Synthesis of Digital Architectures

+ Self-contained course
— no previous requirements beyond compulsory courses
— all material is described in these notes and during the lectures

» Course materials will draw on several texts
— Giovanni De Micheli, “Synthesis and Optimization of Digital Circuits”, McGraw-
Hill, 1994
» A good description of most of the topics covered
+ Also covers logic synthesis, not covered in this course

— Keshab K. Parhi, “VLSI Digital Signal Processing Systems”, Wiley-Interscience,
1999

 Useful for retiming, and a slightly different perspective
— Sabih H. Gerez, “Algorithms for VLSI Design Automation”, Wiley, 1999.
» Useful for a general overview, and some details on floorplanning

— M. McFarland, A. Parker, R. Camposano, “The High-Level Synthesis of Digital
Systems”, Proc. IEEE, Vol. 78, No. 2, Feb 1990

— R. Camposano, “From Behavior to Structure: High-Level Synthesis”, IEEE
Design & Test of Computers, October 1990.
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Administrivia
« Approximately 20 1-hour lectures

* An assessed “mini project”
— small groups develop some synthesis software

Course website

* Room 903,
— Questions / discussion welcome, but please
email first!
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What is Synthesis?

» Synthesis is the automatic mapping from a high-
level description to a low-level description
— gates to transistors
— AHDL or VHDL to gates
— Matlab to AHDL/VHDL (?)
» Synthesis is important because
— it raises designer productivity
— it allows design-space exploration
— it improves time-to-market
— itis a very big industry
» Synthesis is also a fun real-world application of
some nice “game-like” parts of mathematics

1/8/2007 Introductory Lecture gacl 3

What is architectural synthesis?

» Current synthesis comes in two main
“flavours”, depending on what is the input
description and what is the output description
— logic synthesis

* given Boolean equations, map them into gates

— architectural (“high-level”) synthesis

* given a description of circuit behaviour, create an
architecture

 This course will give you a good
understanding of architectural synthesis
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Example: Architectural Synthesis

* Problem:

— create a circuit capable of implementing the
behaviour “y[n] := a[n] * b[n] + c[n] * d[n]’

* Possible solutions:

}.- J sel

(a) fast, big (b) slower, smaller (?)
one result per cycle one result per 2 cycles
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Course Syllabus

* Introduction to architectural synthesis
— scheduling
» when should | execute each operation?

— resource allocation and binding

* how many of each computational unit should | use in
my design, and which unit should do which task?

— area and performance estimation
» how big will my design be and how fast will it run?
— control unit synthesis

* how can | design the controller to tell each unit what it
should be doing at each time?
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Course Syllabus

* Introductory graph theory and combinatorial
optimization
—what is a graph, and how can we use one?
— tractable and intractable problems
—longest path through a graph
— colouring graphs
— finding complete subgraphs
— integer linear programming
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Course Syllabus

« Scheduling algorithms
— As Soon As Possible / As Late As Possible
list scheduling
scheduling with integer linear programs
affine loop scheduling
retiming
* Resource sharing algorithms
— interval graph colouring
— register sharing
— resource sharing with integer linear programs
Other topics
— function approximation
— floorplanning

Subject perspectives and revision
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Introduction: Scheduling

e Part of a 4-lecture introduction

— Scheduling

— Resource binding

— Area and performance estimation
— Control unit synthesis

e This lecture covers

— The relationship between code and operations
— Data flow and control data flow graphs

— Modelling of conditionals and loops

— Resource constrained scheduling

— Scheduling with chaining

— Synchronization
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Example Code Fragment

Because we’re engineers, we’ve written
some code to solve a differential equation

begin diffeq
read( x, y, u, dx, a );
repeat {
xl = x + dx;
ul = u - 3*x*u*dx - 3*y*dx;
yl =y + u*dx;
c =xl < a;
x=xlu=uljy =yl
}until( c );
write(y );
end diffeq
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xl = x + dx;
ul = u-3*x*u*dx -

3*y*dx;
yl =y + u*dx;
c =xl < a;

gacl

Graphs and Models

We want to express this code in a way that
maintains the essential information

Graphs are useful for describing such models
A graph G(V,E) is a pair (V,E), where V is a set and
E is a binary relation on V.

Elements of V are called vertices, elements of E
are called edges.

A graph can be undirected or directed depending
on whether an edge is an unordered or ordered
pair.
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Graphs and Models

Directed Graphs

oo

V ={ab,c,d}

E = {(a,b),(a,c),(b,d),(c,d)}
This graph is acyclic

e

V ={a,b,c,d}

E = {(b,a),(a,0),(d,b),(c,d)}
This graph is cyclic

Undirected Graph

V ={a,b,c,d}
E={{ab},{ac},{b.d},{c.d}}
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Data Flow Graphs Data Flow Graphs
* A data flow graph (DFG) represents the way e What we have done is to break up the
in which data flows through a computation algorithm so that we only use standard 2-
input operators
® s
ul = u - 3*x*u*dx - x1 t2 = u*dx;
3*y*dxg v I xh=x+ dx; t3 = t1+¢2;
yl =y + urdx; ul = u - 3*x*u*dx - t4 = 3*y; ’
c =xl<a B o) © yi= 3:‘_’3’;’)( —————— 5= tardx
N\ c=xl<a; ::? = tus__tt:;;;
(ul) t7 = u*dx;
yl =y + t7;
c =xl < a;
Data Flow Graphs and Compilation Data Flow Graphs and Parallelism
» Splitting into basic operations is necessary for both e Operation v1 needs
hardware and software implementations to know the result of
» For software, such a procedure is performed by the operation v2 before *)
compiler. Each of the steps can be performed by an it can proceed
assembly instruction. : v2 v3
Assuming 1 instruction per clock cycle, our code * Operation v3 o) ©
° ) ’ y C
would take 11 cycles to execute.The data flow Sgeainatliipv?/gdcgzl d vl \
graph shows us how we can speed this up by )
taking advantage of parallelism do it at the same (uh
e The “value” of each edge into a node in the graph time if we had
must be known before the computation described enough hardware to
by the node can be performed Spare




Data Flow Graphs

* Formally, a dataflow graph is a directed
graph G(V,E) whose vertex set is in one-to-
one correspondence with the set of tasks,
and whose edge set is in correspondence
with the transfer of data from one task to
another.

Data flow graphs express the maximum
parallelism available

They do not allow us to express loops or
conditionals
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Control Data Flow Graphs

» Structures which can also represent conditionals
and loops are known as control data flow graphs
(CDFGs)

* CDFGs are hierarchical graphs where each level of
hierarchy is an acyclic DFG together with two
additional nodes representing the start and end of
the task

/ e.g.

1) have a beer 1.1) go to pub
\ 2) have a curry 1.2) order and drink
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Conditionals

Conditionals can be represented by introducing a
task “B” (for branch) with two alternative
expansions in the lower level of hierarchy

a=b<c;
if (a) then

SRS
)
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Loops

* Loops can be represented by introducing a task “L”
(for loop)

* The “L” task tests the loop condition at each
iteration, and does the necessary updates

fori=1to3
a=a*b; /
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Function Calls A Simple Schedule

 Function calls can be represented by introducing a * What if we had unlimited hardware? How fast
task “F” (for function) could we make our algorithm go?
e The F-task calls the function body represented by * Ic;)?glsé assume that each operation takes one clock

the lower level in the hierarchy

@00 O O oo

= : fun(p) { le 2
e ¥ 000 o
b\ / Cycle 3
\‘ Cycle 4
We need at least four clock cycles. This schedule
requires at least 4 multipliers, 1 adder/subtractor, and one comparator
Improving our schedule Schedule: Definition
By shuffling around the execution of tasks, we can e With each node v in the graph G(V,E), let us
reduce the number of resources required associate an execution time d(v)
) @ @ ® Cycle 1 * A schedule of this graph is a function S:V—N
\./ 6 , ‘ Cyele 2 where for all edges (v,, v,) € E,
\b / 6 Cocle 3 S(vp) 2 S(v4) + d(vy)
\ Y e For each node v, S(v) denotes the start time
© Cycle 4 of the relevant task

This schedule requires at least 3 multipliers, 1 adder/subtractor, and
one comparator
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Resource Constrained Schedules

e Often our scheduling task consists of finding
a schedule that will complete in a short time,
subject to constraints on the amount of
hardware available

e This is called “Resource Constrained
Scheduling”

e Example: Schedule the differential equation
code such that we need no more than:

— one multiplier, one adder/subtractor, one
comparator
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Resource Constrained Schedules

T X

o0 000

@ ~o—o @
"®

1 2 3 4 5 6 7
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Scheduling with Chaining

e So far, our basic unit of time has been the clock
cycle.

* What if a subtraction only takes 0.5 clock cycles?
We can do two subtractions in a single clock cycle.

@ ®© & ® Cycle 1
\‘\/ 6 , 6 Cycle 2
0/ o
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Scheduling with Chaining

* The advantages of chaining
— We can reduce the latency of our schedule
* The latency is the total number of clock cycles req’d
— We can avoid registers

e Each data transfer across a clock cycle needs a
reqgister to store temporary data

* The disadvantage of chaining
— We have to work with sub-clock cycle units

— Design of scheduling algorithms becomes more
complex
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Synchronization

* Multiplications and additions have predictable
delays
— We can incorporate them into the scheduling model

e Some blocks do not, e.g. data-dependent iterations

(while @) { ... })
A hardware block with

A hardware block with
predictable delay unpredictable delay
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Synchronization

* Tasks with unpredictable delay can be classified as

— Bounded-delay tasks

L . A simple solution:We could
for( i=0; i<50; i++ ) {

just assume that this task takes

if( something ) continue; 1ts worst-case time

}
— Unbounded-delay tasks

i There is no (easily calculable)
while(x) {

worst-case time

X = <something complicated>

}
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Synchronization

* Methods are req’d to deal with unbounded tasks
(they could also be applied to bounded tasks)

cyclel cycle2 cycle3 cycle cycle
B — bounded max(n+2,4) max(n+2,4)+1

UB — unbounded, actual delay = n
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Summary

* This lecture has covered
— The relationship between code and operations
— Data flow and control data flow graphs
— Modelling of conditionals and loops
— Resource constrained scheduling
— Scheduling with chaining
— Synchronization
* Later in the course, we will be exploring
algorithms to do scheduling automatically
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Introduction: Binding

e Part of a 4-lecture introduction
— Scheduling
— Resource binding
— Area and performance estimation
— Control unit synthesis

* This lecture covers
— Resources and resource types
— Resource sharing and binding
— Graph models of resource binding
— Conflict graphs
— Templates for architectural synthesis
— A complete worked problem
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Resources

We refer to a piece of hardware that can perform a
specific function as a “resource”

— e.g. a 16x16-bit multiplier, a PCI interface

An operation could be performed on one of several
resources

— e.g. a multiplication could be performed on one of two
physically distinct multipliers

— e.g. an addition could be performed by a special-purpose
adder, or an ALU.

We are distinguishing here between the operation,
and the resource that will execute that operation
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Resource Types

* The “type” of a resource denotes its ability to
perform different operations
— A multiplier can do multiplications
— An adder can do additions
— An ALU can do comparisons and additions

* The resource type set R consists of all the
different resource types we have available
— R = {multiplier, adder, ALU}

1/12/2006 Lecture2 gacl 3

Resource Sharing

Just because we have n additions in an algorithm,
we don’t need n adders

— In traditional sequential processors, we use just a single
adder to do all the additions in our program

— This is possible because we have scheduled them — an
adder is only used for one addition at one time

Using the same resource to perform several
different operations is “resource sharing”

Advantage: can save area and peak power.

Disadvantage: can make things slower and use
more energy.
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Resource Sharing

e Consider the code below and its scheduled DFG
=b + 2;
: =a+ 7; "
e We could use two adders or one shared adder

= N =
> a
One fewer adder but 2 more

bI:: MUXs, possibly worse max
clock rate

7 —

2 a/c  Need to generate select

signals
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Resource Binding

* Resource binding is the process of deciding
which resource should perform which
operation

e Cartesian product
— x denotes the Cartesian product of two sets
—~AxB={(ab)|acA, beB}

—e.g. {a,b} x{1,2} = {(a,1),(a,2),(b,1),(b,2)}
* A resource binding is a function Y: V—RxN

1/12/2006 Lecture2 gacl 6

Resource Binding

* Revisiting our example...

g::-r.ﬁ.—' ¢ Yh=(+1)

> a Y(v2) = (+,2)

b':: Y(v1) = (+,1)
7= Y(v2) = (+,1)
2 al/c
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Binding Graphs

* A hypergraph extends the notion of a graph
by allowing edges to be incident to any
number of nodes

* We can represent a bound CDFG or DFG by
a hypergraph G’(V,EUE)

E={(vl,v2)} E={(vl,v2)}
Eg ={ {vl}, {v2} } Eg={ {vl,v2} }
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Conflict Graphs

e Sometimes we must bind operations to
different resources

— e.q. if they execute at the same time
e Such information can be represented using
conflict graphs

* These have the same nodes as the
corresponding DFG or CDFG.
* An edge corresponds to a conflict

—two nodes connected by an edge cannot be
bound to the same resource
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Conflict Graphs

* Our example from Lecture 1

®! QVZ 0" 0"®" cuel
V6 b V76 v8 6 v9  Cycle2

v10 L / Cycle 3
N
‘ vll Cycle 4
vl
/ @—@®  Multiplier
~ v2 V6 v7 Conflict Graph
v3
v4
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Conflict Graphs

* In this example, the structure of the conflict
graph is very simple
— two disjoint sets of nodes, each one fully

connected within itself

* This is because all operations took a single
cycle — with multicycle operations, conflict
graphs become more interesting and
important (a later lecture...)
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Architectural Templates

* Once we have a schedule S and a resource binding
Y, we know all we need to construct our circuit

* |n order to do this, the synthesis tool needs to have
a “template” in mind

* We will be working with register bus-based
architectures: in one clock cycle

— values are read from registers, pass through
multiplexers, and get steered to the right resource

— the operations are performed
— the results are written back into the registers
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Architectural Templates

REGISTERS
a
e
i| x a register is enabled when
| -~ enables it should be written to in
—_} T 1T [« that clock cycle
P
r2
' WS the select-lines decide
A \’/ ::\\T/g_f;‘_f:-'_f;‘_f_; mux controls - which register to send to
| I D R each resource
| ’~ ------- ALU control (+ )
‘ = A8 D some resources may
} | | | require additional control
DATA PATH CONTROL UNIT
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Worked Problem

» Consider the following code:
—a=i+;b=2"a+j;c=a*b;d=a%a;

— (a) construct a CDFG for the code

— (b) schedule the graph so that each operation starts as
soon as it can, assuming each multiplication takes two
cycles and each addition takes one cycle

— (c) if you have the resource type set R = {adder,
multiplier}, construct a resource binding for this example

— (d) draw the completed data-path
— (e) suggest a way you could save area
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Worked Problem (a-c)

v2 v3

tl b
a
/'._ _’.\ v4
o — e
v a\" —
v5
Cycle: 1 2-3 4 5-6

Y(v1) = (adder,1) Y (v2) = (multiplier,1)
Y (v3) = (adder,1) Y (v4) = (multiplier, 1)
Y (v5) = (multiplier,2)
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Worked Problem (d)

s
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from
control
unit

Yy vV vy v Vv




Worked Problem (e)

* Area could be saved by scheduling v5 in
cycles 4-5, and v4 in 6-7, at the penalty of
one clock cycle

(actually if we pipelined one of the
multipliers, we wouldn’t have to pay any
penalty...)
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Summary

* This lecture has covered
— Resources and resource types
— Resource sharing and binding
— Graph models of resource binding
— Conflict graphs
— Templates for architectural synthesis
— A complete worked problem
» Later in the course, we will be examining
algorithms to perform automatic binding
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Suggested Problems

De Micheli, Problems 4.11, Q5 (assume all
additions take one cycle) (**)

For the binding hypergraph shown in De Micheli,
Fig. 4.5, construct a datapath design (you may
label your registers in any way) (*)
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Introduction: Estimation

* Part of a 4-lecture introduction
— Scheduling
— Resource binding
— Area and performance estimation
— Control unit synthesis
* This lecture covers
— Design space and the estimation problem
— Resource domination
— Estimation in general circuits
— Rent’s rule
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Design space parameters

* There can be several objectives when
performing a circuit design
—small area
— low latency
— [ high throughput ] (for pipelined circuits)
— high max clock rate
—low power
e Often these objectives are conflicting, and
we must trade-off between them
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Design space parameters

* We can imagine a 4-dimensional space defined by
(area, latency, max clock rate, power)

* Each design we could choose can be plotted as a
point in this space

e Which design is “the best’?
1. Area =1, Latency =2, MCR = 2, Power =1
2. Area =2, Latency =2, MCR =1, Power =1
3. Area =2, Latency =1, MCR =1, Power =1
e Design 1 is better than design 2

* Design 1 could be better than design 3, depending
on whether it’s area, latency, or MCR we’re most
interested in.

