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Abstract

A model is studied which consists of a chain of N identical pendulums coupled by damped elastic joints
subject to vertical sinusoidal forcing of its base. Particular attention is paid to the stability of the upright
equilibrium configuration with a view to understanding recent experimental results on the stabilization of
an unstable stiff column under parametric excitation. It is shown via an appropriate scaling argument how
the continuum rod model arises by taking the limit N-N:

The effect of the inclusion of bending stiffness is first studied via asymptotics and numerics for the case
N ¼ 1; showing how the static bifurcation of the pendulum varies with the four dimensionless parameters
of the system; damping, bending stiffness and amplitude and frequency of excitation. For the multiple
pendulum system, the bifurcation behaviour of the upright position as a function of the same four
parameters is studied via numerical methods applied to the linearized equations. The damping term is
found to be crucial in destroying many of the resonant instabilities that occur in the limit as N-N: At
realistic damping levels only a few instabilities remain, which are shown to be largely independent of N:
These instabilities agree qualitatively with the experiments.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is now well known that a simple pendulum can be stabilized in the inverted position by
application of a parametric (i.e., vertical) sinusoidal displacement of appropriate (sufficiently
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high) frequency and (sufficiently small) amplitude [1]. The phenomenon comes about because of
the resonance tongue in the ‘negative gravity’ region of the parameter plane of the classical
Mathieu equation. More recently, Acheson [2] (see also the earlier analysis of Otterbein [3]) has
shown that the stability of the inverted equilibrium position of a chain of N pendulums can be
reduced by modal analysis to the study of N uncoupled Mathieu equations with different
parameters. Hence by choosing the frequency sufficiently high and amplitude sufficiently small for
each normal mode, the finite chain can also be stabilized by parametric excitation. Numerical
simulations for chains of 2 and 3 pendulums [2] and experiments by Acheson and Mullin [4] show
that the stability is remarkably robust even for quite large disturbances.
It has been suggested that the limit of this system, in which the total length and mass of the

system stays constant while the number of pendulums in the chain becomes infinite, could be used
as a possible explanation of the so called ‘Indian rope trick’ [5]. Unfortunately, as is shown in the
afore-mentioned papers, in this limit, which is that of a piece of string, the stability region
becomes vanishingly small and the explanation fails.
However, a further experiment by Acheson and Mullin announced in Refs. [6,7], demonstrated

that a piece of ‘bendy curtain wire’, clamped at the bottom and free at the top, that is just too long
to support its own weight can be stabilized by parametric oscillation. This might be called the
‘Indian rod trick’. Recently, Champneys and Fraser [8] proposed a linearized analysis of the
problem for continuously flexible linearly elastic rod. The principle that stabilization is indeed
possible was indeed proved using a combination of harmonic balance and double-scale
asymptotics, but there remains a lack of qualitative and quantitative fit with the experiments
(the details of which appear elsewhere [9]). Part of the problem is that this is an infinite degree-of-
freedom system and there are infinitely many resonance tongues within a finite region of
parameter space. Nevertheless, a recent extension of this asymptotic analysis [10], which also
includes weakly non-linear terms, has shown how the theory of ‘resonant tongue interaction’ plays
a vital role. However, the asymptotic method used breaks down with the inclusion of any small
damping in the model, and yet this damping is responsible in practice for destroying all but the
finite number of resonant instabilities that are observed in practice.
An alternative approach proposed here is to study a discrete model in which small amounts of

damped elastic constraints are added to the bottom joint and the joints between a system of N

identical pendulums. By an appropriate scaling, it will be shown that this problem can be posed in
such a way as to tend to the materially damped linearly elastic rod in a continuum limit obtained
by letting N-N: A justification for studying the problem for fixed (large) N is that it can be seen
that such material damping enters the model in a regular way, whereas it is a singular perturbation
to the continuum problem.
In analyzing such a model, clearly if the stiffness of each joint is high then the state where all

pendulums point vertically upwards is stable even in the absence of external forcing. A natural
question to ask is therefore ‘‘what is the minimum amount of elastic stiffness that will just stabilize
the parametrically excited inverted chain when the above limit process is applied?’’ Also, ‘‘how
does this stability limit depend on the other parameters; damping, and amplitude and frequency of
excitation?’’. This paper addresses these questions using numerical bifurcation theory applied to
the equations linearized around the vertical position.
In the next section the fully non-linear system of equations for the N-pendulum configuration is

derived and it is shown how this reduces in the limit to the equation for a damped version of the
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continuously flexible column investigated by Champneys and Fraser. Section 3 then focuses on
the case N ¼ 1; treating the non-linear equation, and investigates the effect of the inclusion of
bending stiffness by both asymptotic (averaging) and numerical methods. Section 4 then goes on
to present the numerical results for general systems of N > 1 pendulums. The primary ‘leaning
over’ instability is shown to occur at bending stiffness values that extrapolate to the correct value
for the continuum problem. Many other dynamic instabilities are found, but it is shown how
damping ameliorates them to the extent that at realistic damping levels only a few remain. Curves
of this dynamic, as well as the static instability, are traced out in the remaining three parameters
and are shown to be insensitive qualitatively to the value of N provided it is sufficiently large.
Finally, Section 5 draws conclusions.

