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In this paper, we propose a cascade classifier combining AdaBoost and support vector machine, and

applied this to pedestrian detection. The pedestrian detection involved using a window of fixed size to

extract the candidate region from left to right and top to bottom of the image, and performing feature

extractions on the candidate region. Finally, our proposed cascade classifier completed the classification

of the candidate region. The cascade-AdaBoost classifier has been successfully used in pedestrian

detection. We have improved the initial setting method for the weights of the training samples in the

AdaBoost classifier, so that the selected weak classifier would be able to focus on a higher detection rate

other than accuracy. The proposed cascade classifier can automatically select the AdaBoost classifier or

SVM to construct a cascade classifier according to the training samples, so as to effectively improve

classification performance and reduce training time. In order to verify our proposed method, we have

used our extracted database of pedestrian training samples, PETs database, INRIA database and MIT

database. This completed the pedestrian detection experiment whose result was compared to those of

the cascade-AdaBoost classifier and support vector machine. The result of the experiment showed that

in a simple environment involving campus experimental image and PETs database, both our cascade

classifier and other classifiers can attain good results, while in a complicated environment involving

INRA and MIT database experiments, our cascade classifier had better results than those of other

classifiers.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Pedestrian detection based on computer vision acts an impor-
tant role in many applications, for example driver assistance
system, surveillance system and intelligent robot (Gandhi and
Trivedi, 2007; Ma et al., 2009; Enzweiler and Gavrila, 2009;
Geronimo et al., 2010; Nam et al., 2011). The driver assistance
system can avoid the collision through pedestrian and route
detection to guarantee the safety of drivers and pedestrians
effectively. For surveillance system, the false operation caused by
shadow changes and swaying of trees can be avoided by using
pedestrian detection to activate camera to monitor and record,
which can save labor cost and reduce the memory to store the
videos. Secondly, route of pedestrians can be predicted and
behavior of pedestrians can be analyzed by tracking pedestrians,
so as to prevent accidents actively. If accidents are unavoidable, the
prediction and video of pedestrians’ route can help the police know
information of suspects quickly to increase the possibility of case
solving. For the robot applications, pedestrian detection can be
ll rights reserved.
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used for interactivity of human–computer interface and can
provide information about location of surrounding pedestrians
and offer real time service when necessary. It can be known from
the description above that the pedestrian detection is being
actually applied to many fields.

A classification-based pedestrian detection system generally
includes three parts, namely, candidate region segmentation,
feature extraction, and pedestrian classification. According to
the use of camera, they can be divided into visible light camera
and invisible light camera. According to camera architecture, they
can be divided into single camera and multiple cameras. The cost
of invisible light equipment is generally much higher than that of
visible light camera. Multiple cameras require more equipment
and the cost is relatively high, therefore we mainly discuss the
pedestrian detection method using single visible light camera in
this paper. Based on whether or not to adopt the background
image method, candidate region segmentation can be classified
roughly into two methods. The first is to use the background
image, which helps us to get the foreground image by subtracting
the background image from the real-time input image. This
method needs background reconstruction and technology update.
This is unsuitable for mobile platforms, such as driving safety
assistance systems and intelligent robots. The second is not to
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adopt the background image method, which segments the input
image into some candidate regions with the same window size
(such as sliding windows). The advantage of this method is that it
does not need extra time for reconstruction and update of the
background image. This is suitable for mobile platforms. After
completing the segmentation of the candidate region, feature
extraction follows. In this paper, we have applied three kinds of
commonly-used feature extraction methods for pedestrian detec-
tion; namely, edge detection, Haar-like feature (Viola and Jones,
2005), and histograms of oriented gradients (HOG) (Dalal and
Triggs, 2005). Finally, we have identified whether the candidate
regions belonged to pedestrians based on the extracted features.

Classifier performance is a very important factor in classification-
based pedestrian detection and thus it is a widely discussed subject
(Xu et al., 2011; Dollar et al., 2012). The cascade-AdaBoost classifier
(Viola and Jones, 2005) is one of commonly used classifiers.
However, we found that AdaBoost classifiers in front layers could
reach preset targets with less weak classifiers but those in rear
layers need more weak classifiers because the training set would
remove some negative samples when passing through each layer of
AdaBoost classifier; with the increase of layers, the samples of the
remaining training set became less and similar, so more difficult
negative samples were used for training in later layers, and more
weak learners were usually chosen to satisfy the goals in the later
layers. In this paper, we proposed a new self-constructing cascade
classifier combining AdaBoost classifier with SVM for pedestrian
detection, called self-constructing cascade-AdaBoost-SVM classifier,
and modified the training algorithm of cascade-AdaBoost classifier
to make it suitable for constructing a cascade-AdaBoost-SVM
classifier; at the very start, the algorithm set the lowest detection
rate, the highest false alarm rate and the maximum number of weak
classifiers of each layer of AdaBoost classifier; when AdaBoost
classifier of each layer could not achieve the preset performance
under the predetermined maximum number of weak classifiers,
substitute this AdaBoost classifier with SVM and perform SVM
training based on the feature dimensions selected by AdaBoost
classifier without calculating all dimensions; in this way, the SVM
training could be completed more effectively and quickly. On the
other hand, the cascade classifiers of the first layers removed most
of the training samples, and thus the problem of long training
time consumed by SVM classifiers for large samples was solved.
However, the proposed self-constructing cascade classifier improves
the problems of the original cascade-AdaBoost classifier. It also
improves the time consumption of SVM at that time when it is
applied in large-scale training sample sets. Finally, we have modified
the original weight setting method for the AdaBoost classifier’s
training samples in order to maintain the highest detection rate of
each layer’s cascade classifier. With this, the highest detection rate
would still be maintained after each selection of the weak classifier.

