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The joint effect of the majority of chemical mixtures can be predicted using the reference model of Con-
centration Addition (CA). It becomes a challenge, however, when the mixtures include chemicals that
synergise or antagonise the effect of each other. In this study we examine if the deviation from CA of
seven ternary mixtures of interacting chemicals can be predicted from knowledge of the binary mixture
responses involved. We hypothesise that the strongest interactions will take place in the binary mixtures
and that the size of the ternary mixture response can be predicted from knowledge of the binary interac-
tions. The hypotheses were tested using a stepwise modelling approach of incorporating the information
held in binary mixtures into a ternary mixture model, and comparing the model predictions with ob-
served ternary mixture toxicity data derived from studies of interacting chemical mixtures on the floating
plant Lemna minor and the bacteria Vibrio fischeri. The results showed that for both the antagonistic and
the synergistic ternary mixtures the ternary model predictions were superior to the conventional CA ref-
erence model and provided robust estimations of the size of the experimentally derived ternary mixture
toxicity effects.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the environment pollutants occur in mixtures, both because
sources contain multiple pollutants and because the pollutants from
different sources mix. During the recent decades models have been
developed to predict the joint effect of chemical mixtures on organ-
isms and processes in the environment (Altenburger et al., 2003;
George et al., 2003; Greco et al., 1995). These models are based on
two concepts: Concentration Addition (CA), also called Loewe addi-
tivity, additive action, additive dose model etc., and independent ac-
tion (IA), also called Bliss independence, response multiplication,
etc. (Altenburger et al., 2003; Greco et al., 1992; Streibig et al.,
1998). Both CA and IA predictions have proved to closely reflect the
observed joint effects in studies with >10 components (Altenburger
et al., 2000; Arrhenius et al., 2004; Backhaus et al., 2000; Faust et al.,
2001, 2003), and there is evidence that the compliance of observations
with predictions increases as the number of components increases
(Warne and Hawker, 1995). This so-called funnel hypothesis seems
to hold, not only for non-polar narcotics which the hypothesis was
based upon, but also for chemicals with specific site of action
+45 35 33 34 78.
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(McCarty and Borgert, 2006), at least as long as a large number of che-
micals each contribute with a similar proportion to the joint
effect. Hence, biologically significant deviations from a reference
model are most likely to occur when toxicity from a few components
dominates a multi component mixture (McCarty and Borgert, 2006).
For environmental samples this is often the case. Measurements of
pesticides in surface waters in USA and Denmark find more than 5
and 7 pesticides in 50% of the water samples tested positive (Gilliom
et al., 1999; Jensen et al., 2000), but looking at the concentrations of
the individual pesticides in the samples and relating them to the
EC50 for e.g. algae or daphnia often show 2–3 pesticides or pollutants
to dominate the total sample toxicity (Baas et al., 2009; Junghans
et al., 2006).

In terms of risk assessment, addressing the joint effect of known
mixtures behaving according to a reference model is trivial, but it be-
comes a challenge whenmixtures include chemicals that induce devi-
ations from the reference model. Though both synergists and
antagonists are known (Belden et al., 2007; Cedergreen et al., 2008),
it is not straight-forward to predict which mixtures will give rise to
deviations from the reference model or to predict the magnitude
and direction of the deviations. According to the funnel hypothesis
the maximal deviation from a reference model should be found in
mixtures of two chemicals. But even though literature studies seem
to confirm the funnel hypothesis (McCarty and Borgert, 2006), few
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experiments have been designed to systematically test this hypothe-
sis. And not many attempts have been made to extend models de-
scribing deviations from reference models to include mixtures of
more than two chemicals (Charles et al., 2002; Jonker et al., 2005;
Ren et al., 2004). Binary mixture toxicity experiments can be set up
in different ways depending on the hypothesis to be tested and
the resources available. The most complete picture of the interac-
tions between two chemicals is achieved by creating concentra-
tion–response-surfaces describing the joint effect at all effect
levels and mixture ratios (Greco et al., 1995; Jonker et al., 2005;
Sørensen et al., 2007). These concentration–response-surfaces can
be modelled and the significance and size of the deviation from a
chosen reference model can be quantified (Jonker et al., 2005;
Sørensen et al., 2007). The question therefore becomes: Can the de-
tailed information gathered from binary concentration–response-
surfaces be used to more accurately predict the joint effects of
more complex mixtures? From a risk assessor's point of view the
major question is: What happens if a potential synergist enters a
multiple mixture where it might potentiate more than one com-
pound? Some chemicals are known to induce synergy, for example
by affecting the rate at which the organism metabolises other che-
micals (Thompson, 1996; Walker, 2009). It has been proposed that
safety factors should be increased, if such compounds are present in
a mixture (Thompson, 1996). However, it is unknown if and how
the maximal level of potentiation can be predicted in order to as-
sess the needed increase in such specific safety factors.

