
Chapter 2

Linear and Nonlinear Waves

Our initial foray into the vast mathematical continent that comprises partial differential
equations will begin with some basic first-order equations. In applications, first-order
partial differential equations are most commonly used to describe dynamical processes,
and so time, t, is one of the independent variables. Our discussion will focus on dynamical
models in a single space dimension, bearing in mind that most of the methods we introduce
can be extended to higher-dimensional situations. First-order partial differential equations
and systems model a wide variety of wave phenomena, including transport of pollutants in
fluids, flood waves, acoustics, gas dynamics, glacier motion, chromatography, traffic flow,
and various biological and ecological systems.

A basic solution technique relies on an inspired change of variables, which comes
from rewriting the equation in a moving coordinate frame. This naturally leads to the
fundamental concept of characteristic curve, along which signals and physical disturbances
propagate. The resulting method of characteristics is able to solve a first-order linear
partial differential equation by reducing it to one or more first-order nonlinear ordinary
differential equations.

Proceeding to the nonlinear regime, the most important new phenomenon is the pos-
sible breakdown of solutions in finite time, resulting in the formation of discontinuous
shock waves. A familiar example is the supersonic boom produced by an airplane that
breaks the sound barrier. Signals continue to propagate along characteristic curves, but
now the curves may cross each other, precipitating the onset of a shock discontinuity. The
ensuing shock dynamics is not uniquely specified by the partial differential equation, but
relies on additional physical properties, to be specified by an appropriate conservation law
along with a causality condition. A full-fledged analysis of shock dynamics becomes quite
challenging, and only the basics will be developed here.

Having attained a basic understanding of first-order wave dynamics, we then focus
our attention on the first of three paradigmatic second-order partial differential equations,
known as the wave equation, which is used to model waves and vibrations in an elastic
bar, a violin string, or a column of air in a wind instrument. Its multi-dimensional versions
serve to model vibrations of membranes, solid bodies, water waves, electromagnetic waves,
including light, radio waves, microwaves, acoustic waves, and many other physical phenom-
ena. The one-dimensional wave equation is one of a small handful of physically relevant
partial differential equations that has an explicit solution formula, originally discovered by
the eighteenth-century French mathematician (and encyclopedist) Jean d’Alembert. His
solution is the result of being able to “factorize” the second-order wave equation into a
pair of first-order partial differential equations, of a type solved in the first part of this
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Figure 2.1. Stationary wave.
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chapter. We investigate the consequences of d’Alembert’s solution formula for the initial
value problem on the entire real line; solutions on bounded intervals will be deferred until
Chapter 4. Unfortunately, d’Alembert’s method is of rather limited scope, and does not
extend beyond the one-dimensional case, nor to equations modeling vibrations of nonuni-
form media. The analysis of the wave equation in more than one space dimension can be
found in Chapters 11 and 12.

2.1 Stationary Waves

When entering a new mathematical subject — in our case, partial differential equations —
one should first analyze and fully understand the very simplest examples. Indeed, mathe-
matics is, at its core, a bootstrapping enterprise, in which one builds on one’s knowledge
of and experience with elementary topics — in the present case, ordinary differential equa-
tions — to make progress, first with the simpler types of partial differential equations, and
then, by developing and applying each newly gained insight and technique, to more and
more complicated situations.

The simplest partial differential equation, for a function u(t, x) of two variables, is

∂u

∂t
= 0. (2.1)

It is a first-order, homogeneous, linear equation. If (2.1) were an ordinary differential
equation† for a function u(t) of t alone, the solution would be obvious: u(t) = c must be
constant. A proof of this basic fact proceeds by integrating both sides with respect to t
and then appealing to the Fundamental Theorem of Calculus. To solve (2.1) as a partial
differential equation for u(t, x), let us similarly integrate both sides of the equation from,
say, 0 to t, producing

0 =

∫ t

0

∂u

∂t
(s, x) ds = u(t, x)− u(0, x).

Therefore, the solution takes the form

u(t, x) = f(x), where f(x) = u(0, x), (2.2)

and hence is a function of the space variable x alone. The only requirement is that f(x)
be continuously differentiable, so f ∈ C1, in order that u(t, x) be a bona fide classical

† Of course, in this situation, we would write the equation as du/dt = 0.
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solution of the first-order partial differential equation (2.1). The solution (2.2) represents
a stationary wave, meaning that it does not change in time. The initial profile stays frozen
in place, and the system remains in equilibrium. Figure 2.1 plots a representative solution
as a function of x at three successive times.

The preceding analysis seems very straightforward and perhaps even a little boring.
But, to be completely rigorous, we need to take a bit more care. In our derivation, we
implicitly assumed that the solution u(t, x) was defined everywhere on R2. And, in fact,
the solution formula (2.2) is not completely valid as stated if the solution u(t, x) is defined
only on a subdomain D ⊂ R2.

Indeed, a solution u(t) to the corresponding ordinary differential equation du/dt = 0 is
constant, provided it is defined on a connected subinterval I ⊂ R. A solution that is defined
on a disconnected subset D ⊂ R need only be constant on each connected subinterval
I ⊂ D. For instance, the nonconstant function

u(t) =

{
1, t > 0,

−1, t < 0,
satisfies

du

dt
= 0

everywhere on its domain of definition, that is, D = { t ̸= 0}, but is constant only on the
connected positive and negative half-lines.

Similar counterexamples can be constructed in the case of the partial differential equa-
tion (2.1). If the domain of definition is disconnected, then we do not expect u(t, x) to
depend only on x if we move from one connected component of D to another. Even that
is not the full story. For example, the function

u(t, x) =

⎧
⎨

⎩

0, x > 0,

x2, x ≤ 0, t > 0,

−x2, x ≤ 0, t < 0,

(2.3)

is continuously differentiable† on its domain of definition, namely D = R2\{ (0, x) |x ≤ 0 },
satisfies ∂u/∂t = 0 everywhere inD, but, nevertheless, is not a function of x alone, because,
for example, u(1, x) = x2 ̸= u(−1, x) = −x2.

† You are asked to rigorously prove differentiability in Exercise 2.1.10.
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A completely correct formulation can be stated as follows: If u(t, x) is a classical
solution to (2.1), defined on a domain D ⊂ R2 whose intersection with any horizontal‡ line,
namely Da = D ∩ { (t, a) | t ∈ R }, for each fixed a ∈ R, is either empty or a connected
interval, then u(t, x) = f(x) is a function of x alone. An example of such a domain is
sketched in Figure 2.2. In Exercise 2.1.9, you are asked to justify these statements.

We are thus slightly chastened in our dismissal of (2.1) as a complete triviality. The
lesson is that, in future, one must always be careful when interpreting such “general”
solution formulas — since they often rely on unstated assumptions on their underlying
domain of definition.

Exercises

2.1.1. Solve the partial differential equation
∂u
∂t

= x for u(t, x).

2.1.2. Solve the partial differential equation
∂2u
∂t2

= 0 for u(t, x).

2.1.3. Find the general solution u(t, x) to the following partial differential equations:
(a) ux = 0, (b) ut = 1, (c) ut = x−t, (d) ut+3u = 0, (e) ux+t u = 0, (f ) utt+4u = 1.

2.1.4. Suppose u(t, x) is defined for all (t, x) ∈ R2 and solves ∂u/∂t + 2u = 0. Prove that
lim

t→∞
u(t, x) = 0 for all x.

2.1.5. Write down the general solution to the partial differential equation ∂u/∂t = 0 for a func-
tion of three variables u(t, x, y). What assumptions should be made on the domain of defi-
nition for your solution formula to be valid?

2.1.6. Solve the partial differential equation
∂2u
∂x ∂y

= 0 for u(x, y).

2.1.7. Answer Exercise 2.1.6 when u(x, y, z) depends on the three independent variables x, y, z.

♥ 2.1.8. Let u(t, x) solve the initial value problem
∂u
∂t

+ u2 = 0, u(0, x) = f(x), where f(x) is a

bounded C1 function of x ∈ R. (a) Show that if f(x) ≥ 0 for all x, then u(t, x) is defined
for all t > 0, and lim

t→∞
u(t, x) = 0. (b) On the other hand, if f(x) < 0, then the solution

u(t, x) is not defined for all t > 0, but in fact, lim
t→ τ−

u(t, x) = −∞ for some 0 < τ < ∞.

Given x, what is the corresponding value of τ? (c) Given f(x) as in part (b), what is the
longest time interval 0 < t < t⋆ on which u(t, x) is defined for all x ∈ R?

♦ 2.1.9. Justify the claim in the text that if u(t, x) is a solution of ∂u/∂t = 0 that is defined on
a domain D ⊂ R2 with the property that Da = D ∩ { (a, x) |x ∈ R } is either empty or a
connected interval, then u(t, x) = v(x) depends only on x ∈ D.

♦ 2.1.10. Prove that the function in (2.3) is continuously differentiable at all points (t, x) in its
domain of definition.

‡ Important : We will adopt the (slightly unusual) convention of displaying the (t, x)–plane
with time t along the horizontal axis and space x along the vertical axis — which also conforms
with our convention of writing t before x in expressions like u(t, x). Later developments will amply
vindicate our adoption of this convention.
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2.2 Transport and Traveling Waves

In many respects, the stationary-wave equation (2.1) does not quite qualify as a partial
differential equation. Indeed, the spatial variable x enters only parametrically in the so-
lution to what is, in essence (ignoring technical difficulties with domains), a very simple
ordinary differential equation.

Let us then turn to a more “genuine” example. Consider the linear, homogeneous
first-order partial differential equation

∂u

∂t
+ c

∂u

∂x
= 0, (2.4)

for a function u(t, x), in which c is a fixed, nonzero constant, known as the wave speed for
reasons that will soon become apparent. We will refer to (2.4) as the transport equation,
because it models the transport of a substance, e.g., a pollutant, in a uniform fluid flow that
is moving with velocity c. In this model, the solution u(t, x) represents the concentration of
the pollutant at time t and spatial position x. Other common names for (2.4) are the first-
order or unidirectional wave equation. But for brevity, as well as to avoid any confusion
with the second-order, bidirectional wave equation discussed extensively later on, we will
stick with the designation “transport equation” here. Solving the transport equation is
slightly more challenging, but, as we will see, not difficult.

Since the transport equation involves time, its solutions are distinguished by their
initial values. As a first-order equation, we need only specify the value of the solution at
an initial time t0, leading to the initial value problem

u(t0, x) = f(x) for all x ∈ R. (2.5)

As we will show, as long as f ∈ C1, i.e., is continuously differentiable, the initial conditions
serve to specify a unique classical solution. Also, by replacing the time variable t by t− t0,
we can, without loss of generality, set t0 = 0.

Uniform Transport

Let us begin by assuming that the wave speed c is constant. In general, when one is
confronted with a new equation, one solution strategy is to try to convert it into an equation
that you already know how to solve. In this case, we will introduce a simple change of
variables that effectively rewrites the equation in a moving coordinate system, inspired by
the interpretation of c as the overall transport speed.

If x represents the position of an object in a fixed coordinate frame, then

ξ = x− ct (2.6)

represents the object’s position relative to an observer who is uniformly moving with ve-
locity c. Think of a passenger in a moving train to whom stationary objects appear to
be moving backwards at the train’s speed c. To formulate a physical process in the refer-
ence frame of the passenger, we replace the stationary space-time coordinates (t, x) by the
moving coordinates (t, ξ).

Remark : These are the same changes of reference frame that underlie Einstein’s spe-
cial theory of relativity. However, unlike Einstein, we are working in a purely classical,
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Figure 2.3. Traveling wave with c > 0.
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nonrelativistic universe here. Such changes to moving coordinates are, in fact, of a much
older vintage, and named Galilean boosts in honor of Galileo Galilei, who was the first to
champion such “relativistic” moving coordinate systems.

Let us see what happens when we re-express the transport equation in terms of the
moving coordinate frame. We rewrite

u(t, x) = v(t, x− ct) = v(t, ξ) (2.7)

in terms of the characteristic variable ξ = x − ct, along with the time t. To write out
the differential equation satisfied by v(t, ξ), we apply the chain rule from multivariable
calculus, [8, 108], to express the derivatives of u in terms of those of v:

∂u

∂t
=

∂v

∂t
− c

∂v

∂ξ
,

∂u

∂x
=

∂v

∂ξ
.

Therefore,
∂u

∂t
+ c

∂u

∂x
=

∂v

∂t
− c

∂v

∂ξ
+ c

∂v

∂ξ
=

∂v

∂t
. (2.8)

We deduce that u(t, x) solves the transport equation (2.4) if and only if v(t, ξ) solves the
stationary-wave equation

∂v

∂t
= 0. (2.9)

Thus, the effect of using a moving coordinate system is to convert a wave moving with
velocity c into a stationary wave. Think again of the passenger in the train — a second
train moving at the same speed appears as if it were stationary.

According to our earlier discussion, the solution v = v(ξ) to the stationary-wave
equation (2.9) is a function of the characteristic variable alone. (For simplicity, we assume
that v(t, ξ) has an appropriate domain of definition, e.g., it is defined everywhere on R2.)
Recalling (2.7), we conclude that the solution

u = v(ξ) = v(x− ct)

to the transport equation must be a function of the characteristic variable only. We have
therefore proved the following result:

Proposition 2.1. If u(t, x) is a solution to the partial differential equation

ut + cux = 0, (2.10)

which is defined on all of R2, then

u(t, x) = v(x− ct), (2.11)

where v(ξ) is a C1 function of the characteristic variable ξ = x− ct.
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In other words, any (reasonable) function of the characteristic variable, e.g., ξ2+1, or
cos ξ, or eξ, will produce a corresponding solution, (x− ct)2+1, or cos(x− ct), or ex−ct, to
the transport equation with constant wave speed c. And, in accordance with the counting
principle of Chapter 1, the general solution to this first-order partial differential equation
in two independent variables depends on one arbitrary function of a single variable.

To a stationary observer, the solution (2.11) appears as a traveling wave of unchanging
form moving at constant velocity c. When c > 0, the wave translates to the right, as illus-
trated in Figure 2.3. When c < 0, the wave translates to the left, while c = 0 corresponds
to a stationary wave form that remains fixed at its original location, as in Figure 2.1.

At t = 0, the wave has the initial profile

u(0, x) = v(x), (2.12)

and so (2.11) provides the (unique) solution to the initial value problem (2.4, 12). For
example, the solution to the particular initial value problem

ut + 2ux = 0, u(0, x) =
1

1 + x2
, is u(t, x) =

1

1 + (x− 2 t)2
.

Since it depends only on the characteristic variable ξ = x− ct, every solution to the
transport equation is constant on the characteristic lines of slope† c, namely

x = ct+ k, (2.13)

where k is an arbitrary constant. At any given time t, the value of the solution at posi-
tion x depends only on its original value on the characteristic line passing through (t, x).

† This makes use of our convention that the t–axis is horizontal and the x–axis is vertical.
Reversing the axes will replace the slope by its reciprocal.
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This is indicative of a general fact concerning such wave models: Signals propagate along
characteristics. Indeed, a disturbance at an initial point (0, y) only affects the value of the
solution at points (t, x) that lie on the characteristic line x = ct+ y emanating therefrom,
as illustrated in Figure 2.4.

Transport with Decay

Let a > 0 be a positive constant, and c an arbitrary constant. The homogeneous linear
first-order partial differential equation

∂u

∂t
+ c

∂u

∂x
+ au = 0 (2.14)

models the transport of, say, a radioactively decaying solute in a uniform fluid flow with
wave speed c. The coefficient a governs the rate of decay. We can solve this variant of the
transport equation by the self-same change of variables to a uniformly moving coordinate
system.

Rewriting u(t, x) in terms of the characteristic variable, as in (2.7), and then recalling
our chain rule calculation (2.8), we find that v(t, ξ) = u(t, ξ + ct) satisfies the partial
differential equation

∂v

∂t
+ av = 0.

The result is, effectively, a homogeneous linear first-order ordinary differential equation,
in which the characteristic variable ξ enters only parametrically. The standard solution
technique learned in elementary ordinary differential equations, [20, 23], tells us to multiply
the equation by the exponential integrating factor eat, leading to

eat

(
∂v

∂t
+ av

)
=

∂

∂t
(eatv) = 0.

We conclude that w = eatv solves the stationary-wave equation (2.1). Thus,

w = eatv = f(ξ), and hence v(t, ξ) = f(ξ) e−at,

where f(ξ) is an arbitrary function of the characteristic variable. Reverting to physical
coordinates, we produce the solution formula

u(t, x) = f(x− ct) e−at, (2.15)

which solves the initial value problem u(0, x) = f(x). It represents a wave that is moving
along with fixed velocity c while simultaneously decaying at an exponential rate as pre-
scribed by the coefficient a > 0. A typical solution, for c > 0, is plotted at three successive
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times in Figure 2.5. While the solution (2.15) is no longer constant on the characteris-
tics, signals continue to propagate along them, since a solution’s initial value at a point
(0, y) will only affect its subsequent (decaying) values on the associated characteristic line
x = ct+ y.

Exercises

2.2.1. Find the solution to the initial value problem ut + ux = 0, u(1, x) = x/(1 + x2).

2.2.2. Solve the following initial value problems and graph the solutions at times t = 1, 2, and 3:

(a) ut − 3ux = 0, u(0, x) = e−x2

; (b) ut + 2ux = 0, u(−1, x) = x/(1 + x2);

(c) ut + ux + 1
2 u = 0, u(0, x) = tan−1 x; (d) ut − 4ux + u = 0, u(0, x) = 1/(1 + x2).

2.2.3. Graph some of the characteristic lines for the following equations, and write down a for-
mula for the general solution:
(a) ut − 3ux = 0, (b) ut + 5ux = 0, (c) ut + ux + 3u = 0, (d) ut − 4ux + u = 0.

2.2.4. Solve the initial value problem ut + 2ux = 1, u(0, x) = e−x2

.
Hint : Use characteristic coordinates.

2.2.5. Answer Exercise 2.2.4 for the initial value problem ut + 2ux = sin x, u(0, x) = sin x.

♦ 2.2.6. Let c be constant. Suppose that u(t, x) solves the initial value problem ut + cux = 0,
u(0, x) = f(x). Prove that v(t, x) = u(t− t0, x) solves the initial value problem vt + cvx = 0,
v(t0, x) = f(x).

2.2.7. Is Exercise 2.2.6 valid when the transport equation is replaced by the damped transport
equation (2.14)?

2.2.8. Let c ̸= 0. (a) Prove that if the initial data satisfies u(0, x) = v(x) → 0 as x → ±∞,
then, for each fixed x, the solution to the transport equation (2.4) satisfies u(t, x) → 0 as
t→∞. (b) Is the convergence uniform in x?

2.2.9.(a) Prove that if the initial data is bounded, | f(x) | ≤ M for all x ∈ R, then the solu-
tion to the damped transport equation (2.14) with a > 0 satisfies u(t, x) → 0 as t → ∞.
(b) Find a solution to (2.14) that is defined for all (t, x) but does not satisfy u(t, x)→ 0
as t→∞.

2.2.10. Let F (t, x) be a C1 function of (t, x) ∈ R2. (a) Write down a formula for the general
solution u(t, x) to the inhomogeneous partial differential equation ut = F (t, x).
(b) Solve the inhomogeneous transport equation ut + c ux = F (t, x).

♥ 2.2.11.(a) Write down a formula for the general solution to the nonlinear partial differential
equation ut + ux + u2 = 0. (b) Show that if the initial data is positive and bounded,
0 ≤ u(0, x) = f(x) ≤ M , then the solution exists for all t > 0, and u(t, x) → 0 as t → ∞.
(c) On the other hand, if the initial data is negative at some x, then the solution blows up
at x in finite time: lim

t→ τ−
u(t, x) → −∞ for some τ > 0. (d) Find a formula for the earli-

est blow-up time τ⋆ > 0.

2.2.12. A sensor situated at position x = 1 monitors the concentration of a pollutant u(t, 1) as
a function of t for t ≥ 0. Assuming that the pollutant is transported with wave speed c = 3,
at what locations x can you determine the initial concentration u(0, x)?

2.2.13. Write down a solution to the transport equation ut + 2ux = 0 that is defined on a
connected domain D ⊂ R2 and that is not a function of the characteristic variable alone.
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2.2.14. Let c > 0. Consider the uniform transport equation ut + cux = 0 restricted to the
quarter-plane Q = {x > 0, t > 0} and subject to initial conditions u(0, x) = f(x) for x ≥ 0,
along with boundary conditions u(t, 0) = g(t) for t ≥ 0. (a) For which initial and bound-
ary conditions does a classical solution to this initial-boundary value problem exist? Write
down a formula for the solution. (b) On which regions are the effects of the initial condi-
tions felt? What about the boundary conditions? Is there any interaction between the two?

2.2.15. Answer Exercise 2.2.14 when c < 0.

Nonuniform Transport

Slightly more complicated, but still linear, is the nonuniform transport equation

∂u

∂t
+ c(x)

∂u

∂x
= 0, (2.16)

where the wave speed c(x) is now allowed to depend on the spatial position. Characteristics
continue to guide the behavior of solutions, but when the wave speed is not constant, we
can no longer expect them to be straight lines. To adapt the method of characteristics,
let us look at how the solution varies along a prescribed curve in the (t, x)–plane. Assume
that the curve is identified with the graph of a function x = x(t), and let

h(t) = u
(
t, x(t)

)

be the value of the solution on it. We compute the rate of change in the solution along
the curve by differentiating h with respect to t. Invoking the multivariable chain rule, we
obtain

dh

dt
=

d

dt
u
(
t, x(t)

)
=

∂u

∂t

(
t, x(t)

)
+

∂u

∂x

(
t, x(t)

) dx

dt
. (2.17)

In particular, if x(t) satisfies

dx

dt
= c

(
x(t)

)
, then

dh

dt
=

∂u

∂t

(
t, x(t)

)
+ c

(
x(t)

) ∂u

∂x

(
t, x(t)

)
= 0,

since we are assuming that u(t, x) solves the transport equation (2.16) for all values of
(t, x), including those points

(
t, x(t)

)
on the curve. Since its derivative is zero, h(t) must

be a constant, which motivates the following definition.

Definition 2.2. The graph of a solution x(t) to the autonomous ordinary differential
equation

dx

dt
= c(x) (2.18)

is called a characteristic curve for the transport equation with wave speed c(x).

In other words, at each point (t, x), the slope of the characteristic curve equals the
wave speed c(x) there. In particular, if c is constant, the characteristic curves are straight
lines of slope c, in accordance with our earlier construction.

Proposition 2.3. Solutions to the linear transport equation (2.16) are constant
along characteristic curves.
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Figure 2.6. Characteristic curve.

The characteristic curve equation (2.18) is an autonomous first-order ordinary differ-
ential equation. As such, it can be immediately solved by separating variables, [20, 23].
Assuming c(x) ̸= 0, we divide both sides of the equation by c(x), and then integrate the
resulting equation:

dx

c(x)
= dt, whereby β(x) :=

∫
dx

c(x)
= t+ k, (2.19)

with k denoting the integration constant. For each fixed value of k, (2.19) serves to im-
plicitly define a characteristic curve, namely,

x(t) = β−1(t+ k),

with β−1 denoting the inverse function. On the other hand, if c(x⋆) = 0, then x⋆ is a
fixed point for the ordinary differential equation (2.18), and the horizontal line x ≡ x⋆ is a
stationary characteristic curve.

Since the solution u(t, x) is constant along the characteristic curves, it must therefore
be a function of the characteristic variable

ξ = β(x)− t (2.20)

alone, and hence of the form
u(t, x) = v

(
β(x)− t

)
, (2.21)

where v(ξ) is an arbitrary C1 function. Indeed, it is easy to check directly that, provided
β(x) is defined by (2.19), u(t, x) solves the partial differential equation (2.16) for any choice
of C1 function v(ξ). (But keep in mind that the algebraic solution formula (2.21) may fail
to be valid at points where the wave speed vanishes: c(x⋆) = 0.)

Warning : The definition of characteristic variable used here is slightly different from
that in the constant wave speed case, which, by (2.20), would be ξ = x/c− t = (x− ct)/c.
Clearly, rescaling the characteristic variable by 1/c is an inessential modification of our
original definition.

2.2 Transport and Traveling Waves
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Figure 2.7. Characteristic curves for ut + (x2 + 1)−1ux = 0.

To find the solution that satisfies the prescribed initial conditions

u(0, x) = f(x), (2.22)

we merely substitute the general solution formula (2.21). This leads to the implicit equation
v(β(x)) = f(x) for the function v(ξ) = f ◦β−1(ξ). The resulting solution formula

u(t, x) = f ◦β−1
(
β(x)− t

)
(2.23)

is not particularly enlightening, but it does have a simple graphical interpretation: To find
the value of the solution u(t, x), we look at the characteristic curve passing through the
point (t, x). If this curve intersects the x–axis at the point (0, y), as in Figure 2.6, then
u(t, x) = u(0, y) = f(y), since the solution must be constant along the curve. On the other
hand, if the characteristic curve through (t, x) doesn’t intersect the x–axis, the solution
value u(t, x) is not prescribed by the initial data.

Example 2.4. Let us solve the nonuniform transport equation

∂u

∂t
+

1

x2 + 1

∂u

∂x
= 0 (2.24)

by the method of characteristics. According to (2.18), the characteristic curves are the
graphs of solutions to the first-order ordinary differential equation

dx

dt
=

1

x2 + 1
.

Separating variables and integrating, we obtain

β(x) =

∫
(x2 + 1) dx = 1

3 x
3 + x = t+ k, (2.25)

where k is the integration constant. Representative curves are plotted in Figure 2.7. (In this
case, inverting the function β, i.e., solving (2.25) for x as a function of t, is not particularly
enlightening.)



2.2 Transport and Traveling Waves 27

t = 0 t = 2 t = 5

t = 12 t = 25 t = 50

Figure 2.8. Solution to ut +
1

x2 + 1
ux = 0.

⊎

According to (2.20), the characteristic variable is ξ = 1
3 x

3 + x − t, and hence the
general solution to the equation takes the form

u = v
(

1
3 x

3 + x− t
)
, (2.26)

where v(ξ) is an arbitrary C1 function. A typical solution, corresponding to initial data

u(0, x) =
1

1 + (x+ 3)2
, (2.27)

is plotted† at the indicated times in Figure 2.8. Although the solution remains constant
along each individual curve, a stationary observer will witness a dynamically changing
profile as the wave moves through the nonuniform medium. In this example, since c(x) > 0
everywhere, the wave always moves from left to right; its speed as it passes through a point
x determined by the magnitude of c(x) = (x2 + 1)−1, with the consequence that each part
accelerates as it approaches the origin from the left, and then slows back down once it
passes by and c(x) decreases in magnitude. To a stationary observer, the wave spreads out
as it speeds through the origin, and then becomes progressively narrower and slower as it
gradually moves off to +∞.

Example 2.5. Consider the nonuniform transport equation

ut + (x2 − 1)ux = 0. (2.28)

† The required function v(ξ) in (2.26) is implicitly given by the equation v
(
1
3 x

3 + x
)
= u(0, x),

and so the explicit formula for u(t, x) is not very instructive or useful. Indeed, to make the plots,
we instead sampled the initial data (2.27) at a collection of uniformly spaced points y1 < y2 <
· · · < yn. Since the solution is constant along the characteristic curve (2.25) passing through each
sample point (0, yi), we can find nonuniformly spaced sample values for u(t, xi) at any later time.
The smooth solution curve u(t, x) is then approximated using spline interpolation, [89; §11.4], on
these sample values.
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Figure 2.9. Characteristic curves for ut + (x2 − 1)ux = 0.

In this case, the characteristic curves are the solutions to

dx

dt
= x2 − 1,

and so

β(x) =

∫
dx

x2 − 1
=

1

2
log

∣∣∣∣
x− 1

x+ 1

∣∣∣∣ = t+ k. (2.29)

One must also include the horizontal lines x = x± = ±1 corresponding to the roots of
c(x) = x2−1. The curves are graphed in Figure 2.9. Note that those curves starting below
x+ = 1 converge to x− = −1 as t → ∞, while those starting above x+ = 1 veer off to ∞
in finite time. Owing to the sign of c(x) = x2 − 1, points on the graph of u(0, x) lying over
|x | < 1 will move to the left, while those over |x | > 1 will move to the right.

In Figure 2.10, we graph several snapshots of the solution whose initial value is a
bell-shaped Gaussian profile

u(0, x) = e−x2

.

The initial conditions uniquely prescribe the value of the solution along the characteristic
curves that intersect the x–axis. On the other hand, if

x ≤
1 + e2 t

1− e2 t
for t > 0,

the characteristic curve through (t, x) does not intersect the x–axis, and hence the value
of the solution at such points, lying in the shaded region in Figure 2.9, is not prescribed
by the initial data. Let us arbitrarily assign the solution to be u(t, x) = 0 at such points.
At other values of (t, x) with t ≥ 0, the solution (2.23) is

u(t, x) = exp

[
−
(

x+ 1 + (x− 1)e−2 t

x+ 1− (x− 1)e−2 t

)2 ]
. (2.30)
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t = 0 t = .2 t = 1

t = 2 t = 3 t = 5

Figure 2.10. Solution to ut + (x2 − 1)ux = 0.
⊎

(The derivation of this solution formula is left as Exercise 2.2.23.) As t increases, the
solution’s peak becomes more and more concentrated near x− = −1, while the section of
the wave above x > x+ = 1 rapidly spreads out to ∞. In the long term, the solution
converges (albeit nonuniformly) to a step function of height 1/e:

u(t, x) −→ s(x) =

{
1/e ≈ .367879, x ≥ −1,

0, x < −1,
as t −→ ∞.

Let us finish by making a few general observations concerning the characteristic curves
of transport equations whose wave speed c(x) depends only on the position x. Using the
basic existence and uniqueness theory for such autonomous ordinary differential equations,
[20, 23, 52], and assuming that c(x) is continuously differentiable:†

• There is a unique characteristic curve passing through each point (t, x) ∈ R2.

• Characteristic curves cannot cross each other.

• If t = β(x) is a characteristic curve, then so are all its horizontal translates:
t = β(x) + k for any k.

• Each non-horizontal characteristic curve is the graph of a strictly monotone function.
Thus, each point on a wave always moves in the same direction, and can never
reverse its direction of propagation.

• As t increases, the characteristic curve either tends to a fixed point, x(t) → x⋆ as
t → ∞, with c(x⋆) = 0, or goes off to ±∞ in either finite or infinite time.

Proofs of these statements are assigned to the reader in Exercise 2.2.25.

† For those who know about such things, [18, 52], this assumption can be weakened to just
Lipschitz continuity.

2.2 Transport and Traveling Waves
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Exercises

2.2.16.(a) Find the general solution to the first-order equation ut +
3
2 ux = 0.

(b) Find a solution satisfying the initial condition u(1, x) = sinx. Is your solution unique?

2.2.17.(a) Solve the initial value problem ut − xux = 0, u(0, x) = (x2 + 1)−1.
(b) Graph the solution at times t = 0, 1, 2, 3. (c) What is lim

t→∞
u(t, x)?

2.2.18. Suppose the initial data u(0, x) = f(x) of the nonuniform transport equation (2.28) is
continuous and satisfies f(x) → 0 as |x | → ∞. What is the limiting solution profile u(t, x)
as (a) t→∞? (b) t→ −∞?

♥ 2.2.19.(a) Find and graph the characteristic curves for the equation ut + (sin x)ux = 0.
(b) Write down the solution with initial data u(0, x) = cos 1

2 πx. (c) Graph your solution

at times t = 0, 1, 2, 3, 5, and 10. (d) What is the limiting solution profile as t→∞?

2.2.20. Consider the linear transport equation ut + (1 + x2)ux = 0. (a) Find and sketch the
characteristic curves. (b) Write down a formula for the general solution. (c) Find the
solution to the initial value problem u(0, x) = f(x) and discuss its behavior as t increases.

2.2.21. Prove that, for t ≫ 0, the speed of the wave in Example 2.4 is asymptotically propor-
tional to t−2/3.

2.2.22. Verify directly that formula (2.21) defines a solution to the differential equation (2.16).

♦ 2.2.23. Explain how to derive the solution formula (2.30). Justify that it defines a solution to
equation (2.28).

2.2.24. Let c(x) be a bounded C1 function, so | c(x) | ≤ c⋆ < ∞ for all x. Let f(x) be any C1

function. Prove that the solution u(t, x) to the initial value problem ut + c(x)ux = 0,

u(0, x) = f(x), is uniquely defined for all (t, x) ∈ R2.

♥ 2.2.25. Suppose that c(x) ∈ C1 is continuously differentiable for all x ∈ R. (a) Prove that the
characteristic curves of the transport equation (2.16) cannot cross each other. (b) A point
where c(x⋆) = 0 is known as a fixed point for the characteristic equation dx/dt = c(x).
Explain why the characteristic curve passing through a fixed point (t, x⋆) is a horizontal
straight line. (c) Prove that if x = g(t) is a characteristic curve, then so are all the horizon-
tally translated curves x = g(t + δ) for any δ. (d) True or false: Every characteristic curve
has the form x = g(t + δ), for some fixed function g(t). (e) Prove that each non-horizontal
characteristic curve is the graph x = g(t) of a strictly monotone function. (f ) Explain why
a wave cannot reverse its direction. (g) Show that a non-horizontal characteristic curve
starts, in the distant past, t→ −∞, at either a fixed point or at −∞ and ends, as
t→ +∞, at either the next-larger fixed point or at +∞.

♥ 2.2.26. Consider the transport equation
∂u
∂t

+ c(t, x)
∂u
∂x

= 0 with time-varying wave speed.

Define the corresponding characteristic ordinary differential equation to be
dx
dt

= c(t, x),

the graphs of whose solutions x(t) are the characteristic curves. (a) Prove that any so-
lution u(t, x) to the partial differential equation is constant on each characteristic curve.
(b) Suppose that the general solution to the characteristic equation is written in the form
ξ(t, x) = k, where k is an arbitrary constant. Prove that ξ(t, x) defines a characteristic vari-
able, meaning that u(t, x) = f(ξ(t, x)) is a solution to the time-varying transport equation
for any continuously differentiable scalar function f ∈ C1.

2.2.27.(a) Apply the method in Exercise 2.2.26 to find the characteristic curves for the equa-

tion ut + t2 ux = 0. (b) Find the solution to the initial value problem u(0, x) = e−x2

, and
discuss its dynamic behavior.



2.3 Nonlinear Transport and Shocks 31

2.2.28. Solve Exercise 2.2.27 for the equation ut + (x− t)ux = 0.

♥ 2.2.29. Consider the first-order partial differential equation ut + (1 − 2 t)ux = 0. Use Exercise
2.2.26 to: (a) Find and sketch the characteristic curves. (b) Write down the general solu-

tion. (c) Solve the initial value problem with u(0, x) =
1

1 + x2
. (d) Describe the behavior

of your solution u(t, x) from part (c) as t→∞. What about t→ −∞?

2.2.30. Discuss which of the conclusions of Exercise 2.2.25 are valid for the characteristic curves
of the transport equation with time-varying wave speed, as analyzed in Exercise 2.2.26.

♦ 2.2.31. Consider the two-dimensional transport equation
∂u
∂t

+ c(x, y)
∂u
∂x

+ d(x, y)
∂u
∂y

= 0,

whose solution u(t, x, y) depends on time t and space variables x, y. (a) Define a character-
istic curve, and prove that the solution is constant along it. (b) Apply the method of char-

acteristics to solve the initial value problem ut + yux − xuy, u(0, x, y) = e−(x−1)2−(y−1)2 .
(c) Describe the behavior of your solution.

2.3 Nonlinear Transport and Shocks

The first-order nonlinear partial differential equation

ut + uux = 0 (2.31)

has the form of a transport equation (2.4), but the wave speed c = u now depends, not
on the position x, but rather on the size of the disturbance u. Larger waves will move
faster, and overtake smaller, slower-moving waves. Waves of elevation, where u > 0, move
to the right, while waves of depression, where u < 0, move to the left. This equation
is considerably more challenging than the linear transport models analyzed above, and
was first systematically studied in the early nineteenth century by the influential French
mathematician Siméon–Denis Poisson and the great German mathematician Bernhard Rie-
mann.† It and its multi-dimensional and multi-component generalizations play a crucial
role in the modeling of gas dynamics, acoustics, shock waves in pipes, flood waves in rivers,
chromatography, chemical reactions, traffic flow, and so on. Although we will be able to
write down a solution formula, the complete analysis is far from trivial, and will require us
to confront the possibility of discontinuous shock waves. Motivated readers are referred to
Whitham’s book, [122], for further details.

Fortunately, the method of characteristics that was developed for linear transport
equations also works in the present context and leads to a complete mathematical solution.
Mimicking our previous construction, (2.18), but now with wave speed c = u, let us define
a characteristic curve of the nonlinear wave equation (2.31) to be the graph of a solution
x(t) to the ordinary differential equation

dx

dt
= u(t, x). (2.32)

† In addition to his fundamental contributions to partial differential equations, complex anal-
ysis, and number theory, Riemann also was the inventor of Riemannian geometry, which turned
out to be absolutely essential for Einstein’s theory of general relativity some 70 years later!
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As such, the characteristics depend upon the solution u, which, in turn, is to be specified
by its characteristics. We appear to be trapped in a circular argument.

The resolution of the conundrum is to argue that, as in the linear case, the solution
u(t, x) remains constant along its characteristics, and this fact will allow us to simultane-
ously specify both. To prove this claim, suppose that x = x(t) parametrizes a characteristic
curve associated with the given solution u(t, x). Our task is to show that h(t) = u

(
t, x(t)

)
,

which is obtained by evaluating the solution along the curve, is constant, which, as usual,
is proved by checking that its derivative is identically zero. Repeating our chain rule
computation (2.17), and using (2.32), we deduce that

dh

dt
=

d

dt
u
(
t, x(t)

)
=

∂u

∂t

(
t, x(t)

)
+
dx

dt

∂u

∂x

(
t, x(t)

)
=

∂u

∂t

(
t, x(t)

)
+u

(
t, x(t)

)∂u
∂x

(
t, x(t)

)
= 0,

since u is assumed to solve the nonlinear transport equation (2.31) at all values of (t, x),
including those on the characteristic curve. We conclude that h(t) is constant, and hence
u is indeed constant on the characteristic curve.

Now comes the clincher. We know that the right-hand side of the characteristic ordi-
nary differential equation (2.32) is a constant whenever x = x(t) defines a characteristic
curve. This means that the derivative dx/dt is a constant — namely the fixed value of u
on the curve. Therefore, the characteristic curve must be a straight line,

x = ut+ k, (2.33)

whose slope equals the value assumed by the solution u on it.
And, as before, since the solution is constant along each characteristic line, it must be

a function of the characteristic variable

ξ = x− tu (2.34)

alone, and so
u = f(x− tu), (2.35)

where f(ξ) is an arbitrary C1 function. Formula (2.35) should be viewed as an algebraic
equation that implicitly defines the solution u(t, x) as a function of t and x. Verification
that ther resulting function is indeed a solution to (2.31) is the subject of Exercise 2.3.14.

Example 2.6. Suppose that

f(ξ) = αξ + β,

with α, β constant. Then (2.35) becomes

u = α(x− tu) + β, and hence u(t, x) =
αx+ β

1 + α t
(2.36)

is the corresponding solution to the nonlinear transport equation. At each fixed t, the graph
of the solution is a straight line. If α > 0, the solution flattens out: u(t, x) → 0 as t → ∞.
On the other hand, if α < 0, the straight line rapidly steepens to vertical as t approaches
the critical time t⋆ = −1/α, at which point the solution ceases to exist. Figure 2.11 graphs
two representative solutions. The top row shows the solution with α = 1, β = .5, plotted
at times t = 0, 1, 5, and 20; the bottom row takes α = −.2, β = .1, and plots the solution
at times t = 0, 3, 4, and 4.9. In the second case, the solution blows up by becoming vertical
as t → 5.
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t = 0 t = 1 t = 5 t = 20

t = 0 t = 3 t = 4 t = 5

Figure 2.11. Two solutions to ut + uux = 0.
⊎

Remark : Although (2.36) remains a valid solution formula after the blow-up time,
t > 5, this is not to be viewed as a part of the original solution. With the appearance of
such a singularity, the physical solution has broken down, and we stop tracking it.

To solve the general initial value problem

u(0, x) = f(x), (2.37)

we note that, at t = 0, the implicit solution formula (2.35) reduces to (2.37), and hence the
function f coincides with the initial data. However, because our solution formula (2.35) is
an implicit equation, it is not immediately evident

(a) whether it can be solved to give a well-defined function u(t, x), and,

(b) even granted this, how to describe the resulting solution’s qualitative features and
dynamical behavior.

A more instructive approach is founded on the following geometrical construction.
Through each point (0, y) on the x–axis, draw the characteristic line

x = tf(y) + y (2.38)

whose slope, namely f(y) = u(0, y), equals the value of the initial data (2.37) at that point.
According to the preceding discussion, the solution will have the same value on the entire
characteristic line (2.38), and so

u(t, tf(y) + y) = f(y) for all t. (2.39)

For example, if f(y) = y, then u(t, x) = y whenever x = ty + y; eliminating y, we find
u(t, x) = x/(t+ 1), which agrees with one of our straight line solutions (2.36).

Now, the problem with this construction is immediately apparent from Figure 2.12,
which plots the characteristic lines associated with the initial data

u(0, x) = 1
2 π − tan−1 x.
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Figure 2.12. Characteristics lines for u(0, x) = 1
2 π − tan−1 x.

Two characteristic lines that are not parallel must cross each other somewhere. The value
of the solution is supposed to equal the slope of the characteristic line passing through the
point. Hence, at a crossing point, the solution is required to assume two different values,
one corresponding to each line. Something is clearly amiss, and we need to resolve this
apparent paradox.

There are three principal scenarios. The first, trivial, situation occurs when all the
characteristic lines are parallel, and so the difficulty does not arise. In this case, they all
have the same slope, say c, which means that the solution has the same value on each one.
Therefore, u(t, x) ≡ c is a constant solution.

The next-simplest case occurs when the initial data is everywhere nondecreasing , so
f(x) ≤ f(y) whenever x ≤ y, which is assured if its derivative is never negative: f ′(x) ≥ 0.
In this case, as sketched in Figure 2.13, the characteristic lines emanating from the x axis
fan out into the right half-plane, and so never cross each other at any future time t > 0.
Each point (t, x) with t ≥ 0 lies on a unique characteristic line, and the value of the
solution at (t, x) is equal to the slope of the line. We conclude that the solution u(t, x)
is well defined at all future times t ≥ 0. Physically, such solutions represent rarefaction
waves , which spread out as time progresses. A typical example, corresponding to initial
data

u(0, x) = 1
2 π + tan−1(3x),

has its characteristic lines plotted in Figure 2.13, while Figure 2.14 graphs some represen-
tative solution profiles.

The more interesting case occurs when the initial data is a decreasing function, and so
f ′(x) < 0. Now, as in Figure 2.12, some of the characteristic lines starting at t = 0 will cross
at some point in the future. If a point (t, x) lies on two or more distinct characteristic lines,
the value of the solution u(t, x), which should equal the characteristic slope, is no longer
uniquely determined. Although, in a purely mathematical context, one might be tempted
to allow such multiply valued solutions, from a physical standpoint this is unacceptable.
The solution u(t, x) is supposed to represent a measurable quantity, e.g., concentration,
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Figure 2.13. Characteristic lines for a rarefaction wave.

t = 0 t = 1

t = 2 t = 3

Figure 2.14. Rarefaction wave.
⊎

velocity, pressure, and must therefore assume a unique value at each point. In effect, the
mathematical model has broken down and no longer conforms to physical reality.

However, before confronting this difficulty, let us first, from a purely theoretical stand-
point, try to understand what happens if we mathematically continue the solution as a
multiply valued function. For specificity, consider the initial data

u(0, x) = 1
2 π − tan−1 x, (2.40)

appearing in the first graph in Figure 2.15. The corresponding characteristic lines are
displayed in Figure 2.12. Initially, they do not cross, and the solution remains a well-
defined, single-valued function. However, after a while one reaches a critical time, t⋆ > 0,
when the first two characteristic lines cross each other. Subsequently, a wedge-shaped
region appears in the (t, x)–plane, consisting of points that lie on the intersection of three
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t = 0 t = .5

t = 1 t = 1.5

t = 2 t = 2.5

Figure 2.15. Multiply valued compression wave.
⊎

distinct characteristic lines with different slopes; at such points, the mathematical solution
achieves three distinct values. Points outside the wedge lie on a single characteristic line,
and the solution remains single-valued there. The boundary of the wedge consists of points
where precisely two characteristic lines cross.

To fully appreciate what is going on, look now at the sequence of pictures of the
multiply valued solution in Figure 2.15, plotted at six successive times. Since the initial
data is positive, f(x) > 0, all the characteristic slopes are positive. As a consequence,
every point on the solution curve moves to the right, at a speed equal to its height. Since
the initial data is a decreasing function, points on the graph lying to the left will move
faster than those to the right and eventually overtake them. At first, the solution merely
steepens into a compression wave. At the critical time t⋆ when the first two characteristic
lines cross, say at position x⋆, so that (t⋆, x⋆) is the tip of the aforementioned wedge, the
solution graph has become vertical:

∂u

∂x
(t, x⋆) −→ ∞ as t −→ t⋆,

and u(t, x) is no longer a classical solution. Once this occurs, the solution graph ceases to
be a single-valued function, and its overlapping lobes lie over the points (t, x) belonging to
the wedge.

The critical time t⋆ can, in fact, be determined from the implicit solution formula (2.35).
Indeed, if we differentiate with respect to x, we obtain

∂u

∂x
=

∂

∂x
f(ξ) = f ′(ξ)

∂ξ

∂x
= f ′(ξ)

(
1− t

∂u

∂x

)
, where ξ = x− tu.

Solving for
∂u

∂x
=

f ′(ξ)

1 + tf ′(ξ)
,
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we see that the slope blows up:

∂u

∂x
−→ ∞ as t −→ −

1

f ′(ξ)
.

In other words, if the initial data has negative slope at position x, so f ′(x) < 0, then the
solution along the characteristic line emanating from the point (0, x) will fail to be smooth
at the time −1/f ′(x). The earliest critical time is, thus,

t⋆ := min

{
−

1

f ′(x)

∣∣∣∣ f ′(x) < 0

}
. (2.41)

If x0 is the value of x that produces the minimum t⋆, then the slope of the solution profile
will first become infinite at the location where the characteristic starting at x0 is at time
t⋆, namely

x⋆ = x0 + f(x0) t⋆. (2.42)

For instance, for the particular initial configuration (2.40) represented in Figure 2.15,

f(x) =
π

2
− tan−1 x, f ′(x) = −

1

1 + x2
,

and so the critical time is

t⋆ = min {1 + x2 } = 1, with x⋆ = f(0) t⋆ = 1
2 π,

since the minimum value occurs at x0 = 0.

Now, while mathematically plausible, such a multiply valued solution is physically
untenable. So what really happens after the critical time t⋆? One needs to decide which
(if any) of the possible solution values is physically appropriate. The mathematical model,
in and of itself, is incapable of resolving this quandary. We must therefore revisit the
underlying physics, and ask what sort of phenomenon we are trying to model.

Shock Dynamics

To be specific, let us regard the transport equation (2.31) as a model of compressible fluid
flow in a single space variable, e.g., the motion of gas in a long pipe. If we push a piston
into the pipe, then the gas will move ahead of it and thereby be compressed. However, if
the piston moves too rapidly, then the gas piles up on top of itself, and a shock wave forms
and propagates down the pipe. Mathematically, the shock is represented by a discontinuity
where the solution abruptly changes value. The formulas (2.41) and (2.42) determine the
time and position for the onset of the shock-wave discontinuity. Our goal now is to predict
its subsequent behavior, and this will be based on use of a suitable physical conservation
law. Indeed, one expects mass to be conserved – even through a shock discontinuity —
since gas atoms can neither be created nor destroyed. And, as we will see, conservation of
mass (almost) suffices to prescribe the subsequent motion of the shock wave.

Before investigating the implications of conservation of mass, let us first convince
ourselves of its validity for the nonlinear transport model. (Just because a mathematical
equation models a physical system does not automatically imply that it inherits any of its
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physical conservation laws.) If u(t, x) represents density, then, at time t, the total mass
lying in an interval a ≤ x ≤ b is calculated by integration:

Ma,b(t) =

∫ b

a
u(t, x) dx. (2.43)

Assuming that u(t, x) is a classical solution to the nonlinear transport equation (2.31), we
can determine the rate of change of mass on this interval by differentiation:

dMa,b

dt
=

d

dt

∫ b

a
u(t, x) dx =

∫ b

a

∂u

∂t
(t, x) dx = −

∫ b

a
u(t, x)

∂u

∂x
(t, x) dx

= −
∫ b

a

∂

∂x

[
1
2 u(t, x)

2
]
dx = − 1

2 u(t, x)
2
∣∣∣
b

x=a
= 1

2 u(t, a)
2 − 1

2 u(t, b)
2.

(2.44)

The final expression represents the net mass flux through the endpoints of the interval.
Thus, the only way in which the mass on the interval [a, b ] changes is through its endpoints;
inside, mass can be neither created nor destroyed, which is the precise meaning of the mass
conservation law in continuum mechanics. In particular, if there is zero net mass flux, then
the total mass is constant, and hence conserved. For example, if the initial data (2.37) has
finite total mass, ∣∣∣∣

∫ ∞

−∞
f(x) dx

∣∣∣∣ < ∞, (2.45)

which requires that f(x) → 0 reasonably rapidly as |x | → ∞, then the total mass of the
solution — at least up to the formation of a shock discontinuity — remains constant and
equal to its initial value:

∫ ∞

−∞
u(t, x) dx =

∫ ∞

−∞
u(0, x) dx =

∫ ∞

−∞
f(x) dx. (2.46)

Similarly, if u(t, x) represents the traffic density on a highway at time t and position x,
then the integrated conservation law (2.44) tells us that the rate of change in the number
of vehicles on the stretch of road between a and b equals the number of vehicles entering
at point a minus the number leaving at point b — which assumes that there are no other
exits or entrances on this part of the highway. Thus, in the traffic model, (2.44) represents
the conservation of vehicles.

The preceding calculation relied on the fact that the integrand can be written as an x
derivative. This is a common feature of physical conservation laws in continuum mechanics,
and motivates the following general definition.

Definition 2.7. A conservation law , in one space dimension, is an equation of the
form

∂T

∂t
+

∂X

∂x
= 0. (2.47)

The function T is known as the conserved density , while X is the associated flux .

In the simplest situations, the conserved density T (t, x, u) and flux X(t, x, u) depend
on the time t, the position x, and the solution u(t, x) to the physical system. (Higher-order
conservation laws, which also depend on derivatives of u, arise in the analysis of integrable
partial differential equations; see Section 8.5 and [36, 87].) For example, the nonlinear
transport equation (2.31) is itself a conservation law, since it can be written in the form

∂u

∂t
+

∂

∂x

(
1
2 u

2
)
= 0, (2.48)
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Figure 2.16. Equal Area Rule.

and so the conserved density is T = u and the flux is X = 1
2 u

2. And indeed, it was
this identity that made our computation (2.44) work. The general result, proved by an
analogous computation, justifies calling (2.47) a conservation law.

Proposition 2.8. Given a conservation law (2.47), then, on any closed interval
a ≤ x ≤ b,

d

dt

∫ b

a
T dx = − X

∣∣∣
b

x=a
. (2.49)

Proof : The proof is an immediate consequence of the Fundamental Theorem of Cal-
culus — assuming sufficient smoothness that allows one to bring the derivative inside the
integral sign:

d

dt

∫ b

a
T dx =

∫ b

a

∂T

∂t
dx = −

∫ b

a

∂X

∂x
dx = − X

∣∣∣
b

x=a
. Q .E .D .

We will refer to (2.49) as the integrated form of the conservation law (2.47). It states
that the rate of change of the total density, integrated over an interval, is equal to the
amount of flux through its two endpoints. In particular, if there is no net flux into or out
of the interval, then the integrated density is conserved , meaning that it remains constant
over time. All physical conservation laws — mass, momentum, energy, and so on — for
systems governed by partial differential equations are of this form or its multi-dimensional
extensions, [87].

With this in hand, let us return to the physical context of the nonlinear transport
equation. By definition, a shock is a discontinuity in the solution u(t, x). We will make
the physically plausible assumption that mass (or vehicle) conservation continues to hold
even within the shock. Recall that the total mass, which at time t is the area† under
the curve u(t, x), must be conserved. This continues to hold even when the mathematical

solution becomes multiply valued, in which case one employs a line integral

∫

C
u dx, where

C represents the graph of the solution, to compute the mass/area. Thus, to construct a
discontinuous shock solution with the same mass, one replaces part of the multiply valued

† We are implicitly assuming that the mass is finite, as in (2.45), although the overall con-
struction does not rely on this restriction.
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Figure 2.17. Multiply–valued step wave.
⊎

graph by a vertical shock line in such a way that the resulting function is single-valued and
has the same area under its graph. Referring to Figure 2.16, observe that the region under
the shock graph is obtained from that under the multi-valued solution graph by deleting
the upper shaded lobe and appending the lower shaded lobe. Thus the resulting area will
be the same, provided the shock line is drawn so that the areas of the two shaded lobes are
equal. This construction is known as the Equal Area Rule; it ensures that the total mass
of the shock solution matches that of the multiply valued solution, which in turn is equal
to the initial mass, as required by the physical conservation law.

Example 2.9. An illuminating special case occurs when the initial data has the form
of a step function with a single discontinuity at the origin:

u(0, x) =

{
a, x < 0,

b, x > 0.
(2.50)

If a > b, then the initial data is already in the form of a shock wave. For t > 0, the
mathematical solution constructed by continuing along the characteristic lines is multiply
valued in the region bt < x < at, where it assumes both values a and b; see Figure 2.17.
Moreover, the initial vertical line of discontinuity has become a tilted line, because each
point (0, u) on it has moved along the associated characteristic a distance ut. The Equal
Area Rule tells us to draw the shock line halfway along, at x = 1

2 (a+ b) t, in order that the
two triangles have the same area. We deduce that the shock moves with speed c = 1

2 (a+b),
equal to the average of the two speeds at the jump. The resulting shock-wave solution is

u(t, x) =

{
a, x < ct,

b, x > ct,
where c =

a+ b

2
. (2.51)

A plot of its characteristic lines appears in Figure 2.18. Observe that colliding pairs of
characteristic lines terminate at the shock line, whose slope is the average of their individual
slopes.

The fact that the shock speed equals the average of the solution values on either side
is, in fact, of general validity, and is known as the Rankine–Hugoniot condition , named af-
ter the nineteenth-century Scottish physicist William Rankine and French engineer Pierre
Hugoniot, although historically these conditions first appeared in a 1849 paper by George
Stokes, [109]. However, intimidated by criticism by his contemporary applied mathemati-
cians Lords Kelvin and Rayleigh, Stokes thought he was mistaken, and even ended up
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Figure 2.18. Characteristic lines for the step wave shock.

deleting the relevant part when his collected works were published in 1883, [110]. The
missing section was restored in the 1966 reissue, [111].

Proposition 2.10. Let u(t, x) be a solution to the nonlinear transport equation that
has a discontinuity at position x = σ(t), with finite, unequal left- and right-hand limits

u−(t) = u
(
t,σ(t)−

)
= lim

x→σ(t)−
u(t, x), u+(t) = u

(
t,σ(t)+

)
= lim

x→ σ(t)+
u(t, x), (2.52)

on either side of the shock discontinuity. Then, to maintain conservation of mass, the speed
of the shock must equal the average of the solution values on either side:

dσ

dt
=

u−(t) + u+(t)

2
. (2.53)

Proof : Referring to Figure 2.19, consider a small time interval, from t to t + ∆t,
with ∆t > 0. During this time, the shock moves from position a = σ(t) to position
b = σ(t +∆t). The total mass contained in the interval [a, b ] at time t, before the shock
has passed through, is

M (t) =

∫ b

a
u(t, x) dx ≈ u+(t) (b− a) = u+(t)

[
σ(t+∆t)− σ(t)

]
,

where we assume that ∆t ≪ 1 is very small, and so the integrand is well approximated by
its limiting value (2.52). Similarly, after the shock has passed, the total mass remaining in
the interval is

M (t+∆t) =

∫ b

a
u(t+∆t, x) dx ≈ u−(t+∆t) (b− a) = u−(t+∆t)

[
σ(t+∆t)− σ(t)

]
.
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Figure 2.19. Conservation of mass near a shock.

Thus, the rate of change in mass across the shock at time t is given by

dM

dt
= lim

∆t→ 0

M (t+∆t)−M (t)

∆t

= lim
∆t→ 0

[
u−(t+∆t)− u+(t)

] σ(t+∆t)− σ(t)

∆t
=

[
u−(t)− u+(t)

] dσ

dt
.

On the other hand, at any t < τ < t + ∆t, the mass flux into the interval [a, b ] through
the endpoints is given by the right-hand side of (2.44):

1
2

[
u(τ, a)2 − u(τ, b)2

]
−→ 1

2

[
u−(t)2 − u+(t)2

]
, since τ → t as ∆t → 0.

Conservation of mass requires that the rate of change in mass be equal to the mass flux:

dM

dt
=

[
u−(t)− u+(t)

] dσ

dt
= 1

2

[
u−(t)2 − u+(t)2

]
.

Solving for dσ/dt establishes (2.53). Q.E.D.

Example 2.11. By way of contrast, let us investigate the case when the initial data
is a step function (2.50), but with a < b, so the jump goes upwards. In this case, the
characteristic lines diverge from the initial discontinuity, and the mathematical solution is
not specified at all in the wedge-shaped region at < x < bt. Our task is to decide how to
“fill in” the solution values between the two regions where the solution is well defined and
constant.

One possible connection is by a straight line. Indeed, a simple modification of the
rational solution (2.36) produces the similarity solution†

u(t, x) =
x

t
,

† See Section 8.2 for general techniques for constructing similarity (scale-invariant) solutions
to partial differential equations.
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Figure 2.20. Rarefaction wave.
⊎

which not only solves the differential equation, but also has the required values u(t, at) = a
and u(t, bt) = b at the two edges of the wedge. This can be used to construct the piecewise
affine rarefaction wave

u(t, x) =

⎧
⎨

⎩

a, x ≤ at,

x/t, at ≤ x ≤ bt,

b, x ≥ bt,

(2.54)

which is graphed at four representative times in Figure 2.20.
A second possibility would be to continue the discontinuity as a shock wave, whose

speed is governed by the Rankine-Hugoniot condition, leading to a discontinuous solution
having the same formula as (2.51). Which of the two competing solutions should we
use? The first, (2.54), makes better physical sense; indeed, if we were to smooth out the
discontinuity, then the resulting solutions would converge to the rarefaction wave and not
the reverse shock wave; see Exercise 2.3.13. Moreover, the discontinuous solution (2.51)
has characteristic lines emanating from the discontinuity, which means that the shock is
creating new values for the solution as it moves along, and this can, in fact, be done in a
variety of ways. In other words, the discontinuous solution violates causality , meaning that
the solution profile at any given time uniquely prescribes its subsequent motion. Causality
requires that, while characteristics may terminate at a shock discontinuity, they cannot
begin there, because their slopes will not be uniquely prescribed by the shock profile, and
hence the characteristics to the left of the shock must have larger slope (or speed), while
those to the right must have smaller slope. Since the shock speed is the average of the two
characteristic slopes, this requires the Entropy Condition

u−(t) >
dσ

dt
=

u−(t) + u+(t)

2
> u+(t). (2.55)

With further analysis, it can be shown, [57], that the rarefaction wave (2.54) is the unique
solution† to the initial value problem satisfying the entropy condition (2.55).

† Albeit not a classical solution, but rather a weak solution, as per Section 10.4.
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Figure 2.21. Equal Area Rule for the triangular wave.
⊎

These prototypical solutions epitomize the basic phenomena modeled by the nonlinear
transport equation: rarefaction waves, which emanate from regions where the initial data
satisfies f ′(x) > 0, causing the solution to spread out as time progresses, and compression
waves , emanting from regions where f ′(x) < 0, causing the solution to progressively steepen
and eventually break into a shock discontinuity. Anyone caught in a traffic jam recognizes
the compression waves, where the vehicles are bunched together and almost stationary,
while the interspersed rarefaction waves correspond to freely moving traffic. (An intelligent
driver will take advantage of the rarefaction waves moving backwards through the jam
to switch lanes!) The familiar, frustrating traffic jam phenomenon, even on accident- or
construction-free stretches of highway, is, thus, an intrinsic effect of the nonlinear transport
models that govern traffic flow, [122].

Example 2.12. Triangular wave: Suppose the initial data has the triangular profile

u(0, x) = f(x) =

{
x, 0 ≤ x ≤ 1,

0, otherwise,

as in the first graph in Figure 2.22. The initial discontinuity at x = 1 will propagate as a
shock wave, while the slanted line behaves as a rarefaction wave. To find the profile at time
t, we first graph the multi-valued solution obtained by moving each point on the graph of
f to the right an amount equal to t times its height. As noted above, this motion preserves
straight lines. Thus, points on the x–axis remain fixed, and the diagonal line now goes
from (0, 0) to (1 + t, 1), which is where the uppermost point (1, 1) on the graph of f has
moved to, and hence has slope (1 + t)−1, while the initial vertical shock line has become
tilted, going from (1, 0) to (0, 1 + t). We now need to find the position σ(t) of the shock
line in order to satisfy the Equal Area Rule, namely so that the areas of the two shaded
regions in Figure 2.21 are identical. The reader is invited to determine this geometrically;
instead, we invoke the Rankine–Hugoniot condition (2.53). At the shock line, x = σ(t),
the left- and right-hand limiting values are, respectively,

u−(t) = u
(
t,σ(t)−

)
=

σ(t)

1 + t
, u+(t) = u

(
t,σ(t)+

)
= 0,

and hence (2.53) prescribes the shock speed to be

dσ

dt
=

1

2

(
σ(t)

1 + t
+ 0

)
=

σ(t)

2(1 + t)
.
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Figure 2.22. Triangular-wave solution.
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t

x

Figure 2.23. Characteristic lines for the triangular-wave shock.

The solution to the resulting separable ordinary differential equation is easily found. Since
the shock starts out at σ(0) = 1, we deduce that

σ(t) =
√
1 + t , with

dσ

dt
=

1

2
√
1 + t

.

Further, the strength of the shock, namely its height, is

u−(t) =
σ(t)

1 + t
=

1√
1 + t

.

We conclude that, as t increases, the solution remains a triangular wave, of steadily decreas-
ing slope, while the shock moves off to x = +∞ at a progressively slower speed and smaller
height. Its position follows a parabolic trajectory in the (t, x)–plane. See Figure 2.22 for
representative plots of the triangular-wave solution, while Figure 2.23 illustrates the char-
acteristic lines and shock-wave trajectory.

In more general situations, continuing on after the initial shock formation, other char-
acteristic lines may start to cross, thereby producing new shocks. The shocks themselves
continue to propagate, often at different velocities. When a fast-moving shock catches up
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with a slow-moving shock, one must then decide how to merge the shocks so as to retain a
physically meaningful solution. The Rankine–Hugoniot (Equal Area) and Entropy Condi-
tions continue to uniquely specify the dynamics. However, at this point, the mathematical
details have become too intricate for us to pursue any further, and we refer the interested
reader to Whitham’s book, [122]. See also [57] for a proof of the following existence
theorem for shock-wave solutions to the nonlinear transport equation.

Theorem 2.13. If the initial data u(0, x) = f(x) is piecewise† C1 with finitely many
jump discontinuities, then, for t > 0, there exists a unique (weak) solution to the nonlinear
transport equation (2.31) that also satisfies the Rankine–Hugoniot condition (2.53) and
the entropy condition (2.55).

Remark : Our derivation of the Rankine–Hugoniot shock speed condition (2.53) relied
on the fact that we can write the original partial differential equation in the form of a
conservation law. But there are, in fact, other ways to do this. For instance, multiplying the
nonlinear transport equation (2.31) by u allows us write it in the alternative conservative
form

u
∂u

∂t
+ u2 ∂u

∂x
=

∂

∂t

(
1
2 u

2
)
+

∂

∂x

(
1
3 u

3
)
= 0. (2.56)

In this formulation, the conserved density is T = 1
2 u

2, and the associated flux is X = 1
3 u

3.
The integrated form (2.49) of the conservation law (2.56) is

d

dt

∫ b

a

1
2 u(t, x)

2 dx = 1
3

[
u(t, a)3 − u(t, b)3

]
. (2.57)

In some physical models, the integral on the left-hand side represents the energy within the
interval [a, b ], and the conservation law tells us that energy can enter the interval as a flux
only through its ends. If we assume that energy is conserved at a shock, then, repeating
our previous argument, we are led to the alternative equation

dσ

dt
=

1
3

[
u−(t)3 − u+(t)3

]

1
2

[
u−(t)2 − u+(t)2

] =
2

3

u−(t)2 + u−(t)u+(t) + u+(t)2

u−(t) + u+(t)
(2.58)

for the shock speed. Thus, a shock that conserves energy moves at a different speed from
one that conserves mass! The evolution of a shock wave depends not just on the underlying
differential equation, but also on the physical assumptions governing the selection of a
suitable conservation law.

More General Wave Speeds

Let us finish this section by considering a nonlinear transport equation

ut + c(u)ux = 0, (2.59)

whose wave speed is a more general function of the disturbance u. (Further extensions,
allowing c to depend also on t and x, are discussed in Exercise 2.3.20.) Most of the

† Meaning continuous everywhere, and continuously differentiable except at a discrete set of
points; see Definition 3.7 below for the precise definition.
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development is directly parallel to the special case (2.31) discussed above, and so the
details are left for the reader to fill in, although the shock dynamics does require some
care.

In this case, the characteristic curve equation is

dx

dt
= c

(
u(t, x)

)
. (2.60)

As before, the solution u is constant on characteristics, and hence the characteristics are
straight lines, now with slope c(u). Thus, to solve the initial value problem

u(0, x) = f(x), (2.61)

through each point (0, y) on the x–axis, one draws the characteristic line of slope c(u(0, y)) =
c(f(y)). Until the onset of a shock discontinuity, the solution maintains its initial value
u(0, y) = f(y) along the characteristic line.

A shock forms whenever two characteristic lines cross. As before, the mathematical
equation no longer uniquely specifies the subsequent dynamics, and we need to appeal to
an appropriate conservation law. We write the transport equation in the form

∂u

∂t
+

∂

∂x
C(u) = 0, where C(u) =

∫
c(u)du (2.62)

is any convenient anti-derivative of the wave speed. Thus, following the same computation
as in (2.44), we discover that conservation of mass now takes the integrated form

d

dt

∫ b

a
u(t, x) dx = C(u(t, a))− C(u(t, b)), (2.63)

with C(u) playing the role of the mass flux. Requiring the conservation of mass, i.e., of
the area under the graph of the solution, means that the Equal Area Rule remains valid.
However, the Rankine–Hugoniot shock-speed condition must be modified in accordance
with the new dynamics. Mimicking the preceding argument, but with the modified mass
flux, we find that the shock speed is now given by

dσ

dt
=

C(u−(t))− C(u+(t))

u−(t)− u+(t)
. (2.64)

Note that if

c(u) = u, then C(u) =

∫
u du = 1

2 u
2,

and so (2.64) reduces to our earlier formula (2.53). Moreover, in the limit as the shock
magnitude approaches zero, u−(t)− u+(t) → 0, the right-hand side of (2.64) converges to
the derivative C′(u) = c(u) and hence recovers the wave speed, as it should.

Exercises

2.3.1. Discuss the behavior of the solution to the nonlinear transport equation (2.31) for the
following initial data:

(a) u(0, x) =

{
2, x < −1,
1, x > −1; (b) u(0, x) =

{
−2, x < −1,
1, x > −1; (c) u(0, x) =

{
1, x < 1,
−2, x > 1.
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2.3.2. Solve the following initial value problems: (a) ut + 3uux = 0, u(0, x) =

{
2, x < 1,
0, x > 1;

(b) ut − uux = 0, u(1, x) =

{
−1, x < 0,
3, x > 0;

(c) ut − 2uux = 0, u(0, x) =

{
1, x < 1,
0, x > 1.

2.3.3. Let u(0, x) = (x2 + 1)−1. Does the resulting solution to the nonlinear transport equation
(2.31) produce a shock wave? If so, find the time of onset of the shock, and sketch a graph
of the solution just before and soon after the shock wave. If not, explain what happens to
the solution as t increases.

2.3.4. Solve Exercise 2.3.3 when u(0, x) = (a) − (x2 + 1)−1, (b) x(x2 + 1)−1.

2.3.5. Consider the initial value problem ut − 2uux = 0, u(0, x) = e−x2

. Does the resulting
solution produce a shock wave? If so, find the time of onset of the shock and the position
at which it first forms. If not, explain what happens to the solution as t increases.

2.3.6.(a) For what values of α,β, γ, δ is u(t, x) =
αx+ β
γ t+ δ

a solution to (2.31)?

(b) For what values of α,β, γ, δ,λ, µ is u(t, x) =
λ t+ αx+ β
γ t+ µx+ δ

a solution to (2.31)?

2.3.7. A triangular wave is a shock-wave solution to the initial value problem for (2.31) that

has initial data u(0, x) =

{
mx, 0 ≤ x ≤ ℓ,
0, otherwise.

Assuming m > 0, write down a formula for

the triangular-wave solution at times t > 0. Discuss what happens to the triangular wave as
time progresses.

2.3.8. Solve Exercise 2.3.7 when m < 0.

2.3.9. Solve (2.31) for t > 0 subject to the following initial conditions, and graph your solution
at some representative times. In what sense does your solution conserve mass?

(a) u(0, x) =

{
1, 0 < x < 1,
0, otherwise,

(b) u(0, x) =

{
x, −1 < x < 1,
0, otherwise,

(c) u(0, x) =

{
−x, −1 < x < 1,
0, otherwise,

(d) u(0, x) =

{
1− |x |, −1 < x < 1,
0, otherwise.

2.3.10. An N–wave is a solution to the nonlinear transport equation (2.31) that has initial con-

ditions u(0, x) =

{
mx, − ℓ ≤ x ≤ ℓ,
0, otherwise,

where m > 0. (a) Write down a formula for the

N–wave solution at times t > 0. (b) What about when m < 0?

♦ 2.3.11. Suppose u(t, x) and ũ(t, x) are two solutions to the nonlinear transport equation (2.31)
such that, for some t⋆ > 0, they agree: u(t⋆, x) = ũ(t⋆, x) for all x. Do the solutions nec-
essarily have the same initial conditions: u(0, x) = ũ(0, x)? Use your answer to discuss the
uniqueness of solutions to the nonlinear transport equation.

2.3.12. Suppose that x1 < x2 are such that the characteristic lines of (2.31) through (0, x1)
and (0, x2) cross at a shock at (t,σ(t)) and, moreover, the left- and right-hand shock values

(2.52) are f(x1) = u−(t), f(x1) = u+(t). Explain why the signed area of the region between
the graph of f(x) and the secant line connecting (x1, f(x1)) to (x2, f(x2)) is zero.

♦ 2.3.13. Consider the initial value problem uε(0, x) = 2 + tan−1(x/ε) for the nonlinear trans-
port equation (2.31). (a) Show that, as ε → 0+, the initial condition converges to a step
function (2.51). What are the values of a, b? (b) Show that, moreover, the resulting solu-
tion uε(0, x) to the nonlinear transport equation converges to the corresponding rarefaction
wave (2.54) resulting from the limiting initial condition.
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♦ 2.3.14.(a) Under what conditions can equation (2.35) be solved for a single-valued function
u(t, x)? Hint : Use the Implicit Function Theorem. (b) Use implicit differentiation to prove
that the resulting function u(t, x) is a solution to the nonlinear transport equation.

2.3.15. For what values of α, β, γ, δ, k is u(t, x) =

(
αx+ β
γ t+ δ

)k
a solution to the transport equa-

tion ut + u2 ux = 0?

2.3.16.(a) Solve the initial value problem ut + u2 ux = 0, u(0, x) = f(x), by the method of
characteristics. (b) Discuss the behavior of solutions and compare/contrast with (2.31).

2.3.17.(a) Determine the Rankine–Hugoniot condition, based on conservation of mass, for the
speed of a shock for the equation ut + u2 ux = 0. (b) Solve the initial value problem

u(0, x) =

{
a, x < 0,
b, x > 0,

when (i) | a | > | b |, (ii) | a | < | b |. Hint : Use Exercise 2.3.15

to determine the shape of a rarefaction wave.

2.3.18. Solve Exercise 2.3.17 when the wave speed c(u) = (i) 1− 2u, (ii) u3, (iii) sinu.

♦ 2.3.19. Justify the shock-speed formula (2.58).

♦ 2.3.20. Consider the general quasilinear first-order partial differential equation
∂u
∂t

+ c(t, x, u)
∂u
∂x

= h(t, x, u).

Let us define a lifted characteristic curve to be a solution (t, x(t), u(t)) to the system of or-

dinary differential equations
dx
dt

= c(t, x, u),
du
dt

= h(t, x, u). The corresponding charac-

teristic curve
(
t, x(t)

)
is obtained by projecting to the (t, x)–plane. Prove that if u(t, x) is a

solution to the partial differential equation, and u(t0, x0) = u0, then the lifted characteristic
curve passing through (t0, x0, u0) lies on the graph of u(t, x). Conclude that the graph of
the solution to the initial value problem u(t0, x) = f(x) is the union of all lifted characteris-

tic curves passing through the initial data points
(
t0, x0, f(x0)

)
.

2.3.21. Let a > 0. (a) Apply the method of Exercise 2.3.20 to solve the initial value problem
for the damped transport equation: ut + uux + au = 0, u(0, x) = f(x).
(b) Does the damping eliminate shocks?

2.3.22. Apply the method of Exercise 2.3.20 to solve the initial value problem

ut + tux = u2, u(0, x) =
1

1 + x2
.

2.4 The Wave Equation: d’Alembert’s Formula

Newton’s Second Law states that force equals mass times acceleration. It forms the bedrock
underlying the derivation of mathematical models describing all of classical dynamics.
When applied to a one-dimensional medium, such as the transverse displacements of a
violin string or the longitudinal motions of an elastic bar, the resulting model governing
small vibrations is the second-order partial differential equation

ρ(x)
∂2u

∂t2
=

∂

∂x

(
κ(x)

∂u

∂x

)
. (2.65)

Here u(t, x) represents the displacement of the string or bar at time t and position x,
while ρ(x) > 0 denotes its density and κ(x) > 0 its stiffness or tension, both of which are
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assumed not to vary with t. The right-hand side of the equation represents the restoring
force due to a (small) displacement of the medium from its equilibrium, whereas the left-
hand side is the product of mass per unit length and acceleration. A correct derivation of
the model from first principles would require a significant detour, and we refer the reader
to [120, 124] for the details.

We will simplify the general model by assuming that the underlying medium is uni-
form, and so both its density ρ and stiffness κ are constant. Then (2.65) reduces to the
one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, where the constant c =

√
κ
ρ > 0 (2.66)

is known as the wave speed , for reasons that will soon become apparent.
In general, to uniquely specify the solution to any dynamical system arising from

Newton’s Second Law, including the wave equation (2.66) and the more general vibration
equation (2.65), one must fix both its initial position and initial velocity. Thus, the initial
conditions take the form

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), (2.67)

where, for simplicity, we set the initial time t0 = 0. (See also Exercise 2.4.6.) The initial
value problem seeks the corresponding C2 function u(t, x) that solves the wave equation
(2.66) and has the required initial values (2.67). In this section, we will learn how to
solve the initial value problem on the entire line −∞ < x < ∞. The analysis of the
wave equation on bounded intervals will be deferred until Chapters 4 and 7. The two-
and three-dimensional versions of the wave equation are treated in Chapters 11 and 12,
respectively.

d’Alembert’s Solution

Let us now derive the explicit solution formula for the second-order wave equation (2.66)
first found by d’Alembert. The starting point is to write the partial differential equation
in the suggestive form

!u = (∂2
t − c2 ∂2

x) u = utt − c2 uxx = 0. (2.68)

Here
! = ∂2

t − c2 ∂2
x

is a common mathematical notation for the wave operator , which is a linear second-order
partial differential operator. In analogy with the elementary polynomial factorization

t2 − c2 x2 = (t− cx)(t+ cx),

we can factor the wave operator into a product of two first-order partial differential oper-
ators:†

! = ∂2
t − c2 ∂2

x = (∂t − c ∂x) (∂t + c ∂x). (2.69)

† The cross terms cancel, thanks to the equality of mixed partial derivatives: ∂t∂xu = ∂x∂tu.
Constancy of the wave speed c is essential here.
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Now, if the second factor annihilates the function u(t, x), meaning

(∂t + c ∂x) u = ut + c ux = 0, (2.70)

then u is automatically a solution to the wave equation, since

!u = (∂t − c ∂x) (∂t + c ∂x) u = (∂t − c ∂x) 0 = 0.

We recognize (2.70) as the first-order transport equation (2.4) with constant wave speed c.
Proposition 2.1 tells us that its solutions are traveling waves with wave speed c :

u(t, x) = p(ξ) = p(x− ct), (2.71)

where p is an arbitrary function of the characteristic variable ξ = x − ct. As long as
p ∈ C2 (i.e., is twice continuously differentiable), the resulting function u(t, x) is a classical
solution to the wave equation (2.66), as you can easily check.

Now, the factorization (2.69) can equally well be written in the reverse order:

! = ∂2
t − c2 ∂2

x = (∂t + c ∂x) (∂t − c ∂x). (2.72)

The same argument tells us that any solution to the “backwards” transport equation

ut − c ux = 0, (2.73)

with constant wave speed −c, also provides a solution to the wave equation. Again, by
Proposition 2.1, with c replaced by −c, the general solution to (2.73) has the form

u(t, x) = q(η) = q(x+ ct), (2.74)

where q is an arbitrary function of the alternative characteristic variable η = x+ ct. The
solutions (2.74) represent traveling waves moving to the left with constant speed c > 0.
Provided q ∈ C2, the functions (2.74) will provide a second family of solutions to the wave
equation.

We conclude that, unlike first-order transport equations, the wave equation (2.68)
is bidirectional in that it admits both left and right traveling-wave solutions. Moreover,
by linearity the sum of any two solutions is again a solution, and so we can immediately
construct solutions that are superpositions of left and right traveling waves. The remarkable
fact is that every solution to the wave equation can be so represented.

Theorem 2.14. Every solution to the wave equation (2.66) can be written as a
superposition,

u(t, x) = p(ξ) + q(η) = p(x− ct) + q(x+ ct), (2.75)

of right and left traveling waves. Here p(ξ) and q(η) are arbitrary C2 functions, each
depending on its respective characteristic variable

ξ = x− ct, η = x+ ct. (2.76)

Proof : As in our treatment of the transport equation, we will simplify the wave equa-
tion through an inspired change of variables. In this case, the new independent variables
are the characteristic variables ξ, η defined by (2.76). We set

u(t, x) = v(x− ct, x+ ct) = v(ξ, η), whereby v(ξ, η) = u

(
η − ξ

2 c
,
η + ξ

2

)
. (2.77)
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Then, employing the chain rule to compute the partial derivatives,

∂u

∂t
= c

(
−

∂v

∂ξ
+

∂v

∂η

)
,

∂u

∂x
=

∂v

∂ξ
+

∂v

∂η
, (2.78)

and, further,

∂2u

∂t2
= c2

(
∂2v

∂ξ2
− 2

∂2v

∂ξ ∂η
+

∂2v

∂η2

)
,

∂2u

∂x2
=

∂2v

∂ξ2
+ 2

∂2v

∂ξ ∂η
+

∂2v

∂η2
.

Therefore

!u =
∂2u

∂t2
− c2

∂2u

∂x2
= −4c2

∂2v

∂ξ ∂η
. (2.79)

We conclude that u(t, x) solves the wave equation ! u = 0 if and only if v(ξ, η) solves the
second-order partial differential equation

∂2v

∂ξ ∂η
= 0,

which we write in the form

∂

∂ξ

(
∂v

∂η

)
=

∂w

∂ξ
= 0, where w =

∂v

∂η
.

Thus, applying the methods of Section 2.1 (and making the appropriate assumptions on
the domain of definition of w), we deduce that

w =
∂v

∂η
= r(η),

where r is an arbitrary function of the characteristic variable η. Integrating both sides of
the latter partial differential equation with respect to η, we find

v(ξ, η) = p(ξ) + q(η), where q(η) =

∫
r(η) dη,

while p(ξ) represents the η integration “constant”. Replacing the characteristic variables
by their formulas in terms of t and x completes the proof. Q.E.D.

Let us see how the solution formula (2.75) can be used to solve the initial value problem
(2.67). Substituting into the initial conditions, we deduce that

u(0, x) = p(x) + q(x) = f(x),
∂u

∂t
(0, x) = −c p′(x) + c q′(x) = g(x). (2.80)

To solve this pair of equations for the functions p and q, we differentiate the first,

p′(x) + q′(x) = f ′(x),

and then subtract off the second equation divided by c; the result is

2 p′(x) = f ′(x)−
1

c
g(x).

Therefore,

p(x) =
1

2
f(x)−

1

2 c

∫ x

0
g(z) dz + a,
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t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

Figure 2.24. Splitting of waves.
⊎

where a is an integration constant. The first equation in (2.80) then yields

q(x) = f(x)− p(x) =
1

2
f(x) +

1

2 c

∫ x

0
g(z) dz − a.

Substituting these two expressions back into our solution formula (2.75), we obtain

u(t, x)= p(ξ) + q(η) =
f(ξ) + f(η)

2
−

1

2 c

∫ ξ

0
g(z) dz +

1

2 c

∫ η

0
g(z) dz

=
f(ξ) + f(η)

2
+

1

2 c

∫ η

ξ
g(z)dz,

where ξ, η are the characteristic variables (2.76). In this manner, we have arrived at
d’Alembert’s solution to the initial value problem for the wave equation on the real line.

Theorem 2.15. The solution to the initial value problem

∂2u

∂t2
= c2

∂2u

∂x2
, u(0, x) = f(x),

∂u

∂t
(0, x) = g(x), −∞ < x < ∞, (2.81)

is given by

u(t, x) =
f(x− ct) + f(x+ ct)

2
+

1

2 c

∫ x+ct

x−ct
g(z)dz. (2.82)

Remark : In order that (2.82) define a classical solution to the wave equation, we
need f ∈ C2 and g ∈ C1. However, the formula itself makes sense for more general
initial conditions. We will continue to treat the resulting functions as solutions, albeit
nonclassical, since they fit under the more general rubric of “weak solution”, to be developed
in Section 10.4.

Example 2.16. Suppose there is no initial velocity, so g(x) ≡ 0, and hence the
motion is purely the result of the initial displacement u(0, x) = f(x). In this case, (2.82)
reduces to

u(t, x) = 1
2 f(x− ct) + 1

2 f(x+ ct). (2.83)
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t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

Figure 2.25. Interaction of waves.
⊎

The effect is that the initial displacement splits into two waves, one moving to the right
and the other moving to the left, each of constant speed c, and each of exactly the same
shape as f(x), but only half as tall. For example, if the initial displacement is a localized
pulse centered at the origin, say

u(0, x) = e−x2

,
∂u

∂t
(0, x) = 0,

then the solution

u(t, x) = 1
2 e
−(x−ct)2 + 1

2 e
−(x+ct)2

consists of two half size pulses running away from the origin with the same speed c, but
in opposite directions. A graph of the solution at several successive times can be seen in
Figure 2.24.

If we take two initially separated pulses, say

u(0, x) = e−x2

+ 2 e−(x−1)2 ,
∂u

∂t
(0, x) = 0,

centered at x = 0 and x = 1, then the solution

u(t, x) = 1
2 e
−(x−ct)2 + e−(x−1−ct)2 + 1

2 e
−(x+ct)2 + e−(x−1+ct)2

will consist of four pulses, two moving to the right and two to the left, all with the same
speed. An important observation is that when a right-moving pulse collides with a left-
moving pulse, they emerge from the collision unchanged, which is a consequence of the
inherent linearity of the wave equation. In Figure 2.25, the first picture plots the initial
displacement. In the second and third pictures, the two localized bumps have each split into
two copies moving in opposite directions. In the fourth and fifth, the larger right-moving
bump is in the process of interacting with the smaller left-moving bump. Finally, in the
last picture the interaction is complete, and the individual pairs of left- and right-moving
waves move off in tandem in opposing directions, experiencing no further collisions.

In general, if the initial displacement is localized, so that | f(x) | ≪ 1 for |x | ≫ 0, then,
after a finite time, the left- and right-moving waves will separate, and the observer will see
two half-size replicas running away, with speed c, in opposite directions. If the displacement
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Figure 2.26. The error function erf x.

is not localized, then the left and right traveling waves will never fully disengage, and one
might be hard pressed to recognize that a complicated solution pattern is, in reality, just
the superposition of two simple traveling waves. For example, consider the elementary
trigonometric solution

cos ct cosx = 1
2 cos(x− ct) + 1

2 cos(x+ ct).
⊎

(2.84)

In accordance with the left-hand expression, an observer will see a standing cosinusoidal
wave that vibrates up and down with frequency c. However, the d’Alembert form of the
solution on the right-hand side says that this is just the sum of left- and right-traveling
cosine waves! The interactions of their peaks and troughs reproduce the standing wave.
Thus, the same solution can be interpreted in two seemingly incompatible ways. And,
in fact, this paradox lies at the heart of the perplexing wave-particle duality of quantum
physics.

Example 2.17. By way of contrast, suppose there is no initial displacement, so
f(x) ≡ 0, and the motion is purely the result of the initial velocity ut(0, x) = g(x).
Physically, this models a violin string at rest being struck by a “hammer blow” at the
initial time. In this case, the d’Alembert formula (2.82) reduces to

u(t, x) =
1

2 c

∫ x+ct

x−ct
g(z)dz. (2.85)

For example, when u(0, x) = 0, ut(0, x) = e−x2

, the resulting solution (2.85) is

u(t, x) =
1

2 c

∫ x+ct

x−ct
e−x2

dz =

√
π

4 c

[
erf(x+ ct)− erf(x− ct)

]
, (2.86)

where

erf x =
2√
π

∫ x

0
e−z2

dz (2.87)

is known as the error function due to its many applications throughout probability and
statistics, [39]. The error function integral cannot be written in terms of elementary
functions; nevertheless, its properties have been well studied and its values tabulated,
[86]. A graph appears in Figure 2.26. The constant in front of the integral (2.87) has been
chosen so that the error function has asymptotic values

lim
x→∞

erf x = 1, lim
x→−∞

erf x = −1, (2.88)
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t = 3 t = 4 t = 5

Figure 2.27. Error function solution to the wave equation.
⊎

which follow from a well-known integration formula to be derived in Exercise 2.4.21.
A graph of the solution (2.86) at successive times is displayed in Figure 2.27. The

first graph shows the zero initial displacement. Gradually, the effect of the initial hammer
blow is felt further and further away along the string, as the two wave fronts propagate
away from the origin, both with speed c, but in opposite directions. Thus, unlike the case
of a nonzero initial displacement in Figure 2.24, where the solution eventually returns to
its equilibrium position u = 0 after the wave passes by, a nonzero initial velocity leaves the
string permanently deformed.

In general, the lines of slope ±c, where the respective characteristic variables are
constant,

ξ = x− ct = a, η = x+ ct = b, (2.89)

are known as the characteristics of the wave equation. Thus, the second-order wave equa-
tion has two distinct characteristic lines passing through each point in the (t, x)–plane.

Remark : The characteristic lines are the one-dimensional counterparts of the light
cone in Minkowski space-time, which plays a starring role in special relativity, [70, 75].
See Section 12.5 for further details.

In Figure 2.28, we plot the two characteristics going through a point (0, y) on the x
axis. The wedge-shaped region {y − ct ≤ x ≤ y + ct, t ≥ 0} lying between them is known
as the domain of influence of the point (0, y), since, in general, the value of the initial data
at a point will affect the subsequent solution values only in its domain of influence. Indeed,
the effect of an initial displacement at the point y propagates along the two characteristic
lines, while the effect of an initial velocity there will be felt at every point in the triangular
wedge.

External Forcing and Resonance

When a homogeneous vibrating medium is subjected to external forcing, the wave equation
acquires an additional, inhomogeneous term:

∂2u

∂t2
= c2

∂2u

∂x2
+ F (t, x), (2.90)



2.4 The Wave Equation: d’Alembert’s Formula 57

t

x

(0, y)

Figure 2.28. Characteristic lines and domain of influence.

in which F (t, x) represents a force imposed at time t and spatial position x. With a bit
more work, d’Alembert’s solution technique can be readily adapted to incorporate the
forcing term.

Let us, for simplicity, assume that the differential equation is supplemented by homo-
geneous initial conditions,

u(0, x) = 0, ut(0, x) = 0, (2.91)

meaning that there is no initial displacement or velocity. To solve the initial value problem
(2.90–91), we switch to the same characteristic coordinates (2.76), setting

v(ξ, η) = u

(
η − ξ

2 c
,
η + ξ

2

)
.

Invoking the chain rule formulas (2.79), we find that the forced equation (2.90) becomes

∂2v

∂ξ ∂η
= −

1

4c2
F

(
η − ξ

2 c
,
η + ξ

2

)
. (2.92)

Let us integrate both sides of the equation with respect to η, on the interval ξ ≤ ζ ≤ η:

∂v

∂ξ
(ξ, η)−

∂v

∂ξ
(ξ, ξ) = −

1

4c2

∫ η

ξ
F

(
ζ − ξ

2 c
,
ζ + ξ

2

)
dζ. (2.93)

But, recalling (2.78),

∂v

∂ξ
(ξ, η) =

1

2c

∂u

∂t

(
η − ξ

2 c
,
η + ξ

2

)
+

1

2

∂u

∂x

(
η − ξ

2 c
,
η + ξ

2

)
,

and so, in particular,

∂v

∂ξ
(ξ, ξ) =

1

2c

∂u

∂t
(0, ξ) +

1

2

∂u

∂x
(0, ξ) = 0,

which vanishes owing to our choice of homogeneous initial conditions (2.91). Indeed, the
initial velocity condition says that ut(0, x) = 0, while differentiating the initial displacement
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condition u(0, x) = 0 with respect to x implies that ux(0, x) = 0 for all x, including x = ξ.
As a result, (2.93) simplifies to

∂v

∂ξ
(ξ, η) = −

1

4c2

∫ η

ξ
F

(
ζ − ξ

2 c
,
ζ + ξ

2

)
dζ.

We now integrate the latter equation with respect to ξ on the interval ξ ≤ χ ≤ η, producing

− v(ξ, η) = v(η, η)− v(ξ, η) = −
1

4c2

∫ η

ξ

∫ η

χ
F

(
ζ − χ

2 c
,
ζ + χ

2

)
dζ dχ,

since v(η, η) = u(0, η) = 0, thanks again to the initial conditions. In this manner, we
have produced an explicit formula for the solution to the characteristic variable version of
the forced wave equation subject to the homogeneous initial conditions. Reverting to the
original physical coordinates, the left-hand side of this equation becomes −u(t, x). As for
the double integral on the right-hand side, it takes place over the triangular region

T (ξ, η) = { (χ, ζ) | ξ ≤ χ ≤ ζ ≤ η } . (2.94)

Let us introduce “physical” integration variables by setting

χ = y − c s, ζ = y + c s.

The defining inequalities of the triangle (2.94) become

x− ct ≤ y − c s ≤ y + c s ≤ x+ ct,

and so, in the physical coordinates, the triangular integration domain assumes the form

D(t, x) = { (s, y) | x− c (t− s) ≤ y ≤ x+ c (t− s), 0 ≤ s ≤ t } , (2.95)

which is graphed in Figure 2.29. The change of variables formula for double integrals
requires that we compute the Jacobian determinant

det

(
∂χ/∂y ∂χ/∂s

∂ζ/∂y ∂ζ/∂s

)
= det

(
1 −c
1 c

)
= 2c,

and so dχ dζ = 2c ds dy. Therefore,

u(t, x) =
1

2c

∫ ∫

D(t,x)
F (s, y) ds dy =

1

2c

∫ t

0

∫ x+c (t−s)

x−c (t−s)
F (s, y) dy ds, (2.96)

which gives the solution formula for the forced wave equation when subject to homogeneous
initial conditions.

To solve the general initial value problem, we appeal to linear superposition, writing its
solution as a sum of the solution (2.96) to the forced wave equation subject to homogeneous
initial conditions plus the d’Alembert solution (2.82) to the unforced equation subject to
inhomogeneous boundary conditions.

Theorem 2.18. The solution to the general initial value problem

utt = c2uxx + F (t, x), u(0, x) = f(x), ut(0, x) = g(x), −∞ < x < ∞, t > 0,

for the wave equation subject to an external forcing is given by

u(t, x) =
f(x− ct) + f(x+ ct)

2
+

1

2 c

∫ x+ct

x−ct
g(y) dy +

1

2c

∫ t

0

∫ x+c (t−s)

x−c (t−s)
F (s, y) dy ds.

(2.97)
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Figure 2.29. Domain of dependence.

Observe that the solution is a linear superposition of the respective effects of the initial
displacement, the initial velocity, and the external forcing. The triangular integration
region (2.95), lying between the x–axis and the characteristic lines going backwards from
(t, x), is known as the domain of dependence of the point (t, x). This is because, for any
t > 0, the solution value u(t, x) depends only on the values of the initial data and the
forcing function at points lying within the domain of dependence D(t, x). Indeed, the first
term in the solution formula (2.97) requires only the initial displacement at the corners
(0, x + ct), (0, x− ct); the second term requires only the initial velocity at points on the
x–axis lying on the vertical side of D(t, x); while the final term requires the value of the
external force on the entire triangular region.

Example 2.19. Let us solve the initial value problem

utt = uxx + sinω t sin x, u(0, x) = 0, ut(0, x) = 0,

for the wave equation with unit wave speed subject to a sinusoidal forcing function whose
amplitude varies periodically in time with frequency ω > 0. According to formula (2.96),
the solution is

u(t, x) =
1

2

∫ t

0

∫ x+t−s

x−t+s
sinωs sin y dy ds

=
1

2

∫ t

0
sinωs

[
cos(x− t+ s)− cos(x+ t− s)

]
ds

=

⎧
⎪⎪⎨

⎪⎪⎩

sinω t− ω sin t

1− ω2
sinx, 0 < ω ̸= 1,

sin t− t cos t

2
sin x, ω = 1.

Notice that, when ω ̸= 1, the solution is bounded, being a combination of two vibrational
modes: an externally induced mode at frequency ω along with an internal mode, at fre-
quency 1. If ω = p/q ̸= 1 is a rational number, then the solution varies periodically in
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Figure 2.30. Periodic and quasiperiodic functions.

time. On the other hand, if ω is irrational, then the solution is only quasiperiodic, and never
exactly repeats itself. Finally, if ω = 1, the solution grows without limit as t increases,
indicating that this is a resonant frequency . We will investigate external forcing and the
mechanisms leading to resonance in dynamical partial differential equations in more detail
in Chapters 4 and 6.

