Gray-Scott Model at F 0.0380, k 0.0650  

These images and movie demonstrate the behavior of the Gray-Scott reaction-diffusion system with σ=Du/Dv=2 and parameters F=0.0380, k=0.0650.

Spot solitons double like bacteria and fill the space. Note slow drift to attain optimal packing, which is reached after 500,000 or more tu (only 57,600 tu shown here)

The eastern limit for mitosis at F=0.0380 is about k=0.0657.    (glossary of terms)

             increase F









      
decrease k
      
after 192 tu
after 960 tu

15 frames/sec.; each fr. is 64 iter. steps = 32 tu; 1800 fr. total (57,600 tu)









      
increase k
      
after 3,520 tu after 14,400 tu after 57,600 tu
             decrease F
(Click on any image to magnify)

In these images:

Wavefronts and other moving objects have decreasing u values (brighter color) on the leading edge of the blue part of the moving object, and increasing u (light pastel color) on the trailing edge. This is true even for very slow-moving objects — thus, you can tell from the coloring what direction things are moving in.

''tu'' is the dimensionless unit of time, and ''lu'' the dimensionless unit of length, implicit in the equations that define the reaction-diffusion model. The grids for these simulations use Δx=1/143 lu and Δt=1/2 tu; the system is 3.2 lu wide. The simulation meets itself at the edges (periodic boundary condition); all images tile seamlessly if used as wallpaper.

Go back to Gray-Scott pattern index


Robert Munafo's home pages on HostMDS   © 1996-2019 Robert P. Munafo.
aboutcontact
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Details here.

This page was written in the "embarrassingly readable" markup language RHTF, and was last updated on 2019 Jan 05. s.11