

Hypervisor Top Level Functional
Specification

April, 2017: Released Version 5.0b

Abstract

This document is the top-level functional specification (TLFS) of the fifth-generation Microsoft hypervisor. It specifies the
hypervisor’s externally-visible behavior. The document assumes familiarity with the goals of the project and the high-level hypervisor
architecture.

This specification is provided under the Microsoft Open Specification Promise. For further details on the Microsoft Open
Specification Promise, please refer to: http://www.microsoft.com/interop/osp/default.mspx. Microsoft may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering subject matter in these materials. Except as
expressly provided in the Microsoft Open Specification Promise, the furnishing of these materials does not give you any license to
these patents, trademarks, copyrights, or other intellectual property.

Copyright Information

This document is provided “as-is”. Information and views expressed in this document, including URL and other Internet Web site
references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or
should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and
use this document for your internal, reference purposes.

© 2017 Microsoft. All rights reserved.

Microsoft, Windows, Windows NT, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.

http://www.microsoft.com/interop/osp/default.mspx

 i

Contents

1 INTRODUCTION ... 1

1.1 SPECIFICATION STYLE ... 1

1.2 RESERVED VALUES ... 1

1.3 REPORT ISSUES ... 1

1.4 CHANGES FROM THE PREVIOUS REVISION ... 1

1.5 GLOSSARY ... 2

1.6 SIMPLE SCALAR TYPES ... 2

1.7 HYPERCALL STATUS CODE ... 2

1.8 MEMORY ADDRESS SPACE TYPES .. 2

1.9 STRUCTURES, ENUMERATIONS AND BIT FIELDS ... 3

1.10 ENDIANNESS .. 3

1.11 POINTER NAMING CONVENTION .. 3

2 FEATURE AND INTERFACE DISCOVERY ... 4

2.1 INTERFACE MECHANISMS .. 4

2.2 HYPERVISOR DISCOVERY .. 4

2.3 STANDARD HYPERVISOR CPUID LEAVES .. 4

2.4 MICROSOFT HYPERVISOR CPUID LEAVES ... 5

 Hypervisor CPUID Leaf Range - 0x40000000 ... 5

 Hypervisor Vendor-Neutral Interface Identification - 0x40000001 .. 5

 Hypervisor System Identity .. 6

 Hypervisor Feature Identification - 0x40000003 .. 7

 Implementation Recommendations - 0x40000004 .. 8

 Hypervisor Implementation Limits - 0x40000005 ... 9

 Implementation Hardware Features - 0x40000006 ... 9

 Hypervisor CPU Management Features - 0x40000007 .. 10

 Hypervisor SVM Features - 0x40000008 .. 10

 Nested Hypervisor Feature Identification - 0x40000009 ... 11

 Hypervisor Nested Virtualization Features - 0x4000000A .. 12

2.5 VERSIONING ... 12

2.6 REPORTING THE GUEST OS IDENTITY .. 13

 Encoding the Guest OS Identity MSR for Open Source Operating Systems 15

3 HYPERCALL INTERFACE .. 16

3.1 HYPERCALL OVERVIEW ... 16

Hypervisor Top Level Functional Specification v5.0b

 ii

3.2 HYPERCALL CLASSES .. 16

3.3 HYPERCALL CONTINUATION .. 17

3.4 HYPERCALL ATOMICITY AND ORDERING ... 17

3.5 LEGAL HYPERCALL ENVIRONMENTS ... 17

3.6 ALIGNMENT REQUIREMENTS ... 18

3.7 HYPERCALL INPUTS ... 18

 Variable Sized Hypercall Input Headers ... 20

 XMM Fast Hypercall Input (formerly “Extended Fast Hypercalls”) .. 20

3.8 HYPERCALL OUTPUTS ... 21

 XMM Fast Hypercall Output .. 22

3.9 VOLATILE REGISTERS .. 23

3.10 HYPERCALL DOCUMENTATION... 23

3.11 HYPERCALL RESTRICTIONS ... 24

3.12 HYPERCALL STATUS CODES ... 24

 Output Parameter Validity on Failed Hypercalls .. 24

 Ordering of Error Conditions ... 25

 Common Hypercall Status Codes .. 25

3.13 ESTABLISHING THE HYPERCALL INTERFACE ... 25

3.14 EXTENDED HYPERCALL INTERFACE .. 27

 HvExtCallQueryCapabilities .. 27

4 PARTITION PROPERTIES .. 29

4.1 OVERVIEW .. 29

4.2 PARTITION MANAGEMENT DATA TYPES .. 29

 Partition IDs ... 29

 Partition Privilege Flags ... 29

4.3 PARTITION CRASH ENLIGHTENMENT ... 33

 Guest Crash Enlightenment Interface ... 34

 Guest Crash Enlightenment Data Structure ... 34

5 GUEST PHYSICAL ADDRESS SPACES .. 35

5.1 OVERVIEW .. 35

5.2 PAGE ACCESS RIGHTS .. 35

 GPA Overlay Pages ... 36

6 HOST INTERCEPTS .. 38

6.1 OVERVIEW .. 38

 Programmable Intercept Types .. 38

Hypervisor Top Level Functional Specification v5.0b

 iii

7 VIRTUAL PROCESSOR MANAGEMENT .. 40

7.1 OVERVIEW .. 40

7.2 VIRTUAL PROCESSOR INDICES .. 40

7.3 VIRTUAL PROCESSOR REGISTERS .. 40

7.4 VIRTUAL PROCESSOR STATES .. 40

7.5 VIRTUAL PROCESSOR IDLE SLEEP STATE .. 40

7.6 VIRTUAL BOOT PROCESSOR ... 41

7.7 VIRTUAL PROCESSOR SYNTHETIC MACHINE CHECKS .. 41

7.8 VIRTUAL PROCESSOR DATA TYPES .. 41

 Virtual Processor Index .. 41

 Virtual Processor Register Names ... 41

 Virtual Processor Register Values ... 47

 Synthetic Machine Check Status Data Structure ... 48

 Synthetic Machine Check Error Code ... 49

 Synthetic Machine Check Event Data Structure .. 49

 Virtual Processor Assist Page .. 49

 Virtual Processor Set ... 50

7.9 VIRTUAL PROCESSOR REGISTER FORMATS ... 51

 Virtual Processor Run Time Register .. 51

 Virtual Processor Interrupt State Register .. 51

 Virtual Processor Pending Interruption Register .. 52

 Virtual Processor Floating-point and Vector Registers ... 53

 Virtual Processor Segment Registers .. 54

 Virtual Processor Table Registers .. 55

 Synthetic Machine Check Registers .. 55

7.10 VIRTUAL PROCESSOR INTERFACES ... 55

 HvSetVpRegisters .. 55

 HvGetVpRegisters .. 58

 HvStartVirtualProcessor .. 61

 HvGetVpIndexFromApicId ... 64

8 VIRTUAL PROCESSOR EXECUTION ... 67

8.1 PROCESSOR FEATURES AND CPUID .. 67

8.2 FAMILY, MODEL AND STEPPING REPORTED BY CPUID ... 67

8.3 PLATFORM ID REPORTED BY MSR ... 67

8.4 REAL MODE.. 67

Hypervisor Top Level Functional Specification v5.0b

 iv

8.5 MONITOR / MWAIT ... 68

8.6 SYSTEM MANAGEMENT MODE ... 68

8.7 TIME STAMP COUNTER .. 68

8.8 MEMORY ACCESSES .. 68

8.9 I/O PORT ACCESSES ... 69

8.10 MSR ACCESSES .. 70

8.11 CPUID EXECUTION ... 71

8.12 NON-PRIVILEGED INSTRUCTION EXECUTION PREVENTION (NPIEP) ... 71

8.13 EXCEPTIONS .. 72

9 VIRTUAL MMU AND CACHING ... 73

9.1 VIRTUAL MMU OVERVIEW ... 73

 Compatibility .. 73

 Legacy TLB Management Operations ... 74

 Virtual TLB Enhancements .. 74

 Restrictions on TLB Flushes ... 75

9.2 MEMORY CACHE CONTROL OVERVIEW .. 75

 Cacheability Settings .. 75

 Mixing Cache Types between a Partition and the Hypervisor ... 75

9.3 VIRTUAL MMU DATA TYPES ... 76

 Virtual Address Spaces.. 76

 Virtual Address Flush Flags .. 76

 Cache Types ... 76

 Virtual Address Translation Types ... 76

 Gpa Access Types ... 77

9.4 VIRTUAL MMU INTERFACES .. 78

 HvSwitchVirtualAddressSpace ... 78

 HvFlushVirtualAddressSpace ... 79

 HvFlushVirtualAddressSpaceEx... 81

 HvFlushVirtualAddressList .. 82

 HvFlushVirtualAddressListEx .. 85

 HvTranslateVirtualAddress .. 85

 HvExtCallGetBootZeroedMemory .. 89

10 VIRTUAL INTERRUPT CONTROL ... 90

10.1 OVERVIEW .. 90

10.2 LOCAL APIC .. 90

Hypervisor Top Level Functional Specification v5.0b

 v

 Local APIC Virtualization ... 90

 Local APIC Memory-mapped Accesses .. 91

 Local APIC MSR Accesses ... 91

10.3 VIRTUAL INTERRUPTS .. 93

 Virtual Interrupt Overview .. 93

 Virtual Interrupt Types .. 93

 Trigger Types .. 93

 EOI Intercepts ... 94

 EOI Assist .. 94

10.4 VIRTUAL INTERRUPT DATA TYPES ... 95

 Interrupt Types .. 95

 Interrupt Control .. 95

 Interrupt Vectors ... 96

 MSI Entry ... 96

 Interrupt Source .. 97

 Interrupt Entry .. 97

 Device Interrupt Target .. 97

10.5 VIRTUAL INTERRUPT INTERFACES ... 97

 HvAssertVirtualInterrupt ... 97

 HvSendSyntheticClusterIpi .. 100

 HvSendSyntheticClusterIpiEx ... 101

 HvRetargetDeviceInterrupt .. 102

11 INTER-PARTITION COMMUNICATION ... 105

11.1 OVERVIEW .. 105

11.2 SYNIC MESSAGES ... 105

11.3 MESSAGE BUFFERS ... 105

 Guest Message Buffers ... 105

 Timer Message Buffers .. 105

 Intercept Message Buffers .. 105

 Event Log Message Buffers .. 105

 Message Buffer Queues .. 105

 Reliability and Sequencing of Guest Message Buffers ... 105

11.4 MESSAGES ... 106

 Recommended Message Handling .. 107

 Message Sources ... 107

Hypervisor Top Level Functional Specification v5.0b

 vi

11.5 SYNIC EVENT FLAGS ... 107

 Event Flag Delivery .. 108

 Recommended Event Flag Handling ... 108

 Event Flags versus Messages .. 108

11.6 PORTS AND CONNECTIONS.. 108

11.7 MONITORED NOTIFICATIONS ... 108

 Monitored Notification Trigger ... 109

 Monitored Notification Latency Hint ... 109

 Monitored Notification Parameters ... 109

 Monitored Notification Page .. 109

11.8 SYNIC MSRS ... 109

 SCONTROL Register ... 110

 SIEFP Register ... 111

 SIMP Register ... 112

 SINTx Registers .. 112

 EOM Register .. 113

11.9 SIM AND SIEF PAGES ... 113

11.10 INTER-PARTITION COMMUNICATION DATA TYPES .. 114

 Synthetic Interrupt Sources ... 114

 SynIC Message Types ... 115

 SynIC Message Flags .. 116

 SynIC Message Format ... 116

 SynIC Event Flags .. 117

 Ports ... 118

 Connections ... 119

 Connection Information .. 120

 Monitored Notification Page .. 122

11.11 INTER-PARTITION COMMUNICATION INTERFACES ... 124

 HvPostMessage .. 124

 HvSignalEvent ... 127

12 TIMERS .. 129

12.1 OVERVIEW .. 129

 Timer Services .. 129

 Reference Counter ... 129

 Synthetic Timers ... 129

Hypervisor Top Level Functional Specification v5.0b

 vii

 Periodic Timers ... 129

 Ordering of Timer Expirations ... 130

12.2 DIRECT SYNTHETIC TIMERS .. 130

12.3 PARTITION REFERENCE TIME ENLIGHTENMENT ... 131

12.4 PARTITION REFERENCE COUNTER MSR .. 131

 Reference Counter MSR ... 131

12.5 SYNTHETIC TIMER MSRS .. 132

 Synthetic Timer Configuration Register ... 132

 Synthetic Timer Count Register .. 133

12.6 PARTITION REFERENCE TIME ENLIGHTENMENT ... 134

 Reference Time Stamp Counter (TSC) Page MSR ... 134

 Format of the Reference TSC Page .. 135

 Partition Reference TSC Mechanism .. 135

13 MESSAGE FORMATS ... 137

13.1 OVERVIEW .. 137

13.2 MESSAGE DATA TYPES ... 137

 Message Header... 137

 Intercept Message Header .. 137

 VP Execution State ... 138

 I/O Port Access Information .. 138

 Exception Information .. 139

 Memory Access Flags .. 139

13.3 TIMER MESSAGES .. 139

 Timer Expiration Message ... 139

14 SCHEDULER .. 141

14.1 SCHEDULING CONCEPTS ... 141

14.2 SCHEDULING POLICY SETTINGS .. 141

 CPU Reserve... 141

 CPU Cap .. 141

 CPU Weight ... 142

14.3 OTHER SCHEDULING CONSIDERATIONS ... 142

 Hyperthreading .. 142

 NUMA and Affinity .. 142

 Guest Spinlocks .. 142

14.4 SCHEDULER DATA TYPES .. 143

Hypervisor Top Level Functional Specification v5.0b

 viii

14.5 SCHEDULER INTERFACES .. 143

 HvNotifyLongSpinWait ... 143

15 VIRTUAL SECURE MODE .. 145

15.1 OVERVIEW .. 145

15.2 VIRTUAL TRUST LEVELS (VTL) ... 145

 VTL Protections... 146

15.3 VSM DETECTION, ENABLING, AND STATUS .. 146

 VSM Detection .. 146

 VSM Status Registers .. 146

 Partition VTL Initial state .. 147

15.4 VTL ENABLEMENT ... 147

 Enabling a Target VTL for a Partition .. 148

 Enabling a Target VTL for Virtual Processors .. 148

15.5 VTL CONFIGURATION .. 148

 Partition Configuration ... 148

 Configuring Lower VTLs .. 149

15.6 VTL ENTRY .. 150

 VTL Call.. 150

15.7 VTL EXIT .. 151

 VTL Return .. 151

 Restrictions .. 151

15.8 HYPERCALL PAGE ASSISTS ... 152

 VTL Control via the VP Assist Page .. 152

 Definition .. 152

15.9 MEMORY ACCESS PROTECTIONS .. 153

 Memory Protection Hierarchy ... 153

 Memory Access Violations .. 154

 Default memory protection types .. 154

15.10 MODE BASED EXECUTION CONTROL (MBEC) ... 154

 Descriptor Tables .. 155

 MBEC configuration ... 155

 MBEC Interaction with Supervisor Mode Execution Prevention (SMEP) 155

15.11 VIRTUAL PROCESSOR STATE ISOLATION .. 156

 Private State .. 156

 Shared State .. 157

Hypervisor Top Level Functional Specification v5.0b

 ix

 Real Mode .. 158

15.12 VTL INTERRUPT MANAGEMENT ... 158

 Overview .. 158

 Interrupts targeted at a higher VTL .. 158

 Interrupts Targeted at a Lower VTL ... 158

 Virtual Interrupt Notification Assist ... 159

15.13 SECURE INTERCEPTS... 159

 Secure Intercept Types .. 160

 Nested Intercepts .. 160

 Handling Secure Intercepts ... 160

 Secure Register Intercepts .. 160

15.14 DMA AND DEVICES .. 161

15.15 VSM INTERFACES .. 161

 Type Definitions .. 161

 HvModifyVtlProtectionMask .. 162

 HvEnablePartitionVtl .. 163

 HvEnableVpVtl .. 165

 HvVtlCall .. 169

 HvVtlReturn ... 170

16 NESTED VIRTUALIZATION .. 171

16.1 OVERVIEW .. 171

16.2 DEFINITIONS ... 171

16.3 REQUIREMENTS ... 171

 Guest Partition... 171

 Supported Platforms ... 171

16.4 GUEST ENLIGHTENMENTS ... 172

 Enlightened Interface Discovery ... 172

16.5 ENLIGHTENED VMCS .. 172

 Enlightened VMCS Versioning ... 172

 Clean Fields ... 172

 Enlightened MSR Bitmap .. 173

16.6 COMPATIBILITY WITH LIVE MIGRATION .. 173

 Live Migration Notifications ... 173

 TSC Emulation .. 173

16.7 VIRTUAL TLB ... 174

Hypervisor Top Level Functional Specification v5.0b

 x

16.8 DIRECT VIRTUAL FLUSH .. 174

 Configuration ... 174

 Partition Assist Page .. 175

 Synthetic VM-Exit ... 175

16.9 SECOND LEVEL ADDRESS TRANSLATION .. 175

 Compatibility .. 175

16.10 NESTED MSR ACCESS RESTRICTION ... 176

16.11 NESTED VIRTUALIZATION DATA TYPES ... 176

 GPA Range .. 176

 Enlightened VMCS ... 176

 Clean Fields ... 179

 Physical VMCS Encoding .. 179

16.12 NESTED VIRTUALIZATION INTERFACES ... 183

 HvFlushGuestPhysicalAddressSpace ... 183

 HvFlushGuestPhysicalAddressList .. 184

17 APPENDIX A: HYPERCALL CODE REFERENCE ... 186

18 APPENDIX B: HYPERCALL STATUS CODE REFERENCE ... 191

19 APPENDIX C: ARCHITECTURAL CPUID ... 196

20 APPENDIX D: ARCHITECTURAL MSRS ... 220

21 APPENDIX E: VENDOR-SPECIFIC MSRS .. 222

22 APPENDIX F: HYPERVISOR SYNTHETIC MSRS .. 224

 1

1 Introduction

This document is the top-level functional specification (TLFS) of the fifth-generation Microsoft
hypervisor. It specifies the externally-visible behavior to guest partitions. The document assumes
familiarity with the goals of the project and the high-level hypervisor architecture.

This document is intended to be sufficiently complete and precise to allow a developer to implement a
guest partition interface with the Microsoft hypervisor.

1.1 Specification Style

This specification is informal; that is, the interfaces are not specified in a formal language. Nevertheless,
it is a goal to be precise. It is also a goal to specify which behaviors are architectural and which are
implementation-specific. Callers should not rely on behaviors that fall into the latter category because
they may change in future implementations.

Segments of code and algorithms are presented with a grey background.

1.2 Reserved Values

This specification documents some fields as “reserved.” These fields may be given specific meaning in
future versions of the hypervisor architecture. For maximum forward compatibility, clients of the
hypervisor interface should follow the guidance provided within this document. In general, two forms of
guidance are provided.

Preserve value (documented as RsvdP in diagrams and ReservedP in code segments) – For maximum
forward compatibility, clients should preserve the value within this field. This is typically done by reading
the current value, modifying the values of the non-reserved fields, and writing the value back.

Zero value (documented as RsvdZ in diagrams and ReservedZ in code segments) – For maximum
forward compatibility, clients should zero the value within this field.

Reserved fields within read-only structures are simply documented as Rsvd in diagrams and simply as
Reserved in code segments. For maximum forward compatibility, the values within these fields should
be ignored. Clients should not assume these values will always be zero.

1.3 Report Issues

If you notice errors in this document, or would like to give feedback, please file an issue in the Hyper-V
Documentation GitHub repository: https://github.com/Microsoft/Virtualization-

Documentation/issues

1.4 Changes from the Previous Revision

The following changes were made from Revision A:

- Added usage information of HV_VP_SET, including an example.
- Revised type definitions for HvCallRetargetDeviceInterrupt.
- Clarified alignment requirements for hypercall inputs and outputs.
- Clarified which registers can be modified by hypercalls.
- Added information for how *Ex hypercalls are enumerated.

https://github.com/Microsoft/Virtualization-Documentation/issues
https://github.com/Microsoft/Virtualization-Documentation/issues

Hypervisor Top Level Functional Specification

 2

1.5 Glossary

Partition – Hyper-V supports isolation in terms of a partition. A partition is a logical unit of isolation,
supported by the hypervisor, in which operating systems execute.

Root Partition – The root partition (a.k.a the “parent” or “host”) is a privileged management partition.
The root partition manages machine-level functions such as device drivers, power management, and
device addition/removal. The virtualization stack runs in the parent partition and has direct access to the
hardware devices. The root partition then creates the child partitions which host the guest operating
systems.

Child Partition – The child partition (a.k.a. the “guest”) hosts a guest operating system. All access to
physical memory and devices by a child partition is provided via the Virtual Machine Bus (VMBus) or the
hypervisor.

Hypercall – Hypercalls are an interface for communication with the hypervisor.

1.6 Simple Scalar Types

Hypervisor data types are built up from simple scalar types UINT8, UINT16, UINT32, UINT64 and
UINT128. Each of these represents a simple unsigned integer scalar with the specified bit count. Several
corresponding signed integer scalars are also defined: INT8, INT16, INT32, and INT64.

The hypervisor uses neither floating point instructions nor floating point types.

1.7 Hypercall Status Code

Every hypercall returns a 16-bit status code of type HV_STATUS.

typedef UINT16 HV_STATUS;

All hypercall status codes are documented in .

1.8 Memory Address Space Types

The hypervisor architecture defines three independent address spaces:

• System physical addresses (SPAs) define the physical address space of the underlying hardware
as seen by the CPUs. There is only one system physical address space for the entire machine.

• Guest physical addresses (GPAs) define the guest’s view of physical memory. GPAs can be
mapped to underlying SPAs. There is one guest physical address space per partition.

• Guest virtual addresses (GVAs) are used within the guest when it enables address translation
and provides a valid guest page table.

All three of these address spaces are up to 264 bytes in size. The following types are thus defined:

typedef UINT64 HV_SPA;
typedef UINT64 HV_GPA;
typedef UINT64 HV_GVA;

Many hypervisor interfaces act on pages of memory rather than single bytes. The minimum page size is
architecture-dependent. For x64, it is defined as 4K.

Hypervisor Top Level Functional Specification

 3

#define X64_PAGE_SIZE 0x1000

#define HV_X64_MAX_PAGE_NUMBER (MAXUINT64/X64_PAGE_SIZE)
#define HV_PAGE_SIZE X64_PAGE_SIZE
#define HV_LARGE_PAGE_SIZE X64_LARGE_PAGE_SIZE
#define HV_PAGE_MASK (HV_PAGE_SIZE - 1)

typedef UINT64 HV_SPA_PAGE_NUMBER;
typedef UINT64 HV_GPA_PAGE_NUMBER;
typedef UINT64 HV_GVA_PAGE_NUMBER;

typedef UINT32 HV_SPA_PAGE_OFFSET

typedef HV_GPA_PAGE_NUMBER *PHV_GPA_PAGE_NUMBER;

To convert an HV_SPA to an HV_SPA_PAGE_NUMBER, simply divide by HV_PAGE_SIZE.

1.9 Structures, Enumerations and Bit Fields

Many data structures and constant values defined later in this specification are defined in terms of
C-style enumerations and structures. The C language purposely avoids defining certain implementation
details. However, this document assumes the following:

• All enumerations declared with the “enum” keyword define 32-bit signed integer values.

• All structures are padded in such a way that fields are aligned naturally (that is, an 8-byte field is
aligned to an offset of 8 bytes and so on).

• All bit fields are packed from low-order to high-order bits with no padding.

1.10 Endianness

The hypervisor interface is designed to be endian-neutral (that is, it should be possible to port the
hypervisor to a big-endian or little-endian system), but some of the data structures defined later in this
specification assume little-endian layout. Such data structures will need to be amended if and when a
big-endian port is attempted.

1.11 Pointer Naming Convention

The document uses a naming convention for pointer types. In particular, a “P” prepended to a defined
type indicates a pointer to that type. A “PC” prepended to a defined type indicates a pointer to a
constant value of that type.

Hypervisor Top Level Functional Specification

 4

2 Feature and Interface Discovery

2.1 Interface Mechanisms

Guest software interacts with the hypervisor through a variety of mechanisms. Many of these mirror the
traditional mechanisms used by software to interact with the underlying processor. As such, these
mechanisms are architecture-specific. On the x64 architecture, the following mechanisms are used:

• CPUID instruction – Used for static feature and version information.

• MSRs (model-specific registers) – Used for status and control values.

• Memory-mapped registers – Used for status and control values.

• Processor interrupts – Used for asynchronous events, notifications and messages.

In addition to these architecture-specific interfaces, the hypervisor provides a simple procedural
interface implemented with hypercalls. For information about the hypercall mechanism, see chapter 3.

2.2 Hypervisor Discovery

Before using any hypervisor interfaces, software should first determine whether it’s running within a
virtualized environment. On x64 platforms that conform to this specification, this is done by executing
the CPUID instruction with an input (EAX) value of 1. Upon execution, code should check bit 31 of
register ECX (the “hypervisor present bit”). If this bit is set, a hypervisor is present. In a non-virtualized
environment, the bit will be clear.

CPUID.01h.ECX:31 // if set, virtualization present

If the “hypervisor present bit” is set, additional CPUID leafs can be queried for more information about
the conformant hypervisor and its capabilities. Two such leaves are guaranteed to be available:
0x40000000 and 0x40000001. Subsequently-numbered leaves may also be available.

2.3 Standard Hypervisor CPUID Leaves

When the leaf at 0x40000000 is queried, the hypervisor will return information that provides the
maximum hypervisor CPUID leaf number and a vendor ID signature.

Leaf Information Provided

0x40000000 EAX The maximum input value for hypervisor CPUID information.

EBX Hypervisor Vendor ID Signature

ECX Hypervisor Vendor ID Signature

EDX Hypervisor Vendor ID Signature

If the leaf at 0x40000001 is queried, it will return a value representing a vendor-neutral hypervisor
interface identification. This determines the semantics of the leaves from 0x4000002 through
0x400000FF.

Hypervisor Top Level Functional Specification

 5

Leaf Information Provided

0x40000001 EAX Hypervisor Interface Signature

EBX Reserved

ECX Reserved

EDX Reserved

These two leaves allow the guest to query the hypervisor vendor ID and interface independently. The
vendor ID is provided only for informational and diagnostic purposes. It is recommended that software
only base compatibility decisions on the interface signature reported through leaf 0x40000001.

2.4 Microsoft Hypervisor CPUID Leaves

On hypervisors conforming to the Microsoft hypervisor CPUID interface, the 0x40000000 and
0x40000001 leaf registers will have the following values.

 Hypervisor CPUID Leaf Range - 0x40000000

EAX determines the maximum hypervisor CPUID leaf. EBX-EDX contain the hypervisor vendor ID
signature. The vendor ID signature should be used only for reporting and diagnostic purposes.

Leaf Information Provided

0x40000000 EAX The maximum input value for hypervisor CPUID information.
On Microsoft hypervisors, this will be at least 0x40000005.

EBX 0x7263694D—“Micr”

ECX 0x666F736F—“osof”

EDX 0x76482074—“t Hv”

 Hypervisor Vendor-Neutral Interface Identification - 0x40000001

EAX contains the hypervisor interface identification signature. This determines the semantics of the
leaves from 0x40000002 through 0x400000FF.

Hypervisor Top Level Functional Specification

 6

Leaf Information Provided

0x40000001 EAX 0x31237648—“Hv#1”

EBX Reserved

ECX Reserved

EDX Reserved

Hypervisors conforming to the “Hv#1” interface also provide at least the following leaves.

 Hypervisor System Identity

This value will be zero until the OS identity MSR is set (see section 2.6); after that, it has the following
definitions:

Leaf Information Provided

0x40000002 EAX Build Number

EBX Bits 31-16: Major Version

Bits 15-0: Minor Version

ECX Service Pack

EDX Bits 31-24: Service Branch

Bits 23-0: Service Number

Hypervisor Top Level Functional Specification

 7

 Hypervisor Feature Identification - 0x40000003

EAX and EBX indicate which features are available to the partition based upon the current partition
privileges.

Leaf Information Provided

0x40000003 EAX Bits 31-0: Corresponds to bits 31-0 of
HV_PARTITION_PRIVILEGE_MASK (see 4.2.2 Partition
Privilege Flags)

EBX Bits 31-0: Corresponds to bits 63-32 of
HV_PARTITION_PRIVILEGE_MASK (see 4.2.2 Partition
Privilege Flags)

ECX Bits 31-0: Reserved

EDX Bit 0: Deprecated (previously indicated availability of the
MWAIT command).

Bit 1: Guest debugging support is available

Bit 2: Performance Monitor support is available

Bit 3: Support for physical CPU dynamic partitioning events is
available

Bit 4: Support for passing hypercall input parameter block via
XMM registers is available

Bit 5: Support for a virtual guest idle state is available

Bit 6: Support for hypervisor sleep state is available.

Bit 7: Support for querying NUMA distances is available.

Bit 8: Support for determining timer frequencies is available.

Bit 9: Support for injecting synthetic machine checks is
available.

Bit 10: Support for guest crash MSRs is available.

Bit 11: Support for debug MSRs is available.

Bit 12: Support for NPIEP is available.

Bit 13: DisableHypervisorAvailable

Bit 14: ExtendedGvaRangesForFlushVirtualAddressListAvailable

Bit 15: Support for returning hypercall output via XMM
registers is available.

Bit 16: Reserved

Bit 17: SintPollingModeAvailable

Bit 18: HypercallMsrLockAvailable

Bit 19: Use direct synthetic timers

Bits 31-20: Reserved

Hypervisor Top Level Functional Specification

 8

 Implementation Recommendations - 0x40000004

Indicates which behaviors the hypervisor recommends the OS implement for optimal performance.

Leaf Information Provided

0x40000004 EAX Bit 0: Recommend using hypercall for address space switches
rather than MOV to CR3 instruction

Bit 1: Recommend using hypercall for local TLB flushes rather
than INVLPG or MOV to CR3 instructions

Bit 2: Recommend using hypercall for remote TLB flushes
rather than inter-processor interrupts

Bit 3: Recommend using MSRs for accessing APIC registers EOI,
ICR and TPR rather than their memory-mapped
counterparts.

Bit 4: Recommend using the hypervisor-provided MSR to
initiate a system RESET.

Bit 5: Recommend using relaxed timing for this partition. If
used, the VM should disable any watchdog timeouts that
rely on the timely delivery of external interrupts.

Bit 6: Recommend using DMA remapping.

Bit 7: Recommend using interrupt remapping.

Bit 8: Recommend using x2APIC MSRs.

Bit 9: Recommend deprecating AutoEOI.

Bit 10: Recommend using SyntheticClusterIpi hypercall

Bit 11: Recommend using the newer ExProcessorMasks
interface

Bit 12: Indicates that the hypervisor is nested within a Hyper-V
partition.

Bit 13: Recommend using INT for MBEC system calls

Bit 14: Recommend a nested hypervisor using the enlightened
VMCS interface. Also indicates that additional nested
enlightenments may be available (see leaf 0x4000000A)

Bit 31-15: Reserved

EBX Recommended number of attempts to retry a spinlock failure
before notifying the hypervisor about the failures.

0xFFFFFFFF indicates never to retry.

ECX Reserved

EDX Reserved

Hypervisor Top Level Functional Specification

 9

 Hypervisor Implementation Limits - 0x40000005

Describes the scale limits supported in the current hypervisor implementation. If any value is zero, the
hypervisor does not expose the corresponding information; otherwise, they have these meanings.

Leaf Information Provided

0x40000005 EAX The maximum number of virtual processors supported.

EBX The maximum number of logical processors supported.

ECX The maximum number of physical interrupt vectors available
for interrupt remapping.

EDX Reserved

 Implementation Hardware Features - 0x40000006

Indicates which hardware-specific features have been detected and are currently in use by the
hypervisor.

Leaf Information Provided

0x40000006 EAX Bit 0: Support for APIC overlay assist is detected and in use.

Bit 1: Support for MSR bitmaps is detected and in use.

Bit 2: Support for architectural performance counters is
detected and in use.

Bit 3: Support for second level address translation is
detected and in use.

Bit 4: Support for DMA remapping is detected and in use.

Bit 5: Support for interrupt remapping is detected and in
use.

Bit 6: Indicates that a memory patrol scrubber is present in the
hardware.

Bit 7: DMA protection is in use

Bit 8: HPET is requested

Bit 9: Synthetic timers are volatile

Bits 31-10: Reserved

EBX Reserved

ECX Reserved

EDX Reserved

Hypervisor Top Level Functional Specification

 10

 Hypervisor CPU Management Features - 0x40000007

Indicates enlightenments are available to the root partition only.

Leaf Information Provided

0x40000007 EAX Bit 0: StartLogicalProcessor

Bit 1: CreateRootvirtualProcessor

Bits 30-2: Reserved0

Bit 31: ReservedIdentityBit

EBX Bit 0: ProcessorPowerManagement

Bit 1: MwaitIdleStates

Bits 2: LogicalProcessorIdling

Bit 31-3: Reserved1

ECX Reserved

EDX Reserved

 Hypervisor SVM Features - 0x40000008

Indicates support for shared virtual memory (SVM).

Leaf Information Provided

0x40000008

EAX Bit 0: SvmSupported

Bits 10-1: Reserved0

Bits 31-11: MaxPasidSpacePasidCount

EBX Reserved

ECX Reserved

EDX Reserved

Hypervisor Top Level Functional Specification

 11

 Nested Hypervisor Feature Identification - 0x40000009

Describes the features exposed to the partition by the hypervisor when running nested. EAX describes
access to virtual MSRs. EDX describes access to hypercalls.

Leaf Information Provided

0x40000009 EAX Bits 1-0: Reserved

Bit 2: AccessSynicRegs

Bit 3: Reserved

Bit 4: AccessIntrCtrlRegs

Bit 5: AccessHypercallMsrs

Bit 6: AccessVpIndex

Bits 11-7: Reserved

Bit 12: AccessReenlightenmentControls

Bits 31-12: Reserved

EBX Reserved

ECX Reserved

EDX Bits 3-0: Reserved

Bit 4: XmmRegistersForFastHypercallAvailable

Bits 14-5: Reserved

Bit 15: FastHypercallOutputAvailable

Bit 16: Reserved

Bit 17: SintPollingModeAvailable

Bits 31:18 Reserved

Hypervisor Top Level Functional Specification

 12

 Hypervisor Nested Virtualization Features - 0x4000000A

Indicates which nested virtualization optimizations are available to a nested hypervisor.

 Leaf Information Provided

0x4000000A EAX Bits 7-0: Enlightened VMCS version (low)

Bits 15-8: Enlightened VMCS version (high)

Bit 16: Reserved

Bit 17: Indicates support for direct virtual flush hypercalls.

Bit 18 Indicates support for the
HvFlushGuestPhysicalAddressSpace and
HvFlushGuestPhysicalAddressList hypercalls.

Bit 19: Indicates support for using an enlightened MSR bitmap.

Bits 31-20: Reserved

EBX Reserved

ECX Reserved

EDX Reserved

2.5 Versioning

The hypervisor version information is encoded in leaf 0x40000002. Two version numbers are provided:
the main version and the service version.

The main version includes a major and minor version number and a build number. These correspond to
Microsoft Windows release numbers. The service version describes changes made to the main version.
For maximum forward compatibility, clients should use the hypervisor version information with extreme
care. When checking main versions, clients should use greater-than-or-equal tests, not equality tests.
The following pseudo-code demonstrates the method that should be employed when comparing entire
version numbers (consisting of both the main and service versions):

if <your-main-version> greater than <hypervisor-main-version>
 {
 your version is compatible
 }
else if <your-main-version> equal to <hypervisor-main-version>
 and
 <your-service-version> greater than or equal to
 <hypervisor-service-version>
 {
 your version is compatible
 }
else
 {
 your version is NOT compatible
 }

Clients are strongly encouraged to check for hypervisor features by using CPUID leaves 0x40000003
through 0x40000005 rather than by comparing against version ranges.

Hypervisor Top Level Functional Specification

 13

2.6 Reporting the Guest OS Identity

The guest OS running within the partition must identify itself to the hypervisor by writing its signature
and version to an MSR (HV_X64_MSR_GUEST_OS_ID). This MSR is partition-wide and is shared among
all virtual processors (virtual processors are described in chapter 7, Virtual Processor Management).

This register’s value is initially zero. A non-zero value must be written to the Guest OS ID MSR before the
hypercall code page can be enabled (see Establishing the Hypercall Interface). If this register is
subsequently zeroed, the hypercall code page will be disabled.

#define HV_X64_MSR_GUEST_OS_ID 0x40000000

The following is the recommended encoding for this MSR. Some fields may not apply for some guest
OSs.

63 62:48 47:40 39:32 31:24 23:16 15:0

OS Type Vendor ID OS ID Major
Version

Minor
Version

Service
Version

Build
Number

Hypervisor Top Level Functional Specification

 14

Bits Description Attributes

63 OS Type
Indicates the OS types. A value of 0 indicates a proprietary,
closed source OS. A value of 1 indicates an open source OS.

Read/Write

62:48 Vendor ID

Indicates the guest OS vendor. A value of 0 is reserved. A value of
1 indicates Microsoft.

Read/write

47:40 OS ID

Indicates the OS variant. Encoding is unique to the vendor.
Microsoft operating systems are encoded as follows:

0=Undefined, 1=MS-DOS®, 2=Windows® 3.x, 3=Windows® 9x,
4=Windows® NT (and derivatives), 5=Windows® CE

Read/write

39:32 Major Version

Indicates the major version of the OS

Read/write

31:24 Minor Version

Indicates the minor version of the OS

Read/write

23:16 Service Version

Indicates the service version (for example, "service pack"
number)

Read/write

15:0 Build Number

Indicates the build number of the OS

Read/write

Hypervisor Top Level Functional Specification

 15

 Encoding the Guest OS Identity MSR for Open Source Operating Systems

The following encoding is offered as guidance for open source operating system vendors intending to
conform to this specification. It is suggested that open source operating systems adapt the following
convention.

Bits Description Attributes

63 Open Source

Bit 63 should be set to 1 to indicate an Open Source OS.

Read/write

62:56 OS Type

Bits 62-57 should specify the OS type (e.g., Linux, FreeBSD, etc.).
Linux is 0x100.

Read/write

55:48 OS ID

Bits 55:48 may specify any additional vendor information
(distribution-specific identification).

Read/write

47:16 Version

Bits 47:16 should specify the upstream kernel version
information.

Read/write

15:0 Build Number

Bits 15:0 should specify any additional identification.

Read/write

Hypervisor Top Level Functional Specification

 16

3 Hypercall Interface

3.1 Hypercall Overview

The hypervisor provides a calling mechanism for guests. Such calls are referred to as hypercalls. Each
hypercall defines a set of input and/or output parameters. These parameters are specified in terms of a
memory-based data structure. All elements of the input and output data structures are padded to
natural boundaries up to 8 bytes (that is, two-byte elements must be on two-byte boundaries and so
on).

A second hypercall calling convention can optionally be used for a subset of hypercalls – in particular,
those that have two or fewer input parameters and no output parameters. When using this calling
convention, the input parameters are passed in registers.

A third hypercall calling convention can optionally be used for a subset of hypercalls where the input
parameter block is up to 112 bytes. When using this calling convention, the input parameters are passed
in registers, including the volatile XMM registers.

Input and output data structures must both be placed in memory on an 8-byte boundary and padded to
a multiple of 8 bytes in size. The values within the padding regions are ignored by the hypervisor.

For output, the hypervisor is allowed to (but not guaranteed to) overwrite padding regions. If it
overwrites padding regions, it will write zeros.

3.2 Hypercall Classes

There are two classes of hypercalls: simple and rep (short for “repeat”). A simple hypercall performs a
single operation and has a fixed-size set of input and output parameters. A rep hypercall acts like a
series of simple hypercalls. In addition to a fixed-size set of input and output parameters, rep hypercalls
involve a list of fixed-size input and/or output elements.

When a caller initially invokes a rep hypercall, it specifies a rep count that indicates the number of
elements in the input and/or output parameter list. Callers also specify a rep start index that indicates
the next input and/or output element that should be consumed. The hypervisor processes rep
parameters in list order – that is, by increasing element index.

For subsequent invocations of the rep hypercall, the rep start index indicates how many elements have
been completed – and, in conjunction with the rep count value – how many elements are left. For

example, if a caller specifies a rep count of 25, and only 20 iterations are completed within the 50s
window (described in section 3.3), the hypercall returns control back to the calling virtual processor
after updating the rep start index to 20. (See section 3.7 for more information about the rep start index.)
When the hypercall is re-executed, the hypervisor will resume at element 20 and complete the
remaining 5 elements.

If an error is encountered when processing an element, an appropriate status code is provided along
with a reps completed count, indicating the number of elements that were successfully processed before
the error was encountered. Assuming the specified hypercall control word is valid (see the following)
and the input / output parameter lists are accessible, the hypervisor is guaranteed to attempt at least
one rep, but it is not required to process the entire list before returning control back to the caller.

Hypervisor Top Level Functional Specification

 17

3.3 Hypercall Continuation

A hypercall can be thought of as a complex instruction that takes many cycles. The hypervisor attempts

to limit hypercall execution to 50s or less before returning control to the virtual processor that invoked

the hypercall. Some hypercall operations are sufficiently complex that a 50s guarantee is difficult to
make. The hypervisor therefore relies on a hypercall continuation mechanism for some hypercalls –
including all rep hypercall forms.

The hypercall continuation mechanism is mostly transparent to the caller. If a hypercall is not able to
complete within the prescribed time limit, control is returned back to the caller, but the instruction
pointer is not advanced past the instruction that invoked the hypercall. This allows pending interrupts to
be handled and other virtual processors to be scheduled. When the original calling thread resumes
execution, it will re-execute the hypercall instruction and make forward progress toward completing the
operation.

Most simple hypercalls are guaranteed to complete within the prescribed time limit. However, a small
number of simple hypercalls might require more time. These hypercalls use hypercall continuation in a
similar manner to rep hypercalls. In such cases, the operation involves two or more internal states. The
first invocation places the object (for example, the partition or virtual processor) into one state, and
after repeated invocations, the state finally transitions to a terminal state. For each hypercall that
follows this pattern, the visible side effects of intermediate internal states is described.

3.4 Hypercall Atomicity and Ordering

Except where noted, the action performed by a hypercall is atomic both with respect to all other guest
operations (for example, instructions executed within a guest) and all other hypercalls being executed
on the system. A simple hypercall performs a single atomic action; a rep hypercall performs multiple,
independent atomic actions.