In this study we examine if the deviation from the reference
model of seven ternary mixtures of interacting chemicals can be pre-
dicted from knowledge of the binary mixture responses involved, as-
suming that the maximal deviation from the reference model occurs
at the binary mixture level. That is, we hypothesise that no stronger
interactions will take place in the ternary mixture. The hypothesis
will be investigated using a stepwise modelling approach of incor-
porating the information held in binary mixtures to improve the pre-
diction of ternary mixture effects. First, the binary concentration
response surface model of Jonker et al. (2005) will be applied to the
three binary sub-mixtures of a ternary mixture. In that way synergis-
tic or antagonistic deviations from the reference model are quantified
by three deviation parameters (one per binary sub-mixture). We will
use CA as the reference model, as it is considered the most conserva-
tive in most cases and often is the model proposed for risk assessment
(Cedergreen et al., 2008; Grimme and Backhaus, 2003; Syberg et al.,
2009). For the used datasets, previous analyses have shown no dif-
ferences between CA and IA (Fig. 3 in Cedergreen et al., 2008). This
information will then be used to create a joint effect prediction
model for the ternary mixture based on the binary deviations
Fig. 1. The experiments were designed to test series of concentration of the three single che
symbols) and four mixture ratios of ternary mixtures (red symbols). The binary mixture rati
mixture ratios were chosen to give 20:20:60, 20:60:20, 60:20:20 and 33:33:33% effect conc
test design. In panel B we have inserted the ideal Concentration Addition (CA) isobole plane
certain effect, for example a 50% effect.
only. This ternary model will be constructed based on inclusion of
the observed binary deviations proportionately to how much each
binary mixture dominates at any given point of the ternary part
of the response surface. In a final step, a ternary element will be in-
cluded to allow the ternary mixtures to deviate from the model
based on the binary data. The joint effect predictions of both the
CA reference model (based solely on the single chemical concentra-
tion response relationships), the binary model (where we add infor-
mation about the binary deviation patterns), and the truly ternary
model (fitted from ternary mixtures) are then compared in terms
of the sum of toxic units.

The models were tested on Lemna minor and Vibrio fischeri ex-
posed to ternary mixtures of chemicals known to interact either
antagonistically or synergistically, when tested in binary mixtures.
The model of Jonker et al. (2005) was used as a starting point.
Only overall antagony/synergy for the binary mixtures was
addressed, using only one parameter of Jonker et al., 2005 for de-
scribing the deviation from CA, thus ignoring possible concen-
tration level and concentration ratio deviations. This is done as
such more detailed deviation patterns have proven difficult to re-
produce (Cedergreen et al., 2007a) and to limit the model param-
eters needed in this exercise.
2. Materials and methods

2.1. Test-systems

The aquatic macrophytes L. minor and the bacterial test using the
luminescent bacteria Vibrio fischeri were chosen because of their rel-
atively small size and short test durations making large experimental
setups possible. The test conditions and design for the binary mix-
tures are published in Cedergreen et al. (2006). For this study, in ad-
dition to the three binary mixtures where the ratios 25:75, 50:50 and
75:25% effect concentration were tested, four ternary mixtures were
included. The fixed ternary mixture ratios were chosen to give
20:20:60, 20:60:20, 60:20:20 and 33:33:33% effect concentrations
based on EC50 estimates from previous experiments. Full concentra-
tion response curves were tested at these mixture ratios using six
concentrations, three replicates and 12 control treatments for
L. minor, and eight concentrations, two replicates and four control
treatments for V. fischeri. The single chemicals, binary and ternary
mixtures were always tested simultaneously. A schematic presenta-
tion of the treatment design is shown in Fig. 1. For the L. minor
test, the complete experiments were run twice at separate times
for all four ternary mixtures to test the reproducibility of the results.
micals (black symbols), three mixture ratios of each of the three binary mixtures (grey
os were chosen to give 25:75, 50:50 and 75:25% effect concentrations while the ternary
entrations based on EC50 estimates from previous experiments. Panel A shows the raw
s, describing the concentrations of the individual chemicals and their mixtures giving a
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2.2. Chemicals

