
Remarks on the Fundamental Postulates on 
F ieid Singularities in 

Electromagnetic Theory 

B. Po/at 

Electronics and Communications Engineering Department, Faculty of Electrical-Electronics Engineering 
Istanbul Technical University 

Maslak, Istanbul, TR-34469 Turkey 
Tel: +90 2122853646; Fax: +902122853565; E-mail: burakpolat@ehb.itu.edu.tr 

Abstract 

By removing the constraints on field singularities in the divergence and Stokes' theorems, it is demonstrated that the universal 
boundary relations in electromagnetic theory can be obtained by a postulate on the. integral form of Maxwell's equations. In 
that context, the present postulate is the complement of, and identical with regard to its consequences to, ldemen's original 
postulate, which he developed in 1990 for Maxwell's equations in differential (point) form. 
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1. Introduction 

In electromagnetic theory, as in other branches of physics, the 
theoretical explanation of any phenomenon that can usually be 

cast into a mixed boundary value problem strictly depends on the 
proper mathematical description of the conditions that accompany 
the fundamental field equations in space-time. These inclUde: 

1. the boundary/transition conditions, which describe 
field behavior on a discontinuity surface; 

2. the initial conditions, which describe field behavior 
at the instant the observation starts, . 

3. the radiation condition for open-region problems; 

4. the edge conditions, which describe field behavior in 
the vicinity of physical and/or geometrical discontinui­
ties; and 

5. other conditions specific to the problem, such as 
symmetry or periodicity. 

The superiority of one mathematical description of a 
phenomenon over another can be measured through the capability 
or flexibility of the tools employed in covering as many special 
cases as possible. And the ultimate purpose of different formula­
tions is, naturally, to obtain the most general � universal � repre­
sentation of the field equations and the accompanying conditions 
listed above. The everlasting efforts for the construction of a uni­
fied field theory in modem physics may provide an example for 
the former, while the search for the most powerful postulates on 
field equations may provide an example for the latter . Of course, it 
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is equally important that the postulates are experimentally verifi-" 
able, and that the existence and uniqueness of the solution of the 
related mixed boundary-value problem are proven before attacking 
the problem. 

The discussions in this paper are limited to some of the avail­
able postulates on the boundary relations, since the mathematical 
descriptions of the rest of the items in the list are rather less con­
troversial or rigorous, in many cases. In what follows, a number of 
different techniques for deriving the boundary relations will be 

reviewed. A universal link between the differential- and integral­
form postulates of Maxwell 's equations will be established by gen­
eralizing the divergence and Stokes' theorems of vector calculus, 
in the sense of distributions. 

2. The Differential and Integral Forms of 
Maxwell's Equations 

The first discussion with regard to the postulates of boundary 
relations in electromagnetic theory deals with whether the differ­
ential- or integral-form representation of Maxwell's equations 
given below is better suited to the fundamental laws of electricity. 

2.1 The Differential Form of 
Maxwell's Equations 

- at -m curlB+-=�J[} , 
at 
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- aD -e 
curlH --=J,g, ot 

- e divD= Pf}, 

divE = P9' 

2.2 The Integral Form of 
Maxwell's Equations 

J. - If as - IS -m -'j' E·dc+ -·dS=- Ja ·dS, 
c=JS s at s 

# D.dS = Iff Pa d.9, 
s=a.9 .9 

# B.dS= Iffp:9'd.9. 
S=fJ.9 .9 

(lb) 

(Ic) 

(ld) 

(2a) 

(2b) 

(2c) 

(2d) 

In Equations (2a) and (2b), S denotes an arbitrary, regular, open, 
two-sided surface, while in Equations (2c) and (2d), .9 stands for 
an arbitrary regular region. 

One can intuitively claim that two different formulations of 
the same phenomenon need to be equally informative (though they 
are not supposed to be equally practical, in every case) as long as 
both sets are postulated properly. By equal information, we imply 
that any mathematical relation derived through one set of 
Maxwell's equations should also be derivable through the other 
set. 

