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Inverted oscillations of a parametrically driven planar pendulum are considered,
together with their relationship to the inverted solution. In particular, a horse-
shoe structure of the associated manifolds is identified which explains the similarity
between the bifurcations of the inverted position and the hanging position. This
allows us to apply a large body of existing knowledge to the dynamics enabling a
lower bound on the forcing required to achieve inverted oscillations to be established.
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1. Introduction

It has been known for some time that a simple pendulum can be stabilized in the
upside down position by applying an oscillating vertical force to the pivot point
(Stephenson 1908). This has been demonstrated both experimentally and by numer-
ical simulation (Kalmus 1970; Pippard 1987; Smith & Blackburn 1992), and more
recently the concept has been extended to multiple pendulums (Acheson & Mullin
1993). The forcing parameters which bound the regions of stability can be found
approximately by analytical techniques based on linearization (Acheson 1993), or
the bifurcations that bound the stable regions can be followed by numerical methods
(Parker & Chua 1989). Comparison is made between the two approaches by Bryant
& Miles 1990). It is less well known that the pendulum can be made to oscillate
around the inverted position in periodic limit cycles. This behaviour was noted by
Acheson (1995), and the stable solutions were termed ‘multiple-nodding oscillations’
since the pendulum ‘nods’ either side of the inverted vertical position. If we take θ
to measure the angle that a pendulum makes with the downward, hanging position
then, as considered by Acheson, these solutions have three basic characteristics (i)
they oscillate about the inverted position θ = π, (ii) the angle θ remains in the range
π/2 < θ < 3π/2 for all time, and (iii) their velocity changes sign at least three times
on one side of the upright position. Multiple-nodding solutions form a subset of (gen-
erally) subharmonic solutions which may be of various periods and undergo different
numbers of changes in velocity during the periodic time. Many distinct ‘nodding’
oscillations are possible, with different periods and different numbers of nods. How-
ever, the origin of these solutions and their role in the bifurcations which determine
the stability of the inverted position have until now not been fully investigated.
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2. Equation of motion and numerical simulations

If we consider the pendulum to be a light rod of length, l, with a point mass, m,
while the pivot is vertically driven, then it is possible to write the equation of motion
in the form,

l2θ′′ +
d

m
θ′ + l(z′′ + g) sin θ = 0, (2.1)

in which the pendulum is subject to periodic displacement z(τ), and has linear
damping d, where a dash denotes differentiation with respect to time, τ . By writing

z(τ) = −Z cosΩτ, t = ω0τ, ω0 =
√
g

l
, (2.2)

equation (2.1) reduces to

θ̈ + cθ̇ + (1 = p cosωt) sin θ = 0, (2.3)

where

c =
d

ω0ml2
, p =

ZΩ2

g
, ω =

Ω

ω0
, (2.4)

in which θ is the angle of rotation measured from the downwards vertical, c is a
damping constant taken here as 0.1 throughout, p is the scaled parametric excitation
amplitude, ω is the scaled frequency of excitation, and a dot represents differentiation
with respect to the scaled time, t (Capecchi & Bishop 1994). The behaviour of the
parametrically excited pendulum has been the subject of considerable recent research
(Mullin 1993; Bishop & Clifford 1994, 1996a; Clifford & Bishop 1995a, b). In these
previous studies, the bifurcations of the hanging solutions (|θ(t)| < π ∀t) have been
determined by numerical and analytical techniques. It has also been shown that the
pendulum possesses a countable infinity of (unstable) periodic orbits which populate
the well-known tumbling chaotic attractor. The bifurcations at which these periodic
orbits are created or destroyed have been considered in terms of the formation of a
particular Smale horseshoe (Clifford & Bishop 1993, 1994).

The dynamics of the inverted position can equally be examined by using sim-
ilar techniques to those in the works cited. Solutions paths have been numerically
detected by following stable and unstable solutions located around the inverted θ = π
solution. For convenience, to illustrate their loci, a schematic bifurcation diagram
showing the effect of increasing the amplitude of parametric excitation, p is shown
in figure 1. At p = pn, the inverted solution stabilizes, as two mirror image unstable
period-1 solutions collide with the unstable inverted solution at a pitchfork bifur-
cation. The inverted solution then becomes unstable at a supercritical bifurcation
(p = pf ) leaving a symmetric period-2 solution. The symmetric period-2 solution
in turn undergoes a symmetry-breaking bifurcation at p = ps only one of which is
indicated on the figure, and the subsequent period-2 mirror image solutions period-
double repeatedly to possibly chaotic attractors before disappearing at a catastrophic
bifurcation (crisis) at p = pe similar to those discussed by Stewart (1987). This bifur-
cation sequence is identical to that of the hanging pendulum determined by Clifford
& Bishop (1993) with two exceptions. The initial bifurcation which stabilizes the
inverted position has no equivalent for the hanging solution, and the bifurcation at
p = pf may be subcritical in the hanging case. When ω = 2, the bifurcations occur
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Figure 1. Schematic bifurcation diagram for the inverted parametrically excited pendulum. Solid
(dashed) lines represent stable (unstable) solutions. From left to right, the bifurcations are as
follows: at p = pn the inverted solution becomes stable as two period-1 unstable solutions
collide with an unstable inverted solution (labelled I). At p = pf the inverted solution becomes
unstable at a supercritical pitchfork bifurcation leaving a stable symmetric period-2 solution.
This period-2 solution then undergoes a symmetry-breaking bifurcation at p = ps leaving two
mirror image asymmetric stable solutions, only one of which is shown. These period-2 orbits
then rapidly period-double to possibly chaotic attractors before a catastrophic bifurcation at
p = pe.

when pn = 3.12, pf = 3.42, ps = 3.55, pe = 3.37. The bifurcations of the hanging
solution corresponded to the formation of a three-striped Smale horseshoe (termed
a 3-shoe) in the invariant manifolds of the inverted unstable solutions (Smale 1967;
Clifford & Bishop 1995b). We propose that a similar horseshoe exists contained in
the invariant manifolds of the two symmetric (unstable) period-1 solutions, which
accounts for the almost identical behaviour. In effect, these two unstable period-1
solutions are analogous to the unstable inverted saddles (Bishop & Clifford 1996b).

