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Chapter 1

General Outline and Scope of the Book

1.1 MOTIVATION

Facing the bewildering abundance of textbooks and monographs on electromagnetic
theory and applications, the reader may wonder why another large book on the sub-
ject? In our view, which will be substantiated throughout the progressive devolvement
of the work presented here, the field of electromagnetic research has entered during
the last few years a turning point. This critical juncture is related to two major
changes in our current viewpoint: fundamental pressure emerging internally from
within the very discourse of electromagnetics as such, and the enormous demands
imposed on us by the industrial and technological evolution of the contemporary
world. Those two stimuli may appear for the time being unrelated to each other.
Indeed, philosophers and theorists busy themselves with investigations motivated
by purely epistemological and sometimes aesthetic considerations, while applied
scientists and most engineers are devoted to working on themes close to technology
and applications. The separation between these two major thematic orientations has
been the predominant mode of “doing science” since at least the end of the nineteenth
century. Such bifurcation into pure theory and applications is, in our view, not a very
happy chapter of the historical unfolding of scientific thought. In fact, it appears that
the present crises of modern science can be traced back to the tension that such lack
of communication between theorists and applied scientists has been fostering since
the end of World War II and the rise of electrical and electronic engineering as the
major force behind technological advance.

Let us first attempt to describe the second motivation for reengaging applied
electromagnetic theory at a very fundamental level: The demands of modern society.
Every engineer working in the field of antennas and circuits knows that there

1
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is an tremendous increase in complexity characterizing every system and almost
all working environments. ‘Complexity’ here refers to the high density of signal-
processing physical structures within a given volume or surface area. By saying
that the environment is also becoming more complex, we mean that there is always
something happening close to the device under consideration, an interaction here
or an energy coupling there that may radically modify the “normal” or “regular”
behaviour of the device. This brings us immediately to the first theme referred
to above: How can we define what constitutes the “normal” behaviour of an
electromagnetic device? How can we define the electromagnetic character of a
given physical structure in a way that takes into account the full complexity of
the electromagnetic environment? These are the basic questions that this book
attempts to investigate and answer. In other words, the double-edged problematic of
the present historical conjuncture of electromagnetic research reduces to knowing
how to decode increasingly complex operating environments and dense working
conditions, plus a proper theoretical and conceptual understanding of how to analyze
systems embedded into such a milieu in ways going beyond those traditional
approaches that have been serving as “proper” or “normal” operational frameworks
for electromagnetic research.

This naturally brings us to the first of the two major motivations mentioned
above: emerging demands generated by the internal development of applied electro-
magnetic theory. Indeed, after the standardization of three main full-wave numerical
methods (MoM, FDTD, and FEM) and the widespread use of fast and efficient
computing machines all around the world, the old and traditional problems that
dominated the field began to change rapidly. In the next section, some remarks on
the general historical situation will be provided in order to situate this book within
the global map of applied electromagnetic research. However, before moving there
we mention few important facts about the relation between theory and applications.
We believe that it is in the very nature of applied electromagnetics as such to be
occupied with the problem of analyzing complex structures with interest in finding
new behavior not seen before in nature. The rise of the art and science of meta-
materials, for instance, is a striking example illustrating this issue. On the other
hand, a fundamental trait of applied electromagnetics is the need to integrate the
physical theory of electromagnetic waves with neighboring engineering disciplines
like wireless communications and signal processing. While deeper occupation with
metamaterials necessarily leads to serious consideration of quantum theory, a neigh-
boring field from physics, it appears that a parallel interest in probing in depth the
integration of electromagnetic theory and system theory (communications, signal
processing, circuit theory) has not been attempted so far on a large scale. Although
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admirable attempts do exist, they remain isolated and scattered in the vast literature on
the subject. This shortcoming has been further aggravated by the unfortunate massive
drift during the last decade toward industrial and very applied research purely at the
device level. There is now little patience for long and complex theories or speculative
thinking, though exactly such open-minded and free modes of investigation had been
the driving force behind innovative developments in the engineering science. With
this overemphasis on industrial applications, engineering science is now regarded
with suspicion while a disproportionately larger recognition is granted to research
done on small and short-term problems pertinent to antenna and microwave circuit
device development, i.e., commercially-driven design considerations and always
with some lab fabrication and measurement inserted into the work whether needed
or not.

This last point deserves some additional elaboration. Although it is always
interesting to include lab measurements if possible, we believe that this truth has been
overexploited during the last decade in a way that deeply affected electromagnetic
research all around the world. As is well known, it is very difficult to provide
complete fabrication and measurement to support every idea. Therefore, most papers
in recent years tend to avoid wide scope formulations and focus instead on small
and simple ideas that can be tested in the lab within a reasonable time. Although
there is nothing wrong in pursuing such a line of research, it is by no means the
only possible one. In fact, electromagnetic theory is one of the very few scientific
fields where exact and extremely well-attested laws are known, namely Maxwell’s
equations. Armed by sound mathematical and conceptual training, a researcher can
easily derive far-reaching conclusions within the span of few pages that otherwise
may take many years in order to be fully absorbed into mainstream fabrication and
measurement methods. The authors believe that this was actually how pioneers in
applied electromagnetics and other scientific fields had been already conducting
their work. There is an urgent need in the present time to supplement the massive
focus on industrial and device research by long and sustained treatments of matter
more pertinent to fundamental and even foundational issues. Examples of the latter
include energy considerations, causality, applicability of Maxwell’s equations to
nanostructures, and the complex relations between the microscopic and macroscopic
electromagnetic phenomena.

This book attempts to bring into the field an example of this kind of research.
However, since it is impossible to address all or even some of these topics with
sufficient depth within the span of one book, certain selections were necessary.
This was not only to provide a limitation on the size of the final book, but also
to propose a specific promising research theme that occupies our investigations
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to follow, which is the fundamental relation between electromagnetic theory and
applications, especially wireless communications. Indeed, wireless communications
looms large in this book. Every theoretical formulation and each conceptual analysis
developed by the authors was in a certain way or another motivated by some mental
picture of concrete potential application to the field of wireless communications.
This may explain the lack of special chapters addressing propagation in waveguide
structures. Although we believe those belong to the major topic of the book – the
study of space in applied electromagnetic theory – they were not included in order
to provide a focused presentation of the aspects related to wireless communications.
Moreover, we believe that the problems arising with the theoretical status of space
structures in wireless communications are more challenging than the corresponding
case in waveguide problems.

1.2 THE PRESENT STAGE OF ELECTROMAGNETIC SCIENCE

We will not attempt even a brief summary of all what we deem important in applied
electromagnetics and classical field theory. Instead, we provide a concise portrait
of areas we think present the most essential features of the recent evolution of
electromagnetics.

It seems to us that research in electromagnetics can be roughly divided into
three main areas:

1. Theoretical (Fundamental) Research

2. Numerical Research

3. Applied Research

There is a marked difference in style among the three domains indicated above. We
will start the explication of this threefold classification in reverse. The most popular
level, the applied research (level 3), is concerned with the devolvement of working
devices for the purpose of functioning within a larger, more complex systems.
For example, antenna engineers are concerned with the design, development, and
measurements of single antenna elements or arrays in order to efficiently receive
and transmit electromagnetic information (or possibly energy) from one location to
another. Microwave engineers are concerned with the design and construction of
devices that can divide, combine, filter, and amplify various electromagnetic signals
propagating in waveguide structures, sometimes connected with antenna fronts. The
final goal at this level is the successful operation of a concrete device (e.g., the
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antenna element itself) for the purpose of establishing a consistent overall functional
performance and system integrity. The goal then is to be serviceable to the whole,
where the latter is the global system into which the device is embedded.

The second, level, numerical research, had been thriving particularly in the
1980s and 1990s, culminating in the first decade of the 21st century in the wide
availability of efficient and reliable computational electromagnetic solvers. The
various numerical methods found in use today, most notably the method of moment
(MoM), the finite-element method (FEM), and the finite-difference time-domain
method (FDTD), went through extensive stages of research and devolvement before
becoming robust tools for the analysis and design of antennas and circuits in daily
routines at both the academic and industrial levels. Research on the numerical method
itself of course continues to attract attention, and even proposals for trying new
methods can be found in literature from time to time. However, it appears to us that
there is some sort of convergence, at least during the last 10 years, toward the three
numerical methods mentioned above (i.e., MoM, FEM, FDTD) as the main choice for
commercial solvers, with possible improvement in performance using hybridization
and special techniques like the fast multipole methods. It is beyond a doubt that this
convergence would never have been possible had computer technologies not evolved
to their present level of speed and memory performance. However, the intense efforts
pouring into numerical electromagnetic research throughout the last two decades in
the 20th century have been, we believe, the main factor behind the impressive level
of sophistication found today in commercial EM solvers.

The first area, the one we duped the theoretical research program, is paradoxi-
cally both the most fundamental level but at the same time the least explored avenue
in the electromagnetic sciences. Before embarking on an explanation of why this
has been the case, let us first define what we mean by research at the theoretical
level.

The electromagnetic problem, whether being antenna or circuit one, is ulti-
mately governed by a system of coupled partial differential equations discovered by
Maxwell in the 1860s and put into their modern vectorial form independently by
Hertz and Heaviside in the 1880s and 1890s. This system of equations, Maxwell’s
equations, contains a complete description of every electromagnetic problem but
only if a proper electromagnetic model for the the materials used in the construction
of the system under consideration (usually encapsulated in the constitutive relations
of matter) is at hand. For example, for the purpose of analyzing devices working at
the macroscopic level, a set of well-known boundary conditions — delimiting the
behavior of the fields at interfaces presenting discontinuities in the material medium
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under consideration – can be incorporated within the structure of Maxwell’s equa-
tions in order to derive the main equations to be solved numerically at a subsequent
stage. We will come later to a frontier stage where this simple picture is no longer
adequate, i.e., the emerging field of nanoscience and nanotechnology. For now, we
just add that the macroscopic approach, and the understanding of the delicate and
oft-ignored difference between the macroscopic and microscopic descriptions of
electromagnetic interactions, can be dated back to the theoretical researches of
Lorentz in the 1890s. Once the interaction between the electromagnetic field and
matter is well understood, simple linear (or nonlinear) models, such as constitutive
constants and dispersion relations, can be employed in conjunction with the vacuum
field equations to solve the coupled problem for the unknown fields in both matter and
vacuum. The research of the second level, that which is exclusively concerned with
numerical methods, made the solution of the coupled equations mentioned above
possible and, starting in the last decade, relatively speaking a routine task.

The engineering approach that dominated the second half of the 20th century,
accompanying the explosion of new technologies driven by war-related applications,
has led to modern network (circuit) theory as the paradigm of all engineering systems.
Electromagnetic researchers were quick to seize on the new conceptual breakthrough
of the circuit paradigm and proceeded immediately to develop circuit models for all
antenna and microwave devices they needed to work with. It is unquestionable that the
lack of computing resources at the time motivated the search for simplified circuit
models for a realistic description of the devices at hand, and also for guiding the
invention and conceptual devolvement of new devices. However, the triumph of the
circuit paradigm resulted also in its own self-induced fantasy: a simple circuit model
is all that is needed in order to describe a device! For example, the widespread
myth that the input impedance of the antenna is the most important performance
measure in the near-field zone needed for the direct integration of the antenna element
within a larger system. It is true that today an expensive full-wave sophisticated
numerical solution of Maxwell’s equations is essential in order to obtain accurate
data on the input impedance of an antenna or a microwave circuit in agreement
with the experimental results, but the philosophical idea remains the same: the input
impedance continues to be seen as an equivalent circuit model replacing an otherwise
prohibitively complex system. It is then not very surprising to find that recent research
on the more fundamental aspects of antennas, the so-called fundamental limitations
on radiating structures, in particular the popular field of small antennas, is exclusively
concerned with the circuit model through its emphasis on the impedance matching
bandwidth as revealed in applications by knowledge of the system’s effective quality
factor Q.
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The upshot of this story is that during the entire devolvement of classical
electromagnetic field theory in the 20th century, which was mostly a story in the
applied side, culminating in the invention of waveguides, antenna communication
systems, radar systems, and so forth, the ultimate theoretical bases of classical
electromagnetics can be satisfactorily found in the works of Maxwell, Hertz,
Heaviside, and Lorentz. This observation is confirmed by a quick glance at the current
literature on electromagnetic theory. One cannot help but feel astonished by the
huge number of textbooks on electromagnetics that nevertheless are almost always
variations on the same theme. It is undeniable that there is a conspicuous redundancy
in the academic presentation of the theoretical basis of applied electromagnetics.
Even though there is an impressive amount of literature on the solution of numerous
particular problems, like scattering and propagation in specific environments, there
exit only few coherent and comprehensive treatments of the most fundamental in
electromagnetic wave phenomena transcending the particular for the sake of the
universal, without at the same time departing from concrete reality, the behavior of
the electromagnetic field as such, which is our ultimate prize as students of nature.

1.3 FROM STRUCTURES IN SPACE TO SPACE STRUCTURES

A classic textbook definition of applied electromagnetics will probably run like this:
Applied electromagnetics is an an engineering science that studies the analysis and
design of special structures performing useful functions. Examples of those “useful
function” include the all-important wireless communications, cable and optical fiber
communications, radar, sensors, imaging, filtering, and energy direction and transfer
(through space or cables). More recently, the interesting but often misunderstood
topic of metamaterials also entered the picture. But how do we specify those
structures? A simple answer will say that those are things like antennas, waveguides,
junctions, and arrangements (sometimes very dense) of material objects. At a more
abstract level, one may answer the same questions by stating that all those useful
structures studied by applied electromagnetics are in fact structures defined in space.
For instance, an antenna or a junction is a geometrical configuration drawn in space
to demarcate the various domains of different electromagnetic materials. This latter
definition possesses the virtue of being simpler and more general. Through it we
come to think of the engineer’s task as simply manipulations of spatial material
structures aiming at achieving certain performance. Now this performance is not
measured by purely geometrical details like shape and curvature or distance, but via
the most important physical entity in applied electromagnetic: The electromagnetic
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field itself circulating in and around the spatial structure. The electromagnetic field
contains within itself the very essence of what makes a device what it is.

Now, what is the electromagnetic field? It is a process in space and time.
Assuming time-harmonic excitation, as we will do in the entire book, time can be
factored out and what remains are the three spatial variables. In the frequency domain,
the electromagnetic field reduces to a process in space. There is then something
common between the field and the structure generating it: both are in space.
Consequently, both contain structures in space. Now, conventional mathematics
provides us with a well-known method for studying the spatial aspects of an object in
space like an antenna or a periodic array of cells, namely geometry. Indeed, we can
analyze and describe the structures of antennas, say arbitrarily-curved systems like a
conformal antennas, using differential geometry. But what about the other structures
in space associated with the electromagnetic field itself? How can we define and
study such structures? And, to start with, how can we know that such structures even
exist?

In the following investigations various attempts will be developed in order to
propose answers to these fundamental questions. Our approach is not continuous
with mainstream theoretical physics and optics. There, emphasis has been always on
certain research directions that include quantum field theory, relativistic invariance,
and geometrical optics. These are three fundamental viewpoints but — in our opinion
— they don’t exhaust the subject of what constitutes the spatial structure of the
electromagnetic field. Our own approach to the problem is fundamentally that of the
engineering science. That is, we are searching for latent spatial structures pertinent
to aspects we think useful for applications to energy and wireless communications.
Clearly there is already an overlap between the basic sciences and the engineering
sciences in areas like information theory and energy, but most of the lines of thought
pursued in the following chapters are taken directly from motivations originating in
engineering, not fundamental physics, with the exception of Chapter 6.

The major goal of this book is to reexamine the foundations of applied
electromagnetics by providing a common abstract substrate unifying the device
structure (encoded in its geometry) and its performance (encoded in the behavior of
the fields generated by the device). This common substrate is what we call the
spatial structure of the electromagnetic field. It is a mathematical form of the
physical electromagnetic phenomenon reflecting the engineering aspects of the
generating device. Since both the device and its fields are somehow “in space,”
by finding the inner structure of the field and expressing it in mathematical terms
there is a hope that this will bring both the fields and their sources into a closer
proximity that will help us better understand how to control fields by proper device
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engineering. To be more specific, attempts will be made to first discover and isolate
fundamental mathematical structures in electromagnetic fields, for example the
near field, nonlocality or spatial dispersion in the material response, or the system
response to external fields. Afterward, attempts will be made to further analyze these
structures using topological and geometrical methods. Since topology and geometry
are naturally suited to describing spatial structures in general, there is some hope that
the two very different structures, those of the fields and the devices, will converge —
at some later stage — into a mutually consistent whole.

This book is then an attempt to combine mathematics, physics, and engineering
within one consistent discourse, that of the scientific study of the spatial structure
of electromagnetic fields in engineering systems. However, we should mention that
the grand goal aimed at in the previous passage has not been attained yet. We are
here formulating the problem and providing several investigations, each contributing
something toward reaching our major goal. How far the book as in its totality has
progressed in this direction is something we leave for the future to decide.

1.4 THE RELEVANCE OF SPATIAL STRUCTURES TO THE PRESENT
TECHNOLOGICAL WORLD

Moving now from the internal demands of theory back to what we started with,
the relation between theory and applications, the natural question is the following:
Given the concept of the spatial structure of the electromagnetic field here seen as
the common framework for unifying the device and its performance, How does this
concept relate to the problems facing the electromagnetic engineer facing today’s
growing demands on electronics and communication devices?

If one may summarize the most distinguishing characters of the external needs
imposed on researchers and design engineers, it is certainly the following:

1. The progressive increase in device density within any given volume or area.

2. The need to operate at multiple spatial scales at the same time.

3. The increase in the electromagnetic complexity of the device’s surrounding
environment.

Trait 1, the increase in device density, relates to the fact the more people are
using communicating devices than any previous time in history. This leads to the
unavoidable fact that the standard assumptions of free-space environment, where
the transmitter and the receiver are in the far field zones’ of each other, are either
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no longer true or soon will be invalidated. Near-Field Communications (NFC) is
one of the emerging fields that deal – among other things – with problems of
this kind. Since its inception, traditional applied electromagnetic theory has been
relying extensively on the simplifying assumptions of plane-wave illumination, and
consequently we believe much of the conventional theories and methods related
to antenna arrays and receiver design need to be revisited in light of the fact that
near-fields or fields more complicated than simple plane waves are most likely to
dominate the device illumination in today’s and future world. The near-field theory
of Part I and the antenna current Green’s functions of Part II are direct responses to
this demand.

Trait 2, the need to deal with multiple spatial scale, is more subtle. Its most
conspicuous manifestations can be immediately seen in the emerging field of na-
noelectromagnetics. There, one deals with two physical objects operating at very
different spatial scales: The electromagnetic field (macroscopic object) and the
atomic/molecular scattering nanostructures (microscopic object). Much of the con-
fusion in this field in today’s nano research stems from the fact that the problematic
dialectic between the world of the small and the world of the large is either ignored
or improperly treated. The problem, however, is not exclusive to nanoelectromag-
netics but seems to be fundamental even in macroscopic structures. One may first
mention the interesting research done in metamaterials within the framework of
homogenization and effective medium theory. Also, the research areas of subwave-
length imaging and periodic structures involve similar problems. In all these cases,
it is essential to understand how fine or small-wavelength information around the
scattering structure give rise to the observed macroscopic fields. For applications
involving multifunction overall plans in which nanostructures, subwavelength inter-
actions, and metamaterials are all combined into one complex system, a new form of
electromagnetic theory is needed in which several different spatial scales are dealt
with within the same theoretical and conceptual framework. Such a a final theory
will not be found in this book, but the search for viable directions and routes that
could possibly lead to the construction of a future good theory like that is one of
our major motivations for undertaking the effort of writing the investigations to
follow.

Finally, we come to Trait 3, the occasional need to embed devices into elec-
tromagnetically complex environments. This situation is not totally independent of
Traits 1 and 2. Indeed, one may argue that high device density and the presence
of multiple spatial scales are what usually make operating environments electro-
magnetically complex. While this is undoubtedly true, we believe that the issue of
complex environments is so fundamental to the degree it merits forming a category



General Outline and Scope of the Book 11

by itself within the cluster of challenging demands facing applied electromagnetic
theory in today’s world. The idea is that complexity may not always be an accidental
problem imposed on us because of the development of the surrounding area inside
which the system or device of interest happens to operate. Instead, complexity can be
a goal in itself. Engineering applications pursuing a known direction of thought may
reach a bottleneck after some time, and in this case the only way ahead remaining for
developing new applications might be increasing the complexity of the system plus its
environments. This appears to be indeed the case in metamaterials research.Although
much progress in pertinent electromagnetic theory has been accumulating throughout
the last 20 years, we believe that a direct reformulation of theory with emphasis laid
from the beginning on the concept of the spatial structure is fundamental. Everywhere
in this book, we provide tools and concepts that can be readily exploited to build
corresponding complex environments. This is particularly evident, for instance, in
Part III, where we see how special “spatially-engineered metamaterials,” the nonlocal
material, can be used to achieve very unusual electromagnetic behavior.

It is important, however, to call attention to another type of complexity resulting
from those electromagnetically-crowded environments so common in today’s world,
where the main complexity factor may not stem from device density as such,
but rather from the presence of undesired nearby targets and scattering objects
close to the device under consideration. Here, we are no longer focusing on the
problem of near-field communication associated with Trait 1, but instead with the
unavoidable presence of nonstandard illumination bombarding the device of interest
resulting from scattered fields generated by other objects. In such a scenario, which is
becoming more pressing in mobile communications, the naive assumption of plane-
wave style illumination within idealized homogeneous and open medium may no
longer be satisfactory. Although there has been considerable researches in recent
years attempting to address this issue, they appear to be mostly devoted to providing
corrections due to mechanisms like the effects of platforms, diffraction, ground
planes, etc. On the other hand, the problem of how the device under consideration
responds to nonstandard, say near-field illumination, has not been treated in depth
so far. This book takes this technological aspect into consideration right from the
beginning, with several chapters devoted to detailed proposed solution methods and
their implementations.
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1.5 THE STRUCTURE OF THE BOOK

All of the investigations to follow revolve around a central theme that will keep
recurring as the reader gradually advances in the reading process of the book:
The spatial structure of the electromagnetic field. As we explained above, we have
selected certain aspects out of many possible others, guided in this choice by the
desire to bring into light aspects pertinent to specific applications, here energy and
wireless communications. Therefore, the treatments to be found next can be further
expanded if other types of applications are taken into account. However, note that
the presentations of the first three parts of the book attempt to provide a universal
understanding of the subject that is both rigourous, exact, and conceptually clear,
without worrying very much about applications at that stage. In the last part of
the book, several applications drawing on some – but not all – of the theoretical
and conceptual findings of the previous parts will be outlined, and some of these
applications, like mutual coupling, will be presented with extensive details.

The overall structure of the book can be mapped into four distinct divisions,
referred to as

1. Part I: is devoted to near fields, energy, and the fundamental theory of
electromagnetic radiation.

2. Part II: covers the formalisms and methods of the antenna current Green’s
function.

3. Part III: provides a brief introduction to the emerging field of nonlocal
metamaterials.

4. Part IV: develops various applications drawing mainly on Part II and some
chapters of Part I, with special focus on electromagnetic mutual coupling in
antenna array systems.

Due to the complexity of the various parts of the following investigations, we will
provide below detailed overviews of the book’s entire argument in order to help the
reader in forming a general global grasp of the subject.

1.5.1 Part I: The Theory of Near Fields

Here the authors propose a new theory of electromagnetic radiation, near fields, and
energy based on the motivating applications of wireless communications and energy
engineering. The fundamental basic idea is that for the sake of such engineering
applications, the main need is to control electromagnetic energy by moving it around
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from one region to another. Therefore, we propose to study the inner structure of
the field by distinguishing, from the beginning, the propagating part by marking its
evolution against a background of a nonpropagating (evanescent) field. In a way that
is purely relational, the dynamics of the radiation problem is now understood as how
the portion of the field that is moving (propagating part) does in fact flow in space by
“kicking” against its unmoving (evanescent) part. Therefore, the dynamics disclosed
here is not the conventional time-varying character of the field (the form adopted by
Maxwell), but rather the purely relational form between two parts of the field, one
moving with respect to the other.

The implementation of this immanent relational theory of dynamics is done
gradually, chapter by chapter, until it reaches a climax in Chapter 6, where we
propose new differential equations describing the flow of energy around antennas.
This very chapter is provisional and will be expanded fully in a future book by one
of the authors. For the time being, the preceding Chapter 6 provide comprehensive
foundations for the topic more relevant to engineering than fundamental science.

In Chapter 2, we first revisit the existing traditional approach to electromag-
netic energy, in particular reactive energy, which we criticize for being insufficient
for the program of studying the spatial structure of electromagnetic fields. Here, the
presentation summarizes and explains results that will be derived rigorously and in
detail throughout the next chapter. The major aim of Chapter 3 is to unpack for the
general audience the complex argument at the basis of our rejection of the concept
of reactive energy. In order to achieve this, Chapter 3 develops the fine technical
details of the conventional spatial theory of near fields to its most possible complete
form. Here, the reactive energy is derived in a revealing analytical form and the
roots of the troubles previously encountered in its evaluation are clearly spelled out.
Based on this result, we provide a critique of reactive energy suggesting the physical
incoherence of the concept of reactive energy density. Since energy densities, and
not total energies, are what are at stake in a the spatial structure of the field, we then
conclude that reactive energy cannot be the right spatial structure of the antenna near
field.

The alternative new approach to the problem is now formulated in Chapter
4, where we derive the dynamic decomposition of the field into propagating and
nonpropagating parts. Previously, only a “static” decomposition was used in the
engineering community, where a fixed coordinate system was deployed in order
effect the separation of the field into sinusoidal and evanescent modes via the
Weyl expansion. In order to effectively build our new approach, a rotating local
coordinate system is introduced to probe the inner dynamic structure of the field,
where the latter is understood as the latent capacity of the field to flow in qualitatively
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different manners along different directions. The proposed formulation allows us to
investigate new forms of energy for the first time. For example, localized energy
is introduced and derived explicitly using the main conclusions of the dynamic
theory of this book. Furthermore, the interactions energy between the propagating
and evanescent parts is highlighted in our work and its physical significance and
implications briefly discussed. The chapter ends with an explication of the general
mechanism of far-field radiation formation in generic antenna systems. We show that
at the heart of the process of producing the observable far-field pattern lie simple
geometric and filtering operations that can be directly spelled out using the new
dynamic theory.

Chapter 5 presents a simplified form of the general theory of Chapter 4.
Here, we work with scalar sources and avoid the vectorial complexity of the full
electromagnetic problem. This simplification allows us to derive simple analytical
expressions for the various new field decomposition, especially the localized energy.
Moreover, the results obtained here will form the theoretical basis for new numerical
methods developed in Part IV to measure localized energy in general antenna
systems.

Numerous applications can makes use of the results of these chapters of which
more were developed in Part IV, for example Chapter 17. For completeness, we list
some of the current and future related applications:

1. Antenna design.

2. Near-field measurement.

3. Subwavelength imaging.

4. Nanoelectromagnetics.

5. Near-field communications.

6. Electromagnetic mutual coupling.1

7. Wireless energy transfer.

8. Near-field radars and sensors.

9. Energy localization, storage, and control.2

10. Near-field metamaterials.3

1 Cf. Chapter 17.
2 Cf. Chapter 17.
3 Cf. Chapter 13.
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1.5.2 Part II: The Antenna Current Green’s Function

After the in-depth analysis of the spatial structures of electromagnetic radiation em-
anating from a single antenna or radiating system, we move now to the fundamental
situation demanded by applications when two radiating systems interact with each
other. The solution to this problem proposed here is what we term the antenna
current Green’s function (ACGF), which is a rigorous generalization of the concept
of impulse response in the time analysis of linear systems to the framework of spatial
electromagnetics. Part II, in fact, outlines a new program for applied electromagnetics
aiming at incorporating into full-wave analysis problems, methods, and techniques
borrowed from system theory that have not been widely recognized by the applied
electromagnetic community.

Here, we assume that one of two interacting antennas can be replaced by
its generated near field while the other behaves more or less like a passive device
interacting with this illumination field. The ACGF is the transfer function in space
describing how the device generates a radiating current in response to external
excitation. The near field generated by the first device and analyzed in Part I is
now taken for granted and assumed as an input to the second antenna. Consequently,
Part II concentrates on the performance of this second antenna in space.

Chapter 8 provides a careful definition of the problem followed by a proof of the
existence of the ACGF for arbitrary antennas. This was accomplished by combining
electromagnetic theory, functional analysis, distribution theory, and differential
geometry all in one formulation. For simplicity, we consider only perfect electric
conductor (PEC) boundary conditions, but the proof ideas can be applied to any
other known electromagnetic boundary conditions, although the details are very
tedious. (The authors hope to take up this generalization in a future work.) In any
case, the method of the existence proof discovered here is of particular interest
to the engineer. Indeed, the existence of the ACGF was proved by providing a
rigorous and general algorithm allowing the actual construction of the ACGF based
on sets of measurements of external fields and induced currents. In other words,
while the ACGF is an abstract structure introduced as a tool for clear thinking
and alternative computations, the very abstract structure is completely based on
observable physical signals. The constructive nature of the existence proof method
is directly exploited in Chapter 15 to propose the ACGF as a new and alternative
method for computing the response of electromagnetic devices to external near fields.
However, the main motivation for the introduction of the ACGF is the conceptual
facility of the formalism as a tool for clear thinking about applied electromagnetic
problems and as a framework for developing new applications as in Part IV.
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Following the foundations of the ACGF laid down in Chapter 8, Chapter 9
supplies in-depth analysis of the complete electromagnetic system comprised of
transmitter and coupled receiver. We propose a new look at the overall conceptual
structure of such systems reduced to three basic operational modes, which we call
Modes A, B, C, explicating the physics and significance of each mode and how it is
related to the others. That is, we focus from the beginning on the relational intercourse
between various modes in order to attain a deeper understanding of the complete
electromagnetic communication system as a whole. The chapter, for example,
contains statement and proof of the inverse reciprocity theorem and proposal for
designing antennas capable of filtering spatial data according to the illumination field
wavelength structures. Here, the inner structure of the near field developed in Part
I is directly linked to the spatial filtering behavior of the receiving antenna system.
The chapter climax is the new insight obtained on how the geometrical shape of the
receiver interacts resonantly (and nonresonantly) with the multiple spatial scales of
the illumination fields.

The ACGF formalism, being exact and general, enjoys an enormous range of
potential applications that cannot be fully surveyed here. Most of the applications
in Part IV are based on the ACGF method, either directly or indirectly. We mention
here some of the applications that the authors believe to be important:

1. Antenna design.4

2. Near-field communications.

3. Electromagnetic mutual coupling.5

4. Wireless energy transfer.

5. Near-field radars and sensors.

6. Direction-or-Arrival (DoA) estimation.

7. MIMO systems.6

8. Computational methods (especially response to nonstandard field illumina-
tion).7

9. Novel statistical methods in electromagnetic analysis.8

4 Cf. Chapter 9.
5 Cf. Chapter 16.
6 Cf. Chapter 18.
7 Cf. Chapter 15.
8 Cf. Chapter 14.
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1.5.3 Part III: Nonlocal Metamaterials

Part III deals with a third wave of topics different in details from the previous two
but still lying within the main theme of the book. Indeed, nonlocal metamaterials
are those exhibiting novel spatial electromagnetic response, for example spatial
dispersion, allowing them to create new electromagnetic phenomena not seen in the
conventional type of metamaterials where only temporal dispersion is usually taken
into consideration. In this part of the book, the spatial degrees of freedom in the
environment are then highlighted right from the start. While we still consider classic
temporal dispersion, we show that only with controlled spatial dispersion could novel
changes in the electromagnetic field structure be attained.

Chapter 10 first provides a global map of the field, explaining the motivation
behind the search for new generations of metamaterials and their potential use in
current and future applications. Chapter 11 reviews the established mathematical
formalism of spatial electromagnetics, which unfortunately remains not well known
in applied electromagnetics. Following that, Chapter 12 develops new theory of
nonlocal metamaterials for far-field problems (source-free propagation), we derive
the fundamental dispersion engineering equation and show that careful design of
the temporal and spatial dispersion profiles can lead to wide range of unusual group
velocity profiles, including for instance constant negative group velocity and many
others. We then end with Chapter 13, which outlines in a very brief form the near-
field theory of nonlocal metamaterials. The chapter is based on deriving the Green’s
function of a point source in such a nonlocal setting by generalizing the classic
Weyl expansion to take into account the new spatial degrees of freedom made
available by spatial dispersion. The results show that in the near zone of such a
source, there exists backward wave propagation in addition to normal forward waves.
Moreover, design equations were derived to describe how a nonlocal medium can be
analyzed in order to shape and control the spatial structure of the near field. In the
main, some of our conclusions point toward the possibility of completely trapping
and localizing energy around antennas embedded into lossless specially designed
nonlocal metamaterials.

Applications of nonlocal metamaterials proposed here include

1. Near-field focusing.

2. Energy transfer through controlled near-field shells.

3. Energy localization, storage, and retrieval.
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4. Antenna design by spatially engineered nonlocal substrates and/or surround-
ing.

1.5.4 Part IV: Various Applications

The fourth and final part of the book is concerned with a selection of several
applications, most directly based on the theoretical and conceptual results obtained
in the previous three parts. The authors were unable to bring into the text some of
the more recent applications because of size limitations. The subjects included in
this part are very basic and fundamental, but there are also some special topics like
the IDM method in Chapter 16 and MIMO systems in Chapter 18.

Chapters 14 and 15 outline how the ACGF formalism can be used in typical
and nontypical settings. This includes the use of the ACGF in formulating statis-
tical evaluations in antenna array performance. We also show that the Singularity
Expansion Method (SEM) can be used in a new way to describe antenna systems by
searching for characteristic poles or resonators buried in the structure of the ACGF
itself.

The main bulk of the applications part consists of Chapters 16 and 17, which
provide a substantial theory and methods for dealing with the fundamental topic of
electromagnetic mutual coupling. This coupling is first defined in a complete and
rigorous manner using the ACGF, where a mutual coupling ACGF is introduced.
Next, several methods like perturbation techniques and dipole models were outlined
to deal with mutual coupling in arbitrary arrays. Chapter 17 integrates the near-field
theory of Part I with the mutual coupling framework by proposing new numerical
methods to measure localized fields in the antenna-antenna interaction regime.

Finally, the book ends with Chapter 18, which illustrates how the ACGF
formalism can be used to electromagnetically derive the channel matrix of a generic
MIMO system. Due to limitations in space, only simple cases are given here,
while the full analysis will be presented elsewhere. The chapter also contains an
introduction to spatial diversity studied thorough a new Green’s function, the far-
field cross correlation, which, like the ACGF, captures an essential spatial structure
in electromagnetic systems.



Part I

The Theory of Electromagnetic
Near Fields





Chapter 2

Reactive Energy and the Near Field

2.1 INTRODUCTION

Electromagnetic radiation is both an old and new problem. The basic laws of
electromagnetism were laid down by Maxwell in his groundbreaking papers of
the 1860s. However, the theory was not totally accepted until Hertz and Heaviside
succeeded in reformulating it in a more elegant and economic mathematical form
throughout the 1890s. At around the same time, the experimental researches of Hertz
confirmed the existence of electromagnetic waves (predicted by Maxwell based on
purely theoretical calculations) and the entrepreneurship of Marconi started what
succeeded later in constituting a vital strand of modern electrical and electronic
technology, the particular form of technification that was destined to dominate the
20th century. Therefore, since the process of utilizing the electromagnetic spectrum
for all possible types of applications has been and remains a fundamental dimension
of modern applied science, applied electromagnetics as such has emerged in the
post World War II era as one of the most vibrant and active research sectors in
the engineering sciences. In this sense, the study of electromagnetic radiation is as
old as the purely scientific curiosity that motivated thinkers like Faraday, Maxwell,
Hertz, and Heaviside to contemplate the mere possibility of transferring energy in
vacuum; on the other hand, radiation forms a backbone of the modern infrastructure
of technology and hence is still a new and fresh topic amenable for further study and
development. Indeed, the new requirements imposed by the accelerated growth of
human population and the ever-increasing pace of industrialization and technification
taking place all over the world, including nations that started recently to catch up
with capitalism, make a full mastery of the essentials of classical electromagnetic
radiation as relevant and urgent as ever.

21
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In this part of the book, we provide a wide and comprehensive new look
at some of the fundamental issues involved in the thinking process of engineers
and applied scientists when dealing with radiation problems, particularly antenna
devices. The development presented here will be presented again with full details
in Chapter 3. While the content there is more technical in nature due to the need to
establish a foundational approach based on rigorous and precise mathematical bases,
the presentation and reflections given in the this part of the book will stay close to
the original conceptual train of thoughts that essentially motivated and stimulated
the authors to undergo such investigations.

This investigation will reexamine some fundamental issues related to antenna
systems from a specific perspective, that of electromagnetic energy. Our choice of
this particular theme is motivated by both theoretical and practical factors. From
the purely theoretical viewpoint, it seems obvious after a glance at the historical
development of field theory (both classical and quantum) that the concept of
energy plays a fundamental heuristic role in guiding and organizing the total body
of mathematical knowledge accumulated through time concerning the production
and propagation of various physical fields, including electromagnetic waves. For
example, the Lagrangian formulation of field theory, which is now the dominant
theoretical approach to the problem, deals with the field in the form of energy.
Indeed, the field variables enter into the Lagrangian functional only in the form of
quadratic terms. This is even the case in the classical approach to fields via differential
geometry, where one can write down the laws of electromagnetics in a nonvariational
form using special tensors where again the field enters through quadratic terms [94].
Therefore, the energy of the field seems to play a more fundamental role in theory
than the fields themselves.

From the purely practical point of view, almost all thinking of engineers
and applied scientists regarding electromagnetic devices centers around energy and
energy-related concepts, such as flux, power flow, dissipation, losses, and scattering
matrices. The total domination of the energy concept in engineering is probably
hard to understand from the theoretical side, but it seems to fit very well with our
intuition of what a practical device is supposed to do. In fact, one usually thinks of the
antenna, for example, as a system that can send energy away, receive energy from
other sources; a circuit is supposed to process energies flowing throughout them,
extract information from variation in energy levels, redirect pathways of energy
transfer, and so forth.

Due to all of these considerations, we think that our choice of the theme
of electromagnetic energy for this part is well motivated on both the theoretical
and applied sides. With this maybe true, it is a little bit surprising how scanty
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the literature is in applied electromagnetics – especially antenna theory – that has
paid directed and focused effort with regard to researching fundamentals of this
topic. That does not imply that there have been no contributions for dealing with
the problem of defining and computing various antenna-related energies. Indeed,
the three major concepts of reactive, evanescent, and stored energies are all taken
directly from the existing literature. What we claim here, however, is that there has
not been in recent times a comprehensive consideration of the topic from the vantage
point of the conceptual status of the terms, what they mean and how they can be
utilized in practice. The work to follow is an initial contribution to mitigating this
shortcoming in the technical literature with particular emphasis on reactive energy.

A few words on the treatment of previous works must be inserted here. In a
topic at such a wide general scope, no attempt will be made for complete compre-
hensive coverage of all the related literature that has dealt with energy in applied
electromagnetics. On the other hand, our choices in referring to some previously
published works will be guided by our own knowledge and the particular method-
ology adopted here for attacking the problem. The latter will be admittedly less
instrumental than what is usually practiced in mainstream theoretical electromagnet-
ics, where there seems to be much more emphasis on calculation and computation
of certain quantities than reflection on general matters. Therefore, we will try to
develop the topic from first principles, starting directly from Maxwell’s equations
and their classical formulations in terms of radiation integrals via suitable Green’s
functions, series expansion, and so forth. Reference to some of the literature that
formed a background to our main line of approach will then be highlighted on the
above basis.

The more subtle concepts of evanescent (localized) energy and stored energy
will not be treated here. Some of the literature related to them will be referred to but
a separate treatment by the authors will be reported elsewhere.

2.2 ELECTROMAGNETIC ENERGY IN ANTENNA THEORY

One of the most important issues in antenna theory is knowing how to deal
with energy. In practice, one needs to inject energy coming from the system
source to the transmitting antenna in an efficient manner, e.g., avoid reflection
and system loss. We need to direct energy at specific location in the far zone
and maybe suppress radiation at certain other regions. We perhaps need to couple
one antenna to another in the near zone by carefully shaping the form of the
energy shell immediately surrounding the antenna’s physical body. These are few
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examples of major concerns in the life of the antenna engineer. It is therefore plain
that a fundamental reconsideration of the topic is both enlightening and “useful,”
especially if we keep in mind that the concept of antenna energy is not well
addressed in the physics literature, while in the applied field it is fraught with
difficulties.

The magnetic and electric energy densities are given, respectively, by [94],
[33], [28]

we =
1
4
εE · E∗, wh =

1
4
µH · H∗. (2.1)

These expressions are written here for the time-harmonic case and hence the
appearance of 1/4 instead of 1/2. In this book, we focus exclusively on such a
time dependence.

It is possible, and actually quite natural, to raise the question of why should
the square of the field amplitude be interpreted as energy. The immediate meaning of
energy is taken from mechanics as the ability to do work [95]. However, electromag-
netic phenomena exhibits mechanical effects only through the Lorentz force law, in
which a charged moving particle in electric and magnetic fields experiences certain
forms of mechanical force [33]. Based on this force-field connection, a plethora of
very convincing evidences has been accumulating, suggesting that the expressions
(2.1) do represent an authentic form of energy densities. The reader may refer to
books like [94], [95], [33], [31] that discuss a such a train of thought. However,
it must be kept in mind that the now standard interpretation of electromagnetic
theory gives Maxwell’s equation the fundamental status of axioms or postulates
of the theory, while Lorentz force law is secondary or derived. This has been in
harmony with the major theoretical restructuring of physics by the turn of the last
century, especially in the wake of Einstein’s special relativity. The latter theory
gave the Farady-Maxwellian field a foundational status in the sense that the field
becomes a physical object as such, and not only an agent manifesting itself through
the Lorentz force law. Indeed, the impact of the major classical field theorists Faraday,
Maxwell, and Einstein was to shift the focus away from Newtonian mechanics and
even sometime (as in Mie’s work [94]) attempt to derive classical mechanics from
Maxwell’s equation. We will not go into this fascinating but neglected history of the
topic, but only mention that under this now universally accepted interpretation of
Maxwell’s theory, the expressions (2.1) should be viewed as definitions of energy
densities, rather than derived theorems.

This will raise new kinds of problems when dealing with antenna theory.
Since radiation occurs in infinite (non-compact) regions of space, there is an interest
(as will become clearer later) to evaluate the total energy in such regions. In
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other words, one needs to integrate the expressions (2.1) over infinite regions.
Unfortunately, it is not difficult to see that any such a computation will lead to
absurd results, namely infinite energies or divergent integrals.

This appearance of infinite antenna field energy is not related to the famous
problem of divergence in quantum field theories. Actually, there seems to be great
interest in many of the early papers in demonstrating the divergence of the energy
expressions by actually calculating certain special cases. This is not necessary, for
this infinite total antenna energy issue is quite natural and expected based on the
following very general reasoning.

In the time-harmonic case, all fields assumes the dependence exp(−iωt). The
antenna configuration is a radiation problem, i.e., fields in the far zone are expected
to be propagating waves. Now, the problem of an infinite integral can be divided into
the sum of two integrals, one over a finite region and the other over the remaining
infinite region. It is clear that the second part, that involving the unbounded region,
is the source of the infinity trouble. This makes it natural to look for that specific
form of the field in the far zone that may cause the divergence of the second integral.

As we have just mentioned, the field in this far-zone region is normally taken as
a propagating wave. If we look at the problem of propagation in space and time, then
the fact that a time-harmonic form exp(−iωt) is assumed makes it necessary that the
space dependence takes the form exp(ik · r).1 We focus then on pure propagating
modes, and by this term we mean fields whose space-time dependence has the special
form exp(ik·r−iωt). The amplitude squared of this field is |exp (ik · r − ωt)|2 = 1.
Therefore, any integral of the corresponding energy density over infinite regions will
produce infinite result.

The above argument will have far-reaching repercussions for the topic of
electromagnetic energy in antennas and so it is worthwhile repeating it briefly in
a more precise term. Let the radiating antenna be enclosed in a compact region
V . The exterior domain or the radiation region D is the complement of V , or
D := V c = R

3 − V . Now, the signature of the antenna problem is the existence of
pure propagating waves in at least one infinite subregion in D. In other words, we
assume that the exterior region can be decomposed into the sum of two sets D0 and
D∞ such that D = D0 ∪ D∞, D0 is bounded, and D∞ is unbounded and contains
a field spectrum in the form of pure propagating modes exp(ik · r − iωt). It follows

1 This can be easily proved from the requirement that, mathematically speaking, a propagating wave
must be expressed as a function f(t − az), where a is some real constant (we consider a one-
dimensional problem for simplicity). Let the space dependence of the field be g(z). We then need
to solve the functional equation exp(−iωt)g(z) = f(t − az). It is not difficult to show that one
and only one solution is possible, and it is that which makes g(z) the familiar space exponential
exp(iβz) for some real constant β.
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then that the integral diverges, or we have∫
D∞

d3r |E (r)|2 = ∞,

∫
D∞

d3r |H (r)|2 = ∞. (2.2)

Again, this happens because the infinite integral of constant function |exp(ix)| = 1
is infinite.

The above argument needs to be worked out more carefully in order to deal
with problems involving real analysis. In fact, the entire topic of the antenna energy,
with the particular climax surrounding (??), centers on what is essentially a limiting
process. Moreover, any actual computation will inevitably involve interchanging
the order of two or more limiting processes, and hence the concrete modes of
convergence involved have to be studied carefully. In general, the details will depend
on the method adopted for defining and computing the specific type of total energy
under consideration. Up to now, there is no comprehensive mathematical method
that can be used to study all types of electromagnetic energies. Indeed, it seems that
with three major genera of energies, namely reactive, localized, and stored energies,
each one will appropriate a special mathematical approach best suited to the purpose
at hand.

The general analysis above suggests the following three salient features in
antenna electromagnetic energy:

1. The antenna device, being a radiation structure, must involve a noncompact
or unbounded (infinite) domains.

2. In unbounded regions, there exists, in at a least a subregion, a sum of the fields
in the form of pure propagating modes.

3. The total energy contained in the exterior region is infinite.

Feature 1 motivated the innovative engineering idea of replacing the entire
unbounded domain of the antenna by a localized finite region, the input port through
which energy is being injected into the system. The proper theoretical analysis of
this input port model is the concept of antenna reactive energy. Here, the antenna
is replaced by an RLC circuit and the reactive energy of this circuit will correspond
to the antenna reactive energy, while the resistive loss matches the real radiated
power. The discussion of this traditional topic will be given from a new perspective
in Section 2.3.

Feature 2 motivates our new approach to the space-time flow of electromag-
netic energy using the classic Weyl (plane-wave spectrum) expansion2 in a away

2 Cf. Chapter 4.
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that reflects the physical content of propagation understood literally as “moving
energy around in space,” to be developed in Chapter 4. This generalizes the concept of
antenna energy beyond the circuit-model framework of the reactive energy and opens
the door for new directions in exploiting the physics of electromagnetic radiation for
both theoretical and applied purposes.

Feature 3 will raise the question of what exactly one expects to find physically
stored in the near field of the antenna in terms of energy. Indeed, if the naive approach
to the antenna energy exemplified by (2.1) points to the (physically) absurd result of
infinite capacity to do work, then what actually is the real (necessary finite) ability
to perform useful work, or in equivalent terms, what is the concrete energy content
stored in the antenna near-field region? Brief and tentative proposals will be given
in Section 2.4.

Informally speaking, the response to Feature 1 has emphasized the engineering
way of thinking. Feature 2 requires more a mathematical approach. Finally, the issue
raised by Feature 3 focuses on the physics of the problem. However, the three aspects
of engineering, mathematics, and physics, are all subtly interconnected with each
other. Antenna theory requires the three ways of thinking combined together. In the
past, it seems that the emphasis on the pure engineering dimensions of the problem
was allowed to predominate the discussion. We hope that this book will contribute
to bringing the other two dimensions into the picture.

2.3 ON REACTIVE ENERGY

2.3.1 Introduction

For antenna applications, there has been an attempt to deal with the energy problem
(??) in a form that is essentially determined by the needs of applications. It was
decided that a specific concept of electromagnetic energy, the reactive energy, is
the one most relevant to practice and hence should be given the greatest focus. One
finds sometimes in the literature arguments alluding to the belief that only what
can be physically measured at the input port is important. However, the reactive
energy concept constructed based on this limited view need not correspond in
a comprehensive fashion to everything that an antenna can do. We suggest that
more care should be taken in studying energy and that alternative approaches are
explored.

In Chapter 3, we will approach the topic through a special detour via both
Wilcox and the multipole expansions in order to demonstrate that in the case of



28 New Foundations for Applied Electromagnetics

the reactive energy no infinite integral is actually involved. This construction can
be considered a conclusive statement regarding the computation of reactive energy
since the need to deal with unbounded integrals, which are difficult to calculate for
general problems using routine codes, is shown to be unnecessary. However, the main
motivation for reexamining the reactive energy concept is not mainly computational,
but more concerned with the foundational aspect of the concept in addition to a
criticism of the prevailing orthodoxy regarding the interpretation of the antenna
energy as a circuit energy. The need for a space-time approach to energy flow and
the various technical proposals in this line of thought are detailed in Chapter 4 and
will be developed further elsewhere. In the rest of the present discussion, we first
provide a general definition of reactive energy (in conformity with the traditional
literature) and then outline how to compute this energy spatial distribution in terms
of the far-field radiation pattern. More technical details of this definition can be found
in Chapter 3.

2.3.2 Background to the Concept of Reactive Energy

Consider the general radiation problem in Figure 2.1. The complex Poynting theorem
states that [33]

∇ · S = −1
2
J∗ · E + 2iω (wh − we) , (2.3)

where the complex Poynting vector is given by S = (1/2)E×H∗ while the energy
densities are defined by (2.1). One can derive by a standard procedure the following
result [33], [35]

∫
S

ds
1
2

(E × H∗) = Prad − 2iω

∫
V∞−V

dv (wh − we) , (2.4)

where the radiated power is

Prad = Re
∫

S

ds
1
2

(E × H∗). (2.5)

Relation (2.4) is the theoretical basis for the traditional expression of the antenna
input impedance in terms of fields surrounding the radiating structure [33]. For details
about how to define the input ports incident wave modes (where transmission line
and waveguide theory is used), see [53].
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Figure 2.1 General description of antenna system. We assume that an arbitrary electric current J(r)
exists inside a volume V0 enclosed by the surface S0. Let the antenna be surrounded by an infinite,
isotropic, and homogeneous space with electric permittivity ε and magnetic permeability µ. The antenna
current will radiate electromagnetic fields everywhere and we are concerned with the region outside the
source volume V0. We consider two characteristic regions. The first is the region V enclosed by the
spherical surface S and this will be the setting for the near fields. The second region V∞ is the one
enclosed by the spherical surface S∞ taken at infinity and it corresponds to the far fields.
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According to the energy balance relation (2.4), one can write the input
impedance of the antenna in the form

Zin = Rin + i (XL − Xc) , (2.6)

where Rin will be proportional to the radiation power (2.5), while the inductive and
capacitive reactance parts XL and Xc are proportional to the electric and magnetic
total energies

∫
V∞−V

dv we and
∫

V∞−V
dv wh, respectively.

Now, the fundamental technical observation that has provided the theoretical
motivation for defining a finite reactive energy is the following

The Principle of Finite Energy Difference. Although the total elec-
tric and magnetic energies are (when taken individually) infinite, the
difference of the electric and magnetic energy densities has a finite to-
tal integral in the entire exterior (unbounded) domain of the antenna
problem.

Stated more precisely, we have∣∣∣∣
∫

V∞−V

dv (wh − we)
∣∣∣∣ < ∞. (2.7)

Recognition of this mathematical fact for various examples abounds in the theoretical
antenna literature (e.g., see [51], [49], [53]).

It is important to pay very careful attention to the logic of the discussion so
far. The energy balance relation (2.4) is a mathematical theorem that can be proved
rigorously, together with the Principle of Finite Energy Difference (2.7), directly from
Maxwell’s equations. However, the input impedance model in (2.6) is not a theorem,
but an engineering model based on an interpretation of a rigorous mathematical
theorem. Moreover, this input impedance model is made possible mainly because
of the Principle of Finite Energy Difference. Indeed, the inductive and capacitive
reactances XL and Xc in (2.6), taken separately, can have physical meaning as
reactive circuit energies. However, as antenna energies, no physical significance can
be assigned to either of them because of the divergence problem (2.2). In other words,
the individual “antenna’s inductive and capacitive energies” are always infinite. This
is why no such quantities are ever defined for the antenna itself, although they are
used all the time in the circuit models of the antenna.

It is at this stage that one can see why the input impedance concept is useful.
Measurements or computations of the behavior of a general antenna system must
conform to the strict law (2.4). Therefore, even though when total electric and
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magnetic energies – each is taken individually – are infinite, one always measures (or
computes) a finite number, i.e, the difference of the total energies. Any RLC circuit
can implement this observation since it is only the total input impedance of the circuit
that is needed in matching applications. An equivalent inductance or capacitance can
always be given to describe the input impedance of the actual general antenna system.
However, because the relevant physical data depend only on the difference between
two reactances, no unique equivalent inductance and capacitance can be given. For
each specific antenna, there is an infinite number of RLC circuits that will model
exactly the same antenna, and this fact, which is not really surprising, points to the
inherent artificiality of all circuit models even if they can be “useful” sometimes
for applications and calculations. Indeed, a model is “good” as long it describes
a certain particular aspect of the system under investigation, in this case the total
energy balance (2.4) reinterpreted in engineering terms using the circuit model (2.6).
However, when more detailed information about the dynamic structure of the near
field is needed, the impedance concept need not provide the best complete answer
as should be obvious to the reader now.

2.3.3 A Generalized Approach to Reactive Energy

Computations of the reactive energy appear (in the antenna theory literature) to have
been motivated mainly by demands for estimating the antenna quality factor Q. This
can be seen, for example, in the early work on fundamental antenna limitations [50]
and the detailed general analysis of the problem given recently in [53]. As is well
known, the antenna matching bandwidth, very roughly, is inversely proportional to
Q. Since the latter is directly determined by the reactive energy [51], [49], knowledge
of this type of energy is very valuable for characterizing the matching performance
of general antenna systems.

Theoreticians have paid attention to the particular parameter of the antenna
size and how the minimum bounding sphere relates to best achievable bandwidth.
This line of attack is very well motivated from both the theoretical and practical
side. In the former, there seems to be a genuine effect of the antenna size on the
expressions of the total energy since they usually involve series expansions that
are sensitive to considerations of this kind. In the latter case, applications typically
involve difficult fundamental tradeoffs between various conflicting factors, such as
compactness (in terms of size reduction), maximum efficiency (especially match-
ing considerations), and bandwidth performance. Therefore, theory can provide –
through careful analysis of the generic antenna configuration used in practice –
an insight into how the main performance measures of interest are fundamentally
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interrelated with each other. Based on this kind of knowledge, certain fundamental
limitations – which theoretically cannot be bypassed – are explicitly emphasized in
order to avoid wasting recourses on forcing unworkable designs to work. Moreover,
theory for its own sake is usually fruitful in opening the door for new ideas for
applications utilizing latent physical possibilities that were unheeded hitherto for
reasons that have to do with employing limited theoretical tools.

Because of the above motivations, we will outline here a generalized approach
to the reactive energy problem in generic antenna systems that aims to connect
together as many performance measures as possible. In particular, we will focus our
attention on the interrelation between the following three fundamental aspects:

1. Antenna size.

2. Antenna reactive energy (e.g., bandwidth, Q).

3. Far-field radiation pattern (e.g., polarization, directivity, beam shaping).

The idea is to derive a general expression that involves the three above factors
in a simultaneous fashion. In this way, the inherent tradeoff between any combination
of subfactors, like polarization and bandwidth, directivity and size, bandwidth and
size, etc, can be studied according to the need of the application at hand. As we
will see in Chapter 3, one of the main motivations for our foundational approach
to the topic of the antenna near field is to provide the working community with a
canonical machinery allowing for a systematic construction of a wide range of 1)
fundamental antenna interrelations between standard performance measures, and 2)
fundamental antenna limitations on what is achievable in principle by any design
process whatsoever.An approach such as this cannot be implemented using numerical
tools (the latter may solve only special examples), but instead must rely on a general
mathematical methodology.3

It turns out that the general expression promised above does not contain any
infinite integral, and that all terms involved can be evaluated in a closed algebraic
form. The antenna size a will manifest itself in the form of an infinite series in powers
of 1/a. The effect of the far field will be taken into account by the amplitudes of the TE
and TM modes of the antenna problems (which in turn are well-known functions of
the antenna current distribution). The reactive energy will then be formed by a certain
series expansion to be given below. In this way, by one and the same expressions
the three basic performance measures of size, far field, and reactive energy (input
impedance) are organically connected within one whole.

3 Only what is mathematical can deal with the generic, since one may define mathematics (informally)
as ‘the science of the generic per se.’
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The basic idea of the technical approach is very simple and will be described
first in informal fashion before highlighting the conceptual aspects of the construc-
tion. For full details of the computations, see Chapter 3. The main idea involves
combining the classical Wilcox expansion and the multipole expansion together in
order to obtain a relation between the radial distribution of the field, which is the
essential factor in computing the reactive energy, and the angular distribution of
energy, which is the way to the far field. Incidentally, the series expansion approach
itself will force the antenna size to automatically enter into the picture via the fact
that the Wilcox expansion is valid only in the exterior region of the source.

We now turn to a closer examination of the nature of the antenna near fields
in the spatial domain. Here, we consider the fields generated by the antenna lying in
the intermediate zone, i.e., the interesting case between the far zone kr → ∞ and
the static zone kr → 0. We suggest that the natural way to achieve this is the use
of the Wilcox expansion. Indeed, since our fields in the volume outside the source
region satisfy the homogeneous Helmholtz equation, we can expand the electric and
magnetic fields as [47]

E (r) =
eikr

r

∞∑
n=0

An (θ, ϕ)
rn

, H (r) =
eikr

r

∞∑
n=0

Bn (θ, ϕ)
rn

, (2.8)

where An and Bn are vector angular functions dependent on the far-field radiation
pattern of the antenna and k = ω

√
εµ is the wavenumber. The far fields are the

asymptotic limits of the expansion. That is,

E (r) ∼
r→∞

eikr

r
A0 (θ, ϕ) , H (r) ∼

r→∞

eikr

r
B0 (θ, ϕ) . (2.9)

The reason why this approach is the convenient one can be given in the
following manner. We are interested in understanding the structure of the near field
of the antenna. In the far zone, this structure is extremely simple; it is simply the
zeroth-order term of the Wilcox expansion as singled out by (2.9). Now, as we leave
the far zone and descend toward the antenna current distribution, the fields start to
get more complicated. Mathematically speaking, this progressive building up in near
fields’ complexity corresponds to the addition of more terms into the Wilcox series.
The implication is that more terms (and hence the emerging complexity in the spatial
structure) are needed in order to converge to accurate solution of the field as we get
closer to the current distribution.

Let us then divide the entire exterior region surrounding the antenna into an
infinite number of spherical layers, as shown in Figure 2.1. The outermost layer
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Figure 2.2 General description of antenna near-field spatial structure.

R0 is identified with the far zone while the innermost layer R∞ is defined as the
minimum sphere totally enclosing the antenna current distribution. In between these
two regions, an infinite number of layers exists, each corresponding to a term in
the Wilcox expansion. The boundaries between the various regions are not sharply
defined, but are to be understood only as indicators in the asymptotic sense.

Since we are interested in the spatial structure of near field, i.e., the variation
of the field as we move closer to or farther from the antenna physical body where the
current distribution resides, it is natural to average over all the angular information
contained in the energy expressions. Therefore, we introduce the radial energy
density function of the electromagnetic fields by integrating the energy expressions
obtained using Wilcox expansion over a full solid angle Ω in order to obtain

we (r) =
ε

4

∞∑
n=0

〈An,An〉
r2n+2 +

ε

2

∞∑
n,n′=0
n>n′

〈An,An′〉
rn+n′+2 , (2.10)

wh (r) =
µ

4

∞∑
n=0

〈Bn,Bn〉
r2n+2 +

µ

2

∞∑
n,n′=0
n>n′

〈Bn,Bn′〉
rn+n′+2 , (2.11)



Reactive Energy and the Near Field 35

where the mutual interaction between two angular vector fields F and G is defined
as

〈F (θ, ϕ) ,G (θ, ϕ)〉 :=
∫

4π

dΩ Re {F (θ, ϕ) · G∗ (θ, ϕ)}. (2.12)

Equations (2.10) and (2.11) clearly demonstrate the considerable advantage gained
by expressing the energy of the antenna fields in terms of Wilcox expansion. The
angular functional dependence of the energy density is completely removed by
integration over all the solid angles, and we are left afterwards with a power expansion
in 1/r, a result that provides direct intuitive understanding of the structure of the near
field since in such a type of series more higher-order terms are needed for accurate
evaluation only when we get closer to the antenna body, i.e., for large 1/r. Moreover,
the total energy is then obtained by integrating over the remaining radial variable,
which is possible in closed form as can be found in Chapter 3.

We have seen how the Wilcox expansion can be physically interpreted as
the mathematical embodiment of a spherical layering of the antenna exterior region
understood in a convenient asymptotic sense. The localization of the electromagnetic
field within each of the regions appearing in Figure 3.2 suggests that the outermost
region R0, the far zone, corresponds to the simplest field structure possible, while
the fields associated with the regions close to the antenna exclusion sphere, R∞, are
considerably more complex.

However, it was pointed out long a time ago that the entire field in the exterior
region can be completely determined recursively from the radiation pattern [47].
In Chapter 3 , it is shown that entire exterior region field can be determined (non-
recursively) from the far field by a simple construction based on the analysis of the
far field into its spherical wavefunctions. Using the classical multipole expansion,
we expand the field into TE and TM spherical modes

E (r) =
∑
l,m

aE
lmElm (r),H (r) =

∑
l,m

aM
lmHlm (r), (2.13)

where aE
lm and aM

lm represent the amplitudes or coefficients of the TE and TM modes,
respectively. They can be determined directly if the current distribution on the antenna
is known, see [33] for details.

In Chapter 3, the Wilcox series is derived from the multipole expansion, where
the exact variation of the angular vector fields An and Bn were directly determined
in terms of the spherical far-field modes of the antenna. In particular, we managed
to express all of the interaction integrals appearing in the general expression of
the antenna radial energy density (2.10) and (2.11) in the exterior region in closed
analytical form involving only the TMlm and TElm modes excitation amplitudes
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aM (l, m) and aE(l, m). The results turned out to be intuitive and comprehensible if
the entire space of the exterior region is divided into spherical regions understood in
the asymptotic sense as shown in Figure 2.2. In this case, the radial energy densities
(2.10) and (2.11) are simple power series in 1/r, where the amplitude of each term
is simply the mutual interaction between two regions. From the basic behavior of
such expansions, we now see that the closer we approach the exclusion sphere that
directly encloses the antenna current distribution, i.e., what we called region R∞,
the more terms we need to include in the energy density series. However, the logic
of constructing those higher-order terms clearly shows that only higher-order far-
field modes enter into the formation of such increasing powers of 1/r, confirming
the intuitive fact that the complexity of the near field is an expression of richer
modal content where more (higher-order) modes are needed in order to describe the
intricate details of electromagnetic field spatial variation. As a bonus we also find
that the complex behavior of the near field, i.e., that associated with higher-order
far-field modes, is localized in the regions closer to the antenna current distribution,
so in general the nearer the observation to the limit region R∞, the more complex
becomes the near-field spatial variation.

Finally. it is interesting to note that almost “half” of the interactions giving
rise to the amplitudes of the radial energy density series (2.10) and (2.11) are exactly
zero— i.e., the interactions between regions Rn and R′

n when n + n′ is odd is
identically zero. This represents, in our opinion, a significant insight into the nature
of antenna near fields in general. For now, it turns out this observation about the
energy exchange processes is fundamentally connected to the Principle of Finite
Energy Difference (2.7).

We next turn to the final step in our generalized approach, constructing the
reactive energy directly using the above results in terms of the modal content of the
field. Our derivation of the reactive energy will proceed along the following general
line of thinking. We have seen that a direct computation of the total energy leads
to divergent result (2.2). However, The Principle of Finite Energy Difference (2.7)
suggests that there is a common term between we and wh, which is the source of
the trouble in calculating the total energy of the antenna system. Our approach must
eventually prove this principle itself, i.e., show explicitly that (2.7) does hold in
general antenna system. In order to achieve this, we first claim that there is indeed a
common divergent term between the electric and magnetic energy densities and see
where this will take us. We write then

we := w1
e + wrad, wh := w1

h + wrad. (2.14)
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Here w1
e and w1

h are taken tentatively as reactive energy densities and our goal is
to show that they are finite. In Chapter 3, we show that the total reactive energy is
finite. Moreover, we will see that total reactive energies (expressions (3.69) and (3.70)
in Chapter 3) are evaluated completely in analytical form and that in principle no
computation of infinite numerical integrals is needed for evaluating reactive energy.

2.3.4 The Limits of the Reactive Energy Concept and the Need to Move Beyond

In Chapter 3, an analysis will be presented as a generalized approach to reactive
energy (outlined in Section 2.3.3) aiming at understanding the physical meaning of
reactive energy. We will not repeat that argument here, which is quite simple from
the mathematical point of view, but summarize mainly its conclusion and reflect on
its significance for the working scientist and engineer.

It will be found that the terms called “reactive energy density” w1
e and w1

h in
(2.14) are not unique. Indeed, there exists an infinite number of equally legitimate
reactive energy densities, say w2

e and w2
h, all can replace their corresponding parts

in (2.14) and equally reproduce the main results concerning the input impedance
of a general antenna system; moreover, this ambiguity is formally captured by the
Principle of Finite Energy Difference. We would like now to further emphasize this
line of thought by explicitly stating the following proposition

The individual electric and magnetic reactive energy densities are funda-
mentally ambiguous in the sense that there are no unique such densities
that can reproduce the standard results concerning the input impedance
of general antenna systems. Indeed, for each total electric/magnetic
energy difference (i.e., input impedance reactance), there exists an in-
finite number of reactive energy densities, all differing in magnitude,
but eventually reproducing the same prediction of the net input antenna
reactance.

In practice, since only the physically observable antenna impedance is deemed
meaningful (because it is “useful,”) this ambiguity was not even noticed. The
conventional solution was considered the solution, although it is actually only one
possible solution, probably the most direct one but nevertheless not theoretically
special. However, for applications more sophisticated than merely matching the
antenna, one needs to know whether the reactive energy previously defined in terms of
the input impedance is really the physical energy of the antenna.We now immediately
conclude based on the analysis above the following proposition
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In electromagnetic theory, the concept of energy density is fundamental.
However, in antenna theory conventional reactive energy density cannot
be defined in a unique fashion. Therefore, it is unlikely that the actual
physically stored energy in the antenna system is the reactive energy.
In other words, reactive energy and stored energies are not identical
concepts. In particular, numerical computation of the reactive energy
does not give a physical estimate of stored energy.

Engineers should be aware then of the theoretical limitations of some of the widely
used concepts, like quality factor and matching bandwidth. The antenna system is
a vastly more complex organism in which rich processes of energy conversion,
creation, and annihilation seem to be taking place in the near-field zone. This
extended picture is described briefly in Chapter 4, where we focus on mainly
one concept, localized energy, which turns out to be very different from reactive
energy.4 As we mentioned earlier, it seems that each energy concept requires a
special methodology. The reactive energy relies heavily on the engineering way of
thinking, i.e., circuits and impedances. The localized energy will require the space-
time approach, first developed by the authors in Chapter 4, where mathematics seems
to be providing the main tools. In Section 2.4, however, in which the topic is left in
incomplete form, we will speculate that definitive attack on the problem of stored
energy may require extending both circuit theory and the time-harmonic localized
energy concept in order to deal with time-varying field transient phenomena.

2.4 REMARKS ON STORED ENERGY

Now, what then is stored energy? This quantity, regardless of how it will eventually
be computed or measured, must not rest on merely the total field, but on some
well-defined sub-portion of this total field that is somehow both

1. localized in space,

2. recoverable.

By localization we understand a nonpropagating field in a suitable sense. The
space-time approach in Chapter 4 provides a tentative mathematical approach to
the problem of how to define the nonpropagating field in the antenna in a way
that is meaningful from both the physical and engineering viewpoint. While the
details are technically involved, the progress attained so far suggests that some

4 Although not totally unrelated in certain circumstances.
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Figure 2.3 The general pattern of working with stored energy in radiating systems. Regardless of the
actual final definition to be adopted in measuring/computing the stored energy, it should satisfy the
requirement of localizability and recoverability.

version of “radial localization” of energy is more promising than other possible
definitions of localization. The study of how energy is moving dynamically in the
space surrounding the antenna can be put into a more fundamental level by deriving
a set of differential equations describing the flow as outlined in Chapter 6.

By recoverable we require that the physically stored energy be real in the sense
of being capable of either measurement or reutilization in a real actual world setting.
Stored energy should be, at least in principle, extractable from the antenna system.
This idea is advanced informally in Chapter 4 and still remain undeveloped from
experimental viewpoint. The basic proposal here is to construct a working setup in
which a radiating antenna system is suddenly switched off. It is expected that the
proper localized energy existing in the local vicinity of the source will undergo two
possibilities: either part of it will convert into radiating field and escape into the far
zone, or/and part of the localized energy will couple into the feed and emerge in the
antenna circuit part. By measuring or computing both energies, estimations of the
physically realizable stored energy in the antenna can be found. It is suggested in
Chapter 4 that there are no reasons to expect that reactive energy, localized energy,
and stored energy are numerically equal. To our knowledge, this experiment has not
been carried out yet.
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2.5 BEYOND REACTIVE ENERGY

It is very important at this juncture to set the stage for a more decisive contribution
to the problematic issue of how electromagnetic energy and the near field are
related to each other. This will first require coming back into the topic of what
is electromagnetic energy as such and how it is important in applications.

It is standard in classical electromagnetic theory to work with a definition of
energy densities given by the following expressions

we (r) =
1
4ε

|E (r)|2 , wh (r) =
1
4µ

|H (r)|2 . (2.15)

Here, frequency-domain (time-harmonic) conditions are assumed. The medium is
described by the isotropic constitutive relations ε and µ. For simplicity, we don’t
treat anisotropic and/or spatially dispersive media. In fact, most of the discussion to
follow will even refer to energy processes in free space.

Based on the expressions (2.15), we can compute the total electromagnetic
energies inside any region D in space by the integrals

We (D) =
∫

D
d3r we (r) , Wh (D) =

∫
D

d3r wh (r) . (2.16)

Mathematically speaking, classical electromagnetic theory provides us only with
knowledge encapsulated by (2.16), i.e., that a certain continuous map exists between
closed subsets of the antenna exterior region (say in free space) and the real line R.
Let the exterior region be Vext.5

Unfortunately, the two energy maps described above can seldom be of much
practical value in applied electromagnetics. Indeed, although the computation of the
total energy appears to be adequate for the tasks and aims usually prevailing in a
discussion of classical electromagnetic theory in the physics literature, the situation
appears to be different in the case of the applied community. Explicating the nature
of the difference between theoretical and applied electromagnetics is one of the main
goals of the present discussion.

In applied settings, the main object of investigation is a device working within
an electromagnetic environment. The device, by definition, is not merely a physical
structure, but possesses also a function to be performed. This juxtaposition of both

5 This map associates with each region D ⊆ Vext real numbers We and Wh measuring the total
electric and magnetic energies, respectively, enclosed in the interior of D; in symbols, the maps
We : P(Vext) → R and Wh : P(Vext) → R.
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structure and function in one object is the signature of the engineering sciences and
how it is usually differentiated from the physical sciences. Taking into account such
a well-known demarcation between the two fields, the natural question is now the
following: What is the main function to be performed by electromagnetic devices?
Our most general and simple answer will the following: Moving electromagnetic
energy from one location to another.

This function can be used to explain the operations of all known electromag-
netic devices. Radiation, filtering, coupling, interaction, localization, and so forth, all
involve in some way or another a question about how some energy quantum is being
transferred. In a more precise manner, we speak about how the energy contents of
the total system are being differentiated, divided, manipulated, stored, and so forth.
Energy motion is then the key guiding concept to be taken into account throughout
the current work.

It is at this point that we find the classical approach in theoretical electromag-
netics to energy not fully suitable for our needs. The total energies given by (2.16)
don’t describe in detail how the energy content is actually flowing inside the region.
The Poynting theorem only gives a net flow along a surface inclosing D, which is
numerically equal to the time rate of the total energy change. However, the total
energy itself need not be actually composed fully of propagating modes. This is
particularly true in the near field. As is well known, close to the device the total field
tend to be “static,” or nonpropagating. Application of the Poynting theorem in this
region usually do not provide detailed knowledge of the dynamic structure of the
field. In contrast, we find that in most of the computations involving the Poynting
vector one typically works in the far zone, as in optics for example.

Besides the problem of the near field, there is also the important issue of
analyzing the performance of radiating systems in the entire exterior region. In this
case, the region Vext becomes infinite. Computations of the total energy using the
expressions (2.16) give divergent values. There has been a long history of research
in applied electromagnetic theory aiming at extracting some useful finite numbers
from the otherwise infinite integrals (2.16). Such approaches leads to topics involving
reactive energy, quality factors, input impedance matching bandwidth, and so forth.
However, they also point to a more fundamental problem, that involving the nature
of stored energy as such. Stored energy can be defined in various ways. It is not
very clear at the present time what is the definitive approach to the subject. No
exhaustive survey of the topic is therefore necessary here. Instead, some general
conceptual considerations will be mentioned and their connection with existing
applied electromagnetic research will be pointed out.
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Technical discussions of the topic of stored energy tend to be mired with
tedious computational details that may unfortunately obscure the essentials, which
are nevertheless easy to grasp. For this reason, we will develop here a simple
model, basically an example, where the main ingredients of the topic are illustrated.
Suppose that the field existing in the exterior regions of some antenna is given by
the expression

E (r) = Aee
−αr + Ape

ikr, (2.17)

where both α and k are real while the amplitudes Ae and Ap are complex. In other
words, the total field consists of two parts, an evanescent mode Ae exp (αr) and
a propagating wave Ap exp (−kr). This decomposition is permissible since both
modes satisfy the Helmholtz equation in free space and consequently a superposition
of two solutions is another solution satisfying Maxwell’s equations.

Next, suppose we are concerned with studying the nature of the energy content
inside a region D. Traditional electromagnetic theory knows only the total field, that
given by the sum of both the propagating and evanescent modes in (2.17). That is,
we can compute the numbers We(D) and Wh(D), and those involve the total field
levels. However, from the perspective of the antenna or device engineer, it is plain
that the energy associated with the evanescent modes is somehow localized or fixed
in the space region around the origin. The reason is that the decaying exponential
Ap exp (−αr) has insignificant values away from r = 0. On the other hand, the
energy content of the pure propagating wave Ap exp (ikr) is constant and is given
by |Ap|2. This implies that the energy associated with the propagating part spreads
equally in the entire region while the part corresponding to the evanescent wave is
concentrated in a smaller subregion.

If we let D approach the entire exterior domain where the expression (2.17) is
valid, then we obtain the following by simple calculations

We (D) =
∫

D
d3r
(
Aee

−2αr + 2	(AeA
∗
p)e

−αr + |Ap|2
)

. (2.18)

Although the first and second integrals in (2.18) do converge in infinite regions, the
third term, i.e., the constant |Ap|2 causes the integral to diverge. In other words,

lim
D→Vext

We (D) = ∞. (2.19)

What is the physical meaning of such a straightforward calculation? We
believe the most important lesson to be learned from the simple example above is
that energy localization, and related to it somehow energy storage, is not connected



Reactive Energy and the Near Field 43

Figure 2.4 Simple example of an electromagnetic field divided into two modes, one is pure propagating
and the other is evanescent.

with the total field, but to a part of the total field. This direct conclusion was
implicitly taken for granted in the traditional approach to reactive energy, where
a term proportional to radiation density (in the far field) was subtracted from the
total energy. The remaining quantity (after subtraction) turned out to be convergent
and is sometimes interpreted to be the stored energy of the antenna system.

Regardless of the details, what is relevant here is that applied electromagnetic
theory requires a more subtle treatment of the energy concept than what has been
traditionally achieved in theoretical electromagnetics. This increase in subtlety is
dictated by the demands of applications, in particular to the fact that understanding
electromagnetic devices involves delicate matters pertinent to the problem of energy
motion.The latter necessitates in turns differentiating subcomponents in the total field
that are “moving” and delimitating them in contrast to a background of “unmoving”
or “static” fields.

Now what then is stored energy? This quantity, regardless of how it will
eventually be computed or measured, must involve not the total field, but some
well-defined subpart of this field that is somehow both 1) localized in space and
2) recoverable. By localization we understand a nonpropagating field in a suitable
sense. By recoverable we require that the physically stored energy be real in the
sense of being capable of either measurement or reutilization in actual world setting.
Stored energy should be, at least in principle, extractable from the antenna system.

Let us go back now to the simple example (2.17). It is very clear that the
pure propagating part Ap exp (ikr) violates both of the defining conditions of stored
energy proposed above. This wave is the extreme opposite of anything localized: it
actually spreads everywhere. Worse still, being a pure wave, it is always escaping
to infinity, and hence cannot be recaptured anywhere else. On the other hand, the
evanescent part Ae exp (−αr) satisfies a condition of localizability. However, it is
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not immediately clear whether the entire energy content of this mode can always be
recovered. The topic of stored energy gets its peculiar difficulty from exactly such
considerations.

2.6 RELEVANCE OF A FUNDAMENTAL UNDERSTANDING OF ELEC-
TROMAGNETIC ENERGY TO OTHER MAINSTREAM RESEARCH
DIRECTIONS

The issues of main considerations in the topic of electromagnetic energy includes
the following:

Renewable Energy. There has recently been a great interest in managing
energy resources not only in electromagnetics, but also in other physical domains
like the mechanical, chemical, and biological. In the case of applied electromag-
netics, there is certainly the question of what constitutes energy utilization as such.
It should be clear from the above passages that even in a very basic device such as
radiating antenna, the ultimate physical status of the energy concept is by no means
clear. This motivates, we think, the need to invest more in research targeting the
fundamentals of the subject matter in a way that is general and rigorous. The benefits
from this line of investigations are manifolds. First, we expect that new results
regarding the definition of energy will open the door for fresh ideas regarding just
how to efficiently handle the available energy content of arbitrary electromagnetic
systems, leading to improvements in design, efficiency, multifunctionality, etc.
Second, knowing more about the nature of electromagnetic energy may permit deeper
understanding of how other physical processes (mechanical, chemical, biological)
can be related in a fruitful manner to the electromagnetic case. This will lead
to further progress in multidisciplinary areas like nanotechnology, biotechnology,
health systems, where the interaction between varieties of natural fields becomes
indispensable. Third, our planet is now fully penetrated by carbon-biotic materials
such as silicon and electromagnetic systems are contributing radiation almost
everywhere. There has not been much research on the fundamental nature of this type
of radiation coming from manmade devices and how it affects the biosphere and the
environment at large. Asking general questions about energy in electromagnetic
systems is therefore not irrelevant to current concerns with global environment
aspects.

Nanotechnology. The issue of energy in nanotechnology is quite complex due
to the inherently multidisciplinary nature of the topic. Indeed, thermodynamic con-
siderations plays an essential role in nano-transport problems where the connection
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with electromagnetic radiation and interaction is often dropped in order to sim-
plify the analysis. In pure radiation problems, for example nano-antennas, the ef-
fect of spatial scale is also not taken explicitly into consideration. Indeed, due to
the smallness of the spatial extent of the nano-system, subwavelength components
(evanescent modes) may become physically very prominent, bringing into the picture
new phenomena typically not addressed in classical macroscopic electromagnetics.
We think that a clarification of the energy concept acquires an acute importance
in this field of research because of the unexplored richness of the electromagnetic
nano-environment and the need also to understand the interaction between multiple
spatial scales (e.g., a nano-system performs its hardcore function at the nano-scale,
but real-world measurement occurs at a large or macroscopic scale, so one must
have a theory for how energy is computed in the two scales and their interfaces).
Finally, the topic of the near field becomes fundamental in nano-systems since this is
usually the setting of the device (each nano-antenna or nano-circuit is always in close
interaction with other nano-object nearby. Nano-devices are always in the near-field
zone of each other and their environment). The connection between the near field
and electromagnetic = energy has been noticed by many and was discussed briefly
above. It represents, in our opinion, one of the most promising directions in which a
reconsideration of the energy concept in applied electromagnetics can bring valuable
and positive contribution to existing research fields.

Metamaterials. A metamaterial is defined as an effective artificial medium
exhibiting an electromagnetic performance not typically seen in natural materi-
als. The main issue here is the homogenization of a large number of basic unit
cells (“atoms”) in order to produce a macroscopic behavior that is interesting for
applications. In our opinion, energy considerations are crucial here. Indeed, one
of the most basic features exploited in artificial materials in order to achieve new
electromagnetic behavior is a sort of dispersion engineering. Since most metama-
terials are highly dispersive, and given the well-known fact that the definition of
energy is problematic when there is strong dispersion, it immediately follows that a
fundamental investigation of energy in this direction of research is very important
and timely. On the other hand, it is necessary to obtain a better understanding of
stored energy for the purpose of researching the potential of using metamaterials for
energy harvesting, storage, localization, processing, etc. The conventional defini-
tions of energy in classical electromagnetics are not sufficient enough for this regard
since they treat mainly the total field. Based on what we saw previously, it is highly
probable that developing a theory of electromagnetic energy in dispersive media may
involve dealing not with total field, but with dynamically relevant sub-components,
for example proper nonpropagating waves.
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Fundamental antenna limitations. Deign directives and insights. This is by
large the most well researched field in which energy is usually related to a mainstream
topic. Energy here enters in the guise of “reactive energy” within the context of
computing the Q factor of radiating systems. The main objective of this calculation
is usually estimating the input impedance matching bandwidth. The area of small
antennas has dominated this research direction where considerable progress was
attained. It appears, however, that detailed examination of the reactive energy can be
made not only for small antennas (which in any case have simple well-known field
structure, that of infinitesimal dipoles), but also for arbitrary size antennas. It is of
interest to develop fundamental antenna limitations for antenna types other than the
small antennas, and to bring into focus not only impedance matching considerations
to applications, but also the device size and the far field into interplay in a unified
and systematic manner. To summarize, understanding the spatial structure of the
reactive energy may help bringing out new insights into design issues not restricted
to matching small antennas.

2.7 CONCLUSION

The most important conceptual lesson we aim to achieve from writing on the topic
of energy is the following. Applications necessarily involve not the total field, but
the part of the field that is propagating. In terms of energy, that means the portion of
energy that is moving. For example, stored energy is some part of the total energy
that is both localizable and recoverable. In this sense, we look at stored energy as
something similar to available energy in thermodynamics. As is well known, not
all the heat supplied to an engine can be converted into real work, but only a part
of it called available energy. The situation in electromagnetic theory is somehow
analogous but has not received the attention it deserves from either theoreticians
or practitioners. In conclusion, we believe that for devices focus must shift away
from the total energy into some reasonable definition of “nonpropagating” energy,
localized energy, and finally stored energy.

We have not discussed the technical literature on the topic. Some of the
few papers dealing with the subject approach the problem from very different
perspectives, for example fundamental antenna limitations, time domain, and near
fields. It is expected that nanoelectromagnetics, plasmonics, and metamaterials
will provide a strong stimulus for new research in the foundations of applied
electromagnetics.
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The chapter has provided a comprehensive but compact view on the topic of
electromagnetic energy, with special emphasis on the widely used reactive energy in
antenna practice and research. The concept of energy was discussed from a general
perspective before analyzing in detail the conceptual structure of a new approach
to the topic developed recently by the authors. The main goal of the analysis was
to highlight the essential key points in our argument and how it fits into existing
themes in the community that we believe needs more careful examination. It was
shown that the new results derived by the authors can be used within certain contexts
to generalize the topic of fundamental antenna limitations by including the far field,
antenna size, and input impedance in a unified framework. In particular, it was
suggested that fundamental antenna limitations need not be all about small antennas,
and that arbitrary shaped and sized devices can be perfectly investigated using our
formulation. We have shown subsequently that there are limitations to the physical
validity of reactive energy when interpreted as stored energy. Indeed, certain formal
considerations demonstrated the physical ambiguity of reactive energy densities
when attempts are made to extend their range of physical significance beyond the
input impedance, for example, such as studying the structure of the near field and
energy localization and control in the vicinity of the source. Finally, brief remarks
about stored energy were given and some clues about its nature and how to measure
or compute it were briefly discussed.





Chapter 3

The Spatial Theory of Electromagnetic
Fields

3.1 INTRODUCTION

3.1.1 Motivations for the Search for a Theory of Antenna Near Fields

Antenna practice has been dominated since its inception by the research of Hertz
by pragmatic considerations, such as how to generate and receive electromagnetic
waves with the best possible efficiency, how to design and build large and complex
systems, including arrays, circuits to feed these arrays, and the natural extension
toward a more sophisticated signal processing done on site. However, we believe
that the other aspects of the field, such as the purely theoretical, nonpragmatic study
of antennas for the sake of knowledge-for-itself, is in a state altogether different.
We believe that to date the available literature on antennas still appears in need of
a sustained, comprehensive, and rigorous treatment for the topic of near fields, a
treatment that takes into account the peculiar nature of the electromagnetic behavior
at this zone.

Near fields are important because they are operationally complex and struc-
turally rich. Away from the antenna, in the far zone, things become predictable; the
fields take a simple form and approach plane waves. There is not much to know
about the behavior of the antenna aside from the radiation pattern. However, in the
near zone, the field form cannot be anticipated in advance like the corresponding
case in the far zone. Instead, we have to live with a generally very complicated field
pattern that may vary considerably in qualitative form from one point to another. In
such situations, it is meaningless to search for an answer to the question: What is the

49
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near field everywhere? since one has at least to specify what kinds of structures he is
looking for. In light of being totally ignorant about the particular source excitation
of the antenna, the best one can do is to rely on general theorems derived from
Maxwell’s equations, most prominently the dyadic Green’s function theorems. But
even this is not enough. It is required, in order to develop a significant, nontrivial
theory of near fields, to look for further structures separated off from this Green’s
functions of the antenna. We propose in this work (Chapter 4) the idea of propagating
and nonpropagating fields as the remarkable features in the electromagnetic fields
of relevance to understanding how antennas work.

The common literature on antenna theory does not seem to offer a systematic
treatment of the near field in a general way, i.e., when the type and excitation of
the antenna are not known a priori. In this case, one has to resort to the highest
possible abstract level of theory in order to formulate propositions general enough
to include all antennas of interest. The only level in theory where this can be done,
of course, is the mathematical one. Since this represents the innermost core of the
structure of antennas, one can postulate valid conclusions that may describe the
majority of current or potential applications. In this context, engineering practice is
viewed methodologically as being commensurate with physical theory as such, with
the difference that the main object of study in the former, antennas, is an artificially
created system, not a natural object per se.

Antenna theory has focused for a long time on the problems of analysis and
design of radiating elements suitable for a wide variety of scientific and engineering
applications. The demand for a reliable tool helping to guide the design process led
to the invention and devolvement of several numerical tools, such as method of
moments, finite element method, and finite difference time-domain method, and
so on, which can efficiently solve Maxwell’s equations for almost any geometry,
and corresponding to a wide range of important materials. While this development
is important for antenna engineering practice, the numerical approach, obviously,
does not shed light on the deep structure of the antenna system in general. The
reason for this is that numerical tools accept a given geometry and generate a set
of numerical data corresponding to certain electromagnetic properties of interest
related to that particular problem at hand. The results, being firstly numerical, and
secondly related only to a particular problem, cannot lead to significant insights
on general questions, such as the nature of electromagnetic radiation or the inner
structure of the antenna near field. An insight like this, however, can be gained by
reverting to some traditional methods in the literature, most conveniently expansion
theorems for quantities that proved to be of interest in electromagnetic theory, and
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then applying similar tools creatively to the antenna problem in order to gain a
knowledge as much general as possible.

The engineering community is generally interested in this kind of research for
several reasons. First, the antenna system is an engineering system par excellence;
it is not a natural object, but an artificial entity created by humans to satisfy certain
pragmatic needs. As such, the theoretical task of studying the general behavior of
antennas, especially the structural aspects of the system, falls, in our opinion, into
the lot of engineering science, not physics proper. Second, the working engineer
can make use of several general results obtained within the theoretical program of
the study of antenna systems as proposed in this book, and pioneered previously by
many [50, 51, 49, 56, 52, 53]. These general results can give useful information about
the fundamental limitation on certain measures, such as quality factor, bandwidth,
cross-polarization, and gain, and so on. It is exactly the generality of such theoretical
derivations that makes them extremely useful in practice. Third, more knowledge
about fields and antennas is always a positive contribution even if it does not lead
to practical results at the immediate level. Indeed, future researchers, with fertile
imagination, may manage to convert some of the mathematical results obtained
through a theoretical program of research into a valuable design and devolvement
criterion.

3.1.2 Philosophy of the New Theoretical Program

This chapter, as can be discerned from its title, is the laying down for a new foundation
upon which the edifice of the theoretical structure of antenna near fields may be
constructed by researchers in the future. The guiding thread in our investigation is
the search for a suitable theoretical level at which general information about the
antenna can be summarized in the most economical form. By observing the pattern
of the evolution of the physical and mathematical sciences throughout the last one
hundred years, it appears to us that the most fundamental level at which a scientific
investigation can be enacted is the topological one.

There are two levels of structures that may be exploited in formulating
a general theory of the antenna near field. The first is the topological layer. It
consists of systematic abstraction from the real number system used in representing
electromagnetic phenomena within the framework of Maxwell’s equations. The
second level is the physical layer. This consists of any input arising from observing
the way physical quantities actually behave when represented by quantities selected
from the topological layer. For example, we mention here the invariance properties
of the electromagnetic fields, which are expressions of the continuous symmetry of
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the underlying topological base structure when equipped with additional structures
like differentiability and geometry.1

The crux of our theoretical program is to start from the physical layer and
build our way back to the highest abstract level, that of the topological layer. This
task is accomplished in the following manner. First, the rotational invariance of
scalar sources in electromagnetic theory are observed.2 We exploit this symmetry
in the interesting case where there are several point sources coexisting next to each
other. The rotational symmetry of each source is broken by choosing a particular
orientation of the coordinate system along which we attempt a mathematical
description of the electromagnetic near field.3 We therefore move from perfect
(rotational) symmetry to superposition of a multiplicity of broken symmetries, all
coexisting and hence resonating with each other. This picture will be described in
detail in Chapter 4 from an engineering point of view while the fundamental level will
be treated elsewhere. In the more advanced stage, we will derive a system of nonlinear
ordinary differential equations describing the actual dynamic structure of the field.
We then search for the singularities of this system (critical points in the phase space
of the problem). It is the topological structure of these singularities that is, in our
opinion, the broadest abstract level in the scientific description of antennas. Since
singularities are eminent points in the phase space structuring potential solutions of
the problem starting from given initial conditions, a topological description of the
distribution of such singularities is naturally the best general way so far to encode
all the relevant information of a given antenna. This encoding provides a deeper
understanding of how the current distribution may vary in order to effect certain
structural changes in the near fields, or how sensitive the whole antenna system
field is to a continuous change in some parameters of interest, and so on. Once this
topological understanding of the antenna problem is attained, we can work our way
again toward the physical layer, and then back to the topological layer in light of
new questions, problems, and proposals. It is this immanent resonant interrelation
that communicates back and forth between the topological and physical layers that
should be taken as the ultimate object of any scientific theory. A physical theory
sensitive to both the fundamental structural principles and the operational behavior

1 The rotational and translational symmetry of the electromagnetic fields are consequences of modeling
the physical phenomena using the topology of Euclidean spacetime. However, it is only through
observations that we come to know that phenomena appearing in the real world are indeed well-
behaved with respect to certain general symmetry principles.

2 Notice again that this is an expression of structures at the physical layer.
3 As will appear later, this ‘mathematical description’ is chosen to be a decomposition of the total field

into propagating and nonpropagating parts.
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of radiating electromagnetic systems must address this dual mode of theoretical
description.

3.1.3 Overview of the Chapter

At the most general level, this chapter, will study the antenna near-field structure
in the spatial domain, while the main emphasis of Chapter 4 will be the analysis
this time conducted in the spectral domain. The spatial domain analysis will be per-
formed via the Wilcox expansion while the spectral approach will be pursued using
the Weyl expansion. The relation between the two approaches will be addressed in
the final stages of Chapter 4.

In Section 3.2, we formulate the antenna system problem at the general
level related to the near-field theory to be developed in the following sections.
We don’t consider at this stage additional specifications such as dispersion, losses,
anisotropicity, since these are not essential factors in the near-field description to
be developed in chapter 3 using the Wilcox expansions and in Chapter 4 using the
Weyl expansion. Our goal will be to set the antenna problem in terms of power and
energy flow in order to satisfy the demands of the subsequent sections, particularly
our treatment of reactive energy in Section 3.6.

In Section 3.3, we start our conceptualization of the near field by providing a
physical interpretation of the Wilcox expansion of the radiation field in the antenna
exterior region. Here, the spatial structure is defined as a layering of this region
into spherical regions understood in the asymptotic sense such that each region
corresponds to a term in the Wilcox expansion. In Section 3.4, we support this
description by showing how to construct the electromagnetic field in all these regions
starting from the far-field radiation pattern and in a direct, nonrecursive fashion. This
will provide a complete and exact mathematical description for the near field of the
class of antennas that are compatible with a given radiation pattern and also can
be fit inside the innermost region defined in the spatial configuration introduced in
Section 3.3. We then use these results to study the phenomenon of electromagnetic
interaction between all the spherical regions comprising the antenna field in the
exterior region. Section 3.5 provides a complete set of expressions for the self and
mutual interactions, quantifying then the details of the energy exchange processes
occurring between various spatial regions in the antenna surrounding domain. Of
particular interest, we prove that the mutual interaction between “halfs” of these
regions is exactly zero.
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In Section 3.6, we reexamine the traditional concept of reactive energy. The
main contribution here resides in utilizing the Wilcox expansion of the exterior
electromagnetic fields in order to compute the reactive energy in a complete analytical
form. As it turns out, no infinite numerical integral is needed in principle for
computing the antenna reactive energy and hence the quality factor. We also show
that the reason why the reactive energy is finite has its roots in the general theorem
proved in Section 3.5, which states that the energy exchange between some regions
in the exterior domain is exactly zero. The application of this theorem will show that
a term in the energy density series cancels out what would otherwise give rise to
logarithmic divergence in the total reactive energy.

We then provide a demonstration of the inherent ambiguity in the traditional
definition of the reactive energy when the field distribution in the near zone is
examined more carefully. The existence of such an ambiguity renders the concept
of reactive energy, designed originally for the study of the RLC circuit model of
the antenna input impedance, of limited value in describing the antenna as a field
oscillator, rather than being the corresponding circuit concept. Finally, to prepare for
the transition to Chapter 4, we compute the total energy in a spherical shell around
the antenna and express it as a power series in 1/r. This analysis of the near-field
shell reveals the maximum information that can be discerned about the near-field
structure in the spatial domain from the far-field perspective.

3.2 GENERAL CONSIDERATION FOR ENERGETICS AND POWER
FLOW IN ANTENNA SYSTEMS

The purpose of this section is to carefully review the general knowledge we can infer
from Maxwell’s equations regarding the energy and power dynamics surrounding
arbitrary antenna systems. The radiation problem is very complicated. At this
preliminary stage, we need to examine how much information can be deduced
from the mathematical formalism of electromagnetic theory concerning radiation
problems in a way that does not fall under the restrictions of particular antenna
geometries and/ord excitations. Given the complexity of the problem thus described,
we need to critically reflect on what has been already achieved so far in antenna
theory, particularly as developed by the electrical engineering community.

Consider the general radiation problem in Figure 3.1. We assume that an
arbitrary electric current J(r) exists inside a volume V0 enclosed by the surface
S0. Let the antenna be surrounded by an infinite, isotropic, and homogeneous space
with electric permittivity ε and magnetic permeability µ. The antenna current will
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Figure 3.1 General description of antenna system.

radiate electromagnetic fields everywhere and we are concerned with the region
outside the source volume V0. We consider two characteristic regions. The first is
the region V enclosed by the spherical surface S and this will be the setting for the
near fields. The second region V∞ is that enclosed by the spherical surface S∞ taken
at infinity and it corresponds to the far fields. The complex Poynting theorem states
that [33]

∇ · S = −1
2
J∗ · E + 2iω (wh − we) , (3.1)

where the complex Poynting vector is defined as S = (1/2)E×H∗ and the magnetic
and electric energy densities are given, respectively, by

we =
1
4
εE · E∗, wh =

1
4
µH · H∗. (3.2)

Let us integrate (3.1) throughout the volume V (near-field region). We find∫
S

ds 1
2 (E × H∗) =

∫
V0

dv
(
− 1

2J
∗ · E
)

+2iω
∫
V

dv (wm − we) .
(3.3)

The divergence theorem was employed in writing the LHS while the integral of the
first term on the RHS was restricted to the volume V0 because the source current is
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vanishing outside this region. The imaginary part of this equation yields

Im
∫

S
ds 1

2 (E × H∗) = Im
∫

V0
dv
(
− 1

2J
∗ · E
)

+2ω
∫

V
dv (wh − we) .

(3.4)

The real part leads to

Re
∫

S

ds
1
2

(E × H∗) = Re
∫

V0

dv

(
−1

2
J∗ · E

)
. (3.5)

This equation stipulates that the real time-averaged power, which is conventionally
defined as the real part of the complex Poynting vector, is given in terms of the work
done by the source on the field right at the antenna current. Moreover, since this
work is evaluated only over the volume V0, while the surface S is chosen at arbitrary
distance, we can see then that the net time-averaged energy flux generated by the
antenna is the same throughout any closed surface as long as it does enclose the
source region V0.

4

We need to eliminate the source-field interaction (work) term appearing in
(3.3) in order to focus entirely on the fields. To do this, consider the spherical surface
S∞ at infinity. Applying the complex Poynting theorem there and noticing that the
far-field expressions give real power flow, we conclude from (3.4) that

Im
∫

V0

dv

(
−1

2
J∗ · E

)
= −2ω

∫
V∞

dv (wh − we) . (3.6)

Substituting (3.6) into the near-field energy balance (3.4), we find

Im
∫

S

ds
1
2

(E × H∗) = −2ω

∫
V∞−V

dv (wh − we) . (3.7)

This equation suggests that the imaginary part of the complex Poynting vector, when
evaluated in the near-field region, is dependent on the difference between the electric
and magnetic energy in the region enclosed between the observation surface S and
the surface at infinity S∞, i.e., the total energy difference outside the observation
volume V . In other words, we now know that the energy difference Wh − We is a
convergent quantity because the LHS of (3.7) is finite.5 Since this condition is going

4 That is, the surface need not be spherical. However, in order to facilitate actual calculations in later
parts of this chapter, we restrict ourselves to spherical surfaces.

5 We remind the reader that all source singularities are assumed to be inside the volume V0.
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to play an important role later, we stress it again as∣∣∣∣
∫

V∞−V

dv (wh − we)
∣∣∣∣ < ∞. (3.8)

Combining equations (3.5) and (3.7), we reach∫
S

ds
1
2

(E × H∗) = Prad − 2iω

∫
V∞−V

dv (wh − we) , (3.9)

where the radiated power is defined as

Prad = Re
∫

S

ds
1
2

(E × H∗). (3.10)

We need to be careful about the interpretation of equation (3.9). Strictly speaking,
what this result tells us is only the following. Form an observation sphere S at an
arbitrary distance in the near-field zone. As long as this sphere encloses the source
region V0, then the real part of the power flux, the surface integral of the complex
Poynting vector, will give the net real power flow through S, while the imaginary
part is the total difference between the electric and magnetic energies in the infinite
region outside the observation volume V . We repeat: the condition (3.8) is satisfied
and this energy difference is finite. Relation (3.9) is the theoretical basis for the
traditional expression of the antenna input impedance in terms of fields surrounding
the radiating structure [33], [53].

3.3 THE STRUCTURE OF THE ANTENNA NEAR FIELD IN THE SPA-
TIAL DOMAIN

We now turn to a closer examination of the nature of the antenna near fields in
the spatial domain, while the spectral approach is deferred to Chapter 4. Here, we
consider the fields generated by the antenna that is lying in the intermediate zone,
i.e., the interesting case between the far zone kr → ∞ and the static zone kr → 0.
The objective is not to obtain a list of numbers describing the numerical spatial
variation of the fields away from the antenna, a task well achieved with present day
computer packages. Instead, we aim to attain a conceptual insight on the nature
of the near field by mapping out its inner structure in details. We suggest that the
natural way to achieve this is the use of the Wilcox expansion [47]. Indeed, since our
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fields in the volume outside the source region satisfy the homogeneous Helmholtz
equation, we can expand the electric and magnetic fields as [47]

E (r) =
eikr

r

∞∑
n=0

An (θ, ϕ)
rn

, H (r) =
eikr

r

∞∑
n=0

Bn (θ, ϕ)
rn

, (3.11)

where An and Bn are vector angular functions dependent on the far-field radiation
pattern of the antenna and k = ω

√
εµ is the wavenumber. The far fields are the

asymptotic limits of the expansion. That is,

E (r) ∼
r→∞

eikr

r
A0 (θ, ϕ) , H (r) ∼

r→∞

eikr

r
B0 (θ, ϕ) . (3.12)

The reason why this approach is the convenient one can be given in the following
manner. We are interested in understanding the structure of the near field of the
antenna. In the far zone, this structure is extremely simple; it is simply the zeroth-
order term of the Wilcox expansion as singled out in (3.12). Now, as we leave
the far zone and descend toward the antenna current distribution, the fields start to
get more complicated. Mathematically speaking, this corresponds to the addition
of more terms into the Wilcox series. The implication is that more terms (and
hence the emerging complexity in the spatial structure) are needed in order to
converge to accurate solution of the field as we get closer and closer to the current
distribution. Let us then divide the entire exterior region surrounding the antenna
into an infinite number of spherical layers as shown in Figure 3.2. The outermost
layer R0 is identified with the far zone while the innermost layer R∞ is defined as
the minimum sphere totally enclosing the antenna current distribution.6 In between
these two regions, an infinite number of layers exists, each corresponding to a term
in the Wilcox expansion as we now explain. The boundaries between the various
regions are not sharply defined, but taken only as indicators in the asymptotic
sense to be described momentarily.7 The outermost region R0 corresponds to the
far zone. The value of, say, the electric field there is A0 exp (ikr)/r. As we
start to descend toward the antenna, we enter into the next region R1, where
the mathematical expression of the far field given in (3.12) is no longer valid

6 Strictly speaking, there is no reason why R∞ should be the minimum sphere. Any sphere with larger
size satisfying the mentioned condition will do in theory.

7 To be precise, by definition only region R∞ possesses a clear-cut boundary (the minimum sphere
enclosing the source distribution. This sphere encloses the region V0 in Figure 3.1. The field between
V0 and R∞ belongs to the interior region and is not included in our present treatment, which is
concerned exclusively with the study of the exterior region in general antenna systems.
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Figure 3.2 General description of antenna near-field spatial structure.

and has to be augmented by the next term in the Wilcox expansion. Indeed, we
find that for r ∈ R1, the electric field takes (approximately, asymptotically) the form
A0 exp (ikr)

/
r + A1 exp (ikr)

/
r2. Subtracting the two fields from each other,

we obtain the difference A1 exp (ikr)
/
r2. Therefore, it appears to us very natural

to interpret the region R1 as the “seat” of a field in the form A1 exp (ikr)
/
r2.

Similarly, the nth region Rn is associated (in the asymptotic sense just sketched)
with the field form An exp (ikr)

/
rn+1. We immediately mention that this individual

form of the field does not satisfy Maxwell’s equations. The nth field form given
above is a mathematical depiction of the effect of getting closer to the antenna
on the total (Maxwellian) field structure; it represents the contribution added
by the layer under consideration when passed through by the observer while
descending from the far zone to the antenna current distribution. By dividing the
exterior region in this way, we become able to mentally visualize progressively
the various contributions to the total near field expression as they are mapped out
spatially.8

It is important here to mention that, as is proved in Chapter 4, localized and
nonlocalized energies exist in each layer in turn; that is, each region Rn contains
both propagating and nonpropagating energies, which amounts to the observation

8 It is for this reason that we refrain from rigorously defining the near field as all the terms in the
Wilcox expansion with n ≥ 1 as is the habit with some writers. The reason is that such a field is not
Maxwellain.
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that in each region part of the field remains there, while the remaining part of the field
moves to the next larger layer.9 What concerns us here is not this more sophisticated
spectral analysis of the field associated with each layer, but the simple mapping out
of the antenna near fields into such a rough spatial distribution of concentric layers
understood in the asymptotic sense.

To be sure, this spatial picture, illuminating as it is, will remain a mere definition
unless it is corroborated by some interesting consequences. This actually turns out
to be the case. As pointed out in the previous paragraph, it is possible to show that
certain theorems about the physical behavior of each layer can be proved. Better
still, it is possible to investigate the issue of the mutual electromagnetic interaction
between different regions appearing in Figure 3.2. It turns out that a general theorem
(to be proved in Section 3.5) can be established, which shows that exactly “half” of
these layers don’t electromagnetically interact with each other. In order to understand
the meaning of this remark, we need first to define precisely what is expressed in the
term ‘interaction.’Let us use the Wilcox expansion (4.85) to evaluate the electric and
magnetic energies appearing in (3.2). Since the series expansion under consideration
is absolutely convergent [47], and the conjugate of an absolutely convergent series is
still absolutely convergent, the two expansions of E and E∗ can be freely multiplied
and the resulting terms can be arranged as we please. The result is

we =
ε

4
E · E∗ =

ε

4

∞∑
n=0

∞∑
n′=0

An · A∗
n′

rn+n′+2 , (3.13)

wh =
µ

4
H · H∗ =

µ

4

∞∑
n=0

∞∑
n′=0

Bn · B∗
n′

rn+n′+2 . (3.14)

We rearrange the terms of these two series to produce the following illuminating
form

we (r) =
ε

4

∞∑
n=0

An · A∗
n

r2n+2 +
ε

2

∞∑
n,n′=0
n>n′

Re {An · A∗
n′}

rn+n′+2 , (3.15)

wh (r) =
µ

4

∞∑
n=0

Bn · B∗
n

r2n+2 +
µ

2

∞∑
n,n′=0
n>n′

Re {Bn · B∗
n′}

rn+n′+2 . (3.16)

9 The process is still even more complicated because of the interaction (energy exchange) between the
propagating and nonpropagating parts. See Chapter 4 for analysis and conclusions.
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In writing equations (3.15) and (3.16), we made use of the reciprocity in which
the energy transfer from layer n to layer n′ is equal to the corresponding one from
layer n′ to layer n. The first sums on the RHS of (3.15) and (3.16) represent the
self interaction of the nth layer with itself. Those are the self interaction of the
far field, the so-called radiation density, and the self-interactions of all remaining
(inner) regions Rn with n ≥ 1. The second sum in both equations represents the
interaction between different layers. Notice that those interactions can be grouped
into two categories, the interaction of the far field (0th layer in the Wilcox expansion)
with all other layers, and the remaining mutual interactions between different layers
before the far-field zone (again Rn with n ≥ 1).

Now because we are interested in the spatial structure of near field; that is,
the variation of the field as we move closer to or farther from the antenna physical
body where the current distribution resides, it is natural to average over all the
angular information contained in the energy expressions (3.15) and (3.16). That is,
we introduce the radial energy density function of the electromagnetic fields by
integrating (3.15) and (3.16) over the entire solid angle Ω in order to obtain

we (r) =
ε

4

∞∑
n=0

〈An,An〉
r2n+2 +

ε

2

∞∑
n,n′=0
n>n′

〈An,An′〉
rn+n′+2 , (3.17)

wh (r) =
µ

4

∞∑
n=0

〈Bn,Bn〉
r2n+2 +

µ

2

∞∑
n,n′=0
n>n′

〈Bn,Bn′〉
rn+n′+2 , (3.18)

where the mutual interaction between two angular vector fields F and G is defined
as10

〈F (θ, ϕ) ,G (θ, ϕ)〉 :=
∫

4π

dΩ Re {F (θ, ϕ) · G∗ (θ, ϕ)}. (3.19)

In deriving (3.17) and (3.18), we made use of the fact that the energy series is
uniformly convergent in θ and ϕ in order to interchange the order of integration and
summation.11

Equations (3.17) and (3.18) clearly demonstrate the considerable advantage
gained by expressing the energy of the antenna fields in terms of Wilcox expansion.
The angular functional dependence of the energy density is completely removed by

10 For example, in terms of this notation, the principle of reciprocity used in deriving (3.15) and (3.16)
can now be expressed economically in the form 〈An,An′ 〉 = 〈An′ ,An〉.

11 See the appendix in Section 3.8.1.
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integration over all the solid angles, and we are left afterwards with a power expansion
in 1/r, a result that provides direct intuitive understanding of the structure of the near
field since in such a type of series more higher-order terms are needed for accurate
evaluation only when we get closer to the antenna body, i.e., for large 1/r. Moreover,
the total energy is then obtained by integrating over the remaining radial variable,
which is possible in closed form as we will see later in Section 3.6.2.

A particularly interesting observation, however, is that almost “half” of the
mutual interaction terms appearing in (3.17) and (3.18) are exactly zero. Indeed, we
will prove later that if the integer n + n′ is odd, then the interactions are identically
zero, i.e., 〈An,An′〉 = 〈Bn,Bn′〉 = 0 for n + n′ = 2k + 1 and k is integer. This
represents, in our opinion, a significant insight on the nature of antenna near fields in
general. In order to prove this theorem and deduce other results, we need to express
the angular vector fields An(θ, ϕ) and Bn(θ, ϕ) in terms of the antenna spherical TE
and TM modes. This we accomplish next by deriving the Wilcox expansion from
the multipole expansion.

3.4 DIRECT CONSTRUCTION OFTHEANTENNA NEAR-FIELD START-
ING FROM A GIVEN FAR-FIELD RADIATION PATTERN

3.4.1 Introduction

We have seen how the Wilcox expansion can be physically interpreted as the mathe-
matical embodiment of a spherical layering of the antenna exterior region understood
in a convenient asymptotic sense. The localization of the electromagnetic field within
each of the regions appearing in Figure 3.2 suggests that the outermost region R0,
the far zone, corresponds to the simplest field structure possible, while the fields
associated with the regions close to the antenna exclusion sphere, R∞, are consid-
erably more complex. However, as was pointed out long ago, the entire field in the
exterior region can be completely determined recursively from the radiation pattern
[47]. In this section we further develop this idea by showing that the entire region
field can be determined from the far field directly, i.e., nonrecursively, by a simple
construction based on the analysis of the far field into its spherical wavefunctions.
In other words, we show that a modal analysis of the radiation pattern, a process that
is computationally robust and straightforward, can lead to complete knowledge of
the exterior domain near field, in an analytical form, as it is increasing in complexity
while progressing from the far zone to the near zone. This description is meaningful
because it has been expressed in terms of physical radiation modes. The derivation
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will help to appreciate the general nature of the near field spatial structure that was
given in Section 3.3 by gaining some insight into the mechanism of electromagnetic
coupling between the various spatial regions defined in Figure 3.2, a task we address
in detail in Section 3.5.

3.4.2 Mathematical Description of the Far-Field Radiation Pattern and the
Concomitant Near-Field

Our point of departure is the far-field expressions (3.12), where we observe that
because A0(θ, ϕ) and B0(θ, ϕ) are well-behaved angular vector fields tangential to
the 2-sphere, it is possible to expand their functional variations in terms of infinite
sum of vector spherical harmonics [89], [33]. That is, we write

E (r) ∼
r→∞

η eikr

kr

∞∑
l=0

l∑
m=−l

(−1)l+1 [aE (l, m)Xlm

−aM (l, m) r̂ × Xlm] ,
(3.20)

H (r) ∼
r→∞

eikr

kr

∞∑
l=0

l∑
m=−l

(−1)l+1 [aM (l, m)Xlm

+aE (l, m) r̂ × Xlm] ,
(3.21)

the series being absolutely-uniformly convergent [69], [45]. Here, η =
√

µ/ε
is the wave impedance. aE(l, m) and aM (l, m) stand for the coefficients of the
expansion TElm and TMlm modes, respectively.12 The definition of these modes
will be given in a moment. The vector spherical harmonics are defined as Xlm =(
1
/√

l (l + 1)
)
LYlm (θ, ϕ), where L = −i r × ∇ is the angular momentum

operator; Ylm is the spherical harmonics of degree l and order m defined as

Ylm (θ, ϕ) =

√
(2l + 1) (l − m)!

4π (l + m)!
Pm

l (cos θ) eimϕ, (3.22)

where Pm
l stands for the associated Legendre function.

Since the asymptotic expansion of the spherical vector wavefunctions is
exact,13 the electromagnetic fields throughout the entire exterior region of the
antenna problem can be expanded as a series of complete set of of vector multipoles

12 These coefficients can also be determined from the antenna current distribution, i.e., the source point
of view. For derivations and discussion, see [33].

13 That is, exact because of the expansion of the spherical Hankel function given in (3.28).
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in the form [33]

E (r) = η
∞∑

l=0

l∑
m=−l

[
aE (l, m) h

(1)
l (kr)Xlm

+ i
kaM (l, m)∇ × h

(1)
l (kr)Xlm

]
,

(3.23)

H (r) =
∞∑

l=0

l∑
m=−l

[
aM (l, m) h

(1)
l (kr)Xlm

− i
kaE (l, m)∇ × h

(1)
l (kr)Xlm

]
,

(3.24)

which is absolutely and uniformly convergent. The spherical Hankel function of the
first kind h

(1)
l (kr) is used to model the radial dependence of the outgoing wave in

antenna systems. In this formulation, we define the TE and TM modes as follows

TElm mode :=




r · HTE
lm

= aE (l, m) l(l+1)
k h

(1)
l (kr) Ylm (θ, ϕ) ,

r · ETE
lm = 0,

(3.25)

TMlm mode :=




r · ETE
lm

= aM (l, m) l(l+1)
k h

(1)
l (kr) Ylm (θ, ϕ) ,

r · HTE
lm = 0.

(3.26)

Strictly speaking, the adjective ‘transverse’ in the labels TE and TM is meaningless
for the far field because there both the electric and magnetic fields have zero radial
components. However, the terminology is still mathematically pertinent because the
two linearly independent angular vector fields Xlm and r̂ × Xlm form a complete
set of basis functions for the space of tangential vector fields on the 2-sphere. For
this reason, and only for this, we still may frequently use phrases like ‘far field
TE and TM modes.’ In conclusion we find that the far-field radiation pattern (3.20)
and (3.21) determines exactly the electromagnetic fields everywhere in the antenna
exterior region. This observation was corroborated by deriving a recursive set of
relations constructing the entire Wilcox expansion starting only from the far field
[47]. In the remaining part of this section, we provide an alternative nonrecursive
derivation of the same result in terms of the far-field spherical TE and TM modes.
The upshot of this argument is the unique determinability of the antenna near field
in the various spherical regions appearing in Figure 3.2 by a specified far field taken
as the starting point of the engineering analysis of general radiating structures.14

14 We stress, however, that in general the interior-domain field cannot be recovered from the far field
pattern. The field close to the source contains mostly evanescent modes and these cannot in general
be recovered from the far field. For extended discussion, see [35].
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3.4.3 Derivation of the Exterior Domain Near-Field from the Far-Field Radi-
ation Pattern

The second terms on the RHS of (3.23) and (3.24) can be simplified with the help
of the following relation15

∇ × h
(1)
l (kr)Xlm = r̂i

√
l(l+1)
r h

(1)
l (kr) Ylm (θ, ϕ)

+ 1
r

∂
∂r

[
rh

(1)
l (kr)

]
r̂ × Xlm (θ, ϕ) .

(3.27)

We expand the outgoing spherical Hankel function h
(1)
l (kr) in a power series of 1/r

using the following well-known series [89],[88]

h
(1)
l (kr) =

eikr

r

l∑
n=0

bl
n

rn
, (3.28)

where

bl
n = (−i)l+1 in

n!2nkn+1

(l + n)!
(l − n)!

. (3.29)

That is, in contrast to the situation with cylindrical wavefunctions, the spherical
Hankel function can be expanded only in finite number of powers of 1/r, the highest
power coinciding with the order of the Hankel function l. Substituting (3.28) into
(3.27), we obtain after some manipulations

∇ × h
(1)
l Xlm = i

√
l (l + 1) eikr

r

l∑
n=0

bl
n

rn+1 r̂Ylm

− eikr

r

l∑
n=0

nbl
n

rn+1 r̂ × Xlm + eikr

r

l∑
n=0

ikbl
n

rn r̂ × Xlm.

(3.30)

By relabeling the indices in the summations appearing on the RHS of (3.30) involving
powers 1/rn+2, the following is obtained

∇ × h
(1)
l (kr)Xlm = i

√
l (l + 1) eikr

r

l+1∑
n=1

bl
n−1
rn r̂Ylm

− eikr

r

l+1∑
n=1

(n−1)bl
n−1

rn r̂ × Xlm + eikr

r

l∑
n=0

ik
bl

n

rn r̂ × Xlm.

(3.31)

15 Equation (3.27) can be readily derived from the definition of the operator L = −i r × ∇
above and the expansion ∇ = r̂ (r̂ · ∇) − r̂ × r̂ × ∇, and by making use of the relation
L2Ylm = l (l + 1) Ylm.
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Now it will be convenient to write this expression in the following succinct form

∇ × h
(1)
l Xlm =

eikr

r

l+1∑
n=0

cl
n r̂Ylm + dl

n r̂ × Xlm

rn
, (3.32)

where

cl
n =
{

0, n = 0,

i
√

l (l + 1)bl
n−1, 1 ≤ n ≤ l + 1.

(3.33)

and

dl
n =




ikbl
0, n = 0,

ikbl
n − (n − 1) bl

n−1, 1 ≤ n ≤ l,
−lbl

l, n = l + 1.
(3.34)

Using (3.32), the expansions (3.23) and (3.24) can be rewritten as

E (r) = η
∞∑

l=0

l∑
m=−l

[
aE (l, m) eikr

r

l+1∑
n=0

bl
nXlm

rn

+ i
kaM (l, m) eikr

r

l+1∑
n=0

cl
n r̂Ylm+dl

n r̂×Xlm

rn

]
,

(3.35)

H (r) =
∞∑

l=0

l∑
m=−l

[
aM (l, m) eikr

r

l+1∑
n=0

bl
nXlm

rn

− i
kaE (l, m) eikr

r

l+1∑
n=0

cl
n r̂Ylm+dl

n r̂×Xlm

rn

]
.

(3.36)

Assuming that the electromagnetic field in the antenna exterior region is well-
behaved, it can be shown that the infinite double series in (3.35) and (3.36) involving
the l- and n- sums are absolutely convergent. Subsequently, these sums are invariant
to any permutation (rearrangement) of terms [67]. Now let us consider the first
series on the RHS of (3.36). We can easily see that each power r−n will arise from
contributions coming from all the multipoles of degree l ≥ n. That is, we rearrange
as

∞∑
l=0

l∑
m=−l

aM (l, m) eikr

r

l∑
n=0

bl
n

rn Xlm

= eikr

r

∞∑
n=0

1
rn

∞∑
l=n

l∑
m=−l

aM (l, m) bl
nXlm.

(3.37)

The situation is different with the second series on the RHS of (3.36). In this case,
contributions to the 0th and 1st powers of 1/r originate from the same multipole,
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that of degree l = 0. Afterwards, all higher power of 1/r, i.e., terms with n ≥ 2, will
receive contributions from multipoles of the (n − 1)th degree, but yet with different
weighting coefficients. We unpack this observation by writing

∞∑
l=0

l∑
m=−l

i
kaE (l, m) eikr

r

l+1∑
n=0

(cl
n r̂Ylm+dl

n r̂×Xlm)
rn

= − eikr

ikr

[
∞∑

l=0

l∑
m=−l

aE (l, m)
(
cl
0 r̂Ylm + dl

0 r̂ × Xlm

)
+

∞∑
n=1

1
rn

∞∑
l=n−1

l∑
m=−l

aE (l, m)
(
cl
n r̂Ylm + dl

n r̂ × Xlm

)]
.

(3.38)

That is, from (3.37) and (3.38), (3.36) takes the form

H (r) =
eikr

r

∞∑
n=0

Bn (θ, ϕ)
rn

, (3.39)

where

B0 (θ, ϕ) =
∞∑

l=0

l∑
m=−l

(−i)l+1

k [aM (l, m)Xlm

+aE (l, m) r̂ × Xlm] ,
(3.40)

Bn (θ, ϕ) =
∞∑

l=n

l∑
m=−l

aM (l, m) bl
nXlm

−
∞∑

l=n−1

l∑
m=−l

iaE(l,m)
k

(
cl
n r̂Ylm + dl

n r̂ × Xlm

)
, n ≥ 1.

(3.41)

By exactly the same procedure, we derive from (3.35) the following result

E (r) =
eikr

r

∞∑
n=0

An (θ, ϕ)
rn

, (3.42)

where

A0 (θ, ϕ) = η
∞∑

l=0

l∑
m=−l

(−i)l+1

k [aE (l, m)Xlm

−aM (l, m) r̂ × Xlm] ,
(3.43)

An (θ, ϕ) = η
∞∑

l=n

l∑
m=−l

aE (l, m) bl
nXlm

+η
∞∑

l=n−1

l∑
m=−l

iaM (l,m)
k

(
cl
n r̂Ylm + dl

n r̂ × Xlm

)
, n ≥ 1.

(3.44)
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Therefore, the Wilcox series is derived from the multipole expansion and the exact
variation of the angular vector fields An and Bn are directly determined in terms
of the spherical far-field modes of the antenna. We notice that these two nth vector
fields take the form of an infinite series of spherical harmonics of degrees l ≥ n,
i.e., the form of the tail of the infinite series appearing in the far field expression
(3.20) and (3.21). The coefficients, however, of the same modes appearing in the
latter series are now modified by the simple n-dependence of cl

n and dl
n as given in

(3.33) and (3.34). Conversely, the contribution of each l-multipole to the respective
terms in the Wilcox expansion is determined by the weights cl

n and dl
n, which are

varying with l. There is no dependence on m in this derivation of the Wilcox terms
in terms of the electromagnetic field multipoles.

3.4.4 General Remarks

As can be seen from the direct relations (3.43), (3.44), (3.40), and (3.41), the antenna
near field in the various regions Rn defined in Figure 3.2 is developable in a series
of higher-order TE and TM modes, those modes being uniquely determined by
the content of the far-field radiation pattern. Some observations on this derivation
are worthy of mention. We start by noticing that the expressions of the far field
(3.43) and (3.40), the initial stage of the analysis, are not homogeneous with the
expressions of the inner regions (3.44) and (3.41). This can be attributed to mixing
between two adjacent regions. Indeed, in the scalar problem only modes of order
l ≥ n contribute to the content of the region Rn. However, due to the effect of
radial differentiation in the second term of the RHS of (3.27), the aforementioned
mixing between two adjacent regions emerges to the scene, manifesting itself in the
appearance of contributions from modes with order n − 1 in the region Rn. This,
however, always comes from the dual polarization. For example, in the magnetic
field, the TMlm modes with l ≥ n contribute to the field localized in region Rn,
while the contribution of the TElm modes comes from order l ≥ n − 1. The dual
statement holds for the electric field. As will be seen in Section 3.5, this will lead to
similar conclusion for electromagnetic interactions between the various regions.

We also bring to the reader’s attention the fact that the derivation presented
in this section does not imply that the radiation pattern determines the antenna
itself, if by the antenna we understand the current distribution inside the innermost
region R∞. There is an infinite number of current distributions that can produce the
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same exterior-domain field (and consequently the far-field pattern).16 Our results
indicate, however, that the entire field in the exterior region, i.e., outside the
region R∞, is determined exactly and nonrecursively by the far field. We believe
that the advantage of this observation is considerable for the engineering study
of electromagnetic radiation. Antenna designers usually specify the goals of their
devices in terms of radiation pattern characteristics like sidelobe level, directivity,
cross polarization, null location, and son. It appears from our analysis that an exact
analytical relation between the near field and these design goals do exist in the
form derived above. Since the engineer can still choose any type of antenna that fits
within the enclosing region R∞, the results of this chapter should be viewed as a kind
of canonical machinery for generating fundamental relations between the far-field
performance and the lower bound formed by the field behavior in the entire exterior
region compatible with any antenna current distribution that can be enclosed inside
R∞. For example, relations (3.69) and (3.70) provide the exact analytical form for
the reactive energy in the exterior region. This then forms a lower bound on the actual
reactive energy for a specific antenna, because the field inside R∞ will only add to
the reactive energy calculated for the exterior region. To summarize this important
point, our conclusions in this work apply only to a class17 of antennas compatible
with a given radiation pattern, not to a particular antenna current distribution. This,
we repeat, is a natural theoretical framework for the engineering analysis of antenna
fundamental performance measures.18

16 We repeat that there is one-to-one correspondence between the exterior-domain field and the far field;
however, there is no one-to-one correspondence between the exterior-domain field and the antenna
source distribution.

17 Potentially infinite in size.
18 The extensively-researched area of fundamental limitations of electrically small antennas is a special

case in this general study. We don’t presuppose any restriction on the size of the innermost region
R∞, which is required only to enclose the entire antenna in order for the various series expansions
used in the present work to converge nicely. Strictly speaking, electrically small antennas are more
challenging for the impedance matching problem than the field point of view. The field structure
of an electrically small antenna approaches the field of an infinitesimal dipole and hence does not
motivate the more sophisticated treatment developed here, particularly the spectral approach of
Chapter 4.
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3.5 A PHENOMENOLOGICAL EXAMINATION OF THE SPATIAL DIS-
TRIBUTION OF ELECTROMAGNETIC ENERGY IN THE ANTENNA
EXTERIOR REGION

3.5.1 Introduction

In this section, we utilize the results obtained in Section 3.4 in order to evaluate
and analyze the energy content of the antenna near field in the spatial domain.
We continue to work within the overall picture sketched in Section 3.3 in which
the antenna exterior domain was divided into spherical regions understood in the
asymptotic sense (Figure 3.2), and the total energy viewed as the sum of self and
mutual interactions among these regions. Indeed, we will treat now in detail the
various types of interactions giving rise to the radial energy density function in the
form introduced in (3.17) and (3.18). The calculation will make use of the following
standard orthogonality relations∫

4π
dΩXlm · X∗

l′m′ = δll′δmm′ ,∫
4π

dΩXlm · (r̂ × X∗
l′m′) = 0,∫

4π
dΩ (r̂ × Xlm) · (r̂ × X∗

l′m′) = δll′δmm′ ,

r̂ · (r̂ × Xlm) = r̂ · Xlm = 0,

(3.45)

where δlm stands for the Kronecker delta function.

3.5.2 Self-Interaction of the Outermost Region (Far Zone, Radiation Density)

The first type of terms is the self-interaction of the fields in region R0, i.e., the far
zone. These are due to the terms involving 〈A0,A0〉 and 〈B0,B0〉 for the electric
and magnetic fields, respectively. From (3.19), (3.43), (3.40), and (3.45), we readily
obtain the familiar expressions

〈A0,A0〉 =
η2

k2

∞∑
l=0

l∑
m=−l

[
|aE (l, m)|2 + |aM (l, m)|2

]
, (3.46)

〈B0,B0〉 =
1
k2

∞∑
l=0

l∑
m=−l

[
|aM (l, m)|2 + |aE (l, m)|2

]
. (3.47)
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That is, all TElm and TMlm modes contribute to the self-interaction of the far field.
As we will see immediately, the picture is different for the self-interactions of the
inner regions.

3.5.3 Self-Interactions of the Inner Regions

From (3.19), (3.44), and (3.45), we obtain

〈An,An〉 = η2
∞∑

l=n

l∑
m=−l

∣∣aE (l, m) bl
n

∣∣2
+η2

k2

∞∑
l=n−1

l∑
m=−l

|aM (l, m)|2
(∣∣cl

n

∣∣2 +
∣∣dl

n

∣∣2), n ≥ 1,

(3.48)

Similarly, from (3.19), (3.41), and (3.45) we find

〈Bn,Bn〉 =
∞∑

l=n

l∑
m=−l

∣∣aM (l, m) bl
n

∣∣2
+ 1

k2

∞∑
l=n−1

l∑
m=−l

|aE (l, m)|2
(∣∣cl

n

∣∣2 +
∣∣dl

n

∣∣2), n ≥ 1.

(3.49)

Therefore, in contrast to the case with the radiation density, the 0th region, the self-
interaction of the nth inner region (n > 0) consists of two types: the contribution
of TElm modes to the electric energy density, which involves only modes with
l ≥ n; and the contribution of the TMlm modes to the same energy density, which
comes this time from modes with order l ≥ n − 1. The dual situation holds for the
magnetic energy density. This qualitative splitting of the modal contribution to the
energy density into two distinct types is ultimately due to the vectorial structure of
Maxwell’s equations.19

3.5.4 Mutual Interaction Between the Outermost Region and The Inner
Regions

We turn now to the mutual interactions between two different regions, i.e., to an
examination of the second sums in the RHS of (3.17) and (3.18). We first evaluate
here the interaction between the far field and an inner region with index n. From

19 Cf. Section 3.4.4.



72 New Foundations for Applied Electromagnetics

(3.19), (3.43), (3.44), and (3.45), we compute

〈A0,An〉 = η2

k

∞∑
l=n

l∑
m=−l

g1
n (l, m) |aE (l, m)|2

+η2

k2

∞∑
l=n−1

l∑
m=−l

g2
n (l, m) |aM (l, m)|2 , n ≥ 1.