2. The mathematical model

Consider a chain of N simple pendulums, of length c and mass m; linked together in the
inverted configuration shown in Fig. 1. Let yn be the angle the shaft of the nth pendulum makes
with the vertical, and let the lower support point of the system be given the vertical displacement
D cosOt: The system is constrained to move in the Oxy-plane with Oy vertically up. Each joint
(including the bottom support point) is assumed to have a rotational stiffness k which contributes
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Fig. 1. Model of N identical pendulums. Each pendulum has length l and mass m and there is an elastic spring at each

joint. The variable yi measures the angle with respect to the previous shaft whereas the generalized co-ordinate xi

measures the horizontal distance to the vertical position of the bob i:
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elastic potential energy kðyn � yn�1Þ
2=2 at the nth joint and y0 ¼ 0: That is, each joint is unstressed

when each pendulum points vertically. Moreover, each joint is supposed to experience a damping
force gð’yn � ’yn�1Þ proportional to the angular velocity of the joint.

2.1. Lagrangian formulation

The Lagrangian for the system can be written in terms of the generalized coordinates yn;
n ¼ 1; 2;y;N: The Cartesian coordinates of the bob of the nth pendulum are

xn ¼
Xn

i¼1

c sin yi; yn ¼ D cosOt þ
Xn

i¼1

c cos yi: ð1Þ

Thus, the Lagrangian for this system can be written as

L ¼
XN

n¼1

1

2
mð ’x2

n þ ’y2
nÞ � mgyn �

1

2
kðyn � yn�1Þ

2

� �
;

where in the summation of the last term on the right-hand side y0 ¼ 0 and ’ð Þ ¼ dð Þ=dt:
The damping is modelled by means of a Rayleigh dissipation function

F ¼
XN

n¼1

g
2
ð’yn � ’yn�1Þ

2:

When expressions (1) for the positions xn; yn in terms of the generalized co-ordinates yn are
substituted into the Lagrangian one can then apply Lagrange’s equations in the form

d

dt

@L

@ ’yj

 !
�
@L

@yj

þ
@F

@ ’yj

¼ 0 for j ¼ 1;y;N:

Thus, the equation for the jth co-ordinate yj is

0 ¼
XN

n¼j

Xn

i¼1

m½c2 .yi cosðyj � yiÞ þ c2 ’y2i sinðyj � yiÞ� þ ½mcDO2 cosOt � mgc� sin yj

( )

� kðyjþ1 � 2yj þ yj�1Þ � gð’yjþ1 � 2’yj þ ’yj�1Þ

¼mc2 cos yj

XN

n¼j

Xn

i¼1

½.yi cos yi � ’y2i sin yi� þ sin yj

XN

n¼j

Xn

i¼1

½.yi sin yi þ ’y2i cos yi�

 !

þ mðN � j þ 1Þc½DO2 cosOt � g� sin yj � kðyjþ1 � 2yj þ yj�1Þ � gð’yjþ1 � 2’yj þ ’yj�1Þ: ð2Þ

Note that for j ¼ 1 the elastic and the damping term have to be slightly modified.

2.2. Continuum limit

Eqs. (2) will now be linearized on the assumption that jynj{1; 8n; so that
cos ynE1; sin ynEyn; and the squares and higher powers of small quantities are ignored. The
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result is

h2
XN

n¼j

Xn

i¼1

.yi

 !
þ hðN � j þ 1Þðeo2 cosot� 1Þyj

� Bðyjþ1 � 2yj þ yj�1Þ=h2 ¼ Gð’yjþ1 � 2’yj þ ’yj�1Þ=h2; ð3Þ

where the following dimensionless quantities have been introduced, based on the total length and
mass of the system L ¼ Nc; M ¼ Nm:

h ¼
c

L
¼

1

N
; e ¼

D
L
; o ¼

Offiffiffiffiffiffiffiffi
g=L

p ; t ¼
tffiffiffiffiffiffiffiffi
L=g

p ;

B ¼
k

MgLN
; G ¼

g
MgLN

ffiffiffiffi
g

L

r
;

and henceforth ’ð Þ ¼ @ð Þ=@t:
In order to find the continuum column limit of the model described above, first set jh ¼

s; nh ¼ Z; ih ¼ x; and yn ¼ fðs; tÞ; yi ¼ fðx; tÞ; and then take the limit of the above linearized
form of the jth Lagrange equation, as h-0; N-N while L; M; B and G are held fixed. Note
that both k and g must therefore scale with N: The result is

