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The Scalar Helmholtz Equation

Just as in Cartesian coordinates, Maxwell’s equations in
cylindrical coordinates will give rise to a scalar Helmholtz
Equation. We study it first.

∇2ψ + k2ψ = 0

In cylindrical coordinates, this becomes

1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1
ρ2
∂2ψ

∂φ2 +
∂2ψ

∂z2 + k2ψ = 0

We will solve this by separating variables:

ψ = R(ρ)Φ(φ)Z (z)
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Separation of Variables

Substituting and dividing by ψ, we find

1
ρR

d
dρ

(
ρ

dR
dρ

)
+

1
ρ2Φ

d2Φ

dφ2 +
1
Z

d2Z
dz2 + k2 = 0

The third term is independent of φ and ρ, so it must be constant:

1
Z

d2Z
dz2 = −k2

z

This leaves

1
ρR

d
dρ

(
ρ

dR
dρ

)
+

1
ρ2Φ

d2Φ

dφ2 + k2 − k2
z = 0
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Separation of Variables

Now define the

Radial Wavenumber

k2
ρ = k2 − k2

z

and multiply the resulting equation by ρ2 to find

ρ

R
d
dρ

(
ρ

dR
dρ

)
+

1
Φ

d2Φ

dφ2 + k2
ρρ

2 = 0

The second term is independent of ρ and z, so we let

1
Φ

d2Φ

dφ2 = −n2
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Separation of Variables

This process leaves an ordinary differential equation in ρ alone.
We thus have:

The Cylindrical Helmholtz Equation, Separated

ρ
d
dρ

(
ρ

dR
dρ

)
+
[
(kρρ)2 − n2

]
R = 0

d2Φ

dφ2 + n2Φ = 0

d2Z
dz2 + k2

z Z = 0

k2
ρ + k2

z = k2

The first of these equations is called Bessel’s Equation; the
others are familiar.
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The Harmonic Equations

We have already seen equations like those in the z and φ
directions; the solutions are

trigonometric, or
exponential.

The only novelty is that φ is periodic or finite; it therefore is
always expanded in a series and not an integral.
If there is no limit in the φ direction we find

The Periodic Boundary Condition

Φ(φ) = Φ(φ+ 2π)

This implies that n ∈ Z if the entire range is included.
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Bessel’s Equation For Statics

The remaining equation to be solved is the radial equation,
i.e. Bessel’s Equation.
Note that the problem simplifies considerably if kρ = 0
(which would be the case if ρ = 0.

In this case, we have

Bessel’s Equation for Statics

ρ
d
dρ

(
ρ

dR
dρ

)
− n2R = 0

To solve it, let
ρ = ex

so
dρ
dx

= ex = ρ.
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Bessel’s Equation For Statics

This implies that
d

dx
=

dρ
dx

d
dρ

= ρ
d
dρ

Our equation therefore becomes

d2R
dx2 − n2R = 0

The solutions to this are

R(x) =

{
A + Bx n = 0

Aenx + Be−nx n 6= 0

and thus the solutions really are

Static Solutions of Bessel’s Equation

R(ρ) =

{
A + B ln ρ n = 0

Aρn + Bρ−n n 6= 0
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Bessel Functions

We are generally more interested in the dynamic case in which
we must solve the full Bessel Equation:

ξ
d
dξ

(
ξ

dR
dξ

)
+
[
ξ2 − n2

]
R = 0

(We normalize kρ = 1, and rewrite the equation in terms of ρ
instead of ξ) To solve this equation, we suppose

R(ξ) = ξα
∞∑

m=0

cmξ
m

Now
dR
dξ

=
∞∑

m=0

(α + m)cmξ
α+m−1
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Bessel Functions

Thus

ξ
dR
dξ

=
∞∑

m=0

(α + m)cmξ
α+m

and
d
dξ

(
ξ

dR
dξ

)
=
∞∑

m=0

(α + m)2cmξ
α+m−1

so finally

ξ
d
dξ

(
ξ

dR
dξ

)
=
∞∑

m=0

(α + m)2cmξ
α+m

Now, we can plug in...
∞∑

m=0

(α + m)2cmξ
α+m +

[
ξ2 − n2

] ∞∑
m=0

cmξ
α+m = 0
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Bessel Functions

We now have
∞∑

m=0

[
(α + m)2 − n2

]
cmξ

α+m +
∞∑

m=0

cmξ
α+m+2 = 0

or
∞∑

m=0

[
(α + m)2 − n2

]
cmξ

α+m +
∞∑

m=2

cm−2ξ
α+m = 0

We can proceed by forcing the coefficients of each term to
vanish. We fix c0 6= 0 because of the homogeneity of the
equation.
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Bessel Functions

For ξα:
(α2 − n2) = 0

since c0 6= 0 by assumption,

α = ±n.