Simple hypercalls that use hypercall continuation may involve multiple internal states that are externally
visible. Such calls comprise multiple atomic operations.

Each hypercall action may read input parameters and/or write results. The inputs to each action can be
read at any granularity and at any time after the hypercall is made and before the action is executed.
The results (that is, the output parameters) associated with each action may be written at any
granularity and at any time after the action is executed and before the hypercall returns.

The guest must avoid the examination and/or manipulation of any input or output parameters related
to an executing hypercall. While a virtual processor executing a hypercall will be incapable of doing so
(as its guest execution is suspended until the hypercall returns), there is nothing to prevent other virtual
processors from doing so. Guests behaving in this manner may crash or cause corruption within their
partition.

3.5 Legal Hypercall Environments

Hypercalls can be invoked only from the most privileged guest processor mode. In the case of x64, this
means protected mode with a current privilege level (CPL) of zero. Although real-mode code runs with
an effective CPL of zero, hypercalls are not allowed in real mode. An attempt to invoke a hypercall
within an illegal processor mode will generate a #UD (undefined operation) exception.

All hypercalls should be invoked through the architecturally-defined hypercall interface. (See the
following sections for instructions on discovering and establishing this interface.) An attempt to invoke a
hypercall by any other means (for example, copying the code from the hypercall code page to an

Hypervisor Top Level Functional Specification

 18

alternate location and executing it from there) might result in an undefined operation (#UD) exception.
The hypervisor is not guaranteed to deliver this exception.

3.6 Alignment Requirements

Callers must specify the 64-bit guest physical address (GPA) of the input and/or output parameters. GPA
pointers must by 8-byte aligned. If the hypercall involves no input or output parameters, the hypervisor
ignores the corresponding GPA pointer.

The input and output parameter lists cannot overlap or cross page boundaries. Hypercall input and
output pages are expected to be GPA pages and not “overlay” pages (for a discussion of overlay pages,
see section 5.2.1). If the virtual processor writes the input parameters to an overlay page and specifies a
GPA within this page, hypervisor access to the input parameter list is undefined.

The hypervisor will validate that the calling partition can read from the input page before executing the
requested hypercall. This validation consists of two checks: the specified GPA is mapped and the GPA is
marked readable. If either of these tests fails, the hypervisor generates a memory intercept message.
For more information on memory intercepts, see Chapter 11.

For hypercalls that have output parameters, the hypervisor will validate that the partition can be write
to the output page. This validation consists of two checks: the specified GPA is mapped and the GPA is
marked writable. If either of these tests fails, the hypervisor attempts to generate a memory intercept
message. If the validation succeeds, the hypervisor “locks” the output GPA for the duration of the
operation. Any attempt to remap or unmap this GPA will be deferred until after the hypercall is
complete.

3.7 Hypercall Inputs

Callers specify a hypercall by a 64-bit value called a hypercall input value. It is formatted as follows:

63:60 59:48 47:44 43:32 31:27 26:17 16 15:0

RsvdZ

(4 bits)

Rep start index

(12 bits)

RsvdZ

(4 bits)

Rep count

(12 bits)

RsvdZ

(5 bits)

Variable
header size

(9 bits)

Fast

(1 bit)

Call Code

(16 bits)

Hypervisor Top Level Functional Specification

 19

Call code 16 bits Specifies which hypercall is requested

Fast 1 bit Specifies whether the hypercall uses the register-based
calling convention.

0: Use the memory-based calling convention

1: Use the register-based calling convention

If this calling convention is used, the Rep fields must be
zero.

Variable header
size

9 bits The size of a variable header, in QWORDS. See 3.7.1.

RsvdZ 15 bits Must be zero

Rep Count 12 bits Total number of reps (for rep call, must be zero otherwise)

RsvdZ 4 bits Must be zero

Rep Start Index 12 bits Starting index (for rep call, must be zero otherwise)

RsvdZ 4 bits Must be zero

For rep hypercalls, the rep count field indicates the total number of reps. The rep start index indicates
the particular repetition relative to the start of the list (zero indicates that the first element in the list is
to be processed). Therefore, the rep count value must always be greater than the rep start index.

Register mapping for hypercall inputs when the Fast flag is zero:

x64 x86 Contents

RCX EDX:EAX Hypercall Input Value

RDX EBX:ECX Input Parameters GPA

R8 EDI:ESI Output Parameters GPA

The hypercall input value is passed in registers along with a GPA that points to the input and output
parameters. The register mappings depend on whether the caller is running in 32-bit (x86) or 64-bit
(x64) mode. The hypervisor determines the caller’s mode based on the value of EFER.LMA and CS.L. If
both of these flags are set, the caller is assumed to be a 64-bit caller.

Register mapping for hypercall inputs when the Fast flag is one:

Hypervisor Top Level Functional Specification

 20

x64 x86 Contents

RCX EDX:EAX Hypercall Input Value

RDX EBX:ECX Input Parameter

R8 EDI:ESI Input Parameter

The hypercall input value is passed in registers along with the input parameters. The register mappings
depend on whether the caller is running in 32-bit (x86) or 64-bit (x64) mode. The hypervisor determines
the caller’s mode based on the value of EFER.LMA and CS.L. If both of these flags are set, the caller is
assumed to be a 64-bit caller.

 Variable Sized Hypercall Input Headers

Most hypercall input headers have fixed size. The amount of header data being passed from the guest to
the hypervisor is therefore implicitly specified by the hypercall code and need not be specified
separately. However, some hypercalls require a variable amount of header data. These hypercalls
typically have a fixed size input header and additional header input that is of variable size.

A variable sized header is similar to a fixed hypercall input (aligned to 8 bytes and sized to a multiple of 8
bytes). The caller must specify how much total data it is providing as input headers. This size is provided
as part of the hypercall input value (see “Variable header size” in table above).

Since the fixed header size is implicit, instead of supplying the total header size, only the variable portion
is supplied in the input controls:

 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐻𝑒𝑎𝑑𝑒𝑟 𝐵𝑦𝑡𝑒𝑠 = {𝑇𝑜𝑡𝑎𝑙 𝐻𝑒𝑎𝑑𝑒𝑟 𝐵𝑦𝑡𝑒𝑠 −
 𝑠𝑖𝑧𝑒𝑜𝑓 (𝐹𝑖𝑥𝑒𝑑 𝐻𝑒𝑎𝑑𝑒𝑟)} 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑢𝑝 𝑡𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 8

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐻𝑒𝑎𝑑𝑒𝑟 𝑆𝑖𝑧𝑒 =
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐻𝑒𝑎𝑑𝑒𝑟 𝐵𝑦𝑡𝑒𝑠

8

It is illegal to specify a non-zero variable header size for a hypercall that is not explicitly documented as
accepting variable sized input headers. In such a case the hypercall will result in a return code of
HV_STATUS_INVALID_HYPERCALL_INPUT.

It is possible that for a given invocation of a hypercall that does accept variable sized input headers that
all the header input fits entirely within the fixed size header. In such cases the variable sized input
header is zero-sized and the corresponding bits in the hypercall input should be set to zero.

In all other regards, hypercalls accepting variable sized input headers are otherwise similar to fixed size
input header hypercalls with regards to calling conventions. It is also possible for a variable sized header
hypercall to additionally support rep semantics. In such a case the rep elements lie after the header in
the usual fashion, except that the header's total size includes both the fixed and variable portions. All
other rules remain the same e.g. the first rep element must be 8 byte aligned.

 XMM Fast Hypercall Input (formerly “Extended Fast Hypercalls”)

The hypervisor supports the use of XMM fast hypercalls, which allows some hypercalls to take
advantage of the improved performance of the fast hypercall interface even though they require more
than two input parameters. The XMM fast hypercall interface uses six XMM registers to allow the caller
to pass an input parameter block up to 112 bytes in size.

Hypervisor Top Level Functional Specification

 21

3.7.2.1 Feature Enumeration

Availability of the XMM fast hypercall interface is indicated via the “Hypervisor Feature Identification”
CPUID Leaf (0x40000003, see section 2.4.4):

• Bit 4: support for passing hypercall input via XMM registers is available.

Note that there is a separate flag to indicate support for XMM fast output. Any attempt to use this
interface when the hypervisor does not indicate availability will result in a #UD fault.

3.7.2.2 Register Mapping – Input Only

For hypervisor versions with XMM fast input support, callers can use the following register mapping:

x64 x86 Contents

RCX EDX:EAX Hypercall Input Value

RDX EBX:ECX Input Parameter Block

R8 EDI:ESI Input Parameter Block

XMM0 XMM0 Input Parameter Block

XMM1 XMM1 Input Parameter Block

XMM2 XMM2 Input Parameter Block

XMM3 XMM3 Input Parameter Block

XMM4 XMM4 Input Parameter Block

XMM5 XMM5 Input Parameter Block

The hypercall input value is passed in registers along with the input parameters. The register mappings
depend on whether the caller is running in 32-bit (x86) or 64-bit (x64) mode. The hypervisor determines
the caller’s mode based on the value of EFER.LMA and CS.L. If both of these flags are set, the caller is
assumed to be a 64-bit caller. If the input parameter block is smaller than 112 bytes, any extra bytes in
the registers are ignored.

3.8 Hypercall Outputs

All hypercalls return a 64-bit value called a hypercall result value. It is formatted as follows:

63:40 43:32 31:16 15:0

Rsvd

(20 bits)

Reps
complete

(12 bits)

Rsvd

(16 bits)

Result

(16 bits)

Hypervisor Top Level Functional Specification

 22

Result 16 bits HV_STATUS code indicating success or
failure

Rsvd 16 bits Callers should ignore the value in these
bits

Reps completed 12 bits Number of reps successfully completed

Rsvd 20 bits Callers should ignore the value in these
bits

For rep hypercalls, the reps complete field is the total number of reps complete and not relative to the
rep start index. For example, if the caller specified a rep start index of 5, and a rep count of 10, the reps
complete field would indicate 10 upon successful completion.

The hypercall result value is passed back in registers. The register mapping depends on whether the
caller is running in 32-bit (x86) or 64-bit (x64) mode (see above). The register mapping for hypercall
outputs is as follows:

x64 X86 Content

RAX EDX:EAX Hypercall Result Value

 XMM Fast Hypercall Output

Similar to how the hypervisor supports XMM fast hypercall inputs, the same registers can be shared to
return output. This is only supported on x64 platforms.

3.8.1.1 Feature Enumeration

The ability to return output via XMM registers is indicated via the “Hypervisor Feature Identification”
CPUID Leaf (0x40000003, see section 2.4.4):

• Bit 15: support for returning hypercall output via XMM registers is available.

Note that there is a separate flag to indicate support for XMM fast input. Any attempt to use this
interface when the hypervisor does not indicate availability will result in a #UD fault.

3.8.1.2 Register Mapping – Input and Output

Registers that are not being used to pass input parameters can be used to return output. In other words
with this capability, if the input parameter block is smaller than 112 bytes (rounded up to the nearest 16
byte aligned chunk), the remaining registers will return hypercall output.

x64 Contents

RDX Input or Output Block

R8 Input or Output Block

XMM0 Input or Output Block

Hypervisor Top Level Functional Specification

 23

XMM1 Input or Output Block

XMM2 Input or Output Block

XMM3 Input or Output Block

XMM4 Input or Output Block

XMM5 Input or Output Block

For example, if the input parameter block is 20 bytes in size, the hypervisor would ignore the following
12 bytes. The remaining 80 bytes would contain hypercall output (if applicable).

3.9 Volatile Registers

Hypercalls will only modify the specified register values under the following conditions:

1. RAX (x64) and EDX:EAX (x86) are always overwritten with the hypercall result value and output
parameters, if any (discussed in section 3.8).

2. Rep hypercalls will modify RCX (x64) and EDX:EAX (x86) with the new rep start index.
3. HvSetVpRegisters can modify any registers that are supported with that hypercall (see section

7.10.1).
4. RDX, R8, and XMM0 through XMM5, when used for fast hypercall input, remain unmodified.

However, registers used for fast hypercall output can be modified, including RDX, R8, and
XMM0 through XMM5 (see 3.8.1). Hyper-V will only modify these registers for fast hypercall
output, which is limited to x64.

3.10 Hypercall Documentation

Each hypercall in this document is described in two ways: a wrapper interface and a native interface. The
wrapper interface is the recommended high-level (C-style) calling convention typically provided by a
“wrapper library” that runs within the guest (for example, winhv.sys on Microsoft Windows®). The native
interface is the one actually provided by the hypervisor.

The recommended wrapper interface is described using standard C-style notation. The following is an
example of a wrapper interface for the hypothetical HvAssignWidgets hypercall:

HV_STATUS
HvAssignWidgets(
 __in HV_PARTITION_ID PartitionId,
 __in UINT64 Flags,
 __inout PUINT32 RepCount,
__in PCHV_WIDGET WidgetList
);

The native interface is defined in terms of memory-based data structures. Up to four data structures
may be defined:

• Input parameter header

• Input list element (for rep hypercalls)

• Output parameter header

Hypervisor Top Level Functional Specification

 24

• Output list element (for rep hypercalls)

The following is an example of the native interface documentation for the hypothetical
HvAssignWidgets hypercall:

HvAssignWidgets [rep]

 Call Code = 0xBADD

 InputParameter Header

0 PartitionId (8 bytes)

8 Flags (8 bytes)

 Input List Element

0 WidgetId (8 bytes)

8 WidgetType (4 bytes) Padding (4 bytes)

The above is an example of a rep (repeating) hypercall. As input, it has two fixed parameters and an
input list consisting of one or more elements. The first list element can be found at offset 16. The list
element is described using offsets within the element itself, starting with 0.

3.11 Hypercall Restrictions

Hypercalls may have restrictions associated with them for them to perform their intended function. If all
restrictions are not met, the hypercall will terminate with an appropriate error. The following
restrictions will be listed, if any apply:

• The calling partition must possess a particular privilege (see 4.2.2 for information regarding
privilege flags)

• The partition being acted upon must be in a particular state (e.g. “Active”)

• The partition must be the root

• The partition must be either a parent or child

• The virtual processor must be in a particular state (see section 7.4 for information regarding
virtual processor states).

3.12 Hypercall Status Codes

Each hypercall is documented as returning an output value that contains several fields. A status value
field (of type HV_STATUS) is used to indicate whether the call succeeded or failed. The hypercall status
value field is discussed in section 3.7.1.

 Output Parameter Validity on Failed Hypercalls

Unless explicitly stated otherwise, when a hypercall fails (that is, the result field of the hypercall result
value contains a value other than HV_STATUS_SUCCESS), the content of all output parameters are
indeterminate and should not be examined by the caller. Only when the hypercall succeeds, will all
appropriate output parameters contain valid, expected results.

Hypervisor Top Level Functional Specification

 25

 Ordering of Error Conditions

Error conditions are not presented in this document in any particular sequence. The order in which error
conditions are detected and reported by the hypervisor is undefined. In other words, if multiple errors
exist, the hypervisor must choose which error condition to report. Priority should be given to those error
codes offering greater security, the intent being to prevent the hypervisor from revealing information to
callers lacking sufficient privilege. For example, the status code HV_STATUS_ACCESS_DENIED is the
preferred status code over one that would reveal some context or state information purely based upon
privilege.

 Common Hypercall Status Codes

Several result codes are common to all hypercalls and are therefore not documented for each hypercall
individually. These include the following:

Status code Error condition

HV_STATUS_SUCCESS The call succeeded.

HV_STATUS_INVALID_HYPERCALL_CODE The hypercall code is not recognized.

HV_STATUS_INVALID_HYPERCALL_INPUT The rep count is incorrect (for example, a
non-zero rep count is passed to a non-rep
call or a zero rep count is passed to a rep
call).

The rep start index is not less than the rep
count.

A reserved bit in the specified hypercall
input value is non-zero.

HV_STATUS_INVALID_ALIGNMENT

The specified input or output GPA pointer
is not aligned to 8 bytes.

The specified input or output parameter
lists spans pages.

The input or output GPA pointer is not
within the bounds of the GPA space.

The return code HV_STATUS_SUCCESS indicates that no error condition was detected.

3.13 Establishing the Hypercall Interface

Hypercalls are invoked by using a special opcode. Because this opcode differs among virtualization
implementations, it is necessary for the hypervisor to abstract this difference. This is done through a
special hypercall page. This page is provided by the hypervisor and appears within the guest’s GPA
space. The guest is required to specify the location of the page by programming the Guest Hypercall
MSR.

Hypervisor Top Level Functional Specification

 26

#define HV_X64_MSR_HYPERCALL 0x40000001

Bits Description Attributes

63:12 Hypercall GPFN

Indicates the Guest Physical Page Number of the hypercall
page

Read/write

11:2 RsvdP

Guest should ignore on reads and preserve on writes

Reserved

1 Locked

Indicates if this MSR is immutable. If set, this MSR is locked,
thereby preventing the relocation of the hypercall page.

Once set, only system reset can clear this bit.

Read/Write
(unless set)

0 Enable Hypercall Page

Enables the hypercall page

Read/write

The hypercall page can be placed anywhere within the guest’s GPA space, but must be page-aligned. If
the guest attempts to move the hypercall page beyond the bounds of the GPA space, a #GP fault will
result when the MSR is written.

This MSR is a partition-wide MSR. In other words, it is shared by all virtual processors in the partition. If
one virtual processor successfully writes to the MSR, another virtual processor will read the same value.

Before the hypercall page is enabled, the guest OS must report its identity by writing its version
signature to a separate MSR (HV_X64_MSR_GUEST_OS_ID). If no guest OS identity has been specified,
attempts to enable the hypercall will fail. The enable bit will remain zero even if a one is written to it.
Furthermore, if the guest OS identity is cleared to zero after the hypercall page has been enabled, it will
become disabled.

The hypercall page appears as an “overlay” to the GPA space; that is, it covers whatever else is mapped
to the GPA range. Its contents are readable and executable by the guest. Attempts to write to the
hypercall page will result in a protection (#GP) exception.

After the hypercall page has been enabled, invoking a hypercall simply involves a call to the start of the
page.

The following is a detailed list of the steps involved in establishing the hypercall page:

1. The guest reads CPUID leaf 1 and determines whether a hypervisor is present by checking bit 31
of register ECX.

2. The guest reads CPUID leaf 0x40000000 to determine the maximum hypervisor CPUID leaf
(returned in register EAX) and CPUID leaf 0x40000001 to determine the interface signature
(returned in register EAX). It verifies that the maximum leaf value is at least 0x40000005 and
that the interface signature is equal to “Hv#1”. This signature implies that

Hypervisor Top Level Functional Specification

 27

HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL and HV_X64_MSR_VP_INDEX are
implemented.

3. The guest writes its OS identity into the MSR HV_X64_MSR_GUEST_OS_ID if that register is zero.

4. The guest reads the Hypercall MSR (HV_X64_MSR_HYPERCALL).

5. The guest checks the Enable Hypercall Page bit. If it is set, the interface is already active, and
steps 6 and 7 should be omitted.

6. The guest finds a page within its GPA space, preferably one that is not occupied by RAM, MMIO,
and so on. If the page is occupied, the guest should avoid using the underlying page for other
purposes.

7. The guest writes a new value to the Hypercall MSR (HV_X64_MSR_HYPERCALL) that includes the
GPA from step 6 and sets the Enable Hypercall Page bit to enable the interface.

8. The guest creates an executable VA mapping to the hypercall page GPA.

9. The guest consults CPUID leaf 0x40000003 to determine which hypervisor facilities are available
to it.

After the interface has been established, the guest can initiate a hypercall. To do so, it populates the
registers per the hypercall protocol and issues a CALL to the beginning of the hypercall page. The guest
should assume the hypercall page performs the equivalent of a near return (0xC3) to return to the caller.
As such, the hypercall must be invoked with a valid stack.

3.14 Extended Hypercall Interface

Hypercalls with call codes above 0x8000 are known as extended hypercalls. Extended hypercalls use the
same calling convention as normal hypercalls, and appear identical from a guest VM’s perspective.
Extended hypercalls are internally handled differently within the Hyper-V hypervisor.

Below is a list of extended hypercalls.

Extended Hyperall Name Call
Code

HvExtCallQueryCapabilities 0x8001

HvExtCallGetBootZeroedMemory 0x8002

Extended hypercall capabilities can be queried with HvExtCallQueryCapabilities. The availability of
HvExtCallQueryCapabilities is reported as a partition privilege flag (see 4.2.2).

 HvExtCallQueryCapabilities

This hypercall reports the availability of extended hypercalls.

Hypervisor Top Level Functional Specification

 28

Wrapper Interface

HV_STATUS

HvExtCallQueryCapabilities(

__out UINT64 Capabilities;

);

Native Interface

HvExtCallQueryCapabilities

 Call Code = 0x8001

 Output Parameters

0 Capabilities (8 bytes)

Input Parameters

None.

Output Parameters

Capabilities – the extended hypercalls supported by the hypervisor. A value of “1” indicates that the
extended hypercall is available.

Bits Extended Hypercall Call Code

0 HvExtCallGetBootZeroedMemory 0x8002

63:1 Reserved

Restrictions

• The availability of this hypercall must be queried using the EnableExtendedHypercalls partition
privilege flag.

Hypervisor Top Level Functional Specification

 29

4 Partition Properties

4.1 Overview

This section describes how partition privileges and capabilities are defined.

4.2 Partition Management Data Types

 Partition IDs

Partitions are identified by using a partition ID. This 64-bit number is allocated by the hypervisor. All
partitions are guaranteed by the hypervisor to have unique IDs. Note that these are not “globally
unique” in that the same ID may be generated across a power cycle (that is, a reboot of the hypervisor).
However, the hypervisor guarantees that IDs created within a single power cycle are unique.

typedef UINT64 HV_PARTITION_ID;
typedef HV_PARTITION_ID *PHV_PARTITION_ID;

The guest should not ascribe any meaning to the value of a partition ID. The “invalid” partition ID is used
in several interfaces to indicate an invalid partition.

#define HV_PARTITION_ID_INVALID ((HV_PARTITION_ID) 0x0)

A partition can specify its own ID using HV_PARTITION_ID_SELF

#define HV_PARTITION_ID_SELF ((HV_PARTITION_ID) -1)

 Partition Privilege Flags

Each partition has a set of properties that are assigned to it by the hypervisor.

One of the partition properties (HvPartitionPropertyPrivilegeFlags) defines the hypervisor facilities that
the partition is allowed to access. This enables the parent to control which synthetic MSRs and
hypercalls a guest partition can access.

The property is defined with the following structure. Reserved fields should be set to 0 to ensure
forward compatibility:

Hypervisor Top Level Functional Specification

 30

typedef struct
{
// Access to virtual MSRs
UINT64 AccessVpRunTimeReg:1;
UINT64 AccessPartitionReferenceCounter:1;
UINT64 AccessSynicRegs:1;
UINT64 AccessSyntheticTimerRegs:1;
UINT64 AccessIntrCtrlRegs:1;
UINT64 AccessHypercallMsrs:1;
UINT64 AccessVpIndex:1;
UINT64 AccessResetReg:1;
UINT64 AccessStatsReg:1;
UINT64 AccessPartitionReferenceTsc:1;
UINT64 AccessGuestIdleReg:1;
UINT64 AccessFrequencyRegs:1;
UINT64 AccessDebugRegs:1;
UINT64 Reserved1:19;

// Access to hypercalls
UINT64 CreatePartitions:1;
UINT64 AccessPartitionId:1;
UINT64 AccessMemoryPool:1;
UINT64 AdjustMessageBuffers:1;
UINT64 PostMessages:1;
UINT64 SignalEvents:1;
UINT64 CreatePort:1;
UINT64 ConnectPort:1;
UINT64 AccessStats:1;
UINT64 Reserved2:2;
UINT64 Debugging:1;
UINT64 CpuManagement:1;
UINT64 Reserved:1
UINT64 Reserved:1;
UINT64 Reserved:1;
UINT64 AccessVSM:1;
UINT64 AccessVpRegisters:1;
UINT64 Reserved:1;
UINT64 Reserved:1;
UINT64 EnableExtendedHypercalls:1;
UINT64 StartVirtualProcessor:1;
UINT64 Reserved3:10;
} HV_PARTITION_PRIVILEGE_MASK;

The following table explains what each of these flags controls.

Hypervisor Top Level Functional Specification

 31

Privilege Flag Meaning

AccessVpRunTimeReg The partition has access to the synthetic MSR
HV_X64_MSR_VP_RUNTIME. If this flag is cleared,
accesses to this MSR results in a #GP fault if the
MSR intercept is not installed.

AccessPartitionReferenceCounter The partition has access to the partition-wide
reference count MSR,
HV_X64_MSR_TIME_REF_COUNT. If this flag is
cleared, accesses to this MSR results in a #GP fault
if the MSR intercept is not installed.

AccessSynicRegs The partition has access to the synthetic MSRs
associated with the Synic
(HV_X64_MSR_SCONTROL through
HV_X64_MSR_EOM and HV_X64_MSR_SINT0
through HV_X64_MSR_SINT15). If this flag is
cleared, accesses to these MSRs results in a #GP
fault if the MSR intercept is not installed.

AccessSyntheticTimerMsrs The partition has access to the synthetic MSRs
associated with the Synic
(HV_X64_MSR_STIMER0_CONFIG through
HV_X64_MSR_STIMER3_COUNT). If this flag is
cleared, accesses to these MSRs results in a #GP
fault if the MSR intercept is not installed.

AccessIntrCtrlRegs The partition has access to the synthetic MSRs
associated with the APIC (HV_X64_MSR_EOI,
HV_X64_MSR_ICR and HV_X64_MSR_TPR). If this
flag is cleared, accesses to these MSRs results in a
#GP fault if the MSR intercept is not installed.

AccessHypercallMsrs The partition has access to the synthetic MSRs
related to the hypercall interface
(HV_X64_MSR_GUEST_OS_ID and
HV_X64_MSR_HYPERCALL). If this flag is cleared,
accesses to these MSRs result in a #GP fault if the
MSR intercept is not installed.

AccessVpIndex The partition has access to the synthetic MSR that
returns the virtual processor index. If this flag is
cleared, accesses to this MSR results in a #GP fault
if the MSR intercept is not installed.

Hypervisor Top Level Functional Specification

 32

Privilege Flag Meaning

AccessResetReg This partition has access to the synthetic MSR that
resets the system. If this flag is cleared, accesses to
this MSR results in a #GP fault if the MSR intercept
is not installed.

AccessStatsReg This partition has access to the synthetic MSRs that
allows the guest to map and unmap its own
statistics pages.

AccessPartitionReferenceTsc The partition has access to the reference TSC.

AccessGuestIdleMsr The partition has access to the synthetic MSR that
allows the guest to enter the guest idle state.

CreatePartitions The partition can invoke the hypercall
HvCreatePartition. The partition also can make any
other hypercall that is restricted to operating on
children.

AccessFrequencyRegs The partition has access to the synthetic MSRs that
supply the TSC and APIC frequencies, if supported.

AccessDebugRegs The partition has access to the synthetic MSRs used
for some forms of guest debugging.

AccessPartitionId The partition can invoke the hypercall
HvGetPartitionId to obtain its own partition ID.

AccessMemoryPool The partition can invoke the hypercalls
HvDepositMemory, HvWithdrawMemory and
HvGetMemoryBalance.

PostMessages The partition can invoke the hypercall
HvPostMessage.

SignalEvents The partition can invoke the hypercall
HvSignalEvent.

CreatePort The partition can invoke the hypercall
HvCreatePort.

ConnectPort The partition can invoke the hypercall
HvConnectPort.

AccessStats The partition can invoke the hypercalls
HvMapStatsPage and HvUnmapStatsPage.

Hypervisor Top Level Functional Specification

 33

Privilege Flag Meaning

Debugging The partition can invoke the hypercalls
HvPostDebugData, HvRetrieveDebugData and
HvResetDebugSession.

CpuManagement1 The partition can invoke the hypercalls
HvGetLogicalProcessorRunTime and
HvCallParkedVirtualProcessors.

This partition also has access to the power
management MSRs.

AccessVSM The partition can use VSM.

EnableExtendedHypercalls The partition can use the extended hypercall
interface. Callers must query for extended
hypercall capabilities using
HvExtCallQueryCapabilities. See Extended Hypercall
Interface.

StartVirtualPRocessor The partition can use HvStartVirtualProcessor to
initialize virtual processors.

4.3 Partition Crash Enlightenment

The hypervisor provides guest partitions with a crash enlightenment facility. This interface allows the
operating system running in a guest partition the option of providing any relevant forensic information
about fatal OS conditions to the hypervisor as part of its regular crash dump procedure. The guest
partition may also direct the hypervisor to take specific action in response to the guest OS crash event.
Currently, the only supported hypervisor action is to preserve the contents of the guest crash parameter
MSRs. The hypervisor then makes this information available to the root partition for logging. This
allows the virtualization host administrator to gather information about the guest OS crash event
without needing to inspect persistent storage attached to the guest partition for crash dump or core
dump information that may be stored there by the crashing guest OS.

The availability of this mechanism is indicated via CPUID.0x400003.EDX:10, the
GuestCrashMsrsAvailable flag; refer to

1 Some implementations may restrict this partition privilege to the root partition.

Hypervisor Top Level Functional Specification

 34

Hypervisor Feature Identification.

 Guest Crash Enlightenment Interface

The guest crash enlightenment interface is provided through six synthetic MSRs, as defined below.

#define HV_X64_MSR_CRASH_P0 0x40000100
#define HV_X64_MSR_CRASH_P1 0x40000101
#define HV_X64_MSR_CRASH_P2 0x40000102
#define HV_X64_MSR_CRASH_P3 0x40000103
#define HV_X64_MSR_CRASH_P4 0x40000104

#define HV_X64_MSR_CRASH_CTL 0x40000105

4.3.1.1 Guest Crash Control MSR

The guest crash control MSR HV_X64_MSR_CRASH_CTL may be used by guest partitions to determine
the hypervisor’s guest crash capabilities, and to invoke the specified action to take.

Determining Guest Crash Capabilities

To determine the guest crash capabilities, guest partitions may read the HV_X64_MSR_CRASH_CTL
register. The supported set of actions and capabilities supported by the hypervisor is reported.

Invoking Guest Crash Capabilities

To invoke a supported hypervisor guest crash action, a guest partition writes to the
HV_X64_MSR_CRASH_CTL register, specifying the desired action.

Currently, only one guest crash action is supported – CrashNotify. This action is used to indicate to the
hypervisor that the guest partition has completed writing the desired data into the guest crash
parameter MSRs, and the hypervisor should proceed with logging the contents of these MSRs.

 Guest Crash Enlightenment Data Structure

The following data structure is used to define the contents of the guest crash enlightenment control
register, _HV_CRASH_CTL_REG_CONTENTS.

typedef union _HV_CRASH_CTL_REG_CONTENTS
{
 UINT64 AsUINT64;
 struct
 {
 UINT64 Reserved : 63; // Reserved bits
 UINT64 CrashNotify : 1; // Log contents of crash parameter
 // system register
 };
} HV_CRASH_CTL_REG_CONTENTS;

Hypervisor Top Level Functional Specification

 35

5 Guest Physical Address Spaces

5.1 Overview

The size of the GPA space for a partition is the range from 0 to some maximum address that depends on
architectural attributes of the virtual machine exposed by the partition.

Each page within a GPA space is in one of three states:

• Mapped: A mapped GPA page is associated with a RAM SPA page.

• Inaccessible: An inaccessible GPA page may not be read, written, or executed by the partition.

• Unmapped: An unmapped GPA page is not associated with a RAM SPA page.

For guest partitions:

• Its GPA mappings are not necessarily identity-mapped. That is, a GPA does not necessarily refer
to the same SPA.

• The GPA mappings are defined by the partition’s parent. At the time they are mapped, they are
specified in terms of the parent’s GPA space. Therefore, these pages must be mapped into the
parent’s GPA space; however, the parent is not required to have read, write or execute access to
these mapped pages.

• When a virtual processor accesses an unmapped GPA page, the hypervisor suspends the virtual
processor and sends a message to the partition’s parent. Code within the parent will typically
respond by creating a mapping or by emulating the instruction that generated the memory
access. In either case, it is up to the software in the parent partition to “unsuspend” the child’s
virtual processor.

5.2 Page Access Rights

Mapped GPA pages have the following attributes which define the access rights of the partition:

• Readable: Data on the page can be read.

• Writeable: Data to the page can be written.

• Executable: Code on the page can be executed.

These access rights are enforced for explicit accesses performed by the guest’s virtual processors. They
are also enforced for implicit reads or writes performed by the hypervisor (for example, due to guest
page table flag updates).

Access right combinations are limited by the underlying hardware. The following table shows the valid
combinations for an x64 system.

Access Type Description

Read Write Exec

• • • Instruction fetches, reads, and writes are allowed

 • • Illegal combination

Hypervisor Top Level Functional Specification

 36

Access Type Description

Read Write Exec

• • Instruction fetches and reads are allowed

 • Illegal combination

• • Reads and writes are allowed

 • Illegal combination

• Reads are allowed

 No access is allowed

If an attempted memory access is not permitted according to the access rights, the virtual processor
that performed the access is suspended (on an instruction boundary) and a message is sent to the
parent partition. Code within the parent will typically respond by adjusting the access rights to allow the
access or emulating the instruction that performed the memory access. In either case, it is up to the
software in the parent partition to “unsuspend” the child’s virtual processor.

Memory accesses that cross page boundaries are handled in a manner that is consistent with the
underlying processor architecture. For x64, this means the entire access is validated before any data
exchange occurs. For example, if a four-byte write is split across two pages and the first page is writable
but the second is not, the first two bytes are not written.

 GPA Overlay Pages

The hypervisor defines several special pages that “overlay” the guest’s GPA space. The hypercall code
page is an example of an overlay page. Overlays are addressed by guest physical addresses but are not
included in the normal GPA map maintained internally by the hypervisor. Conceptually, they exist in a
separate map that overlays the GPA map.

If a page within the GPA space is overlaid, any SPA page mapped to the GPA page is effectively
“obscured” and generally unreachable by the virtual processor through processor memory accesses.
Furthermore, access rights installed on the underlying GPA page are not honored when accessing an
overlay page.

If an overlay page is disabled or is moved to a new location in the GPA space, the underlying GPA page is
“uncovered”, and an existing mapping becomes accessible to the guest.

If multiple overlay pages are programmed to appear on top of each other (for example, the guest
programs the APIC to appear on top of the hypercall page), the hypervisor will choose an ordering
(which is undefined) and only one of these overlays will be visible to code running within the partition.
In such cases, if the “top-most” overlay is disabled or moved, another overlay page will become visible.

When the hypervisor performs a guest page table walk, it might find that a page table is located on a
GPA location associated with an overlay page. In this case, the hypervisor may choose to do any one of
the following: generate a guest page fault, reference the contents of the overlay page, or reference the
contents of the underlying GPA mapping. Because this behavior can vary from one hypervisor
implementation to the next, it is strongly recommended that guests avoid this situation.

Hypervisor Top Level Functional Specification

 37

Hypervisor Top Level Functional Specification

 38

6 Host Intercepts

6.1 Overview

This section describes the principal mechanism the hypervisor provides to facilitate the virtualization of
certain guest events. These events occur when a virtual processor executes certain instructions or
generates certain exceptions. An authorized guest (a parent partition) can install an intercept for certain
events on another guest (a child partition, or lesser privileged VTL). An intercept involves the detection
of an event performed by a virtual processor (explicitly or implicitly). When an intercepted event occurs
in the child partition, the virtual processor that triggered the event is suspended, and an intercept
message is sent to the parent. The virtual processor remains suspended until the parent explicitly clears
the virtual processor register.

In general, the register state of the virtual processor when it is suspended corresponds to the state
before the execution of the instruction that triggered the intercept. As such, the instruction can be
restarted.

The purpose of this mechanism is to allow a virtualization-aware parent to create a virtual environment
that allows an unmodified legacy guest—that was written to execute on the physical hardware—to
execute in a hypervisor partition. Such legacy guests may attempt to access physical devices that do not
exist in a hypervisor partition (for example, by accessing certain I/O ports). The mechanism described in
this section makes it possible to intercept all such accesses and transfer control to the parent partition.
The parent partition can alter the effect of the intercepted instruction such that, to the child, it mirrors
the expected behavior in physical hardware.

An intercept only affects the state of a single virtual processor. Other virtual processors within the same
partition continue to run. Therefore, it’s possible that multiple intercept messages can be “in progress”
concurrently. Intercept messages are queued to the parent in the order in which they are detected.

 Programmable Intercept Types

The available processor intercept events depend on the (virtual) processor architecture and the
capabilities of the physical hardware’s virtualization facilities.

The following types of processor events can be intercepted on x64 platforms:

• Accesses to I/O Ports

• Accesses to MSRs

• Execution of the CPUID instruction

• Exceptions

• Accesses to registers

• Hypercalls

The following table describes the scope and intercept access flags that are allowed for each intercept
type:

Hypervisor Top Level Functional Specification

 39

Intercept Type Intercept Applies To Valid Access Flags

I/O port access

(see section 8.9)

A specific I/O port. Read and Write access
flags must be specified to
install an intercept.

MSR access

(see section 8.10)

All MSRs not being virtualized by the
hypervisor. Note that certain privileges
affect MSR virtualization.

Read and Write access
flags must be specified to
install the intercept.

CPUID instruction
execution

(see section 8.11)

A specific CPUID leaf. Execute access flag must
be specified to install an
intercept.

Exceptions

A specific exception vector. Execute access flag must
be specified to install an
intercept.

Control Register
Access

A specific control register. Read or Write access
flags must be specified to
install the intercept.

Hypervisor Top Level Functional Specification

 40

7 Virtual Processor Management

7.1 Overview

Each partition may have zero or more virtual processors. This section describes virtual processor state
and how it is managed.

7.2 Virtual Processor Indices

A virtual processor is identified by a tuple composed of its partition ID and its processor index. The
processor index is assigned to the virtual processor when it is created, and it is unchanged through the
lifetime of the virtual processor. Processor indices are described in 7.8.1.

7.3 Virtual Processor Registers

Associated with each virtual processor is a variety of state modeled as processor registers. Most of this
state is defined by the underlying processor architecture and consists of architected register values. The
hypervisor provides a mechanism for reading and writing these registers through hypercalls
HvGetVpRegisters and HvSetVpRegisters.

If a virtual processor register is modified and the newly-specified value is invalid in some way, the
hypervisor may or may not immediately return an error. In some cases, a value is invalid only in certain
contexts (for example, if a bit within another virtual processor register is set). Therefore, some invalid
register values are not detected until the virtual processor resumes execution. In such a case, the virtual
processor is suspended, and an intercept message (with a message type
HvMessageTypeInvalidVpRegisterValue) is sent to its parent partition.

7.4 Virtual Processor States

Conceptually, a virtual processor is in one of four states:

• Running—actively consuming processor cycles of a logical processor

• Ready—ready to run, but not actively running because other virtual processors are running

• Waiting—in a state defined by the processor architecture that does not involve the active
execution of instructions (for example, for the x64 architecture, at a HLT instruction, within
“waiting for SIPI” state or if the scheduler has capped the virtual processor)

• Suspended—stopped on a guest instruction boundary either explicitly suspended or implicitly
suspended due to an intercept. Both suspension reasons must be cleared before a virtual
processor becomes active.

7.5 Virtual Processor Idle Sleep State

Virtual processors may be placed in a virtual idle processor power state, or processor sleep state. This
enhanced virtual idle state allows a virtual processor that is placed into a low power idle state to be
woken with the arrival of an interrupt even when the interrupt is masked on the virtual processor. In
other words, the virtual idle state allows the operating system in the guest partition to take advantage
of processor power saving techniques in the OS that would otherwise be unavailable when running in a
guest partition.

A partition which possesses the AccessGuestIdleMsr privilege (refer to section 4.2.2) may trigger entry
into the virtual processor idle sleep state through a read to the hypervisor-defined MSR

Hypervisor Top Level Functional Specification

 41

HV_X64_MSR_GUEST_IDLE. The virtual processor will be woken when an interrupt arrives, regardless of
whether the interrupt is enabled on the virtual processor or not.

7.6 Virtual Boot Processor

The virtual processor created with the index of zero is the virtual boot processor for the partition that it
is related to. It will be the only virtual processor with the BSP flag set in the IA32_APIC_BASE_MSR
register. Virtual processors created with non-zero indices are virtual application processors. Both the
virtual boot processor and virtual application processors may be created or deleted at any time.

7.7 Virtual Processor Synthetic Machine Checks

On a real x64 system, a processor may have the ability to detect and report hardware (machine) errors.
These are signaled by the processor by generating a machine-check exception (#MC). Some processors
may also include a means to signal system or application level software to respond to certain
uncorrected machine check errors in order to allow software to participate in the containment of and
recovery from these errors.

The hypervisor provides a facility to inject a synthetic machine check on a virtual processor. This
enables the operating system and application software running in a guest partition to be notified about
physical platform errors, and to participate in any supported software error recovery scheme.

7.8 Virtual Processor Data Types

 Virtual Processor Index

Virtual processors are identified by using an index (VP index). The maximum number of virtual
processors per partition supported by the current implementation of the hypervisor can be obtained
through CPUID leaf 0x40000005. A virtual processor index must be less than the maximum number of
virtual processors per partition.

A special value HV_ANY_VP can be used in certain situations to specify “any virtual processor”.

typedef UINT32 HV_VP_INDEX;

#define HV_ANY_VP ((HV_VP_INDEX)-1)

#define HV_VP_INDEX_SELF ((HV_VP_INDEX)-2)

A virtual processor’s ID can be retrieved by the guest through a hypervisor-defined MSR (model-specific
register) HV_X64_MSR_VP_INDEX. A value of HV_VP_INDEX_SELF can be used to specify one’s own VP
index.

#define HV_X64_MSR_VP_INDEX 0x40000002

 Virtual Processor Register Names

Virtual processor state is referenced by register names, 32-bit numbers that uniquely identify a register.