Previous experiments with binary combinations of pesticides on
L. minor did not show any synergistic interactions (Cedergreen
et al., 2006, 2007b; Munkegaard et al., 2008). The combinations of
pesticides were therefore based on mixtures of chemicals responding
in accordance to CA and exhibiting different degrees of antagonism.
Six herbicides with different modes of action were used: acifluorfen
(a protoporphyrinogen oxidase inhibitor), diquat (a photosystem I
inhibitor), glyphosate (an inhibitor of 5-enolpyruvylshikimate-3-
phosphate synthase), mecoprop (a synthetic auxin), mesotrione (an
inhibitor of carotenoid synthesis), and terbuthylazine (a photosystem
II inhibitor) (Tomlin, 2002). In the V. fischeri test system, previous
studies on binary mixtures showed synergy both when the imidazole
fungicide prochloraz (an ergosterol biosynthesis inhibitor), the or-
ganophosphorous insecticide chlorfenvinphos (acetylcholinesterase
inhibitor) and, at times, the herbicide acifluorfen were present in
the mixture (Cedergreen et al., 2006). Mixtures of pesticides for
V. fischeriwere therefore designed to include one or two of these pes-
ticides. In addition diquat and dimethoate (acetylcholinesterase in-
hibitor) were included, as they had been observed to be synergised
by the above-mentioned pesticides.

2.3. Model formulation

For binary mixtures the deviation patterns from the CA model
were described in the model framework of Jonker et al. (2005). For
a full appreciation of this framework please see the original paper.
In the following a simplified description of the model elements used
in this paper is presented.
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Fig. 2. The figure shows the mixture ratios of the experimental setup (central triangle) as ill
around it. First the single compound data were described by a concentration–response mo
scribed by a concentration–response surface model including an interaction parameter that
of response surfaces with interaction parameters of −3 (a1,3), 0 (a1,2) and 2 (a2,3) are sho
ternary isobole planes were predicted based on the three binary isoboles alone (Eq. (7), r
text for details). Introducing deviations from CA on the binary isoboles gives a curved iso
the model can make the isobole plane curve more outwards (a1,2,3>0), indicating antagony
synergy compared to the predicted.
2.3.1. Single concentration response relationship
The log–logistic function is used to describe how the biological

response relates to exposure concentrations for the individual che-
micals (Ritz, 2010). This model was chosen for its simplicity and
adequacy of describing data, as discussed in Jonker et al. (2005)
and Sørensen et al. (2007). Hence, for chemical i, the concentration
c of the chemical and the expected biological response Y are
assumed to be related as follows:

Y ¼ f i cð Þ ¼ Y0

1þ c=EC50ið Þbi : ð1Þ

Here, Y0 is the average control response, and EC50i and bi denote
the 50% effect concentration and the slope parameter for chemical i,
respectively. The relationship is illustrated in the top of Fig. 2. The re-
lationship can be rearranged to express concentration on the basis of
observed effect:

c ¼ f−1
i Yð Þ ¼ EC50i

Y0−Y
Y

� �1=bi
: ð2Þ

For a given biological response Y, Eq. (2) gives the concentration c
of chemical i that on average would result in response Y if the chem-
ical is applied on its own.
2.3.2. Concentration Addition
A mixture of n chemicals that results in an x% joint effect com-

pared to the control response is said to be additive according to
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ustrated as an isobole plane (Fig. 1B). The basic steps of the data analysis are illustrated
del including an EC50, see Eq. (1) (black arrows). Then all binary mixtures were de-
allows the response surface to deviate from CA (Jonker et al., 2005). The EC50 isoboles
wn to illustrate examples of synergy (ab0), CA (a=0) and antagony (a>0). Finally,
ed arrow), or including the ternary data and a fourth deviation parameter, a1,2,3 (see
bole plane rather than the flat isobole plane shown in Fig. 1B. Introducing a1,2,3 into
of the ternary mixture compared to predicted, or more inwards (a1,2,3b0), indicating

image of Fig.�2
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the reference model of CA, if the following relationship holds
(Sprague, 1970):

Xn
i¼1

ci
ECxi

¼ 1: ð3Þ

Here, ci denotes the concentration of chemical i in the mixture,
and ECxi is the effect concentration of chemical i alone that results
in the same effect (x%) as the mixture (i.e. EC50i in case of a 50% mix-
ture effect). The quotient ci/ECxi is the dimensionless toxic unit (TUxi)
that quantifies the relative contribution to toxicity of the individual
chemical i in the mixture. This can be calculated at various effect
levels indicated by x (for example, TU10i=ci/EC10i when the mixture
with concentrations c1,…,cn has a 10% effect). If a mixture follows
CA, the binary isobole at any effect level will be a straight line,
while the isobole plane of the ternary mixture will form a plane sur-
face (Fig. 1B). Notice that the CA model only involves parameters
from the single chemical concentration response curves.