(3.50)

From (3.19), (3.40), (3.41), and (3.45), we also reach to

〈B0,Bn〉 = 1
k

∞∑
l=n

l∑
m=−l

g1
n (l, m) |aM (l, m)|2

+ 1
k2

∞∑
l=n−1

l∑
m=−l

g2
n (l, m) |aE (l, m)|2 , n ≥ 1.

(3.51)

From (3.29), we calculate

g1
n (l, m) := Re

{
(−i)l+1

bl∗
n

}
=

{
0, n odd,
(−1)3n/2

n!2nkn+1
(l+n)!
(l−n)! , n even.

(3.52)

Similarly, we use (3.34) to calculate

g2
n (l, m) := Re

{
(−i)l+1

idl∗
n

}
=
{

kg1
n (l, m) − (n − 1) g3

n (l, m) , 1 ≤ n ≤ l,
−lg3

l+1 (l, m) , n = l + 1.

(3.53)

Here, we define

g3
n (l, m) :=

{
0, n odd,

(−1)3n/2−1

(n−1)!2n−1kn

(l+n−1)!
(l−n−1)! , n even.

(3.54)

Therefore, it follows that the interaction between the far field zone and any inner
region Rn, with odd index n is exactly zero. This surprising result means that “half”
of the mutual interactions between the regions comprising the core of the antenna
near field on one side, and the far field on the other side, is exactly zero. Moreover, the
non-zero interactions, i.e., when n is even, are evaluated exactly in simple analytical
form. We also notice that this nonzero interaction with the nth region Rn involves
only TMlm and TElm modes with l ≥ n and l ≥ n − 1. The appearance of terms
with l = n − 1 is again due to the polarization structure of the radiation field.20

20 Cf. Section 3.4.4.



The Spatial Theory of Electromagnetic Fields 73

3.5.5 Mutual Interaction Between Different Inner Regions

We continue the examination of the mutual interactions appearing in the second term
of the RHS of (3.17) and (3.18), but this time we focus on mutual interactions of
only inner regions, i.e., interaction between region Rn and Rn′ where both n ≥ 1
and n′ ≥ 1. From (3.19), (3.44), and (3.45), we arrive at

〈An,An′〉 = η2
∞∑

l=ϑn′
n

l∑
m=−l

g4
n,n′ (l, m) |aE (l, m)|2

+η2

k2

∞∑
l=ϑm

n

l∑
m=−l

g5
n,n′ (l, m) |aM (l, m)|2

+η2

k2

∞∑
l=ϑn′−1

n−1

l∑
m=−l

g6
n,n′ (l, m) |aM (l, m)|2 , n, n′ ≥ 1.

(3.55)

Similarly, from (3.19), (3.41), and (3.45), we reach to

〈Bn,Bn′〉 =
∞∑

l=ϑn′
n

l∑
m=−l

g4
n,n′ (l, m) |aM (l, m)|2

+ 1
k2

∞∑
l=ϑn′−1

n−1

l∑
m=−l

g5
n,n′ (l, m) |aE (l, m)|2

+ 1
k2

∞∑
l=ϑn′−1

n−1

l∑
m=−l

g6
n,n′ (l, m) |aE (l, m)|2 , n, n′ ≥ 1.

(3.56)

Here we define ϑm
n := max (n, m). Finally, formulas for g4

n,n′ , g5
n,n′ , and g6

n,n′ are
derived in Appendix 3.8.2.

Now, it is easy to see that if n + n′ is even (odd), then n − 1 + n′ − 1 is
also even (odd). Therefore, we conclude from the above and Appendix 3.8.2 that
the mutual interaction between two inner regions Rn and Rn′ is exactly zero if
n + n′ is odd. For the case when the interaction is not zero, the result is evaluated in
simple analytical form. This nonzero term involves only TMlm and TElm modes with
l ≥ max(n, n′) and l ≥ max(n−1, n−1′). Therefore, there exist modes satisfying
min(n, n′) ≤ l < max(n, n′) and min(n−1, n′ −1) ≤ l < max(n−1, n−1′) that
do not contribute to the electromagnetic interaction between regions Rn and Rn′ .
The appearance of terms with l = n− 1 is again a consequence of coupling through
different modal polarization in the electromagnetic field under consideration.21

21 Cf. Section 3.4.4.
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3.5.6 Summary and Conclusion

In this Section, we managed to express all of the interaction integrals appearing in
the general expression of the antenna radial energy density (3.17) and (3.18) in the
exterior region in closed analytical form involving only the TMlm and TElm modes
excitation amplitudes aM (l, m) and aE(l, m). The results turned out to be intuitive
and comprehensible if the entire space of the exterior region is divided into spherical
regions understood in the asymptotic sense as shown in Figure 3.2. In this case, the
radial energy densities (3.17) and (3.18) are simple power series in 1/r, where the
amplitude of each term is simply the mutual interaction between two regions. From
the basic behavior of such expansions, we now see that the closer we approach the
exclusion sphere that directly encloses the antenna current distribution, i.e., what
we called region R∞, the more terms we need to include in the energy density
series. However, the logic of constructing those higher-order terms clearly shows
that only higher-order far-field modes enter into the formation of such increasing
powers of 1/r, confirming the intuitive fact that the complexity of the near field is
an expression of richer modal content where more (higher-order) modes are needed
in order to describe the intricate details of electromagnetic field spatial variation. As
a bonus we also find that the complex behavior of the near field, i.e., that associated
with higher-order far-field modes, is localized in the regions closer to the antenna
current distribution, so in general the nearer the observation to the limit region R∞,
the more complex becomes the near-field spatial variation.

Finally. it is interesting to note that almost “half” of the interactions giving
rise to the amplitudes of the radial energy density series (3.17) and (3.18) are exactly
zero— i.e., the interactions between regions Rn and R′

n when n + n′ is odd. There
is no immediate a priori reason why this should be the case or even obvious, the
logic of the verification presented here being after all essentially computational. We
believe that further theoretical research is needed to shed light on this conclusion
from the conceptual point of view, not merely the computational one.

3.6 THE CONCEPT OF REACTIVE ENERGY: THE CIRCUIT POINT OF
VIEW OF ANTENNA SYSTEMS

3.6.1 Introduction

In the common literature on antennas, relation (3.9) has been taken as an indication
that the so-called ‘reactive field’ is responsible of the imaginary part of the complex
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Poynting vector. Since it is this term that enters into the imaginary part of the
input impedance of the antenna system, and since from circuit theory we usually
associate the energy stored in the circuit with the imaginary part of the impedance,
a trend developed in regarding the convergent integral (3.7) as an expression of
the energy “stored” in the antenna’s surrounding fields, and even sometimes call it
‘evanescent field.’ Hence, there is a confusion resulting from the uncritical use of
the formula: reactive energy = stored energy = evanescent energy. However, there
is nothing in (3.9) that speaks about such a profound conclusion! The equation,
read at its face value, is an energy balance derived based on certain convenient
definitions of time-averaged energy and power densities. The fact that the integral
of the energy difference appears as the imaginary part of the complex Poynting
vector is quite accidental and relates to the contingent utilization of time-harmonic
excitation condition. However, the concepts of stored and evanescent field are, first
of all, spatial concepts, and, secondly, are thematically broad; rightly put, these
concepts are fundamental to the field point of view of general antenna systems.
The conclusion that the stored energy is the sole contributor to the reactive part of
the input impedance of the antenna system is an exaggeration of the circuit model
that was originally advanced to study the antenna through its input port. The field
structure of the antenna is richer and more involved than the limited ‘terminal-like’
point of view implied by circuit theory. The concept of reactance is isomorphic to
neither stored nor evanescent energy.

In this section, we will first carefully construct the conventional reactive
energy and show that its natural definition emerges only after the use of the Wilcox
expansion in writing the radiated electromagnetic fields. In particular, we show that
the general theorem we proved above about the null result of the interaction between
the far field and inner layers with odd index is one of the main reasons why a finite
reactive energy throughout the entire exterior region is possible. Moreover, we show
that such a reactive energy can be evaluated directly in closed form and that no
numerical infinite integral is involved in its computation. We then end this section
by demonstrating the existence of certain ambiguity in the achieved definition of
the reactive energy when attempts to extend its use beyond the circuit model of the
antenna system are made.
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3.6.2 Construction of the Reactive Energy Densities

We will call any energy density calculated with the point of view of those quantities
appearing in the imaginary part of (3.9) reactive densities.22 When someone tries
to calculate the total electromagnetic energies in the region V∞ − V , the result is
divergent integrals. In general, we have∫

V∞−V

dv (wh + we) = ∞. (3.57)

However, condition (3.8) clearly suggests that there is a common term between we

and wh which is the source of the trouble in calculating the total energy of the antenna
system. We postulate then that

we := w1
e + wrad, wh := w1

h + wrad. (3.58)

Here w1
e and w1

h are taken as reactive energy densities and we hope to prove that
they are finite. The common term wrad is divergent in the sense∫

V∞−V

dvwrad = ∞. (3.59)

Therefore, it is obvious that wh − we = w1
h − w1

e , and therefore we conclude from
(3.8) that ∣∣∣∣

∫
V∞−V

dv
(
w1

m − w1
e

)∣∣∣∣ < ∞. (3.60)

Next, we observe that the asymptotic analysis of the complex Poynting theorem
allows us to predict that the energy difference wh − we approaches zero in the
far-field zone. This is consistent with (3.58) only if we assume that

wh (r) ∼
r→∞

wrad (r) , we (r) ∼
r→∞

wrad (r) . (3.61)

That is, in the asymptotic limit r → ∞, the postulated quantities w1
h,e can be

neglected in comparison with wrad. In other words, the common term wrad is easily
identified as the radiation density at the far-field zone.23 It is well-known that the

22 The question of the reactive field is usually ignored in literature for the reason for having difficulty
treating the cross or interaction terms [51].

23 As will be seen shortly, it is meaningless to speak of a radiation density in the near-field zone.
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integral of this density is not convergent and hence our assumption in (3.59) is
confirmed. Moreover, this choice for the common term in (3.58) has the merit of
making the energy difference, the imaginary part of (3.9), “devoid of radiation,” and
hence the common belief in the indistinguishability between the reactive energy and
the stored energy. As we will show later, this conclusion cannot be correct, at least
not in terms of field concepts.

The final step consists in showing that the total energy is finite. Writing the
appropriate sum with the help of (3.58), we find

W 1
h + W 1

e :=
∫

V∞−V
dv
(
w1

h + w1
e

)
= limr′→∞

∫
V (r′)−V

dv [wh (r) + we (r) − 2wrad] . (3.62)

To prove that this integral is finite, we make use of the Wilcox expansion of vectorial
wavefunctions. First, we notice that the far-field radiation patterns are related to each
other by

B0 (θ, ϕ) = (1/η)r̂ × A0 (θ, ϕ) , (3.63)

This relation is the origin of the equality of the radiation density of the electric and
magnetic types when evaluated in the far-field zone. That is, we have

wrad(r) = (ε/4)(A0 · A∗
0)/r2 = (µ/4)(B0 · B∗

0)/r2. (3.64)

Employing the Wilcox expansion (2.8) in the expressions of the energy densities
(3.2) obtained above, it is found that

we (r) = wrad (r) + ε
2

〈A0,A1〉
r3

+ ε
4

∞∑
n=1

〈An,An〉
r2n+2 + ε

2

∞∑
n,n′=1
n>n′

〈An,An′ 〉
rn+n′+2 , (3.65)

wh (r) = wrad (r) + µ
2

〈B0,B1〉
r3

+µ
4

∞∑
n=1

〈Bn,Bn〉
r2n+2 + µ

2

∞∑
n,n′=1
n>n′

〈Bn,Bn′ 〉
rn+n′+2 . (3.66)

By carefully examining the radial behavior of the total energies, we notice that the
divergence of their volume integral over the exterior region arises from two types of
terms:

1. The first type is that associated with the radiation density wrad, which takes a
functional form like 〈A0,A0〉

/
r2 and 〈B0,B0〉

/
r2. The volume integral of

such terms will give rise to linearly divergent energy.
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2. The second type is that associated with functional forms like 〈A0,A1〉
/
r3

and 〈B0,B1〉
/
r3. The volume integral of these terms will result in energy

contribution that is logarithmically divergent.

However, we make use of the fact proved in Section 3.5.4 stating that the interactions
〈A0,A1〉 and 〈B0,B1〉 are identically zero. Therefore, only singularities of the first
type will contribute to the total energy. Making use of the equality (3.64) and the
definitions (3.58), those remaining singularities can be eliminated and we are then
justified in reaching the following series expansions for the reactive radial energy
densities

w1
e (r) =

ε

4

∞∑
n=1

〈An,An〉
r2n+2 +

ε

2

∞∑
n,n′=1
n>n′

〈An,An′〉
rn+n′+2 , (3.67)

w1
h (r) =

µ

4

∞∑
n=1

〈Bn,Bn〉
r2n+2 +

µ

2

∞∑
n,n′=1
n>n′

〈Bn,Bn′〉
rn+n′+2 . (3.68)

For the purpose of demonstration, let us take a hypothetical spherical surface that
encloses the source region V0. Denote by a the radius of smallest such a sphere, i.e.,
R∞ = {(r, θ, ϕ) : r ≤ a}. The evaluation of the total reactive energy proceeds then
in the following way. The expansions (3.67) and (3.68) are uniformly convergent in
r and therefore we can interchange the order of summation and integration in (3.62).
After integrating the resulting series term by term, we finally arrive at the following
results

W 1
e =

∞∑
n=1

(ε/4) 〈An,An〉
(2n − 1) a2n−1 +

∞∑
n,n′=1
n>n′

(ε/2) 〈An,An′〉
(n + n′ − 1) an+n′−1 , (3.69)

W 1
h =

∞∑
n=1

(µ/4) 〈Bn,Bn〉
(2n − 1) a2n−1 +

∞∑
n,n′=1
n>n′

(µ/2) 〈Bn,Bn′〉
(n + n′ − 1) an+n′−1 . (3.70)

Therefore, the total reactive energy is finite. It follows then that the definitions pos-
tulated above for the reactive energy densities w1

h and w1
e are consistent. Moreover,

from the results of Section 3.5, we now see that total reactive energies (3.69) and
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(3.70) are evaluated completely in analytical form and that in principle no compu-
tation of infinite numerical integrals is needed here.24

We stress here that the contribution of the expressions (3.69) and (3.70) is not
merely having at hand a means to calculate the reactive energy of the antenna. The
main insight here is the fact that the same formulas contain information about the
mutual dependence of 1) the quality factor Q (through the reactive energy), 2) the size
of the antenna (through the dependence on a), and 3) the far-field radiation pattern
(through the interaction terms and the results of Section 3.5). The derivation above
points to the relational structure of the antenna from the engineering point of view in
the sense that the quantitative and qualitative interrelations of performance measures
like directivity and polarization (far field), matching bandwidth (the quality factor),
and the physical size become all united within one look. The being of the antenna is
not understood by computing few numbers, but rather by the interconnection of all
measures within an integral whole. The relational structure of the antenna system
will be further developed with increasing sophistication in Chapter 4.

3.6.3 Remarks and General Discussion

The expressions (3.69) and (3.70) form the central result of the generalized approach
to the reactive energy problem in general antenna systems. Using standard definitions
of quality factor and matching bandwidth, one can use (3.69) and (3.70) to compute
these important performance measures. However, our main intention at the moment
is to illustrate the kind of knowledge now made available to antenna engineers
by working with such very general results. As we promised earlier, in (3.69) and
(3.70) we see the three important factors of antenna size, radiation pattern, and input
impedance coming into mutual interaction with each other.

First, the radiation pattern is hidden into the interactions terms defined in
(3.19) and reappearing in the numerators of all the terms in (3.69) and (3.70). The
far field is determined by the modal content of the field (2.13), i.e., by the weights
of each TE and TM modes and those in turns determine the interactions involving
An and Bn for all orders n using the closed-form analytical expressions derived in
Chapter 3. Every desired form in the radiation pattern, for example, polarization,
directivity, beam shape, can be translated into the actual numerical values of the
modes coefficients aE and aM , hence influencing the reactive energy as dictated by
the laws (3.69) and (3.70).

24 Special cases of (3.69) and (3.70) appeared throughout literature. For example, see [51, 49, 52, 53].
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Second, the size of the antenna enters the picture through the minimum radius
a in (3.69) and (3.70). Its manifestation in the general expression of the reactive
energy takes the form of an infinite sequence of terms proportional to negative powers
of a. Physically speaking, each successive term models with increasing accuracy the
behavior of the near field from the antenna length-scale perspective. Therefore, the
effect of the antenna size can be studied systematically using this expression by
detailed investigation of how each higher-order term contribute purturbatively to the
behavior of the energy.

Third, the reactive energies themselves W 1
e and W 1

h can be used to study the
input impedance as mentioned above. Therefore, the tradeoffs between radiation
pattern measures on one hand, and the input impedance on the other hand, can be
studied carefully for each successive term in (3.69) and (3.70), i.e., for each antenna
size order. This perturbation approach needs to be carried out systematically for
a wide variety of examples, not necessarily only small antennas. Indeed, our main
motivation is to present the fundamental interrelations and limitation in general
antenna systems, in which compact and minute devices are one chapter of the
problem among others. To the best of our knowledge, a systematic investigation of
fundamental antenna limitations in this comprehensive and systematic fashion has
not been carried out yet, but will most likely require intensive group effort comprising
several research styles and recourses.

3.6.4 Additional Remarks

The previous generalized derivation of the reactive energy of the antenna systems
presents some important observations that are properly worth considering in some
details.

First, we note that in Section 2.3.2, when we spoke freely about reactive
energy, we have not at the same time made allusion to the apparently identical
concept of reactive energy density. A careful reading of our work will show that
the concept of ‘density’ was proposed only in the stipulation (3.58). Indeed, as will
be explained in more details later, 1) there is no unique reactive energy density
for the antenna problem, while we already know from Section 2.3.2 that 2) the
individual electric and magnetic reactive energies (not densities) are infinite and 3)
by The Principle of Finite Energy Difference, the difference of the total electric
and magnetic energies is finite, and hence can be physically real when interpreted
as the reactance of the input impedance of the antenna system. Now, in literature
we find that the identification of the radiation density wrad as the origin of the
infinity trouble encountered while computing the total reactive energy, and hence
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the proposal of subtracting it, both go back to the work [51], or possibly earlier, and
the idea has been intensively elaborated since then in various antenna theory circles.
Our point here is that this idea was developed in our work on a more general basis
and that the expression (3.58) is simply a stipulation or a starting point which was
proved subsequently to be fruitful. In other words, reactive energy densities are not
“derived” in the strict sense of the word, but assumed or stipulated as part of the
thinking process of the engineer regarding how antennas work. This point will be
further elaborated shortly.

We come to the second observation. In writing (3.58), a critic may state that
The Principle of Finite Energy Difference was presupposed instead of being proved
(as we claimed later). This is not true. The two new terms introduced by (3.58) as a
matter of implicitly defined quantities, mainly the reactive energy densities w1

e and
w1

h, were proved in the sequel to have the properties expected in such quantities.
The expression (3.58) can best be thought of formally as a “guess” that proved right
afterwards. The upshot of this point is that, contrary to what seem to be prevailing
nowadays, there is no unique, unequivocal derivation of reactive energy densities.
Maxwell’s equations don’t contain in themselves a fundamental physical quantity
under this label of reactive energy. The concept of reactive energy is an engineering
idea invented to deal with a specific practical situation, modeling the antenna system
in terms of a fictitious circuit model called the input impedance. Certain measuring
procedures were correlated with the real and imaginary parts of this impedance and
a universally accepted circuit model approach to the design and analysis of general
antenna systems has been developed very successfully. This, however, does not imply
that a tool that is very widespread in practice such as the input impedance and the
network parameters need to exhaust the radiation problem.

3.6.5 Ambiguity of the Concept of Reactive Field Energy

It is often argued in literature that the procedure outlined here is a “derivation” of
the energy ‘stored’ in antenna systems. Unfortunately, this matter is questionable.
The confusion arises from the bold interpretation of the term wrad as a radiation
energy density everywhere. This cannot be true for the following reason. When we
write wrad = (ε/4)Erad · E∗

rad = (µ/4)Hrad · H∗
rad, the resulting quantity is a

function of the radial distance r. However, the expression loses its meaning when
the observation is at the near-field zone. Indeed, if one applies the complex Poynting
theorem there, we still get the same value of the net real power flow, but the whole
field expression must now be taken into account, not just the far-field terms. Such
field terms, whose amplitudes squared were used to calculate wrad, simply don’t
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satisfy Maxwell’s equations in the near-field zone. For this reason, it is incoherent to
state something like “since energy is summable quantity, then we can split the total
energy into radiation density and non-radiation density” as we already did in (3.58).
These two equations are definitions for the quantities w1

h and w1
e , not derivations of

them by a physical argument.25

To make this argument transparent, let us imagine the following scenario.
Scientist X has already gone through all the steps of the previous procedure and
ended up with mathematically sound definitions for the quantities w1

h and w1
e , which

he termed ‘reactive energy densities.’ Now, another person, say Scientist Y, is trying
to solve the same problem. However, for some reason he does not hit directly on the
term wrad found by Scientist X, but instead considers the positive term Υ appearing
in the equation

wrad = α + Υ, (3.71)

where we assume ∫
V∞−V

dvΥ = ∞ (3.72)

and ∣∣∣∣
∫

V∞−V

dvα

∣∣∣∣ < ∞. (3.73)

That is, the divergent density wrad is composed of two terms, one convergent and
the other divergent. We further require that

wrad (r) = α (r) + Υ (r) ∼
r→∞

Υ (r) . (3.74)

That is, the asymptotic behavior of wrad is dominated by the term Υ. The equations
of the total energy density now become

we = w1
e + wrad =

(
w1

e + α
)

+ Υ = w2
e + Υ (3.75)

and
wh = w1

h + wrad =
(
w1

h + α
)

+ Υ = w2
h + Υ, (3.76)

where
w2

e = w1
e + α, w2

h = w1
h + α. (3.77)

25 One has always to remember that the concept of energy in electromagnetism is not straightforward.
All energy relations must be viewed as rigorous mathematical propositions derived from the calculus
of Maxwell’s equations, and afterwards interpreted as energies and power in the usual mechanical
sense.
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Now, it is easily seen that the conditions required for the “derivation” of w1
h and w1

e

are already satisfied for the new quantities w2
h and w2

e . That is, we have

wh,e (r) = w1
h,e (r) + α (r) + Υ (r) ∼

r→∞
Υ (r) ∼

r→∞
wrad (r) , (3.78)

which states that the large argument approximation of Υ(r) coincides with the
radiation density wrad (r) at the far-field zone. Furthermore, it is obvious that∫

V∞−V
dv (wh − we) =

∫
V∞−V

dv
(
w1

h − w1
e

)
=
∫

V∞−V
dv
(
w2

h − w2
e

)
,

(3.79)

and hence is convergent. Also,∫
V∞−V

dv
(
w2

h + w2
e

)
=
∫

V∞−V
dv [(wh − we) − 2wrad] − 2

∫
V∞−V

dvα
(3.80)

and hence is also convergent. Therefore, the quantities w2
h and w2

e will be identified
by Scientist Y as legitimate ‘stored’ energy in his quest for calculating the reactive
energy density of the antenna. This clearly shows that the reactive energy calculated
this way cannot be a legitimate physical quantity in the sense that it is not unique.
In our opinion, the procedure of computing the reactive energy is artificial since it
is tailored to fit an artificial requirement, the engineering circuit description of the
antenna port impedance. Subtracting the radiation energy from the total energy is
not a unique recipe for removing infinities. As should be clear by now, nobody seems
to have thought that maybe the subtracted term wrad itself contains a non-divergent
term that is part of a physically genuine stored energy density defined through a
non-circuit approach, i.e., field formalism per se.26

3.6.6 Critical Reexamination of the Near-Field Shell

We turn now to a qualitative and quantitative analysis of the magnitude of the
ambiguity in the identification of the stored energy with the reactive energy. Let a be
the minimum size of the hypothetical sphere enclosing the source region V0. Denote
by b the radial distance b > a at which the term wrad dominates asymptotically
the reactive energy densities w1

h and w1
e . It is the contribution of wrad to the energy

density lying in the interval a < r < b which is ambiguous in the sense that it
can be arbitrarily decomposed into the sum of two positive functions α(r) + Υ(r)

26 In Chapter 4, we show explicitly that this is indeed the case.
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in the indicated interval. However, if the total contribution of the decomposable
energy density within this interval is small compared with the overall contributions
of the higher-order terms, then the ambiguity in the definition of the reactive energy
densities does not lead to serious problems in practice. The evaluation of all the
integrals with respect to r gives an expression in the form27

W 1
e + W 1

h =
(

ε
4 〈A0,A0〉 + µ

4 〈B0,B0〉
)
(b − a)

+
∞∑

n=1

∞∑
n′=1

ε〈An,An′ 〉+µ〈Bn,Bn〉
4(n+n′−1)

(
1

an+n′−1 − 1
bn+n′−1

)
.

(3.81)

The integration with respect to the solid angle yields quantities with the same order
of magnitude. Therefore, we focus in our qualitative examination on the radial
dependance. It is clear that when a becomes very small, i.e., a  1, the higher-
order terms dominate the sum and the contribution of the lowest-order term can be
safely neglected, with all its ambiguities. On the other hand, when a approaches the
antenna operating wavelength and beyond, the higher-order terms rapidly decay and
the lowest-order term dominates the contribution to the total energy in the interval
a < r < b. Since it is in this very interval that we find the ambiguity in defining
the reactive energy, we conclude that the reactive energy as defined in circuit theory
cannot correspond to a physically meaningful definition of ‘stored’ field energy,
and that the results calculated in literature as a fundamental limit to antenna Q are
incoherent when the electrical size of the exclusion volume approaches unity and
beyond.

One more point that needs to be examined in the above argument relates to
the choice of b. Of course, b cannot be fixed arbitrarily because it is related to the
behavior of the higher-order terms, i.e., b is the radius of the radiation sphere, the
sphere through which most of the field is converted into radiation field.28 Therefore,
in our argument above a reaches the critical value of unit wavelength but cannot
increase significantly because it is bounded from above by b, which is not freely
varying like a. The upshot of the argument is that the vagueness in the precise
value of b is simply the vagueness in any asymptotic expansion in general where
accuracy is closely tied to the physical conditions of the particular situation under
consideration. In this situation, the one corresponding to computing the reactive

27 In writing (3.81), we explicitly dropped the zero terms involving 〈A0,A1〉 and 〈B0,B1〉 in order
simplify the notation.

28 Radiation field does not mean here propagating wave, but fields that contribute to the real part
of the complex Poynting vector. Strictly speaking, the propagating field is close to the radiation
field but not exactly the same because the nonpropagating field contributes to the far field. See also
Chapter 4.
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energy as defined above, the value of the reactive field energy W 1
h + W 1

e becomes
very small with increasing a for the obvious reason that reactive energy is mostly
localized in the near field close to the antenna. However, it is not clear at what precise
value b one should switch from near field into radiation field. Indeed, it is exactly in
this way that the entire argument of this part of the chapter was motivated: The circuit
approach to antennas cannot give a coherent picture of genuine field problems. All
what the common approach requires is that at a distance “large enough,” the energy
density converges (asymptotically) to the radiation density. However, while the total
energy density is approaching this promised limit, the reactive energy is rapidly
decaying in magnitude, and in such a case any ambiguity or error in the definition
of the separation of the two densities (which, again, we believe to be non-physical)
may produce a very large error, or at least render the results of the Q factor not so
meaningful.29

3.7 CONCLUSION

In this chapter, we started the formulation of a comprehensive theoretical program
for the analysis of the antenna electromagnetic field in general, and without re-
striction to a particular or specific configuration in the source regions. The study
in Chapter 3 dealt with the analysis conducted in the spatial domain, that is, by
mapping out the various spatial regions in the antenna exterior domain and expli-
cating their electromagnetic behavior. We studied the phenomena of energy transfer
between these regions and derived exact expressions for all types of such an energy
exchange in closed analytical form in terms of the antenna TE and TM modes.
The formulation shows that this detailed description can be obtained nonrecursively
merely from knowledge of the antenna far-field radiation pattern. The resulting
construction shows explicitly the contribution of each mode in the various spatial
regions of the exterior domain, and also the coupling between different polarizations.

29 One can even reach this conclusion without any evaluation of total energy. The energy density itself
is assumed to be a physically meaningful quantity. At around a = 1, all the radial factors in the terms
appearing in (3.65) and (3.66) become roughly comparable in magnitude (assuming normalization
to wavelength, i.e., a = 1 is taken here to be the intermediate-field zone boundary). However, the
lowest-order term has an ambiguity in its definition that can be varied freely up to its full positive
level. Thus, there seems to be a serious problem beginning in the intermediate-field zone. Even for
larger a, since the overall reactive energy density becomes very small, slight changes in the value of
the contribution of the radiation density resulting from the aforementioned ambiguity render, in our
opinion, the Q factors curves reported in literature of limited physical relevance as indicators of the
size of the actually stored field.
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Of special interest is the discovery that the mutual interaction between regions with
odd sum of indices is exactly zero, regardless to the antenna under study. Such a
general result appears to be the reason why the infinite integral of the radial energy
density giving rise to the antenna reactive energy is finite. The final parts of the chapter
reexamined the concept of reactive energy when extended to study the field structure
of the antenna. We showed how ambiguities in the definition of this circuit quantity
render it of limited use in antenna near-field theory proper (matching considerations
put aside). This prepares for the transition to Chapter 4, which is concerned with the
analysis of the antenna near field in the spectral domain.

On the side of antenna practice, we believe that the proposed theory will play
a role in future advanced research and devolvement of antenna systems. Indeed,
this chapter has provided a formalism suitable for the visualization of the important
spatial regions surrounding the antenna and the details of energy exchange processes
taking place there. It has been found during the long history of electromagnetic
theory and practice that the best intuitive but also rigorous way for understanding
the operation and performance of actual devices and systems is the energy point
of view. For this reason, the theory proposed did not stop at the field formalism,
but also went ahead to investigate how this formalism can be used to provide
general concrete results concerning the pathways of energy transfer between various
regions in the antenna surrounding domain of interest. For example, we mention
the interaction theorems developed in this chapter, which provide a quantitative
measure of the field modal content passing from one spatial region to another. As
we emphasized repeatedly before, this proved to be a natural way in understanding
better the reactive energy, the quantity of fundamental importance in the determining
the behavior of the antenna input impedance. Furthermore, the specification of all
these descriptions in terms of the antenna physical TE and TM modes is continuous
with established traditions in the electromagnetic community in which basic well-
understood solutions of Maxwell’s equations are used to determine and understand
the complex behavior of the most general field. We believe that the generality of the
formalism developed here will help future researchers to investigate special cases
arising from particular applications within their range of interest for the community-
at-large.

The far-field perspective can provide a different kind of valuable information
for the antenna engineer. Here, one starts with a specification of a class of antennas
compatible with a given far field radiation pattern, and then proceeds in constructing
the near field of all antennas belonging to this class, in both the spatial and spectral
domain, in order to relate far field performance measures, such as directivity, polari-
zation, null formation, etc, to near field characteristics, such as input impedance
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and antenna size. A set of fundamental relations, understood in this sense, can be
generated using our formalism for any set of objectives of interest found in a particular
application, and hence guide the design process by deciding what kind of inherent
conflicts and tradeoffs exist between various antagonistic measures. In this way, one
can avoid cumbersome efforts to enforce a certain design goal that cannot be achieved
in principle with any configuration whatsoever because it happens to violate one of
the fundamental limitations mentioned above.

3.8 APPENDICES AND SUPPLEMENTARY MATERIALS

3.8.1 On the Uniform Convergence of the Energy Series using Wilcox Expan-
sion

From [47], we know that the single series converges both absolutely and uniformly
in all its variables. We prove that the energy (double) series is uniformly convergent
in the following way. First, convert the double sum into a single sum by introducing
a map (n, n′) → l. From a basic theorem in real analysis, the multiplication of
two absolutely convergent series can be rearranged without changing its value. This
guarantee that our new single series will give the same value regardless to the map
l = l(n, n′). Finally, we apply the Cauchy criterion of uniform convergence [67] to
deduce that the energy series, i.e., the original double sum, is uniformly convergent
in all its variables.

3.8.2 Computation of the Functions g4
n,n′ (l, m), g5

n,n′ (l, m), and g6
n,n′ (l, m)

From (3.29), we calculate

g4
n,n′ (l, m) := Re

{
bl
nbl∗

n′
}

=

{
0, n + n′ odd,

(−1)(n+3n′)/2
A1 (n, n′; k) , n + n′ even,

(3.82)

where

A1 (n, n′; k) =
(l + n)! (l + n′)!

(n!2nkn+1) (n′!2n′kn′+1) (l − n)! (l − n′)!
. (3.83)
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From (3.33), we also compute

g5
n,n′ (l, m) := Re

{
cl
ncl∗

n′
}

= l (l + 1) g4
n−1,n′−1 (l, m) , 1 ≤ n, n′ ≤ l + 1.

(3.84)

From (3.34) we find

g6
n,n′ (l, m) := Re

{
dl

ndl∗
n′
}

=




(n − 1) (n′ − 1) Re
{
bl
n−1b

l∗
n−1
}

+k2Re
{
bl
nbl∗

n′
}

−k (n′ − 1) Re
{
bl
nibl∗

n′−1

}
+k (n − 1) Re

{
bl∗
n′ibl

n−1
}

, 1 ≤ n ≤ l,
l2Re

{
bl
lb

l∗
l

}
, n = l + 1.

(3.85)

From (3.29), we compute

Re
{
bl
nibl∗

n′−1
}

=




0, n + n′ odd,

(−1)(n+3n′)/2−1

×A2 (n, n′; k) , n + n′ even.

(3.86)

Similarly, we have

Re
{
bl
nibl∗

n′−1
}

=




0, n + n′ odd,

(−1)(n′+3n)/2−1

×A2 (n′, n; k) , n + n′ even.

(3.87)

Here we define

A2 (n, n′; k) := (l+n)!
(n!2nkn+1)(l−n)!

× (l+n′−1)!
(n′−1)!2n′−1kn′ (l−n′+1)!

.
(3.88)

We have used in obtaining (3.16) and (3.17), and also all similar calculations in
Section 3.5, the manipulation (in)∗ = (i∗)n = (−i)n = in (−1)n.

3.8.3 On Rearrangement of the Ylm/rn Terms in the Multipole Expansion

We prove here that the series (3.35) and (3.36) are absolutely convergent and
uniformly convergent in all their variables. The absolute convergence is our main goal
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since it provides the necessary and sufficient condition for arbitrary rearrangement of
terms in infinite series. It is important to notice that the classical absolute and uniform
convergence of both the multipole expansion and the Wilcox expansion does not
necessarily imply that the series comprised of terms in the form Ylm (θ, ϕ)/rn for
solutions of the Helmholtz equation are also absolutely and uniformly convergent.
They strongly suggest that this is the case, but the conclusion has to be established
in a rigorous fashion, which we endeavor to achieve in this appendix.

Due to limitation on space, we focus on the scalar problem. The generalization
to the vector case is tedious but can be accomplished using the scalar case developed
here in addition to a suitable Huygens-like integral formulation.30

Consider a scalar field ψ (r) satisfying the scalar Helmholtz equation(
∇2 + k2)ψ (r) = 0. (3.89)

Our basic prototype of the multipole expansion is the series [89],[33]

ψ (r) =
∞∑

l=0

l∑
m=−l

al
mh

(1)
l (kr) Ylm (θ, ϕ), (3.90)

where al
m stands for the expansion coefficients. Using the series (3.28), (12.49) can

be rewritten as

ψ (r) =
∞∑

l=0

l∑
m=−l

l∑
n=0

al
mbl

n

eikr

rn+1 Ylm (θ, ϕ). (3.91)

Our goal is to show that the rearranged series

eikr

r

∞∑
n=0

An

rn
, (3.92)

where

An =
∞∑

l=n

l∑
m=−l

al
mbl

nYlm (θ, ϕ), (3.93)

converges and is equal to (12.49). First, notice that the two inner sums in (3.130) are
finite and hence can be freely interchanged. Therefore, we focus our study on the
interaction between the l-sum and the n-sum.

30 For example, see [47].
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The solution of (3.89) can be expressed in the form

ψ (r) =
∫

V

d3r′j (r′)
eik|r−r′|
|r − r′| , (3.94)

where the source function j (r) is assumed to be continuous on a compact support
V . Let the positions of the observation and source points be given in spherical
coordinates as r = r (r, θ, ϕ) and r′ = r′ (r′, θ′, ϕ′), respectively. Let the angle
between the two vectors r and r′ be γ. We have then

u := cos γ = cos θ cos θ′ + sin θ sin θ′ cos (ϕ − ϕ′) (3.95)

and

|r − r′| = r

√
1 − 2 (r′/r) cos γ + (r′/r)2. (3.96)

From potential theory, we know that the following expansion holds true [69],[89]

1
|r − r′| =

∞∑
n=0

(r′/r)n
Pn (u), (3.97)

where Pn(u) is the Legendre polynomials. Furthermore, this series is absolutely
convergent and uniformly convergent in all its variables [69].

Let us turn now the remaining factor in the scalar Green’s function, exp (ik |r − r′|).
We first consider instead the form

exp (ik |r − r′|) = exp (ikr) exp {ikr [(1/r) |r − r′| − 1]} (3.98)

and then expand the square root (3.96) in Taylor series. We obtain

(1/r) |r − r′| − 1 =
∞∑

n=1

αn

[
−2 (r′/r) u + (r′/r)2

]n
, (3.99)

which is valid for
∣∣∣−2 (r′/r) cos γ + (r′/r)2

∣∣∣ ≤ 1, a condition that is automat-

ically satisfied in the exterior region. The coefficients αn are given by αn =
(−1)2 (2n)!

/
(1 − 2n) (2n!)2 (4n). It is important to notice that the constant term

in (3.99) dropped out, which will insure that the final series of the scalar Green’s
function takes the form of the Wilcox expansion.
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Next, by substituting (3.99) into the exponential function, expanding the latter
in its Taylor series, we arrive at

exp {ikr [(1/r) |r − r′| − 1]}

=
∞∑

l=0

1
l!

(
ikr

∞∑
n=1

αn

[
−2 (r′/r) u + (r′/r)2

]n)l (3.100)

In order to proceed, we need to expand each n-term in this series and then collect
the resulting l− and n− terms, a process that involves freedom of rearrangement.
To justify this, we need to show that the series (3.100) is absolutely convergent. This
we accomplish most easily in the following way.

We replace all negative signs appearing in the square root function (3.99) with
positive sign. Also, we replace each trigonometric function appearing there with its
absolute value. That is, we define

u′ := |cos θ| |cos θ′|
+ |sin θ| |sin θ′| (|cos ϕ| |cos ϕ′| + |sinϕ| |sinϕ′|) (3.101)

We consider then the new series√
1 + 2 (r′/r) u′ + (r′/r)2 − 1

=
∞∑

n=1
αn

[
2 (r′/r) u′ + (r′/r)2

]n
,

(3.102)

which is convergent for
∣∣∣2 (r′/r) u′ + (r′/r)2

∣∣∣ ≤ 1, again a condition satisfied in

the exterior regions because all the trigonometric functions are bounded. It is well-

known that this series is absolutely convergent for
∣∣∣2 (r′/r) u′ + (r′/r)2

∣∣∣ < 1. Since

the terms in brackets are already positive, we find then that

∞∑
n=1

|αn|
[
2 (r′/r) u′ + (r′/r)2

]n
< ∞. (3.103)

Finally, since the Taylor series expansion of the exponential function is always
convergent, we conclude that

exp
(

kr
∞∑

n=1
|αn|
[
2 (r′/r) u′ + (r′/r)2

]n)
=

∞∑
l=0

1
l!

(
kr

∞∑
n=1

|αn|
[
2 (r′/r) u′ + (r′/r)2

]n)l

< ∞
(3.104)
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Since all the terms appearing in this series are positive and dominate the series
(3.100), we conclude that the expansion (3.100) is absolutely convergent. To be more
precise, let us isolate the “atomic” terms of our final expansion. By ‘atomic terms’
we mean the ultimate indivisible terms comprising the expansion of the Green’s
function obtained by multiplying (3.97) with (3.100). This general term takes the
form

(r′/r)n cosl1 θ cosl2 θ′ sinl3 θ sinl4 θ′

× cosl5 ϕ cosl6 ϕ′ sinl7 ϕ sinl8 ϕ′,
(3.105)

where all the exponents are integers. The result (3.103) then tells us that the infinite
series comprised of the atomic terms (3.105) is absolutely convergent in the exterior
region. From the triangular identity, any grouping of the atomic terms results in
a series that is also absolutely convergent. This fact will be used throughout the
remaining part of this appendix.

Knowing that all the series expansions involved are absolutely convergent, we
can now multiply (3.97) with (3.100) and collect all terms involving like powers of
1/r. The coefficients of such powers are all continuous functions of u, which is in
the range −1 ≤ u ≤ 1. Since the Legendre functions form a complete set of basis
functions for the space of continuous functions on the interval [−1, 1] [69], [89], we
conclude that the Green’s functions can be written in the form

eik|r−r′|
|r − r′| =

∞∑
n=0

∞∑
l=0

Al
n (r′)
rn

Pl (u), (3.106)

where the functional dependence of the coefficient Al
n on r′ takes the simple form

of r′ raised to some integer power whose exact form does not concern us here. From
the addition theorem of the Legendre function we have [89]

Pl (cos γ) =
4π

2l + 1

l∑
m=−l

Y ∗
lm (θ′, ϕ′) Ylm (θ, ϕ). (3.107)

Substituting this into (3.106), we find

eik|r−r′|
|r − r′| =

∞∑
n=0

∞∑
l=0

l∑
m=−l

4πAl
n (r′)Y ∗

lm (θ′, ϕ′)
2l + 1

Ylm (θ, ϕ)
rn

. (3.108)

It is not difficult to show that this series is uniformly convergent in all of its
variables. For the angular dependence, this follows readily from the boundedness of
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the trigonometric functions and the Weierstrass-M test. For the radial dependence,
this can be shown by rearranging the relevant series of the atomic terms (3.105) in
the form of a power series in the radial variable under consideration, an operation
permissible since we already know that the original series is absolutely convergent.
The convergence of a power series at one point implies that it is also uniformly
convergent in the exterior region [67]. Now knowing that (3.106) is uniformly
convergent, we can substitute it into (3.94) and interchange the order of integration
and summation. The result is

ψ (r) =
∞∑

n=0

∞∑
l=0

l∑
m=−l

ξl
n

Ylm (θ, ϕ)
rn

, (3.109)

where the expansion coefficients are given by

ξl
n =

4π

2l + 1

∫
V

d3r′j (r′) Al
n (r′)Y ∗

lm (θ′, ϕ′) . (3.110)

The last step of our proof is to show that the series given by (3.109) is absolutely
(and also uniformly) convergent. To accomplish this, we make use of the fact that
the source function is continuous on a compact support V . From classical analysis, it
follows that j(r′) achieves its bound in V , that is, there exists a positive real number
M such that

|j (r′)| ≤ M , r′ ∈ V. (3.111)

Consider the series of positive terms

∞∑
n=0

∞∑
l=0

l∑
m=−l

∣∣ξl
n

∣∣ |Ylm (θ, ϕ)|
rn

(3.112)

From (3.110) and (3.111), we find

∣∣ξl
n

∣∣ ≤ 4πM

2l + 1

∫
V

d3r′ ∣∣Al
n (r′) Y ∗

lm (θ′, ϕ′)
∣∣ . (3.113)

Now, multiply this inequality by |Ylm (θ, ϕ)|/rn and sum over all indices. From the
absolute and uniform convergence of the series of atomic terms (3.105), we find that

∫
V

d3r′
∞∑

n=0

∞∑
l=0

l∑
m=−l

4πM
∣∣Al

n (r′) Y ∗
lm (θ′, ϕ′)Ylm (θ, ϕ)

∣∣
(2l + 1) rn

(3.114)
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is finite, where the uniform convergence was needed to move the integral outside the
sums and hence relate (3.114) to the RHS of (3.113). From (3.112), (3.113), (3.114),
we conclude that (3.109) is absolutely convergent. The proof that it is also uniformly
convergent in all its variables also follows from the same argument, mainly from
using (3.111) and the Weierstrass-M test.

Consider the limit

lim
l→∞

∣∣bl
n

∣∣ = lim
l→∞

1
n!2nkn

(l + n)!
(l − n)!

=
1

n!2nkn
. (3.115)

Since this limit exists, the sequence bl
n is bounded. That is, there exists a positive

number Mn, generally dependent on n, while the following is true

∃ N ≥ 0 such that∀ l ≥ N,
∣∣bl

n

∣∣ ≤ Mn. (3.116)

We can write then ∣∣al
mbl

nYlm (θ, ϕ)
∣∣ ≤ ∣∣al

mYlm (θ, ϕ)
∣∣Mn, (3.117)

which is valid for sufficiently large l. Now, by definition, the series comprising the
far field, which is evaluated by taking the asymptotic limit kr → ∞ of the expansion
(12.49) and using (3.28), is convergent. Being a Laplace expansion of a well-behaved
field [69],31 it is also absolutely convergent [45]. Therefore, we have

Mn

∞∑
l=n

l∑
m=−l

∣∣al
mYlm (θ, ϕ)

∣∣ < ∞. (3.118)

It follows then from (3.135) and the comparison test that the family of series

∞∑
l=n

l∑
m=−l

∣∣al
mbl

nYlm (θ, ϕ)
∣∣ < ∞ (3.119)

is convergent for all n ≥ 0. Now consider the series of positive terms

∞∑
n=0

Dn

n!2nknrn
, (3.120)

31 For example, it is enough here to assume that the field in the exterior region has continuous first-order
derivatives.



The Spatial Theory of Electromagnetic Fields 95

where

Dn =
∞∑

l=n

l∑
m=−l

∣∣al
mYlm (θ, ϕ)

∣∣ (l + n)!
(l − n)!

. (3.121)

The series (3.120) is the one needed in deciding the absolute convergence of (3.130).
We apply the ratio test to (3.120) and investigate the limit

lim
n→∞

Dn+1

Dn

1
2nkr

. (3.122)

First, we notice that

lim
n→∞

1
2nkr

= 0. (3.123)

Next, we consider the behavior of the ratio Dn+1/Dn. The general term Dn has the
form of the tail of a convergent series. Therefore,

lim
n→∞

Dn = lim
n→∞

∞∑
l=n

l∑
m=−l

∣∣al
mYlm (θ, ϕ)

∣∣ (l + n)!
(l − n)!

= 0. (3.124)

This implies that the ratio Dn+1/Dn is bounded at infinity. For suppose that it
approaches infinity. This amounts to saying that for any chosen number M > 0,
it is possible to find N > 0 such that Dn+1/Dn > M for n ≥ N . Therefore, the
sequence Dn is increasing at infinity (to see this, choose M > 1). But this contradicts
(3.124). Therefore, the ratio Dn+1/Dn is bounded and we can write that there exists
0 < M < ∞ such that for sufficiently large n, we have

0 ≤ Dn+1

Dn
≤ M. (3.125)

Now choose any small positive number ε. The result (3.123) implies that we can
always find an integer N > 0 such that

n ≥ N ⇒ 0 ≤ 1
2nkr

≤ ε

M
. (3.126)

Using (3.125), we conclude

0 ≤ 1
2nkr

Dn+1

Dn
≤ ε. (3.127)
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Therefore, we find

lim
n→∞

Dn+1

Dn

1
2nkr

= 0. (3.128)

It follows from the ratio test that the series (3.120) is convergent. Therefore, the series
(3.131) is absolutely convergent and hence can be rearranged in any way leading
always to the same value. One possible rearrangement can reproduce (3.130), which
is the result needed.

3.8.4 On Rearrangement of the 1/rn Terms in the Multipole Expansion

Our basic prototype of the multipole expansion is the series of the scalar field [89],
[33]

ψ (r) =
∞∑

l=0

l∑
m=−l

al
mh

(1)
l (kr) Ylm (θ, ϕ), (3.129)

where al
m stands for the expansion coefficients. By using the series (3.28), (12.49)

can be rewritten as

ψ (r) =
∞∑

l=0

l∑
m=−l

l∑
n=0

al
mbl

n

eikr

rn+1 Ylm (θ, ϕ). (3.130)

Our goal is to show that the rearranged series

eikr

r

∞∑
n=0

1
rn

∞∑
l=n

l∑
m=−l

al
mbl

nYlm (θ, ϕ) (3.131)

converges and is equal to (12.49). Probably the easiest way to achieve this is by
noticing the special form of (12.49), which consists formally of an infinite series
where each summand itself is expanded in a finite number of terms, each being
a power of 1/r. From complex analysis, the following theorem exists [93] (The
Weierstrass Double Series Theorem). Let

w(z) = w1 (z) + w2 (z) + w3 (z) + · · · (3.132)

be an infinite series of functions of the complex variable z, all analytic (holomorphic)
in domain T and let the series converges uniformly in T . Then the sum w(z)
is analytic in any closed region D ⊆ T . Furthermore, if each function wn(z) is
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expanded in a power series around some point z0

wn (z) =
∞∑

m=0

cn
m (z − z0)

m
, (3.133)

and if

w (z) =
∞∑

n=0

cn (z − z0)
n
, (3.134)

then each series
∞∑

m=0
cn
m converges and we have

cn =
∞∑

m=0

cn
m. (3.135)

This theorem can be directly applied to (3.130) since it has the same form for z = 1/r
and z0 = 0. Since the series (3.129) can be originally derived by expanding the
Green’s function in a power series of 1/r [69], the expansion is valid in the complex
domain as such. In this case, the exterior region of the antenna |r| > r0 > 0
corresponds to the analytically continued complex domain |z| < 1/r0. It remains to
show that (3.129) converges uniformly in r. This can be easily done by majorizing
(3.129) by the series

∞∑
l=0

l∑
m=−l

M l
m =

∞∑
l=0

l∑
m=−l

∣∣al
m

∣∣ ∣∣∣h(1)
l (kr0)

∣∣∣ |Ylm (θ, ϕ)| (3.136)

which is possible because
∣∣∣h(1)

l (kr)
∣∣∣ ≤ ∣∣∣h(1)

l (kr0)
∣∣∣ for r > r0. We know that the

Laplace series (multipole expansion) (3.129) is absolutely convergent [69] and hence∑
l,m M (l, m) converges. It follows then from the classical Weierstrass-M test that

the series (3.129) is uniformly convergent in r.





Chapter 4

The Spectral Theory of Electromagnetic
Fields

4.1 INTRODUCTION

The results of the Chapter 3 have provided us with an insight into the structure of
what we particularly called ‘the near-field shell’ in the spatial domain. This concept
has been important particularly in connection with the computation of the reactive
energy of the antenna system, the quantity needed in the estimation of the quality
factor and hence the input impedance bandwidth. We have shown, however, that
since the concept of reactive energy is mainly a circuit concept, it is incapable of
describing adequately the more troublesome concept of stored field energy. In this
chapter, we propose a new look into the structure of the near fields by examining
the evanescent part of the electromagnetic radiation in the vicinity of the antenna.
The mathematical treatment will be fundamentally based on the Weyl expansion
[94], and hence this will be essentially a spectral method. Such an approach, in
our opinion, is convenient from both the mathematical and physical viewpoints.
For the former, the availability of the general form of the radiated field via the
dyadic Green’s function theorem allows the applicability of the Weyl expansion
to Fourier-analyze any field form into its spectral components. From the physical
point of view, we notice that in practice the the focus is mainly on ‘moving energy
around’ from that location to another. Therefore, it appears to us natural to look for
a general mathematical description of the antenna near fields in terms of, speaking
informally, ‘parts that do not move’ (nonpropagating field), and ‘parts that do move’
(propagating field). As we will see shortly, the Weyl expansion is well suited to
exactly this; it combines both the mathematical and physical perspectives in one

99
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step. Such a field decomposition into two parts can therefore be seen as a logical
step toward a fundamental insight into the nature of the electromagnetic near field.

Because of the complexity involved in the argument presented in this chapter,
we review here the basic ideas and motivations behind each section. In Section 4.2,
we provide a more sophisticated analysis of the near field that goes beyond the
customary (circuit) view of reactive fields and energies. To start with, we recruit
the Weyl expansion in expanding the scalar Green’s function into propagating and
nonpropagating (evanescent) parts. By substituting this expansion into the dyadic
Green’s function theorem, an expansion of the total fields into propagating and
nonpropagating parts becomes feasible. We then break the rotational symmetry
by introducing two coordinate system, once is fixed (the global frame), while the
other can rotate freely with respect to the fixed frame (the local frame). We then
systematically develop the mathematical machinery that allows us to describe the
decomposition of the electric field into the two modes above along the local frame.
It turns out that an additional rotation of the local frame around its z-axis does not
change the decomposition into total propagating and nonpropagating parts along this
axis. This crucial observation, which can be proved in a straightforward manner, is
utilized to introduce the concept of radial streamlines. This concept is a description
of how the electromagnetic fields split into propagating and nonpropagating modes
along radial streamlines, like the situation in hydrodynamics, but defined here only in
terms of fields. The concept of radial streamlines will appear with the progress of our
study to be the most important structure of the antenna near field from an engineering
point of view. We also show that the propagating and nonpropagating parts both
satisfy Maxwell’s equations individually. This important observation will be needed
later in building the energy interpretation. The section ends with a general flow chart
illustrating how the spectral composition of the electric field is constructed. This is
indeed the essence of the formation of the antenna near field, which we associate
here with the nonpropagating part.

In Section 4.3, we further study the near-field streamlines by systematically
investigating the energy associated with our previous field decomposition. The fact
that the propagating and nonpropagating parts are Maxwellian fields is exploited to
generalize the Poynting theorem to accommodate for the three different contributions
to the total energy, the self energy of the propagating field, the self energy of the
nonpropagating field, and the interaction energy between the two fields, which may
be positive or negative, while the first two self energies are always positive. We
then investigate various types of near field energies. It appears that two important
classes of energies can be singled out for further consideration: localization energy
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and stored energy. We notice that the latter may not be within the reach of the time-
harmonic theory we develop in this work, but provide expressions to compute the
former energy type. One conclusion here is that the radial streamline nonpropagating
energy is convergent in the antenna exterior region, another positive evidence of its
importance.

In Section 4.4, we investigate the near-field structure from the far-field point
of view, i.e., using the Wilcox expansion. To achieve this, a generalization of the
Weyl expansion is needed, which we derive and then use to devise a hybrid Wilcox-
Weyl expansion. The advantage of the hybrid expansion is this. While the recursive
structure of the Wilcox expansion, and the direct construction outlined in Chapter
3, allow us to obtain all the terms in the series by starting from a given far-field
radiation pattern, the generalized Weyl expansion permits a spectral analysis of each
term into propagating and nonpropagating streamlines. We notice that only radial
streamlines are possible here, which can be interpreted as a strong relation between
the the far field and the near field of antennas that was not suspected previously. A
more thorough study of this last observation will be conducted in a later publication.

Finally, in Section 4.5 we go back to the analysis of the antenna from the
source point of view where we provide a very general explication of the way in
which the far field of antennas is produced starting from a given current distribution.
The theory explains naturally why some antennas like linear wires and patch antennas
possess broadside radiation patterns. It turns out that the whole process of the far
field formation can be described in terms of geometrical transformations and spatial
filtering, two easy-to-understand processes.

4.2 SPECTRAL ANALYSIS OF ANTENNA NEAR FIELDS: THE CON-
CEPT OF RADIAL STREAMLINES

4.2.1 Spectral Decomposition Using the Weyl Expansion

We start by assuming that the current distribution of an arbitrary antenna is given by a
continuous electric current volume density J(r) defined on a compact support (finite
and bounded volume) V . Let the antenna be surrounded by an infinite, isotropic,
and homogeneous space with electric permittivity ε and magnetic permeability µ.
The electric field radiated by this current distribution is given by the dyadic Green’s
function theorem [35]

E (r) = iωµ

∫
V

d3r′ Ḡ (r, r′) · J (r′), (4.1)
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where the dyadic Green’s function is given by

Ḡ (r, r′) =
[
I +

∇∇
k2

]
g (r, r′) , (4.2)

while the scalar Green’s function is defined as

g (r, r′) =
eik|r−r′|

4π |r − r′| . (4.3)

Therefore, the electromagnetic fields radiated by the antenna1 can be totally deter-
mined by knowledge of the dyadic Green’s function and the current distribution on
the antenna. We would like to further decompose the former into two parts, one pure
propagating and the other evanescent. This task can be accomplished by using the
Weyl expansion [94],[35]

eikr

r
=

ik

2π

∫ ∞

−∞

∫ ∞

−∞
dpdq

1
m

eik(px+qy+m|z|), (4.4)

where2

m(p, q) =

{ √
1 − p2 − q2 , p2 + q2 ≤ 1

i
√

p2 + q2 − 1 , p2 + q2 > 1
. (4.5)

Our mathematical devolvement has been constrained to the condition of time-
harmonic excitation, i.e., all time variations take the form exp(−iωt). From the
basic definition of waves [91], we know that wave propagation occurs only if the
mathematical solution of the problem can be expressed in the form Ψ(r−ct), where
c is a constant and Ψ is some function.3 Since the time variation and the spatial
variation are separable, it is not difficult to see that the only spatial variation that
can lead to a total spatio-temporal solution that conforms to the expression of a
propagating wave mentioned above is the exponential form exp(imr), where m is
a real constant. The part of the field that cannot be put in this form is taken simply
as the nonpropagating portion of the total field.4 Indeed, the Weyl expansion shows
that the total scalar Green’s function can be divided into the sum of two parts, one

1 The magnetic field can be easily obtained from Maxwell’s equations.
2 Throughout this chapter, the explicit dependance of m on p and q will be suppressed for simplicity.
3 Here, a one-dimensional problem is assumed for simplicity.
4 This convention supplies the incentive for our whole treatment of the concept of energies localized

and stored in the antenna fields as presented in this chapter.
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as pure propagating waves and the other as evanescent, hence nonpropagating part.
Explicitly, we write

g (r, r′) = gev (r, r′) + gpr (r, r′) , (4.6)

where the propagating and nonpropagating (evanescent) parts are given, respectively,
by the expressions

gev (r, r′) = ik
8π2

∫
p2+q2>1 dpdq 1

meik[p(x−x′)+q(y−y′)]

×eim|z−z′|,
(4.7)

gpr (r, r′) = ik
8π2

∫
p2+q2<1 dpdq 1

meik[p(x−x′)+q(y−y′)]

×eim|z−z′|.
(4.8)

The Weyl expansion can be significantly simplified by transforming the double inte-
grals into cylindrical coordinates and then making use of the integral representation
of the Bessel function [88]. The final results are5

gev (r, r′) =
k

4π

∫ ∞

0
duJ0

(
kρs

√
1 + u2

)
e−k|z−z′|u, (4.9)

gpr (r, r′) =
ik

4π

∫ 1

0
duJ0

(
kρs

√
1 + u2

)
eik|z−z′|u, (4.10)

where ρs =
√

(x − x′)2 + (y − y′)2. A routine but important observation is that
the integral (4.9), which gives the total evanescent part of the electric field, is both
uniformly and absolutely convergent for z �= z′.6

By substituting the Weyl identity (4.4) into (4.1) and using (4.3), we obtain
easily the following expansion for the dyadic Green’s function7

Ḡ (r, r′) = ik
8π2

∫∞
−∞
∫∞

−∞ dpdq Īk2−KK
k2m

×eik[p(x−x′)+q(y−y′)+m|z−z′|],
(4.11)

5 The details of similar transformation will be given explicitly in Section 4.2.6.
6 See Appendix 4.7.1.
7 First, we bring the differentiation operators into the integral (see Appendix 4.7.2 for justification).

Next, the vector identities ∇ exp (A · r) = A exp (A · r) and ∇ · B exp (A · r) = A ·
B exp (A · r) are used.
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where the spectral variable (wavevector) is given by

K = x̂kp + ŷkq + ẑsgn (z − z′) km. (4.12)

Here, sgn stands for the signum function.8 Throughout this chapter, we will be
concerned only with the exterior region of the antenna, i.e., we don’t investigate the
fields within the source region. For this reason, the singular part that should appear
explicitly in the Fourier expansion of the dyadic Green’s function (4.11) in the form
of a delta function was dropped.

The dyadic Green’s function can be decomposed into two parts, evanescent
and propagating, and the corresponding expressions are given by9

Ḡev (r, r′) = ik
8π2

∫
p2+q2>1 dpdq Īk2−KK

k2m

×eik[p(x−x′)+q(y−y′)+m|z−z′|],
(4.13)

Ḡpr (r, r′) = ik
8π2

∫
p2+q2<1 dpdq Īk2−KK

k2m

×eik[p(x−x′)+q(y−y′)+m|z−z′|].
(4.14)

Substituting the spectral expansion of the dyadic Green’s function as given by
(4.11) into (4.1), we obtain after interchanging the order of integration

E (r) =
−ωkµ

8π2

∫ ∞

−∞
dpdq

Īk2 − KK
k2m

· J̃ (k) eiK·r, (4.15)

where J̃ (K) is the spatial Fourier transform of the source distribution

J̃ (K) =
∫

V

d3r′ J (r′) e−iK·r′
. (4.16)

The expansion (4.15) is valid only in the region z > L and z < −L, i.e., the
region exterior to the infinite slab −L ≤ z ≤ L. The reason is that in the integral
representation of the dyadic Green’s function (4.11), the integration contour actually
does not vary smoothly on the source variables r′. However, for the region |z| > L,
it is possible to justify this exchange of order.10

8 The signum function is defined as

sgn (z) =
{

z, z ≥ 0
−z, z < 0

9 For the purpose of numerical evaluation, the reader must observe that the expressions of the dyadic
Green’s function decomposition (4.13) and (4.14) contain more than two basic integrals because of
the dependence of K on p and q as indicated by (16.17).

10 See Appendix 4.7.3.
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Figure 4.1 The geometrical description of the antenna source distribution (shaded volume V ) suitable
for the application of Weyl expansion. (a) Global observation coordinate system. The spectral represen-
tation of the radiated field given by (4.15) is valid only in the region |z| > L. (b) Global and local
coordinate system. Here, for any orientation of the local frame described by θ and φ, L′′ will be greater
than the maximum dimension of the source region V in that direction.



106 New Foundations for Applied Electromagnetics

4.2.2 Concept of Propagation in the Antenna Near-Field Zone

As can be seen from equation (4.13) for the antenna fields expressed in terms of
evanescent modes, the expansion itself depends on the choice of the coordinate
system while the total field does not. Actually, there are two types of coordinates
to be taken into account here, those needed for the mathematical description of the
antenna current distribution J (r′), i.e., the point r′, and those associated with the
observation point r. In Figure 4.1(a), we show only the observation frame since
the source frame is absorbed into the dummy variables of the integral defining the
Fourier transform of the antenna current distribution (4.16). In the Weyl expansion
as originally given in (4.4), the orientation of the observation frame of reference
is unspecified. This is simply the mathematical expression of the fact that scalar
electromagnetic sources possess rotational symmetry, i.e., the field generated by a
point source located at the origin depends only on the distance of the observation
point from the origin. At a deeper level, we may take this symmetry condition as an
integral trait of the underlying spacetime structure upon which the electromagnetic
field is defined.11 What is relevant to our present discussion, which is concerned with
the nature of the antenna near field, is that the observation frame of reference can
be rotated in an arbitrary manner around a fixed origin. Let us start then by fixing
the choice for the origin of the source frame x′, y′, and z′. Next, we define a global
frame of reference and label its axis by x, y, and z. Without loss of generality, we
assume that the source frame is coincident with the global frame. We then introduce
another coordinate system with the same origin of the both the global and source
frames and label its coordinates by x′′, y′′, and z′′. This last frame will act as our
local observation frame. It can be orientated in an arbitrary manner as is evident
from the freedom of choice of the coordinate system in the Weyl expansion (4.4).
We allow the z′′-axis of our local observation frame to be directed at an arbitrary
direction specified by the spherical angles θ and ϕ, i.e., the z′′-axis will coincide
with the unit vector r̂ in terms of the global frame. The situation is geometrically

11 This observation can be further formalized in the following way. The field concept is defined at
the most primitive level as a function on space and time. Now what is called space and time is
described mathematically as a manifold, which is a precise way of saying that space and time are
topological spaces that admit differentiable coordinate charts (frames of references). We find then
that the electromagnetic fields are functions defined on manifolds. The manifold itself may possess
certain symmetry properties, which in the case of our Euclidean space are a rotational and translational
symmetry. Although only the rotational symmetry is evident in the form of Weyl expansion given
by (4.4), the reader should bear in mind that the translational invariance of the radiated fields has
been already used implicitly in moving from (4.4) to expressions such as (4.13) and (4.14), where
the source is located at r′ instead of the origin.
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described in Figure 4.1(b). There, the Weyl expansion will be written in terms of
the local frame x′′, y′′, and z′′ with region of validity given by |z| > L′′, where
L′′ = L′′(θ, ϕ) is chosen such that it will be greater than the maximum size of the
antenna in the direction specified by θ and ϕ. It can be seen then that our radiated
electric fields written in terms of the global frame but spectrally expanded using the
(rotating) local frame are given12

E (r) = −ωkµ
8π2

∫∞
−∞
∫∞

−∞ dpdq Īk2−K′′K′′

k2m ·
∫

V
d3r′ J (r′)

×eik[px′′+qy′′+sgn(z′′−L′′)mz′′]

×eik[−px′
s−qy′

s−sgn(z′−L′′)mz′
s],

(4.17)

where the new spectral vector is given by

K′′ = x̂′′kp + ŷ′′kq + ẑ′′sgn (z′′ − L′′) km. (4.18)

The cartesian coordinates r′
s = 〈x′

s, y
′
s, z

′
s〉 in (4.17) represent the source coordinates

r′ = 〈x′, y′, z′〉 after being transformed into the language of the new frame
r′′ = 〈x′′, y′′, z′′〉.13 In terms of this notation, (4.17) is rewritten in the more compact
form

E (r) = −ωkµ
8π2

∫∞
−∞ dpdq Īk2−K′′K′′

k2m

× ·
∫

V
d3r′ J (r′) e−iK·r′

seiK·r′′
.

(4.19)

To proceed further, we need to write down the local frame coordinates explicitly
in terms of the global frame. To do this, the following rotation matrix is employed14

R̄ (θ, ϕ) :=


 R11 R12 R13

R21 R22 R23
R31 R32 R33


 , (4.20)

where the elements are given by

R11 = sin2 ϕ + cos2 ϕ cos θ,
R12 = − sinϕ cos ϕ (1 − cos θ) ,
R13 = − cos ϕ sin θ, R21 = − sinϕ cos ϕ (1 − cos θ) ,
R22 = cos2 ϕ + sin2 ϕ cos θ, R23 = − sinϕ sin θ,
R31 = cos ϕ sin θ, R32 = sinϕ sin θ, R33 = cos θ.

(4.21)

12 That is, we expand the dyadic Green’s function (??) in terms of the local frame and then substitute
the result into (4.1).

13 These are required only in the argument of the dyadic Green’s function.
14 See Appendix 4.7.4 for the derivation of the matrix elements (4.21).
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In terms of this matrix, we can express the local frame coordinates in terms of the
global frame’s using the following relations

r′′ = R̄ (θ, ϕ) · r, r′
s = R̄ (θ, ϕ) · r′. (4.22)

It should be immediately stated that this rotation matrix will also rotate the x′′y′′-
plane around the z′′-axis with some angle. We can further control this additional
rotation by multiplying (4.20) by the following matrix

R̄α :=


 cos α − sinα 0

sinα cos α 0
0 0 1


 , (4.23)

where α here represents some angle through which we rotate the x′′y′′-plane around
the z′′-axis. However, as will be shown in Section 4.2.4, a remarkable characteristic
of the field decomposition based on Weyl expansion is that it does not depend on
the angle α if we restrict our attention to the total propagating part and the total
evanescent part of the electromagnetic field radiated by the antenna.

From (4.18) and (5.13), it is found that K′′ = R̄T · K and therefore
K′′K′′ =

(
R̄T · K

) (
K · R̄

)
:= R̄T · KK · R̄, where T denotes matrix transpose

operation. Moreover, it is easy to show that K ·
(
R̄ · r

)
=
(
R̄T · K

)
· r. Using these

two relation, (4.19) can be put in the form

E (r) = −ωkµ
8π2

∫∞
−∞
∫∞

−∞ dpdq Īk2−R̄T ·KK·R̄
k2m

× ·
∫

V
d3r′J (r′) e−i(R̄T ·K)·r′

eiK·(R̄·r).
(4.24)

Therefore, from the definition of the spatial Fourier transform of the antenna current
as given by (16.16), (4.24) can be reduced into the form

E (r) = −ωkµ
8π2

∫∞
−∞
∫∞

−∞ dpdq Īk2−R̄T ·KK·R̄
k2m

× · J̃
(
R̄T · K

)
eiK·(R̄·r).

(4.25)

Separating this integral into nonpropagating (evanescent) and propagating parts, we
obtain, respectively,

Eev (r; û) = −ωkµ
8π2

∫
p2+q2>1 dpdq Īk2−R̄T (û)·KK·R̄(û)

k2m

× · J̃
[
R̄T (û) · K

]
eiK·[R̄(û)·r],

(4.26)
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Epr (r; û) = −ωkµ
8π2

∫
p2+q2<1 dpdq Īk2−R̄T (û)·KK·R̄(û)

k2m

× · J̃
[
R̄T (û) · K

]
eiK·[R̄(û)·r].

(4.27)

We will refer to the expansions (4.26) and (4.27) as the general decomposition
theorem of the antenna fields. They express the decomposition of the field at location
r into total evanescent and propagating parts measured along the direction specified
by the unit vector û = x̂ sin θ cos ϕ + ŷ sin θ sinϕ + ẑ cos θ, i.e., when the z′′-axis
of the local observation frame is oriented along the direction of û. Moreover, since it
can be proved that this decomposition is independent of an arbitrary rotation of the
local frame around û (see Section 4.2.4), it follows that the quantities appearing in
(4.26) and (4.27) are unique. However, it must be noticed that the expansions (4.26)
and (4.27) are valid only in an exterior region, for example |z′′| > L, where here
L is taken as the maximum dimension of the antenna current distribution. Using the
explicit form of the rotation matrix (4.20) given in (4.21), we find that the general
decomposition theorem is valid in the region exterior to the infinite slab enclosed
between the two planes

[
sin2 ϕ + cos2 ϕ cos θ

]
x − [sinϕ cos ϕ (1 − cos θ)] y

− cos ϕ sin θz = ±L.
(4.28)

This region will be refereed to here as the antenna horizon, meaning the horizontal
range inside which the simple expressions in (4.26) and 4.27) are not valid.15 We
immediately notice that the antenna horizon is changing in orientation with every
angles θ and ϕ. This will restrict the usefulness of the expansions (4.26) and (4.27) in
many problems in field theory as we will see later. However, a particularly attractive
field structure, the radial streamline concept, will not suffer from this restriction.
Toward this form we now turn.

4.2.3 The Concept of Antenna Near-Field Radial Streamlines

We focus our attention on the description of the radiated field surrounding the
antenna physical body using spherical coordinates. In particular, notice that by
inserting r = x̂r sin θ cos ϕ + ŷr sin θ sinϕ + ẑ cos θ into (5.13), and using the
form of the rotation matrix given by (4.20) and (4.21), one can easily calculate

15 For an example of calculations made inside the antenna horizon, see Appendix 4.7.6.
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R̄ (θ, ϕ) · r = 〈0, 0, r〉.16 Therefore, the expansion (4.25) becomes

E (r) = −ωkµ
8π2

∫∞
−∞
∫∞

−∞ dpdq Īk2−R̄T ·KK·R̄
k2m · J̃

(
R̄T · K

)
×eisgn(r−L)kmr,

(4.29)

where L := maxθ,ϕ L′′ (θ, ϕ). Since the observation is of the field propagating
or nonpropagating away from the antenna, we are always on the branch r > L.
Furthermore, by dividing the expansion (4.29) into propagating and nonpropagating
parts, it is finally obtained

Eev (r) = −ωkµ
8π2

∫
p2+q2>1 dpdqR̄T (θ, ϕ) · Ω̄ (p, q) · R̄ (θ, ϕ)

× · J̃
[
R̄T (θ, ϕ) · K

]
e−kr

√
p2+q2−1,

(4.30)

Epr (r) = −ωkµ
8π2

∫
p2+q2<1 dpdqR̄T (θ, ϕ) · Ω̄ (p, q) · R̄ (θ, ϕ)

× · J̃
[
R̄T (θ, ϕ) · K

]
eikr

√
1−p2+q2

,
(4.31)

where we have introduced the spectral polarization dyad defined as17

Ω̄ (p, q) :=
Īk2 − KK

k2m
. (4.32)

We notice that in this way the general decomposition theorems (4.26) and (4.27)
are always satisfied since for each direction specified by θ and ϕ, the slab enclosed
between the two planes given by (4.28) will also rotate such that the observation
point is always in the exterior region. This desirable fact is behind the great utility
of the radial streamline concept (to be defined momentarily) in the antenna theory
we are proposing in this work.

The expansions (4.30) and (4.31) can be interpreted as the decomposition
of the electromagnetic fields into propagating and nonpropagating waves in the
radial directions described by the spherical angles θ and ϕ. That is, we do not
obtain a plane wave spectrum in this formulation, but instead, what we prefer to call
radial streamlines emanating from the origin of the coordinate system (conveniently
chosen at the center of the actual radiating structure). The physical meaning of
‘streamlines’ here is analogous to the situation encountered in hydrodynamics,

16 This computation can be considered as an alternative derivation of the rotation matrix compared with
the one presented in Appendix 4.7.4.

17 For a discussion of the physical meaning of this dyad, and hence a justification of the proposed name,
see Section 4.5.
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where material particles move in trajectories embedded within continuous fluids.
In the case considered here, streamlines have the mathematical form Ψ(r − ct) for a
propagating mode with constant phase speed c, and hence are defined completely in
terms of fields. As explained earlier, it is only such solutions that represent a genuine
propagating mode; the remaining part, the evanescent mode in the electromagnetic
problem, represents clearly the nonpropagating part of the radiated field. The concept
of ‘electromagnetic field streamlines’ developed above is a logical deduction from a
peculiarity in the Weyl expansion, namely the symmetry breaking of the rotational
invariance of the scalar Green’s function, a mathematical trait we propose to elevate
to the level of a genuine physical process at the heart of the dynamics of the antenna
near fields.18 It is this form of radial streamlines that appears to the authors to
be the most natural representation of the inner structure of the antenna near fields
since it is viewed from the perspective of the far fields, which in turn is most
conventionally expressed in terms of spherical coordinates. Since antenna engineers
almost always describe the antenna in the far-field zone (among other measures
like the input impedance), and since such mathematical description necessitates
a choice of a spherical coordinate system, we take our global frame introduced
in the previous parts to coincide with the spherical coordinate system employed
by engineers in the characterization of antennas. Therefore, our near field picture,
although it starts from a given current distribution in the antenna region, still
partially reflects the perspective of the far field. In Section 4.4, we will develop
the near field picture completely from the far field perspective by employing the
Wilcox expansion.

4.2.4 Independence of the Spectral Expansion to Arbitrary Rotation Around
the Main Axis of Propagation/Nonpropagation

We now turn to the issue of the effect of rotation around the main axis chosen to
perform the spectral expansion. As we have already seen, the major idea behind
the near-field theory is the interpretation of the rotational invariance of the scalar
Green’s function in terms of its Weyl expansion. It turned out that with respect to
a given antenna current distribution, as long as one is concerned with the exterior
region, the observation frame of reference can be arbitrarily chosen in order to enact
a Weyl expansion with respect to this frame. It is our opinion that such a freedom of
choice is not an arbitrary consequence of the mathematical identity per se, but rather
the deeper expression of the being of electromagnetic radiation as such. Indeed,

18 The generalized concept of non-radial streamlines will be developed by the authors in separate
publications. For example, see Chapter 4.
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the very essence of how antenna works is the scientific explication of a definite
mechanism through which the near field genetically gives rise to the far field; in
other words, the genesis of electromagnetic radiation out from the near field shell.
Although the full analysis of this problem will be addressed in future publications by
the authors, we have introduced so far the concept of radial streamlines to describe
the conversion mechanism above mentioned in precise terms. It was found that we
can orient the z-axis of the observation frame along the unit radial vector r̂ of the
global frame in order to obtain a decomposition of the total fields propagating and
nonpropagating away from the antenna origin along the direction of r̂.19 It remains
to see how our spectral expansion is affected by a rotation of the local frame xy-
plane around the radial direction axis. More precisely, the problem is stated in the
following manner. Consider a point in space described by the position vector r in
the language of the global frame of observation. Assume further that the expansion
of the electric field into propagating and nonpropagating modes along the direction
of the z-axis of this frame was achieved, with values Eev (r) and Epr (r) giving
the evanescent and propagating parts, respectively. Now, keeping the the direction of
the z-axis fixed, we merely rotate the xy-plane by an angle α around the z-axis. The
electric field is now expanded into evanescent and propagating modes again along
the same z-axis, and the results are E′

ev (r) and E′
pr (r), respectively. The question

we now investigate is the relation between these two sets of fields.
To accomplish this, let us start from the original expansion (4.24) but replace

R̄ (θ, ϕ) with a rotation around the z-axis through an angle α, which can be
used to obtain the transformed spatial and spectral variables through the equations
r′ = R̄α ·r and K′ = R̄T

α ·K, where R̄α is given by (4.23). By direct calculation, we
obtain K · r = k (p cos α + sinα) x+k (−p sinα + q cos α) y +sgn (z − L) kmz
and K′ = x̂k (p cos α + q sinα) + ŷk (−p sinα + q cos α) + ẑ sgn (z′ − L′) km.
These results suggest introducing the substitutions p′ = p cos α + q sinα and
q′ = −p sinα + q cos α, which are effectively a rotation of the pq-plane by and
angle −α around the origin. Being a rotation, the Jacobian of this transformation
is one, i.e., J

(
R̄α

)
= 1, where J(·) denotes the Jacobian of the transformation

matrix applied to its argument. Also, it is evident that m′ =
√

1 − p′2 + q′2 =√
1 − p2 + q2 = m. Moreover, this implies that the two regions p2 + q2 < 1 and

p2+q2 > 1 transform into the regions p′2 + q′2 < 1 and p′2 + q′2 > 1, respectively.

19 Cf. equations (4.30) and (4.31).
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After dividing (4.24) into evanescent and propagating part, then rotating the pq-
plane and changing the spectral variables from p and q to p′ and q′, we find

E′
ev (r) = −ωkµ

8π2

∫
p′2+q′2>1 dp′dq′ Īk

2−K(p′,q′)K(p′,q′)
k2m′

×J
(
R̄α

)
· J̃ [K (p′, q′)] eiK(p′,q′)·(r),

(4.33)

E′
pr (r) = −ωkµ

8π2

∫
p′2+q′2<1 dp′dq′ Īk

2−K(p′,q′)K(p′,q′)
k2m′

×J
(
R̄α

)
· J̃ [K (p′, q′)] eiK(p′,q′)·(r).

(4.34)

Applying the results of the paragraph preceding the two equations above, we conclude
that

Eev (r) = E′
ev (r) , Epr (r) = E′

pr (r) . (4.35)

Therefore, the total evanescent and total propagating parts of the antenna radiated
fields are invariant to rotation around the z-axis of the observation frame. This result
is true only when we are interested in field decomposition into regions in the spectral
pq-plane that do not change through rotation. For example, if we are interested in
studying part of the radiated field such that it contains the modes propagating along
the z-direction, but with spectral content in the pq-plane inside, say, a square, then
since not every rotation is a symmetry operation for a square, we conclude that the
quantity of interest above does vary with rotation of the observation frame around
the z-axis for this special case. In this chapter, however, our interest will focus on
the total propagating and nonpropagating parts since these are the quantities that
help rationalize the overall behavior of antennas in general. However, it should be
kept in mind that for more general and sophisticated understanding of near-field
interactions, it is better to retain a general region in the pq-plane as the basis for a
broad spectral analysis of the electromagnetic fields (see Figure 4.2).

4.2.5 The Propagating and Nonpropagating Parts are Maxwellian

Our formalism concerning the expansion of the electromagnetic field produced by a
given antenna current distribution into propagating and evanescent modes is still that
directly reflecting the physics of the phenomena under consideration, which is the
laws dictated by Maxwell’s equations. We will show now that both the propagating
and nonpropagating parts obeys individually Maxwell’s equations.

The frequency-domain Maxwell’s equations in source-free homogeneous
space described by electric permittivity ε and magnetic permeability µ are given
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Figure 4.2 Regions in the spectral pq-plane in terms of which the decomposition of the electromagnetic
field into propagating and nonpropagating modes is conducted. The circle p2+q2 = 1marks the boundary
between the so-called invisible region p2 + q2 > 1 and the visible region p2 + q2 < 1 (a circular disk).
In general, the mathematical description of the field can be accomplished with any region in the spectral
plane, not necessary the total regions inside and outside the circle p2 + q2 = 1. In particular, we show
an arbitrary region D located inside the propagating modes disk p2 + q2 < 1. In general, D need not be
a proper subset of the region p2 + q2 < 1, but may include arbitrary portions of both this disk and its
complement in the plane.

by
∇ × E = iωµH, ∇ × H = −iωεE

∇ · E = 0, ∇ · H = 0.
(4.36)

The first curl equation in (4.36) can be used to compute the magnetic field if the
electric field is known. We assume that the latter can be expressed by the general
decomposition theorem as stated in (4.26) and (4.27). Noticing the vector identity
∇ × (ψA) = ∇ψ × A + ψ∇ · A and the relation ∇ exp (A · r) = A exp (A · r),
which are true in particular for constant vector A and a scalar field ψ(r), we easily
obtain

H (r) = ik
8π2

∫∞
−∞
∫∞

−∞ dpdq Īk2−R̄T ·KK·R̄
k2m · J̃

(
R̄T · K

)
×R̄T · KeiK·(R̄·r),

(4.37)

where the curl operator was brought inside the spectral integral. Next, from the
dyadic identity ab · c = a (b · c), we write

R̄T · KK · R̄ · J̃
(
R̄T · K

)
= R̄T · K

[(
K · R̄

)
· J̃
(
R̄T · K

)]
. (4.38)
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This allows us to conclude that

R̄T · KK · R̄ · J̃
(
R̄T · K

)
× R̄T · K = 0. (4.39)

Therefore, after separating the integral into propagating and evanescent parts, (4.37)
becomes

Hev (r; û) = ik
8π2

∫
p2+q2>1 dpdq 1

m J̃
[
R̄T (û) · K

]
×R̄T (û) · KeiK·(R̄·r),

(4.40)

Hpr (r; û) = ik
8π2

∫
p2+q2<1 dpdq 1

m J̃
[
R̄T (û) · K

]
×R̄T (û) · KeiK·(R̄·r).

(4.41)

The radial streamline magnetic fields corresponding to those given for the electric
field in (4.30) and (4.31) are

Hev (r) = ik
8π2

∫
p2+q2>1 dpdq 1

m J̃
[
R̄T (θ, ϕ) · K

]
×R̄T (θ, ϕ) · Ke−kr

√
p2+q2−1,

(4.42)

Hpr (r) = ik
8π2

∫
p2+q2<1 dpdq 1

m J̃
[
R̄T (θ, ϕ) · K

]
×R̄T (θ, ϕ) · Keikr

√
1−p2+q2

.
(4.43)

It is evident from the original (4.37) that the evanescent (propagating) magnetic field
is found by applying the curl operator to the evanescent (propagating) part of the
electric field. That is,

Hev = (1/iωµ) ∇ × Eev, Hpr = (1/iωµ) ∇ × Epr. (4.44)

Moreover, the divergence of the evanescent and propagating parts of both the
electric and magnetic fields is identically zero. To see this, take the divergence of
(4.26), interchange the order of integration and differentiation, and apply the identity
∇ · B exp (A · r) = A · B exp (A · r). It follows that

∇ · Eev (r; û) = −ωkµ
8π2

∫
p2+q2>1 dpdq Īk2−R̄T (û)·KK·R̄(û)

k2m

× · J̃
[
R̄T (û) · K

]
·
[
R̄T (û) · K

]
eiK·(R̄·r).

(4.45)

We calculate by ab · c = a (b · c) and obtain{
R̄T · KK · R̄ · J̃

[
R̄T · K

]}
· (R̄T · K)

=
(
R̄T · K

)
·
(
R̄T · K

){(
K · R̄

)
· J̃
[
R̄T · K

]}
.

(4.46)
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However, since the rotation matrix is orthogonal, i.e., R̄T · R̄ = Ī, we have(
R̄T · K

)
·
(
R̄T · K

)
= k2 and (11.23) becomes

{
R̄T · KK · R̄ · J̃

[
R̄T · K

]}
· (R̄T · K)

= k2J̃
[
R̄T · K

]
·
(
R̄T · K

)
.

(4.47)

Substituting this result into (11.19), we find that ∇ · Eev (r; û) = 0. A similar
procedure can now be applied to all other field parts and the divergence is also zero.
We conclude from this together with (4.44) that

∇ × Eev = iωµHev, ∇ × Hev = −iωεEev
∇ · Eev = 0, ∇ · Hev = 0.

(4.48)

∇ × Epr = iωµHpr, ∇ × Hpr = −iωεEpr
∇ · Epr = 0, ∇ · Hpr = 0.

(4.49)

These are the main results of this section. They show that each field part satisfies
individually Maxwell’s equations. In other words, whatever is the direction of
decomposition, the resultant fields are always Maxwellian. For the case when the
observation point lies within the antenna horizon, it is still possible to apply the
same procedure of this section but to the most general expressions given by (4.114)
and (4.115). It follows again the the propagating and nonpropagating parts are still
Maxwellian.

4.2.6 Summary and Interpretation

By now we know that our expansion of the electromagnetic field into propagating
and nonpropagating modes along a changing direction is well justified by the
result of Section 4.2.4, namely that such an expansion along a given direction
is independent of an arbitrary rotation of the local observation frame around
this direction. This important conclusion significantly simplifies the analysis of
the antenna near fields. The reason is that the full rotation group requires three
independent parameters in order to specify an arbitrary 3D orientation of the rotated
observation frame. Instead, our formulation depends only on two independent
parameters, namely θ and ϕ, which are the same parameters used to characterize
the degrees of freedom of the antenna far field. This step then indicates an intimate
connection between the antenna near and far fields, which is, relatively speaking, not
quite obvious.
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However, our knowledge of the structure of the near field, as can be discerned
from the expansions (4.30) and (4.31), is enhanced by the record of the exact manner,
as we progress away from the antenna along the radial direction r̂, in which the
evanescent field, i.e., the nonpropagating part, is being continually converted into
propagating modes. As we reach the far-field zone, most of the field contents reduce
to propagating modes, although the evanescent part still contributes asymptotically
to the far field. For each direction θ and ϕ, the functional form of the integrands in
(4.30) and (4.31) will be different, indicating the ‘how’of the conversion mechanism
we are concerned with.

Since close to the antenna most of the near field content is nonpropagating, we
focus now our attention on the evanescent mode expansion of the electric magnetic
field as given by (4.30).20 Let us introduce the cylindrical variables v and α such
that p = v cos α and q = v sinα. Therefore in the region p2 + q2 > 1,

K (v, α) = x̂kv cos α + ŷkv sinα + ẑik
√

v2 − 1. (4.50)

The integral (4.30) then becomes

Eev (r) = −ωkµ
8π2

∫∞
1 vdv

∫ 2π

0 dα F̄ (θ, ϕ, v, α)
× · J̃

[
R̄T (θ, ϕ) · K (v, α)

]
e−k

√
v2−1r,

(4.51)

where
F̄ (θ, ϕ, v, α) =

Īk2−R̄T (θ,ϕ)·K(v,α)K(v,α)·R̄(θ,ϕ)
ik2

√
v2−1

.
(4.52)

Next, perform another substitution u =
√

v2 − 1. Since du = v
/√

v2 − 1dv, it
follows that the integral (4.51) reduces to

Eev (r) =
−ωkµ

8π2

∫ ∞

0
duG (θ, ϕ, u) e−kur, (4.53)

where

G (θ, ϕ, u) =
∫ 2π

0 dα F̄
(
θ, ϕ,

√
1 + u2, α

)
× · J̃

[
R̄T (θ, ϕ) · K

(√
1 + u2, α

)]
.

(4.54)

Therefore, for a fixed radial direction θ and ϕ, the functional form of the evanescent
part of the field along this direction takes the expression of a Laplace transform

20 The subsequent formulation in this section can be also developed for the evanescent part of the
magnetic field (4.42).
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in which the radial position r plays the role of frequency. This fact is interesting, and
suggests that certain economy in the representation of the field decomposition along
the radial direction has been already achieved by the expansions (4.30) and (4.31).
To appreciate better this point, we notice that since R̄ (θ, ϕ) is a rotation matrix,
it satisfies R̄−1 = R̄T . In light of this, the change in the integrands of (4.30) and
(4.31) with the orientation of the decomposition axis given by θ and ϕ can be viewed
as, firstly, a rotation of the spatial Fourier transform of the current by the inverse
rotation originally applied to the local observation frame, and, secondly, as applying
a similarity transformation to transform the spectral polarization dyad Ω̄ (p, q) to
R̄−1 (θ, ϕ) · Ω̄ (p, q) · R̄ (θ, ϕ), that is, the spectral matrix Ω̄ (p, q) is undergoing a
similarity transformation under the transformation R̄−1, the inverse rotation. These
results indicate that there is a simple geometrical transformation at the core of
the change of the spectral content of the electromagnetic fields,21 which enacts the
decomposition of the electromagnetic fields into nonpropagating and propagating
modes. These transformations are simple to understand and easy to visualize. We
summarize the entire process in the following manner

1. Calculate the spatial Fourier transform of the antenna current distribution in a
the global observation frame.

2. Rotate this Fourier transform by the inverse rotation R̄−1.

3. Transform the spectral polarization dyad by the similarity transformation
generated by the inverse rotation R̄−1.

4. Multiply the rotated Fourier transform by the transformed spectral polarization
dyad. Convert the result from cartesian coordinates p and q to cylindrical
coordinates v and α and evaluate the angular (finite) integral with respect to
α. That is, average out the angular variations α.

5. Transform as v =
√

1 + u2 and compute the Laplace transform of the
remanning function of u. This will give the functional dependence of the
antenna evanescent field on the radial position where r will play the role of
frequency in the Laplace transform.

The overall process is summarized in the flowchart of Figure 4.3. The signif-
icance of this picture is that it provides us with a detailed explication of the actual
route to the far field. Indeed, since the radiation observed away from the antenna
emerges from the concrete way in which the nonpropagating part is being trans-
formed into propagating modes that escape to the far field zone, it follows that all of

21 The functional form of the integrands of (4.30) and (4.31)
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Figure 4.3 The process of forming the near field for general antenna system. The flowchart describes the
details in which the mechanism of conversion from evanescent mode to propagating mode unfolds. This
is delimited by the variation of the nonpropagating part along the radial direction θ and ϕ, with distance
r. The flowchart indicates that the changes in the spectral functions can be understood in terms of simple
geometrical transformations applied to basic antenna quantities like the spatial Fourier transform of the
antenna current distribution and the spectral polarization tensor of the dyadic free space Green’s function.
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the radiation characteristics of antennas, like the formation of single beams, multiple
beams and nulls, polarization, etc, can be traced back into the particular functional
form of the spectral function appearing in the Laplace transform expression (4.53).
Moreover, we now see that the generators of the variation of this key functional form
are basically geometrical transformation associated with the rotation matrix R̄ (θ, ϕ)
through which we orient the local observation frame of reference. In Section 4.5, the
theoretical narrative of the far field formation started here will be further illuminated.

4.3 THE CONCEPT OF LOCALIZED AND STORED ENERGIES IN THE
ANTENNA ELECTROMAGNETIC FIELD

4.3.1 Introduction

Armed with the concrete but general results of the previous chapter, we now turn
our attention to a systematic investigation of the phenomena usually associated with
the energy stored in the antenna surrounding field. We have already encountered the
term ‘energy’ in our general investigation of the antenna circuit model in Chapter
3, where an effective reactive energy was defined in conjunction with the circuit
interpretation of the complex Poynting theorem. We have seen that this concept is
not adequate when attempts to extend it beyond the confines of the circuit approach
are made, pointing to the need to develop a deeper general understanding of antenna
near fields before turning to an examination of various candidates for a physically
meaningful definition of stored energy. In this section, we employ the understanding
of the near-field structure attained in terms of the Weyl expansion of the free space
Green’s function in order to build a solid foundation for the phenomenon of energy
localization in general antenna systems. The upshot of this argument will be our
proposal that there is a subtle distinction between localization energy and stored
energy. The former is within the reach of the time-harmonic theory developed here,
while the latter may require in general an extension to transient phenomena.

4.3.2 Generalization of the Complex Poynting Theorem

Since we know at this stage how to decompose a given electromagnetic field into
propagating and nonpropagating parts, the natural next step is to examine the power
flow in a closed region. Our investigation will lead to a form of the Poynting theorem
that is more general than the customary one (where the latter results from treating
only the total fields).
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Start by expanding both the electric and magnetic fields as

E (r) = Eev (r) + Epr (r) , H (r) = Hev (r) + Hpr (r) . (4.55)

The complex Poynting vector is given by [33]

S (r) =
1
2
E (r) × H∗ (r) . (4.56)

Substituting (15.6) into (4.56), we find

S (r) = 1
2Eev × H∗

ev + 1
2Epr × H∗

pr
+ 1

2Eev × H∗
pr + 1

2Epr × H∗
ev.

(4.57)

Since it has been proved in Section 4.2.5 that each of the propagating and nonprop-
agating part of the electromagnetic field is Maxwellian, it follows immediately that
the first and the second terms of the RHS of (4.57) can be identified with complex
Poynting vectors

Sev (r) =
1
2
Eev (r) × H∗

ev (r) , (4.58)

Spr (r) =
1
2
Epr (r) × H∗

pr (r) . (4.59)

From the complex Poynting theorem [33] applied to a source-free region, we also
find

∇ · Sev (r) = −2iω
(
we

ev − wh
ev
)
, (4.60)

∇ · Spr (r) = −2iω
(
we

pr − wh
pr
)
, (4.61)

with electric and magnetic energy densities defined as

we
ev (r) =

ε

4
Eev · E∗

ev, wh
ev (r) =

µ

4
Hev · H∗

ev, (4.62)

we
pr (r) =

ε

4
Epr · E∗

pr, wh
pr (r) =

µ

4
Hpr · H∗

pr. (4.63)

It remains to deal with the cross terms (third and fourth term) appearing on the RHS
of (4.57). To achieve this, we need to derive additional Poynting-like theorems.

Take the dot product of the first curl equation in (4.48) with H∗
pr. The result is

H∗
pr · ∇ × Eev = iωµH∗

pr · Hev. (4.64)
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Next, take the dot product of the complex conjugate of the second curl equation in
(4.49) with Eev. The result is

Eev · ∇ × H∗
pr = iωεEev · E∗

pr. (4.65)

Subtracting (4.65) and (4.64), we obtain

H∗
pr · ∇ × Eev − Eev · ∇ × H∗

pr
= −iω

(
εEpr · E∗

ev − µH∗
pr · Hev

)
.

(4.66)

Using the vector identity ∇ · (A × B) = B · (∇ × A) − A · (∇ × B), equations
(4.66) finally becomes

∇ ·
(
Eev × H∗

pr
)

= −iω
(
εEev · E∗

pr − µHev · H∗
pr
)
. (4.67)

By exactly the same procedure, the following dual equation can also be derived

∇ · (Epr × H∗
ev) = −iω (εEpr · E∗

ev − µHpr · H∗
ev) . (4.68)

Adding (4.67) and (4.68), the following result is obtained

∇ · Sint = −2iω
(
we

int − wh
int
)
, (4.69)

where we defined the complex interaction Poynting vector by

Sint :=
1
2
(
Eev × H∗

pr + Epr × H∗
ev
)
, (4.70)

and the time-averaged interaction electric and magnetic energy densities by

we
int :=

ε

2
Re {Epr · E∗

ev} , (4.71)

wh
int :=

µ

2
Re {Hpr · H∗

ev} , (4.72)

respectively. It is immediate that

we = we
pr + we

ev + we
int, (4.73)

wh = wh
pr + wh

ev + wh
int, (4.74)
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S = Sev + Spr + Sint. (4.75)

The justification for calling the quantities appearing in (4.71) and (4.72) energy
densities is the following. Maxwell’s equations for the evanescent and propagating
parts, namely (4.48) and (4.49), can be rewritten in the original time-dependent form.
By repeating the procedure that led to equation (4.69) but now in the time domain,
it is possible to derive the following continuity equation22

∇ · S̄int +
∂

∂t

(
ue

int + uh
int
)

= 0. (4.76)

Here, we match the time-dependent ‘interaction’ Poynting vector

S̄int = Ēpr × H̄ev + Ēev × H̄pr (4.77)

with the time-dependent electric and magnetic energy densities

ue
int = εĒpr · Ēev, uh

int = µH̄pr · H̄ev, (4.78)

where Ē and H̄ stand for the time-dependent (real) fields. We follow in this treatment
the convention of electromagnetic theory in interpreting the quantities (4.78) as
energy densities. It is easy now to verify that the expressions (4.71) and (4.72) give
the time-average of the corresponding densities appearing in (4.78). Moreover, it
follows that the time-average of the instantaneous Poynting vector (4.77) is given by
Re {Sint}.

Therefore, the complex Poynting theorem can be generalized in the following
manner. In each source-free space region, the total power flow outside the volume
can be separated into three parts, Sev, Spr, and Sint. Each term individually is
interpreted as a Poynting vector for the corresponding field. The evidence for this
interpretation is the fact that a continuity-type equation Poynting theorem can be
proved for each individual Poynting vector with the appropriate corresponding
energy density.23

22 See Appendix 4.7.5 for the derivation of (4.76).
23 For example, consider the energy theorem (4.76). This results states the following. Inside any source-

free region of space, the amount of the interaction power flowing outside the surface enclosing the
region is equal to negative the time rate decrease of the interaction energy located inside the surface.
This interaction energy itself can be either positive or negative, but its “quantity,” is always conserved
as stated by (4.69) or (4.76).
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4.3.3 The Multifarious Aspects of the Energy Flux in the Near Field

According to the fundamental expansion given in the general decomposition theorem
of (4.26) and (4.27), at each spatial location r, the field can be split into total
nonpropagating and propagating parts along a direction given by the unit vector û.24

Most generally, this indicates that if the near field stored energy is to be associated
with that portion of the total electromagnetic field that is not propagating, then it
follows immediately that the definition of stored energy in this way cannot be unique.
The reason, obviously, is that along different directions û, the evanescent part will
have different expansions, giving rise to different total energies. Summarizing this
mathematically, we find that the energy of the evanescent part of the fields is given
by

W e
ev (û) =

ε

4

∫
Vext

d3r |Eev [r; û (r)]|2 , (4.79)

where Vext denotes a volume exterior to the antenna (and possibly the power supply).
In writing down this expression, we made the assumption that the directions along
which the general decomposition theorem (4.26) is applied form a vector field
û = û (r).

The first problem we encounter with the expression (4.79) is that it need not
converge if the volume Vext is infinite. This can be most easily seen when the vector
field û(r) is taken as the constant vector û0. That is, we fix the observation frame for
all points in space, separate the evanescent part, and integrate the amplitude square of
this quantity throughout all space points exterior to the antenna current distribution.
It is readily seen that since the field decays exponentially only in one direction (away
from the antenna current along û0), then the resulting expression will diverge along
the perpendicular directions. The divergence of the total evanescent energy in this
special case is discussed mathematically in Appendix 4.7.6. There, we proved that
the total evanescent energy will diverge unless certain volumes around the antenna
are excluded. Carrying the analysis in spherical coordinates, we discover that the
exterior region can be divided into four regions as shown in Figure 4.5, in which the
total energy converges only in the upper and lower regions.

24 Although the particular mathematical expression given in (4.26) and (4.27) are not valid if the
point at which this decomposition is considered lies within the antenna horizon, the separation into
propagating and nonpropagating remains correct in principle but the appropriate expression is more
complicated.
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4.3.4 The Concept of Localized Energy in the Electromagnetic Field

We now define the localized energy as the energy that is not propagating along certain
directions of space. Notice that the term ‘localized energy’ is 1) not necessarily
isomorphic to ‘stored energy’ and 2) is dependent on certain vector field û = û(r).
The first observation will be discussed in detail later.25 The second observation
is related to the fundamental insight gained from the freedom of choosing the
observation frame in the Weyl expansion. It seems then that the mathematical
description of the wave structure of the electromagnetic field radiated by an antenna
cannot be attained without reference to a particular local observation frame. We have
now learned that only the orientation of the z-axis of this local frame is necessary,
reducing the additional degrees of freedom needed in explicating the wave structure
of the near field into two parameters, e.g., the spherical angles θ and ϕ. This insight
can be generalized by extending it to the energy concept. ‘Localization’here literally
means to restrict or confine something into a limited volume. The electromagnetic
near field possesses a rich and complex structure in the sense that it represents a
latent potential of localization into various forms depending on the local observation
frame chosen to enact the mathematical description of the problem. It is clear then
that the localized energy will be a function of such directions and hence inherently
not unique.26 The overall picture boils down to this: to localize or confine the
electromagnetic energy around the antenna, you first separate the nonpropagating
field along the directions in which the potential localization is to be actualized, and
then the amplitude square of this field is taken as a measure of the energy density of
the localized field in question. By integrating the resulting energy density along the
volume of interest, the total localized energy is obtained. The uncritical approach to
the energy of the antenna fields confuses the stored energy with the localized energy,
and then postulates – without justification – that this energy must be independent of
the observation frame.

One may hope that although the energy density of the evanescent part is not
unique, the total energy, i.e., the volume integral of the density, may turn out to be
unique. Unfortunately, this is not true in general, as can be seen from the results of
Appendix 4.7.6. The total convergent evanescent energy in a give volume depends

25 Cf. Section 4.3.7.
26 The reader should compare this with the definition of quantities like potential and kinetic energies in

mechanics. These quantities will vary according to the frame of reference chosen for the problem.
This does not invalidate the physical aspect of these energies since relative to any coordinate system,
the total energy must remain fixed in a (conservative) closed system. Similarly, relative to any local
observation frame, the sum of the total propagating and nonpropagating fields yields the same actually
observed electromagnetic field.
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in general on the orientation of the decomposition axis û. The ‘near-field pattern’27 is
the quantity of interest that antenna engineers may consider in studying the local field
structure. Such new measure describes the localization of electromagnetic energy
around the antenna in a way that formally resembles the concept of directivity in
the far field. Moreover, based on the general mathematical expression of the near-
field pattern (4.121), it is possible to search for antenna current distributions J(r)
with particular orientations of û in which the obtained evanescent energy density
is invariant. In other words, concepts like omnidirectionality, which is a far-field
concept, can be analogously invented and applied to the analysis of the antenna near
field. Due to the obvious complexity of the near-field energy expression (4.121),
one expects that a richer symmetry pattern may develop with no straightforward
connection with the physical geometry of the antenna body. It is because the far-
field perspective involves an integration operation that the rich sub-wavelength
effects of the antenna spatial current distribution on the generated field tend to be
smoothed out when viewed from the perspective of the antenna radiation pattern. In
the more careful approach of this chapter, the crucial information of the antenna near
zone corresponds to the short-wavelength components, i.e., the spectral components
p2 + q2 > 1, which are responsible of giving the field its intricate terrain of fine
details. These components dominate the field as we approach the antenna current
distribution and may be taken as the main object of physical interest at this localized
level.

4.3.5 The Radial Evanescent Field Energy in the Near-Field Shell

We now reexamine the concept of the near-field shell at a greater depth. The
idea was introduced in Chapter 3 in the context of the reactive energy, i.e., the
energy associated with the circuit model of the antenna input impedance. As it
has been concluded there, this circuit concept was not devised based on the field
vantage point, but mainly to fit the circuit perspective related to the input impedance
expressed in terms of the antenna fields as explicated by the complex Poynting
theorem. We now have the refined model of the radial evanescent field developed
in Section 4.2.3. We define the localized energy in the near-field spherical shell as
the self energy of the nonpropagating modes along the radial streamlines enclosed
in the region a < r < b. The total local energy then is the limit of the previous
expression when b → ∞.

27 Cf. equation (4.121) in Appendix 4.7.6.
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To derive an expression for the localized electric28 radial energy defined this
way, substitute (4.30) to (4.79) with the identification û = r̂. It is obtained29

W e, rd
ev = ω2k2µ2ε

256π4

∫
Vext

d3r

×
∫

p2+q2>1 dpdq
∫

p′2+q′2>1 dp′dq′

×R̄T (θ, ϕ) · Ω̄ (p, q) · R̄ (θ, ϕ)
×R̄T (θ, ϕ) · Ω̄∗ (p′, q′) · R̄ (θ, ϕ)
× · J̃

[
R̄T (θ, ϕ) · K

]
· J̃∗ [R̄T (θ, ϕ) · K

]
×e

−kr
(√

q2+p2−1+
√

q′2+p′2−1
)
.

(4.80)

By converting the space integral in (4.80) into spherical coordinates, and using
identity (4.120) to evaluate the radial integral in the region a < r < b, we end up
with the following expression

W e, rd
ev (a ≤ r ≤ b) = ω2k2µ2ε

256π4

∫ 2π

0

∫ π

0 dθdϕ sin θ
×
∫

p2+q2>1 dpdq
∫

p′2+q′2>1 dp′dq′

×R̄T (θ, ϕ) · Ω̄ (p, q) · R̄ (θ, ϕ)
× · R̄T (θ, ϕ) · Ω̄∗ (p′, q′) · R̄ (θ, ϕ)
× · J̃

[
R̄T (θ, ϕ) · K

]
· J̃∗ [R̄T (θ, ϕ) · K′]

×
{

eik(m+m′)b

ik(m+m′)

[
b2 − 2b

ik(m+m′) − 2
k2(m+m′)2

]
− eik(m+m′)a

ik(m+m′)

[
a2 − 2a

ik(m+m′) − 2
k2(m+m′)2

]}
,

(4.81)

where m = i
√

q2 + p2 − 1 and m′ = i
√

q′2 + p′2 − 1. It appears to the authors
that the radial evanescent mode expansion is the simplest type of near-field decom-
position, and one of the most natural way to mathematically describe the near field
of antennas in general, especially from the engineering point of view.

4.3.6 Electromagnetic Interactions Between Propagating and Nonpropagat-
ing Fields

We turn our attention now to a closer examination of the interaction electromagnetic
field energy in the near-field shell of a general antenna system. The electric field

28 For reasons of economy, throughout this section we give only the expressions of the electric energy.
The magnetic energy is obtained in the same way.

29 Throughout this chapter, the conversion of the multiplication of two integrals into a double integral,
interchange of order of integration, and similar operations are all justified by the results of the
appendices concerning the convergence of the Weyl expansion.
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will again be decomposed into propagating and evanescent parts as E (r) =
Eev (r) + Epr (r). The energy density becomes then

we =
ε

4
|Eev (r)|2 +

ε

4
|Epr (r)|2 +

ε

2
Re {E∗

ev (r) · Epr (r)} . (4.82)

The first term is identified with the self energy density of the evanescent field, the
second with the self energy of the pure propagating part. The third term is a new
event in the near field shell: it represents a measure of interaction between the
propagating and nonpropagating parts of the antenna electromagnetic fields. While
it is relatively easy to interpret the first two terms as energies, the third term, that
which we duped the interaction link between the first two types of fields, presents
some problems. We first notice that contrary to the two self energies, it can be either
positive or negative. Hence, this term cannot be understood as a representative of an
entity standing alone by itself like the self energy, but, instead, it must be viewed
as a relative energy, a relational component in the description of the total energy
of the electromagnetic system. To understand better this point, we imagine that the
two positive energies standing for the self-interaction of both the propagating and
nonpropagating parts subsist individually as physically existing energies associated
with the corresponding field in the way usually depicted in Maxwell’s theory. The
third term, however, is a mutual interaction that relates the two self energies to each
other such that the total energy will be either be larger than the sum of the two self-
subsisting energies (positive interaction term) or smaller than this sum (negative
interaction term.) In other words, although we imagine the self energy density to be
a reflection of an actually existing physical entity, i.e., the corresponding field, the
two fields nevertheless exists in a state of mutual interdependence on each other in
a way that affects the actual total energy of the system.

Consider now the total energy in the near field shell. This will be given by the
volume integral of the terms of (4.82). In particular, we have for the interaction term
the following total interaction energy

W e,rd
int = ω2k2µ2ε

256π4 Re
{∫

Vext
d3r
∫

p2+q2<1 dpdq

×
∫

p′2+q′2>1 dp′dq′R̄T (θ, ϕ) · Ω̄ (p, q) · R̄ (θ, ϕ)
×R̄T (θ, ϕ) · Ω̄∗ (p′, q′) · R̄ (θ, ϕ)

× · J̃
[
R̄T (θ, ϕ) · K

]
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(4.83)

For a particular spherical shell, expressions corresponding to (4.81) and (??) can be
easily obtained. Again, the total interaction energy (4.83) may be negative. Notice
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that from the Weyl expansion, most of the field very close to the antenna current
distribution is evanescent. On the other hand, most of the field in the far-field zone
is propagating. It turns out that the interaction density is very small in those two
limiting cases. Therefore, most of the contribution to the total interaction energy in
(4.83) comes from the intermediate-field zone, i.e., the crucial zone in any theory
striving to describe the formation of the antenna radiated fields.

It is the opinion of the present authors that the existence of the interaction
term in (4.82) is not an accidental or side phenomenon, but instead lies at the
heart of the genesis of electromagnetic radiation out of the near-field shell. The
theoretical treatment we have been developing so far is based on the fact that the
antenna near field consists of streamlines along which the field “flows” not in a
metaphorical sense, but in the mathematically precise manner through which the
evanescent mode is being converted to a propagating modes, and vice versa. The two
modes transform into each other according to the direction of the streamlines under
consideration. This indicates that effectively there is an energy exchange between the
propagating and nonpropagating parts within the near-field shell. Expression (4.83)
is simply an evaluation of the net interaction energy transfer in the case of radial
streamlines. Since this quantity is a single number, it only represents the overall
average of an otherwise extremely complex process. A detailed theory analyzing the
exact interaction mechanism is beyond the scope of this book and will be addressed
elsewhere.

4.3.7 The Concept of Stored Energy

There exists a long history of investigations in the antenna theory literature concern-
ing the topic of ‘stored energy’ in radiating systems, both for concrete particular
antennas and general electromagnetic systems.30 The quality factor Q is the most
widely cited quantity of interest in the characterization of antennas. As we have
already seen in Chapter 3, all such calculations of Q are essentially those related
to an equivalent RLC circuit model for the antenna input impedance. In such a
simple case, the stored energy can be immediately understood as the energy stored
in the inductor and capacitor appearing in the circuit representation. In the case of
resonance, both are equal so one type of energy is usually required. Mathematically
speaking, underlying the RLC circuit there is a second-order ordinary differential
equation that is formally identical to the governing equation of a harmonic oscil-
lator with damping term. It is well-known that a mechanical analogy exists for the

30 For a comprehensive view on the topic of antenna reactive energy and the associated quantities like
quality factor and input impedance, see [53].
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electrical circuit model in which the mechanical kinetic and potential energies will
correspond to the magnetic and electric energies. The stored mechanical energy can
be shown to be the sum of the two mechanical energies mentioned above, while the
friction term will then correspond to the resistive loss in the oscillator [95]. Now,
when attempting to extend this basic understanding beyond the circuit model toward
the antenna as a field oscillator, we immediately face the difficult task of identifying
what stands for the stored energy in the field problem.

The first observation we make is that the concept of Q is well-defined and
clearly understood in the context of harmonic oscillators, which are mainly physical
systems governed by ordinary differential equations. The antenna problem, on the
other hand, is most generally governed by partial differential equations. This implies
that the number of degrees of freedom in the field problem is infinitely larger than the
number of degrees of freedom in the circuit case.While it is enough to characterize the
circuit problem by only measuring or computing the input impedance as seen when
looking into the antenna terminals, the field oscillator problem requires generally the
determination of the spatio-temporal variation of six field components throughout
the entire domain of interest. In order to bring this enormous complexity into the
simple level of second-order oscillatory systems, we need to search for ordinary
differential equations that summarily encapsulate the most relevant parameters of
interest. We will not attempt such an approach here, but instead endeavor to clarify
the general requirements for such a study.

We start from the following quote by Feynman made as preparation for his
introduction of the concept of quality factor [95]:

Now, when an oscillator is very efficient ... the stored energy is very
high—we can get a large stored energy from a relatively small force.
The force does a great deal of work in getting the oscillator going, but
then to keep it steady, all it has to do is to fight the friction. The oscillator
can have a great deal of energy if the friction is very low, and even though
it is oscillating strongly, not much energy is being lost. The efficiency of
an oscillator can be measured by how much energy is stored, compared
with how much work the force does per oscillation.

The ‘efficiency’ of the oscillator is what Feynman will immediately identify as the
conventional quality factor. Although his discussion focused mainly on mechanical
and electric (circuit) oscillator, i.e., simple systems that can be described accurately
enough by second-order ordinary differential equations, we notice that the above
quote is a fine elucidation of the general phenomenon of stored energy in oscillatory
systems. To see this, let us jump directly to our main object of study, the antenna
as a field oscillator. Here, we are working in the time-harmonic regime, which
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means that the problem is an oscillatory one. Moreover, we can identify mechanical
friction with radiation loss, or the power of the radiation escaping into the far-field
zone. In such a case, the antenna system can be viewed as an oscillator driven by
external force, which is simply the power supplied to the antenna through its input
terminal, such that a constant amount of energy per cycle is being injected in order
to keep the oscillator “running.” Now this oscillator, our antenna, will generate a
near-field shell, i.e., a localized field surrounding the source, which will persist in
existence as long as the antenna is “running,” an operation that we can insure by
continuing to supply the input terminal with steady power. The oscillator function,
as is well-known, is inverted: in antenna systems the radiation loss is the main object
of interest that has to be maximized, while the stored energy (whatever that be) has
to be minimized. The stored energy in the field oscillator problem represents then
an inevitable side effect of the system: a nonpropagating field has to exist in the
near field. We say nonpropagating because anything that is propagating is associated
automatically with the oscillator loss; what we are left with belongs only to the
energy stored in the fields and which averages to zero in the long run.

The next step then is to find a means to calculate this stored energy. In the
harmonic oscillator problem, this is an extremely easy task. However, in our case, in
which we are not in possession of such a simple second-order differential equations
governing the problem, one has to resort to indirect method. We suggest that the
quantitative determination of the antenna stored energy must revert back to the
basic definition of energy as such. We define the energy stored in the antenna
surrounding fields as the latent capacity to perform work when the power supply
of the system is switched off. To understand the motivation behind this definition,
let us make another comparison with the time evolution of damped oscillators.
Transient phenomena can be viewed as a discharge of initial energy stored in the
system.31 When the antenna power supply is on, the radiation loss is completely
compensated for by the power removed by the antenna terminals from the source
generator, while the antenna stored energy remains the same. Now, when the
power supply is switched off, the radiation loss can no longer by accounted for
by the energy flux through the antenna port. The question here is about what
happens to the stored energy. In order to answer this question, we need to be more
specific about the description of the problem. It will be assumed that a load is
immediately connected arcos the antenna input terminals after switching off the
generator. The new problem is still governed by Maxwell’s equations and hence
can be solved under the appropriate initial and boundary conditions. It is expected

31 “By a transient is meant a solution of the differential equation when there is no force present, but
when the system is not simply at rest.” [95].
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that a complicated process will occur, in which part of the stored energy will be
converted to electromagnetic radiation, while another portion will be absorbed by
the load. We define then the actual stored energy as the total amount of radiated
power and the power supplied to the load after switching off the source generator.
In this case, the answer to the question about the quantity of the stored energy can
in principle be answered.

Based on this formulation of the problem, we find that our near field theory
can not definitely answer the quantitative question concerning the amount of energy
stored in the near field since it is essentially a time-harmonic theory. A transient
solution of the problem is possible but very complicated. However, our derivations
have demonstrated a phenomenon that is closely connected with the current problem.
This is the energy exchange between the evanescent and propagating modes.As could
be seen from equation (4.83), the two parts of the electromagnetic field interact
with each other. Moreover, by examining the field expression of the interaction
energy density, we discover that this ‘function over space’ extends in a localized
fashion in a way similar to the localization of the self evanescent field energy. This
strongly suggests that the interaction energy density is part of the “non-moving”
field energy, and hence should be included with the self evanescent field energy as
one of the main constituents of the total energy stored in the antenna surrounding
fields. Unfortunately, such a proposal faces the difficulty that this total sum of
the two energies may very well turn out to be negative, in which its physical
interpretation becomes problematic. One way out of this difficulty is to put things
in their appropriate level: the time-harmonic theory is incapable of giving the fine
details of the temporal evolution of the system; instead, it only gives averaged steady
state quantities. The interaction between the propagating and nonpropagating field,
however, is a genuine electromagnetic process and is an expression of the essence
of the antenna as a device that helps converting a nonpropagating energy into a
propagating one. In this sense, the interaction energy term predicted by the time-
harmonic theory measures the net average energy exchange process that occurs
between propagating and nonpropagating modes while the antenna is running,
i.e., supplied by steady power through its input terminals. The existence of this
time-averaged harmonic interaction indicates the possibility of energy conversion
between the two modes in general. When the generator is switched off, another
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energy conversion process (the transient process) will take place, which might not
be related in a simple manner to the steady-state quantity.32

4.3.8 Dependence of the Radial Localized Energy on the Choice of the Origin

In this section, we investigate the effect of changing the location of the origin of
the local observation frame used to compute the radial localized energy in antenna
systems. In (4.80), we presented the expression of such an energy in terms of a
local coordinate system with an origin fixed in advance. If the location of this origin
is shifted to the position r0, then it follows from (16.16) that the only effect will
be to multiply the spatial Fourier transform of the antenna current distribution by
exp (iK · r0). Therefore, the new total radial localized energy will become
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256π4
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(4.84)

It is obvious that in general W rad
ev (r0) �= W rad

ev (0), that is, the new localized energy
corresponding to the shifted origin with respect to the antenna is not unique. This
nonuniqueness, however, has nothing alarming or even peculiar about it. It is a logical
consequence from the Weyl expansion. To see this, consider Figure 4.4 where we
show the old origin O, the new origin located at r0, and an arbitrary observation
point r outside the antenna current region. With respect to the frame O, the actually
computed field at the location r is the evanescent part along the unit vector û1 = r/r.
On the other hand, for the computation of the contribution at the very same point but
with respect to the frame at r0, the field added there is the evanescent part along the
direction of the unit vector û2 = (r − r0)/|r − r0|. Clearly then the two localized
energies cannot be exactly the same in general.

The reader is invited to reflect on this conclusion in order to remove any
potential misunderstanding. If two different coordinate systems are used to describe

32 The reader may observe that the situation in circuit theory is extremely simple compared with the
field problem. There, the transient question of the circuit can be answered by parameters from the
time-harmonic theory itself. For example, in an RLC circuit, the Q factor is a simple function of
the capacitance, inductance, and resistance, all are basic parameters appearing throughout the steady
state and the transient equations. It is not obvious that such a simple parallelism will remain the case
in the transient field problem.
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Figure 4.4 Geometric illustration for the process of forming the radial localized energy with respect to
different origins.

the radial energy localized around the same origin, i.e., an origin with the same
relative position compared to the antenna, then the two results will be exactly
the same. The situation illustrated in Figure 4.4 does not refer to two coordinate
systems per se, but to two different choices of the origin of the radial directions
utilized in computing the localized energy of the antenna under consideration. There
is no known law of physics necessitating that the localized energy has to be the
same regardless to the observation frame. The very term ‘localization’ is a purely
spatial concept, which must make use of a particular frame of reference in order
to draw mathematically specific conclusion. In our particular example, by changing
the relative position of the origin with respect to the antenna, what is meant by the
expression “radial localization” has also to undergo certain change. Equation (4.84)
gives the exact quantitative modification of this meaning.33

4.4 THE NEAR-FIELD RADIAL STREAMLINES FROM THE FAR FIELD
POINT OF VIEW

4.4.1 Introduction

In this section, we synthesize the knowledge that has been achieved in Chapter 3,
concerning the near field in the spatial domain, and Section 4.2, which focused

33 An example illustrating this relativity can be found in the area of rigid-body dynamics. There, the
fundamental equations of motion involve the moment of inertia around certain axes of rotation. It
is a well-known fact that this moment of inertial, which plays a role similar to mass in translational
motion, does depend on the choice of the axis of rotation, and varies even if the new axis is parallel
to the original one.
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mainly on the concept of radial streamlines developed from the spectral domain
perspective. The main mathematical device utilized in probing the spatial structure
of the near field was the Wilcox expansion

E (r) =
eikr

r

∞∑
n=0

An (θ, ϕ)
rn

, H (r) =
eikr

r

∞∑
n=0

Bn (θ, ϕ)
rn

, (4.85)

On the other hand, the Weyl expansion (17.23) represented the major mathematical
tool used to analyze the near field into its constituting spectral components. There is,
however, a deeper way to look into the problem. The view of the antenna presented
in Chapter 3 is essentially an exterior region description. Indeed, inside the sphere
r = a, which encloses the antenna physical body, there is an infinite number of
current distributions that can be compatible with the Wilcox expansion in the exterior
region. Put differently, we are actually describing the antenna system from the far-
field point of view. Indeed, as was already shown by Wilcox [47], it is possible to
recursively compute all the higher-order terms in the expansion (4.85) starting from a
given far field. Now, the approach presented in Section 4.2 is different essentially for
the opposite reason. There, the mathematical description of the problem starts from
an actual antenna current distribution using the dyadic Green’s function as shown in
(16.12). This means that even when inquiring about the fields radiated outside some
sphere enclosing the antenna body, the fields themselves are determined uniquely by
the current distribution. It is for this reason that the analysis following Section 4.2
is inevitably more difficult than Chapter 3.

Our purpose in the present section is to reach for a kind of compromise
between the two approaches. From the engineering point of view, the Wilcox series
approach is more convenient since it relates directly to familiar antenna measures
like far field and minimum Q. On the other hand, as we have already demonstrated
in detail, the reactive energy concept is inadequate when extensions beyond the
antenna circuit models are attempted. The Weyl expansion supplied us with a much
deeper understanding of the near-field structure by decomposing electromagnetic
radiation into propagating and nonpropagating parts. What is required is an approach
that directly combines the Wilcox series with the deeper perspective of the Weyl
expansion. This we proceed now to achieve in the present section. We first generalize
the classical Weyl expansion to handle the special form appearing in the Wilcox
series. This allows us then to derive new Wilcox-Weyl expansion, a hybrid series
that combines the best of the two approaches. The final result is a sequence of
higher-order terms explicating how the radial streamlines split into propagating and
nonpropagating modes as we progressively approach the antenna physical body, all
computed starting from a given far-field pattern,
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4.4.2 Generalization of the Weyl Expansion

We start by observing the following from the product rule
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which is valid for n ≥ 1. We will be interested in deriving a spectral representation
for eikr

/
rn+1 since it is precisly this factor that appears in the Wilcox expansion

(4.85). From (4.86) write
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The Weyl expansion (17.23) written in spherical coordinates reduces to
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where
K̂ = x̂p + ŷq + ẑsgn (cos θ) m, (4.89)

r̂ = x̂ cos ϕ sin θ + ŷ sinϕ sin θ + ẑ cos θ. (4.90)

By bringing the differentiation inside the integral, it is possible to achieve
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Substituting (4.88) and (4.91) into (4.87), it is found that
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Iterating, the following general expansion is attained
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Observing the repeated pattern, we arrive at the generalized Weyl expansion34
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In reaching into this result, the differentiation and integration were freely inter-
changed. The justification for this is very close to the argument in Appendix 4.7.2
and will not be repeated here. On a different notice, the singularity θ = π/2 (i.e.,
z = 0) is avoided in this derivation because our main interest is in the antenna
exterior region.

4.4.3 The Hybrid Wilcox-Weyl Expansion

We now substitute the generalized Weyl expansion (4.94) into the wilcox expansion
(4.85) to obtain
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By separating the spectral integral into propagating and evanescent parts, we finally
arrive at our main results
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34 This result can be rigorously proved by applying the principle of mathematical induction.
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Also, we have
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The expansion electric and magnetic functions (4.99) and (4.100) can be
interpreted in the following manner. The factor iK (p, q) · r̂ (θ, ϕ) appearing in
exp [iK (p, q) · r̂ (θ, ϕ) r] has an attenuating part −mr |cos θ| =
−r
√

p2 + q2 − 1 |cos θ|. Therefore, the field described here consists of evanescent
modes along the radial direction specified by the spherical angles θ and ϕ. Similarly,
the expansion electric and magnetic functions (4.103) and (4.104) are pure propagat-
ing modes along the same radial direction. Thus, we have achieved a mathematical
description similar to the radial streamline in Section 4.2.3, mainly equations (4.30)
and (4.31).

In the new expansion, the rich information encompassing the near-field spectral
structure are given by the functions

(
ink2
/
n!2πm

)
An (θ, ϕ)[

1 − r̂ (θ, ϕ) · K̂ (p, q)
]n

and
(
ink2
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n!2πm

)
Bn (θ, ϕ)

[
1 − r̂ (θ, ϕ) · K̂ (p, q)

]n
for the electric and magnetic fields, respectively. We immediately notice that this
spectral function consists of direct multiplication of two easily identified con-
tributions, the first is the Wilcox-type expansion given by the angular functions
An and Bn, and the second is a common Weyl-type spectral factor given by(
ink2
/
n!2πm

) [
1 − r̂ (θ, ϕ) · K̂ (p, q)

]n
. This latter is function of both the spectral

variable p and q, and the spherical angles θ and ϕ.
We can now understand the structure of the antenna near field from the

point of view of the far field in the following manner. Start from a given far field
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pattern for a class of antennas of interest. Strictly speaking, an infinite number of
actually realized antennas can be built such that they all agree on the supposed
far field. Mathematically, this is equivalent to stating that the hybrid Wilcox-Weyl
expansions above are valid only in the exterior region r > a. We then proceed
by computing (recursively as in [47] or directly as in Chapter 3 all the vectorial
angular functions An and Bn starting from the radiation pattern. With respect to
this basic step, a radial streamline spectral description of the near-field structure can
be be constructed by just multiplying the obtained angular vector field An and Bn

by
(
ink2
/
n!2πm

) [
1 − r̂ (θ, ϕ) · K̂ (p, q)

]n
. This will generate the dependence of

the spectral content of the near field on the radial streamline orientation specified
by θ and ϕ. The actual spatial dependence of the propagating and nonpropagating
fields can be recovered by integrating the result of multiplying the above obtained
spectrum with the radial streamline functions exp [iK (p, q) · r̂ (θ, ϕ) r] over the
regions p2 + q2 < 1 and p2 + q2 > 1, respectively.

A striking feature in this picture is its simplicity. For arbitrary antennas, it
seems that the spectral effect of including higher-order terms in the hybrid Wilcox-
Weyl expansion is nothing but multiplication by higher-order polynomials of p, q,
and m,35 with coefficients directly determined universally by the direction cosines
of the radial vector along which a near-field streamline is considered. On the other
hand, antenna-specific details of the radial streamline description seem to be supplied
directly by the angular vector fields An and Bn, which are functions of the (far-field)
radiation pattern.

It appears then that the expansions (4.97), (4.101),(4.98), (4.102), provide
further information about the antenna, namely the importance of size. Indeed, the
smaller the sphere r = a (inside where the antenna is located), the more terms
in those expansions are needed in order to converge to accurate values of the
electromagnetic fields. Taking into consideration that the angular vector fields An

and Bn are functions of the far-field radiation pattern, we can see now how the
hybrid Wilcox-Weyl expansion actually relates many parameters of interest in a
unified whole picture: the far-field radiation pattern, the near-field structure as given
by the radial streamlines, the size of the antenna, and the minimum Q (for matching
bandwidth consideration). It is for these reasons that the authors believe the results
of this chapter to be of direct interest to the antenna engineering community. More

35 This is intuitively clear since, as we have found in Chapter 3, higher-order terms in the Wilcox-type
expansion correspond to more complex near-field radial structure as we descend from the far zone
toward the source region, which in turns necessities the need to include significant short-wavelength
components (i.e., large p and q components).
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extensive analysis of specific antenna types within the lines sketched above will be
considered elsewhere.

4.4.4 General Remarks

We end this section with few remarks on the Wilcox-Weyl expansion. Notice first that
the reactive energy, as defined in Chapter 3, is the form of the total energy expressed
through the Wilcox series with the 1/r2 term excluded. It is very clear from the
results of this section that this reactive energy includes both nonpropagating and
propagating modes. This may provide an insight into the explanations and analysis
normally attached to the relationship between reactive energy, localized energy, and
stored energy.36

The second remark is about the nature of the new streamline here. Notice
that although we ended up in the hybrid Wilcox-Weyl expansion with a radial
streamline picture of the near field, there is still a marked difference between this
particular streamline and those introduced in Section 4.2.3 from the source point
of view. The difference is that the nonpropagating fields in (4.99) and (4.100) are
damped sinusoidal functions while those appearing, for example, in (4.30), are pure
evanescent modes.