1/12/2006 Lecture3 gacl 3

Design space parameters

* Design 2 is known as an “inferior design”
— it is dominated, in all objectives, by another design

* Graphically, we can imagine trading off area for
latency (possibly by using more resources to
reduce the number of clock cycles)

Area 4 Area

) 1Bfer10r / Pareto optimal

. ° point
° Pareto optimal

curve

Latency Laiency
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Why estimation?

* We are not just trying to create a working circuit,
but one which meets some constraints on area,
power, latency, etc.

e Each time we make a high-level design decision,
we want to have an estimate of the effect of this
decision on these objectives.

— e.g. If  use 5 multipliers rather than 4, how will the power
consumption change?

* We don’t want to have to build the circuit and
measure the power consumption — we need a
model
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Resource domination

* For some “resource dominated” circuits, the area,
speed, power, etc. are all a function of the
resources
— multiplexers, registers, etc. have an insignificant impact

» Estimation for these circuits is easy

— Area: add up the area consumed by each resource: A =
Aadd Naga + Amuit N + -

— Latency: known from schedule
e Often DSP circuits tend to be resource dominated
e Example: the worked example from last lecture...
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Resource domination

small area

large area {

Total Area= A, +2A
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mult

Example: Adder Models

* How do we estimate the area and speed of each
resource?

* Typically we have a model of how a resource is
constructed, for example an n-bit ripple-carry
adder:

Area = AHA + AFA(S) +(n _2)AFA (would be different

Delay = Ty + Trags) + (1-2)Tra o) for a CLA)
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General circuits

e For non-resource dominated circuits, several
other components can impact on the design
objectives

Registers

* Registers are required to store intermediate
data — returning to our previous example, 3

registers are needed for temp. results (a,b,t1)
v2 v3

— registers tl b
— multiplexers p /'._ . vd
— Wiring . -K a :/j
— control unit . \‘,/
v5
Cycle: 1 2-3 4 5-6

1/12/2006 Lecture3 gacl 9 1/12/2006 Lecture3 gacl 10

Registers Multiplexers

* We don’t always need as many registers as
there are temporary variables

* |f registers are expensive, we could share
registers, just like we share resources

—1t1 and b do not overlap in “lifetime” — we could
use the same register for both

* The number of temporary variables provides
a good “first guess” for the number of
registers we’ll need in our design
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* Multiplexers are needed to steer the right operands to the
right resources

b I

* The number and size of multiplexers required is known from
the binding

* Multiplexers can consume area and add delay — the delay
added can depend on the number of MUX inputs
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Wiring
Even wires add area, delay, and significant power

consumption to a circuit

It has been estimated that in the next few years it
will take 10 clock cycles just for a signal to cross a
chip

Unfortunately wiring is hard to estimate

— we need the binding but also the physical layout
Rent’s rule can provide a high-level model

— Relates the amount of interconnect to the number of
gates in an area

— N =KG# (N = no. pins, G = no. gates)
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Rent’s Rule

Rent’s rule gives a rough
estimate how many wires
will cross the boundaries of
any given group.

This can be used as an

estimate of wiring length
A group

e Some examples of Rent constants
— SRAM: $=0.12,K=6
— uP: B =0.45K=0.82
— Gate Array:  =0.50,K=1.9
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Control unit

The control unit, which provides the select lines to MUXs
and enable lines to registers, itself consumes area and
power

The size of the control unit can vary significantly depending
on the amount of looping and branching in the algorithm

— often DSP algorithms have very simple control
The control unit can also impact on the max. clock rate

We will investigate control unit synthesis in the next lecture
— for now, let’s simply state that the size of a controller
tends to grow with

— the number of activation signals (selects, enables)
— the length of the schedule
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Worked Example 1

* A k-bit carry-select adder has the structure shown

below
(k-1)..k/2

(k/2-1)..0

cin

(k-1)..k/2 (k/2-1)..0
e Assume:

* each constituent adder is a ripple-carry design
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Worked Example 1

* Derive models for the area and delay of the circuit,
in terms of the wordlength k

e Compare the area and delay with a k-bit ripple
carry design

e Compared to a k-bit ripple carry design, the area is
always larger. The delay is smaller, so long as
— Tyux < Tra(k/2)  (almost certainly true for reasonable k)
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Worked Example 2

You are designing a circuit with gate-level Rent constants
f=0.25,k =1
There are a total of 1M gates in your design. How many pins
would you expect your chip to have?

— Pins = (1e6)"0.25 = 32
Your chip is too big and you must split it over two chips.
How many pins would you now expect?

— Let’s assume an equal split. Then:

— Pins = 2(5e5)"0.25 = 53
The main source of power consumption in your design is
driving the external pins. Estimate the increase in power due
to using two chips.

— Increase (%) = (563 — 32)/32 = 66% (assuming all pins

equal)
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Summary

* This lecture has covered
— Design space and the estimation problem
— Resource domination
— Estimation in general circuits
— Rent’s rule

* Next lecture will examine the synthesis of
control units
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Introduction: Control Synthesis

e Part of a 4-lecture introduction
— Scheduling
— Resource binding
— Area and performance estimation
— Control unit synthesis
e This lecture covers
— Microcode and microcode optimization
— Hardwired control
— Control with interacting state machines
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Why control synthesis?

e Qur datapath designs have included
— multiplexers, to steer data to the correct resource

— register enable signals, to select when a register
should store an intermediate value

* These signals have to be generated from
somewhere — this is the control unit

* Once we know the schedule and binding for
an algorithm, we have enough information to
design the controller
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A Control Unit

* Let’s take another look at the worked example from Lect 2

—a=i+;b=2%a+j;c=a*b;d=a"a;
v2 i v3

b
&—a 99
a

a \.’/d
v5
Cycle: 1 2-3 4 5-6
Y(v1) = (adder,1) Y (v2) = (multiplier, 1)

Y(v3) = (adder,1) Y (v4) = (multiplier,1)
Y (v5) = (multiplier,2)
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A Control Unit

* The control unit for this example must:
— Cycle 1: Enable register “a”, ensure the inputs of
“adder1” are “i” and "
— Cycle 2: Ensure the inputs of “multiplier1” are 2 and “a”
— Cycle 3: Enable registers “t1” and “d”

— Cycle 4: Enable register “b” , ensure the inputs of

“adder1” are “t1” and
— Cycle 5: Ensure the inputs of “multiplier1” are “a” and “b”
— Cycle 6: Enable register “c”
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Microcode vs Hardwired control

* This is the behaviour of a sequential circuit
— circuit has no inputs apart from clock for this example

— circuit has 7 binary outputs (5 enables and 2 select lines
— don’t need a select line for dedicated resource
“multiplier2”)
e We could build this circuit as a microcode-based controller
with 3 address lines ([log, #cycles )

clock
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Microcode vs Hardwired control

* Alternatively we could build a finite state machine
(FSM) implementation specifically for this sequence

* The choice between these two implementation
schemes is a logic synthesis problem — we will not
consider it in detail

* Hardwired FSM design is itself a major topic
— could be faster, smaller, lower power than the
corresponding microcode controller
— more complex to design
— less flexible (if you make the microcode ROM
programmable)

— more flexible (if your design has unbounded latency

nodes)
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Horizontal Microcode

* For the example we’ve been working with, let’s
construct the ROM contents

— assume the following ordering of data outputs (MSB to
LSB): a enable, t1 enable, d enable, b enable, ¢ enable,
adder1 select, multiplier1 select

— assume a 3-bit up counter, initialized to 0

* ROM micro-program

Address Data Address Data
0x0 0x40 0x3 Ox0A
Ox1 0x00 Ox4 0x01
0x2 0x30 0x5 0x04
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Horizontal Microcode

* This is known as “horizontal” microcode
— # states << # control signals (usually)
— ROM has much greater width than height
* We have great freedom with a horizontal
microcode
— we design a controller for any schedule and any
binding in this way
— design process is simple
e However, the ROM might be large
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Microcode Optimization

By adding an extra (combinational) stage to our
controller, we can often reduce the size of the ROM
required

n #cont sigs

The challenge is to design the ROM and decoder
carefully to keep n small and optimize our speed,
power, and area

1/12/2006 Lecture4 gacl 9

Microcode Optimization

If we didn’t require any control signals concurrently,
we would only require a [ log,(#control sigs+1) |-bit
ROM data bus

— we could then use an nto 2" decoder to generate the
control signals

— (revision... an nto 2" decoder asserts one of 2" different
possible outputs depending on the n-bit binary encoding
of the input. For example a 2-to-4 decoder has truth table
00->0001, 01->0010, 10->0100, 11->1000)

Why (+1)?

— because we may not want to assert any control signals in
some clock cycles

1/12/2006 Lecture4 gacl 10

Microcode Optimization

But if we don’t allow concurrent control signals then
we don’t allow parallelism!

— the advantage of a hardware implementation is
destroyed

Solution:

— Partition the set of control signals into subsets which are
not required concurrently

For our example, one possible partition is:

— {a enable, t1 enable, b enable, ¢ enable, multiplier1
select}, {d enable, adder1 select}

We can encode each of these partitions separately
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Microcode Optimization

We need | log, 6 | = 3 bits to encode the first subset,
and [ log, 3= 2 bits to encode the second subset

Our controller now looks like this
aen,tl en,ben, cen,

3 multl select [+3 unused]

den,
add1 select [+2 unused]

We have saved two bits of ROM data bus!
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Microcode Optimization

e Assume we order the ROM databus (MSB to LSB):

first subset encoding, second subset encoding

e Assume we order the outputs of each decoder in
the order shown on the figure in the prev. slide

e A suitable ROM program is now:

Address Data Address Data
0x0 0b11100 0x3 0b10110
0x1 0b00000 0x4 0b01100
0x2 0b11011 0x5 0b10000
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Hardwired FSM synthesis

* Alternatively, we could view controller design
as a standard FSM synthesis problem

* One state per clock cycle

* Most importantly, it is easy to specify FSM
behaviour for sequencing graphs with nodes
of unbounded latency

* The same optimization technique applied to
microcode can also be applied to the FSM
design
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Bounded Latency Example

e Considering our previous example as an FSM
leads to the following state transition graph, which
can easily be coded in your favourite hardware
description language

......... /0x40

/0x01 /0x00

/0x0A /0x30
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Unbounded Latency Operations

* Let’s consider the unbounded latency example
from Lecture 1

<o ®

cyclel cycle2 cycle3 cycle cycle
max(n+2,4) max(n+2,4)+1
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Unbounded Latency Example

* ltis easy to create an FSM for this example

— we must wait for “done” signal from unbounded latency
resource => we have inputs to the controller as well as
outputs

(FSM outputs not shown)
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Local Controllers

* So far we have assumed that there is one large
controller for the whole circuit
— this can be efficient as it allows the overhead of controller

design and implementation to be shared by many control
signals

— however it may be impractical for large circuits due to the
need to route control signals across the chip
» Each control signal (or set of control signals) could
have its own controller

* Such a control unit is called “distributed control”.
Using one large controller is called “centralized
control” or “lumped control”
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Worked Example

* You are designing a hardware implementation of a discrete
cosine transform (DCT) algorithm. The inner loop of your
algorithm is shown overleaf, along with a schedule and
binding. (x1, x2 are inputs; y1, y2 are outputs). Both
multipliers and adders take one clock cycle.

— (a) draw a datapath for this circuit

— (b) design a horizontal microcode-based controller for
this circuit

— (c) by making your design “non-horizontal”’, minimize the
size of ROM required

— (d) re-design your controller so that each functional unit
has its own controller, which controls the select-lines for
its input multiplexers, and the enable lines for its output
registers
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Worked Example (a)

t1 = a*x1; /I Cycle 1, mult1 t3 = b*x1; /I Cycle 2, mult1
t2 = b*x2; /I Cycle 1, mult2 t4 = -a*x2; /I Cycle 2, mult2
y1 =t1 + t2; // Cycle 2, add1 y2 = t3 + t4; // Cycle 3, add1

from
control
unit

al b

————

y
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Worked Example (b)

* 3cycles =>[log, 3= 2 bit ROM address
* 6 registers + 3 mux select lines = 9 control signals

2 9

e assume data bus ordering (MSB to LSB): enables
(t1,t2,y1,13,14,y2); select lines (add1, mult1, mult2)

Address Data Address Data
0x0 Ob110000000 0ox2 0b000001100
0x1 0b001110011
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Worked Example (c)

In general, finding the subsets that minimize the
size of ROM is a “hard” problem (more on the
meaning of “hard” in a future lecture...)

We will therefore find a “good”, but not necessarily
optimum set of subsets

Set 1: {t1, y1,y2} => need 2 bits
Set 2: {12, t3, add1} => need 2 bits
Set 3: {t4} => need 1 bit
Set 4: {mult1} => need 1 bit
Set 5: {mult2} => need 1 bit
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Worked Example (c)

tl, yl, y2 [+] unused]

t2, t3, add1 [+1 unused]

t4 [+1 unused]

multl [+1 unused]

mult2 [+1 unused]
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Worked Example (c)

Applying the techniques described in the lecture
results in the table below (for the order in the figure
on the prev. slide) This results in compression from
9 to 7 data bits.

Clearly this could be further compressed, as from
below bit6=bit4, bit5=Dbit3, bit2=bit1=bit0. Together
this results in compression from 9 to 3 data bits.