Maxwell himself had postulated the law of electricity in 
differential form [1, Chapter 9]. However, Schelkunoffstated in [2, 
Section 5) that Maxwell's equations were required to be postulated 
in integral form in parallel to all the experimental evidence until 
Maxwell introduced the displacement-current concept, since the 
partial derivatives of field terms can take infinite values on a sur­
face of discontinuity, which makes the point-form representation 
impractical or meaningless. Tai also supported the integral-form 
postulation in [3, Section 3.3], concluding that Maxwell's equa­
tions are more informative in integral form where the boundary 
relations are concerned. In his books, Jones emphasized (see [4, p. 
46J, [5, p. 44]) that the integral form of Maxwell' s equations can 
be used in deriving the boundary relations only when they are 
assumed to hold in the presence of field singularities. It is seen in 
the literature that both foons of Maxwell 's equations are employed 
for postulating the boundary relations, and the validity of the 
mathematical tools in passing from one postulate to another has 
always been subject to debate , In the next section, we shall give a 
brief account of these postulates. 
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3. Review of Some Integral- and 
Differential-Form Postulates on 

Maxwell's Equations 

3.1. Integral-Form Postulates 

There are two techniques widely used in the literature for 
deriving the boundary relations through the integral-fonn postulate 
of Maxwell's equations. These are: 

I. The integration of fields and sources in a volume and 
along a narrow strip that straddles the surface of dis­
continuity, � ; and 

II. The integration of fields in regions on adjacent sides 
of � and joining these relations over � in the Cauchy 
sense. 

The first approach is embedded in the textbooks. However, 
the great majority of authors hardly comment on the validity of the 
divergence and Stokes' theorems in these applications, especially 
when the fields are piecewise continuous (as on the interface 
between two simple media), or when they possess a first-order sin­
gular term (as is the case for a double layer on the interface (cf. [6, 
Section 1.4 J, [7]). 

The widely known restriction on the vector field in the diver­
gence/Stokes' theorems, as met in basic calculus books, is that the 
field and its partial derivatives must be continuous at all points 
inside the regular domain of integration (volume/open, two-sided 
surface) and on its enclosure (or boundary). 

The first extension principle serves to lighten the field con­
straints on the divergence and Stokes' theorems to a certain extent: 

The divergence and Stokes' theorems still hold as long 
as the field is continuous inside the integration domain 

and on its enclosure and piecewise continuously differ­
entiable in the interiors of a finite number of regions, 
the sum of which constitute the integration domain. [8, 
Chapter 4]. 

The integrals in such theorems need to be understood to 
be improper integrals when/if the partial derivatives of 
field components become infinite at the boundaries 
between the regions. [9, p. 488J. 

It should be noted that in the presence of sources expressed 
by frrst- and higher-order Dirac delta distributions, the fields pos­
sess higher-order singularities than covered by the first extension 
principle. Besides, the mathematical steps of this approach are not 
rigorous, and the integrations need to be done very carefully. 

The second approach, on the other hand, relies on the 
application of the divergence and Stokes' theorems for smooth 
functions, and is therefore incapable of representing sources 
expressed by first- and higher-order Dirac delta distributions. And 
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this limits the applicability to the mathematical interface between 
two arbitrary media (cf [10, pp. 113-125], [\1, pp. 98-107], [12, 
pp. 4-8) for a demonstration ofthe method). 

3.2. Differential Form Postulate, 

The boundary relations on a mathematical interface can be 
obtained rigorously when the field components are assumed to 
possess a jump discontinuity on the interface. Examples are avail­
able in many books and papers, including the works of Panicali 
[131 and Namias [14]. The methodology is quite simple and pow-
erful, based on two key points: 

. 

I. The source quantities are expressed in terms of Dirac 
delta distributions of a given order, and so are the fields 
on adjacent sides of the discontinuity surface of one 
order less. 

II. There is one-to-one correspondence between the 
field equations that must hold, and the coefficients of 
the singular terms (Dirac delta distributions) at the two 
sides of the field equations must be equal when the 
field and source representations are entered. 

The postulate on Maxwell's equations in differential fonn 
that covers all types (orders) of polarization mechanisms was pre­
sented by idernen in 1973 [15]: "The Maxwell's equations are 
always valid in the sense of distributions." 

According to this postulate, any vector and scalar functions 
(say A and V) met in Maxwell 's equations in d ifferential form are 
described in the general form 

A(r;!) = p(r;t)} + f Ak(r;t)o�k) , (3) 
k�O 

'" 
V(r; t) = {V(r;t)} + L Vk(r;t)ofk) , (4) 

k�O 

and assumed to satisfy the set of Equations (la)-(ld) at any point, 
including the surface of discontinuity,L. In the standard terminol­
ogy of generalized functions, the terms in curly brackets are called 
the "regular part" of the quantity (the part defined at points other 
than on the discontinuity surface, L). The sum term with the Dirac 
delta distributions is called the "singular part" of the quantity (the 
part defined on the discontinuity surface, L). ofk) denotes kth 
derivative of the Dirac delta distribution. Ak (r;t )Ofk) and 

Vk{r;t)ofk) correspond to the (k+l)th terms in the singular part 
of the field quantities. 

