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Fluctuations in Hertz chains at equilibrium
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We examine the long-term behavior of nonintegrable, energy-conserved, one-dimensional systems of
macroscopic grains interacting via a contact-only generalized Hertz potential and held between stationary walls.
Such systems can be set up to have no phononic background excitation and represent examples of a sonic
vacuum. Existing dynamical studies showed the absence of energy equipartitioning in such systems, hence their
long-term dynamics was described as quasiequilibrium. Here we show that these systems do in fact reach thermal
equilibrium at sufficiently long times, as indicated by the calculated heat capacity. As a by-product, we show how
fluctuations of system quantities, and thus the distribution functions, are influenced by the Hertz potential. In
particular, the variance of the system’s kinetic energy probability density function is reduced by a factor related
to the contact potential.
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I. INTRODUCTION

Recently, there has been broad interest in one-dimensional
(1D) systems of macroscopic grains held between stationary
walls and interacting via a power-law contact potential [1–7].
A long-standing open problem is whether thermalization
(equipartition) can occur in these chains of grains. Only very
recently has it been shown that the related Fermi-Pasta-Ulam
(FPU) chain of coupled oscillators does reach equilibrium after
very long times [8]. In this paper, we show this is also true
for so-called Hertz chains. In the process, we obtain wholly
different approximate distribution functions for interacting
particles in the microcanonical ensemble.

Many power-law interacting systems are notable for sup-
porting solitary wave (SW) propagation [7,3,9]. However, in
response to singular perturbations, the breakup of SWs at
the walls and from gaps between grains leads the system
after a long time to an equilibriumlike, ergodic phase [2–4].
Unusually large [2–4] and occasionally persistent (rogue) [10]
fluctuations in the system’s kinetic energy are seen at late times
for sufficiently strong and unique perturbations. This has been
seen to impede an equal sharing of energy among all the grains
in the system, hence the long-term dynamics of 1D systems
of interacting grains has been described as quasiequilibrium
(QEQ) [2–4]. The question of whether QEQ is the final state for
such systems excited by gentle point perturbations is addressed
in this paper.

To the time scales previously studied, quasiequilibrium has
been seen to be a general feature of the dynamics of systems
with no sound propagation [3]. However, we find in our studies
that at sufficiently late times, kinetic energy fluctuations relax,
allowing for energy to be shared equally among all grains.
Of course, energy equipartitioning happens only in an average
sense in finite systems, and at any given instant each grain will
not have exactly the same kinetic energy. Rather, each grain’s
kinetic energy fluctuates according to the same probability
density function (pdf), the long tail of which determines the
chance of large fluctuations.

The fluctuations are quantified by treating the chain as a
1D gas of interacting spheres [11]. This requires velocity
and kinetic energy distribution functions that are different

from hard spheres, which incorporate the interaction potential.
These distributions are also influenced by the finite heat
capacity of the system, which governs the fluctuations in the
system kinetic energy in a microcanonical ensemble [12]. An
equilibrium value for the specific heat obtained using Tolman’s
generalized equipartition theorem [13] provides a direct way
to probe the extent to which energy equipartitioning occurs in
large but finite systems. We show that at sufficiently long times,
calculated specific heat capacities of chains of interacting
grains agree with the values predicted by the generalized
equipartition theorem, indicating that energy equipartitioning
holds, and consequently that the ultimate fate of these systems
is a true equilibrium phase that can be described by statistical
mechanics.

The paper is organized as follows. In Sec. II we introduce
the model for the Hertz chains and use the machinery
of equilibrium statistical mechanics to derive the expected
equilibrium value of the heat capacity and the approximate
distribution functions. Then we give the details of the numer-
ical simulations in Sec. III. In Sec. IV we compare molecular
dynamics (MD) data with the predicted equilibrium values to
establish that our systems do equilibrate at long times. Finally,
we give some concluding remarks and discuss future research
directions in Sec. V.