Hypervisor Top Level Functional Specification

 42

typedef enum
{
 // Suspend Registers
 HvRegisterExplicitSuspend = 0x00000000,
 HvRegisterInterceptSuspend = 0x00000001,

 // Version
 HvRegisterHypervisorVersion = 0x00000100,

 // Feature Access (registers are 128 bits)
 // 128-bit result same as CPUID 0x40000003
 HvRegisterPrivilegesAndFeaturesInfo = 0x00000200,

 // 128-bit result same as CPUID 0x40000004
 HvRegisterFeaturesInfo = 0x00000201,

 // 128-bit result same as CPUID 0x40000005
 HvRegisterImplementationLimitsInfo = 0x00000202,

 // 128-bit result same as CPUID 0x40000006
 HvRegisterHardwareFeaturesInfo = 0x00000203,

 // Guest Crash Registers
 HvRegisterGuestCrashP0 = 0x00000210,
 HvRegisterGuestCrashP1 = 0x00000211,
 HvRegisterGuestCrashP2 = 0x00000212,
 HvRegisterGuestCrashP3 = 0x00000213,
 HvRegisterGuestCrashP4 = 0x00000214,
 HvRegisterGuestCrashCtl = 0x00000215,

 // Power State Configuration
 HvRegisterPowerStateConfigC1 = 0x00000220,
 HvRegisterPowerStateTriggerC1 = 0x00000221,
 HvRegisterPowerStateConfigC2 = 0x00000222,
 HvRegisterPowerStateTriggerC2 = 0x00000223,
 HvRegisterPowerStateConfigC3 = 0x00000224,
 HvRegisterPowerStateTriggerC3 = 0x00000225,

 // System Reset
 HvRegisterSystemReset = 0x00000230,

 // Frequency Registers
 HvRegisterProcessorClockFrequency = 0x00000240,
 HvRegisterInterruptClockFrequency = 0x00000241,

 // Idle Register
 HvRegisterGuestIdle = 0x00000250,

 // Guest Debug
 HvRegisterDebugDeviceOptions = 0x00000260,

 // Interrupt Registers
 HvRegisterPendingInterruption = 0x00010002,
 HvRegisterInterruptState = 0x00010003,

 // Pending Event Register
 HvRegisterPendingEvent0 = 0x00010004,
 HvRegisterPendingEvent1 = 0x00010005,

 // User-Mode Registers
 HvX64RegisterRax = 0x00020000,
 HvX64RegisterRcx = 0x00020001,
 HvX64RegisterRdx = 0x00020002,

Hypervisor Top Level Functional Specification

 43

 HvX64RegisterRbx = 0x00020003,
 HvX64RegisterRsp = 0x00020004,
 HvX64RegisterRbp = 0x00020005,
 HvX64RegisterRsi = 0x00020006,
 HvX64RegisterRdi = 0x00020007,
 HvX64RegisterR8 = 0x00020008,
 HvX64RegisterR9 = 0x00020009,
 HvX64RegisterR10 = 0x0002000A,
 HvX64RegisterR11 = 0x0002000B,
 HvX64RegisterR12 = 0x0002000C,
 HvX64RegisterR13 = 0x0002000D,
 HvX64RegisterR14 = 0x0002000E,
 HvX64RegisterR15 = 0x0002000F,
 HvX64RegisterRip = 0x00020010,
 HvX64RegisterRflags = 0x00020011,

 // Floating Point and Vector Registers
 HvX64RegisterXmm0 = 0x00030000,
 HvX64RegisterXmm1 = 0x00030001,
 HvX64RegisterXmm2 = 0x00030002,
 HvX64RegisterXmm3 = 0x00030003,
 HvX64RegisterXmm4 = 0x00030004,
 HvX64RegisterXmm5 = 0x00030005,
 HvX64RegisterXmm6 = 0x00030006,
 HvX64RegisterXmm7 = 0x00030007,
 HvX64RegisterXmm8 = 0x00030008,
 HvX64RegisterXmm9 = 0x00030009,
 HvX64RegisterXmm10 = 0x0003000A,
 HvX64RegisterXmm11 = 0x0003000B,
 HvX64RegisterXmm12 = 0x0003000C,
 HvX64RegisterXmm13 = 0x0003000D,
 HvX64RegisterXmm14 = 0x0003000E,
 HvX64RegisterXmm15 = 0x0003000F,
 HvX64RegisterFpMmx0 = 0x00030010,
 HvX64RegisterFpMmx1 = 0x00030011,
 HvX64RegisterFpMmx2 = 0x00030012,
 HvX64RegisterFpMmx3 = 0x00030013,
 HvX64RegisterFpMmx4 = 0x00030014,
 HvX64RegisterFpMmx5 = 0x00030015,
 HvX64RegisterFpMmx6 = 0x00030016,
 HvX64RegisterFpMmx7 = 0x00030017,
 HvX64RegisterFpControlStatus = 0x00030018,
 HvX64RegisterXmmControlStatus = 0x00030019,

 // Control Registers
 HvX64RegisterCr0 = 0x00040000,
 HvX64RegisterCr2 = 0x00040001,
 HvX64RegisterCr3 = 0x00040002,
 HvX64RegisterCr4 = 0x00040003,
 HvX64RegisterCr8 = 0x00040004,
 HvX64RegisterXfem = 0x00040005,

 // X64 Intermediate Control Registers
 HvX64RegisterIntermediateCr0 = 0x00041000,
 HvX64RegisterIntermediateCr4 = 0x00041003,
 HvX64RegisterIntermediateCr8 = 0x00041004,

 // Debug Registers
 HvX64RegisterDr0 = 0x00050000,
 HvX64RegisterDr1 = 0x00050001,
 HvX64RegisterDr2 = 0x00050002,
 HvX64RegisterDr3 = 0x00050003,
 HvX64RegisterDr6 = 0x00050004,
 HvX64RegisterDr7 = 0x00050005,

Hypervisor Top Level Functional Specification

 44

 // Segment Registers
 HvX64RegisterEs = 0x00060000,
 HvX64RegisterCs = 0x00060001,
 HvX64RegisterSs = 0x00060002,
 HvX64RegisterDs = 0x00060003,
 HvX64RegisterFs = 0x00060004,
 HvX64RegisterGs = 0x00060005,
 HvX64RegisterLdtr = 0x00060006,
 HvX64RegisterTr = 0x00060007,

 // Table Registers
 HvX64RegisterIdtr = 0x00070000,
 HvX64RegisterGdtr = 0x00070001,

 // Virtualized MSRs
 HvX64RegisterTsc = 0x00080000,
 HvX64RegisterEfer = 0x00080001,
 HvX64RegisterKernelGsBase = 0x00080002,
 HvX64RegisterApicBase = 0x00080003,
 HvX64RegisterPat = 0x00080004,
 HvX64RegisterSysenterCs = 0x00080005,
 HvX64RegisterSysenterRip = 0x00080006,
 HvX64RegisterSysenterRsp = 0x00080007,
 HvX64RegisterStar = 0x00080008,
 HvX64RegisterLstar = 0x00080009,
 HvX64RegisterCstar = 0x0008000A,
 HvX64RegisterSfmask = 0x0008000B,
 HvX64RegisterInitialApicId = 0x0008000C,

 // Cache control MSRs
 HvX64RegisterMtrrCap = 0x0008000D,
 HvX64RegisterMtrrDefType = 0x0008000E,

 HvX64RegisterMtrrPhysBase0 = 0x00080010,
 HvX64RegisterMtrrPhysBase1 = 0x00080011,
 HvX64RegisterMtrrPhysBase2 = 0x00080012,
 HvX64RegisterMtrrPhysBase3 = 0x00080013,
 HvX64RegisterMtrrPhysBase4 = 0x00080014,
 HvX64RegisterMtrrPhysBase5 = 0x00080015,
 HvX64RegisterMtrrPhysBase6 = 0x00080016,
 HvX64RegisterMtrrPhysBase7 = 0x00080017,
 HvX64RegisterMtrrPhysBase8 = 0x00080018,
 HvX64RegisterMtrrPhysBase9 = 0x00080019,
 HvX64RegisterMtrrPhysBaseA = 0x0008001A,
 HvX64RegisterMtrrPhysBaseB = 0x0008001B,
 HvX64RegisterMtrrPhysBaseC = 0x0008001C,
 HvX64RegisterMtrrPhysBaseD = 0x0008001D,
 HvX64RegisterMtrrPhysBaseE = 0x0008001E,
 HvX64RegisterMtrrPhysBaseF = 0x0008001F,

 HvX64RegisterMtrrPhysMask0 = 0x00080040,
 HvX64RegisterMtrrPhysMask1 = 0x00080041,
 HvX64RegisterMtrrPhysMask2 = 0x00080042,
 HvX64RegisterMtrrPhysMask3 = 0x00080043,
 HvX64RegisterMtrrPhysMask4 = 0x00080044,
 HvX64RegisterMtrrPhysMask5 = 0x00080045,
 HvX64RegisterMtrrPhysMask6 = 0x00080046,
 HvX64RegisterMtrrPhysMask7 = 0x00080047,
 HvX64RegisterMtrrPhysMask8 = 0x00080048,
 HvX64RegisterMtrrPhysMask9 = 0x00080049,
 HvX64RegisterMtrrPhysMaskA = 0x0008004A,

Hypervisor Top Level Functional Specification

 45

 HvX64RegisterMtrrPhysMaskB = 0x0008004B,
 HvX64RegisterMtrrPhysMaskC = 0x0008004C,
 HvX64RegisterMtrrPhysMaskD = 0x0008004D,
 HvX64RegisterMtrrPhysMaskE = 0x0008004E,
 HvX64RegisterMtrrPhysMaskF = 0x0008004F,

 HvX64RegisterMtrrFix64k00000 = 0x00080070,
 HvX64RegisterMtrrFix16k80000 = 0x00080071,
 HvX64RegisterMtrrFix16kA0000 = 0x00080072,
 HvX64RegisterMtrrFix4kC0000 = 0x00080073,
 HvX64RegisterMtrrFix4kC8000 = 0x00080074,
 HvX64RegisterMtrrFix4kD0000 = 0x00080075,
 HvX64RegisterMtrrFix4kD8000 = 0x00080076,
 HvX64RegisterMtrrFix4kE0000 = 0x00080077,
 HvX64RegisterMtrrFix4kE8000 = 0x00080078,
 HvX64RegisterMtrrFix4kF0000 = 0x00080079,
 HvX64RegisterMtrrFix4kF8000 = 0x0008007A,

 // Hypervisor-defined MSRs (Misc)
 HvX64RegisterVpRuntime = 0x00090000,
 HvX64RegisterHypercall = 0x00090001,
 HvRegisterGuestOsId = 0x00090002,
 HvRegisterVpIndex = 0x00090003,
 HvRegisterTimeRefCount = 0x00090004,
 HvRegisterCpuManagementVersion = 0x00090007,

 // Virtual APIC registers MSRs
 HvX64RegisterEoi = 0x00090010,
 HvX64RegisterIcr = 0x00090011,
 HvX64RegisterTpr = 0x00090012,

 HvRegisterVpAssistPage = 0x00090013,

 // Performance statistics MSRs
 HvRegisterStatsPartitionRetail = 0x00090020,
 HvRegisterStatsPartitionInternal = 0x00090021,
 HvRegisterStatsVpRetail = 0x00090022,
 HvRegisterStatsVpInternal = 0x00090023,

 // Hypervisor-defined MSRs (Synic)
 HvRegisterSint0 = 0x000A0000,
 HvRegisterSint1 = 0x000A0001,
 HvRegisterSint2 = 0x000A0002,
 HvRegisterSint3 = 0x000A0003,
 HvRegisterSint4 = 0x000A0004,
 HvRegisterSint5 = 0x000A0005,
 HvRegisterSint6 = 0x000A0006,
 HvRegisterSint7 = 0x000A0007,
 HvRegisterSint8 = 0x000A0008,
 HvRegisterSint9 = 0x000A0009,
 HvRegisterSint10 = 0x000A000A,
 HvRegisterSint11 = 0x000A000B,
 HvRegisterSint12 = 0x000A000C,
 HvRegisterSint13 = 0x000A000D,
 HvRegisterSint14 = 0x000A000E,
 HvRegisterSint15 = 0x000A000F,
 HvRegisterScontrol = 0x000A0010,
 HvRegisterSversion = 0x000A0011,
 HvRegisterSifp = 0x000A0012,
 HvRegisterSipp = 0x000A0013,
 HvRegisterEom = 0x000A0014,
 HvRegisterSirbp = 0x000A0015,

Hypervisor Top Level Functional Specification

 46

 // Hypervisor-defined MSRs (Synthetic Timers)
 HvRegisterStimer0Config = 0x000B0000,
 HvRegisterStimer0Count = 0x000B0001,
 HvRegisterStimer1Config = 0x000B0002,
 HvRegisterStimer1Count = 0x000B0003,
 HvRegisterStimer2Config = 0x000B0004,
 HvRegisterStimer2Count = 0x000B0005,
 HvRegisterStimer3Config = 0x000B0006,
 HvRegisterStimer3Count = 0x000B0007,

 //
 // XSAVE/XRSTOR register names.
 //

 // XSAVE AFX extended state registers.
 HvX64RegisterYmm0Low = 0x000C0000,
 HvX64RegisterYmm1Low = 0x000C0001,
 HvX64RegisterYmm2Low = 0x000C0002,
 HvX64RegisterYmm3Low = 0x000C0003,
 HvX64RegisterYmm4Low = 0x000C0004,
 HvX64RegisterYmm5Low = 0x000C0005,
 HvX64RegisterYmm6Low = 0x000C0006,
 HvX64RegisterYmm7Low = 0x000C0007,
 HvX64RegisterYmm8Low = 0x000C0008,
 HvX64RegisterYmm9Low = 0x000C0009,
 HvX64RegisterYmm10Low = 0x000C000A,
 HvX64RegisterYmm11Low = 0x000C000B,
 HvX64RegisterYmm12Low = 0x000C000C,
 HvX64RegisterYmm13Low = 0x000C000D,
 HvX64RegisterYmm14Low = 0x000C000E,
 HvX64RegisterYmm15Low = 0x000C000F,
 HvX64RegisterYmm0High = 0x000C0010,
 HvX64RegisterYmm1High = 0x000C0011,
 HvX64RegisterYmm2High = 0x000C0012,
 HvX64RegisterYmm3High = 0x000C0013,
 HvX64RegisterYmm4High = 0x000C0014,
 HvX64RegisterYmm5High = 0x000C0015,
 HvX64RegisterYmm6High = 0x000C0016,
 HvX64RegisterYmm7High = 0x000C0017,
 HvX64RegisterYmm8High = 0x000C0018,
 HvX64RegisterYmm9High = 0x000C0019,
 HvX64RegisterYmm10High = 0x000C001A,
 HvX64RegisterYmm11High = 0x000C001B,
 HvX64RegisterYmm12High = 0x000C001C,
 HvX64RegisterYmm13High = 0x000C001D,
 HvX64RegisterYmm14High = 0x000C001E,
 HvX64RegisterYmm15High = 0x000C001F

 // Other MSRs
 HvX64RegisterMsrIa32MiscEnable = 0x000800A0,
 HvX64RegisterIa32FeatureControl = 0x000800A1,

 // Synthetic VSM registers
 //

 HvRegisterVsmVpVtlControl = 0x000D0000,
 HvRegisterVsmCodePageOffsets = 0x000D0002,
 HvRegisterVsmVpStatus = 0x000D0003,
 HvRegisterVsmPartitionStatus = 0x000D0004,
 HvRegisterVsmVina = 0x000D0005,
 HvRegisterVsmCapabilities = 0x000D0006,
 HvRegisterVsmPartitionConfig = 0x000D0007,

Hypervisor Top Level Functional Specification

 47

 HvRegisterVsmVpSecureConfigVtl0 = 0x000D0010,
 HvRegisterVsmVpSecureConfigVtl1 = 0x000D0011,
 HvRegisterVsmVpSecureConfigVtl2 = 0x000D0012,
 HvRegisterVsmVpSecureConfigVtl3 = 0x000D0013,
 HvRegisterVsmVpSecureConfigVtl4 = 0x000D0014,
 HvRegisterVsmVpSecureConfigVtl5 = 0x000D0015,
 HvRegisterVsmVpSecureConfigVtl6 = 0x000D0016,
 HvRegisterVsmVpSecureConfigVtl7 = 0x000D0017,
 HvRegisterVsmVpSecureConfigVtl8 = 0x000D0018,
 HvRegisterVsmVpSecureConfigVtl9 = 0x000D0019,
 HvRegisterVsmVpSecureConfigVtl10 = 0x000D001A,
 HvRegisterVsmVpSecureConfigVtl11 = 0x000D001B,
 HvRegisterVsmVpSecureConfigVtl12 = 0x000D001C,
 HvRegisterVsmVpSecureConfigVtl13 = 0x000D001D,
 HvRegisterVsmVpSecureConfigVtl14 = 0x000D001E,
} HV_REGISTER_NAME;

 Virtual Processor Register Values

Virtual processor register values are all 128 bits in size. Values that do not consume the full 128 bits are
zero-extended to fill out the entire 128 bits.

Hypervisor Top Level Functional Specification

 48

typedef union
{
 UINT128 Reg128;
 UINT64 Reg64;
 UINT32 Reg32;
 UINT16 Reg16;
 UINT8 Reg8;
 HV_X64_FP_REGISTER Fp;
 HV_X64_FP_CONTROL_STATUS_REGISTER FpControlStatus;
 HV_X64_XMM_CONTROL_STATUS_REGISTER XmmControlStatus;
 HV_X64_SEGMENT_REGISTER Segment;
 HV_X64_TABLE_REGISTER Table;
 HV_EXPLICIT_SUSPEND_REGISTER ExplicitSuspend;
 HV_INTERCEPT_SUSPEND_REGISTER InterceptSuspend;
 HV_X64_INTERRUPT_STATE_REGISTER InterruptState;
 HV_X64_PENDING_INTERRUPTION_REGISTER PendingInterruption;
 HV_X64_MSR_NPIEP_CONFIG_CONTENTS NpiepConfig;
} HV_REGISTER_VALUE;

typedef HV_REGISTER_VALUE *PHV_REGISTER_VALUE;

 Synthetic Machine Check Status Data Structure

typedef union _HV_X64_MSR_SYNMC_STATUS_CONTENTS
{
 struct
 {
 UINT16 McaErrorCode;

 union
 {
 UINT16 ModelSpecificErrorCode;

 struct
 {
 UINT16 ErrorDetail : 14;
 UINT16 HypervisorError : 1;
 UINT16 SoftwareError : 1;
 };
 };

 struct
 {
 UINT32 Reserved : 23;
 UINT32 ActionRequired : 1;
 UINT32 Signaling : 1;
 UINT32 ContextCorrupt : 1; // Hypervisor/virt stack
 // context corrupt
 UINT32 AddressValid : 1;
 UINT32 MiscValid : 1;
 UINT32 ErrorEnabled : 1;
 UINT32 Uncorrected : 1; // Uncorrected error
 UINT32 Overflow : 1; // Error overflow
 UINT32 Valid : 1; // Register valid
 };
 };

 UINT64 AsUINT64;

} HV_X64_MSR_SYNMC_STATUS_CONTENTS;

Hypervisor Top Level Functional Specification

 49

 Synthetic Machine Check Error Code

#define HV_SYNMC_MCA_ERROR_CODE (0x0001) // Unclassified error

 Synthetic Machine Check Event Data Structure

typedef struct _HV_SYNMC_EVENT
{
 HV_X64_MSR_SYNMC_STATUS_CONTENTS Status;
 HV_X64_MSR_SYNMC_ADDR_CONTENTS Addr;
 HV_X64_MSR_SYNMC_MISC_CONTENTS Misc;
 BOOLEAN RipValid;
 BOOLEAN EipValid;

} HV_SYNMC_EVENT;

 Virtual Processor Assist Page

The hypervisor provides a page per virtual processor which is overlaid on the guest GPA space. This page
can be used for bi-directional communication between a guest VP and the hypervisor. The guest OS has
read/write access to this virtual VP assist page.

7.8.7.1 VP Assist Page Register

A guest specifies the location of the overlay page (in GPA space) by writing to the Virtual VP Assist MSR
(0x40000073). The format of the Virtual VP Assist Page MSR is as follows:

63:12 11:1 0

Virtual VP Assist Page Base Address RsvdP Enable

Hypervisor Top Level Functional Specification

 50

7.8.7.2 VP Assist Page Format
typedef union _HV_VP_ASSIST_PAGE
{
 struct
 {
 // APIC assist for optimized EOI processing.

 HV_VIRTUAL_APIC_ASSIST ApicAssist;

 UINT32 ReservedZ;

 HV_VP_VTL_CONTROL VtlControl;

 HV_NESTED_ENLIGHTENMENTS_CONTROL NestedEnlightenmentsControl;

 BOOLEAN EnlightenVmEntry;

 HV_GPA CurrentNestedVmcs;

 };

 UINT8 ReservedZBytePadding[HV_PAGE_SIZE];

} HV_VP_ASSIST_PAGE;

 Virtual Processor Set

A virtual processor set represents a collection of virtual processors, and can be used as an input for some
hypercalls.

typedef struct
{
 UINT64 Format;
 UINT64 ValidBanksMask;
 UINT64 BankContents[];
} HV_VP_SET

A processor set has two modes, which are specified by the format field. Processor sets with a format “1”
represent all virtual processors for the given partition. Processor sets with a format “0” describe a
sparse set of virtual processors.

typedef enum {
 HvGenericSetSparse4k,
 HvGenericSetAll,
} HV_GENERIC_SET_FORMAT

Set behavior “format” value

A sparse subset of VPs 0

All VPs (belonging to a partition) 1

7.8.8.1 Sparse Virtual Processor Set

The following section describes how to construct a sparse set of virtual processors.

The total set of virtual processors is split up into chunks of 64, known as a “bank”. For example,
processors 0-63 are in bank 0, 64-127 are in bank 1, and so on.

Hypervisor Top Level Functional Specification

 51

To describe an individual processor, its bank is specified with ValidBanksMask. Each bit in
ValidBanksMask represents a particular bank.

𝑏𝑎𝑛𝑘 =
𝑉𝑃 𝑖𝑛𝑑𝑒𝑥

64

For every bit that is set with ValidBanksMask, there must be an element in the BanksContents array. This
element is a mask describing the bank itself.

7.8.8.2 Processor Set Example

Suppose a partition has 200 VPs, and we wish to specify the following set:

{ 0, 5, 130 }

First, the format is 0, since this is a sparse set.

Next, the corresponding banks (and therefore the set bits of ValidBanksMaks) are

{ 0, 0, 2 }

Thus, ValidBankMask is 0x05.

Bank 0 sets bits 0 and 5 to specify the VPs within that bank. Therefore, the corresponding element in the
BanksContents mask is 0x21.

Since bit 1 is not set in ValidBanksMask, there is no corresponding element in BanksContents.

Bank 2 represents VP indices 128-191. To describe index 130, bit 2 of the corresponding mask is set.
Thus, BanksContents is:

{ 0𝑥21, 0𝑥04 }

7.9 Virtual Processor Register Formats

 Virtual Processor Run Time Register

The hypervisor’s scheduler internally tracks how much time each virtual processor consumes in
executing code. The time tracked is a combination of the time the virtual processor consumes running
guest code, and the time the associated logical processor spends running hypervisor code on behalf of
that guest. This cumulative time is accessible through the 64-bit read-only HV_X64_MSR_VP_RUNTIME
hypervisor MSR. The time quantity is measured in 100ns units.

63:0

VP Runtime

 Virtual Processor Interrupt State Register

The interrupt state register provides information about the interrupt state of the virtual processor. It
indicates whether the virtual processor is in an “interrupt shadow” and whether non-maskable
interrupts are currently masked. Certain instructions inhibit the delivery of hardware interrupts and

Hypervisor Top Level Functional Specification

 52

debug traps for one instruction. Furthermore, when a non-maskable interrupt is delivered to the virtual
processor, subsequent non-maskable interrupts are masked until the virtual processor executes an IRET
instruction.

The interrupt state register is encoded as follows:
typedef struct
{
 UINT64 InterruptShadow:1;
 UINT64 NmiMasked:1;
 UINT64 Reserved:62;
} HV_X64_INTERRUPT_STATE_REGISTER;

 Virtual Processor Pending Interruption Register

The pending interruption register is used to indicate whether a pending interruption exists for the virtual
processor. An interruption is defined as any event that is delivered through the virtual processor’s
interrupt descriptor table (for example, exceptions, interrupts, or debug traps). If an interruption is
pending, the hypervisor will generate the interruption when the virtual processor resumes execution.
This allows code running within the parent partition, for example, to respond to an MSR intercept by
generating a general protection fault.

If an intercept is generated during the delivery of an interruption, the interruption is held pending and
an intercept message is sent to the parent partition. The parent partition can resolve the intercept and
resume the virtual processor, in which case the interruption will be re-delivered.

The type of a pending interruption is encoded as follows:

typedef enum
{
 HvX64PendingInterrupt = 0,
 HvX64PendingNmi = 2,
 HvX64PendingException = 3,
 HvX64PendingSoftwareInterrupt = 4,
 HvX64PendingPrivilegedSoftwareException = 5,
 HvX64PendingSoftwareException = 6
} HV_X64_PENDING_INTERRUPTION_TYPE;

The format of the pending interruption register is as follows:
typedef struct
{
 UINT32 InterruptionPending:1;
 UINT32 InterruptionType:3
 UINT32 DeliverErrorCode:1;
 UINT32 InstructionLength:4;
 UINT32 NestedEvent:1
 UINT32 Reserved:6;
 UINT32 InterruptionVector:16;
 UINT32 ErrorCode;
} HV_X64_PENDING_INTERRUPTION_REGISTER;

If the InterruptionPending bit is cleared, no interruption is pending, and the values in the other fields are
ignored.

InterruptionType indicates the type of the interruption and can be any of the following values:

• HVX64PendingInterrupt — The interruption is due to an interrupt.

Hypervisor Top Level Functional Specification

 53

• HVX64PendingNmi — The interruption is due to a non-maskable interrupt.

• HVX64PendingException — The interruption is due to a hardware exception.

• HVX64PendingSofwareInterrupt – The interruption is due to a software interrupt.

• HVX64PendingPrivilegedSoftwareException – The interruption is due to a software exception
from privileged software, such as a debug trap or fault.

• HVX64PendingSoftwareException – The interruption is due to a software exception.

DeliverErrorCode indicates whether an error code should be pushed on the stack as part of the
interruption.

InterruptionVector indicates the vector to use for the exception.

ErrorCode indicates the error code value that will be pushed as part of the interruption frame.

 Virtual Processor Floating-point and Vector Registers

Floating point registers are encoded as 80-bit values, as follows:

typedef struct
{
 UINT64 Mantissa;
 UINT64 BiasedExponent:15;
 UINT64 Sign:1;
 UINT64 Reserved:48;
} HV_X64_FP_REGISTER;

Additional status and control information for the floating point and vector units are stored in the
following formats:

Hypervisor Top Level Functional Specification

 54

typedef struct
{
 UINT16 FpControl;
 UINT16 FpStatus;
 UINT8 FpTag;
 UINT8 IgnNe:1;
 UINT8 Reserved:7;
 UINT16 LastFpOp;
 union
 {
 UINT64 LastFpRip;
 struct
 {
 UINT32 LastFpEip;
 UINT16 LastFpCs;
 };
 };
} HV_X64_FP_CONTROL_STATUS_REGISTER;

typedef struct
{
 union
 {
 UINT64 LastFpRdp;
 struct
 {
 UINT32 LastFpDp;
 UINT16 LastFpDs;
 };
 };
 UINT32 XmmStatusControl;
 UINT32 XmmStatusControlMask;
} HV_X64_XMM_CONTROL_STATUS_REGISTER;

 Virtual Processor Segment Registers

Segment register state is encoded as follows:

typedef struct
{
 UINT64 Base;
 UINT32 Limit;
 union
 {
 struct
 {
 UINT16 SegmentType:4;
 UINT16 NonSystemSegment:1;
 UINT16 DescriptorPrivilegeLevel:2;
 UINT16 Present:1;
 UINT16 Reserved:4;
 UINT16 Available:1;
 UINT16 Long:1;
 UINT16 Default:1;
 UINT16 Granularity:1;
 };

UINT16 Selector;
 UINT16 Attributes;
 };
} HV_X64_SEGMENT_REGISTER;

Hypervisor Top Level Functional Specification

 55

The limit is encoded as a 32-bit value. For X64 long-mode segments, the limit is ignored. For legacy x86
segments, the limit must be expressible within the bounds of the x64 processor architecture. For
example, if the “G” (granularity) bit is set within the attributes of a code or data segment, the low-order
12 bits of the limit must be 1s.

The “Present” bit controls whether the segment acts like a null segment (that is, whether a memory
access performed through that segment generates a #GP fault).

The MSRs IA32_FS_BASE and IA32_GS_BASE are not defined in the register list, as they are aliases to the
base element of the segment register structure, Use HvX64RegisterFs and HvX64RegisterGs and the
structure above instead.

 Virtual Processor Table Registers

Table registers are similar to segment registers, but they have no selector or attributes, and the limit is
restricted to 16 bits.

typedef struct
{
 UINT16 Pad[3];
 UINT16 Limit;
 UINT64 Base;
} HV_X64_TABLE_REGISTER;

 Synthetic Machine Check Registers

typedef UINT64 HV_X64_MSR_SYNMC_ADDR_CONTENTS

typedef UINT64 HV_X64_MSR_SYNMC_MISC_CONTENTS

7.10 Virtual Processor Interfaces

 HvSetVpRegisters

The HvSetVpRegisters hypercall writes the architectural state of a virtual processor.

Hypervisor Top Level Functional Specification

 56

Wrapper Interface

HV_STATUS
HvSetVpRegisters(
 __in HV_PARTITION_ID PartitionId,
 __in HV_VP_INDEX VpIndex,
 __in HV_INPUT_VTL InputVtl,
 __inout PUINT32 RegisterCount,
 __in_ecount(RegisterCount)
 PCHV_REGISTER_NAME RegisterNameList,
 __in_ecount(RegisterCount)
 PCHV_REGISTER_VALUE RegisterValueList
);

Native Interface

HvSetVpRegisters [rep]

 Call Code = 0x0051

 Input Parameter Header

0 PartitionId (8 bytes)

8 VpIndex (4 bytes) TargetVtl (1

byte)

RsvdZ (3 bytes)

 Input List Element

0 RegisterName (4 bytes) Padding (4 bytes)

16 RegisterValue (low-order) (8 bytes)

24 RegisterValue (high-order) (8 bytes)

Description

The state is written as a series of register values, each corresponding to a register name provided as
input.

Minimal error checking is performed when a register value is modified. In particular, the hypervisor will
validate that reserved bits of a register are set to zero, bits that are architecturally defined as always
containing a zero or a one are set appropriately, and specified bits beyond the architectural size of the
register are zeroed.

This call cannot be used to modify the value of a read-only register.

Side-effects of modifying a register are not performed. This includes generation of exceptions, pipeline
synchronizations, TLB flushes, and so on.

Input Parameters

PartitionId specifies the partition.

Hypervisor Top Level Functional Specification

 57

VpIndex specifies the index of the virtual processor.

TargetVtl specifies the VTL to target.

RegisterName specifies the name of a register to be modified.

RegisterValue specifies the new value for the specified register.

Output Parameters

None.

Restrictions

• The partition specified by PartitionId must be in the “active” state.

• The caller must be the parent of the partition specified by PartitionId.

• Guest operating systems may assume that virtual processors are neither hot-added nor hot-
removed from a partition during normal execution. See 7.10.3.

• This hypercall is a supported way to set the following registers. All other registers should not be
set using this hypercall.

Register

HvRegisterPendingEvent0 = 0x00010004,

HvRegisterVpAssistPage = 0x00090013,

HvRegisterVsmCodePageOffsets = 0x000D0002,

HvRegisterVsmVina = 0x000D0005,

HvRegisterVsmPartitionConfig = 0x000D0007,

HvRegisterVsmVpSecureConfigVtl0 = 0x000D0010,

HvX64RegisterRsp = 0x00020004,

HvX64RegisterRip = 0x00020010,

HvX64RegisterRflags = 0x00020011,

HvX64RegisterCr3 = 0x00040002,

HvX64RegisterCr8 = 0x00040004,

HvX64RegisterDr7 = 0x00050005,

HvX64RegisterEs = 0x00060000,

HvX64RegisterCs = 0x00060001,

HvX64RegisterSs = 0x00060002,

HvX64RegisterDs = 0x00060003,

HvX64RegisterFs = 0x00060004,

HvX64RegisterGs = 0x00060005,

HvX64RegisterLdtr = 0x00060006,

HvX64RegisterTr = 0x00060007,

HvX64RegisterIdtr = 0x00070000,

HvX64RegisterGdtr = 0x00070001,

HvX64RegisterEfer = 0x00080001,

HvX64RegisterKernelGsBase = 0x00080002,

HvX64RegisterSysenterCs = 0x00080005,

HvX64RegisterStar = 0x00080008,

HvX64RegisterLstar = 0x00080009,

Hypervisor Top Level Functional Specification

 58

Register

HvX64RegisterCstar = 0x0008000A,

HvX64RegisterSfmask = 0x0008000B,

HvX64RegisterApicBase = 0x00080003,

HvX64RegisterCrInterceptControl = 0x000E0000,

HvX64RegisterCrInterceptCr0Mask = 0x000E0001,

HvX64RegisterCrInterceptCr4Mask = 0x000E0002,

HvX64RegisterCrInterceptIa32MiscEnableMask = 0x000E0003,

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller is not the parent of the

specified partition.

HV_STATUS_INVALID_PARTITION_ID The specified partition is invalid.

HV_STATUS_INVALID_VP_INDEX The specified VP index does not

reference a virtual processor within the

specified partition.

HV_STATUS_INVALID_PARAMETER

The specified register name is invalid.

The specified register is read-only.

The specified register value is not valid

(for example, a reserved bit is not zero).

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the

"active" state.

HV_STATUS_INVALID_REGISTER_VALUE The supplied register value is invalid.

 HvGetVpRegisters

The HvGetVpRegisters hypercall reads the architectural state of a virtual processor.

Hypervisor Top Level Functional Specification

 59

Wrapper Interface

HV_STATUS
HvGetVpRegisters(
 __in HV_PARTITION_ID PartitionId,
 __in HV_VP_INDEX VpIndex,
 __in HV_INPUT_VTL InputVtl,
 __inout PUINT32 RegisterCount,
 __in_ecount(RegisterCount)
 PCHV_REGISTER_NAME RegisterNameList,
 __out_ecount(RegisterCount)
 PHV_REGISTER_VALUE RegisterValueList
);

Native Interface

HvGetVpRegisters [rep]

 Call Code = 0x0050

 Input Parameter Header

0 PartitionId (8 bytes)

8 VpIndex (4 bytes) InputVtl (1 byte) Padding (3

bytes)

 Input List Element

0 RegisterName[0] (4 bytes) RegisterName[1] (4 bytes)

 Output List Element

0 RegisterValue (low-order) (8 bytes)

8 RegisterValue (high-order) (8 bytes)

Description

The state is returned as a series of register values, each corresponding to a register name provided as
input.

Input Parameters

PartitionId specifies the partition.

VpIndex specifies the index of the virtual processor.

TargetVtl specifies the VTL to target.

RegisterName specifies a list of names for the requested register state.

Output Parameters

RegisterValue returns a list of register values for the requested register state.

Restrictions

• The partition specified by PartitionId must be in the “active” state.

Hypervisor Top Level Functional Specification

 60

• The caller must be the parent of the partition specified by PartitionId or the partition specifying
its own partition ID.

• Guest operating systems may assume that virtual processors are neither hot-added nor hot-
removed from a partition during normal execution. See 7.10.3.

• This hypercall is a supported way to get the following registers. All other registers should not be
read using this hypercall.

Register

HvRegisterPendingEvent0 = 0x00010004,

HvRegisterVpAssistPage = 0x00090013,

HvRegisterVsmCodePageOffsets = 0x000D0002,

HvRegisterVsmVina = 0x000D0005,

HvRegisterVsmPartitionConfig = 0x000D0007,

HvRegisterVsmVpSecureConfigVtl0 = 0x000D0010,

HvX64RegisterRsp = 0x00020004,

HvX64RegisterRip = 0x00020010,

HvX64RegisterRflags = 0x00020011,

HvX64RegisterCr3 = 0x00040002,

HvX64RegisterCr8 = 0x00040004,

HvX64RegisterDr7 = 0x00050005,

HvX64RegisterEs = 0x00060000,

HvX64RegisterCs = 0x00060001,

HvX64RegisterSs = 0x00060002,

HvX64RegisterDs = 0x00060003,

HvX64RegisterFs = 0x00060004,

HvX64RegisterGs = 0x00060005,

HvX64RegisterLdtr = 0x00060006,

HvX64RegisterTr = 0x00060007,

HvX64RegisterIdtr = 0x00070000,

HvX64RegisterGdtr = 0x00070001,

HvX64RegisterEfer = 0x00080001,

HvX64RegisterKernelGsBase = 0x00080002,

HvX64RegisterSysenterCs = 0x00080005,

HvX64RegisterStar = 0x00080008,

HvX64RegisterLstar = 0x00080009,

HvX64RegisterCstar = 0x0008000A,

HvX64RegisterSfmask = 0x0008000B,

HvX64RegisterApicBase = 0x00080003,

HvX64RegisterCrInterceptControl = 0x000E0000,

HvX64RegisterCrInterceptCr0Mask = 0x000E0001,

HvX64RegisterCrInterceptCr4Mask = 0x000E0002,

HvX64RegisterCrInterceptIa32MiscEnableMask = 0x000E0003,

Hypervisor Top Level Functional Specification

 61

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller is neither the partition itself

nor the parent of the specified

partition.

HV_STATUS_INVALID_PARTITION_ID The specified partition is invalid.

HV_STATUS_INVALID_VP_INDEX The specified VP index does not

reference a virtual processor within the

specified partition.

HV_STATUS_INVALID_PARAMETER The specified register name is invalid.

 HvStartVirtualProcessor

HvStartVirtualProcessor is an enlightened method for starting a virtual processor. It is functionally
equivalent to traditional INIT-based methods, except that the VP can start with a desired register state.

Hypervisor Top Level Functional Specification

 62

Wrapper Interface

HV_STATUS
HVStartVirtualProcessor(
 __in HV_PARTITION_ID PartitionId;
 __in HV_VP_INDEX VpIndex;
 __in HV_VTL TargetVtl;
 __in HV_INITIAL_VP_CONTEXT VpContext;
} HV_INPUT_START_VIRTUAL_PROCESSOR, *PHV_INPUT_START_VIRTUAL_PROCESSOR;

Input Structures

typedef struct
{
 UINT64 Rip;
 UINT64 Rsp;
 UINT64 Rflags;

 // Segment selector registers together with their hidden state.
 HV_X64_SEGMENT_REGISTER Cs;
 HV_X64_SEGMENT_REGISTER Ds;
 HV_X64_SEGMENT_REGISTER Es;
 HV_X64_SEGMENT_REGISTER Fs;
 HV_X64_SEGMENT_REGISTER Gs;
 HV_X64_SEGMENT_REGISTER Ss;
 HV_X64_SEGMENT_REGISTER Tr;
 HV_X64_SEGMENT_REGISTER Ldtr;

 // Global and Interrupt Descriptor tables
 HV_X64_TABLE_REGISTER Idtr;
 HV_X64_TABLE_REGISTER Gdtr;

 // Control registers and MSR's
 UINT64 Efer;
 UINT64 Cr0;
 UINT64 Cr3;
 UINT64 Cr4;
 UINT64 MsrCrPat;

} HV_INITIAL_VP_CONTEXT;

Native Interface

HvStartVirtualProcessor

 Call Code = 0x0099

 Input Parameters

0 PartitionId (8 bytes)

8 VpIndex (4 bytes) TargetVtl (1 byte Padding (3 bytes)

16 Rip (8 bytes)

24 Rsp (8 bytes)

32 Rflags (8 bytes)

Hypervisor Top Level Functional Specification

 63

40 Cs[0] (8 bytes)

48 Cs[1] (8 bytes)

56 Ds[0] (8 bytes)

64 Ds[1] (8 bytes)

72 Es[0] (8 bytes)

80 Es[1] (8 bytes)

88 Fs[0] (8 bytes)

96 Fs[1] (8 bytes)

104 Gs[0] (8 bytes)

112 Gs[1] (8 bytes)

120 Ss[0] (8 bytes)

128 Ss[1] (8 bytes)

136 Ts[0] (8 bytes)

144 Ts[1] (8 bytes)

152 Ltdr[0] (8 bytes)

160 Ltdr[1] (8 bytes)

168 Itdr[0] (8 bytes)

176 Itdr[1] (8 bytes)

184 Gtdr[0] (8 bytes)

192 Gtdr[1] (8 bytes)

200 Efer (8 bytes)

208 Cr0 (8 bytes)

216 Cr3 (8 bytes)

224 Cr4 (8 bytes)

232 MsrCrPat (8 bytes)

Hypervisor Top Level Functional Specification

 64

Input Parameters

PartitionId specifies the partition.

VpIndex specifies the VP index to start. To get the VP index from an APIC ID, use
HvGetVpIndexFromApicId.

TargetVtl specifies the target VTL

VpContext specifies the initial context in which this VP should start.

Description

HvStartVirtualProcessor is an enlightened method for starting a virtual processor. The VP will start with
the specified control register state in protected/long mode, skipping real mode entirely.

This is the only method for starting a VP in a non-zero VTL.

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED Access denied.

HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid.

HV_STATUS_INVALID_VP_INDEX The virtual processor specified by

HV_VP_INDEX is invalid.

HV_STATUS_INVALID_REGISTER_VALUE The supplied register value is invalid.

HV_STATUS_INVALID_VP_STATE A virtual processor is not in the correct

state for the performance of the

indicated operation.

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the

“active” state.

HV_STATUS_INVALID_VTL_STATE The VTL state conflicts with the
requested VTL count property change.

 HvGetVpIndexFromApicId

The HvGetVpIndexFromApicId is related to HvStartVirtualProcessor. It allows the caller to retrieve a VP
index before the VP has started running.

Hypervisor Top Level Functional Specification

 65

Wrapper Interface

HV_STATUS
HvGetVpIndexFromApicId(
 __in HV_PARTITION_ID PartitionId,
 __in HV_VTL TargetVtl,
 __inout PUINT32 ApicIdCount,
 __in_ecount(ApicIdCount)
 PHV_APIC_ID ApicIdList
 __out_ecount(RegisterCount)
 PHV_VP_INDEX VpIndexList
);

Native Interface

HvGetVpIndexFromApicId [rep]

 Call Code = 0x009A

 Input Parameter Header

0 PartitionId (8 bytes)

8 TargetVtl (1 byte) Padding (7 bytes)

 Input List Element

0 ApicId (4 bytes) Padding (4 bytes)

 Output List Element

0 VpIndex (4 bytes) Padding (4 bytes)

Input Parameters

PartitionId specifies the partition.

TargetVtl specifies the VTL of the target VP.

ApicId specifies the APIC ID of the VP. Note: Guest operating systems may assume that virtual processor
IDs are consecutive and begin at 0.

