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1 Introduction 

This document is the top-level functional specification (TLFS) of the fifth-generation Microsoft 
hypervisor. It specifies the externally-visible behavior to guest partitions. The document assumes 
familiarity with the goals of the project and the high-level hypervisor architecture. 

This document is intended to be sufficiently complete and precise to allow a developer to implement a 
guest partition interface with the Microsoft hypervisor. 

1.1 Specification Style 

This specification is informal; that is, the interfaces are not specified in a formal language. Nevertheless, 
it is a goal to be precise. It is also a goal to specify which behaviors are architectural and which are 
implementation-specific. Callers should not rely on behaviors that fall into the latter category because 
they may change in future implementations. 

Segments of code and algorithms are presented with a grey background. 

1.2 Reserved Values 

This specification documents some fields as “reserved.” These fields may be given specific meaning in 
future versions of the hypervisor architecture. For maximum forward compatibility, clients of the 
hypervisor interface should follow the guidance provided within this document. In general, two forms of 
guidance are provided. 

Preserve value (documented as RsvdP in diagrams and ReservedP in code segments) – For maximum 
forward compatibility, clients should preserve the value within this field. This is typically done by reading 
the current value, modifying the values of the non-reserved fields, and writing the value back. 

Zero value (documented as RsvdZ in diagrams and ReservedZ in code segments) – For maximum 
forward compatibility, clients should zero the value within this field.  

Reserved fields within read-only structures are simply documented as Rsvd in diagrams and simply as 
Reserved in code segments. For maximum forward compatibility, the values within these fields should 
be ignored. Clients should not assume these values will always be zero. 

1.3 Report Issues 

If you notice errors in this document, or would like to give feedback, please file an issue in the Hyper-V 
Documentation GitHub repository: https://github.com/Microsoft/Virtualization-

Documentation/issues  

1.4 Changes from the Previous Revision 

The following changes were made from Revision A: 

- Added usage information of HV_VP_SET, including an example. 
- Revised type definitions for HvCallRetargetDeviceInterrupt. 
- Clarified alignment requirements for hypercall inputs and outputs. 
- Clarified which registers can be modified by hypercalls. 
- Added information for how *Ex hypercalls are enumerated. 

https://github.com/Microsoft/Virtualization-Documentation/issues
https://github.com/Microsoft/Virtualization-Documentation/issues
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1.5 Glossary 

Partition – Hyper-V supports isolation in terms of a partition. A partition is a logical unit of isolation, 
supported by the hypervisor, in which operating systems execute.  

Root Partition – The root partition (a.k.a the “parent” or “host”) is a privileged management partition. 
The root partition manages machine-level functions such as device drivers, power management, and 
device addition/removal. The virtualization stack runs in the parent partition and has direct access to the 
hardware devices. The root partition then creates the child partitions which host the guest operating 
systems. 

Child Partition – The child partition (a.k.a. the “guest”) hosts a guest operating system. All access to 
physical memory and devices by a child partition is provided via the Virtual Machine Bus (VMBus) or the 
hypervisor. 

Hypercall – Hypercalls are an interface for communication with the hypervisor.  

1.6 Simple Scalar Types 

Hypervisor data types are built up from simple scalar types UINT8, UINT16, UINT32, UINT64 and 
UINT128. Each of these represents a simple unsigned integer scalar with the specified bit count. Several 
corresponding signed integer scalars are also defined: INT8, INT16, INT32, and INT64. 

The hypervisor uses neither floating point instructions nor floating point types. 

1.7 Hypercall Status Code 

Every hypercall returns a 16-bit status code of type HV_STATUS. 

 
typedef UINT16 HV_STATUS; 
 

All hypercall status codes are documented in . 

1.8 Memory Address Space Types 

The hypervisor architecture defines three independent address spaces: 

• System physical addresses (SPAs) define the physical address space of the underlying hardware 
as seen by the CPUs. There is only one system physical address space for the entire machine. 

• Guest physical addresses (GPAs) define the guest’s view of physical memory. GPAs can be 
mapped to underlying SPAs. There is one guest physical address space per partition. 

• Guest virtual addresses (GVAs) are used within the guest when it enables address translation 
and provides a valid guest page table. 

All three of these address spaces are up to 264 bytes in size. The following types are thus defined: 

 
typedef UINT64 HV_SPA; 
typedef UINT64 HV_GPA; 
typedef UINT64 HV_GVA; 
 

Many hypervisor interfaces act on pages of memory rather than single bytes. The minimum page size is 
architecture-dependent. For x64, it is defined as 4K. 
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#define X64_PAGE_SIZE 0x1000 
 
#define HV_X64_MAX_PAGE_NUMBER (MAXUINT64/X64_PAGE_SIZE) 
#define HV_PAGE_SIZE X64_PAGE_SIZE 
#define HV_LARGE_PAGE_SIZE X64_LARGE_PAGE_SIZE 
#define HV_PAGE_MASK (HV_PAGE_SIZE - 1) 
 
typedef UINT64 HV_SPA_PAGE_NUMBER; 
typedef UINT64 HV_GPA_PAGE_NUMBER; 
typedef UINT64 HV_GVA_PAGE_NUMBER; 
 
typedef UINT32 HV_SPA_PAGE_OFFSET 
 
typedef HV_GPA_PAGE_NUMBER *PHV_GPA_PAGE_NUMBER; 
 

To convert an HV_SPA to an HV_SPA_PAGE_NUMBER, simply divide by HV_PAGE_SIZE. 

1.9 Structures, Enumerations and Bit Fields 

Many data structures and constant values defined later in this specification are defined in terms of 
C-style enumerations and structures. The C language purposely avoids defining certain implementation 
details. However, this document assumes the following: 

• All enumerations declared with the “enum” keyword define 32-bit signed integer values. 

• All structures are padded in such a way that fields are aligned naturally (that is, an 8-byte field is 
aligned to an offset of 8 bytes and so on). 

• All bit fields are packed from low-order to high-order bits with no padding. 

1.10 Endianness 

The hypervisor interface is designed to be endian-neutral (that is, it should be possible to port the 
hypervisor to a big-endian or little-endian system), but some of the data structures defined later in this 
specification assume little-endian layout. Such data structures will need to be amended if and when a 
big-endian port is attempted. 

1.11 Pointer Naming Convention 

The document uses a naming convention for pointer types. In particular, a “P” prepended to a defined 
type indicates a pointer to that type. A “PC” prepended to a defined type indicates a pointer to a 
constant value of that type. 
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2 Feature and Interface Discovery 

2.1 Interface Mechanisms 

Guest software interacts with the hypervisor through a variety of mechanisms. Many of these mirror the 
traditional mechanisms used by software to interact with the underlying processor. As such, these 
mechanisms are architecture-specific. On the x64 architecture, the following mechanisms are used: 

• CPUID instruction – Used for static feature and version information. 

• MSRs (model-specific registers) – Used for status and control values. 

• Memory-mapped registers – Used for status and control values. 

• Processor interrupts – Used for asynchronous events, notifications and messages. 

In addition to these architecture-specific interfaces, the hypervisor provides a simple procedural 
interface implemented with hypercalls. For information about the hypercall mechanism, see chapter 3. 

2.2 Hypervisor Discovery 

Before using any hypervisor interfaces, software should first determine whether it’s running within a 
virtualized environment. On x64 platforms that conform to this specification, this is done by executing 
the CPUID instruction with an input (EAX) value of 1. Upon execution, code should check bit 31 of 
register ECX (the “hypervisor present bit”). If this bit is set, a hypervisor is present. In a non-virtualized 
environment, the bit will be clear. 

 
CPUID.01h.ECX:31  // if set, virtualization present 
 

If the “hypervisor present bit” is set, additional CPUID leafs can be queried for more information about 
the conformant hypervisor and its capabilities. Two such leaves are guaranteed to be available: 
0x40000000 and 0x40000001. Subsequently-numbered leaves may also be available.  

2.3 Standard Hypervisor CPUID Leaves 

When the leaf at 0x40000000 is queried, the hypervisor will return information that provides the 
maximum hypervisor CPUID leaf number and a vendor ID signature. 

Leaf Information Provided 

0x40000000 EAX The maximum input value for hypervisor CPUID information. 

EBX Hypervisor Vendor ID Signature 

ECX Hypervisor Vendor ID Signature 

EDX Hypervisor Vendor ID Signature 

If the leaf at 0x40000001 is queried, it will return a value representing a vendor-neutral hypervisor 
interface identification. This determines the semantics of the leaves from 0x4000002 through 
0x400000FF. 
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Leaf Information Provided 

0x40000001 EAX Hypervisor Interface Signature 

EBX Reserved 

ECX Reserved 

EDX Reserved 

These two leaves allow the guest to query the hypervisor vendor ID and interface independently. The 
vendor ID is provided only for informational and diagnostic purposes. It is recommended that software 
only base compatibility decisions on the interface signature reported through leaf 0x40000001. 

2.4 Microsoft Hypervisor CPUID Leaves 

On hypervisors conforming to the Microsoft hypervisor CPUID interface, the 0x40000000 and 
0x40000001 leaf registers will have the following values. 

 Hypervisor CPUID Leaf Range - 0x40000000 

EAX determines the maximum hypervisor CPUID leaf.  EBX-EDX contain the hypervisor vendor ID 
signature. The vendor ID signature should be used only for reporting and diagnostic purposes. 

Leaf Information Provided 

0x40000000 EAX The maximum input value for hypervisor CPUID information. 
On Microsoft hypervisors, this will be at least 0x40000005.  

EBX 0x7263694D—“Micr” 

ECX 0x666F736F—“osof” 

EDX 0x76482074—“t Hv” 

 Hypervisor Vendor-Neutral Interface Identification - 0x40000001 

EAX contains the hypervisor interface identification signature.  This determines the semantics of the 
leaves from 0x40000002 through 0x400000FF. 
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Leaf Information Provided 

0x40000001 EAX 0x31237648—“Hv#1” 

EBX Reserved  

ECX Reserved  

EDX Reserved  

Hypervisors conforming to the “Hv#1” interface also provide at least the following leaves. 

 Hypervisor System Identity 

This value will be zero until the OS identity MSR is set (see section 2.6); after that, it has the following 
definitions: 

Leaf Information Provided 

0x40000002 EAX Build Number 

EBX Bits 31-16:  Major Version 

Bits   15-0:  Minor Version 

ECX Service Pack 

EDX Bits 31-24:  Service Branch 

Bits   23-0:  Service Number 
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 Hypervisor Feature Identification - 0x40000003 

EAX and EBX indicate which features are available to the partition based upon the current partition 
privileges.  

Leaf Information Provided 

0x40000003 EAX Bits 31-0: Corresponds to bits 31-0 of 
HV_PARTITION_PRIVILEGE_MASK (see 4.2.2 Partition 
Privilege Flags) 

EBX Bits 31-0: Corresponds to bits 63-32 of 
HV_PARTITION_PRIVILEGE_MASK (see 4.2.2 Partition 
Privilege Flags) 

ECX Bits 31-0: Reserved 

EDX Bit 0: Deprecated (previously indicated availability of the 
MWAIT command). 

Bit 1: Guest debugging support is available 

Bit 2: Performance Monitor support is available 

Bit 3: Support for physical CPU dynamic partitioning events is 
available 

Bit 4: Support for passing hypercall input parameter block via 
XMM registers is available 

Bit 5: Support for a virtual guest idle state is available 

Bit 6:  Support for hypervisor sleep state is available. 

Bit 7: Support for querying NUMA distances is available. 

Bit 8: Support for determining timer frequencies is available. 

Bit 9: Support for injecting synthetic machine checks is 
available. 

Bit 10: Support for guest crash MSRs is available. 

Bit 11: Support for debug MSRs is available. 

Bit 12: Support for NPIEP is available. 

Bit 13: DisableHypervisorAvailable 

Bit 14: ExtendedGvaRangesForFlushVirtualAddressListAvailable 

Bit 15: Support for returning hypercall output via XMM 
registers is available. 

Bit 16: Reserved 

Bit 17: SintPollingModeAvailable 

Bit 18: HypercallMsrLockAvailable 

Bit 19: Use direct synthetic timers 

Bits 31-20: Reserved 
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 Implementation Recommendations - 0x40000004 

Indicates which behaviors the hypervisor recommends the OS implement for optimal performance. 

Leaf Information Provided 

0x40000004 EAX Bit 0: Recommend using hypercall for address space switches 
rather than MOV to CR3 instruction 

Bit 1: Recommend using hypercall for local TLB flushes rather 
than INVLPG or MOV to CR3 instructions 

Bit 2: Recommend using hypercall for remote TLB flushes 
rather than inter-processor interrupts 

Bit 3: Recommend using MSRs for accessing APIC registers EOI, 
ICR and TPR rather than their memory-mapped 
counterparts. 

Bit 4: Recommend using the hypervisor-provided MSR to 
initiate a system RESET. 

Bit 5: Recommend using relaxed timing for this partition. If 
used, the VM should disable any watchdog timeouts that 
rely on the timely delivery of external interrupts. 

Bit 6: Recommend using DMA remapping. 

Bit 7: Recommend using interrupt remapping. 

Bit 8: Recommend using x2APIC MSRs. 

Bit 9: Recommend deprecating AutoEOI. 

Bit 10: Recommend using SyntheticClusterIpi hypercall 

Bit 11: Recommend using the newer ExProcessorMasks 
interface 

Bit 12: Indicates that the hypervisor is nested within a Hyper-V 
partition. 

Bit 13: Recommend using INT for MBEC system calls 

Bit 14: Recommend a nested hypervisor using the enlightened 
VMCS interface. Also indicates that additional nested 
enlightenments may be available (see leaf 0x4000000A) 

Bit 31-15: Reserved 

EBX Recommended number of attempts to retry a spinlock failure 
before notifying the hypervisor about the failures.  

0xFFFFFFFF indicates never to retry. 

ECX Reserved 

EDX Reserved 
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 Hypervisor Implementation Limits - 0x40000005 

Describes the scale limits supported in the current hypervisor implementation.  If any value is zero, the 
hypervisor does not expose the corresponding information; otherwise, they have these meanings. 

Leaf Information Provided 

0x40000005 EAX The maximum number of virtual processors supported. 

EBX The maximum number of logical processors supported. 

ECX The maximum number of physical interrupt vectors available 
for interrupt remapping. 

EDX Reserved 

 Implementation Hardware Features - 0x40000006 

Indicates which hardware-specific features have been detected and are currently in use by the 
hypervisor. 

Leaf Information Provided 

0x40000006 EAX Bit 0:  Support for APIC overlay assist is detected and in use. 

Bit 1:  Support for MSR bitmaps is detected and in use. 

Bit 2:  Support for architectural performance counters is 
detected and in use. 

Bit 3:  Support for second level address translation is 
detected and in use. 

Bit 4:  Support for DMA remapping is detected and in use. 

Bit 5:  Support for interrupt remapping is detected and in 
use. 

Bit 6:  Indicates that a memory patrol scrubber is present in the 
hardware. 

Bit 7:  DMA protection is in use 

Bit 8:  HPET is requested  

Bit 9:  Synthetic timers are volatile 

Bits 31-10: Reserved 

EBX Reserved 

ECX Reserved 

EDX Reserved 
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 Hypervisor CPU Management Features - 0x40000007 

Indicates enlightenments are available to the root partition only.  

 

Leaf Information Provided 

0x40000007 EAX Bit 0:   StartLogicalProcessor 

Bit 1:   CreateRootvirtualProcessor 

Bits 30-2:  Reserved0 

Bit 31:  ReservedIdentityBit  

EBX Bit 0:   ProcessorPowerManagement 

Bit 1:   MwaitIdleStates 

Bits 2:  LogicalProcessorIdling 

Bit 31-3:  Reserved1 

ECX Reserved 

EDX Reserved 

 

 Hypervisor SVM Features - 0x40000008 

Indicates support for shared virtual memory (SVM). 

Leaf Information Provided 

0x40000008  

EAX Bit 0:  SvmSupported 

Bits 10-1: Reserved0   

Bits 31-11: MaxPasidSpacePasidCount 

EBX Reserved 

ECX Reserved 

EDX Reserved 
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 Nested Hypervisor Feature Identification  - 0x40000009 

Describes the features exposed to the partition by the hypervisor when running nested.  EAX describes 
access to virtual MSRs.  EDX describes access to hypercalls. 

Leaf Information Provided 

0x40000009 EAX Bits 1-0:  Reserved 

Bit 2:  AccessSynicRegs  

Bit 3:          Reserved 

Bit 4:  AccessIntrCtrlRegs 

Bit 5:  AccessHypercallMsrs 

Bit 6:  AccessVpIndex 

Bits 11-7:  Reserved 

Bit 12:  AccessReenlightenmentControls 

Bits 31-12: Reserved 

EBX Reserved 

ECX Reserved 

EDX Bits 3-0: Reserved 

Bit 4:  XmmRegistersForFastHypercallAvailable   

Bits 14-5: Reserved 

Bit 15: FastHypercallOutputAvailable   

Bit 16: Reserved 

Bit 17: SintPollingModeAvailable   

Bits 31:18 Reserved 
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 Hypervisor Nested Virtualization Features - 0x4000000A 

Indicates which nested virtualization optimizations are available to a nested hypervisor.  

 Leaf Information Provided 

0x4000000A EAX Bits 7-0: Enlightened VMCS version (low) 

Bits 15-8: Enlightened VMCS version (high) 

Bit 16: Reserved 

Bit 17: Indicates support for direct virtual flush hypercalls. 

Bit 18 Indicates support for the 
HvFlushGuestPhysicalAddressSpace and 
HvFlushGuestPhysicalAddressList hypercalls. 

Bit 19: Indicates support for using an enlightened MSR bitmap. 

Bits 31-20: Reserved 

EBX Reserved 

ECX Reserved 

EDX Reserved 

2.5 Versioning 

The hypervisor version information is encoded in leaf 0x40000002. Two version numbers are provided: 
the main version and the service version.  

The main version includes a major and minor version number and a build number. These correspond to 
Microsoft Windows release numbers. The service version describes changes made to the main version. 
For maximum forward compatibility, clients should use the hypervisor version information with extreme 
care. When checking main versions, clients should use greater-than-or-equal tests, not equality tests. 
The following pseudo-code demonstrates the method that should be employed when comparing entire 
version numbers (consisting of both the main and service versions): 

 
if <your-main-version> greater than <hypervisor-main-version> 
 { 
   your version is compatible 
 } 
else if <your-main-version> equal to <hypervisor-main-version> 
 and 
      <your-service-version> greater than or equal to 
                                     <hypervisor-service-version> 
 { 
   your version is compatible 
 } 
else 
 { 
   your version is NOT compatible 
 } 
 

Clients are strongly encouraged to check for hypervisor features by using CPUID leaves 0x40000003 
through 0x40000005 rather than by comparing against version ranges. 
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2.6 Reporting the Guest OS Identity 

The guest OS running within the partition must identify itself to the hypervisor by writing its signature 
and version to an MSR (HV_X64_MSR_GUEST_OS_ID). This MSR is partition-wide and is shared among 
all virtual processors (virtual processors are described in chapter 7, Virtual Processor Management). 

This register’s value is initially zero. A non-zero value must be written to the Guest OS ID MSR before the 
hypercall code page can be enabled (see Establishing the Hypercall Interface). If this register is 
subsequently zeroed, the hypercall code page will be disabled. 

 
#define HV_X64_MSR_GUEST_OS_ID 0x40000000 
 

The following is the recommended encoding for this MSR. Some fields may not apply for some guest 
OSs. 

63 62:48 47:40 39:32 31:24 23:16 15:0 

OS Type Vendor ID OS ID Major 
Version 

Minor 
Version 

Service 
Version 

Build 
Number 
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Bits Description Attributes 

63 OS Type 
Indicates the OS types.  A value of 0 indicates a proprietary, 
closed source OS.  A value of 1 indicates an open source OS. 

Read/Write 

62:48 Vendor ID 

Indicates the guest OS vendor. A value of 0 is reserved. A value of 
1 indicates Microsoft. 

Read/write 

47:40 OS ID 

Indicates the OS variant. Encoding is unique to the vendor. 
Microsoft operating systems are encoded as follows: 

0=Undefined, 1=MS-DOS®, 2=Windows® 3.x, 3=Windows® 9x, 
4=Windows® NT (and derivatives), 5=Windows® CE 

Read/write 

39:32 Major Version 

Indicates the major version of the OS 

Read/write 

31:24 Minor Version 

Indicates the minor version of the OS 

Read/write 

23:16 Service Version 

Indicates the service version (for example, "service pack" 
number) 

Read/write 

15:0 Build Number 

Indicates the build number of the OS 

Read/write 
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 Encoding the Guest OS Identity MSR for Open Source Operating Systems 

The following encoding is offered as guidance for open source operating system vendors intending to 
conform to this specification. It is suggested that open source operating systems adapt the following 
convention. 

Bits Description Attributes 

63 Open Source 

Bit 63 should be set to 1 to indicate an Open Source OS. 

Read/write 

62:56 OS Type 

Bits 62-57 should specify the OS type (e.g., Linux, FreeBSD, etc.).  
Linux is 0x100. 

Read/write 

55:48 OS ID 

Bits 55:48 may specify any additional vendor information 
(distribution-specific identification). 

Read/write 

47:16 Version 

Bits 47:16 should specify the upstream kernel version 
information. 

Read/write 

15:0 Build Number 

Bits 15:0 should specify any additional identification. 

Read/write 
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3 Hypercall Interface 

3.1 Hypercall Overview 

The hypervisor provides a calling mechanism for guests. Such calls are referred to as hypercalls. Each 
hypercall defines a set of input and/or output parameters. These parameters are specified in terms of a 
memory-based data structure. All elements of the input and output data structures are padded to 
natural boundaries up to 8 bytes (that is, two-byte elements must be on two-byte boundaries and so 
on).  

A second hypercall calling convention can optionally be used for a subset of hypercalls – in particular, 
those that have two or fewer input parameters and no output parameters. When using this calling 
convention, the input parameters are passed in registers. 

A third hypercall calling convention can optionally be used for a subset of hypercalls where the input 
parameter block is up to 112 bytes. When using this calling convention, the input parameters are passed 
in registers, including the volatile XMM registers. 

Input and output data structures must both be placed in memory on an 8-byte boundary and padded to 
a multiple of 8 bytes in size. The values within the padding regions are ignored by the hypervisor.  

For output, the hypervisor is allowed to (but not guaranteed to) overwrite padding regions. If it 
overwrites padding regions, it will write zeros. 

3.2 Hypercall Classes 

There are two classes of hypercalls: simple and rep (short for “repeat”). A simple hypercall performs a 
single operation and has a fixed-size set of input and output parameters. A rep hypercall acts like a 
series of simple hypercalls. In addition to a fixed-size set of input and output parameters, rep hypercalls 
involve a list of fixed-size input and/or output elements.  

When a caller initially invokes a rep hypercall, it specifies a rep count that indicates the number of 
elements in the input and/or output parameter list. Callers also specify a rep start index that indicates 
the next input and/or output element that should be consumed. The hypervisor processes rep 
parameters in list order – that is, by increasing element index. 

For subsequent invocations of the rep hypercall, the rep start index indicates how many elements have 
been completed – and, in conjunction with the rep count value – how many elements are left. For 

example, if a caller specifies a rep count of 25, and only 20 iterations are completed within the 50s 
window (described in section 3.3), the hypercall returns control back to the calling virtual processor 
after updating the rep start index to 20. (See section 3.7 for more information about the rep start index.) 
When the hypercall is re-executed, the hypervisor will resume at element 20 and complete the 
remaining 5 elements. 

If an error is encountered when processing an element, an appropriate status code is provided along 
with a reps completed count, indicating the number of elements that were successfully processed before 
the error was encountered. Assuming the specified hypercall control word is valid (see the following) 
and the input / output parameter lists are accessible, the hypervisor is guaranteed to attempt at least 
one rep, but it is not required to process the entire list before returning control back to the caller.  
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3.3 Hypercall Continuation 

A hypercall can be thought of as a complex instruction that takes many cycles. The hypervisor attempts 

to limit hypercall execution to 50s or less before returning control to the virtual processor that invoked 

the hypercall. Some hypercall operations are sufficiently complex that a 50s guarantee is difficult to 
make. The hypervisor therefore relies on a hypercall continuation mechanism for some hypercalls – 
including all rep hypercall forms.  

The hypercall continuation mechanism is mostly transparent to the caller. If a hypercall is not able to 
complete within the prescribed time limit, control is returned back to the caller, but the instruction 
pointer is not advanced past the instruction that invoked the hypercall. This allows pending interrupts to 
be handled and other virtual processors to be scheduled. When the original calling thread resumes 
execution, it will re-execute the hypercall instruction and make forward progress toward completing the 
operation. 

Most simple hypercalls are guaranteed to complete within the prescribed time limit. However, a small 
number of simple hypercalls might require more time. These hypercalls use hypercall continuation in a 
similar manner to rep hypercalls. In such cases, the operation involves two or more internal states. The 
first invocation places the object (for example, the partition or virtual processor) into one state, and 
after repeated invocations, the state finally transitions to a terminal state. For each hypercall that 
follows this pattern, the visible side effects of intermediate internal states is described. 

3.4 Hypercall Atomicity and Ordering 

Except where noted, the action performed by a hypercall is atomic both with respect to all other guest 
operations (for example, instructions executed within a guest) and all other hypercalls being executed 
on the system. A simple hypercall performs a single atomic action; a rep hypercall performs multiple, 
independent atomic actions.  

Simple hypercalls that use hypercall continuation may involve multiple internal states that are externally 
visible. Such calls comprise multiple atomic operations. 

Each hypercall action may read input parameters and/or write results. The inputs to each action can be 
read at any granularity and at any time after the hypercall is made and before the action is executed. 
The results (that is, the output parameters) associated with each action may be written at any 
granularity and at any time after the action is executed and before the hypercall returns. 

The guest must avoid the examination and/or manipulation of any input or output parameters related 
to an executing hypercall. While a virtual processor executing a hypercall will be incapable of doing so 
(as its guest execution is suspended until the hypercall returns), there is nothing to prevent other virtual 
processors from doing so. Guests behaving in this manner may crash or cause corruption within their 
partition. 

3.5 Legal Hypercall Environments 

Hypercalls can be invoked only from the most privileged guest processor mode. In the case of x64, this 
means protected mode with a current privilege level (CPL) of zero. Although real-mode code runs with 
an effective CPL of zero, hypercalls are not allowed in real mode. An attempt to invoke a hypercall 
within an illegal processor mode will generate a #UD (undefined operation) exception.  

All hypercalls should be invoked through the architecturally-defined hypercall interface. (See the 
following sections for instructions on discovering and establishing this interface.) An attempt to invoke a 
hypercall by any other means (for example, copying the code from the hypercall code page to an 
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alternate location and executing it from there) might result in an undefined operation (#UD) exception. 
The hypervisor is not guaranteed to deliver this exception. 

3.6 Alignment Requirements 

Callers must specify the 64-bit guest physical address (GPA) of the input and/or output parameters. GPA 
pointers must by 8-byte aligned. If the hypercall involves no input or output parameters, the hypervisor 
ignores the corresponding GPA pointer. 

The input and output parameter lists cannot overlap or cross page boundaries. Hypercall input and 
output pages are expected to be GPA pages and not “overlay” pages (for a discussion of overlay pages, 
see section 5.2.1). If the virtual processor writes the input parameters to an overlay page and specifies a 
GPA within this page, hypervisor access to the input parameter list is undefined. 

The hypervisor will validate that the calling partition can read from the input page before executing the 
requested hypercall. This validation consists of two checks: the specified GPA is mapped and the GPA is 
marked readable. If either of these tests fails, the hypervisor generates a memory intercept message. 
For more information on memory intercepts, see Chapter 11.  

For hypercalls that have output parameters, the hypervisor will validate that the partition can be write 
to the output page. This validation consists of two checks: the specified GPA is mapped and the GPA is 
marked writable. If either of these tests fails, the hypervisor attempts to generate a memory intercept 
message. If the validation succeeds, the hypervisor “locks” the output GPA for the duration of the 
operation. Any attempt to remap or unmap this GPA will be deferred until after the hypercall is 
complete. 

3.7 Hypercall Inputs 

Callers specify a hypercall by a 64-bit value called a hypercall input value. It is formatted as follows: 

63:60 59:48 47:44 43:32 31:27 26:17 16 15:0 

RsvdZ 

(4 bits) 

Rep start index 

(12 bits) 

RsvdZ 

(4 bits) 

Rep count 

(12 bits) 

RsvdZ 

(5 bits) 

Variable 
header size 

(9 bits) 

Fast 

(1 bit) 

Call Code 

(16 bits) 
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Call code 16 bits Specifies which hypercall is requested 

Fast 1 bit Specifies whether the hypercall uses the register-based 
calling convention. 

0: Use the memory-based calling convention 

1: Use the register-based calling convention 

If this calling convention is used, the Rep fields must be 
zero. 

Variable header 
size 

9 bits The size of a variable header, in QWORDS. See 3.7.1. 

RsvdZ 15 bits Must be zero 

Rep Count 12 bits Total number of reps (for rep call, must be zero otherwise) 

RsvdZ 4 bits Must be zero 

Rep Start Index 12 bits Starting index (for rep call, must be zero otherwise) 

RsvdZ 4 bits Must be zero 

For rep hypercalls, the rep count field indicates the total number of reps. The rep start index indicates 
the particular repetition relative to the start of the list (zero indicates that the first element in the list is 
to be processed).  Therefore, the rep count value must always be greater than the rep start index. 

Register mapping for hypercall inputs when the Fast flag is zero: 

x64 x86 Contents 

RCX EDX:EAX Hypercall Input Value 

RDX EBX:ECX Input Parameters GPA 

R8 EDI:ESI Output Parameters GPA 

The hypercall input value is passed in registers along with a GPA that points to the input and output 
parameters. The register mappings depend on whether the caller is running in 32-bit (x86) or 64-bit 
(x64) mode. The hypervisor determines the caller’s mode based on the value of EFER.LMA and CS.L. If 
both of these flags are set, the caller is assumed to be a 64-bit caller. 

Register mapping for hypercall inputs when the Fast flag is one: 
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x64 x86 Contents 

RCX EDX:EAX Hypercall Input Value 

RDX EBX:ECX Input Parameter 

R8 EDI:ESI Input Parameter 

The hypercall input value is passed in registers along with the input parameters.  The register mappings 
depend on whether the caller is running in 32-bit (x86) or 64-bit (x64) mode. The hypervisor determines 
the caller’s mode based on the value of EFER.LMA and CS.L. If both of these flags are set, the caller is 
assumed to be a 64-bit caller. 

 Variable Sized Hypercall Input Headers 

Most hypercall input headers have fixed size. The amount of header data being passed from the guest to 
the hypervisor is therefore implicitly specified by the hypercall code and need not be specified 
separately. However, some hypercalls require a variable amount of header data. These hypercalls 
typically have a fixed size input header and additional header input that is of variable size. 

A variable sized header is similar to a fixed hypercall input (aligned to 8 bytes and sized to a multiple of 8 
bytes). The caller must specify how much total data it is providing as input headers. This size is provided 
as part of the hypercall input value (see “Variable header size” in table above).  

Since the fixed header size is implicit, instead of supplying the total header size, only the variable portion 
is supplied in the input controls: 

 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐻𝑒𝑎𝑑𝑒𝑟 𝐵𝑦𝑡𝑒𝑠 =  {𝑇𝑜𝑡𝑎𝑙 𝐻𝑒𝑎𝑑𝑒𝑟 𝐵𝑦𝑡𝑒𝑠 −
 𝑠𝑖𝑧𝑒𝑜𝑓 (𝐹𝑖𝑥𝑒𝑑 𝐻𝑒𝑎𝑑𝑒𝑟)} 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑢𝑝 𝑡𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 8 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐻𝑒𝑎𝑑𝑒𝑟 𝑆𝑖𝑧𝑒  =  
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐻𝑒𝑎𝑑𝑒𝑟 𝐵𝑦𝑡𝑒𝑠

8
 

It is illegal to specify a non-zero variable header size for a hypercall that is not explicitly documented as 
accepting variable sized input headers. In such a case the hypercall will result in a return code of 
HV_STATUS_INVALID_HYPERCALL_INPUT. 

It is possible that for a given invocation of a hypercall that does accept variable sized input headers that 
all the header input fits entirely within the fixed size header. In such cases the variable sized input 
header is zero-sized and the corresponding bits in the hypercall input should be set to zero. 

In all other regards, hypercalls accepting variable sized input headers are otherwise similar to fixed size 
input header hypercalls with regards to calling conventions. It is also possible for a variable sized header 
hypercall to additionally support rep semantics. In such a case the rep elements lie after the header in 
the usual fashion, except that the header's total size includes both the fixed and variable portions. All 
other rules remain the same e.g. the first rep element must be 8 byte aligned. 

 XMM Fast Hypercall Input (formerly “Extended Fast Hypercalls”) 

The hypervisor supports the use of XMM fast hypercalls, which allows some hypercalls to take 
advantage of the improved performance of the fast hypercall interface even though they require more 
than two input parameters. The XMM fast hypercall interface uses six XMM registers to allow the caller 
to pass an input parameter block up to 112 bytes in size. 



Hypervisor Top Level Functional Specification 

 21 

3.7.2.1 Feature Enumeration 

Availability of the XMM fast hypercall interface is indicated via the “Hypervisor Feature Identification” 
CPUID Leaf (0x40000003, see section 2.4.4): 

• Bit 4: support for passing hypercall input via XMM registers is available. 

Note that there is a separate flag to indicate support for XMM fast output. Any attempt to use this 
interface when the hypervisor does not indicate availability will result in a #UD fault. 

3.7.2.2 Register Mapping – Input Only 

For hypervisor versions with XMM fast input support, callers can use the following register mapping: 

x64 x86 Contents 

RCX EDX:EAX Hypercall Input Value 

RDX EBX:ECX Input Parameter Block  

R8 EDI:ESI Input Parameter Block  

XMM0 XMM0 Input Parameter Block  

XMM1 XMM1 Input Parameter Block  

XMM2 XMM2 Input Parameter Block  

XMM3 XMM3 Input Parameter Block  

XMM4 XMM4 Input Parameter Block  

XMM5 XMM5 Input Parameter Block  

The hypercall input value is passed in registers along with the input parameters.  The register mappings 
depend on whether the caller is running in 32-bit (x86) or 64-bit (x64) mode. The hypervisor determines 
the caller’s mode based on the value of EFER.LMA and CS.L. If both of these flags are set, the caller is 
assumed to be a 64-bit caller.  If the input parameter block is smaller than 112 bytes, any extra bytes in 
the registers are ignored. 

3.8 Hypercall Outputs 

All hypercalls return a 64-bit value called a hypercall result value. It is formatted as follows: 

 

63:40 43:32 31:16 15:0 

Rsvd 

(20 bits) 

Reps 
complete 

(12 bits) 

Rsvd 

(16 bits) 

Result 

(16 bits) 
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Result 16 bits HV_STATUS code indicating success or 
failure 

Rsvd 16 bits Callers should ignore the value in these 
bits 

Reps completed 12 bits Number of reps successfully completed 

Rsvd 20 bits Callers should ignore the value in these 
bits 

 

For rep hypercalls, the reps complete field is the total number of reps complete and not relative to the 
rep start index. For example, if the caller specified a rep start index of 5, and a rep count of 10, the reps 
complete field would indicate 10 upon successful completion. 

The hypercall result value is passed back in registers. The register mapping depends on whether the 
caller is running in 32-bit (x86) or 64-bit (x64) mode (see above). The register mapping for hypercall 
outputs is as follows: 

 

x64 X86 Content 

RAX EDX:EAX Hypercall Result Value 

 XMM Fast Hypercall Output 

Similar to how the hypervisor supports XMM fast hypercall inputs, the same registers can be shared to 
return output. This is only supported on x64 platforms. 

3.8.1.1 Feature Enumeration 

The ability to return output via XMM registers is indicated via the “Hypervisor Feature Identification” 
CPUID Leaf (0x40000003, see section 2.4.4): 

• Bit 15: support for returning hypercall output via XMM registers is available. 

Note that there is a separate flag to indicate support for XMM fast input. Any attempt to use this 
interface when the hypervisor does not indicate availability will result in a #UD fault. 

3.8.1.2 Register Mapping – Input and Output 

Registers that are not being used to pass input parameters can be used to return output. In other words 
with this capability, if the input parameter block is smaller than 112 bytes (rounded up to the nearest 16 
byte aligned chunk), the remaining registers will return hypercall output. 

x64 Contents 

RDX Input or Output Block  

R8 Input or Output Block  

XMM0 Input or Output Block  
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XMM1 Input or Output Block  

XMM2 Input or Output Block  

XMM3 Input or Output Block  

XMM4 Input or Output Block  

XMM5 Input or Output Block  

For example, if the input parameter block is 20 bytes in size, the hypervisor would ignore the following 
12 bytes. The remaining 80 bytes would contain hypercall output (if applicable). 

3.9 Volatile Registers 

Hypercalls will only modify the specified register values under the following conditions: 

1. RAX (x64) and EDX:EAX (x86) are always overwritten with the hypercall result value and output 
parameters, if any (discussed in section 3.8). 

2. Rep hypercalls will modify RCX (x64) and EDX:EAX (x86) with the new rep start index. 
3. HvSetVpRegisters can modify any registers that are supported with that hypercall (see section 

7.10.1). 
4. RDX, R8, and XMM0 through XMM5, when used for fast hypercall input, remain unmodified. 

However, registers used for fast hypercall output can be modified, including RDX, R8, and 
XMM0 through XMM5 (see 3.8.1). Hyper-V will only modify these registers for fast hypercall 
output, which is limited to x64. 

3.10 Hypercall Documentation 

Each hypercall in this document is described in two ways: a wrapper interface and a native interface. The 
wrapper interface is the recommended high-level (C-style) calling convention typically provided by a 
“wrapper library” that runs within the guest (for example, winhv.sys on Microsoft Windows®). The native 
interface is the one actually provided by the hypervisor. 

The recommended wrapper interface is described using standard C-style notation. The following is an 
example of a wrapper interface for the hypothetical HvAssignWidgets hypercall: 

 

 
HV_STATUS 
HvAssignWidgets( 
 __in    HV_PARTITION_ID PartitionId, 
 __in    UINT64  Flags, 
 __inout PUINT32  RepCount, 
__in    PCHV_WIDGET  WidgetList 
); 
 

The native interface is defined in terms of memory-based data structures. Up to four data structures 
may be defined: 

• Input parameter header 

• Input list element (for rep hypercalls) 

• Output parameter header 
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• Output list element (for rep hypercalls)  

The following is an example of the native interface documentation for the hypothetical 
HvAssignWidgets hypercall: 

HvAssignWidgets [rep] 

 Call Code = 0xBADD 

 InputParameter Header 

0 PartitionId (8 bytes) 

8 Flags (8 bytes) 

 Input List Element 

0 WidgetId (8 bytes) 

8 WidgetType (4 bytes) Padding (4 bytes) 

The above is an example of a rep (repeating) hypercall. As input, it has two fixed parameters and an 
input list consisting of one or more elements. The first list element can be found at offset 16. The list 
element is described using offsets within the element itself, starting with 0. 

3.11 Hypercall Restrictions 

Hypercalls may have restrictions associated with them for them to perform their intended function. If all 
restrictions are not met, the hypercall will terminate with an appropriate error. The following 
restrictions will be listed, if any apply:  

• The calling partition must possess a particular privilege (see 4.2.2 for information regarding 
privilege flags) 

• The partition being acted upon must be in a particular state (e.g. “Active”) 

• The partition must be the root 

• The partition must be either a parent or child 

• The virtual processor must be in a particular state (see section 7.4 for information regarding 
virtual processor states). 

3.12 Hypercall Status Codes 

Each hypercall is documented as returning an output value that contains several fields. A status value 
field (of type HV_STATUS) is used to indicate whether the call succeeded or failed. The hypercall status 
value field is discussed in section 3.7.1. 

 Output Parameter Validity on Failed Hypercalls 

Unless explicitly stated otherwise, when a hypercall fails (that is, the result field of the hypercall result 
value contains a value other than HV_STATUS_SUCCESS), the content of all output parameters are 
indeterminate and should not be examined by the caller. Only when the hypercall succeeds, will all 
appropriate output parameters contain valid, expected results. 
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 Ordering of Error Conditions 

Error conditions are not presented in this document in any particular sequence. The order in which error 
conditions are detected and reported by the hypervisor is undefined. In other words, if multiple errors 
exist, the hypervisor must choose which error condition to report. Priority should be given to those error 
codes offering greater security, the intent being to prevent the hypervisor from revealing information to 
callers lacking sufficient privilege. For example, the status code HV_STATUS_ACCESS_DENIED is the 
preferred status code over one that would reveal some context or state information purely based upon 
privilege. 

 Common Hypercall Status Codes 

Several result codes are common to all hypercalls and are therefore not documented for each hypercall 
individually. These include the following: 

Status code Error condition 

HV_STATUS_SUCCESS The call succeeded. 

HV_STATUS_INVALID_HYPERCALL_CODE The hypercall code is not recognized. 

HV_STATUS_INVALID_HYPERCALL_INPUT The rep count is incorrect (for example, a 
non-zero rep count is passed to a non-rep 
call or a zero rep count is passed to a rep 
call). 

The rep start index is not less than the rep 
count. 

A reserved bit in the specified hypercall 
input value is non-zero. 

HV_STATUS_INVALID_ALIGNMENT 

 

The specified input or output GPA pointer 
is not aligned to 8 bytes. 

The specified input or output parameter 
lists spans pages. 

The input or output GPA pointer is not 
within the bounds of the GPA space. 

The return code HV_STATUS_SUCCESS indicates that no error condition was detected. 

3.13 Establishing the Hypercall Interface 

Hypercalls are invoked by using a special opcode. Because this opcode differs among virtualization 
implementations, it is necessary for the hypervisor to abstract this difference. This is done through a 
special hypercall page. This page is provided by the hypervisor and appears within the guest’s GPA 
space. The guest is required to specify the location of the page by programming the Guest Hypercall 
MSR. 
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#define HV_X64_MSR_HYPERCALL 0x40000001 
 

 

Bits Description Attributes 

63:12 Hypercall GPFN 

Indicates the Guest Physical Page Number of the hypercall 
page 

Read/write 

11:2 RsvdP 

Guest should ignore on reads and preserve on writes 

Reserved 

1 Locked 

Indicates if this MSR is immutable. If set, this MSR is locked, 
thereby preventing the relocation of the hypercall page. 

Once set, only system reset can clear this bit. 

Read/Write 
(unless set) 

0 Enable Hypercall Page 

Enables the hypercall page  

Read/write 

The hypercall page can be placed anywhere within the guest’s GPA space, but must be page-aligned. If 
the guest attempts to move the hypercall page beyond the bounds of the GPA space, a #GP fault will 
result when the MSR is written. 

This MSR is a partition-wide MSR. In other words, it is shared by all virtual processors in the partition. If 
one virtual processor successfully writes to the MSR, another virtual processor will read the same value. 

Before the hypercall page is enabled, the guest OS must report its identity by writing its version 
signature to a separate MSR (HV_X64_MSR_GUEST_OS_ID). If no guest OS identity has been specified, 
attempts to enable the hypercall will fail. The enable bit will remain zero even if a one is written to it. 
Furthermore, if the guest OS identity is cleared to zero after the hypercall page has been enabled, it will 
become disabled. 

The hypercall page appears as an “overlay” to the GPA space; that is, it covers whatever else is mapped 
to the GPA range. Its contents are readable and executable by the guest. Attempts to write to the 
hypercall page will result in a protection (#GP) exception. 

After the hypercall page has been enabled, invoking a hypercall simply involves a call to the start of the 
page.  

The following is a detailed list of the steps involved in establishing the hypercall page: 

1. The guest reads CPUID leaf 1 and determines whether a hypervisor is present by checking bit 31 
of register ECX. 

2. The guest reads CPUID leaf 0x40000000 to determine the maximum hypervisor CPUID leaf 
(returned in register EAX) and CPUID leaf 0x40000001 to determine the interface signature 
(returned in register EAX). It verifies that the maximum leaf value is at least 0x40000005 and 
that the interface signature is equal to “Hv#1”. This signature implies that 
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HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL and HV_X64_MSR_VP_INDEX are 
implemented. 

3. The guest writes its OS identity into the MSR HV_X64_MSR_GUEST_OS_ID if that register is zero. 

4. The guest reads the Hypercall MSR (HV_X64_MSR_HYPERCALL). 

5. The guest checks the Enable Hypercall Page bit. If it is set, the interface is already active, and 
steps 6 and 7 should be omitted. 

6. The guest finds a page within its GPA space, preferably one that is not occupied by RAM, MMIO, 
and so on. If the page is occupied, the guest should avoid using the underlying page for other 
purposes. 

7. The guest writes a new value to the Hypercall MSR (HV_X64_MSR_HYPERCALL) that includes the 
GPA from step 6 and sets the Enable Hypercall Page bit to enable the interface. 

8. The guest creates an executable VA mapping to the hypercall page GPA. 

9. The guest consults CPUID leaf 0x40000003 to determine which hypervisor facilities are available 
to it. 

After the interface has been established, the guest can initiate a hypercall. To do so, it populates the 
registers per the hypercall protocol and issues a CALL to the beginning of the hypercall page. The guest 
should assume the hypercall page performs the equivalent of a near return (0xC3) to return to the caller. 
As such, the hypercall must be invoked with a valid stack.  

3.14 Extended Hypercall Interface 

Hypercalls with call codes above 0x8000 are known as extended hypercalls. Extended hypercalls use the 
same calling convention as normal hypercalls, and appear identical from a guest VM’s perspective. 
Extended hypercalls are internally handled differently within the Hyper-V hypervisor. 

Below is a list of extended hypercalls. 

Extended Hyperall Name Call 
Code 

HvExtCallQueryCapabilities 0x8001 

HvExtCallGetBootZeroedMemory 0x8002 

Extended hypercall capabilities can be queried with HvExtCallQueryCapabilities. The availability of 
HvExtCallQueryCapabilities is reported as a partition privilege flag (see 4.2.2).  

 HvExtCallQueryCapabilities 

This hypercall reports the availability of extended hypercalls. 
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Wrapper Interface 

 

HV_STATUS 

HvExtCallQueryCapabilities( 

__out  UINT64   Capabilities; 

 ); 

 

Native Interface 

HvExtCallQueryCapabilities 

 Call Code = 0x8001 

 Output Parameters 

0 Capabilities (8 bytes) 

Input Parameters 

None. 

Output Parameters 

Capabilities – the extended hypercalls supported by the hypervisor. A value of “1” indicates that the 
extended hypercall is available. 

Bits Extended Hypercall Call Code 

0 HvExtCallGetBootZeroedMemory 0x8002 

63:1 Reserved  

 

Restrictions 

• The availability of this hypercall must be queried using the EnableExtendedHypercalls partition 
privilege flag. 
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4 Partition Properties 

4.1 Overview 

This section describes how partition privileges and capabilities are defined. 

4.2 Partition Management Data Types 

 Partition IDs 

Partitions are identified by using a partition ID. This 64-bit number is allocated by the hypervisor. All 
partitions are guaranteed by the hypervisor to have unique IDs. Note that these are not “globally 
unique” in that the same ID may be generated across a power cycle (that is, a reboot of the hypervisor). 
However, the hypervisor guarantees that IDs created within a single power cycle are unique.  

 
typedef UINT64 HV_PARTITION_ID; 
typedef HV_PARTITION_ID *PHV_PARTITION_ID; 
 

The guest should not ascribe any meaning to the value of a partition ID. The “invalid” partition ID is used 
in several interfaces to indicate an invalid partition. 