The content of this paper is summarized as follows: the
second section is literature review; the third section introduces
the feature extraction methods for the candidate regions; the
fourth section introduces our proposed self-constructing cascade-
AdaBoost-SVM classifier combining AdaBoost classifier and SVM;
the next section shows the experimental results and the last
section presents the conclusion
Fig. 1. Combination of multiple classifiers (a) classifier’s parallel architecture

diagram (b) classifier’s cascade architecture diagram.
2. Literature reviews

So far, many sliding window classification-based pedestrian
detection methods have already been proposed. The classifiers used
in the literature can be categorized into two groups: single-classifier-
based approaches and classifier ensemble-based approaches (Xu
et al., 2011). Many single classifier approaches based on neural
networks (NNs) (Gavrila, 2000; Sessler et al., 2001; Szarvas et al.,
2006) and support vector machines (SVMs) (Cheng et al., 2005;
Tian et al., 2005; Xu et al., 2005; Chen et al., 2006; Schauland and
Kummert, 2007; Liue and Fuentes, 2009) have been proposed. Gavrila
(2000) trained a single classifier based on RBF-NNs, whose detection
rate is 85% and false alarm rate is 10%. Szarvas et al. (2006) have
proposed a pedestrian detection method using an artificial neural
network, which combined radar sensor and neural network in their
system. The experimental results showed that the accuracy rate
reached more than 90%, but the system required radar sensors to
capture the candidate region, thus increasing the system cost. Xu
et al. (2005) proposed a single SVM classifier for an infrared camera-
based pedestrian detection system, whose detection rate is 26%–94%
and false alarm rate is 2.6%. Liue and Fuentes (2009) have proposed
the use of SVM in pedestrian detection, which initially applied
principal component analysis (PCA) to conduct feature extraction on
the training samples, and used SVM for classification. The experi-
mental result showed that the accuracy rate of this method reached
about 90%. In addition, since SVM consumed a lot of time in the
classified training of large-scale training sample sets and was difficult
to converge, SVM was generally used in the classification of small-
scale training sample sets. Based on the above information, the
detection rate was still not high enough even if the pedestrian
detection results obtained through the neural network or SVM could
reach more than 90% of the accuracy rate.

In the application of surveillance system and driver assistance
system, an extremely high detection rate and very low false alarm
rate were expected in order to avoid dangerous situations caused
by lapses in pedestrian detection and to avoid unnecessary occur-
rences due to many false alarm cases. Therefore, related studies on
classification have been conducted in recent years; particularly face
detection or pedestrian detection which analyzes the combination of
multiple classifiers (Viola and Jones, 2004; Zhang et al., 2006).
By combining similar or different kinds of classifiers (Zhang et al.,
2006; Chen and Chen, 2004; Sahbi et al., Dec. 2006; Li et al., 2008;
Wang et al., 2010), the performance of a single classifier can be
improved in order to achieve a higher detection rate and lower false
alarm rate. The combined architecture of these classifiers, also
known as classifier ensemble-based approach, is differentiated into
three types: parallel architecture (Viola and Jones, 2004; Grubb
et al., 2004; Tsai et al., 2010; Cheng and Cheng, 2010; Hiromoto
et al., 2009), cascade architecture (Viola and Jones, 2005; Xu et al.,
2005; Ma and Ding, 2002; Kukenys and McCane, 2008; Ding et al.,
2009) and mixture architecture (Xu et al., 2011; Wei et al., 2009),
which are discussed and described below.

Fig. 1(a) shows the architectural chart of the general parallel
classifier, e.g. AdaBoost classifier, multiple parallel SVM or linear
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SVM, in which the parallel combination of T sets of classifiers is
included; x is the input vector and b is the weight value of each
classifier. Therefore, the output can be expressed as the sum of
the product between individual output of T classifiers and its
weight value. Since this parallel classifier shows the example of
two categories, the final output result is either True or False.
Grubb et al. (2004) trained two SVM classifiers to detect pedes-
trians from front/rear and side poses separately, and the final
decision is made by fusing the two results. Tsai et al. (2010) have
proposed the use of many SVMs’ parallel connection in pedestrian
detection. They used the HOG (Dalal and Triggs, 2005) feature
extraction method to extract the features of the candidate region
and to carry out the classification of the SVM parallel combination.
Each SVM had the same weight value and the experimental result
could reach more than 92% of the detection rate and about 4% of
the false alarm rate. Viola and Jones (2004) have completed the
pedestrian detection using the AdaBoost classifier which is a kind
of parallel classifier originally proposed by Freund and Schapire
(1996,1997). The AdaBoost classifier is a linear combination of
many classifiers in which each classifier only focuses on one
dimension’s classification of the input feature vector. Thus, each
classifier is known as a weak classifier. In the latest published
surveyed paper of Dollar et al. (2012) 16 types of state-of-the-art
pedestrian detection methods (published from 2004 to 2010) are
selected to conduct efficiency evaluation. Nearly all modern
detectors employ some forms of HOG feature. In addition, detec-
tors can utilize gradients directly, Haar-like, color, texture, self-
similarity and motion feature. Most of the classifiers of these
methods adopt AdaBoost and linear SVM and a few of them adopt
latent SVM and Hik-SVM. The experiments include 6 types of
pedestrian databases, which is divided into near, middle, and
remote groups for experiments. Since each method uses different
features, it is actually more like an evaluation of the combination of
different input features. For the case without considering the
motion feature, the best overall performing detector is CHNFTRS
(Dollar et al., 2009) and FPDW (Dollar et al., 2010), and these two
methods both use HOG, gradients, grayscale (Haar-like feature)
and AdaBoost classifier. The worst one (Viola and Jones, 2004) is
the method using Haar-like feature and AdaBoost classifier. During
the construction of the AdaBoost classifier wherein a new weak
classifier was added, the minimum error was used to calculate the
weight of this weak classifier. At the same time, each training
sample’s weight was readjusted before it was passed to the next
newly added weak classifier. Based on the newly added weak
classifier, the effect of the overall parallel classifier was gradually
improved. The experimental result showed that a continuous
increase in the number of weak classifiers would effectively
improve the overall detection rate of the parallel classifier, but
there was still a high false alarm rate. Another problem was that
each classifier used all samples (i.e. large number of training
samples) for training, which was time-consuming during the entire
training process. Therefore, some scholars have proposed to use the
cascade combination of many classifiers to address the above
problems.