For ξα+1: [
(α + 1)2 − n2

]
c1 = 0

Thus
c1 = 0
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Bessel Functions

Finally, for all other ξα+m:[
(α + m)2 − n2

]
cm + cm−2 = 0

Assuming α = n,

cm =
−1

m(m + 2n)
cm−2

Thus, immediately, for p ∈ Z

c2p+1 = 0
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Bessel Functions

Given that the odd coefficients vanish, we let m = 2p and let

ap = c2p

So...
ap = c2p =

−1
4p(p + n)

c2p−2 = ap−1

and

a1 =
−1

4(n + 1)
a0

a2 =
−1

4(n + 2)(2)

−1
4(n + 1)

a0

a3 =
−1

4(n + 3)(3)

−1
4(n + 2)(2)

−1
4(n + 1)

a0
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Bessel Functions

Thus, in general,

ap =
(−1)pn!

4pp!(n + p)!
a0

Thus, if we choose 2−nn!a0 = 1, and recall

R(ξ) = ξα
∞∑

m=0

cmξ
m =

∞∑
p=0

apξ
2p+n

we can (finally!) define the

Bessel Function of Order n

Jn(ξ) =
∞∑

p=0

(−1)p

p!(n + p)!

(
ξ

2

)2p+n
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Observations

This function is entire; it exists and is differentiable for all ξ.
This is only one solution of the equation:

We will get to the other shortly.
The other solution is not regular at the origin since the
coefficient of the second order derivative vanishes there.

Note that the solution looks like the corresponding static
(ρn) solution at the origin.
Note also that fractional orders are possible, but do not
arise as commonly in applications (Why not?)

D. S. Weile Cylindrical Waves



Cylindrical Waves
Guided Waves

Separation of Variables
Bessel Functions
TEz and TMz Modes

The Other Solution

Our original equation (normalized) was

ξ
d
dξ

(
ξ

du
dξ

)
+
[
ξ2 − n2

]
u = 0

The other solution, v must solve

ξ
d
dξ

(
ξ

dv
dξ

)
+
[
ξ2 − n2

]
v = 0

Multiply the first equation by v and the second by u, subtract,
and divide by ξ:

v
d
dξ

(
ξ

du
dξ

)
− u

d
dξ

(
ξ

dv
dξ

)
= 0
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The Other Solution

Expanding this out

ξ(u′′v − uv ′′) + u′v − uv ′ = 0,

or
d
dξ
[
ξ(u′v − uv ′)

]
= 0

It therefore stands to reason that

ξ(u′v − uv ′) = C

or
u′v − uv ′

v2 =
C2

ξv2
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The Other Solution

This of course implies

d
dξ

(u
v

)
=

C2

ξv2

This can be integrated to give

u
v

= C1 + C2

∫
dξ
ξv2

or
u(ξ) = C1v(ξ) + C2v(ξ)

∫
dξ

ξv(ξ)2
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The Other Solution

Setting C1 = 0, v(ξ) = Jn(ξ), expanding the series and
integrating gives rise to the

Neumann Function

Yn(ξ) = Jn(ξ)

∫
dξ

ξJ2
n (ξ)

This function
This function is also called the “Bessel function of the
second kind.”
It is sometimes denoted by Nn(ξ).

This function is not defined for ξ = 0.
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Graphs of Jn(x)

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

 

 
J0(x)
J1(x)
J2(x)
J3(x)
J4(x)

D. S. Weile Cylindrical Waves



Cylindrical Waves
Guided Waves

Separation of Variables
Bessel Functions
TEz and TMz Modes

Graphs of Yn(x)
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Hankel Functions

The Jn and Yn are both real functions for real arguments.
They must therefore represent standing waves (Why?).

Hankel functions represent traveling waves.