While the postulate was implemented only for a mathemati­
cal boundary in the 1973 paper, a very genenll implementation for 
a planar material boundary is also available in idemen' s 1990 
paper [16] (se� also [17-20] for an entire list of idem en's work on 
the topic). 

The representation of scalar and vector sources in terms of 
distributions has been widely used since die beginning of the last 
century, and has a solid physical correspondence. For instance, 
when V corresponds to the volume charge density, the zeroth­
order distribution Voor. denotes the surface charge density on L, 
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while v1ofl) and v2of2) si�ify a layer of dipoles and quadrupoles 
onL, and so on (cf. the works of Namias [21-22] for the incorpora­
tion of the Dirac del ta 4istribution in representirig first-and higher­
order polarization mechani�ms). 

On the other hand, such a representation of sources also 
requires the field terms to be expressed in a similar fashion, for 
compatibility. However, where field quantities are concerned one 
should not relate Ak to A and Vk to V physically, since they have 
different units. Actually, Ak and Vk are not supposed to have a 
physical correspondence by themselves, at all. 

The applicatjon of the divergence and curl operators on A in 
Equation (3) and the steps of the solution shall also be reviewed, 
for completeness: 

Assuming that the only surface of discontinuity in /} is I:, 
and that there are no sources inside regions � and 9z that consti-
tute /} through [) = � U L U 9z , one may express the regular part 

of A as 

(5) 

and the application of the divergence and curl operators to {A} 
gives 

where 

with 

and 

. curIA = curl {Ii} + f. curl [ Akofk) J. k�O 

where 

curl {Ii} = {curIA} + i: 1\ t{ Ii] Or., 

with 

{ _} {curtAI, rE� 
curiA = , 

curlAII, r E Sz 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 

(7a) 

(7b) 

(7c) 
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(7d) 

In Equations (6b), ( 6d), (6e), (7b) and (7d), i: denotes the nonnal 
of the surface L:, and is assumed to be directed into �. Proofs of 
the 'relations of Equations (6b)-(6d), (7b), and (7c) are available in 
[15] and [23, Chapter 1]. 

Next, one inserts all sources and field quantities expressed by 
Equations (3)-(7) into Equations ( J a)-( I d) to get four sets of equa­
dons, which include regular parts and singular terms with the 
Dirac delta distributions of every order. The constitutive relations 
are not needed to be included for our purposes. 

Now there are only two steps ahead in order to reach the uni­
versal boundary relations. The first one is due to Item II given in 
this section. This yields two sets of solutions: one indicates that the 
regular parts of the field and source terms satisfy the set of Equa­
tions (la)-(ld), and the other signifies an infinite number ofequa­
tions for k = 0,1,2, . .. to hold on the interface. As can easily be 

seen from Equations (6b) and Equations (7b) and (7c), the equa­
tions for k -= 0 give the amount of discontinuity of the normal and 
tangential components of field quantities on the interface. They are 
therefore called the universal boundary conditions. The remaining 
(infinite number) equatiqns for k = 1,2,... are called the 
compatibility equations. The next and final step in the solution is 
the incorporation of the fact that the singularity that a source or 
field quantity can possess �� � disco'ntinuity surface is supposed to 
be of finite order, i.e., there is a finite number N for which 

(8a) 

( 8b) 

By substituting the conditions of Equations (8a) and ( 8b) into 
the compatibility conditions, one can reach the resultant form of 
the boundary conditions in a straightforward manner. It should be 
noted that the conditions of Equations (8a) and (8b) bring no 
restrictions on the universal nature of the postulate. The explicit 
expressions of the final set of boundary relations for a planar dis­
continuity surface are available in the work of idemen, and are 
beyond the scope of this paper. 

4. The Missing Link Between the Integral­
and Differential-Form Postulates 

As mentioned in Section 2, one may expect the differential­
and integral-fonn postulates to be equally informative. However, It 
has been the lack of associated mathematical tools that have led to 
comparisons of these two sets in the presence of field singularities. 
A universal link between them can be established if one can dem­
onstrate that the universal boundary relations of idemen can also 
be obtained when the integral (rather than differential!) forms of 
Maxwell's equations are postulated to be valid in the sense of dis­
tributions. 