Example 2.20. To appreciate the difference between periodic and quasiperiodic
vibrations, consider the elementary trigonometric function

u(t) = cos t+ cosω t,

which is a linear combination of two simple periodic vibrations, of frequencies 1 and ω. If
ω = p/q is a rational number, then u(t) is a periodic function of period 2πq, so u(t+2πq) =
u(t). However, if ω is an irrational number, then u(t) is not periodic, and never repeats.
You are encouraged to inspect the graphs in Figure 2.30. The first is periodic — can you
spot where it begins to repeat? — whereas the second is only quasiperiodic. The only
quasiperiodic functions we will encounter in this text are linear combinations of periodic
trigonometric functions whose frequencies are not all rational multiples of each other. To
the uninitiated, such quasiperiodic motions may appear to be random, even though they are
built from a few simple periodic constituents. While ostensibly complicated, quasiperiodic
motion is not true chaos, which is is an inherently nonlinear phenomenon, [77].

Exercises

2.4.1. Solve the initial value problem utt = c2uxx, u(0, x) = e−x2

, ut(0, x) = sinx.

2.4.2.(a) Solve the wave equation utt = uxx when the initial displacement is the box function

u(0, x) =

{
1, 1 < x < 2,
0, otherwise,

while the initial velocity is 0.

(b) Sketch the resulting solution at several representative times.
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2.4.3. Answer Exercise 2.4.2 when the initial velocity is the box function, while the initial dis-
placement is zero.

2.4.4. Write the following solutions to the wave equation utt = uxx in d’Alembert form (2.82).
Hint : What is the appropriate initial data?

(a) cosx cos t, (b) cos 2x sin 2 t, (c) ex+t, (d) t2 + x2, (e) t3 + 3 tx2.

♥ 2.4.5.(a) Solve the dam break problem, that is, the wave equation when the initial displacement

is a step function σ(x) =

{
1, x > 0,
0, x < 0,

and there is no initial velocity. (b) Analyze the

case in which there is no initial displacement, while the initial velocity is a step function.
(c) Are your solutions classical solutions? Explain your answer. (d) Prove that the step

function is the limit, as n → ∞, of the functions fn(x) =
1
π

tan−1 nx +
1
2
. (e) Show that,

in both cases, the step function solution can be realized as the limit, as n → ∞, of solutions
to the initial value problems with the functions fn(x) as initial displacement or velocity.

♦ 2.4.6. Suppose u(t, x) solves the initial value problem u(0, x) = f(x), ut(0, x) = g(x), for the
wave equation (2.66). Prove that the solution to the initial value problem u(t0, x) = f(x),
ut(t0, x) = g(x), is u(t − t0, x).

2.4.7. Find all resonant frequencies for the wave equation with wave speed c when subject to
the external forcing function F (t, x) = sinω t sin kx for fixed ω, k > 0.

2.4.8. Consider the initial value problem utt = 4uxx + F (t, x), u(0, x) = f(x), ut(0, x) = g(x).
Determine (a) the domain of influence of the point (0, 2); (b) the domain of dependence of
the point (3,−1); (c) the domain of influence of the point (3,−1).

2.4.9.(a) A solution to the wave equation utt = 2uxx is generated by a displacement concen-
trated at position x0 = 1 and time t0 = 0, but no initial velocity. At what time will an
observer at position x1 = 5 feel the effect of this displacement? Will the observer continue
to feel an effect in the future? (b) Answer part (a) when there is an initial velocity concen-
trated at position x0 = 1 and time t0 = 0, but no initial displacement.

2.4.10. Suppose u(t, x) solves the initial value problem utt = 4uxx + sinω t cosx, u(0, x) = 0,
ut(0, x) = 0. Is h(t) = u(t, 0) a periodic function?

♥ 2.4.11.(a) Write down an explicit formula for the solution to the initial value problem

∂2u
∂t2

− 4
∂2u
∂x2

= 0, u(0, x) = sinx,
∂u
∂t

(0, x) = cos x, −∞ < x <∞, t ≥ 0.

(b) True or false: The solution is a periodic function of t.
(c) Now solve the forced initial value problem

∂2u
∂t2

− 4
∂2u
∂x2

= cos 2 t, u(0, x) = sin x,
∂u
∂t

(0, x) = cos x, −∞ < x <∞, t ≥ 0.

(d) True or false: The forced equation exhibits resonance. Explain.
(e) Does the answer to part (d) change if the forcing function is sin 2t?

2.4.12. Given a classical solution u(t, x) of the wave equation, let E = 1
2 (u

2
t + c2u2x) be the

associated energy density and P = utux the momentum density .
(a) Show that both E and P are conserved densities for the wave equation.
(b) Show that E(t, x) and P (t, x) both satisfy the wave equation.

♦ 2.4.13. Let u(t, x) be a classical solution to the wave equation utt = c2uxx. The total energy

E(t) =
∫ ∞

−∞

1
2

[(
∂u
∂t

)
2
+ c2

(
∂u
∂x

)
2
]

dx (2.98)

represents the sum of kinetic and potential energies of the displacement u(t, x) at time t.
Suppose that ∇u → 0 sufficiently rapidly as x → ±∞; more precisely, one can find α > 1

2
and C(t) > 0 such that |ut(t, x) |, |ux(t, x) | ≤ C(t)/|x |α for each fixed t and all sufficiently
large |x | ≫ 0. For such solutions, establish the Law of Conservation of Energy by showing
that E(t) is finite and constant. Hint : You do not need the formula for the solution.
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♦ 2.4.14.(a) Use Exercise 2.4.13 to prove that the only classical solution to the initial-boundary

value problem utt = c2uxx, u(0, x) = 0, ut(0, x) = 0, satisfying the indicated decay assump-

tions is the trivial solution u(t, x) ≡ 0. (b) Establish the following Uniqueness Theorem for
the wave equation: there is at most one such solution to the initial-boundary value problem
utt = c2uxx, u(0, x) = f(x), ut(0, x) = g(x).

2.4.15. The telegrapher’s equation utt + aut = c2uxx, with a > 0, models the vibration of

a string under frictional damping. (a) Show that, under the decay assumptions of Exer-
cise 2.4.13, the wave energy (2.98) of a classical solution is a nonincreasing function of t.
(b) Prove uniqueness of such solutions to the initial value problem for the telegrapher’s
equation.

2.4.16. What happens to the proof of Theorem 2.14 if c = 0?

2.4.17.(a) Explain why the d’Alembert factorization method doesn’t work when the wave speed
c(x) depends on the spatial variable x.

(b) Does it work when c(t) depends only on the time t?

2.4.18. The Poisson–Darboux equation is
∂2u
∂t2

−∂2u
∂x2

− 2
x

∂u
∂x

= 0. Solve the initial value problem

u(0, x) = 0, ut(0, x) = g(x), where g(x) = g(−x) is an even function. Hint : Set w = xu.

♥ 2.4.19.(a) Solve the initial value problem utt − 2utx − 3uxx = 0, u(0, x) = x2, ut(0, x) = ex.
Hint : Factor the associated linear differential operator. (b) Determine the domain of influ-
ence of a point (0, x). (c) Determine the domain of dependence of a point (t, x) with t > 0.

♦ 2.4.20.(a) Use polar coordinates to prove that, for any a > 0,
∫∫

R2
e−a (x2+y2) dx dy =

π
a
. (2.99)

(b) Explain why
∫ ∞

−∞
e−ax2

dx =

√
π
a
. (2.100)

♦ 2.4.21. Use Exercise 2.4.20 to prove the error function formulae (2.88).



Chapter 4

Separation of Variables

Three cardinal linear second-order partial differential equations have collectively driven the
development of the entire subject. The first two we have already encountered: The wave
equation describes vibrations and waves in continuous media, including sound waves, water
waves, elastic waves, electromagnetic waves, and so on. The heat equation models diffusion
processes, including thermal energy in solids, solutes in liquids, and biological populations.
Third, and in many ways the most important of all, is the Laplace equation and its inho-
mogeneous counterpart, the Poisson equation , which govern equilibrium mechanics. The
latter two equations arise in an astonishing variety of mathematical and physical contexts,
ranging through elasticity and solid mechanics, fluid mechanics, electromagnetism, poten-
tial theory, thermomechanics, geometry, probability, number theory, and many other fields.
The solutions to the Laplace equation are known as harmonic functions, and the discov-
ery of their many remarkable properties forms one of the most celebrated chapters in the
history of mathematics. All three equations, along with their multi-dimensional kin, will
appear repeatedly throughout this text.

The aim of the current chapter is to develop the method of separation of variables
for solving these key partial differential equations in their two-independent-variable incar-
nations. For the wave and heat equations, the variables are time, t, and a single space
coordinate, x, leading to initial-boundary value problems modeling the dynamical behav-
ior of a one-dimensional medium. For the Laplace and Poisson equations, both variables
represent space coordinates, x and y, and the associated boundary value problems model
the equilibrium configuration of a planar body, e.g., the deformations of a membrane. Sep-
aration of variables seeks special solutions that can be written as the product of functions
of the individual variables, thereby reducing the partial differential equation to a pair of
ordinary differential equations. More-general solutions can then be expressed as infinite
series in the appropriate separable solutions. For the two-variable equations considered
here, this results in a Fourier series representation of the solution. In the case of the wave
equation, separation of variables serves to focus attention on the vibrational character of
the solution, whereas the earlier d’Alembert approach emphasizes its particle-like aspects.
Unfortunately, for the Laplace equation, separation of variables applies only to boundary
value problems in very special geometries, e.g., rectangles and disks. Further development
of the separation of variables method for solving partial differential equations in three or
more variables can be found in Chapters 11 and 12.

In the final section, we take the opportunity to summarize the fundamental tripar-
tite classification of planar second-order partial differential equations. Each of the three
paradigmatic equations epitomizes one of the classes: hyperbolic, such as the wave equa-
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tion; parabolic, such as the heat equation; and elliptic, such as the Laplace and Poisson
equations. Each category enjoys its own distinctive properties and features, both analytic
and numeric, and, in effect, forms a separate mathematical subdiscipline.

4.1 The Diffusion and Heat Equations

Let us begin with a brief physical derivation of the heat equation from first principles.
We consider a bar — meaning a thin, heat-conducting body. “Thin” means that we can
regard the bar as a one-dimensional continuum with no significant transverse temperature
variation. We will assume that the bar is fully insulated along its length, and so heat can
enter (or leave) only through its uninsulated endpoints. We use t to represent time, and
a ≤ x ≤ b to denote spatial position along the bar, which occupies the interval [a, b ]. Our
goal is to find the temperature u(t, x) of the bar at position x and time t.

The dynamical equations governing the temperature are based on three fundamental
physical principles. First is the Law of Conservation of Heat Energy. Recalling the general
Definition 2.7, this particular conservation law takes the form

∂ε

∂t
+

∂w

∂x
= 0, (4.1)

in which ε(t, x) represents the thermal energy density at time t and position x, while
w(t, x) denotes the heat flux , i.e., the rate of flow of thermal energy along the bar. Our
sign convention is that w(t, x) > 0 at points where the energy flows in the direction of
increasing x (left to right). The integrated form (2.49) of the conservation law, namely

d

dt

∫ b

a
ε(t, x) dx = w(t, a)− w(t, b), (4.2)

states that the rate of change in the thermal energy within the bar is equal to the total
heat flux passing through its uninsulated ends. The signs of the boundary terms confirm
that heat flux into the bar results in an increase in temperature.

The second ingredient is a constitutive assumption concerning the bar’s material prop-
erties. It has been observed that, under reasonable conditions, thermal energy is propor-
tional to temperature:

ε(t, x) = σ(x) u(t, x). (4.3)

The factor

σ(x) = ρ(x)χ(x) > 0 (4.4)

is the product of the density ρ of the material and its specific heat capacity χ, which is
the amount of heat energy required to raise the temperature of a unit mass of the material
by one degree. Note that we are assuming that the medium is not changing in time, and
so physical quantities such as density and specific heat depend only on position x. We
also assume, perhaps with less physical justification, that its material properties do not
depend upon the temperature; otherwise, we would be forced to deal with a much thornier
nonlinear diffusion equation, [70, 99].

The third physical principle relates heat flux and temperature. Physical experiments
show that the thermal energy moves from hot to cold at a rate that is in direct proportion to
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the temperature gradient, which, in the one-dimensional case, means its derivative ∂u/∂x.
The resulting relation

w(t, x) = −κ(x)
∂u

∂x
(4.5)

is known as Fourier’s Law of Cooling . The proportionality factor κ(x) > 0 is the thermal
conductivity of the bar at position x, and the minus sign reflects the everyday observation
that heat energy moves from hot to cold. A good heat conductor, e.g., silver, will have
high conductivity, while a poor conductor, e.g., glass, will have low conductivity.

Combining the three laws (4.1, 3, 5) produces the linear diffusion equation

∂

∂t

(
σ(x) u

)
=

∂

∂x

(
κ(x)

∂u

∂x

)
, a < x < b, (4.6)

governing the thermodynamics of a one-dimensional medium. It is also used to model a
wide variety of diffusive processes, including chemical diffusion, diffusion of contaminants
in liquids and gases, population dispersion, and the spread of infectious diseases. If there
is an external heat source along the length of the bar, then the diffusion equation acquires
an additional prescribed inhomogeneous term:

∂

∂t

(
σ(x) u

)
=

∂

∂x

(
κ(x)

∂u

∂x

)
+ h(t, x), a < x < b. (4.7)

In order to uniquely prescribe the solution u(t, x), we need to specify an initial tem-
perature distribution

u(t0, x) = f(x), a ≤ x ≤ b. (4.8)

In addition, we must impose a suitable boundary condition at each end of the bar. There
are three common types. The first is a Dirichlet boundary condition, where the end is held
at a prescribed temperature. For example,

u(t, a) = α(t) (4.9)

fixes the temperature (possibly time-varying) at the left end. Alternatively, the Neumann
boundary condition

∂u

∂x
(t, a) = µ(t) (4.10)

prescribes the heat flux w(t, a) = −κ(a)ux(t, a) there. In particular, a homogeneous Neu-
mann condition, ux(t, a) ≡ 0, models an insulated end that prevents thermal energy flowing
in or out. The Robin† boundary condition,

∂u

∂x
(t, a) + β(t) u(t, a) = τ(t), (4.11)

models the heat exchange resulting from the end of the bar being placed in a heat bath
(thermal reservoir) at temperature τ(t).

Each end of the bar is required to satisfy one of these boundary conditions. For
example, a bar with both ends having prescribed temperatures is governed by the pair of
Dirichlet boundary conditions

u(t, a) = α(t), u(t, b) = β(t), (4.12)

† Since it is named after the nineteenth-century French analyst Victor Gustave Robin, the
pronunciation should be with a French accent.
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whereas a bar with two insulated ends requires two homogeneous Neumann boundary
conditions

∂u

∂x
(t, a) = 0,

∂u

∂x
(t, b) = 0. (4.13)

Mixed boundary conditions, with one end at a fixed temperature and the other insulated,
are similarly formulated, e.g.,

u(t, a) = α(t),
∂u

∂x
(t, b) = 0. (4.14)

Finally, the periodic boundary conditions

u(t, a) = u(t, b),
∂u

∂x
(t, a) =

∂u

∂x
(t, b), (4.15)

correspond to a circular ring obtained by joining the two ends of the bar. As before, we
are assuming that the heat is allowed to flow only around the ring — insulation prevents
the radiation of heat from one side of the ring affecting the other side.

The Heat Equation

In this book, we will retain the term “heat equation” to refer to the case in which the
bar is composed of a uniform material, and so its density ρ, conductivity κ, and specific
heat χ are all positive constants. We also exclude external heat sources (other than at the
endpoints), meaning that the bar remains insulated along its entire length. Under these
assumptions, the general diffusion equation (4.6) reduces to the homogeneous heat equation

∂u

∂t
= γ

∂2u

∂x2
(4.16)

for the temperature u(t, x) at time t and position x. The constant

γ =
κ
σ =

κ
ρχ (4.17)

is called the thermal diffusivity ; it incorporates all of the bar’s relevant physical properties.
The solution u(t, x) will be uniquely prescribed once we specify initial conditions (4.8) and
a suitable boundary condition at both of its endpoints.

As we learned in Section 3.1, the separable solutions to the heat equation are based
on the exponential ansatz†

u(t, x) = e−λt v(x), (4.18)

where v(x) depends only on the spatial variable. Functions of this form, which “separate”
into a product of a function of t times a function of x, are known as separable solutions .
Substituting (4.18) into (4.16) and canceling the common exponential factors, we find that
v(x) must solve the second-order linear ordinary differential equation

−γ
d2v

dx2
= λ v.

† Anticipating the eventual signs of the eigenvalues, and to facilitate later discussions, we now
include a minus sign in the exponential term.
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Each nontrivial solution v(x) ̸≡ 0 is an eigenfunction, with associated eigenvalue λ, for the
linear differential operator L[v ] = −γ v′′(x). With the separable eigensolutions (4.18) in
hand, we will then be able to reconstruct the desired solution u(t, x) as a linear combination,
or rather infinite series, thereof.

Let us concentrate on the simplest case: a uniform, insulated bar of length ℓ that is
held at zero temperature at both ends. We specify its initial temperature f(x) at time
t0 = 0, and so the relevant initial and boundary conditions are

u(t, 0) = 0, u(t, ℓ) = 0, t ≥ 0,

u(0, x) = f(x), 0 ≤ x ≤ ℓ.
(4.19)

The eigensolutions (4.18) are found by solving the Dirichlet boundary value problem

γ
d2v

dx2
+ λ v = 0, v(0) = 0, v(ℓ) = 0. (4.20)

By direct calculation (as you are asked to do in Exercises 4.1.19–20), one finds that if λ
is either complex, or real and nonpositive, then the only solution to the boundary value
problem (4.20) is the trivial solution v(x) ≡ 0. This means that all the eigenvalues must
necessarily be real and positive. In fact, the reality and positivity of the eigenvalues need
not be explicitly checked. Rather, they follow from very general properties of positive
definite boundary value problems, of which (4.20) is a particular case. See Section 9.5 for
the underlying theory and Theorem 9.34 for the relevant result.

When λ > 0, the general solution to the differential equation is a trigonometric func-
tion

v(x) = a cosωx+ b sinωx, where ω =
√

λ/γ ,

and a and b are arbitrary constants. The first boundary condition requires v(0) = a = 0.
This serves to eliminate the cosine term, and then the second boundary condition requires

v(ℓ) = b sinωℓ = 0.

Therefore, since we require b ̸= 0 — otherwise, the solution is trivial and does not qualify
as an eigenfunction — ωℓ must be an integer multiple of π, and so

ω =
π

ℓ
,

2π

ℓ
,

3π

ℓ
, . . . .

We conclude that the eigenvalues and eigenfunctions of the boundary value problem (4.20)
are

λn = γ
(nπ

ℓ

)2
, vn(x) = sin

nπx

ℓ
, n = 1, 2, 3, . . . . (4.21)

The corresponding eigensolutions (4.18) are

un(t, x) = exp

(
−

γ n2π2 t

ℓ2

)
sin

nπx

ℓ
, n = 1, 2, 3, . . . . (4.22)

Each represents a trigonometrically oscillating temperature profile that maintains its form
while decaying to zero at an exponentially fast rate.

To solve the general initial value problem, we assemble the eigensolutions into an
infinite series,

u(t, x) =
∞∑

n=1

bn un(t, x) =
∞∑

n=1

bn exp

(
−

γ n2π2 t

ℓ2

)
sin

nπx

ℓ
, (4.23)
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whose coefficients bn are to be fixed by the initial conditions. Indeed, assuming that the
series converges, the initial temperature profile is

u(0, x) =
∞∑

n=1

bn sin
nπx

ℓ
= f(x). (4.24)

This has the form of a Fourier sine series (3.52) on the interval [0, ℓ ]. Thus, the coefficients
are determined by the Fourier formulae (3.53), and so

bn =
2

ℓ

∫ ℓ

0
f(x) sin

nπx

ℓ
dx, n = 1, 2, 3, . . . . (4.25)

The resulting formula (4.23) describes the Fourier sine series for the temperature u(t, x) of
the bar at each later time t ≥ 0.

Example 4.1. Consider the initial temperature profile

u(0, x) = f(x) =

⎧
⎪⎨

⎪⎩

−x, 0 ≤ x ≤ 1
5 ,

x− 2
5 ,

1
5 ≤ x ≤ 7

10 ,

1− x, 7
10 ≤ x ≤ 1,

(4.26)

on a bar of length 1, plotted in the first graph in Figure 4.1. Using (4.25), the first few
Fourier coefficients of f(x) are computed (by either exact or numerical integration) to be

b1 ≈ .0897, b2 ≈ − .1927, b3 ≈ − .0289, b4 = 0,

b5 ≈ − .0162, b6 ≈ .0132, b7 ≈ .0104, b8 = 0,
. . . .

The resulting Fourier series solution to the heat equation is

u(t, x) =
∞∑

n=1

bn un(t, x) =
∞∑

n=1

bn e
−γn2 π2 t sinnπx

≈ .0897 e−γπ2 t sin πx− .1927 e−4γπ2 t sin 2πx− .0289 e−9γπ2 t sin 3πx− · · · .

In Figure 4.1, the solution, for γ = 1, is plotted at some representative times. Observe
that the corners in the initial profile are immediately smoothed out. As time progresses,
the solution decays, at a fast exponential rate of e−π2 t ≈ e−9.87 t, to a uniform, zero tem-
perature, which is the equilibrium temperature distribution for the homogeneous Dirichlet
boundary conditions. As the solution decays to thermal equilibrium, the higher Fourier
modes rapidly disappear, and the solution assumes the progressively more symmetric shape
of a single sine arc, of rapidly decreasing amplitude.

Smoothing and Long–Time Behavior

The fact that we can write the solution to an initial-boundary value problem in the form
of an infinite series (4.23) is progress of a sort. However, because we are unable to sum the
series in closed form, this “solution” is much less satisfying than a direct, explicit formula.
Nevertheless, there are important qualitative and quantitative features of the solution that
can be easily gleaned from such series expansions.
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t = 0 t = .001 t = .01

t = .03 t = .05 t = .1

Figure 4.1. A solution to the heat equation.
⊎

If the initial data f(x) is integrable (e.g., piecewise continuous), then its Fourier coef-
ficients are uniformly bounded; indeed, for any n ≥ 1,

| bn | ≤
2

ℓ

∫ ℓ

0

∣∣∣ f(x) sin
nπx

ℓ

∣∣∣ dx ≤
2

ℓ

∫ ℓ

0
| f(x) | dx ≡ M. (4.27)

This property holds even for quite irregular data. Under these conditions, each term in the
series solution (4.23) is bounded by an exponentially decaying function

∣∣∣∣ bn exp

(
−

γ n2π2

ℓ2
t

)
sin

nπx

ℓ

∣∣∣∣ ≤ M exp

(
−

γ n2π2

ℓ2
t

)
.

This means that, as soon as t > 0, most of the high-frequency terms, n ≫ 0, will be
extremely small. Only the first few terms will be at all noticeable, and so the solution
essentially degenerates into a finite sum over the first few Fourier modes. As time increases,
more and more of the Fourier modes will become negligible, and the sum further degenerates
into fewer and fewer significant terms. Eventually, as t → ∞, all of the Fourier modes will
decay to zero. Therefore, the solution will converge exponentially fast to a zero temperature
profile: u(t, x) → 0 as t → ∞, representing the bar in its final uniform thermal equilibrium.
The fact that its equilibrium temperature is zero is the result of holding both ends of the
bar fixed at zero temperature, whereby any initial thermal energy is eventually dissipated
away through the ends. The small-scale temperature fluctuations tend to rapidly cancel
out through diffusion of thermal energy, and the last term to disappear is the one with the
slowest decay, namely

u(t, x) ≈ b1 exp

(
−

γ π2

ℓ2
t

)
sin

πx

ℓ
, where b1 =

1

π

∫ π

0
f(x) sinxdx. (4.28)

For generic initial data, the coefficient b1 ̸= 0, and the solution approaches thermal equilib-
rium at an exponential rate prescribed by the smallest eigenvalue, λ1 = γ π2/ℓ2, which is
proportional to the thermal diffusivity divided by the square of the length of the bar. The
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t = 0 t = .00001 t = .00005

t = .0001 t = .001 t = .01

Figure 4.2. Denoising a signal with the heat equation.
⊎

longer the bar, or the smaller the diffusivity, the longer it takes for the effect of holding the
ends at zero temperature to propagate along its entire length. Also, again provided b1 ̸= 0,
the asymptotic shape of the temperature profile is a small, exponentially decaying sine arc,
just as we observed in Example 4.1. In exceptional situations, namely when b1 = 0, the
solution decays even faster, at a rate equal to the eigenvalue λk = γ k2π2/ℓ2 corresponding
to the first nonzero term, bk ̸= 0, in the Fourier series; its asymptotic shape now oscillates
k times over the interval.

Another, closely related, observation is that, for any fixed time t > 0 after the initial
moment, the coefficients in the Fourier sine series (4.23) decay exponentially fast as n → ∞.
According to the discussion at the end of Section 3.3, this implies that the Fourier series
converges to an infinitely differentiable function of x at each positive time t, no matter how
unsmooth the initial temperature profile. We have discovered the basic smoothing property
of heat flow, which we state for a general initial time t0.

Theorem 4.2. If u(t, x) is a solution to the heat equation with piecewise continuous
initial data f(x) = u(t0, x), or, more generally, initial data satisfying (4.27), then, for any
t > t0, the solution u(t, x) is an infinitely differentiable function of x.

In other words, the heat equation instantaneously smoothes out any discontinuities
and corners in the initial temperature profile by fast damping of the high-frequency modes.
The heat equation’s effect on irregular initial data underlies its effectiveness for smoothing
and denoising signals. We take the initial data u(0, x) = f(x) to be a noisy signal, and
then evolve the heat equation forward to a prescribed time t⋆ > 0. The resulting function
g(x) = u(t⋆, x) will be a smoothed version of the original signal f(x) in which most of
the high-frequency noise has been eliminated. Of course, if we run the heat flow for too
long, all of the low-frequency features will also be smoothed out and the result will be
a uniform, constant signal. Thus, the choice of stopping time t⋆ is crucial to the success
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of this method. Figure 4.2 shows the effect of running the heat equation,† with γ = 1,
on a signal that has been contaminated by random noise. Observe how quickly the noise
is removed. By the final time, the overall smoothing effect of the heat flow has caused
significant degradation (blurring) of the original signal. The heat equation approach to
denoising has the advantage that no Fourier coefficients need be explicitly computed, nor
does one need to reconstruct the smoothed signal. Basic numerical solution schemes for
the heat equation are to be discussed in Chapter 5.

An important theoretical consequence of the smoothing property is that diffusion is a
one-way process — one cannot run time backwards and accurately infer what a temperature
distribution looked like in the past. In particular, if the initial data u(0, x) = f(x) is not
smooth, then the value of u(t, x) for any t < 0 cannot be defined, because if u(t0, x) were
defined and integrable at some t0 < 0 then, by Theorem 4.2, u(t, x) would be smooth at all
subsequent times t > t0, including t = 0, in contradiction to our assumption. Moreover, for
most initial data, the Fourier coefficients in the solution formula (4.23) are, at any t < 0,
exponentially growing as n → ∞, indicating that high-frequency noise has completely
overwhelmed the solution, thereby precluding any kind of convergence of the Fourier series.

Mathematically, we can reverse future and past by changing t to − t. In the differential
equation, this merely reverses the sign of the time-derivative term; the x derivatives are
unaffected. Thus, by the above reasoning, the backwards heat equation

∂u

∂t
= − γ

∂2u

∂x2
, with a negative diffusion coefficient − γ < 0, (4.29)

is an ill-posed problem in the sense that small changes in the initial data — e.g., a small
perturbation of a high-frequency mode — can produce arbitrarily large changes in the
solution arbitrarily close to the initial time. In other words, the solution does not depend
continuously on the initial data. Even worse, for nonsmooth initial data, the solution is not
even well defined in forwards time t > 0 (although it is well-posed if we run t backwards).
The same holds for more general diffusion processes, e.g., (4.6). If, as in all physically
relevant cases, the coefficient of uxx is everywhere positive, then the initial value problem
is well-posed for t > 0, but ill-posed for t < 0. On the other hand, if the coefficient is
everywhere negative, the reverse holds. A coefficient that changes signs would cause the
differential equation to be ill-posed in both directions.

While theoretically undesirable, the unsmoothing effect of the backwards heat equa-
tion has potential benefits in certain contexts. For example, in image processing, diffusion
will gradually blur an image by damping out the high-frequency modes. Image enhance-
ment is the reverse process, and can be based on running the heat flow backwards in some
stable manner. In forensics, determining the time of death based on the current temper-
ature of a corpse also requires running the equations governing the dissipation of body
heat backwards in time. One option would be to restrict the backwards evolution to the
first few Fourier modes, which prevents the small-scale fluctuations from overwhelming the
computation. Ill-posed problems also arise in the reconstruction of subterranean profiles
from seismic data, a central problem of the oil and gas industry. These and other applica-
tions are driving contemporary research into how to cleverly circumvent the ill-posedness
of backwards diffusion processes.

† To avoid artifacts at the ends of the interval, we are, in fact, using periodic boundary
conditions in the plots. Away from the ends, running the equation with Dirichlet boundary
conditions leads to almost identical results.
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Remark : The irreversibility of the heat equation, along with the irreversibility of non-
linear transport in the presence of shock waves discussed in Section 2.3, highlight a crucial
distinction between partial differential equations and ordinary differential equations. Or-
dinary differential equations are always reversible — the existence, uniqueness, and con-
tinuous dependence properties of solutions are all equally valid in reverse time (although
their detailed qualitative and quantitative properties will, of course, depend upon whether
time is running forwards or backwards). The irreversibility and ill-posedness of partial
differential equations modeling thermodynamical, biological, and other diffusive processes
in our universe may explain why Time’s Arrow points exclusively to the future.

The Heated Ring Redux

Let us next consider the periodic boundary value problem modeling heat flow in an in-
sulated circular ring. We fix the length of the ring to be ℓ = 2π, with −π ≤ x ≤ π
representing the “angular” coordinate around the ring. For simplicity, we also choose units
in which the thermal diffusivity is γ = 1. Thus, we seek to solve the heat equation

∂u

∂t
=

∂2u

∂x2
, −π < x < π, t > 0, (4.30)

subject to periodic boundary conditions

u(t,−π) = u(t,π),
∂u

∂x
(t,−π) =

∂u

∂x
(t,π), t ≥ 0, (4.31)

that ensure continuity of the solution when the angular coordinate switches from −π to π.
The initial temperature distribution is

u(0, x) = f(x), −π < x ≤ π. (4.32)

The resulting temperature u(t, x) will be a periodic function in x of period 2π.
Substituting the separable solution ansatz (3.15) into the heat equation and the bound-

ary conditions results in the periodic eigenvalue problem

d2v

dx2
+ λ v = 0, v(−π) = v(π), v′(−π) = v′(π). (4.33)

As we already noted in Section 3.1, the eigenvalues of this particular boundary value
problem are λn = n2, where n = 0, 1, 2, . . . is a nonnegative integer; the corresponding
eigenfunctions are the trigonometric functions

vn(x) = cosnx, ṽn(x) = sinnx, n = 0, 1, 2, . . . .

Note that λ0 = 0 is a simple eigenvalue, with constant eigenfunction cos 0x = 1 — the
sine solution sin 0x ≡ 0 is trivial — while the positive eigenvalues are, in fact, double, each
possessing two linearly independent eigenfunctions. The corresponding eigensolutions to
the heated ring equation (4.30–31) are

un(t, x) = e−n2 t cosnx, ũn(t, x) = e−n2 t sinnx, n = 0, 1, 2, 3, . . . .

The resulting infinite series solution is

u(t, x) = 1
2 a0 +

∞∑

n=1

(
an e

−n2 t cosnx+ bn e
−n2 t sinnx

)
, (4.34)
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with as yet unspecified coefficients an, bn. The initial conditions require

u(0, x) = 1
2 a0 +

∞∑

n=1

(an cosnx+ bn sinnx) = f(x), (4.35)

which is precisely the complete Fourier series (3.34) of the initial temperature profile f(x).
Consequently,

an =
1

π

∫ π

−π
f(x) cosnxdx, bn =

1

π

∫ π

−π
f(x) sinnxdx, (4.36)

are its usual Fourier coefficients (3.35).
As in the Dirichlet problem, after the initial instant, the high-frequency terms in the

series (4.34) become extremely small, since e−n2 t ≪ 1 for n ≫ 0. Therefore, as soon as
t > 0, the solution instantaneously becomes smooth, and quickly degenerates into what is
in essence a finite sum over the first few Fourier modes. Moreover, as t → ∞, all of the
Fourier modes will decay to zero with the exception of the constant mode, associated with
the null eigenvalue λ0 = 0. Consequently, the solution will converge, at an exponential
rate, to a constant-temperature profile,

u(t, x) −→ 1
2 a0 =

1

2π

∫ π

−π
f(x) dx,

which equals the average of the initial temperature profile. In physical terms, since the
insulation prevents any thermal energy from escaping the ring, it rapidly redistributes itself
so that the ring achieves a uniform constant temperature — its eventual equilibrium state.

Prior to attaining equilibrium, only the very lowest frequency Fourier modes will still
be noticeable, and so the solution will asymptotically look like

u(t, x) ≈ 1
2 a0 + e−t (a1 cosx+ b1 sin x) =

1
2 a0 + r1 e

−t cos(x+ δ1), (4.37)

where

a1 = r1 cos δ1 =
1

2π

∫ π

−π
f(x) cosxdx, b1 = r1 sin δ1 =

1

2π

∫ π

−π
f(x) sinxdx.

Thus, for most initial data, the solution approaches thermal equilibrium at an exponential
rate of e−t. The exceptions are when a1 = b1 = 0, for which the rate of convergence is

even faster, namely at a rate e−k2 t, where k is the smallest integer such that at least one
of the kth order Fourier coefficients ak, bk is nonzero.

In fact, once we are convinced that the bar must tend to thermal equilibrium as t → ∞,
we can predict the final temperature without knowing the explicit solution formula. Our
derivation in Section 4.1 implies that the heat equation has the form of a conservation law
(4.1), with the conserved density being the temperature u(t, x). As in (4.2), the integrated
form of the conservation law reads

d

dt

∫ π

−π
u(t, x) dx =

∫ π

−π

∂u

∂t
(t, x) dx = γ

∫ π

−π

∂2u

∂x2
(t, x) dx

= γ

[
∂u

∂x
(t,π)−

∂u

∂x
(t,−π)

]
= 0,

where the flux terms cancel thanks to the periodic boundary conditions (4.31). Physically,
any flux out of one end of the circular bar is immediately fed into the other, abutting end,
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and so there is no net loss of thermal energy. We conclude that, for the periodic boundary
value problem, the total thermal energy

E(t) =

∫ π

−π
u(t, x) dx = constant (4.38)

remains constant for all time. (In contrast, the thermal energy does not remain constant
for the Dirichlet boundary value problem, decaying steadily to 0 due to the out-flux of heat
through the ends of the bar; see Exercise 4.1.13 for further details.)

Remark : More correctly, according to (4.3), the thermal energy is obtained by multi-
plying the temperature by the product, σ = ρχ, of the density and the specific heat of the
body. For the heat equation, both are constant, and so the physical thermal energy equals
σE(t). Mathematically, we can safely ignore this extra constant factor, or, equivalently,
work in physical units in which σ = 1. This does not extend to nonuniform bodies, whose

thermal energy is given by E(t) =

∫ π

−π
σ(x) u(t, x) dx, and whose constancy, under suitable

boundary conditions, follows from the conservation-law form (4.6) of the linear diffusion
equation.

In general, a system is in (static) equilibrium if it remains unaltered as time progresses.
Thus, any equilibrium configuration has the form u = u⋆(x), and hence satisfies ∂u⋆/∂t = 0.
If, in addition, u⋆(x) is an equilibrium solution to the periodic heat equation (4.30–33),
then it must satisfy

∂u⋆

∂t
= 0 =

∂2u⋆

∂x2
, u⋆(−π) = u⋆(π),

∂u⋆

∂x
(−π) =

∂u⋆

∂x
(π). (4.39)

In other words, u⋆ is a solution to the periodic boundary value problem (4.33) for the null
eigenvalue λ = 0. Thus, the null eigenfunctions (including the zero solution) are all the
possible equilibrium solutions . In particular, for the periodic boundary value problem, the
null eigenfunctions are constant, and therefore solutions to the periodic heat equation will
tend to a constant equilibrium temperature.

Now, once we know that the solution tends to a constant, u(t, x) → a as t → ∞, then
its thermal energy tends to

E(t) =

∫ π

−π
u(t, x) dx −→

∫ π

−π
a dx = 2πa as t −→ ∞.

On the other hand, as we just demonstrated, the thermal energy is constant, so

E(t) = E(0) =

∫ π

−π
u(0, x)dx =

∫ π

−π
f(x) dx.

Combining these two, we conclude that

∫ π

−π
f(x) dx = 2πa, and so the equilibrium temperature a =

1

2π

∫ π

−π
f(x) dx

equals the average initial temperature. This reconfirms our earlier result, but avoids having
to know an explicit series solution formula. As a result, the latter method can be applied
to a much wider range of situations.
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Inhomogeneous Boundary Conditions

So far, we have concentrated our attention on homogeneous boundary conditions. There is
a simple trick that will convert a boundary value problem with inhomogeneous but constant
Dirichlet boundary conditions,

∂u

∂t
= γ

∂2u

∂x2
, u(t, 0) = α, u(t, ℓ) = β, t ≥ 0, (4.40)

into a homogeneous Dirichlet problem. We begin by solving for the equilibrium temperature
profile. As in (4.39), the equilibrium does not depend on t and hence satisfies the boundary
value problem

∂u⋆

∂t
= 0 = γ

∂2u⋆

∂x2
, u⋆(0) = α, u⋆(ℓ) = β.

Solving the ordinary differential equation yields u⋆(x) = a+b x, where the constants a, b are
fixed by the boundary conditions. We conclude that the equilibrium solution is a straight
line connecting the boundary values:

u⋆(x) = α+
β − α

ℓ
x. (4.41)

The difference

ũ(t, x) = u(t, x)− u⋆(x) = u(t, x)− α−
β − α

ℓ
x (4.42)

measures the deviation of the solution from equilibrium. It clearly satisfies the homoge-
neous boundary conditions at both ends:

ũ(t, 0) = 0 = ũ(t, ℓ).

Moreover, by linearity, since both u(t, x) and u⋆(x) are solutions to the heat equation, so
is ũ(t, x). The initial data must be similarly adapted:

ũ(0, x) = u(t, x)− u⋆(x) = f(x)− α−
β − α

ℓ
x ≡ f̃(x). (4.43)

Solving the resulting homogeneous initial-boundary value problem, we write ũ(t, x) in
Fourier series form (4.23), where the Fourier coefficients are specified by the modified

initial data f̃(x) in (4.43). The solution to the inhomogeneous boundary value problem
thus has the series form

u(t, x) = α+
β − α

ℓ
x +

∞∑

n=1

b̃n exp

(
−

γ n2π2

ℓ2
t

)
sin

nπx

ℓ
, (4.44)

where

b̃n =
2

ℓ

∫ ℓ

0
f̃(x) sin

nπx

ℓ
dx, n = 1, 2, 3, . . . . (4.45)

Since ũ(t, 0) decays to zero at an exponential rate as t → ∞, the actual temperature profile
(4.44) will asymptotically decay to the equilibrium profile,

u(t, x) −→ u⋆(x) = α +
β − α

ℓ
x,

at the same exponentially fast rate, governed by the first eigenvalue λ1 = π2/ℓ2 — unless

b̃1 = 0, in which case the decay rate is even faster.
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This method does not work as well when the boundary conditions are time-dependent:

u(t, 0) = α(t), u(t, ℓ) = β(t).

Attempting to mimic the preceding technique, we discover that the deviation†

ũ(t, x) = u(t, x)− u⋆(t, x), where u⋆(t, x) = α(t) +
β(t)− α(t)

ℓ
x, (4.46)

satisfies the homogeneous boundary conditions, but now solves an inhomogeneous or forced
version of the heat equation:

∂ũ

∂t
=

∂2ũ

∂x2
+ h(t, x), where h(t, x) = −

∂u⋆

∂t
(t, x) = −α′(t)−

β′(t)− α′(t)

ℓ
x. (4.47)

Solution techniques for the latter partial differential equation will be discussed in Section 8.1
below.

Robin Boundary Conditions

Consider a bar of unit length and unit thermal diffusivity, insulated along its length,
which has one of its ends held at 0◦ and the other put in a heat bath. The resulting
thermodynamics are modeled by the heat equation subject to Dirichlet boundary conditions
at x = 0 and Robin boundary conditions at x = 1:

∂u

∂t
=

∂2u

∂x2
, u(t, 0) = 0,

∂u

∂x
(t, 1) + β u(t, 1) = 0, (4.48)

where β ̸= 0 is a constant‡ that measures the rate of transfer of thermal energy, with β > 0
when the bath is cold and so the energy is being extracted from the bar. As before, the
general solution to the resulting initial-boundary value problem can be assembled from
the separable eigensolutions based on our usual exponential ansatz u(t, x) = e−λt v(x).
Substituting this expression into (4.48), we find that the eigenfunction v(x) must satisfy
the boundary value problem

− d2v

dx2
= λ v, v(0) = 0, v′(1) + β v(1) = 0. (4.49)

In order to find nontrivial solutions v(x) ̸≡ 0 to (4.49), let us first assume λ = ω2 > 0,
where, without loss of generality, ω > 0. The solution to the ordinary differential equation
that satisfies the Dirichlet boundary condition at x = 0 is a constant multiple of v(x) =
sinω x. Substituting this function into the Robin boundary condition at x = 1, we find

ω cosω + β sinω = 0, or, equivalently, ω = − β tanω. (4.50)

It is not hard to see that there is an infinite number of real, positive solutions 0 < ω1 < ω2 <
ω3 < · · · → ∞ to the latter transcendental equation. Indeed, they can be characterized as
the abscissas ωn > 0 of the intersection points of the graphs of the two functions f(ω) = ω

† In this case, u⋆(t, x) is not an equilibrium solution. Indeed, we do not expect the bar to go
to equilibrium if the temperature of its endpoints is constantly changing.

‡ The case β = 0 reduces to the mixed boundary value problem, whose analysis is left to the
reader.
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ω1 ω2 ω3

λ > 0, β = 1. λ < 0, β = −.5.

ω0

λ < 0, β = −2.

Figure 4.3. Eigenvalue equation for Robin boundary conditions.

and g(ω) = −β tanω, as shown in the first plot in Figure 4.3. Each root ωn defines a
positive eigenvalue λn = ω2

n > 0 to the boundary value problem (4.49) and hence an
exponentially decaying eigensolution

un(t, x) = e−λn t sinωnx (4.51)

to the Robin boundary value problem (4.48). While there is no explicit formula, nu-
merical approximations to the eigenvalues are easily found via a numerical root finder,
e.g., Newton’s Method, [24, 94]. In particular, for β = 1, the first three eigenvalues are
λ1 = ω2

1 ≈ 4.1159, λ2 = ω2
2 ≈ 24.1393, λ3 = ω2

3 ≈ 63.6591.
What about a zero eigenvalue? If λ = 0 in (4.49), then the solution to the ordinary

differential equation that satisfies the Dirichlet boundary condition is a constant multiple
of v(x) = x. This function satisfies the Robin boundary condition v′(1)+β v(1) = 0 if and
only if β = −1. In this special configuration, the heat equation admits a time-independent
eigensolution u0(t, x) = x with eigenvalue λ0 = 0. Physically, the rate of transfer of thermal
energy into the bar through its end in the heat bath is exactly enough to cancel the heat
loss through the Dirichlet end, resulting in a steady-state solution. All other eigenmodes
correspond to positive eigenvalues, and hence are exponentially decaying. The general
solution decays to the steady state, which is a constant multiple of the null eigensolution:
u(t, x) → c x as t → ∞, at an exponential rate prescribed, generically, by the first positive
eigenvalue λ1 > 0.

However, in contrast to the more common types of boundary conditions (Dirichlet,
Neumann, mixed, periodic), we cannot automatically rule out the existence of negative
eigenvalues in the Robin case. Suppose λ = −ω2 < 0 with ω > 0. Now the solution to
(4.49) that satisfies the Dirichlet boundary condition at x = 0 is a constant multiple of
the hyperbolic sine function v(x) = sinhω x. Substituting this expression into the Robin
boundary condition at x = 1 produces

ω coshω + β sinhω = 0, or, equivalently, ω = − β tanhω, (4.52)

where

tanhω =
sinhω

coshω
=

eω − e−ω

eω + e−ω
(4.53)

is the hyperbolic tangent. If β > −1, there are no solutions ω > 0 to this transcendental
equation, and in this case all the eigenvalues are strictly positive and all solutions to the
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heat equation are exponentially decaying. On the other hand, if β < −1, there is a single
solution ω0 > 0, which produces a single negative eigenvalue λ0 = −ω2

0 . Representative
graphs illustrating the two possibilities appear in Figure 4.3; in the first, the graph of
f(ω) = ω does not intersect the graph of g(ω) = 1

2 tanhω when ω > 0, whereas it intersects
the graph of ĝ(ω) = 2 tanhω at a single point, with abscissa ω0 ≈ 1.9150, producing the
negative eigenvalue λ0 ≈ −ω2

0 ≈ −3.6673. Thus, when β < −1, there is, in addition to all
the exponentially decaying eigenmodes associated with the positive eigenvalues, a single
unstable exponentially growing eigenmode

u0(t, x) = eλ0 t sinhω0 x. (4.54)

Physically, β < −1 implies that thermal energy is entering the Robin end of the bar at a
faster rate than can be removed through the Dirichlet end, and hence the bar experiences
an exponential increase in its overall temperature.

Remark : Even though some Robin boundary conditions admit exponentially growing
solutions, and hence lead to unstable dynamics, the initial-boundary value problem remains
well-posed because the solution exists and is uniquely determined by the initial data, and,
moreover, small changes in the initial conditions induce relatively small changes in the
resulting solution on bounded time intervals.

The Root Cellar Problem

As a final example, we discuss a problem that involves analysis of the heat equation on
a semi-infinite interval. The question is this: how deep should you dig a root cellar? In
the prerefrigeration era, a root cellar was used to keep food cool in the summer, but not
freeze in the winter. We assume that the temperature inside the Earth depends only on
the depth and the time of year. Let u(t, x) denote the deviation in the temperature from
its annual mean at depth x > 0 and time t. We shall assume that the temperature at the
Earth’s surface, x = 0, fluctuates in a periodic manner; specifically, we set

u(t, 0) = a cosω t, (4.55)

where the oscillatory frequency

ω =
2π

365.25 days
= 2.0× 10−7sec−1 (4.56)

refers to yearly temperature variations. In this model, we shall ignore daily temperature
fluctuations, since their effect is not significant below a very thin surface layer. At large
depths the temperature is assumed to be unvarying:

u(t, x) −→ 0 as x −→ ∞, (4.57)

where 0 refers to the mean temperature.
Thus, we must solve the heat equation on a semi-infinite bar 0 < x < ∞, with time-

dependent boundary conditions (4.55, 57) at the ends. The analysis will be simplified a
little if we replace the cosine by a complex exponential, and so we look for a complex
solution with boundary conditions

u(t, 0) = a e iω t, lim
x→∞

u(t, x) = 0. (4.58)
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Let us try a separable solution of the form

u(t, x) = v(x) e i ω t. (4.59)

Substituting this expression into the heat equation ut = γ uxx leads to

iω v(x) e iω t = γ v′′(x) e iω t.

Canceling the common exponential factors, we conclude that v(x) should solve the bound-
ary value problem

γ v′′(x) = i ω v, v(0) = a, lim
x→∞

v(x) = 0.

The solutions to the ordinary differential equation are

v1(x) = e
√

i ω/γ x = e
√

ω/(2γ) (1+ i )x, v2(x) = e−
√

iω/γ x = e−
√

ω/(2γ) (1+ i )x .

The first solution is exponentially growing as x → ∞, and so not germane to our prob-
lem. The solution to the boundary value problem must therefore be a multiple of the
exponentially decaying solution:

v(x) = a e−
√

ω/(2γ) (1+ i )x.

Substituting back into (4.59), we find the (complex) solution to the root cellar problem to
be

u(t, x) = a e−x
√

ω/(2γ) e i (ω t−
√

ω/(2γ) x). (4.60)

The corresponding real solution is obtained by taking the real part,

u(t, x) = a e−x
√

ω/(2γ) cos

(
ω t−

√
ω

2γ
x

)
. (4.61)

The first factor in (4.61) is exponentially decaying as a function of the depth. Thus, the
further underground one is, the less noticeable is the effect of the surface temperature
fluctuations. The second factor is periodic in time, with the same annual frequency ω. The
interesting feature is that the temperature variations (4.61) are typically out of phase with
respect to the surface temperature fluctuations, having an overall phase lag of

δ =

√
ω

2γ
x

that depends linearly on the depth x. In particular, a cellar built at a depth where δ is an
odd multiple of π will be completely out of phase, being hottest in the winter, and coldest
in the summer. Thus, the (shallowest) ideal depth at which to build a root cellar would
take δ = π, corresponding to a depth of

x = π

√
2γ

ω
. (4.62)

For typical soils in the Earth, γ ≈ 10−6 meters2 sec−1, and so, with ω given by (4.56),
x ≈ 9.9 meters. However, at this depth, the relative amplitude of the oscillations is

e−x
√

ω/2γ = e−π = .04,

and hence there is only a 4% temperature fluctuation. In Minneapolis, the temperature
varies, roughly, from −40◦C to +40◦C, and hence our 10-meter-deep root cellar would
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experience only a 3.2◦C annual temperature deviation from the winter, when it is the
warmest, to the summer, when it is the coldest. Building the cellar twice as deep would
lead to a temperature fluctuation of .2%, now in phase with the surface variations, which
means that the cellar would be, for all practical purposes, at constant temperature year
round.

Exercises

4.1.1. Suppose the ends of a bar of length 1 and thermal diffusivity γ = 1 are held fixed at
respective temperatures 0◦ and 10◦. (a) Determine the equilibrium temperature profile.
(b) Determine the rate at which the equilibrium temperature profile is approached.
(c) What does the temperature profile look like as it nears equilibrium?

4.1.2. A uniform insulated bar 1 meter long is stored at room temperature of 20◦ Celsius. An
experimenter places one end of the bar in boiling water and the other end in ice water.
(a) Set up an initial-boundary value problem that models the temperature in the bar.
(b) Find the equilibrium temperature distribution.
(c) Discuss how your answer depends on the material properties of the bar.

4.1.3. Consider the initial-boundary value problem

∂u
∂t

=
∂2u
∂x2

,
u(t, 0) = 0 = u(t, 10), t > 0,

u(0, x) = f(x), 0 < x < 10,

for the heat equation where the initial data has the following form:

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x− 1, 1 ≤ x ≤ 2,
11− 5x, 2 ≤ x ≤ 3,
5x− 19, 3 ≤ x ≤ 4,
5− x, 4 ≤ x ≤ 5,
0, otherwise.

Discuss what happens to the solution as t increases. You do not need to write down an ex-
plicit formula, but for full credit you must explain (sketches can help) at least three or four
interesting things that happen to the solution as time progresses.

4.1.4. Find a series solution to the initial-boundary value problem for the heat equation
ut = uxx for 0 < x < 1 when one the end of the bar is held at 0◦ and the other is insulated.
Discuss the asymptotic behavior of the solution as t→∞.

4.1.5. Answer Exercise 4.1.4 when both ends of the bar are insulated.

4.1.6. A metal bar, of length ℓ = 1 meter and thermal diffusivity γ = 2, is taken out of a 100◦

oven and then fully insulated except for one end, which is fixed to a large ice cube at 0◦.
(a) Write down an initial-boundary value problem that describes the temperature u(t, x) of
the bar at all subsequent times. (b) Write a series formula for the temperature distribu-
tion u(t, x) at time t > 0. (c) What is the equilibrium temperature distribution in the bar,
i.e., for t≫ 0? How fast does the solution go to equilibrium? (d) Just before the tempera-
ture distribution reaches equilibrium, what does it look like? Sketch a picture and discuss.

4.1.7. A metal bar of length ℓ = 1 and thermal diffusivity γ = 1 is fully insulated, including its

ends. Suppose the initial temperature distribution is u(0, x) =

⎧
⎨

⎩
x, 0 ≤ x ≤ 1

2 ,

1− x, 1
2 ≤ x ≤ 1.

(a) Use Fourier series to write down the temperature distribution at time t > 0.
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(b) What is the equilibrium temperature distribution in the bar, i.e., for t≫ 0?
(c) How fast does the solution go to equilibrium? (d) Just before the temperature distribu-
tion reaches equilibrium, what does it look like? Sketch a picture and discuss.

4.1.8.(a) Find the series solution to the heat equation ut = uxx on −2 < x < 2, t > 0, when
subject to the Dirichlet boundary conditions u(t,−2) = u(t, 2) = 0 and the initial condi-

tion u(0, x) =

{
x, |x | < 1,
0, otherwise.

(b) Sketch a graph of the solution at some representative

times. (c) At what rate does the temperature approach thermal equilibrium?

4.1.9. Solve the heat equation when the right-hand end of a bar of unit length is held at a fixed
constant temperature α while the left-hand end is insulated. Discuss the asymptotic behav-
ior of the solution.

4.1.10. For each of the following initial temperature distributions, (i) write out the Fourier se-
ries solution to the heated ring (4.30–32), and (ii) find the resulting equilibrium tempera-

ture as t→∞: (a) cos x, (b) sin3 x, (c) |x |, (d)

{
1, −π < x < 0,
0, 0 < x < π.

♦ 4.1.11. Suppose that the temperature u(t, x) of a homogeneous bar satisfies the heat equation.
Show that the associated heat flux w(t, x) is also a solution to the same heat equation.

♦ 4.1.12. Show that the time derivative v = ut of any solution to the heat equation is also a so-
lution. If u(t, x) satisfies the initial condition u(0, x) = f(x), what initial condition does
v(t, x) inherit?

♦ 4.1.13. Explain why the thermal energy E(t) =
∫ ℓ

0
u(t, x) dx is not constant for the Dirichlet

initial-boundary value problem for the heat equation on the interval [0, ℓ ].

♦ 4.1.14.(a) Show that the thermal energy E(t) =
∫ ℓ

0
u(t, x) dx is constant for the Neumann

boundary value problem on the interval [0, ℓ ]. (b) Use part (a) to prove that the constant
equilibrium solution for the homogeneous Neumann boundary value problem is equal to the
mean initial temperature u(0, x).

4.1.15. Let u(t, x) be any nonconstant solution to the periodic heat equation (4.30–31). Prove

that the squared L2 norm of the solution, N(t) =
∫ π

−π
u(t, x)2 dx, is a strictly decreasing

function of t. Remark : Interestingly, comparing this result with formula (4.38), we find
that, for the periodic boundary value problem, the integral of u is constant, but the inte-
gral of u2 is strictly decreasing. How is this possible?

♥ 4.1.16. The cable equation vt = γ vxx − αv, with γ,α > 0, also known as the lossy heat

equation,was derived by the nineteenth-century Scottish physicist William Thomson to
model propagation of signals in a transatlantic cable. Later, in honor of his work on ther-
modynamics, including determining the value of absolute zero temperature, he was named
Lord Kelvin by Queen Victoria. The cable equation was later used to model the electrical
activity of neurons. (a) Show that the general solution to the cable equation is given by
v(t, x) = e−α t u(t, x), where u(t, x) solves the heat equation ut = γuxx.
(b) Find a Fourier series solution to the Dirichlet initial-boundary value problem

vt = γ vxx − α v, v(0, x) = f(x), v(t, 0) = 0 = v(t, 1), 0 ≤ x ≤ 1, t > 0.
Does your solution approach an equilibrium value? If so, how fast?
(c) Answer part (b) for the Neumann problem

vt = γ vxx − α v, v(0, x) = f(x), vx(t, 0) = 0 = vx(t, 1), 0 ≤ x ≤ 1, t > 0.

♦ 4.1.17. The convection-diffusion equation ut + cux = γ uxx is a simple model for the diffusion
of a pollutant in a fluid flow moving with constant speed c. Show that v(t, x) = u(t, x + ct)
solves the heat equation. What is the physical interpretation of this change of variables?

4.1.18. Combine Exercises 4.1.16–17 to solve the lossy convection-diffusion equation
ut = γuxx + cux − αu.
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♦ 4.1.19. Let γ > 0 and λ ≤ 0. (a) Find all solutions to the differential equation γ v′′ + λ v = 0.
(b) Prove that the only solution that satisfies the boundary conditions v(0) = 0, v(ℓ) = 0,
is the zero solution v(x) ≡ 0.

♦ 4.1.20. Answer Exercise 4.1.19 when λ is a non-real complex number.

4.2 The Wave Equation

Let us return to the one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, (4.63)

with constant wave speed c > 0, used to model the vibrations of bars and strings. In Chap-
ter 2, we learned how to explicitly solve the wave equation by the method of d’Alembert.
Unfortunately, d’Alembert’s approach does not extend to other equations of interest to us,
and so alternative solution techniques, particularly those based on Fourier methods, are
worth developing. Indeed, the resulting series solutions provide valuable insight into wave
dynamics on bounded intervals.

Separation of Variables and Fourier Series Solutions

One of the oldest — and still one of the most widely used — techniques for constructing
explicit analytic solutions to a wide range of linear partial differential equations is the
method of separation of variables . We have, in fact, already employed a simplified version
of the method when constructing each eigensolution to the heat equation as an exponential
function of t times a function of x. In general, the separation of variables method seeks
solutions to the partial differential equation that can be written as the product of functions
of the individual independent variables. For the wave equation, we seek solutions

u(t, x) = w(t) v(x) (4.64)

that can be written as the product of a function of t alone and a function of x alone.
When the method succeeds (which is not guaranteed in advance), both factors are found
as solutions to certain ordinary differential equations.

Let us see whether such an expression can possibly solve the wave equation. First of
all,

∂2u

∂t2
= w′′(t) v(x),

∂2u

∂x2
= w(t) v′′(x),

where the primes indicate ordinary derivatives. Substituting these expressions into the
wave equation (4.63), we obtain

w′′(t) v(x) = c2w(t) v′′(x).

Dividing both sides by w(t) v(x) (which we assume is not identically zero, since otherwise,
the solution would be trivial) yields

w′′(t)

w(t)
= c2

v′′(x)

v(x)
,
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which effectively “separates” the t and x variables on each side of the equation, whence
the name “separation of variables”.

Now, how could a function of t alone be equal to a function of x alone? A moment’s
reflection should convince the reader that this can happen if and only if the two functions
are constant,† so

w′′(t)

w(t)
= c2

v′′(x)

v(x)
= λ, (4.65)

where we use λ to indicate the common separation constant . Thus, the individual factors
w(t) and v(x) must satisfy ordinary differential equations

d2w

dt2
− λw = 0,

d2v

dx2
−

λ

c2
v = 0,

as promised. We already know how to solve both of these ordinary differential equations
by elementary techniques. There are three different cases, depending on the sign of the
separation constant λ. As a result, each value of λ leads to four independent separable
solutions to the wave equation, as listed in the accompanying table.

Separable Solutions to the Wave Equation

λ w(t) v(x) u(t, x) = w(t) v(x)

λ = −ω2 < 0 cosω t, sinω t cos
ωx
c , sin

ωx
c

cosω t cos
ωx
c ,

sinω t cos
ωx
c ,

cosω t sin
ωx
c ,

sinω t sin
ωx
c

λ = 0 1, t 1, x 1, x, t, tx

λ = ω2 > 0 e−ω t, eω t e−ωx/c, eωx/c e−ω (t+x/c),

e−ω (t−x/c),

eω (t−x/c),

eω (t+x/c)

So far, we have not taken the boundary conditions into account. Consider first the
case of a string of length ℓ with two fixed ends, and thus subject to homogeneous Dirichlet
boundary conditions

u(t, 0) = 0 = u(t, ℓ).

Substituting the separable ansatz (4.65), we find that v(x) must satisfy

d2v

dx2
− λ

c2
v = 0, v(0) = 0 = v(ℓ). (4.66)

The complete system of (nontrivial) solutions to this boundary value problem were found
in (4.21):

vn(x) = sin
nπx

ℓ
, λn = −

(nπc
ℓ

)2
, n = 1, 2, 3, . . . .

† Technical detail : one should assume that the underlying domain is connected for this to be
valid as stated. In practice, this technicality can be safely ignored.
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Hence, according to the table, the corresponding separable solutions are

un(t, x) = cos
nπc t

ℓ
sin

nπx

ℓ
, ũn(t, x) = sin

nπc t

ℓ
sin

nπx

ℓ
. (4.67)

We will now employ these solutions to construct a candidate series solution to the wave
equation subject to the prescribed boundary conditions:

u(t, x) =
∞∑

n=1

[
bn cos

nπc t

ℓ
sin

nπx

ℓ
+ dn sin

nπc t

ℓ
sin

nπx

ℓ

]
. (4.68)

The solution is thus a linear combination of the natural Fourier modes vibrating with
frequencies

ωn =
nπc

ℓ
=

nπ

ℓ

√
κ

ρ
, n = 1, 2, 3, . . . , (4.69)

where the second expression follows from (2.66). Observe that, the longer the length ℓ
of the string, or the higher its density ρ, the slower the vibrations, whereas increasing its
stiffness or tension κ speeds them up — in exact accordance with our physical intuition.

The Fourier coefficients bn and dn in (4.68) will be uniquely determined by the initial
conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), 0 < x < ℓ.

Differentiating the series term by term, we discover that we must represent the initial
displacement and velocity as Fourier sine series

u(0, x) =
∞∑

n=1

bn sin
nπx

ℓ
= f(x),

∂u

∂t
(0, x) =

∞∑

n=1

dn
nπc

ℓ
sin

nπx

ℓ
= g(x).

Therefore,

bn =
2

ℓ

∫ ℓ

0
f(x) sin

nπx

ℓ
dx, n = 1, 2, 3, . . . , (4.70)

are the Fourier sine coefficients (3.85) of the initial displacement f(x), while

dn =
2

nπc

∫ ℓ

0
g(x) sin

nπx

ℓ
dx, n = 1, 2, 3, . . . . (4.71)

are rescaled versions of the Fourier sine coefficients of the initial velocity g(x).

Example 4.3. A string of unit length fixed at both ends is held taut at its center
and then released. Our task is to describe the ensuing vibrations. Let us assume that the
physical units are chosen so that c2 = 1, and so we are asked to solve the initial-boundary
value problem

utt = uxx, u(0, x) = f(x), ut(0, x) = 0, u(t, 0) = u(t, 1) = 0. (4.72)

To be specific, we assume that the center of the string has been moved by half a unit, and
so the initial displacement is

f(x) =

{
x, 0 ≤ x ≤ 1

2 ,

1− x, 1
2 ≤ x ≤ 1.
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t = 0 t = .2 t = .4

t = .6 t = .8 t = 1

Figure 4.4. Plucked string solution of the wave equation.
⊎

The vibrational frequencies ωn = nπ are the integral multiples of π, and so the natural
modes of vibration are

cosnπt sinnπx and sinnπt sinnπx for n = 1, 2, . . . .

Consequently, the general solution to the boundary value problem is

u(t, x) =
∞∑

n=1

(
bn cosnπt sinnπx+ dn sinnπt sinnπx

)
,

where

bn = 2

∫ 1

0
f(x) sinnπxdx =

⎧
⎨

⎩
4

∫ 1/2

0
x sinnπxdx =

4 (−1)k

(2k + 1)2π2
, n = 2k + 1,

0, n = 2k,

while dn = 0. Therefore, the solution is the Fourier sine series

u(t, x) =
4

π2

∞∑

k=0

(−1)k
cos(2k + 1)π t sin(2k + 1)πx

(2k + 1)2
, (4.73)

whose profile is depicted in Figure 4.4. At time t = 1, the original displacement is re-
produced exactly, but upside down. The subsequent dynamics proceeds as before, but in
mirror-image form. The original displacement reappears at time t = 2, after which time



144 4 Separation of Variables

the motion is periodically repeated. Interestingly, at times tk = .5, 1.5, 2.5, . . . , the dis-
placement is identically zero, u(tk, x) ≡ 0, although the velocity is not, ut(tk, x) ̸≡ 0. The
solution appears to be piecewise affine, i.e., its graph is a collection of straight lines. This
can, in fact, be proved as a consequence of the d’Alembert formula; see Exercise 4.2.13.
Observe that, unlike the heat equation, the wave equation does not smooth out discontinu-
ities and corners in the initial data. And, although we will loosely refer to such piecewise
C2 functions as “solutions”, they are not, in fact, classical solutions. (Their status as weak
solutions, though, can be established using the methods of Section 10.4.)

While the series form (4.68) of the solution is perhaps less satisfying than a d’Alembert-
style formula, we can still use it to deduce important qualitative properties. First of all,
since each term is periodic in t with period 2 ℓ/c, the entire solution is time periodic with
that period: u(t+ 2ℓ/c, x) = u(t, x). In fact, after half a period, the solution reduces to

u

(
ℓ
c , x

)
=

∞∑

n=1

(−1)n bn sin
nπx

ℓ
= −

∞∑

n=1

bn sin
nπ(ℓ− x)

ℓ
= −u(0, ℓ−x) = −f(ℓ−x).

In general,

u

(
t+

ℓ
c , x

)
= − u(t, ℓ− x), u

(
t+

2 ℓ
c , x

)
= u(t, x). (4.74)

Therefore, the initial wave form is reproduced, first as an upside down mirror image of
itself at time t = ℓ/c, and then in its original form at time t = 2 ℓ/c. This has the impor-
tant consequence that vibrations of (homogeneous) one-dimensional media are inherently
periodic, because the fundamental frequencies (4.69) are all integer multiples of the lowest
one: ωn = nω1.

Remark : The immediately preceding remark has important musical consequences. To
the human ear, sonic vibrations that are integral multiples of a single frequency, and thus
periodic in time, sound harmonious, whereas those with irrationally related frequencies,
and hence experiencing aperiodic vibrations, sound dissonant. This is why most tonal
instruments rely on vibrations in one dimension, be it a violin or piano string, a column
of air in a wind instrument (flute, clarinet, trumpet, or saxophone), a xylophone bar, or
a triangle. On the other hand, most percussion instruments rely on the vibrations of two-
dimensional media, e.g., drums and cymbals, or three-dimensional solid bodies, e.g., blocks.
As we shall see in Chapters 11 and 12, the frequency ratios of the latter are irrationally
related, and hence their motion is only quasiperiodic, as in Example 2.20. For some reason,
our appreciation of music is psychologically attuned to the differences between rationally
related/periodic and irrationally related/quasiperiodic vibrations, [105].

Consider next a string with both ends left free, and so subject to the Neumann bound-
ary conditions

∂u

∂x
(t, 0) = 0 =

∂u

∂x
(t, ℓ). (4.75)

The solutions of (4.66) satisfying v′(0) = 0 = v′(ℓ) are now

vn(x) = cos
nπx

ℓ
with ωn =

nπc

ℓ
, n = 0, 1, 2, 3, . . . .

The resulting solution takes the form of a Fourier cosine series

u(t, x) = a0 + c0 t+
∞∑

n=1

(
an cos

nπc t

ℓ
cos

nπx

ℓ
+ cn sin

nπc t

ℓ
cos

nπx

ℓ

)
. (4.76)
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The first two terms come from the null eigenfunction v0(x) = 1 with ω0 = 0. The string
vibrates with the same fundamental frequencies (4.69) as in the fixed-end case, but there
is now an additional unstable mode c0 t that is no longer periodic, but grows linearly in
time. In general, the presence of null eigenfunctions implies that the wave equation admits
unstable modes.

Substituting (4.76) into the initial conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), 0 < x < ℓ,

we find that the Fourier coefficients are prescribed, as before, by the initial displacement
and velocity:

an =
2

ℓ

∫ ℓ

0
f(x) cos

nπx

ℓ
dx, cn =

2

nπc

∫ ℓ

0
g(x) cos

nπx

ℓ
dx, n = 1, 2, 3, . . . .

The order-zero coefficients†

a0 =
1

ℓ

∫ ℓ

0
f(x) dx, c0 =

1

ℓ

∫ ℓ

0
g(x) dx,

are equal to the average initial displacement and average initial velocity of the string. In
particular, when c0 = 0, there is no net initial velocity, and the unstable mode is not
excited. In this case, the solution is time-periodic, oscillating around the position given by
the average initial displacement. On the other hand, if c0 ̸= 0, the string will move off with
constant average speed c0, all the while vibrating at the same fundamental frequencies.

Similar considerations apply to the periodic boundary value problem for the wave
equation on a circular ring. The details are left as Exercise 4.2.6 for the reader.

Exercises

4.2.1. In music, an octave corresponds to doubling the frequency of the sound waves. On my
piano, the middle C string has length .7 meter, while the string for the C an octave higher
has length .6 meter. Assuming that they have the same density, how much tighter does the
shorter string need to be tuned?

4.2.2. How much longer would a piano string have to be to make the same sound when it is
pulled twice as tight?

4.2.3. Write down the solutions to the following initial-boundary value problems for the wave
equation in the form of a Fourier series:
(a) utt = uxx, u(t, 0) = u(t, π) = 0, u(0, x) = 1, ut(0, x) = 0;
(b) utt = 2uxx, u(t, 0) = u(t, π) = 0, u(0, x) = 0, ut(0, x) = 1;

(c) utt = 3uxx, u(t, 0) = u(t, π) = 0, u(0, x) = sin3 x, ut(0, x) = 0;
(d) utt = 4uxx, u(t, 0) = u(t, 1) = 0, u(0, x) = x, ut(0, x) = −x;
(e) utt = uxx, u(t, 0) = ux(t, 1) = 0, u(0, x) = 1, ut(0, x) = 0;
(f ) utt = 2uxx, ux(t, 0) = ux(t, 2π) = 0, u(0, x) = −1, ut(0, x) = 1;
(g) utt = uxx, ux(t, 0) = ux(t, 1) = 0, u(0, x) = x(1− x), ut(0, x) = 0.

† Note that we have not included the usual 1
2 factor in the constant terms in the Fourier series

(4.76).
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4.2.4. Find all separable solutions to the wave equation utt = uxx on the interval 0 ≤ x ≤ π
subject to (a) mixed boundary conditions u(t, 0) = 0, ux(t,π) = 0;
(b) Neumann boundary conditions ux(t, 0) = 0, ux(t,π) = 0.

4.2.5.(a) Under what conditions is the solution to the Neumann boundary value problem (4.75)
a periodic function of t? What is the period? (b) Establish explicit periodicity formulas of
the form (4.74). (c) Under what conditions is the velocity ∂u/∂t periodic in t?

♥ 4.2.6.(a) Formulate the periodic initial-boundary value problem for the wave equation on the
interval −π ≤ x ≤ π, modeling the vibrations of a circular ring. (b) Write out a formula for
the solution to your problem in the form of a Fourier series. (c) Is the solution a periodic
function of t? If so, what is the period? (d) Suppose the initial displacement coincides with
that in Figure 4.6, while the initial velocity is zero. Describe what happens to the solution
as time evolves.

4.2.7. Show that the time derivative, v = ∂u/∂t, of any solution to the wave equation is also a
solution. If you know the initial conditions of u, what initial conditions does v satisfy?

4.2.8. Find all the separable real solutions to the wave equation subject to a restoring force:
utt = uxx − u. Discuss their long-term behavior.

♥ 4.2.9. Let a, c > 0 be positive constants. The telegrapher’s equation utt + aut = c2uxx repre-
sents a damped version of the wave equation. Consider the Dirichlet boundary value prob-
lem u(t, 0) = u(t, 1) = 0, on the interval 0 ≤ x ≤ 1, with initial conditions u(0, x) = f(x),
ut(0, x) = 0. (a) Find all separable solutions to the telegrapher’s equation that satisfy the
boundary conditions. (b) Write down a series solution for the initial boundary value prob-
lem. (c) Discuss the long term behavior of your solution. (d) State a criterion that distin-
guishes overdamped from underdamped versions of the equation.

4.2.10. The fourth-order partial differential equation utt = −uxxxx is a simple model for a vi-
brating elastic beam. (a) Find all separable real solutions to the beam equation. (b) Show
that any (complex) solution to the Schrödinger equation iut = uxx solves the beam equa-
tion.

4.2.11. The initial-boundary value problem

utt = −uxxxx,
u(t, 0) = uxx(t, 0) = u(t, 1) = uxx(t, 1) = 0,

u(0, x) = f(x), ut(0, x) = 0,

0 < x < 1,
t > 0,

models the vibrations of an elastic beam of unit length with simply supported ends, sub-
ject to a nonzero initial displacement f(x) and zero initial velocity. (a) What are the vibra-
tional frequencies for the beam? (b) Write down the solution to the initial-boundary value
problem as a Fourier series. (c) Does the beam vibrate periodically
(i) for all initial conditions? (ii) for some initial conditions? (iii) for no initial conditions?

4.2.12. Multiple choice: The initial-boundary value problem

utt = uxxxx,
u(t, 0) = uxx(t, 0) = u(t, 1) = uxx(t, 1) = 0,

u(0, x) = f(x), ut(0, x) = g(x),

0 < x < 1,
t > 0,

is well-posed for (a) t > 0; (b) t < 0; (c) all t; (d) no t. Explain your answer.

The d’Alembert Formula for Bounded Intervals

In Theorem 2.15, we derived the explicit d’Alembert formula

u(t, x) =
f(x− c t) + f(x+ c t)

2
+

1

2 c

∫ x+c t

x−c t
g(z)dz, (4.77)
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Figure 4.5. Odd periodic extension of a concentrated pulse.

for solving the basic initial value problem for the wave equation on an infinite interval:

∂2u

∂t2
= c2

∂2u

∂x2
, u(0, x) = f(x),

∂u

∂t
(0, x) = g(x), −∞ < x < ∞.

In this section we explain how to adapt the formula in order to solve initial-boundary value
problems on bounded intervals, thereby effectively summing the Fourier series solution.

The easiest case to deal with is the periodic problem on 0 ≤ x ≤ ℓ, with boundary
conditions

u(t, 0) = u(t, ℓ), ux(t, 0) = ux(t, ℓ). (4.78)

If we extend the initial displacement f(x) and velocity g(x) to be periodic functions of
period ℓ, so f(x+ℓ) = f(x) and g(x+ℓ) = g(x) for all x ∈ R, then the resulting d’Alembert
solution (4.77) will also be periodic in x, so u(t, x+ ℓ) = u(t, x). In particular, it satisfies
the boundary conditions (4.78) and so coincides with the desired solution. Details are to
be supplied in Exercises 4.2.27–28.

Next, suppose we have fixed (Dirichlet) boundary conditions

u(t, 0) = 0, u(t, ℓ) = 0. (4.79)

The resulting solution can be written as a Fourier sine series (4.68), and hence is both odd
and 2ℓ–periodic in x. Therefore, to write the solution in d’Alembert form (4.77), we extend
the initial displacement f(x) and velocity g(x) to be odd, periodic functions of period 2ℓ :

f(−x) = −f(x), f(x+ 2ℓ) = f(x), g(−x) = −g(x), g(x+ 2ℓ) = g(x).

This will ensure that the d’Alembert solution also remains odd and periodic. As a result,
it satisfies the homogeneous Dirichlet boundary conditions (4.79) for all t, cf. Exercise
4.2.31. Keep in mind that, while the solution u(t, x) is defined for all x, the only physically
relevant values occur on the interval 0 ≤ x ≤ ℓ. Nevertheless, the effects of displacements
in the unphysical regime will eventually be felt as the propagating waves pass through the
physical interval.

For example, consider an initial displacement that is concentrated near x = ξ for some
0 < ξ < ℓ. Its odd 2ℓ–periodic extension consists of two sets of replicas: those of the same
form occurring at positions ξ ± 2ℓ, ξ ± 4ℓ, . . . , and their upside-down mirror images at
the intermediate positions −ξ, −ξ ± 2ℓ, −ξ ± 4ℓ, . . . ; Figure 4.5 shows a representative
example. The resulting solution begins with each of the pulses, both positive and negative,
splitting into two half-size replicas that propagate with speed c in opposite directions.
When a left and right moving pulse meet, they emerge from the interaction unaltered. The
process repeats periodically, with an infinite row of half-size pulses moving to the right
kaleidoscopically interacting with an infinite row moving to the left.

However, only the part of this solution that lies on 0 ≤ x ≤ ℓ is actually observed
on the physical string. The effect is as if one were watching the full solution as it passes
by a window of length ℓ. Such observers will interpret what they see a bit differently. To
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Figure 4.6. Solution to wave equation with fixed ends.
⊎

wit, the original pulse starting at position 0 < ξ < ℓ splits up into two half-size replicas
that move off in opposite directions. As each half-size pulse reaches an end of the string,
it meets a mirror-image pulse that has been propagating in the opposite direction from
the nonphysical regime. The pulse is reflected at the end of the interval and becomes an
upside-down mirror image moving in the opposite direction. The original positive pulse
has moved off the end of the string just as its mirror image has moved into the physical
regime. (A common physical realization is a pulse propagating down a jump rope that is
held fixed at its end; the reflected pulse returns upside down.) A similar reflection occurs
as the other half-size pulse hits the other end of the physical interval, after which the
solution consists of two upside-down half-size pulses moving back towards each other. At
time t = ℓ/c they recombine at the point ℓ − ξ to instantaneously form a full-sized, but
upside-down mirror image of the original disturbance — in accordance with (4.74). The
recombined pulse in turn splits apart into two upside-down half-size pulses that, when each
collides with the end, reflect and return to their original upright form. At time t = 2ℓ/c,
the pulses recombine to exactly reproduce the original displacement. The process then
repeats, and the solution is periodic in time with period 2 ℓ/c.

In Figure 4.6, the first picture displays the initial displacement. In the second, it has
split into left- and right-moving half-size clones. In the third picture, the left-moving bump
is in the process of colliding with the left end of the string. In the fourth picture, it has
emerged from the collision, and is now upside down, reflected, and moving to the right.
Meanwhile, the right-moving pulse is starting to collide with the right end. In the fifth
picture, both pulses have completed their collisions and are now moving back towards each
other, where, in the last picture, they recombine into an upside-down mirror image of the
original pulse. The process then repeats itself, in mirror image, finally recombining to the
original pulse, at which point the entire process starts over.

The Neumann (free) boundary value problem

∂u

∂x
(t, 0) = 0,

∂u

∂x
(t, ℓ) = 0, (4.80)

is handled similarly. Since the solution has the form of a Fourier cosine series in x, we
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extend the initial conditions to be even 2ℓ–periodic functions

f(−x) = f(x), f(x+ 2ℓ) = f(x), g(−x) = g(x), g(x+ 2ℓ) = g(x).

The resulting d’Alembert solution (4.77) is also even and 2ℓ–periodic in x, and hence
satisfies the boundary conditions, cf. Exercise 4.2.31(b). In this case, when a pulse hits
one of the ends, its reflection remains upright, but becomes a mirror image of the original;
a familiar physical illustration is a water wave that reflects off a solid wall. Further details
are left to the reader in Exercise 4.2.22

In summary, we have now studied two very different ways to solve the one-dimensional
wave equation. The first, based on the d’Alembert formula, emphasizes their particle-like
aspects, where individual wave packets collide with each other, or reflect at the boundary,
all the while maintaining their overall form, while the second, based on Fourier analysis,
emphasizes the vibrational or wave-like character of the solutions. Some solutions look
like vibrating waves, while others appear much more like interacting particles. But, like
the proverbial blind men describing an elephant, these are merely two facets of the same
solution. The Fourier series formula shows how every particle-like solution can be decom-
posed into its constituent vibrational modes, while the d’Alembert formula demonstrates
how vibrating solutions combine into moving wave packets.

The coexistence of particle and wave features is reminiscent of the long-running his-
torical debate over the nature of light. Newton and his disciples proposed a particle-based
theory, anticipating the modern concept of photons. However, until the beginning of the
twentieth century, most physicists advocated a wave-like or vibrational viewpoint. Ein-
stein’s explanation of the photoelectric effect served to resurrect the particle interpretation.
Only with the establishment of quantum mechanics was the debate resolved — light, and,
indeed, all subatomic particles manifest both particle and wave features, depending upon
the experiment and the physical situation. But a theoretical basis for the perplexing wave-
particle duality could have been found already in Fourier’s and d’Alembert’s competing
solution formulae for the classical wave equation!

Exercises

♦ 4.2.13.(a) Solve the initial-boundary value problem from Example 4.3 using the d’Alembert
method.
(b) Verify that your solution coincides with the Fourier series solution derived above.
(c) Justify our earlier observation that, at each time t, the solution u(t, x) is a piecewise

affine function of x.

4.2.14. Sketch the solution of the wave equation utt = uxx and describe its behavior when

the initial displacement is the box function u(0, x) =

{
1, 1 < x < 2,
0, otherwise,

while the initial

velocity is 0 in each of the following scenarios: (a) on the entire line −∞ < x <∞;
(b) on the half-line 0 ≤ x < ∞, with homogeneous Dirichlet boundary condition at the
end; (c) on the half-line 0 ≤ x < ∞, with homogeneous Neumann boundary condition at
the end; (d) on the bounded interval 0 ≤ x ≤ 5 with homogeneous Dirichlet boundary
conditions; (e) on the bounded interval 0 ≤ x ≤ 5 with homogeneous Neumann boundary
conditions.
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4.2.15. Answer Exercise 4.2.14 when the initial velocity is the box function, while the initial
displacement is zero.

4.2.16. Consider the initial-boundary value problem

∂2u
∂t2

=
∂2u
∂x2

,
u(t, 0) = 0 = u(t, 10), t > 0,

u(0, x) = f(x), ut(0, x) = 0, 0 < x < 10,

for the wave equation, where the initial data has the following form:

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3x− 7.5, 2.5 ≤ x ≤ 3,
6− 1.5x, 3 ≤ x ≤ 4.5,
1.5x − 7.5, 4.5 ≤ x ≤ 5,
0, otherwise.

Discuss what happens to the solution. You do not need to write down an explicit formula
for the solution, but for full credit you must explain (sketches can help) at least three or
four interesting things that happen to the solution as time progresses.

4.2.17. Repeat Exercise 4.2.16 for the Neumann boundary conditions.

4.2.18. Suppose the initial displacement of a string of length ℓ looks like
the graph to the right. Assuming that the ends of the string are held
fixed, graph the string’s profile at times t = ℓ/c and 2ℓ/c.

♣ 4.2.19. Consider the wave equation utt = uxx on the interval 0 ≤ x ≤ 1, with homogeneous
Dirichlet boundary conditions at both ends. (a) Use the d’Alembert formula to explicitly

solve the initial value problem u(0, x) = x − x2, ut(0, x) = 0. (b) Graph the solution
profile at some representative times, and discuss what you observe. (c) Find the Fourier
series at each t of your solution and compare the two. (d) How many terms do you need
to sum to obtain a reasonable approximation to the exact solution?

♣ 4.2.20. Solve Exercise 4.2.19 for the initial conditions u(0, x) = 0, ut(0, x) = x2 − x.

♣ 4.2.21. Solve (i) Exercise 4.2.19, (ii) Exercise 4.2.20, when the solution is subject to homoge-
neous Neumann boundary conditions.

♦ 4.2.22. Under what conditions is the solution to the Neumann boundary value problem for the
wave equation on a bounded interval [0, ℓ ] periodic in time? What is the period?

4.2.23. Discuss and sketch the behavior of the solution to the Neumann boundary value prob-
lem utt = 4uxx, 0 < x < 1, ux(t, 0) = 0 = ux(t, 1), u(0, x) = f(x), ut(0, x) = g(x), for

(a) a localized initial displacement: f(x) =

{
1, .2 < x < .3,
0, otherwise.

g(x) = 0;

(b) a localized initial velocity: f(x) = 0, g(x) =

{
1, .2 < x < .3,
0, otherwise.

.

4.2.24.(a) Explain how to solve the Neumann initial-boundary value problem

∂2u
∂t2

=
∂2u
∂x2

,
∂u
∂x

(t, 0) = 0 =
∂u
∂x

(t, 1), u(0, x) = f(x),
∂u
∂t

(0, x) = g(x),

on the interval 0 ≤ x ≤ 1.

(b) Let f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x− 1
4 ,

1
4 ≤ x ≤ 1

2 ,
3
4 − x, 1

2 ≤ x ≤ 3
4 ,

0, otherwise,

and g(x) = 0. Sketch the graph of the solution at

a few representative times, and discuss what is happening. Is the solution periodic in
time? If so, what is the period?

(c) Do the same when f(x) = 0 and g(x) = x.
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4.2.25.(a) Write down a formula for the solution u(t, x) to the initial-boundary value problem

∂2u
∂t2

− 4
∂2u
∂x2

= 0, u(0, x) = sinx,
∂u
∂t

(0, x) =
∂u
∂x

(t, 0) =
∂u
∂x

(t,π) = 0, 0 < x < π, t > 0.

(b) Find u
(
π
2 ,

π
2

)
. (c) Prove that h(t) = u

(
t, π2

)
is a periodic function of t and find its

period. (d) Does
∂u
∂x

have any discontinuities? If so, discuss their behavior.

4.2.26. Answer Exercise 4.2.25 for the mixed boundary conditions u(t, 0) = 0 = ux(t,π).

♥ 4.2.27.(a) Explain how to use d’Alembert’s formula (4.77) to solve the periodic initial-boundary
value problem for the wave equation given in Exercise 4.2.6.
(b) Do the d’Alembert and Fourier series formulae represent the same solution? If so, can

you justify it? If not, explain why they are different.

♦ 4.2.28. Show that the solution u(t, x) to the wave equation on an interval [0, ℓ ], subject to pe-
riodic boundary conditions u(t, 0) = u(t, ℓ), ux(t, 0) = ux(t, ℓ), is a periodic function of t if

and only if there is no net initial velocity:
∫ ℓ

0
g(x) dx = 0.

4.2.29.(a) Explain how to solve the wave equation on a half-line x > 0 when subject to Dirich-
let boundary conditions u(t, 0) = 0. (b) Assuming c = 1, find the solution satisfying

u(0, x) = (x − 2) e−5(x−2.2)2 , ut(0, x) = 0. (c) Sketch a picture of your solution at some
representative times, and discuss what is happening.

4.2.30. Solve Exercise 4.2.29 for homogeneous Neumann boundary conditions at x = 0.

♦ 4.2.31.(a) Given that f(x) is odd and 2ℓ–periodic, explain why f(0) = 0 = f(ℓ).

(b) Given that f(x) is even and 2ℓ–periodic, explain why f ′(0) = 0 = f ′(ℓ).

♦ 4.2.32.(a) Prove that if f(−x) = −f(x), f(x+ 2ℓ) = f(x), for all x, then
u(t, x) = 1

2 [f(x− c t) + f(x+ c t) ] satisfies the Dirichlet boundary conditions (4.79).
(b) Prove that if g(−x) = −g(x), g(x+ 2ℓ) = g(x) for all x, then

u(t, x) =
1
2 c

∫ x+c t

x−c t
g(z) dz also satisfies the Dirichlet boundary conditions.

4.2.33. If both u(0, x) = f(x) and ut(0, x) = g(x) are even functions, show that the solution
u(t, x) of the wave equation is even in x for all t.

4.2.34.(a) Prove that the solution u(t, x) to the wave equation for x ∈ R is an even function of
t if and only if its initial velocity, at t = 0, is zero.

(b) Under what conditions is u(t, x) an odd function of t?

♦ 4.2.35. Let u(t, x) be a classical solution to the wave equation utt = c2uxx on the interval
0 < x < ℓ, satisfying homogeneous Dirichlet boundary conditions. The total energy of u at
time t is

E(t) =
∫ ℓ

0

1
2

⎡

⎣
(
∂u
∂t

)2

+ c2
(
∂u
∂x

)2
⎤

⎦ dx. (4.81)

Establish the Law of Conservation of Energy by showing that E(t) = E(0) is a constant
function.

♦ 4.2.36.(a) Use Exercise 4.2.35 to prove that the only C2 solution to the initial-boundary value

problem vtt = c2vxx, v(t, 0) = v(t, ℓ) = 0, v(0, x) = 0, vt(0, x) = 0, is the trivial solu-
tion v(t, x) ≡ 0. (b) Establish the following Uniqueness Theorem for the wave equation:
given f(x), g(x) ∈ C2, there is at most one C2 solution u(t, x) to the initial-boundary value

problem utt = c2uxx, u(t, 0) = u(t, ℓ) = 0, u(0, x) = f(x), ut(0, x) = g(x).

4.2.37. Referring back to Exercises 4.2.35 and 4.2.36: (a) Does conservation of energy hold for
solutions to the homogeneous Neumann initial-boundary value problem?
(b) Can you establish a uniqueness theorem for the Neumann problem?
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4.2.38. Explain how to solve the Dirichlet initial-boundary value problem

utt = c2uxx + F (t, x), u(0, x) = f(x), ut(0, x) = g(x), u(t, 0) = u(t, ℓ) = 0,

for the wave equation subject to an external forcing on the interval [0, ℓ ].

4.3 The Planar Laplace and Poisson Equations

The two-dimensional Laplace equation is the second-order linear partial differential equa-
tion

∂2u

∂x2
+

∂2u

∂y2
= 0, (4.82)

named in honor of the influential eighteenth-century French mathematician Pierre–Simon
Laplace. It, along with its higher-dimensional versions, is arguably the most important
differential equation in all of mathematics. A real-valued solution u(x, y) to the Laplace
equation is known as a harmonic function. The space of harmonic functions can thus be
identified as the kernel of the second-order linear partial differential operator

∆ =
∂2

∂x2
+

∂2

∂y2
, (4.83)

known as the Laplace operator , or Laplacian for short. The inhomogeneous or forced
version, namely

−∆[u ] = −
∂2u

∂x2
−

∂2u

∂y2
= f(x, y), (4.84)

is known as Poisson’s equation, named after Siméon–Denis Poisson, who was taught by
Laplace. The mathematical and physical reasons for including the minus sign will gradually
become clear.

Besides their theoretical importance, the Laplace and Poisson equations arise as the
basic equilibrium equations in a remarkable variety of physical systems. For example, we
may interpret u(x, y) as the displacement of a membrane, e.g., a drum skin; the inhomo-
geneity f(x, y) in the Poisson equation represents an external forcing over the surface of
the membrane. Another example is in the thermal equilibrium of flat plates; here u(x, y)
represents the temperature and f(x, y) an external heat source. In fluid mechanics, u(x, y)
represents the potential function whose gradient v = ∇u is the velocity vector field of a
steady planar fluid flow. Similar considerations apply to two-dimensional electrostatic
and gravitational potentials. The dynamical counterparts to the Laplace equation are the
two-dimensional versions of the heat and wave equations, to be analyzed in Chapter 11.

Since both the Laplace and Poisson equations describe equilibrium configurations, they
almost always appear the context of boundary value problems. We seek a solution u(x, y)
to the partial differential equation defined at points (x, y) belonging to a bounded, open
domain Ω ⊂ R2. The solution is required to satisfy suitable conditions on the boundary
of the domain, denoted by ∂Ω, which will consist of one or more simple closed curves, as
illustrated in Figure 4.7. As in one-dimensional boundary value problems, there are several
especially important types of boundary conditions.
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Ω

∂Ω

n

n n

n

Figure 4.7. A planar domain with outward unit normals on its boundary.

The first are the fixed or Dirichlet boundary conditions , which specify the value of the
function u on the boundary:

u(x, y) = h(x, y) for (x, y) ∈ ∂Ω. (4.85)

Under mild regularity conditions on the domain Ω, the boundary values h, and the forcing
function f , the Dirichlet conditions (4.85) serve to uniquely specify the solution u(x, y) to
the Laplace or the Poisson equation. Physically, in the case of a free or forced membrane,
the Dirichlet boundary conditions correspond to gluing the edge of the membrane to a
wire at height h(x, y) over each boundary point (x, y) ∈ ∂Ω, as illustrated in Figure 4.8.
A physical realization can be easily obtained by dipping the wire in a soap solution; the
resulting soap film spanning the wire forms a minimal surface, which, if the wire is reason-
ably close to planar shape,† is the solution to the Dirichlet problem prescribed by the wire.
Similarly, in the modeling of thermal equilibrium, a Dirichlet boundary condition repre-
sents the imposition of a prescribed temperature distribution, represented by the function
h, along the boundary of the plate.

The second important class consists of the Neumann boundary conditions

∂u

∂n
= ∇u · n = k(x, y) on ∂Ω, (4.86)

in which the normal derivative of the solution u on the boundary is prescribed. In general, n
denotes the unit outwards normal to the boundary ∂Ω, i.e., the vector of unit length, ∥n ∥ =
1, that is orthogonal to the tangent to the boundary and points away from the domain; see
Figure 4.7. For example, in thermomechanics, a Neumann boundary condition specifies
the heat flux out of a plate through its boundary. The “no-flux” or homogeneous Neumann
boundary conditions, where k(x, y) ≡ 0, correspond to a fully insulated boundary. In the
case of a membrane, homogeneous Neumann boundary conditions correspond to a free,
unattached edge of a drum. In fluid mechanics, the Neumann conditions prescribe the
fluid flux through the boundary; in particular, homogeneous Neumann boundary conditions

† More generally, the minimal surface formed by the soap film solves the vastly more compli-
cated nonlinear minimal surface equation (1 + u2x)uxx − 2uxuyuxy + (1 + u2y)uyy = 0, which, for
surfaces with small variation, i.e., with ∥∇u ∥ ≪ 1, can be approximated by the Laplace equation.
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∂Ω

h(x, y)

Figure 4.8. Dirichlet boundary conditions.

correspond to a solid boundary that the fluid cannot penetrate. More generally, the Robin
boundary conditions

∂u

∂n
+ β(x, y) u = k(x, y) on ∂Ω,

also known as impedance boundary conditions due to their applications in electromag-
netism, are used to model insulated plates in heat baths, or membranes attached to springs.

Finally, one can mix the previous kinds of boundary conditions, imposing, say, Dirich-
let conditions on part of the boundary and Neumann conditions on the complementary
part. A typical mixed boundary value problem has the form

−∆u = f in Ω, u = h on D,
∂u

∂n
= k on N, (4.87)

with the boundary ∂Ω = D ∪N being the disjoint union of a “Dirichlet segment”, denoted
by D, and a “Neumann segment” N . For example, if u represents the equilibrium tem-
perature in a plate, then the Dirichlet segment of the boundary is where the temperature
is fixed, while the Neumann segment is insulated, or, more generally, has prescribed heat
flux. Similarly, when modeling the displacement of a membrane, the Dirichlet segment is
where the edge of the drum is attached to a support, while the homogeneous Neumann
segment is left hanging free.

Exercises

4.3.1.(a) Solve the boundary value problem ∆u = 1 for x2 + y2 < 1 and u(x, y) = 0 for
x2 + y2 = 1 directly. Hint : The solution is a simple polynomial.