 
#define HV_PARTITION_ID_INVALID ((HV_PARTITION_ID) 0x0)  
 

A partition can specify its own ID using HV_PARTITION_ID_SELF 

 
#define HV_PARTITION_ID_SELF    ((HV_PARTITION_ID) -1) 
 

 Partition Privilege Flags 

Each partition has a set of properties that are assigned to it by the hypervisor.  

One of the partition properties (HvPartitionPropertyPrivilegeFlags) defines the hypervisor facilities that 
the partition is allowed to access. This enables the parent to control which synthetic MSRs and 
hypercalls a guest partition can access. 

The property is defined with the following structure. Reserved fields should be set to 0 to ensure 
forward compatibility: 
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typedef struct 
{ 
// Access to virtual MSRs 
UINT64  AccessVpRunTimeReg:1; 
UINT64  AccessPartitionReferenceCounter:1; 
UINT64  AccessSynicRegs:1; 
UINT64  AccessSyntheticTimerRegs:1; 
UINT64  AccessIntrCtrlRegs:1; 
UINT64  AccessHypercallMsrs:1; 
UINT64  AccessVpIndex:1; 
UINT64  AccessResetReg:1; 
UINT64  AccessStatsReg:1; 
UINT64  AccessPartitionReferenceTsc:1; 
UINT64  AccessGuestIdleReg:1; 
UINT64  AccessFrequencyRegs:1; 
UINT64  AccessDebugRegs:1; 
UINT64  Reserved1:19;  
 
// Access to hypercalls 
UINT64  CreatePartitions:1; 
UINT64  AccessPartitionId:1; 
UINT64  AccessMemoryPool:1; 
UINT64  AdjustMessageBuffers:1; 
UINT64  PostMessages:1; 
UINT64  SignalEvents:1; 
UINT64  CreatePort:1; 
UINT64  ConnectPort:1; 
UINT64  AccessStats:1; 
UINT64  Reserved2:2; 
UINT64  Debugging:1; 
UINT64  CpuManagement:1; 
UINT64  Reserved:1 
UINT64  Reserved:1; 
UINT64  Reserved:1; 
UINT64  AccessVSM:1; 
UINT64  AccessVpRegisters:1; 
UINT64  Reserved:1; 
UINT64  Reserved:1; 
UINT64  EnableExtendedHypercalls:1; 
UINT64  StartVirtualProcessor:1; 
UINT64  Reserved3:10; 
} HV_PARTITION_PRIVILEGE_MASK; 
 

The following table explains what each of these flags controls.  
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Privilege Flag Meaning 

AccessVpRunTimeReg The partition has access to the synthetic MSR 
HV_X64_MSR_VP_RUNTIME. If this flag is cleared, 
accesses to this MSR results in a #GP fault if the 
MSR intercept is not installed. 

AccessPartitionReferenceCounter The partition has access to the partition-wide 
reference count MSR, 
HV_X64_MSR_TIME_REF_COUNT. If this flag is 
cleared, accesses to this MSR results in a #GP fault 
if the MSR intercept is not installed. 

AccessSynicRegs The partition has access to the synthetic MSRs 
associated with the Synic 
(HV_X64_MSR_SCONTROL through 
HV_X64_MSR_EOM and HV_X64_MSR_SINT0 
through HV_X64_MSR_SINT15). If this flag is 
cleared, accesses to these MSRs results in a #GP 
fault if the MSR intercept is not installed. 

AccessSyntheticTimerMsrs The partition has access to the synthetic MSRs 
associated with the Synic 
(HV_X64_MSR_STIMER0_CONFIG through 
HV_X64_MSR_STIMER3_COUNT). If this flag is 
cleared, accesses to these MSRs results in a #GP 
fault if the MSR intercept is not installed. 

AccessIntrCtrlRegs The partition has access to the synthetic MSRs 
associated with the APIC (HV_X64_MSR_EOI, 
HV_X64_MSR_ICR and HV_X64_MSR_TPR). If this 
flag is cleared, accesses to these MSRs results in a 
#GP fault if the MSR intercept is not installed. 

AccessHypercallMsrs The partition has access to the synthetic MSRs 
related to the hypercall interface 
(HV_X64_MSR_GUEST_OS_ID and 
HV_X64_MSR_HYPERCALL). If this flag is cleared, 
accesses to these MSRs result in a #GP fault if the 
MSR intercept is not installed. 

AccessVpIndex The partition has access to the synthetic MSR that 
returns the virtual processor index. If this flag is 
cleared, accesses to this MSR results in a #GP fault 
if the MSR intercept is not installed. 
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Privilege Flag Meaning 

AccessResetReg This partition has access to the synthetic MSR that 
resets the system. If this flag is cleared, accesses to 
this MSR results in a #GP fault if the MSR intercept 
is not installed. 

AccessStatsReg This partition has access to the synthetic MSRs that 
allows the guest to map and unmap its own 
statistics pages. 

AccessPartitionReferenceTsc The partition has access to the reference TSC. 

AccessGuestIdleMsr The partition has access to the synthetic MSR that 
allows the guest to enter the guest idle state.   

CreatePartitions The partition can invoke the hypercall 
HvCreatePartition. The partition also can make any 
other hypercall that is restricted to operating on 
children. 

AccessFrequencyRegs The partition has access to the synthetic MSRs that 
supply the TSC and APIC frequencies, if supported. 

AccessDebugRegs The partition has access to the synthetic MSRs used 
for some forms of guest debugging. 

AccessPartitionId The partition can invoke the hypercall 
HvGetPartitionId to obtain its own partition ID. 

AccessMemoryPool The partition can invoke the hypercalls 
HvDepositMemory, HvWithdrawMemory and 
HvGetMemoryBalance. 

PostMessages The partition can invoke the hypercall 
HvPostMessage. 

SignalEvents The partition can invoke the hypercall 
HvSignalEvent. 

CreatePort The partition can invoke the hypercall 
HvCreatePort. 

ConnectPort The partition can invoke the hypercall 
HvConnectPort. 

AccessStats The partition can invoke the hypercalls 
HvMapStatsPage and HvUnmapStatsPage. 
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Privilege Flag Meaning 

Debugging The partition can invoke the hypercalls 
HvPostDebugData, HvRetrieveDebugData and 
HvResetDebugSession. 

CpuManagement1 The partition can invoke the hypercalls 
HvGetLogicalProcessorRunTime and 
HvCallParkedVirtualProcessors.  

This partition also has access to the power 
management MSRs. 

AccessVSM The partition can use VSM. 

EnableExtendedHypercalls The partition can use the extended hypercall 
interface. Callers must query for extended 
hypercall capabilities using 
HvExtCallQueryCapabilities. See Extended Hypercall 
Interface. 

StartVirtualPRocessor The partition can use HvStartVirtualProcessor to 
initialize virtual processors. 

4.3 Partition Crash Enlightenment 

The hypervisor provides guest partitions with a crash enlightenment facility. This interface allows the 
operating system running in a guest partition the option of providing any relevant forensic information 
about fatal OS conditions to the hypervisor as part of its regular crash dump procedure.  The guest 
partition may also direct the hypervisor to take specific action in response to the guest OS crash event.  
Currently, the only supported hypervisor action is to preserve the contents of the guest crash parameter 
MSRs.  The hypervisor then makes this information available to the root partition for logging.  This 
allows the virtualization host administrator to gather information about the guest OS crash event 
without needing to inspect persistent storage attached to the guest partition for crash dump or core 
dump information that may be stored there by the crashing guest OS. 

The availability of this mechanism is indicated via CPUID.0x400003.EDX:10, the 
GuestCrashMsrsAvailable flag; refer to  

  

                                                           

1 Some implementations may restrict this partition privilege to the root partition. 
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Hypervisor Feature Identification. 

 Guest Crash Enlightenment Interface 

The guest crash enlightenment interface is provided through six synthetic MSRs, as defined below. 

 
#define HV_X64_MSR_CRASH_P0                       0x40000100 
#define HV_X64_MSR_CRASH_P1                       0x40000101 
#define HV_X64_MSR_CRASH_P2                       0x40000102 
#define HV_X64_MSR_CRASH_P3                       0x40000103 
#define HV_X64_MSR_CRASH_P4                       0x40000104 
 
#define HV_X64_MSR_CRASH_CTL                      0x40000105 
 

4.3.1.1 Guest Crash Control MSR 

The guest crash control MSR HV_X64_MSR_CRASH_CTL may be used by guest partitions to determine 
the hypervisor’s guest crash capabilities, and to invoke the specified action to take. 

Determining Guest Crash Capabilities 

To determine the guest crash capabilities, guest partitions may read the HV_X64_MSR_CRASH_CTL 
register.  The supported set of actions and capabilities supported by the hypervisor is reported. 

Invoking Guest Crash Capabilities 

To invoke a supported hypervisor guest crash action, a guest partition writes to the 
HV_X64_MSR_CRASH_CTL register, specifying the desired action.  

Currently, only one guest crash action is supported – CrashNotify. This action is used to indicate to the 
hypervisor that the guest partition has completed writing the desired data into the guest crash 
parameter MSRs, and the hypervisor should proceed with logging the contents of these MSRs. 

 Guest Crash Enlightenment Data Structure 

The following data structure is used to define the contents of the guest crash enlightenment control 
register, _HV_CRASH_CTL_REG_CONTENTS. 

 
typedef union _HV_CRASH_CTL_REG_CONTENTS 
{ 
    UINT64 AsUINT64; 
    struct 
    { 
        UINT64 Reserved     : 63;  // Reserved bits 
        UINT64 CrashNotify  : 1;   // Log contents of crash parameter  
       // system register 
    }; 
} HV_CRASH_CTL_REG_CONTENTS; 
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5 Guest Physical Address Spaces 

5.1 Overview 

The size of the GPA space for a partition is the range from 0 to some maximum address that depends on 
architectural attributes of the virtual machine exposed by the partition. 

Each page within a GPA space is in one of three states: 

• Mapped: A mapped GPA page is associated with a RAM SPA page. 

• Inaccessible: An inaccessible GPA page may not be read, written, or executed by the partition. 

• Unmapped: An unmapped GPA page is not associated with a RAM SPA page. 

For guest partitions: 

• Its GPA mappings are not necessarily identity-mapped. That is, a GPA does not necessarily refer 
to the same SPA.  

• The GPA mappings are defined by the partition’s parent. At the time they are mapped, they are 
specified in terms of the parent’s GPA space. Therefore, these pages must be mapped into the 
parent’s GPA space; however, the parent is not required to have read, write or execute access to 
these mapped pages. 

• When a virtual processor accesses an unmapped GPA page, the hypervisor suspends the virtual 
processor and sends a message to the partition’s parent. Code within the parent will typically 
respond by creating a mapping or by emulating the instruction that generated the memory 
access. In either case, it is up to the software in the parent partition to “unsuspend” the child’s 
virtual processor.  

5.2 Page Access Rights 

Mapped GPA pages have the following attributes which define the access rights of the partition: 

• Readable: Data on the page can be read. 

• Writeable: Data to the page can be written. 

• Executable: Code on the page can be executed. 

These access rights are enforced for explicit accesses performed by the guest’s virtual processors. They 
are also enforced for implicit reads or writes performed by the hypervisor (for example, due to guest 
page table flag updates). 

Access right combinations are limited by the underlying hardware. The following table shows the valid 
combinations for an x64 system. 

Access Type Description 

Read Write Exec 

• • • Instruction fetches, reads, and writes are allowed 

 • • Illegal combination 
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Access Type Description 

Read Write Exec 

•  • Instruction fetches and reads are allowed 

  • Illegal combination 

• •  Reads and writes are allowed 

 •  Illegal combination 

•   Reads are allowed 

   No access is allowed 

If an attempted memory access is not permitted according to the access rights, the virtual processor 
that performed the access is suspended (on an instruction boundary) and a message is sent to the 
parent partition. Code within the parent will typically respond by adjusting the access rights to allow the 
access or emulating the instruction that performed the memory access. In either case, it is up to the 
software in the parent partition to “unsuspend” the child’s virtual processor.  

Memory accesses that cross page boundaries are handled in a manner that is consistent with the 
underlying processor architecture. For x64, this means the entire access is validated before any data 
exchange occurs. For example, if a four-byte write is split across two pages and the first page is writable 
but the second is not, the first two bytes are not written. 

 GPA Overlay Pages 

The hypervisor defines several special pages that “overlay” the guest’s GPA space. The hypercall code 
page is an example of an overlay page. Overlays are addressed by guest physical addresses but are not 
included in the normal GPA map maintained internally by the hypervisor. Conceptually, they exist in a 
separate map that overlays the GPA map. 

If a page within the GPA space is overlaid, any SPA page mapped to the GPA page is effectively 
“obscured” and generally unreachable by the virtual processor through processor memory accesses. 
Furthermore, access rights installed on the underlying GPA page are not honored when accessing an 
overlay page.  

If an overlay page is disabled or is moved to a new location in the GPA space, the underlying GPA page is 
“uncovered”, and an existing mapping becomes accessible to the guest. 

If multiple overlay pages are programmed to appear on top of each other (for example, the guest 
programs the APIC to appear on top of the hypercall page), the hypervisor will choose an ordering 
(which is undefined) and only one of these overlays will be visible to code running within the partition. 
In such cases, if the “top-most” overlay is disabled or moved, another overlay page will become visible. 

When the hypervisor performs a guest page table walk, it might find that a page table is located on a 
GPA location associated with an overlay page. In this case, the hypervisor may choose to do any one of 
the following: generate a guest page fault, reference the contents of the overlay page, or reference the 
contents of the underlying GPA mapping. Because this behavior can vary from one hypervisor 
implementation to the next, it is strongly recommended that guests avoid this situation. 
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6 Host Intercepts 

6.1 Overview 

This section describes the principal mechanism the hypervisor provides to facilitate the virtualization of 
certain guest events. These events occur when a virtual processor executes certain instructions or 
generates certain exceptions. An authorized guest (a parent partition) can install an intercept for certain 
events on another guest (a child partition, or lesser privileged VTL). An intercept involves the detection 
of an event performed by a virtual processor (explicitly or implicitly). When an intercepted event occurs 
in the child partition, the virtual processor that triggered the event is suspended, and an intercept 
message is sent to the parent. The virtual processor remains suspended until the parent explicitly clears 
the virtual processor register. 

In general, the register state of the virtual processor when it is suspended corresponds to the state 
before the execution of the instruction that triggered the intercept. As such, the instruction can be 
restarted. 

The purpose of this mechanism is to allow a virtualization-aware parent to create a virtual environment 
that allows an unmodified legacy guest—that was written to execute on the physical hardware—to 
execute in a hypervisor partition. Such legacy guests may attempt to access physical devices that do not 
exist in a hypervisor partition (for example, by accessing certain I/O ports). The mechanism described in 
this section makes it possible to intercept all such accesses and transfer control to the parent partition. 
The parent partition can alter the effect of the intercepted instruction such that, to the child, it mirrors 
the expected behavior in physical hardware. 

An intercept only affects the state of a single virtual processor. Other virtual processors within the same 
partition continue to run. Therefore, it’s possible that multiple intercept messages can be “in progress” 
concurrently. Intercept messages are queued to the parent in the order in which they are detected. 

 Programmable Intercept Types 

The available processor intercept events depend on the (virtual) processor architecture and the 
capabilities of the physical hardware’s virtualization facilities.  

The following types of processor events can be intercepted on x64 platforms: 

• Accesses to I/O Ports 

• Accesses to MSRs 

• Execution of the CPUID instruction 

• Exceptions 

• Accesses to registers 

• Hypercalls 

The following table describes the scope and intercept access flags that are allowed for each intercept 
type: 
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Intercept Type Intercept Applies To Valid Access Flags 

I/O port access 

(see section 8.9) 

A specific I/O port.  Read and Write access 
flags must be specified to 
install an intercept. 

MSR access 

(see section 8.10) 

All MSRs not being virtualized by the 
hypervisor. Note that certain privileges 
affect MSR virtualization. 

Read and Write access 
flags must be specified to 
install the intercept. 

CPUID instruction 
execution 

(see section 8.11) 

A specific CPUID leaf.  Execute access flag must 
be specified to install an 
intercept. 

Exceptions 

 

A specific exception vector.  Execute access flag must 
be specified to install an 
intercept. 

Control Register 
Access 

A specific control register.   Read or Write access 
flags must be specified to 
install the intercept. 
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7 Virtual Processor Management 

7.1 Overview 

Each partition may have zero or more virtual processors. This section describes virtual processor state 
and how it is managed. 

7.2 Virtual Processor Indices 

A virtual processor is identified by a tuple composed of its partition ID and its processor index. The 
processor index is assigned to the virtual processor when it is created, and it is unchanged through the 
lifetime of the virtual processor. Processor indices are described in 7.8.1. 

7.3 Virtual Processor Registers 

Associated with each virtual processor is a variety of state modeled as processor registers. Most of this 
state is defined by the underlying processor architecture and consists of architected register values. The 
hypervisor provides a mechanism for reading and writing these registers through hypercalls 
HvGetVpRegisters and HvSetVpRegisters. 

If a virtual processor register is modified and the newly-specified value is invalid in some way, the 
hypervisor may or may not immediately return an error. In some cases, a value is invalid only in certain 
contexts (for example, if a bit within another virtual processor register is set). Therefore, some invalid 
register values are not detected until the virtual processor resumes execution. In such a case, the virtual 
processor is suspended, and an intercept message (with a message type 
HvMessageTypeInvalidVpRegisterValue) is sent to its parent partition. 

7.4 Virtual Processor States 

Conceptually, a virtual processor is in one of four states: 

• Running—actively consuming processor cycles of a logical processor 

• Ready—ready to run, but not actively running because other virtual processors are running 

• Waiting—in a state defined by the processor architecture that does not involve the active 
execution of instructions (for example, for the x64 architecture, at a HLT instruction, within 
“waiting for SIPI” state or if the scheduler has capped the virtual processor) 

• Suspended—stopped on a guest instruction boundary either explicitly suspended or implicitly 
suspended due to an intercept. Both suspension reasons must be cleared before a virtual 
processor becomes active.  

7.5 Virtual Processor Idle Sleep State 

Virtual processors may be placed in a virtual idle processor power state, or processor sleep state. This 
enhanced virtual idle state allows a virtual processor that is placed into a low power idle state to be 
woken with the arrival of an interrupt even when the interrupt is masked on the virtual processor. In 
other words, the virtual idle state allows the operating system in the guest partition to take advantage 
of processor power saving techniques in the OS that would otherwise be unavailable when running in a 
guest partition.   

A partition which possesses the AccessGuestIdleMsr privilege (refer to section 4.2.2) may trigger entry 
into the virtual processor idle sleep state through a read to the hypervisor-defined MSR 
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HV_X64_MSR_GUEST_IDLE.  The virtual processor will be woken when an interrupt arrives, regardless of 
whether the interrupt is enabled on the virtual processor or not. 

7.6 Virtual Boot Processor 

The virtual processor created with the index of zero is the virtual boot processor for the partition that it 
is related to. It will be the only virtual processor with the BSP flag set in the IA32_APIC_BASE_MSR 
register. Virtual processors created with non-zero indices are virtual application processors. Both the 
virtual boot processor and virtual application processors may be created or deleted at any time. 

7.7 Virtual Processor Synthetic Machine Checks 

On a real x64 system, a processor may have the ability to detect and report hardware (machine) errors.  
These are signaled by the processor by generating a machine-check exception (#MC).  Some processors 
may also include a means to signal system or application level software to respond to certain 
uncorrected machine check errors in order to allow software to participate in the containment of and 
recovery from these errors. 

The hypervisor provides a facility to inject a synthetic machine check on a virtual processor.  This 
enables the operating system and application software running in a guest partition to be notified about 
physical platform errors, and to participate in any supported software error recovery scheme. 

7.8 Virtual Processor Data Types 

 Virtual Processor Index 

Virtual processors are identified by using an index (VP index). The maximum number of virtual 
processors per partition supported by the current implementation of the hypervisor can be obtained 
through CPUID leaf 0x40000005. A virtual processor index must be less than the maximum number of 
virtual processors per partition. 

A special value HV_ANY_VP can be used in certain situations to specify “any virtual processor”.  

 
typedef UINT32 HV_VP_INDEX; 
 
#define HV_ANY_VP  ((HV_VP_INDEX)-1)  
 
#define HV_VP_INDEX_SELF ((HV_VP_INDEX)-2)  
 

A virtual processor’s ID can be retrieved by the guest through a hypervisor-defined MSR (model-specific 
register) HV_X64_MSR_VP_INDEX. A value of HV_VP_INDEX_SELF can be used to specify one’s own VP 
index. 

 
#define HV_X64_MSR_VP_INDEX 0x40000002 
 

 Virtual Processor Register Names 

Virtual processor state is referenced by register names, 32-bit numbers that uniquely identify a register. 
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typedef enum 
{ 
 // Suspend Registers 
 HvRegisterExplicitSuspend = 0x00000000, 
 HvRegisterInterceptSuspend = 0x00000001, 
     
 // Version 
 HvRegisterHypervisorVersion  = 0x00000100, 
  
   // Feature Access (registers are 128 bits) 
 // 128-bit result same as CPUID 0x40000003 
   HvRegisterPrivilegesAndFeaturesInfo = 0x00000200, 
  
 // 128-bit result same as CPUID 0x40000004    
     HvRegisterFeaturesInfo              = 0x00000201, 
  
 // 128-bit result same as CPUID 0x40000005    
     HvRegisterImplementationLimitsInfo  = 0x00000202, 
  
 // 128-bit result same as CPUID 0x40000006    
     HvRegisterHardwareFeaturesInfo      = 0x00000203, 
 
   // Guest Crash Registers 
   HvRegisterGuestCrashP0  = 0x00000210, 
   HvRegisterGuestCrashP1  = 0x00000211, 
   HvRegisterGuestCrashP2  = 0x00000212, 
   HvRegisterGuestCrashP3  = 0x00000213, 
   HvRegisterGuestCrashP4  = 0x00000214, 
   HvRegisterGuestCrashCtl = 0x00000215, 
 
 // Power State Configuration 
   HvRegisterPowerStateConfigC1    = 0x00000220, 
   HvRegisterPowerStateTriggerC1   = 0x00000221, 
   HvRegisterPowerStateConfigC2    = 0x00000222, 
   HvRegisterPowerStateTriggerC2   = 0x00000223, 
   HvRegisterPowerStateConfigC3    = 0x00000224, 
   HvRegisterPowerStateTriggerC3   = 0x00000225, 
  
 // System Reset 
   HvRegisterSystemReset = 0x00000230, 
  
 // Frequency Registers 
   HvRegisterProcessorClockFrequency = 0x00000240, 
   HvRegisterInterruptClockFrequency = 0x00000241, 
 
   // Idle Register 
   HvRegisterGuestIdle = 0x00000250, 
 
   // Guest Debug 
   HvRegisterDebugDeviceOptions = 0x00000260, 
 
 // Interrupt Registers 
 HvRegisterPendingInterruption = 0x00010002, 
 HvRegisterInterruptState = 0x00010003, 
  
 // Pending Event Register 
   HvRegisterPendingEvent0          = 0x00010004, 
   HvRegisterPendingEvent1          = 0x00010005, 
 
 // User-Mode Registers 
 HvX64RegisterRax = 0x00020000, 
 HvX64RegisterRcx = 0x00020001, 
 HvX64RegisterRdx = 0x00020002, 
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 HvX64RegisterRbx = 0x00020003, 
 HvX64RegisterRsp = 0x00020004, 
 HvX64RegisterRbp = 0x00020005, 
 HvX64RegisterRsi = 0x00020006, 
 HvX64RegisterRdi = 0x00020007, 
 HvX64RegisterR8 = 0x00020008, 
 HvX64RegisterR9 = 0x00020009, 
 HvX64RegisterR10 = 0x0002000A, 
 HvX64RegisterR11 = 0x0002000B, 
 HvX64RegisterR12 = 0x0002000C, 
 HvX64RegisterR13 = 0x0002000D, 
 HvX64RegisterR14 = 0x0002000E, 
 HvX64RegisterR15 = 0x0002000F, 
 HvX64RegisterRip = 0x00020010, 
 HvX64RegisterRflags = 0x00020011, 
 
 // Floating Point and Vector Registers 
 HvX64RegisterXmm0 = 0x00030000, 
 HvX64RegisterXmm1 = 0x00030001, 
 HvX64RegisterXmm2 = 0x00030002, 
 HvX64RegisterXmm3 = 0x00030003, 
 HvX64RegisterXmm4 = 0x00030004, 
 HvX64RegisterXmm5 = 0x00030005, 
 HvX64RegisterXmm6 = 0x00030006, 
 HvX64RegisterXmm7 = 0x00030007, 
 HvX64RegisterXmm8 = 0x00030008, 
 HvX64RegisterXmm9 = 0x00030009, 
 HvX64RegisterXmm10 = 0x0003000A, 
 HvX64RegisterXmm11 = 0x0003000B, 
 HvX64RegisterXmm12 = 0x0003000C, 
 HvX64RegisterXmm13 = 0x0003000D, 
 HvX64RegisterXmm14 = 0x0003000E, 
 HvX64RegisterXmm15 = 0x0003000F, 
 HvX64RegisterFpMmx0 = 0x00030010, 
 HvX64RegisterFpMmx1 = 0x00030011, 
 HvX64RegisterFpMmx2 = 0x00030012, 
 HvX64RegisterFpMmx3 = 0x00030013, 
 HvX64RegisterFpMmx4 = 0x00030014, 
 HvX64RegisterFpMmx5 = 0x00030015, 
 HvX64RegisterFpMmx6 = 0x00030016, 
 HvX64RegisterFpMmx7 = 0x00030017, 
 HvX64RegisterFpControlStatus = 0x00030018, 
 HvX64RegisterXmmControlStatus = 0x00030019, 
 
 // Control Registers 
 HvX64RegisterCr0 = 0x00040000, 
 HvX64RegisterCr2 = 0x00040001, 
 HvX64RegisterCr3 = 0x00040002, 
 HvX64RegisterCr4 = 0x00040003, 
 HvX64RegisterCr8 = 0x00040004, 
 HvX64RegisterXfem = 0x00040005, 
 
 // X64 Intermediate Control Registers 
 HvX64RegisterIntermediateCr0    = 0x00041000, 
 HvX64RegisterIntermediateCr4    = 0x00041003, 
 HvX64RegisterIntermediateCr8    = 0x00041004, 
 
 // Debug Registers 
 HvX64RegisterDr0 = 0x00050000, 
 HvX64RegisterDr1 = 0x00050001, 
 HvX64RegisterDr2 = 0x00050002, 
 HvX64RegisterDr3 = 0x00050003, 
 HvX64RegisterDr6 = 0x00050004, 
 HvX64RegisterDr7 = 0x00050005, 
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 // Segment Registers 
 HvX64RegisterEs = 0x00060000, 
 HvX64RegisterCs = 0x00060001, 
 HvX64RegisterSs = 0x00060002, 
 HvX64RegisterDs = 0x00060003, 
 HvX64RegisterFs = 0x00060004, 
 HvX64RegisterGs = 0x00060005, 
 HvX64RegisterLdtr = 0x00060006, 
 HvX64RegisterTr = 0x00060007, 
 
 // Table Registers 
 HvX64RegisterIdtr = 0x00070000, 
 HvX64RegisterGdtr = 0x00070001, 
 
 // Virtualized MSRs 
 HvX64RegisterTsc   = 0x00080000, 
 HvX64RegisterEfer   = 0x00080001, 
 HvX64RegisterKernelGsBase = 0x00080002, 
 HvX64RegisterApicBase  = 0x00080003, 
 HvX64RegisterPat   = 0x00080004, 
 HvX64RegisterSysenterCs  = 0x00080005, 
 HvX64RegisterSysenterRip = 0x00080006, 
 HvX64RegisterSysenterRsp = 0x00080007, 
 HvX64RegisterStar   = 0x00080008, 
 HvX64RegisterLstar  = 0x00080009, 
 HvX64RegisterCstar  = 0x0008000A, 
 HvX64RegisterSfmask  = 0x0008000B, 
 HvX64RegisterInitialApicId = 0x0008000C, 
 
 // Cache control MSRs 
 HvX64RegisterMtrrCap  = 0x0008000D, 
 HvX64RegisterMtrrDefType = 0x0008000E, 
 
 HvX64RegisterMtrrPhysBase0 = 0x00080010, 
 HvX64RegisterMtrrPhysBase1 = 0x00080011, 
 HvX64RegisterMtrrPhysBase2 = 0x00080012, 
 HvX64RegisterMtrrPhysBase3 = 0x00080013, 
 HvX64RegisterMtrrPhysBase4 = 0x00080014, 
 HvX64RegisterMtrrPhysBase5 = 0x00080015, 
 HvX64RegisterMtrrPhysBase6 = 0x00080016, 
 HvX64RegisterMtrrPhysBase7 = 0x00080017, 
 HvX64RegisterMtrrPhysBase8 = 0x00080018,  
 HvX64RegisterMtrrPhysBase9 = 0x00080019, 
 HvX64RegisterMtrrPhysBaseA = 0x0008001A, 
 HvX64RegisterMtrrPhysBaseB = 0x0008001B, 
 HvX64RegisterMtrrPhysBaseC = 0x0008001C, 
 HvX64RegisterMtrrPhysBaseD = 0x0008001D,  
 HvX64RegisterMtrrPhysBaseE = 0x0008001E, 
 HvX64RegisterMtrrPhysBaseF = 0x0008001F, 
 
 
 
 HvX64RegisterMtrrPhysMask0 = 0x00080040, 
 HvX64RegisterMtrrPhysMask1 = 0x00080041, 
 HvX64RegisterMtrrPhysMask2 = 0x00080042, 
 HvX64RegisterMtrrPhysMask3 = 0x00080043, 
 HvX64RegisterMtrrPhysMask4 = 0x00080044, 
 HvX64RegisterMtrrPhysMask5 = 0x00080045, 
 HvX64RegisterMtrrPhysMask6 = 0x00080046, 
 HvX64RegisterMtrrPhysMask7 = 0x00080047, 
 HvX64RegisterMtrrPhysMask8 = 0x00080048,  
 HvX64RegisterMtrrPhysMask9 = 0x00080049, 
 HvX64RegisterMtrrPhysMaskA = 0x0008004A, 
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 HvX64RegisterMtrrPhysMaskB = 0x0008004B, 
 HvX64RegisterMtrrPhysMaskC = 0x0008004C, 
 HvX64RegisterMtrrPhysMaskD = 0x0008004D,  
 HvX64RegisterMtrrPhysMaskE = 0x0008004E, 
 HvX64RegisterMtrrPhysMaskF = 0x0008004F, 
 
 
 HvX64RegisterMtrrFix64k00000 = 0x00080070, 
 HvX64RegisterMtrrFix16k80000 = 0x00080071, 
 HvX64RegisterMtrrFix16kA0000 = 0x00080072, 
 HvX64RegisterMtrrFix4kC0000 = 0x00080073, 
 HvX64RegisterMtrrFix4kC8000 = 0x00080074, 
 HvX64RegisterMtrrFix4kD0000 = 0x00080075, 
 HvX64RegisterMtrrFix4kD8000 = 0x00080076, 
 HvX64RegisterMtrrFix4kE0000 = 0x00080077, 
 HvX64RegisterMtrrFix4kE8000 = 0x00080078, 
 HvX64RegisterMtrrFix4kF0000 = 0x00080079, 
 HvX64RegisterMtrrFix4kF8000 = 0x0008007A, 
 
 // Hypervisor-defined MSRs (Misc) 
 HvX64RegisterVpRuntime = 0x00090000, 
 HvX64RegisterHypercall = 0x00090001, 
 HvRegisterGuestOsId = 0x00090002, 
 HvRegisterVpIndex = 0x00090003, 
 HvRegisterTimeRefCount  = 0x00090004, 
 HvRegisterCpuManagementVersion  = 0x00090007, 
       
 // Virtual APIC registers MSRs 
   HvX64RegisterEoi                 = 0x00090010, 
   HvX64RegisterIcr                 = 0x00090011, 
   HvX64RegisterTpr                 = 0x00090012, 
  
 HvRegisterVpAssistPage  = 0x00090013, 
 
   // Performance statistics MSRs  
   HvRegisterStatsPartitionRetail   = 0x00090020, 
   HvRegisterStatsPartitionInternal = 0x00090021, 
   HvRegisterStatsVpRetail          = 0x00090022, 
   HvRegisterStatsVpInternal        = 0x00090023, 
 
 
 // Hypervisor-defined MSRs (Synic) 
 HvRegisterSint0 = 0x000A0000, 
 HvRegisterSint1 = 0x000A0001, 
 HvRegisterSint2 = 0x000A0002, 
 HvRegisterSint3 = 0x000A0003, 
 HvRegisterSint4 = 0x000A0004, 
 HvRegisterSint5 = 0x000A0005, 
 HvRegisterSint6 = 0x000A0006, 
 HvRegisterSint7 = 0x000A0007, 
 HvRegisterSint8 = 0x000A0008, 
 HvRegisterSint9 = 0x000A0009, 
 HvRegisterSint10 = 0x000A000A, 
 HvRegisterSint11 = 0x000A000B, 
 HvRegisterSint12 = 0x000A000C, 
 HvRegisterSint13 = 0x000A000D, 
 HvRegisterSint14 = 0x000A000E, 
 HvRegisterSint15 = 0x000A000F, 
 HvRegisterScontrol = 0x000A0010, 
 HvRegisterSversion = 0x000A0011, 
 HvRegisterSifp = 0x000A0012, 
 HvRegisterSipp  = 0x000A0013, 
 HvRegisterEom  = 0x000A0014, 
 HvRegisterSirbp = 0x000A0015, 
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 // Hypervisor-defined MSRs (Synthetic Timers) 
 HvRegisterStimer0Config = 0x000B0000, 
 HvRegisterStimer0Count = 0x000B0001, 
 HvRegisterStimer1Config = 0x000B0002, 
 HvRegisterStimer1Count = 0x000B0003, 
 HvRegisterStimer2Config = 0x000B0004, 
 HvRegisterStimer2Count = 0x000B0005, 
 HvRegisterStimer3Config = 0x000B0006, 
 HvRegisterStimer3Count = 0x000B0007, 
     
    // 
    // XSAVE/XRSTOR register names. 
    // 
 
    // XSAVE AFX extended state registers.  
    HvX64RegisterYmm0Low             = 0x000C0000, 
    HvX64RegisterYmm1Low             = 0x000C0001, 
    HvX64RegisterYmm2Low             = 0x000C0002, 
    HvX64RegisterYmm3Low             = 0x000C0003, 
    HvX64RegisterYmm4Low             = 0x000C0004, 
    HvX64RegisterYmm5Low             = 0x000C0005, 
    HvX64RegisterYmm6Low             = 0x000C0006, 
    HvX64RegisterYmm7Low             = 0x000C0007, 
    HvX64RegisterYmm8Low             = 0x000C0008, 
    HvX64RegisterYmm9Low             = 0x000C0009, 
    HvX64RegisterYmm10Low            = 0x000C000A, 
    HvX64RegisterYmm11Low            = 0x000C000B, 
    HvX64RegisterYmm12Low            = 0x000C000C, 
    HvX64RegisterYmm13Low            = 0x000C000D, 
    HvX64RegisterYmm14Low            = 0x000C000E, 
    HvX64RegisterYmm15Low            = 0x000C000F, 
    HvX64RegisterYmm0High            = 0x000C0010, 
    HvX64RegisterYmm1High            = 0x000C0011, 
    HvX64RegisterYmm2High            = 0x000C0012, 
    HvX64RegisterYmm3High            = 0x000C0013, 
    HvX64RegisterYmm4High            = 0x000C0014, 
    HvX64RegisterYmm5High            = 0x000C0015, 
    HvX64RegisterYmm6High            = 0x000C0016, 
    HvX64RegisterYmm7High            = 0x000C0017, 
    HvX64RegisterYmm8High            = 0x000C0018, 
    HvX64RegisterYmm9High            = 0x000C0019, 
    HvX64RegisterYmm10High           = 0x000C001A, 
    HvX64RegisterYmm11High           = 0x000C001B, 
    HvX64RegisterYmm12High           = 0x000C001C, 
    HvX64RegisterYmm13High           = 0x000C001D, 
    HvX64RegisterYmm14High           = 0x000C001E, 
    HvX64RegisterYmm15High           = 0x000C001F 
 
   // Other MSRs 
   HvX64RegisterMsrIa32MiscEnable  = 0x000800A0, 
 HvX64RegisterIa32FeatureControl = 0x000800A1, 
 
    // Synthetic VSM registers 
    // 
 
    HvRegisterVsmVpVtlControl        = 0x000D0000, 
    HvRegisterVsmCodePageOffsets     = 0x000D0002, 
    HvRegisterVsmVpStatus            = 0x000D0003, 
    HvRegisterVsmPartitionStatus     = 0x000D0004, 
    HvRegisterVsmVina                = 0x000D0005, 
    HvRegisterVsmCapabilities        = 0x000D0006, 
    HvRegisterVsmPartitionConfig     = 0x000D0007, 
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    HvRegisterVsmVpSecureConfigVtl0  = 0x000D0010, 
    HvRegisterVsmVpSecureConfigVtl1  = 0x000D0011, 
    HvRegisterVsmVpSecureConfigVtl2  = 0x000D0012, 
    HvRegisterVsmVpSecureConfigVtl3  = 0x000D0013, 
    HvRegisterVsmVpSecureConfigVtl4  = 0x000D0014, 
    HvRegisterVsmVpSecureConfigVtl5  = 0x000D0015, 
    HvRegisterVsmVpSecureConfigVtl6  = 0x000D0016, 
    HvRegisterVsmVpSecureConfigVtl7  = 0x000D0017, 
    HvRegisterVsmVpSecureConfigVtl8  = 0x000D0018, 
    HvRegisterVsmVpSecureConfigVtl9  = 0x000D0019, 
    HvRegisterVsmVpSecureConfigVtl10 = 0x000D001A, 
    HvRegisterVsmVpSecureConfigVtl11 = 0x000D001B, 
    HvRegisterVsmVpSecureConfigVtl12 = 0x000D001C, 
    HvRegisterVsmVpSecureConfigVtl13 = 0x000D001D, 
    HvRegisterVsmVpSecureConfigVtl14 = 0x000D001E, 
} HV_REGISTER_NAME; 
 

 Virtual Processor Register Values 

Virtual processor register values are all 128 bits in size. Values that do not consume the full 128 bits are 
zero-extended to fill out the entire 128 bits.  
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typedef union 
{ 
 UINT128 Reg128; 
 UINT64  Reg64; 
 UINT32  Reg32; 
 UINT16  Reg16; 
 UINT8   Reg8; 
 HV_X64_FP_REGISTER  Fp; 
 HV_X64_FP_CONTROL_STATUS_REGISTER FpControlStatus; 
 HV_X64_XMM_CONTROL_STATUS_REGISTER XmmControlStatus; 
 HV_X64_SEGMENT_REGISTER  Segment; 
 HV_X64_TABLE_REGISTER  Table; 
 HV_EXPLICIT_SUSPEND_REGISTER ExplicitSuspend;
 HV_INTERCEPT_SUSPEND_REGISTER InterceptSuspend;
 HV_X64_INTERRUPT_STATE_REGISTER InterruptState; 
 HV_X64_PENDING_INTERRUPTION_REGISTER PendingInterruption; 
      HV_X64_MSR_NPIEP_CONFIG_CONTENTS        NpiepConfig; 
} HV_REGISTER_VALUE; 
 
typedef HV_REGISTER_VALUE *PHV_REGISTER_VALUE; 
 

 Synthetic Machine Check Status Data Structure 

 
typedef union _HV_X64_MSR_SYNMC_STATUS_CONTENTS 
{ 
    struct 
    { 
        UINT16 McaErrorCode; 
 
        union 
        { 
            UINT16 ModelSpecificErrorCode; 
 
            struct 
            { 
                UINT16 ErrorDetail      : 14; 
                UINT16 HypervisorError  : 1; 
                UINT16 SoftwareError    : 1; 
            }; 
        }; 
     
        struct 
        { 
            UINT32 Reserved             : 23; 
            UINT32 ActionRequired       : 1; 
            UINT32 Signaling            : 1; 
            UINT32 ContextCorrupt       : 1;  // Hypervisor/virt stack 
           // context corrupt 
            UINT32 AddressValid         : 1; 
            UINT32 MiscValid            : 1; 
            UINT32 ErrorEnabled         : 1;         
            UINT32 Uncorrected          : 1;  // Uncorrected error 
            UINT32 Overflow             : 1;  // Error overflow 
            UINT32 Valid                : 1;  // Register valid 
        }; 
    }; 
 
    UINT64 AsUINT64; 
 
} HV_X64_MSR_SYNMC_STATUS_CONTENTS; 
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 Synthetic Machine Check Error Code 

 
#define HV_SYNMC_MCA_ERROR_CODE (0x0001)        // Unclassified error 
 

 Synthetic Machine Check Event Data Structure 

 
typedef struct _HV_SYNMC_EVENT 
{ 
    HV_X64_MSR_SYNMC_STATUS_CONTENTS Status; 
    HV_X64_MSR_SYNMC_ADDR_CONTENTS   Addr; 
    HV_X64_MSR_SYNMC_MISC_CONTENTS   Misc; 
    BOOLEAN                          RipValid; 
    BOOLEAN                          EipValid; 
 
} HV_SYNMC_EVENT; 
 

 Virtual Processor Assist Page 

The hypervisor provides a page per virtual processor which is overlaid on the guest GPA space. This page 
can be used for bi-directional communication between a guest VP and the hypervisor. The guest OS has 
read/write access to this virtual VP assist page. 

7.8.7.1 VP Assist Page Register 

A guest specifies the location of the overlay page (in GPA space) by writing to the Virtual VP Assist MSR 
(0x40000073). The format of the Virtual VP Assist Page MSR is as follows: 

63:12 11:1 0 

Virtual VP Assist Page Base Address RsvdP Enable 
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7.8.7.2 VP Assist Page Format 
typedef union _HV_VP_ASSIST_PAGE 
{ 
    struct 
    { 
        // APIC assist for optimized EOI processing. 
 
        HV_VIRTUAL_APIC_ASSIST ApicAssist; 
 
        UINT32 ReservedZ; 
 
        HV_VP_VTL_CONTROL VtlControl; 
 
        HV_NESTED_ENLIGHTENMENTS_CONTROL NestedEnlightenmentsControl; 
 
        BOOLEAN EnlightenVmEntry; 
 
        HV_GPA CurrentNestedVmcs; 
 
    }; 
 
    UINT8 ReservedZBytePadding[HV_PAGE_SIZE]; 
 
} HV_VP_ASSIST_PAGE; 

 Virtual Processor Set 

A virtual processor set represents a collection of virtual processors, and can be used as an input for some 
hypercalls. 

typedef struct  
{ 
    UINT64 Format; 
    UINT64 ValidBanksMask; 
    UINT64 BankContents[]; 
} HV_VP_SET 

A processor set has two modes, which are specified by the format field. Processor sets with a format “1” 
represent all virtual processors for the given partition. Processor sets with a format “0” describe a 
sparse set of virtual processors. 

typedef enum { 
    HvGenericSetSparse4k, 
    HvGenericSetAll, 
} HV_GENERIC_SET_FORMAT 

 

Set behavior “format” value 

A sparse subset of VPs 0 

All VPs (belonging to a partition) 1 

7.8.8.1 Sparse Virtual Processor Set 

The following section describes how to construct a sparse set of virtual processors. 

The total set of virtual processors is split up into chunks of 64, known as a “bank”. For example, 
processors 0-63 are in bank 0, 64-127 are in bank 1, and so on. 
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To describe an individual processor, its bank is specified with ValidBanksMask. Each bit in 
ValidBanksMask represents a particular bank.  

𝑏𝑎𝑛𝑘 =  
𝑉𝑃 𝑖𝑛𝑑𝑒𝑥

64
  

For every bit that is set with ValidBanksMask, there must be an element in the BanksContents array. This 
element is a mask describing the bank itself. 

7.8.8.2 Processor Set Example 

Suppose a partition has 200 VPs, and we wish to specify the following set: 

{ 0, 5, 130 } 

First, the format is 0, since this is a sparse set. 

Next, the corresponding banks (and therefore the set bits of ValidBanksMaks) are 

{ 0, 0, 2 } 

Thus, ValidBankMask is 0x05.  

 

Bank 0 sets bits 0 and 5 to specify the VPs within that bank. Therefore, the corresponding element in the 
BanksContents mask is 0x21. 

 

Since bit 1 is not set in ValidBanksMask, there is no corresponding element in BanksContents. 

 

Bank 2 represents VP indices 128-191. To describe index 130, bit 2 of the corresponding mask is set. 
Thus, BanksContents is: 

{ 0𝑥21, 0𝑥04 } 

7.9 Virtual Processor Register Formats 

 Virtual Processor Run Time Register 

The hypervisor’s scheduler internally tracks how much time each virtual processor consumes in 
executing code. The time tracked is a combination of the time the virtual processor consumes running 
guest code, and the time the associated logical processor spends running hypervisor code on behalf of 
that guest. This cumulative time is accessible through the 64-bit read-only HV_X64_MSR_VP_RUNTIME 
hypervisor MSR. The time quantity is measured in 100ns units. 

63:0 

VP Runtime 

 Virtual Processor Interrupt State Register 

The interrupt state register provides information about the interrupt state of the virtual processor. It 
indicates whether the virtual processor is in an “interrupt shadow” and whether non-maskable 
interrupts are currently masked. Certain instructions inhibit the delivery of hardware interrupts and 



Hypervisor Top Level Functional Specification 

 52 

debug traps for one instruction. Furthermore, when a non-maskable interrupt is delivered to the virtual 
processor, subsequent non-maskable interrupts are masked until the virtual processor executes an IRET 
instruction.  

The interrupt state register is encoded as follows: 
typedef struct 
{ 
 UINT64  InterruptShadow:1; 
 UINT64 NmiMasked:1; 
 UINT64 Reserved:62; 
} HV_X64_INTERRUPT_STATE_REGISTER; 
 

 Virtual Processor Pending Interruption Register 

The pending interruption register is used to indicate whether a pending interruption exists for the virtual 
processor. An interruption is defined as any event that is delivered through the virtual processor’s 
interrupt descriptor table (for example, exceptions, interrupts, or debug traps). If an interruption is 
pending, the hypervisor will generate the interruption when the virtual processor resumes execution. 
This allows code running within the parent partition, for example, to respond to an MSR intercept by 
generating a general protection fault. 

If an intercept is generated during the delivery of an interruption, the interruption is held pending and 
an intercept message is sent to the parent partition. The parent partition can resolve the intercept and 
resume the virtual processor, in which case the interruption will be re-delivered. 

The type of a pending interruption is encoded as follows: 

 
typedef enum 
{ 
 HvX64PendingInterrupt   = 0, 
 HvX64PendingNmi    = 2, 
 HvX64PendingException   = 3, 
 HvX64PendingSoftwareInterrupt     = 4, 
 HvX64PendingPrivilegedSoftwareException = 5, 
 HvX64PendingSoftwareException    = 6  
} HV_X64_PENDING_INTERRUPTION_TYPE; 
 
The format of the pending interruption register is as follows: 
typedef struct 
{ 
 UINT32  InterruptionPending:1; 
 UINT32 InterruptionType:3 
 UINT32 DeliverErrorCode:1; 
   UINT32  InstructionLength:4; 
 UINT32 NestedEvent:1 
 UINT32 Reserved:6; 
 UINT32 InterruptionVector:16; 
 UINT32 ErrorCode; 
} HV_X64_PENDING_INTERRUPTION_REGISTER; 
 

 
If the InterruptionPending bit is cleared, no interruption is pending, and the values in the other fields are 
ignored. 

InterruptionType indicates the type of the interruption and can be any of the following values: 

• HVX64PendingInterrupt — The interruption is due to an interrupt. 



