretching which accompanies the bending of a flat plate is a second-

order effect in comparison with the bending deflection itself. This is seen,

for example, from the fact that the strain tensor (14.1), which gives this

stretching, is quadratic in £. The situation is entirely different in the defor-

mation of shells : here the stretching is a first-order effect, and therefore is

important even for small bending deflections. This property is most easily

seen from a simple example, that of the uniform stretching of a spherical

shell. If every point undergoes the same radial displacement £, the length

of the equator increases by Inl,. The relative extension is IttX^IttR — t,jR
f

and hence the strain tensor also is proportional to the first power of £. This

effect tends to zero as R -> oo, i.e. as the curvature tends to zero, and is

therefore due to the curvature of the shell.

Let i? be the order of magnitude of the radius of curvature of the shell,

which is usually of the same order as its dimension. Then the strain tensor

for the stretching which accompanies the bending is of the order of £jR,

the corresponding stress tensor is ~ E£jR, and the deformation energy per

unit area is, by (14.2), of the order of Eh{ljRf. The pure bending energy, on

the other hand, is of the order of Eh^jR^, as before. We see that the ratio of

the two is of the order of (R/h)2
, i.e. it is very large. It should be emphasised

that this is true whatever the ratio of the bending deflection £ to the thickness

h, whereas in the bending of flat plates the stretching was important only

for £ £ h.

In some cases there may be a special type of bending of the shell in

which no stretching occurs. For example, a cylindrical shell (open at both

ends) can be deformed without stretching if all the generators remain parallel

(i.e. if the shell is, as it were, compressed along some generator). Such

deformations without stretching are geometrically possible if the shell has

free edges (i.e. is not closed) or if it is closed but its curvature has opposite
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signs at different points. For example, a closed spherical shell cannot be

bent without being stretched, but if a hole is cut in it (the edge of the hole

not being fixed), then such a deformation becomes possible. Since the pure

bending energy is small compared with the stretching energy, it is clear that,

if any given shell permits deformation without stretching, then such defor-

mations will, in general, actually occur when arbitrary external forces act on

the shell. The requirement that the bending is unaccompanied by stretching

places considerable restrictions on the possible displacements uu . These

restrictions are purely geometrical, and can be expressed as differential

equations, which must be contained in the complete system of equilibrium

equations for such deformations. We shall not pause to discuss this question

further.

If, however, the deformation of the shell involves stretching, then the

tensile stresses are in general large compared with the bending stresses,

which may be neglected. Shells for which this is done are called membranes.

The stretching energy of a shell can be calculated as the integral

FPi = ^hju
xfi
a
afi df (15.1)

taken over the surface. Here w
a/ff

(oc, /? = 1, 2) is the two-dimensional strain

tensor in the appropriate curvilinear co-ordinates, and the stress tensor aap
is related to ua/3 by formulae (13.2), which can be written, in two-dimensional

tensor notation, as

(V = E[(l - a)uap+ o8
a/)
u
Yy]l(l

- CT2). (15.2)

A case requiring special consideration is that where the shell is subjected

to the action of forces applied to points or lines on the surface and directed

through the shell. These may be, in particular, the reaction forces on the shell

at points (or lines) where it is fixed. The concentrated forces result in a

bending of the shell in small regions near the points where they are applied;

let d be the dimension of such a region for a force/applied at a point (so that

its area is of the order of d2
). Since the deflection £ varies considerably over a

distance d, the bending energy per unit area is of the order of Ehzl2/d'i , and the

total bending energy (over an area ~ d2
) is of the order oiEtfitpjd2 . The strain

tensor for the stretching is again ~ £/i?, and the total stretching energy due to

the concentrated forces is ~ Eh£,2d2/R2
. Since the bending energy increases

and the stretching energy decreases with decreasing d, it is clear that both

energies must be taken into account in determining the deformation near the

point of application of the forces. The size d of the region of bending is given

in order of magnitude by the condition that the sum of these energies is a

minimum, whence

d ~ y/(hR). (15.3)
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The energy ~ Eh2
£,
2/R. Varying this with respect to £ and equating the result

to the work done by the force/, we find the deflection £ ~ fR/Eh2
.

However, if the forces acting on the shell are sufficiently large, the shape of

the shell may be considerably changed by bulges which form in it. The
determination of the deformation as a function of the applied loads requires

special investigation in this unusual case.f

Let a convex shell (with edges fixed in such a way that it is geometrically

rigid) be subjected to the action of a large concentrated force/ along the in-

ward normal. For simplicity we shall assume that the shell is part of a sphere

of radius R. The region of the bulge will be a spherical cap which is almost a

mirror image of its original shape (Fig. 9 shows a meridional section of the

shell). The problem is to determine the size of the bulge as a function of the

force.

The major part of the elastic energy is concentrated in a narrow strip near

the edge of the bulge, where the bending of the shell is relatively large ; we
shall call this the bending strip and denote its width by d. This energy may be

estimated, assuming that the radius r of the bulge region is much less than R,

so that the angle a <^ 1 (Fig. 9). Then r — R sin a ~ Ra, and the depth of the

Fig. 9

bulge H = 2R(1 — cos a) ~ jRa2 . Let £ denote the displacement of points on

the shell in the bending strip. Just as previously, we find that the energies of

bending along the meridian and of stretching along the circle of latitude:}: per

unit surface area are respectively, in order of magnitude, Eh3
t,
2ld4 and

t The results given below are due to A. V. Pogorelov (1960). A more precise analysis of the problem
together with some similar ones is given in his book Teoriya obolochek pri zakriticheskikh deformatsiyakh

{Theory of Shells at Supercritical Deformations), Moscow 1965.

% The curvature of the shell does not affect the bending along the meridian inthe first approximation,

so that this bending occurs without any general stretching along the meridian, as in the cylindrical

bending of a flat plate.
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Ehl2/R2
. The order of magnitude of the displacement £ is in this case deter-

mined geometrically: the direction of the meridian changes by an angle ~a

over the width d, and so £ ~ <xd ~ rd\R. Multiplying by the area of the bend-

ing strip (~n/), we obtain the energies Eh^jR2d and EhdW/R*. The condi-

tion for their sum to be a minimum again gives d~-\/{hR), and the total

elastic energy is then ~ Er3(h/R)5/2 , orf

constant x Eh™. H^l2jR. (15.4)

In this derivation it has been assumed that d<^r; formula (15.4) is therefore

valid if the condition^

Rhjr*<^\ (15.5)

holds.

The required relation between the depth of the bulge H and the applied

force / is obtained by equating/ to the derivative of the energy (15.4) with

respect to H. Thus we find

H~f2R2\E2hs.
.

.
-, , : ; .

(15.6)

It should be noticed that this relation is non-linear.

Finally, let the deformation (bulge) of the shell occur under a uniform

external pressure^). In this case the work done ispAV, where AV~Hr2 ~H2R
is the change in the volume within the shell when the bulge occurs. Equating

to zero the derivative with respect toH of the total free energy (the difference

between the elastic energy (15.4) and this work), we obtain

H~h*E2lR*p2 . (15.7)

The inverse variation (H increasing when p decreases) shows that in this case

the bulge is unstable. The value ofH given by formula (15.7) corresponds to

unstable equilibrium for a given p: bulges with larger values of H grow of

their own accord, while smaller ones shrink (it is easy to verify that (15.7)

corresponds to a maximum and not a minimum of the total free energy).

There is a critical value pcr of the external load beyond which even small

changes in the shape of the shell increases in size spontaneously. This value

may be defined as that which gives H~h in (15.7):

pCT~Eh2IR2
. (15.8)

We shall add to the above brief account of shell theory only a few simple

examples in the following Problems.

t A more accurate calculation shows that the constant coefficient is 1.2 (1— <r
2
)
_3 ' 4

.

t When a bulge is formed, the outer layers of a spherical segment become the inner ones and are

therefore compressed, while the inner layers become the outer ones and are stretched. The relative

extension (or compression) ~ hjR, and so the corresponding total energy in the region of the bulge
~ E(h/R) 2kr*. With the condition (15.5) it is in fact small in comparison with the energy (15.4) in

the bending strip.

-5*
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PROBLEMS
Problem 1 . Derive the equations of equilibrium for a spherical shell (of radius R) deformed

symmetrically about an axis through its centre.

Solution. We take as two-dimensional co-ordinates on the surface of the shell the angles
0, <f>

in a system of spherical polar co-ordinates, whose origin is at the centre of the sphere and
polar axis along the axis of symmetry of the deformed shell.

Let Pr be the external radial force per unit surface area. This force must be balanced by a
radial resultant of internal stresses acting tangentially on an element of the shell. The con-
dition is

h(a,,+ ae0)IR = Pr (1)

This equation is exactly analogous to Laplace's equation for the pressure difference between
two media caused by surface tension at the surface of separation.

Next, let Qz(0) be the resultant of all external forces on the part of the shell lying above the
co-latitude 9; this resultant is along the polar axis. The force Qz(9) must be balanced by the
projection on the polar axis of the stresses lirRhagg sin 9 acting on the cross-section 2irRh sin 9

of the shell at that latitude. Hence

2TrRhaee sin2 = Qz(6). (2)

Equations (1) and (2) determine the stress distribution, and the strain tensor is then given
by the formulae

Finally, the displacement vector is obtained from the equations

= 0.

uee
1 / due— I Yur
R\dd )

1

Ud(p
— —(ud cotd+ ur).R

(3)

(4)

Problem 2. Determine the deformation under its own weight of a hemispherical shell

convex upwards, the edge of which moves freely on a horizontal support (Fig. 10).

Fig. 10

Solution. We have Pr = —pgh cos 9, Qz = —2iTR2pgh(l —cos 9); Qz is the total weight
of the shell above the circle of co-latitude 9. From (1) and (2) of Problem 1 we find

aeo - - Rpg

1 + COS 0'
arr = Rpg\ cos 01.

^\1+COS0 /

From (3) we calculate u^ and ugg, and then obtain ug and ur from (4); the constant in the

integration of the first equation (4) is chosen so that for 9 = \n we have Ug — 0. The result

Ug =
R2pg(l + a){ COS0

E 1 + cos 6
+ log(l + cos0) sin0,

Ur = (1
2+. / i

-cos 0— cos log(l + COS 0) J.E { 1 + ff

The value of uT for = \ti gives the horizontal displacement of the support.



§15 Deformations of Shells 67

Problem 3. Determine the deformation of a hemispherical shell with clamped edges,

convex downwards and filled with liquid (Fig. 11); the weight of the shell itself can be

neglected in comparison with that of the liquid.

Fig. 11

Solution. We have

Pr = PogR cos d, P* = 0,

f 2

Qz = 2ttR? Pr cos sin d0 = -nR?pog(l - cos30),

where p is the density of the liquid. We find from (1) and (2) of Problem 1

aee
R2

pog 1 — cos3

~3h sin2 '

The displacements are

R2
Pog -l + 3cos0-2cos3

2h sin2

R?pog(l + a) . r cos0
ud = : sin

Ur =

3Eh

R3f>0g(l + cr)

3Eh

r cos0 I— -+log(l + cos0)
,

LI + cos 6 J

r 3 cos 1

cos01og(l + cos0)-l + .

For 9 — $n, ur is not zero as it should be. This means that the shell is actually so severely bent

near the clamped edge that the above solution is invalid.

Problem 4. A shell in the form of a spherical cap rests on a fixed support (Fig. 12). Deter-

mine the bending resulting from the weight Q of the shell.

Fig. 12
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Solution. The main deformation occurs near the edge, which is bent as shown by the
dashed line in Fig. 12. The displacement ug is small compared with the radial displacement
Mr = £• Since £ decreases rapidly as we move away from the supported edge, the deformation
can be regarded as that of a long flat plate (of length 2irR sin a). This deformation is composed
of a bending and a stretching of the plate. The relative extension at each point is Z/R (R
being the radius of the shell), and therefore the stretching energy is Et?l2R* per unit volume.
Using as the independent variable the distance x from the line of support, we have for the
total stretching energy

Eheh r
jPipi = 2ttR sina—— £2 dx,

The bending energy is

Effi f/d2A2
i<2 Pi = 2ttR sin a — I dx.

24(1-0*) J \dW

Varying the sum Fpl = Flpi+F2 pi with respect to £, we obtain

d*£ 12(1-0*)—-+—- X = 0.
d*4 h*R*

For x -* oo, £ must tend to zero, and for * = we must have the boundary conditions of
zero moment of the forces (£" = 0) and equality of the normal force and the corresponding
component of the force of gravity:

27ri?sina £'" = Qcosa.
12(1 - a*)

*

The solution which satisfies these conditions is £ = Ae~KX cos kx, where

_ r3(l-o2)-|i/4 _ 0cot a r3i?2(i-o-2)-|i/4

L A2#2 J '

A "
Eh [ 8W J

'

The bending of the shell is

d = £(0) cos a = A cos a.

§16. Torsion of rods

Let us now consider the deformation of thin rods. This differs from all

the cases hitherto considered, in that the displacement vector u may be large

even for small strains, i.e. when the tensor u^ is small.f For example, when
a long thin rod is slightly bent, its ends may move a considerable distance,

even though the relative displacements of neighbouring points in the rod

are small.

There are two types of deformation of a rod which may be accompanied by
a large displacement of certain parts of it. One of these consists in bending

f The only exception is a simple extension of a rod without change of shape, in which case the
vector u is always small if the tensor wjfc is small, i.e. if the extension is small.
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the rod, and the other in twisting it. We shall begin by considering the latter

case.

A torsional deformation is one in which, although the rod remains straight,

each transverse section is rotated through some angle relative to those below

it. If the rod is long, even a slight torsion causes sufficiently distant cross-

sections to turn through large angles. The generators on the sides of the rod,

which are parallel to its axis, become helical in form under torsion.

Let us consider a thin straight rod of arbitrary cross-section. We take a

co-ordinate system with the sr-axis along the axis of the rod and the origin

somewhere inside the rod. We use also the torsion angle t, which is the angle

of rotation per unit length of the rod. This means that two neighbouring

cross-sections at a distance dsr will rotate through a relative angle d^ = t dz

(so that t = d<f>(dz). The torsional deformation itself, i.e. the relative dis-

placement of adjoining parts of the rod, is assumed small. The condition

for this to be so is that the relative angle turned through by cross-sections

of the rod at a distance apart of the order of its transverse dimension R is

small, i.e.

rR < 1. (16.1)

Let us examine a small portion of the length of the rod near the origin, and
determine the displacements u of the points of the rod in that portion. As
the undisplaced cross-section we take that given by the «y-plane. When a

radius vector r turns through a small angle
8<f>,

the displacement of its end
is given by

8r = 5«J>Xr, (16.2)

where S<|> is a vector whose magnitude is the angle of rotation and whose
direction is that of the axis of rotation. In the present case, the rotation is

about the #-axis, and for points of co-ordinate z the angle of rotation relative

to the ary-plane is rz (since t can be regarded as a constant in some region

near the origin). Then formula (16.2) gives for the components ux, uy of the

displacement vector

ux = -Tzy, uy = tzx. (16.3)

When the rod is twisted, the points in it in general undergo a displacement
along the sr-axis also. Since for t = this displacement is zero, it may be
supposed proportional to t when t is small. Thus

uz = nls(X) y), (16.4)

where i/r(#, y) is some function of x and y, called the torsion function. As a
result of the deformation described by formulae (16.3) and (16.4), each cross-

section of the rod rotates about the #-axis, and also becomes curved instead

of plane. It should be noted that, by taking the origin at a particular point in

the #y-plane, we "fix" a certain point in the cross-section of the rod in such a
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way that it cannot move in that plane (but it can move in the ^-direction).

A different choice of origin would not, of course, affect the torsional deforma-

tion itself, but would give only an unimportant displacement of the rod as a

whole.

Knowing u, we can find the components of the strain tensor. Since u is

small in the region under consideration, we can use the formula

uoc = \{duijdxk+du]cjdxi).

The result is

Uxx — uyy — uxy — uzz — 0,

Uxz = $t(— - yj, uyz = \r\—+ x\. (16.5)

It should be noticed that uu = ; in other words, torsion does not result in

a change in volume, i.e. it is a pure shear deformation.

For the components of the stress tensor we find

&xx — ayy = azz = axy = 0,

axz = 2fiuzz = firi- yu oyz = 2[xuyz = /*rl—+
*J.

(16.6)

Here it is more convenient to use the modulus of rigidity /x in place of E and

a. Since only axz and ayz are different from zero, the general equations

of equilibrium dancjdxjc = reduce to

i^+^fl = 0. (16.7)
dx dy

Substituting (16.6), we find that the torsion function must satisfy the equation

A«A = 0, (16.8)

where A is the two-dimensional Laplacian.

It is rather more convenient, however, to use a different auxiliary function

X (x > y)> defined by

axz = 2firdxldy, Oyz = -2firdx/dx; (16.9)

this function satisfies more convenient boundary conditions on the circum-

ference of the rod (see below). Comparing (16.9) and (16.6), we obtain

*± = y+ 2
d
I,

dl=- x-2% (16.10)
dx dy dy dx

Differentiating the first of these with respect to y, the second with respect to
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x, and subtracting, we obtain for the function x the equation

AX=-1- (16.11)

To determine the boundary conditions on the surface of the rod, we note

that, since the rod is thin, the external forces on its sides must be small com-

pared with the internal stresses in the rod, and can therefore be put equal to

zero in seeking the boundary conditions. This fact is exactly analogous to

what we found in discussing the bending of thin plates. Thus we must have

oiknjc = on the sides of the rod; since the ^-direction is along the axis,

rig = 0, and this equation becomes

aZxHx+ Ozytly = 0.

Substituting (16.9), we obtain

dX dX ~—nx ny — "•

dy dx

The components of the vector normal to a plane contour (the circumference

of the rod) are nx — — dyjdl, ny = dxjdl, where x and y are co-ordinates

of points on the contour and d/ is an element of arc. Thus we have

dx ^x— dx H dy = dx = 0,
dx dy

whence x — constant, i.e. x ls constant on the circumference. Since only

the derivatives of the function x appear in the definitions (16.9), it is clear

that any constant may be added to x- If the cross-section is singly connected,

we can therefore use, without loss of generality, the boundary condition

X = (16.12)

on equation (16.1 l).f

Fig. 13

For a multiply connected cross-section, however, x v*d\ have different

constant values on each of the closed curves bounding the cross-section.

f The problem of determining the torsion deformation from equation (16.11) with the boundary
condition (16.12) is formally identical with that of determining the bending of a uniformly loaded
plane membrane from equation (14.9).

It is useful to note also an analogy with fluid mechanics: an equation of the form (16.11) determines
the velocity distribution v(x, y) for a viscous fluid in a pipe, and the boundary condition (16.12)

corresponds to the condition v = at the fixed walls of the pipe (see Fluid Mechanics, §17).
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Hence we can put x = on only one of these curves, for instance the outer-

most (Co in Fig. 13). The values of x on the remaining bounding curves are

found from conditions which are a consequence of the one-valuedness of the

displacement u z = rifj(x,y) as a function of the co-ordinates. For, since the

torsion function tfj(x, y) is one-valued, the integral of its differential d^r round

a closed contour must be zero. Using the relations (16.10), we therefore

have

j**-§Q**+%*y)

= — 2 (1) I— dy dx\ — 2 (p (# dy—y dx)

= 0,

or

— d/= -S, (16.13)
dn

where dx/dn is the derivative of the function x along the outward normal

to the curve, and S the area enclosed by the curve. Applying (16.13) to each

of the closed curves C\, C2, ••• , we obtain the required conditions.

Let us determine the free energy of a rod under torsion. The energy per

unit volume is

F = \0UcUilc = OxzUxz+ OyzUyZ = (
Oxz2 + Oyz

2
)/2fl

or, substituting (16.9),

where grad denotes the two-dimensional gradient. The torsional energy

per unit length of the rod is obtained by integrating over the cross-section

of the rod, i.e. it is £CV2
, where the constant C = 4/x J (grad x)

2 d/, and is

called the torsional rigidity of the rod. The total elastic energy of the rod is

equal to the integral

Frod = i J
Ct2 d*, (16.14)

taken along its length.

Putting

(gradx)2 = div(xgradx)-xAx = divfo grad*) + x

and transforming the integral of the first term into one along the circumference

of the rod, we obtain

C = 4/x^x^d/+4^Jxd/. (16.15)
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If the cross-section is singly connected, the first term vanishes by the

boundary condition x = 0> leaving

C = Aii
J"
x dx dy- (16.16)

For a multiply connected cross-section (Fig. 13), we put x = on the outer

boundary C and denote by xfr the constant values of x on the inner boun-

daries Ck, obtaining by (16.13)

c = 4/*2x*s*+4/* jx <** 4y; (
16 - 17)

*

it should be remembered that, in integrating in the first term in (16.15), we go

anti-clockwise round the contour Co and clockwise round all the others.

Let us consider now a more usual case of torsion, where one of the ends of

the rod is held fixed and the external forces are applied only to the other end.

These forces are such that they cause only a twisting of the rod, and no other

deformation such as bending. In other words, they form a couple which twists

the rod about its axis. The moment of this couple will be denoted by M.

We should expect that, in such a case, the torsion angle t is constant

along the rod. This can be seen, for example, from the condition that the free

energy of the rod is a minimum in equilibrium. The total energy of a de-

formed rod is equal to the sum FT0<i+ U, where U is the potential energy

due to the action of the external forces. Substituting in (16.14) r = df/dz

and varying with respect to the angle
<f>,

we find

or, integrating by parts,

_ f C-^8<f>dz + 8U+[Cr8<f>] = 0.

J dsr

The last term on the left is the difference of the values at the limits of inte-

gration, i.e. at the ends of the rod. One of these ends, say the lower one, is

fixed, so that 8cf> = there. The variation 8U of the potential energy is

minus the work done by the external forces in rotation through an angle
8(f).

As we know from mechanics, the work done by a couple in such a rotation

is equal to the product M8<f> of the angle of rotation and the moment of the

couple. Since there are no other external forces, 8U = -M8<f>, and we

have

C^8<f>dz+[8<f>(-M+Cr)] = 0. (16.18)

i< dz

The second term on the left has its value at the upper end of the rod. In the
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integral over z, the variation
8<f>

is arbitrary, and so we must have

Cdr/dz = 0,
i.e.

t = constant. (16.19)

Thus the torsion angle is constant along the rod. The total angle of rotation
of the upper end of the rod relative to the lower end is rl, where / is the length
of the rod.

In equation (16.18), the second term also must be zero, and we obtain the
following expression for the constant torsion angle

:

r = M/C. (16.20)

PROBLEMS

Problem 1. Determine the torsional rigidity of a rod whose cross-section is a circle of
radius R.

Solution. The solutions of Problems 1-4 are formally identical with those of problems of
the motion of a viscous fluid in a pipe of corresponding cross-section (see the last footnote
to this section). The discharge Q is here represented by C.

For a rod of circular cross-section we have, taking the origin at the centre of the circle,

X = i(R2—x2—V2
), and the torsional rigidity is C = £/«r.R4 . For the function tf> we have,

from (16.10), i// = constant. A constant xjt, however, corresponds by (16.4) to a simple dis-
placement of the whole rod along the s-axis, and so we can suppose that tfi = 0. Thus the
transverse sections of a circular rod undergoing torsion remain plane.

Problem 2. The same as Problem 1, but for an elliptical cross-section of semi-axes a
and b.

Solution. The torsional rigidity is C = 7r/xas6s/(as+62
). The distribution of longitudinal

displacements is given by the torsion function ifi = (b*—a2
)*y/(6*-f-a

2
), where the co-ordinate

axes coincide with those of the ellipse.

Problem 3. The same as Problem 1, but for an equilateral triangular cross-section of
side a.

Solution. The torsional rigidity is C = \/3 /jui*J80. The torsion function is

i/j = y{xy/Z +y){x-y/3 —y)]6a

the origin being at the centre of the triangle and the x-axis along an altitude.

Problem 4. The same as Problem 1, but for a rod in the form of a long thin plate (of

width d and thickness h<^d).

Solution. The problem is equivalent to that of viscous fluid flow between plane parallel

walls. The result is that C = ^fidh
s

.

Problem 5. The same as Problem 1, but for a cylindrical pipe of internal and external
radii i?x and R2 respectively.

Solution. The function x = i(-^2
a— r2) (in polar co-ordinates) satisfies the condition

(16.13) at both boundaries of the annular cross-section of the pipe. From formula (16.17)
we then find C = i/wKiV— i?i

4
).

Problem 6. The same as Problem 1, but for a thin-walled pipe of arbitrary cross-section.

Solution. Since the walls are thin, we can assume that x varies through the wall thickness
h, from zero on one side to Xi on the other, according to the linear law x = XiVlh (y being a
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co-ordinate measured through the wall). Then the condition (16.13) gives XiUh = S,

where L is the perimeter of the pipe cross-section and S the area which it encloses. The

second term in the expression (16.17) is small compared with the first, and we obtain

C = 4hS2^IL. If the pipe is cut longitudinally along a generator, the torsional rigidity falls

sharply, becoming (by the result of Problem 4) C = \ixLtf.

§17. Bending of rods

A bent rod is stretched at some points and compressed at others. Lines on

the convex side of the bent rod are extended, and those on the concave side

are compressed. As with plates, there is a neutral surface in the rod, which

undergoes neither extension nor compression. It separates the region of

compression from the region of extension.