Fig. 1(b) shows the architectural chart of the cascade classifier
which includes classifiers with a total of L layers; x is an input
vector. Assuming that it is an example of two kinds of classifica-
tions, the output of each layer’s classifier is either True or False. So
when the output of each layer of classifier is True, then the
classifier of the next layer would continue the classification. If the
output of the classifiers of the last layer is still True, it means that
the classification result of this input vector in the cascade
classifiers is True. If the result of any layer’s classifier is False, it
would determine in advance that the classification result of this
input vector in the cascade classifiers is False. The main purpose of
the cascade classifier is to reduce the false alarm rate by using the
cascade combination of many classifiers. Assume there are L

layers in this cascade classifier and the detection rate and false
alarm rate of each layer are di and fi respectively, and then the
detection rate and the false alarm rate of the whole cascade
classifier can be defined as D¼(di)

L and F¼(fi)
L respectively. For

example, there are 10 layers in this cascade classifier. If the
detection rate di and the false alarm rate fi are set as 0.99 and
0.3 respectively in all layers, then the whole detection rate D

and the whole false alarm rate F will be (0.99)1040.9 and
(0.3)10o1e�5, respectively. It can be observed that the cascade
classifier can reduce the overall false alarm rate as well as the
overall detection rate, therefore classifiers in each layer must
maintain the highest detection rate while reducing the false alarm
rate. Ma and Ding (2002) have also used the cascade combination
of multi-layered SVM in face detection. They arranged a six-layer
SVM and the first five layers used a linear kernel function while
the last layer used a nonlinear kernel function. The experimental
result showed that this method achieved a detection rate of 88.9%
given a false alarm rate of below 7e�6. Xu et al. (2005) trained a
three-layer SVM classifier for an infrared camera-based pedes-
trian detection system, and experimental results showed that the
classifier ensemble achieved only a little lower false alarm rate
and almost the same detection rate. Ding et al. (2009) have used
the cascade combination of many SVMs in eye detection, which
used 20�20 grayscale image samples with 400 dimensions as
input feature vectors. The classification was conducted based on a
cascade SVM. The experimental result showed that this method
can achieve an accuracy rate of 88%. Kukenys and McCane (2008)
have applied the cascade combination of a two-layer SVM in
pedestrian detection which used pedestrian heads and shoulders
as training samples in pedestrian detection, and conducted
feature extraction based on HOG. The experimental result showed
that this method achieved an accuracy rate of 90% given a false
alarm rate of below 1e�4. In the training process of the cascade
classifier, the number of training samples were reduced layer by
layer, thus the classifier of each layer did not need all samples for
training. Moreover, the consumed training time of the SVM
cascade classifier was 30 times faster than that of a single
nonlinear SVM classifier. Viola and Jones (2005) have also used
a cascade classifier combining many AdaBoost classifiers in face
detection and pedestrian detection; this was referred to as the
cascade-AdaBoost classifier. They used Haar-like feature for
feature extraction, and there were 4916 face samples and more
than three million non-face samples. The cascade classifier had 38
cascade layers and could achieve a detection rate of about 93.7%
given a false alarm rate of about 1e�7. The same method was
also used in detecting pedestrians, applying Haar-like feature, as
well as mobile and appearance features. The experimental result
showed that it could achieve a detection rate of about 90% given a
false alarm rate of 1e�6.

Xu et al. (2011) and Wei et al. (2009) proposed a tree classifier
for pedestrian detection. It can be regarded as the mixed ensem-
ble classifier. The author compared the approach to others based
on two widely used classifiers in the same benchmark environ-
ment; these are AdaBoost (Viola and Jones, 2005; Cao et al., 2008)
and SVM (Cheng et al., 2005; Tian et al., 2005; Xu et al., 2005;
Schauland and Kummert, 2007; Grubb et al., 2004). The experi-
mental results showed that the tree classifier had good overall
performance. Its detection rate was 92.34% on average and its
false alarm rate was about 0.72%. The cascade-AdaBoost classifier
is somehow similar to a skewed tree classifier. However, when we
made the cascade-AdaBoost classifier, we found that AdaBoost
classifiers in front layers could reach preset targets with less weak
classifiers but those in rear layers need more weak classifiers
because the training set would remove some negative samples
when passing through each layer of AdaBoost classifier; with the
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increase of layers, the samples of the remaining training set
became less and similar, so more difficult negative samples were
used for training in later layers, and more weak learners were
usually chosen to satisfy the goals in the later layers. To solve this
problem, Chen and Chen (2008) proposed a novel cascade
classifier that could exploit both the stage-wise and the cross-
stage information. In their approach, some meta-stage classifiers
were added to the cascaded classifier to utilize inter-stage
information and learn new classification boundaries to enhance
the detection performance. This method could reduce numbers of
weak classifiers used by AdaBoost classifier effectively, but it
required more complicated calculations of the stage-wise and the
cross-stage information. Cao et al. (2008) proposed substituting
AdaBoost classifier of the last layer of cascade-AdaBoost classifier
with SVM, but the structure remained unchanged; in other words,
the structure of cascade classifier could not adjust numbers of
SVMs adaptively.

AdaBoost classifier or cascade-AdaBoost classifier, as well as
parallel-SVM or cascade-SVM, are the most widely used classifiers
among those pedestrian detection methods that have been proposed
by now. The main reason is that each has its advantages and
disadvantages. AdaBoost classifier has high detection rate, but its
false alarm rate is relatively high; while cascade-AdaBoost classifier
has low false alarm rate, but cascade reduces its detection rate at the
same time. In order to maintain high detection rates, more weak
classifiers shall be used, which results in that the latter layers are
more difficult to be classified; parallel-SVM and cascade-SVM also
face the same situation. On the other hand, sliding window
combined with various features leads to a great number of features.
SVM requires using all features while AdaBoost classifier does not,
which causes that the speed of SVM is slower than that of the
AdaBoost classifier. Although the use of nonlinear kernel SVM
presents better performance than that of the AdaBoost classifier of
linear classifier, the nonlinear kernel SVM consumes more time than
that of linear kernel SVM and linear classifier. Over all of the above
discussion, it can be found that there is some space for improve-
ment. If the cascade-AdaBoost classifier is used, the problems that
the detection rate decreases with cascade and the latter layers are
more difficult to be classified must be improved. If SVM is used, the
problems of a bulky number of input features and much consumed
time of dimensions much be improved. Therefore, this paper,
based on cascade-AdaBoost classifier, proposes a cascade classifier
combining AdaBoost classifier and SVM for pedestrian detection.
The following chapters will introduce the proposed methods and
experiments respectively.
3. Features extraction

In this paper, we have used a sliding window of fixed size to
segment the image into candidate regions. After the candidate
regions were extracted, we used three common types of feature
extraction methods in pedestrian detection; namely, edge detection,
Haar-like features and HOG features. Edge detection applies the
Sobel method (Engel, 2006) which is commonly used and is there-
fore not applied here. The other two methods are introduced in the
following sections. After the feature extraction was completed, the
completed cascade classifier in the previous training was used to
determine whether it was a pedestrian or not. The following section
shall introduce the feature extraction methods of the Haar-like
matrix features and the HOG.

