
Low level security
Andrew Ruef

What’s going on
¡ Stuff is getting hacked all the time

¡ We’re writing tons of software
¡ Often with little regard to reliability let

alone security

¡ The regulatory environment is pretty
open
¡ Due to our failures as technologists this

might change

Why low level specifically?
¡ Programs written in C have two

unfortunate intersecting properties
¡ They do something important, servers,

cryptography, etc.
¡ By construction they permit subtle low level

memory errors that allow for malicious
attackers to completely compromise
systems

How subtle are we talking?
¡ Heartbleed was undiscovered for two

years

¡ Many bugs are found in released
products even after internal pen testing
and review

What is memory safety?
¡ A good question that started 2 days of

discussion in the PL group
¡ So probably no coherent answer yet

¡ Generally, memory safety assures spatial
and temporal safety
¡ Do not use memory after it is released

¡ Do not write outside the bounds of an
object

Could there be other errors?
¡ goto fail was not memory safety

¡ Some SSL CNAME checking errors were
not memory safety

¡ Character conversion and “fail open”
logic can still cause big problems

¡ Let’s just look at what we can find with
tools for memory safety and correctness

What is clang-analyzer?
¡ A symbolic execution framework for C/C

++ built in clang

¡ Operates on the clang AST

¡ clang-analyzer is actually separate from
the LLVM project proper

¡ A core symbolic execution framework
that drives state through compilation
units

Extensible checkers
¡ A modular checker architecture where

checkers “visit” state and
¡ Do nothing

¡ Create new state

¡  Report a bug

Symbolic state
¡ The symbolic execution system keeps a

symbolic state for every path it executes
through a program

¡ This state serves two purposes
¡ Checkers can query state to identify bugs
¡ When a bug is identified, the state is

unrolled and projected onto the source
code

Extensible symbolic state
¡ Values stored in symbolic state are also

extensible

¡ Checkers can define new types of values
to store in the state

Example output

Symbolic Execution
¡ Program testing technique

¡ Evaluate a program with symbolic
variables instead of concrete variables

¡ Consider all branches and conditions
that “might be” within a program

Example
int nonneg(int a) {
 if(a >= 0) {
 return a;
 } else {
 return 0;
 }
}

How does a computer explore what this code
does?

What if we could evaluate this program with
every possible input?

Uses of symbolic execution
¡ This technique sits at the heart of modern

flaw finding systems

¡ How could we use it as a tool?

What could we check?
¡ At each point in the program a checker

visits, it has access to the current state

¡ Values are symbolic, symbolic integer
values include range

¡ Some checkers that currently exist:
¡ Array bounds
¡ malloc size parameter overflow
¡  Imbalanced mutex usage

Heartbleed
¡ Epic OpenSSL vulnerability that allowed

for (somewhat) arbitrary read of heap
data

¡ Ultimate cause – read object out of
bounds

¡ Difficult to detect statically

¡ Could we write a checker to find it?
How?

The bug

The bug

Impact
¡ Read a specific amount of memory from

the OpenSSL heap and send it to the
client
¡ Client is unauthenticated
¡ Deliciously, the exfiltrated data sent to the

attacker is encrypted
¡  NIDS is useless, though you can see heartbeat

messages with long sizes

Impact
¡ Deliciously, as long as the memcpy

doesn’t produce a segmentation fault,
this isn’t an observable attack in any
sytsems security model
¡ HIDS and SELinux is useless

How bad could this get?