Hypervisor Top Level Functional Specification 

 53 

• HVX64PendingNmi — The interruption is due to a non-maskable interrupt. 

• HVX64PendingException — The interruption is due to a hardware exception.  

• HVX64PendingSofwareInterrupt – The interruption is due to a software interrupt. 

• HVX64PendingPrivilegedSoftwareException – The interruption is due to a software exception 
from privileged software, such as a debug trap or fault. 

• HVX64PendingSoftwareException – The interruption is due to a software exception. 

DeliverErrorCode indicates whether an error code should be pushed on the stack as part of the 
interruption. 

InterruptionVector indicates the vector to use for the exception. 

ErrorCode indicates the error code value that will be pushed as part of the interruption frame. 

 Virtual Processor Floating-point and Vector Registers 

Floating point registers are encoded as 80-bit values, as follows: 

 
typedef struct 
{ 
 UINT64  Mantissa; 
 UINT64  BiasedExponent:15; 
 UINT64  Sign:1; 
 UINT64  Reserved:48; 
} HV_X64_FP_REGISTER; 
 

Additional status and control information for the floating point and vector units are stored in the 
following formats: 
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typedef struct 
{ 
 UINT16  FpControl; 
 UINT16  FpStatus; 
 UINT8  FpTag; 
 UINT8 IgnNe:1; 
 UINT8 Reserved:7; 
 UINT16 LastFpOp; 
 union 
 { 
  UINT64  LastFpRip; 
  struct 
  { 
   UINT32 LastFpEip; 
   UINT16  LastFpCs; 
  }; 
 }; 
} HV_X64_FP_CONTROL_STATUS_REGISTER; 
 
typedef struct 
{ 
 union 
 { 
  UINT64  LastFpRdp; 
  struct 
  { 
   UINT32 LastFpDp; 
   UINT16  LastFpDs; 
  }; 
 }; 
 UINT32 XmmStatusControl; 
 UINT32 XmmStatusControlMask; 
} HV_X64_XMM_CONTROL_STATUS_REGISTER; 
 

 Virtual Processor Segment Registers 

Segment register state is encoded as follows: 

 
typedef struct 
{ 
 UINT64  Base; 
 UINT32  Limit; 
 union 
 { 
  struct 
  { 
   UINT16 SegmentType:4; 
   UINT16 NonSystemSegment:1; 
   UINT16 DescriptorPrivilegeLevel:2; 
   UINT16 Present:1; 
   UINT16 Reserved:4; 
   UINT16 Available:1; 
   UINT16 Long:1; 
   UINT16 Default:1; 
   UINT16 Granularity:1; 
  }; 
 
UINT16  Selector; 
  UINT16 Attributes;  
 }; 
} HV_X64_SEGMENT_REGISTER; 
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The limit is encoded as a 32-bit value. For X64 long-mode segments, the limit is ignored. For legacy x86 
segments, the limit must be expressible within the bounds of the x64 processor architecture. For 
example, if the “G” (granularity) bit is set within the attributes of a code or data segment, the low-order 
12 bits of the limit must be 1s. 

The “Present” bit controls whether the segment acts like a null segment (that is, whether a memory 
access performed through that segment generates a #GP fault). 

The MSRs IA32_FS_BASE and IA32_GS_BASE are not defined in the register list, as they are aliases to the 
base element of the segment register structure, Use HvX64RegisterFs and HvX64RegisterGs and the 
structure above instead. 

 Virtual Processor Table Registers 

Table registers are similar to segment registers, but they have no selector or attributes, and the limit is 
restricted to 16 bits. 

typedef struct 
{ 
 UINT16  Pad[3]; 
 UINT16  Limit; 
 UINT64  Base; 
} HV_X64_TABLE_REGISTER; 
 

 Synthetic Machine Check Registers 

 
typedef UINT64 HV_X64_MSR_SYNMC_ADDR_CONTENTS 
 
typedef UINT64 HV_X64_MSR_SYNMC_MISC_CONTENTS 
 

7.10 Virtual Processor Interfaces 

 HvSetVpRegisters 

The HvSetVpRegisters hypercall writes the architectural state of a virtual processor. 
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Wrapper Interface 

 
HV_STATUS 
HvSetVpRegisters( 
 __in    HV_PARTITION_ID PartitionId, 
 __in    HV_VP_INDEX VpIndex, 
 __in    HV_INPUT_VTL InputVtl, 
 __inout PUINT32 RegisterCount, 
 __in_ecount(RegisterCount)  
    PCHV_REGISTER_NAME RegisterNameList, 
 __in_ecount(RegisterCount)  
    PCHV_REGISTER_VALUE RegisterValueList 
 ); 
 

Native Interface 

HvSetVpRegisters [rep] 

 Call Code = 0x0051 

 Input Parameter Header 

0 PartitionId (8 bytes) 

8 VpIndex (4 bytes) TargetVtl (1 

byte) 

RsvdZ (3 bytes) 

 Input List Element 

0 RegisterName (4 bytes) Padding (4 bytes) 

  

16 RegisterValue (low-order) (8 bytes) 

24 RegisterValue (high-order) (8 bytes) 

Description 

The state is written as a series of register values, each corresponding to a register name provided as 
input. 

Minimal error checking is performed when a register value is modified. In particular, the hypervisor will 
validate that reserved bits of a register are set to zero, bits that are architecturally defined as always 
containing a zero or a one are set appropriately, and specified bits beyond the architectural size of the 
register are zeroed. 

This call cannot be used to modify the value of a read-only register. 

Side-effects of modifying a register are not performed. This includes generation of exceptions, pipeline 
synchronizations, TLB flushes, and so on.  

Input Parameters 

PartitionId specifies the partition. 
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VpIndex specifies the index of the virtual processor. 

TargetVtl specifies the VTL to target. 

RegisterName specifies the name of a register to be modified. 

RegisterValue specifies the new value for the specified register. 

Output Parameters 

None. 

Restrictions 

• The partition specified by PartitionId must be in the “active” state. 

• The caller must be the parent of the partition specified by PartitionId. 

• Guest operating systems may assume that virtual processors are neither hot-added nor hot-
removed from a partition during normal execution. See 7.10.3. 

• This hypercall is a supported way to set the following registers. All other registers should not be 
set using this hypercall. 

Register 

HvRegisterPendingEvent0          = 0x00010004, 

HvRegisterVpAssistPage       = 0x00090013, 

HvRegisterVsmCodePageOffsets     = 0x000D0002, 

HvRegisterVsmVina                = 0x000D0005, 

HvRegisterVsmPartitionConfig     = 0x000D0007, 

HvRegisterVsmVpSecureConfigVtl0  = 0x000D0010, 

HvX64RegisterRsp  = 0x00020004, 

HvX64RegisterRip  = 0x00020010, 

HvX64RegisterRflags     = 0x00020011, 

HvX64RegisterCr3  = 0x00040002, 

HvX64RegisterCr8  = 0x00040004, 

HvX64RegisterDr7  = 0x00050005, 

HvX64RegisterEs   = 0x00060000, 

HvX64RegisterCs   = 0x00060001, 

HvX64RegisterSs   = 0x00060002, 

HvX64RegisterDs   = 0x00060003, 

HvX64RegisterFs   = 0x00060004, 

HvX64RegisterGs   = 0x00060005, 

HvX64RegisterLdtr = 0x00060006, 

HvX64RegisterTr   = 0x00060007, 

HvX64RegisterIdtr = 0x00070000, 

HvX64RegisterGdtr = 0x00070001, 

HvX64RegisterEfer             = 0x00080001, 

HvX64RegisterKernelGsBase     = 0x00080002, 

HvX64RegisterSysenterCs       = 0x00080005, 

HvX64RegisterStar             = 0x00080008, 

HvX64RegisterLstar            = 0x00080009, 
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Register 

HvX64RegisterCstar            = 0x0008000A, 

HvX64RegisterSfmask           = 0x0008000B, 

HvX64RegisterApicBase         = 0x00080003, 

HvX64RegisterCrInterceptControl            = 0x000E0000, 

HvX64RegisterCrInterceptCr0Mask            = 0x000E0001, 

HvX64RegisterCrInterceptCr4Mask            = 0x000E0002, 

HvX64RegisterCrInterceptIa32MiscEnableMask = 0x000E0003, 

Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller is not the parent of the 

specified partition. 

HV_STATUS_INVALID_PARTITION_ID The specified partition is invalid. 

HV_STATUS_INVALID_VP_INDEX The specified VP index does not 

reference a virtual processor within the 

specified partition. 

HV_STATUS_INVALID_PARAMETER 

 

 

The specified register name is invalid. 

The specified register is read-only. 

The specified register value is not valid 

(for example, a reserved bit is not zero). 

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the 

"active" state. 

HV_STATUS_INVALID_REGISTER_VALUE The supplied register value is invalid. 

 HvGetVpRegisters 

The HvGetVpRegisters hypercall reads the architectural state of a virtual processor. 
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Wrapper Interface 

 
HV_STATUS 
HvGetVpRegisters( 
 __in    HV_PARTITION_ID PartitionId, 
 __in    HV_VP_INDEX VpIndex, 
 __in   HV_INPUT_VTL InputVtl,   
 __inout PUINT32 RegisterCount, 
 __in_ecount(RegisterCount)  
    PCHV_REGISTER_NAME RegisterNameList, 
 __out_ecount(RegisterCount)  
    PHV_REGISTER_VALUE RegisterValueList 
 ); 
 

Native Interface 

HvGetVpRegisters [rep] 

 Call Code = 0x0050 

 Input Parameter Header 

0 PartitionId (8 bytes) 

8 VpIndex (4 bytes) InputVtl (1 byte) Padding (3 

bytes) 

 Input List Element 

0 RegisterName[0] (4 bytes) RegisterName[1] (4 bytes) 

 Output List Element 

0 RegisterValue (low-order) (8 bytes) 

8 RegisterValue (high-order) (8 bytes) 

Description 

The state is returned as a series of register values, each corresponding to a register name provided as 
input. 

Input Parameters 

PartitionId specifies the partition. 

VpIndex specifies the index of the virtual processor. 

TargetVtl specifies the VTL to target. 

RegisterName specifies a list of names for the requested register state. 

Output Parameters 

RegisterValue returns a list of register values for the requested register state. 

Restrictions 

• The partition specified by PartitionId must be in the “active” state. 
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• The caller must be the parent of the partition specified by PartitionId or the partition specifying 
its own partition ID. 

• Guest operating systems may assume that virtual processors are neither hot-added nor hot-
removed from a partition during normal execution. See 7.10.3. 

• This hypercall is a supported way to get the following registers. All other registers should not be 
read using this hypercall. 

Register 

HvRegisterPendingEvent0          = 0x00010004, 

HvRegisterVpAssistPage       = 0x00090013, 

HvRegisterVsmCodePageOffsets     = 0x000D0002, 

HvRegisterVsmVina                = 0x000D0005, 

HvRegisterVsmPartitionConfig     = 0x000D0007, 

HvRegisterVsmVpSecureConfigVtl0  = 0x000D0010, 

HvX64RegisterRsp  = 0x00020004, 

HvX64RegisterRip  = 0x00020010, 

HvX64RegisterRflags     = 0x00020011, 

HvX64RegisterCr3  = 0x00040002, 

HvX64RegisterCr8  = 0x00040004, 

HvX64RegisterDr7  = 0x00050005, 

HvX64RegisterEs   = 0x00060000, 

HvX64RegisterCs   = 0x00060001, 

HvX64RegisterSs   = 0x00060002, 

HvX64RegisterDs   = 0x00060003, 

HvX64RegisterFs   = 0x00060004, 

HvX64RegisterGs   = 0x00060005, 

HvX64RegisterLdtr = 0x00060006, 

HvX64RegisterTr   = 0x00060007, 

HvX64RegisterIdtr = 0x00070000, 

HvX64RegisterGdtr = 0x00070001, 

HvX64RegisterEfer             = 0x00080001, 

HvX64RegisterKernelGsBase     = 0x00080002, 

HvX64RegisterSysenterCs       = 0x00080005, 

HvX64RegisterStar             = 0x00080008, 

HvX64RegisterLstar            = 0x00080009, 

HvX64RegisterCstar            = 0x0008000A, 

HvX64RegisterSfmask           = 0x0008000B, 

HvX64RegisterApicBase         = 0x00080003, 

HvX64RegisterCrInterceptControl            = 0x000E0000, 

HvX64RegisterCrInterceptCr0Mask            = 0x000E0001, 

HvX64RegisterCrInterceptCr4Mask            = 0x000E0002, 

HvX64RegisterCrInterceptIa32MiscEnableMask = 0x000E0003, 
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Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller is neither the partition itself 

nor the parent of the specified 

partition. 

HV_STATUS_INVALID_PARTITION_ID The specified partition is invalid. 

HV_STATUS_INVALID_VP_INDEX The specified VP index does not 

reference a virtual processor within the 

specified partition. 

HV_STATUS_INVALID_PARAMETER The specified register name is invalid. 

 

 HvStartVirtualProcessor 

HvStartVirtualProcessor is an enlightened method for starting a virtual processor. It is functionally 
equivalent to traditional INIT-based methods, except that the VP can start with a desired register state. 
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Wrapper Interface 

 
HV_STATUS 
HVStartVirtualProcessor( 
    __in HV_PARTITION_ID  PartitionId; 
    __in HV_VP_INDEX   VpIndex; 
    __in HV_VTL    TargetVtl;  
    __in HV_INITIAL_VP_CONTEXT VpContext; 
} HV_INPUT_START_VIRTUAL_PROCESSOR, *PHV_INPUT_START_VIRTUAL_PROCESSOR; 
 

Input Structures 

typedef struct  
{ 
    UINT64 Rip; 
    UINT64 Rsp; 
    UINT64 Rflags; 
 
    // Segment selector registers together with their hidden state. 
    HV_X64_SEGMENT_REGISTER Cs; 
    HV_X64_SEGMENT_REGISTER Ds; 
    HV_X64_SEGMENT_REGISTER Es; 
    HV_X64_SEGMENT_REGISTER Fs; 
    HV_X64_SEGMENT_REGISTER Gs; 
    HV_X64_SEGMENT_REGISTER Ss; 
    HV_X64_SEGMENT_REGISTER Tr; 
    HV_X64_SEGMENT_REGISTER Ldtr; 
 
    // Global and Interrupt Descriptor tables 
    HV_X64_TABLE_REGISTER Idtr; 
    HV_X64_TABLE_REGISTER Gdtr; 
 
    // Control registers and MSR's 
    UINT64 Efer; 
    UINT64 Cr0; 
    UINT64 Cr3; 
    UINT64 Cr4; 
    UINT64 MsrCrPat; 
 
} HV_INITIAL_VP_CONTEXT; 

Native Interface 

HvStartVirtualProcessor 

 Call Code = 0x0099 

 Input Parameters 

0 PartitionId (8 bytes) 

8 VpIndex (4 bytes) TargetVtl (1 byte Padding (3 bytes) 

16 Rip (8 bytes) 

24 Rsp (8 bytes) 

32 Rflags (8 bytes) 
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40 Cs[0] (8 bytes) 

48 Cs[1] (8 bytes) 

56 Ds[0] (8 bytes) 

64 Ds[1] (8 bytes) 

72 Es[0] (8 bytes) 

80 Es[1] (8 bytes) 

88 Fs[0] (8 bytes) 

96 Fs[1] (8 bytes) 

104 Gs[0] (8 bytes) 

112 Gs[1] (8 bytes) 

120 Ss[0] (8 bytes) 

128 Ss[1] (8 bytes) 

136 Ts[0] (8 bytes) 

144 Ts[1] (8 bytes) 

152 Ltdr[0] (8 bytes) 

160 Ltdr[1] (8 bytes) 

168 Itdr[0] (8 bytes) 

176 Itdr[1] (8 bytes) 

184 Gtdr[0] (8 bytes) 

192 Gtdr[1] (8 bytes) 

200 Efer (8 bytes) 

208 Cr0 (8 bytes) 

216 Cr3 (8 bytes) 

224 Cr4 (8 bytes) 

232 MsrCrPat  (8 bytes) 
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Input Parameters 

PartitionId specifies the partition. 

VpIndex specifies the VP index to start. To get the VP index from an APIC ID, use 
HvGetVpIndexFromApicId. 

TargetVtl specifies the target VTL 

VpContext specifies the initial context in which this VP should start. 

Description 

HvStartVirtualProcessor is an enlightened method for starting a virtual processor. The VP will start with 
the specified control register state in protected/long mode, skipping real mode entirely. 

This is the only method for starting a VP in a non-zero VTL.  

Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED Access denied. 

HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid. 

HV_STATUS_INVALID_VP_INDEX The virtual processor specified by 

HV_VP_INDEX is invalid. 

HV_STATUS_INVALID_REGISTER_VALUE The supplied register value is invalid. 

HV_STATUS_INVALID_VP_STATE A virtual processor is not in the correct 

state for the performance of the 

indicated operation. 

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the 

“active” state. 

HV_STATUS_INVALID_VTL_STATE The VTL state conflicts with the 
requested VTL count property change.   

 

 HvGetVpIndexFromApicId 

The HvGetVpIndexFromApicId is related to HvStartVirtualProcessor. It allows the caller to retrieve a VP 
index before the VP has started running. 



Hypervisor Top Level Functional Specification 

 65 

Wrapper Interface 

 
HV_STATUS 
HvGetVpIndexFromApicId( 
 __in HV_PARTITION_ID  PartitionId, 
 __in HV_VTL    TargetVtl, 
 __inout PUINT32   ApicIdCount, 
 __in_ecount(ApicIdCount)  
         PHV_APIC_ID ApicIdList 
 __out_ecount(RegisterCount)  
    PHV_VP_INDEX VpIndexList 
 ); 
 

Native Interface 

HvGetVpIndexFromApicId [rep] 

 Call Code = 0x009A 

 Input Parameter Header 

0 PartitionId (8 bytes) 

8 TargetVtl (1 byte) Padding (7 bytes) 

 Input List Element 

0 ApicId (4 bytes) Padding (4 bytes) 

 Output List Element 

0 VpIndex (4 bytes) Padding (4 bytes) 

Input Parameters 

PartitionId specifies the partition. 

TargetVtl specifies the VTL of the target VP. 

ApicId specifies the APIC ID of the VP. Note: Guest operating systems may assume that virtual processor 
IDs are consecutive and begin at 0. 

Output Values 

VpIndex is the VP with the APIC ID specified. 
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Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller is not the parent of the 
specified partition. 

HV_STATUS_INVALID_PARTITION_ID The specified partition is invalid. 

HV_STATUS_INVALID_VP_INDEX The specified VP index references an 
existing virtual processor within the 
specified partition. 

The specified VP index exceeds the 
maximum index allowed by the 
hypervisor implementation. 

HV_STATUS_INVALID_PARAMETER A parameter is invalid. 

 

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the 
"active" state. 

HV_STATUS_INVALID_VTL_STATE The VTL specified is invalid. 
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8 Virtual Processor Execution 

The virtual machine interface exposed by each partition exposes virtual processors, and these are 
architecture specific. This section specifies the core CPU aspects of virtual processors. The following two 
sections specify the MMU (memory management unit) and interrupt controller aspects of virtual 
processors. 

A complete definition of virtual processor behavior requires hundreds of pages of CPU manuals. This 
document specifies the behavior of virtual processors by referencing processor manuals for physical X64 
processors and discussing only cases where a virtual processor’s behavior differs from that of a logical 
processor; that is, the baseline behavior of a virtual processor is defined by the Intel and AMD processor 
reference manuals.  

8.1 Processor Features and CPUID 

The processor intercept mechanism of the hypervisor allows a parent partition to intercept the 
execution of the CPUID instruction by virtual processors within its child partitions. The parent partition 
can set the return values of the CPUID instruction in arbitrary ways. Doing so does not automatically 
alter the set of processor features of a virtual processor; that is, if a parent partition chooses to alter the 
behavior of the CPUID instruction, it is responsible for ensuring that the set of virtual processor features 
matches what is indicated by the CPUID instruction. 

8.2 Family, Model and Stepping Reported by CPUID 

The CPUID instruction can be used to obtain a logical processor’s family, model and stepping 
information. It is possible, but not guaranteed, that logical processors reporting differing information 
may coexist on a single system. To properly use this information, a partition must be able to execute 
with a hard affinity between virtual and logical processors. Only the root partition executes in this 
manner. As a result, the hypervisor will expose the true family, model and stepping only to the root 
partition and will report the minimum value detected in the logical processor configuration to all other 
partitions. 

8.3 Platform ID Reported by MSR 

The value returned by the IA32_PLATFORM_ID MSR (0x17) can be used in conjunction with the family, 
model and stepping information as reported by the CPUID instruction (as described in the previous 
section). The hypervisor is consistent in its handling of this MSR and will expose the true content of the 
IA32_PLATFORM_ID MSR only to the root partition. Guest access to this register is denied. 

8.4 Real Mode 

The hypervisor attempts to support real mode in a fully transparent manner. There may be situations, 
however, where specific processor implementations may not make this entirely possible. As a result, the 
hypervisor may be required to emulate or manipulate the environment to some degree to provide real 
mode support. The following is a list of potential areas where real mode support may not be 
transparent.  

• Hypervisor overhead inconsistencies. As a consequence of an increase in the frequency of 
instruction emulation by the hypervisor, performance of both the guest and the system may be 
affected. 
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• Visible processor state changes as a consequence of switching modes. The hypervisor may be 
required to make changes to the guest’s runtime environment when mode switches occur, such 
as between real and protected mode or vice versa. Such changes may be detected by the guest. 

8.5 MONITOR / MWAIT 

The hypervisor does not support the use of the MONITOR instruction but does have limited support for 
MWAIT. Partitions possessing the CpuManagement privilege (i.e. the root partition) may use MWAIT to 
set the logical processor’s C-state if support for the instruction is present in hardware. Availability is 
indicated by the presence of a flag returned by the CPUID instruction for a hypervisor leaf (see section 
2.4). Any attempt to use these instructions when the hypervisor does not indicate availability will result 
in a #UD fault. 

8.6 System Management Mode 

The hypervisor does not support or participate in the virtualization of system management mode within 
guest partitions. Physical system management interrupts are still handled normally by the system’s 
hardware and firmware and is opaque to the hypervisor. 

8.7 Time Stamp Counter 

The time stamp counter (TSC) is virtualized for each virtual processor. Generally, the TSC value continues 
to run while a virtual processor is suspended. 

Seamless TSC virtualization is not feasible on the x64 architecture. TSC virtualization is typically 
implemented through a simple TSC bias (an offset added to the logical processor’s TSC). Attempts will be 
made by the hypervisor to prevent the TSC from jumping forward or backward as a virtual processor is 
scheduled on different logical processors. However, it cannot compensate for the situation where the 
TSC for a logical processor is set to zero by an SMI handler. Furthermore, the TSC increment rate may 
slow down or speed up depending on thermal or performance throttling, over which the hypervisor has 
no control. 

Guest software should only use the TSC for measuring short durations. Even when using the TSC in this 
simple way, algorithms should be resilient to sudden jumps forward or backward in the TSC value. 

8.8 Memory Accesses 

The behavior of instructions that access memory may differ from the behavior of the same instruction 
on a logical processor. This is the result of the hypervisor’s physical memory virtualization mechanisms 
and of the existence of address ranges with special semantics (hypervisor call page or SynIC area). In a 
broad sense, this applies to all instructions because the processor fetches instructions from memory. 
However, it applies in particular to instructions with memory operands.  

The following pseudo-code defines the different behaviors that can result from an access by a virtual 
processor to its partition’s GPA space. The pseudo-code assumes that a GPA memory access has been 
performed directly (that is, an explicit memory operand) or indirectly (an implicit access) by a virtual 
processor. The access is one of three types: Read, Write, and Execute (Instruction Fetch). 



Hypervisor Top Level Functional Specification 

 69 

 
if the address is within an overlay page 
{ 
 if the access type is not allowed for the page 
 { 
  Generate #MC fault within guest 
 } 
 else 
 { 
  Perform access 
 } 
} 
else if the address is within an unmapped GPA page 
{ 
 if the partition is the root partition 
 { 
  Allow the access to proceed to identity-mapped SPA 
 } 
 else 
 { 
  Suspend VP and send message to parent (umapped GPA) 
 } 
} 
else if the address is within a mapped GPA and 
 the access type violates the mapping’s access rights 
{ 
 if the partition is the root partition 
 { 
  Generate #MC fault in root 
 } 
 else 
 { 
  Suspend VP and send message to parent (GPA access right) 
 } 
} 
else 
{ 
 Memory access proceeds normally  
} 
 

8.9 I/O Port Accesses 

The behavior of instructions that access I/O ports may differ from the behavior of the same instruction 
on a logical processor. This is the result of the hypervisor’s processor intercept mechanism. 

The following pseudo-code defines the different behaviors that can result from an access by a virtual 
processor to I/O ports (through the instructions IN, OUT, INS, or OUTS). Note that each of these 
instructions has an operand size of 1, 2, or 4 bytes. As such, one or more I/O ports are effectively 
accessed. 
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if any of the accessed ports is virtualized 
   by the hypervisor for this access type 

{ 

 Access is emulated 

} 

else if the I/O Port intercept is installed 

{ 

 Suspend VP and send message to parent (I/O Port Intercept) 

} 

else if the partition is a non-root partition 

{ 

 Discard writes; return all bits set for reads 

} 

else 

{ 

 I/O port access proceeds normally 

} 

 

8.10 MSR Accesses 

The behavior of instructions that access MSRs may differ from the behavior of the same instruction on a 
logical processor. This is the result of the hypervisor’s processor intercept mechanism.  

The following pseudo-code defines the different behaviors that can result 
from an access by a virtual processor to MSRs. 

if the MSR is virtualized by the hypervisor AND 

   the partition possesses the privilege required by the MSR 

{ 

 Access is emulated 

} 

else if the MSR intercept is installed 

{ 

 Suspend VP and send message to parent (MSR intercept) 

} 

else 

{ 

 Generate #GP fault within the guest 

} 

 

 
The hypervisor may virtualize MSRs as part of its interface with the guest. A summary of these can be 
found in section 19. 
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For those MSRs that are not virtualized by the hypervisor, internal security policy may require that 
certain fields within certain MSRs remain unmodified, are explicitly set for or hidden from the guest. In 
these cases, the access will appear to succeed from the guest’s perspective, but the value actually 
written or read may not match the underlying physical MSR value. The tables in section 20 outline the 
policy for those MSRs whose contents are modified by the hypervisor. 

8.11 CPUID Execution 

The behavior of the CPUID instruction may differ from the behavior of the same instruction on a logical 
processor.  

The following pseudo-code defines the different behaviors that can result from the execution of a CPUID 
instruction by a virtual processor. 

 

if an intercept has been set for the CPUID instruction for 

 the index specified in EAX 

{ 

 Suspend VP and send message to parent (CPUID Intercept) 

} 

else 

{ 

 CPUID instruction returns information as dictated by the 

  logical processor and the hypervisor 

} 

 

 
The hypervisor may override the standard CPUID information returned by the logical processor. The 
table in Error! Reference source not found. details the ways in which CPUID information is modified by 
the hypervisor. In some cases, the CPUID values returned to the root partition differ from non-root 
partitions. In such cases, the differences are noted. 

NOTE 

The hypervisor does not attempt to dictate a processor selection or to standardize on a particular 
processor model. The manipulation of various CPUID output is used to accommodate processor specifics 
or to reflect limitations on the partition’s accessibility or privilege to use certain processor features. 

8.12 Non-Privileged Instruction Execution Prevention (NPIEP) 

Non-Privileged Instruction Execution (NPIEP) is a feature that limits the use of certain instructions by 
user-mode code. Specifically, when enabled, this feature can block the execution of the SIDT, SGDT, 
SLDT, and STR instructions. Execution of these instructions results in a #GP fault.  

This feature must be configured on a per-VP basis using HV_X64_MSR_NPIEP_CONFIG_CONTENTS: 
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union 
{ 
    UINT64 AsUINT64; 
    struct 
    { 
        // These bits enable instruction execution prevention for specific 
        // instructions. 
 
        UINT64 PreventSgdt:1; 
        UINT64 PreventSidt:1; 
        UINT64 PreventSldt:1; 
        UINT64 PreventStr:1; 
 
        UINT64 Reserved:60; 
    }; 
} HV_X64_MSR_NPIEP_CONFIG_CONTENTS; 
 

8.13 Exceptions 

The hypervisor’s intercept redirection mechanism allows a parent partition to intercept processor-
generated exceptions in the virtual processors of a child partition. When the intercept message is 
delivered, the virtual processor will be in a restartable state (that is, the instruction pointer will point to 
the instruction that generated the exception). 

Exception intercepts are checked before multiple exceptions are combined into a double fault or a triple 
fault. For example, if an exception intercept is installed on the #NP exception and a #NP exception 
occurs during the delivery of a #GP exception, the #NP exception intercept is triggered. Conversely, if no 
intercept was installed on the #NP exception, the nested #NP exception is converted into a double fault, 
which will trigger an intercept on the #DF if such an intercept was installed. 

Note that exception intercepts do not occur for software-generated interrupts (that is, through the 
instructions INT, INTO, INT 3, and ICEBKPT). 

The order in which exceptions are detected and reported by the processor depends on the instruction. 
For example, many instructions can generate multiple exceptions and the order in which these 
exceptions are detected is well defined. 

The way in which exception intercepts interact with other intercept types also depends on the 
instruction. For example, an IN instruction may generate a #GP exception intercept before an I/O port 
intercept, and a RDMSR instruction may generate an MSR intercept before a #GP exception intercept. 
For details on the order of intercept delivery, consult the documentation for Intel’s and AMD’s processor 
virtualization extensions.  
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9 Virtual MMU and Caching 

The virtual machine interface exposed by each partition includes a memory management unit (MMU). 
The virtual MMU exposed by hypervisor partitions is generally compatible with existing MMUs.  

The hypervisor also supports guest-defined memory cacheability attributes for pages mapped into a 
partition’s GVA space. 

9.1 Virtual MMU Overview 

Virtual processors expose virtual memory and a virtual TLB (translation look-aside buffer), which caches 
translations from virtual addresses to (guest) physical addresses. As with the TLB on a logical processor, 
the virtual TLB is a non-coherent cache, and this non-coherence is visible to guests. The hypervisor 
exposes operations to flush the TLB. Guests can use these operations to remove potentially inconsistent 
entries and make virtual address translations predictable. 

 Compatibility 

The virtual MMU exposed by the hypervisor is generally compatible with the physical MMU found within 
an x64 processor. The following guest-observable differences exist: 

• The CR3.PWT and CR3.PCD bits may not be supported in some hypervisor implementations. On 
such implementations, any attempt by the guest to set these flags through a MOV to CR3 
instruction or a task gate switch will be ignored. Attempts to set these bits programmatically 
through HvSetVpRegisters or HvSwitchVirtualAddressSpace may result in an error. 

• The PWT and PCD bits within a leaf page table entry (for example, a PTE for 4-K pages and a PDE 
for large pages) specify the cacheability of the page being mapped. The PAT, PWT, and PCD bits 
within non-leaf page table entries indicate the cacheability of the next page table in the 
hierarchy. Some hypervisor implementations may not support these flags. On such 
implementations, all page table accesses performed by the hypervisor are done by using write-
back cache attributes. This affects, in particular, accessed and dirty bits written to the page table 
entries. If the guest sets the PAT, PWT, or PCD bits within non-leaf page table entries, an 
“unsupported feature” message may be generated when a virtual processor accesses a page 
that is mapped by that page table. 

• The CR0.CD (cache disable) bit may not be supported in some hypervisor implementations. On 
such implementations, the CR0.CD bit must be set to 0. Any attempt by the guest to set this flag 
through a MOV to CR0 instruction will be ignored. Attempts to set this bit programmatically 
through HvSetVpRegisters will result in an error. 

• The PAT (page address type) MSR is a per-VP register. However, when all the virtual processors 
in a partition set the PAT MSR to the same value, the new effect becomes a partition-wide 
effect. 

• For reasons of security and isolation, the INVD instruction will be virtualized to act like a 
WBINVD instruction, with some differences. For security purposes, CLFLUSH should be used 
instead. 

• Some hypervisor implementations may use internal write protection of guest page tables to 
lazily flush MMU mappings from internal data structures (for example, shadow page tables). 
This is architecturally invisible to the guest because writes to these tables will be handled 
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transparently by the hypervisor. However, writes performed to the underlying SPA pages by 
other partitions or by devices (that is, through DMA) may not trigger the appropriate TLB flush. 

• Internally, the hypervisor may use shadow page tables that translate GVAs to SPAs. In such 
implementations, these shadow page tables appear to software as large TLBs. However, several 
differences may be observable. First, shadow page tables can be shared between two virtual 
processors, whereas traditional TLBs are per-processor structures and are independent. This 
sharing may be visible because a page access by one virtual processor can fill a shadow page 
table entry that is subsequently used by another virtual processor.  

 Legacy TLB Management Operations 

The x64 architecture provides several ways to manage the processor’s TLBs. The following mechanisms 
are virtualized by the hypervisor: 

• The INVLPG instruction invalidates the translation for a single page from the processor’s TLB. If 
the specified virtual address was originally mapped as a 4-K page, the translation for this page is 
removed from the TLB. If the specified virtual address was originally mapped as a “large page” 
(either 2 MB or 4 MB, depending on the MMU mode), the translation for the entire large page is 
removed from the TLB. The INVLPG instruction flushes both global and non-global translations. 
Global translations are defined as those which have the “global” bit set within the page table 
entry. 

• The MOV to CR3 instruction and task switches that modify CR3 invalidate translations for all 
non-global pages within the processor’s TLB.  

• A MOV to CR4 instruction that modifies the CR4.PGE (global page enable) bit, the CR4.PSE (page 
size extensions) bit, or CR4.PAE (page address extensions) bit invalidates all translations (global 
and non-global) within the processor’s TLB. 

Note that all of these invalidation operations affect only one processor. To invalidate translations on 
other processors, software must use a software-based “TLB shoot-down” mechanism (typically 
implemented by using inter-process interrupts). 

 Virtual TLB Enhancements 

In addition to supporting the legacy TLB management mechanisms described earlier, the hypervisor also 
supports a set of enhancements that enable a guest to manage the virtual TLB more efficiently.  

These enhanced operations can be used interchangeably with legacy TLB management operations. On 
some systems (those with sufficient virtualization support in hardware), the legacy TLB management 
instructions may be faster for local or remote (cross-processor) TLB invalidation. Guests who are 
interested in optimal performance should use the CPUID leaf 0x40000004 to determine which behaviors 
to implement using hypercalls: 

• UseHypercallForAddressSpaceSwitch: If this flag is set, the caller should assume that it’s faster to 
use HvSwitchAddressSpace to switch between address spaces. If this flag is clear, a MOV to CR3 
instruction is recommended. 

• UseHypercallForLocalFlush: If this flag is set, the caller should assume that it’s faster to use 
hypercalls (as opposed to INVLPG or MOV to CR3) to flush one or more pages from the virtual 
TLB. 
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• UseHypercallForRemoteFlush: If this flag is set, the caller should assume that it’s faster to use 
hypercalls (as opposed to using guest-generated inter-processor interrupts) to flush one or more 
pages from the virtual TLB. 

 Restrictions on TLB Flushes 

When a virtual processor generates an intercept—especially those associated with memory accesses, 
software running within the parent or higher VTL may want to complete the intercepted instruction in 
software. This instruction completion logic will need to emulate the address translation normally 
performed by the processor’s MMU. If a TLB flush request is executed on another virtual processor 
during instruction completion, incorrect behavior can result. For example, the second virtual processor 
could clear the dirty bit within the guest’s page table and then request a TLB flush. If the instruction 
completion software modifies the contents of this page after the TLB flush request has been completed, 
the operating system running within the partition will not be notified of the page modification, and data 
corruption can occur.  

To prevent this situation, the hypervisor provides a way to inhibit TLB flush hypercalls until intercept 
processing is complete. When a memory intercept message is generated by the hypervisor, the “TLB 
Flush Inhibit” bit (TlbFlushInhibit) will consequently be set. Any attempt to flush the TLB with a hypercall 
will place the caller’s virtual processor in a suspended state. The instruction pointer will not be 
incremented past the instruction that invoked the hypercall. After the memory intercept routine 
performs instruction completion, it should clear the TlbFlushInhibit bit of the 
HvRegisterInterceptSuspend register. This resumes virtual processors that were suspended when they 
attempted to flush the TLB while the bit was set. Since the instruction pointer has not been 
incremented, the flush hypercall will automatically be re-executed. If the TlbFlushInhibit bit is clear, the 
hypercall will complete the flush normally. 

9.2 Memory Cache Control Overview 

 Cacheability Settings 

The hypervisor supports guest-defined cacheability settings for pages mapped within the guest’s GVA 
space. For a detailed description of available cacheability settings and their meanings, refer to the Intel 
or AMD documentation. 

When a virtual processor accesses a page through its GVA space, the hypervisor honors the cache 
attribute bits (PAT, PWT, and PCD) within the guest page table entry used to map the page. These three 
bits are used as an index into the partition’s PAT (page address type) register to look up the final 
cacheability setting for the page. 

Pages accessed directly through the GPA space (for example, when paging is disabled because CR0.PG is 
cleared) use a cacheability defined by the MTRRs. If the hypervisor implementation doesn’t support 
virtual MTRRs, WB cacheability is assumed. 

 Mixing Cache Types between a Partition and the Hypervisor 

Guests should be aware that some pages within its GPA space may be accessed by the hypervisor. The 
following list, while not exhaustive, provides several examples: 

• A page that contains input or output parameters for a hypercall 

• All overlay pages including the hypercall page, SynIC SIEF and SIM pages, and stats pages 
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The hypervisor always performs accesses to hypercall parameters and overlay pages by using the WB 
cacheability setting.  

9.3 Virtual MMU Data Types 

 Virtual Address Spaces 

The hypervisor introduces the concept of a virtual address space. The guest uses virtual address spaces 
to define the mapping between guest virtual addresses (GVAs) and guest physical addresses (GPAs). The 
guest OS can decide how and where to use virtual address spaces. In most OSs (including Microsoft 
Windows®), a different virtual address space is used for each process. 

Virtual address spaces are identified by a caller-defined 64-bit ID value. On x64 implementations of the 
hypervisor, this value is the same as the value within the virtual processor’s CR3 register, which points to 
the guest’s page table structures. 

 
typedef UINT64 HV_ADDRESS_SPACE_ID; 
 

 Virtual Address Flush Flags 

The hypervisor provides hypercalls that allow the guest to flush (that is, invalidate) entire virtual address 
spaces or portions of these address spaces. Behavior of the flush operation can be modified by using a 
set of flags, defined as follows: 

 
typedef UINT32 HV_FLUSH_FLAGS; 
 
#define HV_FLUSH_ALL_PROCESSORS    0x00000001 
#define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES 0x00000002 
#define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY  0x00000004 
#define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT 0x00000008 
 

 Cache Types 

Several structures include cache type fields. The following encodings are defined: 

 
typedef enum 
{ 
 HvCacheTypeX64Uncached = 0, 
 HvCacheTypeX64WriteCombining = 1, 
 HvCacheTypeX64WriteThrough = 4, 
 HvCacheTypeX64WriteProtected = 5, 
 HvCacheTypeX64WriteBack = 6 
} HV_CACHE_TYPE; 
 

 Virtual Address Translation Types 

The call HvTranslateVirtualAddress takes a collection of input control flags and returns a result code and 
a collection of output flags. The input control flags are defined as follows: 
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typedef UINT64 HV_TRANSLATE_GVA_CONTROL_FLAGS; 
 
#define HV_TRANSLATE_GVA_VALIDATE_READ 0x0001 
#define HV_TRANSLATE_GVA_VALIDATE_WRITE 0x0002 
#define HV_TRANSLATE_GVA_VALIDATE_EXECUTE 0x0004 
#define HV_TRANSLATE_GVA_PRIVILEGE_EXEMPT 0x0008 
#define HV_TRANSLATE_GVA_SET_PAGE_TABLE_BITS 0x0010 
#define HV_TRANSLATE_GVA_TLB_FLUSH_INHIBIT 0x0020 
#define HV_TRANSLATE_GVA_CONTROL_MASK        (0x003F) 
#define HV_TRANSLATE_GVA_INPUT_VTL_MASK      (0xFF00000000000000UI64) 
 

The returned result code is defined as follows: 

 
typedef enum  
{ 
 HvTranslateGvaSuccess = 0, 
 
 // Translation failures 
 HvTranslateGvaPageNotPresent = 1, 
 HvTranslateGvaPrivilegeViolation = 2, 
 HvTranslateGvaInvalidPageTableFlags = 3, 
  
 // GPA access failures 
 HvTranslateGvaGpaUnmapped = 4, 
 HvTranslateGvaGpaNoReadAccess = 5, 
 HvTranslateGvaGpaNoWriteAccess = 6, 
 HvTranslateGvaGpaIllegalOverlayAccess = 7, 
 HvTranslateGvaIntercept = 8 
} HV_TRANSLATE_GVA_RESULT_CODE; 
 
typedef enum HV_TRANSLATE_GVA_RESULT_CODE 
 *PHV_TRANSLATE_GVA_RESULT_CODE; 
 
typedef struct 
{ 
 HV_TRANSLATE_GVA_RESULT_CODE ResultCode; 
 UINT32 CacheType:8; 
 UINT32 OverlayPage:1; 
 UINT32 Reserved3:23; 
} HV_TRANSLATE_GVA_RESULT; 
 
typedef struct  
{ 
    HV_TRANSLATE_GVA_RESULT_CODE ResultCode; 
    UINT32 CacheType : 8; 
    UINT32 OverlayPage : 1; 
    UINT32 Reserved : 23; 
    HV_X64_PENDING_EVENT EventInfo; 
 
} HV_TRANSLATE_GVA_RESULT_EX; 
 

 Gpa Access Types 

The calls HvReadGpa and HvWriteGpa take a collection of input control flags and return a result code. 
The input control flags are defined as follows: 
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typedef union  
{ 
UINT64 AsUINT64; 
typedef struct 
{ 
 UINT8 CacheType:8; // Cache type for access 
 UINT8  HV_INPUT_VTL InputVtl ; 
 UINT16 ReservedZ0; 
 UINT32 ReservedZ1; 
}; 
} HV_ACCESS_GPA_CONTROL_FLAGS; 
 

The return result code is defined as follows: 

 
typedef enum  
{ 
 HvAccessGpaSuccess  = 0, 
 
 // GPA access failures 
 HvAccessGpaUnmapped  = 1, 
 HvAccessGpaReadIntercept = 2, 
 HvAccessGpaWriteIntercept = 3, 
 HvAccessGpaIllegalOverlayAccess = 4 
} HV_ACCESS_GPA_RESULT_CODE; 
 
UINT64 AsUINT64; 
typedef struct 
{ 
 HV_ACCESS_GPA_RESULT_CODE ResultCode; 
 UINT32 Reserved; 
} HV_ACCESS_GPA_RESULT; 
 
typedef HV_ACCESS_GPA_RESULT *PHV_ACCESS_GPA_RESULT; 
  

9.4 Virtual MMU Interfaces 

 HvSwitchVirtualAddressSpace 

The HvSwitchVirtualAddressSpace hypercall switches the calling virtual processor’s virtual address 
space. 

Wrapper Interface 

 

HV_STATUS 

HvSwitchVirtualAddressSpace( 

 __in HV_ADDRESS_SPACE_ID AddressSpace 

 ); 

 

Native Interface 

HvSwitchVirtualAddressSpace [fast] 

 Call Code = 0x0001 
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 Input Parameters 

0 AddressSpace (8 bytes) 

Description 

For x64 implementations of the hypervisor, this call also updates the CR3 register. However, unlike a 
MOV to CR3 instruction, this hypercall does not have the side-effect of flushing the virtual processor’s 
TLB. 

This hypercall, unlike most, operates implicitly in the context of the calling partition and virtual 
processor. 

Input Parameters 

AddressSpace specifies a new address space ID (a new CR3 value). 

Output Parameters 

None. 

Restrictions 

None. 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER 

 

The specified address space ID is not a valid 

CR3 value. 

One or more reserved bits in the specified 

address space ID (as defined by the x64 

architecture) were set. 

 HvFlushVirtualAddressSpace 

The HvFlushVirtualAddressSpace hypercall invalidates all virtual TLB entries that belong to a specified 
address space. 



Hypervisor Top Level Functional Specification 

 80 

Wrapper Interface 

 

HV_STATUS 

HvFlushVirtualAddressSpace( 

 __in HV_ADDRESS_SPACE_ID AddressSpace, 

 __in HV_FLUSH_FLAGS Flags, 

 __in UINT64 ProcessorMask 

 ); 

 

 
Native Interface 

HvFlushVirtualAddressSpace 

 Call Code = 0x0002 

 Input Parameters 

0 AddressSpace (8 bytes) 

8 Flags (8 bytes) 

16 ProcessorMask (8 bytes) 

Description 

The virtual TLB invalidation operation acts on one or more processors.  

If the guest has knowledge about which processors may need to be flushed, it can specify a processor 
mask. Each bit in the mask corresponds to a virtual processor index. For example, a mask of 
0x0000000000000051 indicates that the hypervisor should flush only the TLB of virtual processors 0, 4, 
and 6. A virtual processor can determine its index by reading from MSR HV_X64_MSR_VP_INDEX. 

The following flags can be used to modify the behavior of the flush: 

• HV_FLUSH_ALL_PROCESSORS indicates that the operation should apply to all virtual 
processors within the partition. If this flag is set, the ProcessorMask parameter is ignored. 

• HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES indicates that the operation should apply to all 
virtual address spaces. If this flag is set, the AddressSpace parameter is ignored. 

• HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY indicates that the hypervisor is required only to 
flush page mappings that were not mapped as “global” (that is, the x64 “G” bit was set in the page 
table entry). Global entries may be (but are not required to be) left unflushed by the hypervisor. 

All other flags are reserved and must be set to zero. 

This call guarantees that by the time control returns back to the caller, the observable effects of all 
flushes on the specified virtual processors have occurred.  
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If a target virtual processor’s TLB requires flushing and that virtual processor’s TLB is currently “locked”, 
the caller’s virtual processor is suspended. When the caller’s virtual processor is “unsuspended”, the 
hypercall will be reissued.  

Input Parameters 

AddressSpace specifies an address space ID (a CR3 value). 

Flags specifies a set of flag bits that modify the operation of the flush. 

ProcessorMask specifies a processor mask indicating which processors should be affected by the 
flush operation. 

Output Parameters 

None. 

Restrictions 

None. 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER 

 

 

 

The specified address space ID is not a valid 

CR3 value and the ”flush all virtual address 

spaces” flag was not specified. 

One or more reserved bits in the specified 

address space ID (as defined by the x64 

architecture) were set. 

One or more reserved bits within the flags 

register are set. 

All of the bits in the processor bit mask are set 

to zero, and the "flush all processors" flag was 

not specified. 

 HvFlushVirtualAddressSpaceEx 

The HvFlushVirtualAddressSpaceEx hypercall is similar to HvFlushVirtualAddressSpace, but can take a 
variably-sized sparse VP set as an input. 

The following checks should be used to infer the availability of this hypercall: 

1. HvFlushVirtualAddressSpace must be available (see section 9.1.3). 

2. ExProcessorMasks must be indicated via CPUID leaf 0x40000004 (see 2.4.5) 
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Wrapper interface 

 
HV_STATUS 
HvFlushVirtualAddressSpaceEx( 
 __in HV_ADDRESS_SPACE_ID AddressSpace, 
 __in HV_FLUSH_FLAGS Flags, 
 __in HV_VP_SET ProcessorSet 
 ); 

Native Interface 

HvFlushVirtualAddressSpaceEx 

 Call Code = 0x0013 

 Input Parameters 

0 AddressSpace (8 bytes) 

8 Flags (8 bytes) 

16 ProcessorSet (Variably sized)  

Description 

See HvFlushVirtualAddressSpace. 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER A parameter is invalid. 