(b) Graph your solution, interpreting it as the equilibrium displacement of a circular drum
under a constant gravitational force.

4.3.2. Set up the boundary value problem corresponding to the equilibrium of a circular mem-
brane subject to a constant downwards gravitational force, half of whose boundary is glued
to a flat semicircular wire, while the other half is unattached.

4.3.3. Set up the boundary value problem corresponding to the thermal equilibrium of a rect-
angular plate that is insulated on two of its sides, has 0◦ at its top edge and 100◦ at the
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bottom edge. Where do you expect the maximum temperature to be located? What is its
value? Can you find a formula for the temperature inside the plate? Hint : The solution is
constant along horizontal lines.

4.3.4. Set up the boundary value problem corresponding to the thermal equilibrium of an in-
sulated semi-circular plate with unit diameter, whose curved edge is kept at 0◦ and whose
straight edge is at 50◦.

4.3.5. Explain why the solution to the homogeneous Neumann boundary value problem for the
Laplace equation is not unique.

4.3.6. Write down the Dirichlet boundary value problem for the Laplace equation on the unit
square 0 ≤ x, y ≤ 1 that is satisfied by u(x, y) = 1 + xy.

4.3.7. Write down the Neumann boundary value problem for the Poisson equation on the unit
disk x2 + y2 ≤ 1 that is satisfied by u(x, y) = x3 + xy2.

♦ 4.3.8. Suppose u(x, y) is a solution to the Laplace equation.
(a) Show that any translate U(x, y) = u(x − a, y − b), where a, b ∈ R, is also a solution.
(b) Show that the rotated function U(x, y) = u(x cos θ + y sin θ,−x sin θ + y cos θ), where

−π < θ ≤ π, is also a solution.

♦ 4.3.9.(a) Show that if u(x, y) solves the Laplace equation, then so does the rescaled function
U(x, y) = c u(αx,αy) for any constants c,α.
(b) Discuss the effect of scaling on the Dirichlet boundary value problem.
(c) What happens if we use different scaling factors in x and y?

Separation of Variables

Our first approach to solving the Laplace equation

∆u =
∂2u

∂x2
+

∂2u

∂y2
= 0 (4.88)

will be based on the method of separation of variables . As in (4.64), we seek solutions that
can be written as a product

u(x, y) = v(x)w(y) (4.89)

of a function of x alone times a function of y alone. We compute

∂2u

∂x2
= v′′(x)w(y),

∂2u

∂y2
= v(x)w′′(y),

and so

∆u =
∂2u

∂x2
+

∂2u

∂y2
= v′′(x)w(y) + v(x)w′′(y) = 0.

We then separate the variables by placing all the terms involving x on one side of the
equation and all the terms involving y on the other; this is accomplished by dividing by
v(x)w(y) and then writing the resulting equation in the separated form

v′′(x)

v(x)
= −

w′′(y)

w(y)
= λ. (4.90)
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As we argued in (4.65), the only way a function of x alone can be equal to a function of y
alone is if both functions are equal to a common separation constant λ. Thus, the factors
v(x) and w(y) must satisfy the elementary ordinary differential equations

v′′ − λ v = 0, w′′ + λw = 0.

As before, the solution formulas depend on the sign of the separation constant λ. We list
the resulting collection of separable harmonic functions in the following table:

Separable Solutions to Laplace’s Equation

λ v(x) w(y) u(x, y) = v(x)w(y)

λ = −ω2 < 0 cosωx, sinωx e−ωy, eωy,
eωy cosωx,

e−ωy cosωx,

eωy sinωx,

e−ωy sinωx

λ = 0 1, x 1, y 1, x, y, xy

λ = ω2 > 0 e−ωx, eωx cosωy, sinωy
eωx cosωy,

e−ωx cosωy,

eωx sinωy,

e−ωx sinωy

Since Laplace’s equation is a homogeneous linear system, any linear combination of
solutions is also a solution. So, we can build more general solutions as finite linear combi-
nations, or, provided we pay proper attention to convergence issues, infinite series in the
separable solutions. Our goal is to solve boundary value problems, and so we must ensure
that the resulting combination satisfies the boundary conditions. But this is not such an
easy task, unless the underlying domain has a rather special geometry.

In fact, the only bounded domains on which we can explicitly solve boundary value
problems using the preceding separable solutions are rectangles. So, we will concentrate
on boundary value problems for Laplace’s equation

∆u = 0 on a rectangle R = {0 < x < a, 0 < y < b}. (4.91)

To make progress, we will allow nonzero boundary values on only one of the four sides of
the rectangle. To illustrate, we will focus on the following Dirichlet boundary conditions:

u(x, 0) = f(x), u(x, b) = 0, u(0, y) = 0, u(a, y) = 0. (4.92)

Once we know how to solve this type of problem, we can employ linear superposition to
solve the general Dirichlet boundary value problem on a rectangle; see Exercise 4.3.12 for
details. Other boundary conditions can be treated in a similar fashion — with the proviso
that the condition on each side of the rectangle is either entirely Dirichlet or entirely
Neumann or, more generally, entirely Robin with constant transfer coefficient.

To solve the boundary value problem (4.91–92), the first step is to narrow down the
separable solutions to only those that respect the three homogeneous boundary conditions.
The separable function u(x, y) = v(x)w(y) will vanish on the top, right, and left sides of
the rectangle, provided

v(0) = v(a) = 0 and w(b) = 0.
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Referring to the preceding table, the first condition v(0) = 0 requires

v(x) =

⎧
⎪⎨

⎪⎩

sinωx, λ = −ω2 < 0,

x, λ = 0,

sinhωx, λ = ω2 > 0,

where sinh z = 1
2 (e

z − e−z) is the usual hyperbolic sine function. However, the second
and third cases cannot satisfy the second boundary condition v(a) = 0, and so we discard
them. The first case leads to the condition

v(a) = sinω a = 0, and hence ω a = π, 2π, 3π, . . . .

The corresponding separation constants and solutions (up to constant multiple) are

λn = −ω2 = −
n2π2

a2
, vn(x) = sin

nπx
a , n = 1, 2, 3, . . . . (4.93)

Note: So far, we have merely recomputed the known eigenvalues and eigenfunctions
of the familiar boundary value problem v′′ − λ v = 0, v(0) = v(a) = 0.

Next, since λ = −ω2 < 0, we have w(y) = c1e
ωy + c2e

−ωy for constants c1, c2. The
third boundary condition w(b) = 0 then requires that, up to constant multiple,

wn(y) = sinh ω (b− y) = sinh
nπ(b− y)

a . (4.94)

We conclude that the harmonic functions

un(x, y) = sin
nπx
a sinh

nπ(b− y)
a , n = 1, 2, 3, . . . , (4.95)

provide a complete list of separable solutions that satisfy the three homogeneous boundary
conditions. It remains to analyze the inhomogeneous boundary condition along the bottom
edge of the rectangle. To this end, let us try a linear superposition of the relevant separable
solutions in the form of an infinite series

u(x, y) =
∞∑

n=1

cnun(x, y) =
∞∑

n=1

cn sin
nπx
a sinh

nπ (b− y)
a ,

whose coefficients c1, c2, . . . are to be prescribed by the remaining boundary condition. At
the bottom edge, y = 0, we find

u(x, 0) =
∞∑

n=1

cn sinh
nπb
a sin

nπx
a = f(x), 0 ≤ x ≤ a, (4.96)

which takes the form of a Fourier sine series for the function f(x). Let

bn =
2
a

∫ a

0
f(x) sin

nπx
a dx (4.97)

be its Fourier sine coefficients, whence cn = bn/ sinh(nπb/a). We thus anticipate that the
solution to the boundary value problem can be expressed as the infinite series

u(x, y) =
∞∑

n=1

bn sin
nπx
a sinh

nπ(b− y)
a

sinh
nπb
a

. (4.98)
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Figure 4.9. Square membrane on a wire.

Does this series actually converge to the solution to the boundary value problem?
Fourier analysis says that, under very mild conditions on the boundary function f(x), the
answer is yes. Suppose that its Fourier coefficients are uniformly bounded,

| bn | ≤ M for all n ≥ 1, (4.99)

which, according to (4.27), is true whenever f(x) is piecewise continuous or, more generally,

integrable:

∫ a

0
| f(x) | dx < ∞. In this case, as you are asked to prove in Exercise 4.3.20,

the coefficients of the Fourier sine series (4.98) go to zero exponentially fast:

bn sinh
nπ(b− y)

a

sinh
nπb
a

−→ 0 as n −→ ∞ for all 0 < y ≤ b, (4.100)

and so, at each point inside the rectangle, the series can be well approximated by partial
summation. Theorem 3.31 tells us that, for each 0 < y ≤ b, the solution u(x, y) is an
infinitely differentiable function of x. Moreover, by term-wise differentiation of the series
with respect to y and use of Proposition 3.28, we also establish that the solution is infinitely
differentiable with respect to y; see Exercise 4.3.21. (In fact, as we shall see, solutions to
the Laplace equation are always analytic functions inside their domain of definition — even
when their boundary values are rather rough.) Since the individual terms all satisfy the
Laplace equation, we conclude that the series (4.98) is indeed a classical solution to the
boundary value problem.

Example 4.4. A membrane is stretched over a wire in the shape of a unit square
with one side bent in half, as graphed in Figure 4.9. The precise boundary conditions are

u(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x, 0 ≤ x ≤ 1
2 , y = 0,

1− x, 1
2 ≤ x ≤ 1, y = 0,

0, 0 ≤ x ≤ 1, y = 1,

0, x = 0, 0 ≤ y ≤ 1,

0, x = 1, 0 ≤ y ≤ 1.
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The Fourier sine series of the inhomogeneous boundary function is readily computed:

f(x) =

{
x, 0 ≤ x ≤ 1

2 ,

1− x, 1
2 ≤ x ≤ 1,

=
4

π2

(
sinπx−

sin 3πx

9
+

sin 5πx

25
− · · ·

)
=

4

π2

∞∑

j=0

(−1)j
sin(2j + 1)πx

(2j + 1)2
.

Specializing (4.98) to a = b = 1, we conclude that the solution to the boundary value
problem can be expressed as a Fourier series

u(x, y) =
4

π2

∞∑

j=0

(−1)j
sin(2j + 1)πx sinh(2j + 1)π(1− y)

(2j + 1)2 sinh(2j + 1)π
.

In Figure 4.9 we plot the sum of the first 10 terms in the series. This gives a reasonably good
approximation to the actual solution, except when we are very close to the raised corner
of the boundary wire — which is the point of maximal displacement of the membrane.

Exercises

4.3.10. Solve the following boundary value problems for Laplace’s equation on the square
Ω = {0 ≤ x ≤ π, 0 ≤ y ≤ π}.

(a) u(x, 0) = sin3 x, u(x,π) = 0, u(0, y) = 0, u(π, y) = 0.
(b) u(x, 0) = 0, u(x,π) = 0, u(0, y) = sin y, u(π, y) = 0.
(c) u(x, 0) = 0, u(x,π) = 1, u(0, y) = 0, u(π, y) = 0.
(d) u(x, 0) = 0, u(x,π) = 0, u(0, y) = 0, u(π, y) = y(π − y).

♦ 4.3.11.(a) Explain how to use linear superposition to solve the boundary value problem

∆u = 0, u(x, 0) = f(x), u(x, b) = g(x), u(0, y) = h(y), u(a, y) = k(y),

on the rectangle R = {0 < x < a, 0 < y < b}, by splitting it into four separate boundary
value problems for which each of the solutions vanishes on three sides of the rectangle.
(b) Write down a series formula for the resulting solution.

4.3.12. Solve the following Dirichlet problems for Laplace’s equation on the unit square
S = {0 < x, y < 1}. Hint : Use superposition as in Exercise 4.3.11.
(a) u(x, 0) = sinπx, u(x, 1) = 0, u(0, y) = sinπy, u(1, y) = 0;
(b) u(x, 0) = 1, u(x, 1) = 0, u(0, y) = 1, u(1, y) = 0;
(c) u(x, 0) = 1, u(x, 1) = 1, u(0, y) = 0, u(1, y) = 0;
(d) u(x, 0) = x, u(x, 1) = 1− x, u(0, y) = y, u(1, y) = 1− y.

4.3.13. Solve the following mixed boundary value problems for Laplace’s equation ∆u = 0 on
the square S = {0 < x, y < π}.
(a) u(x, 0) = sin 1

2 x, uy(x,π) = 0, u(0, y) = 0, ux(π, y) = 0;

(b) u(x, 0) = sin 1
2 x, uy(x,π) = 0, ux(0, y) = 0, ux(π, y) = 0;

(c) u(x, 0) = x, u(x,π) = 0, ux(0, y) = 0, ux(π, y) = 0;
(d) u(x, 0) = x, u(x,π) = 0, u(0, y) = 0, ux(π, y) = 0.

4.3.14. Find the solution to the boundary value problem

∆u = 0,
uy(x, 0) = uy(x, 2) = 0,

u(0, y) = 2 cosπy − 1, u(1, y) = 0,

0 < x < 1,
0 < y < 2.
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4.3.15. Find the solution to the boundary value problem

∆u = 0,
u(x, 0) = 2 cos 7πx − 4, u(x, 1) = 5 cos 3πx,

ux(0, y) = ux(1, y) = 0,
0 < x, y < 1.

4.3.16. Let u(x, y) be the solution to the boundary value problem

∆u = 0, u(x,−1) = f(x), u(x, 1) = 0, u(−1, y) = 0, u(1, y) = 0, −1 < x < 1, −1 < y < 1.

(a) True or false: If f(−x) = −f(x) is odd, then u(0, y) = 0 for all −1 ≤ y ≤ 1.
(b) True or false: If f(0) = 0, then u(0, y) = 0 for all −1 ≤ y ≤ 1.
(c) Under what conditions on f(x) is u(x, 0) = 0 for all −1 ≤ x ≤ 1?

4.3.17. Use separation of variables to solve the following boundary value problem:
uxx + 2uy + uyy = 0, u(x, 0) = 0, u(x, 1) = f(x), u(0, y) = 0, u(1, y) = 0.

4.3.18. Use separation of variables to solve the Helmholtz boundary value problem ∆u = u,
u(x, 0) = 0, u(x, 1) = f(x), u(0, y) = 0, u(1, y) = 0, on the unit square 0 < x, y < 1.

♦ 4.3.19. Provide the details for the derivation of (4.94).

♦ 4.3.20. Justify the statement that if | bn | ≤ M are uniformly bounded, then the coefficients
given in (4.100) go to zero exponentially fast as n→∞ for any 0 < y ≤ b.

♦ 4.3.21. Let u(x, y) denote the solution to the boundary value problem (4.91–92).
(a) Write down the Fourier sine series for ∂u/∂y . (b) Prove that ∂u/∂y is an infinitely
differentiable function of x. (c) Justify the same result for the functions ∂ku/∂yk for each
k ≥ 0. Hint : Don’t forget that u(x, y) solves the Laplace equation.

Polar Coordinates

The method of separation of variables can be successfully exploited in certain other very
special geometries. One particularly important case is a circular disk. To be specific, let
us take the disk to have radius 1 and be centered at the origin. Consider the Dirichlet
boundary value problem

∆u = 0, x2 + y2 < 1, and u = h, x2 + y2 = 1, (4.101)

so that the function u(x, y) satisfies the Laplace equation on the unit disk and the specified
Dirichlet boundary conditions on the unit circle. For example, u(x, y) might represent the
displacement of a circular drum that is attached to a wire of height

h(x, y) = h(cos θ, sin θ) ≡ h(θ), −π < θ ≤ π, (4.102)

at each point (x, y) = (cos θ, sin θ) on its edge.
The rectangular separable solutions are not particularly helpful in this situation, and

so we look for solutions that are better adapted to a circular geometry. This inspires us to
adopt polar coordinates

x = r cos θ, y = r sin θ, or r =
√
x2 + y2 , θ = tan−1 y

x , (4.103)

and write the solution u(r, θ) as a function thereof.

Warning : We will often retain the same symbol, e.g., u, when rewriting a function
in a different coordinate system. This is the convention of tensor analysis, physics, and



4.3 The Planar Laplace and Poisson Equations 161

differential geometry, [3], that treats the function (scalar field) as an intrinsic object, which
is concretely realized through its formula in any chosen coordinate system. For instance,
if u(x, y) = x2 + 2y in rectangular coordinates, then its expression in polar coordinates
is u(r, θ) = (r cos θ)2 + 2r sin θ, not r2 + 2θ. This convention avoids the inconvenience of
having to devise new symbols when changing coordinates.

We need to relate derivatives with respect to x and y to those with respect to r and
θ. Performing a standard multivariate chain rule computation based on (4.103), we obtain

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

∂

∂θ
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
,

so

∂

∂x
= cos θ

∂

∂r
−

sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

(4.104)

Applying the squares of the latter differential operators to u(r, θ), we find, after a calcula-
tion in which many of the terms cancel, the polar coordinate form of the Laplace equation:

∆u =
∂2u

∂x2
+

∂2u

∂y2
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0. (4.105)

The boundary conditions are imposed on the unit circle r = 1, and so, by (4.102), take the
form

u(1, θ) = h(θ). (4.106)

Keep in mind that, in order to be single-valued functions of x, y, the solution u(r, θ) and
its boundary values h(θ) must both be 2π–periodic functions of the angular coordinate:

u(r, θ + 2π) = u(r, θ), h(θ + 2π) = h(θ). (4.107)

Polar separation of variables is based on the ansatz

u(r, θ) = v(r)w(θ), (4.108)

which assumes that the solution is a product of functions of the individual variables. Sub-
stituting (4.108) into the polar form (4.105) of Laplace’s equation yields

v′′(r)w(θ) +
1

r
v′(r)w(θ) +

1

r2
v(r)w′′(θ) = 0.

We now separate variables by moving all the terms involving r onto one side of the equation
and all the terms involving θ onto the other. This is accomplished by first multiplying the
equation by r2/

(
v(r)w(θ)

)
and then moving the final term to the right-hand side:

r2 v′′(r) + r v′(r)

v(r)
= −

w′′(θ)

w(θ)
= λ.

As in the rectangular case, a function of r can equal a function of θ if and only if both are
equal to a common separation constant, which we call λ. The partial differential equation
thus splits into a pair of ordinary differential equations

r2 v′′ + r v′ − λ v = 0, w′′ + λw = 0, (4.109)

that will prescribe the separable solution (4.108). Observe that both have the form of an
eigenfunction equation in which the separation constant λ plays the role of the eigenvalue.
We are, as always, interested only in nonzero solutions.
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We have already solved the eigenvalue problem for w(θ). According to (4.107),
w(θ + 2π) = w(θ) must be a 2π–periodic function. Therefore, by our earlier discussion,
this periodic boundary value problem has the nonzero eigenfunctions

1, sinnθ, cosnθ, n = 1, 2, . . . , (4.110)

corresponding to the eigenvalues (separation constants)

λ = n2, n = 0, 1, 2, . . . .

With the value of λ fixed, the linear ordinary differential equation for the radial component,

r2v′′ + rv′ − n2v = 0, (4.111)

does not have constant coefficients. But, fortunately, it has the form of a second-order Euler
ordinary differential equation, [23, 89], and hence can be readily solved by substituting the
power ansatz v(r) = rk. (See also Exercise 4.3.23.) Note that

v′(r) = krk−1, v′′(r) = k (k − 1) rk−2,

and hence, by substituting into the differential equation,

r2v′′ + rv′ − n2v =
[
k (k − 1) + k − n2

]
rk = (k2 − n2)rk.

Thus, rk is a solution if and only if

k2 − n2 = 0, and hence k = ±n.

For n ̸= 0, we have found the two linearly independent solutions:

v1(r) = rn, v2(r) = r−n, n = 1, 2, . . . . (4.112)

When n = 0, the power ansatz yields only the constant solution. But in this case, the
equation r2v′′ + rv′ = 0 is effectively of first order and linear in v′, and hence readily
integrated. This provides the two independent solutions

v1(r) = 1, v2(r) = log r, n = 0. (4.113)

Combining (4.110) and (4.112–113), we produce the complete list of separable polar coor-
dinate solutions to the Laplace equation:

1, rn cosnθ, rn sinnθ,

log r, r−n cosnθ, r−n sinnθ,
n = 1, 2, 3, . . . . (4.114)

Now, the solutions in the top row of (4.114) are continuous (in fact analytic) at the origin,
where r = 0, whereas the solutions in the bottom row have singularities as r → 0. The
latter are not of use in the present situation, since we require that the solution remain
bounded and smooth — even at the center of the disk. Thus, we should use only the
nonsingular solutions to concoct a candidate series solution

u(r, θ) =
a0
2

+
∞∑

n=1

(
anr

n cosnθ + bnr
n sinnθ

)
. (4.115)
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The coefficients an, bn will be prescribed by the boundary conditions (4.106). Substituting
r = 1, we obtain

u(1, θ) =
a0
2

+
∞∑

n=1

(
an cosnθ + bn sinnθ

)
= h(θ).

We recognize this as a standard Fourier series (3.29) (with θ replacing x) for the 2π periodic
function h(θ). Therefore,

an =
1

π

∫ π

−π
h(θ) cosnθ dθ, bn =

1

π

∫ π

−π
h(θ) sinnθ dθ, (4.116)

are precisely its Fourier coefficients, cf. (3.35). In this manner, we have produced a series
solution (4.115) to the boundary value problem (4.105–106).

Remark : Introducing the complex variable

z = x+ i y = r e i θ = r cos θ + i r sin θ (4.117)

allows us to write

zn = rn e inθ = rn cosnθ + i rn sinnθ. (4.118)

Therefore, the nonsingular separable solutions are the harmonic polynomials

rn cosnθ = Re zn, rn sinnθ = Im zn. (4.119)

The first few are listed in the following table:

n Re zn Im zn

0 1 0

1 x y

2 x2 − y2 2xy

3 x3 − 3xy2 3x2 y − y3

4 x4 − 4x2y2 + y4 4x3 y − 4xy3

Their general expression is obtained using the Binomial Formula:

zn = (x+ i y)n

= xn + nxn−1( i y) +

(
n

2

)
xn−2( i y)2 +

(
n

3

)
xn−3( i y)3 + · · · + ( i y)n

= xn + inxn−1 y −
(
n

2

)
xn−2 y2 − i

(
n

3

)
xn−3 y3 + · · · ,

where (
n

k

)
=

n !

k ! (n− k) !
(4.120)
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Figure 4.10. Membrane attached to a helical wire.

are the usual binomial coefficients . Separating the real and imaginary terms, we produce
the explicit formulae

rn cosnθ = Re zn = xn −
(
n

2

)
xn−2 y2 +

(
n

4

)
xn−4 y4 + · · · ,

rn sinnθ = Im zn = nxn−1 y −
(
n

3

)
xn−3 y3 +

(
n

5

)
xn−5 y5 + · · · ,

(4.121)

for the two independent harmonic polynomials of degree n.

Example 4.5. Consider the Dirichlet boundary value problem on the unit disk with

u(1, θ) = θ for − π < θ < π. (4.122)

The boundary data can be interpreted as a wire in the shape of a single turn of a spiral
helix sitting over the unit circle. The wire has a single jump discontinuity, of magnitude
2π, at the boundary point (−1, 0). The required Fourier series

h(θ) = θ ∼ 2

(
sin θ −

sin 2θ

2
+

sin 3θ

3
−

sin 4θ

4
+ · · ·

)

was already computed in Example 3.3. Therefore, invoking our solution formula (4.115–
116), we have

u(r, θ) = 2

(
r sin θ −

r2 sin 2θ

2
+

r3 sin 3θ

3
−

r4 sin 4θ

4
+ · · ·

)
(4.123)

is the desired solution, which is plotted in Figure 4.10. In fact, this series can be explicitly
summed. In view of (4.119) and the usual formula (A.13) for the complex logarithm, we
have

u = 2 Im

(
z −

z2

2
+

z3

3
−

z4

4
+ · · ·

)
= 2 Im log(1 + z) = 2ψ, (4.124)
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ψ

(x, y)

Figure 4.11. Geometric construction of the solution.

where
ψ = tan−1 y

1 + x

is the angle that the line passing through the two points (x, y) and (−1, 0) makes with the
x-axis, as sketched in Figure 4.11. You should try to convince yourself that, on the unit
circle, 2ψ = θ has the correct boundary values. Observe that, even though the boundary
values are discontinuous, the solution is an analytic function inside the disk.

In fact, unlike the rectangular series (4.98), the general polar series solution for-
mula (4.115) can, in fact, be summed in closed form! If we substitute the explicit Fourier
formulae (4.116) into (4.115) — remembering to change the integration variable to, say, φ
to avoid a notational conflict — we obtain

u(r, θ) =
a0
2

+
∞∑

n=1

(
an r

n cosnθ + bn r
n sinnθ

)

=
1

2π

∫ π

−π
h(φ) dφ+

∞∑

n=1

[
rn cosnθ

π

∫ π

−π
h(φ) cosnφ dφ+

rn sinnθ

π

∫ π

−π
h(φ) sinnφ dφ

]

=
1

π

∫ π

−π
h(φ)

[
1

2
+

∞∑

n=1

rn
(
cosnθ cosnφ+ sinnθ sinnφ

)
]
dφ

=
1

π

∫ π

−π
h(φ)

[
1

2
+

∞∑

n=1

rn cosn(θ − φ)

]
dφ.

(4.125)

We next show how to sum the final series. Using (4.118), we can write it as the real part
of a geometric series:

1

2
+

∞∑

n=1

rn cosnθ = Re

(
1

2
+

∞∑

n=1

zn
)

= Re

(
1

2
+

z

1− z

)
= Re

(
1 + z

2(1− z)

)

= Re

(
(1 + z)(1− z)

2 | 1− z |2

)
=

Re (1 + z − z − | z |2)
2 | 1− z |2

=
1− | z |2

2 | 1− z |2
=

1− r2

2(1 + r2 − 2r cos θ)
,

which is known as the Poisson kernel . Substituting back into (4.125) establishes the
important Poisson Integral Formula for the solution to the boundary value problem.
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Figure 4.12. Equilibrium temperature of a disk.

Theorem 4.6. The solution to the Laplace equation in the unit disk subject to
Dirichlet boundary conditions u(1, θ) = h(θ) is

u(r, θ) =
1

2π

∫ π

−π
h(φ)

1− r2

1 + r2 − 2 r cos(θ − φ)
dφ. (4.126)

Example 4.7. A uniform metal disk of unit radius has half of its circular boundary
held at 1◦, while the other half is held at 0◦. Our task is to find the equilibrium temperature
u(x, y). In other words, we seek the solution to the Dirichlet boundary value problem

∆u = 0, x2 + y2 < 1, u(x, y) =

{
1, x2 + y2 = 1, y > 0,

0, x2 + y2 = 1, y < 0.
(4.127)

In polar coordinates, the boundary data is a (periodic) step function

h(θ) =

{
1, 0 < θ < π,

0, −π < θ < 0.

Therefore, according to the Poisson formula (4.126), the solution is given by†

u(r, θ) =
1

2π

∫ π

0

1− r2

1 + r2 − 2r cos(θ − φ)
dφ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1− 1
π tan−1

(
1− r2

2r sin θ

)
, 0 < θ < π,

1

2
, θ = 0,±π,

− 1
π tan−1

(
1− r2

2r sin θ

)
, −π < θ < 0,

(4.128)

† The detailed derivation of the final expressions is left to the reader as Exercise 4.3.40.
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where we use the principal branch − 1
2 π < tan−1 t < 1

2 π of the inverse tangent. Revert-
ing to rectangular coordinates, we find that the equilibrium temperature has the explicit
formula

u(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1− 1
π tan−1

(
1− x2 − y2

2y

)
, x2 + y2 < 1, y > 0,

1

2
, x2 + y2 < 1, y = 0,

− 1
π tan−1

(
1− x2 − y2

2y

)
, x2 + y2 < 1, y < 0.

(4.129)

The result is depicted in Figure 4.12.

Averaging, the Maximum Principle, and Analyticity

Let us investigate some important consequences of the Poisson integral formula (4.126).
First, setting r = 0 yields

u(0, θ) =
1

2π

∫ π

−π
h(φ) dφ. (4.130)

The left-hand side is the value of u at the origin — the center of the disk — and so
independent of θ; the right-hand side is the average of its boundary values around the unit
circle. This formula is a particular instance of an important general fact.

Theorem 4.8. Let u(x, y) be harmonic inside a disk of radius a centered at a point
(x0, y0) with piecewise continuous (or, more generally, integrable) boundary values on the
circle C = { (x− x0)

2 + (y − y0)
2 = a2 }. Then its value at the center of the disk is equal

to the average of its values on the boundary circle:

u(x0, y0) =
1

2πa

∮

C
u ds =

1

2π

∫ π

−π
u(x0 + a cos θ, y0 + a sin θ) dθ. (4.131)

Proof : We use the scaling and translation symmetries of the Laplace equation, cf. Ex-
ercises 4.3.8–9, to map the disk of radius a centered at (x0, y0) to the unit disk centered at
the origin. Specifically, we set

U (x, y) = u(x0 + ax, y0 + ay). (4.132)

An easy chain rule computation proves that U (x, y) also satisfies the Laplace equation on
the unit disk x2 + y2 < 1, with boundary values

h(θ) = U (cos θ, sin θ) = u(x0 + a cos θ, y0 + a sin θ).

Therefore, by (4.130),

U (0, 0) =
1

2π

∫ π

−π
h(θ) dθ =

1

2π

∫ π

−π
U (cos θ, sin θ) dθ.

Replacing U by its formula (4.132) produces the desired result. Q.E.D.

An important consequence of the integral formula (4.131) is the Strong Maximum
Principle for harmonic functions.
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Theorem 4.9. Let u be a nonconstant harmonic function defined on a bounded
domain Ω and continuous on ∂Ω. Then u achieves its maximum and minimum values only
at boundary points of the domain. In other words, if

m = min { u(x, y) | (x, y) ∈ ∂Ω } , M = max { u(x, y) | (x, y) ∈ ∂Ω },

are, respectively, its maximum and minimum values on the boundary, then

m < u(x, y) < M at all interior points (x, y) ∈ Ω.

Proof : Let M⋆ ≥ M be the maximum value of u on all of Ω = Ω ∪ ∂Ω, and assume
u(x0, y0) = M⋆ at some interior point (x0, y0) ∈ Ω. Theorem 4.8 implies that u(x0, y0)
equals its average over any circle C centered at (x0, y0) that bounds a closed disk contained
in Ω. Since u is continuous and ≤ M⋆ on C, its average must be strictly less than M⋆

— except in the trivial case in which it is constant and equal to M⋆ on all of C. Thus,
our assumption implies that u(x, y) = M⋆ = u(x0, y0) for all (x, y) belonging to any
circle C ⊂ Ω centered at (x0, y0). Since Ω is connected, this allows us to conclude† that
u(x, y) = M⋆ is constant throughout Ω, in contradiction to our original assumption.

A similar argument works for the minimum; alternatively, one can interchange maxi-
mum and minimum by replacing u by −u. Q.E.D.

Physically, if we interpret u(x, y) as the vertical displacement of a membrane stretched
over a wire, then Theorem 4.9 says that, in the absence of external forcing, the membrane
cannot have any internal bumps — its highest and lowest points are necessarily on the
boundary of the domain. This reconfirms our physical intuition: the restoring force exerted
by the stretched membrane will serve to flatten any bump, and hence a membrane with a
local maximum or minimum cannot be in equilibrium. A similar interpretation holds for
heat conduction. A body in thermal equilibrium will achieve its maximum and minimum
temperature only at boundary points. Indeed, thermal energy would flow away from any
internal maximum, or towards any local minimum, and so if the body contained a local
maximum or minimum in its interior, it could not remain in thermal equilibrium.

The Maximum Principle immediately implies the uniqueness of solutions to the Dirich-
let boundary value problem for both the Laplace and Poisson equations:

Theorem 4.10. If u and ũ both satisfy the same Poisson equation −∆u = f = −∆ũ
within a bounded domain Ω, and u = ũ on ∂Ω, then u ≡ ũ throughout Ω.

Proof : By linearity, the difference v = u− ũ satisfies the homogeneous boundary value
problem ∆v = 0 in Ω and v = 0 on ∂Ω. Our assumption implies that the maximum and
minimum boundary values of v are both 0 = m = M . Theorem 4.9 implies that v(x, y) ≡ 0
at all (x, y) ∈ Ω, and hence u ≡ ũ everywhere in Ω. Q.E.D.

Finally, let us discuss the analyticity of harmonic functions. In view of (4.119), the
nth order term in the polar series solution (4.115), namely,

an r
n cosnθ + bn r

n sinnθ = anRe z
n + bn Im zn = Re

[
(an − i bn)z

n
]
,

is, in fact, a homogeneous polynomial in (x, y) of degree n. This means that, when written
in rectangular coordinates x and y, (4.115) is, in fact, a power series for the harmonic

† You are asked to supply the details in Exercise 4.3.42.
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function u(x, y). It is well known, [8, 23, 97], that any convergent power series converges
to an analytic function — in this case u(x, y). Moreover, the power series must, in fact, be
the Taylor series for u(x, y) based at the origin, and so its coefficients are multiples of the
derivatives of u at x = y = 0. Details are worked out in Exercise 4.3.49.

We can adapt this argument to prove analyticity of all solutions to the Laplace equa-
tion. Note especially the contrast with the wave equation, which has many non-analytic
solutions.

Theorem 4.11. A harmonic function is analytic at every point in the interior of its
domain of definition.

Proof : Let u(x, y) be a solution to the Laplace equation on the open domain Ω ⊂ R2.
Let x0 = (x0, y0) ∈ Ω, and choose a > 0 such that the closed disk of radius a centered at
x0 is entirely contained within Ω:

Da(x0) = {∥x− x0 ∥ ≤ a} ⊂ Ω,

where ∥ · ∥ is the usual Euclidean norm. Then the function U (x, y) defined by (4.132) is
harmonic on the unit disk, with well-defined boundary values. Thus, by the preceding
remarks, U (x, y) is analytic at every point inside the unit disk, and hence so is

u(x, y) = U

(
x− x0

a
,
y − y0

a

)

at every point (x, y) in the interior of the disk Da(x0). Since x0 ∈ Ω was arbitrary, this
establishes the analyticity of u throughout the domain. Q.E.D.

This concludes our discussion of the method of separation of variables for the planar
Laplace equation and some of its important consequences. The method can be used in a
few other special coordinate systems. See [78, 79] for a complete account, including the
fascinating connections with the underlying symmetry properties of the equation.

Exercises

4.3.22. Solve the following Euler differential equations by use of the power ansatz:

(a) x2u′′ + 5xu′ − 5u = 0, (b) 2x2u′′ − xu′ − 2u = 0, (c) x2u′′ − u = 0,

(d) x2u′′ + xu′ − 3u = 0, (e) 3x2u′′ − 5xu′ − 3u = 0, (f )
d2u
dx2

+
2
x

du
dx

= 0.

♦ 4.3.23. (i) Show that if u(x) solves the Euler differential equation

ax2
d2u
dx2

+ bx
du
dx

+ cu = 0, (4.133)

then v(y) = u(ey) solves a linear constant-coefficient differential equation.
(ii) Use this technique to solve the Euler differential equations in Exercise 4.3.22.

4.3.24.(a) Use the method in Exercise 4.3.23 to solve an Euler equation whose characteristic
equation has a double root r1 = r2 = r. (b) Solve the specific equations

(i) x2u′′ − xu′ + u = 0, (ii)
d2u
dx2

+
1
x

du
dx

= 0.



170 4 Separation of Variables

4.3.25. Solve the following boundary value problems:
(a) ∆u = 0, x2 + y2 < 1, u = x3, x2 + y2 = 1;

(b) ∆u = 0, x2 + y2 < 2, u = log(x2 + y2), x2 + y2 = 1;

(c) ∆u = 0, x2 + y2 < 4, u = x4, x2 + y2 = 4;

(d) ∆u = 0, x2 + y2 < 1,
∂u
∂n

= x, x2 + y2 = 1.

4.3.26. Let u(x, y) be the solution to the boundary value problem uxx + uyy = 0, x2 + y2 < 1,

u(x, y) = x2, x2 + y2 = 1. Find u(0, 0).

♥ 4.3.27.(a) Find the equilibrium temperature on a disk of radius 1 when half the boundary is
held at 1◦ and the other half is held at −1◦. (b) Find the equilibrium temperature on a
half-disk of radius 1 when the temperature is held to 1◦ on the curved edge and 0◦ on the
straight edge. (c) Find the equilibrium temperature on a half disk of radius 1 when the
temperature is held to 0◦ on the curved edge and 1◦ on the straight edge.

4.3.28. Find the solution to Laplace’s equation uxx + uyy = 0 on the semi-disk x2 + y2 < 1,

y > 0, that satisfies the boundary conditions u(x, 0) = 0 for −1 < x < 1 and u(x, y) = y3

for x2 + y2 = 1, y > 0.

4.3.29. Find the equilibrium temperature on a half-disk of radius 1 when the temperature is
held to 1◦ on the curved edge, while the straight edge is insulated.

4.3.30. Solve the Dirichlet boundary value problem for the Laplace equation on the pie wedge
W = {0 < θ < 1

4 π, 0 < r < 1}, when the nonzero boundary data u(1, θ) = h(θ) appears
only on the curved portion of its boundary.

4.3.31. Find a harmonic function u(x, y) defined on the annulus 1
2 < r < 1 subject to the

constant Dirichlet boundary conditions u = a on r = 1
2 and u = b on r = 1.

4.3.32. Boiling water flows continually through a long circular metal pipe of inner radius 1 cm
and outer radius 1.2 cm placed in an ice water bath. True or false: The temperature at the
midpoint, at radius 1.1 cm, is 50◦. If false, what is the temperature at this point?

4.3.33. Write out the series solution to the boundary value problem u(1, θ) = 0, u(2, θ) = h(θ),
for the Laplace equation on an annulus 1 < r < 2. Hint : Use all of the separable solutions
listed in (4.114).

4.3.34. Solve the following boundary value problems for the Laplace equation on the annulus
1 < r < 2: (a) u(1, θ) = 0, u(2, θ) = 1, (b) u(1, θ) = 0, u(2, θ) = cos θ,
(c) u(1, θ) = sin 2θ, u(2, θ) = cos 2θ, (d) ur(1, θ) = 0, u(2, θ) = 1,
(e) ur(1, θ) = 0, u(2, θ) = sin 2θ, (f ) ur(1, θ) = 0, ur(2, θ) = 1,
(g) ur(1, θ) = 2, ur(2, θ) = 1.

4.3.35. Solve the following boundary value problems for the Laplace equation on the semi-
annular domain D = {1 < x2 + y2 < 2, y > 0}:
(a) u(x, y) = 0, x2 + y2 = 1, u(x, y) = 1, x2 + y2 = 2, u(x, 0) = 0;

(b) u(x, y) = 0, x2 + y2 = 1 or 2, u(x, 0) = 0, x > 0, u(x, 0) = 1, x < 0.

4.3.36. Solve the following boundary value problem:
(x2 + y2)(uxx + uyy) + 2xux + 2yuy = 0, x2 + y2 < 1, u(x, y) = 1 + 3x, x2 + y2 = 1.

♦ 4.3.37. Justify the chain rule computation (4.104). Then justify formula (4.105) for the Lapla-
cian in polar coordinates.

4.3.38. Suppose
∫ π

−π
|h(θ) | dθ < ∞. Prove that (4.115) converges uniformly to the solution to

the boundary value problem (4.101) on any smaller disk Dr⋆ = {r ≤ r⋆ < 1}!D1.

4.3.39. Prove directly that (4.124) satisfies the boundary conditions (4.122).
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♦ 4.3.40. Justify the integration formula in (4.128).

4.3.41. Provide a complete proof that (4.129) is indeed the solution to the boundary value
problem (4.127).

♦ 4.3.42. Complete the proof of Theorem 4.9 by showing that u(x, y) = M⋆ for all (x, y) ∈ Ω.
Hint : Join (x0, y0) to (x, y) by a curve C ⊂ Ω of finite length, and use the preceding part
of the proof to inductively deduce the existence of a finite sequence of points (xi, yi) ∈ C,
i = 0, . . . , n, with (xn, yn) = (x, y), and such that u(xi, yi) = M⋆.

♦ 4.3.43. Derive the analogue of the Poisson integral formula for the solution to the Neumann
boundary value problem ∆u = 0, x2 + y2 < 1, ∂u/∂n = h, x2 + y2 = 1, on the unit disk.
Pay careful attention to the existence and uniqueness of solutions in your formulation.

4.3.44. Give an example of a solution to Poisson’s equation on the unit disk that achieves its
maximum at an interior point. Interpret your construction physically.

4.3.45. Let p(x, y) be a polynomial (not necessarily harmonic). Suppose u(x, y) is harmonic
and equals p(x, y) on the unit circle x2 + y2 = 1. Prove that u(x, y) is a harmonic polyno-
mial.

4.3.46. Write down an integral formula for the solution to the Dirichlet boundary value prob-
lem on a disk of radius R > 0, namely, ∆u = 0, x2 + y2 < R2, u = h, x2 + y2 = R2.

4.3.47. State and prove a one-dimensional version of Theorem 4.8. Does the analogue of Theo-
rem 4.9 hold?

4.3.48. A unit area square plate has 100◦ temperature on its top edge and 0◦ on its three other
edges. True or false: The temperature at the center equals the average edge temperature.

♦ 4.3.49. Let u(x, y) be a harmonic function on the unit disk with boundary values h(θ) when
r = 1. Using the fact that (4.115) is the Taylor series for u(x, y) at the origin: (a) Find
integral formulas for its partial derivatives ux(0, 0), uy(0, 0), involving the boundary values
h(θ). (b) Generalize part (a) to the second-order derivatives uxx(0, 0), uxy(0, 0), uyy(0, 0).

4.3.50. Prove that if u(x, y) is a bounded harmonic function defined on all of R2, then u is con-
stant. Hint : First generalize Exercise 4.3.49(a) to find the value of its gradient, ∇u(x0, y0),
in terms of the values of u on a circle of radius a centered at (x0, y0). Then see what hap-
pens when the radius of the circle goes to ∞.

4.4 Classification of Linear Partial Differential Equations

We have, at last, been introduced to the three paradigmatic linear second-order partial
differential equations for functions of two variables. The homogeneous versions are

(a) The wave equation: utt − c2 uxx = 0, hyperbolic,

(b) The heat equation: ut − γ uxx = 0, parabolic,

(c) Laplace’s equation: uxx + uyy = 0, elliptic.

The last column indicates the equation’s type, in accordance with the standard taxonomy
of partial differential equations; an explanation will appear momentarily. The wave, heat,
and Laplace equations are the prototypical representatives of these three fundamental gen-
res. Each genre has its own distinctive analytic features, physical manifestations, and even
numerical solution schemes. Equations governing vibrations, such as the wave equation,
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are typically hyperbolic. Equations modeling diffusion, such as the heat equation, are
parabolic. Hyperbolic and parabolic equations both typically represent dynamical pro-
cesses, and so one of the independent variables is identified as time. On the other hand,
equations modeling equilibrium phenomena, including the Laplace and Poisson equations,
are usually elliptic, and involve only spatial variables. Elliptic partial differential equations
are associated with boundary value problems, whereas parabolic and hyperbolic equations
require initial and initial-boundary value problems.

The classification theory of real linear second-order partial differential equations for a
scalar-valued function u(t, x) depending on two variables† proceeds as follows. The most
general such equation has the form

L[u ] = Autt +Butx + Cuxx +Dut +Eux + F u = G, (4.134)

where the coefficients A,B,C,D,E, F are all allowed to be functions of (t, x), as is the
inhomogeneity or forcing function G(t, x). The equation is homogeneous if and only if
G ≡ 0. We assume that at least one of the leading coefficients A,B,C is not identically
zero, since otherwise, the equation degenerates to a first-order equation.

The key quantity that determines the type of such a partial differential equation is its
discriminant

∆ = B2 − 4AC. (4.135)

This should (and for good reason) remind the reader of the discriminant of the quadratic
equation

Q(x, y) = Ax2 +Bxy + C y2 +Dx+ Ey + F = 0, (4.136)

whose solutions trace out a plane curve — a conic section. In the nondegenerate cases, the
discriminant (4.135) fixes its geometric type:

• a hyperbola when ∆ > 0,

• a parabola when ∆ = 0,

• an ellipse when ∆ < 0.

This motivates the choice of terminology used to classify second-order partial differential
equations.

Definition 4.12. At a point (t, x), the linear second-order partial differential equa-
tion (4.134) is called

• hyperbolic if ∆(t, x) > 0,

• parabolic if ∆(t, x) = 0, but A2 +B2 + C2 ̸= 0,

• elliptic if ∆(t, x) < 0,

• singular if A = B = C = 0.

In particular:

• The wave equation utt − uxx = 0 has discriminant ∆ = 4, and is hyperbolic.

• The heat equation uxx − ut = 0 has discriminant ∆ = 0, and is parabolic.

• The Poisson equation utt + uxx = − f has discriminant ∆ = −4, and is elliptic.

† For equilibrium equations, we identify t with the space variable y.
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Example 4.13. When the coefficientsA,B,C vary, the type of the partial differential
equation may not remain fixed over the entire domain. Equations that change type are
less common, as well as being much harder to analyze and solve, both analytically and
numerically. One example arising in the theory of supersonic aerodynamics, [44], is the
Tricomi equation

x
∂2u

∂t2
−

∂2u

∂x2
= 0. (4.137)

Comparing with (4.134), we find that

A = x, B = 0, C = −1, while D = E = F = G = 0.

The discriminant in this particular case is

∆ = B2 − 4AC = 4x,

and hence the equation is hyperbolic when x > 0, elliptic when x < 0, and parabolic on the
transition line x = 0. In the physical model, the hyperbolic region corresponds to subsonic
flow, while the supersonic regions are of elliptic type. The transitional parabolic boundary
represents the shock line between the sub- and super-sonic regions — the familiar sonic
boom as an airplane crosses the sound barrier.

While this tripartite classification into hyperbolic, parabolic, and elliptic equations
initially appears in the bivariate context, the terminology, underlying properties, and as-
sociated physical models carry over to second-order partial differential equations in higher
dimensions. Most of the partial differential equations arising in applications fall into one
of these three categories, and it is fair to say that the field of partial differential equations
splits into three distinct subfields. Or rather four subfields, the last containing all the equa-
tions, including higher-order equations, that do not fit into the preceding categorization.
(One important example appears in Section 8.5.)

Remark : The classification into hyperbolic, parabolic, elliptic, and singular types car-
ries over as stated to quasilinear second-order equations, whose coefficients A, . . . , G are
allowed to depend on u and its first-order derivatives, ut, ux. Here the type of the equation
can vary with both the point in the domain and the particular solution being considered.
Even more generally, for a fully nonlinear second-order partial differential equation

H(t, x, u, ut, ux, utt, utx, uxx) = 0, (4.138)

one defines its discriminant to be

∆ =

(
∂H

∂utx

)2

− 4
∂H

∂utt

∂H

∂uxx

. (4.139)

Its sign determines the type of the equation as above — again depending on the point in
the domain and the solution under consideration.

Exercises

4.4.1. Plot the following conic sections and classify their type:
(a) x2 + 3y2 = 1, (b) xy + x+ y = 4, (c) x2 − xy + y2 = x− 2y,
(d) x2 + 2xy + y2 + y = 1, (e) x2 − 2y2 = 6x+ 8y + 1.
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4.4.2. Determine the type of the following partial differential equations:
(a) utt + 3uxx = 0, (b) utx + ut + ux = u, (c) utt + ut + ux = 0,
(d) utt − utx + uxx = u, (e) utt + 4utx + 4uxx = ut, (f ) utx + uxx = 0.

4.4.3. Consider the partial differential equation xutt + (t + x)uxx = 0. At what points of the
plane is the equation elliptic? hyperbolic? parabolic? degenerate?

4.4.4. Answer Exercise 4.4.3 for the equations
(a) x2 uxx + xux + uyy = 0, (b) ∂x(xux) = ∂y(y uy), (c) ut = ∂x[ (x + t)ux ],
(d) ∇ · (c(x, y)∇u) = u, where c(x, y) is a given function.

4.4.5. Steady flow of air past an airplane is modeled by the partial differential equation
(m2 − 1)uxx + uyy = 0, in which x is the flight direction, y the transverse direction, and
m ≥ 0 is the Mach number — the ratio of the airplane’s speed to the speed of sound. Show
that the equation is hyperbolic for subsonic flight, but elliptic for supersonic flight.

4.4.6. Show that the second-order partial differential equation

− ∂
∂x

(

p(x, y)
∂u
∂x

)

− ∂
∂y

(

q(x, y)
∂u
∂y

)

+ r(x, y)u = f(x, y)

is elliptic if and only if p(x, y) and q(x, y) are nonzero and have the same sign.

♦ 4.4.7. True or false: The type of a linear second-order partial differential equation is not af-
fected by a change of independent variables: τ = ϕ(t, x), ξ = ψ(t, x).

4.4.8. Let v(t, x) = a(t, x)u(t, x) + b(t, x), where a, b are fixed functions with a ̸= 0. Suppose u
is a solution to a second-order linear partial differential equation. Prove that v also solves a
linear partial differential equation of the same type.

♦ 4.4.9. True or false: The polar coordinate form (4.105) of the Laplace equation is elliptic.

4.4.10. Rewrite the Laplace equation uxx + uyy = 0 in terms of parabolic coordinates ξ, η, as

defined by the equations x = ξ2 − η2, y = 2ξ η. Is the resulting equation elliptic?

♦ 4.4.11. Prove that the complex change of variables x = x, t = i y, maps the Laplace equation
uxx+uyy = 0 to the wave equation utt = uxx. Explain why the type of a partial differential
equation is not necessarily preserved under a complex change of variables.

♥ 4.4.12. Suppose, against all advice, we pose the elliptic Laplace equation as an initial value
problem, namely utt = −uxx for 0 < x < 1, t > 0,

u(0, x) = f(x), ut(0, x) = 0, 0 ≤ x ≤ 1, u(t, 0) = 0 = u(t, 1), t ≥ 0.

(a) Prove that for any positive integer n > 0, the function un(t, x) =
sinnπ t coshnπx

n
satisfies the initial value problem. Determine the initial condition un(0, x) = fn(x).

(b) Prove that, as n → ∞, the initial condition fn(x) → 0 becomes vanishingly small,

whereas, at any t > 0, the solution value un
(
t, 12

)
→∞.

(c) Explain why this represents an ill-posed problem.

4.4.13. The minimal surface equation (1+u2x)uxx−2uxuyuxy+(1+u2y)uyy = 0 is (a) hyperbolic,
(b) parabolic, (c) elliptic, (d) singular, (e) of variable type depending on the point in the
domain, or (f ) of variable type depending on the solution and the point in the domain.

Characteristics and the Cauchy Problem

In Chapter 2, we discovered that the characteristic curves guide the behavior of solutions
to first-order partial differential equations. Characteristics play a similarly fundamental
role in the analysis of more general hyperbolic partial differential equations and systems.
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In particular, they provide a mechanism for distinguishing among the various classes of
second-order partial differential equations.

As above, we will focus our attention on partial differential equations involving two
independent variables. The starting point is the general initial value problem, also known
as the Cauchy problem, in honor of the prolific nineteenth-century French mathemati-
cian Augustin–Louis Cauchy, justly famous for his wide-ranging contributions throughout
mathematics and its applications, including the Cauchy–Schwarz inequality, many of the
fundamental concepts in complex analysis, as well as the foundations of elasticity and
materials science. The general Cauchy problem specifies appropriate initial data along a
smooth curve† Γ ⊂ R2 and seeks a solution to the partial differential equation that as-
sumes the given initial data on Γ. In all our examples, the curve in question has been a
straight line, e.g., the x–axis, but one could easily envisage more general situations. If the
partial differential equation has order n, then the Cauchy data consists of the values of the
dependent variable u along with all its partial differential equations up to order n − 1 on
the curve Γ. For most curves, there is a unique solution u(t, x) to the partial differential
equation that achieves the specified values along Γ. More rigorously, if we are in the an-
alytic category, meaning that the partial differential equation, the curve, and the Cauchy
data are all specified by analytic functions, then the fundamental Cauchy–Kovalevskaya
Theorem guarantees the existence of an analytic solution u(t, x) to the Cauchy problem
near any point on the initial curve. The statement of proof of this important theorem, due
to Cauchy and, in general form, the influential nineteenth-century Russian mathematician
Sofia Kovalevskaya, relies on the construction of convergent power series for the desired
solution and would take us too far afield. We refer the interested reader to [35, 44]. The
exceptional curves, for which the Cauchy–Kovalevskaya Existence Theorem does not apply,
are called the characteristics of the underlying partial differential equations.

More prosaically, a curve Γ will be called non-characteristic for the given partial
differential equation if one can determine the values of all the derivatives of u along Γ
from the specified Cauchy data. Indeed, the determination of the values of the higher-
order derivatives along the curve is a necessary preliminary step towards establishing the
Cauchy–Kovalevskaya existence result. As we will now show, this requirement serves to dis-
tinguish the characteristic and non-characteristic curves for the examples we have already
encountered, and hence to lead to their characterization in much more general contexts.

To illustrate the preceding requirement, let us begin with a first-order linear partial
differential equation of the form

∂u

∂t
+ c(t, x)

∂u

∂x
= f(t, x). (4.140)

Let Γ ⊂ R2 be a smooth curve parametrized§ by x(s) =
(
t(s), x(s)

)
T , where smoothness

necessitates that its tangent vector not vanish: x′(s) = (dt/ds, dx/ds)T ̸= 0. Since the
equation is of order n = 1, the Cauchy data requires specifying the values of the dependent
variable u only along Γ — in other words, the function

h(s) = u
(
t(s), x(s)

)
. (4.141)

† More generally, for partial differential equations in m > 2 independent variables, the curve
is replaced by a hypersurface S ⊂ Rm of dimension m− 1.

§ The parameter s could be the arc length, but this is not required. See also Exercise 4.4.20.
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The curve will be non-characteristic if we can then determine the values of the derivatives
of u along Γ, starting with

∂u

∂t

(
t(s), x(s)

)
,

∂u

∂x

(
t(s), x(s)

)
. (4.142)

To this end, let us differentiate the Cauchy data (4.141): applying the chain rule, we obtain

h′(s) =
d

ds
u
(
t(s), x(s)

)
=

∂u

∂t

(
t(s), x(s)

) dt

ds
+

∂u

∂x

(
t(s), x(s)

) dx
ds

. (4.143)

On the other hand, we are assuming that u(t, x) solves the partial differential equation
(4.140) at all points in its domain of definition. In particular, at points on the curve Γ, the
partial differential equation requires

∂u

∂t

(
t(s), x(s)

)
+ c

(
t(s), x(s)

) ∂u
∂x

(
t(s), x(s)

)
= f

(
t(s), x(s)

)
. (4.144)

We can regard (4.143–144) as a pair of inhomogeneous linear algebraic equations, which
can be uniquely solved for the as yet unknown quantities (4.142), unless the determinant
of their coefficient matrix vanishes:

det

(
1 c

(
t(s), x(s)

)

dt/ds dx/ds

)
=

dx

ds
− c

(
t(s), x(s)

) dt

ds
= 0. (4.145)

This condition serves to define a characteristic curve for the first-order partial differential
equation (4.140). In particular, if the curve is parametrized by s = t, i.e., can be identified
with the graph of a function x = g(t), then the characteristic condition (4.145) reduces to

dx

dt
= c(t, x), (4.146)

thus reproducing our original definition of characteristic curve, as in (2.18) and, more
generally, Exercise 2.2.26. On the other hand, if the determinant (4.145) is nonzero, then
one can solve (4.143–144) for the values of the first-order derivatives (4.142) along Γ.
Further differentiation of these conditions proves that one can, in fact, determine the
values of all the higher-order derivatives of the solution u along the curve, which is hence
non-characteristic.

Next, consider a nonsingular linear second-order partial differential equation of the
form (4.134). Since the equation has order n = 2, the Cauchy data along a curve Γ
parametrized as above consists of the values of the function and its first derivatives:

u
(
t(s), x(s)

)
,

∂u

∂t

(
t(s), x(s)

)
,

∂u

∂x

(
t(s), x(s)

)
. (4.147)

However, the latter cannot be specified independently. Indeed, given the value of the
dependent variable, h(s) = u

(
t(s), x(s)

)
, along Γ, its derivative

h′(s) =
d

ds
u
(
t(s), x(s)

)
=

∂u

∂t

(
t(s), x(s)

) dt

ds
+

∂u

∂x

(
t(s), x(s)

) dx
ds

(4.148)

prescribes a particular combination of the two first-order derivatives. Thus, once the
value of one derivative of u on Γ is known, the other is automatically fixed by the relation
(4.148). For example, if dx/ds ̸= 0, we can use (4.148) to determine ux

(
t(s), x(s)

)
, knowing

u
(
t(s), x(s)

)
and ut

(
t(s), x(s)

)
. Similarly, if we differentiate the values of the first-order



4.4 Classification of Linear Partial Differential Equations 177

derivatives with respect to the curve parameter, we can determine two combinations of
second-order derivatives along the curve Γ:

d

ds

∂u

∂t

(
t(s), x(s)

)
=

∂2u

∂t2
(
t(s), x(s)

) dt

ds
+

∂2u

∂t ∂x

(
t(s), x(s)

) dx
ds

,

d

ds

∂u

∂x

(
t(s), x(s)

)
=

∂2u

∂t ∂x

(
t(s), x(s)

) dt

ds
+

∂2u

∂x2

(
t(s), x(s)

) dx
ds

.

(4.149)

On the other hand, the partial differential equation (4.134) induces yet a third relation
among the second-order partial derivatives utt, utx, uxx. These three linear equations can
be uniquely solved for values of these derivatives on Γ if and only if the determinant of
their coefficient matrix is nonzero:

det

⎛

⎝
A(t, x) B(t, x) C(t, x)

dt/ds dx/ds 0

0 dt/ds dx/ds

⎞

⎠ = A(t, x)

(
dx

ds

)2

−B(t, x)
dt

ds

dx

ds
+ C(t, x)

(
dt

ds

)2

= 0.

(4.150)
We conclude that a smooth curve x(s) =

(
t(s), x(s)

)
T ⊂ R2 is a characteristic curve

for the nonsingular linear second-order partial differential equation (4.134) whenever its
tangent vector x′(s) = (dt/ds, dx/ds)T ̸= 0 satisfies the quadratic characteristic equation
(4.150). Conversely, if the curve is non-characteristic, meaning that its tangent does not
satisfy (4.150) anywhere, then one can, with some further work, determine all the higher-
order derivatives of the solution u(t, x) along Γ, and then, at least in the analytic category,
prove existence of a solution to the Cauchy problem, [35].

According to Exercise 4.4.20, the status of a curve as characteristic or not does not
depend on the choice of parametrization. In particular, if the curve is given by the graph
of the function x = x(t), which we parametrize by s = t, then the characteristic equation
(4.150) takes the form of a quadratically nonlinear first-order ordinary differential equation

A(t, x)

(
dx

dt

)2

−B(t, x)
dx

dt
+ C(t, x) = 0, (4.151)

whose solutions are characteristic curves of the second-order partial differential equation.

Warning : If A(t, x) = 0, then the partial differential equation admits characteristic
curves with vertical tangents that cannot be parametrized by s = t. For example, if
A(t, x) ≡ 0, then the vertical lines e.g., t = constant, x = s, are characteristic, satisfying
(4.150), but do not appear as solutions to (4.151).

For example, consider the hyperbolic wave equation

utt − c2 uxx = 0.

According to (4.151), any characteristic curve that is given by the graph of x(t) must solve
(
dx

dt

)2

− c2 = 0, which implies that
dx

dt
= ± c.

Thus, in accordance with our previous analysis, the characteristic curves are the straight
lines of slope ±c, and there are two characteristic curves passing through each point of the
(t, x)–plane. On the other hand, the elliptic Laplace equation

utt + uxx = 0
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has no (real) characteristic curves, since the characteristic equation (4.150) reduces to
(
dx

ds

)2

+

(
dt

ds

)2

= 0,

and ts and xs are not allowed to vanish simultaneously. Finally, for the parabolic heat
equation

uxx − ut = 0,

the characteristic curve equation (4.150) is simply
(
dt

ds

)2

= 0

(since the first-derivative term plays no role), and so there is only one characteristic curve
passing through each point, namely the vertical line t = constant. Observe that the stan-
dard initial value problem u(0, x) = f(x) for the heat equation takes place on a character-
istic curve — the x–axis — but does not take the form of a Cauchy problem, which would
also require specifying the first-order derivatives ut(0, x), ux(0, x) there. And indeed, the
standard initial value problem is not well-posed near the characteristic x–axis for negative
t < 0.

In general, the number of real solutions to the nondegenerate quadratic characteristic
curve equation (4.150) depends on its discriminant ∆ = B2 − 4AC: In the hyperbolic
case, ∆ > 0, and there are two real characteristic curves passing through each point; in
the parabolic case, ∆ = 0, and there is just one real characteristic curve passing through
each point; in the elliptic case, ∆ < 0, and there are no real characteristic curves. In this
manner, elliptic, parabolic, and hyperbolic partial differential equations are distinguished
by the number of (real) characteristic curves passing through a point — namely, zero,
one, and two, respectively. First-order partial differential equations are also viewed as
hyperbolic, since they always admit real characteristic curves.

With further analysis, [35, 70, 122], it can be shown that, as with the wave equation,
signals and disturbances propagate along characteristic curves. Thus, hyperbolic equa-
tions share many qualitative properties with the wave equation, with signals moving in
two different directions. For example, light rays move along characteristic curves, and are
thereby subject to the optical phenomena of refraction and focusing. Similarly, since the
characteristic curves for the parabolic heat equation are the vertical lines, this indicates
that the effect of a disturbance at a point (t, x) = (t0, x0) is simultaneously felt along the
entire contemporaneous vertical line t = t0. This has the implication that disturbances in
the heat equation propagate at infinite speed — a counterintuitive fact that will be further
expounded on in Section 8.1. Elliptic equations have no characteristics, and as a conse-
quence, do not support propagating signals; indeed, the effect of a localized disturbance
is immediately felt throughout the domain. For example, even when an external force is
concentrated near a single point, it displaces the entire membrane.

Exercises

4.4.14. Find and graph the real characteristic curves for each of the partial differential equa-
tions in Exercise 4.4.2.
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4.4.15. Graph the characteristic curves for the Tricomi equation (4.137) in its hyperbolic region.
What happens to the characteristics as one approaches the parabolic transition boundary?

4.4.16. True or false: The characteristic curves of the Helmholtz equation uxx +uyy −u = 0 are
circles.

4.4.17.(a) At what points of the plane is the partial differential equation xuxx + yuyy = 0
elliptic? parabolic? hyperbolic? (b) How many characteristics are there through the point
(1,−1)? (c) Find them explicitly.

4.4.18. Consider the partial differential equation uxx + yuxy = y2.
(a) On which regions of the (x, y)–plane is the equation elliptic? parabolic? hyperbolic?
(b) Find the characteristics in the hyperbolic region.
(c) Find the general solution in the hyperbolic region. Hint : Use characteristic coordinates.

4.4.19. Find a partial differential equation whose characteristic curves are:
(a) the lines x− y = a, x+ 2y = b, where a, b ∈ R are arbitrary constants;

(b) the exponential curves y = cex for c ∈ R;

(c) the concentric circles x2 + y2 = a for a ≥ 0, and the rays y = bx.

♦ 4.4.20. Prove that any reparametrization of a characteristic curve for a given second-order lin-
ear partial differential equation is also a characteristic curve.

4.4.21. True or false: You can uniquely recover a second-order partial differential equation by
knowing all its characteristic curves.

♦ 4.4.22. Prove that any invertible change of variables, as in Exercise 4.4.7, maps the character-
istic curves of the original linear partial differential equation to the characteristic curves of
the transformed equation. Thus, characteristic curves are intrinsic: they do not depend on
the parametrization, nor on the coordinates used to represent the partial differential equa-
tion.
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6.3 Green’s Functions for the Planar Poisson Equation

Now we develop the Green’s function approach to solving boundary value problems in-
volving the two-dimensional Poisson equation (4.84). As before, the Green’s function is
characterized as the solution to the homogeneous boundary value problem in which the
inhomogeneity is a concentrated unit impulse — a delta function. The solution to the
general forced boundary value problem is then obtained via linear superposition, that is,
as a convolution integral with the Green’s function.

However, before proceeding, we need to quickly review some basic facts concerning
vector calculus in the plane. The student may wish to consult a standard multivariable
calculus text, e.g., [8, 108], for additional details.

Calculus in the Plane

Let x = (x, y) denote the usual Cartesian coordinates on R2. The term scalar field is
synonymous with a real-valued function u(x, y), defined on a domain Ω ⊂ R2. A vector-
valued function

v(x) = v(x, y) =

(
v1(x, y)
v2(x, y)

)
(6.70)

is known as a (planar) vector field . A vector field assigns a vector v(x, y) ∈ R2 to each point
(x, y) ∈ Ω in its domain of definition, and hence defines a function v:Ω → R2. Physical
examples include velocity vector fields of fluid flows, heat flux fields in thermodynamics,
and gravitational and electrostatic force fields.

The gradient operator ∇ maps a scalar field u(x, y) to the vector field

∇u =

(
∂u/∂x
∂u/∂y

)
. (6.71)

The scalar field u is often referred to as a potential function for its gradient vector field
v = ∇u. On a connected domain Ω, the potential, when it exists, is uniquely determined
up to addition of a constant.

The divergence of the planar vector field v = ( v1, v2 )
T is the scalar field

∇ · v = div v =
∂v1
∂x

+
∂v2
∂y

. (6.72)

Its curl is defined as

∇× v = curlv =
∂v2
∂x

−
∂v1
∂y

. (6.73)

Notice that the curl of a planar vector field is a scalar field. (In contrast, in three dimen-
sions, the curl of a vector field is another vector field.) Given a smooth potential u ∈ C2,
the curl of its gradient vector field automatically vanishes:

∇×∇u =
∂

∂x

∂u

∂y
−

∂

∂y

∂u

∂x
≡ 0,

by the equality of mixed partials. Thus, a necessary condition for a vector field v to admit
a potential is that it be irrotational , meaning ∇ × v = 0; this condition is sufficient if
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Figure 6.10. Orientation of the boundary of a planar domain.

the underlying domain Ω is simply connected , i.e., has no holes. On the other hand, the
divergence of a gradient vector field coincides with the Laplacian of the potential function:

∇ ·∇u = ∆u =
∂2u

∂x2
+

∂2u

∂y2
. (6.74)

A vector field is incompressible if it has zero divergence: ∇ · v = 0; for the velocity vector
field of a steady-state fluid flow, incompressibility means that the fluid does not change
volume. (Water is, for all practical purposes, an incompressible fluid.) Therefore, an
irrotational vector field with potential u is also incompressible if and only if the potential
solves the Laplace equation ∆u = 0.

Remark : Because of formula (6.74), the Laplacian operator is also sometimes written
as ∆ = ∇2. The factorization of the Laplacian into the product of the divergence and the
gradient operators is, in fact, of great importance, and underlies its “self-adjointness”, a
fundamental property whose ramifications will be explored in depth in Chapter 9.

Let Ω ⊂ R2 be a bounded domain whose boundary ∂Ω consists of one or more piecewise
smooth closed curves. We orient the boundary so that the domain is always on one’s left
as one goes around the boundary curve(s). Figure 6.10 sketches a domain with two holes;
its three boundary curves are oriented according to the directions of the arrows. Note that
the outer boundary curve is traversed in a counterclockwise direction, while the two inner
boundary curves are oriented clockwise.

Green’s Theorem, first formulated by George Green to use in his seminal study of
partial differential equations and potential theory, relates certain double integrals over a
domain to line integrals around its boundary. It should be viewed as the extension of the
Fundamental Theorem of Calculus to double integrals.

Theorem 6.13. Let v(x) be a smooth† vector field defined on a bounded domain
Ω ⊂ R2. Then the line integral of v around the boundary ∂Ω equals the double integral of
its curl over the domain: ∫ ∫

Ω
∇× v dx dy =

∮

∂Ω
v · dx, (6.75)

† To be precise, we require v to be continuously differentiable within the domain, and contin-
uous up to the boundary, so v ∈ C0(Ω) ∩ C1(Ω), where Ω = Ω ∪ ∂Ω denotes the closure of the
domain Ω.
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or, in full detail, ∫ ∫

Ω

(
∂v2
∂x

−
∂v1
∂y

)
dx dy =

∮

∂Ω
v1 dx+ v2 dy . (6.76)

Example 6.14. Let us apply Green’s Theorem 6.13 to the particular vector field

v = ( y, 0 )T . Since ∇× v ≡ −1, we obtain
∮

∂Ω
y dx =

∫ ∫

Ω
(−1) dx dy = − area Ω. (6.77)

This means that we can determine the area of a planar domain by computing the negative
of the indicated line integral around its boundary.

For later purposes, we rewrite the basic Green identity (6.75) in an equivalent “diver-

gence form”. Given a planar vector field v = ( v1, v2 )
T , let

v⊥ =

(
−v2
v1

)
(6.78)

denote the “perpendicular” vector field. We note that its curl

∇× v⊥ =
∂v1
∂x

+
∂v2
∂y

= ∇ · v (6.79)

coincides with the divergence of the original vector field.
When we replace v in Green’s identity (6.75) by v⊥, the result is

∫ ∫

Ω
∇ · v dx dy =

∫ ∫

Ω
∇× v⊥ dx dy =

∮

∂Ω
v⊥ · dx =

∮

∂Ω
v · n ds,

where n denotes the unit outwards normal to the boundary of our domain, while ds denotes
the arc-length element along the boundary curve. This yields the divergence form of Green’s
Theorem: ∫ ∫

Ω
∇ · v dx dy =

∮

∂Ω
v · n ds. (6.80)

Physically, if v represents the velocity vector field of a steady-state fluid flow, then the
line integral in (6.80) represents the net fluid flux out of the region Ω. As a result, the
divergence ∇ ·v represents the local change in area of the fluid at each point, which serves
to justify our earlier statement on incompressibility.

Consider next the product vector field uv obtained by multiplying a vector field v by
a scalar field u. An elementary computation proves that its divergence is

∇ · (uv) = u∇ · v +∇u · v. (6.81)

Replacing v by uv in the divergence formula (6.80), we deduce what is usually referred to
as Green’s formula

∫ ∫

Ω

(
u∇ · v+∇u · v

)
dx dy =

∮

∂Ω
u (v · n) ds, (6.82)

which is valid for arbitrary bounded domains Ω, and arbitrary C1 scalar and vector fields
defined thereon. Rearranging the terms produces

∫ ∫

Ω
∇u · v dx dy =

∮

∂Ω
u (v · n) ds−

∫ ∫

Ω
u∇ · v dx dy. (6.83)
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We will view this identity as an integration by parts formula for double integrals. Indeed,
comparing with the one-dimensional integration by parts formula

∫ b

a
u′(x) v(x)dx = u(x) v(x)

∣∣∣
b

x=a
−

∫ b

a
u(x) v′(x) dx, (6.84)

we observe that the single integrals have become double integrals; the derivatives are vector
derivatives (gradient and divergence), while the boundary contributions at the endpoints
of the interval are replaced by a line integral around the entire boundary of the two-
dimensional domain.

A useful special case of (6.82) is that in which v = ∇v is the gradient of a scalar field
v. Then, in view of (6.74), Green’s formula (6.82) becomes

∫ ∫

Ω

(
u∆v +∇u ·∇v

)
dx dy =

∮

∂Ω
u

∂v

∂n
ds, (6.85)

where ∂v/∂n = ∇v ·n is the normal derivative of the scalar field v on the boundary of the
domain. In particular, setting v = u, we deduce

∫ ∫

Ω

(
u∆u+ ∥∇u ∥2

)
dx dy =

∮

∂Ω
u
∂u

∂n
ds. (6.86)

As an application, we establish a basic uniqueness theorem for solutions to the boundary
value problems for the Poisson equation:

Theorem 6.15. Suppose ũ and u both satisfy the same inhomogeneous Dirichlet or
mixed boundary value problem for the Poisson equation on a connected, bounded domain
Ω. Then ũ = u. On the other hand, if ũ and u satisfy the same Neumann boundary value
problem, then ũ = u+ c for some constant c.

Proof : Since, by assumption, −∆ũ = f = −∆u, the difference v = ũ − u satisfies
the Laplace equation ∆v = 0 in Ω, and satisfies the homogeneous boundary conditions.
Therefore, applying (6.86) to v, we find

∫ ∫

Ω
∥∇v ∥2 dx dy =

∮

∂Ω
v
∂v

∂n
ds = 0,

since, at every point on the boundary, either v = 0 or ∂v/∂n = 0. Since the integrand is
continuous and everywhere nonnegative, we immediately conclude that ∥∇v ∥2 = 0, and
hence ∇v = 0 throughout Ω. On a connected domain, the only functions annihilated by
the gradient operator are the constants:

Lemma 6.16. If v(x, y) is a C1 function defined on a connected domain Ω ⊂ R2,
then ∇v ≡ 0 if and only if v(x, y) ≡ c is a constant.

Proof : Let a,b be any two points in Ω. Then, by connectivity, we can find a curve C
connecting them. The Fundamental Theorem for line integrals, [8, 108], states that

∫

C
∇v · dx = v(b)− v(a).

Thus, if ∇v ≡ 0, then v(b) = v(a) for all a,b ∈ Ω, which implies that v must be con-
stant. Q.E.D.
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Returning to our proof, we conclude that ũ = u+ v = u+ c, which proves the result
in the Neumann case. In the Dirichlet or mixed problems, there is at least one point on
the boundary where v = 0, and hence the only possible constant is v = c = 0, proving that
ũ = u. Q.E.D.

Thus, the Dirichlet and mixed boundary value problems admit at most one solution,
while the Neumann boundary value problem has either no solutions or infinitely many
solutions. Proof of existence of solutions is more challenging, and will be left to a more
advanced text, e.g., [35, 44, 61, 70].

If we subtract from formula (6.85) the formula
∫ ∫

Ω

(
v∆u+∇u ·∇v

)
dx dy =

∮

∂Ω
v
∂u

∂n
ds, (6.87)

obtained by interchanging u and v, we obtain the identity
∫ ∫

Ω

(
u∆v − v∆u

)
dx dy =

∮

∂Ω

(
u

∂v

∂n
− v

∂u

∂n

)
ds, (6.88)

which will play a major role in our analysis of the Poisson equation. Setting v = 1 in (6.87)
yields ∫ ∫

Ω
∆udx dy =

∮

∂Ω

∂u

∂n
ds. (6.89)

Suppose u solves the Neumann boundary value problem

−∆u = f, in Ω
∂u

∂n
= h on ∂Ω.

Then (6.89) requires that ∫ ∫

Ω
f dx dy +

∮

∂Ω
h ds = 0, (6.90)

which thus forms a necessary condition for the existence of a solution u to the inhomo-
geneous Neumann boundary value problem. Physically, if u represents the equilibrium
temperature of a plate, then the integrals in (6.89) measure the net gain or loss in heat en-
ergy due to, respectively, the external heat source and the heat flux through the boundary.
Equation (6.90) is telling us that, for the plate to remain in thermal equilibrium, there can
be no net change in its total heat energy.

The Two–Dimensional Delta Function

Now let us return to the business at hand — solving the Poisson equation on a bounded
domain Ω ⊂ R2. We will subject the solution to either homogeneous Dirichlet boundary
conditions or homogeneous mixed boundary conditions. (As we just noted, the Neumann
boundary value problem does not admit a unique solution, and hence does not possess a
Green’s function.) The Green’s function for the boundary value problem arises when the
forcing function is a unit impulse concentrated at a single point in the domain.

Thus, our first task is to establish the proper form for a unit impulse in our two-
dimensional context. The delta function concentrated at a point ξ = (ξ, η) ∈ R2 is denoted
by

δ(ξ,η)(x, y) = δξ(x) = δ(x− ξ) = δ(x− ξ, y − η), (6.91)
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Figure 6.11. Gaussian functions converging to the delta function.

and is designed so that

δξ(x) = 0, x ̸= ξ,

∫ ∫

Ω
δ(ξ,η)(x, y) dx dy = 1, ξ ∈ Ω. (6.92)

In particular, δ(x, y) = δ0(x, y) represents the delta function at the origin. As in the
one-dimensional version, there is no ordinary function that satisfies both criteria; rather,
δ(x, y) is to be viewed as the limit of a sequence of more and more highly concentrated
functions gn(x, y), with

lim
n→∞

gn(x, y) = 0, for (x, y) ̸= (0, 0), while

∫ ∫

R2

gn(x, y) dx dy = 1.

A good example of a suitable sequence is provided by the radial Gaussian functions

gn(x, y) =
n
π e−n (x2+y2) . (6.93)

As plotted in Figure 6.11, as n → ∞, the Gaussian profiles become more and more con-
centrated near the origin, while maintaining a unit volume underneath their graphs. The
fact that their integral over R2 equals 1 is a consequence of (2.99).

Alternatively, one can assign the delta function a dual interpretation as the linear
functional

L(ξ,η)[u ] = Lξ[u ] = u(ξ) = u(ξ, η), (6.94)

which assigns to each continuous function u ∈ C0(Ω) its value at the point ξ = (ξ, η) ∈ Ω.
Then, using the L2 inner product

⟨ u , v ⟩ =
∫ ∫

Ω
u(x, y) v(x, y)dx dy (6.95)

between scalar fields u, v ∈ C0(Ω), we formally identify the linear functional L(ξ,η) with
the delta “function” by the integral formula

⟨ δ(ξ,η) , u ⟩ =
∫ ∫

Ω
δ(ξ,η)(x, y) u(x, y)dx dy =

{
u(ξ, η), (ξ, η) ∈ Ω,

0, (ξ, η) ∈ R2 \ Ω,
(6.96)
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for any u ∈ C0(Ω). As in the one-dimensional version, we will avoid defining the integral
when the delta function is concentrated at a boundary point of the domain.

Since double integrals can be evaluated as repeated one-dimensional integrals, we can
conveniently view

δ(ξ,η)(x, y) = δξ(x) δη(y) = δ(x− ξ) δ(y − η) (6.97)

as the product† of a pair of one-dimensional delta functions. Indeed, if the impulse point

(ξ, η) ∈ R =
{
a < x < b, c < y < d

}
⊂ Ω

is contained in a rectangle that lies within the domain, then
∫ ∫

Ω
δ(ξ,η)(x, y) u(x, y)dx dy =

∫ ∫

R
δ(ξ,η)(x, y) u(x, y)dx dy

=

∫ b

a

(∫ d

c
δ(x− ξ) δ(y − η) u(x, y)dy

)
dx =

∫ b

a
δ(x− ξ) u(x, η) dx = u(ξ, η).

The Green’s Function

As in the one-dimensional context, the Green’s function is defined as the solution to the
inhomogeneous differential equation when subject to a concentrated unit delta impulse at
a prescribed point ξ = (ξ, η) ∈ Ω inside the domain. In the current situation, the Poisson
equation takes the form

−∆u = δξ, or, explicitly, −
∂2u

∂x2
−

∂2u

∂y2
= δ(x− ξ) δ(y − η). (6.98)

The function u(x, y) is also subject to some homogeneous boundary conditions, e.g., the
Dirichlet conditions u = 0 on ∂Ω. The resulting solution is called the Green’s function for
the boundary value problem, and written

Gξ(x) = G(x; ξ) = G(x, y; ξ, η). (6.99)

Once we know the Green’s function, the solution to the general Poisson boundary
value problem

−∆u = f in Ω, u = 0 on ∂Ω (6.100)

is reconstructed as follows. We regard the forcing function

f(x, y) =

∫ ∫

Ω
δ(x− ξ) δ(y − η)f(ξ, η) dξ dη

as a superposition of delta impulses, whose strength equals the value of f at the impulse
point. Linearity implies that the solution to the boundary value problem is the correspond-
ing superposition of Green’s function responses to each of the constituent impulses. The
net result is the fundamental superposition formula

u(x, y) =

∫ ∫

Ω
G(x, y; ξ, η) f(ξ, η)dξ dη (6.101)

† This is an exception to our earlier injunction not to multiply delta functions. Multiplication
is allowed when they depend on different variables.



6.3 Green’s Functions for the Planar Poisson Equation 249

for the solution to the boundary value problem. Indeed,

−∆u(x, y) =

∫ ∫

Ω
−∆G(x, y; ξ, η)f(ξ, η) dξ dη

=

∫ ∫

Ω
δ(x− ξ, y − η) f(ξ, η) dξ dη = f(x, y),

while the fact that G(x, y; ξ, η) = 0 for all (x, y) ∈ ∂Ω implies that u(x, y) = 0 on the
boundary.

The Green’s function inevitably turns out to be symmetric under interchange of its
arguments:

G(ξ, η;x, y) = G(x, y; ξ, η). (6.102)

As in the one-dimensional case, symmetry is a consequence of the self-adjointness of the
boundary value problem, and will be explained in full in Chapter 9. Symmetry has the
following intriguing physical interpretation: Let x, ξ ∈ Ω be any two points in the domain.
We apply a concentrated unit force to the membrane at the first point and measure its
deflection at the second; the result is exactly the same as if we applied the impulse at
the second point and measured the deflection at the first. (Deflections at other points
in the domain will typically have no obvious relation with one another.) Similarly, in
electrostatics, the solution u(x, y) is interpreted as the electrostatic potential for a system
of charges in equilibrium. A delta function corresponds to a point charge, e.g., an electron.
The symmetry property says that the electrostatic potential at x due to a point charge
placed at position ξ is exactly the same as the potential at ξ due to a point charge at x.
The reader may wish to meditate on the physical plausibility of these striking facts.

Unfortunately, most Green’s functions cannot be written down in closed form. One
important exception occurs when the domain is the entire plane: Ω = R2. The solution
to the Poisson equation (6.98) is the free-space Green’s function G0(x, y; ξ, η) = G0(x; ξ),
which measures the effect of a unit impulse, concentrated at ξ, throughout two-dimensional
space, e.g., the gravitational potential due to a point mass or the electrostatic potential
due to a point charge. To motivate the construction, let us appeal to physical intuition.
First, since the concentrated impulse is zero when x ̸= ξ, the function must solve the
homogeneous Laplace equation

−∆G0 = 0 for all x ̸= ξ. (6.103)

Second, since the Poisson equation is modeling a homogeneous, uniform medium, in the
absence of boundary conditions the effect of a unit impulse should depend only on the
distance from its source. Therefore, we expect G0 to be a function of the radial variable
alone:

G0(x, y; ξ, η) = v(r), where r = ∥x− ξ ∥ =
√

(x− ξ)2 + (y − η)2 .

According to (4.113), the only radially symmetric solutions to the Laplace equation are

v(r) = a+ b log r, (6.104)

where a and b are constants. The constant term a has zero derivative, and so cannot
contribute to the delta function singularity. Therefore, we expect the required solution to
be a multiple of the logarithmic term. To determine the multiple, consider a closed disk of
radius ε > 0 centered at ξ,

Dε =
{
0 ≤ r ≤ ε

}
=

{
∥x− ξ ∥ ≤ ε

}
,
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with circular boundary

Cε = ∂Dε = {r = ∥x− ξ ∥ = ε} = { ( ξ + ε cos θ, η + ε sin θ ) | −π ≤ θ ≤ π } .

Then, by (6.74) and the divergence form (6.80) of Green’s Theorem,

1 =

∫ ∫

Dε

δ(x, y)dx dy = −b

∫ ∫

Dε

∆(log r) dx dy = −b

∫ ∫

Dε

∇ ·∇(log r) dx dy

= −b

∮

Cε

∂(log r)

∂n
ds = −b

∮

Cε

∂(log r)

∂r
ds = −b

∮

Cε

1

r
ds = −b

∫ π

−π
dθ = −2π b,

(6.105)

and hence b = −1/(2π). We conclude that the free-space Green’s function should have the
logarithmic form

G0(x, y; ξ, η) = −
1

2π
log r = −

1

2π
log ∥x− ξ ∥ = −

1

4π
log

[
(x− ξ)2 + (y − η)2

]
.

(6.106)

A fully rigorous, albeit more difficult, justification of (6.106) comes from the following
important result, known as Green’s representation formula.

Theorem 6.17. Let Ω ⊂ R2 be a bounded domain, with piecewise C1 boundary ∂Ω.
Suppose u ∈ C2(Ω) ∩ C1(Ω). Then, for any (x, y) ∈ Ω,

u(x, y) = −
∫ ∫

Ω
G0(x, y; ξ, η)∆u(ξ, η)dξ dη

+

∮

∂Ω

(
G0(x, y; ξ, η)

∂u

∂n
(ξ, η)−

∂G0

∂n
(x, y; ξ, η) u(ξ, η)

)
ds,

(6.107)
where the Laplacian and the normal derivatives on the boundary are all taken with respect
to the integration variables ξ = (ξ, η).

In particular, if both u and ∂u/∂n vanish on ∂Ω, then (6.107) reduces to

u(x, y) = −
∫ ∫

R2

G0(x, y; ξ, η)∆u(ξ, η)dξ dη.

Invoking the definition of the delta function on the left-hand side and formally applying
the Green identity (6.88) to the right-hand side produces

∫ ∫

R2

δ(x− ξ) δ(y − η) u(ξ, η) dξ dη =

∫ ∫

R2

−∆G0(x, y; ξ, η) u(ξ, η)dξ dη. (6.108)

It is in this dual sense that we justify the desired formula

−∆G0(x; ξ) =
1

2π
∆
(
log ∥x− ξ ∥

)
= δ(x− ξ). (6.109)

Proof of Theorem 6.17 : We first note that, even though G0(x, ξ) has a logarithmic
singularity at x = ξ, the double integral in (6.107) is finite. Indeed, after introducing polar
coordinates ξ = x + r cos θ, η = y + r sin θ, and recalling dξ dη = r dr dθ, we see that it
equals

1

2π

∫ ∫
(r log r)∆udr dθ.
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∂Ω

Cε

x

Figure 6.12. Domain Ωε = Ω \Dε(x).

The product r log r is everywhere continuous — even at r = 0 — and so, provided ∆u is
well behaved, e.g., continuous, the integral is finite. There is, of course, no problem with
the line integral in (6.107), since the contour does not go through the singularity.

Let us now avoid dealing directly with the singularity by working on a subdomain

Ωε = Ω \Dε(x) = { ξ ∈ Ω | ∥x− ξ ∥ > ε }

obtained by cutting out a small disk

Dε(x) = { ξ | ∥x− ξ ∥ ≤ ε }

of radius ε > 0 centered at x. We choose ε sufficiently small in order that Dε(x) ⊂ Ω, and
hence

∂Ωε = ∂Ω ∪ Cε, where Cε =
{
∥x− ξ ∥ = ε

}

is the circular boundary of the disk. The subdomain Ωε is represented by the shaded
region in Figure 6.12. Since the double integral is well defined, we can approximate it by
integrating over Ωε:

∫ ∫

Ω
G0(x, y; ξ, η)∆u(ξ, η)dξ dη = lim

ε→ 0

∫ ∫

Ωε

G0(x, y; ξ, η)∆u(ξ, η)dξ dη. (6.110)

Since G0 has no singularities in Ωε, we are able to apply the Green formula (6.85) and then
(6.103) to evaluate

∫ ∫

Ωε

G0(x, y; ξ, η)∆u(ξ, η)dξ dη

=

∮

∂Ω

(
G0(x, y; ξ, η)

∂u

∂n
(ξ, η)−

∂G0

∂n
(x, y; ξ, η) u(ξ, η)

)
ds

−
∮

Cε

(
G0(x, y; ξ, η)

∂u

∂n
(ξ, η)−

∂G0

∂n
(x, y; ξ, η) u(ξ, η)

)
ds,

(6.111)

where the line integral around Cε is taken in the usual counterclockwise direction — the
opposite orientation to that induced by its status as part of the boundary of Ωε. Now, on
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the circle Cε,

G0(x, y; ξ, η) = −
log r

2π

∣∣∣∣
r=ε

= −
log ε

2π
, (6.112)

while, in view of Exercise 6.3.1,

∂G0

∂n
(x, y; ξ, η) = −

1

2π

∂(log r)

∂r

∣∣∣∣
r=ε

= −
1

2πε
. (6.113)

Therefore, ∮

Cε

∂G0

∂n
(x, y; ξ, η) u(ξ, η) ds = −

1

2πε

∮

Cε

u(ξ, η) ds,

which we recognize as minus the average of u on the circle of radius ε. As ε → 0, the circles
shrink down to their common center, and so, by continuity, the averages tend to the value
u(x, y) at the center; thus,

lim
ε→ 0

∮

Cε

∂G0

∂n
(x, y; ξ, η) u(ξ, η)ds = −u(x, y). (6.114)

On the other hand, using (6.112), and then (6.89) on the disk Dε, we have

∮

Cε

G0(x, y; ξ, η)
∂u

∂n
(ξ, η) ds = −

log ε

2π

∮

Cε

∂u

∂n
(ξ, η) ds

= −
log ε

2π

∫ ∫

Dε

∆u(ξ, η) dξ dη = − (ε2 log ε)∆uε,

where

∆uε =
1

2πε2

∫ ∫

Dε

∆u(ξ, η) dξ dη

is the average of ∆u over the disk Dε. As above, as ε → 0, the averages over the disks
converge to the value at their common center, ∆uε → ∆u(x, y), and hence

lim
ε→ 0

∮

Cε

G0(x, y; ξ, η)
∂u

∂n
(ξ, η) ds = lim

ε→ 0
(− ε2 log ε)∆uε = 0. (6.115)

In view of (6.110, 114, 115), the ε → 0 limit of (6.111) is exactly the Green representation
formula (6.107). Q.E.D.

As noted above, the free space Green’s function (6.106) represents the gravitational
potential in empty two-dimensional space due to a unit point mass, or, equivalently, the
two-dimensional electrostatic potential due to a unit point charge sitting at position ξ. The
corresponding gravitational or electrostatic force field is obtained by taking its gradient:

F = ∇G0 = −
x− ξ

2π ∥x− ξ ∥2
.

Its magnitude

∥F ∥ =
1

2π ∥x− ξ ∥

is inversely proportional to the distance from the mass or charge, which is the two-
dimensional form of Newton’s and Coulomb’s three-dimensional inverse square laws.
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The gravitational potential due to a two-dimensional mass, e.g., a flat plate, in the
shape of a domain Ω ⊂ R2 is obtained by superimposing delta function sources with
strengths equal to the density of the material at each point. The result is the potential
function

u(x, y) = −
1

4π

∫ ∫

Ω
ρ(ξ, η) log

[
(x− ξ)2 + (y − η)2

]
dξ dη, (6.116)

in which ρ(ξ, η) denotes the density at position (ξ, η) ∈ Ω.

Example 6.18. The gravitational potential due to a circular diskD = {x2 + y2 ≤ 1}
of unit radius and unit density ρ ≡ 1 is

u(x, y) = −
1

4π

∫ ∫

D
log

[
(x− ξ)2 + (y − η)2

]
dξ dη. (6.117)

A direct evaluation of this double integral is not so easy. However, we can write down the
potential in closed form by recalling that it solves the Poisson equation

−∆u =

{
1, ∥x ∥ < 1,

0, ∥x ∥ > 1.
(6.118)

Moreover, u is clearly radially symmetric, and hence a function of r alone. Thus, in the
polar coordinate expression (4.105) for the Laplacian, the θ derivative terms vanish, and
so (6.118) reduces to

d2u

dr2
+

1

r

du

dr
=

{ −1, r < 1,

0, r > 1,

which is effectively a first-order linear ordinary differential equation for du/dr. Solving
separately on the two subintervals produces

u(r) =

{
a+ b log r − 1

4 r
2, r < 1,

c+ d log r, r > 1,

where a, b, c, d are constants. Continuity of u(r) and u′(r) at r = 1 implies c = a − 1
4 ,

d = b− 1
2 . Moreover, the potential for a non-concentrated mass cannot have a singularity

at the origin, and so b = 0. Direct evaluation of (6.117) at x = y = 0, using polar
coordinates, proves that a = 1

4 . We conclude that the gravitational potential (6.117) due
to a uniform disk of unit radius, and hence total mass (area) π, is, explicitly,

u(x, y) =

{
1
4 (1− r2) = 1

4 (1− x2 − y2), x2 + y2 ≤ 1,

− 1
2 log r = − 1

4 log(x
2 + y2), x2 + y2 ≥ 1.

(6.119)

Observe that, outside the disk, the potential is exactly the same as the logarithmic potential
due to a point mass of magnitude π located at the origin. Consequently, the gravitational
force field outside a uniform disk is the same as if all its mass were concentrated at the
origin.

With the free-space logarithmic potential in hand, let us return to the question of find-
ing the Green’s function for a boundary value problem on a bounded domain Ω ⊂ R2. Since
the logarithmic potential (6.106) is a particular solution to the Poisson equation (6.98), the
general solution, according to Theorem 1.6, is given by u = G0+ z, where z is an arbitrary
solution to the homogeneous equation ∆z = 0, i.e., an arbitrary harmonic function. Thus,
constructing the Green’s function has been reduced to the problem of finding the harmonic
function z such that G = G0 + z satisfies the desired homogeneous boundary conditions.
Let us explicitly formulate this result for the (inhomogeneous) Dirichlet problem.
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Theorem 6.19. The Green’s function for the Dirichlet boundary value problem for
the Poisson equation on a bounded domain Ω ⊂ R2 has the form

G(x, y; ξ, η) = G0(x, y; ξ, η) + z(x, y; ξ, η), (6.120)

where the first term is the logarithmic potential (6.106), while, for each (ξ, η) ∈ Ω, the
second term is the harmonic function that solves the boundary value problem

∆z = 0 on Ω,

z(x, y; ξ, η) =
1

4π
log

[
(x− ξ)2 + (y − η)2

]
for (x, y) ∈ ∂Ω.

(6.121)

If u(x, y) is a solution to the inhomogeneous Dirichlet problem

−∆u = f, x ∈ Ω, u = h, x ∈ ∂Ω, (6.122)

then

u(x, y) =

∫ ∫

Ω
G(x, y; ξ, η) f(ξ, η)dξ dη −

∮

∂Ω

∂G

∂n
(x, y; ξ, η) h(ξ, η) ds, (6.123)

where the normal derivative of G is taken with respect to (ξ, η) ∈ ∂Ω.

Proof : To show that (6.120) is the Green’s function, we note that

−∆G = −∆G0 −∆z = δ(ξ,η) in Ω, (6.124)

while
G(x, y; ξ, η) = G0(x, y; ξ, η) + z(x, y; ξ, η) = 0 on ∂Ω. (6.125)

Next, to establish the solution formula (6.123), since both z and u are C2, we can use
(6.88) (with v = z, keeping in mind that ∆z = 0) to establish

0 = −
∫ ∫

Ω
z(x, y; ξ, η)∆u(ξ, η)dξ dη

+

∮

∂Ω

(
z(x, y; ξ, η)

∂u

∂n
(ξ, η)−

∂z

∂n
(x, y; ξ, η) u(ξ, η)

)
ds.