Let us begin by investigating a bending deformation in a small portion of

the length of the rod, where the bending may be supposed slight; by this we

here mean that not only the strain tensor but also the magnitudes of the dis-

placements of points in the rod are small. We take a co-ordinate system with

the origin on the neutral surface in the portion considered, and the sr-axis

parallel to the axis of the undeformed rod. Let the bending occur in the

•sw-plane.f

As in the bending of plates and the twisting of rods, the external forces on

the sides of a thin bent rod are small compared with the internal stresses, and

can be taken as zero in determining the boundary conditions at the sides of the

rod. Thus we have everywhere on the sides of the rod a^njc = 0, or, since

n z
= 0, axxnx+ axyny = 0, and similarly for i = y, z. We take a point on

the circumference of a cross-section for which the normal n is parallel to the

ar-axis. There will be another such point somewhere on the opposite side

of the rod. At both these points % = 0, and the above equation gives

axx = 0. Since the rod is thin, however, axx must be small everywhere in the

cross-section if it vanishes on either side. We can therefore put axx =
everywhere in the rod. In a similar manner, it can be seen that all the com-

ponents of the stress tensor except a zz must be zero. That is, in the bending

of a thin rod only the extension (or compression) component of the internal

stress tensor is large. A deformation in which only the component a zz of

the stress tensor is non-zero is just a simple extension or compression (§5).

Thus there is a simple extension or compression in every volume element of

a bent rod. The amount of this varies, of course, from point to point in every

cross-section, and so the whole rod is bent.

It is easy to determine the relative extension at any point in the rod. Let

us consider an element of length dz parallel to the axis of the rod and near

the origin. On bending, the length of this element becomes dz'. The only

elements which remain unchanged are those which lie in the neutral surface.

Let R be the radius of curvature of the neutral surface near the origin. The

f In a rod undergoing only small deflections we can suppose that the bending occurs in a single

plane. This follows from the result of differential geometry that the deviation of a slightly bent curve

from a plane (its torsion) is of a higher order of smallness than its curvature.
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lengths dz and dz' can be regarded as elements of arcs of circles whose radii

are respectively R and R+ x, x being the co-ordinate of the point where
dz

f

lies. Hence

, , R+ x
, / x\

The relative extension is therefore (dz' — dz)/dz = xjR.

The relative extension of the element dz, however, is equal to the com-
ponent u zz of the strain tensor. Thus

uzz = x/R. (17.1)

We can now find azz by using the relation azz - Euzz which holds for a

simple extension. This gives

azz = ExjR. (17.2)

The position of the neutral surface in a bent rod has now to be determined.
This can be done from the condition that the deformation considered must
be pure bending, with no general extension or compression of the rod. The
total internal stress force on a cross-section of the rod must therefore be
zero, i.e. the integral J azz df, taken over a cross-section, must vanish. Using
the expression (17.2) for azz , we obtain the condition

jxdf=0. (17.3)

We can now bring in the centre of mass of the cross-section, which is that

of a uniform flat disc of the same shape. The co-ordinates of the centre of

mass are, as we know, given by the integrals J x d/// df, $y d// / df. Thus the

condition (17.3) signifies that, in a co-ordinate system with the origin in the

neutral surface, the x co-ordinate of the centre of mass of any cross-section

is zero. The neutral surface therefore passes through the centres of mass
of the cross-sections of the rod.

Two components of the strain tensor besides uzz are non-zero, since for a

simple extension we have uXx = ttyy = —auzz . Knowing the strain tensor,

we can easily find the displacement also

:

uzz — duzJdz = xjR, duzjdx = duy/dy = — ax/R,

duz dux dux duv duu duz—-+—- = 0, +^=0, —-+—~ = 0.
dx dz By dx dz dy

Integration of these equations gives the following expressions for the com-
ponents of the displacement

:

"^"a^
2"^2-^'

(17.4)

uy = — axyJR, uz = xz/R.

The constants of integration have been put equal to zero; this means that

we "fix" the origin.
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It is seen from formulae (17.4) that the points initially on a cross-section

z — constant = %o will be found, after the deformation, on the surface

z = zo+u z = zo(l+xlR). We see that, in the approximation used, the

cross-sections remain plane but are turned through an angle relative to their

initial positions. The shape of the cross-section changes, however; for

example, when a rod of rectangular cross-section (sides a, b) is bent, the sides

y = + \b of the cross-section become y = ±\b + uy = ±\b{\ — ax\R\ i.e.

no longer parallel but still straight. The sides x = ±\a> however, are bent

into the parabolic curves

(Fig. 14).

x = ±\a+ ux = ±\a- —[*o
2+ <Ki«

2 -:>'2)]
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—j— b —•-
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\
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/
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1

i

\
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Fig. 14

The free energy per unit volume of the rod is

\<JikUQz = \olzuzz = %Ex2/R2
.

Integrating over the cross-section of the rod, we have

K£/*2

)J**
2 d/. (17.5)

This is the free energy per unit length of a bent rod. The radius of curvature

R is that of the neutral surface. However, since the rod is thin, JR can here

be regarded, to the same approximation, as the radius of curvature of the

bent rod itself, regarded as a line (often called an "elastic line").

In the expression (17.5) it is convenient to introduce the moment of

inertia of the cross-section. The moment of inertia about they-axis in its plane

is defined as

/„« J>d/, (17.6)

analogously to the ordinary moment of inertia, but with the surface element

d/ instead of the mass element. Then the free energy per unit length of the

rod can be written

\EIyIR\ (17.7)
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We can also determine the moment of the internal stress forces on a given
cross-section of the rod (the bending moment). A force azz d/ = (xE/R) d/
acts in the z-direction on the surface element d/ of the cross-section. Its

moment about the y-axis is xazz d/. Hence the total moment of the forces

about this axis is

My = (E/R) jx*df= ElyfR. (17.8)

Thus the curvature \jR of the elastic line is proportional to the bending
moment on the cross-section concerned.

The magnitude of Iy depends on the direction of the jy-axis in the cross-

sectional plane. It is convenient to express Iy in terms of the principal

moments of inertia. If 6 is the angle between the jy-axis and one of the

principal axes of inertia in the cross-section, we know from mechanics that

Iy = h cos2d+I2 sin20, (17.9)

where h and 72 are the principal moments of inertia. The planes through
the #-axis and the principal axes of inertia are called the principal planes of
bending.

If, for example, the cross-section is rectangular (with sides a, b), its centre

of mass is at the centre of the rectangle, and the principal axes of inertia

are parallel to the sides. The principal moments of inertia are

h = a*b/12, h = 0&3/12. (17.10)

For a circular cross-section of radius R, the centre of mass is at the centre

of the circle, and the principal axes are arbitrary. The moment of inertia

about any axis lying in the cross-section and passing through the centre is

/ = IttR\ (17.11)

§18. The energy of a deformed rod

In §17 we have discussed only a small portion of the length of a bent rod.

In going on to investigate the deformation throughout the rod, we must
begin by finding a suitable method of describing this deformation. It is

important to note that, when a rod undergoes large bending deflections,-)-

there is in general a twisting of it as well, so that the resulting deformation

is a combination of pure bending and torsion.

To describe the deformation, it is convenient to proceed as follows. We
divide the rod into infinitesimal elements, each of which is bounded by two
adjacent cross-sections. For each such element we use a co-ordinate system

f, rj, £, so chosen that all the systems are parallel in the undeformed state,

and their £-axes are parallel to the axis of the rod. When the rod is bent, the

t By this, it should be remembered, we mean that the vector u is not small, but the strain tensor

is still small.
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co-ordinate system in each element is rotated, and in general differently in

different elements. Any two adjacent systems are rotated through an infini-

tesimal relative angle.

Let d<|> be the vector of the angle of relative rotation of two systems at a

distance d/ apart along the rod (we know that an infinitesimal angle of rotation

can be regarded as a vector parallel to the axis of rotation ; its components

are the angles of rotation about each of the three axes of co-ordinates).

To describe the deformation, we use the vector

SI = d*/d/, (18.1)

which gives the "rate" of rotation of the co-ordinate axes along the rod. If

the deformation is a pure torsion, the co-ordinate system rotates only about

the axis of the rod, i.e. about the £-axis. In this case, therefore, the vector

SI is parallel to the axis of the rod, and is just the torsion angle r used in §16.

Correspondingly, in the general case of an arbitrary deformation we can call

the component Q^ of the vector SI the torsion angle. For a pure bending of the

rod in a single plane, on the other hand, the vector SI has no component Q^,

i.e. it lies in the l^-plane at each point. If we take the plane of bending as the

££-plane, then the rotation is about the ry-axis at every point, i.e. SI is parallel

to the 77-axis.

We take a unit vector t tangential to the rod (regarded as an elastic line).

The derivative dt/d/ is the curvature vector of the line; its magnitude is

1/R, where R is the radius of curvature, f and its direction is that of the

principal normal to the curve. The change in a vector due to an infinitesimal

rotation is equal to the vector product of the rotation vector and the vector

itself. Hence the change in the vector t between two neighbouring points of

the elastic line is given by dt = d<t> X t, or, dividing by d/,

dt/d/= Slxt. (18.2)

Multiplying this equation vectorially by t, we have

SI = txdt/d/+t(t- a). (18.3)

The direction of the tangent vector at any point is the same as that of the

£-axis at that point. Hence t • SI = Q
f

. Using the unit vector n along the

principal normal (n = R dt/d/), we can therefore put

SI = tXnIR + tfy. (18.4)

The first term on the right is a vector with two components Q
g

, £lr
The unit vector t Xn is the binormal unit vector. Thus the components Q

£ ,

Q
v
form a vector along the binormal to the rod, whose magnitude equals the

curvature 1/R.

f It may be recalled that any curve in space is characterised at each point by a curvature and a
torsion. This torsion (which we shall not use) should not be confused with the torsional deformation,
which is a twisting of a rod about its axis.
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By using the vector SI to characterise the deformation and ascertaining

its properties, we can derive an expression for the elastic free energy of a

bent rod. The elastic energy per unit length of the rod is a quadratic function

of the deformation, i.e., in this case, a quadratic function of the components

of the vector SI. It is easy to see that there can be no terms in this quadratic

form proportional to QgQg and Q^Q^. For, since the rod is uniform along

its length, all quantities, and in particular the energy, must remain constant

when the direction of the positive £-axis is reversed, i.e. when £ is replaced

by — £, whereas the products mentioned change sign.

For Qg = Q = we have a pure torsion, and the expression for the

energy must be that obtained in §16. Thus the term in Q^2 in the free

energy is \C£l^.

Finally, the terms quadratic in Q.g and Q.
v
can be obtained by starting from

the expression (17.7) for the energy of a slightly bent short section of the rod.

Let us suppose that the rod is only slightly bent. We take the ££-plane as

the plane of bending, so that the component Qg is zero ; there is also no torsion

in a slight bending. The expression for the energy must then be that given

by (17.7), i.e. %EI
v
jR2 . We have seen, however, that 1/JR2 is the square of the

two-dimensional vector (Q.%, Q.
v). Hence the energy must be of the foi'm

^ElyQ,^. For an arbitrary choice of the £ and v\ axes this expression becomes,

as we know from mechanics,

i£(/„Q f
» + 2Z,gQ

?
Q

£
+/K£y),

where I
V7]y

/ g, 1^ are the components of the inertia tensor for the cross-

section of the rod. It is convenient to take the £ and 17 axes to coincide with

the principal axes of inertia. We then have simply ^E(IiQ^2+ l2Sl
v
2
) }
where

7i, I2 are the principal moments of inertia. Since the coefficients of £2g
2 and

Q,
v
2 are constants, the resulting expression must be valid for large deflections

also.

Finally, integrating over the length of the rod, we obtain the following

expression for the elastic free energy of a bent rod

:

Frod =
J*
{ihEQf+lhEnz +iCn&dl. (18.5)

Next, we can express in terms of SI the moment of the forces acting on

a cross-section of the rod. This is easily done by again using the results

previously obtained for pure torsion and pure bending. In pure torsion, the

moment of the forces about the axis of the rod is Cr. Hence we conclude

that, in the general case, the moment M^ about the £-axis must be CD.^.

Next, in a slight deflection in the f£-plane, the moment about the 77-axis is

EhjR. In such a bending, however, the vector SI is along the 17-axis, so that

1/R is just the magnitude of SI, and EI2/R = EI2Q. Hence we conclude

that, in the general case, we must have M
g
— EIi£l

g , Mv
= EI2&V

(the $ and

r\ axes being along the principal axes of inertia in the cross-section). Thus



Frod =
J"|
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the components of the moment vector M are

M
{
= Emgy

M
v
= Eh&r M

c
= CQ

C
. (18.6)

The elastic energy (18.5), expressed in terms of the moment of the forces, is

Mr2 M 2 M? \

i^!_+ i!!i_ +^i- d/. (18.7)

ZhE 2hE 2C J

An important case of the bending of rods is that of a slight bending, in

which the deviation from the initial position is everywhere small compared

with the length of the rod. In this case torsion can be supposed absent, and

we can put Q
£
= 0, so that (18.4) gives simply

Sl = txn//? = txdt/d/. (18.8)

We take a co-ordinate system x, y, z fixed in space, with the 2-axis along the

axis of the undeformed rod (instead of the system £, rj, £ for each point in the

rod), and denote by X, Y the co-ordinates x, y for points on the elastic line;

X and Y give the displacement of points on the line from their positions

before the deformation.

Since the bending is only slight, the tangent vector t is almost parallel

to the .sr-axis, and the difference in direction can be approximately neglected.

The unit tangent vector is the derivative t = dr/d/ of the radius vector r

of a point on the curve with respect to its length. Hence

dt/d/= d2r/d/2 ^d2r/d*2
;

the derivative with respect to the length can be approximately replaced by

the derivative with respect to z. In particular, the x and y components of

this vector are respectively d2Xjdz2 and d2 Y/d;s2 . The components ft
£ ,

Cl
v

are, to the same accuracy, equal to Qxt Qv , and we have from (18.8)

Q
g
= -d2 Y/d*2

,
Q

v
= d2X/d*2

. (18.9)

Substituting these expressions in (18.5), we obtain the elastic energy of a

slightly bent rod in the form

ri /d2 Y\ 2 /d*X\ 2
\

F<«^EiH-w) +h(-^)h (18 - 10)

Hereh andh are the moments of inertia about the axes of x andy respectively,

which are the principal axes of inertia.

In particular, for a rod of circular cross-section, h = h = A and the

integrand is just the sum of the squared second derivatives, which in the

approximation considered is the square of the curvature

:

/d*x\ 2 /d2yy
\ow +

\d^7
/d*X\ 2 /d2Y\ 2 1
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Hence formula (18.10) can be plausibly generalised to the case of slight

bending of a circular rod having any shape (not necessarily straight) in its

undeformed state. To do so, we must write the bending energy as

Frod = \EI
J(—

- —
J

d*, (18.11)

where R is the radius of curvature at any point of the undeformed rod. This
expression has a minimum, as it should, in the undeformed state (R = R ),

and for R -> co it becomes formula (18.10).

§19. The equations of equilibrium of rods

We can now derive the equations of equilibrium for a bent rod. We again
consider an infinitesimal element bounded by two adjoining cross-sections

of the rod, and calculate the total force acting on it. We denote by F the
resultant internal stress on a cross-section.f The components of this vector
are the integrals of a^ over the cross-section

:

Fi^ja^df. (19.1)

If we regard the two adjoining cross-sections as the ends of the element, a

force F+dF acts on the upper end, and -F on the lower end; the sum of

these is the differential dF. Next, let K be the external force on the rod per
unit length. Then an external force K dl acts on the element of length d/.

The resultant of the forces on the element is therefore dF+K d/. This must
be zero in equilibrium. Thus we have

dF/dZ = - K. (19.2)

A second equation is obtained from the condition that the total moment of

the forces on the element is zero. Let M be the moment of the internal

stresses on the cross-section. This is the moment about a point (the origin)

which lies in the plane of the cross-section; its components are given by
formulae (18.6). We shall calculate the total moment, on the element con-
sidered, about a point O lying in the plane of its upper end. Then the

internal stresses on this end give a moment M+dM. The moment about O
of the internal stresses on the lower end of the element is composed of the

moment —M of those forces about the origin O' in the plane of the lower
end and the moment about O of the total force — F on that end. This latter

moment is — dl X — F, where dl is the vector of the element of length of the

rod between O' and O. The moment due to the external forces K is of a

higher order of smallness. Thus the total moment acting on the element
considered is dM+ dlxF. In equilibrium, this must be zero:

dM+ dlxF = 0.

| This notation will not lead to any confusion with the free energy, which does not appear in

§§19-21.
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Dividing this equation by d/ and using the fact that dl/d/ = t is the unit

vector tangential to the rod (regarded as a line), we have

dM/d/=Fxt. (19.3)

Equations (19.2) and (19.3) form a complete set of equilibrium equations

for a rod bent in any manner.

If the external forces on the rod are concentrated, i.e. applied only at

isolated points of the rod, the equilibrium equations at all other points are

much simplified. For K = we have from (19.2)

F = constant, (19.4)

i.e. the stress resultant is constant along any portion of the rod between

points where forces are applied. The values of the constant are found from

the fact that the difference F2-Fi of the forces at two points 1 and 2 is

F2-Fi= -SK, (19.5)

where the sum is over all forces applied to the segment of the rod between

the two points. It should be noticed that, in the difference F2-F1, the

point 2 is further from the point from which / is measured than is the point 1

;

this is important in determining the signs in equation (19.5). In particular, if

only one concentrated force f acts on the rod, and is applied at its free end,

then F = constant = f at all points of the rod.

The second equilibrium equation (19.3) is also simplified. Putting

t = dl/d/ = dr/d/ (where r is the radius vector from any fixed point to the

point considered) and integrating, we obtain

M = FXr+ constant, (19.6)

since F is constant.

If concentrated forces also are absent, and the rod is bent by the application

of concentrated moments, i.e. of concentrated couples, then F = constant

at all points of the rod, while M is discontinuous at points where couples

are applied, the discontinuity being equal to the moment of the couple.

Let us consider also the boundary conditions at the ends of a bent rod.

Various cases are possible.

The end of the rod is said to be clamped (Fig. 4a, §12) if it cannot move

either longitudinally or transversely, and moreover its direction (i.e. the direc-

tion of the tangent to the rod) cannot change. In this case the boundary

conditions are that the co-ordinates of the end of the rod and the unit tangen-

tial vector t there are given. The reaction force and moment exerted on the

rod by the clamp are determined by solving the equations.

The opposite case is that of a free end, whose position and direction are

arbitrary. In this case the boundary conditions are that the force F and

moment M must be zero at the end of the rod.f

t If a concentrated force f is applied to the free end of the rod, the boundary condition is F = f

not F = 0.
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If the end of the rod is fixed to a hinge, it cannot be displaced, but its

direction can vary. In this case the moment of the forces on the freely turning
end must be zero.

Finally, if the rod is supported (Fig. 4b), it can slide at the point of support
but cannot undergo transverse displacements. In this case the direction t of
the rod at the support and the point on the rod at which it is supported are
unknown. The moment of the forces at the point of support must be zero,
since the rod can turn freely, and the force F at that point must be perpen-
dicular to the rod; a longitudinal force would cause a further sliding of the
rod at this point.

The boundary conditions for other modes of fixing the rod can easily be
established in a similar manner. We shall not pause to add to the typical
examples already given.

It was mentioned at the beginning of §18 that a rod of arbitrary cross-
section undergoing large deflections is in general twisted also, even if no
external twisting moment is applied to the rod. An exception occurs when a
rod is bent in one of its principal planes, in which case there is no torsion.
For a rod of circular cross-section no torsion results for any bending (if there
is no external twisting moment, of course). This can be seen as follows. The
twisting is given by the component Q% = SI • t of the vector SI. Let us
calculate the derivative of this along the rod. To do so, we use the fact that
Q

c
= MJC:

d „, x ~ d^ dM dt—(M-t) = C—*- = t+M—

.

d/
v '

61 61 61

Substituting (19.3), we see that the first term is zero, so that

C6SiJ61= M-dt/d/.

For a rod of circular cross-section, h = I2 = I; by (18.3) and (18.6), we can
therefore write M in the form

M = EItx6t/6l+tCQ
c

. (19.7)

Multiplying by dt/d/, we have zero on the right-hand side, so that

6QJ61 = 0,

whence

D
s
= constant, (19.8)

i.e. the torsion angle is constant along the rod. If no twisting moments are

applied to the ends of the rod, then Q,^ is zero at the ends, and there is no
torsion anywhere in the rod.

For a rod of circular cross-section, we can therefore put for pure bending

dr d2rM = EIX Xdt/61 = EI—x—

.

(19.9)
61 d/2
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Substituting this in (19.3), we obtain the equation for pure bending of a

circular rod:

<fr d3r dr
,« rt < Av

£/
d7*d^ = Fx

d?
(mo)

PROBLEMS
Problem 1. Reduce to quadratures the problem of determining the shape of a rod of

circular cross-section bent in one plane by concentrated forces.

Solution. Let us consider a portion of the rod lying between points where the forces

are applied ; on such a portion F is constant. We take the plane of the bent rod as the xy-

plane, with the y-axis parallel to the force F, and introduce the angle 8 between the tangent

to the rod and the y-axis. Then dxjdl = sin 8, dyjdl = cos 8, where x, y are the co-ordinates

of a point on the rod. Expanding the vector products in (19.10), we obtain the following

equation for 8 as a function of the arc length I: £7d20/d/a—Fsin 8 = 0. A first integration

gives lEI(dOld[)*+Fcos 8 = clt and

/ = ± VdEI) f ,. Z ^+C2. (1)
J v(ci— Fcosv)

The function 8(1) can be obtained in terms of elliptic functions. The co-ordinates

x =
J

sin 6 dlt y = j cos 6 d/

are

x = ± y/[2EI(ci - F cos 6)1F2
] + constant,

r cos0d0 (2)
y = +W(iEI) + constant.

The moment M (19.9) is parallel to the ar-axis, and its magnitude is M = EId8/dl.

Problem 2. Determine the shape of a bent rod with one end clamped and the other under
a force f perpendicular to the original direction of the rod (Fig. 15).

Fig. 15

Solution. We have F = constant = f everywhere on the rod. At the clamped end
(/ = 0), 8 = \it, and at the free end (Z = L, the length of the rod) M = 0, i.e. 8' = 0. Putting

8(L) = 8 , we have in (1), Problem 1, Ci — /cos 8 and

= VQEiiflj
dO

-v/(cos do— cos 8)
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Hence we obtain the equation for 6 :

= V(iEIlf)j
dd

\/(cos #o— cos 6)

The shape of the rod is given by

x = ^/(2EIjf)[^/(cos 6 )-V(cos do -cos 6)\,

in

y = V(EI/2f)j
cosddd

yYcos do— cos 6)
e

Problem 3. The same as Problem 2, but for a force f parallel to the original direction of

the rod.

Fig. 16

Solution. We have F = —f; the co-ordinate axes are taken as shown in Fig. 16. The
boundary conditions are 8 = for I = 0, 0' = for / = L. Then

vwwj ie

yYcos 6— cos #o)
o

where

d = 6(L)

is given by

0.

- vmif)j
dd

\/(cOS0— COS0o)

For * and y we obtain

x = V(2W)[V(l~ cos 0o)- V(cos0-cos0o)],

e

y=V(EI/2f)j
cos 6 dd

-\/(cos 6— cos do)
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For a small deflection, O <^ 1, and we can write

L v(£///)!v(^)= w(£///) '

i.e. 0q does not appear. This shows that, in accordance with the result of §21, Problem 3,

the solution in question exists only for / 5s ir
2EI14L2

, i.e. when the rectilinear shape ceases

to be stable.

Problem 4. The same as Problem 2, but for the case where both ends of the rod are sup-

ported and a force f is applied at its centre. The distance between the supports is L .

Solution. We take the co-ordinate axes as shown in Fig. 17. The force F is constant on
each of the segments AB and BC, and on each is perpendicular to the direction of the rod at

the point of support A or C. The difference between the values of F on AB and BC is f,

and so we conclude that, on AB, F sin 8 = — i/, where o is the angle between the y-axis

and the line AC. At the point A (/ = 0) we have the conditions = \tt and M = 0, i.e.

0' = 0, so that on AB

I EI sin O r
=
V ? Ji/ \/cos8

x = 2
EI sin #o cos 6

1
'

y =
/EI sin

6

f cos0d0.

The angle 8 is determined from the condition that the projection of AB on the straight line

AC must be iL , whence

\u J
EI sin O fi= v7 J"

EI sin O fcos(0-0o)

<\/sin0
d0.

*•

For some value O lying between and Jw the derivative dfld0 o (/being regarded as a function

of 6 ) passes through zero to positive values. A further decrease in O > i-e. increase in the
deflection, would mean a decrease in /. This means that the solution found here becomes
unstable, the rod collapsing between the supports.

Problem 5. Reduce to quadratures the problem of three-dimensional bending of a rod

under the action of concentrated forces.
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Solution. Let us consider a segment of the rod between points where forces are applied,
on which F = constant. Integrating (19.10), we obtain

dr d2r

the constant of integration has been written as a vector cF parallel to F, since, by appro-
priately choosing the origin, i.e. by adding a constant vector to r, we can eliminate any vector
perpendicular to F. Multiplying (1) scalarly and vectorially by r' (the prime denoting
differentiation with respect to I), and using the fact that r'«r" = (since r'2 = 1), we obtain

FTXr'+cF^r' = 0, EIv" = (Fxr)Xr'+cFxr'. In components (with the ar-axis parallel

to F) we obtain (xy'—yx') + cz' = 0, EIz" = —F(xx'+yy'). Using cylindrical polar co-

ordinates r,
<f>,

z, we have

r*<f>' + cz' = 0, EIz" = -Err'. (2)

The second of these gives

z' = F{A-r*)\2Eh (3)

where A is a constant. Combining (2) and (3) with the identity r'2 +r*^'* -J-*'* = 1, we find

r dr
d/ =

VI>2- (r2 + cz)(A - r2)2F2/4£2/2j'

and then (2) and (3) give

{A-r*)rdr
z =

/

c

2EI J y/[r*-F2(r*+ c*)(A - r^ffim*]

(A-r*)dr

V[r2-F2(r2+ c2)(A - r2)*/4£2/2
]

which gives the shape of the bent rod.