 HvFlushVirtualAddressList 

The HvFlushVirtualAddressList hypercall invalidates portions of the virtual TLB that belong to a specified 
address space. 
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Wrapper Interface 

 

HV_STATUS 

HvFlushVirtualAddressList( 

 __in    HV_ADDRESS_SPACE_ID AddressSpace, 

 __in    HV_FLUSH_FLAGS Flags, 

 __in    UINT64 ProcessorMask, 

 __inout PUINT32 GvaCount, 

 __in_ecount(GvaCount)  

         PCHV_GVA GvaRangeList 

 ); 

 

Native Interface 

HvFlushVirtualAddressList [rep] 

 Call Code = 0x0003 

 Input Parameter Header 

0 AddressSpace (8 bytes) 

8 Flags (8 bytes) 

16 ProcessorMask (8 bytes) 

 Input List Element 

0 GvaRange (8 bytes) 

Description 

The virtual TLB invalidation operation acts on one or more processors.  

If the guest has knowledge about which processors may need to be flushed, it can specify a processor 
mask. Each bit in the mask corresponds to a virtual processor index. For example, a mask of 
0x0000000000000051 indicates that the hypervisor should flush only the TLB of virtual processors 0, 4 
and 6. 

The following flags can be used to modify the behavior of the flush: 

• HV_FLUSH_ALL_PROCESSORS indicates that the operation should apply to all virtual 
processors within the partition. If this flag is set, the ProcessorMask parameter is ignored. 

• HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES indicates that the operation should apply to all 
virtual address spaces. If this flag is set, the AddressSpace parameter is ignored. 

• HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY does not make sense for this call and is treated 
as an invalid option. 

All other flags are reserved and must be set to zero. 
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This call takes a list of GVA ranges. Each range has a base GVA. Because flushes are performed with page 
granularity, the bottom 12 bits of the GVA can be used to define a range length. These bits encode the 
number of additional pages (beyond the initial page) within the range. This allows each entry to encode 
a range of 1 to 4096 pages. 

A GVA that falls within a “large page” mapping (2MB or 4MB) will cause the entire large page to be 
flushed from the virtual TLB. 

This call guarantees that by the time control returns back to the caller, the observable effects of all 
flushes on the specified virtual processors have occurred.  

Invalid GVAs (those that specify addresses beyond the end of the partition’s GVA space) are ignored. 

If a target virtual processor’s TLB requires flushing and that virtual processor is inhibiting TLB flushes, the 
caller’s virtual processor is suspended. When TLB flushes are no longer inhibited, the virtual processor is 
“unsuspended” and the hypercall will be reissued.  

Input Parameters 

AddressSpace specifies an address space ID (a CR3 value). 

Flags specifies a set of flag bits that modify the operation of the flush. 

ProcessorMask specifies a processor mask indicating which processors should be affected by the 
flush operation. 

GvaRange specifies a guest virtual address range. 

Output Parameters 

None. 

Restrictions 

None. 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER 

 

 

 

 

The specified address space ID is not a valid 

CR3 value and the "flush all virtual address 

spaces” flag was not specified. 

One or more reserved bits in the specified 

address space ID (as defined by the x64 

architecture) were set. 

One or more reserved bits within the flags 

register are set. 

All of the bits in the processor bit mask are set 

to zero, and the "flush all processors" flag was 

not specified. 
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 HvFlushVirtualAddressListEx 

The HvFlushVirtualAddressListEx hypercall is similar to HvFlushVirtualAddressList, but can take a 
variably-sized sparse VP set as an input. 

The following checks should be used to infer the availability of this hypercall: 

3. HvFlushVirtualAddressList must be available (see section 9.1.3). 

4. ExProcessorMasks must be indicated via CPUID leaf 0x40000004 (see 2.4.5) 

Wrapper interface 

HV_STATUS 
HvFlushVirtualAddressListEx( 
 __in    HV_ADDRESS_SPACE_ID AddressSpace, 
 __in    HV_FLUSH_FLAGS  Flags, 
 __in    HV_VP_SET   ProcessorSet, 
 __inout PUINT32   GvaCount, 
 __in_ecount(GvaCount) PCHV_GVA GvaRangeList 
 ); 

Native Interface 

HvFlushVirtualAddressList [rep] 

 Call Code = 0x0014 

 Input Parameter Header 

0 AddressSpace (8 bytes) 

8 Flags (8 bytes) 
 

ProcessorSet (Variably sized) 

 Input List Element 

0 GvaRange (8 bytes) 

Description 

See HvFlishVirtualAddressList. 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER A parameter is invalid. 

 

 HvTranslateVirtualAddress 

The HvTranslateVirtualAddress hypercall attempts to translate a specified GVA page number into a GPA 
page number. 
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Wrapper Interface 

 

HV_STATUS 

HvTranslateVirtualAddress( 

 __in  HV_PARTITION_ID PartitionId, 

 __in  HV_VP_INDEX VpIndex, 

 __in  HV_TRANSLATE_GVA_CONTROL_FLAGS ControlFlags, 

 __in  HV_GVA_PAGE_NUMBER GvaPage, 

 __out PHV_TRANSLATE_GVA_RESULT TranslationResult, 

 __out PHV_GPA_PAGE_NUMBER GpaPage 

 ); 

 

Native Interface 

HvTranslateVirtualAddress 

 Call Code = 0x0052 

 Input Parameters 

0 PartitionId (8 bytes) 

8 VpIndex (4 bytes) Padding (4 bytes) 

16 ControlFlags (8 bytes) 

24 GvaPage (8 bytes) 

 Output Parameters 

0 TranslationResult (8 bytes) 

8 GpaPage (8 bytes) 

Description 

The translation considers the current modes and state of the specified virtual processor as well as the 
guest page tables. 

The caller must specify whether the intended access is to read, write or execute by setting the 
appropriate control flags. Combinations of these access types are possible. Several other translation 
options are also available. 

• HV_TRANSLATE_GVA_PRIVILEGE_EXEMPT: Indicates that the access should be performed as 
though the processor was running at a privilege level zero rather than the current privilege level. 

• HV_TRANSLATE_GVA_SET_PAGE_TABLE_BITS: Indicates that the routine should set the dirty and 
accessed bits within the guest’s page tables if appropriate for the access type. The dirty bit will 
only be set if HV_TRANSLATE_GVA_VALIDATE_WRITE is also specified. If the caller has 
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requested that accessed and dirty bits be set as part of the table walk, these bits are set as the 
walk occurs. If a walk is aborted, the accessed and dirty bits that were already set are not 
restored to their previous values. 

• HV_TRANSLATE_GVA_TLB_FLUSH_INHIBIT: Indicates that the TlbFlushInhibit flag in the virtual 
processor’s HvRegisterInterceptSuspend register should be set as a consequence of a successful 
return. This prevents other virtual processors associated with the target partition from flushing 
the stage 1 TLB of the specified virtual processor until after the TlbFlushInhibit flag is cleared 
(see 9.1.4).  

If paging is disabled in the virtual processor (that is, CR0.PG is clear), then no page tables are consulted, 
and translation success is guaranteed. 

If paging is enabled in the virtual processor (that is, CR0.PG is set), then a page table walk is performed. 
The call uses the current state of the virtual processor to determine whether to perform a two-level, 
three-level, or four-level page table walk. The caller may not assume that the walk is coherent with the 
hardware TLB state. 

During the page table walk, a number of conditions can arise that cause the walk to be terminated.A 
table entry is marked “not present” or the GVA is beyond the range permitted for the paging mode. In 
this case, HvTranslateGvaPageNotPresent is returned. 

A privilege violation is detected based on the access type (read, write, execute) or on the current 
privilege level. In this case, HvTranslateGvaPrivilegeViolation is returned. 

A reserved bit is set within a table entry. In this case, HvTranslateGvaInvalidPageTableFlags is returned. 

A page table walk can also be terminated if one of the guest’s page table pages cannot be accessed. This 
can occur in one of the following situations: The GPA is unmapped. In this case, 
HvTranslateGvaGpaUnmapped is returned. 

The GPA mapping’s access rights indicate that the page is not readable. In this case, 
HvTranslateGvaGpaNoReadAccess or HvTranslateGvaGpaNoWriteAccess is returned. 

The access targets an overlay page that doesn’t allow reads or writes. In this case, 
HvTranslateGvaGpaIllegalOverlayAccess is returned. 

If any of these GPA access failures are reported, the GpaPage output parameter is used to indicate 
which GPA page could not be accessed.  

If no translation error occurs, HvTranslateGvaSuccess is returned. In this case, the GpaPage output 
parameter is used to report the resulting translation, and the associated CacheType and OverlayPage 
fields are set appropriately. The CacheType field indicates the effective cache type used by the virtual 
processor to access the translated virtual address. The OverlayPage field indicates whether the 
translated GPA accesses an overlay page owned by the hypervisor. Callers can use this information to 
determine whether memory accesses performed by the virtual processor would have accessed a 
mapped GPA page or an overlay page. 

If the caller has requested that accessed and dirty bits be set as part of the table walk, then these bits 
are set as the walk occurs. If a walk is aborted, then the accessed and dirty bits that were already set are 
not restored to their previous values. 

The reported cache type considers all of the state of the virtual processor including the current virtual 
PAT register settings and (if supported by the hypervisor implementation) the value of the MTRR MSRs 
and CR0.CD. 
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If the call returns HV_STATUS_SUCCESS, the output parameter TranslationResult is valid. The caller must 
consult the result code and results flags to determine whether the GpaPage parameter is valid.  

Input Parameters 

PartitionId specifies a partition. 

VpIndex specifies a virtual processor index. 

ControlFlags specifies a set of flag bits that modify the behavior of the translation. 

GvaPage specifies a guest virtual address page number. 

Output Parameters 

TranslationResult specifies information about the translation including the result code and flags. 

GpaPage specifies the translated GPA (if the result code is HvTranslateGvaSuccess) or the address 
of a GPA access failure (if the result code is HvTranslateGvaGpaUnmapped, 
HvTranslateGvaGpaNoReadAccess, HvTranslateGvaGpaNoWriteAccess, or 
HvTranslateGvaGpaIllegalOverlayAccess). For other result codes, this return parameter is invalid. 

Restrictions 

• The partition specified by PartitionId must be in the “active” state. 

• The caller must be the parent of the partition specified by PartitionId. 

Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller is not the parent of the 

specified partition. 

HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid. 

HV_STATUS_INVALID_VP_INDEX The specified VP index does not 

reference a virtual processor within the 

specified partition. 

HV_STATUS_INVALID_PARAMETER 

 

All three of the control flags 

HV_TRANSLATE_GVA_VALIDATE_READ, 

HV_TRANSLATE_GVA_VALIDATE_WRITE

, and 

HV_TRANSLATE_GVA_VALIDATE_EXECU

TE are cleared. At least one of these 

must be set. 

One or more reserved bits in the 

specified control flags are set. 

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the 

“active” state. 
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Status code Error condition 

HV_STATUS_INVALID_VP_STATE A virtual processor is not in the correct 

state for the performance of the 

indicated operation. 

 

 HvExtCallGetBootZeroedMemory 

Hyper-V allocates zero-filled pages to a VM at creation time. The HvExtCallGetBootZeroedMemory 
hypercall can be used to query which GPA pages were zeroed by Hyper-V during creation. This can 
prevent the guest memory manager from having to redundantly zero GPA pages, which can reduce 
utilization and increase performance. 

This is an extended hypercall; its availability must be queried using HvExtCallQueryCapabilities. 

Wrapper Interface 

 

HV_STATUS 

HvExtCallGetBootZeroedMemory( 

 __out UINT64 StartGpa, 

 __out UINT64 PageCount 

 ); 

 

 
Native Interface 

HvExtCallGetBootZeroedMemory 

 Call Code = 0x8002 

 Output Parameters 

0 StartGpa (8 bytes) 

8 PageCount (8 bytes) 

Input Parameters 

None. 

Output Parameters 

StartGpa – the GPA address where the zeroed memory region begins. 

PageCount – the number of pages included in the zeroed memory region. 

Restrictions 

• The availability of this hypercall must be queried using the HvExtCallQueryCapabilities. 
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10 Virtual Interrupt Control 

10.1 Overview 

The hypervisor virtualizes interrupt delivery to virtual processors. This is done through the use of a 
synthetic interrupt controller (SynIC) which is an extension of a virtualized local APIC; that is, each virtual 
processor has a local APIC instance with the SynIC extensions. These extensions provide a simple inter-
partition communication mechanism which is described in the following chapter. 

Interrupts delivered to a partition fall into two categories: external and internal. External interrupts 
originate from other partitions or devices, and internal interrupts originate from within the partition 
itself. 

External interrupts are generated in the following situations: 

• A physical hardware device generates a hardware interrupt. 

• A parent partition asserts a virtual interrupt (typically in the process of emulating a hardware 
device). 

• The hypervisor delivers a message (for example, due to an intercept) to a partition. 

• Another partition posts a message. 

• Another partition signals an event. 

Internal interrupts are generated in the following situations: 

• A virtual processor accesses the APIC interrupt command register (ICR). 

• A synthetic timer expires. 

10.2 Local APIC 

The SynIC is a superset of a local APIC. The interface to this APIC is given by a set of 32-bit memory 
mapped registers. This local APIC (including the behavior of the memory mapped registers) is generally 
compatible with the local APIC on P4/Xeon systems as described in Intel’s documentation. 

 Local APIC Virtualization 

The hypervisor’s local APIC virtualization may deviate from physical APIC operation in the following 
minor ways:  

• On physical systems, the IA32_APIC_BASE MSR can be different for each processor in the 
system. The hypervisor may require that this MSR contains the same value for all virtual 
processors within a partition. As such, this MSR may be treated as a partition-wide value. If a 
virtual processor modifies this register, the value may effectively propagate to all virtual 
processors within the partition. 

• The IA32_APIC_BASE MSR defines a “global enable” bit for enabling or disabling the APIC. The 
virtualized APIC may always be enabled. If so, this bit will always be set to 1. 

• The hypervisor’s local APIC may not be able to generate virtual SMIs (system management 
interrupts). 

• The hypervisor may allow accesses only to the APIC’s memory-mapped registers to be 
performed by one of the instructions in section 10.2.2. Furthermore, it may allow only accesses 
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that are four bytes in size and aligned to four-byte boundaries. In such cases, if an unsupported 
access is attempted, the virtual processor will be suspended, and an unsupported feature error 
message will be delivered to the partition’s parent. 

• If multiple virtual processors within a partition are assigned identical APIC IDs, behavior of 
targeted interrupt delivery is boundedly undefined. That is, the hypervisor is free to deliver the 
interrupt to just one virtual processor, all virtual processors with the specified APIC ID, or no 
virtual processors. This situation is considered a guest programming error. 

• Some of the memory mapped APIC registers may be accessed by way of virtual MSRs. 

• The hypervisor may not allow a guest to modify its APIC IDs. 

The remaining parts of this section describe only those aspects of SynIC functionality that are extensions 
of the local APIC. 

 Local APIC Memory-mapped Accesses 

The hypervisor emulates accesses to memory-mapped registers within the virtualized local APIC. 
However, only certain instruction forms are supported, and use of other forms will result in #GP. 
Compatible guests should access only the local APIC registers by using the following instruction forms: 

Opcode Instruction Notes 

89 /r MOV m32,r32 m32 must be 4-byte aligned. 

8B /r MOV r32,m32 m32 must be 4-byte aligned. 

A1 MOV EAX,moffs32 moffs32 must be 4-byte aligned. 

A3 MOV moffs32,EAX moffs32 must be 4-byte aligned. 

C7 /0 MOV m32,imm32 m32 must be 4-byte aligned. 

FF /6 PUSH m32 m32 must be 4-byte aligned. 

 Local APIC MSR Accesses 

The hypervisor provides accelerated MSR access to high usage memory mapped APIC registers. These 
are the TPR, EOI, and the ICR registers. The ICR low and ICR high registers are combined into one MSR. 

MSR Address Register Name Function 

0x40000070 HV_X64_MSR_EOI Accesses the APIC EOI 

0x40000071 HV_X64_MSR_ICR Accesses the APIC ICR-high and ICR-low 

0x40000072 HV_X64_MSR_TPR Access the APIC TPR 

 
For performance reasons, the guest operating system should follow the hypervisor recommendation for 
the usage of the APIC MSRs (see section 2.4)  
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10.2.3.1 EOI Register 

63:32 31:0 

Ignored EOI value 

 

Bits Description Attributes 

63:32 RsvdZ (reserved, should be zero) Write 

31:0 EOI value Write 

This is a write-only register, and it sets a value into the APIC EOI register. Attempts to read from this 
register will result in a #GP fault. 

10.2.3.2 ICR Register 

63:32 31:0 

ICR high ICR low 

 

Bits Description Attributes 

63:32 ICR high value Read/write 

31:0 ICR low value Read/write 

The values of ICR high and ICR low are read from or written into the corresponding APIC ICR high and 
low registers. 

10.2.3.3 TPR Register 

63:8 7:0 

RsvdZ TPR value 

 

Bits Description Attributes 

63:8 RsvdZ (reserved, should be zero) Read/write 

7:0 TPR value Read/write 

The value of the APIC TPR register is read or written. 

NOTE 
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This MSR is intended to accelerate access to the TPR in 32-bit mode guest partitions. 64-bit mode guest 
partitions should set the TPR by way of CR8. 

10.3 Virtual Interrupts 

 Virtual Interrupt Overview 

The hypervisor provides interfaces that allow a partition to send virtual interrupts to virtual processors. 
This is useful for emulating an IOAPIC or a legacy 8259 PIC (programmable interrupt controller). 

 Virtual Interrupt Types 

To send a virtual interrupt, software must call HvAssertVirtualInterrupt and specify a virtual processor 
within the target partition or VTL. It must also specify the interrupt type that determines the behavior: 

• HvX64InterruptTypeNmi generates a non-maskable interrupt on the specified processor. 

• HvX64InterruptTypeSmi generates a system management interrupt on the specified processor. 

• HvX64InterruptTypeInit generates an INIT interrupt on the specified processor. 

• HvX64InterruptTypeSipi generates a start inter-processor interrupt. If the target processor is in 
wait-for-SIPI state, it causes the target processor to begin executing in real mode at an address 
determined by the SIPI vector as specified by the x64 architecture. 

• HvX64InterruptTypeFixed generates a fixed interrupt latched into the local APIC’s interrupt 
request register (IRR). A fixed interrupt can be edge-triggered or level-triggered. Withdrawing an 
edge-triggered interrupt does not clear the corresponding bit in the IRR. Withdrawing a level-
triggered interrupt clears the corresponding bit in the IRR. 

• HvX64InterruptTypeLowestPriority is like a fixed interrupt except that it is delivered only to the 
lowest-priority destination virtual processor. 

• HvX64InterruptTypeExtInt generates a fixed level-triggered interrupt. The behavior is the same 
as with HvX64InterruptTypeFixed, with the following exceptions: 

o It is always directed at the boot processor, and 

o It can be used when the APIC is software disabled. 

Regardless of whether the APIC is enabled or not, the PPR (process priority register) is not used in 
determining whether the interrupt will be serviced. This type is also special in that it is always directed 
at the boot processor. It also requires the use of a separate hypercall, HvClearVirtualInterrupt, to clear 
an acknowledged interrupt before subsequent interrupts of this type can be asserted. 

 Trigger Types 

Virtual interrupts are either edge-triggered or level-triggered. Edge-triggered interrupts are latched 
upon assertion and cannot be withdrawn. Level-triggered interrupts are not latched and can potentially 
be withdrawn by deasserting. The following table indicates, for each interrupt type, what the implicit 
interrupt trigger type is and whether a vector should be specified with the virtual interrupt. 

Interrupt type Vector applicable? Trigger type 

NMI No Edge 
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Interrupt type Vector applicable? Trigger type 

INIT No Edge 

SIPI Yes Edge 

Fixed Yes Edge or Level 

Lowest Priority Yes Edge or Level 

ExtINT Yes Level 

SMI Yes Edge 

Sometime after a virtual interrupt is asserted, it may be acknowledged by the virtual processor. Until 
then, level-triggered virtual interrupts can be deasserted by calling HvAssertVirtualInterrupt with vector 
HV_INTERRUPT_VECTOR_NONE or it can be re-asserted by calling HvAssertVirtualInterrupt. Deasserting 
an edge-triggered interrupt is unnecessary and has no effect. 

 EOI Intercepts 

An intercept is defined for processor events (specifically, memory accesses) that indicate the EOI (end of 
interrupt) for a level-triggered fixed interrupt. An EOI intercept is the expected (eventual) response by 
the child to a parent asserting a level triggered interrupt using the HvAssertVirtualInterrupt hypercall. 
The intercept is delivered at the instruction boundary following the instruction that issued the EOI.  

For performance reasons, it is desirable to reduce the number of EOI intercepts. Most EOI intercepts can 
be eliminated and done lazily if the guest OS leaves a marker when it performs an EOI. However, there 
are two cases for which EOI intercepts are strictly necessary. 

• A level triggered interrupt is EOI’ed, since the hypervisor needs to either EOI the physical APIC 
(in case of the root partition) or send an EOI message (in case of a non-root partition) when the 
guest performs an EOI. 

• A lower priority interrupt is pending, since the hypervisor needs to re-evaluate interrupts when 
the guest performs an EOI. 

 EOI Assist 

One field in the virtual VP assist page (see 7.8.7) is the EOI Assist field. The EOI Assist field resides at 
offset 0 of the overlay page and is DWORD sized. The format of the EOI assist field is as follows: 

31:1 0 

Reserved to Zero No EOI Required 

The OS performs an EOI by atomically writing zero to the EOI Assist field of the virtual  VP assist page 
and checking whether the “No EOI required” field was previously zero. If it was, the OS must write to the 
HV_X64_APIC_EOI MSR thereby triggering an intercept into the hypervisor. The following code is 
recommended to perform an EOI: 
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lea  rcx, [VirtualApicAssistVa] 
btr  [rcx], 0 
jc  NoEoiRequired 
 
mov  ecx, HV_X64_APIC_EOI 
wrmsr 
 
NoEoiRequired: 
 

The hypervisor sets the “No EOI required” bit when it injects a virtual interrupt if the following 
conditions are satisfied: 

• The virtual interrupt is edge-triggered, and 

• There are no lower priority interrupts pending 

If, at a later time, a lower priority interrupt is requested, the hypervisor clears the “No EOI required” 
such that a subsequent EOI causes an intercept. 

In case of nested interrupts, the EOI intercept is avoided only for the highest priority interrupt. This is 
necessary since no count is maintained for the number of EOIs performed by the OS. Therefore only the 
first EOI can be avoided and since the first EOI clears the “No EOI Required” bit, the next EOI generates 
an intercept. However nested interrupts are rare, so this is not a problem in the common case. 

Note that devices and/or the I/O APIC (physical or synthetic) need not be notified of an EOI for an edge-
triggered interrupt – the hypervisor intercepts such EOIs only to update the virtual APIC state. In some 
cases, the virtual APIC state can be lazily updated – in such cases, the “NoEoiRequired” bit is set by the 
hypervisor indicating to the guest that an EOI intercept is not necessary. At a later instant, the 
hypervisor can derive the state of the local APIC depending on the current value of the “NoEoiRequired” 
bit. 

Enabling and disabling this enlightenment can be done at any time independently of the interrupt 
activity and the APIC state at that moment. While the enlightenment is enabled, conventional EOIs can 
still be performed irrespective of the “No EOI required” value but they will not realize the performance 
benefit of the enlightenment. 

10.4 Virtual Interrupt Data Types 

 Interrupt Types 

Several virtual interrupt types are supported. 

 
typedef enum 
{ 
 HvX64InterruptTypeFixed   = 0x0000, 
 HvX64InterruptTypeLowestPriority = 0x0001, 
 HvX64InterruptTypeNmi   = 0x0004, 
 HvX64InterruptTypeInit   = 0x0005, 
 HvX64InterruptTypeSipi   = 0x0006, 
 HvX64InterruptTypeExtInt  = 0x0007 
} HV_INTERRUPT_TYPE; 
 

 Interrupt Control 

The interrupt control specifies the type of the virtual interrupt, its destination mode and whether the 
virtual interrupt is edge or level triggered. 
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typedef struct 
{  
 HV_INTERRUPT_TYPE InterruptType; 
 UINT32  LevelTriggered:1; 
 UINT32  LogicalDestinationMode:1; 
 UINT32  Reserved:30; 
} HV_INTERRUPT_CONTROL; 
 

 Interrupt Vectors 

Interrupt vectors are represented by a 32-bit value. A special value is used to indicate “no interrupt 
vector” and is used by calls that indicate whether a previous interrupt was acknowledged. 

 
typedef UINT32 HV_INTERRUPT_VECTOR; 
typedef HV_INTERRUPT_VECTOR *PHV_INTERRUPT_VECTOR; 
 
 
#define HV_INTERRUPT_VECTOR_NONE 0xFFFFFFFF 
 

 MSI Entry 

typedef union  
{ 
    struct 
    { 
        UINT32 Address; 
        UINT32 Data; 
    }; 
 
    UINT64 AsUINT64; 
 
} HV_MSI_ENTRY; 

Note: in the case of MSI multiple message enabled devices, each vector is retargeted independently. 
“Data” is the data value sent by the device when signaling the specific vector. In other words, it is the 
data field returned by the VSP with the low bits set to the index (0-31) of the vector. 
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 Interrupt Source 

typedef enum 
{ 
    HvInterruptSourceMsi = 1, 
 
} HV_INTERRUPT_SOURCE; 

 Interrupt Entry 

typedef struct 
{ 
    HV_INTERRUPT_SOURCE InterruptSource; 
    UINT32 Reserved; 
 
    union 
    { 
        HV_MSI_ENTRY MsiEntry; 
        UINT64 Data; 
    }; 
 
} HV_INTERRUPT_ENTRY; 

 Device Interrupt Target 

typedef struct 
{ 
    HV_INTERRUPT_VECTOR Vector; 
    UINT32 Flags; 
 
    union 
    { 
        UINT64 ProcessorMask; 
        UINT64 ProcessorSet[]; 
    }; 
 
} HV_DEVICE_INTERRUPT_TARGET; 

“Flags” supplies optional flags for the interrupt target: 

#define HV_DEVICE_INTERRUPT_TARGET_MULTICAST        1 
#define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET    2 

“Multicast” indicates that the interrupt is sent to all processors in the target set. By default, the 
interrupt is sent to an arbitrary single processor in the target set. 

10.5 Virtual Interrupt Interfaces 

 HvAssertVirtualInterrupt 

The HvAssertVirtualInterrupt hypercall requests a virtual interrupt to be presented to the specified 
virtual processor(s). 
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Wrapper Interface 

 
HV_STATUS 
HvAssertVirtualInterrupt( 
 __in  HV_PARTITION_ID DestinationPartition, 
 __in  HV_INTERRUPT_CONTROL InterruptControl, 
 __in  UINT64 DestinationAddress, 
 __in  HV_INTERRUPT_VECTOR RequestedVector 
 __in  HV_VTL TargetVtl 
 __in  UINT8  Reservedz0 
 __in  UINT16 ReservedZ1 
 ); 
 

Native Interface 

HvAssertVirtualInterrupt 

 Call Code = 0x0094 

 Input Parameters 

0 DestinationPartition (8 bytes) 

8 InterruptControl (8 bytes)  

16 DestinationAddress (8 bytes) 

24 RequestedVecto

r (4 bytes) 

TargetVtl (1 

byte) 

Padding (3 bytes) 

Description 

For information on virtual interrupts, see section 10.2.3. 

If the call is made twice in a row with the same interrupt type specified in the InterruptControl 
parameter, the behavior depends upon whether or not the first interrupt was acknowledged by the 
virtual processor before the second call is made. 

If the first interrupt has already been acknowledged, then the second call is treated as a new assertion. 

If the first interrupt has not yet been acknowledged, then the second call supersedes the previous 
assertion with the new vector. If the second call specifies the vector HV_INTERRUPT_VECTOR_NONE, 
then the call acts as a deassertion. 

The behavior of this call differs for interrupts of type HvX64InterruptTypeExtInt in the following ways: 

This interrupt type is always targeted at the boot processor. The boot processor is identified by a virtual 
processor index of zero. The DestinationAddress parameter must, therefore, be zero. 

Calls to HvAssertVirtualInterrupt will fail if the interrupt asserted by a previous call has already been 
acknowledged by the processor. This acknowledgement must first be cleared by calling 
HvClearVirtualInterrupt. This is especially useful when implementing an external interrupt controller, 
such as the 8259 PIC. It prevents HvAssertVirtualInterrupt from overwriting the previous 
acknowledgement, which may need to be reported through the external interrupt controller. 
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Input Parameters 

DestinationPartition specifies the partition. 

InterruptControl specifies the type of the virtual interrupt that should be asserted, its destination mode 
and whether the virtual interrupt is edge or level triggered. 

DestinationAddress specifies the destination virtual processor(s). In case of physical destination 
mode, the destination address specifies the physical APIC ID of the target virtual processor. In case 
of logical destination mode, the destination address specifies the logical APIC ID of the set of target 
virtual processors. This value must be zero for external interrupt delivery mode where the interrupt 
request is always sent to the boot processor. 

RequestedVector specifies the interrupt vector. This value is used only for fixed, lowest-priority, 
external, and SIPI interrupt types. In all other cases, a vector of zero must be specified. 

TargetVtl specifies the VTL to be targeted for this call. 

Output Parameters 

None. 

Restrictions 

• The partition specified by DestinationPartition must be in the “active” state. 

• The caller must be the parent of the partition specified by DestinationPartition. 

Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller is not the parent of the 

specified partition. 

HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid. 

HV_STATUS_INVALID_VP_INDEX The virtual processor selected by the 

DestinationAddress parameter is not 

valid. 

For interrupts of type 

HvX64InterruptTypeExtInt, the 

DestinationAddress was non-zero. 

HV_STATUS_INVALID_PARAMETER 

 

One or more fields of the specified 

interrupt control are invalid or reserved 

bits within the interrupt control are set. 

The specified destination address is 

invalid or is non-zero for an external 

interrupt type. 

The specified vector is not within a valid 

range (0 to 255 inclusive or 

HV_INTERRUPT_VECTOR_NONE). 
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Status code Error condition 

A non-zero vector is specified with an 

interrupt type that is not fixed, lowest-

priority, external, or SIPI. 

HV_STATUS_ACKNOWLEDGED An external interrupt cannot be 

asserted because a previously-asserted 

external interrupt was acknowledged by 

the virtual processor and has not yet 

been cleared. 

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the 

“active” state. 

HV_STATUS_INVALID_VTL_STATE The VTL state conflicts with the 
requested VTL count property change.   

 

 HvSendSyntheticClusterIpi 

This hypercall sends a virtual fixed interrupt to the specified virtual processor set. It does not support 
NMIs. 

Wrapper Interface 

 

HV_STATUS 

HvSendSyntheticClusterIpi( 

__in  UINT32   Vector; 

__in  HV_INPUT_VTL  TargetVtl; 

__in  UINT64   ProcessorMask; 

 ); 

 

Native Interface 

HvSendSyntheticClusterIpi 

 Call Code = 0x000b 

 Input Parameters 

0 Vector (4 bytes) TargetVtl (1 byte) Rsvd (3 bytes) 

8 ProcessorMask (8 bytes)  
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Input Parameters 

Vector specifies the vector asserted. Must be between >= 0x10 and <= 0xFF. 

TargetVtl specifies the VTL to target. 

ProcessorMask specifies a mask consisting of HV_VP_INDEX, representing which VPs to target. 

Output Parameters 

None. 

Restrictions 

• This hypercall does not support NMI’s (non-maskable interrupts) 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER 

 

One or more fields of the specified 

interrupt control are invalid or reserved 

bits within the interrupt control are set. 

 HvSendSyntheticClusterIpiEx 

This hypercall sends a virtual fixed interrupt to the specified virtual processor set. It does not support 
NMIs. This version differs from HvSendSyntheticClusterIpi in that a variable sized VP set can be specified.  

The following checks should be used to infer the availability of this hypercall: 

1. HvSendSyntheticClusterIpi must be available (see section 9.1.3). 

2. ExProcessorMasks must be indicated via CPUID leaf 0x40000004 (see 2.4.5) 

Wrapper Interface 

 

HV_STATUS 

HvSendSyntheticClusterIpiEx( 

__in  UINT32   Vector; 

__in  HV_INPUT_VTL  TargetVtl; 

__in  HV_VP_SET   ProcessorSet; 

 ); 

 

Native Interface 

HvSendSyntheticClusterIpiEx 

 Call Code = 0x0015 

 Input Parameters 

0 Vector (4 bytes) TargetVtl (1 byte) Rsvd (3 bytes) 
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8 ProcessorSet (variably sized)  

Input Parameters 

Vector specifies the vector asserted. Must be between >= 0x10 and <= 0xFF. 

TargetVtl specifies the VTL to target. 

ProcessorSet specifies a set consisting of HV_VP_SET representing which VPs to target. 

Output Parameters 

None. 

Restrictions 

• This hypercall does not support NMI’s (non-maskable interrupts) 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER 

 

One or more fields of the specified 

interrupt control are invalid or reserved 

bits within the interrupt control are set. 

 HvRetargetDeviceInterrupt 

This hypercall retargets a device interrupt, which may be useful for rebalancing IRQs within a guest. 

Wrapper Interface 

 

HV_STATUS 

HvRetargetDeviceInterrupt( 

__in  HV_PARTITION_ID    PartitionId; 

__in UINT64     DeviceId; 

__in HV_INTERRUPT_ENTRY   InterruptEntry; 

__in  UINT64    Reserved; 

__in  HV_DEVICE_INTERRUPT_TARGET InterruptTarget 

 ); 

 

Native Interface 

HvRetargetDeviceInterrupt 

 Call Code = 0x007e 

 Input Parameters 

0 PartitionId (8 bytes) 

8 DeviceId (8 bytes)  
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16 InterruptEntry (16 bytes) 

32 

64 Reserved 

72 InterruptTarget (16 bytes) 

80 

Input Parameters 

PartitionId: must be HV_PARTITION_SELF (-1) 

DeviceId: supplies the unique (within a guest) logical device ID that is assigned by the host. 

InterruptEntry: supplies the MSI address and data that identifies the interrupt (see 10.4.6). 

InterruptTarget: specifies the new virtual interrupt target (see 10.4.7). 

Output Parameters 

None. 

Restrictions 

• Virtual processor indices specified by the processor mask must exist at the time of calling. 
Specifying the special “all processors” type is invalid for this hypercall. 

• Reserved fields must be 0. 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER 

 

One or more fields of the specified 

interrupt control are invalid or reserved 

bits within the interrupt control are set. 

HV_STATUS_ACCESS_DENIED The caller did not possess sufficient 

access rights to perform the requested 

operation. 

HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid. 

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the 

“active” state. 

HV_STATUS_FEATURE_UNAVAILABLE A hypervisor feature is not available to 

the caller. 

HV_STATUS_INVALID_PARAMETER One or more fields of the specified 

interrupt control are invalid or reserved 

bits within the interrupt control are set. 
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Status code Error condition 

HV_STATUS_INVALID_DEVICE_ID The supplied device ID is invalid. 

HV_STATUS_OPERATION_DENIED The operation could not be performed. 

(The actual cause depends on the 

operation.) 
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11 Inter-Partition Communication 

11.1 Overview 

The hypervisor provides two simple mechanisms for one partition to communicate with another: 
messages and events. In both cases, notification is signaled by using the SynIC (synthetic interrupt 
controller). 

11.2 SynIC Messages 

The hypervisor provides a simple inter-partition communication facility that allows one partition to send 
a parameterized message to another partition. (Because the message is sent asynchronously, it is said to 
be posted.) The destination partition may be notified of the arrival of this message through an interrupt.  

11.3 Message Buffers 

A message buffer is used internally to the hypervisor to store a message until it is delivered to the 
recipient. The hypervisor maintains several sets of message buffers. 

 Guest Message Buffers 

The hypervisor maintains a set of guest message buffers for each port. These buffers are used for 
messages sent explicitly from one partition to another by a guest. When a port is created, the hypervisor 
will allocate sixteen (16) message buffers from the port owner’s memory pool. These message buffers 
are returned to the memory pool when the port is deleted. 

 Timer Message Buffers 

The hypervisor maintains four timer message buffers for each virtual processor (one per synthetic 
interrupt timer). They are allocated when a virtual processor is created.  

 Intercept Message Buffers 

The hypervisor maintains one intercept message buffer for each virtual processor. It is used for 
intercepts. The intercept message buffer is allocated when the virtual processor is created. 

 Event Log Message Buffers 

The hypervisor maintains one event log message buffer for each event log group. It is used to notify the 
root partition when one or more event log buffers are full.  

 Message Buffer Queues 

For each partition and each virtual processor in the partition, the hypervisor maintains one queue of 
message buffers for each SINTx (synthetic interrupt source) in the virtual processor’s SynIC. All message 
queues of a virtual processor are empty upon creation or reset of the virtual processor. 

 Reliability and Sequencing of Guest Message Buffers 

Messages successfully posted by a guest have been queued for delivery by the hypervisor. Actual 
delivery and reception by the target partition is dependent upon its correct operation. Partitions may 
disable delivery of messages to particular virtual processors by either disabling its SynIC or disabling the 
SIMP. 
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Breaking a connection will not affect undelivered (queued) messages. Deletion of the target port will 
always free all of the port’s message buffers, whether they are available or contain undelivered 
(queued) messages. 

Messages arrive in the order in which they have been successfully posted. If the receiving port is 
associated with a specific virtual processor, then messages will arrive in the same order in which they 
were posted. If the receiving port is associated with HV_ANY_VP, then messages are not guaranteed to 
arrive in any particular order. 

11.4 Messages 

When a message is sent, the hypervisor selects a free message buffer. The set of available message 
buffers depends on the event that triggered the sending of the message. 

The hypervisor marks the message buffer “in use” and fills in the message header with the message 
type, payload size, and information about the sender. Finally, it fills in the message payload. The 
contents of the payload depend on the event that triggered the message. This document specifies the 
payloads of all messages generated by the hypervisor. The payload for messages sent by calling 
HvPostMessage must be defined by the caller. 

The hypervisor then appends the message buffer to a receiving message queue. The receiving message 
queue depends on the event that triggered the sending of the message. For all message types, SINTx is 
either implicit (in the case of intercept messages), explicit (in the case of timer messages) or specified by 
a port ID (in the case of guest messages). The target virtual processor is either explicitly specified or 
chosen by the hypervisor when the message is enqueued. Virtual processors whose SynIC or SIM page 
(see section 11.9) is disabled will not be considered as potential targets. If no targets are available, the 
hypervisor terminates the operation and returns an error to the caller. 

The hypervisor then determines whether the specified SINTx message slot within the SIM page for the 
target virtual processor is empty. (See section 11.9 for a description of the SIM page.) If the message 
type in the message slot is equal to HvMessageTypeNone (that is, zero), the message slot is assumed to 
be empty. In this case, the hypervisor dequeues the message buffer and copies its contents to the 
message slot within the SIM page. The hypervisor may copy only the number of payload bytes 
associated with the message. The hypervisor also attempts to generate an edge-triggered interrupt for 
the specified SINTx. If the APIC is software disabled or the SINTx is masked, the interrupt is lost. The 
arrival of this interrupt notifies the guest that a new message has arrived. If the SIM page is disabled or 
the message slot within the SIM page is not empty, the message remains queued, and no interrupt is 
generated. 

As with any fixed-priority interrupt, the interrupt is not acknowledged by the virtual processor until the 
PPR (process priority register) is less than the vector specified in the SINTx register and interrupts are 
not masked by the virtual processor (rFLAGS[IF] is set to 1). 

Multiple message buffers with the same SINTx can be queued to a virtual processor. In this case, the 
hypervisor will deliver the first message (that is, write it to the SIM page) and leave the others queued 
until one of three events occur: 

• Another message buffer is queued. 

• The guest indicates the “end of interrupt” by writing to the APIC’s EOI register. 

• The guest indicates the “end of message” by writing to the SynIC’s EOM register. 
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In all three cases, the hypervisor will scan one or more message buffer queues and attempt to deliver 
additional messages. The hypervisor also attempts to generate an edge-triggered interrupt, indicating 
that a new message has arrived.  

If a queued message cannot be delivered because the corresponding SIM entry is still in use, the 
hypervisor will attempt to deliver it again after an unspecified time (typically on the order of 
milliseconds). To avoid this potential latency, software should mark the SIM entry as unused before 
indicating an EOI or EOM. 

 Recommended Message Handling 

The SynIC message delivery mechanism is designed to accommodate efficient delivery and receipt of 
messages within a target partition. It is recommended that the message handling ISR (interrupt service 
routine) within the target partition perform the following steps: 

• Examine the message that was deposited into the SIM message slot.  

• Copy the contents of the message to another location and set the message type within the 
message slot to HvMessageTypeNone.  

• Indicate the end of interrupt for the vector by writing to the APIC’s EOI register.  

• Perform any actions implied by the message. 

 Message Sources 

The classes of events that can trigger the sending of a message are as follows: 

• Intercepts: Any intercept in a virtual processor will cause a message to be sent. The message 
buffer used is the intercept message buffer of the virtual processor that caused the intercept. The 
receiving message queue belongs to SINT0 of a virtual processor that the hypervisor selects non-
deterministically from among the virtual processors of the parent partition. The message payload 
describes the event that caused the intercept. If the intercept message buffer is already queued 
when an intercept occurs, it is removed from the queue, overwritten, and placed back on the 
queue. This should occur only if the software running in the parent partition clears the “suspended 
for intercept” register before receiving the intercept message. This situation is considered a 
programming error. 

• Timers: The timer mechanisms defined in chapter 12 will cause messages to be sent. Associated 
with each virtual processor are four dedicated timer message buffers, one for each timer. The 
receiving message queue belongs to SINTx of the virtual processor whose timer triggered the 
sending of the message. 

• Guest messages: The hypervisor supports message passing as an inter-partition communication 
mechanism between guests. The interfaces defined in this section allow one guest to send 
messages to another guest. The message buffers used for messages of this class are taken from 
the receiver’s per-port pool of guest message buffers.  

• Event log buffers: The hypervisor will send a message when an event log buffer has been filled.  

11.5 SynIC Event Flags 

In addition to messages, the SynIC supports a second type of cross-partition notification mechanism 
called event flags. Event flags may be set explicitly using the HvSignalEvent hypercall or implicitly by the 
hypervisor as a consequence of the monitored notification facility. 
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 Event Flag Delivery 

When a partition calls HvSignalEvent, it specifies an event flag number. The hypervisor responds by 
atomically setting a bit within the receiving virtual processor’s SIEF page. (See section 11.9 for a detailed 
description of the SIEF page.)  Virtual processors whose SynIC or SIEF page is disabled will not be 
considered as potential targets. If no targets are available, the hypervisor terminates the operation and 
returns an error to the caller. 

If the event flag was previously cleared, the hypervisor attempts to notify the receiving partition that the 
flag is now set by generating an edge-triggered interrupt. The target virtual processor, along with the 
target SINTx, is specified as part of a port’s creation. (See the following for information about ports.) If 
the SINTx is masked, HvSignalEvent returns HV_STATUS_INVALID_SYNIC_STATE.  

As with any fixed-priority external interrupt, the interrupt is not acknowledged by the virtual processor 
until the process priority register (PPR) is less than the vector specified in the SINTx register and 
interrupts are not masked by the virtual processor (rFLAGS[IF] is set to 1). 

 Recommended Event Flag Handling 

It is recommended that the event flag interrupt service routine (ISR) within the target partition perform the 
following steps: 

• Examine the event flags and determine which ones, if any, are set.  

• Clear one or more event flags by using a locked (atomic) operation such as LOCK AND or LOCK 
CMPXCHG.  

• Indicate the end of interrupt for the vector by writing to the APIC’s EOI register.  

• Perform any actions implied by the event flags that were set. 

 Event Flags versus Messages 

Event flags are lighter-weight than messages and are therefore lower overhead. Furthermore, event 
flags do not require any buffer allocation or queuing within the hypervisor, so HvSignalEvent will never 
fail due to insufficient resources. 

11.6 Ports and Connections 

A message or event sent from one guest to another must be sent through a pre-allocated connection. A 
connection, in turn, must be associated with a destination port.  

A port is allocated from the receiver’s memory pool and specifies which virtual processor and SINTx to 
target. Event ports have a “base flag number” and “flag count” that allow the caller to specify a range of 
valid event flags for that port.  

Connections are allocated from the sender’s memory pool. When a connection is created, it must be 
associated with a valid port. This binding creates a simple, one-way communication channel. If a port is 
subsequently deleted, its connection, while it remains, becomes useless. 

11.7 Monitored Notifications 

The monitored notification facility (MNF) introduces the concept of shared triggers between two 
communicating partitions. MNF uses a port (in the recipient partition) and a connection (in the 
originating partition) to establish a hypervisor-monitored, unidirectional notification channel. A monitor 
port-and-connection pair alone isn’t enough to form the said notification channel. It needs in addition to 
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be associated with an event connection through the monitored notification parameters in the 
monitored notification page  

When the channel is created, a monitored notification is established in an overlay page that includes the 
following: 

• A trigger, 

• A latency hint 

• A set of input parameters appropriate for the HvSignalEvent hypercall. 

After the monitor page is established, the hypervisor periodically examines the trigger at a rate subject 
to the latency hint to determine if a notification is warranted. If so, the hypervisor invokes the 
HvSignalEvent hypercall internally on behalf of the originating guest. The behavior is the same as if the 
originating guest had invoked the HvSignalEvent directly. 

 Monitored Notification Trigger 

The trigger can be directly accessed by guests without hypervisor intervention. It is set or cleared by the 
inter-partition communication code running in the communicating guests. The trigger must be placed in 
memory that is shared by the two communicating partitions and the hypervisor.  

 Monitored Notification Latency Hint 

The latency hint specifies an approximate wait period between hypervisor examinations of the trigger. It 
is expressed in 100 nanosecond units. The hypervisor can override the specified latency value if making 
it somewhat smaller or larger is more efficient. The hypervisor can also override the specified latency 
value if it exceeds minimum or maximum values. 

 Monitored Notification Parameters 

Each MNF trigger is defined by a set of input parameters compatible with those accepted by an 
HvSignalEvent hypercall. These parameters include an event flag number and a connection ID. If the 
internal invocation of the HvSignalEvent hypercall fails, the error is discarded and the invocation is 
treated as a NOP. 

 Monitored Notification Page 

Monitored notifications are collected into monitor overlay pages that can be created or deleted only 
from a parent partition. The parent partition creates a monitor-page port in the recipient and specifies 
the GPA of the recipient’s associated monitor page. The parent subsequently creates a connection to 
that the monitor page port in the originator and specifies the GPA of the originator’s associated monitor 
page. While each of these two GPAs is partition-specific, the underlying physical page is a common page 
that is managed by the hypervisor. Changes to the page are visible from both partitions as well as the 
hypervisor. 