Adding this to Green’s representation formula (6.107), and using (6.125), we deduce that

u(x, y) = −
∫ ∫

Ω
G(x, y; ξ, η)∆u(ξ, η)dξ dη −

∮

∂Ω

∂G(x, y; ξ, η)

∂n
u(ξ, η) ds,

which, given (6.122), produces (6.123). Q.E.D.

The one subtle issue left unresolved is the existence of the solution. Read properly,
Theorem 6.19 states that if a classical solution exists, then it is necessarily given by the
Green’s function formula (6.123). Proving existence of the solution — and also the existence
of the Green’s function, or equivalently, the solution z to (6.121) — requires further in-
depth analysis, lying beyond the scope of this text. In particular, to guarantee existence,
the underlying domain must have a reasonably nice boundary, e.g., a piecewise smooth
curve without sharp cusps. Interestingly, lack of regularity at sharp cusps in the boundary
underlies the electromagnetic phenomenon known as St. Elmo’s fire, cf. [121]. Extensions
to irregular domains, e.g., those with fractal boundaries, is an active area of contemporary
research. Moreover, unlike one-dimensional boundary value problems, mere continuity of
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the forcing function f is not quite sufficient to ensure the existence of a classical solution to
the Poisson boundary value problem; differentiability does suffice, although this assumption
can be weakened. We refer to [61, 70], for a development of the Perron method based on
approximating the solution by a sequence of subsolutions , which, by definition, solve the
differential inequality −∆u ≤ f . An alternative proof, using the direct method of the
calculus of variations, can be found in [35]. The latter proof relies on the characterization
of the solution by a minimization principle, which we discuss in some detail in Chapter 9.

Exercises

♦ 6.3.1. Let CR be a circle of radius R centered at the origin and n its unit outward normal. Let
f(r, θ) be a function expressed in polar coordinates. Prove that ∂f/∂n = ∂f/∂r on CR.

6.3.2. Let f(x) > 0 be a continuous, positive function on the interval a ≤ x ≤ b. Let Ω be the
domain lying between the graph of f(x) on the interval [a, b ] and the x–axis. Explain why
(6.77) reduces to the usual calculus formula for the area under the graph of f .

6.3.3. Explain what happens to the conclusion of Lemma 6.16 if Ω is not a connected domain.

6.3.4. Can you find constants cn such that the functions gn(x, y) = cn[1 + n2(x2 + y2) ]−1

converge to the two-dimensional delta function: gn(x, y)→ δ(x, y) as n→∞?

6.3.5. Explain why the two-dimensional delta function satisfies the scaling law

δ(β x,β y) =
1
β2 δ(x, y), for β > 0.

♦ 6.3.6. Write out a polar coordinate formula, in terms of δ(r − r0) and δ(θ − θ0), for the two-
dimensional delta function δ(x− x0, y − y0) = δ(x− x0) δ(y − y0).

6.3.7. True or false: δ(x) = δ(∥x ∥).

♦ 6.3.8. Suppose that ξ = f(x, y), η = g(x, y) defines a one-to-one C1 map from a domain
D ⊂ R2 to the domain Ω = { (ξ, η) = (f(x, y), g(x, y)) | (x, y) ∈ D } ⊂ R2, and has nonzero
Jacobian determinant: J(x, y) = fxgy − fygx ̸= 0 for all (x, y) ∈ D. Suppose further that
(0, 0) = (f(x0, y0), g(x0, y0)) ∈ Ω for (x0, y0) ∈ D. Prove the following formula governing
the effect of the map on the two-dimensional delta function:

δ(f(x, y), g(x, y)) =
δ(x− x0, y − y0)

| J(x0, y0) |
. (6.126)

6.3.9. Suppose f(x, y) =

{
1, 3x− 2y > 1,
0, 3x− 2y < 1.

Compute its partial derivatives
∂f
∂x

and
∂f
∂y

in

the sense of generalized functions.

6.3.10. Find a series solution to the rectangular boundary value problem (4.91–92) when the
boundary data f(x) = δ(x− ξ) is a delta function at a point 0 < ξ < a. Is your solution
infinitely differentiable inside the rectangle?

6.3.11. Answer Exercise 6.3.10 when f(x) = δ ′(x− ξ) is the derivative of the delta function.

6.3.12. A 1 meter square plate is subject to the Neumann boundary conditions ∂u/∂n = 1 on
its entire boundary. What is the equilibrium temperature? Explain.

♦ 6.3.13. A conservation law for an equilibrium system in two dimensions is, by definition, a di-
vergence expression

∂X
∂x

+
∂Y
∂y

= 0 (6.127)



256 6 Generalized Functions and Green’s Functions

that vanishes for all solutions.
(a) Given a conservation law prescribed by v = (X,Y ) defined on a simply connected do-

main D, show that the line integral
∫

C
v · n ds =

∫

C
X dy − Y dx is path-independent,

meaning that its value depends only on the endpoints of the curve C.
(b) Show that the Laplace equation can be written as a conservation law, and write down

the corresponding path-independent line integral.

Note: Path-independent integrals are of importance in the study of cracks, dislocations, and
other material singularities, [49].

♦ 6.3.14. In two-dimensional dynamics, a conservation law is an equation of the form

∂T
∂t

+
∂X
∂x

+
∂Y
∂y

= 0, (6.128)

in which T is the conserved density , while v = (X,Y ) represents the associated flux .

(a) Prove that, on a bounded domain Ω ⊂ R2, the rate of change of the integral
∫∫

Ω
T dx dy

of the conserved density depends only on the flux through the boundary ∂Ω.
(b) Write the partial differential equation ut + uux + uuy = 0 as a conservation law. What

is the integrated version?

The Method of Images

The preceding analysis exposes the underlying form of the Green’s function, but we are
still left with the determination of the harmonic component z(x, y) required to match the
logarithmic potential boundary values, cf. (6.121). We will discuss two principal analytic
techniques employed to produce explicit formulas. The first is an adaptation of the method
of separation of variables, which leads to infinite series expressions. We will not dwell on
this approach here, although a couple of the exercises ask the reader to work through some
of the details; see also the discussion leading up to (9.110). The second is the Method
of Images , which will be developed in this section. Another approach is based on the
theory of conformal mapping ; it can be found in books on complex analysis, including
[53, 98]. While the first two methods are limited to a fairly small class of domains, they
extend to higher-dimensional problems, as well as to certain other types of elliptic boundary
value problems, whereas conformal mapping is, unfortunately, restricted to two-dimensional
problems involving the Laplace and Poisson equations.

We already know that the singular part of the Green’s function for the two-dimensional
Poisson equation is provided by a logarithmic potential. The problem, then, is to construct
the harmonic part, called z(x, y) in (6.120), so that the sum has the correct homogeneous
boundary values, or, equivalently, so that z(x, y) has the same boundary values as the
logarithmic potential. In certain cases, z(x, y) can be thought of as the potential induced
by one or more hypothetical electric charges (or, equivalently, gravitational point masses)
that are located outside the domain Ω, arranged in such a manner that their combined
electrostatic potential happens to coincide with the logarithmic potential on the boundary
of the domain. The goal, then, is to place image charges of suitable strengths in the
appropriate positions.

Here, we will only consider the case of a single image charge, located at a position
η ̸∈ Ω. We scale the logarithmic potential (6.106) by the charge strength, and, for added
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Figure 6.13. Method of Images for the unit disk.

flexibility, include an additional constant — the charge’s potential baseline:

z(x, y) = a log ∥x− η ∥+ b, η ∈ R2 \ Ω.

The function z(x, y) is harmonic inside Ω, since the logarithmic potential is harmonic
everywhere except at the external singularity η. For the Dirichlet boundary value problem,
then, for each point ξ ∈ Ω, we must find a corresponding image point η ∈ R2 \ Ω and
constants a, b ∈ R such that†

log ∥x− ξ ∥ = a log ∥x− η ∥+ b for all x ∈ ∂Ω,

or, equivalently,
∥x− ξ ∥ = λ ∥x− η ∥a for all x ∈ ∂Ω, (6.129)

where λ = eb. For each fixed ξ,η,λ, a, the equation in (6.129) will, typically, implicitly
prescribe a plane curve, but it is not clear that one can always arrange that these curves
all coincide with the boundary of our domain.

To make further progress, we appeal to a geometric construction based on similar
triangles. Let us select η = c ξ to be a point lying on the ray through ξ. Its location
is chosen so that the triangle with vertices 0,x,η is similar to the triangle with vertices
0, ξ,x, noting that they have the same angle at the common vertex 0 — see Figure 6.13.
Similarity requires that the triangles’ corresponding sides have a common ratio, and so

∥ ξ ∥
∥x ∥

=
∥x ∥
∥η ∥

=
∥x− ξ ∥
∥x− η ∥

= λ. (6.130)

The last equality implies that (6.129) holds with a = 1. Consequently, if we choose

∥η ∥ =
1

∥ ξ ∥
, so that η =

ξ

∥ ξ ∥2
, (6.131)

then
∥x ∥2 = ∥ ξ ∥ ∥η ∥ = 1.

† To simplify the formulas, we have omitted the 1/(2π) factor, which can easily be reinstated
at the end of the analysis.
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Figure 6.14. Green’s function for the unit disk.

Thus x lies on the unit circle, and, as a result, λ = ∥ ξ ∥ = 1/∥η ∥. The map taking a
point ξ inside the disk to its image point η defined by (6.131) is known as inversion with
respect to the unit circle.

We have now demonstrated that the potentials

1

2π
log ∥x− ξ ∥ =

1

2π
log

(
∥ ξ ∥ ∥x− η ∥

)
=

1

2π
log

∥ ∥ ξ ∥2 x− ξ ∥
∥ ξ ∥

, ∥x ∥ = 1,

(6.132)
have the same boundary values on the unit circle. Consequently, their difference

G(x; ξ) = −
1

2π
log ∥x− ξ ∥+

1

2π
log

∥ ∥ ξ ∥2 x− ξ ∥
∥ ξ ∥

=
1

2π
log

∥ ∥ ξ ∥2 x− ξ ∥
∥ ξ ∥ ∥x− ξ ∥

(6.133)

has the required properties for the Green’s function for the Dirichlet problem on the unit
disk. Writing this in terms of polar coordinates

x = (r cos θ, r sin θ), ξ = (ρ cosφ, ρ sinφ),

and applying the Law of Cosines to the triangles in Figure 6.13 produces the explicit
formula

G(r, θ; ρ,φ) =
1

4π
log

(
1 + r2ρ2 − 2rρ cos(θ − φ)

r2 + ρ2 − 2rρ cos(θ − φ)

)
. (6.134)

In Figure 6.14 we sketch the Green’s function for the Dirichlet boundary value problem
corresponding to a unit impulse being applied at a point halfway between the center and
the edge of the disk. We also require its radial derivative

∂G

∂r
(r, θ; ρ,φ) = − 1

2π

1− r2

1 + r2 − 2 r cos(θ − φ)
, (6.135)

which coincides with its normal derivative on the unit circle. Thus, specializing (6.123),
we arrive at a solution to the general Dirichlet boundary value problem for the Poisson
equation in the unit disk.
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Figure 6.15. The Poisson kernel.

Theorem 6.20. The solution to the inhomogeneous Dirichlet boundary value prob-
lem

−∆u = f, for r = ∥x ∥ < 1, u = h, for r = 1,

is, when expressed in polar coordinates,

u(r, θ) =
1

4π

∫ π

−π

∫ 1

0
f(ρ,φ) log

(
1 + r2ρ2 − 2rρ cos(θ − φ)

r2 + ρ2 − 2rρ cos(θ − φ)

)
ρ dρ dφ

+
1

2π

∫ π

−π
h(φ)

1− r2

1 + r2 − 2 r cos(θ − φ)
dφ.

(6.136)

When f ≡ 0, formula (6.136) recovers the Poisson integral formula (4.126) for the
solution to the Dirichlet boundary value problem for the Laplace equation. In particular,
the boundary data h(θ) = δ(θ − φ), corresponding to a concentrated unit heat source
applied to a single point on the boundary, produces the Poisson kernel

u(r, θ) =
1− r2

2π
(
1 + r2 − 2r cos(θ − φ)

) . (6.137)

The reader may enjoy verifying that this function indeed solves the Laplace equation and
has the correct boundary values in the limit as r → 1.

Exercises

6.3.15. A circular disk of radius 1 is subject to a heat source of unit magnitude on the subdisk
r ≤ 1

2 . Its boundary is kept at 0◦.

(a) Write down an integral formula for the equilibrium temperature.
(b) Use radial symmetry to find an explicit formula for the equilibrium temperature.
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6.3.16. A circular disk of radius 1 meter is subject to a unit concentrated heat source at its
center and has completely insulated boundary. What is the equilibrium temperature?

♥ 6.3.17.(a) For n > 0, find the solution to the boundary value problem

−∆u =
n
π
e−n (x2+y2), x2 + y2 < 1, u(x, y) = 0, x2 + y2 = 1.

(b) Discuss what happens in the limit as n→∞.

♥ 6.3.18.(a) Use the Method of Images to construct the Green’s function for a half-plane {y > 0}
that is subject to homogeneous Dirichlet boundary conditions. Hint : The image point is
obtained by reflection. (b) Use your Green’s function to solve the boundary value problem

−∆u =
1

1 + y
, y > 0, u(x, 0) = 0.

6.3.19. Construct the Green’s function for the half-disk Ω = {x2 + y2 < 1, y > 0} when sub-
ject to homogeneous Dirichlet boundary conditions. Hint : Use three image points.

6.3.20. Prove directly that the Poisson kernel (6.137) solves the Laplace equation for all r < 1.

♥ 6.3.21. Provide the details for the following alternative method for solving the homogeneous
Dirichlet boundary value problem for the Poisson equation on the unit square:

uxx − uyy = f(x, y), u(x, 0) = 0, u(x, 1) = 0, u(0, y) = 0, u(1, y) = 0, 0 < x, y < 1.

(a) Write both u(x, y) and f(x, y) as Fourier sine series in y whose coefficients depend on x.
(b) Substitute these series into the differential equation, and equate Fourier coefficients to
obtain an infinite system of ordinary boundary value problems for the x-dependent Fourier
coefficients of u. (c) Use the Green’s functions for each boundary value problem to write
out the solution and hence a series for the solution to the original boundary value problem.
(d) Implement this method for the following forcing functions:

(i) f(x, y) = sinπy, (ii) f(x, y) = sin πx sin 2πy, (iii) f(x, y) = 1.

♦ 6.3.22. Use the method of Exercise 6.3.21 to find a series representation for the Green’s func-
tion of a unit square subject to Dirichlet boundary conditions.

6.3.23. Write out the details of how to derive (6.134) from (6.133).

6.3.24. True or false: If the gravitational potential at a point a is greater than its value at the
point b, then the magnitude of the gravitational force at a is greater than its value at b.

♠ 6.3.25.(a) Write down integral formulas for the gravitational potential and force due to a square
plate S = {−1 ≤ x, y ≤ 1} of unit density ρ = 1. (b) Use numerical integration to calculate
the gravitational force at the points (2, 0) and

(√
2 ,
√
2
)
. Before starting, try to predict

which point experiences the stronger force, and then check your prediction.

♠ 6.3.26. An equilateral triangular plate with unit area exerts a gravitational force on an ob-
server sitting a unit distance away from its center. Is the force greater if the observer is lo-
cated opposite a vertex of the triangle or opposite a side? Is the force greater than or less
than that exerted by a circular plate of the same area? Use numerical integration to evalu-
ate the double integrals.

6.3.27. Consider the wave equation utt = c2uxx on the line −∞ < x < ∞. Use the d’Alembert
formula (2.82) to solve the initial value problem u(0, x) = δ(x − a), ut(0, x) = 0. Can you
realize your solution as the limit of classical solutions?

♦ 6.3.28. Consider the wave equation utt = c2uxx on the line −∞ < x < ∞. Use the d’Alembert
formula (2.82) to solve the initial value problem u(0, x) = 0, ut(0, x) = δ(x − a), modeling
the effect of striking the string with a highly concentrated blow at the point x = a. Graph
the solution at several times. Discuss the behavior of any discontinuities in the solution. In
particular, show that u(t, x) ̸= 0 on the domain of influence of the point (a, 0).
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6.3.29.(a) Write down the solution u(t, x) to the wave equation utt = 4uxx on the real line

with initial data u(0, x) =

{
1− |x |, |x | ≤ 1,
0, otherwise,

∂u
∂t

(0, x) = 0. (b) Explain why u(t, x) is

not a classical solution to the wave equation. (c) Determine the derivatives ∂2u/∂t2 and
∂2u/∂x2 in the sense of distributions (generalized functions) and use this to justify the fact
that u(t, x) solves the wave equation in a distributional sense.

♥ 6.3.30. A piano string of length ℓ = 3 and wave speed c = 2 with both ends fixed is hit by a
hammer 1

3 of the way along. The initial-boundary value problem that governs the resulting
vibrations of the string is

∂2u
∂t2

= 4
∂2u
∂x2

, u(t, 0) = 0 = u(t, 3), u(0, x) = 0,
∂u
∂t

(0, x) = δ(x− 1).

(a) What are the fundamental frequencies of vibration?
(b) Write down the solution to the initial-boundary value problem in Fourier series form.
(c) Write down the Fourier series for the velocity ∂u/∂t of your solution.
(d) Write down the d’Alembert formula for the solution, and sketch a picture of the string

at four or five representative times.
(e) True or false: The solution is periodic in time. If true, what is the period? If false, ex-

plain what happens as t increases.

6.3.31.(a) Write down a Fourier series for the solution to the initial-boundary value problem

∂2u
∂t2

=
∂2u
∂x2

, u(t,−1) = 0 = u(t, 1), u(0, x) = δ(x),
∂u
∂t

(0, x) = 0.

(b) Write down an analytic formula for the solution, i.e., sum your series. (c) In what
sense does the series solution in part (a) converge to the true solution? Do the partial sums
provide a good approximation to the actual solution?

6.3.32. Answer Exercise 6.3.31 for
∂2u
∂t2

=
∂2u
∂x2

, u(t,−1) = 0 = u(t, 1), u(0, x) = 0,
∂u
∂t

(0, x) = δ(x).



Chapter 8

Linear and Nonlinear Evolution Equations

The term evolution equation refers to a dynamical partial differential equation that involves
both time t and space x = (x1, . . . , xn) as independent variables and takes the form

∂u

∂t
= K[u ], (8.1)

whose left-hand side is just the first-order time derivative of the dependent variable u,
while the right-hand side, which can be linear or nonlinear, involves only u and its space
derivatives and, possibly, t and x. Examples already encountered include the linear and
nonlinear transport equations in Chapter 2 and the heat equation. (But not the wave
equation or Laplace equation.) In this chapter, we will analyze several important evolution
equations, both linear and nonlinear, involving a single spatial variable.

Our first stop is to revisit the heat equation. We introduce the fundamental solution,
which, for dynamical partial differential equations, assumes the role of the Green’s function,
in that its initial condition is a concentrated delta impulse. The fundamental solution leads
to an integral superposition formula for the solutions produced by more general initial
conditions or by external forcing. For the heat equation on the entire real line, the Fourier
transform enables us to construct an explicit formula that identifies its fundamental solution
as a Gaussian filter. We next present the Maximum Principle that rigorously justifies
the entropic decay of temperature in a heated body and underlies much of the advanced
mathematical analysis of parabolic partial differential equations. Finally, we discuss the
Black–Scholes equation, the paradigmatic model for investment portfolios, first proposed
in the early 1970s and now lying at the heart of the modern financial industry. We will
find that the Black–Scholes equation can be transformed into the linear heat equation,
whose fundamental solution is applied to establish the celebrated Black–Scholes formula
for option pricing.

The following section provides a brief introduction to symmetry-based solution tech-
niques for linear and nonlinear partial differential equations. Knowing a symmetry of a
partial differential equation allows one to readily construct additional solutions from any
known solution. Solutions that remain invariant under a one-parameter family of symme-
tries can be found by solving a reduced ordinary differential equation. The most important
are the traveling wave solutions, which are invariant under translation symmetries, and
similarity solutions, which are invariant under scaling symmetries.

The next evolution equation to appear is a paradigmatic model of nonlinear diffusion
known as Burgers’ equation. It can be regarded as a very simplified model of fluid dynamics,
combining both nonlinear and viscous effects. We discover a remarkable nonlinear change
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of variables that maps Burgers’ equation to the linear heat equation, and thereby facilitates
its analysis, allowing us to construct explicit solutions, and investigate how they converge
to shock wave solutions of the nonlinear transport equation in the inviscid limit.

Next, we turn our attention to the simplest third-order linear evolution equation, which
arises as a model for wave mechanics. Unlike first- and second-order wave equations, its
solutions are not simple traveling waves, but instead exhibit dispersion, in which oscillatory
waves of different frequencies move at different speeds. As a result, initially localized
disturbances will spread out or disperse, even while they conserve the underlying energy.
Dispersion implies that the individual wave velocities differ from the group velocity, which
measures the speed of propagation of energy in the system. An everyday manifestation of
this phenomenon can be observed in the ripples caused by throwing a rock into a pond:
the individual waves move faster than the overall disturbance. Finally, we present the
remarkable Talbot effect, only recently discovered, in which solutions having discontinuous
initial data and subject to periodic boundary conditions exhibit radically different profiles
at rational and irrational times.

Our final example is the celebrated Korteweg–deVries equation, which originally arose
in the work of the nineteenth-century French applied mathematician Joseph Boussinesq as
a model for surface waves on shallow water. It combines the effects of linear dispersion and
nonlinear transport. Unlike the linearly dispersive model, the Korteweg–deVries equation
admits explicit, localized traveling wave solutions, now known as “solitons”. Remark-
ably, despite the potentially complicated nonlinear nature of their interaction, two solitons
emerge from a collision with their individual profiles preserved, the only residual effect
being a relative phase shift. The Korteweg–de Vries equation is the prototype of a com-
pletely integrable partial differential equation, whose many remarkable properties were
first discovered in the mid 1960s. A surprising number of such completely integrable non-
linear systems appear in a variety of applications, including dynamical models in fluids,
plasmas, optics, and solid mechanics. Their analysis remains an extremely active area of
contemporary research, [2, 36].

8.1 The Fundamental Solution to the Heat Equation

One disadvantage of the Fourier series solution to the heat equation is that it is not nearly
as explicit as one might desire for practical applications, numerical computations, or even
further theoretical investigations and developments. An alternative approach is based on
the idea of the fundamental solution, which plays the role of the Green’s function in solving
initial value problems. The fundamental solution measures the effect of a concentrated,
instantaneous impulse, either in the initial conditions or as an external force on the system.

We restrict our attention to homogeneous boundary conditions — keeping in mind
that these can always be included by use of linear superposition. The basic idea is to
analyze the case in which the initial data u(0, x) = δξ(x) = δ(x − ξ) is a delta function,
which we can interpret as a highly concentrated unit heat source, e.g., a soldering iron or
laser beam, that is instantaneously applied at a position ξ along a metal bar. The heat
will diffuse away from its initial concentration, and the resulting fundamental solution is
denoted by

u(t, x) = F (t, x; ξ), with F (0, x; ξ) = δ(x− ξ). (8.2)

For each fixed ξ, the fundamental solution, considered as a function of t > 0 and x, must
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satisfy the underlying partial differential equation, and so, for the heat equation,

∂F

∂t
= γ

∂2F

∂x2
, (8.3)

along with the specified homogeneous boundary conditions.
As with the Green’s function, once we have determined the fundamental solution, we

can then use linear superposition to reconstruct the general solution to the initial-boundary
value problem. Namely, we first write the initial data

u(0, x) = f(x) =

∫ b

a
δ(x− ξ) f(ξ) dξ (8.4)

as a superposition of delta functions, as in (6.16). Linearity implies that the solution
can be expressed as the corresponding superposition of the responses to those individual
concentrated delta profiles:

u(t, x) =

∫ b

a
F (t, x; ξ) f(ξ) dξ. (8.5)

Assuming that we can differentiate under the integral sign, the fact that F (t, x; ξ) satis-
fies the differential equation and the homogeneous boundary conditions for each fixed ξ
immediately implies that the integral (8.5) is also a solution with the correct initial and
(homogeneous) boundary conditions.

Unfortunately, most boundary value problems do not have fundamental solutions that
can be written down in closed form. An important exception is the case of an infinitely
long homogeneous bar, which requires solving the heat equation on the entire real line:

∂u

∂t
=

∂2u

∂x2
, for −∞ < x < ∞, t > 0. (8.6)

For simplicity, we have chosen units in which the thermal diffusivity is γ = 1. The solution
u(t, x) is defined for all x ∈ R, and has initial conditions

u(0, x) = f(x) for −∞ < x < ∞. (8.7)

In order to specify the solution uniquely, we shall require that the temperature be square-
integrable, i.e., in L2, at all times, so that

∫ ∞

−∞
|u(t, x) |2 dx < ∞ for all t ≥ 0. (8.8)

Roughly speaking, square-integrability requires that the temperature be vanishingly small
at large distances, and hence plays the role of boundary conditions in this context.

To solve the initial value problem (8.6–7), we apply the Fourier transform, in the x
variable, to both sides of the differential equation. In view of the effect of the Fourier
transform on derivatives, cf. (7.43), the result is

∂ û

∂t
= − k2 û, (8.9)

where

û(t, k) =
1√
2π

∫ ∞

−∞
u(t, x) e− i kx dx (8.10)
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t = .05 t = .1

t = 1 t = 10

Figure 8.1. The fundamental solution to the one-dimensional heat equation.
⊎

is the Fourier transformed solution. For each fixed k, (8.9) can be viewed as a first-order
linear ordinary differential equation for û(t, k), with initial conditions

û(0, k) = f̂(k) =
1√
2π

∫ ∞

−∞
f(x) e− i kx dx (8.11)

given by Fourier transforming the initial data (8.7). The solution to the initial value
problem (8.9, 11) is immediate:

û(t, k) = e−k2 t f̂(k). (8.12)

We can thus recover the solution to the initial value problem (8.6–7) by applying the inverse
Fourier transform to (8.12), leading to the explicit integral formula

u(t, x) =
1√
2π

∫ ∞

−∞
e i kx û(t, k) dk =

1√
2π

∫ ∞

−∞
e i kx−k2 t f̂(k) dk. (8.13)

In particular, to construct the fundamental solution, we take the initial temperature
profile to be a delta function δξ(x) = δ(x− ξ) concentrated at x = ξ. According to (7.37),
its Fourier transform is

δ̂ξ(k) =
e− i kξ

√
2π

.

Plugging this into (8.13), and then referring to our table of Fourier transforms, we are led
to the following explicit formula for the fundamental solution:

F (t, x; ξ) =
1

2π

∫ ∞

−∞
e i k(x−ξ)−k2 t dk =

1

2
√
π t

e−(x−ξ)2/(4 t) for t > 0. (8.14)

As you can verify, for each fixed ξ, the function F (t, x; ξ) is indeed a solution to the heat
equation for all t > 0. In addition,

lim
t→ 0+

F (t, x; ξ) =

{
0, x ̸= ξ,

∞, x = ξ.
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Furthermore, its integral ∫ ∞

−∞
F (t, x; ξ) dx = 1 (8.15)

is constant — in accordance with the law of conservation of thermal energy; see Exercise
8.1.20. Therefore, as t → 0+, the fundamental solution satisfies the original limiting
definition (6.8–9) of the delta function, and so F (0, x; ξ) = δξ(x) has the desired initial
temperature profile.

In Figure 8.1, we graph F (t, x; 0) at the indicated times. It starts life as a delta
spike concentrated at the origin, and then immediately smooths out into a tall and narrow
bell-shaped curve, centered at x = 0. As time increases, the solution shrinks and widens,
eventually decaying everywhere to zero. Its amplitude is proportional to t−1/2, while its
overall width is proportional to t1/2. The thermal energy (8.15), which is the area under
the graph, remains fixed while gradually spreading out over the entire real line.

Remark : In probability, these exponentially bell-shaped curves are known as normal or
Gaussian distributions, [39]. The width of the bell curve measures its standard deviation.
For this reason, the fundamental solution to the heat equation is sometimes referred to as
a Gaussian filter .

Remark : The fact that the fundamental solution depends only on the difference x− ξ,
and hence has the same profile at all ξ ∈ R, is a consequence of the translation invariance
of the heat equation, reflecting the fact that it models the thermodynamics of a uniform
medium. See Section 8.2 for additional symmetry properties of the heat equation and its
solutions.

Remark : One of the striking properties of the heat equation is that thermal energy
propagates with infinite speed. Indeed, because, at any t > 0, the fundamental solution
is nonzero for all x, the effect of an initial concentration of heat will immediately be felt
along the entire length of an infinite bar. (The graphs in Figure 8.1 are a little misleading
because they fail to show the extremely small, but still positive, exponentially decreasing
tails.) This effect, while more or less negligible at large distances, is nevertheless in clear
violation of physical intuition — not to mention relativity, which postulates that signals
cannot propagate faster than the speed of light. Despite this non-physical artifact, the heat
equation remains an accurate model for heat propagation and similar diffusive phenomena,
and so continues to be successfully used in applications.

With the fundamental solution in hand, we can adapt the linear superposition for-
mula (8.5) to reconstruct the general solution

u(t, x) =
1

2
√
π t

∫ ∞

−∞
e−(x−ξ)2/(4 t) f(ξ) dξ (8.16)

to our initial value problem (8.6). This solution formula is merely a restatement of (8.13)
combined with the Fourier transform formula (8.11). Comparing with (7.54), we see that
the solutions are obtained by convolution of the initial data with a one-parameter family
of progressively wider and shorter Gaussian filters:

u(t, x) = F0(t, x) ∗ f(x), where F0(t, x) = F (t, x; 0) =
e−x2/(4 t)

2
√
π t

.

Since u(t, x) solves the heat equation, we conclude that Gaussian filter convolution has the
same smoothing effect on the initial signal f(x). Indeed, the convolution integral (8.16)
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t = 0 t = .1 t = 1

t = 5 t = 30 t = 300

Figure 8.2. Error function solution to the heat equation.
⊎

serves to replace each initial value f(x) by a weighted average of nearby values, the weight
being determined by the Gaussian distribution. This has the effect of smoothing out high-
frequency variations in the signal, and, consequently, the Gaussian convolution formula
(8.16) provides an effective method for denoising rough signals and data.

Example 8.1. An infinite bar is initially heated to unit temperature along a finite
interval. The initial temperature profile is thus a box function

u(0, x) = f(x) = σ(x− a)− σ(x− b) =

{
1, a < x < b,

0, otherwise.

The ensuing temperature is provided by the solution to the heat equation obtained by the
integral formula (8.16):

u(t, x) =
1

2
√
π t

∫ b

a
e−(x−ξ)2/(4 t) dξ =

1

2

[
erf

(
x− a

2
√
t

)
− erf

(
x− b

2
√
t

)]
, (8.17)

where erf denotes the error function, as defined in (2.87). Graphs of the solution (8.17) for
a = −5, b = 5, at the indicated times, are displayed in Figure 8.2. Observe the instanta-
neous smoothing of the sharp interface and instantaneous propagation of the disturbance,
followed by a gradual decay to thermal equilibrium, with u(t, x) → 0 as t → ∞.

The Forced Heat Equation and Duhamel’s Principle

The fundamental solution approach can be also applied to solve the inhomogeneous heat
equation

ut = uxx + h(t, x), (8.18)

modeling a bar subject to an external heat source h(t, x), which might depend on both
position and time. We begin by solving the particular case

ut = uxx + δ(t− τ) δ(x− ξ), (8.19)
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whose inhomogeneity represents a heat source of unit magnitude that is concentrated at a
position x = ξ and applied at a single time t = τ > 0. Physically, this models the effect of
instantaneously applying a soldering iron to a single spot on the bar. Let us also impose
homogeneous initial conditions

u(0, x) = 0 (8.20)

as well as homogeneous boundary conditions of one of our standard types. The resulting
solution

u(t, x) = G(t, x; τ, ξ) (8.21)

will be referred to as the general fundamental solution to the heat equation. Since a heat
source that is applied at time τ will affect the solution only at later times t ≥ τ , we expect
that

G(t, x; τ, ξ) = 0 for all t < τ. (8.22)

Indeed, since u(t, x) solves the unforced heat equation at all times t < τ subject to ho-
mogeneous boundary conditions and has zero initial temperature, this follows immediately
from the uniqueness of the solution to the initial-boundary value problem.

Once we know the general fundamental solution (8.21), we are able to solve the problem
for a general external heat source (8.18). We first write the forcing as a superposition

h(t, x) =

∫ ∞

0

∫ b

a
δ(t− τ) δ(x− ξ) h(τ, ξ) dξ dτ (8.23)

of concentrated instantaneous heat sources. Linearity allows us to conclude that the solu-
tion is given by the self-same superposition formula

u(t, x) =

∫ t

0

∫ b

a
G(t, x; τ, ξ) h(τ, ξ)dξ dτ. (8.24)

The fact that we only need to integrate over times 0 ≤ τ ≤ t is a consequence of (8.22).

Remark : If we have a nonzero initial condition, u(0, x) = f(x), then, by linear super-
position, the solution

u(t, x) =

∫ b

a
F (t, x; ξ) f(ξ) dξ +

∫ t

0

∫ b

a
G(t, x; τ, ξ) h(τ, ξ)dξ dτ (8.25)

is a combination of (a) the solution with no external heat source, but nonzero initial
conditions, plus (b) the solution with homogeneous initial conditions but nonzero heat
source.

Let us explicitly solve the forced heat equation on an infinite interval −∞ < x < ∞.
We begin by computing the general fundamental solution. As before, we take the Fourier
transform of both sides of the partial differential equation (8.18) with respect to x. In view
of (7.37, 43), we find

∂ û

∂t
+ k2 û =

1√
2π

e− i k ξ δ(t− τ), (8.26)

which is an inhomogeneous first-order ordinary differential equation for the Fourier trans-
form û(t, k) of u(t, x), while (8.20) implies the initial condition

û(0, k) = 0. (8.27)
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We solve the initial value problem (8.26–27) by the usual method, [18, 23]. Multiplying

the differential equation by the integrating factor ek
2t yields

∂

∂t
( ek

2t û ) =
1√
2π

ek
2t− i k ξ δ(t− τ).

Integrating both sides from 0 to t and using the initial condition, we obtain

û(t, k) =
1√
2π

e−k2(t−τ)− i k ξ σ(t− τ),

where σ(s) is the usual step function (6.23). Finally, we apply the inverse Fourier transform
formula (7.9), and then (8.14), to deduce that

u(t, x) = G(t, x; τ, ξ) =
σ(t− τ)

2π

∫ ∞

−∞
e−k2(t−τ)+ i k (x−ξ) dk

=
σ(t− τ)

2
√
π(t− τ)

exp

[
−

(x− ξ)2

4(t− τ)

]
= σ(t− τ)F (t− τ, x; ξ) .

(8.28)

Thus, the general fundamental solution is obtained by translating the fundamental solution
F (t, x; ξ) for the initial value problem to a starting time of t = τ instead of t = 0. Finally,
the superposition principle (8.24) produces the solution,

u(t, x) =

∫ t

0

∫ ∞

−∞

h(τ, ξ)

2
√
π(t− τ)

exp

[
−

(x− ξ)2

4 (t− τ)

]
dξ dτ, (8.29)

to the heat equation with source term and zero initial condition on an infinite bar. A
nonzero initial condition u(0, x) = f(x) leads, as in the superposition formula (8.25), to an
additional term of the form (8.16) in the solution formula.

Remark : The fact that an initial condition has the same aftereffect on the temper-
ature as an instantaneous applied heat source of the same magnitude, thus implying the
identification (8.28) of the two types of fundamental solution, is known as Duhamel’s Prin-
ciple, named after the nineteenth-century French mathematician Jean–Marie Duhamel.
Duhamel’s Principle remains valid over a broad range of linear evolution equations.

Example 8.2. An infinitely long bar with unit thermal diffusivity starts out uni-
formly at zero degrees. Beginning at time t = 0, a concentrated heat source of unit
magnitude is continually applied at the origin. The resulting temperature is the solution
u(t, x) to the initial value problem

ut = uxx + δ(x), u(0, x) = 0, t > 0, −∞ < x < ∞.

According to (8.29), the solution is given by

u(t, x) =

∫ t

0

∫ ∞

−∞

δ(ξ)

2
√
π(t− τ)

exp

[
−

(x− ξ)2

4 (t− τ)

]
dξ dτ

=

∫ t

0

1

2
√
π(t− τ)

exp

[
−

x2

4 (t− τ)

]
dτ =

√
t

π
exp

[
−

x2

4 t

]
+

x erf

(
x

2
√
t

)
− |x |

2
.

Three snapshots can be seen in Figure 8.3. Observe that the solution is even in x and
monotonically decreasing as |x | → ∞. Moreover, it has a corner at the origin with limiting
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t = 1 t = 2 t = 3

Figure 8.3. Effect of a concentrated heat source.
⊎

tangent lines of slopes ± 1
2 , which implies that its second x derivative produces the delta-

function forcing term. At each time t, the solution can be viewed as the linear superposition
of a continuous family of fundamental solutions, corresponding to the cumulative effect of
individual heat sources applied at each previous time 0 ≤ τ ≤ t. Moreover, it is not
difficult to see that, at each fixed x, the temperature is monotonically increasing in t, with
u(t, x) → ∞ as t → ∞, and hence the continuous heat source eventually produces an
unbounded temperature in the entire infinite bar.

The Black–Scholes Equation and Mathematical Finance

The most important and influential partial differential equation in financial modeling and
investment is the celebrated Black–Scholes equation

∂u

∂t
+

σ2

2
x2 ∂2u

∂x2
+ rx

∂u

∂x
− ru = 0, (8.30)

first proposed in 1973 by the American economists Fischer Black and Myron Scholes, [19],
and Robert Merton, [71]. The dependent variable u(t, x) represents the monetary value
of a single financial option, meaning a contract to either buy or sell an asset at a specified
exercise price p at a certain future time t⋆. The value u(t, x) of the option will depend
on the current time t ≤ t⋆ and the current price x ≥ 0 of the underlying asset. As with
many financial models, one assumes the absence of arbitrage, meaning that there is no
way to make a riskless profit. The constant σ > 0 represents the asset’s volatility , while
r denotes the (assumed fixed) interest rate for bank deposits, where investors could place
their money with a guaranteed rate of return instead of buying the option. (Investors
borrowing money to buy the asset would use a negative value of r.) The derivation of
the Black–Scholes equation from basic financial modeling relies on the theory of stochastic
differential equations, [83], which would take us too far afield to explain here; instead, we
refer the interested reader to [123]. The Black–Scholes equation and its generalizations
form the basis of much of the modern financial world, and, increasingly, the insurance
industry.

Observe first that the Black–Scholes equation is a backwards diffusion process, since,
upon solving for

∂u

∂t
= −

σ2

2
x2 ∂2u

∂x2
− r x

∂u

∂x
+ r u, (8.31)

the coefficient of the diffusion term uxx is negative. This implies that the initial value
problem is well-posed only when time runs backwards . In other words, given a prescribed
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value of the option at some specified time in the future, we can use the Black–Scholes
equation to determine its current value. However, ill-posedness implies that we cannot
predict future values from the current worth of the portfolio.

The “final value problem” for the Black–Scholes equation is to determine the option’s
value u(t, x) at the current time t and asset value x ≥ 0, given the final condition

u(t⋆, x) = f(x) (8.32)

at the exercise time t⋆ > t. For a so-called European call option, whereby the asset is to
be bought at the exercise price p > 0 at the specified time, the final condition is

u(t⋆, x) = max{x− p, 0}, (8.33)

representing the investor’s profit when x > p, or, when x ≤ p, the option not being exercised
so as to avoid a loss. Analogously, for a put option, where the asset is to be sold, the final
condition is

u(t⋆, x) = max{p− x, 0}. (8.34)

The solution u(t, x) will be defined for all t < t⋆ and all x > 0, subject to the boundary
conditions

u(t, 0) = 0, u(t, x) ∼ x as x → ∞,

where the asymptotic boundary condition means that the ratio u(t, x)/x tends to a constant
as x → ∞.

Fortunately, the Black–Scholes equation can be solved explicitly by transforming it
into the heat equation. The first step is to convert it to a forward diffusion process, by
setting

τ = 1
2 σ

2 (t⋆ − t), v(τ, x) = u(t⋆ − 2τ/σ2, x),

so that τ effectively runs forward from 0 as the actual time t runs backwards from t⋆. This
substitution has the effect of converting the final condition (8.32) into an initial condition
v(0, x) = f(x). Moreover, a straightforward chain rule computation shows that v satisfies

∂v

∂τ
= x2 ∂2v

∂x2
+ κx

∂v

∂x
− κ v, where κ =

2r

σ2
.

The next step is to remove the explicit dependence on the independent variable x. The
hint is that the right-hand side has the form of an Euler ordinary differential equation,
[23, 89]. According to Exercise 4.3.23, these terms can be placed into constant-coefficient
form by the change of independent variables x = ey. Indeed, writing

w(τ, y) = v(τ, ey) = v(τ, x) when x = ey,

we apply the chain rule to compute the derivatives

∂w

∂τ
=

∂v

∂τ
,

∂w

∂y
= ey

∂v

∂x
= x

∂v

∂x
,

∂2w

∂y2
= e2y

∂2v

∂x2
+ ey

∂v

∂x
= x2 ∂2v

∂x2
+ x

∂v

∂x
.

As a result, we find that w solves the partial differential equation

∂w

∂τ
=

∂2w

∂y2
+ (κ− 1)

∂w

∂y
− κw. (8.35)

This is getting closer to the heat equation, and, in fact, can be changed into it by setting

w(τ, y) = eατ+β y z(τ, y)



8.1 The Fundamental Solution to the Heat Equation 301

for suitable constants α, β. Indeed, differentiating and substituting into (8.35) yields

∂z

∂τ
+ αz =

∂2z

∂y2
+ 2β

∂z

∂y
+ β2z + (κ− 1)

(
∂z

∂y
+ β z

)
− κ z.

The terms involving ∂z/∂y and z are eliminated by setting

α = − 1
4 (κ+ 1)2, β = − 1

2 (κ− 1). (8.36)

We conclude that the function

z(τ, y) = e(κ+1)2τ/4+(κ−1)y/2w(τ, y) (8.37)

satisfies the heat equation
∂z

∂τ
=

∂2z

∂y2
. (8.38)

Unwinding the preceding argument, we have managed to prove the following:

Proposition 8.3. If z(τ, y) is the solution to the initial value problem

∂z

∂τ
=

∂2z

∂y2
, z(0, y) = h(y) = e(κ−1)y/2f(ey), (8.39)

for τ > 0, −∞ < y < ∞, then

u(t, x) = x−(κ−1)/2e−(κ+1)2 σ2(t⋆−t)/8 z
(
1
2 σ

2(t⋆ − t), log x
)

(8.40)

solves the final value problem (8.30, 32) for the Black–Scholes equation for t < t⋆ and
0 < x < ∞.

Now, according to (8.16), the solution to the initial value problem (8.39) can be written
as a convolution integral of the initial data with the heat equation’s fundamental solution:

z(τ, y) =
1

2
√
π τ

∫ ∞

−∞
e−(y−η)2/(4τ) h(η) dη =

1

2
√
π τ

∫ ∞

−∞
e−(y−η)2/(4τ)+(κ−1)η/2f(eη) dη.

(8.41)
Combining this formula with (8.40) produces an explicit solution formula for the general
final value problem for the Black–Scholes equation. In particular, for the European call
option (8.33), the initial condition is

z(0, y) = h(y) = e(κ−1)y/2 max{ey − p, 0},

and so

z(τ, y) =
1

2
√
π τ

∫ ∞

log p
e−(y−η)2/(4τ)+(κ−1)η/2(eη − p) dη.

The integral can evaluated by completing the square inside the exponential, producing

z(τ, y) =
1

2

[
e(κ+1)2τ/4+(κ+1)y/2 erfc

(
log p− (κ+ 1)τ − y

2
√
τ

)

− p e(κ−1)2τ/4+(κ−1)y/2 erfc

(
log p− (κ− 1)τ − y

2
√
τ

)]
,

(8.42)
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Figure 8.4. Solution to the Black–Scholes equation.
⊎

where

erfcx =
2√
π

∫ ∞

x
e−z2

dz = 1− erf x (8.43)

is the complementary error function, cf. (2.87). Substituting (8.42) into (8.40) results in
the celebrated Black–Scholes formula for a European call option:

u(t, x) =
1

2

[
x erfc

(
−

(
r + 1

2 σ
2
)
(t⋆ − t) + log(x/p)

√
2σ2(t⋆ − t)

)

− p e−r(t⋆−t) erfc

(
−

(
r − 1

2 σ
2
)
(t⋆ − t) + log(x/p)

√
2σ2(t⋆ − t)

)]
.

(8.44)

A graph of the solution for the specific values t⋆ = 10, r = .1, σ = .2, p = 10 appears in
Figure 8.4. Observe that the option’s value slowly decreases as the time gets closer and
closer to the exercise time t⋆, thereby lessening any chances of further profit stemming
from the option’s underlying price volatility.
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Exercises

8.1.1. Find the solution to the heat equation ut = uxx on the real line having the following
initial condition at time t = 0. Then sketch graphs of the resulting temperature distribution
at times t = 0, 1, and 5.

(a) e−x2

, (b) the step function σ(x), (c) e− | x |, (d)

{
1− |x |, |x | < 1,
0, otherwise.

8.1.2. On an infinite bar with unit thermal diffusivity, a concentrated unit heat source is in-
stantaneously applied at the origin at time t = 0. A heat sensor measures the resulting
temperature in the bar at position x = 1. Determine the maximum temperature measured
by the sensor. At what time is the maximum achieved?

8.1.3.(a) Find the solution to the heat equation (8.6) whose initial data corresponds to a pair
of unit heat sources placed at positions x = ±1. (b) Graph the solution at times t =
.1, .25, .5, 1. (c) At what time(s) does the origin experience its maximum overall tempera-
ture? What is the maximum temperature at the origin?

8.1.4.(a) Use the Fourier transform to solve the initial value problem

∂u
∂t

=
∂2u
∂x2

, u(0, x) = δ ′(x− ξ), −∞ < x <∞, t > 0,

whose initial data is the derivative of the delta function at a fixed position ξ.
(b) Show that your solution can be written as the derivative ∂F/∂x of the fundamental solu-

tion F (t, x; ξ). Explain why this observation should be valid.

8.1.5. Suppose that the initial data u(0, x) = f(x) is real. Explain why the Fourier transform
solution formula (8.13) defines a real function u(t, x) for all t > 0.

8.1.6.(a) What is the maximum value of the fundamental solution at time t?
(b) Can you justify the claim that its width is proportional to

√
t ?

8.1.7. Prove directly that (8.5) is indeed a solution to the heat equation, and, moreover, has
the correct initial and boundary conditions.

8.1.8. Show, by a direct computation, that the final formula in (8.14) is a solution to the heat
equation for all t > 0.

♦ 8.1.9. Justify formula (8.15).

8.1.10. According to Exercises 4.1.11–12, both the t and x partial derivatives of the fundamen-
tal solution solve the heat equation. (a) Write down the initial value problem satisfied by
these two solutions. (b) Set ξ = 0 and then sketch graphs of each solution at several se-
lected times. (c) Reconstruct each solution as a Fourier integral.

8.1.11. Let u(t, x) =
∂F
∂x

(t, x; 0) denote the x derivative of the fundamental solution (8.14).

(a) Prove that u(t, x) is a solution to the heat equation ut = uxx on the domain
{−∞ < x <∞, t > 0}. (b) For fixed x, prove that lim

t→ 0+
u(t, x) = 0. (c) Explain why,

despite the results in parts (a) and (b), u(t, x) is not a classical solution to the initial value
problem ut = uxx, u(0, x) = 0. What is the classical solution? (d) What initial value
problem does u(t, x) satisfy?

8.1.12. Justify all the statements in Example 8.2.

♥ 8.1.13.(a) Solve the heat equation on an infinite bar when the initial temperature is equal to 1
for |x | < 1 and 0 elsewhere, while a unit heat source is applied to the same part of the bar
|x | < 1 for a unit time period 0 < t < 1. (b) At what time and what location is the bar
the hottest? (c) What is the final equilibrium temperature of the bar?
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8.1.14. An insulated bar 1 meter long, with constant diffusivity γ = 1, is taken from a freezer
that is kept at −10◦ C, and then has its ends kept at room temperature of 20◦ C. A solder-
ing iron with temperature 350◦ C is continually held at the midpoint of the bar.
(a) Set up an initial value problem modeling the temperature distribution in the bar.
(b) Find the corresponding equilibrium temperature distribution.

♥ 8.1.15. Consider the heat equation with unit thermal diffusivity on the interval 0 < x < 1
subject to homogeneous Dirichlet boundary conditions.
(a) Find a Fourier series representation for the fundamental solution F̂ (t, x; ξ) that solves

the initial-boundary value problem
ut = uxx, t > 0, 0 < x < 1, u(0, x) = δ(x− ξ), u(t, 0) = 0 = u(t, 1).

Your solution should depend on t, x and the point ξ where the initial delta impulse is
applied.

(b) For the value ξ = .3, use a computer program to sum the first few terms in the series
and graph the result at times t = .0001, .001, .01, and .1. Make sure you have included
enough terms to obtain a reasonably accurate graph.

(c) Compare your graphs with those of the fundamental solution F (t, x; .3) on an infinite
interval at the same times. What is the maximum deviation between the two solutions
on the entire interval 0 ≤ x ≤ 1?

(d) Use your fundamental solution F̂ (t, x; ξ) to construct a series solution to the general ini-
tial value problem u(0, x) = f(x). Is your series the same as the usual Fourier series
solution? If not, explain any discrepancy.

8.1.16. True or false: Periodic forcing of the heat equation at a particular frequency can pro-
duce resonance. Justify your answer.

8.1.17. Find the fundamental solution for the cable equation vt = γ vxx − α v on the real line.
Hint : See Exercise 4.1.16.

8.1.18. The partial differential equation ut + c ux = γ uxx models transport of a diffusing pol-
lutant in a fluid flow. Assuming that the speed c is constant, write down a solution to the
initial value problem u(0, x) = f(x) for −∞ < x <∞. Hint : Look at Exercise 4.1.17.

♦ 8.1.19. Use the Fourier transform to solve the initial value problem iut = uxx, u(0, x) = f(x),
for the one-dimensional Schrödinger equation on the real line −∞ < x <∞.

♦ 8.1.20. Let u(t, x) be a solution to the heat equation having finite thermal energy,

E(t) =
∫ ∞

−∞
u(t, x) dx <∞, and satisfying ux(t, x)→ 0 as x→ ±∞, for all t ≥ 0. Prove the

law of conservation of thermal energy : E(t) = constant.

8.1.21. Explain in your own words how a function u(t, x) can satisfy u(t, x) → 0 uniformly as

t→∞ while maintaining the constancy of
∫ ∞

−∞
u(t, x) dx = 1 for all t. Discuss what this

signifies regarding the interchange of limits and integrals.

8.1.22.(a) Prove that if f̂(k) ∈ L2 is square-integrable, then so is e−ak2

f̂(k) for any a > 0.
(b) Prove that when the initial data f(x) ∈ L2 is square integrable, so is the Fourier inte-
gral solution (8.13) for all t ≥ 0.

8.1.23. Find the solution to the Black–Scholes equation for a put option (8.34).

8.1.24.(a) If we increase the interest rate r, does the value of a call option (i) increase;
(ii) decrease; (iii) stay the same; (iv) could do any of the above? Justify your answer.

(b) Answer the same question when rate stays fixed, but the volatility σ is increased.

♦ 8.1.25. Justify formula (8.42).
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8.2 Symmetry and Similarity

The geometric approach to partial differential equations enables one to exploit their sym-
metry properties to construct explicit solutions of both mathematical and physical interest.
Unlike separation of variables, which is restricted to special types of linear partial differ-
ential equations,† symmetry methods can also be successfully applied to a broad range of
nonlinear partial differential equations. While we do not have the mathematical tools to
develop the full range of symmetry techniques, we will learn how to exploit some of the
most basic symmetry properties: translations, leading to traveling wave solutions; scalings,
leading to similarity solutions; and, in subsequent chapters, rotational symmetries.

In general, by a symmetry of an equation, we mean a transformation that takes so-
lutions to solutions. Thus, knowing a symmetry transformation, if we are in possession of
one solution, then we can construct a second solution by applying the symmetry. And,
possibly, a third solution by applying the symmetry yet again. And so on. If we know lots
of symmetries, then we can produce lots of solutions by this simple device.

Remark : General symmetry techniques are founded on the theory of Lie groups ,
named after the influential nineteenth-century Norwegian mathematician Sophus Lie (pro-
nounced “Lee”). Lie’s theory is a profound synthesis of group theory and differential
geometry, and provides an algorithm for completely determining all the (continuous) sym-
metries of a given differential equation. Although the theory lies beyond the scope of
this introductory text, direct inspection and/or physical intuition will often produce the
most important symmetries of the system, which can then be directly exploited. Modern
applications of Lie’s symmetry methods to partial differential equations arising in physics
and engineering can be traced back to an influential book on hydrodynamics by the au-
thor’s thesis advisor, Garrett Birkhoff, [17]. A complete and comprehensive treatment
of Lie symmetry methods can be found in the author’s first book [87], and, at a more
introductory level, in the recent books [27, 58], the first having a particular emphasis on
applications in fluid mechanics.

The heat equation serves as an excellent testing ground for the general methodology,
since it admits a rich variety of symmetry transformations that take solutions to solutions.
The simplest are the translations. Moving the space and time coordinates by a fixed
amount,

t 7−→ t+ a, x 7−→ x+ b, (8.45)

where a, b are constants, changes the function u(t, x) into the translated function‡

U (t, x) = u(t− a, x− b). (8.46)

A simple application of the chain rule proves that the partial derivatives of U with respect
to t and x agree with the corresponding partial derivatives of u, so

∂U

∂t
=

∂u

∂t
,

∂U

∂x
=

∂u

∂x
,

∂2U

∂x2
=

∂2u

∂x2
,

† This is not entirely fair: separation of variables can also be applied to certain nonlinear
partial differential equations such as Hamilton–Jacobi equations, [73].

‡ The minus signs arise because when we set t̂ = t+ a, x̂ = x+ b, then the translated function
is U( t̂, x̂) = u(t, x) = u( t̂− a, x̂− b). Dropping the hats produces the stated formula.

8.2 Symmetry and Similarity
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and so on. In particular, the function U (t, x) is a solution to the heat equation Ut = γ Uxx
whenever u(t, x) also solves ut = γ uxx. Physically, translation symmetry formalizes the
property that the heat equation models a homogeneous medium, and hence the solution
does not depend on the choice of reference point or origin of our coordinate system.

As a consequence, each solution to the heat equation will produce an infinite family
of translated solutions. For example, starting with the separable solution

u(t, x) = e−γ t sin x,

we immediately produce the additional translated solutions

U (t, x) = e−γ (t−a) sin(x− b),

valid for any choice of constants a, b.

Warning : Typically, the symmetries of a differential equation do not respect initial
or boundary conditions. For instance, if u(t, x) is defined for t ≥ 0 and in the domain
0 ≤ x ≤ ℓ, then its translated version (8.46) is defined for t ≥ a and in the translated
domain b ≤ x ≤ ℓ+ b, and so will solve a translated initial-boundary value problem.

A second important class of symmetries consists of the scaling invariances. We already
know that if u(t, x) is a solution, then so is the scalar multiple c u(t, x) for any constant c;
this is a simple consequence of linearity of the heat equation. We can also add an arbitrary
constant to the temperature, noting that

U (t, x) = cu(t, x) + k (8.47)

is a solution for any choice of constants c, k. Physically, the transformation (8.47) amounts
to a change in the scale used to measure temperature. For instance, if u is measured in
degrees Celsius, and we set c = 9

5 and k = 32, then U = 9
5 u+32 will be measured in degrees

Fahrenheit. Thus, reassuringly, the physical processes described by the heat equation do
not depend on our choice of thermometer.

More interestingly, suppose we rescale the space and time variables:

t 7−→ α t, x 7−→ β x, (8.48)

where α, β ̸= 0 are nonzero constants. The effect of such a scaling transformation is to
convert u(t, x) into a rescaled function†

U (t, x) = u(α−1 t, β−1 x). (8.49)

The derivatives of U are related to those of u according to the formulas

∂U

∂t
=

1

α

∂u

∂t
,

∂U

∂x
=

1

β

∂u

∂x
,

∂2U

∂x2
=

1

β2

∂2u

∂x2
.

Therefore, if u satisfies the heat equation ut = γ uxx, then U satisfies the rescaled heat
equation

Ut =
1
α ut =

γ
α uxx =

β2 γ
α Uxx,

† As before, setting t̂ = α t, x̂ = β x, produces the rescaled function U( t̂, x̂) = u(t, x) =
u(α−1 t̂,β−1 x̂), and we then drop the hats.
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which we rewrite as

Ut = ΓUxx, where Γ =
β2 γ
α . (8.50)

Thus, the net effect of scaling space and time is merely to rescale the diffusion coefficient.
Physically, the scaling symmetry (8.48) corresponds to a change in the physical units used
to measure time and distance. For instance, to change from minutes to seconds, set α = 60,
and from yards to meters, set β = .9144. The net effect (8.50) on the diffusion coefficient
γ is a reflection of its physical units, namely distance2/time.

In particular, if we choose

α = γ, β = 1,

then the rescaled diffusion coefficient becomes Γ = 1. This observation has the following
important consequence. If U (t, x) solves the heat equation for a unit diffusivity, Γ = 1,
then

u(t, x) = U (γ t, x) (8.51)

solves the heat equation for the diffusivity γ > 0. Thus, the only effect of the diffusion
coefficient is to speed up or slow down time. A body with diffusivity γ = 2 will cool down
twice as fast as a body (of the same shape subject to similar boundary conditions and initial
conditions) with diffusivity γ = 1. Note that this particular rescaling has not altered the
space coordinates, and so U (t, x) is defined on the same spatial domain as u(t, x).

On the other hand, if we set α = β2, then the rescaled diffusion coefficient is exactly
the same as the original: Γ = γ. Thus, the transformation

t 7−→ β2 t, x 7−→ β x, (8.52)

does not alter the equation, and hence defines a scaling symmetry — also known as a sim-
ilarity transformation — for the heat equation. Combining (8.52) with the linear rescaling
u 7→ c u, we make the elementary, but important, observation that if u(t, x) is any solution
to the heat equation, then so is the function

U (t, x) = c u(β−2 t, β−1 x), (8.53)

for the same diffusion coefficient γ. For example, rescaling the solution

u(t, x) = e−γ t cosx leads to the solution U (t, x) = c e−γ t/β2

cos
x

β
.

Warning : As in the case of translations, rescaling space by a factor β ̸= 1 will alter
the domain of definition of the solution. If u(t, x) is defined for a ≤ x ≤ b, then U (t, x), as
given in (8.53), is defined for β a ≤ x ≤ β b (or, when β < 0, for β b ≤ x ≤ β a).

For example, suppose that we have solved the heat equation for the temperature u(t, x)
on a bar of length 1, subject to certain initial and boundary conditions. We are then given
a bar composed of the same material of length 2. Since the diffusivity coefficient has not
changed, we can directly construct the new solution U (t, x) by rescaling. Setting β = 2
will serve to double the length. If we also rescale time by a factor α = β2 = 4, then the
rescaled function U (t, x) = u

(
1
4 t,

1
2 x

)
will be a solution of the heat equation on the longer

bar with the same diffusivity constant. The net effect is that the rescaled solution will be
evolving four times as slowly as the original, and hence it effectively takes a bar that is
twice the length four times as long to cool down.
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Similarity Solutions

A similarity solution of a partial differential equation is one that remains unchanged (in-
variant) under a one-parameter family† of scaling symmetryscaling symmetries. For a
partial differential equation in two variables — say t and x — the similarity solutions can
be found by solving an ordinary differential equation.

Suppose our partial differential equation admits the scaling symmetries

t 7−→ βa t, x 7−→ βb x, u 7−→ βc u, β ̸= 0, (8.54)

where a, b, c are fixed constants with a, b not both zero. As above, this means that if u(t, x)
is a solution to the differential equation, so is the rescaled function

U (t, x) = βc u(β−a t, β−b x) (8.55)

for all values of β ̸= 0. Checking that this indeed defines a symmetry is a simple matter of
applying the chain rule, which implies that the derivatives scale according to

ut 7−→ βc−a ut, ux 7−→ βc−b ux, utt 7−→ βc−2a utt, uxt 7−→ βc−a−b uxt, (8.56)

and so on. Products of derivatives scale multiplicatively, e.g., x4 u uxt 7→ β2c−a+3b x4 u uxt.
In order that a (polynomial) differential equation admit such a scaling symmetry, each of
its terms must scale by the same overall power of β.

By definition, u(t, x) is called a similarity solution if it remains unchanged (invariant)
under the scaling symmetries (8.54), so that

u(t, x) = βc u(β−a t, β−b x) (8.57)

for all β > 0. Let us, for specificity, assume that a ̸= 0, leaving the case a = 0, b ̸= 0,
for the reader to complete in Exercise 8.2.13. Since the left-hand side of (8.57) does not
depend on β, we can fix its value to be‡ β = t1/a, and conclude that the similarity solution
must have the form

u(t, x) = tc/a v(ξ), where ξ = x t−b/a and v(ξ) = u(1, ξ), (8.58)

are referred to as the similarity variables , since they remain invariant when subjected to
the scaling transformations (8.54). We then use the chain rule to find the formulas for the
partial derivatives of u in terms of the ordinary derivatives of v with respect to ξ. Substi-
tuting these expressions into the scale-invariant partial differential equation for u(t, x), and
then canceling a common factor of t, will effectively reduce it to an ordinary differential
equation for the function v(ξ). Each solution to the resulting ordinary differential equa-
tion then gives rise to a scale-invariant solution to the original partial differential equation
through the similarity ansatz (8.58).

Example 8.4. As a first example, let us return to the nonlinear transport equation

ut + uux = 0, (8.59)

† Or, more accurately, a one-parameter group, [87].
‡ This assumes t > 0; for t < 0, just replace t by − t.
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which we studied in Section 2.3. Under (8.54, 56), the equation rescales to

βc−aut + β2c−buux = 0,

which is unchanged, provided c−a = 2c− b, and hence c = b−a. Setting a = 1, c = b− 1,
we conclude that if u(t, x) is any solution, then so is the rescaled function

U (t, x) = βb−1 u(β−1 t, β−b x)

for any b and any β ̸= 0.
To find the associated similarity solutions, we use (8.58) to introduce the ansatz

u(t, x) = tb−1 v(ξ), where ξ = x t−b. (8.60)

Differentiating, we obtain

ut = −b x t−2 v′(ξ) + (b− 1) tb−2 v(ξ) = tb−2
[
−b ξ v′(ξ) + (b− 1) v(ξ)

]
, ux = t−1 v′(ξ).

Substituting these expressions into the transport equation (8.59) yields

0 = ut + uux = tb−2
[
(v − b ξ) v′ + (b− 1) v

]
,

and so

(v − b ξ)
dv

dξ
+ (b− 1) v = 0. (8.61)

Any solution to this nonlinear first-order ordinary differential equation will, when substi-
tuted into (8.60), produce a similarity solution to the nonlinear transport equation.

If b = 1, then either v = b ξ, producing the particular similarity solution u(t, x) = x/t
that we earlier used to construct the rarefaction wave (2.54), or v is constant, and so is u.
Otherwise, we can, in fact, linearize (8.61) by treating ξ as a function of v, whence

(b− 1) v
dξ

dv
− b ξ = −v.

The general solution to such a linear first-order ordinary differential equation is found by
the standard method, [18, 23], resulting in

ξ = v + k vb/(b−1),

where k is the constant of integration. Recalling (8.60), we find that the similarity solutions
u(t, x) are defined by an implicit equation

x = kub/(b−1) + t u.

For example, if b = 2, the (multi-valued) solution is a sideways-moving parabola:

x = ku2 + tu, so that u =
− t±

√
t2 + 4kx

2k
.

Example 8.5. Consider the linear heat equation

ut = uxx. (8.62)

Under the rescaling (8.54), the equation becomes βc−aut = βc−2buxx, and thus (8.54)
represents a symmetry if and only if a = 2b. Therefore, if u(t, x) is any solution, so is the
rescaled function

U (t, x) = βc u(β−2 t, β−1 x).
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Of course, the initial scaling factor stems from the linearity of the equation.

The scale-invariant solutions are constructed through the similarity ansatz

u(t, x) = tc/2 v(ξ), where ξ = x/
√
t .

Differentiation yields

ut = − 1
2 x t

c/2−3/2 v′(ξ) + 1
2 ct

c/2−1 v(ξ) = tc/2−1
[
− 1

2 ξ v
′(ξ) + 1

2 cv(ξ)
]
,

uxx = tc/2−1 v′′(ξ).

Substituting these expressions into the heat equation and canceling a common power of t,
we find that v must satisfy the linear ordinary differential equation

v′′ + 1
2 ξ v

′ − 1
2 cv = 0. (8.63)

If c = 0, then (8.63) is effectively a linear first-order ordinary differential equation for v′(ξ),
which can be readily solved by the usual method, thereby producing the solution

v(ξ) = c1 + c2 erf
(
1
2 ξ

)
,

where c1, c2 are arbitrary constants and erf is the error function (2.87). The corresponding
similarity solution to the heat equation is

u(t, x) = c1 + c2 erf

(
x√
t

)
.

The error function solutions that we encountered in (8.17) can be built up as a linear
combination of translations of this similarity solution.

If c ̸= 0, most solutions to the ordinary differential equation (8.63) are not elementary
functions.† One is in need of more sophisticated techniques, e.g., the method of power
series to be developed in Section 11.3, to understand its solutions, and hence the resulting
similarity solutions to the heat equation.

Exercises

8.2.1. If it takes a 2 cm long insulated bar 23 minutes to cool down to room temperature, how
long does it take a 4 cm bar?

8.2.2. If it takes a 5 centimeter long insulated iron bar 10 minutes to cool down so as not to
burn your hand, how long does it take a 20 centimeter bar made out of the same material
to cool down to the same temperature?

♦ 8.2.3.(a) Given γ > 0, use a scaling transformation to write down the formula for the funda-
mental solution for the general heat equation ut = γuxx for x ∈ R. (b) Write down the
corresponding integral formula for the solution to the initial value problem.

† According to [87; Example 3.3], the general solution can be written in terms of parabolic
cylinder functions, [86].



8.2 Symmetry and Similarity 311

8.2.4. Use scaling to construct the series solution for a heated circular ring of radius r and
thermal diffusivity γ. Does scaling also give the correct formulas for the Fourier coefficients
in terms of the initial temperature distribution?

8.2.5. A solution u(t, x) to the heat equation is measured in degrees Fahrenheit. What is the
corresponding temperature in degrees Kelvin? Which symmetry transformation takes the
first solution to the second solution, and how does it affect the diffusion coefficient?

8.2.6. Is time reversal, t 5→ − t, a symmetry of the heat equation? Write down a physical expla-
nation, and then a mathematical justification.

8.2.7. According to Exercise 4.1.17, the partial differential equation ut + cux = γuxx models
diffusion in a convective flow. Show how to use scaling to place the differential equation in
the form ut + ux = P−1 uxx, where P is called the Péclet number , and controls the rate of
mixing. Is there a scaling that will reduce the problem to the case P = 1?

8.2.8. Suppose you know a solution u⋆(t, x) to the heat equation that satisfies u⋆(1, x) = f(x).
Explain how to solve the initial value problem with u(0, x) = f(x).

8.2.9. Solve the following initial value problems for the heat equation ut = uxx for x ∈ R:

(a) u(0, x) = e−x2/4. Hint : Use Exercise 8.2.8. (b) u(0, x) = e−4x2

.

(c) u(0, x) = x2 e−x2/4. Hint : Use Exercise 4.1.12.

8.2.10. Define the functions Hn(x) for n = 0, 1, 2, . . . , by the formula

dn

dxn
e−x2

= (−1)nHn(x) e
−x2

. (8.64)

(a) Prove that Hn(x) is a polynomial of degree n, known as the nth Hermite polynomial .
(b) Calculate the first four Hermite polynomials.
(c) Assuming γ = 1, find the solution to the heat equation for −∞ < x < ∞ and t > 0,

given the initial data u(0, x) = Hn(x) e
−x2

. Hint : Combine Exercises 4.1.11, 8.2.8.

8.2.11. Find the scaling symmetries and corresponding similarity solutions of the following par-
tial differential equations: (a) ut = x2ux, (b) ut + u2ux = 0, (c) utt = uxx.

8.2.12. Show that the wave equation utt = c2uxx has the following invariance properties: if
u(t, x) is a solution, so is (a) any time translate: u(t−a, x), where a is fixed; (b) any space
translate: u(t, x − b), where b is fixed; (c) the dilated function u(β t, βx) for β ̸= 0; (d) any
derivative: say ∂u/∂x or ∂2u/∂t2, provided u is sufficiently smooth.

♦ 8.2.13. Suppose a = 0, b ̸= 0 in the scaling transformation (8.57).
(a) Discuss how to reduce the partial differential equation to an ordinary differential equa-

tion for the corresponding similarity solutions.
(b) Illustrate your method with the partial differential equation t ut = uuxx.

8.2.14. True or false: (a) A homogeneous polynomial solution to a partial differential equa-
tion is always a similarity solution. (b) An inhomogeneous polynomial solution to a partial
differential equation can never be a similarity solution.

8.2.15.(a) Find all scaling symmetries of the two-dimensional Laplace equation uxx + uyy = 0.
(b) Write down the ordinary differential equation for the similarity solutions. (c) Can you
find an explicit formula for the similarity solutions? Hint : Look at Exercise 8.2.14(a).

♥ 8.2.16. Besides the translations and scalings, Lie symmetry methods, [87], produce two other
classes of symmetry transformations for the heat equation ut = uxx. Given that u(t, x) is a
solution to the heat equation:

(a) Prove that U(t, x) = ec
2 t−cx u(t, x − 2ct) is also a solution to the heat equation for any

c ∈ R. What solution do you obtain if u(t, x) = a is a constant solution? Remark : This
transformation can be interpreted as the effect of a Galilean boost to a coordinate frame
that is moving with speed c.
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(b) Prove that U(t, x) =
e−cx2/(4(1+ct))

√
1 + ct

u
( t
1 + ct

,
x

1 + ct

)
is a solution to the heat equa-

tion for any c ∈ R. What solution do you obtain if u(t, x) = a is a constant?

8.3 The Maximum Principle

We have already noted the temporal decay of temperature, as governed by the heat equa-
tion, to thermal equilibrium. While the temperature at any individual point in a physical
medium can fluctuate — depending on what is happening elsewhere, thermodynamics tells
us that the overall heat content of an isolated body must continually decrease. The Max-
imum Principle is the mathematical formulation of this physical law, and states that the
temperature of a body cannot, in the absence of external heat sources, ever become larger
than its initial or boundary values. This can be viewed as a dynamical counterpart to the
Maximum Principle for the Laplace equation, as formulated in Theorem 4.9, stating that
the maximum temperature of a body in equilibrium is achieved only on its boundary.

The proof of the Maximum Principle will be facilitated if we analyze the more general
situation in which heat energy is being continually extracted throughout the body.

Theorem 8.6. Let γ > 0. Suppose u(t, x) is a solution to the forced heat equation

∂u

∂t
= γ

∂2u

∂x2
+ F (t, x) (8.65)

on the rectangular domain

R = {a < x < b, 0 < t < c}.

Assume that the forcing term is nowhere positive: F (t, x) ≤ 0 for all (t, x) ∈ R. Then the
maximum of u(t, x) on the closed rectangle R is attained at t = 0 or x = a or x = b.

In other words, if no new heat is being introduced, the maximum overall temperature
occurs either at the initial time or on the body’s boundary. In particular, in the fully
insulated case F (t, x) ≡ 0, (8.65) reduces to the heat equation, and Theorem 8.6 applies
as stated.

Proof : First let us first prove the result under the stronger assumption F (t, x) < 0,
which implies that

∂u

∂t
< γ

∂2u

∂x2
(8.66)

everywhere in the rectangle R. Suppose first that u(t, x) has a (local) maximum at a point
(t⋆, x⋆) in the interior of R. Then, by multivariable calculus, [8, 108], its gradient must
vanish there, ∇u(t⋆, x⋆) = 0, and hence

ut(t
⋆, x⋆) = ux(t

⋆, x⋆) = 0. (8.67)

Our assumption implies that the scalar function h(x) = u(t⋆, x) has a maximum at x = x⋆.
Thus, by the second derivative test for functions of a single variable,

h′′(x⋆) = uxx(t
⋆, x⋆) ≤ 0. (8.68)
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But the requirements (8.67–68) are clearly incompatible with the initial inequality (8.66).
We conclude that the solution u(t, x) cannot have a local maximum at any point in the
interior of R.

We still need to exclude the possibility of a maximum occurring at a non-corner point
(t⋆, x⋆) = (c, x⋆), a < x⋆ < b, on the right-hand edge of the rectangle. If such were
to occur, then the function g(t) = u(t, x⋆) would be nondecreasing at t = c, and hence
g′(t) = ut(c, x

⋆) ≥ 0 there. The preceding argument also implies that uxx(c, x
⋆) ≤ 0, and

again these two requirements are incompatible with (8.66). We conclude that any (local)
maximum must occur on one of the other three sides of the rectangle, in accordance with
the statement of the theorem.

To generalize the argument to the case F (t, x) ≤ 0 — which includes the heat equation
— requires a little trick. Starting with the solution u(t, x) to (8.65), we set

v(t, x) = u(t, x) + ε x2, where ε > 0.

Then,

∂v

∂t
=

∂u

∂t
= γ

∂2u

∂x2
+ F (t, x) = γ

∂2v

∂x2
− 2γ ε+ F (t, x) = γ

∂2v

∂x2
+ F̃ (t, x),

where, by our original assumption on F (t, x),

F̃ (t, x) = F (t, x)− 2γ ε < 0

everywhere in R. Thus, by the previous argument, a local maximum of v(t, x) can occur
only when t = 0 or x = a or x = b. Now we let ε → 0 and conclude the same for u. More
rigorously, let M denote the maximum value of u(t, x) on the indicated three sides of the
rectangle. Then

v(t, x) ≤ M + εmax{a2, b2 }

there, and hence, by the preceding argument,

u(t, x) ≤ v(t, x) ≤ M + εmax{a2, b2 } for all (t, x) ∈ R.

Now, letting ε → 0+ proves that u(t, x) ≤ M everywhere in R. Q.E.D.

For the unforced heat equation, we can bound the solution from both above and below
by its boundary and initial temperatures:

Corollary 8.7. Suppose u(t, x) solves the heat equation ut = γ uxx, with γ > 0, for
a < x < b, 0 < t < c. Set

B = { (0, x) | a ≤ x ≤ b } ∪ { (t, a) | 0 ≤ t ≤ c } ∪ { (t, b) | 0 ≤ t ≤ c } ,

and let

M = max { u(t, x) | (t, x) ∈ B } , m = min { u(t, x) | (t, x) ∈ B } , (8.69)

be, respectively, the maximum and minimum values for the initial and boundary temper-
atures. Then m ≤ u(t, x) ≤ M for all a ≤ x ≤ b, 0 ≤ t ≤ c.

Proof : The upper bound u(t, x) ≤ M follows from the Maximum Principle of Theo-
rem 8.6. To establish the lower bound, we note that ũ(t, x) = − u(t, x) also solves the heat
equation, satisfying ũ(t, x) ≤ −m on B, and hence, by the Maximum Principle, everywhere
in the rectangle. But this implies u(t, x) = − ũ(t, x) ≥ m. Q.E.D.
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Remark : Theorem 8.6 is sometimes referred to as the Weak Maximum Principle for
the heat equation. The Strong Maximum Principle states that, provided the solution
u(t, x) is not constant, its value at any non-initial, non-boundary point (t, x) ∈ R̂ =
{a < x < b, 0 < t ≤ c} is strictly less than its maximum initial and boundary values; in
other words, u(t, x) < M for (t, x) ∈ R̂, where M is given in (8.69). Similarly, the
Strong Maximum Principle implies that, for nonconstant solutions to the heat equation,
the inequalities in Corollary 8.7 are strict: m < u(t, x) < M for all (t, x) ∈ R̂. Proofs of
the Strong Maximum Principle are more delicate, and can be found in [38, 61].

One immediate application of the Maximum Principle is to prove uniqueness of solu-
tions to the heat equation.

Theorem 8.8. There is at most one solution to the Dirichlet initial-boundary value
problem for the forced heat equation.

Proof : Suppose u and ũ are any two solutions with the same initial and boundary
values. Then their difference v = u − ũ solves the homogeneous initial-boundary value
problem for the unforced heat equation, with minimum and maximum boundary values
m = 0 ≤ v(t, x) ≤ 0 = M for t = 0, a ≤ x ≤ b, and also x = a or b, 0 ≤ t ≤ c. But then
Corollary 8.7 implies that 0 ≤ v(t, x) ≤ 0 everywhere, which implies that u ≡ ũ, thereby
establishing uniqueness. Q.E.D.

Remark : Existence of the solution follows from the convergence of our Fourier series
— assuming that the initial and boundary data and the forcing function are sufficiently
nice.

Exercises

8.3.1. True or false: Assuming no external heat source, if the initial and boundary tempera-
tures of a one-dimensional body are always positive, the temperature within the body is
necessarily positive.

8.3.2. Suppose u(t, x) and v(t, x) are two solutions to the heat equation such that u ≤ v when
t = 0 and when x = a or x = b. Prove that u(t, x) ≤ v(t, x) for all a ≤ x ≤ b and all t ≥ 0.
Provide a physical interpretion of this result.

8.3.3. For t > 0, let u(t, x) be a solution to the unforced heat equation on an interval a < x < b,
subject to homogeneous Dirichlet boundary conditions. Prove that
M(t) = max{u(t, x) | a ≤ x ≤ b } is a nonincreasing function of t.

8.3.4.(a) State and prove a Maximum Principle for the convection-diffusion equation
ut = uxx + ux. (b) Does the equation ut = uxx − ux also admit a Maximum Principle?

8.3.5. Consider the parabolic equation
∂u
∂t

= x
∂2u
∂x2

+
∂u
∂x

on the interval 1 < x < 2, with initial

and boundary conditions u(0, x) = f(x), u(t, 1) = α(t), u(t, 2) = β(t).
(a) State and prove a version of the Maximum Principle for this problem.
(b) Establish uniqueness of the solution to this initial-boundary value problem.

8.3.6.(a) Show that u(t, x) = −x2 − 2xt is a solution to the diffusion equation ut = xuxx.
(b) Explain why this differential equation does not admit a Maximum Principle.
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8.3.7. Suppose that u(t, x) is a nonconstant solution to the heat equation on the interval
0 < x < ℓ, with homogeneous (a) Dirichlet, (b) Neumann, or (c) mixed boundary condi-

tions. Prove that the function E(t) =
∫ ℓ

0
u(t, x)2 dx is everywhere decreasing: E(t1) > E(t2)

whenever t1 < t2.

8.3.8. True or false: The wave equation utt = c2uxx satisfies a Maximum Principle. If true,

clearly state the principle; if false, explain why not.

8.4 Nonlinear Diffusion

First-order partial differential equations serve to model conservative wave motion, begin-
ning with the basic one-dimensional scalar transport equations that we studied in Chap-
ter 2, and progressing on to higher-dimensional systems, the equations of gas dynamics,
the full-blown Euler equations of fluid mechanics, and yet more complicated systems of
partial differential equations modeling plasmas, magneto-hydrodynamics, etc. However,
such systems fail to account for frictional and viscous effects, which are typically modeled
by parabolic diffusion equations such as the heat equation and its generalizations, both lin-
ear and nonlinear. In this section, we investigate the consequences of combining nonlinear
wave motion with linear diffusion by analyzing the simplest such model. As we will see, the
dissipative term has the effect of smoothing out abrupt shock discontinuities, and the re-
sult is a well-determined, smooth dynamical process with classical solutions. Moreover, in
the inviscid limit, the smooth solutions converge (nonuniformly) to a discontinuous shock
wave, leading to the method of viscosity solutions that has been successfully employed to
analyze such nonlinear dynamical processes.

Burgers’ Equation

The simplest nonlinear diffusion equation is known as† Burgers’ equation

ut + uux = γuxx, (8.70)

which is obtained by appending a simple linear diffusion term to the nonlinear transport
equation (2.31). As with the heat equation, the diffusion coefficient γ ≥ 0 must be nonneg-
ative in order that the initial value problem be well-posed in forwards time. In fluid and
gas dynamics, one interprets the right-hand side as modeling the effect of viscosity, and
so Burgers’ equation represents a very simplified version of the equations of viscous fluid
flows, including the celebrated and widely applied Navier–Stokes equations (1.4), [122].
When the viscosity coefficient vanishes, γ = 0, Burgers’ equation reduces to the nonlinear
transport equation (2.31), which, as a consequence, is often referred to as the inviscid
Burgers’ equation.

† The equation is named after the Dutch physicist Johannes Martinus Burgers, [26], and so
the apostrophe goes after the “s”. Burgers’ equation was apparently first studied as a physical
model by the British (later American) applied mathematician Harry Bateman, [13], in the early
twentieth century.
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Since Burgers’ equation is of first order in t, we expect that its solutions will be
uniquely prescribed by their initial values

u(0, x) = f(x), −∞ < x < ∞. (8.71)

(For simplicity, we will ignore boundary effects here.) Small, slowly varying solutions —
more specifically, those for which both |u(t, x) | and |ux(t, x) | are small — tend to act like
solutions to the heat equation, smoothing out and decaying to 0 as time progresses. On the
other hand, when the solution is large or rapidly varying, the nonlinear term tends to play
the dominant role, and we might expect the solution to behave like nonlinear transport
waves, perhaps steepening into some sort of shock. But, as we will learn, the smoothing
effect of the diffusion term, no matter how small, ultimately prevents the appearance of a
discontinuous shock wave. Indeed, it can be proved that, under rather mild assumptions
on the initial data, the solution to the initial value problem (8.70–71) remains smooth and
well defined for all subsequent times, [122].

The simplest explicit solutions are the traveling waves , for which

u(t, x) = v(ξ) = v(x− ct), where ξ = x− ct, (8.72)

indicates a fixed profile, moving to the right with constant speed c. By the chain rule,

∂u

∂t
= −cv′(ξ),

∂u

∂x
= v′(ξ),

∂2u

∂x2
= v′′(ξ).

Substituting these expressions into Burgers’ equation (8.70), we conclude that v(ξ) must
satisfy the nonlinear second-order ordinary differential equation

−cv′ + v v′ = γ v′′.

This equation can be solved by first integrating both sides with respect to ξ, and so

γ v′ = k − cv + 1
2 v

2,

where k is a constant of integration. Following the analysis after Proposition 2.3, as
ξ → ±∞, the bounded solutions to such an autonomous first-order ordinary differential
equation tend to one of the fixed points provided by the roots of the quadratic polynomial
on the right-hand side. Therefore, for there to be a bounded traveling-wave solution v(ξ),
the quadratic polynomial must have two real roots, which requires k < 1

2 c
2. Assuming

this holds, we rewrite the equation in the form

2γ
dv

dξ
= (v − a)(v − b), where c = 1

2 (a+ b), k = 1
2 ab. (8.73)

To obtain bounded solutions, we must require a < v < b. Integrating (8.73) by the usual
method, cf. (2.19), we find

∫
2γ dv

(v − a)(v − b)
=

2γ

b− a
log

(
b− v

v − a

)
= ξ − δ,

where δ is another constant of integration. Solving for

v(ξ) =
ae(b−a)(ξ−δ)/(2γ) + b

e(b−a)(ξ−δ)/(2γ) + 1
,
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γ = .25 γ = .1 γ = .025

Figure 8.5. Traveling-wave solutions to Burgers’ equation.
⊎

and recalling (8.73), we conclude that the bounded traveling-wave solutions to Burgers’
equation all have the explicit form

u(t, x) =
ae(b−a)(x−ct−δ)/(2γ) + b

e(b−a)(x−ct−δ)/(2γ) + 1
, (8.74)

where a < b and δ are arbitrary constants. Observe that our solution is a monotonically
decreasing function of x, with asymptotic values

lim
x→−∞

u(t, x) = b, lim
x→∞

u(t, x) = a,

at large distances. The wave travels to the right, unchanged in form, with speed c = 1
2 (a+b)

equal to the average of its asymptotic values. In particular, if a = −b, the result is a
stationary-wave solution. In Figure 8.5 we graph sample profiles, corresponding to a = .1,
b = 1, for three different values of the diffusion coefficient. Note that the smaller γ is, the
sharper the transition layer between the two asymptotic values of the solution.

In the inviscid limit as the diffusion becomes vanishingly small, γ → 0, the traveling-
wave solutions (8.74) converge to the step shock-wave solutions (2.51) of the nonlinear
transport equation. Indeed, this can be proved to hold in general: as γ → 0, solutions to
Burgers’ equation (8.70) converge to the corresponding solutions to the nonlinear transport
equation (2.31) that are subject to the Rankine–Hugoniot and entropy conditions (2.53, 55).
Thus, the method of vanishing viscosity allows one to monitor solutions to the nonlinear
transport equation as they evolve into regimes where multiple shocks interact and merge.
This approach also reconfirms our physical intuition, in that most physical systems retain
a very small dissipative component that serves to mollify abrupt discontinuities that might
appear in a theoretical model that fails to take friction or viscous effects into account. In
the modern theory of partial differential equations, the resulting viscosity solution method
has been successfully used to characterize the discontinuous solutions to a broad range of
inviscid nonlinear wave equations as limits of classical solutions to a viscously regularized
system. We refer the interested reader to [64, 107, 122] for further details.

The Hopf–Cole Transformation

By a remarkable stroke of good fortune, the nonlinear Burgers’ equation can be con-
verted into the linear heat equation and thereby explicitly solved. The transformation
that linearizes the nonlinear Burgers’ equation first appeared in an obscure exercise in a
nineteenth-century differential equations textbook, [41; vol. 6, p. 102]. Its rediscovery by
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the applied mathematicians Eberhard Hopf, [56], and Julian Cole, [32], was a milestone
in the modern era of nonlinear partial differential equations, and it is now named the
Hopf–Cole transformation in their honor.

In general, linearization — that is, converting a given nonlinear differential equation
into a linear equation — is extremely challenging, and, in most instances, impossible. On
the other hand, the reverse process — “nonlinearizing” a linear equation — is trivial:
any nonlinear change of dependent variables will do the trick! However, the resulting
nonlinear equation, while evidently linearizable by inverting the change of variables, is
rarely of independent interest. But sometimes there is a lucky accident, and the resulting
linearization of a physically relevant nonlinear differential equation can have a profound
impact on our understanding of more complicated nonlinear systems.

In the present context, our starting point is the linear heat equation

vt = γ vxx. (8.75)

Among all possible nonlinear changes of dependent variable, one of the simplest that might
spring to mind is an exponential function. Let us, therefore, investigate the effect of an
exponential change of variables

v(t, x) = eαϕ(t,x), so ϕ(t, x) =
1

α
log v(t, x), (8.76)

where α is a nonzero constant. The function ϕ(t, x) is real, provided v(t, x) is a positive
solution to the heat equation. Fortunately, this is not hard to arrange: if the initial
data v(0, x) > 0 is strictly positive, then, as a consequence of the Maximum Principle in
Corollary 8.7, the resulting solution v(t, x) > 0 is positive for all t > 0.

To determine the differential equation satisfied by the function ϕ, we invoke the chain
and product rules to differentiate (8.76):

vt = αϕt e
αϕ, vx = αϕx e

αϕ, vxx = (αϕxx + α2ϕ2
x) e

αϕ.

Substituting the first and last formulas into the heat equation (8.75) and canceling a com-
mon exponential factor, we conclude that ϕ(t, x) satisfies the nonlinear partial differential
equation

ϕt = γϕxx + γαϕ2
x, (8.77)

known as the potential Burgers’ equation, for reasons that will soon become apparent.

The second step in the process is to differentiate the potential Burgers’ equation with
respect to x; the result is

ϕtx = γϕxxx + 2γαϕxϕxx. (8.78)

If we now set
∂ϕ

∂x
= u, (8.79)

so that ϕ acquires the status of a potential function, then the resulting partial differential
equation

ut = γuxx + 2γαuux

coincides with Burgers’ equation (8.70) when α = −1/(2γ). In this manner, we have
arrived at the famous Hopf–Cole transformation.
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Figure 8.6. Trignometric solution to Burgers’ equation.
⊎

Theorem 8.9. If v(t, x) > 0 is any positive solution to the linear heat equation
vt = γ vxx, then

u(t, x) =
∂

∂x

[
−2γ log v(t, x)

]
= −2γ

vx
v (8.80)

solves Burgers’ equation ut + uux = γuxx.

Do all solutions to Burgers’ equation arise in this way? In order to answer this question,
we run the argument in reverse. First, choose a potential function ϕ̃(t, x) that satisfies
(8.79); for example,

ϕ̃(t, x) =

∫ x

0
u(t, y) dy.

If u(t, x) is any solution to Burgers’ equation, then ϕ̃(t, x) satisfies (8.78). Integrating both
sides of the latter equation with respect to x, we conclude that

ϕ̃t = γ ϕ̃xx + γαϕ̃ 2
x + g(t),

for some integration “constant” g(t). Thus, unless g(t) ≡ 0, our potential function ϕ̃
doesn’t satisfy the potential Burgers’ equation (8.77), but that is because we chose the
“wrong” potential. Indeed, if we define

ϕ(t, x) = ϕ̃(t, x)−G(t), where G′(t) = g(t),

then
ϕt = ϕ̃t − g(t) = γ ϕ̃xx + γαϕ̃ 2

x = γϕxx + γαϕ2
x,

and hence the modified potential ϕ(t, x) is a solution to the potential Burgers’ equation
(8.77). From this it easily follows that

v(t, x) = e−ϕ(t,x)/(2γ) (8.81)

is a positive solution to the heat equation, from which the Burgers’ solution u(t, x) can
be recovered through (8.80). We conclude that every solution to Burgers’ equation comes
from a positive solution to the heat equation via the Hopf–Cole transformation.
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Example 8.10. As a simple example, the separable solution

v(t, x) = a+ b e−γω2 t cosωx

to the heat equation leads to the following solution to Burgers’ equation:

u(t, x) =
2γ bω sinωx

a eγω2 t + b cosωx
. (8.82)

A representative example is plotted in Figure 8.6. We should require that a > | b | in
order that v(t, x) > 0 be a positive solution to the heat equation for t ≥ 0; otherwise the
resulting solution to Burgers’ equation will have singularities at the roots of u — as in
the first graph in Figure 8.6. This family of solutions is primarily affected by the viscosity
term, and rapidly decays to zero.

To solve the initial value problem (8.70–71) for Burgers’ equation, we note that, under
the Hopf–Cole transformation (8.80),

v(0, x) = exp

(
−

ϕ(0, x)

2γ

)
= exp

(
−

1

2γ

∫ x

0
f(y) dy

)
≡ h(x). (8.83)

Remark : The lower limit of the integral can be changed from 0 to any other convenient
value. The only effect is to multiply v(t, x) by an overall constant, which does not change
the final form of u(t, x) in (8.80).

According to formula (8.16) (adapted to general diffusivity, as in Exercise 8.2.3), the
solution to the initial value problem (8.75, 83) for the heat equation can be expressed as a
convolution integral with the fundamental solution

v(t, x) =
1

2
√
πγ t

∫ ∞

−∞
e−(x−ξ)2/(4γ t) h(ξ) dξ.

Therefore, setting v̂(t, x) = 2
√
πγ t v(t, x), the solution to the Burgers’ initial value problem

(8.70–71), valid for t > 0, is given by

u(t, x) = −
2γ

v̂(t, x)

∂ v̂

∂x
, where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v̂(t, x) =

∫ ∞

−∞
e−H(t,x;ξ) dξ,

H(t, x; ξ) =
(x− ξ)2

4γ t
+

1

2γ

∫ ξ

0
f(η) dη.

(8.84)

Example 8.11. To demonstrate the smoothing effect of the diffusion terms, let us
see what happens to the initial data

u(0, x) =

{
a, x < 0,

b, x > 0,
(8.85)

in the form of a step function. We assume that a > b, which corresponds to a shock wave
in the inviscid limit γ = 0. (In Exercise 8.4.4, the reader is asked to analyze the case a < b,
which corresponds to a rarefaction wave.) In this case,

H(t, x; ξ) =
(x− ξ)2

4γ t
+

⎧
⎪⎪⎨

⎪⎪⎩

aξ

2γ
, ξ < 0,

bξ

2γ
, ξ > 0.

(8.86)
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t = .01 t = .5

t = 1 t = 2

Figure 8.7. Shock-wave solution to Burgers’ equation.
⊎

After some algebraic manipulations, the solution (8.84) is found to have the explicit form

u(t, x) = a +
b− a

1 + exp

(
b− a

2γ
(x− ct)

)
erfc

(
x− at

2
√
γ t

)/
erfc

(
bt− x

2
√
γ t

) ,
(8.87)

with c = 1
2 (a + b), where erfc z = 1 − erf z denotes the complementary error function

(8.43). The solution, for a = 1, b = .1, and γ = .03, is plotted at various times in
Figure 8.7. Observe that, as with the heat equation, the jump discontinuity is immediately
smoothed out, and the solution soon assumes the form of a smoothly varying transition
between its two original heights. The larger the diffusion coefficient in relation to the
jump magnitude, the more pronounced the smoothing effect. Moreover, as γ → 0, the
solution u(t, x) converges to the shock-wave solution (2.51) to the transport equation, in
which the speed of the shock is c, the average of the step heights — in accordance with
the Rankine–Hugoniot shock rule. Indeed, in view of (2.88),

lim
z→∞

erfc z = 0, lim
z→−∞

erfc z = 2. (8.88)

Thus, for t > 0, as γ → 0, the ratio of the two complementary error functions in (8.87)
tends to ∞ when x < bt, to 1 when bt < x < at, and to 0 when x > at. On the other
hand, since a > b, the exponential term tends to ∞ when x < ct, and to 0 when x > ct.
Put together, these imply that the solution u(t, x) → a when x < ct, while u(t, x) → b,
when x > ct, thus proving convergence to the shock-wave solution.

Example 8.12. Consider the case in which the initial data u(0, x) = δ(x) is a
concentrated delta function impulse at the origin. In the solution formula (8.84), starting
the integral for H(t, x; ξ) at 0 is problematic, but as noted earlier, we are free to select any
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Figure 8.8. Triangular-wave solution to Burgers’ equation.
⊎

other starting point, e.g., −∞. Thus, we take

H(t, x; ξ) =
(x− ξ)2

4γ t
+

1

2γ

∫ ξ

−∞
δ(η) dη =

⎧
⎪⎪⎨

⎪⎪⎩

(x− ξ)2

4γ t
, ξ < 0,

1

2γ
+

(x− ξ)2

4γ t
, ξ > 0.