This is related to a deeper difference between the two approaches of Section
4.2.3 and the present one. In using the Wilcox expansion for the mathematical
description of the antenna electromagnetic fields, we are asserting a far-field point
of view and hence our obtained near-field insight is already biased. This appears
behind the fact that the generalized Weyl integral (4.94), when separated into the
two regions inside and outside the circle p2 + q2 = 1, will not give a decomposition
into propagating and nonpropagating modes in general. The reason is that there exists
in the integrand spatial variables, mainly the spherical angles θ and ϕ. Only when
these two angles are fixed can we interpret the resulting quantity as propagating
and nonpropagating modes with respect to the remaining spatial variable, namely
r. It follows then that from the far-field point of view, the only possible meaningful
decomposition of the near field into propagating and nonpropagating parts is the
radial streamline picture.

36 Cf. Section 4.3 Chapter 3.
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4.5 THE MECHANISM OF FAR FIELD FORMATION

We are now in a position to put together the theory developed throughout this chapter
into a more concrete presentation by employing it to explain the structural formation
of the far field radiation. This we aim to achieve by relying on the insight into
the spectral composition of the near field provided by the Weyl expansion. In the
remaining parts of this section, our focus will be on applying the source point of
view developed in Section 4.2. The theory of Section 4.4, i.e., the far-field point of
view, will be taken up in separate work.

Let us assume that the current distribution on the antenna physical body was
obtained by a numerical solution of Maxwell’s equations, ideally using an accurate,
preferably higher-order, method of moment.37 We will now explicate the details of
how the far-field pattern is created starting from this information.

We focus on the electric field. Since the far-field pattern is a function of the
angular variables θ and ϕ, the most natural choice of the appropriate mathematical
tool for studying this problem is the concept of radial streamlines as developed
in Section 4.2.3. A glance at equations (4.30) and (4.31) shows that the quantity
pertinent to the antenna current distribution is the spatial Fourier transform of this
current J̃ (K) as defined in (16.16). Now, to start with, we choose a global cartesian
frame of reference xyz. Relative to this frame we fix the spherical angles θ and
ϕ used in the description of both the far-field pattern and the radial streamline
picture of the near field. The global frame is chosen such that the z-axis points
in the direction of the broadside radiation. For example, if we are analyzing a linear
wire antenna or a planner patch, the global frame is chosen such that the z-axis is
perpendicular to the wire in the former case and to the plane containing the patch
in the latter case. Although we don’t prove this here, it can be shown that under
these condition the Fourier transform of the current distribution in the previous two
special cases, as a function of the spectral variables p and q, has its maximum value
around the origin of the pq-plane as shown in Figure 4.2. Since the majority of
the contribution to the far field comes from the propagating modes appearing in
(4.31), the rest being attenuated exponentially as shown in (4.30), we can picture
the antenna operation as a two-dimensional low-pass spatial filer in the following
manner. All spectral components within the unit circle p2 + q2 = 1 (the visible
domain) will pass to the far field, while components outside this region will be

37 It is evident that the problem formulated this way is not exact. However, since the integral operator
of the problem is bounded, the approximate finite dimensional matrix representation of this operator
will approach the correct exact solution in the limit when N → ∞.
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filtered out. Let us call this filter the visible domain filter.38 Now, the fact that when
the global frame is chosen such that its z-axis is oriented in the direction along
which the spatial Fourier transform of the current distribution J̃ (K), as a function
of p and q, will have most of its values concentrated around the region p = q = 0
immediately explains why some antennas, such as linear wires and planner patches,
have broadside radiation pattern to begin with.

We unpack this point by first noticing how the near field splits into propagating
and nonpropagating streamlines. The mechanism here, as derived in (4.30) and
(4.31), is purely geometrical. To see this, let us call the region around which J̃ (K)
is maximum D(p, q); e.g., in the case of planner patch this region will be centered
around p = q = 0. What happens is that for varying spherical angles θ and ϕ, we
have to rotate the spatial Fourier transform J̃ (K) by the matrix R̄T (θ, ϕ). This
will translates into the introduction of new nonlinear transformation of p and q
as given by K′ = R̄T (θ, ϕ) · K.39 The region D(p, q) is now transformed into
D(p′, q′). Since we are viewing the antenna operation in producing the far field
pattern as a global two-dimensional spatial filter, we must transform back into the
language of the global frame. The newly transformed region D(p′, q′) will be written
in the old language as D′(p, q). Therefore, varying the observation angles θ and ϕ
is effectively equivalent to a nonlinear stretching of the original domain D(p, q)
given by

D (p, q)
K′=R̄T (θ,ϕ)·K−−−−−−−−−−→ D′ (p, q) . (4.105)

This implies that a re-shaping of the domain D(p, q) is the main cause for the
formation of the far-field pattern. Indeed, by relocating points within the pq-plane,
the effect of the visible domain filter will generate the far-field pattern.

However, there is also a universal part of the filtering process that does not
depend on the antenna current distribution. This is the spectral polarization dyad
Ω̄ (p, q) defined by (4.32). The multiplication of this dyad with m, i.e., the spectral
quantity mΩ̄ (p, q), is the outcome of the fact that the electromagnetic field has
polarization, or that the problem is vector in nature.40 It is common to all radiation
processes.

We now see that the overall effect of varying the observation angles can be
summarized in the tertiary process

1. Rotate the spatial Fourier transform by R̄T (θ, ϕ).

38 Similar construction of this filter exists in optics.
39 This transformation is nonlinear because m depends nonlinearly on p and q via the relation

m =
√

1 − p2 + q2.
40 Cf. Section 4.2.3.
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2. Multiply (filter) the rotated Fourier transform by the spectral polarization dyad
Ω̄ (p, q) after applying to the latter a similarity transformation.

3. Filter the result by the visible domain filter of the antenna.

This process fully explicates the formation of the far-field pattern of any antenna from
the source point of view. As it can be seen, our theoretical narrative utilizes only two
types of easy-to-understand operations: 1) geometrical transformations (rotation,
stretching, similarity transformation), and 2) spatial filtering (spectral polarization
filtering, visible domain filtering).

4.6 CONCLUSION

This chapter provided a broad outline for the understanding of the electromagnetic
near fields of general antenna systems in the spectral domain. The concept of
streamlines was introduced using the Weyl expansion in order to picture the
field dynamically as a process of continuous decomposition into propagating and
nonpropagating streamlines viewed here from the source point of view. We then
used the new insight to reexamine the topic of the antenna energy, suggesting that
there are multiple possible views of what best characterizes the near-field structure
from the energy point of view. The concept of the near-field radial streamlines was
then developed but this time from the far-field point of view by deriving a hybrid
Wilcox-Weyl expansion to mathematically describe the splitting of the near field
into radial propagating and nonpropagating streamlines constructed recursively or
directly from a given far field radiation pattern. The source point of view was finally
used to provide an explanation for why and how antennas produce far-field radiation
patterns.

It seems from the overall consideration of this work that there exists a deep
connection between the near and far fields different from what is seen in the first
look. Indeed, the results of Section 4.2.4 suggested that only two degrees of freedom
are needed to describe the splitting of the electromagnetic field into propagating and
nonpropagating parts, which supplied the theoretical motivation to investigate the
radial streamline structure of the near field. Furthermore, the results of Section 4.4
showed that the only near-field decomposition into propagating and nonpropagating
modes possible from the far-field point of view is the radial streamline picture
introduced previously from the source point of view. This shows that there exists
an intimate relation between the far and near field structures, and we suggest
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that further research in this direction is needed in order to understand the deep
implications of this connection for electromagnetic radiation in general.

On the side of antenna practice, we believe that the proposed theory will
play a role in future advanced research and devolvement of antenna systems. Indeed,
Chapter 3 provided a formalism suitable for the visualization of the important spatial
regions surrounding the antenna and the details of energy exchange processes taking
place there. It has been found during the long history of electromagnetic theory and
practice that the best intuitive but also rigorous way for understanding the operation
and performance of actual devices and systems is the energy point of view. For this
reason, the theory proposed did not stop at the field formalism, but also went ahead
to investigate how this formalism can be used to provide general concrete results
concerning the pathways of energy transfer between various regions in the antenna
surrounding domain of interest. For example, we mention the interaction theorems
developed in Chapter 3, which provide a quantitative measure of the field modal
content passing from one spatial region to another. As we emphasized repeatedly
before, this proved to be a natural way in understanding better the reactive energy,
the quantity of fundamental importance in the determining the behavior of the
antenna input impedance. Furthermore, the specification of all these descriptions in
terms of the antenna physical TE and TM modes is continuous with the established
tradition in the electromagnetic community in which basic well-understood solutions
of Maxwell’s equations are used to determine and understand the complex behavior
of the most general field. We believe that the generality of the formalism developed
here will help future researchers to investigate special cases arising from particular
applications within their range of interest to the community.

The more fundamental treatment presented in this chapter aimed at providing
foundations for the analysis of Chapters 2 and 3. The strategy we followed here
was the classical Fourier analysis of mathematical physics and engineering in which
complex arbitrary field forms are developed in a series of well-behaved basic solution,
i.e., the sinusoidal or harmonic functions. This not only provide a solid grounding
for the results obtained in the direct study conducted in the spatial domain, but
also opens the door for new windows that may be needed in characterizing the
field structure in emerging advanced applications and experimental setups. The
spectral theory, which decomposes the fields into evanescent and propagating modes
together with a fundamental understanding of their mutual interrelation, can be
related to the ongoing research in nanooptics, imaging, and other areas relevant
to nanostructures and artificial materials. Indeed, the crux of this new devolvement
is the manipulation of the intricate way in which the electromagnetic fields interact
with subwavelength (nano) objects. Mathematically and physically, the resonance
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of such subwavelength structures occurs upon interaction with evanescent modes,
because the latter correspond to the high-wavenumber k-components. Therefore, the
analysis in this chapter regarding the fine details of the process in which the total
field is being continually split into propagating and evanescent modes appears as
a natural approach for studying the interaction of a nanoantenna or any radiating
structure with complex surrounding environments. What is even more interesting is
to see how such a kind of applications (interaction with complex environments) can
be studied by the same mathematical formalism used to understand how the far field
of any antenna (in free space) is formed, as suggested particularly in Section 4.5.
The advantage of having one coherent formalism that can deal with a wide variety
of both theoretical and applied issues is one of main incentives that stimulated us in
carrying out this program of antenna near-field theory research.

On the more conventional side, the design and devolvement of antennas
radiating in free space, we have tried to illuminate the near-field structure from
both the source point of view and the far field perspective at the same time. Both
views are important in the actual design process. For the source point of view, our
analysis in Chapter 4, especially Section 4.2.3, relates in a fundamental way the
exact variation in the antenna current distribution to the details of how the near field
converts continually from evanescent to propagating modes. This can help antenna
engineers in devising clues about how to modify the antenna current distribution in
order to meet some desirable design or performance goals. The advantage gained
from such an outcome is reducing the dependence on educated guess, random trial
and error, and expensive optimization tasks, by providing a solid base for carrying
the antenna devolvement process in a systematic fashion.

The far-field perspective, which was developed in Chapter 3 and continued in
Section 4.5, could provide a different kind of valuable information for the antenna
engineer. Here, one starts with a specification of a class of antennas compatible with
a given far field radiation pattern, and then proceeds in constructing the near field
of all antennas belonging to this class, in both the spatial and spectral domain, in
order to relate far field performance measures, such as directivity, polarization, null
formation, etc, to near field characteristics, such as input impedance and antenna
size. A set of fundamental relations, understood in this sense, can be generated using
our formalism for any set of objectives of interest found in a particular application,
and hence guide the design process by deciding what kind of inherent conflicts and
tradeoffs exist between various antagonistic measures. In this way, one can avoid
cumbersome efforts to enforce a certain design goal that cannot be achieved in
principle with any configuration whatsoever because it happens to violate one of the
fundamental limitations mentioned above.
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4.7 APPENDICES AND SUPPLEMENTARY MATERIALS

4.7.1 Absolute and Uniform Convergence of the Weyl Expansion

We prove this observation by using the integral representation (5.11). First, notice
that from the definition of the Bessel function,

∣∣u2J0
(
ρ
√

1 + u2
)
e−k|z|u∣∣ ≤∣∣u2e−k|z|u∣∣ . Next, by L’Hopital rule, we have lim

u→∞

∣∣u2e−k|z|u∣∣ = 0 for z �= 0.

We conclude then that lim
u→∞

∣∣u2J0
(
ρ
√

1 + u2
)
e−k|z|u∣∣ = 0 for z �= 0. This allows

as to write
∣∣J0
(
ρ
√

1 + u2
)
e−k|z|u∣∣ < 1

u2 for sufficiently large u, say u ≥ u0.
Notice that this is valid for any ρ ≥ 0 and for any |z| ≥ z0 > 0, which is the case
here because we are working in the exterior region of the antenna system. We now
apply the Weierstrass-M [90] test for uniform convergence. Specifically, identify
M (u) = 1

u2 and notice that
∫∞

u0
M (u) du < ∞. It follows then that the integral is

absolutely convergent and uniformly convergent in all its variables.

4.7.2 Interchange of Integration and Differentiation in Weyl Expansion

Here we interchange the order of integration and differentiation. To prove this,
we make use of the following theorem [90]: If f(x, α) is continuous and has
continuous partial derivatives with respect to α for x ≥ a and α1 ≤ α ≤ α2,
and if

∫∞
a

∂
∂αf (x, α) dx converges uniformly in the interval α1 ≤ α ≤ α2, and if

a dose not depend on α, then

∂

∂α

∫ ∞

a

f (x, α) dx =
∫ ∞

a

∂

∂α
f (x, α) dx.

We now consider the derivative of the Weyl expansion (5.11) with respect to x, y,
and z. The last case gives∫∞

0 du ∂
∂z J0

(
kρ

√
1 + u2

)
e−k|z|u

= −sgn (z) k
∫∞
0 du uJ0

(
kρ

√
1 + u2

)
e−k|z|u.

We notice that
∣∣uJ0

(
kρ

√
1 + u2

)
e−k|z|u∣∣ ≤ ∣∣ue−k|z|u∣∣. Moreover, it can be easily

shown that lim
u→∞

u2ue−k|z|u = 0 which implies
∣∣uJ0

(
kρ

√
1 + u2

)
e−k|z|u∣∣ ≤∣∣ue−k|z|u∣∣ < M (u) = 1

u2 for sufficiently large u. Therefore,
∫∞
0 du ∂

∂z is
uniformly convergent. Also, the integrand is continuous. All these requirement are
valid for ρ ≥ 0 and z �= 0. We conclude then by the theorem stated above that∫∞
0 du ∂

∂z = ∂
∂z

∫∞
0 du.
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We now consider the derivatives with respect to x (the case with respect to y
is essentially the same). It is possible to write∫∞

0 du ∂
∂xJ0

(
kρ

√
1 + u2

)
e−k|z|u

= k cos ϕ
∫∞
0 du

√
1 + u2J1

(
kρ

√
1 + u2

)
e−k|z|u,

where the recurrence relation of the derivative of the bessel function was used.
Again, from the properties of bessel functions that, |J1 (x)| < 1 for all positive
real x, so we can write

∣∣√1 + u2J1
(
kρ

√
1 + u2

)
e−k|z|u∣∣ <

√
1 + u2e−k|z|u.

From L’Hopital rule, we compute lim
u→∞

u2
√

1 + u2e−k|z|u = 0. It follows that∣∣√1 + u2J1
(
kρ

√
1 + u2

)
e−k|z|u∣∣ <

√
1 + u2e−k|z|u < M (u) = 1

u2 for suf-
ficiently large u and the Weierstrass-M test guarantee that the integral of the
derivative is absolutely and uniformly convergent [90]. From the theorem stated
earlier on the exchange of the derivative and integral operators, it follows that
∂
∂x

∫∞
0 du =

∫∞
0 du ∂

∂x .

4.7.3 Exchange of Order of Integrations in the Radiated Field Formula Via
the Spectral Representation of the Dyadic Green’s Function

We can exchange the order of integrations by using the following theorem from
real analysis [90]: If f(x, α) is continuous for x ≥ a, and α1 ≤ α ≤ α2, and
if
∫∞

a
f (x, α) dx is uniformly convergent for α1 ≤ α ≤ α2, we conclude that∫ α2

α1

∫∞
a

f (x, α) dxdα =
∫∞

a

∫ α2

α1
f (x, α) dαdx. Now, we already proved that the

Weyl expansion converges uniformly. In addition, since the antenna current distri-
bution is confined to a finite region it immediately follows by repeated application
of the theorem above that we can bring the integration with respect to the source
elements inside the spectral integral.

4.7.4 Derivation of the Rotation Matrix

We know that the matrix describing 3D rotation by an angle θ around an axis described
by the unit vector û is given by

 u2
x + exc uxuyd − uzs uxuzd + uys

uxuyd + uzs u2
y + eyc uyuzd − uxs

uxuzd − uys uyuzd + uxs u2
z + ezc




with c = cos θ, s = sin θ, d = 1−cos θ, and ex = 1−u2
x, ey = 1−u2

y, ez = 1−u2
z .

In order to rotate the z-axis into the location described by the radial vector
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r̂, we imagine the equivalent process of rotating the original coordinate system by an
angle θ around an axis perpendicular to the unit vector ρ̂ and contained within the xy-
plane. Such an axis of rotation is described by the unit vector û = x̂ sinϕ− ŷ cos ϕ.
Substituting these values to the rotation matrix above, the form given by (4.20) and
(4.21) follows readily.

4.7.5 The Time-Dependent Interaction Poynting Theorem

Taking the inverse Fourier transform of equations (4.48) and (4.49), the following
sets are obtained

∇ × Ēev = −µ ∂
∂tH̄ev, ∇ × H̄ev = ε ∂

∂t Ēev,
∇ · Ēev = 0, ∇ · H̄ev = 0,

(4.106)

∇ × Ēpr = −µ ∂
∂tH̄pr, ∇ × H̄pr = ε ∂

∂t Ēpr,
∇ · Ēpr = 0, ∇ · H̄pr = 0

(4.107)

Take the dot product of the first curl equation in (4.106) by H̄pr and the second curl
equation in (4.107) by Ēev, subtract the results. It is found that

H̄pr · ∇ × Ēev − Ēpr · ∇ × H̄pr

= −εĒpr · ∂
∂t Ēpr − µH̄pr · ∂

∂tH̄ev.
(4.108)

Similarly, by taking the dot product of the second curl equation in (4.106) by Ēpr
and the first curl equation in (4.107) by H̄ev, subtracting the results, we obtain

H̄ev · ∇ × Ēpr − Ēev · ∇ × H̄ev

= −εĒev · ∂
∂t Ēev − µH̄ev · ∂

∂tH̄pr.
(4.109)

Applying the vector identity, ∇· (A × B) = B · (∇ × A)−A · (∇ × B), equations
(12.31) and (4.109) become

∇ ·
(
Ēev × H̄pr

)
= −εĒev · ∂

∂t Ēev − µH̄ev · ∂
∂tH̄pr, (4.110)

∇ ·
(
Ēpr × H̄ev

)
= −εĒev · ∂

∂t Ēev − µH̄ev · ∂
∂tH̄pr. (4.111)

Adding (12.33) and (12.36), and observing the Leibniz product rule in handling
contributions of the RHS, equation (4.76) immediately follows.
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4.7.6 On the Divergence of the Total Evanescent Field Energy with Fixed Axis
of Decomposition

Expand the dyadic Green’s function into evanescent mode along the z-direction by
using (??) and then substituting the result into (16.12). The following generalized
electromagnetic field expansion can be obtained

E (r) = −ωkµ
8π2

∫
V

d3r′ ∫∞
−∞
∫∞

−∞ dpdq

×Ω̄ (K) · J (r′) eik[p(x−x′)+q(y−y′)+m|z−z′|],
(4.112)

where
K = x̂kp + ŷkq + ẑsgn (z − z′) km. (4.113)

That is, we don’t here interchange the order of the spectral and source integrals
because the exterior region will generally contain points within the antenna horizon.
By decomposing the field into evanescent and propagating parts, it is found that

Eev (r) = −ωkµ
8π2

∫
V

d3r′ ∫
p2+q2>1 dpdq

×Ω̄ (K) · J (r′) eik[p(x−x′)+q(y−y′)+m|z−z′|],
(4.114)

Epr (r) = −ωkµ
8π2

∫
V

d3r′ ∫
p2+q2<1 dpdq

×Ω̄ (K) · J (r′) eik[p(x−x′)+q(y−y′)+m|z−z′|].
(4.115)

Next, a spherical region enclosing the antenna is introduced and denoted by V (r0),
where r0 is the radius of the sphere. The total evanescent (nonpropagating) energy
is calculated using (4.79) with fixed direction of decomposition chosen along the
z-axis, which gives after using (4.114)

W e
ev = ω2k2µ2ε

256π4

∫
Vext

d3r
∫

V
d3r′ ∫

V
d3r′′

×
∫

p2+q2>1 dpdq
∫

p′2+q′2>1 dp′dq′

×Ω̄ (K) · J (r′) · Ω̄∗ (K′) · J∗ (r′′)
×eik[p(x−x′)+q(y−y′)+m|z−z′|]

×e−ik[p′(x−x′′)+q′(y−y′′)+m′∗|z−z′′|],

(4.116)

where Vext = V∞ − V (r0) is the region exterior to the sphere V (r0). We still don’t
know if this integral will converge, so expression (4.116) should be considered a
tentative formula. From physical grounds, it is expected that the calculation will face
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the problem of dealing with waves along a plane perpendicular to the z-axis. In such
domains, the electromagnetic field expansion into evanescent modes along the z-axis
consists actually of only pure propagating modes. As will be seen below, when the
spherical coordinate system is employed in performing the space integral, there is
indeed a convergence problem when the evaluation of the total energy approaches
the critical xy-plane. In explicating this difficulty, it will be explicitly shown now
that the limit of the total energy when θ → π/2± does not exist.

Assuming that the order of integrations in (4.116) can be interchanged (a
justification of this assumption will be given later), we write after expressing the
space cartesian coordinates in terms of spherical coordinates

W e
ev = ω2k2µ2ε

256π4

∫
V

d3r′ ∫
V

d3r′′

×
∫

p2+q2>1 dpdq
∫

p′2+q′2>1 dp′dq′

×eik(p′x′′+q′y′′−px′−qy′)

×
2π∫
0

2π∫
0

∞∫
r0

r2drdθdϕ sin θ

×eik[ζr sin θ+m|r cos θ−z′|+m′|r cos θ−z′′|]
×Ω̄ (K) · J (r′) · Ω̄∗ (K′) · J∗ (r′′) ,

(4.117)

where
ζ = (p − p′) cos ϕ + (q − q′) sinϕ. (4.118)

We focus our attention now on radial integrals in the form

I =

∞∫
r0

drr2eik[ζr sin θ+m|r cos θ−z′|+m′|r cos θ−z′′|]. (4.119)

In Figure 4.5(a), we illustrate the geometry of the problem needed in computing this
integral. Here, two source points z′ and z′′ are required in the evaluation around
which a change in the definition of the integrand occurs. The angle θ will determine
the exact location of z′ and z′′ with respect to r0. Also, implicit here is the angle ϕ
which will generate the 3D pattern out of this plane.

To simplify the calculation, the integral (4.119) will be evaluated for the special
case z′ = z′′. Also, it will be assumed that r0 cos θ < z′. The motivation behind
these assumptions is the anticipation of the result that the limit θ → π/2 does not
exist. In this case, it is evident that in such a limit the radial vector r̂ will meet the
circle r = r0 before any z′.
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Figure 4.5 (a) The geometry behind the calculation of the space integral in (4.116). Here, the shaded
region V refers to an arbitrary antenna current distribution enclosed within a fictitious sphere with radius
r0. In the figure, the two source points z′ and z′′ are chosen randomly. (b) The differentiation of the
space Vext exterior to sphere V (r0). The upper and lower regions correspond to convergent evanescent
energy integrals while the left and right regions contain divergent evanescent energy. The z-axis can be
freely rotated and hence the resulting total evanescent mode energy in the convergent two regions can
acquired for the purpose of attaining a deeper analysis of the antenna near field structure. In both figures
we show only the zy-plane section of the problem.
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Integral (4.119) can be evaluated using the identity∫
x2ecxdx = ecx

[
x2

c
− 2x

c2 +
2
c3

]
. (4.120)

For θ = π/2, (4.119) is divergent. For other angles, it is convergent since the radial
dependence involves exponential decay through the imaginary constants m and m′.

Therefore, the integral with respect to θ in the tentative energy expansion
(4.117) is ill-defined. The best we can do is to introduce an exclusion region
π/2 − δ < θ < π/2 + δ, and compute the evanescent field energy in the exterior
regions, that is, the upper and lower regions 0 ≤ θ ≤ π/2− δ and π/2+ δ ≤ θ ≤ π,
both with r ≥ r0. In such a case, which is depicted in Figure 4.5(b), it is easy to prove
that the energies computed in the upper and lower regions are finite. This follows
from the fact that the fields in such regions are exponentially decaying with respect
to r. Using (4.120), the corresponding infinite radial integral (4.119) is convergent.
Moreover, by using an argument similar to Appendix 4.7.1, the same integral can be
shown to be uniformly convergent. It follows then that the order of integrations with
respect to the source and space variables can be interchanged because the former
is finite. Also, since the Weyl expansion is uniformly convergent for |z − z′| �= 0,
the integrals with respect to the space variables and the spectral variables can be
interchanged except at the plane θ = π/2, which we have already excluded.41 This
formally justifies the general expression for the evanescent field energy, which now
can be written as

W e
ev (û, δ) = ω2k2µ2ε

256π4

∫
V

d3r′ ∫
V

d3r′′

×
∫

p2+q2>1 dpdq
∫

p′2+q′2>1 dp′dq′

×eik(p′x′′+q′y′′−px′−qy′)

×
(

2π∫
0

π/2−δ∫
0

∞∫
r0

drdθdϕ sin θ +
2π∫
0

π∫
π/2+δ

∞∫
r0

drdθdϕ sin θ

)
×r2eik(ζr sin θ+m|r cos θ−z′|+m′|r cos θ−z′′|)
× Ω̄ (K) · J (r′) · Ω̄∗ (K′) · J∗ (r′′) .

(4.121)

41 The shrewd reader will observe that in evaluating the integral (4.119), the integrand will meet with
the singularities |z − z′| = 0 and |z − z′′| = 0, at which the Weyl expansion is not uniformly
convergent. However, since the radial integral clearly exists, its value is unchanged by the actual value
of the integrand at the two discrete locations mentioned above. This is in contrast to the situation of
radial integration at the plane θ = π/2. In the latter case, the singularity |z−z′| = 0 is enforced at a
continuum of points and so the interchange of integrations, together with all subsequent evaluations,
are not justified.
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It should be kept in mind that the last factor in this equation is function of z and
z′ as can be seen from (4.113). Here, we have emphasized the dependence of this
energy expression on the exclusion angle δ. Also, since this energy depends on the
direction of the axis of decomposition (in this particular example, it was chosen as the
z-axis for simplicity), the dependance on this orientation is retained explicitly. The
structure of an antenna near field can be analyzed by calculating the total evanescent
energy for full azimuthal and elevation angle scan, with a suitable choice for δ. In
this way, we have introduced what looks like a “near-field pattern,” in analogy with
the far-field radiation pattern.42

42 The expression (4.121) is complicated by the fact that the source and spectral integrals cannot be
interchanged. In particular, rotation of the axis of decomposition û by a matrix R̄ cannot be simplified
by effectively rotating the spectral vector K through the inverse operation. For this reason, it does
not appear possible to gain further quick insight into the rotation effect on the evanescent energy as
given above.





Chapter 5

The Scalar Antenna Near Field

5.1 INTRODUCTION

There has been a growing interest throughout the last few years in the topic of
antenna near fields, motivated by both theoretical and applied concerns, where there
appears to be a convergence toward more compact systems working at various spatial
scales, for example nanoscale applications, metamaterials, miniaturized microwave
and millimeter technology, etc [43], [35], [44]. On the other hand, the design
and devolvement of large and complex antenna arrays force us to decrease the
spacing between the elements, resulting in strong mutual coupling, a phenomenon
that involves the near field of the radiating sources. The topic of electromagnetic
energy has also been studied extensively in the last few decades, especially in
connection with reactive energy, e.g., see the comprehensive paper [53]. In the new
approach to the near field developed in Chapters 3 and 4, it was proposed that
one of the most important aspects of the antenna field is its dynamic tendency
to propagate or not propagate differently in different directions in space. The
analysis there was based on the classic plane wave spectrum (Weyl) expansion
(see [56] for background material) combined with a dynamic rotation of the local
coordinate system in order to study the physical structure of the radiation problem.
The analysis revealed the complexity of energy aspects in antennas, especially those
related to localized and stored energy. However, it is possible using this approach
to quantify many important features in the localization of the radiation field by
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computing the total nonpropagating part and comparing it with the total field. Due
to the complexity of the analysis, no numerical study was presented in Chapter 4 for
simple and exact special cases.We attempt here to focus on such smaller problems but
within the perspective of the general insights obtained previously in the researches
conducted by the authors.

The topic of this chapter is an investigation of the fundamental physical
aspects of the near field produced by radiators comprised of scalar sources. The
generalization to the full-wave vectorial case is more involved but relies on the
insights developed after the study of the scalar case presented here. The overall
structure of this chapter is the following. In Section 5.2, we first provide a general
motivation for the study of the scalar theory. In Section 5.3, we formulate the
problem starting from the vantage point of Chapter 4, which is reviewed here for
self completeness. In particular, we show how the traditional Weyl expansion is
combined with our dynamic approach to shed some light on the subtle manner
in which the radiated field tend to propagate in different radial directions. In
Section 5.4, we show that the radial field generated by a point scalar source, i.e.,
the radial Green’s function, can be evaluated in simple analytical form when the
origin of the coordinate system is located at the source itself. In Section 5.5, we
provide in-depth analysis of the analytical results just obtained with comparison
to numerical evaluation of the spectral integrals. Several interesting features are
observed, for example the total vanishing of the propagating parts at certain spheres
even in the far zone. The important topic of the interaction energy between the
propagating and nonpropagating parts is also discussed. In Section 5.6, we give
a brief indication of how to deal with the case of multiple sources, for example
antenna arrays or continuous source distributions. Finally, we end with conclusions.
The theory proposed in this chapter is applied extensively in Chapter 17 to develop
new numerical analysis tools suitable for antenna design and development.

5.2 MOTIVATION FOR THE STUDY OF STUDY OF SCALAR NEAR-
FIELD THEORY

Although the electromagnetic problem is strictly speaking never scalar, the scalar
case provides a very attractive viewpoint to the topic at large and presents some
very compelling advantages, which we briefly review here. To begin with, the vector
Helmholtz equation, which governs the propagation of electromagnetic fields in
the space surrounding the source, is obtained from the scalar Helmholtz equation,
which governs the scalar problem, by updating the scalar field of the latter to the three
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Cartesian components of the former [28]. Therefore, although the vector problem is
considerably more complex, it is actually based on a the scalar case. Understanding
the simpler theory provides therefore good foundations for working with the full-
wave vectorial case.This approach has been favourite for many throughout the history
of electromagnetic theory.

Another important advantage for studying the scalar theory is provided by the
fact that many fundamental vectorial electromagnetic problems can be reformulated
in a form that resembles the scalar case. That does not mean that a full-wave problem
can be made equivalent to a scalar one, which is contradiction in terms, but that certain
complex aspects in the vectorial case can be put in the easier form of the scalar one.
We will give here a general example that illustrates this idea.

Consider a generic interaction problem between two current distributions
J1 (r) and J2 (r) radiating in free spaces within volume supports V1 and V2. Suppose
we are interested in studying the phenomenon of energy exchange between the two
sources, for example, the problem of mutual coupling in antenna arrays. Any such a
study will sooner or later involve the consideration of basic integrals of the following
form

I =
∫

V1

d3r

∫
V2

d3r′ J1 (r) ·
(
Ī +

1
k2 ∇∇·

)
g (r, r′) · J2 (r′) , (5.1)

where g (r, r′) is the free-space Green’s function (17.17). Physically, the direct
meaning of the expression (5.1) reduces to understanding energy exchange be-
tween the antennas represented by J1 (r) and J2 (r) as mediated by the “channel”
Ḡ (r, r′) =

(̄
I + 1

/
k2∇∇·

)
g (r, r′), i.e., the full-wave vectorial Green’s function.

However, it is possible to apply integration by parts in order to convert (5.1) into an
expression containing only integrals of the form

I ′ =
∫

V1

d3r

∫
V2

d3r′ J1 (r) · g (r, r′) · J2 (r′) , (5.2)

I ′′ =
∫

V1

d3r

∫
V2

d3r′ ∇ · J1 (r) g (r, r′) ∇′ · J2 (r′) . (5.3)

Technically speaking, the trick is to move the differential operators in (5.1) from the
free-space Green’s function to the source. This is, for example, done routinely in
method of moment formulations, for instance see [35].

From the physical point of view, the problem has not changed. However, from
the computational aspect, the integrals (5.2) are much easier to work with. Indeed,
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for examining the problem of the near field, as will be done below, the analysis
of the free-space Green’s function g (r, r′) into propagating and nonpropagating
modes using (5.2) is much easier to perform than the original (5.1). Therefore, un-
derstanding the scalar near-field problem can provide considerable help in tackling
the interaction problem in general electromagnetic systems both computationally
and theoretically. For example, it will be shown in Section 5.4 that the radial total
propagating and nonpropagating parts can be put in simple analytical forms and that
there is here no need to perform numerical integration.

Finally, a strong motivation for the study of the scalar case is the relation
with the far-field problem in the full-wave vectorial case. Indeed, the scalar Green’s
function (17.17) is simply the spherical wave representing the far field of any antenna
[28]. While we are mainly interested here in studying the near field behavior of this
wave, we will have occasions to say something interesting about its behavior in the
far zone. On the other hand, the spherical wave (17.17) contributes to the near field of
any antenna and becomes important even before reaching the far zone, for example
in the intermediate field zone (see Chapter 3). Therefore, the insight developed here
for the scalar can be considered a direct contribution to studying one aspect of the
full-vectorial near field of any antenna.

A direct utilization of the proposal motivated by the expression (5.2) can be
found in Chapter 17, where extensive numerical results and more examples beyond
this chapter can be found there.

5.3 DEVELOPMENT OF THE RADIAL LOCALIZED NEAR-FIELD
GREEN’S FUNCTION

The scalar problem is the one connected with establishing the scalar field ψ (r)
produced by a scalar source density ρ (r) defined on a compact support V . The
fields can be rigorously defined everywhere, including the source region, but in the
present we are concerned mainly with the problem in the exterior region R

3 − V .
Therefore, we work with infinite, homogeneous, and isotropic space containing only
a single source enclosed within the (possibly multi-connected) region V . In the
time-harmonic case, the wave equation reduces to the scalar Helmholtz equation
∇2ψ (r)+ k2ψ (r) = 0. The scalar Green’s function of this equation is given by the
well-known expression [33]

g (r, r′) =
eik|r−r′|
|r − r′| . (5.4)
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The importance of this Green’s function arises from the fact that the radiated fields
can now be expressed bt the following intuitive form

ψ (r) =
∫

V

d3r g (r, r′) ρ (r) . (5.5)

We would like to further decompose the Green’s function into two parts, one
pure propagating and the other evanescent. This task can be accomplished by using
the Weyl expansion [35]

eikr

r
=

ik

2π

∫ ∞

−∞

∫ ∞

−∞
dpdq

1
m

eik(px+qy+m|z|), (5.6)

where

m(p, q) =
{ √

1 − p2 − q2 , p2 + q2 ≤ 1
i
√

p2 + q2 − 1 , p2 + q2 > 1
. (5.7)

The Weyl expansion shows that the total scalar Green’s function can be divided into
the sum of two parts, one as pure propagating waves and the other as evanescent,
hence nonpropagating part. Explicitly, we write [35]

g (r, r′) = gev (r, r′) + gpr (r, r′) , (5.8)

where the propagating and nonpropagating (evanescent) parts are given, respectively,
by the expressions

gev (r, r′) =
ik

8π2

∫
p2+q2>1

dpdq
1
m

eik[p(x−x′)+q(y−y′)]eim|z−z′|, (5.9)

gpr (r, r′) =
ik

8π2

∫
p2+q2<1

dpdq
1
m

eik[p(x−x′)+q(y−y′)]eim|z−z′|. (5.10)

By transforming the double integrals into cylindrical coordinates, making use of the
integral representation of the Bessel function, we write the Weyl expansion in the
following form [35]

gev (r, r′) =
k

4π

∫ ∞

0
duJ0

(
kρs

√
1 + u2

)
e−k|z−z′|u, (5.11)

gpr (r, r′) =
ik

4π

∫ 1

0
duJ0

(
kρs

√
1 − u2

)
eik|z−z′|u, (5.12)
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Figure 5.1 Radial Near Field. A generic antenna is shown in the left with the radial direction field along
which a decomposition of the total field into propagating and nonpropagating modes is enacted. To the
right, we show the notation of the coordinate systems used. The global coordinate system is the Cartesian
xyz system. The local frame is given the notation of the spherical coordinates and the use of double
primes is avoided for convenience in the notation.

where ρs =
√

(x − x′)2 + (y − y′)2.
We now introduce the radial localized near field of the radiation problem first

proposed in Chapter 4. The main idea is to distinguish between three coordinate
systems in the radiation problem:

1. Global coordinate system.

2. Source coordinate system.

3. Local coordinate system.

The global and source frames are the conventional ones used in electromagnetic
theory, and are usually denoted by the unprimed and primed notation, e.g., r
and r′ respectively. In Chapter 4, it was found after a critical examination of the
traditional approach (carried out in Chapter 3) that in order to adequately describe
the engineering aspects of the radiation problem in the near field, there is a need to
introduce a third coordinate system, the local frame, which was denoted there by
double prime notation r′′. The physico-engineering significance of this new frame
is quite straightforward and can be explained briefly as follows.

Consider a generic antenna system as shown in the left of Figure 5.1. As
we now know, the field in the near zone can no longer be considered a pure
propagating wave. Instead, it has the ambiguous character of being composed of
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both propagating and nonpropagating parts.1 A Fourier analysis (i.e., via the Weyl
expansion) of the spatial field is then required in order to decompose radiation
into propagating and nonpropagating modes along any arbitrary chosen direction
in space. This analysis, therefore, requires the specification of a direction at each
point in the exterior region of the antenna problem along which the above mentioned
decomposition into propgating/nonpropagating parts will be effectuated. The radial
local frame is one natural choice that was pointed out in the general analysis of
Chapter 4. As can be seen from Figure 5.1, it consists of choosing the direction field
of the Fourier decomposition to coincide with the familiar radial field, i.e., at each
location r in the exterior region, we attach the direction r̂ and analyze the total field
into propagating and nonpropagating modes along this vector. In this way, instead
of the total field (which does not say anything about the inner dynamic structure of
the near field), we obtain two different fields, the propagating radial near field, and
the nonpropagating radial near field. The sum of the two will obviously give back
the total field; however, we now obtain through this decomposition a firm grasp of
how the original field structure splits dynamically as we move the local observation
frame around the source.

The engineering motivations of this process are evident: We need to know
how the field behaves around specific parts of the physical structure supporting the
current distribution. By fixing the global frame on this rigid physical structure, and
then rotating the local frame with respect to the global frame, we obtain in essence the
relational dynamics of the problem in the sense that the tendency of the field to split
into propagating and nonpropagating modes is described in reference to the physical
body of the antenna itself. The three coordinate systems are then tightly connected
with each other in a process that eventually leads to the explication of a physically
real phenomena: the dynamical production of the propagating field with respect to
the geometry of the source. It is the opinion of the authors that the conventional
approach to energy and propagation in antenna systems using the methods of input
impedance, reactive energy, and radiation density, are not adequate to deal with the
problem in the way described above.

In Figure 5.1, we use the unprimed notation xyz to refer to the global frame.
The local frame will be referred to by the usual spherical coordinates r, θ, and
φ. However, no double prime is used here. The reader should be aware that the
angles θ and φ refer to the direction field along which the dynamic decomposition
into propgating/nonpropgating modes will be performed. No semantic confusion

1 In literature, this division is usually termed “static” and “radiated” fields. The difficulties of this
approach, which is based on a hasty generalization of phenomena applicable only to small dipoles
antennas, were criticized in Chapter 3.
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between the typical spherical angles used to define position in r and these two
angles above should be made, although their numerical values happen to coincide
only in this case of radial localized near field.2

5.4 DERIVATION OF THE RADIAL LOCALIZED NEAR-FIELD
GREEN’S FUNCTION FOR THE SCALAR PROBLEM

To proceed further, we need to write down the local frame coordinates explicitly in
terms of the global frame. To do this, the rotation matrix (4.20) introduced in Chapter
4 is used. Using this matrix, we can express the local frame coordinates in terms of
the global frame’s using the following relations

r′′ = R̄ (θ, φ) · r, r′
s = R̄ (θ, φ) · r′. (5.13)

It should be immediately stated that this rotation matrix will also rotate the x′′y′′-
plane around the z′′-axis with some angle. However, it was shown in Chapter 4 that
the total propagating and nonpropagating modes are independent of rotation of the
local frame around its z′-axis.

Since the scalar Green’s function (17.17) is invariant with respect to rotation
of the coordinate system, we replace r in (17.23) with r′′ using (5.13). This leads to

exp (ikr)
r

=
ik

2π

∫ ∞

−∞
dpdq

1
m

eiK·(R̄·r), (5.14)

where the spectral variable (wavevector) is given by

K = x̂kp + ŷkq + ẑsgn (z − z′) km. (5.15)

Here, sgn stands for the signum function. From the expressions of the rotation matrix
elements (4.21)), we easily find that

exp (ikr)
r

=
ik

2π

∫ ∞

−∞
dpdq

1
m

eikmr. (5.16)

We next further simplify this integral by converting the double integral into a
single integral and then removing the singularity of the integrand. To achieve this,

2 The more general decomposition theorem, of which the radial localized field is only a special case,
was discussed extensively in Chapter 4.
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we work in the polar coordinates of the spectral domain, i.e., we employ p = v cos ϕ
and q = v sinϕ. The integral (5.16) becomes then

exp (ikr)
r

=
ik

2π

∫ 2π

0

∫ ∞

0
dvdϕ

v√
1 − v2

eik
√

1−v2r. (5.17)

Since the integrand is independent of ϕ, we evaluate the outer integral and
then separate the Green’s function into two parts as in (5.8). The outcome is

grad
ev = ik

∫ ∞

1
dv

v√
1 − v2

eik
√

1−v2r, (5.18)

grad
pr = ik

∫ 1

0
dv

v√
1 − v2

eik
√

1−v2r. (5.19)

Finally, perform the transformations of variable u = −i
√

1 − v2 and u =√
1 − v2 in (5.18) and (5.19), respectively. We obtain

grad
ev = k

∫ ∞

0
du e−kur =

1
r
, (5.20)

grad
pr = ik

∫ 1

0
du eikur =

eikr − 1
r

. (5.21)

These are the main results of the scalar theory of the radial propagating-evanescent
Green’s functions. In the remaining parts of this section, we explore some of their
salient consequences.

5.5 DISCUSSION OF THE RESULTS AND THEIR PHYSICAL CONSE-
QUENCES

Before discussing the nature of the analytical expressions of the radial localized
Green’s functions derived above, we first present some numerical studies justifying
the physical importance of the radial direction in describing the near field of the
source. We consider a simple example comprised of a single point source located
at the origin and ask how the radiate field tend to propagate at the point (0, d, 0).
Figure 5.2 presents the propagating scalar Green’s function numerically when the
rotation matrix has θ = π/2. The variation with respect to φ are recorded at position
(0, 10λ, 0), hence in the far field of the source. It is interesting that at exactly the
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Figure 5.2 Spectral content of the propagation scalar Green’s function observed at (0, 10λ, 0) with
θ = π/2.

radial direction, in this case φ = π/2, the total propagating part is zero! On the
other hand, for directions around the radial orientation the propagating field has
significant value. At a slightly different position (0, 10.25λ, 0), Figure 5.3 shows
that, contrary to the previous case, the propagating part has its most significant
value concentrated at the radial direction. (The same results are also obtained for
the position (0, 9.75λ, 0).) This phenomena, the vanishing of the radial propagating
part at some locations in space, will be explained below based on the analytical
expressions (5.18) and (5.19). For the time being, we notice that most of the time
the field tends to propagate maximally in the radial direction. For example, consider
Figure 5.4 where this time we observe the spectral composition of the radiated
field in the near-field zone. It is clear that energy can be found propagating in all
directions, but the highest concentration of energy is located in the radial direction.
Our conclusion is that even though at certain discrete locations the radiated field
has zero total propagating part, almost everywhere in space energy tends to flow
maximally in the radial direction. This provides some further justification for the
theoretical and practical importance of the radial Green’s function besides their
obvious intuitive motivation.

Let us now examine carefully the structure of the radial Green’s functions
(5.18) and (5.19). Our purpose is to gain some insight into the physical settings of
the problem by exploiting the analytical simplicity of the derived expressions.
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Figure 5.3 Spectral content of the propagation scalar Green’s function observed at (0, 10.25λ, 0) with
θ = π/2.
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Figure 5.4 Spectral content of the propagation scalar Green’s function observed at (0, 0.15λ, 0) with
θ = π/2.
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Spherical symmetry. Both scalar radial Green’s functions are independent of
θ and φ. This is expected since a point source in the scalar problem has no structure.
Therefore, the problem is spherically symmetric. However, note that this applies
only to the radial decomposition chosen in this chapter.

Independence of the wavenumber. A striking feature in the expression (5.20)
is the fact that the dependence of the total radial evanescent field on k cancels
out in the final formula. In particular, the localized near field is independent of
frequency in the scalar problem. This shows that all scalar radiation problems possess
a single universal structure of the nonpropagating field. This is connected with the
next observation.

Connection between the evanescent field and electrostatics. The evanescent
radial Green’s function is simply (numerically speaking) the electrostatic Green’s
function. This suggests that there is deep connection between the electromagnetic
near-field theory and potential theory.

Singularity of the radial propagating-evanescent Green’s functions. The
evanescent Green’s function is singular at r = 0. This is, however, not the case
with the propagating Green’s function, which takes a nonzero value at the origin.
Indeed, by L’hospital rule we have

lim
r→0

grad
pr (r) = lim

r→0

eikr − 1
r

= ik lim
r→0

eikr

1
= ik. (5.22)

This shows that the radiation field is already propagating right at the source location
itself. In other words, the field is created already in a propagating state! This result is
surprising since one would expect intuitively that if the propagating part is finite at the
source, it would approach the value zero there. Instead, the calculation (5.22) proves
that the propagating field behaves differently in the neighborhood of the source.

Figure 5.5 shows the radial propagating scalar Green’s functions. It is clear
that the propagating part attains its greatest magnitude at r = 0, implying that not
only the propagating field is nonzero at the source location, but actually it is maximal
there.

Rate of decay. Another very interesting observation is that the rate of decay of
both the propagating and evanescent scalar Green’s functions is the same. Indeed,
since exp(ikr) − 1 is bounded, the function grv(r) is asymptotically like 1/r.
Therefore, both the propagating and evanescent fields behave in the far field as
1/r. The evanescent field contribute to the far field by the same level of magnitude
contributed by the pure propagating part.
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Figure 5.5 Radial propagating scalar Green’s function.

Vanishing of the total propagating part. From (5.21) we see that the propa-
gating field can vanish at any sphere

r = 2nλ, n ∈ N. (5.23)

This means that at point on any sphere with radius equals exactly an even multiple
of λ, the totality of radial propagating modes all cancel each other. On such a
sphere, the radiation field is completely nonpropagating (evanescent) along the
radial directions.

Energy ratio. Consider now the energy density of the propagating and
evanescent parts of the radiation field. We define the energy ratio Γ as

Γ :=
|gpr (r)|2

|gev (r)|2
=
∣∣eikr − 1

∣∣2 . (5.24)

Figure 5.6 illustrates this energy ratio. It is clear that at the source the ratio is zero
although the propagating part is not zero as we found above. This is possible because
the evanescent field energy is infinite at the source. The fact that the limit of the ratio
is zero restores some of the intuitive picture expected in radiation problem. That is,
although the individual total propagating field is nonzero at the source, its relative
strength compared with the total evanescent field is zero.
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Figure 5.6 The energy ratio between the radial propagating and evanescent energy densities for the
scalar problem.

The truly interesting feature of the energy ratio Γ is that the vanishing of
the total propagating part extends to the far field zone as was already observed
numerically in Figure 5.2. Indeed, any even multiple of λ satisfies the condition
(5.23) and hence even deep in the far zone, one still encounters spheres where there
is no total propagating mode. This is somehow contrasting with the naive common
sense picture we usually draw about radiation problems where it is expected that the
field is “totally propagating” in the far zone. Notice that the total field on the spheres
r = nλ is not zero. Actually, the radiation field of the scalar problem is never zero.
Only the total pure propagating part is zero. This is again connected with the fact
established above that in the far zone, both the propagating and evanescent modes
are at the same level of magnitude.

Interaction energy. Consider now the total energy density in terms of the
propagaing and evanscent parts. Simple calculations shows that

|g (r)|2 =
1
r2︸︷︷︸

self
evanscent

energy

+
2
r2 Re

{
eikr − 1

}
︸ ︷︷ ︸
interaction energy

+

∣∣eikr − 1
∣∣2

r2︸ ︷︷ ︸
self propgating

energy

. (5.25)
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Therefore, the interaction energy between the propagating and evanescent parts is
given by the simple expression

Eint :=
2
r2 Re

{
eikr − 1

}
=

2
r2 (cos kr − 1) . (5.26)

Figure 5.7 shows the variation of the interaction energy (5.26) with distance. It is
immediately observed that Eint ≤ 0 for all r. This is not surprising, since the self
energy density of the radial evanescent part is actually equal to the total field energy,
necessitating that when the propagating and evanescent parts mutually interact with
each other, they both loss energy.

Notice that Eint = 0 for all r = 2nλ, where n is a natural number. This is
in harmony with the fact that at these spheres, the propagating part is zero so the
interaction energy is trivially also zero. However, at the spheres r = (2n + 1)λ, the
interaction energy reaches its smallest value at Eint = −2

/
r2. In this case, the total

propagating field energy density is equal to twice the total energy 1
/
r2.

Such observations suggest that care should be taken when attempting to
interpret the evanescent part of the total field. It is usually assumed that the energy
“stored” in the field is located in the nonpropagating part of this field. However,
the simple calculation above points to opposite conclusions, for total energy seems
to be distributed not only among the propagating and evanescent modes, but also
in the interaction zone between the two. Now, although the evanescent modes for
arbitrary (extended or nonpoint) source distribution will tend to be localized around
the antenna, the propagating modes obviously exist everywhere. The fact that part
of the total energy is always allocated to the interaction between purely propagating
field and a localized one seems to imply that part of the stored energy may be
related somehow to propagating waves escaping to infinity! This is another evidence
indicating the difficulty in dealing with stored energy using a time-harmonic theory.3

Total radial evanescent energy. From the energy density expressions we can
compute the total energy in any finite volume by simple integration

Wev, pr =
∫

V

d3r Eev, pr (r) , (5.27)

Consider a spherical volume bounded between the radii r = a and r = b. The total
electric radial evanescent energy in this region can be readily calculated as

Wev = 4π (b − a) . (5.28)

3 In Chapter 4, the authors suggested that stored energy cannot be properly understood without a
transient (time-dependent) analysis of the antenna system.
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Figure 5.7 The interaction energy between the radial propagating and evanescent energy densities for
the scalar problem.

We note that Wev = 4πb at a = 0, which is finite, although the evanescent field itself
is infinite at the source. However, as b → ∞, the total energy diverges. Therefore,
the total radial evanescent energy is infinite, even though the individual modes are
pure evanescent and decays exponentially at infinity.

The total radial propagating energy is computed in the following form

Wpr = 8π

[
b − a − 1

k
(sin kb − sin ka)

]
. (5.29)

The limit does not exist in an infinite domain as should be the case with pure
propagating modes (i.e., total propagation energy is always infinite in any radiation
problem). The total interaction energy is simply the negative of the total propagating
energy (5.29)

5.6 THE CASE OF MULTIPLE SCALAR SOURCES

Knowledge of the scalar radial Green’s functions in the closed analytical form (5.18)
and (5.19) derived in Section 5.4 permits us to compute the near field decomposition
due to an arbitrary source. However, there is a subtlety in the multiple point source
case that need to be clarified first. We noted in Section 5.4 that the derivation of the
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Figure 5.8 A diagram of three sources producing a near field at point P . Each point source will contribute
a total propagating field along the direction specified by the line joining it with the observation point. A
rough estimate of the direction of the resultant sum is the vector k̂P , which can be considered an average
direction.

closed form expressions above is possible only when the origin of the coordinate
system is chosen to coincide with the point source location. Obviously, when there
are two or more point sources, this is not possible simultaneously. Therefore, the
physical situation appear a bit more complicated in this case.

Before giving the mathematical expressions of the near field decompositions,
we first consider the problem as illustrated graphically in Figure 5.8. We have three
point sources ρ1 (r), ρ2 (r), and ρ3 (r) and it is desired to know how the near field
behaves at point P . When the method of Section 5.4 is used to compute the the
propagating and evanescent parts of the field due to each source taken individually,
the radial contributions of the sources ρ1 (r), ρ2 (r), and ρ3 (r) will appear as k̂1,
k̂2, and k̂3, respectively. By invoking the physically intuitive assumption that the net
near field tendency to propagate or not propagate is the superposition of the separate
sources taken individually, we may assume that the total propgating/nonpropgating
parts of the near field at point P will be described with respect to the vector k̂P ,
which is the unit vector parallel to k̂1 + k̂2 + k̂3. This is to be understood, however,
only as an average direction of energy flow.
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If we have a continuous source in a volume V , the expressions of the total
propagating and nonpropagating parts follow from the expressions (5.18) and (5.19)

ψev (r) =
∫

V

d3r′ ρ (r′)
r

, (5.30)

ψpr (r) =
∫

V

d3r′ ρ (r′)
(
eikr − 1

)
r

. (5.31)

The unit vector of “most likely propagation” is estimated as

k̂P =

∫
V

d3r′ (r − r′)∥∥∫
V

d3r′ (r − r′)
∥∥ . (5.32)

Therefore, the direction along which the near field tends to “maximally” propagate
(or localize) depends on the geometric configuration of the relative positions of the
radiating point sources with respect to each other. Evidently„ each source current
distribution will produce a near field localization pattern that reflects the shape of
the radiator.

Finally, we mention that it is possible to improve the estimation (5.32) by
inserting a “weight” at each propgation/nonpropagation direction proportional to
the magnitude of the total propagating part at the point under consideration. In this
case, we can replace (5.32) with

k̂P =

∫
V

d3r′ |ψpr (r)| (r − r′)∥∥∫
V

d3r′ |ψpr (r)| (r − r′)
∥∥ . (5.33)

The use of the absolute value of ψpr (r) in (5.33) is intentional and aims at eliminating
any cancellation from the total sum. The reason is that from the energy viewpoint, a
negative or positive total propagating parts are the same. A negative amplitude of a
plane wave does not imply that the direction of propagation is reversed. Consequently,
in computing the average direction of energy flow, it is more appropriate to use only
positive values.

5.7 CONCLUSION

The chapter presented a study of the near-field structure of the basic problem
of scalar point sources radiating in free space. The topic was approached from
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the new perspective of the dynamic structure of the near field based on careful
spectral analysis of radiation using the plane wave spectrum combined with a rotating
coordinate frame of reference. The analysis focused on the radial flow of energy
given its intuitive appeal. We motivated this choice by some numerical examples
indicating that most of the energy tend to move maximally in the radial direction. The
radial Green’s function of the scalar problem was then derived in simple analytical
closed form for both the propagating and nonpropagating parts. We studied in depth
the physical structure of the radiation problem revealed by these expressions and
documented some interesting observations. Finally, a quick formulation for the array
or multiple source problem was outlined, which may be used in the future for near-
field shaping and focusing applications.





Chapter 6

Morphogenesis of Electromagnetic
Radiation in the Near-Field Zone

6.1 INTRODUCTION

6.1.1 Philosophical Resume

The guiding thread in our investigation is the search for a suitable theoretical level
at which general knowledge about the antenna can be summarized in the most
economical form. By observing the pattern of the evolution of the physical and
mathematical sciences throughout the last one hundred year, it appears to us that
the most fundamental level at which a scientific investigation can be enacted is the
topological one.

There are two levels of structures that may be exploited in formulating a
general theory of the antenna near field. The first is the topological layer. It
consists of systematic abstraction from the real number system used in representing
electromagnetic phenomena within the framework of Maxwell’s equations. The
second level is the physical layer. This consists of any input arising from observing
the way physical quantities actually behave when represented by quantities selected
from the topological layer. For example, we mention here the invariance properties
of the electromagnetic fields, which are expressions of the continuous symmetry of

175
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the underlying topological base structure when equipped with additional structures
like differentiability and geometry.1

Our theoretical program here is to start from the physical layer and build
the way back to the highest abstract level, that of the topological layer. This task
is accomplished in the following manner. First, the rotational invariance of scalar
sources in electromagnetic theory are observed.2 We exploit this symmetry in the
interesting case where there are several point sources co-existing next to each other.
The rotational symmetry of each source is broken by choosing a particular orientation
of the coordinate system along which we attempt a mathematical description of the
electromagnetic near field.3 We therefore move from perfect (rotational) symmetry
to superposition of a multiplicity of broken symmetries, all coexisting and hence
resonating with each other. This picture was described in detail in Chapter 4
from the engineering point of view, while the fundamental level will be treated
comprehensively elsewhere. This chapter will provide an introduction to this latter
more fundamental way of looking at the near field.

In such a more advanced stage, we will derive a system of nonlinear ordinary
differential equations describing the actual dynamic structure of the field. We then
search for the singularities of this system (critical points in the phase space of
the problem). It is the topological structure of these singularities that is, in our
opinion, the broadest abstract level in the scientific description of antennas. Since
singularities are eminent points in the phase space structuring virtual solutions of
the problem starting from given initial conditions, a topological description of the
distribution of such singularities is naturally the best general way so far to encode
all the relevant information of a given antenna. Such an encoding provides a deeper
understanding of how the current distribution may vary in order to effect certain
structural changes in the near fields, or how sensitive is the whole antenna system’s
radiation field to a continuous change in some antenna parameters of interest,
etc. Once this topological understanding of the antenna problem is attained, we
can work our way again toward the physical layer, and then back again to the
topological layer in light of new questions, problems, and proposals. It is this
immanent resonant interrelation that communicates back and forth between the
topological and physical layers what should be taken as the ultimate object of

1 The rotational and translational symmetries of the electromagnetic fields are consequences of
modeling physical phenomena by the topology of Euclidean spacetime. However, it is only through
observations that we come to know that phenomena appearing in the real world are indeed well-
behaved with respect to certain general symmetry principles.

2 Notice again that this is an expression of a structure at the physical layer.
3 As will appear later, this ‘mathematical description’ is chosen to be a decomposition of the total field

into propagating and nonpropagating parts.
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any scientific theory. A physical theory sensitive to both the fundamental structural
principles and the operational behavior of radiating electromagnetic systems must
address this dual mode of theoretical description.

6.1.2 General Scope of this chapter

The purpose of this chapter is presenting a brief outline of a general mathematical
model of electromagnetic radiation and energy flow in the source region viewed
as a space-time process. The familiar Poynting flow can be best interpreted as a
hydrodynamic phenomenon occurring in some yet undiscovered foundational fluid
dynamic formulation of Maxwell’s theory. It is well known that following the advent
of special relativity in 1905, there has been a general shift away from models
involving a “substantial ether” serving as substrates underlying electromagnetic
phenomena, mainly due to the justified objection that such an invisible media
are clearly incapable of being uniquely singled out by any known experimental
apparatus. However, by accepting the electromagnetic field as simply a mathematical
function on manifolds, we may study the problem of energy flow by resorting only
to considerations imposed by the structure of Maxwell’s equations themselves. Such
an approach will be adopted in this work, where we model space-time flow as the
dynamic splitting of the near field into propagating and nonpropagating modes as
observation moves progressively away from the source region.

The definition of ‘propagation’ here is based on the most simple consideration
of what constitutes a moving wave. More specifically, by performing a Fourier
analysis on the field, each resulting spectral component is seen to be either pure
propagating mode exp(ix − iut) or a nonpropagating mode in the form of an
exponential function exp(x − ut), where x plays the role of space, t the time,
and u the speed, all real quantities. As was discovered in Chapter 4, the freedom
allowed in choosing the orientation of the coordinate system in the free space Green’s
function (what was termed local frame) is the essence of the dynamic structure of
the electromagnetic field. The reason is that this local orientation, fully captured by
the Lie group SO(3), (the 3-dimensional rotation group), is the “space of additional
forms” that appears to emerge in the far zone although apparently absent in the
near zone. Our analysis suggests that for the purpose of characterizing the dynamic
structure of radiation, every electromagnetic field must not only be labeled by a
position in the 3-dimensional Euclidean space R

3, but also by an element of SO(3)
as much.Viewed in this form, the effective configuration space of the electromagnetic
radiation problem becomes R

3 × SO(3), which is a 6-dimensional non-Euclidean
manifold with a nontrivial but well-understood topology.
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The empirical content of the proposed theory lies in the discovery of the
existence of a scalar field on the configuration space R

3 × SO(3) characterizing
the dynamic splitting of the radiation field into propagating and nonpropagating
modes. This scalar field is what we call the propagation potential of the antenna.
It is simply the relative ratio of the energy of the propagating field to the energy of
the total field. Its precise construction will be detailed in this chapter. By computing
the gradient of this potential function with respect to a suitable Riemannian metric,
a new vector field is obtained, the morphogenetic field, and from this it follows
the ordinary differential equations on the 6-manifold R

3 × SO(3) controlling the
associated gradient flow.

6.2 THE FUNDAMENTAL PROBLEM OF MORPHOGENESIS IN
ANTENNA THEORY

What is precisely the sense of that “profound mystery” associated with the creation of
the antenna’s radiation pattern? Why do we need to undertake a painful fundamental
investigation within the framework of morphogenesis in order to understand the
production of radiation fields in general antenna systems? Is there, to begin with,
a genuine problematic underlying our understanding of the radiation field aside
from the common knowledge of the general expressions of the antenna’s field,
which have been available for long time?4 The answer to such questions requires
some preliminary reflection on the terms implicitly employed for framing these
and similar inquires. We start by noticing that the radiation pattern is essentially a
form. Furthermore, it is a spatial form, amenable to mathematical description, in
particular using the geometric language of differential manifolds [59]. The ‘form’
under consideration here is simply the mere fact that the radiation field, the physical
content of the electromagnetic field in the antenna’s far zone, exists mostly in the
state of propagating modes, i.e., the mathematical expression of the fields tend to
appear as a traveling wave.5

It has been well known for a long time that the near field, the field generated
by the antenna observed at an electrically small distance from the antenna, does
not behave as a propagating mode [33], [37], [35]; instead, it appears “static,” to
use an inaccurate term but adequate for our present purpose, i.e., describing the
antenna near field as non-propagating or simply “not moving.” By attributing ‘form’

4 Indeed, available in the form of the dyadic Green’s function, which is known in analytical closed
form.

5 For an elementary introduction to the mathematical concept of traveling waves, see [91]. For a
classical exposition, see [89].
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to the existence of propagating modes in the spectral content of the field, we can
now say that the near field lacks form, while the far field possesses a plenty of an
unambiguous and definite form. It is then legitimate to ask the following question:
If form was lacking in the early stage of the field (the near field), from where did
it emerge later in the far field? Was it “imposed” from the “outside,” or was it
somehow originally hidden invisibly in the near field? And in any case, what are the
mechanisms responsible for the creation of this form? The fundamental problem of
morphogenesis is finding satisfactory scientific answers to these questions. The task
is to provide an immanent (in contrast to transcendent) explanation of the genesis
of form, i.e., an objectively scientific explication of the mechanisms of the formative
processes unfolding the near field into the far field. In the language of the antenna
system, we need to figure out the mechanism of the production of propagating modes
from nonpropagating modes.

Throughout our investigations, it will turn out that the research program of
morphogenesis is extremely fruitful for both the theoretical and applied points
of view. Indeed, the epigenetic theory to be developed in this chapter appears
to be naturally attuned to practical considerations while at the same abstract
level where it expresses itself as a fundamental theory. This should not be a
great surprise given that the engineering sciences are directly concerned with the
problem of form, probably in a way more striking that the situation with the
physical sciences. In the latter, form manifests itself as the mathematical harmony
disclosed in a newly established law of nature. On the other hand, engineering is
the science of creating, manipulating, transporting, processing, and even destroying
various forms, shapes, structures, and so on. Communication theory is concerned
with the transmission of form as information. Power engineering is interested
in transporting energy in the organized form of electric current (rather than the
disorganized from of, for example, heat). Computer engineering builds complex
machines capable of processing and manipulating information in multiple forms.
Construction engineering builds highly organized structures by arranging matter in
rigid form. And so on. Physical sciences strive to understand form, but engineering
sciences aim to control it. However, it is obvious from the history of science that the
best way to control something is to understand how it works. This probably explains
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why technology has been in a sense prior to basic science in the historical context
of not only the modern era, but even that dating backs to antiquity [169].6

Deeper knowledge of how a form is produced can be utilized in a variety of
methods designed later by practitioners to channel the process of devolvement (the
genesis of form) such that desirable particular end results may be obtained. This view
can be better appreciated when reflecting on how difficult it is to change a particular
feature in a mature organism by crude manipulation of its early embryo. If the
process of biological devolvement is not fully understood, the final outcome of such
a manipulation cannot be anticipated in an accurate fashion. This observation goes
actually beyond a mere analogy; later in the chapter, we will propose a tentative
scheme of “biological development” as the most natural framework for casting a
reasonable theoretical interpretation of the mathematical equations governing the
growth of the antenna radiated fields.

6.2.1 Propagation Model for the Antenna Fields

We need now to move toward a concrete implementation of the general program
outlined above. The concept of form, with its essentially wider semantic scope,
must now be narrowed down to a simpler level amenable to mathematization.
By form we now focus our attention on that aspects pertaining to propagation
of the field, i.e., the character of the field as a moving function over space in
time. Mathematically speaking, we describe propagation by giving a a vector k,
with direction providing information about the direction of propagation, while its
magnitude supplies information about the “speed of motion.” The idea we suggest
here is a generalization of the approach developed in Chapter 4, where we studied
the structure of the electromagnetic field in the spectral domain by means of
disclosing for the distribution of wavevectors k in the field structure. This implies
that a Fourier analysis of the three-dimensional field function over space has to
be performed. It is well known in literature that this analysis, when applied to
functions satisfying the Helmholtz equation, will lead to the Weyl expansion of
the field generated by a scalar point source [94], [35]. We are not going to repeat
the basic derivation here, but instead refer the reader to the standard literature on
the subject. In what follow, the general conceptual essence of the subject will be

6 A classical demonstration of this observation in the modern era can be looked up in any good book
on the history of 19th-century science. The practical need to design better steam engines in order
to sustain the rising demands of the Industrial Revolution was the stimulus leading to the creation
of fundamental theory of modern thermodynamics. Also, the prospects opened up by the electrical
sciences for achieving long-distance communication was noticed very early, as can be found in the
famous “magnetic communication” experiment conducted by Gauss and Weber.
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presented here in a rather simplified form, that pertaining to the scalar theory, not
the fully electromagnetic complete picture.

To be more precise, let us assume that we are given a scalar field ψ (r) generated
by a point source and satisfying the scalar Helmholtz equation. For the well-behaved
fields of mathematical physics, it is always possible to perform a Fourier analysis by
writing the Fourier integral

ψ (r) =
∫ ∞

−∞
d3kψ̃ (k)e−ik·r. (6.1)

Here, the orientation of the coordinate system along which the spectral analysis is
performed is chosen at random. Of course, by changing this orientation, the Fourier
transform ψ̃ (k) itself will change, but the value of the field observed at the same
spatial location r remains the same, and this applies to any well-behaved field, i.e.,
not only the electromagnetic and acoustic fields. There is nothing remarkable about
this observation, which we consider to be devoid of any original physical content.
However, the situation changes dramatically when we take into consideration the
fact that the scalar field does satisfy Helmholtz equation. In this case, it is possible
to show that the scalar Green’s function Fourier integral can be reduced into a
two-dimensional integral (the classic plane-wave spectrum of Weyl’s expansion).
The reduced integral, moreover, has the curious property that it is the sum of two
parts, one in which only propagating modes in the z-direction are admissible, and
the other where only evanescent (exponentially decaying) modes can be included.
When the total radiated field produced by arbitrary source is expressed in terms of
the actual source and the scalar Green’s function, it follows at once that the total
field is written as

ψ (r) = ψpr (r) + ψev (r) , (6.2)

where ψpr (r) and ψev (r) stand for the propagating and evanescent (nonpropagating)
parts, respectively.

Up to now, this is a standard knowledge in classic field theory (the mathematical
formalism of acoustic and electromagnetic fields). What has to be emphasized
here is the choice of the orientation of the observation frame along which the
decomposition (6.2) was conducted. If the observation frame in the plane wave
spectrum analysis of the scalar Green’s function was rotated, the respective values of
the total propagating and nonpropagating parts will change too, while of course their
sum will always give back the original total value of the field. Now, we notice that the
propagating part represents the total sum of all plane waves propagating along the
z-direction. The evanescent part, being an exponentially decaying field, represents
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clearly the nonpropagating field along the same direction. There is, therefore, an
unambiguous physical meaning to be attached to both fields. They serve to delimitate
the propagation structure of the field with respect to a given observation frame. What
about other observation frames? Here we should immediately mention that it is not
the field itself what is being “observed,” but instead the scalar Green’s function
itself. Indeed, there is only one global frame used to write the position vector r of
the field, but a new observation frame has to be introduced in order to perform the
spectral analysis leading to the decomposition of the fields into propagating and
nonpropagating modes similar to (6.2). The details where provided in Chapter 4,
but the general idea is simple and states that the field decomposition can now be
written as

ψ (r) = ψpr
(
r, R̄
)

+ ψev
(
r, R̄
)
. (6.3)

Therefore, the quantities ψpr
(
r, R̄
)

and ψev
(
r, R̄
)

represent the propagating and
nonpropagating parts, respectively, while the local observation frame is oriented
using the rotation matrix R̄ ∈ SO (3). The explicit functional dependence of the
propagating and nonpropagating parts on R̄ serves to indicate that these quantities
are not unique and that the total field can be Fourier analyzed in different ways
according to the orientation of the observation frame with respect to the source
distribution. Indeed, what attaches a special physical significance to this fact is that
the aforementioned dependence is completely controlled by the spatial distribution of
the source. In other words, the non-uniqueness of the Fourier analysis, in the sense
understood above as decomposition into propagating and nonpropagating modes
along a certain axis, is not a mathematical artefact, but a consequence based on the
physical distribution of the source responsible of producing the radiated field and
applies only to certain class of fields, i.e., those satisfying Helmholtz equation.7

It is a good idea to summarize the particular propagation model we chose in
our work as the form of the antenna radiated fields under study. We provide the
following procedure

1. Fix a global coordinate frame r = 〈x, y, z〉.

2. Generate a rotated local frame r′′ = 〈x′′, y′′, z′′〉 = R̄ ·r. Here, R̄ is a general
rotation matrix.

3. Along the z′′-axis of the local frame, expand the fields into a sum of
propagating and nonpropagating modes.

7 There is the interesting question of whether the idea of field decomposition into propagating and
nonpropagating modes can be developed for other equations of mathematical physics, which we
leave open here.
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This process is illustrated graphically in Figure 6.1a. There we show the rotated
local frame x′′y′′z′′ sharing the same origin with the global frame xyz. The source
frame x′y′z′ is assumed without loss of generality to coincide with the global frame
and is suppressed in the figure. A general current distribution J(r) represents the
mathematical model of the antenna as an electromagnetic source function in the
form of a vector field on the Euclidean manifold. As usual, we always assume that
this function has a compact support given by the shaded area in the figure.

It is worthy mentioning that the total propagating and nonpropagating parts of
the field, namely ψpr

(
r, R̄
)

and ψev
(
r, R̄
)
, where the spectral analysis is conducted

along the z′′-axis, do not vary if the orientation of the local frame x′′y′′z′′ is
changed by only a rotation around the z′′-axis.8 This interesting observation was
exploited in the formulation of the concept of radial streamlines, which the authors
believe to be the most natural object of study in connection with the field spectral
structure of general antenna systems from the engineering point of view. Although
in this chapter, we go beyond the streamline picture, it is good to keep in mind
the observation mentioned above about the invariance of the decomposition to local
rotation around the main axis of the propagation model. It appears that even though
the total propagating and nonpropagating field parts have this property, for the full
and most fundamental theory the complete rotation matrix as an element of SO(3) has
to be retained in its entirety. That is, in contrast to Chapter 4, here we don’t introduce
a spherical parameters like θ and ϕ in order to describe the direction of the z′′-
axis. Instead, the full rotation matrix, which is a three-dimensional non-Euclidean
differential manifold, is retained and used as part of the extended configuration
space of the problem. This will lead to a theory with a mathematical structure
very different from the formalism of Chapter 4. For example, we argue that it is
not possible to fully comprehend the structure of the antenna near field without
working with the geometrical structure of a 6-dimensional differential manifold
with the form R

3 × SO(3) as will be explained in detail later. At this stage, it
is probably helpful to recall the precise meaning of the term ‘propagating.’ Even
though we focus in our propagation model on the decomposition of the field into
a propagating and nonpropagating modes along a certain axis, it is not possible
mathematically to ignore the specific directions of the remaining two orthogonal
directions. If we say that ψpr

(
r, R̄
)

is the total propagating field along the z-
axis of a frame obtained by rotating the global coordinate system by the matrix
R̄, then the the other two axes, the x- and y- axes, are part of the mathematical
description of the way in which the field is written as a sum of propagating modes.
This is a fundamental difference between a particle (mechanistic) model and a

8 Cf. Chapter 4.
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genuine field problem. In the former, the motion of a material or point particle
is fully described mathematically by giving a vector in the configuration space of
the problem, namely the velocity of the particle. In the latter case, the field problem,
we find that although there is a preferred direction in space, the main axis along
which we enact the spectral decomposition into propagating and nonpropagating
parts as explained in detail above, still it is not possible to ignore the functional
dependence of the field on the other orthogonal directions when writing the actual
expansion.9 The total propagating part as a number is invariant to the rotation around
the main decomposition axis, but the dynamics of the problem, in a sense to be
developed carefully later, requires working with the full rotation group, which is a
three dimensional manifold, rather than two.

Although the local frame has to share the same origin with the global frame,10

it is very instructive to introduce another local frame xlylzl, which has the same
orientation of the original local frame x′′y′′z′′, but this time with its origin Ol

translated to the general location r outside the source region. The situation is depicted
in Figure 6.1b. The second local frame has an orientation described in terms of the
rotation matrix R̄, in exactly the same way as the first local frame of Figure 6.1a.
We show also a trajectory or path spanned by the vector r = r(τ), where τ is a real
parametrization of the three-dimensional curve. At this stage, it is not quite clear
yet what is the physical motivation for introducing such a path in the antenna near
zone, but let us pursue the idea now mathematically. (The concept of trajectory will
emerge immanently at a later stage of the formulation.)

As the point r(τ) changes with τ , we imagine that the rotation matrix R̄ itself
also changes with τ , i.e., we write explicitly R̄ = R̄ (τ). Everywhere, we allow
an arbitrary but smooth dependence on the motion parameter τ . In this picture,
“motion” in the antenna near field zone can be visualized as a change of the spatial
location, specified by r(τ), accompanied with an arbitrary smooth change of the
orientation of the local frame xlylzl generated by R̄ (τ). Physically, this means
that the electromagnetic field is being decomposed at each spatial location r(τ)
into a sum of propagating and nonpropagating parts along the z-axis of a local
frame oriented according to the rotation matrix R̄ (τ), i.e., the z′′- and zl- axes.
As mentioned before, for the actual computation of this spectral decomposition, the
first local frame x′′y′′z′′ has to be used; however a translated second local frame
can be used to picture the process graphically. We notice that the second picture,

9 This is probably connected with the fact that 3D rotation cannot be completely parameterized by
only two parameters. Three parameters and several coordinate patches are necessary to full describe
the rotation space viewed as a manifold.

10 Because the scalar Green’s function is invariant only to rotation, while translation will change the
function because the distance to the source point is now modified.
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Figure 6.1 An illustration of the propagation model of a general antenna system specified by the current
distribution J(r). Here, the coordinate system (frame) xyz is the global system of the problem. The source
frame is given by x′′y′′z′′ and is assumed without loss of generality to coincide with the global frame. In
addition to these two frames of reference, a third coordinate system is introduced, the local frames xyz
and xlylzl. (a) The local frame x′′y′′z′′ has as its origin the same location of the origin of the global
frame. It is used in the actual computation of the antenna propagation potential. (b) Here, another local
frame is introduced, the system xlylzl is descried mathematically by two objects, the position vector r
of the local frame’s origin Ol, and the rotation matrix R̄ ∈ SO (3). The latter is used to generate the
orientation of the local frame with respect to the global coordinate system. (The same rotation matrix is
also used to describe the orientation of the first local frame x′′y′′z′′.) Shown here also is a general path
in the antenna near zone. The path is mathematically described by the trajectory spanned by the vector
r = r(τ), i.e., the locus of the origin Ol of translated local frame xlylzl.
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that of Figure 6.1b, is formally identical to the motion of a rigid body in classical
mechanics. Indeed, the position vector r(τ) plays the role of the body’s center of
gravity, while the rotation of the body in the three-dimensional Euclidean space is
determined by the orientation of the local frame xlylzl [76]. As is well known in
this case, the configuration space of the mechanical problem is R

3 × SO(3). The
second depiction of motion in the near zone of the antenna, i.e., Figure 6.1b, is
formally identical to the motion of rigid body in three-dimensional Euclidean space.
Throughout this chapter, we will adopt this fundamental analogy by working with
the six-dimensional manifold R

3 × SO(3) as the (extended) configuration space of
the antenna near-field problem.

6.2.2 The Idea of the Antenna Propagation Potential

Armed with the mathematical model of propagation in the antenna near zone
described in Figure 6.1, we now move one step forward and introduce the most
fundamental concept in this chapter, the idea of the antenna propagation potential.
This will be a direct devolvement of the observation we made before about the
peculiarity shared by fields satisfying the Helmholtz equations, namely that they
admit a spectral decomposition into propagating and nonpropagating parts along a
chosen axis in freely rotating local observation frame of reference.

We will continue to work with the scalar problem in this non-technical
summary of the mathematical content of the present theory. That is, we now refer
to the spectral expansion (6.3). Consider a general point in the configuration space
R

3 × SO (3) described as
(
r, R̄
)
. Imagine first that the position is fixed. Now, one

can change the orientation of the local frame in an arbitrary fashion and obtain
generally varying spectral decompositions of the same total field. As was mentioned
before, only the direction of the z-axis of the local frame will change the spectral
composition of the field since rotation of the xy-plane around the z-axis does not
change the total propagating and nonpropagating parts.11

We would like to express this overall varying spectral composition in a
simple quantitative fashion. Since we endorse in this chapter the viewpoint of
morphogenesis, where form was identified with the propagating part of the field,
we find that the most natural approach for defining the form of the antenna near
field is to express the energy of the propagating part as a fraction or relative ratio of

11 But we repeat again, the orientation of the z-axis results from a 3D rotation, and hence cannot be
successfully built into the mathematical expressions of the Weyl expansion without resort to the full
rotation group, i.e., by parameterizations involving three variables, not only two parameters as in
Chapter 4.
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the total field. That is, we define a new scalar field, the antenna propagation potential
V = V

(
r, R̄
)

as

V
(
r, R̄
)

=

∣∣ψpr
(
r, R̄
)∣∣2

|ψ (r)|2
=

∣∣ψpr
(
r, R̄
)∣∣2∣∣ψpr

(
r, R̄
)∣∣2 +

∣∣ψev
(
r, R̄
)∣∣2 , (6.4)

where it is understood in this definition that the potential is defined only in regions
where ψ (r) �= 0. That is, the antenna propagation potential is a positive real function
bounded from above by one and is defined over a subregion U ⊂ R

3 × SO (3),
i.e., 0 < V

(
r, R̄
)

≤ 1, ∀
(
r, R̄
)

∈ U ⊂ R
3 × SO (3). It can be proved that

this function is smooth on U under quite general conditions on the antenna current
distribution.

The antenna propagation potential measures the relative amount of propagating
field at a particular location when the orientation of the observation frame is specified.
Being a ratio, it serves as an indicator of the “degree” of form (=propagation)
attained by the field at a given point in the configuration space R

3 × SO (3). From
this, we can see at once that the function V is an intensive quantity, similar to
temperature, pressure, electrostatic potential, gravitational potential, etc. In this case,
a corresponding physical phenomenon is naturally associated with changes in the
values of the potential, not its actual absolute value as with extensive quantities. This
is clear from the definition of the antenna propagation potential given in (6.4).

In order to describe how the field is actually propagating in a given small
region, one starts by a certain location in the Euclidean space R

3, then examines
the behavior of the potential V at all orientations R̄. The value of the propagation
potential in itself does not help much in shedding light on how the field will move
from that location to another. This latter depends on the difference between the value
of the potential at the initial location, and its values at other nearby locations. If the
difference is large, then one expects a significant amount of the field to flow into the
new location with the larger value of V . The implicit assumption we make here is
that electromagnetic flow, like all physical processes encountered in classical field
theory, is local, i.e., motion occurs at infinitesimal steps in contiguous regions in
the configuration space of the problem. According to this picture, the overall flow of
electromagnetic energy is governed by differences in the propagation potential.

The truth of this proposition does not hinge on an additional empirical law,
but is a consequence of the definition of the propagation potential itself. Indeed,
the most remarkable feature exploited here is the existence of such a potential,
which is a result deduced from the Weyl expansion. The capacity of the near field to
split into propagating and nonpropagating parts by changing the orientation of the
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local observation frame is considered by us as something on bar with an “empirical
discovery” in the sense that it provides the necessary foundations for defining the
antenna propagation potential as an intensive quantity. The flow of electromagnetic
waves is driven by the field of intensive differences associated with this potential.

In mathematical physics, the precise content of this ‘field of intensive dif-
ferences associated with a given potential’ is encoded in the idea of the gradient
of the potential. Mathematically speaking, the gradient is a vector field pointing
in the directions of maximum increase in the associated potential.12 Therefore, the
gradient is exactly the quantity capturing the true sense of intensive difference since
it supplies the field of directions along which flow or motion will “most likely” tend
to form and develop, where the “most likely” here is the extremum of the increase
in the potential V mentioned above. The gradient field, conventionally denoted as
∇V , is then postulated here as the fundamental force driving the formation of form
or propagation structure in the near field.

Before moving to the next step, we would like to come back to the interpretation
of the scalar field V as a potential. We notice that although we postulate a physical
significance mainly for the difference of potential, an individual value of the potential,
computed at some location in the extended configuration space, is not totally devoid
of meaning. Indeed, since V is defined as the relative strength of the propagating
field, it can serve as a quick indicator of the “degree of maturity” of the field in
the form of propagation structure. Although terms like ‘maturity’ may strike the
reader as a bit metaphorical in a physical investigation, we would like to indicate
that the biological interpretation of this mathematical theory to be developed in
Section 6.5 will make the use of such a jargon less objectionable as it may appear
on first look. At this stage of our development, we expect that when the position
r is close to the antenna current distribution, most the field will exist in its early
underdeveloped form of nonpropagating fields. Therefore, for all values of R̄, the
corresponding propagation potential at the location r is small. As we move away
from the antenna, say along the direction of radiation beam, the value of V tends
to grow in magnitude. Notice that our main objective in this chapter is to describe
the mechanism of the formation of the near field, not to decide whether a given field
is propagating or not. Therefore, our study will examine the pattern of variations
in the antenna propagation potential, most simply and intuitively as captured by the
idea of the gradient ∇V . Deciding whether the obtained field is “mature” enough

12 Conceptually speaking, Faraday introduced this idea to electromagnetism in his early analysis of
electrostatics. The mathematical details were worked out later by mathematical physicists like
William Thomson, Tait, and Maxwell. In our personal opinion, it is Faraday who deserves most
of the credits for the concept of dynamics driven by potential gradients.
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or not is a secondary result that can be obtained as a bonus from the fundamental
evolution equations to be presented next.

6.2.3 The Fundamental Evolution Equations of the Antenna Near Fields

Given a new vector field, what is the best method to understand its structure? When
Faraday was trying to answer this question for the magnetic field, he performed
the now famous experiment of iron filings, in which the small iron pieces interacted
with the field by forming a characteristic spatial distribution in the space surrounding
the magnet, the ‘lines of forces’ of the field, as they were termed later by Faraday.
Mathematically, what happens here is exactly the following: Search for a bundle of
trajectories in the configuration space of the problem such that at each point on a
given trajectory, the tangent to the path points into the direction of the vector field
assigned to that point. The fundamental theorem of the existence of solutions to
first-order ordinary differential equations guarantees the existence (and uniqueness)
of this bundle of trajectories if the vector field is smooth enough [74]. Assuming that
our gradient field ∇V is smooth (we will prove this later), the trajectories filling the
configuration space R

3 × SO (3) associated with this vector field are solutions to
the following system of ordinary differential equations

dr
dτ

= ∇rV,
dR̄
dτ

= ∇R̄V, (6.5)

where ∇rV and ∇R̄V are the gradients evaluated with respect to r and R̄, respec-
tively. The variable τ is a real parameter for the path. The equations (6.5) has to
be augmented with initial conditions as points located in the configuration space
R

3 × SO (3) such that ∇V is smooth. Notice also that the equations are coupled
because each of ∇rV and ∇R̄V is a function of both r and R̄ at the same time.

We call equations (6.5) the fundamental evolution equations of the antenna
near field. This is a system of six nonlinear coupled first-order ordinary differential
equations on the manifold R

3 × SO(3). They supply, in our opinion, the entire
mathematical content of the problem of genesis of form in the near zone, where
‘form’ is defined as the propagation structure of the field. They are written as
evolution equations in terms of the real parameter τ . As the value of this variable
increases, the field flows away from the antenna and tends generally to propagate
toward the far zone. The reason behind using the term ‘evolution’ is that the
solution of these equations, as is well-known from the general theory of ordinary
differential equations, can be expressed as one-parameter transformation group
[74]. Mathematically speaking, the group transforms any initial region in the
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configuration space of the problem into another region by generating a flow from
the former ending in the latter. Since the vector field appearing on the RHS of (6.5)
is a gradient of the antenna propagation potential, the use of the term ‘evolution’
suggested by ‘flow’ and ‘propagation’ is doubly motivated.

A qualitative (topological) analysis of the solution of equations (6.5) will be
supplied in Section 6.4. An analytical solution of these equations does not exist, and
only direct numerical integration can provide quantitative results. For each antenna
current distribution, the entire system (6.5) has to be integrated and the trajectories
in a region in the configuration space under interest can be displayed. Similar to the
iron filling experiment, we expect that the geometrical structure of these trajectories
will shed significant light on the electromagnetic structure of the field in the antenna
near zone.

We now find that the concept of ‘path in the near field,’ introduced in Figure
6.1b, is an essential part of the theoretical analysis of the near field structure. Indeed,
the integration of (6.5) provides as with the functions r = r(τ) and R̄ = R̄(τ)
postulated there. Notice that although the two sets of equations in (6.5) are coupled,
once integrated, their solutions can be displayed not only as trajectories in the 6-
manifold of the extended configuration space R

3 ×SO (3), but also in the suggestive
form of Figure 6.1b; i.e., as a normal spatial trajectory in the Euclidean space R

3,
and superimposed on it the change of the orientation of the local observation frame
xlylzl as the point r = r(τ) moves along its spatial trajectory. Our strategy will
be to work with both representations of the solution of the fundamental evolution
equations. Indeed, depending on the context and the intention, one geometrical model
is sometimes far more convenient than the other.

There is another distinguishing features in equations (6.5). This is the fact
that the manifold on which the fundamental evolution equations are defined, namely
R

3 × SO(3), in contrast to the Euclidean space R
3, cannot be covered completely

by a single coordinate chart. As is well known from Lie theory, the rotation
group SO(3) is a non-Euclidean three-dimensional manifold that requires a set of
overlapping coordinate patches in order to cover it completely [81], [80], [60], [61].
Therefore, equations (6.5) can be written in a coordinate-free manner by refereing
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to such a global covering of the underlying configuration space R
3 ×SO(3) by a the

suitable differential structure.13

6.3 COMPARISON WITH THE POYNTING FLOW

It is interesting to write down the differential equations describing the flow of
electromagnetic energy in terms of the classical Poynting flux flow density S =
(1/2) Re {E × H∗}. These are readily given as the coupled three equations in R

3

dr
dτ

=
1
2
Re {E (r) × H∗ (r)} . (6.9)

Comparison between (6.9) and (6.5) reveals that the two systems of equations
cannot be isomorphic (i.e., topological equivalent, c.f., [74]) since the dimensions of
the corresponding configuration spaces are different. Moreover, careful asymptotic
analysis (not given here) demonstrates that the energy flow in the far zone as predicted
by (6.5) is not identical to the Poynting flow. These surprising results strongly
suggests that the unquestioned reliance on the conventional interpretation of the
Poynting flux as a mathematical representation of electromagnetic energy flow in
space and time should be reconsidered.

13 To give more details, consider an open set U ⊂ R3×SO (3). Let ϕ : U → D ⊂ R6 be a coordinate
map with coordinates given by xn, n = 1, ..., 6. The gradient field ∇V can be written in terms of
this chart as [60]

∇V =
6∑

n=1

fn (x)
∂

∂xn
, (6.6)

where the fn(x) are smooth functions in x :=
〈
x1, x2, x3, x4, x5, x6〉

. Define f (x) :=〈
f1 (x) , f2 (x) , f3 (x) , f4 (x) , f5 (x) , f6 (x)

〉
. In terms of this chart, we can write the fun-

damental evolution equation locally as

dx

dτ
= f (x) , (6.7)

or component-wise in detail as

dxn

dτ
= fn

(
x1, x2, x3, x4, x5, x6)

, n = 1, ..., 6. (6.8)

As is well known from basic differential manifold theory, it is possible to state the fundamental
evolution equations in a coordinate-free manner. This requires the notion of integral curves, which
can be defined in terms of the vector field ∇V without reference to a specific coordinate chart (U, ϕ)
on R3 × SO(3) [60], [61].
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At this stage, it is convenient to refer to another interesting aspect implied
by (6.5). The reader may have noticed the emergence of a new concept of time,
the τ -time, beside the familiar t-time of electromagnetic (relativistic) phenomena.
Such a multi-layering of the temporal structure is not new in physics, although it is
usually ignored. We mention here that, for example, the photon concept is obtained in
quantum electrodynamics by the second-quantization procedure of t-time-harmonic
classical field modes [110]. On the other hand, the finite “time period” through
which a photon is created at the source and subsequently annihilated at the detector
obviously cannot refer to the same harmonic t-time. Therefore, it appears that the
“development time” of the photon is more properly related to the τ -time of (6.5)
than the formal t-time. This observation suggests the need for quantizing the theory
presented in this chapter.

We also notice that τ plays a role similar to the physical time t in the sense
that the near field tends to evolve and flow along trajectories in its configuration
space parameterized by τ . However, the physical t-time has been already employed
implicitly in constructing the antenna propagation potential V using the time-
harmonic excitation condition exp(−iωt) in writing the Weyl expansion [35]. On
the other hand, the parameter τ is intimately connected with the spatial structure
of the configuration space R

3 × SO(3) in the sense that as τ increases, the field
tends to convert from its embryonic “early” stage, in which most of its spectral
content is nonpropagating (regions spatially close to the antenna current in the
near-field zone,) to its mature phase, where most of the spectral composition of
the field consists of propagating modes (the antennas far-field zone). Therefore, the
parameter τ , which possesses a straightforward mathematical semantics, appears
to play a double role in the physical sense by conveying both temporal and spatial
meanings. We would like to introduce, vaguely, a new time we call the τ -time.
We notice immediately that this new time is frequency dependent; actually, for
each frequency ω there is a new set of fundamental evolution equations because
the antenna propagation potential (6.4) is obviously a function of frequency. The
τ -time is simply the mathematical content of the real parameter used to describe
the solutions of the fundamental evolution equations (6.5). The ultimate connection
between the physical t-time and the τ -time requires performing time-dependent
plane wave spectrum analysis [35] in which the complete temporal dynamics of the
radiated fields is determined by all the τ -times in the entire frequency range. This
process is extremely complicated and it is not clear at the present stage wether it is
warranted or not. In this chapter, we restrict our analysis fully to the time-harmonic
excitation scenario.
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It might be interesting to make some few additional observations that are
somehow speculative in nature. Although the entire theory developed here is
applicable only to classical fields, in which no quantization of the field itself
is attempted, the trajectory picture emerging from the fact that the fundamental
evolution equations (6.5) are ordinary differential equations strongly suggests a
“particle” interpretation of the field. Indeed, one may argue that an integral curve
of equations (6.5) represents motion of a “particle of radiation” in the antenna near
zone. It is well known that photons, the only genuine particle of electromagnetic
radiation, are obtained by first Fourier analyzing the classical fields then quantizing
the obtained spectral expansion [111], [110]. (In this sense, each photon with energy
E is associated unambiguously with a frequency ω through the Planck-Einstein
equation E = �ω.) However, every physicist or engineer working with phenomena
essentially involving the photon concept, e.g., quantum optics, acts with some
mental imaginations in which the photon is visualized as moving somehow from
region to another. (This remains true even with the fact that the concept of photon
wavefunction is problematic [112].) When one tries to interpret the experiment in
which a photographic plate registers the impact of a photon, it is this t-time-harmonic
entity – which presupposes an infinite-time-harmonic waveform – that moves and hits
spatially localized regions, where the impact process occurs in (another?) physical
time. The concept of τ -time may help resolve this difficulty. One can speculate
that the definition of photon requires a t-time, while the genetic process of photon
generation, transfer/movement, and subsequent absorbtion/destruction are all based
ultimately on the τ -time. This interpretation is not fundamental to our main theory
because in the antenna problem, where the fields are classical (non-quantized) fields,
there is no essential need for introducing the concept of particles of radiation.

6.4 THE ROLE OF SINGULARITIES

Our approach to the antenna near field through the fundamental equations (6.5)
will be based on the qualitative theory of ordinary differential equations, which was
originally proposed by Poincare and Lyabonov at the end of the 19th century [74].
The topological aspects of the flow generated by (6.5) can be completely described
by the distribution of special points in the phase space of the problem. These points
are usually termed critical or fixed points, but we adopt here the other commonly
used terminology of singularities. They can be defined as the points in R

3 × SO(3)
at which the gradient field ∇V is identically zero. The entire solution of (6.5) will be
structured both locally and globally by the location and types of these singularities



194 New Foundations for Applied Electromagnetics

in the phase space. The local study begins by computing the differential of the field
∇V and obtaining its eigenvalues at each singularities. Depending on the nature of
these, e.g., whether real (positive, negative, zero), imaginary (pure imaginary, etc),
one can deduce valuable information about the behavior of the electromagnetic flow
around the fixed point [74]. There has been an enormous effort in the mathematical
community throughout the 20th century to classify all types of singularities and
tabulate the resulting qualitative behavior. This literature can be directly utilized by
the antenna community in the quest to understand the structure of electromagnetic
flow in the near zone based on the equations (6.5).

Instead of reviewing this literature, we will propose here a new concept that
appears to the authors natural in gradient-like flows. This is the idea of a near-field
wavefront, which we define as the set of points in R

3×SO(3) satisfying the equation
V = V0, for constant V0. Therefore, this is the “level surface” of the propagation
potential (6.4) at V0. It is a generalization of the familiar idea of a equipotential
surface in electrostatics. The near-field wavefront can be thought of as the moving
structure of electromagnetic energy that recedes away from the source into the far-
zone. The actual radiation field will carry the signature of this structure in the form
in which it was initiated near the antenna current distribution. The question is now
the following: How does this near-field wavefront change while moving away from
the source?

Let Mτ1 and Mτ2 be two near-field wavefronts obtained from each other by
the flow generated by (6.5), i.e., starting from time τ1 and ending at τ2. It can be
shown based on a local analysis of the propagation potential that if no singularity is
encountered during the motion of wavefront Mτ in the interval [τ1, τ2], then the two
fronts Mτ1 and Mτ2 will be diffeomorphic to each other, i.e., have essentially the
same topological or qualitative shape. As it turns out, it is only when the wavefront
passes through a singularity that a topological (qualitative) change occurs in the
shape of the moving field.

The specific analysis of the case when singularities are present requires
some more technical treatment. We will classify singularities as is customarily in
differential topology into degenerate and nondegenerate points. The former is the
case when the Hessian matrix of the propagation potential is singular, while the
latter is the other possibility [87]. Any antenna propagation potential which has all
of its singularities belonging to the nondegenerate type are called Mores functions.
However, there is no reason why the antenna potential (6.4) must be always a Mores
function, but it can be shown that the set of Morse functions are dense and hence any
generic antenna potential can be safely assumed to be a Morse function (the details
of this argument will be given elsewhere). This brings into the antenna problem
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the powerful machinery of differential topology in general, and Morse theory in
particular, for our quest to understand the structure of the near field flow generated
by (6.5).

Using Morse theory [87], it is possible to completely determine how the
antenna near-field wavefront will change when passing through each possible type of
singularities. The effect of the singularities is here described locally as the topological
change enacted by the singularity in a small neighborhood surrounding it on the part
of the near-field wavefront passing this region. The nature of this topological change
turns out to depend fully on two factors, the nature of the antenna configuration space
R

3 × SO(3) (e.g., dimension, homotopy and homology groups, etc.), and the index
of the nondegenerate singularity (this quantity is defined in [87]).

The program of analysis of the structure of the antenna near field is now
summarized as follows:

1. Using the antenna propagation potential, identify all singularities and classify
them according to their indices.

2. Identify initial near-field wavefronts at any location of interest near the
antenna.

3. Study how the near-field wavefront will undergo a fundamental qualitative
change when passing through a singularity.

4. If no singularity is encountered by the near-field wavefront, then its essential
qualitative form as originated in the near zone will pass unchanged into the
far zone.

Based on this overall picture, we suggest that the specific form of the fields
generated by the antenna device is completely governed by the locations and the
indices of the antenna propagation potential singularities. Therefore, answering
fundamental questions about electromagnetic radiation, in our view, may be attacked
using the topological program sketched here. Notice that the task of implementing
this procedure is now completely computational after the derivation of (6.5), although
not an easy one and may require a considerable and sustained group effort.

6.5 FROM THEORETICAL BIOLOGY TO ANTENNA ENGINEERING

In the theory to be presented in this work, we make use of ideas inspired by the study
of development and ontogenesis as observed in the biological world. That does not
imply that our intention is to suggest that the antenna fields are a “living organism,”
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although, as will become clear toward the end of this chapter, there is indeed
a striking similarity between the manner in which an initial germ in the animal
kingdom grows to form a mature organism and the mechanism of the emergence of
well-defined radiation pattern in general antenna systems. Our objective of spelling
out this remarkable similarity is twofold. First, we make a progress in the purely
scientific study of electromagnetic radiation by probing in depth its mechanisms of
morphogenesis in a mathematically rigorous fashion. On the other hand, this new
understanding is shown to lead in a natural way to a significant insight into the
prospects of attaining a finer control of the antenna fields by supplying clues for how
to modify the current distribution.

Morphogenesis is the coming of form into being [161], [162], [163], [164].
The first comprehensive mathematical approach to the problem of the genesis of
form can be traced back to the classic work by Thompson [155], which was taken
up again by Thom in his catastrophe theory [163], [164]. Without going into much
details about the subject matter of these works, we first make notice of the fact that
at a very general level, the framework of morphogenesis involves fundamentally two
pillars: 1) an emphasis on form as the subject proper of the scientific investigation,
and 2) the genesis of this form, its creation as a historical process in which an initial
germ unfolds and “evolves” into a complete form. The sense of the term ‘complete’
here remains ambiguous till we delimit its meaning as essentially refereing to the
emergence of form; i.e., the final (mature) object unfolding from the initial germ
possesses an unequivocal new form that was absent in the germ itself.

In antenna systems, the field close to the physical support of the current
distribution is “devoid of radiation” in the sense of being consisting mainly of
nonpropagating modes.14 On the other hand, the field away from the antenna contains
the “well-developed” state of radiation in the form of propagating or traveling modes.
Therefore, the natural signification of the word ‘form’ is being either propagating
or nonpropagating. In this sense, the near-field part is “less-developed” than the far-
field parts, since the latter contains rich amount of “complete” forms or propagating
modes. In our opinion, this simple picture is fundamental in achieving proper
understanding of the inner working of antenna systems. It explains why it has been
extremely difficult in antenna practice during the last six or seven decades to come up
with a perspicuous methodology for antenna design. Indeed, the recurrent reference
to antenna design as being more of an “art” than science stems from the fact that the
process of electromagnetic radiation is a complex genetic process in which there is
roughly speaking a plethora of pathways of growth and development taking each
part of an initial germ into a complete form in the far field. Think of an early

14 Cf. Chapter 4.
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animal embryo. It is well known that modification of this initial germ may lead
to all kinds of complications in the final attained form. One thing that was observed
very early in embryology is that small modifications in the initial germ may lead to
enormous variations in the morphology of the mature organism [156]. Something
very similar occurs in antenna practice. Modification of the antenna parameters leads
to changes in the current distribution, affecting directly the near field shell, which
we now take as the initial morphogenetic germ of the problem of electromagnetic
radiation. Therefore, it is possible for all kinds of changes to occur in the final form,
the far field. We would like then to visualize the antenna system as a device with the
main function – ontologically speaking – producing form, where ‘form’ here means
electromagnetically propagating fields along certain directions.

The meaning of propagation is a that a field form moves from one location in
space to another. Like any motion, this requires knowing the direction of movement
and its speed or amount. We proposed in Chapter 4 a mathematical model for the
description of propagation in the near-field zone. The model relies on exploiting the
freedom of orienting the observation frame in the expression of the Weyl expansion.
And as it turned out in this chapter in the section on propagation potentials, a quantity
can be computed to give the “amount of propagation” along various directions in
space. within this framework, the form of the radiation field will be determined by
assigning to each location in space, and an orientation of the observation coordinate
system, a number or a group of numbers describing the “amount of propagation”
we spoke about above. Form then can be mathematically quantified via our model
as will become clearer later. In the remaining parts of this chapter, we will attempt
to integrate the previous mathematical theory with the embryology or biological
development.

6.5.1 Epigenesis

What is the difference between morphogenesis and epigenesis?15 We would like
to consider morphogenesis as the proper name to be given for the theoretical
program of the scientific description of the antenna electromagnetic near field. In
this sense, morphogenesis is the overall frame of study, while epigenesis refers to
a particular emphasis laid down by the theorist on his empirical observation and
subsequent reflections and speculations. We will show later that the discovery of

15 The technical term ‘epigenetics’ was introduced by Waddington in 1947 [160]. It is adapted from the
Aristotelian term ‘epigenesis.’ It appears that from Waddington’s term is derived the now standard
adjective ‘epigenetic.’ We are not concerned here with the labyrinth of the etymological uses that
this term has elicited in biology and philosophy. Instead, we try as much as possible to provide our
own definitions and understandings of the various terms used.
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the propagation potential of the antenna system represents an instance of empirical
finding. Later on, the postulation of a six-dimensional configuration space (6-
manifold), the construction of the associated morphogenetic field, and the derivation
of the fundamental evolution equations, are all to be considered as theoretical
constructs proposed by the theorist within the general outline of the program of
morphogenesis.

We can go farther beyond this philosophical introduction and define epigenesis
as the emergence of a form that was not present in the previous stage. In this
sense, the use of the term epigenesis suggests that 1) a temporal evolution is under
consideration, 2) there is a clear demarcation between a past and new stages, and 3)
in the new stage there is a well-defined form that was absent in the old stage. Now
this can be contrasted to the case of morphogenesis, which was defined roughly as
the coming of form into being. A form may already exist in some past stage of the
developmental process, and yet continues to be present in the new stage. For example,
as we will explained in Section 6.4, the near field wave front is homeomorphic to
all evolved fronts as long no Morse singularity is passed over. In this example,
the form is merely the topology of the 5-manifold comprising the near-field wave
front. If we define form as the (metric) geometry of this 5-manifold, then there is
always a potential creation of new form, i.e., change in the geometric isomorphism
as we move along the flow. In this case, all flows involves epigenesis if form is
defined geometrically, but only special cases involve epigenesis if form is defined
topologically.

Epigenesis can then be defined as the generation of a discontinuity. A change
of form is itself a form viewed at the meta-linguistic level. Morphogenesis is the
science of the creation of all kinds of forms, but epigenesis narrows the focus down
to empirical findings of concrete cases. The distribution of the singularities in the
antenna near-field zone is a kind of “concrete universal” event, to borrow the concept
from the philosopher Gellis Deleuze. It is concrete because involved is a concrete
spatial distribution of the singularities in the phase space. But also universal because
it governs the behavior of not a single trajectory around the singularity, but an entire
continuum of all possible (later we will better say virtual) trajectories that pass near
the particular location of that singularity.

Finally, we reinstate one of the main terminological issues adopted by this
chapter. The propagation potential of the antenna is a real-valued, smooth function
defined on the six-dimensional manifold of the morphogenesis configuration space.
As such, this function produces a new six-dimensional manifold, the “graph”
of the function itself now viewed as a differential submanifold embedded in an
higher-dimensional ambient Euclidean manifold [84], [86]. Following a similar
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idea proposed by Waddington’s concept of ‘canalization’ in his theory of genetic
assimilation [158], we call this 6-manifold, the “graph” of the propagation potential,
the epigenetic landscape. In this sense, the term ‘epigenetic’ is used liberally to
generally indicate the mere morphogenetic nature of the particular potential. As we
mentioned before, the existence of this scalar field, the propagation potential, is taken
as an empirical discovery about electromagnetic radiation.

6.5.2 Waddington’s Canalization

The concept of canalization was proposed by the biologist Waddington in the 1940s
in response to a series to experimental studies suggesting that living organisms
are capable of responding to external environmental stimuli by an adaptation that
can become inheritable after several generations [158], [159], [160]. We are not
interested here in the biological context itself, which is basically the idea of genetic
assimilation. Instead, we would like to focus on the abstract theoretical scheme that
lies behind Waddington’s proposal. This is the ability of an embryological system to
“buffer” random stimuli that are not exceeding certain threshold; the development
process appears to resist random changes in the sense that the evolution of the system
manages to persists in reaching the same final objective goal after enough interval
to time. In other words, developmental mechanisms in the biological world posses
robustness with respect to both external (environment) and internal (genetic) small
fluctuations. Figure 6.2 illustrates the basic idea. The motion of the ball represents
a possible developmental history undergone by the organism. If we take the case
depicted in one scenario, say A, we notice that if the initial stimuli managed to push
development in this trajectory, then any random small disturbing effect affecting the
rolling ball while in its trajectory has little impact on the final destination reached.
The reason is that the trajectory, viewed as a “steep valley,” compensates for slight
deviations by pushing the ball back to the main track. This ability for spontaneous
automatic control or self-correction was observed empirically by embryologists.
Waddington’s proposal is that there is indeed something in the development system
that acts like the trajectory, or what he named later the chreod, refereing by this
new term to to a possible well-defined developmental trajectory in the epigenetic
landscape.

It is now well-known that Waddington himself had not gone enough beyond
the orthodoxy of neo-Darwinism by proposing the concept of canalization. Rene
Thom went further than Waddington by first giving the concept of chreod a precise
mathematical definition [163], and then by postulating the existence of the chreod
on a firm level of reality, at least in the sense of applied ontology [164]. The concept
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Figure 6.2 An illustration of Waddington’s concept of canalization in biological devolvement. The
“graph” of the antenna propagation potential is interpreted by us as the epigenetic landscape proposed
originally by Waddington. Electromagnetic flow is here homologous to embryological evolution and both
are depicted in the figure as the movement of the ball along a potential trajectory in the landscape or what
Waddington later named ‘chreod.’ The two scenarios A and B represents two potential developmental
trajectories. In the biological case, it is up to environmental effects (through selection pressure) or genetic
stimuli to switch the devolvement from A to B or vice versa. In the antenna near field zone, the emergence
of such a clear cut two trajectories is an indication of the formation of possibly multiple beams if this
two-canalization chreod persists up to the far zone. One question remains: what plays in the antenna
case the role of “random” stimulus capable of switching the evolution from one chreods to another? We
suggest that the answer to this question in the context of a morphogenetic field theory necessitates the
use of the concepts of the virtual and the actual.

of canalization as robustness or persistence of behavior is now well-understood
mathematically in terms of the concept of attractor that Thom utilized in his precise
definition. The fact that a behavior tends to robustly manifests itself in time is not
new, and can be found in many textbooks on dynamics [78].

What we would like to investigate further in this position is not the idea of
chreod as an attractor, but rather the deeper implications that this analogy have
for a field theory. Indeed, if the configuration space of the field problem is the
classical Euclidean space-time, then we immediately face the difficulty of explaining
what exactly we mean by an “initial condition” at a particular location. There
are no “particles” that may move embryology like the case in dynamics, and the
question remains whether the whole discussion of canalization is essential to our
morphogenetic theory or not.

We believe that one of the main contributions of morphogenesis in under-
standing the nature and the mechanism of the formation of electromagnetic radiation
lies in clarifying the inadequacy of the conventional Euclidean space-time to the
mathematical description of the problem. It is interesting that Waddington himself
had noticed early enough that embryological devolvement cannot be properly
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studied except in higher-dimensional space [160]. Here, the phenotypes that are
relevant to the evolvement process are taken into account as “extra dimensions” in
the configuration space of the problem.

We will implement this idea in the theory of the morphogenesis of electro-
magnetic radiation by choosing a new “phenotype” and appending it to the standard
3D configuration position space in order to make the extended configuration space.
This new “phenotype” is the orientation of the local observation frame needed in
the mathematical model of propagation in the electromagnetic field. According to
this model, each element of the rotation group SO(3) corresponds to a possible phe-
notype. Development concerns the historical unfolding of series of spatial locations
and the phenotypes adjoined to them. Since the rotation group is itself a 3-manifold,
the space SO(3) × R

3 is the 6-manifold or the extended configuration space of
our morphogenetic theory. The fact that the phenotype space is the 3-manifold
SO(3) suggests that one way of thinking about the extended configuration space
is viewing the latter as an annexion of a full group SO(3) to each spatial location.
This interpretation will prove to be powerful when the solutions of the fundamental
evolution equation are processed to draw physical conclusions about the behavior of
the antenna fields. However, while solving the equations themselves, it is important to
retain the full “wholeness” of the 6-manifold as a unified configuration space for the
entire problem. Indeed, the six fundamental differential equations are all generally
coupled.

6.5.3 The Virtual and the Actual

It appears to us that the difference between morphogenetic theories of field structures,
like the electromagnetic and acoustic fields, and traditional morphogenetic theories
considered as refinement of dynamics [163], [164], is the increasing necessity for
introducing the fundamental concepts of the virtual and the actual. If one looks
back at Waddington’s canalization, it can be noticed that “randomness in the initial
conditions” is one of the main factor triggering the developmental processes by
setting it to take course in one chreod instead of others. This seems to be a legitimate
and comprehensible assumption in such theories since the model ‘chreod = attractor’
is inspired by the theory of dynamic systems, which is, in certain sense, the modern
mathematical theory of dynamics in classical mechanics. In this context, there is
always an unambiguous conception of what constitutes an initial condition. In the
extended configuration space of our morphogenetic theory, the “initial position”
involves an initial position in space and a given element of SO(3). While one can
easily think of spatial positions as forming initial points for the morphogenetic
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evolution, it is less obvious what kind of meaning should be allotted to “initial
phenotype,” here mathematically given as elements of SO(3). The ambiguity can
be resolved by noticing that an initial region in the extended configuration space
R

3 × SO(3) is better viewed as a “germ,” an embryonic stage that is still in
the early developmental phase. As was noticed early on by Driesch [156], one
fundamental characteristic of such an early “germs” is their “equi-potentiality”
for future developments. This means that each part of the embryo is capable of
developing, if forced or stimulated to do so, to any possible final form. We think
that the term ‘equi-potential’ is not very convenient here because in Section 6.4
we introduced the concept of near-field wave front as an equipotential surface
(actually, a 5-manifold) where ‘potential’ here refers to the propagation potential
of the antenna. We propose to call Driesch’s embryologic property equi-virtuality.
It still means the same thing implied by Driesch’s equi-potentiality, which is the
equal possibility for each spatial part of the germ to develop into a mature part of
the full organism actualizing the full phenotype or form. In this sense, we define
the morphogenetic germ U as any open subset U ⊂ R

3 × SO(3) of the extended
configuration space taken as an initial region for the future evolution under the
fundamental (morphogenetic) evolution equations.As expected, this definition losses
its importance if the spatial locations in U are already in the far zone. In this case,
one is already talking about the “full or mature organism,” the far-field radiation
pattern. In order for U to play an important, nontrivial part in the morphogenetic
theory of electromagnetic radiation, it is necessary to take the spatial part of U to
be in the near zone, as close as possible to the antenna current distribution. Here,
the rotation-group part of U , i.e., the elements of SO(3), give the virtual phenotype
or electromagnetic form, the spectral expansion at the considered spatial location.
In the morphogenetic germ, all possible forms (phenotypes) are legitimate initial
conditions for the fundamental morphogenetic equations. However, the appearance
of a well-defined form, propagation for a continuous domain of spatial points in which
the propagation vectors are coherent, will give rise to the emergence of the radiation
pattern. Away from the antenna, flow is in concrete (we say actual) directions. Very
close to the antenna, there is still no well-developed field of directions in which
there is coherence in the propagation vectors associated with neighboring points.
All directions of propagation or flow are equally legitimate, and we say that all
these directions are virtual. The virtual is still real, exactly as the actual, but it is
different from the latter in being “not realized,” not “selected” or “implemented” by
the mechanism of morphogenesis.A noncoherent mixture of things, where coherence
is assigned the value of a given form, is still real, but with respect to the form under
consideration has all forms virtually built into it without being able to actualize a
particular or concrete one.
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In order to clarify these abstract ideas, we come back to the antenna propagation
potential introduced in (6.4). The mathematical function V = V

(
r, R̄
)

is defined
in a domain D ⊂ R

3 × SO (3) in which the potential is a smooth function on
this manifold.16 Consider the 2-sphere S2

a = {r = a} chosen such that the entire
antenna current distribution is contained inside its interior. For simplicity, we work
with a single antenna, instead of the most general case in which an entire array is
considered. We are interested in understanding the genesis of the antenna radiation
field by starting from this sphere. The question of how did we get from the interior
region of the antenna to this sphere is interesting but is beyond the scope of this
book. Therefore, our focus is concentrated in understanding the structural emer-
gence of form starting from this enclosing sphere that already lies in the exterior
region of the antenna system, but very close to the boundary of this region. If we
consider the fundamental evolution equations of the antenna near field (6.5) in order
to solve this problem, we notice that knowledge of the spatial locations on the
sphere S2

a is not enough to integrate the equations uniquely since it is still required
to specify the location in the SO(3) part of the full 6-manifold of the configuration
space. Indeed, the morphogenetic germ of this particular configuration is the 5-
submanifold US

a = S2
a ×SO (3). This submanifold will be called the standard mor-

phogenetic germ for the antenna problem in our investigation, and will be refereed
to repeatedly as US

a .
At this stage, the antenna propagation potential V does not distinguish between

any orientation of the local observation frame attached to a given point on the
enclosing sphere S2

a; indeed, for r ∈ S2
a the potential reduces to a smooth

function on the submanifold US
a . In general, the value of V changes for different

orientations R̄ ∈ SO (3); although one may view through such evaluations how the
potential restricted into US

a is behaving, it is not possible theoretically to identify
unambiguously a specific orientation to serve as the sole legitimate initial point in the
integration of the evolution equations (6.5). Our strategy for resolving this difficulty
is based on the interpretation of the morphogenetic germ inspired by Driesch’s
concept of equi-virtuality. That is, we declare the full range of possible forms,
mathematically encoded by all values of the orientations R̄ ∈ SO (3), as legitimate
initial points for integrating (6.5). The entire 5-submanifold US

a is then considered
as the initial region in the full 6-manifold configuration space D from which we
compute the flow (diffeomorphism group) generated by the evolution equations
(6.5). The result from this process is a new region in the far zone, coinciding with the

16 For a definition of smoothness of real-valued functions defined on a general abstract manifolds, see
[60], [84], [85], [86].
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radiation pattern, and giving in the details of the transition via the aforementioned
flow itself the mechanism of the formation of the radiation field.

The question now is this: What really performs the real transition from the
arbitrariness of taking into account all possible orientations in the initial region –
the standard morphogenetic germ US

a – into the emergence of well-defined radiation
pattern in the far zone? Notice that this definiteness of the radiation field in the far
zone translates mathematically, according to our propagation model in Figure 6.1,
into the selection of certain orientations, i.e., specific elements of SO(3), as “realized”
in the spectral composition of the field in the far zone; if the propagation potential
V
(
r, R̄
)

is evaluated in the far zone along other directions, it will yield small
values, while along the selected directions its value is large, possibly approaching
unity in some cases (e.g., at full peaks in the radiation pattern). Our answer to the
question raised above is that some sort of an attractor in the phase space of this
problem has “selected” certain orientations by forcing the flow initialized in the
full (sub)manifold Us

a to be channeled or canalized in certain pathways. Otherwise,
there will be no uniquely specified propagation in that region in the far zone. An
attractor acts like a “focal point” in the phase space of the problem organizing the
behavior of all trajectories originating in the surrounding regions [78]. In Section
6.4, the exact meaning of these attractors will be studied with more care within
the context of the singularities (critical points) of the gradient field of the antenna
problem. What is relevant to the present discussion is that the attractor is merely the
mechanism in which all the virtual states taken into full consideration in the standard
morphogenetic germ US

a , namely the entire (compact) rotation group SO(3) attached
to each location onS2

a, are actualized in the far zone. This explain, in our opinion, how
a definite form, a phenotype, a preferred direction for propagation/nonpropagation
was generated from an early embryonic state, the germ US

s , where more states (the
virtual states) were present than found in the later (mature) states of the far zone, say
on the radiation sphere S2

∞.
The term ‘virtual’ was consistently emphasized in our presentation while the

deceptively similar term ‘potential’ was deliberately avoided. The reason is that the
latter got mixed up from early on with Aristotle’s use of this key term in his work.
Our use of the key couple of terms ‘virtual’ and ‘actual’ is more in line with the
modern philosophical tradition of Bergson [166], [167] and the postmodern work
of Deleuze [168]. However, the idea of the ‘actualization of the virtual’ seems to be
present in the writings of many open-minded biologists, especially embryologists.
In the ontological context of our theory, which is not the topic of this chapter, we
think of the actual as the product resulting from the virtual when the latter has
undergone a process of ontological epigenetic devolvement. The actualization of
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the virtual is the production of being by working on a “raw material” consisting
of virtual beings. One way to visualize the epigenetic process leading from the
virtual into the actual is to imagine the actualized being as the net outcome of
a “condensation” of a multiplicity of virtual states. Of course, the mechanism of
“condensation” here has to be explicated by a reasonable model in order to avoid
falling back into metaphorical traps. The actualization of the virtual through the
formative power of the morphogenetic field is proposed in our work as an extension
of Deleuze’s ideas [168] where singularises plays the essential part in forming
the transition from the virtual to the actual through the ontological operator of
difference. Difference is incorporated in our work through the intensive nature of the
morphogenetic field as the gradient field associated with the antenna propagation
potential.

6.5.4 The Concept of the Morphogenetic Field

According to the standard story, the idea of a field organizing and orchestrating
the process of development was introduced independently in the 1920s by three
biologists, Hans Spemann in 1921, Alexander Gurwitsch in 1922, and Paul Weiss
in 1923 [162]. The sense of the fundamental importance of these postulated fields
was allotted to their value in organizing normal growth and devolvement and also
directing the processes of regulation and regeneration, for example, if the normal
devolvement is disturbed for some external reason.

It is interesting, however, to notice that the conceptual basis of the field concept
as a guiding force in morphogenesis can be found in the earlier work of Driesch,
in particular, in the semi-mathematical concept of the ‘prospective potency’ of a
given part of the embryo to develop into several forms [156]. This concept appears
to be a more sophisticated adaptation of the framework of potential functions in
mechanics. What is of direct interest to us here is that Driesch’s ‘prospective potency’
was defined as a function over space, making it resembling something like a scalar
field, another strong indication of its conceptual analogy to the potential function
in mathematical physics. In a later stage of his theory, Driesch introduced (non-
mathematically) the main force of biological development as a form of “intensive
manifoldness.” The concept of intensity was cautiously used by Driesch who is
also a philosopher. The potential function is related to the idea of intensity in
the sense that force is generated by difference in potential. For example, if we
take the most intuitive scalar potential field, temperature, then we immediately
recall that heat flows under the intensive force of temperature differences (or more
precisely, heat gradient). Similarly, in classical mechanics, the gravitational force is
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generated by the gradient of the gravitational potential, a scalar field. The electric
(Columbian) force is generated by the gradient of the electrostatic potential. And so
on. The idea of the intensive versus the extensive is well known in both physics and
philosophy.17 Modelling the force of biological devolvement by Driesch as ‘intensive
manifoldness’ suggests, in our opinion, that the concept of morphogenetic field can
be traced back to the work of this biologist and theorist.

In this chapter, we endorse the framework of morphogenetic fields as the ap-
propriate theoretical framework for understanding the problem of morphogenesis in
the antenna near field zone. Our formulation is more sophisticated than the typically
non-mathematical models found in biology, especially in the early literature, but less
speculative and ambitious that the later catastrophe theorists [163], [164]. We adopt
the proposition that the antenna morphogenetic field is the gradient of the antenna
propagation potential. This gradient is computed with respect to the 6-manifold of
the extended configuration space of the problem. It describes the directions18 in this
phase space along which the field tends “most strongly” to transform from its poor-
form state of nonpropagating modes to a rich-form state of propagating modes. The
meaning of the vague expression ‘most strongly’ is unambiguously fixed through
our definition by fact that the gradient points to the direction of maximum increase
in the scalar field from which it is derived.

6.6 CONCLUSION

We would like now to start a summary of the main ideas presented in this chapter.
The efforts undertaken her focus on bringing attention to the richness and complex-
ity of the problem of morphogenesis in general, and the formation of electromag-
netic radiation in the antenna near zone in particular. The theoretical framework
of morphogenesis has been singled out by us as a crucial step in understanding
the genesis of radiation in a quite general and hence necessarily abstract manner.
The abstractness here is not merely a byproduct of the formulation of the evolution
equations of the near field, but, we believe, the inevitable consequence of the effort
to understand the actual physical content of these equations. The derivation of the
evolution law (6.5) does not require directly any biological input for its comple-
tion. However, the purely empirical fact of the existence of the antenna propagation

17 For a penetrating philosophical analysis of the extensive and intensive, see Bergson’s early work
[165]. For a modern, actually postmodern, treatment, the reader is referred to the work of Deleuze,
for example, see [168].

18 ‘Direction’ is a geometric, not topological concept, and therefore a metric for the configuration space
of the antenna problem has to be chosen.
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potential (which in tern is a consequence of the Weyl expansions) cannot be under-
stood fully by just performing numerical integration of the differential equations.
A deeper understanding of the unique way in which the new degrees of freedom
associated with the rotation group SO(3) are distributed in the extended phase (con-
figuration) space of the problem calls for a radically new manner of dealing with
evolution questions in physics and engineering. However, the proposed interpretation
sketched out very briefly in this present chapter is actually a devolvement of ideas
originally developed long time ago by thinkers like Driesch and Waddington [156],
[158]. Our main contribution is in putting all these scattered ideas together in a coher-
ent whole. A quite well-developed feeling of the dynamic content of these theories
applied to the understanding of electromagnetic radiation will be attained gradually
in time when further theoretical and empirical research on the morphogenesis of
electromagnetic radiation is performed.
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Chapter 7

The Antenna Current Green’s Function
Formalism as a Paradigm

7.1 GENERAL INTRODUCTION: THE PROGRAM OF ELECTROMAG-
NETIC SYSTEMS

7.1.1 Explanatory Adequacy in Scientific Research

Chief among the closely guarded ideals of science is the attainment of what has
become known as explanatory adequacy, in contrast to descriptive adequacy [1], [2].
The latter concerns the objective depiction of the observations under investigation
conducted in a manner as faithful as possible to the phenomena themselves,
and without introducing doubtful elements of subjective standards. As such, a
given phenomenon can be considered ‘adequately described’ when an unequivocal
procedure for reproducing the main features of this phenomenon exists. In antenna
and circuit engineering, this ideal appears to have been achieved. Indeed, given
any antenna or circuit structure, it is possible now, at least in principle, to either
perform a full-wave numerical simulation or collect measured data such that both
procedures describe the system very well, and the two sets of results can be shown
to be approximately identical.

The situation, however, appears to be different with respect to the other ideal
of science, the explanatory function of applied electromagnetic theory. Informally,
explanation is the explication of the unfamiliar in terms of the familiar. ‘Adequacy’
of an explanation means that the corresponding explication is rich enough to en-
compass most of the details of the phenomena under investigation judged by typical
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practitioners as important. In natural science, and in particular electromagnetic the-
ory, we may define explanatory adequacy formally as the explication of detailed
mechanisms articulating the intricate web of basic processes leading to the pro-
duction of the observed phenomena. This definition in turn depends on the term
‘basic processes.’ By this we mean very simply something like a familiar process.
The “familiar” components include things like geometrical transformations (e.g.,
rotation, translation), harmonic modes, resonance, atoms, field-oscillator interaction,
and so on. These are all part of the daily bread and butter of the scientist and engineer,
and consequently any theory that makes recourse only to such familiar processes is
deemed by our presentation as explanatory adequate.

We will give an example illustrating the fundamental distinction between
descriptive and explanatory adequacy. A basic problem in electromagnetic theory
is this. Two antennas A and B are placed in close vicinity to each other such that
coupling between them occurs in the near-field zone. Let antenna A functions as a
source and antenna B as a receiving system. We can observe the voltage developed
at the receiving port of antenna B. To adequately describe this problem, it is possible
either to directly measure the voltage at the physical port or to perform a full-wave
simulation of the combined system A + B. Both approaches lead to answers within
the limits of the now universally accepted numerical and empirical procedures. Next,
suppose that antenna A is kept fixed, but now we rotate antenna B with respect to
some frame of reference. In general, the received voltage will change. Again, it
is possible either to measure or compute the new voltage. However, while such a
procedure is perfectly adequate to describing any new situation, it is totally at loss
when it comes to the question why and how this voltage changes. Indeed, neither the
empirical nor the numerical procedures are capable of even formulating this question
in a mathematically precise manner. What we encounter here is a fundamental
shortcoming in descriptive methods of mainstream science in general. They are,
by design, incapable of probing deeply beneath the routinely measured/computed
in order to provide alternative views about the rich tapestry of mechanisms buried
under the surface of observed phenomena.

In this part, we will develop a formalism for the analysis of general elec-
tromagnetic systems, mainly antennas but also including circuits, such that some
clues about the issue of explanatory adequacy defined above can be provided. The
antenna current Green’s function formalism includes the previous stage of descrip-
tive adequacy,1 and therefore does not sacrifice the accuracy and precision of the
traditional descriptive procedures. However, it is further developed here in order

1 Because currently the mentioned Green’s function can be obtained practically only using full-wave
numerical solutions, though we hope lab-based methods will be developed in the near future.
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to supply a deeper insight into electromagnetic energy exchange and transfer in
general systems, particularly the core phenomena of near-field coupling and inter-
action. The ultimate purpose of providing explanatory adequacy is the attainment
of acceptable rationalization of the topic under study, allowing us consequently to
fully control the phenomena and hence exploiting some of the subject matter’s future
unseen potentials.

7.1.2 Context and Motivations

Core problems in electrical engineering, at least if attention is restricted to the
physical layer, revolve around the existence of well-defined systems, commonly
named circuits, responsible for the implementation of functions originally conceived
by the designer. Deciding whether such functions involve radiation, reception,
filtering, generation, etc, depends on the actual anatomical details of these circuits,
but the overall abstract concept, that of a well-defined, isolable module, the circuit
element as such, remains the key theoretical presupposition upon which the entire
edifice of electrical engineering is based. Therefore, the total complex of a given
engineering system can be analyzed into separate basic building blocks variously
interconnected with each other (usually in a very complicated manner) while situated
in a global platform that may itself enters in the future into the community of other
more or less equally complicated systems.

It is important to appreciate the hidden assumptions implicit in any circuit
formulation of problems with electrical engineering purport. The circuit paradigm
is based on the existence of units satisfying some or all of the following conditions:

1. Axiom 1. Each unit is well defined. That is, when embedded within the overall
system, there are no great ambiguities in delimitating the boundaries formed
by the unit, or the physical domain occupied by the device, or its material
constitution, or the nature of its connection with other units existing in its
neighborhood.

2. Axiom 2. Each unit possesses some sort of independent identity. By this we
mean that a unit has a character (electromagnetic in nature) that persists in
relative autonomy with respect to the existence of other nearby elements. For
example, a circuit that operates as an oscillator should not turn to functioning
as something else, say a mixer, because a transmission line is placed in its
vicinity. Although the existence of a transmission line, or any other device,
will theoretically affect the electromagnetic character of the oscillator, this
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effect should not be so vast to the degree of turning the oscillator into something
completely different.

3. Axiom 3. The focus of the engineer or the designer is not on the entire
performance measure of the unit, but is limited instead only to certain terminal-
like quantities, such as voltage, impedance, current, power flow, etc. These
quantities of interest usually give rise to a finite set. In contrast, the full range
of the information relevant to the operation of any electromagnetic unit is
infinite (because electromagnetic fields, being smooth functions on the space-
time continuum, are infinite “lists of data” by definition).