Address Data Address Data

0x0 Ob1111000 0x2 0b0101000

0x1 Ob1010111
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Worked Example (d)

* For a horizontal implementation, simply pick the
relevant output bits from the lumped-controller
implementation

e Assume orderings (MSB to LSB):
— add1 controller: add1, y1, y2
— mult1 controller: mult1, t1, t3
— mult2 controller: mult2, t2, t4
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Summary

e This lecture has covered

— Microcode and microcode optimization
— Hardwired control

— Control with interacting state machines
— A detailed worked example

Address add1 Data mult1 Data mult2 Data
0x0 0b000 06010 06010 * During the next lecture we will start to look at
Ox1 06010 0b101 05107 some of the mathematical framevyork which
0 0b101 05000 05000 helps us do architectural synthesis
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Suggested Problems

e Some multiplication algorithms have data-
dependent delay. Assume we want to use
one such multiplier, and one adder (with
delay 1 cycle) to implement the differential
equation inner-loop introduced in Lecture 1.
— (a) perform a scheduling, treating the multipliers
as elements of unknown latency

— (b) sketch the datapath of the resulting design

— (c) draw a FSM state-transition diagram for your
design
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Graphs & Combinatorial Problems

* A new part of the course — will cover the more
theoretical aspects required in later lectures
— Graphs, cliques, and colouring
— Algorithms and intractability
— Linear programming and integer linear programming
— Shortest and longest path algorithms
* This lecture covers
— Definition of graph (revision), clique, and clique number
— Graph colouring, chromatic number
— Interval graphs
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Graphs

Formal Definition:

— A graph G is a finite nonempty set V together with an
[irreflexive], symmetric relation E on V

* The relation E relates vertices to other vertices and is known

as the edge relation, or “edge set”

+ If relation E is symmetric, it means that

* (a,b)eE = (b,a)eE
+ an edge has no concept of “direction”

* In mathematics, an edge relation is usually considered

irreflexive:
* 73Ja: (a,a)eE
— engineers often relax this constraint (hence the brackets)
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Directed Graphs

* Formal definition:

— A directed graph G is a finite nonempty set V
together with an [irreflexive] relation E on V

— This time the concept of direction is implicit, as
we could have (a,b)eE and (b,a)¢E

* You may see directed graphs referred to as
“digraphs’”
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Cliques

* A complete graph is a special type of graph where
all possible edges are in the edge set

I<1 K2 ; K3

* A subgraph G’(V’,E’) of a graph G(V,E) is a graph
whose vertex and edge sets obey
*VcV,EcE

(2w

G(V,E) G (V',E’)
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Cliques

* A clique is a complete subgraph

(2w

G(V.E) G’ (V',E)

G (V.,E)

» G'isaclique. G” is not a clique (but it is a
subgraph of G)
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Cligue Number

The clique number »(G) of a graph G is the size of
the node set of its largest clique

G(V.E)

This graph has cliques with the following node
subsets:

— {v1}, {v2}, {v3}, {v4}, {v1,v2}, {v1,v3}, {v2,v3}, {v2,v4},
{v1,v2,v3}

Its clique number is 3
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Graph Colouring

» Graph colouring is the process of labelling each
node of a graph such that no two connected nodes
share the same label

G(V.E)

» The graph above is coloured with three different
colours
» Graph colouring can model many problems

* e.g. colouring a conflict graph (Lecture 2) will
result in a resource binding
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A Colouring Algorithm

A simple algorithm for colouring a graph is given below

Colour_Graph( G(V,E) )
begin
foreach ve V¢
c=1;
while 3(v,V’) € E: vV has colour ¢
c=c+1;

label v with colour c }

end

» This will always correctly colour a graph, but the number of

distinct colours used depends on the order in which the
nodes are visited
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Chromatic Number

» The smallest number of colours with which it is possible to
colour a graph G is called its chromatic number % (G)

» For a general graph, finding x(G) is a “hard” problem

— the algorithm presented does not guarantee a colouring
with x(G) colours

— we’ll be discussing “hard” problems next lecture

* In resource binding, the chromatic number tells us the
minimum number of distinct resources required

» Since every node in a clique must be coloured differently to
every other node in a clique,

+ o(G) <1(G)
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Interval Graphs

» Luckily, not all graphs are “hard” to colour. One type of
graph which is easy to colour with the minimum number of
colours is an “interval graph”

* An interval graph is a graph whose vertices can be put in
one-to-one correspondence with a set of intervals, such that
two vertices are connected by an edge iff the corresponding
intervals intersect

Vll I vlzl I v3?7?
V2I vl
V3 v4

An interval graph NOT an interval graph
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The Left Edge Algorithm

» The left-edge algorithm colours interval graphs optimally.

» Let us denote by /; and r; the left-most and right-most point of
the interval corresponding to vertex v,.

Left Edge( G(V,E) )
begin
sort nodes in ascending order of left edge - store in L
c:==1;
while( not all vertices have been coloured ) {
r:=0;
while( 3 an element sin L with /.> r) {
v, i= first node in L with /,> n;

r=Erg
label v, with colour ¢
L:=L\{v});}

c:=c+1;}

d
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The Left Edge Algorithm

» Some set theory:

—\ represents set subtraction
e X\Y={z:zeXAnzeY}
» The left edge algorithm tries to colour as many
intervals as possible with one colour, before moving
on the the next colour

+ Left Edge was originally introduced to pack wire
segments tightly on a VLSI layout. It is now used
for many other purposes — particularly resource
binding.
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Left Edge - Example

Left Edge - Example

e

#lc

) ’
\ =3
] ©
\ - coloured graph i i
I grap intervals packed into colours
BEEN 1o
A 3
interval graph interval list L
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Summary Suggested Problems

* This lecture has covered
— graphs and digraphs
— cliques and clique number
— colouring and chromatic number
—interval graphs and the Left Edge algorithm

» Next lecture will examine the ideas behind
designing “good” algorithms, and what it
means for a problem to be “hard”
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» For the graph below, apply the general colouring algorithm
for the following two vertex orders. Compare and contrast
your results. (*)

—(a) (v1,v2, v3, v4)
— (b) (v1, v4, v3, v2)

» By applying the left-edge algorithm, or otherwise,
demonstrate that one of the two orders above results in an
optimum colouring (*)
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Algorithms and Intractability

+ Part of our 4-lecture “theory break”
— Graphs, cliques, and colouring
— Algorithms and intractability
— Linear programming and integer linear programming
— Shortest and longest path algorithms
* This lecture covers
— The definition of an “algorithm”
— Polynomial-time and intractability
— P and NP

— Polynomial reduction, NP-completeness and NP-
hardness
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The Purpose of This Lecture

Synthesis is all about writing algorithms to solve
problems in digital design

This lecture will consider some of the more
theoretical aspects concerning

— problems, algorithms, and complexity

We will formalize what is meant by a “hard”
problem

You will not be required to prove the hardness of
any unseen problems as part of this course

You may be required to describe the ideas of
hardness
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Problems and Instances

+ We have already discussed several problems and
algorithms. We will now take a few minutes to formalize
these concepts

* A problem is a general question to be answered, usually
possessing several parameters, whose values are left
unspecified

— e.g. Can | schedule a DFG G(V,E) to complete within A
cycles using at most n multipliers?

* An instance of a problem is obtained by specifying particular
values for all parameters

— e.g. Can | schedule the DFG given in Lecture 1, slide 5,
to complete within 10 cycles using at most 2 multipliers?
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“Hard” Problems

7

i

I can’t find an efficient algorithm, I guess I'm just too dumb.”

[Garey & Johnson 1979]
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“Hard” Problems
( x
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“I can’t find an i i
efficient algorithm, because no such algorithm is possible!”’

L4

[Garey & Johnson 1979]
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“Hard” Problems
MOLLE Lo

cl

P i}

*“I can’t find an efficient algorithm, but neither can all these famous people.”
[Garey & Johnson 1979]

1/15/2007 Lecture6 gacl 6

Algorithms and Efficiency

* An algorithm is a general step-by-step procedure
for solving problems

* An algorithm is said to solve a problem IT if the
algorithm can be applied to any instance of IT and
is guaranteed to always produce a solution for that
instance

» An efficient algorithm is one that solves the problem
“quickly”
— there are other factors such as memory usage, but we
will ignore these
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Complexity

Usually, we can describe the worst-case
performance of an algorithm as a function of the
“size” n of the problem instance

We generally are concerned with the “big picture” of
how performance scales with size (especially for
large sizes), rather than specific execution times
The Big-Oh notation allows us to express this
behaviour

— O(n), O(n?), O(e")

An algorithm is O( f(n) ) if its worst case
performance is bounded by k f(n) for large n
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Complexity

« Example: A (good) algorithm to add n
numbers will be O(n)

« Example: An algorithm to sort n numbers in
order. You may be familiar with
— quicksort: O(n?)
— heapsort: O(n log n)

« Example: An algorithm which considers all

possible k-colourings that a graph could have
would be O(k")
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Polynomial vs Exponential Time

* A polynomial-time algorithm is one which has
O( p(n) ) for some polynomial p(-).
« An exponential-time algorithm is any algorithm
which is not polynomial-time.
» Clearly for large n, exponential-time algorithms take
much longer than polynomial-time algorithms
— the main distinction is thus: “is this algorithm exponential
(bad) or polynomial (good)?”
— the order of the polynomial is of secondary concern
 All problems which can be solved by polynomial
algorithms are said to belong to the class P
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Nondeterministic Polynomial Time

* To complicate matters, computer scientists have
come up with another class, NP (nondeterministic
polynomial).

» A problem is in NP if a solution to the problem can
be checked in polynomial time
— this doesn’t mean it has to be solvable in polynomial time

« Example:

— scheduling G(V,E) in time A given resource constraints
may or may not be solvable in polynomial time

— it is clear that given a schedule, we could check in
polynomial time that it is a valid schedule and it
completes within A cycles
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Want to Earn Some Money?

» The problem “does P = NP?” is unsolved

« If you solve it you will
— be famous
—win $2,000,000 from

 ...but don't let it distract you from your
degree!

1/15/2007 Lecture6 gacl 12




Polynomial Reduction

» Many interesting and difficult problems (like
scheduling) are in NP but we don’t know whether
they're in P

 Since it is generally hard to prove that a given
problem is not in P, we instead concentrate on
proving that its “at least as hard” as a known hard
problem

+ If we can transform any instance of a hard problem
ITH into an instance of our problem IT, and that
transformation can be done in polynomial time,
then

— if we can solve I1, we can solve ITH = I1 is also hard!
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NP-completeness & NP-hardness

* There are some problems which are in NP and
which are known to be at least as hard as any other
problem in NP.

— these are called NP-complete
» NP-complete problems are of particular interest, as

if a solution to any NP-complete problem can be
found in polynomial time then P = NP

* A problem which is at least as hard as an NP-
complete problem is called NP-hard

— this is our formal definition: for “hard problem” read “NP-
hard problem”
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A Hierarchy of Problems

« Assuming P = NP, this is how our “world of
problems” looks

NP-

@ complete
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Proving Hardness

* Proving NP-hardness requires two stages
— pick a known NP-hard problem

— demonstrate a transformation from this problem to your
problem

* There are some NP-complete problems which form the
basis of many proofs. We will look at one: Partition

+ Partition: Given a finite set A and a measure s(a) € Z* for
each a € A, is there a subset A’ c A such that the following
equation holds?

D s(@)= 2 s(a)

acA' acA-A'
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Proving Hardness

» An example instance of “partition”:
— A ={v1, v2, v3} with s(v1) =1, s(v2) = 2,
s(v3) =1
— for this instance, the answer is clearly “yes”:
« A={v2} or A ={v1,v3}
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Example: Scheduling is NP-hard

» To finish off, we’'ll prove the NP-hardness of an
example problem (a simple form of scheduling)

» Our simple scheduling problem has no data
dependencies and only one type of operation

* Remember that you won'’t be asked to do such a
proof for an unseen problem, but this proof has
been included

— for completeness

— to give a more “practical” end to a highly theoretical
lecture

— to justify past and future comments about scheduling
being a “hard” task to perform
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Scheduling is NP-hard

 Let’s start by defining our problem:

— given a finite set A of operations, a latency
d(a) € Z* foreach a € A, a number m € Z* of
resources, and a deadline A € Z*

—is there a schedule such that all operations
complete within the deadline and no more than
m resources are used?
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Scheduling is NP-hard

 Let us rephrase the question:

—is there a partiton A=A, UA,U ... UA, Of A
into m disjoint subsets such that

<
max) 2 4@ <4

— A, represents the set of operations assigned to
processor i, and no two operations can be
executed at the same time on a single resource
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Scheduling is NP-hard

» Let’s consider a special case of our problem, for
=2 and
m=2 an P Zd(a)

aeA
* Then the problem reduces to:
— given a finite set A, and a value d(a) € Z*foreacha € A
— is there a partition into 2 disjoint subsets A’ and A — A’

Scheduling is NP-hard

* Rewriting, we require

—max{Zd(a)— Y d(a), Y d(a)- Zd(a)}<0

acA' acA-A' acA-A' acA'

» But for any k, max(k,-k) < 0 = k = 0, so we require

such that Z d(a) = Z d(a)
acA' acA-A'
max{z d(a), Zd(a)} —> d(a)
aed' acA-A' 2 i  But this is the “partition” problem. So “partition” is a special
case of our problem and hence our problem is NP-hard
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Summary

* This lecture has covered
— The definition of an “algorithm”
— Polynomial-time and intractability
— P and NP

— Polynomial reduction, NP-completeness and NP-
hardness

* Next lecture we will look at the (NP-hard!) problem
of Integer Linear Programming (ILP) and how we
can use ILP solving software to help us optimize
our hardware
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[Integer] Linear Programming

+ Part of our 4-lecture “theory break”
— Graphs, cliques, and colouring
— Algorithms and intractability
— Linear programming and integer linear programming
— Shortest and longest path algorithms

* This lecture covers

— Mathematical programming, integer / mixed-integer
programming, and linear programming

— Slack variables
— Application example: Capital budgeting
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Mathematical Programming

« Mathematical “programming” is the name given to
the branch of mathematics that considers the
following optimization problem:

max f(x), xeScR"

* Here R" represents the set of n-dimensional
vectors of real numbers, and fis a real-valued
function defined on S. S is the constraint set and f
is the objective function.

» By choosing f and S appropriately, we can model a
wide variety of real-life problems in this way.
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Feasibility and Optimality

* Any x € Sis called a feasible solution
* If the there is an x° € S such that
f(x) < f(x°) forall x € S
then x° is called an optimal solution

* The aim is to find an optimal solution for a given f
and S
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Integer Programming

* An integer programming problem is one where S is
restricted to have only integer values

ScZ"cR"

* A mixed integer programming problem is one where some
elements of S are restricted to integers

* Integer programming problems are typically harder than the
equivalent real problem. You can gain an intuition why by
considering the following problems

— find the value of x minimizing cos(x/5)
* 51

— find the integer value of x minimizing cos(x/5)
* round(5n ) ?round (57 + 107 ) ? ...
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Linear Programming

* Problems where fand S are restricted to linear form

are of particular interest

f(x) = c'x, S={x|Ax=b,x>0}

— cisan nx 1 vector, Ais an m x n matrix and b is an
m x 1 vector

Imposing the linearity constraints restricts the

domain of problems, but allows us to use known

solution techniques

For general x, these problems can be solved
exactly (e.g. Simplex technique). For integer x, the
problem is NP-complete.
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Why Are We Interested?

* We are interested in expressing problems as

integer or mixed integer linear programs because
— it provides a way to formalize the problem

— we can apply known general techniques to solve
the problem

— lots of software exists to solve MILPs (e.g.
Ip_solve, available free from the web)

— | will be introducing ILP formulations for
scheduling and resource binding in later lectures
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Modelling Complex Problems

« At first glance, linear constraints may seem very

restrictive — this is not necessarily the case, if you

build your model carefully.

Here are three types of constraint that could be

useful in synthesis

— inequalities (e.g. x1 + x2 < b1, rather than x1 + x2 = b1)

— dichotomy (e.g. x1 + x2 <b1 OR x3 + x4 < b2)

— conditionals (e.g. x1 + x2 < b1 = x3 + x4 < b2)

* We will only be considering the first in this brief

introduction. If you wish to use the others,

— R.S. Garfinkel and G.L. Nemhauser, “Integer
Programming”, Wiley and Sons, 1972
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Inequality

Inequality constraints can easily be introduced by adding an
extra variable

For example, consider the program:

max 2x, + 3x, subject to x;, + x, < 10
This is the same as

max 2x, + 3x, subject to x; + x, + x3 = 10
For “>”, we would insert (-x;) into the constraint

The extra variable is called a slack variable — it does not
appear in the objective function

Because this is so straight-forward, many ILP solving
programs allow you to express constraints with inequality
directly. From now on, we will use inequalities freely without
considering slack variables explicitly
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Example: Capital Budgeting

» From Garfinkel and Nemhauser (1972):

— A firm has n projects that it would like to
undertake, but due to budget limitations, not all
can be selected. In particular, project j has a
value of ¢;, and requires an investment of a;; in
the time period /i, i =1,...,m. The capital available
in time period i is b;.