Problem 6. A rod of circular cross-section is subjected to torsion (with torsion angle r)

and twisted into a spiral. Determine the force and moment which must be applied to the

ends of the rod to keep it in this state.

Solution. Let R be the radius of the cylinder on whose surface the spiral lies (and along

whose axis we take the ^-direction) and a the angle between the tangent to the spiral and a

plane perpendicular to the sr-axis ; the pitch h of the spiral is related to a andR by h — 2nR tan a.

The equation of the spiral is x — R cos <$>, y = R sin
<f>,

z = <j>R tan a, where
<f>

is the angle

of rotation about the »-axis. The element of length is 61 — (Rjcos a)d<£. Substituting these

expressions in (19.7), we calculate the components of the vector M, and then the force F
from formula (19.3); F is constant everywhere on the rod. The result is that the force F is

parallel to the z-axis and its magnitude is F = Fz = (O/R) sin a—(EI/R3
) cos 2 a sin a.

The momentM has a ^-componentMt — Cr sin a-\-(EI/R) cos3 a and a ^-component, along

the tangent to the cross-section of the cylinder, M$ = FR.

Problem 7. Determine the form of a flexible wire (whose resistance to bending can be

neglected in comparison with its resistance to stretching) suspended at two points and in a

gravitational field.

Solution. We take the plane of the wire as the jry-plane, with the y-axis vertically down-
wards. In equation (19.3) we can neglect the term dM/dZ, since M is proportional to EI.

Then Fxt = 0, i.e. F is parallel to t at every point, and we can put F = Ft. Equation (19.2)

then gives

d / dx\ n d ( ndy\

d7A dl! dl\ 61 J
H
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where q is the weight of the wire per unit length; hence F 6x161 = c, Fdyldl — ql, and so

F = V(«"+flV). so that dxldl = A/V(A 2+P), dyjdl = UV(A*+P), where ^4 = elq.

Integration gives x = A sivh-\llA), y — ^(A*+P), whence y = A cosh (x/A), i.e. the

wire takes the form of a catenary. The choice of origin and the constant A are determined

by the fact that the curve must pass through the two given points and have a given length.

§20. Small deflections of rods

The equations of equilibrium are considerably simplified in the important

case of small deflections of rods. This case holds if the direction of the

vector t tangential to the rod varies only slowly along its length, i.e. the deriva-

tive dt/d/ is small. In other words, the radius of curvature of the bent rod is

everywhere large compared with the length of the rod. In practice, this

condition amounts to requiring that the transverse deflection of the rod is

small compared with its length. It should be emphasised that the deflection

need not be small compared with the thickness of the rod, as it had to be in

the approximate theory of small deflections of plates given in §§ll-12.f

Differentiating (19.3) with respect to the length, we have

d2M dF dt ^^= Xt+Fx—. (20.1)
d/2 61 dl

K
'

The second term contains the small quantity dt/d/, and so can usually be

neglected (some exceptional cases are discussed below). Substituting in the

first term dF/d/ = — K, we obtain the equation of equilibrium in the form

d2M/d/2 = txK. (20.2)

We write this equation in components, substituting in it from (18.6) and

(18.9)

Mz = -EhY", My = EIzX", Mz = 0, (20.3)

where the prime denotes differentiation with respect to z. The unit vector t

may be supposed to be parallel to the #-axis. Then (20.2) gives

EI2X™-KX = 0, EhY^-Ky = 0. (20.4)

These equations give the deflections X and Y as functions of z, i.e. the shape

of a slightly bent rod.

The stress resultant F on a cross-section of the rod can also be expressed in

terms of the derivatives of X and Y. Substituting (20.3) in (19.3), we obtain

Fx = -EhX"\ Fy = -EhY"'. (20.5)

We see that the second derivatives give the moment of the internal stresses,

while the third derivatives give the stress resultant. The force (20.5) is

called the shearing force. If the bending is due to concentrated forces, the

shearing force is constant along each segment of the rod between points

f We shall not give the complex theory of the bending of rods which are not straight when un-
deformed, but only consider one simple example (see Problems 8 and 9).
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where forces are applied, and has a discontinuity at each of these points

equal to the force applied there.

The quantities EI% and EI\ are called the flexural rigidities of the rod in

the xz and yz planes respectively,f
If the external forces applied to the rod act in one plane, the bending takes

place in one plane, though not in general the same plane. The angle between

the two planes is easily found. If a is the angle between the plane of action of

the forces and the first principal plane of bending (the a:2-plane), the equa-

tions of equilibrium become X*iv
> = (K/I2E) cos a, Y<lv

> = (KlhE) sin a.

The two equations differ only in the coefficient of K. Hence X and Y are

proportional, and Y = (Xh/Ii) tan a. The angle 6 between the plane of

bending and the xsr-plane is given by

tan0 = (72//i)tana. (20.6)

For a rod of circular cross-section h = h and <x = 6, i.e. the bending occurs

in the plane of action of the forces. The same is true for a rod of any cross-

section when a = 0, i.e. when the forces act in a principal plane. The magni-

tude of the deflection £ = V(X2+ Y2) satisfies the equation

£/£(iv) = k, I = IihlVVi2 cos2a+ /22 sin2a). (20.7)

The shearing force F is in the same plane as K, and its magnitude is

F = -Ell'". (20.8)

Here I is the "effective" moment of inertia of the cross-section of the rod.

We can write down explicitly the boundary conditions on the equations of

equilibrium for a slightly bent rod. If the end of the rod is clamped, we must

have X = Y = there, and also X' = Y' = 0, since its direction cannot

change. Thus the conditions at a clamped end are

X = Y = 0, X' = y = 0. (20.9)

The reaction force and moment at the point of support are determined from

the known solution by formulae (20.3) and (20.5).

When the bending is sufficiently slight, the hinging and supporting of a

point on the rod are equivalent as regards the boundary conditions. The

reason is that, in the latter case, the longitudinal displacement of the rod at

its point of support is of the second order of smallness compared with the

f An equation of the form

DXW-KX = (20.4a)

also describes the bending of a thin plate in certain limiting cases. Let a rectangular plate (with

sides a, b and thickness h) be fixed along its sides a (parallel to the y-axis) and bent along its sides b

(parallel to the 2-axis) by a load uniform in the y-direction. In the general case of arbitrary a and b,

the two-dimensional equation (12.5), with the appropriate boundary conditions at the fixed and free

edges, must be used to determine the bending. In the limiting case a g> b, however, the deformation

may be regarded as uniform in the y-direction, and then the two-dimensional equilibrium equation

becomes of the form (20.4a), with the flexural rigidity replaced by D = E/i3a/12(l -o2
). Equation

(20.4a) is also applicable to the opposite limiting case a <g b, when the plate can be regarded as a

rod of length b with a narrow rectangular cross-section (a rectangle of sides a and h); in this case,

however, the flexural rigidity is D = EI2 = Eh3ajl2.
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transverse deflection, and can therefore be neglected. The boundary con-

ditions of zero transverse displacement and moment give

X = Y = 0, X" = Y" = 0. (20.10)

The direction of the end of the rod and the reaction force at the point of

support are obtained by solving the equations.

Finally, at a free end, the force F and moment M must be zero. According

to (20.3) and (20.5), this gives the conditions

X" = Y" = 0, X'" = Y'" = 0. (20.11)

If a concentrated force is applied at the free end, then F must be equal to this

force, and not to zero.

It is not difficult to generalise equations (20.4) to the case of a rod of

variable cross-section. For such a rod the moments of inertia I\ and 1% are

functions of z. Formulae (20.3), which determine the moment at any cross-

section, are still valid. Substitution in (20.2) now gives

d2 / d2Y\ d2 / d2^\
E—(h = Ky , E—(h—A = K*> (20A2)
d*2\ dW d*2 \ <W

in which Ij and h must be differentiated. The shearing force is

d / d2X\ d / d2Y\
'

—

\h , Fy = -E—(h . (20.13)
d*\ d*2 /

V
d*\ d*2 /

v
'

Let us return to equations (20.1). Our neglect of the second term on the

right-hand side may in some cases be illegitimate, even if the bending is

slight. The cases involved are those in which a large internal stress resultant

acts along the rod, i.e. Fz is very large. Such a force is usually caused by a

strong tension of the rod by external stretching forces applied to its ends.

We denote by T the constant lengthwise stress Fz . If the rod is strongly

compressed instead of being extended, T will be negative. In expanding the

vector product F Xdt/d/ we must now retain the terms in T, but those in Fx

and Fy can again be neglected. Substituting X", Y", 1 for the components

of the vector dt/d/, we obtain the equations of equilibrium in the form

hEX^)-TX"-Kx = 0,

(20.14)
I1EYM-TY"-Kv = 0.

v '

The expressions (20.5) for the shearing force will now contain additional

terms giving the projections of the force T (along the vector t) on the x and

y axes :

Fx = -EI2X'" + TX', Fy = -EhY'" + TY'. (20.15)

These formulae can also, of course, be obtained directly from (19.3).

In some cases a large force T can result from the bending itself, even if

no stretching forces are applied. Let us consider a rod with both ends

Fx = -E
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clamped or hinged to fixed supports, so that no longitudinal displacement is

possible. Then the bending of the rod must result in an extension of it,

which leads to a force T in the rod. It is easy to estimate the magnitude of the

deflection for which this force becomes important. The length L + AL of the

bent rod is given by

L

L+AL = JV(l + *'2+ Y'2) d*,

o

taken along the straight line joining the points of support. For slight bending

the square root can be expanded in series, and we find

L

The stress force in simple stretching is equal to the relative extension multi-

plied by Young's modulus and by the area S of the cross-section of the rod.

Thus the force T is

E'er L

T =—J(Z'2+ Y'2) d*. (20.16)
2L

If 8 is the order of magnitude of the transverse bending, the derivatives

X' and Y' are of the order of 8jL, so that the integral in (20.16) is of the

order of S2/L, and T ~ ES(8/L) 2
. The orders of magnitude of the first and

second terms in (20.14) are respectively EI8/L* and T8/L2 ~ ES83/L*. The
moment of inertia / is of the order of A4 , and S ~ h2 , where h is the thickness

of the rod. Substituting, we easily find that the first and second terms in

(20.14) are comparable in magnitude if 8 ~ h. Thus, when a rod with fixed

ends is bent, the equations of equilibrium can be used in the form (20.4) only

if the deflection is small in comparison with the thickness of the rod. If 8

is not small compared with h (but still, of course, small compared with L),

equations (20.14) must be used. The force T in these equations is not known

a priori. It must first be regarded as a parameter in the solution, and then

determined by formula (20.16) from the solution obtained; this gives the

relation between T and the bending forces applied to the rod.

The opposite limiting case is that where the resistance of the rod to bending

is small compared with its resistance to stretching, so that the first terms in

equations (20.14) can be neglected in comparison with the second terms.

Physically this case can be realized either by a very strong tension force T or

by a small value of EI, which can result from a small thickness h. Rods under

strong tension are called strings. In such cases the equations of equilibrium

are

TX" +KX = 0, TY"+Ky = 0. (20.17)
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The ends of the string are fixed, in the sense that their co-ordinates are given,

i.e.

X = Y = 0. (20.18)

The direction of the ends cannot be decided arbitrarily, but is given by the

solution of the equations.

In conclusion, we may show how the equations of equilibrium of a slightly

bent rod may be obtained from the variational principle, using the expression

(18.10) for the elastic energy:

Ftoa = lEJ{hY"2 + l2X"2}dz.

In equilibrium the sum of this energy and the potential energy due to the

external forces K acting on the rod must be a minimum, i.e. we must have

8FTO&-$(Kx8X+Ky8Y)<\z = 0, where the second term is the work done

by the external forces in an infinitesimal displacement of the rod. In varying

Prod, we effect a repeated integration by parts:

l8JX"*dz = jX"8X"dz

= [X"8X']- jX'"8X'dz

= [X,,8X']-[X,,,8X]+ jX™8Xdz,

and similarly for the integral of Y"2
. Collecting terms, we obtain

j [(Eh yav)_Ky)8Y+ (EIzX<M-KX)8X] d*

+

+ EI1[(Y"8Y
,-Y,

"8Y)] +EI2[(X
f'8Xf-X,

"SX)] = 0.

The integral gives the equilibrium equations (20.4), since the variations 8X
and 8Y are arbitrary. The integrated terms give the boundary conditions on

these equations ; for example, at a free end the variations 8X, 8 Y, 8X', 8 Y'

are arbitrary, and the corresponding conditions (20.11) are obtained. Also,

the coefficients of 8X and 8Y in these terms give the expressions (20.5) for

the components of the shearing force, and those of 8X' and 8Y' give the

expressions (20.3) for the components of the bending moment.
Finally, the equations of equilibrium (20.14) in the presence of a tension

force T can be obtained by the same method if we include in the energy a

term TAL = \T\ (X'2+ Y'2
) dsr, which is the work done by the force T over a

distance AL equal to the extension of the rod.

PROBLEMS
Problem 1. Determine the shape of a rod (of length /) bent by its own weight, for various

modes of support at the ends.
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Solution. The required shape is given by a solution of the equation £('v > = qlEI, where
q is the weight per unit length, with the appropriate boundary conditions at its ends, as shown
in the text. The following shapes and maximum displacements are obtained for various

modes of support at the ends of the rod. The origin is at one end of the rod in each case.

(a) Both ends clamped:

£ = qz\z-lf\2\EIy £(£/) = qPfiMEI.

(b) Both ends supported

:

£ = qz(z3-2lz* + P)/24EI, £(£Z) = 5ql*/384EI.

(c) One end (z = I) clamped, the other supported:

£ = qz(2z* - 3Z*2 + /3)/48£7, £(0-42/) = 0-0054#/£7.

(d) One end (z — 0) clamped, the other free

:

£ = qz\z2 -\lz+W)\2\EI, £(Z) = ql*J8EI.

Problem 2. Determine the shape of a rod bent by a force/applied to its mid-point.

Solution. We have £( lv) = everywhere except at z = \l. The boundary conditions

at the ends of the rod (z = and z — I) are determined by the mode of support ; at z = £/,

£, £' and £" must be continuous, and the discontinuity in the shearing force F = —Ell,'"

must be equal to/.

The shape of the rod (for < z ^ £/) and the maximum displacement are given by the

following formulae:

(a) Both ends clamped

:

£ =>2(3Z- 4*)/48£7, £(£Z) = fP/192EI.

(b) Both ends supported:

£ = fz(3P- 4#2)/48£/, £(|Z) = //3/48£7.

The rod is symmetrical about its mid-point, so that the functions £(#) in \l ^ z s$ / are

obtained simply by replacing z by l—z.

Problem 3. The same as Problem 2, but for a rod clamped at one end (z = 0) and free

at the other end (z = I), to which a force/ is applied.

Solution. At all points of the rod F = constant = /, so that £'" == —f/EI. Using the

conditions £ = 0, £' = for z = 0, £" = for z = I, we obtain

£ = fz*(3l-z)l6EI, £(/) = /73/3E7.

Problem 4. Determine the shape of a rod with fixed ends, bent by a couple at its

mid-point.

Solution. At all points of the rod £
(lv) = 0, and at z = \l the moment M = Eli" has

a discontinuity equal to the moment m of the applied couple. The results are:

(a) Both ends clamped:

£ = mz\l -2z)l8EIl for ^ z ^ \l,

£ = -m(l-zf[l-2(l-z)]ISEIl for #<*</.
(b) Both ends hinged:

£ = mz(l2-4z2)j24EIl for < z ^ £/,

£ = -m(/-#)[Z2 -4(Z-#)2]/24£/Z for J/ < z < Z.
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The rod is bent in opposite directions on the two sides of z = \l.

Problem 5. The same as Problem 4, but for the case where one end is clamped and the

other end free, the couple being applied at the latter end.

Solution. At all points of the rodM = Elt," = m, and at z = we have £ = 0, £' = 0.

The shape is given by £ = mz2l2EI,

Problem 6. Determine the shape of a circular rod with hinged ends stretched by a force

T and bent by a force/ applied at its mid-point.

Solution. On the segment < z =£ J/ the shearing force is £/, so that (20.15) gives the

equation

£"-T£'IEI = -fj2EI.

The boundary conditions are £ = C = for z = and I; £' = for z = \l (since £' is

continuous). The shape of the rod (in the segment s$ z ^ \V) is given by

c =nz _
sinh **

), k = v(w.fe

2r\ kcoshiki!'
vv

For small ft this gives the result obtained in Problem 2 (b). For large k it becomes £ = fzjlT,

i.e., in accordance with equations (20.17), a flexible wire under a force / takes the form of

two straight pieces intersecting at z = \l.

If the force T is due to the stretching of the rod by the transverse force, it must be deter-

mined by formula (20.16). Substituting the above result, we obtain the equation

1 r3 1 1 3 1 1 8E2/3— l-+-tanh2-&/ tanh *H-*»L2 2 2 kl 2 J PS
'

which determines T as an implicit function off.

Problem 7. A circular rod of infinite length lies in an elastic substance, i.e. when it is

bent a force K = — oc£ proportional to the deflection acts on it. Determine the shape of the

rod when a concentrated force/acts on it.

Solution. We take the origin at the point where the force / is applied. The equation

E/£(iv) _ _a£ holds everywhere except at z = 0. The solution must satisfy the condition

J=0at2= ±oo, and at z = £' and £" must be continuous; the difference between the

shearing forces F = —Eli"' for * -»> 0+ and z ->- 0— must be/. The required solution is

Problem 8. Derive the equation of equilibrium for a slightly bent thin circular rod which,

in its undeformed state, is an arc of a circle and is bent in its plane by radial forces.

Solution. Taking the origin of polar co-ordinates r,
<f> at the centre of the circle, we write

the equation of the deformed rod as r = a+ £(<£), where a is the radius of the arc and I a small

radial displacement. Using the expression for the radius of curvature in polar co-ordinates,

we find as far as the first order in £

1 r2_ rr" + 2r'2 1 £+£"

R (
r2 + r'2)3/2 a a2

where the prime denotes differentiation with respect to <f>.
According to (18.11), the elastic

bending energy is

r 1 1 1\ 2 EI r
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^o being the angle subtended by the arc at its centre. The equation of equilibrium is obtained
from the variational principle

00

SFrod- jSCKradfi** 0,

where Kr is the external radial force per unit length, with the auxiliary condition

00

JCd^-0,

which is, in this approximation, the statement of the fact that the total length of the rod is

unchanged, i.e. it undergoes no general extension. Using Lagrange's method, we put

4>o

&Frod- jaKM d<f> + aoLJ8£ d<f> = 0,

where a is a constant. Varying the integrand in Fto<i and integrating the 8 £" term twice by
parts, we obtain

f{—(£+2^ + £
(iv))-«^r+aaW d<f>+

+^[«+D8n-^[«'+r)8a = o.
a3 a3

Hence we find the equation of equilibriumt

EI(P*>+2C"+ Qla*-Kr+* = 0, (1)

the shearing force F= —EI(t,'+t,'")la*, and the bending moment M = £!/({+ £")/«*;

cf. the end of §20. The constant a is determined from the condition that the rod as a whole
is not stretched.

Problem 9. Determine the deformation of a circular ring bent by two forces / applied

along a diameter (Fig. 18).

t In the absence of external forces, Kr = and a = 0; the non-zero solutions of the resulting

homogeneous equation correspond to a simple rotation or translation of the whole rod.
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Solution. Integrating equation (1), Problem 8, along the circumference of the ring, we

have 27T<xa = JKra d<f> = 2/. We have equation (1) with K, = everywhere except at

<f>
— and

<f>
— tt:

£Uv)+ 21" + 1 +fa?J7TEI = 0.

The required deformation of the ring is symmetrical about the diameters AB and CD, and

so we must have £' = at A, B, C and D. The difference in the shearing forces for
<f>
-> ±

must be/. The solution of the equation of equilibrium which satisfies these conditions is

< IT.£ = (—h-<£cos<£—7rcos</>— sin<£), <: <f>

In particular, the points .4 and B approach through a distance

IROHJWI-y;-;)-

§21. The stability of elastic systems

The behaviour of a rod subject to longitudinal compressing forces is the

simplest example of the important phenomenon of elastic instability, first

discovered by L. Euler.

In the absence of transverse bending forces Kx , Ky , the equations of

equilibrium (20.14) for a compressed rod have the evident solution

X = Y = 0, which corresponds to the rod's remaining straight under a

longitudinal force |T|. This solution, however, gives a stable equilibrium

of the rod only if the compressing force
|
T\ is less than a certain critical value

Tor- For
|
T\ < TCT , the straight rod is stable with respect to any small pertur-

bation. In other words, if the rod is slightly bent by some small force, it will

tend to return to its original position when that force ceases to act.

If, on the other hand, \T\ > TCT , the straight rod is in unstable equilibrium.

An infinitesimal bending suffices to destroy the equilibrium, and a large

bending of the rod results. It is clear that, if this is so, the compressed rod

cannot actually remain straight.

The behaviour of the rod after it ceases to be stable must satisfy the equa-

tions for bending with large deflections. The value Tcr of the critical load,

however, can be obtained from the equations for small deflections. For

\T\ = Tcr , the straight rod is in neutral equilibrium. This means that, besides

the solution X = Y = 0, there must also be states where the rod is slightly

bent but still in equilibrium. Hence the critical value of TCI is the value of

|T| for which the equations

EI2X(W+ \T\X" = 0, EhY<™+ \T\Y" = (21.1)

have a non-zero solution. This solution gives also the nature of the deforma-

tion of the rod immediately after it ceases to be stable.
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The following Problems give some typical cases of the loss of stability in

various elastic systems.

PROBLEMS
Problem 1 . Determine the critical compression force for a rod with hinged ends.

Solution. Since we are seeking the smallest value of \T\ for which equations (21.1) have
a non-zero solution, it is sufficient to consider only the equation which contains the smaller
of /j and I2 . Let I% < Ix . Then we seek a solution of the equation EIzX(lv^-\-\T\X" =
in the form X = A+Bz+C sin kz+D cos kz, where k = \/(\T\/EI2). The non-zero
solution which satisfies the conditions X = X" = for z = and z = / is X = C sin kz,

with sin kl = 0. Hence we find the required critical force to be Tcr = tt'EIJP. On ceasing

to be stable, the rod takes the form shown in Fig. 19a.

(a)

Fig. 19

Problem 2. The same as Problem 1, but for a rod with clamped ends (Fig. 19b).

Solution. Tcr = WEIJl2
.

Problem 3. The same as Problem 1, but for a rod with one end clamped and the other

free (Fig. 19c).

Solution. Tcr = n*EJJW.

Problem 4. Determine the critical compression force for a circular rod with hinged ends

in an elastic medium (see §20, Problem 7).

Solution. The equations (21.1) must now be replaced by EIXW+ \T\X"+ctX = 0.

A similar treatment gives the solution X = A sin nnzjl,

tPEI/ od* \

Z2 \ nhflEl)

where n is the integer for which Tcr is least. When a is large, n > 1, i.e. the rod exhibits

several undulations as soon as it ceases to be stable.

Problem 5. A circular rod is subjected to torsion, its ends being clamped. Determine
the critical torsion beyond which the straight rod becomes unstable.

Solution. The critical value of the torsion angle is determined by the appearance of

non-zero solutions of the equations for slight bending of a twisted rod. To derive these

equations, we substitute the expression (19.7) M = EltXdt/dl+Crt, where t is the constant

torsion angle, in equation (19.3). This gives

d2t dt
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We differentiate ; since the bending is not large, t may be regarded as a constant vector t

along the axis of the rod (the #-axis) in differentiating the first and third terms. Since also

dF/d/ = (there being no external forces except at the ends of the rod), we obtain

d3t d2t

or, in components,

Y^-kX'" = 0,

X^+kY'" = 0,

where k = CrjEI. Taking as the unknown function £ = X+iY,we obtain £< lv)—ii<£'" = 0.

We seek a solution which satisfies the conditions £ = 0, £' = for z = and z = I, in the

form £ = a(l+iKZ—

e

iKZ)+bz*, and obtain as the compatibility condition of the equations

for a and b the relation eiKl = (2+iW)/(2—tW), whence \kI — tan \kI. The smallest root

of this equation is \kI = 4-49, so that rcr = S-9SEIJCI.

Problem 6. The same as Problem 5, but for a rod with hinged ends.

Solution. In this case we have £ = a(l—eiKZ—i^z^+bz, where k is given by

eiKl = 1, i.e. kI = 2tt.

Hence the required critical torsion angle is tci = 2-itEIJCI.

Problem 7. Determine the limit of stability of a vertical rod under its own weight, the

ower end being clamped.

Solution. If the longitudinal stress Fs = T varies along the rod, dFt/dl ^ in the

first term of (20.1), and equations (20.14) are replaced by

hEX^-{TX')'-Kx = 0,

hEYW-^TYJ-Ky = 0.

In the case considered, there are no transverse bending forces anywhere in the rod, and
T = —q(l—z), where q is the weight of the rod per unit length and z is measured from the

lower end. Assuming that It < Ilt we consider the equation

hEX'" = TX' = -q{l-z)X'\

illy. The general integral of 1for z = I, X'" — automatically. The general integral of this equation for the function

« = X' is

where

The boundary conditions X' = for z — and X" = for z — I give for the function

«(i?) the conditions u = for t) = 170 = $V(ql3JEh)> u'r]113 = for 17 = 0. In order to satisfy

these conditions we must put b = and J-i(-rjo) = 0- The smallest root of this equation

is 170 = 1 -87, and so the critical length is lcr ~ 1 -98(£/2/g)
1/3

.