2.3.3. Incorporation of deviations from CA
To enable quantification of antagonistic or synergistic devia-

tions from CA, Eq. (3) is rewritten in terms of the biological re-
sponse, Y, and extended with a deviation function G as follows
(Jonker et al., 2005):

Xn
i¼1

ci
f−1
i Yð Þ ¼ exp Gð Þ: ð4Þ

The degree of deviations from CA is given by the quantity G. When
G=0, the right hand side becomes 1 corresponding to CA (Eq. (3)). In
combination, Eqs. (2) and (4) give the relationship between the con-
centrations of the chemicals in a mixture and the combined biological
response. For a given value of G and concentrations c1,…,cn the equa-
tions can be solved by numerical methods.

The toxicity of each of the individual chemicals in a mixture can
differ substantially, hence, the deviation function G should depend
on each chemical's relative contribution to toxicity (i.e. the toxic
units: TUx, see above) rather than on their actual concentrations.
The relative proportion of toxic units of each chemical i in a mixture
can be calculated as follows:

zi ¼
TUxiPn

j¼1
TUxj

whereTUxi ¼
ci

ECxi
: ð5Þ

While effect concentration (ECx) upon which the TUx's are
based, can obviously be chosen arbitrarily, then the toxic units re-
ferred to in the remainder of this paper will be EC50 based. We
choose EC50, as it is the response level that can be determined
with the greatest precision.

2.3.4. Deviation function for binary mixtures
In the analysis of binary mixtures the deviation function which

describes synergism or antagonism and is substituted into Eq. (4)
is as follows:

G z1; z2ð Þ ¼ a⋅z1⋅z2: ð6Þ

This deviation function describes antagonism when the parameter
a is positive, and synergism when a is negative. As we have three sep-
arate binary mixtures within each ternary mixture, each data analysis
will consequently include three separate a parameters, namely a1,2
for the interaction between chemicals 1 and 2, a1,3 for the interaction
between chemicals 1 and 3, and a2,3 for the interaction between che-
micals 2 and 3 (Fig. 2). The model given by Eqs. (4) and (6) (for each
mixture) will be referred to as the binary model.
2.3.5. Incorporation of binary deviations into ternary mixture
effect predictions

The model for binary mixtures can be used to construct predic-
tions of ternary mixtures if a deviation function for ternary mixtures
is defined using the parameters from the binary model. The ternary
deviation function combines the three binary deviations as follows:

G z1; z2; z3ð Þ ¼ a1;2⋅z1⋅z2 þ a1;3⋅z1⋅z3 þ a2;3⋅z2⋅z3: ð7Þ

When Eq. (7) is substituted into Eq. (4), it defines a ternary re-
sponse surface.

At the edges of the ternary response surface where the mixture
consists solely of two chemicals, e.g. chemical 1 and chemical 2, the
predicted joint effect will match the deviation from the correspond-
ing binary model since the two other terms are zero (z3=0). Once
a slight amount of the third chemical is added and the mixture be-
comes truly ternary, the ternary deviation will be made up of a
large fraction of the deviation from the binary mixture of chemicals
1 and 2 plus small amounts of the deviations from the binary mix-
tures of chemicals 1 and 3, and chemicals 2 and 3, respectively. The
model given by Eq. (4) combined with Eq. (7) will be referred to as
the ternary model.

2.3.6. Including additional ternary deviations
In order to examine if the ternary model given by Eq. (7) provides

full description of the ternary mixture data, an extension with a sep-
arate ternary deviation parameter a1,2,3 has been introduced. The de-
viation function is now

G z1; z2; z3ð Þ ¼ a1;2⋅z1⋅z2 þ a1;3⋅z1⋅z3 þ a2;3⋅z2⋅z3 þ a1;2;3⋅z1⋅z2⋅z3: ð8Þ

Inclusion of the truly ternary parameter allows the ternary re-
sponse surface to be above or below the one predicted from combina-
tion of the binary deviations (Eq. (7)). When a1,2,3 is positive it
describes antagonism compared to the isobole plane predicted by
Eq. (7), and when a1,2,3 is negative, it describes synergism compared
to Eq. (7) (Fig. 2). The model given by Eq. (4) combined with
Eq. (8) will be referred to as the Ternary-Plus model.

2.3.7. Error model and model fitting
Eq. (1) defines expected values for the biological response for

single chemicals. The unknown parameters consist of the average
control response Y0, the 50% effect level concentrations EC501,
EC502, EC503 and the slopes b1, b2 and b3. The expected values for
the binary model (Eq. (4) combined with Eq. (6)) have extra param-
eters a1,2, a1,3, and a2,3, and finally the Ternary-Plus model (Eq. (4)
combined with Eq. (8)) involves an extra parameter a1,2,3. Notice
that the model equations cannot be solved in closed form. Hence,
the expected value of Y cannot be written in closed form as a func-
tion of parameters and concentrations, but should be computed
with numerical algorithms. Fig. 2 gives a schematic illustration of
the model. As is common for continuous data, it is assumed that
the random variation around the expected values is normally dis-
tributed with the same variance for all exposure combinations. Pa-
rameters are estimated by least squares, i.e. by minimising
SS=Σ(yh−Yh)2 where y denotes observed responses, Ŷ denotes
predicted values, and the sum is over all observations used for esti-
mation. The objective function was minimised in a spreadsheet en-
vironment (Microsoft Excel) using the built-in Solver tool that
uses a Newton algorithm. Notice that least squares estimation is
equivalent to maximum likelihood estimation under the model as-
sumptions (Neter et al., 1996).
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2.4. The data analysis process