When an electromagnetic unit satisfies the three conditions above, we usually refer
to it by the term ‘circuit.’ These three conditions then are fundamental and form
the axiomatic basis of any rational discourse dealing with circuits and networks in
electrical engineering.

The main contents of this circuit paradigm has been definitively consolidated
during the early years of the birth of electrical engineering, a process that was
stimulated by war-related activities but later took off as an independent discipline
in the period immediately following the end of World War II, mostly in the
United States. The two early pioneers of electrical engineering, Norbert Wiener
and Y. M. Lee, formulated the mathematical apparatus needed in setting up the
stage for a comprehensive and adequate description of general electrical networks.
Although practical research in wireless technology dates earlier by almost half a
century (Marconi, Rayleigh, Heaviside, etc), the systematic integration of radiating
elements (antennas) within larger systems started to gather momentum only after the
maturation of the impedance concept and the establishment of network theory as a
paradigm for the scientific study of electrical systems.

Probably the main feature in the Wiener–Lee approach was the reliance on
the spectral analysis technique (Fourier methods) to deal with the circulation of
information within an existing electrical network. Therefore, we see that the now
de facto concepts of transfer function and filtering play a fundamental role in
rationalizing our conception of large-and-complex systems. The reasons motivating
this trend are not hard to find. The Fourier method has been one of the main tools
at the disposal of theoretical physicists since its inception by Fourier during the
first two decades of the 19th century. The method, being already a mathematically
powerful tool, proved also to be a extremely fertile general “thinking platform”
for reflecting on nature in broad terms. The idea that a general physical effect can
be expanded as a linear sum of oscillations coheres very nicely with the intuitive
understanding of interactions as a sort of mechanical responses to certain applied or
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forced vibrating modes. (The metaphor of the ringing of a vibrating fork is buried
deep in the memory of most people.) It was not difficult therefore to imagine an
extension of the Fourier method, especially after its rigorous justification by 19th-
century mathematicians, such as Cauchy, Reimann, Dirichlet, in order to apply it to
all natural phenomena that happen to obey linear differential equations. Indeed, the
use of Fourier analysis in electrical engineering during the last six or seven decades
proved to be the single most pervasive and influential theoretical idea at the core
of the entire discipline. But it should be kept in mind that the deployment of the
Fourier method, similar to what happened with the stochastic methods of statistical
mechanics, was not created from scratch by Wiener and Lee, but consciously
appropriated from an already existing mature tradition in theoretical physics.

However, we observe that the systematic application of the Fourier methods
described above was focused almost exclusively on time, rather than space. That is,
the Fourier expansion was performed with respect to the temporal variation of the
various signals involved. This is quite understandable when viewed from the histor-
ical context of the developments that took place immediately after 1945. Indeed, the
majority of early industrial applications involved low-frequency circuits, which can
be modeled very accurately as lumped-element circuit elements. Moreover, for the
majority of other systems that cannot be modeled in this way, a distributed-element
model was developed for basic circuits and transmission lines. This circuit model
was compared directly to classical electromagnetics using the theory of electromag-
netic wave propagation in waveguide structures, which had been already developed
much earlier during the last century. For radiating elements, i.e., antennas, whether
operational in the transmitting or receiving modes, the strategy was to characterize
them in the near-field perspective using the concept of equivalent impedance, i.e., by
replacing the antenna itself by a simple lumped-element circuit object. In this way,
the antenna part can be analyzed when connected with other circuit elements using
the same mathematical formalism. The resulting microwave network theory was
quite successful (and remains so) because it is solely concerned with few terminal
quantities like voltages and currents at identifiable physical ports. However, when
the analysis is focused on the spatial variations of the fields involved at these ports,
a situation that is created and sustained by modern developments in the applied field
and the monotonic growth of the complexity of existing and projected systems, the
standard network theory becomes inadequate.

In recent years, the need to know more about the spatial distribution of the
fields in complex antenna and circuit systems mobilized the use of brute-force
full-wave numerical solution of Maxwell’s equations through one of the popular
numerical methods available today, e.g., FEM, MoM, FDTD. We believe that
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although knowledge of certain numerical ratios or data is in principle possible by
either full-wave simulation or direct measurement, the theoretical understanding
of the nature of electromagnetic interactions and the mechanisms of information
transfer within general electromagnetic systems is still lacking. This gap, however,
cannot be filled by simply improving the efficiency of numerical or experimental
methods. The reason is that such methods can provide information about only a
concrete system, i.e., the particular system that is being simulated or measured at
the time. Instead, such a gap in our knowledge can be filled only by developing
a general theoretical framework for analyzing and studying electromagnetic flow
and interactions in general electromagnetic systems at a broad level. This study,
we believe, has to answer in particular to the demand for constructing a Fourier
formalism for space, not time.

The electromagnetic problem is inherently more complicated because of the
following peculiarities. While we can expand the spatial variation of the signal
applied to a given electromagnetic device in terms of the Fourier transform, the
device itself is described in spatial terms, say via the geometrical details of the
device’s physical boundaries. There is a direct connection, generally very complex,
between the spatial information content of the fields circulating within and around a
given electromagnetic system and the spatial geometry of the system itself. It is the
analysis and the understanding of such subtle interrelations what constitutes a major
strand in our contributions in this book.

For instance, it will be shown in Chapter 9 that by Fourier analyzing the input
signal into spatial-harmonic modes, and by also performing the same operation on
the Green’s function describing the device interacting with this input signal, it will be
possible to propose a mechanism explaining the overall interaction picture in terms
of simple basic field–oscillator interaction processes familiar in atomic physics. This
picture was attained only after performing the spatio-spectral analysis of the right
degrees of freedom. However, note that although this analysis involves considerable
field-theoretic considerations, it is still a circuit-based analysis in the sense that only
localized parts of the systems, the input and the output terminals, are concerned. The
mode of the analysis we are proposing here is therefore intermediate in complexity
between a conventional microwave circuit on one hand, and antenna theory and an
exact full-wave field analysis on the other, although it is as accurate and rigorous as
the latter.

Few comments must be inserted here regarding how we would like to place
out theory with regard to the rest of the electromagnetic community, particularly
the optical field of research. Optics is basically relevant to the short wavelength
limit λ → 0. That is, with the exception of the very recent development of
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near-field nano-optics, all of classical optics deals with far-field phenomena. One
manifestation of this fact is that optical devices placed in the vicinity of each other
do not couple electromagnetically as is the case in the microwave regime where the
operating wavelength is comparable with the physical dimension of the devices.2

Finally, we mention that in optics there has been from the beginning a considerable
interest in the spatial variations of the fields, in contrast to the case in microwave
engineering. For example, beam shaping, focusing, spatial filtering, are all spatial
operations that are analyzed using Fourier methods. However, they are still in the
main far-field phenomena. Although in this work we will make use of spatial Fourier
transform methods, the theoretical framework, near-field interactions, is different
from classical disciplines such as Fourier optics.

7.1.3 Overview of the Present Work

The prime objective of the present investigations will be the construction of a
complete mathematical formalism suitable for the analysis of energy–information
flow and interactions in general systems, composed of both circuit and antenna parts
(this will become the main interest of Chapter 9, while this chapter is concerned
with establishing the theoretical foundations of the concept of the antenna current
Green’s function itself). Our arguments will demonstrate that such analysis of general
electromagnetic systems is reducible to the antenna problem. More precisely, we
treat pure circuit problems as manifestations of antenna-antenna interactions where
coupling occurs in the near-field zone. The antenna problem itself is analyzed into
three modes of operations, Modes A, B, and C. We later (Chapter 9) employ suitable
reciprocity theorems to eliminate Mode C by reducing it to Mode A. The two
remaining modes, Mode A and Mode B, are essentially distinct and one cannot
be reduced to the other. We then provide in Chapter 9 a theory for the interrelations
between all these three modes and study various practical configurations of possible
interactions. The net outcome is what we believe a general formalism suitable
for handling the analysis of arbitrary metallic electromagnetic systems understood
ultimately in terms of the foundational problem of antenna theory, i.e., the theory
of the three modes mentioned above.3 Applications of the ACGF formalism will
be developed in several independet chapters. Chapter 14 apply the formalism to

2 By ‘electromagnetic coupling’ we understand change in the electromagnetic responsitivity of
one device because of the presence of another object near to it. The most general definition of
electromagnetic coupling is developed in Chapter 16.

3 The extension of the same ideas to other types of interacting media, for example mixed metallic and
dielectric materials, is possible in principle but quite lengthy and so will not be attempted in the
present book.
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receiving antenna arrays, with special focus on far-field excitations. The more
difficult and substantially undevloped topic in the literature, i.e., arrays responding to
generic near-field illumination, will be briefly dealt with in Chapter 15. Applications
to mutual coupling analysis are presented in Chapter 16. Finally, the utlization of
the ACGF formalism for the analysis and design of MIMO systems is discussed in
Chapter 18.

One of the fundamental insights that the antenna current Green’s function
formalism can provide, especially when combined with the theory of the antenna
near fields, is the crucial relevance of the way various local and global frames of
reference are being interpreted when closer examination of the dynamic content of
the phenomena under consideration is attempted. For example, it will be shown that
no preferred local coordinate system can be chosen in the mathematical description
of the antenna current Green’s functions of Modes A and C, which is a consequence
from the fact that the configuration space of this problem is a general 2D surface (2-
manifold) with a curvature (or Reimannian metric) that cannot be fixed in advance
for general antennas. Multiple coordinate systems can be defined and introduced
locally. The actual content of the theory, for example the 2D Green’s tensor, is
expressed only in terms of one frame of reference but its transformation into the
language of other frames is readily available using the methods of differential
geometry.

On other hand, the core of this chapter will be the explication of the relations
between the modes, particularly Mode B and Mode C, as we endeavor do in Chapter
9. For this problem, we will show that adequate understanding of the mechanisms
of electromagnetic coupling in the near-field zone can be attained by paying special
attention to the geometrical transformations (rotation and/or translation) of certain
local coordinate systems that are directly connected with the basic physical processes
in the interaction picture. It will be demonstrated later in detail how such basic
geometrical transformations, such as rotations, lie behind the complex mechanism
generating the actually observed change in the received voltage.

Consequently, it is appropriate to reinstate here that a fundamental theoretical
theme recurring in various forms throughout the entire book is the particular
attention we pay to the intricate issues surrounding the use of coordinate systems
(or frames of reference). Although it has been often emphasized in the literature of
electromagnetic theory that Maxwell’s equations can be given a “coordinate-free”
formulation, for example using the calculus of differential forms, we believe that
coordinate systems are not dispensable, and that even a coordinate-free formalism
presupposes more or less a concept of coordinate systems. It is precisely the manner
in which coordinate systems are defined with respect to distributions of sources and
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physical boundaries that will dictate the way in which a process of electromagnetic
interaction will unfold. Even though no preferred coordinate frame is singled out,
for each concrete problem a set of global and local frames of references have to be
established unambiguously. Our subsequent analysis suggests that a careful study
of the geometrical transformations involved in the electromagnetic phenomena now
described in terms of those chosen frames will make a rational understanding of the
physical problem ready at hand.

7.1.4 Fundamental Assumption about General Electromagnetic Systems

This book aims at studying electromagnetic systems at the most general level. The
motivations for this research, beside the original incentive of the search for new and
deeper scientific knowledge, also include some practical issues. One of the most
important of these issues is the search for alternative methods for analyzing large-
and-complex general systems, which will probably dominate many of the advanced
applications of the future.4 As such, it is important to develop some mathematical
procedures capable of providing a platform for thinking about these systems. Our
main fundamental ontological postulate about general systems will be the following
[3]

Every system, except the universe, interacts with other systems
in certain respects, and is isolated from other systems in other
respects.

(7.1)

This axiom will be tacitly presupposed in our approach below. Actually, the same
axiom can be shown to be implicitly assumed in conventional antenna theory.
If one is studying the radiation produced by a single element, then the antenna
under consideration is taken to be electromagnetically isolated from the rest of the
universe. On the other hand, when radiation by an array of closely spaced elements
is considered, then interactions between various objects is taken into account. In the
case of general systems, the decision concerning which elements are to be considered
isolated and which are strongly interacting cannot be answered in advance, but
must be investigated empirically in connection with a particular system. In this
book, we discuss theoretically the various possible scenarios in general system
analysis and show that even at such an abstract level some concrete knowledge
about electromagnetic interactions can be attained. More specific examples will also
be given whenever necessary, e.g., see Chapters 14, 15, 16, 18.

4 Indeed, although the future is in principle an open-ended process, the only thing an engineer can
claim about the future with certainty is that it will deal with systems vastly more complex than those
known at the present. A glance at the history of technology immediately confirms this claim.
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Indeed, without treating some parts of a complex circuit as relatively indepen-
dent entities, no hope can be attained in analyzing the complex whole. At the same
time, in electromagnetic systems, more than any other subsystems like low-frequency
circuits, it is extremely important to remain always alert about the latent channels
of interactions. Electromagnetic systems in general operate as an integral whole,
and this is one of the reasons why recourse to full-wave simulation of the entire
system, say an antenna array with strong mutual coupling, has been very frequent in
the last two decades. The art of analyzing large-and-complex systems will rely on
striking a certain balance between both the relative autonomy of a circuit element
and its electromagnetic coupling with the surrounding elements. The analysis to be
developed in this book will pay attention to these issues.5

7.1.5 The Circulation of Information in General Electromagnetic Systems

There is another theme that will appear repeatedly throughout our investigations.
This is the issue of the flow and circulation of information within an existing
electromagnetic system. Unfortunately, this topic is seldom treated in the vast
literature on applied electromagnetics. The subject matter of our remarks goes
to the manner in which unknown field variations move from one location in the
system to another. Notice that once a given circuit or antenna system is assembled,
usually no modification in the geometry is possible.6 However, the actual form of
the field that is being injected into the system throughout the latter’s operational
duration is contingent on the practical circumstances of the system’s function and
environment. This is akin to speaking about ‘information’ in communication theory
where the form of the signals cannot be anticipated in advance. Usually, in order
to analyze the performance of such systems, a stochastic technique is introduced.
In the case of conventional circuit theory developed with spectral methods in time,
the analysis can be executed in the now traditional manner.7 However, for the case

5 However, we immediately remind the reader that this chapter does not replace empirical studies
of concrete systems. Our approach is abstract and general in the sense that it supplies a broad
mathematical scheme and a physical interpretation of this scheme. We don’t provide rules of thumbs
or empirical prescriptions for things like, for example, when to consider two elements strongly
coupled or not. Such a practical insight can be generated by using our mathematical formalism
together with its physical content in direct empirical studies of specific systems. Examples of such
an empirical information obtained using our theory can be found in the applications chapters of the
present work.

6 With the exception of electro-mechanical systems.
7 That is, the mathematics of linear system theory and its extension to include stochastic processes,

time series, data correlations, etc.
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of general electromagnetic system, where the analysis must be based on spatial
Fourier methods, it is not clear how to perform such a statistical study.

What happens in practice is this. The antenna engineer and the microwave
circuit engineers design their devices by ensuring that they meet certain standard
operational measures, such as directivity, gain, polarization, input impedance, etc.
After assembling, the system is handed over to other specialists. The communication
and system engineers in turn characterize the system in terms of their own measures,
such as signal-to-noise ratio, intersymbol interference, probability of error, sensi-
tivity analysis, budget analysis, etc. What is not performed is an actual analysis of
how the information dealt with by the latter engineers is really circulated in the
existing electromagnetic system designed by the former engineers. Indeed, we find
here that the accumulated experience of network theory, which is based on dealing
with Fourier analysis with respect to time, fails to measure up with the need to
study electromagnetic coupling and flow, a processes that involves essentially spatial
considerations.

The mathematical methods developed in this part will pay attention to the
issue of the circulation of information within a general system by clearly indicating
how the spatial variations of the injected signal affect the responses produced at
distant parts of the system. Since our whole approach is based on frequency-domain
formulation, only the spatial content of the information flow will be analyzed. The
full-fledged study of both temporal and spatial dynamics is beyond the scope of this
book; however, any such a study, we believe, will probably involve a a formalism
more or less resembling the one we are proposing here.

7.1.6 The Interrelation Between Synthesis and Analysis

Notice that although the ultimate objective in electrical engineering is the design
or synthesis of complex systems in order to perform certain preconceived tasks,
the procedure of analysis is fundamental and cannot be dispensed with. In order
to understand the reason behind this, it may be helpful to picture the actual
development of any design process. Initially, the engineer implements a design as
an idea in the most economic means available to him: By imagining a very rough
approximative mental blueprint, a kind of primitive initial prototype. He then needs
either to verify the imagined idea or to explore its consequences (practically both
alternatives turn out to be necessary). For this the engineer proceeds by making
use of the next available analytical tool, say, a circuit simulator. Notice that even if
the ultimate devolvement will depend on the use of full-wave simulators, all of the
next-in-line methods awaiting the engineer in research and development depend on
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pure analysis of existing prototypes. There is, however, an indirect way in which
analysis participates crucially in the synthesis process. By going back to the first
step in the design process, the creation (by the imagination of the engineer) of an
initial prototype, a question comes out naturally: how did the designer come up with
the basic idea after all? Did the blueprint comes “out of the blue”? Obviously, there is
no unequivocal answer to this kind of queries, which belong more conveniently to the
field of the psychology of creativity. The celebrated moment of mentally creating the
initial prototype is essentially (ontologically speaking) synthetic, i.e., it is irreducible
in its ownmost being to an analytic element. But there is no denying that the ability
of the engineer to create a good initial design hinges on his own personal grasp of the
problem. If the only means available to him are either numerical or experimental, then
little can be achieved aside from common sense and practiced intuition. However, the
existence of a comprehensive mathematical theory that fully explicates the physics
behind the working of electromagnetic systems greatly enhances the ability of the
engineer to think a new design. We conclude then from all of the above that deep
understanding of analysis is an essential step in any actual design process. Therefore,
although this book is tends to focus on the analytical in the sense that it develops a
comprehensive theoretical understanding of the mathematics and physics of existing
systems, we believe the theory presented here will be of value for future engineering
studies of large-and-complex systems, nano-scale problems, and artificial media.
As history has been teaching us up to date, a profound comprehension of the inner
workings of a complex system is the best incentive for the invention of better systems
that can surpass the old design in ways usually totally unseen without the mediation
of theory.

7.2 OUTLINE OF THE GENERAL PROBLEMS OF ANTENNA THEORY

Antennas can operate in two different modes, the transmitting and receiving modes.
The choice of this particular dichotomy is purely pragmatic, being ultimately
reducible to the concrete and specific ways in which scientists and engineers need
to deal with radiating structures functioning as parts of larger and more complex
systems [28]. For research purpose, we will attempt in this part to study the two
separate (transiting and receiving) operational modes of general antenna systems.
The goal is to understand

1. their principles of operation when viewed separately from each other,
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2. and the mode of interrelation between these different modes of operation when
combined within a single system.

For studying the first point, we take the analysis of the antenna in the transmitting
mode for granted and focus on the receiving mode. That does not imply that the
transmitting mode operation is now a completed or finished research topic, for
nothing is farther from truth than this. However, as will be shown later, the first
stage of the transmitting mode antenna system, i.e., solving for the induced current
using, for example, the method of moment, is a relatively speaking well mature
subject now.8

Here, Part II, we will study the second point, the interrelational aspect of the
transaminating and receiving mode, from the perspective of the near field. This will
be achieved by showing that the antenna in the receiving mode can be viewed as a
collection of “atomic resonators,” i.e., well-defined objects interacting resonantly
with the illuminating field. The latter is analyzed using the recently developed
theory of the antenna near-field structure in the spectral domain (Part I). It will be
demonstrated in that rotating a given antenna, which is immersed in the near field of
another antenna, will change the received voltage by varying the contributions of the
illuminating field’s propagating and nonpropagating (evanescent) parts interacting
with the aforementioned atomic resonators.9

In our approach, we will systematically demarcate the two modes of operation.
Although a reciprocity theorem relates some of the performance measures of the two
modes to each other, the mechanisms of operation of the antenna system in the two
situations are generally quite different.10 As we will strive to clarify throughout, one
of the main contributions of this research program is the correction of some widely
held misunderstanding regarding such an issues.

We present the overall study of the antenna system in the a threefold process
as shown in Figure 7.1, where the full path leading from a given voltage source
in one antenna to the receiving port of another antenna illuminated by the field
produced by the former is illustrated. The starting point of any practical PEC

8 The analysis of the second stage (see the second block in Figure 7.2a) is undertaken in Part I of this
book.

9 As will be shown later, this analysis was considerably simplified by assuming that this rotation of
the receiving mode antenna immersed in the field of a transmitting mode antenna does not affect
the current distribution on both antennas. That is, the current-current interaction is weak, while our
focus is concentrated on the field-voltage interaction, the field being the illumination one radiated by
the transmitting mode antenna, while the voltage is the signal developed at the physical port of the
receiving mode antenna.

10 For an extended discussion and analysis of this issue not invoking spectral considerations, see
Chapter 14.
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Figure 7.1 Combined general description of antenna system. The system is complete in the sense that
the full chain of processes starting from the voltage excitation of a transmitting antenna up to the physical
port of a receiving antenna is included in the analysis.
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antenna is a source excitation Vex proportional to an externally applied electric field
Eex.11 The antenna responds by generating an electric current distribution J(r) such
that the re-radiated field plus the applied fields satisfy the boundary condition on the
antenna surface [28]. The electromagnetic problem, being linear, admits a Green’s
function F̄ (r, r′) that connects the output current with the input field excitation,
which we call here the antenna current Green’s function (ACGF). That is, we
write12

J (r) =
∫

S

ds′F̄ (r, r′) · [n̂ × Eex (r′)] . (7.2)

Here, S represents the (orientable) antenna surface (all interfaces presenting material
discontinuities in the antenna system). The unit vector n̂ is the normal vector on S
pointing in the outward direction.13

If the impressed field is localized, then the surface integral in (7.2) can be
reduced to the region of influence of this input.14 We call this step in the transmitting
phase Mode A. That is, Mode A is the stage in the overall transmitting phase in which
a locally applied external field will produce a current on the entire surface of the
antenna system.15

Next, we introduce Mode B of the overall transmitting phase. Here, the antenna
current distribution J(r) will radiate fields everywhere in space through the free space
Green’s function (FSGF) Ḡ (r, r′). This can be written at once as

E (r) =
∫

S

ds′Ḡ (r, r′) · J (r′) . (7.3)

11 For general boundary conditions, the externally applied magnetic field has to be included. This does
not affect any of the general conclusions to be drawn henceforth since the antenna current Green’s
function formalism is valid for any (macroscopic) electromagnetic system.

12 Throughout this book, an implicit time-harmonic dependence exp(−iωt) is assumed and suppressed
everywhere. Also, we have the homogeneous space wavenumber given by k0 = ω

√
ε0µ0. Here ε0

is the electric primitivity and µ0 is the magnetic permeability of free space.
13 Obtaining the ACGF F̄ (r, r′) in (7.2) is the most difficult part in the overall process of the

transmitting mode. Generally speaking, the whole “art” of antenna engineering can be reduced to
the problem of knowing how to tailor the antenna specifications in order to produce a desired current
distribution in response to a known source. For now, we obtain this Green’s function only through
numerical solvers in conjunction with the distribution-theoretic construction in Section 8.2.3.

14 Cf. equation (8.11). Moreover, for simplicity, we restricted ourselves here to only metallic antennas.
The generalization to dielectric and metallic antennas is possible but a little bit more involved.

15 It is also possible to formulate the whole problem in terms of volume equivalence theorem. In this
case, the antenna surface S should be replaced by some effective volume V . However, here we
analyze the antenna problem using the concept of surface equivalence only. It appears to the author
that the fundamental understanding of Mode A does not require dealing in an essential way with the
consideration of configuration spaces possessing dimensionality larger than two.
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Here, the FSGF is given by (18.36). The radiated field E (r) represents the final
output of the antenna system in the transmitting phase. We therefore managed to
explicate this phase as composed of two modes cascaded in series, first Mode A
followed by Mode B, as shown in Figure 7.2a.

The second phase, i.e., Mode B, which involves the free space Green’s function,
is completely different. Here the Green’s function Ḡ (r, r′) is fully known in closed-
form analytical solution.16

We now consider the final stage in Figure 7.1, the antenna receiving part.
The previously produced fields E(r) and H(r) impinge on the receiving antenna.
The latter may be located in the near or far zone of the transmitting antenna. The
illuminating fields interact with the entire surface of the receiving antenna and
produce a voltage that can be observed at the receiving part. In general, an induced
surface current is generated on both the PEC part of the port and the antenna
surface. However, for practical applications, where PEC ports are used to collect
the developed voltage, only this voltage is pertinent to applications. Therefore, here
we restrict our focus in the study of receiving antenna systems to observation of
voltages developed at unique locations in the illuminated antennas, i.e., the physical
port.

The receiving antenna problem is still governed by Maxwell’s equations where
the incident field plays the excitation or forcing term. Similar to the situation
in the transmitting mode, the existence of external fields disturbs the boundary
condition so a current distribution is generated on the antenna surface in order to
re-establish the correct electromagnetic transition condition. The linearity of the
problem allows us to express the relation between the input (illumination field)
and output (antenna current distribution) by another Green’s function operator, say
L̄ (r, r′). This mode, which we call Mode C, is similar to Mode A in the sense of
being described by an antenna current Green’s function. The produced current is
therefore given by

Jrx (r) =
∫

S

dsL̄ (r, r′) · E (r′) . (7.4)

Again, we ignore here the interaction with the magnetic field since the antenna system
is assumed for simplicity to be PEC system. The integration surface S is that of the
receiving antenna.

16 The produced field E (r) can be roughly classified into far field and near field. The far field has
a simple well-known analytical form (spherical outgoing wave). An outline of a general theory of
the antenna near field providing in-depth analysis of its spatial structure have been developed in
Chapters 3, 4, and 5.
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Figure 7.2 General description of antenna system. (a) Transmitting mode model. (2) Receiving mode
model.

In Chapter 9, it was proved that Mode C receiving ACGF L̄ (r, r′) is related to
the Mode A transmitting ACGF F̄ (r, r′) by simple transpose relation. It is possible
then to determine the voltage observed at the receiving port if theACGF, of which the
excitation voltage is also placed in the same port location, is known. As will be seen
later, if the port location is changed, a new ACGF has to be calculated. Therefore, it
is possible to divide the main problems in antenna theory into two types as shown in
Figure 7.2 where we treat the transmitting and receiving modes as separate problems.
The transmitting part consists of Mode A followed by Mode B. The input is some
external field Eex (r) while the output is fields E (r) and H (r) radiated everywhere
in the exterior region. This is shown in Figure 7.2a. The receiving mode problem,
Mode C above, is given by the transpose of same Green’s function of the Mode A.
Figure 7.2b shows this problem where the illuminating field is a general external
field Eex (r), not necessary the one mentioned in Figure 7.2a. We would like to add
that although there seems to be a simple relation between the transmitting Mode A
and the receiving Mode C, the mechanisms of electromagnetic interactions in the
case of general arrays problems are very different.17

The general pictures presented by either the combined transmitting/recieving
system of Figure 7.1, or the individual models of Figure 7.2, serve to delimitate
the main problems in antenna engineering as they usually arise in practice. As has
been stated repeatedly so far, the fact that all modes of electromagnetic interactions

17 For example, the existence of variable loads connected to the ports of the receiving modes introduces
additional complexity that was absent in the transmitting mode.
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can be described by linear operators naturally suggests representing each mode by
a proper Green’s function.



Chapter 8

Foundations of the Antenna Current
Green’s Function Formalism

8.1 DEFINITION OF THE ANTENNA CURRENT GREEN’S FUNCTION

8.1.1 Definition of the Antenna System

We first make a precise definition of what we mean by an antenna system.1 Consider a
region D in the Euclidean 3-dimensional space R

3 inside which an antenna is located.
By the term ‘antenna’we usually understand a composition of various materials with
varying electromagnetic properties such that the entire structure, when excited by
placing a localized electric field at a certain location (excitation port), becomes
capable of producing electromagnetic fields propagating efficiently away from the
structure into the exterior region R

3 \ D. For the mathematical formulation of our
problem, we will adopt the vantage point of the surface equivalence theorem in
which only changes of the electromagnetic character of the medium through surfaces
are taken into account. Indeed, we will assume that there is a finite number N of
surfaces composing the antenna system such that it is associated with each surface
Sn an electromagnetic boundary condition BCn describing the exact manner in
which the field must undergo a change when moving across this surface. The total
surface comprising the antenna system will be defined simply as the union of all
these individual surfaces

S =
⋃N

n=1
Sn, BC = {BCn}N

n=1 . (8.1)

1 We anticipate that for the extension of the antenna current Green’s function formalism to general
dielectric-PEC systems, this definition will prove vital in securing the correctness of the derivation.
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That is, the boundary condition BC of the antenna system is the set of all individual
boundary conditions associated with the individual surfaces Sn. It is seen then from
(8.1) that the definition of a general antenna system possesses two components.
The first is purely geometrical and consists of the internal structure of the com-
bined surface S as the sum (set-theoretic union) of the individual surfaces Sn.
The second component is electromagnetic and consists of the corresponding data
BC1,BC2, ...,BCN . In this book we will treat only the PEC boundary condition;
i.e., here BC will be simply {PEC}. However, note that all the concepts to be
developed under the rubric of the antenna current Green’s function formalism can
be generalized to arbitrary electromagnetic boundary conditions. From now on, by
the ‘antenna physical body’ we understand the total surface S.2

The surfaces composing S are described mathematically using the rigorous
theory of two-dimensional differential manifold, that is, a geometrical surface with
an additional structure allowing us to perform calculus on this surface.3 Although
manifold theory is now standard in the mathematical literature, we believe some
important conceptual issues relevant to the 2-manifold theory are in need for further
clarifications in connection with electromagnetic theory. It is well known that a
general surface is not topologically equivalent to a Euclidean patch. Technically,
this translates into the fact that it is not possible to cover a general surface with
only one coordinate patch. Instead, one has to revert into a collection of coordinate
neighborhoods overlapping in a specific technical manner described in detail in
[61]. Although this observation may appear of rather technical import, it actually
implies some considerations that are crucial for the appreciation of the subtleties
involved in the concept of the antenna current Green’s function and how it differs
from the classical Green’s functions of mathematical physics, where the later arise
from differential equations. As we will show later, in order to obtain the ACGF, one
must solve an integral operator equation to obtain a vector field (the current) defined
on the global surface S. The geometric details of this surface determines completely
the nature of the operator at question.

The topology of S is the global qualitative features encoded in the geometry
of S. There is an organic connection between this topology and the solution of
the integral operator equation mentioned above, a connection that is still not well
understood due to the fact that no analytical solution of the general surface integral

2 At an even more abstract level, one may prefer to define the antenna system as the ordered triple
〈S, BC, ϑ〉, where S = {S1, S2, ...}, and the function ϑ is defined as ϑ : S → BC, mapping
every surface Sn ∈ S to the corresponding boundary condition BCn ∈ BC. Notice the difference
between S defined above and S in (8.1).

3 The basic definitions and results needed for our aims here can be found in any book dealing with
modern differential geometry. For example, see [61].
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equation exists. However, even with the absence of such solutions, we believe it
may be possible to infer some information about the ACGF by applying suitable
topological techniques in order to pin out the relation between the ACGF and the
shape of S. Such a study is beyond the scope of this book and therefore will be
avoided. However, the fact that several coordinate patches are needed to cover a
general surface is at the heart of the ACGF method as will be shown in detail later.
Indeed, it will be demonstrated that there is no unique way for writing the 2D tensor
representing the ACGF. In general, any collection of coordinate patches can do
the job. The 3D tensor representing the ACGF in the language of a global frame
of reference can be derived from the local representation of the 2D tensor. One
manifestation of the topology of S will then be seen as a restriction on the available
coordinate patches and the manner of their overlap. Since such coordinate patches
enter directly into the structure of the 2DACGF tensor, and therefore, into the derived
3D tensor, we begin, although in at a relatively primitive level, to catch a glimpse of
the impact of the topology of the antenna system surface S on the electromagnetic
characterization of the device under consideration.

The subtle topological issues in antenna theory can probably be best illustrated
by the following simple example. Consider a closed loop and a curved open wire.
Topologically, these two structures are different because there is no continuously
invertible bijective map that can take one into the other. (On the other hand, a square
loop and a circular loop are topologically equivalent because such a transformation
can be easily constructed.) Now, we know that wire antennas act like electric dipole
while loop antennas behave like magnetic dipoles. The two electromagnetic types of
dipoles are qualitatively, and hence fundamentally, different. We may now suspect
that the topological difference between the loop and wire structures plays some
role in this important dissimilarity in the electromagnetic performance. To our
knowledge, this topological structure of antenna theory has never been seriously
discussed in literature. From the viewpoint of the present work, we notice that the
special topology of closed loops entails that it is impossible to cover the entire loop,
regardless to its shape, by a single coordinate patch. This is not the case with an open
wire where such a coordinate map can be immediately constructed. To describe all
the points of the closed loop, one must make resort to multiple coordinate patches
overlapping in the manner described in [61]. We may then begin to appreciate the
fundamental importance of paying the utmost attention to the full machinery of
two-manifold theory. Indeed, the ACGF of a general antenna system can not be
described by a single unique global coordinate system. Only a local representation
is possible. The rich topology of 2D surfaces comprising the structure of the antenna
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Figure 8.1 Illustration of the interaction between between a source (externally applied field) localized
in a compact region U and an antenna system contained within another compact set D. a) U ∩ D = Ø.
b) U ⊂ D.

system as defined in (8.1) are encoded in the manner of the distribution and overlap
of these coordinate patches used in the construction of the ACGF.

In order to better grasp this definition of the antenna system, let us consider
the mechanism of the excitation of an arbitrary antenna. According to the definition
(8.1), it is only the boundary condition BC that is responsive to an externally applied
field. The reason is that if a given field is nonzero at a location in S, the total surface
of the antenna system, then the BC applicable there is disturbed. In order to remain
valid, a nonzero current distribution is generated on the entire surface S which
will radiate electromagnetic fields everywhere, but most importantly the radiated
fields, when combined with the external fields, will satisfy the global boundary
condition BC. In Figure 8.1, two possible scenarios are presented. We would like to
consider externally applied electromagnetic fields that are 1) smooth4 and 2) vanish
outside a compact support U .5 Assume that the entire antenna system is located in
a region D, which can be taken also to be compact without loss of generality. In
Figure 8.1a, we consider first the situation when the compact support of the source
U and the antenna domain D are disjoint, i.e., when U ∩ D = Ø. In this case,

4 By ‘smooth’ function we mean a function with continuous partial derivatives of all order.
5 It is possible to show explicitly that such functions exist using basic techniques in elementary

differential topology.
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even with the usual time-harmonic excitation condition exp(−iωt), the source,
being completely confined within the region U , cannot disturb any of boundary
conditions BC, and therefore the antenna will not be excited.6 Consider now the
situation depicted in Figure 8.1b. In this case, we assume for simplicity that the
antenna system consists of merely a homogeneous dielectric cylinder with some
relative permittivity different from one. Inside this homogeneous regions, we apply
an externally controlled field with compact support U as in Figure 8.1a. In this
case, the localized source, although located within the antenna domain D itself, still
does not disturb any boundary condition7 and therefore the antenna is not excited
and no radiated fields will be observed. As should become clear now, it is the fact
that the material filling the antenna domain is homogeneous throughout the entire
source domain U what prevents any interaction between the localized source and
the actual antenna system. These simple facts should be kept in mind as they figure
prominently in the derivation of the ACGF in the receiving mode, especially in
the case when more complicated boundary conditions than the PEC are taken into
account.8

Before leaving this point, let us comment briefly on the issue of electromagnetic
interaction between two objects placed in the vicinity of each other. Imagine
that the first object is a PEC part while the second is a dielectric object such that
the regions occupied by both are disjoint. As is well known, if we excite the first
object, the PEC part of the antenna system, the presence of the other object will
affect the radiated field. One may wonder how could this be explained in light of
our observation that the mechanism of antenna excitation consists solely of the
disturbance caused by the external field at a boundary surface right at the location
where the source is applied. If we excite the PEC part by a localized source, then
no direct disturbance of the boundary condition of the second object is immediately
pertinent. What happens actually is the following. The field generated by the
PEC object is unlikely under general circumstances to decay rapidly enough away
from the excited PEC object. Therefore, since the dielectric object is located at the

6 The situation, of course, is different with plane wave excitation. In the latter case, such an external
field is be definition nonvanishing everywhere in R3, in particular at D.

7 In this particular example, the electromagnetic boundary condition is the continuity of the tangential
electric and magnetic fields along the cylindrical surface separating the homogeneous dielectric
region from the surrounding infinite free space.

8 A careful reader may wonder why we assume the localized source to be defined over a compact
support U instead of just assuming a Dirac delta source. The reply is that although the Dirac delta
source works perfectly well in this argument of Figure 8.1, some other readers may object that it is
not a “physical” field since it is not smooth. To avoid such philosophical argument, we made use
only of smooth functions defined on a compact support.
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Figure 8.2 A metallic antenna with arbitrary shape excited by an external electric field Eex (r)
producing a current distribution on S that in turn generates the fields E (r) ,H (r) throughout an infinite
homogeneous space surrounding the antenna described by a dielectric constant ε and permeability µ. For
simplicity, we set ε = ε0 and µ = µ0 for the rest of this book.

vicinity of the metallic one, the field radiated by the latter will in turn disturb the
boundary condition of the former. The actual radiated field has obviously to satisfy
simultaneously both boundary conditions in order to serve as the self-consistent
unique field produced by the antenna system. The details of this analysis belongs to
the study of Mode A, and is in our opinion still poorly understood.9

8.1.2 An Intuitive Approach

Figure 8.2 illustrates the general geometry of the problem. An PEC antenna is
enclosed within the volume inscribed by a closed surface S.10 A unit normal vector n̂
points outward of the surface S. The structure is excited by a localized electric field
distribution Eex (r), i.e., a field with a compact support contained in S. Since only

9 Notice that although nowadays it is routine to compute or measure the self-consistent field radiated
by an antenna array under the condition of strong mutual coupling, very little is known about the
detailed mechanisms giving rise to the actually observed field. One reason for this is perhaps the
excessive reliance on numerical simulations, which don’t always provide the right framework for a
deeper analysis of radiation problems.

10 By ‘closed surface’ we mean a compact 2-manifold with no boundary [61]. Therefore, since in
practice any surface PEC has a finite nonvanishing thickness, this model can deal with arbitrary
PEC physical shapes. It is possible however to formulate the problem with respect to a mathematical
surface that is open. In this case, the ideal situation of exactly zero thickness can be modeled. In both
cases, the mathematical theory of 2-manifolds or surfaces is the same and therefore we restrict our
treatment in the text to closed surfaces.
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the tangential component of this field is relevant to the PEC boundary condition,
we work only with the surface (vector field) Eex

t := n̂ × Eex. Subsequently, the
antenna responds by generating an electric current distribution J (r) with a compact
2-dimensional support consisting of the entire antenna physical body surface S.11

The relation between the impressed field Eex
t and the generated current J(r)

is given by the electric field integral equation (EFIE) [70]

Eex
t (r) = −iωµ0 n̂ ×

∫
S

ds′
[
Ī +

1
k2
0
∇∇·
]

eik0|r−r′|
4π |r − r′| · J (r′), (8.2)

which is a Fredholm equation of the first kind. Equation (8.2) can be put in the
form Eex

t = LJ (r), where L is a linear (but unbounded) operator [70]. Therefore,
mathematically the problem of exciting the antenna can be understood in terms of a
linear map L defined on the linear space of vector fields on the compact support S.
Indeed, this function space can be given the structure of Banach space. (See [70].)
Theoretically speaking, Mode A and Mode C in antenna systems can be studied
completely in a reduced-dimensional space represented by the 2-manifold S. Mode
B, however, essentially involves the full Euclidean space R

3 in order to describe
electromagnetic radiation into free space.

It can be proved using the basic theory of linear operators that the electric-
field exterior problem is uniquely solvable provided that k0 is not an eigenvalue
of the interior problem [70].12 Since the integral operator L defined by (8.2) is
linear, its inverse L−1 is also linear [58]. Therefore, we expects that L−1 admits a
Green’s function. However, it is not immediately clear how this function should be
written. In general, since the antenna excitation problem in Figure 8.2 is embedded
in R

3, one expects that the ultimate Green’s function must be written as a 3D
tensor F̄ (r, r′) as in (7.3).13 While this is obviously correct, care must be taken
in interpreting the components of this tensor. As will be shown below, even before

11 All of the theoretical devolvements to be presented below in connection with Figure 8.2 applies
to the case when multiple antenna elements are located in the vicinity to each other with arbitrary
geometries and positions. For reasons of brevity, we will refer to the total antenna array surface by S
and refrain from using multiple indices to distinguish different elements within the array. A detailed
analysis for the general array case can be found in Chapter 14.

12 However, for the numerical solution of surface integral equations using methods that depend on
mesh descretizations, problems may occur at frequencies matching the eigenmodes of the interior
problems [40]. This difficulty can be dealt with by using combined integral equations [40], [70]. In
this part, which is not concerned with the numerical method used in obtaining the ACGF, we don’t
worry about conditions related to convergence or actual numerical accuracy.

13 For a simplified review of the dyadic calculus needed in electromagnetic theory, see [34]. For more
comprehensive introduction to tensor calculus in general, see [58].
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enforcing reciprocity considerations, it is not true that the components of this tensor
are all independent. The reason turns out to be in the nature of the operator equation
Eex

t (r) = LJ (r), which is really in a function space on two-dimensional non-
Euclidean manifold S, not the three-dimensional Euclidean space R

3. It will be
demonstrated shortly that the Green’s tensor of such a problem is properly a 2D
tensor Fnm, n, m = 1, 2, defined by piecing together functions defined locally on S.
This remains true even though the operator L, being an integral rather than differential
operator, is actually a global operator.

In order to mathematically describe the tensor Fnm, one has to choose suitable
local coordinate systems on S. Let us consider the problem of exciting the antenna at
location r′ and observing the induced current generated at r. There are no preferable
coordinate frames in the atlas defining S, and therefore we pick any two patches, one
(Ul, xl) such that r ∈ Ul, while the other (Ul′ , xl′) satisfies r′ ∈ Ul′ . (Notice that in
general it is not necessary that the two patches overlap, even if both r′ and r belong
to a connected surface.) Here, xl and xl′ are in R

2 and represent the local coordinates
of points located in Ul and Ul′ , respectively. In order to facilitate our construction of
the tensor Fnm (r, r′), we choose two orthogonal unit vectors α̂1

l (r) , α̂2
l (r) at r in

the language of Ul, and α̂1
l′ (r′) , α̂2

l′ (r′) at r′ in the language of Ul′ .14 We can then
formally construct all possible combinations of tensor products α̂n

l (r) α̂m
l′ (r′) for

n, m = 1, 2 as will be used below.
In the standard literature on differential manifold theory, tensor products are

defined only with respects to vectors defined at the same point, i.e., vectors belonging
to the same tangent space TMp, where p is some point in the (2-dimensional)
manifold under consideration. The tensor product α̂n

l (r)⊗ α̂m
l′ (r′) involves vectors

belonging to two different tangent spaces, i.e., TMr and TMr′ . This difficulty
can be overcome in several ways. Probably the most direct strategy is to exploit
the fact that the vectors involved can all be embedded in the larger space R

3. In
this case, it is always possible to perform parallel transport of any vector from a
given point to an arbitrary point. Since the inner product is invariant with respect to
permutations involving vectors that are obtained from each other by the process of
parallel transport, the tensor product above can always be construed as a 3D cartesian
tensor product.

This solution may not be found in harmony with our earlier claim that Modes
A and C can be studied, at least theoretically, as processes occurring completely
in a 2D space, rather than R

3. In this case, it is desirable not to refer to the larger

14 Notice that two linearly independent vectors do not necessary constitute coordinate basis. In
particular, the two orthonormal vectors chosen above may not be coordinate basis. This, however,
has no important bearing on what follows.
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space in the definition of the antenna current Green’s function operator. It is enough
for our purpose to define the operator entity α̂n

l (r)⊗α̂m
l′ (r′) : TMr′ → TMr by the

equation α̂n
l (r) ⊗ α̂m

l′ (r′) · α̂q
l′ (r′) := α̂n

l (r) [α̂m
l′ (r′) · α̂q

l′ (r′)], which is possible
since we have a natural inner product on S (i.e., the Euclidean inner product inherited
from the ambient space R

3 into which S is embedded) available for computing
α̂m

l′ (r′) · α̂q
l′ (r′). Finally, we mention that by reverting to the techniques of tangent

bundles on abstract manifolds, this argument can be made fully rigorous. However,
we don’t pursue further such a formalization in the present work.

Denote by δr′ a Dirac-like delta (point) source located at r′ ∈ S. (Detailed
examination of this Dirac delta functions is given in Section 8.2.3, particularly in the
discussion around (8.30).) The antenna response to a point source polarized along the
unit vector α̂1

l′ (r′) at r′ is itself a vector but located this time at r ∈ S. In particular,
it can be written as

L−1 {δr′ α̂1
l′ (r′)

}
:= F11α̂

1
l (r) + F21α̂

2
l (r) . (8.3)

Similarly, the response to point excitation directed along α̂2
l′ (r′) is expressed in the

form

L−1 {δr′ α̂2
l′ (r′)

}
:= F12α̂

1
l (r) + F22α̂

2
l (r) . (8.4)

Now, since an arbitrary tangent vector at r′ can be written as a linear combination of
α̂1

l′ (r′) and α̂2
l′ (r′), it follows from the linearity of the operator L−1 that the antenna

current produced in response to any input can be written completely in terms of the
four functions Fnm defined above. Furthermore, by using the inner product inherited
by S from R

3, we can express the Green’s tensor as

F̄ (r, r′) =
2∑

n=1

2∑
m=1

Fnm (r, r′) α̂n
l (r) α̂m

l′ (r′). (8.5)

From the basic identity
(
âb̂
)

· ĉ = â
(
b̂ · ĉ
)

[58], which is true for any three vectors

â, b̂, and ĉ, the expansion (8.5) is justified by formally observing its role in the
expression (7.2).

The four functions Fnm (r, r′), n, m = 1, 2, determine completely the antenna
response to an arbitrary electric field excitation construed as a vector field on S.
As was emphasized explicitly in (8.5), this expansion of the ACGF depends on
the two local coordinate systems containing the observation and source points,
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i.e., on the choices (Ul, xl) and (Ul′ , xl′), respectively.15 In general, it is possible
to transform this tensor from one local frame to another using the formula (8.57)
derived in Section 8.2.6. Therefore, in practice a particular choice of coordinate
frames is made, e.g., the two patches Ul and Ul′ , and then the four corresponding
functions Fnm are computed. Afterwards, a translation to arbitrary other coordinate
languages can be made using the transformational calculus developed in Section
8.2.6. In effect, any suitable local frame can be chosen since all local coordinate
systems on S are in principle equivalent.

It is now an easy matter to deduce the form of the ACGF 3D tensor, that is, the
expression of the 2D tensor (8.5) but this time written in terms of the global (i.e., the
one associated with the ambient space R

3) 3D Cartesian frame xyz. Define x1 := x,
x2 := y, and x3 := z. Each tangential vector α̂n

l (r) can be expanded in terms of
the unit vectors x̂m as

α̂n
l (r) =

3∑
m=1

βn
lm (r) x̂m, (8.6)

where the functions βn
lm(r) are easily determined using the inner product on the

manifold S by the relation βn
lm (r) = α̂n

l (r) · x̂m. Substituting (8.6) into (8.5), we
obtain

F̄ (r, r′) =
3∑

p=1

3∑
q=1

Fxpxq (r, r′) x̂px̂q, (8.7)

where

Fxpxq (r, r′) :=
2∑

n=1

2∑
m=1

Fnm (r, r′)βn
lp (r) βm

l′q (r′). (8.8)

The form of the antenna current Green’s function given by (8.7) will be refereed to
as the 3D ACGF tensor. We must notice that, in contrast to the components of the
2D tensor appearing in (8.5), the components of the 3D ACGF are in general not
independent of each other. This can be easily inferred from the expression (8.8),
a fact that is not really surprising if we keep in mind that the genuine problems
of Modes A and C possess a configuration space of the dimension two. Now, the
Green’s function, being properly a distribution or a generalized function, cf. Section

15 In fact, for a fully rigorous notation one has to indicate explicitly in the functional form of Fnm their
dependence on the choice of the coordinate patches Ul and Ul′ , for example by writing F ll′

nm (r, r′)
instead of Fnm (r, r′). However, the latter version was adopted in order to simplify the notation.
The reader has to bear in mind all the time that any reference to specific components of a tensor
necessarily involves a choice of a coordinate frame.
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8.2.3, is never dealt with outside its defining (7.2). In such equations (and also in (8.9)
below), the Green’s function is never multiplied by an arbitrary vector, but always
appears associated with a vector field tangential to S, the configuration space of the
physical and mathematical problem. For example, it is not appropriate to interpret the
components of the 3DACGF individually, say by calling Fx1x1 ‘the x1-component of
the response of the antenna to an applied electric field polarized in the x1 direction.’
Such an interpretation is rejected from the outset because it is not always the case
that the x1-component of this applied field is tangential to the antennas surface at
the location under consideration.

We are now ready to write down the integral equation satisfied by the ACGF.
This can be achieved from (8.2) with the help of (8.7). The result is

n̂ × â δ (r − r′) = −iωµ0 n̂ ×
∫

S
ds′′
[
Ī + 1

k2
0
∇∇·
]

× eik0|r−r′′|
4π|r−r′′| ·

[
F̄ (r′′, r′) · (n̂ × â)

]
,

(8.9)

where â is unit vector describing the polarization of the impressed field point source.
It is clear that since the problem in (8.2) is vectorial in R

3, the appropriate Green’s
function describing the relation between the input excitation (electric field) and the
output (surface electric current density) should be the 3D tensor (8.7).

In (8.9), the vector r′ gives the position of the impressed excitation Eex =
â δ (r − r′). The ACGF will represent the response to this particular excitation in
the form of the Cartesian (i.e., a 3-dimensional) vector F̄ (r′′, r′) · (n̂ × â), which
gives the electric current surface density at the location of the vector r′′. The free
space dyadic Green’s function Ḡ (r, r′′) defined in (18.36) will generate the radiated
field due to a point current source located at r′′ observed at the position r. This
radiated field will cancel exactly the tangential component (to the surface S) of the
externally supplied impulsive excitation Eex defined above. Therefore, it is important
for consistency to keep in mind the semantic differences between the three position
vectors r, r′, and r′′ while reading (8.9). This integral equation is interesting from the
theoretical point of view because it encodes in a concise manner the interplay between
two very different types of electromagnetic Green’s functions, the traditional free-
space function (18.36) (forward problem) and the antenna current Green’s function
(a kind of “reverse” problem). Finally, the relation (8.9) can be justified rigorously
using the special distribution theory developed in Section 8.2.3. However, the details
are not given here for brevity.
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8.1.3 Some General Remarks

The problem solved by obtaining the antenna current dyadic Green’s function
F̄ (r, r′) is the inverse of the classical problem solved by physicists long time ago,
which is described by the free space dyadic Green’s function (FSGF)

Ḡ (r, r′) =
[
Ī +

1
k2
0
∇∇·
]

eik0|r−r′|
4π |r − r′| , (8.10)

where subsequently the superposition principle is used to compute the antenna
radiated field once the current distribution on the antenna is known as shown in (7.3).
Therefore, the latter problem, Mode B, was already solved in a closed analytical form,
while the former one, the engineering problem of designing antennas, i.e., Mode
A, cannot be solved exactly in terms of simple known function because integral
equations in general do not admit such solutions [70].

Informally, equation (7.2) may be verified by substituting it into (8.2) and using
(8.9) after interchanging the (finite) integral operator with the dyadic operator F̄. But
a rigorous procedure for the verification of expressions like (7.2) must ultimately
be based on distribution theory since the dyadic Green’s functions are generalized
functions [58]. The rudiments of such a formulation is provided in Section 8.2.3,
where the existence of the ACGF is established based on first principles, i.e.,
distribution theory and differential manifold theory.

It is important to mention that the ACGF F̄ (r, r′) defined above is in general
not a function of r − r′. This also applies to the ACGF L̄ (r, r′) of the receiving
mode. Therefore, the ACGFs of Mode A and Mode C are not spatially shift-
invariant, while the free space Green’s function is shift invariant. This considerably
complicates the mathematical treatment of Modes A and C compared with standard
Green’s function (FSGF) methods in electromagnetics, in which the latter have been
developed mostly in connection with the investigation of Mode B. The reason behind
this vital difference between the ACGF and the FSGF can be explained as follows.
The configuration space of a given mode is defined as the space on which the
output field (= the field produced by the physical process associated with the mode
under consideration) is defined. Mode B, as can be seen from (7.3), has the full 3D
Euclidean space R

3 as its configuration space. However, from (7.2) and (7.4) we
clearly see that the configuration space of Modes A and C is the 2D space (surface)
S; here, in J(r), the output field of these two modes, the current distribution, is
defined only on this lower dimensional space, i.e., r ∈ S. The configuration space
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of Mode B, then, being the Euclidean manifold R
3, is a homogeneous space.16 On

the other hand, the surface S is obviously not homogeneous in general. This is why
the ACGFs of Modes A and C are not only dependent on the distance between the
source and observation points, but also on the relative locations of these points with
respect to other points on the surface, for example the boundary. If we take very
special antennas in which S is a homogeneous space, for example an infinite plane
PEC sheet or a perfect conducting sphere, then the ACGF of these structures is shift
invariant, and in these cases we can write, for instance, F̄ (r, r′) = F̄ (r − r′)because
it can be shown that (8.9) is invariant to a uniform shift of both the observation and
source points. For other nonsymmetric antenna shapes, this conclusion need not be
true in general.

8.1.4 Response to Arbitrary Excitation using the ACGF Method

In Mode A, the antenna is usually excited by a localized electric field, say defined
on a small compact support U ⊂ S. In this case, (7.2) is reduced to

J (r) =
∫

U

dsF̄ (r, r′) · [n̂ × E (r′)] . (8.11)

Notice that this equation is not valid for Mode C, where the antenna in the receiving
mode is illuminated by an external field that is generally nonvanishing everywhere,
and therefore in the latter case the full integration region S has to be retained as in
(7.2). For the case of Mode A, we observe that equation (8.11) suggests that when
an antenna is used as a radiator in a given system in which the excitation area U
is already fixed, then if the data F̄ (r, r′) , r′ ∈ U , is stored, one can compute the
current on the antenna for arbitrary excitation field E (r′). This situation is expected
in practice since the actual excitation, the function E (r′) , r′ ∈ U, with fixed U ,
depends on the information being processed or the overall mode along which the
entire system is operating.

The antenna element or array, together with their excitation (feeding) mech-
anism which determines U , are usually fixed after design and installation, while
the information content, the variations of the fields being transferred and processed
throughout the system, is not known a priori for obvious reasons. For example, in
communication systems, the actual variations of the field depend on the specific
information being transferred, processed, detected, etc. Equation (8.11) then is of

16 By a homogeneous space we understand a space in which given any point located inside this space,
all of its neighborhoods look the same compared with other neighborhoods containing any other
point. The expression ‘look the same’ can be made precise in differential geometry, see [61].
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great value for system engineers since once the ACGF is computed and stored as
explained above, the operation of the system can be predicted without the need to
perform a new full-wave simulation for every new excitation.

8.2 DISTRIBUTIONAL FOUNDATIONS FOR THE ANTENNA CURRENT
GREEN’S FUNCTION

8.2.1 Resume of the Distributional Theory

In Sections 8.2.2-8.2.5, we develop the mathematical foundations of the ACGF
formalism using distribution theory. There are two main motivations behind this
formulation. The first is to provide a rigorous justification of the major theorem
(7.2). This we achieve in Section 8.2.3 where the ACGF is proved to exist by actually
constructing one. The inverse reciprocity theorem Chapter 9 is then utilized to prove
the relation (7.2).

The second motivation is providing an approach to actually compute theACGF
using numerical methods. It is clear that no closed-form analytical expression exists
for the general electromagnetic boundary-value problem and therefore the use of full-
wave numerical methods to approximate the antenna Green’s function is inevitable.
Our construction of the ACGF in the form of a suitable limit of a sequence of
distributions, given in (8.33), can serve as a foundation for testing and developing
methods aiming at utilizing the ACGF in the role of a transfer function model for
various concrete applications, for example receiving antenna arrays (for a brief
overview, see Chapter 9).

The structure of our approach to the distributional theory can be summarized
very briefly in the following manner. We first provide in Section 8.2.2 a direct
construction of the Green’s function for a scalar problem. This fictitious problem
is dealt with first in order to motivate two technical proposals: 1) approximating
the ACGF as a limit (in a suitable sense) of responses to special delta sequence,
and 2) constructing a local delta sequence that reflects the differential geometry of
the antenna system surface S. After solving the scalar problem, the construction
of the actual electromagnetic ACGF is attempted in Section 8.2.3 using a chain
of carefully chosen definitions. We then prove the main relation (7.2) rigorously
using the inverse reciprocity theorem, which will be derived in detail in Chapter 9.
Finally, anticipating the major applications of the ACGF formalism in Chapter 9, we
develop in Appendices 8.2.4 and 8.2.5 the mathematical foundations of the Fourier
transform of the ACGF using tempered distribution theory. In particular, we show
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that the ACGF as a surface function can be replaced by a sequence of functions with
3-dimensional compact support in R

3. This idea is essential for securing the validity
of the main formulation of Chapter 9, where interaction between two antennas in the
near zone is addressed.

8.2.2 Direct Construction of the ACGF Using Distribution Theory: Scalar
Theory

In this section and Section 8.2.3, we will provide an outline for the construction
of the ACGF of a general antenna system specified by a 2-manifold S using the
theory of distributions or generalized functions (we don’t distinguish between the
two terminologies). For simplicity, we will work out the construction first for a
scalar problem. The extension to the electromagnetic case will be taken up in
Section 8.2.3.

The ACGF is defined as the response of the antenna system to a local17 delta-
source excitation δ (r − r′) placed in S, i.e., for r′ ∈ S. The ACGF is then defined as
F (r, r′) := L−1δ (r − r′), where again L is the (surface) electromagnetic operator
of the problem. Let D(M) be the standard space of test functions in distribution
theory [58], [67], i.e., the space of smooth (infinity differentiable) functions with
bounded support in M , where M is either R

n for some n ≥ 1, or a smooth
manifold embedded in some R

n.18 The topological dual of D(M) is the space of
continuous linear functionals on D(M), which is customarily denoted by D′(M).19

Let ϕ (r) ∈ D. The distribution F is then defined tentatively as the continuous linear
functional given by the relation

〈F (r, r′) , ϕ (r)〉 :=
〈
L−1δ (r − r′) , ϕ (r)

〉
=
〈
δ (r − r′) ,L−1ϕ (r)

〉
.

(8.12)

Here the scalar interaction is as defined by

〈φ (r) , ϕ (r)〉 :=
∫

S

ds φ (r)ϕ (r) , (8.13)

which is well defined for any two functions φ and ϕ that are locally integrable on
S. The foundations of the definition (8.12) rest on the fact that the operator L is self

17 The precise definition of ‘local’ used here will be given later in (8.28).
18 In the case that M is such a smooth manifold, we set M := S throughout the rest of this work.
19 A functional g on D is a function g : D → R. The suitable definition of continuity here is technical

and can be found in the standard literature, for example [58], [67].
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adjoint, a fact that is intimately connected with the inverse reciprocity theorem of
the antenna current Green’s function formalism proved in Chapter 9.

In the present formulation, choosing space of test functions as D will present an
immediate problem, which is the fact that for ϕ (r) ∈ D, in general L−1ϕ (r) /∈ D,
i.e., the current distribution obtained by inverting the operator L is not necessarily
smooth, although still possessing a compact support (since S is compact) [70].
Therefore, the standard distribution theory associated with the space D cannot be
used directly in constructing the ACGF F as a distribution.

The basic idea in our construction is the observation that the ACGF is always
used within an integral in order to compute the induced current on S due to
some external excitation. Therefore, we always encounter F in expressions like
〈F (r, r′) , E (r)〉, where E(r) is the applied electric field excitation, which plays
the role of the test function ϕ (r) defined above. Now, although J (r) = L−1E (r)
need not be smooth, it is certainly continuous [70]. Therefore, it will be enough for
most practical considerations to examine the provisional definition (8.12) in the case
where the function L−1ϕ (r) is required to be at least continuous.

We now present a sequence of functions belonging to the delta family, i.e.,
a sequence of sufficiently well-behaving functions approximating the Dirac delta
function [71]. The crucial details lie in requiring only the continuity of the test
function, rather than the much stronger condition of infinite differentiability. The
following is one possible candidate of such a delta family [71], [67]

Theorem 8.2.1. Consider the family {fn (x)}n∈N
of nonnegative locally integrable

functions with x ∈ R
m, m ≥ 1, such that the following two conditions are satisfied:

1. For some A > 0, limn→∞
∫

|x|<A
fn (x) dx = 1.

2. For every A > 0, we have limn→∞ fn (x) = 0 uniformly for every |x| ≥ A.

Then for every continuous function ϕ (x) satisfying
∫

Rm ϕ (x) dx < ∞, we have

lim
n→∞

∫
Rm

fn (r) ϕ (r) dx = ϕ (0) . (8.14)

Actually, even continuity of ϕ (x) only at x = 0 is enough.

Let us select a delta family satisfying the conditions of Theorem 8.2.1. One
possible delta family is provided by the following theorem [71]

Theorem 8.2.2. Consider a sequence of functions {fn (x)}n∈N
, x ∈ R

m, m ≥ 1,
where fn (x) := nmf (nx), and f(x) is a nonnegative locally integrable function
in R

m satisfying
∫

Rm f (r) dx = 1. Then relation (8.14) holds for the sequence fn.
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It is not difficult to show that the conditions of Theorem 8.2.1 are satisfied
for the sequence defined in Theorem 8.2.2 and hence this delta family can be used
in computing the ACGF as will be demonstrated later below. Moreover, by simply
choosing f to be any smooth function with bounded support, the resulting sequence
will also be smooth with bounded support, and thus satisfying a stronger requirement
enforced in Section 8.2.3.

Our strategy will be to employ such delta families in order to insure that the
last equality in (8.12) is well defined by replacing it with a limit modeled on (8.14).
To achieve this rigorously, we will use the concept of weak convergence as follows.

The distributional limit is defined as [71]

Definition 1. Let {fn}n∈N
be a family of distributions in D′(M). We say that fn

converges distributionally to the distribution g ∈ D′(M) as n → ∞ if

lim
n→∞

〈fn, ϕ〉 = 〈g, ϕ〉 , (8.15)

for each ϕ ∈ D(M).

We then have the following important theorem in distribution theory [71]

Theorem 8.2.3. If limn→∞ 〈fn, ϕ〉 exists for every ϕ ∈ D(Rm), m ≥ 1, then there
exists a unique distribution g ∈ D′(Rm) such that limn→∞ fn = g in the sense of
Definition 1, that is

〈g, ϕ〉 = lim
n→∞

〈fn, ϕ〉 , (8.16)

for each ϕ ∈ D(Rm).

Consider any point r′ ∈ S. Our first goal is to construct a delta sequence
defined totally in S, that is, a definition of the delta function centered at r′ intrinsic
in S. Pick any local coordinate system (Ul, xl) such that r′ ∈ Ul. Consider a delta
family {fn (xl)}n∈N

, xl ∈ R
2, satisfying the conditions of Theorem 8.2.2. We will

make a stronger demand by requiring these functions to be smooth and with bounded
support.20 (This will insure that L−1fn (r) is well defined for all n ∈ N and that it
is continuous [70].)21

20 A differentiable function is continuous, and consequently locally integrable. A smooth function
on bounded support has bounded derivatives and hence uniformly Lipschitz continuous, and
consequently uniformly Holder continuous. For integral equations formalisms making use of uniform
Holder spaces, see [70].

21 By assuming that the delta sequence is smooth, we impose a quite strong condition that will most
likely meet the demands of all types of boundary-value problems. However, for a specific given
operator, probably less stringent conditions can be imposed.
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Now let Vl be the coordinate image in R
2 of the region Ul, i.e., let R

2 ⊃
Vl = xl (Ul). Next, choose the functions fn(xl) such that for n = 1, the support
of f1(xl) is contained in Vl. Since we have from the specific delta sequence of
Theorem 8.2.2 supp {fn (xl)} ⊂ supp {f1 (xl)} for all n > 1, we conclude that
supp {fn (xl)} ⊂ Vl for all n ≥ 1. In other words, all the functions belonging to
this delta family in R

2 have supports within the local coordinate patch Vl.
The interaction between a locally integrable function f (r) confined in Ul and

a function ϕ(r) continuous on S is given by the following integral∫
Ul

dsf (r) ϕ (r) =
∫

Vl

dxl

√
g (xl)f (xl) ϕ (xl) , (8.17)

where the second integral is obtained from the first by using the well-known area
element in differential geometry ds =

√
g (xl)dxl [61]. Here g(xl) stands for the

determinant of the Riemannian metric tensor of the 2-manifold S. Next, define the
following sequence of functions on Vl

fS
n (xl, x

′
l) :=

fn (xl − x′
l)√

g (xl)
(8.18)

This definition does work because we know that g �= 0 in any Ul and for arbitrary
2-manifold S [61]. From (8.17) and (8.18) we find after applying Theorem 8.2.2

lim
n→∞

〈
fS

n (r, r′) , ϕ (r)
〉

= lim
n→∞

∫
Ul

dsfS
n (r, r′) ϕ (r)

= lim
n→∞

∫
Vl

dxlfn (xl − x′
l) ϕ (xl) = ϕ (x′

l) .
(8.19)

The important thing to remember is that for the validity of (8.19) above the test
function ϕ(r) is required to be at least continuous at r′ and integrable throughout
Ul.22 Therefore, the family of functions {fS

n (xl, x
′
l)}n∈N represents a local delta

sequence in S at r′ = r′(x′
l). These functions are defined intrinsically in S, and so

no need arises for functional embedding in R
3.

Let Fn (r, r′) := L−1fS
n (r, r′). Each ordinary function Fn(r, r′) on S

generates a regular23 distribution in D(S), but a singular distribution in D(R3),

22 Since we require the delta sequence functions fn to be of bounded support, only integrability on Vl

is needed, not the entire domain R2 as required in Theorem 8.2.1, the latter being much more general
than what is needed here.

23 We associate with each locally integrable function f(x), x ∈ M , its regular distribution f .
(That is, we don’t distinguish in notation between an ordinary function and its associated regular
distribution.) The regular distribution f is defined as the continuous linear functional 〈f, ϕ〉 :=∫

M f (x)ϕ (x) dx, ∀ϕ ∈ D(M). It can be proved that any locally integrable function generates a
regular distribution in D′(M). For details, see [67], [71].
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which we also denote by Fn.24 These distributions Fn will now be shown to represent
an approximation of the exact ACGF distribution F to be defined below.

From the fact thatL is self-adjoint [13], it follows that
〈
L−1fS

n (r, r′) , ϕ (r)
〉

=〈
fS

n (r, r′) ,L−1ϕ (r)
〉

for every ϕ ∈ D(R3). The function L−1ϕ (r) is continuous
for each ϕ ∈ D(R3) [70] and since L−1ϕ (r) is of bounded support on S, it is
absolutely integrable. It follows then from (8.19) that the limn→∞ 〈Fn, ϕ (r)〉 ex-
ists. Consequently, by Theorem 8.2.3 there exists a unique distribution F ∈ D′(R3)
such that

〈F, ϕ〉 = lim
n→∞

〈
L−1fS

n (r, r′) , ϕ (r)
〉
, ∀ϕ ∈ D(R3). (8.21)

Therefore, The scalar antenna Green’s function F is now formally defined by the
basic relation (8.21) as a singular distribution in D′(R3). By replacing D(R3) in
(8.21) by D(S) and using the version of Theorem 8.2.3 valid in D′(S), we obtain
the definition of F as a distribution in D′(S). The singular distribution F ∈ D′(R3)
corresponds to the 3D ACGF while the distribution F ∈ D′(S) can be compared
with the 2D ACGF.

Our approach is based on choosing any (smooth and with bounded support)
local delta family that insures the existence of the limit (8.19). In this sense, one way
to interpret the definition (8.21) is that it associates theACGF F with the equivalence
class of all (smooth and with bounded support) local delta families satisfying (8.19).
As long as the operator L is invertible, one can insure the existence of the antenna
current Green’s function through the definition (8.21). For the particular operator
we chose to work with in this chapter, namely the standard electric-field integral
operator, it can be shown using functional-analytic methods that the problem is
uniquely solvable if and only the free-space wavenumber k0 is not an eigenvalue of
the interior problem [70]. The extension of this basic idea to the full dyadic case and
the proof of the Green’s function theorem are the subject of Section 8.2.3.

24 Remember that the definition of the singular distribution in D′(R3) generated by a function σ(r)
integrable on S is the linear continuous functional given by

〈σ (r) , ϕ (r)〉 :=
∫

S
ds σ (r) ϕ (r) , ∀ϕ (r) ∈ D

(
R

3)
. (8.20)



248 New Foundations for Applied Electromagnetics

8.2.3 Direct Construction of the ACGF Using Distribution Theory: Electro-
magnetic Theory

Choose two local coordinate systems containing the source location r′ and the
observation point r and select two orthonormal unit vectors α̂n, n = 1, 2 at each
location. We then have

L−1
r δ (r − r′) α̂1 (r′) = α̂1 (r) F11 (r, r′) + α̂2 (r) F21 (r, r′) , (8.22)

L−1
r δ (r − r′) α̂2 (r′) = α̂1 (r) F12 (r, r′) + α̂2 (r) F22 (r, r′) . (8.23)

Here the subscript r in L−1
r serves to indicate that the operator is applied to the

r-vector function δ (r − r′) α̂n (r′) , n = 1, 2. Similar consideration applies when
we write L−1

r′ with the obvious modifications. Based on the notation of (8.22) and
(8.23), we can write down at once the full form of the ACGF tensor in operator form

F̄ (r, r′) =
[
L−1

r δ (r − r′) α̂1 (r′)
]
α̂1 (r′)

+
[
L−1

r δ (r − r′) α̂2 (r′)
]
α̂2 (r′) .

(8.24)

Our goal now is give the expression (8.24) a rigorous meaning using distribution
theory by following the train of thought developed in Section 8.2.2.

We define the interaction of two vector fields on S by the formula [13]

〈X1 (r′) ,X2 (r′)〉 :=
∫

S

ds′ X1 (r′) · X2 (r′) . (8.25)

Also, we make the following definition

〈
F̄ (r, r′) ,X (r′)

〉
:=
∫

S

ds′ F̄ (r, r′) · X (r′) . (8.26)

Therefore, the ACGF theorem (7.2), which gives the current induced on the antenna
due to excitation field E(r), can be expressed compactly as

J (r) =
〈
F̄ (r, r′) ,E (r′)

〉
. (8.27)

We notice again that the electric field can be thought of as formally playing the role
of “test function” in distribution theory. This observation was exploited in [13] in
order to prove the ACGF theorem (8.27).

The space D(R3) was defined in terms of scalar functions but we can easily
extend this function space to vector fields T(r) on S. In this case, we need a relation
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like the following

〈δ (r′ − r) α̂ (r′) ,T (r′)〉 = α̂ (r) · T (r) . (8.28)

Note that the integration is with respect to r′. Here, T(r′) is required to be only a
continuous vector field on S. On the other hand, α̂(r′) is to be taken as a smooth unit
vector field also on S in line with the geometric formulation of the ACGF introduced
previously.

In (8.22), (8.23), and (8.28), although the delta functions are written in the
language of R

3, for the actual approximation of the ACGF using distribution theory
we must use the special local delta family in S introduced formally by (8.18). Let
such a family be denoted by

{
fS

n (r′, r)
}

n∈N
. Using (8.25), (8.13), then (8.19), we

find
lim

n→∞

〈
fS

n (r′, r) α̂ (r′) ,T (r′)
〉

= lim
n→∞

〈
fS

n (r′, r) , α̂ (r′) · T (r′)
〉

= α̂ (r) · T (r) .
(8.29)

Therefore, we can define the local vector delta function δ (r′ − r) α̂ (r′) on S as the
distributional limit25

δ (r′ − r) α̂ (r) := lim
n→∞

fS
n (r′, r) α̂ (r′) . (8.30)

In this case, the desired relation (8.28) is obtained by means of (8.29). The reader
should carefully note how the argument of the function α̂ changes from r to r′ when
moving from the LHS to the RHS of (8.30).

We have now all the tools necessary to justify (8.24) in the sense of distribution
theory. When the electromagnetic operator L−1 is invertible, it is always possible
to construct the exact ACGF L−1

r δ (r − r′) α̂n (r′) , n = 1, 2 using the definition
(8.21) by performing two constructions corresponding to the two cases l = 1, 2. In
details, we have

limn→∞
〈
L−1

r′ fS
n (r′, r) α̂l (r′) ,T (r′)

〉
= limn→∞

〈
fS

n (r′, r) α̂l (r′) ,L−1
r′ T (r′)

〉
= limn→∞

〈
fS

n (r′, r) , α̂l (r′) · L−1
r′ T (r′)

〉
.

(8.31)

But L−1
r′ T (r′) is continuous [70] while α̂l (r′) by definition is smooth. Conse-

quently, α̂l (r′) · L−1
r′ T (r′) is continuous. Hence, from (8.19) we conclude that the

limit exists. Therefore, we define the vector distribution L−1
r′ δ (r′ − r) α̂l (r) as the

25 Cf. Definition 1.
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distributional limit

L−1
r′ δ (r′ − r) α̂l (r) := lim

n→∞
L−1

r′ fS
n (r′, r) α̂l (r′) , (8.32)

which is valid for l = 1, 2.
The procedure should be obvious by now. We define the dyadic functions{

F̄n (r, r′)
}

n∈N
by the relation

F̄n (r, r′) :=
[
L−1

r fS
n (r, r′) α̂1 (r)

]
α̂1 (r′)

+
[
L−1

r fS
n (r, r′) α̂2 (r)

]
α̂2 (r′) .

(8.33)

Therefore, from (8.33) we have

F̄T
n (r′, r) := α̂1 (r)

[
L−1

r′ fS
n (r′, r) α̂1 (r′)

]
+α̂2 (r)

[
L−1

r′ fS
n (r′, r) α̂2 (r′)

]
.

(8.34)

Now, consider

F̄ (r, r′) := lim
n→∞

F̄n (r, r′) , F̄T (r′, r) := lim
n→∞

F̄T
n (r′, r) , (8.35)

where the limit is the distributional convergence of Definition 1. By construction,
the delta family

{
fS

n (r′, r)
}

n∈N
will insure that the two limits on the RHS of the

equations (8.35) exist in a manner identical to the way we proved that the definition
(8.32) is well posed but will not give the details.26

By the inverse reciprocity theorem, we have F̄T (r, r′) = F̄ (r′, r). Therefore,
we may write

lim
n→∞

〈
F̄n (r, r′) ,E (r′)

〉
= lim

n→∞

〈
F̄T

n (r′, r) ,E (r′)
〉
. (8.36)

Next, using the relation E (r′) = Lr′J (r′), it is possible to rewrite the RHS of
(11.55) as

lim
n→∞

〈
F̄T

n (r′, r) ,E (r′)
〉

= lim
n→∞

〈
F̄T

n (r′, r) ,Lr′J (r′)
〉
. (8.37)

Since the operator L is self-adjoint, so is its inverse [67], [13]. Therefore, after sub-
stituting the expression of F̄T

n (r′, r) in (8.34) into (8.37), we can move the operator
L−1

r′ in (8.34) to act on the function Lr′J (r′),27 resulting in L−1
r′ Lr′J (r′) = J (r′).

26 In the proof, the definition (8.26) should be used first, then (8.25) and (8.13), successively, to reduce
a form like

〈
F̄,E

〉
to the form where (8.19) can be used to establish the convergence of the ordinary

limit. Distributional limit existence then follows by the force of Theorem 8.2.3.
27 That is, for a self-adjoint operator L, we have for any two vector fields X1 and X2 belonging to the do-

main of definition of L, the following equality holds 〈LX1 (r′) ,X2 (r′)〉 = 〈X1 (r′) , LX2 (r′)〉.
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Consequently, the RHS of (8.37) becomes

α̂1 (r) limn→∞
〈
fS

n (r′, r) α̂1 (r′) ,J (r′)
〉

+α̂2 (r) limn→∞
〈
fS

n (r′, r) α̂2 (r′) ,J (r′)
〉

= α̂1 (r) [α̂1 (r) · J (r)] + α̂2 (r) [α̂2 (r) · J (r)]
= J (r) ,

(8.38)

where use was made of (8.28) in the form of (8.29). Therefore, we reach

J (r) = lim
n→∞

〈
F̄n (r, r′) ,E (r′)

〉
. (8.39)

This is the main relation we are looking for. It states that the exact ACGF can
be obtained by a certain limit of converging sequences. For any desired er-
ror ε, we can find a sufficiently large integer N such that for each n > N ,∣∣J (r) −

〈
F̄n (r, r′) ,E (r′)

〉∣∣ < ε. The convergence in (8.39) is pointwise in r, not
uniform. That is, for each r, one must look for the corresponding integer N(r, ε),
such that

J (r) �
〈
F̄N(r,ε) (r, r′) ,E (r′)

〉
. (8.40)

In contrast, for uniform convergence, N must be dependent only on the error level ε.
Such a stronger type of convergence is desirable but in general cannot be guaranteed
according to our construction.

8.2.4 On the Fourier Transform of the ACGF Tensor

Working in the 3D Euclidian space R
3, the ACGF is not a classical function,

but a distribution, and that is for two reasons. The first is the obvious fact that
F̄(r, r′) is a response to a distribution, namely the Dirac delta source. The second
is that the ACGF in R

3 represents a surface function on S. Therefore, its Fourier
transform should be ultimately grounded on a suitable formalism, namely tempered
distribution theory [67].

We will propose a solution in line with the basic construction of the ACGF
presented by (8.21). Let us denote by P ′(R3) the space of rapid decay functions
on R

3 [67], [68], [71]. The space of tempered distributions is the topological dual
and is denoted by P ′(R3). As is well known, every distribution g ∈ P ′ possesses
a Fourier transform Fg also in P ′(R3) [67]. Moreover, the exact corresponding
version to Theorem 8.2.2 holds for the tempered distribution space P ′(R3), i.e., if
〈fn, ϕ〉 converges for every ϕ ∈ P ′(R3), then there exists a unique distribution
F ∈ P ′(R3) such that 〈F, ϕ〉 = 〈fn, ϕ〉 for all ϕ ∈ P ′(R3) [68].
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It is very natural then to consider the sequences of functions {F pq
n (r, r′)}n∈N,

p, q = 1, 2, defined by (8.33), and ask whether they generate tempered distributions
in P ′(R3). The answer is in the affirmative. Indeed, in a certain sense, the functional〈
F̄n (r, r′) ,T (r)

〉
=
∫

S
dsF̄n (r, r′) · T (r) define a distribution in P ′(R3).

Linearity is obvious so we will prove continuity. Let Tm (r) → T (r) in the space
P(R3).28 We find∣∣〈F̄m (r, r′) ,T (r) − Tm (r)

〉∣∣
≤
∫

S
ds‖F̄m (r, r′)‖ · ‖T (r) − Tm (r)‖

= sup
r∈S

|T (r) − Tm (r)|
∫

S
ds‖F̄m (r, r′)‖,

(8.41)

where we define the norm of the tensor as ‖F̄‖ :=
∑2

p=1
∑2

q=1 ‖F pq‖. However,
convergence in P ′(R3) implies uniform convergence on S, i.e., supr∈S |T (r)−Tm

(r) | → 0. Therefore, from (8.41) we find
∣∣〈F̄m (r, r′) ,T (r) − Tm (r)

〉∣∣→ 0 and
hence conclude that the functional F̄m is continuous in P ′(R3), which establishes
that it is indeed a distribution in P ′(R3).

We next need the following theorem [68]

Theorem 8.2.4. Consider a sequence of distributions in P ′ such that fn → f
distributionally. Then, we have Ffn → Ff also distributionally in P ′.

That is, if a sequence converges distributionally to a distribution in P ′, then
the Fourier transforms of the converging distributions converge distributionally
(also in P ′) to the Fourier transform of the former limit. Since each of the
scalar functions comprising F pq

n is in P ′(R3), they possess Fourier transforms
{FF pq

n }n∈N
also in P ′(R3) [67]. Similarly, the components of the limit function

F̄ → F̄n are in P ′(R3) and so they possess distributional Fourier transforms
FF pq

n ∈ P ′(R3). From Theorem 8.2.4, we conclude that FF̄ → FF̄n because
the limit holds for each of the four functions F pq, p, q = 1, 2. In detail, we may
write

〈FF pq, ϕ(r)〉 = lim
n→∞

〈FF pq
n (r, r′) , ϕ (r)〉 , ∀ϕ ∈ P

(
R

3) . (8.42)

This establishes the Fourier transform of the ACGF in the rigorous sense of tempered
distribution theory. In practice, especially in numerical computations, we will seldom
work with the distribution itself, but rather with an approximation in terms of test
functions. This topic will be dealt with next in Section 8.2.5.

28 Here, we understand that each component of the vector field T(r) converges to the corresponding
component of Tm(r) in the sense of convergence in the space P ′(R3).
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8.2.5 On the Inverse Fourier Transform of the ACGF Tensor

Our goal here is to understand the inverse Fourier transform of the ACGF in terms of
a sequence of relations converging in some acceptable sense. The theoretical basis
for this construction is the following important theorem

Theorem 8.2.5. Every distribution in D′(R3) can be written as the distributional
limit of a sequence of regular distributions generated by test functions in D(R3). In
other words, the space D(R3) is dense in D′(R3).

Hence, we can approximate the distribution F̄ (r, r′) by a sequence of regular
distributions

{
F̄d

n (r, r′)
}

n∈N
in the sense that F d,pq

n (r, r′) → F d,pq (r, r′) , p, q =
1, 2, distributionally in D′(R3). Indeed, Theorem 8.2.5 allows us to write

lim
n→∞

∫
R3

d3rF̄d
n (r′, r) · E (r) =

〈
F̄ (r′, r) ,E (r)

〉
= J (r′) . (8.43)

Notice that the support of the integral on the LHS is in R
3. The fact that the integral

on the RHS is on S indicates again that the ACGF is a singular distribution in both
D′(R3) and P ′(R3).

Each of the functions F d,pq (r, r′) is both smooth and of bounded support
in R

3. Therefore, they possess an ordinary Fourier transform and also an inverse
Fourier integral that is absolutely and uniformly convergent.29 That is, we have

F̄d
n (r, r′) =

1
(2π)3

∫
R3

d3k F̄d
n (k, r′) eik·r, (8.44)

Now, since each smooth function F̄d
n (r, r′) is ordinary, it defines a regular distribu-

tion in D′(R3) [67]. Moreover, since it has a compact support, it is automatically a
function of slow growth and consequently its associated regular distribution is also
in P ′(R3) [67]. Consequently, it can be inferred from Theorem 8.2.4 that in the space
of tempered distributions, F̄d

n (r′, r) → F̄ (r′, r) entails F̄d
n (r′,k) → F̄ (r′,k).

It can be easily proved that the regular tempered distribution generated
by F̄d

n (r′,k), and the distributional Fourier transform of the regular distribution
F̄ (r′, r) are identical [67]. Therefore, we don’t distinguish in notation between
distributional transforms and Fourier transforms of regular distributions in P ′(R3).
As an example of how to move freely between distributions and regular functions,

29 Cf. Theorem 8.2.6.
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consider the following manipulation

lim
n→∞

〈
F̄d

n (r′, r) ,E (r)
〉

= limn→∞
〈
F−1F̄d

n (r′,k) ,E (r)
〉

= lim
n→∞

〈
F̄d

n (r′,k) ,F−1E (r)
〉

=
〈
F̄ (r′,k) ,F−1E (r)

〉
=
〈
F−1F̄ (r′,k) ,E (r)

〉
=
〈
F̄ (r′, r) ,E (r)

〉
,

(8.45)

or in short, F−1F̄d
n (k, r′) → F̄ (r′, r), which is the same as (8.43). The first equality

in (8.45) follows from (8.44); the second equality from the fact the operator F−1 is
self-adjoint; the third equality from F̄d

n (r′,k) → F̄ (r′,k) just established above;
and the last equality again follows from the self-adjoint property of F .30

The relation (8.44) states that one may approximate both the Fourier transform
and the inverse Fourier integral of the ACGF by the corresponding transforms of
the smooth approximating functions

{
F̄d

n (r, r′)
}

n∈N
, all possessing 3-dimensional

bounded supports in R
3. There is an enormous advantage in working with such

functions in both theory and applications. Some of the nice behavior of these
functions is captured by the following theorems [67], which we will have occasions
to use throughout this chapter, cf. Chapter 9.

Theorem 8.2.6. Let f be a function of C2 class such that f , f ′, and f ′′ are all
integrable. Then Ff is also integrable and the Fourier inversion formula holds.

Theorem 8.2.7. If f ∈ L1 is a function of bounded support, then its Fourier
transform is of C∞ class.

Theorem 8.2.8. Let f(r) be a function differentiable p times. Then its Fourier
transform Ff := f̃(k) satisfies

∣∣∣f̃ (k)
∣∣∣ ≤ |2πk|−p

∫
R3

∣∣∣f̃ (p) (r)
∣∣∣ d3r. (8.46)

Note that the three theorems above can be generalized to arbitrary spaces
R

m, m ≥ 1.

8.2.6 Transformation Calculus for the 2D ACGF Tensor

First, consider the four functions Fnm, n, m = 1, 2, forming the components of
the 2D ACGF tensor (8.5). They can be interpreted as the scalar Green’s function
defined by (8.21). Now, the local delta sequence introduced in (8.18) does depend on

30 In (8.45), we assume that the components of E(r) belong to P ′(R3).
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the choice of the local coordinate system, say (Ul, xl). Indeed, in a new coordinate
system, say (Uq, xq), the quantity

√
g transforms as [61]

√
g (xq) =

∣∣∣∣ ∂xl

∂xq

∣∣∣∣√g (xl), (8.47)

where |∂xl/∂xq| := det
([

∂xn
l

/
∂xm

q

])
, i.e., the determinant of the transformation

matrix ∂xn
l

/
∂xm

q , n, m = 1, 2. From (8.18), the local delta sequences transforms
then in the new coordinate system as

fS,q
n (x, x′) = |∂xl/∂xq|−1

fS,l
n (x, x′) . (8.48)

This implies that for each choice of the local coordinate system containing r′,
there exists a different sequence of approximating functions Fn. In other words,
we should write F l

n in order to explicitly refer to the local coordinate system used in
constructing (8.18). However, a careful examination of the definition (8.21) reveals
that the distribution F does not depend on the choice of the local coordinate system.
In other words, F l

n → F as n → ∞ for all possible values of l. The fact that the
approximating sequence Fn does depend on the choice of the local coordinate system
is not a problem because in practice the Green’s function, as a distribution, always
appears inside a surface integral on S. In all these cases, from the relation (8.19) it
can be seen at once that the final result of any such an integration does not depend
on the choice of the local coordinate system.

It remains then to examine the dependence of theACGF on the local coordinate
system that arises from the orthonormal vectors α̂n

l . Suppose we are given a 2D
Green’s tensor as in (8.5).The explicit components of this tensor are the four functions
Fnm, n, m = 1, 2, and they are dependent on the choice of the source and observation
frames of references, (Ul′ , xl′) and (Ul, xl), respectively, and also upon the choice of
corresponding two sets of orthonormal vectors α̂1

l′ (r′) , α̂2
l′ (r′) and α̂1

l (r) , α̂2
l (r).

We are given another two coordinate patches (Uq′ , xq′) and (Uq, xq) such that both
Uq′ ∩Ul′ and Uq ∩Ul are nonempty. Furthermore, let r′ ∈ Uq′ ∩Ul′ and r ∈ Uq ∩Ul.
In this case, it is possible to express the coordinates and the tangent vectors defined
at r and r′ in terms of the language of the new coordinate patches (Uq′ , xq′) and
(Uq, xq). The purpose of the present Section is detailing how this purely geometrical
problem is to be properly handled. To achieve this task, we will rely on the standard
machinery of smooth manifolds [61].
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Let us expand the two sets of orthonormal vectors chosen at r and r′ in terms
of coordinate basis with respect to the frames (Uq, xq) and (Uq′ , x′

q′) as follows

α̂n
l (r) =

2∑
m=1

ζmn
l

∂

∂xm
l

, α̂n
l′ (r′) =

2∑
m=1

ζmn
l′

∂

∂xm
l′

, (8.49)

with n = 1, 2. In terms of the new patches (Uq, xq) and (Uq′ , x′
q′), we have similarly

α̂n
q (r) =

2∑
m=1

ζmn
q

∂

∂xm
q

, α̂n
q′ (r′) =

2∑
m=1

ζmn
q′

∂

∂xm
q′

. (8.50)

The relation between the coordinate basis of the two representations can be written
easily as [61]

∂

∂xn
q

=
2∑

m=1

∂xm
l

∂xn
q

∂

∂xm
l

,
∂

∂xn
q′

=
2∑

m=1

∂xm
l′

∂xn
q′

∂

∂xm
l′

. (8.51)

The inverse relation is given by

∂

∂xn
l

=
2∑

m=1

∂xm
q

∂xn
l

∂

∂xm
q

,
∂

∂xn
l′

=
2∑

m=1

∂xm
q′

∂xn
l′

∂

∂xm
q′

. (8.52)

Substituting (8.49) into (8.5), we find

F̄ (r, r′) =
∑
mm′

∑
nn′

Fmm′ζnm
l ζn′m′

l′
∂

∂xn
l

∂

∂xn′
l′

. (8.53)

This represents the expansion of the 2DACGF tensor, originally given in terms of two
sets of orthonormal vectors, now in terms of the coordinate basis ∂/∂xn

l , n = 1, 2.
Note that the tensorial basis in turns are (∂/∂xn

l ) (∂/∂xm
l′ ) , n, m = 1, 2. Now,

substituting (8.52) into (8.53), we arrive at

F̄ (r, r′) =
∑
mm′

∑
nn′

∑
pp′

∂xp
q

∂xn
l

∂xp′

q′

∂xn
l′

Fmm′ζnm
l ζn′m′

l′
∂

∂xp
q

∂

∂xp′

q′

. (8.54)

This gives the representation of the 2D ACGF tensor in terms of the coordinate basis
of the new coordinate patches.
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In order to give the final transformational rule, we first need to invert (8.50) to
obtain

∂

∂xn
q

=
2∑

m=1

κmn
q α̂m

q (r) ,
∂

∂xn
q′

=
2∑

m=1

κmn
q′ α̂m

q′ (r′), (8.55)

where the inverse matrix is defined as[
κmn

q

]
:=
[
ζmn
q

]−1
,
[
κmn

q′
]

:=
[
ζmn
q′
]−1

. (8.56)

Finally, substituting (8.50) into (8.54), we reach the most general result desired

F̄ (r, r′) =
∑
vv′

[ ∑
mm′

∑
nn′

∑
pp′

∂xp
q

∂xn
l

∂xp′
q′

∂xn
l′

ζnm
l ζn′m′

l′

×κvp
q κv′p′

q′ Fmm′

]
α̂v

q (r) α̂v′

q′ (r′) .

(8.57)

This represents the transformational law connecting the 2D ACGF tensor, written in
the language of orthonormal vectors in terms of coordinate patches with indices in
the atlas of S given by l and l′, to a corresponding new tensor, i.e., that expressed in
terms of the language of new coordinate patches at q and q′, respectively.31 As we
can see after inspecting (8.57), given the four components of the 2D ACGF tensor
computed in (8.5), one can transform this tensor to any other sets of orthonormal
vectors and with respect to any other admissible coordinate patch in the atlas
describing the differential geometry of the antenna surface S. The transformation
law can be stated as

F new
vv′ =

∑
mm′

∑
nn′

∑
pp′

∂xp
q

∂xn
l

∂xp′

q′

∂xn
l′

ζnm
l ζn′m′

l′ κvp
q κv′p′

q′ F old
mm′ . (8.58)

where F new
vv′ represent the components of the new tensor expressed in terms of the

old components F old
mm′ .

8.2.7 Remarks on the Tensorial Character of the ACGF

In the standard literature on differential manifold theory, tensor products are defined
only with respects to vectors defined at the same point, i.e., vectors belonging to the

31 In (8.57), only the explicit dependence of α̂v
q and α̂v′

q′ on their spatial locations was mentioned.
However, all the remaining factors contain in turn their own spatial dependence. Only Fnm depends
jointly on r and r′. On the other hand, the functions ∂xp

q

/
∂xn

l , ζn,m
l , κv,p

q depend on r, while the

functions ∂xp′

q′

/
∂xn

l , ζnm
l′ , κv′,p′

q′ depend on r′.
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same tangent space TMp, where p is some point in the (2-dimensional) manifold
under consideration. The tensor product α̂n

l (r) α̂m
l′ (r′) involves vectors belonging

to two different tangent spaces, i.e., TMr and TMr′ . This difficulty can be overcome
in several ways. Probably the most direct strategy is to exploit the fact that the vectors
involved can all be embedded in the larger space R

3. In this case, it is always possible
to perform parallel transport of any vector from a given point to an arbitrary point.
Since the inner product is invariant with respect to permutations involving vectors
that are obtained from each other by the process of parallel transport, the tensor
product above can always be construed as a 3D Cartesian tensor product.

This solution may not be found in harmony with our earlier claim that Modes
A and C can be studied, at least theoretically, as processes occurring completely in
a 2D space, rather than R

3. In this case, it is desirable not to refer to the larger space
in the definition of the antenna current Green’s function operator. It is enough for
our purpose to define the operator entity α̂n

l (r) α̂m
l′ (r′) : TMr′ → TMr by the

equation α̂n
l (r) α̂m

l′ (r′) · α̂q
l′ (r′) := α̂n

l (r) [α̂m
l′ (r′) · α̂q

l′ (r′)], which is possible
since we have a natural inner product on S (i.e., the Euclidean inner product inherited
from the ambient space R

3 into which S is embedded) available for computing
α̂m

l′ (r′) · α̂q
l′ (r′). Finally, we mention that by reverting to the techniques of tangent

bundles on abstract manifolds, this argument can be made fully rigorous. However,
we don’t pursue further such a formalization in the present work.



Chapter 9

Interrelationships Between Operational
Modes of General Antenna Systems

9.1 GENERAL INTRODUCTION

At the present point of Part II, we start developing some of the major applications
made available by the systematic deployment of the antenna current Green’s function
(ACGF) formalism introduced in chapter 8. Following our proposal of studying
general electromagnetic systems through three operational modes, i.e., Modes A, B,
and C, efforts in this Chapter will be focused on the various schemes of interrelations
between the modes, rather than the modes themselves. This choice of focus is
based on our belief that the dynamic content of electromagnetic theory can be
best captured by paying special attention to differential (in the sense of relational)
structures holding between basic processes isolated and identified earlier as the main
constituents of the phenomena under investigation. Accordingly, our interest is not
restricted solely to obtaining certain amount of data pertaining to one given mode, but
rather we aim at understanding how one mode interrelates with another, regardless
of what the particular state of each of these modes is at the time.1

To achieve this task, it is necessary to dig deep enough into the connective
structure combining two given modes with each other. This connective structure,

1 For example, the dynamic content of classical mechanics can be captured by Newton’s second law
F = ma, where F is the force, m the mass, and a the acceleration. As such, the law does not give
us direct information on what is the particular applicable force or how to measure the acceleration.
Instead, the law states that whatever is the force F and the acceleration a in a material system with
mass m, the relation between the two vectors is given by such and such equation.

259



260 New Foundations for Applied Electromagnetics

especially as developed in Sections 9.4 and 9.5 below, will take the form of a
mechanism of interaction explicated with the help of a theory of the electromagnetic
near field of Part I. An idea of spatial bandwidth is captured in our formulation and
highlighted within the context familiar in system engineering. Moreover, it is found
that there are two regimes in electromagnetic interactions, resonant and nonresonant,
and each has its own dominant features. Some other interesting findings include the
concept of generalized transfer function, which turns out to be the most general
invariant structure for the antenna system (as a spectral concept). In a certain sense,
it goes beyond the ACGF itself as a transfer function. We also propose a general
design methodology that can help in constructing approximations of antenna shapes
capable of meeting arbitrary desired spectral characteristics specified in terms of the
generalized transfer function mentioned above. The chapter ends by discussing the
dynamic genesis of the received voltage in an antenna spatially displaced in the near-
field zone of the source, with expected repercussions regarding the understanding of
how arrays work, besides its relevance for foundational research.

Section 9.2 will develop in detail an argument first presented in [13] but
expanded this time in the light of the subsequent devolvements of Chapter 8. The goal
is to situate the inverse reciprocity theorem, which relates Mode A to Mode C, into
the context of the 2D and 3D ACGF tensors defined rigorously in the distributional
construction of Chapter 8. In Section 9.4, we introduce the near-field perspective
and start exploring the structure of the relation between Mode A and Mode B. This
aims at gaining some general knowledge concerning how the spatial variations of
the excitation field control the radiated fields. Finally, Section 9.5 contains the bulk
of the contribution of the present chapter. It aims at studying the relation between
a current source of a nearby antenna and a general receiving antenna. The various
findings of this part, we hope, will contribute to the final synthesis of the overall
theoretical understanding attained via the use of the ACGF formalism. In particular,
we focus on two dual contexts, the static and dynamic genesis of the received voltage
in near-field zone interactions. The static genesis will present the substructure upon
which the the dynamic picture can be erected. The latter explicates the (geometrical)
mechanism of how motion of the receiving antenna changes the observed voltage.
This analysis, which is quite general, may form the basis for future investigations of
particular systems, such as antenna arrays and near field measurement.
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9.2 SYMMETRY OF THE ANTENNA CURRENT GREEN’S FUNCTION:
THE INTERRELATIONSHIP BETWEEN MODE A AND MODE C

9.2.1 Introduction

The antenna current induced by a delta source can seldom by represented in a closed-
form analytical expansion, and hence it is difficult to see in advance what kind of
properties it has. However, we prove in this section a very general symmetry property
possessed by the dyadic function F̄ (r, r′). The upshot of the argument is that in the
case where the focus in the receiving mode is on certain terminal-like quantities, e.g.,
received voltage, current, power, etc, then it is possible to relate the ACGF of Mode
C to the ACGF of Mode A in a quite simple manner. The basic idea of reciprocity
applied to transfer functions appears to have been already formulated in [25] and
[26] within the context of circuit-theoretic models of antenna systems. The idea
was recently applied numerically to antenna arrays to predict the received voltages
with strong mutual coupling using transmitting mode data. However, in all these
works, the approach was worked out informally in a close reading of the numerical
method adopted for use in performing the computation without explicitly refereing to
the antenna current Green’s function concept itself.2 The derivation of the receiving
ACGF (Mode C) in this section is constructed directly using field theory, not a circuit
or numerical approximation.

9.2.2 Derivation of the Symmetry Relation of the ACGF

The starting point is Lorentz reciprocity theorem in one of its standard integral forms
[28]. We assume that two sources J1 (r) and J2 (r) produce the fields E1 (r), H1 (r)
and E2 (r), H2 (r). The magnetic sources are set to zero since the problem involves
only PEC objects. It can then be shown using Maxwell’s equations that [28]∫

V

dv (J1 · E2 − J2 · E1) =
∮

S0

ds · (E1 × H2 − E2 × H1). (9.1)

Here, the surface S0 incloses the antenna surface S.3 If the surface S0 is taken to
infinity, then it can be shown that, provided the surrounding medium is assumed to
be infinite and homogeneous, the surface integral on the RHS of (9.1) vanishes [28].

2 For further details about the ACGF method applied to empirical contexts with some comparison with
existing reciprocity methods in literature, see the following applications-oriented chapters.

3 Since we assume perfect electric conductor, the terms involving the magnetic field on the LHS of
(9.1) has already been dropped out.
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We are left with ∫
V

dv (J1 · E2 − J2 · E1) = 0. (9.2)

The integration volume V is the volume inclosed by the metallic antenna body S.
Now consider the situation described by the electric field integral equation in

the form stated in Chapter 8, equation (8.2). Here, we have two sets of electromagnetic
data, each containing three types of quantities: 1) The externally applied electric
field Eex, 2) the current induced by this field J, and 3) the field radiated by
the induced current Erad.4 At the antenna surface, the following relation holds
n̂ × Erad = −n̂ × Eex. Consider now the configuration

Eex
1 (r) = â δ (r − r1) , n̂ × Erad

1 (r) = −â δ (r − r1) , (9.3)

Eex
2 (r) = b̂ δ (r − r2) , n̂ × Erad

2 (r) = −b̂ δ (r − r2) , (9.4)

J1 (r) = F̄ (r, r1) · â, J2 (r) = F̄ (r, r2) · b̂. (9.5)

The first equations in (9.3) and (9.4) give the form of the externally applied field
polarized according to the arbitrary unit vectors â and b̂ tangential to S and located
at arbitrary two positions r1 and r2. The second equations in (9.3) and (9.4) give
the response of the antenna system to these excitations.5 The two currents appearing
in (9.5) finally provide us with the electric current induced on the antenna by the
externally applied field. They are written in terms of the ACGF tensors.6 However,
the manner in which the relation between the ACGF tensor F̄ and the induced
currents was expressed in (9.5) should be studied carefully by the reader. It is
crucial in the present derivation to realize that the statement of Lorentz reciprocity
theorem relates sets of sources (currents) to the fields produced by these sources.
Our goal is to reach a statement regarding the exact reverse of this relation: we
would like to learn something about the receiving mode ACGF in terms of the
transmitting mode ACGF but for the physical situation when the sources are fields
while the outputs are currents. Strictly speaking, the electromagnetic operator of this

4 We just happen to be not interested in the present derivation in the current producing the externally
applied field, which can be computed directly from Maxwell’s equation. It is part of the idealization
of any scientific model that irrelevant quantities are dropped out of consideration when they do not
affect the parameters of interest in the theory. However, this source current will be taken directly into
consideration in Section 9.5.

5 For the rigorous definition of the surface Dirac delta function in the context of the antenna current
Green’s function, see Chapter 8.

6 The local sifting property derived in Chapter 8 is assumed and used freely throughout the present
derivation.
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problem is the EFIE operator L defined by 8.2, which is wholly different from the
forward electromagnetic operator to which the classical Lorentz reciprocity theorem
applies. However, we can bypass the difficult problem of working directly with
L by noticing the mechanism of PEC objects: They simply work by generating a
current such that the radiated field is canceled by the applied field. In order to apply
Lorentz reciprocity to this situation, we must still operate with sources in the form
of currents and outputs in the form of fields. The appropriate sets will be then the
currents in (9.5) as the sources and the second fields in (9.3) and (9.4), i.e., the
fields Erad

1 (r) and Erad
2 (r). These two fields are strictly produced by the currents

J1 and J2 according to the typical forward electromagnetic operator to which the
Lorentz reciprocity theorem applies. We now can appreciate the peculiar way in
which the arguments of the ACGF were written in (9.5). Recalling the clarification
given in Chapter 8 regarding the semantics of the various arguments of the Green’s
functions involved there, we find that in the functional form F̄ (r, r′), the agrement
r′ stands for location of the impressed field (now should be replaced by radiated
fields), while r stands for the spatial location of the current on the antenna surface.
This latter location is simply a position vector ranging on the total surface S. In this
way, the two sets of sources and radiated fields to be related to each other in the next
step have the correct functional form required by the Lorentz reciprocity theorem.
Therefore, we obtain from (9.2), (9.5), and the second equations in (9.3) and (9.4)
the result

−
∫

V
dv
[(

F̄ (r, r1) · â
)

· b̂ δ (r − r2)

−
(
F̄ (r, r2) · b̂

)
· â δ (r − r1)

]
= 0.

(9.6)

In writing this equation, we made use of the fact that the currents J1(r) and J2(r)
have nonvanishing values only on the antenna surface S, which allowed us to restrict
the value of the radiated field Erad(r) to the tangential components only as given by
(9.3) and (9.4). This integral can now be immediately evaluated to give

[
F̄ (r2, r1) · â

]
· b̂ =

[
F̄ (r1, r2) · b̂

]
· â. (9.7)

Since r1 and r2 were assumed arbitrary in our derivation, they can be replaced by
r and r′. We now notice that the proper unit vectors â and b̂ are tangential to S.
Therefore, in order to spell out the meaning of (9.7) in terms of the components of
the ACGF, only the 2D tensor can be used. Moreover, since â and b̂ are arbitrary,
any choice of the coordinate patches of the source and observation points, together
with a choice of two orthogonal directions in each patch, can be matched by proper
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corresponding selections of â and b̂. In this case, we immediately arrive from (9.7)
at our main result

[Fnm (r, r′)] = [Fnm (r′, r)]T , (9.8)

where T denotes the transpose operation applied to the matrix representation [Fnm]
of the 2D dyadic operator. In component form, equation (9.8) is expanded as

F11 (r, r′) = F11 (r′, r) , F12 (r, r′) = F21 (r′, r) ,
F21 (r, r′) = F12 (r′, r) , F22 (r, r′) = F22 (r′, r) .

(9.9)

The same symmetry relation is also enjoyed by the 3D ACGF tensor, a fact proved
formally in the next section.

9.2.3 On the Symmetry of the 3D ACGF Tensor

We show here that the 3D ACGF tensor also satisfies the simple symmetry relation
(9.8) enjoyed by the 2D ACGF tensor. To see this, we study the components of the
Mode C 3D ACGF tensor as given in Chapter 8 by (8.7). By swapping the source
and observation variables, we obtain for Mode C the following components

Fxpxq
(r′, r) =

2∑
n=1

2∑
m=1

Fnm (r′, r)βn
l′p (r′) βm

lq (r) . (9.10)

In order to show that the 3D tensor is indeed symmetric, we swap the indices p and
q in (9.10) and then use (9.8) to obtain

Fxpxq (r′, r) =
2∑

n=1

2∑
m=1

Fmn (r, r′)βm
l′p (r)βn

lq (r′) . (9.11)

By relabeling the dummy indices in the sums of (9.11) as n → m and m → n, it
follows at once by comparing (9.11) above with (8.7) in Chapter 8 that

Fxpxq (r′, r) = Fxqxp (r′, r) . (9.12)

That is, we can safely write in general

F̄ (r, r′) = F̄T (r′, r) , (9.13)
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regardless to whether the 2D or 3D form of the ACGF is used. In any case, Mode
C ACGF can still be related to Mode A ACGF through the relation (9.10) together
with (9.8) or (9.9).7

9.2.4 Discussion of the Results

We now put the mathematical theorem (9.8) proved above in the physical context
of antenna applications. That is, we consider Mode C as defined in terms of its
characteristic Green’s function L̄ (r, r′). The situation encountered in practice is
this. It is usually the case that we solve numerically for the ACGF in the transmitting
mode, typically in connection with calculations similar to that outlined in Chapter
8, i.e., for localized excitation region U corresponding to the physical port used to
inject information into the antenna system. This is Mode A. For Mode C, the same
antenna is used as a receiving structure. The received voltage is usually collected at
the same physical port used in Mode A, i.e., the receiving “area” will be also U [28].8

Now a question naturally arises regarding whether the two modes of operation can
be related to each other, which can now be easily answered with the help of (9.8).
From (7.2) and (7.4) and (9.8) above, we find

L̄ (r, r′) = F̄T (r′, r) . (9.14)

It is significant for the derivation of this relation to carefully observe the reference of
each argument belonging to the various Green’s functions involved as they appear
in their defining relations (7.2) and (7.4).

The distinguishing feature of the ACGF formalism, we believe, is that the
Lorentz reciprocity theorem (9.1) is not the core of the method. Instead, it is the
antenna current Green’s function what is at stake here. In this sense, the method of
expressing the received current using (7.4) is unique and represents the signature
of the formalism adopted in this book. Indeed, the method is valid for arbitrary
illuminating field in the receiving mode. The simple relation (9.14) allows us to
predict the current induced in the receiving port occupying the area U , when the

7 The reader may consider (9.10) as an effective method to compute the receiving Green’s function
L̄ (r, r′) defined in Chapter 8. This fact will be heavily exploited in the forthcoming applications
chapters.

8 There is no loss of generality in the subsequent analysis if the receiving port is different from the
transmitting antenna port.
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antenna is functioning in Mode C, using some data computed from Mode A.9

However, it should be kept in mind that it is only the received signals at U that
can be predicted, and not the induced current distribution on the entire antenna
system surface S. Since the focus of the engineer is on terminal-like quantities,
and hence the limited inverse relation implied by (9.14) (“limited” in the sense of
being applicable in practice to a spatially common area U in both Modes A and C)
is adequate for most of the applications of electromagnetic systems involving both
antennas and circuits.10

9.2.5 Comparison with Traditional Reciprocity Methods

Probably the closest formulations to the ACGF to be found in the literature are some
special remarks in [26], although the concept of the current Green’s function itself
for general antenna systems was never explicitly formulated there. The majority of
the works in applied electromagnetics, e.g., see [32], [31], [37], [28], [54], appears
to be based on the direct application of the Lorentz reciprocity theorem to special
cases tailored for the particular problem under consideration. In this section, we will
pick up and highlight one characteristic traditional reciprocity method formulation
to be found in [28], and compare it to the picture proposed by the ACGF formalism.

Consider an antenna system with a surface S supporting its electromagnetic
boundary condition. The equivalent circuit of an antenna in the receiving mode
consists of a current generator Irx connected in parallel with the admittance Yin,
which is simply the input admittance seen when looking into the input terminals of
the antenna’s physical port during the transmitting mode operation [26]. The main
intention of the reciprocity method is to establish a formula for the current Irx in
terms of some transmitting mode data. Using Lorentz reciprocity theorem, such
formula was found and is given by [28]

Irx = (−1/Vtx)
∫

V
dvEtx(r) · Jsrc(r). (9.15)

9 That is, the reciprocity theorem is applied to the Green’s function, and then the latter is used to
enact the calculations. In literature, it is usually the reciprocity theorem what is applied directly
to certain combinations of variables of interest. Such methods are inherently less general than the
ACGF formalism. It is clear that any specific result obtained in one of the common reciprocity
methods existing now in literature can be also obtained using theACGF formalism. For more detailed
comparison with literature, see Section 9.2.5.

10 Further and detailed investigation of the issues of mutual coupling, load and intrinsic impedance
characterization, improved computational models, etc, in antenna arrays using the ACGF formalism
armed with the reciprocity theorem will be dealt with elsewhere.
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Here, Vtx stands for the input port’s voltage in the transmitting mode. Jsrc is the
source current located in the source region V in the exterior of S; it produces the
fields impinging on S in the receiving mode. The field Etx is the electric field
produced by the antenna S in the region V when working in the transmitting mode.
It is clear that (9.15) does achieve the intended goal stated above in the sense that it
expresses the receiving mode current Irx in terms of only transmitting mode data,
namely Etx in the source region V . We would like now to compare this formula with
the ACGF formulas (7.4) and (9.14).

First of all, we need to be careful about the effect of the source region V on the
operation of the antenna S. In general, the transmitting mode data Etx are computed
or measured in the presence of Jsrc [28]. The motivation for this restriction is that
the antenna S may couple electromagnetically with the source. This coupling does
not occur with the current Jsrc itself, but with the physical layer supporting it, i.e.,
the region V and its associated boundary condition. In practice, however, we are
very seldom interested in the details of the source generating the fields impinging on
the antenna under consideration. In characterizing systems working in the receiving
mode, we are interested in the fields impinging on S, which may be generated by
infinite varieties of source distributions. We notice now that the ACGF formalism
is well suited to this task since it requires as an in input to the antenna S only the
illumination field Einc. We will then assume for a while that the antenna S does not
couple electromagnetically with V . A discussion of the implications of not posing
this assumption will be presented at the end.

Suppose that the antenna S is excited by a field Einc generated by the source
Jsrc. In this case, both the ACGF formula (7.4) and (9.15) are exact relations since
they were both derived from field theory. There is a difference, however, in the
nature of the transmitting data used in the two formulas. In (9.15), this data has the
form of a field computed or measured in the source region V . In (7.4), on the other
hand, the Green’s function F̄ (r, r′) (in the form of a current distribution) is our
transmitting data. This difference may appear superficial at a first examination since
eventually both formulas are indeed exact. However, the crucial contrast between
the ACGF formula and all other traditional reciprocity methods emerges when we
consider the quite practical scenario where other sources radiate in the vicinity of
S. Suppose that there is another source region V ′ with current J′

src. In order to use
(9.15) for the computation of the received current Irx, we must compute a new set
of transmitting mode data, namely the field radiated by S in the transmitting mode
evaluated in the new source region V ′. In the ACGF formula (7.4), the situation is
quite different. In principle, there is no need to compute any new transmitting mode
data. The ACGF F̄ (r, r′) used previously can be perfectly employed in computing
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the response of S to the new fields. Thus, if the new source region does not overlap
with the first region, i.e., when V ∩ V ′ = Ø, then none of the old transmitting mode
data can be utilized in the computation of the received current using the formula
(9.15), while the situation is exactly the opposite with the ACGF formula (7.4). The
difference between the two methods becomes even graver when one considers an
arbitrary number of fields impinging on S emanating from various source regions.
For example, there may be a far field illumination due to multiple antennas in the far
zone of S plus the fields generated by the sources V , V ′, V ′′, etc, in the near zone.
In all such cases, the same formula (7.4) can be used with an integration restricted
on a fixed region, the antenna’s own surface S. Using (9.15), on the other hand,
requires knowledge of fields radiated by S in all those source regions, with different
integrations performed in the various source regions involved.11

It is important to be clear about the proper origin of the advantageous position
of the ACGF formula (7.4) compared with (9.15). This is not because of some
deficiency in the latter formula, or to suggest that we managed to use the same
reciprocity result, the classical Lorentz theorem, in a way superior to the manner in
which it was used in (9.15). What is actually the case is this. The ACGF formula
(7.4), augmented by the inverse reciprocity theorem (9.14), involves not only the
use of Lorentz reciprocity theorem as manifested in the derivation of (9.14), but also
the use of another powerful theorem, namely the Green’s function theorem (7.4).
What we have achieved here is that the classical Lorentz reciprocity theorem was
applied not to the inputs and outputs of the electromagnetic system S, but to the
transfer function, the system function, the Green’s function of S, i.e., F̄ (r, r′). It
is for this very reason that (7.4), when combined with (9.14), becomes capable of
dealing with the arbitrary general situation when multiple illumination scenarios
are prevalent, while traditional reciprocity methods fail to achieve the same result
without deploying additional sets of transmitting mode data.

We would like now to say something about the assumption that the antenna
under consideration S does not electromagnetically couple with a source region V
located in the near zone. Assume that this is not the case. In such scenario, both the
ACGF formalism and the method of (9.15) have to take into account explicitly the
effect of the mutual interaction (between S and V) on the data Etx and F̄ (r, r′). In
both cases, the predictions of the two methods are exact. Consider another source
in region V ′ to be introduced to the problem as before. If the new region also

11 The proper origin of the advantageous position of the ACGF formula (7.4) compared with (9.15) is
that the ACGF formula (7.4), augmented by the inverse reciprocity theorem (9.14), involves not only
the use of Lorentz reciprocity theorem as manifested in the derivation of (9.14), but also the use of
another powerful theorem, namely the Green’s function theorem (7.4).
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couples electromagnetically with S, then again both the ACGF formalism and the
method of (9.15) has to be modified to reflect the effect of this mutual interaction
between the source and the antenna under consideration. However, we may notice
that if additional source regions V ′′, V ′′′, etc, were introduced at positions in which
they alone do not electromagnetically couple with S, while V and V ′ remains so,
then obviously the ACGF formalism has the advantage over the formula (9.15) as
explained in the previous paragraphs.

But the extreme situation in which every added source region will couple
significantly with the antenna S is quite odd and in disharmony with the spirit of the
usual investigations of antenna practice. If for some input X we compute the output
Y by using the transfer function H via the relation Y = HX , then it is implicitly
assumed that H is independent of X . Indeed, we don’t want to have a system in which
H = H(X), making the computation of the output Y by the relation Y = H(X)X
quite awkward. The main underlying theme of system theory is that there exists
in practice a characteristic function, the transfer function or the Green’s function,
independent of the nature of the input, in which the output due to any excitation can
be readily computed. Now that does not mean that the opposite situation cannot be
encountered in practice, for nothing is further from truth than this. In electromagnetic
systems, especially in the microwave regime, the possibility of strong coupling in
the near zone is real. But if the device under consideration is an antenna working
in the receiving mode under various field illumination scenarios, then this idealized
situation, antenna interacting with impinging fields, is the dominant theme expected
in applications, and the ACGF formalism is the most natural setting for this kind of
problems. In case the antenna performance is different for each new source of field
illumination, then this is not a proper single antenna problem anymore; instead, one
then has to consider the antenna S together with the source regions as a combined
larger system since the component parts are strongly interacting with each other all
the time. In this case, the ACGF formalism can be applied to an array problem, as
explained in detail in Chapter 14.

9.3 INTERLUDE: THE SIGNIFICANCE OF THE NEAR-FIELD
PERSPECTIVE IN APPLIED ELECTROMAGNETICS

We provide some general remarks about the importance of devoting considerable
attention to the near-field perspective in a general analysis of electromagnetic
systems, a theme that will dominate Sections 9.4 and 9.5 below. There is a need
for fresh re-examination of the fundamental issues pertaining to the principles of
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operations of electromagnetic systems viewed mainly from the near field viewpoint
developed in Part I. The reasons for this can be stated as follows. First, the
radiation pattern of the array is itself the outcome of a complex genetic process
in which the near field continuously differentiates and changes in form, giving rise
to a determinate shape of radiation at the far zone. Consequently, understanding
the structure of the near field allows us to better grasp the hidden potentials
of controlling the radiated fields through educated modifications of the current
distribution on the system. Second, electromagnetic interactions between array
elements, especially elements placed very close to each other, is a direct coupling
phenomenon between near fields shells. The physics of the near field then dictates
the manner in which electromagnetic coupling will affect the performance of the
array under consideration, e.g., see Chapter 16. Third, for future applications, which
tends to increase dramatically in complexity, such as metamaterial environments
(artificial media) and nano-structures, it is important to get a hold on the fine
details of the spatial structure of the near field in order to theoretically pre-plan
new devices and guide the research and devolvement process. The spectral analysis
of the near field is one such perspective on the spatial structure (see Chapter 4).
Although the utilization of the evanescent fields has found its way into near-field
nano-optics, especially for imaging applications, very little research in this direction
has been conducted for antennas working in the microwave regime. Consequently,
we devote the remaining parts of this chapter to detailed theoretical investigations
of the spectral aspects in electromagnetic interactions using the formalism of the
ACGF developed above.

9.4 SPECTRAL ANALYSIS OF THE ANTENNA-SOURCE RADIATED
FIELDS: THE INTERRELATIONSHIP BETWEEN MODE A AND
MODE B

9.4.1 Introduction

Having established a precise mathematical formalism for describing antenna systems
working in Mode A in Chapter 8, Mode C in Section 9.2, and the exact relation
between these two modes, we direct our attention now toward the intermediate stage
essential in any electromagnetic system, Mode B, i.e., the conversion of a current
source into an electromagnetic field capable of interacting with far and near objects.
Although Mode B is the most widely studied topic in classical electromagnetic
theory, little is understood about the fundamental physics of the relation between
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Mode A and Mode B on one side, and Mode B and Mode C on another. In the this
section, we focus our attention on the former relation and leave the latter to the next
section.

The complete antenna system comprised of Mode A and Mode B is shown
in Figure 7.1. In order to bring a new insight into this system, we notice that the
input excitation field Eex is a function of space defined on a compact support U .
To understand the combined A + B system, one is naturally interested in mapping
out the relation between the input Eex and the radiated fields E and H. Due to
the considerable complexity of the radiated fields, we should select certain features
in the output variables that can be deemed the most interesting theoretically and
practically within the present context of investigation. Now, the antenna system
is a spatial object in the sense that its physics is dictated by the geometry of the
surfaces supporting the electromagnetic boundary condition. The fields themselves
are functions on space. We would like then to analyze with sufficient depth their
spatial structure and the manner in which spatial degrees of freedom interact with
the geometrical details of the antenna system total surface. However, for the interest
of applied electromagnetic theory, we are most concerned about the wave phenomena
associated with the radiated fields. This means that an adequate appreciation of the
peculiar mechanism in which the field converts from nonpropagating to propagating
modes, as the observation point is moved in the spatial domain surrounding the
antyenna/circuit system, is the main general feature most likely to arouse our interest.
From the perspective of the antenna current Green’s function, the analysis of the near
field of general antenna systems takes a new light as this section and the following
one will make clear. Henceforth, the dynamic decomposition of the near field into
propagating and nonpropagating modes will be taken up in the present work as the
major thematic framework for the subsequent inquiries into the interrelation between
the two “outer” modes, Mode A and Mode C, on one side, and the “inner” mode,
Mode B, on the other side.

9.4.2 Derivation of the Main Relation Between Mode A and Mode B

The main method of investigation to be adopted in this work is phenomenological in
the following sense. We will not force dogmatically any external ad hoc viewpoint,
but the analysis will proceed according to the nature of the phenomena under
investigation themselves. More particularly, we will focus on the dynamic picture
of the radiated field as developed in Part I and try to relate it to the input excitation
Eex(r). To accomplish this, we will perform a Fourier expansion of the ACGF, then
plug its expression into the form of the dynamic decomposition of the near field (to
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propagating and nonpropagating modes). In Section 9.4.3, we discuss the physical
significance of the results.

The main idea behind the dynamic picture presented in Part I was the utilization
of two coordinate frames to describe the splitting of the electromagnetic fields into
propagating and nonpropagating modes.12 Mathematically, this was accomplished
by using the well-known Weyl expansion that expands the scalar free space Green’s
function into propagating and evanescent modes. The local observation frame is
described by a matrix R̄ that defines the 3D rotation of this frame with respect to a
previously chosen global frame. The following general decomposition theorem was
derived in Part I

Eev (r; û) =
∫

p2+q2>1
dpdq D (K, û) eiK·(R̄·r), (9.16)

Epr (r; û) =
∫

p2+q2<1
dpdq D (K, û) eiK·(R̄·r), (9.17)

where
D (K, û) := R̄T (û) · Ω̄ (K) · R̄ (û) · J

[
R̄T (û) · K

]
. (9.18)

Here, û = x̂ sin θ cos ϕ + ŷ sin θ sinϕ + ẑ cos θ is a unit vector describing the
orientation of the z-axis of the local frame.13 The spectral variables p and q describe
the Fourier expansion in the x and y directions, while the third variable m, pertinent
to the corresponding expansion in the z-direction, is related to the first two by the
relation m =

√
1 − p2 − q2. The spectral vector K is given by

K := x̂k0p + ŷk0q + ẑsgn (z) k0m, (9.19)

where sgn stands for the signum function and k0 for the free space wavenumber.
The spectral polarization dyad is defined as

Ω̄ (K) :=
−ωµ

8π2k0m

(̄
Ik2

0 − KK
)
. (9.20)

We will call the vector function D(K) the field spectral composition. Its physical
significance lies in the fact that through D(K) we can fully specify the dynamics

12 The reader is referred to Part I for full details. However, the background presented in this chapter is
sufficient to follow the main lines of analysis and forthcoming conclusions.

13 Note that the functional dependence on û comes from the fact that the rotation matrix R̄ depends on
the spherical angles ϕ and θ through relations that can be found in Chapter 4.
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of the radiated fields in such a way that at each orientation of the local observation
frame, determined by û, it is possible to determine which spectral components are
present in the fields and how they split into propagating and nonpropagating modes
as in Chapter 4. The spatial Fourier transform J (K) is defined by

J (K) :=
∫

S

dsJ (r) e−iK·r, (9.21)

where the volume V originally used in Chapter 4 is replaced in (9.21) by the S
appearing in the general definition of the antenna system presented in 8.1.1.14

The expansions (16.19) and (16.18) are valid only in the region exterior to the
infinite slab |z′′| < L0, which is perpendicular to the (varying) direction û, where
z′′ is the z-coordinate of the local (rotating) frame of reference.15

The physical content of the decomposition (9.16) and (9.17) boils down to
this: When the observation point moves around the antenna current distribution
such that û points along a direction specified by the spherical angles ϕ and θ, then
the manner in which the field splits into propagating and nonpropagating modes
along this direction will vary from one location to another.16 This overall manner
of variation is the essences of the dynamic description of the near field not only
because it maps out the overall process in which the field converts from its “static”
(nonpropagating) form into the dynamic (propagating) form, but more because no
fixed observation frame is singled out a priori for the description of the radiation
process.17

Now, by substituting (7.2) into (9.21), we obtain

J (K) =
∫

S

ds

∫
U

ds′ F̄ (r, r′) · Eex
t (r′) e−iK·r, (9.22)

14 For an elementary method to eliminate this Fourier transform from the general decomposition theorem
(16.19) and (16.18), see the appendix in Chapter 16. Note however that this method is approximative,
not exact.

15 However, it was found in Part I that the concept of radial streamlines, which is the most interesting
description of the the spectral structure of the antenna near field from the engineering point of view,
is not restricted by this limitation on the region of validity of the general expansion (9.16) and (9.17).
In the remaining parts of this chapter, we will work only with the general decomposition theorem
(9.16) and (9.17).

16 At each location, propagation (nonpropagating) is understood in the sense of “instantaneous” velocity
in mechanics.

17 For example, it is possible within the scope of the general theory developed in Part I to describe
the exact mechanism in which the far-field radiation pattern develops from the near-field region as
one moves continuously from the “source sphere” r = L0 to the “radiation sphere” r = ∞. The
essence of this work hinges on careful understanding of the role played by coordinate systems in the
description of the electromagnetic field radiated by the source.
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where Eex
t (r′) := n̂ × Eex (r′) is the tangential component of the excitation field.

The two integrals in (9.22) are over compact supports S and U , which allows us to
interchange the order of the s′- and s′′- integrations [62]. Therefore, we reach the
following result

J (K) =
∫

U

ds′ F̄ (K, r′) · Eex
t (r′), (9.23)

where

F̄ (k, r′) :=
∫

S

ds F̄ (r, r′) e−ik·r. (9.24)

For the justification of the Fourier transform formula (9.24) using distribution theory,
see Chapter 8. Relations (9.18), (9.23), and (9.24) represent the main ingredients of
the theory of the interrelation between Mode A and Mode B. Their significance and
physical interpretation will be outlined next.

9.4.3 Discussion of the Results

We provide here a phenomenological reading of the results obtained in the previous
section. We start from the decomposition theorem (16.19) and (16.18). The general
form of this spectral expansion is the outcome of the analysis performed in Part I
and which had led to the conclusion that the generator of the specific manner in
which the near field of any antenna gives rise to the actually observed radiation
pattern comes from the functional dependence of the integrands of the spectral
expansions in (16.19) and (16.18) on the angles of the local frame ϕ and θ. Indeed,
the entire content of the spectral theory of the antenna near field is encapsulated
in the functional form D (K, û), i.e., the spectral composition of the field is
determined by the manner in which D depends jointly on K and û. Given such
determination, it is possible to fully reconstruct the history of how the near field
dynamically splits into propagating and nonpropagating modes as the observation
point moves away from the source.18 What is needed in our present treatment is
the following. Since Mode A is determined completely by the ACGF F̄ (r, r′),
full understanding of the interrelation between Mode A and Mode B requires
acquiring conclusive knowledge about the way in which the ACGF transforms into
the spectral function D (K, û) for a given input excitation Eex

t . Note that once the
spectral function D (K, û) is found, it becomes routine to obtain the full picture
of the physics of the antenna near fields using the machinery developed in Part I.

18 In this case, the particular concept of the radial streamline picture enters favorably into the picture
but the details can be found in Part I.
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For these reasons, we claim that Mode B is sufficiently captured by the function
D (K, û).

The reader may observe that there is some analogy here with the traditional
approach to the analysis of linear systems using the temporal Fourier transform
method. Indeed, if we write y (t) =

∫
dωH (ω)X (ω) exp (iωt) for the Fourier

integral of the output y(t) of some given system characterized by the transfer function
H(ω) and is excited by the input x(t), then we can easily see that the spectral
composition of the output signal is determined by the functional dependence of
the integrand given by H (ω) X (ω), which corresponds in this interpretation to
D(K, û) in (16.19) and (16.18). The only difference concerning the application of
the Fourier transform method to the analysis of the electromagnetic near field is
that we encounter in the latter case a more complicated structure arising from the
peculiarity of being able to expand Mode B radiation Green’s function Ḡ(r, r′) in
terms of propagating and nonpropagating modes, and the fact that this expansion
depends on the choice of the observation coordinate system (see Chapter 4). In
such case, we find that the spectral composition of the radiation field involves
a new set of parameters, i.e., those encoded in û as ϕ and θ. Nevertheless, the
conceptual basis of our approach is essentially the same as the traditional methods
although with further refinement.

By the linearity of the electromagnetic problem we expect that each point
excitation Eex

t (r′) = âδ (r′ − r′′) will give rise to some contribution E (r, r′′) to
the radiated field. The total field will be then given by the sum of the contributions
from all locations r′′, i.e., the integral

∫
d3r′′ E (r, r′′). Now we can see from

(16.19) and (16.18) that the radiated field E itself depends linearly on D. Therefore,
the spectral composition too D has to depend linearly on the excitation Eex

t . This
explains the form found in (9.23). Therefore, it is enough to focus on the way in
which a point source excitation generates the functional form D (K, û). That is,
the situation appears as if we are introducing a new Green’s function connecting
the input Eex

t (r′) with the output D (K, û) instead of the fields E(r) and H(r)
themselves.19

The previous discussion motivates the formal introduction of the new Green’s
function Ȳ (K, û; r′) by the relation

D (K, û) =
∫

S

ds′ Ȳ (K, û; r′) · Eex
t (r′) . (9.25)

19 The magnetic fields can be easily computed in a manner essentially following the general outline
developed here for the electric field. However, the details are omitted.
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Notice that there is nothing remarkable about the existence of such Green’s operator,
which follows trivially from the linearity of the various electromagnetic operators
involved. However, we will be rather interested in the internal structure of the
operator Ȳ (K, û; r′), which turns out to be both nontrivial and interesting.