3.1. Haar-like feature

The Haar-like feature is commonly used in pedestrian detec-
tion (Viola and Jones, 2005,2004). It is an extraction method used
in a local block and its calculation is simple. In this paper, we have
used four kinds of Haar-like feature masks, as shown in Fig. 2. The
two left masks included two blocks, and the third and fourth
masks included three blocks and four blocks. These four masks
covered the candidate regions sequentially. A feature value was
obtained by calculating the difference of the sums of the image gray
values at the corresponding location of the black and white blocks.
The features were extracted through a full-scanning method of the
candidate region. After adopting four different masks to complete the
full-scanning of a candidate region, a feature vector was obtained.
Since it couldn’t be determined whether the mask size was helpful for
pedestrian classification, this paper has adopted the Haar-like masks
of various scales from the four basic masks so as to achieve better
features.
3.2. Histograms of oriented gradients

The feature extraction method of the histograms of oriented
gradients (HOG) is another commonly used method in pedestrian
detection (Dalal and Triggs, 2005; Tsai et al., 2010). First, the 3�3
pixel block in the candidate region is regarded as a cell and the
candidate region is segmented into m�n blocks. Next, the
magnitude and direction of the gradient of the grayscale pixel
value in each cell is calculated and the statistics histogram of each
block can be obtained based on the magnitude and direction of
the gradient in all cells of the block. Finally, the histograms of all
blocks are combined into a vector as a pedestrian detection
feature. In this paper, the gradient calculation has used the Sobel
method (Engel, 2006) to obtain the gradient horizontal compo-
nent Gx and vertical component Gy of the grayscale pixel values in
each cell. The gradient magnitude of the grayscale pixel value in
one cell is calculated and expressed as follows:

rf
�� ��¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
xþG2

y

q
, ð1Þ

with the gradient direction y, the calculation is as follows:

y¼ atan
Gy

Gx

� �
: ð2Þ

Gathering statistics on the gradient magnitude of the cell in
each block is required based on the directional features. The
gradient direction is divided by 45 degree as a unit; therefore,
eight units, i.e. Uk, k¼1, y, 8 is obtained. When y belongs to unit
Uk, then the accumulated magnitude 9rf9 on the direction of Uk is
calculated using the following equation:

jk’jkþ rf
�� ��, yAUk, k¼ 1, :::, 8, ð3Þ

wherein, jk is the accumulated value of 8 directions, k¼1, y, 8,
which indicates eight directions.
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4. The proposed self-constructing cascade classifier

In this section, we shall introduce our proposed self-
constructing cascade-AdaBoost-SVM classifier which combines
AdaBoost classifier (Viola and Jones, 2004,2005) and SVM (Nello
and John, 2000; Chen et al., 2006; Wang et al., 2010). First, this
section introduces the AdaBoost classifier and cascade-AdaBoost
classifier, and then proceeds with our proposed self-constructing
cascade-AdaBoost-SVM classifier and training algorithm.

4.1. The cascade-AdaBoost classifier

The AdaBoost classifier is a parallel classifier combined with
many linear weak classifiers. Each weak classifier only focuses on
the classification of one dimension in the input feature vector.
During the entire training process after the goal is given to the
classifier, the algorithm is able to self-adaptively increase the
number of weak classifiers so as to improve the overall accuracy
rate of the classification and focus on key features. After a weak
classifier is added, the algorithm uses the minimum error to
calculate the weight value of this weak classifier and re-adjust the
weight value of every training sample, and then pass the value to
the next newly added weak classifier. Based on the newly added
weak classifier, the effect of the overall parallel classifier is
improved. Fig. 3 shows the algorithm of the AdaBoost classifier.

Since the AdaBoost classifier is a strong classifier composed of
many weak classifiers, the selection of effective weak classifiers is
important. Fig. 4 shows the case of two classifications for one
dimension. Assuming that both positive and negative samples
have Gaussian probability distribution features, the blue solid line
covered by the Gaussian function is the probability distribution of
positive samples and the red dotted line covered by the Gaussian
function is the probability distribution of negative samples. Both
Gaussian functions are partially overlapped. The weak classifiers
obtained by the minimum mean square error method can get the
best accuracy rate, as shown in the classifier location of the
critical value marked by the ‘Th2’ line in Fig. 4. But with the high
detection rate requirement, this classification leads to a wrong
classification of some positive samples. In case of a high detection
rate requirement, the weak classifiers must be able to correctly
classify all positive samples and maintain the error classification
result of the negative samples only, as shown in the classifier
location of the critical value marked by the ‘Th3’ line in Fig. 4. In
this case, two types of classification samples can have a totally
correct detection rate and high false alarm rate. In contrast, if the
zero false alarm rate is set as the target, then the classifier would
use the location of the critical value marked by the ‘Th1’ line in
Fig. 4. Since we have focused on high detection rate in this paper,
the simplest method to achieve a high detection rate is to change
the initial weight value setting method of each training sample
assuming that the AdaBoost algorithm would not be changed. If
the weight value op of a positive sample is equal to the weight
Fig. 3. AdaBoost algorithm.
value on of all negative samples given that no positive sample can
be falsely classified, the relationship can be expressed in the
following equation:

op ¼ qon,

popþqon ¼ 1,

(
ð4Þ

By solving this simultaneous equation, we can get the weight
values op¼1/(pþ1) and on¼1/q(pþ1); the result can be used to
replace the initial setting of the weight value of training samples
in the AdaBoost algorithm, shown in Fig. 3. The experiment has
shown that this equation is capable of maintaining a high
detection rate for the classification result. However, the AdaBoost
classifier still has a high false alarm rate. To improve this
condition, Viola and Jones (2005,2004) have further proposed a
cascade-AdaBoost classifier to reduce the false alarm rate.