The data was analysed in the following steps: 1) The single chem-
ical concentration response curves were fitted in one operation and
with a common maximum/control value by minimising the sum of
squared residuals for the single chemical data only. If the curve pa-
rameters of the single substances compared well with the observed
data, then their parameters were held constant for the remaining
analyses. The fitted model for single chemicals and the assumption
of CA give rise to a predicted ternary response surface, denoted the
“CA surface”. 2) The model for binary mixtures, obtained by substitut-
ing the binary deviation function given in Eq. (6) into Eq. (4), was
fitted. This was done for the three binary mixtures in one go, minimis-
ing the sum of squared residuals for the binary mixture data with the
estimates from step 1 held fixed. The resulting estimates of a1,2, a1,3
and a2,3 were then held constant in the remaining analyses. The esti-
mated parameters together with Eq. (7) define a predicted ternary re-
sponse surface, denoted the ternary surface. 3) The truly ternary
model, obtained by substituting Eq. (8) into Eq. (4), was fitted by
optimising the sum of squared residuals for data from ternary mix-
tures with all other parameters than a1,2,3 held fixed. The fitted
model defines a “fitted” response surface describing pure ternary de-
viation from the “ternary surface” using a1,2,3, the Ternary-Plus sur-
face. 4) The predicted and “fitted” ternary surfaces are compared as
described below.

2.5. Quantification of deviations between the models

One aim of the study was to examine whether the difference be-
tween the ternary prediction models is likely to be of biological/
ecological significance in the context it is used. We therefore wished
to quantify the size of possible deviations between the models. The
maximum difference between CA and the two ternary models will be
located on the transect between the point of maximal binary deviation
(the 50:50% mixture effect ratio of the binary combination with the
largest numerical a-value) and the pure third chemical as shown in
Fig. 3. The maximum deviations from CA of the ternary prediction
model as well as the Ternary-Plus model were therefore quantified in
terms of sums of toxic units for all three transect lines of each mixture
as a function of the relative contribution of the third chemical for each
of the ternary model transect lines. The CA prediction corresponds to
a sum of toxic units of 1.

2.6. Comparing observed data and predicted models

The compliance between the observed data and the predicted
models was evaluated graphically at the EC50 level. This was done
Fig. 3. Panel A shows the three transects of the isobole plane where the deviation from ad
EC50 and the predicted isobole plane, these transects are shown as the sum of TU for th
by evaluating the EC50 values of all binary and ternary mixtures to-
gether with the EC50 isobole plane, as shown in Figs. 4 and 5 and
the supplementary information. Moreover, the EC50 value of each of
the ternary mixtures and their 95% confidence intervals were com-
pared with the model predictions of the isobole plane transects giving
the largest deviation from CA. The transects are illustrated in Fig. 3.
These comparisons allow for individual assessments of the predictive
power of the models for the EC50 of each of the ternary mixtures. To
illustrate how the models predicted the entire concentration–response
relationship for selected ternary mixture, the observed L. minor growth
rates for the four ternarymixtures of glyphosate,mesotrione andmeco-
prop presented in Fig. 4A and C were plotted together with the model
predictions of Concentration Addition, the ternary model based on the
binary mixture deviations (with parameters a1,2, a1,3 and a2,3) and on
the Ternary-Plus model (including the ternary deviation parameter
a1,2,3) in Fig. 6. Bootstrap methods would make it possible to take into
account the estimation error on the model predictions, but this is a
topic for future research. All figures were made using SigmaPlot 11.0.
2.7. Limitations and assumptions of the analysis