Z 1

s

Z Z

0

.fðx; tÞdx
� 

dZþ ðeo2 cosot� 1Þð1� sÞfðs; tÞ � B
@2f
@s2

¼ G
@2 ’f
@s2

:

Finally, differentiation of this result twice with respect to s gives

� .fþ ðeo2 cosot� 1Þ½ð1� sÞf�00 � BfIV ¼ G ’fIV; ð4Þ

where ð Þ0 ¼ @ð Þ=@s:
This equation is equivalent to that of a continuously flexible column with bending stiffness B

and a material damping coefficient G: The equivalence of Eq. (4) to Eqs. (3.3)–(3.5) in Ref. [8] can
be seen by making the substitutions r0 ¼ i sin fEif for jfj{1 and G ¼ 0:
For the majority of the rest of this paper the linearized equation (3) shall be studied. This

represents a convenient discretised formulation, because its parameters B; o; e and G are scaled
in such a way that they correspond to those of the continuum model. Also in Ref. [10] it is shown
that non-linear terms are not at all crucial in studying how the various instabilities of the vertical
equilibrium interact upon varying B; e and O for the continuum model. Hence it would seem
reasonable to treat the linearized model (3) which has the huge advantage over (2) that constant
matrices, rather than non-linear functions of yi; multiply the highest order derivatives. However it
is clear that in any practical demonstration of the ‘Indian rod trick’ damping is important, and
Eq. (3) has the advantage over the continuum model (4) in that damping does not enter as a
singular perturbation.
Before proceeding, it will be helpful to put Eq. (3) in a more convenient form.
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2.3. Writing as a first order system

The linearized form of the Lagrange equations given in Eq. (3) can be written in matrix form as
follows (cf. Otterbein [3] who considers the case without stiffness or damping):

M .H þ ðeo2 cosot� 1ÞNKH þ BN4EH ¼ �GN4E ’H; ð5Þ

where

H ¼ ðy1; y2; y3;y; yNÞ
T;

M ¼

N N � 1 N � 2 N � 3 ? 1

N � 1 N � 1 N � 2 N � 3 ? 1

N � 2 N � 2 N � 2 N � 3 ? 1

N � 3 N � 3 N � 3 N � 3 ? 1

^ ^ ^ ^ ^

1 1 1 1 ? 1

2
6666666664

3
7777777775
;

K ¼

N 0 0 0 ? 0

0 N � 1 0 0 ? 0

0 0 N � 2 0 ? 0

0 0 0 N � 3 ? 0

^ ^ ^ ^ ^

0 0 0 0 ? 1

2
6666666664

3
7777777775
;

E ¼

2 �1 0 0 ? 0

�1 2 �1 0 ? 0

0 �1 2 �1 ? 0

^ ^ ^ �1 2 �1

0 0 0 0 �1 1

2
6666664

3
7777775
:

In general then, matrix M must be inverted in order to write Eq. (5) in first order form. A
simpler, physically motivated approach is to introduce the generalized coordinates; x ¼
ðx1; x2; x3;y; xNÞ

T; via the transformation

hH ¼ Tx;

where

T ¼

1 0 0 0 ? 0

�1 1 0 0 ? 0

0 �1 1 0 ? 0

0 0 �1 1 ? 0

^ ^ ^ ^ ^

0 0 0 0 �1 1

2
6666666664

3
7777777775
:
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The generalized coordinates x represent the horizontal displacements of the bobs as depicted in
Fig. 1. Thus, in terms of x; the matrix form of the linearized Lagrange equations is

.xþ ðeo2 cosot� 1ÞN #Kxþ BN4 #Ex ¼ �GN4 #E ’x; ð6Þ

where TTMT ¼ I; #K ¼ TTKT; and #E ¼ TTET:
In this representation, although the coefficient of .x is greatly simplified, the expressions for #K

and #E are more complicated:

#K ¼

2N � 1 �N þ 1 0 0 0 0 ? 0

�N þ 1 2N � 3 �N þ 2 0 0 0 ? 0

0 �N þ 2 2N � 5 �N þ 3 0 0 ? 0

^ ^ ^ ^ ^ ^ ^

0 0 0 0 �3 5 �2 0

0 0 0 0 0 �2 3 �1

0 0 0 0 0 0 �1 1

2
666666666664

3
777777777775
;

#E ¼

6 �4 1 0 0 0 0 0 ? 0

�4 6 �4 1 0 0 0 0 ? 0

1 �4 6 �4 1 0 0 0 ? 0

0 1 �4 6 �4 1 0 0 ? 0

0 0 1 �4 6 �4 1 0 ? 0

^ ^ ^ ^ ^ ^ ^ ^ ^

0 0 0 0 0 1 �4 6 �4 1

0 0 0 0 0 0 1 �4 5 �2

0 0 0 0 0 0 0 1 �2 1

2
66666666666666664

3
77777777777777775

:

Unfortunately, it is not possible to uncouple these equations as is the case when B ¼ G ¼ 0; and
so one cannot appeal directly to the theory of Mathieu equations as in Ref. [2].