Problem 8. A rod has an elongated cross-section, so that It ^> Ix . One end is clamped
and a force/ is applied to the other end, which is free, so as to bend it in the principal *«-plane

(in which the flexural rigidity is EI2). Determine the critical force

/

cr at which the rod bent
in a plane becomes unstable and the rod is bent sideways (in the yz-plane), at the same time

undergoing torsion.
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Solution. Since the rigidity EI% is large compared with EIX (and with the torsional

rigidity C),t the instability as regards sideways bending occurs while the deflection in the
war-plane is still small. To determine the point where instability sets in, we must form the
equations for slight sideways bending of the rod, retaining the terms proportional to the
products of the force/ in the xsr-plane and the small displacements. Since there is a concen-
trated force only at the free end of the rod, we have F = f at all points, and at the free end
(ar = I) the moment M = 0; from formula (19.6) we find the components of the moment
relative to a fixed system of co-ordinates x, y, z: Mx = 0, Mv = {l—z)f, Mz — (Y— Y )f,

where Y — Y(l). Taking the components along co-ordinate axes £, t], £ fixed at each point
to the rod, we obtain as far as the first-order terms in the displacements Mg — <f>(l—z)f,M

n
= (/—z)f, Mc

= (l-z)fd Y/dz+f(Y— Y„), where <f> is the total angle of rotation of a
cross-section of the rod under torsion; the torsion angle t = d<f>ldz is not constant along
the rod. According to (18.6) and (18.9), however, we have for a small deflection

M
g
= -EhY", M

v
= EI2X", M^ = Cf

;

comparing, we obtain the equations of equilibrium

EhX" = {l-z)fy EhY" = -<f>(l-z)f,

Ccf>' = (l-z)fY' + (Y-Y )f.

The first of these equations gives the main bending of the rod, in the xz-plane ; we require

the value of/ for which non-zero solutions of the second and third equations appear. Eliminat-

ing Y, we find

<f>" + k\l- zf $ = 0, £2 = pfEhC.

The general integral of this equation is

* = «V(*- *!/*&*('- *)»]+ V('-*)/-i[P('-*)2
].

At the clamped end (z = 0) we must have
<f>
= 0, and at the free end the twisting moment

C<f>' = 0. From the second condition we have a = 0, and then the first gives J-^kl2
) = 0.

The smallest root of this equation is %kl2 = 2-006, whence fCT = 4 -01 -\/^EIxC)

1

7*.

t For example, for a narrow rectangular cross-section of sides b and h (i > h), we have
EIX

= bh3Ell2, ETt = VhE\\2, C = bh3
fil3.



CHAPTER III

ELASTIC WAVES

§22. Elastic waves in an isotropic medium

If motion occurs in a deformed body, its temperature is not in general

constant, but varies in both time and space. This considerably complicates

the exact equations of motion in the general case of arbitrary motions.

Usually, however, matters are simplified in that the transfer of heat from

one part of the body to another (by simple thermal conduction) occurs very

slowly. If the heat exchange during times of the order of the period of

oscillatory motions in the body is negligible, we can regard any part of the

body as thermally insulated, i.e. the motion is adiabatic. In adiabatic defor-

mations, however, ow is given in terms of w$& by the usual formulae, the

only difference being that the ordinary (isothermal) values ofE and a must be

replaced by their adiabatic values (see §6). We shall assume in what follows

that this condition is fulfilled, and accordingly E and a in this chapter will be

understood to have their adiabatic values.

In order to obtain the equations of motion for an elastic medium, we must

equate the internal stress force daucjdxjc to the product of the acceleration

tit and the mass per unit volume of the body, i.e. its density p

:

put
= daikfdxk . (22.1)

This is the general equation of motion.

In particular, the equations of motion for an isotropic elastic medium can

be written down at once by analogy with the equation of equilibrium (7.2).

We have

F E
pu = Au+ grad div u. (22.2)

2(1 + a) 2(l + <r)(l-2a)
S V

Since all deformations are supposed small, the motions considered in the

theory of elasticity are small elastic oscillations or elastic waves. We shall

begin by discussing a plane elastic wave in an infinite isotropic medium, i.e.

a wave in which the deformation u is a function only of one co-ordinate

{x, say) and of the time. All derivatives with respect to y and z in equations

(22.2) are then zero, and we obtain for the components of the vector u the

equations

dhix 1 d2ux ^ d2uy 1 d2uy ,„„ „v— - = 0, — = (22.3)
dx2 ci

2 dt2 dx2 Ct
2 dt2

101
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(the equation for u z is the same as that for uy) ; heref

Cl ~ Vp(l + a)(l-2a)'
Ct =fe' (22 '4)

Equations (22.3) are ordinary wave equations in one dimension, and the
quantities ci and ct which appear in them are the velocities of propagation of
the wave. We see that the velocity of propagation for the component ux is

different from that for uy and u z .

Thus an elastic wave is essentially two waves propagated independently.
In one (ux) the displacement is in the direction of propagation; this is called

the longitudinal wave, and is propagated with velocity cj. In the other wave
(%> «z) the displacement is in a plane perpendicular to the direction of propa-
gation; this is called the transverse wave, and is propagated with velocity ct.

It is seen from (22.4) that the velocity of longitudinal waves is always greater
than that of transverse waves: we always haveJ

ct > V(4/3)^. (22.5)

The velocities ci and ct are often called the longitudinal and transverse veloci-

ties of sound.

We know that the volume change in a deformation is given by the sum of

the diagonal terms in the strain tensor, i.e. by ua = div u. In the transverse

wave there is no component ux, and, since the other components do not
depend on y or z, div u = for such a wave. Thus transverse waves do not

involve any change in volume of the parts of the body. For longitudinal

waves, however, div u ^ 0, and these waves involve compressions and
expansions in the body.

The separation of the wave into two parts propagated independently with
different velocities can also be effected in the general case of an arbitrary

(not plane) elastic wave in an infinite medium. We rewrite equation (22.2) in

terms of the velocities ci and ct

:

u = ct
2Au+ (q

2- ct
2
) grad div u. (22.6)

We then represent the vector u as the sum of two parts

:

u = ui + ut, (22.7)

of which one satisfies

div ut = (22.8)

and the other satisfies

curl ui = 0. (22.9)

We know from vector analysis that this representation (i.e. the expression of

t We may give also expressions for Cj and ct in terms of the moduli of compression and rigidity

and the Lam6 coefficients: c, = V{(3i^+V)/3p} = V{ (A+ 2fi)/p }, ct = V(m/p)-
J Since a actually varies only between and J (see the second footnote to §5), we always have
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a vector as the sum of the curl of a vector and the gradient of a scalar) is

always possible.

Substituting u = uj + uf in (22.6), we obtain

Uj+ii* = ct
2 A(ui+ ut) + (ci

2 -ct2) grad divuj. (22.10)

We take the divergence of both sides. Since div ut = 0, the result is

diviij = ct
2A div ui + (c^-ct

2
)A divuj,

or div(ui-ci2/\ui) = 0. The curl of the expression in parentheses is also

zero, by (22.9). If the curl and divergence of a vector both vanish in all

space, that vector must be zero identically. Thus

— - 'Muz = 0. (22.11)

dp

Similarly, taking the curl of equation (22.10) we have, since the curls of ut

and of any gradient are zero, curl (u t-ct
2A^t) = 0. Since the divergence

of the expression in parentheses is also zero, we obtain an equation of the

same form as (22.11):

— - tfAut = 0. (22.12)

dt2

Equations (22.11) and (22.12) are ordinary wave equations in three dimen-

sions. Each of them represents the propagation of an elastic wave, with

velocity c\ and ct respectively. One wave (ut) does not involve a change in

volume (since div ut
= 0), while the other (u{) is accompanied by volume

compressions and expansions.

In a monochromatic elastic wave, the displacement vector is

u = re{uo(r)*-^}, (22.13)

where uo is a function of the co-ordinates which satisfies the equation

ct
2A uo+ {ci

2- ct
2
)
grad div uo+ <u2uo = 0, (22. 14)

obtained by substituting (22.13) in (22.6). The longitudinal and transverse

parts of a monochromatic wave satisfy the equations

Aui + J^ui = 0, Au,+ £t
2ut= 0, (22.15)

where ki = co/cj, kt
= cojct are the wave numbers of the longitudinal and

transverse waves.

Finally, let us consider the reflection and refraction of a plane mono-

chromatic elastic wave at the boundary between two different elastic media.

It must be borne in mind that the nature of the wave is in general changed

when it is reflected or refracted. If a purely transverse or purely longitudinal

wave is incident on a surface of separation, the result is a mixed wave con-

taining both transverse and longitudinal parts. The nature of the wave
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remains unchanged (as we see from symmetry) only when it is incident

normally on the surface of separation, or when a transverse wave whose
oscillations are parallel to the plane of separation is incident (at any angle).

The relations giving the directions of the reflected and refracted waves can
be obtained immediately from the constancy of the frequency and of the

tangential components of the wave vector,f Let 6 and 6' be the angles of

incidence and reflection (or refraction) and c, c' the velocities of the two waves.

Then
sin# c

~^¥ = V (22 '16)
sina c

For example, let the incident wave be transverse. Then c = ct\ is the

velocity of transverse waves in medium 1. For the transverse reflected wave
we have c' = ct\ also, so that (22.16) gives 6 = 0', i.e. the angle of incidence

is equal to the angle of reflection. For the longitudinal reflected wave,
however, c' = en, and so

sin 6 ca

sin 6' en

For the transverse part of the refracted wave c' = ct2> and for a transverse

incident wave
sin 6 en

sin d' ct2

Similarly, for the longitudinal refracted wave

sin 9 ct\

sin 6' C12

PROBLEMS
Problem 1. Determine the reflection coefficient for a longitudinal monochromatic wave

incident at any angle on the surface of a body (with a vacuum outside).*

Fig. 20
Solution. When the wave is reflected, there are in general both longitudinal and trans-

verse reflected waves. It is clear from symmetry that the displacement vector in the trans-

verse reflected wave lies in the plane of incidence (Fig. 20, where n , nj and nj are unit

f See Fluid Mechanics, §65. The arguments given there are applicable in their entirety.

I The more general case of the reflection of sound waves from a solid-liquid interface, and the
similar problem of the reflection of a wave incident from a liquid on to a solid, are discussed by L. M.
Brekhovskikh, Waves in Layered Media, §4, Academic Press, New York 1960.
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vectors in the direction of propagation of the incident, longitudinal reflected and transverse

reflected waves, and u , u t , Ut the corresponding displacement vectors). The total displace-

ment in the body is given by the sum (omitting the common factor e~im for brevity)

u = A noeik*-r+Ainieikrr+A
taXnteikfr

,

where a is a unit vector perpendicular to the plane of incidence. The magnitudes of the wave
vectors are k = k t

= w/cj, kt = ojct, and the angles of incidence 9 and of reflection 9U

&t are related by 0j = 9 , sin dt = (ct/cj) sin O . For the components of the strain tensor at

the boundary we obtain

uxx = ik<s{AQ+ Ai) cos2#o + iAtkt cos 0* sin 0*, uu = iko(Ao + At),

uXy = iko(Ao— Ai) sin do cos 6o+ ^iAtkt (cos
26t
— sin20*),

again omitting the common exponential factor. The components of the stress tensor can be

calculated from the general formula (5.11), which can here be conveniently written

oilc
= 2pCt

2Uik+ p(cp -2ct
2)uu8ik .

The boundary conditions at the free surface of the medium are a<k«* = 0, whence

<*xx — ayx — 0,

giving two equations which express Ai and At in terms of A . The result is

ct
2 sin 20* sin 20o- ct

2 cos2 20*
A x

= A

At = -AG

ct
2 sin 20* sin 20o+ Q2 cos2 2dt

2ciCt sin 20o cos 20*

ct
2 sin 20* sin 20o+ ct

2 cos2 20*

For 9 = we have A t
= —A , At = 0, i.e. the wave is reflected as a purely longitudinal

wave. The ratio of the energy flux density components normal to the surface in the reflected

and incident longitudinal waves is Ri = |^4jM
|

a
- The corresponding ratio for the reflected

transverse wave is

Rt =
ct cos 0*

A

|2

Ci COS 00

The sum of R t and Rt is, of course, 1.

Problem 2. The same as Problem 1, but for a transverse incident wave (with the oscilla-

tions in the plane of incidence).
-f

Solution. The wave is reflected as a transverse and a longitudinal wave, with 0< = o ,

Ct sin 9 % = Cj sin 9 . The total displacement vector is

u = aXno^oe*k»-r+n^ze<k ''r+aXn*^*e*k'-«\

The expressions for the amplitudes of the reflected waves are

A
t

ct
2 sin 20; sin 20o- ci

2 cos2 20o

Aq
~~

ct
2 sin 20j sin 20o+ ci

2 cos2 20o
'

Ai 2ciCf sin 20o cos 20o

Aq ~
ct
2 sin 20; sin 20o+ ci

2 cos2 20o
'

t If the oscillations are perpendicular to the plane of incidence, the wave is entirely reflected a* a
wave of the same kind, and so Rt = 1

.
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Problem 3. Determine the characteristic frequencies of radial vibrations of an elastic

phere of radius R.

Solution. We take spherical polar co-ordinates, with the origin at the centre of the sphere.
For radial vibrations, u is along the radius, and is a function of r and t only. Hence curl u = 0.

We define the displacement "potential" 4> by ur = u = 8<f>ldr. The equation of motion,
expressed in terms of

<f>,
is just the wave equation cisA<A = $, or, for oscillations periodic in

time (~e~i<Jit
),

The solution which is finite at the origin is <j> = (A/r) sin kr (the time factor is omitted). The
radial stress is

arr = pi (ci
2 — 2ct2)uu + 2ct

2Urr

= p\{cl
2 -2ct

2
)/\<l> + 2ct

2
<l>"

or, using (1),

Orrlp= -o>2<f>-W<f>'lr. (2)

The boundary condition arr(R) = leads to the equation

tan kR 1

kR l-(kRcil2ct)
2

'

(3)

whose roots determine the characteristic frequencies w = kci of the vibrations.

Problem 4. Determine the frequency of radial vibrations of a spherical cavity in an infinite

elastic medium for which ci !> ct (M. A. Isakovich 1949).

Solution. In an infinite medium, radial oscillations of the cavity are accompanied by the

emission of longitudinal sound waves, leading to loss of energy and hence to damping of the

oscillations. When ci ^> ct (i.e. K ^> /x), this emission is weak, and we can speak of the charac-

teristic frequencies of oscillations with a small coefficient of damping.

We seek a solution of equation (1), Problem 3, in the form of an outgoing spherical wave
ff> = Aeikr

lr, k = oi\ci and, using (2), obtain from the boundary condition orr(R) = the

result {kRcijctY = 4(1 —ikR). Hence, when c? ^> ct ,

lct I ct \
co —— 1 1— i— .

R\ ci)
The real part of ou gives the characteristic frequency of oscillation ; the imaginary part gives

the damping coefficient. In an incompressible medium (ci ~> oo) there would of course be no
damping. These vibrations are specifically due to the shear resistance of the medium (fi #0).
Il should be noticed that they have kR = 2ct\ci <^. 1 , i.e. the corresponding wavelength is

large compared with R ; it is interesting to compare this with the result for vibrations of an

elastic sphere, where with ci ^> ct the first characteristic frequency is given by (3) : kR = -it.

§23. Elastic waves in crystals

The propagation of elastic waves in anisotropic media, i.e. in crystals, is

more complicated than for the case of isotropic media. To investigate such

waves, we must return to the general equations of motion piii = dotje/dxk

and use for o-^ the general expression (10.3) 0% = \MmUim- According to
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what was said at the beginning of §22, A^zm always denotes the adiabatic

moduli of elasticity.

Substituting for o^ in the equations of motion, we obtain

duim v
d l dui du

piii = XiMm—— = l^iklm
OXjc OXfc

l dui dum \

d2ut d2um
= iMklmrz

— H fMklmr
dx]cdxm dxjcdxi

Since the tensor Xikim is symmetrical with respect to the suffixes / and m
we can interchange these in the first term, which then becomes identical

with the second term. Thus the equations of motion are

d2Um
piii = Xikim——-—

•

(23.1)
OXkOXi

Let us consider a monochromatic elastic wave in a crystal. We can seek

a solution of the equations of motion in the form Ui = uoie
i{k 'r~a)t

\ where the

uoi are constants, the relation between the wave vector k and the frequency (o

being such that this function actually satisfies equation (23.1). Differentiation

of m with respect to time results in multiplication by — ico, and differentia-

tion with respect to xjc leads to multiplication by ikjc. Hence the above substi-

tution converts equation (23.1) into pcohii = AijcimkkkiUm. Puttings = 8imUm,
we can write this as

(p(o2him-\ucimkkki)Um = 0. (23.2)

This is a set of three homogeneous equations of the first degree for the

unknowns u%, uy , u z . Such equations have non-zero solutions only if the

determinant of the coefficients is zero. Thus we must have

\hkimkkh— poi28im \

— 0. (23.3)

This is a cubic equation in co2 . It has three roots, which are in general

different. Each root gives the frequency as a function of the wave vector k.f

Substituting each in turn in equation (23.2), we obtain equations giving

the components of the corresponding displacement w* (since the equations

are homogeneous, of course, only the ratios of the three components «* are

obtained, and not their absolute values, so that all the m can be multiplied

by an arbitrary constant).

The velocity of propagation of the wave (the group velocity) is given by the

derivative of the frequency with respect to the wave vector. In an isotropic

body, the frequency is proportional to the magnitude of k, and so the direc-

tion of the velocity U = dco/dk is the same as that of k. In crystals this

relation does not hold, and the direction of propagation of the wave is there-

fore not the same as that of its wave vector.

t In an isotropic body, equation (23.3) gives the result previously obtained: one root u>* = c*k*
and two coincident roots to2 = C(

2Aa .
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It is seen from equation (23.3) that o> is a homogeneous function, of degree

one, of the components ki ; if the unknown quantity is taken as the ratio cufk,

the coefficients in the equation do not depend on k. Hence the velocity of

propagation 9cu/8k is a homogeneous function, of degree zero, of ki. Thus
the velocity of a wave is a function of its direction, but not of its frequency.

Since there are three possible relations between o» and k for any direction

in the crystal, there are in general three different velocities of propagation

of elastic waves. These velocities are the same only in a few exceptional

directions.

In an isotropic medium, purely longitudinal and purely transverse waves

correspond to two different velocities of propagation. In a crystal, on the

other hand, to each velocity of propagation there corresponds a wave in which

the displacement vector has components both parallel and perpendicular

to the direction of propagation.

Finally, we may notice the following. For any given wave vector k in a

crystal there can be three waves, with different frequencies and velocities of

propagation. It is easy to see that the displacement vectors u in these three

waves are mutually perpendicular. For, when k is given, equation (23.3) may
be regarded as determining the principal values pco2 of a tensor of rank two,

Xiicimkkki, which is symmetrical with respect to the suffixes i, m.f Equations

(23.2) then give the principal axes of this tensor, which we know are mutually

perpendicular.

PROBLEM
Determine the frequency as a function of the wave vector for elastic waves propagated in a

crystal of the hexagonal system.

Solution. The non-zero components of the tensor A»&jm in the co-ordinates x, y, z are

related to those in the co-ordinates £, q, z (see §10) by

Axxxx — Ayyyy = a+ b, Axxyy — a~ b
y Axyxy = b,

^XXZZ = Ayyzz = C, &XZXZ = AyZyZ = U, &ZZZZ = />

where we have put

The ar-axis is along the sixth-order axis of symmetry; the directions of the x and y axes are

arbitrary. We take the xz-plane such that it contains the wave vector k. Then kx = k sin 6,

ky — 0, kz = k cos 0, where 6 is the angle between k and the ar-axis. Forming the equation

(23.3) and solving it, we obtain three different dependences of to on k:

co!2 = k2(bs'm2d+ dcos2e)!P ,

k?
C02 32 = —{(a+ b) sinW+fcosW+d± ^([(a+ b - d) sinW+ (d-f) cosWf+

2P

+ 4(c+rf)2 sm20cos20)}.

t By the symmetry of the tensor \ncim, we have Xikimkkki = hktmikjcki = Xmihikicki- The latter

expression differs from Xmkiikjcki only by the naming of the suffixes k and /, so that the tensor

Xikimkkki has the symmetry stated.
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§24. Surface waves

A particular kind of elastic waves are those propagated near the surface

of a body without penetrating into it (Rayleigh waves). We write the equation

of motion in the form (22.11) and (22.12):

— - c*Au = 0, (24.1)
dt2

where u is any component of the vectors uj, ut, and c is the corresponding

velocity c\ or ct , and srek solutions corresponding to these surface waves.

The surface of the elastic medium is supposed plane and of infinite extent.

We take this plane as the ry-plane; let the medium be in z < 0.

Let us consider a plane monochromatic surface wave propagated along the

#-axis. Accordingly u = «<(**-**>/(*). Substituting this expression in (24.1), we

obtain for the function f(z) the equation

dy

d*2

If k2 - ofijc2 < 0, this equation gives a periodic function /, i.e. we obtain

an ordinary plane wave which is not damped inside the body. We must

therefore suppose that k2-w2]c2 > 0. Then the solutions for /are

f(z) = constant x exp { ± J
\k2 -m.

The solution with the minus sign would correspond to an unlimited increase

in the deformation for z -» — oo. This solution is clearly impossible, and

so the plus sign must be taken.

Thus we have the following solution of the equations of motion:

u = constant x «***-**>««, (24.2)

where

K = ^(k2 -a>2!c2). (24.3)

It corresponds to a wave which is exponentially damped towards the interior

of the medium, i.e. is propagated only near the surface. The quantity k

determines the rapidity of the damping.

The true displacement vector u in the wave is the sum of the vectors uj and

Uf, the components of each of which satisfy the equation (24.1) with c = ci

for ui and ct for u$. For volume waves in an infinite medium, the two parts

are independently propagated waves. For surface waves, however, this

division into two independent parts is not possible, on account of the boundary

conditions. The displacement vector u must be a definite linear combination

of the vectors u* and Uf . It should also be mentioned that these latter vectors

have no longer the simple significance of the displacement components

parallel and perpendicular to the direction of propagation.
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To determine the linear combination of the vectors uj and ut which gives

the true displacement u, we must use the conditions at the boundary of the
body. These give a relation between the wave vector k and the frequency &>,

and therefore the velocity of propagation of the wave. At the free surface

we must have cr^n fc = 0. Since the normal vector n is parallel to the s-axis,

it follows that axz = oyz = azz = 0, whence

UXz = 0, Uyz = 0, v(uZx+ Uyy) + (l-v)Uzz = 0. (24.4)

Since all quantities are independent of the co-ordinate y, the second of

these conditions gives

1 iduy duz\
Uyz = - \-^-+

-J~)
= %duvldz = °*

Using (24.2), we therefore have

uy = 0. (24.5)

Thus the displacement vector u in a surface wave is in a plane through the

direction of propagation perpendicular to the surface.

The transverse part u$ of the wave must satisfy the condition (22.8)

div Mt
= 0, or

dutx dutz
.+-—. = 0.

dx dz

The dependence of utx and Utz on x and z is determined by the factor

eikx+Kt
z
, where t<t is given by the expression (24.3) with c = ct, i.e.

K = \/(k2 —C02jCt2).

Hence the above condition leads to the equation

ikutx+KtUtz = 0, or utx/utz = —KtJik.

Thus we can write

utx = Ktaeikx+
K
t
z-i(0t

y
utz = -ikaeikx+Kt

z-icot
, (24.6)

where a is some constant.

The longitudinal part u* satisfies the condition (22.9) curl uj = 0, or

duix duiz ^
dz dx

whence

ikuiz —KiUix = (ki = \Z[k2 —co2
Jci

2
]).

Thus we must have

uix = kbeikx+Ki
z-ia,t

, uiz = -iKibeikx+Ki
z-iu)t

, (24.7)

where b is a constant.
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We now use the first and third conditions (24.4). Expressing um in terms

of the derivatives of U{, and using the velocities ci, ct, we can write these

conditions as

dux duz+ = 0,
dZ dX

(24.8)
duz dux

oz ox

Here we must substitute ux = uix+ ut%, uz = ttiz+ utz- The result is that

the first condition (24.8) gives

a(k?+ Kt*) + 2bkKi = 0. (24.9)

The second condition leads to the equation

2ac?K&+ b[c?(ic?-k*)+ 2c?k*] = 0.

Dividing this equation by Ct
2 and substituting

we can write it as

2aic£+ b(&+K?) = 0. (24.10)

The condition for the two homogeneous equations (24.9) and (24.10)

to be compatible is (k2 + Kt2)
2 = 4k2 Kt Ki or, squaring and substituting

the values of K t
2 and ki2 ,

I to2 \ 4 / co2 \ / ft)
2
\

From this equation we obtain the relation between o> and k. It is convenient

to put

co = cM\ (24.12)

k8 then cancels from both sides of the equation, and, expanding, we obtain

for £ the equation

$«-8£*+S€2(3-2—\-l6(\ - —\ = 0. (24.13)

Hence we see that £ depends only on the ratio ctjci, which is a constant

characteristic of any given substance and in turn depends only on Poisson's

ratio

:

CtjCi= V((l-2<r)/2(l-a)}.
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The quantity £ must, of course, be real and positive, and £ < 1 (so that

Kt and ki are real). Equation (24.13) has only one root satisfying these con-

ditions, and so a single value of f is obtained for any given value of ct/ci.