As stated in the Introduction the main question of this paper is
to address if inclusion of knowledge of deviations from additivity
in the three binary mixtures will help provide better prediction
of the ternary response surface compared to the CA reference
model. Fixing the parameters for the single concentration response
curves (during steps 2 and 3) and the binary deviations (in step 3)
makes it possible to examine the predictive power of extending the
CA model with information about binary and ternary mixtures. In
step 2, for example, we want the full deviation from CA to be
accounted for in the binary deviation parameters. The single con-
centration response curves were fitted to the single chemical ob-
servations only and kept fixed when fitting the binary mixture
data. The reason for this is that if parameters for these curves
were left free to vary when fitting the binary model to data
which genuinely deviate from CA, then the deviation would
“drag” the single curves away from where they are known to be,
in particular if there are many data points from mixtures compared
to single chemicals. The estimates for the binary deviations would
therefore be smaller as a consequence of having “twisted” the sin-
gle chemical concentration response parameters to match the CA
prediction best possible. The reasoning for fixing the binary param-
eters (as well as the single chemical concentration response pa-
rameters) when fitting the ternary data is similar. We want to
examine if it is possible to model the ternary mixtures given
what is known about the binary deviations.
ditivity is the largest. To illustrate the size of deviation between the observed ternary
e mixture as a function of the fraction (z) for each of the three chemicals (panel B).



Fig. 4. The EC50 isobole plane of two experiments mixing glyphosate, mecoprop and mesotrione and testing their joint effect of the growth of Lemna minor are illustrated in
panels A and B together with the EC50 values of the individually fitted concentration response curves of each mixture ratio. Binary mixtures between glyphosate and mecoprop
are given with dark grey half-circles, glyphosate and mesotrione with light grey half-moons, mecoprop and mesotrione with black half-moons and the four ternary mixtures
with red circles. In panels C and D the transects of the isobole plane are shown in bold lines (see Fig. 3 for explanation) together with the four ternary mixture EC50 values
given in sums of toxic units (ΣTU)±95% confidence intervals. The confidence intervals are computed from the individual response curves. The ternary mixtures containing
60% effect concentration of glyphosate, mecoprop and mesotrione are given in green, blue and pink circle respectively, while the 33:33:33% mixture is given with a black square.
As the theoretical 20:20:60 and 33:33:33% mixtures will always be situated in a slightly different place on the response surface in a real experiment (A and B), where obtained
effects do not correspond 100% with theoretical predictions, their location on the two dimensional plots (C and D) cannot be determined precisely. While the bold lines give the
transects for the ternary model including the deviation parameters a1,2, a1,3 and a2,3 (Eq. (7)), the dotted line gives the transects for the model Ternary-Plus including the de-
viation parameter a1,2,3 (Eq. (8)). CA is given with a thin straight line at ΣTU=1. The EC50 values of the single compounds, the size of the deviation parameters and the max-
imal deviation from CA for binary mixtures and the two ternary models are given in Table 1. Figures for the remaining six mixtures conducted on L. minor are given in Appendix
I and II.
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Notice that we cannot carry out likelihood ratio tests when we fix
parameter values from step to step even though the CA model, the
ternary model and the Ternary-Plus models are nested. For the likeli-
hood ratio test all data (single chemicals, binary and ternary mix-
tures) should be used to fit all models and all parameters should be
re-estimated for each model. The above-mentioned reasons, howev-
er, led us not to do so.
3. Results and discussion

The study showed that the ternary model based on the binary
mixture toxicity data was far superior to the CA reference model in
predicting joint effects of interacting ternary mixtures. This was illus-
trated in Figs. 4, 5 and 6, and in the Supplementary material S1 and
S2. The improvement from the ternary to the Ternary-Plus model
was not substantial, and model predictions were not changed more
than they were by repeating the experiment. This is illustrated by
the example given in Fig. 4. For this ternary mixture the estimate of
a1,2,3 was negative in the first experiment, indicating synergy com-
pared to the ternary prediction, while it was positive in the next
(Table 1). The difference between the two predictions was mainly
caused by the EC50 for the single compound mesotrione shifting
from 14.8 to 23.3 μg L−1 between experiment one and two (Table 1,
Fig. 4). A less than two-fold shift in EC50 estimates between experi-
ments is not uncommon and must be regarded as part of the natural
variance occurring in many test systems (Cedergreen et al., 2007a).

For the synergistic mixtures tested on V. fischeri the maximal devi-
ation from CA, was not any larger for the Ternary-Plus model than it
was in any of the binary mixtures (Table 1, Fig. 5). For the mixture
of acifluorfen, diquat and prochloraz the ternary model predicted 4%
stronger synergy compared to Ternary-Plus and the binary mixtures.
This small difference is, nonetheless, not likely to be of any major bi-
ological significance. Hence, we conclude that for both the antagonis-
tic and the synergistic ternary mixtures the ternary model including
the binary deviation information provides robust estimations of the
experimentally derived ternary mixture toxicity data.