Rather than determining the invariant manifolds of the inverted unstable period-1
solutions directly, which would involve locating the unstable solutions with a great
deal of accuracy, we can see the formation of horseshoe dynamics by numerically inte-
grating a range of initial conditions forwards and backwards in time. Figure 2 shows
the results of integrating the range of initial conditions around the inverted state for-
wards and backwards through one cycle of forcing for ω = 2, p = 4. The intersection
between these two sets contains orbits that will remain around the inverted position
for all time. Hence, the hatched regions contain a countable infinity of (unstable)
inverted oscillatory orbits, which can be located individually by numerical methods.
As an example, we show the position of a period-4 orbit in the figure. This topolog-
ical structure is identical to the 3-shoe which governed the dynamics of the hanging
pendulum.

3. Subharmonic oscillations

The origin of the multiple-nodding or other subharmonic oscillations can now be
explained in terms of the formation of the 3-shoe. While many of the inverted oscil-
lations may come from the bifurcations of the inverted state, it is clear that many
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Figure 2. Intersection of forward and backward integration of a range initial conditions which
remain around the inverted position θ = π plotted in (θ̇, θ/π) space. Unstable orbits that oscillate
about the unstable inverted position are located in the hatched regions by numerical methods.
The position of a period-4 orbit is also shown.

other oscillations, in particular those with odd periods, cannot come from this source.
The same was true for the hanging position, and many other orbits were success-
fully located by applying braid and knot theory to the sequence of events which
surrounded the 3-shoe creation process (Clifford & Bishop 1995a; Bishop & Clifford
1996). In particular, stable oscillations with odd period were located that had been
overlooked by earlier efforts. These additional orbits originate at subharmonic saddle-
node bifurcations, and are typically only stable over a narrow range of parameters.
Of particular note, in the hanging case, subharmonic solutions of a ‘nodding’ type
were located beyond the value of forcing amplitude for which the hanging state (or
bifurcations from it) was stable, akin to pe for the inverted case (Clifford & Bishop
1995a). The same is true for the inverted pendulum since the dynamics are gov-
erned by the same topological process. Using the invariant manifolds, and a symbolic
approach to locate periodic orbits, an approximation to their location can be found.
These solutions may be subsequently pin-pointed via a Newton–Raphson scheme.
In the problem under consideration, two period-4 subharmonic inverted oscillations
were located. Initially, these oscillations are unstable, but subsequently stabilize at
saddle-node bifurcations as the control parameter, p is varied. Time histories of the
two inverted oscillations are shown in figure 3 for ω = 2, p = 4, well beyond pe. At
first glance the orbits appear to be similar: both perform similar oscillating motions
close to θ = π before a larger negative movement (θ < π). However, closer inspection
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Figure 3. Construction of braids from two period-4 subharmonic orbits. The time histories of
the two orbits appear to be similar (top two pictures), but if we construct braid diagrams by
first plotting the time histories with time modulo T (second two pictures), and subsequently
rotating the pictures through 90◦ clockwise and straightening out the individual strands, we can
easily see that the left-hand orbit has five crossings, while the right-hand orbit has only three
crossings. It should be noted that all crossings are positive (left over right).

reveals that the second solution passes the θ = 0 hanging position while the first
solution does not proceed beyond the horizontal (θ = π/2). Thus, although these are
not multiple-nodding orbits as defined by Acheson, they show a similar ‘nodding’
behaviour, and exist beyond pe. Furthermore, if the solutions are displayed with
time plotted modulo T , then the solutions begin to look more distinct. Indeed, if
we construct braid diagrams (Birman 1974; McRobie & Thompson 1993) from the
time histories, it is apparent that there is a difference in the number of crossings:
the first solution has five crossings while the second has only three. This has many
important consequences when it comes to determining the possible bifurcations of
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different pairs of orbits (McRobie 1992), and is a much stronger topological invariant
than number of nods.

One very simple conclusion that can be drawn directly from the analogy to a 3-
shoe is that no subharmonic inverted oscillation can exist (stable or unstable) before
the initial bifurcation that stabilizes the inverted position takes place (Clifford &
Bishop 1994). Or to put it more simply, the inverted subharmonics cannot exist if
the inverted state has not been stabilized. The physical significance of this is that the
pendulum cannot be stabilized in an inverted oscillation with less excitation ampli-
tude, p, than it would take to stabilize the inverted state. However, these oscillations
can continue to exist beyond the symmetry-breaking bifurcation where the inverted
state again becomes unstable. The same analogy indicates that subharmonic solu-
tions, possibly including those of multiple-nodding type, can occur beyond pe, the
value beyond which inverted motions do not exist in stable form.

4. Conclusions

We have determined the bifurcations of the inverted pendulum by numerical meth-
ods, and have observed the creation of a similar horseshoe structure for the inverted
pendulum to the hanging pendulum. We have also successfully located subhar-
monic oscillations, though for complete understanding a topological consideration is
required, including their braid type. More significantly, we have shown that by anal-
ogy to the 3-shoe, the pendulum cannot be stabilized in a subharmonic inverted oscil-
lation with less excitation amplitude, p, than it would take to stabilize the inverted
state.

The authors acknowledge the helpful comments of David Acheson.
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