Output Values

VpIndex is the VP with the APIC ID specified.

Hypervisor Top Level Functional Specification

 66

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller is not the parent of the
specified partition.

HV_STATUS_INVALID_PARTITION_ID The specified partition is invalid.

HV_STATUS_INVALID_VP_INDEX The specified VP index references an
existing virtual processor within the
specified partition.

The specified VP index exceeds the
maximum index allowed by the
hypervisor implementation.

HV_STATUS_INVALID_PARAMETER A parameter is invalid.

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the
"active" state.

HV_STATUS_INVALID_VTL_STATE The VTL specified is invalid.

Hypervisor Top Level Functional Specification

 67

8 Virtual Processor Execution

The virtual machine interface exposed by each partition exposes virtual processors, and these are
architecture specific. This section specifies the core CPU aspects of virtual processors. The following two
sections specify the MMU (memory management unit) and interrupt controller aspects of virtual
processors.

A complete definition of virtual processor behavior requires hundreds of pages of CPU manuals. This
document specifies the behavior of virtual processors by referencing processor manuals for physical X64
processors and discussing only cases where a virtual processor’s behavior differs from that of a logical
processor; that is, the baseline behavior of a virtual processor is defined by the Intel and AMD processor
reference manuals.

8.1 Processor Features and CPUID

The processor intercept mechanism of the hypervisor allows a parent partition to intercept the
execution of the CPUID instruction by virtual processors within its child partitions. The parent partition
can set the return values of the CPUID instruction in arbitrary ways. Doing so does not automatically
alter the set of processor features of a virtual processor; that is, if a parent partition chooses to alter the
behavior of the CPUID instruction, it is responsible for ensuring that the set of virtual processor features
matches what is indicated by the CPUID instruction.

8.2 Family, Model and Stepping Reported by CPUID

The CPUID instruction can be used to obtain a logical processor’s family, model and stepping
information. It is possible, but not guaranteed, that logical processors reporting differing information
may coexist on a single system. To properly use this information, a partition must be able to execute
with a hard affinity between virtual and logical processors. Only the root partition executes in this
manner. As a result, the hypervisor will expose the true family, model and stepping only to the root
partition and will report the minimum value detected in the logical processor configuration to all other
partitions.

8.3 Platform ID Reported by MSR

The value returned by the IA32_PLATFORM_ID MSR (0x17) can be used in conjunction with the family,
model and stepping information as reported by the CPUID instruction (as described in the previous
section). The hypervisor is consistent in its handling of this MSR and will expose the true content of the
IA32_PLATFORM_ID MSR only to the root partition. Guest access to this register is denied.

8.4 Real Mode

The hypervisor attempts to support real mode in a fully transparent manner. There may be situations,
however, where specific processor implementations may not make this entirely possible. As a result, the
hypervisor may be required to emulate or manipulate the environment to some degree to provide real
mode support. The following is a list of potential areas where real mode support may not be
transparent.

• Hypervisor overhead inconsistencies. As a consequence of an increase in the frequency of
instruction emulation by the hypervisor, performance of both the guest and the system may be
affected.

Hypervisor Top Level Functional Specification

 68

• Visible processor state changes as a consequence of switching modes. The hypervisor may be
required to make changes to the guest’s runtime environment when mode switches occur, such
as between real and protected mode or vice versa. Such changes may be detected by the guest.

8.5 MONITOR / MWAIT

The hypervisor does not support the use of the MONITOR instruction but does have limited support for
MWAIT. Partitions possessing the CpuManagement privilege (i.e. the root partition) may use MWAIT to
set the logical processor’s C-state if support for the instruction is present in hardware. Availability is
indicated by the presence of a flag returned by the CPUID instruction for a hypervisor leaf (see section
2.4). Any attempt to use these instructions when the hypervisor does not indicate availability will result
in a #UD fault.

8.6 System Management Mode

The hypervisor does not support or participate in the virtualization of system management mode within
guest partitions. Physical system management interrupts are still handled normally by the system’s
hardware and firmware and is opaque to the hypervisor.

8.7 Time Stamp Counter

The time stamp counter (TSC) is virtualized for each virtual processor. Generally, the TSC value continues
to run while a virtual processor is suspended.

Seamless TSC virtualization is not feasible on the x64 architecture. TSC virtualization is typically
implemented through a simple TSC bias (an offset added to the logical processor’s TSC). Attempts will be
made by the hypervisor to prevent the TSC from jumping forward or backward as a virtual processor is
scheduled on different logical processors. However, it cannot compensate for the situation where the
TSC for a logical processor is set to zero by an SMI handler. Furthermore, the TSC increment rate may
slow down or speed up depending on thermal or performance throttling, over which the hypervisor has
no control.

Guest software should only use the TSC for measuring short durations. Even when using the TSC in this
simple way, algorithms should be resilient to sudden jumps forward or backward in the TSC value.

8.8 Memory Accesses

The behavior of instructions that access memory may differ from the behavior of the same instruction
on a logical processor. This is the result of the hypervisor’s physical memory virtualization mechanisms
and of the existence of address ranges with special semantics (hypervisor call page or SynIC area). In a
broad sense, this applies to all instructions because the processor fetches instructions from memory.
However, it applies in particular to instructions with memory operands.

The following pseudo-code defines the different behaviors that can result from an access by a virtual
processor to its partition’s GPA space. The pseudo-code assumes that a GPA memory access has been
performed directly (that is, an explicit memory operand) or indirectly (an implicit access) by a virtual
processor. The access is one of three types: Read, Write, and Execute (Instruction Fetch).

Hypervisor Top Level Functional Specification

 69

if the address is within an overlay page
{
 if the access type is not allowed for the page
 {
 Generate #MC fault within guest
 }
 else
 {
 Perform access
 }
}
else if the address is within an unmapped GPA page
{
 if the partition is the root partition
 {
 Allow the access to proceed to identity-mapped SPA
 }
 else
 {
 Suspend VP and send message to parent (umapped GPA)
 }
}
else if the address is within a mapped GPA and
 the access type violates the mapping’s access rights
{
 if the partition is the root partition
 {
 Generate #MC fault in root
 }
 else
 {
 Suspend VP and send message to parent (GPA access right)
 }
}
else
{
 Memory access proceeds normally
}

8.9 I/O Port Accesses

The behavior of instructions that access I/O ports may differ from the behavior of the same instruction
on a logical processor. This is the result of the hypervisor’s processor intercept mechanism.

The following pseudo-code defines the different behaviors that can result from an access by a virtual
processor to I/O ports (through the instructions IN, OUT, INS, or OUTS). Note that each of these
instructions has an operand size of 1, 2, or 4 bytes. As such, one or more I/O ports are effectively
accessed.

Hypervisor Top Level Functional Specification

 70

if any of the accessed ports is virtualized
 by the hypervisor for this access type

{

 Access is emulated

}

else if the I/O Port intercept is installed

{

 Suspend VP and send message to parent (I/O Port Intercept)

}

else if the partition is a non-root partition

{

 Discard writes; return all bits set for reads

}

else

{

 I/O port access proceeds normally

}

8.10 MSR Accesses

The behavior of instructions that access MSRs may differ from the behavior of the same instruction on a
logical processor. This is the result of the hypervisor’s processor intercept mechanism.

The following pseudo-code defines the different behaviors that can result
from an access by a virtual processor to MSRs.

if the MSR is virtualized by the hypervisor AND

 the partition possesses the privilege required by the MSR

{

 Access is emulated

}

else if the MSR intercept is installed

{

 Suspend VP and send message to parent (MSR intercept)

}

else

{

 Generate #GP fault within the guest

}

The hypervisor may virtualize MSRs as part of its interface with the guest. A summary of these can be
found in section 19.

Hypervisor Top Level Functional Specification

 71

For those MSRs that are not virtualized by the hypervisor, internal security policy may require that
certain fields within certain MSRs remain unmodified, are explicitly set for or hidden from the guest. In
these cases, the access will appear to succeed from the guest’s perspective, but the value actually
written or read may not match the underlying physical MSR value. The tables in section 20 outline the
policy for those MSRs whose contents are modified by the hypervisor.

8.11 CPUID Execution

The behavior of the CPUID instruction may differ from the behavior of the same instruction on a logical
processor.

The following pseudo-code defines the different behaviors that can result from the execution of a CPUID
instruction by a virtual processor.

if an intercept has been set for the CPUID instruction for

 the index specified in EAX

{

 Suspend VP and send message to parent (CPUID Intercept)

}

else

{

 CPUID instruction returns information as dictated by the

 logical processor and the hypervisor

}

The hypervisor may override the standard CPUID information returned by the logical processor. The
table in Error! Reference source not found. details the ways in which CPUID information is modified by
the hypervisor. In some cases, the CPUID values returned to the root partition differ from non-root
partitions. In such cases, the differences are noted.

NOTE

The hypervisor does not attempt to dictate a processor selection or to standardize on a particular
processor model. The manipulation of various CPUID output is used to accommodate processor specifics
or to reflect limitations on the partition’s accessibility or privilege to use certain processor features.

8.12 Non-Privileged Instruction Execution Prevention (NPIEP)

Non-Privileged Instruction Execution (NPIEP) is a feature that limits the use of certain instructions by
user-mode code. Specifically, when enabled, this feature can block the execution of the SIDT, SGDT,
SLDT, and STR instructions. Execution of these instructions results in a #GP fault.

This feature must be configured on a per-VP basis using HV_X64_MSR_NPIEP_CONFIG_CONTENTS:

Hypervisor Top Level Functional Specification

 72

union
{
 UINT64 AsUINT64;
 struct
 {
 // These bits enable instruction execution prevention for specific
 // instructions.

 UINT64 PreventSgdt:1;
 UINT64 PreventSidt:1;
 UINT64 PreventSldt:1;
 UINT64 PreventStr:1;

 UINT64 Reserved:60;
 };
} HV_X64_MSR_NPIEP_CONFIG_CONTENTS;

8.13 Exceptions

The hypervisor’s intercept redirection mechanism allows a parent partition to intercept processor-
generated exceptions in the virtual processors of a child partition. When the intercept message is
delivered, the virtual processor will be in a restartable state (that is, the instruction pointer will point to
the instruction that generated the exception).

Exception intercepts are checked before multiple exceptions are combined into a double fault or a triple
fault. For example, if an exception intercept is installed on the #NP exception and a #NP exception
occurs during the delivery of a #GP exception, the #NP exception intercept is triggered. Conversely, if no
intercept was installed on the #NP exception, the nested #NP exception is converted into a double fault,
which will trigger an intercept on the #DF if such an intercept was installed.

Note that exception intercepts do not occur for software-generated interrupts (that is, through the
instructions INT, INTO, INT 3, and ICEBKPT).

The order in which exceptions are detected and reported by the processor depends on the instruction.
For example, many instructions can generate multiple exceptions and the order in which these
exceptions are detected is well defined.

The way in which exception intercepts interact with other intercept types also depends on the
instruction. For example, an IN instruction may generate a #GP exception intercept before an I/O port
intercept, and a RDMSR instruction may generate an MSR intercept before a #GP exception intercept.
For details on the order of intercept delivery, consult the documentation for Intel’s and AMD’s processor
virtualization extensions.

Hypervisor Top Level Functional Specification

 73

9 Virtual MMU and Caching

The virtual machine interface exposed by each partition includes a memory management unit (MMU).
The virtual MMU exposed by hypervisor partitions is generally compatible with existing MMUs.

The hypervisor also supports guest-defined memory cacheability attributes for pages mapped into a
partition’s GVA space.

9.1 Virtual MMU Overview

Virtual processors expose virtual memory and a virtual TLB (translation look-aside buffer), which caches
translations from virtual addresses to (guest) physical addresses. As with the TLB on a logical processor,
the virtual TLB is a non-coherent cache, and this non-coherence is visible to guests. The hypervisor
exposes operations to flush the TLB. Guests can use these operations to remove potentially inconsistent
entries and make virtual address translations predictable.

 Compatibility

The virtual MMU exposed by the hypervisor is generally compatible with the physical MMU found within
an x64 processor. The following guest-observable differences exist:

• The CR3.PWT and CR3.PCD bits may not be supported in some hypervisor implementations. On
such implementations, any attempt by the guest to set these flags through a MOV to CR3
instruction or a task gate switch will be ignored. Attempts to set these bits programmatically
through HvSetVpRegisters or HvSwitchVirtualAddressSpace may result in an error.

• The PWT and PCD bits within a leaf page table entry (for example, a PTE for 4-K pages and a PDE
for large pages) specify the cacheability of the page being mapped. The PAT, PWT, and PCD bits
within non-leaf page table entries indicate the cacheability of the next page table in the
hierarchy. Some hypervisor implementations may not support these flags. On such
implementations, all page table accesses performed by the hypervisor are done by using write-
back cache attributes. This affects, in particular, accessed and dirty bits written to the page table
entries. If the guest sets the PAT, PWT, or PCD bits within non-leaf page table entries, an
“unsupported feature” message may be generated when a virtual processor accesses a page
that is mapped by that page table.

• The CR0.CD (cache disable) bit may not be supported in some hypervisor implementations. On
such implementations, the CR0.CD bit must be set to 0. Any attempt by the guest to set this flag
through a MOV to CR0 instruction will be ignored. Attempts to set this bit programmatically
through HvSetVpRegisters will result in an error.

• The PAT (page address type) MSR is a per-VP register. However, when all the virtual processors
in a partition set the PAT MSR to the same value, the new effect becomes a partition-wide
effect.

• For reasons of security and isolation, the INVD instruction will be virtualized to act like a
WBINVD instruction, with some differences. For security purposes, CLFLUSH should be used
instead.

• Some hypervisor implementations may use internal write protection of guest page tables to
lazily flush MMU mappings from internal data structures (for example, shadow page tables).
This is architecturally invisible to the guest because writes to these tables will be handled

Hypervisor Top Level Functional Specification

 74

transparently by the hypervisor. However, writes performed to the underlying SPA pages by
other partitions or by devices (that is, through DMA) may not trigger the appropriate TLB flush.

• Internally, the hypervisor may use shadow page tables that translate GVAs to SPAs. In such
implementations, these shadow page tables appear to software as large TLBs. However, several
differences may be observable. First, shadow page tables can be shared between two virtual
processors, whereas traditional TLBs are per-processor structures and are independent. This
sharing may be visible because a page access by one virtual processor can fill a shadow page
table entry that is subsequently used by another virtual processor.

 Legacy TLB Management Operations

The x64 architecture provides several ways to manage the processor’s TLBs. The following mechanisms
are virtualized by the hypervisor:

• The INVLPG instruction invalidates the translation for a single page from the processor’s TLB. If
the specified virtual address was originally mapped as a 4-K page, the translation for this page is
removed from the TLB. If the specified virtual address was originally mapped as a “large page”
(either 2 MB or 4 MB, depending on the MMU mode), the translation for the entire large page is
removed from the TLB. The INVLPG instruction flushes both global and non-global translations.
Global translations are defined as those which have the “global” bit set within the page table
entry.

• The MOV to CR3 instruction and task switches that modify CR3 invalidate translations for all
non-global pages within the processor’s TLB.

• A MOV to CR4 instruction that modifies the CR4.PGE (global page enable) bit, the CR4.PSE (page
size extensions) bit, or CR4.PAE (page address extensions) bit invalidates all translations (global
and non-global) within the processor’s TLB.

Note that all of these invalidation operations affect only one processor. To invalidate translations on
other processors, software must use a software-based “TLB shoot-down” mechanism (typically
implemented by using inter-process interrupts).

 Virtual TLB Enhancements

In addition to supporting the legacy TLB management mechanisms described earlier, the hypervisor also
supports a set of enhancements that enable a guest to manage the virtual TLB more efficiently.

These enhanced operations can be used interchangeably with legacy TLB management operations. On
some systems (those with sufficient virtualization support in hardware), the legacy TLB management
instructions may be faster for local or remote (cross-processor) TLB invalidation. Guests who are
interested in optimal performance should use the CPUID leaf 0x40000004 to determine which behaviors
to implement using hypercalls:

• UseHypercallForAddressSpaceSwitch: If this flag is set, the caller should assume that it’s faster to
use HvSwitchAddressSpace to switch between address spaces. If this flag is clear, a MOV to CR3
instruction is recommended.

• UseHypercallForLocalFlush: If this flag is set, the caller should assume that it’s faster to use
hypercalls (as opposed to INVLPG or MOV to CR3) to flush one or more pages from the virtual
TLB.

Hypervisor Top Level Functional Specification

 75

• UseHypercallForRemoteFlush: If this flag is set, the caller should assume that it’s faster to use
hypercalls (as opposed to using guest-generated inter-processor interrupts) to flush one or more
pages from the virtual TLB.

 Restrictions on TLB Flushes

When a virtual processor generates an intercept—especially those associated with memory accesses,
software running within the parent or higher VTL may want to complete the intercepted instruction in
software. This instruction completion logic will need to emulate the address translation normally
performed by the processor’s MMU. If a TLB flush request is executed on another virtual processor
during instruction completion, incorrect behavior can result. For example, the second virtual processor
could clear the dirty bit within the guest’s page table and then request a TLB flush. If the instruction
completion software modifies the contents of this page after the TLB flush request has been completed,
the operating system running within the partition will not be notified of the page modification, and data
corruption can occur.

To prevent this situation, the hypervisor provides a way to inhibit TLB flush hypercalls until intercept
processing is complete. When a memory intercept message is generated by the hypervisor, the “TLB
Flush Inhibit” bit (TlbFlushInhibit) will consequently be set. Any attempt to flush the TLB with a hypercall
will place the caller’s virtual processor in a suspended state. The instruction pointer will not be
incremented past the instruction that invoked the hypercall. After the memory intercept routine
performs instruction completion, it should clear the TlbFlushInhibit bit of the
HvRegisterInterceptSuspend register. This resumes virtual processors that were suspended when they
attempted to flush the TLB while the bit was set. Since the instruction pointer has not been
incremented, the flush hypercall will automatically be re-executed. If the TlbFlushInhibit bit is clear, the
hypercall will complete the flush normally.

9.2 Memory Cache Control Overview

 Cacheability Settings

The hypervisor supports guest-defined cacheability settings for pages mapped within the guest’s GVA
space. For a detailed description of available cacheability settings and their meanings, refer to the Intel
or AMD documentation.

When a virtual processor accesses a page through its GVA space, the hypervisor honors the cache
attribute bits (PAT, PWT, and PCD) within the guest page table entry used to map the page. These three
bits are used as an index into the partition’s PAT (page address type) register to look up the final
cacheability setting for the page.

Pages accessed directly through the GPA space (for example, when paging is disabled because CR0.PG is
cleared) use a cacheability defined by the MTRRs. If the hypervisor implementation doesn’t support
virtual MTRRs, WB cacheability is assumed.

 Mixing Cache Types between a Partition and the Hypervisor

Guests should be aware that some pages within its GPA space may be accessed by the hypervisor. The
following list, while not exhaustive, provides several examples:

• A page that contains input or output parameters for a hypercall

• All overlay pages including the hypercall page, SynIC SIEF and SIM pages, and stats pages

Hypervisor Top Level Functional Specification

 76

The hypervisor always performs accesses to hypercall parameters and overlay pages by using the WB
cacheability setting.

9.3 Virtual MMU Data Types

 Virtual Address Spaces

The hypervisor introduces the concept of a virtual address space. The guest uses virtual address spaces
to define the mapping between guest virtual addresses (GVAs) and guest physical addresses (GPAs). The
guest OS can decide how and where to use virtual address spaces. In most OSs (including Microsoft
Windows®), a different virtual address space is used for each process.

Virtual address spaces are identified by a caller-defined 64-bit ID value. On x64 implementations of the
hypervisor, this value is the same as the value within the virtual processor’s CR3 register, which points to
the guest’s page table structures.

typedef UINT64 HV_ADDRESS_SPACE_ID;

 Virtual Address Flush Flags

The hypervisor provides hypercalls that allow the guest to flush (that is, invalidate) entire virtual address
spaces or portions of these address spaces. Behavior of the flush operation can be modified by using a
set of flags, defined as follows:

typedef UINT32 HV_FLUSH_FLAGS;

#define HV_FLUSH_ALL_PROCESSORS 0x00000001
#define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES 0x00000002
#define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY 0x00000004
#define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT 0x00000008

 Cache Types

Several structures include cache type fields. The following encodings are defined:

typedef enum
{
 HvCacheTypeX64Uncached = 0,
 HvCacheTypeX64WriteCombining = 1,
 HvCacheTypeX64WriteThrough = 4,
 HvCacheTypeX64WriteProtected = 5,
 HvCacheTypeX64WriteBack = 6
} HV_CACHE_TYPE;

 Virtual Address Translation Types

The call HvTranslateVirtualAddress takes a collection of input control flags and returns a result code and
a collection of output flags. The input control flags are defined as follows:

Hypervisor Top Level Functional Specification

 77

typedef UINT64 HV_TRANSLATE_GVA_CONTROL_FLAGS;

#define HV_TRANSLATE_GVA_VALIDATE_READ 0x0001
#define HV_TRANSLATE_GVA_VALIDATE_WRITE 0x0002
#define HV_TRANSLATE_GVA_VALIDATE_EXECUTE 0x0004
#define HV_TRANSLATE_GVA_PRIVILEGE_EXEMPT 0x0008
#define HV_TRANSLATE_GVA_SET_PAGE_TABLE_BITS 0x0010
#define HV_TRANSLATE_GVA_TLB_FLUSH_INHIBIT 0x0020
#define HV_TRANSLATE_GVA_CONTROL_MASK (0x003F)
#define HV_TRANSLATE_GVA_INPUT_VTL_MASK (0xFF00000000000000UI64)

The returned result code is defined as follows:

typedef enum
{
 HvTranslateGvaSuccess = 0,

 // Translation failures
 HvTranslateGvaPageNotPresent = 1,
 HvTranslateGvaPrivilegeViolation = 2,
 HvTranslateGvaInvalidPageTableFlags = 3,

 // GPA access failures
 HvTranslateGvaGpaUnmapped = 4,
 HvTranslateGvaGpaNoReadAccess = 5,
 HvTranslateGvaGpaNoWriteAccess = 6,
 HvTranslateGvaGpaIllegalOverlayAccess = 7,
 HvTranslateGvaIntercept = 8
} HV_TRANSLATE_GVA_RESULT_CODE;

typedef enum HV_TRANSLATE_GVA_RESULT_CODE
 *PHV_TRANSLATE_GVA_RESULT_CODE;

typedef struct
{
 HV_TRANSLATE_GVA_RESULT_CODE ResultCode;
 UINT32 CacheType:8;
 UINT32 OverlayPage:1;
 UINT32 Reserved3:23;
} HV_TRANSLATE_GVA_RESULT;

typedef struct
{
 HV_TRANSLATE_GVA_RESULT_CODE ResultCode;
 UINT32 CacheType : 8;
 UINT32 OverlayPage : 1;
 UINT32 Reserved : 23;
 HV_X64_PENDING_EVENT EventInfo;

} HV_TRANSLATE_GVA_RESULT_EX;

 Gpa Access Types

The calls HvReadGpa and HvWriteGpa take a collection of input control flags and return a result code.
The input control flags are defined as follows:

Hypervisor Top Level Functional Specification

 78

typedef union
{
UINT64 AsUINT64;
typedef struct
{
 UINT8 CacheType:8; // Cache type for access
 UINT8 HV_INPUT_VTL InputVtl ;
 UINT16 ReservedZ0;
 UINT32 ReservedZ1;
};
} HV_ACCESS_GPA_CONTROL_FLAGS;

The return result code is defined as follows:

typedef enum
{
 HvAccessGpaSuccess = 0,

 // GPA access failures
 HvAccessGpaUnmapped = 1,
 HvAccessGpaReadIntercept = 2,
 HvAccessGpaWriteIntercept = 3,
 HvAccessGpaIllegalOverlayAccess = 4
} HV_ACCESS_GPA_RESULT_CODE;

UINT64 AsUINT64;
typedef struct
{
 HV_ACCESS_GPA_RESULT_CODE ResultCode;
 UINT32 Reserved;
} HV_ACCESS_GPA_RESULT;

typedef HV_ACCESS_GPA_RESULT *PHV_ACCESS_GPA_RESULT;

9.4 Virtual MMU Interfaces

 HvSwitchVirtualAddressSpace

The HvSwitchVirtualAddressSpace hypercall switches the calling virtual processor’s virtual address
space.

Wrapper Interface

HV_STATUS

HvSwitchVirtualAddressSpace(

 __in HV_ADDRESS_SPACE_ID AddressSpace

);

Native Interface

HvSwitchVirtualAddressSpace [fast]

 Call Code = 0x0001

Hypervisor Top Level Functional Specification

 79

 Input Parameters

0 AddressSpace (8 bytes)

Description

For x64 implementations of the hypervisor, this call also updates the CR3 register. However, unlike a
MOV to CR3 instruction, this hypercall does not have the side-effect of flushing the virtual processor’s
TLB.

This hypercall, unlike most, operates implicitly in the context of the calling partition and virtual
processor.

Input Parameters

AddressSpace specifies a new address space ID (a new CR3 value).

Output Parameters

None.

Restrictions

None.

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER

The specified address space ID is not a valid

CR3 value.

One or more reserved bits in the specified

address space ID (as defined by the x64

architecture) were set.

 HvFlushVirtualAddressSpace

The HvFlushVirtualAddressSpace hypercall invalidates all virtual TLB entries that belong to a specified
address space.

Hypervisor Top Level Functional Specification

 80

Wrapper Interface

HV_STATUS

HvFlushVirtualAddressSpace(

 __in HV_ADDRESS_SPACE_ID AddressSpace,

 __in HV_FLUSH_FLAGS Flags,

 __in UINT64 ProcessorMask

);

Native Interface

HvFlushVirtualAddressSpace

 Call Code = 0x0002

 Input Parameters

0 AddressSpace (8 bytes)

8 Flags (8 bytes)

16 ProcessorMask (8 bytes)

Description

The virtual TLB invalidation operation acts on one or more processors.

If the guest has knowledge about which processors may need to be flushed, it can specify a processor
mask. Each bit in the mask corresponds to a virtual processor index. For example, a mask of
0x0000000000000051 indicates that the hypervisor should flush only the TLB of virtual processors 0, 4,
and 6. A virtual processor can determine its index by reading from MSR HV_X64_MSR_VP_INDEX.

The following flags can be used to modify the behavior of the flush:

• HV_FLUSH_ALL_PROCESSORS indicates that the operation should apply to all virtual
processors within the partition. If this flag is set, the ProcessorMask parameter is ignored.

• HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES indicates that the operation should apply to all
virtual address spaces. If this flag is set, the AddressSpace parameter is ignored.

• HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY indicates that the hypervisor is required only to
flush page mappings that were not mapped as “global” (that is, the x64 “G” bit was set in the page
table entry). Global entries may be (but are not required to be) left unflushed by the hypervisor.

All other flags are reserved and must be set to zero.

This call guarantees that by the time control returns back to the caller, the observable effects of all
flushes on the specified virtual processors have occurred.

Hypervisor Top Level Functional Specification

 81

If a target virtual processor’s TLB requires flushing and that virtual processor’s TLB is currently “locked”,
the caller’s virtual processor is suspended. When the caller’s virtual processor is “unsuspended”, the
hypercall will be reissued.

Input Parameters

AddressSpace specifies an address space ID (a CR3 value).

Flags specifies a set of flag bits that modify the operation of the flush.

ProcessorMask specifies a processor mask indicating which processors should be affected by the
flush operation.

Output Parameters

None.

Restrictions

None.

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER

The specified address space ID is not a valid

CR3 value and the ”flush all virtual address

spaces” flag was not specified.

One or more reserved bits in the specified

address space ID (as defined by the x64

architecture) were set.

One or more reserved bits within the flags

register are set.

All of the bits in the processor bit mask are set

to zero, and the "flush all processors" flag was

not specified.

 HvFlushVirtualAddressSpaceEx

The HvFlushVirtualAddressSpaceEx hypercall is similar to HvFlushVirtualAddressSpace, but can take a
variably-sized sparse VP set as an input.

The following checks should be used to infer the availability of this hypercall:

1. HvFlushVirtualAddressSpace must be available (see section 9.1.3).

2. ExProcessorMasks must be indicated via CPUID leaf 0x40000004 (see 2.4.5)

Hypervisor Top Level Functional Specification

 82

Wrapper interface

HV_STATUS
HvFlushVirtualAddressSpaceEx(
 __in HV_ADDRESS_SPACE_ID AddressSpace,
 __in HV_FLUSH_FLAGS Flags,
 __in HV_VP_SET ProcessorSet
);

Native Interface

HvFlushVirtualAddressSpaceEx

 Call Code = 0x0013

 Input Parameters

0 AddressSpace (8 bytes)

8 Flags (8 bytes)

16 ProcessorSet (Variably sized)

Description

See HvFlushVirtualAddressSpace.

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER A parameter is invalid.

 HvFlushVirtualAddressList

The HvFlushVirtualAddressList hypercall invalidates portions of the virtual TLB that belong to a specified
address space.

Hypervisor Top Level Functional Specification

 83

Wrapper Interface

HV_STATUS

HvFlushVirtualAddressList(

 __in HV_ADDRESS_SPACE_ID AddressSpace,

 __in HV_FLUSH_FLAGS Flags,

 __in UINT64 ProcessorMask,

 __inout PUINT32 GvaCount,

 __in_ecount(GvaCount)

 PCHV_GVA GvaRangeList

);

Native Interface

HvFlushVirtualAddressList [rep]

 Call Code = 0x0003

 Input Parameter Header

0 AddressSpace (8 bytes)

8 Flags (8 bytes)

16 ProcessorMask (8 bytes)

 Input List Element

0 GvaRange (8 bytes)

Description

The virtual TLB invalidation operation acts on one or more processors.

If the guest has knowledge about which processors may need to be flushed, it can specify a processor
mask. Each bit in the mask corresponds to a virtual processor index. For example, a mask of
0x0000000000000051 indicates that the hypervisor should flush only the TLB of virtual processors 0, 4
and 6.

The following flags can be used to modify the behavior of the flush:

• HV_FLUSH_ALL_PROCESSORS indicates that the operation should apply to all virtual
processors within the partition. If this flag is set, the ProcessorMask parameter is ignored.

• HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES indicates that the operation should apply to all
virtual address spaces. If this flag is set, the AddressSpace parameter is ignored.

• HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY does not make sense for this call and is treated
as an invalid option.

All other flags are reserved and must be set to zero.

Hypervisor Top Level Functional Specification

 84

This call takes a list of GVA ranges. Each range has a base GVA. Because flushes are performed with page
granularity, the bottom 12 bits of the GVA can be used to define a range length. These bits encode the
number of additional pages (beyond the initial page) within the range. This allows each entry to encode
a range of 1 to 4096 pages.

A GVA that falls within a “large page” mapping (2MB or 4MB) will cause the entire large page to be
flushed from the virtual TLB.

This call guarantees that by the time control returns back to the caller, the observable effects of all
flushes on the specified virtual processors have occurred.

Invalid GVAs (those that specify addresses beyond the end of the partition’s GVA space) are ignored.

If a target virtual processor’s TLB requires flushing and that virtual processor is inhibiting TLB flushes, the
caller’s virtual processor is suspended. When TLB flushes are no longer inhibited, the virtual processor is
“unsuspended” and the hypercall will be reissued.

Input Parameters

AddressSpace specifies an address space ID (a CR3 value).

Flags specifies a set of flag bits that modify the operation of the flush.

ProcessorMask specifies a processor mask indicating which processors should be affected by the
flush operation.

GvaRange specifies a guest virtual address range.

Output Parameters

None.

Restrictions

None.

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER

The specified address space ID is not a valid

CR3 value and the "flush all virtual address

spaces” flag was not specified.

One or more reserved bits in the specified

address space ID (as defined by the x64

architecture) were set.

One or more reserved bits within the flags

register are set.

All of the bits in the processor bit mask are set

to zero, and the "flush all processors" flag was

not specified.

Hypervisor Top Level Functional Specification

 85

 HvFlushVirtualAddressListEx

The HvFlushVirtualAddressListEx hypercall is similar to HvFlushVirtualAddressList, but can take a
variably-sized sparse VP set as an input.

The following checks should be used to infer the availability of this hypercall:

3. HvFlushVirtualAddressList must be available (see section 9.1.3).

4. ExProcessorMasks must be indicated via CPUID leaf 0x40000004 (see 2.4.5)

Wrapper interface

HV_STATUS
HvFlushVirtualAddressListEx(
 __in HV_ADDRESS_SPACE_ID AddressSpace,
 __in HV_FLUSH_FLAGS Flags,
 __in HV_VP_SET ProcessorSet,
 __inout PUINT32 GvaCount,
 __in_ecount(GvaCount) PCHV_GVA GvaRangeList
);

Native Interface

HvFlushVirtualAddressList [rep]

 Call Code = 0x0014

 Input Parameter Header

0 AddressSpace (8 bytes)

8 Flags (8 bytes)

ProcessorSet (Variably sized)

 Input List Element

0 GvaRange (8 bytes)

Description

See HvFlishVirtualAddressList.

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER A parameter is invalid.

 HvTranslateVirtualAddress

The HvTranslateVirtualAddress hypercall attempts to translate a specified GVA page number into a GPA
page number.

Hypervisor Top Level Functional Specification

 86

Wrapper Interface

HV_STATUS

HvTranslateVirtualAddress(

 __in HV_PARTITION_ID PartitionId,

 __in HV_VP_INDEX VpIndex,

 __in HV_TRANSLATE_GVA_CONTROL_FLAGS ControlFlags,

 __in HV_GVA_PAGE_NUMBER GvaPage,

 __out PHV_TRANSLATE_GVA_RESULT TranslationResult,

 __out PHV_GPA_PAGE_NUMBER GpaPage

);

Native Interface

HvTranslateVirtualAddress

 Call Code = 0x0052

 Input Parameters

0 PartitionId (8 bytes)

8 VpIndex (4 bytes) Padding (4 bytes)

16 ControlFlags (8 bytes)

24 GvaPage (8 bytes)

 Output Parameters

0 TranslationResult (8 bytes)

8 GpaPage (8 bytes)

Description

The translation considers the current modes and state of the specified virtual processor as well as the
guest page tables.

The caller must specify whether the intended access is to read, write or execute by setting the
appropriate control flags. Combinations of these access types are possible. Several other translation
options are also available.

• HV_TRANSLATE_GVA_PRIVILEGE_EXEMPT: Indicates that the access should be performed as
though the processor was running at a privilege level zero rather than the current privilege level.

• HV_TRANSLATE_GVA_SET_PAGE_TABLE_BITS: Indicates that the routine should set the dirty and
accessed bits within the guest’s page tables if appropriate for the access type. The dirty bit will
only be set if HV_TRANSLATE_GVA_VALIDATE_WRITE is also specified. If the caller has

Hypervisor Top Level Functional Specification

 87

requested that accessed and dirty bits be set as part of the table walk, these bits are set as the
walk occurs. If a walk is aborted, the accessed and dirty bits that were already set are not
restored to their previous values.

• HV_TRANSLATE_GVA_TLB_FLUSH_INHIBIT: Indicates that the TlbFlushInhibit flag in the virtual
processor’s HvRegisterInterceptSuspend register should be set as a consequence of a successful
return. This prevents other virtual processors associated with the target partition from flushing
the stage 1 TLB of the specified virtual processor until after the TlbFlushInhibit flag is cleared
(see 9.1.4).

If paging is disabled in the virtual processor (that is, CR0.PG is clear), then no page tables are consulted,
and translation success is guaranteed.

If paging is enabled in the virtual processor (that is, CR0.PG is set), then a page table walk is performed.
The call uses the current state of the virtual processor to determine whether to perform a two-level,
three-level, or four-level page table walk. The caller may not assume that the walk is coherent with the
hardware TLB state.

During the page table walk, a number of conditions can arise that cause the walk to be terminated.A
table entry is marked “not present” or the GVA is beyond the range permitted for the paging mode. In
this case, HvTranslateGvaPageNotPresent is returned.

A privilege violation is detected based on the access type (read, write, execute) or on the current
privilege level. In this case, HvTranslateGvaPrivilegeViolation is returned.

A reserved bit is set within a table entry. In this case, HvTranslateGvaInvalidPageTableFlags is returned.

A page table walk can also be terminated if one of the guest’s page table pages cannot be accessed. This
can occur in one of the following situations: The GPA is unmapped. In this case,
HvTranslateGvaGpaUnmapped is returned.

The GPA mapping’s access rights indicate that the page is not readable. In this case,
HvTranslateGvaGpaNoReadAccess or HvTranslateGvaGpaNoWriteAccess is returned.

The access targets an overlay page that doesn’t allow reads or writes. In this case,
HvTranslateGvaGpaIllegalOverlayAccess is returned.

If any of these GPA access failures are reported, the GpaPage output parameter is used to indicate
which GPA page could not be accessed.

If no translation error occurs, HvTranslateGvaSuccess is returned. In this case, the GpaPage output
parameter is used to report the resulting translation, and the associated CacheType and OverlayPage
fields are set appropriately. The CacheType field indicates the effective cache type used by the virtual
processor to access the translated virtual address. The OverlayPage field indicates whether the
translated GPA accesses an overlay page owned by the hypervisor. Callers can use this information to
determine whether memory accesses performed by the virtual processor would have accessed a
mapped GPA page or an overlay page.

If the caller has requested that accessed and dirty bits be set as part of the table walk, then these bits
are set as the walk occurs. If a walk is aborted, then the accessed and dirty bits that were already set are
not restored to their previous values.

The reported cache type considers all of the state of the virtual processor including the current virtual
PAT register settings and (if supported by the hypervisor implementation) the value of the MTRR MSRs
and CR0.CD.

Hypervisor Top Level Functional Specification

 88

If the call returns HV_STATUS_SUCCESS, the output parameter TranslationResult is valid. The caller must
consult the result code and results flags to determine whether the GpaPage parameter is valid.

Input Parameters

PartitionId specifies a partition.

VpIndex specifies a virtual processor index.

ControlFlags specifies a set of flag bits that modify the behavior of the translation.

GvaPage specifies a guest virtual address page number.

Output Parameters

TranslationResult specifies information about the translation including the result code and flags.

GpaPage specifies the translated GPA (if the result code is HvTranslateGvaSuccess) or the address
of a GPA access failure (if the result code is HvTranslateGvaGpaUnmapped,
HvTranslateGvaGpaNoReadAccess, HvTranslateGvaGpaNoWriteAccess, or
HvTranslateGvaGpaIllegalOverlayAccess). For other result codes, this return parameter is invalid.

Restrictions

• The partition specified by PartitionId must be in the “active” state.

• The caller must be the parent of the partition specified by PartitionId.

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller is not the parent of the

specified partition.

HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid.

HV_STATUS_INVALID_VP_INDEX The specified VP index does not

reference a virtual processor within the

specified partition.

HV_STATUS_INVALID_PARAMETER

All three of the control flags

HV_TRANSLATE_GVA_VALIDATE_READ,

HV_TRANSLATE_GVA_VALIDATE_WRITE

, and

HV_TRANSLATE_GVA_VALIDATE_EXECU

TE are cleared. At least one of these

must be set.

One or more reserved bits in the

specified control flags are set.

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the

“active” state.

Hypervisor Top Level Functional Specification

 89

Status code Error condition

HV_STATUS_INVALID_VP_STATE A virtual processor is not in the correct

state for the performance of the

indicated operation.

 HvExtCallGetBootZeroedMemory

Hyper-V allocates zero-filled pages to a VM at creation time. The HvExtCallGetBootZeroedMemory
hypercall can be used to query which GPA pages were zeroed by Hyper-V during creation. This can
prevent the guest memory manager from having to redundantly zero GPA pages, which can reduce
utilization and increase performance.

This is an extended hypercall; its availability must be queried using HvExtCallQueryCapabilities.

Wrapper Interface

HV_STATUS

HvExtCallGetBootZeroedMemory(

 __out UINT64 StartGpa,

 __out UINT64 PageCount

);

Native Interface

HvExtCallGetBootZeroedMemory

 Call Code = 0x8002

 Output Parameters

0 StartGpa (8 bytes)

8 PageCount (8 bytes)

Input Parameters

None.

Output Parameters

StartGpa – the GPA address where the zeroed memory region begins.

PageCount – the number of pages included in the zeroed memory region.

Restrictions

• The availability of this hypercall must be queried using the HvExtCallQueryCapabilities.

Hypervisor Top Level Functional Specification

 90

10 Virtual Interrupt Control

10.1 Overview

The hypervisor virtualizes interrupt delivery to virtual processors. This is done through the use of a
synthetic interrupt controller (SynIC) which is an extension of a virtualized local APIC; that is, each virtual
processor has a local APIC instance with the SynIC extensions. These extensions provide a simple inter-
partition communication mechanism which is described in the following chapter.

Interrupts delivered to a partition fall into two categories: external and internal. External interrupts
originate from other partitions or devices, and internal interrupts originate from within the partition
itself.

External interrupts are generated in the following situations:

• A physical hardware device generates a hardware interrupt.

• A parent partition asserts a virtual interrupt (typically in the process of emulating a hardware
device).

• The hypervisor delivers a message (for example, due to an intercept) to a partition.

• Another partition posts a message.

• Another partition signals an event.

Internal interrupts are generated in the following situations:

• A virtual processor accesses the APIC interrupt command register (ICR).

• A synthetic timer expires.

10.2 Local APIC

The SynIC is a superset of a local APIC. The interface to this APIC is given by a set of 32-bit memory
mapped registers. This local APIC (including the behavior of the memory mapped registers) is generally
compatible with the local APIC on P4/Xeon systems as described in Intel’s documentation.

 Local APIC Virtualization

The hypervisor’s local APIC virtualization may deviate from physical APIC operation in the following
minor ways:

• On physical systems, the IA32_APIC_BASE MSR can be different for each processor in the
system. The hypervisor may require that this MSR contains the same value for all virtual
processors within a partition. As such, this MSR may be treated as a partition-wide value. If a
virtual processor modifies this register, the value may effectively propagate to all virtual
processors within the partition.

• The IA32_APIC_BASE MSR defines a “global enable” bit for enabling or disabling the APIC. The
virtualized APIC may always be enabled. If so, this bit will always be set to 1.

• The hypervisor’s local APIC may not be able to generate virtual SMIs (system management
interrupts).

• The hypervisor may allow accesses only to the APIC’s memory-mapped registers to be
performed by one of the instructions in section 10.2.2. Furthermore, it may allow only accesses

Hypervisor Top Level Functional Specification

 91

that are four bytes in size and aligned to four-byte boundaries. In such cases, if an unsupported
access is attempted, the virtual processor will be suspended, and an unsupported feature error
message will be delivered to the partition’s parent.