II. MODEL AND THEORETICAL BACKGROUND

The specific systems under consideration are 1D chains
of N grains, each with mass m and radius R, interacting
via a Hertz-like contact-only potential [14]. The Hamiltonian
describing the system is

H = K + U = 1

2

N∑
i=1

mv2
i +

N−1∑
i=1

a�n
i,i+1, (1)

where vi is the velocity of grain i and �i,i+1 ≡ 2R − (xi+1 −
xi) � 0 is the overlap between neighboring grains, located at
position xi . There is no potential interaction when the grains
are not in contact. In the above expression, the exponent n

is shape dependent (n = 2.5 for spheres), and a contains the
material properties and radius of curvature of the grains [15].
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The grain interactions with the fixed walls add two terms to the
Hamiltonian. In particular, the walls are implemented by taking
the limit R → ∞ as the radius of the wall, which ensures that
the boundary is much larger than any grain in the chain and
will therefore not move, while also relaxing the condition that
the wall must be flat [7]. In this way, the prefactor a in the
potential energy describing grain-wall interactions is then a
factor of

√
2 larger than the grain-grain interaction potential

prefactor.
The total system energy is taken to be fixed, H = const =

E. Since our primary aim is to establish that the systems under
consideration are described by a microcanonical ensemble of
interacting particles long after an initial energy perturbation,
we now discuss the relevant theoretical background.

The pdf of particle velocity of a d-dimensional, finite
sized microcanonical ensemble is not a Maxwell-Boltzmann
distribution [11,16]. The actual distribution can be found
from the total volume of a 2dN-dimensional phase space
circumscribed by the total energy E,

� ∝
∫

�(E − H )dqdNdpdN, (2)

where � is the Heaviside step function. The integral in Eq. (2)
is taken over all grain momenta p and all grain positions q.
Integration over the grain momenta evaluates to the volume
of a dN-dimensional hypersphere of radius [2m(E − U )]1/2,
leaving the remaining integral over the grain positions:

� ∝
∫

(E − U )dN/2�(E − U )dqdN . (3)

This integral has been evaluated analytically for hard spheres,
where the system potential energy U = 0 [11,16,17], but to
the best of our knowledge, not for any case of an interaction
potential.

Indeed, there may not be an exact analytic solution for
the Hamiltonian in Eq. (1). Instead, we seek an approximate
solution, and making the simple observation that the virial
theorem holds for these systems, replace (E − U ) with
(E − 〈U 〉v) = 〈K〉v , where 〈· · · 〉v denotes the expected value
from the virial theorem. For Eq. (1), the virial theorem yields
2〈K〉v = n〈U 〉v , and thus

〈U 〉v
E

= 2

n + 2
,

〈K〉v
E

= n

n + 2
, (4)

with K the system kinetic energy. Thus 〈K〉v can come out of
the integral in Eq. (3), and the integral proceeds as previously
described [11,16,17].

This substitution cannot be exact: The grain momentum’s
limit is now set by 〈K〉v , an average value, and there are
certainly grains with kinetic energy that, at times, are slightly
greater than this value. However, we can rely on decreasing
fluctuations with increasing N , and show that for N > 10, the
number of states beyond this limit is small, and this is a very
good approximation.

The resulting pdf of per-grain velocities vi in 1D is then
[11]

pdf(vi) = B(α,β,ṽi)/(2〈v〉v),

= 1

2〈v〉v

(
�(α + β)

�(α)�(β)
(ṽi)

α−1(1 − ṽi)
β−1

)
, (5)

where

ṽi = 1

2

(
1 − vi

〈v〉v

)
, (6)

with 〈v〉2
v = 2〈K〉v/m, and α = β = (N − 1)/2. Also,

B(α,β,ṽi) is the beta distribution, and � is the gamma
function. In the limit N 	 1, Eq. (5) becomes the familiar
Maxwell-Boltzmann 1D normal distribution with mean μ = 0
and variance σ 2 = 〈v〉2

v/N .
The distribution of kinetic energy per grain Ki is also given

by a beta distribution [11],

pdf(Ki) = B(α,β; K̃)/〈K〉v, (7)

where K̃ = Ki/〈K〉v , α = 1/2, and β = (N − 1)/2. For N 	
1, this becomes the familiar Maxwell-Boltzmann distribution
for kinetic energy, a gamma distribution G(α,β,Ki),

pdf(Ki) = G(α,β,Ki) = βα

�(α)
Kα−1

i e−βKi , (8)

where α = 1/2 and β = N/(2〈K〉v). Interestingly, the possi-
bility of large kinetic energy fluctuations increases with the
variance of Eq. (7) [and Eq. (8)], 〈δK2

i 〉 ≡ 〈K2
i 〉 − 〈Ki〉2,

〈
δK2

i

〉 = 2(N − 1)

N2(N + 1)

[(
n

n + 2

)
E

]2

,

≈ 2

N2

[(
n

n + 2

)
E

]2

, (9)

which increases to the hard-sphere limit with larger n, but
rapidly decreases with increasing system size.