3. Single pendulum with elastic support and damping

Before proceeding to an analysis of the N-pendulum case, it is instructive to carry out an
investigation of the simplest approximation to the parametrically excited continuous column; i.e,
one pendulum with elastic support and damping. Owing to the simplicity of the model, one can in
this case carry out a fully non-linear study, using both averaging theory and numerical bifurcation
analysis.
To obtain the single pendulum equation, set N ¼ 1; y1 ¼ y and c ¼ L (so that h ¼ 1) in Eq. (2),

and introduce the dimensionless variables to find

.yþ ðeo2 cosot� 1Þ sin yþ Byþ G’y ¼ 0: ð7Þ
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Note that the choice of origin of y is such that the trivial solution y ¼ ’y ¼ .y ¼ 0 of Eq. (7), for any
values of the parameters, corresponds to the inverted pendulum position. The usual down-
hanging position is given by y ¼ p: Now to analyze the stability and bifurcation behaviour of the
y ¼ 0 solution.
The case without the elastic joint, i.e., setting coefficient B ¼ 0; is well known and can be found

in many textbooks [11–13]. See Ref. [14] for some of the most recent results. The bifurcation
diagram can be presented either in a dimensionless amplitude–frequency diagram [2], or, if
another non-dimensionalization is chosen, in the more familiar Mathieu-like amplitude–gravity
diagram with the classical resonance tongues. In fact, the stability of the inverted pendulum
solution is given by the linearization of Eq. (7), which leads to the classical damped Mathieu
equation;

.yþ ðeo2 cosot� 1þ BÞyþ G’y ¼ 0: ð8Þ

Note that the effect of the stiffness B in this linearized equation is simply to modify the usual
gravitational term. However, it is not evident what the effect of the elastic and damping terms are
on the fully non-linear Eq. (7).

3.1. Static stability

When e ¼ 0; the equilibria of Eq. (7) are the solutions of

sin y ¼ By:

From an analysis of solutions to this equation, it is found that the trivial solution undergoes a
supercritical pitchfork bifurcation upon decreasing B through 1. Analyzing the stability of the
equilibria using Eq. (8), one finds that the trivial solution is stable for B > 1 and the bifurcated
ones stable for Bo1: Hence, this corresponds to a stable stiff-jointed single pendulum becoming
unstable and ‘leaning over’ to one side as the bending stiffness in the joint is reduced through the
critical value, 1 in dimensionless units.

3.2. High-frequency asymptotic limit

The author’s now wish to assess what happens to the symmetry-breaking bifurcation when the
parametric excitation is added (e > 0 in Eq. (7)). It is convenient to use the theory of averaging in
the limit that the frequency of excitation o is large.
It is assumed that the time dependence of yðtÞ can be decomposed into a sum of two terms:

yðtÞ ¼ aðtÞ þ xðtÞ; ð9Þ

such that /yðtÞS ¼ aðtÞ is a function of Oð1Þ that is slowly varying compared with the external
forcing, and xðtÞ is a rapidly varying function with small amplitude and zero average over one
forcing period. In particular this analysis is valid when e{1 and e2o2BOð1Þ: Here, the averaging
operation over one period of the external force is defined by

/CS ¼
o
2p

Z 2p
o

0

Cdt: ð10Þ
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Note that the above considerations can be formalized by introducing two time scales t; and #t ¼ et
and letting #o ¼ oe ¼ Oð1Þ: The results from such a formalism (cf. for example the general theory
in Ref. [15]) is identical to that obtained below.
Substitution of Eq. (9) into Eq. (7) gives

.aþ .xþ Bðaþ xÞ þ Gð’aþ ’xÞ þ ðeo2 cosot � 1Þðsin a cos xþ cos a sin xÞ ¼ 0: ð11Þ

Since x is small, take cos xB1 and sin xBx so that the last term becomes

ðeo2 cosot � 1Þðsin aþ x cos aÞ þ Oðx2Þ:

When this equation is averaged over one period of the fast frequency and the averages
/cosotS ¼ /xS ¼ /’xS ¼ /.xS ¼ 0 are taken into account, one obtains

.aþ Baþ G’a� sin aþ eo2 cos a/x cosotS ¼ 0: ð12Þ

An expression for the term /x cosotS; is found as follows: First, subtract Eq. (12) from Eq. (11)
which gives

.xþ Bxþ G’xþ eo2 sin a cosot þ eo2 cos aðx cosot �/x cosotSÞ ¼ 0: ð13Þ

The dominant term in this equation is eo2 sin a cosot; so that an approximate equation for x is

.xC� eo2 sin a cosot

(note that for consistency x ¼ OðeÞ and .x ¼ Oðe�1Þ are required, so that the term proportional to
G in Eq. (13) has been correctly neglected). Integrating twice with respect to time and noting that a
is constant over the averaging period with respect to the fast time scale 1=o; gives the result that

xðtÞCe sin a cosot:

This last expression is now used to find

/x cosotS ¼ e sin a/cos2 otS ¼ 1
2
e sin a: ð14Þ

Substitution of Eq. (14) into Eq. (12) gives the equation that determines the time evolution of the
slowly varying component of yðtÞ:

.aþ Baþ G’aþ
e2o2

2
cos a� 1

� 
sin a ¼ 0: ð15Þ

If B ¼ 0; the well-known stability result for the simple pendulum in the high-frequency limit is
recovered; if eoo

ffiffiffi
2

p
the a ¼ 0 solution is unstable, whereas if eo >

ffiffiffi
2

p
it is stable. Hence the

maximum a which will not result in the pendulum falling over is amax ¼ cos�1ð2=e2o2Þ:
For non-zero B the a ¼ 0 solution is stable if B þ e2o2=2 > 1: Thinking of B as the bifurcation

parameter, this gives the correction to the supercritical pitchfork bifurcation found above for the
e ¼ 0 problem, namely that a pendulum with B > 1� e2o2=2 is stable in the upright position. So
the effect of parametric forcing in this asymptotic limit is to reduce the B-value that leads to
stability. Note that from the point of view of dynamical systems theory, the trivial solution is now
a periodic solution and the pitchfork is a symmetry-breaking bifurcation of this periodic solution.
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However, equivalently eo may be thought of as the bifurcation parameter, then it is possible to
find that the stability of the bifurcating solutions for B just less than 1 is very different from that
for the non-elastic pendulum B ¼ 0: In the former case, decreasing eo leads to an unstable
equilibrium surrounded by two stable equilibria, whereas for B ¼ 0; there is a subcritical pitchfork
bifurcation (increasing eo through

ffiffiffi
2

p
a stable equilibrium surrounded by two unstable ones is

found). Hence for B between 0 and 1 there must be a codimension-two point that accounts for the
change between a super- and subcritical pitchfork.
To consider what happens, now focus on the symmetry broken solutions that originate at the

pitchfork bifurcation. They are characterized by non-zero equilibria of the averaged Eq. (15), i.e.,
solutions of

B ¼ 1�
e2o2

2
cos a

� 
sin a
a

: ð16Þ

The nature of the bifurcation can be inferred by Taylor expansion in a of the trigonometric
functions in Eq. (16):

B ¼ 1�
e2o2

2
þ e2o2 �

1

2

� 
a2

3
: ð17Þ

The solution without external forcing ðe ¼ 0Þ is stable for B > 1 and unstable for Bo1: From
Eq. (17) it is clear that the bifurcation will be supercritical if e2o2 � 1

2
o0 (Fig. 2a) and subcritical if

e2o2 � 1
2
> 0 (Fig. 2b). Therefore, there is a degenerate pitchfork bifurcation at

eo ¼
1ffiffiffi
2

p
in the high-frequency limit. Emanating from the super-subcritical transition in the ðB;oÞ-plane
there will also be a curve of folds (limit points of branches of the non-trivial periodic solutions), as
depicted in Fig. 2b. From the averaging results, the position of the limit points can be estimated
from the zeros of dB=da; which, according to the quadratic approximation (17) occur at
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Fig. 2. Schematic bifurcation diagram for a single pendulum. A measure of the amplitude of the solution is plotted as a

function of B for fixed value of e and o: Panel (a) correspond to a supercritical bifurcation ðeoo 1 ffiffi
2

p Þ and panel (b) to a

subcritical one ðeo > 1 ffiffi
2

p Þ: The turning point ðBLPÞ in the subcritical case is approximately given by Eq. (18).
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a ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2=e2o2

p
: Substituting this expression for a back into Eq. (17) gives the quadratic

approximation to the locus of limit points

BLP ¼
ð1þ e2o2Þ2

6e2o2
; for eo >

1ffiffiffi
2

p : ð18Þ

3.3. Numerical results

Fig. 3 compares the above results from the averaging method with the results of a numerical
bifurcation analysis using the numerical continuation code AUTO [16]. Fig. 3a shows an e� o
bifurcation diagram for B ¼ 0 and G ¼ 0:1: For small values of o and e the pendulum is unstable,
but it can be stabilized for certain values inside the shaded region. The borders of the stability
region are formed by pitchfork and period-doubling bifurcations, which correspond to harmonic
and subharmonic instabilities, respectively. The label e1 marks the threshold of stability for the
amplitude for a given value of the frequency o1 ðo1 ¼ 35:4; e1 ¼ 0:04Þ:
Fig. 3b depicts the position of the pitchfork bifurcation in the ðo� BÞ-plane for this particular

value of e ¼ e1: Note that the curve should connect the point ðB ¼ 1; o ¼ 0Þ with ðB ¼ 0; o ¼
o1Þ: There is transition from supercritical to subcritical pitchfork bifurcation at the precise value
o ¼ 17:71: Note that this compares very well with the theoretical value o ¼ 1=e