4.2. The self-constructing cascade-AdaBoost-SVM classifier

In previous section, we mentioned that because in cascade-
AdaBoost classifier, AdaBoost classifier in front layers could reach
preset targets with less weak classifiers; but with the increase of
layers, the samples of the remaining training set became less and
similar; AdaBoost classifier in rear layers need linear combination
of more weak classifiers to reach preset targets, which is easy to
cause over-fitting and time-consuming; so in this paper, we
propose a cascade classifier combined AdaBoost classifier and
SVM, which we call cascade-AdaBoost-SVM classifier; because
SVM can solve the nonlinearly classification problem, substitute
AdaBoost classifier behind cascade classifier with SVM; modify the
cascade-AdaBoost classifier training algorithm proposed by Viola
and Jones to make it suitable for constructing a cascade-AdaBoost-
SVM classifier which is different from the cascade classifier
combined AdaBoost classifier and SVM. The cascade classifier
proposed by us can increase AdaBoost classifier or SVM adaptively.

Fig. 5 shows the training algorithm of cascade-AdaBoost-SVM
classifier; during the training of cascade classifier, first set the
detection rate d, the false alarm rate f, the maximum number of
weak classifiers nth and the target Ftarget of the overall false alarm
rate of classifiers. Suppose assume the sets of positive examples
and negative examples are called P and N respectively; the
construction algorithm of the cascade classifier is mainly com-
posed of two loops; the internal loop mainly uses the above
mentioned AdaBoost algorithm to train AdaBoost classifier; each
time a weak classifier is added, the present AdaBoost classifier
will be reappraised to see if it has satisfied the condition; if it has,
continue adding weak classifiers until conditions of the inner loop
are not satisfied; otherwise, it determines whether the number ni
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of weak classifiers is greater than the maximum value nth; if it is,
substitute AdaBoost classifier of this layer with SVM and train SVM
with dimension of input vector selected by this AdaBoost classifier
without calculating all dimensions of input vector; in this way, the
training of SVM can be completed more effectively and quickly;
otherwise, training of AdaBoost classifier at this layer will be
completed. Then, determine whether the overall false alarm rate of
the present cascade-AdaBoost-SVM classifier can satisfy the condition
of external loop; if it can, train AdaBoost classifier of the next layer
with the rest negative examples and all positive examples; otherwise,
terminate the training of cascade-AdaBoost-SVM classifier.

In addition, the SVM training of the cascade-AdaBoost-SVM is
different from the previous training which focuses on a higher
accuracy rate. Our proposed cascade classifier is based on the premise
of a high detection rate to further reduce the false alarm rate. By
considering the accuracy rate, a lower false alarm rate could be
obtained but might lead to a wrong classification of some positive
training samples, causing a detection rate reduction of the SVM
classification result; this further reduces the detection rate of the
overall cascade classifier. In order to maintain a high detection rate of
the overall cascade classifier, the related parameters selected in the
SVM training would be capable of maintaining a higher detection rate
rather than a higher accuracy rate. Therefore, the cascade-AdaBoost-
SVM classifier can use classifiers with less layers but achieve lower
overall false alarm rate than that of the cascade-AdaBoost classifier.
5. Experimental results

In this section, four experiments have been performed to
demonstrate the proposed method. The first experiment used a
captured video image on campus and the existing pedestrian sample
database was used from the second to the fourth experiments. The
PETs (VS-PETS’ 2003), INRIA (INRIA Person Dataset) and MIT (MIT
Pedestrian Dataset) pedestrian sample databases were also included.
In addition, we have defined the accuracy rate (AR), detection rate
(DR) and false alarm rate (FAR) of those three parameters in order to
assess the results of our proposed methods in every database; the
calculation is as follows:

AR¼
TPþTN

pþq
� 100%, ð5Þ

DR¼
TP

p
� 100%, ð6Þ

FAR¼
FP

q
� 100%, ð7Þ
where p and q represent the number of pedestrian sample collections
and non-pedestrian samples. TP is true positive representing the
number of pedestrian samples which are detected as pedestrians; FP

is false positive representing the number of non-pedestrian samples
which are detected as pedestrians. Therefore, AR is defined as the
ratio of all detected correct samples divided by the overall sample
number, while DR is defined as the ratio of positive classifications
divided by the positive sample number. The higher the DR is, the
higher the ratio of positive samples being detected. FAR is defined as
the ratio of the number of positive samples from the negative
samples divided by the negative samples. The higher the FAR, the
higher the false alarm rate and vice versa. In the following experi-
ments, we have used random sampling and the 3-fold cross-valida-
tion method for all sample sets of the database. Each experimental
result was the average of three repeated experiments which were
compared with the results obtained using a single SVM and the
cascade-AdaBoost classifier. With feature extraction, the size of each
sample was normalized to an image sample of 15 pixels wide and 36
pixels high, and the standard deviation of the grayscale value was
normalized to 1. The Haar-like feature and HOG feature calculation as
well as edge detection were conducted on the sample. All three
features were combined into an input feature vector. The training and
test conducted on the pedestrian detection were carried out using our
proposed cascade classifier, single SVM and cascade-AdaBoost classi-
fier. The next step was to describe the experiment and result of each
database.