We then evaluate

v̂(t, x) =

∫ ∞

−∞
e−H(t,x;ξ) dξ =

√
πγ t

[
1− erf

(
x

2
√
γ t

)
+ e−1/(2γ)

{
1 + erf

(
x

2
√
γ t

)}]
.

Therefore, the solution to the initial value problem is

u(t, x) = −
2γ

v̂(t, x)

∂ v̂

∂x
= 2

√
γ

π t

e−x2/(4γ t)

coth

(
1

4γ

)
− erf

(
x

2
√
γ t

) , (8.89)

where

coth z =
cosh z

sinh z
=

ez + e−z

ez − e−z
=

e2z + 1

e2z − 1

is the hyperbolic cotangent function. A graph of this solution when γ = .02 and a = 1
appears in Figure 8.8. As you can see, the initial concentration diffuses out, but, in contrast
to the heat equation, does not remain symmetric, since the nonlinear advection term causes
the wave to steepen in front. Eventually, as the effect of the diffusion accumulates, the
propagating triangular wave becomes vanishingly small.
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Exercises

8.4.1. Find the solution to Burgers’ equation that has the following initial data:

u(0, x) = (a) σ(x), (b) σ(−x), (c)

{
1, 0 < x < 1,
0, otherwise.

8.4.2. Starting with the heat equation solution v(t, x) = 1 + t−1/2 e−x2/(4γ t), find the corre-
sponding solution to Burgers’ equation and discuss its behavior.

8.4.3. Justify the solution formula (8.87).

♦ 8.4.4.(a) Prove that lim
z→∞

z ez
2

erfc z = 1/
√
π . (b) Show that when a < b, the Burgers’

solution (8.87) converges to the rarefaction wave (2.54) in the inviscid limit γ → 0+.

8.4.5. True or false: If u(t, x) solves Burgers’ equation for the step function initial condition
u(0, x) = σ(x), then v(t, x) = ux(t, x) solves the initial value problem with v(0, x) = δ(x).

8.4.6. True or false: If v̂(t, x) is as given in (8.84), then
∂ v̂
∂x

=
∫ ∞

−∞

ξ − x
2γ t

e−H(t,x;ξ) dξ,

and hence the solution to the Burgers’ initial value problem (8.70–71) can be written as

u(t, x) =

∫ ∞

−∞

x− ξ
t

e−H(t,x;ξ) dξ

∫ ∞

−∞
e−H(t,x;ξ) dξ

, where H(t, x; ξ) =
(x− ξ)2

4γ t
+

1
2γ

∫ ξ

0
f(η) dη.

8.4.7. Show that if u(t, x) solves Burgers’ equation, then U(t, x) = u(t, x − ct) + c is also a
solution. What is the physical interpretation of this symmetry?

8.4.8.(a) What is the effect of a scaling transformation (t, x, u) 5−→ (α t, βx,λu) on Burgers’
equation? (b) Use your result to solve the initial value problem for the rescaled Burgers’
equation Ut + ρU Ux = σUxx, U(0, x) = F (x).

♥ 8.4.9.(a) Find all scaling symmetries of Burgers’ equation. (b) Determine the ordinary dif-
ferential equation satisfied by the similarity solutions. (c) True or false: The Hopf–Cole
transformation maps similarity solutions of the heat equation to similarity solutions of
Burgers’ equation.

8.4.10. What happens if you nonlinearize the heat equation (8.75) using the change of vari-
ables

(a) v = ϕ2; (b) v =
√
ϕ ; (c) v = logϕ ?

8.4.11. What partial differential equation results from applying the exponential change of vari-
ables (8.76) to:

(a) the wave equation vtt = c2vxx? (b) the Laplace equation vxx + vyy = 0?

8.5 Dispersion and Solitons

In this section, we finally venture beyond the by now familiar terrain of second-order
partial differential equations. While considerably less common than those of first and
second order, higher-order equations arise in certain applications, particularly third-order
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dispersive models for wave motion, [2, 122], and fourth-order systems modeling elastic
plates and shells, [7]. We will focus our attention on two basic third-order evolution
equations. The first is a simple linear equation with a third derivative term. It arises as
a simplified model for unidirectional wave motion, and thus has more in common with
first-order transport equations than with the second-order dissipative heat equation. The
third-order derivative induces a process of dispersion, in which waves of different frequencies
propagate at different speeds. Thus, unlike the first- and second-order wave equations, in
which waves maintain their initial profile as they move, dispersive waves will spread out and
decay even while conserving energy. Waves on the surface of a liquid are familiar examples
of dispersive waves — an initially concentrated disturbance, caused by, say, throwing a
rock in a pond, spreads out over the surface as its different vibrational components move
off at different speeds.

Our second example is a remarkable nonlinear third-order evolution equation known
as the Korteweg–de Vries equation, which combines dispersive effects with nonlinear trans-
port. As with Burgers’ equation (but for very different mathematical reasons), the dis-
persive term thwarts the tendency for solutions to break into shock waves, and, in fact,
classical solutions exist for all time. Moreover, a general localized initial disturbance will
break up into a finite number of solitary waves; the taller the wave, the faster it moves.
Even more remarkable are the interactive properties of these solitary waves. One ordinar-
ily expects nonlinearity to induce very complicated and not easily predictable behavior.
However, when two solitary-wave solutions to the Korteweg–deVries equation collide, they
eventually emerge from the interaction unchanged, save for a phase shift. This unexpected
and remarkable phenomenon was first detected through numerical simulations in the 1960s
and distinguished with the neologism soliton. It was then found that solitons appear in
a surprising number of basic nonlinear physical models. The investigation of their mathe-
matical properties has had deep ramifications, not just within partial differential equations
and fluid mechanics, but throughout applied mathematics and theoretical physics; it has
even contributed to the solution of long-outstanding problems in complex function theory.
Further development of the modern theory and amazing properties of integrable soliton
equations can be found in [2, 36].

Linear Dispersion

The simplest nontrivial third-order partial differential equation is the linear equation

ut + uxxx = 0, (8.90)

which models the unidirectional† propagation of linear dispersive waves. To avoid compli-
cations engendered by boundary conditions, we shall initially look only at solutions on the
entire line, so −∞ < x < ∞. Since the equation involves only a first-order time derivative,
one expects its solutions to be uniquely specified by a single initial condition

u(0, x) = f(x), −∞ < x < ∞. (8.91)

† Bidirectional propagation, as we saw in the wave equation, requires a second-order time
derivative. As in the d’Alembert solution to the second-order wave equation, the reduction to a
unidirectional model is based on an (approximate) factorization of the bidirectional operator.
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Figure 8.9. Gaussian solution to the dispersive wave equation.
⊎

In wave mechanics, u(t, x) represents the height of the fluid at time t and position x, and
the initial condition (8.91) specifies the initial disturbance.

As with the heat equation (and, indeed, any linear constant-coefficient evolution equa-
tion), the Fourier transform is an effective tool for solving the initial value problem on the
real line. Assuming that the solution u(t, ·) ∈ L2(R) remains square integrable at all times
t (a fact that can be justified a priori — see Exercise 8.5.18(b)), let

û(t, k) =
1√
2π

∫ ∞

−∞
u(t, x) e− i kx dx

be its spatial Fourier transform. Owing to its effect on derivatives, the Fourier transform
converts the partial differential equation (8.90) into a first-order linear ordinary differential
equation:

∂ û

∂t
+ ( i k)3 û =

∂ û

∂t
− i k3 û = 0, (8.92)

in which the frequency variable k appears as a parameter. The corresponding initial con-
ditions

û(0, k) = f̂(k) =
1√
2π

∫ ∞

−∞
f(x) e− i kx dx (8.93)

are provided by the Fourier transform of (8.91). The solution to the initial value problem
(8.92–93) is

û(t, k) = f̂(k) e ik3 t.

Inverting the Fourier transform yields the explicit formula for the solution

u(t, x) =
1√
2π

∫ ∞

−∞
f̂(k) e i (kx+k3 t) dk (8.94)

to the initial value problem (8.90–91) for the dispersive wave equation.
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Example 8.13. Suppose that the initial profile

u(0, x) = f(x) = e−x2

is a Gaussian. According to our table of Fourier transforms (see page 272),

f̂(k) =
e−k2/4

√
2

,

and hence the corresponding solution to the dispersive wave equation (8.90) is

u(t, x) =
1

2
√
π

∫ ∞

−∞
e i (kx+k3 t)−k2/4 dk =

1

2
√
π

∫ ∞

−∞
e−k2/4 cos(kx+ k3 t) dk;

the imaginary part vanishes thanks to the oddness of the integrand. (Indeed, the solution
must be real, since the initial data is real.) A plot of the solution at various times appears
in Figure 8.9. Note the propagation of initially rapid oscillations to the rear (negative x)
of the initial disturbance. The dispersion causes the oscillations to gradually spread out
and decrease in amplitude, with the effect that u(t, x) → 0 uniformly as t → ∞, even

though, according to Exercise 8.5.7, both the mass M =

∫ ∞

−∞
u(t, x) dx and the energy

E =

∫ ∞

−∞
u(t, x)2 dx of the wave are conserved, i.e., are both constant in time.

Example 8.14. The fundamental solution to the dispersive wave equation is gener-
ated by a concentrated initial disturbance:

u(0, x) = δ(x).

The Fourier transform of the delta function is just δ̂(k) = 1/
√
2π . Therefore, the corre-

sponding solution (8.94) is

u(t, x) =
1

2π

∫ ∞

−∞
e i (kx+k3 t) dk =

1

π

∫ ∞

0
cos(kx+ k3 t) dk, (8.95)

since the solution is real (or, equivalently, the imaginary part of the integrand is odd),
while the real part of the integrand is even.

A priori, it appears that the integral (8.95) does not converge, because the integrand
does not go to zero as | k | → ∞. However, the increasingly rapid oscillations induced by
the cubic term tend to cancel each other out and allow convergence. To prove this, given
l > 0, we perform a (non-obvious) integration by parts:

∫ l

0
cos(kx+ k3 t) dk =

∫ l

0

1

x+ 3k2 t

d

dk
sin(kx+ k3 t) dk (8.96)

=
sin(kx+ k3 t)

x+ 3k2 t

∣∣∣∣
l

k=0

−
∫ l

0

d

dk

(
1

x+ 3k2 t

)
sin(kx+ k3 t) dk

=
sin(lx+ l3 t)

x+ 3 l2 t
+

∫ l

0

6k t sin(kx+ k3 t)

(x+ 3k2 t)2
dk.

Provided t ̸= 0, as l → ∞, the first term on the right goes to zero, while the final integral
converges absolutely due to the rapid decay of the integrand.
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t = .03 t = .1 t = .33333

t = 1 t = 5 t = 20

Figure 8.10. Fundamental solution to the dispersive wave equation.
⊎

While the integral in the solution formula (8.95) cannot be evaluated in terms of
elementary functions, it is related to the integral defining the Airy function

Ai(z) =
1

π

∫ ∞

0
cos

(
sz + 1

3 s
3
)
ds, (8.97)

an important special function, [86], that was first employed by the nineteenth-century
British applied mathematician George Airy in his studies of optical caustics (the focusing
of light waves through a lens, e.g., a magnifying glass) and rainbows, [4]. Indeed, applying
the change of variables

s = k 3
√
3 t , z =

x
3
√
3 t

,

to the Airy function integral (8.97), we deduce that the fundamental solution to the dis-
persive wave equation (8.90) can be written as

u(t, x) =
1

3
√
3 t

Ai

(
x

3
√
3 t

)
. (8.98)

See Figure 8.10 for a graph of the solution at several times; in particular, at t = 1/3
the solution is exactly the Airy function. We see that the immediate effect of the initial
delta impluse is to spawn a highly oscillatory wave trailing off to −∞. (As with the heat
equation, signals propagate with infinite speed.) As time progresses, the dispersive effects
cause the oscillations to spread out, with their overall amplitude decaying in proportion to
t−1/3. On the other hand, as t → 0+, the solution becomes more and more oscillatory for
negative x, and so converges weakly to the initial delta function. We also note that (8.98)
has the form of a similarity solution, since it is invariant under the scaling symmetry

(t, x, u) 7−→ (λ−3t,λ−1 x,λ u).

Equation (8.98) gives the response to an initial delta function concentrated at the
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t = .1 t = .2 t = .3

t = .4 t = .5 t = .6

Figure 8.11. Periodic dispersion at irrational (with respect to π) times.
⊎

origin. By translation invariance, we immediately deduce that

F (t, x; ξ) =
1

3
√
3 t

Ai

(
x− ξ
3
√
3 t

)

is the fundamental solution corresponding to an initial delta impulse at x = ξ. Therefore,
we can use linear superposition to find an explicit formula for the solution to the initial
value problem that bypasses the Fourier transform. Namely, writing the general initial
data as a superposition of delta functions,

u(0, x) = f(x) =

∫ ∞

−∞
f(ξ) δ(x− ξ) dξ,

we conclude that the resulting solution is the selfsame combination of fundamental solu-
tions:

u(t, x) =
1

3
√
3 t

∫ ∞

−∞
f(ξ) Ai

(
x− ξ
3
√
3 t

)
dξ. (8.99)

Example 8.15. Dispersive Quantization. Let us investigate the periodic initial-
boundary value problem for our basic linear dispersive equation on the interval−π ≤ x ≤ π:

ut + uxxx = 0, u(t,−π) = u(t,π), ux(t,−π) = ux(t,π), uxx(t,−π) = uxx(t,π),
(8.100)

with initial data u(0, x) = f(x). The Fourier series formula for the resulting solution is
straightforwardly constructed:

u(t, x) =
∞∑

k=−∞

ck e
i (kx+k3t), (8.101)

where ck are the usual (complex) Fourier coefficients (3.65) of the initial data f(x).
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t = 1
30 π t = 1

15 π t = 1
10 π

t = 2
15 π t = 1

6 π t = 1
5 π

Figure 8.12. Periodic dispersion at rational (with respect to π) times.
⊎

Let us take the initial data to be the unit step function: u(0, x) = σ(x). In view of its
Fourier series (3.67), the resulting solution formula (8.101) becomes

u(t, x) =
1

2
−

i

π

∞∑

l=−∞

e i [ (2 l+1)x+(2 l+1)3t ]

2 l + 1

=
1

2
+

2

π

∞∑

l=0

sin
[
(2 l+ 1)x+ (2 l+ 1)3t

]

2 l+ 1
.

(8.102)

Let us graph this solution. At times uniformly spaced by ∆t = .1, the resulting solution
profiles are plotted in Figure 8.11. The solution appears to have a continuous but fractal-
like structure, reminiscent of Weierstrass’ continuous but nowhere differentiable function,
[55; pp. 401–421]. The temporal evolution continues in this fashion until the initial data
are formed again at t = 2π, after which the process periodically repeats.

However, when the times are spaced by ∆t = 1
30 π ≈ .10472, the resulting solution

profiles, as plotted in Figure 8.12, are strikingly different! Indeed, as you are asked to
prove in Exercise 8.5.8, at each rational time t = 2π p/q, where p, q are integers, the
solution (8.102) to the initial-boundary value problem is discontinuous but constant on
subintervals of length 2π/q. This remarkable behavior, in which the solution profiles of
linearly dispersive periodic boundary value problems have markedly different behaviors at
rational and irrational times (with respect to π), was first observed, in the 1990’s, in optics
and quantum mechanics by the British physicist Michael Berry, [16, 115], and named the
Talbot effect , after an optical experiment conducted by the inventor of the photographic
negative, William Henry Fox Talbot. While writing this book, I rediscovered the effect,
which I like to call dispersive quantization, [88], and found that it arises in a wide range
of linearly dispersive periodic initial-boundary value problems, [30].
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The Dispersion Relation

As noted earlier, a key feature of the third-order wave equation (8.90) is that waves disperse,
in the sense that those of different frequencies move at different speeds. Our goal now is
to better understand the dispersion process. To this end, consider a solution whose initial
profile

u(0, x) = e i kx

is a complex oscillatory function. Since the initial data does not decay as |x | → ∞, we
cannot use the Fourier integral solution formula (8.94) directly. Instead, anticipating the
induced wave to exhibit temporal oscillations, let us try an exponential solution ansatz

u(t, x) = e i (kx−ω t) (8.103)

representing a complex oscillatory wave of temporal frequency ω and wave number (spatial
frequency) k. Since

∂u

∂t
= − iω e i (kx−ω t),

∂3u

∂x3
= − i k3 e i (kx−ω t),

(8.103) satisfies the partial differential equation (8.90) if and only if its frequency and wave
number satisfy the dispersion relation

ω = −k3. (8.104)

Therefore, the exponential solution (8.103) of wave number k takes the form

u(t, x) = e i (kx+k3 t). (8.105)

Our Fourier transform formula (8.94) for the solution can thus be viewed as a (continu-
ous) linear superposition of these elementary exponential solutions. In general, to find the
dispersion relation for a linear constant-coefficient partial differential equation, one substi-
tutes the exponential ansatz (8.103). On cancellation of the common exponential factors,
the result is an equation expressing the frequency ω as a function of the wave number k.

Any exponential solution (8.103) is automatically in the form of a traveling wave, since
we can write

u(t, x) = e i (kx−ω t) = e i k (x−cp t), where cp =
ω

k
(8.106)

is the wave speed or, as it is more usually called, the phase velocity . If the dispersion
relation is linear in the wave number, ω = ck, as occurs in the linear transport equation
ut + cux = 0, then all waves move at an identical speed cp = c, and hence localized
disturbances stay localized as they propagate through the medium. In the dispersive case,
ω is no longer a linear function of k, and so waves of different spatial frequencies move at
different speeds. In the particular case (8.90), those with wave number k move at speed
cp = ω/k = −k2, and so the higher the wave number, the faster the wave propagates to the
left. As the individual exponential constituents separate, the overall effect is the dispersive
decay of an initially localized wave, with slowly diminishing amplitude and increasingly
rapid oscillation as x → −∞.

The general solution to the linear partial differential equation under consideration is
then built up by linear superposition of the exponential solutions,

u(t, x) =

∫ ∞

−∞
e i (kx−ω t)g(k) dk, (8.107)
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where ω = ω(k) is determined by the relevant dispersion relation. While the evolution of
the individual waves is an immediate consequence of the dispersion relation, the evolution
of the localized wave packet represented by (8.107) is less evident. To determine its speed
of propagation, let us switch to a moving coordinate frame of speed c by setting x = c t+ξ.
The solution formula (8.107) then becomes

u(t, c t+ ξ) =

∫ ∞

−∞
e i (ck−ω)te i k ξ g(k) dk. (8.108)

For a fixed value of ξ, the integral is of the general oscillatory form

H(t) =

∫ ∞

−∞
e iϕ(k) t h(k) dk, (8.109)

where, in our case, ϕ(k) = ck − ω(k) and h(k) = e i k ξ g(k). We are interested in under-
standing the behavior of such an oscillatory integral as t → ∞. Now, if ϕ(k) = k, then
(8.109) is just a Fourier integral, (7.9), and, as we learned in Chapter 7, H(t) → 0 as
t → ∞, for any reasonable function h(k). Intuitively, the increasingly rapid oscillations of
the exponential factor tend to cancel each other out in the high-frequency limit. A similar
result holds wherever ϕ(k) has no stationary points, i.e., ϕ′(k) ̸= 0, since one can then

perform a local change of variables k̃ = ϕ(k) to convert that part of the oscillatory integral
to Fourier form, and again the increasingly rapid oscillations cause the limit to vanish. In
this fashion, we arrive at the key insight of Stokes and Kelvin that produced the powerful
Method of Stationary Phase. Namely, for large t ≫ 0, the primary contribution to the
highly oscillatory integral (8.109) occurs at the stationary points of the phase function,
that is, where ϕ′(k) = 0. A rigorous justification of the method, along with precise error
bounds, can be found in [85].

In the present context, the Method of Stationary Phase implies that the most signifi-
cant contribution to the integral (8.108) occurs when

0 =
d

dk
(ω − ck) =

dω

dk
− c. (8.110)

Thus, surprisingly, the principal contribution of the components at wave number k is felt
when moving at the group velocity

cg =
dω

dk
. (8.111)

Interestingly, unless the dispersion relation is linear in the wave number, the group velocity
(8.111), which determines the speed of propagation of the energy, is not the same as the
phase velocity (8.106), which governs the speed of propagation of an individual oscillatory
wave. For example, in the case of the dispersive wave equation (8.90), ω = −k3, and so
cg = −3k2, which is three times as fast as the phase velocity, cp = ω/k = −k2. Thus, the
energy propagates faster than the individual waves. This can be observed in Figure 8.9:
while the bulk of the disturbance is spreading out rather rapidly to the left, the individual
wave crests are moving slower.

On the other hand, the dispersion relation associated with deep water waves is (ig-
noring physical constants) ω =

√
k , [122]. Now, the phase velocity is cp = ω/k = 1/

√
k ,

whereas the group velocity is cg = dω/dk = 1/(2
√
k ) = 1

2 cp, and so the individual waves
move twice as fast as the speed of propagation of the underlying wave energy. For an ex-
perimental verification, just throw a stone in a still pond. An individual wave crest emerges
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in back and then steadily grows as it moves through the disturbance, eventually subsiding
and disappearing into the still water ahead of the expanding wave packet triggered by the
stone. The distinction between group velocity and phase velocity is also well understood
by surfers, who know that the largest waves seen out to sea are not the largest when they
break upon the shore.

Exercises

8.5.1. Sketch a picture of the solution for the initial value problem in Example 8.13 at times
t = −.1,−.5, and −1.

♠ 8.5.2.(a) Write down an integral formula for the solution to the dispersive wave equation (8.90)

with initial data u(0, x) =

{
1, 0 < x < 1,
0, otherwise.

(b) Use a computer package to plot your

solution at several times and discuss what you observe.

8.5.3.(a) Write down an integral formula for the solution to the initial value problem

ut + ux + uxxx = 0, u(0, x) = f(x).

(b) Based on the results in Example 8.13, discuss the behavior of the solution to the initial

value problem u(0, x) = e−x2

as t increases.

8.5.4. Find the (i) dispersion relation, (ii) phase velocity, and (iii) group velocity for the fol-
lowing partial differential equations. Which are dispersive? (a) ut + ux + uxxx = 0,
(b) ut = uxxxxx, (c) ut + ux − uxxt = 0, (d) utt = c2uxx, (e) utt = uxx − uxxxx.

8.5.5. Find all linear evolution equations for which the group velocity equals the phase velocity.
Justify your answer.

8.5.6. Show that the phase velocity is greater than the group velocity if and only if the phase
velocity is a decreasing function of k for k > 0 and an increasing function of k for k < 0.
How would you observe this in a physical system?

♦ 8.5.7.(a) Conservation of Mass: Prove that T = u is a density associated with a conservation
law of the dispersive wave equation (8.90). What is the corresponding flux? Under what
conditions is total mass conserved? (b) Conservation of Energy : Establish the same result
for the energy density T = u2. (c) Is u3 the density of a conservation law?

♦ 8.5.8. Prove that when t = πp/q, where p, q are integers, the solution (8.102) is constant on
each interval π j/q < x < π(j + 1)/q for integers j ∈ Z. Hint : Use Exercise 6.1.29(d).
Remark : The proof that the solution is continuous and fractal at irrational times is consid-
erably more difficult, [90].

♦ 8.5.9.(a) Find the complex Fourier series representing the fundamental solution F (t, x; ξ) to
the periodic initial-boundary value problem (8.100). (b) Prove that at time t = 2πp/q,
where p, q are relatively prime integers, F (t, x; ξ) is a linear combination of delta functions
based at the points ξ+2π j/q. Hint : Use Exercise 6.1.29(c). (c) Let u(t, x) be any solution
to (8.100). Prove that u(2πp/q, x) is a linear combination of a finite number of translates,
f(x− xj), of the initial data.
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The Korteweg–deVries Equation

The simplest wave model that combines dispersion with nonlinearity is the celebrated
Korteweg–deVries equation

ut + uxxx + uux = 0. (8.112)

It was first derived, in 1872, by the French applied mathematician Joseph Boussinesq, [21;
eq. (30)], [22; eqs. (283, 291)], as a model for surface waves on shallow water. Two decades
later, it was rediscovered by the Dutch applied mathematician Diederik Korteweg and his
student Gustav de Vries, [65], and, despite Boussinesq’s priority, it is nowadays named
after them. In the early 1960s, the American mathematical physicists Martin Kruskal and
Norman Zabusky, [125], used the Korteweg–deVries equation as a continuum model for
a one-dimensional chain of masses interconnected by nonlinear springs: the Fermi–Pasta–
Ulam problem, [40]. Numerical experimentation revealed its many remarkable properties,
which were soon rigorously established. Their work sparked the rapid development of one
of the most remarkable and far-reaching discoveries of the modern era: integrable nonlinear
partial differential equations, [2, 36].

The most important special solutions to the Korteweg–deVries equation are the trav-
eling waves . We seek solutions

u = v(ξ) = v(x− ct), where ξ = x− ct,

that have a fixed profile while moving with speed c. By the chain rule,

∂u

∂t
= −cv′(ξ),

∂u

∂x
= v′(ξ),

∂3u

∂x3
= v′′′(ξ).

Substituting these expressions into the Korteweg–deVries equation (8.112), we conclude
that v(ξ) must satisfy the nonlinear third-order ordinary differential equation

v′′′ + v v′ − cv′ = 0. (8.113)

Let us further assume that the traveling wave is localized , meaning that the solution and
its derivatives are vanishingly small at large distances:

lim
x→±∞

u(t, x) = lim
x→±∞

∂u

∂x
(t, x) = lim

x→±∞

∂2u

∂x2
(t, x) = 0. (8.114)

This implies that we should impose the boundary conditions

lim
ξ→±∞

v(ξ) = lim
ξ→±∞

v′(ξ) = lim
ξ→±∞

v′′(ξ) = 0. (8.115)

The ordinary differential equation (8.113) can, in fact, be solved in closed form. First,
note that it has the form

d

dξ

(
v′′ + 1

2 v
2 − cv

)
= 0, and hence v′′ + 1

2 v
2 − cv = a,

where a indicates the constant of integration. The localizing boundary conditions (8.115)
imply that a = 0. Multiplying the resulting equation by v′ allows us to integrate a second
time:

0 = v′
(
v′′ + 1

2 v
2 − cv

)
=

d

dξ

[
1
2 (v′)2 + 1

6 v
3 − 1

2 cv
2
]
= 0.
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Figure 8.13. Solitary wave/soliton.
⊎

Thus,
1
2 (v

′)2 + 1
6 v

3 − 1
2 cv

2 = b,

where b is a second constant of integration, which, again by the boundary conditions
(8.115), is also zero. Setting b = 0, and solving for v′, we conclude that v(ξ) satisfies the
autonomous first-order ordinary differential equation

dv

dξ
= v

√
c− 1

3 v ,

which is integrated by the standard method:
∫

dv

v
√
c− 1

3 v
= ξ + δ,

where δ is constant. Consulting a table of integrals, e.g., [48], and then solving for v, we
conclude that the solution has the form

v(ξ) = 3c sech2
(

1
2

√
c ξ + δ

)
, (8.116)

where

sech y =
1

cosh y
=

2

ey + e−y

is the hyperbolic secant function. The solution has the form graphed in Figure 8.13. It is
a symmetric, monotone, exponentially decreasing function on either side of its maximum
height of 3c. (Despite its suggestive profile, it is not a Gaussian.) The resulting localized
traveling-wave solutions to the Korteweg–deVries equation are thus

u(t, x) = 3c sech2
[
1
2

√
c (x− ct) + δ

]
, (8.117)

where c > 0 represents the wave speed — which is necessarily positive, and so all such
solutions move to the right — while δ represents an overall phase shift. The amplitude of
the wave is three times its speed, while its width is proportional to 1/

√
c . Thus, the taller

(and narrower) the wave, the faster it moves.
Localized traveling waves are commonly known as solitary waves . They were first

observed in nature by the British engineer J. Scott Russell, [104], who recounts how one was
triggered by the sudden motion of a barge along an Edinburgh canal. Scott Russell ended
up chasing the propagating wave on horseback for several miles — a physical indication
of its stability. Russell’s observations were dismissed by his contemporary Airy, who,
relying on his linearly dispersive model for surface waves (8.90), claimed that such localized
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Figure 8.14. Interaction of two solitons.
⊎

disturbances could not exist. Much later, Boussinesq derived the proper nonlinear surface
wave model (8.112), valid for long waves in shallow water, along with its solitary wave
solutions (8.117), thereby fully exonerating Russell’s physical observations and insight.

It took almost a century before all the remarkable properties of these solutions came
to light. The most striking is how two such solitary waves interact. While linear equations
always admit a superposition principle, one cannot näıvely combine two solutions to a
nonlinear equation. However, in the case of the Korteweg–deVries equation, suppose the
initial data represent a taller solitary wave to the left of a shorter one. As time evolves,
the taller wave will move faster, and eventually catch up to the shorter one. They then
experience a complicated nonlinear interaction, as expected. But, remarkably, after a
while, they emerge from the interaction unscathed! The smaller wave is now in back and
the larger one in front, and both unchanged in speed, amplitude, and profile. They then
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proceed independently, with the smaller solitary wave lagging farther and farther behind
the faster, taller wave. The only effect of their encounter is an overall phase shift, so that
the taller wave is a bit behind where it would be if it had not encountered the shorter
wave, while the shorter wave is a little ahead of its unhindered position. Figure 8.14 plots
a typical such interaction.

Owing to this “particle-like” behavior under interaction, these solutions were given
a special name: soliton. An explicit formula for a two-soliton solution to the Korteweg–
de Vries equation can be written in the following form:

u(t, x) = 12
∂2

∂x2
log∆(t, x), (8.118)

where

∆(t, x) = det

⎛

⎜⎝
1 + ε1(t, x)

2b1
b1 + b2

ε2(t, x)

2b2
b1 + b2

ε1(t, x) 1 + ε2(t, x)

⎞

⎟⎠, (8.119)

where 0 < b1 < b2, and

εj(t, x) = exp
[
bj(x− b2j t) + dj

]
, j = 1, 2. (8.120)

The constants cj = b2j represent the wave speeds, while the dj correspond to phase shifts of
the individual solitons. Proving that (8.118) is indeed a solution to the Korteweg–deVries
equation is a straightforward, albeit tedious, exercise in differentiation. In Exercise 8.5.14,
the reader is asked to investigate its asymptotic behavior, as t → ±∞, and prove that the
solution does, indeed, break up into two solitons, having the same profiles, speeds, and
amplitudes in both the distant past and future.

A similar dynamic occurs when there are multiple collisions among solitons. Faster
solitons catch up to slower ones moving to their right. After the various solitons finish
colliding and interacting, they emerge in order, from smallest to largest, each moving at
its characteristic speed and becoming more and more separated from its peers. An explicit
formula for the n–soliton solution is provided by the same logarithmic derivative (8.118) in
which ∆(t, x) now represents the determinant of an n× n matrix whose ith diagonal entry

is 1 + εi(t, x), while the off-diagonal (i, j) entry, i ̸= j, is
2bi

bi + bj
εj(t, x), using the same

formula (8.120) for the εj’s, and where 0 < b1 < · · · < bn correspond to the n different
soliton wave speeds cj = b2j . Furthermore, it can be shown that, starting with an arbitrary
localized initial disturbance u(0, x) = f(x) that decays sufficiently rapidly as |x | → ∞, the
resulting solution eventually emits a finite number of solitons of different heights, moving
off at their respective speeds to the right, and so arranged in order from smallest to largest,
followed by a small, asymptotically self-similar dispersive tail that gradually disappears.

The source of these highly non-obvious facts and formulas lies beyond the scope of
this introductory text. Soon after the initial numerical studies, Gardner, Green, Kruskal,
and Miura, [45], discovered a profound connection between the solutions to the Korteweg–
de Vries equation and the eigenvalues λ of the Sturm–Liouville boundary value problem

−
d2ψ

dx2
+ 6u(t, x)ψ = λψ, −∞ < x < ∞, with ψ(t, x) −→ 0 as |x | −→ ∞.

(8.121)
Their remarkable result is that whenever u(t, x) is a localized solution to the Korteweg–
de Vries equation (8.112), the eigenvalues of (8.121) are constant, meaning that they do not
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vary with the time t, while the continuous spectrum has a very simple temporal evolution.
In physical applications of the stationary Schrödinger equation (8.121), in which u(t, x)
represents a quantum-mechanical potential, the eigenvalues correspond to bound states,
while the continuous spectrum governs its scattering behavior. The solution to the so-
called inverse scattering problem reconstructs the potential u(t, x) from its spectrum, and
can be viewed as a nonlinear version of the Fourier transform, in that it effectively linearizes
the Korteweg–de Vries equation and thereby reveals its many remarkable properties. In
particular, the eigenvalues are responsible for the preceding determinantal formulae for the
multi-soliton solutions, while, when present, the continuous spectrum governs the dispersive
tail. See [2, 36] for additional details.

Exercises

8.5.10. Justify the statement that the width of a soliton is proportional to the inverse of the
square root of its speed.

8.5.11. Prove that the function (8.116) is a symmetric, monotone, exponentially decreasing
function on either side of its maximum height of 3c.

8.5.12. Let u(t, x) solve the Korteweg–de Vries equation.
(a) Show that U(t, x) = u(t, x− ct) + c is also a solution.
(b) Give a physical interpretation of this symmetry.

8.5.13.(a) Find all scaling symmetries of the Korteweg–de Vries equation.
(b) Write down an ansatz for the similarity solutions, and then find the corresponding re-

duced ordinary differential equation. (Unfortunately, the similarity solutions cannot be
written in terms of elementary functions, [2].)

♥ 8.5.14.(a) Let u(t, x) be the two-soliton solution defined in (8.118). Let ũ(t, ξ) = u(t, ξ + ct)
represent the solution as viewed in a coordinate frame moving with speed c. Prove that

lim
t→∞

ũ(t, ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3c1 sech2
[
1
2
√
c1 ξ + δ1

]
, c = c1,

3c2 sech2
[
1
2
√
c2 ξ + δ2

]
, c = c2,

0, otherwise,
for suitable constants δ1, δ2. Explain why this justifies the statement that the solution in-
deed breaks up into two individual solitons as t→ ∞. (b) Explain why ũ(t, ξ) has a similar
limiting behavior as t → −∞, but with possibly different constants δ̂1, δ̂2. (c) Use your
formulas to discuss how the solitons are affected by the collision.

8.5.15. Let α,β ̸= 0. Find the soliton solutions to the rescaled Korteweg–de Vries equation
ut + αuxxx + βuux = 0. How are their speed, amplitude, and width interrelated?

8.5.16.(a) Find the solitary wave solutions to the modified Korteweg–de Vries equation

ut + uxxx + u2ux = 0. (b) Discuss how the amplitude and width of the solitary waves are
related to their speeeds. Note: The modified Korteweg–de Vries equation is also integrable,
and its solitary wave solutions are solitons, cf. [36].

8.5.17. Answer Exercise 8.5.16 for the Benjamin–Bona–Mahony equation ut − uxxt + uux = 0,
[14]. Note: The BBM equation is not integrable, and collisions between its solitary waves
produce a small, but measurable, inelastic effect, [1].

♦ 8.5.18.(a) Show that T1 = u is the density for a conservation law for the Korteweg–de Vries

equation. (b) Show that T2 = u2 is also a conserved density. (c) Find a conserved density

of the form T3 = u2x + µu3 for a suitable constant µ. Remark : The Korteweg–de Vries
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equation in fact has infinitely many conservation laws, whose densities depend on higher
and higher-order derivatives of the solution, [76, 87]. It was this discovery that unlocked
the door to all its remarkable integrability properties, [2, 36].

8.5.19. Find two conservation laws of
(a) the modified Korteweg–de Vries equation ut + uxxx + u2ux = 0;
(b) the Benjamin–Bona–Mahony equation ut − uxxt + uux = 0.



Chapter 11

Dynamics of Planar Media

In previous chapters, we studied the equilibrium configurations of planar media — plates
and membranes — governed by the two-dimensional Laplace and Poisson equations. In
this chapter, we analyze their dynamics, modeled by the two-dimensional heat and wave
equations. The heat equation describes diffusion of, say, heat energy in a thin metal plate,
an animal population dispersing over a region, or a pollutant spreading out into a shallow
lake. The wave equation models small vibrations of a two-dimensional membrane such as a
drum. Since both equations fit into the general framework for dynamics that we established
in Section 9.5, their solutions share many of the general qualitative and analytic properties
possessed by their respective one-dimensional counterparts.

Although the increase in dimension may tax our analytical prowess, we have, in fact,
already mastered the principal solution techniques: separation of variables, eigenfunction
series, and fundamental solutions. When applied to partial differential equations in higher
dimensions, separation of variables in curvilinear coordinates often leads to new linear,
but non-constant-coefficient, ordinary differential equations, whose solutions are no longer
elementary functions. Rather, they are expressed in terms of a variety of important special
functions , which include the error and Airy functions we encountered earlier; the Bessel
functions, which play a starring role in the present chapter; and the Legendre and Ferrers
functions, spherical harmonics, and spherical Bessel functions arising in three-dimensional
problems. Special functions are ubiquitous in more advanced applications in physics, chem-
istry, mechanics, and mathematics, and, over the last two hundred and fifty years, many
prominent mathematicians have devoted significant effort to establishing their fundamen-
tal properties, to the extent that they are now, by and large, well understood, [86]. To
acquire the requisite familiarity with special functions, in preparation for employing them
to solve higher-dimensional partial differential equations, we must first learn basic series
solution techniques for linear second-order ordinary differential equations.

11.1 Diffusion in Planar Media

As we learned in Chapter 4, the equilibrium temperature u(x, y) of a thin, uniform, isotropic
plate is governed by the two-dimensional Laplace equation

∆u = uxx + uyy = 0.

Working by analogy, the dynamical diffusion of the plate’s temperature should be modeled
by the two-dimensional heat equation

ut = γ∆u = γ (uxx + uyy). (11.1)
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The coefficient γ > 0, assumed constant, measures the relative speed of diffusion of heat
energy throughout the plate; its positivity is required on physical grounds, and also serves
to avoid ill-posedness inherent in running diffusion processes backwards in time. In this
model, we are assuming that the plate is uniform and isotropic, and experiences no loss of
heat or external heat sources other than at its edge — which can be arranged by covering
its top and bottom with insulation.

The solution u(t,x) = u(t, x, y) to the heat equation measures the temperature, at
time t, at each point x = (x, y) in the (bounded) domain Ω ⊂ R2 occupied by the plate.
To uniquely specify the solution u(t, x, y), we must impose suitable initial and boundary
conditions. The initial data is the temperature of the plate

u(0, x, y) = f(x, y), (x, y) ∈ Ω, (11.2)

at an initial time, which for simplicity, we take to be t0 = 0. The most important boundary
conditions are as follows:

• Dirichlet boundary conditions: Specifying

u = h on ∂Ω (11.3)

fixes the temperature along the edge of the plate.
• Neumann boundary conditions : Let n be the unit outwards normal on the boundary

of the domain. Specifying the normal derivative of the temperature,

∂u

∂n
= k on ∂Ω, (11.4)

effectively prescribes the heat flux along the boundary. Setting k = 0 corresponds
to an insulated boundary.

• Mixed boundary conditions: More generally, we can impose Dirichlet conditions on
part of the boundary D ! ∂Ω and Neumann conditions on its complement N =
∂Ω \D. For instance, homogeneous mixed boundary conditions

u = 0 on D,
∂u

∂n
= 0 on N, (11.5)

correspond to freezing a portion of the boundary and insulating the remainder.
• Robin boundary conditions:

∂u

∂n
+ β u = τ on ∂Ω, (11.6)

where the edge of the plate sits in a heat bath at temperature τ .
Under reasonable assumptions on the domain, the initial data, and the boundary data,
a general theorem, [34, 38, 99], guarantees the existence of a unique solution u(t, x, y) to
any of these initial-boundary value problems for all subsequent times t > 0. Our practical
goal is to both compute and understand the behavior of the solution in specific situations.

Derivation of the Diffusion and Heat Equations

The physical derivation of the two-dimensional (and three-dimensional) heat equation relies
on the same basic thermodynamic laws that were used, in Section 4.1, to establish the
one-dimensional version. The first principle is that heat energy flows from hot to cold as
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rapidly as possible. According to multivariable calculus, [8, 108], the negative temperature
gradient −∇u points in the direction of the steepest decrease in the temperature function
u at a point, and so heat energy will flow in that direction. Therefore, the heat flux vector
w, which measures the magnitude and direction of the flow of heat energy, should be
proportional to the temperature gradient:

w(t, x, y) = − κ(x, y)∇u(t, x, y). (11.7)

The scalar quantity κ(x, y) > 0 measures the thermal conductivity of the material, so
(11.7) is the multi-dimensional form of Fourier’s Law of Cooling (4.5). We are assuming
that the thermal conductivity depends only on the position (x, y) ∈ Ω, which means that
the material in the plate

(a) is not changing in time;

(b) is isotropic, meaning that its thermal conductivity is the same in all directions;

(c) and, moreover, its thermal conductivity is not affected by any change in tempera-
ture.

Dropping either assumption (b) or (c) would result in a considerably more challenging
nonlinear diffusion equation.

The second thermodynamic principle is that, in the absence of external heat sources,
heat can enter any subregion R ⊂ Ω only through its boundary ∂R. (Keep in mind that
the plate is insulated from above and below.) Let ε(t, x, y) denote the heat energy density
at each time and point in the domain, so that

HR(t) =

∫ ∫

R
ε(t, x, y) dx dy

represents the total heat energy contained within the subregion R at time t. The amount
of additional heat energy entering R at a boundary point x ∈ ∂R is given by the normal
component of the heat flux vector, namely −w ·n, where, as always, n denotes the outward
unit normal to the boundary ∂R. Thus, the total heat flux entering the region R is ob-

tained by integration along the boundary of R, resulting in the line integral −
∮

∂R
w · n ds.

Equating the rate of change of heat energy to the heat flux yields

dHR

dt
=

∫ ∫

R

∂ε

∂t
(t, x, y) dx dy = −

∮

∂R
w · n ds = −

∫ ∫

R
∇ ·w dx dy,

where we applied the divergence form of Green’s Theorem, (6.80), to convert the flux line
integral into a double integral. Thus,

∫ ∫

R

(
∂ε

∂t
+∇ ·w

)
dx dy = 0. (11.8)

Keep in mind that this result must hold for any subdomain R ⊂ Ω. Now, according to
Exercise 11.1.13, the only way in which an integral of a continuous function can vanish for
all subdomains is if the integrand is identically zero, and so

∂ε

∂t
+∇ ·w = 0. (11.9)

In this manner, we arrive at the basic conservation law relating the heat energy density ε
and the heat flux vector w.

11.1 Diffusion in Planar Media
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As in our one-dimensional model, cf. (4.3), the heat energy density ε(t, x, y) is propor-
tional to the temperature, so

ε(t, x, y) = σ(x, y) u(t, x, y), where σ(x, y) = ρ(x, y)χ(x, y) (11.10)

is the product of the density ρ and the specific heat capacity χ of the material at the
point (x, y) ∈ Ω. Combining this with the Fourier Law (11.7) and the energy balance
equation (11.10) leads to the general two-dimensional diffusion equation

∂u

∂t
=

1

σ
∇ ·

(
κ∇u

)
(11.11)

governing the thermodynamics of an isotropic medium in the absence of external heat
sources or sinks. In full detail, this second-order partial differential equation is

∂u

∂t
=

1

σ(x, y)

[
∂

∂x

(
κ(x, y)

∂u

∂x

)
+

∂

∂y

(
κ(x, y)

∂u

∂y

)]
. (11.12)

Such diffusion equations are also used to model movements of populations, e.g., bacte-
ria in a petri dish or wolves in the Canadian Rockies, [81, 84]. Here the solution u(t, x, y)
represents the population density at position (x, y) at time t, which diffuses over the do-
main due to random motions of the individuals. Similar diffusion processes model the
mixing of solutes in liquids, with the diffusion induced by the random Brownian motion
from molecular collisions. More generally, diffusion processes in the presence of chemical
reactions and convection due to fluid motion are modeled by the more general class of
reaction-diffusion and convection-diffusion equations, [107].

In particular, if the body (or the environment or the solvent) is uniform, then both
σ and κ are constant, and so (11.11) reduces to the heat equation (11.1) with thermal
diffusivity

γ =
κ

σ
=

κ

ρχ
. (11.13)

Both the heat and more general diffusion equations are examples of parabolic partial dif-
ferential equations, the terminology being adapted from Definition 4.12 to apply to partial
differential equations in more than two variables. As we will see, all the basic qualitative
features of solutions to the one-dimensional heat equation carry over to parabolic partial
differential equations in higher dimensions.

Indeed, the general diffusion equation (11.12) can be readily fit into the self-adjoint
dynamical framework of Section 9.5, taking the form

ut = −∇∗ ◦∇u. (11.14)

The gradient operator ∇ maps scalar fields u to vector fields v = ∇u; its adjoint ∇∗, which
goes in the reverse direction, is taken with respect to the weighted inner products

⟨ u , ũ ⟩ =
∫ ∫

Ω
u(x, y) ũ(x, y) σ(x, y)dx dy, ⟨⟨v , ṽ ⟩⟩ =

∫ ∫

Ω
v(x, y) · ṽ(x, y) κ(x, y) dx dy,

(11.15)
between, respectively, scalar and vector fields. As in (9.33), a straightforward integration
by parts tells us that

∇∗v = −
1

σ
∇ · (κv) = −

1

σ

[
∂(κ v1)

∂x
+

∂(κ v2)

∂y

]
, when v =

(
v1
v2

)
. (11.16)
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Therefore, the right-hand side of (11.14) equals

−∇∗ ◦∇u =
1

σ
∇ · (κ∇u), (11.17)

which thereby recovers the general diffusion equation (11.11). As always, the validity of
the adjoint formula (11.16) rests on the imposition of suitable homogeneous boundary
conditions: Dirichlet, Neumann, mixed, or Robin.

In particular, to obtain the heat equation, we take σ and κ to be constant, and so
the inner products (11.15) reduce, up to a constant factor, to the usual L2 inner products
between scalar and vector fields. In this case, the adjoint of the gradient is, up to a scale
factor, minus the divergence: ∇∗ = − γ∇· , where γ = κ/σ. In this scenario, (11.14)
reduces to the two-dimensional heat equation (11.1).

Separation of Variables

Let us now discuss analytical solution techniques. According to Section 9.5, the separable
solutions to any linear evolution equation

ut = −S[u ] (11.18)

are of exponential form
u(t, x, y) = e−λt v(x, y). (11.19)

Since the linear operator S involves differentiation with respect to only the spatial variables
x, y, we obtain

∂u

∂t
= − λ e−λt v(x, y), while S[u ] = e−λt S[v ].

Substituting back into the diffusion equation (11.18) and canceling the exponentials, we
conclude that

S[v ] = λ v. (11.20)

Thus, v(x, y) must be an eigenfunction for the linear operator S, subject to the relevant
homogeneous boundary conditions.

In the case of the heat equation (11.1),

S[u ] = −γ∆u,

and hence, as in Example 9.40, the eigenvalue equation (11.20) is the two-dimensional
Helmholtz equation

γ∆v + λ v = 0, or, in detail, γ

(
∂2v

∂x2
+

∂2v

∂y2

)
+ λ v = 0. (11.21)

According to Theorem 9.34, self-adjointness implies that the eigenvalues are all real and
nonnegative: λ ≥ 0. In the positive definite cases — Dirichlet and mixed boundary
conditions — they are strictly positive, while the Neumann boundary value problem admits
a zero eigenvalue λ0 = 0 corresponding to the constant eigenfunction v0(x, y) ≡ 1.

Let us index the eigenvalues in increasing order:

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · , (11.22)
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repeated according to their multiplicities, where λ0 = 0 is an eigenvalue only in the Neu-
mann case, and λk → ∞ as k → ∞. For each eigenvalue λk, let vk(x, y) be an independent
eigenfunction. The corresponding separable solution is

uk(t, x, y) = e−λk t vk(x, y).

Those corresponding to positive eigenvalues are exponentially decaying in time, while a
zero eigenvalue produces a constant solution u0(t, x, y) ≡ 1. The general solution to the
homogeneous boundary value problem can then be built up as an infinite series in these
basic eigensolutions

u(t, x, y) =
∞∑

k=1

ck uk(t, x, y) =
∞∑

k=1

ck e
−λk t vk(x, y). (11.23)

The coefficients ck are prescribed by the initial conditions, which require

∞∑

k=1

ck vk(x, y) = f(x, y). (11.24)

Since S is self-adjoint, Theorem 9.33 guarantees orthogonality† of the eigenfunctions under
the L2 inner product on the domain Ω:

⟨ vj , vk ⟩ =
∫ ∫

Ω
vj(x, y) vk(x, y) dx dy = 0, j ̸= k. (11.25)

As a consequence, the coefficients in (11.24) are given by the standard orthogonality formula
(9.104), namely

ck =
⟨ f , vk ⟩
∥ vk ∥

2 =

∫ ∫

Ω
f(x, y) vk(x, y) dx dy

∫ ∫

Ω
vk(x, y)

2 dx dy

. (11.26)

(For the more general diffusion equation (11.11), one uses the appropriately weighted inner
product.) The exponential decay of the eigenfunction coefficients implies that the resulting
eigensolution series (11.23) converges and thus produces the solution to the initial-boundary
value problem for the diffusion equation. See [34; p. 369] for a precise statement and proof
of the general theorem.

Qualitative Properties

Before tackling examples in which we are able to construct explicit formulas for the eigen-
functions and eigenvalues, let us see what the eigenfunction series solution (11.23) can
tell us about general diffusion processes. Based on our experience with the case of a one-
dimensional bar, the final conclusions will not be especially surprising. Indeed, they also
apply, word for word, to diffusion processes in three-dimensional solid bodies. A reader who
is impatient to see the explicit formulas may wish to skip ahead to the following section,
returning here as needed.

† As usual, in the case of a repeated eigenvalue, one chooses an orthogonal basis of the
associated eigenspace to ensure orthogonality of all the basis eigenfunctions.
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Keep in mind that we are still dealing with the solution to the homogeneous boundary
value problem. The first observation is that all terms in the series solution (11.23), with the
possible exception of a null eigenfunction term that appears in the semi-definite Neumann
case, are tending to zero exponentially fast. Since most eigenvalues are large, all the higher-
order terms in the series become almost instantaneously negligible, and hence the solution
can be accurately approximated by a finite sum over the first few eigenfunction modes.
As time goes on, more and more of the modes can be neglected, and the solution decays
to thermal equilibrium at an exponentially fast rate. The rate of convergence to thermal
equilibrium is, for most initial data, governed by the smallest positive eigenvalue λ1 > 0
for the Helmholtz boundary value problem on the domain.

In the positive definite cases of homogeneous Dirichlet or mixed boundary conditions,
thermal equilibrium is u(t, x, y) → u⋆(x, y) ≡ 0. Here, the equilibrium temperature is equal
to the zero boundary temperature — even if this temperature is fixed on only a small part
of the boundary. The initial heat is eventually dissipated away through the uninsulated
part of the boundary. In the semi-definite Neumann case, corresponding to a completely
insulated plate, the general solution has the form

u(t, x, y) = c0 +
∞∑

k=1

ck e
−λkt vk(x, y), (11.27)

where the sum is over the positive eigenmodes, λk > 0. Since all the summands are expo-
nentially decaying, the final equilibrium temperature u⋆ = c0 is the same as the constant
term in the eigenfunction expansion. We evaluate this term using the orthogonality formula
(11.26), and so, as t → ∞,

u(t, x, y) −→ c0 =
⟨ f , 1 ⟩
∥ 1 ∥2

=

∫ ∫

Ω
f(x, y) dx dy

∫ ∫

Ω
dx dy

=
1

area Ω

∫ ∫

Ω
f(x, y) dx dy. (11.28)

We conclude that the equilibrium temperature is equal to the average initial temperature
distribution. Thus, when the plate is fully insulated, the heat energy cannot escape, and
instead redistributes itself in a uniform manner over the domain.

Diffusion has a smoothing effect on the initial temperature distribution f(x, y). As-
sume that the eigenfunction coefficients are uniformly bounded, so | ck | ≤ M for some
constant M . This will certainly be the case if f(x, y) is piecewise continuous or, more gen-
erally, belongs to L2, since Bessel’s inequality, (3.117), which holds for general orthogonal
systems, implies that ck → 0 as k → ∞. Many distributions, including delta functions,
also have bounded Fourier coefficients. Then, at any time t > 0 after the initial instant,
the coefficients ck e

−λkt in the eigenfunction series solution (11.23) are exponentially small
as k → ∞, which is enough to ensure smoothness of the solution u(t, x, y) for each t > 0.
Therefore, the diffusion process serves to immediately smooth out jumps, corners, and
other discontinuities in the initial data. As time progresses, the local variations in the so-
lution become less and less pronounced, as it asymptotically reaches a constant equilibrium
state.

As a result, diffusion processes can be effectively applied to smooth and denoise planar
images. The initial data u(0, x, y) = f(x, y) represents the gray-scale value of the image at
position (x, y), so that 0 ≤ f(x, y) ≤ 1, with 0 representing black and 1 representing white.
As time progresses, the solution u(t, x, y) represents a more and more smoothed version
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Figure 11.1. Smoothing a gray scale image.

of the image. Although this has the effect of removing unwanted high-frequency noise,
there is also a gradual blurring of the actual features. Thus, the “time” or “multiscale”
parameter t needs to be chosen to optimally balance between the two effects — the larger
t is the more noise is removed, but the more noticeable the blurring. A representative
illustration appears in Figure 11.1. The blurring affects small-scale features first, then,
gradually, those at larger and larger scales, until eventually the entire image is blurred to
a uniform gray. To further suppress undesirable blurring effects, modern image-processing
filters are based on anisotropic (and thus nonlinear) diffusion equations; see [100] for a
survey of recent progress in this active field.

Since the forward heat equation effectively blurs the features in an image, we might be
tempted to reverse “time” in order to sharpen the image. However, the argument presented
in Section 4.1 tells us that the backwards heat equation is ill-posed, and hence cannot be
used directly for this purpose. Various “regularization” strategies have been devised to
circumvent this mathematical barrier, and thereby design effective image enhancement
algorithms, [46].

Inhomogeneous Boundary Conditions and Forcing

Let us next briefly discuss how to incorporate inhomogeneous boundary conditions and
external heat sources into the general solution framework. Consider, as a specific example,
the forced heat equation

ut = γ∆u+ F (x, y) for (x, y) ∈ Ω, (11.29)

where F (x, y) represents an unvarying external heat source or sink, subject to inhomoge-
neous Dirichlet boundary conditions

u(x, y) = h(x, y) for (x, y) ∈ ∂Ω, (11.30)

that fixes the temperature of the plate on its boundary. When the external forcing does
not vary in time, we expect the solution to eventually settle down to an equilibrium con-
figuration: u(t, x, y) → u⋆(x, y) as t → ∞. This will be justified below.

The time-independent equilibrium temperature u⋆(x, y) satisfies the equation obtained
by setting ut = 0 in the evolution equation (11.29), which reduces it to the Poisson equation

− γ∆u⋆ = F for (x, y) ∈ Ω. (11.31)

The equilibrium solution is subject to the same inhomogeneous Dirichlet boundary condi-
tions (11.30). Positive definiteness of the Dirichlet boundary value problem implies that
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there is a unique equilibrium solution, which can be characterized as the sole minimizer of
the associated Dirichlet principle; for details see Section 9.3.

With the equilibrium solution in hand, we let

v(t, x, y) = u(t, x, y)− u⋆(x, y)

measure the deviation of the dynamical solution u from its eventual equilibrium. By
linearity v(t, x, y) satisfies the unforced heat equation subject to homogeneous boundary
conditions:

vt = γ∆v, (x, y) ∈ Ω, v = 0, (x, y) ∈ ∂Ω. (11.32)

Therefore, v can be expanded in an eigenfunction series (11.23), and will decay to zero,
v(t, x, y) → 0, at an exponentially fast rate prescribed by the smallest eigenvalue λ1 of
the associated homogeneous Helmholtz boundary value problem. (Special initial data can
decay at a faster rate, prescribed by a larger eigenvalue.) Consequently, the solution to the
forced inhomogeneous problem (11.29–30) will approach thermal equilibrium,

u(t, x, y) = v(t, x, y) + u⋆(x, y) −→ u⋆(x, y),

at exactly the same exponential rate as its homogeneous counterpart.

The Maximum Principle

Finally, let us state and prove the (Weak) Maximum Principle for the two-dimensional
heat equation. As in the one-dimensional situation described in Section 8.3, it states that
the maximum temperature in a body that is either insulated or having heat removed from
its interior must occur either at the initial time or on its boundary. Observe that there are
no conditions imposed on the boundary temperatures.

Theorem 11.1. Suppose u(t, x, y) is a solution to the forced heat equation

ut = γ∆u+ F (t, x, y), for (x, y) ∈ Ω, 0 < t < c,

where Ω is a bounded domain, and γ > 0. Suppose F (t, x, y) ≤ 0 for all (x, y) ∈ Ω and
0 ≤ t ≤ c. Then the global maximum of u on the set { (t, x, y) | (x, y) ∈ Ω, 0 ≤ t ≤ c }
occurs either when t = 0 or at a boundary point (x, y) ∈ ∂Ω.

Proof : First, let us prove the result under the assumption that F (t, x, y) < 0
everywhere. At a local interior maximum, ut = 0, and, since its Hessian matrix

∇2u =

(
uxx uxy
uxy uyy

)
must be negative semi-definite, both diagonal entries uxx, uyy ≤ 0

there. This would imply that ut − γ∆u ≥ 0, resulting in a contradiction. If the maximum
were to occur when t = c, then ut ≥ 0 there, and also uxx, uyy ≤ 0, leading again to a
contradiction.

To generalize to the case F (t, x, y) ≤ 0, which includes the heat equation when
F (t, x, y) ≡ 0, set

v(t, x, y) = u(t, x, y) + ε (x2 + y2), where ε > 0.

Then,
∂v

∂t
= γ∆v − 4γ ε+ F (t, x, y) = γ∆v + F̃ (t, x, y),
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where
F̃ (t, x, y) = F (t, x, y)− 4γ ε < 0.

Thus, by the previous paragraph, the maximum of v occurs either when t = 0 or at a
boundary point (x, y) ∈ ∂Ω. We then let ε → 0 and conclude the same for u. More
precisely, let u(t, x, y) ≤ M on t = 0 or (x, y) ∈ ∂Ω. Then

v(t, x, y) ≤ M + C ε, where C = max
{
x2 + y2

∣∣ (x, y) ∈ ∂Ω
}
< ∞,

since Ω is a bounded domain. Thus,

u(t, x, y) ≤ v(t, x, y) ≤ M + C ε.

Letting ε → 0 proves that u(t, x, y) ≤ M at all (x, y) ∈ Ω, 0 ≤ t ≤ c, which completes the
proof. Q.E.D.

Remark : The preceding proof can be readily adapted to general diffusion equations
(11.12) — assuming that the coefficients σ,κ remain strictly positive throughout the do-
main.

Exercises

11.1.1. A homogeneous, isotropic circular metal disk of radius 1 meter has its entire boundary
insulated. The initial temperature at a point is equal to the distance of the point from the
center. Formulate an initial-boundary value problem governing the disk’s subsequent tem-
perature dynamics. What is the eventual equilibrium temperature of the disk?

11.1.2. A homogeneous, isotropic, circular metal disk of radius 2 cm has half its boundary fixed
at 100◦ and the other half insulated. Given a prescribed initial temperature distribution,
set up the initial-boundary value problem governing its subsequent temperature profile.
What is the eventual equilibrium temperature of the disk? Does your answer depend on
the initial temperature?

11.1.3. Given the initial temperature distribution f(x, y) = xy (1− x)(1− y) on the unit square
Ω = {0 ≤ x, y ≤ 1}, determine the equilibrium temperature when subject to homogeneous
(a) Dirichlet boundary conditions; (b) Neumann boundary conditions.

11.1.4. A square plate with side lengths 1 meter has its right and left edges insulated, its top
edge held at 100◦, and its bottom edge held at 0◦. Assuming that the plate is made out of
a homogeneous, isotropic material, formulate an appropriate initial-boundary value prob-
lem describing the temperature dynamics of the plate. Then find its eventual equilibrium
temperature.

11.1.5. A square plate with side lengths 1 meter has initial temperature 5◦ throughout, and
evolves subject to the Neumann boundary conditions ∂u/∂n = 1 on its entire boundary.
What is the eventual equilibrium temperature?

♥ 11.1.6. Let u(t, x, y) be a solution to the heat equation on a bounded domain Ω subject to
homogeneous Neumann conditions on its boundary ∂Ω. (a) Prove that the total heat

H(t) =
∫∫

Ω
u(t, x, y) dx dy is conserved, i.e., is constant in time. (b) Use part (a) to prove

that the eventual equilibrium solution is everywhere equal to the average of the initial tem-
perature u(0, x, y). (c) What can you say about the behavior of the total heat for the
homogeneous Dirichlet boundary value problem? (d) What about an inhomogeneous
Dirichlet boundary value problem?
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11.1.7. Let u(t, x, y) be a nonconstant solution to the heat equation on a connected, bounded
domain Ω subject to homogeneous Dirichlet boundary conditions on ∂Ω. (a) Prove that its

L2 norm N(t) =

√∫∫

Ω
u(t, x, y)2 dx dy is a strictly decreasing function of t. (b) Is this also

true for mixed boundary conditions? (c) For Neumann boundary conditions?

11.1.8. Are the conclusions in Exercises 11.1.6 and 11.1.7 valid for the general diffusion equa-
tion (11.12)?

♦ 11.1.9. Write out the eigenvalue equation governing the separable solutions to the general dif-
fusion equation (11.11), subject to appropriate boundary conditions. Given a complete sys-
tem of eigenfunctions, write down the eigenfunction series solution to the initial value prob-
lem u(0, x, y) = f(x, y), including the formulas for the coefficients.

11.1.10. True or false: The equilibrium temperature of a fully insulated nonuniform plate whose
thermodynamics are governed by the general diffusion equation (11.12) equals the average
initial temperature.

11.1.11. Let α > 0, and consider the initial-boundary value problem ut = ∆u−αu, u(0, x, y) =

f(x, y) on a bounded domain Ω ⊂ R2, with boundary conditions ∂u/∂n = 0 on ∂Ω.
(a) Write the equation in self-adjoint form (9.122). Hint : Look at Exercise 9.3.26.
(b) Prove that the problem has a unique equilibrium solution.

11.1.12. Write each of the following linear evolution equations in the self-adjoint form (9.122)
by choosing suitable inner products and a suitable set of homogeneous boundary conditions.
Is the operator you construct positive definite?

(a) ut = uxx + uyy − u, (b) ut = y uxx + xuyy , (c) ut = ∆2u.

♦ 11.1.13. Prove that if f(x, y) is continuous and
∫∫

R
f(x, y) dx dy = 0 for all R ⊂ Ω, then

f(x, y) ≡ 0 for (x, y) ∈ Ω. Hint : Adapt the method in Exercise 6.1.23.

11.2 Explicit Solutions of the Heat Equation

Solving the two-dimensional heat equation in series form requires knowing the eigenfunc-
tions for the associated Helmholtz boundary value problem. Unfortunately, as with the
vast majority of partial differential equations, explicit solution formulas are few and far
between. In this section, we discuss two specific cases in which the required eigenfunctions
can be found in closed form. The calculations rely on a further separation of variables,
which, as we know, works in only a very limited class of domains. Nevertheless, interesting
solution features can be gleaned from these particular geometries.

The first example is a rectangular domain, and the eigensolutions can be expressed in
terms of elementary functions — trigonometric functions and exponentials. We then study
the heating of a circular disk. In this case, the eigenfunctions are no longer elementary
functions, but, rather, are expressed in terms of Bessel functions. Understanding their
basic properties will require us to take a detour to develop the fundamentals of power
series solutions to ordinary differential equations.

Heating of a Rectangle

A homogeneous rectangular plate

R =
{
0 < x < a, 0 < y < b

}
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is heated to a prescribed initial temperature,

u(0, x, y) = f(x, y), for (x, y) ∈ R. (11.33)

Then its top and bottom are insulated, while its sides are held at zero temperature. Our
task is to understand the thermodynamic evolution of the plate’s temperature.

The temperature u(t, x, y) evolves according to the two-dimensional heat equation

ut = γ(uxx + uyy), for (x, y) ∈ R, t > 0, (11.34)

where γ > 0 is the plate’s thermal diffusivity, while subject to homogeneous Dirichlet
conditions along the boundary of the rectangle at all subsequent times:

u(t, 0, y) = u(t, a, y) = u(t, x, 0) = u(t, x, b) = 0, 0 < x < a, 0 < y < b, t > 0.
(11.35)

As in (11.19), the eigensolutions to the heat equation are obtained from the usual expo-
nential ansatz u(t, x, y) = e−λt v(x, y). Substituting this expression into the heat equation,
we conclude that the function v(x, y) solves the Helmholtz eigenvalue problem

γ(vxx + vyy) + λ v = 0, (x, y) ∈ R, (11.36)

subject to the same homogeneous Dirichlet boundary conditions:

v(0, y) = v(a, y) = v(x, 0) = v(x, b) = 0, 0 < x < a, 0 < y < b. (11.37)

To tackle the rectangular Helmholtz eigenvalue problem (11.36–37), we shall, as in
(4.89), introduce a further separation of variables, writing the solution

v(x, y) = p(x) q(y)

as the product of functions depending on the individual Cartesian coordinates. Substituting
this expression into the Helmholtz equation (11.36), we find

γ p′′(x) q(y) + γ p(x) q′′(y) + λ p(x) q(y) = 0.

To effect the variable separation, we collect all terms involving x on one side and all terms
involving y on the other side of the equation, which is accomplished by dividing by v = pq
and rearranging the terms:

γ
p′′(x)

p(x)
= − γ

q′′(y)

q(y)
− λ ≡ −µ.

The left-hand side of this equation depends only on x, whereas the middle term depends
only on y. As before, this requires that the expressions equal a common separation constant ,
denoted by −µ. (The minus sign is for later convenience.) In this manner, we reduce our
partial differential equation to a pair of one-dimensional eigenvalue problems

γ
d2p

dx2
+ µ p = 0, γ

d2q

dy2
+ (λ− µ) q = 0, (11.38)

each of which is subject to homogeneous Dirichlet boundary conditions

p(0) = p(a) = 0, q(0) = q(b) = 0, (11.39)
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stemming from the boundary conditions (11.37). To obtain a nontrivial separable solution
to the Helmholtz equation, we seek nonzero solutions to these two supplementary eigenvalue
problems.

We have already solved these particular two boundary value problems (11.38–39) many
times; see, for instance, (4.21). The eigenfunctions are, respectively,

pm(x) = sin
mπx

a
, m = 1, 2, 3, . . . , qn(y) = sin

nπy

b
, n = 1, 2, 3, . . . ,

with

µ =
m2 π2 γ

a2
, λ− µ =

n2 π2 γ

b2
, so that λ =

m2 π2 γ

a2
+

n2 π2 γ

b2
.

Therefore, the separable eigenfunction solutions to the Helmholtz boundary value problem
(11.35–36) have the doubly trigonometric form

vm,n(x, y) = sin
mπx

a
sin

nπy

b
, for m,n = 1, 2, 3, . . . , (11.40)

with associated eigenvalues

λm,n =
m2 π2 γ

a2
+

n2 π2 γ

b2
=

(
m2

a2
+

n2

b2

)
π2 γ . (11.41)

Each of these corresponds to an exponentially decaying eigensolution

um,n(t, x, y) = e−λm,n t vm,n(x, y) = exp

[
−

(
m2

a2
+

n2

b2

)
π2 γ t

]
sin

mπx

a
sin

nπy

b
(11.42)

to the original rectangular Dirichlet boundary value problem for the heat equation.
Using the fact that the univariate sine functions form a complete system, it is not

hard to prove, [120], that the separable eigenfunction solutions (11.42) are complete, and
so there are no non-separable eigenfunctions.† As a consequence, the general solution to
the initial-boundary value problem can be expressed as a linear combination

u(t, x, y) =
∞∑

m,n=1

cm,n um,n(t, x, y) =
∞∑

m,n=1

cm,n e
−λm,n t vm,n(x, y) (11.43)

of the eigenmodes. The coefficients cm,n are prescribed by the initial conditions, which
take the form of a double Fourier sine series

f(x, y) = u(0, x, y) =
∞∑

m,n=1

cm,nvm,n(x, y) =
∞∑

m,n=1

cm,n sin
mπx

a
sin

nπy

b
.

Self-adjointness of the Laplacian operator coupled with the boundary conditions im-
plies that‡ the eigenfunctions vm,n(x, y) are orthogonal with respect to the L2 inner product

† This appears to be a general fact, true in all known examples, but I know of no general
proof. Theorem 9.47 can be used to establish completeness of the eigenfunctions, but does not
guarantee that they can all be constructed by separation of variables.

‡ Technically, orthogonality is guaranteed only when the eigenvalues are distinct: λm,n ̸= λk,l.
However, by a direct computation, one finds that orthogonality continues to hold even when the
indicated eigenfunctions are associated with equal eigenvalues. See the final subsection of this
chapter for a discussion of when such “accidental degeneracies” arise.
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Figure 11.2. Heat diffusion in a rectangle.

on the rectangle:

⟨ vk,l , vm,n ⟩ =
∫ b

0

∫ a

0
vk,l(x, y) vm,n(x, y) dx dy = 0 unless k = m and l = n.

(The skeptical reader can verify the orthogonality relations directly from the eigenfunction
formulas (11.40).) Thus, we can appeal to our usual orthogonality formula (11.26) to
evaluate the coefficients

cm,n =
⟨ f , vm,n ⟩
∥ vm,n ∥2

=
4

ab

∫ b

0

∫ a

0
f(x, y) sin

mπx

a
sin

nπy

b
dx dy, (11.44)

where the formula for the norms of the eigenfunctions

∥ vm,n ∥
2 =

∫ b

0

∫ a

0
vm,n(x, y)

2 dx dy =

∫ b

0

∫ a

0
sin2

mπx

a
sin2

nπy

b
dx dy = 1

4 ab (11.45)

follows from a direct evaluation of the double integral. Unfortunately, while orthogonality
is (mostly) automatic, computation of the norms must inevitably be done “by hand”.

For generic initial temperature distributions, the rectangle approaches thermal equi-
librium at a rate equal to the smallest eigenvalue:

λ1,1 =

(
1

a2
+

1

b2

)
π2 γ, (11.46)

i.e., the sum of the reciprocals of the squared lengths of its sides multiplied by the diffusion
coefficient. The larger the rectangle, or the smaller the diffusion coefficient, the smaller the
value of λ1,1, and hence the slower the return to thermal equilibrium. The exponentially
fast decay rate of the Fourier series implies that the solution immediately smooths out any
discontinuites in the initial temperature profile. Indeed, the higher modes, with m and
n large, decay to zero almost instantaneously, and so the solution quickly behaves like a
finite sum over a few low-order modes. Assuming that c1,1 ̸= 0, the slowest-decaying mode
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in the Fourier series (11.43) is

c1,1 u1,1(t, x, y) = c1,1 exp

[
−

(
1

a2
+

1

b2

)
π2 γ t

]
sin

πx

a
sin

πy

b
. (11.47)

Thus, in the long run, the temperature becomes entirely of one sign — either positive
or negative depending on the sign of c1,1 — throughout the rectangle. This observation
is, in fact, indicative of the general phenomenon that an eigenfunction associated with
the smallest positive eigenvalue of a self-adjoint elliptic operator is necessarily of one sign
throughout the domain, [34]. A typical solution is plotted at several times in Figure 11.2.
Non-generic initial conditions, with c1,1 = 0, decay more rapidly, and their asymptotic
temperature profiles are not of one sign.

Exercises

11.2.1. A rectangle of size 2 cm by 1 cm has initial temperature f(x, y) = sinπx sin πy for
0 ≤ x ≤ 2, 0 ≤ y ≤ 1. All four sides of the rectangle are held at 0◦. Assuming that the
thermal diffusivity of the plate is γ = 1, write down a formula for its subsequent tempera-
ture u(t, x, y). What is the rate of decay to thermal equilibrium?

11.2.2. Solve Exercise 11.2.1 when the initial temperature f(x, y) is

(a) x y, (b)

{
1, 0 < x < 1,
0, 1 < x < 2;

(c)
(
1− | 1− x |

) (
1
2 −

∣∣∣ 1
2 − y

∣∣∣
)
.

11.2.3. Solve the initial-boundary value problem for the heat equation ut = 2∆u on the rectan-
gle −1 < x < 1, 0 < y < 1 when the two short sides are kept at 0◦, the two long sides are

insulated, and the initial temperature distribution is u(0, x, y) =

{
−1, x < 0,
+1, x > 0,

0 < y < 1.

11.2.4. Answer Exercise 11.2.3 when the two long sides are kept at 0◦ and the two short sides
are insulated.

♥ 11.2.5. A rectangular plate of size 1 meter by 3 meters is made out a metal with unit diffusiv-
ity. The plate is taken from a 0◦ freezer, and, from then on, one of its long sides is heated
to 100◦, the other is held at 0◦, while its top, bottom, and both of the short sides are fully
insulated. (a) Set up the initial-boundary value problem governing the time-dependent
temperature of the plate. (b) What is the equilibrium temperature? (c) Use your answer
from part (b) to construct an eigenfunction series for the solution. (d) How long until the
temperature of the plate is everywhere within 1◦ of its eventual equilibrium?
Hint : Once t is no longer small, you can approximate the series solution by its first term.

11.2.6. Among all rectangular plates of a prescribed area, which one returns to thermal equi-
librium the slowest when subject to Dirichlet boundary conditions? The fastest? Use your
physical intuition to explain your answer, but justify it mathematically.

11.2.7. Answer Exercise 11.2.6 for a fully insulated rectangular plate, i.e., subject to Neumann
boundary conditions.

♥ 11.2.8. A square metal plate is taken from an oven, and then set out to cool, with its top and
bottom insulated. Find the rate of cooling, in terms of the side length and the thermal dif-
fusivity, if (a) all four sides are held at 0◦; (b) one side is insulated and the other three
sides are held at 0◦; (c) two adjacent sides are insulated and the other two are held at 0◦;
(d) two opposite sides are insulated and the other two are held at 0◦; (e) three sides are
insulated and the remaining side is held at 0◦. Order the cooling rates of the plates from
fastest to slowest. Do your results confirm your intuition?
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♥ 11.2.9. Two square plates are made out of the same homogeneous material, and both are ini-
tially heated to 100◦. All four sides of the first plate are held at 0◦, whereas one of the
sides of the second plate is insulated while the other three sides are held at 0◦. Which plate
cools down the fastest? How much faster? Assuming the thermal diffusivity γ = 1, how
long do you have to wait until every point on each plate is within 1◦ of its equilibrium tem-
perature? Hint : Once t is no longer small, the series solution is well approximated by its
first term.

♥ 11.2.10. Multiple choice: On a unit square that is subject to Dirichlet boundary conditions, the
eigenvalues of the Laplace operator are

(a) all simple, (b) at most double, or (c) can have arbitrarily large multiplicity.

♥ 11.2.11. The thermodynamics of a thin circular cylindrical shell of radius a and height h, e.g.,
the side of a tin can after its top and bottom are removed, is modeled by the heat equation
∂u
∂t

= γ

⎛

⎝ 1
a2

∂2u
∂θ2

+
∂2u
∂z2

⎞

⎠, in which u(t, θ, z) measures the temperature of the point on

the cylinder at time t > 0, angle −π < θ ≤ π, and height 0 < z < h. Keep in mind
that u(t, θ, z) must be a 2π–periodic function of the angular coordinate θ. Assume that the
cylinder is everywhere insulated, while its two circular ends at held at 0◦. Given an initial
temperature distribution at time t = 0, write down a series formula for the cylinder’s tem-
perature at subsequent times. What is the eventual equilibrium temperature? How fast
does the cylinder return to equilibrium?

♥ 11.2.12. Consider the initial-boundary value problem
ut = uxx + uyy , u(0, x, y) = 0, 0 < x, y < π, t > 0,

for the heat equation in a square subject to the Dirichlet conditions

u(0, y) = u(π, y) = 0 = u(x, 0), u(x,π) = f(x), 0 < x, y < π.

Write out an eigenfunction series formulas for
(a) the equilibrium solution u⋆(x, y) = lim

t→∞
u(t, x, y); (b) the solution u(t, x, y).

11.2.13. Solve Exercise 11.2.1 when one long side of the plate is held at 100◦.
Hint : See Exercise 11.2.12.

Heating of a Disk — Preliminaries

Let us perform a similar analysis of the thermodynamics of a circular disk. For simplicity
(or by choice of suitable physical units), we will assume that the disk

D = {x2 + y2 ≤ 1 } ⊂ R2

has unit radius and unit diffusivity γ = 1. We shall solve the heat equation on D subject
to homogeneous Dirichlet boundary values of zero temperature at the circular edge

∂D = C = {x2 + y2 = 1 }.

Thus, the full initial-boundary value problem is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, x2 + y2 < 1,

u(t, x, y) = 0, x2 + y2 = 1,

u(0, x, y) = f(x, y), x2 + y2 ≤ 1.

t > 0,
(11.48)
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We remark that a simple rescaling of space and time, as outlined in Exercise 11.4.7, can
be used to recover the solution for an arbitrary diffusion coefficient and a disk of arbitrary
radius from this particular case.

Since we are working in a circular domain, we instinctively pass to polar coordinates
(r, θ). In view of the polar coordinate formula (4.105) for the Laplace operator, the heat
equation and boundary and initial conditions assume the form

∂u

∂t
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
, u(t, 1, θ) = 0, u(0, r, θ) = f(r, θ), (11.49)

where the solution u(t, r, θ) is defined for all 0 ≤ r ≤ 1 and t ≥ 0. To ensure that the
solution represents a single-valued function on the entire disk, it is required to be a 2π–
periodic function of the angular variable:

u(t, r, θ + 2π) = u(t, r, θ).

To obtain the separable solutions

u(t, r, θ) = e−λt v(r, θ), (11.50)

we need to solve the polar coordinate form of the Helmholtz equation

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2
∂2v

∂θ2
+ λ v = 0,

0 ≤ r < 1,

−π < θ ≤ π,
(11.51)

subject to the boundary conditions

v(1, θ) = 0, v(r, θ + 2π) = v(r, θ). (11.52)

To solve the polar Helmholtz boundary value problem (11.51–52), we invoke a further
separation of variables by writing

v(r, θ) = p(r) q(θ). (11.53)

Substituting this ansatz into (11.51), collecting all terms involving r and all terms involving
θ, and then equating both to a common separation constant, we are led to the pair of
ordinary differential equations

r2
d2p

dr2
+ r

dp

dr
+ (λr2 − µ) p = 0,

d2q

dθ2
+ µ q = 0, (11.54)

where λ is the Helmholtz eigenvalue, and µ the separation constant.

Let us start with the equation for q(θ). The second boundary condition in (11.52)
requires that q(θ) be 2π–periodic. Therefore, the required solutions are the elementary
trigonometric functions

q(θ) = cosmθ or sinmθ, where µ = m2, (11.55)

with m = 0, 1, 2, . . . a nonnegative integer.

Substituting the formula for the separation constant, µ = m2, the differential equation
for p(r) takes the form

r2
d2p

dr2
+ r

dp

dr
+ (λ r2 −m2) p = 0, 0 ≤ r ≤ 1. (11.56)
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Ordinarily, one imposes two boundary conditions in order to pin down a solution to such a
second-order ordinary differential equation. But our Dirichlet condition, namely p(1) = 0,
specifies its value at only one of the endpoints. The other endpoint is a singular point for
the ordinary differential equation, because the coefficient of the highest-order derivative,
namely r2, vanishes at r = 0. This situation might remind you of our solution to the Euler
differential equation (4.111) in the context of separable solutions to the Laplace equation
on the disk. As there, we require that the solution be bounded at r = 0, and so seek
eigensolutions that satisfy the boundary conditions

| p(0) | < ∞, p(1) = 0. (11.57)

While (11.56) appears in a variety of applications, it is more challenging than any
ordinary differential equation we have encountered so far. Indeed, most solutions cannot
be written in terms of the elementary functions (rational functions, trigonometric functions,
exponentials, logarithms, etc.) you see in first-year calculus. Nevertheless, owing to their
ubiquity in physical applications, its solutions have been extensively studied and tabulated,
and so are, in a sense, well known, [86, 85, 119].

To simplify the subsequent analysis, we make a preliminary rescaling of the indepen-
dent variable, replacing r by

z =
√
λ r.

(We know the eigenvalue λ > 0, since we are dealing with a positive definite boundary
value problem.) Note that, by the chain rule,

dp

dr
=

√
λ

dp

dz
,

d2p

dr2
= λ

d2p

dz2
,

and hence

r
dp

dr
= z

dp

dz
, r2

d2p

dr2
= z2

d2p

dz2
.

The net effect is to eliminate the eigenvalue parameter λ (or, rather, hide it in the change
of variables), so that (11.56) assumes the slightly simpler form

z2
d2p

dz2
+ z

dp

dz
+ (z2 −m2) p = 0. (11.58)

The resulting ordinary differential equation (11.58) is known as Bessel’s equation, named
after the early-nineteenth-century German astronomer Wilhelm Bessel, who first encoun-
tered its solutions, now known as Bessel functions , in his study of planetary orbits. Special
cases had already appeared in the investigations of Daniel Bernoulli on vibrations of a hang-
ing chain, and in those of Fourier on the thermodynamics of a cylindrical body. To make
further progress, we need to take time out to study their basic properties, and this will re-
quire us to develop the method of power series solutions of ordinary differential equations.
With this in hand, we can then return to complete our solution to the heat equation on a
disk.

11.3 Series Solutions of Ordinary Differential Equations

When confronted with a novel ordinary differential equation, we have several available
options for deriving and understanding its solutions. For instance, the “look-up” method
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relies on published handbooks. One of the most useful references that collects many solved
differential equations is the classic German compendium by Kamke, [62]. Two more recent
English-language handbooks are [93, 127]. In addition, many symbolic computer algebra
programs, including Mathematica and Maple, will produce solutions, when expressible
in terms of both elementary and special functions, to a wide range of differential equations.

Of course, use of numerical integration to approximate solutions, [24, 60, 80], is al-
ways an option. Numerical methods do, however, have their limitations, and are best
accompanied by some understanding of the underlying theory, coupled with qualitative
or quantitative expectations of how the solutions should behave. Furthermore, numerical
methods provide less than adequate insight into the nature of the special functions that
regularly appear as solutions of the particular differential equations arising in separation
of variables. A numerical approximation cannot, in itself, establish rigorous mathematical
properties of the solutions of the differential equation.

A more classical means of constructing and approximating the solutions of differential
equations is based on their power series expansions, a.k.a. Taylor series. The Taylor ex-
pansion of a solution at a point x0 is found by substituting a general power series into the
differential equation and equating coefficients of the various powers of x− x0. The initial
conditions at x0 serve to uniquely determine the coefficients and hence all the derivatives of
the solution at the initial point. The Taylor expansion of a special function is an effective
tool for deducing some of its key properties, as well as providing a means of comput-
ing reasonable numerical approximations to its values within the radius of convergence of
the series. (However, serious numerical computations more often rely on nonconvergent
asymptotic expansions, [85].)

In this section, we provide a brief introduction to the basic series solution techniques for
ordinary differential equations, concentrating on second-order linear differential equations,
since these form by far the most important class of examples arising in applications. At a
regular point, the method will produce a standard Taylor expansion for the solution, while
so-called regular singular points require a slightly more general type of series expansion.
Generalizations to irregular singular points, higher-order equations, nonlinear equations,
and even linear and nonlinear systems are deferred to more advanced texts, including
[54, 59].

The Gamma Function

Before delving into the machinery of series solutions and special functions, we need to
introduce the gamma function, which effectively generalizes the factorial operation to non-
integers. Recall that the factorial of a nonnegative integer n ≥ 0 is defined inductively by
the iterative formula

n ! = n · (n− 1) !, starting with 0 ! = 1. (11.59)

When n is a positive integer, the iteration terminates, yielding the familiar expression

n ! = n(n− 1)(n− 2) · · · 3 · 2 · 1. (11.60)

However, for more general values of n, the iteration never stops, and it cannot be used to
compute its factorial. Our goal is to circumvent this difficulty, and introduce a function
f(x) that is defined for all values of x and will play the role of such a factorial. First,
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mimicking (11.59), the function should satisfy the functional equation

f(x) = x f(x− 1) (11.61)

where defined. If, in addition, f(0) = 1, then we know that f(n) = n ! whenever n is a
nonnegative integer, and hence such a function will extend the definition of the factorial
to more general real and complex numbers.

A moment’s thought should convince the reader that there are many possible ways
to construct such a function; see Exercise 11.3.6 for a nonstandard example. The most
important version is due to Euler. The modern definition of Euler’s gamma function relies
on an integral formula discovered by the eighteenth-century French mathematician Adrien–
Marie Legendre, who will play a starring role in Chapter 12.

Definition 11.2. The gamma function is defined by

Γ(x) =

∫ ∞

0
e−t tx−1 dt. (11.62)

The first fact is that, for real x, the gamma function integral converges only when
x > 0; otherwise the singularity of tx−1 at t = 0 is too severe. The key property that turns
the gamma function into a substitute for the factorial function relies on an elementary
integration by parts:

Γ(x+ 1) =

∫ ∞

0
e−t tx dt = −e−t tx

∣∣∣
∞

t=0
+ x

∫ ∞

0
e−t tx−1 dt.

The boundary terms vanish whenever x > 0, while the final integral is merely Γ(x). There-
fore, the gamma function satisfies the recurrence relation

Γ(x+ 1) = xΓ(x). (11.63)

If we set f(x) = Γ(x+ 1), then (11.63) becomes (11.61). Moreover, by direct integration,

Γ(1) =

∫ ∞

0
e−t dt = 1.

Combining this with the recurrence relation (11.63), we deduce that

Γ(n+ 1) = n ! (11.64)

whenever n ≥ 0 is a nonnegative integer. Therefore, we can identify x ! with the value
Γ(x+ 1) whenever x > −1 is any real number.

Remark : The reader may legitimately ask why not replace tx−1 by tx in the definition
of Γ(z), which would avoid the n + 1 in (11.64). There is no good answer; we are merely
following a well-established precedent set by Legendre and enshrined in all subsequent
works.

Thus, at integer values of x, the gamma function agrees with the elementary factorial.
A few other values can be computed exactly. One important case is at x = 1

2 . Using the
substitution t = s2, with dt = 2s ds, we obtain

Γ
(
1
2

)
=

∫ ∞

0
e−t t−1/2 dt =

∫ ∞

0
2 e−s2 ds =

√
π, (11.65)
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Figure 11.3. The gamma function.

where the final integral was evaluated in (2.100). Thus, using the identification with the
factorial function, we identify this value with

(
− 1

2

)
! =

√
π. The recurrence relation

(11.63) will then produce the value of the gamma function at all half-integers 1
2 ,

3
2 ,

5
2 , . . . .

For example,
Γ
(
3
2

)
= 1

2 Γ
(
1
2

)
= 1

2

√
π, (11.66)

and hence 1
2 ! =

1
2

√
π. The recurrence relation can also be employed to extend the definition

of Γ(x) to (most) negative values of x. For example, setting x = − 1
2 in (11.63), we have

Γ
(
1
2

)
= − 1

2 Γ
(
− 1

2

)
, so Γ

(
− 1

2

)
= −2Γ

(
1
2

)
= −2

√
π .

The only points at which this device fails are the negative integers, and indeed, Γ(x) has
a singularity when x = −1,−2,−3, . . . . A graph† of the gamma function is displayed in
Figure 11.3.

Remark : Most special functions of importance for applications arise as solutions to
fairly simple ordinary differential equations. The gamma function is a significant exception.
Indeed, it can be proved, [11], that the gamma function does not satisfy any algebraic
differential equation!

Regular Points

We are now ready to develop the method of series solutions to ordinary differential equa-
tions. Before we proceed to develop the general computational machinery, a näıve calcula-
tion in an elementary example will be enlightening.

† The axes are at different scales; the tick marks are at integer values.
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Example 11.3. Consider the initial value problem

d2u

dx2
+ u = 0, u(0) = 1, u′(0) = 0. (11.67)

Let us investigate whether we can construct an analytic solution in the form of a convergent
power series

u(x) = u0 + u1x+ u2x
2 + u3x

3 + · · · =
∞∑

n=0

unx
n (11.68)

that is based at the initial point x0 = 0. Term-by-term differentiation yields the following
series expansions† for its derivatives:

du

dx
= u1 + 2u2x+ 3u3x

2 + 4u4x
3 + · · · =

∞∑

n=0

(n+ 1)un+1x
n,

d2u

dx2
= 2u2 + 6u3x+ 12u4x

2 + 20u5x
3 + · · · =

∞∑

n=0

(n+ 1)(n+ 2)un+2x
n.

(11.69)

The next step is to substitute the series (11.68–69) into the differential equation and collect
common powers of x:

d2u

dx2
+ u = (2u2 + u0) + (6u3 + u1)x+ (12u4 + u2)x

2 + (20u5 + u3)x
3 + · · · = 0.

At this point, one focuses attention on the individual coefficients, appealing to the following
basic observation:

Two convergent power series are equal if and only if all their coefficients are equal.

In particular, a power series represents the zero function‡ if and only if all its coefficients
are 0. In this manner we obtain the following infinite sequence of algebraic recurrence
relations among the coefficients:

1 2u2 + u0 = 0,

x 6u3 + u1 = 0,

x2 12u4 + u2 = 0,

x3 20u5 + u3 = 0,

x4 30u6 + u4 = 0,

...
...

xn (n+ 1)(n+ 2)un+2 + un = 0.

(11.70)

Now, the initial conditions serve to prescribe the first two coefficients:

u(0) = u0 = 1, u′(0) = u1 = 0.

† When working with the series in summation form, it helps to re-index in order to display
the term of degree n.

‡ Here it is essential that we work with analytic functions, since this result is not true for

C∞ functions! For example, the function e−1/x2

has identically zero power series at x0 = 0; see
Exercise 11.3.21.
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We then solve the recurrence relations in order: The first determines u2 = − 1
2 u0 = − 1

2 ;
the second, u3 = − 1

6 u1 = 0; next, u4 = − 1
12 u2 = 1

24 ; then u5 = − 1
20 u3 = 0; then

u6 = − 1
30 u4 = − 1

720 ; and so on. In general, it is not hard to see that

u2k =
(−1)k

(2k) !
, u2k+1 = 0, k = 0, 1, 2, . . . .

Hence, the required series solution is

u(x) = 1− 1
2 x

2 + 1
24 x

3 − 1
720 x

6 + · · · =
∞∑

k=0

(−1)k

k !
x2k,

which, by the ratio test, converges for all x. We have thus recovered the well-known Taylor
series for cosx, which is indeed the solution to the initial value problem. Changing the
initial conditions to u(0) = u0 = 0, u′(0) = u1 = 1, will similarly produce the usual
Taylor expansion of sinx. Note that the generation of the Taylor series does not rely on
any a priori knowledge of trigonometric functions or the direct solution method for linear
constant-coefficient ordinary differential equations.

Building on this experience, let us describe the general method. We shall concentrate
on solving a second-order homogeneous linear differential equation

p(x)
d2u

dx2
+ q(x)

du

dx
+ r(x) u = 0. (11.71)

The coefficients p(x), q(x), r(x) are assumed to be analytic functions on some common
domain. This means that, at a point x0 within the domain, they admit convergent power
series expansions

p(x) = p0 + p1 (x− x0) + p2 (x− x0)
2 + · · · ,

q(x) = q0 + q1 (x− x0) + q2 (x− x0)
2 + · · · ,

r(x) = r0 + r1 (x− x0) + r2 (x− x0)
2 + · · · .

(11.72)

We expect that solutions to the differential equation are also analytic. This expectation is
justified, provided that the equation is regular at the point x0, in the following sense.

Definition 11.4. A point x = x0 is a regular point of a second-order linear ordinary
differential equation (11.71) if the leading coefficient does not vanish there:

p0 = p(x0) ̸= 0.

A point where p(x0) = 0 is known as a singular point .

In short, at a regular point, the second-order derivative term does not disappear, and
so the equation is “genuinely” of second order.

Remark : The definition of a singular point assumes that the other two coefficients do
not also vanish there, so that either q(x0) ̸= 0 or r(x0) ̸= 0. If all three functions happen
to vanish at x0, we can cancel any common factor (x − x0)

k, and hence, without loss of
generality, assume that at least one of the coefficient functions is nonzero at x0.

Proofs of the basic existence theorem for differential equations at regular points can
be found in [18, 54, 59].
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Theorem 11.5. Let x0 be a regular point for the second-order homogeneous linear
ordinary differential equation (11.71). Then there exists a unique, analytic solution u(x)
to the initial value problem

u(x0) = a, u′(x0) = b. (11.73)

The radius of convergence of the power series for u(x) is at least as large as the distance
from the regular point x0 to the nearest singular point of the differential equation in the
complex plane.

Thus, every solution to an analytic differential equation at a regular point x0 can be
expanded in a convergent power series

u(x) = u0 + u1(x− x0) + u2(x− x0)
2 + · · · =

∞∑

n=0

un(x− x0)
n. (11.74)

Since the power series necessarily coincides with the Taylor series for u(x), its coefficients†

un =
u(n)(x0)

n !

are multiples of the derivatives of the function at the point x0. In particular, the first two
coefficients,

u0 = u(x0) = a, u1 = u′(x0) = b, (11.75)

are fixed by the initial conditions. The remaining coefficients will then be uniquely pre-
scribed thanks to the uniqueness of solutions to initial value problems.

Near a regular point, the second-order differential equation (11.71) admits two linearly
independent analytic solutions, which we denote by û(x) and ũ(x). The general solution
can be written as a linear combination of the two basis solutions:

u(x) = a û(x) + b ũ(x). (11.76)

A convenient choice is to have the first satisfy the initial conditions

û(x0) = 1, û ′(x0) = 0, (11.77)

and the second satisfy
ũ(x0) = 0, ũ ′(x0) = 1, (11.78)

although other conventions may be used depending on the circumstances. Given (11.77–
78), the linear combination (11.76) automatically satisfies the initial conditions (11.73).