We will next prove this assertion in two steps. First, we shall 
consider the equivalence of the set of Equations (la)-(ld) to its 
fonnal integral form, Equations (9a)-(9d), given below: 
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ff - - ffaB - ff-m -curlE ·dS + -·dS = - J,9 ·dS, 
s s at s 

(9a) 

If - - ffoD - fJ-e -curlH ·dS - -.dS", J,9"dS, 
s s at s 

fffdiVD dB = ffIps dB, 
,9 ,9 

(9b) 

(9c) 

(9d) 

The equivalence of Equations (la)-(ld) to Equations (9a)­
(9d) can be expressed as follows. If an equation is known (or 
assumed) to hold at all points in space, then the integration of both 
sides of this equation over a regular region - or a regular, open, 
two-sided surface - is supposed hold as well. And, similarly, if an 
integral relation is seen to hold for every arbitrary regular integra­
tion domain, then one can infer from the basic theorems of inte­
gration that this can be provided if and only if the integrand func­
tions at both sides of the relation are equal, or differ at most by a 
null function. It is an easy task to show that this general one-to-one 
com;spondence applies in the presence of integrands expressed in 
terms of generalized functions (distributions) as well as smooth 
functions, provided the integrals are bounded. An example of this 
formal equivalence between the integral and point form of an 
equation is available in [24, p. 3] for the divergence theorem as a 
lemma with proof 

Next, we shall compare Equations (9a)-(9d) with Equa­
tions (2a)-(2d). It is seen that the equivalence of Equations (9a)­
(9d) to Equations (2a)-(2d) (and therefore to Equations (la)-(ld» 
strictly depends on the validity of the divergence and Stokes' theo­
rems in the presence of singular fields given in the general form of 
Equation (3). On the other hand, this property of the divergence 
and Stokes' theorems is proved in the Appendix, through the gen­
eralization of the extension principle. 

Therefore, one can conclude that the postulate of Jdemen, 
which was intended for the differential form of Maxwell's equa­
tions, applies equally to the same set in integral form. 

5. Concluding Remarks 

I. The validity of Maxwell's equations (in differential 
and integral form) in the sense of distributions yields 
the result that the relations that evolve from them (such 
as the continuity condition and energy relations) are 
also valid in the sense of distributions. 

II. The Lorentz force equation, as one of the main field 
equations, should also be postulated in the sense of dis­
tributions for completeness. 

III. It is expected that the procedure presented in the 
Appendix for removing the field requirements in the 
divergence and Stokes' theorems can be applied to a 
large number of integral theorems in vector calculus, 
and can find direct application in other branches of 
physics as well, such as acoustics, fluid mechanics, and 
elasticity. 

IV. It should be noted that the initial conditions in 
electromagnetic theory have also been postulated by 
idemen in 1993 [20], based on a representation similar 
to that applied for the boundary relations. The formal 
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equivalence between the differential and integral fonns 
of Maxwell's equations reveals thllt the uiti versal initial 
relations given in [20] for the ��t of Equations (la)-(ld) 
can also be reached through Maxwell's equation m 
integral fonn with respect to the time variable. 

V. The postulate of idemen based on an infinite-sum 
representation of field singularities has also been 
applied for a comprehensive treatment of impedance 
boundary relations [16, 20] and edge conditions [25, 
26]. 

VI. The postulate of idemen for Maxwell's equations is 
also valid in the presence of moving boundaries. It has 
been shown by the author that a combination of the 
methodologies given in [14] and [16] can be applied 
directly to yield universal initial and boundary relations 
in the presence of moving boundaries [27]. 

VII. Regarding education, the books written by idemen 
(in Turkish) have been used in Istanbul Technical Uni­
versity in both undergraduate and graduate electromag­
netics courses since 1973, in which the initial and 
boundary relations have been presented in parallel to 
his contributions in the area. With the help of an earlier 
math course on vector calculus, and introduction of the 
basic properties of the Dirac delta distribution (which 
includes the relations of Equations (6b) and (7b) with­
out proof) within the electromagnetics course, the theo­
ries have always been fully' grasped by sophomore and 
junior students . 
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7. Appendix 

7.1 Generalized Extension Principle 

The validity of a general class of integral theorems relating 
volume to surface integrals requires that the following relation 
hold: 

ffJaf (r)d.9= # f(r)(xjon)dS, i=I,2,3, (Al) 
sax; S=d,9 

where r = (X!,X2,x3); .9 is an arbitrary regular region enclosed by 

a regular surface, S; and n is the outer nonnal of S . In general, 
the region .9 is assumed to be convex with no holes. However, it is 
an easy task to remove such constraints in the way explained in 
many textbooks (cf. {28], pp. 138-139, Remarks 2, 4). 

