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It has been almost one hundred and fifty years since the discovery of a self-
preserving solitary nonlinear wave or soliton. However, there is still much ac-
tivity going on on the subject nowadays among the physical and mathematical
communities, mainly because of the many occurances of soliton in other branches
of physics, for example quantum and plasma physics, and also because of the
richness in its properties. One of the equation that was first known to possess

this solitary wave type of solution is the Korteweg-de Vries or KdV equation,
U + 6uty + Ugpy = 0. (1)

(Note that there are some variance of the above equation especially in the coef-
ficients and their signs, but we will stick with the most widely used one above.)

The main objective of this paper is to expose the Hamiltonian structure,
and hence the symmetries, of the KdV equation using the Lie group and Lie
algebra technique. A lot of work in this aspect has recently been done and much
activity is still in progress. Here, our discussion will be more in an expository

nature. However, since the recent work done by the previously mentioned au-




thors involved a newly used technique, we need to provide some background on
the history and development of the KdV equation and its soliton solution. The

following two sections outline the exposition given in [2].

A brief history on Soliton and KdV equation

The occurance of a solitary wave was first noticed by J.S. Russel [2]. He de-
scribed the wave as an elevation in the surface of the water in a narrow channel,
which preserved its shape while moving along the channel. This observation or
“discovery” led to a confusion among the science community at that period. It
was widely believed that a solitary wave could not preserve its shape for a long
period because of the forces of dispersion which tend to spread the wave. Hence,
the discovery was not quite accepted and it wasn’t until another discovery, the
KdV equation, that the subject received more serious attention.

The existence of a shape-preserving solitary wave was established by Ko-
rteweg and de Vries, and it takes shape as a solution of an equation which bears
their names. The shape preservation results from the balance between the dis-
persion term and the nonlinear term. This remarkable discovery provided some
incentive few years later to the development of another main area of physics,
namely wave mechanics, or quantum mechanics as is more widely known today.
The locality of the wave was needed to describe the evolution of a fast moving
particle with small mass, implied by the well-known principle of wave-particle

duality. This local wave is given as a solution of another well-known equation,




the Nonlinear Schrodinger (NLS) equation,
2iuy + ugg + 2ulu* = 0. (2)

Besides the KAV and NLS equations, other equations of similar type, that is the
ones that possess soliton solutions, like Kadomtsev-Petviashvili (KP), Boussi-
nesq, and sine-Gordon equations, also received wide attention from mainly the
mathematical community. Most of these equations are related to the water wave

problems.

Derivation of the KdV equation

One of the interesting thing about the KdV equation is that it results as a
constraint for other equations, namely the shallow-water wave and Fermi-Pasta-
Ulam equations, which has to be satisfied in order for the uniform solutions to
exist over long period of time. The KdV equation also comes out as an analog
to the Euler equation in the appropriate Lie algebra. A brief discussion is given
in the following paragraphs.

Consider a one-dimensional shallow-water-wave problem. The evolution of
a small-amplitude long wave can be obtained from the equation of continuity of
hydrodynamics and its boundary constraints at the upper and lower surfaces.

After the scalings on the amplitude and length of the wave, and also on the



shallowness of the water, the water wave equations are given as

¢yy+5¢zz=0
¢y=0v y=—h
¢t+7l+-2'#¢z+§;¢,,=0, y=1+un (3)

1
N+ pdz7e = ;d)m y=1+un,

where h is the constant depth of the channel, ¢ the velocity potential, 7 the
pressure, x and y the horizontal and vertical coordinates, respectively, ¢ the
ratio of the depth of the channel to the length of the wave, and x the ratio of
the amplitude of the wave and the depth of the channel. The solution of the

above equation can be obtained by asymptotic power series expansion in y of

the form

1

¢(z,y,t)=F(z,t)-§ u(y+h)2+5224F,,,,(y+h)4+..., (4)