11.8 SynIC MSRs 

In addition to the memory-mapped registers defined for a local APIC, the following model-specific 
registers (MSRs) are defined in the SynIC. Each virtual processor has its own copy of these registers, so 
they can be programmed independently. 
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MSR Address Register Name Function 

0x40000080 SCONTROL SynIC Control 

0x40000081 SVERSION SynIC Version 

0x40000082 SIEFP Interrupt Event Flags Page 

0x40000083 SIMP Interrupt Message Page 

0x40000084 EOM End of message 

0x40000090 SINT0 Interrupt source 0 (hypervisor) 

0x40000091 SINT1 Interrupt source 1 

0x40000092 SINT2 Interrupt source 2 

0x40000093 SINT3 Interrupt source 3 

0x40000094 SINT4 Interrupt source 4 

0x40000095 SINT5 Interrupt source 5 

0x40000096 SINT6 Interrupt source 6 

0x40000097 SINT7 Interrupt source 7 

0x40000098 SINT8 Interrupt source 8 

0x40000099 SINT9 Interrupt source 9 

0x4000009A SINT10 Interrupt source 10 

0x4000009B SINT11 Interrupt source 11 

0x4000009C SINT12 Interrupt source 12 

0x4000009D SINT13 Interrupt source 13 

0x4000009E SINT14 Interrupt source 14 

0x4000009F SINT15 Interrupt source 15 

 SCONTROL Register 

63:1 0 

RsvdP Enable 
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This register is used to control SynIC behavior of the virtual processor. 

Bits Description Attributes 

63:1 RsvdP (value must be preserved) Read/write 

0 Enable 

When set, this virtual processor will allow message 

queuing and event flag notifications to be posted to its 

SynIC (see chapter 10.5.4 for details). When clear, 

message queuing and event flag notifications cannot be 

directed to this virtual processor. 

Read/write 

At virtual processor creation time and upon processor reset, the value of this SCONTROL (SynIC control 
register) is 0x0000000000000000. Thus, message queuing and event flag notifications will be disabled. 
SVERSION Register 

63:32 31:0 

Rsvd SynIC Version (0x00000001) 

This is a read-only register, and it returns the version number of the SynIC. For the first version of the 
hypervisor, the value is 0x00000001. Attempts to write to this register result in a #GP fault. 

 SIEFP Register 

63:12 11:1 0 

SIEFP Base Address RsvdP Enable 

 

Bits Description Attributes 

63:12 Base address (in GPA space) of SIEFP 

(low 12 bits assumed to be zero) 

Read/write 

11:1 RsvdP (value should be preserved) Read/write 

0 SIEFP enable Read/write 

At virtual processor creation time and upon processor reset, the value of this SIEFP (synthetic interrupt 
event flags page) register is 0x0000000000000000. Thus, the SIEFP is disabled by default. The guest must 
enable it by setting bit 0. If the specified base address is beyond the end of the partition’s GPA space, 
the SIEFP page will not be accessible to the guest. When modifying the register, guests should preserve 
the value of the reserved bits (1 through 11) for future compatibility. 
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 SIMP Register 

63:12 11:1 0 

SIMP Base Address RsvdP Enable 

 

Bits Description Attributes 

63:12 Base address (in GPA space) of SIMP 

(low 12 bits assumed to be zero) 

Read/write 

11:1 RsvdP (value should be preserved) Read/write 

0 SIMP enable Read/write 

At virtual processor creation time and upon processor reset, the value of this SIMP (synthetic interrupt 
message page) register is 0x0000000000000000. Thus, the SIMP is disabled by default. The guest must 
enable it by setting bit 0. If the specified base address is beyond the end of the partition’s GPA space, 
the SIMP page will not be accessible to the guest. When modifying the register, guests should preserve 
the value of the reserved bits (1 through 11) for future compatibility. 

 SINTx Registers 

63:19 18 17 16 15:8 7:0 

RsvdP Polling AutoEOI Mask RsvdP Vector 

 

Bits Description Attributes 

63:19 RsvdP (value should be preserved) Read/write 

18 Polling Read/write  

17 AutoEOI 

Set if an implicit EOI should be performed upon interrupt 

delivery 

Read/write 

16 Set if the SINT is masked Read/write 

15:8 RsvdP (value should be preserved) Read/write 

7:0 Vector Read/write 

At virtual processor creation time, the default value of all SINTx (synthetic interrupt source) registers is 
0x0000000000010000. Thus, all synthetic interrupt sources are masked by default. The guest must 
unmask them by programming an appropriate vector and clearing bit 16. 
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Setting the polling bit will have the effect of unmasking an interrupt source, except that an actual 
interrupt is not generated. 

The AutoEOI flag indicates that an implicit EOI should be performed by the hypervisor when an interrupt 
is delivered to the virtual processor. In addition, the hypervisor will automatically clear the 
corresponding flag in the “in service register” (ISR) of the virtual APIC. If the guest enables this behavior, 
then it must not perform an EOI in its interrupt service routine. 

The AutoEOI flag can be turned on at any time, though the guest must perform an explicit EOI on an in-
flight interrupt The timing consideration makes it difficult to know whether a particular interrupt needs 
EOI or not, so it is recommended that once SINT is unmasked, its settings are not changed. 

Likewise, the AutoEOI flag can be turned off at any time, though the same concerns about in-flight 
interrupts apply 

Valid values for vector are 16-255 inclusive. Specifying an invalid vector number results in #GP.  

 EOM Register 

63:0 

RsvdZ 

 

Bits Description Attributes 

63:0 RsvdZ (value should be set to zero) Write-only trigger 

A write to the end of message (EOM) register by the guest causes the hypervisor to scan the internal 
message buffer queue(s) associated with the virtual processor. If a message buffer queue contains a 
queued message buffer, the hypervisor attempts to deliver the message. Message delivery succeeds if 
the SIM page is enabled and the message slot corresponding to the SINTx is empty (that is, the message 
type in the header is set to HvMessageTypeNone). If a message is successfully delivered, its 
corresponding internal message buffer is dequeued and marked free. If the corresponding SINTx is not 
masked, an edge-triggered interrupt is delivered (that is, the corresponding bit in the IRR is set). 

This register can be used by guests to “poll” for messages. It can also be used as a way to drain the 
message queue for a SINTx that has been disabled (that is, masked). 

If the message queues are all empty, a write to the EOM register is a no-op. 

Reads from the EOM register always returns zeros. 

11.9 SIM and SIEF Pages 

The SynIC defines two pages that extend the functionality of a traditional APIC. The pages for these two 
addresses are specified by the SIEFP register and the SIMP register (see earlier in this specification for 
these register formats). 

The SIEF and SIM pages are implemented as GPA overlay pages. For a description of overlay pages, see 
section 5.2.1. 
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The addresses of the SIEF and SIM pages should be unique for each virtual processor. Programming 
these pages to overlap other instances of the SIEF or SIM pages or any other overlay page (for example, 
the hypercall page) will result in undefined behavior.  

The hypervisor may implement the SIEF and SIM pages so that a SIEF or SIM instance associated with a 
virtual processor is not accessible to other virtual processors. In such implementations, an access by one 
virtual processor to another virtual processor’s SIEF or SIM page will result in a #MC fault. It is highly 
recommended that guests avoid performing such accesses.  

Read and write accesses by a virtual processor to the SIEF and SIM pages behave like read and write 
accesses to RAM. However, the hypervisor’s SynIC implementation also writes to these pages in 
response to certain events.  

Upon virtual processor creation and reset, the SIEF and SIM pages are cleared to zero. 

The SIEF page consists of a 16-element array of 256-byte event flags (see the following for an 
explanation of event flags). Each array element corresponds to a single synthetic interrupt source 
(SINTx). 

The SIM page consists of a 16-element array of 256-byte messages (see the following HV_MESSAGE data 
structure). Each array element (also known as a message slot) corresponds to a single synthetic interrupt 
source (SINTx). A message slot is said to be “empty” if the message type of the message in the slot is 
equal to HvMessageTypeNone. 

11.10 Inter-Partition Communication Data Types 

 Synthetic Interrupt Sources 

The SynIC supports 16 synthetic interrupt sources. 

 

#define HV_SYNIC_SINT_COUNT  16 

 

 

 

typedef UINT32 HV_SYNIC_SINT_INDEX; 
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 SynIC Message Types 

SynIC messages encode the message type as a 32-bit number. 

typedef enum 

{ 

 HvMessageTypeNone = 0x00000000, 

 

 // Memory access messages 

 HvMessageTypeUnmappedGpa = 0x80000000, 

 HvMessageTypeGpaIntercept = 0x80000001, 

 

 // Timer notifications 

 HvMessageTimerExpired = 0x80000010, 

 

 // Error messages 

 HvMessageTypeInvalidVpRegisterValue = 0x80000020, 

 HvMessageTypeUnrecoverableException = 0x80000021, 

 HvMessageTypeUnsupportedFeature = 0x80000022, 

 HvMessageTypeTlbPageSizeMismatch  = 0x80000023, 

 

 // Trace buffer messages 

 HvMessageTypeEventLogBuffersComplete = 0x80000040, 

 

// Hypercall intercept. 

HvMessageTypeHypercallIntercept = 0x80000050, 

 

 // Platform-specific processor intercept messages 

 HvMessageTypeX64IoPortIntercept = 0x80010000, 

 HvMessageTypeMsrIntercept   = 0x80010001, 

 HvMessageTypeX64CpuidIntercept = 0x80010002, 

HvMessageTypeExceptionIntercept  = 0x80010003, 

HvMessageTypeX64ApicEoi   = 0x80010004, 

HvMessageTypeX64LegacyFpError  = 0x80010005,  

HvMessageTypeRegisterIntercept  = 0x80010006, 

} HV_MESSAGE_TYPE; 

 

 

#define HV_MESSAGE_TYPE_HYPERVISOR_MASK  0x80000000 

 

Any message type that has the high bit set is reserved for use by the hypervisor. Guest-initiated 
messages cannot send messages with a hypervisor message type. 
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For a complete list of messages sent by the hypervisor, see section Error! Reference source not found.. 

 SynIC Message Flags 

 

7:1 0 

RsvdZ MessagePending 

 

Bits Description Meaning 

7:1 RsvdP (value should be set to zero) Reserved 

0 MessagePending One or more messages are pending 

in the message queue 

The MessagePending flag indicates whether or not there are any messages pending in the message 
queue of the synthetic interrupt source. If there are, then an “end of message” must be performed by 
the guest after emptying the message slot. This allows for opportunistic writes to the EOM MSR (only 
when required). Note that this flag may be set by the hypervisor upon message delivery or at any time 
afterwards. The flag should be tested after the message slot has been emptied and if set, then there are 
one or more pending messages and the “end of message” should be performed. 

 

typedef struct 

{ 

 UINT8 MessagePending:1; 

 UINT8 Reserved:7; 

} HV_MESSAGE_FLAGS; 

 

 SynIC Message Format 

SynIC messages are of fixed size composed of a message header (which includes the message type and 
information about where the message originated) followed by the payload. Messages that are sent in 
response to HvPostMessage contain the port ID. Intercept messages contain the partition ID of the 
partition whose virtual processor generated the intercept. Timer intercepts do not have an origination 
ID (that is, the specified ID is zero). 
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#define HV_MESSAGE_SIZE   256 

#define HV_MESSAGE_MAX_PAYLOAD_BYTE_COUNT 240 

#define HV_MESSAGE_MAX_PAYLOAD_QWORD_COUNT 30 

 

 

typedef struct 

{ 

 HV_MESSAGE_TYPE MessageType; 

 UINT16 Reserved; 

 HV_MESSAGE_FLAGS MessageFlags; 

 UINT8 PayloadSize; 

 union 

 { 

        UINT64  OriginationId; 

  HV_PARTITION_ID  Sender; 

  HV_PORT_ID  Port; 

 }; 

} HV_MESSAGE_HEADER; 

 

typedef struct 

{ 

 HV_MESSAGE_HEADER Header; 

 UINT64 Payload[HV_MESSAGE_MAX_PAYLOAD_QWORD_COUNT]; 

} HV_MESSAGE; 

 

 
For a detailed description of the messages sent by the hypervisor, see chapter Error! Reference source 
not found.. 

 SynIC Event Flags 

SynIC event flags are fixed-size bitwise arrays. They are numbered such that the first byte of the array 
contains flags 0 through 7 (0 being the least significant bit) and the second byte of the array contains 
flags 8 through 15 (8 being the least significant bit), and so on. 
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#define HV_EVENT_FLAGS_COUNT               (256 * 8) 

#define HV_EVENT_FLAGS_BYTE_COUNT 256 

 

 

typedef struct 

{ 

 UINT8 Flags[HV_EVENT_FLAGS_BYTE_COUNT]; 

} HV_SYNIC_EVENT_FLAGS; 

 

 Ports 

Destination ports are identified by 32-bit IDs. The high 8 bits of the ID are reserved and must be zero. All 
port IDs are unique within a partition.  

 

typedef union 

{ 

 UINT32 AsUint32; 

 struct 

 { 

     UINT32 Id:24; 

     UINT32 Reserved:8; 

 }; 

} HV_PORT_ID; 

 

Three types of ports are supported: message ports, event ports, and monitor ports. Message ports are 
valid for use with the HvPostMessage hypercall. Event ports are valid for use with the HvSignalEvent 
hypercall. Monitor ports are valid for use with monitor pages that are monitored by the hypervisor and 
result in HvSignalEvent-based notifications when appropriate. 

 

enum HV_PORT_TYPE 

{ 

 HvPortTypeMessage = 1, 

 HvPortTypeEvent = 2, 

 HvPortTypeMonitor = 3 

}; 

 

When a port is created, the following information is specified. 
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typedef struct 

{ 

 HV_PORT_TYPE   PortType; 

 UINT32     ReservedZ; 

 

 union 

 { 

     struct 

        { 

         HV_SYNIC_SINT_INDEX TargetSint; 

         HV_VP_INDEX   TargetVp; 

         UINT64   ReservedZ; 

        } MessagePortInfo; 

 

        struct 

        { 

         HV_SYNIC_SINT_INDEX TargetSint; 

         HV_VP_INDEX   TargetVp; 

         UINT16   BaseFlagNumber; 

         UINT16   FlagCount; 

         UINT32   ReservedZ; 

        } EventPortInfo; 

 

        struct 

     { 

         HV_GPA   MonitorAddress; 

         UINT64   ReservedZ; 

     } MonitorPortInfo; 

 }; 

} HV_PORT_INFO; 

 

 Connections 

Connections are identified by 32-bit IDs. The high 8 bits are reserved and must be zero. All connection 
IDs are unique within a partition.  
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typedef union 

{ 

 UINT32 AsUint32; 

 struct 

 { 

     UINT32 Id:24; 

     UINT32 Reserved:8; 

 }; 

} HV_CONNECTION_ID; 

 

The hypervisor does not ascribe special meaning to any connection IDs.  

 Connection Information 

The following structure contains the information that must be specified when creating a connection: 
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typedef struct 

{ 

 HV_PORT_TYPE  PortType; 

 UINT32   ReservedZ; 

 

 union 

 { 

  struct 

  { 

   UINT64 ReservedZ; 

  } MessageConnectionInfo; 

 

  struct 

  { 

   UINT64 ReservedZ; 

  } EventConnectionInfo; 

 

  struct 

  { 

   HV_GPA MonitorAddress; 

  } MonitorConnectionInfo; 

 }; 

} HV_CONNECTION_INFO, *PHV_CONNECTION_INFO; 

 

11.10.8.1 Monitored Notification Trigger Group 

The monitored notification triggers group structure defines 32 triggers per group. The structure has the 
following format: 
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typedef struct 

{ 

 UINT64  AsUINT64; 

 struct 

 { 

  UINT32 Pending; 

  UINT32 Armed; 

 }; 

} HV_MONITOR_TRIGGER_GROUP, *PHV_MONITOR_TRIGGER_GROUP; 

 

The 32 triggers are represented by two related arrays of bits: Pending and Armed. Setting a trigger bit to 
1in the Pending array indicates to the hypervisor that the related notification should eventually generate 
a signal event. The corresponding bit in the Armed array should be set to 0 whenever the matching 
Pending bit is modified. The Armed bit is used to ensure that a notification is deferred by at least the 
latency specified for the notification. Both of these bits must be updated atomically. 

11.10.8.2 Monitored Notification Parameters 

Each trigger has a set of associated notification parameters that are used by the hypervisor as inputs to 
the implicit HvSignalEvent hypercall that the hypervisor invokes when appropriate. The parameter 
structure has the following format: 

 

typedef struct 

{ 

 HV_CONNECTION_ID  ConnectionId; 

 UINT16   FlagNumber; 

 UINT16   ReservedZ; 

} HV_MONITOR_PARAMETER, *PHV_MONITOR_PARAMETER; 

 

When the hypervisor detects that a monitored notification is pending, it signals the event by making an 
internal call to the HvSignalEvent hypercall and passing it the ConnectionID and FlagNumber members.  
If signaling an event causes an error, the error is discarded; that is, the internal HvSignalEvent call 
becomes a NOP. 

 Monitored Notification Page 

Monitored notifications are defined in a MNF overlay page, which supports four sets of monitored 
notification trigger groups. Each individual 32-bit group can be enabled independently using the 
following structure: 
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typedef union 

{ 

 UINT32    AsUINT32; 

 

 struct 

 { 

  UINT32   GroupEnable:4; 

  UINT32   MonitorDisabled:1; 

  UINT32   ReservedZ:27; 

 }; 

} HV_MONITOR_TRIGGER_STATE, *PHV_MONITOR_TRIGGER_STATE; 

 

GroupEnable and MonitorDisabled are described below. 

The MNF overlay page has the following format: 

 

typedef struct 

{ 

 HV_MONITOR_TRIGGER_STATE TriggerState; 

 UINT32    Reserved1; 

 

 HV_MONITOR_TRIGGER_GROUP TriggerGroup[4]; 

 UINT8     Reserved2[536]; 

 

 UINT16    Latency[4][32]; 

 UINT8     Reserved3[256]; 

 

 HV_MONITOR_PARAMETER  Parameter[4][32]; 

 

 UINT8     Reserved4[1984]; 

} HV_MONITOR_PAGE, *PHV_MONITOR_PAGE; 

 

typedef volatile HV_MONITOR_PAGE *PVHV_MONITOR_PAGE; 

 

TriggerState contains the GroupEnable and MonitorDisabled flags. The GroupEnable flags are an array of 
4 bits, each associated with a trigger group. If GroupEnable[n] is set to one, the corresponding 
TriggerGroup[n] is enabled. Although the GroupEnable flags can be changed at any time, they are 
intended to be semi-static and are typically used to drain pending notifications during a save or restore 
process. The hypervisor inspects the group enable flags at varying rates. If they are all disabled (set to 
zero), the hypervisor might significantly reduce its inspection rate. The hypervisor inspects all of the 
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enabled monitored notifications approximately at the lowest latency value specified for the monitors of 
each group. 

The MonitorDisabled flag is set when the hypervisor is temporarily not monitoring the monitor page. If 
the caller observes this condition, it may trigger the read of the page by calling the HVSignalEvent 
hypercall.   

TriggerGroup is an array of four trigger group structures. For details, see section 11.10.8.1. 

Latency is a hint; suggesting how often the hypervisor should inspect the monitored notifications. The 
hypervisor might adjust it to be smaller or larger than this value if doing so is either more efficient or to 
conform to implementation-specific limitations. Latency is specified in 100-nanosecond units. 

Parameter is an array of notification parameters, one per trigger. The hypervisor can monitor up to 128 
notifications in groups of 32. For details, see section 11.10.8.2 . 

The Reservedn bits are reserved for use by the hypervisor. Changing their value is boundedly undefined. 

11.11 Inter-Partition Communication Interfaces 

 HvPostMessage 

The HvPostMessage hypercall attempts to post (that is, send asynchronously) a message to the specified 
connection, which has an associated destination port. 
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Wrapper Interface 

 

HV_STATUS 

HvPostMessage( 

 __in HV_CONNECTION_ID ConnectionId, 

 __in HV_MESSAGE_TYPE MessageType, 

 __in UINT32 PayloadSize, 

 __in_ecount(PayloadSize)  

      PCVOID Message 

 ); 

 

Native Interface 

HvPostMessage 

 Call Code = 0x005C 

 Input Parameters 

0 ConnectionId (4 bytes) Padding (4 bytes) 

8 MessageType (4 bytes) PayloadSize (4 bytes) 

16 Message[0] (8 bytes) 

…
 

...
 

248 Message[29] (8 bytes) 

Description 

If the message is successfully posted, then it will be queued for delivery to a virtual processor within the 
partition associated with the port. 

For details about message delivery, see section 10.5.4. 

Input Parameters 

ConnectionId specifies the ID of the connection created by calling HvConnectPort. 

MessageType specifies the message type that will appear within the message header. The caller can 
specify any 32-bit message type whose most significant bit is cleared, with the exception of zero. 
Message types with the high bit set are reserved for use by the hypervisor. 

PayloadSize specifies the number of bytes that are included in the message. 

Message specifies the payload of the message—up to 240 bytes total. Only the first n bytes are 
actually sent to the destination partition, where n is provided in the PayloadSize parameter. 

Output Parameters 

None. 
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Restrictions 

• The partition that is the target of the connection must be in the “active” state. 

Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller’s partition does not 

possess the PostMessages privilege. 

HV_STATUS_INVALID_CONNECTION_ID The specified connection ID is 

invalid. 

HV_STATUS_INVALID_PORT_ID The port associated with the 

specified connection has been 

deleted. 

The port associated with the 

specified connection belongs to a 

partition that is not in the “active” 

state. 

The port associated with the 

specified connection is not a 

"message" type port. 

HV_STATUS_INVALID_PARAMETER 

 

 

The most significant bit of the 

specified message type is set. 

The MessageType parameter 

specifies a value of zero. 

The specified payload size exceeds 

240 bytes. 

HV_STATUS_INSUFFICIENT_BUFFERS The port has no available guest 

message buffers. 

HV_STATUS_INVALID_VP_INDEX The target VP no longer exists or 

there are no available VPs to which 

the message can be posted. 

HV_STATUS_INVALID_SYNIC_STATE The target VP’s SynIC is disabled and 

cannot accept posted messages. For 

ports targeted at HV_ANY_VP, this 

indicates that the SynIC of all of the 

partition’s VPs are disabled. 
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Status code Error condition 

The target VP’s SIM page is disabled. 

For ports targeted at HV_ANY_VP, 

this indicates that the SIM page of 

all of the partition’s VPs are 

disabled. 

 HvSignalEvent 

The HvSignalEvent hypercall signals an event in a partition that owns the port associated with the 
specified connection. 

Wrapper Interface 

 

HV_STATUS 

HvSignalEvent( 

 __in HV_CONNECTION_ID ConnectionId, 

 __in UINT16 FlagNumber 

 ); 

 

Native Interface 

HvSignalEvent 

 Call Code = 0x005D 

 Input Parameter Header 

0 ConnectionId 

(4 bytes) 

FlagNumber 

(2 bytes) 

RsvdZ 

(2 bytes) 

Description 

The event is signaled by setting a bit within the SIEF page of one of the receive partition’s virtual 
processors.  

The caller specifies a relative flag number. The actual SIEF bit number is calculated by the hypervisor by 
adding the specified flag number to the base flag number associated with the port. 

Input Parameters 

ConnectionId specifies the ID of the connection. 

FlagNumber specifies the relative index of the event flag that the caller wants to set within the target 
SIEF area. This number is relative to the base flag number associated with the port. 

Output Parameters 

None. 
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Restrictions 

• The partition that is the target of the connection must be in the “active” state. 

Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller’s partition does not possess the 

SignalEvents privilege. 

HV_STATUS_INVALID_CONNECTION_ID The specified connection ID is invalid. 

HV_STATUS_INVALID_PORT_ID The port associated with the specified 

connection has been deleted. 

The port associated with the specified 

connection belongs to a partition that is 

not in the “active” state. 

The port associated with the specified 

connection is not an "event" type port. 

HV_STATUS_INVALID_PARAMETER The specified flag number is greater than 

or equal to the port’s flag count. 

HV_STATUS_INVALID_VP_INDEX The target VP no longer exists or there 

are no available VPs to which the 

message can be posted. 

HV_STATUS_INVALID_SYNIC_STATE The target VP’s SynIC is disabled and 

cannot accept signaled events. For ports 

targeted at HV_ANY_VP, this indicates 

that the SynIC of all of the partition’s VPs 

are disabled. 

The target VP’s SIEF page is disabled. For 

ports targeted at HV_ANY_VP, this 

indicates that the SIEF page of all of the 

partition’s VPs are disabled. 

The target SINTx is masked. 
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12 Timers 

12.1 Overview 

 Timer Services 

The hypervisor provides simple timing services. These are based on a constant-rate reference time 
source (typically the ACPI timer on x64 systems).  

The following timer services are provided: 

• A per-partition reference time counter. 

• Four synthetic timers per virtual processor. Each synthetic timer is a single-shot or periodic 
timer that delivers a message when it expires. 

• One virtual APIC timer per virtual processor. 

• Two timer assists: an emulated periodic timer and a PM Timer assist. 

• A partition reference time enlightenment, based on the host platform’s support for an Invariant 
Time Stamp Counter (iTSC). 

 Reference Counter 

The hypervisor maintains a per-partition reference time counter. It has the characteristic that successive 
accesses to it return strictly monotonically increasing (time) values as seen by any and all virtual 
processors of a partition. Furthermore, the reference counter is rate constant and unaffected by 
processor or bus speed transitions or deep processor power savings states. A partition’s reference time 
counter is initialized to zero when the partition is created. The reference counter for all partitions count 
at the same rate, but at any time, their absolute values will typically differ because partitions will have 
different creation times. 

The reference counter continues to count up as long as at least one virtual processor is not explicitly 
suspended. 

 Synthetic Timers 

Synthetic timers provide a mechanism for generating an interrupt after some specified time in the 
future. Both one-shot and periodic timers are supported. A synthetic timer sends a message to a 
specified SynIC SINTx (synthetic interrupt source) upon expiration. 

The hypervisor guarantees that a timer expiration signal will never be delivered before the expiration 
time. The signal may arrive any time after the expiration time. 

 Periodic Timers 

The hypervisor attempts to signal periodic timers on a regular basis.  

For example, if a timer has a requested period of 1ms, here is the idealized schedule for timer expiration 
notifications:

 

However, if the virtual processor used to signal the expiration is not available, some of the timer 
expirations may be delayed. A virtual processor may be unavailable because it is suspended (for 

Time (1ms 
Timer Expiration Signals 
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example, during intercept handling) or because the hypervisor’s scheduler decided that the virtual 
processor should not be scheduled on a logical processor (for example, because another virtual 
processor is using the logical processor or the virtual processor has exceeded its quota). 

The shaded portions of the following diagram show periods of inactivity during which a periodic timer 
expiration signal could not be delivered. Consequently, the signal is deferred until the virtual processor 
becomes available.

 

If a virtual processor is unavailable for a sufficiently long period of time, a full timer period may be 
missed. In this case, the hypervisor uses one of two techniques. The first technique involves timer period 
modulation, in effect shortening the period until the timer “catches up”. 

The following diagram shows the period modulation technique.

 

If a significant number of timer signals have been missed, the hypervisor may be unable to compensate 
by using period modulation. In this case, some timer expiration signals may be skipped completely. 

For timers that are marked as lazy, the hypervisor uses a second technique for dealing with the situation 
in which a virtual processor is unavailable for a long period of time. In this case, the timer signal is 
deferred until this virtual processor is available. If it doesn’t become available until shortly before the 
next timer is due to expire, it is skipped entirely.  

The following diagram shows the lazy timer technique.

 

 Ordering of Timer Expirations 

Synthetic and virtualized timers generate interrupts at or near their designated expiration time. Due to 
hardware and other scheduling interactions, interrupts could potentially be delayed. No ordering may 
be assumed between any set of timers. 

12.2 Direct Synthetic Timers 

“Direct” synthetic timers assert an interrupt upon timer expiration instead of sending a message to a 
SynIc synthetic interrupt source (see Section 12.1.3 for more about synthetic timers). 

A synthetic timer is set to “direct” mode by setting the “DirectMode” field of the 
HV_X64_MSR_STIMER_CONFIG_CONTENTS MSR. The “ApicVector” field controls the interrupt vector 
that is asserted upon timer expiration. 
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typedef struct { 
    union 
    { 
        UINT64 AsUINT64; 
        struct 
        { 
            UINT64 Enable       : 1; 
            UINT64 Periodic     : 1; 
            UINT64 Lazy         : 1; 
            UINT64 AutoEnable   : 1; 
            UINT64 ApicVector   : 8; 
            UINT64 DirectMode   : 1; 
            UINT64 ReservedZ1   : 3; 
            UINT64 SINTx        : 4; 
            UINT64 ReservedZ2   :44; 
        }; 
    }; 
} HV_X64_MSR_STIMER_CONFIG_CONTENTS; 

 

12.3 Partition Reference Time Enlightenment 

The partition reference time enlightenment presents a reference time source to which does not require 
an intercept into the hypervisor. This enlightenment is available only when the underlying platform 
provides support of an invariant processor Time Stamp Counter (TSC), or iTSC.  In such platforms, the 
processor TSC frequency remains constant irrespective of changes in the processor’s clock frequency 
due to the use of power management states such as ACPI processor performance states, processor idle 
sleep states (ACPI C-states), etc.  

The partition reference time enlightenment uses a virtual TSC value, an offset and a multiplier to enable 
a guest partition to compute the normalized reference time since partition creation, in 100nS units. The 
mechanism also allows a guest partition to atomically compute the reference time when the guest 
partition is migrated to a platform with a different TSC rate, and provides a fallback mechanism to 
support migration to platforms without the constant rate TSC feature. 

This facility is not intended to be used a source of wall clock time, since the reference time computed 
using this facility will appear to stop during the time that a guest partition is saved until the subsequent 
restore. 

12.4 Partition Reference Counter MSR 

A partition’s reference counter is accessed through a partition-wide MSR. 

MSR Address Register Name Function 

0x40000020 HV_X64_MSR_TIME_REF_COUNT Time reference count (partition-

wide) 

 Reference Counter MSR 

63:0 

Count 
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Bits Description Attributes 

63:0 Count—Partition’s reference counter value in 100 

nanosecond units 

Read-only 

When a partition is created, the value of the TIME_REF_COUNT MSR is set to 0x0000000000000000. 
This value cannot be modified by a virtual processor. Any attempt to write to it results in a #GP fault. 

12.5 Synthetic Timer MSRs 

Synthetic timers are configured by using model-specific registers (MSRs) associated with each virtual 
processor. Each of the four synthetic timers has an associated pair of MSRs. 

MSR 

address 
Register name Function 

0x400000B0 HV_X64_MSR_STIMER0_CONFIG Configuration register for synthetic 

timer 0 

0x400000B1 HV_X64_MSR_STIMER0_COUNT Expiration time or period for 

synthetic timer 0 

0x400000B2 HV_X64_MSR_STIMER1_CONFIG Configuration register for synthetic 

timer 1 

0x400000B3 HV_X64_MSR_STIMER1_COUNT Expiration time or period for 

synthetic timer 1 

0x400000B4 HV_X64_MSR_STIMER2_CONFIG Configuration register for synthetic 

timer 2 

0x400000B5 HX_X64_MSR_STIMER2_COUNT Expiration time or period for 

synthetic timer 2 

0x400000B6 HV_X64_MSR_STIMER3_CONFIG Configuration register for synthetic 

timer 3 

0x400000B7 HV_X64_MSR_STIMER3_COUNT Expiration time or period for 

synthetic timer 3 

 Synthetic Timer Configuration Register 

63:20 19:16 15:4 3 2 1 0 

RsvdZ SINTx RsvdZ 
Auto 

Enable 
Lazy Periodic Enable 
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Bits Description Attributes 

63:20 RsvdZ (value should be set to zero) Read/write 

19:16 SINTx—synthetic interrupt source Read/write 

15:3 RsvdZ (value should be set to zero) Read/write 

3 AutoEnable—set if writing the corresponding counter 

implicitly causes the counter to be enabled, cleared if not 

Read/write 

2 Lazy—set if timer is lazy, cleared if not Read/write 

1 Periodic—set if timer is periodic, cleared if one-shot Read/write 

0 Enable—set if timer is enabled Read/write 

When a virtual processor is created and reset, the value of all HV_X64_MSR_STIMERx_CONFIG 
(synthetic timer configuration) registers is set to 0x0000000000000000. Thus, all synthetic timers are 
disabled by default. 

If AutoEnable is set, then writing a non-zero value to the corresponding count register will cause Enable 
to be set and activate the counter. Otherwise, Enable should be set after writing the corresponding 
count register in order to activate the counter. For information about the Count register, see the 
following section. 

When a one-shot timer expires, it is automatically marked as disabled. Periodic timers remain enabled 
until explicitly disabled. 

If a one-shot is enabled and the specified count is in the past, it will expire immediately. 

It is not permitted to set the SINTx field to zero for an enabled timer. If attempted, the timer will be 
marked disabled (that is, bit 0 cleared) immediately. 

Writing the configuration register of a timer that is already enabled may result in undefined behavior. 
For example, merely changing a timer from one-shot to periodic may not produce what is intended. 
Timers should always be disabled prior to changing any other properties.  

 Synthetic Timer Count Register 

63:0 

Count 

 

Bits  Description   Attributes 

63:0 Count—expiration time for one-shot timers, duration for 

periodic timers 

Read/write 
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The value programmed into the Count register is a time value measured in 100 nanosecond units. 
Writing the value zero to the Count register will stop the counter, thereby disabling the timer, 
independent of the setting of AutoEnable in the configuration register. 

Note that the Count register is permitted to wrap. Wrapping will have no effect on the behavior of the 
timer, regardless of any timer property.  

For one-shot timers, it represents the absolute timer expiration time. The timer expires when the 
reference counter for the partition is equal to or greater than the specified count value. 

For periodic timers, the count represents the period of the timer. The first period begins when the 
synthetic timer is enabled. 

12.6 Partition Reference Time Enlightenment 

The hypervisor provides a partition-wide virtual reference TSC page which is overlaid on the partition’s 
GPA space. A partition’s reference time stamp counter page is accessed through the Reference TSC MSR.  
A partition which possesses the AccessPartitionReferenceTsc privilege may access the reference TSC 
MSR. 

 Reference Time Stamp Counter (TSC) Page MSR 

A guest wishing to access its reference TSC page must use the following model-specific register (MSR). 

MSR Address Register Name Function 

0x40000021 HV_X64_MSR_REFERENCE_TSC Time reference count (partition-

wide) 

The format of the Reference TSC MSR is as follows: 

63:12 11:1 0 

 GPA Page Number  RsvdP Enable 

 

Bits Description Attributes 

63:12 GPA Page Number Read/write 

11:1 RsvdP (value should be preserved) Read/write 

0 Enable—set if reference TSC is enabled Read/write 

 

At the guest partition creation time, the value of the reference TSC MSR is 0x0000000000000000.  Thus, 
the reference TSC page is disabled by default. The guest must enable the reference TSC page by setting 
bit 0. If the specified base address is beyond the end of the partition’s GPA space, the reference TSC 
page will not be accessible to the guest. When modifying the register, guests should preserve the value 
of the reserved bits (1 through 11) for future compatibility. 
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Restrictions 

The caller must possess the AccessPartitionReferenceTsc privilege. 

 Format of the Reference TSC Page 

The reference TSC page is defined using the following structure: 

 

typedef struct _HV_REFERENCE_TSC_PAGE 

{ 

    volatile UINT32  TscSequence; 

    UINT32   Reserved1; 

    volatile UINT64  TscScale; 

    volatile INT64  TscOffset; 

    UINT64   Reserved2[509]; 

} HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE; 

 

 Partition Reference TSC Mechanism 

The partition reference time is computed by the following formula: 

ReferenceTime = ((VirtualTsc * TscScale) >> 64) + TscOffset 

The multiplication is a 64 bit multiplication, which results in a 128 bit number which is then shifted 64 
times to the right to obtain the high 64 bits.TscScale 

The TscScale value is used to adjust the Virtual TSC value across migration events to mitigate TSC 
frequency changes from one platform to another.TscSequence 

The TscSequence value is used to synchronize access to the enlightened reference time if the scale 
and/or the offset fields are changed during save/restore or live migration. This field serves as a 
sequence number which is incremented whenever the scale and/or the offset fields are modified. A 
special value of 0x0 is used to indicate that this facility is no longer a reliable source of reference time 
and the VM must fall back to a different source.Reference TSC during Save/Restore and Migration 

To address migration scenarios to physical platforms which do not support iTSC, the TscSequence field is 
used. In the event a guest partition is migrated from an iTSC capable host to a non-iTSC capable host, 
the hypervisor sets TscSequence to the special value of 0x0, which directs the guest operating system to 
fall back to a different clock source. The recommended code for computing the partition reference time 
using this enlightenment is shown below: 

 



Hypervisor Top Level Functional Specification 

 136 

do { 

    StartSequence = ReferenceTscPage->TscSequence; 

    if (StartSequence == 0) { 

// 0 means that the Reference TSC enlightenment is not available at  

// the moment, and the Reference Time can only be obtained from  

// reading the Reference Counter MSR. 

        ReferenceTime = rdmsr(HV_X64_MSR_TIME_REF_COUNT); 

        return ReferenceTime; 

    } 

 

    Tsc = rdtsc(); 

// Assigning Scale and Offset should niether happen before 

// setting StartSequence, nor after setting EndSequence. 

    Scale = ReferenceTscPage->TscScale; 

    Offset = ReferenceTscPage->TscOffset; 

 

   EndSequence = ReferenceTscPage->TscSequence; 

 

} while (EndSequence != StartSequence); 

 

// The result of the multiplication is treated as a 128-bit value. 

ReferenceTime = ((Tsc * Scale) >> 64) + Offset; 

return ReferenceTime; 
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13 Message Formats 

13.1 Overview 

The hypervisor supports a simple message-based inter-partition communication mechanism. Messages 
can be sent by the hypervisor to a partition or can be sent from one partition to another. This section 
describes all of the messages sent by the hypervisor. 

Each message has a message type, a source partition, and a message payload. For a complete list of 
message types, see chapter 10.5.4. The format of the message payload depends on the message type. 

The messages sent by the hypervisor fall into the following categories: 

• Memory access messages (unmapped GPA, GPA access violations, and so on.) 

• Processor intercepts 

• Error messages 

• Timer notifications 

• Event log events 

13.2 Message Data Types 

Intercept messages are delivered by the SynIC. For a description of SynIC messages, including the 
message header layout, see chapter 10.5.4. 

 Message Header 

Each message begins with a common message header. The significant fields are the MessageType, 
PayloadSize and the OriginationId (the source of the message). It is important to note that the payload 
size reflects only the size of the data and does not include the message header. The message header is 
described in section 11.10.4. 

 Intercept Message Header 

All x64 memory access messages and processor intercept messages contain a common payload header. 
This header contains information about the state of the virtual processor at the time of the intercept, 
making it easier for the recipient of the message to complete the intercepted instruction in software. 

 
typedef struct 
{ 
 HV_VP_INDEX VpIndex; 
 UINT8 InstructionLength; 
 HV_INTERCEPT_ACCESS_TYPE_MASK InterceptAccessType; 
 HV_X64_VP_EXECUTION_STATE ExecutionState; 
 HV_X64_SEGMENT_REGISTER CsSegment; 
 UINT64 Rip; 
 UINT64 Rflags; 
} HV_X64_INTERCEPT_MESSAGE_HEADER; 
 

VpIndex indicates the index of the virtual processor that generated the intercept. 

InstructionLength indicates the byte length of the instruction that generated the intercept. If the 
instruction length is unknown, a length of zero is reported, and the recipient of the message must fetch 
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and decode the instruction to determine its length. The hypervisor guarantees that it will fill in the 
correct instruction length for CPUID, I/O port, and MSR intercepts. 

InterceptAccessType indicates the access type (read, write, or execute) of the event that triggered the 
intercept. 

ExecutionState provides miscellaneous information about the virtual processor’s state at the time the 
intercept was triggered. 

CsSegment provides information about the code segment at the time the intercept was triggered. 

Rip provides the instruction pointer at the time the intercept was triggered. 

Rflags provides the flags register at the time the intercept was triggered. 

 VP Execution State 

The execution state is a collection of flags that specify miscellaneous states of the virtual processor. 

 
typedef struct 
{ 
    UINT16 Cpl:2; 
    UINT16 Cr0Pe:1; 
    UINT16 Cr0Am:1; 
    UINT16 EferLma:1; 
    UINT16 DebugActive:1; 
    UINT16 InterruptionPending:1; 
    UINT16 Reserved:4; 
    UINT16 Reserved:5;  
} HV_X64_VP_EXECUTION_STATE; 
 

Cpl indicates the current privilege level at the time of the intercept. Real mode has an implied CPL of 0, 
and v86 has an implied CPL of 3. In other modes, the CPL is defined by the low-order two bits of the 
code segment (CS). 

Cr0Pe indicates whether the processor is executing within protected mode. 

Cr0Am indicates whether alignment must be checked for non-privileged accesses. 

EferLma indicates whether the processor is executing within long mode (64-bit mode). 

DebugActive indicates that one or more debug registers are marked as active, so the recipient of the 
message may need to perform additional work to correctly emulate the behavior of the debug 
breakpoint facilities. 

InterruptionPending indicates that the intercept was generated while delivering an interruption. The 
interruption is held pending and, unless removed, will be re-delivered when the virtual processor is 
resumed. For a description of the Pending Interruption register, see section 7.9.3. 

 I/O Port Access Information 

On x64 platforms, I/O port access messages include a collection of flags that provide information about 
the memory access. 
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typedef struct 
{ 
 UINT8 AccessSize:3; 
 UINT8 StringOp:1; 
 UINT8 RepPrefix:1; 
 UINT8 Reserved:3; 
} HV_X64_IO_PORT_ACCESS_INFO; 
 

AccessSize indicates the size of the access. The following encodings are used: 001b = 8 bits; 010b = 16 
bits; 100b = 32 bits. All other combinations are reserved.  

StringOp indicates that the instruction is a string form (INS or OUTS). 

RepPrefix indicates that the instruction has a “rep” prefix. This flag is used only for string operations. 

 Exception Information 

On x64 platforms, exception intercept messages include a collection of flags that provide information 
about the exception. 

 
typedef struct 
{ 
 UINT8 ErrorCodeValid:1; 
 UINT8 Reserved:7; 
} HV_X64_EXCEPTION_INFO; 
 

ErrorCodeValid indicates that the error code field in the exception message is valid. 

 Memory Access Flags 

Memory intercept messages include a collection of flags that provide information about the intercept. 

 
typedef struct 
{ 
    UINT8     GvaValid:1; 
    UINT8     Reserved:7; 
} HV_X64_MEMORY_ACCESS_INFO; 
 

GvaValid indicates that the Gva field of the memory access message contains a valid guest virtual 
address. 

13.3 Timer Messages 

 Timer Expiration Message 

Timer expiration messages are sent when a timer event fires. 

M
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0 MessageType (4 bytes) Rsvd (3 bytes) PayloadSize 

(1 byte) 

8 Rsvd (8 bytes) 
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16 TimerIndex (4 bytes) Rsvd (4 bytes) 

24 ExpirationTime (8 bytes) 

32 DeliveryTime (8 bytes) 

 

TimerIndex is the index of the synthetic timer (0 through 3) that generated the message. This allows a 
client to configure multiple timers to use the same interrupt vector and differentiate between their 
messages. 

ExpirationTime is the expected expiration time of the timer measured in 100-nanosecond units by using 
the time base of the partition’s reference time counter. Note that the expiration message may arrive 
after the expiration time. 

DeliveryTime is the time when the message is placed into the respective message slot of the SIM page. 
The time is measured in 100-nanosecond units based on the partition’s reference time counter. 
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14 Scheduler 

14.1 Scheduling Concepts 

The hypervisor schedules virtual processors to run on logical processors.  

The hypervisor scheduler makes scheduling decisions based on these policy settings set by the root. 
Because these decisions are made at discreet times, not continuously, the policies are guaranteed only 
over a sufficiently long period of time. This time is purposely undefined but will typically be on the order 
of hundredths of a second. 

14.2 Scheduling Policy Settings 

Various schedule policy settings can be set by the root partition administrator. These include: 

• CPU Reserve 

• CPU Cap 

• CPU Weight 

Each of these is described in more detail in the following sections. 

 CPU Reserve 

A CPU reserve can be supplied for each partition. The hypervisor guarantees that this fraction of CPU 
time is available to each virtual processor within the partition as needed. It does not necessarily mean 
that the virtual processors will consume the entire reserve. If they are idle or waiting on hypervisor 
work, other virtual processors may consume the available processor cycles. 

The CPU reserve is specified as a fraction of a logical processor’s capacity. A reserve value of 0.5 
indicates that 50% of a logical processor is reserved for each virtual processor in the partition. Valid 
reserve values range from 0 (no reserve) to 1 (in which case each virtual processor is guaranteed to get 
100% of a logical processor if required). The reserve value may not be greater than the CPU Cap (see 
section 14.2.2). 

The reserve value is expressed as an integer ranging from 0x00000000 to 0x00010000. For example, the 
value 0x0000C000 indicates 0.75, or 75% of a logical processor. By default, a partition’s reserve is set to 
0x00000000, indicating that there is no reserve. 

The total reserves for all virtual processors cannot exceed the number of logical processors in the 
system. Reserves are not guaranteed if the number of virtual processors in a partition exceeds the 
number of logical processors that are available for scheduling. 

If the number of virtual processors in a partition is greater than the number of logical processors, then 
reserves are not guaranteed, and the partition’s reserve may be reset to zero. 

 CPU Cap 

A CPU cap can be specified for each partition. The hypervisor guarantees that the fraction of CPU time 
consumed by each virtual processor within the partition will not exceed this cap.  

The CPU cap is specified as a fraction of a logical processor’s capacity. A cap value of 0.5 indicates that 
each virtual processor will be restricted to using 50% of a logical processor. Valid cap values range from 
0 to 1 (in which case the cap has no effect). 
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The CPU cap value may not be less than the CPU reserve (see section Error! Reference source not 
found.). 

The cap value is expressed as an integer ranging from 0x00000000 to 0x00010000. For example, the 
value 0x0000C000 indicates 0.75, or 75% of a logical processor. 

By default, a partition’s cap is set to 0x00010000, indicating that there is no cap. 

 CPU Weight 

The CPU weight is a relative weight assigned to each of the virtual processors of the partition. Unless 
otherwise constrained by reserves and caps, the scheduler will attempt to weight the run time of the 
virtual processors scheduled on a given logical processor according to their relative weights. Let’s 
consider the case where three partitions, each with one virtual processor are being scheduled on a 
single logical processor, their weights are 100, 200 and 700, no reserves or caps are in effect, and all 
three of the virtual processors have work to perform (that is, they are not idle). In this case, the fraction 
of physical CPU capacity provided to the three virtual processors would be approximately 10%, 20%, and 
70%. 

The CPU weight value is expressed as a decimal value from 1 to 10,000 where 100 (the geometric mean) 
is the typical value. 

By default, a partition’s weight is set to 100. 

14.3 Other Scheduling Considerations 

 Hyperthreading 

Multiple virtual processors can optionally be grouped together and scheduled onto hyperthreads within 
a single physical processor core. In effect, these virtual processors then act like virtual hyperthreads. 
When virtual processors are grouped as such, the hypervisor tries to schedule them concurrently on the 
same physical processor core. This scheduling behavior potentially improves performance and reduces 
information leakage across partition boundaries. 

 NUMA and Affinity 

When a virtual processor is run-able, the hypervisor’s scheduler assigns it to a logical processor. The 
placement is determined based on a variety of factors including workload, reservations, and NUMA 
topology. In general, the scheduler will attempt to keep a virtual processor scheduled on a logical 
processor that is topologically closest to the memory being accessed by the virtual processor, in effect 
minimizing memory access times.  

The scheduler also attempts to create as much temporal affinity as possible. That is, it will prefer to run 
a virtual processor on the same logical processor each time it is scheduled. If the logical processor is 
oversubscribed, the scheduler may move it to another logical processor.  