5.1. Experiment on captured images in campus

In this experiment, pedestrian and non-pedestrian databases
were taken from video images of various scenes around campus,
and we divided them into set 1 and set 2. Each set contained
10,560 sheets of samples, composed of 480 sheets of pedestrian
samples and 10,080 sheets of non-pedestrian samples, in which
the pedestrian samples contained the front, back, and different
sides of pedestrians, while the non-pedestrian samples included
roads, trees, traffic signs, banners, cars, motorcycles, bicycles,
telephone poles, flagpoles, incomplete pedestrian images, back-
ground and other non-pedestrian samples. The samples in set
1 were selected from the same scene, and the contrast between
the pedestrian and the background in the pedestrian samples was
significant and simple. Fig. 8 shows the experimental scene in set
1 and Fig. 6 shows some pedestrian and non-pedestrian samples
in set 1. The samples in set 2 were selected from different scenes
in various campuses and the background in the pedestrian
samples was relatively complex, in which there was overlapping
among pedestrians. Fig. 9 shows the experimental scenes in set
2 and Fig. 7 shows some pedestrian and non-pedestrian samples
in set 2.

First, the detection rate d of each layer in the cascade
classifiers was set to 0.99 and the false alarm rate f was set to
0.5. The false alarm rate Ftarget of the overall cascade classifier was
set to 1e�5. In the set 1 experiment, the cascade-AdaBoost
classifier used two layers of AdaBoost classifier, in which the first
layer only used one weak classifier and 3–5 weak classifiers were
used in the second layer. Assuming that the maximum allowable
number of weak classifiers nth is 2, then our proposed cascade-
AdaBoost-SVM classifier had two layers, in which the first layer
was the AdaBoost classifier and the second layer was the SVM
with RBF kernel function, parameter s¼0.2 and parameter C set
to 10. In the set 2 experiment, the cascade-AdaBoost classifier
used 6 layers of the AdaBoost classifiers in total, in which the
average numbers of weak classifiers were 4, 5, 7, 9, 9, and 12.
The maximum allowable number of weak classifier nth was set
to 10. The cascade-AdaBoost-SVM classifier used 5 to 6 layers of
classifiers, in which the fifth or sixth layer’s classifier of the



Fig. 7. Some training samples in set 2 (a) pedestrian samples, and (b) non-pedestrian samples.

Fig. 6. Some training samples in set 1 (a) pedestrian samples, and (b) non-pedestrian samples.
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cascade classifier used SVM with RBF kernel function, parameter
s¼5 and parameter C set to 10. Since the training samples in set
2 were a little more complex than those in set 1, the layer number
required by the cascade classifier was more than that in set 1 and
the number of weak classifier in each layer was much greater.
In addition, when the AdaBoost classifier was changed to SVM
given the uncomplicated training samples in the experiment, the
overall obtained false alarm rate was lower than the preset Ftarget
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because the accuracy rate of the SVM training result could reach
100%. It can be seen from the architecture that the SVM classifier
was the last layer of the cascade classifier. Since the previous
layers’ AdaBoost classifiers have filtered over 90% of the training
samples, the training samples for SVM decreased sharply, allow-
ing the SVM to easily complete the training. Another advantage of
this architecture is that it solved the problems of SVM’s unsuit-
ability for large training samples.

Table 1 shows the experimental results. The single SVM
classifier had the highest accuracy rate at 99.91% in set 1 and
98.85% in set 2, because the single SVM classifier did not focus on
the detection rate but on the accuracy rate instead. While the
accuracy rate of our proposed cascade classifier was 99.71% in set
1 and 98.25% in set 2, which were slightly better than those of the
cascade-AdaBoost classifier’s 99.60% in set 1 and 98.14% in set 2,
our proposed cascade classifier had the highest detection rate of
Table 1
Comparison of experimental results and training time in campus video images.

Dataset Classifier

Set 1 Signal SVM (RBF Kernel, C¼100, s¼5)

Cascade-AdaBoost

Cascade-AdaBoost-SVM (RBF Kernel, C¼10, s¼0.2)

Set 2 Signal SVM (RBF Kernel, C¼100, s¼5)

Cascade-AdaBoost

Cascade-AdaBoost-SVM (RBF Kernel, C¼10, s¼5)

Fig. 8. Pedestrian detection results i
99.45% in set 1 and 95.97% in set 2, which were better than those
of the single classifier and the cascade-AdaBoost classifier. The
results have met our expectation. In some applications which
prioritize security like driver assistance system or surveillance
system, the detection rate is considered more important than the
accuracy rate. Our proposed cascade classifier had better perfor-
mance. In comparing the training time, the consumed training
time of the cascade classifier was significantly lower than that of
the single SVM due to the cascade classifier’s reduction of the
number of training samples layer by layer. In addition, set 1 was
far lower than set 2. As for the larger training samples required in
the future, the simple SVM might not be able to fully perform the
training. In short, the experiments showed that the results of the
three types of classifiers had little difference in set 1, because of the
significant identification degree of pedestrian and non-pedestrian
samples in set 1. Therefore, good results were obtained. The results
Testing performances (%) Training time (s)

AR DR FAR

99.91 99.31 0.00 12752.1

99.60 99.17 0.34 380.9

99.71 99.45 0.26 371.4

98.85 94.10 0.48 9648.5

98.14 95.91 1.54 2027.1

98.25 95.97 1.43 1947.8

n several video images in set 1.
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in set 2 were significantly different from those in set 1, because the
pedestrian samples in set 2 were complicated.

Fig. 8 shows the experimental scenes in set 1 and some
pedestrian image detection results, in which the final detection
of pedestrian is combined with many similar pedestrian detection
results. It can be observed from the experimental results that our
proposed pedestrian detection method can effectively detect
pedestrians, even if the pedestrians held umbrellas, as long as
the frame of the umbrellas is not too big, as shown in Fig. 8(a) and
(b). In Fig. 8(c), although pedestrians were partially overlapped,
the classifier could also block them. Fig. 8(e) contains moving
trains and vehicles, and the classifier could also block the
pedestrians. There were pedestrians who were not detected at
the upper right shadows in Fig. 8(f) due to brightness and
obstruction. Fig. 9 shows some experimental scenes in set 2 along
with pedestrian detection results. The samples of this set were
selected from multiple scenes, making them complicated. Fig. 9
shows that there are other moving objects in the image, such as
cars or motorcycles, but our proposed cascade classifier could still
carry out the correct classification and correctly detect the
locations of pedestrians. Fig. 9(e) and (f) shows the results of
pedestrian detection at dusk, while Fig. 9(c) and (e) shows some
cases of wrong detection. The error detection in Fig. 9(c) was
caused by pedestrians obscured by the light pole while 9 (e) was
caused by false alarm. To further validate the performance of
our proposed pedestrian detection, we have also applied three
commonly used pedestrian detection databases such as PETs
(VS-PETS’ 2003), INRIA (INRIA Person Dataset), and MIT (MIT
Pedestrian Dataset), which are described below.
Fig. 9. Pedestrian detection results i
5.2. Experiment on PETs database