¡  One SSL object allocated per connection

¡  Read values could include self or near-self referencing pointer
values

¡  By establishing concurrent connections, could snapshot entire
heap state

SSL Heap

SSL objects

Stride of out-of-bound read

How could we find it
statically?
¡ Need to know that payload variable is

fully attacker controlled

¡ Use ntohl as an annotation that a
variable is attacker controlled

¡ Identify unconstrained uses of those
variables

What about the web?
¡ I want to live in a world with widespread

verified code

¡ At the moment it is probably an easier
sell to say that our medical and avionic
systems should be formally verified
¡ You mean they’re not right now?
¡ Well, some of them are in Europe

¡ We can apply these same techniques to
find bugs in web applications though

What are pragmatic things?
¡ There are some software security

focused classes to take
¡ Mike Hicks is teaching one in the fall on

Coursera

¡ There are companies that will do you a
good job on pen testing your stuff

¡ There are ways you can write and design
your applications to make failure less
certain

Programming Tips
¡ One way to view pointers is as

capabilities*
¡ A pointer is a language resource

¡ Every use of a pointer should be
performed with concern to safety
invariants
¡ Ownership
¡ Bounds

¡ Lifetime

* http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Ownership
¡ Which thread of execution is interacting

with the pointer?

¡ Multiple threads interacting with shared
memory is a source of both security and
correctness errors

¡ Ownership questions usually resolved
with a mutex

Bounds
¡ Is the access with the pointer in bounds

¡ Is the data being read/written within the
bounds of the specified field or object?

¡ Bounds can sometimes be enforced via
type checking

¡ For arbitrary buffers, carry around a size
field and check the size before use

Lifetime
¡ Has an allocated pointer fallen out of

lifetime, or died

¡ Using dead pointers is uncouth
¡ Could result in writing into a now-live region

of memory, resulting in use after free

¡ Control the lifetime of pointers with
reference counting

Checking tools
¡ clang-analyzer is a static analyzer

¡ Dynamic analyzers can find bugs with
fewer false positives and time spent

¡ Traces concrete execution of a program

¡ Examines the trace for violations of
memory safety

Checking tools
¡ AddressSanitizer
¡ Component of clang compiler

¡ Emits code with checks embedded

¡ valgrind
¡ Stand-alone checker, works on unmodified

binaries

¡ Executes code and checks for safety
violations

Find Heartbleed with ASAN
¡ Fuzzer would need to produce heartbeat

packets

¡ ASAN instruments reads and writes

¡ At runtime, the act of reading out of
bounds triggers a fault

Avoid the snake
¡ Of course you should ask yourself, why

am I writing in an unmanaged
language?

¡ I think that Java and C# are on the front
line of winning our war with memory
safety

¡ So what could we do in the future and
what is the frontier for making new
programs better?

Types and memory safety?
¡ In some sense we already tolerate

advanced static analysis of our programs
before we let them run
¡ We just call it “type checking”

¡ How much information about a
programs behavior can we put into the
type system?
¡ Could we encode a state machine into

the type system?

Neat type applications
¡ Session types
¡ Essentially put state machine transitions into

types

¡ Refinement types
¡ Put logical constraints on the use of types
¡ “Practical” implementations in

LiquidHaskell, F7

¡ Check “high level” properties
¡ Does “login” actually do the right thing?

We still have C though
¡ We can bolt a lot of checking onto C

code though

¡ frama-c
¡ Open source analysis framework
¡ ACSL – specification language for behavior

¡ Write C code with low and high level
guarantees

frama-c success stories
¡ Formally verified PolarSSL implementation

¡ After-the-fact retrofit of memory safety
guarantees onto older C codebase
¡ Helped by PolarSSL modularity

¡ Could we do better?

Compartmentalization
¡ ocaml-tls implements the TLS protocol in

OCaml

¡ They use native code bindings to
implement block ciphers
¡ There are some reasons you want to do this

like timing channels and performance
¡ The code is small enough that you could

formally verify it for memory safety

Well specified formats
¡ When sending or receiving rich data, let

other coders worry about serialization
and deserialization

¡ Encode messages into protocol buffers,
CapnProto, thrift, etc.

Well encapsulated libraries
¡ If your crypto library abstraction wants to

make you choose a cipher suite and
decide if you want HMAC or not, you
have a bad library

¡ If your product depends on maintaining
some kind of security invariant, consider
hiring a security adult

Conclusion
¡ It’s scary

¡ We have a lot of low level code

¡ We don’t know what it does

¡ We’re getting better

¡ Please don’t write more of it