— Problem: Maximize the total value, subject to
budget constraints
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Example: Capital Budgeting

* Let’s introduce a set of variables Xj, which we
interpret as:

—X; =1 = project j is selected
— X; = 0 = project j is not selected
» Then the objective function can be formulated as

Z CiX;
j=1

* The constraints are
n
Zaijxj <b,i=l...m; x <1l j=1,..,n
j=1
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Summary

* This lecture has covered

— Mathematical programming, integer / mixed-
integer programming, and linear programming

— Slack variables
— Application example: Capital budgeting

» Next lecture (the last in our “theory break”),
looks at finding the shortest and longest path
through a graph

1/15/2007 Lecture7 gacl 11




Path Problems and Algorithms

+ Part of our 4-lecture “theory break”
— Graphs, cliques, and colouring
— Algorithms and intractability
— Linear programming and integer linear programming
— Shortest and longest path algorithms
* This lecture covers

— Edge-weighted graphs, shortest and longest path
problems

— Longest path through a DAG
— Longest path through a general graph: Liao-Wong
— Longest path as a LP
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Edge Weighted Graphs

» An edge-weighted graph is a graph G(V,E) together
with a weighting function w: E > R

» We can represent this graphically by annotating
each edge e € E with its weight w(e)

=
G

An edge weighted DAG An edge-weighted graph with cycles
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Shortest and Longest Path

» A path through a graph is an alternating sequence
of vertices and edges

+ A path between vertices v0O and v3, with total edge
weight 3+1 = 4 has been highlighted
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Shortest and Longest Path

» The longest path problem is to find a path of
maximum total weight between a given “source”
vertex and any other vertex in the graph
— the shortest path problem is defined similarly

— we will consider only longest path problems — shortest
path can then be achieved by inverting all weights
w(e)= —wl(e)

» Bellman’s equations define the total weight of any
vertex v
s, = max (s, + w(u,v))
(u,v)ek
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Longest Path Through a DAG

The longest path through a DAG is an easier problem than
the equivalent for a general graph

This is because we can find an order of nodes to visit such
that the right-hand side of each Bellman’s equation is known
For our example DAG, let’s choose vertex 0 as our source.
Then s, = 0. If we now proceed to apply Bellman’s
equations in the order (s, S,, S3, S4, S5, Sg), We can
determine the total weight for each node
-5=0,5=0,8;=0,8,=2,5,=2,5=4

Note that this would not work with an arbitrary order. We
must calculate s, before s, for all (v,u) € E

For a graph with cycles, it is not possible to find such an
order
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DAG Algorithm

» Below is one possible algorithm (apologies to the recursion-
phobics)

Algorithm DAG_Longest_Path( G(V,E), source )
Set s =0;

source
foreachve V
Find_DAG_Path( G(V,E), v);
end DAG_Longest_Path

Algorithm Find_DAG_Path( G(V,E), v)
if already know s,
return;
else

foreach (u,v) € E
Find_DAG_Path( G(V,E), u)
Apply Bellman’s equation to find s,
end Find_DAG_Path
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DAG example

» Let's assume the vertices are stored in V
in an arbitrary order — say (4,1,2,3,5,0,6)

* A call to DAG_Longest_Path( G(V,E), 0)
will set s, = 0, and then follow the following
execution profile

1. Find_DAG_Path( G(V,E), 4)
1. Find_DAG_Path( G(V,E), 1)
1. Find_DAG_Path( G(V,E), 0)
2. Calculates,; =0
2. Find_DAG_Path( G(V,E), 2)
1. Find_DAG_Path( G(V,E), 0)
2. Calculates, =0

3. Calculate s, =2
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DAG Example

Find_DAG_Path( G(V,E), 1)
3. Find_DAG_Path( G(V,E), 2)
4. Find_DAG_Path( G(V,E), 3)
1. Find_DAG_Path( G(V,E), 0)
2. Calculates; =0
5. Find_DAG_Path( G(V,E), 5)
1. Find_DAG_Path( G(V,E), 3)
2. Calculate s; =2
Find_DAG_Path( G(V,E), 0)
7. Find_DAG_Path( G(V,E), 6)
1. Find_DAG_Path( G(V,E), 4)
2. Find_DAG_Path( G(V,E), 5)
3. Calculate s; =4

N

o
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General Longest Path

« Many algorithms to find the longest path of general
graphs have been proposed in the literature

» We will consider Liao and Wong’s algorithm as it is
very efficient for cases where the graph edge set
E U F can be partitioned into a “forward” edge set E
and a feedback edge set F where G(V,E) is a DAG
and |E| >> |F|
— this is often the case with graphs arising in synthesis —
we will consider some of these in future lectures
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Example Edge Set Partition

Consider our example graph. If we remove the
edges labelled “-1” and “-6”, we obtain a DAG

3 1
—@ |'®
\. 4
The remaining edges form the set E, whereas the
two we removed form the set F
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General Algorithm

Algorithm Liao_Wong( G(V,E U F), source)
forj=1to| F|+1{
DAG_Longest Path( G(V,E), source);
flag = TRUE;
foreach (u#,v) in F {
if sv< su+ W(u,l/){
flag = FALSE;
E= EuU {(source, V) };
w(source,V) = s, + W(u,V);

?f( flag ) return;

end Liao_Wong
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Algorithm Description

Liao Wong first applies the DAG algorithm on the forward
edges only. If no feedback edge provides a longer path
alternative, the algorithm terminates

If a longer path alternative is found, the algorithm models
this as an extra forward edge directly from the source

This process is repeated, until no more changes to the edge
set are necessary

It is provable that if the graph contains no cycles where the
sum of weights around the cycle is positive, the outer loop
need only be executed at most |F|+1 times.
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General Example

* Let us examine our example graph
@
—
\. 4

» Performing our initial DAG longest path, with vO as
the source, leads to
— Sy = O’ Sy1 = 3 Sy2 = 1 » Sy3 = 3
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General Example

* We now examine each of the feedback edges
in turn

— for edge (v3,v0), s,, > s,3—6 (0>-1), so no change
needs to be made

— for edge (v1,v2), s, <s,;—1(1<2), sowe mustinsert a
new forward edge (v0,v2) with weight 2 [in this example,
(v0,v2) is already in E, so we just modify the weight]

« o]
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General Example

 Calculating the longest path on the modified DAG
leads to
-8,0,=0,8,,=3,5,=2,55=6

« Examining each feedback edge in turn

— for edge (v3,v0), s,, = s,3—6 (0>0), so no change
needs to be made

— for edge (v1,v2), s, > s, — 1 (2 > 2), so no change needs
to be made

+ At this point, the algorithm terminates as no
changes are necessary
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Longest Path as a LP

* To keep up our interest in LP, let’s formulate the
longest path problem as a LP

Let’s revisit Bellman’s equations:

s, = max (s, + w(u,v))
(u,v)eE
* A necessary condition for satisfaction is:

Vu,vyeE, s,zs,+w(u,v)

* The minimum values of s, that satisfy (*) are the
solutions to Bellman’s equations
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Longest Path as a LP

* \We can write this as:
minimize Y s, subject to:

velV

s, > s, +w(u,v)forall(uyv)e E

ands. =0

source

» This is a standard LP formulation (c.f. lecture 7),
which can easily be cast in matrix notation Ax > b if
required
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LP Example

« For our general graph example, the LP objective
function and constraints are given below
* minimize Sy + S; + S, + S5
subject to:
s1>s0+3; s1>s2+1
s2>s0+1; s2>s1-1
s3>s1+1;s3>s2+4
s0>s3-6;s0=0
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Some Applications

* Longest and shortest path problems have
many real-life applications, including

— Circuits: Determining the critical path in a circuit,
and hence the performance of that circuit

— Transport: Finding the (shortest/cheapest/least
fuel) route between two places

— Networking and Comms: Shortest path through a
network
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Worked Example

» Consider the edge-weighted graph shown below

1

* (a) determine the longest path from v1 to all other
vertices in the graph

* (b) if an edge (v2,v3) with weight w(v2,v3) = -4
were added, how would this affect the longest
paths?
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Worked Example

(a) It should be easy to see thats,; =0, s, =5,
Sy3 =1, S,4 = 3 (verify by applying Bellman'’s
equations in the order (v1, v3, v4, v2)

(b) This edge would close a cycle {v3, v4, v2}. We
therefore use Liao-Wong to determine whether
any change has occurred to the longest paths

Examining the feedback edge (v2,v3), we see
thats,; > s, —4 (1 > 5 —4) and therefore the
extra edge has not affected the longest paths
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Summary

e This lecture has covered

— Edge-weighted graphs, shortest and longest
path problems

— Longest path through a DAG

— Longest path through a general graph: Liao-
Wong

—Longest pathas a LP
 This brings us to the end of our “theory

break”. Next lecture will look at scheduling
digital circuits.
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Suggested Problems

» Find the shortest path through the DAG used as an
example in this lecture (*)

* Try to apply the Liao-Wong algorithm to find the
shortest path through the cyclic graph example.
Does it work? If not, why not? (***)

* In the cyclic example, change the weight of edge
(v3,v0) to —4. Now apply Liao-Wong to the shortest
path problem. (*)
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ASAP and ALAP scheduling

* We're now entering the final portion of the course
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future
* This lecture covers
— The ASAP scheduling algorithm
— The ALAP scheduling algorithm and operation slack
— Introducing timing constraints into schedules
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ASAP Scheduling

* The simplest type of scheduling occurs when we
wish to optimize the overall latency of the
computation and do not care about the number of
resources required

» This can be achieved by simply starting each
operation in a CDFG as soon as its predecessors
have completed

» This strategy gives rise to the name ASAP for “As
Soon As Possible”
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ASAP Scheduling

» Let’s label each edge in the CDFG with the latency
of the node producing that edge

» Then scheduling under ASAP is equivalent to
finding the longest path between each operation
and the source node

» Since a CDFG is a DAG, we can use the DAG
longest path algorithm presented in Lecture 8

» Consider the original example from Lecture 1, and
assume that multiplication takes two cycles,
whereas addition and comparison take one cycle
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ASAP Scheduling

0
2 2 2 1
2
28 2
N
-~
1 6
Edge weighted CDFG Scheduled start times

* Applying the DFG algorithm to finding the longest path
between the start and end nodes leads to the scheduled
start times on the right-hand diagram
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ALAP Scheduling

The ASAP algorithm schedules each operation at the
earliest opportunity. Given an overall latency constraint, it is
equally possible to schedule operations at the latest
opportunity.

This leads to the concept of As-Late-As-Possible (ALAP)
scheduling.

ALAP scheduling can be performed by seeking the longest
path between each operation and the end or “sink” node.

We will re-examine the example, under the same delay
assumptions, with an overall latency constraint of 6 clock
cycles.
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ALAP Scheduling

Edge-weighted CDFG

+ The ALAP schedule start times can be derived by
subtracting the longest path time from the desired overall
latency constraint

Longest paths to sink node
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ALAP Scheduling

* Here are the ALAP start
4 times. You can see that
each operation starts at
> the latest opportunity
possible to still meet 6
cycles overall
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Mobility

» Let’s compare the ASAP and ALAP schedules:
0

+ The highlighted nodes have equal ASAP and ALAP times.
For all others there is a difference of at least once cycle.
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Mobility

The difference between the ALAP and ASAP times
for an operation is called the operation mobility or
slack.

Mobility measures how free we are to move the
operation into different time-slots.

Operations with zero mobility are critical operations,
and together form the critical path, which
determines how fast our circuit will run.

More sophisticated scheduling algorithms will take
advantage of positive mobility to balance the
resource requirements over time.
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Types of Timing Constraint

« As well as an overall latency constraint, other types
of timing constraint are important

» Consider these examples [DeMicheli94]

— A circuit reads data from a bus, performs a computation,
and writes the result back onto the bus. The bus interface
specifies that the data must be written exactly three
cycles after the read

— A circuit has two independent streams of operations,
constrained to communicate simultaneously to external
circuits by providing two pieces of data at two interfaces.
The cycle in which the data are made available is
irrelevant, although the simultaneity of the data is
essential.

1/22/2007 Lecture9 gacl 10

Types of Timing Constraint

We will consider two types of constraint

—a minimum timing constraint /; between
operations v; and v;: S(v)) > S(v)) + I;

—a maximum timing constraint u; between
operations v;and v; : S(v)) < S(v)) + u;

These constraints are sufficient to model the

situations on the previous slide, in addition to many

others. Solutions for previous slide:

— set both min and max of 3 cycles between read and write

— set both min and max of 0 cycles between the two writes
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Modelling Timing Constraints

* How can we incorporate these timing constraints
within our sequencing graph-based model, and
how do they affect the schedule?

* From the sequencing graph G(V,E), we construct
an edge-weighted constraint graph Gq(V,E;),
where E c E.:

— the edge weights for edges in E are the same as before
(i.e. the delay of the node producing that edge)

— we add extra edges to model the timing constraints

1/22/2007 Lecture9 gacl 12




Modelling Timing Constraints

* Minimum timing constraints can simply be modelled
by adding an extra edge (v;, v;) with weight /;

« By adding the curved edge
with weight 5, the
subtraction operation
cannot start for at least 5
cycles after the
multiplication starts
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Modelling Timing Constraints

« Maximum timing constraints can be modelled by
adding an extra edge (v}, v;) with weight -u;

* Now the multiplication cannot
occur before -5 cycles after

| the subtraction starts

o S(mult) > S(sub) -5, i.e.
S(sub) < S(mult) + 5

* The subtraction cannot occur
later than five cycles after the
multiplication starts
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Scheduling with timing constraints

» ASAP / ALAP scheduling can still be performed on
constraint graphs through the longest path
technique, BUT...