ffiffiffi
2

p
E17:68 found

above analytically in the high-frequency limit, although the value of e used is just 1
25
: Emanating

from the degenerate pitchfork bifurcation point, three curves are shown. The grey line is the
approximate position of the limit point for the unstable periodic orbit born at the subcritical
pitchfork bifurcation as given by Eq. (18). The solid thick line is the same quantity but derived
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Fig. 3. Bifurcation diagrams for the single pendulum. Panel (a) is the e–o bifurcation diagram for B ¼ 0 and G ¼ 0:1:
Panel (b) is the position of the pitchfork bifurcation in the o–B plane for a fixed value of e:We have chosen e ¼ 0:04 and
marked it in panel (a) with the symbol e1 and the corresponding frequency with o1: See text for explanation of the

curves emanating from the codimension-two point. Panel (c) shows the e–B bifurcation diagram for a fixed value of the

frequency, marked by o1 in panel (a). The shaded region corresponds to stability of the inverted pendulum position.

Panel (d) plots the ðe;BÞ-bifurcation diagram corresponding to the same values as those used in (c) but in a broader

range.
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from the full non-linear Eq. (16). Finally, the circles are the numerically computed positions of the
limit points from the continuation scheme. The agreement with the prediction of averaging theory
is remarkable.
Fig. 3c shows the e–B bifurcation diagram for a fixed value of the frequency, marked by w1 in

panel (a). The shaded region corresponds to stability of the inverted pendulum position. Fig. 3d is
a plot of the same e–B bifurcation diagram on a much broader range (up to B values
corresponding to highly stiff support which is way beyond the region of interest for the primary
investigation of this paper). Note that, as argued above, the linearized stability diagram is
essentially the same as that of the Mathieu equation with eB playing the role of the frequency
parameter. However, as can be seen by running numerical simulations, the non-linear behaviour is
entirely different to that of the parametrically excited ðB ¼ 0Þ simple pendulum.
A simple QuickBasic program has been written to perform simulations of a single stiff damped

parametrically excited pendulum and plot the results in physical configuration space.1 The results
of running this program are striking. For example, setting e ¼ 0:1; o ¼ 10; G ¼ 0:1 and allowing
B to increase from say 0.25 to 25 will result in a bent-over equilibrium position approaching a
stable upside-down configuration for B about 0.64. So a small amount of bending stiffness has a
stabilizing influence. In agreement with the above analysis (since eo > 1=

ffiffiffi
2

p
) there is evidence of

hysteresis in that upon decreasing B; the upright equilibrium stays stable until a B-value of
approximately 0.5. Now, upon increase of B to 25 the upside down state becomes unstable again
and large oscillations result. Hence, counterintuitively, making the support much stiffer, has
resulted in instability! Further increases of B result in hitting the next stability tongue of Fig. 3d
and stability is once again restored. Note that although there is a close analogy with the usual,
rigid, unsupported pendulum at the linear level, the non-linear dynamics of the two problems
seem very different; compare numerical experiments using the QuickBasic program with those at
the corresponding parameter set for the standard parametrically excited pendulum [14].
The situation for N-pendulums is, however, much more complicated. Since there are N normal

modes, there will be many other instability tongues around, and depending on the values of the
other parameters, these may well not all be bounded away from a small neighbourhood of B ¼ 1:

4. Stability of the trivial solution for N pendulums

This section investigates the stability of the trivial solution ðyi ¼ ’yi ¼ 0 i ¼ 1;y;NÞ; of Eq. (5),
as the parameters and the number of pendulums are varied. The aim is to gain some insight into
the continuum limit (Eq. (4)) and, in particular, explain the experimental stabilization of a flexible
and damped curtain wire [9].

4.1. Numerical method

To investigate the stability of the upright solution of the linearized system Eq. (6) use of AUTO
has been made in the following way. The starting point is the upright vertical solution (i.e., xi ¼ 0)
for a fixed number of pendulums. This is represented as a periodic solution of the
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non-autonomous system of ODEs. Then continue this solution, which is trivial, as one of the
parameters (B; e; o or G) varies. In so-doing it is possible to monitor the characteristic (Floquet)
multipliers and accurately locate bifurcation points, at which multipliers cross the unit circle. In
order to extract information on the continuous limit, follow a straightforward scaling analysis by
plotting the relevant quantities as a function of 1=N and extrapolating the result to the origin.
Once a bifurcation point is located, it is possible to continue it in two parameters and determine

the stability regions of the system. Alternatively, investigations into the spatial and temporal
character of the mode that is bifurcating can be performed by demanding that AUTO switches
branches at the bifurcation point. Since one is using the linearized equations, this will compute a
pure ‘vertical branch’ of solutions at fixed parameter values, which can be plotted at a fixed non-
zero value of the solution’s norm. However, one cannot detect non-linear behaviour such as the
super or subcriticality of the bifurcation or any secondary bifurcations since the linearized
equations have been used.