 Guest Spinlocks 

A typical multiprocessor-capable operating system uses locks for enforcing atomicity of certain 
operations. When running such an operating system inside a virtual machine controlled by the 
hypervisor these critical sections protected by locks can be extended by intercepts generated by the 
critical section code. The critical section code may also be preempted by the hypervisor scheduler. 
Although the hypervisor attempts to prevent such preemptions, they can occur. Consequently, other 
lock contenders could end up spinning until the lock holder is re-scheduled again and therefore 
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significantly extend the spinlock acquisition time. The hypervisor indicates to the guest OS the number 
of times a spinlock acquisition should be attempted before indicating an excessive spin situation to the 
hypervisor. This count is returned in CPUID leaf 0x40000004. 

The HvNotifyLongSpinWait hypercall provides an interface for enlightened guests to improve the 
statistical fairness property of a lock for multiprocessor virtual machines. Through this hypercall, a guest 
notifies the hypervisor of a long spinlock acquisition. This allows the hypervisor to make better 
scheduling decisions. 

14.4 Scheduler Data Types 

The following data types support the scheduler interfaces.  

 

typedef UINT64 HV_INPUT_NOTIFY_LONG_SPINWAIT ; 

typedef HV_INPUT_NOTIFY_LONG_SPINWAIT, *PHV_INPUT_NOTIFY_LONG_SPINWAIT; 

 

14.5 Scheduler Interfaces 

 HvNotifyLongSpinWait 

The HvNotifyLongSpinWait hypercall is used by a guest OS to notify the hypervisor that the calling virtual 
processor is attempting to acquire a resource that is potentially held by another virtual processor within 
the same partition. This scheduling hint improves the scalability of partitions with more than one virtual 
processor. 

Wrapper Interface 

 

HV_STATUS 

HvNotifyLongSpinWait( 

 _in HV_INPUT_NOTIFY_LONG_SPINWAIT SpinwaitInfo 

); 

 

Native Interface 

HvNotifyLongSpinWait [fast] 

 Call Code = 0x0008 

 Input Parameters 

0 SpinwaitInfo (4 bytes) Padding (4 bytes) 

Description 

The HvNotifyLongSpinWait hypercall allows a partition to inform the Hypervisor of a long spinlock 
acquire failure. The hypervisor can use this information to make better scheduling decisions for the 
notifying virtual processor and its partition. 

Input Parameters 
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SpinwaitInfo – Specifies the accumulated count the guest was spinning. 

Output Parameters 

None. 

Restrictions 

None. 

Return Values 

There is no error status for this hypercall, only HV_STATUS_SUCCESS will be returned as this is an 
advisory hypercall. 
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15 Virtual Secure Mode 

15.1 Overview 

Virtual Secure Mode (VSM) is a set of hypervisor capabilities and enlightenments offered to host and 
guest partitions which enables the creation and management of new security boundaries within 
operating system software. VSM is the hypervisor facility on which Windows security features including 
Device Guard, Credential Guard, virtual TPMs and shielded VMs are based.  These security features were 
introduced in Windows 10 and Windows Server 2016. 

VSM enables operating system software in the root and guest partitions to create isolated regions of 
memory for storage and processing of system security assets.  Access to these isolated regions is 
controlled and granted solely through the hypervisor, which is a highly privileged, highly trusted part of 
the system’s Trusted Compute Base (TCB).  Because the hypervisor runs at a higher privilege level than 
operating system software and has exclusive control of key system hardware resources such as memory 
access permission controls in the CPU MMU and IOMMU early in system initialization, the hypervisor 
can protect these isolated regions from unauthorized access, even from operating system software (e.g., 
OS kernel and device drivers) with supervisor mode access (i.e. CPL0, or “Ring 0”). 

With this architecture, even if normal system level software running in supervisor mode (e.g. kernel, 
drivers, etc.) is compromised by malicious software, the assets in isolated regions protected by the 
hypervisor can remain secured. 

15.2 Virtual Trust Levels (VTL) 

VSM achieves and maintains isolation through Virtual Trust Levels (VTLs). VTLs are enabled and 
managed on both a per-partition and per-virtual processor basis. 

Virtual Trust Levels are hierarchical, with higher levels being more privileged than lower levels.  VTL0 is 
the least privileged level, with VTL1 being more privileged than VTL0, VTL2 being more privileged than 
VTL1, etc.  

Architecturally, up to 16 levels of VTLs are supported; however a hypervisor may choose to implement 
fewer than 16 VTL’s.  Currently, only two VTLs are implemented. 

 
// 
// Define a virtual trust level (VTL) 
// 
 
typedef UINT8 HV_VTL, *PHV_VTL; 
#define HV_NUM_VTLS  2 
#define HV_INVALID_VTL ((HV_VTL) -1) 
#define HV_VTL_ALL 0xF 
 

Each VTL has its own set of memory access protections. These access protections are managed by the 
hypervisor in a partition’s physical address space, and thus cannot be modified by system level software 
running in the partition.  

Since more privileged VTLs can enforce their own memory protections, higher VTLs can effectively 
protect areas of memory from lower VTLs.  In practice, this allows a lower VTL to protect isolated 
memory regions by securing them with a higher VTL. For example, VTL0 could store a secret in VTL1, at 
which point only VTL1 could access it. Even if VTL0 is compromised, the secret would be safe. 
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  VTL Protections 

There are multiple facets to achieving isolation between VTLs: 

• Memory Access Protections: Each VTL maintains a set of guest physical memory access 
protections. Software running at a particular VTL can only access memory in accordance with 
these protections. 

• Virtual Processor State: Virtual processors maintain separate per-VTL state. For example, each 
VTL defines a set of a private VP registers. Software running at a lower VTL cannot access the 
higher VTL’s private virtual processor’s register state.  

• Interrupts: Along with a separate processor state, each VTL also has its own interrupt subsystem 
(local APIC). This allows higher VTLs to process interrupts without risking interference from a 
lower VTL. 

• Overlay Pages: Certain overlay pages are maintained per-VTL such that higher VTLs have reliable 
access. E.g. there is a separate hypercall overlay page per VTL.  

15.3 VSM Detection, Enabling, and Status 

 VSM Detection 

The VSM capability is advertised to partitions via the AccessVsm partition privilege flag. Only partitions 
with all of the following privileges may utilize VSM: AccessVsm, AccessVpRegisters, and AccessSynicRegs.  
See Partition Privilege Flags. 

 VSM Status Registers 

In addition to a partition privilege flag, two virtual registers can be used to learn additional information 
about VSM status: HvRegisterVsmPartitionStatus and HvRegisterVsmVpStatus. 

15.3.2.1 HvRegisterVsmPartitionStatus 

HvRegisterVsmPartitionStatus is a per-partition read-only register that is shared across all VTLs. This 
register provides information about which VTLs have been enabled for the partition, as well as the 
maximum VTL allowed. 
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typedef union 
{ 
    UINT64 AsUINT64; 
    struct 
    { 
        UINT64 EnabledVtlSet    : 16; 
        UINT64 MaximumVtl       : 4; 
        UINT64 ReservedZ        : 44; 
    }; 
} HV_REGISTER_VSM_PARTITION_STATUS; 
 

15.3.2.2 HvRegisterVsmVpStatus 

HvRegisterVsmVpStatus is a read-only register and is shared across all VTLs. It is a per-VP register, 
meaning each virtual processor maintains its own instance. This register provides information about 
which VTLs have been enabled, which is active, as well as the MBEC mode active on a VP. 

 
typedef union 
{ 
    UINT64 AsUINT64; 
    struct 
    { 
        UINT64 ActiveVtl         : 4; 
        UINT64 ActiveMbecEnabled    : 1; 
        UINT64 ReservedZ0        : 11; 
        UINT64 EnabledVtlSet     : 16; 
        UINT64 ReservedZ1        : 32; 
    }; 
} HV_REGISTER_VSM_VP_STATUS; 
 

ActiveVtl is the ID of the VTL context that is currently active on the virtual processor. 

ActiveMbecEnabled specifies that MBEC is currently active on the virtual processor. 

EnabledVtlSet is a bitmap of the VTL’s that are enabled on the virtual processor. 

 Partition VTL Initial state 

When a partition starts or resets, it begins running in VTL0. All other VTLs are disabled at partition 
creation. 

15.4 VTL Enablement 

To begin using a VTL, a lower VTL must initiate the following: 

1) Enable the target VTL for the partition. This makes the VTL generally available for the partition. 
2) Enable the target VTL on one or more virtual processors. This makes the VTL available for a VP, 

and sets its initial context. It is recommended that all VPs have the same enabled VTLs. Having a 
VTL enabled on some VPs (but not all) can lead to unexpected behavior. 

3) Once the VTL is enabled for a partition and VP, it can begin setting access protections once the 
EnableVtlProtection flag has been set (see 15.5.1.1). 

Note that VTLs need not be consecutive.   



Hypervisor Top Level Functional Specification 

 148 

 Enabling a Target VTL for a Partition 

The HvCallEnablePartitionVtl hypercall is used to enable a VTL for certain partition. Note that before 
software can actually execute in a particular VTL, that VTL must be enabled on virtual processors in the 
partition. 

 Enabling a Target VTL for Virtual Processors 

Once a VTL is enabled for a partition, it can be enabled on the partition’s virtual processors. The 
HvCallEnableVpVtl hypercall can be used to enable VTLs for a virtual processor, which sets its initial 
context.  

Virtual processors have one “context” per VTL. If a VTL is switched, the virtual processor context is also 
switched. See 15.11 for details on what state is switched. 

15.5 VTL Configuration 

Once a VTL has been enabled, its configuration can be changed by a VP running at an equal or higher 
VTL.  

 Partition Configuration 

Partition-wide attributes can be configured using the HvRegisterVsmPartitionConfig register. There is 
one instance of this register for each VTL (greater than 0) on every partition. 

Every VTL can modify its own instance of HV_REGISTER_VSM_PARTITION_CONFIG, as well as instances 
for lower VTLs. VTLs may not modify this register for higher VTLs. 

 
typedef union  
{ 
    UINT64 AsUINT64; 
    struct 
    { 
        UINT64 EnableVtlProtection      : 1; 
        UINT64 DefaultVtlProtectionMask : 4; 
        UINT64 ZeroMemoryOnReset        : 1; 
        UINT64 ReservedZ                : 58; 
    }; 
 
} HV_REGISTER_VSM_PARTITION_CONFIG;  
 

The fields of this register are described below. 

15.5.1.1 Enable VTL Protections 

Once a VTL has been enabled, the EnableVtlProtection flag must be set before it can begin applying 
memory protections.  

This flag is write-once, meaning that once it has been set, it cannot be modified. 

15.5.1.2 Default Protection Mask 

By default, the system applies RWX protections to all currently mapped pages, and any future “hot-
added” pages. Hot-added pages refer to any memory that is added to a partition during a resize 
operation. See section 15.9 for a description of memory access protections. 
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A higher VTL can set a different default memory protection policy by specifying 
DefaultVtlProtectionMask in HV_REGISTER_VSM_PARTITION_CONFIG. This mask must be set at the time 
the VTL is enabled. It cannot be changed once it is set, and is only cleared by a partition reset.  

DefaultVtlProtectionMask 

Bit 0: Read 

Bit 1: Write 

Bit 2: User Mode Execute (UMX) 

Bit 3: Kernel Mode Execute (KMX) 

15.5.1.3 Zero Memory on Reset 

ZeroMemOnReset is a bit that controls if memory is zeroed before a partition is reset. This configuration 
is on by default. If the bit is set, the partition’s memory is zeroed upon reset so that a higher VTL’s 
memory cannot be compromised by a lower VTL. 

If this bit is cleared, the partition’s memory is not zeroed on reset. 

To unlock the TLB, the higher VTL can clear this bit. Also, once a VP returns to a lower VTL, it releases all 
TLB locks which it holds at the time.  

 Configuring Lower VTLs 

The following register can be used by higher VTLs to configure the behavior of lower VTLs: 

 
typedef union 
{ 
    UINT64 AsUINT64; 
    struct 
    { 
        UINT64 MbecEnabled    : 1; 
        UINT64 TlbLocked   : 1; 
        UINT64 ReservedZ   : 62; 
    }; 
 
} HV_REGISTER_VSM_VP_SECURE_VTL_CONFIG; 

Each VTL (higher than 0) has an instance of this register for every VTL lower than itself. For example, 
VTL2 would have two instances of this register – one for VTL1, and a second for VTL0.  

15.5.2.1 MbecEnabled 

This field configures whether MBEC is enabled for the lower VTL (see 15.10). 

15.5.2.2 TlbLocked 

This field locks the lower VTL’s TLB. This capability can be used to prevent lower VTLs from causing TLB 
invalidations which might interfere with a higher VTL. When this bit is set, all address space flush 
requests from the lower VTL are blocked until the lock is lifted. 
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15.6 VTL Entry 

A VTL is “entered” when a VP switches from a lower VTL to a higher one. This can happen for the 
following reasons: 

1. VTL call: this is when software explicitly wishes to invoke code in a higher VTL.   
2. Secure interrupt: if an interrupt is received for a higher VTL, the VP will enter the higher VTL. 

See 15.12. 
3. Secure intercept: certain actions will trigger a secure interrupt (accessing certain MSRs for 

example). See 15.13. 

Once a VTL is entered, it must voluntarily exit. A higher VTL cannot be preempted by a lower VTL. 

 VTL Call 

A “VTL call” is when a lower VTL initiates an entry into a higher VTL (for example, to protect a region of 
memory with the higher VTL). 

VTL calls preserve the state of shared registers across VTL switches. Private registers are preserved on a 
per-VTL level. (See 15.11.1 and 15.11.2 for which state is shared/private). The exception to these 
restrictions are the registers required by the VTL call sequence. The following registers are required for a 
VTL call: 

x64 Register x86 Register Value Description 

RCX EDX:EAX RsvdZ Specifies a VTL call control input to the hypervisor 

RAX ECX  Reserved 

15.6.1.1 VTL Call Restrictions 

VTL calls can only be initiated from the most privileged processor mode. For example, on x64 systems a 
VTL call can only come from CPL0. A VTL call initiated from a processor mode which is anything but the 
most privileged on the system results in the hypervisor injecting a #UD exception into the virtual 
processor. 

A VTL call can only switch into the next highest VTL. In other words, if there are multiple VTLs enabled, a 
call cannot “skip” a VTL. 

The following actions result in a #UD exception: 

1. A VTL call initiated from a processor mode which is anything but the most privileged on the 
system (architecture specific). 

2. A VTL call from real mode (x86/x64) 
3. A VTL call on a virtual processor where the target VTL is disabled (or has not been already 

enabled). 
4. A VTL call with an invalid control input value 

15.6.1.2 Identifying VTL Entry Reason 

In order to react appropriately to an entry, a higher VTL might need to know the reason it was entered. 
To discern between entry reasons, the following field is included in the VP assist page (see 7.8.7):  
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typedef enum  
{ 
    // This reason is reserved and is not used. 
    HvVtlEntryReserved             = 0, 
 
    // Indicates entry due to a VTL call from a lower VTL. 
    HvVtlEntryVtlCall              = 1, 
 
    // Indicates entry due to an interrupt targeted to the VTL. 
    HvVtlEntryInterrupt            = 2 
 
} HV_VTL_ENTRY_REASON;  
 

15.7 VTL Exit 

A switch to a lower VTL is known as a “return”. Once a VTL has finished processing, it can initiate a VTL 
return in order to switch to a lower VTL. The only way a VTL return can occur is if a higher VTL 
voluntarily initiates one. A lower VTL can never preempt a higher one.  

 VTL Return 

A “VTL return” is when a higher VTL initiates a switch into a lower VTL. Similar to a VTL call, private 
processor state is switched out, and shared state remains in place (See 15.11.1 and 15.11.2 for which 
state is shared/private). If the lower VTL has explicitly called into the higher VTL,  the hypervisor 
increments the higher VTL’s instruction pointer before the return is complete so that it may continue 
after a VTL call. 

A VTL Return code sequence requires the use of the following registers: 

x64 

Register 

x86 

Register 

Register Value Description 

RCX EDX:EAX Bits 63:1 - RsvdZ 

Bit 0 - Fast return (See 15.7.1.1) 

Specifies a VTL return control input to 

the hypervisor 

RAX ECX  Reserved 

15.7.1.1 Fast return 

As a part of processing a return, the hypervisor can restore the lower VTL’s register state from the VTL 
control page. For example, after processing a secure interrupt, a higher VTL may wish to return without 
disrupting the lower VTL’s state. Therefore, the hypervisor provides a mechanism to simply restore the 
lower VTL’s registers to their pre-call value stored in the control page.  

If this behavior is not necessary, a higher VTL can use a “fast return”. A fast return is when the 
hypervisor does not restore register state from the control page. This should be utilized whenever 
possible to avoid unnecessary processing.  

This field can be set with bit 0 of the VTL return input. If it is set to 0, the registers are restored from the 
VP assist page. If this bit is set to 1, the registers are not restored (a fast return). 

 Restrictions 

The following actions will generate a #UD exception: 



Hypervisor Top Level Functional Specification 

 152 

1. Attempting a VTL return when the lowest VTL is currently active 

2. Attempting a VTL return with an invalid control input value 

3. Attempting a VTL return from a processor mode which is anything but the most privileged on 
the system (architecture specific) 

15.8 Hypercall Page Assists 

The hypervisor provides mechanisms to assist with VTL calls and returns via the hypercall page (see 
3.13). This page abstracts the specific code sequence required to switch VTLs. 

The code sequences to execute VTL calls and returns may be accessed by executing specific instructions 
in the hypercall page. The call/return chunks are located at an offset in the hypercall page determined 
by the HvRegisterVsmCodePageOffset virtual register. This is a read-only and partition-wide register, 
with a separate instance per-VTL. 

A VTL can execute a VTL call/return using the CALL instruction. A CALL to the correct location in the 
hypercall page will initiate a VTL call/return.  

 
typedef union  
{ 
    UINT64 AsUINT64; 
    struct 
    { 
        UINT64 VtlCallOffset   : 12; 
        UINT64 VtlReturnOffset : 12; 
        UINT64 ReservedZ       : 40; 
    }; 
} HV_REGISTER_VSM_CODE_PAGE_OFFSETS; 
 

To summarize, the steps for calling a code sequence using the hypercall page are as follows: 

1. Map the hypercall page into a VTL’s GPA space (see 3.13). 

2. Determine the correct offset for the code sequence (VTL call or return). 

3. Execute the code sequence using CALL. 

 VTL Control via the VP Assist Page 

The hypervisor uses part of the VP assist page to facilitate communication with code running in a VTL 
higher than VTL0 (see 7.8.7). Each VTL has its own control structure (except VTL0).  

 Definition 

The following information is communicated using the control page: 

1. The VTL entry reason. 

2. A flag indicating that VINA is being asserted. 

3. The values for registers to load upon a VTL return. 
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typedef struct  
{ 
    // The hypervisor updates the entry reason with an indication as to why  
    // the VTL was entered on the virtual processor.  
    HV_VTL_ENTRY_REASON     EntryReason; 
 
    // This flag determines whether the VINA interrupt line is asserted. 
    union 
    { 
        UINT8               AsUINT8; 
        struct 
        { 
            UINT8           VinaAsserted  :1; 
            UINT8           VinaReservedZ :7; 
        }; 
    } VinaStatus; 
 
    UINT8                   ReservedZ00; 
    UINT16                  ReservedZ01; 
 
    // A guest updates the VtlReturn* fields to provide the register values  
    // to restore on VTL return.  The specific register values that are  
    // restored will vary based on whether the VTL is 32-bit or 64-bit.  
 
    union 
    { 
        struct 
        { 
            UINT64          VtlReturnX64Rax; 
            UINT64          VtlReturnX64Rcx; 
        }; 
 
        struct 
        { 
            UINT32          VtlReturnX86Eax; 
            UINT32          VtlReturnX86Ecx; 
            UINT32          VtlReturnX86Edx; 
            UINT32          ReservedZ1; 
        }; 
    }; 
 
} HV_VP_VTL_CONTROL; 
 
 

15.9 Memory Access Protections 

One necessary protection provided by VSM is the ability to isolate memory accesses.  

 Memory Protection Hierarchy 

Memory access permissions can be set by a number of sources for a particular VTL. Each VTL’s 
permissions can potentially be restricted by a number of other VTLs, as well as by the host partition. The 
order in which protections are applied is the following:  

1. Memory protections set by the host 
2. Memory protections set by higher VTLs 

In other words, VTL protections supersede host protections. Higher-level VTLs supersede lower-level 
VTLs. Note that a VTL may not set memory access permissions for itself.  

A conformant interface is expected to not overlay any non-RAM type over RAM. 
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 Memory Access Violations 

If a VP running at a lower VTL attempts to violate a memory protection set by a higher VTL, an intercept 
is generated. This intercept is received by the higher VTL which set the protection. This allows higher 
VTLs to deal with the violation on a case-by-case basis. For example, the higher VTL may choose to 
return a fault, or emulate the access (see 15.13) 

 Default memory protection types 

Higher VTLs have a high degree of control over the type of memory access permissible by lower VTLs. 
There are three basic types of protections that can be specified by a higher VTL for a particular GPA 
page: Read, Write, and eXecute. These are defined in the following table: 

Name Description 

Read Controls whether read access is allowed to a memory page 

Write Controls whether write access allowed to a memory page 

Execute Controls whether instruction fetches are allowed for a memory 

page 

These three combine for the following types of memory protection: 

1. No access 
2. Read-only, no execute 
3. Read-only, execute 
4. Read/write, no execute 
5. Read/write, execute 

These three types will continue to be the only memory protections supported for use by the host OS 
when restricting the guest. However, a VTL mask will have additional memory protections available to 
restrict lower VTL. This capability is known as “mode based execution control (MBEC)”. 

15.10 Mode Based Execution Control (MBEC) 

When a VTL places a memory restriction on a lower VTL, it may wish to make a distinction between user 
and kernel mode when granting an “execute” privilege. For example, if code integrity checks were to 
take place in a higher VTL, the ability to distinguish between user-mode and kernel-mode would mean 
that a VTL could enforce code integrity for only kernel-mode applications.  

Apart from the traditional three memory protections (read, write, execute), MBEC introduces a 
distinction between user-mode and kernel-mode for execute protections. Thus, if MBEC is enabled, a 
VTL has the opportunity to set four types of memory protections: 
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Name Description 

Read Controls whether read access is allowed to a memory page 

Write Controls whether write access allowed to a memory page 

User Mode 

Execute (UMX) 

Controls whether instruction fetches generated in user-mode are 

allowed for a memory page 

NOTE: If MBEC is disabled, this setting is ignored. 

Kernel Mode 

Execute (KMX) 

Controls whether instruction fetches generated in kernel-mode 

are allowed for a memory page 

NOTE: If MBEC is disabled, this setting controls both user-mode 

and kernel-mode execute accesses. 

Memory marked with the “User-Mode Execute” protections would only be executable when the virtual 
processor is running in user-mode. Likewise, “Kernel-Mode Execute” memory would only be executable 
when the virtual processor is running in kernel-mode.  

KMX and UMX can be independently set such that execute permissions are enforced differently 
between user and kernel mode. All combinations of UMX and KMX are supported, except for KMX=1, 
UMX=0. The behavior of this combination is undefined. 

MBEC is disabled by default for all VTLs and virtual processors. When MBEC is disabled, the kernel-mode 
execute bit determines memory access restriction. Thus, if MBEC is disabled, KMX=1 code is executable 
in both kernel and user-mode.  

 Descriptor Tables 

Any user-mode code that accesses descriptor tables must be in GPA pages marked as KMX=UMX=1. 
User-mode software accessing descriptor tables from a GPA page marked KMX=0 is unsupported and 
results in a general protection fault. 

 MBEC configuration 

To make use of Mode-based execution control, it must be enabled at two levels: 

1. When the VTL is enabled for a partition, MBEC must be enabled using 
HvEnablePartitionVtl (see 15.15.3). 

2. MBEC must be configured on a per-VP and per-VTL basis, using 
HvRegisterVsmVpSecureVtlConfig (see 15.5.2). 

 MBEC Interaction with Supervisor Mode Execution Prevention (SMEP) 

Supervisor-Mode Execution Prevention (SMEP) is a processor feature supported on some platforms. 
SMEP can impact the operation of MBEC due to its restriction of supervisor access to memory pages. 
The hypervisor adheres to the following policies related to SMEP: 

1. If SMEP is not available to the guest OS (whether it be because of hardware capabilities or 
processor compatibility mode), MBEC operates unaffected. 
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2. If SMEP is available, and is enabled, MBEC operates unaffected. 

3. If SMEP is available, and is disabled, all execute restrictions are governed by the KMX control. 
Thus, only code marked KMX=1 will be allowed to execute. 

15.11 Virtual Processor State Isolation 

Virtual processors maintain separate states for each active VTL. However, some of this state is private to 
a particular VTL, and the remaining state is shared among all VTLs.  

State which is preserved per VTL (a.k.a. private state) is saved by the hypervisor across VTL transitions. If 
a VTL switch is initiated, the hypervisor saves the current private state for the active VTL, and then 
switches to the private state of the target VTL. Shared state remains active regardless of VTL switches.  

 Private State 

In general, each VTL has its own control registers, RIP register, RSP register, and MSRs. Below is a list of 
specific registers and MSRs which are private to each VTL. 

15.11.1.1 Private MSRs 

SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP, STAR, LSTAR, CSTAR, SFMASK, EFER, PAT, 

KERNEL_GSBASE, FS.BASE, GS.BASE, TSC_AUX 

HV_X64_MSR_HYPERCALL 

HV_X64_MSR_GUEST_OS_ID 

HV_X64_MSR_REFERENCE_TSC 

HV_X64_MSR_APIC_FREQUENCY 

HV_X64_MSR_EOI 

HV_X64_MSR_ICR 

HV_X64_MSR_TPR 

HV_X64_MSR_APIC_ASSIST_PAGE 

HV_X64_MSR_NPIEP_CONFIG 

HV_X64_MSR_SIRBP 

HV_X64_MSR_SCONTROL 

HV_X64_MSR_SVERSION 

HV_X64_MSR_SIEFP 

HV_X64_MSR_SIMP 

HV_X64_MSR_EOM 

HV_X64_MSR_SINT0 – HV_X64_MSR_SINT15 

HV_X64_MSR_STIMER0_CONFIG – HV_X64_MSR_STIMER3_CONFIG 

HV_X64_MSR_STIMER0_COUNT – HV_X64_MSR_STIMER3_COUNT 

Local APIC registers (including CR8/TPR) 
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15.11.1.2 Private registers 

RIP, RSP 

RFLAGS 

CR0, CR3, CR4 

DR7 

IDTR, GDTR 

CS, DS, ES, FS, GS, SS, TR, LDTR 

TSC 

DR6 (*dependent on processor type. Read HvRegisterVsmCapabilities virtual register to 

determine shared/private status) 

 Shared State 

VTLs share state in order to cut down on the overhead of switching contexts. Sharing state also allows 
some necessary communication between VTLs. Most general purpose and floating point registers are 
shared, as are most architectural MSRs. Below is the list of specific MSRs and registers that are shared 
among all VTLs: 

15.11.2.1 Shared MSRs 

HV_X64_MSR_TSC_FREQUENCY 

HV_X64_MSR_VP_INDEX 

HV_X64_MSR_VP_RUNTIME 

HV_X64_MSR_RESET 

HV_X64_MSR_TIME_REF_COUNT 

HV_X64_MSR_GUEST_IDLE 

HV_X64_MSR_DEBUG_DEVICE_OPTIONS 

HV_X64_MSR_BELOW_1MB_PAGE 

HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE 

HV_X64_MSR_STATS_VP_RETAIL_PAGE 

MTRRs 

MCG_CAP 

MCG_STATUS 

15.11.2.2 Shared registers 

Rax, Rbx, Rcx, Rdx, Rsi, Rdi, Rbp 

CR2 

R8 – R15 
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DR0 – DR5 

X87 floating point state 

XMM state 

AVX state 

XCR0 (XFEM) 

DR6 (*dependent on processor type. Read HvRegisterVsmCapabilities virtual register to 

determine shared/private status)  

 Real Mode 

Real mode is not supported for any VTL greater than 0. VTLs greater than 0 can run in 32-bit or 64-bit 
mode. In order to switch between 32-bit and 64-bit in a non-zero VTL, the VTL needs to be disabled and 
re-initialized.  

15.12 VTL Interrupt Management 

 Overview 

In order to achieve a high level of isolation between Virtual Trust Levels, Virtual Secure Mode provides a 
separate interrupt subsystem for each VTL enabled on a virtual processor. This ensures that a VTL is able 
to both send and receive interrupts without interference from a less secure VTL. 

Each VTL has its own interrupt controller, which is only active if the virtual processor is running in that 
particular VTL. If a virtual processor switches VTL states, the interrupt controller active on the processor 
is also switched.  

 Interrupts targeted at a higher VTL 

An interrupt targeted at a VTL which is higher than the active VTL will cause an immediate VTL switch. 
The higher VTL can then receive the interrupt. If the higher VTL is unable to receive the interrupt 
because of its TPR/CR8 value, the interrupt is held as “pending” and the VTL does not switch. If there are 
multiple VTLs with pending interrupts, the highest VTL takes precedence (without notice to the lower 
VTL).  

15.12.2.1 RFLAGS.IF 

For the purposes of switching VTLs, RFLAGS.IF does not affect whether a secure interrupt triggers a VTL 
switch. If RFLAGS.IF is cleared to mask interrupts, interrupts into higher VTLs will still cause a VTL switch 
to a higher VTL. Only the higher VTL’s TPR/CR8 value is taken into account when deciding whether to 
immediately interrupt. 

This behavior also affects pending interrupts upon a VTL return. If the RFLAGS.IF bit is cleared to mask 
interrupts in a given VTL, and the VTL returns (to a lower VTL), the hypervisor will reevaluate any 
pending interrupts. This will cause an immediate call back to the higher VTL.  

 Interrupts Targeted at a Lower VTL 

When an interrupt is targeted at a lower VTL, the interrupt is not delivered until the next time the virtual 
processor transitions into the targeted VTL.  
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INIT and startup IPIs targeted at a lower VTL are dropped on a virtual processor with a higher VTL 
enabled. Since INIT/SIPI is blocked, the HvStartVirtualProcessor and HvGetVpIndexFromApicId hypercalls 
should be used to start processors (see 7.10.3 and 7.10.4, respectively). 

 Virtual Interrupt Notification Assist 

Higher VTLs may register to receive a notification if they are blocking immediate delivery of an interrupt 
to a lower VTL of the same virtual processor. Higher VTLs can enable Virtual Interrupt Notification Assist 
(VINA) via a virtual register HvRegisterVsmVina: 

 
typedef union  
{ 
  UINT64 AsUINT64; 
    struct 
    { 
        UINT64 Vector          : 8; 
        UINT64 Enabled         : 1; 
        UINT64 AutoReset       : 1; 
        UINT64 AutoEoi         : 1; 
        UINT64 ReservedP       : 53; 
    }; 
} HV_REGISTER_VSM_VINA; 
 

Each VTL on each VP has its own VINA instance, as well as its own version of HvRegisterVsmVina. The 
VINA facility will generate an edge triggered interrupt to the currently active higher VTL when an 
interrupt for the lower VTL is ready for immediate delivery. 

In order to prevent a flood of interrupts occurring when this facility is enabled, the VINA facility includes 
some limited state.  When a VINA interrupt is generated, the VINA facility’s state is changed to 
“Asserted.”  Sending an end-of-interrupt to the SINT associated with the VINA facility will not clear the 
“Asserted” state.  The asserted state can only be cleared in one of two ways: 

1) The state can manually be cleared by writing to the VinaAsserted field of the VTL control 
page. 

2) The state is automatically cleared on the next entry to the VTL if the “auto-reset on VTL entry” 
option is enabled in the HvRegisterVsmVina register. 

This allows code running at a secure VTL to just be notified of the first interrupt that is received for a 
lower VTL.  If a secure VTL wishes to be notified of additional interrupts, it can clear the VinaAsserted 
field of the VP assist page, and it will be notified of the next new interrupt. 

15.13 Secure Intercepts 

Recall that the root partition has the ability to install an intercept on certain guest actions. With this 
capability, anytime a specified event takes place in a guest partition, the guest VP is suspended and an 
intercept is triggered. This allows the root to take action in response to an event (e.g. a memory access). 

In much the same way, the hypervisor allows a higher VTL to install intercepts for events that take place 
in the context of a lower VTL. This gives higher VTLs an elevated level of control over lower-VTL 
resources. Secure intercepts can be used to protect system-critical resources, and prevent attacks from 
lower-VTLs. 

A normal intercept suspends the guest VP, and sends an intercept message to the root partition. In the 
case of a secure intercept, the intercept is queued to the higher VTL, and that VTL is made runnable on 
the VP.  
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 Secure Intercept Types 

 

Intercept Type Intercept Applies To 

Memory access Attempting to access GPA protections established by a higher VTL. 

Control register access Attempting to access a set of control registers specified by a higher VTL. 

 Nested Intercepts 

Intercepts can intersect in two cases: 

1. Multiple VTLs can install secure intercepts for the same event in a lower VTL.  

2. The host and a higher VTL can install an intercept for the same event in a guest. 

Thus, a hierarchy is established to decide where nested intercepts are notified. The following list is the 
order of where intercept are notified: 

1. Lower VTL 

2. Higher VTL 

3. Root partition 

A lower VTL always takes precedence, and VTLs always take precedence over the root partition. Once 
the VTL or root partition is notified of the intercept, no other VTLs or partitions are notified. 

 Handling Secure Intercepts 

Once a VTL has been notified of a secure intercept, it must take action such that the lower VTL can 
continue.  

The higher VTL can handle the intercept in a number of ways, including: injecting an exception, 
emulating the access, or providing a proxy to the access. In any case, if the private state of the lower VTL 
VP needs to be modified, HvSetVpRegisters should be used. 

 Secure Register Intercepts 

A higher VTL can intercept on accesses to certain control registers. This is achieved by setting 
HvX64RegisterCrInterceptControl using the HvSetVpRegisters hypercall (see 7.10.1). 

Setting the control bit in HvX64RegisterCrInterceptControl will trigger an intercept for every 
access of the corresponding control register.  
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HvX64RegisterCrInterceptControl            = 0x000E0000, 
 
typedef union 
{ 
    UINT64 AsUINT64; 
    struct 
    { 
        UINT64 Cr0Write            : 1;       // 0x0000000000000001 
        UINT64 Cr4Write            : 1;       // 0x0000000000000002 
        UINT64 XCr0Write           : 1;       // 0x0000000000000004 
        UINT64 IA32MiscEnableRead  : 1;       // 0x0000000000000008 
        UINT64 IA32MiscEnableWrite : 1;       // 0x0000000000000010 
        UINT64 MsrLstarRead        : 1;       // 0x0000000000000020 
        UINT64 MsrLstarWrite       : 1;       // 0x0000000000000040 
        UINT64 MsrStarRead         : 1;       // 0x0000000000000080 
        UINT64 MsrStarWrite        : 1;       // 0x0000000000000100 
        UINT64 MsrCstarRead        : 1;       // 0x0000000000000200 
        UINT64 MsrCstarWrite       : 1;       // 0x0000000000000400 
        UINT64 ApicBaseMsrRead     : 1;       // 0x0000000000000800 
        UINT64 ApicBaseMsrWrite    : 1;       // 0x0000000000001000 
        UINT64 MsrEferRead         : 1;       // 0x0000000000002000 
        UINT64 MsrEferWrite        : 1;       // 0x0000000000004000 
        UINT64 GdtrWrite           : 1;       // 0x0000000000008000 
        UINT64 IdtrWrite           : 1;       // 0x0000000000010000 
        UINT64 LdtrWrite           : 1;       // 0x0000000000020000 
        UINT64 TrWrite             : 1;       // 0x0000000000040000 
        UINT64 MsrSysenterCsWrite  : 1;       // 0x0000000000080000 
        UINT64 MsrSysenterEipWrite : 1;       // 0x0000000000100000 
        UINT64 MsrSysenterEspWrite : 1;       // 0x0000000000200000 
        UINT64 MsrSfmaskWrite      : 1;       // 0x0000000000400000 
        UINT64 MsrTscAuxWrite      : 1;       // 0x0000000000800000 
        UINT64 RsvdZ               : 40; 
    }; 
} HV_REGISTER_CR_INTERCEPT_CONTROL; 
 

15.13.4.1 Mask Registers 
HvX64RegisterCrInterceptCr0Mask            = 0x000E0001, 
HvX64RegisterCrInterceptCr4Mask            = 0x000E0002, 
HvX64RegisterCrInterceptIa32MiscEnableMask = 0x000E0003, 

To allow for finer control, a subset of control registers also have corresponding mask registers (defined 
above). Mask registers can be used to install intercepts on a subset of the corresponding control 
registers. Where a mask register is not defined, any access (as defined by 
HvX64RegisterCrInterceptControl) will trigger an intercept. 

15.14 DMA and Devices 

Devices effectively have the same privilege level as VTL0. When VSM is enabled, all device-allocated 
memory is marked as VTL0. Any DMA accesses have the same privileges as VTL0.  

15.15 VSM Interfaces 

 Type Definitions 

Below are type definitions for a VTL, as well as the input for targeting a VTL with a hypercall. 
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// VTL definition 
typedef UINT8 HV_VTL; 
 
// Input for targeting a specific VTL. 
 
typedef union 
{ 
    UINT8 AsUINT8; 
    struct 
    { 
        UINT8 TargetVtl    : 4; 
        UINT8 UseTargetVtl : 1; 
        UINT8 ReservedZ    : 3; 
    }; 
} HV_INPUT_VTL; 

 HvModifyVtlProtectionMask 

The HvModifyVtlProtectionMask hypercall modifies the VTL protections applied to an existing set of GPA 
pages. 

Wrapper Interface 

 
HV_STATUS 
HvModifyVtlProtectionMask ( 
 _in HV_PARTITION_ID  TargetPartitionId, 
 _in HV_MAP_GPA_FLAGS  MapFlags, 
 _in HV_INPUT_VTL  TargetVtl, 
 _in_ecount(PageCount)  HV_GPA_PAGE_NUMBER GpaPageList 
); 
 

Native Interface 

HvModifyVtlProtectionMask [rep] 

 Call Code = 0x000c 

 Input Parameters 

0 TargetPartitionId (8 bytes) 

8 MapFlags(4 bytes) TargetVTL 

(1 byte) 

RsvdZ (3 bytes) 

 Input List Element 

0 GpaPageList 

 

Input Parameters 

TargetPartitionId supplies the partition ID of the partition this request is for. 

MapFlags specifies the new mapping flags to apply 

TargetVtl specifies the VTL to be enabled by this hypercall. 
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GpaPageList supplies the pages to be protected  

Output Parameters 

None. 

Restrictions 

A VTL can only place protections on a lower VTL.  

Any attempt to apply VTL protections on non-RAM ranges will fail with 
HV_STATUS_INVALID_PARAMETER. 

Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller does not possess the 

CpuManagement privilege. 

HV_STATUS_INVALID_PARTITION_ID A partition with the specified partition Id does 

not exist. 

HV_STATUS_INVALID_PARTITION_STATE The hypervisor could not perform the operation 

because the partition is entering or in an invalid 

state. 

HV_STATUS_INVALID_PARAMETER The hypervisor could not perform the operation 

because an invalid parameter was specified. 

HV_STATUS_OPERATION_DENIED The operation could not be performed. (The 

actual cause depends on the operation.) 

HV_STATUS_INSUFFICIENT_MEMORY Insufficient memory exists for the call to 

succeed. 

HV_STATUS_HYPERCALL_INTERCEPT The requested access to the hypercall generated 

an intercept.   

 

HV_STATUS_INVALID_VTL_STATE The supplied virtual trust level is not in the 

correct state to perform the requested 

operation. 

 HvEnablePartitionVtl 

The HvEnablePartitionVtl hypercall enables a virtual trust level for a specified partition. It should be used 
in conjunction with HvEnableVpVtl to initiate and use a new VTL. 

 

vbscript:u(%222C%22,25)
vbscript:u(%228T%22,17)
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Wrapper Interface 

 
HV_STATUS 
HvEnablePartitionVtl ( 
 _in HV_PARTITION_ID  TargetPartitionId, 
 _in HV_VTL    TargetVtl, 
 _in HV_ENABLE_PARTITION_VTL_FLAGS   Flags 
); 
 

Input Structures 

 
typedef union { 
    UINT8 AsUINT8; 
    struct 
    { 
        UINT8 EnableMbec:1; 
        UINT8 Reserved:7; 
    }; 
} HV_ENABLE_PARTITION_VTL_FLAGS; 
 

Native Interface 

HvEnablePartitionVtl 

 Call Code = 0x000d 

 Input Parameters 

0 TargetPartitionId (8 bytes) 

8 Flags(4 bytes) TargetVTL 

(1 byte) 

RsvdZ (3 bytes) 

 

Input Parameters 

TargetPartitionId supplies the partition ID of the partition this request is for. 

Flags specifies a mask to enable VSM related features. 

TargetVtl specifies the VTL to be enabled by this hypercall. 

Output Parameters 

None. 

Restrictions 

1. A launching VTL can always enable a target VTL if the target VTL is lower than the launching VTL. 

2. A launching VTL can enable a higher target VTL if the launching VTL is the highest VTL enabled 
for the partition that is lower than the target VTL. 

These restrictions are only enforced for cases where a partition is launching a VTL for itself.  If the 
host partition is enabling a VTL for a child partition, these restrictions do not apply. 
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Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller does not possess the CpuManagement 

privilege. 

HV_STATUS_INVALID_PARTITION_ID A partition with the specified partition Id does 

not exist. 

HV_STATUS_INVALID_PARAMETER The hypervisor could not perform the operation 

because an invalid parameter was specified. 

HV_STATUS_INVALID_PARTITION_STATE The hypervisor could not perform the operation 

because the partition is entering or in an invalid 

state. 

HV_STATUS_INSUFFICIENT_MEMORY Insufficient memory exists for the call to succeed. 

HV_STATUS_HYPERCALL_INTERCEPT The requested access to the hypercall generated 

an intercept.   

 

HV_STATUS_INVALID_VTL_STATE The supplied virtual trust level is not in the 

correct state to perform the requested operation. 

 HvEnableVpVtl 

HvEnableVpVtl enables a VTL to run on a VP. This hypercall should be used in conjunction with 
HvEnablePartitionVtl to enable and use a VTL. To enable a VTL on a VP, it must first be enabled for the 
partition. This call does not change the active VTL. 

vbscript:u(%228T%22,17)
vbscript:u(%222C%22,25)
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Wrapper Interface 

 
HV_STATUS 
HvEnableVpVtl( 
 _in HV_PARTITION_ID  TargetPartitionId, 
 _in HV_VP_INDEX  VpIndex, 
 _in HV_VTL    TargetVtl, 
 _in HV_INITIAL_VP_CONTEXT VpVtlContext 
); 
 

Input Structures 

 
typedef struct  
{ 
    UINT64 Rip; 
    UINT64 Rsp; 
    UINT64 Rflags; 
 
    // Segment selector registers together with their hidden state. 
    HV_X64_SEGMENT_REGISTER Cs; 
    HV_X64_SEGMENT_REGISTER Ds; 
    HV_X64_SEGMENT_REGISTER Es; 
    HV_X64_SEGMENT_REGISTER Fs; 
    HV_X64_SEGMENT_REGISTER Gs; 
    HV_X64_SEGMENT_REGISTER Ss; 
    HV_X64_SEGMENT_REGISTER Tr; 
    HV_X64_SEGMENT_REGISTER Ldtr; 
 
    // Global and Interrupt Descriptor tables 
    HV_X64_TABLE_REGISTER Idtr; 
    HV_X64_TABLE_REGISTER Gdtr; 
 
    // Control registers and MSR's 
    UINT64 Efer; 
    UINT64 Cr0; 
    UINT64 Cr3; 
    UINT64 Cr4; 
    UINT64 MsrCrPat; 
 
} HV_INITIAL_VP_CONTEXT; 
 

Native Interface 
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HvEnableVpVtl 

 Call Code = 0x000f 

 Input Parameters 

0 TargetPartitionId (8 bytes) 

8 VpIndex (4 bytes) TargetVtl 

(1 byte) 

RsvdZ (3 bytes) 

16 Rip (8 bytes) 

24 Rsp (8 bytes) 

32 Rflags (8 bytes) 

40 Cs[0] (8 bytes) 

48 Cs[1] (8 bytes) 

56 Ds[0] (8 bytes) 

64 Ds[1] (8 bytes) 

72 Es[0] (8 bytes) 

80 Es[1] (8 bytes) 

88 Fs[0] (8 bytes) 

96 Fs[1] (8 bytes) 

104 Gs[0] (8 bytes) 

112 Gs[1] (8 bytes) 

120 Ss[0] (8 bytes) 

128 Ss[1] (8 bytes) 

136 Ts[0] (8 bytes) 

144 Ts[1] (8 bytes) 

152 Ltdr[0] (8 bytes) 

160 Ltdr[1] (8 bytes) 

168 Itdr[0] (8 bytes) 
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176 Itdr[1] (8 bytes) 

184 Gtdr[0] (8 bytes) 

192 Gtdr[1] (8 bytes) 

200 Efer (8 bytes) 

208 Cr0 (8 bytes) 

216 Cr3 (8 bytes) 

224 Cr4 (8 bytes) 

232 MsrCrPat  (8 bytes) 

 

Input Parameters 

TargetPartitionId supplies the partition ID of the partition this request is for. 

VpIndex specifies the index of the virtual processor on which to enable the VTL. 

TargetVtl specifies the VTL to be enabled by this hypercall. 

VpVtlContext gives the initial context in which the VP should start upon the first entry to the target 
VTL. 

Output Parameters 

None. 

Restrictions 

In general, a VTL can only be enabled by a higher VTL. There is one exception to this rule: the highest 
VTL enabled for a partition can enable a higher target VTL. These restrictions are only enforced for 
cases where a partition is launching a VTL for itself.  If the host partition is enabling a VTL for a child 
partition, these restrictions do not apply. 

Once the target VTL is enabled on a VP, all other calls to enable the VTL must come from equal or 
greater VTLs. 

This hypercall will fail if called to enable a VTL that is already enabled for a VP. 
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Return Values 

Status code Error condition 

HV_STATUS_ACCESS_DENIED The caller does not possess the CpuManagement 

privilege. 

HV_STATUS_INVALID_PARTITION_ID A partition with the specified partition Id does not 

exist. 

HV_STATUS_INVALID_PARAMETER The hypervisor could not perform the operation 

because an invalid parameter was specified. 

HV_STATUS_INVALID_PARTITION_STATE The specified partition’s state was not appropriate 

for the requested operation. 

HV_STATUS_INVALID_VP_STATE A virtual processor is not in the correct state for 

the performance of the indicated operation. 

HV_STATUS_INVALID_VTL_STATE The supplied virtual trust level is not in the correct 

state to perform the requested operation. 

HV_STATUS_INVALID_REGISTER_VALUE The supplied register value is invalid. 

HV_STATUS_INVALID_VP_INDEX The specified VP index is invalid. 

 HvVtlCall 

HvVtlCall switches into the next highest VTL enabled on the VP. For more details, see 15.6.1. 

Wrapper Interface 

 

HV_STATUS 

HvVtlCall (); 

 

Native Interface 

HvVtlCall 

 Call Code = 0x0011 

Input Parameters 

See 15.6.1 for details about the input control value. 

Output Parameters 

None. 

Restrictions 

See 15.6.1.1. 
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Return Values 

None. 

 HvVtlReturn 

HvVtlReturn switches into the next lowest VTL enabled on the VP. For more details, see 15.7.1. 

Wrapper Interface 

 

HV_STATUS 

HvVtlReturn (); 

 

Native Interface 

HvVtlReturn 

 Call Code = 0x0012 

Input Parameters 

See 15.7 for details about the input control value and “fast return”. 

Output Parameters 

None. 