— the graph may no longer be a DAG (e.g. on the previous
slide)

— we may need to use Liao-Wong to find the longest path
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Summary

 This lecture has covered
— The ASAP scheduling algorithm
— The ALAP scheduling algorithm and operation slack
— Introducing timing constraints into schedules

* Next lecture will look at list scheduling, an heuristic
method to find a short schedule given constraints
on the number of each type of resource available
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Suggested Problem More Suggested Problems

» Consider again the differential equation example « DeMicheli, Chapter 5, Problems 2 and 3 (note that
from Lecture 1, repeated again below. DeMicheli refers to a combined min and max
* Itis required that the constraint between the source vertex and an

subtraction operation operation as a “release time” constraint)
marked (o) begin no later
than 3 cycles after the
multiplication operation
marked (B)

» Compare the ALAP
schedules with and without
this constraint
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List Scheduling

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future

* This lecture covers

— resource constrained scheduling and latency constrained
scheduling

— the resource-constrained list-scheduling algorithm
— the latency-constrained list-scheduling algorithm
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Resource Constrained Scheduling

* The following problem is given the name “resource
constrained scheduling”:

— Given a library of resources, and a constraint on the
maximum number of each type of resource to be used in
the implementation, find a schedule of minimum latency

* This problem is NP-hard (proof in Lecture 6), so
generally heuristics are used to attack the problem

— we will also be looking at a way to find an optimum
solution next lecture
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Resource Constrained Scheduling

» Let R denote the set of resource types,
— e.g. R ={add, mult, ALU}

» Let the bound on the number of each resource type
re Rbe a,

* In list scheduling, we schedule operations by
considering each clock-cycle in turn

— U, is used to denote the set of operations of type r
whose predecessors have already completed by cycle { —
the candidate set

— T,,is used to denote the set of operations of type r
started, but not completed by cycle t
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Resource Constrained Algorithm

Algorithm RC_ListSchedule( G(V,E), R, a) {
set £= 0;
repeat {
foreach rc R{

determine U, ;
determine T, ;
selectY c U, s.t. ||+ |T, | < a;
set S(v)=fforallve Y;

set = 1+1;
} until all nodes scheduled
return( S);

}
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Resource Constrained Algorithm

« At each clock cycle, the candidate set represents
those operations we could schedule

* From the candidate set, we select a subset Y,
which we do schedule

» The constraint on selection of Y'is that we can
never have more than a, operations of type r
executing simultaneously

* Notice that as a, » o for all r € R, the list schedule
approaches an ASAP schedule
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Resource Constrained Algorithm

* Notice that the algorithm is not fully defined, as we
haven’t said how to pick Y

* The most common way to pick Y'is to prefer to
schedule the most urgent operations first

» Urgency is typically defined in terms of the
minimum latency ALAP schedule time — the lower
the ALAP time, the more urgent the operation is
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Resource Constrained Example

 Let’s re-visit our familiar differential equation
example

» Consider scheduling under
the resource set
R = {*, +/-, <}, where the
d e delay of +/- and <is 1
~cycle, and the delay of * is
1 2cycles

=

» We will perform a list-
schedule with a.=2, a,, =2,
a~=1
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Resource Constrained Example

«t=0
—Uy-= {a,b,c,d}, Uy,.={e}, Uy =D
~T0s=0, Tg4. =D, Ty =
— For +/-, easy to select Y = {e}

— For *, we have a choice. ALAP times for a,b,c,d
are 0,0,1,3, respectively (see Lecture 9). So
most urgent are Y = {a,b}

— For <, there is nothing to schedule Y = &
-S(@a)=0, S(b)=0, S(e)=0
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Resource Constrained Example

e =1
~U,.={cd}, Uy, =@, Uy . = {i}
-T-={ab} T,,.=0, T, . =0
—For+/-,Y=O
—For*, Y= (all resources busy)
—For <, Y={i}
-S(@) =1
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Resource Constrained Example

e t=2
—Uy.={cdf}, Uy, =G, Uy . =
—T15:=0,T5,.=0, T, . =0
—For+/-,Y=0
— For *, ALAP times for c,d,f are 1,3,2

respectively.Y = {c,f}

—For<, Y=O
- S(c) =2, S(f) =
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Resource Constrained Example

« If we continue this process until the algorithm terminates

— we take once cycle longer than ASAP (but can use half
the number of multipliers)

List-scheduled times ASAP times from Lect 9
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Latency Constrained Scheduling

* The dual problem is “latency constrained
scheduling”™

— Given a library of resources, and a constraint on the
maximum overall latency of the schedule, find a schedule
using the minimum number of resources of each type

* This problem is also NP-hard (the same proof
holds), so again heuristics are used to attack the
problem

» Let A denote the desired maximum latency
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Latency Constrained Algorithm

Algorithm LC_ListSchedule( G(V,E), R, ). ) {

perform ALAP( G(V,E), 1 );

seta =1forallrc R

sett=0;

repeat {

foreach rc R{

determine U, ;
determine 7, ;
determine slack s, = ALAP - tforall ve U,;
setY,={fve Vs, =0)
seta, = max(a,, Y, +|T,));
selectY,c U,,s.t. |Y,u Y] +|T, | <a;
set S{(v) = fforallve Y,U Y,;

}

set t= t+1;
} until all nodes scheduled
return( S, a);
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Latency Constrained Algorithm

This algorithm works by constantly refining the
“maximum” number of resources it allows

— we start with one resource of each type

— this is changed if the desired latency is not achievable

For each cycle, we calculate the slack of the
candidate operations

— slack is the difference between the last cycle an
operation could be scheduled in and the current cycle

— if the slack of an operation is zero, it must clearly be
scheduled immediately, even if that means increasing the
number of resources allowed
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Latency Constrained Algorithm

+ Such “forced” scheduled nodes are placed in set Y,

It may also be possible to schedule additional nodes,
without increasing the resource requirements further. These
are placed in Y,, and selected on the basis of urgency, as
with the resource-constrained algorithm
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Latency Constrained Example

As an example, we will again consider the
differential equation CDFG

— The ASAP schedule gave a minimum schedule length of
6 cycles. It had up to 4 “*”, 1 “+” and 1 “<” operating in
parallel

— Let’s see whether latency constrained list scheduling can
do better than that

We will execute LC_ListSchedule( G(V,E), R, 6)

The ALAP times for this example have already
been determined in Lecture 9, and are:
—a:0,b:0,c:1,d:3,e:4,f:2,9:3,h:5,i:5,j:4,k: 5
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Latency Constrained Example

«t=0
—Uy-= {a,b,c,d}, Uy,.={e}, Uy =D
—T0s=0, T44. =D, Tg. =D
-5,=0,5,=0,5,=1,5=3,5.=4
—For*, Y, ={a,b}; for +/-, Y, =Q; for<, Y, =
— a. = 2; others unchanged
—For*, Y,=0; for +/-, Y,={e}; for<, Y, =
-S(@)=0, S(b)=0, S(e)=0
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Latency Constrained Example

e t=1
~Uy. = {od}, Uy, = @, Uy < = {i}
—T={ab} 1, =0, T =0
-5.=0,84=2,5=4
—For*, Y,={c}; for+/-, Y, =; for<, Y, =
— a. = 3; others unchanged
—For*, Y, =; for +/-, Y, = &; for <, Y, = {i}
—-S(c)=1, S(i) =1
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Latency Constrained Example

e t=2
-U,.= {fd}, U, =0, U, =0
—Ty-={ch 154.=90, T, =D
-5=0,54=1
—For*, Y, ={f}; for +/-, Y, =O; for<, Y, = O
— all resource constraints unchanged
—For*, Y, ={d}; for +/-, Y, = Q; for<, Y, =&
-S(f)=2,S(d)=2
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Latency Constrained Example

« If we continue this process until the algorithm terminates

— schedule has the same latency as ASAP, but requires 3
rather than 4 multipliers

0 0
2 1
6
List-scheduled times ASAP times from Lect 9
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Area / Speed Tradeoffs

In general, if we allow more resources, the schedule may
have a shorter latency

Similarly, if we allow a longer latency, the schedule may
require fewer resources

This leads to the concept of an area / speed tradeoff

— one of a designers most important jobs is to explore this curve — and
architectural synthesis tools can help

l can’t use fewer than one mult
overall
latency //. can’t go faster than ASAP
|
achievable% ©
designs # mults (for constant # other resources)
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Summary

 This lecture has covered
— resource constrained scheduling and latency constrained
scheduling
— the resource-constrained list-scheduling algorithm
— the latency-constrained list-scheduling algorithm
— area / speed tradeoffs

* Next lecture will look at optimum scheduling
methods, using Integer Linear Programming
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Suggested Problems

1. Re-visit the differential equation example. For two +/-
resources and one < resource, draw the complete Area /

Speed tradeoff curves achieved by applying

* resource-constrained list-scheduling

» latency-constrained list-scheduling

Are they the same? Account for any differences (**)

2.  Write a program to perform one of the list-scheduling
algorithms and test it on some CDFGs of your own

invention (***)
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Optimum Scheduling

» The final portion of the course covers

— Scheduling and retiming

— Resource sharing algorithms
— Floorplanning

— Function Approximation

— Perspectives for the future

* This lecture covers

— Optimum scheduling: why ILP?
— Integer linear program model
— Example ILP and solution

1/22/2007 Lecturell gacl 1

Optimum Scheduling

 Last lecture we looked at an heuristic scheduling
technique: list scheduling

* We may also wish to know the optimum result for a
given scheduling problem

— optimum results are only achievable for small problems,
as resource-constrained scheduling is NP-hard

— if we design a heuristic, and it achieves near-optimal
schedules for small problems, we are usually more
confident it will do well for large problems

— optimum results form a “baseline” against which we can
compare heuristics
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Why ILP?

* Integer Linear Programming is useful to achieve
optimum results because
— it lets us formalize the problem

— it gives a structure to the problem: what is the objective
function, what are the constraints, how many are there,
what are their nature?

— we can use ILP solvers such as Ip_solve
( ) to solve
problems once they are in ILP format
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Notation

« We will use the following notation, mainly carried
over from previous lectures
— S(v): the scheduled start time of node v
— d,: the delay (latency) of node v
— a,: the maximum number of resources of type r
— T(v): the type of node v
— R: the set of resource types
— A: the maximum overall latency

— ASAP, (ALAP ): the ASAP time (ALAP time) under
overall latency A

— X, binary decision variable (see next slide)
— ¢, the cost of a resource of type r
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Binary Decision Variables

We will use a trick often used in ILP formulations: to
introduce binary decision variables

We willuse x; (v € V, t € {ASAP,, ASAP +1, ...,
ALAP }, with x, = 1 iff node v is scheduled to start
attimet, ie. x,;,=1< S(v)=t

These will allow us to formulate the resource
constraints as linear functions of x,,

Note that if we are doing resource-constrained
scheduling, we may not know A. Since it is an
upper bound, we can use RC list scheduling to
obtain it.
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Ensuring a Unique Start Time

» Quir first constraint needs to be to ensure that each
operation starts at only one time

ALAP,
Vvel: wa =1
t=ASAP,

» Because x,; are constrained to be binary variables,
this means that exactly one time-index is true for
each operation

1/22/2007 Lecturell gacl 6

Specifying Data Dependencies

Of course we can’t allow operations to start before
their predecessors in the CDFG have completed

ALAP, ALAP,
vV, v)eLE: Zt-xwz Zt-xv.t+dv.
1=ASAP, t=ASAP,

Each edge in the CDFG defines one of these
constraints

Each summation represents the start time of the
particular node (v on the LHS, v’ on the RHS)
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Specifying Resource Constraints

+ No more than a, operations of type r can
simultaneously execute

Vre RVt ed0,.., 1},

Z Z X, <a,

veV:T'(v)=r t'e{t—d, +1,..,t}"{ASAP,,...,ALAP,}
» The first summation is over all nodes of type r

* The second summation is over a time “window”
covering all start cycles t’ for which the operation
would still be executing by cycle ¢
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Resource-Constrained
Objective Function

+ Under these constraints, the resource-constrained
scheduling problem can be solved by minimizing
the overall latency (we fix a,)

ALAP,
min : Zt'xvzt
t=ASAP,

* Here, v, represents the “end” or “sink” node in the
CDFG
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Latency-Constrained
Objective Function

* Under the same constraints, the latency-
constrained scheduling problem can be solved by
minimizing the cost of the resources required (we

fix 1)
min : Z c.a,
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Example ILP

» We will build an ILP for the differential equation solver as an
example

» We will formulate the latency-constrained problem for A = 6,
the minimum possible latency

» To refresh your memories, here are the ASAP and ALAP

times for A, =6 f(gom Lecture 9
S:

Lecturel 1

Example ILP

* First, lets examine what variables we have:
{2505 X405 X505 Xeos Xer> Xa05 Xa1s X2
KXa3sXe0sXe1s XeasXe3s Xoas X 25 Xgas
X3 X025 X35 X85 Xpss Xips Xins X35
XigsX;55X 45 Xp55 X6}

» Operations with large mobility give rise to a large
number of variables
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Example ILP

» The first constraints are unique-start-time
constraints:

X =1
X, = —
50 Xy +Xg5 =1
X = —
a0 Xy +X5+ X, X, =1
X, =1 _
b0 X +X,+x,;+x,+x,=1
ch+‘xc1_1 xi4:1
Xgo + X + X4 + x5 =1 x5 =1
er+xel+er+xe3+xe4:1 xz6:1
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Example ILP

* The next constraints are dependency constraints:
“X,020-x,+0
Xy 202,40
“Xot+l-x,20-x,+0

X+ lox, +2-x,+3-x,,20-x,+0

Xy 20-x,,+2
X 20-x,+2
Xy +3-x,,20-x,+1-x,+2

0
0
0
0
O-x,0+1l-x;+2-x,+3-x,3+4-x,,20-x,+0
2
2
2
2-x,, +3- %, +4-x,, +5-x,,20-x,0+1-x, +2-x,, +3-x,5,+2
1

Xy +2x,+3x,+4-x,+5-x,20-x,+1-x,+2-x,+3-x,,+4-x,,+1
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Example ILP
* Dependency constraints continued...
4-x,,22-x,,+2
S5X5 22X, +3-x,,+2
6:x 22-x,+3-x,,+4-x,,+5-x,5+1
6-xo21lx,+2-x,+3-x;+4-x,+5-x,5+1
5-x;5 24-xj4+1

6-x25x,+1
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Example ILP

* Resource constraints:

r=<,t=1:x,<a_ r=+/—t=0:x,<a,,

r=<,t=2:x,<a. r=+/—t=1:x,<a,_
r=+/—t=2:x,+x,,<a
r=<,t=3:xi3Sa< ’ e2 h2 /-
7":+/—,l‘:3lxe3+xh3ﬁa+/_
r=<,t=4:x,<a
r=+/—t=4:x,+x,+x,<a,
r=<,t=5:x.<a
5 o — .
i < r—+/—,t—5.xh5+xk5£a+/_
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Example ILP

* More resource constraints:
r=%*t=0:x,+x,,+x,,+X,<a.
r=*t=1:x,+x,,+x,+x,+x,,+x, <a
r=*0=21x,4 X, X, X0+ X, <a
F=RE=30X Xt Xy X, X S

* Obijective function:

— let’'s assume the cost of a mult is “2”, and that of an adder
and comparator is “1”:

min:2a.+a,, +a.

1/22/2007 Lecturell gacl 17

Example ILP

* This (rather long!) example contains 29 binary
decision variables and 3 resource allocation
variables (total = 32) and 44 constraints

* For even this small example, the ILP model is quite
sizable

— ILP is only really practical for solving small problems

1/22/2007 Lecturell gacl 18

Summary

* This lecture has covered
— Optimum scheduling: why ILP?
— Integer linear program model
— Example ILP and solution

* Next lecture will move off the subject of
scheduling, and start to consider algorithms
for resource sharing

1/22/2007 Lecturell gacl 19

Suggested Problems

* Download a copy of Ip_solve from the website
given at the start of the lecture, and solve the ILP
example
— what is the minimum possible cost?

— how many adders, multipliers, and comparators does it
use?

— how does that compare with a latency-constrained list-
schedule?
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Affine Scheduling

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future
* This lecture covers
— Scheduling nested loops: the affine approach

1/22/2007 Lecturell gacl 1

Nested Loop Programs

» So far, we have only looked at scheduling “straight-line”
code

— Loops can be trivially scheduled by repeating the
schedule of the loop body.

— However, this is not always the most efficient way.
* We shall now consider nested loop programs:

fori, =1, to u,
for i, = I,(i,) to u,(i,)

for i, = 1, (iqymmnsipnq) t0 U (ig5mmnsifq)
$,: first statement

S,: kth statement
end for

end for

1/22/2007 end for Lecturel 1 gacl

Affine Nested Loop Programs

» To simplify notation, we will discuss scheduling statements,
rather than operations
— Equivalent if each statement contains a single operation.
» Our scheduling procedures so far would allocate a start time
S(u) to each statement u in the inner loop
— loops will run sequentially.
» We can do better if we make a (practical) restriction on the
functions /; and y;
— Letus denote i = (iy, iy, ..., iy)".
— We will assume /;and u; are affine, i.e.
i) =i+ e,
ui(i)=yli+up.
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The Unrolling “Solution”

» Before going further, it let us consider an easy
alternative:
— “unroll” all the loops, i.e. convert to straight-line code,
— Use one of our previous scheduling algorithms.

* Problem:
— Size of unrolled code exponential in n.