The PETs database (VS-PETS’ 2003) was retrieved from the
video image of a replayed football match. It included video images
shot at different angles using cameras. We selected the video
image of one scene and randomly extracted an experimental
sample set of 10,560 sheets which consisted of 480 sheets of
pedestrian samples and 10,080 sheets of non-pedestrian samples.
Although the background of pedestrian samples is very simple,
the pedestrians had complex movements such as walking, run-
ning and playing ball, etc. The pedestrians were highly similar in
clothing, which increased the difficulty of detection. The non-
pedestrian samples also contained some pedestrians, excluding
those in the background. Fig. 10 shows some training samples
retrieved from the PETs database and the size of each sample is
fixed at 15�36 pixels.

In this experiment, the detection rate d of each layer of the
cascade classifier was set to 0.99 and the false alarm rate f was set
to 0.5. The maximum allowable number of weak classifiers nth

was set to 5. The cascade-AdaBoost classifier used AdaBoost
classifiers with a total of 3 to 4 layers, and the average numbers
of weak classifiers were 1, 2, 4, and 8. Our proposed cascade-
AdaBoost-SVM classifier used 3-layer or 4-layer classifiers whose
parameter C and variance s of SVM were set to 10 and 2,
respectively. Table 2 shows the experimental results. Our pro-
posed cascade classifier had an AR of 99.36% which was better
than the cascade-AdaBoost classifier’s AR of 99.22%. With the
detection rate, our proposed cascade classifier and cascade-
AdaBoost classifier both reached the 97.78% and were higher
n several video images in set 2.



Fig. 10. Some training samples in PETs database, (a) pedestrian samples, (b) non-pedestrian samples.

Table 2
Comparison of identification results and training time in PETs database.

Classifier Testing performances Training time (s)

AR (%) DR (%) FPR (%)

Signal SVM (RBF Kernel, C¼100, s¼5) 99.57 96.59 0.01 12675.4

Cascade-AdaBoost 99.22 97.78 0.58 633.7

Cascade-AdaBoost-SVM (RBF Kernel, C¼10, s¼2) 99.36 97.78 0.42 529.3
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than the SVM’s DR of 96.59%. It can also be observed that our
proposed cascade classifier had the shortest training time. The
experimental results were similar to the results of our retrieved
campus video images. Fig. 11 shows the pedestrian detection
result of partial images in the PETs database, from which we can
see that our proposed method was capable of detecting the
locations of footballers effectively, but in case of overlapping or
obstruction, some pedestrians could not be detected correctly.

5.3. Experiment on INRIA database

In the INRIA pedestrian database (INRIA Person Dataset)
experiments, we also captured a total of 10,560 training samples,
composed of 480 pedestrian samples and 10,080 non-pedestrian
samples. The experimental samples included images of the
countryside, city, snow and the sea as well as other sights.
Therefore, the positions of pedestrians varied and most of them
were overlapped or unsteady. The non-pedestrian samples had
also collected various images which was quite challenging. Fig. 12
shows some pedestrian and non-pedestrian samples in the INRIA
database. The size of each sample was normalized to 15�36
pixels. Based on the pictures, we can see that the samples of INRIA
were more complex and varied compared to the previous experi-
mental samples. In addition, the upper and lower boundaries of
the pedestrian samples contained extra background which
increased the difficulty of pedestrian detection.
In the INRIA database experiment, the detection rate d of each
layer of the cascade classifier was set to 0.99 and the false alarm
rate f was set to 0.5. In this experiment, the cascade-AdaBoost
classifier used 6 layers of AdaBoost classifiers in total, in which
the average numbers of weak classifiers were 8, 14, 18, 25, 26, and
35. We have set the maximum allowable number of weak
classifiers nth at 25. Therefore, our proposed cascade-AdaBoost-
SVM classifier used 4 layers or 5 layers of classifiers and the
fourth layer’s classifier or the fifth layer’s classifier was replaced
by the SVM, of which the parameter C and variance s of SVM were
set at 10 and 3.5, respectively. Since the training samples were
complex, some samples remained unclassified after completion of
the SVM training. Therefore, another AdaBoost classifier of one
layer was used to classify the remaining samples, in which the
average number of weak classifiers was 4. Table 3 shows the
experimental results. Our proposed cascade classifier had an AR of
96.44% which was better than the single SVM’s AR of 95.49% and
the cascade-AdaBoost classifier’s AR of 96.02%. With the detection
rate, our proposed cascade classifier reached a DR of 94.72% which
was better than the cascade-AdaBoost classifier’s DR of 94.24%
and it was 27% higher than the single SVM’s DR of 67.43%. Based
on the above findings, our method had a better effect whether
it was applied in a simple or complex pedestrian detection
environment. In addition, our proposed cascade classifier had
the shortest training time which was 3 times faster than a single
SVM.



Fig. 11. Pedestrian detection results of some video images in PETs database.

Fig. 12. Some training samples in the INRIA database, (a) pedestrian samples, (b) non-pedestrian samples.
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5.4. Experiment on MIT database

Finally, the MIT pedestrian database (MIT Pedestrian Dataset)
was used for the pedestrian detection experiment. Its shooting
angle of pedestrians was similar to that of the INRIA database;
both had a horizontal shooting angle which was similar to the
shooting angle of a camera inside a car. In addition, the database
only contained pedestrian samples and none of the non-pedestrian
samples. Therefore we used the non-pedestrian samples of the INRIA
database. In this experiment, we have extracted a total of 9900 sheets
of training samples, composed of 900 pedestrian samples and 9000
non-pedestrian samples. Furthermore, the pedestrian samples were
all frontal or posterior images of pedestrians, and some pedestrian
samples were overlapped. Figure 13 shows some pedestrian training
samples in the MIT database and the size of each sample was
normalized to 15�36 pixels.