Restrictions 

See 15.7.2 

Return Values 

None. 
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16 Nested Virtualization 

16.1 Overview 

Nested virtualization refers to the Hyper-V hypervisor emulating hardware virtualization extensions. 
These emulated extensions can be used by other virtualization software (e.g. a nested hypervisor) to run 
on the Hyper-V platform. 

16.2 Definitions 

The following terminology is used to define various levels of nested virtualization: 

Term Definition 

L0 Hypervisor The Hyper-V hypervisor running on physical hardware. 

L1 Root The Windows root operating system.  

L1 Guest A Hyper-V virtual machine without a nested hypervisor. 

L1 Hypervisor A nested hypervisor running within a Hyper-V virtual machine. 

L2 Root A root Windows operating system, running within the context of a Hyper-
V virtual machine. 

L2 Guest A nested virtual machine, running within the context of a Hyper-V virtual 
machine. 

The diagram below shows how “levels” are used to describe a case where Hyper-V is both the L0 and L1 
hypervisor: 

 

16.3 Requirements 

 Guest Partition 

This capability is only available to guest partitions. It must be enabled per virtual machine. 

Nested virtualization is not supported in a Windows root partition. 

 Supported Platforms 

Nested virtualization is supported on Intel platforms only. 
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16.4 Guest Enlightenments 

Compared to bare-metal, hypervisors can incur a significant performance regression when running in a 
VM. L1 hypervisors can be optimized to run in a Hyper-V VM by using enlightened interfaces provided by 
the L0 hypervisor. 

 Enlightened Interface Discovery 

Support for an enlightened VMCS interface is reported with CPUID leaf 0x40000004. If an enlightened 
VMCS interface is supported, additional nested enlightenments may be discovered by reading the CPUID 
leaf 0x4000000A (see 2.4.11). 

16.5 Enlightened VMCS 

On Intel platforms, virtualization software uses virtual machine control data structures (VMCSs) to 
configure processor behavior related to virtualization. VMCSs must be made active using a VMPTRLD 
instruction and modified using VMREAD and VMWRITE instructions. These instructions are often a 
significant bottleneck for nested virtualization because they must be emulated. 

The hypervisor exposes an “enlightened VMCS” feature which can be used to control virtualization-
related processor behavior using a data structure in guest physical memory. This data structure can be 
modified using normal memory access instructions, thus there is no need for the L1 hypervisor to 
execute VMREAD or VMWRITE or VMPTRLD instructions. 

The L1 hypervisor may choose to use enlightened VMCSs by writing 1 to the corresponding field in the 
VP assist page (see section 7.8.7). Another field in the VP assist page controls the currently active 
enlightened VMCS. Each enlightened VMCS is exactly one page (4 KB) in size and must be initially 
zeroed. No VMPTRLD instruction must be executed to make an enlightened VMCS active or current.  

After the L1 hypervisor performs a VM entry with an enlightened VMCS, the VMCS is considered active 
on the processor. An enlightened VMCS can only be active on a single processor at the same time. The 
L1 hypervisor can execute a VMCLEAR instruction to transition an enlightened VMCS from the active to 
the non-active state. Any VMREAD or VMWRITE instructions while an enlightened VMCS is active is 
unsupported and can result in unexpected behavior.  

The enlightened VMCS type is defined in section 16.11.2. All non-synthetic fields map to an Intel physical 
VMCS encoding, which is defined in section 16.11.4. 

 Enlightened VMCS Versioning 

The enlightened VMCS structure is versioned to account for future changes. Each enlightened VMCS 
structure contains a version field, which is reported by the L0 hypervisor (see 2.4.11) 

The only VMCS version currently supported is 1. 

 Clean Fields 

The L0 hypervisor may choose to cache parts of the enlightened VMCS. The enlightened VMCS clean 
fields control which parts of the enlightened VMCS are reloaded from guest memory on a nested VM 
entry. The L1 hypervisor must clear the corresponding VMCS clean fields every time it modifies the 
enlightened VMCS, otherwise the L0 hypervisor might use a stale version. 

The clean fields enlightenment is controlled via the synthetic “CleanFields” field of the enlightened 
VMCS. By default, all bits are set such that the L0 hypervisor must reload the corresponding VMCS fields 
for each nested VM entry. 
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 Enlightened MSR Bitmap 

On Intel platforms, the L0 hypervisor emulates the VMX “MSR-Bitmap Address” controls that allow 
virtualization software to control which MSR accesses generate intercepts.  

The L1 hypervisor may collaborate with the L0 hypervisor to make MSR accesses more efficient. It can 
enable enlightened MSR bitmaps by setting the corresponding field in the enlightened VMCS (See 
16.11.2) to 1. When enabled, the L0 hypervisor does not monitor the MSR bitmaps for changes. Instead, 
the L1 hypervisor must invalidate the corresponding clean field after making changes to one of the MSR 
bitmaps. 

16.6 Compatibility with Live Migration 

Hyper-V has the ability to live migrate a child partition from one host to another host. Live migrations 
are typically transparent to the child partition. However, in the case of nested virtualization, the L1 
hypervisor may need to be aware of migrations. 

 Live Migration Notifications 

An L1 hypervisor can request to be notified when its partition is migrated. This capability is enumerated 
in CPUID as “AccessReenlightenmentControls” privilege (see 2.4.10). 

The L0 hypervisor exposes a synthetic MSR (HV_X64_MSR_REENLIGHTENMENT_CONTROL) that may be 
used by the L1 hypervisor to configure an interrupt vector and target processor. The L0 hypervisor will 
inject an interrupt with the specified vector after each migration.  

#define HV_X64_MSR_REENLIGHTENMENT_CONTROL (0x40000106) 
 
typedef union 
{ 
    UINT64 AsUINT64; 
    struct 
    { 
 
        UINT64 Vector       :8; 
        UINT64 RsvdZ1       :8; 
        UINT64 Enabled      :1; 
        UINT64 RsvdZ2       :15; 
        UINT64 TargetVp     :32; 
    }; 
} HV_REENLIGHTENMENT_CONTROL; 

The specified vector must correspond to a fixed APIC interrupt. TargetVp specifies the virtual processor 
index. 

 TSC Emulation 

A guest partition may be live migrated between two machines with different TSC frequencies. In those 
cases, the TscScale value from the reference TSC page (see section 12.6) may need to be recomputed.  

The L0 hypervisor optionally emulates all TSC accesses after a migration until the L1 hypervisor has had 
the opportunity to recompute the TscScale value. The L1 hypervisor can opt into TSC Emulation by 
writing to the HV_X64_MSR_TSC_EMULATION_CONTROL MSR. If opted in, the L0 hypervisor emulates 
TSC accesses after a migration takes place.  

The L1 hypervisor can query if TSC accesses are currently being emulated using the 
HV_X64_MSR_TSC_EMULATION_STATUS MSR. For example, the L1 hypervisor could subscribe to Live 
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Migration notifications (see 16.6) and query the TSC status after it receives the migration interrupt. It 
can also turn off TSC emulation (after it updates the TscScale value) using this MSR. 

#define HV_X64_MSR_TSC_EMULATION_CONTROL   (0x40000107) 
#define HV_X64_MSR_TSC_EMULATION_STATUS    (0x40000108) 
 
typedef union { 
    UINT64 AsUINT64; 
    struct 
    { 
        UINT64 Enabled      :1; 
        UINT64 RsvdZ        :63; 
    }; 
 
} HV_TSC_EMULATION_CONTROL; 
 
typedef union { 
    UINT64 AsUINT64; 
    struct 
    { 
        UINT64 InProgress   : 1; 
        UINT64 RsvdP1       : 63; 
    }; 
 
} HV_TSC_EMULATION_STATUS; 

16.7 Virtual TLB 

The virtual TLB exposed by the hypervisor may be extended to cache translations from L2 GPAs to GPAs. 
As with the TLB on a logical processor, the virtual TLB is a non-coherent cache, and this non-coherence is 
visible to guests. The hypervisor exposes operations to manage the TLB. 

On Intel platforms, the L0 hypervisor virtualizes the following additional ways to manage the TLB: 

• The INVVPID instruction can be used to invalidate cached GVA to GPA or SPA mappings 

• The INVEPT instruction can be used to invalidate cached L2 GPA to GPA mappings 

16.8 Direct Virtual Flush 

The hypervisor exposes hypercalls (HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, 
HvFlushVirtualAddressList, and HvFlushVirtualAddressListEx) that allow operating systems to more 
efficiently manage the virtual TLB. The L1 hypervisor can choose to allow its guest to use those 
hypercalls and delegate the responsibility to handle them to the L0 hypervisor. This requires the use of 
enlightened VMCSs and of a partition assist page. 

When enlightened VMCSs are in use, the virtual TLB tags all cached mappings with an identifier of the 
enlightened VMCS that created them. In response to a direct virtual flush hypercall from a L2 guest, the 
L0 hypervisor invalidates all cached mappings created by enlightened VMCSs where 

• The VmId is the same as the caller’s VmId 

• Either the VpId is contained in the specified ProcessorMask or HV_FLUSH_ALL_PROCESSORS is 
specified 

 Configuration 

Direct handling of virtual flush hypercalls is enabled by setting the 
EnlightenmentsControl.NestedFlushVirtualHypercall field of an enlightened VMCS to 1.  
Before enabling it, the L1 hypervisor must configure the following additional fields of the enlightened 
VMCS: 
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• VpId: ID of the virtual processor that the enlightened VMCS controls.  

• VmId: ID of the virtual machine that the enlightened VMCS belongs to. 

• PartitionAssistPage: Guest physical address of the partition assist page. 

The L1 hypervisor must also expose the following capabilities to its guests via CPUID (see 9.1.3): 

• UseHypercallForLocalFlush  

• UseHypercallForRemoteFlush 

 Partition Assist Page 

The partition assist page is a page-size aligned page-size region of memory that the L1 hypervisor must 
allocate and zero before direct flush hypercalls can be used. Its GPA must be written to the 
corresponding field in the enlightened VMCS. 

struct 
{ 
    UINT32 TlbLockCount; 
} VM_PARTITION_ASSIST_PAGE; 

 Synthetic VM-Exit 

If the TlbLockCount of the caller’s partition assist page is non-zero, the L0 hypervisor delivers a VM-Exit 
with a synthetic exit reason to the L1 hypervisor after handling a direct virtual flush hypercall. 

#define HV_VMX_SYNTHETIC_EXIT_REASON_TRAP_AFTER_FLUSH  0x10000031 

16.9 Second Level Address Translation 

When nested virtualization is enabled for a guest partition, the memory management unit (MMU) 
exposed by the partition includes support for second level address translation. Second level address 
translation is a capability that can be used by the L1 hypervisor to virtualize physical memory. When in 
use, certain addresses that would be treated as guest physical addresses (GPAs) are treated as L2 guest 
physical addresses (L2 GPAs) and translated to GPAs by traversing a set of paging structures. 

The L1 hypervisor can decide how and where to use second level address spaces. Each second level 
address space is identified by a guest defined 64-bit ID value. On Intel platforms, this value is the same 
as the address of the EPT PML4 table. 

 Compatibility 

On Intel platforms, the second level address translation capability exposed by the hypervisor is generally 
compatible with VMX support for address translation. However, the following guest-observable 
differences exist: 

• Internally, the hypervisor may use shadow page tables that translate L2 GPAs to SPAs. In such 
implementations, these shadow page tables appear to software as large TLBs. However, several 
differences may be observable. First, shadow page tables can be shared between two virtual 
processors, whereas traditional TLBs are per-processor structures and are independent. This 
sharing may be visible because a page access by one virtual processor can fill a shadow page 
table entry that is subsequently used by another virtual processor.  

• Some hypervisor implementations may use internal write protection of guest page tables to 
lazily flush MMU mappings from internal data structures (for example, shadow page tables). 
This is architecturally invisible to the guest because writes to these tables will be handled 
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transparently by the hypervisor. However, writes performed to the underlying GPA pages by 
other partitions or by devices may not trigger the appropriate TLB flush. 

• On some hypervisor implementations, a second level page fault (“EPT violation”) might not 
invalidate cached mappings. 

16.10 Nested MSR Access Restriction 

With VSM enabled in the root partition, the Hyper-V hypervisor filters MSR access for security purposes 
(guest partition MSR access is already filtered or virtualized). For example, access to non-architectural or 
vendor-specific MSRs are blocked. This protection also applies in the nested virtualization case. When 
the Hyper-V hypervisor is running nested within a virtual machine, and the L0 hypervisor chooses to 
reflect an MSR access to the L1 Hyper-V hypervisor, the access may be dropped.  

To avoid the MSR access being filtered out, the L0 hypervisor may choose not to reflect the MSR access 
to the L1 hypervisor and handle it directly. In this case, caution should be taken to avoid a “confused 
deputy” attack in which the L0 hypervisor is used to work around VSM protections or attack a higher 
privileged context. 

16.11 Nested Virtualization Data Types 

 GPA Range 

typedef union 
{ 
    UINT64 AsUINT64; 
 
    struct 
    { 
        UINT64 AdditionalPages : 11; 
        UINT64 LargePage : 1; 
        UINT64 BasePfn : 52; 
 
    }; 
 
    struct 
    { 
        UINT64 : 12; 
        UINT64 PageSize : 1; 
        UINT64 Reserved : 8; 
        UINT64 BaseLargePfn : 43; 
    }; 
 
} HV_GPA_PAGE_RANGE; 

 Enlightened VMCS 

Below is the type definition for the enlightened VMCS. The corresponding Intel physical VMCS encoding 
for each field can be found in 16.11.4. Note that some enlightened VMCS fields are synthetic, and 
therefore will not have a corresponding physical VMCS encoding. 
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typedef struct 
{ 
    UINT32  VersionNumber; 
    UINT32  AbortIndicator; 
 
    UINT16 HostEsSelector; 
    UINT16 HostCsSelector; 
    UINT16 HostSsSelector; 
    UINT16 HostDsSelector; 
    UINT16 HostFsSelector; 
    UINT16 HostGsSelector; 
    UINT16 HostTrSelector; 
    UINT64 HostPat; 
    UINT64 HostEfer; 
    UINT64 HostCr0; 
    UINT64 HostCr3; 
    UINT64 HostCr4; 
    UINT64 HostSysenterEspMsr; 
    UINT64 HostSysenterEipMsr; 
    UINT64 HostRip; 
    UINT32 HostSysenterCsMsr; 
    UINT32 PinControls; 
    UINT32 ExitControls; 
    UINT32 SecondaryProcessorControls; 
    HV_GPA IoBitmapA; 
    HV_GPA IoBitmapB; 
    HV_GPA MsrBitmap; 
    UINT16 GuestEsSelector; 
    UINT16 GuestCsSelector; 
    UINT16 GuestSsSelector; 
    UINT16 GuestDsSelector; 
    UINT16 GuestFsSelector; 
    UINT16 GuestGsSelector; 
    UINT16 GuestLdtrSelector; 
    UINT16 GuestTrSelector; 
    UINT32 GuestEsLimit; 
    UINT32 GuestCsLimit; 
    UINT32 GuestSsLimit; 
    UINT32 GuestDsLimit; 
    UINT32 GuestFsLimit; 
    UINT32 GuestGsLimit; 
    UINT32 GuestLdtrLimit; 
    UINT32 GuestTrLimit; 
    UINT32 GuestGdtrLimit; 
    UINT32 GuestIdtrLimit; 
    UINT32 GuestEsAttributes; 
    UINT32 GuestCsAttributes;   
    UINT32 GuestSsAttributes; 
    UINT32 GuestDsAttributes; 
    UINT32 GuestFsAttributes; 
    UINT32 GuestGsAttributes; 
    UINT32 GuestLdtrAttributes; 
    UINT32 GuestTrAttributes; 
    UINT64 GuestEsBase; 
    UINT64 GuestCsBase; 
    UINT64 GuestSsBase; 
    UINT64 GuestDsBase; 
    UINT64 GuestFsBase; 
    UINT64 GuestGsBase; 
    UINT64 GuestLdtrBase; 
    UINT64 GuestTrBase; 
    UINT64 GuestGdtrBase; 
    UINT64 GuestIdtrBase; 
    UINT64 Rsvd1[3];   
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    HV_GPA ExitMsrStoreAddress; 
    HV_GPA ExitMsrLoadAddress; 
    HV_GPA EntryMsrLoadAddress; 
    UINT64 Cr3Target0; 
    UINT64 Cr3Target1; 
    UINT64 Cr3Target2; 
    UINT64 Cr3Target3; 
    UINT32 PfecMask; 
    UINT32 PfecMatch; 
    UINT32 Cr3TargetCount; 
    UINT32 ExitMsrStoreCount; 
    UINT32 ExitMsrLoadCount; 
    UINT32 EntryMsrLoadCount; 
    UINT64 TscOffset; 
    HV_GPA VirtualApicPage; 
    HV_GPA GuestWorkingVmcsPtr; 
    UINT64 GuestIa32DebugCtl; 
    UINT64 GuestPat; 
    UINT64 GuestEfer; 
    UINT64 GuestPdpte0; 
    UINT64 GuestPdpte1; 
    UINT64 GuestPdpte2; 
    UINT64 GuestPdpte3; 
    UINT64 GuestPendingDebugExceptions; 
    UINT64 GuestSysenterEspMsr; 
    UINT64 GuestSysenterEipMsr; 
    UINT32 GuestSleepState; 
    UINT32 GuestSysenterCsMsr;    
    UINT64 Cr0GuestHostMask; 
    UINT64 Cr4GuestHostMask; 
    UINT64 Cr0ReadShadow; 
    UINT64 Cr4ReadShadow; 
    UINT64 GuestCr0; 
    UINT64 GuestCr3; 
    UINT64 GuestCr4; 
    UINT64 GuestDr7;     
    UINT64 HostFsBase; 
    UINT64 HostGsBase; 
    UINT64 HostTrBase; 
    UINT64 HostGdtrBase; 
    UINT64 HostIdtrBase; 
    UINT64 HostRsp; 
    UINT64 EptRoot; 
    UINT16 Vpid; 
    UINT16 Rsvd2[3]; 
    UINT64 Rsvd3[5]; 
    UINT64 ExitEptFaultGpa; 
    UINT32 ExitInstructionError; 
    UINT32 ExitReason; 
    UINT32 ExitInterruptionInfo; 
    UINT32 ExitExceptionErrorCode; 
    UINT32 ExitIdtVectoringInfo; 
    UINT32 ExitIdtVectoringErrorCode; 
    UINT32 ExitInstructionLength; 
    UINT32 ExitInstructionInfo; 
    UINT64 ExitQualification; 
    UINT64 ExitIoInstructionEcx; 
    UINT64 ExitIoInstructionEsi; 
    UINT64 ExitIoInstructionEdi; 
    UINT64 ExitIoInstructionEip; 
    UINT64 GuestLinearAddress; 
    UINT64 GuestRsp; 
    UINT64 GuestRflags; 
    UINT32 GuestInterruptibility; 
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    UINT32 ProcessorControls; 
    UINT32 ExceptionBitmap; 
    UINT32 EntryControls; 
    UINT32 EntryInterruptInfo; 
    UINT32 EntryExceptionErrorCode; 
    UINT32 EntryInstructionLength; 
    UINT32 TprThreshold; 
    UINT64 GuestRip; 
 
    UINT32 CleanFields; 
    UINT32 Rsvd4; 
    UINT32 SyntheticControls; 
    union 
    { 
        UINT32 AsUINT32; 
 
        struct 
        { 
            UINT32 NestedFlushVirtualHypercall : 1; 
            UINT32 MsrBitmap : 1; 
            UINT32 Reserved : 30; 
        }; 
 
    } EnlightenmentsControl; 
 
    UINT32 VpId; 
    UINT64 VmId; 
    UINT64 PartitionAssistPage; 
    UINT64 Rsvd5[4]; 
 
    UINT64 GuestBndcfgs; 
    UINT64 Rsvd6[7]; 
    UINT64 XssExitingBitmap; 
    UINT64 Rsvd7[7]; 
 
} HV_VMX_ENLIGHTENED_VMCS; 

 Clean Fields 

#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE            (0) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP       (1 << 0) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP      (1 << 1) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2    (1 << 2) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1    (1 << 3) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC    (1 << 4) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT   (1 << 5) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY   (1 << 6) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN   (1 << 7) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR            (1 << 8) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT    (1 << 9) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC     (1 << 10) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1      (1 << 11) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2      (1 << 12) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER    (1 << 13) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1       (1 << 14) 
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL (1 << 15) 

 Physical VMCS Encoding 

The following table maps the Intel physical VMCS encoding to its corresponding enlightened VMCS field 
name, as well as its corresponding clean field name. 
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VMCS Encoding  Enlightened Name  
 Field 
Size   Clean Field Name 

0x0000681e   GuestRip  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE 

0x0000401c   TprThreshold  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE 

0x0000681c   GuestRsp  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC 

0x00006820   GuestRflags  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC 

0x00004824   GuestInterruptibility  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC 

0x00004002   ProcessorControls  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC 

0x00004004   ExceptionBitmap  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN 

0x00004012   EntryControls  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY 

0x00004016   EntryInterruptInfo  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT 

0x00004018   EntryExceptionErrorCode  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT 

0x0000401a   EntryInstructionLength  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT 

0x00000c00   HostEsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00000c02   HostCsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00000c04   HostSsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00000c06   HostDsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00000c08   HostFsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00000c0a   HostGsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00000c0c   HostTrSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00002c00   HostPat  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00002c02   HostEfer  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00006c00   HostCr0  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00006c02   HostCr3  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00006c04   HostCr4  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00006c10   HostSysenterEspMsr  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00006c12   HostSysenterEipMsr  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00006c16   HostRip  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00004c00   HostSysenterCsMsr  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 

0x00004000   PinControls  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1 

0x0000400c   ExitControls  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1 

0x0000401e   SecondaryProcessorControls  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1 

0x00002000   IoBitmapA  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP 

0x00002002   IoBitmapB  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP 

0x00002004   MsrBitmap  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP 

0x00000800   GuestEsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00000802   GuestCsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 
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0x00000804   GuestSsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00000806   GuestDsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00000808   GuestFsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000080a   GuestGsSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000080c   GuestLdtrSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000080e   GuestTrSelector  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004800   GuestEsLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004802   GuestCsLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004804   GuestSsLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004806   GuestDsLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004808   GuestFsLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000480a   GuestGsLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000480c   GuestLdtrLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000480e   GuestTrLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004810   GuestGdtrLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004812   GuestIdtrLimit  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004814   GuestEsAttributes  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004816   GuestCsAttributes  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004818   GuestSsAttributes  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000481a   GuestDsAttributes  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000481c   GuestFsAttributes  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000481e   GuestGsAttributes  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004820   GuestLdtrAttributes  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00004822   GuestTrAttributes  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00006806   GuestEsBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00006808   GuestCsBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000680a   GuestSsBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000680c   GuestDsBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x0000680e   GuestFsBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00006810   GuestGsBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00006812   GuestLdtrBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00006814   GuestTrBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00006816   GuestGdtrBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00006818   GuestIdtrBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 

0x00002010   TscOffset  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2 

0x00002012   VirtualApicPage  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2 



Hypervisor Top Level Functional Specification 

 182 

0x00002800   GuestWorkingVmcsPtr  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x00002802   GuestIa32DebugCtl  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x00002804   GuestPat  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x00002806   GuestEfer  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x0000280a   GuestPdpte0  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x0000280c   GuestPdpte1  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x0000280e   GuestPdpte2  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x00002810   GuestPdpte3  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x00006822   GuestPendingDebugExceptions  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x00006824   GuestSysenterEspMsr  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x00006826   GuestSysenterEipMsr  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x00004826   GuestSleepState  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x0000482a   GuestSysenterCsMsr  4  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x00006000   Cr0GuestHostMask  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR 

0x00006002   Cr4GuestHostMask  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR 

0x00006004   Cr0ReadShadow  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR 

0x00006006   Cr4ReadShadow  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR 

0x00006800   GuestCr0  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR 

0x00006802   GuestCr3  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR 

0x00006804   GuestCr4  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR 

0x0000681a   GuestDr7  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR 

0x00006c06   HostFsBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER 

0x00006c08   HostGsBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER 

0x00006c0a   HostTrBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER 

0x00006c0c   HostGdtrBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER 

0x00006c0e   HostIdtrBase  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER 

0x00006c14   HostRsp  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER 

0x00000000   Vpid  2  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT 

0x0000201a   EptRoot  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT 

0x00002812   GuestBndcfgs  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 

0x0000202c   XssExitingBitmap  8  HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2 

0x00002400   ExitEptFaultGpa  8 Read only (no corresponding clean field) 

0x00004400   ExitInstructionError  4 Read only (no corresponding clean field) 

0x00004402   ExitReason  4 Read only (no corresponding clean field) 

0x00004404   ExitInterruptionInfo  4 Read only (no corresponding clean field) 

0x00004406   ExitExceptionErrorCode  4 Read only (no corresponding clean field) 
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0x00004408   ExitIdtVectoringInfo  4 Read only (no corresponding clean field) 

0x0000440a   ExitIdtVectoringErrorCode  4 Read only (no corresponding clean field) 

0x0000440c   ExitInstructionLength  4 Read only (no corresponding clean field) 

0x0000440e   ExitInstructionInfo  4 Read only (no corresponding clean field) 

0x00006400   ExitQualification  8 Read only (no corresponding clean field) 

0x00006402   ExitIoInstructionEcx  8 Read only (no corresponding clean field) 

0x00006404   ExitIoInstructionEsi  8 Read only (no corresponding clean field) 

0x00006406   ExitIoInstructionEdi  8 Read only (no corresponding clean field) 

0x00006408   ExitIoInstructionEip  8 Read only (no corresponding clean field) 

0x0000640a   GuestLinearAddress  8 Read only (no corresponding clean field) 

 

16.12 Nested Virtualization Interfaces 

 HvFlushGuestPhysicalAddressSpace 

The HvFlushGuestPhysicalAddressSpace hypercall invalidates cached L2 GPA to GPA mappings within a 
second level address space. 

Wrapper Interface 

 
HV_STATUS 
HVFlushGuestPhysicalAddressSpace ( 
 __in HV_SPA AddressSpace 
 __in UINT64 Flags 
 ); 
 

Native Interface 

HvFlushGuestPhysicalAddressSpace 

 Call Code = 0x00AF 

 Input Parameters 

0 AddressSpace (8 bytes) 

8 Flags (8 bytes) 

Description 

The virtual TLB invalidation operation acts on all processors. 

On Intel platforms, the HvFlushGuestPhysicalAddressSpace hypercall is like the execution of an INVEPT 
instruction with type “single-context” on all processors.  

All flags are reserved and must be set to zero. 

This call guarantees that by the time control returns to the caller, the observable effects of all flushes 
have occurred.  
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If the TLB is currently “locked”, the caller’s virtual processor is suspended.  

Input Parameters 

AddressSpace specifies an address space ID (an EPT PML4 table pointer) 

Flags reserved. 

Output Parameters 

None. 

Restrictions 

None. 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER  A parameter is invalid. 

HV_STATUS_INVALID_VP_STATE Occurs when nested virtualization is not enabled, 
or the VP is currently not in nested hypervisor 
mode. 

 

 HvFlushGuestPhysicalAddressList 

The HvFlushGuestPhysicalAddressSpace hypercall invalidates cached GVA / L2 GPA to GPA mappings 
within a portion of a second level address space. 

Wrapper Interface 

 
HV_STATUS 
HVFlushGuestPhysicalAddressList ( 
 __in HV_SPA   AddressSpace 
 __in UINT64   Flags 
 __in HV_GPA_PAGE_RANGE GpaRangeList[] 
 ); 
 

Native Interface 

HvFlushGuestPhysicalAddressSpaceList [rep] 

 Call Code = 0x00B0 

 Input Parameters 

0 AddressSpace (8 bytes) 

8 Flags (8 bytes) 

 Input List Element 
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 GpaRangeList (8 bytes) 

Description 

The virtual TLB invalidation operation acts on all processors. 

All flags are reserved and must be set to zero. 

This call guarantees that by the time control returns to the caller, the observable effects of all flushes 
have occurred.  

This call takes a list of L2 GPA ranges to flush. Each range has a base L2 GPA. Because flushes are 
performed with page granularity, the bottom 12 bits of the L2 GPA can be used to define a range length. 
These bits encode the number of additional pages (beyond the initial page) within the range. This allows 
each entry to encode a range of 1 to 4096 pages. 

If the TLB is currently “locked”, the caller’s virtual processor is suspended.  

Input Parameters 

AddressSpace specifies and address space ID (an EPT PML4 table pointer) 

Flags reserved. 

GpaRange specifies an L2 guest physical address range to flush. 

Output Parameters 

None. 

Restrictions 

None. 

Return Values 

Status code Error condition 

HV_STATUS_INVALID_PARAMETER  A parameter is invalid. 

HV_STATUS_INVALID_VP_STATE Occurs when nested virtualization is not enabled, 
or the VP is currently not in nested hypervisor 
mode. 
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17 Appendix A: Hypercall Code Reference 

The following is a table of all hypercalls by call code. 

Call Code 
Rep 

Call 

Fast 

Call 
Hypercall Caller 

Partition Privilege Required (if 

any) 

0x0001 
  HvSwitchVirtualAddressSpace Any 

UseHypercallForAddressSpaceS

witch 

0x0002 
  HvFlushVirtualAddressSpace Any 

UseHypercallFor[Local][Remote]

Flush 

0x0003 
  HvFlushVirtualAddressList Any 

UseHypercallFor[Local][Remote]

Flush 

0x0004   HvGetLogicalProcessorRunTime Any CpuManagement 

0x0005 

through 

0x0007 

  Reserved  --  

0x0008   HvNotifyLongSpinWait Any UseHypercallForLongSpinWait 

0x00090   HvCallParkedVirtualProcessors Any CpuManagement 

0x000b   HvCallSendSyntheticClusterIpi Any  

0x000c   HvCallModifyVtlProtectionMask Any  

0x000d   HvCallEnablePartitionVtl Any  

0x000e   HvCallDisablePartitionVtl Any  

0x000f   HvCallEnableVpVtl Any  

0x0010   HvCallDisableVpVtl Any  

0x0011   HvCallVtlCall Any  

0x0012   HvCallVtlReturn Any  

0x0013   HvCallFlushVirtualAddressSpaceEx Any  

0x0014   HvCallFlushVirtualAddressListEx Any  

0x0015   HvCallSendSyntheticClusterIpiEx Any  

0x0016 

through 

0x003F 

  Reserved  --  

0x0040   HvCreatePartition Any CreatePartitions 

0x0041   HvInitializePartition Parent  

0x0042   HvFinalizePartition Parent  



Hypervisor Top Level Functional Specification 

 187 

Call Code 
Rep 

Call 

Fast 

Call 
Hypercall Caller 

Partition Privilege Required (if 

any) 

0x0043   HvDeletePartition Parent  

0x0044 
  HvGetPartitionProperty 

Parent / 

Root 
 

0x0045 
  HvSetPartitionProperty 

Parent / 

Root 
 

0x0046   HvGetPartitionId Any AccessPartitionId 

0x0047   HvGetNextChildPartition Parent  

0x0048 
  HvDepositMemory 

Parent / 

Root 
AccessMemoryPool 

0x0049 
  HvWithdrawMemory 

Parent / 

Root 
AccessMemoryPool 

0x004A 
  HvGetMemoryBalance 

Parent / 

Root 
AccessMemoryPool 

0x004B 
  HvMapGpaPages 

Parent / 

Root 
 

0x004C   HvUnmapGpaPages Parent  

0x004D   HvInstallIntercept Parent  

0x004E   HvCreateVp Parent  

0x004F   HvDeleteVp Parent  

0x0050   HvGetVpRegisters Any  

0x0051   HvSetVpRegisters Any  

0x0052   HvTranslateVirtualAddress Any  

0x0053   HvReadGpa Parent  

0x0054   HvWriteGpa Parent  

0x0055   Deprecated Parent  

0x0056   HvClearVirtualInterrupt Parent  

0x0057 
  Deprecated 

Parent / 

Root 
CreatePort 

0x0058 
  HvDeletePort 

Parent / 

Root 
 

0x0059 
  HvConnectPort 

Parent / 

Root 
ConnectPort 

0x005A 
  HvGetPortProperty 

Parent / 

Root 
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Call Code 
Rep 

Call 

Fast 

Call 
Hypercall Caller 

Partition Privilege Required (if 

any) 

0x005B 
  HvDisconnectPort 

Parent / 

Root 
 

0x005C   HvPostMessage Any PostMessages 

0x005D   HvSignalEvent Any SignalEvents 

0x005E   HvSavePartitionState Parent  

0x005F   HvRestorePartitionState Parent CreatePartitions 

0x0060   HvInitializeEventLogBufferGroup Root  

0x0061   HvFinalizeEventLogBufferGroup Root  

0x0062   HvCreateEventLogBuffer Root  

0x0063   HvDeleteEventLogBuffer Root  

0x0064   HvMapEventLogBuffer Root  

0x0065   HvUnmapEventLogBuffer Root  

0x0066   HvSetEventLogGroupSources Root  

0x0067   HvReleaseEventLogBuffer Root  

0x0068   HvFlushEventLogBuffer Root  

0x0069   HvPostDebugData Any Debugging 

0x006A   HvRetrieveDebugData Any Debugging 

0x006B   HvResetDebugSession Any Debugging 

0x006C   HvMapStatsPage Parent2 AccessStats 

0x006D 

  HvUnmapStatsPage 

ParentErro

r! 

Bookmark 

not 

defined. 

AccessStats 

0x006E 
  HvCallMapSparseGpaPages 

Parent / 

Root 
 

0x006F   HvCallSetSystemProperty Root ConfigureProfiler 

0x0070 
  HvCallSetPortProperty 

Parent / 

Root 
CreatePort 

0x0071 

thru 

0x0075 

  Reserved   

                                                           
2 Only the root partition may map global statistics pages. 
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Call Code 
Rep 

Call 

Fast 

Call 
Hypercall Caller 

Partition Privilege Required (if 

any) 

0x0076   HvCallAddLogicalProcessor Root CpuManagement 

0x0077   HvCallRemoveLogicalProcessor Root CpuManagement 

0x0078   HvCallQueryNumaDistance Root CpuManagement 

0x0079   HvCallSetLogicalProcessorProperty Root CpuManagement 

0x007A   HvCallGetLogicalProcessorProperty Root CpuManagement 

0x007B   HvCallGetSystemProperty Any CpuManagement 

0x007C   HvCallMapDeviceInterrupt Root CpuManagement 

0x007D   HvCallUnmapDeviceInterrupt Root CpuManagement 

0x007E   HvCallRetargetDeviceInterrupt Any CpuManagement 

0x007F   Reserved Root CpuManagement 

0x0080   HvCallMapDevicePages Root CpuManagement 

0x0081   HvCallUnmapDevicePages Root CpuManagement 

0x0082   HvCallAttachDevice Root CpuManagement 

0x0083   HvCallDetachDevice Root CpuManagement 

0x0084   HvCallNotifyStandbyTransition Root CpuManagement 

0x0085   HvCallPrepareForSleep Root CpuManagement 

0x0086   HvCallPrepareForHibernate Root CpuManagement 

0x0087   HvCallNotifyPartitionEvent Root CpuManagement 

0x0088   HvCallGetLogicalProcessorRegisters Root CpuManagement 

0x0089   HvCallSetLogicalProcessorRegisters Root CpuManagement 

0x008A   HvCallQueryAssociatedLpsforMca Root CpuManagement 

0x008B   HvCallNotifyRingEmpty Root CpuManagement 

0x008C   HvCallInjectSyntheticMachineCheck Root CpuManagement 

0x008D   HvCallScrubPartition Root  

0x008E   HvCallCollectLivedump Root Debugging 

0x008F   HvCallDisableHypervisor Root  

0x0090   HvCallModifySparseGpaPages Root  

0x0091   HvCallRegisterInterceptResult Root  

0x0092   HvCallUnregisterInterceptResult Root  
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Call Code 
Rep 

Call 

Fast 

Call 
Hypercall Caller 

Partition Privilege Required (if 

any) 

0x0094   HvCallAssertVirtualInterrupt Any  

0x0095   HvCallCreatePort Root  

0x0096   HvCallConnectPort Root  

0x0097   HvCallGetSpaPageList Root  

0x0098   Reserved   

0x0099   HvCallStartVirtualProcessor Any  

0x009A   HvCallGetVpIndexFromApicId Any  

0x009A  

through 

0x00AE 

  Reserved  

 

0x00AF   HvCallFlushGuestPhysicalAddressSpace Any  

0x00B0   HvCallFlushGuestPhysicalAddressList Any  
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18 Appendix B: Hypercall Status Code Reference 

The following is a table of all hypercall return codes. 

Status 

Code 
Status Name Meaning 

0x0000 HV_STATUS_SUCCESS The operation succeeded. 

0x0001  Reserved. 

0x0002 HV_STATUS_INVALID_HYPERCALL_CODE The hypervisor does not support the operation because the specified 

hypercall code is not supported. 

0x0003 HV_STATUS_INVALID_HYPERCALL_INPUT The rep count was incorrect (for example, a non-zero rep count was 

passed to a non-rep call or a zero rep count was passed to a rep call) or 

a reserved bit in the specified hypercall input value was non-zero. 

0x0004 HV_STATUS_INVALID_ALIGNMENT The specified input and/or output GPA pointers were not aligned to 8 

bytes or the specified input and/or output parameters lists spanned a 

page boundary. 

0x0005 HV_STATUS_INVALID_PARAMETER One or more input parameters were invalid.  

0x0006 HV_STATUS_ACCESS_DENIED The caller did not possess sufficient access rights to perform the 

requested operation.  

0x0007 HV_STATUS_INVALID_PARTITION_STATE The specified partition’s state was not appropriate for the requested 

operation. 

0x0008 HV_STATUS_OPERATION_DENIED The operation could not be performed. (The actual cause depends on 

the operation.) 

0x0009 HV_STATUS_UNKNOWN_PROPERTY The specified partition property ID is not a recognized property. 

0x000A HV_STATUS_PROPERTY_VALUE_OUT_OF_RANGE The specified value of a partition property is out of range or violates an 

invariant. 

0x000B HV_STATUS_INSUFFICIENT_MEMORY Insufficient memory exists for the call to succeed. 

0x000C HV_STATUS_PARTITION_TOO_DEEP The maximum partition depth has been exceeded for the partition 

hierarchy. 

0x000D HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid. 

0x000E HV_STATUS_INVALID_VP_INDEX The specified VP index is invalid. 

0x000F  Reserved 

0x0010  Reserved 

0x0011 HV_STATUS_INVALID_PORT_ID The specified port ID is not unique or does not exist. 

0x0012 HV_STATUS_INVALID_CONNECTION_ID The specified connection ID is not unique or does not exist. 

0x0033 HV_STATUS_INSUFFICIENT_BUFFERS The target port does not have sufficient buffers for the caller to post a 

message. 

0x0014 HV_STATUS_NOT_ACKNOWLEDGED An external interrupt has not previously been asserted and 

acknowledged by the virtual processor prior to clearing it. 
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Status 

Code 
Status Name Meaning 

0x0015 HV_STATUS_INVALID_VP_STATE A virtual processor is not in the correct state for the performance of 

the indicated operation. 

0x0016 HV_STATUS_ACKNOWLEDGED An external interrupt cannot be asserted because a previously-asserted 

external interrupt was acknowledged by the virtual processor and has 

not yet been cleared. 

0x0017 HV_STATUS_INVALID_SAVE_RESTORE_STATE The initial call to HvSavePartitionState or HvRestorePartitionState 

specifying HV_SAVE_RESTORE_STATE_START was not made at the 

beginning of the save/restore process. 

0x0018 HV_STATUS_INVALID_SYNIC_STATE The operation could not be performed because a required feature of 

the SynIC was disabled. 

0x0019 HV_STATUS_OBJECT_IN_USE The operation could not be performed because the object or value was 

either already in use or being used for a purpose that would not permit 

it. 

0x001A HV_STATUS_INVALID_PROXIMITY_DOMAIN_INFO The Flags field included an invalid mask value in the proximity domain 

information. 

The Id field contained an invalid ACPI node ID in the proximity domain 

information. 

0x001B HV_STATUS_NO_DATA An attempt to retrieve data failed because none was available. 

0x001C HV_STATUS_INACTIVE The physical connection being used for debugging has not recorded 

any receive activity since the last operation. 

0x001D HV_STATUS_NO_RESOURCES A resource is unavailable for allocation. This may indicate that there is 

a resource shortage or that an implementation limitation may have 

been reached. 

0x001E HV_STATUS_FEATURE_UNAVAILABLE A hypervisor feature is not available to the caller. 

0x001F HV_STATUS_PARTIAL_PACKET The debug packet returned is only a partial packet due to an I/O error. 

0x0020 HV_STATUS_PROCESSOR_FEATURE_SSE3_NOT_SUPP

ORTED 

The supplied restore state requires an unsupported processor feature 

(SSE3). 

0x0021 HV_STATUS_PROCESSOR_FEATURE_LAHFSAHF_NOT

_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

(LAHFSAHF ). 

0x0022 HV_STATUS_PROCESSOR_FEATURE_SSSE3_NOT_SUP

PORTED 

The supplied restore state requires an unsupported processor feature 

(SSSE3). 

0x0023 HV_STATUS_PROCESSOR_FEATURE_SSE4_1_NOT_SU

PPORTED 

The supplied restore state requires an unsupported processor feature 

(SSE4.1). 

0x0024 HV_STATUS_PROCESSOR_FEATURE_SSE4_2_NOT_SU

PPORTED 

The supplied restore state requires an unsupported processor feature 

SSE4.2 is not supported. 

0x0025 HV_STATUS_PROCESSOR_FEATURE_SSE4A_NOT_SUP

PORTED 

The supplied restore state requires an unsupported processor feature 

SSE4a is not supported. 
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Status 

Code 
Status Name Meaning 

0x0026 HV_STATUS_PROCESSOR_FEATURE_XOP_NOT_SUPP

ORTED 

The supplied restore state requires an unsupported processor feature 

XOP is not supported. 

0x0027 HV_STATUS_PROCESSOR_FEATURE_POPCNT_NOT_S

UPPORTED 

The supplied restore state requires an unsupported processor feature 

POPCNT is not supported. 

0x0028 HV_STATUS_PROCESSOR_FEATURE_CMPXCHG16B_N

OT_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

CMPXCHG16B is not supported. 

0x0029 HV_STATUS_PROCESSOR_FEATURE_ALTMOVCR8_N

OT_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

ALTMOVCR8 is not supported. 

0x002A HV_STATUS_PROCESSOR_FEATURE_LZCNT_NOT_SU

PPORTED 

The supplied restore state requires an unsupported processor feature 

LZCNT is not supported. 

0x002B HV_STATUS_PROCESSOR_FEATURE_MISALIGNED_SS

E_NOT_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

MISALIGNED SSE3 is not supported. 

0x002C HV_STATUS_PROCESSOR_FEATURE_MMX_EXT_NOT

_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

MMX EXT is not supported. 

0x002D HV_STATUS_PROCESSOR_FEATURE_3DNOW_NOT_S

UPPORTED 

The supplied restore state requires an unsupported processor feature 

3DNow is not supported. 

0x002E HV_STATUS_PROCESSOR_FEATURE_EXTENDED_3DN

OW_NOT_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

Extended 3DNow is not supported. 

0x002F HV_STATUS_PROCESSOR_FEATURE_PAGE_1GB_NOT

_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

PAHGE 1GB is not supported. 

0x0030 HV_STATUS_PROCESSOR_CACHE_LINE_FLUSH_SIZE_I

NCOMPATIBLE 

The processor’s cache line flush size  is not supported. 

0x0031 HV_STATUS_PROCESSOR_FEATURE_XSAVE_NOT_SU

PPORTED 

The supplied restore state requires an unsupported processor feature 

XSAVE is not supported. 

0x0032 HV_STATUS_PROCESSOR_FEATURE_XSAVEOPT_NOT

_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

XSAVEOPT is not supported. 

0x0033 HV_STATUS_INSUFFICIENT_BUFFER The specified buffer was too small to contain all of the requested data. 

0x0034 HV_STATUS_PROCESSOR_FEATURE_XSAVE_AVX_NO

T_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

AVX is not supported. 

0x0035 HV_STATUS_PROCESSOR_FEATURE_XSAVE_ 

FEATURE_NOT_SUPPORTED 

The supplied restore state requires an unsupported XSAVE processor 

feature. 

0x0036 HV_STATUS_PROCESSOR_XSAVE_SAVE_AREA_INCO

MPATIBLE 

The processor’s XSAVE area is not supported. 

0x0037 HV_STATUS_INCOMPATIBLE_PROCESSOR The processor architecture is not supported. 

0x0038 HV_STATUS_INSUFFICIENT_DEVICE_DOMAINS The maximum number of domains supported by the platform I/O 

remapping hardware is currently in use. 

0x0039 HV_STATUS_PROCESSOR_FEATURE_AES_NOT_SUPP

ORTED 

The supplied restore state requires an unsupported processor feature 

(AES). 
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Status 

Code 
Status Name Meaning 

0x003A HV_STATUS_PROCESSOR_FEATURE_PCLMULQDQ_N

OT_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

(PCLMULQDQ). 

0x003B HV_STATUS_PROCESSOR_FEATURE_INCOMPATIBLE_

XSAVE_FEATURES 

The supplied restore state enables incompatible XSAVE features. 

(Enabling AVX without XSAVE/enabling XSAVEOPT without XSAVE) 

0x003C HV_STATUS_CPUID_FEATURE_VALIDATION_ERROR Generic logical processor CPUID feature set validation error. 

0x003D HV_STATUS_CPUID_XSAVE_FEATURE_VALIDATION_E

RROR 

CPUID XSAVE feature validation error. 

0x003E HV_STATUS_PROCESSOR_STARTUP_TIMEOUT Processor startup timed out. 

0x003F HV_STATUS_SMX_ENABLED SMX enabled by the BIOS. 

0x0040 HV_STATUS_PROCESSOR_FEATURE_PCID_NOT_SUPP

ORTED 

The supplied restore state requires an unsupported processor 

processor feature (PCID). 

0x0041 HV_STATUS_INVALID_LP_INDEX The hypervisor could not perform the operation because the specified 

LP index is invalid. 

0x0042 HV_STATUS_FEATURE_FMA4_NOT_SUPPORTED The supplied restore state requires an unsupported processor feature 

(FMA4). 

0x0043 HV_STATUS_FEATURE_F16C_NOT_SUPPORTED The supplied restore state requires an unsupported processor feature 

(F16C). 

0x0044 HV_STATUS_PROCESSOR_FEATURE_RDRAND_NOT_S

UPPORTED 

The supplied restore state requires an unsupported processor feature 

(RDRAND). 

0x0045 HV_STATUS_PROCESSOR_FEATURE_RDWRFSGS_NOT

_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

(Read/Write FS/GS). 

0x0046 HV_STATUS_PROCESSOR_FEATURE_SMEP_NOT_SUP

PORTED 

The supplied restore state requires an unsupported processor feature 

(SMEP). 

0x0047 HV_STATUS_PROCESSOR_FEATURE_ENHANCED_FAS

T_STRING_NOT_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

(Enhanced Fast String). 

0x0048 HV_STATUS_PROCESSOR_FEATURE_MOVBE_NOT_S

UPPORTED 

The supplied restore state requires an unsupported processor feature 

(MovBe Instruction).  

0x0049 HV_STATUS_PROCESSOR_FEATURE_BMI1_NOT_SUP

PORTED 

The supplied restore state requires an unsupported processor feature 

(Bmi1). 

0x004A HV_STATUS_PROCESSOR_FEATURE_BMI2_NOT_SUP

PORTED 

The supplied restore state requires an unsupported processor feature 

(Bmi2).  

0x004B HV_STATUS_PROCESSOR_FEATURE_HLE_NOT_SUPP

ORTED 

The supplied restore state requires an unsupported processor feature 

(Hle). 

