Breaking The GSM A5/1 Cryptography
Algorithm with Rainbow Tables
and High-end FPGAs

Maria Kalenderil, Dionisios Pnevmatikatos?,

loannis Papaefstathiou*?, Charalampos Manifavas3

1ECE Department, Technical University of Crete
2Synelixis Solutions Ltd

3Applied Informatics & Multimedia Department, Technological Educational
Institute of Crete

FPL 2012

Presentation Overview

Motivation

A5/1 Cryptographic algorithm
Crypto-attack with Rainbow Tables
Our Rainbow Table Creation Engine

Conclusions

FPL 2012

Motivation: Why the A5/1 Alg?

Cell-phone privacy is obviously important

A5/1 is used in mobile cell phones (GSM) for the
encryption of the exchanged information
(voice/SMS) between mobile and base stations

It is a stream cipher

Optimized for efficient and cheap hardware
implementation

A5/1 used only for encryption, authentication in
GSM phones is handled with other algorithm

FPL 2012

Motivation: Why Rainbow Tables?

* Rainbow tables are one of the most efficient
methods for cracking passwords, encrypted by
different cryptographic algorithms

 They trade online computation for one-time
offline computation + storage

* One-time computation is still expensive! We
exploit parallelism and high-end FPGAs to
construct Rainbow tables up to thousand of
times faster than single threaded software.

4 FPL 2012

A5/1 structure & operation

* 64 bit state, 3 LFSRs, 3 designated “clock” bits.
Their majority generates a “clock” signal
* Process:
— Initialize all 3 LFSRs to zero
— Serially put in the encryption key (64 bits)
— Serially put in the Frame Number (22 bits)
— Now at “Initial State”
— Clock 100 cycles and discard output

— Next 228 clocks produce two 114 bit values to be
used encrypting the uplink and decrypting the
downlink (reverse use in the Base station)

— XOR data and key to produce output

FPL 2012

A5/1 structure (LFSRs)

-
\ .
C1 Total: 64 bits
R1 |0|1|2|3(4|5|6|7[8|9/[10(11]12]13|14]15[16(17[18
/—(/
N
C2 keystream
R2)
LSB 0(1]2(3[4]5|6|7|8]9[10/11/12]13|14]15]16]17[18]19]20/21}— o
C3

R3 |0|1]2|3[4(5[6/(7|8]9|10{11|12]13|14|15|16]17(18/19]20(2122

A

“Clock” Rule = Majority (C1,, C2,,, C3,,)
Controls when keystream bits are generated

6 FPL 2012

Crypto-attack approaches

°* Cryptography is used to protect sensitive
information

* Since the introduction of cryptography, we have
attack efforts

* Crypto attack: reverse the mapping of the key to
the ciphertext. For n-bit functions we can:

* Use an exhaustive search computing an average
of 2" 1values until the target is reached

* Precompute and store a table of 2" input/output
pairs. Then, to invert a particular value, we only
need a single table lookup

7 FPL 2012

Space-Time tradeoff

Lies in-between those two previous options
(Originally proposed by Hellman)

Idea: Do not store the entire table, but starting
points from which we can re-compute at run-time
several other points (for a chain)

Precomputation time of this approach is still in the
order of 2"

Memory complexity is 223 and the inversion of a
single value requires only 22"/3 function evaluations.

FPL 2012

Rainbow Tables

Oechslin improved Hellman’s approach (in 2003 & 2008)
More compact representation (less memory!!!)

Use a reduction function after each hash as the input for the
next chain link (not needed in this work)

The initial and final passwords of the chain comprise a
rainbow table entry and they are called Startpoint (SP) and
Endpoints (EP) respectively.

Chains contain only Distinguished Points (DPs) to further
improve efficiency (only keep results with a specific property)

Used in many attacks (Nohl used it for breaking A5/1 using
GPUs)

9 FPL 2012

Rainbow Table Illlustration

f1 |pP| f2

O |
3

{SP,EP} pairs stored, the intermediate entries are re-computed!

10 FPL 2012

Our Rainbow Table creation approach

* Use a hardware implementation of A5/1
* Sequential but smalll

* Exploit parallelism in creating different chains
— Start with random Start-Points (A5/1 initial state)
— Produce 32-entry chains (count only DPs)
— Use as many parallel chain engines as can fit in FPGA

— Deal with memory access problem (write results)
Compare with S/W running the same algorithm

* Extrapolate/compare w/ published GPU results

11 FPL 2012

12

A5/1 Chain creation engine

NOTE:

~ input | - Round Function] o
64 bits | Ifsr64 values Variable timi ng
64bits
1 for each result
\T\:‘ -
count
Ik /‘/ \Frounds 64bits 0
——clk—— \
"‘ | outputDP——
—reset— fsm ———reseta51—— A51 module }* p
/-~ enable a51——
o
(ﬁ validDP
done
last 15 Comparator
bits 15dp]
is DP

FPL 2012

Connecting Multiple Parallel Engines

64 bits

SP
64 bits

Mem size: 64Kx128bit (SP + EP). Controller produces
addresses and coordinates Writes

13 FPL 2012

Results

Used a Virtex5 LX330T

Engines | Frequency Slice Registers Slice LUTs Block RAM
(207360) (207360) (324)
1 178 488 (0%) 507 (0%) 2 (0%)
250 150 122802 (59%) | 154103 (74%) | 228 (70%)
345 146 165386 (79%) | 206911 (99%) | 228 (70%)

Max throughput (345 engines): 415 chains/sec
Power consumption 4.2 Watts
S/W measured with Vtune on a PA@3GHz: 0.14 chains/sec

NOTE: each chain takes different amount of processing

Execution Times (FPGA/SW)

Comparison Software-Hardware

2500000 2346701
2036733
2000000
» 1670042
-]
5
500000 1353663
0_:’:1 1217800
E m Software
1000000
m Hardware
500000
714%‘14 17 96 12 30

128 181 200 256 345
mstances instances lnstancespm’im%ﬁﬁ&gces mstances instances

15 FPL 2012

Speedup FPGA/SW

X times

3000

2500

2000

1500

1000

500

Speedup Software - Hardware

y 2824
2540
v
2055
< 1699
1462
e
1064

e
/

116

yZ
10 128 181 200 256 300 345

instances instances instances instances instances instances instances

16

FPL 2012

17

Comparison w/ GPUs

Published GPU results:

— 162 chains/sec for GTX260

— ~500 chains/sec for GTX280

— Result quality is lower for GPU (cannot adjust)

Performance:
— 2.5x over GTX260, slightly slower than GTX280 (-17%)

Power consumption:
— GPU ~250W, FPGA ~4.2W (~60 times better)

Estimate adjusting result quality:
— 150x energy efficiency for roughly similar performance

FPL 2012

Improvements/Extensions

e Current design is not very pipelined => we can further
improve the operating frequency

e Use larger FPGA (V6, Kintex7, V7)
e Use an array of devices for more throughput

— Optimize the cost/performance and/or power efficiency
— Have to coordinate the devices

— Have to measure the impact on result quality

18 FPL 2012

Conclusions

We exploit parallelism to create Rainbow table entries for A5/1

The proposed system is quite simple and scalable to larger
FPGA devices (or to multiple ones)

We are almost 3,000 times faster than single threaded S/W
running on a P4@3GHz

Speed is roughly similar to a GTS280 GPU but at 60 times lower
power and giving better quality results

FPGAs prove both quite fast and extremely power efficient for
this type of application

19 FPL 2012