Table 3
Comparison of identification results and training time in INRIA database.

Classifier Testing performances Training time (s)

AR (%) DR (%) FPR (%)

Signal SVM (RBF Kernel, C¼100, s¼5) 95.49 67.43 0.51 12675.4

Cascade-AdaBoost 96.02 94.24 3.72 5273.9

Cascade-AdaBoost-SVM (RBF Kernel, C¼10, s¼3.5) 96.44 94.72 3.31 4730.7

Fig. 13. Some pedestrian training samples in the MIT database.

Table 4
Comparison of identification results and training time in MIT database.

Classifier Testing performances Training

time (s)
AR

(%)

DR

(%)

FPR

(%)

Signal SVM (RBF Kernel, C¼100, s¼5) 95.68 83.89 0.4 11531.8

Cascade-AdaBoost 96.22 97.26 4.12 5243.9

Cascade-AdaBoost-SVM (RBF Kernel,

C¼10, s¼0.5)

97.02 97.30 3.07 4276.2
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In the MIT database experiment, the cascade-AdaBoost classi-
fier used a 6-layer AdaBoost classifier, and the average numbers of
weak classifiers were 6, 12, 16, 20, 20 and 27. We have set the
maximum allowable number of weak classifiers nth to 20. There-
fore, our proposed cascade-AdaBoost-SVM classifier used 4 layers
or 5 layers of classifiers and the fourth layer’s classifier or the fifth
layer’s classifier was replaced by SVM; the parameter C and
variance s of SVM were set to 10 and 0.5, respectively. Table 4
shows the experimental results. Our proposed cascade classifier
had an AR of 97.02% which was better than the single SVM’s AR of
95.68% and the cascade-AdaBoost classifier’s AR of 96.22%. As for
the detection rate, our proposed cascade classifier reached a DR of
97.30% which was slightly higher than the cascade-AdaBoost
classifier’s DR of 97.26% and 13.4% higher than a single SVM’s
DR of 83.89%. Our proposed cascade classifier had the shortest
training time which was 2.5 times faster than a single SVM.

Since the settings of parameters greatly affect the perfor-
mances of classifiers, we discuss the parameter setting method
of our proposed cascade classifiers in the last part. Parameter C

and sigma of SVM is set to get optimal parameters by the use of
grid algorithm (Hsu et al., 2003). Since the optimal value C is not
unique, we set a fixed value C in this paper in order to speed up
the effectiveness of grid algorithm and adjust sigma to achieve
the best classification results. The experiment results show that,
for the experiments of different databases, a single SVM classifier
aims at the classifier trainings based on full training samples and
all feature dimensions, thus it gets the same optimal parameter
setting. However, when our proposed cascade classifier is used,
since the previous layers’ AdaBoost classifiers have filtered over
90% of the training samples and perform SVM training based on
the feature dimensions selected by AdaBoost classifier without
calculating all dimensions. Therefore, different databases result in
different parameter setting. In addition, since parameter nth is
the basis of cascade classifier algorithm determines whether
AdaBoost classifier is replaced by SVM, the increased number of
weak classifiers of a certain AdaBoost classifier layer is multiplied
by several times of the average of increased numbers of previous
several layers, then we set nth as the number of weak classifiers of
previous layers. For example, in the MIT database experiment, the
average numbers of weak classifiers were 6, 12, 16, 20, 20 and 27,
the increased numbers from the second layer are 6, 4, 4, 0 and
7 respectively. Therefore, the increased number of the sixth layer
is greater than or equal to two times of the average 3.5. Thus, nth

is set to 20 which is the number of weak classifiers of previous
layers; otherwise, if the number of weak classifiers is not
increased by multiples, nth is set to the weak classifiers number
of AdaBoost classifier at penultimate layer of cascade classifier. In
other words, the last layer is replaced by SVM directly, for
example, in the Set 1 database of the experiment A.
6. Conclusion

In this paper, we have proposed a new cascade classifier
combining AdaBoost classifier and SVM. This self-constructing
classifier is based on the training sample set and preset target,
therefore it does not have a fixed structure. It is called a self-
constructing cascade-AdaBoost-SVM classifier which addresses the
problems of the original cascade-AdaBoost classifier and at the same
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time improves the time consumption of SVM while being applied in
large-scale training sample sets. Furthermore, we have also improved
the initial setting method of the AdaBoost classifier algorithm so that
the AdaBoost classifier would be able to focus on the classification
detection rate, since the calculation of the AdaBoost classifier is
simple and the SVM classifier has many unique advantages in solving
problems for small samples and non-linear problems. Our proposed
self-constructing cascade-AdaBoost-SVM classifier combines the
advantages of these two classifiers. Based on the experimental results,
both our proposed cascade classifier and other two classifiers have
good results in simple pedestrian detection environments like in
plazas or playgrounds and other places. Our proposed cascade
classifier has a better performance than other two classifiers in
complex and diversified pedestrian detection environments like the
INRIA or MIT database. In addition, our proposed cascade classifier
has the shortest training time, making it is easier to conduct
numerous tests and verifications. On the basis of the same input
features, our proposed classifier has an overall detection rate of
97.04%, which is better than 88.26% of single SVM and 96.87% of
cascade-AdaBoost classifier. Our proposed classifier has an overall
false alarm rate of 1.70%, which is lower than 2.06% of cascade-
AdaBoost classifier; however, it is higher than 0.28% of the single SVM
classifier. One of reasons causing high false alarm rate is that the high
detection rate is set as the prerequisite when our proposed classifier
is constructed, which results in more false alarm cases introduced. For
this case, the false alarm rate could have been reduced by the use of
cascade classifiers. Another reason is that samples used in the
experiments are not sufficient enough, which leads to the fact that
a few layers are required to construct cascade classifiers to complete
training, so the false alarm rate of grade 1e-6 which is achieved by the
application of cascade-AdaBoost classifier to face the detection can
not be reached. However, the overall accuracy rate of the proposed
method is better than other two classifiers. Future studies will firstly
perform a great deal of database experiments, and we secondly
intend to conduct pedestrian tracking to further determine the
pedestrian paths and behaviors needed for additional researches.
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