Finally, the distribution of system kinetic energy is given
by the Dirichlet distribution [11], which is a multivariate
generalization of the beta distribution and not amenable to
visualization or calculation. Alternatively, if we let Ki be
independent and identically distributed (i.i.d.) variates drawn
from the distributions of either Eq. (7) or (8), then the pdf
of K = ∑N

i Ki can be determined from statistical theory.
No such distribution for beta-distributed variates exists for
N > 2 [18], however, for the gamma distribution, this is
pdf(K) = G(N/2,N/(2〈K〉v); K).

Although this has the correct mean, comparison with
simulation data shows it has the incorrect variance, and after
trial and error, a better approximation was found to be

pdf(K) = G

(
n + 2

2

N

2
,
n + 2

2

N

2〈K〉v ; K

)
. (10)

We justify this distribution not only by the excellent empirical
match to the distribution calculated from molecular dynamics
(MD) simulation, but also from the connection between the
variance of system kinetic energy and the specific heat capacity
in the microcanonical ensemble.

In ergodic systems in the thermodynamic limit, Tolman’s
generalized equipartition theorem [13] applied to Eq. (1) yields
an average total energy per grain 〈ε〉 = kBT /2 + kBT /n,
where kB is Boltzmann’s constant and T is the canonical
temperature. The corresponding specific heat per grain is then

CV =
(

n + 2

2n

)
kB, (11)
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which evidently depends only upon the exponent in the
potential, i.e., there is no grain material, grain size, or tem-
perature dependence. The equivalence of different statistical
ensembles when N → ∞ implies Eq. (11) is also valid for
the microcanonical ensemble in this limit, and when energy is
equipartitioned.

It is possible to express the fluctuations in the total system
kinetic energy in terms of CV using the approximation found
in Refs. [12,19] which, for 1D systems, is

〈δK2〉
〈K〉2

= 2

N

(
1 − 1

2CV

)
, (12)

where CV is in units of kB . Then, using Eq. (11), we have

〈δK2〉 = 2

N

(
2

n + 2

)
〈K〉2, (13)

from which the factor of (n + 2)/2 appears as part of the
distribution variance of Eq. (10).

Equation (12) also provides one method to calculate the
specific heat per grain from an MD simulation. However,
taking an energy derivative of the so-called microcanonical
temperature gives the exact formula for the microcanonical
specific heat, which in 1D is [19]

CV = kB

N

(
1 − (N − 4)〈1/K2〉

(N − 2)〈1/K〉2

)−1

. (14)

With this equation and Eq. (10), we can compute an ap-
proximate CV for finite microcanonical systems, via analytic
approximations of 〈1/K〉 and 〈1/K2〉 (see the Appendix). The
result is

CV = kB

[
n + 2

2n
− 1

N

(
n + 2

n
+ 4(N − 2)

nN

)]
, (15)

which has the form of Eq. (11) plus an N -dependent correction
term that vanishes in the thermodynamic limit. Hence Eq. (15)
provides an estimate for CV in a large but finite system in which
the energy is equipartitioned among the interacting grains.

We point out that all of the distribution functions presented
above (per-grain velocity, per-grain kinetic energy, and total
system kinetic energy) depend only on the number of grains
N , the total system energy E, and, most interestingly, the
exponent of the potential energy n.

III. SIMULATION DETAILS

To test the distribution functions in Sec. II, we ran MD
simulations of a 1D monatomic chain of N grains held between
fixed walls and described by the Hamiltonian in Eq. (1), which
includes grain-wall interactions [7]. Our grains and walls are
steel, and the grains are 6 mm in radius.