— As a result, optimal scheduling infeasible, heuristic
scheduling overwhelmed, massive FSM.
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Affine Schedules

The alternative is to define a scheduling function
S(i,v): the start time of statement v in iteration /.

lteration Space

* This is because the lower and upper iteration bounds
impose linear constraints on I

If we impose a particular functional form on S(i,v), -1 0o - 0 0 ~1°

the problem becomes tractable +1 0 0 0 ;0

- Ens.ure S(i,\./) is “affine-by-statement”: I 1 0 0 _; 0
S@i,v)=tTi+tp0. 2

The domain of the function S is Vx2s, where 95 A=), +_1 0 0 b= u

denotes the iteration space. : : ;

For an affine loop nest, 75 is the set of integral L Lo Ly 1 -1

points inside Ai £ b, known as a convex polytope. —U, U, o U, tHl u’
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lteration Space Dependences

Geometrically:
— each constraint (a row in A and b) cuts n-dimensional

space with an (n — 1)-dimensional hyperplane.
Graphical example:

fori;=0to 5
fori,=0to5—1i
end for

end for

|
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» As before, the key issue in scheduling is to respect
data dependences (‘flow’ dependences).
— We shall now consider inter-iteration data dependences.
— Typically, these are carried by array accesses.

fori, =1 to 100
fori, = 0 to 100

s[iyMlil=s[i;-1I[i;]1+c[i,[i,]"x[i,]
end
end

— In this code, iteration (i;,i,) must execute after iteration
(i1-1,) due to dependence carried by access to array “s”.

— In the unrolled CDFG, this would be a normal edge.
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Constant dependences

» Each of the dependences imposes a linear
constraint on ¢,

— For our example, there is only one statement, so we
shall drop the “v” subscript, and denote the delay of this
statement by d. Then:

) -
zT(l}Jzﬂ[’l_ ]+d:>(1 0y >d
L b

— In this example, there is nothing in the constraint
(1 0)t = d that depends on j or j; this is a constant
dependence.
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Constant dependences

» Constant dependences make life easier
— One linear constraint per statement

— Any feasible solution to the corresponding linear set of
constraints is a valid schedule!

— We could define an appropriate objective function,
depending on what we’re trying to optimize — overall
latency, etc.

— More complex techniques exist to deal with non-constant
(but still affine!) dependences

» P. Feautrier, “Some Efficient Solutions to the Affine Scheduling
Problem I: One-Dimensional Time”, Int. J. Parallel Programming
21(5), 1992, pp. 313-347.
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Example Objective

* We have our constraints: what about an objective
function?

— Instance i of statement v completes by ¢,Ti + ¢ ° + d(v).

— This linear function of i will be maximized at one of the
vertices.

— For each vertex i, introduce a constraint
AztTi+t0+d(v).
— Min latency objective is then just min: A.

1/22/2007 Lecturell gacl 11

Limitations

+ Affine scheduling sub-optimal, e.g. the code below, where n
is some constant known at synthesis time.

fori=0ton
forj=0toi
s = s + a(i,j)
end for
end for

» The code is completely sequential. The best (non-affine)
schedule is S(i,j) = i(i +1)/2 + j, giving overall latency
n(n + 3)/2. The best affine schedule S(i,j) = ni + j, which is
much worse (approx twice as slow), at n(n +1).

» Can use multi-dimensional “time” < polynomial schedules.
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Summary

» This lecture has covered
— Affine nested loop programs
— Affine schedules
— Constant and affine dependences
— The vertex method
— Limitations of affine schedules.

» Next lecture will move off the subject of
scheduling, and start to consider algorithms
for resource sharing.
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Suggested Problems

» Consider the code below.

» Determine the flow dependences, and construct a
linear program to schedule this code.
— Assume each statement takes a single cycle

fori=1to10

for j =i to 2*i

x[PIj1=x[i-11[j] " x[il[j-1]
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Resource Sharing

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future
* This lecture covers

— Non-hierarchical CDFGs
— Hierarchical CDFGs
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Introduction

* We will consider some approaches for sharing
resources between operations

* Non-hierarchical and hierarchical CDFGs will be
considered separately
— problem has different complexity

* Remember that hierarchical CDFGs can be used to
represent the following (Lecture 1)
— conditionals
— loops
— function calls
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Resource Conflict Graph

The one fundamental restriction on sharing
resources:

— two operations executing simultaneously cannot be
executed on the same resource
This leads to the concept of “resource conflict”

Two operations are in resource conflict if they
overlap in execution time

A resource conflict graph uses the same node set
as the CDFG, but uses a set of undirected edges
such that: (Lecture 2)

— two operations are joined by an edge iff they are in
resource conflict
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Non-Hierarchical CDFGs

» For non-hierarchical CDFGs (i.e. those with just
one level of hierarchy), such a conflict graph is
simple

adder
conflict graph

b
1@

C
i@

multiplier
conflict graph

non-hierarchical CDFG
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Graph Structure

« Conflict graphs for non-hierarchical CDFGs are
interval graphs

» Recall from Lecture 5 that an interval graph is one
whose vertices can be put in one-to-one
correspondence with a set of intervals, such that
two vertices are connected by an edge iff the
corresponding intervals intersect

 Also recall from Lecture 5 that such graphs are
colourable easily in polynomial time using the /eft-
edge algorithm
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Solution via Left-Edge

*  We can therefore find an optimum binding using left-edge, reproduced
below from Lecture 5

— use the scheduled start and end times as the left and right “edges”,
respectively
Left_Edge( G(V,E) )
begin
sort nodes in ascending order of left edge - store in L
c:=1;
while( not all vertices have been coloured ) {
r:=0;
while( there is a vertex inL with /,> r ) ({
v, := first node in L with /,> n;
r=rg
label v, with colour ¢
L:=L\{v}}
c:=c+1;}
end 1/22/2007 Lecturel2 gacl 6

Left-Edge: Example

« Taking the previous example:

a . I I b
i@ I I IC
c=1 c=1 ¢=2

* So use one adder to do both a and d, but different
multipliers to do b and c

« Formally, Y(a) = (+,1); Y(b) = (*,1); Y(c)=(*,2); Y(d)=(+,1)
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Hierarchical CDFGs

» Consider a simple hierarchical CDFG with function
calls, performing the same function as the previous
example
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Hierarchical CDFGs

* How do we perform resource sharing?

— a naive approach would be to perform resource sharing
on each level of the hierarchy in turn

— for our example, this would lead to one multiplier and one
adder for each function: one more adder than we needed
for the non-hierarchical version

* We should try to share resources across the levels
of hierarchy
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Conditionals

» Conditionals help us share resources, as the two
branches (“if’ and “else”) are never needed
simultaneously

a=b<c;
if (a) then
d=b * b;
else

d=c *c;

» Operations c and d are not in resource conflict,
although they have the same type and “overlap” in
time

1/22/2007 Lecturel2 gacl 10

Multiple Function Calls

» Multiple calls to the same function complicate
matters, as operations can have several execution
times

a = fun(x); fun(p) {
b = fun(a); return p*p + 5; c:0,3
} a:0
d:2,5
b:3
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Graph Properties

» Conditionals and multiple function calls change the
structure of the conflict graph
— it no longer must be an interval graph
— the left-edge algorithm is therefore no longer applicable

* We need an heuristic approach to colouring the
graph

— one such algorithm is given in Lecture 5
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Colouring Heuristic

» Here is the colouring heuristic from Lecture 5:

Colour_Graph( G(V,E) )

Hierarchical Example

* Here is a more complex scheduled CDFG

begin a = fun(x); 0,3
foreach ve V¢ b = fun(a); fun(p) { 20 M
c=1; if (y) then t1 = p*p; )
while 3(v, V) € E: ¥ has colour ¢ e:;: b * b; }'et""' t1+5; d:2,5
c=c+1; c=2"*b;
label v with colour c } d = 3*b;
end : :
« We will apply it to an example with conditionals and £:6 2:6
multiple function calls
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Hierarchical Example Example Datapath
+ Remember f and g don’t conflict (if / else) ¢
. from
¢ control

multiplier conflict graph adder conflict graph

» Let’s colour the multiplier nodes in the order:
c,f,g,h
— c gets colour 1; f gets colour 1; g gets colour 1; h gets
colour 2

— we need two mults and an add
1/22/2007 Lecturel2 gacl 15

unit
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Summary

» We have investigated resource sharing for
both
— Non-hierarchical CDFGs
— Hierarchical CDFGs

* Next lecture we will look at register sharing

1/22/2007 Lecturel2 gacl 17

Suggested Problems

Perform a resource binding for the list-scheduled
differential equation example from Lecture 10 and
draw the completed datapath (*)

Design a controller for this datapath (*)

Discuss resource binding for conditionals within
conditionals (****)

Discuss a possible approach to resource binding
for loops (****)

De Micheli, Problems 6.11, No. 1 (conflict graphs
only) (*)
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Register Sharing

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future

* This lecture covers
— The register sharing problem
— Variable lifetime calculation
— Register conflict graphs
— Non-hierarchical register sharing
— Hierarchical register sharing: the loop problem
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Register Sharing

We have discussed sharing of arithmetic resources
— registers also consume silicon area

Registers are required for each intermediate result
passed across a clock-cycle boundary

So far, we have used a distinct register for each
intermediate result

— but we could share registers if results are not needed at
the same time
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Lifetime Analysis

* Consider the code and scheduled CDFG below
— it has inputs x and y, and output f

z1 = 2*x;
z2 = 3*y;
z3 = z1*22;
z4 = x*x;
z5=23-2;
z6 = z2*%24;

2
f = 25 - z6; Z3\.
A [ K
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Lifetime Analysis

Let’'s analyse the lifetime for which each result is required
— z1is produced during cycle 1 and consumed during cycle 2

— z2is produced during cycle 1 and consumed both
during cycle 2 and cycle 3

— z3is produced during cycle 3 and consumed during cycle 4
— z4 is produced during cycle 2 and consumed during cycle 3
— z5 is produced during cycle 4 and consumed during cycle 5
— z6 is produced during cycle 4 and consumed during cycle 5
— fis produced during cycle 5 and consumed at some unknown time

A register must be allocated to each result from the period
AFTER production, to the period DURING the last
consumption

— this is the variable “lifetime”
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Register Conflict Graph

« Two results cannot share a register if their lifetimes
overlap

— we can thus create a register conflict graph just like the
resource conflict graph used in the previous lecture

cycle 0
cycle 1

cycle 2 .

cycle 3

cycle 4 ‘ .

cycle 5

cycle 6 .
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Register Conflict Graph

+ As with resource sharing, for the non-hierarchical
case the register conflict graph is an interval graph
— optimum solution through the left-edge algorithm

» Our example conflict graph can be coloured with
only two colours
— only two registers are required
— z1, 23, z4, z6 and f share a register
— z2 and z5 share a register

@
@—=6)
@
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Example Datapath

+ So what would the datapath be for that design?

zl —_—
z3 —
(from 74 —
76 —|
resources) f —|

z2_>

o~

from

) control
to MUXs unit

and resources

from
control unit
* Note the multiplexers on the register inputs
— sharing resources leads to MUXs on resource inputs

— sharing registers leads to MUXs on register inputs
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Register sharing for loops

» As with resource sharing, things get more
complicated for hierarchical CDFGs
— we will not consider the general problem
— but we will examine the effect of loops to give you a
glimpse
 Consider the following sum-of-squares code and

scheduled CDFG 3n
0 / x[n]
total = 0; X total > 3n
VA

forn=0to 9 0
1

z1 = x[n]*x[n];
total = total + z1; total 3n+2
end 30 total
3n+3
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Register sharing for loops

* The result “total” is required to keep its value
BETWEEN loop iterations
— itis produced at cycles 3,6,9,...30 (excluding the

initialization) and consumed at cycles 2,5,8,...,29, and at
an unknown time after cycle 30

Register sharing for loops

Because of the “circular arc” wrap around effect
with some variables, the conflict graphs for
hierarchical CDFGs are not always interval graphs

Colouring such general graphs is NP-hard,
requiring the use of our colouring heuristic (or

cycle 3n+0 tota similar)
cycle 3n+1 L ._.
cycle 3n+2
total
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Summary Suggested Problems

« We have investigated register sharing:
— Variable lifetime calculation
— Register conflict graphs
— Non-hierarchical register sharing
— Hierarchical register sharing: the loop problem

* Next lecture we will look at the module
selection problem
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Perform a resource binding, and thus complete the partial
example datapath given this lecture (*)

To what extent can the registers be shared in the resource-
constrained list-scheduled example of Lecture 107 (*)

How important is register sharing? (think about it...) (***)

Consider what problems, if any, you may have extending
the framework discussed in this lecture to (****)

— function calls (with one call per function)
— function calls (with unlimited calls per function)
— conditionals
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Module Selection

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future
* This lecture covers
— The module selection problem
— Module selection / scheduling / binding interaction
— An ILP formulation
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Module Selection

» So far, we have considered only one resource type
capable of performing each operation, e.g.
— an adder/subtractor performs additions or subtractions
— a multiplier performs multiplications

* We could have different possibilities, e.g.

— either an adder/subtractor or an ALU could perform an
addition

— either a ripple-carry adder or a carry-lookahead adder
could perform an addition
« Module selection is the task of selecting an
appropriate type of resource to perform each
operations
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Interactions

* Ideally, we would like to perform module selection
before scheduling

— different resource types for a given operation may have
different latencies

— we need to know the latency (or at least an upper bound)
before we can schedule
* However, ideally we would like to combine module
selection and resource binding

— we don’t know which operations can share resources
until we know the resource type of each operation

— delaying module selection until binding will help us find a
low-area implementation
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Interactions
» For example, consider the code and CDFG below
1= x*2; #)
:1 = :1 < 3; a / \ b
f2 = x+2;

» Assume we have the following library:

* Adder: 1 area unit / latency 1 cycle, Comparator: 1 area
unit / latency 1 cycle, ALU: 1.5 area units / latency 2
cycles, Multiplier: 2 area units / latency 2 cycles
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Interactions

We may wish to implement
— ain an adder, c in a comparator
—aandcinALUs

The second option is only useful if the operations can share
a single ALU, otherwise it is a waste of area and latency

We don’t know if they can share a single ALU until after
scheduling

— we should perform module selection after scheduling
But we don’t know the latencies until module selection
— we should perform module selection before scheduling
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Interactions

+ Since we perform scheduling before binding, there
is clearly a contradiction
— we want to do module selection early in the design flow
— we want to do module selection late in the design flow

* One solution is to perform scheduling, module
selection, and resource binding concurrently as a
single problem

— advantage: leads to high-quality solutions
— disadvantage: leads to a complex problem to solve

1/22/2007 Lecturel4 gacl 6

ILP Formulation

It is relatively straightforward to extend our ILP
scheduling approach to consider the combined
problem

Rather than using variables x,, to indicate the
scheduling of operation v at time ¢

— we assume we know an upper bound a, on the number of
resources required of type r e R

— use x4, to indicate the scheduling of operation v at time ¢
oninstance i € {1,...,a,} of resource type r e R

— one variable x,, exists forallv e V, t € { ASAP,, ...,
ALAP,}, re T(v), i e {1,..., a}

1/22/2007 Lecturel4 gacl 7

ILP Formulation

— T(v) is the type set of operation v. For our previous
example, T(*) =% T(<) = {ALU,<}; T(+) = {ALU, +/-}
* The module selection problem is thus choosing a
single member of T(v) foreach v e V
— We will combine module selection, scheduling, and
binding, to achieve an optimum result
+ In addition to x,;,, we will use a binary variable b,
for each instance of each resource type

— b, = 1 < instance i of resource type ris used by at least
one operation

— as before, we will use c, to denote the cost of a resource
of type r
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ILP Formulation

Unlike the ILP scheduling in Lecture 11, a CDFG
node does not have a fixed delay

— it depends on which resource type implements the
operation

For this reason, we associate delays with resource
types: type r has delay d,

There is at least one resource type with minimum
delay dmin v

The ASAP and ALAP scheduling is performed by
assuming each operation has its minimum delay

1/22/2007 Lecturel4 gacl 9

ILP Formulation

* We will also introduce one more symbol which will
make the formulation easier to follow:

* W represents the set of all times that any operation
could possibly start at:

W =|J{4SA4P.,,..., ALAP,}

vel
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Objective Function

We are now in a position to formulate the “minimum
cost” objective function:

minimize : Zcribﬁ,

rerR i=1
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Binding Constraints

» Each operation must be mapped to a single
instance of a single resource type, operating at a
single time:

a, ALAPV _dr +dminv

Vvel, Z Z vam, =

rel (v) i=l t=ASAP,

* Note that an operation with ALAP time ALAP,,
cannot execute later than ALAP,—d, + d,,,, when
performed on a resource with delay d,

e

min v
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Resource Constraints

* No one instance of any resource type can execute
more than one operation at a time

— indeed, if the instance is unused, no operations may
execute on that instance

VteW,VreR,Viell,.,a.},

Z Z 'xvl'ir < bir

veVirel (v) t'eit,..t+d, —1}ﬁ{ASAPV,...,ALAPV —d,.+d

minv}

* As before, the 24 summation is over a “time window” during
which operations could overlap

1/22/2007 Lecturel4 gacl 13

Dependencies

» As previously, we need to encode each
dependency in the CDFG

v(V',v)eE,

a, ALAP,—d, +d a, ALAP,—d.+d;.