4.2. Static instability

In the absence of external forcing ðe ¼ 0Þ and elastic restoring forces ðB ¼ 0Þ the system of N
pendulums (and its continuous counterpart) is unstable in its upright position ðxi ¼ 0; i ¼
1;y;NÞ: As the elastic term is increased, this solution becomes stable. For the continuous system,
the critical value of B for this transition in dimensionless values is Bcr ¼ 0:127594 (see Refs. [8,17]
for how this number is determined exactly in terms of the first zero of a certain Bessel function). In
Fig. 4a is plotted the critical values of BðNÞ

cr as a function of the number of pendulums for e ¼ 0: In
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Fig. 4. The upper part of the figure shows the critical values of B as a function of the number of pendulums N: They
approach the value corresponding to the continuum limit ðBN ¼ 0:1278Þ in an asymptotic way. The lower figure shows

the same quantity as a function of 1=N to make the scaling behaviour more evident. The dashed line is the quadratic

extrapolation to the origin that gives an estimation of B ¼ 0:1275 for the critical value of the elastic coefficient.
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the previous section it has already been seen that Bð1Þ
cr ¼ 1: These results now show that BðNÞ

cr

decreases monotonically from this value as N increases. To extrapolate to the value as N-N the
same values as a function of 1=N have been plotted in Fig. 4b. A quadratic fit of the points
evaluated at 1=N ¼ 0 indicates that the estimation of the critical value as the number of
pendulums goes to infinity is BN ¼ 0:1278; in very good agreement with the continuum value.

4.3. The effect of damping

In the continuous model the undamped ðG ¼ 0Þ case has been studied by means of an
asymptotic analysis and numerical Floquet Theory [8,10]. The presence of a countably infinite
number of resonances within a finite range of parameter values makes this analysis problematic. It
is well known that the inclusion of damping in the model not only makes the model more realistic,
but also eliminates higher order resonances by shifting them to higher values of e:
Fig. 5 shows the number of Floquet multipliers of the trivial solution outside the unit circle as a

function of the frequency for e ¼ 0:02; a fixed value of B slightly below BðNÞ
cr ; for N ¼ 8 and 16,

and several values of the damping coefficient G:
The stability of the upright position is indicated by zero unstable multipliers, and jumps in the

plot, which must be integer valued, corresponding to certain modes of instability. The undamped
case (upper panel) shows a rich structure with many narrow windows of stability, interspersed
with short peaks and plateau corresponding to the crossing of instability tongues. Clearly for
N ¼ 16 there is a more rapid variation, because of the greater number of spatial modes and hence
greater propensity for parametric instability. Taking the limit N-N one would see an infinite
number of such jumps (given infinite resolution) due to countably many resonances for a finite
range of o:Higher values of G broaden the regions of stability and decrease the number of narrow
instabilities. This is in keeping with the idea that damping destroys narrow resonance tongues
(more precisely moves them up to higher values of e in a parameter plane); see for example
Ref. [18]. Note too the similarity in the broad features of these instability plots for N ¼ 8 and 16,

ARTICLE IN PRESS

0 5 10 2015 25 30 35 40 0 5 10 2015 25 30 35 40
ω

Γ=0.000

Γ=0.001

Γ=0.002

Γ=0.003

Γ=0.004

Γ=0.005

1

1

1

1

1

1

(a) ω

Γ=0.000

Γ=0.001

Γ=0.002

Γ=0.003

Γ=0.004

Γ=0.005

1

1

1

1

1

1

(b)

Fig. 5. Number of characteristic multipliers outside the unit circle as a function of o for N ¼ 8 (left) and N ¼ 16 (right)

for B-values slightly below the critical value (B ¼ 0:1814 and B ¼ 0:1529; respectively) and different values of the

damping coefficient ðGÞ: The undamped case ðG ¼ 0Þ shows a rich structure with narrow and numerous windows of

stability, whereas for higher values of G there are just broader windows of stability.
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which indicates that only instabilities corresponding to simple (i.e., few noded) spatial modes will
survive as damping is increased for fixed amplitude e: For the rest of the paper the damping
coefficient will be fixed at G ¼ 0:004; and the effect of the remaining parameters will be studied. In
practice, it is hard to measure material damping of a continuous structure accurately, but this
particular G-value is chosen as it keeps just 2 or 3 instabilities within the o-range that is used in
Mullin’s experiment.