We consider values of the potential exponent n from 2
(harmonic) to 5, and system sizes from N = 10 to 100. A
standard velocity Verlet algorithm is used to integrate the
equations of motion with a 10 ps time step, and no dissipation is
included. The grains are set into motion with an initial velocity
applied to the first grain only, directed into the chain, causing
a SW to propagate through the system. The SW breaks down
in collisions with boundaries and in the formation of gaps,
creating numerous secondary solitary waves (SSWs). After a

period of time, the number of SSWs increases to a point where
the system enters into quasiequilibrium [3,4]. We allow the
system to evolve for a substantial amount of time past this
phase change, and at least an order of magnitude longer than
previous work has considered.

The time scale to equilibrium onset is determined by the
potential exponent n [2], so we adjust the velocity perturbation
such that the system arrives at equilibrium quickly. Still, it
was necessary to collect at least one second of real time data
for n = 2, 2.5, 2.75, and even longer (up to 6 s) for larger
values of n. Data of grain position and velocity are recorded to
file every 1 μs, though we resample the data at time intervals
beyond the dampening of velocity autocorrelation (not shown).
The deviation from the expected virial 〈K〉v was <1% for all
systems.

IV. RESULTS AND DISCUSSION

In Fig. 1 we show the distribution functions obtained
from MD simulations and the corresponding expected pdfs
[Eqs. (5), (7), (8), and (10)] for three representative systems.
In each system, the per-grain velocity data agree with the beta
distribution, Eq. (5), which is nearly identical to the normal
distribution for large N [see Figs. 1(i-a) and 1(ii-a)]. The
difference between the normal and beta distributions becomes
apparent for small systems (N � 30), where the per-grain
velocity data fit the beta distribution better.

The grain kinetic energy distributions are presented in
Figs. 1(i-b)–1(iii-b), illustrating agreement between MD re-
sults and Eq. (7) for large N . The difference between Eqs. (7)
and (8) seems pronounced in the log scale with smaller N ,
where the beta distribution has a cutoff before the tail of
the MD data. However, for N = 10, P (Ki > 〈K〉v) = 0.03%,
while for larger N it is even less. This shows that the limitation
of our original virial approximation is quite small. Finally, the
sensitivities to n and N are also shown in Fig. 1, with curves
of n + 1 or 1.1N . They do not agree as well with the data.

Figures 1(i-c)–1(iii-c) contain the distributions of system
kinetic energy from MD simulations, along with the cor-
responding Eq. (10), for the three systems. The agreement
between MD data and the expected result is very good for
N = 100 [see Fig. 1(i-c)], less so with decreasing N . This is
because Eq. (10) develops an increasing skew with decreasing
N [cf. Figs. 1(i-c) and 1(iii-c)]. For comparison, we also
present the distribution without the variance correction, i.e.,
n = 0, which we call the hard-sphere limit, and clearly does
not agree with any MD data of interacting grains.

Lastly, we computed the specific heats of MD simulation
data using both Eqs. (12) and (14). These results are directly
compared with CV predicted by Eq. (11) shown as the solid
line in both Figs. 2(a) and 2(b), from which it is evident that as
N increases, the values calculated by Eq. (12) agree very well
with the theory. Moreover, even for small (N � 20) systems,
the deviation from theory is no more than ∼10% for Eq. (12),
and improves with additional statistics. We also present the
n,N -dependent CV predicted by Eq. (15) as dashed lines in
Fig. 2(b), which agrees with the MD data within the error bars
for N = 100.

The fact that the calculated specific heat agrees with the
value predicted by the generalized equipartition theorem for
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FIG. 1. Distribution of grain velocity, grain kinetic energy, and system kinetic energy for three representative systems. Results of MD
simulations are shown as solid circles. In columns (a) and (b), solid lines are predicted distributions [Eqs. (5), (7), and (8)], and dashed-dotted
lines are the corresponding distributions with parameters slightly changed to illustrate the sensitivity of Eqs. (5) and (7). In column (c), the
solid curve is the theoretical prediction Eq. (10), and the dashed line is the corresponding hard-sphere distribution.

N 	 1 provides evidence that energy is indeed equipartitioned
in the Hertz chain at late enough times. Since the dynamics of
these systems was previously shown to be ergodic [3], this
finally establishes that the very late-time dynamics of 1D
granular chains perturbed at one end with zero dissipation is a
true equilibrium phase. The appearance of large fluctuations at
late times is thus entirely predictable [10]. While real granular
alignments are inherently dissipative, dissipation-free versions
of our systems may be possibly realized as integrated circuits
and hence our results may be observable in the laboratory.
Finally, a quantitative analysis of the QEQ phase may now be
possible with this equilibrium theory as the starting point.