0x004C HV_STATUS_PROCESSOR_FEATURE_RTM_NOT_SUPP

ORTED 

The supplied restore state requires an unsupported processor feature 

(Rtm). 

0x004D HV_STATUS_PROCESSOR_FEATURE_XSAVE_FMA_NO

T_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

(Fma). 
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Status 

Code 
Status Name Meaning 

0x004E HV_STATUS_PROCESSOR_FEATURE_XSAVE_AVX2_N

OT_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

(Avx2) 

0x004F HV_STATUS_PROCESSOR_FEATURE_NPIEP1_NOT_SU

PPORTED 

The supplied restore state requires an unsupported processor feature 

(NPIEP1). 

0x0050 HV_STATUS_INVALID_REGISTER_VALUE The supplied register value is invalid. 

0x0052 HV_STATUS_PROCESSOR_FEATURE_RDSEED_NOT_S

UPPORTED 

The supplied restore state requires an unsupported processor feature 

(RdSeed). 

0x0053 HV_STATUS_PROCESSOR_FEATURE_ADX_NOT_SUPP

ORTED 

The supplied restore state requires an unsupported processor feature 

(Adx). 

0x0054 HV_STATUS_PROCESSOR_FEATURE_SMAP_NOT_SUP

PORTED 

The supplied restore state requires an unsupported processor feature 

(SMAP). 

0x0055 HV_STATUS_NX_NOT_DETECTED NX not detected on the machine. 

0x0056 HV_STATUS_PROCESSOR_FEATURE_INTEL_PREFETC

H_NOT_SUPPORTED 

The supplied restore state requires an unsupported processor feature 

(Intel Prefetch) 

0x0057 HV_STATUS_INVALID_DEVICE_ID The supplied device ID is invalid. 

0x0058 HV_STATUS_INVALID_DEVICE_STATE The operation is not allowed in the current device state. 

0x0059 HV_STATUS_PENDING_PAGE_REQUESTS The device had pending page requests which were discarded. 

0x0060 HV_STATUS_PAGE_REQUEST_INVALID The supplied page request specifies a memory access that the guest 

does not have permissions to perform. 

0x0071 HV_STATUS_OPERATION_FAILED The requested operation failed. 

0x0072 HV_STATUS_NOT_ALLOWED_WITH_NESTED_VIRT_A

CTIVE 

The requested operation is not allowed due to one or more virtual 

processors having nested virtualization active. 
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19 Appendix C: Architectural CPUID 

The table below contains a list of architected CPUID leaves and how they are virtualized by the 
hypervisor. Pass through means that the hardware value is used and passed through to the partition. 
That value will be the same on all logical processors in the system.  

Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

0x00000000  Vendor ID         

EAX Maximum valid standard CPUID 

index 

0 31 Minimum of the 

hardware value on 

the current logical 

processor and 

0x00000006 

Minimum of the hardware 

value across all logical 

processors and 0x00000006 

EBX Processor vendor string 0 31 Pass through Pass through 

ECX Processor vendor string 0 31 Pass through Pass through 

EDX Processor vendor string 0 31 Pass through Pass through 

0x00000001  Feature Information         

EAX Stepping 0 3 Pass through Pass through minimum 

stepping across all logical 

processors 

  Base Model 4 7 Pass through Pass through 

  Base Family 8 11 Pass through Pass through 

  Processor Type 12 13 Pass through Pass through 

  RsvdZ 14 15 Cleared Cleared 

  Extended Model 16 19 Pass through Pass through 

  Extended Family 20 27 Pass through Pass through 

  RsvdZ 28 31 Cleared Cleared 

EBX Miscellaneous Information 

    

  Brand Identifier 0 7 Pass through Pass through value received 

from processor 0 

  CL Flush size 8 15 Pass through Pass through 

  Maximum LPs in a physical 

package 

16 23 Pass through If HT is disabled, set to 

number of cores. If HT 

enabled, Pass through. 

  Initial APIC ID 24 31 Pass through Return value of the 

HvX64RegisterInitialApicId 

ECX Feature Flags / Identifiers 

    



Hypervisor Top Level Functional Specification 

 197 

Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 
 

SSE3 0 0 Pass through Set if set on all, otherwise 0 
 

PCLMULDQ 1 1 Pass through Pass through 

 DTES64 2 2 Cleared Cleared 
 

MONITOR 3 3 Cleared Cleared 
 

DS-CPL 4 4 Cleared Cleared 
 

VMX 5 5 Cleared Cleared 
 

SMX 6 6 Cleared Cleared 
 

EIST 7 7 Pass through Cleared 
 

TM2 8 8 Pass through Cleared 
 

SSSE3 9 9 Pass through Set if set on all, otherwise 0 
 

CNXT-ID 10 10 Pass through Cleared 
 

RsvdZ 11 11 Cleared Cleared 

 FMA 12 12 Pass through Pass through 
 

CMPXCHG16B 13 13 Pass through Set if set on all, otherwise 0 
 

xTPR 14 14 Pass through Cleared 
 

PDCM 15 15 Cleared Cleared 
 

RsvdZ 16 16 Cleared Cleared 

 PCID 17 17 Pass through Pass through 
 

DCA 18 18 Cleared Cleared 
 

SSE4.1 19 19 Pass through Set if set on all, otherwise 0 
 

SSE4.2 20 20 Pass through Set if set on all, otherwise 0 
 

x2APIC 21 21 Pass through Cleared 

 RsvdZ 22 22 Cleared Cleared 
 

POPCNT 23 23 Pass through Set if set on all, otherwise 0 
 

TSC-DEADLINE 24 24 Cleared Cleared 

 AES 25 25 Pass through Pass through 

 XSAVE 26 26 Set if enabled Set if enabled 

 OSXSAVE 27 27 Pass through Pass through 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

 AVX 28 28 Set if enabled Set if enabled 

 F16C 29 29 Pass through Pass through 

 RDRAND 30 30 Pass through Pass through 

 

Hypervisor Present 31 31 Set Set 

EDX Feature Information 

    

 

FPU 0 0 Set Set 
 

VME 1 1 Set Set 
 

DE 2 2 Set Set 
 

PSE 3 3 Set Set 
 

TSC 4 4 Set Set 
 

MSR 5 5 Set Set 
 

PAE 6 6 Set Set 
 

MCE 7 7 Set Set 
 

CMPXCHG8B 8 8 Set Set 
 

APIC 9 9 Set Set 
 

RsvdZ 10 10 Cleared Cleared 
 

SEP 11 11 Set Set 
 

MTRR 12 12 Set Set 
 

PGE 13 13 Set Set 
 

MCA 14 14 Set Set 
 

CMOV 15 15 Set Set 
 

PAT 16 16 Set Set 
 

PSE-36 17 17 Set Set 
 

PSN 18 18 Cleared Cleared 
 

CLFSH 19 19 Set Set 
 

RsvdZ 20 20 Cleared Cleared 
 

DS  21 21 Cleared Cleared 
 

ACPI 22 22 Pass through Cleared 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 
 

MMX 23 23 Set Set 
 

FXSR 24 24 Set Set 
 

SSE  25 25 Set Set 
 

SSE2 26 26 Set Set 
 

SS 27 27 Pass through Set if set on all, otherwise 0 
 

HTT 28 28 Pass through Cleared 

 

TM 29 29 Pass through Cleared 
 

RsvdZ 30 30 Cleared Cleared 
 

PBE 31 31 Pass through Cleared 

0x00000002  Cache Descriptors         

EAX Cache and TLB descriptors 0 31 Pass through on Intel 

Cleared on AMD 

Pass through value from 

processor 0 on Intel 

Cleared on AMD 

EBX Cache and TLB descriptors 0 31 Pass through on Intel 

Cleared on AMD 

Pass through value from 

processor 0 on Intel 

Cleared on AMD 

ECX Cache and TLB descriptors 0 31 Pass through on Intel 

Cleared on AMD 

Pass through value from 

processor 0 on Intel 

Cleared on AMD 

EDX Cache and TLB descriptors 0 31 Pass through on Intel 

Cleared on AMD 

Pass through value from 

processor 0 on Intel 

Cleared on AMD 

0x00000003  Processor Serial Number         

EAX Processor serial number 0 31 Cleared Cleared 

EBX Processor serial number 0 31 Cleared Cleared 

ECX Processor serial number 0 31 Cleared Cleared 

EDX Processor serial number 0 31 Cleared Cleared 

0x00000004 Deterministic Cache Parameters       

EAX Cache type 0 4 Pass through Pass through value from 

processor 0 
 

Cache level 5 7 Pass through Pass through value from 

processor 0 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 
 

Self-initializing cache level 8 8 Pass through Pass through value from 

processor 0 
 

Fully Associative 9 9 Pass through Pass through value from 

processor 0 
 

Write back invalidate / invalidate 10 10 Pass through Pass through value from 

processor 0 
 

Cache inclusiveness 11 11 Pass through Pass through value from 

processor 0 
 

RsvdZ 12 13 Cleared Cleared 
 

Maximum threads in cache 14 25 Pass through If HT disabled, scale the 

value down by the number 

of threads / core. If HT is 

enabled, set to the number 

of logical processors per 

package. 
 

Max cores per package 26 31 Pass through If HT enabled, scale up this 

value by number of threads 

per core. If HT is  disabled, 

Pass through the value from 

processor 0. 

EBX Coherency line size 0 11 Pass through Pass through value from 

processor 0 
 

Physical line partitions 12 21 Pass through Pass through value from 

processor 0 
 

Ways of associativity 22 31 Pass through Pass through value from 

processor 0 

ECX Number of sets 0 31 Pass through Pass through value from 

processor 0 

EDX RsvdZ 0 31 Cleared Cleared 

0x00000005 MONITOR / MWAIT         

EAX 

 

0 15 Cleared Cleared 

  RsvdZ 16 31 Cleared Cleared 

EBX MonLineSizeMax 0 15 Cleared Cleared 

  RsvdZ 16 31 Cleared Cleared 

ECX EMX 0 0 Cleared Cleared 

  IBE 1 1 Cleared Cleared 

  RsvdZ 2 31 Cleared Cleared 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

EDX C0SubstatesUsingMwait 0 3 Cleared Cleared 

  C1SubstatesUsingMwait 4 7 Cleared Cleared 

  C2SubstatesUsingMwait 8 11 Cleared Cleared 

  C3SubstatesUsingMwait 12 15 Cleared Cleared 

  C4SubstatesUsingMwait 16 19 Cleared Cleared 

  RsvdZ 20 31 Cleared Cleared 

0x00000006 
Power management feature 

enumeration function 
        

EAX Digital Temperature Sensor 

Supported. 

0 0 Pass through for the 

partition possessing 

the CpuManagement 

privilege, otherwise 

Cleared 

Pass through for the 

partition possessing the 

CpuManagement privilege, 

otherwise Cleared 

  Dynamic Acceleration Enabled 1 1 Pass through for the 

partition possessing 

the CpuManagement 

privilege, otherwise 

Cleared 

Pass through for the 

partition possessing the 

CpuManagement privilege, 

otherwise Cleared 

 

Constant Rate Timer 2 2 Pass through for the 

partition possessing 

the CpuManagement 

privilege, otherwise 

Cleared 

Pass through for the 

partition possessing the 

CpuManagement privilege, 

otherwise Cleared 

  RsvdZ 3 31 Pass through for the 

partition possessing 

the CpuManagement 

privilege, otherwise 

Cleared 

Pass through for the 

partition possessing the 

CpuManagement privilege, 

otherwise Cleared 

EBX Thermal Threshold Count 0 3 Pass through for the 

partition possessing 

the CpuManagement 

privilege, otherwise 

Cleared 

Pass through for the 

partition possessing the 

CpuManagement privilege, 

otherwise Cleared 

  RsvdZ 4 31 Pass through for the 

partition possessing 

the CpuManagement 

privilege, otherwise 

Cleared 

Pass through for the 

partition possessing the 

CpuManagement privilege, 

otherwise Cleared 

ECX Hardware Coordination Feeback 0 0 Pass through for the 

partition possessing 

the CpuManagement 

privilege, otherwise 

Cleared 

Pass through for the 

partition possessing the 

CpuManagement privilege, 

otherwise Cleared 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

  RsvdZ 1 31 Pass through for the 

partition possessing 

the CpuManagement 

privilege, otherwise 

Cleared 

Pass through for the 

partition possessing the 

CpuManagement privilege, 

otherwise Cleared 

EDX RsvdZ 0 31 Pass through for the 

partition possessing 

the CpuManagement 

privilege, otherwise 

Cleared 

Pass through for the 

partition possessing the 

CpuManagement privilege, 

otherwise Cleared 

0x00000007  Extended Feature Flags         

EAX RsvdZ 0 31 Cleared Cleared 

EBX FSGSBASE 0 0 Pass Through Pass Through 

 RsvdZ 1 6 Cleared Cleared 

 SMEP 7 7 Pass Through Pass Through 

 RsvdZ 8 8 Cleared Cleared 

 Enhanced REP MOVSB/STOSB 9 9 Pass Through Pass Through 

 RsvdZ 10 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x00000008 Reserved         

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x00000009           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x0000000A Architectural Performance Monitor       

EAX Architectural Perfmon 0 31 Cleared Cleared 

EBX Architectural Perfmon 0 31 Cleared Cleared 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

ECX Architectural Perfmon 0 31 Cleared Cleared 

EDX Architectural Perfmon 0 31 Cleared Cleared 

0x40000000 
Hypervisor CPUID leaf range and 

vendor ID signature 
        

EAX The maximum input value for 

hypervisor CPUID information 

0 31 At least 0x40000005 At least 0x40000005 

EBX Hypervisor Vendor ID Signature 0 31 0x7263694D—“Micr” 0x7263694D—“Micr” 

ECX Hypervisor Vendor ID Signature 0 31 0x666F736F—“osof” 0x666F736F—“osof” 

EDX Hypervisor Vendor ID Signature 0 31 0x76482074—“t Hv” 0x76482074—“t Hv” 

0x40000001 
Hypervisor vendor-neutral 

interface identification 
        

EAX Hypervisor Interface Signature 0 31 0x31237648—“Hv#1” 0x31237648—“Hv#1” 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x40000002 Operating system identity         

EAX Build Number 0 31 

  

EBX Minor Version 0 15 

  

  Major Version 16 31 

  

ECX Service Pack 0 31 

  

EDX Service Number 0 23 

  

  Service Branch 24 31 

  

0x40000003           

EAX Feature identification - partition 

privileges 

    

  VP Runtime available 0 0 

  

  Partition Reference Counter 

available 

1 1 

  

  Basic SynIC MSRs available 2 2 

  

  Synthetic Timer MSRs available 3 3 

  

  APIC access MSRs available 4 4 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

  Hypercall MSRs available 5 5 

  

  Access virtual processor index 

MSR available 

6 6 

  

  Virtual System Reset MSR 

available 

7 7 

  

 

Access statistics pages MSRs 

available 

8 8 

  

 AccessPartitionReferenceTsc 9 9   

 AccessGuestIdleMsrs 10 10   

 AccessFrequencyMsrs 11 11   

 AccessDebugMsrs 12 12   

  RsvdZ 13 31 Cleared Cleared 

EBX Feature identification - partition 

creation flags 

    

  CreatePartitions 0 0 

  

  AccessPartitionId 1 1 

  

  AccessMemoryPool 2 2 

  

  AdjustMessageBuffers 3 3 

  

  PostMessages 4 4 

  

  SignalEvents 5 5 

  

  CreatePort 6 6 

  

  ConnectPort 7 7 

  

  AccessStats 8 8 

  

  RsvdZ 9 10 

  

  Debugging 11 11 

  

  CpuManagement 12 12 

  

 ConfigureProfiler 13 13   

 RsvdP 14 15   

 AccessVSM 16 16   

 AccessVpRegisters 17 17   

 RsvdP 18 19   
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

 EnableExtendedHypercalls 20 20   

 StartVirtualProcessor 21 21   

  RsvdZ 22 31 Cleared Cleared 

ECX Feature identification - power 

management 

    

  Maximum processor power state. 

0 is C0, 1 is C1, 2 is C2, 3 is C3. 

0 3 

  

 HPET needed for C3 4 4   

  RsvdZ 5 31 Cleared Cleared 

EDX Feature identification - 

miscellaneous 

    

  The MWAIT instruction is 

available 

0 0 

  

  Guest debugging support is 

available 

1 1 Cleared Set 

  Performance monitor support is 

available 

2 2 Cleared Cleared 

 CpuDynamicPartitioningAvailable 3 3 Cleared Cleared 

 XmmRegistersForFastHypercallAv

ailable 

4 4 Set Set 

 GuestIdleAvailable 5 5 Cleared Set 

 HypervisorSleepStateSupportAvail

able 

6 6 Set Cleared 

 NumaDistanceQueryAvailable 7 7 Set Cleared 

 FrequencyMsrsAvailable 8 8 Set Cleared 

 SyntheticMachineCheckAvailable 9 9 Cleared Set 

 GuestCrashMsrsAvailable 10 10 Cleared Set 

 DebugMsrsAvailable 11 11 Cleared Set 

 Npiep1Available 12 12   

 DisableHypervisorAvailable 13 13   

 ExtendedGvaRangesForFlishVirtua

lAddressListAvailable 

14 14   

 FastHypercallOutputAvailable 15 15   
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

 Reserved 16 16   

 SintPollingModeAvailable 17 17   

 HypercallMsrLockAvailable 18 18   

 Use direct synthetic timers 19 19   

  RsvdZ 20 31 Cleared Cleared 

0x40000004           

EAX Implementation 

recommendations 

    

  Recommend using hypercall for 

address space switches rather 

than MOV to CR3 instruction 

0 0 Set Set 

  Recommend using hypercall for 

local TLB flushes rather than 

INVLPG or MOV to CR3 

instructions 

1 1 Set Set 

  Recommend using hypercall for 

remote TLB flushes rather than 

inter-processor interrupts 

2 2 Set Set 

  Recommend using MSRs for 

accessing APIC registers EOI, ICR 

and TPR rather than their 

memory-mapped counterparts. 

3 3 Set Set 

  Recommend using the hypervisor-

provided MSR to initiate a system 

RESET. 

4 4 Set Set 

  Recommend using relaxed timing 

for this partition. 

5 5 Set Set 

 UseDmaRemapping 6 6   

 UseInteruptRemapping 7 7   

 UseX2ApicMsrs 8 8   

 DeprecateAutoEoi 9 9   

 Recommend using 

SyntheticClusterIpi hypercall 

10 10   

 Recommend using the newer 

ExProcessorMasks interface 

11 11   

 Indicates that the hypervisor is 

nested within a Hyper-V partition. 

12 12   
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

 Recommend using INT for MBEC 

system calls 

13 13   

 Recommend a nested hypervisor 

using the enlightened VMCS 

interface. Also indicates that 

additional nested enlightenments 

may be available (see leaf 

0x4000000A) 

14 14   

  RsvdZ 15 31 Cleared Cleared 

EBX Recommended number of 

attempts to retry a spinlock 

failure before notifying the 

hypervisor about the failures. 

0xFFFFFFFF indicates never to 

retry. 

0 31 

  

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x40000005 Implementation limits         

EAX The maximum number of virtual 

processors supported. 

0 31 

  

EBX The maximum number of logical 

processors supported. 

0 31 

  

ECX The maximum number of 

interrupt mappings supported 

0 31 

  

EDX RsvdZ 0 31 Cleared Cleared 

0x40000006 
Implementation hardware 

features 
    

EAX Support for APIC overlay assist is 

detected and in use. 

0 0 

  

 

Support for MSR bitmaps is 

detected and in use. 

1 1 

  

 

Support for architectural 

performance counters is detected 

and in use. 

2 2 

  

 Second Level Address Translation 

is detected and in use. 

3 3   

 DMA Remapping is detected and 

in use. 

4 4   

 Interrupt Remapping is detected 

and in use. 

5 5   
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

 Memory patrol scrubber present 6 6   

 DMA protection is in use 7 7   

 HPET is requested 8 8   

 Synthetic timers are volatile 9 9   
 

RsvdZ  10 31 

  

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ for future AMD-specific 

features 

0 31 Cleared Cleared 

0x40000007 CPU Management Features     

EAX StartLogicalProcessor 0 0   

 CreateRootVirtualProcessor 1 1   

 Reserved 2 30   

 ReservedIdentityBit 31 31   

EBX ProcessorPowerManagement 0 0   

 MwaitIdelStates 1 1   

 LogicalProcessorIdling 2 2   

 Reserved 3 31   

ECX Reserved 0 31   

EDX Reserved 0 31   

0x40000008 SVM Features     

EAX SvmSupported 0 0   

 Reserved 1 10   

 MaxPasidSpacePasidCount 11 31   

EBX Reserved 0 31   

ECX Reserved 0 31   
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

EDX Reserved 0 31   

0x40000009 
Nested Hypervisor Feature 

Identification   
    

EAX Reserved 0 1   

 AccessSynicRegs 2 2   

 Reserved 3 3   

 AccessIntrCtrlRegs 4 4   

 AccessHypercallMsrs 5 5   

 AccessVpIndex 6 6   

 Reserved 7 31   

EBX Reserved 0 31   

ECX Reserved 0 31   

EDX Reserved 0 3   

 
XmmRegistersForFastHypercalAva

ilable 
4 4   

 Reserved 5 14   

 FastHypercallOutputAvailable 15 15   

 Reserved 16 16   

 SintPollingModeAvailable 17 17   

 Reserved 18 31   

0x4000000A 
Hypervisor Nested Virtualization 

Features 
    

EAX Enlightened VMCS version (low) 0 7   

 Enlightened VMCS version (high) 8 15   

 Reserved 16 16   

 
Indicates support for direct virtual 

flush hypercalls 
17 17   
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

 

Indicates support for the 

HvFlushPhysicalAddressSpace and 

HvFlushGuestPhysicalAddressList 

hypercalls 

18 18   

 
Indicates support for using an 

enlightened MSR bitmap. 
19 19   

 Reserved 20 31   

EBX Reserved 0 31   

ECX Reserved 0 31   

EDX Reserved 0 31   

0x4000000B - 

0x4000007F 
          

EAX - EDX Reserved for future hypervisor 

use 

    

0x40000080 - 

0x400000FF 
          

EAX - EDX Reserved for use of intercept 

handlers in the parent partition 

    

0x80000000           

EAX Highest Extended CPUID Leaf 0 31 Minimum of the 

hardware value on 

current logical 

processor and 

0x8000001A 

Minimum of the hardware 

value across all logical 

processors in the system and 

0x8000001A 

EBX Processor vendor string 0 31 Pass through Pass through value from 

processor 0 

ECX Processor vendor string 0 31 Pass through Pass through value from 

processor 0 

EDX Processor vendor string 0 31 Pass through Pass through value from 

processor 0 

0x80000001           

EAX Stepping 0 3 Pass through Minimum across all logical 

processors 

  Base Model 4 7 Pass through Pass through value from 

processor 0 

  Base Family 8 11 Pass through Pass through value from 

processor 0 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

  Processor Type 12 13 Pass through Pass through value from 

processor 0 

  RsvdZ 14 15 Cleared Cleared 

  Extended Model 16 19 Pass through Pass through  

  Extended Family 20 27 Pass through Pass through 

  RsvdZ 28 31 Cleared Cleared 

EBX Brand ID 0 15 Pass through Pass through 

  RsvdZ 16 27 Cleared Cleared 

  Package Type 28 31 Pass through Pass through 

ECX Extended feature flag / feature 

identifiers 

    

  LahfSahf 0 0 Pass through Set if set on all, otherwise 0 

  CmpLegacy 1 1 Pass through Set if set on all, otherwise 0 

  SVM 2 2 Cleared Cleared 

  ExtApicSpace 3 3 Cleared Cleared 

  AltMovCr8 4 4 Pass through Set if set on all, otherwise 0 

  ABM 5 5 Pass through Set if set on all, otherwise 0 

  SSE4A 6 6 Pass through Set if set on all, otherwise 0 

  MisAlignSse 7 7 Pass through Set if set on all, otherwise 0 

  3DNowPrefetch 8 8 Pass through Set if set on all, otherwise 0 

  OSVW 9 9 Pass through Set if set on all, otherwise 0 

  RsvdZ 10 10 Cleared Cleared 

  SSE5 11 11 Pass through Set if set on all, otherwise 0 

  SKINIT 12 12 Cleared Cleared 

  WDT 13 13 Pass through Cleared 

  RsvdZ 14 31 Cleared Cleared 

EDX Extended feature flags 

    

  FPU 0 0 Set Set 

  VME 1 1 Pass through Set if set on all, otherwise 0 

  DE 2 2 Set Set 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

  PSE 3 3 Set Set 

  TSC 4 4 Set Set 

  MSR 5 5 Set Set 

  PAE 6 6 Set Set 

  MCE 7 7 Set Set 

  CMPXCHG8B 8 8 Set Set 

  APIC 9 9 Set Set 

  RsvdZ 10 10 Cleared Cleared 

  SysCallSysRet 11 11 Set Set 

  MTRR 12 12 Set Set 

  PGE 13 13 Set Set 

  MCA 14 14 Set Set 

  CMOV 15 15 Set Set 

  PAT 16 16 Set Set 

  PSE36 17 17 Pass through Set if set on all, otherwise 0 

  RsvdZ 18 18 Cleared Cleared 

  RsvdZ 19 19 Cleared Cleared 

  Execute disabled / No execute 20 20 Set Set 

  RsvdZ 21 21 Cleared Cleared 

  MmxExt 22 22 Pass through Set if set on all, otherwise 0 

  MMX 23 23 Set Set 

  FXSR 24 24 Set Set 

  FFXSR 25 25 Pass through Set if set on all, otherwise 0 

  Page1GB 26 26 Cleared Cleared 

  RDTSCP 27 27 Pass through Cleared 

  RsvdZ 28 28 Cleared Cleared 

  LM 29 29 Set Set 

  3DNowExt 30 30 Pass through Set if set on all, otherwise 0 

  3DNow  31 31 Pass through Set if set on all, otherwise 0 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

0x80000002 Processor name string identifier          

EAX Processor Brand String 0 31 Pass through Pass through value from 

processor 0  

EBX Processor Brand String 0 31 Pass through Pass through  value from 

processor 0  

ECX Processor Brand String 0 31 Pass through Pass through value from 

processor 0   

EDX Processor Brand String 0 31 Pass through Pass through value from 

processor 0   

0x80000003 Processor name string identifier          

EAX Processor Brand String 0 31 Pass through Pass through value from 

processor 0  

EBX Processor Brand String 0 31 Pass through Pass through value from 

processor 0  

ECX Processor Brand String 0 31 Pass through Pass through value from 

processor 0  

EDX Processor Brand String 0 31 Pass through Pass through value from 

processor 0  

0x80000004 Processor name string identifier          

EAX Processor Brand String 0 31 Pass through Pass through value from 

processor 0  

EBX Processor Brand String 0 31 Pass through Pass through value from 

processor 0  

ECX Processor Brand String 0 31 Pass through Pass through value from 

processor 0  

EDX Processor Brand String 0 31 Pass through Pass through value from 

processor 0  

0x80000005 
L1 Cache and TLB identifiers (all 

registers) 
        

EAX L1ITlb2and4MSize 0 7 Pass through Pass through 

  L1ITlb2and4MAssoc 8 15 Pass through Pass through 

  L1DTlb2and4MSize 16 23 Pass through Pass through 

  L1DTlb2and4MAssoc 24 31 Pass through Pass through 

EBX L1ITlb4KSize 0 7 Pass through Pass through 

  L1ITlb4KAssoc 8 15 Pass through Pass through 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

  L1DTlb4KSize 16 23 Pass through Pass through 

  L1DTlb4KAssoc 24 31 Pass through Pass through 

ECX L1DcLineSize 0 7 Pass through Pass through 

  L1DcLinesPerTag 8 15 Pass through Pass through 

  L1DcAssoc 16 23 Pass through Pass through 

  L1DcSize 24 31 Pass through Pass through 

EDX L1IcLineSize 0 7 Pass through Pass through 

  L1IcLinesPerTag 8 15 Pass through Pass through  

  L1IcAssoc 16 23 Pass through Pass through 

  L1IcSize 24 31 Pass through Pass through 

0x80000006 L2 Cache and L2 TLB identifiers         

EAX L2ITlb2and4MSize 0 11 Pass through Pass through 

  L2ITlb2and4MAssoc 12 15 Pass through Pass through 

  L2DTlb2and4MSize 16 27 Pass through Pass through 

  L2DTlb2and4MAssoc 28 31 Pass through Pass through 

EBX L2ITlb4KSize 0 11 Pass through Pass through 

  L2ITlb4KAssoc 12 15 Pass through Pass through 

  L2DTlb4KSize 16 27 Pass through Pass through 

  L2DTlb4KAssoc 28 31 Pass through Pass through 

ECX L2 Line Size 0 7 Pass through Pass through 

  L2 Lines per tag 8 11 Pass through Pass through 

  L2 Associativity 12 15 Pass through Pass through 

  L2 cache size in kilobytes 16 31 Pass through Pass through 

EDX L3LineSize 0 7 Pass through Pass through 

  L3LinesPerTag 8 11 Pass through Pass through 

  L3Assoc 12 15 Pass through Pass through 

  RsvdZ 16 17 Pass through Pass through 

  L3Size 18 31 Pass through Pass through 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

0x80000007 
Advanced Power Management 

Information 
        

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX TS  0 0 Pass through Cleared 

  FID 1 1 Pass through Cleared 

  VID 2 2 Pass through Cleared 

  TTP 3 3 Pass through Cleared 

  TM 4 4 Pass through Cleared 

  STC 5 5 Pass through Cleared 

  100MhzSteps 6 6 Pass through Cleared 

  HwPState 7 7 Pass through Cleared 

  TscInvariant 8 8 Pass through Cleared 

  RsvdZ 9 31 Cleared Cleared 

0x80000008           

EAX PhysAddrSize 0 7 Pass through The size of the physical GPA 

space that is supported 

  LinAddrSize 8 15 Pass through The size of the virtual GPA 

space that is supported  

  RsvdZ 16 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX NC 0 7 Pass through Pass through 

  RsvdZ 8 11 Cleared Cleared 

  ApicIdCoreIdSize 12 15 Pass through Pass through  

  RsvdZ 16 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000009           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x8000000A 
SVM revision and feature 

identification  
        

EAX SvmRev 0 7 Cleared Cleared 

  RsvdZ 8 31 Cleared Cleared 

EBX NASID 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX NP 0 0 Cleared Cleared 

  LBRVirt 1 1 Cleared Cleared 

  SVML 2 2 Cleared Cleared 

  NRIPS 3 3 Cleared Cleared 

  RsvdZ 4 31 Cleared Cleared 

0x8000000B           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x8000000C           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x8000000D           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x8000000E           
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x8000000F           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000010           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000011           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000012           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000013           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

0x80000014           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000015           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000016           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000017           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000018           

EAX RsvdZ 0 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x80000019           

EAX L1ITlb1GSize 0 11 Cleared Cleared 

  L1ITlb1GAssoc 12 15 Cleared Cleared 

  L1DTlb1GSize 16 27 Cleared Cleared 
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Index and 

Register 

Name Start 

bit 

End 

bit 

Virtualized Value 

Root 

 

Virtualized Value  

Non-Root 

 

  L1DTlb1GAssoc 28 31 Cleared Cleared 

EBX L2ITlb1GSize 0 11 Cleared Cleared 

  L2ITlb1GAssoc 12 15 Cleared Cleared 

  L2DTlb1GSize 16 27 Cleared Cleared 

  L2DTlb1GAssoc 28 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 

0x8000001A           

EAX FP128 0 0 Pass through Set if set on all, otherwise 0 

  MOVU 1 1 Pass through Set if set on all, otherwise 0 

  RsvdZ 2 31 Cleared Cleared 

EBX RsvdZ 0 31 Cleared Cleared 

ECX RsvdZ 0 31 Cleared Cleared 

EDX RsvdZ 0 31 Cleared Cleared 
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20 Appendix D:  Architectural MSRs 

The table below contains a list of architectural MSRs that are virtualized for guest partition access. The 
default behavior for MSRs not on this list is a #GP fault. Note that this list does not include MSRs that 
could be filtered by the hypervisor (see 16.10) 

MSR Number MSR Name Behavior 

0x010 X64_MSR_TIME_STAMP_COUNTER Virtualize  

0x01B X64_MSR_APIC_BASE Virtualize 

0x0FE X64_MSR_MTRRCAP Virtualize 

0x174 X64_MSR_SYSENTER_CS Virtualize 

0x175 X64_MSR_SYSENTER_ESP Virtualize 

0x176 X64_MSR_SYSENTER_EIP Virtualize 

0x179 X64_MSR_MCG_CAP 0 

0x17A X64_MSR_MCG_STATUS Virtualize 

0x1D9 X64_MSR_DEBUG_CTL Virtualize 

0x200 X64_MSR_MTRR_PHYSBASE0 Virtualize 

0x201 X64_MSR_MTRR_PHYSMASK0 Virtualize 

0x202 X64_MSR_MTRR_PHYSBASE1 Virtualize 

0x203 X64_MSR_MTRR_PHYSMASK1 Virtualize 

0x204 X64_MSR_MTRR_PHYSBASE2 Virtualize 

0x205 X64_MSR_MTRR_PHYSMASK2 Virtualize 

0x206 X64_MSR_MTRR_PHYSBASE3 Virtualize 

0x207 X64_MSR_MTRR_PHYSMASK3 Virtualize 

0x208 X64_MSR_MTRR_PHYSBASE4 Virtualize 

0x209 X64_MSR_MTRR_PHYSMASK4 Virtualize 

0x20A X64_MSR_MTRR_PHYSBASE5 Virtualize 

0x20B X64_MSR_MTRR_PHYSMASK5 Virtualize 

0x20C X64_MSR_MTRR_PHYSBASE6 Virtualize 

0x20D X64_MSR_MTRR_PHYSMASK6 Virtualize 

0x20E X64_MSR_MTRR_PHYSBASE7 Virtualize 
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MSR Number MSR Name Behavior 

0x20F X64_MSR_MTRR_PHYSMASK7 Virtualize 

0x250 X64_MSRMTRR_FIX64K_00000 Virtualize 

0x258 X64_MSR_MTRR_FIX16K_80000 Virtualize 

0x259 X64_MSR_MTRR_FIX16K_A0000 Virtualize 

0x268 X64_MSR_MTRR_FIX4K_C0000 Virtualize 

0x269 X64_MSR_MTRR_FIX4K_C8000 Virtualize 

0x26A X64_MSR_MTRR_FIX4K_D0000 Virtualize 

0x26B X64_MSR_MTRR_FIX4K_D8000 Virtualize 

0x26C X64_MSR_MTRR_FIX4K_E0000 Virtualize 

0x26D X64_MSR_MTRR_FIX4K_E8000 Virtualize 

0x26E X64_MSR_MTRR_FIX4K_F0000 Virtualize 

0x26F X64_MSR_MTRR_FIX4K_F8000 Virtualize 

0x277 X64_MSR_CR_PAT Virtualize 

0x2FF X64_MSR_MTRR_DEF_TYPE Virtualize 

0xC0000080 X64_MSR_EFER Virtualize 

0xC0000081 X64_MSR_STAR Virtualize 

0xC0000082 X64_MSR_LSTAR Virtualize 

0xC0000083 X64_MSR_CSTAR Virtualize 

0xC0000084 X64_MSR_SFMASK Virtualize 

0xC0000100 X64_MSR_FS_BASE Virtualize 

0xC0000101 X64_MSR_GS_BASE Virtualize 

0xC0000102 X64_MSR_KERNEL_GS_BASE Virtualize 
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21 Appendix E: Vendor-Specific MSRs 

G.1 AMD-specific MSRs 

The table below contains a list of AMD-specific MSRs and how they are handled by the hypervisor.  

The default behavior for MSRs not listed here is a #GP fault for non-root access. 

MSR Number MSR Name Non-Root Behavior 

0xC0010010 AMD_MSR_SYSCFG 
Reads return 0. 

Writes ignored. 

0xC001001F AMD_MSR_NB_CFG 
Reads return 0. 

Writes ignored. 

G.2 Intel-specific MSRs 

The table below contains a list of Intel-specific MSRs and how they are handled by the hypervisor.  

The default behavior for MSRs not listed here is #GP for non-root partitions. 

MSR Number MSR Name Non-Root Behavior 

0x006 INTEL_MSR_MONITOR_FILTER_SIZE 

 

#GP 

0x017 INTEL_MSR_PLATFORM_ID 

 

Reads return 0. 

Writes ignored. 

0x03A INTEL_MSR_FEATURE_CONTROL 

 

#GP 

0x079 INTEL_MSR_BIOS_UPDT_TRIG 

 

Reads return 0. 

Writes ignored. 

0x08B INTEL_MSR_BIOS_SIGN_ID 

 

Reads return 8FFFFFFF 

indicating the best possible 

patch is already loaded. 

Writes ignored. 

0x1A0 INTEL_MSR_MISC_ENABLE Reads Pass through,  

Writes ignored 

0x38D INTEL_MSR_PERF_CAPABILITIES #GP 

0x38E INTEL_MSR_PER_GLOBAL_STATUS #GP 

0x38F INTEL_MSR_PERF_GLOBAL_CTRL #GP 
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MSR Number MSR Name Non-Root Behavior 

0x390 INTEL_MSR_PERF_GLOBAL_OVF_CTRL #GP 

0x3F1 INTEL_MSR_PEBS_ENABLE #GP 

0x480 – 

0x48A 

INTEL_MSR_VMX_CAPSx #GP 

0x600 INTEL_MSR_DS_AREA #GP 
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22 Appendix F: Hypervisor Synthetic MSRs 

The following is a table of new MSR values defined by the hypervisor. 

MSR Number MSR Name 
Privilege Required (if 

any) 

Access 
Description 

0x40000000 HV_X64_MSR_GUEST_OS_ID AccessHypercallMsrs R/W Used to identify the guest OS 

running in the partition. See 

section 2.6. 

0x40000001 HV_X64_MSR_HYPERCALL AccessHypercallMsrs R/W Used to enable the hypercall 

interface. See section 3.13. 

0x40000002 HV_X64_MSR_VP_INDEX AccessVpIndex R Specifies the virtual 

processor’s index. See section 

7.8.1. 

0x40000003 HV_X64_MSR_RESET AccessSystemResetMsr R/W Used to perform a hypervisor-

controlled reboot operation.  

0x40000010 HV_X64_MSR_VP_RUNTIME AccessVpRuntimeMsr R Specifies the virtual 

processor’s run time in 100ns 

units. See section 7.9.1. 

0x40000020 HV_X64_MSR_TIME_REF_COUNT AccessPartitionReferen

ceCounter 

R Partition-wide reference 

counter.. 

0x40000021 HV_X64_MSR_REFERENCE_TSC AccessPartitionReferen

ceCounter 

R Partition-wide reference time 

stamp counter.   

0x40000022 HV_X64_MSR_TSC_FREQUENCY AccessFrequencyRegs R Specifies the frequency, in Hz, 

of the TSC, as reported by the 

hypervisor. 

0x40000023 HV_X64_MSR_APIC_FREQUENCY AccessFrequencyRegs R Specifies the frequency, in Hz, 

of the local APIC, as reported 

by the hypervisor.  

0x40000070 HV_X64_MSR_EOI AccessApicMsrs W Fast access to the APIC EOI 

register. See section 10.2.3. 

0x40000071 HV_X64_MSR_ICR AccessApicMsrs R/W Fast access to the APIC ICR 

high and ICR low registers. 

See section 10.2.3. 

0x40000072 HV_X64_MSR_TPR AccessApicMsrs R/W Fast access to the APIC TPR 

register (use CR8 in 64-bit 

mode). See section 10.2.3. 

0x40000073 HV_X64_MSR_VP_ASSIST_PAGE AccessApicMsrs R/W Enables lazy EOI processing. 

See section 10.3.4. 

0x40000080 HV_X64_MSR_SCONTROL AccessSynicRegs R/W Used to control specific 

behaviors of the synthetic 

interrupt controller. See 

section 11.8.1. 

0x40000081 HV_X64_MSR_SVERSION AccessSynicRegs R Specifies the SynIC version.  
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MSR Number MSR Name 
Privilege Required (if 

any) 

Access 
Description 

0x40000082 HV_X64_MSR_SIEFP AccessSynicRegs R/W Controls the base address of 

the synthetic interrupt event 

flag page. See section 11.8.2. 

0x40000083 HV_X64_MSR_SIMP AccessSynicRegs R/W Controls the base address of 

the synthetic interrupt 

parameter page. See section 

11.8.3. 

0x40000084 HV_X64_MSR_EOM AccessSynicRegs W Indicates the end of message 

in the SynIC. See section 

11.8.5. 

0x40000090 HV_X64_MSR_SINT0 AccessSynicRegs R/W Configures synthetic interrupt 

source 0. See section 11.8.4. 

0x40000091 HV_X64_MSR_SINT1 AccessSynicRegs R/W Configures synthetic interrupt 

source 1. See section 11.8.4. 

0x40000092 HV_X64_MSR_SINT2 AccessSynicRegs R/W Configures synthetic interrupt 

source 2. See section 11.8.4. 

0x40000093 HV_X64_MSR_SINT3 AccessSynicRegs R/W Configures synthetic interrupt 

source 3. See section 11.8.4. 

0x40000094 HV_X64_MSR_SINT4 AccessSynicRegs R/W Configures synthetic interrupt 

source 4. See section 11.8.4. 

0x40000095 HV_X64_MSR_SINT5 AccessSynicRegs R/W Configures synthetic interrupt 

source 5. See section 11.8.4. 

0x40000096 HV_X64_MSR_SINT6 AccessSynicRegs R/W Configures synthetic interrupt 

source 6. See section 11.8.4. 

0x40000097 HV_X64_MSR_SINT7 AccessSynicRegs R/W Configures synthetic interrupt 

source 7. See section 11.8.4. 

0x40000098 HV_X64_MSR_SINT8 AccessSynicRegs R/W Configures synthetic interrupt 

source 8. See section 11.8.4. 

0x40000099 HV_X64_MSR_SINT9 AccessSynicRegs R/W Configures synthetic interrupt 

source 9. See section 11.8.4. 

0x4000009A HV_X64_MSR_SINT10 AccessSynicRegs R/W Configures synthetic interrupt 

source 10. See section 11.8.4. 

0x4000009B HV_X64_MSR_SINT11 AccessSynicRegs R/W Configures synthetic interrupt 

source 11. See section 11.8.4. 

0x4000009C HV_X64_MSR_SINT12 AccessSynicRegs R/W Configures synthetic interrupt 

source 12. See section 11.8.4. 

0x4000009D HV_X64_MSR_SINT13 AccessSynicRegs R/W Configures synthetic interrupt 

source 13. See section 11.8.4. 

0x4000009E HV_X64_MSR_SINT14 AccessSynicRegs R/W Configures synthetic interrupt 

source 14. See section 11.8.4. 
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MSR Number MSR Name 
Privilege Required (if 

any) 

Access 
Description 

0x4000009F HV_X64_MSR_SINT15 AccessSynicRegs R/W Configures synthetic interrupt 

source 15. See section 11.8.4. 

0x400000B0 HV_X64_MSR_STIMER0_CONFIG AccessSyntheticTimerR

egs 

R/W Configuration register for 

synthetic timer 0.  

0x400000B1 HV_X64_MSR_STIMER0_COUNT AccessSyntheticTimerR

egs 

R/W Expiration time or period for 

synthetic timer 0.  

0x400000B2 HV_X64_MSR_STIMER1_CONFIG AccessSyntheticTimerR

egs 

R/W Configuration register for 

synthetic timer 1.  

0x400000B3 HV_X64_MSR_STIMER1_COUNT AccessSyntheticTimerR

egs 

R/W Expiration time or period for 

synthetic timer 1.  

0x400000B4 HV_X64_MSR_STIMER2_CONFIG AccessSyntheticTimerR

egs 

R/W Configuration register for 

synthetic timer 2. 

0x400000B5 HV_X64_MSR_STIMER2_COUNT AccessSyntheticTimerR

egs 

R/W Expiration time or period for 

synthetic timer 2.  

0x400000B6 HV_X64_MSR_STIMER3_CONFIG AccessSyntheticTimerR

egs 

R/W Configuration register for 

synthetic timer 3.  

0x400000B7 HV_X64_MSR_STIMER3_COUNT AccessSyntheticTimerR

egs 

R/W Expiration time or period for 

synthetic timer 3.  

0x400000C1 HV_X64_MSR_POWER_STATE_TRIGGER_C1 CpuManagement R Trigger the transition to 

power state C1 

0x400000C2 HV_X64_MSR_POWER_STATE_TRIGGER_C2 CpuManagement R Trigger the transition to 

power state C2 

0x400000C3 HV_X64_MSR_POWER_STATE_TRIGGER_C3 CpuManagement R Trigger the transition to 

power state C3 

0x400000D1 HV_X64_MSR_POWER_STATE_CONFIG_C1 CpuManagement R/W Configure the recipe for 

power state transitions to C1 

0x400000D2 HV_X64_MSR_POWER_STATE_CONFIG_C2 CpuManagement R/W Configure the recipe for 

power state transitions to C2 

0x400000D3 HV_X64_MSR_POWER_STATE_CONFIG_C3 CpuManagement R/W Configure the recipe for 

power state transitions to C3 

0x400000E0 HV_X64_MSR_STATS_PARTITION_RETAIL_PA

GE 

AccessStatsReg R/W Map the guest’s retail 

partition statistics page 

0x400000E1 HV_X64_MSR_STATS_PARTITION_INTERNAL_

PAGE 

AccessStatsReg R/W Map the guest’s internal 

partition statistics page 

0x400000E2 HV_X64_MSR_STATS_VP_RETAIL_PAGE AccessStatsReg R/W Map the guest’s retail VP 

statistics page 

0x400000E3 HV_X64_MSR_STATS_VP_INTERNAL_PAGE AccessStatsReg R/W Map the guest’s internal VP 

statistics page 



Hypervisor Top Level Functional Specification 

 227 

MSR Number MSR Name 
Privilege Required (if 

any) 

Access 
Description 

0x400000F0 HV_X64_MSR_GUEST_IDLE AccessGuestIdleReg R Trigger the guest’s transition 

to the idle power state 

0x400000F1 

 

HV_X64_MSR_SYNTH_DEBUG_CONTROL    

0x400000F2 

 

HV_X64_MSR_SYNTH_DEBUG_STATUS    

0x400000F3 

 

HV_X64_MSR_SYNTH_DEBUG_SEND_BUFFER    

0x400000F4 

 

HV_X64_MSR_SYNTH_DEBUG_RECEIVE_BUFF

ER 

   

0x400000F5 HV_X64_MSR_SYNTH_DEBUG_PENDING_BUF

FER 

   

0x40000100 HV_X64_MSR_CRASH_P0  GuestCrashMsrsAvailab

le 

R/W MSR that is preserved with 

the guest crash 

enlightenment. 

0x40000101 HV_X64_MSR_CRASH_P1  GuestCrashMsrsAvailab

le 

R/W MSR that is preserved with 

the guest crash 

enlightenment. 

0x40000102 HV_X64_MSR_CRASH_P2  GuestCrashMsrsAvailab

le 

R/W MSR that is preserved with 

the guest crash 

enlightenment. 

0x40000103 HV_X64_MSR_CRASH_P3  GuestCrashMsrsAvailab

le 

R/W MSR that is preserved with 

the guest crash 

enlightenment. 

0x40000104 HV_X64_MSR_CRASH_P4  GuestCrashMsrsAvailab

le 

R/W MSR that is preserved with 

the guest crash 

enlightenment. 

0x40000105 HV_X64_MSR_CRASH_CTL GuestCrashMsrsAvailab

le 

R/W Queries and controls the 

hypervisor’s guest crash 

capabilities. 

 

 