4.4. The stiffness–amplitude bifurcation diagram

In Section 3.1 it was shown that the B–e bifurcation diagram for the single pendulum coincides
with the classical result for the Mathieu equation. This picture becomes more complicated as the
number of pendulums increases. In Fig. 6 the same bifurcation diagram is shown for G ¼ 0:004
and N ¼ 8 and two values of the frequency; o ¼ 10 and 20. The digits in the different regions
denote the number of multipliers outside the unit circle. Each bifurcation curve has been labelled
with the symbol BP; PD or TR according to the kind of bifurcation (branching point, period
doubling or torus bifurcation, respectively), and the stability regions have been shaded. Note that
the main effect of the damping is to lift the resonance tongues away from e ¼ 0: However, note
that frequency o also greatly affects the shape of the stability diagram. The two panels of Fig. 6
have some broad features the same and others that are quite different. The fundamental pitchfork
bifurcation connecting to Bcr at e ¼ 0 behaves qualitatively the same. However, the ordering and
shape of the other instabilities depends crucially on o; just as it did for the undamped continuous
model in Refs. [8,10]. This indicates that, unlike the case N ¼ 1 where Section 3 showed that B
and o essentially play the same role in the linear problem, this is a genuine three-parameter
problem (for fixed G).

4.5. The stiffness–frequency bifurcation diagram

The original motivation for the introduction of a model of N pendulums with elastic stiffness
and damping, was to gain some understanding into the problem of stabilizing an elastic and
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damped curtain wire. By varying the length of the specimen of wire in order to vary the
dimensionless parameter B; the most readily experimentally testable results are found by plotting
results in the ðB;oÞ-parameter plane for fixed e:
In order to see whether the stability results of the authors discrete model can be related to the

continuum one, the number of characteristic multipliers outside the unit circle are plotted in Fig. 7
as the parameters o and B are varied, for N ¼ 8 (left) and N ¼ 16 (right). The upper curve is the
result for the critical value of B and the histograms below correspond to decreasing values of the
elastic stiffness. Recall that if B is above the critical value the system is stable in its upright
position, even without forcing. As the elastic component is lowered, the stability regions shrink.
The small plateau with two characteristic multipliers outside the unit circle reveal further
bifurcations of the already unstable system. These figures indicate that there is a qualitative
agreement with the experimental results.
Fig. 8 is the main result of this paper. It is the ðB;oÞ-bifurcation diagram for fixed e ¼

0:02; G ¼ 0:04; N ¼ 8 (left) and N ¼ 16 (right). There are two stability regions (shaded) that are
limited by curves of pitchfork (BP) and period doubling bifurcations (PD). The window at lower
frequency is small and only exits close to the critical value of B: The digits inside each region
denote the number of multipliers outside the unit circle.
In Fig. 9 is plotted a schematic representation of the mode that becomes unstable, by taking

snapshots at given instants of time, at a characteristic point along each of the curves marked by
BP, PD1 and PD2 in Fig. 8. Plotting the linear mode shape represents small amplitude motion
near each instability, and normalizes the solutions by forcing the sum of the maximum of the
components to be one. For ease of illustration it has been chosen to plot these modes for N ¼ 8;
mode shapes for N ¼ 16 are found to be qualitatively the same.
Note that natural experimentally controllable parameters are the driving frequency and the

total length of the wire. In the dimensionless equation, these broadly speaking refer to varying B
and o; but since the length of the wire also affects e; one must also vary the time scale, the
dimensionless driving amplitude, the elastic term and the effective damping factor in the
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dimensionless model. A careful comparison with the experiments and such a process will be
written up elsewhere [9]. At this stage though it is worth mentioning that the broad shape of the
stability region in Fig. 8 corresponds to that of the experiments. The mode shape of the BP
instability corresponds to what is observed in the experiment too as does that of the PD2 curve
that bounds the main stability curve. The one caveat is that in the experiments and in the theory of
Ref. [10], this mode shape is at harmonic resonance with the drive frequency rather than at
subharmonic as here.
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5. Conclusions

This paper demonstrates that a multiple linked pendulum model with bending stiffness and
damping can be made stable in the upside down configuration by parametric resonance. Moreover
by correctly scaling it has been demonstrated how this model approaches that of a continuously
flexible rod with the inclusion of realistic material damping. This then leads to an effective way of
performing numerical stability analysis on the continuum problem for which the inclusion of
damping precludes a straightforward asymptotic analysis. Indeed these results show that damping
has the effect of removing all but the few simplest instabilities for a fixed amplitude of parametric
excitation. Moreover, these instabilities are well captured by an N-linked model with small N: The
shape of the instability curves and the mode shapes of the corresponding instabilities well matched
to those of an experiment on curtain wire, with one caveat. In broad terms it has been shown that
the phenomenon of stabilization of rods by parametric excitation shown in Refs. [8,10] is robust
under the inclusion of damping. The full non-linear dynamics of the N-linked model remain to be
investigated. Taking the case N ¼ 1; it has been shown how non-linear effects lead to hysteresis
and have also related what is observed to known results for the simple pendulum (with
dimensionless bending stiffness B ¼ 0). The authors have also argued how the inclusion of small
bending stiffness in the support has a stabilizing influence, whereas large B can paradoxically lead
to instability. Presumably, the non-linear dynamics of the N-linked model will be far richer.
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