For the synergistic mixtures the estimations of worst case ternary
synergy can be simplified even further, as it is described by the stron-
gest synergy of the involved binary mixtures. This pattern of the se-
verest synergy occurring in the binary mixture is confirmed by
other studies mixing three or four chemicals, which in binary mix-
tures interact synergistically (Cooper et al., 2009; Lin et al., 2005;
Rosal et al., 2010; Wang et al., 2011; Woods et al., 2002). For studies
where the mechanisms behind the synergism involve transformation
of chemicals outside the organisms, rather than inside, which is the
hypothesis behind some of the above-mentioned interactions, the
patterns might be different. This was discussed by Koutsaftis and
Aoyama (2007) in a study of mixtures of antifouling biocides where
the proportions of chelated and non-chelated metal ions were
known to be able to change when mixed, thereby changing the toxic-
ity of the individual metals. The results presented in the study did,
nevertheless, still show the most severe synergy to occur in the bina-
ry mixtures (Koutsaftis and Aoyama, 2007).

Other models have been proposed to evaluate interacting ternary
mixtures, but most have been descriptive simply testing the signifi-
cance of deviation from additivity (Charles et al., 2002). Lin et al.
(2005), for example, propose a Climax Hypothesis stating that the
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Fig. 5. The isobole planes and corresponding transects of the three mixture experiments performed on V. fischeri. All symbols are as explained in Fig. 4.
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maximal deviation from additivity will occur at equitoxic ratios. They
verified this for both binary and ternary mixtures of interacting che-
micals using the V. fischeri test. They did not, however, try to quantify
the size of the deviations in the ternary and quaternary mixtures
based on the binary deviations. Also Lin et al. found the largest syner-
gistic effects in the binary mixtures (Lin et al., 2005). Ren et al. (2004)
Fig. 6. To illustrate the predictive power of the models for the entire concentration–respo
together with the model predictions of Concentration Addition (broken curve), the tern
a2,3) (solid curve) and on the Ternary-Plus model (including the ternary deviation parame
vals (n=3). The mixture ratios of the three herbicides are given in the legends at each p
wished to predict the joint effect of ternary mixtures of interacting
chemicals. They did this by constructing a model for binary and terna-
ry interacting metal mixtures on a luminescent bacterium (Shk1)
using both binary and ternary data to construct the model. Thereafter
they verified the model using other binary and ternary data at other
mixture ratios (Ren et al., 2004). Hence, contrary to the present
nse curve, the observed data for the four ternary mixtures of Fig. 4A,C are pictured
ary model based on the binary mixture deviations (with parameters a1,2, a1,3 and
ter a1,2,3) (dotted line). The observed data are given as mean±95% confidence inter-
anel A–D.
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Table 1
Results of the model fits to the 11 sets of experimental data. EC50 values of each of the three single chemicals (in μg L−1 for the L. minor tests and in mg L−1 for the V. fischeri tests)
are given together with the deviation parameters described in Eqs. (7) and (8). The maximal deviation from CA at the EC50 isobole plane is given in sums of toxic units of chemical
needed to obtain EC50 both for the binary mixture with the largest deviation parameter (Bin), the ternary model based on the binary mixture deviations (with parameters a1,2, a1,3
and a2,3) and on the Ternary-Plus model (including the ternary deviation parameter a1,2,3). The CA model predicts a ΣTU of 1.

Chemicals EC50 Deviation parameters (a) ΣTU at max dev.

Chemical 1 Chemical 2 Chemical 3 1 2 3 a12 a13 a23 a123 Bin Ter Ter+

Lemna minor
Glyphosate Mecoprop Mesotrione 30,611 12,284 14.8 1.78 3.99 3.45 −8.51 2.71 2.88 2.71
Glyphosate Mecoprop Mesotrione 31,905 12,315 23.9 0.86 0.78 2.09 7.47 1.69 1.69 2.04
Glyphosate Mecoprop Terbuthylazine 28,406 13,235 244 −0.03 0.86 1.94 0.67 1.63 1.63 1.63
Glyphosate Mecoprop Terbuthylazine 34,213 12,289 276 0.75 1.10 2.83 5.07 2.03 2.03 2.15
Terbuthylazine Mesotrione Mecoprop 142 15.1 9486 0.91 3.07 2.95 −0.91 2.16 2.26 2.19
Terbuthylazine Mesotrione Mecoprop 117 25.0 14,000 −0.29 0.90 0.88 10.91 1.25 1.25 1.79
Diquat Acifluorfen Mesotrione 25.7 220 20.5 1.44 0.93 1.13 −0.49 1.43 1.49 1.46
Diquat Acifluorfen Mesotrione 27.4 399 20.9 2.00 1.90 1.44 −0.75 1.64 1.82 1.77

Vibrio fischeri
Acifluorfen Dimethoate Prochloraz 112 8.04 38.7 1.19 0.90 −1.69 −4.45 0.66 0.66 0.66
Acifluorfen Diquat Prochloraz 214 856 28.1 −1.29 −2.24 −2.67 7.78 0.51 0.49 0.51
Chlorfenvinphos Dimethoate Prochloraz 3.08 7.44 31.2 −0.84 −0.51 −0.30 1.46 0.81 0.81 0.81
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study, ternary data was needed to make predictions on ternary mix-
tures of interacting chemicals. This limits the extent of the model to
those areas of the ternary mixture response surface that have
already been tested, while the ternary model presented in the pre-
sent study can be applied to all ternary combinations based solely
on established binary interaction terms.