The basic computational strategy to construct the power series solution to the initial
value problem is a straightforward adaptation of the method used in Example 11.3. One
substitutes the known power series (11.72) for the coefficient functions and the unknown
power series (11.74) for the solution into the differential equation (11.71). Multiplying out
the formulas and collecting the common powers of x − x0 will result in a (complicated)
power series whose individual coefficients must be equated to zero. The lowest-order terms
are multiples of (x− x0)

0 = 1, i.e., the constant terms. They produce a linear relation

u2 = R2(u0, u1) = R2(a, b)

† Some authors prefer to include the n !’s in the original power series; this is purely a matter
of personal taste.
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that prescribes the coefficient u2 in terms of the initial data (11.75). The coefficient of
(x− x0) leads to a relation

u3 = R3(u0, u1, u2) = R3(a, b, R2(a, b))

that prescribes u3 in terms of the initial data and the previously computed coefficient u2.
And so on. At the nth stage of the procedure, the coefficient of (x − x0)

n produces the
linear recurrence relation

un+2 = Rn(u0, u1, . . . , un+1), n = 0, 1, 2, . . . , (11.79)

that will prescribe the (n + 2)nd order coefficient in terms of the previously computed
coefficients. In this fashion, we will have constructed a formal power series solution to the
differential equation at a regular point. The one remaining issue is whether the resulting
power series actually converges. The full analysis can be found in [54, 59], and will serve
to complete the proof of the general Existence Theorem 11.5.

Rather than continue on in general, the best way to learn the method is to work
through another, less trivial, example.

The Airy Equation

We will illustrate the procedure by constructing power series solutions to the Airy equation

d2u

dx2
= xu. (11.80)

This second-order linear ordinary differential equation, which arises in applications to op-
tics, rainbows, and dispersive waves, has solutions that cannot be expressed in terms of
elementary functions.

For the Airy equation (11.80), the leading coefficient is constant, and so every point
is a regular point. For simplicity, we will look only for power series based at the origin
x0 = 0, and therefore of the form (11.68). Equating the two series

u′′(x) = 2u2 + 6u3x+ 12u4x
2 + 20u5x

3 + · · · =
∞∑

n=0

(n+ 1)(n+ 2)un+2x
n,

x u(x) = u0x+ u1x
2 + u2x

3 + · · · =
∞∑

n=1

un−1x
n,

leads to the following recurrence relations relating the coefficients:

1 2u2 = 0,

x 6u3 = u0,

x2 12u4 = u1,

x3 20u5 = u2,

x4 30u6 = u3,

...
...

xn (n+ 1)(n+ 2)un+2 = un−1.



460 11 Dynamics of Planar Media

As before, we solve them in order: The first equation determines u2. The second prescribes
u3 = 1

6 u0 in terms of u0. Next, we find u4 = 1
12 u1 in terms of u1, followed by u5 = 1

20u2 =
0; then u6 = 1

30 u3 = 1
180 u0 is first given in terms of u3, but we already know the latter in

terms of u0. And so on.
Let us now construct two basis solutions. The first has the initial conditions

u0 = û(0) = 1, u1 = û ′(0) = 0.

The recurrence relations imply that the only nonzero coefficients cn occur when n = 3k is
a multiple of 3. Moreover,

u3k =
u3k−3

3k (3k − 1)
.

A straightforward induction proves that

u3k =
1

3k (3k − 1)(3k − 3)(3k − 4) · · ·6 · 5 · 3 · 2
.

The resulting solution is

û(x) = 1+ 1
6x

3+ 1
180x

6+ · · · = 1+
∞∑

k=1

x3k

3k (3k − 1)(3k − 3)(3k − 4) · · ·6 · 5 · 3 · 2
. (11.81)

Note that the denominator is similar to a factorial, except every third term is omitted.
A straightforward application of the ratio test confirms that the series converges for all
(complex) x, in conformity with the general Theorem 11.5, which guarantees an infinite
radius of convergence because the Airy equation has no singular points.

Similarly, starting with the initial conditions

u0 = ũ(0) = 0, u1 = ũ ′(0) = 1,

we find that the only nonzero coefficients un occur when n = 3k + 1. The recurrence
relation

u3k+1 =
u3k−2

(3k + 1)(3k)
yields u3k+1 =

1

(3k + 1)(3k)(3k − 2)(3k − 3) · · · 7 · 6 · 4 · 3
.

The resulting solution is

ũ(x) = x+ 1
12 x

4 + 1
504 x

7 + · · · = x+
∞∑

k=1

x3k+1

(3k + 1)(3k)(3k − 2)(3k − 3) · · · 7 · 6 · 4 · 3
.

(11.82)
Again, the denominator skips every third term in the product. Every solution to the Airy
equation can be written as a linear combination of these two basis power series solutions:

u(x) = a û(x) + b ũ(x), where a = u(0), b = u′(0).

Both power series (11.81, 82), converge quite rapidly, and so the first few terms will provide
a reasonable approximation to the solutions for moderate values of x.

We have, in fact, already encountered another solution to the Airy equation. According
to formula (8.97), the integral

Ai(x) =
1

π

∫ ∞

0
cos

(
sx+ 1

3 s
3
)
ds (11.83)
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defines the Airy function of the first kind . Let us prove that it satisfies the Airy differential
equation (11.80):

d2

dx2
Ai(x) = xAi(x).

Before differentiating, we recall the integration by parts argument in (8.96) to re-express
the Airy integral in absolutely convergent form:

Ai(x) =
2

π

∫ ∞

0

s sin
(
sx+ 1

3 s
3
)

(x+ s2)2
ds.

We are now permitted to differentiate under the integral sign, producing (after some alge-
bra)

d2

dx2
Ai(x)− xAi(x) =

2

π

∫ ∞

0

d

ds

[
s (x+ s2) cos

(
sx+ 1

3 s
3
)
− sin

(
sx+ 1

3 s
3
)

(x+ s2)3

]
ds = 0.

Thus, the Airy function must be a certain linear combination of the two basic series solu-
tions:

Ai(x) = Ai(0) û(x) + Ai′(0) ũ(x).

Its values at x = 0 are, in fact, given by

Ai(0) =
1

π

∫ ∞

0
cos

(
1
3 s

3
)
ds =

Γ
(
1
3

)

2π 31/6
=

1

32/3 Γ
(
2
3

) ≈ .355028 ,

Ai′(0) = −
1

π

∫ ∞

0
s sin

(
1
3 s

3
)
ds = −

31/6 Γ
(
2
3

)

2π
= −

1

31/3 Γ
(
1
3

) ≈ − .258819.

(11.84)

The second and third expressions involve the gamma function (11.62); a proof, based on
complex integration, can be found in [85; p. 54].

Exercises

11.3.1. Find (a) Γ
(
5
2

)
, (b) Γ

(
7
2

)
, (c) Γ

(
− 3

2

)
, (d) Γ

(
− 5

2

)
.

11.3.2. Prove that Γ
(
n+ 1

2

)
=

√
π (2n) !
22n n !

for every positive integer n.

11.3.3. Let x ∈ C be complex. (a) Prove that the gamma function integral (11.62) converges,
provided Rex > 0. (b) Is formula (11.63) valid when x is complex?

♦ 11.3.4. Prove that Γ(x) =
∫ 1

0
(− log s)x−1 ds, and hence, for 0 ≤ n ∈ Z, we have

n ! =
∫ 1

0
(− log s)n ds. Remark : Euler first established the latter identity directly, and used

it to define the gamma function.

11.3.5. Evaluate
∫ ∞

0

√
x e−x3

dx.

♦ 11.3.6. Can you construct a function f(x) that satisfies the factorial functional equation (11.61)
and has the values f(x) = 1 for 0 ≤ x ≤ 1? If so, is f(x) = Γ(x + 1)?
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11.3.7. Explain how to construct the power series for sinx by solving the differential equation
(11.67).

11.3.8. Construct two independent power series solutions to the Euler equation x2u′′ − 2u = 0
based at the point x0 = 1.

11.3.9. Construct two independent power series solutions to the equation u′′+x2u = 0 based at
the point x0 = 0.

11.3.10. Consider the ordinary differential equation u′′ + 2xu′ + 2u = 0. (a) Find two linearly
independent power series solutions in powers of x. (b) What is the radius of convergence
of your power series? (c) By inspection of your series, find one solution to the equation
expressible in terms of elementary functions. (d) Find an explicit (non-series) formula for
the second independent power series solution.

11.3.11. Answer Exercise 11.3.10 for the equation u′′ + 1
2 xu

′ − 1
2 u = 0, which is a special case

of equation (8.63).

11.3.12. Consider the ordinary differential equation u′′+xu′+2u = 0. (a) Find two linearly in-
dependent power series solutions based at x0 = 0. (b) Write down the power series for the
solution to the initial value problem u(0) = 1, u′(0) = −1. (c) What is the radius of con-
vergence of your power series solution in part (a)? Can you justify this by direct inspection
of your power series?

♦ 11.3.13. The Hermite equation of order n is

d2u
dx2

− 2x
du
dx

+ 2nu = 0. (11.85)

Assuming n ∈ N is a nonnegative integer: (a) Find two linearly independent power series
solutions based at x0 = 0, and then show that one of your solutions is a polynomial of de-
gree n. (b) Prove that the Hermite polynomial Hn(x) defined in (8.64) solves the Hermite
equation (11.85) and hence is a multiple of the polynomial solution you found in part (a).
What is the multiple? (c) Prove that the Hermite polynomials are orthogonal with respect

to the inner product ⟨u , v ⟩ =
∫ ∞

−∞
u(x) v(x) e−x2

dx.

11.3.14. Use the ratio test to directly determine the radius of convergence of the series solu-
tions (11.81, 82) to the Airy equation.

11.3.15. Write down the general solution to the following ordinary differential equations:
(a) u′′ + (x− c)u = 0, where c is a fixed constant;
(b) u′′ = λxu, where λ ̸= 0 is a fixed nonzero constant.

♦ 11.3.16. The Airy function of the second kind is defined by

Bi(x) =
1
π

∫ ∞

0

[
exp

(
sx− 1

3 s3
)
+ sin

(
sx+ 1

3 s3
) ]

ds. (11.86)

(a) Prove that Bi(x) is well defined and a solution to the Airy equation. (b) Given that†

Bi(0) =
1

31/6Γ
(
2
3

) , Bi′(0) =
31/6

Γ
(
1
3

) , (11.87)

explain why every solution to the Airy equation can be written as a linear combination of
Ai(x) and Bi(x). (c) Write the two series solutions (11.81, 82) in terms of Ai(x) and Bi(x).

11.3.17. Use the Fourier transform to construct an L2 solution to the Airy equation. Can you
identify your solution?

♦ 11.3.18. Apply separation of variables to the Tricomi equation (4.137), and write down all sep-
arable solutions. Hint : See Exercise 11.3.15(b) and Exercise 11.3.16.

† See [85; p. 54] for a proof.
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♥ 11.3.19.(a) Show that u(x) =
∞∑

n=1
(n − 1)! xn is a power series solution to the first-order linear

ordinary differential equation x2u′ − u + x = 0. (b) For which x does the series converge?
(c) Find an analytic formula for the general solution to the equation. (d) Find a second-
order homogeneous linear ordinary differential equation that has this power series as a (for-
mal) solution. Remark : The lesson of this exercise is that not all power series solutions to
ordinary differential equations converge. Theorem 11.5 guarantees convergence at a regular
point, but in this example the power series is based at the singular point x0 = 0.

11.3.20. True or false: The only function f(x) that has identically zero Taylor series is the zero
function.

♦ 11.3.21. Define f(x) =

⎧
⎨

⎩
e−1/x2

, x ̸= 0,
0, x = 0.

(a) Prove that f is a C∞ function for all x ∈ R.

(b) Prove that f(x) is not analytic by showing that its Taylor series at x0 = 0 does not
converge to f(x) when x ̸= 0.

Regular Singular Points

As we have just seen, constructing power series solutions at regular points is a reasonably
straightforward computational exercise: one writes down a power series with arbitrary
coefficients, substitutes into the differential equation along with a pair of initial conditions,
and recursively solves for the coefficients. Finding a general formula for the coefficients
might be challenging, but producing their successive numerical values, degree by degree, is
a mechanical exercise.

However, at a singular point, the solutions cannot be typically written as an ordinary
power series, and one needs to be cleverer. Of course, you may object — why not just solve
the equation away from the singular point and be done with it. But there are multiple
reasons not to do this. First, one may be unable to discover a general formula for the
power series coefficients at regular points. Second, the most informative and interesting
behavior of solutions is typically found at the singular points, and so series solutions based
at singular points are particularly enlightening. And finally, one of the boundary conditions
required for us to complete our construction of separable solutions to partial differential
equations often occurs at a singular point.

Singular points appear in two guises. The easier to handle, and, fortunately, the ones
that arise in almost all applications, are known as “regular singular points”. Irregular
singular points are nastier, and we will not make any attempt to understand them in this
text; the curious reader is referred to [54, 59].

Definition 11.6. A second-order linear homogeneous ordinary differential equation
that can be written the form

(x− x0)
2 a(x)

d2u

dx2
+ (x− x0) b(x)

du

dx
+ c(x) u = 0, (11.88)

where a(x), b(x), and c(x) are analytic at x = x0 and, moreover, a(x0) ̸= 0, is said to have
a regular singular point at x0.

The simplest example of a second-order equation with a regular singular point at
x0 = 0 is the Euler equation

ax2u′′ + bxu′ + cu = 0, (11.89)
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with a, b, c all constant and a ̸= 0. Note that all other points are regular points. Euler
equations can be readily solved by substituting the power ansatz u(x) = xr. We find

ax2u′′ + bxu′ + cu = ar(r − 1)xr + brxr + cxr = 0,

provided the exponent r satisfies the indicial equation

ar (r − 1) + br + c = 0.

If this quadratic equation has two distinct roots r1 ̸= r2, we obtain two linearly independent
(possibly complex) solutions û(x) = xr1 and ũ(x) = xr2 . The general solution u(x) =
c1x

r1 + c2x
r2 is a linear combination thereof. Note that unless r1 or r2 is a nonnegative

integer, all nonzero solutions have a singularity at the singular point x = 0. A repeated root,
r1 = r2, has only one power solution, û(x) = xr1 , and requires an additional logarithmic
term, ũ(x) = xr1 log x, for the second independent solution. In this case, the general
solution has the form u(x) = c1x

r1 + c2x
r1 log x.

The series solution method at more general regular singular points is modeled on the
simple example of the Euler equation. One now seeks a solution that has a series expansion
of the form

u(x) = (x−x0)
r
∞∑

n=0

un(x−x0)
n = u0(x−x0)

r+u1(x−x0)
r+1+u2(x−x0)

r+2+· · · . (11.90)

The exponent r is known as the index . If r = 0, or, more generally, if r is a positive
integer, then (11.90) is an ordinary power series, but we allow the possibility of a non-
integral, or even complex, index r. We can assume, without any loss of generality, that the
leading coefficient u0 ̸= 0. Indeed, if uk ̸= 0 is the first nonzero coefficient, then the series
begins with the term uk(x − x0)

r+k, and we merely replace r by r + k to write it in the
form (11.90). Since any scalar multiple of a solution is a solution, we can further assume
that u0 = 1, in which case we call (11.90) a normalized Frobenius series in honor of the
German mathematician Georg Frobenius, who systematically established the calculus of
series solutions at regular singular points in the late 1800s. The index r, and the higher-
order coefficients u1, u2, . . ., are then found by substituting the normalized Frobenius series
into the differential equation (11.88) and equating the coefficients of the powers of x− x0
to zero.

Warning : Unlike those in ordinary power series expansions, the coefficients u0 = 1
and u1 are not prescribed by the initial conditions at the point x0.

Since

u(x) = (x− x0)
r + u1(x− x0)

r+1 + · · · ,
(x− x0) u

′(x) = r (x− x0)
r + (r + 1)u1(x− x0)

r+1 + · · · ,
(x− x0)

2 u′′(x) = r (r − 1) (x− x0)
r + (r + 1) ru1(x− x0)

r+1 + · · · ,

the terms of lowest order in the equation are multiples of (x− x0)
r. Equating their coeffi-

cients to zero produces a quadratic equation of the form

s0 r (r − 1) + t0 r + r0 = 0, (11.91)

where
s0 = s(x0) =

1
2 p
′′(x0), t0 = t(x0) = q′(x0), r0 = r(x0),
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are the leading coefficients in the power series expansions of the individual coefficient func-
tions. The quadratic equation (11.91) is known as the indicial equation, since it determines
the possible indices r in the Frobenius expansion (11.90) of a solution.

As with the Euler equation, the quadratic indicial equation usually has two roots,
say r1 and r2, which provide two allowable indices, and one thus expects to find two
independent Frobenius expansions. Usually, this expectation is realized, but there is an
important exception. The general result is summarized in the following list:

(i) If r2−r1 is not an integer, then there are two linearly independent solutions û(x) and
ũ(x), each having convergent normalized Frobenius expansions of the form (11.90).

(ii) If r1 = r2, then there is only one solution û(x) with a normalized Frobenius expansion
(11.90). One can construct a second independent solution of the form

ũ(x) = log(x− x0) û(x) + v(x), where v(x) =
∞∑

n=1

vn(x− x0)
n+r1 (11.92)

is a convergent Frobenius series.

(iii) Finally, if r2 = r1 + k, where k > 0 is a positive integer, then there is a nonzero
solution û(x) with a convergent Frobenius expansion corresponding to the smaller
index r1. One can construct a second independent solution of the form

ũ(x) = c log(x−x0) û(x)+v(x), where v(x) = xr2 +
∞∑

n=1

vn(x−x0)
n+r2 (11.93)

is a convergent Frobenius series, and c is a constant, which may be 0, in which case
the second solution ũ(x) is also of Frobenius form.

Thus, in every case, the differential equation has at least one nonzero solution with a con-
vergent Frobenius expansion. If the second independent solution does not have a Frobenius
expansion, then it requires an additional logarithmic term of a well-prescribed form. Rather
than try to develop the general theory in any more detail here, we will content ourselves
to work through a couple of particular examples.

Example 11.7. Consider the second-order ordinary differential equation

d2u

dx2
+

(
1

x
+

x

2

)
du

dx
+ u = 0. (11.94)

We look for series solutions based at x = 0. Note that, upon multiplying by x2, the
equation takes the form

x2u′′ + x
(
1 + 1

2 x
2
)
u′ + x2u = 0,

and hence x0 = 0 is a regular singular point, with a(x) = 1, b(x) = 1 + 1
2 x

2, c(x) = x2.
We thus look for a solution that can be represented by a Frobenius expansion:

u(x) = xr + u1x
r+1 + · · ·+ unx

n+r + · · · ,
x u′(x) = rxr + (r + 1)u1x

r+1 + · · ·+ (n+ r)unx
n+r + · · · ,

1
2 x

3u′(x) = 1
2 rx

r+2 + 1
2 (r + 1)u1x

r+3 + · · ·+ 1
2 (n+ r − 2)un−2x

n+r + · · · ,
x2u′′(x) = r(r − 1)xr + (r + 1)ru1x

r+1 + · · ·+ (n+ r)(n+ r − 1)unx
n+r + · · · .

(11.95)
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Substituting into the differential equation, we find that the coefficient of xr leads to the
indicial equation

r2 = 0.

There is only one root, r = 0, and hence, even though we are at a singular point, the
Frobenius expansion reduces to an ordinary power series. The coefficient of xr+1 = x tells
us that u1 = 0. The general recurrence relation, for n ≥ 2, is

n2un + 1
2 nun−2 = 0,

and hence
un = −

un−2

2n
.

Therefore, the odd coefficients u2k+1 = 0 are all zero, while the even ones are

u2k = −
u2k−2

4k
=

u2k−4

4k (4k − 4)
= −

u2k−6

4k(4k − 4)(4k − 8)
= · · · =

(−1)k

4k k !
, since u0 = 1.

The resulting power series assumes a recognizable form:

û(x) =
∞∑

k=1

u2kx
2k =

∞∑

k=1

1

k !

(
−

x2

4

)k

= e−x2/4,

which is an explicit elementary solution to the ordinary differential equation (11.94).
Since there is only one root to the indicial equation, the second solution ũ(x) will

require a logarithmic term. It can be constructed by a second application of the Frobenius
method using the more complicated form (11.92). Alternatively, since the first solution
is known, we can use a well-known reduction trick, [23]. Given one solution û(x) to a
second-order linear ordinary differential equation, the general solution can be found by
substituting the ansatz

u(x) = v(x) û(x) = v(x) e−x2/4 (11.96)

into the equation. In this case,

u′′ +

(
1

x
+

x

2

)
u′ + u = v

[
û ′′ +

(
1

x
+

x

2

)
û ′ + û

]
+ v′

[
2 û ′ +

(
1

x
+

x

2

)
û

]
+ v′′ û

= e−x2/4

(
v′′ +

v′

x

)
.

If u is to be a solution, v′ must satisfy a linear first-order ordinary differential equation:

v′′ +
v′

x = 0, and hence v′ =
c
x , v = c log x+ d,

where c, d are arbitrary constants. We conclude that the general solution to the original
differential equation is

ũ(x) = v(x) û(x) = (c log x+ d) e−x2/4. (11.97)

Bessel’s Equation

Perhaps the most important “non-elementary” ordinary differential equation is

x2 u′′ + x u′ + (x2 −m2) u = 0, (11.98)
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known as Bessel’s equation of order m. We assume here that the order m ≥ 0 is a
nonnegative real number. (Exercise 11.3.30 investigates Bessel equations of imaginary
order.) The Bessel equation arises from separation of variables in a variety of partial
differential equations, including the Laplace, heat, and wave equations on a disk, a cylinder,
and a spherical ball.

The Bessel equation cannot (except in a few particular instances) be solved in terms
of elementary functions, and so the use of power series is essential. The leading coefficient,
p(x) = x2, is nonzero except when x = 0, and so all points except the origin are regular.
Therefore, at any x0 ̸= 0, the standard power series construction can be used to produce
the solutions of the Bessel equation. However, the recurrence relations for the coefficients
are not particularly easy to solve in closed form. Moreover, applications tend to demand
understanding the behavior of solutions at the singular point x0 = 0.

Comparison with (11.88) immediately shows that x0 = 0 is a regular singular point,
and so we seek solutions in Frobenius form. We substitute the first, second, and fourth
expressions in (11.95) into the Bessel equation and then equate the coefficients of the
various powers of x to zero. The lowest power, xr, provides the indicial equation

r(r − 1) + r −m2 = r2 −m2 = 0.

It has two solutions, r = ±m, except when m = 0, for which r = 0 is the only index.
The higher powers of x lead to recurrence relations for the coefficients un in the

Frobenius series. Replacing m2 by r2 produces

xr+1 :
[
(r + 1)2 − r2

]
u1 = (2r + 1)u1 = 0, u1 = 0,

xr+2 :
[
(r + 2)2 − r2

]
u2 + 1 = (4r + 4)u2 + 1 = 0, u2 = −

1

4r + 4
,

xr+3 :
[
(r + 3)2 − r2

]
u3 + u1 = (6r + 9)u3 + u1 = 0, u3 = −

u1

6r + 9
= 0,

and, in general,

xr+n :
[
(r + n)2 − r2

]
un + un−2 = n(2r + n)un + un−2 = 0.

Thus, the general recurrence relation is

un = −
1

n(2r + n)
un−2, n = 2, 3, 4, . . . . (11.99)

Starting with u0 = 1, u1 = 0, it is easy to deduce that all un = 0 for all odd n = 2k + 1,
while for even n = 2k,

u2k = −
u2k−2

4k(k + r)
=

u2k−4

16k(k − 1)(r + k)(r + k − 1)
= · · ·

=
(−1)k

22k k(k − 1) · · ·3 · 2 (r + k)(r + k − 1) · · · (r + 2)(r + 1)
.

We have thus found the series solution

û(x) =
∞∑

k=0

u2k x
r+2k =

∞∑

k=0

(−1)kxr+2k

22k k! (r + k)(r + k − 1) · · · (r + 2)(r + 1)
. (11.100)

So far, we have not paid attention to the precise values of the indices r = ±m. In
order to continue the recurrence, we need to ensure that the denominators in (11.99) are
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never 0. Since n > 0, a vanishing denominator will appear whenever 2r + n = 0, and so
r = −1

2 n is either a negative integer −1,−2,−3, . . . or half-integer − 1
2 ,−

3
2 ,−

5
2 , . . . . This

will occur when the order m = −r = 1
2 n is either an integer or a half-integer. Indeed,

these are precisely the situations in which the two indices, namely r1 = −m and r2 = m,
differ by an integer, r2 − r1 = n, and so we are in the tricky case (iii) of the Frobenius
method.

There is, in fact, a major difference between the integral and the half-integral cases.
Recall that the odd coefficients u2k+1 = 0 in the Frobenius series automatically vanish, and
so we only have to worry about the recurrence relation (11.99) for even values of n. When
n = 2k, the factor 2r+n = 2(r + k) = 0 vanishes only when r = −k is a negative integer;
the half-integral values do not, in fact cause problems. Therefore, if the order m ≥ 0 is not
an integer, then the Bessel equation of order m admits two linearly independent Frobenius
solutions, given by the expansions (11.100) with exponents r = +m and r = −m. On the
other hand, if m is an integer, there is only one Frobenius solution, namely the expansion
(11.100) for the positive index r = +m. The Frobenius recurrence with index r = −m
breaks down, and the second independent solution must include a logarithmic term; details
appear below.

By convention, the standard Bessel function of order m is obtained by multiplying
the Frobenius solution (11.100) with r = m by

1

2m m !
, or, more generally,

1

2m Γ(m + 1)
, (11.101)

where the first factorial form can be used if m is a nonnegative integer, while the more
general gamma function expression must be employed for non-integral values of m. The
result is

Jm(x) =
∞∑

k=0

(−1)kxm+2k

22k+m k ! (m+ k) !
(11.102)

=
1

2m m !

[
xm −

xm+2

4(m+1)
+

xm+4

32(m+1)(m+2)
−

xm+6

384(m+1)(m+2)(m+3)
+ · · ·

]
.

When m is non-integral, the (m + k) ! should be replaced by Γ(m + k + 1), and m ! by
Γ(m + 1). With this convention, the series is well defined for all real m except when
m = −1,−2,−3, . . . is a negative integer. Actually, if m is a negative integer, the first
m terms in the series vanish, because, at negative integer values, Γ(−n) = ∞. With this
convention, one can prove that

J−m(x) = (−1)mJm(x), m = 1, 2, 3, . . . . (11.103)

A simple application of the ratio test tells us that the power series converges for all
(complex) values of x, and hence Jm(x) is everywhere analytic. Indeed, the convergence
is quite rapid when x is of moderate size, and so summing the series is a reasonably effec-
tive method for computing the Bessel function Jm(x) — although in serious applications
one adopts more sophisticated numerical techniques based on asymptotic expansions and
integral formulas, [85, 86]. In particular, we note that

J0(0) = 1, Jm(0) = 0, m > 0. (11.104)

Figure 11.4 displays graphs of the first four Bessel functions for 0 ≤ x ≤ 20; the vertical
axes range from −.5 to 1.0. Most software packages, both symbolic and numeric, include
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J0(x) J1(x)

J2(x) J3(x)

Figure 11.4. Bessel functions.

routines for accurately evaluating and graphing Bessel functions, and their properties can
be regarded as well known.

Example 11.8. Consider the Bessel equation of order m = 1
2 . There are two indices,

r = ± 1
2 , and the Frobenius method yields two independent solutions: J1/2(x) and J−1/2(x).

For the first, with r = 1
2 , the recurrence relation (11.99) takes the form

un = −
un−2

(n+ 1)n
.

Starting with u0 = 1 and u1 = 0, the general formula is easily found to be

un =

⎧
⎨

⎩

(−1)k

(n+ 1)!
, n = 2k even,

0 n = 2k + 1 odd.

Therefore, the resulting solution is

û(x) =
√
x

∞∑

k=0

(−1)k

(2k + 1)!
x2k =

1√
x

∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 =

sinx√
x

.

According to (11.101), the Bessel function of order 1
2 is obtained by dividing this function

by
√
2 Γ

(
3
2

)
=

√
π

2
,

where we used (11.66) to evaluate the gamma function at 3
2 . Therefore,

J1/2(x) =

√
2

πx
sin x . (11.105)
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Similarly, for the other index r = − 1
2 , the recurrence relation

un = −
un−2

n(n− 1)

leads to the formula

un =

⎧
⎨

⎩

(−1)k

n !
, n = 2k even,

0 n = 2k + 1 odd,

for its coefficients, corresponding to the solution

ũ(x) = x−1/2
∞∑

k=0

(−1)k

(2k) !
x2k =

cosx√
x

.

Therefore, in view of (11.101) and (11.65), the Bessel function of order − 1
2 is

J−1/2(x) =

√
2

Γ
(

1
2

) cosx√
x

=

√
2

πx
cosx . (11.106)

As we noted above, if m is not an integer, the two independent solutions to the Bessel
equation of order m are Jm(x) and J−m(x). However, when m is an integer, (11.103)
implies that these two solutions are constant multiples of each other, and so one must look
elsewhere for a second independent solution. One method is to use a generalized Frobenius
expansion involving a logarithmic term, i.e., (11.92) when m = 0 (see Exercise 11.3.33)
or (11.93) when m > 0. A second approach is to employ the reduction procedure used in
Example 11.7. Yet another option relies on the following limiting procedure; see [85, 119]
for full details.

Theorem 11.9. If m > 0 is not an integer, then the Bessel functions Jm(x) and
J−m(x) provide two linearly independent solutions to the Bessel equation of order m. On
the other hand, if m = 0, 1, 2, 3, . . . is an integer, then a second independent solution,
traditionally denoted by Ym(x) and called the Bessel function of the second kind of order
m, can be found as a limiting case

Ym(x) = lim
ν→m

Jν(x) cosν π − J−ν(x)

sin ν π
(11.107)

of a certain linear combination of Bessel functions of non-integral order ν.

With some further analysis, it can be shown that the Bessel function of the second
kind of order m has the logarithmic Frobenius expansion

Ym(x) =
2

π

(
γ + log

x

2

)
Jm(x) +

∞∑

k=0

bkx
2k−m, m = 0, 1, 2, . . . , (11.108)

with coefficients

bk =

⎧
⎪⎪⎨

⎪⎪⎩

−
(m− k − 1) !

π 22k−m k !
, 0 ≤ k ≤ m− 1,

(−1)k−m−1(hk−m + hk)

π 22k−m k ! (k −m) !
, k ≥ m,
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Y0(x) Y1(x)

Y2(x) Y3(x)

Figure 11.5. Bessel functions of the second kind.

where

h0 = 0, hk = 1+
1

2
+

1

3
+ · · · +

1

k
, k > 0,

while

γ = lim
k→∞

(
hk − log k

)
≈ .5772156649 . . . (11.109)

is known as the Euler or Euler–Mascheroni constant . All Bessel functions of the second
kind have a singularity at the origin x = 0; indeed, by inspection of (11.108), we find that
the leading asymptotics as x → 0 are

Y0(x) ∼
2

π
log x, Ym(x) ∼ −

2m (m− 1) !

πxm
, m > 0. (11.110)

Figure 11.5 contains graphs of the first four Bessel function of the second kind on the
interval 0 < x ≤ 20; the vertical axis ranges from −1 to 1.

Finally, we show how Bessel functions of different orders are interconnected by two
important recurrence relations.

Proposition 11.10. The Bessel functions are related by the following formulae:

dJm
dx

+
m

x
Jm(x) = Jm−1(x), −

dJm
dx

+
m

x
Jm(x) = Jm+1(x). (11.111)

Proof : Differentiating the power series

xmJm(x) =
∞∑

k=0

(−1)kx2m+2k

22k+m k ! (m+ k) !
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produces

d

dx
[xmJm(x) ] =

∞∑

k=0

(−1)k 2 (m+ k)x2m+2k−1

22k+m k ! (m + k) !

= xm
∞∑

k=0

(−1)kxm−1+2k

22k+m−1 k ! (m− 1 + k) !
= xm Jm−1(x).

(11.112)

Expansion of the left-hand side of this formula leads to

xm dJm
dx

+mxm−1Jm(x) =
d

dx
[xmJm(x) ] = xmJm−1(x),

which establishes the first recurrence formula (11.111). The second is proved by a similar
manipulation involving differentiation of x−m Jm(x). Q.E.D.

For example, using the second recurrence formula (11.111) along with (11.105), we
can write the Bessel function of order 3

2 in elementary terms:

J3/2(x) = −
dJ1/2(x)

dx
+

1

2x
J1/2(x)

= −
√

2

π

(
cosx

x1/2
−

sin x

2x3/2

)
+

√
2

π

sinx

2x3/2
=

√
2

π

sinx− x cosx

x3/2
.

(11.113)

Iterating, one concludes that Bessel functions of half-integral order, m = ± 1
2 ,±

3
2 ,±

5
2 , . . . ,

are all elementary functions, in that they can be written in terms of trigonometric func-
tions and powers of

√
x . We will make use of these functions in our treatment of the

three-dimensional heat and wave equations in spherical geometry. On the other hand, all
of the other Bessel functions are non-elementary special functions.

With this, we conclude our brief introduction to the method of Frobenius and the
basics of Bessel functions. The reader interested in delving further into either the general
method or the host of additional properties of Bessel functions is encouraged to consult a
more specialized text, e.g., [59, 85, 119].

Exercises

11.3.22. Consider the ordinary differential equation 2xu′′ + u′ + xu = 0. (a) Prove that x = 0
is a regular singular point. (b) Find two independent series solutions in powers of x.

♥ 11.3.23. Consider the differential equation
u′′

2− x
=

u
x2

. (a) Classify all x0 ∈ R as either a

(i) regular point; (ii) regular singular point; and/or (iii) irregular singular point. Explain
your answers. (b) Find a series solution to the equation based at the point x0 = 0, or ex-
plain why none exists. What is the radius of convergence of your series?

11.3.24. Consider the differential equation u′′ +
(
1− 1

x

)
u′ + u = 0.

(a) Classify all x0 ∈ R as either (i) a regular point; (ii) a regular singular point; (iii) an
irregular singular point; (iv) none of the above. Explain your answers.

(b) Write out the first five nonzero terms in a series solution.
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11.3.25. Consider the differential equation 4xu′′ + 2u′ + u = 0. (a) Classify the values of x for
which the equation has regular points, regular singular points, and irregular singular points.
(b) Find two independent series solutions, in powers of x. For what values of x do your
series converge? (c) By inspection of your series, write the general solution to the equation
in terms of elementary functions.

♥ 11.3.26. The Chebyshev differential equation is (1 − x2)u′′ − xu′ + m2u = 0. (a) Find all
(i) regular points; (ii) regular singular points; (iii) irregular singular points. (b) Show
that if m is an integer, the equation has a polynomial solution of degree m, known as a
Chebyshev polynomial . Write down the Chebyshev polynomials of degrees 1, 2, and 3.
(c) For m = 1, find two linearly independent series solutions based at the point x0 = 1.

11.3.27. Write the following Bessel functions in terms of elementary functions:
(a) J5/2(x), (b) J7/2(x), (c) J−3/2(x).

♦ 11.3.28. Prove the identity (11.103).

11.3.29. Suppose that u(x) solves Bessel’s equation. (a) Find a second order ordinary differen-
tial equation satisfied by the function w(x) =

√
x u(x). (b) Use this result to rederive the

formulas for J1/2(x) and J−1/2(x).

♦ 11.3.30. Let m ≥ 0 be real, and consider the modified Bessel equation of order m:

x2 u′′ + x u′ − (x2 +m2)u = 0. (11.114)

(a) Explain why x0 = 0 is a regular singular point.
(b) Use the method of Frobenius to construct a series solution based at x0 = 0. Can you

relate your solutions to the Bessel function Jm(x)?

♦ 11.3.31.(a) Let a, b, c be constants with b, c ̸= 0. Show that the function u(x) = xaJ0(bx
c)

solves the ordinary differential equation

x2
d2u
dx2

+ (1− 2a)x
du
dx

+ (b2c2x2c + a2)u = 0.

What is the general solution to this equation?
(b) Find the general solution to the ordinary differential equation

x2
d2u
dx2

+ αx
du
dx

+ (βx2c + γ)u = 0,

for constants α,β, γ, c with β, c ̸= 0.

♥ 11.3.32. Let k > 0 be a constant. The ordinary differential equation
d2u
dt2

+ e−2 t u = 0 describes

the vibrations of a weakening spring whose stiffness k(t) = e−2 t is exponentially decaying
in time. (a) Show that this equation can be solved in terms of Bessel functions of order 0.
Hint : Perform a change of variables. (b) Does the solution tend to 0 as t→∞?

♥ 11.3.33. We know that û(x) = J0(x) is a solution to the Bessel equation of order 0, namely

xu′′ + u′ + xu = 0. (11.115)

In accordance with the general Frobenius method, construct a second solution of the form

ũ(x) = J0(x) log x+
∞∑

n=1
vnx

n.

11.3.34. Is it possible to have all solutions to an ordinary differential equation bounded at a
regular singular point? If not, explain why not. If true, give an example where this hap-
pens.

11.3 Series Solutions of Ordinary Differential Equations
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11.4 The Heat Equation in a Disk, Continued

Now that we have acquired some familiarity with the solutions to Bessel’s ordinary differ-
ential equation, we are ready to analyze the separable solutions to the heat equation in a
polar geometry. At the end of Section 11.2, we were left with the task of solving the Bessel
equation (11.58) of integer order m. As we now know, there are two independent solutions,
namely the Bessel function of the first kind Jm, (11.102), and the more complicated Bessel
function of the second kind Ym, (11.107), and hence the general solution has the form

p(z) = c1Jm(z) + c2Ym(z),

for constants c1, c2. Reverting to our original radial coordinate r = z/
√
λ , we conclude

that every solution to the radial equation (11.56) has the form

p(r) = c1Jm
(√

λ r
)
+ c2Ym

(√
λ r

)
.

Now, the singular point r = 0 represents the center of the disk, and the solutions must
remain bounded there. While this is true for Jm(z), the second Bessel function Ym(z) has,
according to (11.110), a singularity at z = 0 and so is unsuitable for the present purposes.
(On the other hand, it plays a role in other situations, e.g., the heat equation on an annular
ring.) Thus, every separable solution that is bounded at r = 0 comes from the rescaled
Bessel function of the first kind of order m:

p(r) = Jm
(√

λ r
)
. (11.116)

The Dirichlet boundary condition at the disk’s rim r = 1 requires

p(1) = Jm
(√

λ
)
= 0.

Therefore, in order that λ be a bona fide eigenvalue,
√
λ must be a root of the mth order

Bessel function Jm.

Remark : We already know, thanks to the positive definiteness of the Dirichlet bound-
ary value problem, that the Helmholtz eigenvalues must all be positive, λ > 0, and so there
will be no difficulty in taking its square root.

The graphs of Jm(z) strongly indicate, and, indeed, it can be rigorously proved,
[85, 119], that as z increases above 0, each Bessel function oscillates, with slowly de-
creasing amplitude, between positive and negative values. In fact, asymptotically,

Jm(z) ∼
√

2
πz cos

[
z −

(
1
2 m+ 1

4

)
π
]

as z −→ ∞, (11.117)

and so the oscillations become essentially the same as a (phase-shifted) cosine whose am-
plitude decreases like z−1/2. As a consequence, there exists an infinite sequence of Bessel
roots , which we number in increasing order:

Jm(ζm,n) = 0, where

0 < ζm,1 < ζm,2 < ζm,3 < · · · with ζm,n −→ ∞ as n −→ ∞.
(11.118)

It is worth emphasizing that the Bessel functions are not periodic, and so their roots
are not evenly spaced. However, as a consequence of (11.117), the large Bessel roots are
asymptotically close to the evenly spaced roots of the shifted cosine:

ζm,n ∼
(
n+ 1

2 m− 1
4

)
π as n −→ ∞. (11.119)
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Owing to their physical importance in a wide range of problems, the Bessel roots have
been extensively tabulated. The accompanying table displays all Bessel roots that are < 12
in magnitude. The columns of the table are indexed by m, the order of the Bessel function,
and the rows by n, the root number.

Table of Bessel Roots ζm,n

n

∖
m 0 1 2 3 4 5 6 7 . . .

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715 9.9361 11.0864 . . .

2 5.5201 7.0156 8.4172 9.7610 11.0647
...

...
...

3 8.6537 10.1735 11.6198
...

...

4 11.7915
...

...

...
...

Remark : According to (11.102),

Jm(0) = 0 for m > 0, while J0(0) = 1.

However, we do not count 0 as a bona fide Bessel root, since it does not lead to a valid
eigenfunction for the Helmholtz boundary value problem.

Summarizing our progress so far, the eigenvalues

λm,n = ζ2m,n, n = 1, 2, 3, . . . , m = 0, 1, 2, . . . , (11.120)

of the Bessel boundary value problem (11.56–57) are the squares of the roots of the Bessel
function of order m. The corresponding eigenfunctions are

wm,n(r) = Jm(ζm,n r) , n = 1, 2, 3, . . . , m = 0, 1, 2, . . . , (11.121)

defined for 0 ≤ r ≤ 1. Combining (11.121) with the formula (11.55) for the angular com-
ponents, we conclude that the separable solutions (11.53) to the polar Helmholtz boundary
value problem (11.51) are

v0,n(r) = J0(ζ0,n r),

vm,n(r, θ) = Jm(ζm,n r) cosmθ,

v̂m,n(r, θ) = Jm(ζm,n r) sinmθ,

where m,n = 1, 2, 3, . . . . (11.122)

These solutions define the normal modes for the unit disk; Figure 11.6 plots the first few of
them. The eigenvalues λ0,n are simple, and contribute radially symmetric eigenfunctions,
whereas the eigenvalues λm,n for m > 0 are double, and produce two linearly independent
separable eigenfunctions, with trigonometric dependence on the angular variable.

Recalling the original ansatz (11.50), we have at last produced the basic separable
eigensolutions

u0,n(t, r) = e− ζ2
0,nt v0,n(r) = e− ζ2

0,nt J0(ζ0,n r),

um,n(t, r, θ) = e− ζ2
m,nt vm,n(r, θ) = e− ζ2

m,nt Jm(ζm,n r) cosmθ,

ûm,n(t, r, θ) = e− ζ2
m,nt v̂m,n(r, θ) = e− ζ2

m,nt Jm(ζm,n r) sinmθ, m, n = 1, 2, 3, . . . ,

(11.123)
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Figure 11.6. Normal modes for a disk.

to the homogeneous Dirichlet boundary value problem for the heat equation on the unit
disk. The general solution is obtained by linear superposition, in the form of an infinite
series

u(t, r, θ) =
1

2

∞∑

n=1

a0,n u0,n(t, r) +
∞∑

m,n=1

[
am,n um,n(t, r, θ) + bm,n ûm,n(t, r, θ)

]
, (11.124)

where the initial factor of 1
2 is included, as with ordinary Fourier series, for later conve-
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nience. As usual, the coefficients am,n, bm,n are determined by the initial condition

u(0, r, θ) =
1

2

∞∑

n=1

a0,n v0,n(r) +
∞∑

m,n=1

[
am,n vm,n(r, θ) + bm,n v̂m,n(r, θ)

]
= f(r, θ).

(11.125)
This requires that we expand the initial data into a Fourier–Bessel series in the eigen-
functions. As before, it is possible to prove, [34], that the separable eigenfunctions are
complete — there are no other eigenfunctions — and hence every (reasonable) function
defined on the unit disk can be written as a convergent series in the Bessel eigenfunctions.

Theorem 9.33 gurantees that the eigenfunctions are orthogonal† with respect to the
standard L2 inner product

⟨ u , v ⟩ =
∫ ∫

D
u(x, y) v(x, y)dx dy =

∫ 1

0

∫ π

−π
u(r, θ) v(r, θ) r dθ dr

on the unit disk. (Note the extra factor of r coming from the polar coordinate form of
the area element dx dy = r dr dθ.) The L2 norms of the Fourier–Bessel eigenfunctions are
given by the interesting formulae

∥ v0,n ∥ =
√
π
∣∣ J1(ζ0,n)

∣∣ , ∥ vm,n ∥ = ∥ v̂m,n ∥ =

√
π

2

∣∣ Jm+1(ζm,n)
∣∣ , (11.126)

which involve the value of the Bessel function of the next-higher order at the appropriate
Bessel root. A proof of (11.126) can be found in Exercise 11.4.22, while numerical values
are provided in the accompanying table.

Norms of the Fourier–Bessel Eigenfunctions ∥ vm,n ∥ = ∥ v̂m,n ∥

n

∖
m 0 1 2 3 4 5 6 7

1 .9202 .5048 .4257 .3738 .3363 .3076 .2847 .2658

2 .6031 .3761 .3401 .3126 .2906 .2725 .2572 .2441

3 .4811 .3130 .2913 .2736 .2586 .2458 .2347 .2249

4 .4120 .2737 .2589 .2462 .2352 .2255 .2169 .2092

5 .3661 .2462 .2353 .2257 .2171 .2095 .2025 .1962

Orthogonality of the eigenfunctions implies that the coefficients in the Fourier–Bessel

† For the two independent eigenfunctions corresponding to one of the double eigenvalues,
orthogonality must be verified by hand, but, in this case, it follows easily from the orthogonality
of their trigonometric components.
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Figure 11.7. Heat diffusion in a disk.
⊎

series (11.125) are given by the inner product formulae

a0,n = 2
⟨ f , v0,n ⟩
∥ v0,n ∥2

=
2

π J1(ζ0,n)
2

∫ 1

0

∫ π

−π
f(r, θ) J0(ζ0,n r) r dθ dr,

am,n =
⟨ f , vm,n ⟩
∥ vm,n ∥2

=
2

π Jm+1(ζm,n)
2

∫ 1

0

∫ π

−π
f(r, θ) Jm(ζm,n r) r cosmθ dθ dr,

bm,n =
⟨ f , v̂m,n ⟩
∥ v̂m,n ∥2

=
2

π Jm+1(ζm,n)
2

∫ 1

0

∫ π

−π
f(r, θ) Jm(ζm,n r) r sinmθ dθ dr.

(11.127)

In accordance with the general theory, each individual separable solution (11.123) to
the heat equation decays exponentially fast, at a rate λm,n = ζ2m,n prescribed by the square
of the corresponding Bessel root. In particular, the dominant mode, meaning the one that
persists the longest, is

u0,1(t, r, θ) = e− ζ2
0,1 t J0(ζ0,1 r). (11.128)

Its decay rate is prescribed by the smallest positive eigenvalue:

ζ20,1 ≈ 5.783, (11.129)

which is the square of the smallest root of the Bessel function J0(z). Since J0(z) > 0 for
0 ≤ z < ζ0,1, the dominant eigenfunction v0,1(r, θ) = J0(ζ0,1 r) > 0 is radially symmet-
ric and strictly positive within the entire disk. Consequently, for most initial conditions
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(specifically those for which a0,1 ̸= 0), the disk’s temperature distribution eventually be-
comes entirely of one sign and radially symmetric, while decaying exponentially fast to zero
at the rate given by (11.129). See Figure 11.7 for a plot of a typical solution. Note how,
in accordance with the theory, the solution soon acquires a radial symmetry as it decays
to thermal equilibrium.

Exercises

11.4.1. At the initial time t0 = 0, a concentrated unit heat source is instantaneously applied at
position x = 1

2 , y = 0, to a circular metal disk of unit radius and unit thermal diffusivity

whose outside edge is held at 0◦. Write down an eigenfunction series for the resulting tem-
perature distribution at time t > 0. Hint : Be careful working with the delta function in
polar coordinates; see Exercise 6.3.6.

11.4.2. Solve Exercise 11.4.1 when the concentrated unit heat source is instantaneously applied
at the center of the disk.

♥ 11.4.3.(a) Write down the Fourier–Bessel series for the solution to the heat equation on a unit
disk with γ = 1, whose circular edge is held at 0◦ and subject to the initial conditions
u(0, x, y) ≡ 1 for x2 + y2 ≤ 1. Hint : Use (11.112) to evaluate the integrals for the coeffi-
cients. (b) Approximate the time t⋆ ≥ 0 after which the temperature of the disk is every-
where ≤ .5◦.

♣ 11.4.4.(a) Write down the first three nonzero terms in the Fourier–Bessel series for the solution
to the heat equation on a unit disk with γ = 1 whose circular edge is held at 0◦ subject to
the initial conditions u(0, r, θ) = 1 − r for r ≤ 1. Use numerical integration to evaluate the
coefficients. (b) Use your approximation to determine at which times t ≥ 0 the tempera-
ture of the disk is everywhere ≤ .5◦.

11.4.5. Prove that every separable eigenfunction of the Dirichlet boundary value problem for
the Helmholtz equation in the unit disk can be written in the form

c Jm(ζm,n r) cos(mθ − α) for fixed c ̸= 0 and −π < α ≤ π.

11.4.6. Suppose the initial data f(r, θ) in (11.49) satisfies
∫ 1

0

∫ π

−π
f(r, θ) J0(ζ0,1 r) r dθ dr = 0.

(a) What is the decay rate to equilibrium of the resulting heat equation solution u(t, r, θ)?
(b) Prove that, generically, the asymptotic temperature distribution has half the disk above
the equilibrium temperature and the other half below. Can you predict the diameter that
separates the two halves? (c) If you know that a0,1 = 0, and also that the long-time tem-
perature distribution is radially symmetric, what is the (generic) decay rate? What is the
asymptotic temperature distribution?

♦ 11.4.7. Show how to use a scaling symmetry to solve the heat equation in a disk of radius R
knowing the solution in a disk of radius 1.

11.4.8. Use rescaling, as in Exercise 11.4.7, to produce the solution to the Dirichlet initial-
boundary value problem for a disk of radius 2 with diffusion coefficient γ = 5.

11.4.9. If it takes a disk of unit radius 3 minutes to reach (approximate) thermal equilibrium,
how long will it take a disk of radius 2 made out of the same material and subject to the
same homogeneous boundary conditions to reach equilibrium?

11.4.10. Assuming Dirichlet boundary conditions, does a square or a circular disk of the same
area reach thermal equilibrium faster? Use your intuition first, and then check using the
explicit formulas.
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11.4.11. Answer Exercise 11.4.10 when the square and circle have the same perimeter.

11.4.12. Which reaches thermal equilibrium faster: a disk whose edge is held at 0◦ or a disk of
the same radius that is fully insulated?

11.4.13. A circular metal disk is removed from an oven and then fully insulated.
True or false: (a) The eventual equilibrium temperature is constant.
(b) For large t ≫ 0, the temperature u(t, x, y) becomes more and more radially symmetric.
If false, what can you say about the temperature profile at large times?

♥ 11.4.14.(a) Write down an eigenfunction series formula for the temperature dynamics of a disk
of radius 1 that has an insulated boundary. (b) What is the eventual equilibrium temper-
ature? (c) Is the rate of decay to thermal equilibrium (i) faster, (ii) slower, or (iii) the
same as a disk with Dirichlet boundary conditions?

♥ 11.4.15. Write out a series solution for the temperature in a half-disk of radius 1, subject to
(a) homogeneous Dirichlet boundary conditions on its entire boundary; (b) homogeneous
Dirichlet conditions on the circular part of its boundary and homogeneous Neumann con-
ditions on the straight part. (c) Which of the two boundary conditions results in a faster
return to equilibrium temperature? How much faster?

11.4.16. A large sheet of metal is heated to 100◦. A circular disk and a semi-circular half-disk
of the same radius are cut out of it. Their edges are then held at 0◦, while being fully insu-
lated from above and below.
(a) True or false: The half-disk goes to thermal equilibrium twice as fast as the disk.
(b) If you need to wait 20 minutes for the circular disk to cool down enough to be picked up

in your bare hands, how long do you need to wait to pick up the semi-circular disk?

♣ 11.4.17. Two identical plates have the shape of an annular ring {1 < r < 2} with inner radius
1 and outer radius 2. The first has an insulated inner boundary and outer boundary held
at 0◦, while the second has an insulated outer boundary and inner boundary held at 0◦. If
both start out at the same temperature, which reaches thermal equilibrium faster? Quan-
tify the rates of decay.

♥ 11.4.18. Let m ≥ 0 be a nonnegative integer. In this exercise, we investigate the completeness
of the eigenfunctions of the Bessel boundary value problem (11.56–57). To this end, define
the Sturm–Liouville linear differential operator

S[u ] = − 1
x

d
dx

(

x
du
dx

)

+
m2

x2
u,

subject to the boundary conditions |u′(0) | < ∞, u(1) = 0, and either |u(0) | < ∞ when
m = 0, or u(0) = 0 when m > 0.

(a) Show that S is self-adjoint relative to the inner product ⟨ f , g ⟩ =
∫ 1

0
f(x) g(x) x dx.

(b) Prove that the eigenfunctions of S are the rescaled Bessel functions Jm(ζm,nx) for n =
1, 2, 3, . . . . What are the orthogonality relations?

(c) Find the Green’s function G(x; ξ) and modified Green’s function Ĝ(x; ξ), cf. (9.59), asso-
ciated with the boundary value problem S[u ] = 0.

(d) Use the criterion of Theorem 9.47 to prove that the eigenfunctions are complete.

11.4.19. Determine the Bessel roots ζ1/2,n. Do they satisfy the asymptotic formula (11.119)?

♣ 11.4.20. Use a numerical root finder to compute the first 10 Bessel roots ζ3/2,n, n = 1, . . . , 10.

Compare your values with the asymptotic formula (11.119).

♦ 11.4.21. Prove that Jm−1(ζm,n) = −Jm+1(ζm,n).

♦ 11.4.22. In this exercise, we prove formula (11.126).
(a) First, use the recurrence formulae (11.111) to prove

d
dx

[
x2

(
Jm(x)2 − Jm−1(x) Jm+1(x)

) ]
= 2xJm(x)2.

(b) Integrate both sides of the previous formula from 0 to the Bessel zero ζm,n and then
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use Exercise 11.4.21 to show that
∫ ζm,n

0
xJm(x)2 dx = −

ζ2m,n

2
Jm−1(ζm,n) Jm+1(ζm,n) =

ζ2m,n

2
Jm+1(ζm,n)

2.

(c) Next, use a change of variables to establish the identity
∫ 1

0
z Jm(ζm,n z)2 dz = 1

2 Jm+1(ζm,n)
2.

(d) Finally, use the formulae for vm,n and v̂m,n to complete the proof of (11.126).

♦ 11.4.23. Prove directly that the eigenfunctions vm,n(r, θ) and v̂m,n(r, θ) in (11.122) are orthog-

onal with respect to the L2 inner product on the unit disk.

11.4.24. Establish the following alternative formulae for the eigenfunction norms:

∥ v0,n ∥ =
√
π

∣∣∣ J ′0 (ζ0,n)
∣∣∣ , ∥ vm,n ∥ = ∥ v̂m,n ∥ =

√
π
2

∣∣∣ J ′m(ζm,n)
∣∣∣ .

11.5 The Fundamental Solution to the Planar Heat Equation

As we learned in Section 4.1, the fundamental solution to the heat equation measures
the temperature distribution resulting from a concentrated initial heat source, e.g., a hot
soldering iron applied instantaneously at a single point on a metal plate. The physical
problem is modeled mathematically by taking a delta function as the initial data along
with the relevant homogeneous boundary conditions. Once the fundamental solution is
known, one is able to use linear superposition to recover the solution generated by any
other initial data.

As in our one-dimensional analysis, we shall concentrate on the most tractable case,
in which the domain is the entire plane: Ω = R2. Thus, our first goal is to solve the initial
value problem

ut = γ∆u, u(0, x, y) = δ(x− ξ) δ(y − η), (11.130)

for t > 0 and (x, y) ∈ R2. The solution u = F (t,x; ξ) = F (t, x, y; ξ, η) to this initial value
problem is known as the fundamental solution for the heat equation on R2.

The quickest route to the desired formula relies on the following means of combining
solutions of the one-dimensional heat equation to produce solutions of the two-dimensional
version.

Lemma 11.11. Let v(t, x) and w(t, x) be any two solutions to the one-dimensional
heat equation ut = γ uxx. Then their product

u(t, x, y) = v(t, x)w(t, y) (11.131)

is a solution to the two-dimensional heat equation ut = γ (uxx + uyy).

Proof : Our assumptions imply that vt = γ vxx, while wt = γ wyy when we write
w(t, y) as a function of t and y. Therefore, differentiating (11.131), we find

∂u

∂t
=

∂v

∂t
w + v

∂w

∂t
= γ

∂2v

∂x2
w + γ v

∂2w

∂y2
= γ

(
∂2u

∂x2
+

∂2u

∂y2

)
,

and hence u(t, x, y) solves the two-dimensional heat equation. Q.E.D.

11.5 The Fundamental Solution to the Planar Heat Equation
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For example, if

v(t, x) = e−γα2 t sinαx, w(t, y) = e−γβ2 t sin β y,

are separable solutions of the one-dimensional heat equation, then

u(t, x, y) = e−γ (α2+β2)t sinαx sinβ y

are the separable solutions we used to solve the heat equation on a rectangle. A more
interesting case is to choose

v(t, x) =
1

2
√
πγ t

e−(x−ξ)2/(4γ t), w(t, y) =
1

2
√
πγ t

e−(y−η)2/(4γ t), (11.132)

to be the fundamental solutions (8.14) to the one-dimensional heat equation at respec-
tive locations x = ξ and y = η. Multiplying these two solutions together produces the
fundamental solution for the two-dimensional problem.

Theorem 11.12. The fundamental solution to the heat equation ut = γ∆u corre-
sponding to a unit delta function placed at position (ξ, η) ∈ R2 at the initial time t0 = 0
is

F (t, x, y; ξ, η) =
1

4πγ t
e− [ (x−ξ)2+(y−η)2 ]/(4γ t). (11.133)

Proof : Since we already know that both function (11.132) are solutions to the one-
dimensional heat equation, Lemma 11.11 guarantees that their product, which equals
(11.133), solves the two-dimensional heat equation for t > 0. Moreover, at the initial
time,

u(0, x, y) = v(0, x)w(0, y) = δ(x− ξ) δ(y − η)

is a product of delta functions, and hence the result follows. Indeed, the total heat
∫ ∫

u(t, x, y) dx dy =

∫ ∞

−∞
v(t, x) dx

∫ ∞

−∞
w(t, y) dy = 1, t ≥ 0,

remains constant, while

lim
t→0+

u(t, x, y) =

{
∞, (x, y) = (ξ, η),

0, otherwise,

has the standard delta function limit at the initial time instant. Q.E.D.

Figure 11.8 depicts the evolution of the fundamental solution when γ = 1 at the
indicated times. Observe that the initially concentrated temperature spreads out in a
radially symmetric manner, while the total amount of heat remains constant. At any
individual point (x, y) ̸= (0, 0), the initially zero temperature rises slightly at first, but
then decays monotonically back to zero at a rate proportional to 1/t. As in the one-
dimensional case, since the fundamental solution is > 0 for all t > 0, the heat energy has
an infinite speed of propagation.

Both the one- and two-dimensional fundamental solutions have bell-shaped profiles
known as Gaussian filters . The most important difference is the initial factor. In a one-
dimensional medium, the fundamental solution decays in proportion to 1/

√
t, whereas in

the plane the decay is more rapid, being proportional to 1/t. The physical explanation is
that the heat energy is able to spread out in two independent directions, and hence diffuses
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Figure 11.8. Fundamental solution of the planar heat equation.
⊎

away from its initial source more rapidly. As we shall see, the decay in three-dimensional
space is more rapid still, being proportional to t−3/2 for similar reasons; see (12.120).

The principal use of the fundamental solution is for solving the general initial value
problem. We express the initial temperature distribution as a superposition of delta func-
tion impulses,

u(0, x, y) = f(x, y) =

∫ ∫
f(ξ, η) δ(x− ξ, y − η) dξ dη,

where, at the point (ξ, η) ∈ R2, the impulse has magnitude f(ξ, η). Linearity implies that
the solution is then given by the same superposition of fundamental solutions.

Theorem 11.13. The solution to the initial value problem

ut = γ∆u, u(t, x, y) = f(x, y), (x, y) ∈ R2,

for the planar heat equation is given by the linear superposition formula

u(t, x, y) =
1

4πγ t

∫ ∫
f(ξ, η) e− [ (x−ξ)2+(y−η)2 ]/(4γ t) dξ dη. (11.134)
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Figure 11.9. Diffusion of a disk.
⊎

We can interpret the solution formula (11.134) as a two-dimensional convolution

u(t, x, y) = F (t, x, y) ∗ f(x, y) (11.135)

of the initial data with a one-parameter family of progressively wider and shorter Gaussian
filters

F (t, x, y) = F (t, x, y; 0, 0) =
1

4πγ t
e−(x2+y2)/(4γ t). (11.136)

As in (7.54), such a convolution can be interpreted as a Gaussian weighted averaging of
the function f(x, y), which has the effect of smoothing out the initial data.

Example 11.14. If our initial temperature distribution is constant on a circular
region, say

u(0, x, y) =

{
1 x2 + y2 < 1,

0, otherwise,

then the solution can be evaluated using (11.134), as follows:

u(t, x, y) =
1

4π t

∫ ∫

D
e−[ (x−ξ)2+(y−η)2 ]/(4 t) dξ dη,

where the integral is over the unit disk D = {ξ2 + η2 ≤ 1}. Unfortunately, the integral
cannot be expressed in terms of elementary functions. On the other hand, numerical
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evaluation of the integral is straightforward. A plot of the resulting radially symmetric
solution appears in Figure 11.9. One could also interpret this solution as the diffusion of
an animal population in a uniform isotropic environment or bacteria in a similarly uniform
large petri dish that are initially confined to a small circular region.

Exercises

11.5.1. Solve the following initial value problem: ut = 5(uxx + uyy), u(0, x, y) = e−(x2+y2).

11.5.2. Write down an integral formula for the solution to the following initial value problem:
ut = 3(uxx + uyy), u(0, x, y) = (1 + x2 + y2)−2.

11.5.3. At the initial time t = 0, a unit heat source is instantaneously applied at the origin
of the (x, y)–plane. For t > 0, what is the maximum temperature experienced at a point
(x, y) ̸= 0? At what time is the maximum temperature achieved? Does the temperature
approach an equilibrium value as t→∞? If so, how fast?

11.5.4.(a) Find an eigenfunction series representation of the fundamental solution for the heat
equation ut = ∆u on the unit square {0 ≤ x, y ≤ 1} when subject to homogeneous Dirich-
let boundary conditions. (b) Write the solution to the initial value problem u(0, x, y) =
f(x, y) in terms of the fundamental solution. (c) Discuss how your formula is related to the
Fourier series solution (11.43).

11.5.5. Let u(t, x, y) be a solution to the heat equation on all of R2 such that u and ∥∇u ∥ → 0

rapidly as ∥x ∥ → ∞. (a) Prove that the total heat H(t) =
∫∫

u(t, x, y) dx dy is constant.

(b) Explain how this can be reconciled with the statement that u(t, x, y) → 0 as t → ∞ at
all points (x, y) ∈ R2.

♦ 11.5.6. Consider the initial value problem ut = γ∆u+H(t, x, y), u(0, x, y) = 0, for the inhomo-
geneous heat equation on the entire (x, y)–plane, where H(t, x, y) represents a time-varying
external heat source. Derive an integral formula for its solution. Hint : Mimic the solution
method in Section 8.1.

11.5.7. A flat plate of infinite extent with unit thermal diffusivity starts off at 0◦. From then
on, a unit heat source is continually applied at the origin. Find the resulting temperature
distribution. Does the temperature eventually reach a steady state? Hint : Use Exercise
11.5.6.

♥ 11.5.8. Building on Example 11.14, we model the “diffusion” of a set D ⊂ R2 as the solution
u(t, x, y) to the heat equation ut = ∆u subject to the initial condition u(0, x, y) = χD(x, y),

where χD(x, y) =

{
1, (x, y) ∈ D,
0, (x, y) ̸∈ D,

is the characteristic function of the set D.

(a) Write down a formula for the diffusion of the set D.
(b) True or false: At each t, the diffusion u(t, x, y) is the characteristic function of a set Dt.

(c) Prove that 0 < u(t, x, y) < 1 for all (x, y) and t > 0. (d) What is lim
t→∞

u(t, x, y)?

(e) Write down a formula for the diffusion of a unit square D = {0 ≤ x, y ≤ 1}, and then
plot the result at several times. Discuss what you observe.

11.5.9.(a) Explain why the delta function on R2 satisfies the scaling law δ(x, y) = β2 δ(βx,β y),
for β > 0. (b) Verify that the fundamental solution to the heat equation on R2 obeys the
same scaling law: F (t, x, y) = β2F (β2 t,β x,β y). (c) Is the fundamental solution a simi-
larity solution?
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11.5.10.(a) Find the fundamental solution on R2 to the cable equation ut = γ∆u − αu, where
α > 0 is constant. (b) Use your solution to write down a formula for the solution to the
general initial value problem u(0, x, y) = f(x, y) for (x, y) ∈ R2.

11.5.11.(a) Prove that if v(t, x) and w(t, x) solve the dispersive wave equation (8.90), then
their product u(t, x, y) = v(t, x)w(t, y) solves the two-dimensional dispersive equation

ut + uxxx + uyyy = 0.

(b) What is the fundamental solution on R2 of the latter equation? (c) Write down an in-
tegral formula for the solution to the initial value problem u(0, x, y) = f(x, y) for (x, y) ∈ R2.

11.5.12. Define the two-dimensional convolution f ∗ g of functions f(x, y) and g(x, y) so that
equation (11.135) is valid.

11.6 The Planar Wave Equation

Let us next consider the two-dimensional wave equation

∂2u

∂t2
= c2∆u = c2

(
∂2u

∂x2
+

∂2u

∂y2

)
, (11.137)

which models the unforced transverse vibrations of a homogeneous membrane, e.g., a drum.
Here, u(t, x, y) represents the vertical displacement of the membrane at time t and position
(x, y) ∈ Ω, where the domain Ω ⊂ R2, assumed bounded, represents the undeformed shape.
The constant c2 > 0 encapsulates the membrane’s physical properties — density, tension,
stiffness, etc.; its square root, c, is called, as in the one-dimensional case, the wave speed ,
since it represents the speed of propagation of localized signals.

Remark : In this simplified model, we are only allowing small, transverse (vertical)
displacements of the membrane. Large elastic vibrations lead to the nonlinear partial
differential equations of elastodynamics, [7]. In particular, the bending vibrations of a
flexible elastic plate are governed by a more complicated fourth-order partial differential
equation.

The solution u(t, x, y) to the wave equation will be uniquely specified once we impose
suitable boundary and initial conditions. The Dirichlet conditions

u(t, x, y) = h(x, y), (x, y) ∈ ∂Ω, (11.138)

correspond to gluing our membrane to a fixed boundary — a rim; more generally, we can
also allow h to depend on t, modeling a membrane attached to a moving boundary. On
the other hand, the homogeneous Neumann conditions

∂u

∂n
(t, x, y) = 0, (x, y) ∈ ∂Ω, (11.139)

represent a free boundary where the membrane is not attached to any support — although
in this model, its edge is allowed to move only in a vertical direction. Mixed boundary
conditions attach part of the boundary and leave the remaining portion free to vibrate:

u = h on D ! ∂Ω,
∂u

∂n
= 0 on N = ∂Ω \D. (11.140)
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Since the wave equation is of second order in time, to uniquely specify the solution we need
to impose two initial conditions,

u(0, x, y) = f(x, y),
∂u

∂t
(0, x, y) = g(x, y), (x, y) ∈ Ω. (11.141)

The first specifies the membrane’s initial displacement, while the second prescribes its
initial velocity.

Separation of Variables

Unfortunately, the d’Alembert solution method does not apply to the two-dimensional
wave equation in any obvious manner. The reason is that, unlike the one-dimensional
version (2.69), one cannot factorize the planar wave operator ! = ∂2

t − c2 ∂2
x − c2 ∂2

y , thus
precluding any sort of reduction to a first-order partial differential equation. However, this
is not the end of the story, and we will return to this issue at the end of Section 12.6.

We thus fall back on our universal solution tool for linear partial differential equations
— separation of variables. According to the general framework established in Section 9.5,
the separable solutions to the wave equation have the trigonometric form

uk(t, x, y) = cos(ωk t) vk(x, y) and ũk(t, x, y) = sin(ωk t) vk(x, y). (11.142)

Substituting back into the wave equation, we find that vk(x, y) must be an eigenfunction
of the associated Helmholtz boundary value problem

c2
(

∂2u

∂x2
+

∂2u

∂y2

)
+ λk v = 0, (11.143)

whose eigenvalue λk = ω2
k equals the square of the vibrational frequency. According to

Theorem 9.47, on a bounded domain, there is an infinite number of such normal modes with
progressively faster vibrational frequencies: ωk → ∞ as k → ∞. In addition, in the positive
semi-definite case — which occurs under homogeneous Neumann boundary conditions —
there is a single constant null eigenfunction, leading to the additional separable solutions

u0(t, x, y) = 1 and ũ0(t, x, y) = t. (11.144)

The first represents a stationary membrane that has been displaced to a fixed height, while
the second represents a membrane that is moving off in the vertical direction with constant
unit speed. (Think of the membrane moving in outer space unaffected by any external
gravitational force.) As in Section 9.5, the general solution can be written as an infinite
series in the eigensolutions (11.142). Unfortunately, as we know, the Helmholtz boundary
value problem can be explicitly solved only on a rather restricted class of domains. Here
we will content ourselves with investigating the two most important cases: rectangular and
circular membranes.

Remark : The vibrational frequencies represent the tones and overtones one hears when
the drum membrane vibrates. An interesting question is whether two drums of different
shapes can have identical sounds — the exact same vibrational frequencies. Or, more
descriptively, can one “hear” the shape of a drum? It was not until 1992 that the answer
was shown to be no, but for quite subtle reasons. See [47] for a discussion and some
examples of differently shaped drums that have the same vibrational frequencies.

11.6 The Planar Wave Equation
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Vibration of a Rectangular Drum

Let us first consider the vibrations of a membrane in the shape of a rectangle

R = {0 < x < a, 0 < y < b},

with side lengths a and b, whose edges are fixed to the (x, y)–plane. Thus, we seek to solve
the wave equation

utt = c2∆u = c2(uxx + uyy), 0 < x < a, 0 < y < b, (11.145)

subject to the initial and boundary conditions

u(t, 0, y) = u(t, a, y) = 0 = u(t, x, 0) = u(t, x, b),

u(0, x, y) = f(x, y), ut(0, x, y) = g(x, y),

0 < x < a,

0 < y < b.
(11.146)

As we saw in Section 11.2, the eigenfunctions and eigenvalues for the associated Helmholtz
equation on a rectangle,

c2(vxx + vyy) + λ v = 0, (x, y) ∈ R, (11.147)

when subject to the homogeneous Dirichlet boundary conditions

v(0, y) = v(a, y) = 0 = v(x, 0) = v(x, b), 0 < x < a, 0 < y < b, (11.148)

are

vm,n(x, y) = sin
mπx

a
sin

nπy

b
, where λm,n = π2 c2

(
m2

a2
+

n2

b2

)
, (11.149)

with m,n = 1, 2, . . . . The fundamental frequencies of vibration are the square roots of the
eigenvalues, so

ωm,n =
√
λm,n = π c

√
m2

a2
+

n2

b2
, m, n = 1, 2, . . . . (11.150)

The frequencies will depend upon the underlying geometry — meaning the side lengths —
of the rectangle, as well as the wave speed c, which, in turn, is a function of the membrane’s
density and stiffness. The higher the wave speed, or the smaller the rectangle, the faster
the vibrations. In layman’s terms, (11.150) quantifies the observation that smaller, stiffer
drums made of less-dense material vibrate faster.

According to (11.142), the normal modes of vibration of our rectangle are

um,n(t, x, y) = cos

(
π c

√
m2

a2
+

n2

b2
t

)
sin

mπx

a
sin

nπy

b
,

ũm,n(t, x, y) = sin

(
π c

√
m2

a2
+

n2

b2
t

)
sin

mπx

a
sin

nπy

b
.

(11.151)

The general solution can then be written as a double Fourier series

u(t, x, y) =
∞∑

m,n=1

[
am,n um,n(t, x, y) + bm,n ũm,n(t, x, y)

]
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Figure 11.10. Vibrations of a square.

in the normal modes. The coefficients am,n, bm,n are fixed by the initial displacement
u(0, x, y) = f(x, y) and the initial velocity ut(0, x, y) = g(x, y). Indeed, the usual orthogo-
nality relations among the eigenfunctions imply

am,n =
⟨ vm,n , f ⟩
∥ vm,n ∥2

=
4

a b

∫ b

0

∫ a

0
f(x, y) sin

mπx

a
sin

nπy

b
dx dy, (11.152)

bm,n =
⟨ vm,n , g ⟩

ωm,n ∥ vm,n ∥2
=

4

π c
√
m2 b2 + n2 a2

∫ b

0

∫ a

0
g(x, y) sin

mπx

a
sin

nπy

b
dx dy.

Since the fundamental frequencies are not rational multiples of each other, the general
solution is a genuinely quasiperiodic superposition of the various normal modes.

In Figure 11.10, we plot the solution resulting from the initially concentrated displace-
ment†

u(0, x, y) = f(x, y) = e−100 [ (x−.5)2+(y−.5)2 ]

at the center of a unit square, so a = b = 1, with unit wave speed, c = 1. Note that, unlike
a concentrated displacement of a one-dimensional string, which remains concentrated at
all subsequent times and periodically repeats, the initial displacement here spreads out in
a radially symmetric manner and propagates to the edges of the rectangle, where it reflects

† The alert reader may object that the initial displacement f(x, y) does not exactly satisfy
the Dirichlet boundary conditions on the edges of the rectangle. But this does not prevent the
existence of a well-defined (weak) solution to the initial value problem, whose initial boundary
discontinuities will subsequently propagate into the square. However, here these are so tiny as to
be unnoticeable in the solution graphs.
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and then interacts with itself. Moreover, due to the quasiperiodicity of the solution, the
drum’s motion never exactly repeats, and the initially concentrated displacement never
quite reforms.

Vibration of a Circular Drum

Let us next analyze the vibrations of a circular membrane of unit radius. In polar coordi-
nates, the planar wave equation (11.137) takes the form

∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)
. (11.153)

We will again consider the homogeneous Dirichlet boundary value problem

u(t, 1, θ) = 0, t ≥ 0, −π ≤ θ ≤ π, (11.154)

along with initial conditions

u(0, r, θ) = f(r, θ),
∂u

∂t
(0, r, θ) = g(r, θ), (11.155)

representing the initial displacement and velocity of the membrane. As always, we build up
the general solution as a quasiperiodic linear combination of the normal modes as specified
by the eigenfunctions for the associated Helmholtz boundary value problem.

As we saw in Section 11.2, the eigenfunctions of the Helmholtz equation on a disk
of radius 1, say, subject to homogeneous Dirichlet boundary conditions, are products of
trigonometric and Bessel functions:

v0,n(r, θ) = J0(ζ0,n r),

vm,n(r, θ) = Jm(ζm,n r) cosmθ,

ṽm,n(r, θ) = Jm(ζm,n r) sinmθ,

m, n = 1, 2, 3, . . . . (11.156)

Here r, θ are the usual polar coordinates, while ζm,n > 0 denotes the nth (positive) root
of the mth order Bessel function Jm(z), cf. (11.118). The corresponding eigenvalue is its
square, λm,n = ζ2m,n, and hence the natural frequencies of vibration are equal to the Bessel
roots scaled by the wave speed:

ωm,n = c
√
λm,n = c ζm,n. (11.157)

A table of their values (for the case c = 1) can be found in the preceding section. The
Bessel roots do not follow any easily discernible pattern, and are not rational multiples
of each other. This result, known as Bourget’s hypothesis , [119; p. 484], was rigorously
proved by the German pure mathematician Carl Ludwig Siegel in 1929, [106]. Thus, the
vibrations of a circular drum are also truly quasiperiodic, thereby providing a mathematical
explanation of why drums sound dissonant.

The frequencies ω0,n = c ζ0,n correspond to simple eigenvalues, with a single radially
symmetric eigenfunction J0(ζ0,n r), while the “angular modes” ωm,n, for m > 0, are double,
each possessing two linearly independent eigenfunctions (11.156). According to the general
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Figure 11.11. Vibrations of a disk.
⊎

11.6 The Planar Wave Equation
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formula (11.142), each eigenfunction engenders two independent normal modes of vibration,
having the explicit forms

cos(c ζ0,n t) J0(ζ0,n r), sin(c ζ0,n t) J0(ζ0,n r),

cos(c ζm,n t) Jm(ζm,n r) cosmθ, sin(c ζm,n t) Jm(ζm,n r) cosmθ,

cos(c ζm,n t) Jm(ζm,n r) sinmθ, sin(c ζm,n t) Jm(ζm,n r) sinmθ.

(11.158)

The general solution to (11.153–154) is then expressed as a Fourier–Bessel series:

u(t, r, θ) =
1

2

∞∑

n=1

[
a0,n cos(c ζ0,n t) + c0,n sin(c ζ0,n t)

]
J0(ζ0,n r)

+
∞∑

m,n=1

[ (
am,n cos(c ζm,n t) + cm,n sin(c ζm,n t)

)
cosmθ

+
(
bm,n cos(c ζm,n t) + dm,n sin(c ζm,n t)

)
sinmθ

]
Jm(ζm,n r),

(11.159)

whose coefficients am,n, bm,n, cm,n, dm,n are determined, as usual, by the initial displace-
ment and velocity of the membrane (11.155). In Figure 11.11, the vibrations due to an
initially off-center concentrated displacement are displayed; the wave speed is c = 1, and the
time interval between successive plots is ∆t = .3. Again, the motion is only quasiperiodic
and, no matter how long you wait, never quite returns to its original configuration.

Exercises

11.6.1. Use your physical intuition to decide whether the following statements are true or false.
Then justify your answer.
(a) Increasing the stiffness of a membrane increases the wave speed.
(b) Increasing the density of a membrane increases the wave speed.
(c) Increasing the size of a membrane increases the wave speed

11.6.2. Two uniform membranes have the same shape, but are made out of different materials.
Assuming that they are both subject to the same homogeneous boundary conditions, how
are their vibrational frequencies related?

11.6.3. List the numerical values of the six lowest vibrational frequencies of a unit square with
wave speed c = 1 when subject to homogeneous Dirichlet boundary conditions. How many
linearly independent normal modes are associated with each of these frequencies?

♥ 11.6.4. The rectangular membrane R = {−1 < x < 1, 0 < y < 1} has its two short sides at-
tached to the (x, y)–plane, while its long sides are left free. The membrane is initially dis-
placed so that its right half is one unit above, while its left half is one unit below the plane,
and then released with zero initial velocity. (This discontinuous initial data serves to model
a very sharp transition region.) Assume that the physical units are chosen so the wave
speed c = 1. (a) Write down an initial-boundary value problem that governs the vibrations
of the membrane. (b) What are the fundamental frequencies of vibration of the membrane?
(c) Find the eigenfunction series solution that describes the subsequent motion of the mem-
brane. (d) Is the motion (i) periodic? (ii) quasiperiodic? (iii) unstable? (iv) chaotic?
Explain your answer.

11.6.5. Determine the solution to the following initial-boundary value problems for the wave
equation on the rectangle R = {0 < x < 2, 0 < y < 1}:

(a)

{
utt = uxx + uyy , u(t, x, 0) = u(t, x, 1) = u(t, 0, y) = u(t, 2, y) = 0,

u(0, x, y) = sin πy, ut(0, x, y) = sinπy;
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(b)

⎧
⎪⎨

⎪⎩
utt = uxx + uyy , u(t, x, 0) = u(t, x, 1) =

∂u
∂x

(t, 0, y) =
∂u
∂x

(t, 2, y) = 0,

u(0, x, y) = sinπy, ut(0, x, y) = sinπy;

(c)

⎧
⎪⎪⎨

⎪⎪⎩

utt = uxx + uyy , u(t, x, 0) = u(t, x, 1) = u(t, 0, y) = u(t, 2, y) = 0,

u(0, x, y) =

{
1, 0 < x < 1,
0, 1 < x < 2,

ut(0, x, y) = 0;

(d)

⎧
⎪⎪⎨

⎪⎪⎩

utt = 2uxx + 2uyy , u(t, x, 0) = u(t, x, 1) = u(t, 0, y) = u(t, 2, y) = 0,

u(0, x, y) = 0, ut(0, x, y) =

{
1, 0 < x < 1,
0, 1 < x < 2.

11.6.6. True or false: The more sides of a rectangle that are tied down, the faster it vibrates.

11.6.7. Answer Exercise 11.6.3 when (a) two adjacent sides of the square are tied down and
the other two are left free; (b) two opposite sides of the square are tied down and the other
two are left free; (c) the membrane is freely floating in outer space.

11.6.8. A square drum has two sides fixed to a support and two sides left free. Does the drum
vibrate faster if the fixed and free sides are adjacent to each other or on opposite sides?

11.6.9. Write down a periodic solution to the wave equation on a unit square, subject to ho-
mogeneous Dirichlet boundary conditions, that is not a normal mode. Does it vibrate at a
fundamental frequency?

11.6.10. A rectangular drum with side lengths 1 cm by 2 cm and unit wave speed c = 1 has its
boundary fixed to the (x, y)–plane while subject to a periodic external forcing of the form
F (t, x, y) = cos(ω t) h(x, y). (a) At which frequencies ω will the forcing incite resonance
in the drum? (b) If ω is a resonant frequency, write down the condition(s) on h(x, y) that
ensure excitation of a resonant mode.

11.6.11. The right half of a rectangle of side lengths 1 by 2 is initially displaced, while the left half is
quiescent.True or false: The ensuing vibrations are restricted to the right half of the membrane.

♥ 11.6.12. A torus (inner tube) can be obtained by gluing together each of the two pairs of op-
posite sides of a rubber rectangle. The (small) vibrations of the torus are described by the
following periodic initial-boundary value problem for the wave equation, in which x, y repre-
sent angular variables:

utt = c2∆u = c2(uxx + uyy), u(0, x, y) = f(x, y), ut(0, x, y) = g(x, y),

u(t,−π, y) = u(t,π, y), ux(t,−π, y) = ux(t,π, y), −π < x < π,
u(t, x,−π) = u(t, x,π), ux(t, x,−π) = ux(t, x,π), −π < y < π.

(a) Find the fundamental frequencies and normal modes of vibration. (b) Write down a
series for the solution. (c) Discuss the stability of a vibrating torus. Is the motion
(i) periodic; (ii) quasiperiodic; (iii) chaotic; (iv) none of these?

11.6.13. The forced wave equation utt = c2∆u + F (x, y) on a bounded domain Ω ⊂ R2

models a membrane subject to a constant external forcing function F (x, y). Write down
an eigenfunction series solution to the forced wave equation when the membrane is subject
to homogeneous Dirichlet boundary conditions and initial conditions u(0, x, y) = f(x, y),
ut(0, x, y) = g(x, y). Hint : Expand the forcing function in an eigenfunction series.

11.6.14. A circular drum of radius ζ0,1 ≈ 2.4048 has initial displacement and velocity

u(0, x, y) = 0,
∂u
∂t

(0, x, y) = 2 J0
(√

x2 + y2
)
.

Assuming that the circular edge of the drum is fixed to the (x, y)–plane, describe, both
qualitatively and quantitatively, its subsequent motion.

11.6.15. Write out the integral formulae for the coefficients in the Fourier–Bessel series solution
(11.159) to the wave equation in a circular disk in terms of the initial data
u(0, r, θ) = f(r, θ), ut(0, r, θ) = g(r, θ).

11.6.16. A circular drum at rest is struck with a concentrated blow at its center. Write down
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an eigenfunction series describing the resulting vibration.

♥ 11.6.17.(a) Set up and solve the initial-boundary value problem for the vibrations of a uniform
circular drum of unit radius that is freely floating in space. (b) Discuss the stability of the
drum’s motion. (c) Are the vibrations slower or faster than when its edges are fixed to a
plane?

11.6.18. A flat quarter-disk of radius 1 has its circular edge and one of its straight edges at-
tached to the (x, y)–plane, while the other straight edge is left free. At time t = 0 the disk
is struck with a hammer (unit delta function) at its midpoint, i.e., at radius 1

2 and halfway
between the straight edges. (a) Write down an initial-boundary value problem for the sub-
sequent vibrations of the quarter-disk. Hint : Be careful with the form of the delta function
in polar coordinates; see Exercise 6.3.6. (b) Assuming that the physical units are chosen so
that the wave speed c = 1, determine the quarter-disk’s vibrational frequencies. (c) Write
down an eigenfunction series solution for the subsequent motion. (d) Is the motion unsta-
ble? periodic? If so, what is the period?

11.6.19. True or false: Assuming homogeneous Dirichlet boundary conditions, the fundamen-
tal frequencies of a vibrating half-disk are exactly twice those of the full disk of the same
radius.

♥ 11.6.20. The edge of a circular drum is moved periodically up and down, so u(t, 1, θ) = cosω t.
Assuming that the drum is initially at rest, discuss its response.

♣ 11.6.21. A drum is in the shape of a circular annulus with outer radius 1 meter and inner ra-
dius .5 meter. Find numerical values for its first three fundamental vibrational frequencies.

♥ 11.6.22. A homogeneous rope of length 1 and weight 1 is suspended from the ceiling. Taking x
as the vertical coordinate, with x = 1 representing the fixed end and x = 0 the free end, the
planar displacement u(t, x) of the rope satisfies the initial-boundary value problem

∂2u
∂t2

=
∂
∂x

(

x
∂u
∂x

)

,
|u(t, 0) | <∞, u(t, 1) = 0,

u(0, x) = f(x),
∂u
∂t

(0, x) = g(x),
t > 0, 0 < x < 1.

(a) Find the solution. Hint : Let y =
√
x . (b) Are the vibrations periodic or quasiperi-

odic? (c) Describe the behavior of the rope when subject to uniform periodic external forc-
ing

F (t, x) = a cosω t.

Scaling and Symmetry

Symmetry methods can also be effectively employed in the analysis of the wave equation.
Let us consider the simultaneous rescaling

t 7−→ α t, x 7−→ β x, y 7−→ β y, (11.160)

of time and space, whose effect is to change the function u(t, x, y) into a rescaled version

U (t, x, y) = u(α t, β x, β y). (11.161)

The chain rule is employed to relate their derivatives:

∂2U

∂t2
= α2 ∂2u

∂t2
,

∂2U

∂x2
= β2 ∂2u

∂x2
,

∂2U

∂y2
= β2 ∂2u

∂y2
.

Therefore, if u satisfies the wave equation

utt = c2∆u,
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then U satisfies the rescaled wave equation

Utt =
α2 c2

β2
∆U = C2 ∆U, where the rescaled wave speed is C =

α c

β
. (11.162)

In particular, rescaling only time by setting α = 1/c, β = 1, results in a unit wave speed
C = 1. In other words, we are free to choose our unit of time measurement so as to fix the
wave speed equal to 1.

If we set α = β, scaling time and space in the same proportion, then the wave speed
does not change, C = c, and so

t 7−→ β t, x 7−→ β x, y 7−→ β y, (11.163)

defines a symmetry transformation for the wave equation: If u(t, x, y) is any solution to
the wave equation, then so is its rescaled version

U (t, x, y) = u(β t, βx, β y) (11.164)

for any choice of scale parameter β ̸= 0. Observe that if u(t, x, y) is defined on a domain
Ω, then the rescaled solution U (t, x, y) will be defined on the rescaled domain

Ω̃ =
1

β
Ω =

{ (
x

β
,
y

β

) ∣∣∣∣ (x, y) ∈ Ω

}
= { (x, y) | (βx, β y) ∈ Ω } . (11.165)

For instance, setting the scaling parameter β = 2 halves the size of the domain. The
normal modes for the rescaled domain have the form

Un(t, x, y) = un(β t, βx, β y) = cos(β ωn t) vn(βx, β y),

Ũn(t, x, y) = ũn(β t, βx, β y) = sin(β ωn t) vn(βx, β y),

and hence the rescaled vibrational frequencies are Ωn = β ωn. Thus, when β < 1, the
rescaled membrane is larger by a factor 1/β, and its vibrations are slowed down by the
reciprocal factor β. For instance, a drum that is twice as large will vibrate twice as slowly,
and hence have an octave lower overall tone. Musically, this means that all drums of a
similar shape have the same pattern of overtones, differing only in their overall pitch, which
is a function of their size, tautness, and density.

In particular, choosing β = 1/R will rescale the unit disk into a disk of radius R. The
fundamental frequencies of the rescaled disk are

Ωm,n = β ωm,n =
c

R
ζm,n, (11.166)

where c is the wave speed and ζm,n are the Bessel roots, defined in (11.118). Observe that
the ratios ωm,n/ωm′,n′ between vibrational frequencies remain the same, independent of
the size of the disk R and the wave speed c. We define the relative vibrational frequencies

ρm,n =
ωm,n

ω0,1

=
ζm,n

ζ0,1
, in proportion to ω0,1 =

c ζ0,1
R

≈ 2.4
c

R
, (11.167)

which is the drum’s dominant, or lowest, vibrational frequency. The relative frequencies
ρm,n are independent of the size, stiffness or composition of the drum membrane. In the
following table, we display a list of all relative vibrational frequencies (11.167) that are < 6.
Once the lowest frequency ω0,1 has been determined — either theoretically, numerically,
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or experimentally — all the higher overtones ωm,n = ρm,n ω0,1 are simply obtained by
rescaling.

Relative Vibrational Frequencies of a Circular Disk

n

∖
m 0 1 2 3 4 5 6 7 8 9 . . .

1 1.000 1.593 2.136 2.653 3.155 3.647 4.132 4.610 5.084 5.553 . . .

2 2.295 2.917 3.500 4.059 4.601 5.131 5.651
...

...
...

3 3.598 4.230 4.832 5.412 5.977
...

...

4 4.903 5.540
...

...
...

...
...

...

Exercises

11.6.23. True or false: Two rectangular membranes, made out of the same material and both
subject to Dirichlet boundary conditions, have the same relative vibrational frequencies if
and only if they are have similar shapes.

11.6.24. True or false: (a) The vibrational frequencies of a square with side lengths a = b = 2
are four times as slow as those of a square with side lengths a = b = 1.
(b) The vibrational frequencies of a rectangle with side lengths a = 2, b = 1, are twice as
slow as those of a square with side lengths a = b = 1.

11.6.25. A vibrating rectangle of unknown size has wave speed c = 1 and is subject to homoge-
neous Dirichlet boundary conditions. How many of its lowest vibrational frequencies do you
need to know in order to determine the size of the rectangle?

11.6.26. Answer Exercise 11.6.25 when the rectangle is subject to homogeneous Neumann bound-
ary conditions.

♣ 11.6.27. A circular drum has the A above middle C, which has a frequency of 440 Hertz, as its
lowest tone. What notes are the first five overtones nearest? Try playing these on a piano
or guitar. Or, if you have a synthesizer, try assembling notes of these frequencies to see how
closely it reproduces the dissonant sound of a drum.

11.6.28. In an orchestra, a circular snare drum of radius 1 foot sits near a second circular drum
made out of the same material. Vibrations of the first drum are observed to excite an unde-
sired resonant vibration in its partner. What are the possible radii of the second drum?

11.6.29. True or false: The relative vibrational frequencies of a half-disk, subject to Dirichlet
boundary conditions, are a subset of the relative vibrational frequencies of a full disk.

11.6.30. True or false: If u(t, x, y) = cos(ω t) v(x, y) is a normal mode of vibration for a unit
square subject to homogeneous Dirichlet boundary conditions, then the function û(t, x, y) =
cos(ω t) v

(
1
2 x,

1
3 y

)
is a normal mode of vibration for a 2× 3 rectangle that is subject to the

same boundary conditions, but with a possibly different wave speed. If true, how are the
wave speeds of the two rectangles related?

11.6.31. Prove that if u(t, x, y) is a solution to the two-dimensional wave equation, so is the
translated function U(t, x, y) = u(t − t0, x− x0, y − y0), for any constants t0, x0, y0.
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♦ 11.6.32.(a) Prove that if u(t, x, y) solves the wave equation, so does U(t, x, y) = u(− t, x, y).
Thus, unlike the heat equation, the wave equation is time-reversible, and its solutions can
be unambiguously followed backwards in time. (b) Suppose u(t, x, y) solves the initial value
problem (11.141). Write down the initial value problem satisfied by U(t, x, y).

11.6.33.(a) Prove that, on R2, the solution to the pure displacement initial value problem

utt = c2∆u, u(0, x, y) = f(x, y), ut(0, x, y) = 0, is an even function of t.

(b) Prove that the solution to the pure velocity initial value problem utt = c2∆u,
u(0, x, y) = 0, ut(0, x, y) = g(x, y), is an odd function of t. Hint : Use Exercise 11.6.32
and uniqueness of solutions to the initial value problem.

11.6.34. Suppose v(t, x) is any solution to the one-dimensional wave equation vtt = vxx. Prove
that u(t, x, y) = v(t, ax + by), for any constants (a, b) ̸= (0, 0), solves the two-dimensional
wave equation utt = c2(uxx + uyy) for some choice of wave speed. Describe the behavior of
such solutions.

11.6.35. A traveling-wave solution to the two-dimensional wave equation has the form
u(t, x, y) = v(x − at, y − at), where a is a constant. Find the partial differential equation
satisfied by the function v(ξ, η). Is the equation hyperbolic?

11.6.36. Is the counterpart of Lemma 11.11 valid for the wave equation? In other words, if
v(t, x) and w(t, x) are any two solutions to the one-dimensional wave equation, is their prod-
uct u(t, x, y) = v(t, x)w(t, y) a solution to the two-dimensional wave equation?

11.6.37.(a) How would you solve an initial-boundary value problem for the wave equation on a
rectangle that is not aligned with the coordinate axes? (b) Apply your method to set up
and solve an initial-boundary value problem on the square R = {|x+ y | < 1, |x− y | < 1}.

Chladni Figures and Nodal Curves

When a membrane vibrates, its individual atoms typically move up and down in a quasiperi-
odic manner. As such, there is little correlation between their motions at different locations.
However, if the membrane is set to vibrate in a pure eigenmode, say

un(t, x, y) = cos(ωn t) vn(x, y), (11.168)

then all points move up and down at a common frequency ωn =
√

λn , which is the square
root of the eigenvalue corresponding to the eigenfunction vn(x, y). The exceptions are the
points where the eigenfunction vanishes:

vn(x, y) = 0, (11.169)

which remain stationary. The set of all points (x, y) ∈ Ω that satisfy (11.169) is known as
the nth Chladni figure of the domain Ω, named in honor of the eighteenth-century German
physicist and musician Ernst Chladni who first observed them experimentally by exciting a
metal plate with his violin bow, [43]. The mathematical models governing such vibrating
plates were formulated by the French mathematician Sophie Germain in the early 1800s.
It can be shown that, in general, each Chladni figure consists of a finite system of nodal
curves , [34, 43], that partition the membrane into disjoint nodal regions . As the membrane
vibrates, the nodal curves remain stationary, while each nodal region is entirely either
above or below the equilibrium plane, except, momentarily, when the entire membrane
has zero displacement. As Chladni discovered in his original experiments, scattering small
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1.000 1.593 2.136

2.295 2.653 2.917

3.155 3.500 3.598

Figure 11.12. Nodal curves and relative vibrational
frequencies of a circular membrane.

particles (e.g., fine sand) over a membrane or plate vibrating in an eigenmode will enable
us to visualize the Chladni figure, because the particles will tend to accumulate along the
stationary nodal curves. Adjacent nodal regions, lying on the opposite sides of a nodal
curve, move in opposing directions — when one is up, its neighbors are down, and then
they switch roles as the membrane becomes momentarily flat. Let us look at a couple of
examples where the Chladni figures can be readily determined.
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Example 11.15. Circular Drums . Since the eigenfunctions (11.156) for a disk are
products of trigonometric functions in the angular variable and Bessel functions of the
radius, the nodal curves for the normal modes of vibrations of a circular membrane are
rays emanating from and circles centered at the origin. Consequently, the nodal regions
are annular sectors. Chladni figures associated with the first nine normal modes, indexed
by their relative frequencies, are plotted in Figure 11.12. Representative displacements of
the membrane in each of the first twelve modes can be found earlier, in Figure 11.6. The
dominant (lowest frequency) mode is the only one that has no nodal curves; it has the
form of a radially symmetric bump where the entire membrane flexes up and down. The
next lowest modes vibrate proportionally faster at a relative frequency ρ1,1 ≈ 1.593. The
most general solution with this vibrational frequency is a linear combination of the two
eigensolutions: αu1,1 + β ũ1,1. Each such combination has a single diameter as a nodal
curve, whose angle with the horizontal depends on the ratio β/α. The two semicircular
halves of the drum vibrate in opposing directions — when the top half is up, the bottom
half is down and vice versa. The next set of modes have two perpendicular diameters as
nodal curves; the four quadrants of the drum vibrate in tandem, with opposite quadrants
moving in the same direction. Next in increasing order of vibrational frequency is a single
mode, which has a circular nodal curve whose (relative) radius equals the ratio of the
first two roots of the order zero Bessel function, ζ0,2/ζ0,1 ≈ .43565; see Exercise 11.6.39
for a justification. In this case, the inner disk and the outer annulus vibrate in opposing
directions. And so on . . . .