Z Z Zt.xvtirz Z Z Z(t-i_dr)'xv'n’r

reT(v) i=l  t=ASAP, reT(v") i=l 1=ASAP,

* The main difference with the previous formulation is
simply bringing the execution delay into the RHS
summations, as it depends on the resource type
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ILP Example

» To illustrate the method, we will complete an ILP for
the simple example earlier this lecture
—leta.=1,a,=1,a.=1,a,,=2
— (we can’t use more resource than operations of that type)
— note that a,, , is overkill, as we mentioned earlier
—letd.=2,d,=1,d.=1,d,,=2 .
—lete.=2,6,=1,c.= 10y =15 YN b
— let A = 4 (not a tight constraint)
— then ASAP,_ = 0, ASAP, =0, c
ASAP, =2, ALAP, =3, ALAP, =1,
ALAP,=3
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ILP Example

. So W=1{0,1,2,3}{0,1} U{2,3} = {0,1,2,3}

» Our objective function is then:

minimize :
2b1,* +1b1,+ +1b1,< +1.5(b1, LU +b2’ )
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ILP Example
* Binding constraints:

v=a:. X +X

2014 T X1 T X000 T X504 T X000 T

=1

Xoanarv Y Xa21a00 T Xa02.400 T Xan2.400 T Xan0.410

v=>b: X, 0+ tX, =1

V=CI X<t Xs1<« T Xt T Xennau = 1
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ILP Example

* Resource constraints:
t=0,r=+,i=1: x,,,,<b.,
t=lLr=+i=1: x,,,.<b.,
t=2,r=+,i=1: x,,,,<b,

t=3,r=+,i=1: x,5, <b,
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ILP Example

* More resource constraints:
t=0,r=*i=1: x,,,.+tx,,,.<D.
t=1r=*i=1: x,,,.<b.
t=2,r=<ji=1: x,,,_<bh._

t=3,r=<i=1: x ;,_.<b.
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ILP Example

* More resource constraints:

t=0,r=ALU,i=1: X0, yu+ X 1000 SO v
1=0,r=ALU,i=2: X,05 4v + X120 S0 v
t=Lr=ALU,i=1: X, v+ X021 a0 ¥ X2 a0 <O arv
t=Lr=ALU,i=2: X\, 4u +Xe22a0 t X220 Sbr v
t=2,r=ALU,i=1: Xy TXeonay S bl,ALU

t=2,r=ALU,i=2: Xoroarw T X200 S5 410
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ILP Example

* Dependency constraint:

vi=byv=c: 2x,,,_+3x.,,.+

2xc,2,1,ALU + 2xc,2,2,ALU 20+ 2)xb,0,1,* +(1+ 2)xb,1,1,*

1/22/2007 Lecturel4 gacl 21

Summary

 This lecture has covered
— The module selection problem
— Module selection / scheduling / binding

interaction

— An ILP formulation

* Next lecture we will examine the retiming

problem.

1/22/2007
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Suggested Problems

* Download a copy of Ip_solve from the website
given at the start of Lecture 11, and solve the ILP
example
— what is the minimum possible cost? (*)

— how many adders, multipliers, comparators and ALUs
does it use? (*)

— how many variables and constraints are there? (*)

— how do you think the number of variables and constraints
vary with the size of the CDFG? (***)
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Retiming

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future

Motivation

» Our concentration so far has been on synthesising “straight-
line code” or single loop iterations

* We have also briefly generalized this using CDFGs

» Often, algorithms will contain loop-carried dependencies,
e.g. this lIR filter:

a=0;b=0;c=0;
while( true ) {

An IR filter with transfer

read x: function
« This lecture covers y = x+ a H() 1
. . . T ’ = * *en zZ)=
— Retiming: motivation and definitions 2 3;'1 b+ 0.2%c; 1-0.122-025"
— Delay-weighted DFGs c’ = b;
— Retiming for clock period minimization a=ajib=bje=ch
write y;
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Motivation Motivation

* There is an alternative way of writing this code:

d=0;e=0;f=0;9 = 0;
while( true ) {
read x; (We will soon see how you
y=x+d+g; can prove the equivalence)
d’=0.1%¢e;
e’ =y;
f=e;
g’ = 0.2*f;
d=dje=e’;f=F;g=g%
write y;
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» Comparing the CDFGs of the two inner loops, we can see
that they may have different minimum latency.

/IT\e

aj|c

potential speedup e

X

min Iatency = min |atency =
max{T+T,, T.}+T. max{T.,.2T,+T,, T +T,+T,}
4
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Retiming an operator

» This type of code transformation is called retiming,
and derives from the following simple observation:

* We can move a
register through an
operation without

... has identical behaviour to ... affecting the “outside
world” view of

1/22/2007 Lecturel5 gacl 5

The initialization problem

* We must, however, give some thought to the
initialization of the system

- For example, « This is fine for forward

retiming, i.e. moving the

register from an input to

an output.

L . + Backward retiming

... has identical behaviour to ... .
requires there to be an
appropriate set of inputs

’ . I that generate the desired

initially 1~ output

1/22/2007 Lecturel5 gacl 6

— finitially 0

The delay-weighted DFG

» To be able to formally reason about retiming issues, we
need to represent the entire loop as a form of DFG,
including information on loop-carried dependencies.

» We will do this by an edge-weighted DFG, where each edge
weight represents the number of iterations delay on that
edge. We will call this a delay-weighted DFG.

* Note that when we have a loop-carried dependency, the
delay-weighted DFG will contain a cycle.

1/22/2007 Lecturel5 gacl 7

Delay-Weighted DFG
0

a=0;b=0;c=0; 0
while( true ) { ®— @
read x; 1
Yy =X+ a; 2
a’=0.1*b + 0.2*%c;
b’ =y;
c’ = b;
a=ajb=b%c=c’%
write y; a’ a
}

» This is our original example and its delay-weighted DFG

* Noting that the only output of the lower adder has weight 1,
we can retime backwards across this adder, resulting in...
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Delay-Weighted DFG

d=0;e=0;f=0;9g =0;
while( true ) {
read x;
y=x+d+g;
d’=0.1%¢e;
e’'=yj;
f=e;
g’ = 0.2*f;
d=dje=e;f=f;g=g%
write y;

* ... which corresponds to our modified example

1/22/2007 Lecturel5 gacl 9

Approaching the problem

» We can associate the nodes V with a retiming value
r. V — Z which denotes the number of clock cycles
that node has been moved “forwards in time”

 If we denote by w: E — Z the original weight, and
w,. E — Z the retimed weight, then
for all (u,v) € E, w/lu,v) = w(u,v) + r(v) — r(u)

» A feasible retiming is one for which for all
(u,v) € E, w(u,v) > 0 (since we can’t have a
negative number of registers)

1/22/2007 Lecturel5 gacl 10

Retiming for Clock-Period Min

* There are several reasons why we may wish to retime,
including for speed and for minimization of registers.

» We will address retiming for clock-period minimization, i.e.
clock frequency maximization.

» The maximum clock frequency is determined by the worst-
case combinational delay between any two registers, or

from an input to a register, or from an register to an output.

» Let us denote by d(v) the combinational delay of node v,
and we will assume all nodes are combinational.

1/22/2007 Lecturel5 gacl 11

Retiming problem formulation

* We must therefore have the notion of a
combinational path, i.e. a path that does not pass
through any registers.

— wJ(u,v) = 0 = combinational path.
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An ILP Solution An ILP Solution

« We can modify the LP for * Here N is a “large-enough” negative number.
longest-path given in « L corresponds to the longest combinational path, a
Lecture 8 to: fact guaranteed by (2), which ensures it is at least

* Minimize L s.t. as large as the largest (s, + delay of node v).

s, 28, +dw)+w.(u,v)N forall(uv)ye E () (1) is simply an extension of Bellman’s equations. If

w/u,v) = 0, it is a direct implementation of

s,+d(v)y<LforallvelV (2 Bellman’s. w(u,v) > 0, (1) is satisfied no matter
3) what (due to N being large, and w,being integer
w,.(u,v) =wu,v)+r(v)—r(u)=0forall (uv)e E (4)).
+ Finally, (3) combines the definition of w,(u,v) with
r(vyeZforallvelV @ the feasibility constraint.
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Example Summary

Let's say d(v,) = d(v,) =1, d(vy) =  This lecture has covered
d(vs) = 0, d(vs) = d(ve) =2

If the retimi — Retiming: motivation and definitions
e retiming left the graph _
unchanged, then r(v,)=r(v,)=r(v,)= — Delay-weighted DFGs

r(v4)=r(vs)=r(vs)=0 — Retiming for clock-period minimization
It should be easily verifiable that (1)-
(4) are satisfied in this case, with s,

= 0’—852 ; 9,3Svs =184 =2,85=0, » The next lecture will investigate the
S =5 5T floorplanning problem.

* The retimed example also corresponds to a feasible
solution, with s, =0,s,=1,85=2,54=0,5,5=0,5,4=0,
L = 2: an improvement!
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Suggested Problems

* Is the retiming shown in the example optimal?

» The edge-weighted DFG of a two-stage lattice filter
is shown below: retime the DFG to improve the
clock rate given that the delay of a multiplier is 2ns,
the delay of an adder is 1ns, and the delay of an
I/O node is Ons.

(unlabelled edges have
zero weight)
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Floorplanning

» The final portion of the course covers
— Scheduling algorithms
— Resource sharing algorithms
— Module selection
— Retiming
— Floorplanning
— Function approximation
— Perspectives for the future
* This lecture covers
— The floorplanning problem
— Slicing and non-slicing floorplans and representations
— Heuristic and ILP solutions

1/22/2007 Lecturel6 gacl

Motivation

* In recent years, we have moved to deep sub-
micron design.

« Wiring delays have started to compete with (and
sometimes overtake) logic delay.

— it is important to be able to estimate wiring delay early in
the design process.

* We need an early idea of geometrical layout on
silicon
— a floorplan.

* Floorplanning becomes part of architectural
synthesis.
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Slicing Floorplans

* Floorplans are typically categorised into
— slicing floorplans or non-slicing floorplans

+ Slicing floorplan
— obtainable by repeated bisection of rectangular cells
— simplifies representation and optimization

A slicing floorplan A non-slicing floorplan

1/22/2007 Lecturel6 gacl

Slicing Tree Representation

» A slicing tree is a binary tree representation of a
slicing floorplan
— aleaf is a resource to be floorplanned
— other nodes indicate how to compose their children:

vertically, or horizontally. \V4
/ N\
7 H
/N
H H
/N /N
v
1 23 AN
6 H
/ N\
4 5
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Skewed Slicing Trees

» Unfortunately, slicing trees are not unique
representations of the floorplan.

A A
/ \ / \

7 H 7 H
/7 N\ /N
H H H v
/N /N /N /\
1 23,V H 36 H

/ N\

6 u / N\ 4/\5
S 12
4 5

Both slicing trees are valid representations
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Skewed Slicing Trees

» A skewed slicing tree has the following property
— no node and its right-child have the same type

» Every slicing floorplan has a unique skewed slicing
tree.

* How to represent the trees in a floorplanning
algorithm?

— we can represent it as a string, called a Polish
expression.
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Polish Expressions

* Polish expression for: X

v . . N
/ N\ Polish(Y)+Polish(Z)+X* v 7
7 /H\ * Polish expression for leaf is
H \% leaf value.
/SN /N
H 36 H * For tree on the left:
7\ /N “T12H3HB645HVHV”
1 2 4 5

* A skewed slicing tree corresponds to a Polish
expression where
— no two consecutive operators (H/V) are of the same type.
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Floorplan Optimization

+ We have a compact and unique representation of a
slicing floorplan. How to optimize for smallest area?

« A common approach:
— start with a random floorplan
— improve it based on certain well-defined “moves”

« What moves'?

— Swap two adjacent operands (leaf nodes) in the Polish
expression.

— Take a chain of consecutive operators, e.g. “HVHV”, and
complement it, e.g. “VHVH".

— Swap an adjacent operator and operand. (But make sure still a
skewed tree!)

! Moves from Prof. Hai Zhou
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Floorplan Optimization

—p
12H3H 12V3H
/ 21V3H
213VH
1/22/2007 Lecturel6 gacl 9

Area Computation

* How to tell whether a move improves area?
— Height( XYH ) = max( Height( X ), Height( Y ) )
— Width( XYH ) = Width( X ) + Width( Y)
— Height( XYV ) = Height( X ) + Height( Y )
— Width( XYV ) = max( Width( X ), Width( Y ) )

Height(21V3H) = max( Height(21V), Height(3)
= max( Height(2) + Height(1), Height(3)

 —

Width(21V3H) = Width(21V) + Width(3)
= max( Width(2), Width(1) ) + Width(3)
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Simulated Annealing

* In our example, not all moves improved area
— not good enough to just “pick the best move” each time

» Simulated annealing is often used
— pick a move at random.
— if it improves area, do it.
— if it doesn’t improve area, maybe do it.
 Probability of selecting a move that does not
improve area
— reduces with area penalty for move
— decreases (for a fixed area penalty) with iteration number

1/22/2007 Lecturel6 gacl 11

An ILP Approach

* We can also take an ILP approach to the
floorplanning problem
— guaranteed optimal solutions

— slicing and non-slicing floorplans within a single
framework

— poor execution-time scaling
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An [LP Approach

* Resources cannot overlap

w; X2 x;tw (1)
> x. .
" W, X 2x;+w, 2)
’ yizy+ hj (3)
X h; J’jZJ’i+hi 4)
X
Vi |V « We need to ensure that at
least one of (1)-(4) holds
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An [LP Approach

» Although each constraint is linear, “at least one of”
causes us a problem.
* A solution: all constraints below hold.

— P is a big enough positive number, e.g. max chip
dimension. For all (i,j) € R?, (1) to (4) must hold.

x; + Po; + P2 x; +w; (1)
x; + P(1-8) + Pmy2x;+w, )
v PO APA-m) 2yt ()
yp +P(-6) +P(I-mp)2y;+h (4
é;'j: n; € B
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Good Floorplanning

» Some floorplans are better than others
— place resources that communicate close to each other.
* Given a maximum wire-length W for each pair
(ij) € R? of connected resources, (5)-(9) mu%_hold.

J
h
x; +0.5w; —x; —0.5w; <W,;” (5) L W,
h j —>
—x; —0.5w; +x; +0.5w,; <W;" (6)
Y 0.5k, -y, =050, <w,;"  (7) Y |h,-
~y;—0.5h +y; +0.5h; <W," (8) X, ’
h v J Vi
Wy =W;" +W; 9)
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Good Floorplanning

» Constraints (5) & (6) ensure that horizontal
wirelength is no more than W,".
— (7) and (8) perform a similar function for vertical

wirelength.

» Constraint (9) expresses total wirelength in terms of
Manhattan distance.