Traveling waves are represented by

Hankel Functions

H(1)
n (x) = Jn(x) + jYn(x)

H(2)
n (x) = Jn(x)− jYn(x)

These are called Hankel functions of the first and second kind,
respectively.
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Hankel Functions

The Jn and Yn are both real functions for real arguments.
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Small Argument Behavior

Suppose Re(ν) > 0.
Let ln γ = 0.5772⇒ γ = 1.781 (i.e. ln γ is “Euler’s
constant”).

Consider the behavior of the Bessel and Neumann functions as
x → 0:

J0(x) → 1

Y0(x) → 2
π

ln
γx
2

Jν(x) → 1
ν!

(x
2

)ν
Yν(x) → −(ν − 1)!

π

(
2
x

)ν
The only Bessel functions finite at the origin are the Jn(x).
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Large Argument Behavior

As x →∞:

Jν(x) →
√

2
πx

cos
(

x − π

4
− νπ

2

)
Yν(x) →

√
2
πx

sin
(

x − π

4
− νπ

2

)
Given the definition of Hankel functions, we must also have

H(1)
ν (x) →

√
2

jπx
j−νejx

H(2)
ν (x) →

√
2j
πx

jνe−jx

The H(2)
ν represent outward traveling waves.

Why are these all proportional to x−
1
2 ?
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Imaginary Arguments

In applications, we get Bessel functions of dimensionless
quantities: Bn(kρρ).
If kρ becomes imaginary, we have evanescence in the ρ
direction.

For these applications, we define the

Modified Bessel Functions

In(x) = jnJn(−jx)

Kn(x) =
π

2
(−j)n+1H(2)

n (−jx)

These are real functions of real arguments.
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Graphs of In(x)
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Graphs of Kn(x)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 
K0(x)
K1(x)
K2(x)
K3(x)
K4(x)

D. S. Weile Cylindrical Waves



Cylindrical Waves
Guided Waves

Separation of Variables
Bessel Functions
TEz and TMz Modes

Outline

1 Cylindrical Waves
Separation of Variables
Bessel Functions
TEz and TMz Modes

2 Guided Waves
Cylindrical Waveguides
Radial Waveguides
Cavities

D. S. Weile Cylindrical Waves



Cylindrical Waves
Guided Waves

Separation of Variables
Bessel Functions
TEz and TMz Modes

Transverse Magnetic Fields

Let
A
µ

= uzψ

for some solution of the Helmholtz equation ψ. Then

Hρ = 1
ρ
∂ψ
∂φ Eρ = 1

ŷ
∂2ψ
∂ρ∂z

Hφ = −∂ψ
∂ρ Eφ = 1

ŷρ
∂2ψ
∂φ∂z

Hz = 0 Ez = 1
ŷ

(
∂2

∂z2 + k2
)
ψ

This is a general formula for a TMz field; Hz = 0.
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Transverse Electric Fields

Let
F
ε

= uzψ

for some solution of the Helmholtz equation ψ. Then

Eρ = −1
ρ
∂ψ
∂φ Hρ = 1

ẑ
∂2ψ
∂ρ∂z

Eφ = ∂ψ
∂ρ Hφ = 1

ẑρ
∂2ψ
∂φ∂z

Ez = 0 Hz = 1
ẑ

(
∂2

∂z2 + k2
)
ψ

This is a general formula for a TEz field; Ez = 0.
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The Circular Waveguide

A circular waveguide is a tube of (say) radius a.
The field must be finite at ρ = 0, so only Jn are admissible.

Without further ado, the wave function for TMz waves is

ψ = Jn(kρρ)

{
sin nφ
cos nφ

}
e−jkzz

The azimuthal dependence keeps the transverse fields in
phase; either sine or cosine can be chosen.
For n = 0 we obviously choose the cosine.
The restriction to n ∈ Z is required because of the periodic
boundary condition. Other boundaries would lead to other
results.
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Boundary Conditions

Since
Ez =

1
ŷ

(k2 − k2
z )ψ

we need ψ to vanish on the walls. This implies

Jn(kρa) = 0

giving the

Values for kρ

kρ =
χnp

a

where χnp is the pth solution of

Jn(χnp) = 0.