By taking the limit as € — 0 and letting 2 (< 1) finite, we obtain

2
Fu— (14 h)Fy), = ~2F,Fy — eFFyq + e P

Fzza:z~ (5)

Further expansion of F as F' = f + ¢F; + --- and imposition of the uniformity
condition, that is the condition for the boundedness of solution at z = o0,

result in the following equation,

1
2fex + 3fe foo + §feeee =0, (6)

which is the KdV equation after letting fe = u and rescaling © and X. Another

variance of the equation, the Perturbed KdV equation, is generated by slowly



varying the depth of the channel. However, this results in a non-adiabatic vari-
ation, and the solitary wave doesn’t strictly preserve its shape since a reflected
wave is created. Clearly, the extent in which the shape of the solitary wave is
modified depends on the extent of the depth variation.

Besides the water wave equations, the KdV equation also emerges from a
mechanical system. This system was investigated by Fermi, Pasta, and Ulam
around the middle of this century. It consists of an N —1 one-dimensional lattice
of masses m connected by nonlinear springs. The method for solving the system
is very similar to the one applied in the water wave equations.

A recent approach using Lie group method shows that the KdV equation
is the analog of Euler equation for rigid body motion. Discussion about the
application of this method to a special case of solution will be described later

in the paper.

Conservation laws

We start this section by finding travelling wave solutions of KdV equation. Let

u(z,t) = ¥(z — ct) and substitute this to eqn. 1 to obtain
—c' + 69y’ + 9" = 0. )
After integrating the above equation, multiplication by 2¢' yields

-+ 2% + 9% =0, (8)




where the constants of integration vanish as a result of the boundary conditions

¥(xo0) = 9¥’(+o00) = --. = 0. This equation has solutions of the form
u(z, t) = 2n2sech®n(z — ct), 9)

where 7 is determined by initial condition. Since sech(z) is an even function of
z wrt. = = 0 and ¥(z - ct) is a positive function, we see that this solution
is a solitary wave travelling along the characteristic z — ct. Clearly the density
of the wave is a conserved quantity. The arbitrariness of c results in an infinite
number of solutions, all satisfying the KdV equation. From here, we can make a
conjecture that suppose the initial wave consists of a (nonlinear) superposition
of these travelling wave solutions, as ¢ — oo the wave will decompose into an
infinite set of travelling waves, each with velocity ¢;. If this conjecture is true,
then this implies that after a collision between these travelling waves, the shape
of the waves is retained, that is the faster wave is seen as taking over the slower
wave. Computer simulation by Kruskal and Zabusky (2] showed that this is
indeed the case. Besides the retention of shape, there is an after-collision phase
shift, which is related to the Berry-Hannay geometric phase.

The existence of the geometric phase in the KdV solution is not the only
relation between the KdV equation and geometric mechanics. In fact, the KdV
equation is the Hamilton's equations of an infinite number of Hamiltonian, each
corresponds to different velocities of the travelling waves which are constants of
the motion. To obtain the Hamiltonian structure of the KdV equation, we go

back to the original work made by Miura. First he observed that the modified




KdV (MKdV) equation
Ve + 6V, + Vogz =0 (10)

has an infinite number of solutions. Applying the transformation u = v? — jv_,

he obtained the relation between MKdV and KdV equations as

d
ug + 6utty + e = (2v - i%) (ve + 6920, + vozz). (11)

Hence, if u satisfies the KdV equation, then v has to satisfy the MKdV equation.

Linearizing the Miura transformation by v = —i¢./¢ yields
bz +udp =0, (12)

Here we notice that the KAV equation is invariant under Galilean translation.

Indeed, by using transformation u — u + A the KdV equation transforms to
ug + 6(t + A)uz + tizzz = 0. (13)

Assuming the travelling wave solution, the above transformation only amounts
to substracting the velocity by a constant 6A. Therefore, the linearized Miura

transformation is the stationary Schrédinger equation with eigenvalue A and

potential u,
bzz = (A +u)p=0. (14)

Obviously ¢, which is the Hamiltonian, has to satisfy the transformed MKdV
equation, but we will sece below that in obtaining the Hamiltonian structure of

the KdV equation, we will not have to worry about the transformed equation.