The caveat to this is that we have considered only
asymmetric perturbations. Consider instead a 1D chain of
an odd number N of grains that is perturbed by symmetric
velocity pulses from both ends. The middle grain would never
move, thus kinetic energy could not be equipartitioned among
all the grains. However, due to the symmetry of the system,
in a sense the left (N − 1)/2 and the right (N − 1)/2 grains
are nothing more than separate subsystems that have been
perturbed asymmetrically. Hence energy will be equiparti-
tioned in each of these two subsystems as t → ∞, and their
late-time dynamics will be described by equilibrium statistical
mechanics. This implies that energy is equipartitioned among
the available degrees of freedom in Hertz systems at long
times. This ultimately has an impact on the microcanonical
distribution functions and the specific heat, which is further
explored below.

Symmetrically perturbed systems

The number of independent degrees of freedom in Hertz
systems can be reduced by imposing periodic boundary
conditions [17], or by symmetrically perturbing the system
(velocity perturbations at both chain ends of equal magnitude,
directed into the chain). Perturbing the system in this way
results in a mirror-reflection symmetry to be induced in the
system, thus halving the degrees of freedom, and in turn
affecting the probability distribution functions and specific
heat capacity.

Because every grain can still individually visit the same total
phase space volume with the same probability as computed
earlier, the distributions of grain velocity and grain kinetic
energy are independent of the degrees of freedom and are still
given by Eqs. (5) and (7) [and Eq. (8)]. Since N grains were
used to compute the normalized histogram, N is used for the
distribution function parameters.

However, the distribution of system kinetic energy, Eq. (10),
must be modified to account for the loss in the number of
degrees of freedom due to the resulting spatial symmetry.
This is because Eq. (10) was derived from statistical theory
under the assumption of drawing N identical and independent
random variates (grain kinetic energies) from a gamma
distribution; however, by perturbing the system symmetrically,
this is no longer the case.

In particular, due to the mirror reflection symmetry about
the center of the chain, a system with even N loses N/2
degrees of freedom from the momentum (and N/2 from
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FIG. 2. Specific heat capacities (in units of kB ) computed for all
MD simulated systems as a function of the exponent on the potential.
In (a) we present values obtained from inverting Eq. (12), and in
(b) values obtained from Eq. (14). The solid line in both plots is
the specific heat predicted by the generalized equipartition theorem,
Eq. (11). The dashed lines in (b) are specific heats predicted by
Eq. (15).

the grain positions). Hence there are only N/2 independent
grain kinetic energies in such systems. Similarly, in a system
with odd N , (N − 1)/2 degrees of freedom are lost from
the momentum [and (N − 1)/2 from position], as well as an
additional two degrees of freedom (one from momentum, one
from position) since the central grain never moves when the
system is perturbed symmetrically. Thus only (N − 1)/2 of
the grain kinetic energies are independent in odd-N systems.
The approximate distribution function for the system kinetic
energy in such systems is then given by Eq. (10), after replacing
N with the number of independent grain kinetic energies,

i.e., N → N/2 for even N and N → (N − 1)/2 for odd N ,
and with E the total energy of the system. We illustrate the
agreement between these distribution functions and MD data
for both an even-N and an odd-N representative system in
Fig. 3(a).

Finally, since the specific heat is connected to the fluc-
tuations in the system kinetic energy, it is expected that the
microcanonical specific heat should also be modified. The
previous Eq. (14) gives nonsensical and negative values of CV

for the symmetrically perturbed cases, since it is based on the
assumption of N total degrees of freedom of momentum. The
correct expression for the modified specific heat was derived
previously [20], and for even-N systems it is

CV,even = 2kB

N

(
1 − (N − 8)

(N − 4)

〈1/K2〉
〈1/K〉2

)−1

, (16)

and for odd-N systems it is

CV,odd = 2kB

(N − 1)

(
1 − (N − 9)

(N − 5)

〈1/K2〉
〈1/K〉2

)−1

. (17)