D. S. Weile Cylindrical Waves



Cylindrical Waves
Guided Waves

Cylindrical Waveguides
Radial Waveguides
Cavities

Roots of Bessel Functions, χnp

The roots of the Bessel functions are well tabulated.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
p = 1 2.405 3.832 5.136 6.380 7.588 8.771
p = 2 5.520 7.016 8.417 9.761 11.065 12.339
p = 3 8.654 10.173 11.620 13.015 14.732
p = 4 11.792 13.324 14.796

For TMz modes, we have:

ψTM
np = Jn

(χnpρ

a

){ sin nφ
cos nφ

}
e−jkzz

with (χnp

a

)2
+ k2

z = k2
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TEz Modes

The wave function for TEz waves is

ψ = Jn(kρρ)

{
sin nφ
cos nφ

}
e−jkzz

just as for TMz and for the same reasons. (Here, of course,
F = εψuz .)
Now

Eφ =
∂ψ

∂ρ
,

so we need
J ′n(kρa) = 0.
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TEz Modes

We therefore find the radial wavenumber must be of the form

Values for kρ

kρ =
χ′np

a

where χ′np is the pth solution of

J ′n(χ′np) = 0.
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Roots of Bessel Function Derivatives, χ′np

The roots of the Bessel function derivatives are also well
tabulated.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
p = 1 3.832 1.841 3.054 4.201 5.317 6.416
p = 2 7.016 5.331 6.706 87.015 9.282 10.520
p = 3 10.173 8.536 9.969 11.346 12.682 13.987
p = 4 13.324 11.706 13.170

For TEz modes, we have:

ψTE
np = Jn

(
χ′npρ

a

){
sin nφ
cos nφ

}
e−jkzz

with (
χ′np

a

)2

+ k2
z = k2
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Cutoff

Cutoff occurs when kz = 0 We can thus compute the

Cutoff Wavenumber

(kc)TM
np =

χnp

a
(kc)TE

np =
χ′np

a

and the

Cutoff Frequencies

(fc)TM
np =

χnp

2πa
√
µε

(fc)TE
np =

χ′np

2πa
√
µε

Cutoff frequency is thus proportional to the roots χnp and
χ′np.
The fundamental mode is TE11.
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Modal Impedance

The calculation of impedance is just like that in rectangular
waveguides. The result is the same too:

Z TE
0 =

Eρ
Hφ

= −
Eφ
Hρ

=
ωµ

kz

and
Z TM

0 =
Eρ
Hφ

= −
Eφ
Hρ

=
kz

ωε

Other cylindrical waveguides can be analyzed similarly;
homework will contain examples.
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Radial Waveguides

In addition to cylindrical waveguides, we can consider
guides that carry waves radially.
The simplest such guide is a parallel plate waveguide,
analyzed to consider radial propagation.
We call the distance between the plates (in the z-direction)
a.

For TMz waves, we need Eρ = Eφ = 0.
Both components are proportional to a derivative of ψ in
their respective directions, so the wave functions are

TMz Wavefunctions for Parallel Plate Guide

ψTM
mn = cos

(mπ
a

z
)

cos nφH(2)
n (kρρ)
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Radial Waveguides

In addition to cylindrical waveguides, we can consider
guides that carry waves radially.
The simplest such guide is a parallel plate waveguide,
analyzed to consider radial propagation.
We call the distance between the plates (in the z-direction)
a.
For TMz waves, we need Eρ = Eφ = 0.

Both components are proportional to a derivative of ψ in
their respective directions, so the wave functions are

TMz Wavefunctions for Parallel Plate Guide

ψTM
mn = cos

(mπ
a

z
)

cos nφH(2)
n (kρρ)
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Radial Waveguides

In addition to cylindrical waveguides, we can consider
guides that carry waves radially.
The simplest such guide is a parallel plate waveguide,
analyzed to consider radial propagation.
We call the distance between the plates (in the z-direction)
a.
For TMz waves, we need Eρ = Eφ = 0.
Both components are proportional to a derivative of ψ in
their respective directions, so the wave functions are

TMz Wavefunctions for Parallel Plate Guide

ψTM
mn = cos

(mπ
a

z
)

cos nφH(2)
n (kρρ)
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Radial Waveguides

In addition to cylindrical waveguides, we can consider
guides that carry waves radially.
The simplest such guide is a parallel plate waveguide,
analyzed to consider radial propagation.
We call the distance between the plates (in the z-direction)
a.
For TMz waves, we need Eρ = Eφ = 0.
Both components are proportional to a derivative of ψ in
their respective directions, so the wave functions are