Thus, for both surface waves and volume waves, the frequency is pro-

portional to the wave number. The proportionality coefficient is the velocity

of propagation of the wave,

U = c&. (24.14)

This gives the velocity of propagation of surface waves in terms of the

velocities ct and ci of the transverse and longitudinal volume waves. The
ratio of the amplitudes of the transverse and longitudinal parts of the wave
is given in terms of £ by the formula

2-|2

2V(1-|2
)

(24.15)

The ratio ct\ci actually varies from \jy/2 to for various substances,

corresponding to the variation of a from to \\ £ then varies from 0-874 to

0-955. Fig. 21 shows a graph of f as a function of a.

100

0-95

0-90

085

PROBLEM

A plane-parallel slab of thickness h (medium 1) lies on an elastic half-space (medium 2).

Determine the frequency as a function of the wave number for transverse waves in the slab

whose direction of oscillation is parallel to its boundaries.

Solution. We take the plane separating the slab from the half-space as the xy-plane,

the half-space being in z < and the slab in s£ z <; h. In the slab we have

Uzl = uzl = 0, uyl = f{z)eM*-<>>t\

and in medium 2 a damped wave

:

Ux2 = Uz2 = 0, %2 = ^eV«i(M)
,

K2 = V(k2-02
ICt2

2
).

For the function f(z) we have the equation

/"+ K?f =0, Kl = V(«>
2
fCtl

2 -k*)
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(we shall see below that k^ > 0), whence f(z) = B sin kxz+C cos kxz. At the free surface

of the slab {z — h) we must have oty — 0, i.e. duyjdz = 0. At the boundary between the

two media (z = 0) the conditions are uyl = uvt, frdtij/Jdz = fi^du^dz, ^ and /i, being the

moduli of rigidity for the two media. From these conditions we find three equations for

A, B, C, and the compatibility condition is tan k-Ji = iH Kilfh. Ki- This equation gives <o

as an implicit function of k ; it has solutions only for real #cx and k2 , and so Ct% > (o/k > en.

Hence we see that such waves can be propagated only if c*2 > c«i.

§25. Vibration of rods and plates

Waves propagated in thin rods and plates are fundamentally different

from those propagated in a medium infinite in all directions. Here we are

speaking of waves of length large compared with the thickness of the rod or

plate. If the wavelength is small compared with this thickness, the rod or

plate is effectively infinite in all directions as regards the propagation of the

wave, and we return to the results obtained for infinite media.

Waves in which the oscillations are parallel to the axis of the rod or the

plane of the plate must be distinguished from those in which they are per-

pendicular to it. We shall begin by studying longitudinal waves in rods.

A longitudinal deformation of the rod (uniform over any cross-section), with

no external force on the sides of the rod, is a simple extension or compression.

Thus longitudinal waves in a rod are simple extensions or compressions

propagated along its length. In a simple extension, however, only the com-

ponent azz of the stress tensor (the ar-axis being along the rod) is different

from zero; it is related to the strain tensor by azz = Euzz = Eduzjdz

(see §5). Substituting this in the general equation of motion puz = 9<tza;/3^a;»

we find

^_Z_^ = . (25.1)

This is the equation of longitudinal vibrations in rods. We see that it is an

ordinary wave equation. The velocity of propagation of longitudinal waves

in rods is

V(E/p). (25.2)

Comparing this with the expression (22.4) for q, we see that it is less than

the velocity of propagation of longitudinal waves in an infinite medium.
Let us now consider longitudinal waves in thin plates. The equations of

motion for such vibrations can be written down at once by substituting

— phdhiz/dt2 and —phdhiyjdt2 for Px and Py in the equilibrium equations

(13.4):

p d2uz 1 d2ux 1 d2ux 1 d2uy

~E~W
=
l-a2 1hP

+
2(\ + a) Hy*

+
2{\-o)lh&y'

p d2uy 1 d2uy 1 B2Uy 1 d2uz
•+t— :

—

_ „ +•

(25.3)

E dt2 1 - a2 dy2 2(1 + a) Bx2 2(1 - a) dxdy
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We take the case of a plane wave propagated along the #-axis, i.e. a wave in

which the deformation depends only on the co-ordinate x, and not on y.
Then equations (25.3) are much simplified, becoming

&U% E d*UX =
d*Uy E d*Uy

=
d& pO—a2

) d*2 ' dfi 2p(l + a) dx*
'

^ '
'

We thus again obtain wave equations. The coefficients are different for ux
and uy . The velocity of propagation of a wave with oscillations parallel to the

direction of propagation (ux) is

ViElrfl-6*)]. (25.5)

The velocity for a wave (%) with oscillations perpendicular to the direction

of propagation (but still in the plane of the plate) is equal to the velocity ct of

transverse waves in an infinite medium.
Thus we see that longitudinal waves in rods and plates are of the same

nature as in an infinite medium, only the velocity being different; as before,

it is independent of the frequency. Entirely different results are obtained for

bending waves in rods and plates, for which the oscillations are in a direction

perpendicular to the axis of the rod or the plane of the plate, i.e. involve

bending.

The equations for free oscillations of a plate can be written down at once

from the equilibrium equation (12.5). To do so, we must replace —P by the

acceleration £ multiplied by the mass ph per unit area of the plate. This

gives

92£ Eh*

»w +W^)AH = °' (25 '6)

where A is the two-dimensional Laplacian.

Let us consider a monochromatic elastic wave, and accordingly seek a

solution of equation (25.6) in the form

£ = constant xe«k"- wi
), (25.7)

where the wave vector k has, of course, only two components, kx and ky .

Substituting in (25.6), we obtain the equation

-pco2 + Eh*k*/12(l-o2) = 0.

Hence we have the following relation between the frequency and the wave
number

:

a) = kW{Eh*ll2P(l - <x2)}. (25.8)

Thus the frequency is proportional to the square of the wave number, whereas

in waves in an infinite medium it is proportional to the wave number itself.
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Knowing the relation between the frequency and the wave number, we can

determine the velocity of propagation of the wave from the formula

U = dcojdk.

The derivatives of k2 with respect to the components kXi ky are respectively

2kx , 2ky . The velocity of propagation of the wave is therefore

U = kV{Eh*/3P(l - a2)}. (25.9)

It is proportional to the wave vector, and not a constant as it is for waves in

a medium infinite in three dimensions.^

Similar results are obtained for bending waves in thin rods. The bending

deflections of the rod are supposed small. The equations of motion are

obtained by replacing —Kx and —Ky in the equations of equilibrium for a

slightly bent rod (20.4) by the product of the acceleration X or Y and the

mass pS per unit length of the rod (S being its cross-sectional area). Thus

PSX = EIyd*XJdz\ PSY = ElaPY/dz*. (25.10)

We again seek solutions of these equations in the form

X = constant x e«*z-<*« Y = constant x ei{kz
- mt\

Substituting in (25.10), we obtain the following relations between the fre-

quency and the wave number :

co = kty(EIylPS), co = kW(EIxlpS), (25.11)

for vibrations in the x and y directions respectively. The corresponding

velocities of propagation are

U<*> = Ik^iEIyfpS), W> = 2kV(EIxlPS). (25.12)

Finally, there is a particular case of vibration of rods called torsional

vibration. The corresponding equations of motion are derived by equating

Cdrjdz (see §18) to the time derivative of the angular momentum of the rod

per unit length. This angular momentum is pld<f>fdt y
where d<j>jdt is the

angular velocity
(<f>

being the angle of rotation of the cross-section considered)

and / = J (x2+y2
) d/ is the moment of inertia of the cross-section about its

centre of mass; for pure torsional vibration each cross-section of the rod

performs rotary vibrations about its centre of mass, which remains at rest.

Putting t = d<f>/dz, we obtain the equation of motion in the form

Cd2
<f>/dz

2 = pidmet2
. (25.13)

f The wave number k = 2-ir/X, where A is the wavelength. Hence the velocity of propagation

should increase without limit as A tends to zero. This physically impossible result is obtained because
formula (25.9) is not valid for short waves.
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Hence we see that the velocity of propagation of torsional oscillations along
the rod is

V(C/PI). (25.14)

PROBLEMS
Problem 1. Determine the characteristic frequencies of longitudinal vibrations of a rod

of length /, with one end fixed and the other free.

Solution. At the fixed end (z = 0) we must have ut = 0, and at the free end (z = /)

<*« = Eutg = 0, i.e. duzldz = 0. We seek a solution of equation (25.1) in the form

#2 = A cos(a>t+ (x) sinks,

where k = <o\Z(p/E). From the condition at z = I we have cos kl — 0, whence the charac-
teristic frequencies are

eo = V(Elp)(2n+l)7rl2l,

n being any integer.

Problem 2. The same as Problem 1, but for a rod with both ends free or both fixed.

Solution. In either case <o = \/(E/p) tin/1.

Problem 3. Determine the characteristic frequencies of vibration of a string of length /.

Solution. The equation of motion of the string is

d*X oS d*X
L == 0;

cf. the equilibrium equation (20.17). The boundary conditions are that X — for z —
and /. The characteristic frequencies are o> = y/(pS/T)nn/l.

Problem 4. Determine the characteristic transverse vibrations of a rod (of length /) with
clamped ends.

Solution. Equation (25.10), on substituting X = X (z) cos(a>t +<x), becomes

d^o/d*4 = k*Xo,

where k1 = uPpS/EIy. The general integral of this equation is

Xq = A cos kz+B sin kz+C cosh kz+D sinh kz.

The constants A, B, C and D are determined from the boundary conditions thatX = dX/dz
= for z = and /. The result is

Xq = Aftsmfcl— sinh «r/)(cos kz— cosh kz)—

— (cos kI— cosh «/)(sin kz— sinh kz)},

and the equation coskZ cosh#tZ = 1, the roots of which give the characteristic frequencies
The smallest characteristic frequency is

224 lEh
COmin =

I Ely

V pS/2 V PS

Problem 5. The same as Problem 4, but for a rod with supported ends.
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Solution. In the same way as in Problem 4, we obtainX = A sin kz, and the frequencies

are given by sin*/ = 0, i.e. k = nn/l(n = 1, 2, ...). The smallest frequency is

y-87 I Ely

Problem 6. The same as Problem 4, but for a rod with one end clamped and the other

free.

Solution. We have for the displacement

Xo = A{(cos kI+ cosh k/)(cos kz— cosh kz)

+ (sin kI— sinh /c/)(sin kz— sinh kz)}

(the clamped end being at z — and the free end atz = I), and for the characteristic fre-

quencies the equation cos kI coshkZ+1 = 0. The smallest frequency is

3-52
J
Ely

COmin
3-5Z I Ely

=
~¥~J~p~S~'PS

Problem 7. Determine the characteristic vibrations of a rectangular plate of sides a and b,

with its edges supported.

Solution. Equation (25.6), on substituting £ = l (x, y) cos(a>t+a), becomes

where #c* = 12p(l —a^wPjEh*. We take the co-ordinate axes along the sides of the plate.

The boundary conditions (12.11) become £ = 92£/3*8 = for x = and a,

for y = and b. The solution which satisfies these conditions is

Co = A sm(m7rx/a) s'mfoiry/b),

where m and n are integers. The frequencies are given by

E _ [m2 w2 l

12o(l-o-2
)

7CO = h / 7T
2 —+— .

Vl2p(l-a2) [ a2 #jj

Problem 8. Determine the characteristic frequencies for the vibration of a rectangular

membrane of sides a and b.

Solution. The equation for the vibration of a membrane is TA £ — phi', cf. the equili-

brium equation (14.9). The edges of the membrane must be fixed, so that £ — 0. The
corresponding solution for a rectangular membrane is

£ = A sm(niTTxla) sin(»7ry/#) cos cot,

where the characteristic frequencies are given by

Ttt2 /m2 n2\
ft)
2 =— —+— I,

ph W bV
m and n being integers.
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Problem 9. Determine the velocity of propagation of torsional vibrations in a rod whose
cross-section is a circle, an ellipse, or an equilateral triangle, and in a rod in the form of a
long thin rectangular plate.

Solution. For a circular cross-section of radius R, the moment of inertia is / = \ttR*',

C is given in §16, Problem 1, and we find the velocity to be V(plp), which is the same as the
velocity ct.

Similarly (using the results of §16, Problems 2 to 4), we find for a rod of elliptical cross-

section the velocity [2a6/(a2 +fc2
)] vX^/p). for one with an equilateral triangular cross-section

V(3l*l5p), and for one which is a long rectangular plate (2h/d)\/(fjL/p). All these are less than a.

Problem 10. The surface of an incompressible fluid of infinite depth is covered by a thin
elastic plate. Determine the relation between the wave number and the frequency for waves
which are simultaneously propagated in the plate and near the surface of the fluid.

Solution. We take the plane of the plate as 2 = 0, and the x-axis in the direction of
propagation of the wave ; let the fluid be in z < 0. The equation of motion of the plate alone
would be

d% _ Em d*£
po

Jfi
~ ~

12(1-0*) a?

where p is the volume density of the plate. When the fluid is present, the right-hand side
of this equation must also include the force exerted by the fluid on unit area of the plate,

i.e. the pressure p of the fluid. The pressure in the wave, however, can be expressed in

terms of the velocity potential by p = —pd<f>ldt (we neglect gravity). Hence we obtain

a2£ _ Em wz, r d<f>i

poh
~dF

= ~ 12(1

-

CT2) W "
l Tt\z=o

(1)

Next, the normal component of the fluid velocity at the surface must be equal to that of the
plate, whence

dydt = [ty/a*],..o. (2)

The potential
<f>
must satisfy everywhere in the fluid the equation

~+-J~ = 0. (3)
dx2 dz2

We seek £ in the form of a travelling wave £ = £ eikx
~ ia)t

; accordingly, we take as the
solution of equation (3) the surface wave

<f>
=

<f>
ei(- lcz ~M '>e

lcz
, which is damped in the interior

of the fluid. Substituting these expressions in (1) and (2), we obtain two equations for ^
and £o» and the compatibility condition is

Eh^ &
12(1 -a2

) p + hpok

§26. Anharmonic vibrations

The whole of the theory of elastic vibrations given above is approximate

to the extent that any theory of elasticity is so which is based on Hooke's
law. It should be recalled that the theory begins from an expansion of the

elastic energy as a power series with respect to the strain tensor, which
includes terms up to and including the second order. The components of
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the stress tensor are then linear functions of those of the strain tensor, and

the equations of motion are linear.

The most characteristic property of elastic waves in this approximation is

that any wave can be obtained by simple superposition (i.e. as a linear com-

bination) of separate monochromatic waves. Each of these is propagated

independently, and could exist by itself without involving any other motion.

We may say that the various monochromatic waves which are simultaneously

propagated in a single medium do not interact with one another.

These properties, however, no longer hold in subsequent approximations.

The effects which appear in these approximations, though small, may be of

importance as regards certain phenomena. They are usually called anharmonic

effects, since the corresponding equations of motion are non-linear and do

not admit simple periodic (harmonic) solutions.

We shall consider here anharmonic effects of the third order, arising from

terms in the elastic energy which are cubic in the strains. It would be too

cumbersome to write out the corresponding equations of motion in their

general form. However, the nature of the resulting effects can be ascertained

as follows. The cubic terms in the elastic energy give quadratic terms in the

stress tensor, and therefore in the equations of motion. Let us suppose that

all the linear terms in these equations are on the left-hand side, and all the

quadratic terms on the right-hand side. Solving these equations by the

method of successive approximations, we omit the quadratic terms in the

first approximation. This leaves the ordinary linear equations, whose solution

uo can be put in the form of a superposition of monochromatic travelling

waves: constant xei{k 'r~(0t)

, with definite relations between co and k. On
going to the second approximation, we must put u = uo + ui and retain only

the terms in uo on the right-hand sides of the equations (the quadratic terms).

Since uo, by definition, satisfies the homogeneous linear equations obtained

by putting the right-hand sides equal to zero, the terms in uo on the left-hand

sides will cancel. The result is a set of inhomogeneous linear equations for the

components of the vector ui, where the right-hand sides contain only known
functions of the co-ordinates and time. These functions, which are obtained

by substituting uo for u in the right-hand sides of the original equations, are

sums of terms each of which is proportional to

^•[(ki-k,).!—(o^-w,)*]

or

where coi, o>2, ki, k2 are the frequencies and wave vectors of any two mono-
chromatic waves in the first approximation.

A particular integral of linear equations of this type is a sum of terms

containing similar exponential factors to those in the free terms (the right-

hand sides) of the equations, with suitably chosen coefficients. Each such

term corresponds to a travelling wave with frequency coi ± a>2 and wave
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vector ki + k2. Frequencies equal to the sum or difference of the frequencies

of the original waves are called combination frequencies.

Thus the anharmonic effects in the third order have the result that the set

of fundamental monochromatic waves (with frequencies a>i, a>2, ... and wave
vectors ki, k2, ...) has superposed on it other "waves" of small intensity,

whose frequencies are the combination frequencies such as to± + to2, and
whose wave vectors are such as ki±k2. We call these "waves" in quotation

marks because they are a correction effect and cannot exist alone except in

certain special cases (see below). The values to\ ± a>2 and ki + k2 do not in

general satisfy the relations which hold between the frequencies and wave
vectors for ordinary monochromatic waves.

It is clear, however, that there may happen to be particular values of a>i, ki
and a>2, k2 such that one of the relations for monochromatic waves in the

medium considered also holds for a>i+o>2 and ki + k2 (for definiteness, we
shall discuss sums and not differences). Putting toz = coi+102, ks = ki + k2,

we can say that, mathematically, 103 and k3 then correspond to waves which
satisfy the homogeneous linear equations of motion (with zero on the right-

hand side) in the first approximation. If the right-hand sides in the second
approximation contain terms proportional to £

< <k»'r-w»( >

>
then a particular

integral will be a wave with the same frequency and an amplitude which
increases indefinitely with time.

Thus the superposition of two monochromatic waves with values of to±, ki

and co2, k2 whose sum C03, k3 satisfies the above condition leads, by the

anharmonic effects, to resonance: a new monochromatic wave (with para-

meters C03, h.3) is formed, whose amplitude increases with time and eventually

is no longer small. It is evident that, if a wave with 003, k3 is formed on super-

position of those with a>i, ki and C02, k2, then the superposition of waves with

wi, ki and 003, k3 will also give a resonance with to2 = 103 — toi, k2 = k3 — ki,

and similarly 102, k2 and C03, k3 lead to to\, ki.

In particular, for an isotropic body to and k are related by to = ctk or

to = cik, with ci > ct. It is easy to see in which cases either of these relations

can hold for each of the three combinations

wi, ki; 0)2, k2; a>3 = CO1+C02, k3 = ki + k2.

If ki and k2 are not in the same direction, A3 < ki + &2, and so it is clear that

resonance can then occur only in the following two cases: (1) the waves with

toi, ki and 002, k2 are transverse and that with C03, k3 longitudinal
; (2) one of

the waves with toi, ki and a>2, k2 is transverse and the other longitudinal, and
that with a>3, k3 is longitudinal. If the vectors ki and k2 are in the same
direction, however, resonance is possible when all three waves are longi-

tudinal or all three are transverse.

The anharmonic effect involving resonance occurs not only when several

monochromatic waves are superposed, but also when there is only one wave,
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with parameters a>i, ki. In this case the right-hand sides of the equations of

motion contain terms proportional to e
2^ki-r-0,i()

. if a)1 and ki satisfy the

usual condition, however, then 2o>i and 2ki do so too, since this condition is

homogeneous and of degree one. Thus the anharmonic effect results in the

appearance, besides the monochromatic waves with o>i, ki previously ob-

tained, of waves with 2oji, 2ki, i.e. with twice the frequency and twice the

wave vector, and amplitude increasing with time.

Finally, we may briefly discuss how we can set up the equations of motion,

allowing for the anharmonic terms. The strain tensor must now be given

by the complete expression (1.3):

_\(dui eto* dui dui \

2\dxjc dxi dxi dxjeJ*

in which the terms quadratic in ut can not be neglected. Next, the general

expression for the energy densityf <?, in bodies having a given symmetry,

must be written as a scalar formed from the components of the tensor um
and some constant tensors characteristic of the substance involved; this

scalar will contain terms up to a given power of tint. Substituting the ex-

pression (26.1) for Uik and omitting terms in m of higher orders than that

power, we find the energy $ as a function of the derivatives dui/dxjc to the

required accuracy.

In order to obtain the equations of motion, we notice the following result.

The variation 8$ may be written

S^ = 8—,
d(duijdx]c) dxk

or, putting

d&
<*ik — ;

» (26.2)
d(dui/dxk)

dStii d dcrijc

o& = ailc
— = —

—

(arikSui)— 8ui— .

dxjc 0X]c oxjc

The coefficients of — 8ut are the components of the force per unit volume of

the body. They formally appear the same as before, and so the equations of

motion can again be written

poiii = doujdxjc, (26.3)

f We here use the internal energy S, and not the free energy F, since adiabatic vibrations are
involved.

5



122 Elastic Waves §26

where po is the density of the undeformed body, and the components of the

tensor atk are now given by (26.2), with g correct to the required accuracy.

The tensor ow is no longer symmetrical, f

PROBLEM
Write down the general expression for the elastic energy of an isotropic body in the third

approximation.

Solution. From the components of a symmetrical tensor of rank two we can form two
quadratic scalars (urn* and «n2

) and three cubic scalars («u8
, whw**8 and uucUnujci). Hence the

most general scalar containing terms quadratic and cubic in wie, with scalar coefficients

(since the body is isotropic), is

6 = pUiic
2+ {$K-$fi)uu2 + $AuikUiiuki+Buik2uii+ lCuuZ;

the coefficients of utk* and tin* have been expressed in terms of the moduli of compression
and rigidity, and A, B, C are three new constants. Substituting the expression (26.1) for

in* and retaining terms up to and including the third order, we find the elastic energy to be

dui dujA 2
v/^MA 2

\dxic Cxi I \dxil
+

2dui dui dui dui /dui\''

OXjc OXi OXjc OXi \OXjcJ

dut duk dui ,dui duk dut ,^/3«A 3

+hA +iB +$c — .

dxk dxi dxi dxk dxt dxi \dxiJ

f It should be emphasised that <7<fc is no longer the momentum flux density (the stress tensor).

In the ordinary theory this interpretation was derived by integrating the body force density

doikjdxic over the volume of the body. This derivation depended on the fact that, in performing the

integration, we made no distinction between the co-ordinates of points in the body before and after

the deformation. In subsequent approximations, however, this distinction must be made, and the

surface bounding the region of integration is not the same as the actual surface of the region considered

after the deformation.

It has been shown in §2 that the symmetry of the tensor am is due to the conservation of angular

momentum. This result no longer holds, since the angular momentum density is not Xiiijc — **m<

but (Xi+ujuk -(**+«*)«<•



CHAPTER IV

DISLOCATIONS!

§27. Elastic deformations in the presence of a dislocation

Elastic deformations in a crystal may arise not only by the action of external

forces on it but also because of internal structural defects present in the crystal.

The principal type of defect that influences the mechanical properties of cry-

stals is called a dislocation. The study of the properties of dislocations on the

atomic or microscopic scale is not, of course, within the scope of this book ; we
shall here consider only purely macroscopic aspects of the phenomenon as it

affects elasticity theory. For a better understanding of the physical significance

of the relations obtained, however, we shall first give two simple examples to

show what is the nature of dislocation defects as regards the structure of the

crystal lattice.

Let us imagine that an "extra" half-plane is put into a crystal lattice of

which a cross-section is shown in Fig. 22 ; in this diagram, the added half-plane

Fig. 22

is the upper half of the _y#-plane. The edge of this half-plane (the #-axis, at

right angles to the plane of the diagram) is then called an edge dislocation. In

the immediate neighbourhood of the dislocation the crystal lattice is greatly

distorted, but even at a distance of a few lattice periods the crystal planes fit

together in an almost regular manner. The deformation nevertheless exists

even far from the dislocation. It is clearly seen on going round a closed circuit

of lattice points in the xy-plane, with the origin within the circuit: if the

| This chapter was written jointly with A. M. Kosevich.
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displacement of each point from its position intheideal lattice isdenoted by the

vector u, the total increment of this vector around the circuit will not be zero,

but equals one lattice period in the x-direction.

Another type of dislocation may be visualised as the result of "cutting" the

lattice along a half-plane and then shifting the parts of the lattice on either

side of the cut in opposite directions to a distance of one lattice period parallel

to the edge of the cut (then called a screw dislocation). Such a dislocation

converts the lattice planes into a helicoidal surface, like a spiral staircase

without the steps. In a complete circuit round the dislocation line (the axis of

the helicoidal surface) the lattice point displacement vector increment is one
lattice period along that axis. Figure 23 shows a diagram of such a cut.

Fig. 23

Microscopically, a dislocation deformation of a crystal regarded as a

continuous medium has the following general property; after a passage round

any closed contour L which encloses the dislocation line D, the elastic

displacement vector u receives a certain finite increment b which is equal to

one of the lattice vectors in magnitude and direction; the constant vector b is

called the Burgers vector of the dislocation concerned. This property may be

•expressed as

)6ui = q) dx/c = — bf, (27.1)
J dxje

where the direction in which the contour is traversed and the chosen direction

of the tangent vector t to the dislocation line are assumed to be related by the

corkscrew rulef (Fig. 24). The dislocation line itself is a line of singularities of

the deformation field.