From (9.18), (9.25), (9.23) we conclude that

Ȳ (K, û; r′) = Λ (K, û) F̄ (k, r′) , (9.26)

where the Λ-operator is defined by the equation

Λ (K, û) F̄ (k, r′) :=
[
R̄T (û) · Ω̄ (K) · R̄ (û)

]
× · F̄

(
R̄T (û) · K, r′) . (9.27)

Therefore, it is understood that a dyadic function of k is applied as an input to the
operator Λ (K, û). The Λ-operator works by 1) evaluation of this input function at
K, 2) rotating the result by R̄T (û), and 3) left multiplying the thus obtained dyadic
function by the tensor R̄T (û) · Ω̄ (K) · R̄ (û).

We may call Λ (K, û) the spectral AB-transfer function, in which we under-
stand the appropriate transfer function from Mode A to Mode B in the spectral
domain. It constitutes the essential relation between Mode A and Mode B. Indeed,
Mode A data F̄ (k, r′) is transformed by the this Λ-operator into Mode B data
D (K, û). Consequently, we may visualize the operation of the antenna system as the
interplay between Mode A and Mode B highlighted by the nature of the geometrical
transformations enacted by the Λ-operator. The explication of the precise sense of
“geometrical” here requires a closer examination of the structure of (9.27), which
we provide briefly as follows.

Mode B presents the geometrical part of the electromagnetic process of
radiation. The “genuine” electromagnetic part, that involving the electromagnetic
boundary condition, belongs to Mode A and is stored in the ACGF F̄ (r, r′). We
have chosen to enact the analysis of the relation between Mode A and Mode B in the
spectral domain, and hence the input data supplied in the first stage is given by the
Fourier transform of the ACGF (9.24). Next, the Λ-operator (9.27) will transform
the spectral Mode A ACGF tensor into the Y -tensor appearing in (9.25) by purely
geometrical operation, mainly multiplication by a constant tensor (the transformed
polarization dyad) and then rotating the result. Through this remarkably simple
operation, the full spectral composition of the radiated fields, as exemplified by
(9.18), reveals itself in the manifestation of the manner in which the electromagnetic
fields dynamically split into propagating and nonpropagating modes according to
the general decomposition theorem (16.19) and (16.18).
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9.4.4 Conclusion

To begin with, we have achieved through (9.25) a complete decoupling of Modes
A and B. The Λ-operator stands physically for the second stage in electromagnetic
radiation following the production of the antenna current distribution in Mode A. In
our opinion, that such decoupling between the modes via a linear operator (the Λ-
operator) is possible is not an obvious a priori fact. Its relatively simple derivation,
however, is an indication of 1) the fertility of the ACGF formalism, and 2) the
correctness of the selection of the appropriate degrees of freedom in Mode B, i.e.,
via the choice of the field spectral composition D(K, û) in (9.18).

The most interesting conclusion to be drawn from the foregoing analysis relates
to expression (9.25), where it is found that the input excitation field Eex

t (r′) in the
spatial domain controls directly the spectral composition of the radiated field in a
simple and well-defined manner through the action of the Λ-operator. Indeed, the
Green’s tensor Ȳ (K, û; r′) is independent of the excitation, and can be computed
and stored completely prior to the operation of the electromagnetic system. The
nature of the excitation field is generally unknown in the system, and depends on
the particular circumstances of the electromagnetic environment at the time. Yet,
in any case, the manner in which the radiated fields structure themselves is fully
determined physically by the Y -tensor. The actually observed field structure is simply
the appropriate weighted sum of the r′-indexed Y -tensors, each assigned a weight
according to the value of the excitation Eex

t (r′) as can be seen from combining
(9.25) with (16.19) and (16.18).

We also observe from the internal structure of the Λ-operator (9.27) that it
divides into two factors. The first factor is the transformed spectral polarization dyad
R̄T (û) · Ω̄ (K) · R̄ (û), which is independent of both r′ and K. Such independence
signifies that it is a genuinely universal element in Mode B. This fact was already
observed in Chapter 4, however it acquires new light in the present formulation.20 The
second factor, F̄

(
R̄T (û) · K, r′) introduces the effect of the location of the actual

excitation of the antenna system through the variable r′; and the spectral shaping
achieved through the rotation (by the matrix R̄T (û)) of the Fourier transform of
the antenna current Green’s function but evaluated at the K defined by (16.17)
instead of k. It is then this second factor in the Λ-operator that will take care of
the “individuality” of the particular antenna under consideration, in contrast to the
first factor, which is essentially universal.

20 The origin of this constant tensor R̄T (û) · Ω̄ (K) · R̄ (û) is the vectorial structure of the electro-
magnetic radiation operator, and hence the motivation for the use of the term ‘polarization,’
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Finally, notice that it is absolutely necessary in the analysis of the relation
between Mode A and Mode B to use the 3D ACGF tensor (8.7) instead of the 2D
tensor (8.5). Indeed, the spectral composition D (K, û) in (9.18) is a 3D entity, and
so is the spectral polarization dyad (9.20). This makes it mandatory to use the 3D
ACGF in order to compute the correct transformation enacted by (9.25). Although
Modes A and C are ultimately reducible to problems in 2D configuration space (the
2-manifold S), Mode B is essentially a process in the 3D configuration space R

3,
and hence its interaction with Mode A will make it necessary to revert the latter back
to the full 3D problem. The same situation will emerge again later when we analyze
the relation between Mode B and Mode C in Section 9.5.

We finally end this conclusion by a note on the functional dependence of the
Y -tensor (9.25) on r′, the position of the excitation field. For each different value of
r′, the ACGF has to be calculated anew, without being able to provide any definite
general statement of the correlation between the various functions indexed by r′.
This can be seen at once from the defining integral equation of Mode A (8.2), in
which the solution for a given ACGF depends crucially on the relative position of
the excitation point r′ within S. It is beyond the scope of the theory developed in this
book to provide further insight on the numerical variation in theACGF due to changes
in r′. Without delving deeper into this subject, we consider in the present work that
each Y -tensor corresponding to a given value of r′ is a new channel of interaction
in variance with another Y -tensor evaluated at different r′. However, we conjecture
that further understanding of the effect of r′ can be gleaned through a systematic
investigation of the relation between the topology of S and the electromagnetic
operators as represented by the ACGF.

9.5 SPECTRALAPPROACHTOANTENNA-ANTENNA INTERACTIONS:
THE INTERRELATIONSHIP BETWEEN MODE B AND MODE C

9.5.1 Introduction

So far our focus has been concentrated on various scenarios involving systems that
can be deemed, in a certain sense, as isolated from other parts of the universe.
In our case, we have been dealing with antennas working in pure Mode A, pure
Mode C (Section 9.2), and the single antenna system comprised of Modes A + B
(Section 9.4). This ideal situation already covers the ground up to most of the
applications involving individual radiating antenna systems in which the device
under consideration can be effectively enclosed inside a bounded surface. In reality,
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however, we seldom encounter such situation. Indeed, radiating structures are always
in the process of mutual interaction with both near and far objects.21 The full process,
however, becomes extremely complex when all types of interactions are included
once and for all. Our strategy will be a more pragmatic one, based in part on first
assuming isolated system, as we have been doing so far, and then gradually introduce
more complicated situations in which basic levels of interaction gradually become
relevant and important. Understanding the more complicated case will be based,
if we are fortunate, on some more primitive understanding of the less complicated
situation.22

The most elementary situation that we will deal with is the interaction between
two antennas, one operating as a source while the other works as a receiving
system. The interaction of a given antenna with the far field produced by another
antenna located in the latter’s far zone represents the simplest possible scheme of
interaction imaginable. Indeed, in this case the incident field is simple in form,
being merely a plane wave. Moreover, due to the fact that the distance between the
two objects is practically infinite, the presence of one is incapable of modifying
the electromagnetic performance of the other.23 In the this section, we deal with
the more general case in which the two antennas interact with each other in the
near-field zone.

Our approach to the problem of understanding the relational structure of
Modes B and C will exploit a general thematization of a duality between static
and dynamic genesis. The meaning of ‘static genesis’ is the determination of the
general mechanism detailing how a fixed antenna located within the near-field
radiation of another antenna is producing the physically observed received voltage.
As will be shown in Section 9.5.8, this mechanism is developed after a thorough
examination of the mathematical structure of the expression of the received voltage
using the ACGF formalism. It explains how given electromagnetic and geometric
configurations give rise to the actually observed port voltage by looking into the

21 It is probably worth the effort to compare this situation in applied electromagnetics with thermo-
dynamics, in particular with the fundamental distinction in the latter field of study between open
and closed systems. Closed systems can be considered as isolated assemblies of objects exchanging
energy only within its well-defined boundary separating the system from the outside universe. Such
idealization is obviously a fiction, but a very legitimate one.

22 In science, this can be seen in the process of developing basic prototype systems, i.e., extremely
simple but yet very interesting systems that later prove essential in understanding the full physical
picture. Examples of such prototypes include harmonic oscillator models in both classical and
quantum mechanics, lower dimensional quantum field theories, Ising models in ferromagnetism,
etc.

23 This situation has been dealt with theoretically and numerically in Chapter 14 and experimentally
in [15].



280 New Foundations for Applied Electromagnetics

process in the spectral domain. However, the discovered mechanism explains only
how a fixed electromagnetic/geometric configuration is organically connected with
the port voltage, leaving still open the question about how this particular received
voltage would vary if the electromagentic/geoemtric configuration did change. In
this chapter, we will focus only on the geometrical aspects of the above mentioned
change, and the framework of such study will be undertaken through the theme of
the dynamic genesis of Section 9.5.9. The basic philosophical motivation behind
this kind of genesis, which we claim to be the most comprehensive investigation
possible, is the fact that no privilege should be granted to a specific coordinate
system in the endeavor to provide an explanatory model for a given electromagnetic
phenomenon. Instead, focus must be directed on the dynamic interrelationship
connecting various situations with each other through the web of an integral whole,
in a way that treat all coordinate systems as equally significant in the explanatory
roles they play in the model. This, in our opinion, can be attained only if a physical
meaning is given to the process of changing the perspective of the observer, i.e., the
coordinate system used to describe the problem. As will be shown in Section 9.5.9,
by moving the received antenna immersed in the near zone of another antenna, we
can exploit the dynamic splitting of the source’s radiation field into propagating and
nonpropagating modes in order to explain how exactly the received voltage will
vary. This we will achieve again by working in the spectral domain and using the
ACGF formalism.

9.5.2 Interaction Between Externally Applied Source and a Fixed Receiving
Antenna in the Near-Field Zone

We will assume that the source antenna is given by externally controlled electro-
magnetic currents. This implies that the effect of the receiving system on the source
will be neglected. Although it may appear to some readers that this is practically
not feasible, we reply that within the framework of Maxwell’s theory, this is a very
legitimate assumption. Indeed, Maxwell’s equations are a system of differential
equations including forcing – or better called independent– terms representing the
applied source. It is essential in understanding the mathematical boundary-value
problem to realize that such forcing terms are truly independent of the actually
‘dependent variables,’ the electromagnetic fields themselves, and also the boundary



Interrelationships Between Operational Modes of General Antenna Systems 281

Figure 9.1 A general schematic diagram illustrating the geometry of the antenna-antenna interaction
problem.

condition itself.24 Therefore, by starting with modeling the source antenna as an
externally applied current, we basically effect the first and most natural level in a
hierarchy of theories with increasing complexity.

The general problem is geometrically illustrated in Figure 9.1. The externally
applied source Js(r) is assumed to be localized in the compact region Vs. The
receiving antenna is located in the compact region V surrounded by a regular surface
S (i.e., the 2-manifold S is the boundary of V ). Without loss of generality, we
restrict our attention to a connected surface S. For antenna arrays, the analysis
can be generalized in a straightforward fashion to the case when S is a multiply-
connected surface. A global coordinate system with origin at O ∈ V is chosen as
shown in Figure 9.1. The choice of this frame is made such that the source antenna
horizon lies outside the receiving antenna region V . Aside from this restriction,

24 Sometimes it is necessary to relate the forcing terms and the boundary condition together under a
common category, like being smooth (continuously differentiable). However, this is not an essential
relation between the two entities. Indeed, the functional form of the forcing term is independent
of the geometrical details of the boundary-condition surface or the numerical values of the various
electromagnetic parameters of the media involved, etc.
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this global frame of reference is completely arbitrary. Some origin for the source
antenna, O′ ∈ Vs, is also chosen randomly.25

The source antenna will produce a radiation field given by the following
spectral expansion [35], [10]

E (r) =
∫

R2
dpdq Ω̄ (K) · J (K) eiK·r. (9.28)

Notice that there is no question of employing a rotating local frame as was done in
Section 9.4. The reason is that in Figure 9.1 the choice of the coordinate system is
fixed by the existence of another object, the antenna S, in the exterior region of the
source antenna. This absence of rotating frames is the hallmark of the static genesis.
Indeed, the goal of the dynamic genesis of Section 9.5.9 will be to find a way in
which a local description of the interaction can be injected back into the picture.

The receiving antenna system S will be described by its exact ACGF F̄ (r, r′).
We introduce the inverse Fourier integral of the ACGF tensor

F̄ (r′, r) =
1

(2π)3

∫
R3

d3k F̄ (r′,k) eik·r, (9.29)

where the integration with the respect to the spectral variable k is carried throughout
the entire Euclidian space R

3. Throughout this section, we will understand the inte-
gral in (9.29) in the distributional sense developed in Chapter 8. That is, each spectral
function F̄ (r′, r) will be replaced by a smooth approximation {F̄d

m (r′, r)}m∈N with
bounded support on vm ⊂ R

3, a sequence of 3-dimensional volumes approximating
S. The importance of this distributional approximation will become apparent shortly.

From (9.28) and (9.29), we obtain with the help of the ACGF of the antenna S
the following expression for the current induced at r′

J (r′) = (2π)−3 ∫
S

ds
∫

R3 d3k
∫

R2 dpdq
×F̄ (r′,k) · Ω̄ (K) · Js (K) ei(K+k)·r.

(9.30)

The next crucial step in our derivation involves changing the order of integrations
in (9.30). We know that the pq-integral is uniformly convergent (Chapter 4) and

25 The figure also shows three different types of rigid motion of the receiving antenna S, which will be
discussed in Section 9.5.9. Motion I consists of simple translation of S. Motion II is a simple local
rotation of the antenna S around any axis passing through O. Motion III is a rotation of S around
an axis passing through O′ such that the antenna S will preserve its relative local orientation with
respect to the source.
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therefore it can be interchanged with s-integral since the latter is on compact region
S. However, the third integral, i.e., the k-integral, need not be uniformly convergent
without further investigation. Since we aim at formulating the problem at the most
general level, we will avoid imposing an ad hoc condition, like simply postulating
the possibility of performing such exchange. To solve this problem, the reader is
referred to Section 8.2.4, where we proposed a construction, using distribution
theory, such that each Fourier transform of the ACGF F̄ (r, r′) is absolutely and
uniformly convergent. This was done by introducing a distributional approximation
by a sequence of smooth functions (with bounded support) as mentioned in the text
after (9.29) above. Based on this construction, we can first interchange the s- and k-
integrals, then interchange the s- and the pq- integrals, where the surface S will now
be understood to refer implicitly to a sequence of volumes vm ⊂ R

3 approximating
S as m → ∞. Therefore, expression (9.30) can be written as

J (r′) = (2π)−3
∫

R3
d3k

∫
R2

dpdq F̄ (k, r′) I (k,K) · D (K), (9.31)

where we define D (K) := Ω̄ (K) · Js (K). The scalar function I(k, K) is defined
as

I (k,K) :=
∫

S

ds ei(K+k)·r. (9.32)

We will call the function on the LHS of (9.32) the spectral interaction kernel. It plays
a foundational role in the theory of electromagnetic interactions we are developing
here and will be studied at great details shortly. It suffices for now to observe its
role in the spectral interaction integral (9.31) where the function I(k, K) appears as
a mediator linking the incoming field’s spectral component at K and the receiving
antenna ACGF’s Fourier component at k. In other words, the interaction between
the Fourier components of the illumination field and the receiving antenna Green’s
function is not direct, but has to be mediated by a new (third) function, namely the
spectral interaction kernel I(k, K).

Now let us divide the total receiving antenna surface S into an arbitrary number
N of smaller surfaces sn, n = 1, 2, ..., N , each with arbitrary shape, i.e., we may
write

S =
⋃N

n=1
sn. (9.33)

Therefore, we have I (k,K) =
∑N

n=1 In (k,K), where

In (k,K) :=
∫

sn

ds ei(k+K)·r. (9.34)
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Using this notation, we can express the total interaction integral (9.31) as

J (r′) = (2π)−3
N∑

n=1

∫
R3 d3k

∫
R2 dpdq

×F̄ (r′,k) In (k,K) · D (K) .
(9.35)

The division of the antenna system surface into smaller arbitrary shaped regions as
enacted by (9.33) is in line with the engineering perspective of the present work.
That is, we don’t search for ultimate fundamental constituents of the system under
consideration, as for example in the search for new fundamental particles in the
phenomena of subatomic interactions, but rather we leave it to the application
considered to determine the exact manner in which a given antenna surface is to
be split into various parts reflecting the physical aspects intended by the engineer,
whether being for analysis or synthesis (design) considerations. In this way, the
nnth spectral interaction kernel (9.34) represents the structure – associated with the
geometric element sn – mediating between the external illumination field and the
internal Green’s function of the total system S. The received signal, as a glance
at (9.35) shows, is the sum of all contributions coming from the totality of the
subsurfaces sn. Therefore, by a careful study of the various terms appearing therein,
the engineer will be able to gain some understanding of the inner mechanism
through which each important geometrical part of the antenna system will unfold its
contribution to the production of the actually observed received signal. Finally, we
will refer to this scheme of thinking as the implicit field of division of an antenna
system overall surface S into arbitrary parts. It is a field of division in the dynamic
sense understood here as a constantly varying choice of the parts composing the
antenna system which can always be modified according to the engineering need. In
other words, it is a dynamic field of division, not a static one as in dividing a piece
of crystals into fixed parts, namely atoms or molecules. Our antenna “atoms” sn can
always be redefined as long as (9.33) is satisfied.

9.5.3 The General Behavior of the Spectral Interaction Kernel

We start by observing that I(k, K) is actually a function of k + K, which motivates
the name kernel since it appears as a multiplicative factor in the integrand of the
spectral interaction integral (9.31). We will use the notations In, In(k + K), and
In(k, K) interchangeably depending on the context.

The first important observation, however, is that the function In(k, K) is a a
Fourier transform. To see this, the surface S is replaced by one of its approximating
volumes vm. Next, this region vm is divided in turn as vm = ∪N

n=1vmn. The
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resulting integral over vmn is therefore seen as the usual 3-dimensional Fourier
transform with respect to its k argument. However, note that with respect to the
p and q arguments, it is not a 2-dimensional Fourier transform. We will not refer
explicitly in the following analysis to the approximation volumes vmn or vm but
this distributional context should always be understood implicitly, especially when
performing numerical computations.

9.5.3.1 Short-Wavelength Behavior of the Spectral Interaction Kernel

Consider the following discontinues function

un (r) =
{

1, r ∈ sn,
0, otherwise. (9.36)

The spectral interaction kernel can therefore be written as the usual spatial Fourier
transform I (k,K) = F

{
un (r) eiK·r}. We now make use of the classic Reimann-

Lebesgue lemma, which states that the Fourier transform of an integrable function
approaches zero as the magnitude of its spectral vector goes to infinity. Therefore, it
immediately follows from this theorem that

lim
|k|→∞

In (k,K) = 0. (9.37)

This is our first important property of the spectral interaction kernel. The study of
the behavior of In when both p and q goes to infinity is more difficult. We would
like to prove that

lim
p2+q2→∞

In (k,K) = 0. (9.38)

Equations (9.37) and (9.38) are valid for all n = 1, ..., N .
The main difficulty in interchanging the order of limit and integral in

lim
p2+q2→∞

∫
sn

ds exp[i (k + K) · r]

is the following. For the most general problem, it is possible that the origin of the coor-
dinate system be contained in sn. In this case, the limit limp2+q2→∞ exp[i (k + K) ·
r] will not be uniform in sn as can be gleaned after examining the behavior at r = 0.
Therefore, the classical theorem guaranteeing the permissibility of interchanging
the order of integration and a limit of sequence of functions once the latter limit is
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uniform cannot be directly applied to our problem. Instead, use will be made of a
stronger result in real analysis.

We say that a sequence of functions fn(x) is uniformly bounded on a
closed interval A whenever there exists a nonnegative real number M such that
|fn (x)| ≤ M, ∀ n ∈ N, x ∈ A. The following is the bounded convergence theorem
for Riemann integrable functions [72]

Theorem 9.5.1. If a uniformly bounded sequence of (Riemann) integrable functions
fn converges pointwise to a (Riemann) integrable function f on [a, b], then the
following relation holds

lim
n→∞

∫ b

a

fn (x) dx =
∫ b

a

f (x) dx. (9.39)

This theorem can be generalized to the space R
3 where the interval [a, b] is

replaced by a compact set.
Define the function

g (r) := lim
p2+q2→∞

ei(k+K)·r =
{

1, r = 0,
0, otherwise. (9.40)

We further notice that∣∣∣ei(k+K)·r
∣∣∣ ≤ 1, ∀ p2 + q2 ∈ R

+, ∀ r ∈ sn. (9.41)

Therefore, from the bounded convergence theorem (9.39) and the definition (9.40)
we find

limp2+q2→∞
∫

sn
ds ei(k+K)·r

=
∫

sn
ds limp2+q2→∞ ei(k+K)·r =

∫
sn

ds g (r) = 0.
(9.42)

Hence, (9.38) is proved.

9.5.3.2 Boundedness Property

It is interesting to observe that all the functions are bounded. Indeed, from (9.34) we
find

|In (k,K)| <

∫
sn

ds
∣∣∣ei(k+K)·r

∣∣∣ < ∫
sn

ds
∣∣eiK·r∣∣ . (9.43)
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However, from (16.17) we see that for real and complex K, the quantity exp (iK · r)
is always less than or equal unity. Therefore, we find

|In (k,K)| ≤ In (k,K)|k+K=0 =
∫

sn

ds . (9.44)

Therefore, the nth spectral interaction kernel is bounded from above by the area of
sn. Moreover, it attains its upper bound at k + K = 0.

9.5.3.3 The Concept of Spatial Bandwidth in General Antenna systems

The results (9.37), (9.38), and (9.44) together help visualize the behavior of the
spectral interaction kernels at infinity and strongly suggest that each function function
In acts like a lowpass filter. Its input receives spectral contributions from the external
illumination field (evaluated at K) and the ACGF of the receiving antenna system
(evaluated at k). The two contributions are filtered by In(k, K) and the total sum
of all spectral variables k and p, q is formed. Moreover, because of the condition
(9.44), it appears that this filter behaves more like a resonator, with its resonance
peak centered at k + K = 0. Consequently, it is very reasonable to guess that a
phenomenon like bandwidth is at hand here. However, in order to substantiate this
conclusion, we need to learn more about the rate of decay of the function In(k, K).

We first observe that the function In(k) cannot be absolutely integrable. The
reason is that if it does, then its inverse Fourier integral will be uniformly convergent
(by the Weierstrass M test), and hence the function un (r) exp (iK · r) would be
continuous, contradicting the definition (9.36). Therefore, we must have

|In (k,K)| decays at infinity slower than |k|−4
. (9.45)

Now let us study the environment inside which the function In(k, K) lives in the
interaction integral (9.31). It is easy to show that limp2+q2→∞ Ω (K) = constant.26

Moreover, from the definition of the Fourier transform of the source current given
in (9.21) and the definition of of In in (9.34), we conclude that that both Js(K) and
In(K) have roughly the same rate of decay as p2 + q2 tends to infinity.27 However,
since the ACGF is smooth (see the construction in Section 8.2.4), it follows that∣∣F̄ (k, r′)

∣∣ decays faster than |k|−p for any positive integer p [67]. Therefore, by

26 This follows at once from the definition of the spectral polarization dyad given in (9.20).
27 That limp2+q2→∞ Js (K) = 0 can be proved by exactly the same procedure outlined inSection

9.5.3.1.
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(9.45) we find that In(k, K) has the slowest decay rate in the spectral interaction
integral (9.31).

On the basis of these findings, we introduce the idea of spatial effective
bandwidth defined in terms of the spectral interaction function In(k + K). Its exact
value will depend on the application but can always be properly defined as in resonant
circuits and lowpass filters. We will denote the bandwidth associated with the antenna
part sn by BWn. It is a function of the error level e below (with respect to which the
amplitude of In is considered sufficiently small for the application at hand)

(
|k|2 + k2

0p
2 + k2

0q
2
)1/2

> BWn ⇒ |In (k,K)| < e. (9.46)

This definition is always well posed because of the relations (9.37) and (9.38).
Furthermore, the fact that In(k + K) has the slowest decay rate in the spectral
interaction integral (9.31) makes the definition of BWn independent of the particular
illumination field and the ACGF. We will not always write explicitly BWn =
BWn(en) but use instead BWn under the assumption that a suitable global implicit
error level e := max {e1, e2, ..., eN} has been fixed in advance. Based on these
definitions, we can approximate the interaction integral (9.35) as

J (r′) � (2π)−3
N∑

n=1

∫
|k|2+k2

0(p2+q2)<BWn
d3kdpdq

×F̄ (r′,k) In (k,K) · D (K) .
(9.47)

Therefore, we effectively replace the infinite integration domain in (9.31) by the
5-sphere |k|2 + k2

0(p
2 + q2) < BW 2.

9.5.4 Examples of the Spectral Interaction Kernel: Dipole and Patch
Antennas

It is possible to compute the spectral interaction kernel in simple closed analytical
forms for antennas like linear wires and patches. Consider a linear wire oriented
along the z-axis with length 2L and origin at the middle point. The spectral kernel
is readily evaluated as28

Idipole (k,K)

= −i e
i(kz+k0

√
1−p2−q2)L−e

−i(kz+k0
√

1−p2−q2)L

kz+k0

√
1−p2−q2

.
(9.48)

28 We replace the surface S in (9.34) by a 1-dimensional line extended along the wire antenna.
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On the other hand, for a square patch in the xy-plane with side length 2L and origin
located at the center, the spectral interaction kernel is given by

Ipatch (k,K) = − ei(kx+k0p)L−e−i(kx+k0p)L

kx+k0p

× ei(ky+k0q)L−e−i(ky+k0q)L

ky+k0q .
(9.49)

It is not difficult to show by direct numerical computation that all the general
properties of the I(k, K) developed in Section 9.5.3 are applicable to the special
forms given in (9.48) and (9.49). In particular, we mention that the spectral shape
resembles a 1-dimensional sinc function for the case of the linear dipole and a 2-
dimensional sinc function for the square patch. It is well-known that such shapes are
resonant with approximate bandwidth given by 2π/L [67].

9.5.5 Miltipole Expansion of the Spectral Interaction Kernel

The goal of this Section is to study the inner structure of the spectral interaction
kernel (9.34) within the framework of the classic multipole expansion. Our point of
departure is expanding the integrand of (9.34) in Taylor series, which is valid for all
complex arguments

ei(k+K)·r =
∞∑

m=0

im

m! [(k + K) · r]m

= 1 + i
1r · (k + K) + i2

2 [rr · (k + K)] · (k + K)
+ i3

6 {[rrr · (k + K)] · (k + K)} · (k + K) + · · ·,

(9.50)

where use was made of the identity (a1a2...an) · b = (a1a2...an−1) (an · b). We
can write (9.50) compactly in the following form

ei(k+K)·r =
∞∑

m=0

im

m!
rr · · · r︸ ︷︷ ︸
m times

· (k + K)m
, (9.51)

where the m-fold operation on r is tensor multiplication while the corresponding
operation on k + K is repeated inner product with the resulting mth-order tensor
rr · · · r.

Now the series (9.51), being a power series, is uniformly convergent in r on
every compact region [72], in particular in sn. Therefore, it can be integrated term
by term [62], [72]. We obtain then after substituting (9.51) into (9.34) the following
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expansion

In (k,K) =
∞∑

m=0

�

Qmn · (k + K)m
, (9.52)

where the mth multipole moment of In is defined as

�

Qmn :=
im

m!

∫
sn

ds rr · · · r︸ ︷︷ ︸
m times

. (9.53)

It is important to pay due attention to the issue of the convergence of the
multipole expansion (9.52). In the electromagnetic and physical literature, the
expansion is usually truncated after few terms (sometimes without justification).
This actually works because in the majority of the applications of such expansion,
for example the interaction of light with matter, the wavelength of the electromagnetic
radiation is large compared with the spatial extension of the characteristic atomic or
molecular structure under illumination. In our problem, the main goal is the study of
the received signal as given by the interaction integrals (9.31) and (9.35). As can be
seen after a glance at these expressions, they involve infinite integrations in the space
R

5 over the spectral variables k, p, and q. Therefore, the quantity k + K appearing
in (9.52) are by no means small, and in general it is not possible to terminate the
multipole expansion after few terms. However, we will now show that an analytical
approximation of In in the form of a finite polynomial in k + K can be obtained
provided we make use of the phenomenon of spatial bandwidth elaborated in (9.46)
and (9.47).

We start by observing that the expansion (9.52) can be put in the form of a
power series in three generally complex variables X = kx+k0p, Y = ky+k0q, Z =
ky +k0

√
1 − p2 − q2, where we used (16.17) and the fact that the global coordinate

system in Figure 9.1 was chosen above the source antenna horizon. That is, (9.52)
can be written in the form

∑
mnl anmlX

nY mZl. This is a power series in three
variables, and in particular the third variable Z is generally complex. We will apply
the following theorem [69]

Theorem 9.5.2. Let the power series
∑

mnl anmlX
nY mZl be convergent at X0,

Y0, and Z0. It follows that the series is absolutely and uniformly convergent in the
region |X| < |X0| , |Y | < |Y0| , |Z| < |Z0|.

Notice that the absolute convergence justifies our deducing the form∑
mnl

anmlX
nY mZl
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from (9.52) by rearrangement of terms.
Now, choose kx = ky = kz = B, p = q = B/k0 where B is an arbitrarily

large positive number. The multipole expansion (9.52) converges at this choice, and
consequently from Theorem 9.5.2 the power series

∑
mnl anmlX

nY mZl converges
uniformly in the region

|kx + k0p| < 2B, |ky + k0q| < 2B,∣∣∣kz + k0
√

1 − p2 − q2
∣∣∣ < 3B2 − k2

0.
(9.54)

Notice that the last inequality in (9.54) follows from the fact that we choose B large
enough to make the square root

√
1 − p2 − q2 imaginary.

Next, by the triangular inequality,29 we may deduce from (9.54)

|kx| < 2B, |k0p| < 2B, |ky| < 2B, |k0q| < 2B,

|kz| < 3B2 − k2
0,
∣∣∣k0
√

1 − p2 − q2
∣∣∣ < 3B2 − k2

0.
(9.55)

We now distinguish two possible scenarios. In the first, we have p2 + q2 > 1, in
which case (9.55) give

k2
x + k2

y + k2
z + k2

0
(
p2 + q2) < 8B2 + 2

(
3B2 − k2

0
)2

+ k2
0. (9.56)

In the second scenario, we assume p2 + q2 < 1. Combining this inequality with
(9.55), we find

k2
x + k2

y + k2
z + k2

0
(
p2 + q2) < 8B2 +

(
3B2 − k2

0
)2

+ k2
0. (9.57)

From (9.56) and (9.57), we conclude that if we choose B large enough such that
BW 2 = max{BW 2

n} < 8B2 +
(
3B2 − k2

0
)2 + k2

0 , then we will insure that

|k|2 + k2
0
(
p2 + q2

)
< BW 2

n for all n = 1, 2, ..., N . Therefore, the multipole

expansion is uniformly convergent in the 5-sphere |k|2 + k2
0
(
p2 + q2

)
< BW 2.

In particular, the uniform convergence of (9.52) in any spectral 5-sphere allows
us to interchange the order of integration and summation in (9.47) and obtain

J (r′) � (2π)−3
N∑

n=1

∞∑
m=0

∫
|k|2+p2+q2<BWn

d3kdpdq

×F̄ (r′,k)
{

�

Qmn · [(k + K)]m
}

· D (K) .

(9.58)

29 I.e., |x + y| < |x| + |y|, ∀ x, y ∈ C.
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On the other hand, the uniform convergence of the multipole expansion implies that
we can approximate the received signal appearing in (9.47) to any degree of accuracy
desired by including enough terms in the multipole series. The number of terms will
depend on both the spatial bandwidth BW and the desired error. We will write this
number as M = M(BW ) and drop reference to the error. Next, we can exploit the
fact that the “atoms” sn appearing in (9.33) may be chosen as small as possible and
approximate each multipole moment in (9.53) as

�

Qmn � im

m!
rnrn · · · rn︸ ︷︷ ︸

m times

∫
sn

ds, (9.59)

where rn ∈ sn. We will not spell out the details of how to choose sn but
outline the method. For simplicity, consider only polynomials in one variable x.
For sufficiently small deviation in x, we can approximate any polynomial around a
by f(x) � f(a)+f ′(a)(x−a). However, if we choose |x − a| << |f (a)|/|f ′ (x)|,
it may be assumed that the polynomial in this interval is practically a constant. After
truncating the multipole series by M(BW ) terms, the integrand of (9.53) becomes a
polynomial in a finite number of several variables. Therefore, the procedure outlined
above can always be carried out in practice to choose a suitable (sufficiently small)
sn and the approximation (9.59) can be made as accurate as one wishes. This choice
of N , however, will depend on the already chosen M because, as can be seen from
(9.53), the nth multipole moment involves a polynomial of order m. The smallest
size of sn, which determines N , will then depend on the largest value of m, that is
on M , which in turns depended in its determination on BW .

The reasoning above leads to the following analytical approximation of the
spectral interaction kernel of the antenna system S

I (k,K) �
N(M)∑
n=1

M(BW )∑
m=0


 im

m!
rn · ·rn︸ ︷︷ ︸
m times

∫
sn

ds


 · (k + K)m

, (9.60)

It is a polynomial in the cartesian components of k+K. We have explicitly indicated
the dependence of M on BW and of N on the just chosen M . Notice that the validity
of this approximation (9.60) depends crucially on the existence of an effective spatial
bandwidth of the antenna system as suggested by (9.47).

9.5.6 Synthesis of Antenna Shapes to Meet Specific Spectral Characteristics

It is possible to gain further insight into the nature of the spectral interaction kernel
by performing a multipole expansion as outlined in Section 9.5.5. The virtue of
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this derivation is that it situates the antenna-antenna interaction picture developed
in this chapter in the familiar context of elementary light-matter interactions in
physics. The multipole moments (9.53) provide a physically intuitive interpretation
of the multipole expansion of In by thinking of the first-order term as a dipole
interaction term, the second-order as a quadruple interaction, and so on. Since the
spectral kernels In don’t depend on the illumination field and the particular ACGF,
this computation need be done once for a given antenna shape. Changes in the
electromagnetic environment or the feeding mechanism will affect only the ACGF,
while the interaction function In, mediating the coupling between the antenna and
the exciting field, is fixed. Therefore, it is worth the effort computing and studying
each term in the expansion (9.52) in the process of attempting to achieve deeper
understanding of the principles of operations of a given class of antennas possessing
the same geometrical shape.

The expansion (9.52) shows that the spectral function In is analytic in k + K,
although not analytic in the five variables kx, ky, kz, p, q pertinent to the antenna
problem because of the nonlinear relation between m, in the z-component of K,
and p and q as evident in m =

√
1 − p2 − q2. However, although the multipole

expansion (9.52) is not a power series, we were able to prove in Section 9.5.5 that
it is uniformly convergent in any 5-sphere |k|2 + k0(p2 + q2) < BW 2. Using this
knowledge, together with the fact established in Section 9.5.3 regarding the existence
of an effective spatial bandwidth of the antenna system, we managed to derive the
analytical approximation of the spectral interaction kernel (9.60). It is important to
notice the sense in which this analytical approximation is considered valid. The term
‘analytical approximation’ itself is meaningless unless one decides which quantity
of interest the analytical expression is supposed to approximate. In this work, the
spectral interaction function I(k, K) by itself is not important, but we are instead
interested in its role as a mediator between the external field and the ACGF in the
process of producing the physically observable received signal J(r′). Therefore, in
the derivation of (9.60), we showed that the error in J(r′) can be made as small as
one wishes by truncating the multipole expansion (9.52) by a finite number of terms.
This depends on two crucial facts 1) the uniform convergence of (9.52) and 2) the
existence of an effective finite spatial bandwidth of the antenna system. Since both
facts have been established, we conclude that the analytical expression (9.60) can
always be found provided one chooses sufficiently large M and N (see Section 9.5.5
for definitions and details).

The multipole moments of this expansion as given by (9.59) provide a simple
means for reconstructing the geometry of the antenna as we now proceed to
demonstrate. Suppose we are given a desired spectral function Id(k, K) that we
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Figure 9.2 The general synthesis of an antenna shape S meeting a pre-given spectral characteristics.

would like to achieve by a certain antenna geometrical shape Sd. Suppose further
that this spectral function has a spatial bandwidth BWd. The analysis conducted
in Section 9.5.5 demonstrated that it is always possible to obtain an analytical
approximation of the spectral interaction function of an antenna system provided it
has a finite bandwidth, namely the polynomial expression (9.60) as a function of k, p,
and q. Since the multipole expansion (9.52) was proved to be uniformly convergent
in the 5-sphere |k|2 + k0(p2 + q2) < BW 2

d , we can consider the minimization of
the sup norm

F := sup|k|2+k0(p2+q2)<BW 2
d

|Id (k,K)

−
N(M)∑
n=1

M(BWd)∑
m=0

(imAn/m) rn · · · rn︸ ︷︷ ︸
m times

· (k + K)m

∣∣∣∣∣∣ . (9.61)

Here, An :=
∫

sn
ds are the areas of the elements sn. A powerful global optimization

algorithm can be utilized to search for the best distribution of position vectors rn

and areas of sn minimizing the objective function (9.61). From the knowledge of
rm and the rough sizes of the small “atoms” sn, one can build a first approximation
of the antenna shape that can meet the desired spectral characteristics Id.

From the value of the effective bandwidth BWd one can get a first estimate of
the number of terms in the multipole expansion, i.e., the value M(BWd). Based on
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this choice of M , a rough estimate of N can be given as outlined in Section 9.5.5
provided we know the rough overall surface area of the antenna to be synthesized.
The design methodology will then work for antennas with various total surface areas
in the sense that for each such area the objective function (9.61) can be formed and an
optimization search is conducted. The choice of the antenna size is certainly a matter
to be left to the actual application at hand (which originally motivates the particular
choice of the desired spectral characteristics Id) and the concrete implementation of
the design methodology suggested here.

Figure 9.2 demonstrates the proposed synthesis procedure. For a given spec-
tral function Id(k, K) and a spatial bandwidth BW , one can determine M and
consequently N . An initial rough antenna shape is implemented by the geometric
modeler and is fed into the process of constructing the objective function F (9.61),
the latter now dependent on the main optimization parameters rn and An. A global
optimization strategy, for example genetic algorithms or the particle swarm optimiza-
tion, may now be deployed in order to search for the best parameters minimizing
F within the limits delimited by the allowable spatial region imposed through the
geometric modeler. Once a best set of parameters rn and An is found, their values are
fed into the geometric modeler in order to construct various practical realizations of
the antenna surface S meeting the desired spectral characteristics. As can be clearly
seen, this process is quite complex. However, the analysis in Section 9.5.5 provides
the initial mathematical results suggesting that this scheme can work if a physical
solution exists (i.e., a solution in which the minimum attained in optimizing (9.61)
is acceptable in the application at hand).

9.5.7 The Idea of the Antenna Generalized Transfer Function

The results achieved so far permit us to introduce a new concept of antenna transfer
function that is more general than the ACGF itself. Indeed, by studying the structure
of the interaction integrals (9.31), we may define the following dyadic function

H̄ (k,K) := I (k + K) Ω̄ (K) . (9.62)

In terms of this quantity, we can write the interaction integral (9.31) more compactly
in the following form

J (r′) =
∫

R5
d3k dp dq F̄ (r′,k) · H̄ (k,K) · Js (K) . (9.63)

Therefore, the antenna generalized transfer function H̄ (k,K) accepts two inputs,
the spectral source antenna current Js (K) and the Fourier transform of the ACGF
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Figure 9.3 The concept of generalized antenna transfer function. After filtering the spectral-domain
source antenna current and the receiving ACGF through the agency H̄ (k,K), the results are integrated
in order to form the received signal.

F̄ (r′,k), and produce (after summing over all of the spectral variables) the received
signal J (r′). Figurer 9.3 illustrates the process of antenna-antenna interaction in
terms of the generalized transfer function introduced above. In particular, one can
trace how each Fourier competent K interacts with the receiving antenna Fourier
mode k and contributes to the production of the received signal.30 Therefore, the
complete spectral structure of the complex process leading to the formation of the
port signal of an antenna immersed in the near field of another antenna is now fully
disclosed.

The two “inputs” Js (K) and F̄ (r′,k), however, should be received with
some qualification. In general, we expect that an ‘input’ to a system is independent
of the system transfer function itself. This is not the case here for two reasons.
First, the ACGF F̄ (r′,k) depends on the antenna surface S. Second, in case mutual
coupling between the source and receiving antenna is taken into account, then the
source current Js (K) itself becomes function of the antenna surface S. However,
the very same surface S is the sole determinant factor of the generalized transfer
function H̄ (k,K) itself. In spite of this, we believe that the concept introduced by
the new transfer function H̄ remains important and even vital for the devolvement
of a general formalism for the analysis and design of electromagnetic systems. The
reason is that the function H̄ (k,K) is simply the only invariant transfer function in
the antenna-antenna interaction problem. Indeed, the fact that it depends mainly on
the geometry of the antenna system,31 as encapsulated in S, makes it indifferent
to what actually exists in the electromagnetic environment surrounding the two

30 Cf. Section 9.5.8.
31 We are considering the infinite and homogeneous medium, characterized by the wavenumber k0,

inside which the entire system is immersed as a fixed background.
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antennas. For example, in a complex system, both Js (K) and F̄ (r′,k) will vary
in general due to mutual coupling with other nearby objects (and also because of
the nature of the spatial field structure injected into the system and circulating at
a given stage of operation). To give the antenna S a system characterization that
is immune to all such unpredictable changes, we have introduced the concept of
the interaction function H̄ (k,K) as the only truly invariant transfer function of the
antenna system.

By focusing (in the process of antenna design and devolvement) on this transfer
function, one can isolate the “second-order effects” expected to result from the actual
operation of the device in a complex environment. For example, it is possible to start
with a typical ACGF F̄ (r′,k) and use it in (9.63) in order to obtain a general feel of
the overall characteristics H̄ (k,K) required. Then, one can use the method described
in Section 9.5.6 in order to obtain an approximation of the antenna shape S capable
of realizing the needed spectral filtering characteristics. Afterwards, even when the
ACGF F̄ (r′,k) and the source current deviate from the initial estimation, the overall
performance of the antenna system, viewed from the spectral-domain perspective, is
roughly the same. In this sense, the engineer can picture both Js (K) and F̄ (r′,k)
as genuine “input” functions to the generalized transfer function H̄ (k,K), yet still
both are capable of varying as the actual operation of the combined electromagnetic
system requires.32

9.5.8 The Static Genesis

We are in a position now to put together all the results and conclusions arrived at
so far in the analysis of antenna-antenna interactions within a unified theoretical
framework, which will be called the static genesis of the received signal. By ‘static’
we emphasize that up to now the receiving mode antenna (Mode C) is fixed within
the near-field zone of the source antenna. Mathematically, this is implied by the fact
that a fixed global coordinate system was chosen for the mathematical description
of the problem as illustrated in Figure 9.1. In Section 9.5.9, this restriction will be
released. For now, however, focus will be on understanding the physical mechanism
behind the production of the received signal in a fixed port.

The physical picture that appears the most natural in the description of the
antenna-antenna interaction process is suggested by careful examination of the uni-
fied theme behind the various interaction integrals (9.31), (9.35), (9.63), (9.58),

32 We suggest further research along these lines of thinking in order to reach more concrete conclusions.
This may probably be best attempted with simple systems.



298 New Foundations for Applied Electromagnetics

which is the idea of oscillator-oscillator coupling. Indeed, the incident electro-
magnetic field is expanded (Fourier analyzed) into a sum of harmonic functions
in space. The ACGF, which represents the system function of the antenna in the
spatial domain, is also Fourier analyzed into its spatial harmonic modes. It turns out
that the spatial interaction between the illumination field and the antenna manifests
itself in exactly the same formal structure of the familiar interaction in time: That
of field oscillator coupled with an antenna oscillator. If the regions sn introduced in
dividing the total surface S as in (9.33) are made very small, then each region may be
considered an “atom.” This terminology is not metaphorical because the interaction
function In for this small region approaches that of a 2-dimensional sinc function.
As is will know, such sinc function has a very narrow peak concentrated around its
center, while it decays rapidly away from the peak. It follows that in this case each
Fourier mode of the illumination field at K will interact resonantly with the ACGF
Fourier mode at −k. More precisely, most of the contributions to the interaction
integrals will emerge from the spectral region centered around k + K = 0. Each
other “atom” sn will interact with the illumination field spatial harmonic modes in
the same manner, and the total observed voltage will be simply the direct sum of the
all the interactions. It is very clear then that the interaction of the illumination field
and the antenna in space can be viewed in exactly the same (qualitative) manner
of field-atom interaction in physics: That is, resonant interactions between field
oscillators and antenna (current Green’s function) oscillators, but in this case the
whole process occurs in space.

The illumination field, being electromagnetic in character, has the additional
peculiarity of being developable into a sum of propagating and nonpropagating
modes. That implies that the picture outlined in the preceding paragraph is not
complete, because a careful spectral analysis of the antenna near fields using the
Weyl expansion revealed the existence of nonpropagating modes in the form of
evanescent field. In order to assess the overall importance of this phenomenon, we
will perform now a more precise analysis of the results obtained so far.

As mentioned above, if sn is chosen very small, and moreover, say, with an
approximately rectangular shape, then the function In(k, K) will look roughly like
a 2-dimensional sinc function. However, for more general shapes and sizes of sn, it
is not always easy to have an idea about the degree of narrowness of the main peak.
In this case, we can make use of the result (9.44), (9.37), and (9.38), which show
that the spectral interaction kernel In(k, K) attains its maximum at k+K = 0 while
decays away from this region. It is reasonable then to assume that the majority of
the contribution of the field-ACGF interactions due to the “atom” sn will come from
the region around k + K = 0. However, a glance at (16.17) shows that the condition
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k = −K can be satisfied only for pure propagating illumination modes, i.e., when
p2 + q2 < 1. The nonpropagating modes of the illumination field spectrum, i.e.,
the region p2 + q2 > 1, still interact with the Fourier modes of the ACGF, but their
contributions are strongly attenuated by the spectral interaction kernel In(k, K).

Therefore, the picture of oscillator-oscillator interaction sketched above has to
be qualified in the following manner. The total interaction of the illumination field
with the receiving antenna can be always divided unambiguously into two distinct
parts, resonant and nonresonant interactions, the former is the familiar oscillator-
oscillator interaction (propagating mode interacts with Fourier modes of the ACGF),
while the latter is an evanescent-oscillator interaction (evanescent mode interacting
with a Fourier component of the ACGF). The ACGF will always manifests itself
spectrally as a sum of spatial oscillator associated with each “atom” sn. However,
the illumination field is split into two parts, pure oscillator and nonpropagating
(evanescent) modes. Since the essence of the near field of any source is the subtle
manner in which such splitting into propagating and nonpropagating is enacted
(Chapter 4), we conclude that the division of the interaction into the corresponding
resonant and nonresonant parts above is of great physical significance.

Before explaining further this point, let us first write down the expressions
of the divided interaction integrals. The general spatial bandwidth BWn defined
in (9.46) arises from two bandwidths, one associated with the k-part of In, while
the other is linked to the K-dependence of the same function. More precisely, we
have |k|2 < BW 2

n,k and k2
0
(
p2 + q2

)
< BW 2

n,K, from which it follows that

|k|2+k2
0
(
p2 + q2

)
< BW 2 and BW 2 = BW 2

n,k+BW 2
n,K. Now, the K-bandwidth

BW 2
n,K obviously satisfies BW 2

n,K > k2
0 because attenuation in the K-space starts

only when p2+q2 > 1. Therefore, we have BW 2 > k2
0 . The study now of the regions

in the k-space interacting resonantly and nonresonantly with the illumination field
can be readily completed. We have

Resonant Interaction
p2 + q2 < 1 , k2

0 < |k|2 < BW 2
n ,

Nonresonant Interaction
p2 + q2 > 1, 0 < |k|2 < BW 2

n − k2
0.

(9.64)

We can now rewrite (9.63) in the following form

J (r′) = F̄ (r′,k) ĤRJs (K) + F̄ (r′,k) ĤNRJs (K) . (9.65)

The two operators ĤR and ĤNR are called the resonant and nonresonant operators,
respectively, and are defined by their effects on a dyadic k-function Ȳ (k) and a
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vector K-function X (K) in the following manner

Ȳ (k) ĤRX (K) :=
∫

k2
0<|k|2<BW 2 d3k

∫
p2+q2<1 dpdq

×Ȳ (k) · H̄ (k,K) · X (K) ,
(9.66)

Ȳ (k) ĤNRX (K) :=
∫
0<|k|2<BW 2−k2

0
d3k
∫

p2+q2>1 dpdq

×Ȳ (k) · H̄ (k,K) · X (K) .
(9.67)

When BW goes to infinity, the expression (9.65) is exact. However, when BW is
truncated to a finite value, then we obtain an approximation of the received signal
J (r′) in the spirit of the discussion around the definition (9.46). The two integral
operators ĤR and ĤNR are therefore dependent only on k0 and the antenna shape
S.33

We are in a position now to survey the results of our analysis by examining the
general expression (9.65). We find that there are two fundamental insights revealed
by the form of the interaction integral above regarding the problem of the static
genesis:

1. The electromagnetic system is best understood at the fundamental level of
inquiry we have been conducting so far as a process in the sense that the
antenna is a relational structure. This structure is simply that transformational
role enacted by the two operators ĤR and ĤNR. In other words, the only
invariant function of the antenna system is these two operators, while the two
spectral quantities serving as “inputs,” i.e., the source current Js(K) and the
ACGF F̄ (r′,k), may vary according to the electromagnetic environment and
the operational details of the system at hand. Therefore, the source current and
the ACGF are themselves not absolute characteristics of the antenna system,
but instead manifest themselves in the interaction integral (9.65) as mere terms
in the truly intrinsic relations encapsulated by the structure of the resonant and
nonresonant operators ĤR and ĤNR.

2. The actual value of the received signal J(r′) can be understood physically
as the contributions of all of the ACGF oscillators F̄ (r′,k) after interacting
resonantly with the propagating part of the illumination field spectrum, and
nonresonantly with the evanescent part of this spectrum. Therefore, an antenna
interacts with another source in the latter’s near-field zone in a manner
dictated by the rather subtle way in which the illumination near field splits
into propagating and nonpropagating parts. This is because for a fixed global

33 Notice that BW is determined from In(k, K), which are themselves functions of S.



Interrelationships Between Operational Modes of General Antenna Systems 301

coordinate system the spectral ACGF F̄ (r′,k) is also fixed, and it remains for
the near-field illumination to vary from one configuration of sources to another,
where by ‘variation’ we understand the above mentioned decomposition into
purely propagating waves and evanescent modes.

It should be mentioned that although the nonresonant part of the interaction
in (9.67) is significantly attenuated by the spectral interaction kernel In(k, K), we
cannot in general ignore its contributions without further inquiry. Although we may
find in many cases that it is possible, say as a first approximation, to consider
only the resonant interaction with the purely propagating modes of the illumination
field, we believe that for a deeper and more comprehensive understanding of the
operational principles of devices designed within the framework of coupling in the
near field zone, one has to retain the full expression (9.65) with both the resonant
and nonresonant integral operators ĤR and ĤNR taken into account.

9.5.9 The Dynamic Genesis: Interaction Between Externally Applied Source
and a Moving Receiving Antenna in the Near-Field Zone

9.5.9.1 Introduction

The general picture of antenna-antenna interaction within the framework of the
static genesis is encapsulated in the equation (9.65), together with the resonant
and nonresonant operators (9.66) and (9.67), respectively. However, although we
have achieved a significant progress in our theoretical analysis of interaction by
bracketing out the varying quantities and focusing instead mainly on the invariant
structure, i.e., the operators ĤR and ĤNR, our analysis is still incomplete because
the last two operators themselves depend on the choice of the global coordinate
system in Figure 9.1. To be sure, merely stating how the operators will change
with a general rotation or translation of this global frame is superficial and does
not shed any light on the problem from the fundamental viewpoint. A more careful
approach was developed by the authors in Chapter 4 where two frames of reference
were introduced, one is global while the other is local. The dynamic essence of the
formation of the radiation field was identified afterwards as the complex manner
in which the near field continuously split into propagating and nonpropagating
parts while the perspective of the observer, represented here by the local coordinate
system, changes continuously. For example, the concept of radial streamlines was
proposed there as the most convenient tool in probing the structure of the near
field, especially from the engineering point of view. However, this concept of
radial streamlines cannot be directly applied to the antenna-antenna interaction
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problem in Figure 9.1. The reason is simply the following. In order to obtain a
reasonable interaction mechanism, one must keep the mathematical representation
of the ACGF of the receiving antenna fixed. Now in order to introduce a second
coordinate system for the implementation of the idea of a local frame of reference
associated with the fields radiated by the source antenna, the ACGF of the receiving
antenna will also change with this local frame. Therefore, while the local frame
is capturing how the source antenna’s near field is splitting into propagating and
nonpropagating parts, the ACGF is also changing, rendering the spectral resonance
picture as oscillator-field interaction, incoherent since there is no longer a “fixed”
ACGF oscillator interacting with varying spectrum of propagating and evanescent
modes. We then achieve nothing using this approach.

This difficulty, however, can be overcome by noticing that the intention of
introducing a local frame is merely to serve as a step toward the real object of
investigation, which is the study of the dynamic aspects of the radiation field. In the
analysis of Chapter 4, there was only a single antenna system under consideration, a
fact that permitted us using a simple local frame comprised of a rotating coordinate
system sharing the same origin with the global frame. Now in order to single out
the dynamic aspects of interaction in the antenna-antenna problem of Figure 9.1,
what is needed is not moving the global frame of the two-antenna system, but rather
moving one antenna, say the receiving antenna, with respect to another. That is,
we must introduce a relative motion of two antennas with respect to some fixed
global frame. This was already suggested by Motions I-III in Figure 9.1. Our main
aim in this section is to complete the study of the genesis of the received signal
in antenna-antenna interactions by studying the dynamic aspects of the interaction
understood here as motion of the receiving system with respect to the source. The
present study may serve, beside other things, as a theoretical foundation for the
design and devolvement of experimental techniques for probing the structure of the
near fields of general antenna systems.

9.5.9.2 Study of General Euclidean Motion of the Receiving Antenna

We will consider the two geometrical transformations forming the classical Eu-
clidean motion group, translation and rotation. Using the terminology of Figure 9.1,
translation corresponds to Motion I while rotation to Motion II. Here, we keep the
global coordinate system as the one fixed previously, i.e., with origin O inside the
receiving antenna S. Let us start first with translation.

Suppose that the the antenna S is displaced into a new position ra, i.e.,
consider the transformation S → Sa, where Sa is the surface positioned at ra. Due
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to this translation, a new current distribution Ja (r) will be induced on the antenna
Sa. We are interested in the changes in the received signal at a specific location, say
r′. Let the ACGF of the antenna Sa be denoted by F̄a (r′, r). We can compute the
received signal using the usual relation Ja (r′) =

∫
Sa

ds F̄a (r′, r) ·E (r) . However,
since the source is externally applied, the new ACGF is simply the translated
version of the antenna S, i.e., F̄a (r′, r) = F̄ (r′ − ra, r − ra). Substituting this
into the above integral and performing the transformation of variables r′′ = r − ra

we obtain (after replacing r′′ by r at the end) the following formula Ja (r′) =∫
S

ds F̄ (r′ − ra, r) · E (r + ra) . We proceed then in exactly the same manner in
which (9.31) was derived from (9.30). Indeed, we obtain

Ja (r′) = (2π)−3 ∫
R3 d3k

∫
R2 dpdq

×F̄ (r′ − ra,k) I (k,K) eiK·ra · D (K) .
(9.68)

Comparing (9.68) with (9.31) and observing the definition (9.32), we find that the
overall mechanism of interaction after translating the antenna S is rather similar to
the untranslated case. The reason is that multiplication by a complex exponential
does not affect the amplitude filtering characteristics of I(k, K), and in particular, it
leaves the spatial bandwidth intact. The illumination spectral field D(K) is the same,
and also the spectral ACGF F̄ (r′ − ra,k) of the original configuration appears
unchanged. Only the phase of I(k, K) is modified by a linear phase shift K · ra.
However, it should be kept in mind that the above conclusion is valid only if none of
the points of the translated antenna S lies within the source horizon.

Next, consider a rotation of the receiving antenna S with respect to the global
frame xyz by R̄a. Again, if mutual coupling is neglected, then the ACGF of the
rotated antenna Sa is given by F̄a (r′, r) = F̄

(
R̄−1

a · r′, R̄−1
a · r

)
. The received

signal is given by Ja (r′) =
∫

Sa
ds F̄

(
R̄−1

a · r′, R̄−1
a · r

)
· E (r) . Performing the

transformation r′′ = R̄−1
a · r and changing back from r′′ to r at the end, we

obtain Ja (r′) =
∫

S
ds F̄

(
R̄−1

a · r′, r
)
·E
(
R̄a · r

)
. Next, we use the orthogonality

relations of rotation matrices R̄T
a = R̄−1

a and the identityK·
(
R̄a · r

)
=
(
R̄T

a · K
)
·r

in order to derive the following relation

Ja (r′) = (2π)−3 ∫
R3 d3k

∫
R2 dpdq

×F̄
(
R̄a · r′

a,k
)
I
(
k, R̄T

a · K
)

· D (K) .
(9.69)

Again, the interaction mechanism is rather similar to original (before rotation)
case. The reason is that simple rotation of the K-argument of spectral interaction
kernel I(k, K) does not affect its amplitude filtering character, and in particular the
bandwidth remains the same. We conclude then that the picture of the static genesis
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contains in essence the most important features of interactions. By translating and/or
rotating the receiving antenna system S, only translation and/or rotation of the
spectral interaction kernel I(k, K) is needed in order to modify the conclusion of
the static genesis,34 while the rest of the interaction integral retains its original form
intact. In particular, the spatial bandwidth of the antenna system is invariant with
respect to the Euclidean motion group.

9.5.9.3 Local Rotation of the Source Antenna: The Dynamic Aspects of the Near
Field Structure

We come now to the most important analysis in this work, which is concerned with
unconcealing the dynamic aspects of a given source antenna’s radiated near field as
revealed through its interaction with another antenna. This is not only important from
the fundamental theoretical standpoint, but also we find such analysis crucial for the
practical aspects as well. The reason is that in practice one can study one antenna
only through the analysis of the way in which it interacts with another antenna or
measuring system (say a special probe in the neat field).

The results (9.68) and (9.69) indicated that the static genesis framework can
be used to relate the changes in the received signal due to motion of the receiving
antenna to the mechanism of interaction conducted while the latter antenna was
fixed. Since any motion in R

3 can be analyzed into translation plus rotation, then
we conclude that as long as the moving antenna does not enter the source horizon,
the expressions (9.68) and (9.69) can be used to predict the interaction mechanism
for the moving antenna. One particular compound motion is Motion III in Figure
9.1, which was defined as rotation of the receiving antenna such as its relative 3D
orientation with respect to the source remains fixed. It is clear that simple translation
(Motion I, translation along a circle centered around O′) cannot implement this
motion, but an additional special local rotation (Motion II, local rotation around
O) has to be superimposed on the previous Motion I in order to correctly obtain
Motion III. Such treatment is, first of all, quite complicated, and moreover not
complete since we cannot treat the case when the moving receiving antenna enters the
source horizon. A different approach to the problem is needed, which we propose as
follows.

The key aspect in Motion III is that it is exactly equivalent to a rotation of
the source antenna around O′ while the receiving antenna is kept fixed, where
the rotation is inverse to that originally intended when viewing the receiving
antenna as the moving object. The advantages of rotating the source instead of

34 In the case of translation, this is true as long the antenna does not enter the source horizon.
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Figure 9.4 Study of the near-field structure of a source Js(r) inclosed inside a region Vs via its
interaction with another antenna rotating around O′. The received signal induced in the moving antenna
varies according to the manner in which the source’s near field are dynamically splitting into propagating
and nonpropagating modes as the perspective of the observer varies through the motion of the receiving
probe.

the receiving antenna are considerable. First, the global coordinate system and the
relative position of the receiving antenna with respect to it are kept fixed, which
facilitate our intention of studying the variation in the structure of the source antenna
near field. Second, for the entire continuum of local rotations of the source around
O′, its antenna horizons are all identical and fixed as shown in Figure 9.1. The reason
is that the global frame of reference is fixed, and the rotated source antenna remains
all the time inside this horizon. Figure 9.4 illustrates this process. The motion of the
probe around the source can be implemented by treating the probe as fixed while the
source rotates locally around its center O′.

Now let us go back to the expression (9.30). The Fourier transform of the source
will transform like Js (k) → Js

(
R̄T

a · k
)

as can be found from (9.21). However,
the illumination field due to the source is always evaluated at the same locations
r ∈ S because the global coordinate system is fixed. This implies that the spectral
interaction kernel I(k, K) remains the same. Moreover, for the same reasons the
spectral ACGF of the receiving antenna is unchanged by the local rotation of the
source. We finally then arrive at our main result

J
(
r′; R̄a

)
= (2π)−3 ∫

R3 d3k
∫

R2 dpdq
× F̄ (r′,k) · H̄ (k,K) · Js

(
R̄T

a · K
)
.

(9.70)
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Notice that the spectral ACGF F̄ (r′,k) of the probe and its generalized transfer
function H̄ (k,K) are fixed. Now, since the distance of probe to the source is
constant, the main generator of change in the received signal can be best thought of as
a change in the proportions of the resonant and nonresonant parts of the illumination
field interaction with the receiving system in the spirit of the expression (9.65).
Therefore, the result (9.70) suggests that the variation in the received signal of
the rotating antenna (probe) in Figure 9.4 is due fully to the dynamic splitting of
the source’s near field into propagating and nonpropagating modes. This motivates
our belief that a fair understanding of the (spectral) generalized transfer function
of a well-designed probe may enable us to infer valuable conclusions about the
near-field structure of a given source by carefully interpreting the variations in the
received signal J

(
r′; R̄a

)
for a wide range of specially chosen 3D rotations R̄a.

Notice that in contrast to (9.68), there is no restriction on the region of validity of
(9.70).

9.5.9.4 The Effect of Mutual Coupling

Strictly speaking, the relations (9.68), (9.69), and (9.70) are not exact if mutual
coupling is present. Indeed, the values of the source current Js(r) and/or the receiving
spectral ACGF F̄ (r′,k) will change with ra and/or R̄a. However, we will now show
that although the quantitative prediction of the received signal has to take into account
mutual coupling if necessary, the physical mechanism of interaction, and in particular
the antenna system S’s spatial bandwidth BW , remain unaffected.

In the presence of mutual coupling between the source and the receiving
system, we must modify the current distributions according to the following general
scheme

Js

(
r; R̄a, ra

)
= Js

(
R̄a · r − ra

)
+ δJs

(
r; R̄a, ra

)
, (9.71)

F̄
(
r′, r; R̄a, ra

)
= F̄
(
R̄a · r′ − ra, R̄a · r − ra

)
+δF̄

(
R̄a · r′ − r, r; R̄a, ra

)
.

(9.72)

Formally speaking, these equations can be considered as a definition of the new
functions δJ and δF̄ arising from mutual coupling while Js

(
r; R̄a, ra

)
and

F̄
(
r′, r; R̄a, ra

)
stand for the new total values of the source current and the spectral

ACGF, respectively. In particular, we notice the special definitions Js

(
r; Ī, 0

)
:=

Js (r) and F̄
(
r′, r; Ī, 0

)
:= F̄ (r′, r), where Ī is the unit dyad. In both cases, the

origin of mutual coupling is the Euclidian motion of the source and/or receiving
system according to the rotation R̄a and translation ra.

It is important to pay considerable attention to the way equations (9.71) and
(9.72) have been written. First consider (9.71). If we rotate and translate the source
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antenna, then the new source current can be expressed as the sum of two terms. The
first term on the LHS is the source current that would appear if there is no mutual
coupling. As we saw in the derivation of equations like (9.68), (9.69), and (9.70), it is
simply the rotation and translation of the spatial function (but the inverse operations
for the corresponding Fourier transform). The new term δJs, however, does not arise
in this simple way, but should be considered a totally new function of r, R̄a and
ra. It is beyond the scope of this chapter to determine how this functional variation
can be expressed in a more concrete way at the very general level characterizing our
investigation. Therefore, only the formal appearance of the mutual coupling term is
retained in our equations. Now relation (9.72) can be treated in the same fashion as
(9.71) with the difference that we should also transform the location of the received
signal like r′ → R̄a · r′ − ra everywhere.

To simplify the presentation, let us introduce the following operator

Ȳ (k) Î (k,K)X (K)
:= (2π)−3 ∫

R3 d3k
∫

R2 dpdq Ȳ (k) ·I (k,K) Ω̄ (K) · X (K) ,
(9.73)

valid for the dyadic function Ȳ (k) and the vector X (K). Now, in light of (9.71)
and (9.72), we rotate and translate only the receiving antenna. Equations (9.68) and
(9.69) will then be replaced by

J
(
r′; R̄a, ra

)
=

F̄
(
R̄a · r′ − ra,k

)
Î
(
k, R̄T

a · K
)
eiK·raΩ̄ · Js (K)

+F̄
(
R̄a · r′ − ra,k

)
Î (k,K) Ω̄ · δJs

(
K; R̄a, ra

)
+

δF̄
(
R̄a · r′ − ra,k; R̄a, ra

)
Î
(
k, R̄T

a · K
)
eiK·raΩ̄ · Js (K)

+δF̄
(
R̄a · r′ − ra,k; R̄a, ra

)
Î (k,K) Ω̄ · δJs

(
K; R̄a, ra

)
.

(9.74)

The first term on the LHS is exactly the effect predicted in (9.68) and (9.69) under the
assumption that no mutual coupling is present. The remaining three terms are new
and present the effect of mutual coupling when both the source and the receiving
antennas react back on each other because of the Euclidean motion of the receiving
antenna. The second and third terms have roughly the same order of magnitude.
They represent 1) the interaction between F̄ and δJs on one hand, and 2) δF̄
and Js on the other. The first type of interaction has no effect on the spectral
interaction kernel I(k, K). However, with type 2) of interaction, the K-argument
of I(k, K) is rotated by R̄T

a and the whole function I multiplied by the phase
factor exp (iK · ra). Finally, the fourth term in (9.74) represents a third type of
interaction 3) between δF̄ and δJs. It has an order of magnitude yet smaller than
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types 1) and 2). Notice that both arguments of I(k, K) are unaffected. In general,
the price to paid for not transforming some or all of the spectral interaction kernel’s
arguments in the mutual coupling terms of (9.74) is that a new spectral source and/or
spectral ACGF will appear, namely δF̄ or/and δJs, which depend on the rotation
and translation in a complicated manner that cannot be disclosed at the current state
of the ACGF formalism. Now the most important conclusion to be drawn from
(9.74) is this: Regardless to the actual functional behavior of δF̄ or/and δJs, the
interaction mechanism with the presence of mutual coupling is still essentially the
same as that of the static and dynamic genesis developed above. The reason is that
the only possible effects on the spectral interaction kernel I(k, K) are rotation of
the K-argument and multiplication by exp (iK · ra). Such types of operations do
not affect the “metrical” properties of the function I(k, K) important for the spectral
filtering process it performs in the physical mechanism of interaction as developed
in Section 9.5.8. In particular, the spatial bandwidth BW of the antenna system
remains the same.

In exactly the same manner, relation (9.70) will modified in the presence of
mutual coupling to take the following form

J
(
r′; R̄a, ra

)
= F̄ (r′,k) Ĥ (k,K)Js

(
R̄T

a · K
)

+F̄ (r′,k) Ĥ (k,K) δJs

(
K; R̄T

a

)
+δF̄ (r′,k) Ĥ (k,K)Js

(
R̄T

a · K
)

+δF̄ (r′,k) Ĥ (k,K) δJs

(
K; R̄T

a

)
.

(9.75)

Again, the first term on the LHS is exactly the no-mutual-coupling prediction (9.70).
The next three terms are new and represent the effect of electromagnetic coupling
between the probe and the source in Figure 9.4. Their interpretation, however,
follows exactly the corresponding exposition around (9.74). In particular, we notice
the physical interaction mechanism associated with (9.70), the static and dynamic
genesis, remains the same in the presence of mutual coupling.
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Chapter 10

General Introduction and Motivation

10.1 INTRODUCTION

One of the major problems facing the electromagnetic engineer and researcher
nowadays, a problem which probably distinguishes applied electromagnetics in this
century from the preceding one, is the enormous growth in the spatial complexity
of the environments inside which antennas and circuits are intended to work. For
example, the increase in urban density and the steady inflation of the number of
electronic devices used per unit square meter have led recently to interest in a more
refined understanding of the full complexity of radiation and interactions in the near
zone in the presence of complex media. Indeed, many of the design and analysis
methods in applied electromagnetics tend to assume idealized environments, e.g.,
free space or ground plane with few other antennas or objects nearby. While these
assumptions might be relevant for an initial analysis, they become increasingly
difficult to sustain when there is an interest in novel phenomena and accurate
representation of the operational details of new devices.

In the electromagnetic literature, the problem of radiation of point source in the
presence of complex environments has been treated mostly within the conventional
perspective of periodic structures. In such formulations, the environment is elec-
tromagnetically modeled using the effective-boundary conditions of macroscopic
Maxwell’s equations and the fields radiated by the source are computed by solving
these equations for the unknown fields. These calculations tend to be difficult but
once obtained, complete knowledge of the problem becomes at hand.

A different approach adopted in this part of the book attempts to treat the
problem of radiation in complex environments from the perspective of artificial
media or metamaterials. Although a complex environment surrounding an antenna

311
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presents tremendous difficulties when attempting to study theoretically the main
structural features of the near field produced by the source distribution, a quite
natural and simple approach for mathematically describing the environment is to use
a material representation in which the overall effect of the medium reduces to the
dielectric tensor εnm (r, r′; t; t′) connecting D and E. Since the electromagnetic field
is a process occurring in space and time, and the surrounding (complex) environment
consists, most interestingly, of strongly interacting spatial distributions of boundary
conditions, we allow both space and time dependence to appear explicitly in the
response function.

This approach to modeling the electrodynamics of complex media has been
known in the physics literature, especially for dealing with the classical problems of
optical scattering by crystals and source-free wave propagation in such periodic
structures. The works [97] and [98] in particular systematized the focus on the
spatial aspects of the material response of material media using the concept of
spatial dispersion, which we take here as synonymous to nonlocality, although
spatial dispersion as such has been well known much earlier, see for instance
[139] and the references therein. Spatial dispersion, which means the dependence
of the electric and magnetic material responses on the wavevector k, was treated
microscopically in [140], [108]. Meanwhile, the topic of nonlocality, which does
not figure prominently in classic electromagnetics books like [102] and [41], found
its way into well-known monographs and textbooks such as [103], [105], [141],
[142], in addition to the book [108] already mentioned. However, appreciation of
the full span and potentials of nonlocal media does not seem to be widespread
in electromagnetic teaching and research. In any case, with the recent interest
in metamaterials, the topic of spatial dispersion seems to be coming back into
the picture, see for example [143], [144]. Following these lines, an engineering-
motivated approach to nonlocal media and spatial dispersionwill be proposed here,
where the concept of nonlocality is taken as basic and the electrodynamics of
artificial materials is investigated with focus on new physical phenomena, such
as distortion-free negative group velocity propagation, which are not possible in
principle if only temporal dispersion is considered.

10.2 SCOPE AND MOTIVATIONS

Traditionally, the research area classed under the label ‘artificial materials,’ or what
has become popular nowadays as ‘metamaterials,’ is based on the idea of mimicking
the way natural media respond to an applied electromagnetic field. The mechanism



General Introduction and Motivation 313

responsible for the electromagnetic character of the medium, for example optical
properties, can be applied to repeat the whole process artificially in the sense that
the atomic constituents of matter are individually manipulated and controlled in
order to achieve a desired electromagnetic profile.

Conventional approaches to describe material responses rely on assuming that
the external field induces multipole electric and magnetic moments in the medium,
giving rise to polarization and magnetization density vectors.1 This approach has
its merits although it is theoretically problematic. The multipole method provides
an extremely simple mathematical model that is adequate for a very wide range
of applications. However, with the exploding progress in nanotechnology and
experimental research, it is becoming increasingly important to employ a more
general mathematical formalism that allows us to explore new dimensions in the
material response that go beyond the traditional multipole description.

It is the opinion of the present authors that a significant proportion of future
research in the field of artificial materials should be invested in studying the spatial
degrees of freedom latent in the medium under interest, a space hitherto unexplored
in depth with few notable exceptions [97], [98], [141], [108]. The purely spatial
effects, for example spatial dispersion, have been often neglected because natural
materials happen to have very small interatomic-spacing-to-operating-wavelength
ratio, which implies that when a macroscopic field measurement is employed,
all microscopic spatial information are washed away. However, there is nothing
in principle prohibiting designing artificial media with arbitrary spatial response
profile.2 Tentative proposals for controlling wave propagation by manipulating both
the temporal and spatial dispersion will be outlined in Chapters 12 and Chapter 13.

10.3 ENGINEERING NONLOCAL MEDIA

The engineering and design of new artificial media is the essence of the popular field
of metamaterials. The idea is to manipulate the microscopic structure in order to
produce tangible effects that can be recorded macroscopically by certain effective
parameters like ε and µ. The main focus so far has been directed at manipulating
the temporal dispersion of the medium.3 However, with the steady improvement in
technology, new spatial scales can be probed and manipulated, leading to interesting

1 Cf. Chapter 11.
2 The implementation of a particular solution of Maxwell’s equations coupled with a suitable

mechanical model is a technological problem, not a theoretical one. In this sense, the present treatment
should be viewed as a theoretical contribution to the subject.

3 Roughly speaking, temporal dispersion is captured by the functional dependence of ε and µ on ω.
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applications that were not possible before. One of these new phenomena is the
nonlocal interaction between spatially separated parts of the materials, leading to
what is called spatial dispersion.4 In this case, the electromagnetic response of the
medium fails to depend only on the position where we apply the external field, but
depends also on the value of this field at other locations.5

It was observed that taking spatial dispersion into consideration may lead to
qualitatively new phenomena not seen in conventional materials obeying classical
optics (spatial dispersion is ignored). In particular, spatial dispersion can allow
electromagnetic wave propagation with negative group velocity to occur, even when
both the permittivity and permeability are positive [97]. Such interesting behavior
was originally anticipated in connection with natural materials in crystal form,
where spatial dispersion is manifest, for example, in the phenomena of exciton.
Recently, the same original conclusions in [97] were reinstated [143], [144]. It is
still possible, however, to put the problem in a wider context by referring not only
to natural crystals, but also to any type of artificial materials. To demonstrate the
philosophy of the engineering approach, consider Figure 10.1 where we take the
medium function to be ε(ω, k). The physics approach is illustrated in Figure 10.1(a)
where the starting stage is assuming certain models for the natural material under
consideration (usually crystal). Then, Taylor series expansion of some parameters
in the model (the exciton model as in [139] or the permittivity function itself as
in [97]) can be applied to estimate the medium function ε(ω, k). The next step
is to apply electromagnetic theory to study the resulting propagation. However, it
is possible to invert this logic in the following way. In Figure 10.1(b), we start
from certain wave propagation characteristics (e.g. negative group velocity, negative-
refraction propagation, etc), and then derive the medium function, ε(ω, k), such that
Maxwell’s theory will allow the desired wave propagation characteristic. This is
done in Chapter 12 The future step is to find experimental methods to synthesize
an artificial medium with this calculated function ε(ω, k). The parallel devolvement
for the case when the field is observed close to the source is briefly outlined in
Chapter 13.

4 Following the literature, we use ‘spatial dispersion’ and ‘nonlocality’ synonymously.
5 Spatial dispersion manifests itself in the functional dependence of the medium parameters on the

wave vector k. Thus, when both temporal and spatial dispersion are present, we write the permittivity
and the permeability functions as ε = ε(ω, k) and µ = µ(ω, k).
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Figure 10.1 General philosophy of the study of electromagnetic wave propagation in dispersive media.
(a) Physics approach. (b) Engineering approach.

10.4 THE PLAN AND GLOBAL STRUCTURE OF PART III

In Chapter 11, we review the Fourier-space formalism suitable for modeling the
spatial effects of a given natural or artificial medium. The formalism is compatible
with the traditional multipole approach but is conceptually easier to understand.
This Fourier transform method introduced here is inspired by techniques developed
in the physics community to attack plasma problems [97], [98]. There is a plethora
of advantages in employing this particular point of view in this setting, the chief
one being that the Fourier-space formalism is more general in its applicability to
fluctuating fields with higher frequencies. Also, it naturally provides a complete
characterization of the field in both space and time. Finally, being a spectral method,
it allows for deeper understanding of localization phenomena and energy transfer
and coupling mechanisms. One of the disadvantages is that it requires an additional
mathematical background that is not usually part of the training of professional
electromagnetic engineers. It also does not apply to static field problems. In general,
the Fourier formalism does not conform with the conventional literature standards
of notation and usage. The rest of the book can be read without the content of this
chapter. It is included here for completeness.
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The of core this Part III is deliberately divided into two Chapters 12 and 13 in
order to highlight from the begining the need to separate between what we call “far-
field metamaterials” and “near-field metamaterials.” Indeed, the former has received
the lion’s share of the scientific community’s attention during the last two or three
decades, while the latter seems to be starting to emerge only very recently. One of
the essential long-term goals of this book is to revitalize interest in exploring the
latent potentials of artificially-engineered materials for electromagnetic applications
through a clear understanding of how the spatial structure of the electromagnetic
fields bifurcates into the two fundamentally different near and far zones. For this
reason, Chapter 12 will concentrate on source-free propagation aspects in nonlocal
media with special emphasis on the case of negative-refraction behavior. On the
other hand, Chapter 13 will provide a short view of the generalization of the theory
to include the presence of a source in a nonlocal media and how the inner structure
of the fields close to the source can be understood this way. There is no claim here of
completeness. The topic of nonlocal media is vast and still in its initial stages when
it comes to the engineering aspects.



Chapter 11

Review of Spatial Electromagnetics
(The Material Response Theory)

11.1 MAXWELL’S EQUATION

We start with the fundamental equations governing the Maxwellian fields B and E
in matter-free regions. These are

∇ × E = −∂B
∂t

, (11.1)

∇ × B = µ0J +
(
1
/
c2) ∂E

∂t
, (11.2)

∇ · E =
ρ

ε0
, (11.3)

∇ · B = 0, (11.4)

where c is the speed of light and ε0 = 8.854×10−12 F/m and µ0 = 4π×10−7 H/m
are the permittivity and permeability of free space, respectively.

We notice that these equations are complete since they capture everything
related to electromagnetic interactions. However, in order to solve Maxwell’s
equations in the presence of matter, one has to supply suitable decompositions of
the source terms appearing in (11.2) and (11.3) in the following manner

ρ = ρext + ρind (11.5)

and
J = Jext + Jind, (11.6)

317
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where ρext and Jext are the imposed sources supplied externally. Matter will interact
with the fields radiated by these sources and respond by generating induced sources
ρind and Jind. These induced sources cannot be deduced from Maxwell’s equations
themselves. They must be found upon constructing an appropriate mechanical model
for matter in the radiation field.1

By observing the conservation of electric charge density ρ(t, r), the equation
of continuity for electromagnetism takes the following form

∂ρ

∂t
+ ∇ · J = 0. (11.7)

Energy conservation is already built into the structure of Maxwell’s equations in
continuous media. Indeed, it is possible to directly derive the following relation

∂

∂t

(
1
2
ε0 |E|2 +

1
2
|B|2
/

µ0

)
+ ∇ ·

(
1
µ0

E × B
)

= −J · E. (11.8)

Let us supplement this equation with Lorentz force law

F = qE + v × B. (11.9)

One can carefully supply an interpretation for the various terms appearing on the
RHS of (11.8) starting from the basic law of force (11.9). As it turns out, the time
rate of the volume density of the work done by the electric current J on the electric
field E is given by −J · E. This provides us with an interpretation of the RHS
of (11.8). Now, in order to interpret (11.8) as a continuity equation, we observe

that, in vacuum, the quantities ε0 |E|2
/

2 and |B|2
/

2µ0 can straightforwardly

be interpreted as volume densities of electric and magnetic energies, respectively,
stored in free space. It follows then that the last term, E × B/µ0, can be easily
interpreted to stand for the volume density of the power flow, or the electromagnetic
flux.

1 It is here that the incompleteness of Maxwell’s equations becomes critical. Strictly speaking, we need
to augment the four Maxwell’s equations listed above by additional laws prescribing how material
particles are charged and how they behave in the presence of fields. Ultimately, this has to be done
through quantum electrodynamics, although in the majority of applications a semi-classical approach
is enough to derive results that are in conformity with experiments.
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11.2 FOURIER TRANSFORM APPROACH TO THE GREEN’S FUNC-
TIONS

11.2.1 Maxwell’s Equations in the Spectral Domain

As we are going to formulate the entire problem in terms of the Fourier transform,
the usual spatio-temporal form of Maxwell’s equations must be transformed into
the spectral domain. In this section, we handle the problem of a source radiating in
infinite isotropic and homogeneous medium. Maxwell’s equations (11.1)–(11.4) can
be written in the Fourier transform domain as

k × E (ω,k) = ωB (ω,k) , (11.10)

ik × B (ω,k) = −iωE (ω,k)
/
c2 + µ0J (ω,k) , (11.11)

k · E (ω,k) = −iρ (ω,k)/ε0, (11.12)

k · B (ω,k) = 0. (11.13)

The equation of continuity (11.7) can be also Fourier transformed into the form

ωρ (ω,k) = k · J (ω,k) . (11.14)

The reader must note that these equations cannot be used to describe static fields,
which may be tackled on their own by applying the Coulomb gauge. Therefore,
throughout this chapter, we restrict ourselves to the case ω �= 0.

The program of performing calculations in electromagnetism using the Fourier
transform method can be elucidated in the following manner

1. Express the magnetic field in terms of the electric field using Maxwell’s
equation (11.10)

B (ω,k) = k × E (ω,k)/ω. (11.15)

2. Express the charge density in terms of the current density using the equation
of continuity (11.14)

ρ (ω,k) =
1
ω

k · J (ω,k) . (11.16)

3. End up with a single equation in one unknown, E(ω, k), and forcing term
J(ω, k); i.e., solve

ω2

c2 E (ω,k) + k × [k × E (ω,k)] = −iωµ0J (ω,k) . (11.17)
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Therefore, the program of solving Maxwell’s equations reduces to solving a single
algebraic equation in terms of the electric field E (ω,k).All the other field and source
components can be obtained from the solution of the electric field together with the
given form of the source.

11.2.2 The Green’s Function Tensor in the Spectral Domain

To obtain the Green’s function in the Fourier domain, we first put (11.17) in a suitable
form. We use the following identity

A × B = εijkAjBk, (11.18)

where εijk is the permutation tensor.2 Therefore, we have

k × E = εijkkjEk. (11.19)

Iterating, we obtain

k × k × E = εijkkjεkj′k′kj′Ek′ = εijkεkj′k′kjkj′Ek′ . (11.20)

We use the following basic identity

εabcεijk = δaiδbjδck + δakδbiδcj + δajδbkδci

−δbiδajδck − δakδaiδcj − δbjδakδci.
(11.21)

Therefore, we have
εiabεijk = δajδbk − δakδbj . (11.22)

Using this identity in (11.17), we arrive at[(
ω2

c2 − k2
)

δnm + knkm

]
Em (ω,k) = −iωµ0Jn (ω,k) . (11.23)

The Green’s function tensor is defined to satisfy the following equation[(
ω2

c2 − k2
)

δnm + knkm

]
Gml (ω,k) = −iωµ0δnl (ω,k) . (11.24)

2 Throughout this chapter, the Einstein (repeated) summation index is used. That is, whenever an index
is repeated in a given expression, summation is implied with respect to these indices.
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Therefore, by inverting the matrix operator appearing in the equation above, the
Green’s function tensor is readily obtained in the following compact closed form

Gnm (ω,k) =
−iωµ0

ω2
/
c2 − k2

(
δnm − c2

ω2 knkm

)
(11.25)

Finally, we observe that it is possible to separate the field into two components,
one transverse to the direction of the wave vector k (transverse mode), and another
perpendicular to this direction, which we call longitudinal mode. The longitudinal
mode is not involved in the radiation and is related to the near field. It contributes
directly to the structure of the field surrounding the source.

11.3 REVIEW OF THE TRADITIONAL DESCRIPTION OF ELECTRO-
MAGNETIC MATERIALS IN TERMS OF MULTIPOLE MOMENTS

The conventional old description of electromagnetic materials involves the intro-
duction of two quantities to calculate the induced charge and current distributions.
We review here the traditional view and show how it can be derived by a Fourier
transform approach to the multipole expansion of the source.

The conventional idea is to assume that a given medium responds to both
electric and magnetic fields by generating an induced polarization density P and
magnetization M. However, this description is strictly valid when both the electric
and magnetic responses can be unambiguously separated from each other. This
is possible only when the fields are static; otherwise, it should be viewed as an
approximation. Indeed, if rapid field fluctuations at the microscopic scale are taken
into consideration, then the separation becomes ill-defined and even potentially
problematic.

Let us see how P and M arise from the Fourier transform perspective. Consider
an arbitrary charge and current distribution

ρ (t,k) =
∫

d3re−ik·rρ (t, r) , (11.26)

J (t,k) =
∫

d3re−ik·rJ (t, r) . (11.27)

Expand the exponential in Taylor series

e−ik·r = 1 − ik · r +
1
2

(ik · r)2 + · · ·. (11.28)
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Inserting (11.28) into (11.26), we obtain

ρ (t,k) =
∫

d3rρ (t, r)
[
1 − ik · r + 1

2 (ik · r)2 + · · ·
]

=
∫

d3rρ (t, r) −
∫

d3rik · rρ (t, r) + 1
2

∫
d3r (ik · r)2 ρ (t, r) + · · ·

= −
∫

d3riknrnρ (t, r) − 1
2

∫
d3rknrnkmrmρ (t, r) + · · ·

= −ikn

∫
d3rrnρ (t, r) − 1

2knkm

∫
d3r rnrmρ (t, r) + · · ·

= −ik · p (t) − 1
2knkmqnm (t) + · · ·,

(11.29)
where

pn (t) =
∫

d3rrnρ (t) (11.30)

and

qnm (t) =
∫

d3r rnrmρ (t) (11.31)

are the dipole and quadrable moments, respectively. We also used the assumption that
the charge distribution is neutral;

∫
d3rρ (t, r) = 0. Similarly, by inserting (11.28)

into (11.27), one obtains

Jn (t,k) =
∫

d3rJn (t, r)
[
1 − ik · r + 1

2 (ik · r)2 + · · ·
]

=
∫

d3rJn (t, r) −
∫

d3r (ik · r) Jn (t, r) + 1
2

∫
d3r (ik · r)2 Jn (t, r) + · · ·

=
∫

d3rJn (t, r)︸ ︷︷ ︸
µn(t)

−ikm

∫
d3r rmJn (t, r)︸ ︷︷ ︸

µmn(t)

− 1
2klkm

∫
d3r rlrmJn (t, r) + · · ·

= ∂
∂tpn (t) − ikm

1
2

∂
∂tqmn (t) − iεmnskmms (t) + · · ·

= ∂
∂tpn (t) − ikm

1
2

∂
∂tqmn (t) + iεnmskmms (t) + · · ·,

(11.32)
where equations (11.107) and (11.117) (see Appendix below) were utilized in
obtaining the fourth equality, and the relation εnms = −εmns is employed in the
writing last equality. Also notice that the magnetization m is defined by (11.115).

By ignoring all quadrable and higher terms in (11.29) and (11.32), we find

ρ (t,k) = −ik · p (t) , (11.33)
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J (t,k) =
∂

∂t
p (t) + ik × m (t) . (11.34)

Define the polarization and magnetization densities P and M, respectively, by the
following relations

p (t) =
∫

d3rP (t, r) (11.35)

and

m (t) =
∫

d3rM (t, r) . (11.36)

Inserting (11.33) and (11.34) into (11.26) and (11.27), it follows

ρ (t,k) = −ik · P (t, r), (11.37)

J (t,k) =
∂

∂t
P (t, r) + ik × M (t, r). (11.38)

Therefore, by inverting the Fourier transforms (11.37) and (11.38), we obtain

ρind (t, r) = −∇ · P (t, r) , (11.39)

Jind (t, r) =
∂

∂t
P (t, r) + ∇ × M (t, r) . (11.40)

As can be seen now, this derivation ignores higher-order multipole without
providing a clear-cut criterion for when and why this approximation is valid. Since
we are attempting to construct a general theory for both near and far fields in the
context of material response, it is important to employ a formulation that does not
involve approximations that may not hold in certain media. Some other difficulties
relate to the question of the convergence of the multipole expansion, which are seldom
addressed in literature. Finally, there is the incompleteness issue in the expansion
(11.28), which includes only terms with zero trace.

11.4 MATERIAL RESPONSE THROUGH THE FOURIER TRANSFORM
APPROACH

We will now carefully introduce the equivalent representation of the electromagnetic
material response in terms of the Fourier transform of the fields, not the actual
field in space and time. There are several advantages in this approach. First, note
that this approach does not apply to static fields, which are better addressed by the
classical P-M approach. On other hand, certain complex electromagnetic effects, like
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spatial dispersion, magnetoelectric responses and optical activity, can be regarded
as special cases of nonlocality.

It appears to the authors that operating directly on material systems with a for-
malism tailored especially to handle spatial dispersion is very advantageous. Besides
its ability to deal with complex media exhibiting phenomena like magnetoelectric
effects and optical activity, it can also provide a natural window to probe near-field
interactions. Although we are still trying to mathematically identify the meaning of
the near field, remember that one of the most immediate features that come to mind
when thinking about fields in the near zone (close to the radiator or the scatterer) is that
they tend to be localized, or, equivalently, contain short wavelength components that
contribute significantly to the field structure. In this case, one is looking naturally for a
mathematical device that characterizes electromagnetic wave phenomena in terms of
the Fourier spatial modes, i.e., the k-components. Therefore, the formalism should
look for information about the response of the system to particular wavevecotrs
k. This is essentially the goal of integrating spatial dispersion into the theoretical
description of material media.

Let us try to address in more detail some of the difficulties in the traditional
approach to electromagnetic material response. By Fourier transforming (11.40) in
time, we obtain

Jind (ω,k) = −iωP (ω,k) + ik × M (ω,k) . (11.41)

The problem here is that there exists no general a priori method to tell how the
individual contributions of the quantities P and M divide between themselves in
forming the total induced current. In this sense, one should view these two vectors
as mere calculational tools, auxiliary devices used to compute the actually observed
induced current Jind. In particular, there seems to be no harm in just setting the
magnetization density M to zero and considering only a polarization density P
contributing to the induced charge and current densities.

As we have just observed in Section 11.2.1, the program of calculating the fields
through Maxwell’s equations can be reduced to the solution of a single equation,
namely (11.17), which contains a single unknown, the electric field vector E(ω, k)
itself. If the relation between the induced current density Jind (ω,k) and the electric
field is known, then this relation, together with the master (11.17), can be used to
completely solve the problem of light-matter interaction. It seems natural then to
introduce a single material response tensor

(Jind)m (ω,k) = σmn (ω,k)En (ω,k) , (11.42)
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where the matrix σmn (ω,k) is called the conductivity tensor. After solving for the
electric field, all the remaining quantities, the magnetic field B(t, r) and the charge
density ρ(t, r), can be calculated from knowledge of the total current and the electric
field.

One can replace the conductivity tensor by different equivalent representations
that may turn out to be handy in some applications. In particular, we discuss here
the polarization tensor αnm(ω,k) and the equivalent dielectric constant εeq

nm (ω,k),
defined by the following equations

εeq
nm (ω,k) = δnm + i

ωε0
σnm (ω,k)

= δnm + 1
ω2ε0

αnm (ω,k)
= δnm + χnm (ω,k) .

(11.43)

The reader should notice that the equivalent dielectric function ε0ε
eq
nm (ω,k) is not

the same as the conventional dielectric function defined in terms of the polarization
and magnetization densities appearing in (11.40). In terms of the new dielectric
function εeq

nm (ω,k), we write

Dn (ω,k) =
∑
m

ε0ε
eq
nm (ω,k)Em (ω,k). (11.44)

It follows that in the Fourier transform approach to the material response, we
effectively kill the magnetization vector M and collect all relevant physical processes
into a single vector, the effective polarization density P.

11.5 COMPARISON BETWEEN THE TRADITIONAL MULTIPOLE AND
THE FOURIER TRANSFORM APPROACH TO THE MATERIAL
RESPONSE

Within the multipole approach to the material response, two new fields are tradition-
ally introduced, the electric induction D (the electric displacement vector), and the
magnetic field strength H. These are defined by the relations

D := ε0E + P, (11.45)

H :=
1
µ0

B − M. (11.46)
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The electric susceptibility χe and the magnetic susceptibility χm are defined by the
following equations

P = ε0χ
eE, (11.47)

M =
1
µ0

χmB. (11.48)

The effective dielectric constant, or electric permittivity ε, and the magnetic perme-
ability µ, can now be defined in terms of the quantities above as

D (ω,k) = εE (ω,k) , (11.49)

H (ω,k) =
1
µ
B (ω,k) . (11.50)

We now proceed to derive the equivalence between this traditional approach
and the Fourier formalism of Section 11.4. First, the current distribution is decom-
posed into two parts, one due to external (applied) sources, Jext, and the other, Jind

due to the interaction between the medium and the electromagnetic fields. We write

J (t, r) = Jext (t, r) + Jind (t, r) . (11.51)

The induced current is written using the conductivity tensor introduced in (11.42)
and the result is substituted to the master equation (11.17). After simple re-arranging
of terms, we find

ω2

c2 E (ω,k) + k × k × E (ω,k) + iωµ0 ¯̄σ (ω,k) · E (ω,k) = −iωµ0Jext (ω,k) .

(11.52)
Now let us calculate by means of the ε-µ method. In this case, the induced

current is written in terms of both the polarization and magnetization current
densities P and M as shown in (11.40). Using (11.47) and (11.48) in (11.41), we
find

Jind (ω,k) = −iωε0χ
eE (ω,k) + ik × χm

µ0
B (ω,k) . (11.53)

But from Maxwell’s equations in the Fourier domain, specifically (11.10), we know
that

ik × B (ω,k) =
i

ω
k × k × E (ω,k) . (11.54)

The induced current in (11.53) becomes then

Jind (ω,k) = −iωε0χ
eE (ω,k) + i

χm

ωµ0
k × k × E (ω,k) . (11.55)
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Combining (11.51) and (11.55) and substituting the result into (11.17), we arrive
after some rearranging to

ω2

c2 E (ω,k) + k × k × E (ω,k)
+ω2

c2 χeE (ω,k) − χmk × k × E (ω,k) = −iωµ0Jext (ω,k)
(11.56)

By comparing (11.52) and (11.56), we conclude that we must have

iωµ0 ¯̄σ (ω,k) · E (ω,k) =
ω2

c2 χeE (ω,k) − χmk × k × E (ω,k) . (11.57)

In tensor form, (11.57) becomes

iωµ0σnl (ω,k) El (ω,k) =
ω2

c2 χeEn (ω,k) − χm
[
knkl − k2δnl

]
El (ω,k) .

(11.58)
Since the equality holds for arbitrary El, we obtain

σnl (ω,k) =
1

iωµ0

{
ω2

c2 χeδnl − χm
[
knkl − k2δnl

]}
. (11.59)

From (11.43), we reach to

εeq
nl (ω,k) = δnl + i

ωε0

1
iωµ0

{
ω2

c2 χeδnl − χm
[
knkl − k2δnl

]}
= δnl + χeδnl − c2

ω2 χm
(
knkl − k2δnl

)
= (1 + χe) δnl − c2

ω2 χm
(
knkl − k2δnl

)
.

(11.60)

Finally, we use the definitions (11.45), (11.46), (11.47), (11.48) to write

εeq
nm (ω,k) =

(
ε

ε0

)
δnm − c2

ω2

(
1 − µ0

µ

)(
knkm − k2δnm

)
. (11.61)

This is the main equation we are looking for. It shows that a medium which
is magnetic in the ε-µ approach translates into spatial dispersion in the Fourier
approach. It follows also that the two dielectric functions are the same only if there
is no spatial dispersion.
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11.6 GENERAL PROPERTIES OF THE MATERIAL RESPONSE
TENSORS

The requirement that the electromagnetic fields should by themselves satisfy
Maxwell’s equations cannot fully specify how the very same fields will behave
in a material environment. Such behavior is dictated by a more complex structure
consisting of the mechanical response of the microscopic constituents coupled with
the electromagnetic fields. In this section, we survey and present rigorously the most
important non-electromagnetic restrictions imposed on the material tensor. Such
restrictions can be conveniently gathered under the heading ‘General properties of
the Material Tensor’since they involve quite broad characteristics that are wider than
the particular dynamical laws encapsulated by the Maxwell’s equations.

Our main equations will be the relation between the electric flux density vector
and the electric field in both the spatio-temporal and spectral domain. These are,
respectively,

Dn (ω,k) =
∑
m

ε0ε
eq
nm (ω,k)Em (ω,k), (11.62)

Dn (t, r) = ε0

∫
dt′
∫

d3r′
∑
m

εeq
nm (t − t′, r − r′) Em (t′, r′). (11.63)

These equations describe electromagnetic processes in homogeneous, isotropic or
anisotropic media. It is important to keep in mind that within the Fourier-space
formalism the equivalent dielectric tensor is inherently a tensor; even when the
medium under consideration is isotropic, the dielectric function is still generally a
tensor. Also, the reader may notice from (13.2) that the field induced at particular
time t and location r depends generally on the applied field at different times and
locations. We say that the medium exhibit “memory” in both the temporal and spatial
sense. The spatial sense of the this memory, which is going to be the main concern
for us here, is called nonlocality.3

11.6.1 The Reality of the Fields

Since the fields appearing in (13.2) are all real, the properties of the Fourier transform
dictate that the negative and positive frequencies appearing in the spectrum of

3 Whenever there is no risk of confusion, we drop the superscript ‘eq’ from εeq
nm (ω,k) and refer to

the equivalent dielectric function as merely the dielectric tensor.
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the fields are both essentially equivalent to each other. Formally, we have

ε∗
nm (ω,k) = εnm (−ω, −k) . (11.64)

We express in this requirement a relation that any material tensor describing the
responses of the medium to real quantities must satisfy.

11.6.2 Dissipative and Non-Dissipative Processes

The material tensorial response is the Fourier transform of a real quantity and
hence generally complex. The real part and the imaginary part of this tensor are
usually interpreted as those responsible for dispersion and losses (dissipation),
respectively. In this section, we provide the mathematical evidence in support of
this interpretation.

We start by decomposing an arbitrary response tensor into hermitian and
antihermitian parts

εnm (ω,k) = εH
nm (ω,k) + εA

nm (ω,k) , (11.65)

where

εH
nm (ω,k) =

1
2

[εnm (ω,k) + ε∗
mn (ω,k)] , (11.66)

εA
nm (ω,k) =

1
2

[εnm (ω,k) − ε∗
mn (ω,k)] . (11.67)

It is obvious that the two parts satisfy

εH∗
nm (ω,k) = εH∗

mn (ω,k) , (11.68)

εA∗
nm (ω,k) = −εA∗

mn (ω,k) . (11.69)

We now recall our interpretation in Section 11.1 of the term −J · E as the density
of the rate of energy transfer by the current J into the electric field E. The current
can be decomposed into external and induced parts as J = Jex+Jind. Thus, the total
work done by the medium on the electric field is obtained by integrating −Jind · E
in both time and space as

−
∫

dt

∫
d3rJind (t, r) · E (t, r) = −

∫
dωd3k

(2π)4
Jind (ω,k) · E∗ (ω,k) , (11.70)
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where the power theorem of Fourier transforms was used in writing the equality. We
now have∫

dωd3k
(2π)4 Jind (ω,k) · E∗ (ω,k)

=
∫

dωd3k
(2π)4

1
2 [J∗

ind (ω,k) · E (ω,k) + Jind (ω,k) · E∗ (ω,k)].
(11.71)

In deriving this, the integral was first divided into its negative and positive frequency
parts, and then a transformation of variables was applied to the negative frequencies
integral. Finally, the symmetry condition (reality condition) given in (11.64) was
applied. Employing (11.42) in (11.71), we can write

−
∫

dωd3k

(2π)4
Jind (ω,k) · E∗ (ω,k)

=
∫

dωd3k

(2π)4
1
2
[σnm(ω,k)Em(ω,k)E∗

n(ω,k)

+σ∗
mn(ω,k)E∗

n(ω,k)Em(ω,k)]

=
∫

dωd3k

(2π)4
σH

nm (ω,k) Em (ω,k)E∗
n (ω,k). (11.72)

Therefore, it is the hermitian part of the conductivity tensor which contributes to
the dissipation of energy by the medium. Equivalently, by considering the relation
between the conductivity and the equivalent dielectric tensor (11.43), we find that it
is the antihermitian part of the dielectric tensor that contributes to energy dissipation
by the medium.

11.6.3 Onsager Relations

Since any material responses tensor is ultimately based on a mechanical model, of
which the dynamical equations must satisfy certain space-time symmetry trans-
formations, there exist quite general restrictions on the mathematical form of a
physically realizable material tensor. In order to give the reader some idea about
such requirement, we list the classical dynamical equation for the particle motion,
namely the Lorentz force (11.9). By writing the force as F = dp/dt, where p is
the linear momentum, it is an easy matter to verify that the equation of motion is
invariant under the transformations

t → −t, p → −p, B → −B (11.73)

The same conclusion can be obtained if the Lorentz force law is replaced by the
Schrodinger equation.
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Notice that a time-reversal corresponds to the substitution ω → −ω in the
Fourier domain. The reversal of the sign of the momentum corresponds to reversing
the sign of the wavevector. Finally, the reversal of the sign of the magnetic field is
shown explicitly in the following standard form of the Onsager relations4

εeq
nm (ω, −k)|−B = εeq

mn (ω,k)|B . (11.74)

The Onsager relations places severe restrictions on the physically allowable form of
the material response. We discuss below particular examples of isotropic spatially
dispersive media.

Let us focus on materials that don’t respond to the magnetic field. In this
case, the Onsager relations reduce to the situation in which the tensorial response is
required to be invariant under the transformation

k −→ −k, n ←→ m. (11.75)

First, notice that in the Fourier transform approach, even when the medium is
isotropic, the response is still described by a tensorial quantity, c.f. (11.61). For
isotropic media that are spatially dispersive, we can analyze the situation by pure
matrix-theoretic arguments. Indeed, the only available vector in this case is km,
while the only available tensors are δnm and εnml. It can be shown that the
Onsager relations leads to the result that we can construct only three independent
second-rank tensors. A popular choice in the condensed-matter physics literature is
the following

εeq
nm (ω,k) = εL (ω, k) κnκm + εT (ω, k) (δnm − κnκm) + iεR (ω, k) εnmlκl,

(11.76)
where

κm = km/k, k = |k| . (11.77)

Here, the quantities εL(ω, k), εT (ω, k), εR(ω, k) are the longitudinal, transverse, and
rotational permittivities, respectively. The rotatory parts can be ignored in media that
don’t exhibit optical activity. Notice that for media in which both the longitudinal
and transverse parts happen to be equal to each other, the equivalent dielectric tensor
reduces to the scalar case.

11.6.4 The Kramers–Kronig Relations

The fact that the dielectric tensor is a response function imposes a restriction on the
relationship between the real and imaginary part. This restriction is due to causality

4 The symmetry relations (11.64) are used to simplify the final form.
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and can be rigorously derived by standard techniques in the theory of complex
functions.5 Kramers-Kronig relations say that the real and imaginary parts of the
Fourier transform of a function that is causal (i.e., a function with inverse Fourier
transform identically zero for a time interval in the form −∞ < t < t0) satisfy

εeq,H
nm (ω,k) − δnm =

i

π
℘

∫ ∞

−∞
dω′ ε

eq,A
nm (ω′,k) − δnm

ω − ω′ , (11.78)

εeq,A
nm (ω,k) =

i

π
℘

∫ ∞

−∞
dω′ ε

eq,H
nm (ω′,k)
ω − ω′ , (11.79)

where ℘ symbolizes the Cauchy principal value.6 Equations (11.78) and (11.79)
show that if dissipation is known, then dispersion can be uniquely determined (and
vice versa) by applying the Hilbert transform operator to the available data.

One can see that when spatial dispersion is present, then in the case of non-
dissipative medium, i.e., a medium with negligible losses which, as can be seen from
Section 11.6.2, corresponds to εeq,A

nm (ω,k) = 0, the dispersion behavior dictated by
εeq,H

nm (ω,k) is restricted to only the class of functions of ω which have zero Hilbert
transform. It can be shown that such functions take the basic form 1/(ω − ωm) with
constant ωm. This explains partially why such basic form pops out very frequently in
practice. Moreover, they also demonstrate the power of Kramers-Kronig relations in
being able to severely restrict the allowable functional form of dispersion in lossless
media.

The general lesson we learn from taking causality into consideration when
thinking about designing artificial media is that once losses are neglected for the
entire frequency range −∞ < ω < ∞ (or the medium is designed to have small
losses globally), the global form of dispersion is no more a free degree of freedom
but, instead, takes a particular form. However, in practice we seldom achieve or
require particular specifications of the losses and/or dispersion to hold for the entire
frequency range. Noticing that the Hilbert transform relations in (11.78) and (11.79)
are global operators, i.e., they involve integration over the entire frequency range
in order to know the value at a single frequency (nonlocal or memory-dependent in

5 The causality restriction translates formally to the following setting. Imagine that the medium is
excited by an applied electric field E. The material responses, for example through (11.47), will
appear in the form of a forced (induced) quantity, here the polarization density P. If the applied field
was zero for time t < 0, then causality implies that there must be no induced polarization in this
time interval.

6 These equations represent a Hilbert transform relation between the hermitian and antihermitian
parts, which play the role of real and imaginary parts, respectively, in the case of matrices (linear
operators).
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frequency), we just need to restrict ourselves to a finite frequency and wavenumber
range upon which the desired losses and dispersion characteristics are required to
apply. By this route, Kramers–Kronig relations cannot impose a serious restriction
on the design and analysis of artificial media.

11.7 ADVANCED PROPERTIES OF THE MATERIAL TENSOR

In this Section, we look at the material tensor through the point of view of
complex analysis. The motivation for such study is that certain characteristics of
signals excited in media, like short-term disturbances and damped waveforms are
best understood analytically if viewed using the mathematical device of Laplace
transform instead of the familiar Fourier transform, the latter being ideally suited
for the task of analyzing the steady-state behavior of a given system. As will be
shown below, there are general restrictions on the mathematical form of the response
functions when viewed in the complex plane. Knowledge of such global restrictions
is vital in the theory and practice of metamaterials.

11.7.1 Stability Restrictions

From the physical point of view, a passive medium cannot generate energy and
hence all propagating signals must be damped or decaying when the distance goes to
infinity.7 Mathematically, this translates to the requirement that all poles are located
in the left-half plane (LHP). We call the following the statement of the stability
condition of material media

All poles of the material tensor must be located in the LHP. (11.80)

To see why this should be the case, just (Laplace) invert a spectral component in the
form 1/(ω − ω0 + iγ/2) and notice the sign of the resulting exponential factor. For
signals to exponentially decay, the algebraic sign of the factor γ must be positive.

11.7.2 Causality Restrictions

Although we have already looked at causality in the study of Kramers -Kronig
relations, we want to understand here this topic at a deeper level. Consider the

7 Notice that for a range that is bounded, both growing and decaying signals are possible. For example,
consider a multilayered medium. In one intermediate layer both growing and decaying waves are
permitted.
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Fourier transform of a causal function f(t) given by

f (ω) =
∫ ∞

0
dt f (t) eiωt. (11.81)

Let us study the asymptotic behavior of this function when t → ∞. We first notice
that when Im {ω} > 0, the integral in (11.81) has a finite value since the integrand
approaches zero as t grows to infinity. Moreover, on repeatedly differentiating this
integral, we conclude also that all derivatives of f(ω) are finite. Therefore, the
function f(ω) is analytic in the upper half complex plane (UHP). We have then

A causal function is analytic in the UHP. (11.82)

An immediate corollary is that

A causal function has no poles or branch points in the UHP. (11.83)

This principle forms the mathematical background behind the derivation of Kramers-
Kronig relations.

11.7.3 Landau Condition

The Laplace transform of a signal is defined as

F (s) :=
∫ ∞

0
dt f (t) e−st. (11.84)

Therefore, the s-plane and the complex ω-plane are related by s = iω, which means
that ‘upper’ and ‘lower’ in the language of one transform translates into ‘right’
and ‘left’, respectively, in the language of the other transform. The inverse Laplace
transform is given by the equation

f (t) =
1

2πi

∫ Γ+i∞

Γ−i∞
ds F (s) est, (11.85)

where Γ specifies how the integration contour should be chosen. Landau condition
states that

The contour in (11.85) is to the left of all singularites in the s-plane. (11.86)

Therefore, the integration contour must be above all singularities in the complex
ω-plane. It can be shown then that the resulting function does not depend on the
particular path provided it satisfies the Landau condition.
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11.8 WAVE PROPAGATION

11.8.1 Dispersion Relations

By wave modes or wave propagation we understand electromagnetic disturbances
that can propagate in a source-free medium. In our case, the medium response is
described by the nonlocal model characteristic of the Fourier approach.

Equation (11.52) is the inhomogeneous wave equation in our medium. From
definition (11.42), the induced current expressed in terms of the vector potential
(temporal gauge) is given by

Jind, m (ω,k) = αmn (ω,k) An (ω,k) . (11.87)

In tensor form, we can write then (11.52) as

Ξnm (ω,k) Am (ω,k) = −µ0c
2

ω2 Jext, n (ω,k) , (11.88)

where

Ξnm (ω,k) =
c2

ω2

(
knkm − k2δnm

)
+ χnm (ω,k) . (11.89)

If the source term in (11.88) is set to zero, we obtain the homogeneous wave
equation describing the propagation of waves in a source-free environment, i.e., the
eigenmodes. However, as we found in Section 11.6.2, the antihermitian part of the
tensor Ξnm (ω,k) is responsible of dissipation or energy generation in the medium.
Such term must be omitted from the final homogeneous equation describing pure
wave propagation. The desired equation of motion is therefore given by

ΞH
nm (ω,k) Am (ω,k) = 0, (11.90)

where ΞH
nm (ω,k) describes the hermitian part of the tensor Ξnm (ω,k). The reader

should notice that there is a thermodynamic hypothesis implicit in the derivation of
this fundamental equation. That is, dissipation is treated as equivalent to source, and
so the antihermitian part is removed even when it describes only a passive medium.
Such hypothesis, equivalence of source and sink, is an additional postulate that cannot
be derived from Maxwell’s equations and should be supplied by an external theory,
in this case thermodynamics of continuous media.

Notice that (11.90) is a matrix equation. From linear algebra, the necessary
and sufficient condition for the existence of a nontrivial solution is that the determi-
nant of the hermitian matrix ΞH

nm (ω,k) is identically zero. That is, the dispersion
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relation is given by

det
[
ΞH

nm (ω,k)
]

= 0. (11.91)

In general, this dispersion relation has potentially many solutions, each is called a
mode or branch. We write the solution of the lth mode of the dispersion equation
(11.91) as

ω = ωl (k) . (11.92)

For each mode, there corresponds a vector An satisfying equation (11.90). Such
vector is called the polarization of the wave mode. within the scheme of Fourier-
space electromagnetics, there exists a detailed theory of how to obtain and classify
polarizations in various types of media, which is based on direct application of
results from tensor calculus. However, we omit such details for the limitations of
space.

11.8.2 The Green’s Function

The solution of the inhomogeneous wave equation (11.88) can be formally written
as

An (ω,k) = −µ0c
2

ω2 Gnm (ω,k)Jext, m (ω,k) , (11.93)

where Gnm (ω,k) is the Green’s function dyad in the spectral domain. From matrix
theory, an expression of this dyad can be immediately written as

Gnm (ω,k) =
cofnm [Ξn′m′ (ω,k)]

det [Ξnm (ω,k)]
, (11.94)

where cofnm is the cofactor matrix. In deriving this result, only the hermitian part
of the operator Ξnm (ω,k) is used, and therefore the Green’s dyad as it stands
here is hermitian. However, when inverting the Fourier transform for the purpose
of calculating the fields in the spatio-temporal domain, a singularity in the spectral
domain is encountered around ω = ωl (k). The traditional solution of this problem
is to carefully enforce suitable causality conditions. Technically, the determinant is
expanded in the following form

det [Ξnm (ω,k)] ≈ ∂

∂ω
det [Ξnm (ω,k)]

∣∣∣∣
ω=ωl(k)

{ω − ωl (k) + i0} , (11.95)
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where the expansion illustrated here is taken around the lth mode pole. By formally
inverting the Fourier transform using the Dirac delta function, we obtain the following
expression for the antihermitian part of the Green’s function

DA
nm (ω,k) =

∑
l

−iπωl (k) e∗
l,m (k) el,n (k) Fl [Ξnm (ω,k)] δ (ω − ωl (k)) ,

(11.96)
where the scalar quantity Fl [Ξnm] depends only on k and can be directly deter-
mined by the dispersion profile of the medium, but its explicit expression is not
of direct concern to us here. The unit vectors el,n (k) describe the polarization of
the lth mode.8 This derivation shows that although the antihermitian part was not
originally taken into consideration in writing the expression of the Green’s dyad
(11.94), causality considerations forces us to introduce an antihermitian part. As we
will show in Section 11.9, it is precisely this antihermitian part that contributes to
the radiated field.9

It is interesting to observe again the role played by thermodynamics in the
solution of Maxwell’s equations. Indeed, the ultimate origin of the causality con-
sideration introduced above can be tracked back to the thermodynamic requirement
that energy decays away from the source and toward the sink. Maxwell’s equa-
tions themselves are blind to the direction of power flow; they can support both
(temporally) forward and backward waves. However, thermodynamics appears to
fix the sign of the pole contribution around the real ω-axis and hence effectively
imposes a particular form on the solution of the field equations. The reader can
better appreciate the subtlety of this fact by recalling that the very concepts of
source and sink are thermodynamic in nature and cannot be based ultimately on
Maxwell’s equations. An impulsive excitation, say an ideal Dirac delta function, can
be mathematically introduced to the theory in a straightforward manner, e.g., using
generalized function theory. However, the choice of the sign of the imaginary part
of the pole associated with source or sink depends on energetics and dissipation, a
topic that is best described macroscopically by classical thermodynamics. Since the
ultimate origin of the antihermitian part of the Green’s function, as shown above
in (11.96), is causality, and the particular form of this depends in turn on thermo-
dynamic consideration, and knowing that it is this part of the Green’s dyad that
is responsible of radiation (see Section 11.9), we can claim that the ultimate answer

8 Notice that for the case of transverse modes, the degeneracy of the eigenvalue problems requires a
special treatment. Indeed, in this case one has to resort to the use of polarization matrices. We omit
such details here.

9 The hermitian part contributes to the non-propagating field (near field) surrounding the source.
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to the question of why an antenna can radiate appears to be purely thermodynamic
in nature.

11.9 LOCALIZATION OF ELECTROMAGNETIC ENERGY RADIATED
BY ANTENNAS EMBEDDED IN COMPLEX MEDIA

In this section, we provide some applications for the general Fourier approach in the
characterization of the material responses to the electromagnetic fields as sketched
above. We perform an explicit calculation of the electromagnetic energy radiated by
an arbitrary antenna in a medium described by a nonlocal response tensor. We will
show that the Fourier approach described in this chapter may help understanding the
structure of the near-field surrounding the antenna, and therefore the possibility of
localizing energy in complex artificial media.

The method relies on calculating the total energy of the radiated field using
the Fourier integral. We start from the statement of energy conservation as stated in
(11.8). The current J appearing on the RHS is replaced by the current distribution
on the antenna, which is taken as an externally-controlled source Jext. As discussed
in Section 11.1, the energy (work) density transferred to the surrounding field by
this current is given by −Jext · E. The trick in performing general calculation is to
introduce a new quantity Ul (k), which is defined as the density in the k-space of the
energy added to the surrounding field by the antenna when radiating through the lth
mode. That is, by energy conservation, the net time-averaged total energy transferred
to the field through all modes is given by the following equation

T/2∫
−T/2

dt

∫
d3rJext (t, r) · E (t, r) =

∑
l

∫
d3k

(2π)3
Ul (k). (11.97)

Expressing the electric field in terms of the vector potential in the temporal gauge as
E (ω,k) = iωA (ω,k), using the Green’s function of (11.93), and employing the
Pareseval (power) theorem of Fourier analysis, we write the LHS as

T/2∫
−T/2

dt
∫

d3rJext (t, r) · E (t, r) = −
∫

dωd3k
(2π)4 J∗

ext (ω,k) · E (ω,k)

=
∫

dωd3k
(2π)4

i
ε0ω J∗

ext,m (ω,k) Gmn (ω,k) Jext,n (ω,k)

=
∫

dωd3k
(2π)4

i
ε0ω J∗

ext,m (ω,k)
[
GA

mn (ω,k) + GH
mn (ω,k)

]
Jext,n (ω,k)

(11.98)
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Due to the presence of the factor i in the integrand, together with the fact that
the integral must be real, it follows from the basic properties of hermitian and
antihermitian functions (operators) that only the antihermitian part of the Green’s
dyad contributes to the radiation field. Now, by inserting into (11.98) the value given
in (11.96), we finally arrive at an expression of the energy density in the following
form

Ul (k) = Fl [Ξnm (ω,k)] |e∗
l (k) · Jext (ωl (k) ,k)|2 , (11.99)

where Fl is a positive real function with particular details not of direct concern to
us here.10 We will propose an interpretation for the physical meaning of Ul (k).
Consider the inverse Fourier transform

uF,l (r) = �−1
{√

Ul (k)
}

. (11.100)

Next, we use the Parseval theorem to write

∫
d3r uF,l (r) (uF,l (r))∗ =

∫
d3k

(2π)3
√

Ul (k)
√

Ul (k). (11.101)

Since the RHS is by definition the total energy radiated by the antenna in the lth
mode, it follows that the integrand of the LHS, namely ul (r) := |uF,l (r)|2 can be
interpreted as the spatial distribution of the energy density radiated by the antenna
through the lth mode. We have

ul (r) =
∫ ∫

d3kd3k′
√

Fl [Ξnm (ω,k)]Fl [Ξnm (ω,k′)]∗ei(k−k′)·r

× |e∗
l (k) · Jext (ωl (k) ,k) e∗

l (k′) · Jext (ωl (k′) ,k′)| .
(11.102)

This new quantitative measure contains information about the spatial structure of
the time-averaged energy surrounding a radiator specified by its externally enforced
current distribution Jext(t, r). For example, it can be directly used in studying the
localization of the radiated energy surrounding an antenna located inside an artificial
medium described by the dispersion profile χnm (ω,k). In other words, information
about the conversion of the radiation field into near-field (non-propagating Fourier
modes) can be investigated by suitable computation of the measure introduced
above.

10 Although this is by no means obvious, one way of re-arranging terms and factors in the derivation
of (11.99) can lead to a simple interpretation of the factor Fl in terms of the ratios of various stored
energies.
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Another important fact suggested by the expression (11.99) is the following.
Although we are interested here in the localization of energy around the antenna, i.e.,
the time-averaged spatial distribution of energy, we can see from the first argument
of Jext that this distribution does depend on the temporal characteristics of the
current distribution of the antenna.11 In other words, one can engineer the localization
of electromagnetic energy around an antenna not just by manipulating the spatial
distribution of the current on the antenna, but also by the independent degree of
freedom of the time excitation. In principle, the two arguments of the external source
function Jext are obviously independent of each other. The art of antenna design can
be viewed as the method of controlling the functional dependence of the current on
its two spatial and temporal arguments.

11.10 APPENDIX: MAGNETIC MOMENTS IN TERMS OF ELECTRIC
MOMENTS

11.10.1 The Magnetic Moment Term

Multiply the equation of continuity (11.7) by rl and integrate over all space to get∫
d3r

∂ρ (t, r)
∂t

rl = −
∫

d3r rl∇ · J (t, r) . (11.103)

Consider first the LHS of (11.103). By employing the definition of the dipole moment
(11.30), we write immediately∫

d3r
∂ρ (t, r)

∂t
rl =

∂

∂t

∫
d3rρ (t, r) rl =

∂

∂t
pl (t, r) . (11.104)

Now we consider the RHS of (11.103). Write the divergence as ∇ · J (t, r) =
(∂/∂rs) Js (t, r) and integrate by parts through the variable rs to obtain∫

d3r rl∇ · J (t, r) =
∫

d3r rl
∂

∂rs
Js (t, r)

=
∫

d2r
∫

drs rl
∂

∂rs
Js (t, r)

=
∫

d2r
[
Js (t, r) rl|rs=+∞

rs=−∞ −
∫

drs
∂rl

∂rs
Js (t, r)

]
=
∫

d2r
[
Js (t, r) rl|rs=+∞

rs=−∞ −
∫

drs δl
sJs (t, r)

]
=
∫

d2r
[
Js (t, r) rl|rs=+∞

rs=−∞ −
∫

drs Jl (t, r)
]
.

(11.105)

11 At first look, this dependence may appear hidden in the dispersion relation that relates each temporal
frequency ωl to the wavevector k.
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Using the assumption that the surface current Js (t, r) vanishes on the surface of the
integration volume, we obtain

∫
d3r rl∇ · J (t, r) = −

∫
d3r Jl (t, r) := −µl (t, r) . (11.106)

From (11.103), (11.104), and (11.106), we finally arrive at

µl (t, r) =
∂

∂t
pl (t, r) . (11.107)

11.10.2 The Magnetic Quadrable Term

Multiply the equation of continuity (11.7) by rlrm and integrate over all space to
get

∫
d3r

∂ρ (t, r)
∂t

rnrm = −
∫

d3r rnrm∇ · J (t, r) . (11.108)

Consider first the LHS of (11.108). By employing the definition of the electric
quadrable moment (11.31), we write immediately

∫
d3r

∂ρ (t, r)
∂t

rnrm =
∂

∂t

∫
d3rρ (t, r) rnrm =

∂

∂t
qnm (t) . (11.109)

Now let us take the RHS of (11.108). We first decompose the magnetic moment
into the sum of symmetric and anti-symmetric parts as follows

xnJm =
1
2

(xnJm + xmJn) +
1
2

(xnJm − xmJn) . (11.110)



342 New Foundations for Applied Electromagnetics

Now, write again the divergence as ∇ · J (t, r) = (∂/∂rs) Js (t, r) and integrate by
parts through the variable rs to obtain∫

d3r rnrm∇ · J (t, r) =
∫

d3r rnrm
∂

∂rs
Js (t, r)

=
∫

d2r
∫

drs rnrm
∂

∂rs
Js (t, r)

=
∫

d2r
[
Js (t, r) rnrm|rs=+∞

rs=−∞ −
∫

drs
∂

∂rs
(rnrm) Js (t, r)

]
=
∫

d2r
[
Js (t, r) rnrm|rs=+∞

rs=−∞ −
∫

drs (rnδn
s + rmδm

s ) Js (t, r)
]

=
∫

d2r
[
Js (t, r) rnrm|rs=+∞

rs=−∞ −
∫

drs {rnJs (t, r) + rmJs (t, r)}
]

(11.111)
Using again the assumption that the surface current Js (t, r) vanishes on the surface
of the integration volume, we obtain∫

d3r rnrm∇ · J (t, r) = −
∫

d3r [rnJs (t, r) + rmJs (t, r)]. (11.112)

From (11.108), (11.109), and (11.112), we reach∫
d3r [rnJs (t, r) + rmJs (t, r)] =

∂

∂t
qns (t) . (11.113)

The antisymmetrical part in (11.110) can be written readily in the form
1/2εlmnµmn (t), where magnetic quadrable moment µmn is defined as

µnm (t) =
∫

d3r rm Jn (t, r) . (11.114)

Therefore, one can express the axial vector as

m (t) =
1
2

∫
d3r r × J (t, r) . (11.115)

It follows then

εlsnmn (t) = 1
2

∫
d3rεlsn (r × J (t, r))n

= 1
2

∫
d3rεlsn εns′n′rs′Jn′ (t, r)

= 1
2

∫
d3r (δss′δnn′ − δsn′δns′) rs′Jn′ (t, r)

= 1
2

∫
d3r [rsJn (t, r) − rnJs (t, r)]

(11.116)
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where the the definition of the cross product (11.18) was used in the second equality,
and the identity (11.22) was employed for the third equality. Thus, from (11.109),
(11.110), (11.113), and (11.116) we finally arrive to

µln (t) =
1
2

∂

∂t
qln (t) + εlnsms (t) . (11.117)





Chapter 12

The Far-Field Theory of Nonlocal
Metamaterials

In Chapter 12, we develop a general theoretical scheme for the engineering approach
to electromagnetic wave propagation in dispersive materials. Our investigation is
carried out through two stages. First, we focus on the special case where the group
velocity is negative, which may lead (if the medium is lossless) to negative refraction.
In the second stage, we go beyond the first-order approximation of the group velocity
by deriving the second-, and third-order corrections of the power flow due to the
spatial dispersion profile.

12.1 LINEAR PHENOMENOLOGICAL MODEL FOR THE MEDIUM RE-
SPONSE

In this section, we review the basic theory of electromagnetic wave propagation in a
homogeneous, and dispersive medium described by the dielectric tensor ¯̄ε(ω, k) and
the permeability ¯̄µ(ω, k).

The general relation between the electric displacement D and the electric field
E is given by [98]

D (r, t) =
∫

dt′
∫

d3r′ ¯̄ε (r − r′, t − t′) · E (r′, t′) , (12.1)
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where it has been assumed that the medium is time-invariant and spatially homoge-
neous. The Fourier transform of the field is defined as

D (ω, k) =
∫

dt

∫
d3rD (r, t) ejk·re−jωt, (12.2)

which when applied into (12.1) will lead to

D (ω,k) = ¯̄ε (ω,k) · E (ω,k) . (12.3)

Applying the same logic to the magnetic field, we also find

B (ω,k) = ¯̄µ (ω,k) · H (ω,k) , (12.4)

where we have

¯̄ε (ω,k) =
∫

dτ

∫
d3R ¯̄ε (R, τ) ejk·Re−jωτ , (12.5)

¯̄µ (ω,k) =
∫

dτ

∫
d3R ¯̄µ (R, τ) ejk·Re−jωτ . (12.6)

For a source-free region, Maxwell’s equations are given in the following form

∇ × E = −∂B
∂t

, ∇ × H =
∂D
∂t

, ∇ · B = 0, ∇ · D = 0. (12.7)

Assume that a plane monochromatic wave is excited and propagated with fields
given by

E (r, t) = E0 (ω,k) e−jk·r, H (r, t) = H0 (ω,k) e−jk·r. (12.8)

Substituting these fields into the two curl Maxwell’s equation (12.7), taking
the curl of both sides, and using (12.3) and (12.4) with scalar (isotropic) medium
functions, we obtain

k × k × E0 (ω,k) −
(
ω2/c2) ε (ω,k)µ (ω,k)E0 (ω,k) = 0, (12.9)

and from the remaining two divergence Maxwell’s equation (12.7) we find

ε (ω,k)k · E0 (ω,k) = 0, (12.10)
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µ (ω,k)k · H0 (ω,k) = 0. (12.11)

To separate between the transverse (T) and longitudinal (L) waves we assume
in the next part that the medium is nonmagnetic (µ = 1) [?]. Let us assume that

ε(ω, k) �= 0. (12.12)

Then, from (12.10) we obtain k · E0 (ω,k) = 0. This condition when applied to
(12.9) immediately gives the dispersion relation for the transverse waves

k · k = (ω/c)2 n2 (ω,k) , (12.13)

where we have defined the index of refraction as

n (ω,k)2 := ε (ω,k) µ (ω,k) . (12.14)

The longitudinal modes can be obtained by setting ε(ω, k) = 0. Therefore,
from (12.10) we see that k · E0 (ω,k) �= 0. That is, contrary to the transverse wave,
the wave vector here is not orthogonal to the field amplitude.

Generally speaking, the dispersion relations for the L and T modes are different
and should be distinguished from each other by using the appropriate indices l and
t, respectively, whenever possible. However, in this chapter the main focus will
be on transverse waves so these subscripts will be omitted for the simplicity of
notation. Notice that when spatial dispersion is ignored, ε (ω,k) = ε (ω). Hence,
for the longitudinal modes the equation ε (ω,k) = 0 can be satisfied only at discrete
frequencies. In other words, the group velocity ∂ωl/∂k is zero and no energy flow
can be associated with the longitudinal modes (one exception for this is some forms
of plasmas [98]). Now, when spatial dispersion is considered, relation (12.12) is not
only satisfied at a continuous range of frequencies, but may give non-zero group
velocity, contributing to the power flow in the medium.