• If multiple virtual processors within a partition are assigned identical APIC IDs, behavior of
targeted interrupt delivery is boundedly undefined. That is, the hypervisor is free to deliver the
interrupt to just one virtual processor, all virtual processors with the specified APIC ID, or no
virtual processors. This situation is considered a guest programming error.

• Some of the memory mapped APIC registers may be accessed by way of virtual MSRs.

• The hypervisor may not allow a guest to modify its APIC IDs.

The remaining parts of this section describe only those aspects of SynIC functionality that are extensions
of the local APIC.

 Local APIC Memory-mapped Accesses

The hypervisor emulates accesses to memory-mapped registers within the virtualized local APIC.
However, only certain instruction forms are supported, and use of other forms will result in #GP.
Compatible guests should access only the local APIC registers by using the following instruction forms:

Opcode Instruction Notes

89 /r MOV m32,r32 m32 must be 4-byte aligned.

8B /r MOV r32,m32 m32 must be 4-byte aligned.

A1 MOV EAX,moffs32 moffs32 must be 4-byte aligned.

A3 MOV moffs32,EAX moffs32 must be 4-byte aligned.

C7 /0 MOV m32,imm32 m32 must be 4-byte aligned.

FF /6 PUSH m32 m32 must be 4-byte aligned.

 Local APIC MSR Accesses

The hypervisor provides accelerated MSR access to high usage memory mapped APIC registers. These
are the TPR, EOI, and the ICR registers. The ICR low and ICR high registers are combined into one MSR.

MSR Address Register Name Function

0x40000070 HV_X64_MSR_EOI Accesses the APIC EOI

0x40000071 HV_X64_MSR_ICR Accesses the APIC ICR-high and ICR-low

0x40000072 HV_X64_MSR_TPR Access the APIC TPR

For performance reasons, the guest operating system should follow the hypervisor recommendation for
the usage of the APIC MSRs (see section 2.4)

Hypervisor Top Level Functional Specification

 92

10.2.3.1 EOI Register

63:32 31:0

Ignored EOI value

Bits Description Attributes

63:32 RsvdZ (reserved, should be zero) Write

31:0 EOI value Write

This is a write-only register, and it sets a value into the APIC EOI register. Attempts to read from this
register will result in a #GP fault.

10.2.3.2 ICR Register

63:32 31:0

ICR high ICR low

Bits Description Attributes

63:32 ICR high value Read/write

31:0 ICR low value Read/write

The values of ICR high and ICR low are read from or written into the corresponding APIC ICR high and
low registers.

10.2.3.3 TPR Register

63:8 7:0

RsvdZ TPR value

Bits Description Attributes

63:8 RsvdZ (reserved, should be zero) Read/write

7:0 TPR value Read/write

The value of the APIC TPR register is read or written.

NOTE

Hypervisor Top Level Functional Specification

 93

This MSR is intended to accelerate access to the TPR in 32-bit mode guest partitions. 64-bit mode guest
partitions should set the TPR by way of CR8.

10.3 Virtual Interrupts

 Virtual Interrupt Overview

The hypervisor provides interfaces that allow a partition to send virtual interrupts to virtual processors.
This is useful for emulating an IOAPIC or a legacy 8259 PIC (programmable interrupt controller).

 Virtual Interrupt Types

To send a virtual interrupt, software must call HvAssertVirtualInterrupt and specify a virtual processor
within the target partition or VTL. It must also specify the interrupt type that determines the behavior:

• HvX64InterruptTypeNmi generates a non-maskable interrupt on the specified processor.

• HvX64InterruptTypeSmi generates a system management interrupt on the specified processor.

• HvX64InterruptTypeInit generates an INIT interrupt on the specified processor.

• HvX64InterruptTypeSipi generates a start inter-processor interrupt. If the target processor is in
wait-for-SIPI state, it causes the target processor to begin executing in real mode at an address
determined by the SIPI vector as specified by the x64 architecture.

• HvX64InterruptTypeFixed generates a fixed interrupt latched into the local APIC’s interrupt
request register (IRR). A fixed interrupt can be edge-triggered or level-triggered. Withdrawing an
edge-triggered interrupt does not clear the corresponding bit in the IRR. Withdrawing a level-
triggered interrupt clears the corresponding bit in the IRR.

• HvX64InterruptTypeLowestPriority is like a fixed interrupt except that it is delivered only to the
lowest-priority destination virtual processor.

• HvX64InterruptTypeExtInt generates a fixed level-triggered interrupt. The behavior is the same
as with HvX64InterruptTypeFixed, with the following exceptions:

o It is always directed at the boot processor, and

o It can be used when the APIC is software disabled.

Regardless of whether the APIC is enabled or not, the PPR (process priority register) is not used in
determining whether the interrupt will be serviced. This type is also special in that it is always directed
at the boot processor. It also requires the use of a separate hypercall, HvClearVirtualInterrupt, to clear
an acknowledged interrupt before subsequent interrupts of this type can be asserted.

 Trigger Types

Virtual interrupts are either edge-triggered or level-triggered. Edge-triggered interrupts are latched
upon assertion and cannot be withdrawn. Level-triggered interrupts are not latched and can potentially
be withdrawn by deasserting. The following table indicates, for each interrupt type, what the implicit
interrupt trigger type is and whether a vector should be specified with the virtual interrupt.

Interrupt type Vector applicable? Trigger type

NMI No Edge

Hypervisor Top Level Functional Specification

 94

Interrupt type Vector applicable? Trigger type

INIT No Edge

SIPI Yes Edge

Fixed Yes Edge or Level

Lowest Priority Yes Edge or Level

ExtINT Yes Level

SMI Yes Edge

Sometime after a virtual interrupt is asserted, it may be acknowledged by the virtual processor. Until
then, level-triggered virtual interrupts can be deasserted by calling HvAssertVirtualInterrupt with vector
HV_INTERRUPT_VECTOR_NONE or it can be re-asserted by calling HvAssertVirtualInterrupt. Deasserting
an edge-triggered interrupt is unnecessary and has no effect.

 EOI Intercepts

An intercept is defined for processor events (specifically, memory accesses) that indicate the EOI (end of
interrupt) for a level-triggered fixed interrupt. An EOI intercept is the expected (eventual) response by
the child to a parent asserting a level triggered interrupt using the HvAssertVirtualInterrupt hypercall.
The intercept is delivered at the instruction boundary following the instruction that issued the EOI.

For performance reasons, it is desirable to reduce the number of EOI intercepts. Most EOI intercepts can
be eliminated and done lazily if the guest OS leaves a marker when it performs an EOI. However, there
are two cases for which EOI intercepts are strictly necessary.

• A level triggered interrupt is EOI’ed, since the hypervisor needs to either EOI the physical APIC
(in case of the root partition) or send an EOI message (in case of a non-root partition) when the
guest performs an EOI.

• A lower priority interrupt is pending, since the hypervisor needs to re-evaluate interrupts when
the guest performs an EOI.

 EOI Assist

One field in the virtual VP assist page (see 7.8.7) is the EOI Assist field. The EOI Assist field resides at
offset 0 of the overlay page and is DWORD sized. The format of the EOI assist field is as follows:

31:1 0

Reserved to Zero No EOI Required

The OS performs an EOI by atomically writing zero to the EOI Assist field of the virtual VP assist page
and checking whether the “No EOI required” field was previously zero. If it was, the OS must write to the
HV_X64_APIC_EOI MSR thereby triggering an intercept into the hypervisor. The following code is
recommended to perform an EOI:

Hypervisor Top Level Functional Specification

 95

lea rcx, [VirtualApicAssistVa]
btr [rcx], 0
jc NoEoiRequired

mov ecx, HV_X64_APIC_EOI
wrmsr

NoEoiRequired:

The hypervisor sets the “No EOI required” bit when it injects a virtual interrupt if the following
conditions are satisfied:

• The virtual interrupt is edge-triggered, and

• There are no lower priority interrupts pending

If, at a later time, a lower priority interrupt is requested, the hypervisor clears the “No EOI required”
such that a subsequent EOI causes an intercept.

In case of nested interrupts, the EOI intercept is avoided only for the highest priority interrupt. This is
necessary since no count is maintained for the number of EOIs performed by the OS. Therefore only the
first EOI can be avoided and since the first EOI clears the “No EOI Required” bit, the next EOI generates
an intercept. However nested interrupts are rare, so this is not a problem in the common case.

Note that devices and/or the I/O APIC (physical or synthetic) need not be notified of an EOI for an edge-
triggered interrupt – the hypervisor intercepts such EOIs only to update the virtual APIC state. In some
cases, the virtual APIC state can be lazily updated – in such cases, the “NoEoiRequired” bit is set by the
hypervisor indicating to the guest that an EOI intercept is not necessary. At a later instant, the
hypervisor can derive the state of the local APIC depending on the current value of the “NoEoiRequired”
bit.

Enabling and disabling this enlightenment can be done at any time independently of the interrupt
activity and the APIC state at that moment. While the enlightenment is enabled, conventional EOIs can
still be performed irrespective of the “No EOI required” value but they will not realize the performance
benefit of the enlightenment.

10.4 Virtual Interrupt Data Types

 Interrupt Types

Several virtual interrupt types are supported.

typedef enum
{
 HvX64InterruptTypeFixed = 0x0000,
 HvX64InterruptTypeLowestPriority = 0x0001,
 HvX64InterruptTypeNmi = 0x0004,
 HvX64InterruptTypeInit = 0x0005,
 HvX64InterruptTypeSipi = 0x0006,
 HvX64InterruptTypeExtInt = 0x0007
} HV_INTERRUPT_TYPE;

 Interrupt Control

The interrupt control specifies the type of the virtual interrupt, its destination mode and whether the
virtual interrupt is edge or level triggered.

Hypervisor Top Level Functional Specification

 96

typedef struct
{
 HV_INTERRUPT_TYPE InterruptType;
 UINT32 LevelTriggered:1;
 UINT32 LogicalDestinationMode:1;
 UINT32 Reserved:30;
} HV_INTERRUPT_CONTROL;

 Interrupt Vectors

Interrupt vectors are represented by a 32-bit value. A special value is used to indicate “no interrupt
vector” and is used by calls that indicate whether a previous interrupt was acknowledged.

typedef UINT32 HV_INTERRUPT_VECTOR;
typedef HV_INTERRUPT_VECTOR *PHV_INTERRUPT_VECTOR;

#define HV_INTERRUPT_VECTOR_NONE 0xFFFFFFFF

 MSI Entry

typedef union
{
 struct
 {
 UINT32 Address;
 UINT32 Data;
 };

 UINT64 AsUINT64;

} HV_MSI_ENTRY;

Note: in the case of MSI multiple message enabled devices, each vector is retargeted independently.
“Data” is the data value sent by the device when signaling the specific vector. In other words, it is the
data field returned by the VSP with the low bits set to the index (0-31) of the vector.

Hypervisor Top Level Functional Specification

 97

 Interrupt Source

typedef enum
{
 HvInterruptSourceMsi = 1,

} HV_INTERRUPT_SOURCE;

 Interrupt Entry

typedef struct
{
 HV_INTERRUPT_SOURCE InterruptSource;
 UINT32 Reserved;

 union
 {
 HV_MSI_ENTRY MsiEntry;
 UINT64 Data;
 };

} HV_INTERRUPT_ENTRY;

 Device Interrupt Target

typedef struct
{
 HV_INTERRUPT_VECTOR Vector;
 UINT32 Flags;

 union
 {
 UINT64 ProcessorMask;
 UINT64 ProcessorSet[];
 };

} HV_DEVICE_INTERRUPT_TARGET;

“Flags” supplies optional flags for the interrupt target:

#define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
#define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2

“Multicast” indicates that the interrupt is sent to all processors in the target set. By default, the
interrupt is sent to an arbitrary single processor in the target set.

10.5 Virtual Interrupt Interfaces

 HvAssertVirtualInterrupt

The HvAssertVirtualInterrupt hypercall requests a virtual interrupt to be presented to the specified
virtual processor(s).

Hypervisor Top Level Functional Specification

 98

Wrapper Interface

HV_STATUS
HvAssertVirtualInterrupt(
 __in HV_PARTITION_ID DestinationPartition,
 __in HV_INTERRUPT_CONTROL InterruptControl,
 __in UINT64 DestinationAddress,
 __in HV_INTERRUPT_VECTOR RequestedVector
 __in HV_VTL TargetVtl
 __in UINT8 Reservedz0
 __in UINT16 ReservedZ1
);

Native Interface

HvAssertVirtualInterrupt

 Call Code = 0x0094

 Input Parameters

0 DestinationPartition (8 bytes)

8 InterruptControl (8 bytes)

16 DestinationAddress (8 bytes)

24 RequestedVecto

r (4 bytes)

TargetVtl (1

byte)

Padding (3 bytes)

Description

For information on virtual interrupts, see section 10.2.3.

If the call is made twice in a row with the same interrupt type specified in the InterruptControl
parameter, the behavior depends upon whether or not the first interrupt was acknowledged by the
virtual processor before the second call is made.

If the first interrupt has already been acknowledged, then the second call is treated as a new assertion.

If the first interrupt has not yet been acknowledged, then the second call supersedes the previous
assertion with the new vector. If the second call specifies the vector HV_INTERRUPT_VECTOR_NONE,
then the call acts as a deassertion.

The behavior of this call differs for interrupts of type HvX64InterruptTypeExtInt in the following ways:

This interrupt type is always targeted at the boot processor. The boot processor is identified by a virtual
processor index of zero. The DestinationAddress parameter must, therefore, be zero.

Calls to HvAssertVirtualInterrupt will fail if the interrupt asserted by a previous call has already been
acknowledged by the processor. This acknowledgement must first be cleared by calling
HvClearVirtualInterrupt. This is especially useful when implementing an external interrupt controller,
such as the 8259 PIC. It prevents HvAssertVirtualInterrupt from overwriting the previous
acknowledgement, which may need to be reported through the external interrupt controller.

Hypervisor Top Level Functional Specification

 99

Input Parameters

DestinationPartition specifies the partition.

InterruptControl specifies the type of the virtual interrupt that should be asserted, its destination mode
and whether the virtual interrupt is edge or level triggered.

DestinationAddress specifies the destination virtual processor(s). In case of physical destination
mode, the destination address specifies the physical APIC ID of the target virtual processor. In case
of logical destination mode, the destination address specifies the logical APIC ID of the set of target
virtual processors. This value must be zero for external interrupt delivery mode where the interrupt
request is always sent to the boot processor.

RequestedVector specifies the interrupt vector. This value is used only for fixed, lowest-priority,
external, and SIPI interrupt types. In all other cases, a vector of zero must be specified.

TargetVtl specifies the VTL to be targeted for this call.

Output Parameters

None.

Restrictions

• The partition specified by DestinationPartition must be in the “active” state.

• The caller must be the parent of the partition specified by DestinationPartition.

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller is not the parent of the

specified partition.

HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid.

HV_STATUS_INVALID_VP_INDEX The virtual processor selected by the

DestinationAddress parameter is not

valid.

For interrupts of type

HvX64InterruptTypeExtInt, the

DestinationAddress was non-zero.

HV_STATUS_INVALID_PARAMETER

One or more fields of the specified

interrupt control are invalid or reserved

bits within the interrupt control are set.

The specified destination address is

invalid or is non-zero for an external

interrupt type.

The specified vector is not within a valid

range (0 to 255 inclusive or

HV_INTERRUPT_VECTOR_NONE).

Hypervisor Top Level Functional Specification

 100

Status code Error condition

A non-zero vector is specified with an

interrupt type that is not fixed, lowest-

priority, external, or SIPI.

HV_STATUS_ACKNOWLEDGED An external interrupt cannot be

asserted because a previously-asserted

external interrupt was acknowledged by

the virtual processor and has not yet

been cleared.

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the

“active” state.

HV_STATUS_INVALID_VTL_STATE The VTL state conflicts with the
requested VTL count property change.

 HvSendSyntheticClusterIpi

This hypercall sends a virtual fixed interrupt to the specified virtual processor set. It does not support
NMIs.

Wrapper Interface

HV_STATUS

HvSendSyntheticClusterIpi(

__in UINT32 Vector;

__in HV_INPUT_VTL TargetVtl;

__in UINT64 ProcessorMask;

);

Native Interface

HvSendSyntheticClusterIpi

 Call Code = 0x000b

 Input Parameters

0 Vector (4 bytes) TargetVtl (1 byte) Rsvd (3 bytes)

8 ProcessorMask (8 bytes)

Hypervisor Top Level Functional Specification

 101

Input Parameters

Vector specifies the vector asserted. Must be between >= 0x10 and <= 0xFF.

TargetVtl specifies the VTL to target.

ProcessorMask specifies a mask consisting of HV_VP_INDEX, representing which VPs to target.

Output Parameters

None.

Restrictions

• This hypercall does not support NMI’s (non-maskable interrupts)

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER

One or more fields of the specified

interrupt control are invalid or reserved

bits within the interrupt control are set.

 HvSendSyntheticClusterIpiEx

This hypercall sends a virtual fixed interrupt to the specified virtual processor set. It does not support
NMIs. This version differs from HvSendSyntheticClusterIpi in that a variable sized VP set can be specified.

The following checks should be used to infer the availability of this hypercall:

1. HvSendSyntheticClusterIpi must be available (see section 9.1.3).

2. ExProcessorMasks must be indicated via CPUID leaf 0x40000004 (see 2.4.5)

Wrapper Interface

HV_STATUS

HvSendSyntheticClusterIpiEx(

__in UINT32 Vector;

__in HV_INPUT_VTL TargetVtl;

__in HV_VP_SET ProcessorSet;

);

Native Interface

HvSendSyntheticClusterIpiEx

 Call Code = 0x0015

 Input Parameters

0 Vector (4 bytes) TargetVtl (1 byte) Rsvd (3 bytes)

Hypervisor Top Level Functional Specification

 102

8 ProcessorSet (variably sized)

Input Parameters

Vector specifies the vector asserted. Must be between >= 0x10 and <= 0xFF.

TargetVtl specifies the VTL to target.

ProcessorSet specifies a set consisting of HV_VP_SET representing which VPs to target.

Output Parameters

None.

Restrictions

• This hypercall does not support NMI’s (non-maskable interrupts)

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER

One or more fields of the specified

interrupt control are invalid or reserved

bits within the interrupt control are set.

 HvRetargetDeviceInterrupt

This hypercall retargets a device interrupt, which may be useful for rebalancing IRQs within a guest.

Wrapper Interface

HV_STATUS

HvRetargetDeviceInterrupt(

__in HV_PARTITION_ID PartitionId;

__in UINT64 DeviceId;

__in HV_INTERRUPT_ENTRY InterruptEntry;

__in UINT64 Reserved;

__in HV_DEVICE_INTERRUPT_TARGET InterruptTarget

);

Native Interface

HvRetargetDeviceInterrupt

 Call Code = 0x007e

 Input Parameters

0 PartitionId (8 bytes)

8 DeviceId (8 bytes)

Hypervisor Top Level Functional Specification

 103

16 InterruptEntry (16 bytes)

32

64 Reserved

72 InterruptTarget (16 bytes)

80

Input Parameters

PartitionId: must be HV_PARTITION_SELF (-1)

DeviceId: supplies the unique (within a guest) logical device ID that is assigned by the host.

InterruptEntry: supplies the MSI address and data that identifies the interrupt (see 10.4.6).

InterruptTarget: specifies the new virtual interrupt target (see 10.4.7).

Output Parameters

None.

Restrictions

• Virtual processor indices specified by the processor mask must exist at the time of calling.
Specifying the special “all processors” type is invalid for this hypercall.

• Reserved fields must be 0.

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER

One or more fields of the specified

interrupt control are invalid or reserved

bits within the interrupt control are set.

HV_STATUS_ACCESS_DENIED The caller did not possess sufficient

access rights to perform the requested

operation.

HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid.

HV_STATUS_INVALID_PARTITION_STATE The specified partition is not in the

“active” state.

HV_STATUS_FEATURE_UNAVAILABLE A hypervisor feature is not available to

the caller.

HV_STATUS_INVALID_PARAMETER One or more fields of the specified

interrupt control are invalid or reserved

bits within the interrupt control are set.

Hypervisor Top Level Functional Specification

 104

Status code Error condition

HV_STATUS_INVALID_DEVICE_ID The supplied device ID is invalid.

HV_STATUS_OPERATION_DENIED The operation could not be performed.

(The actual cause depends on the

operation.)

Hypervisor Top Level Functional Specification

 105

11 Inter-Partition Communication

11.1 Overview

The hypervisor provides two simple mechanisms for one partition to communicate with another:
messages and events. In both cases, notification is signaled by using the SynIC (synthetic interrupt
controller).

11.2 SynIC Messages

The hypervisor provides a simple inter-partition communication facility that allows one partition to send
a parameterized message to another partition. (Because the message is sent asynchronously, it is said to
be posted.) The destination partition may be notified of the arrival of this message through an interrupt.

11.3 Message Buffers

A message buffer is used internally to the hypervisor to store a message until it is delivered to the
recipient. The hypervisor maintains several sets of message buffers.

 Guest Message Buffers

The hypervisor maintains a set of guest message buffers for each port. These buffers are used for
messages sent explicitly from one partition to another by a guest. When a port is created, the hypervisor
will allocate sixteen (16) message buffers from the port owner’s memory pool. These message buffers
are returned to the memory pool when the port is deleted.

 Timer Message Buffers

The hypervisor maintains four timer message buffers for each virtual processor (one per synthetic
interrupt timer). They are allocated when a virtual processor is created.

 Intercept Message Buffers

The hypervisor maintains one intercept message buffer for each virtual processor. It is used for
intercepts. The intercept message buffer is allocated when the virtual processor is created.

 Event Log Message Buffers

The hypervisor maintains one event log message buffer for each event log group. It is used to notify the
root partition when one or more event log buffers are full.

 Message Buffer Queues

For each partition and each virtual processor in the partition, the hypervisor maintains one queue of
message buffers for each SINTx (synthetic interrupt source) in the virtual processor’s SynIC. All message
queues of a virtual processor are empty upon creation or reset of the virtual processor.

 Reliability and Sequencing of Guest Message Buffers

Messages successfully posted by a guest have been queued for delivery by the hypervisor. Actual
delivery and reception by the target partition is dependent upon its correct operation. Partitions may
disable delivery of messages to particular virtual processors by either disabling its SynIC or disabling the
SIMP.

Hypervisor Top Level Functional Specification

 106

Breaking a connection will not affect undelivered (queued) messages. Deletion of the target port will
always free all of the port’s message buffers, whether they are available or contain undelivered
(queued) messages.

Messages arrive in the order in which they have been successfully posted. If the receiving port is
associated with a specific virtual processor, then messages will arrive in the same order in which they
were posted. If the receiving port is associated with HV_ANY_VP, then messages are not guaranteed to
arrive in any particular order.

11.4 Messages

When a message is sent, the hypervisor selects a free message buffer. The set of available message
buffers depends on the event that triggered the sending of the message.

The hypervisor marks the message buffer “in use” and fills in the message header with the message
type, payload size, and information about the sender. Finally, it fills in the message payload. The
contents of the payload depend on the event that triggered the message. This document specifies the
payloads of all messages generated by the hypervisor. The payload for messages sent by calling
HvPostMessage must be defined by the caller.

The hypervisor then appends the message buffer to a receiving message queue. The receiving message
queue depends on the event that triggered the sending of the message. For all message types, SINTx is
either implicit (in the case of intercept messages), explicit (in the case of timer messages) or specified by
a port ID (in the case of guest messages). The target virtual processor is either explicitly specified or
chosen by the hypervisor when the message is enqueued. Virtual processors whose SynIC or SIM page
(see section 11.9) is disabled will not be considered as potential targets. If no targets are available, the
hypervisor terminates the operation and returns an error to the caller.

The hypervisor then determines whether the specified SINTx message slot within the SIM page for the
target virtual processor is empty. (See section 11.9 for a description of the SIM page.) If the message
type in the message slot is equal to HvMessageTypeNone (that is, zero), the message slot is assumed to
be empty. In this case, the hypervisor dequeues the message buffer and copies its contents to the
message slot within the SIM page. The hypervisor may copy only the number of payload bytes
associated with the message. The hypervisor also attempts to generate an edge-triggered interrupt for
the specified SINTx. If the APIC is software disabled or the SINTx is masked, the interrupt is lost. The
arrival of this interrupt notifies the guest that a new message has arrived. If the SIM page is disabled or
the message slot within the SIM page is not empty, the message remains queued, and no interrupt is
generated.

As with any fixed-priority interrupt, the interrupt is not acknowledged by the virtual processor until the
PPR (process priority register) is less than the vector specified in the SINTx register and interrupts are
not masked by the virtual processor (rFLAGS[IF] is set to 1).

Multiple message buffers with the same SINTx can be queued to a virtual processor. In this case, the
hypervisor will deliver the first message (that is, write it to the SIM page) and leave the others queued
until one of three events occur:

• Another message buffer is queued.

• The guest indicates the “end of interrupt” by writing to the APIC’s EOI register.

• The guest indicates the “end of message” by writing to the SynIC’s EOM register.

Hypervisor Top Level Functional Specification

 107

In all three cases, the hypervisor will scan one or more message buffer queues and attempt to deliver
additional messages. The hypervisor also attempts to generate an edge-triggered interrupt, indicating
that a new message has arrived.

If a queued message cannot be delivered because the corresponding SIM entry is still in use, the
hypervisor will attempt to deliver it again after an unspecified time (typically on the order of
milliseconds). To avoid this potential latency, software should mark the SIM entry as unused before
indicating an EOI or EOM.

 Recommended Message Handling

The SynIC message delivery mechanism is designed to accommodate efficient delivery and receipt of
messages within a target partition. It is recommended that the message handling ISR (interrupt service
routine) within the target partition perform the following steps:

• Examine the message that was deposited into the SIM message slot.

• Copy the contents of the message to another location and set the message type within the
message slot to HvMessageTypeNone.

• Indicate the end of interrupt for the vector by writing to the APIC’s EOI register.

• Perform any actions implied by the message.

 Message Sources

The classes of events that can trigger the sending of a message are as follows:

• Intercepts: Any intercept in a virtual processor will cause a message to be sent. The message
buffer used is the intercept message buffer of the virtual processor that caused the intercept. The
receiving message queue belongs to SINT0 of a virtual processor that the hypervisor selects non-
deterministically from among the virtual processors of the parent partition. The message payload
describes the event that caused the intercept. If the intercept message buffer is already queued
when an intercept occurs, it is removed from the queue, overwritten, and placed back on the
queue. This should occur only if the software running in the parent partition clears the “suspended
for intercept” register before receiving the intercept message. This situation is considered a
programming error.

• Timers: The timer mechanisms defined in chapter 12 will cause messages to be sent. Associated
with each virtual processor are four dedicated timer message buffers, one for each timer. The
receiving message queue belongs to SINTx of the virtual processor whose timer triggered the
sending of the message.

• Guest messages: The hypervisor supports message passing as an inter-partition communication
mechanism between guests. The interfaces defined in this section allow one guest to send
messages to another guest. The message buffers used for messages of this class are taken from
the receiver’s per-port pool of guest message buffers.

• Event log buffers: The hypervisor will send a message when an event log buffer has been filled.

11.5 SynIC Event Flags

In addition to messages, the SynIC supports a second type of cross-partition notification mechanism
called event flags. Event flags may be set explicitly using the HvSignalEvent hypercall or implicitly by the
hypervisor as a consequence of the monitored notification facility.

Hypervisor Top Level Functional Specification

 108

 Event Flag Delivery

When a partition calls HvSignalEvent, it specifies an event flag number. The hypervisor responds by
atomically setting a bit within the receiving virtual processor’s SIEF page. (See section 11.9 for a detailed
description of the SIEF page.) Virtual processors whose SynIC or SIEF page is disabled will not be
considered as potential targets. If no targets are available, the hypervisor terminates the operation and
returns an error to the caller.

If the event flag was previously cleared, the hypervisor attempts to notify the receiving partition that the
flag is now set by generating an edge-triggered interrupt. The target virtual processor, along with the
target SINTx, is specified as part of a port’s creation. (See the following for information about ports.) If
the SINTx is masked, HvSignalEvent returns HV_STATUS_INVALID_SYNIC_STATE.

As with any fixed-priority external interrupt, the interrupt is not acknowledged by the virtual processor
until the process priority register (PPR) is less than the vector specified in the SINTx register and
interrupts are not masked by the virtual processor (rFLAGS[IF] is set to 1).

 Recommended Event Flag Handling

It is recommended that the event flag interrupt service routine (ISR) within the target partition perform the
following steps:

• Examine the event flags and determine which ones, if any, are set.

• Clear one or more event flags by using a locked (atomic) operation such as LOCK AND or LOCK
CMPXCHG.

• Indicate the end of interrupt for the vector by writing to the APIC’s EOI register.

• Perform any actions implied by the event flags that were set.

 Event Flags versus Messages

Event flags are lighter-weight than messages and are therefore lower overhead. Furthermore, event
flags do not require any buffer allocation or queuing within the hypervisor, so HvSignalEvent will never
fail due to insufficient resources.

11.6 Ports and Connections

A message or event sent from one guest to another must be sent through a pre-allocated connection. A
connection, in turn, must be associated with a destination port.

A port is allocated from the receiver’s memory pool and specifies which virtual processor and SINTx to
target. Event ports have a “base flag number” and “flag count” that allow the caller to specify a range of
valid event flags for that port.

Connections are allocated from the sender’s memory pool. When a connection is created, it must be
associated with a valid port. This binding creates a simple, one-way communication channel. If a port is
subsequently deleted, its connection, while it remains, becomes useless.

11.7 Monitored Notifications

The monitored notification facility (MNF) introduces the concept of shared triggers between two
communicating partitions. MNF uses a port (in the recipient partition) and a connection (in the
originating partition) to establish a hypervisor-monitored, unidirectional notification channel. A monitor
port-and-connection pair alone isn’t enough to form the said notification channel. It needs in addition to

Hypervisor Top Level Functional Specification

 109

be associated with an event connection through the monitored notification parameters in the
monitored notification page

When the channel is created, a monitored notification is established in an overlay page that includes the
following:

• A trigger,

• A latency hint

• A set of input parameters appropriate for the HvSignalEvent hypercall.

After the monitor page is established, the hypervisor periodically examines the trigger at a rate subject
to the latency hint to determine if a notification is warranted. If so, the hypervisor invokes the
HvSignalEvent hypercall internally on behalf of the originating guest. The behavior is the same as if the
originating guest had invoked the HvSignalEvent directly.

 Monitored Notification Trigger

The trigger can be directly accessed by guests without hypervisor intervention. It is set or cleared by the
inter-partition communication code running in the communicating guests. The trigger must be placed in
memory that is shared by the two communicating partitions and the hypervisor.

 Monitored Notification Latency Hint

The latency hint specifies an approximate wait period between hypervisor examinations of the trigger. It
is expressed in 100 nanosecond units. The hypervisor can override the specified latency value if making
it somewhat smaller or larger is more efficient. The hypervisor can also override the specified latency
value if it exceeds minimum or maximum values.

 Monitored Notification Parameters

Each MNF trigger is defined by a set of input parameters compatible with those accepted by an
HvSignalEvent hypercall. These parameters include an event flag number and a connection ID. If the
internal invocation of the HvSignalEvent hypercall fails, the error is discarded and the invocation is
treated as a NOP.

 Monitored Notification Page

Monitored notifications are collected into monitor overlay pages that can be created or deleted only
from a parent partition. The parent partition creates a monitor-page port in the recipient and specifies
the GPA of the recipient’s associated monitor page. The parent subsequently creates a connection to
that the monitor page port in the originator and specifies the GPA of the originator’s associated monitor
page. While each of these two GPAs is partition-specific, the underlying physical page is a common page
that is managed by the hypervisor. Changes to the page are visible from both partitions as well as the
hypervisor.

11.8 SynIC MSRs

In addition to the memory-mapped registers defined for a local APIC, the following model-specific
registers (MSRs) are defined in the SynIC. Each virtual processor has its own copy of these registers, so
they can be programmed independently.

Hypervisor Top Level Functional Specification

 110

MSR Address Register Name Function

0x40000080 SCONTROL SynIC Control

0x40000081 SVERSION SynIC Version

0x40000082 SIEFP Interrupt Event Flags Page

0x40000083 SIMP Interrupt Message Page

0x40000084 EOM End of message

0x40000090 SINT0 Interrupt source 0 (hypervisor)

0x40000091 SINT1 Interrupt source 1

0x40000092 SINT2 Interrupt source 2

0x40000093 SINT3 Interrupt source 3

0x40000094 SINT4 Interrupt source 4

0x40000095 SINT5 Interrupt source 5

0x40000096 SINT6 Interrupt source 6

0x40000097 SINT7 Interrupt source 7

0x40000098 SINT8 Interrupt source 8

0x40000099 SINT9 Interrupt source 9

0x4000009A SINT10 Interrupt source 10

0x4000009B SINT11 Interrupt source 11

0x4000009C SINT12 Interrupt source 12

0x4000009D SINT13 Interrupt source 13

0x4000009E SINT14 Interrupt source 14

0x4000009F SINT15 Interrupt source 15

 SCONTROL Register

63:1 0

RsvdP Enable

Hypervisor Top Level Functional Specification

 111

This register is used to control SynIC behavior of the virtual processor.

Bits Description Attributes

63:1 RsvdP (value must be preserved) Read/write

0 Enable

When set, this virtual processor will allow message

queuing and event flag notifications to be posted to its

SynIC (see chapter 10.5.4 for details). When clear,

message queuing and event flag notifications cannot be

directed to this virtual processor.

Read/write

At virtual processor creation time and upon processor reset, the value of this SCONTROL (SynIC control
register) is 0x0000000000000000. Thus, message queuing and event flag notifications will be disabled.
SVERSION Register

63:32 31:0

Rsvd SynIC Version (0x00000001)

This is a read-only register, and it returns the version number of the SynIC. For the first version of the
hypervisor, the value is 0x00000001. Attempts to write to this register result in a #GP fault.

 SIEFP Register

63:12 11:1 0

SIEFP Base Address RsvdP Enable

Bits Description Attributes

63:12 Base address (in GPA space) of SIEFP

(low 12 bits assumed to be zero)

Read/write

11:1 RsvdP (value should be preserved) Read/write

0 SIEFP enable Read/write

At virtual processor creation time and upon processor reset, the value of this SIEFP (synthetic interrupt
event flags page) register is 0x0000000000000000. Thus, the SIEFP is disabled by default. The guest must
enable it by setting bit 0. If the specified base address is beyond the end of the partition’s GPA space,
the SIEFP page will not be accessible to the guest. When modifying the register, guests should preserve
the value of the reserved bits (1 through 11) for future compatibility.

Hypervisor Top Level Functional Specification

 112

 SIMP Register

63:12 11:1 0

SIMP Base Address RsvdP Enable

Bits Description Attributes

63:12 Base address (in GPA space) of SIMP

(low 12 bits assumed to be zero)

Read/write

11:1 RsvdP (value should be preserved) Read/write

0 SIMP enable Read/write

At virtual processor creation time and upon processor reset, the value of this SIMP (synthetic interrupt
message page) register is 0x0000000000000000. Thus, the SIMP is disabled by default. The guest must
enable it by setting bit 0. If the specified base address is beyond the end of the partition’s GPA space,
the SIMP page will not be accessible to the guest. When modifying the register, guests should preserve
the value of the reserved bits (1 through 11) for future compatibility.

 SINTx Registers

63:19 18 17 16 15:8 7:0

RsvdP Polling AutoEOI Mask RsvdP Vector

Bits Description Attributes

63:19 RsvdP (value should be preserved) Read/write

18 Polling Read/write

17 AutoEOI

Set if an implicit EOI should be performed upon interrupt

delivery

Read/write

16 Set if the SINT is masked Read/write

15:8 RsvdP (value should be preserved) Read/write

7:0 Vector Read/write

At virtual processor creation time, the default value of all SINTx (synthetic interrupt source) registers is
0x0000000000010000. Thus, all synthetic interrupt sources are masked by default. The guest must
unmask them by programming an appropriate vector and clearing bit 16.

Hypervisor Top Level Functional Specification

 113

Setting the polling bit will have the effect of unmasking an interrupt source, except that an actual
interrupt is not generated.

The AutoEOI flag indicates that an implicit EOI should be performed by the hypervisor when an interrupt
is delivered to the virtual processor. In addition, the hypervisor will automatically clear the
corresponding flag in the “in service register” (ISR) of the virtual APIC. If the guest enables this behavior,
then it must not perform an EOI in its interrupt service routine.

The AutoEOI flag can be turned on at any time, though the guest must perform an explicit EOI on an in-
flight interrupt The timing consideration makes it difficult to know whether a particular interrupt needs
EOI or not, so it is recommended that once SINT is unmasked, its settings are not changed.

Likewise, the AutoEOI flag can be turned off at any time, though the same concerns about in-flight
interrupts apply

Valid values for vector are 16-255 inclusive. Specifying an invalid vector number results in #GP.

 EOM Register

63:0

RsvdZ

Bits Description Attributes

63:0 RsvdZ (value should be set to zero) Write-only trigger

A write to the end of message (EOM) register by the guest causes the hypervisor to scan the internal
message buffer queue(s) associated with the virtual processor. If a message buffer queue contains a
queued message buffer, the hypervisor attempts to deliver the message. Message delivery succeeds if
the SIM page is enabled and the message slot corresponding to the SINTx is empty (that is, the message
type in the header is set to HvMessageTypeNone). If a message is successfully delivered, its
corresponding internal message buffer is dequeued and marked free. If the corresponding SINTx is not
masked, an edge-triggered interrupt is delivered (that is, the corresponding bit in the IRR is set).

This register can be used by guests to “poll” for messages. It can also be used as a way to drain the
message queue for a SINTx that has been disabled (that is, masked).

If the message queues are all empty, a write to the EOM register is a no-op.

Reads from the EOM register always returns zeros.

11.9 SIM and SIEF Pages

The SynIC defines two pages that extend the functionality of a traditional APIC. The pages for these two
addresses are specified by the SIEFP register and the SIMP register (see earlier in this specification for
these register formats).

The SIEF and SIM pages are implemented as GPA overlay pages. For a description of overlay pages, see
section 5.2.1.

Hypervisor Top Level Functional Specification

 114

The addresses of the SIEF and SIM pages should be unique for each virtual processor. Programming
these pages to overlap other instances of the SIEF or SIM pages or any other overlay page (for example,
the hypercall page) will result in undefined behavior.

The hypervisor may implement the SIEF and SIM pages so that a SIEF or SIM instance associated with a
virtual processor is not accessible to other virtual processors. In such implementations, an access by one
virtual processor to another virtual processor’s SIEF or SIM page will result in a #MC fault. It is highly
recommended that guests avoid performing such accesses.

Read and write accesses by a virtual processor to the SIEF and SIM pages behave like read and write
accesses to RAM. However, the hypervisor’s SynIC implementation also writes to these pages in
response to certain events.

Upon virtual processor creation and reset, the SIEF and SIM pages are cleared to zero.

The SIEF page consists of a 16-element array of 256-byte event flags (see the following for an
explanation of event flags). Each array element corresponds to a single synthetic interrupt source
(SINTx).

The SIM page consists of a 16-element array of 256-byte messages (see the following HV_MESSAGE data
structure). Each array element (also known as a message slot) corresponds to a single synthetic interrupt
source (SINTx). A message slot is said to be “empty” if the message type of the message in the slot is
equal to HvMessageTypeNone.

11.10 Inter-Partition Communication Data Types

 Synthetic Interrupt Sources

The SynIC supports 16 synthetic interrupt sources.

#define HV_SYNIC_SINT_COUNT 16

typedef UINT32 HV_SYNIC_SINT_INDEX;

Hypervisor Top Level Functional Specification

 115

 SynIC Message Types

SynIC messages encode the message type as a 32-bit number.

typedef enum

{

 HvMessageTypeNone = 0x00000000,

 // Memory access messages

 HvMessageTypeUnmappedGpa = 0x80000000,

 HvMessageTypeGpaIntercept = 0x80000001,

 // Timer notifications

 HvMessageTimerExpired = 0x80000010,

 // Error messages

 HvMessageTypeInvalidVpRegisterValue = 0x80000020,

 HvMessageTypeUnrecoverableException = 0x80000021,

 HvMessageTypeUnsupportedFeature = 0x80000022,

 HvMessageTypeTlbPageSizeMismatch = 0x80000023,

 // Trace buffer messages

 HvMessageTypeEventLogBuffersComplete = 0x80000040,

// Hypercall intercept.

HvMessageTypeHypercallIntercept = 0x80000050,

 // Platform-specific processor intercept messages

 HvMessageTypeX64IoPortIntercept = 0x80010000,

 HvMessageTypeMsrIntercept = 0x80010001,

 HvMessageTypeX64CpuidIntercept = 0x80010002,

HvMessageTypeExceptionIntercept = 0x80010003,

HvMessageTypeX64ApicEoi = 0x80010004,

HvMessageTypeX64LegacyFpError = 0x80010005,

HvMessageTypeRegisterIntercept = 0x80010006,

} HV_MESSAGE_TYPE;

#define HV_MESSAGE_TYPE_HYPERVISOR_MASK 0x80000000

Any message type that has the high bit set is reserved for use by the hypervisor. Guest-initiated
messages cannot send messages with a hypervisor message type.

Hypervisor Top Level Functional Specification

 116

For a complete list of messages sent by the hypervisor, see section Error! Reference source not found..

 SynIC Message Flags

7:1 0

RsvdZ MessagePending

Bits Description Meaning

7:1 RsvdP (value should be set to zero) Reserved

0 MessagePending One or more messages are pending

in the message queue

The MessagePending flag indicates whether or not there are any messages pending in the message
queue of the synthetic interrupt source. If there are, then an “end of message” must be performed by
the guest after emptying the message slot. This allows for opportunistic writes to the EOM MSR (only
when required). Note that this flag may be set by the hypervisor upon message delivery or at any time
afterwards. The flag should be tested after the message slot has been emptied and if set, then there are
one or more pending messages and the “end of message” should be performed.

typedef struct

{

 UINT8 MessagePending:1;

 UINT8 Reserved:7;

} HV_MESSAGE_FLAGS;

 SynIC Message Format

SynIC messages are of fixed size composed of a message header (which includes the message type and
information about where the message originated) followed by the payload. Messages that are sent in
response to HvPostMessage contain the port ID. Intercept messages contain the partition ID of the
partition whose virtual processor generated the intercept. Timer intercepts do not have an origination
ID (that is, the specified ID is zero).

