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Motivation: Why the A5/1 Alg?

Cell-phone privacy is obviously important

A5/1 is used in mobile cell phones (GSM) for the
encryption of the exchanged information
(voice/SMS) between mobile and base stations

It is a stream cipher

Optimized for efficient and cheap hardware
implementation

A5/1 used only for encryption, authentication in
GSM phones is handled with other algorithm
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Motivation: Why Rainbow Tables?

* Rainbow tables are one of the most efficient
methods for cracking passwords, encrypted by
different cryptographic algorithms

 They trade online computation for one-time
offline computation + storage

* One-time computation is still expensive! We
exploit parallelism and high-end FPGAs to
construct Rainbow tables up to thousand of
times faster than single threaded software.
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A5/1 structure & operation

* 64 bit state, 3 LFSRs, 3 designated “clock” bits.
Their majority generates a “clock” signal
* Process:
— Initialize all 3 LFSRs to zero
— Serially put in the encryption key (64 bits)
— Serially put in the Frame Number (22 bits)
— Now at “Initial State”
— Clock 100 cycles and discard output

— Next 228 clocks produce two 114 bit values to be
used encrypting the uplink and decrypting the
downlink (reverse use in the Base station)

— XOR data and key to produce output
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A5/1 structure (LFSRs)
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“Clock” Rule = Majority (C1,, C2,,, C3,,)
Controls when keystream bits are generated
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Crypto-attack approaches

°* Cryptography is used to protect sensitive
information

* Since the introduction of cryptography, we have
attack efforts

* Crypto attack: reverse the mapping of the key to
the ciphertext. For n-bit functions we can:

* Use an exhaustive search computing an average
of 2" 1values until the target is reached

* Precompute and store a table of 2" input/output
pairs. Then, to invert a particular value, we only
need a single table lookup

7 FPL 2012



Space-Time tradeoff

Lies in-between those two previous options
(Originally proposed by Hellman)

Idea: Do not store the entire table, but starting
points from which we can re-compute at run-time
several other points (for a chain)

Precomputation time of this approach is still in the
order of 2"

Memory complexity is 223 and the inversion of a
single value requires only 22"/3 function evaluations.
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Rainbow Tables

Oechslin improved Hellman’s approach (in 2003 & 2008)
More compact representation (less memory!!!)

Use a reduction function after each hash as the input for the
next chain link (not needed in this work)

The initial and final passwords of the chain comprise a
rainbow table entry and they are called Startpoint (SP) and
Endpoints (EP) respectively.

Chains contain only Distinguished Points (DPs) to further
improve efficiency (only keep results with a specific property)

Used in many attacks (Nohl used it for breaking A5/1 using
GPUs)
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Rainbow Table Illlustration

f1 |pP| f2

O |
3

{SP,EP} pairs stored, the intermediate entries are re-computed!
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Our Rainbow Table creation approach

* Use a hardware implementation of A5/1
* Sequential but smalll

* Exploit parallelism in creating different chains
— Start with random Start-Points (A5/1 initial state)
— Produce 32-entry chains (count only DPs)
— Use as many parallel chain engines as can fit in FPGA

— Deal with memory access problem (write results)
Compare with S/W running the same algorithm

* Extrapolate/compare w/ published GPU results
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A5/1 Chain creation engine
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Connecting Multiple Parallel Engines

64 bits

SP
64 bits

Mem size: 64Kx128bit (SP + EP). Controller produces
addresses and coordinates Writes
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Results

Used a Virtex5 LX330T

# Engines | Frequency Slice Registers Slice LUTs Block RAM
(207360) (207360) (324)
1 178 488 (0%) 507 (0%) 2 (0%)
250 150 122802 (59%) | 154103 (74%) | 228 (70%)
345 146 165386 (79%) | 206911 (99%) | 228 (70%)

Max throughput (345 engines): 415 chains/sec
Power consumption 4.2 Watts
S/W measured with Vtune on a PA@3GHz: 0.14 chains/sec

NOTE: each chain takes different amount of processing




Execution Times (FPGA/SW)
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Speedup FPGA/SW
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Comparison w/ GPUs

Published GPU results:

— 162 chains/sec for GTX260

— ~500 chains/sec for GTX280

— Result quality is lower for GPU (cannot adjust)

Performance:
— 2.5x over GTX260, slightly slower than GTX280 (-17%)

Power consumption:
— GPU ~250W, FPGA ~4.2W (~60 times better)

Estimate adjusting result quality:
— 150x energy efficiency for roughly similar performance

FPL 2012



Improvements/Extensions

e Current design is not very pipelined => we can further
improve the operating frequency

e Use larger FPGA (V6, Kintex7, V7)
e Use an array of devices for more throughput

— Optimize the cost/performance and/or power efficiency
— Have to coordinate the devices

— Have to measure the impact on result quality
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Conclusions

We exploit parallelism to create Rainbow table entries for A5/1

The proposed system is quite simple and scalable to larger
FPGA devices (or to multiple ones)

We are almost 3,000 times faster than single threaded S/W
running on a P4@3GHz

Speed is roughly similar to a GTS280 GPU but at 60 times lower
power and giving better quality results

FPGAs prove both quite fast and extremely power efficient for
this type of application
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