It is evident that the Burgers vector b is necessarily constant along the dis-

location line, and also that this line cannot simply terminate within the crystal:

it must either reach the surface of the crystal at both ends or (as usually hap-

pens in actual cases) form a closed loop.

f The simple cases of edge and screw dislocations mentioned above correspond to straight lines D
-with x J_ b and t || b. We may also note that in the representation given by Fig. 22 edge dislocations

-with opposite directions of b differ in that the "extra" crystal half-plane lies above or below the xz-

plane; such dislocations are said to have opposite signs.
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The condition (27.1) signifies, therefore, that in the presence of a dislocation

the displacement vector is not a single-valued function of the co-ordinates,

but receives a certain increment in a passage round the dislocation line.

Physically, of course, there is no ambiguity: the increment b denotes an addi-

tional displacement of the lattice points equal to a lattice vector, and this does

not affect the lattice itself.

In the subsequent discussion it is convenient to use the notation

w>ik — dujcjdxi, (27.2)

so that the condition (27.1) becomes

I
WW dxt = - bk. (27.3)

The (unsymmetrical) tensor wm is called the distortion tensor. Its symmetrical

part gives the ordinary strain tensor:

uik = l(mk+ mi)- (27.4)

According to the foregoing discussion the tensors zvtk and utk, and therefore

the stress tensor o-^, are single-valued functions of the co-ordinates, unlike

the function u(r).

The condition (27.3) may also be written in a differential form. To do so,

we transform the integral round the contour L into one over a surface Sl
spanning this contour

:f

r C 8wmk
<bzvmjc axm = earn—

-

—
aft-

v »/ C/XT

dwmk
Urn

~L St.

dxi

The constant vector bk is written as an integral over the same surface by

t The transformation is made, according to Stokes' theorem, by replacing dxm by the operator
d/ietim djdxi, where eam is the antisymmetric unit tensor.
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means of the two-dimensional delta function

:

h= (nhSftdfi, (27.5)

i

where \ is the two-dimensional radius vector taken from the axis of the dis-

location in the plane perpendicular to the vector t at the point considered.

Since the contour L is arbitrary, the integrals can be equal only if the inte-

grands are equal:

eumdwmkldxi= -TihSfe). (27.6)

This is the required differential form.f

The displacement field u(r) around the dislocation can be expressed in a

general form ifwe know the Green's tensor G^(r) of the equations of equilib-

rium of the anisotropic medium considered, i.e. the function which determines

the displacement component Ui produced in an infinite medium by a unit

force applied at the origin along the a^-axis (see §8). This can easily be done

by using the following formal device.

Instead of seeking many-valued solutions of the equations of equilibrium,

we shall regard u(r) as a single-valued function, which undergoes a fixed

discontinuity b on some arbitrarily chosen surface Sd spanning the dislocation

loop D. Then the strain tensor formally defined by (27.4) will have a delta-

function singularity on the "surface of discontinuity":

Wt™ = l{nibk + nkbi)8(Q, (27.7)

where £ is a co-ordinate measured from the surface Sd along the normal n
(which is in the direction relative to t shown in Fig. 24).

Since there is no actual physical singularity in the space around the dis-

location, the stress tensor ow must, as already mentioned, be a single-valued

and everywhere continuous function. The strain tensor (27.7), however, is

formally related to a stress tensor anc^ = Xncim uimSs\ which also has a

singularity on the surface Sd- In order to eliminate this we must define ficti-

tious body forces distributed over the surfaceSd with a certain densityf(
sK The

equations of equilibrium in the presence of body forces are doijc/dxjc+ft^ =
(cf. (2.7)). Hence it is clear that we must put

ft*)
= JL_ = _ Xmm-^—. (27.8)

OXjc CXjc

Thus the problem of finding the many-valued function u(r) is equivalent to

that of finding a single-valued but discontinuous function in the presence of

f To avoid misunderstanding it should be noted that on the dislocation line itself (( -* 0), which is

a line of singularities, the representation of the ttHk as the derivatives (27.2) is no longer meaningful.
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body forces given by formulae (27.7) and (27.8). We can now use the formula

^(r) = J^(r-r')/^)(r')dF.

We substitute (27.8) and integrate by parts; the integration with the delta

function is then trivial, giving

C d
ut(r) = -Xjumbm «r—G*y(r- r')d/'. (27.9)

J OXlc

This solves the problem.
-f

The deformation (27.9) has its simplest form far from the closed dislocation

loop. If we imagine the loop to be situated near the origin, then at distances r

large compared with the linear dimensions of the loop we have

u t{t) = -XjkimdimdGij(r)jdxk ,
(27.10)

where

dm = Sibk , Si = ntdf= lemi>xkdxi, (27.11)

sD d

and enci is the antisymmetric unit tensor. The axial vector S has components

equal to the areas bounded by the projections of the loop D on planes perpen-

dicular to the corresponding co-ordinate axes ; the tensor due may be called the

dislocation moment tensor. The components of the tensor Gy are first-order

homogeneous functions of the co-ordinates x, y, z (see §8, Problem). We
therefore see from (27.10) that Ui~\/r2 , and the corresponding stress field

It is also easy to ascertain the way in which the elastic stresses vary with

distance near a straight dislocation. In cylindrical polar co-ordinates z, r,
<f>

(with the s-axis along the dislocation line) the deformation will depend only

on r and
<f>.

The integral (27.3) must, in particular, be unchanged by an

arbitrary change in the size of any contour in the xy-plane which leaves the

shape of the contour the same. It is clear that this can be true only if all the

woc^X jr. The tensor w^, and therefore the stresses cr^, will be proportional

to the same power, 1/r.J

f The tensor Gn for an anisotropic medium has been derived in the paper by I. M. Lifshitz and

L. N. RozentsveIg quoted in §8, Problem. This tensor is in general very complicated. For a straight

dislocation, which corresponds to a two-dimensional problem of elasticity theory, it may be simpler to

solve the equations of equilibrium directly.

% Attention is drawn to a certain analogy between the elastic deformation field round a dislocation

line and the magnetic field of constant line currents. The current is replaced by the Burgers vector,

which must be constant along the dislocation line, like the current. Similar analogies will also be readily

seen in the relations given below. However, quite apart from the entirely different nature of the two
physical effects, these analogies are not far-reaching, because the tensor character of the corresponding

quantities is different.
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Although we have hitherto spoken only of dislocations, the formulae de-
rived are applicable also to deformations caused by other kinds of defect in

the crystal structure. Dislocations are linear defects; there exist also defects in
which the regular structure is interrupted through a region near a given
surface.| Such a defect can be macroscopically described as a surface of dis-

continuity on which the displacement vector u is discontinuous but the stresses

aik are continuous, by virtue of the equilibrium conditions. If the discontinuity

b is the same everywhere on the surface, the resulting strain is just the same as

that due to a dislocation along the edge of the surface. The only difference is

that the vector b is not equal to a lattice vector. However, the position of the
surface Sd discussed above is no longer arbitrary; it must coincide with the
actual physical discontinuity. Such a surface of discontinuity involves a certain

additional energy which may be described by means of an appropriate surface-

tension coefficient.

PROBLEMS

Problem 1 . Derive the differential equations of equilibrium for a dislocation deformation
in an isotropic medium, expressed in terms of the displacement vector.^

Solution. In terms ofthe stress tensor or strain tensor the equations ofequilibrium have the
usual form daikjdxu = or, substituting ai]c from (5.11),

duM a dun

dxjc l—2a dxi

To convert to the vector u we must use the differential condition (27.6). Multiplying (27.6)
by even and summing over * and k, we obtain§

dWnk dwjcjc
= -(TXb)»8(|). (2)

Writing (1) in the form

dxjc dxn

2 o '
2~

~

l"~ Z Z
= "

dx^ dxjc 1 — 2ct dxt

and substituting (2), we find

dzvjci 1 dzon

dxjc l—2a dxi

Now changing to u in accordance with (27.2), we find the required equation for the multi-
valued function u(r)

:

1

Au+——- grad div u = xXbS(^). (3)
1 — La

t A well-known example of a defect of this type is a narrow twinned layer in a crystal.

\ The physical meaning of this and other problems relating to an isotropic medium is purely
conventional, since actual dislocations by their nature occur only in crystals, i.e. in anisotropic media.
Such problems have illustrative value, however.

§ Using also the formula eumetkn = Sik Smn— Sj„fi mfc .



§27 Elastic deformations in the presence of a dislocation 129

Problem 2. Determine the deformation near a straight screw dislocation in an isotropic

medium.

Solution. We take cylindrical polar co-ordinates z, r, ^, with the sr-axis along the disloca-

tion line; the Burgers vector is bx = b y = 0, bz = b. It is evident from symmetry that the

displacement u is parallel to the #-axis and is independent of the co-ordinate z. The equation
of equilibrium (3), Problem 1, reduces to A«z = 0. The solution which satisfies the condition

(27.1) isf uz = b<f>j2ir. The only non-zero components of the tensors utk and 0% are mz <j>
=

bjAirr, oz$ = fiil2irr, and the deformation is therefore a pure shear.

The free energy of the dislocation (per unit length) is given by the integral

fib
2 rdr

4tt J r
'

which diverges logarithmically at both limits. As the lower limit we must take the order of

magnitude of the interatomic distances (~b), at which the deformation is large and the macro-
scopic theory is inapplicable. The upper limit is determined by a dimension of the order of the

length L of the dislocation. ThenF = (\tb2\A-n) log (L/b). The energy of the deformation in the

"core' ' of the dislocation near its axis (in a region of cross-sectional area ~ b2) can be estimated

as ~ fib
2

. When log (Ljb) ^> 1 this energy is small in comparison with that of the elastic

deformation field. %

Problem 3. Determine the internal stresses in an anisotropic medium near a screw disloca-

tion which is perpendicular to a plane of symmetry of the crystal.

Solution. We take co-ordinates x, y, z so that the #-axis is along the dislocation line, and
again write bz = b. The vector u again has only the component uz = u(x,y). Since the xy-

plane is a plane of symmetry, all the components of the tensor Xikim are zero which contain the

suffix z an odd number of times. Thus only two components of the tensor aw are non-zero

:

oXz — A-xzxz~^ V^xzyz
du du
-—\-^xzyz~,

ox cy

du du
Vyz — Ayzxz-7-+ Ayzyz~z~-

ox cy

We define a two-dimensional vector a and a two-dimensional tensor Aa g: <ra = oaz , Aa $ =
A<x«33 (a = 1, 2). Then <ra = \a&8ul8x$, and the equation of equilibrium becomes div o = 0.

The required solution of this equation must satisfy the condition (27.1) : $ grad u • dl = b.

In this form, the problem is the same as that of finding the magnetic induction and magnetic
field (represented by o and grad u) in an anisotropic medium of magnetic permeability Aa p
near a straight current of strength I = cb\\-n. Using the solution derived in electrodynamics,

we obtain§

o\,, = — b KftepyzXy

2n VH-*«V*«'*/

'

where |A| is the determinant of the tensor Aap.

t In all the problems on straight dislocations we take the vector t in the negative ar-direction.

t These estimates are general ones and are valid in order of magnitude for any dislocation (and not
only for a screw dislocation).

It should be noted that in practice the values of log (L/b) are usually not very large, and the energy
of the "core" is therefore a considerable fraction of the total energy of the dislocation.

§ See Electrodynamics of Continuous Media, §29, Problem 5.
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Problem 4. Determine the deformation near a straight edge dislocation in an isotropic

medium.

Solution. Let the s-axis be along the dislocation line, and the Burgers vector be bx = b,

by = bz = 0. It is evident from the symmetry of the problem that the displacement vector

lies in the xy-plane and is independent of z, so that the problem is a two-dimensional one. In

the rest of this solution all vectors and vector operations are two-dimensional in the xy-plane.

We shall seek a solution of the equation

AuH grad div u = -&jS(r)
1 — 2ct

(see Problem 1 ; j is a unit vector along the j>-axis) in the form u = u(°> + w, where u<°> is a

vector with components u^x = b<l>l2ir, w<% = (fc/2-n-) log r; these are the imaginary and real

parts of (6/2tt) log (x+iy), r and
<f>

being polar co-ordinates in the xy-plane. This vector

satisfies the condition (27.1). The problem therefore reduces to finding the single-valued

function w. Since, as is easily verified, div u<°> = 0, Au<°> = £j8(r), it follows that w satisfies

the equation

Aw+ grad div w = -2£j8(r).
1 — 2cr

This is the equation of equilibrium under forces concentrated along the sr-axis with volume

density £6jS(r)/2(l + a) ; cf. §8, Problem, equation (1). By means of the Green's tensor found

in that problem for an infinite medium, the calculation ofw is reduced to that of the integral

W =
a) J [ r mr(l-a)

u

R = ^2 + ^2).

The result is

b
j y 1 xy

ux = —

—

{tan-1--r-
2tt 1 x 2(1 — a) x2+y2

j

b i 1-2<t 1 x2
|

The stress tensor calculated from this has Cartesian components

y(3x2+y2
)

vxx = - bD

Oyy = bD

oXy = bD

(x2+y2
)
2

y(x2 —y2
)

(x2+y2
)
2

x(x2 —y2
)

(x2+y2
)
2

and polar components

where D = /*/27r(l — a).

<*rr = oH = -(bD/r) sin
<f>,

ar4> = (bDjr) cos
<f>,
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Problem 5. An infinity of identical parallel straight edge dislocations in an isotropic

medium lie in one plane perpendicular to their Burgers vectors and at equal distances h apart.

Find the shear stresses due to such a "dislocation wall" at distances large compared with h.

Solution. Let the dislocations be in the ys-plane and parallel to the sr-axis. According to

the results of Problem 4, the total stress due to all the dislocations at the point (x, y) is given by

the sum

axy(x, y) = bDx> —— —-.

This may be written in the form

axy
a

= -bD-
h

3/(«,0)
7(a, p) + a-

da.

where

' + {^-nf
n = — °° v

According to Poisson's summation formula

00 00 00

Y/(«) = V j f(x)e
2"ikxdx,

k = — °° — °°

find

d£ ^ .
re****idgf df ^ re*

77 Z7T77 Z.77 -«r—

v

= -+ > e-2^^«cos 27rfyS.

a a
f̂t = i

When a = »/A^> 1 only the first term need be retained in the sum over k, and the result is

bx
axy = 7̂T

2]T
>_e-27rx/h C0S(277}>//*).

h2

Thus the stresses decrease exponentially away from the wall.

§28. The action of a stress field on a dislocation

Let us consider a dislocation loop D in a field of elastic stresses a\^
created by given external loads, and calculate the force on the loop in such a

field.

According to the general rules, this must be done by finding the work 8R
done by internal stresses in an infinitesimal displacement of the loop D. If



1 32 Dislocations §28

Sttjfc is the change in the strain tensor due to this displacement, we have from

(3.1)f

sr = - oikmuikdv.~

dujc
* -dV

Since the distribution of the stresses o^e) is assumed independent of the

position of the dislocation, we can take the difference symbol S outside the

integral. Using also the symmetry of the tensor otk <e) and the equation of

equilibrium daik^\dxk = 0, we can write

8R = -8Lik^uikdV

J CXi

= -h[- {aik^uk)dV. (28.1)
J OXf

As explained in §27, we shall regard the displacement u as a single-valued

function having a discontinuity on some surface Sd spanning the line D. Then
the volume integral in (28.1) can be transformed into an integral over a closed

surface consisting of the upper and lower surfaces of the cut Sd, joined by a

tubular lateral surface of infinitesimal width enclosing the line D. The values

of the continuous quantities <Jik^ are the same on both surfaces, butthe values

of u differ by a given amount b. We therefore obtain^

jcr^dfi. (28.2)8R = -bk8

x
Let each element of length dl of the dislocation be displaced by an amount

Sr. This displacement causes a change in the area of the surface Sd, the

elementary change being Sf = Sr X dl, i.e. 8fi = eimn8xmdln = eimn8xmrndl.
The work (28.2) therefore becomes a line integral round the dislocation loop

:

8R = — Sbkeimn crki^8xmrndl,

where t is the tangent vector to D.

The coefficient of 8xm in the integrand is minus the forcefm on unit length

f To avoid misunderstandingwemust emphasise that Suae in this formula is to be taken (inaccordance
with the sense of this quantity in (3.1)) as the total (geometrical) change in the deformation following an
infinitesimal movement of the dislocation. It comprises both elastic and plastic (see §29) parts.

\ The integral over the tubular lateral surface of radius p vanishes as p — 0, since the uie become
infinite more slowly than 1/p.
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of the dislocation line. Thus

fi = eiklTk°lrn
e)bm (28.3)

(M. Peach and J. S. Koehler 1950). We may note that the force f is perpen-

dicular to the vector t, i.e. to the dislocation line, and also to the vector

oik (e) bk-

The plane which is defined by the vectors t and b at each point of the dis-

location is called the slipplane of the corresponding element of the dislocation

;

for every element this plane of course touches the slip surface of the whole

dislocation, which is a cylindrical surface with generators parallel to the Bur-

gers vector b of the dislocation. The distinctive physical property of the slip

plane is that it is the only one in which a comparatively easy mechanical dis-

placement of the dislocation is possible.-f- For this reason it is of interest to

determine the force (28.3) on this plane.

Let k be a vector normal to the dislocation line in the slip plane. Then the

required force component (f±t say) is f± = Kifa = eikiKiTkbmaim <e\ or

fx= vtomPbm, (28.4)

where v = k Xt is a vector normal to the slip plane. Since the vectors b and v

are perpendicular, we see that the forcefx is determined by only one compo-

nent oimSe) if two of the co-ordinate axes are taken along these vectors.

The total force acting on the whole dislocation loop is

Fi = encibmixrim{e)dxk . (28.5)

This is zero except for a non-uniform stress field ; when a\m^ = constant,

the integral is §dxk = 0. If the stress field varies only slightly over the loop,

we can write

ri = enabm— (pa^d^A;,

P D

the loop being regarded as situated near the origin .This force can be expressed

in terms of the dislocation moment du defined by (27.11):

Ft = dkidade)ldxi. (28.6)

PROBLEMS

Problem 1. Find the force of interaction between two parallel screw dislocations in an

isotropic medium.

f This fact follows from the microscopic form of a dislocation defect. For example, to move the

edge dislocation shown in Fig. 22 in its slip plane (the xs-plane) comparatively slight movements of the

atoms are sufficient, which make crystal planes farther and farther from the yar-plane (but still parallel to

it) into "extra" planes.

The movement of the dislocation in other directions can occur only by diffusion processes. For

example, the dislocation shown in Fig. 22 can move in the yar-plane only when atoms leave the "extra"

half-plane by diffusion. Such a process can be of practical importance only at fairly high temperatures.
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Solution. The force per unit length acting on one dislocation in the stress field due to the
other dislocation is determined from formula (28.4), using the results of §27, Problem 2. It is

a radial force of magnitude/ = [ib\b2\2m: Dislocations of like sign (bxb2 > 0) repel, while
those of unlike sign (bib2 < 0) attract.

Problem 2. A straight screw dislocation lies parallel to the plane free surface of an iso-

tropic medium. Find the force acting on the dislocation.

Solution. Let the yz-plane be the surface of the body, and let the dislocation be parallel to

the .sr-axis with co-ordinates * = xo, y — 0.

The stress field which leaves the surface of the medium a free surface is described bythesum
of the fields of the dislocation and its image in the y^-plane, considered to lie in an infinite

medium

:

fxb y y

[ib

Gyz = —

2ttL(x— xo)2 +y2 (x+ xo)2+y2

X— Xq X+ Xq

2tt L (x— xo)2+y2 (x+xo)2+y2
_

Such a field exerts a force on the dislocation considered which is equal to the attraction exerted

by its image, i.e. the dislocation is attracted to the surface of the medium by a force

/ = nb'ftnxo.

Problem 3. Find the force of interaction between two parallel edge dislocations in an
isotropic medium which are in parallel slip planes.

Solution. Let the slip planes be parallel to the xsr-plane and let the ar-axis be parallel to the

dislocation lines ; as in §27, Problem 4, we put ts = — l,bx = b. Then the force on unit length

of the dislocation in the field of elastic stresses ow has components fx = boxy,fy = — boxx .

In the case considered, oik is determined by the expressions derived in §27, Problem 4. If one
dislocation is along the z-axis, it exerts on the other dislocation (passing through the point
(x, y, 0)) a force whose polar components are fr = b\b2Djr, f<\>

= {bib2Djr) sin 2<f>, D =
nl2ir(l — a). The component of this force in the slip plane is fx = (bib2Dlr) cos

<f>
cos 2<j>,

which is zero when <f>
= \-n or \tt. The former position corresponds to stable equilibrium when

6i&2 > 0» the latter when bib2 < 0.

§29. A continuous distribution of dislocations

If a crystal contains several dislocations at the same time which are at

relatively short distances apart (although far apart compared with the lattice

constant, of course), it is useful to treat them by means of an averaging process

:

we consider "physically infinitesimal" volume elements in the crystal with a

large number of dislocation lines through each.

An equation which expressed a fundamental propertyof dislocationdeforma-

tions can be formulated by a natural generalisation of equation (27.6). We
define a tensor pw (the dislocation density tensor) such that its integral over a

surface spanning any contour L is equal to the sum b of the Burgers vectors

of all the dislocation lines embraced by the contour

:

f.
PiJcdft = bk . (29.1)

The continuous functions pw describe the distribution of dislocations in the
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crystal. This tensor now replaces the expression on the right of equation

(27.6):

eumdWmk/ %*% = - pik- (29.2)

This equation shows that the tensor pik must satisfy the condition

8paldxt
= Q; (29.3)

for a single dislocation, this condition simply states that the Burgers vector is

constant along the dislocation line.

When the dislocations are treated in this way, the tensor wik becomes a

primary quantity describing the deformation and determining the strain ten-

sor through (27.4). A displacement vector u related to wi1c by the definition

(27.2) cannot exist; this is clear from the fact that with such a definition the

left-hand side of equation (29.2) would be identically zero throughout the

crystal.

So far we have assumed the dislocations to be at rest. Let us now see how a

set of equations may be formulated so as to allow in principle elastic deforma-

tions and stresses in a medium where dislocations are moving in a given man-

nerf (E. Kroner and G. Rieder 1956).

Equation (29.2) is independent of whether the dislocations are at rest or in

motion. The tensor wilc still determines the elastic deformation; its symmetri-

cal part is the elastic strain tensor, which is related to the stress tensor in the

usual way, by Hooke's law.

This equation, however, is now insufficient for a complete formulation of

the problem. The full set of equations must also determine the velocity v of

the points in the medium.

It must be borne in mind that the movement of dislocations causes not only

a change in the elastic deformation but also a change in the shape of the crystal

which does not involve stresses, i.e. aplastic deformation. The motion of dis-

locations is in fact a mechanism of plastic deformation. This is clearly illustra-

ted by Fig. 25, where the passage of the edge dislocation from left to right

causes the part of the crystal above the slip plane to be shifted to the right by

one lattice period; since the lattice is then regular, the crystal remains un-

stressed. Unlike an elastic deformation, which is uniquely defined by the

thermodynamic state of the body, a plastic deformation depends on the process

which occurs. In considering dislocations at rest we have no need to distin-

guish elastic and plastic deformations, since we are concerned only with

stresses which are independent of the previous history of the crystal.

Let u be the geometrical displacement vector of points in the medium,

measured, say, from their position before the deformation process begins; its

f We shall not discuss here the problem of determining this motion itself from the forces applied to

the body. The solution of such a problem requires a detailed study of the microscopic mechanism of the

motion of dislocations and their retardation by various defects, which must take account of the

conditions occurring in actual crystals.
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time derivative ii = v. If the "total distortion" tensor Wik = dut/dxt is

formed from the vector u, its "plastic part" «^<pl
) is obtained by subtracting

Fig. 25

from Wik the "elastic distortion" tensor, which is the same as the tensor zcijc in

(29.2). We use the notation

-ja=fai*Wlto; (29.4)

the symmetrical part ofjw gives the rate of variation of the plastic deformation

tensor: the change in e^& (pl) in an infinitesimal time interval 8t is

Si^CPD = -ft/tt+AOS*. (29.5)

We may note, in particular, that, if a plastic deformation occurs without

destroying the continuity of the body, the trace of the tensor jm is zero : a

plastic deformation causes no extension or compression of the body (which

would always involve the appearance of internal stresses), i.e. u^^ = 0, and
therefore;^ = -dukkW/dt = 0.
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Substituting in the definition (29.4) Wik^ = Wuc— ww, we can write it as

= -r-+ja, (29.f^

dt dxt

an equation which relates the rates of change of the elastic and plastic deforma-

tions. Here the /^ must be regarded as given quantities which must satisfy

conditions ensuring the compatibility of equations (29.6) and (29.2). These

conditions are found by differentiating (29.2) with respect to time and sub-

stituting (29.6), and are

^+^ = 0. (29.7)
Ot OX\

The complete set of equations is given by (29.2) and (29.6), together with the

dynamical equations

pvi = datjcldxjc, (29.8)

where ailc = XtjcimUim = At^m^zm-The tensors puc and fa which appear in

these equations are given functions of the co-ordinates (and time) which

describe the distribution and movement of the dislocations. These functions

must satisfy the compatibility conditions of equations (29.2) with one another

and with (29.6), which are given by (29.3) and (29.7).

The condition (29.7) may be regarded as a differential expressionof the "law

of conservation of the Burgers vector" in the medium: integrating both sides

of this equation over a surface spanning some closed line L, defining by (29.1)

the total Burgers vector b of the dislocations embraced by L, and using

Stokes' theorem, we obtain

~df
= -jjikdxi. (29.9)

The form of this equation shows that the integral on the right gives the "flux"

of the Burgers vector through the contour L per unit time, i.e. the Burgers

vector carried across L by moving dislocations. We may therefore caliy^ the

dislocation flux density tensor.