Proceeding in an identical fashion to that of Ref. [19], one
can obtain approximate expressions relating the above two
formulas for CV to the system kinetic energy fluctuations.
Setting K = 〈K〉 + δK and expanding 1/K in a Taylor series,
retaining only terms to order N−1, the resulting expressions
are analogous to Eq. (12), except appropriately modified to
account for the spatial symmetry of the system. The result is

〈δK2〉
〈K〉2

= 4

N

(
1 − 1

2CV,even

)
(18)

for even-N systems, and

〈δK2〉
〈K〉2

= 4

N

(
1 − N

2(N − 1)CV,odd

)
(19)

for odd-N systems. Note that in both Eqs. (18) and (19), CV

is in units of kB .
While these equations seem little changed from earlier

equations with full degrees of freedom, Eqs. (12) and (15),
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FIG. 3. Results of chains with even and odd N , perturbed by symmetric velocity perturbations. (a) Distribution of system kinetic energies
for an n = 2, N = 40 system and an n = 3.5, N = 101 system. Data for the second system were scaled by 10−3 in the x domain and 103 in
the y domain to fit in the viewport. Results of MD simulations are shown as solid symbols. Dashed-dotted lines are the predicted distributions
[Eq. (10)], and solid lines are the predicted distributions [Eq. (10)] with the symmetrically imposed reduced degrees of freedom, i.e., with
N → N/2 for even N , and N → (N − 1)/2 for odd N . (b) Specific heat capacities computed for all symmetrically perturbed MD simulated
systems as a function of the exponent on the potential. Circles correspond to values obtained from Eqs. (16) and (17), and squares correspond
to values obtained from inverting Eqs. (18) and (19). The solid line is the specific heat predicted by the generalized equipartition theorem,
Eq. (11).
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only these give the correct result as seen in Fig. 3(b), where
we show the resulting heat capacities calculated using both
Eqs. (16) and (18) for a representative even-N system, and
Eqs. (17) and (19) for a representative odd-N system, which
have been perturbed symmetrically at both ends.

It is clear from Fig. 3(b) that the calculated specific heats
agree well with the values predicted by the equipartition
theorem, Eq. (11), indicating that energy is also shared equally
in symmetrically perturbed systems. Since this is the case
even for odd-N systems, where the central grain never moves,
the definition of “equipartitioning of energy” must be clearly
defined in such systems. While energy equipartitioning is
sometimes erroneously discussed in terms of energy being
shared equally among all particles in a system, the equipartition
theorem makes no reference to particles, but rather to the
independent degrees of freedom in a system [21]. Hence the
fact that the specific heat per particle, Eqs. (16) and (17), agrees
with the value predicted by the equipartition theorem implies
that the energy is being spread out equally over all the inde-
pendent degrees of freedom at long times in Hertzian chains.

V. CONCLUSIONS

Here we have shown that the long-term dynamics of Hertz
chains is described by a microcanonical ensemble of interact-
ing particles. As demonstrated by the calculated heat capacity,
energy equipartitioning occurs in such systems, indicating that
their long-term fate is indeed an equilibrium phase.

These results are also an empirical demonstration of how
the potential energy function can affect the kinetic energy
distribution. Shirts et al. [17], in their calculation of the exact
distribution for the finite hard-sphere system, speculate that
for attractive potentials pdf(Ki) would differ somehow, but
concede it would be exceedingly complicated to derive. We
have shown accurate distributions that may guide attempts to
solve Eq. (3) for finite interaction potentials.
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APPENDIX

The cumulative distribution function of K is FK (K0) ≡
P (K < K0). Now consider X ≡ K−ρ , where ρ > 0. By
definition, K � 0, thus FX(x) = 0 for x < 0. Meanwhile
for x > 0, FX(x) ≡ P (0 < K−ρ � x) = P (K � x−1/ρ) =
1 − P (K < x−1/ρ) = 1 − FK (x−1/ρ). The pdf(X) is given
by dFX(x)/dx, thus pdf(X) = F ′

K (x−1/ρ)/(ρx(ρ+1)/ρ) =
[pdf(K)|k=x−1/ρ ]/(ρx(ρ+1)/ρ). Knowing the pdfs of 1/K (ρ =
1) and 1/K2 (ρ = 2), the means 〈1/K〉 and 〈1/K2〉 can be
computed in a standard way.
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