Following [3], suppose that we have an evolution equation of the form
ue = K(u). (15)

Let A be the function space (e.g., La(—00,+00) or L2(R2) where  is a com-
pact support) of u(t) for t € R and let B be the Hilbert space of self-adjoint
functionals L, on A. If there exists an evolution of Ly, corresponding to
the evolution of u(t) under eqn. 15, such that L, is constant for all ¢ € R,
then this constant, which is an eigenvalue of L.y, is a constant of the motion
of eqn. 15. We can always find such Ly if Ly() is unitarily equivalent as u(t)

evolves, that is
L(0) = U(t) "' L()U(2). (16)
Computing the ¢ derivative of the above equation, we obtain
L = [B, L), 17

where B = UU" is a skew symmetric operator and [, -] is the commutator.
Obviously, different B(t) will give different functional K in eqn. 15. From the

previous paragraph, we discover that the eigenvalues of eqn. 14 are invariant

under the evolution of the KdV equation,
Uy = —6UUz — Urps. (18)

Hence, substituting L = 8% + u and B = 48° — 3(ud + Hu) into eqn. 17 we
re-obtain the KdV equation. At this stage the eigenfunctions of L are still

irrelevant since L, is just the multiplication operator u,. However, since the



eigenvalues of L, are not discrete, it seems that we have to deal with an
infinite number of first integrals. In fact, the first integrals of the KdV equation

are given as [5)

Iy = fu2 dz (19)

They can be easily checked by taking the ¢ derivative of the integrals and using
the vanishing boundary conditions of u, uz, - - -. Besides being the first integrals,
they are in fact the Hamiltonians [2] of the family of KdV equation, obtained
for skew symmetric operators (3|

q
B, = 8%+ + 3 "(b;6%71 + 8%~ 1by), (20)

=1

where ¢ is an integer.

KdV equation as an analog of Euler equation

The discussion in the previous section about the existence of the Hamiltonian
structure for the KdV equation suggests that all that was said can be developed
further into a geometric formalism.

Before going further, we need some familiarity with the geometric aspect of
the rigid body motion. Here we will follow the exposition given in Marsden [4].

Consider a rigid body in a space with no external field. If we take an inertial



frame of reference with the center of mass of the body as the origin, then the
motion of the body can be represented as a rotation around the origin. Let
R(t) € SO(3) be a map of a reference configuration, B € R?, of the body to its
configuration at time t € R. Hence, z(t) = R*(X) where X € B. The evolution
of a point x € R3 can then be described by
t=RR 'z=wxz, (21)
where w is the spatial angular velocity. Now define the body angular velocity
as Q = R~'w and the moment of inertia operator I as
I:R® — (RY)", (22)

where * denotes the adjoint and [ is symmetric. It follows that the Lagrangian

on TSO(3)
LR B =3 [ o0 1RX1" X, (23)
can be reduced to the one on so(3) ~ R3
L =5 [ s 10 X1 X, (24)
or equivalently if written in terms of /
L@y = % <I9,0 >, (25)

where the inner product < -,- > induces the left-invariant metric (that is,
the metric is preserved under the left translation Ly) in R3. Applying the

variational method with appropriate boundary conditions produces the Euler-

Poincare equation

d 6l 6l

10



which describes the evolution of the orbit of the co-adjoint representation of
50(3) on (R?)* of the Euler equation I = IQ x 2. This equation of motion is
the geodesic of the left-invariant metric on SO(3) since it satisfies the principle
of least action. The Hamiltonian of the reduced Lagrangian above is H(M) =<
M,I7'M >, where M = IQ.