The funnel hypothesis, which we referred to in the Introduction,
states that as the number of components in a mixture increases, the
range of deviation from toxic additivity decreases (Warne and
Hawker, 1995). This was true for all the synergistic mixtures of this
study as the largest deviation from CA occurred in the binary and
not the ternary mixtures, also for mixtures of up to three synergisti-
cally interacting binary mixtures (Table 1, Fig. 5). However, for the
antagonistic mixtures, three of the eight ternary predictions were
larger than any of the binary deviations included in the mixture
(Table 1, Fig. 4, Supplementary material S2), which is not strictly in
compliance with the funnel hypothesis. It is uncertain what the max-
imal deviation would be, if a fourth antagonistic herbicide was added.
But there is no scientific argument saying that the joint antagony
would decrease. We therefore propose a reformulation of the funnel
hypothesis to: As the number of possible interactions in a mixture
increases, the likelihood of large joint deviation from toxic additivity
decreases. Shifting the focus from number of components to number
of possible interactions, makes it plausible that mixing an increasing
number of antagonistically interacting chemicals might not necessarily
lead to CA, just as mixing an increasing number of synergistically inter-
acting chemicalsmost likelywill not. Only if the chemicals are chosen at
random from a sample of substances that, in binary combinations, will
lead to an equal amount of synergy as well as antagony, the Warne
definition of the funnel hypothesis is likely to apply.

Implementing the results of the present study in a risk assessment
context, the synergistic mixtures are the most interesting. The key
observation that the deviation from the reference model in the ter-
nary mixture did not increase above that of the binary mixture
showing the highest degree of synergy, was confirmed by other
studies (Cooper et al., 2009; Lin et al., 2005; Rosal et al., 2010;
Wang et al., 2011; Woods et al., 2002). It indicates that knowledge
of the strongest degree of synergy of a binary mixture can be used
to determine the size of safety factors used for complex mixtures in-
cluding potential synergists, such as suggested by Thompson (1996).
In the present study, for example, the strongest synergy was found
between diquat and prochloraz. In this mixture 50% effect was ob-
served at only 51% of the mixture concentrations expected from
CA (Table 1). This would mean that for a multiple mixture contain-
ing these two chemicals an extra safety factor of >2 would be nec-
essary. The examples of synergy presented in this study are not
very severe. There are examples of 6–16 fold synergies in other
organisms than V. fischeri in studies including P450 inhibitors
such as piperonyl butoxide and azole fungicides tested on crusta-
ceans and insects (El-Merhibi et al., 2004; Nørgaard and
Cedergreen, 2010; Pilling and Jepson, 1993) and a study on antifoul-
ing mixtures on sea urchin embryos showed similar strong syner-
gies ranging from 2 to 7-fold for the ten tested binary mixtures,
while the range was 2 to 30-fold for the resulting ten ternary and
3 to 10-fold for the five quaternary mixtures tested (Wang et al.,
2011). Though the synergy in this study was higher in the ternary
and quaternary mixtures compared to the binary mixtures, the dif-
ferences were not statistically significant (Wang et al., 2011).
Hence, for those types of mixtures considerable extra safety factors
should be included to account for synergy if they are evaluated to
occur at realistic concentrations.

Regulatory risk assessments of mixtures are, for various reasons,
not yet very common. But when they are implemented, as for exam-
ple for product preparations in the European legislation of chemicals
(REACH), CA is used as a concept for mixture assessment (European
Council, 1999; Syberg, 2009). In that context, determining the che-
micals likely to induce synergy in different organisms is important.
Interactions with the activity of metabolic enzymes are, as men-
tioned, a well known mechanism behind much of the synergy ob-
served (Thompson, 1996; Varsano et al., 1992; Walker, 2009). Other
mechanisms behind synergistic interactions, such as the promotion
of chemical uptake or chemical interactions outside the organism
are less well studied (Chalvet-Monfray et al., 1996; Koutsaftis and
Aoyama, 2007). A future challenge therefore seems to be to develop
methods that can identify and distinguish different kinds of potential
synergists, and evaluate their environmental relevance.

Supplementary data related to this article can be found online at
doi:10.1016/j.scitotenv.2012.03.086.
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