12.2 NEGATIVE GROUP VELOCITY MEDIA

Let us start with a very general refraction of index given by n = n(ω, k).
The resulting dispersion relation for the transverse mode propagating in infinite,
homogeneous, and isotropic medium is given by (12.13). The group velocity is
defined as [102], [41]

vg =
∂ω

∂k
= ∇kω = x̂

∂ω

∂kx
+ ŷ

∂ω

∂ky
+ ẑ

∂ω

∂kz
. (12.15)
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Our goal now is to derive an equation connecting the spatial and temporal dis-
persion such that the resulting medium supports negative group velocity (NGV)
propagation.

Differentiate both sides of (12.13) with respect to kα, where α = x, y, z, we
get

kα

k
=

∂n (ω,k)
∂kα

ω

c
+

∂ω

∂kα

n (ω,k)
c

. (12.16)

Using the following chain rule

∂n (ω,k)
∂kα

=
∂n (ω,k)

∂k
· ∂k
∂kα

+
∂n (ω,k)

∂ω

∂ω

∂kα
, (12.17)

equation (12.16) can be solved for ∂ω/∂kα to give

vgα =
∂ω

∂kα
=

kα

k − ω
c

∂n
∂k · ∂k

∂kα

n
c + ω

c
∂n
∂ω

. (12.18)

Let us now calculate the dot product between vg and k. We write

vg · k =
∑
α

vgαkα =
1

n
c + ω

c
∂n
∂ω

∑
α

[
kα

k
− ω

c

∂n

∂k
· ∂k
∂kα

]
kα, (12.19)

and after multiplying the numerator and the denominator by k

vg · k =
k

n
c + ω

c
∂n
∂ω

∑
α

[
k2

α

k2 − ω

c

∂n

∂k
· ∂k
∂kα

kα

k

]
. (12.20)

Notice that ∑
α

k2
α

k2 = 1 (12.21)

and

−
∑
α

ω

c

∂n

∂k
· ∂k
∂kα

kα

k
= − ω

c

∂n

∂k
· k
k

= −ω

c

∂n

∂k
, (12.22)

where the relation ∂k/∂kα = ûα has been used. Therefore, (12.20) reduces to

vg · k = k
1 − ω

c
∂n
∂k

n
c + ω

c
∂n
∂ω

. (12.23)
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It can be shown by the same procedure that |vg| |k| = |vg · k|. Thus, the angle
cosine cos θ = vg · k/|vg| |k| is either 1 or -1. This is expected since we assumed
the medium to be homogeneous and isotropic.1 Therefore, we define the negative
group velocity as the case when the angle between vg and k is 180◦. By defining
γ := |vg| and assuming k > 0, (12.23) can give the following result for NGV

ω

c

∂n (ω,k)
∂k

− γ

c

(
1 + ω

∂

∂ω

)
n (ω,k) = 1. (12.24)

12.3 THE PHYSICAL MEANING OF NEGATIVE GROUP VELOCITY

Negative refraction (NR) must occur at the interface separating the conventional from
the meta-material if the Poynting vector S and the wave vector k in the metamaterial
are oriented opposite to each other. That is, if we have

S · k < 0. (12.25)

We will refer to (12.25) here as the main sufficient condition for obtaining NR in our
metamaterial. The question now is whether the requirement

vg · k < 0 (12.26)

is equivalent to condition (12.25). This is identical to asking whether the Poynting
vector S and the group velocity vg are oriented in the same direction. The answer is
that in general they are not [101], [97]. The two vectors vg and S become parallel
if the medium is lossless or has small dissipation. In this case, it is possible to write
[101], [97], [41]

S = Wvg, (12.27)

where W is the total energy density stored in the medium. Since at thermodynamic
equilibrium W > 0 [102], it follows that S and vg are parallel. For lossy media, the
angle between these two vectors may vary considerably depending on the material;
no a priori conclusion can be stated without examining the specific dispersion and
losses profile.

It is common in the literature of metamaterials nowadays, following the orig-
inal work of Veselago [145], to associate negative-refraction media with the hand-
edness as being left-handed (LH), in contrast the normal right-handedness (RH) of

1 In other words, the dependence of the refraction index n on the wave vector k can be written
idnetically as either n(k) or n(k).
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conventional materials. However, it has been noticed long before Veselago’s work
that negative refraction is a more general phenomenon that should be addressed in
terms of group velocities, not the algebraic signs of the medium parameters [118],
[119]. In particular, it was predicted that negative refraction may occur even when
both ε and µ are positive [97], a situation consistent with (12.24), which gives the
exact details of how to choose the temporal and spatial dispersion of the medium
such that the resulting waves propagate with NGV. If, furthermore, the medium has
low dissipation, equation (12.25) is satisfied and the medium will support NR.

From (12.23), we write

vg =
1 − ω

c
∂n
∂k

n
c + ω

c
∂n
∂ω

|k|
k

(12.28)

and

vp =
ω

k

|k|
k

=
c

|n| âk. (12.29)

The correct interpretation of the group velocity is that it is the speed of propagation
of the smoothly varying wave packet’s envelope of relatively small bandwidth (first-
order approximation). This velocity is the same as the energy velocity in lossless
media but in general lossy materials this is not correct [101], [113].

Assume that a certain direction in space is chosen as a reference. Thus, with
respect to this direction each of vg and vp can be either positive or negative. Will
now show that the condition (12.25) represents a more general definition of a broader
type of metamaterials by isolating and identifying the following four distinct cases,
depending on the algebraic signs of the group velocity and the wave vector.

Case I (vp > 0, vg > 0, n > 0.) This is the conventional medium. Here the wave
envelope and phase propagate away from the source and positive refraction
occurs all the time.

Case II (vp < 0, vg > 0, n < 0.) This is the so-called Veselago medium. Here
the wave envelope propagates away from the source while phase propagates
towards the source. Negative refraction occurs in this case.

Case III (vp > 0, vg < 0, n > 0.) This represents the main interest of this
chapter. Here the wave envelope propagates toward the source while the phase
propagates away from the source. However, although n is positive, negative
refraction may occur if the medium has small dissipation and a carefully chosen
profile of the spatial dispersion is implemented.
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Case IV (vp < 0, vg < 0, n < 0.) Here, both the wave envelope and phase
propagate toward the source. In this case negative refraction will appear for
small losses but this cannot be achieved using only temporal dispersion.

To get a better understanding of the four cases listed above we need to resort
to important distinction between normal and anomalous dispersion.2 We will prove
now the previous statements. The first and the second cases are self-evident and no
further illustrations are needed here. For the third case, assume first that the medium
has small losses so we can apply (12.27) and write

S · âk = W
c − ω∂n/∂k

n + ω∂n/∂ω
. (12.30)

Consider first a medium showing only temporal dispersion (∂n/∂k = 0). Since
n > 0, then the only way for vg to become negative is to have ∂n/∂ω < 0.
This is, however, the region of anomalous dispersion, which corresponds usually
to high losses. This means that negative refraction is not guaranteed in this case.
We must stress here that a metamaterial in which the group velocity is negative is
still meaningful even when there is no negative refraction. We need to refer to vg as
only the velocity in which a wave packet propagates without appreciable distortion
[113]. Such media has been already demonstrated experimentally more than three
decades ago where the group velocity was reportedly measured with supraliminal
negative values in carefully designed media having anomalous dispersion [146],
[147], [148].

When considering spatial dispersion, the dot product in (12.30) can be made
negative by solutions of equation (12.24) as we will show in later sections. In this case,
no assumption about the sign of ∂n/∂ω < 0 is necessary and condition (12.26) can
be satisfied in low dissipation media, leading to negative refraction. Thus, spatial
dispersion is the crucial factor in permitting negative refraction in such kind of
metamaterials (Case III).

Finally, Case IV will be treated briefly here. Consider first the scenario when
the spatial dispersion is neglected. Here, since n is already negative, (12.28) may
suggest that obtaining NGV in a negative phase velocity medium is possible without
operating in the region of anomalous dispersion. However, in Appendix 12.5 we
show that causality considerations do not allow this. If the losses are small, then it is

2 Normal dispersion is characterized by a medium function, say n for example, which is monotonically
increasing. Hence, ∂n/∂ω > 0. Anomalous dispersion is then defined as the opposite case when
∂n/∂ω < 0. In general, we know from experiments that anomalous dispersion is correlated with
lossy media [116], [33], [113]. For a rigorous proof that anomalous dispersion is a necessary condition
for the medium to be lossy see [102].
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impossible to have both NGV and also vp < 0. Experimental data in [149], [150] are
consistent with this conclusion as it shows that vg and vp becomes simultaneously
negative in the region of anomalous dispersion. Therefore, in Case IV it is not
guaranteed to observe NR even though n < 0. The situation again will change
when spatial dispersion is considered where careful choice of the dispersion profile
may lead to NGV in the normal dispersion region, leading therefore to NR.

12.4 EXACT SOLUTION FOR THE DISPERSION ENGINEERING
EQUATION

12.4.1 Geometric Interpretation

Before proceeding into the exact analytical solution of (12.24), it will be very
insightful to provide a geometrical interpretation of this solution. One of the
applications of such interpretation will be setting the stage for necessary and
sufficient conditions required for the existence and the uniqueness of the solution.
Those are very important as they will illuminate the physically feasible conditions
in which spatial and temporal dispersion can conspire with each other to produce
NR propagation with a pre-specified group velocity profile.

The relation ω = ω(k) is simply the dispersion law of the medium. We may say
that this equation determines a family of curves in the plane upon which the general
solution n = n(ω, k) will be constructed. Notice that this function is a surface in the
ω-k-n 3-dimensional space. Therefore, as shown in Figure 12.1, one can consider
the family of curves ω = ω(k) as base curves upon which the solution surface would
be found.

12.4.2 Development of the Exact Solution

Let us consider the dispersion relation ω = ω(k) as an implicit parametrization of
the solution in terms of k. Then it is possible to write

d

dk
n (ω (k) , k) =

∂n

∂k
+

∂n

∂ω

dω

dk
. (12.31)

From the defintion of group velocity and the dispersion relation we have

dω

dk
= −γ (ω, k) . (12.32)
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Figure 12.1 Geometric interpretation for a solution to the dispersion engineering equation (12.24). The
solution n = n(ω, k) is a surface in the ω-k-n 3-dimensional space.

Thus, from (12.31) and (12.32) we obtain

ω
c

dn
dk − γ

c n = ω
c

{
∂n
∂k + ∂n

∂ω
dω
dk

}
− γ

c n
= ω

c

{
∂n
∂k − γ ∂n

∂ω

}
− γ

c n
= ω

c
∂n
∂k − ωγ

c
∂n
∂ω − γ

c n

(12.33)

And from (12.31) we readily get the following ordinary differential equation (ODE)

ω (k)
c

dn (ω, k)
dk

− γ (ω, k)
c

n (ω, k) = 1. (12.34)

Therefore, the solution to the original partial differential equation (12.24) can be
thought of as solving the ODE (12.34) along the path (curve) described by the ODE
(12.32). Notice that γ is in general an arbitrary positive function of both ω and k.
Therefore, although the problem has been reduced into two ODEs, still no general
solution is available analytically.

12.4.3 Solution for k-Dependent Group Velocity

Consider the boundary-value problem consisting of the PDE (12.24) together with

∂γ

∂ω
= 0, n (ω, k = k1) = φ (ω) ∀ ω1 < ω < ω2, ω1 > 0, k1 > 0, (12.35)
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where k1 < k2 and ω1 < ω2 are positive real numbers. Assuming that γ is function
of k only, it is possible to directly integrating equation (12.33) to obtain

ω (k) = −
∫

dkγ + a. (12.36)

Substituting (12.36) into (12.34) we find(
−
∫

dkγ + a

)
dn

dk
− γn = c. (12.37)

Let us assume for the moment that ω �= 0 for any k. Then we can write

dn

dk
− γ

−
∫

dkγ + a
n =

c

−
∫

dkγ + a
. (12.38)

This equation admits the following exact solution

n (k) = e−F

(
c

∫
dk eF

−
∫

dkγ (k) + a
+ b

)
, F =

∫
dkγ (k)∫

dkγ (k) − a
, (12.39)

where a and b or constants to be determined later. Since we are solving the ODE
(12.34) along the trajectory specified by (12.32), then b is not independent of a, and
we may write in general b = f (a), where the function f is to be fixed by enforcing
the boundary condition imposed on the function n = n(ω, k).

12.4.4 Solution for Constant Group Velocity

Let us evaluate the general solution for the case when γ is constant; i.e., we want to
impose the condition that the group is velocity is constant but negative. In this case,
(12.36) gives

ω (k) = −γk + a. (12.40)

In Figure 12.2 we show the geometric structure of this case. The linear segments
shown between the two lines k = k1 and k = k2 represent the permissible
characteristic curves. Substituting (12.40) it into the general solution we obtain after
evaluating the integrals

n =
ck + f (a)
−γk + a

. (12.41)
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Figure 12.2 Geometric interpretation for solution of the dispersion eningeering equation (12.24). The
solution n = n(ω, k) is a surface in the ω-k-n 3-dimensional space.

Substituting a = ω + γk we get

n (ω, k) =
ck + f (ω + γk)

ω
(12.42)

To find the function f , we apply the boundary condition n (ω, k = k1) = φ (ω)
to get f (ω + γk1) = ωφ (ω) − ck1. Using the transformation x = ω + γk1 we
determine the function f to be

f (x) = (x − γk1) φ (x − γk1) − ck1. (12.43)

The final solution can be written then as

n (ω, k) =
c (k − k1)

ω
+

1
ω

[ω + γ (k − k1)]φ (ω + γ (k − k1)) . (12.44)

The importance of the general expression given in (12.44) is evident. Disper-
sion engineering in this case amounts to choosing the right spatial dispersion profile,
starting at initial data consisting of the temporal dispersion at a specific value of the
wavenumber k, such that the resulting wave propagation exhibits a constant NGV.
Therefore, while the the desired anti-parallel nature of S and k is obtained, the
group velocity does not vary with frequency, leading to minimal distortion in signal
transmission for communication applications for example.
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For a medium with small losses, Kramers-Kronig relations implies

∂n

∂ω
=

(k − k1) (c − γφ)
−ω2 +

γ (k − k1)
ω

∂φ

∂ω
> 0. (12.45)

Let us choose an initial data in the normal dispersion regime (low losses) such that
∂φ/∂ω = Aω2, A > 0. In this case

∂n

∂ω
=

(k − k1) (c − γφ)
−ω2 + γ (k − k1) Aω, (12.46)

which can be to satisfied, for example, at sufficiently high frequencies. Another
possibility would be to choose φ (ω + γ (k − k1)) > c/γ > 0.

12.4.5 Zero-Temporal Dispersion

The consideration of spatial dispersion will lead to a new picture for the special
case when temporal dispersion is ignored. We start by the following simple theorem:
Assuming constant γ > 0 (constant negative group velocity), there is no possibility
to achieve NR when the temporal dispersion is zero. To prove this, we notice that ti
follows immediately from (12.44) that for constant NGV and ∂n/∂ω = 0 we get
φ (ω + γk) = −c/γ, in which it follows that the corresponding spatial dispersion
profile is simply n (k) = −c/γ. Thus, the refraction index is also independent of k
and negative. However, we proved before that in order to have NR we must have very
small losses. In this case a negative index of refraction can be achieved only with
double negative material. To achieve negative refraction in such a medium we must
have temporal dispersion [145]. Therefore, we conclude that there is no physical
solution corresponding to n above.

Moreover, from (12.28) it follows that in the case of zero-temporal dispersion
the group velocity takes the form

vg =
c

n
− ω

n

∂n

∂k
. (12.47)

We notice two important things here. First, although n does not depend on frequency,
the group velocity will have a linear dependence on frequency for nonzero spatial
dispersion. Thus, we cannot say that having a refraction index that does not depend
on frequency means a group velocity that is constant. This statement is true only if
spatial dispersion is ignored.
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Second, from (12.47) it is clear that one can achieve NGV if we choose ∂n/∂k
large enough. In particular, if n is positive, we just need to satisfy ∂n/∂k > c/ω.
Therefore, if losses are small, it is possible to achieve NR in media that has no
temporal dispersion.

12.5 APPENDIX: PROOF FOR CASE IV

From (12.28) and (12.29) we can write

vg =
n

n + ω∂n/∂ω
vp. (12.48)

For negative phase velocity media we have n = −√
µε. Therefore, it is possible to

write
n + ω∂n/∂ω = n + ω∂

(
−√

εµ
)/

∂ω

= −√
εµ − ω

2
√

εµ

[
ε ∂µ

∂ω + µ ∂ε
∂ω

]
= −√

εµ
{

1 + ω
2εµ

[
ε ∂µ

∂ω + µ ∂ε
∂ω

]}
.

(12.49)

From Kramers-Kronig relations we know that in a medium with small losses
∂/∂ω (ωε) > 0 and ∂/∂ω (ωµ) > 0 [102]. This in turns yields ∂ε/∂ω > −ε/ω
and ∂µ/∂ω > −µ/ω. Noticing that both ε and µ are negative, the previous two
inequalities when combined together will give µ∂ε/∂ω + ε∂µ/∂ω < −2εµ/ω, or

1 +
ω

2εµ

[
ε
∂µ

∂ω
+ µ

∂ε

∂ω

]
< 0. (12.50)

Therefore, (12.48), (12.49), and (12.50) lead to group and phase velocities with signs
opposite of each other.





Chapter 13

The Near-Field Theory of Nonlocal
Metamaterials

13.1 INTRODUCTION

The purpose of this chapter is to continue and expand the proposals in Chapter 12,
which were mainly concerned with source-free prorogation, to the more difficult
and richer problem of radiation in the near zone of sources embedded in complex
media exhibiting nonlocality. The chapter is brief and does not present in full length
the technical details of the results attained therein. The general theory of nonlocal
electromagnetic theory, including further examples and details, will be treated by
one of the authors in a future monograph.

The main motivations for undertaking this study are the following:

1. By modeling complex environments surrounding conventional antenna sys-
tems, such as mobile and MIMO arrays, using nonlocal material response
function, it is possible to obtain new insights into the fundamental changes in
the performance of these conventional systems brought up by operating them
in non-standard or non-idealized surroundings.

2. Investigations of nonlocal media can be considered a subject of interest in
itself since nonlocal metamaterials constitute a major extension of the now
traditional concept of metamaterials, the latter being typically understood
within the classic picture of temporal dispersion.

3. It is well known that nano-scale structures cannot be modeled using macro-
scopic Maxwell’s equations for all purposes. The most general level of the
electrodynamics of nanostrucutres involves a nonlocal kernel in the material
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response that is essential at the microscopic level. Although averaging these
microscopic information can lead sometimes to classic material response with
no effective spatial dispersion, for completeness and rigorous understanding
of the physics of nano-scale problems, nonlocality remains essential.

4. New engineering applications can emerge from considering the novel physical
phenomena exhibited by nonlocal media. Indeed, in this chapter we point out
several of such potential applications related to energy localization, retrieval,
harvesting.

It will be shown in Section 13.3 below that the essence of the near-field theory
of nonlocal media is the derivation of a new dyadic Green’s function for point sources
embedded in such media. This will be achieved by working in the Fourier domain and
it involves a significant generalization of the classic Weyl expansion. The new Weyl
expansion is very different from the conventional one since new poles in the complex
domains have to be included in the complex plane counter integration encountered
while performing the inverse Fourier transformation needed to obtain the Green’s
function in the spatial domain. We will not be able to go into all the details of the
derivation but some of their immediate physical consequences and potential novel
applications will be provided thereafter.

13.2 BASIC MODEL FOR ELECTROMAGNETIC NONLOCALITY IN
MATERIAL MEDIA

In this chapter, we follow the Fourier transform approach to the electrodynamics
of nonlocal media presented in Chapter 11, which is the most natural mathematical
formalism suitable for the study of spatial problems. The approach is widely used
in the physical literature, especially the literature related to the optics of crystals. In
general, all electric and magnetic responses are treated in a single dielectric tensor
instead of the conventional division into electric and magnetic polarizations. In
agreement with this proposed revision, which is essentially contained in [97], [98],
[103], we write the relation between the electric field E and displacement vector D
as

Dn (ω,k) =
∑
m

εeq
nm (ω,k) Em (ω,k), (13.1)

Dn (t, r) =
∫

dt′
∫

d3r′
∑
m

εeq
nm (t − t′, r − r′) Em (t′, r′), (13.2)
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where εeq
nm is the equivalent dielectric tensor of the Fourier space approach.

The relation between this tensor and the conventional dielectric and magnetic
susceptibilities can be found in Chapter 11.

It can be shown from first principles that the most general form of the dielectric
function is given by [97], [105]

εeq
nm (ω,k) = εL (ω, k) κnκm

+εT (ω, k) (δnm − κnκm) + iεR (ω, k) εnmlκl,
(13.3)

where κm = km/k, k = |k| . Here, the quantities εL(ω, k), εT (ω, k), εR(ω, k) are
the longitudinal, transverse, and rotational permittivities, respectively. The rotatory
parts can be ignored in media that don’t exhibit optical activity.

We postulate additional simplifying hypotheses about this environment by
assuming that the effective medium is 1) infinite, 2) isotropic, 3) homogeneous in
space and 4) shift-invariant in time, 5) lossless, 6) nonmagnetic, and 7) optically
inactive. Here, we also make the further assumption that 8) the longitudinal and
transverse dielectric functions are equal. In this case, we can write [140], [105]

D (r) =
∫

R3
d3rε (r − r′, ω)E (r). (13.4)

The effective medium1 modeling the surrounding complex environment reduces then
to a general scalar response function, namely ε(r − r′, ω).

Although it is occasionally mentioned in textbooks that spatial dispersion is
possible only with tensor dielectric function, the special assumptions stated above
insure that a scalar function is enough. Note that for this condition to be true, the
equality of the longitudinal and transverse responses is essential. This will require a
high symmetry and in practice one may conjuncture that most media don’t possess
such symmetry. However, as shown above, the idealized medium described in this
chapter is physically possible and hence realizable. Moreover, it is the most simple
nonlocal medium imaginable, and therefore it is essential that an initial theory of
near-field nonlocal electromagnetics be developed for such basic and fundamental
environments. As will be seen in the following parts, even with such simplified
nonlocal media, completely new physical phenomena come in to the picture.

By the term nonlocal medium we refer to a material described by response
functions similar to (13.1). As we noticed previously, it follows from this definition
that the material exhibits a memory-like behavior in the sense that the response to a

1 Starting from equation (13.4), we drop the superscript ‘eq’ from dielectric function symbols.
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field excreted at a particular location appears to depend on the field values at other
locations. We will show below that this phenomenon is quite general and does not
refer just to a particular physical process occurring in natural crystals.

First, notice that we arrive at the definition (13.1) through a Fourier transform
approach to the electromagnetic fields. Moreover, we are able to derive a relation
connecting the traditional multipole approach and the Fourier approach. It is then
found that nonlocality or spatial dispersion arises very naturally in accounting for
nonmagnetic media. However, it is in the nature of the Fourier approach itself to
introduce the spatial spectral variable k into the description of the material medium,
and hence one can view nonlocality as a characteristics of the formalism itself, rather
than a particular label given to an exotic physical process, for example exciotons-
polaritons in crystal optics.

Let us start by providing a global qualitative look at the response of material
media in classical and quantum physics. This view will serve as standard theoretical
background upon which we measure our understanding of how to design artificial
media.

Imagine that the material is composed of a system of uncoupled (hence, in-
dependent) oscillators. Each oscillator can interact with the applied electromagnetic
fields by producing a dipole moment p. From the basic picture of Lorentz models,
we can express the functional dependence of this induced dipole moment on the
temporal frequency ω by the broad Lorentzian form ζ

/(
ω2 − ω2

0
)
, where ω0 is a

constant called the eigenfrequency or the resonance frequency, and ζ the oscilla-
tor strength. In general, each independent oscillator will resonate with the applied
field according to its own eigenfrequency and strength, and the medium’s overall
response will be taken as the sum of all individual resonances. In this view, it is
useful to think of each oscillator as representing an ‘atom’, even when its actual
physical dimensions are much larger than real atoms. The essential idea in the art
of artificial material design is taking this conceptual framework into its extreme by
assuming that one can manipulate each atom individually in order to control and
tailor the resulting material responses. The assumption that the atoms are uncoupled
will be translated to the fact that the resulting eigenfrequency ω0 and oscillator
strength ζ don’t depend on wavelength, or equivalently on k. For natural materials
observed and studied through macroscopic electromagnetics, the atomic separation,
for example in periodic structures like crystals, denoted here by a, is very small
compared with the operating wavelength, i.e., we have a/λ  1. In this case, all
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atoms appear to be in perfect phase synchronization and no significant coupling
mechanism takes place.2

The situation is dramatically different in periodic structures, like photonic
crystals and frequency selective surfaces, where, in this case, the operating wave-
length can become appreciable compared with the characteristic spatial scale of the
separation between the atoms (or unit cells), and hence interesting electromagnetic
behavior can arise, like stopbands, localization, etc. However, it is still possible to
describe all these complex structures by employing an effective dielectric function
that is nonlocal. Such function can contain the full information of the symmetry group
of the periodic structure. Therefore, Maxwell’s equations, written in terms of these
equivalent response functions, can be appropriated to describe the electromagnetism
of the medium without explicitly enforcing a set of boundary conditions.3 Aside
from the economic advantage of such formulation, allowing the effective dielectric
function to become nonlocal has the merit of bringing the full power of the conceptual
framework of effective medium theory right to the fore even though the artificial
medium under consideration may not satisfy the natural condition of infinitesimally
small atomic constituents.

13.3 DERIVATION OF THE DYADIC GREEN’S FUNCTION OF A SPA-
TIALLY RESPONSIVE (NONLOCAL) MEDIUM

In order to study the structure of the near field associated with a source embedded
within this medium, we need to compute the dyadic Green’s function of the
problem. This we endeavor to achieve using the Fourier transform method. In
this case, the relation (13.4) reduces to D (k) = ε (k, ω)E (k). Here, ε (k, ω) :=
F {ε (r − r′, ω)}, where F is the Fourier transform operator applied to the spatial
variable r − r′ and k := |k|.

Let a point source J (r) = α̂δ (r − r′) be located at r′. Working in the spatial
Fourier space, we can derive from Maxwell’s equations and the definition of the
dyadic Green’s function the following algebraic (tensor) relation −k×k×Ḡ (k, r′)−
ω2ε (k, ω) Ḡ (k, r′) = Īe−ik·r′

[103],[108]. Solving for Ḡ (k, r′) and then applying
the inverse Fourier transform operator, we find

Ḡ (r, r′) =
1

(2π)3

∫
R3

d3k

[̄
Iω2ε (k, ω) − kk

]
eik·(r−r′)

ω2ε (k, ω) [k2 − ω2ε (k, ω)]
. (13.5)

2 The fundamental pre-condition for this to be true is that the fields are averaged on a spatial scale
much larger than this natural characteristic spatial scale, i.e., the atomic separation a.

3 For example, see [142].
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Figure 13.1 Distribution of complex poles introduced by the nonlocality of the medium.
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In order to apply the theory of the near field developed in Chapter 4, we introduce
a cartesian coordinate system xyz and attempt a spectral expansion of the Green’s
function along the z-axis as in the classical Weyl expansion. Therefore, we must
evaluate first the kz integral in (13.5) and express the result as a spectral expansion in
terms of the transverse variables kx and ky . Notice that since the medium is assumed
to be completely symmetric, the evaluation of (13.5) in the manner just described
does not depend on the orientation of the chosen (local) coordinate system. Our
hope then is to investigate whether the integral can be split into propagating and
nonpropagating parts and subsequently break the rotational symmetry in order to get
an insight into the structure of the near field as was done successfully with antennas
radiating in free space.4

However, in order to proceed further, a specific but still general enough
restriction on the dielectric function ε (k, ω) must be made. We will assume that
the spatial response of the environment is nonresonant. In this case, ε (k, ω) can be
considered analytic in k. Furthermore, since the medium is completely symmetric,
we must also have ε (k, ω) = ε (−k, ω).5 Therefore, only even powers will emerge
in the Taylor series expansion

ε (k, ω) =
∞∑

n=0

εn(ω)k2n = ε0 + ε1k
2 + ε2k

4 + · · ·. (13.6)

The truncation of the series by N terms will be called the N th-order class of
nonresonant environment, and this is the most general situation to be encountered in
practice.6 It turns out that the finite series corresponding to the N th-order medium
can be treated in exact manner using the methods of contour integration in the
complex kz plane. Indeed, in this case, the integrand in (13.5) when viewed as a
complex function of kz will possess pole singularities given by the solution of the
two equations

ε
(
k2

x + k2
y + k2

z , ω
)

= 0, (13.7)

k2
z = ω2ε

(
k2

x + k2
y + k2

z , ω
)

− k2
x − k2

y, (13.8)

where the unknown is kz . Here, (13.7) corresponds to longitudinal poles while the
(13.8) characterizes transverse poles.

4 Cf. Chapter 4
5 Cf. Chapter 11.
6 We are excluding pure quantum elementary excitations like excitons [97], [139], which exhibit

resonant spatial dispersion effects. Such special scenarios can be treated on case-to-case basis. For
details about the microscopic quantum origin of spatial dispersion in a model independent way, see
[141], [142].



366 New Foundations for Applied Electromagnetics

The two relations above are the fundamental near field engineering equations
since their solution will completely determine the structure of the field near to
the source in spatially responsive environments. We expect that the design and
synthesis of final physical prototypes of specially-engineered nonlocal media for
near applications will require adequate understanding of the mathematical behavior
of (13.7) and (13.8).

For an N th-order class, (13.7) and (13.8) are polynomial equations in k of
order 2N . Therefore, they are effectively also polynomial equations in kz with the
same order when kx and ky are treated as constants. Therefore, by factoring the
denominator of the integrand of (13.5), we can express the latter as a rational function
multiplied by exp(ik · (r − r′)). Furthermore, we notice that for N th-order medium
with N > 0, we have

lim
|kz|→∞

Īω2ε (k, ω) − kk
ε (k, ω) [k2 − ω2ε (k, ω)]

= 0. (13.9)

Therefore, all the conditions of Jordan’s lemma are met and we can evaluate
the kz-integral in (13.5) using the residue theorem [67]. The residues are those
corresponding to the roots of (13.7) and (13.8). The Green’s function of the nonlocal
medium can then be expanded in the following form

Ḡ (r, r′) =
2N∑
n=1

[
ḠT

n (r, r′) + ḠL
n (r, r′)

]
, (13.10)

where

ḠT,L
n (r, r′) = 1

ω2

∫
R2 dkxdky ×

[̄Iω2ε(k,ω)−kk]e−ikx(x−x′)−ikx(y−y′)e−ikT,L,n|z−z′|
N∏

m=1
m
=n

(k2
T,L,n−k2

T,m−k2
ρ)

N∏
m=1
m
=n

(k2
T,L,n−k2

L,m−k2
ρ)

√
k2

T,L,n−k2
ρ

. (13.11)

which were obtained by direct application of the residue calculus [67].
The expression (13.11) provides the required generalization of the classic Weyl

expansion when the point source is embedded into a nonlocal medium. As can be
seen from at a glance, this is considerably more complicated that the case when
there is only temporal dispersion. In fact, the derivation above implies that whatever
is the complexity of a given temporal dispersion, no essential change in the Weyl
expansion will follow. However, only with spatial dispersion can completely new
phenomena arise. Brief proof and examples of how this happens will be given in the
remaining parts of this chapter.
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13.4 RUDIMENTS OF A THEORY FOR COMPLEX POLES ENGINEER-
ING IN NONLOCAL MEDIA

From the fundamental theorem of algebra, each of these two equations in k will have
2N (possibly repeated) complex roots, say kT

n , kL
n , n = 1, 2, ..., 2N , for transverse

and longitudinal poles, respectively. There exists two rules governing the distribution
of these roots in the complex kz plane, see Figure 13.1. The first is that since only
even powers in k appear in (13.7) and (13.8), then for each root kT,L

n , −kT,L
n is also

a root.
The second rule results from our assumption that the medium is lossless, which

makes all the coefficients of k2n real. In this case, for each complex roots, the
conjugate is also a root. In general, among each set of 2N roots, N will correspond
to the expression of the Green’s function for z > 0 while the remaining poles
(obtained by negating the first set) are associated with the (symmetric) expression
for z < 0. Therefore, the number of independent poles is N transverse poles and N
longitudinal poles, with a possible reduction in number when some of these poles
are complex.

We will not present the calculations of the kz integral but mention mainly that
the expression provides effectively a spectral expansion of the Green’s functions in
terms of modes indexed by kx and ky , where kz for the nth transverse/longitudinal
pole is given by the relation

kT,L
z,n = ±

√(
kT,L

n

)2
− k2

x − k2
y. (13.12)

The choice of the sign is made in each case to satisfy the radiation condition at
infinity.

Detailed discussion of the physical interpretation of the results will be given
elsewhere. Here, we mainly present some of the most interesting features. We start by
the observation that if the poles are all real, then the structure of the near field is similar
to the situation studied for free space Part I. The situation becomes dramatically
different when one of the poles is in the second (forth) quadrant, with very small
imaginary part. This pole type will give rise to backward wave propagation. For
small kx and ky , it will effectively couple to the far field zone, giving rise to a
negative-group-velocity wave, in perfect agreement with the conclusion arrived to
in Chapter 12 using a source-free analysis.

For complex roots with non-negligible imaginary parts, the two rules govern-
ing the distribution of the poles will force additional poles to appear in the other
quadrants of the complex kz plane. The field associated with the four poles is not
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pure evanescent, but has the form of attenuating propagating mode, where propaga-
tion includes both forward and backward phase shift. If all the poles are of this type,
which is possible because equations (13.7) and (13.8) have even order, then no pure
propagating modes in the antenna radiation are possible and we predict then that the
field is fully localized by the medium. Figure 13.1(bottom) summarizes the physical
interpretation of the nonlocal medium Green’s function poles.

13.5 APPLICATIONS FOR NEAR-FIELD ENGINEERING, METAMATE-
RIALS, AND NANOELECTROMAGNETICS

We mentioned in the introduction that the first motivation for understanding the
physics of radiation and propagation in nonlocal media is the need to model complex
environments surrounding conventional systems such as mobile devices. Indeed,
when the medium is very dense, it is possible as a first approximation to simplify
the fields by spatial averaging on an effective wavelength larger than the typical
inter-element spacings between the constituents of the complex environment. In this
case, the first important model of the new electromagnetic features introduced by
this surrounding is the inclusion of explicit dependence on k in the dielectric tensor
of the effective medium.

One may also work in the converse direction. Specifically, it is possible to
envision the scenario where the electromagnetic engineer already starts with an
artificial medium described by a nonlocal dielectric function in an attempt to use the
new properties of this environment to modify and shape the radiation characteristics
of an antenna inserted into his/her medium, see Figure 13.2.

The theory developed in this chapter provides some indications about how this
program can be realized. Indeed, by engineering the poles of the nonlocal MTM to
lie deep in the complex plane, we showed than radiation energy can become totally
confined within a finite shell around the source. The thickness of this shell depends
directly on how far one can push the complex poles away from the real axis in
Figure 13.1. This potential localization can be used in circuits and systems to store
electromagnetic energy in the medium surrounding them, possibly recovering this
energy in later time or sending it to another location.

Another potential engineering potential of using nonlocal MTMs for near-
field engineering is depicted in Figure 13.3 and is based on the expansion of
the medium Green’s function to several terms each corresponding to longitudi-
nal/transverse pole as shown in (13.10). Each pole will correspond to a “channel”
described by its corresponding Green’s function ḠT,L

n (r, r′). The total radiated
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Figure 13.2 A nonlocal MTM is used to engineer the NF of an antenna embedded inside the medium.

field in the presence of the nonlocal MTM is the sum of all these channels or filters.
Therefore, in a way formally resembling far-field antenna arrays, a nonlocal MTM
with properly designed poles can act like a near-field array though there is only one
antenna present, giving rise to what we call virtual near-field arrays, a phenomenon
physically impossible without nonlocality. This feature can be used in shaping the
near field. Indeed, since the MTM designer can change with the locations of the
complex poles, the relative form and strength of each “channel” ḠT,L

n (r, r′) can be
changed in turn in order to effect a desired form in a way similar to pattern shaping
of far-field antenna arrays radiating in free space.

Finally, we present brief remarks on the emerging field of nanoelectromagnet-
ics. Since nano-antennas and nano-scatterers appear to obey a form of Maxwell’s
equations essentially nonlocal in nature [142], knowledge of how macroscopic sys-
tems behave in the presence of complex environments modeled as nonlocal effective
media (a direct example is periodic structures) can help researchers further un-
derstand the hitherto unexplored consequences of replacing traditional Maxwell’s
equations by the new nonlocal ones valid at the microscopic scale. Conversely,
research in nanoelectromagnetics can influence microwave antenna design by ex-
ploiting the formal similarly in the mathematical structures of the electrodynamics at
the nanoscale and nonlocal macroscopic electromagnetics such as the one developed
in this chapter.
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Figure 13.3 Virtual near-field array created by the additional complex poles introduced by nonlocality.

13.6 CONCLUSION

The chapter proposed a program for the study of electromagnetic radiation in the near
zone of sources embedded in complex media modeled as nonlocal materials. The
basic method first obtaining the Green’s function of this medium (the electromagnetic
fields radiated by point source) and then understanding the physical content of the
solution. Working in the spectral domain, the nonlocal medium Green’s function has
been obtained by generalizing the Weyl expansion to nonlocal medium. It was found
that nonlocality introduces qualitatively new features in the solution not seen before
in temporal dispersive media. For instance, the spatial structure of the antenna near
field can be controlled by a properly designed surrounding nonlocal medium. It is
found that backward propagation in the near field zone can exist in the near-zone
of nonlocal media. Furthermore, it is also possible to achieve full localization of
the field, which is significant for energy applications. This opens the door for novel
potentials for controlling and engineering the radiation fields by carefully designing
special complex surrounding media. Applications of nonlocal metamaterials for near
field engineering were described and some connections with nanoelectromagnetics
pointed out.
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Chapter 14

Basic Applications of the Antenna Current
Green’s Function

14.1 INTRODUCTION

In both theoretical and applied electromagnetics, it has always been the objective to
search for intuitive methods for visualizing and handling the analysis of propagation
and radiation problems. Such methods, provided they exist in a mature form,
permit the systematic extension of techniques originally developed for simple
systems in order to deal successfully with much larger and considerably more
complex structures. The availability of advanced methodologies, however, rests
entirely on a correct and rigorous mathematical understanding of the nature of the
physical problem at hand; afterwards one may decide, following typical patterns
of progressive learning through trial and error, on which, methodology best reflects
the most productive approach to the description and analysis of general radiating
structures.

The Antenna Current Green’s Function (ACGF) formalism has been recently
proposed (in a brief outline) for the analysis of general electromagnetic systems [5],
with the theoretical, conceptual, and physical foundations developed extensively in
Chapters 8 and 9. In this chapter, we focus on the empirical side of the ACGF
formalism, outlining a general scheme for its application to the description of
electromagnetic interactions in arbitrary antenna arrays working in the receiving
mode.

The chapter is organized into three major sections. The first part, Section 14.2,
deals with theoretical issues pertinent to the formulation of the ACGF of receiving
antenna systems, but with focus on the applied requirements of such systems.

373
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We first present in Section 14.2.1 the background needed to follow subsequent
derivations. In Section 14.2.2, we develop the concrete form of the receiving ACGF
when the excitation and observation of the received signals are enacted by means
of wire systems. In Section 14.2.3, the formalism is generalized to deal with array
problems. We follow this in Section 14.2.4 by an in-depth analysis of the mechanism
of interaction between the geometry of an arbitrarily-shaped antenna surface and
the general polarization of an incoming plane wave. A detailed system-theoretic
model is singled out and illustrated for the process of attaining a better grasp of
the fundamentals of the interaction picture. Finally, we provide in Section 14.5 a
simplified abstract antenna system designed to present in a clear form the main
ingredients of the physics of the antenna problem in the receiving mode.

In the second part of the chapter, Section 14.3, we take a closer look at
some of the issues that are likely to be relevant to practical applications, but
while still remaining conceptually in the discursive mode of general analysis. Some
elementary numerical issues relevant to the estimation of the ACGF are discussed
in a very broad manner in connection with discretization error. A simple model
is advanced to illustrate the connection between the error in computing the exact
ACGF and the actually observed received signals predicted using the approximation
of this ACGF.

The third part, Section 14.4, we develop briefly the ACGF for all-wire antenna
systems. The goal is the demonstration of some of the general theoretical discussions
presented in the previous two sections within a numerical setting. The key concept
is the application of the Singularity Expansion Method (SEM) to the ACGF of the
system. Indeed, we perform a spectral expansion of the ACGF of the wire-antenna
system and show that this ACGF can be approximated (to a high accuracy) by a
very simple analytical model based on the SEM. The interaction with illuminating
homogeneous (plane) and inhomogeneous waves is then evaluated analytically and
the resulting expressions are verified by direct comparison with full-wave analysis.
Finally, a discussion of the physical meaning of the simple analytical models
is presented in which the interaction of the illumination field is illustrated as a
resonant/nonresonant interaction schema.

Although the boundary condition assumed throughout this Part is the simple
perfect electric (PEC) condition, the entire analysis can be applied verbatim to
any macroscopic boundary condition, as will be shown by the authors elsewhere.
However, treatment of the general case in the present work will only increase
the complexity of the discussion and obscure the main insights to be developed
below, which are not restricted to any particular boundary condition. Therefore,
we will explicitly work here only with PEC structures. On the other hand, given
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some boundary condition, the main thrust of our analysis will be focus on general
results derived for arbitrary antennas obeying the adopted major electromagnetic
boundary condition. No special antenna examples will be investigated till Section
14.4. Throughout this chapter and as everywhere in the book, an implicit time-
harmonic excitation exp(−iωt) is assumed and suppressed everywhere.

14.2 THE ANTENNA CURRENT GREEN’S FUNCTION FORMALISM
FOR RECEIVING ANTENNA SYSTEMS

14.2.1 Rudiments of the General Formulation

In this section, we rehearse the ACGF formalism developed in Chapter 8 in a
simplified form suitable for the applications to follow. We start with a general antenna
system comprised of an arbitrary-shaped PEC object. The number of connected and
disconnected surfaces supporting the PEC boundary condition is kept arbitrary, and
so the formalism applies for both single antennas and antenna arrays. The system is
immersed in infinite, homogeneous free space with permittivity ε0 and permeability
µ0. Let the total PEC surface of the antenna system be S. We then distinguish a
proper subset of this surface, U ⊂ S, such that an input excitation electric field
Eex

t (r) := n̂ × Eex (r), where n̂ is normal to the surface S,1 is applied, i.e., we
have Eex

t (r) �= 0 only for r ∈ U . Due to the disturbance of the electromagnetic
boundary condition of the problem caused by the presence of the excitation field
Eex

t (r) within the excitation region U , the total antenna system will respond by
producing a current distribution on the surface S. The relation between the input
Eex

t (r) and the output J (r) can be written in terms of a suitable electromagnetic
linear operator L appearing in the equation

J (r) = LEex
t (r) . (14.1)

We are not concerned with the exact details of the operator L. The computational
problem can be solved using integral or differential equation solvers, but the
physical problem always remains the simple one encapsulated by the equation
(14.1): The input vector field tangential to S, the excitation electric field, will
produce via the system operator L another vector tangential field, the antenna
current distribution, which is also tangential to S. This suggests the idea of a
system transfer function, which we introduce now under the rubric of the antenna

1 Strictly speaking, we should write n̂(r) instead of n̂, but we omit this for simplicity.
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current Green’s function (ACGF). Part of the novelty of this ACGF concept is that
it describes a system existing only on a 2-dimensional surface, namely S.

Now suppose that the antenna system is excited by a point source located at
r′, i.e., let Eex

t (r) = α̂δ (r − r′), where α̂ is a unit vector tangential to S at r′ and δ
is the Dirac delta function. The antenna current Green’s function F̄ (r, r′) is defined
by the relation

F̄ (r, r′) · α̂ = Lα̂δ (r − r′) , (14.2)

which is valid for arbitrary vector α̂ tangential to the antenna system surface S. It
follows that the ACGF is properly a dyadic function (a tensor), or probably most
easily put, a matrix.2 Consequently, it was proved in Chapter 8 that

J (r) =
∫

U

ds′F̄ (r, r′) · Eex
t (r′). (14.3)

The relation (14.3) presents an intuitive picture of the excitation of an antenna system.
In other words, it says that the total current excited on the overall antenna surface
S is given by a linear sum of the contributions originating from all point excitations
located within the energizing port area U , each scaled by a proper weight specified
by the ACGF F̄ (r, r′). The latter function is fixed for a given antenna system, while
the geometry of the port (i.e., the geometry of the surface U ) and the particular details
of the excitation, i.e., the functional form of Eex (r′), are left open. Since the data
F̄ (r, r′) need to be computed only once and then stored for subsequent processing,
the exact expression (14.3) represents the most complete picture of the operation of
antenna systems in the transmitting mode.

In the receiving mode, however, one expects another ACGF to be constructed
and used in formulas resembling (14.3). However, it can be proved using Lorentz
reciprocity theorem that the receiving mode ACGF, say L̄ (r, r′), which is defined
by Jrx (r) =

∫
S

ds′ L̄ (r, r′) · Einc
t (r′), is related to the transmitting mode ACGF

F̄ (r, r′) by the simple relation L̄ (r, r′) = F̄T (r′, r), where T denotes the transpose
operation [13]. Therefore, the receiving mode induced current Jrx (r′) due to
illumination by the incident field Einc

t (r) is determined by the relation

Jrx (r′) =
∫

S

dsF̄T (r, r′) · Einc
t (r). (14.4)

Notice that here the integration must be performed on the entire antenna surface S.
The received current can be computed for any r′ ∈ U ; however, in this case the

2 It was found in Chapter 8 that the nine components of the 3D cartesian ACGF tensor are not all
independent even without applying reciprocity considerations. However, this fact has no bearing on
what follows in this chapter.
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transmitting mode ACGF F̄ (r, r′) has to be computed for all the corresponding
values of r′ ∈ U in order to use (14.4) for predicting Jrx (r′).

14.2.2 Formulation of the ACGF for Surface-Wire Antenna Systems

The formulation developed above assumes that the entire antenna system is repre-
sented geometrically by a 2D surface. To be sure, this is the most general situation
encountered in actual physical systems. However, in realistic applications of the
formalism to practical problems, it is desirable to have a simplified version of the
theory reflecting certain reduced but important models. In many devices, energy is
customarily injected or removed by one-dimensionally extended structures, forming
the physical ports of the antenna, e.g., coaxial lines, thin microstrip lines, linear
probes, etc. In such situations, the cross sectional area of the physical port is usually
small compared to the total surface area of the antenna body.

This motivates the consideration of an antenna system comprised of a surface
S joined (not necessarily physically touching) by a generally curved wire W . The
central axis of W consists of the curve C.3 We also consider a radius function
a = a(τ), where τ is the parameter of the curve C, such that at the location c(τ)
on C the radius of the wire W is given by a(τ). Assuming thin-wire approximation,
which is valid when maxτ{πa(τ)2}

/
area (S)  1 holds, the degrees of freedom

associated with the current on the wire reduces to the one-dimensional data specified
by vectors tangent to C as will be illustrated shortly. The surface S forms the main
body of the radiating structure while the curve C, together with the radius function
a, stand for the reduced geometrical model of the antenna’s port.4 Therefore, the
antenna system ANT can be defined simply as the set-theoretic union of S and C,
i.e., ANT := S ∪ W . For brevity, we will describe the construction of the wire’s
surface W from the data C and a by the operator form W = clnd(a, C), where clnd
stands for the operator forming the cylindrical surface with axis C and radius a.

After choosing a global coordinate system to describe the surface-wire antenna
system, it is possible to construct a function that assigns to each point on the curve
r ∈ C the tangent to the curve at the point; this tangent is given by the unit vector
α̂0 (r) = dc (τ)/dτ , where τ is the parametric length of C and the derivative is
evaluated at τ0 such that r = c(τ0). We can then find a vector tangential to W
parallel to the tangential to C. From now on, we refer to the former as α̂0 (r),

3 A curve is defined in differential geometry as a smooth map c : [a, b] → R3, where b > a ≥ 0 [?].
In this way, the curve C is simply the set C =

{
x ∈ R3| x = c (τ) for some τ ∈ [a, b]

}
.

4 The still interesting case of all-wire antenna systems will be analyzed numerically in Section 14.4.



378 New Foundations for Applied Electromagnetics

where r ∈ W . This tangent vector α̂0 (r) will be taken as the representation of
the polarization of the surface current on the corresponding wire W = clnd (a, C) .5

On the other hand, it is also possible to construct at each point on the surface
r ∈ S two orthonormal unit vectors α̂1 (r) and α̂2 (r) tangential to S at that point.
The procedure is more complicated than the case with curves but is pretty much
standard and can be found in any textbook on differential geometry, for example
[59], [61], [58].

Based on this simple geometrical language, we find that the ACGF of the
transmitting mode of the antenna system ANT can be written in the form

F̄ANT (r, r′) = α̂0 (r) α̂0 (r′) F00 (r, r′)
+α̂1 (r) α̂0 (r′) F10 (r, r′) + α̂2 (r) α̂0 (r′) F20 (r, r′) .

(14.5)

Here α̂n (r) α̂m (r) stands for the familiar tensor product.6 The transfer function
F00 (r, r′) presents the net effect of a point source, located at r′ on the wire W ,
observed at location r also on the wire W , connecting therefore an excitation
polarized along α̂0 (r′) with an induced current polarized along α̂0 (r).7 On the
other hand, the transfer functions F10 (r, r′) and F20 (r, r′) provide information
about the effect of a point source, also located at r′ on the wire W and polarized
along α̂0 (r′), observed at a point r but this time located on the surface S, and with
polarization specified by α̂1 (r) and α̂2 (r).8

The receiving mode ACGF L̄ANT (r′, r) is analogously given by

L̄ANT (r′, r) = α̂0 (r′) α̂0 (r) F00 (r′, r)

+α̂0 (r′) α̂1 (r) F01 (r′, r) + α̂0 (r′) α̂2 (r) F02 (r′, r) .
(14.7)

5 These definitions are meaningful only for thin wires. In particular, the points on W and C belonging to
the same cross section are identified in our notation (this ‘identification’can be made rigorously using
the concept of equivalent class). Otherwise, there will be no advantage in ignoring other possible
directions of the current polarization, say the azimuthal components.

6 Readers unfamiliar with the operation of tensor product in differential geometry can simply consider
α̂n (r) α̂m (r) as an entity defined by the relation

[α̂n (r) α̂m (r)] · α̂l (r) := α̂n (r)
[
α̂m (r) · α̂l (r)

]
, (14.6)

valid for arbitrary vectors α̂n,m,l.
7 In other terms, r /∈ clnd (a, C) or r′ /∈ clnd (a, C) → F00 (r, r′) = 0.
8 In other terms, r /∈ S or r′ /∈ clnd (a, C) → F10 (r, r′) = F20 (r, r′) = 0.
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The crucial statement of reciprocity L̄ANT (r′, r) = F̄T
ANT (r, r′) [13] consequently

implies
F00 (r, r′) = F00 (r′, r) , F10 (r, r′) = F01 (r′, r) ,

F20 (r, r′) = F02 (r′, r) .
(14.8)

By putting (14.7), (14.8), and (14.4) together, we arrive at the main result

Jrx (r′) = α̂0 (r′)
∫

ANT

dsu (r′, r) · Einc
t (r) , (14.9)

where

u (r′, r) := α̂0 (r) F00 (r, r′) + α̂1 (r) F10 (r, r′)
+α̂2 (r) F20 (r, r′) .

(14.10)

Therefore, we have proved the following simple but worth mentioning result: The
ACGF of the surface-wire antenna system, where the physical port is located in the
wire part, has the structure of a one-dimensional tensor. That is, the ACGF of the
surface-curve system ANT is not properly a full (3×3) matrix as in the general case
of the tensor F̄ appearing in (14.3), but rather a 1 × 3 row tensor. Furthermore, by
inspecting the expressions (14.9) and (14.10), we find that the receiving port signal
can be completely recovered from the transmitting mode data u (r′, r) by a simple
inner-product-and-integration operation applied to the illuminating field tangential
component Einc

t (r). We again recall that this field is arbitrary and so (14.9) is valid
for both far- and near- field electromagnetic interaction with the receiving array.
Some numerical predictions using (14.9) are presented in Section 14.4 for far-field
illumination.

14.2.3 Extension to Array Configurations

The mathematical treatment of array problems follows from the general relations
(14.3) and (14.4). Due to their importance in practical applications, we pause
here to present the relevant expressions and discuss their physical significance and
interpretation.

Assume we are given an array of N elements, each consisting of a radiating
surface Sn and a feed-wire system Wn. The total surface S and feed systems W are
expressed in terms of the individual components as

S =
⋃N

n=1
Sn, W =

⋃N

n=1
Wn. (14.11)
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By substituting (14.11) to (14.9), the received current at the mth port is given by

Jrx (rm) = α̂0
m (rm)

N∑
n=1

∫
Sn+Wn

dsun (rm, r) · Einc
t (r), (14.12)

where

un (rm, r) := α̂0
n (r) Fn

00 (rm, r)
+α̂1

n (r) Fn
01 (rm, r) + α̂2

n (r) Fn
02 (rm, r) .

(14.13)

Here, rm denotes the position of the receiving port of the mth antenna, i.e.,
rm ∈ Wm. We can easily see that r /∈ Wn and r /∈ Sn entail Fn

00 (rm, r) = 0
and Fn

01 (rm, r) = Fn
02 (rm, r) = 0, respectively.

Expression (14.12) allows us to interpret the interaction of a receiving array
with an arbitrary incident field as the exact sum of N channels or subsystems, each
characterized by a Green’s function of the form α̂0

m (rm)un (rm, r) , n = 1, ..., N,
specifying how an excitation at location r is transformed into the mth receiving port
signal observed at rm.

Further inspection of the form (14.13) suggests that each of these subsys-
tem Green’s functions can in turn be split into the sum of two terms. The first
is α̂0

m (rm) α̂0
n (r) Fn

00 (rm, r), which provides information about the interaction
between the feed system Wn of the nth antenna with the currently observed mth
feed rm ∈ Wm. The second subsystem Green’s function is the one corresponding to
α̂0

m (rm)
[
α̂1

n (r) Fn
01 (rm, r) + α̂2

n (r) Fn
02 (rm, r)

]
, and supplies information about

how two orthogonal excitations at the surface Sn of the nth antenna interact with
the receiving port Wm at rm.

For various applications, it is of interest to spell out the ACGF of the
transmitting mode. From reciprocity, we can immediately write,

F̄ (r, rm) =
N∑

n=1

F̄n (r, rm), (14.14)

where

F̄n (r, rm) =
[
α̂0

n (r) α̂0
m (rm) Fn

00 (r, rm)
+α̂1

n (r) α̂0
m (rm) Fn

10 (r, rm)
+α̂2

n (r) α̂0
m (rm) Fn

20 (r, rm)
]

.
(14.15)
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The excitation of the antenna array in the transmitting mode proceeds according to
an externally applied field of the form

Eex
t (r) =

N∑
m=1

α̂0
m (rm) bmδ (r − rm) , (14.16)

where each of the N ports is energized by a field with strength and phase given by
the complex number bn. From (14.3), (14.14), and (14.15), we arrive at

J (r) =
N∑

m=1

N∑
n=1

bmF̄n (r, rm) · α̂0
m (rm). (14.17)

This represents the radiating current of the array due to a complex vector of excitation
[bn]Nn=1 as in (14.16). Some numerical examples illustrating this general process will
be given in Section 14.4.

It is worth mentioning that in order to compute the receiving mode signal
in terms of transmitting mode data, it is not enough to have access to the total
current (14.17). Instead, one must acquire a set of N independent ACGFs, each
obtained by setting bm = 1 and bn = 0 for n �= m; then by repeating this
procedure for m = 1, ..., N , the N α̂0

m (rm)-components of the ACGFs in (14.15)
can be determined, which is the information needed to predict the received signal
via (14.12).

14.2.4 Interaction with Plane Waves: An Excursus on Polarization

TheACGF formalism permits a decoupling of the illuminating field from the physical
body of the receiving antenna, where the latter acts as a continuously-distributed
linear system. We will now show that this fundamental insight allows us to isolate
the purely geometrical factors, which are involved in the interaction of an arbitrarily
polarized incident field with the generally curved shape of the antenna’s physical
body surface, from the purely electromagnetic response of the antenna. In other
words, it is possible to locate the various components in the polarization-port
interaction within the receiving antenna formula (14.4) by carefully studying the
manner in which the ACGF varies as a 2D tensor defined on the surface S.

In order to better clarify the nature of the contribution made here, the reader
may consider the simple example of linear wire antenna working in the receiving
mode. In this case, the purely geometric considerations of how the polarization
of the incident field interacts with the shape of the antenna is well understood.
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For simplicity, assume that the plane wave is linearly polarized. In this case,
polarization matching can be defined as the inner product of the direction of the
electric field vector and the unit vector oriented alone the wire. However, when
the antenna surface is arbitrarily curved, there seems to be no general way to
theoretically describe this purely geometric interaction between the polarization of
the illumination field and the antenna surface, which is now a function of the general
position on this surface.9 The following discussion provides, to our knowledge,
the first general analysis of this geometric interaction, which turned out to depend
essentially on the concept of an exact transfer function in space, i.e., the ACGF
defined on the antenna system surface S.

For a direct demonstration of this point, we compute the geometrical factors
needed in the evaluation of the total interaction of an incident field, possessing a
randomly-oriented polarization vector, with a fixed-shape single antenna element
embedded in array configurations. As will be seen shortly, the computation of the
expected value of the relevant statistical variables in the field-antenna interaction
scheme is performed only once for a given shape, while the electromagnetic data
may vary according to the array geometry, excitation mechanism, or modifications in
the electromagnetic material properties. Such interesting general conclusion appears
to be one of the gains obtained from developing a rigorous system-function formalism
for antenna systems using the new concept of the ACGF.

Consider an incident plane wave given by the form Einc (r) = E0 (k0) exp
(ik0 · r). Since we are assuming a PEC boundary condition, the magnetic field of the
incident wave does not interact with the antenna. Using (14.4), we write the signal
induced in the physical port U as

Jrx (r′) =
∫

S

ds F̄T (r, r′) · E0 (k0) exp (ik0 · r). (14.18)

Since the amplitude vector E0 (k0) does not depend on r, it is not difficult to see
that (14.18) entails that the induced signal is given in terms of the spatial Fourier
transform of the vector F̄T (r′, r) · E0 (k0) evaluated at the “spatial frequency”
k0. It still needed, however, to decouple the dependence on the polarization vector
E0 (k0). In order to achieve this, we first expand the receiving mode ACGF in terms
of a suitable set of locally tangential orthonormal vectors α̂n (r′) and α̂m (r) as
follows

F̄T (r, r′) =
∑
n,m

α̂n (r′) α̂m (r) Fmn (r, r′), (14.19)

9 Because, as is known in elementary differential geometry, curvature varies from one point to another
on general 2D surface. For example, see [60].
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where the indices m and n run through 1 to 2. The four functions Fmn (r, r′) are
those due to the transmitting mode (reciprocity utilized). Substituting (14.19) into
(14.18), we obtain after using (14.6)

Jrx (r′) =
∑
n,m

α̂n (r′)
∫

S
ds [α̂m (r) · E0 (k0)]

×Fmn (r, r′) exp (ik0 · r) .
(14.20)

Therefore, although the factor α̂n (r′) has been moved outside the Fourier integral,
the integrand still contains the factor α̂m (r) · E0 (k0), which ties the polarization
vector E0 (k0) with the inner geometrical structure of the ACGF as represented in
this case by α̂m (r). We suggest using the product theorem of the Fourier transform
to re-write (14.20) in the following illuminating form

Jrx (r′) =
∑
m,n

α̂n (r′) Fmn (k, r′) ∗ Pm
k0

(k)
∣∣
k=k0

, (14.21)

where

Fmn (k, r′) :=
∫

S

ds Fmn (r, r′) exp (ik · r) , (14.22)

Pm
k0

(k) := E0 (k0) · α̂m (k) , (14.23)

α̂m (k) :=
∫

S

ds α̂m (r) exp (ik · r) . (14.24)

The star ‘∗’ denotes the convolution operation.10 Equation (14.21) states that the
received signal can be understood as the sum of convolutions of the Fourier transform
of the ACGF components with the Fourier transforms of the polarization interactions
factors defined in (14.23), where the convolution is evaluated at the wavevector of
the incident field k0.

The advantages of the new form (14.21) can be elucidated as follows.
From (14.19), we can see that the ACGF contains two sets of data, the first, a
purely geometric one, is reflected by the orthonormal vectors α̂n (r′) and α̂m (r),
while the second is purely electromagnetic and consists of the response functions

10 The product theorem states that F {fg} = F {f}∗F {g}, where F stands for the Fourier transform
operator. A sufficient condition for the applicability of the product theorem is that both f and g are
square integrable [68]. This, however, follows immediately in our case from the fact theACGF, which
is a continuous function, is defined on the bounded support S.
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Fmn (r, r′).11 From (14.18), it is possible to see that the received signal can be
best understood as related to the Fourier transform of the ACGF. However, by the
expression (14.21), we now see that this Fourier transform is actually given as the
convolution of two spectral functions (Fourier transforms). The first spectral function
is given by (14.22) and is a function independent of the details of the illumination
field. The second spectral function (14.23) is given simply as the inner product of the
plane wave amplitude E(k0) and the Fourier transforms of the ACGF’s excitation
position vectors α̂m (k), the latter being a purely geometrical function. Now, while
both Fmn (k, r′) and α̂m (k) are fixed for a given electromagnetic problem, i.e.,
by being not dependent on the variations of the illumination field, the quantity
Pm

k0
(k) varies according to E(k0) in a simple way as specified in (14.23).

To better appreciate the significance of the decoupling claimed in (14.21)
between the geometrical and electromagnetic responses, let us introduce a plane
wave incidence problem where the polarization of the wave is random. More
precisely, we assume that for a given k0, the direction of the electric field vector,
which is contained in a plane perpendicular to k0, is specified by the angle ψ,
the rotation being around k0 with respect to some reference. That is, we assume
linear polarization in the form E0 (k0, ψ) = E0 (k0, ψ) ê (k0, ψ), where ê is a unit
(real) vector. Other types of polarization, circular and elliptic, can also be treated
but the logic of the demonstration to follow remains unaltered. Henceforth, the
probability density function (pdf) of the polarization E0 (k0, ψ) will be denoted
by fk0 (ψ).12 The received signal becomes a function of the polarization in the
form Jrx (r′,k0;ψ), i.e., we treat k0 as a deterministic entity while the polarization
specified by ψ is a random variable with a known statistical distribution. We would
like to compute the expected value of the received signal in (14.18), which is
given by

〈Jrx (r′,k0;ψ)〉ψ :=
∫ 2π

0
dψJrx (r′,k0;ψ)fk0 (ψ) . (14.25)

11 Notice, however, that the geometric and electromagnetic structures of the ACGF are not totally
independent of each other. One way to see this is by developing a special tensor transformational
calculus, which demonstrates how the geometrical and electromagnetic information get entangled
with each other when transforming from one local coordinate system on S to another. But for a fixed
set of local coordinate systems, it is possible to make a boundary line between the geometric and
electromagnetic information as mentioned above. Since we are not going to change the coordinate
system in the analysis of this chapter, the foregoing considerations are enough.

12 For the generalization to other types of polarization, a joint pdf of the familiar polarization parameters
can be introduced.
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Using the general form (14.21), we can reach the following result

Jrx (r′) =
∑
m,n

α̂n (r′) Fmn (k, r′) ∗
〈
Pm

k0,ψ (k)
〉

ψ

∣∣∣
k=k0

, (14.26)

where the characteristic polarization k-function is defined as

〈
Pm

k0,ψ (k)
〉

ψ
:= α̂m (k) ·

∫ 2π

0
dψE0 (k0, ψ)fk0 (ψ) . (14.27)

In deriving (14.26), we have interchanged the s- and ψ- integrals in (14.20), an
operation permitted because the two integrals are finite [?]. Next, the transition from
the resulting equation to (14.26) proceeds according to the same line of reasoning
used in moving from (14.20) to (14.21), i.e., via invoking the product theorem of the
Fourier transform.

Our main result is the expression (14.26), which presents a significant ad-
vance in the understating of how antennas interact with plane waves with random
polarization. In words, it says that the purely geometrical aspects of polarization-
antenna interactions can be completely decoupled from the purely electromagnetic
response. Indeed, the geometrical polarization-antenna interaction is given by the

spectral k-function
〈
Pm

k0,ψ (k)
〉

ψ
, while the purely electromagnetic response of the

antenna system, independent of the incident wave, is that due to the other spectral
k-function Fmn (k, r′). Remembering that convolution operations are intimately
connected with linear systems acting as a filter, it is possible to appreciate the value
of the insight provided by the derivation of (14.21): The average received signal
of an arbitrarily-shaped antenna interacting with a plane wave possessing random
polarization is expressible as a linear sum of k-shifted basic response functions, in

this case
〈
Pm

k0,ψ (k0 − k)
〉

ψ
, each weighted by the antenna (purely electromag-

netic) response functions Fmn (k, r′). For each statistical distribution of the incident
plane waves, there is one and only one such characteristic polarization function〈
Pm

k0,ψ (k)
〉

ψ
, which is a function of only the geometrical shape of the antenna.

On the other hand, the electromagnetic response Fmn (k, r′) may change by several
mechanisms. For example, by changing the feed location, the function Fmn (k, r′)
will change (notice the already explicit dependence on r′). Also, by placing another
object near the antenna, close enough to produce an electromagnetic coupling, the
response functions Fmn (k, r′) will change even for the same port location r′. How-
ever, none of these mechanisms will alter the characteristic polarization k-function
(14.27).
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Figure 14.1 System-theoretic formulation of the interaction of arbitrarily-shaped receiving antenna
with arbitrarily-polarized plane-wave illumination. The system model combines the 1) statistical, 2)
geometrical, and 3) pure electromagnetic aspects of general antenna array systems.

For example, imagine an array composed of identical radiating and receiving
elements. Therefore, since the geometry of each element is the same, effectively one

characteristic polarization function
〈
Pm

k0,ψ (k)
〉

ψ
will be used for the entire array.

If the distances between the elements are sufficiently small, the relative position and
orientation of each antenna within the array will change the purely electromagnetic
responses encapsulated in the functions Fmn (k, r′) because of the phenomenon of
mutual coupling (electromagnetic interaction between nearby elements). However,

this will not change
〈
Pm

k0,ψ (k)
〉

ψ
as mentioned above since it depends only on

the local geometry of antenna element and the illumination field. Therefore, with
the expression (14.26) we have achieved the interesting insight that the purely
geometrical interaction aspects between randomly polarized incident plane waves
impinging on an arbitrarily curved antenna surface, on one hand, and the purely
electromagnetic response of the antenna, on the other hand, can be completely
decoupled in such a way that the former acts like a linear k-filter on the latter.

This interpretation is illustrated in Figure 14.1. In the top figure, we show
a block diagram representation of the interaction of an antenna with randomly
polarized plane waves. The “input” to the system is the spectral response function
Fmn (k, r′). The k-filter’s “impulse response” is the characteristic polarization k-

function
〈
Pm

k0,ψ (k)
〉

ψ
. The proper output of this system is the mnth component

Jmn
rx (k, r′) of the induced current.13 Now, this system view is actually a “meta-

system” description. The reason is that the “input” Fmn (k, r′) can be changed

13 See (14.26).
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in two ways (as mentioned above), mainly by changing the feed location and/or
placing a nearby object capable of electromagnetically coupling with our antenna
under consideration, i.e., in effect both methods entail a change in the purely
electromagnetic system as such. The engineer interested in studying the performance
of a system involving the same antenna shape design, but excited by different feed
positions or placed within a complex environment, can utilize the metasystem-
theoretic description in Figure 14.1 because the polarization-geometry interaction

aspects are totally buried in the k-filter’s
〈
Pm

k0,ψ (k)
〉

ψ
, which is invariant with

respect to the above mentioned factors.
On the other hand, it is possible to analyze the problem in a direct system level,

rather than the previous meta-systemic picture, by considering the interpretation
given in the bottom of Figure 14.1. Here, the feed position and the electromagnetic
environment are fixed, but the polarization aspects are varied. The electromagnetic
response Fmn (k, r′) plays then the role of the k-filter impulse response, and the
output signal can be understood in the familiar interpretation of the convolution as
the superposition of properly scaled shifted versions Fmn (k0 − k, r′).

In both interpretations of Figure 14.1, the meta-systemic and the systemic,
we should observe a peculiarity in the antenna problem. The proper k-filter impulse
response in the top figure involves the spectral value k0; also, in the bottom figure, the
input k-function involves k0; this dependence manifests itself through the appearance
of k0 as subscript in the characteristic polarization function Pm

k0,ψ . That does not
reduce the significance of the convolution interpretation outlined above, but suggests
that care should be paid to this technical point when working with expressions like
(14.21) and (14.26). Indeed, the convolution operation is applied only to the normal
(main) functional k-arguments appearing in the functional expressions of Figure
14.1. In other words, the subscript k0 does not enter into the convolution but acts
merely as an index.

14.3 SOME EMPIRICAL CONSIDERATIONS IN THE ACGF
FORMALISM

14.3.1 Some General Remarks

This work can be considered as a generalization of the specific approaches and
formulations usually presented in the literature of applied electromagnetics. The
ACGF formalism adapted for analyzing receiving mode antenna arrays has some-
thing in common with the conventional approach, but also it represents a significant
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advance. The thing we find in common with existing literature is the fact that in
(14.4) we compute the receiving mode signal at a localized region, in this case U .
That is, we are still interested in a terminal-like quantity as is the case with the circuit
paradigm in applied electromagnetics. However, in light of recent advances in our
understanding of the field-theoretic aspects of general electromagnetic systems, we
highlight the fact that expression (14.4) presents a decoupling of the field illumination
from the actual physical body of the antenna system. In other words, reciprocity is
not employed in connection with two fixed sets of sources and fields in order to
compute the system circuit Y -matrix [28], but rather applied in a peculiar manner
to the system function F̄(r, r′) itself. In this way, the expression given in (14.4) is
valid for arbitrary field illumination, in particular, it is still valid when the exciting
field is that belonging to the near field of another object close to the antenna system
under consideration.

Besides its fundamental theoretical importance, the use of theACGF, computed
only once in the transmitting mode, has some pragmatic advantages when compared
with other conventional methods found in literature. These include reduced memory
requirements, especially for statistical analysis of fixed arrays; the ability to identify
and isolate the contributions of the various physical parts of the antenna systems to
the total received signals; and the utility of the method in providing information going
beyond the circuit Y -matrix, such as the manner in which diverse field variations
determine the overall system performance, especially in connection with mutual
coupling. This is mainly the outcome of the ability to use (14.4) as an exact relation
for arbitrary field illumination.

14.3.2 On the Approximation of the Receiving Antenna System via the ACGF
Formalism

It will be demonstrated now that in practical antenna configurations, which use
port excitation more complex than the simple point-source excitation type, it is
still possible to gain a considerable insight into the operation of the antenna in
the receiving mode using transmitting mode data. This follows conceptually from
the geometric fact that in principle one may approximate any complex port by a
superposition of suitable point-like ports. This will require considering the issue of
averaging field quantities at the physical port in order to obtain simple scalar circuit
quantities like voltage and current. The remaining parts of this Section will address
this topic at a very general level. Numerical examples for special antennas can be
found in Section 14.4.
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When the excitation field is a simple delta source Eex (r) = α̂ (r0) δ (r − r0),
equation (14.3) tells us that the corresponding current distribution obtained in this
case is given simply by Jr0 (r) = F̄ (r, r0) · α̂ (r0). It is important to keep in mind
all the time that this current distribution Jr0 (r) is not a Green’s function, but it
is numerically equal to the Green’s function that connects a point excitation at r0
polarized along α̂ (r0) with the field vector induced at location r. Now consider
the situation in which a field excitation Eex (r) that is not composed of a discrete
sum of Dirac delta functions is applied within the physical port area U . Denote the
current distribution obtained by means of (14.3) by JU (r). It should be obvious that
this current is not even numerically equal to any Green’s function whatsoever; in
particular, JU (r) does not represent a proper transfer function connecting arbitrary
excitation in U with the induced current at r. The nature of JU (r) in general depends
strongly on the nature of Eex (r). If a new excitation is applied, also within U ,
there is no general recipe for expressing the new induced current in terms of the
old current when the latter is obtained with respect to the old excitation field. This
observation explains some of the differences between the ACGF formalism and
other methods existing in literature based on direct applications of the reciprocity
theorem. The method of this chapter is essentially a Green’s function strategy (and
reciprocity was applied to it only in a later stage via a special theorem [13],) so our
attention must be directed toward antenna responses to point sources, not arbitrary
input fields.

However, we notice that the quantity F̄ (r, r′) is actually a family of current
distributions functions (functions of r) indexed by the source position r′. There
exists to date no theoretical method allowing us to relate different members of
this family indexed by different source variables. In this situation, the only method
available is brute-force numerical computation in which we store all the functions
F̄ (r, r′) , r′ ∈ U , with sufficiently dense sampling of the port region U . Notice that
this need to be done only once since the exact receiving mode relation (14.4) is valid
now for arbitrary illumination field.

Although this can be achieved in principle, it might be computationally
expensive in many cases, and one would like to consider a simpler approach that
does not involve computing a family of ACGFs but rather a single computation.
In many common full-wave electromagnetic solvers, realistic port models are
integrated within the main code in order to provide users with the ability to compute
the system performance and make direct comparison with existing experimental
setups. This situation is more urgent in general electromagnetic systems, where
several antennas are connected with each other, beside other circuits, through
waveguide structures. The excitation field is then that of the waveguide propagating
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mode, and hence not a simple point source. The ACGF formalism can still of course
deal with such situations using (14.3), provided we know the eigenmodes of the
excitation waveguide, and then employing (14.4) to predict the receiving antenna
port signal; but we would like to directly investigate the empirical aspects as they
arise in practice.

In order to give a general view applicable to any antenna system, We will
employ the ACGF formalism to derive the main relation connecting a non-impulsive
field excitation with the actually measured currents in physical experiments. The
antenna system to be considered in this derivation will be the reduced surface-wire
system of Section 14.2.2. The reasons for this choice is the simplicity of the resulting
derivation and also the direct relevance to the physical set ups normally encountered
in practice.

Let us first start with the simplest form of an excitation field deviating from
the ideal Dirac delta field. Consider the following U -characteristic field defined by

Ec
U (r) := α̂0 (r)

{
1, r ∈ U,
0, otherwise. (14.28)

Here, U refers to a segment of the wire W used to model the antenna wire part
(which supports the physical port) that is exposed to excitation.14 It is the segment
of W = clnd (a, C) on which a constant excitation field, polarized along the vector
α̂0 (r) parallel to the tangent to C, is applied to the antenna system. An arbitrary
nonuniform excitation, e.g., an eigenfunction of the waveguide feed line impinging
on the region U of the feeding line C, can be approximated by a superposition of
functions all having the form of (14.28).15

We will assume that the antenna is excited by some U -characteristic field, i.e.,
Eex (r) = Ec

U (r). Naturally, one starts with the smallest possible U that a mesh

14 That is, U = clnd (a, C0), where C0 ⊆ C is a segment of the curve C.
15 More precisely, let the total region of nonuniform excitation be expanded as the sum

U =
⋃N

n=1
Un

of N mutually disjoint segments Un. The excitation field is then approximated as

Eex (r) =
N∑

n=1

βnEc
Un

(r),

where βn represents the average value of the actual excitation in the segment Un. The smaller the
segments, the better the approximation. However, notice that in this case the approximate excitation
is discontinuous (but remains piecewise continuous). This has no bearing on our analysis and results.
A more sophisticated version of our argument can be developed in such a way that the approximating
functions are themselves continuous. We omit this construction for space limitation.
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descretization can achieve for a given operating frequency. A small subdivision
is assumed to correspond to a “point” excitation, and hence the claim that the
obtained current distribution is numerically equal to the properACGF of the problem.
However, as we pointed above, this is strictly speaking not true. The quantity obtained
by exciting the antenna system using the field Ec

U (r) can be computed from (14.3)
and is given by

JU (r) =
∫

U

ds′ F̄ (r, r′) · α̂0 (r′) . (14.29)

Here, JU (r) stands for the current at r due to a U -characteristic excitation. We will
now suppose that this current distribution, erroneously identified with the ACGF, is
used in (14.4) in order to compute the receiving mode induced current in U , which
we denote by Jrx (U). More specifically, we use (14.29) and (14.4) to compute the
quantity

Jrx (U) := γ

∫
S

ds

∫
U

ds′α̂0 (r′) · F̄T (r, r′) · Einc (r) , (14.30)

where γ is a constant inserted here for units consistency but its value will be fixed
in few moments.

The fact that the regions U and S are both compact allows us using a well-
known result in real analysis in order to interchange the order of integrations in
(14.30) [72]. Performing this operation and then using again (14.4) to redefine the
s-integral, we arrive at

Jrx (U) = γ

∫
U

ds′α̂0 (r′) · Jrx (r′) . (14.31)

This is our main result. In other words, (14.31) says that the induced current,
computed by simply treating the current distribution generated in the transiting
mode due to a U -characteristic excitation as the properACGF, is proportional to the
average of the correct receiving mode induced current within the region U . Now
we notice that all physical measurement devices essentially involve an averaging over
a small but finite spatial region. We can then conveniently choose γ = 1/area(U).
In practice, such a choice can always be made by a proper calibration of the device
used to measure the receiving mode induced current.

Relation (14.31), although can be rendered intuitive by constructing a suitable
toy model like the one presented in Appendix 14.5, is actually nontrivial because it
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involves interchanging the order of two repeated integrations, an operation that is not
always permissible.16 In the opinion of the authors, the result (14.31) represents the
essential statement of the empirical content of the ACGF formalism. It connects
the numerically computed estimation, Jrx (r′) on the RHS, with the physically
measured value in a real set up, Jrx (U) of the LHS. Indeed, the error in the theoretical
estimation of the true ACGF of the problem, which cannot be obtained analytically
in most cases, is “balanced” by the fact that measuring devices produce quantitative
values only for averages. It appears then that the size of the discretization in the
numerical strategy used to invert the electromagnetic operator L in (14.2), roughly
the size of U in (14.28), is delimited by the spatial resolution of the measuring
device.

14.4 APPLICATION OF THEACGF FORMALISM TO THEANALYSIS OF
LINEAR WIRE ANTENNA SYSTEMS

In this section, we apply the general ACGF formalism to the analysis of electromag-
netic field interactions with receiving wire antenna systems. The numerical examples
provided below serve to illustrate the basic ideas, rather of being exhaustive. Indeed,
it seems there is a wide range of traditional problems, e.g., mutual coupling, that
can be studied in a rigorous fashion using the idea of the ACGF as an exact transfer
function in space. Such further studies will be taken up elsewhere.

14.4.1 General Formulation

Assume a configuration of N linear thin-wire antennas. The antennas are distributed
in space at locations described by the position vectors of the delta-source excitation
rm, m = 1, 2, ..., M ≤ N . Each antenna is oriented alone a direction described by
the rotation matrix Rn applied to ẑ chosen as an arbitrary initial direction. At the
terminal of each antenna, a load with complex impedance ZLn

is connected.
Since we are working with thin-wire antennas, both the delta source polariza-

tion and the direction of the induced current on the antenna are known a priori: The
direction of the antenna element itself. Fixing the polarity of the source and current,

16 For example, in the case of infinite radiators, say a structure no more complicated than a PEC infinite
plane sheet, the s-integral in (14.30) becomes infinite. It is not clear a priori that in general this
integral will be uniformly convergent for all values of r′. Consequently, the derivation of (14.31),
provided it is possible, becomes more involved, and may require special treatment. In this book,
however, we focus our attention on physically realizable antennas, and to those correspond only
compact regions S.
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we use the unit vector α̂n := Rnẑ to describe the orientation of the nth antenna.
The source index m should then be mapped to its corresponding antenna, and to
accomplish this we use the device σ : m → σm, where in this notion σm is the index
of the antenna excited by the mth source. We then write

F̄ (r, rm) =
N∑

n=1

α̂nα̂σmFnm (r, rm) . (14.32)

The function Fnm gives the current response at the nth antenna due to a delta-source
excitation located at the port of the σmth antenna.17 Substituting (14.32) to (14.14),
it is evident that

F̄ (r) =
N∑

n=1

M∑
m=1

α̂nα̂σmFnm (r, rm), (14.33)

which completely characterizes the N -element antenna array system in the trans-
mitting mode when all M sources are active at their respective ports.

We are interested in the interaction of the array described by the ACGF (14.33)
with an incident electric field given by E(r).Applying the inverse reciprocity theorem
to (14.32) and using (14.4), we obtain

J (rm) = α̂σm

N∑
n=1

∫
Sn

ds α̂nFnm (r, rm) · E (r), (14.34)

where Sn is the surface of the nth wire antenna. Equation (14.34) gives an exact
expression for the received mode current at the mth port in response to an arbitrary
near- or far- field E(r).

A direct numerical verification of the relation (14.34) is given as follows.
We use the Method of Moment (MoM) to compute the ACGF of the transmitting
mode by exciting the system by an approximation of a delta source. The antenna
system is a dipole comprised of two identical thin wires excited by the delta source
at an infinitesimal gap. The inverse reciprocity theorem derived in Chapter 9 is
used to relate the ACGF of the receiving mode to this data and the induced open
circuit (Norton) current source Ioc as predicted by (14.34) is computed by numerical
integration. The receiving antenna’s port is connected to a load impedance of 50Ω

17 Notice that we describe the polarization of both the source field and the response current using the
same set of unit vectors because of the peculiarity of thin-wire linear antennas. In the most general
case, two different sets of vectors must be used.
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Figure 14.2 Interaction of a linear wire antenna of length 90mm with an incident plane wave at θ = 5o.
The wire has a radius of 3 mm and the feed location is at the center. The receiving mode antenna has a
load impedance of 50Ω.

and the load current is computed by means of the relation

IL (f) =
ZTh (f)

ZL + ZTh (f)
Ioc (f) , (14.35)

where ZTh(f) is the input impedance of the antenna at frequency f computed in
the transmitting mode. The results are compared with a full-wave scattering solution
(MoM) in Figures 14.2 and 14.3 for plane waves of angles of incidence given by
θ = 5, 75o, respectively. Excellent agreement is found in all angles of incidence but
only those two cases are presented here for brevity.

14.4.2 Spectral Analysis of the ACGF of Linear Wire Antennas

We will approach the spectral structure of the ACGF of wire antenna systems
not from the standpoint of the Fourier integral, but rather from the much simpler
perspective of finite sum of complex exponential. The disadvantage is merely
theoretical, which is that the spectral representation is approximate, not exact. The
advantages are, however, considerable. We will achieve a drastic reduction in the
computational complexity of the resulting expressions. Indeed, we now show that
the interaction of the linear wire antenna with homogeneous and inhomogeneous
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Figure 14.3 The same problem as in Figure 14.2 but with incident wave at θ = 75o.

waves can be approximated by simple analytic expressions that are as accurate as
full-wave numerical solution.

Using Proney’s or the matrix pencil methods, we write

Fnm (r, rm) �
{ ∑Pnm

l=1 anm
l eκnm

l s, r ∈ Sn

0, , otherwise.
(14.36)

Here, anm
l and knm

l are complex numbers determined by the algorithm. In this
expression, Pnm is the number of terms in the spectral expansion of the ACGF Fnm

and is a parameter of the method. Recall that s in (14.36) is a local length parameter
of the nth wire as introduced in Section 14.2.2.

In order to verify the analytical expression (14.36), we obtained an approxi-
mation of the 0.75λ dipole antenna described in the caption of Figure 14.2 using the
classical Prony’s algorithm. The comparison with the numerically obtained ACGF
is given in Figure 14.4. As can be seen, excellent agreement is observed throughout
the entire span of the antenna system with only three complex exponentials.

In the previous example, each wire was individually modeled analytically by
finding its Prony’s approximation. Since the feed location was chosen at the center,
the models for the two wires are identical (by symmetry). In order to demonstrate
an asymmetrical case, a different antenna system is presented in which the dipole
antenna is comprised of two unequal wires with final results shown in Figure 14.5.
Notice that, as anticipated in the theoretical part of this part, the ACGF is strongly
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Figure 14.4 Comparison between the analytical approximation of the ACGF using (14.36) and the
numerical ACGF obtained using MoM. The antenna system is the same problem as in Figure 14.2 but with
frequency fixed at 5 GHz. The analytical approximation (14.36) uses three complex exponentials (for each
wire) with amplitudes a1 = −0.0030 + j0.0141, a2 = 5.4979 − j0.6061, a3 = 3.1206 + j1.8557;
the corresponding exponents are κ1 = 136.05 − j31.817, κ2 = −5.2724 − j82.0551, κ3 =
9.7095 + j81.6741.

dependent on the location of the source. In this case, each wire was approximated
by its own Prony’s model (details can be found in the caption of Figure 14.5).

14.4.3 Interaction with Homogeneous and Inhomogeneous Waves

Consider an incident wave of the form E (r) = E0 (k0) exp (ik0 · r) in which k0

can be either pure real or pure imaginary vector (homogeneous and inhomogeneous
waves, respectively). By substituting (14.36) into (14.34), we obtain

J (rm) � α̂σm

N∑
n=1

E0 (k0) · α̂n

×
Pnm∑
l=1

anm
l

e(κnm
l +ik0·α̂n)se

n −e(κnm
l +ik0·α̂n)si

n

κnm
l +ik0·α̂n

.

(14.37)

Here, si
n and se

n are the length parametric values of the initial and end points,
respectively, of the nth linear wire antenna.

In order to simplify the analysis, we consider a wire antenna oriented along
the z-axis with length 2L. Its port is located at the wire center (placed at the origin),
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Figure 14.5 Comparison between the analytical approximation of the ACGF using (14.36) and the
numerical ACGF obtained using MoM. The antenna system is a dipole antenna with the upper segment
of length 0.75λ and the lower with 0.375λ at frequency 5 GHz. The analytical approximation (14.36)
uses four complex exponentials. For the 0.75λ wire, the amplitudes are a1 = −84.883 − j3.799,
a2 = −2834.4 + j9.2359, a3 = 3167.3 + j154.07, a4 = −247.21 + j2915.1; the corresponding
exponents are κ1 = −2.5156 + j3.8101, κ2 = 3.7737 + j2.4996, κ3 = −3.7863 − j2.5557,
κ4 = 2.5285 − j3.7541. For the 0.375λ segment, a model of three complex exponentials is found with
amplitudes a1 = −21336.0 + j4424.9, a2 = 14609.0 + j16118.0, a3 = 6725.7 − j20541.0;
the corresponding exponents are κ1 = 0.1768 + j0.2668, κ2 = 0.1424 − j0.2867, κ3 =
−0.3192 + j0.0199.
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Figure 14.6 The same problem as in Figure 14.2 but with frequency fixed at 5 GHz. The angle of
incidence θ is varied and the prediction of the analytical formula (14.37) is compared with full-wave
MoM solution.

where a load impedance ZL is connected. Using (14.37), the interaction with a plane
wave produces a received voltage given by

VL = (E0 · ẑ)
ZLZTh

ZTh + ZL

P∑
l=1

alI (κl,k0 · ẑ), (14.38)

where we define the spectral interaction function I(κ, k) by

I (κ, k) :=
e(κ+ik)L − e−(κ+ik)L

κ + k
. (14.39)

Therefore, in principle, an arbitrary-size wire antenna system can be effectively
replaced with a simple analytical expression capable of predicting the interaction
with arbitrary plane waves with a level of accuracy matching full-wave scattering
results.

The analytical expression (14.38) is verified in Figure 14.6 by working with
the 0.75λ dipole system. Again, very good agreement is observed demonstrating the
ability of the obtained simple analytical expression to predict the correct received
signals for all angles of incidence on the basis of the ACGF formalism developed
earlier.
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Figure 14.7 Study of the spectral interaction function (14.39) for varying half-dipole length L. The
results are normalized with respect to 1/2L. In the figure, L0 = 45 mm.

14.4.4 General Remarks on the Results

We conclude by discussing the physical meaning of the results obtained so far.
The spectral interaction function defined by (14.39) appears as the basic building
blocks through which the received signal due to arbitrary illumination homogeneous
or inhomogeneous waves can be computed. Indeed, as can be seen from relation
(14.38), the induced signal is simply a weighted sum of the values of the interactions
I(κl, k) evaluated for a given plane wave wavenumber k (along the wire antenna) and
a given κl. In order to have some idea about the general behavior of the solution, we
show in Figure 14.7 the spectral interaction function I(κl, k) evaluated at κl = 0 for
several wire lengthes L. It is clear that this function behaves as a filter (in the spectral
variable k) centered at k = 0 with a bandwidth determined by the extension of the
antenna system. For larger systems (larger L), the spectral resolution significantly
increases. This example confirms the conclusions arrived at but on a general theatrical
ground in Chapter 9.

Notice that for the particular example worked out above, the pertinent spectral
variable k is simply k0 cos θ. Therefore, we have k ∈ [−k0, k0]. Now Figure 14.7
clearly shows that the spectral interaction function I(κl, k) is centered at κl (with
a spatial k-bandwidth of roughly 2π/L). Therefore, an incident plane wave will
interact resonantly with the receiving system only if Imκl ∈ [−k0, k0]. For this
reason, we will call the numbers κl the complex poles of the ACGF, while al serves
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as the strengths or amplitudes of these poles. If the condition Imκl ∈ [−k0, k0] is
satisfied, then the ACGF pole at κl will contribute resonantly to the received signal
with a relative strength (weighting factor) determined by al.

It is of interest to notice that most practical wire antenna systems give rise to
complex poles, not pure imaginary.18 This can be seen from a glance at the numerical
examples given in the captions of Figures 14.4 and 14.5. At the frequency of choice,
the resonance interaction band is [−104.7m−1, 104.7m−1]. The three ACGF poles
of Figure 14.4 fall within this resonance range, although they also possess real parts
that cause the response to deviate from the theoretical peak level. This suggests that
full resonance can be obtained in the case of inhomogeneous waves, i.e., interaction
with the near field of another source.

14.5 TOY MODEL: A DISCRETE ANTENNA SYSTEM

In order to illustrate the intuitive character of the foregoing formulation of the
fundamental problem of how antennas work in the transmitting and receiving mode,
and the nature of their interrelationships, we develop in this part a fictitious toy
model of a discrete antenna composed of a finite number of points. Each point can
be excited by an externally applied electric field and respond by producing a current
distribution. Moreover, distant points can respond to an excitation not involving any
of them.Assume further that each point is ‘internally identical’to all other points, i.e.,
there is no absolute identity distinguishing one point from the other. Only the relative
position of two points with respect to another set of points is considered as a legitimate
way of marking or baptizing one point as “different” from the other. This imaginary
situation can be easily attained if we assume that the discrete antenna is comprised of
geometrical points imbedded in empty infinite, isotropic, and homogeneous space,
say the standard Euclidean space R

3.
For simplicity, let us first assume that the problem is scalar (acoustic). Our first

scalar discrete antenna configuration is shown in Figure 14.8(top), which consists
of four points labeled by the numerals from 1 to 4. Point 1 acts in this model as
the antenna port. In the top figure, the transmitting mode is illustrated, with various
weights F serving as transfer functions from Point 1 to Points 2-4. Let the excitation
field be given by a unit-amplitude delta function Eex = δ (r − r1) located at the
position r1. The “current distribution” on this antenna is given by

J (r) = F (r1, r1) δ (r − r1) + F (r2, r1) δ (r − r2)
+F (r3, r1) δ (r − r3) + F (r4, r1) δ (r − r4) .

(14.40)

18 The reason is that the ACGF has to decay into exactly zero at the terminals of the wire system.
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Figure 14.8 Discrete antenna system with Point 1 acting as a transmit-receive port. Top: Transmitting
Mode. Bottom: Receiving mode. In both cases, the self-interaction terms F (r1, r1) and L(r1, r1) are
not shown explicitly.

This form has a simple and intuitive physical meaning. The antenna system in the
transmitting mode can be considered as a set of four subsystems, each being given
by the pair of points (1, n), where n = 1, 2, 3, 4. The subsystem (1, n) has an
“input terminal” represented by Point 1 while the “output terminal” is Point n. It
possesses a transfer function specified by the complex number F (r1, rn), which is
the transmitting mode ACGF. The actual antenna current is, therefore, simply the
linear superposition of the outputs of all these subsystems. The antenna can then be
viewed as an ensemble of linear subsystems orchestrated by a common excitation
point (in this example, Point 1).

Let us move now to the bottom of Figure 14.8. Here, the antenna, being operated
in the receiving mode, is excited by an arbitrary illuminating field, which becomes
after interacting with discrete locations

Einc (r) = e1δ (r − r1) + e2δ (r − r2)
+e3δ (r − r3) + e4δ (r − r4) ,

(14.41)
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where the quantities en, n = 1, 2, 3, 4 are complex constants. The received current
can be expressed as

J (r) = [L (r1, r1) e1 + F (r1, r2) e2
+F (r1, r3) e3 + F (r1, r4) e4] δ (r − r1) .

(14.42)

Now, it is not difficult to see that again the discrete antenna system can be viewed
as an ensemble of subsystems, each represented by the pair (n, 1), and is associated
with transfer functions L(r1, rn), n = 1, 2, 3, 4, respectively.

We can appreciate the difference between the transmitting and receiving modes
of the antenna at two levels. The first level is straightforward. Here, we observe that
in the receiving mode, the antenna interacts with a field that generally illuminates
the entire antenna’s body.19 This can be seen at once by comparing (14.41) with
(14.42). In the former case, only the localized excitation field applied at Point 1
interacts with the antenna. In the latter case, Point 1 receives contributions from
field-antenna interactions at all points, including Point 1 itself, which serves here
as the receiving port. Now, all other points in the situation depicted in Figure
14.8(bottom) also receive in terns contributions from the excited points. For example,
it is possible to write down equations similar to (14.42) for each of the other Points
2-4. However, we restricted ourselves to Point 1 in the receiving mode because
here we work within the paradigm of circuit theory, in which only terminal-like
quantities are taken into consideration.20 It can be seen then that the physics of
the receiving mode, if understood as the manner in which ensembles of linear
subsystems superimpose themselves upon each other in order to give rise to the
total contribution at terminal-like quantities, is not identical to the physics of the
transmitting mode, the reason being that the receiving mode signal depends on the
particular circumstances of how the incident field interacts with the entire body of
the antenna system.

The second level is a more profound one. There is an essential difference
in the antenna system, with respect to its two principal modes of operation, that
is usually overlooked. We first start by observing the formal similarities between
the top and the bottom of Figure 14.8. Indeed, for both modes of operation, the
same paths between Point n and Point 1 are traversed twice in opposite directions.
This fact, that two interactions appear to occur along the same line, is probably the
unconscious motivation for researchers to look for reciprocity theorems assuring

19 Unless the incident field is a localized beam, which is typical in optics, not in microwave
applications.

20 See Chapter 8 for extended discussion of the role of circuit theory in the analysis of general
electromagnetic systems.
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us that somehow the net interaction between two pairs of points is the same if we
merely swap the terms of one pair. In the case of electromagnetic systems obeying
certain conditions (e.g., see [28]), it is possible indeed to prove this intuitive guess.
We ask then the following question, Is this reciprocity relation obvious a priori?
Our answer is that it is not obvious, and the fact that it can be proved for many
practical electromagnetic systems should not deceive us into thinking that there
is something intuitively clear about reciprocity. Actually, there is a fundamental
difference between the two modes of operation illustrated in Figure 14.8. We explain
this difference as follows.

By assumption all parts of the discrete antenna system in Figure 14.8 are
endowed by internally identical electromagnetic structure. That amounts to the
supposition that it is not possible to distinguish between any two points if focus
is concentrated on some inner structure responsible for generating the differential
relation between the respective two points (if such relation exists).21 Now, in general
two transfer functions F (r1, rn) and F (r1, rm) are different for n �= m. One may
wonder what is the reason for this difference if the points are by definition internally
identical. The answer is simply that two points may differ in their relative position
with respect to other parts of the system considered as a frame of reference. Let
us take a concrete example. In Figure 14.8(top), we may ask ourselves about the
possible reason that may explain a difference in the numerical values of F (r1, r2)
and F (r1, r3). The answer is that Point 2 is different from Point 3 when compared to
each other with respect to their position relative to Point 4. The subsystem comprised
of Points 1 and 2 is then different from the subsystem comprised of Points 1 and 3,
a difference to be explained by reference to an external part of the system serving as
a frame of reference, in this case Point 4.

Now let us focus on one pair of points, say the one composed of Points 1
and 2. In the transmitting mode, an excitation field is placed at Point 1 while the
induced current is observed at Point 2. In the receiving mode, the excitation is at

21 There is nothing extraordinary about such assumption. It is actually the standard situation encountered
in classical macroscopic electrodynamics. For example, two perfectly conducting spheres are
internally identical electromagnetically because the PEC boundary condition of each is not disturbed
by the existence of the other close to it. Note that this situation is not applicable in the case of
quantum systems in particular, and nanoscale electrodynamics in general. In the latter case, the
mere presence of nearby object may lead to direct coupling capable of changing the electromagnetic
properties of the subsystem under consideration. Finally, we mention that this footnote does not
suggest that the points in Figure 14.8 are infinitesimal PEC spheres, since in such case the model
looses its depth. These points are geometrical points, i.e., infinitesimal primitive part-structures; and
therefore they are not infinitesimal physical points, e.g., atoms or fundamental particles surrounded
by void. In other words, the part-points of the discrete antenna are “formal atoms,” not material
atoms.
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Point 2 while the observation is enacted at Point 1. By an argument that should now
be familiar to the reader, Points 1 and 2 are different from each other (for example,
compare their relative positions to Point 4). Consequently, the physical problem
of placing the excitation at Point 1 is different in general from the corresponding
problem consisting of placing the excitation this time at Point 2. Indeed, the
electromagnetic environment in the latter case is different from the former, where by
‘electromagnetic environment’ we mean the system of other points existing near the
point under consideration. It follows that associated with the pair of Points 1 and 2
are two subsystems, one to be represented by the ordered pair (1, 2), while the other
is denoted by (2, 1); the former being a subsystem in the transmitting mode, while
the other the generally different subsystem in the receiving mode.

Our conclusion is that the applicability of reciprocity-type theorems to a wide
range of electromagnetic problems, in such a way leading to the fact that any two
subsystems obtained in the transmitting and receiving modes and involving the same
pair of parts are equivalent, is indeed a remarkable finding which is by no means
logically obvious. Notice that the statement of reciprocity indicates that switching
the positions of the source and observation points does not change the transfer
functions connecting the two points; and this turns out to be true regardless of
the electromagnetic environments surrounding these two points, which in general
are quite diverse and nonuniform.22

The reader at this point may reflect on why in the electromagnetic radiation
problem we find that the characteristic Green’s function is indeed reciprocal. The
explanation is not difficult to find. Consider the scalar problem and its Green’s
function g (r, r′) = exp (ik |r − r′|)/|r − r′|. Here, we find that the configuration
space of the problem consists of the entire Euclidean space R

3. Indeed, the “parts” of
this systems are the set of all geometrical points r ∈ R

3. The space R
3 is topologically

and geometrically homogeneous: All points look exactly alike. Therefore, given two
pairs of radiation problems, one described by (r, r′) and the other by (r′, r), and such
that r′ �= r, we find that it is impossible to distinguish between the two situations
since there exists no other “special electromagnetic environment” closer to one point
than the other. In this case, the statement of reciprocity is logically and conceptually
obvious.

We finally mention that there is nothing essentially new in the generalization
of the analysis above when the discrete antenna toy model is assumed to be vectorial
instead of scalar. The corresponding equations only get more complicated since
the scalar transfer functions need now to be made dyadic functions. The transpose

22 The reader may notice that our definition of ‘electromagnetic environment’ above has nothing to do
with effective material response characterizations, such as dispersive, anisotropic, chiral, etc.
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operation in the relation between F̄ and L̄ is intuitively clear in light of (14.6) since
a vector that appears as part of the source in one configuration becomes part of the
observation in the other configuration, and vice versa with the other vector. The
passage to the limit of continuous antenna system can be made formally using the
calculus of generalized functions and all summations in equations like (14.41) and
(14.42) become integrals like (14.3). In our simple discrete antenna systems, the
number of parts was four while in the passage to the limit the actual antenna system
acquires the size of the cardinal of the continuum.

14.6 RECEIVING ANTENNA SYSTEM CIRCUIT MODEL

We review the receiving antenna circuit model that can be used in connection with
the fundamental expression (14.4). It is worth adding that none of the numerical or
experimental models are exact, and hence they cannot be proved from the ACGF
formalism itself without appending the theory with further assumptions, for example,
new axioms for circuit theory. This, however, is not usually the practice in applied
electromagnetics, and hence there is no formalized theory to work with. In all cases,
the empirical validation of the circuit and MoM models has been accumulating
since the past sixty years and the evidence is overwhelming that such computational
schemes can be successfully employed to tackle most of the practical problems to be
encountered in engineering applications. The ACGF formalism provides a rigorous
exact framework for understanding existing numerical and experimental antenna
methods and for extending them in the near and far future.

The equivalent circuit of a receiving antenna consists of ZANT , the input
impedance measured across the physical port terminals in the transmitting mode.
The load impedance ZL is connected in series at the terminals of the antenna through
a transmission line. The induced voltage voc is the equivalent open-circuit voltage
at the antenna terminals due to an external far-field excitation and is equal to the
voltage that would develop if the load impedance was removed.23 In terms of the
ACGF formalism, it can be found by an elementary circuit-theoretic argument that
|voc| = ZANT (2πa) |Jrx|, where here Jrx and the radius function a are computed
at the location of the physical port.

23 When considering an array system of N receive antenna elements, this concept of induced voltage
can be generalized using network theory [29].





Chapter 15

Antenna Current Green’s Function as a
Method to Compute Near-Field
Interactions

15.1 INTRODUCTION

There is a growing interest within the applied electromagnetic community in systems
involving parts and subsystems interacting at close distance. Examples are compact
antenna arrays, wireless devices working in dense and crowded electromagneti-
cally changing environments such as MIMO and DoA applications, miniaturized
circuits and radiators, near-field communication, and wireless energy transfer. A
common denominator in all these applications is the existence of the problem of
illumination by near fields. In theory, the near field is much more complex than
the far fields or waveguide modes. Although it is not completely arbitrary but
appears to enjoy a very specific mathematical structure of its own, e.g., see Part
I, the understanding near-zone problems remains challenging compared with the
other limit cases (examples of the latter include far zone and waveguide-based
excitations).

Field illumination by a generic source at close distance involves not only
propagating modes with wavelength roughly determined by the formula λ = f/c,
but also short-wavelength components or evanescent modes that represent the rapid
variation in the near field [35]. Note that for a specially prepared discretization
mesh, it is possible to compute the response to any near field using full-wave
analysis methods such as MoM [23]. However, for each new type of near field, e.g.,
different composition of short-wavelength components, it is necessary to change the
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mesh in order to obtain an accurate solution to the problem [38], [39]. Recently, some
methods to compute the response of antennas to generic near fields were proposed
but for special antennas [42], [44]. These methods, though useful, don’t address the
problem at the most general level, besides being already contained in the method
presented here as a special case.

Investigation of the question whether there is a general method to compute the
response of the antenna to such generic excitation led the authors to the development
of the antenna current Green’s function (ACGF) formalism. The Chapters 8 and 9
contain the bulk of the theoretical foundations of the approach to the ACGF as an
exact transfer function in space. Some applications to mutual coupling in arrays are
reported in [15] and Chapter 16. The numerical and experimental examples found
in Chapter 14 and [15], however, included only far field illumination. This chapter
provides the first numerical study of the near-field interaction problem using the
antenna current Green’s function method.

The chapter is organized as follows. Section 15.2 provides a motivation for
the study of the problem of EM devices interactions with near-field illumination by
pointing out how this case arises in practice. Section 15.3 provides the theoretical
background needed to understand this chapter in a self-sufficient manner. It reviews
the concept of the ACGF in light of the specific needs of the current investigation,
explains how the general theoretical presentation in Chapter 8 can be adapted for near
field applications. Some of the main themes discussed there will be put into concrete
demonstration in Section 15.4, which provides a detailed example comprised of wire
antenna solved using the method of moment. We compute the ACGF and discuss
its validity and physical significance within the specific context in which it appears.
Finally, we end up with conclusion and summary.

15.2 SOME PRELIMINARY MOTIVATIONS

Before starting the technical analysis itself, let us pause for a while to reflect on
how the problem of near-field illumination of EM devices arises in practice. There
are several possibilities. First, we may think of our device D as directly excited by
another antenna S acting like a source producing near fields sufficiently strong to
force D to respond by generating a signal at its output terminal. Figure 15.1 illustrates
this case, which we call the S-Rx scenario.

In literature, such situation is dealt with in the following manner. Both Device
D and Source S are treated as a single system in the full-wave solution of the
problem in order to take into account the extent of mutual coupling between the
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Figure 15.1 The S-Rx scenario. Interaction between a Source S close to Device D (typically an antenna
system). The field impinging on Device D is a near field rich with short-wavelength components. The
device responds to the near field by generating a received (Rx) signal.

two [23], [38], [39]. However, in practice one needs to study how D is working
as an independent unit that can be embedded into various environments, where a
source like S is simply one potential element of this environment among others.
In other words, our main focus is the system D itself, while sources are relegated
to the background. Therefore, the first natural step is to ignore the effect of the
source S on the electromagnetic responsitivity of D and deal with the latter as a
system interacting mainly with illumination fields. Here, the field is a near field
and the device will behave according to this type of excitation. For example, one
can assume that the device is electromagnetically shielded in a proper way or
designed to minimize its interaction with nearby objects. After developing some
basic understanding of the physics of how an independent D responds to arbitrary
near field produced by S, we can move subsequently to the next stage where the
effect of mutual coupling is included in the problem. This will most likely manifest
itself as a perturbation on the characteristics studied in the previous step. Detailed
investigations of mutual coupling will be tackled by the authors in a separate
publication, but see Chapter 16.

Let us move now to a more common problem encountered in real-life
situations. Figure 15.2 depicts what we choose to call the S-O-Rx scenario. Here, the
source antenna S is located in the far zone of the device D. The far field generated by
S will first interact with an object O close to the device D. Next, the field scattered
by O will impinge on D as a near field. Therefore, although the entire structure
D+O is located in the far zone of the source S, then, provided we again focus
attention on the device of interest D, the latter is eventually excited by near fields,
not far fields. In most of the standard literature, the idealized scheme in which the
receiving system D exists alone in free space (or above a ground plane) is assumed.
In electromagnetically dense environments, such as highly populated urban areas,
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Figure 15.2 The S-O-Rx scenario. Interaction between a Source S far from a Device D (typically an
antenna system) is mediated by a Object O placed in the vicinity of the device. The far field produced
by the distant source will be converted upon interaction with Object O to a near field (scattered field)
impinging in turn on Device D. The device responds to the near field by generating a received (Rx) signal.

this is no longer satisfactory. Even more, in nanoscale problems there is always a
strong energy exchange with the surrounding objects unless extreme care is taken to
eliminate this interaction [43]. Therefore, we believe that there is a need to reexamine
the electromagnetic problem as a whole from this perspective of a device interacting
solely with some near field.

Interest in describing the antenna using the ACGF method derives from the
well-known advantages of classical system theory in electrical engineering. Indeed,
by finding a characteristic function (transfer or Green’s function) of the device, we
achieve

1. Deeper understanding of the physics of the device. This is because the Green’s
function as a transfer function contains the theoretically and physically com-
plete information needed to compute the output for generic input regardless
to the environment and without the need to re-meshing.

2. Reduced computational efforts. This is because one may use the same de-
vice operating within very different systems and environments. Without re-
performing a full-wave analysis of the device + new enviroment/system every
time, we can directly compute the output by just specifying what is the illu-
mination field at hand.

3. Although sometimes it is not easy to know the illumination field itself
without further calculations, we can still use the Green’s function productively
in theoretical research, test, and devolvement, for example, by performing
statistical analysis to predict the expected received signal in such-and-such
scenarios or working conditions, e.g., DoA and MIMO applications often
involve such kind of analysis.
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4. Knowing the antenna current Green’s function and employing it for near-field
excitation calculations is a key step in finding new methods to compute and
compensate for mutual coupling. This line of research is treated elsewhere,
e.g, see Chapter 15.

To our best knowledge, such study has not been systematically considered in
the computational literature. The authors believe that it is convenient at the present
time to spend considerable efforts on understanding the physical and computational
aspects of near-field interactions in electromagnetic systems, both simple and
complex. Although the topic of the near field is notoriously difficult, we hope
that a group effort within the larger community will eventually produce significant
progress. This chapter is part of an initial contribution in this specific direction.

15.3 CONCEPTUAL AND COMPUTATIONAL ASPECTS OF THE
ANTENNA CURRENT GREEN’S FUNCTION METHOD FOR
NEAR-FIELD INTERACTIONS

15.3.1 The ACGF Approximation Techniques

Existence of the ACGF was established in Chapter 8 within the framework of distri-
bution theory. The method of the proof was to actually construct the function using
sequences of trial approximations and then showing that some subsequence does
converge to the exact value of the antenna received signal. Therefore, it is possible
to exploit the existence proof itself for the study of the concrete implementation of
the ACGF in numerical contexts. This topic will be briefly illuminated here.

The distributional ACGF F̄ (r′, r) is replaced by a sequence of regular
dyadic functions F̄n (r′, r) , n = 1, 2, ...,∞. While these functions approximate
the exact ACGF of the problem, they differ essentially from F̄ (r′, r) in being
ordinary functions, rather than a distribution. In fact, each function F̄n (r′, r) can be
represented as the current on the antenna generated in response to a special vector
surface excitation function fS (r′, r). This special excitation belongs to a very wide
range of localized fields all approximating in a certain sense a generalization of
the concept of the Dirac delta function familiar in system theory. For example, any
localized smooth pulse can work for this excitation.1 Therefore, the ACGF of the
antenna problem can be approximated by simply exciting the antenna by a sequence
of surface Dirac functions and choosing a suitable approximation level to work with.

1 For the rigorous description of the set of allowed delta sequences, see Chapter 8.
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The Method of Moment (MoM), Finite Element Method (FEM), Finite Difference
Time Domain Method (FDTD), can all be used to perform this computation. For
example, to confirm the method, FEM was used in [15] (with comparison with
measurement) while the MoM was utilized in Chapter 14 in conjunction with
the singularity expansion method.2 It is possible, moreover, to rely on special
measurement methods to obtain the ACGF. For instance, by exciting the antenna
by an extremely concentrated field and measuring the induced current distribution,
it might be possible to bypass the need to employ very dense mesh in the numerical
solution.

15.3.2 The ACGF and Traditional Full-Wave Solvers

Since electromagnetic fields are either far or near fields, an arbitrarily complex
field is most probably a near field. Commercial EM codes usually deal with two
types of excitation, wave ports and far-field illumination. Both types of excitations
necessitate generating a sufficiently fine mesh with a degree of resolution that can be
quickly estimated from the operating frequency. The reason is that both far-field and
wave port excitations involve propagating modes, which have a wavelength roughly
around v/f , where v is the speed of propagation in the medium of interest and f
the frequency. The situation, however, is very different with near-field excitations.
In this case, not only wavelengthes between ∞ and λ0 are available, but also short
wavelength components 0 < λ < λ0 corresponding to the nonpropagating modes.
Those rapidly decaying field modes make the a priori prediction of the proper
resolution of the full-wave numerical solution mesh very difficult for generic field
excitation. In other words, only if the nature of the field impinging on the antenna
is known in advance can we specify the suitable mesh of the problem. We believe
that in order to characterize a device in a manner that is independent of the nature
of the illumination field, one must have something new in addition to the traditional
numerical solver: The transfer function of the system, or, equivalently, the antenna
current Green’s function.

In our opinion, the reason why this new concept was not fully pursued
during the last few decades relates to the nature of the research problems that
have been deemed important by the practicing community. It has been widely
believed that far fields interaction with antennas is the dominant type of interactions.
This is certainly correct in many communication and radar applications operating
in typical environments, where the idealization of properly isolated and shielded

2 However, we pose the possibility that other special numerical methods need to be developed in order
to perform this computation in a more accurate and systematic fashion.
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device can always be made. However, currently things look different compared
with before. Indeed, urban environments are electromagnetically dense. Devices are
always embedded in complex environments. Typical practical scenarios now involve
multiple antennas and circuits constantly interacting with each other. Moreover, in
nanoscale structures and metametrials, the smallness of the devices and unit cells
forces interactions with the surroundings to become very critical (as an example,
consider near-field nano-optics and subwavelength imaging [43]). In all such cases,
two key terms come to mind: near field and mutual coupling. Interaction at short
distances typically involve near fields.

Finally, we mention that for general near-field illumination, the MoM matrix
cannot be adequate even for a single frequency. The reason is that no fixed accurate
mesh can be found for arbitrary field excitation. In practice, only special inputs are
typically taken into account, mainly plane-wave illumination and wave ports. The
problem of how to study the antenna response to generic field form has not been
investigated in a systematic fashion within the applied EM community.

15.4 NUMERICAL ANALYSIS OF NEAR-FIELD INTERACTIONS IN
LINEAR WIRE ANTENNAS

As an a concrete example demonstrating the ACGF method for near-field excitation,
we consider a linear wire antenna system illuminated by an external near field
Eex (r). In order to numerically solve the problem, a thin-wire electric field integral
equation (EFIE) for the current distribution on the antenna is solved using the Method
of Moment [23], [38]. The operator equation is written as

n̂ × Eex (r) = n̂ × LI (r) , (15.1)

where I is the current on the wire with the latter’s outward normal vector pointing
along n̂. The electromagnetic operator L is the one associated with the EFIE.

For simplicity, we work with a linear (triangular) basis function. The code
is verified by comparison with the solver WIPL-D, which uses higher-order basis
functions to model the current on wire segments [39].

The MoM expansion of the current is given by

I (z) =
N∑

l=1

Ilfl (z). (15.2)

Here we assume that the antenna is oriented along the z-axis and that the origin
coincides with the middle point of the wire. The complex numbers In give the
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unknown current values at the mesh locations zl, for l = 1, 2, ..., N , while fl(z) are
the basis functions (for explicit expressions in the triangular case, see for example
[38]). Using this numerical model, we intend to approximate the ACGF of the wire
numerically as

F (z, z′) =
N∑

l=1

Il (z′) fl (z). (15.3)

Note that the MoM current values Il become functions of the location of excitation
z′.

Let the tangential component of the external field be denoted by Eex (z). From
the fundamental definition of the ACGF, the current induced on the antenna can be
given by

I (z′) =
N∑

l=1

Il (z′)
∫

Sl

dz fl (z) Eex (z) , (15.4)

where the integration is on the segment Sl on which the lth basis function fl(z) is
defined. The integration is performed numerically using Gauss-Legendre technique
with five points on each segment. Note that in order to use the Tx mode ACGF (15.3)
to write (15.4), we have invoked the inverse reciprocity theorem.

The expression (15.4) gives the main formula of the ACGF approach when the
MoM is used as the computational medium through which we implement the exact
theory in Chapter 8. Its accuracy depends on how good the current values In(z′) are
in modeling the response to a delta function at z = z′. In order to assess the method,
we need also to know how good the obtained ACGF is in modeling the response
of the antenna to rapid fluctuations or short-wavelength components present in the
illuminating near field.

A convenient way allowing both goals to be achieved at once is to choose a delta
sequence [71] (a sequence of ordinary functions approximating the idealized Dirac
delta source) that consisting of decaying exponentials. One possible such choice is
the sequence of functions

En (z) = (1/2)n exp (−n |z|) , (15.5)

for n = 1, 2, .... The main advantage in using the special sequence (15.5) is that
it has exactly the same form of the evanescent modes radiated by a point source
at the origin. As is well known in electromagnetic near-field theory, the major
difference between far fields and generic fields (for example, near fields, directed
beams, scattered fields) is that the latter contain rich and complex mixture evanescent
modes in addition to the typical propagating modes [35]. Mathematically, a generic
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near field can be written as

E
(
r; R̄
)

= Epr
(
r; R̄
)

+ Eev
(
r; R̄
)
, (15.6)

where Epr and Eev are the propagating and evanescent parts, respectively. Here,
R̄ is a 3D rotation matrix specifying orientation of the local coordinate frame used
in deciding the direction of the axis along which the splitting into propagating and
evanescent modes is enacted (Chapter 4).

Consequently, since it is this type of evanescent modes Eev
(
r; R̄
)

that
represents the rapid part of generic near field variations, knowledge of the accuracy
of the ACGF method in terms of exponentially-decaying excitations like (15.5)
automatically provides information about how good the ACGF thus obtained is in
predicting the response of the antenna system to this level of short-wavelength details
in the near field.

We may now use (15.4) to illustrate the applicability of this argument in actual
examples. Let each ACGF approximation be written as

Fn (z, z′) := L−1En (z) =
N∑

l=1

In
l (z′) fl (z). (15.7)

for n = 1, 2, .... It can be shown that all the requirements of the special delta
sequence (15.5) stated in Chapter 8 are satisfied and therefore, according to the
convergence theory of the ACGF, it is always possible to obtain production of the
near field response in antennas using a sufficiently small exponential illumination
field.3 Therefore, we conclude that the corresponding current values In (z′) obtained
by (15.4) will converge to the exact solution as was shown in Chapter 8.

Consider a linear wire antenna with length 0.25λ and radius 0.001λ. We choose
four members of the exponential delta sequence (15.5). Figure 15.3 provides the
shape of the illumination field along the wire extension. The ACGF approximations
corresponding to each exponential field are shown in Figure 15.4. In general, as n in
the excitation fields of (15.5) becomes large, the sequence of pulses approaches the
idealized delta function. Since the electric-field integral equations of this particular
problem is not continuous (the EFIE operator is unbounded [70]), the convergence
of the delta sequence functions (15.5) to the Dirac does not necessarily imply
that the corresponding current distribution will converge. However, the analysis
in Chapter 8 proved that convergence to the correct current does happen for

3 The details of the proof are lengthy but straightforward and can be readily obtained by mimicking
the argument of Chapter 8.
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all operators obeying the reciprocity theorem, which include in particular the EFIE
operator of the antenna problem (15.1). Thus, from the purely numerical viewpoint,
one can work with any approximation level of the exact ACGF by choosing the
proper value n. In general, the higher the accuracy of the approximating ACGF, the
larger is n.

To verify the prediction of the current distribution using the ACGF with a
direct approach, we present in Figure 15.5 comparison with the scattering problem
(15.1) solved directly using the MoM for two choices of n. In the MOM scattering
code, we generate a nonuniform mesh appropriate to the shape of the exponential
delta sequence member for each choice of n in the input field (15.5). For the
computation of the ACGF in the transmitting mode, we use a single mesh sufficiently
dense to provide accurate prediction for all the input excitation near field cases
considered. Excellent agreement can be observed. Although this agreement in the
convergence results with increasing n was proved mathematically in Chapter 8 and
verified numerically for far-field illumination in Chapter 9, they are confirmed here
numerically for non-plane wave, i.e., inhomogeneous or evanescent fields, for the
first time. Note that since a generic electromagnetic field can always be written
as a proper mixture of propagating and evanescent modes Chapter 4, the results
here provide evidence that the ACGF can be used to compute the response to any
excitation field. This is because the basic building blocks of this excitation, namely
propagating and evanescent modes, are dealt with successfully using the ACGF
method.

Although the method of moment was used in this work to investigate the
near-field ACGF approach, we mention that since the ACGF has been established
on a rigorous basis going back to Maxwell’s equations Chapter 8, it could be
advantageous to develop special numerical methods or measurement procedures
to obtain the Green’s function in ways that go beyond conventional numerical
methods.

In order to go beyond linear wire antennas, for example to consider more
complex structures such as multilayered microstrip and dielectric resonator antennas,
it is required to develop a general EM solver that can deal with the special excitations
(the delta sequence) applied to the antenna in order to obtain its ACGF. Most
commercial EM solvers provide only plane wave and wave port excitations, or
sometimes special waves like Gaussian beams. In studying such problems, more
factors come into the picture, for instance how the geometrical shape of the antenna
interacts with spectral content of the non-standard NF applied to that part under
consideration. Such detailed study, including questions of convergence, were dealt
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Figure 15.3 A sequence of exponentially localized near electric field excitations (as in (15.5))
approximating the Dirac delta functions applied around the center of a 0.25λ linear thin-wire antenna
with radius 0.001λ.
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Figure 15.4 The approximations of the ACGFs of the antenna computed using the MoM in response to
the excitations of in Figure 15.3.
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Figure 15.6 Interaction of a linear wire antenna of length 2L with the near field produced by a point
source.

with theoretically in Chapter 8, and numerically for linear wire antennas here. The
numerical study of 2D and 3D structures will be taken up in future publications.

15.4.1 Interaction with Point Sources

We will utilize the analytical expression (14.37) to compute the received signal
induced in a linear wire antenna due to interaction with the near field of a point source
Js as shown in Figure 15.6. For simplicity, we consider only a source polarized in
the z-direction. The wire antenna is shown to be in the yz plane.

As was suggested in Chapter 4, the salient feature of the near field is its dy-
namic splitting into propagating and nonpropagating (evanescent, inhomogeneous)
parts. For a receiving antenna oriented along the z-direction as in Figure 15.6,
only the z-component of the source will interact with the wire. Let us denote the
propagating and nonpropagating parts of this component by Epr

z and Eev
z , respec-

tively. The field radiated by the source current Js can be put in the following form
(see Chapter 4 for details)

Epr
z = ik0

(
A0

pr − A2
pr
)
, Eev

z = ik0
(
A0

ev + A2
ev
)
, (15.8)

where

An
pr :=

∫ 1

0
du uneik0|z|uJ0

[
k0ρ
√

1 − u2
]
, (15.9)
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An
ev :=

∫ ∞

0
du une−k0|z|uJ0

[
k0ρ
√

1 + u2
]
. (15.10)

Here, ρ =
√

x2 + y2.
The received load voltage VL will be given by VL = V pr

L + V ev
L , where

V pr
L =

ik0ZLZTh

ZTh + ZL

Lnm∑
l=1

al

[
B0

pr (κl) − B2
pr (κl)

]
, (15.11)

V ev
L =

ik0ZLZTh

ZTh + ZL

Lnm∑
l=1

al

[
B0

ev (κl) + B2
ev (κl)

]
. (15.12)

Here we define

Bn
pr (κl) :=

∫ 1

0
du unJ0

[
k0ρ
√

1 − u2
]
I (κl, ik0u) , (15.13)

Bn
ev (κl) :=

∫ ∞

0
du unJ0

[
k0ρ
√

1 + u2
]
I (κl,−k0u) . (15.14)

Here we define the spectral interaction function as

I (κ, k) :=
e(κ+k)(L+b) − e(κ+k)(−L+b)

κ + k
. (15.15)

Note that in this particular calculation, ρ = a.4 The expressions (15.12) and (15.11)
are quite general. Their derivation depended crucially on the powerful Green’s
function theorem (14.3) and the spectral expansion (14.36). They show that for
arbitrary wire antennas, the response to an arbitrary near field generated by a z-
directed point source can be fully understood in terms of the behavior of only four
different spectral integrals (15.13) and (15.14).5

15.5 CONCLUSION

This chapter presented an investigation of the recently proposed antenna current
Green’s function (ACGF) formalism for applications concerning the analysis of
antenna arrays working in the receiving mode. A rigorous formulation was presented

4 Cf. Figure 15.6.
5 Further types of spectral integrals will be needed for sources polarized in directions other than ẑ.

However, in this chapter, we focus on the simple example given in Figure 15.6.
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for the commonly encountered practical situation when an antenna is fed by a linear
structure or a waveguide with a cross-sectional area small compared to the overall
surface area of the effectively radiating structure. For achieving the highest level of
generality in the method, the formulation assumed an arbitrarily-curved radiating
surface and also a generally curved wire extension. It was found then that the ACGF
tensor takes a very simple form in this case. Exact formulas for predicting the signals
induced in the receiving mode using transmitting mode data, and valid for arbitrary
illumination field, were then derived rigorously for the first time using the idea of
the current Green’s function.

Several in-depth discussions were presented to probe the structure of field-
antenna interaction as exemplified in the above mentioned general receiving array
system. We then demonstrated how the method can be applied in the general case
when the excitation of the structure is enacted by means of fields more complicated
than the point-source model used in defining the ACGF of the system. It was found
that the predicted value of the received signal, which would result if an approximation
of the ACGF is attempted using a numerical method, will be equal to the spatial
average of the correct value of the induced current, e.g., those obtained through
measurements. This result can help motivating further interplay between theory and
measurement in antenna practice since it provides a theoretical view of measurement
based on an exact Green’s function method, not the numerical approximation of full-
wave analysis, and hence can never be exact.

The chapter ended by a numerical study of wire antenna systems. The basic
formulas are developed for the special thin-wire array problem and the main
results were verified by direct computations using method of moment. A new
turn in the discussion was taken by performing a spectral analysis on the ACGF
of the wire-antenna system. The analysis, using Prony’s algorithm, obtained an
analytical approximate of the ACGF form and was used successfully in predicting
the interaction with plane-wave illumination in simple analytical form. The physical
meaning of the results was explicated in which the important difference between
resonant and nonresonant interactions with antenna systems was introduced and
numerically illustrated for the case of wire antennas.

The value of the analysis presented here is that it can be considered the first
time in literature in which systematic and rigorous models of generalized antenna
systems are presented using an exact transfer function in space. One of the advantages
obtained through this step is the ability to separate the input of the system, the
general illumination field, from the description of the antenna system itself. The
latter is further analyzed into two components, one termed the purely geometric
level while the other is the purely electromagnetic response. The pure geometric
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level depends only on the shape of the generally curved antenna surface. The pure
electromagnetic response depends on the feed mechanism, the nature of the materials
composing the antenna system, and the electromagnetic environment. Such detailed
insight into the various levels of electromagnetic field interactions with general
antenna systems is possible only when an exact concept of spatial Green’s function
is developed in detail, with attention paid to the differential geometry of the antenna
surface. We expect that the basic ideas presented in this chapter can help establish
a deeper understanding of how antenna (and other electromagnetic) systems in the
receiving mode work under very general operational conditions. Indeed, the neat
separation of the interaction scheme into the three distinct levels mentioned above has
direct relevance to engineering studies and development since it allows identifying
the relevant degrees of freedom in one particular mode of operation while fixing
the others.





Chapter 16

Electromagnetic Mutual Coupling in
General Antenna Systems

16.1 GENERAL INTRODUCTION

16.1.1 Broad View and Outline

This chapter aims at providing a broad new view on the topic of mutual coupling
in general electromagnetic systems, with emphasis here put on antenna arrays. The
topic of mutual coupling is not new, and has been recognized as an important research
area since the early beginnings of antenna theory. The basic problem encountered
here is how the behavior of one electromagnetic device changes when placed next
to another device or nearby object. Although there is a universal agreement on
this deceptively simple definition, there exists a wide range of different answers
to the immediate question about how to describe the device’s behavior of interest
in the mutual coupling problem as defined above. Unfortunately, there has been
a tendency throughout the last six or seven decades to reduce mutual coupling
to coupling through the ports of the antenna system under consideration. While
port coupling is indeed part of the general process of electromagnetic mutual
coupling, it by no means exhausts the problem. One of the main objectives of this
chapter is to illuminate mutual coupling through a more comprehensive scheme.
For example, we will learn how to monitor interactions by looking through the near
field, rather than mutual impedance or the far field. Since future devices are being
reduced in size and are operating in dense and crowded environments (just think

425
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of the high average number of mobile phone devices existing in each square meter
nowadays), it is expected that characterization of coupling through the near field will
become increasingly important in the near future.

However, the need to study mutual coupling through the near field faces very
serious obstacles. First of all, we don’t have a complete understanding of the structure
of the near field comparable with the case of the far field. If an antenna system is
being illuminated by a near field instead of plane wave, the physics of coupling
and interactions are in general quite different. The main difficulty is that it is not
known in advance what wavelength components exist in the near field impinging
on the system. In contrast, with plane-wave illumination only one wavelength is
possible for a given frequency f , that given by the relation λ = c/f , where c is
the speed of light in the space into which the antenna is radiating and receiving.
Consequently, the task of analyzing the problem of mutual coupling in the presence
of complex illumination field becomes involved since in general antenna arrays
behave differently with different wavelength field components acting as excitations.
This difficulty will be solved in two steps. Initially, we will utilize the near-field
theory developed by the authors to provide suggestions about how best should the
near-field structure be analyzed in order to obtain a physically meaningful picture.
The next step is to utilize the antenna current Green’s function (ACGF) in order to
compute the response of the device to generic excitations. The two-step approach
will then be combined and illustrated for antenna arrays.

The second difficulty concerns the problem of how to compute mutual coupling
for large-and-complex antenna systems. This is the problem that has dominated
research interest in the last period. It concerns the well-known prohibitive cost of
solving Maxwell’s equations for large number of antenna arrays. We will provide
a two-step approach to deal with this problem. In the first step, we employ the
infinitesimal dipole model (IDM) method to model arbitrary antenna arrays based
on measured near field data. This bypasses the need to solve Maxwell’s equations
on a computer. The obtained model is analytical and can be used to predict the
fields radiated by the original array everywhere in the exterior region. In order to
incorporate the effect of mutual coupling, a physics-based approach, inspired by
multiple scattering in solids, will be introduced. This approach, here applied in a
simple and intuitive fashion, will be further developed later in a more rigorous manner
using the ACGF formalism. In fact, we will show that using perturbation theory, one
can compute mutual coupling in arbitrary antenna arrays with a given error tolerance
without the need to solve Maxwell’s equations for the entire coupled system.