Example 11.16. Rectangular Drums . For most rectangular drums, the Chladni fig-
ures are relatively uninteresting. Since the normal modes (11.151) are separable products
of trigonometric functions in the coordinate variables x, y, the nodal curves are equally
spaced straight lines parallel to the sides of the rectangle. The internodal regions are
smaller rectangles, of identical size and shape, with adjacent rectangles vibrating in oppo-
site directions.

More interesting figures appear when the rectangle admits multiple eigenvalues — so-
called accidental degeneracies . Note that two of the eigenvalues (11.149) coincide, λm,n =
λk,l, if and only if

m2

a2
+

n2

b2
=

k2

a2
+

l2

b2
, (11.170)

where (m,n) ̸= (k, l) are distinct pairs of positive integers. In such situations, the two
eigenmodes happen to vibrate with a common frequency ω = ωm,n = ωk,l. Consequently,
any linear combination of the eigenmodes, e.g.,

cos(ω t)

(
α sin

mπx

a
sin

nπy

b
+ β sin

kπx

a
sin

lπy

b

)
, α, β ∈ R,

is also a pure vibration, and hence qualifies as a normal mode. The associated nodal curves,

α sin
mπx

a
sin

nπy

b
+ β sin

kπx

a
sin

lπy

b
= 0,

0 ≤ x ≤ a,

0 ≤ y ≤ b,
(11.171)

have a more intriguing geometry, which can change dramatically as the coefficients α, β
vary.

For example, on the unit square R =
{
0 < x, y < 1

}
, an accidental degeneracy occurs

whenever
m2 + n2 = k2 + l2 (11.172)
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Figure 11.13. Some Chladni figures for a square membrane.

for distinct pairs of positive integers (m,n) ̸= (k, l). The simplest possibility arises when-
ever m ̸= n, in which case we can merely reverse the order, setting k = n, l = m. In
Figure 11.13 we plot three sample nodal curves

α sin 4πx sin πy + sin πx sin 4πy = 0,

corresponding to three different linear combinations of the eigenfunctions with m = l = 4,
n = k = 1. The associated vibrational frequency is, in all cases, ω4,1 = c

√
17 π, where c is

the wave speed.
Classifying accidental degeneracies of rectangles takes us into the realm of number

theory, [9, 29]. In the case of a square, equation (11.172) is asking us to locate all integer
points (m,n) ∈ Z2 that lie on a common circle.

Remark : Bourget’s hypothesis, mentioned after (11.157), implies that ζm,n ̸= ζk,l
whenever (m,n) ̸= (k, l). This implies that a disk has no accidental degeneracies, and
hence all its nodal curves are concentric circles and diameters.

Exercises

♦ 11.6.38. Suppose that a membrane is vibrating in a normal mode. Prove that the membrane
lies instantaneously completely flat at regular time intervals.

♦ 11.6.39. For a vibrating disk of unit radius, determine the radius of the circular nodal curve for
the next-to-lowest circular mode.

11.6.40. Order the five nodal circles displayed in Figure 11.12 according to their size.

11.6.41. Sketch the Chladni figures in a unit disk corresponding to the following vibrational
frequencies. Determine numerical values for the radii of any circular nodal curves.

(a) ω4,0, (b) ω4,2, (c) ω2,4, (d) ω3,3, (e) ω1,5.

11.6.42. True or false: Any diameter of a circular disk is a nodal curve for some normal mode.

11.6.43. True or false: The nodal curves on a semicircular disk are all semicircles and rays em-
anating from the center.

α = β = 1 α = 2, β = 1 α = 5, β = 1
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11.6.44.(a) Find the smallest distinct pair of positive integers (k, l) ̸= (m,n) satisfying (11.172)
that are not obtained by simply reversing the order, i.e., (k, l) ̸= (n,m). (b) Find the
next-smallest example. (c) Plot two or three Chladni figures arising from such degenerate
eigenfunctions.

♥ 11.6.45. Let R be a rectangle all of whose sides are fixed to the (x, y)–plane. Suppose that all
its nodal curves are straight lines. What can you say about its side lengths a, b?

11.6.46. True or false: The nodal regions of a vibrating rectangle are similarly shaped rectan-
gles.

♦ 11.6.47. Prove that any point of intersection (x0, y0) of two nodal curves associated with the
same normal mode is a critical point of the associated eigenfunction: ∇v(x0, y0) = 0.

11.6.48. True or false: The nodal curves on a domain do not depend on the choice of boundary
conditions.



Chapter 12

Partial Differential Equations in Space

At last we have ascended to the ultimate rung of the dimensional ladder (at least for those
of us living in a three-dimensional universe): partial differential equations in physical space.
As in the one- and two-dimensional settings developed in the preceding chapters, the main
protagonists are the Laplace and Poisson equations, modeling equilibrium configurations of
solid bodies; the three-dimensional wave equation, governing vibrations of solids, liquids,
and electromagnetic waves; and the three-dimensional heat equation, modeling spatial
diffusion processes. To conclude this chapter — and the book — we will also analyze the
particular three-dimensional Schrödinger equation that governs the hydrogen atom, and
thereby characterizes atomic orbitals.

Fortunately, almost everything of importance has already appeared in the previous
chapters, and appending a third dimension is, for the most part, simply a matter of ap-
propriately adapting the constructions. We have already developed the principal solu-
tion techniques: separation of variables, Green’s functions, and fundamental solutions. In
three-dimensional problems, separation of variables is applicable in a variety of coordinate
systems, including the usual rectangular, cylindrical, and spherical coordinates. The first
two do not lead to anything fundamentally new, and are therefore relegated to the exer-
cises. Separation in spherical coordinates requires spherical Bessel functions and spherical
harmonics, which play essential roles in a wide variety of physical systems, both classical
and quantum.

The Green’s function for the three-dimensional Poisson equation in space can be iden-
tified as the classic Newton (Coulomb) 1/r gravitational (electrostatic) potential. The
fundamental solution for the three-dimensional heat equation can be easily guessed from
its one- and two-dimensional forms. The three-dimensional wave equation, surprisingly,
has an explicit solution formula, named after Kirchhoff, of electrical fame, but originally
due to Poisson. Counterintuitively, the best way to handle the two-dimensional wave equa-
tion is by “descending” from the simpler(!) three-dimensional Kirchhoff formula. Descent
reveals a remarkable difference between waves in planar and spatial media. Huygens’ Prin-
ciple states that three-dimensional waves emanating from a localized initial disturbance
remain localized as they propagate through space. In contrast, initially concentrated two-
dimensional disturbances leave a slowly decaying remnant that never entirely disappears.

The final section is concerned with the Schrödinger equation for a hydrogen atom,
that is, the quantum-dynamical system governing the spatial motion of a single electron
around a positively charged nucleus. As we will see, the spherical harmonic eigensolutions
account for the observed quantum energy levels of atoms that underly the periodic table
and hence the foundations of molecular chemistry.
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12.1 The Three–Dimensional Laplace and Poisson Equations

We begin our investigations, as usual, with systems in equilibrium, deferring dynamics
until later. The prototypical equilibrium system is the three-dimensional Laplace equation

∆u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0, (12.1)

in which x = ( x, y, z )T represents rectangular coordinates on R3. The solutions u(x, y, z)
continue to be known as harmonic functions. The Laplace equation models unforced
equilibria; Poisson’s equation is the inhomogeneous version

−∆u = f(x, y, z), (12.2)

whose right-hand side represents some form of external forcing.
The basic boundary value problem for the Laplace and Poisson equations seeks a

solution inside a bounded domain Ω ⊂ R3 subject to either Dirichlet boundary conditions,
prescribing the function values on the domain’s boundary:

u = h on ∂Ω, (12.3)

or Neumann boundary conditions , prescribing its normal derivative or flux through the
boundary:

∂u

∂n
= k on ∂Ω, (12.4)

or mixed boundary conditions, in which one imposes Dirichlet conditions on part of the
boundary and Neumann conditions on the remainder. Keep in mind that the boundary of
the solid domain Ω consists of one or more piecewise smooth closed surfaces, which will be
oriented by use of the outward — meaning exterior to the domain — unit normal n.

The boundary value problems for the three-dimensional Laplace and Poisson equations
govern a wide variety of physical systems, including:

• Heat conduction: The solution u represents the equilibrium temperature in a solid
body. The inhomogeneity f represents some form of internal heat source or sink.
Dirichlet conditions correspond to fixing the temperature on the bounding sur-
face(s), whereas homogeneous Neumann conditions correspond to an insulated
boundary, i.e., one that does not allow any heat flux.

• Ideal fluid flow : Here the solution u to the Laplace equation represents the velocity po-
tential for an incompressible, irrotational steady-state fluid flow inside a container
governed by the velocity vector field v = ∇u. Homogeneous Neumann boundary
conditions correspond to a solid boundary that the fluid cannot penetrate.

• Elasticity : In certain restricted contexts, u represents an equilibrium deformation of
a solid body, e.g., the radial deformation of an elastic ball.

• Electrostatics : In applications to electromagnetism, u is the electric potential in a
conducting medium; its gradient∇u prescribes the electromotive force on a charged
particle. The inhomogeneity f represents an external electrostatic force field.

• Gravitation: The Newtonian gravitational potential in flat empty space is also pre-
scribed by the Laplace equation. (In contrast, Einstein’s theory of general rela-
tivity requires a vastly more complicated nonlinear system of partial differential
equations, [75].)
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Self–Adjoint Formulation and Minimum Principle

The Laplace and Poisson equations naturally fit into the general self-adjoint equilibrium
framework summarized in Chapter 9. We introduce the L2 inner products

⟨ u , ũ ⟩ =
∫ ∫ ∫

Ω
u(x, y, z) ũ(x, y, z)dx dy dz,

⟨v , ṽ ⟩ =
∫ ∫ ∫

Ω
v(x, y, z) · ṽ(x, y, z)dx dy dz,

(12.5)

between, respectively, scalar fields u, ũ, and vector fields v, ṽ, which are defined on the
domain Ω ⊂ R3. We assume that the functions in question are sufficiently nice in order
that these inner products be well defined; if Ω is unbounded, this, in essence, requires that
they decay reasonably rapidly to zero at large distances.

When subject to suitable homogeneous boundary conditions, the three-dimensional
Laplace equation can be placed in our standard self-adjoint form

−∆u = −∇ ·∇u = ∇∗ ◦∇u. (12.6)

This relies on the fact that the adjoint of the gradient operator with respect to the L2 inner
products (12.5) is minus the divergence operator:

∇∗v = −∇ · v. (12.7)

As usual, the determination of the adjoint rests on an integration by parts formula, which,
in three-dimensional space, is a consequence of the Divergence Theorem from multivariable
calculus, [8, 108]:

Theorem 12.1. Let Ω ⊂ R3 be a bounded domain whose boundary ∂Ω consists
of one or more piecewise smooth simple closed surfaces. Let n denote the unit outward
normal to the boundary of Ω. Let v be a C1 vector field defined on Ω and continuous
up to its boundary. Then the surface integral, with respect to surface area, of the normal
component of v over the boundary of the domain equals the triple integral of its divergence
over the domain: ∫ ∫

∂Ω
v · n dS =

∫ ∫ ∫

Ω
∇ · v dx dy dz. (12.8)

Replacing v by the product uv of a scalar field u and a vector field v yields
∫ ∫ ∫

Ω
(u∇ · v +∇u · v) dx dy dz =

∫ ∫ ∫

Ω
∇ · (uv) dx dy dz =

∫ ∫

∂Ω
u (v · n) dS. (12.9)

Rearranging the terms produces the desired integration by parts formula for triple integrals:
∫ ∫ ∫

Ω
(∇u · v) dx dy dz =

∫ ∫

∂Ω
u (v · n) dS −

∫ ∫ ∫

Ω
u (∇ · v) dx dy dz. (12.10)

The boundary surface integral will vanish, provided either u = 0 or v ·n = 0 at each point
on ∂Ω. When u = 0 on all of ∂Ω, we have homogeneous Dirichlet conditions. Setting
v ·n = 0 everywhere on ∂Ω results in the homogeneous Neumann boundary value problem
owing to the identification of v = ∇u. Finally, the mixed boundary value problem takes
u = 0 on part of ∂Ω and v · n = 0 on the rest. Thus, subject to one of these choices, the
integration by parts formula (12.10) reduces to

⟨∇u ,v ⟩ = ⟨ u ,−∇ · v ⟩, (12.11)

which suffices to establish the adjoint formula (12.7).
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Remark : Adopting more general weighted inner products results in a more general
elliptic boundary value problem. See Exercise 12.1.9 for details.

According to Theorem 9.20, the self-adjoint formulation (12.6) automatically implies
positive semi-definiteness of the boundary value problem, with positive definiteness if
ker∇ = {0}. Since, on a connected domain, only constant functions are annihilated by
the gradient operator — see Lemma 6.16, which also applies to three-dimensional domains
— both the Dirichlet and mixed boundary value problems are positive definite, while the
Neumann boundary value problem is only positive semi-definite.

Finally, in the positive definite cases, Theorem 9.26 implies that the solution can
be characterized by the three-dimensional version of the Dirichlet minimization principle
(9.82).

Theorem 12.2. The solution u(x, y, z) to the Poisson equation (12.2) subject to
homogeneous Dirichlet or mixed boundary conditions (12.3) is the unique function that
minimizes the Dirichlet integral

1
2 |∥∇u ∥|2 − ⟨ u , f ⟩ =

∫ ∫ ∫

Ω

[
1
2 (u

2
x + u2

y + u2
z)− f u

]
dx dy dz (12.12)

among all C2 functions that satisfy the prescribed boundary conditions.

As in the two-dimensional version discussed in Chapter 9, the Dirichlet minimization
principle continues to hold in the case of the inhomogeneous Dirichlet boundary value
problem. Modifications for the inhomogeneous mixed boundary value problem appear in
Exercise 12.1.13.

Exercises

12.1.1. Find bases for the following: (a) the space of harmonic polynomials u(x, y, z) of degree
≤ 2; (b) the space of homogeneous cubic harmonic polynomials u(x, y, z).

12.1.2. True or false: (a) Every harmonic polynomial is homogeneous.
(b) Every homogeneous polynomial is harmonic.

12.1.3. Solve the Poisson boundary value problem −∆u = 1 on the unit ball x2 + y2 + z2 < 1
with homogeneous Dirichlet boundary conditions. Hint : Look for a polynomial solution.

♦ 12.1.4. Prove that if u(x, y, z) solves the Laplace equation, then so does the translated function
U(x, y, z) = u(x − a, y − b, z − c) for constants a, b, c.

♦ 12.1.5.(a) Prove that if u(x, y, z) solves Laplace’s equation, so does the rescaled function
U(x, y, z) = u(λx, λy,λz) for any constant λ. (b) More generally, show that
U(x, y, z) = µu(λx,λy,λz) + c solves Laplace’s equation for any constants λ, µ, c.

♦ 12.1.6. Let A be a constant nonsingular 3 × 3 matrix, u(x) a C1 scalar field, and v(x) a C1

vector field. Set U(x) = u(Ax) and V(x) = v(Ax). Prove that
(a) ∇U(x) = AT∇u(Ax), (b) ∇ ·V(x) = w(Ax), where w(x) = ∇ · (Av)(x).

♦ 12.1.7. Prove that every rotation and reflection is a symmetry of the Laplace equation. In
other words, if Q is any 3 × 3 orthogonal matrix, so QTQ = I , and u(x) is a harmonic
function, then so is U(x) = u(Qx). Hint : Use Exercise 12.1.6.
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♦ 12.1.8. The Weak Maximum Principle: Let Ω ⊂ R2 be a bounded domain. Let u(x, y, z) solve
the Poisson equation −∆u = f(x, y, z), where f(x, y, z) < 0 for all (x, y, z) ∈ Ω.
(a) Prove that the maximum value of u occurs on the boundary ∂Ω.

Hint : Explain why u cannot have a local maximum at any interior point in Ω.
(b) Generalize your result to the case f(x, y, z) ≤ 0.

Hint : Look at vε(x, y, z) = u(x, y, z) + ε (x2 + y2 + z2) and let ε→ 0+.

♦ 12.1.9. Find the equilibrium equations corresponding to minimizing |∥∇u ∥|2 subject to homo-
geneous Dirichlet boundary conditions, where the indicated norm is based on the weighted
inner product

⟨⟨v ,w ⟩⟩ =
∫∫∫

Ω
v(x, y, z) ·w(x, y, z)σ(x, y, z) dx dy dz,

with σ(x, y, z) > 0 a positive scalar function.

♦ 12.1.10. Prove the following vector calculus identities:
(a) ∇ · (uv) = ∇u · v + u∇ · v, (b) ∇× (uv) = ∇u× v + u∇× v,
(c) ∇ · (v ×w) = (∇× v) ·w − v · (∇×w), (d) ∇× (∇× v) = ∇(∇ · v)−∆v.

(In the final term, the Laplacian ∆ acts component-wise on the vector field v.)

♦ 12.1.11. Let Ω be a bounded domain with piecewise smooth boundary ∂Ω. Prove the following

identities: (a)
∫∫∫

Ω
∆u dxdy dz =

∫∫

∂Ω

∂u
∂n

dS,

(b)
∫∫∫

Ω
u∆u dx dy dz =

∫∫

∂Ω
u
∂u
∂n

dS −
∫∫∫

Ω
|∥∇u ∥|2 dx dy dz.

12.1.12. Suppose the inhomogeneous Neumann boundary value problem (12.1, 4) has a solu-

tion. (a) Prove that
∫∫

∂Ω
k dS = 0. (b) Is the solution unique? If not, what is the most

general solution? (c) State and prove an analogous result for the inhomogeneous Poisson
equation −∆u = f(x, y, z). (d) Provide a physical explanation for your answers.

♦ 12.1.13. Find a minimization principle that characterizes the solution to the inhomogeneous
mixed boundary value problem −∆u = f on Ω, with u = g on D ! ∂Ω, and ∂u/∂n = h on
N = ∂Ω \D.

♥ 12.1.14.(a) Prove that, subject to suitable boundary conditions, the curl ∇× defines a self-
adjoint operator with respect to the L2 inner product between vector fields. What kinds
of boundary conditions do you need to impose for your integration by parts argument to be
valid? Hint : Use the identity in Exercise 12.1.10(c). (b) What operator on vector fields is
given by the self-adjoint composition S = (∇×)∗ ◦ (∇×)? (c) Choose a set of homoge-
neous boundary conditions that make S self-adjoint. Is the resulting boundary value prob-
lem S[v ] = f positive definite? If not, what does the Fredholm Alternative say about its
solvability?

12.2 Separation of Variables for the Laplace Equation

In this section, we revisit the method of separation of variables in the context of the three-
dimensional Laplace equation. As always, its applicability is unfortunately restricted to
rather special, but important, geometric configurations, the simplest being rectangular,
cylindrical, and spherical domains. Since the first two are straightforward extensions of
their two-dimensional counterparts, we will discuss only spherically separable solutions in
any detail.

The simplest domain to which the separation of variables method applies is a rectan-
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gular box:
B = {0 < x < a, 0 < y < b, 0 < z < c}.

For functions of three variables, one begins the separation process by splitting off one of
them, by setting u(x, y, z) = v(x)w(y, z), say. The function v(x) satisfies a simple second-
order ordinary differential equation, while w(y, z) solves the two-dimensional Helmholtz
equation (11.21), which is further separated by writing w(y, z) = p(y) q(z). The resulting
fully separated solutions u(x, y, z) = v(x) p(y) q(z) are (mostly) products of trigonometric
and hyperbolic functions. Implementation of the technique and analysis of the resulting
series solutions are relegated to Exercise 12.2.34.

In the case that the domain is a cylinder, one passes to cylindrical coordinates r, θ, z,
where

x = r cos θ, y = r sin θ, z = z, (12.13)

to effect the separation. Writing u(r, θ, z) = v(r, θ)w(z), one finds that w(z) satisfies a
simple second-order ordinary differential equation, while v(r, θ) solves the two-dimensional
polar Helmholtz equation (11.51) on a disk. Applying a further separation to v(r, θ), as
in Chapter 11, produces fully separable solutions u(r, θ, z) = p(r) q(θ)w(z) as products of
Bessel functions of the cylindrical radius r, trigonometric functions of the polar angle θ,
and hyperbolic functions of z; see Exercise 12.2.40.

The most interesting case is that of spherical coordinates, which we proceed to analyze
in detail in the following subsection.

Remark : These are just three of the many coordinate systems in which the three-
dimensional Laplace equation separates. See [78, 79] for 37 additional exotic types, in-
cluding ellipsoidal, toroidal, and parabolic spheroidal coordinates. The resulting separable
solutions are written in terms of new classes of special functions that solve interesting
second-order ordinary differential equations, all of Sturm–Liouville form (9.71).

Laplace’s Equation in a Ball

Suppose a solid ball (e.g., the Earth) is subject to a specified steady temperature distri-
bution on its spherical boundary. Our task is to determine the equilibrium temperature
within the ball. We assume that the body is composed of an isotropic, uniform medium
and, to slightly simplify the analysis, choose units in which its radius equals 1.

To find the equilibrium temperature within the ball, we must solve the Dirichlet bound-
ary value problem

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0, x2 + y2 + z2 < 1,

u(x, y, z) = h(x, y, z), x2 + y2 + z2 = 1,

(12.14)

where h is prescribed on the bounding unit sphere. Problems in spherical geometries are
most naturally analyzed in spherical coordinates r,ϕ, θ. Our convention is to set

x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cosϕ, (12.15)

where −π < θ ≤ π is the azimuthal angle or longitude, while 0 ≤ ϕ ≤ π is the zenith

angle or latitude on the sphere of radius r =
√

x2 + y2 + z2 . In other words, ϕ measures
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x

y

z

r

ϕ

θ

(x, y, z)

(x, y, 0)

Figure 12.1. Spherical coordinates.

the angle between the vector (x, y, z )T and the positive z–axis, while θ measures the

angle between its projection (x, y, 0 )T on the (x, y)–plane and the positive x–axis; see
Figure 12.1. On Earth, longitude θ is measured from the Greenwich prime meridian, while
latitude is measured from the equator, and so equals 1

2 π−ϕ (although the everyday units
are degrees, not radians).

Warning : In many books, particularly those in physics, the roles of θ and ϕ are re-
versed , leading to much confusion when one is perusing the literature. We prefer the
mathematical convention, since the azimuthal angle θ coincides with the cylindrical angle
coordinate (and the polar coordinate on the (x, y)–plane), thus avoiding unnecessary con-
fusion when going from one coordinate system to the other. You must be attentive to the
convention being used when consulting any reference!

In spherical coordinates, the Laplace equation for u(r,ϕ, θ) takes the form

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂ϕ2
+

cosϕ

r2 sinϕ

∂u

∂ϕ
+

1

r2 sin2 ϕ

∂2u

∂θ2
= 0. (12.16)

This important formula is the final result of a fairly nasty chain rule computation, whose
details are left to the motivated reader. (Set aside lots of paper and keep an eraser handy!)

To construct separable solutions to the spherical coordinate form (12.16) of the Laplace
equation, we begin by separating off the radial part of the solution, setting

u(r,ϕ, θ) = v(r)w(ϕ, θ). (12.17)

Substituting this ansatz into (12.16), multiplying the resulting equation through by r2

vw ,
and then placing all the terms involving r on one side yields

1

v

(
r2

d2v

dr2
+ 2r

dv

dr

)
= −

1

w
∆S [w ], (12.18)

where

∆S[w ] =
∂2w

∂ϕ2
+

cosϕ

sinϕ

∂w

∂ϕ
+

1

sin2 ϕ

∂2w

∂θ2
. (12.19)
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The second-order differential operator ∆S, which involves only the angular components
of the full Laplacian operator ∆, is of particular significance. It is known as the spher-
ical Laplacian, and governs the equilibrium and dynamics of thin spherical shells — see
Example 12.15 below.

Returning to equation (12.18), our usual separation argument applies. The left-hand
side depends only on r, while the right-hand side depends only on the angles ϕ, θ. This can
occur only when both sides are equal to a common separation constant, which we denote by
µ. As a consequence, the radial component v(r) satisfies the ordinary differential equation

r2 v′′ + 2rv′ − µv = 0, (12.20)

which is of Euler type (11.89), and hence can be readily solved. However, let us put this
equation aside for the time being, and concentrate our efforts on the more complicated
angular components.

The second equation in (12.18) assumes the form

∆S[w ] + µw =
∂2w

∂ϕ2
+

cosϕ

sinϕ

∂w

∂ϕ
+

1

sin2 ϕ

∂2w

∂θ2
+ µw = 0. (12.21)

This second-order partial differential equation can be regarded as the eigenvalue equation
for the spherical Laplacian operator ∆S and is known as the spherical Helmholtz equation.
To find explicit solutions, we adopt a further separation of angular variables,

w(ϕ, θ) = p(ϕ) q(θ), (12.22)

which we substitute into (12.21). Dividing the result by the product w = p q, multiplying
by sin2 ϕ, and then rearranging terms, we are led to the separated system

1

p

(
sin2 ϕ

d2p

dϕ2
+ cosϕ sinϕ

dp

dϕ

)
+ µ sin2 ϕ = −

1

q

d2q

dθ2
= ν,

where, by our usual argument, ν is another separation constant. The spherical Helmholtz
equation thereby splits into a pair of ordinary differential equations

sin2 ϕ
d2p

dϕ2
+ cosϕ sinϕ

dp

dϕ
+ (µ sin2 ϕ− ν) p = 0,

d2q

dθ2
+ ν q = 0.

The equation for q(θ) is easy to solve. As one circumnavigates the sphere, the azimuthal
angle θ increases from −π to π, so q(θ) must be a 2π–periodic function. Thus, q(θ) solves
the well-studied periodic boundary value problem treated, for instance, in (4.109). Up to
a constant multiple, nonzero periodic solutions occur only when the separation constant
assumes one of the values ν = m2, where m = 0, 1, 2, . . . is an integer, with

q(θ) = cosmθ or sinmθ, m = 0, 1, 2, . . . . (12.23)

Each positive ν = m2 > 0 admits two linearly independent 2π–periodic solutions, while
when ν = 0, only the constant solutions are periodic.

The Legendre Equation and Ferrers Functions

With this information, we endeavor to solve the zenith differential equation

sin2 ϕ
d2p

dϕ2
+ cosϕ sinϕ

dp

dϕ
+ (µ sin2 ϕ−m2) p = 0. (12.24)
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This is not so easy, and constructing analytic formulas for its solutions requires some
ingenuity. The motivation behind the following steps may not be so apparent; indeed,
they are the culmination of a long, detailed study of this important differential equation
by mathematicians over the last 200 years.

As an initial simplification, let us get rid of the trigonometric functions, by invoking
the change of variables

t = cosϕ, with p(ϕ) = P (cosϕ) = P (t). (12.25)

Since

0 ≤ ϕ ≤ π, we have 0 ≤
√
1− t2 = sinϕ ≤ 1.

According to the chain rule,

dp

dϕ
=

dP

dt

dt

dϕ
= − sinϕ

dP

dt
= −

√
1− t2

dP

dt
,

d2p

dϕ2
= − sinϕ

d

dt

(
−
√
1− t2

dP

dt

)
= (1− t2)

d2P

dt2
− t

dP

dt
.

Substituting these expressions into (12.24), we conclude that P (t) must satisfy

(1− t2)2
d2P

dt2
− 2 t (1− t2)

dP

dt
+
[
µ (1− t2)−m2

]
P = 0. (12.26)

Unfortunately, the resulting differential equation is still not elementary, but at least its
coefficients are polynomials. It is known as the Legendre differential equation of order m,
having first been employed by Adrien–Marie Legendre to study the gravitational attraction
of ellipsoidal bodies. In the cases of interest to us, the order parameter m is an integer,
while the separation constant µ plays the role of an eigenvalue.

Power series solutions to the Legendre equation can be constructed by the standard
techniques presented in Section 11.3. The most general solution is a new type of special
function, called a Legendre function, [86]. However, it turns out that the solutions we are
actually interested in can all be written in terms of elementary algebraic functions. First
of all, since t = cosϕ, the solution only needs to be defined on the interval −1 ≤ t ≤ 1,
the so-called cut locus . The endpoints of the cut locus, t = 1 and t = −1, correspond to
the sphere’s north pole, ϕ = 0, and south pole, ϕ = π, respectively. Both endpoints are
singular points for the Legendre equation, since the coefficient (1−t2)2 of the leading-order
derivative vanishes when t = ±1. In fact, both are regular singular points, as you are asked
to show in Exercise 12.2.11. Since ultimately we need the separable solution (12.17) to be a
well-defined function of x, y, z (even at points where the spherical coordinates degenerate,
i.e., on the z–axis), we need p(ϕ) to be well defined at ϕ = 0 and π, and this requires P (t)
to be bounded at the singular points:

|P (−1) | < ∞, |P (+1) | < ∞. (12.27)

Let us begin our analysis with the Legendre equation of order m = 0

(1− t2)
d2P

dt2
− 2 t

dP

dt
+ µP = 0. (12.28)

In this case, the eigenfunctions, i.e., solutions to the Legendre boundary value problem
(12.27–28), are the Legendre polynomials

Pn(t) =
(−1)n

2n n !

dn

dtn
(1− t2)n. (12.29)
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P0(t) P1(t) P2(t)

P3(t) P4(t) P5(t)

Figure 12.2. Legendre polynomials.

(The initial factor is by common convention, [86]; see (12.64) for the explicit formula.)
The first few are

P0(t) = 1, P1(t) = t, P2(t) =
3
2 t

2 − 1
2 , P3(t) =

5
2 t

3 − 3
2 t,

P4(t) =
35
8 t4 − 15

4 t2 + 3
8 , P5(t) =

63
8 t5 − 35

4 t3 + 15
8 t,

and are graphed in Figure 12.2.
Each Legendre polynomial clearly satisfies the boundary conditions (12.27). To verify

that they are indeed solutions to the differential equation (12.28), we set

Qn(t) = (1− t2)n.

By the chain rule, the derivative of Qn(t) is

Q′n = −2nt(1− t2)n−1, and hence (1− t2)Q′n = −2nt(1− t2)n = −2ntQn.

Differentiating the latter formula yields

(1− t2)Q′′n − 2 tQ′n = −2ntQ′n − 2nQn, or (1− t2)Q′′n = −2(n− 1)tQ′n − 2nQn.

A simple induction proves that the kth order derivative Q(k)
n (t) =

dkQn

dtk
satisfies

(1− t2)Q(k+2)
n = −2(n− k − 1) tQ(k+1)

n − 2[n+ (n− 1) + · · ·+ (n− k) ]Q(k)
n

= −2(n− k − 1) tQ(k+1)
n − (k + 1)(2n− k)Q(k)

n .
(12.30)
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In particular, when k = n, this reduces to

(1− t2)Q(n+2)
n = 2 tQ(n+1)

n − n(n+ 1)Q(n)
n = 0,

and so P̂n(t) = Q(n)
n (t) satisfies

(1− t2)P̂ ′′
n − 2 t P̂ ′

n + n(n+ 1) P̂n = 0,

which is precisely the order 0 Legendre equation (12.28) with eigenvalue parameter µ =

n(n + 1). The Legendre polynomial Pn is a constant multiple of P̂n, and hence it too
satisfies the order 0 Legendre equation. According to Theorem 12.3 below, the Legendre
polynomials form a complete system of eigenfunctions for the order 0 Legendre boundary
value problem.

When the order m > 0, the eigenfunctions of the Legendre boundary value problem
(12.26–27) are not always polynomials. They are known as the Ferrers functions, named
after the nineteenth-century British mathematician Norman Ferrers, or, more generally, as
associated Legendre functions. They have the explicit formula†

Pm
n (t) = (1− t2)m/2 dm

dtm
Pn(t)

= (−1)n
(1− t2)m/2

2n n !

dn+m

dtn+m
(1− t2)n,

n = m,m+ 1, . . . , (12.31)

which generalizes the formula (12.29) for the Legendre polynomials. In particular P 0
n (t) =

Pn(t). Here is a list of the first few Ferrers functions, which, for completeness, includes
Legendre polynomials:

P 0
0 (t) = 1, P 0

1 (t) = t, P 1
1 (t) =

√
1− t2 ,

P 0
2 (t) = − 1

2 + 3
2 t

2, P 1
2 (t) = 3 t

√
1− t2 , P 2

2 (t) = 3(1− t2),

P 0
3 (t) = − 3

2 t+
5
2 t

3, P 1
3 (t) =

(
− 3

2 + 15
2 t2

)√
1− t2,

P 2
3 (t) = 15 t (1− t2), P 3

3 (t) = 15(1− t2)3/2 , (12.32)

P 0
4 (t) =

3
8 − 15

4 t2 + 35
8 t4, P 1

4 (t) =
(
− 15

2 t+ 35
2 t3

)√
1− t2,

P 2
4 (t) =

(
− 15

2 + 105
2 t2

)
(1− t2), P 3

4 (t) = 105 t (1− t2)3/2 , P 4
4 (t) = 105(1− t2)2.

When m = 2k ≤ n is an even integer, Pm
n (t) is a polynomial function, while when m =

2k + 1 ≤ n is odd, there is an extra factor of
√
1− t2 . Keep in mind that the square root

is real and positive, since we are restricting our attention to the interval −1 ≤ t ≤ 1. If
m > n, formula (12.31) reduces to the zero function and so is not included in the final
tally.

Warning : Even though half of the Ferrers functions are polynomials, only those with
m = 0, i.e., Pn(t) = P 0

n (t), are called Legendre polynomials .

† Warning : Some authors include a (−1)m factor in the formula, resulting in the opposite sign
when m is odd. Another source of confusion is that many tables define the associated Legendre
functions using the alternative initial factor (t2−1)m/2. But this is unsuitable, since we are solely
interested in values of t lying in the interval −1 ≤ t ≤ 1, and this convention would result in a
complex-valued function when m is odd. Following [86], we use the term “Ferrers function” to
refer to the restriction of the associated Legendre function to the cut locus −1 ≤ t ≤ 1.
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0 ≤ P 1
1 (t) ≤ 1 −1.5 ≤ P 1

2 (t) ≤ 1.5 0 ≤ P 2
2 (t) ≤ 3

−1.5 ≤ P 1
3 (t) ≤ 2.07 −5.77 ≤ P 2

3 (t) ≤ 5.77 0 ≤ P 3
3 (t) ≤ 15

−2.64 ≤ P 1
4 (t) ≤ 2.64 −7.5 ≤ P 2

4 (t) ≤ 9.64 −34.1 ≤ P 3
4 (t) ≤ 34.1 0 ≤ P 4

4 (t) ≤ 105

Figure 12.3. Ferrers functions.

Figure 12.3 displays graphs of the Ferrers functions Pm
n (t) for 1 ≤ m ≤ n ≤ 4.

Pay particular attention to the fact that, owing to the choice of normalization factor, the
graphs have very different vertical scales, as indicated by their minimum and maximum
values (rounded to two decimal places) written below each — although one always has the
freedom to rescale the eigenfunctions as desired, e.g., so as to be orthonormal.

To show that the Ferrers functions Pm
n (t) satisfy the Legendre differential equation

(12.26) of order m, we substitute k = m+ n in (12.30):

(1− t2)
d2Rm

n

dt2
− 2(m+ 1) t

dRm
n

dt
+ (m+ n+ 1)(n−m)Rm

n = 0, (12.33)

where

Rm
n (t) = Q(m+n)

n (t).

This is not the order m Legendre equation, but it can be converted into it by setting

Rm
n (t) = (1− t2)−m/2 Sm

n (t).
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Differentiating, we obtain

dRm
n

dt
= (1− t2)−m/2

dSm
n

dt
−mt(1− t2)−m/2−1 Sm

n ,

d2Rm
n

dt2
= (1− t2)−m/2

d2Sm
n

dt2
− 2mt(1− t2)−m/2−1

dSm
n

dt

+
[
m+m(m+ 1)t2

]
(1− t2)−m/2−2 Sm

n .

Therefore, after a little algebra, equation (12.33) takes the alternative form

(1− t2)−m/2+1
d2Sm

n

dt2
− 2 t(1− t2)−m/2

dSm
n

dt

+
[
n(n+ 1)(1− t2)−m2

]
(1− t2)−m/2−1 Sm

n = 0,

which, when multiplied by (1−t2)m/2+1, is precisely the order m Legendre equation (12.26)
with eigenvalue parameter µ = n(n+ 1). Thus,

Sm
n (t) = (1− t2)m/2Rm

n (t) = (1− t2)m/2 dn+m

dtn+m
(1− t2)n,

which is a constant multiple of the Ferrers function Pm
n (t), is a solution to the order m

Legendre equation. Moreover, we note that

Pm
n (1) = Pm

n (−1) = 0, when m > 0, (12.34)

and we conclude that Pm
n (t) is an eigenfunction for the order m Legendre boundary value

problem.

The following result states that the Ferrers functions provide a complete list of solu-
tions to the Legendre boundary value problem (12.26–27).

Theorem 12.3. Let m ≥ 0 be a nonnegative integer. Then the order m Legendre
boundary value problem prescribed by (12.26–27) has eigenvalues µn = n(n + 1) for n =
0, 1, 2, . . ., and associated eigenfunctions Pm

n (t), where m = 0, . . . , n. Moreover, the Ferrers
eigenfunctions form a complete orthogonal system relative to the L2 inner product on the
cut locus [−1, 1 ].

Returning to the zenith variable ϕ via (12.25), Theorem 12.3 implies that our original
boundary value problem

sin2 ϕ
d2p

dϕ2
+ cosϕ sinϕ

dp

dϕ
+ (µ sin2 ϕ−m2) p = 0, | p(0) |, | p(π) | < ∞, (12.35)

has its eigenvalues and eigenfunctions expressed in terms of the Ferrers functions:

µn = n(n+ 1), pmn (ϕ) = Pm
n (cosϕ), for 0 ≤ m ≤ n. (12.36)

Since Pm
n (t) is either a polynomial or a polynomial multiplied by a power of

√
1− t2 ,

the eigenfunction pmn (ϕ) is a trigonometric polynomial of degree n, which we call a trigono-
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p00(ϕ) ≡ 1 −1 ≤ p01(ϕ) ≤ 1 0 ≤ p11(ϕ) ≤ 1

−.5 ≤ p02(ϕ) ≤ 1 −1.5 ≤ p12(ϕ) ≤ 1.5 0 ≤ p22(ϕ) ≤ 3 −1 ≤ p03(ϕ) ≤ 1

−1.5 ≤ p13(ϕ) ≤ 2.07 −5.77 ≤ p23(ϕ) ≤ 5.77 0 ≤ p33(ϕ) ≤ 15 −.43 ≤ p04(ϕ) ≤ 1

−2.64 ≤ p14(ϕ) ≤ 2.64 −7.5 ≤ p24(ϕ) ≤ 9.64 −34.1 ≤ p34(ϕ) ≤ 34.1 0 ≤ p44(ϕ) ≤ 105

Figure 12.4. Trigonometric Ferrers functions.

metric Ferrers function. Here are the first few, written in Fourier form, as in (3.38):

p00(ϕ) = 1, p01(ϕ) = cosϕ, p11(ϕ) = sinϕ,

p02(ϕ) =
1
4 + 3

4 cos 2ϕ, p12(ϕ) =
3
2 sin 2ϕ, p22(ϕ) =

3
2 − 3

2 cos 2ϕ,

p03(ϕ) =
3
8 cosϕ+ 5

8 cos 3ϕ, p13(ϕ) =
3
8 sinϕ+ 15

8 sin 3ϕ,

p23(ϕ) =
15
4 cosϕ− 15

4 cos 3ϕ, p33(ϕ) =
45
4 sinϕ− 15

4 sin 3ϕ,

p04(ϕ) =
9
64 + 5

16 cos 2ϕ+ 35
64 cos 4ϕ, p14(ϕ) =

5
8 sin 2ϕ+ 35

16 sin 4ϕ,

p24(ϕ) =
45
16 + 15

4 cos 2ϕ− 105
16 cos 4ϕ, p34(ϕ) =

105
4 sin 2ϕ− 105

8 sin 4ϕ,

p44(ϕ) =
315
8 − 105

2 cos 2ϕ+ 105
8 cos 4ϕ.

(12.37)

It is also instructive to plot the eigenfunctions in terms of the zenith angle ϕ; see Figure 12.4.
As in Figure 12.3, the vertical scales are not the same, as indicated by the listed minimum
and maximum values.
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Spherical Harmonics

At this stage, we have determined both angular components of our separable solutions
(12.22). Multiplying the two parts together results in the spherical angle functions

Y m
n (ϕ, θ) = pmn (ϕ) cosmθ,

Ỹ m
n (ϕ, θ) = pmn (ϕ) sinmθ,

n = 0, 1, 2, . . . ,

m = 0, 1, . . . , n,
(12.38)

known as spherical harmonics . They satisfy the spherical Helmholtz equation

∆S Y m
n + n(n+ 1)Ym

n = 0 = ∆S Ỹm
n + n(n+ 1) Ỹm

n , (12.39)

and so are eigenfunctions for the spherical Laplacian operator, (12.19), with associated
eigenvalues µn = n(n + 1) for n = 0, 1, 2, . . . . The nth eigenvalue µn admits a (2n + 1)–
dimensional eigenspace, spanned by the spherical harmonics

Y 0
n (ϕ, θ), Y 1

n (ϕ, θ), . . . , Y n
n (ϕ, θ), Ỹ 1

n (ϕ, θ), . . . , Ỹ n
n (ϕ, θ).

(The omitted function Ỹ 0
n (ϕ, θ) ≡ 0 is trivial, and so does not contribute.) In Figure 12.5

we plot the first few spherical harmonic surfaces r = Y m
n (ϕ, θ). In these graphs, in view of

the spherical coordinate formulae (12.15), points with a negative r coordinate appear on
the opposite side of the origin from their positive r counterparts. Incidentally, the graphs of
the other spherical harmonic surfaces r = Ỹ m

n (ϕ, θ), when m > 0, are obtained by rotation
around the z–axis by 90◦; see Exercise 12.2.20. On the other hand, the graphs of Y 0

n are
cylindrically symmetric (why?), and hence unaffected by such a rotation.

Self-adjointness of the spherical Laplacian, as per Exercise 12.2.21, implies that the
spherical harmonics are orthogonal with respect to the L2 inner product

⟨ f , g ⟩ =
∫ ∫

S1

f g dS =

∫ π

−π

∫ π

0
f(ϕ, θ) g(ϕ, θ) sinϕ dϕ dθ (12.40)

given by integrating the product of the functions with respect to the surface area element
dS = sinϕ dϕ dθ on the unit sphere S1 = {∥x ∥ = 1}. More correctly, self-adjointness only
guarantees orthogonality of the harmonics corresponding to distinct eigenvalues: µn ̸= µl.
However, the orthogonality relations

⟨Ym
n , Y k

l ⟩ =
∫ ∫

S1

Y m
n Y k

l dS = 0, for (m,n) ̸= (k, l),

⟨Y m
n , Ỹ k

l ⟩ =
∫ ∫

S1

Y m
n Ỹ k

l dS = 0, for all (m,n), (k, l),

⟨ Ỹ m
n , Ỹ k

l ⟩ =
∫ ∫

S1

Ỹ m
n Ỹ k

l dS = 0, for (m,n) ̸= (k, l),

(12.41)

do, in fact, hold in full generality; Exercise 12.2.22 asks you to supply the details. Moreover,
their norms can be explicitly computed:

∥ Y 0
n ∥2 =

4π

2n+ 1
, ∥ Ym

n ∥2 = ∥ Ỹ m
n ∥2 =

2π(n+m) !

(2n+ 1)(n−m) !
, m = 1, . . . , n.

(12.42)
Proofs of the latter formulae are outlined in Exercise 12.2.24.

With some further work, it can be shown that the spherical harmonics form a complete
orthogonal system of functions on the unit sphere. This means that any reasonable (e.g.,
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Y 0
0 (ϕ, θ) Y 0

1 (ϕ, θ) Y 1
1 (ϕ, θ)

Y 0
2 (ϕ, θ) Y 1

2 (ϕ, θ) Y 2
2 (ϕ, θ) Y 0

3 (ϕ, θ)

Y 1
3 (ϕ, θ) Y 2

3 (ϕ, θ) Y 3
3 (ϕ, θ) Y 0

4 (ϕ, θ)

Y 1
4 (ϕ, θ) Y 2

4 (ϕ, θ) Y 3
4 (ϕ, θ) Y 4

4 (ϕ, θ)

Figure 12.5. Spherical harmonics.
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piecewise C1 or even L2) function h:S1 → R, can be expanded into a convergent spherical
harmonic series

h(ϕ, θ) =
c0,0
2

+
∞∑

n=1

(
c0,n
2

Y 0
n (ϕ) +

n∑

m=1

[
cm,nY

m
n (ϕ, θ) + c̃m,nỸ

m
n (ϕ, θ)

])
. (12.43)

Applying the orthogonality relations (12.41), we find that the spherical harmonic coeffi-
cients are given by the inner products

c0,n =
2 ⟨ h , Y 0

n ⟩
∥ Y 0

n ∥2
, cm,n =

⟨ h , Ym
n ⟩

∥ Ym
n ∥2

, c̃m,n =
⟨ h , Ỹm

n ⟩
∥ Ỹ m

n ∥2
,

0 ≤ n,

1 ≤ m ≤ n,

or, explicitly, using (12.40) and the formulae (12.42) for the norms,

cm,n =
(2n+ 1)(n−m) !

2π (n+m) !

∫ π

−π

∫ π

0
h(ϕ, θ) pmn (ϕ) cosmθ sinϕ dϕ dθ,

c̃m,n =
(2n+ 1)(n−m) !

2π (n+m) !

∫ π

−π

∫ π

0
h(ϕ, θ) pmn (ϕ) sinmθ sinϕ dϕ dθ.

(12.44)

As with an ordinary Fourier series, the extra 1
2 was appended to the c0,n terms in (12.43)

so that equations (12.44) remain valid for all values of m,n. In particular, the constant
term in the spherical harmonic series is the mean of the function h over the unit sphere:

c0,0
2

=
1

4π

∫ ∫

S1

h dS =
1

4π

∫ π

−π

∫ π

0
h(ϕ, θ) sinϕ dϕ dθ. (12.45)

Remark : Establishing uniform convergence of a spherical harmonic series (12.43) is
more challenging than in the Fourier series case, because, unlike the trigonometric func-
tions, the orthonormal spherical harmonics are not uniformly bounded. A recent survey of
what is known in this regard can be found in [10].

Remark : An alternative approach is to replace the real trigonometric functions by
complex exponentials, and work with the complex spherical harmonics†

Ym
n (ϕ, θ) = Y m

n (ϕ, θ) + i Ỹ m
n (ϕ, θ) = pmn (ϕ) e imθ,

n = 0, 1, 2, . . . ,

m = −n,−n+ 1, . . . , n.
(12.46)

The associated orthogonality and expansion formulas are relegated to the exercises.

Harmonic Polynomials

To complete our solution to the Laplace equation on the solid ball, we still need to solve the
ordinary differential equation (12.20) for the radial component v(r). In view of our analysis
of the spherical Helmholtz equation, the original separation constant is µ = n(n + 1) for
some nonnegative integer n ≥ 0, and so the radial equation takes the form

r2 v′′ + 2rv′ − n(n+ 1)v = 0. (12.47)

† Here we use the convention that Y m
n = Y −m

n , Ỹ m
n = − Ỹ −m

n , and Ỹ 0
n ≡ 0, which is

compatible with their defining formulas (12.38).
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To solve this Euler equation, we substitute the power ansatz v(r) = rα, and find that the
exponent α must satisfy the quadratic indicial equation

α2 + α− n(n+ 1) = 0, and hence α = n or α = − (n+ 1).

Therefore, the two linearly independent solutions are

v1(r) = rn and v2(r) = r−n−1. (12.48)

Since we are currently interested only in solutions that remain bounded at r = 0 — the
center of the ball — we will retain just the first solution v(r) = rn for our subsequent
analysis.

At this stage, we have solved all three ordinary differential equations for the separa-
ble solutions. We combine (12.23, 38, 48) to produce the following spherically separable
solutions to the Laplace equation:

Hm
n = rn Y m

n (ϕ, θ) = rn pmn (ϕ) cosmθ,

H̃m
n = rn Ỹ m

n (ϕ, θ) = rn pmn (ϕ) sinmθ,

n = 0, 1, 2, . . . ,

m = 0, 1, . . . , n.
(12.49)

Although apparently complicated, these solutions are, perhaps surprisingly, elementary
polynomial functions of the rectangular coordinates x, y, z, and hence are harmonic poly-
nomials . The first few are

H0
0 = 1, H0

1 = z, H0
2 = z2 − 1

2 x
2 − 1

2 y
2, H0

3 = z3 − 3
2 x

2z − 3
2 y

2z,

H1
1 = x, H1

2 = 3xz, H1
3 = 6xz2 − 3

2 x
3 − 3

2 xy
2,

H̃1
1 = y, H̃1

2 = 3y z, H̃1
3 = 6y z2 − 3

2 x
2y − 3

2 y
3,

H2
2 = 3x2 − 3y2, H2

3 = 15x2z − 15y2z,

H̃2
2 = 6xy, H̃2

3 = 30xy z,

H3
3 = 15x3 − 45xy2,

H̃3
3 = 45x2y − 15y3.

(12.50)

The polynomials
H0

n, H1
n, . . . , Hn

n , H̃1
n, . . . , H̃n

n

are homogeneous of degree n. Orthogonality of the spherical harmonics implies that they
form a basis for the vector space comprised of all homogeneous harmonic polynomials of
degree n, which hence has dimension 2n+ 1.

The harmonic polynomials (12.49) form a complete system, and therefore the gen-
eral solution to the Laplace equation inside the unit ball can be written as a harmonic
polynomial series:

u(x, y, z) =
c0,0
2

+
∞∑

n=1

(
c0,n
2

H0
n(x, y, z) +

n∑

m=1

[
cm,nH

m
n (x, y, z) + c̃m,nH̃

m
n (x, y, z)

]
)
,

(12.51)
or equivalently, in spherical coordinates,

u(r,ϕ, θ) =
c0,0
2

+
∞∑

n=1

(
c0,n
2

rnY 0
n (ϕ) +

n∑

m=1

[
cm,n r

nY m
n (ϕ, θ) + c̃m,n r

n Ỹ m
n (ϕ, θ)

]
)
.

(12.52)
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The coefficients cm,n, c̃m,n are uniquely prescribed by the boundary conditions. Indeed,
substituting (12.52) into the Dirichlet boundary conditions on the unit sphere r = 1 yields

u(1,ϕ, θ) =
c0,0
2

+
∞∑

n=1

(
c0,n
2

Y 0
n (ϕ) +

n∑

m=1

[
cm,nY

m
n (ϕ, θ) + c̃m,nỸ

m
n (ϕ, θ)

]
)

= h(ϕ, θ).

(12.53)
Thus, the coefficients cm,n, c̃m,n are given by the inner product formulae (12.44). If the
terms in the resulting series are uniformly bounded — which occurs for all piecewise con-
tinuous functions h, as well as all L2 functions and many generalized functions such as the
delta function — then the harmonic polynomial series (12.52) converges everywhere, and,
in fact, uniformly on any smaller ball ∥x ∥ = r ≤ r0 < 1.

Averaging, the Maximum Principle, and Analyticity

In rectangular coordinates, the nth summand of the series (12.51) is a homogeneous polyno-
mial of degree n. Therefore, repeating the argument used in the two-dimensional situation
(4.115), we conclude that the harmonic polynomial series is, in fact, a power series, and
hence provides the Taylor expansion for the harmonic function u(x, y, z) at the origin! In
particular, its convergence for all r < 1 implies that the harmonic function u(x, y, z) is
analytic at x = y = z = 0.

The constant term in such a Taylor series can be identified with the value of the
function at the origin: u(0, 0, 0) = 1

2 c0,0. On the other hand, since u = h on S1 = ∂Ω, the
coefficient formula (12.45) tells us that

u(0, 0, 0) =
c0,0
2

=
1

4π

∫ ∫

S1

u dS. (12.54)

Therefore, we have established the three-dimensional counterpart of Theorem 4.8: the value
of a harmonic function u at the center of the sphere is equal to the average of its values

on the sphere’s surface. Moreover, each partial derivative
∂i+j+ku

∂xi∂yj∂zk
(0, 0, 0) appears, up

to a factor, as the coefficient of the terms xiyjzk in the Taylor series, and hence can be
expressed as a certain linear combination of the coefficients cm,n, c̃m,n, which are in turn
given by the integral formulae (12.44).

So far, we have restricted our attention to a ball of unit radius. A simple scaling
argument serves to establish the general result.

Theorem 12.4. If u(x) is a harmonic function defined on a domain Ω ⊂ R3, then u
is analytic inside Ω. Moreover, its value at any x0 ∈ Ω is obtained by averaging its values
on any sphere centered at x0:

u(x0) =
1

4πa2

∫ ∫

∥x−x0 ∥=a
u dS, (12.55)

provided the enclosed ball lies within its domain of analyticity: {∥x− x0 ∥ ≤ a} ⊂ Ω.

Proof : It is easily checked that, under the hypothesis of the theorem, the rescaled and
translated function

U (y) = u(ay + x0) = u(x), where y =
x− x0

a
, (12.56)



522 12 Partial Differential Equations in Space

is harmonic on the unit ball ∥y ∥ ≤ 1, and hence solves the boundary value problem (12.14)
with boundary values h(y) = U (y) = u(ay+ x0) on ∥y ∥ = 1. By the preceding remarks,

U (y) is analytic at y = 0, and so u(x) = U
(
x− x0

a

)
is analytic at x = x0. Since x0

can be any point inside Ω, this establishes the analyticity of u everywhere in Ω. Moreover,
according to (12.54),

u(x0) = U (0) =
1

4π

∫ ∫

∥y ∥=1
U dS =

1

4πa2

∫ ∫

∥x−x0 ∥=a
u dS,

since the effect of the change of variables (12.56) is just to rescale the spherical surface
integral. Q.E.D.

Arguing as in the planar case of Theorem 4.9, we readily establish the corresponding
Strong Maximum Principle for harmonic functions of three variables.

Theorem 12.5. A nonconstant harmonic function cannot have a local maximum or
minimum at any interior point of its domain of definition. Moreover, its global maximum
or minimum (if any) is located on the boundary of the domain.

For instance, the Maximum Principle implies that the maximum and minimum tem-
peratures in a solid body in thermal equilibrium are to be found only on its boundary. In
physical terms, since heat energy must flow away from an internal maximum and towards
an internal minimum, any local temperature extremum inside the body would preclude it
from being in thermal equilibrium.

Example 12.6. In this example, we shall determine the electrostatic potential inside
a hollow sphere when the upper and lower hemispheres are held at different constant
potentials. This device is called a spherical capacitor and is realized experimentally by
separating the two charged conducting hemispherical shells by a thin insulating ring at
the equator. A straightforward scaling argument allows us to choose our units so that the
sphere has unit radius, while the potential is set equal to 1 on the upper hemisphere and
equal to 0, i.e., grounded, on the lower hemisphere. The resulting electrostatic potential
satisfies the Laplace equation

∆u = 0 inside a solid ball ∥x ∥ < 1,

and is subject to Dirichlet boundary conditions

u(x, y, z) = h(x, y, z) ≡
{

1, z > 0,

0, z < 0,
on the unit sphere ∥x ∥ = 1. (12.57)

The solution will be prescribed by a harmonic polynomial series (12.51) whose coeffi-
cients are fixed by the boundary values (12.57). Before tackling the required computation,
let us first note that since the boundary data does not depend upon the azimuthal angle
θ, the solution u = u(r,ϕ) will also be independent of θ. Therefore, we need only consider
the θ-independent spherical harmonic polynomials (12.38), which are those with m = 0.
Thus,

u(x, y, z) =
1

2

∞∑

n=0

cnH
0
n(x, y, z) =

1

2

∞∑

n=0

cn r
nPn(cosϕ), (12.58)
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where we abbreviate cn = c0,n. The boundary conditions (12.57) require

u|r=1 =
1

2

∞∑

n=0

cnPn(cosϕ) = h(ϕ) =

{
1, 0 ≤ ϕ < 1

2 π,

0, 1
2 π < ϕ ≤ π.

The coefficients are given by (12.44), which, in the case m = 0, reduce to

cn =
2n+ 1

2π

∫ ∫

S1

h Y 0
n dS = (2n+ 1)

∫ π/2

0
Pn(cosϕ) sinϕ dϕ = (2n+ 1)

∫ 1

0
Pn(t) dt,

(12.59)
since h = 0 when 1

2 π < ϕ ≤ π. The first few are

c0 = 1, c1 = 3
2 , c2 = 0, c3 = − 7

8 , c4 = 0, . . . .

Therefore, the solution has the explicit Taylor expansion

u(x, y, z) = 1
2 + 3

4 r cosϕ− 21
128 r

3 cosϕ− 35
128 r

3 cos 3ϕ+ · · ·
= 1

2 + 3
4 z +

21
32 (x

2 + y2) z − 7
16 z

3 + · · · .
(12.60)

Note in particular that the value u(0, 0, 0) = 1
2 at the center of the sphere is the average

of its boundary values, in accordance with Theorem 12.4. The solution depends only on
the cylindrical coordinates r, z, which is a consequence of the invariance of the Laplace
equation under general rotations, coupled with the invariance of the boundary data under
rotations around the z–axis.

Remark : The same solution u(x, y, z) describes the thermal equilibrium in a solid
sphere whose upper hemisphere is held at temperature 1◦ and lower hemisphere at 0◦.

Example 12.7. A closely related problem is to determine the electrostatic potential
outside a spherical capacitor. As in the preceding example, we take our capacitor of radius
1, with electrostatic charge of 1 on the upper hemisphere and 0 on the lower hemisphere.
Here, we need to solve the Laplace equation ∆u = 0 in the unbounded domain Ω =
{∥x ∥ > 1} — the exterior of the unit sphere — subject to the same Dirichlet boundary
conditions (12.57). We anticipate that the potential will be vanishingly small at large
distances away from the capacitor: r = ∥x ∥ ≫ 1. Therefore, the harmonic polynomial
solutions (12.49) will not help us solve this problem, since (except for the constant case)
they become unboundedly large far away from the origin.

However, revisiting our original separation of variables argument will produce a dif-
ferent class of solutions having the desired decay properties. When we solved the radial
equation (12.47), we discarded the solution v2(r) = r−n−1 because it had a singularity at
the origin. In the present situation, the behavior of the function at r = 0 is irrelevant; our
requirement is that the solution decay as r → ∞, and v2(r) has this property. Therefore,
we will utilize the complementary harmonic functions

Km
n (x, y, z) = r−2n−1Hm

n (x, y, z) = r−n−1 Y m
n (ϕ, θ) = r−n−1pmn (ϕ) cosmθ,

K̃m
n (x, y, z) = r−2n−1 H̃m

n (x, y, z) = r−n−1 Ỹ m
n (ϕ, θ) = r−n−1pmn (ϕ) sinmθ,

(12.61)

for solving such exterior problems. For the capacitor problem, we need only those that are
independent of θ, whereby m = 0. We write the resulting solution as a series

u(x, y, z) =
1

2

∞∑

n=0

cnK
0
n(x, y, z) =

1

2

∞∑

n=0

cn r
−n−1 Pn(cosϕ). (12.62)
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The boundary conditions

u|r=1 =
1

2

∞∑

n=0

cnPn(cosϕ) = h(ϕ) ≡

{
1, 0 ≤ ϕ < 1

2 π,

0, 1
2 π < ϕ ≤ π,

are identical to those in the previous example. Therefore, the coefficients are given by
(12.59), leading to the series expansion

u(x, y, z) =
1

2r
+

3 cosϕ

4r2
−

21 cosϕ + 35 cos 3ϕ

128r4
+ · · · (12.63)

=
1

2
√
x2 + y2 + z2

+
3z

4(x2 + y2 + z2)3/2
+

21(x2 + y2)z − 14z3

32(x2 + y2 + z2)7/2
+ · · · .

Observe that the higher-order terms become negligible at large distances, and hence the
potential is asymptotic to that associated with a point charge concentrated at the origin
of magnitude 1

2 , which is the average of the boundary potential over the sphere. This is
indicative of a general fact, to be explored in Exercise 12.2.32.

Exercises

12.2.1. A solid ball of radius R has its upper hemispherical surface held at temperature T1 and
its lower hemispherical surface held at temperature T0. Find the resulting equilibrium tem-
perature.

12.2.2. A solid ball has its top hemispherical surface insulated and its bottom hemispherical
surface held at a fixed temperature of 10◦. Find its equilibrium temperature.

12.2.3. Find the potential inside a spherical capacitor of radius R when the upper hemisphere
is at potential α and the lower is at β.

12.2.4. Find the potential u(x, y, z) inside a unit spherical capacitor that has the indicated
boundary values on the unit sphere x2+y2+z2 = 1: (a) x, (b) x2+y2, (c) x3. Hint : The
potential is a polynomial.

12.2.5. Each point on the spherical boundary of a solid ball of radius 1 has temperature equal
to its zenith angle ϕ. (a) Find the value of the equilibrium temperature at the center of the
ball. (b) Find the Taylor polynomial of degree 3, based at the origin, for the equilibrium
temperature distribution.

12.2.6. Solve Exercise 12.2.5 when the boundary temperature equals (a) cosϕ, (b) cos θ, (c) θ.

12.2.7. A solid spherical container of radius 3 cm contains a hollow spherical cavity of radius
1 cm in its center. The inner cavity is filled with boiling water at 100◦, while the entire
container is immersed in an ice water bath at 0◦. Assume that the container is in thermal
equilibrium. True or false: The temperature at a point half-way between the container’s in-
ner and outer boundaries is 50◦. If true, explain. If false, what is the temperature at such a
point?

12.2.8. Find the electrostatic potential between two concentric spherical metal shells of respec-
tive radii 1 and 1.2, given that the inner shell is grounded, while the outer shell has poten-
tial equal to 1.

♦ 12.2.9. Use the chain rule to establish the formula (12.16) for the Laplacian in spherical coordi-
nates.
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♦ 12.2.10.(a) Prove that t = ±1 are both regular singular points for the order 0 Legendre dif-
ferential equation (12.28). (b) Prove that the Legendre eigenvalue problem (12.27–28) is
defined by a self-adjoint operator with respect to the L2 inner product on the cut locus
[−1, 1]. (c) Discuss the orthogonality of the Legendre polynomials.

♦ 12.2.11. Solve Exercise 12.2.10 for the Legendre eigenvalue problem (12.26–27) of order m
along with the relevant Ferrers eigenfunctions.

♦ 12.2.12. Suppose m > 0. (a) Find the Green’s function for the boundary value problem

(1− t2)
d2P
dt2

− 2 t
dP
dt
− m2

1− t2
P = f(t), |P (−1) |, |P (1) | <∞.

Hint : The homogeneous differential equation has solutions

(
1 + t
1− t

)m
2

and

(
1− t
1 + t

)m
2
.

(b) Use part (a) to prove completeness of the Ferrers functions of order m > 0 on [−1, 1].
(c) Explain why there is no Green’s function in the order m = 0 case.
Remark : When m = 0, one can use the trick of Example 9.49 to prove completeness. Al-
though the Green’s function for the modified operator does not have an explicit elementary
formula, one can prove that it has logarithmic singularities at the endpoints, and hence fi-
nite double L2 norm. See [120; §43] for details.

12.2.13. What happens when n < m in formula (12.31)?

♦ 12.2.14. Prove that the Legendre polynomial (12.29) has the explicit formula

Pn(t) =
∑

0≤2m≤n

(−1)m (2n− 2m)!
2n (n−m) !m ! (n− 2m) !

tn−2m. (12.64)

♦ 12.2.15. Prove the following recurrence relation for the Ferrers functions:

Pm+1
n (t) =

√
1− t2

dPm
n

dt
+

mt√
1− t2

Pm
n (t). (12.65)

♥ 12.2.16. In this exercise, we determine the L2 norms of the Ferrers functions. (a) First, prove

that
∫ 1

−1
(1− t2)n dt =

22n+1 (n ! )2

(2n+ 1)!
. Hint : Set t = cos θ and then integrate by parts re-

peatedly. (b) Prove that ∥Pn ∥
2 =

2
2n+ 1

. Hint : Integrate by parts repeatedly and then

use part (a). (c) Prove that ∥Pm+1
n ∥2 = (n − m)(n + m + 1) ∥Pm

n ∥2. Hint : Use (12.65)

and an integration by parts. (d) Finally, prove that ∥Pm
n ∥2 =

2
2n+ 1

(n+m) !
(n−m) !

.

12.2.17.(a) Prove that Pm
n (t) is an even or odd function according to whether m+ n is an even

or odd integer. (b) Prove that its Fourier form, pmn (ϕ), depends only on cosnϕ, cos(n− 2)ϕ,
cos(n− 4)ϕ, . . . if m is even, and only on sinnϕ, sin(n− 2)ϕ, sin(n− 4)ϕ, . . . if m is odd.

12.2.18. Let m be fixed. Are the functions pmn (ϕ) for n = 0, 1, 2, . . . mutually orthogonal with

respect to the standard L2 inner product on [0, π ]? If not, is there an inner product that
makes them orthogonal functions?

12.2.19. Prove that the surfaces defined by the first three spherical harmonics Y 0
0 , Y 0

1 , and Y 1
1 ,

as in Figure 12.5, are all spheres. Find their centers and radii.

♦ 12.2.20. Explain why the surface defined by r = Ỹ m
n (ϕ, θ) is obtained by rotating that defined

by r = Y m
n (ϕ, θ) around the z–axis by 90◦.

♦ 12.2.21. Prove directly that the spherical Laplacian ∆S is a self-adjoint linear operator with
respect to the inner product (12.40).

♦ 12.2.22.(a) In view of Exercise 12.2.21, which orthogonality relations in (12.41) follow from
their status as eigenfunctions of the spherical Laplacian?
(b) Prove the general orthogonality formulae by direct computation.
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♦ 12.2.23. State and prove the orthogonality of the complex spherical harmonics (12.46). Then
establish the following formula for their norms:

∥Ym
n ∥2 =

∫∫

S1

| Ym
n |2 dS =

4π(n +m) !
(2n+ 1)(n−m) !

n = 0, 1, 2, . . . ,

m = −n,−n+ 1, . . . , n.
(12.66)

♦ 12.2.24. Prove the formulae (12.42) for the norms of the spherical harmonics. Hint : Use Exer-
cise 12.2.16.

♦ 12.2.25. Justify the formulas in (12.50) for (a) H0
1 , (b) H0

2 , (c) H̃1
2 .

12.2.26. Find formulas for the following harmonic polynomials (i) in spherical coordinates;
(ii) in rectangular coordinates: (a) H0

4 , (b) H4
4 , (c) H̃4

4 .

12.2.27. Explain why every polynomial solution of the Laplace equation is a linear combination
of the harmonic polynomials (12.49). Hint : Look at its Taylor series.

12.2.28.(a) Prove that if u(x, y, z) is any harmonic polynomial, then so are u(y, x, z), u(z, x, y),
and all other functions obtained by permuting the variables x, y, z. (b) Discuss the effect of
such permutations on the basis harmonic polynomials Hm

n (x, y, z) appearing in (12.50).

12.2.29. Find the formulas in rectangular coordinates for the following complementary har-
monic functions: (a) K0

0 , (b) K1
1 , (c) K0

2 , (d) K̃1
2 .

♦ 12.2.30. Let u(x, y, z) be a harmonic function defined on the unit ball r ≤ 1. Prove that its
gradient at the center, ∇u(0), equals the average of the vector field v(x) = xu(x) over the
unit sphere r = 1.

♦ 12.2.31.(a) Suppose u(x, y, z) is a solution to the Laplace equation. Prove that the function
U(x, y, z) = r−1 u(x/r2, y/r2, z/r2) obtained by inversion is also a solution. (b) Explain
how inversion can be used to solve boundary value problems on the exterior of a sphere.
(c) Use inversion to relate the solutions to Examples 12.6 and 12.7.

♦ 12.2.32. Suppose u(r,ϕ, θ) is the potential exterior to a spherical capacitor of unit radius.
(a) Prove that lim

r→∞
ru(r,ϕ, θ) equals the average value of u on the sphere.

(b) Use Exercise 12.2.31 to deduce this result as a consequence of Theorem 12.4.

12.2.33.(a) Write out, using spherical coordinates, formulas for the L2 inner product and norm
for scalar fields f(r,ϕ, θ) and g(r,ϕ, θ) on a solid ball of unit radius centered at the origin.
(b) Let f(x, y, z) = z and g(x, y, z) = x2 + y2. Find ∥ f ∥, ∥ g ∥ and ⟨ f , g ⟩.
(c) Verify the Cauchy–Schwarz and triangle inequalities for these two functions.

♦ 12.2.34. Use separation of variables to construct a Fourier series solution to the Laplace equa-
tion on a rectangular box, B = {0 < x < a, 0 < y < b, 0 < z < c}, subject to the Dirichlet

boundary conditions u(x, y, z) =

{
h(x, y), z = 0, 0 < x < a, 0 < y < b,
0, at all other points in ∂B.

12.2.35. Find the equilibrium temperature distribution inside a unit cube that has 100◦ tem-
perature on its top face, 0◦ on its bottom face, while all four side faces are insulated.

12.2.36. Solve Exercise 12.2.35 when the top face of the cube has temperature u(x, y, 1) =
cosπx cos πy.

♣ 12.2.37. A solid unit cube is in thermal equilibrium when subject to 100◦ temperature on its
top face and 0◦ on all other faces. True or false: The temperature at the center equals the
average temperature over the surface of the cube.

12.2.38. Solve the boundary value problem

− ∂2u
∂x2

− ∂2u
∂y2

− ∂2u
∂z2

+ u = cosx cos y, 0 < x, y, z < π,

u(x, y, 0) = 1,
∂u
∂z

(x, y,π) =
∂u
∂y

(x, 0, z) =
∂u
∂y

(x,π, z) =
∂u
∂z

(0, y, z) =
∂u
∂x

(π, y, z) = 0.
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12.2.39. Let C be the cylinder of height 1 and diameter 1 that sits on the (x, y)–plane centered
on the z–axis. (a) Write out, in cylindrical coordinates, the explicit formula for the L2 in-
ner product and norm on C.
(b) Let f(x, y, z) = z and g(x, y, z) = x2 + y2. Find ∥ f ∥, ∥ g ∥ and ⟨ f , g ⟩.
(c) Verify the Cauchy–Schwarz and triangle inequalities for these two functions.

♦ 12.2.40.(a) Write out the Laplace equation in cylindrical coordinates.
(b) Use separation of variables to construct a series solution to the Laplace equation on the

cylinder C = {x2 + y2 < 1, 0 < z < 1}, subject to the Dirichlet boundary conditions

u(x, y, z) =

{
h(x, y), z = 0, x2 + y2 < 1,
0, at all other points in ∂C.

12.2.41. A cylinder of radius 1 and height 2 has 100◦ temperature on its top face, 0◦ on its
bottom face, while its curved side is fully insulated. Find its equilibrium temperature dis-
tribution.

12.2.42. Solve Exercise 12.2.41 if the curved sides are kept at 0◦ instead.

12.3 Green’s Functions for the Poisson Equation

We now turn to the inhomogeneous form of the three-dimensional Laplace equation: the
Poisson equation

−∆u = f, (12.67)

on a solid domain Ω ⊂ R3. In order to uniquely specify the solution, we must impose
appropriate boundary conditions: Dirichlet or mixed. (As in the planar version, Neumann
boundary value problems have either infinitely many solutions or no solutions, depending
upon whether the Fredholm conditions are satisfied or not.) We only need to discuss the
case of homogeneous boundary conditions, since, by linear superposition, an inhomogeneous
boundary value problem can be split into a homogeneous boundary value problem for the
inhomogeneous Poisson equation along with an inhomogeneous boundary value problem
for the homogeneous Laplace equation.

As in Chapter 6, we begin by analyzing the case of a delta function inhomogeneity
that is concentrated at a single point in the domain. Thus, for each ξ = (ξ, η, ζ) ∈ Ω, the
Green’s function G(x; ξ) = G(x, y, z; ξ, η, ζ) is the unique solution to the Poisson equation

−∆u = δ(x− ξ) = δ(x− ξ) δ(y − η) δ(z − ζ) for all x ∈ Ω, (12.68)

subject to the chosen homogeneous boundary conditions. The solution to the general
Poisson equation (12.67) is then obtained by superposition: We write the forcing function

f(x, y, z) =

∫ ∫ ∫

Ω
f(ξ, η, ζ) δ(x− ξ) δ(y − η) δ(z − ζ) dξ dη dζ (12.69)

as a linear superposition of delta functions. By linearity, the solution

u(x, y, z) =

∫ ∫ ∫

Ω
f(ξ, η, ζ)G(x, y, z; ξ, η, ζ)dξ dη dζ (12.70)

to the homogeneous boundary value problem for the Poisson equation (12.67) is then given
as the corresponding superposition of the Green’s function solutions.
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The Green’s function can also be used to solve the inhomogeneous Dirichlet boundary
value problem

−∆u = 0, x ∈ Ω, u = h, x ∈ ∂Ω. (12.71)

The same argument that was used in the two-dimensional situation produces the solution

u(x) = −
∫ ∫

∂Ω

∂G

∂n
(x; ξ) h(ξ)dS, (12.72)

where the normal derivative is taken with respect to the variable ξ ∈ ∂Ω. In the case that
Ω is a solid ball, this integral formula effectively sums the spherical harmonic series (12.51);
see Theorem 12.12 below.

The Free–Space Green’s Function

Only in a few specific instances is an explicit formula for the Green’s function known.
Nevertheless, certain general guiding features can be readily established. The starting
point is to investigate the Poisson equation (12.68) when the domain Ω = R3 is all of
three-dimensional space. We impose boundary constraints by seeking a solution that goes
to zero, u(x) → 0, at large distances, ∥x ∥ → ∞. Since the Laplacian operator is invariant
under translations, we can, without loss of generality, place our delta impulse at the origin,
and concentrate on solving the particular case

−∆u = δ(x) , x ∈ R3.

Since δ(x) = 0 for all x ̸= 0, the desired solution will, in fact, be a solution to the
homogeneous Laplace equation

∆u = 0, x ̸= 0,

save, possibly, for a singularity at the origin.
The Laplace equation models the equilibria of a uniform isotropic medium, and so, as

noted in Exercise 12.1.7, is also invariant under three-dimensional rotations. This suggests
that, in any radially symmetric configuration, the solution should depend only on the
distance r = ∥x ∥ from the origin. Referring to the spherical coordinate form (12.16) of
the Laplacian operator, if u is a function of r only, then its derivatives with respect to the
angular coordinates ϕ, θ are zero, and so u(r) solves the ordinary differential equation

d2u

dr2
+

2

r

du

dr
= 0. (12.73)

This equation is, in effect, a first-order linear ordinary differential equation for v = du/dr
and hence is particularly easy to solve:

du

dr
= v(r) = −

b

r2
, and hence u(r) = a+

b

r
,

where a, b are arbitrary constants. The constant solution u(r) = a does not die away at
large distances, nor does it have a singularity at the origin. Therefore, if our intuition is
valid, the desired solution should be of the form

u =
b

r
=

b

∥x ∥
=

b√
x2 + y2 + z2

. (12.74)
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Indeed, this function is harmonic — solves Laplace’s equation — everywhere away from
the origin and has a singularity at x = 0.

The solution (12.74) is, up to a constant multiple, the three-dimensional Newtonian
gravitational potential due to a point mass at the origin. Its gradient,

f (x) = ∇
(

b

∥x ∥

)
= −

b x

∥x ∥3
, (12.75)

defines the gravitational force vector at the point x. When b > 0, the force f (x) points
toward the mass at the origin. Its magnitude

∥ f ∥ =
b

∥x ∥2
=

b

r2

is proportional to the reciprocal of the squared distance, which is the well-known inverse
square law of three-dimensional Newtonian gravity. Formula (12.75) can also be interpreted
as the electrostatic force due to a concentrated electric charge at the origin, with (12.74)
giving the corresponding Coulomb potential. The constant b is positive when the charges
are of opposite signs, leading to an attractive force, and negative in the repulsive case of
like charges.

Returning to our problem, the remaining task is to fix the multiple b such that the
Laplacian of our candidate solution (12.74) has a delta function singularity at the origin;
equivalently, we must determine a = 1/b such that

−∆(r−1) = a δ(x). (12.76)

This equation is certainly valid away from the origin, since δ(x) = 0 when x ̸= 0. To
investigate near the singularity, we integrate both sides of (12.76) over a small solid ball
Bε = {∥x ∥ ≤ ε} of radius ε :

−
∫ ∫ ∫

Bε

∆(r−1) dx dy dz =

∫ ∫ ∫

Bε

a δ(x) dx dy dz = a, (12.77)

where we used the definition of the delta function to evaluate the right-hand side. On the
other hand, since ∆ r−1 = ∇ ·∇ r−1, we can use the divergence theorem (12.8) to evaluate
the left-hand integral, whence

∫ ∫ ∫

Bε

∆(r−1) dx dy dz =

∫ ∫ ∫

Bε

∇ ·∇(r−1) dx dy dz =

∫ ∫

Sε

∂

∂n

(
1

r

)
dS,

where the surface integral is over the bounding sphere Sε = ∂Bε = {∥x ∥ = ε}. The
sphere’s unit normal n points in the radial direction, and hence the normal derivative
coincides with differentiation with respect to r; in particular,

∂

∂n

(
1

r

)
=

∂

∂r

(
1

r

)
= − 1

r2
.

The surface integral can now be explicitly evaluated:
∫ ∫

Sε

∂

∂n

(
1

r

)
dS = −

∫ ∫

Sε

1

r2
dS = −

∫ ∫

Sε

1

ε2
dS = − 4π,

since Sε has surface area 4πε2. Substituting this result back into (12.77), we conclude that

a = 4π, and hence − ∆ r−1 = 4π δ(x). (12.78)
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This is our desired formula! We conclude that a solution to the Poisson equation with a
delta function impulse at the origin is

G(x, y, z) =
1

4π r
=

1

4π ∥x ∥
=

1

4π
√
x2 + y2 + z2

, (12.79)

which is the three-dimensional Newtonian potential due to a unit point mass situated at
the origin.

If the singularity is concentrated at some other point ξ = (ξ, η, ζ), then we merely
translate the preceding solution. This leads immediately to the free-space Green’s function

G(x; ξ) = G(x− ξ) =
1

4π ∥x− ξ ∥
=

1

4π
√
(x− ξ)2 + (y − η)2 + (z − ζ)2

. (12.80)

The superposition principle (12.70) implies the following integral formula for the solutions
to the Poisson equation on all of three-dimensional space.

Theorem 12.8. Assuming that f(x) → 0 sufficiently rapidly as ∥x ∥ → ∞, a par-
ticular solution to the Poisson equation

−∆u = f, for x ∈ R3, (12.81)

is given by

u⋆(x) =
1

4π

∫ ∫ ∫

R3

f(ξ)

∥x− ξ ∥
dξ =

1

4π

∫ ∫ ∫

R3

f(ξ, η, ζ) dξ dη dζ√
(x− ξ)2 + (y − η)2 + (z − ζ)2

. (12.82)

The general solution is u(x, y, z) = u⋆(x, y, z) + w(x, y, z), where w(x, y, z) is an arbitrary
harmonic function.

Example 12.9. In this example, we compute the gravitational (or electrostatic)
potential in three-dimensional space due to a uniform solid ball, e.g., a spherical planet
such as the Earth. By rescaling, it suffices to consider the case in which the forcing function
is equal to 1 inside a ball of radius 1 and zero outside:

f(x) =

{
1, ∥x ∥ < 1,

0, ∥x ∥ > 1.

The particular solution to the resulting Poisson equation (12.81) is given by the integral

u(x) =
1

4π

∫ ∫ ∫

∥ ξ ∥<1

1

∥x− ξ ∥
dξ dη dζ. (12.83)

Clearly, since the forcing function is radially symmetric, the solution u = u(r) is also
radially symmetric. To evaluate the integral, then, we can take x = (0, 0, z) to lie on the
z–axis, so that r = ∥x ∥ = | z |. We use cylindrical coordinates ξ = (ρ cos θ, ρ sin θ, ζ), so
that

∥x− ξ ∥ =
√
ρ2 + (z − ζ)2 .

The integral in (12.83) can then be explicitly computed:

1

4π

∫ 1

−1

∫ √
1−ζ2

0

∫ 2π

0

ρ dθ dρ dζ√
ρ2 + (z − ζ)2

=
1

2

∫ 1

−1

(√
1 + z2 − 2z ζ − | z − ζ |

)
dζ =

⎧
⎪⎪⎨

⎪⎪⎩

1

3 | z |
, | z | ≥ 1,

1

2
−

z2

6
, | z | ≤ 1.
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r

u(r)

1 2 3 4

.25

.5

Figure 12.6. Solution to Poisson’s equation in a solid ball.

Therefore, by radial symmetry, the solution is

u(x) =

⎧
⎪⎨

⎪⎩

1

3r
, r = ∥x ∥ ≥ 1,

1

2
−

r2

6
, r = ∥x ∥ ≤ 1,

(12.84)

plotted, as a function of r = ∥x ∥, in Figure 12.6. Note that, outside the solid ball, the
solution is a Newtonian potential corresponding to a concentrated point mass of magnitude
4
3 π — the total mass of the planet. We have thus demonstrated a well-known result in
gravitation and electrostatics: the exterior potential due to a spherically symmetric mass
(or electrically charged body) is the same as if all the mass (charge) were concentrated at
its center. In the darkness of outer space, if you cannot see a spherical planet, you can
determine only its mass, not its size, by measuring its external gravitational force.

Bounded Domains and the Method of Images

Suppose we now wish to solve the inhomogeneous Poisson equation (12.67) on a bounded
domain Ω ⊂ R3. To construct the desired Green’s function, we proceed as follows. The
Newtonian potential (12.80) is a particular solution to the underlying inhomogeneous equa-
tion

−∆u = δ(x− ξ), x ∈ Ω, (12.85)

but it almost surely does not have the proper boundary values on ∂Ω. By linearity, the
general solution to such an inhomogeneous linear equation must take the form

u(x) =
1

4π ∥x− ξ ∥
− v(x), (12.86)

where the first term is a particular solution, while v(x) is an arbitrary solution to the ho-
mogeneous equation∆v = 0, i.e., an arbitrary harmonic function. The solution (12.86) sat-
isfies the homogeneous boundary conditions, provided the boundary values of v(x) match
those of the Green’s function. Let us explicitly state the result in the Dirichlet case.

Theorem 12.10. The Green’s function for the homogeneous Dirichlet boundary
value problem

−∆u = f for x ∈ Ω, u = 0 for ∥x ∥ ∈ ∂Ω,
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0 ξ

η

x

Figure 12.7. Method of Images for the unit ball.

for the Poisson equation in a domain Ω ⊂ R3 has the form

G(x; ξ) =
1

4π ∥x− ξ ∥
− v(x; ξ), x, ξ ∈ Ω, (12.87)

where v(x; ξ) is the harmonic function of x ∈ Ω that satisfies

v(x; ξ) =
1

4π ∥x− ξ ∥
for all x ∈ ∂Ω. (12.88)

In this manner, we have reduced the determination of the Green’s function to the
solution to a particular family of Laplace boundary value problems, which are parametrized
by the point ξ ∈ Ω. In certain domains with simple geometry, the Method of Images can
be used to produce an explicit formula for the Green’s function. As in Section 6.3, the idea
is to match the boundary values of the free-space Green’s function due to a delta impulse
at a point inside the domain with one or more additional Green’s functions corresponding
to impulses at points outside the domain — the “image points”.

The case of a solid ball of radius 1 with Dirichlet boundary conditions is the easiest to
handle. Indeed, the same geometric construction that we used for a planar disk, redrawn
in Figure 12.7, applies here. Although identical to Figure 6.13, we are re-interpreting it as
a three-dimensional diagram, with the circle representing the unit sphere, while the lines
remain lines. The required image point is given by inversion:

η =
ξ

∥ ξ ∥2
, whereby ∥ ξ ∥ =

1

∥η ∥
.

By the similar triangles argument used before, we have

∥ ξ ∥
∥x ∥

=
∥x ∥
∥η ∥

=
∥x− ξ ∥
∥x− η ∥

, and therefore ∥x ∥ = 1.

As a result, the function

v(x, ξ) =
1

4π

∥η ∥
∥x− η ∥

=
1

4π

∥ ξ ∥
∥ ξ − ∥ ξ ∥2 x ∥

has the same boundary values on the unit sphere as the Newtonian potential:

1

4π

∥η ∥
∥x− η ∥

=
1

4π∥x− ξ ∥
whenever ∥x ∥ = 1.
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We conclude that their difference

G(x; ξ) =
1

4π

(
1

∥x− ξ ∥
−

∥ ξ ∥
∥ ξ − ∥ ξ ∥2 x ∥

)
(12.89)

has the required properties of the Green’s function: it satisfies the Laplace equation inside
the unit ball except at the delta function singularity x = ξ, and, moreover, G(x; ξ) = 0
has homogeneous Dirichlet conditions on the spherical boundary ∥x ∥ = 1.

With the Green’s function in hand, we can apply the general superposition for-
mula (12.70) to arrive at a solution to the Dirichlet boundary value problem for the Poisson
equation in the unit ball.

Theorem 12.11. The solution to the homogeneous Dirichlet boundary value prob-
lem

−∆u = f for ∥x ∥ < 1, u = 0 for ∥x ∥ = 1,

on the unit ball is given by the integral

u(x) =
1

4π

∫ ∫ ∫

∥ ξ ∥≤1

(
1

∥x− ξ ∥
−

∥ ξ ∥
∥ ξ − ∥ ξ ∥2 x ∥

)
f(ξ) dξ dη dζ. (12.90)

By the same token, formula (12.72) provides a solution to the inhomogeneous Dirichlet
boundary value problem for the Laplace equation on a ball.

Theorem 12.12. The solution to the homogeneous Dirichlet boundary value prob-
lem

−∆u = 0 for ∥x ∥ < 1, u = h for ∥x ∥ = 1,

is given by the following surface integral:

u(x) =
1

4π

∫ ∫

∥ ξ ∥=1

1− ∥x ∥2

∥ ξ − x ∥3
h(ξ) dS. (12.91)

Proof : We start with the explicit formula (12.89) for the Green’s function on the
unit ball. Since the normal derivative on the unit sphere ∥ ξ ∥ = 1 can be written as
∂/∂n = ξ ·∇ξ, a short computation demonstrates that

∂G

∂n
(x; ξ) =

1

4π

(
x · ξ − ∥ ξ ∥2

∥x− ξ ∥3
−

∥ ξ ∥3
(
x · ξ − ∥ ξ ∥2 ∥x ∥2

)

∥ ξ − ∥ ξ ∥2 x ∥3

)
=

1

4π

∥x ∥2 − 1

∥ ξ − x ∥3
.

The solution formula (12.91) thus immediately follows from (12.72). Q.E.D.

For example, the series solution (12.60) to the spherical capacitor problem of Exam-
ple 12.6 can thus be re-expressed as a surface integral:

u(x, y, z) =
1

4π

∫ ∫

{ξ2+η2+ζ2=1, ζ>0}

(1− x2 − y2 − z2) dS
[
(ξ − x)2 + (η − y)2 + (ζ − z)2

]3/2

=

∫ π

−π

∫ π/2

0

(1− x2 − y2 − z2) sinϕ dϕ dθ
[
(cos θ sinϕ− x)2 + (sin θ sinϕ− y)2 + (cosϕ− z)2

]3/2 .
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Exercises

12.3.1. Find the equilibrium temperature of a sphere of radius 1 whose boundary is held at 0◦

while a concentrated unit heat source is applied at (a) the center; (b) a point half-way be-
tween the center and the boundary.

12.3.2. A hot soldering iron is continually applied to the north pole of a solid spherical ball of
radius 1. Find the equilibrium temperature.

12.3.3. Write down the gravitional potential — both external and internal — due to a spherical
planet of radius R composed out of a uniform material with density ρ.

12.3.4.(a) Find the gravitational potential due to a spherical shell of unit density obtained by
carving out a spherical cavity of radius a from a solid ball of radius b > a. Hint : Use the
solution to Exercise 12.3.3. (b) What is the gravitational force inside the cavity?
(c) Show that outside the shell, the gravitational potential is as if the entire mass were con-
centrated at the origin.

♣ 12.3.5.(a) Write down an integral formula for the gravitational potential and gravitational
force field due to a mass of unit density in the shape of a solid unit cube that is centered
at the origin. (b) Use numerical integration to determine the gravitational force vector at
the points (3, 0, 0) and

(√
3 ,
√
3 ,
√
3
)
. Before doing the calculation, see whether you can

predict which experiences a stronger force, and then check your prediction numerically.
(c) Suppose the mass is re-formed into a sphere. How does this affect the gravitational
force at the two points? First predict whether it will increase, decrease, or stay the same.
Then test your prediction by computing the values and comparing with those you computed
in part (b).

12.3.6. A thin hollow metal sphere of unit radius is grounded. Find the electrostatic potential
inside the sphere due to a small solid metal ball of radius ρ < 1 placed at its center, assum-
ing unit charge density throughout the ball.

12.3.7. A thin straight rod of unit density and length 2ℓ is fixed on the z–axis centered at the
origin. Find the induced (a) gravitational potential and (b) gravitational force experienced
by a point (x, y, z) not on the rod.

♥ 12.3.8.(a) Find the gravitational force due to a thin, uniform straight rod of unit density and
infinite length by letting ℓ → ∞ in your solution to Exercise 12.3.7(b). (b) Show that the
force field of part (a) has a potential function that can be identified with the two-dimensional
logarithmic gravitational potential due to a point mass at the origin. Thus, two-dimensional
gravitation can be regarded as a cross-section of three-dimensional gravitation due to in-
finitely long vertical line masses. (c) Is your potential function the limit, as ℓ → ∞, of the
potential function you found in Exercise 12.3.7(a)? Discuss.

12.3.9. Which well-known solutions to the Laplace equation comes from setting m = n = 0 in
(12.61)?

12.3.10. Use the Fredholm Alternative to analyze the existence and uniqueness of solutions to
the homogeneous Neumann boundary value problem for the Poisson equation on a bounded
domain Ω ⊂ R3.

♦ 12.3.11. Mimic the proof of Theorem 6.19 to establish the solution formula (12.72).

12.3.12. Use the Method of Images to find the Green’s function for a solid hemisphere of unit
radius subject to homogeneous Dirichlet boundary conditions.
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12.4 The Heat Equation for Three–Dimensional Media

Thermal diffusion in a uniform isotropic solid body Ω ⊂ R3 is modeled by the three-
dimensional heat equation

∂u

∂t
= γ∆u = γ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
, (x, y, z) ∈ Ω. (12.92)

The positivity of the body’s thermal diffusivity, γ > 0, is required on both physical and
mathematical grounds. The physical derivation is exactly the same as that for the two-
dimensional version (11.1), and does not need to be repeated in detail. Briefly, Fourier’s
law expresses the heat flux vector as a multiple of the temperature gradient, w = − κ∇u,
while energy conservation implies that its divergence is proportional to the rate of change of
temperature: ∇ ·w = − σut. Combining these two physical laws and assuming uniformity,
whereby κ and σ are constant, produces (12.92) with γ = κ/σ.

As always, we must impose suitable boundary conditions: either Dirichlet condi-
tions u = h that specify the boundary temperature; (homogeneous) Neumann conditions
∂u/∂n = 0 corresponding to an insulated boundary; or a mixture of the two. Given the
body’s temperature

u(t0, x, y, z) = f(x, y, z) (12.93)

at an initial time t0, it can be proved, [38, 61, 99], that the resulting initial-boundary value
problem is well-posed, which means that there is a unique classical solution u(t, x, y, z),
defined at all subsequent times t > t0, that depends continuously on the initial data.

As in the one- and two-dimensional versions, we begin by restricting our attention to
homogeneous boundary conditions. Separation of variables works as usual, and we quickly
review the basic ideas. One begins by imposing an exponential solution ansatz

u(t,x) = e−λt v(x).

Substituting into the differential equation and canceling the exponentials, it follows that v
satisfies the Helmholtz eigenvalue problem

γ∆v + λ v = 0,

subject to the relevant boundary conditions. For Dirichlet and mixed boundary conditions,
the Laplacian is a positive definite operator, and hence the eigenvalues are all strictly
positive,

0 < λ1 ≤ λ2 ≤ · · · , with λn −→ ∞, as n → ∞.

Moreover, on a bounded domain, the Helmholtz eigenfunctions are complete, and so linear
superposition implies that the solution can be written as an eigenfunction series

u(t,x) =
∞∑

n=1

cn e
−λn t vn(x). (12.94)

The coefficients cn are uniquely prescribed by the initial condition (12.93):

u(t0,x) =
∞∑

n=1

cn e
−λn t0 vn(x) = f(x). (12.95)
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Self-adjointness of the boundary value problem implies orthogonality of the eigenfunctions,
and hence the coefficients are obtained via the usual inner product formulae:

cn = eλn t0 ⟨ f , vn ⟩
∥ vn ∥2

= eλn t0

∫ ∫ ∫

Ω
f(x) vn(x) dx dy dz

∫ ∫ ∫

Ω
vn(x)

2 dx dy dz
. (12.96)

The resulting solution decays exponentially fast to thermal equilibrium, u(t,x) → 0
as t → ∞, typically at a rate equal to the smallest positive eigenvalue λ1 > 0, although
special solutions, whose initial series coefficients vanish, will decay at a faster rate governed
by a higher eigenvalue. Since the higher modes — the terms with n ≫ 0 — go to zero
extremely rapidly with increasing t, the solution can be well approximated by the first few
terms in its eigenfunction expansion. As a consequence, the heat equation rapidly smooths
out discontinuities and eliminates high-frequency noise in the initial data.