Hypervisor Top Level Functional Specification

 117

#define HV_MESSAGE_SIZE 256

#define HV_MESSAGE_MAX_PAYLOAD_BYTE_COUNT 240

#define HV_MESSAGE_MAX_PAYLOAD_QWORD_COUNT 30

typedef struct

{

 HV_MESSAGE_TYPE MessageType;

 UINT16 Reserved;

 HV_MESSAGE_FLAGS MessageFlags;

 UINT8 PayloadSize;

 union

 {

 UINT64 OriginationId;

 HV_PARTITION_ID Sender;

 HV_PORT_ID Port;

 };

} HV_MESSAGE_HEADER;

typedef struct

{

 HV_MESSAGE_HEADER Header;

 UINT64 Payload[HV_MESSAGE_MAX_PAYLOAD_QWORD_COUNT];

} HV_MESSAGE;

For a detailed description of the messages sent by the hypervisor, see chapter Error! Reference source
not found..

 SynIC Event Flags

SynIC event flags are fixed-size bitwise arrays. They are numbered such that the first byte of the array
contains flags 0 through 7 (0 being the least significant bit) and the second byte of the array contains
flags 8 through 15 (8 being the least significant bit), and so on.

Hypervisor Top Level Functional Specification

 118

#define HV_EVENT_FLAGS_COUNT (256 * 8)

#define HV_EVENT_FLAGS_BYTE_COUNT 256

typedef struct

{

 UINT8 Flags[HV_EVENT_FLAGS_BYTE_COUNT];

} HV_SYNIC_EVENT_FLAGS;

 Ports

Destination ports are identified by 32-bit IDs. The high 8 bits of the ID are reserved and must be zero. All
port IDs are unique within a partition.

typedef union

{

 UINT32 AsUint32;

 struct

 {

 UINT32 Id:24;

 UINT32 Reserved:8;

 };

} HV_PORT_ID;

Three types of ports are supported: message ports, event ports, and monitor ports. Message ports are
valid for use with the HvPostMessage hypercall. Event ports are valid for use with the HvSignalEvent
hypercall. Monitor ports are valid for use with monitor pages that are monitored by the hypervisor and
result in HvSignalEvent-based notifications when appropriate.

enum HV_PORT_TYPE

{

 HvPortTypeMessage = 1,

 HvPortTypeEvent = 2,

 HvPortTypeMonitor = 3

};

When a port is created, the following information is specified.

Hypervisor Top Level Functional Specification

 119

typedef struct

{

 HV_PORT_TYPE PortType;

 UINT32 ReservedZ;

 union

 {

 struct

 {

 HV_SYNIC_SINT_INDEX TargetSint;

 HV_VP_INDEX TargetVp;

 UINT64 ReservedZ;

 } MessagePortInfo;

 struct

 {

 HV_SYNIC_SINT_INDEX TargetSint;

 HV_VP_INDEX TargetVp;

 UINT16 BaseFlagNumber;

 UINT16 FlagCount;

 UINT32 ReservedZ;

 } EventPortInfo;

 struct

 {

 HV_GPA MonitorAddress;

 UINT64 ReservedZ;

 } MonitorPortInfo;

 };

} HV_PORT_INFO;

 Connections

Connections are identified by 32-bit IDs. The high 8 bits are reserved and must be zero. All connection
IDs are unique within a partition.

Hypervisor Top Level Functional Specification

 120

typedef union

{

 UINT32 AsUint32;

 struct

 {

 UINT32 Id:24;

 UINT32 Reserved:8;

 };

} HV_CONNECTION_ID;

The hypervisor does not ascribe special meaning to any connection IDs.

 Connection Information

The following structure contains the information that must be specified when creating a connection:

Hypervisor Top Level Functional Specification

 121

typedef struct

{

 HV_PORT_TYPE PortType;

 UINT32 ReservedZ;

 union

 {

 struct

 {

 UINT64 ReservedZ;

 } MessageConnectionInfo;

 struct

 {

 UINT64 ReservedZ;

 } EventConnectionInfo;

 struct

 {

 HV_GPA MonitorAddress;

 } MonitorConnectionInfo;

 };

} HV_CONNECTION_INFO, *PHV_CONNECTION_INFO;

11.10.8.1 Monitored Notification Trigger Group

The monitored notification triggers group structure defines 32 triggers per group. The structure has the
following format:

Hypervisor Top Level Functional Specification

 122

typedef struct

{

 UINT64 AsUINT64;

 struct

 {

 UINT32 Pending;

 UINT32 Armed;

 };

} HV_MONITOR_TRIGGER_GROUP, *PHV_MONITOR_TRIGGER_GROUP;

The 32 triggers are represented by two related arrays of bits: Pending and Armed. Setting a trigger bit to
1in the Pending array indicates to the hypervisor that the related notification should eventually generate
a signal event. The corresponding bit in the Armed array should be set to 0 whenever the matching
Pending bit is modified. The Armed bit is used to ensure that a notification is deferred by at least the
latency specified for the notification. Both of these bits must be updated atomically.

11.10.8.2 Monitored Notification Parameters

Each trigger has a set of associated notification parameters that are used by the hypervisor as inputs to
the implicit HvSignalEvent hypercall that the hypervisor invokes when appropriate. The parameter
structure has the following format:

typedef struct

{

 HV_CONNECTION_ID ConnectionId;

 UINT16 FlagNumber;

 UINT16 ReservedZ;

} HV_MONITOR_PARAMETER, *PHV_MONITOR_PARAMETER;

When the hypervisor detects that a monitored notification is pending, it signals the event by making an
internal call to the HvSignalEvent hypercall and passing it the ConnectionID and FlagNumber members.
If signaling an event causes an error, the error is discarded; that is, the internal HvSignalEvent call
becomes a NOP.

 Monitored Notification Page

Monitored notifications are defined in a MNF overlay page, which supports four sets of monitored
notification trigger groups. Each individual 32-bit group can be enabled independently using the
following structure:

Hypervisor Top Level Functional Specification

 123

typedef union

{

 UINT32 AsUINT32;

 struct

 {

 UINT32 GroupEnable:4;

 UINT32 MonitorDisabled:1;

 UINT32 ReservedZ:27;

 };

} HV_MONITOR_TRIGGER_STATE, *PHV_MONITOR_TRIGGER_STATE;

GroupEnable and MonitorDisabled are described below.

The MNF overlay page has the following format:

typedef struct

{

 HV_MONITOR_TRIGGER_STATE TriggerState;

 UINT32 Reserved1;

 HV_MONITOR_TRIGGER_GROUP TriggerGroup[4];

 UINT8 Reserved2[536];

 UINT16 Latency[4][32];

 UINT8 Reserved3[256];

 HV_MONITOR_PARAMETER Parameter[4][32];

 UINT8 Reserved4[1984];

} HV_MONITOR_PAGE, *PHV_MONITOR_PAGE;

typedef volatile HV_MONITOR_PAGE *PVHV_MONITOR_PAGE;

TriggerState contains the GroupEnable and MonitorDisabled flags. The GroupEnable flags are an array of
4 bits, each associated with a trigger group. If GroupEnable[n] is set to one, the corresponding
TriggerGroup[n] is enabled. Although the GroupEnable flags can be changed at any time, they are
intended to be semi-static and are typically used to drain pending notifications during a save or restore
process. The hypervisor inspects the group enable flags at varying rates. If they are all disabled (set to
zero), the hypervisor might significantly reduce its inspection rate. The hypervisor inspects all of the

Hypervisor Top Level Functional Specification

 124

enabled monitored notifications approximately at the lowest latency value specified for the monitors of
each group.

The MonitorDisabled flag is set when the hypervisor is temporarily not monitoring the monitor page. If
the caller observes this condition, it may trigger the read of the page by calling the HVSignalEvent
hypercall.

TriggerGroup is an array of four trigger group structures. For details, see section 11.10.8.1.

Latency is a hint; suggesting how often the hypervisor should inspect the monitored notifications. The
hypervisor might adjust it to be smaller or larger than this value if doing so is either more efficient or to
conform to implementation-specific limitations. Latency is specified in 100-nanosecond units.

Parameter is an array of notification parameters, one per trigger. The hypervisor can monitor up to 128
notifications in groups of 32. For details, see section 11.10.8.2 .

The Reservedn bits are reserved for use by the hypervisor. Changing their value is boundedly undefined.

11.11 Inter-Partition Communication Interfaces

 HvPostMessage

The HvPostMessage hypercall attempts to post (that is, send asynchronously) a message to the specified
connection, which has an associated destination port.

Hypervisor Top Level Functional Specification

 125

Wrapper Interface

HV_STATUS

HvPostMessage(

 __in HV_CONNECTION_ID ConnectionId,

 __in HV_MESSAGE_TYPE MessageType,

 __in UINT32 PayloadSize,

 __in_ecount(PayloadSize)

 PCVOID Message

);

Native Interface

HvPostMessage

 Call Code = 0x005C

 Input Parameters

0 ConnectionId (4 bytes) Padding (4 bytes)

8 MessageType (4 bytes) PayloadSize (4 bytes)

16 Message[0] (8 bytes)

…

...

248 Message[29] (8 bytes)

Description

If the message is successfully posted, then it will be queued for delivery to a virtual processor within the
partition associated with the port.

For details about message delivery, see section 10.5.4.

Input Parameters

ConnectionId specifies the ID of the connection created by calling HvConnectPort.

MessageType specifies the message type that will appear within the message header. The caller can
specify any 32-bit message type whose most significant bit is cleared, with the exception of zero.
Message types with the high bit set are reserved for use by the hypervisor.

PayloadSize specifies the number of bytes that are included in the message.

Message specifies the payload of the message—up to 240 bytes total. Only the first n bytes are
actually sent to the destination partition, where n is provided in the PayloadSize parameter.

Output Parameters

None.

Hypervisor Top Level Functional Specification

 126

Restrictions

• The partition that is the target of the connection must be in the “active” state.

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller’s partition does not

possess the PostMessages privilege.

HV_STATUS_INVALID_CONNECTION_ID The specified connection ID is

invalid.

HV_STATUS_INVALID_PORT_ID The port associated with the

specified connection has been

deleted.

The port associated with the

specified connection belongs to a

partition that is not in the “active”

state.

The port associated with the

specified connection is not a

"message" type port.

HV_STATUS_INVALID_PARAMETER

The most significant bit of the

specified message type is set.

The MessageType parameter

specifies a value of zero.

The specified payload size exceeds

240 bytes.

HV_STATUS_INSUFFICIENT_BUFFERS The port has no available guest

message buffers.

HV_STATUS_INVALID_VP_INDEX The target VP no longer exists or

there are no available VPs to which

the message can be posted.

HV_STATUS_INVALID_SYNIC_STATE The target VP’s SynIC is disabled and

cannot accept posted messages. For

ports targeted at HV_ANY_VP, this

indicates that the SynIC of all of the

partition’s VPs are disabled.

Hypervisor Top Level Functional Specification

 127

Status code Error condition

The target VP’s SIM page is disabled.

For ports targeted at HV_ANY_VP,

this indicates that the SIM page of

all of the partition’s VPs are

disabled.

 HvSignalEvent

The HvSignalEvent hypercall signals an event in a partition that owns the port associated with the
specified connection.

Wrapper Interface

HV_STATUS

HvSignalEvent(

 __in HV_CONNECTION_ID ConnectionId,

 __in UINT16 FlagNumber

);

Native Interface

HvSignalEvent

 Call Code = 0x005D

 Input Parameter Header

0 ConnectionId

(4 bytes)

FlagNumber

(2 bytes)

RsvdZ

(2 bytes)

Description

The event is signaled by setting a bit within the SIEF page of one of the receive partition’s virtual
processors.

The caller specifies a relative flag number. The actual SIEF bit number is calculated by the hypervisor by
adding the specified flag number to the base flag number associated with the port.

Input Parameters

ConnectionId specifies the ID of the connection.

FlagNumber specifies the relative index of the event flag that the caller wants to set within the target
SIEF area. This number is relative to the base flag number associated with the port.

Output Parameters

None.

Hypervisor Top Level Functional Specification

 128

Restrictions

• The partition that is the target of the connection must be in the “active” state.

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller’s partition does not possess the

SignalEvents privilege.

HV_STATUS_INVALID_CONNECTION_ID The specified connection ID is invalid.

HV_STATUS_INVALID_PORT_ID The port associated with the specified

connection has been deleted.

The port associated with the specified

connection belongs to a partition that is

not in the “active” state.

The port associated with the specified

connection is not an "event" type port.

HV_STATUS_INVALID_PARAMETER The specified flag number is greater than

or equal to the port’s flag count.

HV_STATUS_INVALID_VP_INDEX The target VP no longer exists or there

are no available VPs to which the

message can be posted.

HV_STATUS_INVALID_SYNIC_STATE The target VP’s SynIC is disabled and

cannot accept signaled events. For ports

targeted at HV_ANY_VP, this indicates

that the SynIC of all of the partition’s VPs

are disabled.

The target VP’s SIEF page is disabled. For

ports targeted at HV_ANY_VP, this

indicates that the SIEF page of all of the

partition’s VPs are disabled.

The target SINTx is masked.

Hypervisor Top Level Functional Specification

 129

12 Timers

12.1 Overview

 Timer Services

The hypervisor provides simple timing services. These are based on a constant-rate reference time
source (typically the ACPI timer on x64 systems).

The following timer services are provided:

• A per-partition reference time counter.

• Four synthetic timers per virtual processor. Each synthetic timer is a single-shot or periodic
timer that delivers a message when it expires.

• One virtual APIC timer per virtual processor.

• Two timer assists: an emulated periodic timer and a PM Timer assist.

• A partition reference time enlightenment, based on the host platform’s support for an Invariant
Time Stamp Counter (iTSC).

 Reference Counter

The hypervisor maintains a per-partition reference time counter. It has the characteristic that successive
accesses to it return strictly monotonically increasing (time) values as seen by any and all virtual
processors of a partition. Furthermore, the reference counter is rate constant and unaffected by
processor or bus speed transitions or deep processor power savings states. A partition’s reference time
counter is initialized to zero when the partition is created. The reference counter for all partitions count
at the same rate, but at any time, their absolute values will typically differ because partitions will have
different creation times.

The reference counter continues to count up as long as at least one virtual processor is not explicitly
suspended.

 Synthetic Timers

Synthetic timers provide a mechanism for generating an interrupt after some specified time in the
future. Both one-shot and periodic timers are supported. A synthetic timer sends a message to a
specified SynIC SINTx (synthetic interrupt source) upon expiration.

The hypervisor guarantees that a timer expiration signal will never be delivered before the expiration
time. The signal may arrive any time after the expiration time.

 Periodic Timers

The hypervisor attempts to signal periodic timers on a regular basis.

For example, if a timer has a requested period of 1ms, here is the idealized schedule for timer expiration
notifications:

However, if the virtual processor used to signal the expiration is not available, some of the timer
expirations may be delayed. A virtual processor may be unavailable because it is suspended (for

Time (1ms
Timer Expiration Signals

Hypervisor Top Level Functional Specification

 130

example, during intercept handling) or because the hypervisor’s scheduler decided that the virtual
processor should not be scheduled on a logical processor (for example, because another virtual
processor is using the logical processor or the virtual processor has exceeded its quota).

The shaded portions of the following diagram show periods of inactivity during which a periodic timer
expiration signal could not be delivered. Consequently, the signal is deferred until the virtual processor
becomes available.

If a virtual processor is unavailable for a sufficiently long period of time, a full timer period may be
missed. In this case, the hypervisor uses one of two techniques. The first technique involves timer period
modulation, in effect shortening the period until the timer “catches up”.

The following diagram shows the period modulation technique.

If a significant number of timer signals have been missed, the hypervisor may be unable to compensate
by using period modulation. In this case, some timer expiration signals may be skipped completely.

For timers that are marked as lazy, the hypervisor uses a second technique for dealing with the situation
in which a virtual processor is unavailable for a long period of time. In this case, the timer signal is
deferred until this virtual processor is available. If it doesn’t become available until shortly before the
next timer is due to expire, it is skipped entirely.

The following diagram shows the lazy timer technique.

 Ordering of Timer Expirations

Synthetic and virtualized timers generate interrupts at or near their designated expiration time. Due to
hardware and other scheduling interactions, interrupts could potentially be delayed. No ordering may
be assumed between any set of timers.

12.2 Direct Synthetic Timers

“Direct” synthetic timers assert an interrupt upon timer expiration instead of sending a message to a
SynIc synthetic interrupt source (see Section 12.1.3 for more about synthetic timers).

A synthetic timer is set to “direct” mode by setting the “DirectMode” field of the
HV_X64_MSR_STIMER_CONFIG_CONTENTS MSR. The “ApicVector” field controls the interrupt vector
that is asserted upon timer expiration.

Hypervisor Top Level Functional Specification

 131

typedef struct {
 union
 {
 UINT64 AsUINT64;
 struct
 {
 UINT64 Enable : 1;
 UINT64 Periodic : 1;
 UINT64 Lazy : 1;
 UINT64 AutoEnable : 1;
 UINT64 ApicVector : 8;
 UINT64 DirectMode : 1;
 UINT64 ReservedZ1 : 3;
 UINT64 SINTx : 4;
 UINT64 ReservedZ2 :44;
 };
 };
} HV_X64_MSR_STIMER_CONFIG_CONTENTS;

12.3 Partition Reference Time Enlightenment

The partition reference time enlightenment presents a reference time source to which does not require
an intercept into the hypervisor. This enlightenment is available only when the underlying platform
provides support of an invariant processor Time Stamp Counter (TSC), or iTSC. In such platforms, the
processor TSC frequency remains constant irrespective of changes in the processor’s clock frequency
due to the use of power management states such as ACPI processor performance states, processor idle
sleep states (ACPI C-states), etc.

The partition reference time enlightenment uses a virtual TSC value, an offset and a multiplier to enable
a guest partition to compute the normalized reference time since partition creation, in 100nS units. The
mechanism also allows a guest partition to atomically compute the reference time when the guest
partition is migrated to a platform with a different TSC rate, and provides a fallback mechanism to
support migration to platforms without the constant rate TSC feature.

This facility is not intended to be used a source of wall clock time, since the reference time computed
using this facility will appear to stop during the time that a guest partition is saved until the subsequent
restore.

12.4 Partition Reference Counter MSR

A partition’s reference counter is accessed through a partition-wide MSR.

MSR Address Register Name Function

0x40000020 HV_X64_MSR_TIME_REF_COUNT Time reference count (partition-

wide)

 Reference Counter MSR

63:0

Count

Hypervisor Top Level Functional Specification

 132

Bits Description Attributes

63:0 Count—Partition’s reference counter value in 100

nanosecond units

Read-only

When a partition is created, the value of the TIME_REF_COUNT MSR is set to 0x0000000000000000.
This value cannot be modified by a virtual processor. Any attempt to write to it results in a #GP fault.

12.5 Synthetic Timer MSRs

Synthetic timers are configured by using model-specific registers (MSRs) associated with each virtual
processor. Each of the four synthetic timers has an associated pair of MSRs.

MSR

address
Register name Function

0x400000B0 HV_X64_MSR_STIMER0_CONFIG Configuration register for synthetic

timer 0

0x400000B1 HV_X64_MSR_STIMER0_COUNT Expiration time or period for

synthetic timer 0

0x400000B2 HV_X64_MSR_STIMER1_CONFIG Configuration register for synthetic

timer 1

0x400000B3 HV_X64_MSR_STIMER1_COUNT Expiration time or period for

synthetic timer 1

0x400000B4 HV_X64_MSR_STIMER2_CONFIG Configuration register for synthetic

timer 2

0x400000B5 HX_X64_MSR_STIMER2_COUNT Expiration time or period for

synthetic timer 2

0x400000B6 HV_X64_MSR_STIMER3_CONFIG Configuration register for synthetic

timer 3

0x400000B7 HV_X64_MSR_STIMER3_COUNT Expiration time or period for

synthetic timer 3

 Synthetic Timer Configuration Register

63:20 19:16 15:4 3 2 1 0

RsvdZ SINTx RsvdZ
Auto

Enable
Lazy Periodic Enable

Hypervisor Top Level Functional Specification

 133

Bits Description Attributes

63:20 RsvdZ (value should be set to zero) Read/write

19:16 SINTx—synthetic interrupt source Read/write

15:3 RsvdZ (value should be set to zero) Read/write

3 AutoEnable—set if writing the corresponding counter

implicitly causes the counter to be enabled, cleared if not

Read/write

2 Lazy—set if timer is lazy, cleared if not Read/write

1 Periodic—set if timer is periodic, cleared if one-shot Read/write

0 Enable—set if timer is enabled Read/write

When a virtual processor is created and reset, the value of all HV_X64_MSR_STIMERx_CONFIG
(synthetic timer configuration) registers is set to 0x0000000000000000. Thus, all synthetic timers are
disabled by default.

If AutoEnable is set, then writing a non-zero value to the corresponding count register will cause Enable
to be set and activate the counter. Otherwise, Enable should be set after writing the corresponding
count register in order to activate the counter. For information about the Count register, see the
following section.

When a one-shot timer expires, it is automatically marked as disabled. Periodic timers remain enabled
until explicitly disabled.

If a one-shot is enabled and the specified count is in the past, it will expire immediately.

It is not permitted to set the SINTx field to zero for an enabled timer. If attempted, the timer will be
marked disabled (that is, bit 0 cleared) immediately.

Writing the configuration register of a timer that is already enabled may result in undefined behavior.
For example, merely changing a timer from one-shot to periodic may not produce what is intended.
Timers should always be disabled prior to changing any other properties.

 Synthetic Timer Count Register

63:0

Count

Bits Description Attributes

63:0 Count—expiration time for one-shot timers, duration for

periodic timers

Read/write

Hypervisor Top Level Functional Specification

 134

The value programmed into the Count register is a time value measured in 100 nanosecond units.
Writing the value zero to the Count register will stop the counter, thereby disabling the timer,
independent of the setting of AutoEnable in the configuration register.

Note that the Count register is permitted to wrap. Wrapping will have no effect on the behavior of the
timer, regardless of any timer property.

For one-shot timers, it represents the absolute timer expiration time. The timer expires when the
reference counter for the partition is equal to or greater than the specified count value.

For periodic timers, the count represents the period of the timer. The first period begins when the
synthetic timer is enabled.

12.6 Partition Reference Time Enlightenment

The hypervisor provides a partition-wide virtual reference TSC page which is overlaid on the partition’s
GPA space. A partition’s reference time stamp counter page is accessed through the Reference TSC MSR.
A partition which possesses the AccessPartitionReferenceTsc privilege may access the reference TSC
MSR.

 Reference Time Stamp Counter (TSC) Page MSR

A guest wishing to access its reference TSC page must use the following model-specific register (MSR).

MSR Address Register Name Function

0x40000021 HV_X64_MSR_REFERENCE_TSC Time reference count (partition-

wide)

The format of the Reference TSC MSR is as follows:

63:12 11:1 0

 GPA Page Number RsvdP Enable

Bits Description Attributes

63:12 GPA Page Number Read/write

11:1 RsvdP (value should be preserved) Read/write

0 Enable—set if reference TSC is enabled Read/write

At the guest partition creation time, the value of the reference TSC MSR is 0x0000000000000000. Thus,
the reference TSC page is disabled by default. The guest must enable the reference TSC page by setting
bit 0. If the specified base address is beyond the end of the partition’s GPA space, the reference TSC
page will not be accessible to the guest. When modifying the register, guests should preserve the value
of the reserved bits (1 through 11) for future compatibility.

Hypervisor Top Level Functional Specification

 135

Restrictions

The caller must possess the AccessPartitionReferenceTsc privilege.

 Format of the Reference TSC Page

The reference TSC page is defined using the following structure:

typedef struct _HV_REFERENCE_TSC_PAGE

{

 volatile UINT32 TscSequence;

 UINT32 Reserved1;

 volatile UINT64 TscScale;

 volatile INT64 TscOffset;

 UINT64 Reserved2[509];

} HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE;

 Partition Reference TSC Mechanism

The partition reference time is computed by the following formula:

ReferenceTime = ((VirtualTsc * TscScale) >> 64) + TscOffset

The multiplication is a 64 bit multiplication, which results in a 128 bit number which is then shifted 64
times to the right to obtain the high 64 bits.TscScale

The TscScale value is used to adjust the Virtual TSC value across migration events to mitigate TSC
frequency changes from one platform to another.TscSequence

The TscSequence value is used to synchronize access to the enlightened reference time if the scale
and/or the offset fields are changed during save/restore or live migration. This field serves as a
sequence number which is incremented whenever the scale and/or the offset fields are modified. A
special value of 0x0 is used to indicate that this facility is no longer a reliable source of reference time
and the VM must fall back to a different source.Reference TSC during Save/Restore and Migration

To address migration scenarios to physical platforms which do not support iTSC, the TscSequence field is
used. In the event a guest partition is migrated from an iTSC capable host to a non-iTSC capable host,
the hypervisor sets TscSequence to the special value of 0x0, which directs the guest operating system to
fall back to a different clock source. The recommended code for computing the partition reference time
using this enlightenment is shown below:

Hypervisor Top Level Functional Specification

 136

do {

 StartSequence = ReferenceTscPage->TscSequence;

 if (StartSequence == 0) {

// 0 means that the Reference TSC enlightenment is not available at

// the moment, and the Reference Time can only be obtained from

// reading the Reference Counter MSR.

 ReferenceTime = rdmsr(HV_X64_MSR_TIME_REF_COUNT);

 return ReferenceTime;

 }

 Tsc = rdtsc();

// Assigning Scale and Offset should niether happen before

// setting StartSequence, nor after setting EndSequence.

 Scale = ReferenceTscPage->TscScale;

 Offset = ReferenceTscPage->TscOffset;

 EndSequence = ReferenceTscPage->TscSequence;

} while (EndSequence != StartSequence);

// The result of the multiplication is treated as a 128-bit value.

ReferenceTime = ((Tsc * Scale) >> 64) + Offset;

return ReferenceTime;

Hypervisor Top Level Functional Specification

 137

13 Message Formats

13.1 Overview

The hypervisor supports a simple message-based inter-partition communication mechanism. Messages
can be sent by the hypervisor to a partition or can be sent from one partition to another. This section
describes all of the messages sent by the hypervisor.

Each message has a message type, a source partition, and a message payload. For a complete list of
message types, see chapter 10.5.4. The format of the message payload depends on the message type.

The messages sent by the hypervisor fall into the following categories:

• Memory access messages (unmapped GPA, GPA access violations, and so on.)

• Processor intercepts

• Error messages

• Timer notifications

• Event log events

13.2 Message Data Types

Intercept messages are delivered by the SynIC. For a description of SynIC messages, including the
message header layout, see chapter 10.5.4.

 Message Header

Each message begins with a common message header. The significant fields are the MessageType,
PayloadSize and the OriginationId (the source of the message). It is important to note that the payload
size reflects only the size of the data and does not include the message header. The message header is
described in section 11.10.4.

 Intercept Message Header

All x64 memory access messages and processor intercept messages contain a common payload header.
This header contains information about the state of the virtual processor at the time of the intercept,
making it easier for the recipient of the message to complete the intercepted instruction in software.

typedef struct
{
 HV_VP_INDEX VpIndex;
 UINT8 InstructionLength;
 HV_INTERCEPT_ACCESS_TYPE_MASK InterceptAccessType;
 HV_X64_VP_EXECUTION_STATE ExecutionState;
 HV_X64_SEGMENT_REGISTER CsSegment;
 UINT64 Rip;
 UINT64 Rflags;
} HV_X64_INTERCEPT_MESSAGE_HEADER;

VpIndex indicates the index of the virtual processor that generated the intercept.

InstructionLength indicates the byte length of the instruction that generated the intercept. If the
instruction length is unknown, a length of zero is reported, and the recipient of the message must fetch

Hypervisor Top Level Functional Specification

 138

and decode the instruction to determine its length. The hypervisor guarantees that it will fill in the
correct instruction length for CPUID, I/O port, and MSR intercepts.

InterceptAccessType indicates the access type (read, write, or execute) of the event that triggered the
intercept.

ExecutionState provides miscellaneous information about the virtual processor’s state at the time the
intercept was triggered.

CsSegment provides information about the code segment at the time the intercept was triggered.

Rip provides the instruction pointer at the time the intercept was triggered.

Rflags provides the flags register at the time the intercept was triggered.

 VP Execution State

The execution state is a collection of flags that specify miscellaneous states of the virtual processor.

typedef struct
{
 UINT16 Cpl:2;
 UINT16 Cr0Pe:1;
 UINT16 Cr0Am:1;
 UINT16 EferLma:1;
 UINT16 DebugActive:1;
 UINT16 InterruptionPending:1;
 UINT16 Reserved:4;
 UINT16 Reserved:5;
} HV_X64_VP_EXECUTION_STATE;

Cpl indicates the current privilege level at the time of the intercept. Real mode has an implied CPL of 0,
and v86 has an implied CPL of 3. In other modes, the CPL is defined by the low-order two bits of the
code segment (CS).

Cr0Pe indicates whether the processor is executing within protected mode.

Cr0Am indicates whether alignment must be checked for non-privileged accesses.

EferLma indicates whether the processor is executing within long mode (64-bit mode).

DebugActive indicates that one or more debug registers are marked as active, so the recipient of the
message may need to perform additional work to correctly emulate the behavior of the debug
breakpoint facilities.

InterruptionPending indicates that the intercept was generated while delivering an interruption. The
interruption is held pending and, unless removed, will be re-delivered when the virtual processor is
resumed. For a description of the Pending Interruption register, see section 7.9.3.

 I/O Port Access Information

On x64 platforms, I/O port access messages include a collection of flags that provide information about
the memory access.

Hypervisor Top Level Functional Specification

 139

typedef struct
{
 UINT8 AccessSize:3;
 UINT8 StringOp:1;
 UINT8 RepPrefix:1;
 UINT8 Reserved:3;
} HV_X64_IO_PORT_ACCESS_INFO;

AccessSize indicates the size of the access. The following encodings are used: 001b = 8 bits; 010b = 16
bits; 100b = 32 bits. All other combinations are reserved.

StringOp indicates that the instruction is a string form (INS or OUTS).

RepPrefix indicates that the instruction has a “rep” prefix. This flag is used only for string operations.

 Exception Information

On x64 platforms, exception intercept messages include a collection of flags that provide information
about the exception.

typedef struct
{
 UINT8 ErrorCodeValid:1;
 UINT8 Reserved:7;
} HV_X64_EXCEPTION_INFO;

ErrorCodeValid indicates that the error code field in the exception message is valid.

 Memory Access Flags

Memory intercept messages include a collection of flags that provide information about the intercept.

typedef struct
{
 UINT8 GvaValid:1;
 UINT8 Reserved:7;
} HV_X64_MEMORY_ACCESS_INFO;

GvaValid indicates that the Gva field of the memory access message contains a valid guest virtual
address.

13.3 Timer Messages

 Timer Expiration Message

Timer expiration messages are sent when a timer event fires.

M
es

sa
ge

 H
ea

d
er

0 MessageType (4 bytes) Rsvd (3 bytes) PayloadSize

(1 byte)

8 Rsvd (8 bytes)

Hypervisor Top Level Functional Specification

 140

Ti
m

er
 E

xp
ir

at
io

n

P
ay

lo
ad

16 TimerIndex (4 bytes) Rsvd (4 bytes)

24 ExpirationTime (8 bytes)

32 DeliveryTime (8 bytes)

TimerIndex is the index of the synthetic timer (0 through 3) that generated the message. This allows a
client to configure multiple timers to use the same interrupt vector and differentiate between their
messages.

ExpirationTime is the expected expiration time of the timer measured in 100-nanosecond units by using
the time base of the partition’s reference time counter. Note that the expiration message may arrive
after the expiration time.

DeliveryTime is the time when the message is placed into the respective message slot of the SIM page.
The time is measured in 100-nanosecond units based on the partition’s reference time counter.

Hypervisor Top Level Functional Specification

 141

14 Scheduler

14.1 Scheduling Concepts

The hypervisor schedules virtual processors to run on logical processors.

The hypervisor scheduler makes scheduling decisions based on these policy settings set by the root.
Because these decisions are made at discreet times, not continuously, the policies are guaranteed only
over a sufficiently long period of time. This time is purposely undefined but will typically be on the order
of hundredths of a second.

14.2 Scheduling Policy Settings

Various schedule policy settings can be set by the root partition administrator. These include:

• CPU Reserve

• CPU Cap

• CPU Weight

Each of these is described in more detail in the following sections.

 CPU Reserve

A CPU reserve can be supplied for each partition. The hypervisor guarantees that this fraction of CPU
time is available to each virtual processor within the partition as needed. It does not necessarily mean
that the virtual processors will consume the entire reserve. If they are idle or waiting on hypervisor
work, other virtual processors may consume the available processor cycles.

The CPU reserve is specified as a fraction of a logical processor’s capacity. A reserve value of 0.5
indicates that 50% of a logical processor is reserved for each virtual processor in the partition. Valid
reserve values range from 0 (no reserve) to 1 (in which case each virtual processor is guaranteed to get
100% of a logical processor if required). The reserve value may not be greater than the CPU Cap (see
section 14.2.2).

The reserve value is expressed as an integer ranging from 0x00000000 to 0x00010000. For example, the
value 0x0000C000 indicates 0.75, or 75% of a logical processor. By default, a partition’s reserve is set to
0x00000000, indicating that there is no reserve.

The total reserves for all virtual processors cannot exceed the number of logical processors in the
system. Reserves are not guaranteed if the number of virtual processors in a partition exceeds the
number of logical processors that are available for scheduling.

If the number of virtual processors in a partition is greater than the number of logical processors, then
reserves are not guaranteed, and the partition’s reserve may be reset to zero.

 CPU Cap

A CPU cap can be specified for each partition. The hypervisor guarantees that the fraction of CPU time
consumed by each virtual processor within the partition will not exceed this cap.

The CPU cap is specified as a fraction of a logical processor’s capacity. A cap value of 0.5 indicates that
each virtual processor will be restricted to using 50% of a logical processor. Valid cap values range from
0 to 1 (in which case the cap has no effect).

Hypervisor Top Level Functional Specification

 142

The CPU cap value may not be less than the CPU reserve (see section Error! Reference source not
found.).

The cap value is expressed as an integer ranging from 0x00000000 to 0x00010000. For example, the
value 0x0000C000 indicates 0.75, or 75% of a logical processor.

By default, a partition’s cap is set to 0x00010000, indicating that there is no cap.

 CPU Weight

The CPU weight is a relative weight assigned to each of the virtual processors of the partition. Unless
otherwise constrained by reserves and caps, the scheduler will attempt to weight the run time of the
virtual processors scheduled on a given logical processor according to their relative weights. Let’s
consider the case where three partitions, each with one virtual processor are being scheduled on a
single logical processor, their weights are 100, 200 and 700, no reserves or caps are in effect, and all
three of the virtual processors have work to perform (that is, they are not idle). In this case, the fraction
of physical CPU capacity provided to the three virtual processors would be approximately 10%, 20%, and
70%.

The CPU weight value is expressed as a decimal value from 1 to 10,000 where 100 (the geometric mean)
is the typical value.

By default, a partition’s weight is set to 100.

14.3 Other Scheduling Considerations

 Hyperthreading

Multiple virtual processors can optionally be grouped together and scheduled onto hyperthreads within
a single physical processor core. In effect, these virtual processors then act like virtual hyperthreads.
When virtual processors are grouped as such, the hypervisor tries to schedule them concurrently on the
same physical processor core. This scheduling behavior potentially improves performance and reduces
information leakage across partition boundaries.

 NUMA and Affinity

When a virtual processor is run-able, the hypervisor’s scheduler assigns it to a logical processor. The
placement is determined based on a variety of factors including workload, reservations, and NUMA
topology. In general, the scheduler will attempt to keep a virtual processor scheduled on a logical
processor that is topologically closest to the memory being accessed by the virtual processor, in effect
minimizing memory access times.

The scheduler also attempts to create as much temporal affinity as possible. That is, it will prefer to run
a virtual processor on the same logical processor each time it is scheduled. If the logical processor is
oversubscribed, the scheduler may move it to another logical processor.

 Guest Spinlocks

A typical multiprocessor-capable operating system uses locks for enforcing atomicity of certain
operations. When running such an operating system inside a virtual machine controlled by the
hypervisor these critical sections protected by locks can be extended by intercepts generated by the
critical section code. The critical section code may also be preempted by the hypervisor scheduler.
Although the hypervisor attempts to prevent such preemptions, they can occur. Consequently, other
lock contenders could end up spinning until the lock holder is re-scheduled again and therefore

Hypervisor Top Level Functional Specification

 143

significantly extend the spinlock acquisition time. The hypervisor indicates to the guest OS the number
of times a spinlock acquisition should be attempted before indicating an excessive spin situation to the
hypervisor. This count is returned in CPUID leaf 0x40000004.

The HvNotifyLongSpinWait hypercall provides an interface for enlightened guests to improve the
statistical fairness property of a lock for multiprocessor virtual machines. Through this hypercall, a guest
notifies the hypervisor of a long spinlock acquisition. This allows the hypervisor to make better
scheduling decisions.

14.4 Scheduler Data Types

The following data types support the scheduler interfaces.

typedef UINT64 HV_INPUT_NOTIFY_LONG_SPINWAIT ;

typedef HV_INPUT_NOTIFY_LONG_SPINWAIT, *PHV_INPUT_NOTIFY_LONG_SPINWAIT;

14.5 Scheduler Interfaces

 HvNotifyLongSpinWait

The HvNotifyLongSpinWait hypercall is used by a guest OS to notify the hypervisor that the calling virtual
processor is attempting to acquire a resource that is potentially held by another virtual processor within
the same partition. This scheduling hint improves the scalability of partitions with more than one virtual
processor.

Wrapper Interface

HV_STATUS

HvNotifyLongSpinWait(

 _in HV_INPUT_NOTIFY_LONG_SPINWAIT SpinwaitInfo

);

Native Interface

HvNotifyLongSpinWait [fast]

 Call Code = 0x0008

 Input Parameters

0 SpinwaitInfo (4 bytes) Padding (4 bytes)

Description

The HvNotifyLongSpinWait hypercall allows a partition to inform the Hypervisor of a long spinlock
acquire failure. The hypervisor can use this information to make better scheduling decisions for the
notifying virtual processor and its partition.

Input Parameters

Hypervisor Top Level Functional Specification

 144

SpinwaitInfo – Specifies the accumulated count the guest was spinning.

Output Parameters

None.

Restrictions

None.

Return Values

There is no error status for this hypercall, only HV_STATUS_SUCCESS will be returned as this is an
advisory hypercall.

Hypervisor Top Level Functional Specification

 145

15 Virtual Secure Mode

15.1 Overview

Virtual Secure Mode (VSM) is a set of hypervisor capabilities and enlightenments offered to host and
guest partitions which enables the creation and management of new security boundaries within
operating system software. VSM is the hypervisor facility on which Windows security features including
Device Guard, Credential Guard, virtual TPMs and shielded VMs are based. These security features were
introduced in Windows 10 and Windows Server 2016.

VSM enables operating system software in the root and guest partitions to create isolated regions of
memory for storage and processing of system security assets. Access to these isolated regions is
controlled and granted solely through the hypervisor, which is a highly privileged, highly trusted part of
the system’s Trusted Compute Base (TCB). Because the hypervisor runs at a higher privilege level than
operating system software and has exclusive control of key system hardware resources such as memory
access permission controls in the CPU MMU and IOMMU early in system initialization, the hypervisor
can protect these isolated regions from unauthorized access, even from operating system software (e.g.,
OS kernel and device drivers) with supervisor mode access (i.e. CPL0, or “Ring 0”).

With this architecture, even if normal system level software running in supervisor mode (e.g. kernel,
drivers, etc.) is compromised by malicious software, the assets in isolated regions protected by the
hypervisor can remain secured.

15.2 Virtual Trust Levels (VTL)

VSM achieves and maintains isolation through Virtual Trust Levels (VTLs). VTLs are enabled and
managed on both a per-partition and per-virtual processor basis.

Virtual Trust Levels are hierarchical, with higher levels being more privileged than lower levels. VTL0 is
the least privileged level, with VTL1 being more privileged than VTL0, VTL2 being more privileged than
VTL1, etc.

Architecturally, up to 16 levels of VTLs are supported; however a hypervisor may choose to implement
fewer than 16 VTL’s. Currently, only two VTLs are implemented.

//
// Define a virtual trust level (VTL)
//

typedef UINT8 HV_VTL, *PHV_VTL;
#define HV_NUM_VTLS 2
#define HV_INVALID_VTL ((HV_VTL) -1)
#define HV_VTL_ALL 0xF

Each VTL has its own set of memory access protections. These access protections are managed by the
hypervisor in a partition’s physical address space, and thus cannot be modified by system level software
running in the partition.

Since more privileged VTLs can enforce their own memory protections, higher VTLs can effectively
protect areas of memory from lower VTLs. In practice, this allows a lower VTL to protect isolated
memory regions by securing them with a higher VTL. For example, VTL0 could store a secret in VTL1, at
which point only VTL1 could access it. Even if VTL0 is compromised, the secret would be safe.

Hypervisor Top Level Functional Specification

 146

 VTL Protections

There are multiple facets to achieving isolation between VTLs:

• Memory Access Protections: Each VTL maintains a set of guest physical memory access
protections. Software running at a particular VTL can only access memory in accordance with
these protections.

• Virtual Processor State: Virtual processors maintain separate per-VTL state. For example, each
VTL defines a set of a private VP registers. Software running at a lower VTL cannot access the
higher VTL’s private virtual processor’s register state.

• Interrupts: Along with a separate processor state, each VTL also has its own interrupt subsystem
(local APIC). This allows higher VTLs to process interrupts without risking interference from a
lower VTL.

• Overlay Pages: Certain overlay pages are maintained per-VTL such that higher VTLs have reliable
access. E.g. there is a separate hypercall overlay page per VTL.

15.3 VSM Detection, Enabling, and Status

 VSM Detection

The VSM capability is advertised to partitions via the AccessVsm partition privilege flag. Only partitions
with all of the following privileges may utilize VSM: AccessVsm, AccessVpRegisters, and AccessSynicRegs.
See Partition Privilege Flags.

 VSM Status Registers

In addition to a partition privilege flag, two virtual registers can be used to learn additional information
about VSM status: HvRegisterVsmPartitionStatus and HvRegisterVsmVpStatus.