Now we go back to the KdV equation and we will shortly see that it possesses
a structure very similar to the one described above (1]. Here, we consider peri-
odic solutions to the KdV equation, that is, solutions with a compact support.
Without loosing generality, we can consider the support as [0,2x). Solutions
with infinite support can always be approximated by scaling the [0, 2}-support.
Since S! is one-dimensional, the vector fields on the circle can be represented
by 2m-periodic L; functions. The Jacobi-Lie bracket of the Lie algebra of vector

fields is given as
[u,v] = uwv' — 'y, 27

where u,v € X(S!). At this moment we need to build a new Lie algebra such
that its left action is Hamiltonian. This is the case if the momentum map (in this
case the map from the algebra to its dual) is infinitesimally equivariant. If the
original Lie algebra is symplectic and connected (which is it is in our case), then
we can always built such a map by enlarging the algebra to its unique central
extension defined by the two-cocycle £(u, v) of the algebra [4]). For X(S!), the

cocycle is given as
27
Swv) =7 [ u(en(z)da, (28)
0

1




where v € R is a constant. In our case, the new Lie algebra is termed the

Virasoro algebra
v = {(u,a)|u € X(S!),a € R} (29)
and the new Lie algebra bracket becomes

((60) 00 = (-’ + /017 / " (@ (@) ), (30)

since the Lie algebra bracket [u,v] = —[u,v],, for a left Lie algebra action. The

inner product on this algebra is given as

27
((,a), (v, b)) = ab+ fo w(z)v(z) dz, (31)

forvt =v.
It is commonly known that the fluid systems are right invariant systems.
Therefore, the KAV system which also belongs to the fluid systems has a right

invariant property. As a consequence, we need to use the plus Lie- Poisson

bracket

1) = (o) [l 525]). (32)

where f,g € F(v) with values in R. Moreover, the functional derivative of

f(u,a) is given as

of 5f 8f
5(u,a) (E E) : (33)

where the La-functional derivative is defined as

32"1‘1) Z_-[F(v +edv) - F(v)] = & ovdiz. (34)

12




The (+) Lie-Poisson bracket for functions on S! can be written as

{f,h}(u,0) = <(“' a), [a(zfa) d(ft’:a) >

= (wo.[(E) (R 2)) 5

[ [ () - () o (2 (2)]

[ ()]

[ (R (2) vl (2))

o [ (B (Y el (2))
where we have used the fact that functions on S! are periodic. By definition,

the Lie-Poisson equation f = {f, h} is equivalent to

f=trmywa) = (o (. 5)). (36)

Thus, we obtain for f=aand f=u

a = 0 (37)
D 5_’! o oh ﬁ m
o= ou ou) ~ Y7 /)

The above equations are just the Hamilton equations for Hamiltonian h(u,a).

Now consider the moment of inertia operator on v, defined as
IN v—(v)*=v (38)
(u,a) — (u,a).
Then the Hamiltonian H(M) = (M,I"'M) = (M, M) is given for M = (u,a)

13




h(u,a) = -;-a2 + % /; ” u’(z) dz. (39)

Substituting this A(u,a) into the previously-obtained Hamilton equations, we

obtain

ug + 3uus + ayu’’ = 0. (40)
This equation can be easily transformed into the KdV equation

vr + 6V + tzzr =0, (41)

by letting u(t,z) = v(r(t),z) and a = 1/2v. Hence, since the Hamilton equa-
tions are just the Euler equation for the Moment of Inertia operator and Hamil-
tonian given above, the KAV equation is the Euler equation and hence the

geodesic on the Virasoro algebra v.

Comment

Even though KdV equation is an old equation, we see that it is still attracting
a lot of attention because of its ubiquity and its remarkable properties. Fur-
thermore, the geometric properties of the KAV equation has been reasonably
well-developed [6] and further study has been pursued on the equations associ-

ated with it (e.g., the super-KdV eqn).
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