The first extension principle and the remarks by Van Bladel 
as presented in Section 3.1 lighten the field requirements to a cer­
tain extent. However, for removing the requirements on fer) 
totally, one may attempt to generalize the tirst extension principle 
as follows: 

' 

The relations of Equation (AJ) are always valid in the 
sense of distributions. 
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7.2 Proof 

Due to the singular nature of the scalar field f(r) , the rela­
tion of Equation (AI) describes a distribution in the form 

(A2) 

where the inner-product operation between a distribution, g, and a 
test function, ¢I, is given by 

(g,¢I)s. = fffg(r)¢(r)d.9, 
sa 

and the surface distribution, OS' is described by 

(Os,rfJ)s. = H¢I(r)dS. 
Sa 

The subscripts .9a and Sa for the angular brackets indicate the 
domain of integration, for clarity. 

For the derivation of many (differential-form) properties of 

distributions, it is generally assumed that ¢I(?) is in class COO and 

has compact support, while no restriction is required on the sup­
port of the distribution g(r). For the proof of a� integral relation 

in the sense of distributions, one can alternatively define g(r) to 

be identically zero outside .9a and take ¢(r) = I, as is done in [29, 

Section 5.4]. The validity of the latter approach is plausible, since 
the inner products still yield finite values. 

As a rule of thumb, the distribution, f, in terms of its regular 

( {J} ) and singular (iT. ) parts may be written as 

(A3) 

where L is the surface of discontinuity straddling the region .9 . 
The regular part of f is expressed by 

(M) 

as in Equation (5). 

The proofs of the present and the following theorems are lim­
ited to the special case of Dirac delta distributions, i .e., It. is 
considered to have the special fonn 

(AS) 

where the fk' 'ik, are assumed to be smooth functions on the sur­
face k. In this case, the representation of Equation (A 1) in angu­
lar-bracket notation, as in Equation (A2), does not yield more 
informative or general results than can be obtained through the 
integral representation Equation (AI) itself, and therefore this does 
not need to be eanied in the following steps of the proof. 
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Substituting Equation (A3) into Equation (AI) yields 

(A6) 

Since the regular and singular components of f have 
nonintersecting regions of support by definition, our assertion 
requires the following two relations: 

(A7) 

IJf��d.9= <# lr.(ii·ii)dS, i=I,2,3, (A8) 
a Xi s=aa 

to hold separately,. under the assumption that all four of the inner 
products in' Equations (A7) and (A8) yield finite values. 

Regarding Equation (A7), its validity is obvious through the 
standard theorems of vector calculus when { f} and its first partial 

derivatives are smooth functions (i.e., in the case where they do 
not possess jump discontinuities). When {J} is discontinuous on 

I: , its derivative is expressed by (cf. [30, pp. 118-119] for proof) 

--= - +,1.[1] Xi·I: 0,£,1=1,2,3, a{J} {aJ} (' ' ) . 
aXj 8xj 

(A9) 

with .1.[JJ = fI - fII. In this case, the left-hand side of Equa­

tion (A7) still Yiel
'�s a finite value, since the support of a{J} is aXj 

again limited to the region [) and its singular term is integrable. 

Substituting Equation (A9) into Equation (A7) yields 

Iff {'8f }d9= If {J} (ii ·n)dS - ff.1.[Jl(xi·t}ds, ax· �+� I S[+S2 L 
i=1,2,3, CAlO) 

where the 812 denote the parts of the closed surface S that remain . , . 
in regions �,2 . 

The proof of Equation CAlO) can be reached upon the 
summation in the Cauchy sense of the following two integral rela: 
tions, well known for regular functions: 

(All) 

(AI2) 

with 
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In Equations (All) and (AI2), the LJ,2 denote surfaces residing in 

regions �,2 , and parallel to and coinciding with the interface L in 

the limiting case. 