The key idea of our approach to mutual coupling will be isolating and
properly defining the single most important quantity describing mutual coupling
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in the widest general way possible. This quantity turns out to be the mutual
coupling Green’s function, which acts like a transfer function for mutual coupling
in generic electromagnetic systems. Indeed, such function can predict those popular
and standard mutual coupling effects at the ports of the arrays plus the impact on
the radiation pattern. But it also can estimate the impact on the near field brought by
coupling and interaction with nearby objects. However, the most important feature
of the mutual coupling Green’s function is the insight it provides into the physical
aspects of energy exchange between antennas and their environments. By analyzing
the structure of the coupling transfer function, we hope to be able to understand
in depth how two antennas couple and react against each other. Examples will
be provided in which new pictures are generated by our method explicating the
dynamic structure of the near field between two antennas (wires) and how energy is
localized in the space lying between them. This new analysis can find applications in
various problems that depend crucially on interactions at short distance, for example
detection of underground objects, near field communications, near field radar and
MIMO, and many others.

16.1.2 Motivations and Context

The main motivations for this research come from the unique present historical
juncture of electromagnetic and electronic research: Some of the most challenging
technological problems facing the electromagnetic engineer in the future will require
a deeper understanding of the physical and computational aspects connected with
the problem of interaction and energy exchange in general antenna systems. In fact,
steady expansion of the electromagnetic technological infrastructure is now facing
the following two limiting problems:

• The increasing complexity and/or density of the working environment.

• The need to reduce the size of electromagnetic and electronic systems.

Limitations of space push toward smaller spatial extents, a situation which inevitably
raises difficulties regarding how various parts of the device mutually interact with
each other. On the other hand, the need to run devices in dense and complex
environments brings in the unavoidable task of characterizing how interactions with
nearby objects may modify the ideal performance of the device. The two problems
above, the internal and external ones, are fundamentally the same when viewed from
a proper general theoretical perspective: electromagnetic mutual coupling between
two or more objects.
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Following this view, it is expected that by rigorously formulating the problem
using exact techniques, one hopes to develop a deeper understanding of the scientific
dimensions of the issue at hand, an understanding capable of nurturing fruitful
solutions to concrete problems. This chapter aims at achieving this double goal:
to sketch out a general theoretical formulation of mutual coupling using methods
recently developed by the authors; and to devise special computational and statistical
methodologies convenient to common practical array and system designs.

There are numerous advantages for developing a general theory of electro-
magnetic mutual coupling in applied electromagnetics. We mention below only few
of what we think might be important

1. A theory of mutual coupling must involve a theory of electromagnetic en-
ergy exchange between radiators or between radiators and their environment.
Such theory is still not fully developed in the classical regime of macroscopic
electromagnetic, especially with respect to the fundamental role played by
evanescent modes in light of recent progress in near field optics and engineer-
ing. In fact, the topic of energy exchange is well developed for light-matter
interactions, which typically involves quantum-mechanical effects. For the
case of classic antennas and structures where the wavelength is comparable
with the spatial dimensions along which the electromagnetic boundary condi-
tion is placed, to our knowledge no general theory of energy exchange exists up
to date. Note that such theory has to deal with such poorly understood concepts
like reactive, localized, and stored energies, which are still controversial. We
anticipate that a theory of mutual coupling will help clarify many of the subtle
aspects involved with electromagnetic energy exchange in general, particularly
within the prospects of the potential wealth of numerical and physical data that
such a theory of antenna’s coupling may generate.

2. A deeper physical understanding of mutual coupling is an a priori condition for
being able to devise satisfactory methods and techniques for mutual coupling
compensation in general antenna arrays. Since the size of the array can
be considerably reduced by decreasing the average inter-element spacings,
correcting deviation from ideal behavior caused by such reduction of size is
one of the most effective methods to achieve the long-term goal of system
miniaturization.

3. It is conceivable that a theory of mutual coupling will allow new types of
applications to arise. As experience has shown during the last several decades
of research in applied electromagnetics, strong interactions can lead to quali-
tatively new electromagnetic behavior. For example, strong coupling between
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narrowband systems can make the resulting (combined) system wideband. An
in-depth analysis of the structure of electromagnetic interactions, therefore,
might be a good method for generating new behavior exploitable for future
applications.

4. Energy, here electromagnetic energy, can be manipulated and controlled only
by working with strong mutual coupling systems. The reason is that radiation
tends to weaken considerably at long distances due to the well-known 1/R2

spherical wave spreading loss. This implies that energy harvesting, control,
and transportation, will likely be implemented through a setup that involves
near-field interactions with strong mutual coupling. In order to understand
how to design such systems, a general theory of mutual coupling is necessary.

16.1.3 The Overall Structure of The Theory of Electromagnetic Mutual
Coupling

In Figure 16.1, we present the various investigations to be discussed in this
chapter about electromagnetic mutual coupling together with the multiple possible
connections existing among them.

The Antenna Current Green’s function (ACGF) will be used to define mutual
coupling rigorously by introducing the concept of mutual coupling Green’s function
(Section 16.2.1). Here, we isolate that part of total ACGF that is responsible of
mutual coupling alone and find that it provides a complete and exact description
of mutual coupling effects, including input port parameters, far field pattern, and
the entire near field. For studying the behavior of antenna arrays in the receiving
mode, it is possible to use this mutual coupling ACGF to predict the received port
voltages for arbitrary field illumination. This is not possible with knowledge of only
the S-matrix, which highlights one of the important applications of the new mutual
coupling ACGF.

The dipole model approach to mutual coupling (Section 16.4) will be intro-
duced in order to provide a simple and efficient method capable of dealing with
arbitrary antenna arrays with or without strong mutual coupling. The method accepts
a set of measured near field data and construct a model for the source using optimiza-
tion methods. Mutual coupling here is not defined from the limited viewpoint of port
coupling, but rather through the near field itself. An initial theory of mutual coupling
is then presented in which we suggest that coupling occurs because of a multiple
scattering effect in the space between the two antennas. A technique to compensate
for mutual coupling effects in the dipole model of a single antenna is then introduced
and verified by working with near field data.
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Inspired by the intuitive approach to mutual coupling via infinitesimal dipole
models, the basic mutual coupling ACGF is now shown to be computable in terms
of a perturbation series that involves only the isolated elements’ ACGFs and the
forward interaction operator (Section 16.5). The forward interaction operator is in
general small since it usually involves the perturbation effects coming from the
nearest elements. Hence, it is possible to compute low-order corrections due to
mutual coupling for very large arrays using the perturbation series without the need
to invert the full electromagnetic operator of the problem. The approach also will
confirm our assumption in the dipole model approach that mutual coupling is a
multiple scattering effect.

The new theory of the near field will then be combined with the formulation
of mutual coupling in terms of the ACGF method to provide a deeper analysis of
interactions between two antennas. We show that certain modifications of existing
Method of Moment (MoM) codes introduce a direct method to measure the degree
of localization of energy in the space between the antennas. In particular, we keep
intact the entire numerical apparatus concerned with mesh descretization, choice and
implementations of basis functions, but split the Green’s functions into two parts in
a physically meaningful and illuminating way. The method consists of septation the
interaction operator into propagating and evanescent part then computing the ratio of
the nonpropagating part to the total interaction. New pictures illustrating interesting
features in energy coupling between wire antennas will be given there. In particular,
we provide an experiment in which one wire is used as a probe to study the structure
of the field radiated by another wire.

As can be seen from Figure 16.1, the various sections of this chapter converge
into the block enclosed by dashed line, which represents an integration of the
overall achievement in one unified theory of electromagnetic energy exchange. This
final theory has not been attained yet, but we hope that the multiple investigations
conducted in this chapter and the remaining parts of the book will help bringing us
closer to attaining this ambitious objective.

16.2 WHAT IS MUTUAL COUPLING IN APPLIED
ELECTROMAGNETICS?

The term ‘mutual coupling,’ although widely used in the literature of applied
electromagnetics, is seldom clearly defined in a precise and general way. Instead,
it is usually left for the specific context inside which the term happens to be
currently introduced and used to decide the particular definition of the problem
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Figure 16.1 Road map for the structure of the mutual coupling theory presented in this chapter.

at hand. The lack of systematic investigations of the semantic aspects of mutual
interactions is partially responsible, we believe, for the occasionally controversial
claims made about what has been actually achieved regrading the analysis and
mitigation of problems caused by the onset of mutual coupling effects in the system
under consideration. Indeed, even though excellent separate proposals for methods
successfully handling mutual coupling degradation in special common problems is
not lacking, an overall view of the subject combined with more general approach
to both analysis and computation of energy exchange between arbitrary systems
is highly needed now. Moreover, we believe that some of the existing methods
cannot actually deal with more general problems. The absence of a general theory of
mutual coupling is one of the reasons behind this immature belief in the unrestricted
applicability of many popular mutual compensation methods. We will not attempt
here anything like a literature survey or comprehensive comparative studies, but
proceed immediately to construct a general definition of mutual coupling using
new theoretical contributions made recently (see chapters on the near field and
the antenna current Green’s function formalism) that address the topics of near
fields, localized energy, and the antenna current Green’s function. Based on the
new formulation of mutual coupling introduced here for the first time, we propose
some methodological techniques for handling the subject on a computational and
statistical basis.
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Figure 16.2 Simplest mutual coupling scenario involving a two-element antenna system. In the
transmitting (Tx) system at the left, a source with internal voltage Vs and impedance Zs is connected to
the element and used to energize the system. In the receiving (Rx) system at the right, an incoming wave
(usually plane wave) is used to excite the two-element array. The terminals of the antennas are connected
to a load impedances ZL1,2 and the resultant received voltages V1,2 are observed.

Before attempting to define the problem of mutual coupling using the concept
of the antenna current Green’s function, it is appropriate to ponder for a while
the existing understanding of the problem currently prevailing in the specialized
literature. This presentation will help the reader to better appreciate the advantage of
the rigorous and exact general formulation proposed later, and also will improve our
ability to relate the theoretical framework to practice in terms of actual computations
and/or measurements.

Figure 16.2 illustrates a minimal mutual coupling problem consisting of a two-
element antenna array system operating in both the transmitting and receive mode,
represented by the left and half graphs, respectively. The common understanding
is that a separate antenna element is designed and developed as an isolated object,
i.e., and antenna operating in idealized environment, typically infinite free space
or half space. Subsequently, the device thus obtained is operated not in its origi-
nal ideal design environment, but in the real world where other objects, possibly
identical antenna elements, come into close proximity within its neighbourhood.
Due to the peculiarity of electromagnetic devices, if the separation between the
objects is not large with respect to the operating wavelength, then strong mutual
interactions may exist and affect the performance of the device under considera-
tion. In that case, the element in the array will not exhibit the original behavior,
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and, therefore, the actual array or complex system will deliver a modified output.
The deviation of the array’s output from that anticipated based on simple addition
(sum or superposition) of the idealized (isolated) performances of the constitutive
elements is exactly what is called mutual coupling effect. Let us explain this with
few common examples.

There are three main features in the electromagnetic performance of all antenna
arrays:

1. Terminal port voltages and/or currents.

2. Near fields.

3. Far fields.

Most of the attention of commercial, industrial, and scientific research activ-
ities seem to be focused on the first and the third features, i.e., the terminal (port)
characteristics and the far field. The near field is seldom directly addressed in re-
search, and industry has been slow in appreciating its potentials. However, later on
the near field will receive prominent attention, so we focus for now on the remaining
two factors.

Consider first terminal voltages. The entire circuit connected to the ports of the
receiving array can be replaced by their equivalent impedance ZL, which in general
varies from one port to another. When the antenna array operates without mutual
coupling, each element will act as if the other objects, e.g., the antenna nearest to it,
does not exist. The ideal received voltages will be denoted by V1 and V2 as in Figure
16.2 (right). Due to mutual coupling, the idealized voltages will be changed to V ′

1
and V ′

2 . We define the mutual coupling effect by the quantities

δV1 := V ′
1 − V1, δV2 := V ′

2 − V2. (16.1)

In other words, for the quantification of deviation of the observed voltages due to
mutual coupling, we compare V ′

1 and V ′
2 with the idealized (no mutual coupling)

voltages V1 and V2.
This definition of mutual coupling is the most common one found in literature

(the definition of mutual coupling for the far field is similar and will be given below).
The majority of the so-called mutual coupling compensation techniques are designed
to address a situation defined in these terms. There are several shortcomings, however,
in this approach. We mention the most important:

• The definition is not general. It applies only to those systems where the terminal
voltages are the major object of interest.
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• The definition of the mutual coupling effects δV depends on the nature of the
illumination field. In the case of (16.1), a plane wave excitation is assumed.
As will be demonstrated later, this is far from exhausting the problem. For
example, in dense and crowded environments, near-field illuminations tend to
dominate.

• The precise nature of the role played by the load impedance is not clearly
separated from pure electromagnetic effects. In Figure 18.4, mutual coupling is
intuitively understood as a process emerging from some sort of electromagnet
coupling between the two antennas. The variable load impedance, on the other
hand, is an external factor relevant only to the remaining parts of the system.
The input Thevenin impedance of each antenna is added to the load impedance
in order to compute the port current, but this former impedance itself varies
with mutual coupling, leading to variations in the power delivered to the load
emerging from changes in the circuit power divider ration. In our opinion,
such pure circuit effects should be distinguished from pure electromagnetic
effects.

The general definition of mutual coupling to be presented later will take into account
such difficulties.

For the transmitting antenna system, the most important performance measure
is the far field. Let the far fields radiated by idealized single elements be given by
E1(θ, φ) and E2(θ, φ). By superposition, the expected total far field is given by
E1(θ, φ) + E2(θ, φ). Due to mutual coupling, the actual far field will be given by
E′(θ, φ). The far-field mutual coupling effect δE(θ, φ) is then defined as

δE (θ, φ) = E′ (θ, φ) − E1 (θ, φ) − E2 (θ, φ) . (16.2)

In other words, the signature of the far-field mutual coupling effect is the failure
of simple superposition of idealized antenna element to account for the actually
observed radiation pattern. The function δE (θ, φ) measures this degree of deviation.
The near-field mutual coupling effect is defined in exactly the same manner.

For matching consideration, it is useful to extend the above definitions to
deal directly with the input impedance. Let the Thevenin impedance of a radiating
antenna element in isolation be given by ZT . Then the same impedance with mutual
coupling will be modified to Z ′

T . The input impedance mutual coupling effect δZT

is defined as
δZT1 := Z ′

T1
− ZT1 , δZT2 := Z ′

T2
− ZT2 . (16.3)

That is, mutual coupling will modify the input impedance seen at its excitation port
when radiating in the presence of another nearby object.
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16.2.1 A Rigorous and Exact Formulation of the Problem of Mutual Coupling

The classic problem of mutual coupling can be described in very simple terms as
follows. Suppose you are given two electromagnetic systems A and B. Assume
a frequency-domain approach where a time-harmonic dependence exp(−ωt) is
presupposed and suppressed everywhere. It can be shown that the full performance
of the two systems individually is fully accounted for using the antenna current
Green’s functions F̄A (r, r′) and F̄B (r, r′) for the systems A and B, respectively
[13]. These functions can be used to predict the exact response of the systems
under consideration for both the transmitting and receiving modes Chapters 8 and
9. Indeed, the received signals in antennas A and B can be written in the following
proper superposition form

JA (r) =
∫

SA
ds′ F̄A (r, r′) · Ein (r′),

JB (r) =
∫

SB
ds′ F̄B (r, r′) · Ein (r′). (16.4)

Here, SA and SB refers to the surfaces of antennas A and B. It is important to notice
that in this context each of the two transfer functions F̄A (r, r′) and F̄B (r, r′) above
is computed for an isolated system, i.e., when the system under consideration works
in infinite, isotropic, local, and homogeneous space, say free space.

Next, when each of the two systems is brought into close proximity to the other,
the possibility of significant coupling between the devices cannot be ruled out. In this
case, the actual transfer function is no longer equal to the one computed for isolated
environment. In general, we write the new antenna current Green’s functions as
F̄′

A (r, r′) and F̄′
B (r, r′).

Finally, define the mutual coupling transfer functions δF̄A (r, r′) and
δF̄B (r, r′) by the relations

δF̄A (r, r′) := F̄′
A (r, r′) − F̄A (r, r′) ,

δF̄B (r, r′) := F̄′
B (r, r′) − F̄B (r, r′) .

(16.5)

It is this deviation of the modified ACGF from its value when considered in isolated
environment what we define precisely as the effect of electromagnetic mutual
coupling. As one may notice, the theoretical tool of the antenna current Green’s
function allows us to define mutual coupling in general electromagnetic systems
using rigorous exact terms.

The functions δF̄A (r, r′) and δF̄B (r, r′) can be thought of as the mathemat-
ical representation of mutual coupling in terms of exact transfer function in space.
In other words, given any illumination field impinging on the A + B system, we
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can compute separately the contribution to the receiving mode signal arising solely
from the effect of mutual coupling on each subsystem A and B. Indeed, we have the
following expressions for the perturbation on the total signals

δJA (r) =
∫

SA
ds′ δF̄A (r, r′) · Ein (r′) ,

δJB (r) =
∫

SB
ds′ δF̄B (r, r′) · Ein (r′) .

(16.6)

Here, similar to (16.5), we can write J′
A (r) = δJA (r) + JA (r) and J′

B (r) =
δJB (r) + JB (r) for the signals received by the respective antennas at location r
due to general illumination field Ein (r′). Since the expressions (16.6) are exact and
general, the complete solution of the problem of mutual coupling reduces to finding
the perturbation transfer functions δF̄A (r, r′) and δF̄B (r, r′).

16.3 INTERLUDE: APPLICATIONS OF THE ANTENNA CURRENT
GREEN’S FUNCTION MUTUAL COUPLING FORMULATION

In the next few sections, we will sketch out briefly the main features of some major
applications of the above rigorous and exact definition of electromagnetic mutual
coupling using the antenna current Green’s function. Before going into details, we
provide a general philosophical anticipation of these applications serving as a rational
motivation for their perusal.

The key difference between the popular definitions of mutual coupling pre-
sented in Section 16.2 and the rigorous and exact formulation of Section 16.2.1 is
that in the former all of the definitions (16.1), (16.2), (16.3) appear as special cases
of the latter. Indeed, the common denominator in the definitions of mutual coupling
in terms of far- and near- fields, input impedance, mutual impedance, etc, is that all
such formulations deal with outputs of the antenna problem. On the other hand, the
definition (16.5) differs essentially in being worked out in terms of the exact general
transfer function of the problem throughout which any output whatsoever can be
computed. Stated differently, by finding the perturbations in the ACGF caused by
mutual coupling, the most basic interaction problem is essentially solved. (This can
be inferred from (16.6)). It is such system viewpoint – facilitated by the concept
of exact transfer function in space – what will form the crux of the next three
applications.
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16.4 THE INFINITESIMAL DIPOLE MODEL (IDM) APPROACH TO
MUTUAL COUPLING

16.4.1 Introduction

This part of the chapter is concerned with the analysis of the near field produced by
array elements with arbitrary degree of couplings. The use of such arrays has been a
cornerstone in wireless and radar technology since its early invention in the previous
century. The function of the array depends on the configuration and the design of the
elements, and for retaining full control of the radiated fields one usually runs into
the important situation when strong electromagnetic coupling between the elements
is present. In this case, the near-field structure is no longer the superposition of the
fields radiated by isolated elements. Instead, the near field acquires a very complex
structure, and the exact manner in which the far field is generated from this structure
is not well understood yet. In this part, we extend the equivalent dipole method to deal
with strongly interacting array elements. The method is chosen for its computational
simplicity and conceptual clarity.

16.4.2 Mutual Coupling and Computational Electromagnetics

With the increasing sophistication and complexity in present-day electronic and
electromagnetic devices and systems, the demand for fast and efficient methods for
performing the analysis, design, and devolvement of a wide variety of tasks is still
a crucial issue in applied science and engineering. In particular, the computational
demand becomes a prohibitive limiting factor in the analysis and design of large-and-
complex antenna arrays for many important applications such as radars and smart
antennas. In such cases, it is usually required to perform repeated computations of
the radiated field and the echo scattered by nearby objects or distant targets in order to
facilitate signal processing schemes in conjunction with a particular application in
mind. Since accurate characterization of such systems is usually feasible mainly
in the full-wave analysis mode, there is a need to consider alternative methods
that can give the same accuracy but without the need to solve the expensive entire
boundary-value problem every time a modification in the array under consideration
is introduced.

The method proposed in this part is suited to these and other applications
in the sense that it aims to replace the complex and expensive numerical problem
by a more tractable, semi-analytical approach in a way that avoids re-solving the
entire problem for every array configuration. The approach is based on extending the
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method originally presented in [21] for single antennas but to handle this time the
analysis of strongly-coupled antenna array elements. The equivalent dipole model
method is based on replacing a complicated radiation problem by a simple model
consisting of few infinitesimal dipoles radiating in free space or semi-half free space.
The crux of this idea is to avoid solving the actual boundary-value problem and
search instead for equivalent source representations for the problem at hand. The
price, of course, is that the obtained dipole model is not unique. However, it can
still be regarded acceptable in the sense that the model is valid only in the region
exterior to some domain enclosing the antenna. The obtained dipoles re-produce the
actual field in this exterior region with high accuracy and can be used to analyze
antenna-antenna and antenna-scatterer interactions, therefore reducing considerably
the computational cost.

In the formulation [21], the dipole model was employed to study successfully
antenna-antenna interactions when the separation between the elements was large
enough (weak coupling). However, the original method suffers from its inability
to deal with strong mutual coupling effects for general arrays. In this section,
we develop a new idea to systematically account for antenna-antenna interactions
whose mutual coupling is significant, with our attention focused on the operational
details of implementing the method for general arrays. When mutual coupling is
strong, the equivalent current distribution obtained for the single element using
the method available now in literature [21] fails to predict correctly the near-field
behavior when this element is placed in the actual array environment. However, a
hypothesis pertinent to the nature of mutual coupling in antenna arrays is developed
in this part to modify the dipole model in order to predict correctly the new field
in the strong mutual coupling scenario [11]. The method is based on modeling
mutual coupling, i.e., the electromagnetic interaction between radiating elements, as
a multiple scattering effect taking place between the antenna element and the nearby
right and left elements. For simplicity, we limit our investigations in this section to
linear array topology. It turns out that such hypothesis predicts correctly, within the
original method’s error, the electromagnetic interaction. Moreover, only one dipole
model, taking into effect the first-neighborhood interactions, can be used to predict
the correct near field for arbitrary-size arrays.

16.4.3 The Infinitesimal Dipole Method and the Near Field

The main emphasis of the infinitesimal dipole method is on developing efficient
methods suitable for the description and analysis of the antenna near fields in
various configurations of weakly or strongly interacting array elements. After
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developing the main method, we end in Section 16.4.9, where we provide an in-
depth analysis of the antenna arrays near fields. It has been proposed recently
by the authors (see also chapter on near field) that the decomposition of the
radiated fields into propagating and nonpropagating (evanescent) fields constitutes
the single most important feature in the dynamic description of the processes forming
electromagnetic radiation as discussed in Chapter 4. Indeed, variations of the manner
in which the near-field splits into propagating and nonpropagating parts as the
observer varies his perspective (orientation of the observation frame) while moving
around the antenna give rise to many important features in the antenna radiation
pattern. Moreover, the coupling between antenna elements can be viewed as a field
effect in which the respective near-field shells of two elements placed in the vicinity
of each other tend to mutually interpenetrate and hence couple directly through their
fields themselves. Traditionally, the only near-field measure studied in details has
been the input impedance, predominantly for matching considerations. However,
it has been shown by the authors that this approach is limited when consideration
focuses instead on the electromagnetic fields themselves.1

For these motivations, there is a need for a fresh re-examination of the
fundamental issues pertaining to the principles of operations of antenna arrays
viewed mainly from the near-field perspective. The reasons for this can be stated
as follows

1. First, the radiation pattern of the array is itself the outcome of a complex
genetic process in which the near field continuously differentiates and changes
in form giving rise to a determinate shape for the radiation at the far zone.
Understanding the structure of the near fields then allows us to better grasp
fresh potentials for controlling the radiated fields by modifying the current
distribution on the array.

2. Second, electromagnetic interactions between array elements, especially el-
ements placed very close to each other, is a direct coupling phenomenon
between near fields shells as stated above. The physics of the near field then
dictates the manner in which electromagnetic coupling will affect the perfor-
mance of the array under consideration.

3. Third, for future applications, which tend to increase dramatically in com-
plexity, such as metamaterial environments (artificial media) and nanostruc-
tures, it is important to get a hold on the fine details of the spatial structure

1 Cf. Chapter 4.
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of the near field in order to theoretically pre-plan new devices and guide the
research and devolvement process.

The spectral analysis of the near field, outlined in Section 16.4.9 of the present
part, is one such perspective on the spatial structure capable of shedding light on the
three issues above. Although the utilization of the evanescent fields has found its way
in near-field nano-optics, especially for imaging applications, very little research in
this direction has been conducted for antennas working in the microwave regime. For
these reasons, Section 16.4.9 develops this important applications for the equivalent
dipole model in order to provide the working community with reliable theoretical
tools for the analysis and design of antenna arrays.

16.4.4 The Basic Method of Equivalent Dipole Source Models

We provide here the minimum necessary background to follow the main arguments
of this section but the reader may refer to [21] and [22] for further information about
the technical aspect of the implementation. Some of the most basic details relating
to the mathematical description of the dipole model used in this part are collected in
the Appendices.

The electric field radiated by a single dipole with moment pm and location rm

is given by the well-known formula

E (r) =
µ0ω

2

4π
Ḡ (r) · pm. (16.7)

The scalar Green’s function is defined as

g (r) =
eikr

r
, (16.8)

while the dyadic Green’s function is given in terms of the scalar solution using the
following well-known relation

Ḡ (r) =
(
Ī +

1
k2 ∇∇

)
g (r − rm) , (16.9)

where k = ω/c = 2π/λ is the wavenumber in free space, c and λ are the speed of
light and the wavelength, respectively, both in free space, and Ī is the unit dyad.
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The basic idea of the dipole model method is to generate the actual field of an
arbitrary radiating structure by an expansion in the form [133],[134],[21]

EDM (r) =
M∑

m=1

µ0ω
2

4π
Ḡ (r) · pm, (16.10)

where EDM stands for the Dipole Model (DM) fields and µ0 is the magnetic
permeability of free space. Viewed in light of (16.10), the dipole model is an
analytical expansion of a given arbitrary field in terms of infinitesimal dipoles
(point sources) with the appropriate moments, locations, and orientations. When
considered as such, there is no way to predict the number of dipoles in advance.
Clearly, if M is large, the proposed approach loses its strength as analytical method
and becomes on par with classical full-wave numerical solution of Maxwell’s
equations (subject to the appropriate boundary condition), or other deceptively
similar methods [135]. However, it was found in previous research that the number
of dipoles is actually small, typically in the range of five to ten dipoles for many
antennas of practical interest [134],[21]. This vital observation will be exploited
in this work by trying to see if such small size dipole model can be recruited
in studying complicated problems. The Method of Moment (MoM) [23] will be
used in this part to obtain the near field training data set needed to find the dipole
model and in combining an existing model with the numerical solver to study more
complicated configurations.

Figure 16.3 illustrates the general process. The expression of the error function
F = ‖EDM − EA‖, a highly non-trivial choice in optimization, can be found in
Appendix 16.6.1. The objective function is a nonlinear measure which is difficult to
optimize. Notice that each dipole requires seven optimization parameters (Appendix
16.6.1). Therefore, for, say, 10 dipoles, the dimensionality of the search landscape
is 70, necessitating a powerful optimization algorithm to deal with the problem. In
this part, we employ the Quantum Particle Swarm Optimization (QPSO) algorithm
developed in [22] for electromagnetic applications in order to search for the best
dipole model. The applicability of the algorithm for a wide range of practical
problems was already demonstrated in [21].

The training data set is ideally obtained by a high-resolution accurate near-
field measurement setup. Once the data is available, the dipole model can be found
using the QPSO algorithm (or any other similar powerful search method) and an
analytical model for the antenna can then be utilized to predict the field anywhere
outside the forbidden region (see below). Therefore, there is in principle no need to
numerically solve Maxwell’s equations. The dipole method is an ideal choice when
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Figure 16.3 General schematics for the procedure of obtaining an equivalent dipole model for an
arbitrary radiating structure. Only a training set of near-field data, not necessarily on a closed surface, are
needed to guide the QPSO algorithm in the search for accurate dipole models. A suitable error function
‖EDM − EA‖ is introduced and used as an objective function in the QPSO algorithm. The outcome of
the search is a dipole model that can re-produce the training set and predict the near and far fields at other
locations.
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the geometry of the radiating structure is not well known (e.g., imaging problems)
or very complicated to deal with numerically. In this part, which is concerned
with developing the proof of concept, we employ the MoM to compute the actual
fields. Moreover, we show that the dipole model has a considerable advantage when
combined with MoM to deal with large array problems.

It is important to notice that the dipole model, being a current distribution that
does not satisfy the actual boundary condition of the problem at hand, is not unique.
That is, there exists a region directly surrounding the antenna in which the dipole
model field deviates significantly from the actual field. The most extreme case is when
the field is observed at the (discrete) locations of the dipoles, where the singularity
will produce infinite (non-physical) field strength. The forbidden region is explicitly
indicated in Figure 16.3 to sort out this important restriction on the equivalent dipole
model: such models can not be used directly to study what happens at the antenna
itself. However, they can used to accurately describe the field everywhere in the
exterior region.

16.4.5 Analysis of Linear Arrays of Patch Antennas

In this section, we provide a general investigation of a concrete antenna array.
The configuration is linear. The chosen antenna element is a wideband PEC patch
excited by L-shaped probe. This antenna is intermediate in complexity between linear
metallic wires and dielectric antennas. Notice that the basic method works well when
applied to a wide range of antennas, for example dielectric resonator antennas [21].
However, no study of the effect of mutual coupling between array elements on the
infinitesimal dipole model was reported before and hence we endeavor to achieve
this in this work.

Figure 16.4 illustrates the details of the antenna geometry. A dipole model was
obtained for this antenna radiating as a single element at the frequency 4.5 GHz.
Next, we investigate the performance of the antenna within an array environment
consisting of a linear configuration of identical elements as shown in Figure 16.5. All
elements are located above an infinite ground plane with uniform separation given
by d. Image theory is used to model the ground plane, replacing effectively the free
space Green’s function by the half-space Green’s function, and reducing therefore
the computational demand of the optimization problem. (The reader should notice
that the situation with finite ground plane cannot be modeled exactly using this
method because of the complexity of the Green’s function of such ground plane.
We expect then that our model may not be very successful with small ground
planes in which edge diffraction effects are important. The problem can be solved,



444 New Foundations for Applied Electromagnetics

Figure 16.4 Conducting patch excited by L-Shaped coaxial probe. h1 = 5 mm, h2 = 11.14mm,
h3 = 8 mm, rf = 13.84mm, W/2 = 12.84 mm, and L/2 = 15.44 mm.

however, by including the effect of the edge in the actual near field data used to
search for the best dipole model. The only potential difficulty is that a larger number
of dipoles may be needed in order for the optimization algorithm to converge into
an accurate model.)

The array at the top of Figure 16.5 is the actual configuration. At the bottom
of the same figure we show an equivalent dipole model. Each dashed box has a
size roughly the same as the physical volume occupied by the actual antenna but
need not be exactly identical. (It has been found by the authors’ experience that
allowing some variations in the initialization of the box inside which the QPSO
algorithm will search for the dipoles is potentially advantageous in obtaining good
convergence results.) It is very important to notice that this dipole model was not
obtained from a training set data due to the actual array at the top. The procedure is
detailed as follows

1. Obtain a dipole model for the single antenna radiating in free environment.

2. Position the dipole model at the location of each antenna in the array
configuration. The field radiated by this model is obtained analytically in a
straightforward manner by shift operations (displacement in space) essentially
equivalent to using the array factor of linear configurations.

3. To obtain the effect of the arbitrary complex excitation, a scaling of only the
dipole moments is needed. This is based on the fact that Maxwell’s equations
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Figure 16.5 (Top Array) A linear array of patch antennas with uniform separation between the elements
given by d. The radiating elements are located above an infinite ground plane. (Bottom Array) The
equivalent dipole model configuration for the same array.

are linear and once a solution (in this case the dipole model) was obtained,
there is no need to rerun the simulation/measurement to obtain the solution for
another (proportional) excitation. That is, let the dipole model moments due to
voltage excitation V be given by pu(V ). Assume that a dipole model moment
pu(V0) was obtained for voltage V0. The new moments due to a complex
voltage V are then given by

pu(V ) = pu(V0)V, (16.11)

where u is one of x, y, and z.

Therefore, what was accomplished here is first obtaining the dipole model
for an isolated radiating element, and then superimposing several identical dipole
models in order to mimic the original array. The models are ‘identical’in the sense that
they differ from each other only with respect to a scaling factor. All the models have
in common the same relative distribution of infinitesimal dipoles (relative locations,
orientations, moments) within their allocated volume positions.
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Figure 16.6 A set of near field (magnitude of the total electric field) for the comparison between the
array dipole model and the actual configuration solved by MoM. The distance of the set is λ from the
PEC ground plane. The dimensions of the rectangular is 9λ × λ. The number of observation points
Nops = 10, 000. The array elements are excited with voltage sources (from left to right) 1V, 16V,
1 + j1V, 2jV, and −3jV. The inter-element spacing is 1.1λ.

16.4.6 Weak Mutual Coupling

We first rehearse the situation when the mutual coupling between the elements is
weak. In this case, one can replace each antenna by the dipole model that was
obtained for a single antenna and superimpose as many dipole models as we wish.
Figure 16.6 illustrates an example of 5 PEC patch antennas with uniform separation
of 1.1λ.

For the problem shown in Figure 16.6, the obtained global error (see Appendix
16.6.2 for definition) is 5.34%, which is very close to the original global error
obtained by the QPSO algorithm for a single (non-interacting) antenna. From the
experience of the authors, a global error in the range 3-8% is considered acceptable
[21]. The reader should notice that there is nothing special about the particular
near-field data of Figure 16.6. Indeed, arbitrary different sets, but with sufficient
resolution, can be chosen as long as the observation plate does not get very close to
the antennas (more on this below).

In Figure 16.7, we present a comparison between the fields computed by the
MoM and those predicted by the dipole model (DM). We show these particular
components since they represent the maximum strength of the electric and magnetic
fields and reflect the variation across the length of the near field rectangle shown
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Figure 16.7 Comparison between the Dipole Model (DM) and the Method of Moment (MoM) for two
components of the field due to the 5-element linear array of Figure 16.6. The field is plotted across a line
passing midway across the length of the near field rectangular shown in Figure 16.6.

in Figure 16.6. This excellent agreement was obtained for a vector of complex
excitations (see caption of Figure 16.7 for the exact numerical values) chosen
arbitrarily. The MoM solution was computed due to these excitations while (16.11)
was used to obtain the modified dipole model array factor.

In Figure 16.8, we study the performance of the dipole model when the
near-field observation rectangle is brought closer to the array under test. As can
be seen, the dipole model is still capable of predicting the MoM fields even at
distance from the ground plane as close as 0.4λ (roughly 0.28λ from the PEC patch
itself). On the other hand, at distance 0.2λ (the observation rectangle is almost
touching the PEC patches), the error becomes prohibitively large (around 45%).
However, it is instructive to examine several electric and magnetic field components
corresponding to this worst-case error. Figure 16.9 illustrates the comparison for Ex,
Ey , Hx, and Hy . We notice two points in the log scale plot there. First, although
the global error is high, the dipole model can still capture very roughly the field
behavior. Second, where it comes to the quantitative measure of the difference
between the dipole field and the actual field, it appears that most of the error arises
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Figure 16.8 The variation in the global error (in percentage) when the near-field observation rectangle
in Figure 16.6 is brought closer to the array. The horizontal axis shows the distance measured from the
ground plane normalized to the operating wavelength λ = 66.67mm. At the distance 0.2λ the near-field
rectangle is almost touching the antenna array.

from non-physical singularities introduced by the dipoles, which don’t exist in the
actually smooth current computed by the MoM. Indeed, away from the non-physical
singularities, it seems that this worst-case dipole model can still provide a reliable
estimation, at least on the qualitative level, for the actual field produced by the
array. A quick glance at the expression of the global error introduced in (16.65) can
convince the reader that this is indeed the case. That is, when the observation point
is very close to a dipole location, the fields radiated by that dipole becomes very
large, theoretically approaching infinity. However, since the MoM field is finite, the
ratio forming the error measure will tend to infinity, regardless to the agreement or
disagreement at other observation points.

16.4.7 Arrays with Strong Mutual Coupling

We now systematically study the effect of decreasing the distance between the ele-
ments in the patch antenna linear array on the global error. Figure 16.10 demonstrates
this parametric study. It is clear that when the separation shrinks to a certain critical
distance, the mutual coupling starts to significantly increase the global error. For
this particular array, this happens, loosely speaking, around d = 0.5λ, indicating
the onset of considerable electromagnetic coupling between the elements starting
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Figure 16.9 Comparison between the Dipole Model (DM) and the Method of Moment (MoM) when
the near-field rectangle is 0.2λ from the ground plane, i.e., for the case corresponding to the global error
of roughly 45% in Figure 16.8.
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Figure 16.10 The global error (in percentage) versus the separation (normalized to the wavelength
λ = 66.67mm) between the PEC patch antennas in the array of Figure 16.6.

from this separation. In the current section, we will take the case of d = 0.21λ as a
representative example of strong mutual coupling.

It is obvious that the dipole model that was obtained with only an isolated
radiating element cannot be directly used to predict the actual field when several
interacting elements are radiating simultaneously within the same environment. This
means that the current distribution obtained by the QPSO algorithm is invalidated
by the presence of nearby interacting elements. Indeed, the results of the previous
section show that when the array elements are not interacting with each other, the
same dipole model can be used for all the elements provided we account correctly
for the array factor. The question now is whether it is possible to account for the
interaction itself using the dipole model without going into the optimization problem
of searching for a dipole model for the entire array considered as a single large
antenna. The latter task is practically not feasible for the following reasons

1. The number of dipoles, and hence the dimensionality of the optimization
problem, becomes very large. For example, suppose we have a 10-element
array and we use 10 dipoles for each antenna but all are dispersed within a
search box encompassing the entire array physical domain. In this case, the
number of optimization parameters is 100 × 7 = 700, an extremely large size
to work with in a global optimization problem.
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Figure 16.11 The basic building block for a modified equivalent dipole model that takes into account
the interaction between closely packed array elements. The antenna in the middle is excited by a voltage
source while the two antennas to the right and left are passive, i.e., the voltage source is removed but the
source impedance is left in the numerical model or experiment.

2. Notice that, to make things even worse, since the effective antenna size of
the entire array is large, a large number of training data points is required to
capture the physics of the near field due to the array under test. This increases
tremendously the computational demand on the objective function which,
when combined with the very large size of the optimization landscape, will
make the use of the QPSO algorithm or any other global optimization method
practically useless.

3. Even if all the previous computational demands were met, the dipole model we
obtain through such procedure is valid only for a fixed-size array. By Adding
or removing few elements, the dipole model will fail to predict correctly the
actual fields.

In the next section, we present a simple method that appears to mitigate the previous
difficulties.

16.4.8 A Method to Account for Strong Mutual Coupling Using Equivalent
Dipole Models

16.4.8.1 Introduction

Consider an antenna radiating in an ideal environment consisting of multiple identical
antennas arranged in a linear array configuration (cf. Figure 16.5). We assume that
the separation d between the elements is chosen such that strong mutual coupling
will modify the near field generated by the array.
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What is the origin of mutual coupling in antenna arrays? Of course, the answer
to this question is quite complex and depends crucially on the type, function, design,
and environment associated with the array under test. However, our inquiry is about
the origin and nature of electromagnetic interactions in general. Indeed, there may
be many manifestations for such mutual coupling, like surface modes propagation
in dielectric substrates or just space-to-space direct coupling of energy from one
element to another, but it might be reasonable to visualize all interactions in the
following unified manner inspired by the study of scattering in solids.

16.4.8.2 Elementary Theory of Electromagnetic Interactions

Consider two antennas A and B. Both antennas are excited and hence generate an
electromagnetic field in the surrounding region. If the two antennas are close to
each other, the field due to antenna A, call it EA, will hit antenna B and scatters
back, now as EB , to the location of antenna A. This scattered field EB will in turn
scatter by antenna A back to antenna B, and the process goes on indefinitely. The
solution of the new boundary-condition problem in which both antennas exist as
scattering object will give rise to what is usually refereed to in literature as the
multiple scattering effect [120]. The field due to such situation is the self-consistent
field that is simply the formal sum of the infinite series of small back-and-forth
scattering events developing between antenna-objects A and B. For arbitrary antenna
structure, there is no analytical solution of such multiple scattering problems and
one has to resort to brute force full-wave numerical solution of Maxwell’s equations
with the right boundary condition. However, it is the objective of the work presented
in this part to avoid solving actual boundary-condition problems and rely instead on
the QPSO algorithm to search for equivalent dipole models. We accomplish this by
postulating two hypothesis:

1. Hypothesis I: The electromagnetic interaction between radiating elements in
antenna arrays is solely due to the multiple scattering effect between active
(energized) element and passive nearby elements.

2. Hypothesis II: The interaction is, to the first-order approximation, due to the
nearest neighbor elements.

Accoutring to Hypothesis I, although in the actual array all elements are energized
(active), we assume that the effect of an antenna B on an antenna A is mainly due to
the multiple scattering of the fields generated by antenna A by antenna B treated as
a passive object. That is, we ignore the effect of antenna B being actually active in
the array and assume that its effect on the near field is due to the multiple scattering
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series formed between the objects A and B. Next, according to Hypothesis II, we
assume that only the nearest elements to the energized antenna contribute to the
mutual coupling. In the linear array configuration, this second assumption stipulates
only two passive elements to be considered in the interaction picture, one to the right
and the other to the left of the active element. The power of this Hypothesis is that it
allows us to obtain a basic building block suitable for analyzing antenna arrays with
arbitrary size without going into the computationally demanding process of running
the QPSO algorithm again for each new size.

In Figure 16.11, we demonstrate what we mean by the phrase ‘basic building
block.’ There we see an active antenna surrounded by two passive antennas to the
right and the left. The separation d is assumed to be small enough to allow for multiple
scattering effects between the array elements to become significant. Now, either high-
resolution near field measurement setup or an accurate numerical full-wave solution
can be used to obtain a suitable near field data set. The QPSO algorithm is then
employed to find an equivalent dipole model for this new structure. It is important
to stress the following fact here: The dipoles in the optimization code are allowed
to move only within the dotted box in Figure 16.11 enclosing the active antenna
only. The interpretation of the new dipole model obtained through this search is
that the current distribution (dipoles’ locations, orientations, and moments) contains
the effect of nearby elements on the current distribution of the active element only.
Therefore, we can use this new (modified) current distribution to build arbitrary-size
arrays by applying the basic procedure developed in Section 16.4.5. The dashed box
in Figure 16.11 represents then the basic structure accounting for mutual coupling
within the limit of the approximations assumed in the two basic hypothesis above.

16.4.8.3 Numerical Validation of the Proposed Method

This procedure has been carried out and an accurate equivalent dipole model was
obtained for the configuration of Figure 16.11 with the patch antennas of Figure
16.4 as the radiating element and separation d = 0.21λ. The MoM was used to
solve for the near field with the generators of the right and left elements removed
and replaced by the source impedance. The obtained dipole model was then used to
build an equivalent dipole model for a 13-element array. The near field observation
rectangle is taken to extend across the entire array at a distance λ from the ground
plane. The global error for this array using the dipole model that does not take into
account mutual coupling is 24.27%. The method outlined above reduced this global
error to just 6.57%. This reduction in error is consistent in all field components with
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Figure 16.12 Comparison between the fields generated by the dipole model and the Mom for a 13-
element linear array of patch antennas. All elements are excited by unit voltage.
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Figure 16.13 Global error comparison between the equivalent dipole model predictions of the near field
for the situation when the single element dipole model is employed (no mutual coupling) and the modified
dipole model (with mutual coupling) using the method of Section 16.4.8. The separation between the
elements in all arrays is d = 0.21λ. The array configuration has E-plane coupling.

varying sizes of near field data and locations, indicating the validity of the simple
picture presented in Section 16.4.8.2.

Figure 16.12 illustrates the comparison between MoM and the modified
dipole model for the field components with maximum strength measured at a line
midway across the length of the observation rectangle. This excellent agreement
demonstrates the ability of the modified dipole model to reproduce the same
quantitative variation of the field at various spatial location. The choice of the
particular location of the observation is here restricted as described above only for
the purpose of the demonstration. The authors have found that the modified dipole
model, i.e., the one obtained originally with only two nearby elements effect taken
into consideration, predicts correctly the extrapolated 13-element array field very
accurately and consistently everywhere in the exterior domain.

Figure 16.13 illustrates the comparison between the dipole model without
taking into effect mutual coupling and the modified model obtained using the method
of this section in which various array sizes are assumed. In each array, a near field
observation rectangle at a distance of one wavelength from the ground plane was
used to calculate the error. The length of the rectangle was modified in each case to
extend across the actual array size and enough number of samples was employed.
It is clear from the results that the modified dipole model is consistently capable
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Figure 16.14 Global error comparison between the equivalent dipole model predictions of the near field
for the situation when H-plane coupling is considered. The separation between the elements in all arrays
is d = 0.21λ.

of capturing the effect of mutual coupling with increasing array size. Moreover, it
is interesting to notice that the error level is nearly constant with the array size.
Actually, we expect the method to work better when the array size gets larger
because the effect of the asymmetry introduced by the edge elements becomes less
important. It seems therefore that the error level around 6.5% in the modified dipole
model is the intrinsic limit of the method within the approximations introduced by
Hypothesis I and II.

In Figure 16.14 we study the mutual coupling in the same linear array but
with H-plane coupling, instead of the E-plane coupling illustrated in Figure 16.5. To
obtain these results, another (new) problem like the one in Figure 16.11 is introduced
but with H-plane coupling. The QPSO algorithm is employed to find the modified
equivalent dipole model for this configuration. We compare in Figure 16.14 the
predictions of this model with the single element (no-mutual-coupling) model. It is
clear that the method still works for this different coupling configuration. Indeed, the
H-plane coupling represents a physically different mode of electromagnetic coupling
and hence cannot be analyzed using the dipole model obtained with the configuration
of E-plane coupling.

The comparison between the results of E- and H-plane coupling suggest that
care must be taken in applying the method proposed in this part. Indeed, every
new environment surrounding the antenna under consideration in the array will
require its own modified equivalent dipole model. These models are functions not
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just of frequency and the separation between the elements, but also may crucially
depend on the rotation of one element with respect to the other. By building a library
of dipole models corresponding to the various modes of coupling needed in the
application at hand, it is possible then to study the problem of arbitrary arrays using
the corresponding dipole model obtained previously and for varying number of
elements.

Finally, we end this section with few words about numerical efficiency. If the
total overall cost of obtaining the equivalent dipole model, which is mainly due to
the global optimization process, is taken into account in the comparison regarding
the computational cost, then the full-wave numerical solution of arrays as large
as the 13-element array we presented above is much less expensive. However, the
value of obtaining the dipole model relies on two aspects, the theoretical advantage
of the conceptual simplicity of infinitesimal dipoles as radiating structure (see
Section 16.4.9 for elaboration on this point), and the economy in use within larger
applications. The latter concerns the fact that the dipole model can now be used as part
of a larger engine concerned with extensive study of an array under consideration, for
example, the statistical analysis of a radar system or a direction-of-arrival algorithms
in smart antennas. In this case, the availability of simple analytical models accurate
enough for the entire exterior region of the array cuts dramatically the cost of the
essentially repetitive calculations in this type of statistical studies. On the other hand,
if the number of elements in the array grows to very large number, then the full-wave
analysis will at some point exceeds even the optimization process cost, and in such
large-and-complex arrays (not considered in this part), we expect that the dipole
method will prove advantageous.

16.4.9 Spectral Analysis of the Antenna Array Near Field Using the
Equivalent Dipole Model

16.4.9.1 Introduction

The detailed investigations of the foregoing parts of this part have established
unequivocally the validity of the modified equivalent dipole model for an efficient
computation of the near field at various locations close enough to the radiating
elements. Indeed, (16.10) gives the array near field in a closed-form analytical
expression written as a weighted sum of free-space Green’s functions. We would
like to conclude our work by sketching a general outline for a theory of the near field
in the spectral domain that takes into account knowledge of an equivalent dipole
model for some array under consideration.
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The spectral analysis we have in mind is the decomposition of the radiated
field into propagating and nonpropagating parts. As was suggested by the authors
in Chapter 4, it is this decomposition that plays a fundamental role in establishing
the correct principles of operation of general antenna systems. The physics of the
near field can be effectively encoded in the manifold ways in which the “static”
nonpropagating field is dynamically being converted into a propagating field as
we move progressively away from the radiating elements. As was pointed out in
Chapter 4, for an antenna embedded in free space, there is a freedom in choosing
the orientation of the observation coordinate system, and the crux of the dynamic
content of the decomposition into propagating and nonpropagating fields was traced
back into this freedom of choice. However, in the array environment being studied
in this part, there is a natural choice for the orientation of the observation frame,
specifically that in which the z-axis is directed perpendicular to the array plane. In
the remaining parts of this section, we analyze the fields in the spectral domain using
this particular orientation. The study of the manner in which the near field spectral
composition varies with other choices of the orientation of the observation frame
will be taken up in other publications.

As will be shown in the coming sections, one of the major stages in the
spectral analysis involves the computation of the spatial Fourier transform of the
antenna current distribution. The analysis in Chapter 4 was conducted mainly for
a single antenna system. In the next section, we extend the treatment to an array
configuration and make use of the equivalent dipole model of the present part
to eliminate completely the need to perform the spatial Fourier transform in the
computation of the propagating and nonpropagating parts. Our goal is to demonstrate
the power of the dipole model method in analyzing the fields of general antenna array
systems both in the spatial and spectral domain.

16.4.9.2 Development of the Spectral Expansion of the Array Near Field in Terms
of the Equivalent Dipole Model

The electric field radiated by this current distribution is given by the classic dyadic
Green’s function theorem

E (r) = iωµ

∫
V

d3r′ Ḡ (r, r′) · J (r′), (16.12)

Therefore, the electromagnetic fields radiated by the antenna can be totally deter-
mined by knowledge of the dyadic Green’s function (16.9) and the current distribu-
tion on the antenna array J(r) with total support V . We can decompose the former
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into two parts, one pure propagating and the other evanescent. This task can be
accomplished by using the Weyl expansion [35]

eikr

r
=

ik

2π

∫ ∞

−∞

∫ ∞

−∞
dpdq

1
m

eik(px+qy+m|z|), (16.13)

where

m(p, q) =
{ √

1 − p2 − q2 , p2 + q2 ≤ 1
i
√

p2 + q2 − 1 , p2 + q2 > 1
. (16.14)

Substituting the Weyl expansion (4.4) into the dyadic Green’s function as given
by (16.9) and making use of (16.12), we obtain after interchanging the order of
integration

E (r) =
−ωkµ

8π2

∫ ∞

−∞
dpdq

Īk2 − KK
k2m

· J̃ (k) eiK·r, (16.15)

where J̃ (K) is the spatial Fourier transform of the source distribution

J̃ (K) =
∫

V

d3r′ J (r′) e−iK·r′
. (16.16)

The spectral variable (wavevector) is given by

K = x̂kp + ŷkq + ẑsgn (z) km, (16.17)

where sgn stands for the signum function. From this it readily follows that the
propagating and nonpropagating parts are given, respectively, by the expressions

Epr (r) =
−ωkµ

8π2

∫
p2+q2<1

dpdq
Īk2 − KK

k2m
· J̃ (k) eiK·r, (16.18)

Eev (r) =
−ωkµ

8π2

∫
p2+q2>1

dpdq
Īk2 − KK

k2m
· J̃ (k) eiK·r. (16.19)

In order to specify the region of validity of the expansion (16.15), we need to
provide some specifications of the antenna system. We assume that the radiating
system consists of a planner array of N elements. The current distribution on the
nth array element is given by Jn(r) and its Fourier transform by J̃n(K). That is,
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we can write

J (r) =
N∑

n=1

Jn (r), J̃ (K) =
N∑

n=1

J̃n (K). (16.20)

Assume further that the entire array is contained between the planes z = L > 0
and z = L, where the global observation coordinate system is chosen such that the
z-axis is directed perpendicular to the array plane as mentioned in the introductory
part of the section. Now, the expansion (16.15) is valid only in the region z > L and
z < −L, i.e., the region exterior to the infinite slab −L ≤ z ≤ L.2 Notice also that
the assumption | z |> L was implicit in writing (16.17).

In its general form, the spectral integrations implied by the equations (16.15),
(16.16), (16.18), (16.19), and (16.20) cannot be easily assessed in terms of com-
putational complexity. Indeed, as given, the Fourier transform of the current dis-
tribution, J̃(K), is a generally complex function of K that cannot be known a
priori but depends on the specific array topology and excitation. The only thing
that can be stated with confidence at this level, we believe, is that the computa-
tion of the 3-dimensional spatial Fourier transform mentioned above is a computa-
tionally demanding process, which forms only one stage, while the next step is to
use this obtained Fourier transform to compute the spectral integrals themselves as
appearing in (16.15).

In order to mitigate these computational difficulties, we now make use of the
equivalent dipole model method developed for strongly interacting antenna arrays
in order to completely eliminate the need to perform the spatial Fourier transform.

Assume that for a given global error, a dipole model DM for the antenna array
was found. Let the number of dipoles for the nth antenna element be Mn. The dipole
moment and position for the lth dipole in the nth array element are given by pnl and
rnl, respectively. The equivalent dipole model source is then given by the form

JDM (r) =
N∑

n=1

Mn∑
l=1

pnlδ (r − rnl). (16.21)

We immediately remind the reader that this “equivalent” current does not replace
the current given by (16.20). The latter is a unique current distribution obtained by
solving a well-posed boundary value problem. The sense of ‘equivalence’ implied
here is that the fields radiated by (16.20) and (16.21) are the same only in some
exterior region. Let us define this region as the domain z > |L′|, where L′ ≥ L. The
ideal situation in which L′ is almost equal to L is seldom encountered in practice

2 Cf. Chapter 4.
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where the number of dipoles is kept low to facilitate optimization. However, the
value of the tolerable global error will ultimately dictate how much L′ deviates from
L, a topic that is a matter of further empirical research. In this section we will be
concerned exclusively with the theoretical formulation of the problem.

By substituting (16.21) into (16.15), we arrive into the following expressions
for the propagating and nonpropagating parts

EDM
pr (r) = −ωkµ

8π2

N∑
n=1

Mn∑
l=1

∫
p2+q2<1 dpdq

× Īk2−KK
k2m · pnle

iK·(r−rnl),

(16.22)

EDM
ev (r) = −ωkµ

8π2

N∑
n=1

Mn∑
l=1

∫
p2+q2>1 dpdq

× Īk2−KK
k2m · pnle

iK·(r−rnl).

(16.23)

Here, we assume that all the dipoles are located in the region |z| ≤ L, i.e., we assume
that |znl| ≤ L for all n and l.

In the region of the validity of the dipole model, we finally have

EDM
pr (r) � Epr (r)

EDM
ev (r) � Eev (r)

}
for |z| ≥ L′. (16.24)

By comparing (16.18) and (16.19) with (16.22) and (16.23), we find that (16.24)
implies that the use of the equivalent dipole model lead to the elimination of the
spatial Fourier transform appearing in the original expressions in the exterior region
|z| ≥ L′.

16.4.9.3 Discussion of the Results

The new expressions (16.22) with (16.23) now contain simple and universal forms
for the spectral content of the fields. In other words, the complete functional form of
the spectral integrands’ dependence on the antenna configuration and excitation is
now fully given by the manner of the simple appearance of the dipole moments
pmn and positions rmn in (16.22) with (16.23). As such, a significant advance
compared with the original scenario of (16.18) and (16.19) has been made by using
the equivalent dipole model. This is not merely a computational gain, but also a
theoretical one. The reason is that the spectral composition of the radiated fields as a
mixture of propagating and nonpropagating modes is presently spelled out in terms
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of the same functional forms (strictly speaking, the spectral integrands are second-
order polynomials in K multiplied by some complex exponential of K and divided
by m) valid for arbitrary antenna arrays. What makes the variation of the spectral
composition of one particular array to another is simply the numerical values of the
model parameters pnl and positions rnl.

We turn now to the assessment of the computational complexity of the
expressions derived using the equivalent dipole model. From Appendix 16.6.3, we
know that for a given arbitrary location of the observation point, we need in general
six different numerical integrals in order to evaluate the full array of propagating and
nonpropagating dyadic Green’s function. A glance at (16.21) shows that for the full
array, we have a total number of dipoles given by

Nd =
N∑

n=1

Mn. (16.25)

Therefore, for each observation point, a total number of 6Nd numerical integrations
is needed in order to obtain all of the six propagating and nonpropagating electric
field components using the equivalent dipole mode. The same basic procedure
can be extended to compute the magnetic field components once the spectral
decomposition in terms of the electric field has been attained.3 As can be seen
from this rough discussion, a definite knowledge of the computational demands
of the spectral analysis of the electromagnetic near fields for general arrays is made
possible by the use of the equivalent dipole method for strongly interacting antenna
arrays.

The previous analysis was conducted with the assumption of the most general
dipole model for an arbitrary planner antenna arrays. If the method developed in the
previous sections for computing the near fields of strongly interacting elements
is adopted, then the same dipole models is used for all array elements. In this
case, Mn = M , for all n = 1, 2, ..., N , and M is the fixed number of dipole
obtained when an active element radiates in the presence of two inactive nearby
elements. The positions of the dipoles at their respective locations within the array
environment are obtained by simple translation operations. Unfortunately, it does
not appear in this case that the number of numerical integrals needed in evaluating
the field decomposition into propagating and nonpropagating parts can be reduced.
The reason is that any change in the location of the observation point with respect to
the source will require a new evaluation of the integral as can be seen from a glance

3 Cf. Chapter 4.
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at (16.71) and (16.72). The total number of such integrals is in this case given by
6M .

16.4.10 Summary

We presented an alternative approach to the analysis of electromagnetic interactions
in antenna arrays in which there is no need to solve Maxwell’s equations. Ideally, the
method accepts only a set of near-field data and then uses the QPSO algorithm
to search for a dipole model that can reproduce the same fields everywhere in
the exterior region. The main contribution of the section is providing a simple
theory accounting for electromagnetic interaction by interpreting coupling between
nearby elements in the array as a multiple scattering effect. The application of this
idea to the dipole model method led to dramatic reduction in the error caused
by electromagnetic interaction on the performance of the dipole model originally
obtained by neglecting the effect of such interactions. The proposed method appears
to work very well with an arbitrary number of linear array elements for a given
mode of coupling (for example, E- or H-plane coupling, etc.). We concluded by
carrying out a spectral analysis of the near fields by describing its decomposition into
propagating and nonpropagating parts along a direction normal to the antenna array
under consideration. The analysis pointed out that one of the most computationally
demanding stages in completing this analysis, namely the calculation of the spatial
Fourier transform of the entire antenna array, can be totally eliminated by using the
equivalent dipole method in its domain of validity. This led to the derivation of a
simple universal analytical form for the spectral composition of arbitrary antenna
arrays.

16.5 PERTURBATIVE APPROACH TO THE COMPUTATION OF
MUTUAL COUPLING IN LARGE ANTENNA ARRAYS

16.5.1 Introduction

We now return to addressing mutual coupling through the general exact definition
of the mutual coupling current Green’s function (ACGF) introduced in Section
16.2. Following the intuitive but not exact approach though the infinitesimal dipole
model, our objective now is to base the quantitative analysis of electromagnetic
coupling on a solid basis by deriving a perturbation series for the mutual coupling
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ACGF. This series can serve as the ultimate foundation for tackling mutual inter-
actions in generic electromagnetic systems and represents the core of the theory
developed in this chapter.

There are two major advantages of using perturbation theory in studying mutual
coupling. It can be shown that the general perturbation series to be derived below
provides

• an algorithmic method to compute mutual coupling for large systems without
the need to invert the electromagnetic operator of the full problem, and

• it allows the construction of a physically intuitive map electromagnetic energy
exchange in the entire array, in which it becomes possible to know from which
part of the antenna array a desired effect of mutual coupling has originated
and which path through the array this effect has traversed through its journey
from the source to the final observation point.

16.5.2 The Basic Idea of Perturbation Theory

We consider that individual (isolated) antenna elements have already been designed
and characterized. After that, the elements are placed in an array environment where
they begin to mutually interact with each other. By knowing the original (isolated)
performance of the device on one hand, and the forward interactions between the
elements on the other hand, can we predict accurately the effect of mutual coupling
without actually solving the entire array problem as a single electromagnetic
system? The answer we find here is yes, and the method of obtaining the solution
is perturbation theory. In a nutshell, we decompose the full array electromagnetic
operator into a sum of isolated-element operator and interaction operator. The full
operator is then inverted using the perturbation series and only few terms are retained.
In this case, the effect of coupling can be approximated very accurately by few basic
multiplication and addition operations involving small operators.

In order to develop the method for a general setting, the recent concept of
antenna current Green’s function (ACGF) Chapters 8 and 9 is employed for the
fundamental characterization of the antenna as a system in space. The ACGF, which
serves as the exact transfer function in space, will be developed for the mutual
coupling context in Section 16.5.3 together with the derivation of the perturbation
series. In Section 16.5.4, a method of moment procedure and a special perturbation
code were written to verify the theory is used to supply the relevant proof of
concept for two-element array. The basic idea can be extended with some efforts
to handle arbitrary large arrays but the details will be presented in the future. Finally,
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Figure 16.15 Two generic mutually interacting antennas are shown with arbitrary surfaces SA and
SB . The unit outward normals to the surfaces are n̂A and n̂B . The externally applied fields can interact
with either a local portion of the surface (as in the Tx mode) or the entire surface area (as in the Rx
mode).

the conclusion provides a summary of the new advantages supplied by the work
developed here.

16.5.3 Derivation of the Perturbative Series

In Figure 16.15, we show a schematic illustration of two interacting antenna elements
A and B. The antennas are assumed to have an arbitrary smooth surfaces SA and
SB and are both possibly excited by fields Eex

A and Eex
B , respectively, which may be

defined either locally (transmitting mode) or globally (receiving mode). Our goal is
to describe the interaction of these two antennas in terms of the ACGF formalism
using the general conceptions outlined in Section 16.2.1.

Assume that both antennas support a perfect electric conductor boundary
condition (PEC).4 We can write the electric field integral operator for antennas A
and B as LA and LB . They are defined by the equation

LJ (r) = −iωµ

∫
S

ds′
[
Ī +

1
k2 ∇∇·

]
eik|r−r′|

4π |r − r′| · J (r′). (16.26)

4 The generalization to arbitrary boundary conditions is possible but length and will be reported
elsewhere.
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When the two-antenna system receives excitation fields Eex
A and Eex

B it responds by
generating two self-consistent current distributions JA (r) and JB (r) supported by
the surfaces SA and SB , respectively. By enforcing the PEC boundary conditions on
the two antennas, the following operator equations must be obeyed

n̂A × Eex
A (r) + n̂A × LBJB (r) = −n̂A × LAJA (r) ,

n̂B × Eex
B (r) + n̂B × LAJA (r) = −n̂B × LBJB (r) .

(16.27)

Rearranging, we can write these two equations in the form(
n̂A × LA n̂A × LB

n̂B × LA n̂B × LB

)(
JA

JB

)
= −

(
n̂A × Eex

A

n̂B × Eex
B

)
. (16.28)

More compactly,
L̃ [J] = [Eex] , (16.29)

where

L̃ := −
(

n̂A × LA n̂A × LB

n̂B × LA n̂B × LB

)
,

[J] :=
(

JA

JB

)
, [Eex] :=

(
n̂A × Eex

A

n̂B × Eex
B

)
.

(16.30)

Next, decompose the full operator into the direct sum

L̃ = L̃0 + L̃int, (16.31)

where

L̃0 :=
(

−n̂A × LA 0
0 −n̂B × LB

)
,

L̃int :=
(

0 −n̂A × LB

−n̂B × LA 0

)
.

(16.32)

Therefore, if the solution to the problem (16.28) exists, it is given by

[J] = L̃−1 [Eex] =
(
L̃0 + L̃int

)−1
[Eex] . (16.33)

The operator L̃0 can be thought of as the self-interaction operator of the antenna
system. It is written in terms of the operators of the isolated antennas, i.e., when
each exists in homogeneous infinite environment. The other operator L̃int represents
the interaction operator of the two-antenna system. It convey information about how
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the two elements couple to each other electromagnetically. Further insights into the
structure of this operator will be developed below.

Suppose that the isolated antenna problems are solvable, i.e., the following
inverse operator exist

L̃−1
0 =

(
(−n̂A × LA)−1 0

0 (−n̂B × LB)−1

)
. (16.34)

Equation (16.33) can then written as

[J] = L̃−1
0

(
Ĩ + L̃−1

0 L̃int

)−1
[Eex] , (16.35)

where Ĩ is the identity operator corresponding to (16.30).
The ACGF of the two-antenna system is readily obtained as

[
F̄ (r, r′)

]
= L̃−1

0

(
Ĩ + L̃−1

0 L̃int

)−1
[δ (r, r′)] , (16.36)

where [
F̄ (r, r′)

]
:=
(

F̄AA (r, r′) F̄AB (r, r′)
F̄BA (r, r′) F̄BB (r, r′)

)
, (16.37)

and (
JA (r)
JB (r)

)
=
∫

SA+SB
ds′

×
(

F̄AA (r, r′) F̄AB (r, r′)
F̄BA (r, r′) F̄BB (r, r′)

)
·
(

n̂A × Eex
A (r′)

n̂B × Eex
B (r′)

)
.

(16.38)

The excitation vector in (16.36) is defined by

[δ (r, r′)] :=
(

δA (r, r′)
δB (r, r′)

)
, (16.39)

where δA (r, r′) and δB (r, r′) stand for vector surface delta excitations applied at
antennas A and B, respectively.

It is possible to give more specific form for the origin of the various ACGFs
appearing in (16.36). Let us write the inverse operator in the detailed form

L̃−1 =
(

MAA MAB

MBA MBB

)
(16.40)
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Figure 16.16 Flow chart representation of mutual coupling from the viewpoint of the antenna current
Green’s function formalism.

It then follows that

F̄AA (r, r′) = MAAδA (r, r′) ,
F̄BA (r, r′) = MBAδA (r, r′) ,
F̄AB (r, r′) = MABδB (r, r′) ,
F̄BB (r, r′) = MBBδB (r, r′) .

(16.41)

In other words, FAA (r, r′) and FBB (r, r′) are the ACGFs of the self-interactions
of antennas A and B respectively. On the other hand, FAB (r, r′) and FBA (r, r′)
completely characterize the mutual interactions between the two antennas.

Figure 16.16 illustrates the formulation above in a block diagram represen-
tation of the system viewpoint attained by our deployment of the antenna current
Green’s function formalism to describe mutual coupling in antenna arrays. Indeed,
the isolated element design performance, i.e„ the individual device characteristics
acquired by testing the antenna before placing it into the array environment, is fully
given by the Green’s functions (transfer functions) FAA (r, r′) and FBB (r, r′). The
effect of coupling between the elements, the new factors arising from the coexistence
of the elements in close proximity to each other, is rigorously and exactly determined
by the Green’s functions FAB (r, r′) and FBA (r, r′). However, the reader should
not confuse these functions with the mutual coupling transfer functions defined
in Section 16.2.1. Although the two sets comprised of the interaction and mutual
coupling Green’s functions are related to each other, yet they are not fully identical.
The difference in meaning will be demonstrated shortly.
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When there is no mutual coupling, i.e., when each antenna works in isolation,
there is obviously no mutual interaction. The full Green’s function of the antenna
can be simply put as

[
F̄ (r, r′)

]
:=
(

F̄AA (r, r′) 0
0 F̄BB (r, r′)

)
, (16.42)

which provides no more information than the individual entries of the matrix. When
mutual coupling is present, the problem is different and has to be solved in terms of
the full operator (16.35). The new ACGF of the two-elements system will change
into [

F̄′ (r, r′)
]

:=
(

F̄′
AA (r, r′) F̄AB (r, r′)

F̄BA (r, r′) F̄′
BB (r, r′)

)
, (16.43)

where the off diagonal element signifies interactions. Following the definition of
mutual coupling proposed in Section 16.2.1, the mutual coupling ACGF is given by[

δF̄ (r, r′)
]

=
[
F̄′ (r, r′)

]
−
[
F̄ (r, r′)

]
=
(

F̄′
AA − F̄AA F̄AB

F̄BA F̄′
BB − F̄BB

)
=
(

δF̄AA (r, r′) F̄AB (r, r′)
F̄BA (r, r′) δF̄BB (r, r′)

)
.

(16.44)

In other words, the mutual couplingACGF is not merely the interaction (off diagonal)
ACGF components, but includes also the perturbations on the main diagonal entries.
As we will see below, these perturbations themselves are related to the interaction
terms but in a rather complicated manner.

In order to proceed further, it is necessary to restrict the class of operators we
are working with to bounded operators. The electric-field integral operator (16.26) is
unbounded, however it can be approximated by a bounded operator, e.g., the method
of moment as will be shown below. In general, if the electromagnetic operator of
interest is unbounded, we replace it by a suitable bounded operator approximation.
This will be supposed in what follows without change in notation for simplicity.

If the norm of a bounded operator L satisfies ‖L‖ < 1, then we have

(1 − L)−1 =
∞∑

n=0

Ln, (16.45)

which is the well known absolutely convergent geometric series. Let us assume that∥∥∥L̃−1
0 L̃int

∥∥∥ < 1, (16.46)
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which presents a sufficient condition for the perturbation series to hold true. In this
case, we expand (

Ĩ + L̃−1
0 L̃int

)−1
=

∞∑
n=0

(
L̃−1

0 L̃int

)n

. (16.47)

Therefore, the current distribution of the antenna system (16.35) can be written
perturbatively as

[J] = L̃−1
0 [Eex] +

(
L̃−1

0

)2
L̃int [Eex]

+
(
L̃−1

0

)3 (
L̃int

)2
[Eex] +

(
L̃−1

0

)4 (
L̃int

)3
[Eex] + · · ·.

(16.48)

Note that the first term of this series [J0] := L̃−1
0 [Eex] is simply the current

distribution on non-interacting (isolated) antennas.
Define the change in current due to interaction by [δJ] := [J] − [J0]. We find

then the mutual coupling effect on the current distribution to be given by the series

[δJ] =
(
L̃−1

0

)2
L̃int [Eex] +

(
L̃−1

0

)3 (
L̃int

)2
[Eex]

+
(
L̃−1

0

)4 (
L̃int

)3
[Eex] + · · ·.

(16.49)

Following the definition of the mutual coupling ACGF proposed in Section 16.2.1,
we conclude that[

δF̄ (r, r′)
]

=
[(

L̃−1
0

)2
L̃int +

(
L̃−1

0

)3 (
L̃int

)2
+ · · ·

]
· [δ (r, r′)] . (16.50)

In a more suggestive form, (16.50) can be expressed as

[
δF̄ (r, r′)

]
=

∞∑
n=1

δF̄(n) (r, r′) , (16.51)

where

δF̄(n) (r, r′) :=
(
L̃−1

0

)n+1 (
L̃int

)n

[δ (r, r′)] . (16.52)

This is our main result. It provides a complete characterization of mutual
coupling in antenna arrays by tracing back the origin of the mutual coupling transfer
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function into various orders of corrections expressed in terms of the isolated antenna
operator L̃0 and the interaction operator L̃int. Each correction of order n is given by
δF̄(n) (r, r′) defined by (16.52).

The main advantages of the perturbation series (16.50) are the following

1. The perturbation technique accepts only the ACGF of the isolated antennas
plus the interaction operator of the array. In other words, it is expressed in terms
of the intuitive engineering understanding of complex systems as formed by
independent parts plus interactions between them.

2. The perturbation technique involves only the forward interaction operator.
There is no new inversion operation required to estimate mutual coupling
effects. The only operations needed are multiplication and addition. The
accuracy of the computations can be controlled by varying the number of
perturbations needed.

3. The perturbation technique provide a full physical mechanism explaining
the origin of each correction in the observable antenna array due to mutual
coupling interactions.

We would like now to express the individual ACGFs in (16.44) in terms of a
perturbation series similar to that above. Define the mutual coupling operator Lc as

Lc :=
∞∑

n=1

L(n)
c =L(1)

c + L(2)
c + · · ·, (16.53)

where

L(n)
c =

(
L̃−1

0

)n+1 (
L̃int

)n

. (16.54)

From (??) we find

L̃−1 = L̃0 + L̃c. (16.55)

The first-order perturbation term L
(1)
c =

(
L̃−1

0

)2
L̃int can be computed

directly for the two-antenna system. The result is

L
(1)
c11 = L

(1)
c22 = 0,

L
(1)
c12 = (n̂A × LA)−1 (n̂A × LA)−1 (−n̂A × LB) ,

L
(1)
c21 = (−n̂B × LB)−1 (−n̂B × LB)−1

n̂B × LA.

(16.56)
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Similarly, the first-order perturbation term L
(2)
c = L̃−3

0

(
L̃int

)2
can be

computed directly for the two-antenna system. The result is

L
(2)
c11 = (n̂A × LA)−3 (−n̂A × LB) n̂B × LA,

L
(2)
c22 = (−n̂B × LB)−3

n̂B × LA (−n̂A × LB) ,

L
(2)
c21 = L

(2)
c21 = 0.

(16.57)

Note that the diagonal elements in (16.56) are zero while the off diagonal element
in (16.57) vanishes. In terms of the ACGFs, we use (16.56) and (16.57) in (16.41)
to obtain

F̄(1)
AA (r, r′)

= (n̂A × LA)−3 (−n̂A × LB) n̂B × LA δA (r, r′) ,

F̄(1)
AB (r, r′)

= (n̂A × LA)−1 (n̂A × LA)−1 (−n̂A × LB) δA (r, r′) ,

F̄(1)
BA (r, r′)

= (−n̂B × LB)−1 (−n̂B × LB)−1
n̂B × LA δB (r, r′) ,

F̄(1)
BB (r, r′)

= (−n̂B × LB)−3
n̂B × LA (−n̂A × LB) δB (r, r′) .

(16.58)

Note that the effect of mutual coupling on the self-interactions of antennas A and
B, i.e., the ACGFs F̄(1)

AA (r, r′) and F̄(1)
BB (r, r′) emerges only starting from the

second-order perturbation operator L
(2)
c . On the other hand, the interaction ACGFs

F̄(1)
AB (r, r′) and F̄(1)

BA (r, r′) start gaining contributions from the first-order term

L
(1)
c . We will not write down explicitly expressions for the higher order terms. The

computations, although straightforward, become very tedious for arrays containing
more than two elements.

16.5.4 Numerical Examples

To implement the perturbation method, we apply a Galerkin-type finite dimensional
approximation of the forward interaction operators of the problem, where a triangular
basis function is used to model the current distribution on thin wires. Gaussian
quadrature is employed to compute all of the impedance matrix integrals except the
self- and near- self terms, which are integrated analytically. The accuracy of our
approximation is verified by comparison with the commercial software WIPL-D,
which uses a higher-order basis function.
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We consider a numerical example for a two-element antenna array comprised of
two parallel thin-wires. The two antennas have identical radii of 0.001λ and lengthes
0.5λ.AntennaA is energized by a delta source to compute its current Green’s function
as in Chapter 9, while antenna B is kept passive. The input impedance (seen at the
input port located in the middle of antenna A) is computed using the perturbation
method and the results are compared with the inversion of the full MoM matrix in
Figure 16.17. Excellent agreement is observed as long as the two antennas are not
touching each other.

An important quantity helpful in characterizing the numerical aspect of the
perturbation algorithm is the spectral radius. The spectral radius of a matrix A is
defined as ρ(A) := maxi(|λi|), where λi are the eigenvalues of A. It can be shown
(see [92]) that the validity of the perturbation series (16.47) is guaranteed only
when this spectral radius is less than unity. This explains some slight discrepancy
between the exact and perturbation results observed at very small inter-element
separation. In Figure 16.18, we compute the spectral radius of the perturbation
interaction matrix L̃−1

0 L̃int as a function of the separation between the antennas. As
expected, ρ(L̃−1

0 L̃int) is close to unity when the two antennas touch each other. At
this extreme case the perturbation series is divergent. Note that while the perturbation
series converges if and only if the spectral radius is less than unity, the hypothesis
(16.46) is only a sufficient condition. Therefore, in the study of a more complex
array problem using the perturbation theory developed in this part, the spectral radius
should always be monitored.

The number of terms needed to ensure accurate results with the perturbation
series strongly depends on both the spectral radius and the details of the antennas.
For the results given in Figure 16.17, we used a constant number of 30 terms for
the entire computation. However, a much smaller number of terms is needed while
the separation between the elements increases. When the perturbation method is
used to analyze a large array of fixed elements, one can determine the minimum
number of terms needed according to the accuracy of the results required for the
applications at hand. In Figure 16.19, we show the variation in the error in predicting
Zin with the order of perturbation. As expected, for smaller separation between the
antennas, more terms in the perturbation are needed. The actual number of sufficient
terms depends on the level of acceptable error, which in turn is determined by the
application.
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Figure 16.17 Comparison between the full MoM matrix inversion and perturbation input impedance
results for two-element array having identical radii of 0.001λ and lengthes 0.5λ. The horizontal axis gives
the variable distance between the elements while the impedance is measured in ohms.
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Figure 16.18 The spectral radius of the operator L̃−1
0 L̃int.
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Figure 16.19 Percentage error in the input impedance predicted using the perturbation series as a
function of the number of terms (order of perturbation). The separation between the two antennas is given
by d. The spectral radius at d = 0.15λ and d = 0.25λ is 0.7168 and 0.5840, respectively.

16.5.5 Summary

The main advantages of the general method introduced in this part are the following.
First, the perturbation technique accepts only theACGF of the isolated antennas plus
the interaction operator of the array. In other words, it is expressed in terms of the
intuitive engineering understanding of complex systems as formed by independent
parts plus interactions between them. Second, the perturbation technique involves
only the forward interaction operator. There is no new inversion operation required
to estimate mutual coupling effects, which makes full-wave analysis of very large
arrays feasible. Third, the perturbation technique naturally provides full physical
mechanisms explaining the origin of each correction in the observable antenna array
due to mutual coupling interactions.

16.6 APPENDICES

16.6.1 The Optimization Process

Assume a set of infinitesimal electric dipoles {χi}N
i=1, where N is the number of

dipoles and χi is a seven-element vector representing the parameters of the ith
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dipole given by

χi =
[

Re {pi} Im {pi} αi βi xi yi zi

]T
. (16.59)

Here, the position of the ith dipole is given by xi, yi, and, zi, which are constrained by
the actual antenna size. pi is the complex dipole moment, with orientation given by
the direction cosines αi and βi defined with respect to the x- and y- axis, respectively.
The third directional cosine can be obtained from

γ2
i = 1 − α2

i − β2
i . (16.60)

The components of the ith dipole moments are then given as

pix = piαi, piy = piβi, piz = piγi. (16.61)

Notice that by employing directional cosines in the formulation, equations (16.60)
and (16.61) eliminate two degrees of freedom from the total number associated
with each dipole as used with the representation of [133] and [134]. Moreover, by
restricting the dipole type to be electric only, we attain further reduction by one
degree of freedom for each dipole. This gives seven variables per dipole and a total
of 7N for the entire optimization problem.

We define the cost measure of the optimization process as the function

F = wE

Nops∑
n=1

∑
u

∣∣Eu
A (rn) − Eu

DM
(rn)
∣∣2

+wH

Nops∑
n=1

∑
u

∣∣Hu
A (rn) − Hu

DM
(rn)
∣∣2 (16.62)

where Nops is the number of observation (samples) points of the near-field data set
and the sum over u takes the three cartesian components x, y, and z. The position
vector of the nth sampling point is rn. Here

wE = α


1

/
Nops∑
n=1

∑
u

|Eu
A (rn)|2


 , (16.63)

wH = (1 − α)


1

/
Nops∑
n=1

∑
u

|Hu
A (rn)|2


 . (16.64)
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The factor 0 ≤ α ≤ 1 is a normalization coefficient and gives the contributions of
electric and magnetic field to the objective function, respectively. In this part, we fix
α = 0.5.

In general, the cost measure is highly nonlinear, with a landscape full of local
minima. This makes the optimization problem very difficult unless a powerful global
search method is used. The quantum particle swarm optimization (QPSO) is used
to perform the optimization process needed to find the best dipole model for the
problem at hand. This algorithm, in the version developed in [22], contains only one
control parameter g. In all the optimization used throughout this part, we fixed this
parameter at g = 3.

16.6.2 Post-Processing Evaluation Measure

We introduce now the error criterion adopted in the quantitative evaluation of
the performance of the obtained dipole model. The global error is defined as the
arithmetic average of the global error in the electric and magnetic fields (eE + eH)/2.
Here, the individual errors are defined in the following manner

eΨ =

√√√√√√√√
∑

u=x,y,z

Nops∑
n=1

|ΨActual
u (n) − ΨDM

u (n)|

∑
u=x,y,z

Nops∑
n=1

|ΨActual
u (n)|

, (16.65)

where Ψ stands for either E or H , and Nops is the size of the observation data set.
The definition of a global error, that is, a single number that reflects the collective
behavior of all the six field components at all observation points is certainly not a
trivial matter. First of all, there is no a priori way to decide which error measure is
“optimum” in any meaningful manner. Next, we notice that a good global error
should satisfy some desirable characteristics. First, it must be reasonably small
when the six field components appear visually in good agreement with the actual
fields. Second, it must be consistent in the sense that the error monotonically
increase when there are reliable reasons to believe that the dipole model fields
are deviating from the actual fields. Third, the error must be roughly the same for
any location (outside the forbidden region) and size of the observation near-field
data set. It appears to the authors that the RMS definition in (16.65) satisfy these
demands.
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16.6.3 Computations of the Spectral Integrals

In this Appendix, we provide the minimum background necessary for a numerical
computations of the spectral integrals (16.22) and (16.23). From the Weyl expansion
(4.4) and (16.9), the dyadic Green’s function in the spectral domain is written as

Ḡ (r) =
−ωkµ

8π2

∫ ∞

−∞
dpdq

Īk2 − KK
k2m

eiK·r. (16.66)

By direct computation, we find

Ḡ (r) =
−ωkµ

8π2

∫ ∞

−∞
dpdq

1
k2m

F̄ (p, q) eiK·r, (16.67)

where

F̄ (p, q) =


 1 − p2 −pq −sgn (z) pm

−pq 1 − q2 −sgn (z) qm
−sgn (z) pm −sgn (z) qm 1 − m2


 . (16.68)

The Weyl expansion (4.4) can be reduced into a one-dimensional integral, and after
separating the propagating and nonpropagating parts, we obtain

gpr (r, r′) =
ik

4π

∫ 1

0
duJ0

(
kρs

√
1 − u2

)
eik|z−z′|u, (16.69)

gev (r, r′) =
k

4π

∫ ∞

0
duJ0

(
kρs

√
1 + u2

)
e−k|z−z′|u, (16.70)

where ρs =
√

(x − x′)2 + (y − y′)2. Here x′, y′, and z′ give the source coordinates.
Using the reduced forms (16.69) and (16.70), it can be demonstrated by direct

calculations that the dyadic Green’s function (16.66) can be expressed in terms of
only six different basic integrals. These are

An =
∫ 1

0
duJ0

(
kρs

√
1 − u2

)
uneiku|z−z′|, (16.71)

Bn =
∫ ∞

0
duJ0

(
kρs

√
1 + u2

)
une−ku|z−z′|, (16.72)
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where n = 0, 1, 2. The calculations are straightforward but lengthy, and since no
numerical results are presented here, we omit the details.

Integrals (16.71) and (16.72) can be evaluated analytically for special cases,
e.g., when z = z′ or x = x′ and y = y′. For general observation point, it appears
that no closed-form solution in terms of simple analytical function can be found and
numerical integration in this case is therefore necessary.

16.7 CONCLUSION

This chapter presented a general theory of electromagnetic mutual coupling in
antenna array systems with several applications. The theory itself works ultimately
within the perspective of the antenna current Green’s function (ACGF) formalism
introduced in Part II, where the antenna as such is replaced by its exact transfer
function in space and treated in the spirit of system theory as a transformation from
input (excitation field) to outputs (radiating currents). We were able to isolate the
mutual coupling transfer function and show that it constitutes a complete description
of the system from the viewpoint of electromagnetic interactions. In order to bring
this concept into an intuitive form and to facilitate computations, a perturbation
approach was developed from scratch, proving that in general the mutual coupling
ACGF can be approximated by a converging series that involves only the isolated
elements’ ACGFs plus small forward interaction operators. This puts the study of
large antenna arrays and their mutual coupling in the light of the physically appealing
pictures of atoms plus their interactions. In this case, each antenna behaves like an
atom or unit cell with its isolated-element ideal behavior, while mutual coupling
effects are incorporated perturbatively as successive levels of corrections imposed
on the ideal behavior, where these corrective modifications emerge from forward
interactions involving mainly neighboring elements. Since this method avoids the
computationally daunting job of inverting the full electromagnetic operator of the
entire (coupled) system, we expect that perturbation techniques will provide solid
foundations for tackling full-wave analysis of large-and-complex antenna arrays.

The chapter also provided a simpler approach using the concept of infinitesimal
dipole models to represent arbitrary antenna systems by analytical radiation formulas
(the fields radiated by infinitesimal dipoles can be expressed in such manner). The
advantages of the dipole model approach to mutual coupling is that 1) it does
not require solving Maxwell’s equations (since it works only with measured near
field date), and 2) it motivates intuitively many of the ideas that will be developed
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rigorously using the ACGF formalism. For these reasons, the dipole model approach
was introduced first in this chapter.

The dipole model approach also used the near field of the array to characterize
mutual coupling and to distinguish between weak and strong mutual coupling
scenarios. The near field contains more information than S-matrix parameters. In
fact, we expect that future and current applications will require focus on the near
zone in order to insure satisfactory performance of systems in complex and dense
electromagnetic environments. As an application motivated by Part I on near-field
theory, we presented here a method to analyze mutual coupling into its propagating
and evanescent parts and provided new data concerning the physics of interactions in
several examples, involving some information on the localization of electromagnetic
energy in the near zone.



Chapter 17

Method for the Analysis of Localized
Energy in Mutually-Coupled Antenna
Systems

17.1 INTRODUCTION

This chapter addresses several fundamental issues within the topic of mutual coupling
and energy transfer in generic electromagnetic systems, with focus given here on
antennas as exemplary cases of such systems. The new approach proposed here takes
its point of departure from the view that mutual coupling is essentially a near-field
phenomenon, even though one may, in a rather generic manner, include interactions
via far-field and guided propagating modes. In our opinion, the physical problem
found in the setting of two antennas interacting with each other at a relatively short
electric distance is basically one involving energy exchange through the near field
in between the two elements.

The electromagnetic near field represents one of the most complex structures
in the radiation problem and it seems that the topic has not received a comprehensive
and sustained attention in the literature. Many mutual coupling studies have been
published based on special proposals focusing mainly on the far fields and the circuit
parameters (S-matrix). While the latter two performance measures are essential to
many application, they don’t exhaust the complexity of the antenna problem for
several reasons. First, far fields and circuit parameters are themselves functions of
the near field; they are determined by the physical processes occurring in the near-
zone region; therefore, proper understanding of such popular performance charac-
teristics may benefit from a closer examination of the near field structure. Second,

481



482 New Foundations for Applied Electromagnetics

there are many applications (current or future) that work directly with the near
field; examples are close-range detection of unknown or buried objects, imaging
experiments (especially sub-wavelength imaging), near-field communications, and
wireless electromagnetic energy transfer, just to mention few now common research
and industrial topics. Third, the near field is most likely to be the main site of energy
storage in the antenna system. Since many fundamental issues in operating antennas
depend crucially on how energy is stored in the region surrounding the source, e.g.,
bandwidth, quality factor, efficiency, etc, not to mention the utilization of free space
for energy handling and manipulations (a topic not fully exploited yet), we anticipate
that studies of the near field will gain some momentum in the near future in both
fundamental and applied research.

Existing tools in the near field literature suffer from the shortcoming that
they focus mainly on the total field. However, as was suggested previously by the
authors, the interesting features in the near field arise when we look at how energy
is divided into propagating and nonpropagating parts since this is actually what is
involved in all existing and future devices. In other words, knowing the value of
the total near field does not provide much new information. However, computing
how the just-mentioned total field value splits into moving and non-moving energies
usually illuminates the understanding of the concrete problem because it provides a
proper visualization of the actual dynamic process of field propagation. The specific
examples of mutual coupling in antenna arrays given below will illustrate this new
insight.

For these reasons, the work presented here aims at developing new fundamental
techniques suitable for analyzing the structure of the near field in antenna systems
experiencing both strong and weak mutual coupling. For a general view of existing
methods addressing the topic of mutual coupling from the perspective of far-field
and circuit parameters, see for example [29], [121]. Antenna-Antenna interaction
theory was developed some time ago in [55], [56], [122], [123]. Utilization of
this theory in developing antenna field measurement methods based on careful
understanding of electromagnetic coupling in the near and far zones can be found
in [122], [35].

In order to develop new tools for studying mutual coupling from the perspective
of the near field, two recent theoretical advances will be employed here, the near-field
theory in the spectral domain Chapter (4) and the antenna current Green’s function
formalism Chapters (8 and 9). The new approach presented here is different from
previous methods since we focus on the localization structure of the interaction
energy right from the beginning. The geometrical shape of the interacting antennas
will be included in the formulation by attempting to provide an analysis of energy
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coupling and transfer, where this analysis will be focused neither exclusively on
coupling between two ports (the standard scattering matrix method [29]) nor between
reference planes enclosing the interacting antennas (the generalized scattering
matrix method [56]); instead, each pair of points on the entire surfaces of the two
coupled antennas will be taken into account and the effect of shape, size, geometry,
inter-element spacing will be incorporated fundamentally into the method. The
analysis will provide information about how antenna-antenna interaction energy
is divided into propagating (energy flow) and evanescent (localized energy) and how
various parts of the antennas contribute to these energy processes. For example, a
new coupling coefficient, the energy localization coefficient, will be introduced to
measure how much of the total interaction energy between two antennas is realized
in the form of stationary (localized) energy. This in turn provides direct knowledge
of the structure of energy localization in real-life antenna systems. The topic then can
be investigated in great details both conceptually and for many practical examples.
One of the main features of the new method is that it was developed with attention
devoted from the beginning to simple implementation utilizing existing the method
of moment (MoM) architectures. Indeed, we show that the new analysis can be
readily integrated into available codes.

Moreover, we avoid the technical complexity of the original formulations of
Part I and II by working directly with a simplified model. Indeed, we will avoid
relying exclusively on the antenna current Green’s function in this investigation and
work instead with the electromagnetic operators of the problem. As was shown in
Chapter 8, the antenna Green’s function can be constructed from the operators using
distribution theory, and hence there is no loss of generality here. The gain is a more
concise and focused presentation of the results given here. On the other hand, we
will concentrate from the beginning on a method of moment (MoM) formulation
of the proposed technique. The goal of this choice is to exploit certain technical
aspects in the method of moment that don’t seem easy to generalize when working
on the exact level of operators or antenna Green’s functions. In particular, the full-
vectorial formulation of the near-field theory developed in Chapter 4 will not be
heavily used here since it turns out that one can work with the scalar problem by
exploiting the integration-by-parts trick in moving the differential operators from
the free-space Green’s functions to the current basis functions when evaluating the
MoM impedance matrix. This allows the study of the near-field structure using the
simpler spectral integrals of the scalar Green’s functions, which turned out to be
expressible in simple analytical closed form as is shown in this work.

The chapter is structured in the following manner. Section 17.2 provides
an overall evaluation of the problem of antenna-antenna interactions and reviews
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existing methods. The new approach developed here will be briefly described and
compared with the generalized scattering matrix approach. Section 17.3 will give
a brief formulation of the setting of two interacting antennas in terms of the exact
electromagnetic operators. Moreover, the definition of the mutual coupling antenna
current Green’s function proposed in Chapter 16 will be outlined although will not
figure prominently in what follows since the results will be presented in conjunction
with the interaction operators rather than the Green’s function itself. Section 17.4
will outline the main ideas of the chapter. The required background from the near-
field theory Chapter 4 will be simplified and adapted to the purpose of our purpose
here. Detailed technical implementation of the analysis method will be given in
Section 17.5 where the derivation of the MoM matrix decomposition into propagating
and nonpropagating parts will be illustrated for linear wire antennas. The main
results are the expressions (17.30) and (17.31), giving the MoM matrix elements
decompositions. There, no numerical spectral integration for computing the total
propagating and nonpropagating modes are needed since they turn out to be given in
simple analytical form. The new derived MoM expressions can be readily included
in existing codes. In Section 17.6, a set of carefully chosen numerical examples
are provided to illustrate the physics of mutual coupling in typical antenna array
configurations from the viewpoint of the near field. Section 17.7 show how the basic
method can be applied to study the structure of the radiated field of an antenna by
using another receiving antenna as a probe. (These results applies not only to the
near field, but extends to the far zone.) We illustrate the approach by defining a
factor measuring the degree of localization in the radiation field and shows several
examples where these quantitative indicators can be used to infer information about
the physical process in the antenna interactions with other objects. Finally, we end
with a brief overview on possible applications and the conclusion.

17.2 DESCRIPTION OF THE PROBLEM OF ANTENNA-ANTENNA
ENERGY TRANSFER PROBLEM AND COMPARISON WITH
EXISTING METHODS

The basic setting of energy transfer system is shown in Figure 17.1, where two
antennas A and B with separation d are shown. Here, the port signals are denoted
at local reference planes by a0 and b0 for Antenna B and a′

0 and b′
0 for Antenna A.

Since interest in energy coupling applications focuses on obtaining a characterization
of the received signal in one antenna when the other is used as a source, the most
natural choice for characterizing antenna-antenna interaction has been the coupling
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Figure 17.1 Schematic diagram of conventional antenna-antenna interaction problem analyzed using
the generalized scattering matrix approach.

ratio b′
0/a0 [56], which is reducible to the conventional scattering parameter S12

(after properly choosing the load impedance) [29].
To our best knowledge, the most comprehensive investigation of the problem

of antenna-antenna coupling is due to Kerns, who developed the generalized
scattering matrix approach to deal with the analysis of energy coupling in generic
antenna systems. The basic theory can be found in [56], with detailed experimental
investigation of the proposed formalism. The method was further developed and
simplified by Yaghjian where coupling was expressed in terms of the far fields
patterns for antennas not interacting in the deep near-zone region [123]. More
recently, the formulation in [123] was used to study energy coupling for some
currently popular applications such as RFID [136].

The antenna-antenna interaction approach of Kerns can be viewed as a massive
generalization of the classic waveguide microwave circuit theory [29]. Indeed, as can
be seen form Figure 17.1, the method defines fictitious (mathematical) surfaces at
planes z = 0 and z = d where “incident” and “outgoing” waves a1, b1 and a′

1, b
′
1

are referenced, similar to what is done at the normal waveguide sections with port
signals a0, b0 and a′

0, b
′
0. In order to mathematically extract a useful definition of

“outgoing” and “incoming” waves, Kerns used the Weyl expansion to expand the
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fields into ([56], eq. (1.2-14))

E (r) =
∫

R2 dkxdkye
ikt·r

×
[
B (kx, ky) e

+ikz|z|
+ A (kx, ky) e

−ikz|z|
]
,

(17.1)

where A and B are “transverse field spectra” for the “outgoing” and “ingoing” wave
components. Here, the integrations is on all real values of kx and ky while kz can
be either pure real (propagating modes) or pure imaginary (evanescent modes) and
kt = x̂kx + ŷky . In the above expansion, the plane z = 0 is chosen as a reference
plane for describing the splitting of the fields into outgoing and incoming waves. By
defining a scattering matrix for each spectral mode indexed by kx and ky , and then
summing over all modes to obtain the total fields, Kerns was able to put antenna-
antenna interactions in the framework of microwave circuit theory.

The alternative approach to the analysis of antenna-antenna interaction devel-
oped here uses the Weyl expansion but in a very different way compared with [56].
Figure 17.2 illustrates the basic configuration of interaction between two generic
antennas. Here, we consider energy exchange between every point on the geomet-
ric surface of the antennas, rather than mathematical reference planes as in the
generalized scattering method of Figure 17.1. The major difficulty encountered in
implementing the approach of Figure 17.2 is that now we no longer can fix in advance
the direction of the z-axis along which the fields are expanded into their spectral
mixture of propagating and nonpropagating modes. Indeed, in order to reflect the
general changing shape of the interacting antennas, the direction of z-axis must also
change in general between every pair of interacting points (see the small local frame
in Figure 17.2). The solution of this problem, which will be detailed in Section 17.4,
exploits recent physical understanding of the antenna near zone in terms of dynamic
splitting of the field into propagating and evanescent modes.1 Indeed, it was shown
by the authors that a 3D rotation matrix R̄ is needed in addition to the location r in the
near zone in order to fully specify the spectral content of the field (the decomposition
into homogeneous and inhomogeneous waves). The key idea in Figure 17.2 will be
to orient the local frame described by this 3D matrix at each pair of points rA

and rB in the interacting antennas such that the axis along which we decompose
the coupled field into propagating and evanescent modes is aligned along the line
joining the mentioned two points. In this sense, the analysis method proposed here
can provide information about the localization of energy between variable regions on
the interacting generic antennas (depending the geometrical shapes, distance, etc.)
and how exchange energy is localized in the space between.

1 Cf. Chapter 4.
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The major differences between our method and Kerns’ are the following:

1. The Weyl expansion is used in (17.1) mainly as a computational method to
compute total fields. In contrast, the proposed method is based on separating
and explicitly differentiating the propagating field from the total field by
emphasizing how the composition of interaction is split into propagating and
evanescent modes in a way that is reflected by the geometry of the interacting
antennas.

2. The method in [56] assumes fictitious mathematical reference planes enclosing
the interacting antennas in order to complete the analysis into outgoing and
incoming waves. In contrast, this method does not introduce new reference
planes; instead, we analyze interactions in terms of the geometrical surface
of the antenna involved, with focus on how changing the antenna array geo-
metrical details affect mutual energy coupling and exchange for applications
involving antenna design and synthesis.

3. The methods of Kerns [56] include evanescent modes in the definitions of
both incoming and outgoing waves. In our approach, the basic emphasis is
on localization of electromagnetic energy and hence the focus here shifts to
how energy exchange is mediated by physically different types of fields, the
propagating and nonpropagating modes. In other words, instead of defining
coupling in terms of ratio involving outgoing and incoming waves, we define
new coupling coefficients in terms degree of localization or, equivalently,
the relative strength of evanescent modes energy with respect to the total
interaction field energy.

Therefore, our method complements and expands the generalized scattering
matrix approach by providing new information not addressed in the older techniques.
Moreover, the present approach essentially includes the traditional scattering matrix
method since by simply recombining our propagating and nonpropagating sub-
operators, the classic coupling ratio S12 is recovered (see Section 17.5).

17.3 BASIC MUTUAL ENERGY COUPLING AND TRANSFER
FORMULATION

Consider two interacting antenna elements A and B. The antennas are assumed
to have arbitrary smooth surfaces SA and SB and are both possibly excited by
fields Eex

A and Eex
B , respectively, which may be defined either locally (transmitting
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Figure 17.2 A spectral analysis of mutual coupling between two antennas A and B showing direct line-
of-sight energy exchange between two points rA and rB . In order to describe the spectral decomposition
of the interaction, a local coordinate xyz system must be specified in order to compute the division of
the net energy exchange into propagating and nonpropagating (evanescent) parts. The orientation of this
local frame is described by the 3D rotation matrix R̄.

Figure 17.3 Analysis of interaction between two antennas A and B into line-of-sight (direct) energy
exchange and “spilled” energy radiated away from the source. Two points rA1 and rA2 on antenna A may
couple in a direct fashion with a point rB on antenna B. However, part of the energy of antenna A will
not be coupled with any point on antenna B and is lost to the surrounding space. (This is represented by
the wavy arrows.) In this method, all numerical results are concerned mainly with the direct interaction
energy between two antennas.
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mode) or globally (receiving mode). Assume further that both antennas support a
perfect electric conductor boundary condition (PEC).2 We can write the electric
field integral equation (EFIE) operator for antennas A and B as LA and LB . They
are defined by the equation [23], [38], [39], [34]

LJ (r) = −iωµ

∫
S

ds′
[
Ī +

1
k2 ∇∇·

]
eik|r−r′|

4π |r − r′| · J (r′). (17.2)

Here, Ī stands for the unit dyad and k is the surrounding medium wavenumber.
When the two-antenna system receives excitation fields Eex

A and Eex
B , it

responds by generating two self-consistent current distributions JA (r) and JB (r)
supported by the surfaces SA and SB , respectively. By enforcing the PEC boundary
conditions on the two antennas, the following operator equations must be obeyed

n̂A × Eex
A (r) + n̂A × LBJB (r) = −n̂A × LAJA (r) ,

n̂B × Eex
B (r) + n̂B × LAJA (r) = −n̂B × LBJB (r) ,

(17.3)

where n̂A,B stands for outward unit normal vectors on antennas A and B. Rearrang-
ing, we can write these two equations in the form

L̃ [J] = [Eex] , (17.4)

where

L̃ := −
(

n̂A × LA n̂A × LB

n̂B × LA n̂B × LB

)
,

[J] :=
(

JA

JB

)
, [Eex] :=

(
n̂A × Eex

A

n̂B × Eex
B

)
.

(17.5)

Next, decompose the full operator into the direct sum

L̃ = L̃0 + L̃int, (17.6)

where

L̃0 :=
(

−n̂A × LA 0
0 −n̂B × LB

)
,

L̃int :=
(

0 −n̂A × LB

−n̂B × LA 0

)
.

(17.7)

2 The generalization to arbitrary boundary conditions is possible but lengthy and therefore will be
reported elsewhere.
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Therefore, if the solution to the problem (17.4) exists, it is given by

[J] = L̃−1 [Eex] =
(
L̃0 + L̃int

)−1
[Eex] . (17.8)

The operator L̃0 can be though of as the self-interaction operator of the antenna
system. It is written in terms of the operators of the isolated antennas, i.e., when
each exists in homogeneous infinite environment. The other operator L̃int represents
the interaction operator of the two-antenna system.3 It conveys information about
how the two elements couple to each other electromagnetically. Further insights into
the structure of this operator will be developed below.

Suppose that the isolated antenna problems are solvable, i.e., assume that the
following inverse operator exists

L̃−1
0 =

(
(−n̂A × LA)−1 0

0 (−n̂B × LB)−1

)
. (17.9)

Equation (17.8) can then written as

[J] = L̃−1
0

(
Ĩ + L̃−1

0 L̃int

)−1
[Eex] , (17.10)

where Ĩ is the identity operator corresponding to (17.5).
For completeness, we review briefly how the antenna current Green’s function

(ACGF), which provide complete description of the array as an electromagnetic
system, can be obtained from operators defined above. Indeed, the ACGF of the
two-antenna system is readily obtained as4

[
F̄ (r, r′)

]
= L̃−1

0

(
Ĩ + L̃−1

0 L̃int

)−1
[δ (r, r′)] , (17.11)

where [
F̄ (r, r′)

]
:=
(

F̄AA (r, r′) F̄AB (r, r′)
F̄BA (r, r′) F̄BB (r, r′)

)
, (17.12)

and (
JA (r)
JB (r)

)
=
∫

SA+SB
ds′

×
(

F̄AA (r, r′) F̄AB (r, r′)
F̄BA (r, r′) F̄BB (r, r′)

)
·
(

n̂A × Eex
A (r′)

n̂B × Eex
B (r′)

)
.

(17.13)

3 Cf. Chapter 16.
4 Cf. Chapter 16.
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The excitation vector in (17.11) is defined by

[δ (r, r′)] :=
(

δA (r, r′)
δB (r, r′)

)
, (17.14)

where δA (r, r′) and δB (r, r′) stand for vector surface delta excitations applied at
antennas A and B, respectively.

I n order to simplify the presentation, throughout the rest of this chapter the
ACGF (17.11) will not be used to express the final results. However, by employing
the techniques developed in Chapter 9, transition the operator-based results given
below to the corresponding ACGF-based form should not present a problem.

17.4 INITIAL FORMULATION OF THE PROBLEM OF MUTUAL
ENERGY COUPLING AND TRANSFER FROM THE NEAR-FIELD
PERSPECTIVE

Consider Figure 17.2. We are interested in studying the process of electromagnetic
interaction between antennaA and antenna B.As suggested above, this process can be
reduced to the study of the interaction operator Lint defined in the second equation
of (17.7). It can be seen from this formula that each entry in the off-diagonal part
of the interaction operator is itself written in terms of the EFIE operator (17.2). In
order to understand the structure of the interaction operator, we carefully examine
the interaction fields defined as

[Eint] =
(

EA
int

EB
int

)
:= L̃int [J]

=
(

0 −n̂A × LB

−n̂B × LA 0

)(
JA

JB

)
=
(

−n̂A × LBJB

−n̂B × LAJA

)
.

(17.15)

In other words, EA
int = −n̂A × LBJB is the tangential fields on antenna A radiated

by the current on antenna B, and similarly for EB
int = −n̂B × LAJA. In terms of

the EFIE operator (17.2), we find

EA
int (rA)

= −iωµ
∫

SB

dsB

[̄
I + 1

k2 ∇∇·
]

eik|rA−rB |
4π|rA−rB | · JB (rB) . (17.16)
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A similar equation can be written for EB
int = −n̂B × LAJA. Consider the integrand

of (17.16). The current on antenna B at position rB acts as a source. Its effect
is communicated to position rA on antenna A via the Green’s function of free
space. This Green’s function, however, is neither a pure propagating nor pure
nonpropagating channel. It is in fact a mixture of both as can be seen by a Fourier
analysis of the field (viz the plane-wave spectrum or the Weyl expansion, see for
example [35]). Therefore, physically speaking, it is the rather subtle manner in
which the free-space Green’s function divides into propagating and evanescent
modes that determines how much of the interaction between the points rA and rB is
mediated by either by pure flow of energy or a localized (non-moving) energy zone.
In Section 17.5, the details of our approach will be given with respect to the method
of moment (MoM). Throughout the remaining parts of this section, we will illustrate
the conceptual structure of the proposed analysis of interaction.

The free-space scalar Green’s function is given by [35]

g (r, r′) :=
eik|r−r′|

4π |r − r′| . (17.17)

Using the Weyl expansion ((17.23) below), (17.17) can be expanded into propagating
and nonpropagating parts as follows

g (r, r′) = gev
(
r, r′; R̄

)
+ gpr

(
r, r′; R̄

)
. (17.18)

Here, we notice, as was reported in Chapter 4, that the decomposition of the free
space Green’s function into propagating and evanescent modes depends in general
on the choice of the coordinate system. In order to capture the dynamic content of
engineering problems in a systematic fashion (more on this below), it was proposed
by the authors that a local coordinate system be introduced into the problem with
relative orientation (with respect to the ordinal global coordinate system) described
by a 3D rotational matrix R̄.5 Note that although the total Green’s function g (r, r′)
on the LHS of (17.18) is obviously independent of the choice of the local frame,
the individual propagating and nonpropagating parts do depend explicitly on R̄.
Physically, we say that the near field tends to split differently into propagating and
evanescent modes along various directions in the space around the antenna.

For problems of mutual interactions between several antennas, each pair of
points on the interacting elements will have its own “line-of-sight” direction of
energy exchange, i.e., that straight line connecting the two points. Moreover, as

5 Cf. Chapter 4.
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suggested by Figure 17.2, we expect from the physics of the interaction problem that
the proper locus of the spectral analysis of the near field should be that along the line
carrying the vector rA − rB connecting the source point rB and observation point
rA. Therefore, we need to rotate the local coordinate system such that the z-axis
of the local frame coincides with the line along rA − rB . The rotation matrix that
accomplishes this will be denoted by R̄ (rA, rB). By substituting the decomposition
(17.18) into (17.16), we obtain

LA,B = LA,B
ev
(
R̄
)

+ LA,B
pr
(
R̄
)
. (17.19)

In (17.19), the rotation matrix was reproduced explicitly on the RHS (however,
one of the contributions of this chapter is the demonstration in Section 17.5 that the
decomposition of the total interaction operator into propagating and nonpropagating
parts can be effectuated independently of the this rotation). Next, the overall
interaction operator for the two-antenna system is decomposed in the following
manner

Lint =
(

0 −LB
ev
(
R̄
)

−LA
ev
(
R̄
)

0

)
︸ ︷︷ ︸

Lint
ev

+
(

0 −LB
pr
(
R̄
)

−LA
pr
(
R̄
)

0

)
︸ ︷︷ ︸

Lint
pr

.
(17.20)

An explication of the physical meaning and importance of these propagating and
evanescent interaction sub-operators will be given in conjunction with the numerical
examples of Section 17.6.

Finally, using a suitable norm to estimate the “size” of the operator [92] (the
details will be given below), we may define the localization of the interaction energy
as the percentage of the size of the evanescent operator LA,B

ev with respect to the size
of the full operator, i.e., we define

κ :=

∥∥Lint
ev

∥∥
‖Lint‖ . (17.21)

This factor κ will be called the energy coupling localization coefficient of antenna-
antenna interaction. It provides a quick quantitative view on how much of the total
interaction between the two antennas is mediated by nonpropagating modes. In
other words, it indicates how the near field between the two antennas tends to
localize due to mutual coupling effects. Stored energy, for instance, is probably
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related to this phenomenon of localization.6 The larger the value of κ, the stronger
will be the tendency of the energy exchange to be located in the space in between
the two antennas.

17.5 A NUMERICAL MODEL USING THE METHOD OF MOMENT

17.5.1 Basic MoM Formulation

We will employ the Method of Moment (MoM) to implement the theory developed in
Section 17.4. Moreover, the antenna types to be considered in the following numerical
examples of Section 17.6 are all thin-wire antennas. However, the basic technique
applies to generic antenna systems and is not restricted to wire antennas. The choice
of thin-wires made here is for simplicity.

Triangular pulse basis functions were deployed to approximate current dis-
tributions on a discretized thin-wire version of the EFIE (17.2) [38]. Testing is
done using the Galerkin method to reduce the EFIE into a matrix equation with
the complex amplitudes of the triangular basis functions as unknowns. An accurate
Gauss quadrature method is used to compute the off-diagonal elements of the MoM
matrix, while the singular and near-singular terms were derived analytically.

The MoM matrix element expression arising from Galerkin testing of the EFIE
is given by [38]

zmn =
∫

Sm

∫
Sn

ds′ds fm (r) · eik|r−r′|
4π|r−r′| fn (r′)

− 1
k2

∫
Sm

∫
Sn

ds′ds ∇ · fm (r) · eik|r−r′|
4π|r−r′|∇ · fn (r′).

(17.22)

We first carefully examine the structure of the MoM matrix element expression
(17.22). The two terms on the RHS are actually formally identical: they both involve
the formula ρmnexp (ik |r − r′|)/4π |r − r′|, where in the case of the first term we
have ρmn = fm (r)·fn (r′), while for the second term ρmn = ∇·fm (r) ∇·fn (r′) =
−ω2ρmρn. (In the latter relation, the equation of continuity ∇ · J (r) = iωρ (r)
was used.) In both cases, the quantity ρmn stands for the mutual interaction charge
between the source r′ and the observation r. Formally, this interaction is mediated
by the scalar Green’s function exp (ik |r − r′|)/4π |r − r′| although the MoM
formulation used here is for the full-wave vectorial case. This observation will

6 Cf. Chapter 4.
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considerably simplify our quest for computing the spectral composition of the
electromagnetic coupling between interacting antennas.

The Weyl expansion shows that the total scalar Green’s function can be divided
into the sum of two parts, one as pure propagating waves and the other as evanescent,
hence nonpropagating part. Explicitly, we write [35]

eikr

r
=

ik

2π

∫ ∞

−∞

∫ ∞

−∞
dpdq

1
m

eik(px+qy+m|z|), (17.23)

where

m(p, q) =
{ √

1 − p2 − q2 , p2 + q2 ≤ 1
i
√

p2 + q2 − 1 , p2 + q2 > 1
. (17.24)

Here we used the notation r = |r − r′|. The propagating and nonpropagating
(evanescent) parts are given, respectively, by the expressions

gev (r, r′) = ik
8π2

∫
p2+q2>1 dpdq 1

meik[p(x−x′)+q(y−y′)]

×eim|z−z′|,
(17.25)

gpr (r, r′) = ik
8π2

∫
p2+q2<1 dpdq 1

meik[p(x−x′)+q(y−y′)]

×eim|z−z′|.
(17.26)

As was pointed out in Chapter 4, the nonpropagating part of the Green’s function
is related to energy localization in the space surrounding the antennas. We have
explained in Section 17.4 how the changing direction along which we effect the
decomposition into propagating and evanescent modes will determine the fine
structure of the energy exchange between the two antennas. The observation just
made will now be exploited by concentrating our spectral analysis on the scalar
Green’s function of the problem.

17.5.2 Analytical Evaluation of the Scalar Green’s Function Dynamic Spectral
Representations

Similar to (17.19), we separate the matrix element into propagating and nonpropa-
gating parts

zmn = zev
mn + zpr

mn, (17.27)
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where
zpr
mn = ik

4π2

∫
Sm

ds′dsfm (r) ·
∫

Sn

fn (r′)

×
∫

p2+q2<1 dpdq 1
m ei(R̄T ·K)·r

− i
4kπ2

∫
Sm

ds′ds∇ · fm (r) ·
∫

Sn

∇ · fn (r′)

×
∫

p2+q2<1 dpdq 1
m ei(R̄T ·K)·r

(17.28)

zev
mn = ik

4π2

∫
Sm

ds′dsfm (r) ·
∫

Sn

fn (r′)

×
∫

p2+q2>1 dpdq 1
m ei(R̄T ·K)·r

− i
4kπ2

∫
Sm

ds′ds∇ · fm (r) ·
∫

Sn

∇ · fn (r′)

×
∫

p2+q2>1 dpdq 1
m ei(R̄T ·K)·r

(17.29)

To proceed further, we will use results from Chapter 5. Using the analytical
expression (5.20) and (5.21) in (17.28) and (17.29), respectively, we find

zpr
mn = ik

4π2

∫
Sm

ds′ds fm (r) ·
∫

Sn

fn (r′) eik|r−r′|−1
r

− i
4kπ2

∫
Sm

ds′ds∇ · fm (r) ·
∫

Sn

∇ · fn (r′) eik|r−r′|−1
r ,

(17.30)

zev
mn = ik

4π2

∫
Sm

ds′dsfm (r) ·
∫

Sn

fn (r′) 1
r

− i
4kπ2

∫
Sm

ds′ds∇ · fm (r) ·
∫

Sn

∇ · fn (r′) 1
r .

(17.31)

Therefore, the final expressions of the MoM matrix decomposition does not depend
on the rotation matrix R̄. However, this conclusion applies only when we consider
decomposition into the total propagating and total evanescent part. Since this is the
only type of spectral decomposition considered here, the results (17.30) and (17.31)
are enough for our practical interests, see Section 17.6 for numerical examples.

Finally, given the new matrices zev and zpr, we can estimate the size of the
sub-operators by using standard matrix operator norms. For example, we may define
the energy localization factor κ as follows

κ :=
‖zev‖
‖z‖ . (17.32)

Here, ‖‖ stands for some matrix norm, see for example [92]. Concrete details about
the definition (17.21) will be given in Section 17.6.
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17.5.3 Verification of the Code

The relations (17.30) and (17.31) show that the same basic MoM formulation can
be used with simple modification to compute the spectral structure of the interaction
operator. Indeed, no new numerical integrals are needed for the spectral analysis
since these are evaluated analytically as given by (5.20) and (5.21). The only
additional computation is an increase in the number of the MoM sub-matrices
integrals since now we have two integrations, one corresponding to the evanescent
mode interaction, the other to the propagating mode case as can be seen after a glance
at (17.30) and (17.31). These additional integrals, however, have the same structure
of the classic MoM integrations and present no considerable difficulty for adapting
them to existing codes.

A computer code was written to implement the theory and method developed
above. Since the results presented here are new, verification proceeds in two carefully
separated stages.

• Stage I: Conventional MoM scripts to discretize the current and evaluate
the impedance matrix integrals using the classic scalar Green’s function as
mediator of interaction (Section 17.5.1). Verification of these code scripts was
made by comparison with other standard full-wave EM solvers, for example
WIPL-D which uses higher-order basis functions [39].

• Stage II: Separation of the scalar Green’s function into propagating and
nonpropagating dynamic parts depending on the location of the two coupled
points on the two interacting antennas. This part was done analytically
in 17.5.2. It is verified by numerical integration to confirm the analytical
expression and also by substitution.

In writing the new code, the use of independent classes or subroutines in imple-
menting the two stages of the code above allows direct combination of the two,
each verified independently, to form the new code without any modification in the
separate codes themselves. This is possible because, as can be seen from (17.22), the
interaction propagator (the Green’s function) appears in the MoM matrix element
expression independently of the current basis function and the integration region.
Therefore, the new expressions (17.30) and (17.31) can be readily programmed
without any essential changes with respect to the already verified Stages I and II.
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Figure 17.4 A spectral analysis of interaction between two linear wire antennas A and B. The two
antennas have identical radius of 0.001λ and length 0.5λ. The spacing between the elements is given
by d.

17.6 NUMERICAL EXAMPLES USING LINEAR WIRE ANTENNA
ARRAYS

We first consider a basic two-element antenna array composed of two parallel
thin wires A and B. Figure 17.4 illustrates the configuration of the interaction
problem. Antenna A will be excited by a delta source gap placed at the center
while antenna B (with no generator) will couple electromagnetically with antenna
B. The overall coupling is represented by the operator (17.15), which involves
the sum (integral) of all mutual interactions between points r′ on antenna A and
points r on antenna A. As we showed in Section 17.5, if the MoM is used to
compute energy coupling, then the mediator of electromagnetic interaction (the
“electromagnetic propagator”), can be formally captured by the scalar exchange
IAB (r, r′) = ρmnexp (ik |r − r′|)/4π |r − r′|.We rotate the local coordinate frame
xyz such that its z-axis coincides with line of the vector r′−r while the origin O is at
the source point r′. In this case, the formulas (17.30) and (17.31) become applicable.

The interaction operator is approximated by the MoM matrix

Zint =
(

0 ZAB

ZBA 0

)
. (17.33)
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Figure 17.5 The distribution of the interaction self energy of the propagating part. The two antennas of
Figure 17.4 have identical radius of 0.001λ and length 0.5λ. The spacing between the elements is given
by 0.25λ.

The mnth matrix element is expanded as ZAB,mn = Zpr
AB,mn+Zev

AB,mn. Therefore,
the corresponding mutual coupling energy is given by

|ZAB,mn|2 =
∣∣∣Zpr

AB,mn

∣∣∣2 +
∣∣Zev

AB,mn

∣∣2
+2ReZpr

AB,mnZev∗
AB,mn.

(17.34)

The terms
∣∣∣Zpr

AB,mn

∣∣∣2 and
∣∣Zev

AB,mn

∣∣2 give the self energies of the propagating and

evanescent parts, respectively. The third term 2ReZpr
AB,mnZev∗

AB,mn, however, is a
new energy process: it is the net exchange energy between the propagating and
evanescent fields. It was shown by generalizing the Poynting theorem that this term
does actually behave as energy and possess a suitable flux (Poynting) density flow.7

Moreover, in contrast to the self energy, it can be either positive, zero, or negative.
Figures 17.5 and 17.6 illustrate the self energy of the pure propagating and

evanescent parts of the interaction energy between antennas A and B when the
spacing between the two antennas is 0.25λ. The two parts, however, exchange energy

7 Cf. Chapter 4.
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Figure 17.6 The distribution of the interaction self energy of the evanescent part. The array is the same
as described in the caption of Figure 17.5.

and this net coupling between the propagating and nonpropagating components
is quantified in Figure 17.7. In all these figures, the axis labeled ‘Antenna A or
B’ list the MoM segments used in the discretization of the antenna system. There
are several interesting features to draw from these data. First, the propagating part
is maximum along the line in the horizontal plane given by y = x, i.e., for all
interactions connecting each segment with the direct segment corresponding to it
on the other antenna obtained by a line orthogonal to the parallel antennas. This is
more obvious in Figure 17.6, where the self energy of the evanescent part exhibit a
minimum at exactly the same line. On the other hand, the latter figure also shows
something more: there exist two local maxima of the self evanescent energy at two
different lines in the horizontal plane. In Figure 17.8 we show which parts of the two
wires contribute to these maxima in the interaction energy. On the left diagram, the
direct coupling of segments connected by the horizontal lines delimits the maximal
transfer of pure propagating energy. In the right diagram of Figure 17.8, we see two
complementary or symmetric couplings contributing to the two maxima in the self
evanescent energy of Figure 17.6. These parts of the two wires can then provide



Method for the Analysis of Localized Energy in Mutually-Coupled Antenna Systems 501

0 2 4 6 8 10 12
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Frequency (GHz)

 T
h
e
 L

o
a
d
 C

u
rr

e
n
t 
I L

 (
m

A
)

 

 

ACGF method (real)
ACGF method (imag)
MoM scattering (imag)
MoM scattering (real)

Figure 17.7 The distribution of the interaction exchange energy between the evanescent and propagating
parts. The array is the same as described in the caption of Figure 17.5.

clues about the origin of the localization of electromagnetic energy between the two
wires due to mutual coupling.

Finally, we notice from Figure 17.7 that the exchange energy between the
propagating and evanescent parts is always negative. Moreover, the qualitative shape
of this exchange energy distribution between the various segments of the two-antenna
system follows a curious pattern that is intermediate between Figures 17.5 and 17.6.
Indeed, the local maximum coincides with the local maximum of Figure 17.5 of the
pure propagating parts, but the two nearby local minima are in opposition to the two
local maxima of Figure 17.6. This suggests that the exchange energy is somehow
ambiguous, in the sense of having the form of a decaying propagating mode, which
may be interpreted as belonging to either propagating or nonpropagating energy
depending on the problem and the context.

In order to compare with a case of weak mutual coupling, Figures 17.9, 17.10,
and 17.11 provide the corresponding results when the spacing between the elements
is as large as 0.5λ. As can be seen in this case, the main qualitative features of strong
mutual coupling manifested in Figures 17.5, 17.6, and 17.7 are absent here, mainly
the local maxima and minima in the self propagating and nonpropagating parts.
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Figure 17.8 A schematic diagram illustrating the parts of the two-wire system with contributing to the
maximum propagating and evanescent mode coupling. Here, the separation between the elements is 0.25λ
In the left diagram, the direct lines highlight those pairs on the two wires contributing to maximum pure
propagating energy transfer. In the right diagram, two complementary sets of pairs provide the distribution
of parts contributing to maxima in the pure evanescent mode energy transfer.

This indicates that the spectral content of the near-field structure (and consequently
energy localization) is strongly influenced by mutual coupling. It appears that a
localization of the near field produced by the interaction between two antennas
depends on a critical separation between the elements.

To further confirm these conclusions, we carried another numerical experiment
in which the separation between the elements is reduced to just 0.1λ. Figures
17.12, 17.13, and 17.14 show the results in this case. Comparison between Figures
17.5 and 17.12 for the self energy of the propagating parts shows no qualitative
difference. The same applies roughly to Figures 17.7 and 17.14 concerning the
exchange energy between the propagating and evanescent parts, although the peak
(local maximum) in the latter figure shows marked increase in concentration. There
is, however, a qualitative change in Figures 17.6 and 17.13 concerning the self energy
of the evanescent part of the interaction. In the 0.1λ array, stronger mutual coupling
introduced a new peak or maximum at the position where only a minimum existed
before, creating in the process two new local nearby minima. The new maximum in
the evanescent energy shown in Figure 17.13 coincides with the maximum of the
propagating energy of Figure 17.5 (represented geometrically in the left of Figure
17.8). This makes the interpretation of the results a bit more difficult since now both
the nonpropagating and propagating parts possess maxima at the same location.

A change in the length of one antenna gives some clues about the nature of
the coupling between the two elements. The length of antenna A is kept at 0.5λ
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Figure 17.9 The distribution of the interaction self energy of the propagating part. The two antennas of
Figure 17.4 have identical radius of 0.001λ and length 0.5λ. The spacing between the elements is given
by 0.5λ.
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Figure 17.10 The distribution of the interaction self energy of the evanescent part. The array is the same
as described in the caption of Figure 17.9.

but antenna B was shortened into 0.15λ while remaining parallel to antenna A.
Figures 17.15, 17.16, and 17.17 give the results for this case where the separation
between the two element is 0.2λ. The result look qualitatively similar to the case
of Figures 17.5, 17.6, and 17.7 with the important difference that the maximum of
the self energy of the propagating part of the interaction is no longer along the line
y = x. Instead, only a portion of antenna A interacts with the entirety of antenna B
in the mode of maximum propagating energy transfer. This geometrical relation is
illustrated in Figure 17.18. There we see that the region of antenna A highlighted in
the figure is the part that contribute the most to the propagating energy transferred
to antenna B by the process of mutual coupling. As we can see, the direct lines
mediating this transfer are no longer orthogonal to the wire as was the case in
the left diagram of Figure 17.8. Therefore, we don’t expect that maximum energy
transfer through the propagating modes alone should follow simple geometrical
rules, but rather it depends on the separation distance and relative orientation of the
elements. The methods proposed help help automate the study of field localization
due to mutual coupling by providing detailed pictures about the distribution of
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Figure 17.11 The distribution of the interaction exchange energy between the evanescent and propa-
gating parts. The array is the same as described in the caption of Figure 17.9.

propagating and nonpropagating energies among the various parts of the antennas
mutually interacting with each other.

17.7 MEASUREMENT OF THE LOCALIZATION OF THE RADIATED
FIELD

Localization of the radiated field is not reducible to the value of the total field.
Instead, it is about how portion of the energy contained in the total field gets to
stay around certain regions in space.8 While the total field is always time varying,
it is not true that any time-varying field is moving energy in space. For example, a
standing wave in transmission lines is time varying but does not carry energy away
from the source. The localized field produced by an antenna can be compared with
the standing waves of circuits. Although the situation in field theory is much more
complex, see for example Chapter 4, the basic idea is to separate the nonpropagating
part of the total field and ascribe localization of energy to this portion alone. In this

8 Cf. Chapter 4.
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Figure 17.12 The distribution of the interaction self energy of the propagating part. The two antennas
of Figure 17.4 have identical radius of 0.001λ and length 0.5λ. The spacing between the elements is given
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Figure 17.13 The distribution of the interaction self energy of the evanescent part. The array is the same
as described in the caption of Figure 17.12.

section, we outline how the methods developed above can be used to implement
an approach to perform a computation of this localization. We still work with the
basic configuration of Figure 17.8 but now think of antenna B as a probe used for
measurement while antenna A is the source of the field we would like to characterize
in terms of localization. By varying the distance between the two antennas, the
spectral decomposition of the interaction operator can be utilized to provide some
rough idea about how much of the field received by the probe is localized in space.
We don’t focus on only the received signal at the port of antenna B, but examine the
interaction of the entire receiving element with the illumination field by examining
the MoM matrix of the interaction operator.

As was suggested by the numerical examples in Section 17.6, interaction
energy certainly tends to get localized in a more complex manner when the separation
between the elements gets smaller. However, in order to quantify this localization
in a simpler manner, a relative and global measure has to be introduced. That is,
we need to average the overall decompositions of the interaction MoM matrix into
propagating and nonpropagating modes and then estimate the relative weight of
each energy type with respect to the others. This we accomplish by computing
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Figure 17.14 The distribution of the interaction exchange energy between the evanescent and propa-
gating parts. The array is the same as described in the caption of Figure 17.12.

a suitable norm in order to roughly approximate the “size” of the operator, as is
usually done in theoretical numerical analysis. The most convenient such norm in
our case is the Frobenius norm defined as [92]

‖A‖F :=

√√√√ M∑
m=1

N∑
n=1

|amn|2, (17.35)

which naturally corresponds to the energy definitions typical in physics and engi-
neering.

We define the following three coefficients quantifying the near-field coupling

κpr :=
‖Zpr

AB‖2

F

‖Zpr
AB‖2

F
+‖Zev

AB‖2

F
+

∥∥∥2ReZev
AB(Zpr

AB)H
∥∥∥2

F

,

κev := ‖Zev
AB‖2

F

‖Zpr
AB‖2

F
+‖Zev

AB‖2

F
+

∥∥∥2ReZev
AB(Zpr

AB)H
∥∥∥2

F

,

κpr/ev :=

∥∥∥2ReZev
AB(Zpr

AB)H
∥∥∥

F

‖Zpr
AB‖2

F
+‖Zev

AB‖2

F
+

∥∥∥2ReZev
AB(Zpr

AB)H
∥∥∥2

F

.

(17.36)
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Figure 17.15 The distribution of the interaction self energy of the propagating part. The two antennas
of Figure 17.4 have identical radius of 0.001λ but different lengthes. Antenna A is 0.5λ while antenna B
is 0.15λ. The spacing between the elements is given by 0.2λ.
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Figure 17.16 The distribution of the interaction self energy of the evanescent part. The array is the same
as described in the caption of Figure 17.15.