TMz Wavefunctions for Parallel Plate Guide

ψTM
mn = cos

(mπ
a

z
)

cos nφH(2)
n (kρρ)
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Radial Wavguides

The solution on the previous slide chose cos nφ for
simplicity; sin nφ is legal but gives no new information.
The solution on the previous slide is for outgoing waves,
incoming waves are proportional to H(1)

n (kρρ).
For TEz waves, we need the same components to vanish.
Here, they are directly proportional to the wavefunction so
we find the

TEz Wavefunctions for Parallel Plate Guide

ψTE
mn = sin

(mπ
a

z
)

cos nφH(2)
n (kρρ)

In either case we find that

kρ =

√
k2 −

(mπ
a

)2
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Phase Constant and Velocity: An Aside

In general, any wave can be written in polar form

ψ(x , y , z) = A(x , y , z)ejΦ(x ,y ,z)

where A,Φ ∈ R. In the time domain, this wave becomes

Re
{

A(x , y , z)ejΦ(x ,y ,z)ejωt
}

A surface of constant phase thus has the form

ωt + Φ(x , y , z) = constant
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Phase Constant and Velocity: An Aside

This equation can be differentiated with respect to t to give

ω +∇Φ · vp = 0

This equation cannot be solved per se; it is one equation in
three unknowns!
If we choose a direction, we can solve it along that
direction (i.e., we can find the speed we need to move to
keep the phase fixed.)

Thus, we have the

Phase Velocity in the x-Direction

vpx = − ω
∂Φ
∂x
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Phase Constant and Velocity: An Aside

We can also define the

Phase Velocity in the Direction of Travel

vp = − ω

|∇Φ|

In any case, we have the

Wavevector

β = −∇Φ

We would like to see how these ideas apply to radial travel.
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Phase Velocity of Radial Waves

From the above discussion, we can define

βρ = − d
dρ

tan−1 Yn(kρρ)

Jn(kρρ)

Let us compute this:

− d
dρ

tan−1 Yn(kρρ)

Jn(kρρ)
= − 1

1 +
(

Yn(kρρ)
Jn(kρρ)

)2

[
d
dρ

Yn(kρρ)

Jn(kρρ)

]

= − kρ

1 +
(

Yn(kρρ)
Jn(kρρ)

)2
Y ′n(kρρ)Jn(kρρ)− Yn(kρρ)J ′n(kρρ)

J2
n (kρρ)
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Phase Velocity of Radial Waves

The Wronskian

Jn(x)Y ′n(x)− J ′n(x)Yn(x) =
2
πx

.

Thus

βρ =
kρ

1 +
(

Yn(kρρ)
Jn(kρρ)

)2
1

J2
n (kρρ)

2
πkρρ

=
2
πρ

1
J2

n (kρρ) + Y 2
n (kρρ)
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Phase Velocity of Radial Waves

Now, as ρ→∞, we can substitute the large argument
approximations:

βρ =
2
πρ

1
J2

n (kρρ) + Y 2
n (kρρ)

→ 2
πρ


[√

2
πkρ

cos
(

kρρ−
π

4
− nπ

2

)]2

+

[√
2
πkρ

sin
(

kρρ−
π

4
− nπ

2

)]2

−1

= kρ

Why would we expect this?
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Modal Impedance and Cutoff

Impedance can be computed in the usual manner:

Outward-Travelling Modal Impedance

Z+ρTM = − Ez
Hφ

=
kρ
jωε

H(2)
n (kρρ)

H(2)′
n (kρρ)

Z+ρTE =
Eφ

Hz
=

jωµ
kρ

H(2)
n (kρρ)

H(2)′
n (kρρ)

Note that this is not purely real. Now, it should be remembered
that

kρ =

√
k2 −

(mπ
a

)2
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Modal Impedance and Cutoff

We thus have a purely imaginary radial wavenumber (−jα) if
ka < mπ. Recall

H(2)
n (−jαρ) =

2
π

jn+1Kn(αρ)

Plugging this in to our expression for TM impedance, we find

Z+ρTM =
jα
ωε

Kn(αρ)

K ′n(αρ)