In particular, it is clear that for an isolated dislocation loop the tensorjw has

the form

jik = eumpucVm

= eamTiVmbko{l), (29.10)

puc being given by (27.6), and V being the velocity of the dislocation line at a

particular point on it. The flux vector through the element dl of the contour

L is jijcdli and is proportional to dl^x XV = V«dl Xt, i.e. the component of V
in a direction perpendicular to both dl and t ; from geometrical considerations

6
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it is evident that this is correct, since only that velocity component causes the

dislocation to intersect the element dl.

We may note that the trace of the tensor (29.10) is proportional to the com-

ponent of the velocity of the dislocation along the normal to its slip plane. It

has been mentioned above that the absence of any inelastic change in density

of the medium is ensured by the condition/^ = 0. We see that for an indivi-

dual dislocation this condition signifies motion in the slip plane, in accordance

with the previous discussion of the physical nature of the movement of dis-

locations; see the last footnote to §28.

Finally, let us consider the case where dislocation loops are distributed in

the crystal in such a way that their total Burgers vector (denoted by B) is zero.f

Fig. 26

This condition signifies that integration over any cross-section of the body

gives

pikdfi = 0. (29.11)

From this it follows that the dislocation density in this case can be written as

pik = eumBPmkl dxi (29 . 1 2)

(F. Kroupa 1962); then the integral (29.11) becomes an integral along a con-

tour outside the body, and is zero. It may also be noted that the expression

(29.12) necessarily satisfies the condition (29.3).

It is easy to see that the tensor P^ thus defined represents the dislocation

moment density in the deformed crystal, and may therefore be called the

"dislocation polarisation": the total dislocation moment Afc of the crystal is,

by definition,

Dm — ^ Stbjc = leum£hi>xidxf

D

= J eamXlpmkdV,

t The presence of a dislocation involves a certain bending of the crystal, as shown diagrammatically

in Fig. 26 (greatly exaggerated). The condition B = means that there is no macroscopic bending of

the crystal as a whole.
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where the summation is over all dislocation loops and the integration is over

the whole volume of the crystal. Substituting (29.12), we obtain

dPaic

Dm = \ eumempgxi——dV
J OXp

-If.
uXi OXm/

and, after integrating by parts in each term,

Dik = jpikdV. (29.13)

The dislocation flux density is given in terms of the same tensor Pik by

jiJc=-dPikl8L (29.14)

This is easily seen, for example, by calculating the integral jj\k dV over an

arbitrary part of the volume of the body, using the expression (29.10), to give

a sum over all dislocation loops within that volume. We may note that the

expression (29.14) together with (29.12) automatically satisfies the condition

(29.7).

A comparison of (29.14) with (29.4) shows that Stotk^ = &Pik . If we

agree to regard the plastic deformation as absent in the state with Pm = 0,

then wifctoU = P^,f and

Wik = Wit-to*®) = dujcldxt-Pijc, (29.15)

where uk is again the vector of the total geometrical displacement from the

position in the undeformed state. Equation (29.6) is then satisfied identically,

and the dynamical equation (29.8) becomes

pUi-Xmmd2umldxkdxi = -XikimdPimjdxk . (29.16)

Thus the determination of the elastic deformation due to moving dislocations

with B = reduces to a problem of ordinary elasticity theory with body forces

distributed in the crystal with density —hkimdPimfixk (A. M. Kosevich

1963).

§30. Distribution of interacting dislocations

Let us consider a large number of similar straight dislocations lying

parallel in the same slip plane, and derive an equation to determine their

equilibrium distribution. Let the sr-axis be parallel to the dislocations, and

the xs-plane be the slip plane.

t It is assumed that the entire deformation process occurs with B = 0. This point must be empha-

sised, since there is a fundamental difference between the tensors Pik and w Jfc

(pl)
: whereas Pik is a func-

tion of the state of the body, the tensor «.-
Mr

(pl>
is not, but depends on the process which has brought the

body into that state.
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We shall suppose for definiteness that the Burgers vectors of the disloca-

tions are in the ^-direction. Then the force in the slip plane on unit length of

a dislocation is baxyy where axy is the stress at the position of the dislocation.

The stresses created by one straight dislocation (and acting on another

dislocation) decrease inversely as the distance from it. The stress at a point x

due to a dislocation at a point x' is therefore bD/(x— x'), where D is a constant

of the order of the elastic moduli of the crystal. It may be shown that this

constant D is positive, i.e. two like dislocations in the same slip plane repel

each other.f

Let p(x) be the line density of dislocations on a segment (a±, a^) of the

x-axis
;
p(x)dx is the sum of the Burgers vectors of dislocations passing through

points in the interval dx. Then the total stress at a point x on the x-axis due to

all the dislocations is given by the integral

a>

axy{x)^-D[^p-^. (30.1)
J £ — X

For points in the segment («i, a?) this integral must be taken as a principal

value in order to exclude the physically meaningless action of a dislocation on

itself.

If the crystal is also subjected to a two-dimensional stress field axy ^e\x, y)
in the ry-plane, caused by given external loads, each dislocation will be sub-

jected to a force b(axy +p(x)), where for brevity p{x) denotes oxyW(x, 0). The
condition of equilibrium is that this force should be zero: axy+p — 0, i.e.

D? />(£)<*£ p(x)
P — =—— = w(x), (30.2)
J tj— x D
ai

where P denotes, as usual, the principal value. This is an integral equation to

determine the equilibrium distribution p(x). It is a singular equation with a

Cauchy kernel.

The solution of such an equation is equivalent to a problem in the theory of

functions of a complex variable which may be formulated as follows.

Let Q,(z) denote a function defined throughout the complex #-plane (cut

from a± to a?) as the integral

Q(*) =
J"!

''^^
(30.3)

«l
I"

Let Q.
+ (x) and Q~(x) denote the limiting values of Q(#) on the upper and lower

edges of the cut. They are equal to similar integrals along the segment («i, #2)

f For an isotropic medium this has been proved in §28, Problem 3.
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with an indentation in the form of an infinitesimal semicircle below or above

the point z = x respectively, i.e.

a 2

a ±(*) = P mLl. + i^x). (30.4)

ax

If p(£) satisfies equation (30.2), the principal value of the integral is w(x), and

we therefore have

Q+(x) + Qr(x) = 2(v(x), (30.5)

Q+(x) - Q-(x) = 2iiTP{x). (30.6)

Thus the problem of solving equation (30.2) is equivalent to that of finding an

analytic function £l(z) with the property (30.5); p(x) is then given by (30.6).

The physical conditions of the problem in question also require that Q( oo)= ;

this follows because far from the dislocations (#-»+ oo) the stresses aXy must

be zero (by the definition (30.3), axy{x) = — DQ.(x) outside the segment

(fli, «2)).

Let us first consider the case where there are no external stresses (j>(x) = 0),

and the dislocations are constrained by some obstacles (lattice defects) at the

ends of the segment (a\> a%). When co(x) = we have from (30.5) CI +(x) =
— Q.~(x), i.e. the function Q,(z) must change sign in a passage round each of

the points «i, a%. This condition is satisfied by any function of the form

P(z)
Q(z) = —

, (30.7)
V[{<*2-z)(z-ai)]

where P(z) is a polynomial. The condition Q,(co) = means that we must

take P(z) = 1 (apart from a constant coefficient), so that

°<*> = -7i7 Tr ^ (30 '8)
y[{a2 -z)(z-ai)]

The required function p(x) will, according to (30.6), have the same form. The
coefficient is determined from the condition

a*

jP
(£)d£ = B, (30.9)

ay

where B is the sum of the Burgers vectors of all the dislocations, and so we have

P(*)=
/r

,

B
v rr- (30.10)

77y [(«2— x){x— a\) J

We see that the dislocations pile up towards the obstacles at the ends of the
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segment, with density inversely proportional to the square root of the distance

from the obstacle. The stress outside the segment (ai, a2) increases in the same

manner as the ends of the segment are approached, e.g. for x>a2

BD
\/[(x-a2)(a2 -ai)]

In other words, the concentration of dislocations at the boundary leads to a

stress concentration beyond the boundary.

Let us now suppose that under the same conditions (obstacles at the fixed

ends of the segment) there is also an external stress field p(x). Let Q.o(z)

denote a function of the form (30.7), and let us rewrite equation (30.5)

divided by Qo + = — Qo~ as

Q+(x) Q-(x) 2w(x)

C1q+(x) Q,o~(x) Qq+(x)

A comparison of this with (30.6) shows that

a*

Q(*) 1
f off) d|

«i

where P(z) is a polynomial. A solution which satisfies the condition D( oo)

= is obtained by taking as Qo(#) the function (30.8) and putting P(z) = C>

a constant. The required function p(x) is hence found by means of (30.6), and

the result is

u>2

M—
,V[(^-l)(.- ai)]

i
'J

a'tf)V[(fl2- f)tf
- ai)^+

+ . (30.12)

V[(a2-x)(x-a{)]

The constant C is determined by the condition (30.9). Here also p(x) increases

as (^2— x)~1/2 when x-^a2 (and similarly when x->ai), and a similar concentra-

tion of stresses occurs on the other side of the boundary.

If there is an obstacle only on one side (at a2 , say) the required solution

must satisfy the condition of finite stress for all x<a2 , including the point x=
a\ ; the position of the latter point is not known beforehand and must be deter-

mined by solving the problem. With respect to £i{z) this means that Q.(a{)

must be finite. Such a function (satisfying also the condition Q(oo) = 0) is

obtained from the same formula (30.11) by taking for Q,q(z) the function
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\Z[(z-ai)l(a2 -z)], which is also of the form (30.7), and putting P(z) = in

(30.11). The result is

^)= _I/^p]/^4^. (30.13)

«i

When x^ai, p(x) tends to zero as <\/(x-ai). The total stress axy(x)+p(x)

tends to zero according to a similar law on the other side of the point a\.

Finally, let there be no obstacle at either end of the segment, and let the

dislocations be constrained only by external stresses />(#). The corresponding

Q(*) is obtained by putting in (30.11) Cl (z) = V[(«2-*)(*-«i)], P(z) = °-

The condition ii(oo) = 0, however, here requires the fulfilment of a further

condition: taking the limit as z~>co in (30.11), we find

a2

i
(30.14)

y[(«s-£)(£-«i)]

The function p(x) is given by

*)- 4^-^- ai)]p
J v^-f)«-^] p? (30 - 15)

tti

the co-ordinates «i and «2 of the ends of the segment being determined by the

conditions (30.9) and (30.14).

PROBLEM

Find the distribution of dislocations in a uniform stress field p(x) = po over a segment

with obstacles at one or both ends.

Solution. When there is an obstacle at one end (a2) the calculation of the integral (30.13)

gives

p0 IX- fli

"w -sy «2 — X

The condition (30.9) determines the length of the segment occupied by dislocations :a2— a\ =

IBDjPo. Beyond the obstacle there is a concentration of stresses near it according to

/ A2 - «

1

<Txy=p0 •

V x— a<i

For a segment of length 2L bounded by two obstacles we take the origin of * at the midpoint

and obtain from (30.12)

pfx) = l—x+ b) .HK }
77a/(L2-*2) \D J
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§31. Equilibrium of a crack in an elastic medium

The problem of the equilibrium of a crack is somewhat distinctive among
the problems of elasticity theory. From the point of view of that theory, a

crack is a cavity in an elastic medium, which exists when internal stresses are

present in the medium and closes up when the load is removed. The shape and
size of the crack depend considerably on the stresses acting on it. The mathe-
matical feature of the problem is therefore that the boundary conditions are

given on a surface which is initially unknown and must itself be determined in

solving the problem.f

Let us consider a crack in an isotropic medium, of infinite length and uni-
form in the ^-direction and in a plane stress field vik {e)(x, y) ; this is a two-
dimensional problem of elasticity theory. We shall suppose that the stresses

are symmetrical about the centre of the cross-section of the crack. Then the
outline of the cross-section will also be symmetrical (Fig. 27). Let its length be
2L and its variable width h(x) ; since the crack is symmetrical, h( — x) = h(x)

We shall assume the crack to be thin (h<^L). Then the boundary conditions
on its surface can be applied to the corresponding segment of the #-axis. Thus
the crack is regarded as a line of discontinuity (in the xy-plane) on which the
normal component of the displacement uy = + \h is discontinuous.

Instead of h(x) we define a new unknown function p(x) by the formulae

L

h(x)= lp(x)dx, p(-x)=-P(x). (31.1)

x

The function p(x) may be conveniently, though purely formally, interpreted

as a density of straight dislocations lying in the s'-direction and continuously
distributed along the x-axis, with their Burgers vectors in the ^-direction.J

It has been shown in §27 that a dislocation line may be regarded as the edge of
a surface of discontinuity on which the displacement u has a discontinuity b.

In the form (31.1) the discontinuity h of the normal displacement at the point

f The quantitative theory of cracks discussed here is due to G. I. Barenblatt (1959).

% It is for this reason that the theory of cracks is described here in the chapter on dislocations,
although physically the phenomena are quite different.
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x is regarded as the sum of the Burgers vectors of all the dislocations lying to

the right of that point; the equation p{-x) = -p{x) signifies that the dis-

locations to the right and to the left of the point * = have opposite signs.

By means of this representation we canwrite down immediatelyan expression

for the normal stresses (ayy) on the *-axis. These consist of the stresses

oyy {e) (x> 0) resulting from the external loads (which for brevity we denote by

p(x)) and the stresses oyyW{x) due to the deformation caused by the crack.

Regarding the latter stresses as being due to dislocations distributed over the

segment (-L, L), we obtain (similarly to (30.1))

ayrKx)= J[jm, (31.2)

j
L i- x

for points in the segment ( - L, L) itself, the integral must be taken as a princi-

pal value. For an isotropic medium,

27r(l-cr) 4tt(1-<72)

see §28, Problem 3. The stresses axy due to such dislocations in an isotropic

medium are zero on the #-axis.

The boundary condition on the free surface of the crack, applied (as already

mentioned) to the corresponding segment of the *-axis, requires that the

normal stresses ayy = a
2/2/

<cr> +p(x) should be zero. This condition, however,

needs to be made more precise, for the following reason.

Let us make the assumption (which will be confirmed by the result) that

the edges of the crackjoin smoothly near its ends, so that the surfaces approach

very closely. Then it is necessary to take into account the forces of molecular

attraction between the surfaces ; the action of these forces extends to a distance

r large compared with interatomic distances. These forces will be of impor-

tance in a narrow region near the end of the crack where h<ro; the length of

this region will be denoted by d in order of magnitude, and will be estimated

later.

Let G be the force of molecular cohesion per unit area of the crack; it

depends on the distance h between the surfaces.! When these forces are taken

into account, the boundary condition becomes

ayy(rt+p(x)-G = 0. (31.4)

It is reasonable to suppose that the shape of the crack near its end is deter-

mined by the nature of the cohesion forces and does not depend on the external

loads applied to the body. Then, in finding the shape of the main part of the

crack from the external forces p(x), the quantity G becomes a given function

G(x) independent ofp(x) (over the region d, outside which it is unimportant).

f In the macroscopic theory, the function G(x) is to be regarded as increasing smoothly, asL-x
decreases, up to a maximum value at the end of the crack.

6*
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Substituting ayy^) from (31.2) in (31.4), we thus obtain the following

integral equation for p(x)

:

L
Cp(i)d$ 1 1

P ^^ = -rftx)-^*) - «(*). (31-5)
J t — x D D

Since the ends of the crack are assumed not fixed, the stresses must remain

finite there. This means that, in solving the integral equation (31.5), we now
have the last of the cases discussed in §30, for which the solution is given by

(30.15). With the origin at the midpoint of the segment (
— L,L) this formula

becomes

pw= __v(i2 _,2)pj__y___. (31 .6)

—Jj

The condition (30.14) must be satisfied, which in this case gives

l , , . l
C P(x)

dx _ C G(x)dx
= q

(where the integrals from — L to L have been replaced by integrals from to

L, using the symmetry of the problem). Since G(x) is zero except in the range

L — x~ d
y
in the second integral we can put L2 — x 2, ^ 2L(L — x) ; the condition

(31.7) then becomes

p(x)dx MFK }

(31.8)

q
V(L2 -x*) V(2L)

where M denotes the constant

which depends on the medium concerned. This constant can be expressed in

terms of the ordinary macroscopic properties of the body, its elastic moduli

and surface tension a ; as will be shown later, the relation is

M=vT™£/(l-a2
)]. (31.10)

The equation (31.8) determines the length 2L of the crack from the given

stress distribution p{x). For example, for a crack widened by concentrated
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forces/applied to the midpoints of the sides (p(x) =fB(x)) we find

2L=/ 2/Af2

= /2(l-cT2)/7ra£'. (31.11)

It must be remembered, however, that stable equilibrium of a crack is not

possible for every distribution p(x). For instance, with uniform widening

stresses (p(x) = constant = po) (31.8) gives

1L = 4M2/t7V
= 4a£/77(l-(72)/>o2. (31 - 12)

This inverse relation (L decreasing when^o increases) shows that the state is

unstable. The value of L determined by (31.12) corresponds to unstable

equilibrium and gives the "critical" crack length: longer cracks grow spon-

taneously, but shorter ones close up, a result first derived by A. A. Griffith

(1920).

Letusnowreturn to theconsideration oftheshape ofthe crack.WhenL -x<d,

the region L- 1~ d is the most important in the integral in (3 1 . 6) . The integral

can then be replaced by its limiting value asx^L ; the result is p = constant x

x \/(L — x), whencef

h(x) = constant x(L-xf12 (L-x~d). (31.13)

We see that over the terminal region d the two sides of the crack in fact join

smoothly. The value of the coefficient in (31.13) depends on the properties of

the cohesion forces and can not be expressed in terms of the ordinary macro-

scopic parameters.J

For the part farther from the end, where d<L-x<^L, the region L-£~d
is again the most important in the integral in (31.6), and o>(£)^ -G(0ID - *n

addition to putting L2 -x*z2L(L-x), L2-£2 z2L(L-£), we can here

replace g-x by L-x, obtaining /> = MJt^D^/{L-x), where M is the same

constant as in (31.9), (31.10). Hence

h(x) = 2MV(L-x)J7rW (d4L-x<L). (31.14)

Thus the end of the crack has a shape independent of the applied forces (and

therefore of the length of the crack) throughout the range L-x^L: when

L- x> d the shape is given by (3 1 . 14), and when L- x ~ d it has an infinitely

t In order to proceed to the limit we must first divide the integral in (31.6) into two integrals with

numerators a>(f)

—

m(L) and u(L); the second integral makes no contribution to the limiting value.

X An estimate of the coefficient in (3 1 . 1 3) gives a value of the order of Va/d, where a is the dimension

of an atom (using a ~ aE, M ~ EVa). An estimate of the length d is obtained from the condition

h{d) ~ ro, whence d ~ ro 2/a > ro. It should be mentioned, however, that in practice the required

inequalities are satisfied only by a small margin, so that the resulting shape of the terminal projection

of the crack is not to be taken as exact.
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sharp projection (31.13) (Fig. 28). The shape of the remainder of the crack

does depend on the applied forces.

Y*-*;.-

Fig. 28

If we ignore details, of the order of the radius of the action of the cohesion

forces, the crack therefore has a smooth outline with ends rounded according

to the parabolas (31.14), and this shape is entirely determined by the applied

forces and the ordinary macroscopic parameters. The small (~d) terminal

projections which actually occur are of fundamental significance, however,

since they ensure that the stresses remain finite at the ends of the crack.

The stresses caused by the crack on the continuation of the #-axis are given

by formula (31.2). At distances x—L such that d<^x—L<^L, we havej-

Oyy^(Tyy^)^MlTT^{x-L). (31.15)

The increase in the stresses as the edge of the crack is approached continues

according to this law up to distances x—L~d, and avy then drops to zero at

the point x — L.

It remains to derive the formula (31.10) already given above, which relates

the constantM to the ordinary macroscopic quantities. To do this, we write

down the condition for the total free energy to be a minimum by equating to

zero its variation under a change in the length L.

Firstly, when the length of the crack increases by SL the surface energy at

its two free surfaces increases by &FSurf = 2aSL. Secondly, the "opening" of

the crack end reduces the elastic energy Fe\ by %$oyy(x)r)(x)dx, where rj(x) is

the difference in width between the displaced and undisplaced crack shapes.

Since the shape of the crack end is independent of its length, r)(x) = h(x— 8L) —
— h{x). The stress ayy = for x<L, and h(x) = for x> L. Hence

L+SL

8F ei= — § \oyy(x)h(x— 8L)dx.

f The integral is easily calculated directly, but it is not necessary to do this if we use the relation

between the functions p(x) for x < L and aay
(cr) for x > L, which is evident from the results of §30.
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Substituting (31.14) and (31.15), we find

L+dL
M2 r iL+SL-x,

L

8L

M2 r Vydy

M
*SL.

Finally, the condition SF^t+BFei = gives the relation M2 = 47r2oD, and

hence we have (31.10).|

t It may be noted that the theory described above, including the relation (31.10), is in fact applicable

as it stands only to ideally brittle bodies, i.e. those which remain linearly elastic up to fracture, such as

glass and fused quartz. In bodies which exhibit plasticity the formation of the crack may be accompanied

by plastic deformation at its ends.



CHAPTER V

THERMAL CONDUCTION AND VISCOSITY IN SOLIDS

§32. The equation of thermal conduction in solids

Non-uniform heating of a solid does not cause convection as it generally

does in fluids. Hence the transfer of heat is effected in solids by thermal

conduction alone. The processes of thermal conduction in solids are there-

fore described by somewhat simpler equations than those for fluids, where
they are complicated by convection.

The equation of thermal conduction in a solid can be derived immediately
from the law of conservation of energy in the form of an "equation of con-

tinuity for heat". The amount of heat absorbed per unit time in unit volume
of the body is TdS/dt, where S is the entropy per unit volume. This must
be put equal to — div q, where q is the heat flux density. This flux can

almost always be written as — k grad T, i.e. it is proportional to the tempera-

ture gradient (k being the thermal conductivity). Thus

TdSJdt = div(/c grad T). (32.1)

According to formula (6.4), the entropy can be written as

S = S (T) + K<x.uiiy

where a is the thermal expansion coefficient and So the entropy in the

undeformed state. We shall suppose that, as usually happens, the tempera-

ture differences in the body are so small that quantities such as k, a, etc.

may be regarded as constants. Then equation (32.1), after substitution of

the above expression for S, becomes

dSn dtiuT—+olKT— = *AT.
dt dt

According to a well-known formula of thermodynamics, we have

Cp—Cv = KofiT,

whence

olKT = (Cp—Cv)l<x.

The time derivative of So can be written as (dSo/dT) • (dT/dt), where the

derivative dSojdT is taken for uu = div u = 0, i.e. at constant volume, and
therefore is equal to CJT.

150
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The resulting equation of thermal conduction is

C?—+
Cv- Cv - divu = kAT. (32.2)

dt a dt

In order to obtain a complete system of equations, it is necessary to add an

equation describing the deformation of a non-uniformly heated body. This is

the equilibrium equation (7.8)

:

2(1 _ a)
grad div u- (1 - 2a) curl curl u = |a(l + a) grad T. (32.3)

From equation (32.3) we can in principle determine the deformation of the

body for any given temperature distribution. Substituting the expression for

divu thus obtained in equation (32.2), we derive an equation giving the

temperature distribution, in which the only unknown function is T (x, y, z, t).

For example, let us consider thermal conduction in an infinite solid in

which the temperature distribution satisfies only one condition: at infinity,

the temperature tends to a constant value T ,
and there is no deformation.

In such a case equation (32.3) leads to the following relation between div u

and T (see §7, Problem 8)

:

1 + cr

divu = — -a(T-To).
3(1 - a)

Substituting this expression in (32.2), we obtain

(l + a)Cp+ 2(l-2a)Cv W_ =KATy (32 .4)

3(1 -a) dt

which is the ordinary equation of thermal conduction.

An equation of this type also describes the temperature distribution along

a thin straight rod, if one (or both) of its ends is free. The temperature may

be assumed constant over any transverse cross-section, so that T is a function

only of the co-ordinate x along the rod and of the time. The thermal expan-

sion of such a rod causes a change in its length, but no departure from straight-

ness and no internal stresses. Hence it is clear that the derivative dSjdt in

the general equation (32.1) must be taken at constant pressure and, since

(dSldt)p
= Cp/T, the temperature distribution will satisfy the one-dimen-

sional thermal conduction equation CvdTjdt = Kd2T\dx2 .

It should be mentioned, however, that the temperature distribution m a

solid can in practice always be determined, with sufficient accuracy, by a

simple thermal conduction equation. The reason is that the second term on

the left-hand side of equation (32.2) is a correction of order {CP~CV)ICV

relative to the first term. In solids, however, the difference between the two

specific heats is usually very small, and if it is neglected the equation of

thermal conduction in solids can always be written

BTIft=x*T> (
32 ' 5)
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where x is the thermometric conductivity, defined as the ratio of the ther-
mal conductivity k to some mean specific heat per unit volume C.

§33. Thermal conduction in crystals

In an anisotropic body, the direction of the heat flux q is not in general
that of the temperature gradient. Hence, instead of the formula

q = _ K grad T

relating q to the temperature gradient, we have in a crystal the more general
relation

qt = -KtkdT/dxk . (33.1)

The tensor Kik) of rank two, is called the thermal conductivity tensor of the
crystal. In accordance with (33.1), the equation of thermal conduction (32.5)
has also a more general form,

dT d*T
c
ir - *w <33 -2>

A general theorem can be stated: the thermal conductivity tensor is

symmetrical, i.e.

Kik = Kki - (33.3)

This relation, which we shall now prove, is a consequence of the symmetry
of the kinetic coefficients.f

The rate of increase of the total entropy of the body by irreversible pro-

cesses of thermal conduction is

C div q C Q C 1
St0t = "

J T
dV = "

J
divY dF+

J
q-grad-dF.