Here, κpr measures the total propagating energy relative to the total interaction en-
ergy. Similarly, κev measures the total nonpropagating or evanescent energy relative
to the total interaction energy. The third coefficient κpr/ev provides information
about the exchange of energy between the propagating and nonpropagating parts.9

As defined above, κpr and κev, and κpr/ev are always positive, even though the
exchange energy between the evanescent and propagating parts (when taken term
by term) can take negative values. In any case, the relation κpr + κev + κpr/ev = 1
always holds.

Figure 17.19 shows the results for two-element antenna array with equal
length of 0.5λ. The evanescent mode energy κev reaches its maximum limit at 1.0
periodically at integer multiples of wavelength. At those locations, the propagating
mode interaction energy drops to zero. Moreover, Figure 17.20 indicates that
throughout all locations, the exchange of energy between the propagating and
nonpropagating modes can be neglected.

If we view antenna B as a probe used to measure the structure of the field
produced by antenna B, then it is clear from Figure 17.19 that around the locations

9 The superscript H appearing in (17.36) is the Hermitian of the matrix.



Method for the Analysis of Localized Energy in Mutually-Coupled Antenna Systems 511

0
5

10
15

20
25

30

0
5

10
15

20
25

30
−13

−12

−11

−10

−9

−8

−7

−6
x 10

−13

 Antenna A  Antenna B

2
 R

e
 z

A
B

p
r

z A
B

*e
v

Figure 17.17 The distribution of the interaction exchange energy between the evanescent and propa-
gating parts. The array is the same as described in the caption of Figure 17.15.

Figure 17.18 A schematic diagram illustrating the parts of the two-wire system with contributing to the
maximum propagating and evanescent mode coupling. Here, the separation between the elements is 0.25λ
In the left diagram, the direct lines highlight those pairs on the two wires contributing to maximum pure
propagating energy transfer. In the right diagram, two complementary sets of pairs provide the distribution
of parts contributing to maxima in the pure evanescent mode energy transfer.
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Figure 17.19 The localization coefficients of the two-element array in Figure 17.8. The elements
specifications are as in the caption of Figure 18.8. The horizontal axis provides the separation distance
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Figure 17.20 The exchange coefficients characterizing the interchange of energy between the propa-
gating and nonpropagating modes for the system described in the caption of Figure 17.19.
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d = nλ, n = 0, 2, 3, ..., the field radiated by the source A tends to get localized.
The spatial extension of the localization width defined in terms of half-power level
is about 0.392λ and is roughly the same at all locations d = nλ, n = 0, 2, 3, ....
We remind the reader that although the total field is not zero in this region, most
of its spectral content is composed of nonpropagating modes. As we move outside
the localization region, the propagating part grows from its zero total value and
contributes to the moving energy flux before entering into another localization region,
reaching a maximum of %80 at the locations d = (n + 1/2)λ, n = 0, 1, 2, .... In
particular, this cyclic process continues indefinitely, regardless to how large the
distance from the source can be. We are therefore witnessing a phenomenon that
goes beyond mutual coupling between antenna elements close to each other. For
example, even in the far zone, the pattern shown in Figure 17.19 still holds. It gives
a characterization of energy flow away from the source in terms of series of full
localization followed by partial localization of energy, followed by a collapse into
complete localization, and so on.

Although the basic results shown here are for wire antennas, the method is
general and can be used in conjunction with MoM to study the structure of the
radiation field of arbitrary complex antennas.

17.8 POTENTIAL APPLICATIONS

The main findings presented above were formulated as a general methodology in
order to reflect both its scope as basic research in antenna theory and also its wide
applicability to a large range of practical problems encountered in the fields of
radiation and coupling of electromagnetic energy. It is possible, however, to sketch
briefly some of the potential uses of the current work in existing device applications
without entering into details, which can be addressed by us or others in future
publications.

Studies of Bandwidth. It is well known that one of the effective methods to
achieve enhanced bandwidth in EM devices is the careful exploitation of mutual
coupling. For example, if two narrow resonant peaks are forced to interpenetrate,
then under certain circumstances one may obtain a combined resonance exhibiting
considerable improvement in bandwidth compared with individual peaks that entered
originally into its composition. This important engineering idea can now be analyzed
in depth by studying the localization structure of the radiation field. Indeed,
if it is known that the fields produced by two individual devices are localized
in certain regions, then mutual coupling may considerably affect the nature of
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this localization by either destroying it or changing its spatial extension. It is not
obvious a priori what will happen when devices interact given the complexity of the
near-field problem. However, the intention in this chapter was to focus directly on the
interaction operator of two antennas and to devise methods to understand its structure
exactly in terms of localization in the space around the radiating elements. This makes
the approach suitable for empirical studies aiming at documenting and characterizing
the possible scenarios in which considerable improvement in bandwidth can result
from manipulating localization through mutual coupling.

Detection problems. Many problems involve characterizing the electromag-
netic signature of unknown objects, for examples early detection of tumors or geo-
physical detection of buried targets, or even basic radar and weather prediction.
Antennas are used in this case for sending and receiving signals. The received signal
is usually collected at a single location, the port. This signal is proportional to the total
field and may not always reflect the fine variations in the spectral composition of the
near field, as in detection of close targets.The methods proposed here can provide new
pictures of the field forming additional output variables in the detection algorithm
that can be integrated in order to enhance our knowledge of the nature of coupling
and interaction with nearby objects. In particular, since we have characterized the
interaction operator in terms of its dynamic decomposition into propagating and
nonpropagating modes, it is probable that a fixed electromagnetic signature that was
not seen when relying on, say, the scattering parameters S12, can be found in the
way the interaction operator splits into its spectral components. For example, the
total field may not show a resonance indicating the presence of the target, but this
resonance can be located in the propagating and nonpropagating parts. Figures 17.5–
17.16 provided insight into how new propagating/nonpropagating field resonances
and peaks emerges and varies considerably with distance between elements. We
suggest that systematic use of the field dynamic decomposition developed above
may provide the difficult problems of electromagnetic detection with some new
physical degrees of freedom not yet fully recognized and exploited for research.

Energy resources. The study of energy localization is important for some new
applications, such as information retrieval through the stored field and energy storage.
A localized field can be used for either locating information in a complex energy
processing system or to store energy outside the circuit component. Such potentials
have not been realized at a commercial level but they represent some fascinating
avenues for experimentation and innovation that require a more sophisticated
approach going beyond traditional total-field characterizations.
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17.9 CONCLUSION

The chapter introduced methods to characterize mutual energy coupling and transfer
in interaction between antenna elements. Using a theory of electromagnetic near
fields recently introduced by the authors, the basic idea was to express the mutual
coupling problem in terms of an interaction operator and then studying the struc-
ture of this operator in order to gain some understanding of the physical processes
involved. It was found that when formulated in terms of the method of moment
(MoM), it is possible to reduce the analysis to the scalar Green’s function problem
and simplify considerably the computation of the spectral content of the interaction
channel. The results obtained show how the coupling operator between two antennas
can be judicially decomposed into propagating and nonpropagating parts, providing
in the meantime valuable information about the physical distribution of moving/non-
moving energy linkages between the interacting elements. We have shown that
detailed maps describing interactions can be given in which the various parts of
the mutually coupled antennas exchange energy either via propagating or nonprop-
agating fields. A study of energy localization was also provided where one antenna
was used as a probe coupled with the source. Some results demonstrated interesting
localization phenomena in the radiated fields. Potential applications (energy engi-
neering, NF communications, detection algorithms) of the methods proposed here
were suggested and related to the various parts of the formulation. The formulation
can be readily integrated into existing MoM codes.





Chapter 18

Applications to MIMO and Spatial
Diversity Systems

This chapter provides some investigations of spatial-diversity based communica-
tions, in particular Multiple Input, Multiple Output (MIMO) systems, which have
reemerged in recent years as one of the major backbone infrastructures employed
by wireless communication technology. The choice of MIMO system as the topic of
the concluding chapter of this book has its own symbolic significance. The system
is indeed the quintessential application of spatial concepts to electromagnetism, and
for this reason, together with mobile communications, MIMO is generally referred
to as spatial diversity. Therefore, it is very natural to test how the various theoretical
constructs evolved throughout the earlier chapters of this book may all sum up to
make a definite contribution to our understanding of this field. Unfortunately, due to
limitation of size, it is not possible to give complete treatment of the subject here.
Instead, what follow are brief sketches with some concrete applications that are
somehow fragmentary in nature though can be organized in a more focused form,
which will be done by the authors somewhere else.

In order give some minimal presentation of the MIMO topic, we focus in
this chapter on two themes. The first is how to perform a complete electromagnetic
derivation of the MIMO channel matrix using the ACGF alone. This however, will
only treat a special case that is simple enough yet sufficient for our present purposes.
The main goal is to show that using the concept of Green’s functions or transfer
functions in space it is possible to complete eliminate electromagnetic fields and
currents from the final expression of the MIMO channel matrix. All what appears in
the end are the ACGFs of the Tx, Rx, and the response functions of any significant
scatterer in the propagation environment.

517
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The second theme is the introduction of a new but simpler type of Green’s
function, the far-field cross-correlation Green’s function, which is conceptually in
harmony with the ACGF but technically very different. The main intention here is
first to give yet another demonstration of the enormous utility of the concept of
Green’s function in general as tool for clear thinking, and also to supply the reader
with new types of applications and design methods that still circle around the major
topic of this book, the spatial structure of electromagnetic fields.

18.1 OVERVIEW OF GENERIC MIMO ANTENNA ARRAYS

A generic MIMO system is shown in Figure 18.1 where we present only the
electromagnetic hardcore, i.e., the input field excitations at the NT ports of the
transmitting array, the electromagnetic channel, and the NR receiving antenna
elements. The propagation channel consists of free space plus a set of Ns scatterers
usually located close to the receiving array. The electromagnetic responsitivity
of the scatterer is described by a polarizability tensor ᾱn, n = 1, 2, ..., Ns. The
fields impinging on the antennas will produce a vector of received signals yn, n =
1, 2, ..., NR.

The general idea behind MIMO systems is how to exploit the spatial diversity
of the environment in order to boost up the channel capacity to carry information
without additional constraints on the bandwidth. This can be achieved, for example,
by the ability of the receiver to resolve illumination fields coming from different
directions. The Tx array may send up to NT differently encoded data streams. The
existence of multipath propagation in the channel, typically caused by the presence
of scatterers, usually results in producing several illumination fields impinging on
the Rx array through different directions. If the receiver can distinguish between
these various illuminations, then differently encoded data can be recovered.

The most difficult step in the analysis and design of MIMO systems is to obtain
accurate and realistic models for the coupling between the transmitted signals xn

and the received signals yn. This information is summarized in the channel transfer
matrix H , which is an NT × NR complex array, whose general nmth element Hnm

gives the coupling between the input port of the nth Tx antenna and the mth Rx
antenna’s port. The entire performance of MIMO systems depends very crucially on
the properties of this matrix H . For instance, the channel capacity, the most popular
performance measure, is computed directly as a function of H .

The problem of how to obtain the channel transfer matrix is completely
electromagnetic in nature. It involves the energization of a set of antennas in the
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Figure 18.1 Generic scheme for MIMO systems.

transmitting terminal by signals x, the subsequent radiation of these elements into
free space, the propagation of the radiated fields through possible scattering objects,
and the interaction of the illumination field with the receiving antennas giving rise
to the production of the received signals y. The relationship between the two sets of
signals is given by

y (ω) = H (ω)x (ω) + n, (18.1)

where n is a vector of additive noise produced by the antennas, circuits, and
propagation environment. Although the channel matrix is obtained by solving a
deterministic electromagnetic problem, in many cases the actual details of the objects
in the propagation path of fields radiated by the Tx terminals are not known in
advance, resulting in the need to consider a random channel matrix H . Some of
the contributions of this work will be the elucidation of a connection between the
deterministic electromagnetic problems and the statistical nature of MIMO systems.

Let us now consider more carefully how the MIMO system shown in Figure
18.1 can be modeled using the system approach of linear operator theory. Indeed, all
the physical processes occurring in Figure 18.1 involves linear integro-differential
operators derived from Maxwell’s equations, explaining ultimately why a linear
relation as (18.1) was written from the outset. However, it appears to the authors
that it has not been sufficiently observed in the literature of MIMO systems that the
individual building blocks of Figure 18.1 can be put in terms of relatively independent
transfer functions connected in cascade to each other. The real importance of this
observation is the fact that by writing the overall MIMO channel matrix H in
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Figure 18.2 Analysis of general MIMO system into a series connection of linear operations.

terms of the appropriate electromagnetic transfer functions, it becomes possible
to get a deeper insight into the operational details of the total process in ways that
have been obscured hitherto by the focus on network parameters.

In Figure 18.2 we show the full details of the MIMO system from the
electromagnetic viewpoint. Start with a set of NT signals to be transmitted by the Tx
array into the Rx array.A typical RF circuit will modulate the signals and perform RF
up-conversion as a preparation for sending the information to the radiating antennas.
In general, the signal xn will be converted into some excitation field Eex

n (r). This
field is commonly assumed to be that of the propagating mode of the waveguide
connected to the input port of the nth antenna. However, in this work the excitation
field need not be restricted to a waveguide field, but can be any field variation
whatsoever. The set of excitations fields Eex

n (r) , n = 1, 2, ..., NT , will interact with
the NT Tx antennas and produce current distributions JNT

n (r), n = 1, 2, ..., NT .
As was shown in Chapter 8, this process can actually be described in an exact
manner using the antenna current Green’s function (ACGF) of the array, which
plays a role similar to the impulse response in time domain but generalized in
this case to deal with the spatial problem in three dimensions. The excited current
distributions will radiate in the propagation environment, resulting in a set of fields
ET

n (r) , n = 1, 2, ..., NT impinging on the Ns scatterers. The scattered and direct
fields will be collected in a set of NR fields ER

n (r) , n = 1, 2, ..., NR, impinging
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on the NR elements of the Rx system. Again, the process of interaction can be
described by the ACGF of the receiving array, resulting in a set of NR received
current values JR

n (r) , n = 1, 2, ..., NR at the output ports. The currents will then
be processed to produce the received signals yn, n = 1, 2, ..., NR.

Few general remarks about this complex process are in order. First, In
this chapter, the first and last stages, i.e., RF up/down conversion and modula-
tion/demodualtion are not treated as part of the basic electromagnetic process of
MIMO systems. Indeed, we may start at the Tx terminal with the excitations
fields Eex

n (r) , n = 1, 2, ..., NT and end at the Rx site with the current sources
JR

n (r) , n = 1, 2, ..., NR connected with the proper equivalent Norton impedances.
The signal processing and circuitry involved in those two discarded first and last
blocks in Figure 18.2 are not directly involved with the spatial diversity aspects of
MIMO systems. However, loading at the Rx terminal plays some role and will be
taken into consideration. Moreover, we always assume that matching circuits are
automatically implemented in the various stages of the system. Second, the transfer
function of each block in Figure 18.2 is independent of the others, i.e., we assume as
typical in system theory that mutual coupling between systems is ignored. That does
not imply that mutual couplings effects don’t arise inside each block. In fact, we will
explicitly take relevant mutual couplings into consideration whenever necessary. The
basic idea will be to group all elements with significant mutual coupling into the same
block and treat the resulting ensemble as a collective whole with one independent
transfer function.

18.2 COMPLETE ELECTROMAGNETIC THEORY OF GENERIC MIMO
SYSTEMS

In this section, we take into account the general understanding of electromagnetic
structures attained through Pat II of this book, where we viewed the electromagnetic
phenomenon in terms of system theory. That is, the entire set of microwave and
antenna parts is analyzed into cascade connections of various sub-modules, each
modeled through its proper “transfer function” or Green’s function. The purpose
of this section is to provide a complete derivation of the MIMO channel matrix
using only those Green’s functions and without any explicit reference to fields and
currents. The idea is that, within the ACGF framework, those fields and currents
are merely “inputs” and “outputs” of some invariant electromagnetic systems (the
Tx antenna, the propagation channel, the Rx antenna, scaterers, etc.). Therefore,
if interest is focused only on the terminal relationship between transmitted signal
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and final received signal, which is the ultimate goal in every communication
system, then the final result expressing this eventual relationship must be stated
in terms of suitable fixed system functions. Up to now, the few works addressing the
electromagnetic aspects of MIMO systems that can be found in literature appear to
rely on models involving fields and currents. To our best knowledge, what follows
is a complete derivation of the channel matrix relying completely on the invariant
aspects of the electromagnetic structures is attempted. The derivation will provide
also a full account of the impact of mutual coupling on the channel matrix.

18.2.1 Model for the Tx Array

In terms of theACGF, we can write the current distribution produced by the tangential
component of a field excitation Eex

t (r′) as

JT (r) =
∫

U

ds′F̄T (r, r′) · Eex
t (r′), (18.2)

where U is the area inside which the tangential component of the excitation field
Eex

t (r) interacts with the surface of the antenna supporting the electromagnetic
boundary condition of the problem.1 The current distribution on the Tx antenna
array is denoted by JT (r) while the corresponding current Green’s function is
F̄T (r, r′).

In general, we need NT equations like (18.2) in order to fully describe the NT

current distributions of the radiating array. However, due to mutual coupling between
the elements, an increase in the complexity of the final expressions is inevitable due
to cross interaction between the closely spaced antennas. We will follow here the
proposal outlined in Chapter 16, which handles mutual coupling effects within the
general framework of the ACGF by introducing a new transfer function of mutual
coupling δF̄T

1 (r, r′) defined as follows

δF̄T
n (r, r′) := F̄T

n (r, r′) − F̄T,0
n (r, r′) =

NT∑
m=1

δF̄T
nm (r, r′). (18.3)

Here, F̄T
n (r, r′) is the ACGF of the Tx array responsible for generating the current

Jn (r) on the nth element. On the other hand, F̄T,0
n (r, r′) is the isolated ACGF of

the nth element, i.e., the nth element’s ACGF when no other antenna is present. In
the latter case (no mutual coupling), an antenna will respond only to the incident

1 The exact shape of this area is determined by the nature and type of the physical port.
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field illuminating its own surface, i.e., no direct coupling with the other NT − 1
excitations fields will appear in the isolated case. It is clear that δF̄T

nm (r, r′) is the
part of the mutual coupling ACGF responsible of connecting the field excitation at
the nth port with the current induced on the mth antenna, in other words, the cross-
coupling between the elements. In effect, all such coupling or mutual interactions
are moved into the mutual coupling transfer function δF̄T

n (r, r′) defined by (18.3).
Therefore, in contrast to F̄T,0

n (r, r′), F̄T
n (r, r′) will accept as input excitations all

input fields Eex
n (r′), n = 1, 2, ..., NT . In fact, we can write

JT
n (r) =

∫
ST

n

ds′F̄T,0
n (r, r′) · Eex

n,t (r′) +
NT∑

m=1

∫
ST

m

ds′δF̄T
nm (r, r′) · Eex

m,t (r′),

(18.4)
where the subscript ‘t’ stands for the tangential component of the field while the
superscript ‘T ’ for the transmitting array. The first term in (18.4), on the other
hand, involves F̄T,0

n (r, r′), which is physically explained as the self -coupling part
of mutual coupling.

Figure 18.3 provides a graphical elucidation of the expressions (18.4) for the
internal structure of the nth element of the Tx array as understood in terms of
the language of the ACGF formalism. The first term in (18.4) can be interpreted
as the self -interaction of the nth element with its own tangential component of the
excitation fieldEex

n,t (r′). On the other hand, the remaining NT −1 terms represent the
cross-interactions received by the nth element from fields exciting the other elements
of the arrays, namely, Eex

m,t (r′), m = 1, 2, ..., NT , m �= n. Each cross-interaction
is mediated by the ACGF δF̄T

nm (r, r′), which provides complete information about
how the field impinging on the mth element will influence the current induced at the
nth element’s port. Note that these cross-interaction transfer functions are valid for
arbitrary excitation field. In expression (18.4), we notice further that each Tx antenna
element can take any smooth geometric shape with enclosing surface ST

m. Therefore,
since no restriction is imposed on either the shape of the antennas or the nature of
the excitation field, the expression (18.4) can be considered the most general model
for the Tx array in MIMO systems from the electromagnetic viewpoint. All the other
elements can be modeled in exactly the same way shown in Figure 18.3. The total
MIMO Tx array current is then given by

JT (r) =
NT∑
n=1

JT
n (r). (18.5)
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Figure 18.3 A system model for the nth element of the Tx array using the ACGF method.
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It should be noted that Jn (r) = 0, ∀r ∈ ST
m, m �= n. In other words, the nth

current has a nonzero compact support only on its own surface Sn. From (18.4) and
(18.5) we find

JT (r) =
NT∑
n=1

∫
ST

n

ds′F̄T,0
n (r, r′) · Eex

n,t (r′)

︸ ︷︷ ︸
Self Interactions

+
NT∑
n=1

NT∑
m=1

∫
ST

m

ds′δF̄T
nm (r, r′) · Eex

m,t (r′)

︸ ︷︷ ︸
Mutual Coupling Interactions

.

(18.6)

which is the complete expression of the current induced on the MIMO Tx array
expressed in terms of input excitation fields and the TX isolated and mutual coupling
ACGFs.

18.2.2 Model for the Propagation Channel

The communication channel separating the Tx and Rx arrays was shown in Figure
18.1. It consists of free space plus a set of scatterers. In general the shape and
nature of the materials entering into the composition of each scattering object can
assume an almost unrestricted range of possibilities, rendering the formulation of
the MIMO problem at the most general level impossible in principle. However,
in practice we tend to restrict the structural variability of the environment in a
manner permitting the construction of a realistic model that can describe the essential
physical properties of the systems. Since in a theory of electromagnetic spatial
diversity we are mostly concerned with the establishment of multiple paths of
propagation, we will assume that the MIMO environment scattering obstacles are
point scatterers (the exact definition will be given shortly). In this way, each object
can interact with the Tx array field and produce a new field that will illumine the
Rx array from its own angle. In case larger objects than point scatterers are present,
those can be approximated by a set of point scatterers using the ACGF as will be
shown later.

Consider the nth point scatterer. The current JSc
n (r) induced on the nth

scatterer is obtained by the following relation

JSc
n (r) = P̄n · ET (rn) δ (r − rn) , (18.7)
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where P̄n is the polarizability tensor of the nth point scatterer described by a 3 × 3
matrix for the most general case. The location of the scatterer is rn and δ stands
for the 3D Dirac delta function. In this expression, the scatterer is treated as a
particle with a material tensor P̄n specifying how it will respond to an external
electric field. Since the scattering object is point-like, only the value of the field at
the location of the particle rn is pertinent to the electromagnetic model. The fact
that the induced current is supported by the point-like particle is indicated by the
use of the Dirac delta function to mathematically describe the functional form of
the scatterer’s current.

The field ET (r) radiated by the Tx array is given by the well-known
expression

ET (r) =
∫

ST

ds Ḡ (r, r′) · JT (r′), (18.8)

where Ḡ (r, r′) is the dyadic Green’s function of free space. Here, the surface
ST refers to the sum of all surfaces of the individual Tx antenna elements, i.e.,
ST =

⋃NT

n=1 ST
n .

The total field received by the Rx array will then consist of two parts: 1) direct
field coming from the Tx array, and 2) the field scattered by the NS objects in the
environment. Since each scattering current given by (18.7) will radiate also in the
free space environment, the same expression used in computing the direct field of
the Tx array (18.8) will also be used to compute the scattered fields. The illumination
field impinging on the Rx array can then be written most generally as

ER (r) =
∫

ST

ds Ḡ (r, r′) · JT (r′)︸ ︷︷ ︸
Direct Field

+
Ns∑

n=1

Ḡ (r, rn) ·
[
P̄n · ET (rn)

]
︸ ︷︷ ︸

Scattered Field

. (18.9)

18.2.3 Model for the Rx Array

The model of the receiving part of the MIMO system is the reverse of the model
of the Tx array. Here, the illumination field found in (18.9) is the exciting field
interacting with a set of NR Rx antennas, leading to the generation of NR signals
at the output ports. Let us describe the ACGF of the nth Rx antenna element by
F̄R

n (r, r′) defined on the compact support SR
n . The total surface of the receiving

array is then given by SR =
⋃NR

n=1 SR
n . The individual (isolated) element ACGF is

denoted by F̄R,0
n (r, r′). Therefore, the Rx element mutual coupling ACGF is given
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by

δF̄R
n (r, r′) := F̄R

n (r, r′) − F̄R,0
n (r, r′) =

NR∑
m=1

δF̄R
nm (r, r′). (18.10)

The current on nth Rx element at location r is found through the relation

JR
n (r) =

∫
SR

n

ds′F̄R,0
n (r, r′) · ER

n,t (r′) +
NT∑

m=1

∫
SR

m

ds′δF̄R
nm (r, r′) · ER

m,t (r′),

(18.11)
which is the analog of (18.4). The total current on the Rx array is written as

JR (r) =
NR∑
n=1

JR
n (r), (18.12)

with the proviso JR
n (r) = 0, ∀ r ∈ SR

m, m �= n. Therefore, from (18.11) and (18.12)
we conclude

JR (r) =
NR∑
n=1

∫
SR

n

ds′F̄R,0
n (r, r′) · ER

n,t (r′)

︸ ︷︷ ︸
Self Interactions

+
NR∑
n=1

NR∑
m=1

∫
SR

m

ds′δF̄R
nm (r, r′) · ER

m,t (r′)

︸ ︷︷ ︸
Mutual Coupling Interactions

.

(18.13)

which is the most general relation at the Rx array side.

18.2.4 Derivation of the Channel Transfer Function of General MIMO
System

We are in a position now to put together all the results obtained so far regarding
the modeling of the individual parts of general MIMO systems in order to derive
a complete expression for the channel matrix H . We assume that the propagation
channel consists of free space plus point scatters with definite polarizability tensors
as in Section 18.2.2. Moreover, in order to simplify the presentation, it is assumed
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that the input and output ports at the Tx and Rx arrays, respectively, are point-like.
The generalization to arbitrary complex ports is straightforward.

An input NT × 1 vector of information signal x is fed into the MIMO
system by the RF up-conversion stage and converted into a set of excitation fields
Eex

n , n = 1, 2, .., NT as follows

x (ω) =




x1 (ω)
x2 (ω)

·
·

xNT
(ω)


 RF Up - Conversion−−−−−−−−−−→ [Eex (ω)] =




Eex
1 (ω)

Eex
2 (ω)

·
·

Eex
NT

(ω)


 (18.14)

The excitation fields in the MIMO system can be expressed as

[Eex (ω)] =




x1 (ω)aex
1 δ (r − rex

1 )
x2 (ω)aex

2 δ (r − rex
1 )

·
·

xNT
(ω)aex

NT
δ
(
r − rex

NT

)


 , (18.15)

where the vectors aex
n (ω) give the components of the external excitations tangential

to the Tx antenna surfaces ST
n . Here, rex

n are the positions of the delta-like excitation
fields Eex

n , n = 1, 2, .., NT . These excitation vector fields are in general frequency
dependent and arise from the excited mode field associated with the waveguide used
to feed the corresponding Tx antenna.

These excitations generate a set of NT current distributions on the Tx array
antennas given by

[
JT (r)

]
=




JT
1 (r)

JT
2 (r)
·
·

JT
NT

(r)


 =




x1 (ω) F̄T
1 (r, rex

1 ) · aex
1 (ω)

x2 (ω) F̄T
2 (r, rex

2 ) · aex
2 (ω)

·
·

xNT
(ω) F̄T

NT

(
r, rex

NT

)
· aex

NT
(ω)


 , (18.16)

where use was made of (18.2) with the data (18.14).

18.2.5 The Case of No Scattering Objects in the Propagation Environment

For simplicity, and in order to further grasp the electromagnetic structure of the
MIMO channel matrix, we first develop the derivation when only homogeneous and
isotropic free space exists between the Tx and Rx antennas.
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We will try to write down the expression of the mnth term of the channel
matrix, i.e., Hmn, based on the electromagnetic model outlined above. In order to
provide maximal clarity, each contribution to the net transfer between the nth Tx
port and the mth Rx port will be spelled out separately in detail. By the end, all
contributions will be summed up in order to provide the net outcome Hmn.

18.2.5.1 Direct Coupling Path

Here, ANTTx
n is directly coupled with ANTTx

m . The no-mutual-coupling ACGF
F̄T,0

n (r, r′) connects the excited signal at the mth port with the received signal
in the nth port. The current induced on the nth antenna due to a source xn(t) on its
port with mode field aex

n is given by

Jn (r) = F̄T,0
n (r, rex

n ) · aex
n xn (ω) . (18.17)

This current will give rise to radiated field

ET
n (r) =

∫
ST

n

ds′ Ḡ (r, r′) ·
[
F̄T,0

n (r′, rex
n ) · aex

n xn (ω)
]
. (18.18)

The signal received by the mth antenna is

JR
m (rm) =

∫
SR

m

ds′F̄R,0
m (rm, r′) ·

∫
ST

n

ds′′ Ḡ (r′, r′′) ·
[
F̄T,0

n (r′′, rex
n ) · aex

n

]
xn (ω) .

(18.19)
The receiver circuit will sample this current based on the relation

ym (ω) = bRx
m · JR

m (rm) , (18.20)

where bRx
m (ω) is the transfer function of the receiving circuit. The final direct

contribution to the channel matrix is given by

H0,0
mn =

∫
SR

m

ds′
∫

ST
n

ds′′ bRx
m · F̄R,0

m (rm, r′) · Ḡ (r′, r′′) · F̄T,0
n (r′′, rex

n ) · aex
n .

(18.21)
Formally, the expression (18.21) explicates the following physical mechanism

rex
n

Excite the nth Tx ANT−−−−−−−−−−−→ r′′ Radiation by nth Tx ANT−−−−−−−−−−−−−→ r′ Reception by mth Rx ANT−−−−−−−−−−−−−→ rm

(18.22)
Formula (18.21) provides the MIMO channel matrix when mutual coupling is
ignored in both the Tx and Rx arrays.
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18.3 CROSS CORRELATION IN ANTENNA SYSTEM: GENERALIZED
APPROACH THROUGH GREEN’S FUNCTIONS

Starting from this section and until the end of the chapter, we begin to formulate
a new concept for spatial diversity systems, the far-field cross-correlation Green’s
function, which is independent of the ACGF. Both types of Green’s functions share
in common the fact that they capture fundamental aspects in the spatial structure of
electromagnetic phenomena in general, and the relation between fields and currents
in particular.

18.3.1 Introduction

By relying on spatial considerations, an enhancement in the performance of MIMO
systems is usually attributed to the so-called diversity gain of the system. It is
now commonly believed by researchers that among the most important factors
determining this diversity gain of MIMO systems there stands the cross correlation
between the far fields radiated by the transmitting terminal [151]. The basic idea here
is to use the reciprocity theorem that relates the far field of a transmitting antenna
to its receiving characteristics. If identical elements are used for both transmit and
receive arrays, and the angles of incidence of the illuminating fields are assumed
(statistically) to be uniformly distributed, then the degree of correlation in the receiver
signals can be directly related to the cross correlation of the far fields radiated by the
elements of the transmit array [152]. For this reason, there has been a great interest in
finding methods that allow the computation of this important performance parameter.
However, since cross correlation involves integration of far field patterns over the
entire radiation solid angle, which may require full 3-dimensional measurement of
the radiation field for both cross and copolar components, there has been an attempt to
reduce the computation of the correlation into measurement of scattering parameters
at the terminals of the transmit array. Some expressions relating the far-field cross
correlation to the scattering parameters have been derived and used extensively for the
design of MIMO system. However, we will show in this chapter that such reduction of
correlation to scattering parameters is not possible in principle. In particular, specific
basic examples will be given to show how the scattering parameter expressions
fail to predict the cross correlation in the case of no-mutual-coupling arrays (e.g.
electrically-small antennas, see Section 18.3.5.2), in addition to being unable to deal
with scattering objects in the receiver environment.

We present here new consideration of the electromagnetic aspects of spatial
diversity and MIMO systems. In particular, we will first devise a strategy to reduce
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the computation of the far-field cross correlation into expressions involving only
the current distribution on the antenna elements. The goal is to provide a method
helping in understanding how small current segments and their polarization at the
radiating antenna surface contribute directly to the far-field cross correlation. It will
be shown here that the cross-correlation expression can be put in a form resembling
the method of moment impedance matrix but with the proviso that the free-space
Green’s function is being replaced here by a new transfer function acting like a
“Green’s function for the cross correlation.” The physical interpretation of this new
Green’s function turns out to be simply the cross correlation of the far fields radiated
by two infinitesimal dipoles, and hence the motivation for the new term ‘correlation
Green’s function’ becomes quite natural in this context. It is shown that if this
correlation Green’s function is computed, then the total cross correlation is obtained
merely by straightforward superposition as in the method of moment (MoM) or the
radiation integrals of electromagnetics. The general expression, incidently, proves
that cross correlation depends on the entire current on the antenna surfaces, and
consequently it is not possible in general to reduce the calculation of cross correlation
into measurement of scattering parameters since the latter are relevant only to the
location of antenna current at the physical ports.

The following investigations are organized in the following manner. Section
18.3.2 provides the derivation of the fundamental relations in this work. In order
to bring the far-field cross correlation to the design level, we express the total cross
correlation coefficient in terms of the source current distributions on the two antennas.
It is found that one can completely characterize correlation in the far zone in terms
of current segments at the antennas themselves only if a new dyadic function is
introduced, namely the cross-correlation Green’s function. In particular, all angular
integrations are moved into this cross correlation function while the contribution
of each current segment depends just on its position and direction. This permits us
to focus on the design aspects of MIMO systems, for example, how the shape and
location of each part of the antennas contribute to the total diversity gain of the
system. In this way, it is possible to understand how modifications in the antenna
shape, position, and orientation should be introduced in order to manipulate the
MIMO system performance.

Section 18.3.3 supplies an in-depth analysis of the results obtained in Section
18.3.2. In Section 18.3.3.1, we outline briefly the salient features of the new
cross-correlation Green’s function by comparing it with the familiar free-space
Green’s function. Both similarities and differences between the two fundamental
quantities are emphasized in order to gain some understanding of the physical
processes involved in spatial diversity systems. Since the cross-correlation Green’s
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function is the value of cross correlation (in the far zone) between two infinitesimal
dipoles, and given the fact that arbitrary current distributions can be expanded
as sum of infinitesimal dipoles, the new correlation Green’s function is expected
to play a fundamental role in the electromagnetic analysis and design of MIMO
systems. Section 18.3.3.2 builds on the observations of Section 18.3.3.1 in order to
develop a comparative scheme between the classic method of moment (MoM) in
applied electromagnetics and the problem of cross correlation in spatial diversity
applications. It will be shown that the structure of the MoM impedance matrix
element is identical to the cross-correlation expression derived in Section 18.3.2
provided we replace the free-space Green’s function by the new cross-correlation
Green’s function. This observation can then help building algorithms for processing
cross correlation in arbitrary antenna arrays using the already existing numerical
infrastructure of standard MoM routines. It will be shown that if the new cross-
correlation Green’s function is computed in a separate routine, then the rest of
the evaluation of the total cross correlation for arbitrary antenna elements can be
completed in a way formally identical to MoM. Moreover, certain peculiarities in
the cross correlation algorithm make the latter more efficient that the MoM procedure,
and such advantages are mentioned and discussed here.

A critical review of the now common approach to cross correlation through
S-parameters is given in Section 18.3.4. It will be shown that three major difficulties
known to the authors render the use of correlation coefficients based solely on S-
parameters of questionable value. The divergence between the exact value of the cross
correlation and its estimation using port measurements is mentioned and discussed,
though no in-depth investigation of the errors in the derivation of the S-parameters
formula found in literature will be given here. The expression of cross correlation
based on the currents derived in Section 18.3.2 will be shown later to agree exactly
with the far-field-based computation and to be free of all the difficulties associated
with the procedure based on measurements at the array ports. It seems to the authors
that reliance on port measurements is not the best strategy in the design process of
MIMO antennas since it provides only information about the currents at the ports,
while our analysis has shown that cross correlation depends significantly on the
position and polarization of all current segments in the antenna. Moreover, even
in lossless antennas, the S-parameters formula actually produces wrong numerical
results in many important cases, which strongly suggests that this formula is not
exact but merely an approximation of cross correlation in general.

Section 18.3.5 supplies a series of numerical studies and design examples in
order to verify the proposed theory and outline some of its potential applications
in spatial diversity and MIMO systems. We start in Section 18.3.5.1 by verifying
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the form of the cross-correlation Green’s function by direct comparison with the
exact expression in terms of the far field. This will show that the formula of cross
correlation in terms of the current distributions is valid for arbitrary antennas provided
that the size of these antennas is finite. The case of infinite antenna source, i.e,
antenna systems where the radiating source extends to infinity, requires special
investigation that is beyond the scope of this discussion. However, all typical
MIMO systems involve a finite number of antennas each with finite size, rendering
the expressions derived below together with their validation sufficient for most
practical purposes. In Section 18.3.5.2, we give numerical studies of the cross
correlation between infinitesimal dipoles with variable distances and polarizations.
Some general observations that help understand and guide the design process for
more complicated arrays and/or antennas will be clearly spelled out throughout the
discussion. In order to assess the status of our knowledge following the basic theory
outlined above, we provide in Section 18.3.6 a design methodology to demonstrate
how the derived expressions for cross correlation in terms of the antenna currents
can be used in concrete cases to find the optimum locations of the radiating elements
capable of producing a set of radiation patterns with minimum total cross correlation
(maximum diversity gain). The methodology will be illustrated by applying it to
linear and circular arrays with a few small dipoles but is applicable to arbitrary
antenna arrays. In particular, we demonstrate the tradeoff existing between the
density of the array and its diversity gain, which motivates the need to do a proper
design for antenna arrays if the size of the system is to be reduced. Due to the
limitations of space, only a simple random search method will be developed here in
order to illustrate the physical and engineering aspects of antenna spatial diversity
design problems. Finally, Section 18.3.7 will show that the computational and
design techniques applied in Sections Section 18.3.5.2 and 18.3.6 for infinitesimal
dipoles can be extended to arbitrary current distributions. The idea is to exploit
the observation made earlier amounting to the fact that the new cross-correlation
Green’s function is nonsingular. This allows us to apply classic quadrature rules to
convert the integrations in the cross-correlation formula derived in Section 18.3.2
into a sum of small number of correlations involving a set of equivalent infinitesimal
dipoles. The procedure will be demonstrated by replacing the current on a dipole
antenna by such set of infinitesimal dipoles and the results are numerically verified
for arbitrary currents. This concludes the study with one of our main observations,
namely that the computation and design of cross correlation in arbitrary array
systems can be reduced to the problem of correlation between infinitesimal dipoles,
and hence follows the fundamental importance of the cross-correlation Green’s
function introduced here.
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Figure 18.4 Tx array (left) and Rx array (right) in a generic 2 × 2 MIMO system.

18.3.2 Derivation of the Mutual Correlation Expression in Terms of the
Antenna Currents

For a basic MIMO configuration consider a 2-element Tx and Rx array as shown
in Figure 18.4. The generalization to arbitrary number of antenna elements is
straightforward but will not be presented here for simplicity. When the same antenna
type is used for both terminals, it is possible to apply reciprocity theorems to relate
the receiving characteristics of the system to the far field radiation pattern of the
transmitting terminal. Let the radiation patterns of antennas 1 and 2 be E1 (θ, ϕ) and
E2 (θ, ϕ), respectively. The envelope cross correlation between the two antennas is
defined as

ρ =

∣∣∫
4π

dΩE1 (θ, ϕ) · E∗
2 (θ, ϕ)

∣∣√∫
4π

dΩ |E1 (θ, ϕ)|2
√∫

4π
dΩ |E2 (θ, ϕ)|2

, (18.23)

where the integration is with respect to the full solid angle Ω, ′∗′ denotes the complex
conjugate operator, and |E1,2 (θ, ϕ)|2 := E1,2 (θ, ϕ) · E∗

1,2 (θ, ϕ).
When the two Tx array antennas are connected to their respective sources,

current distributions J1 (r) and J2 (r) will be generated on the two antennas 1 and
2, respectively. Our goal in this section is to express the correlation coefficients
(18.23) in terms of the currents J1 (r) and J2 (r) only. This will bring the spatial
diversity problem into the design level available to the engineer at the Tx terminal
side. Here, we assume that the volume (or surface) on which the two currents
J1 (r) and J2 (r) are nonzero are bounded subregions of the entire space R

3. A
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time-harmonic excitation exp(−iωt) is assumed and suppressed everywhere. The
antennas are also assumed to be radiating in infinite isotropic and homogeneous
space with magnetic permeability µ and dielectric permittivity ε.

We first compute the magnetic vector potential due to each antenna alone using
the well-known radiation formula [37]

A1,2 (r) =
µ

4π

∫
V1,2

d3rJ1,2 (r′)
eik|r−r′|
|r − r′| , (18.24)

where A1,2 (r) are the vector potentials due to sources on antennas 1,2, with current
supports on the volumes V1,2. The wavenumber k is given by k = ω

√
µε. In the far

zone, the integrals (18.24) are replaced by the Fourier transform expressions [27]

A1,2 (r, r̂) =
µ

4π

eikr

r

∫
V1,2

d3rJ1,2 (r′) eikr′ ·̂r, (18.25)

where r̂ (θ, ϕ) := x̂ sin θ cos ϕ + ŷ sin θ sinϕ + ẑ cos θ is the unit vector r/‖r‖.

Since the spherical wave eik|r−r′|
/

r does not depend on the observation angle, we

follow the custom by referring to the radiation pattern functions defined as

A1,2 (r̂) := (iω)−1
∫

V1,2

d3rJ1,2 (r′) eikr′ ·̂r, (18.26)

which is now a function of only the angles θ and ϕ. In the far zone, it is possible
to express the electric field in terms of the vector potentials using the following
relations [27]

E1,2 (r̂) = iω [A1,2 (r̂) − (A1,2 (r̂) · r̂) r̂] . (18.27)

From (18.26) and (18.27) we find

E1,2 (r̂) =
∫

V1,2

d3r [J1,2 (r′) − (J1,2 (r′) · r̂) r̂] eikr′ ·̂r. (18.28)

It will be important for the remaining part of the derivation to extract the current
distribution J1,2 from the bracket in the integrand of (18.27). To achieve this, we use
the dyadic calculus and write

E1,2 (r̂) =
∫

V1,2

d3r′J1,2 (r′) ·
[̄
I − r̂r̂

]
eikr′ ·̂r, (18.29)
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where Ī is the unit dyad. Indeed, one can verify by direct calculation that J1,2 (r′) ·[̄
I − r̂r̂

]
=
[̄
I − r̂r̂

]
· J1,2 (r′) = J1,2 (r′) − (J1,2 (r′) · r̂) r̂.

Using (18.29), we write the numerator of the cross correlation definition
(18.23) in the following way∫

4π
dΩE1 (r̂) · E∗

2 (r̂)
=
∫
4π

dΩ
[∫

V1
d3r′ J1 (r′) ·

[̄
I − r̂r̂

]
eikr′ ·̂r

× ·
∫

V2
d3r′′ [̄I − r̂r̂

]
· J∗

2 (r′′) e−ikr′′ ·̂r
]
.

(18.30)

The next step relies on the observation that all the integrals in (18.30) are finite
integrals, which applies only to antennas with bounded source regions (basically, all
antennas of practical interest satisfy this condition). Therefore, we can interchange
the order of integrations (e.g., see [90] for background in analysis) in (18.30) and
arrive at the following form∫

4π
dΩ E1 (r̂) · E∗

2 (r̂)
=
∫

V1
d3r′ ∫

V2
d3r′′

×J1 (r′) ·
{∫

4π
dΩ
[̄
I − r̂r̂

]
eik(r′−r′′)·̂r

}
· J∗

2 (r′′) .
(18.31)

In deriving (18.31), we have used the identity
[̄
I − r̂r̂

]
·
[̄
I − r̂r̂

]
=
[̄
I − r̂r̂

]
, which

can be verified by expanding the multiplication.
Consequently, we have been able to carry the reduction of the complicated

expression (18.23) for far-field cross correlation into the following form∫
4π

dΩ E1 (r̂) · E∗
2 (r̂)

=
∫

V1
d3r′ ∫

V2
d3r′′ J1 (r′) · C̄ (r′, r′′) · J∗

2 (r′′) ,
(18.32)

where the function C̄ (r′, r′′) is defined as

C̄ (r′, r′′) :=
∫

4π

dΩ
[̄
I − r̂r̂

]
eik(r′−r′′)·̂r. (18.33)

The quantity C̄ (r′, r′′) will be called here cross-correlation Green’s function. The
reason for this terminology will be shown later (Section 18.3.5.1) when it is found
that this function is the cross correlation of the far fields radiated by two infinitesimal
dipoles placed at locations r′ and r′′.

We can use the general formula (18.32) to compute the quantities appearing
in the denominator of the envelope cross correlation (18.23) as follows
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∫
4π

dΩ |E1 (r̂)|2
=
∫

V1
d3r′ ∫

V2
d3r′′ J1 (r′) · C̄ (r′, r′′) · J∗

1 (r′′) ,
(18.34)

∫
4π

dΩ |E2 (r̂)|2
=
∫

V1
d3r′ ∫

V2
d3r′′ J2 (r′) · C̄ (r′, r′′) · J∗

2 (r′′) .
(18.35)

Therefore, the expressions (18.32), (18.33), (18.34), and (18.35) provide an exact
evaluation of the envelop cross correlation (18.23) of an arbitrary pair of antennas
expressed in terms of the current distributions on the antennas.

18.3.3 General Remarks on the Results

18.3.3.1 Comparison Between the Free-Space Green’s Function and the cross-
correlation Green’s Function

As will become increasingly apparent throughout the rest of this chapter, the
new Green’s function (18.33) is the most fundamental electromagnetic quantity
connecting the performance of the array in spatial diversity and MIMO systems
with the underlying physical distribution of sources in the array elements’ region.
Therefore, it is worth spending some time on comparing the cross-correlation
Green’s function with the classic free-space Green’s function in electromagnetic
theory. This will turn out to be specially important when we show in Section
18.3.3.2 that cross correlation can be computed using the the basic scheme of the
method of moment (MoM).

The classical dyadic Green’s function in electromagnetic theory is given by

Ḡ (r, r′) =
[
Ī +

1
k2 ∇∇·

]
eik|r−r′|

4π |r − r′| . (18.36)

By comparing (18.36) with the cross-correlation Green’s function (18.33), the
following observations are immediate:

• Both the correlation and free-space Green’s functions are dyadic functions,
i.e., they are constituted by 3 × 3 (spatial) matrices. However, the dyadic
structure of the correlation matrix has the simple form Ī − r̂r̂ while the free-
space Green’s function has the form Ī−∇∇

/
k2, the latter being more complex

since it involves differentiation with respect to all spatial coordinates.
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• The free-space Green’s function is highly singular. In contrast, the correlation
Green’s function is regular. In fact, it can be shown to be smooth.

• The free-space Green’s function is given in analytic form. The correlation
Green’s function is up to now known to involve a numerical integration. But the
integration is finite and the integrand is smooth, making its computation using
standard numerical methods a straightforward task. The detailed expressions
of these integrals are given in the Appendix. However, it is possible to evaluate
the cross-correlation Green’s function in analytical form. Since the derivation
is lengthy, it is not provided here but will be addressed elsewhere.

• The free-space Green’s function and the correlation Green’s function are both
shift invariant, i.e., they both depend only on the distance between the two
source points. In other words, C̄ (r′, r′′) = C̄ (r′ − r′′).

Fundamentally speaking, the existence of a cross-correlation Green’s function,
as in the case of any Green’s function, finds its origin in the superposition principle
of electromagnetics. Indeed, the rigorous relation (18.32) tells us that total far-
field cross correlation between two current distributions is the sum of the mutual
interactions between all infinitesimal sources entering into the constitution of the
collective currents on the two antennas under consideration. This intuitive picture
will be further elaborated in Section 18.3.5 when we verify the derivation of (18.32).

18.3.3.2 Comparison With the Method of Moment

The expression of cross correlation (18.32) has a striking similarity to the method
of moment impedance matrix. Indeed, in replacing the cross-correlation Green’s
function C̄ (r′, r′′) by the free-space Green’s function Ḡ (r′, r′′) we formally obtain
the general MoM impedance matrix expression for 3-dimensional electromagnetic
problems solved by surface integral equations [23]. In order to see this, it suffices
to replace the volumes V1 and V2 in (18.32) by the antenna surfaces S1 and S2 and
compare the form of the integrals in both cases. Note that in MoM, the position r′ is
called the ‘source’ while r′′ is ‘observation’. In the cross-correlation problem both
points are due to sources, but in essence the computation is the same.

The new method proposed here to compute the MIMO system envelope cross
correlation (18.23) can be directly utilized in existing MoM codes through the
following proposed procedure
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1. Write a subroutine to compute the cross-correlation Green’s function C̄ (r′, r′′)
for any two positions r′ and r′′. This will require simple numerical integration
using the expression (18.33).

2. Expand the currents on the two antennas using a suitable basis functions. That
is, write

J1,2 (r′) =
N1,2∑
n=1

I1,2
n f1,2

n (r′), (18.37)

where fn stands for the current basis functions (real), e.g., RWG basis
functions. The numbers of the MoM basis function on antennas 1 and 2 and
the current excitation (amplitudes) are given by N1,2 and I1,2

n (complex),
respectively.

3. Use the expression (18.32) to write the far-field cross correlation in the form

∫
4π

dΩE1 (r̂) · E∗
2 (r̂) =

N1∑
m=1

N2∑
n=1

I1
n I2∗

n ρmn, (18.38)

where

ρmn :=
∫

Sm

ds′
∫

Sn

ds′′ f1
m (r′) · C̄ (r, r′) · f2

n (r′′) . (18.39)

The array of real numbers ρmn, (m = 1, 2, .., N1;n = 1, 2, .., N2), form an
N1 × N2 matrix, which we call the source correlation matrix. The physical
interpretation of its elements is that each number ρmn provides the net cross
correlation between the far field radiated by mth current element f1n on antenna
1 and the far field radiated by the nth current element f2n on antenna 2.

4. The mnth element in the MoM impedance matrix, however, can be put in the
following form (missing conventional scaling factor) [23]

zmn =
∫

Sm

ds′
∫

Sn

ds′′ f1
m (r′) · Ḡ (r, r′) · f2

n (r′′) . (18.40)

Comparing (18.40) with (18.38), we find that the cross correlation of the far
fields is equal to the sum of matrix elements ρmn having exactly the same formal
structure of the MoM impedance matrix elements zmn except that the free-space
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Green’s function (18.36) in the MoM expression must be replaced by the cross-
correlation Green’s function (18.33).

Regarding the numerical efficiency of this procedure, we notice the following

• The computation of the total cross correlation using the MoM scheme proposed
above does not involve inverting the correlation matrix ρmn. Indeed, as the
relation (18.38) shows, the total correlation is obtained by summing the
elements of the matrix, a very simple numerical operation compared with
typical MoM matrix inversion.

• In contrast to the classical MoM, computations of the correlation matrix
elements via (18.39) don’t involve any singularity treatment when the distance
|r′ − r′′| is small. This follows at once from the observation we made in
Section 18.3.3.1 to the effect that the correlation Green’s function (18.33) is
nonsingular for all values of its arguments. Therefore, special subroutines to
deal with singular and near singular integrations found in the literature of
MoM are not needed here.

• The non-existence of differential operators in the expression of correlation
Green’s function (18.33) reduces down the cost of developing the computa-
tional scheme proper for the integrals (18.39). This is in contrast to typical
MoM procedures based on the impedance matrix (18.40), which involve the
free-space dyadic Green’s function (18.36) containing double differentiation.

Finally, we mention that the method developed here for computing the total
cross correlation using current elements defined by basis function as in (18.37)
introduces a strategy for designing MIMO arrays by experimenting with the locations
and strengths of various small current elements and observing how cross correlation
varies according to the shapes of the antennas, levels and types of relative excitations,
and mutual coupling. This not only provide a deeper insight into the electromagnetic
infrastructure of MIMO systems, but also can help in actually automating the design
process itself by using optimization methods. We will supply some basic numerical
studies and design examples illustrating this proposal in Section 18.3.5.

18.3.4 Comparison with the S-Parameter Methods

In this section, we provide a few remarks about how the formula of cross correlation
in terms of the cross-correlation Green’s function compares with some recent
methods that rely on using port measurement (S-parameters) to estimate far-field
envelope correlation. The next few paragraphs don’t attempt a comprehensive
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survey of the topic or a complete criticism, but aim only at pointing out some
occasionally encountered difficulties with the methods based on port measurements
together with some general comments.

It is clear from the expression (18.32) that the envelope cross correlation
between the far fields of two arbitrary antennas depends on the full current of
both antennas, i.e., it involves the values of the currents J1(r) and J2(r) for all
points r1 and r2 on the antennas’ volumes (or surfaces) V1 (or S1) and V2 (or S2),
respectively. The S parameters of an antenna array, however, depend only on the
currents observed on the antenna at the locations of the physical ports [26], [29],
[37]. This observation suggests that the cross correlation between two antennas in
general cannot be reduced to measurement or calculation of S parameters. In fact, it
has been known since 1962 that there exists no one-to-one correspondence between
the correlation matrix of the far fields produced by an array and the scattering matrix
of this array. This analysis of the problem can be found in [151] and is based on
conservation of energy and linear algebra.

Recently, it was proposed that an exact relation exists for lossless antennas
in which the envelope cross correlation between two antennas can be determined
uniquely through the S-parameters through the relation [128]

ρ
?=

|S∗
11S12 + S∗

21S22|√
1 − |S11|2 − |S21|2

√
1 − |S22|2 − |S12|2

. (18.41)

(The square roots in the denominator of (18.41) are introduced to match the definition
(18.23).) Relation (18.41) has become popular because it replaces the computation-
ally difficult evaluation of the envelope cross correlation using the original definition
(18.23) by the standard measurement procedure of input parameters at the array
terminals. However, the numerical inadequacy of expression (18.41) for general
array configurations has been frequently observed by comparing its calculations
with (18.23). In particular, it was pointed out in [129] that the relation (18.41) is not
valid when the antenna array is lossy. However, it was not sufficiently noticed that
the derivation of (18.41) is in fact incomplete. As we will see here, it is not only
that the expression (18.41) is not valid for lossy antennas, but in fact the equation is
not correct even for lossless antennas. Counter examples to (18.41) will be given in
Section 18.3.5.

To the best of our knowledge, there are three main problems with the S-
parameters approach to the estimation of cross correlation:
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1. For antennas with no port coupling, i.e., antennas with S12 = 0, the formula
(18.41) produces completely wrong results. Details will be given in Section
18.3.5.

2. When there is mutual coupling between two excited antennas but an electro-
magnetic coupling exists with a third object in the surrounding environment,
e.g., a scatterer or another antenna, the S-parameters formula (18.41) is am-
biguous and in general gives wrong results.

3. When port mutual coupling is not zero but weak, i.e., for small values of S12,
the formula (18.41) is found to be sometimes inaccurate.

Regarding point 1, the formula (18.41) predicts that cross correlation is exactly
zero when S12 = 0. In Section 18.3.5 we provide numerical and theoretical evidence
showing that non-mutually coupled antennas are in general correlated in the far
zone. In addition to these examples, it is possible to realize an approximation of
infinitesimal dipoles as very short dipoles and construct an implementation in typical
EM solvers. Such constructed examples can be considered as belonging to the genera
of electrically small antennas, which are very popular and widely used. By computing
S12 in these systems, the value obtained is not exactly zero, but very small and can be
safely neglected. The prediction of the envelope cross correlation in this case agrees
with our formula and the original definition, while the S-parameter formula gives
the wrong result.

Point 3 is somehow related to point 1 though the connection is not very clear. It
seems from various numerical experiments that in the absence of scatterers, strongly
coupled antennas show cross correlation pattern that is well approximated by the
S-parameters formula (18.41). However, this agreement seems rather accidental
because when the level of S12 decreases, examples of lossless antennas can be found
where there is divergence between the original definition (18.23) and (18.41). Since
(18.41) is believed to be exact for lossless antennas, this divergence in the results for
some cases strongly suggests that the S-parameters formula is not in fact valid for
arbitrary lossless arrays.

Point 2 seems to be still more interesting. Consider Figure 18.5 where we
show a generic problem consisting of two antennas and a third object (scatterer or
another antenna). Two scenarios are depicted at the top and bottom parts. In the
top diagram, we are interested in measuring the cross correlation between antennas
1 and 2 using S-parameters. Assume that the three objects are mutually coupled,
i.e., the measured S-parameters take into account a) mutual coupling between
antennas 1 and 2, and b) the mutual coupling between antenna 1 and the object,
and between antenna 2 and the same object. Next, consider the configuration in the
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Figure 18.5 Top. Generic two-antenna system with a third object in the radiation environment. Bottom.
The same problem in the top diagram but with the scattering object included as part of antenna 2. In
both cases, strong mutual coupling between the antennas and objects is allowed and is reflected in the
S-parameters measurement. Excitations and observations are permitted only at the locations of Ports 1
and 2.

bottom diagram. Here, we have exactly the same physical configuration as in the
top diagram, but instead of asking for cross correlation between antennas 1 and 2 as
defined there, we look for cross correlation between antenna 1 and a new antenna
2 comprised of the old antenna 2 plus the object. Since the radiated far field of the
new antenna 2 is different from the old, the far-field cross correlation using (18.23)
will be different in the two cases. However, the S-parameter expression is always the
same regardless to how we regroup interacting antennas. Numerical experiments
with various scattering objects show indeed that the S-parameter formula produces
completely wrong results. What is more interesting here is that there is an essential
theoretical ambiguity in the status of scattering parameters approach to cross
correlation when scattering objects exist.

The abundance of counter examples to (18.41) even in lossless antennas
indicate that the derivation of this formula cannot be considered complete. It seems
that S-parameter estimation of cross correlation may occasionally work, but it is
not correct in general and in many practical cases (existence of several antennas
in the array or weak or zero mutual coupling) it fails. All these difficulties totally
disappear when the general formula (18.32) in terms of the currents on the antenna
is used.
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The basic idea of using conservation of energy to derive a relation between
the correlation matrix and the scattering matrix is to compute the total power flow
radiating away from the arrays using the far fields themselves. Another computation
using the scattering parameters is possible. Since power computed using the far field
and power found from the energy absorbed by the ports have to agree (Poynting
theorem), then by equating the two quantities a relation between the correlation
matrix and the scattering matrix os obtained. However, it does not follow from this
relation that an equation like (18.41) holds.

The technical argument is briefly the following. Start with a set of far fields Fn

radiated byN antenna elements, taking into account the effect of mutual coupling.We
also assume that standard waveguides supporting a fundamental mode are connected
to each antenna terminal, for details see [29]. Let the vector excitation be a. By
evaluating the net power field flow, we can by expanding and rearranging find that the
total power radiated by the array is given by an expression of the form aHC a, where
H stands for the Hermitian transpose and R is the correlation matrix of the array.
The mnth element of this matrix, i.e., Rmn, is proportional to the cross correlation∫
4π

dΩFm (r̂) ·Fn (r̂) between the far field Fm (r̂) and Fn (r̂) radiated by antennas
m and n. For the complete expression including the scaling factors and their physical
meaning, see [151]. At the same time, a basic argument from circuit theory shows
that the power absorbed by the array at its input terminals equal aH

(
I − SHS

)
a

[29]. In the lossless case, we have by conservation of energy

aH
(
I − SHS

)
a = aHC a, (18.42)

which is an exact relation valid for any a. However, it does not mathematically follow
from (18.42) that I−SHS = C. In fact, it was already shown in [151] that in general

I − SHS �= C. (18.43)

Relation (18.41) is based on the incorrect equality I−SHS = R, and therefore
we conclude that the expression reducing the envelope correlation to the S parameters
is not in general valid. Numerical counter examples to (18.41) will be given in Section
18.3.5. The goal of this discussion is showing that cross correlation in spatial diversity
systems like MIMO cannot be reduced to expressions involving only S parameters.
In fact, the derivation of the general formula (18.32) above shows that the complete
current distribution on the entire interacting antennas should be known in order to
evaluate envelope cross correlation.
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18.3.5 Verification, Numerical Studies, and Design Examples of Basic Spatial
Diversity Antenna Array Configurations

18.3.5.1 Verification of the cross-correlation Green’s Function Formula

Although the derivation of the expression (18.32) is exact and rigorous, we will
present here a brief verification of the basic result. Incidently, we will also prove at
the same time that the quantity introduced in (18.33) is indeed a Green’s function.
The basic idea is to compute cross correlation for two infinitesimal dipoles and then
compare the outcome with the direct definition (18.23).

Consider two infinitesimal dipoles located at points r′ and r′′ with currents
J1 (r) = α̂1a1δ (r − r1) and J1 (r) = α̂1a1δ (r − r2), respectively. Here, α̂1,2
and are two unit vectors and a1,2 are the complex dipole moments for sources J1,2,
respectively.As usual we denote the far fields radiated by the two currents byE1,2 (r̂).
Using (18.32), the far-field cross correlation is immediately given by∫

4π

dΩ E1 (r̂) · E∗
2 (r̂) = a1a

∗
2 α̂1 · C̄ (r1, r2) · α̂2 , (18.44)

where the sifting property of the Dirac delta function was used. The expression
(18.44) clearly shows that the tensor C̄ (r′, r′′) does represent the Green’s function
for the far-field cross-correlation problem. Remember that the Green’s function of
a linear problem is defined simply as the response to an infinitesimal source. As
can be seen from Figure 18.6, our problem consists of two ‘inputs’, the sources at
the two general positions r′ and r′′, and one ‘output’, the far-field cross correlation.
When the inputs are reduced to point sources acting at specific positions r1 and
r2, we obtained merely the value of the general function C̄ (r′, r′′) evaluated at
these two special positions, i.e., we obtained a quantity proportional to C̄ (r1, r2).
This proves that C̄ (r′, r′′) is indeed the Green’s function of the cross-correlation
problem.

To verify (18.44), consider for simplicity two vertically-oriented infinitesimal
dipoles as in Figure 18.7(top). From the well-known expressions of the far-field
radiation of infinitesimal dipoles together with linear array theory, the fields due to
the two antennas are given by [27]

E1 = θ̂a1 sin θ, E2 = θ̂a2 sin θeikd sin θ sin ϕ. (18.45)

The cross correlation is then∫
4π

dΩ E1 (r̂) · E∗
2 (r̂) = a1a

∗
2

∫
4π

dΩ sin2 θ e−ikd sin θ sin ϕ. (18.46)
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Figure 18.6 Representation of the cross-correlation problem in spatial diversity arrays as a system with
the cross-correlation Green’s function (18.33) acting as its “transfer function.”

However, according to (18.44), we have
∫
4π

dΩ E1 (r̂) · E∗
2 (r̂) = a1a

∗
2 ẑ ·

C̄ (r1, r2) · ẑ = a1a
∗
2czz (d), where d is the separation between the two dipoles

(see Figure 18.7). Using the expression of czz in Appendix 18.3.8, we find∫
4π

dΩ E1 (r̂) · E∗
2 (r̂)

= a1a
∗
2
∫
4π

dΩ
(
1 − cos2 θ

)
eik(r1−r2)·r̂.

(18.47)

Employing the obvious relations r1 − r2 = −ŷd, 1 − cos2 θ = sin2 θ, and r̂ =
x̂ sin θ cos ϕ+ ŷ sin θ sinϕ+ ẑ cos θ, it follows that (18.46) and (18.47) are identical.
Therefore, the expression (18.44) yields the same result of the original definition
(18.23). The verification for all other different orientations of the infinitesimal
dipoles is essentially the same but lengthy and so the details are omitted. This
proves that for any two infinitesimal dipoles, the computation of the far-field cross
correlation produces the correct result. Finally, for arbitrary source distributions,
we just note that the far-field correlation is simply the sum of the contributions
of all mutual cross correlations between the infinitesimal currents forming the
total source. Consequently, the cross-correlation formula (18.32) is now generally
verified.

18.3.5.2 Numerical Study of Cross Correlation between Two Infinitesimal Dipoles

Consider two vertically-oriented electrically small dipoles as in Figure 18.7. Figure
18.8 shows the result for the cross correlation coefficient (18.23) using the formula
(18.44) but with the sign retained. For the two small antennas, S12 = 0 and therefore
according to the S-parameters formula (18.41) we have ρ = 0. Therefore, the
prediction of the far-field cross correlation based on the S-parameters of the array
is completely wrong. The calculation of ρ in Figure 18.8 using the cross-correlation
Green’s function (18.33) fully agrees with the original definition (18.23) computed
directly via the far fields radiated by the dipoles.
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Figure 18.7 Two infinitesimal dipoles J1 (r) = ẑa1δ (r − r1) and J1 (r) = ẑa2δ (r − r2). Top.
Vertically-oriented array. Bottom. Horizontally-oriented array.

We show in the same figure the calculation for two horizontally oriented
dipoles. It is possible to observe from Figure 18.8 that the horizontal case far-
field envelope correlation is higher in magnitude than the vertically-oriented array
but up till separation of 0.45λ, where correlation in the later case reached zero.
After that, the horizontal polarization array cross correlation becomes less than the
vertical case. We observe also from Figure 18.8 that at periodic separations (roughly
speaking, at 0.438λ, 0.97λ, 1.48λ, 1.98λ, 2.49λ, 2.98λ, 3.49λ, and so on), the cross
correlation between the two dipoles becomes exactly zero (in fact, it switches sign
in a cyclic fashion). These critical locations are interesting and give first hints about
the possibility of designing antenna arrays with minimum cross correlation.

We next consider the scenario when antenna 1 is inclined with an angle a with
respect to the positive y-direction in Figure 18.7(top). The computation using the
expression (18.44) are shown in Figure 18.9. It is observed that as the first dipole is
further rotated toward a = 0, the state of complete orthogonality with respect to the
other antenna, cross correlation decreases and eventually drops to very small value
at the exact orientation a = 0. Similar numerical results can be shown for other
relative inclinations, suggesting that the far-field cross correlation of two orthogonal
dipoles is very low. This information can also help in designing antenna elements to
reduce far-field cross correlation.

However, note that the far fields of two perpendicular small dipoles need not
be orthogonal everywhere on the radiation sphere. The results only suggest that the
net cross correlation of orthogonal dipoles is very small though not always exactly
zero. For example, consider the array configuration shown in Figure 18.10. The
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Figure 18.8 Envelope correlation coefficient (with the sign retained) for the two vertically/horizantally-
oriented infinitesimal dipoles.
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Figure 18.9 Envelope correlation coefficient (with the sign retained) for two infinitesimal dipoles with
variable relative orientation. Antenna 1 in Figure 18.7(top) is inclined with an angle a measured with
respect to the positive y-direction while antenna 2 is kept vertically oriented.
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Figure 18.10 Two perpendicular infinitesimal dipoles J1 (r) = ẑa1δ (r − r1) and J1 (r) =
ŷa2δ (r − r2) whose far-field cross correlation in Figure 18.17 is not exactly zero.
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Figure 18.11 Cross correlation between the two dipoles in Figure 18.10.

computation of the envelope cross correlation is shown in Figure 18.11. It is clear
that although the correlation is not high, it is certainly not negligible. Therefore,
although it seems that typically for perpendicular dipoles their far fields tend to be
uncorrelated or very weakly correlated, caution is needed in order not to generalize
this observation to all cases. It appears that cross correlation is exactly zero when the
field radiated by one antenna is orthogonal to the current of the other. It is possible
to see that this is not the case in the example of Figure 18.10, which may explain
why the corresponding cross correlation in Figure 18.11 is not exactly zero. General
mathematical proofs of this observation will not be given here.
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18.3.6 Design Methodology for Best Diversity Gain

It is possible using the technique presented above to examine the engineering
problem of designing optimum antenna arrays capable of achieving certain diversity
performance as determined by the cross correlation between the far fields. In order
to do so, we need to define a measure for the diversity gain attained through a proper
design of the radiating element.

First, we define the cross correlation matrix of an antenna array composed of
N elements as the N × N matrix R whose mnth element Rmn is given by

Rmn :=
∫

4π

dΩ Em (r̂) · E∗
n (r̂). (18.48)

Consider then an antenna array described by the correlation matrix R. We define the
diversity gain as

G =
tr
(
R2
)

‖R‖Fr

, (18.49)

where tr is the matrix trace (the sum of the diagonal elements) and ‖R‖Fr is the
Frobenius norm defined as ‖R‖Fr :=

∑
m,n |ρmn|2. This definition is very natural

since it measures the degree to which the correlation matrix R tends to have zero
off-diagonal element. For the best performance, i.e., when all the array elements
are mutually uncorrelated, the diversity gain will be unity, which corresponds to
the best performance from the viewpoint of MIMO and spatial diversity. In general,
0 < G ≤ 1. The definition (18.49) is similar to the correlation metrics in [153].

We will first motivate the design approach by studying the impact of the array
density on the diversity gain. The results of Section 18.3.5 suggest the following
general rules:

1. Cross correlation between vertical and horizontal current elements tend to
decrease with increasing distance.

2. Cross correlation between horizontal current elements tend to dominate for
short distances compared with vertical current segments. For larger separation,
the converse is observed.

3. Cross correlation between perpendicular current elements tend to be either
vanishing or small.

These are very general observations that may help in designing arrays for MIMO
applications. However, it is possible go further in quantifying the MIMO system



Applications to MIMO and Spatial Diversity Systems 551

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

 Interelement spacing (in wavelength)

A
rr

ay
 D

iv
er

si
ty

 G
ai

n
 (

G
)

Figure 18.12 Diversity gain for array of linear vertically-polarized infinitesimal dipoles as in Figure
18.7(top) with uniform spacing between the radiating elements.

performance by showing how the density of the array elements per unit wavelength
affects the diversity gain. We consider a linear array with uniform spacing of
infinitesimal dipoles all oriented vertically. Figure 18.12 shows the variation of the
array diversity with the density of the array expressed in terms of the inter-element
spacing. It is clear that performance deteriorates when more elements are utilized
within the same length span. Therefore, there is a fundamental tradeoff in MIMO
systems between size and diversity gain: the smaller the total antenna size, the higher
is the density of the array, the worse the diversity gain becomes.

A view on the design approach will be now given using a random search
method. We suggest that positions and orientations of each dipole to be changed
randomly until a good diversity gain is achieved. In general, it would be preferable
to formulate the problem using a more complex search algorithm, for example, global
optimization, convex optimization, etc. However, in this chapter we will develop the
most direct approach using random search and leave more elaborate design tools for
future work.

Consider an antenna array comprised of a set of N infinitesimal dipoles at
positions rn and orientations α̂n. The random search algorithm works by changing
the data rn and α̂n such that the trial arrays all fit within a given size limitation and
a geometrical form. The diversity performance of the search trials is monitored by
observing the correlation gain G defined in (18.49). When the best performance is
attained, the algorithm is terminated.
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Figure 18.13 The design topology for linear arrays of vertically-polarized sources (top) and
horizontally-polarized sources (bottom). In each case, the dipole positions rn is varied using the op-
timization algorithm in order to maximize the diversity gain (18.49).

We provide basic examples involving linear and circular antenna arrays but
the method is applicable to arbitrary topologies. Figure 18.13 shows the schematics
of two possible arrays, one for vertical polarization (top) while the other is for
horizontal polarization (bottom). The maximum size of the array is fixed at one
wavelength and a set of four dipoles is considered for the design. The average
density in this case is 0.25λ between two antennas. The positions of the dipoles
are given by the vectors rn, n = 1, 2, 3, 4. The y-component of each rn is changed
according to the formula

ry
n = ymin + w (ymax − ymin) , (18.50)

where [ymin, ymax] is the allowable search range and w is a random variable
uniformly distributed between 0 and 1.

Figure 18.14 shows the results of the above random search algorithm for the
vertically-polarized array. The best performance obtained in 100 trials is G = 0.705.
For the horizontally-polarized case, Figure 18.15 provides the design results, where
the best diversity gain is lower at the level G = 0.5768. For both cases, the design
parameters, i.e., the positions of antennas, are given in the captions of the two figures.
These results can be further improved by using a local search algorithm with initial
points at the positions just obtained using the random search method.

As another example, we consider this time the direction of the dipoles as a
design parameters. For simplicity, we force all the dipoles to be parallel to each
other but instead of being restricted to either vertical or horizontal directions, the
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Figure 18.14 The diversity gain for a linear array of vertically-polarized infinitesimal dipoles using
direct random search algorithm. The number of dipoles is 4 per maximum size of unit wavelength, i.e.,
with an average inter-element spacing of 0.25λ. The best solution obtained in 100 trials is with positions
(not to scale in the diagram) given by: r1 = 0.0826λ, r2 = 0.5118λ, r3 = 0.7196λ, r4 = 0.9962λ,
with a corresponding diversity gain of about 0.705.
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Figure 18.15 The diversity gain for a linear array of vertically-polarized infinitesimal dipoles using
direct random search algorithm. The number of dipoles is 4 per maximum size of unit wavelength, i.e.,
with an average inter-element spacing of 0.25λ. The best solution obtained in 100 trials is with positions
(not to scale in the diagram) given by: r1 = 0.0170λ, r2 = 0.1209λ, r3 = 0.5801λ, r4 = 0.9283λ,
with a corresponding diversity gain of about 0.5768.
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Figure 18.16 The diversity gain for a linear array of parallel infinitesimal dipoles with varying current
polarization. All the dipole currents are restricted to be parallel to each other but this common direction
is varied from one trial to another together with the positions. The trials are obtained using direct random
search algorithm. The number of dipoles is 4 per maximum size of unit wavelength, i.e., with an average
inter-element spacing of 0.25λ. The best solution obtained in 100 trials is with positions (not to scale in
the diagram) given by: r1 = 0.0298λ, r2 = 0.4972λ, r3 = 0.8667λ, r4 = 0.8944λ,. The common
orientation of the four dipoles currents is the unit vector x̂0.2995 + ŷ0.3351 + ẑ0.8933. The best gain
is G = 0.7158.
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entire set of radiating elements is re-oriented in each search trial along the direction of
the vector x̂αx + ŷαy + ẑαz , where αx, αy, αz are statistically-independent random
variables uniformly distributed between 0 and 1. Figure 18.16 provides us with the
results and the design data for this case. The best performance in 100 random trials
was obtained when the currents on the dipoles were all oriented in the direction of the
unit vector x̂0.6782+ŷ0.2160+ẑ0.7024. In this case, the best attained diversity gain
is G = 0.7158, which is better than the those achieved with vertical and horizontal
polarization in Figures 18.14 and 18.15.

In general, the overall results in Figure 18.16 when compared with Figures
18.14 and 18.15 suggest that varying the orientation of the radiating elements in
a linear array improves the diversity gain results. Motivated by this observation,
we provide a final example in which the direction of the current of each dipole
is varied independently of the others. To achieve this, we change in each trial
the direction of the current using a statistically-independent uniformly distributed
random variable such that each component of the direction vector of each dipole
current is changed independently of the others. The results are shown in Figure 18.17,
with the spectacular diversity gain G = 0.9087. The positions and orientations of
each antenna element belonging to this best configuration are given in the caption. We
conclude that in linear antenna arrays, if there are no restrictions on the orientation of
the individual radiating elements, then it is best to allow the individual directions of
the current in the array to vary independently through the design process. However, in
practice it is sometimes not easy to change the orientation individually, for example
because of the inflexibility of the feed circuit, and so the results of uniform orientation
presented in Figures 18.14-18.16 remain important even with the superior results of
Figure 18.17.

Before ending this section, we consider an example of circular array as shown
in Figure 18.18. All the antenna elements are oriented in the z-direction pointing
outward to the plane containing the array. The radius of the circle a will determine
the maximum size of the array, i.e., the circumference 2πa. The position of each
element in the xy-plane is given by a cos φn, a sinφn, n = 1, 2, 3, 4. Here, we vary
the angles φn as statistically-independent random variable uniformly distributed
between 0 and π. Figure 18.19 shows the design results for this array topology. We
choose the radius as 0.25λ, resulting in an average array density of about 0.4λ. The
best gain in 100 trials is G = 0.6073. The angles of the array elements are given in
the caption.
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Figure 18.17 The diversity gain for a linear array of infinitesimal dipoles with varying current
polarization. The currents positions and directions of the dipoles are allowed to change independently
of each other in each trial. The trials are obtained using direct random search algorithm. The number of
dipoles is 4 per maximum size of unit wavelength, i.e., with an average inter-element spacing of 0.25λ.
The best solution obtained in 100 trials is with positions (not to scale in the diagram) given by: r1 =
0.0298λ, r2 = 0.4972λ, r3 = 0.8667λ, r4 = 0.8944λ,. The orientations of the four dipole currents
are x̂0.4607 + ŷ0.0112 + ẑ0.1425, x̂0.1706 + ŷ0.2345 + ẑ0.9397, x̂0.7944 + ŷ0.7070 + ẑ0.0003,
x̂0.8885 + ŷ0.6942 + ẑ0.4388. The best gain is G = 0.9087.

Figure 18.18 The design topology for circular array of vertically-polarized sources. In each case, the
dipole positions rn is varied by changing the angle φn using the optimization algorithm in order to
maximize the diversity gain (18.49).
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Figure 18.19 The diversity gain for a the circular array of Figure 18.18.All the dipoles are oriented along
the z-direction outward to the xy plane. The trials are obtained using direct random search algorithm. The
average inter-element spacing of 0.4λ. The best solution obtained in 100 trials is with positions (not to
scale in the diagram) given by: φ1 = 3.4474o, φ2 = 63.2383o, φ1 = 158.0790o, φ1 = 177.8924o.
The best gain is G = 0.6073.

18.3.7 Generalization to Arbitrary Antennas

In this section, we show how the techniques and methods of the previous parts can
be applied to more complex antenna types. We first outline the method through
which knowledge of cross correlation among infinitesimal dipoles can be used to
estimate cross correlation in arbitrary complex radiating elements. Next, we apply
the method to an example consisting of long thin wire. The same method can be
applied to any antenna type without modification but only results for wire cases
are shown here for brevity. Further examples and design methods will be treated in
future work.

The technique developed above managed to first express the far-field cross
correlation between a set of infinitesimal dipoles in the simple form of the cross-
correlation Green’s function, and second to reduce the problem of several point
sources to the superposition of all pairwise interactions between the dipoles. In light
of the general expressions given by (18.32) and (18.39), it is even possible to reduce
the computation for the case of arbitrary current distribution into the infinitesimal
dipole scenario. The key idea here is based on the observation in Section 18.3.3.1
that the cross-correlation Green’s function (18.33) is nonsingular. Therefore, it is
always possible to approximate the integral in (18.32) by a finite sum evaluated
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at discrete points using the quadrature methods familiar from the context of the
method of moment. Indeed, we may approximate (18.39) by

ρmn =
N1∑

l1=1

N2∑
l2=1

γl1γl2f
1
m (r′

l1) · C̄ (r′
l1 , r

′′
l2) · f2

n (r′′
l2), (18.51)

where N1 and N2 are the number of quadrature points associated with the current
basis functions f1m and f2n, respectively. The data comprised of the positions rl and
weights γl can be found from standard quadrature routines. These rules are available
for both one-dimensional, two-dimensional, and three-dimensional regions, and
hence are enough to handle any correlation integral in electromagnetics.

After evaluating the individual elements of the correlation matrix ρmn, it is
possible to compute the cross correlation between any group of antennas by simple
matrix partitioning. We will illustrate the general idea by a practical example. Con-
sider the antenna configuration in Figure 18.20(top). Antenna A is an infinitesimal
dipole with current fA (r) = ẑδ (r − rA) located at position rA, while antenna B
is a short (not infinitesimal) thin-wire dipole. We further assume that the current
distribution on this antenna B can be approximated by the familiar sinusoidal form
[26], [27]

fB (z) = ẑ sin [k (L − |z|)] , (18.52)

where k = 2π/λ and 2L is the length of the antenna. The correlation integral then
has the form

ρAB =
∫

SA

ds′
∫

SB

ds′′ fA (r′) · C̄ (r′, r′′) · fB (r′′) , (18.53)

where SA and SB are the surfaces of antennas A and B with local length parameters
s′ and s′′, respectively. By the sifting property of the Dirac delta function, we have

ρAB =
∫

SB

ds′′ ẑ · C̄ (rA, r′′) · fB (r′′) . (18.54)

Using the quadrature method, a set of points rn residing in SB are chosen to
approximate the integral (18.53). By this method, the total cross correlation is simply
given by the superposition rule

ρAB =
N∑

l=1

γlẑ · C̄ (rA, rl) · fB (rl), (18.55)
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Figure 18.20 Top. Two-antenna system composed of linear thin-wire antenna B and an infinitesimal
dipole A (antenna). The linear wire has length 2L and is separated from the small dipole located at rA

by distance d. Bottom. The same problem in the top diagram but with antenna B replaced by a finite
number of infinitesimal dipoles. The dipoles are located at locations rl, with the same orientation as
the original antenna. The excitation of each equivalent dipole is γlfB(rl). The computation of cross
correlation between the two antennas using the equivalent dipole model in the bottom diagram produces
the same result corresponding to the original problem in the top. We shown only three equivalent dipoles
but the number of dipoles in each model can be varied according to the accuracy needed.
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Figure 18.21 Computation of the cross correlation between antennas A and B in Figure 18.20(top)
using the equivalent dipole model in Figure 18.20(bottom). The length of the wire antenna B is 0.05λ.
The cross correlation (not normalized) is based on 10 infinitesimal dipoles.
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Figure 18.22 Computation of the cross correlation for the same problem of Figure 18.21 but with the
length of the wire antenna B changed to 0.2λ. The cross correlation (not normalized) is based on 10
infinitesimal dipoles.

where N is the number of quadrature points rl with weights γn.
The technique developed above is applied to the simple problem illustrated in

Figure 18.20(top) using the equivalent dipole model in the bottom part of the same
figure. The computation of the cross correlation (not normalized) is effected using the
formula (18.55) and the results compared with the exact expression (18.53) computed
using accurate adaptive integration routine. With 10-dipole model obtained through
a simple Gauss quadrature method, excellent agreement was observed as shown in
Figure 18.21. Note in general that the number of the dipoles needed to represent a
given antenna for the purpose of computing its cross correlation strongly depends
on the physical size of the antenna in question. In particular, the linear wire in the
previous example has length 0.05λ. When the length is increased to 0.2λ, the results
using again 10-dipole model are shown in Figure 18.22. Some discrepancy can be
seen, especially at short separation. However, by using more dipoles, the agreement
can always be improved.

In practical applications the sinusoidal current distribution (18.52) is in fact
used as a basis function and the entire wire span is a just one segment in the overall
dsicretization scheme, e.g., method of moment. It is always true in this case that
the length of the segment is small compared with the wavelength in order to insure
convergence of the full-wave numerical solver to correct results. Therefore, the same
level of accuracy obtained in Figure 18.21 can be attained in typical calculations of
cross correlation for practical spatial diversity applications.
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18.3.8 Appendix: Detailed Components of the Far-Field Cross Correlation
Dyadic Green’s Function

In the following, set r̂ (θ, ϕ) := x̂ sin θ cos ϕ + ŷ sin θ sinϕ + ẑ cos θ. The compo-
nents of the cross-correlation Green’s function (18.33) are given by

cxx (r′, r′′) =
∫ π

0

∫ 2π

0 dθdϕ sin θ
(
1 − sin2 θ cos2 ϕ

)
eik(r′−r′′)·̂r,

cxy (r′, r′′) = −
∫ π

0

∫ 2π

0 dθdϕ sin3 θ cos ϕ sinϕ eik(r′−r′′)·̂r,

cxz (r′, r′′) =
∫ π

0

∫ 2π

0 dθdϕ sin2 θ cos θ cos ϕ eik(r′−r′′)·̂r,

cyx (r′, r′′) = −
∫ π

0

∫ 2π

0 dθdϕ sin3 θ sinϕ cos ϕ eik(r′−r′′)·̂r,

cyy (r′, r′′) =
∫ π

0

∫ 2π

0 dθdϕ sin θ
(
1 − sin2 θ sin2 ϕ

)
eik(r′−r′′)·̂r,

cyz (r′, r′′) = −
∫ π

0

∫ 2π

0 dθdϕ sin2 θ cos θ sinϕ eik(r′−r′′)·̂r,

czx (r′, r′′) = −
∫ π

0

∫ 2π

0 dθdϕ sin2 θ cos θ cos ϕ eik(r′−r′′)·̂r,

czy (r′, r′′) = −
∫ π

0

∫ 2π

0 dθdϕ sin2 θ cos θ sinϕeik(r′−r′′)·̂r,

czz (r′, r′′) =
∫ π

0

∫ 2π

0 dθdϕ sin θ
(
1 − cos2 θ

)
eik(r′−r′′)·̂r.

(18.56)

18.4 CONCLUSION

The chapter provided a general and integrated study of MIMO systems. We first
outlined how the ACGF can be used to effectively provide a complete and exact
derivation of the MIMO channel matrix, effectively eliminating fields and currents
in the final expression. The chapter also proposed a general approach to cross
correlation in arbitrary antenna systems based on reducing the computation of
far-field correlations to the radiating currents on antenna elements. It is found
that the reduction requires the introduction of a fundamental function, the cross-
correlation Green’s function, which measures the degree of correlation between the
fields produced by infinitesimal dipoles. For arbitrary source distribution, the total
cross correlation is then shown to be merely the superposition of all the point-
source mutual correlations obtained by means of this cross-correlation Green’s
function. The new approach is further elaborated by careful comparison with the
classical Green’s function and method of moment in applied electromagnetics.
The estimation of cross correlation using S-parameters (measurement at the ports)
was criticized and shown to be inadequate for general problems and for design
purposes. Cross correlation expressions based on the currents were verified by
direct comparison with the exact formula in terms of the far field and they avoid
all the difficulties associated with the S-parameter expressions. Several numerical
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studies of basic array configurations were given. Some of the findings include
demonstrating the inverse relation between the array density and the diversity gain,
suggesting the need for a proper design of antenna arrays if the total size of the MIMO
system is to be brought down. Several design studies and examples involving linear
and circular arrays were given. The overall goal of the chapter was to establish
the underlying principles of methods suitable for the design of antenna elements in
MIMO systems such that desired diversity gain data can be attained. In particular,
we showed how the position and orientation of each current segment contribute to
the total diversity gain of the system and used this knowledge to devise a general
design strategy for spatial diversity systems.
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Index
2D tensor
ACGF variation as, 381
 representation, 231
 transformation calculus, 254–57
 See also Antenna current Green’s 

function (ACGF)
3D ACGF tensor, 238–39
 in Mode A and Mode B analysis, 278
 symmetry of, 264–65
 See also Antenna current Green’s 

function (ACGF)

Absolute convergence, 88, 91, 95, 146, 290
Actual and virtual, 201–5
Analysis, 221–22
Antenna-antenna energy transfer
 alternative approach, 486
 differences in methods, 487
 generalized scattering matrix, 485
 Kerns’ method, 485
 problem, 484–87
 schematic diagram, 485
Antenna-antenna interactions, 278–308
 antenna generalized transfer function, 

295–97
 dynamic genesis, 301–8
 energy coupling localization coefficient, 

493
 externally applied source and fixed 

receiving antenna, 280–84
 geometry illustration, 281

 multipole expansion of spectral 
interaction kernel, 289–92

 spectral interaction kernel behavior, 
284–88

 spectral interaction kernel examples, 
288–89

 static genesis, 297–301
 synthesis of antenna shapes, 292–95
Antenna arrays
 arbitrary, 462
 electromagnetic interactions, 463
 electromagnetic performance of, 433
 excitation in transmitting mode, 381
 fixed, statistical analysis, 388
 linear wire, 498–505
 MIMO, 518–21
 mutual coupling in, 468
 operation from near-field perspective, 

439–40
 patch antennas, 443–46
 radiation pattern, 439
 S-parameters, 541
 strong mutual coupling, 448–51
 weak mutual coupling, 446–48
Antenna current Green’s function (ACGF), 

15–16, 231, 278
 2D tensor, 231, 254–57
 3D tensor, 238–39, 264–65, 278
 approximation with distribution theory,  

249
 automatic geometrical structure of, 383
 computed and stored, 242
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Antenna current Green’s function (ACGF) 
(continued)

 defined, 15, 225, 243
 dependence on local coordinate system, 

255
 direct construction with distribution 

theory (electromagnetic theory), 
248–51

 direct construction with distribution 
theory (scalar theory), 243–47

 distributional, 242–58, 411
 distribution approximation, 247
 existence of, 15
 formulas, 267, 268
 Fourier expansion of, 271
 Fourier modes of, 299
 Fourier transform of, 252
 FSGF and, 240
 of general antenna system, 231
 integral equation satisfied by, 239
 intuitive approach, 234–40
 Mode A, 227, 239, 241
 Mode C, 227, 239, 241
 MoM scattering code comparison, 419
 mutual coupling and, 429
 in near-field interaction computation, 

407–23
 operators, 237, 258
 perfectly conducting sphere and, 241
 receiving mode, 262, 376, 378
 spectral analysis of linear wire antennas, 

394–96
 spectral manifestation, 299
 for surface-wire antenna system,  

377–79
 symmetry relation, 261–64
 tensor, Fourier transform of, 251–54
 tensor, inverse Fourier transform of,  

253–54
 tensorial character of, 257–58
 theorem, 248
 traditional full-wave solvers and, 

412–13
 transmitting mode, 376, 379, 380–81, 

383, 414
 of two-antenna system, 467
 of Tx array, 522–23
Antenna current Green’s function (ACGF) 

formalism

 for analysis and design, 218
 applications of, 217
 context and motivations, 213–17
 decoupling of illuminating field, 381
 descriptive adequacy, 212
 for discrete antenna system, 400–405
 excitation fields and, 390
 foundations of, 229–58
 interrelation between synthesis and 

analysis, 221–22
 for linear wire antenna systems, 

392–400
 mathematical foundations of, 243–54
 outline of general problems, 222–28
 overview, 217–19
 as paradigm, 211–28
 potential applications, 16, 18
 proof of existence, 242
 for receiving antenna systems, 375–92
 systematic deployment of, 259
Antenna generalized transfer function
 concept illustration, 296
 defined, 295
 idea of, 295–97
Antenna horizon, 109
Antenna propagation potential
 defined, 178
 differences in, 187
 gradient of, 188, 190
 idea of, 186–89
 measurement, 187
 morphogenetic field and, 206
 variations in, 188
Antennas
 circuit models, 30
 embedded in complex media, 338–40
 as field oscillators, 54, 130–31
 inductive and capacitive energies, 30
 isolated, 466, 471
 metallic, with arbitrary shape, 234
 modes of operation, 222
 patch, 443–46
 PEC, 233, 234–35
 propagation potential, 178
 as relational structures, 300
 response to electric field excitation, 237
 size of, 80
 source distribution, 105
Antenna shapes, synthesis of, 292–95
Antenna systems, 129–33
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 circuit point of view, 74–85
 combined general description of, 224
 continuous, 405
 cross correlation in, 530–60
 defined, 229–34
 discrete, 400–405
 electromagnetic energy and, 22
 as engineering system, 51
 field of division, 284
 general, 219–21, 231
 general description of, 29, 55, 227
 linear wire, 392–400
 mutual coupling, 425–80
 power flow in, 54–57
 reactive energy and, 31
 receiving, 375–92, 405
 relational structure, 79
 singularities of, 52, 176
 surface-wire, 377–79
Antenna theory
 electromagnetic energy in, 23–27
 energy and, 23
 focus of, 50
 new program philosophy, 51–53
 outline of general problems, 222–28
Applications
ACGF formalism, 368–70
ACGF method, 16
 metamaterials, 368–70
 mutual coupling, 436
 mutual energy coupling, 513–14
 of nonlocal metamaterials, 17
 theory of near fields, 14
Applied electromagnetics, 2, 5, 7, 21
 mutual coupling, 430–36
 significance of near-field perspective, 

269–70
Arbitrary excitation field, 241
Arbitrary field excitation, 413
Arbitrary field illumination, 388
Arbitrary response tensor, 329
Array density, 550, 551
Attenuating propagating mode, 368
Attractor, 200

Backward wave propagation, 367
Banach space, 235
Bandwidth
 effective, 288, 294

 spatial, 260, 287–88, 293, 299, 304
 studies of, 513–14
Basic prototype systems, 279
Bessel function, 159
Boundary conditions
 arbitrary, generalization to, 465, 489
 PEC, 374, 382, 465–66, 489
Bounded convergence theorem, 286
Boundedness property, 286–87
Bounded operator, 469C

Canalization, 199–201
Cartesian coordinates, 107
Cartesian vector, 239
Cauchy principal value, 332
Causality restrictions, 333–34
Chain rule, 348
Channel transfer function, 527–29
Characteristic function, 269, 410–11
Characteristic polarization, 385
Chreod, 199
Circuit models, 30
Circuit theory, 75
Circular arrays
 design topology, 556
 diversity gain for, 557
Cofactor matrix, 336
Comparison test, 94
Complex interaction Poynting vector, 122
Complex poles
 distribution in nonlocal medium, 364
 engineering in nonlocal media, 367–68
 singularities, 365
Complex Poynting theorem
 circuit interpretation of, 120
 generalization of, 120–23
Complex Poynting vector, 121
Condensation, 205
Conductivity tensor
 defined, 325
 hermitian port, 330
Configuration space, 240
Constant group velocity, 354–56
Constitutive relations, 5
Continuous antenna systems, 405
Continuous vector field, 249
Convergent evanescent energy, 125–26
Correlation matrix, 550
Critical (fixed) points, 193
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Cross correlation, 530–60
 in arbitrary systems, 533
 comparison with S-parameter methods, 

540–44
 computing between group of antennas,  

558
 conclusion, 561–62
 diversity gain design methodology,  

550–57
 envelope, 544
 envelope coefficient, 548
 far field, 546
 far-field dyadic Green’s function, 561
 generalization to arbitrary antennas,  

557–60
 between infinitesimal dipoles, 546–49, 

557
 introduction to, 530–34
 mutual correlation expression 

derivation, 534–37
 reducing calculation of, 531
 S-parameters and, 541–42
 spatial diversity antenna array 

configurations, 545–49
 total, 540, 558–60
 between two dipoles, 549
Cross-correlation Green’s function
 defined, 531, 536
 far-field, 561
 free-space Green’s function (FSGF) 

comparison, 537–38
 MoM and, 538–40
 as nonsingular, 533
 as shift invariant, 538
 verification of, 545–49
Curl equations, 121–22
Curl operator, 114, 115
Current, 267
Current distribution
 discrete antenna system, 400
 electric field radiated by, 458
 Fourier transform, 141
 mutual coupling effect, 470
 on nth array element, 459
 perturbative theory, 469
 sinusoidal, 560
 thin-wire EFIE for, 413
 Tx array, 522
 unique, 460

Decaying propagating mode, 501
Decay rate, 288
Decomposition theorem, 272
Delta functions, 244–45
Dependent variables, 280
Descriptive adequacy, 211
Detection problems, 514
Differential equations
 Green’s functions and, 230
 ordinary, 130
 partial, 130
Differential manifold, 230
Differential structures, 259
Dipole model method, 440–43
Dipole models
 comparison between fields, 454
 equivalent, 440–43
 field comparison, 446
 identifical, 445
 modified equivalent, 451
 MoM comparison, 447, 449
 region of validity, 461
 searching for, 450
Dipole moments, 461
Dirac delta functions, 237, 337, 558
Direction field, 161
Discrete antenna system
 current distribution, 400
 internally identical electromagnetic 

structure, 403
 modes of operation, 402–3
 received current, 402
 relative position, 400
 toy model, 400–405
 transmit-receive port, 401
 transmitting and receiving modes, 402
Dispersion
 anomalous, 351
 global form, 332
 profile, 352
 spatial, 312, 351, 366
 spatial distribution in exterior region, 

356
 temporal, 313, 351
 zero-temporal, 356–57
Dispersion engineering equation
 exact solution, 352–53
 geometric interpretation, 352, 355
 solution for constant group velocity, 

354–56
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 solution for k-dependent group velocity, 
353–54

 zero-temporal dispersion, 356–57
Dispersion relations, 335–36
 homogeneous wave equation, 335
 inhomogeneous wave equation, 335
 modes (branches), 336
 for transverse mode, 347
Distributional limit, 245, 250
Distribution theory, 242–43
 ACGF approximation with, 249
 direct construction of ACGF using 

(electromagnetic theory), 248–51
 direct construction of ACGF using  

(scalar theory), 243–47
 structure of approach, 242
 tempered, 251
 theorem, 245
Divergence theorem, 55
Diversity gain
 array density and, 550
 for circular array, 557
 defined, 530, 550
 design methodology, 550–57
 for linear array of parallel infinitesimal 

dipoles, 554, 556
 for linear vertically-polarized 

infinitesimal dipoles, 551, 553
 size tradeoff, 551
Dual polarization, 68
Dyadic functions, 250
Dyadic Green’s function, 99–100
 computation of, 363
 decomposition, 104
 in electromagnetic theory, 537
 expansion in terms of local frame, 107
 Fourier expansion of, 104
 integral representation, 104
 knowledge of, 102
 nonlocal medium, 363–66
 order of integrations and, 147
 spectral expansion, 104
 theorem, 101–2
Dynamic genesis, 279, 280, 301–8
 general Euclidean motion of receiving 

antenna, 302–4
 introduction, 301–2
 local rotation of source antenna, 304–6
 mutual coupling effect, 306–8
 physical interaction mechanism, 308

Effective bandwidth, 294
Electric dipole, 231
Electric energy
 densities, 122, 123
 evaluation of, 60
Electric field
 electric displacement relation, 345
 integral operator, 469
 production of, 267
 radiated by current distribution, 458
 radiated by single dipole, 440
 vector potential, 338
Electric field integral equation (EFIE), 235, 

413
Electric permittivity, 54, 326
Electric susceptibility, 326
Electromagnetic boundary condition, 229
Electromagnetic energy
 angular distribution of, 33
 antenna limitations, 46
 antenna systems and, 22
 in antenna theory, 23–27
 exchange process, 36
 metamaterials and, 45
 moving from one location to another, 

41
 nanotechnology and, 44–45
 near fields and, 40
 renewable energy and, 44
 salient features, 26–27
 spatial distribution in exterior region, 

70–74
 total, 40
Electromagnetic fields
 antenna current radiation of, 54–55
 decomposition of, 114, 118
 dynamic structure of, 13, 177
 energy of, 22
 in exterior region, 66
 as functions defined on manifolds, 106
 invariance properties of, 51
 localized energy, 120, 125–26
 radial distribution, 33
 radial energy density function, 34
 spatial structures, 8, 21–47
 spatial theory, 49–97
 spectral theory, 99–153
 streamlines, 111
 total evanescent part, 108, 113
 total propagating part, 108, 113
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Electromagnetic fields (continued)
 transformation visualization, 118–19
Electromagnetic interaction
 antenna arrays, 463
 between propagating and 

nonpropagating fields, 127–29
 between regions, 60
 See also Interactions
Electromagnetic materials, 321–23
Electromagnetic nano-environment, 45
Electromagnetics
 applied. see applied electromagnetics
 numerical research, 5
 present stage of, 4–7
 research areas, 4
 spatial, 317–43
Electromagnetic systems
 fundamental assumptions about, 

219–20
 general, 219–21
 operation as integral whole, 220
Electromagnetic theory, 248–51
 applied, 43
 dyadic Green’s function, 537
 energy density in, 38
 of generic MIMO systems, 521–29
Energy
 behavior of, 80
 densities, 24
 evanescent, 125–27
 exchange, 132
 finite difference, 30
 interaction, 168–69
 interaction exchange, 501, 505, 508,  

511
 interaction self, 499, 500, 503–4, 

506–7, 509–10
 linearly divergent, 77
 localization, 42
 localized, 38, 125–26, 133–34
 logarithmically divergent, 78
 reactive, 13, 27–38
 renewable, 44
 resources, 514
 stored, 38–39, 41–42, 129–33
 total, 24, 30, 77, 128
 transfer, 22
 See also Electromagnetic energy
Energy balance relation, 30
Energy coupling localization coefficient, 493

Energy densities
 angular functional dependence, 61
 decomposable, 84
 electric, 121, 123
 in electromagnetic theory, 38
 magnetic, 121, 123
 reactive energy, 37, 76–79
 spatial distribution of, 339
 time-averaged, 75, 122
 total, 82, 85
 Wilcox expansion and, 77
Energy flow, space-time approach, 28
Energy flux, 124
Energy localization coefficient, 483
Energy motion, 41
Energy ratio, 167–68
Energy transfer
 antenna-antenna problem, 484–87
 initial formulation of problem, 491–94
 maximum, 504
Epigenesis, 197–98
Epigenetic landscape, 199
Equivalent circuit, receiving antenna systems, 

405
Equivalent class, 247
Equivalent dielectric function, 325, 330
Equivalent dipole model
 development of spectral expansion, 

458–61
 global error comparison, 455, 456
 introduction, 451–52, 457–58
 method, 438, 440–43
 numerical validation, 453
 results, 461–63
 spectral analysis of antenna array using, 

457–63
 strong mutual coupling and, 451–57
Equivalent impedance, 215, 433
Equi-virtuality, 202
Euclidean manifold, 198
Euclidean space, 235, 240
Evanescent energy
 convergent, 125–26
 radial, 126–27
Evanescent modes, 414
Evanescent part, 108, 113, 115, 117
Exchange coefficients, 512
Excitation fields, 389–90, 528
Excitation vector, 467
Expansion coefficients, 89, 93, 96
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Explanatory adequacy, 211–13

Farady-Maxwellian field, 24
Far field
 cross correlation, 546
 mutual coupling and, 434
 region field determination from, 62
 self-interactions, 61
 spherical modes, 68
Far field formation
 geometrical, 142
 mechanism of, 141–43
 varying observation angles, 142–43
Far-field radiation pattern
 exterior domain near-field derivation 

from, 65–68
 mathematical description of, 63–64
 near-field starting from, 62–69
Far-field theory, 345–57
Far-field zone, 117
Field illumination
 arbitrary, 388
 by generic source, 407
Field of division, 284
Field oscillators, 54, 130–31
Fields
 arbitrary number of, 268
 averaging quantities, 388
 classical, 193
 excitation, 389–90
 form of, 220
 generic, 414–15
 illumination, 298, 300, 381
 impinging, 269
 impressed, 263
 interaction, 491
 propagation model for, 180–86
 reality of, 328–29
Field spectral composition, 272
Field theory, 200
Filtering, 214
Finite-difference time domain (FDTD) 

method, 5
Finite-element method (FEM), 5
Forcing term, 281
Form
 of antenna radiated fields, 182
 concept of, 180
 of field, 220

 genesis of, 179, 196
 knowledge of production of, 180
Forward interaction operator, 471
Fourier spatial modes, 324
Fourier transform
 of ACGF tensor, 251–54
 approach to Green’s functions, 319–21
 convolution of spectral functions, 384
 of current distribution, 141
 distributional, 252
 inverse, 253–54, 339
 material response and, 323–25
 power theorem, 330
 of source, 305
 of source current, 287
 spatial, 104, 108, 273, 382, 460
Freedom of rearrangement, 91
Free-space Green’s function (FSGF), 157, 

239
 ACGF and, 240
 cross-correlation Green’s function 

comparison, 537–38
 decomposition, 492
 defined, 225, 492
 as shift invariant, 240, 538
Frequency selective surfaces, 363
Function over space, 205

Galerkin-type approximation, 472
Gauss quadrature method, 560
General antenna systems
 ACGF of, 231
 circulation of information, 220–21
 fundamental assumptions about, 

219–20
 organic interrelationships between 

operational modes, 259–308
 spatial bandwidth, 287–88
General decomposition theorem, 109
Generalized scattering matrix, 485
Generalized transfer function, 260
Global error
 comparison, 455, 456
 defined, 477
Global frame, 141, 161
Global optimization algorithm, 294
Global qualitative features, 230
Green’s function, 50, 162
 differential equations and, 230
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Green’s function (continued)
 dyadic, 99–104, 107, 147
 expansion of, 92, 97
Fourier transform approach, 319–21
 independent of nature of input and, 

269
 mutual coupling, 427
 operators, 226
 radial, 164–70
 radial localized near-field, 158–63
 scalar, 90, 102–3, 111, 158–62
 in spectral domain, 320–21
 total, 492
 wave propagation, 336–38
 See also Antenna current Green’s 

function (ACGF); Cross-
correlation Green’s function; Free-
space Green’s function (FSGF)

Green’s tensor, 277
Group velocity
 constant, 354–56
 k-dependent, 353–54
 media, negative, 347–49
 negative, 348, 349–52

Helmholtz equation, 33, 42, 89, 156, 181
Hilbert transform relations, 332
Homogeneous space, 241
Homogeneous wave equation, 335
Homogeneous waves, 396–99
Hybrid Wilcox-Weyl expansion, 137–40
 general remarks, 140
 higher-order terms, 139
Hydrodynamic phenomenon, 177

Idealized voltages, 433
Illumination field, 298, 300, 381, 412
Imaging, 221
Impedance
 concept, 214
 equivalent, 215
 input, 31, 80
 load, 434
 Thevenin, 434
Impressed field, 263
Impulse response, 386
Independent poles, 367
Index of refraction, 347
Induced voltage, 405

Infinitesimal dipole model (IDM)
 for arbitrary antenna arrays, 426
 emphasis, 438
 mutual coupling approach, 437–63
 near field and, 438–40
 relative distribution, 445
Infinitesimal dipoles
 cross correlation between, 546–49, 557
 envelope correlation coefficient, 548
 illustrated, 547
 linear array of parallel, 554, 556
 linear vertically-polarized, 551, 553
 perpendicular, 549
Inhomogeneous wave equation, 335
Inhomogeneous waves, 396–99
Input impedance, 31, 80
Input impedance mutual coupling effect, 

434
Integral operator, 230
Integrations, order of, 147
Intensity, 205
Intensive manifoldness, 206
Interaction energy, radial Green’s functions, 

168–69
Interaction exchange energy, 501, 505, 508, 

511
Interaction fields, 491
Interaction operator
 approximation by MoM matrix, 

498–99
 defined, 491
 self, 490
 of two-antenna system, 490
Interactions
 antenna-antenna, 278–308
 near-field, 413–21
 with point sources, 420–21
 scalar, 243
 self, 70–71, 499–500, 503–4, 506–7, 

509–10
Interrelationships between operational modes
 general introduction, 259–60
 Mode A and Mode B, 270–78
 Mode A and Mode C, 261–69
 Mode B and Mode C, 278–308
Invariant transfer function, 296
Inverse Fourier transform, 253–54, 282, 339
Inverse Laplace transform, 334
Inverse reciprocity theorem, 244, 393
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Jordan’s lemma, 366

K-dependent group velocity, 353–54
Kramers-Kronig relations, 331–33, 356, 357

Landau condition, 334
Laplace expansion, 94
Laplace transform, 117–18, 334
Left-half plane (LHP), 333, 338, 341
Left-handedness (LH), 349
Legendre function, addition theorem, 92
Legendre polynomials, 90
Leibniz product rule, 148
Linear array of patch antennas, 443–46
Linearly divergent energy, 77
Linear wire antenna systems, 414–15
 application of ACGF formalism, 

392–400
 configuration, 392
 full-wave scattering solution, 394
 general formulation, 392–94
 interaction of, 394
 interaction with homogeneous and 

inhomogeneous waves, 396–99
 near-field interactions in, 413–21
 results, 399–400
 spectral analysis of ACGF, 394–96
 spectral analysis of interaction, 498
Load impedance, 434
Local delta sequence, 246
Local frame, 107, 161, 184
Localization
 coefficients, 512
 defined, 125
 of electromagnetic energy by embedded 

antennas, 338–40
 measurement, 430
 measurement, of radiated field, 505–13
 nonpropagating field, 38, 43
 partial, 513
 radial, 39
 spectral method and, 315
 stored energy and, 493–94
Localized electric field
 antenna excitation by, 241
 distribution, 234
Localized energy
 defined, 38, 125
 derivation of, 14

 electric radial, 127
 in electromagnetic field, 125–26
 in near-field spherical shell, 126
 radial, 133–34
 space-time approach, 38
 stored energy and, 125
Localized near fields, 417
Logarithmically divergent energy, 78
Longitudinal mode, 321
Lorentz force law, 318
Lorentz reciprocity theorem, 263, 268
Low-pass spatial filter, 141

Magnetic dipoles, 231
Magnetic energy
 densities, 121, 122, 123
 evaluation of, 60
Magnetic fields, computation, 275
Magnetic moments, 340–43
 quadrable term, 341–43
 term, 340–41
Magnetic permeability, 54, 326
Magnetic susceptibility, 326
Magnetic vector potential, 535
Magnetization current density, 326
Magnetization density, 321, 323
Manifolds, 106, 190
 differential, 230
 Euclidean, 198
 smooth, 255
Material response
 Fourier transform approach, 323–25
 multipole and Fourier transform 

approach comparison, 325–27
 multipole approach, 321–23
 theory, 317–43
 wave propagation, 335–36
Material response tensors
 advanced properties of, 333–34
 causality restrictions, 333–34
 characteristics, 328
 dissipative process, 329–30
 general properties of, 328–33
 Kramers-Kronig relations, 331–33
 Landau condition, 334
 non-dissipative process, 329–30
 Onsager relations, 330–31
 reality of the fields, 328–29
 stability restrictions, 333
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Matrix equation, 335
Matrix pencil method, 395
Maxwell’s equations, 24, 50, 54, 317–18
 defined, 5–6
 direction of power flow and, 337
 equivalent response functions, 363
 in Fourier domain, 326
 frequency-domain, 113
 full-wave numerical solution, 452
 independent terms, 280
 in near-field zone, 82
 numerical solution of, 141–43
 in presence of matter, 317
 propagating and evanescent parts, 116, 

123
 reactive energy and, 81
 receiving antenna problem and, 226
 satisfaction of, 59, 100
 in spectral domain, 319–20
 two curl, 346
 two divergence, 346
 vectorial structure of, 71
Maxwell’s theory, 128, 177
Mechanism of interaction, 260
Medium response, 345–47
Metamaterials
 applications, 368–70
 cases, 350–51
 defined, 45, 311
 electromagnetic energy and, 45
 far-field theory, 345–57
 introduction to, 311–12
 near-field theory of, 359–70
 negative refraction (NR), 349
 Poynting vector, 349
 scope and motivations, 312–13
 wave vector, 349
Method of Moment (MoM)
 basic formulation, 494–95
 dipole model comparison, 447, 449
 in equivalent dipole model method, 

443
 expansion of current, 413
 fields comparison, 446
 fields prediction, 447
 impedance matrix, 538, 539–40
 localization measurement, 430
 matrix, 498–99
 matrix decomposition, 484, 496
 mutual energy coupling, 483

 numerical ACGF using, 393
 numerical model using, 494–98
 in response to excitations, 418
 scattering code, 414–15, 419
MIMO systems
 analysis and design, 518
 antenna arrays, 518–21
 basic idea, 518
 channel matrix, 517, 519
 channel transfer function, 527–29
 choice of, 517
 cross correlation in, 530–60
 direct coupling path, 529
 electromagnetic theory, 521–29
 environment scattering obstacles, 525
 excitation fields, 528
 generic scheme, 519
 model for propagation channel, 525–26
 model for Rx array, 526–27
 model for Tx array, 522–25
 no scattering objects in propagation  

environment, 528–29
 overview, 518–21
 performance of, 518
 series connection of linear operations,  

520
 size and diversity gain tradeoff, 551
 statistical nature of, 519
Mode, 227, 239, 241
Mode A
 decoupling, 277
 determination, 274
Mode B interrelationship, 270–78
Mode C interrelationship, 261–69
Mode B
 decoupling, 277
 defined, 270
 derivation of main relation, 271–74
 geometrical part of electromagnetic 

process, 276
Mode A interrelationship, 270–78
Mode C interrelationship, 278–308
 sufficiently captured, 275
Mode C, 227, 239, 241
Mode A interrelationship, 261–69
Mode B interrelationship, 278–308
Morphogenesis
 in antenna engineering, 195–206
 comparison with Poynting flow, 

191–93
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 conclusion, 206–7
 defined, 196
 electromagnetic radiation and, 200
 epigenesis and, 197–99
 fundamental problem of, 178–91
 genesis of form, 179
 introduction to, 175–78
 singularities and, 193–95
 virtual and actual and, 201–5
 Waddington’s canalization and, 

199–201
Morphogenetic fields
 concept of, 205–6
 gradient of propagation potential, 206
 intensive nature of, 205
 obtaining, 178
Morphogenetic germ, 202
Morse functions, 194–95
Morse theory, 195
Motivation, this book, 1–4
Multiple Input, Multiple Output systems. 

See MIMO systems
Multiple scalar sources, 170–72
Multiple scattering effect, 463
Multipole expansion
 coefficients, 89, 93, 96
 prototype, 89, 96
 rearrangement of terms, 88–97
 of spectral interaction kernel, 289–92
 uniform convergence, 89, 291
Multipole moments
 defined, 290
 electromagnetic materials and, 321–23
 interpretation of multipole expansion, 

293
Mutual coupling, 425–80
 ACGF and, 429
 in antenna arrays, 468, 470
 applications, 436
 in applied electromagnetics, 430–36
 approach to, 426–27
 computational electrodynamics and,  

437–38
 conclusion, 479–80
 defined, 430, 433
 dipole model approach, 429
 effect of, 306–8
 equivalent dipole source models, 

440–43
 far fields and, 434

 flow chart representation, 468
 formulation of problem, 435–36
 general introduction, 425–30
 general theory advantages, 428–29
 Green’s function, 427
 idealized voltages and, 433
 IDM approach, 437–63
 for isolated system, 435
 linear arrays of patch antennas, 443–46
 load impedance, 434
 localized energy, 481–515
 minimal problem, 432
 motivations and context, 427–29
 optimization process, 475–77
 perturbative approach to computation, 

463–75
 physical understanding of, 428
 post-processing evaluation measure, 

477
 roadmap for structure, 431
 simple scenario, 432
 between source and receiving system,  

306
 theoretical perspective, 427
 theory structure, 429–30
 transfer functions, 435, 436, 522
 weak, 446–48
Mutual coupling effect
 current distribution, 470
 defined, 433, 434
 input impedance, 434
 near-field, 434
Mutual coupling operator, 471
Mutual energy coupling
 conclusion, 515
 in detection problems, 514
 in energy resources, 515
 examples using linear wire antenna 

arrays, 498–505
 exchange coefficients, 512
 formulation, 487–91
 initial formulation, 491–94
 interaction analysis, 488
 introduction to, 481–84
 localization coefficients, 512
 measurement of localization of radiated 

field, 505–13
MoM formulation, 483
 numerical model using MoM, 494–98
 potential applications, 513–14
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MoM formulation (continued)
 problem description, 484–87
 spectral analysis, 488
 in studies of bandwidth, 513–14
 two-wire system schematic, 511
 verification of the code, 497
Mutual interaction
 angular vector fields, 35
 different inner regions, 73
 outermost region and inner regions, 

71–72

Nanoelectromagnetics, 368–70
Nano-optics, 440
Nanotechnology, 44–45
Near field
 construction from far-field radiation  

pattern, 62–69
 dynamic splitting, 420
 dynamic structure of, 173
 electromagnetic energy and, 40
 energy flux, 124
 exterior domain, derivation of, 65–68
 fundamental evolution equations of, 

189–91
 generic, 414–15
 IDM method and, 438–40
 illumination by, 407
 importance of, 49
 lacking form, 179
 multiple scalar sources, 170–72
 in nano-systems, 45
 progressive building up in, 33
 radial, 160
 spectral analysis of, 101–5
 theory of, 12–14
Near-Field Communications (NFC), 10
Near-field interaction computation
 ACGF and traditional full-wave solvers,  

412–13
 ACGF approximation techniques,  

411–12
 ACGF in, 407–23
 benefits of, 410–11
 conceptual and computational aspects  

of, 411
 conclusion, 421–23
 interaction with point sources, 420–21
 introduction to, 407–8

 numerical analysis in linear wire 
antennas, 413–21

 preliminary motivations, 408–11
 S-O-Rx scenario, 410
 S-Rx scenario, 409
Near-field mutual coupling effect, 434
Near-field nano-optics, 440
Near-field pattern
 defined, 126
 introduction of, 153
Near-field shell
 critical reexamination of, 83–85
 defined, 99
 radial evanescent energy, 126–27
Near-field streamlines, 100, 109–11
Near-field structure
 from far-field point of view, 101
 in spatial domain, 34, 57–62
Near-field theory, 359–70
Near-field wavefront, 194
Near-field zone
 morphogenesis of electromagnetic 

radiation in, 175–207
 propagation concept, 106–9
Negative group velocity (NGV)
 achieving, 357
 constant, 354–56
 defined, 349
 media, 347–49
 physical meaning of, 349–52
 propagation, 348
Negative refraction (NR), 349
Network history, 214
Nonasymmetric antenna shapes, 241
Nonlocality, 312, 328
Nonlocal medium
 defined, 361
 distribution of complex poles, 364
 dyadic Green’s function, 363–66
 theory for complex poles engineering 

in, 367–68
Nonlocal metamaterials, 17–18
 applications, 17
 electromagnetic model, 360–63
 engineering, 313–15
 far-field theory of, 345–57
 near-field theory of, 359–70
Nonlocal MTM, 368–69
Nonpropagating fields, 13, 38, 43
Nonpropagating modes, 412, 512
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Nonresonant environment, 365
Nonresonant operator, 299
Numerical efficiency, 457

Observational frame, 116
Odd index, 72
Onsager relations, 330–31
Optimization process, 475–77
Order of integrations, 147
Orthonormal vectors, 256
Oscillator-oscillator coupling, 298

Pareseval (power) theorem, 338
Partial differential equations, 130
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Perfect electric conductor (PEC) boundary 

condition, 374, 382, 465, 489
Perturbation approach, 80
Perturbation theory, 463–75
 advantages of using, 464
 concept of, 464–65
 introduction to, 463–64
 in large array analysis, 473
 MoM matrix inversion comparison, 

474
 numerical examples, 472–75
 perturbative series derivation, 465–72
 summary, 475
Perturbative series
 advantages of, 471
 derivation of, 465–72
 first order perturbative term, 471–72
 number of terms needed, 473
Phenotypes, 201
Photonic crystals, 363
Physical layer, 175, 267
Planck-Einstein equation, 193
Polarizability tensor, 526
Polarization
 characteristic, 385
 geometry interaction, 387
 probability density function of, 384
 random, 384
 of the wave mode, 336
Polarization current density, 326
Polarization density, 321, 323
Polarization tensor, 325
Post-processing evaluation measure, 477
Potential function, gradient of, 178
Potential theory, 90

Power density, time-averaged, 75
Power flow, 54–57
Power series, 97
Poynting flow
 density, 191
 morphogenesis and, 191–93
Poynting theorem, 76, 100, 499
 complex, 120–23
 defined, 55
 time-dependent interaction, 148
Poynting vector
 complex, 56, 57, 121, 122
 imaginary part, 56
 in metamaterial, 349
 real part, 56
 surface integral, 57
 time-dependent, 123
Principle of Finite Energy Difference, 30, 36, 

80–81
Produced field, 226
Product theorem, 383
Prony’s algorithm, 395, 422
Propagating modes, 178, 181, 183, 412
Propagating part, 108, 113, 115
Propagating wave, 25
Propagation
 in antenna near-field zone, 106–9
 defined, 177
 field form movement, 197
 negative group velocity (NGV), 348
 radial Green’s functions, 167
 scalar Green’s function, 163, 164, 165
 source-free, 359
Propagation channel, 525–26
Propagation model
 for antenna fields, 180–86
 illustrated, 185
Propagation potential
 differences in, 187
 gradient of, 188, 190
 idea of, 186–89
 measurement, 187
 morphogenetic field and, 206
 variations in, 188
Pure propagating modes, 25

Quantum Particle Swarm Optimization 
(QPSO) algorithm, 441, 446, 
450, 452, 456, 477
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Radial energy density function, 34, 61
Radial evanescent energy, 126–27
Radial Green’s functions, 164–70
 connection between evanescent field 

and electrostatics, 166
 energy ratio, 167–68
 independence of wavenumber, 166
 interaction energy, 168–69
 propagation, 167
 rate of decay, 166 
 singularity, 166
 spherical symmetry, 166
 total radial evanescent energy, 169–70
 vanishing of total propagating part, 167
Radial local frame, 161
Radial localized energy, 133–34
Radial localized near field, 160, 162–63
Radial near fields, 160
Radial streamlines, 110–11
 concept of, 135
 from far-field point of view, 134–40
 magnetic fields, 115
Radiated field formula, 147
Radiation density
 defined, 61
 equality of, 77
 at far-field zone, 76
Radiation pattern
 antenna array, 439
 functions, 535
 in interactions terms, 79
Radical localization, 39
Rapid decay functions, 251
Rate of decay, 166
Reactive energy, 13, 27–38
 background to concept, 28–31
 beyond, 40
 computations of, 31
 concept of, 74–85
 defined, 27
 generalized approach to, 31–37
 input impedance and, 80
 introduction to, 27–28
 limits of, 37–38
 lower bound to, 69
 performance of antenna systems and, 

31
 problem interrelationship, 32
 procedure for computing, 83
 technical approach, 32

 total, 37
Reactive energy densities
 as ambiguous, 37
 as assumed, 81
 construction off, 76–79
 defined, 76
 radial, 78
 terms as not unique, 37
Reactive field, 74–75
Reactive field energy, 81–83
Rearranged series, 89
Receiving antenna, 306–8
 arbitrarily-shaped, 386
 general Euclidean motion, 302–4
 mutual coupling, 306
 rigid motion of, 282
 total surface, 283
 See also Antenna-antenna interactions
Receiving antenna systems
 ACGF formalism for, 375–92
 approximation via ACGF formalism, 

388–92
 computational problem, 375
 equivalent circuit, 405
 extension to array configurations, 

379–81
 general formulation, 375–77
 incident plane wave interaction, 399
 induced voltage, 405
 interaction with plane waves, 381–87
 surface-wire, ACGF for, 377–79
 system circuit model, 405
 transmitting mode, 405
Recoverable, stored energy, 39, 43
Refraction index, 356
Regions, electromagnetic interaction 

between, 60
Reimann-Lebesgue lemma, 285
Relational structure, 79
Renewable energy, 44
Resonant operator, 299
Right-half plane (RHS), 338, 341
Right-handedness (RH), 349
Rotational matrix, 116, 147–48, 184, 493
Rx array
 current on nth element, 527
 in MIMO system, 534
 model for, 526–27
 total current, 527
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Scalar antenna near field, 155–73
 conclusion, 172–73
 derivation of radial localized near-field 

Green’s function, 162–63
 introduction to, 155–56
 motivation of study of, 156–58
 multiple scalar sources, 170–72
 problem, understanding, 158
 radial localized near-field Green’s 

function, 158–62
 results and physical consequences, 

163–70
Scalar Green’s function
 defined, 102, 247, 440
 divided into sum of two parts, 495
 dynamic spectral representations, 

495–98
 expression, 158
 as invariant, 162
 plane wave spectrum analysis, 181
 propagation, 163, 164, 165
 rotational invariance, 111
 spectral integrals, 483
 total, 102–3, 159
 Wilcox expansion and, 90
Scalar interaction, 243
Scalar response function, 361
Scalar source density, 158
Scalar theory, 243–47
Self energy, 128
Self-interaction operator, 466, 490
Self-interactions
 energy, 499, 500, 503–4, 506–7, 

509–10
 far field, 61
 inner regions, 71
 outermost region, 70–71
Shrodinger equation, 330
Signum function, 104
Singular distribution, 246
Singularities
 complex poles, 365
 defined, 52, 193
 eigenvalues, 194
 index of, 195
 role of, 193–95
 search for, 52, 176
Singularity Expansion Method (SEM), 18
Sinusoidal current distribution, 560

Source antenna
 local rotation of, 304–6
 mutual coupling, 306
 near-field structure of, 305
 radiation field, 282
 See also Antenna-antenna interactions
Source correlation matrix, 539
Source distribution, geometrical description, 

105
Space, 298
Space-time process, 177
S-parameters
 of antenna array, 541
 in estimation of cross correlation,  

541–42
 formula, 532, 543
 methods, 540–44
 regrouping interacting antennas and, 

543
Spatial bandwidth, 260, 287–88
 arising of, 299
 finite, 293
 as invariant, 304
Spatial dispersion, 312, 327, 351
Spatial distribution
 energy density, 339
 in exterior region dispersion, 356
Spatial distribution in exterior region
 introduction to, 70
 mutual interaction (different inner 

regions), 73
 mutual interaction (outermost region 

and inner regions), 71–72
 self-interactions of inner regions, 71
 self-interactions of outermost region,  

70–71
 summary and conclusion, 74
 See also Electromagnetic energy
Spatial diversity systems
 defined, 517
 numerical studies, 546–49
 verification, 545–46
Spatial effective bandwidth, 288
Spatial electromagnetics, 17, 317–43
Spatial Fourier transform, 104, 108, 273, 

382, 460
Spatial structures
 conclusion, 46–47
 defined, 8
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Spatial structures (continued)
 electromagnetic fields, 21–47
 near-field, 34
 relevance of, 9–11
Spatio-spectral analysis, 216
Spectral AB-transfer function, 276
Spectral analysis
 antenna near fields, 101–20
 of antenna-source radiated fields, 

270–78
 with equivalent dipole model, 457–63
 mutual energy coupling, 488
 Weyl expansion, 101
Spectral decomposition, with Weyl 

expansion, 101–5
Spectral domain
 Green’s function tensor in, 320–21
 Maxwell’s equations in, 319–20
Spectral function, 274
Spectral integrals, 478–79, 483
Spectral interaction function, 398
Spectral interaction kernel
 boundedness property, 286–87
 examples of, 288–89
 general behavior of, 284–88
 multipole expansion of, 289–92
 short-wave behavior of, 285–86
Spectral polarization dyad, 110, 272
Spectral radius, 473, 474
Spectral theory, 99–145
 analysis, 101–20
 far field formation, 141–43
 introduction to, 99–101
 localized and stored energies, 120–34
 near-field radial streamlines, 134–40
 See also Electromagnetic fields
Spherical Hankel function, 64, 65
Spherical symmetry, 166
Stability restrictions, 333
Standard morphogenetic germ, 203
Static genesis, 279, 282, 297–301
 conclusion modification of, 304
 defined, 297
 interaction integral and, 300–301
 physical interaction mechanism, 308
 picture of, 303–4
Stored energy
 concept of, 129–33
 defined, 38, 41
 field, 84

 in field oscillator, 131
 general pattern of working with, 39
 localization and, 38–39, 43, 493–94
 localized energy and, 125
 nature of, 41
 as recoverable, 39, 43
 technical discussions, 42
Streamlines
 defined, 110
 electromagnetic field, 111
 near-field, 109–11
 radial, 110–11
Strong mutual coupling
 arrays with, 448–51
 method to account for, 451–57
Structure, this book, 12–18
Superposition rule, 558–60
Surfaces, 229, 230, 251
 frequency selective, 363
 shape of, 231
 topology of, 230
 unit vectors tangential to, 262
Surface-wire antenna systems, 377–79
Symmetry
 of 3D ACGF tensor, 264–65
 of ACGF, 261–69
 comparison with traditional reciprocity 

methods, 266–69
 derivation of relation, 261–64
 introduction, 261
 results, 265–66
Synthesis, 221–22
System functions, 268, 522

Tail
 convergent series, 95
 infinite series, 68
Taylor series, 91, 289, 314
Tempered distribution theory, 251
Temporal dispersion, 313, 351
Theoretical program, 51–53
Thevenin impedance, 434
Time-averaged energy density, 75
Time-averaged spatial distribution, 339
Time-dependent electric and magnetic 

energy densities, 123
Time-dependent interaction Poynting 

theorem, 148
Time-dependent Poynting vector, 123
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Time-harmonic excitation, 8
Topological dual, 243
Topological layer, 175
Total energy density, 82, 85
Total evanescent field energy
 calculation of, 149–50
 divergence of, 149–53
 exclusion angle and, 153
 general expression justification, 152
Total interaction energy, 128
Total radial evanescent energy, 169–70
Transfer function
 channel, 527–29
 concept, 214
 mutual coupling, 435, 436, 522
Traveling waves, 178
Triangular inequality, 291
Two-antenna systems, interaction operator 

of, 490
Tx array
 ACGF of, 522–23
 current distribution, 522
 in MIMO system, 534
 model for, 522–25
 system model for nth element, 524
 total MIMO current, 523–25

U-characteristic excitation, 391
Uniform convergence, 146, 250, 291
Uniformly bounded sequence, 286
Upper half plane (UHP), 334

Vector distribution, 249–50
Vector identity, 122
Vector multipoles, 63–64
Virtual and actual, 201–5
Virtual near-field array, 370
Visible domain filter, 142

Waddington’s canalization, 199–201

Wave propagation
 backward, 367
 dispersion relations, 335–36
 Green’s function, 336–38
Wavevector, 459
Weak mutual coupling, 446–48
Weierstrass-M test, 93, 94, 97
Weyl expansion
 absolute convergence, 146
 applicability of, 99
 expression, 159
 generalization of, 136–37
 hybrid Wilcox-Weyl expansion, 137–40
 interchange of integration and 

differentiation, 146–47
 local frame, 107
 plane-wave spectrum, 181
 simplification, 103
 spectral analysis, 101
 spectral factor, 138
 spherical coordinates, 136–37
 total scalar Green’s function, 159
 uniform convergence, 146
 as uniformly convergent, 152
Weyl identity, 103
Wilcox expansion
 energy densities, 77
 hybrid Wilcox-Weyl expansion, 137–40
 monopole contribution, 68
 physical interpretation, 33–35, 62
 recursive relations, 64
 recursive structure, 101
 scalar Green’s function and, 90
 uniform convergence, 87, 89
 zeroth-order term, 33, 58
Wilcox series, 68, 135
WIPL-D, 472
Wireless communications, 4

Zero-temporal dispersion, 356–57
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