15.3.2.1 HvRegisterVsmPartitionStatus

HvRegisterVsmPartitionStatus is a per-partition read-only register that is shared across all VTLs. This
register provides information about which VTLs have been enabled for the partition, as well as the
maximum VTL allowed.

Hypervisor Top Level Functional Specification

 147

typedef union
{
 UINT64 AsUINT64;
 struct
 {
 UINT64 EnabledVtlSet : 16;
 UINT64 MaximumVtl : 4;
 UINT64 ReservedZ : 44;
 };
} HV_REGISTER_VSM_PARTITION_STATUS;

15.3.2.2 HvRegisterVsmVpStatus

HvRegisterVsmVpStatus is a read-only register and is shared across all VTLs. It is a per-VP register,
meaning each virtual processor maintains its own instance. This register provides information about
which VTLs have been enabled, which is active, as well as the MBEC mode active on a VP.

typedef union
{
 UINT64 AsUINT64;
 struct
 {
 UINT64 ActiveVtl : 4;
 UINT64 ActiveMbecEnabled : 1;
 UINT64 ReservedZ0 : 11;
 UINT64 EnabledVtlSet : 16;
 UINT64 ReservedZ1 : 32;
 };
} HV_REGISTER_VSM_VP_STATUS;

ActiveVtl is the ID of the VTL context that is currently active on the virtual processor.

ActiveMbecEnabled specifies that MBEC is currently active on the virtual processor.

EnabledVtlSet is a bitmap of the VTL’s that are enabled on the virtual processor.

 Partition VTL Initial state

When a partition starts or resets, it begins running in VTL0. All other VTLs are disabled at partition
creation.

15.4 VTL Enablement

To begin using a VTL, a lower VTL must initiate the following:

1) Enable the target VTL for the partition. This makes the VTL generally available for the partition.
2) Enable the target VTL on one or more virtual processors. This makes the VTL available for a VP,

and sets its initial context. It is recommended that all VPs have the same enabled VTLs. Having a
VTL enabled on some VPs (but not all) can lead to unexpected behavior.

3) Once the VTL is enabled for a partition and VP, it can begin setting access protections once the
EnableVtlProtection flag has been set (see 15.5.1.1).

Note that VTLs need not be consecutive.

Hypervisor Top Level Functional Specification

 148

 Enabling a Target VTL for a Partition

The HvCallEnablePartitionVtl hypercall is used to enable a VTL for certain partition. Note that before
software can actually execute in a particular VTL, that VTL must be enabled on virtual processors in the
partition.

 Enabling a Target VTL for Virtual Processors

Once a VTL is enabled for a partition, it can be enabled on the partition’s virtual processors. The
HvCallEnableVpVtl hypercall can be used to enable VTLs for a virtual processor, which sets its initial
context.

Virtual processors have one “context” per VTL. If a VTL is switched, the virtual processor context is also
switched. See 15.11 for details on what state is switched.

15.5 VTL Configuration

Once a VTL has been enabled, its configuration can be changed by a VP running at an equal or higher
VTL.

 Partition Configuration

Partition-wide attributes can be configured using the HvRegisterVsmPartitionConfig register. There is
one instance of this register for each VTL (greater than 0) on every partition.

Every VTL can modify its own instance of HV_REGISTER_VSM_PARTITION_CONFIG, as well as instances
for lower VTLs. VTLs may not modify this register for higher VTLs.

typedef union
{
 UINT64 AsUINT64;
 struct
 {
 UINT64 EnableVtlProtection : 1;
 UINT64 DefaultVtlProtectionMask : 4;
 UINT64 ZeroMemoryOnReset : 1;
 UINT64 ReservedZ : 58;
 };

} HV_REGISTER_VSM_PARTITION_CONFIG;

The fields of this register are described below.

15.5.1.1 Enable VTL Protections

Once a VTL has been enabled, the EnableVtlProtection flag must be set before it can begin applying
memory protections.

This flag is write-once, meaning that once it has been set, it cannot be modified.

15.5.1.2 Default Protection Mask

By default, the system applies RWX protections to all currently mapped pages, and any future “hot-
added” pages. Hot-added pages refer to any memory that is added to a partition during a resize
operation. See section 15.9 for a description of memory access protections.

Hypervisor Top Level Functional Specification

 149

A higher VTL can set a different default memory protection policy by specifying
DefaultVtlProtectionMask in HV_REGISTER_VSM_PARTITION_CONFIG. This mask must be set at the time
the VTL is enabled. It cannot be changed once it is set, and is only cleared by a partition reset.

DefaultVtlProtectionMask

Bit 0: Read

Bit 1: Write

Bit 2: User Mode Execute (UMX)

Bit 3: Kernel Mode Execute (KMX)

15.5.1.3 Zero Memory on Reset

ZeroMemOnReset is a bit that controls if memory is zeroed before a partition is reset. This configuration
is on by default. If the bit is set, the partition’s memory is zeroed upon reset so that a higher VTL’s
memory cannot be compromised by a lower VTL.

If this bit is cleared, the partition’s memory is not zeroed on reset.

To unlock the TLB, the higher VTL can clear this bit. Also, once a VP returns to a lower VTL, it releases all
TLB locks which it holds at the time.

 Configuring Lower VTLs

The following register can be used by higher VTLs to configure the behavior of lower VTLs:

typedef union
{
 UINT64 AsUINT64;
 struct
 {
 UINT64 MbecEnabled : 1;
 UINT64 TlbLocked : 1;
 UINT64 ReservedZ : 62;
 };

} HV_REGISTER_VSM_VP_SECURE_VTL_CONFIG;

Each VTL (higher than 0) has an instance of this register for every VTL lower than itself. For example,
VTL2 would have two instances of this register – one for VTL1, and a second for VTL0.

15.5.2.1 MbecEnabled

This field configures whether MBEC is enabled for the lower VTL (see 15.10).

15.5.2.2 TlbLocked

This field locks the lower VTL’s TLB. This capability can be used to prevent lower VTLs from causing TLB
invalidations which might interfere with a higher VTL. When this bit is set, all address space flush
requests from the lower VTL are blocked until the lock is lifted.

Hypervisor Top Level Functional Specification

 150

15.6 VTL Entry

A VTL is “entered” when a VP switches from a lower VTL to a higher one. This can happen for the
following reasons:

1. VTL call: this is when software explicitly wishes to invoke code in a higher VTL.
2. Secure interrupt: if an interrupt is received for a higher VTL, the VP will enter the higher VTL.

See 15.12.
3. Secure intercept: certain actions will trigger a secure interrupt (accessing certain MSRs for

example). See 15.13.

Once a VTL is entered, it must voluntarily exit. A higher VTL cannot be preempted by a lower VTL.

 VTL Call

A “VTL call” is when a lower VTL initiates an entry into a higher VTL (for example, to protect a region of
memory with the higher VTL).

VTL calls preserve the state of shared registers across VTL switches. Private registers are preserved on a
per-VTL level. (See 15.11.1 and 15.11.2 for which state is shared/private). The exception to these
restrictions are the registers required by the VTL call sequence. The following registers are required for a
VTL call:

x64 Register x86 Register Value Description

RCX EDX:EAX RsvdZ Specifies a VTL call control input to the hypervisor

RAX ECX Reserved

15.6.1.1 VTL Call Restrictions

VTL calls can only be initiated from the most privileged processor mode. For example, on x64 systems a
VTL call can only come from CPL0. A VTL call initiated from a processor mode which is anything but the
most privileged on the system results in the hypervisor injecting a #UD exception into the virtual
processor.

A VTL call can only switch into the next highest VTL. In other words, if there are multiple VTLs enabled, a
call cannot “skip” a VTL.

The following actions result in a #UD exception:

1. A VTL call initiated from a processor mode which is anything but the most privileged on the
system (architecture specific).

2. A VTL call from real mode (x86/x64)
3. A VTL call on a virtual processor where the target VTL is disabled (or has not been already

enabled).
4. A VTL call with an invalid control input value

15.6.1.2 Identifying VTL Entry Reason

In order to react appropriately to an entry, a higher VTL might need to know the reason it was entered.
To discern between entry reasons, the following field is included in the VP assist page (see 7.8.7):

Hypervisor Top Level Functional Specification

 151

typedef enum
{
 // This reason is reserved and is not used.
 HvVtlEntryReserved = 0,

 // Indicates entry due to a VTL call from a lower VTL.
 HvVtlEntryVtlCall = 1,

 // Indicates entry due to an interrupt targeted to the VTL.
 HvVtlEntryInterrupt = 2

} HV_VTL_ENTRY_REASON;

15.7 VTL Exit

A switch to a lower VTL is known as a “return”. Once a VTL has finished processing, it can initiate a VTL
return in order to switch to a lower VTL. The only way a VTL return can occur is if a higher VTL
voluntarily initiates one. A lower VTL can never preempt a higher one.

 VTL Return

A “VTL return” is when a higher VTL initiates a switch into a lower VTL. Similar to a VTL call, private
processor state is switched out, and shared state remains in place (See 15.11.1 and 15.11.2 for which
state is shared/private). If the lower VTL has explicitly called into the higher VTL, the hypervisor
increments the higher VTL’s instruction pointer before the return is complete so that it may continue
after a VTL call.

A VTL Return code sequence requires the use of the following registers:

x64

Register

x86

Register

Register Value Description

RCX EDX:EAX Bits 63:1 - RsvdZ

Bit 0 - Fast return (See 15.7.1.1)

Specifies a VTL return control input to

the hypervisor

RAX ECX Reserved

15.7.1.1 Fast return

As a part of processing a return, the hypervisor can restore the lower VTL’s register state from the VTL
control page. For example, after processing a secure interrupt, a higher VTL may wish to return without
disrupting the lower VTL’s state. Therefore, the hypervisor provides a mechanism to simply restore the
lower VTL’s registers to their pre-call value stored in the control page.

If this behavior is not necessary, a higher VTL can use a “fast return”. A fast return is when the
hypervisor does not restore register state from the control page. This should be utilized whenever
possible to avoid unnecessary processing.

This field can be set with bit 0 of the VTL return input. If it is set to 0, the registers are restored from the
VP assist page. If this bit is set to 1, the registers are not restored (a fast return).

 Restrictions

The following actions will generate a #UD exception:

Hypervisor Top Level Functional Specification

 152

1. Attempting a VTL return when the lowest VTL is currently active

2. Attempting a VTL return with an invalid control input value

3. Attempting a VTL return from a processor mode which is anything but the most privileged on
the system (architecture specific)

15.8 Hypercall Page Assists

The hypervisor provides mechanisms to assist with VTL calls and returns via the hypercall page (see
3.13). This page abstracts the specific code sequence required to switch VTLs.

The code sequences to execute VTL calls and returns may be accessed by executing specific instructions
in the hypercall page. The call/return chunks are located at an offset in the hypercall page determined
by the HvRegisterVsmCodePageOffset virtual register. This is a read-only and partition-wide register,
with a separate instance per-VTL.

A VTL can execute a VTL call/return using the CALL instruction. A CALL to the correct location in the
hypercall page will initiate a VTL call/return.

typedef union
{
 UINT64 AsUINT64;
 struct
 {
 UINT64 VtlCallOffset : 12;
 UINT64 VtlReturnOffset : 12;
 UINT64 ReservedZ : 40;
 };
} HV_REGISTER_VSM_CODE_PAGE_OFFSETS;

To summarize, the steps for calling a code sequence using the hypercall page are as follows:

1. Map the hypercall page into a VTL’s GPA space (see 3.13).

2. Determine the correct offset for the code sequence (VTL call or return).

3. Execute the code sequence using CALL.

 VTL Control via the VP Assist Page

The hypervisor uses part of the VP assist page to facilitate communication with code running in a VTL
higher than VTL0 (see 7.8.7). Each VTL has its own control structure (except VTL0).

 Definition

The following information is communicated using the control page:

1. The VTL entry reason.

2. A flag indicating that VINA is being asserted.

3. The values for registers to load upon a VTL return.

Hypervisor Top Level Functional Specification

 153

typedef struct
{
 // The hypervisor updates the entry reason with an indication as to why
 // the VTL was entered on the virtual processor.
 HV_VTL_ENTRY_REASON EntryReason;

 // This flag determines whether the VINA interrupt line is asserted.
 union
 {
 UINT8 AsUINT8;
 struct
 {
 UINT8 VinaAsserted :1;
 UINT8 VinaReservedZ :7;
 };
 } VinaStatus;

 UINT8 ReservedZ00;
 UINT16 ReservedZ01;

 // A guest updates the VtlReturn* fields to provide the register values
 // to restore on VTL return. The specific register values that are
 // restored will vary based on whether the VTL is 32-bit or 64-bit.

 union
 {
 struct
 {
 UINT64 VtlReturnX64Rax;
 UINT64 VtlReturnX64Rcx;
 };

 struct
 {
 UINT32 VtlReturnX86Eax;
 UINT32 VtlReturnX86Ecx;
 UINT32 VtlReturnX86Edx;
 UINT32 ReservedZ1;
 };
 };

} HV_VP_VTL_CONTROL;

15.9 Memory Access Protections

One necessary protection provided by VSM is the ability to isolate memory accesses.

 Memory Protection Hierarchy

Memory access permissions can be set by a number of sources for a particular VTL. Each VTL’s
permissions can potentially be restricted by a number of other VTLs, as well as by the host partition. The
order in which protections are applied is the following:

1. Memory protections set by the host
2. Memory protections set by higher VTLs

In other words, VTL protections supersede host protections. Higher-level VTLs supersede lower-level
VTLs. Note that a VTL may not set memory access permissions for itself.

A conformant interface is expected to not overlay any non-RAM type over RAM.

Hypervisor Top Level Functional Specification

 154

 Memory Access Violations

If a VP running at a lower VTL attempts to violate a memory protection set by a higher VTL, an intercept
is generated. This intercept is received by the higher VTL which set the protection. This allows higher
VTLs to deal with the violation on a case-by-case basis. For example, the higher VTL may choose to
return a fault, or emulate the access (see 15.13)

 Default memory protection types

Higher VTLs have a high degree of control over the type of memory access permissible by lower VTLs.
There are three basic types of protections that can be specified by a higher VTL for a particular GPA
page: Read, Write, and eXecute. These are defined in the following table:

Name Description

Read Controls whether read access is allowed to a memory page

Write Controls whether write access allowed to a memory page

Execute Controls whether instruction fetches are allowed for a memory

page

These three combine for the following types of memory protection:

1. No access
2. Read-only, no execute
3. Read-only, execute
4. Read/write, no execute
5. Read/write, execute

These three types will continue to be the only memory protections supported for use by the host OS
when restricting the guest. However, a VTL mask will have additional memory protections available to
restrict lower VTL. This capability is known as “mode based execution control (MBEC)”.

15.10 Mode Based Execution Control (MBEC)

When a VTL places a memory restriction on a lower VTL, it may wish to make a distinction between user
and kernel mode when granting an “execute” privilege. For example, if code integrity checks were to
take place in a higher VTL, the ability to distinguish between user-mode and kernel-mode would mean
that a VTL could enforce code integrity for only kernel-mode applications.

Apart from the traditional three memory protections (read, write, execute), MBEC introduces a
distinction between user-mode and kernel-mode for execute protections. Thus, if MBEC is enabled, a
VTL has the opportunity to set four types of memory protections:

Hypervisor Top Level Functional Specification

 155

Name Description

Read Controls whether read access is allowed to a memory page

Write Controls whether write access allowed to a memory page

User Mode

Execute (UMX)

Controls whether instruction fetches generated in user-mode are

allowed for a memory page

NOTE: If MBEC is disabled, this setting is ignored.

Kernel Mode

Execute (KMX)

Controls whether instruction fetches generated in kernel-mode

are allowed for a memory page

NOTE: If MBEC is disabled, this setting controls both user-mode

and kernel-mode execute accesses.

Memory marked with the “User-Mode Execute” protections would only be executable when the virtual
processor is running in user-mode. Likewise, “Kernel-Mode Execute” memory would only be executable
when the virtual processor is running in kernel-mode.

KMX and UMX can be independently set such that execute permissions are enforced differently
between user and kernel mode. All combinations of UMX and KMX are supported, except for KMX=1,
UMX=0. The behavior of this combination is undefined.

MBEC is disabled by default for all VTLs and virtual processors. When MBEC is disabled, the kernel-mode
execute bit determines memory access restriction. Thus, if MBEC is disabled, KMX=1 code is executable
in both kernel and user-mode.

 Descriptor Tables

Any user-mode code that accesses descriptor tables must be in GPA pages marked as KMX=UMX=1.
User-mode software accessing descriptor tables from a GPA page marked KMX=0 is unsupported and
results in a general protection fault.

 MBEC configuration

To make use of Mode-based execution control, it must be enabled at two levels:

1. When the VTL is enabled for a partition, MBEC must be enabled using
HvEnablePartitionVtl (see 15.15.3).

2. MBEC must be configured on a per-VP and per-VTL basis, using
HvRegisterVsmVpSecureVtlConfig (see 15.5.2).

 MBEC Interaction with Supervisor Mode Execution Prevention (SMEP)

Supervisor-Mode Execution Prevention (SMEP) is a processor feature supported on some platforms.
SMEP can impact the operation of MBEC due to its restriction of supervisor access to memory pages.
The hypervisor adheres to the following policies related to SMEP:

1. If SMEP is not available to the guest OS (whether it be because of hardware capabilities or
processor compatibility mode), MBEC operates unaffected.

Hypervisor Top Level Functional Specification

 156

2. If SMEP is available, and is enabled, MBEC operates unaffected.

3. If SMEP is available, and is disabled, all execute restrictions are governed by the KMX control.
Thus, only code marked KMX=1 will be allowed to execute.

15.11 Virtual Processor State Isolation

Virtual processors maintain separate states for each active VTL. However, some of this state is private to
a particular VTL, and the remaining state is shared among all VTLs.

State which is preserved per VTL (a.k.a. private state) is saved by the hypervisor across VTL transitions. If
a VTL switch is initiated, the hypervisor saves the current private state for the active VTL, and then
switches to the private state of the target VTL. Shared state remains active regardless of VTL switches.

 Private State

In general, each VTL has its own control registers, RIP register, RSP register, and MSRs. Below is a list of
specific registers and MSRs which are private to each VTL.

15.11.1.1 Private MSRs

SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP, STAR, LSTAR, CSTAR, SFMASK, EFER, PAT,

KERNEL_GSBASE, FS.BASE, GS.BASE, TSC_AUX

HV_X64_MSR_HYPERCALL

HV_X64_MSR_GUEST_OS_ID

HV_X64_MSR_REFERENCE_TSC

HV_X64_MSR_APIC_FREQUENCY

HV_X64_MSR_EOI

HV_X64_MSR_ICR

HV_X64_MSR_TPR

HV_X64_MSR_APIC_ASSIST_PAGE

HV_X64_MSR_NPIEP_CONFIG

HV_X64_MSR_SIRBP

HV_X64_MSR_SCONTROL

HV_X64_MSR_SVERSION

HV_X64_MSR_SIEFP

HV_X64_MSR_SIMP

HV_X64_MSR_EOM

HV_X64_MSR_SINT0 – HV_X64_MSR_SINT15

HV_X64_MSR_STIMER0_CONFIG – HV_X64_MSR_STIMER3_CONFIG

HV_X64_MSR_STIMER0_COUNT – HV_X64_MSR_STIMER3_COUNT

Local APIC registers (including CR8/TPR)

Hypervisor Top Level Functional Specification

 157

15.11.1.2 Private registers

RIP, RSP

RFLAGS

CR0, CR3, CR4

DR7

IDTR, GDTR

CS, DS, ES, FS, GS, SS, TR, LDTR

TSC

DR6 (*dependent on processor type. Read HvRegisterVsmCapabilities virtual register to

determine shared/private status)

 Shared State

VTLs share state in order to cut down on the overhead of switching contexts. Sharing state also allows
some necessary communication between VTLs. Most general purpose and floating point registers are
shared, as are most architectural MSRs. Below is the list of specific MSRs and registers that are shared
among all VTLs:

15.11.2.1 Shared MSRs

HV_X64_MSR_TSC_FREQUENCY

HV_X64_MSR_VP_INDEX

HV_X64_MSR_VP_RUNTIME

HV_X64_MSR_RESET

HV_X64_MSR_TIME_REF_COUNT

HV_X64_MSR_GUEST_IDLE

HV_X64_MSR_DEBUG_DEVICE_OPTIONS

HV_X64_MSR_BELOW_1MB_PAGE

HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE

HV_X64_MSR_STATS_VP_RETAIL_PAGE

MTRRs

MCG_CAP

MCG_STATUS

15.11.2.2 Shared registers

Rax, Rbx, Rcx, Rdx, Rsi, Rdi, Rbp

CR2

R8 – R15

Hypervisor Top Level Functional Specification

 158

DR0 – DR5

X87 floating point state

XMM state

AVX state

XCR0 (XFEM)

DR6 (*dependent on processor type. Read HvRegisterVsmCapabilities virtual register to

determine shared/private status)

 Real Mode

Real mode is not supported for any VTL greater than 0. VTLs greater than 0 can run in 32-bit or 64-bit
mode. In order to switch between 32-bit and 64-bit in a non-zero VTL, the VTL needs to be disabled and
re-initialized.

15.12 VTL Interrupt Management

 Overview

In order to achieve a high level of isolation between Virtual Trust Levels, Virtual Secure Mode provides a
separate interrupt subsystem for each VTL enabled on a virtual processor. This ensures that a VTL is able
to both send and receive interrupts without interference from a less secure VTL.

Each VTL has its own interrupt controller, which is only active if the virtual processor is running in that
particular VTL. If a virtual processor switches VTL states, the interrupt controller active on the processor
is also switched.

 Interrupts targeted at a higher VTL

An interrupt targeted at a VTL which is higher than the active VTL will cause an immediate VTL switch.
The higher VTL can then receive the interrupt. If the higher VTL is unable to receive the interrupt
because of its TPR/CR8 value, the interrupt is held as “pending” and the VTL does not switch. If there are
multiple VTLs with pending interrupts, the highest VTL takes precedence (without notice to the lower
VTL).

15.12.2.1 RFLAGS.IF

For the purposes of switching VTLs, RFLAGS.IF does not affect whether a secure interrupt triggers a VTL
switch. If RFLAGS.IF is cleared to mask interrupts, interrupts into higher VTLs will still cause a VTL switch
to a higher VTL. Only the higher VTL’s TPR/CR8 value is taken into account when deciding whether to
immediately interrupt.

This behavior also affects pending interrupts upon a VTL return. If the RFLAGS.IF bit is cleared to mask
interrupts in a given VTL, and the VTL returns (to a lower VTL), the hypervisor will reevaluate any
pending interrupts. This will cause an immediate call back to the higher VTL.

 Interrupts Targeted at a Lower VTL

When an interrupt is targeted at a lower VTL, the interrupt is not delivered until the next time the virtual
processor transitions into the targeted VTL.

Hypervisor Top Level Functional Specification

 159

INIT and startup IPIs targeted at a lower VTL are dropped on a virtual processor with a higher VTL
enabled. Since INIT/SIPI is blocked, the HvStartVirtualProcessor and HvGetVpIndexFromApicId hypercalls
should be used to start processors (see 7.10.3 and 7.10.4, respectively).

 Virtual Interrupt Notification Assist

Higher VTLs may register to receive a notification if they are blocking immediate delivery of an interrupt
to a lower VTL of the same virtual processor. Higher VTLs can enable Virtual Interrupt Notification Assist
(VINA) via a virtual register HvRegisterVsmVina:

typedef union
{
 UINT64 AsUINT64;
 struct
 {
 UINT64 Vector : 8;
 UINT64 Enabled : 1;
 UINT64 AutoReset : 1;
 UINT64 AutoEoi : 1;
 UINT64 ReservedP : 53;
 };
} HV_REGISTER_VSM_VINA;

Each VTL on each VP has its own VINA instance, as well as its own version of HvRegisterVsmVina. The
VINA facility will generate an edge triggered interrupt to the currently active higher VTL when an
interrupt for the lower VTL is ready for immediate delivery.

In order to prevent a flood of interrupts occurring when this facility is enabled, the VINA facility includes
some limited state. When a VINA interrupt is generated, the VINA facility’s state is changed to
“Asserted.” Sending an end-of-interrupt to the SINT associated with the VINA facility will not clear the
“Asserted” state. The asserted state can only be cleared in one of two ways:

1) The state can manually be cleared by writing to the VinaAsserted field of the VTL control
page.

2) The state is automatically cleared on the next entry to the VTL if the “auto-reset on VTL entry”
option is enabled in the HvRegisterVsmVina register.

This allows code running at a secure VTL to just be notified of the first interrupt that is received for a
lower VTL. If a secure VTL wishes to be notified of additional interrupts, it can clear the VinaAsserted
field of the VP assist page, and it will be notified of the next new interrupt.

15.13 Secure Intercepts

Recall that the root partition has the ability to install an intercept on certain guest actions. With this
capability, anytime a specified event takes place in a guest partition, the guest VP is suspended and an
intercept is triggered. This allows the root to take action in response to an event (e.g. a memory access).

In much the same way, the hypervisor allows a higher VTL to install intercepts for events that take place
in the context of a lower VTL. This gives higher VTLs an elevated level of control over lower-VTL
resources. Secure intercepts can be used to protect system-critical resources, and prevent attacks from
lower-VTLs.

A normal intercept suspends the guest VP, and sends an intercept message to the root partition. In the
case of a secure intercept, the intercept is queued to the higher VTL, and that VTL is made runnable on
the VP.

Hypervisor Top Level Functional Specification

 160

 Secure Intercept Types

Intercept Type Intercept Applies To

Memory access Attempting to access GPA protections established by a higher VTL.

Control register access Attempting to access a set of control registers specified by a higher VTL.

 Nested Intercepts

Intercepts can intersect in two cases:

1. Multiple VTLs can install secure intercepts for the same event in a lower VTL.

2. The host and a higher VTL can install an intercept for the same event in a guest.

Thus, a hierarchy is established to decide where nested intercepts are notified. The following list is the
order of where intercept are notified:

1. Lower VTL

2. Higher VTL

3. Root partition

A lower VTL always takes precedence, and VTLs always take precedence over the root partition. Once
the VTL or root partition is notified of the intercept, no other VTLs or partitions are notified.

 Handling Secure Intercepts

Once a VTL has been notified of a secure intercept, it must take action such that the lower VTL can
continue.

The higher VTL can handle the intercept in a number of ways, including: injecting an exception,
emulating the access, or providing a proxy to the access. In any case, if the private state of the lower VTL
VP needs to be modified, HvSetVpRegisters should be used.

 Secure Register Intercepts

A higher VTL can intercept on accesses to certain control registers. This is achieved by setting
HvX64RegisterCrInterceptControl using the HvSetVpRegisters hypercall (see 7.10.1).

Setting the control bit in HvX64RegisterCrInterceptControl will trigger an intercept for every
access of the corresponding control register.

Hypervisor Top Level Functional Specification

 161

HvX64RegisterCrInterceptControl = 0x000E0000,

typedef union
{
 UINT64 AsUINT64;
 struct
 {
 UINT64 Cr0Write : 1; // 0x0000000000000001
 UINT64 Cr4Write : 1; // 0x0000000000000002
 UINT64 XCr0Write : 1; // 0x0000000000000004
 UINT64 IA32MiscEnableRead : 1; // 0x0000000000000008
 UINT64 IA32MiscEnableWrite : 1; // 0x0000000000000010
 UINT64 MsrLstarRead : 1; // 0x0000000000000020
 UINT64 MsrLstarWrite : 1; // 0x0000000000000040
 UINT64 MsrStarRead : 1; // 0x0000000000000080
 UINT64 MsrStarWrite : 1; // 0x0000000000000100
 UINT64 MsrCstarRead : 1; // 0x0000000000000200
 UINT64 MsrCstarWrite : 1; // 0x0000000000000400
 UINT64 ApicBaseMsrRead : 1; // 0x0000000000000800
 UINT64 ApicBaseMsrWrite : 1; // 0x0000000000001000
 UINT64 MsrEferRead : 1; // 0x0000000000002000
 UINT64 MsrEferWrite : 1; // 0x0000000000004000
 UINT64 GdtrWrite : 1; // 0x0000000000008000
 UINT64 IdtrWrite : 1; // 0x0000000000010000
 UINT64 LdtrWrite : 1; // 0x0000000000020000
 UINT64 TrWrite : 1; // 0x0000000000040000
 UINT64 MsrSysenterCsWrite : 1; // 0x0000000000080000
 UINT64 MsrSysenterEipWrite : 1; // 0x0000000000100000
 UINT64 MsrSysenterEspWrite : 1; // 0x0000000000200000
 UINT64 MsrSfmaskWrite : 1; // 0x0000000000400000
 UINT64 MsrTscAuxWrite : 1; // 0x0000000000800000
 UINT64 RsvdZ : 40;
 };
} HV_REGISTER_CR_INTERCEPT_CONTROL;

15.13.4.1 Mask Registers
HvX64RegisterCrInterceptCr0Mask = 0x000E0001,
HvX64RegisterCrInterceptCr4Mask = 0x000E0002,
HvX64RegisterCrInterceptIa32MiscEnableMask = 0x000E0003,

To allow for finer control, a subset of control registers also have corresponding mask registers (defined
above). Mask registers can be used to install intercepts on a subset of the corresponding control
registers. Where a mask register is not defined, any access (as defined by
HvX64RegisterCrInterceptControl) will trigger an intercept.

15.14 DMA and Devices

Devices effectively have the same privilege level as VTL0. When VSM is enabled, all device-allocated
memory is marked as VTL0. Any DMA accesses have the same privileges as VTL0.

15.15 VSM Interfaces

 Type Definitions

Below are type definitions for a VTL, as well as the input for targeting a VTL with a hypercall.

Hypervisor Top Level Functional Specification

 162

// VTL definition
typedef UINT8 HV_VTL;

// Input for targeting a specific VTL.

typedef union
{
 UINT8 AsUINT8;
 struct
 {
 UINT8 TargetVtl : 4;
 UINT8 UseTargetVtl : 1;
 UINT8 ReservedZ : 3;
 };
} HV_INPUT_VTL;

 HvModifyVtlProtectionMask

The HvModifyVtlProtectionMask hypercall modifies the VTL protections applied to an existing set of GPA
pages.

Wrapper Interface

HV_STATUS
HvModifyVtlProtectionMask (
 _in HV_PARTITION_ID TargetPartitionId,
 _in HV_MAP_GPA_FLAGS MapFlags,
 _in HV_INPUT_VTL TargetVtl,
 _in_ecount(PageCount) HV_GPA_PAGE_NUMBER GpaPageList
);

Native Interface

HvModifyVtlProtectionMask [rep]

 Call Code = 0x000c

 Input Parameters

0 TargetPartitionId (8 bytes)

8 MapFlags(4 bytes) TargetVTL

(1 byte)

RsvdZ (3 bytes)

 Input List Element

0 GpaPageList

Input Parameters

TargetPartitionId supplies the partition ID of the partition this request is for.

MapFlags specifies the new mapping flags to apply

TargetVtl specifies the VTL to be enabled by this hypercall.

Hypervisor Top Level Functional Specification

 163

GpaPageList supplies the pages to be protected

Output Parameters

None.

Restrictions

A VTL can only place protections on a lower VTL.

Any attempt to apply VTL protections on non-RAM ranges will fail with
HV_STATUS_INVALID_PARAMETER.

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller does not possess the

CpuManagement privilege.

HV_STATUS_INVALID_PARTITION_ID A partition with the specified partition Id does

not exist.

HV_STATUS_INVALID_PARTITION_STATE The hypervisor could not perform the operation

because the partition is entering or in an invalid

state.

HV_STATUS_INVALID_PARAMETER The hypervisor could not perform the operation

because an invalid parameter was specified.

HV_STATUS_OPERATION_DENIED The operation could not be performed. (The

actual cause depends on the operation.)

HV_STATUS_INSUFFICIENT_MEMORY Insufficient memory exists for the call to

succeed.

HV_STATUS_HYPERCALL_INTERCEPT The requested access to the hypercall generated

an intercept.

HV_STATUS_INVALID_VTL_STATE The supplied virtual trust level is not in the

correct state to perform the requested

operation.

 HvEnablePartitionVtl

The HvEnablePartitionVtl hypercall enables a virtual trust level for a specified partition. It should be used
in conjunction with HvEnableVpVtl to initiate and use a new VTL.

vbscript:u(%222C%22,25)
vbscript:u(%228T%22,17)

Hypervisor Top Level Functional Specification

 164

Wrapper Interface

HV_STATUS
HvEnablePartitionVtl (
 _in HV_PARTITION_ID TargetPartitionId,
 _in HV_VTL TargetVtl,
 _in HV_ENABLE_PARTITION_VTL_FLAGS Flags
);

Input Structures

typedef union {
 UINT8 AsUINT8;
 struct
 {
 UINT8 EnableMbec:1;
 UINT8 Reserved:7;
 };
} HV_ENABLE_PARTITION_VTL_FLAGS;

Native Interface

HvEnablePartitionVtl

 Call Code = 0x000d

 Input Parameters

0 TargetPartitionId (8 bytes)

8 Flags(4 bytes) TargetVTL

(1 byte)

RsvdZ (3 bytes)

Input Parameters

TargetPartitionId supplies the partition ID of the partition this request is for.

Flags specifies a mask to enable VSM related features.

TargetVtl specifies the VTL to be enabled by this hypercall.

Output Parameters

None.

Restrictions

1. A launching VTL can always enable a target VTL if the target VTL is lower than the launching VTL.

2. A launching VTL can enable a higher target VTL if the launching VTL is the highest VTL enabled
for the partition that is lower than the target VTL.

These restrictions are only enforced for cases where a partition is launching a VTL for itself. If the
host partition is enabling a VTL for a child partition, these restrictions do not apply.

Hypervisor Top Level Functional Specification

 165

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller does not possess the CpuManagement

privilege.

HV_STATUS_INVALID_PARTITION_ID A partition with the specified partition Id does

not exist.

HV_STATUS_INVALID_PARAMETER The hypervisor could not perform the operation

because an invalid parameter was specified.

HV_STATUS_INVALID_PARTITION_STATE The hypervisor could not perform the operation

because the partition is entering or in an invalid

state.

HV_STATUS_INSUFFICIENT_MEMORY Insufficient memory exists for the call to succeed.

HV_STATUS_HYPERCALL_INTERCEPT The requested access to the hypercall generated

an intercept.

HV_STATUS_INVALID_VTL_STATE The supplied virtual trust level is not in the

correct state to perform the requested operation.

 HvEnableVpVtl

HvEnableVpVtl enables a VTL to run on a VP. This hypercall should be used in conjunction with
HvEnablePartitionVtl to enable and use a VTL. To enable a VTL on a VP, it must first be enabled for the
partition. This call does not change the active VTL.

vbscript:u(%228T%22,17)
vbscript:u(%222C%22,25)

Hypervisor Top Level Functional Specification

 166

Wrapper Interface

HV_STATUS
HvEnableVpVtl(
 _in HV_PARTITION_ID TargetPartitionId,
 _in HV_VP_INDEX VpIndex,
 _in HV_VTL TargetVtl,
 _in HV_INITIAL_VP_CONTEXT VpVtlContext
);

Input Structures

typedef struct
{
 UINT64 Rip;
 UINT64 Rsp;
 UINT64 Rflags;

 // Segment selector registers together with their hidden state.
 HV_X64_SEGMENT_REGISTER Cs;
 HV_X64_SEGMENT_REGISTER Ds;
 HV_X64_SEGMENT_REGISTER Es;
 HV_X64_SEGMENT_REGISTER Fs;
 HV_X64_SEGMENT_REGISTER Gs;
 HV_X64_SEGMENT_REGISTER Ss;
 HV_X64_SEGMENT_REGISTER Tr;
 HV_X64_SEGMENT_REGISTER Ldtr;

 // Global and Interrupt Descriptor tables
 HV_X64_TABLE_REGISTER Idtr;
 HV_X64_TABLE_REGISTER Gdtr;

 // Control registers and MSR's
 UINT64 Efer;
 UINT64 Cr0;
 UINT64 Cr3;
 UINT64 Cr4;
 UINT64 MsrCrPat;

} HV_INITIAL_VP_CONTEXT;

Native Interface

Hypervisor Top Level Functional Specification

 167

HvEnableVpVtl

 Call Code = 0x000f

 Input Parameters

0 TargetPartitionId (8 bytes)

8 VpIndex (4 bytes) TargetVtl

(1 byte)

RsvdZ (3 bytes)

16 Rip (8 bytes)

24 Rsp (8 bytes)

32 Rflags (8 bytes)

40 Cs[0] (8 bytes)

48 Cs[1] (8 bytes)

56 Ds[0] (8 bytes)

64 Ds[1] (8 bytes)

72 Es[0] (8 bytes)

80 Es[1] (8 bytes)

88 Fs[0] (8 bytes)

96 Fs[1] (8 bytes)

104 Gs[0] (8 bytes)

112 Gs[1] (8 bytes)

120 Ss[0] (8 bytes)

128 Ss[1] (8 bytes)

136 Ts[0] (8 bytes)

144 Ts[1] (8 bytes)

152 Ltdr[0] (8 bytes)

160 Ltdr[1] (8 bytes)

168 Itdr[0] (8 bytes)

Hypervisor Top Level Functional Specification

 168

176 Itdr[1] (8 bytes)

184 Gtdr[0] (8 bytes)

192 Gtdr[1] (8 bytes)

200 Efer (8 bytes)

208 Cr0 (8 bytes)

216 Cr3 (8 bytes)

224 Cr4 (8 bytes)

232 MsrCrPat (8 bytes)

Input Parameters

TargetPartitionId supplies the partition ID of the partition this request is for.

VpIndex specifies the index of the virtual processor on which to enable the VTL.

TargetVtl specifies the VTL to be enabled by this hypercall.

VpVtlContext gives the initial context in which the VP should start upon the first entry to the target
VTL.

Output Parameters

None.

Restrictions

In general, a VTL can only be enabled by a higher VTL. There is one exception to this rule: the highest
VTL enabled for a partition can enable a higher target VTL. These restrictions are only enforced for
cases where a partition is launching a VTL for itself. If the host partition is enabling a VTL for a child
partition, these restrictions do not apply.

Once the target VTL is enabled on a VP, all other calls to enable the VTL must come from equal or
greater VTLs.

This hypercall will fail if called to enable a VTL that is already enabled for a VP.

Hypervisor Top Level Functional Specification

 169

Return Values

Status code Error condition

HV_STATUS_ACCESS_DENIED The caller does not possess the CpuManagement

privilege.

HV_STATUS_INVALID_PARTITION_ID A partition with the specified partition Id does not

exist.

HV_STATUS_INVALID_PARAMETER The hypervisor could not perform the operation

because an invalid parameter was specified.

HV_STATUS_INVALID_PARTITION_STATE The specified partition’s state was not appropriate

for the requested operation.

HV_STATUS_INVALID_VP_STATE A virtual processor is not in the correct state for

the performance of the indicated operation.

HV_STATUS_INVALID_VTL_STATE The supplied virtual trust level is not in the correct

state to perform the requested operation.

HV_STATUS_INVALID_REGISTER_VALUE The supplied register value is invalid.

HV_STATUS_INVALID_VP_INDEX The specified VP index is invalid.

 HvVtlCall

HvVtlCall switches into the next highest VTL enabled on the VP. For more details, see 15.6.1.

Wrapper Interface

HV_STATUS

HvVtlCall ();

Native Interface

HvVtlCall

 Call Code = 0x0011

Input Parameters

See 15.6.1 for details about the input control value.

Output Parameters

None.

Restrictions

See 15.6.1.1.

Hypervisor Top Level Functional Specification

 170

Return Values

None.

 HvVtlReturn

HvVtlReturn switches into the next lowest VTL enabled on the VP. For more details, see 15.7.1.

Wrapper Interface

HV_STATUS

HvVtlReturn ();

Native Interface

HvVtlReturn

 Call Code = 0x0012

Input Parameters

See 15.7 for details about the input control value and “fast return”.

Output Parameters

None.

Restrictions

See 15.7.2

Return Values

None.

Hypervisor Top Level Functional Specification

 171

16 Nested Virtualization

16.1 Overview

Nested virtualization refers to the Hyper-V hypervisor emulating hardware virtualization extensions.
These emulated extensions can be used by other virtualization software (e.g. a nested hypervisor) to run
on the Hyper-V platform.

16.2 Definitions

The following terminology is used to define various levels of nested virtualization:

Term Definition

L0 Hypervisor The Hyper-V hypervisor running on physical hardware.

L1 Root The Windows root operating system.

L1 Guest A Hyper-V virtual machine without a nested hypervisor.

L1 Hypervisor A nested hypervisor running within a Hyper-V virtual machine.

L2 Root A root Windows operating system, running within the context of a Hyper-
V virtual machine.

L2 Guest A nested virtual machine, running within the context of a Hyper-V virtual
machine.

The diagram below shows how “levels” are used to describe a case where Hyper-V is both the L0 and L1
hypervisor:

16.3 Requirements

 Guest Partition

This capability is only available to guest partitions. It must be enabled per virtual machine.

Nested virtualization is not supported in a Windows root partition.

 Supported Platforms

Nested virtualization is supported on Intel platforms only.

Hypervisor Top Level Functional Specification

 172

16.4 Guest Enlightenments

Compared to bare-metal, hypervisors can incur a significant performance regression when running in a
VM. L1 hypervisors can be optimized to run in a Hyper-V VM by using enlightened interfaces provided by
the L0 hypervisor.

 Enlightened Interface Discovery

Support for an enlightened VMCS interface is reported with CPUID leaf 0x40000004. If an enlightened
VMCS interface is supported, additional nested enlightenments may be discovered by reading the CPUID
leaf 0x4000000A (see 2.4.11).

16.5 Enlightened VMCS

On Intel platforms, virtualization software uses virtual machine control data structures (VMCSs) to
configure processor behavior related to virtualization. VMCSs must be made active using a VMPTRLD
instruction and modified using VMREAD and VMWRITE instructions. These instructions are often a
significant bottleneck for nested virtualization because they must be emulated.

The hypervisor exposes an “enlightened VMCS” feature which can be used to control virtualization-
related processor behavior using a data structure in guest physical memory. This data structure can be
modified using normal memory access instructions, thus there is no need for the L1 hypervisor to
execute VMREAD or VMWRITE or VMPTRLD instructions.

The L1 hypervisor may choose to use enlightened VMCSs by writing 1 to the corresponding field in the
VP assist page (see section 7.8.7). Another field in the VP assist page controls the currently active
enlightened VMCS. Each enlightened VMCS is exactly one page (4 KB) in size and must be initially
zeroed. No VMPTRLD instruction must be executed to make an enlightened VMCS active or current.