The first integral, on being transformed into a surface integral, is seen to be
zero. Thus

= Jq.grad— dV = -
j

Stot = |
q-grad^dF = -

|

q'**£ T dV,

or

1 dT
ito,= -Jr^ dF-

<33 -+>

In accordance with the general definition of the kinetic coefficients,:!: we

t See Statistical Physics, §122.

J We here use the definition given in Fluid Mechanics, §58.
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can deduce from (33.4) that in the case considered the coefficients T2Ktk in

1 dT/l dT\

are kinetic coefficients. Hence the result (33.3) follows immediately from the

symmetry of the kinetic coefficients.

The quadratic form

dT dT dT

dxi dxt dxjc

must be positive, since the time derivative (33.4) of the entropy must be

positive. The condition for a quadratic form to be positive is that the eigen-

values of the matrix of its coefficients are positive. Hence all the principal

values of the thermal conductivity tensor Kilc are always positive; this is

evident also from simple considerations regarding the direction of the heat

flux.

The number of independent components of the tensor km depends on the

symmetry of the crystal. Since the tensor Kik is symmetrical, this number is

evidently the same as the number for the thermal expansion tensor (§10),

which is also a symmetrical tensor of rank two.

§34. Viscosity of solids

In discussing motion in elastic bodies, we have so far assumed that the

deformation is reversible. In reality, this process is thermodynamically

reversible only if it occurs with infinitesimal speed, so that thermodynamic

equilibrium is established in the body at every instant. An actual motion,

however, has finite velocities ; the body is not in equilibrium at every instant,

and therefore processes will take place in it which tend to return it to equili-

brium. The existence of these processes has the result that the motion is

irreversible, and, in particular, mechanical energyf is dissipated, ultimately

into heat.

The dissipation of energy occurs by two means. Firstly, when the tempera-

ture at different points in the body is different, irreversible processes ofthermal

conduction take place in it. Secondly, if any internal motion occurs in the

body, there are irreversible processes arising from the finite velocity of

that motion. This means of energy dissipation may be referred to, as in

fluids, as internal friction or viscosity.

In most cases the velocity of macroscopic motions in the body is so small

that the energy dissipation is not considerable. Such "almost irreversible"

processes can be described by means of what is called the dissipativefunction.%

f By mechanical energy we here mean the sum of the kinetic energy of the macroscopic motion in

the elastic body and its (elastic) potential energy arising from the deformation.

% See Statistical Physics, §123.
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If we have a mechanical system whose motion involves the dissipation of
energy, this motion can be described by the ordinary equations of motion,
with the forces acting on the system augmented by the dissipative forces or

frictional forces, which are linear functions of the velocities. These forces

can be written as the velocity derivatives of a certain quadratic function T
of the velocities, called the dissipative function. The frictional force fa
corresponding to a generalised co-ordinate qa of the system is then given by

fa — - WlHa' The dissipative function T is a positive quadratic form in

the velocities qa . The above relation is equivalent to

SY = ~2/«%> (34.1)

a

where ST is the change in the dissipative function caused by an infinitesimal

change in the velocities. It can also be shown that the dissipative function is

half the decrease in the mechanical energy of the system per unit time.

It is easy to generalise equation (34.1) to the case of motion with friction

in a continuous medium. The state of the system is then defined by a con-

tinuum of generalised co-ordinates. These are the displacement vector u at

each point in the body. Accordingly, the relation (34.1) can be written in

the integral form

SJTdF= - jfiSutdV, (34.2)

where ft are the components of the dissipative force vector f per unit volume
of the body; we write the total dissipative function for the body as JT dV,
where T is the dissipative function per unit volume.

Let us now determine the general form of the dissipative function T for

deformed bodies. The function T, which describes the internal friction,

must be zero if there is no internal friction, and in particular if the body
executes only a general translatory or rotary motion. In other words, the dis-

sipative function must be zero ifu = constant or u = SlXr. This means that it

must depend not on the velocity itself but on its gradient, and can contain only

such combinations of the derivatives as vanish when u = SI X r. These are

the sums

dxjc dxi

i.e. the time derivatives u\u of the components of the strain tensor,f Thus
the dissipative function must be a quadratic function of w^. The most
general form of such a function is

^ = IViklmUikUim- (34.3)

t Cf. the entirely analogous arguments on the viscosity of fluids in Fluid Mechanics, §15.
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The tensor rjikimt of rank four, may be called the viscosity tensor. It has the

following evident symmetry properties:

T)iklm = Vlmik = f]kilm = 7]ikmh ("•*)

The expression (34.3) is exactly analogous to the expression (10.1) for the

free energy of a crystal: the elastic modulus tensor is replaced by the tensor

rjikim, and uik by uik . Hence the results obtained in §10 for the tensor Xikim

in crystals of various symmetries are wholly valid for the tensor r]mm also.

In particular, the tensor rjmm in an isotropic body has only two independent

components, and Y can be written in a form analogous to the expression

(4.3) for the elastic energy of an isotropic body:

Y = ^ite- ^imif+mi2
,

(34.5)

where rj and £ are the two coefficients of viscosity. Since T is a positive

function, the coefficients r\ and £ must be positive.

The relation (34.2) is entirely analogous to that for the elastic free energy,

8 $FdV = -IFihm dV, where Ft
= daik\dxk is the force per unit volume.

Hence the expression for the dissipative force ft in terms of the tensor uik

can be written down at once by analogy with the expression for Ft in terms

of uik . We have

fi = da'ikldxic, (34.6)

where the dissipative stress tensor a'a is defined by

a'ijc = BYjdUiJc = rjmmUim. (34.7)

The viscosity can therefore be taken into account in the equations of motion

by simply replacing the stress tensor <jik in those equations by the sum

oi ic + cr'ik .

In an isotropic body,

a'ik = 27](uik -l8ikuu) + ^uiiBik . (34.8)

This expression is, as we should expect, formally identical with that for the

viscosity stress tensor in a fluid.

§35. The absorption of sound in solids

The absorption of sound in solids can be calculated in a manner entirely

analogous to that used for fluids.f Here we shall give the calculations for an

isotropic body. The thermal-conduction part of the energy dissipation

£nech is given by the integral -(k/T)/ (grad Tf dV. On account of viscosity,

an amount of energy 2Y is dissipated per unit time and volume, so that the

total viscosity part of Emech is -2 JY dV. Using the expression (34.5), we

t See Fluid Mechanics, §77.
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therefore have

imecn = - j /(grad Tf dV-2r)j(uik -ls8ikmy dV-^ju^ dV. (35.1)

To calculate the temperature gradient, we use the fact that sound oscilla-

tions are adiabatic in the first approximation. Using the expression (6.4) for

the entropy, we can write the adiabatic condition as So(T)+ Koaiu = So(Tq),

where To is the temperature in the undeformed state. Expanding the differ-

ence So(T) — So(To) in powers of T—To, we have as far as the first-order

terms S (T)-So(T ) = (T-T ) dSo/dT = Cv{T-T )jT . The derivative

of the entropy is taken for uu = 0, i.e. at constant volume. Thus

T— T = — T(x.KuujCv .

Using also the relations K = Kiso = CVK^\CV and Kaa/p = cp-\c?\?>,

we can rewrite this result as

T*p(c?-4cflZ)T-T = — uu. (35.2)

Let us first consider the absorption of transverse sound waves. The
thermal conduction cannot result in the absorption of these waves (in the

approximation considered). For, in a transverse wave, we have uu — 0, and

therefore the temperature in it is constant, by (35.2). Let the wave be propa-

gated along the #-axis; then

ux = 0, uy = uoycos(kx—cot), uz = uoz cos(kx—cot),

and the only non-zero components of the deformation tensor are

uXy = — \kuoy sin(&K— exit), uXz = — \hioz sin(A#— cot).

We shall consider the energy dissipation per unit volume of the body ; the

(time) average value of this quantity is, from (35.1),

^mech = -ii7 ft)4(MOy
2+ Moz2)M2

,

where we have put k = co/ct. The total mean energy of the wave is twice

the mean kinetic energy, i.e.

E = pjtfdV;

for unit volume we have

£ = |/oco2(woy2+ «oz
2
)-

The sound absorption coefficient is defined as the ratio of the mean energy

dissipation to twice the mean energy flux in the wave; this quantity gives

the manner of variation of the wave amplitude with distance. The amplitude
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decreases as e~y*. Thus we find the following expression for the absorption

coefficient for transverse waves:

yt = illmecul/^fi = -n^Ppcf. (35.3)

In a longitudinal sound wave uz - uocos(kx-cot), uy = u z = 0. A

similar calculation, using formulae (35.1) and (35.2), gives

CO [&«)« -sn- <">71 ~2

Pc?

These formulae relate, strictly speaking, only to a completely isotropic and

amorphous body. They give, however, the correct order of magnitude for

the absorption of sound in anisotropic single crystals also.

The absorption of sound in polycrystalline bodies exhibits peculiar proper-

ties. If the wavelength A of the sound is small in comparison with the

dimensions a of the individual crystallites, then the sound is absorbed in

each crystallite in the same way as in a large crystal, and the absorption

coefficient is proportional to a>2 .

If A > «, however, the nature of the absorption is different. In such a

wave we can assume that each crystallite is subject to a uniformly distributed

pressure. However, since the crystallites are anisotropic, and so are the

boundary conditions at their surfaces of contact, the resulting deformation is

not uniform. It varies considerably (by an amount of the same order as

itself) over the dimension of a crystallite, and not over one wavelength as in a

homogeneous body. When sound is absorbed, the rates of change of the

deformation (uik) and the temperature gradients are of importance. Of

these, the former are still of the usual order of magnitude. The temperature

gradients within each crystallite are anomalously large, however. Hence the

absorption due to thermal conduction will be large compared with that due to

viscosity, and only the former need be calculated.

Let us consider two limiting cases. The time during which the temperature

is equalised by thermal conduction over distances ~ a (the relaxation time

for thermal conduction) is of the order of a2)x- Let us first assume that

<o ^ xl<*
2

- Tnis means that the relaxation time is small compared with the

period of the oscillations in the wave, and so thermal equilibrium is nearly

established in each crystallite; in this case we have almost isothermal oscilla-

tions.

Let T be the temperature difference in a crystallite, and T ' the corres-

ponding difference in an adiabatic process. The heat transferred by thermal

conduction per unit volume is -divq = k[\T ~ kT/o2
. The amount of

heat evolved in the deformation is of the order of Tq'C ~ ojTo'C, where

C is the specific heat. Equating the two, we obtain T ~ To'oja2jx- The

temperature varies by an amount of the order of T over the dimension of

the crystallite, and so its gradient is of magnitude ~ T'\a. Finally, TV is
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found from (35.2), with uu ~ ku ~ coufc (u being the amplitude of the

displacement vector):

T ' ~ Txpccou/C] (35.5)

in obtaining orders of magnitude, we naturally neglect the difference between
the various velocities of sound. Using these results, we can calculate the

energy dissipated per unit volume

:

- K K (T'\ 2

£max~y(gradT)2~-^-j.

Dividing this by the energy flux cE ~ cpa>2u2 , we find the damping coefficient

to be

y ~ TaL2pca2a)2lxC for co < x/a2 (35.6)

(C. Zener 1938). Comparing this expression with the general expressions

(35.3) and (35.4), we can say that, in the case considered, the absorption of

sound by a polycrystalline body is the same as if it had a viscosity

which is much larger than the actual viscosity of the component crystallites.

Next, let us consider the opposite limiting case, where o> > xla2 - I*1 other

words, the relaxation time is large compared with the period of oscillations

in the wave, and no noticeable equalisation of the temperature differences

due to the deformation can occur in one period. It would be incorrect,

however, to suppose that the temperature gradients which determine the

absorption of sound are of the order of To'/a. This assumption would take

into account only thermal conduction in each crystallite, whereas heat ex-

change between neighbouring crystallites must be of importance in the case in

question (M. A. Isakovich 1948). If the crystallites were thermally insulated

the temperature differences occurring at their boundaries would be of the

same order To' as those within each individual crystallite. In reality, however,

the boundary conditions require the continuity of the temperature across

the surface separating two crystallites. We therefore have "temperature

waves" propagated away from the boundary into the crystallite; these are

damped at a distance^ 8 ~ vXx/ 60)- I*1 tne case under consideration 8 <^ a,

i.e. the main temperature gradient is of the order of To'/8 and occurs over

distances small compared with the total dimension of a crystallite. The cor-

responding fraction of the volume of the crystallite is ~ a28 ; taking the ratio

t It may be recalled that, if a thermally conducting medium is bounded by the plane x — 0, at

which the excess temperature varies periodically according to T" = T 'e
r~*tt) ', then the temperature

distribution in the medium is given by the "temperature wave" T" = T^e-i^t e-(l+t)xv/
(««'/2x); see

Fluid Mechanics, §52.
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of this to the total volume - a3
, we find the mean energy dissipation

Emech ~ ~f\T) a*
~ Ta8

'

Substituting for T ' the expression (35.5) and dividing by cE ~ cpuPu\ we

obtain the required absorption coefficient:

y ~ T<x.
2pcV(Xco)laC for co > x/a2 . (35.7)

It is proportional to the square root of the frequency-!

Thus the sound absorption coefficient in a polycrystalline body varies as

a? at very low frequencies (co <^ x/«
2
)*> for xl<*

2 < °> < cl
a [t varies as Vw »

and for a> > c/a it again varies as a>2 .

Similar considerations hold for the damping of transverse waves in thin

rods and plates (C. Zener 1938). If h is the thickness of the rod or plate,

then for A > h the transverse temperature gradient is important, and the

damping is mainly due to thermal conduction (see the Problems). If also

o> ^ xjh
2

, the oscillations may be regarded as isothermal, and therefore, in

determining (for example) the characteristic frequencies of vibrations of the

rod or plate, the isothermal values of the moduli of elasticity must be used.

PROBLEMS

Problem 1. Determine the damping coefficient for longitudinal vibrations ofa rod.
_

Solution. The damping coefficient for the vibrations is denned as £ = |£mech|/2-E;

the amplitude of the vibrations diminishes with time as e'fiK

In a longitudinal wave, any short section of the rod is subject to simple extension or com-

pression; the components of the strain tensor are uzz = duzIdz, uxx = uyy = —o^duzjdz.

We put uz = Mo cos kz cos wt, where k = «>/ V(#ad/p)- Calculations similar to those given

above lead to the following expression for the damping coefficient:

Here we have written £ad and <*ad in terms of the velocities cu ct by means of formulae (22.4).

Problem 2. The same as Problem 1, but for longitudinal oscillations of a plate.

Solution. For waves whose direction of oscillation is parallel to that of their propagation

(the w-axis, say) the non-zero components of the strain tensor are

UXx = dUxfix, UZZ = -[o-ad/tl-o-acOFM*/9*;

see (13.1). The velocity of propagation of these waves is \/[£'ad/p(l
- ffad

2
)]- A calculation

gives

_ afito 3cfi+ 4c£-6c?c? W KT^pz(l + a&a)2
\

P =
Tp[Z cM{&-<*)

+
<#(<#- <$)

+
9Cv2

''

t The same frequency dependence is found for the absorption of sound propagated in a fluid near

a solid wall (in a pipe, for instance); see Fluid Mechanics, §77, Problems.
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For waves whose direction of oscillation is perpendicular to the direction of propagation,
«n = 0, and the damping is caused only by the viscosity 17. In this case the damping coeffi-

cient is fi = r)w*l2pct*. This applies also to the damping of torsional vibrations of rods.

Problem 3. Determine the damping coefficient for transverse vibrations of a rod (with
frequencies such that a> > x/h', where h is the thickness of the rod).

Solution. The damping is due mainly to thermal conduction. According to §17, we have
for each volume element in the rod Uzz = x/R, uxx = uyy = —a^xIR (for bending in the
*ar-plane) ; for at > x/h', the vibrations are adiabatic. For small deflections the radius of
curvature R = \\X", so that uti = (1 —2o&a)xX", the prime denoting differentiation with
respect to z. The temperature varies most rapidly across the rod, and so (grad T) J

«(3773*)*. Using (35.1) and (35.2), we obtain for the total mean energy dissipation in the

rod —(KTa*E&&*SI9Cv*) /X"* dz, where S is the cross-sectional area of the rod. The mean
total energy is twice the potential energy E^ly \X"% dz. The damping coefficient is

j8 = KT<x?SEaa/l8IyCp
Z.

Problem 4. The same as Problem 3, but for transverse vibrations of a plate.

Solution. According to (11.4), we have for any volume element in the plate

l-2aad BHm = _ z
1 — o"ad OX*

for bending in the roar-plane. The energy dissipation is found from formulae ( 35 .1) and (5.2)

and the mean total energy is twice the expression (11.6). The damping coefficient is

2KT^E&a 1 + gad _ 2kTv*p (3^-4^)2^2
P ~~ ZCPW 1-crad

"
3C,«A«

'

W-cflcfi
'

Problem 5. Determine the change in the characteristic frequencies of transverse vibrations
of a rod due to the fact that the vibrations are not adiabatic. The rod is in the form of a

long plate of thickness h. The surface of the rod is supposed thermally insulated.

Solution. Let T&&(x, t) be the temperature distribution in the rod for adiabatic vibra-

tions, and T(x, t) the actual temperature distribution; x is a co-ordinate across the thickness

of the rod, and the temperature variation in the yz-ptene is neglected. Since, for T = Tad,
there is no heat exchange between various parts of the body, it is clear that the thermal con-
duction equation must be

d 32r

u
{T- T**)

= xw-

For periodic vibrations of frequency a>, the differences ra(j = Tad~""^o» f — T—T from
the equilibrium temperature T are proportional to e~iM , and we have r" -\-imr\x = i<^T&Cilx>

the prime denoting differentiation with respect to x. Since, by (35.2), ra(j is proportional

to un, and the components «,# are proportional to x (see §17), it follows that Tad = Ax, where
A is a constant which need not be calculated, since it does not appear in the final result. The
solution of the equation T"+iair/x = iwAx/x, with the boundary condition t' = for

x = ±ih( the surface of the rod being insulated), is

(Sill nX \

*~i—in- '
k = (i+iWH2x).

K COS ~hnfl /

The moment My of the internal stress forces in a rod bent in the xsr-plane is composed of

the isothermal partMy< is0 (i.e. the value for isothermal bending) and the part due to the
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non-uniform heating of the rod. If M„,ad is the moment in adiabatic bending, the second

part of the moment is reduced from My.^a—

M

v,iao in the ratio

hh ift

1 +f(o>) = j zr dz/j zr&a dz.

-ift -ih

Defining the Young's modulus #w for any frequency a» as the coefficient of proportionality

between M„ and IJR (see (17.8)), and noticing that E^-E = ElTa*l9C9 (see (6.8); E is

the isothermal Young's modulus), we can put

E^E+ll+fMWTotpCj,.

A calculation shows that /(o>) = (24/#V»8)(ita -tan \kh). For a. -> oo we obtain / = 1,

which is correct, since Eoo = £ad» and for <a -* 0, / = and E = E.

The frequencies of the characteristic vibrations are proportional to the square root of the

Young's modulus (see §25, Problems 4-6). Hence

"="o[l+/(*>o)—],

where a» are the characteristic frequencies for adiabatic vibrations. This value of to is

complex. Separating the real and imaginary parts (<o = o'+tf), we find the characteristic

frequencies

r ETa? 1 sinh£-sin£l
"' =

°T "
~3C^'T*' cosh £+ cos

d

and the damping coefficient

2ETa?x\ 1 sinh^+sinn

^
=

3CpA2 [ ~ i'coshl+cosd'
where £ = A\/( a>o/2x)«

For large £ the frequency a> tends to w , as it should, and the damping coefficient to

2£roc2x/3C,A2
, in accordance with the result of Problem 3.

Small values of £ correspond to almost isothermal conditions ; in this case

co ^ coo\ 1 -
1S

„ ) « cooV(EIEad),

and the damping coefficient /3 = i?T
,

a2A2w 2/180C,X'

§36. Highly viscous fluids

For typical fluids, the Navier-Stokes equations are valid if the periods of

the motion are large compared with times characterising the molecules. This,

however, is not true for very viscous fluids. In such fluids, the usual equations

of fluid mechanics become invalid for much larger periods of the motion.

There are viscous fluids which, during short intervals of time (though these

are long compared with molecular times), behave as solids (for instance,

glycerine and resin). Amorphous solids (for instance, glass) may be regarded

as a limiting case of such fluids having a very large viscosity.

The properties of these fluids can be described by the following method,

due to Maxwell. They are elastically deformed during short intervals of time.
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When the deformation ceases, shear stresses remain in them, although these

are damped in the course of time, so that after a sufficiently long time almost

no internal stress remains in the fluid. Let r be of the order of the time during

which the stresses are damped (sometimes called the Maxwellian relaxation

time). Let us suppose that the fluid is subjected to some variable external forces,

which vary periodically in time with frequency w. If the period l/a» is large

compared with the relaxation time t, i.e. wr <^ 1, the fluid under consideration

will behave as an ordinary viscous fluid. If, however, the frequency co is suffi-

ciently large (so that cot > 1), the fluid will behave as an amorphous solid.

In accordance with these "intermediate" properties, the fluids in question

can be characterised by both a viscosity coefficient r\ and a modulus of

rigidity \l. It is easy to obtain a relation between the orders of magnitude of

rj, fi and the relaxation time r. When periodic forces of sufficiently small

frequency act, and so the fluid behaves like an ordinary fluid, the stress tensor

is given by the usual expression for viscosity stresses in a fluid, i.e.

o'ik = ^]Uik = —licorjuijc.

In the opposite limit of large frequencies, the fluid behaves like a solid, and

the internal stresses must be given by the formulae of the theory of elasticity,

i.e. one = 2[m.ik\ we are speaking of pure shear deformations, i.e. we assume

that ua — an = 0. For frequencies co ~ 1/r, the stresses given by these

two expressions must be of the same order of magnitude. T1ius?7m/At ~ /x-m/A,

whence

7] ~ T[Jb. (36.1)

This is the required relation.

Finally, let us derive the equation of motion which qualitatively describes

the behaviour of these fluids. To do so, we make a very simple assumption

concerning the damping of the internal stresses (when motion ceases):

namely, that they are damped exponentially, i.e. dcr^/d* = — ct^/t. In a

solid, however, we have o% = 2/xm^, and so daacjdt = Ifidutjc/dt. It is easy

to see that the equation

dailc ai1c dune
= Zu. (3o.Z)

dt T ^ dt
^ '

gives the correct result in both limiting cases of slow and rapid motions, and

may therefore serve as an interpolatory equation for intermediate cases.

For example, in periodic motion, where uiu and cruc depend on the time

through a factor e~iwt, we have from (36.2) —ioianc+ oadr = —2iu)fj,Uijc,

whence

0ik = -—-—

•

(36.3)
1 + l/COT

For cot > 1, this formula gives aa = I^um, i.e. the usual expression for

solid bodies, while for cut <^ 1 we have ow = —2ioi[irUik = 2/x,t«m, the

usual expression for a fluid of viscosity /jlt.
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Typ. if many statements made by experts, reviewing the series, are the following

:

"The Mks of the volumes in this series cover a vast range of topics, and there seems to be

Unle in physics on which the authors are not very well informed." Nature

The remarkable nine-volume Course of Theoretical Physics . . . the clearness and accuracy

If the auth ors' treatment of theoretical physics is weff maintained.

Proceedings of the Physical Society
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cf individual volumes, reviewers have written

"The entire book is a masterpiece of scientific writing. There is not a superfluous sentence

and the authors know exactly where they are going It is certain that this volume will be

able to hold its own amongst more conventional texts in classical mechanisms, as a scholarly

and economic exposition of the subject." Science Progress

QUANTUM MECHANICS (Non-relativistic Theory)
'.

. . throughout the five hundred large pages, the authors' discussion proceeds with the

clarity and succinctness typical of the very best works on theoretical physics." Technology

D MECHANICS
"The ground covered includes ideal fluids, viscous fluids, turbulence, boundary layers,

conduction and diffusion, surface phenomena and sound. Compressible fluids are treated

under the headings of shock waves, one dimensional gas flow and flow past finite bodies.

There is a c foapter on the fluid dynamics of combustion while unusual topics discussed are

relativistic fluid dynamics, dynamics of superfluids and fluctuations in fluid dynamics . .

.

a valuable addition to any library covering the mechanics of fluids." Science Progress

THE CLASSICAL THEORY OF FIELDS (Second Edition)

"This is an excellent and readable volume. It is a valuable and unique addition to the

literature of theoretical physics." Science

"The clarity of style, the conciseness of treatment, and the originality and variety of illustrative

problems make this a book which can be highly recommended."
Proceedings of the Physical Society

STATISTICAL PHYSICS
".

. . stimulating reading, partly because of the clarity and compactness of some of the

treatments put forward, and partly by reason of contrasts with texts on statistical mechanics

and statistical thermodynamics better known to English sciences. . . . Other features attract

attention since they do not always receive comparable mention in other textbooks."

New Scientist
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"I shall be surprised if this book does not come to be regarded as a masterpiece."

Journal of the Royal Institute of Physics

".
. . the book is well constructed, ably translated, and excellently produced."

Journal of the Royal Aeronautical Society

ELECTRODYNAMICS OF CONTINUOUS MEDIA
"Within the volume one finds everything expected of a textbook on classical electricity and

magnetism, and a great deal more. It is quite certain that this book will remain unique and

indispensable for many years to come." Science Progress

"The volume on electrodynamics conveys a sense of mastery of the subject on the part of

the authors which is truly astonishing." Nature

08 006465 5