Since the Kn are real functions of real arguments, this
expression is purely imaginary and no energy propagates.
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TM0n Modes

If
a <

λ

2
only m = 0 modes propagate. (These are all TMz .)
In this case we have

TM0n Wavefunctions

ψTM
0n = cos nφH(2)

n (kρ)

How can large n modes propagate?
Why is this cause for concern?
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Impedance of TM0n Modes

To understand what is happening, we look at the expression

Z TM
+ρ = −jη

H(2)
n (kρ)

H(2)′
n (kρ)

Using a well-known identity (obtained by differentiating and
manipulating Bessel’s equation) we can write

Z TM
+ρ = −jη

H(2)
n (kρ)

n
x H(2)

n (kρ)− H(2)
n+1(kρ)

By examining the (absolute) phase angle of the impedance, we
can see how efficiently each mode carries energy.
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Absolute Impedance Phase vs. kρ
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Gradual Cutoff

The last slide shows that as the frequency increases, each
mode carries power more efficiently.
The transition from storing energy to carrying it occurs at

kρ = n

This is exactly where the radial waveguide is n
wavelengths in circumference.
This phenomenon is called gradual cutoff and it is related
to the poor radiation ability of small antennas.
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The TM00 mode

The dominant mode in the radial parallel plate guide is the
TM00 mode.
The outwardly traveling fields are given by

E+
z =

k2

jωε
H(2)

0 (kρ)

H+
φ = kH(2)

1 (kρ)

This is a TEM mode and can be analyzed with a
transmission line analysis if desired.
The inductance/capacitance per unit length change with
distance.
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Feynman’s Analysis

The Nobel Laureate Richard P. Feynman used a
particularly simple approach to the analysis of cylindrical
resonators.
The approach also demonstrates the evolution from statics
to dynamics.
It also introduces Bessel Functions without partial (or even
ordianary) differential equations!

So consider a circular capacitor with a static electric field E0. If
the field begins to oscillate with frequency ω, a magnetic field is
created.
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Feynman’s Analysis

To find the magnetic field, we can apply the Ampere-Maxwell
law to a circle C of radius ρ centered on the axis:∮

∂C
H · dl = jωε

∫∫
C

E · dS

2πρHφ = jωεπρ2Ez

Hφ =
jωερ

2
E0

=
jkρ
2η

E0
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Feynman’s Analysis

Now, this magnetic field is also oscillating, so the original
electric field is also wrong.

We will call the original field E1 = E0; the field at the center
of the plate.
The magnetic field we have found is H1.
It will give rise to an E2.
To find E2 we use the surface S shown below.

z

S

ρ
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Feynman’s Analysis

To find the correction to E, we use Faraday’s Law.∮
∂S

E · dl = −jωµ
∫∫

S
H · dS

−
∫ a

0
E2dz = −jωµ

∫ a

0
dz
∫ ρ

0
dρ′H1

E2 = jωµ
∫ ρ

0
dρ′

jkρ′

2η
E0

= −k2ρ2

22 E0

Thus, at the moment,

Ez = E1 + E2 = E0

(
1− k2ρ2

22

)
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Feynman’s Analysis

We can now correct H again:∮
∂C

H · dl = jωε
∫∫

C
E · dS

2πρH2 = jωε
∫ 2π

0
dφ
∫ ρ

0
ρdρE2

H2 = − jωεk2E0

22ρ

∫ ρ

0
dρρ3

= − jk3ρ3

22 · 4
E0

η
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Feynman’s Analysis

And, we can now correct E again:∮
∂S

E · dl = −jωµ
∫∫

S
H · dS

−
∫ a

0
E3dz = −jωµ

∫ a

0
dz
∫ ρ

0
dρ′H2

E3 = ωµ

∫ ρ

0
dρ′

k3ρ′3

22 · 4
E0

η

=
k4ρ4

22 · 42 E0

Thus, at the moment,

Ez = E1 + E2 + E3 = E0

(
1− k2ρ2

22 +
k4ρ4

22 · 42

)
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Feynman’s Analysis

The importance of these terms we keep adding is
proportional to

Frequency
Plate size

In this way, we see how statics naturally morphs into
dynamics.
It is easy to see that the E-field found after continuing the
process is

E = E0

(
1− k2ρ2

22 +
k4ρ4

22 · 42 −
k4ρ4

22 · 42 · 62 + · · ·
)

= E0

∞∑
n=0

(−1)n

(n!)2

(
kρ
2

)2

= E0J0(kρ)
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Wedge Waveguide

φ0

A wedge guide is formed by two half-planes inclined at an
angle φ0.
The problem is independent of z.
For the TMz mode, we must have Ez = 0 on the plates.