Regarding Equation (A8), the regions of support of air. and 
aXi 

II are the interface L. However, the formal integration on the 

right-hand side is always reduced to the left-hand side in Equa­
tion (A8), based on the fact that both integrals in Equation (A8) 
have finite values due to the basic properties of the Dirac delta 
distribution, such as 

j(X )o(k) (x - xo) = (-1/ /k) (xo)o(x � xo) 
+ higher order terms 

and 

for Xl < Xo < x2, where H denotes the Heaviside unit step func­

tion. 

It should be noted that the integrands in the standard integral 
theorems of vector calculus are smooth functions, and the integra­
tions are therefore defined in the Riemann sense. However, formal 
integrations, such as in Equation (A8), also apply in the general­
ized sense, as long as the basic properties of the Dirac delta distri­
butions are invoked properly. 

This concludes the proof. 

7.3 Generalized Divergence Theorem 

The divergence theorem is always valid in the sense of 
distributions. 

7.4 Proof 

It is required to show that the integral relation 

Jffdiv]{r)d.9= <# l(r).ndS 
9 S=o9 

(AI3) 

holds in an arbitrary regular region 9, enclosed by a regular sur­

face S, when the vector field ] (r) 

IEEE Antennas and Propagation Magazine. Vol. 47, No.5, October 2005 



1. possesses a singular part of any order on an arbitrary 
regular surface 1: straddling the region [), and 

II. its partial derivatives are continuous inside the 
region [} -l: and on its boundary surface, S . 

3 
For 1(1') == LJi(1')Xj' the proof of Equation (Al3) reduces 

j=l 
to the requirement that the following three constituents, 

(A14) 

of Equation (A13) hold in the sense of distributions. This is noth­
ing but the already-proved generalized extension principle with 

f �ft· 

This concludes the proof. 

7.5 Generalized Stokes' Theorem 

Stokes' theorem is always valid in the sense of distri­
butions. 

7.6 Proof 

It is required to show that the integral relation 

Jfcurif(r).dS= � ](r)'cTc 
S ·C=dS 

(A15) 

holds on an arbitrary, regular, open, two-sided surface S, enclosed 

by a regular contour C, when the vector field 1 (1') 
1. possesses a singular part of any order on an arbitrary, 
regular, open, two-sided surface L straddled byS ,and 

II. its partial derivatives are continuous on the surface 
S -Cr and along its boundary, C. 

Here, C is traversed in the direction such that S appears to the 
left of an observer moving along C, and CE = S n L is the 

intersection line ofthe surfaces S and L . 

This time, we need to prove the relation 

fJ curl[{1(1')}+ 1I: (1')}dS = P [{l(n}+ lr. (r)}dC. 
S C=dS 

(A16) 

It suffices to show that the following two relations, which consti­
tute Equation (AI6), hold separately: 

and 

ffcur1{J(n}·dS= p {J(r)}.dc 
S C=<JS 

(AI7) 
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If curl[JE (i') }dS = (p [Jdr) }de. (AI 8) 
s c=as 

Since {J} may in general be discontinuous and have discontinu­
ous partial derivatives on L, we can construct Equation (A 17) as 
the sum of the following two relations: 

Ifcurl {J} . dS = If {curif}odS + fK i; /\ t.[JJOE }dS 
S S,+S2 S 

(AI9) 

and 

= If {curif} odS + J[ i; /\ t.[JJ}dc, 
S[+S2 ct 

·ff {curif}·dS= <ji {J}.de- J[i;/\A[lJ}de. (A20) 
Sl +S2 C=<JS c� 

Equation (A19) is the relation of Equation (7b) in integral form, 
and Equation (A20) can be obtained through the summation of the 
following applications of Stokes' theorem for regular functions: 

ff{curlf}·dS= <ji {l}odC+ f {l}.dc, 
s, as,-cII CII 

If {curif} odS = <ji {J}.dc + f {l}'dC, 
S2 aS2 -Cn eEl 

(A21) 

(A22) 

where CII: and C2l: are parts of the enclosures of Sj and S2 

parallel to and coinciding with CL in the limiting case {see the 

previously given references ([to, pp. t 13.125], [11, pp. 98-107], 
[12, pp. 4-8]) for the details of the derivation). 

Regarding Equation (A 18), the procedure followed in the 
proof of the standard Stokes' theorem yields the desired relation, 
since the integrations of both sides always have finite values, due 
to the basic properties of the Dirac delta distribution mentioned 
earlier. 

This concludes the proof. 
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