Unfortunately, explicit formulas for the eigenfunctions and eigenvalues are rare. Most
explicit eigensolutions of the Helmholtz boundary value problem require a further separa-
tion of variables. In a rectangular box, one separates the solution into a product of functions
depending upon the individual Cartesian coordinates, and the eigenfunctions are written
as products of trigonometric functions; see Exercise 12.4.1 for details. In a cylindrical
domain, the separation is effected in cylindrical coordinates, which leads to eigensolutions
involving trigonometric and Bessel functions, as outlined in Exercise 12.4.5. The most in-
teresting and enlightening case is a spherical domain, and we treat this particular problem
in complete detail in the ensuing subsection.

Exercises

♦ 12.4.1. Let B = {0 < x < a, 0 < y < b, 0 < z < c} be a solid box of size a× b× c.
(a) Write down an initial-boundary value problem for the thermodynamics of the box when
all its sides are all held at 0◦ and its initial temperature is f(x, y, z). (b) Use separation
of variables to construct the normal mode solutions. (c) Write down a series representing
the general solution to the initial-boundary value problem. What are the formulas for the
coefficients in your series? (d) What is the equilibrium temperature? How fast does the
temperature in the box decay to equilibrium?

12.4.2. True or false: In the context of Exercise 12.4.1, among all boxes of a given volume V , a
cube decays slowest to thermal equilibrium. What is the cube’s decay rate?

12.4.3. Answer Exercises 12.4.1 and 12.4.2 when the top of the box, where z = c, is insulated.

12.4.4. A rectangular brick of size 1 cm × 2 cm × 3 cm made out of material with diffusion
coefficient γ = 6 is insulated on five sides, while one of its small ends is held at temperature
u(x, y, 0) = cosπx cos 2πy. (a) Find the eventual equilibrium temperature distribution.
(b) If the brick is initially heated in an oven, how fast does it return to equilibrium?

♦ 12.4.5. Let C =
{
0 ≤

√
x2 + y2 < a, 0 < z < h

}
be a solid cylinder of radius a and height h.

(a) Write down an initial-boundary value problem in cylindrical coordinates for the thermo-
dynamics of the cylinder when its sides, top, and bottom are all held at 0◦.

(b) Use separation of variables to write down a series representing the general solution to
the initial-boundary value problem. What are the formulas for the coefficients in your
series?
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(c) What is the eventual equilibrium temperature?
(d) How fast does the temperature in the cylinder go to equilibrium?

12.4.6. Find the solution to the initial-boundary value problem in Exercise 12.4.5 when the ini-
tial temperature of the cylinder is uniformly 30◦. Hint : Use (11.112) to evaluate the coeffi-
cients.

♥ 12.4.7. A cylindrical can that contains 355 ml of soda is removed from the refrigerator. Find
the optimal cylindrical shape for such a can in order to keep the soda cold the longest. Is
this the manufactured shape of a standard soda can?

♥ 12.4.8. True or false: Among all solid cylinders of a given volume, the one that reaches ther-
mal equilibrium the slowest, when subject to homogeneous Dirichlet boundary conditions, is
the one that has the least surface area. Justify your answer.

♥ 12.4.9. Among all fully insulated solid cylinders of unit volume, which cools down
(i) the slowest? (ii) the fastest?

♦ 12.4.10. Write down a series for the solution to the homogeneous Neumann boundary value
problem for the heat equation on a bounded domain Ω ⊂ R3, corresponding to the thermo-
dynamics of a completely insulated solid body. What is the equilibrium temperature of the
body? Does the solution decay to equilibrium? If so, how fast?

♦ 12.4.11. Suppose u(t, x, y, z) is a solution to the heat equation on a fully insulated bounded
domain Ω ⊂ R3. Use the identities in Exercise 12.1.11 to prove the following:

(a) The total heat H(t) =
∫∫∫

Ω
u(t, x, y, z) dx dy dz is conserved, i.e., is constant. Explain

how this can be used to determine the equilibrium temperature of the body.

(b) If u is a non-equilibrium solution, its squared L2 norm E(t) =
∫∫∫

Ω
u(t, x, y, z)2 dx dy dz

is a strictly decreasing function of t.
(c) Use part (b) to prove uniqueness of solutions to the initial value problem.

♦ 12.4.12. State and prove a Maximum Principle for the three-dimensional heat equation.

Heating of a Ball

Our goal is to study heat propagation in a solid spherical body, e.g., the Earth.† For
simplicity, we take the diffusivity γ = 1, and consider the heat equation on a solid spherical
ball of unit radius, B1 = {∥x ∥ < 1}, that is subject to homogeneous Dirichlet boundary
conditions. Once we know how to solve this particular case, an easy scaling argument, as
outlined in Exercise 12.4.16, will allow us to find the solution for a ball of arbitrary radius
and general diffusivity.

As usual, when dealing with a spherical geometry, we adopt spherical coordinates
r,ϕ, θ, as in (12.15), in terms of which the heat equation takes the form

∂u

∂t
= ∆u =

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂ϕ2
+

cosϕ

r2 sinϕ

∂u

∂ϕ
+

1

r2 sin2 ϕ

∂2u

∂θ2
, (12.97)

where we have used our handy spherical coordinate formula (12.16) for the Laplacian. The

† In this admittedly simplistic model, we are assuming that the Earth is composed of a
completely uniform and isotropic solid material.
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standard diffusive separation of variables ansatz

u(t, r,ϕ, θ) = e−λt v(r,ϕ, θ)

requires us to analyze the spherical coordinate form of the Helmholtz equation

∆v + λ v =
∂2v

∂r2
+

2

r

∂v

∂r
+

1

r2
∂2v

∂ϕ2
+

cosϕ

r2 sinϕ

∂v

∂ϕ
+

1

r2 sin2 ϕ

∂2v

∂θ2
+ λ v = 0 (12.98)

on the unit ball Ω = {r < 1} under homogeneous Dirichlet boundary conditions. To make
further progress, we invoke a second variable separation, splitting off the radial coordinate
by setting

v(r,ϕ, θ) = p(r)w(ϕ, θ).

The function w must be 2π–periodic in θ and well defined on the z–axis, i.e., when ϕ = 0,π.
Substituting this ansatz into (12.98), and separating all the r-dependent terms from those
terms depending on the angular variables ϕ, θ leads to a pair of differential equations
involving a separation constant, denoted by µ. The first is an ordinary differential equation

r2
d2p

dr2
+ 2r

dp

dr
+ (λ r2 − µ)p = 0, (12.99)

for the radial component p(r), while the second is a familiar partial differential equation

∆Sw + µw =
∂2w

∂ϕ2
+

cosϕ

sinϕ

∂w

∂ϕ
+

1

sin2 ϕ

∂2w

∂θ2
+ µw = 0, (12.100)

for its angular counterpart w(ϕ, θ). The operator ∆S is the spherical Laplacian from
(12.19). In Section 12.2, we showed that its eigenvalues are

µm = m(m+ 1) for m = 0, 1, 2, 3, . . . .

The mth eigenvalue admits 2m+ 1 linearly independent eigenfunctions: the spherical har-
monics Y 0

m, . . . , Y m
m , Ỹ 1

m, . . . , Ỹ m
m defined in (12.38).

Spherical Bessel Functions

The radial ordinary differential equation (12.99) can be solved by setting

q(r) =
√
r p(r). (12.101)

We use the product rule to relate the derivatives of q and p, whereby

p =
q

r1/2
,

dp

dr
=

1

r1/2
dq

dr
− q

2r3/2
,

d2p

dr2
=

1

r1/2
d2q

dr2
− 1

r3/2
dq

dr
+

3q

4r5/2
.

Substituting these expressions back into (12.99) with µ = µm = m(m+1) and multiplying
the resulting equation by

√
r, we discover that q(r) must solve the differential equation

r2
d2q

dr2
+ r

dq

dr
+
[
λ r2 −

(
m+ 1

2

)2 ]
q = 0, (12.102)

which we recognize as the rescaled Bessel equation (11.56) of half-integer order m + 1
2 .

Consequently, the solution to (12.102) that remains bounded at r = 0 is (up to a scalar
multiple) the rescaled Bessel function

q(r) = Jm+1/2

(√
λ r

)
.
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The corresponding solution

p(r) = r−1/2 Jm+1/2

(√
λ r

)
(12.103)

to (12.99) is important enough to warrant a special name.

Definition 12.13. The spherical Bessel function of order m ≥ 0 is defined by the
formula

Sm(x) =

√
π

2 x
Jm+1/2(x). (12.104)

Remark : The multiplicative factor
√
π/2 is included in the definition so as to avoid

annoying factors of
√
π and

√
2 in the subsequent formulas.

Surprisingly, unlike the Bessel functions of integer order, the spherical Bessel functions
are all elementary functions! Comparing (12.104) with (11.105), we see that the spherical
Bessel function of order 0 is

S0(x) =
sinx
x . (12.105)

The corresponding explicit formulas for the higher-order spherical Bessel functions can be
obtained through the general recurrence relation

Sm+1(x) = −
dSm

dx
+

m

x
Sm(x), (12.106)

which is a consequence of the Bessel function recurrence formula (11.111). Indeed,

dSm

dx
=

√
π

2x

dJm+1/2

dx
−

1

2

√
π

2

1

x3/2
Jm+1/2(x)

= −
√

π

2x

[
Jm+3/2(x) +

m+ 1
2

x
Jm+1/2(x)

]
−

1

2

√
π

2

1

x3/2
Jm+1/2(x)

= −
√

π

2x
Jm+3/2(x) +

m

x

√
π

2x
Jm+1/2(x) = −Sm+1(x) +

m

x
Sm(x).

The next few spherical Bessel functions are, therefore,

S1(x) = −
dS0

dx
= −

cosx

x
+

sin x

x2
,

S2(x) = −
dS1

dx
+

S1

x
= −

sinx

x
−

3 cosx

x2
+

3 sinx

x3
,

S3(x) = −
dS2

dx
+

2S2

x
=

cosx

x
−

6 sinx

x2
−

15 cosx

x3
+

15 sinx

x4
,

(12.107)

and so on. Figure 11.4 provides graphs of the first four spherical Bessel functions on the
interval 0 ≤ x ≤ 20; the vertical axes range from −.5 to 1.0. We note that

S0(0) = 1, whereas Sm(0) = 0 for m > 0, (12.108)

whose proof is the task of Exercise 12.4.26. Thus, our radial solution (12.103) is, apart
from an inessential constant multiple, a rescaled spherical Bessel function of order m :

p(r) = Sm

(√
λ r

)
.
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S0(x) S1(x)

S2(x) S3(x)

Figure 12.8. Spherical Bessel functions.

So far, we have not taken into account the (homogeneous) Dirichlet boundary condition
at r = 1. This requires

p(1) = 0, and hence Sm

(√
λ
)
= 0.

Therefore,
√
λ must be a root of the mth order spherical Bessel function. We introduce the

notation
0 < σm,1 < σm,2 < σm,3 < · · ·

to denote the successive (positive) spherical Bessel roots , satisfying

Sm(σm,n) = 0 for n = 1, 2, . . . . (12.109)

In particular the roots of the zeroth order spherical Bessel function S0(x) = x−1 sin x are
just the integer multiples of π:

σ0,n = nπ for n = 1, 2, . . . .

The higher-order roots are not expressible in terms of known constants. A table of all
spherical Bessel roots that are < 13 appears below. The columns of the table are indexed
by m, the order, while the rows are indexed by n, the root number.

Re-assembling the individual constituents, we have now demonstrated that the sepa-
rable eigenfunctions of the Helmholtz equation on a solid ball of radius 1, when subject
to homogeneous Dirichlet boundary conditions, are products of spherical Bessel functions
and spherical harmonics,

vk,m,n(r,ϕ, θ) = Sm(σm,n r) Y
k
m(ϕ, θ),

ṽk,m,n(r,ϕ, θ) = Sm(σm,n r) Ỹ
k
m(ϕ, θ),

m = 0, 1, 2, . . . ,

k = 0, . . . ,m,

n = 1, 2, 3, . . . .

(12.110)
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Spherical Bessel Roots σm,n

n

∖
m 0 1 2 3 4 5 6 7

1 3.1416 4.4934 5.7635 8.1826 9.3558 10.5128 11.6570 12.7908 . . .

2 6.2832 7.7253 9.0950 11.7049 12.9665
...

...
...

3 9.4248 10.9041 12.3229
...

...

4 12.5664
...

...

...
...

The corresponding eigenvalues

λm,n = σ2
m,n, m = 0, 1, 2, . . . , n = 1, 2, 3, . . . , (12.111)

are the squared spherical Bessel roots. Since there are 2m + 1 independent spherical
harmonics of order m, the eigenvalue λm,n admits 2m+ 1 linearly independent eigenfunc-
tions, namely v0,m,n, . . . , vm,m,n, ṽ1,m,n, . . . , ṽm,m,n. In particular, the radially symmetric

solutions are the eigenfunctions with k = m = 0:

vn(r) = v0,0,n(r) = S0(σ0,n r) =
sinnπ r

nπ r
, n = 1, 2, . . . . (12.112)

Further analysis, cf. [34], demonstrates that the separable solutions (12.110) form a com-
plete system of eigenfunctions for the Helmholtz equation on the unit ball with homoge-
neous Dirichlet boundary conditions.

We have thus completely determined the basic separable solutions to the heat equation
on a solid unit ball subject to homogeneous Dirichlet boundary conditions. They are
products of exponential functions of time, spherical Bessel functions of the radius, and
spherical harmonics:

uk,m,n(t, r,ϕ, θ) = e−σ2
m,nt Sm(σm,n r) Y

k
m(ϕ, θ),

ũk,m,n(t, r,ϕ, θ) = e−σ2
m,nt Sm(σm,n r) Ỹ

k
m(ϕ, θ).

(12.113)

The general solution can be written as an infinite “Fourier–Bessel–spherical harmonic”
series in these fundamental modes:

u(t, r,ϕ, θ) =
∞∑

m=0

∞∑

n=1

e−σ2
m,nt Sm(σm,n r)

(
c0,m,n

2
Y 0
m(ϕ, θ)

+
m∑

k=1

[
ck,m,nY

k
m(ϕ, θ) + c̃k,m,nỸ

k
m(ϕ, θ)

])
.

(12.114)

The series’ coefficients are uniquely prescribed by the initial data u(0, r,ϕ, θ) = f(r,ϕ, θ),
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and their explicit formulae†

ck,m,n =
(2m+ 1)(m− k) !

π (m+ k) !Sm+1(σm,n)
2

∫ π

−π

∫ π

0

∫ 1

0
f(r,ϕ, θ) vk,m,n(r,ϕ, θ) r

2 sinϕ dr dϕ dθ,

c̃k,m,n =
(2m+ 1)(m− k) !

π (m+ k) !Sm+1(σm,n)
2

∫ π

−π

∫ π

0

∫ 1

0
f(r,ϕ, θ) ṽk,m,n(r,ϕ, θ) r

2 sinϕ dr dϕ dθ,

(12.115)
follow from the usual orthogonality relations among the eigenfunctions, combined with the
formulas

∥ v0,m,n ∥ =

√
2π

2m+ 1
Sm+1(σm,n),

∥ vk,m,n ∥ = ∥ ṽk,m,n ∥ =

√
π(m+ k) !

(2m+ 1)(m− k) !
Sm+1(σm,n), k > 0,

(12.116)

for their norms, to be established in Exercise 12.4.29. In particular, the slowest-decaying
mode is the spherically symmetric function

u0,0,1(t, r) =
e−π2 t sinπr

π r
, (12.117)

corresponding to the smallest eigenvalue λ0,1 = σ2
0,1 = π2. Therefore, typically, the decay

to thermal equilibrium of a unit sphere is at an exponential rate of π2 ≈ 9.8696, or, to a
very rough approximation, 10.

Exercises

12.4.13. It takes a solid ball of radius 1 cm ten minutes to return to (approximate) thermal
equilibrium. How long does it take a similar ball of radius 2?

12.4.14. If a 200-gram potato served hot from the oven takes 15 minutes until its maximum
temperature is less than 40◦ C, how long does it take a 300-gram potato of the same shape
to cool off?

♥ 12.4.15. A uniform solid metal ball of radius 1 meter, with diffusion coefficient γ = 2, is taken
from a 300◦ oven and immersed in a bucket of ice water. (a) Write down an initial-boundary
value problem that describes the temperature of the ball. (b) Find a series solution for
the temperature. (c) At what time is the temperature ≤ 50◦ throughout the ball?

♦ 12.4.16. Find the decay rate to thermal equilibrium of a solid spherical ball of radius R and
diffusion coefficient γ when subject to homogeneous Dirichlet boundary conditions.

12.4.17. True or false: A heated solid hemisphere placed in a 0◦ environment cools down twice
as fast as a solid sphere of the same radius made out of the same material.

12.4.18. A fully insulated solid spherical ball of radius 1 has initial temperature distribution
f(r,ϕ, θ). (a) Write down a formula for the equilibrium temperature of the ball.
(b) What is the rate of decay of the ball to thermal equilibrium?

† We use the spherical coordinate form of the L2 inner product on the ball.
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12.4.19. Which cools down to equilibrium faster: a fully insulated solid ball or one whose bound-
ary is held fixed at 0◦? How much faster?

12.4.20. A solid sphere and solid cube are made out of the same material and have the same
volume. Both are heated in an oven and then submerged in a large vat of water. Which
will cool down faster? Explain and justify your answer.

12.4.21. Answer Exercise 12.4.20 when the two solids have the same surface area.

12.4.22. Suppose the solid spherical shell in Exercise 12.2.7 starts off at room temperature. As-
suming that the water in the center remains at 100◦, find the rate at which the shell tends
to thermal equilibrium.

♥ 12.4.23. The thermodynamics of a thin, uniform, spherical shell of unit radius is governed by
the spherical heat equation ut = γ∆Su, u(0,ϕ, θ) = f(ϕ, θ), in which ∆S is the spheri-
cal Laplacian (12.19). The solution u(t,ϕ, θ) represents the temperature of the point on the
unit sphere with angular coordinates ϕ, θ, while f(ϕ, θ) is the initial temperature distribu-
tion. (a) Find the eigensolutions. (b) Write down the solution to the initial value problem
as a series in eigensolutions. (c) What is the final equilibrium temperature of the spheri-
cal shell? (d) What is its rate of decay to equilibrium? (e) Find the solution and the final
equilibrium temperature when f(ϕ, θ) = (i) sinϕ cos θ; (ii) cos 2ϕ.

12.4.24. A spherical potato, of radius R = 7.5 cm and thermal diffusivity γ = .3 cm2/sec, is
initially at room temperature, 25◦ C, and is placed in a pot of boiling water at 100◦ C. The
potato is cooked when it has reached the temperature of at least 90◦ C throughout. How
long do you have to wait until the potato is done?

12.4.25.(a) Explain why the spherical Bessel function S1(x) is bounded at x = 0. What is
S1(0)? (b) Answer the same question for S2(x).

♦ 12.4.26. Prove the formulae (12.108).

♦ 12.4.27.(a) Find a recurrence relation expressing the spherical Bessel function Sm−1(x) in
terms of Sm(x). (b) Prove that

d
dx

[
x3

(
Sm(x)2 − Sm−1(x)Sm+1(x)

) ]
= 2x2Sm(x)2.

♦ 12.4.28. Let m ≥ 0 be a fixed integer. (a) Prove that the rescaled spherical Bessel functions
vn(r) = Sm(σm,n r), n = 1, 2, . . . , are mutually orthogonal under the inner product

⟨ f , g ⟩ =
∫ 1

0
f(r) g(r) r2 dr. (b) Prove that ∥ vn ∥ = 1√

2
|Sm+1(σm,n) |. Hint : Mimic the

method outlined in Exercise 11.4.22, using the identity in Exercise 12.4.27(b).

♦ 12.4.29.(a) Use the result of Exercise 12.4.28 to prove the formulae (12.116) for the L2 norms
of the eigenfunctions (12.110). (b) Justify the formulae (12.115).

The Fundamental Solution of the Heat Equation

For the heat equation (as well as more general diffusion equations), the fundamental so-
lution measures the response of the body to an instantaneously applied concentrated unit
heat source. Thus, given a point ξ = (ξ, η, ζ) ∈ Ω within the body, the fundamental
solution

u(t,x) = F (t,x; ξ) = F (t, x, y, z; ξ, η, ζ)

solves the initial-boundary value problem

ut = ∆u, u(0,x) = δ(x− ξ), for x ∈ Ω, t > 0, (12.118)



544 12 Partial Differential Equations in Space

subject to the selected homogeneous boundary conditions — Dirichlet, Neumann, or mixed.
Explicit formulas for the fundamental solution are rare, although in bounded domains

it is possible to construct it as an eigenfunction series, as described in Section 9.5. The
one case amenable to a complete analysis is that in which the heat is distributed over
all of three-dimensional space, so Ω = R3. We recall that Lemma 11.11 showed how to
construct solutions of the two-dimensional heat equation as products of one-dimensional
solutions. In a similar manner, if p(t, x), q(t, x), and r(t, x) are any three solutions to the
one-dimensional heat equation ut = γ uxx, then their product

u(t, x, y, z) = p(t, x) q(t, y) r(t, z) (12.119)

is a solution to the three-dimensional heat equation

ut = γ (uxx + uyy + uzz).

In particular, choosing

p(t, x) =
e−(x−ξ)2/4γ t

2
√
πγ t

, q(t, y) =
e−(y−η)2/4γ t

2
√
πγ t

, r(t, z) =
e−(z−ζ)2/4γ t

2
√
πγ t

,

to all be one-dimensional fundamental solutions, we are immediately led to the fundamental
solution in the form of a three-dimensional Gaussian filter .

Theorem 12.14. The fundamental solution

F (t,x; ξ) = F (t,x− ξ) =
e−∥x−ξ ∥2/(4γ t)

8 (πγ t)3/2
(12.120)

solves the three-dimensional heat equation ut = γ∆u on R3 for t > 0, with an initial
temperature equal to a delta function concentrated at the point x = ξ.

Thus, the initially concentrated heat energy immediately begins to spread out in a
spherically symmetric manner, with a minuscule, but nonzero effect that is felt immediately
arbitrarily far away from the initial concentration. At each individual point x ∈ R3, after
an initial warm-up, the temperature decays back to zero at a rate proportional to t−3/2

— more rapidly than in two dimensions, because, intuitively, there are more directions in
which the heat energy can disperse.

To solve a more general initial value problem with the initial temperature distributed
over all of space, we first write

u(0,x) = f(x) =

∫ ∫ ∫
f(ξ) δ(x− ξ) dξ dη dζ

as a linear superposition of delta functions. By linearity, the solution to the initial value
problem is given by the corresponding superposition

u(t,x) =
1

8 (πγ t)3/2

∫ ∫ ∫
f(ξ) e−∥x−ξ ∥2/(4γ t) dξ dη dζ (12.121)

of the fundamental solutions. Since the fundamental solution has exponential decay as
∥x ∥ → ∞, the superposition formula is valid even for initial temperature distributions
that are moderately increasing at large distances. We remark that the integral (12.121)
has the form of a three-dimensional convolution

u(t,x) = F (t,x) ∗ f(x) =
∫ ∫ ∫

f(ξ)F (t,x− ξ) dξ dη dζ (12.122)
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of the initial data with a one-parameter family of increasingly spread-out Gaussian filters.
Thus, as before, convolution with a Gaussian filter has a smoothing effect on the initial
temperature distribution.

Exercises

12.4.30. True or false: In a three-dimensional medium, heat energy propagates at infinite speed.

12.4.31. A solid spherical ball of radius 1 is heated to 100◦ and inserted into a three-dimen-
sional medium filling the rest of R3 with uniform temperature 0◦.
(a) Write down an integral formula for the subsequent temperature distribution over R3 at

time t > 0, assuming a common diffusion coefficient γ = 1.
(b) Evaluate the resulting integral using spherical coordinates.

12.4.32.(a) Prove that u(t, r) is a spherically symmetric solution to the three-dimensional heat
equation if and only if w(t, r) = r u(t, r) solves the one-dimensional heat equation: wt = wrr.
(b) True or false: If w(t, r) is the fundamental solution for the one-dimensional heat equa-
tion based at r = 0, then u(t, r) = w(t, r)/r is the fundamental solution for the three-
dimensional heat equation based at the origin.

12.4.33. Construct the solution to the initial value problem in Exercise 12.4.31 using radial
symmetry and Exercise 12.4.32.

♥ 12.4.34. Suppose that, as Earth orbits the sun, its surface is subject to yearly periodic tem-
perature variations a cosω t, where the frequency ω is given by (4.56). (a) Assuming, for
simplicity, that the Earth is a homogeneous solid ball, of radius R, formulate an initial-
boundary value problem that governs the temperature fluctuations within the Earth due
to its orbiting the sun. (b) At what depth does the temperature vary out of phase with the
surface, i.e., is the warmest in winter and coldest in summer? Compare your answer with
the root cellar computation at the end of Section 4.1. Hint : Use Exercise 12.4.32.

12.4.35.(a) Prove that if u(t, x) is any (sufficiently smooth) solution to the heat equation, so is
its time derivative v = ∂u/∂t. (b) Write out the time derivative of the fundamental solu-
tion, and the initial value problem it satisfies.

12.4.36. Write down an explicit eigenfunction series for the fundamental solution F (t,x; ξ) to
the heat equation in a unit cube with thermal diffusivity γ = 1 that is subject to homoge-
neous Dirichlet boundary conditions.

12.4.37. Write down an explicit eigenfunction series for the fundamental solution F (t,x; ξ) to
the heat equation in a ball of radius 1 that has thermal diffusivity γ = 1 and is subject to
homogeneous Dirichlet boundary conditions.

♦ 12.4.38. Justify the statement that formula (12.119) provides a solution to the three-dimensional
heat equation.

12.4.39. Fill in the details of the proof of Theorem 12.14.

12.5 The Wave Equation for Three–Dimensional Media

The three-dimensional wave equation

utt = c2∆u = c2(uxx + uyy + uzz), (12.123)
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in which c > 0 denotes the speed of light, governs the propagation of waves in a homoge-
neous isotropic three-dimensional medium, e.g., electromagnetic waves (light, X-rays, radio
waves, etc.) in empty space. In this context, while the electric and magnetic vector fields
E,B are intrinsically coupled by the more complicated system of Maxwell’s equations, each
individual component satisfies the wave equation; see Exercise 12.5.14 for details.

The wave equation also models certain restricted classes of vibrations of a uniform
solid body. The solution u(t,x) = u(t, x, y, z) represents a scalar-valued displacement of
the body at time t and position x = (x, y, z) ∈ Ω ⊂ R3. For example, u(t,x) might
represent the radial displacement of the body. One imposes suitable boundary conditions,
e.g., Dirichlet, Neumann, or mixed, on ∂Ω, along with a pair of initial conditions

u(0,x) = f(x),
∂u

∂t
(0,x) = g(x), x ∈ Ω, (12.124)

that specify the body’s initial displacement and initial velocity. As long as the initial and
boundary data are reasonably nice, there exists a unique classical solution to the initial-
boundary value problem for all −∞ < t < ∞, cf. [38, 61, 99]. Thus, in contrast to the
heat equation, one can follow solutions to the wave equation both forwards and backwards
in time.

Let us focus our attention on the homogeneous boundary value problem. The funda-
mental vibrational modes are found by imposing our usual trigonometric ansatz

u(t, x, y, z) = cos(ω t) v(x, y, z) or sin(ω t) v(x, y, z).

Substituting into the wave equation (12.123), we discover (yet again) that v(x, y, z) must
be an eigenfunction for the associated Helmholtz eigenvalue problem

∆v + λ v = 0, where λ =
ω2

c2
, (12.125)

coupled to the relevant boundary conditions. In the positive definite cases, i.e., Dirichlet
and mixed boundary conditions, the eigenvalues λk = ω2

k/c
2 > 0 are all positive. Each

eigenfunction vk(x, y, z) yields two normal vibrational modes

uk(t, x, y, z) = cos(ωkt) vk(x, y, z), ũk(t, x, y, z) = sin(ωkt) vk(x, y, z),

of frequency ωk = c
√
λk equal to the square root of the corresponding eigenvalue multiplied

by the wave speed. The general solution is a quasiperiodic linear combination,

u(t, x, y, z) =
∞∑

k=1

[
ak cos(ωkt) + bk sin(ωkt)

]
vk(x, y, z), (12.126)

of the eigenmodes. The coefficients ak, bk are uniquely prescribed by the initial conditions
(12.124). Thus,

u(0, x, y, z) =
∞∑

k=1

ak vk(x, y, z) = f(x, y, z),

∂u

∂t
(0, x, y, z) =

∞∑

k=1

ωk bk vk(x, y, z) = g(x, y, z).
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The explicit formulas follow immediately from the orthogonality of the eigenfunctions:

ak =
⟨ f , vk ⟩
∥ vk ∥2

=

∫ ∫ ∫

Ω
f vk dx dy dz

∫ ∫ ∫

Ω
v2k dx dy dz

, bk =
1

ωk

⟨ g , vk ⟩
∥ vk ∥2

=

∫ ∫ ∫

Ω
g vk dx dy dz

ωk

∫ ∫ ∫

Ω
v2k dx dy dz

.

(12.127)
In the positive semi-definite Neumann case, there is an additional zero eigenvalue

λ0 = 0 corresponding to the constant null eigenfunction v0(x, y, z) ≡ 1. This results in two
additional terms in the eigenfunction expansion — a constant term

a0 =
1

volΩ

∫ ∫ ∫

Ω
f(x, y, z)dx dy dz

that equals the average initial displacement, and an unstable mode b0 t that grows linearly
in time, whose speed

b0 =
1

volΩ

∫ ∫ ∫

Ω
g(x, y, z)dx dy dz

is the average initial velocity over the entire body. Thus, the unstable mode will be excited
if and only if there is a nonzero net initial velocity: b0 ̸= 0.

Most of the basic solution techniques we learned in the two-dimensional case apply
here, and we will not dwell on the details. The case of a rectangular box is a particularly
straightforward application of the method of separation of variables, and is outlined in the
exercises. A similar analysis, now in cylindrical coordinates, can be applied to the case of
a vibrating cylinder. The most interesting case is that of a solid spherical ball, which is
the subject of the next subsection.

Vibration of Balls and Spheres

Let us focus on the radial vibrations of a solid ball, as modeled by the three-dimensional
wave equation (12.123). The solution u(t, x, y, z) represents the radial displacement of the
“atom” that is situated at position (x, y, z) when the ball is at rest.

For simplicity, we look at the Dirichlet boundary value problem on the unit ball
B1 = {∥x ∥ < 1}. The normal modes of vibration are governed by the Helmholtz equation
(12.125) subject to homogeneous Dirichlet boundary conditions. According to (12.110),
the eigenfunctions are

v0,m,n(r,ϕ, θ) = Sm(σm,n r) Y
0
m(ϕ, θ),

vk,m,n(r,ϕ, θ) = Sn(σn,m r) Y k
m(ϕ, θ),

ṽk,m,n(r,ϕ, θ) = Sm(σm,n r) Ỹ
k
m(ϕ, θ),

for

n = 1, 2, 3, . . . ,

m = 0, 1, 2, . . . ,

k = 1, 2, . . . ,m.

(12.128)

Here Sm denotes the mth order spherical Bessel function (12.104), σm,n is its nth root, as

in (12.109), while Y m
n , Ỹm

n are the spherical harmonics (12.38). Each eigenvalue

λm,n = σ2
m,n, m = 0, 1, 2, . . . , n = 1, 2, 3, . . . ,

corresponds to 2m+ 1 independent eigenfunctions, namely

vk,m,0(r,ϕ, θ), vk,m,1(r,ϕ, θ), . . . , vk,m,m(r,ϕ, θ), ṽk,m,1(r,ϕ, θ), . . . , ṽk,m,m(r,ϕ, θ).
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Consequently, the fundamental vibrational frequencies of a solid ball

ωm,n = c
√
λm,n = c σm,n, m = 0, 1, 2, . . . , n = 1, 2, 3, . . . , (12.129)

are equal to the spherical Bessel roots σm,n multiplied by the wave speed. There is a
total of 2(2m+ 1) independent vibrational modes associated with each distinct frequency
(12.129), namely

u0,m,n(t, r,ϕ, θ) = cos(c σm,n t) Sm(σm,n r) Y
0
m(ϕ, θ),

û0,m,n(t, r,ϕ, θ) = sin(c σm,n t) Sm(σm,n r) Y
0
m(ϕ, θ),

uk,m,n(t, r,ϕ, θ) = cos(c σm,n t) Sm(σm,n r) Y
k
m(ϕ, θ),

ûk,m,n(t, r,ϕ, θ) = sin(c σm,n t) Sm(σm,n r) Y
k
m(ϕ, θ),

ũk,m,n(t, r,ϕ, θ) = cos(c σm,n t) Sm(σm,n r) Ỹ
k
m(ϕ, θ),

̂̃uk,m,n(t, r,ϕ, θ) = sin(c σm,n t) Sm(σm,n r) Ỹ
k
m(ϕ, θ),

n = 1, 2, 3, . . . ,

m = 0, 1, 2, . . . ,

k = 1, 2, . . . ,m.

(12.130)

In particular, the radially symmetric modes of vibration have, according to (12.105), the
elementary form

u0,0,n(r,ϕ, θ) = cos(c nπ t) S0(nπr) =
cos c nπ t sinnπr

r
,

û0,0,n(r,ϕ, θ) = sin(c nπ t) S0(nπr) =
sin c nπ t sinnπr

r
,

n = 1, 2, 3, . . . . (12.131)

Their vibrational frequencies, ω0,n = c nπ, are integral multiples of the lowest frequency
ω0,1 = cπ. Thus, intriguingly, if you excite only the radially symmetric modes, the resulting
motion of the ball is periodic. However, more general vibrations are only quasiperiodic.

Adopting the same scaling argument as in (11.166), we conclude that the fundamental
frequencies for a solid ball of radius R and wave speed c are given by ωm,n = c σm,n/R.
The relative vibrational frequencies

ωm,n

ω0,1

=
σm,n

σ0,1

=
σm,n

π
(12.132)

are independent of the size of the ball R or the wave speed c. In the accompanying table,
we display all relative vibrational frequencies that are less than 4 in magnitude.

Relative Spherical Bessel Roots σm,n/σ0,1

n

∖
m 0 1 2 3 4 6 7 8 . . .

1 1.0000 1.4303 1.8346 2.2243 2.6046 2.9780 3.3463 3.7105 . . .

2 2.0000 2.4590 2.8950 3.3159 3.7258
...

...
...

3 3.0000 3.4709 3.9225
...

...

4 4.0000
...

...

...
...
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The purely radial modes of vibration (12.131) have individual frequencies

ω0,n =
nπ c

R
, so

ω0,n

ω0,1

= n,

which appear in the first column of the table. The lowest frequency is ω0,1 = π c/R, cor-
responding to a vibration with period 2π/ω0,1 = 2R/c. In particular, for the Earth, the
radius R ≈ 6000 km, and the wave speed in rock is, on average, c ≈ 5 km/sec, so that the
fundamental mode of vibration has period 2R/c ≈ 2400 seconds, or 40 minutes. Of course,
we have suppressed almost all interesting terrestrial geology in this very crude approxima-
tion, which has been based on the assumption that the Earth is a uniform spherical body,
globally vibrating only in its radial direction. A more realistic modeling of the vibrations of
the Earth requires an understanding of the basic partial differential equations of linear and
nonlinear elastodynamics, [7, 49]. Nonuniformities in the Earth lead to scattering of the
vibrational waves, which are then used to locate subterranean geological structures, e.g., oil
and gas deposits. Localized vibrations of the Earth are also known as seismic waves , and,
of course, earthquakes are their most severe manifestation. We refer the interested reader
to [5] for an introduction to mathematical seismology. Understanding terrestrial vibrations
is an issue of critical importance in geophysics and civil engineering, including the design
of structures, buildings, and bridges, requiring the avoidance of potentially catastrophic
resonant frequencies.

Example 12.15. The radial vibrations of a hollow thin spherical shell (e.g., an elastic
balloon) are governed by the differential equation

∂2u

∂t2
= c2 ∆S[u ] = c2

(
∂2u

∂ϕ2
+

cosϕ

sinϕ

∂u

∂ϕ
+

1

sin2 ϕ

∂2u

∂θ2

)
, (12.133)

where ∆S denotes the spherical Laplacian (12.19). The radial displacement u(t,ϕ, θ) of a
point on the sphere depends only on time t and the angular coordinates ϕ, θ. The solution
u(t,ϕ, θ) is required to be 2π–periodic in the azimuthal angle θ and bounded at the poles,
where ϕ = 0 and π.

According to (12.38), the nth eigenvalue of the spherical Laplacian, λn = n(n + 1),
possesses 2n+ 1 linearly independent eigenfunctions, namely, the spherical harmonics

Y 0
n (ϕ, θ), Y 1

n (ϕ, θ), . . . , Y n
n (ϕ, θ), Ỹ 1

n (ϕ, θ), . . . , Ỹ n
n (ϕ, θ).

As a consequence, the fundamental frequencies of vibration for a spherical shell are

ωn = c
√
λn = c

√
n(n+ 1) , n = 1, 2, . . . . (12.134)

The vibrational solutions are quasiperiodic combinations of the fundamental spherical har-
monic modes

cos
(√

n(n+ 1) t
)
Y m
n (ϕ, θ), sin

(√
n(n+ 1) t

)
Y m
n (ϕ, θ),

cos
(√

n(n+ 1) t
)
Ỹ m
n (ϕ, θ), sin

(√
n(n+ 1) t

)
Ỹ m
n (ϕ, θ).

(12.135)

Representative graphs can be seen in Figure 12.5. The smallest positive eigenvalue is
λ1 = 2, yielding a lowest tone of frequency ω1 = c

√
2. The higher-order frequencies are

irrational multiples of the fundamental frequency, implying that a vibrating spherical bell
sounds dissonant to our ears.

One further remark is in order. The spherical Laplacian operator is only positive semi-
definite, since the lowest mode has eigenvalue λ0 = 0, which corresponds to the constant
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null eigenfunction v0(ϕ, θ) = Y 0
0 (ϕ, θ) ≡ 1. Therefore, the wave equation (12.133) admits

an unstable mode b0,0 t, corresponding to a uniform radial inflation; its coefficient

b0,0 =
3

4π

∫ ∫

S1

∂u

∂t
(0,ϕ, θ) dS

represents the shell’s average initial velocity. The existence of such an unstable mode is an
artifact of the simplified linear model we are using, which fails to account for nonlinearly
elastic effects that serve to constrain the inflation of a spherical balloon.

Exercises

12.5.1. Find the eigenfunction series solution to the initial-boundary value problem for the
wave equation utt = ∆u on a unit cube C = {0 < x, y, z < 1}, subject to homogeneous
Dirichlet boundary conditions and one of the following sets of initial conditions:
(a) u(0, x, y, z) = 1, ut(0, x, y, z) = 0; (b) u(0, x, y, z) = 0, ut(0, x, y, z) = 1;
(c) u(0, x, y, z) = sin πx sinπy sinπz, ut(0, x, y, z) = 0; (d) u(0, x, y, z) = sin 3πx,
ut(0, x, y, z) = sin 2πy; (e) u(0, x, y, z) = 0, ut(0, x, y, z) = xy z (1− x)(1− y)(1− z).

12.5.2. Suppose the cube in Exercise 12.5.1 is subject to homogeneous Neumann boundary con-
ditions. Which of the preceding initial value problems leads to an unstable motion of the
cube?

12.5.3.(a) Find the separable periodic vibrations of a unit cube subject to homogeneous Dirich-
let boundary conditions. (b) Can you find a periodic mode that is not separable?

12.5.4. Answer Exercise 12.5.3 when one face of the cube is left free, while the other five faces
are fixed.

12.5.5. Given a material with wave speed c = 1.5 cm/sec, find the natural vibrational frequen-
cies of a solid rectangular box of size 1 cm × 2 cm × 3 cm whose sides are held fixed. List
the lowest five such frequencies in order. Does the box vibrate periodically?

12.5.6. Find the natural vibrational frequencies of a solid cylinder of height 2, radius 1, and
wave speed c = 1, when (a) all sides are fixed; (b) the top and bottom of the cylinder are
free, while the curved side is fixed; (c) the curved side of the cylinder is free, while the top
and bottom are fixed.

12.5.7. Among all solid cylinders of unit volume with fixed boundary, find the one that vibrates
the slowest.

12.5.8. Does a solid spherical ball that is subject to homogeneous Neumann boundary condi-
tions vibrate (i) faster, (ii) slower, or (iii) at the same rate as the same ball subject to
homogeneous Dirichlet conditions. If your answer is (i) or (ii), estimate how much faster or
slower.

12.5.9. A solid cube and solid sphere are made of the same material and have the same volume.
Which vibrates faster when subject to homogeneous Dirichlet boundary conditions?

12.5.10. Assuming that they both have the same wave speed and fixed boundaries, which vi-
brates faster: a solid sphere or a circular membrane of the same radius?

12.5.11. A uniform, solid spherical planet is floating freely in outer space. Find its three slow-
est resonant frequencies.

12.5.12. True or false: Suppose we have two uniform solid bodies composed of the same ma-
terial. If the first body cools down to thermal equilibrium the fastest, then it also vibrates
the fastest. Explain your answer.
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12.5.13.(a) Define what is meant by a nodal curve and a nodal region on a vibrating thin spher-
ical shell. (b) True or false: All the nodal curves are arcs of circles.

♥ 12.5.14. The propagation of electromagnetic waves (including light) is governed by the electric
field E(t,x) and magnetic field B(t,x), which are both time-dependent vector fields defined
for x = (x, y, z) in a domain Ω ⊂ R3. In empty space, Maxwell’s equations (as formulated
by Heaviside) are

∇ ·E = 0, ∇ ·B = 0,
∂B
∂t

= −∇× E,
∂E
∂t

=
1

µ0 ϵ0
∇×B, (12.136)

where µ0, ϵ0 are, respectively, the permeability and permittivity constants. Prove that all in-
dividual components of E and B satisfy the scalar wave equation. What is the wave speed,
i.e., the speed of light in empty space?

12.6 Spherical Waves and Huygens’ Principle

For any dynamical partial differential equation, the fundamental solution measures the
effect of applying an instantaneous concentrated unit impulse at a single point. Two
representative physical effects to keep in mind are the light waves emanating from a sudden
concentrated blast, e.g., a lightning bolt or a stellar supernova, and the sound waves
due to an explosion or thunderclap, propagating in air at a much slower speed. Linear
superposition utilizes the fundamental solution to build up more general solutions to initial
value problems. For the wave and other second-order vibrational equations, the impulse
can be applied either to the initial displacement or to the initial velocity, resulting in two
distinct types of fundamental solution. The general solution to the initial value problem will
be obtained by a double superposition. In this section, we derive explicit formulas for the
two fundamental solutions for the three-dimensional wave equation on all of space, leading
to Kirchhoff’s formula for the solution to the general initial value problem. An important
consequence is Huygens’ Principle, which states that, in three-dimensional space, localized
initial disturbances remain localized as they propagate. In the final subsection, we apply
the method of descent to our three-dimensional solution formulas in order to solve the
two-dimensional wave equation, for which, surprisingly, Huygens’ Principle is no longer
valid.

Spherical Waves

In a uniform isotropic medium, an initial concentrated blast results in a spherically ex-
panding wave, moving away at the speed of light (or sound) in all directions. Invoking
translation invariance, we will assume, without loss of generality, that the source of the
disturbance is at the origin, and so the solution u(t,x) should depend only on the distance
r = ∥x ∥ from the source. We adopt spherical coordinates and look for a solution u = u(t, r)
to the three-dimensional wave equation (12.123) with no angular dependence. Substituting
the formula (12.16) for the spherical Laplacian and setting both angular derivatives to 0,
we are led to the partial differential equation

∂2u

∂t2
= c2

(
∂2u

∂r2
+

2

r

∂u

∂r

)
, (12.137)
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which governs the propagation of spherically symmetric waves in three-dimensional space.
Surprisingly, we can explicitly solve (12.137). The secret is to multiply both sides of the
equation by r:

∂2(ru)

∂t2
= r

∂2u

∂t2
= c2

(
r
∂2u

∂r2
+ 2

∂u

∂r

)
= c2

∂2

∂r2
(r u).

Thus, the function
w(t, r) = r u(t, r)

satisfies the one-dimensional wave equation

∂2w

∂t2
= c2

∂2w

∂r2
. (12.138)

According to Theorem 2.14, the general solution to the one-dimensional wave equa-
tion (12.138) can be written in d’Alembert form

w(t, r) = p(r − ct) + q(r + ct),

where p(ξ) and q(η) are arbitrary functions of a single characteristic variable. Therefore,
spherically symmetric solutions to the three-dimensional wave equation assume the form

u(t, r) =
p(r − ct)

r +
q(r + ct)

r . (12.139)

The first summand,

u(t, r) =
p(r − ct)

r , (12.140)

represents a wave moving at speed c in the direction of increasing r, and so describes the
illumination from a variable light source that is concentrated at the origin, e.g., a pulsating
quasar in interstellar space. To highlight this interpretation, let us concentrate on the case
that p(ξ) = δ(ξ − a) is a delta function, keeping in mind that more general solutions can
then be assembled by linear superposition. The induced solution

u(t, r) =
δ(r − ct− a)

r =
δ
(
r − c (t− t0)

)

r , where t0 = −
a

c
, (12.141)

represents a spherical wave propagating through space. At the instant t = t0, the light is
entirely concentrated at the origin, r = 0. The signal then moves away from the origin
in all directions at speed c. At each later time t > t0, the wave remains concentrated on
the surface of a sphere of radius r = c (t − t0). Its intensity at each point on the sphere,
however, has decreased by a factor 1/r, and so, the farther the light travels away from the
source, the dimmer it becomes. A stationary observer sitting at a fixed point in space will
see only an instantaneous flash of light of intensity 1/r as the spherical wave passes by
at time t = t0 + r/c, where r is the observer’s distance from the light source. A similar
statement holds for sound waves — to an observer, the sound of a distant explosion will
last momentarily. Thunder and lightning are the most familiar examples of this everyday
phenomenon.

On the other hand, for t < t0, the impulse is concentrated at a negative radius r =
c (t − t0) < 0. To interpret this, note that, for spherical coordinates (12.15), replacing r
by −r has the same effect as changing x to the antipodal point −x. Thus, the solution
(12.141) represents a concentrated spherically symmetric light wave arriving from the edges
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of the universe at speed c that strengthens in intensity as it collapses into the origin at
t = t0. After collapse, it immediately reappears and expands back out into the universe.

The second solution in the d’Alembert formula (12.139) has, in fact, exactly the same
physical form under the antipodal identification. Indeed, if we set

r̃ = −r, p̃(ξ) = − q(−ξ), then
q(r + ct)

r
=

p̃ (r̃ − ct)

r̃
.

Thus, the second d’Alembert solution is redundant, and we only need to consider solutions
of the form (12.140) from now on.

To effectively utilize such spherical wave solutions, we need to understand the nature
of their originating singularity. For simplicity, we set t0 = 0 in (12.141) and concentrate
on the particular solution

u(t, r) =
δ(r − ct)

r , (12.142)

which apparently has a bad singularity at the origin, r = 0, at the initial time t = 0. We
need to pin down precisely which sort of distribution (generalized function) it represents.
Invoking the limiting definition is tricky, and it will be easier to work with the dual char-
acterization of a distribution as a linear functional. Thus, at a fixed time t ≥ 0, we must
evaluate the inner product†

⟨ u(t, ·) , f ⟩ =
∫ ∫ ∫

u(t, x, y, z) f(x, y, z)dx dy dz

of the solution with a smooth test function f(x) = f(x, y, z). We rewrite the triple integral
in spherical coordinates, whereby

⟨ u(t, ·) , f ⟩ =
∫ π

−π

∫ π

0

∫ ∞

0

δ(r − ct)

r
f(r,ϕ, θ) r2 sinϕ dr dϕ dθ.

When t ̸= 0, the r integration can be immediately evaluated, and so

⟨ u(t, ·) , f ⟩ = c t

∫ π

−π

∫ π

0
f(c t,ϕ, θ) sinϕ dϕ dθ = 4πc t Mct [ f ] , (12.143)

where

Mct [ f ] =
1

4π

∫ π

−π

∫ π

0
f(c t,ϕ, θ) sinϕ dϕ dθ =

1

4πc2 t2

∫ ∫

Sct

f dS (12.144)

is the mean or average value of the function f on the sphere Sct =
{
∥x ∥ = c t

}
of radius

r = c t and, hence, surface area 4πc2 t2. In particular, in the limit as the sphere’s radius
c t → 0, by continuity, the mean reduces to just the value of the function at the origin:

lim
t→∞

Mct [ f ] = M0 [ f ] = f(0). (12.145)

Thus, (12.143) implies that

lim
t→∞

⟨ u(t, ·) , f ⟩ = ⟨ u(0, ·) , f ⟩ = 0 for all functions f ,

† For fixed t, we use u(t, ·) to indicate the real-valued function (x, y, z) 5→ u(t, x, y, z) on R3.
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and hence u(0, x, y, z) ≡ 0 represents a zero initial displacement. In other words, there is,
in fact, no singularity in the solution at t = 0!

In the absence of any initial displacement, how, then, can the solution (12.142) be
nonzero? Clearly, this must be the result of a nonzero initial velocity. To evaluate ∂u/∂t,
we differentiate (12.143), whereby

〈
∂u

∂t
, f

〉
=

∂

∂t
⟨ u(t, ·) , f ⟩ =

∂

∂t

(
c t

∫ π

−π

∫ π

0
f(c t,ϕ, θ) sinϕ dϕ dθ

)

= c

∫ π

−π

∫ π

0
f(c t,ϕ, θ) sinϕ dϕ dθ + c2 t

∫ π

−π

∫ π

0

∂f

∂r
(c t,ϕ, θ) sinϕ dϕ dθ

= 4πcMct [ f ] + 4πc2 tMct

[
∂f

∂r

]
. (12.146)

The result is a linear combination of the means of f and its radial derivative fr over the
sphere of radius c t. In the limit, the second term goes to 0, and so, by (12.145),

lim
t→ 0

⟨ ut , f ⟩ = 4πcM0 [ f ] = 4πc f(0).

Since this holds for all test functions f , we conclude that the initial velocity of our solution
is a multiple of a delta function at the origin:

ut(0, r) = 4πc δ(x).

Dividing through by 4πc, we find that the spherical expanding wave

u(t, r) =
δ(r − c t)

4πc r
(12.147)

solves the initial value problem

u(0,x) ≡ 0,
∂u

∂t
(0,x) = δ(x),

corresponding to an initial unit-velocity impulse concentrated at the origin. This solution
can be viewed as the three-dimensional version of the hammer-blow solution to the one-
dimensional wave equation discussed in Exercise 6.3.28.

More generally, we use the translational symmetry of the wave equation to conclude
that the function

G(t,x; ξ) =
δ
(
∥x− ξ ∥ − c t

)

4πc ∥x− ξ ∥
, t ≥ 0, (12.148)

is the fundamental solution to the wave equation resulting from a unit-velocity impulse
concentrated at the point ξ at the initial time t = 0:

G(0,x; ξ) = 0,
∂G

∂t
(0,x; ξ) = δ(x− ξ). (12.149)

With this in hand, we can apply linear superposition to solve the zero initial displacement
initial value problem

u(0, x, y, z) = 0,
∂u

∂t
(0, x, y, z) = g(x, y, z). (12.150)
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Figure 12.9. Cross-section of a sphere intersecting a ball.

Namely, we write the initial velocity

g(x) =

∫ ∫ ∫
g(ξ) δ(x− ξ) dξ dη dζ

as a superposition of impulses, and immediately conclude that the relevant solution is the
selfsame superposition of spherical waves:

u(t,x) =
1

4πc

∫ ∫ ∫
g(ξ)

δ
(
∥x− ξ ∥ − c t

)

∥x− ξ ∥
dξ dη dζ

=
1

4πc2 t

∫ ∫

∥ ξ−x ∥=ct
g(ξ) dS = tMx

ct [ g ] .

(12.151)

Thus, the value of our solution at position x and time t > 0 is equal to t times the mean
of the initial velocity function g over the sphere of radius r = c t centered at the point x.

Example 12.16. Let us set the wave speed c = 1. Suppose that the initial velocity

g(x) =

{
1, ∥x ∥ < 1,

0, ∥x ∥ > 1,

is 1 inside the unit ball B1 centered at the origin and 0 outside. To solve the corresponding
initial velocity problem, we must compute the average value of g over a sphere

S x
t = { ξ | ∥ ξ − x ∥ = t }

of radius t > 0 centered at a point x ∈ R3. Since g = 0 outside the unit ball, its average
will be equal to the surface area of that part of the sphere that is contained inside the unit
ball, namely S x

t ∩ B1, divided by the total surface area of S x
t , namely 4π t2.

To compute this quantity, let r = ∥x ∥. If t > r + 1 or 0 < t < r − 1, then the sphere
of radius t lies entirely outside the unit ball, and so the average is 0; if 0 < t < 1− r, which
requires r < 1 and so x ∈ B1, then the sphere lies entirely within the unit ball, and so the
average is 1. Otherwise, referring to Figure 12.9 and Exercise 12.6.7, we see that the area
of the spherical cap S x

t ∩B1 is given by

2π t2(1− cosα) = 2π t2
(
1−

r2 + t2 − 1

2 r t

)
=

π t

r
[1− (t− r)2 ] , (12.152)
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where α denotes the angle between the line joining the centers of the two spheres and
the circle formed by their intersection, whose value is prescribed by the Law of Cosines.
Assembling the different subcases, we conclude that

Mx
ct [ g ] =

⎧
⎪⎨

⎪⎩

1, 0 ≤ t ≤ 1− r,

1− (t− r)2

4 r t
, | r − 1 | ≤ t ≤ r + 1,

0, 0 ≤ t ≤ r − 1 or t ≥ r + 1.

(12.153)

The solution (12.151) is obtained by multiplying by t, and hence for t ≥ 0,

u(t,x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t, 0 ≤ t ≤ 1− ∥x ∥,

1−
(
t− ∥x ∥

)2

4 ∥x ∥
,

∣∣ ∥x ∥ − 1
∣∣ ≤ t ≤ ∥x ∥+ 1,

0, 0 ≤ t ≤ ∥x ∥ − 1 or t ≥ ∥x ∥+ 1.

(12.154)

The resulting function is not smooth at the interfaces t =
∣∣ ∥x ∥ − 1

∣∣ and ∥x ∥ + 1, and
hence does not qualify as a classical solution. Nevertheless, it can be shown that (12.154)
is a bona fide weak solution to the initial value problem.

The first two rows of Figure 12.10 plot the solution as a function of time for several
fixed values of r = ∥x ∥. An observer sitting at the origin will see a linearly increasing
light intensity followed by a sudden blackout. At other points inside the sphere, there
is a similar linear increase, while the subsequent decrease follows a parabolic arc; if the
observer is closer to the edge of the ball than its center, the parabolic portion will continue
to increase for a while before eventually tapering off. On the other hand, an observer sitting
outside the sphere will experience, after an initially dark period, a symmetric parabolic
increase to a maximal intensity and then a decrease back to dark after a total time lapse
of 2. The second two rows plot the solution as a function of r for various fixed times.
Note that, up until time t = 1, the light spreads out while increasing in intensity near the
origin, after which the solution is of gradually decreasing magnitude, supported within the
domain lying between two concentric spheres of respective radii t− 1 and t+ 1.

Returning to the general situation, we note that the solution formula (12.151) han-
dles only nonzero initial velocities. What about solutions resulting from a nonzero initial
displacement? Surprisingly, the answer comes from differentiation! The key observation is
that if u(t,x) is any (sufficiently smooth) solution to the wave equation, then so is its time
derivative

v(t,x) =
∂u

∂t
(t,x). (12.155)

This follows at once from differentiating both sides of the wave equation with respect to t
and using the equality of mixed partial derivatives. Physically, this implies that the velocity
of a wave obeys the same evolutionary principle as the wave itself, which is a manifestation
of the linearity and time-independence (autonomy) of the equation.

Now, suppose u has initial conditions

u(0,x) = f(x), ut(0,x) = g(x). (12.156)

What are the initial conditions for its derivative v = ut? Clearly, its initial displacement

v(0,x) = ut(0,x) = g(x) (12.157)
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Figure 12.10. Wave equation solution u(t, r) due to

an initial velocity of the unit ball.
⊎

equals the initial velocity of u. As for its initial velocity, we have

∂v

∂t
=

∂2u

∂t2
= c2∆u,

because we are assuming that u solves the wave equation. Thus, at the initial time, the
velocity,

∂v

∂t
(0,x) = c2∆u(0,x) = c2∆f(x), (12.158)

equals c2 times the Laplacian of the initial displacement f . In particular, if u satisfies the
initial conditions

u(0,x) = 0, ut(0,x) = g(x), (12.159)

then v = ut satisfies the initial conditions

v(0,x) = g(x), vt(0,x) = 0. (12.160)

Thus, paradoxically, to solve the initial displacement problem we differentiate the initial
velocity solution (12.151) with respect to t, and hence

v(t,x) =
∂u

∂t
(t,x) =

∂

∂t

(
tMx

ct [ g ]
)
= Mx

ct [ g ] + c tMx
ct

[
∂g

∂n

]
, (12.161)
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where we have made use of our computation in (12.146). Therefore, v(t,x) is a linear
combination of the mean of the function g and the mean of its normal or radial derivative
∂g/∂n = ∂g/∂r, taken over a sphere of radius c t centered at the point x. In particular, to
obtain the solution corresponding to a concentrated initial displacement,

F (0,x; ξ) = δ(x− ξ),
∂F

∂t
(0,x; ξ) = 0, (12.162)

we differentiate the solution (12.148), resulting in

F (t,x; ξ) =
∂G

∂t
(t,x; ξ) = −

δ ′
(
∥x− ξ ∥ − ct

)

4π ∥ ξ − x ∥
, (12.163)

which is the fundamental solution for the initial displacement problem. Thus, interestingly,
a concentrated initial displacement spawns a spherically expanding doublet, cf. Figure 6.6,
whereas a concentrated initial velocity spawns an expanding spherical singlet or delta wave.

Example 12.17. Let c = 1. Consider the initial conditions

u(0,x) = f(x) =

{
1, ∥x ∥ < 1,

0, ∥x ∥ > 1,

∂u

∂t
(0,x) = 0, (12.164)

modeling the effect of an instantaneously illuminated solid ball. To obtain the resulting
solution, we differentiate (12.154) with respect to t, leading to

u(t,x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 ≤ t < 1− ∥x ∥,
∥x ∥ − t

2 ∥x ∥
,

∣∣ ∥x ∥ − 1
∣∣ ≤ t ≤ ∥x ∥+ 1,

0, 0 ≤ t < ∥x ∥ − 1 or t > 1 + ∥x ∥.

(12.165)

As illustrated in the first two rows of Figure 12.11, an observer sitting at the center of
the ball will see a constant light intensity until t = 1, at which time the solution suddenly
goes dark. At other points inside the ball, 0 < r < 1, the downwards jump in intensity
arrives sooner, and even goes below 0, followed by a further linear decrease, and finally
a jump back to quiescence. An observer placed outside the ball, at radius r = ∥x ∥ > 1,
will experience, after an initially dark period, a sudden increase in the light intensity at
time t = r − 1, followed by a linear decrease to negative, followed by a jump back up to
darkness at time t = r + 1. The farther away from the source, the fainter the light. In
the second two rows, we plot the same solution as a function of r for different values of
t. Note the sudden appearance of a 1/r singularity at the origin at time t = 1, which is
the result of a focusing of the initial discontinuities of u(0,x) = f(x) on the surface of the
unit sphere. Afterwards, the residual radially symmetric disturbance moves off to ∞ while
gradually decreasing in intensity. Again, the discontinuities imply that (12.165) is not a
classical solution, but it does qualify as a weak solution to the initial value problem.

Kirchhoff’s Formula and Huygens’ Principle

Linearly combining the two solution formulas (12.151) and (12.161) establishes Kirch-
hoff ’s formula (first discovered by Poisson), which is the three-dimensional counterpart to
d’Alembert’s solution formula for the wave equation.
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Figure 12.11. Wave equation solution u(t, r) due to

an initial displacement of the unit ball .
⊎
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Theorem 12.18. The solution to the initial value problem

utt = c2∆u, u(0,x) = f(x),
∂u

∂t
(0,x) = g(x), x ∈ R3, (12.166)

for the wave equation in three-dimensional space is given by

u(t,x) =
∂

∂t

(
t Mx

ct [ f ]
)

+ t Mx
ct [ g ] = Mx

ct [ f ] + c tMx
ct

[
∂f

∂n

]
+ t Mx

ct [ g ] , (12.167)

where Mx
ct [ f ] denotes the average of the function f over the sphere S x

ct = {∥ ξ− x ∥ = c t}
of radius c t centered at the point x.

A crucially important consequence of the Kirchhoff solution formula is a celebrated
physical principle first set out by the pioneering seventeenth century Dutch scientist Chris-
tiaan Huygens.† Roughly, Huygens’ Principle states that, in three-dimensional space,
localized solutions to the wave equation remain localized. More concretely, (12.167) im-
plies that the value of the solution at a point x and time t depends only on the values of
the initial displacements and velocities at a distance c t away. Thus, all signals propagate
along the relativistic light cone

c2 t2 = x2 + y2 + z2

in four-dimensional Minkowski space-time. Physically, Huygens’ Principle assures us that
any light that we witness at time t arrived from points that lie a distance exactly d =
c (t − t0) away at an earlier time t0 < t. In particular, a localized initial signal, whether
initial displacement or initial velocity, that is concentrated near a point produces a response
that remains concentrated on an ever expanding sphere surrounding the point. In our three-
dimensional universe, we witness the light from a sudden explosion or lightning bolt for only
a brief moment, after which the view returns to darkness. Similarly, a sharp sound, e.g.,
a thunderclap, remains sharply concentrated with diminishing magnitude as it propagates
through space. Huygens’ Principle is responsible for the important astronomical fact that
the light we now observe from a distant star was generated at a single past time that is
directly proportional to the star’s distance from the Earth. Remarkably, as we will show in
the following subsection, Huygens’ Principle does not hold in a two-dimensional universe!
There, initially concentrated light and sound impulses will spread out as time progresses,
and their effect will be experienced over an extended time range; see below for details.

Exercises

12.6.1. Solve the wave equation in three-dimensional space for the following initial conditions:
(a) u(0, x, y, z) = x+ z, ut(0, x, y, z) = 0; (b) u(0, x, y, z) = 0, ut(0, x, y, z) = y;

(c) u(0, x, y, z) = 1/(1 + x2 + y2 + z2), ut(0, x, y, z) = 0,

(d) u(0, x, y, z) = 0, ut(0, x, y, z) = 1/(1 + x2 + y2 + z2).

12.6.2. At what points in space-time does a three-dimensional wave vanish if it vanishes out-
side a sphere of radius R at the initial time t = 0?

† Don’t even bother trying to pronounce his name correctly unless you are Dutch!
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12.6.3. Consider the initial value problem

∂2u
∂t2

=
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

, u(0, x, y, z) = 0,
∂u
∂t

(0, x, y, z) =

{
1, 0 < x, y, z < 1,

0, otherwise,

i.e., the initial velocity is 1 inside a unit cube and 0 outside the cube. We interpret the so-
lution u(t, x, y, z) as the intensity of light at a given point in space-time, measured in units
that make the speed of light c = 1. (a) Write down an integral formula for u(t, x, y, z).
(b) Suppose a light sensor is placed at the point (2, 2, 1). For which values of t > 0 will
the sensor register a nonzero signal? Sketch a rough graph of what the sensor measures.
(You do not need to find the precise formula, but explain how you obtained your graph.)
(c) True or false: The solution u(t, x, y, z) ≥ 0 at all points in space-time.

12.6.4. Is (12.151) a solution to the wave equation for t < 0? If not, write down a solution
formula that is valid for negative t.

12.6.5. True or false: The function u(t, x, y, z) defined by (12.154) is everywhere continuous.

12.6.6. A thermonuclear explosion occurs at the center of the Earth. Would you feel the effect
first through a motion at the surface or a change in temperature at the surface? Discuss.

♦ 12.6.7. Prove that the area of the spherical cap S x
t ∩B1 is given by formula (12.152).

Descent to Two Dimensions

So far, we have found explicit formulas for the solution to the wave equation on the one-
dimensional line, and in three-dimensional space. The two-dimensional case

utt = c2∆u = c2(uxx + uyy) (12.168)

is, counterintuitively, more complicated! For instance, seeking a radially symmetric solution
u(t, r) requires solving the partial differential equation

∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, (12.169)

which, unlike its three-dimensional counterpart (12.137), is not so easily integrated.

However, our solution to the three-dimensional problem can be adapted to construct
a solution to the two-dimensional problem using the so-called Method of Descent . Observe
that any solution u(t, x, y) to the two-dimensional wave equation (12.168) can be viewed
as a solution to the three-dimensional wave equation (12.123) that does not depend upon
the vertical z coordinate, whence ∂u/∂z = 0. Clearly, if the three-dimensional initial data
does not depend on z, then the resulting solution u(t, x, y) will also be independent of z.

Consider first the zero initial displacement condition

u(0, x, y) = 0,
∂u

∂t
(0, x, y) = g(x, y). (12.170)

In the three-dimensional solution formula (12.151), if g(x, y) does not depend on the z–
coordinate, then the integrals over the upper and lower hemispheres

S+
ct =

{
∥ ξ − x ∥ = c t, ζ ≥ z

}
, S−ct =

{
∥ ξ − x ∥ = c t, ζ ≤ z

}
,
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are identical. To evaluate these integrals, we parametrize the upper hemisphere as the
graph of

ζ = z+
√
c2 t2 − (ξ − x)2 − (η − y)2 over the disk D x

ct =
{
(ξ − x)2 + (η − y)2 ≤ c2 t2

}
,

concluding that

u(t, x, y) =
1

4πc2 t

∫ ∫

Sct

g(ξ, η) dS =
1

2πc2 t

∫ ∫

S+
ct

g(ξ, η) dS

=
1

2πc

∫ ∫

D x

ct

g(ξ, η)√
c2 t2 − (ξ − x)2 − (η − y)2

dξ dη

(12.171)

solves the initial value problem (12.170). In particular, if we take the initial velocity

∂u

∂t
(0, x, y) = g(x, y) = δ(x) δ(y)

to be a unit impulse concentrated at the origin, then the resulting solution is

u(t, x, y) =

⎧
⎨

⎩

1

2πc
√
c2 t2 − x2 − y2

, x2 + y2 < c2 t2,

0, x2 + y2 > c2 t2.

(12.172)

An observer sitting at distance r = ∥x ∥ =
√

x2 + y2 from the origin will first witness
a concentrated displacement singularity at time t = r/c. However, in contrast to the
three-dimensional solution, even after the impulse passes by, there will continue to be a
decreasing, but nonzero, signal of magnitude roughly proportional to 1/t. In Figure 12.12,
we plot the solution (12.172) for unit wave speed c = 1. The first row plots intensity as a
function of t at three different radii; note that the initial singularity, indicated by a spike in
the graph, is followed by a progressively smaller residual displacement, which never entirely
disappears. The second row shows the displacement at three different times as a function
of r = ∥x ∥.

As in the three-dimensional case, the solution to the initial displacement conditions

u(0, x, y) = f(x, y),
∂u

∂t
(0, x, y) = 0, (12.173)

can then be obtained by differentiation of (12.171) with respect to t, and so

u(t, x, y) =
1

2πc

∂

∂t

∫ ∫

D x

ct

f(ξ, η)√
c2 t2 − (ξ − x)2 − (η − y)2

dξ dη. (12.174)

As before, starting with a concentrated impulse, an observer will witness, after a time
lapse t = r/c, an abrupt impulse passing by, followed by a progressively decaying residual
wave. The general solution to the two-dimensional wave equation on all of R2 is a linear
combination of these two types of solutions (12.171, 174).

As a consequence of these considerations, we discover that Huygens’ Principle is not
valid in a two-dimensional universe. The solution to the two-dimensional wave equation
at a point x at time t depends on the initial displacement and velocity on the entire disk
of radius c t centered at the point, and not just on the points lying a distance c t away.
So a two-dimensional creature would experience not just an initial effect of a concentrated
sound or light wave, but also an “afterglow” of slowly diminishing magnitude. It would be
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Figure 12.12. Solution to the two-dimensional wave equation
⊎

for a concentrated impulse.

like living in a permanent echo chamber, and so understanding and acting upon sensory
phenomena would be considerably more challenging. In general, it can be proved that
Huygens’ Principle for the wave equation is valid only in spaces of odd dimension n =
2k + 1 ≥ 3; see also [15] for recent advances in the classification of partial differential
equations that admit a Huygens’ Principle.

Remark : Since the solutions to the two-dimensional wave equation can be interpreted
as three-dimensional solutions with no z dependence, a concentrated delta impulse for the
two-dimensional wave equation would correspond to a three-dimensional initial impulse
that is concentrated along an entire vertical line, e.g., an instantaneous lightning bolt in
the form of an infinite straight line. An observer fixed in space will first encounter the
light flash arriving from the closest point on the line, but will subsequently experience the
gradually decreasing effect of the light emitted by points that lie progressively farther away
along the line. This accounts for the two-dimensional afterglow in formula (12.172).

Exercises

12.6.8. Solve initial value problem for the two-dimensional wave equation with the following
initial data (a) u(0, x, y) = x− y, ut(0, x, y) = 0; (b) u(0, x, y) = 0, ut(0, x, y) = y.
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12.6.9.(a) Prove that u(t, x, y) = 1/
√
x2 + y2 − c2t2 is a solution to the two-dimensional wave

equation on the domain Ω = {x2 + y2 > c2t2 } exterior to the light cone passing through
the origin. What is the corresponding initial data at t = 0? (b) Use part (a) to solve the

initial value problem u(0, x, y) = 0, ut(0, x, y) = 1/
√
x2 + y2 , on Ω.

12.6.10. Consider the two-dimensional wave equation on R2 with wave speed c = 1. Write
down an integral formula for the solution to the following initial value problems. You need
not evaluate the integrals. (a) u(0, x, y) = x3 − y3, ut(0, x, y) = 0;

(b) u(0, x, y) = 0, ut(0, x, y) = y2; (c) u(0, x, y) = x2 + y2, ut(0, x, y) = −x2 − y2.

12.6.11.(a) Find the solution to the two-dimensional wave equation whose initial displacement
is a concentrated delta impulse at the origin and whose initial velocity is zero.

(b) Is your expression a classical solution when t > 0?
(c) True or false: The solution tends to 0 uniformly as t→∞.

12.6.12. Use separation of variables to write down an eigenfunction series solution to the par-
tial differential equation (12.169) when subject to homogeneous Dirichlet boundary condi-
tions at r = 1 and bounded at r = 0.

♦ 12.6.13. Write down the fundamental solution for the one-dimensional wave equation with
(a) a concentrated initial displacement at the origin; (b) a concentrated initial velocity
at the origin. (c) Discuss the validity of Huygens’ Principle in a one-dimensional universe.

12.6.14. Discuss how you can construct solutions to the one-dimensional wave equation by de-
scent from the three-dimensional wave equation.

12.7 The Hydrogen Atom

A hydrogen atom consists of a single electron circling an atomic nucleus that contains a
single proton, which, owing to it relatively tiny size, is assumed to be entirely concentrated
at the origin. As a result of quantization of the corresponding classical Coulomb problem,
the Schrödinger equation† governing the dynamical behavior of the electron moving around
the nucleus takes the explicit form

i "
∂ψ

∂t
= −

"2

2M
∆ψ −

α2

r
ψ = −

"2

2M

(
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂y2

)
−

α2 ψ√
x2 + y2 + z2

.

(12.175)
Here ψ(t, x, y, z) denotes the electron’s time-dependent wave function, which, at each time
t, prescribes its quantum probability density as it circles the nucleus. In the quantized
Hamiltonian operator K = − 1

2 ("
2/M )∆− α2/r, the coefficient of the Laplacian depends

on Planck’s constant " and the electron’s mass M . The final term represents the three-
dimensional electromagnetic (Coulomb) potential function V (x) = α2/r attracting the
electron to the nucleus, with α representing the electron’s (and proton’s) charge, while r =
∥x ∥ is its distance from the nucleus. Incidentally, the quantum-mechanical Schrödinger
equation for multi-electron atoms or even molecules is not so difficult to write down, but
its solution, even for, say, the helium atom, is much more difficult, and is still a major

† The reader is referred to (9.151) and the subsequent discussion for generalities regarding the
Schrödinger equation and quantum mechanics.
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challenge for numerical analysts, even on today’s supercomputers, [116]. Thus, to keep
matters as simple as possible, we will consider only the case of a single electron hydrogen
atom here.

Bound States

According to the analysis in Section 9.5, the normal mode solutions to the Schrödinger
equation are of the form

ψ(t, x, y, z) = e iλ t/! v(x, y, z),

where v is an eigenfunction of the Hamiltonian operator with eigenvalue λ, and hence
satisfies

"2

2M
∆v +

(
λ+

α2

r

)
v = 0. (12.176)

The bound states of the atom, in which the electron remains trapped by the nucleus, are
represented by the nonzero solutions to the eigenvalue problem (12.176) with unit L2 norm:

∥ v ∥2 =

∫ ∫ ∫
| v(x, y, z) |2 dx dy dz = 1.

The eigenvalue λ specifies the bound state’s energy, and is necessarily negative: λ < 0.
Since we are working on an unbounded domain, the bound states do not form a complete
system of eigenfunctions, and so not every wave function ϕ ∈ L2(R3) can be approximated
by an eigenfunction series. The missing data are the so-called scattering states arising
from the continuous spectrum of the Schrödinger operator; these represent electrons that
scatter off the nucleus, and so do not remain trapped in an orbit. (For the classical Kepler
problem of a planet circling a sun, the bound states would correspond to planets following
bounded elliptic orbits, while the scattering states correspond to interstellar comets and
the like moving along unbounded hyperbolic or parabolic trajectories.) We will leave
the discussion of the quantum-mechanical scattering states and the associated continuous
spectrum to a more advanced treatment of the subject, [72, 95].

To understand the bound states, we will apply the method of separation of variables.
We begin by rewriting the eigenvalue problem (12.176) in spherical coordinates:

"2

2M

(
∂2v

∂r2
+

2

r

∂v

∂r
+

1

r2
∂2v

∂ϕ2
+

cosϕ

r2 sinϕ

∂v

∂ϕ
+

1

r2 sin2 ϕ

∂2v

∂θ2

)
+

(
λ+

α2

r

)
v = 0.

(12.177)
We then separate off the radial coordinate, setting

v(r,ϕ, θ) = p(r)w(ϕ, θ).

The angular component satisfies the spherical Helmholtz equation

∆Sw + µw =
∂2w

∂ϕ2
+

cosϕ

sinϕ

∂w

∂ϕ
+

1

sin2 ϕ

∂2w

∂θ2
+ µw = 0,

which we have already solved; see (12.21) and the ensuing discussion. The eigensolutions
are spherical harmonics, which, because the quantum-mechanical solutions are intrinsically
complex-valued, we take in their complex form (12.46). The associated eigenvalue

µ = l (l + 1), where the integer l = 0, 1, 2, . . . (12.178)



566 12 Partial Differential Equations in Space

is known as the angular quantum number , admits a total of 2 l + 1 linearly independent
eigenfunctions

Ym
l (ϕ, θ) = Pm

l (cosϕ) e im θ, m = −l,−l+ 1, . . . , l − 1, l. (12.179)

The radial equation with the separation constant (12.178) is

"2

2M

(
d2p

dr2
+

2

r

dp

dr

)
+

(
λ+

α2

r
−

l (l + 1)

r2

)
p = 0. (12.180)

To eliminate the physical parameters, let us rescale the radial coordinate by setting

s = σ r, where σ =
2
√
−2M λ

"
, (12.181)

given that λ < 0. The resulting ordinary differential equation for the rescaled function

P (s) = p
( s
σ

)

is
d2P

ds2
+

2

s

dP

ds
−
(

1

4
−

n

s
+

l (l + 1)

s2

)
P = 0, (12.182)

where

n =
2M α2

σ "2
=

α2

"

√
−

M

2λ
. (12.183)

Equation (12.182) is a version of the generalized Laguerre differential equation — see Ex-
ercise 12.7.4 below — named after the nineteenth-century French mathematician Edmond
Laguerre, who studied its solutions well before the appearance of quantum mechanics. Since
we are searching for bound states, the relevant solutions should be defined on 0 ≤ s < ∞,
remain bounded at s = 0, and go to zero as s → ∞:

lim
s→ 0+

P (s) < ∞, lim
s→∞

P (s) = 0. (12.184)

The proof of the following key result is outlined in Exercises 12.7.4–5.

Theorem 12.19. For each pair of nonnegative integers 0 ≤ l < n, the boundary
value problem (12.182, 184) has the eigensolution

Pn
l (s) = sl e−s/2 L2 l+1

n−l−1(s), (12.185)

where

Lj
k(s) =

s−jes

k !

dk

dsk
[
sj+ke−s

]
=

k∑

i=0

(−1)i

i !

(
j + k

j + i

)
si, j, k = 0, 1, 2, . . . , (12.186)

are known as generalized† Laguerre polynomials.

† The ordinary Laguerre polynomials are Lk(s) = L0
k(s).
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L0
1(s) L0

2(s) L0
3(s)

L1
1(s) L1

2(s) L1
3(s)

Figure 12.13. Generalized Laguerre polynomials.

The first few generalized Laguerre polynomials are

L0
0(s) = 1, L0

1(s) = 1− s, L0
2(s) = 1− 2s+ 1

2 s
2, L0

3(s) = 1− 3s+ 3
2 s

2 − 1
6 s

3,

L1
0(s) = 1, L1

1(s) = 2− s, L1
2(s) = 3− 3s+ 1

2 s
2, L1

3(s) = 4− 6s+ 2s2 − 1
6 s

3,

L2
0(s) = 1, L2

1(s) = 3− s, L2
2(s) = 6− 4s+ 1

2 s
2, L2

3(s) = 10− 10s+ 5
2 s

2 − 1
6 s

3.

Note that Lj
k(s) has degree k. A few graphs, on the interval 0 ≤ t ≤ 6, appear in

Figure 12.13. See [86] for details on their properties.

Atomic Eigenstates and Quantum Numbers

The integer n, whose physical value was noted in (12.183), is known as the principal
quantum number . We further note that the scaling factor in (12.181) can be written as

σ =
2M α2

n "2
=

2

na
, where a =

"2

M α2
≈ .529× 10−10 meter,

which approximates the radius of the electron’s lowest energy level, is known as the Bohr
radius , in honor of the pioneering Danish quantum physicist Niels Bohr. Reverting to phys-
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ical coordinates, the bound state solutions (12.185) become, up to an inessential constant
multiple, the radial wave functions

βn
l (r) =

(
2r

na

)l

e−r/(na) L2 l+1
n−l−1

(
2r

na

)
. (12.187)

Combining them with the spherical harmonics (12.179) yields the atomic eigenfunctions
or eigenstates

vlmn(r,ϕ, θ) =

√
(2 l+ 1) (l−m) ! (n− l − 1) !

πa3n4(l +m) ! (l+ n) !
βn
l (r)Y

m
l (ϕ, θ), (12.188)

where the initial factor is selected so as to make ∥ vlmn ∥ = 1, and hence a bona fide wave
function. (A proof of this fact is outlined in Exercise 12.7.8.) The eigenstates depend on
three integers, which have the following physical designations:

• n = 1, 2, 3, . . . : the principal quantum number ;
• l = 0, 1, . . . , n− 1: the angular quantum number ;
• m = − l,− l+ 1, . . . , l − 1, l : the magnetic quantum number .

The energy is the associated eigenvalue:

λn = −
α4M

2 "2
1

n2
= −

α2

2a

1

n2
, n = 1, 2, 3, . . . . (12.189)

The fact that the ratios λn/λ1 = 1/n2 between the energy levels of an atom are inverse
squares of integers was one of the key experimental discoveries that precipitated the dis-
covery of quantum mechanics. Observe that the nth energy level has a total of

n−1∑

l=0

(2 l+ 1) = n2 (12.190)

linearly independent bound states (12.188). The dimension of the eigenspace corresponds to
the number of orbital subshells in the atom for the corresponding energy level. The shells
indexed by the angular quantum number, i.e., the order l = 0, 1, 2, . . . of the spherical
harmonic, are traditionally labeled by a letter in the sequence s, p, d, f, g, . . . , where each
successive shell contains 2 l + 1 individual subshells, indexed by the magnetic quantum
number m.

The one missing ingredient in this simple model is the electron’s spin. Since electrons
can have one of two possible spins, the Pauli Exclusion Principle, first formulated by the
Austrian physicist Wolfgang Pauli, tells us that each atomic energy shell can be occupied
by at most two electrons. Consequently, the atomic shell with angular quantum number l
may contain up to 2(2 l + 1) electrons. Keep in mind that, since 0 ≤ l < n, the lth shell
appears only when n is sufficiently large, so that, according to (12.190), the nth energy
level contains up to 2n2 electrons.

The resulting atomic configuration of electronic energy shells is the explanation for
Mendeleev’s periodic table. Its rows are indexed by the principal quantum number n,
while the columns are labeled by the angular and magnetic quantum numbers l,m, and
the spin. As one moves up the periodic table, the electrons in each successive element’s
atom progressively fill up the lower energy levels, each new shell containing first a single
electron, then two electrons with opposite spins. Thus, hydrogen (in its ground state) has
a single electron in the 1s shell. Helium has two electrons in the 1s shell. Lithium has
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three electrons, with two of them filling the 1s shell and the third in the 2s shell. Neon
has ten electrons filling the first two energy levels, with two electrons in the 1s shell, two
in the 2s shell, and six in the 2p shell. And so on. The one complication is that, owing
to the orbital’s geometry, as prescribed by the associated spherical harmonic, the angular
and, to a lesser extent, magnetic quantum numbers also affect the physically observed
energy, and this can cause shells to fill later than might initially be expected. For example,
in potassium and calcium, the 4s shell is successively filled, followed by scandium, which
begins the process of filling the 3d subshells. The chemical properties of the elements are,
to a very large extent, determined by the placement of their atom’s electrons within the
outermost energy level. The interested reader can consult, for example, [67, 79] for further
details.

Exercises

12.7.1. If the nucleus contains Z protons circled by a single electron, then its atomic potential
V (x) is rescaled accordingly, replacing α2/r by Zα2/r. Discuss the induced effect on the
energy levels of such an atomic ion.

♥ 12.7.2.(a) Write down the time-dependent wave function for a single electron atom when the
electron is in its ground state, i.e., the lowest energy level. (b) What is the probability
density of the electron? (c) What is the probability of finding the electron within 1 Bohr
radius of the atom? (d) Find the distance d (measured in Bohr radii) so that there is a
95% probability of finding the electron within a distance d of the nucleus.

♦ 12.7.3. Prove that the two expressions for the Laguerre polynomials in (12.186) agree.

♦ 12.7.4.(a) Let k = 0, 1, 2, . . . be a nonnegative integer. The Laguerre differential equation of
order k is

xu′′ + (1− x)u′ + k u = 0. (12.191)
Show that x = 0 is a regular singular point. Then prove that the Frobenius solution based
at x = 0 is a polynomial of degree j that coincides with the Laguerre polynomial L0

k(x).
(b) Given nonnegative integers j, k ≥ 0, use the Frobenius method to prove that the general-

ized Laguerre differential equation

xu′′ + (j + 1− x)u′ + k u = 0 (12.192)

has a polynomial solution that can be identified with the generalized Laguerre polyno-
mial Lj

k(x) in (12.186).

♦ 12.7.5. Suppose that P (s) solves the ordinary differential equation (12.182). Prove that

Q(s) = s− l es/2P (s) solves the differential equation

s
d2Q
ds2

+ [2(l + 1)− s ]
dQ
ds

+ (n− l − 1)Q = 0. (12.193)

Then apply the result of Exercise 12.7.4 to complete the proof of Theorem 12.19.

♥ 12.7.6. Suppose f(x) is a polynomial, and let Lj
k(s) denote the generalized Laguerre polynomi-

als (12.186). (a) Prove that, for j, k ≥ 0,
∫ ∞

0
f(s)Lj

k(s) s
j e−s ds =

(−1)k

k !

∫ ∞

0
f (k)(s) sj+k e−s ds.

(b) For fixed j, prove that the generalized Laguerre polynomials Lj
k(s), k = 0, 1, 2, . . . ,

are orthogonal with respect to the weighted inner product ⟨ f , g ⟩ =
∫ ∞

0
f(s) g(s) sj e−s ds.

(c) Prove the formula for their corresponding norms: ∥Lj
k ∥ =

√
(j + k) !

k !
.
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♦ 12.7.7.(a) Prove that the generalized Laguerre polynomials satisfy the following recurrence re-
lation:

(k + 1)Lj
k+1(s)− (j + 2k + 1− s)Lj

k(s) + (j + k)Lj
k−1(s) = 0. (12.194)

(b) Prove that
∫ ∞

0
sj+1e−s

[
Lj
k(s)

]2
ds =

(j + 2k + 1) (j + k) !
k !

. (12.195)

Hint : Use part (a) and Exercise 12.7.6.

♥ 12.7.8. Prove that the atomic eigenfunctions (12.188) form an orthonormal system of wave
functions with respect to the L2 inner product on R3. Hint : Use Theorem 9.33 and equa-
tion (12.195).
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Symbol Meaning Page(s)

c+ d addition of scalars 575

z + w complex addition 571

A+B addition of matrices 575

v+w addition of vectors 575

f + g addition of functions 575

zw complex multiplication 571

z/w complex division 572

cv, cA, cf scalar multiplication 575

z complex conjugate 571

Ω closure of subset or domain 243

0 zero vector xvi, 575

> 0 positive definite 355, 578

≥ 0 positive semi-definite 355

f−1 inverse function xvi

A−1 inverse matrix xvi

f(x+), f(x−) one-sided limits xvi

n ! factorial 163, 453(
n

k

)
binomial coefficient 163

| · | absolute value, modulus 94, 225, 571

∥ · ∥ norm 73, 89, 106, 284, 356,
578, 579, 581

∥ · ∥ double norm 380

|∥ · ∥| norm 356

v ·w dot product 578

z ·w Hermitian dot product 580

⟨ · ⟩ expected value 287

⟨ · , · ⟩ inner product 73, 89, 107, 285, 341,
578, 579, 581

⟨⟨ · , · ⟩⟩ inner product 341

[0, 1 ] closed interval xvi

{ f | C } set xvi

∈ element of xvi
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̸∈ not element of xvi

⊂, ! subset xvi

∪ union xvi

∩ intersection xvi

\ set theoretic difference xvi

:= definition of symbol xvi

≡ identical equality of functions xvi

≡ equivalence in modular arithmetic xvi
◦ composition xvi

∗ convolution 95, 281

L∗ adjoint operator 341

∼ Fourier series representation 74

∼ asymptotic equality 300

f :X → Y function xvi

xn → x convergent sequence xvi

fn ⇀ f weak convergence 230

f(x+), f(x−) one-sided limits 41, 79

u′, u′′, . . . space derivatives xvii
!

u,
!!

u, . . . time derivatives xvii

ux, uxx, utx, . . . partial derivatives xvii, 1

du

dx
,
d2u

dx2
, . . . ordinary derivatives xvii, 1

∂ partial derivative xvii, 1

∂ boundary of domain 5, 152, 504
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂t ∂x
, . . . partial derivatives xvii, 1

∂x,
∂

∂x
partial derivative operator 2

∂

∂n
normal derivative 153, 244, 504

∇ gradient 150, 242, 345, 505

∇· divergence 242, 347, 505

∇× curl 242

∇2 Laplacian 243

! wave operator 50
n∑

i=1

summation xvi

∫
f(x) dx indefinite integral xvii

∫ b

a
f(x) dx definite integral xvii
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∫ ∞

−∞
− f(x) dx principal value integral 283
∫ ∫

Ω
f(x, y) dx dy double integral 243

∫ ∫ ∫

Ω
f(x, y, z)dx dy dz triple integral 505

∫

C
f(s) ds line integral with respect to arc length 244

∫

C
v dx line integral 243

∮

C
v dx line integral around closed curve 243

∫ ∫

∂Ω
f dS surface integral 505

a Bohr radius 567

A space of analytic functions 576

ak Fourier coefficient 74, 89

Ai Airy function 327, 460

arg argument (see phase) xvi, 573

b finite element vector 401

B magnetic field 551

bk Fourier coefficient 74, 89

Bi Airy function of the second kind 462

c wave speed 19, 24, 50, 486, 546

c finite element coefficient vector 401

C complex numbers xv, 571

cg group velocity 331

ck complex Fourier coefficient 89

ck eigenfunction series coefficient 378

cp phase velocity 330

C0 space of continuous functions 108, 576

Cn space of differentiable functions 5, 576

C∞ space of smooth functions 576

Cn n-dimensional complex space xv, 575

coker cokernel 350

cos cosine 6, 89

cosh hyperbolic cosine 88

coth hyperbolic cotangent 91, 317

csc cosecant 230

curl curl (see also ∇×) 242

d ordinary derivative xvii, 1

D derivative operator 342, 585

D domain 5
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det determinant 582

dim dimension 577

div divergence (see also ∇·) 242

ds arc length element 244

dS surface area element 505

e base of natural logarithm xvi

E energy 61, 132, 151

E electric field 551

ex exponential 5

ez complex exponential 573

ei standard basis vector 216, 577

erf error function 55

erfc complementary error function 302

f̃ periodic extension 77

F function space 575

F Fourier transform 264

F−1 inverse Fourier transform 265

F (t, x; ξ) fundamental solution 292, 387, 481, 543

G(x; ξ), Gξ(x) Green’s function 234, 240, 248, 527

G(t, x; τ, ξ) general fundamental solution 297

h step size 182

" Planck’s constant 6, 287, 394

Hn Hermite polynomial 311

Hm
n , H̃m

n harmonic polynomial 520

i =
√
−1 imaginary unit 571

I identity matrix 575

Im imaginary part 571

Jm Bessel function 468

k frequency variable 264

k wave number 330

K finite element matrix 401

K[u ] right hand side of evolution equation 291

kνij elemental stiffness 417

Km
n , K̃m

n complementary harmonic function 523

ker kernel 350, 577

l angular quantum number 568

L2 Hilbert space 106, 284

Lk Laguerre polynomial 566

Lj
k generalized Laguerre polynomial 566

L[u ] linear function/operator 10, 64, 585

lim
x→ a

, lim
n→∞

limits xvi
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lim
x→ a−

, lim
x→ a+

one-sided limits xvi

log natural or complex logarithm xvi, 573

m mass 6

m magnetic quantum number 568

M electron mass 564

Mr, Mx
r spherical mean 553

max maximum xvi

min minimum xvi

mod modular arithmetic xvi

n principal quantum number 568

n unit normal 153, 244, 505

N natural numbers xv

O zero matrix 575

O(h) Big Oh notation 182

p pressure 3

p option exercise price 299

P Péclet number 311

Pn Legendre polynomial 511, 525

pmn trigonometric Ferrers function 515

Pm
n Ferrers (associated Legendre) function 513

P(n) space of polynomials of degree ≤ n 577

ph phase (argument) xvi, 572

Q[u ] quadratic function(al) 362

r radial coordinate xv, 3, 160, 572

r cylindrical radius xv, 3, 508

r spherical radius xv, 3, 508

r interest rate 299

R real numbers xv

Rn n-dimensional Euclidean space xv, 575

R[u ] Rayleigh quotient 375

Re real part 571

rng range 576

s arc length 244

S surface area 505

Sm spherical Bessel function 539

sn partial sum 75, 113

Sr, Sx
r sphere of radius r 553, 555

sech hyperbolic secant 334

sign sign function 94, 225

sin sine 6, 89

sinh hyperbolic sine 88
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span span 576

supp support 407

t time xv, 3

T conserved density 38, 256

AT transpose of matrix 341, 578

Tν finite element triangle 411

tan tangent 1

tanh hyperbolic tangent 135

u dependent variable xv, 3

ux, uxx, . . . partial derivative 1

v dependent variable xv, 3

v eigenvector/eigenfunction 371

v vector xv, 575

v eigenvector 66, 582

v vector field 3, 242

V vector space 575

V potential function 6

v⊥ perpendicular vector 244

vlmn atomic eigenfunction 568

Vλ eigenspace 371

w dependent variable xv, 3

w heat flux 122

w heat flux vector 437

x Cartesian space coordinate xv, 3, 152, 504

x real part of complex number 571

X flux 38, 256

y Cartesian space coordinate xv, 3, 152, 504

y imaginary part of complex number 571

Y flux 256

Ym Bessel function of the second kind 470

Y m
n , Ỹ m

n spherical harmonic 517

Ym
n complex spherical harmonic 519

z Cartesian space coordinate xv, 3, 504

z cylindrical coordinate xv, 3, 508

z complex number 571

Z integers xv

α electron charge 564

βn
l radial wave function 568

γ thermal diffusivity 124, 438, 535

γ Euler–Mascheroni constant 471

Γ gamma function 454



Symbol Index 601

δ, δξ delta function 217, 219, 246, 247, 527

δ̃ periodically extended delta function 229

δ ′, δ ′ξ derivative of delta function 225, 226

∆ Laplacian 4, 152, 161, 243,

504, 509
∆ discriminant 172, 173

∆x step size 186

∆x variance 287

∆S spherical Laplacian 509

ε thermal energy density 122, 437

ϵ0 permittivity constant 551

ζm,n Bessel root 474

η characteristic variable 51

θ polar angle xv, 3, 160, 572

θ cylindrical angle xv, 3, 508

θ azimuthal angle xv, 3, 508

ζ root of unity 582

κ thermal conductivity 65, 123, 437

κ stiffness or tension 49

λ eigenvalue 66, 371, 573

λ magnification factor 189

µ0 permeability constant 551

ν viscosity 3

ξ characteristic variable 19, 25, 32, 51

π area of unit circle 5

ρ density 49, 122, 438

ρ spectral radius 584

ρ, ρξ ramp function 91, 223

ρn, ρn,ξ nth order ramp function 95, 223

ρm,n relative vibrational frequency 495

σ shock position 41

σ heat capacity 65, 122, 438

σ volatility 299

σ, σξ unit step function 61, 80, 222

σm,n spherical Bessel root 540

ϕ zenith angle xv, 3, 508

ϕ wave function 286

ϕk orthogonal or orthonormal system 109

ϕk basis for finite element subspace 401

χ specific heat capacity 122, 431

χD characteristic function 485
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ψ time-dependent wave function 394, 564

ω frequency 59, 330

Ω domain 152, 242, 504
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