/ v appropriate

for most

design rules

v linear
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Design Area

* We must ensure that the design fits in chip
dimensions X by Y.
— For all resources i € R, (10) and (11) must hold.

X +w, <X (10)
v, +h <Y (11)
+ If the chip aspect ratio is given, Y = kX (12).

— Objective is then min: X

« If aspect ratio is not given, we have min: XY
— problem: nonlinear objective
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Linearization

» Two standard approaches

— iterate: solve “min: X” with Y fixed, many times
for different values of Y.

— approximate:
XY=xXY+(X-X)Y+(Y-Y")X for
X~X and Y~ Y.

— (or some combination of the two).

* More recently, convex (nonlinear) optimization
techniques have started to appear.
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ILP Approaches

» The approach has a (very) large execution time:
O(n?) integer variables.

— techniques have been proposed to break down into sub-
problems!.

— sub-problems can be stitched into suboptimal solutions.

1Sutanthavibu1, Schragowitz, and Rosen, IEEE Trans CAD 10(6), 1991.
Smith, Constantinides, and Cheung, Proc. Field-Programmable Logic, 2005 (in
the context of FPGA design).
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Summary

» This lecture has introduced floorplanning
— motivation: deep-submicron era
— slicing vs non-slicing floorplans
— Polish expressions
— optimizing moves
— an ILP approach

» The next lecture will look at function approximation.
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Suggested Problems

Draw the floorplan represented by the following slicing tree:

Convert this tree into a skewed slicing tree.
Write the Polish expression for the skewed tree.

Identify one of the three moves proposed in this lecture that could be
applied to obtain an optimal area floorplan for the given resource
dimensions.

— Resource 1: Height = 2, Width = 2

— Resource 2: Height = 2, Width =1

— Resource 3: Height = 1, Width =1

— Resource 4: Height = 1, Width =1
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Beyond Mults and Adds

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Function Approximation
— Floorplanning
— Perspectives for the future

* This lecture covers
— Polynomial approximations
— Evaluation methods
— Approximation methods
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Function Evaluation

* Throughout much of the course, we have used
multiplication and addition as the key operations

» There are typically pre-designed library blocks for
adder and multiplier resources

* Not necessarily the case for more complex
functions: sin(x), cos(x), e, etc.

* In this lecture we investigate how to evaluate these
functions
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Polynomial Approximations

» Let us return to our main operations: addition, and
multiplication

* What different functions of a variable x can be
produced through addition and multiplication
alone?

— polynomials in x
—f(X)=cCy+CiXx+CoX2+ ...+ C X"

» This suggests a solution to our problem: find a
polynomial “close enough” to the function, and
then use mults and adds to evaluate it
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A Simple Evaluation Scheme

 Let’s use a 2nd order polynomial as an example
— how can we evaluate this polynomial?

()
2 X+ opx?

2
Cotex tex
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Horner's Scheme

* Horner’s scheme is a method to reduce the number
of operations involved

—fx)=co+ X+ Cox?+ ...+ X"
— re-write: f(x) = (...((c,X + C,)X + Cpo)X + ... + Cq)x + Cy
- For our example .

Q.
ClX T X
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2
cotepx +ox

Finding Polynomial Coefficients

* For any function f(x), we want to find the set of
polynomial coefficients so that the polynomial
function g(x) is “close enough” to f(x)

*  Whatis “close enough”? Could be:
1. to within a worst case error ¢, i.e. max, |f(x) — g(x)| <
2. inthe least-squares sense, i.e.

[we(f(r)-g() dx<e

— w(x) is a “weight” function, which allows us to place
greater emphasis on errors some ranges of x
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Least-Squares Approximations

* We can construct

g0 =Y ad ()

— where ¢(x) is a known polynomial of degree i

+ If we choose a set of orthogonal polynomials ¢(x),
i.e.

Vi j, j $,(x)¢, (x)dx = 0

» Then it is easy to calculate a;
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Least-Squares Approximations

* If we define the inner product
< frg>=[ f(x)g(x)dx

* Then the coefficients minimizing the least-squares

error are
<S>

- <4.¢>
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Least-Squares Approximations

» Proof: We are trying to minimize

E=| [f(x)—iaiczz(x)] dx
~[ £ @-2Y af Fg 0+ XY aa, 408, (s

" i=0 j=0

~[FF@-22 0 < f.h >0 <dod>

1/22/2007 Lecturel6 gacl 9

Least-Squares Approximations

* Proof (cont'd): Differentiate w.r.t. a; and set equal to zero

a—E:—2<f,¢l. >+2a, <@, ¢ >=0
oa,
<@,P >

» This ease of derivation makes least-squares solutions
popular
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Legendre Polynomials

» There are many sets of orthogonal polynomials with
different properties

* Two common ones are the Legendre and the
Chebyshev-| polynomials, both defined over [-1,1]

» Legendre polynomials have a weight w(x) = 1 and
can be defined by

.(x) = L4

201! dx’!

(x* =1
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Chebyshev Polynomials

» Chebyshev-I polynomials have weighting function
w(x) = (1-x2)"12 and can be defined by:

¢(x)=2""] |4 x—cos (2K _.1)7[
k=1 2i

* Your choice of orthogonal polynomials should
depend on which parts of the function domain you
require to be highly accurate
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Summary

* This lecture has covered
— Polynomial approximations
— The Horner’s scheme evaluation method
— Least squares approximation

— Legendre and Chebyshev-| orthogonal
polynomials

* In the next lecture, we will discuss floorplanning.

* The work by my ex-Ph.D. student Dr. Nalin Sidahao was used extensively to prepare this
lecture.
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Suggested Problems

* What is the least-squares error when fitting the
function f(x) = sin(n(x+1)/4) over [-1,1] using a
polynomial of 3 order constructed as a weighted
sum of Legendre polynomials?

* Derive a formula for the number of multipliers
required using Horner’s scheme for polynomial
evaluation

* The critical path of the Horner’'s scheme evaluation

can be reduced, possibly at the cost of more
operations, by different approaches. Can you
derive one such scheme?
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Perspectives |

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Function Approximation
— Floorplanning
— Perspectives for the future

» This lecture (part one of two) covers
— Abstract design representations
— Word-length optimization
— Number representations
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Levels of Abstraction in Design

* Most of our examples have used a C-like
imperative language as the original design
specification

increasing increasingly

abstraction technology-
specific

increasing

productivity
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Why [not?] C

» One of the main candidates for “?” on the previous
slides is C

» Advantage: There are lots of C programmers, and
even more C code

» Disadvantage: C was designed for a single
processor

— no concept of parallelism, so we would need to
automatically detect all parallelism

— sometimes C is not a natural representation — we have
had to sequentialize an algorithm, only to have to re-
parallelize it

1/22/2007 Lecturel7 gacl 3

Why [not?] C

* One compromise is to extend C

— Celoxica ( ) has a product for
synthesis from “C with extensions”

— You can add explicit parallelism with the “par” keyword

» Some aspects of C are particularly troublesome for
automatic analysis and efficient hardware
generation
— Synthesis of code containing pointers has only recently

been addressed (c. 2000)
( )

— For this reason, pointerless Java has been sometimes
suggested as an alternative
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Simulink

* | believe a more promising approach is to
target specific problem domains

— Simulink is widely used in Control and DSP, so
use it as a specification format in these domains

— We have developed a tool for synthesis from Simulink
(http://cas.ee.ic.ac.uk/~gac1/)

— Recently technology manufacturers are getting

interested in this approach
(http://www.xilinx.com/xInx/xil_prodcat_product.jsp?title=system_generator)
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Example in Simulink

* Modelling loops, etc. is
not as natural

» |deal for data-intensive
applications

111 . — DSP
= ol el — Communications
©

-]
v s [Ho0lp e | ‘
Xilinx
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L—@ * Already in DFG form!

Matlab

» Probably the widest used tool for DSP algorithm
development

» Has complex control structures (while, etc) like C
— so comparatively hard to map efficiently
— also has implicit parallelism in matrix statements, e.g.
A = B + C for matrices: each element can be done in
parallel — in C, we would have to write as a loop
* A Matlab-based synthesis tool is in development at
Northwestern University
(http://www.ece.northwestern.edu/cpdc/Match/Match.html)
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Mathematical Specifications

» Possibly the “ultimate” future for synthesis of DSP
systems

» DSP algorithms are typically defined as a set of
equations

— a designer will then map this to a Matlab or Simulink
description

» We could aim higher — for direct synthesis from the
equations themselves
— plenty of scope for research here!
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Word-Length Optimization

Simulink, Matlab, some C and mathematical
specifications share something not present in
hardware languages

— in numerical computations, often everything is a high-
precision floating point number

— for hardware, we want to trim the precision down the the
minimum (high speed, low area, low power)
Word-length optimization problem:

— Choose a suitable word-length for each internal variable,
in order to minimize area (or power, or maximize speed)
subject to acceptable arithmetic error
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Word-Length Optimization

This problem is one of my original research areas
Our research has produced two tools (Synoptix, Right-Size)

— synthesizes a low-area implementation by selecting the
internal word-lengths appropriately

— input format is Simulink

— output format is structural VHDL

— http://cas.ee.ic.ac.uk/~gac1

— LTI systems, differentiable nonlinear systems

Actively researching the use of word-length optimization for
power consumption minimization

— EPSRC funded research, Dr. Altaf Abdul Gaffar and Mr.

Jonathan Clarke.
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Logarithmic Representations

Using standard two’s complement representation is
not always the most efficient

In an algorithm with many additions but few
divisions and multiplies, standard representation
may suffice

In an algorithm with few additions but many
multiplies and divisions, a logarithmic
representation may be better

— log( a/b ) =log(a) — log(b); log(ab) = log(a) + log(b)
We may still have to do conversion in and out of
log-form

— overheads could outweigh advantages
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Residue Number Systems

Residue number systems also may be a possible
route to fast circuitry

Choose n relatively prime numbers m,, m,, ..., m,
Represent x as a list (x mod m,, x mod m,, ..., x
mod m,)

— we can represent up to mym,...m, numbers uniquely like
this

— we can perform arithmetic on the list of numbers, e.g. for
n=2, m=3, m,=5:4=(1,4),3=(0,3),4*3 = (1*0,4*3) =
(0,172 mod 5) = (0, 2)
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Residue Number Systems

* Key point: We can do arithmetic on each of the list
elements in parallel
— if max([log, m,1,Tlog, m, |, ..., Tlog, m, 1) <
[ log2(m, m,...m.) 1, we can get speed advantages

— the delay of an arithmetic component depends on the
worst-case delay of each list element

— for our example, max([log, 31,/log, 5 1) =3 <4 = [log,
15]
— however the area of the design may increase

— for our example, we need a 2-bit and a 3-bit adder rather
than a single 4-bit adder (roughly 25% larger)
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Number System Selection

Ideally, a synthesis tool would select automatically which
portions of the circuit are best implemented using

— standard bit-parallel representation

bit-serial representation (or something between)

logarithmic representation

residue representation

fixed point

floating point (IEEE standard — or something else?)

Such a tool would have to take into account the overhead of
converting from one format to another

This is an open research topic
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Summary

 This lecture (part one of two) has covered
— Abstract design representations
— Word-length optimization
— Number representations

* Next lecture will continue to examine some
future directions for architectural synthesis
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Perspectives Il

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Function Approximation
— Floorplanning
— Perspectives for the future
» This lecture (part two of two) covers
— Function approximation
— Mathematical transformations
— Hardware / Software partitioning
— Memory synthesis
— Synthesis of Reconfigurable Architectures
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Function Approximation

 During this lecture course, we have often used
multiplication and addition as exemplary operations

+ Sometimes we are interested in incorporating more
complex functions like sin(x) or ecos()

* We could simply extend our current approach, if we
have a library of designs for such functions

— however there are many different methods for
implementing a given function in hardware

— we could use a ROM as a lookup-table

— we could express the function using a polynomial
approximation, and then implement it using adds and
mults
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Function Approximation

— we could express the function using a rational
approximation, and then implement it using adds, mults,
and a divide

» Simple lookup table approach:

Size oc m2"
m bits Speed o 1/n
Error oc 2 + a complex
dependence on n

n bits

sqrt(x)

» Choose m and n to trade-off area/error/speed
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Function Approximation

* Polynomial approximation:

— Over [1,2], sqrt(x) ~ 0.44 + 0.63x + 0.07x2
=0.44 + x( 0.63 + 0.07x)

» Many tradeoffs are possible

N * how many bits used to represent
0.63 coefficient?
* how many bits to represent internal
o variables?
0.44 * how many polynomial terms?

» what type of approximation?
» worst-case, or average case?
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Function Approximation

« Different solutions will have different area,
arithmetic error, power, and speed characteristics

* The challenge is to decide automatically when to
use which type of function approximation

— we have started to investigate this issue (Dr Nalin
Sidahao and Mr Gareth Morris)
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Mathematical Transformations

There are certain mathematical transformations
which may be used to obtain different speed / area
tradeoffs

For a simple example, ((a+b)+c)+d = (a+b) + (c+d)
— addition is associative

Comparing the LHS and RHS as DFGs,

Can be
Can be scheduled )
in 4 time units .\ ’ scheduled in

. . 2 time units,
using a single .
if we use two
adder

adders
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Mathematical Transformations

» Another typical transformation is “strength
reduction”

— try to replace high-area / low-speed / high-power
operators by a combination of low-area / high-speed /
low-power operators

* For example 127x — 128x — x = (x<<7) — x

— “<<7” represents a left-shift by 7 bits

— shifting in hardware is cheap: just wires

— subtraction is cheap

— multiplication is expensive
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Mathematical Transformations

The challenge is to decide, given constraints on
area, error, power and speed for the overall design,
which transformations to apply where

There may be hidden pitfalls

— just because a transformation is valid for real numbers
doesn’t make it valid for binary representations

— in an 8-bit 2’'s complement representation, numbers can
range from —128 to 127. (120+120)-150 may flag an
overflow, but (120-150)+120 won'’t
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Hardware / Software Partitioning

» Large scale designs of embedded systems typically
have a hardware portion and a software portion

* The designer must decide which tasks are best
done in software, and which in hardware
— software can be slow, power-hungry, and cheap
— hardware can be fast, power-efficient, and expensive

— hardware can only be significantly faster if the application
can be parallelized

* Could this task be done automatically?

— Our research group has been addressing this problem for
configurable hardware based on Field-Programmable
Gate Arrays (FPGASs) [Dr. Theerayod Wiangtong]

1/22/2007 Lecturel8 gacl 9

Memory Synthesis

We have concentrated in the course on the area,
speed, and power associated with arithmetic units

In many applications, memory accesses consume
significant power and slow down the application
Memory itself can also consume a significant
proportion of silicon area

Recently, our research group has been
investigating ways to use memory more efficiently

— what variables should be stored where in memory in
order to minimize power consumption? (Dr. Sambuddhi
Hettiaratchi)

— How to design customised parallel caches which match
the characteristics of the algorithm (Mr. Su-Shin Ang)
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Synthesis of Reconfigurable Architectures

* We have covered techniques to synthesise application
specific architectures.

— this architecture could then be implemented on an ASIC (expensive
for small volume!)

— oron an FPGA (expensive for large volume)
» FPGAs are cost effective for small volumes
— able to spread fixed costs over a large range of designs
— but how to decide the architecture of the FPGA itself?
» Fixed-function blocks: multipliers, RAMs
— limited flexibility, high performance, small footprint
» What proportion of multipliers, RAMs, fine-grain logic, and
other components are appropriate?

— Synthesise an FPGA architecture suitable for synthesising AS
architectures!

— New and exciting research field. (Mr. Alastair Smith).
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Summary

This lecture (part two of two) has covered
— Function approximation

— Mathematical transformations

— Hardware / Software partitioning

— Memory synthesis

— Reconfigurable architectures

Next lecture will summarize the entire
course, and allow you to focus on topics for
revision
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