Thus

ψ ∝ sin
(

pπ
φ0
φ

)
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Wedge Waveguide Wavefunctions

Now, the order of the Bessel function equals the coefficient of
φ. We thus have the

TM Outwardly Traveling Wavefunctions

ψTM
p = sin

(
pπ
φ0
φ

)
H(2)

pπ
φ0

(kρ)

By the same token, we have the

TE Outwardly Traveling Wavefunctions

ψTE
p = cos

(
pπ
φ0
φ

)
H(2)

pπ
φ0

(kρ)
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Observations

Most of the discussion of the radial parallel plate guide
applies here:

Wave impedances are given by the same formulas (with
fractional orders),
Gradual cutoff occurs when pπ

φ0
= kρ. Why?

The dominant mode is TE0; it is a TEM mode derivable by
transmission line theory. Its fields are

TE0 Mode Fields

E+
φ = kH(2)

1 (kρ)

H+
z =

k2

jωµ
H(2)

0 (kρ)
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Outline

1 Cylindrical Waves
Separation of Variables
Bessel Functions
TEz and TMz Modes

2 Guided Waves
Cylindrical Waveguides
Radial Waveguides
Cavities
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The Circular Cavity

The circular cavity is a circular waveguide shorted at both
ends.
We will assume the height of the cavity is denoted by d .

For TMz modes,

Eρ ∝
∂2ψ

∂ρ∂z

so we must have (assuming cos nφ variation)

TMz Modes

ψTM
npq = Jn

(χnpρ

a

)
cos nφ cos

(qπz
d

)
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The Circular Cavity

By the same token

TEz Modes

ψTE
npq = Jn

(
χ′npρ

a

)
cos nφ sin

(qπz
d

)
We can also immediately write

Separation Equations

TM:
(χnp

a

)2
+
(qπ

d

)2
= k2

TE:
(
χ′np

a

)2

+
(qπ

d

)2
= k2
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Resonant Frequencies

From these equations it is a simply matter to compute

Resonant Frequencies

(fr)TM
npq =

1
2π
√
µε

√(χnp

a

)2
+
(qπ

d

)2

(fr)TE
npq =

1
2π
√
µε

√(
χ′np

a

)2

+
(qπ

d

)2

If d < 2a the TM010 mode is dominant, otherwise the TE111
mode is.
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Quality Factor

It is also straightforward to compute the Q of the circular
cavity.
We will do so only for the (usually dominant) TM010 mode.

Given ψ, it is easy to show that the modal fields are

TM010 Mode Fields

Ez =
k2

jωε
J0

(χ01ρ

a

)
Hφ =

χ01

a
J1

(χ01ρ

a

)
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Quality Factor

Now, the total energy stored is

W = 2We =
ε

2

∫ d

0

∫ a

0

∫ 2π

0
|E |2ρdφdρdz

=
k4

ω2ε
πd
∫ a

0
ρJ2

0

(χ01ρ

a

)
dρ =

πk4da2

2ω2ε
J2

1 (χ01)

To compute the energy absorbed by the walls, we appeal to the
approximate formula

Pd =
R
2
©
∫∫

walls
|H|2dS
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Quality Factor

On the cylindrical side wall of the cavity, the magnetic field is
constant, so the value of this integral is

Pd = πadRJ2
1 (χ01)

On the other two walls together we have

Pd = R
∫ a

0

∫ 2π

0

(χ01

a

)2
J2

1

(χ01ρ

a

)
ρdφdρ

= 2πR
(χ01

a

)2
∫ a

0
J2

1

(χ01ρ

a

)
ρdρ

= πa2R
(χ01

a

)2
J2

1 (χ01)
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Quality Factor

Plugging into our formula for the quality factor we find

Q =
ωW
Pd

=
dk4a3

2ωεRχ2
01(d + a)

Now, ka = χ01 and ωε = k
η , so we find the final formula for

The Quality Factor

Q =
ηχ01d

2R(a + d)
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