After the L1 hypervisor performs a VM entry with an enlightened VMCS, the VMCS is considered active
on the processor. An enlightened VMCS can only be active on a single processor at the same time. The
L1 hypervisor can execute a VMCLEAR instruction to transition an enlightened VMCS from the active to
the non-active state. Any VMREAD or VMWRITE instructions while an enlightened VMCS is active is
unsupported and can result in unexpected behavior.

The enlightened VMCS type is defined in section 16.11.2. All non-synthetic fields map to an Intel physical
VMCS encoding, which is defined in section 16.11.4.

 Enlightened VMCS Versioning

The enlightened VMCS structure is versioned to account for future changes. Each enlightened VMCS
structure contains a version field, which is reported by the L0 hypervisor (see 2.4.11)

The only VMCS version currently supported is 1.

 Clean Fields

The L0 hypervisor may choose to cache parts of the enlightened VMCS. The enlightened VMCS clean
fields control which parts of the enlightened VMCS are reloaded from guest memory on a nested VM
entry. The L1 hypervisor must clear the corresponding VMCS clean fields every time it modifies the
enlightened VMCS, otherwise the L0 hypervisor might use a stale version.

The clean fields enlightenment is controlled via the synthetic “CleanFields” field of the enlightened
VMCS. By default, all bits are set such that the L0 hypervisor must reload the corresponding VMCS fields
for each nested VM entry.

Hypervisor Top Level Functional Specification

 173

 Enlightened MSR Bitmap

On Intel platforms, the L0 hypervisor emulates the VMX “MSR-Bitmap Address” controls that allow
virtualization software to control which MSR accesses generate intercepts.

The L1 hypervisor may collaborate with the L0 hypervisor to make MSR accesses more efficient. It can
enable enlightened MSR bitmaps by setting the corresponding field in the enlightened VMCS (See
16.11.2) to 1. When enabled, the L0 hypervisor does not monitor the MSR bitmaps for changes. Instead,
the L1 hypervisor must invalidate the corresponding clean field after making changes to one of the MSR
bitmaps.

16.6 Compatibility with Live Migration

Hyper-V has the ability to live migrate a child partition from one host to another host. Live migrations
are typically transparent to the child partition. However, in the case of nested virtualization, the L1
hypervisor may need to be aware of migrations.

 Live Migration Notifications

An L1 hypervisor can request to be notified when its partition is migrated. This capability is enumerated
in CPUID as “AccessReenlightenmentControls” privilege (see 2.4.10).

The L0 hypervisor exposes a synthetic MSR (HV_X64_MSR_REENLIGHTENMENT_CONTROL) that may be
used by the L1 hypervisor to configure an interrupt vector and target processor. The L0 hypervisor will
inject an interrupt with the specified vector after each migration.

#define HV_X64_MSR_REENLIGHTENMENT_CONTROL (0x40000106)

typedef union
{
 UINT64 AsUINT64;
 struct
 {

 UINT64 Vector :8;
 UINT64 RsvdZ1 :8;
 UINT64 Enabled :1;
 UINT64 RsvdZ2 :15;
 UINT64 TargetVp :32;
 };
} HV_REENLIGHTENMENT_CONTROL;

The specified vector must correspond to a fixed APIC interrupt. TargetVp specifies the virtual processor
index.

 TSC Emulation

A guest partition may be live migrated between two machines with different TSC frequencies. In those
cases, the TscScale value from the reference TSC page (see section 12.6) may need to be recomputed.

The L0 hypervisor optionally emulates all TSC accesses after a migration until the L1 hypervisor has had
the opportunity to recompute the TscScale value. The L1 hypervisor can opt into TSC Emulation by
writing to the HV_X64_MSR_TSC_EMULATION_CONTROL MSR. If opted in, the L0 hypervisor emulates
TSC accesses after a migration takes place.

The L1 hypervisor can query if TSC accesses are currently being emulated using the
HV_X64_MSR_TSC_EMULATION_STATUS MSR. For example, the L1 hypervisor could subscribe to Live

Hypervisor Top Level Functional Specification

 174

Migration notifications (see 16.6) and query the TSC status after it receives the migration interrupt. It
can also turn off TSC emulation (after it updates the TscScale value) using this MSR.

#define HV_X64_MSR_TSC_EMULATION_CONTROL (0x40000107)
#define HV_X64_MSR_TSC_EMULATION_STATUS (0x40000108)

typedef union {
 UINT64 AsUINT64;
 struct
 {
 UINT64 Enabled :1;
 UINT64 RsvdZ :63;
 };

} HV_TSC_EMULATION_CONTROL;

typedef union {
 UINT64 AsUINT64;
 struct
 {
 UINT64 InProgress : 1;
 UINT64 RsvdP1 : 63;
 };

} HV_TSC_EMULATION_STATUS;

16.7 Virtual TLB

The virtual TLB exposed by the hypervisor may be extended to cache translations from L2 GPAs to GPAs.
As with the TLB on a logical processor, the virtual TLB is a non-coherent cache, and this non-coherence is
visible to guests. The hypervisor exposes operations to manage the TLB.

On Intel platforms, the L0 hypervisor virtualizes the following additional ways to manage the TLB:

• The INVVPID instruction can be used to invalidate cached GVA to GPA or SPA mappings

• The INVEPT instruction can be used to invalidate cached L2 GPA to GPA mappings

16.8 Direct Virtual Flush

The hypervisor exposes hypercalls (HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx,
HvFlushVirtualAddressList, and HvFlushVirtualAddressListEx) that allow operating systems to more
efficiently manage the virtual TLB. The L1 hypervisor can choose to allow its guest to use those
hypercalls and delegate the responsibility to handle them to the L0 hypervisor. This requires the use of
enlightened VMCSs and of a partition assist page.

When enlightened VMCSs are in use, the virtual TLB tags all cached mappings with an identifier of the
enlightened VMCS that created them. In response to a direct virtual flush hypercall from a L2 guest, the
L0 hypervisor invalidates all cached mappings created by enlightened VMCSs where

• The VmId is the same as the caller’s VmId

• Either the VpId is contained in the specified ProcessorMask or HV_FLUSH_ALL_PROCESSORS is
specified

 Configuration

Direct handling of virtual flush hypercalls is enabled by setting the
EnlightenmentsControl.NestedFlushVirtualHypercall field of an enlightened VMCS to 1.
Before enabling it, the L1 hypervisor must configure the following additional fields of the enlightened
VMCS:

Hypervisor Top Level Functional Specification

 175

• VpId: ID of the virtual processor that the enlightened VMCS controls.

• VmId: ID of the virtual machine that the enlightened VMCS belongs to.

• PartitionAssistPage: Guest physical address of the partition assist page.

The L1 hypervisor must also expose the following capabilities to its guests via CPUID (see 9.1.3):

• UseHypercallForLocalFlush

• UseHypercallForRemoteFlush

 Partition Assist Page

The partition assist page is a page-size aligned page-size region of memory that the L1 hypervisor must
allocate and zero before direct flush hypercalls can be used. Its GPA must be written to the
corresponding field in the enlightened VMCS.

struct
{
 UINT32 TlbLockCount;
} VM_PARTITION_ASSIST_PAGE;

 Synthetic VM-Exit

If the TlbLockCount of the caller’s partition assist page is non-zero, the L0 hypervisor delivers a VM-Exit
with a synthetic exit reason to the L1 hypervisor after handling a direct virtual flush hypercall.

#define HV_VMX_SYNTHETIC_EXIT_REASON_TRAP_AFTER_FLUSH 0x10000031

16.9 Second Level Address Translation

When nested virtualization is enabled for a guest partition, the memory management unit (MMU)
exposed by the partition includes support for second level address translation. Second level address
translation is a capability that can be used by the L1 hypervisor to virtualize physical memory. When in
use, certain addresses that would be treated as guest physical addresses (GPAs) are treated as L2 guest
physical addresses (L2 GPAs) and translated to GPAs by traversing a set of paging structures.

The L1 hypervisor can decide how and where to use second level address spaces. Each second level
address space is identified by a guest defined 64-bit ID value. On Intel platforms, this value is the same
as the address of the EPT PML4 table.

 Compatibility

On Intel platforms, the second level address translation capability exposed by the hypervisor is generally
compatible with VMX support for address translation. However, the following guest-observable
differences exist:

• Internally, the hypervisor may use shadow page tables that translate L2 GPAs to SPAs. In such
implementations, these shadow page tables appear to software as large TLBs. However, several
differences may be observable. First, shadow page tables can be shared between two virtual
processors, whereas traditional TLBs are per-processor structures and are independent. This
sharing may be visible because a page access by one virtual processor can fill a shadow page
table entry that is subsequently used by another virtual processor.

• Some hypervisor implementations may use internal write protection of guest page tables to
lazily flush MMU mappings from internal data structures (for example, shadow page tables).
This is architecturally invisible to the guest because writes to these tables will be handled

Hypervisor Top Level Functional Specification

 176

transparently by the hypervisor. However, writes performed to the underlying GPA pages by
other partitions or by devices may not trigger the appropriate TLB flush.

• On some hypervisor implementations, a second level page fault (“EPT violation”) might not
invalidate cached mappings.

16.10 Nested MSR Access Restriction

With VSM enabled in the root partition, the Hyper-V hypervisor filters MSR access for security purposes
(guest partition MSR access is already filtered or virtualized). For example, access to non-architectural or
vendor-specific MSRs are blocked. This protection also applies in the nested virtualization case. When
the Hyper-V hypervisor is running nested within a virtual machine, and the L0 hypervisor chooses to
reflect an MSR access to the L1 Hyper-V hypervisor, the access may be dropped.

To avoid the MSR access being filtered out, the L0 hypervisor may choose not to reflect the MSR access
to the L1 hypervisor and handle it directly. In this case, caution should be taken to avoid a “confused
deputy” attack in which the L0 hypervisor is used to work around VSM protections or attack a higher
privileged context.

16.11 Nested Virtualization Data Types

 GPA Range

typedef union
{
 UINT64 AsUINT64;

 struct
 {
 UINT64 AdditionalPages : 11;
 UINT64 LargePage : 1;
 UINT64 BasePfn : 52;

 };

 struct
 {
 UINT64 : 12;
 UINT64 PageSize : 1;
 UINT64 Reserved : 8;
 UINT64 BaseLargePfn : 43;
 };

} HV_GPA_PAGE_RANGE;

 Enlightened VMCS

Below is the type definition for the enlightened VMCS. The corresponding Intel physical VMCS encoding
for each field can be found in 16.11.4. Note that some enlightened VMCS fields are synthetic, and
therefore will not have a corresponding physical VMCS encoding.

Hypervisor Top Level Functional Specification

 177

typedef struct
{
 UINT32 VersionNumber;
 UINT32 AbortIndicator;

 UINT16 HostEsSelector;
 UINT16 HostCsSelector;
 UINT16 HostSsSelector;
 UINT16 HostDsSelector;
 UINT16 HostFsSelector;
 UINT16 HostGsSelector;
 UINT16 HostTrSelector;
 UINT64 HostPat;
 UINT64 HostEfer;
 UINT64 HostCr0;
 UINT64 HostCr3;
 UINT64 HostCr4;
 UINT64 HostSysenterEspMsr;
 UINT64 HostSysenterEipMsr;
 UINT64 HostRip;
 UINT32 HostSysenterCsMsr;
 UINT32 PinControls;
 UINT32 ExitControls;
 UINT32 SecondaryProcessorControls;
 HV_GPA IoBitmapA;
 HV_GPA IoBitmapB;
 HV_GPA MsrBitmap;
 UINT16 GuestEsSelector;
 UINT16 GuestCsSelector;
 UINT16 GuestSsSelector;
 UINT16 GuestDsSelector;
 UINT16 GuestFsSelector;
 UINT16 GuestGsSelector;
 UINT16 GuestLdtrSelector;
 UINT16 GuestTrSelector;
 UINT32 GuestEsLimit;
 UINT32 GuestCsLimit;
 UINT32 GuestSsLimit;
 UINT32 GuestDsLimit;
 UINT32 GuestFsLimit;
 UINT32 GuestGsLimit;
 UINT32 GuestLdtrLimit;
 UINT32 GuestTrLimit;
 UINT32 GuestGdtrLimit;
 UINT32 GuestIdtrLimit;
 UINT32 GuestEsAttributes;
 UINT32 GuestCsAttributes;
 UINT32 GuestSsAttributes;
 UINT32 GuestDsAttributes;
 UINT32 GuestFsAttributes;
 UINT32 GuestGsAttributes;
 UINT32 GuestLdtrAttributes;
 UINT32 GuestTrAttributes;
 UINT64 GuestEsBase;
 UINT64 GuestCsBase;
 UINT64 GuestSsBase;
 UINT64 GuestDsBase;
 UINT64 GuestFsBase;
 UINT64 GuestGsBase;
 UINT64 GuestLdtrBase;
 UINT64 GuestTrBase;
 UINT64 GuestGdtrBase;
 UINT64 GuestIdtrBase;
 UINT64 Rsvd1[3];

Hypervisor Top Level Functional Specification

 178

 HV_GPA ExitMsrStoreAddress;
 HV_GPA ExitMsrLoadAddress;
 HV_GPA EntryMsrLoadAddress;
 UINT64 Cr3Target0;
 UINT64 Cr3Target1;
 UINT64 Cr3Target2;
 UINT64 Cr3Target3;
 UINT32 PfecMask;
 UINT32 PfecMatch;
 UINT32 Cr3TargetCount;
 UINT32 ExitMsrStoreCount;
 UINT32 ExitMsrLoadCount;
 UINT32 EntryMsrLoadCount;
 UINT64 TscOffset;
 HV_GPA VirtualApicPage;
 HV_GPA GuestWorkingVmcsPtr;
 UINT64 GuestIa32DebugCtl;
 UINT64 GuestPat;
 UINT64 GuestEfer;
 UINT64 GuestPdpte0;
 UINT64 GuestPdpte1;
 UINT64 GuestPdpte2;
 UINT64 GuestPdpte3;
 UINT64 GuestPendingDebugExceptions;
 UINT64 GuestSysenterEspMsr;
 UINT64 GuestSysenterEipMsr;
 UINT32 GuestSleepState;
 UINT32 GuestSysenterCsMsr;
 UINT64 Cr0GuestHostMask;
 UINT64 Cr4GuestHostMask;
 UINT64 Cr0ReadShadow;
 UINT64 Cr4ReadShadow;
 UINT64 GuestCr0;
 UINT64 GuestCr3;
 UINT64 GuestCr4;
 UINT64 GuestDr7;
 UINT64 HostFsBase;
 UINT64 HostGsBase;
 UINT64 HostTrBase;
 UINT64 HostGdtrBase;
 UINT64 HostIdtrBase;
 UINT64 HostRsp;
 UINT64 EptRoot;
 UINT16 Vpid;
 UINT16 Rsvd2[3];
 UINT64 Rsvd3[5];
 UINT64 ExitEptFaultGpa;
 UINT32 ExitInstructionError;
 UINT32 ExitReason;
 UINT32 ExitInterruptionInfo;
 UINT32 ExitExceptionErrorCode;
 UINT32 ExitIdtVectoringInfo;
 UINT32 ExitIdtVectoringErrorCode;
 UINT32 ExitInstructionLength;
 UINT32 ExitInstructionInfo;
 UINT64 ExitQualification;
 UINT64 ExitIoInstructionEcx;
 UINT64 ExitIoInstructionEsi;
 UINT64 ExitIoInstructionEdi;
 UINT64 ExitIoInstructionEip;
 UINT64 GuestLinearAddress;
 UINT64 GuestRsp;
 UINT64 GuestRflags;
 UINT32 GuestInterruptibility;

Hypervisor Top Level Functional Specification

 179

 UINT32 ProcessorControls;
 UINT32 ExceptionBitmap;
 UINT32 EntryControls;
 UINT32 EntryInterruptInfo;
 UINT32 EntryExceptionErrorCode;
 UINT32 EntryInstructionLength;
 UINT32 TprThreshold;
 UINT64 GuestRip;

 UINT32 CleanFields;
 UINT32 Rsvd4;
 UINT32 SyntheticControls;
 union
 {
 UINT32 AsUINT32;

 struct
 {
 UINT32 NestedFlushVirtualHypercall : 1;
 UINT32 MsrBitmap : 1;
 UINT32 Reserved : 30;
 };

 } EnlightenmentsControl;

 UINT32 VpId;
 UINT64 VmId;
 UINT64 PartitionAssistPage;
 UINT64 Rsvd5[4];

 UINT64 GuestBndcfgs;
 UINT64 Rsvd6[7];
 UINT64 XssExitingBitmap;
 UINT64 Rsvd7[7];

} HV_VMX_ENLIGHTENED_VMCS;

 Clean Fields

#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE (0)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP (1 << 0)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP (1 << 1)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2 (1 << 2)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1 (1 << 3)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC (1 << 4)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT (1 << 5)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY (1 << 6)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN (1 << 7)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR (1 << 8)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT (1 << 9)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC (1 << 10)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1 (1 << 11)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2 (1 << 12)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER (1 << 13)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1 (1 << 14)
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL (1 << 15)

 Physical VMCS Encoding

The following table maps the Intel physical VMCS encoding to its corresponding enlightened VMCS field
name, as well as its corresponding clean field name.

Hypervisor Top Level Functional Specification

 180

VMCS Encoding Enlightened Name
 Field
Size Clean Field Name

0x0000681e GuestRip 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE

0x0000401c TprThreshold 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE

0x0000681c GuestRsp 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC

0x00006820 GuestRflags 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC

0x00004824 GuestInterruptibility 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC

0x00004002 ProcessorControls 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC

0x00004004 ExceptionBitmap 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN

0x00004012 EntryControls 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY

0x00004016 EntryInterruptInfo 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT

0x00004018 EntryExceptionErrorCode 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT

0x0000401a EntryInstructionLength 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT

0x00000c00 HostEsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00000c02 HostCsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00000c04 HostSsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00000c06 HostDsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00000c08 HostFsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00000c0a HostGsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00000c0c HostTrSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00002c00 HostPat 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00002c02 HostEfer 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00006c00 HostCr0 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00006c02 HostCr3 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00006c04 HostCr4 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00006c10 HostSysenterEspMsr 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00006c12 HostSysenterEipMsr 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00006c16 HostRip 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00004c00 HostSysenterCsMsr 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1

0x00004000 PinControls 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1

0x0000400c ExitControls 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1

0x0000401e SecondaryProcessorControls 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1

0x00002000 IoBitmapA 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP

0x00002002 IoBitmapB 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP

0x00002004 MsrBitmap 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP

0x00000800 GuestEsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00000802 GuestCsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

Hypervisor Top Level Functional Specification

 181

0x00000804 GuestSsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00000806 GuestDsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00000808 GuestFsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000080a GuestGsSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000080c GuestLdtrSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000080e GuestTrSelector 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004800 GuestEsLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004802 GuestCsLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004804 GuestSsLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004806 GuestDsLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004808 GuestFsLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000480a GuestGsLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000480c GuestLdtrLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000480e GuestTrLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004810 GuestGdtrLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004812 GuestIdtrLimit 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004814 GuestEsAttributes 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004816 GuestCsAttributes 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004818 GuestSsAttributes 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000481a GuestDsAttributes 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000481c GuestFsAttributes 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000481e GuestGsAttributes 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004820 GuestLdtrAttributes 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00004822 GuestTrAttributes 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00006806 GuestEsBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00006808 GuestCsBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000680a GuestSsBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000680c GuestDsBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x0000680e GuestFsBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00006810 GuestGsBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00006812 GuestLdtrBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00006814 GuestTrBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00006816 GuestGdtrBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00006818 GuestIdtrBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2

0x00002010 TscOffset 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2

0x00002012 VirtualApicPage 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2

Hypervisor Top Level Functional Specification

 182

0x00002800 GuestWorkingVmcsPtr 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x00002802 GuestIa32DebugCtl 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x00002804 GuestPat 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x00002806 GuestEfer 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x0000280a GuestPdpte0 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x0000280c GuestPdpte1 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x0000280e GuestPdpte2 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x00002810 GuestPdpte3 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x00006822 GuestPendingDebugExceptions 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x00006824 GuestSysenterEspMsr 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x00006826 GuestSysenterEipMsr 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x00004826 GuestSleepState 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x0000482a GuestSysenterCsMsr 4 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x00006000 Cr0GuestHostMask 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR

0x00006002 Cr4GuestHostMask 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR

0x00006004 Cr0ReadShadow 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR

0x00006006 Cr4ReadShadow 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR

0x00006800 GuestCr0 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR

0x00006802 GuestCr3 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR

0x00006804 GuestCr4 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR

0x0000681a GuestDr7 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR

0x00006c06 HostFsBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER

0x00006c08 HostGsBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER

0x00006c0a HostTrBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER

0x00006c0c HostGdtrBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER

0x00006c0e HostIdtrBase 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER

0x00006c14 HostRsp 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER

0x00000000 Vpid 2 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT

0x0000201a EptRoot 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT

0x00002812 GuestBndcfgs 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1

0x0000202c XssExitingBitmap 8 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2

0x00002400 ExitEptFaultGpa 8 Read only (no corresponding clean field)

0x00004400 ExitInstructionError 4 Read only (no corresponding clean field)

0x00004402 ExitReason 4 Read only (no corresponding clean field)

0x00004404 ExitInterruptionInfo 4 Read only (no corresponding clean field)

0x00004406 ExitExceptionErrorCode 4 Read only (no corresponding clean field)

Hypervisor Top Level Functional Specification

 183

0x00004408 ExitIdtVectoringInfo 4 Read only (no corresponding clean field)

0x0000440a ExitIdtVectoringErrorCode 4 Read only (no corresponding clean field)

0x0000440c ExitInstructionLength 4 Read only (no corresponding clean field)

0x0000440e ExitInstructionInfo 4 Read only (no corresponding clean field)

0x00006400 ExitQualification 8 Read only (no corresponding clean field)

0x00006402 ExitIoInstructionEcx 8 Read only (no corresponding clean field)

0x00006404 ExitIoInstructionEsi 8 Read only (no corresponding clean field)

0x00006406 ExitIoInstructionEdi 8 Read only (no corresponding clean field)

0x00006408 ExitIoInstructionEip 8 Read only (no corresponding clean field)

0x0000640a GuestLinearAddress 8 Read only (no corresponding clean field)

16.12 Nested Virtualization Interfaces

 HvFlushGuestPhysicalAddressSpace

The HvFlushGuestPhysicalAddressSpace hypercall invalidates cached L2 GPA to GPA mappings within a
second level address space.

Wrapper Interface

HV_STATUS
HVFlushGuestPhysicalAddressSpace (
 __in HV_SPA AddressSpace
 __in UINT64 Flags
);

Native Interface

HvFlushGuestPhysicalAddressSpace

 Call Code = 0x00AF

 Input Parameters

0 AddressSpace (8 bytes)

8 Flags (8 bytes)

Description

The virtual TLB invalidation operation acts on all processors.

On Intel platforms, the HvFlushGuestPhysicalAddressSpace hypercall is like the execution of an INVEPT
instruction with type “single-context” on all processors.

All flags are reserved and must be set to zero.

This call guarantees that by the time control returns to the caller, the observable effects of all flushes
have occurred.

Hypervisor Top Level Functional Specification

 184

If the TLB is currently “locked”, the caller’s virtual processor is suspended.

Input Parameters

AddressSpace specifies an address space ID (an EPT PML4 table pointer)

Flags reserved.

Output Parameters

None.

Restrictions

None.

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER A parameter is invalid.

HV_STATUS_INVALID_VP_STATE Occurs when nested virtualization is not enabled,
or the VP is currently not in nested hypervisor
mode.

 HvFlushGuestPhysicalAddressList

The HvFlushGuestPhysicalAddressSpace hypercall invalidates cached GVA / L2 GPA to GPA mappings
within a portion of a second level address space.

Wrapper Interface

HV_STATUS
HVFlushGuestPhysicalAddressList (
 __in HV_SPA AddressSpace
 __in UINT64 Flags
 __in HV_GPA_PAGE_RANGE GpaRangeList[]
);

Native Interface

HvFlushGuestPhysicalAddressSpaceList [rep]

 Call Code = 0x00B0

 Input Parameters

0 AddressSpace (8 bytes)

8 Flags (8 bytes)

 Input List Element

Hypervisor Top Level Functional Specification

 185

 GpaRangeList (8 bytes)

Description

The virtual TLB invalidation operation acts on all processors.

All flags are reserved and must be set to zero.

This call guarantees that by the time control returns to the caller, the observable effects of all flushes
have occurred.

This call takes a list of L2 GPA ranges to flush. Each range has a base L2 GPA. Because flushes are
performed with page granularity, the bottom 12 bits of the L2 GPA can be used to define a range length.
These bits encode the number of additional pages (beyond the initial page) within the range. This allows
each entry to encode a range of 1 to 4096 pages.

If the TLB is currently “locked”, the caller’s virtual processor is suspended.

Input Parameters

AddressSpace specifies and address space ID (an EPT PML4 table pointer)

Flags reserved.

GpaRange specifies an L2 guest physical address range to flush.

Output Parameters

None.

Restrictions

None.

Return Values

Status code Error condition

HV_STATUS_INVALID_PARAMETER A parameter is invalid.

HV_STATUS_INVALID_VP_STATE Occurs when nested virtualization is not enabled,
or the VP is currently not in nested hypervisor
mode.

Hypervisor Top Level Functional Specification

 186

17 Appendix A: Hypercall Code Reference

The following is a table of all hypercalls by call code.

Call Code
Rep

Call

Fast

Call
Hypercall Caller

Partition Privilege Required (if

any)

0x0001
  HvSwitchVirtualAddressSpace Any

UseHypercallForAddressSpaceS

witch

0x0002
 HvFlushVirtualAddressSpace Any

UseHypercallFor[Local][Remote]

Flush

0x0003
 HvFlushVirtualAddressList Any

UseHypercallFor[Local][Remote]

Flush

0x0004 HvGetLogicalProcessorRunTime Any CpuManagement

0x0005

through

0x0007

 Reserved --

0x0008  HvNotifyLongSpinWait Any UseHypercallForLongSpinWait

0x00090 HvCallParkedVirtualProcessors Any CpuManagement

0x000b HvCallSendSyntheticClusterIpi Any

0x000c  HvCallModifyVtlProtectionMask Any

0x000d HvCallEnablePartitionVtl Any

0x000e HvCallDisablePartitionVtl Any

0x000f HvCallEnableVpVtl Any

0x0010 HvCallDisableVpVtl Any

0x0011 HvCallVtlCall Any

0x0012 HvCallVtlReturn Any

0x0013 HvCallFlushVirtualAddressSpaceEx Any

0x0014 HvCallFlushVirtualAddressListEx Any

0x0015 HvCallSendSyntheticClusterIpiEx Any

0x0016

through

0x003F

 Reserved --

0x0040 HvCreatePartition Any CreatePartitions

0x0041  HvInitializePartition Parent

0x0042  HvFinalizePartition Parent

Hypervisor Top Level Functional Specification

 187

Call Code
Rep

Call

Fast

Call
Hypercall Caller

Partition Privilege Required (if

any)

0x0043  HvDeletePartition Parent

0x0044
 HvGetPartitionProperty

Parent /

Root

0x0045
 HvSetPartitionProperty

Parent /

Root

0x0046 HvGetPartitionId Any AccessPartitionId

0x0047 HvGetNextChildPartition Parent

0x0048
 HvDepositMemory

Parent /

Root
AccessMemoryPool

0x0049
 HvWithdrawMemory

Parent /

Root
AccessMemoryPool

0x004A
 HvGetMemoryBalance

Parent /

Root
AccessMemoryPool

0x004B
 HvMapGpaPages

Parent /

Root

0x004C  HvUnmapGpaPages Parent

0x004D HvInstallIntercept Parent

0x004E HvCreateVp Parent

0x004F  HvDeleteVp Parent

0x0050  HvGetVpRegisters Any

0x0051  HvSetVpRegisters Any

0x0052 HvTranslateVirtualAddress Any

0x0053 HvReadGpa Parent

0x0054 HvWriteGpa Parent

0x0055 Deprecated Parent

0x0056  HvClearVirtualInterrupt Parent

0x0057
 Deprecated

Parent /

Root
CreatePort

0x0058
  HvDeletePort

Parent /

Root

0x0059
 HvConnectPort

Parent /

Root
ConnectPort

0x005A
 HvGetPortProperty

Parent /

Root

Hypervisor Top Level Functional Specification

 188

Call Code
Rep

Call

Fast

Call
Hypercall Caller

Partition Privilege Required (if

any)

0x005B
  HvDisconnectPort

Parent /

Root

0x005C HvPostMessage Any PostMessages

0x005D  HvSignalEvent Any SignalEvents

0x005E HvSavePartitionState Parent

0x005F HvRestorePartitionState Parent CreatePartitions

0x0060 HvInitializeEventLogBufferGroup Root

0x0061  HvFinalizeEventLogBufferGroup Root

0x0062  HvCreateEventLogBuffer Root

0x0063  HvDeleteEventLogBuffer Root

0x0064 HvMapEventLogBuffer Root

0x0065  HvUnmapEventLogBuffer Root

0x0066  HvSetEventLogGroupSources Root

0x0067  HvReleaseEventLogBuffer Root

0x0068  HvFlushEventLogBuffer Root

0x0069 HvPostDebugData Any Debugging

0x006A HvRetrieveDebugData Any Debugging

0x006B  HvResetDebugSession Any Debugging

0x006C HvMapStatsPage Parent2 AccessStats

0x006D

 HvUnmapStatsPage

ParentErro

r!

Bookmark

not

defined.

AccessStats

0x006E
 HvCallMapSparseGpaPages

Parent /

Root

0x006F HvCallSetSystemProperty Root ConfigureProfiler

0x0070
 HvCallSetPortProperty

Parent /

Root
CreatePort

0x0071

thru

0x0075

 Reserved

2 Only the root partition may map global statistics pages.

Hypervisor Top Level Functional Specification

 189

Call Code
Rep

Call

Fast

Call
Hypercall Caller

Partition Privilege Required (if

any)

0x0076 HvCallAddLogicalProcessor Root CpuManagement

0x0077 HvCallRemoveLogicalProcessor Root CpuManagement

0x0078 HvCallQueryNumaDistance Root CpuManagement

0x0079 HvCallSetLogicalProcessorProperty Root CpuManagement

0x007A HvCallGetLogicalProcessorProperty Root CpuManagement

0x007B HvCallGetSystemProperty Any CpuManagement

0x007C HvCallMapDeviceInterrupt Root CpuManagement

0x007D HvCallUnmapDeviceInterrupt Root CpuManagement

0x007E HvCallRetargetDeviceInterrupt Any CpuManagement

0x007F Reserved Root CpuManagement

0x0080 HvCallMapDevicePages Root CpuManagement

0x0081 HvCallUnmapDevicePages Root CpuManagement

0x0082 HvCallAttachDevice Root CpuManagement

0x0083 HvCallDetachDevice Root CpuManagement

0x0084 HvCallNotifyStandbyTransition Root CpuManagement

0x0085 HvCallPrepareForSleep Root CpuManagement

0x0086 HvCallPrepareForHibernate Root CpuManagement

0x0087 HvCallNotifyPartitionEvent Root CpuManagement

0x0088 HvCallGetLogicalProcessorRegisters Root CpuManagement

0x0089 HvCallSetLogicalProcessorRegisters Root CpuManagement

0x008A HvCallQueryAssociatedLpsforMca Root CpuManagement

0x008B HvCallNotifyRingEmpty Root CpuManagement

0x008C HvCallInjectSyntheticMachineCheck Root CpuManagement

0x008D HvCallScrubPartition Root

0x008E HvCallCollectLivedump Root Debugging

0x008F HvCallDisableHypervisor Root

0x0090 HvCallModifySparseGpaPages Root

0x0091 HvCallRegisterInterceptResult Root

0x0092 HvCallUnregisterInterceptResult Root

Hypervisor Top Level Functional Specification

 190

Call Code
Rep

Call

Fast

Call
Hypercall Caller

Partition Privilege Required (if

any)

0x0094 HvCallAssertVirtualInterrupt Any

0x0095 HvCallCreatePort Root

0x0096 HvCallConnectPort Root

0x0097 HvCallGetSpaPageList Root

0x0098 Reserved

0x0099 HvCallStartVirtualProcessor Any

0x009A  HvCallGetVpIndexFromApicId Any

0x009A

through

0x00AE

 Reserved

0x00AF HvCallFlushGuestPhysicalAddressSpace Any

0x00B0  HvCallFlushGuestPhysicalAddressList Any

Hypervisor Top Level Functional Specification

 191

18 Appendix B: Hypercall Status Code Reference

The following is a table of all hypercall return codes.

Status

Code
Status Name Meaning

0x0000 HV_STATUS_SUCCESS The operation succeeded.

0x0001 Reserved.

0x0002 HV_STATUS_INVALID_HYPERCALL_CODE The hypervisor does not support the operation because the specified

hypercall code is not supported.

0x0003 HV_STATUS_INVALID_HYPERCALL_INPUT The rep count was incorrect (for example, a non-zero rep count was

passed to a non-rep call or a zero rep count was passed to a rep call) or

a reserved bit in the specified hypercall input value was non-zero.

0x0004 HV_STATUS_INVALID_ALIGNMENT The specified input and/or output GPA pointers were not aligned to 8

bytes or the specified input and/or output parameters lists spanned a

page boundary.

0x0005 HV_STATUS_INVALID_PARAMETER One or more input parameters were invalid.

0x0006 HV_STATUS_ACCESS_DENIED The caller did not possess sufficient access rights to perform the

requested operation.

0x0007 HV_STATUS_INVALID_PARTITION_STATE The specified partition’s state was not appropriate for the requested

operation.

0x0008 HV_STATUS_OPERATION_DENIED The operation could not be performed. (The actual cause depends on

the operation.)

0x0009 HV_STATUS_UNKNOWN_PROPERTY The specified partition property ID is not a recognized property.

0x000A HV_STATUS_PROPERTY_VALUE_OUT_OF_RANGE The specified value of a partition property is out of range or violates an

invariant.

0x000B HV_STATUS_INSUFFICIENT_MEMORY Insufficient memory exists for the call to succeed.

0x000C HV_STATUS_PARTITION_TOO_DEEP The maximum partition depth has been exceeded for the partition

hierarchy.

0x000D HV_STATUS_INVALID_PARTITION_ID The specified partition ID is invalid.

0x000E HV_STATUS_INVALID_VP_INDEX The specified VP index is invalid.

0x000F Reserved

0x0010 Reserved

0x0011 HV_STATUS_INVALID_PORT_ID The specified port ID is not unique or does not exist.

0x0012 HV_STATUS_INVALID_CONNECTION_ID The specified connection ID is not unique or does not exist.

0x0033 HV_STATUS_INSUFFICIENT_BUFFERS The target port does not have sufficient buffers for the caller to post a

message.

0x0014 HV_STATUS_NOT_ACKNOWLEDGED An external interrupt has not previously been asserted and

acknowledged by the virtual processor prior to clearing it.

Hypervisor Top Level Functional Specification

 192

Status

Code
Status Name Meaning

0x0015 HV_STATUS_INVALID_VP_STATE A virtual processor is not in the correct state for the performance of

the indicated operation.

0x0016 HV_STATUS_ACKNOWLEDGED An external interrupt cannot be asserted because a previously-asserted

external interrupt was acknowledged by the virtual processor and has

not yet been cleared.

0x0017 HV_STATUS_INVALID_SAVE_RESTORE_STATE The initial call to HvSavePartitionState or HvRestorePartitionState

specifying HV_SAVE_RESTORE_STATE_START was not made at the

beginning of the save/restore process.

0x0018 HV_STATUS_INVALID_SYNIC_STATE The operation could not be performed because a required feature of

the SynIC was disabled.

0x0019 HV_STATUS_OBJECT_IN_USE The operation could not be performed because the object or value was

either already in use or being used for a purpose that would not permit

it.

0x001A HV_STATUS_INVALID_PROXIMITY_DOMAIN_INFO The Flags field included an invalid mask value in the proximity domain

information.

The Id field contained an invalid ACPI node ID in the proximity domain

information.

0x001B HV_STATUS_NO_DATA An attempt to retrieve data failed because none was available.

0x001C HV_STATUS_INACTIVE The physical connection being used for debugging has not recorded

any receive activity since the last operation.

0x001D HV_STATUS_NO_RESOURCES A resource is unavailable for allocation. This may indicate that there is

a resource shortage or that an implementation limitation may have

been reached.

0x001E HV_STATUS_FEATURE_UNAVAILABLE A hypervisor feature is not available to the caller.

0x001F HV_STATUS_PARTIAL_PACKET The debug packet returned is only a partial packet due to an I/O error.

0x0020 HV_STATUS_PROCESSOR_FEATURE_SSE3_NOT_SUPP

ORTED

The supplied restore state requires an unsupported processor feature

(SSE3).

0x0021 HV_STATUS_PROCESSOR_FEATURE_LAHFSAHF_NOT

_SUPPORTED

The supplied restore state requires an unsupported processor feature

(LAHFSAHF).

0x0022 HV_STATUS_PROCESSOR_FEATURE_SSSE3_NOT_SUP

PORTED

The supplied restore state requires an unsupported processor feature

(SSSE3).

0x0023 HV_STATUS_PROCESSOR_FEATURE_SSE4_1_NOT_SU

PPORTED

The supplied restore state requires an unsupported processor feature

(SSE4.1).

0x0024 HV_STATUS_PROCESSOR_FEATURE_SSE4_2_NOT_SU

PPORTED

The supplied restore state requires an unsupported processor feature

SSE4.2 is not supported.

0x0025 HV_STATUS_PROCESSOR_FEATURE_SSE4A_NOT_SUP

PORTED

The supplied restore state requires an unsupported processor feature

SSE4a is not supported.

Hypervisor Top Level Functional Specification

 193

Status

Code
Status Name Meaning

0x0026 HV_STATUS_PROCESSOR_FEATURE_XOP_NOT_SUPP

ORTED

The supplied restore state requires an unsupported processor feature

XOP is not supported.

0x0027 HV_STATUS_PROCESSOR_FEATURE_POPCNT_NOT_S

UPPORTED

The supplied restore state requires an unsupported processor feature

POPCNT is not supported.

0x0028 HV_STATUS_PROCESSOR_FEATURE_CMPXCHG16B_N

OT_SUPPORTED

The supplied restore state requires an unsupported processor feature

CMPXCHG16B is not supported.

0x0029 HV_STATUS_PROCESSOR_FEATURE_ALTMOVCR8_N

OT_SUPPORTED

The supplied restore state requires an unsupported processor feature

ALTMOVCR8 is not supported.

0x002A HV_STATUS_PROCESSOR_FEATURE_LZCNT_NOT_SU

PPORTED

The supplied restore state requires an unsupported processor feature

LZCNT is not supported.

0x002B HV_STATUS_PROCESSOR_FEATURE_MISALIGNED_SS

E_NOT_SUPPORTED

The supplied restore state requires an unsupported processor feature

MISALIGNED SSE3 is not supported.

0x002C HV_STATUS_PROCESSOR_FEATURE_MMX_EXT_NOT

_SUPPORTED

The supplied restore state requires an unsupported processor feature

MMX EXT is not supported.

0x002D HV_STATUS_PROCESSOR_FEATURE_3DNOW_NOT_S

UPPORTED

The supplied restore state requires an unsupported processor feature

3DNow is not supported.

0x002E HV_STATUS_PROCESSOR_FEATURE_EXTENDED_3DN

OW_NOT_SUPPORTED

The supplied restore state requires an unsupported processor feature

Extended 3DNow is not supported.

0x002F HV_STATUS_PROCESSOR_FEATURE_PAGE_1GB_NOT

_SUPPORTED

The supplied restore state requires an unsupported processor feature

PAHGE 1GB is not supported.

0x0030 HV_STATUS_PROCESSOR_CACHE_LINE_FLUSH_SIZE_I

NCOMPATIBLE

The processor’s cache line flush size is not supported.

0x0031 HV_STATUS_PROCESSOR_FEATURE_XSAVE_NOT_SU

PPORTED

The supplied restore state requires an unsupported processor feature

XSAVE is not supported.

0x0032 HV_STATUS_PROCESSOR_FEATURE_XSAVEOPT_NOT

_SUPPORTED

The supplied restore state requires an unsupported processor feature

XSAVEOPT is not supported.

0x0033 HV_STATUS_INSUFFICIENT_BUFFER The specified buffer was too small to contain all of the requested data.

0x0034 HV_STATUS_PROCESSOR_FEATURE_XSAVE_AVX_NO

T_SUPPORTED

The supplied restore state requires an unsupported processor feature

AVX is not supported.

0x0035 HV_STATUS_PROCESSOR_FEATURE_XSAVE_

FEATURE_NOT_SUPPORTED

The supplied restore state requires an unsupported XSAVE processor

feature.

0x0036 HV_STATUS_PROCESSOR_XSAVE_SAVE_AREA_INCO

MPATIBLE

The processor’s XSAVE area is not supported.

0x0037 HV_STATUS_INCOMPATIBLE_PROCESSOR The processor architecture is not supported.

0x0038 HV_STATUS_INSUFFICIENT_DEVICE_DOMAINS The maximum number of domains supported by the platform I/O

remapping hardware is currently in use.

0x0039 HV_STATUS_PROCESSOR_FEATURE_AES_NOT_SUPP

ORTED

The supplied restore state requires an unsupported processor feature

(AES).

Hypervisor Top Level Functional Specification

 194

Status

Code
Status Name Meaning

0x003A HV_STATUS_PROCESSOR_FEATURE_PCLMULQDQ_N

OT_SUPPORTED

The supplied restore state requires an unsupported processor feature

(PCLMULQDQ).

0x003B HV_STATUS_PROCESSOR_FEATURE_INCOMPATIBLE_

XSAVE_FEATURES

The supplied restore state enables incompatible XSAVE features.

(Enabling AVX without XSAVE/enabling XSAVEOPT without XSAVE)

0x003C HV_STATUS_CPUID_FEATURE_VALIDATION_ERROR Generic logical processor CPUID feature set validation error.

0x003D HV_STATUS_CPUID_XSAVE_FEATURE_VALIDATION_E

RROR

CPUID XSAVE feature validation error.

0x003E HV_STATUS_PROCESSOR_STARTUP_TIMEOUT Processor startup timed out.

0x003F HV_STATUS_SMX_ENABLED SMX enabled by the BIOS.

0x0040 HV_STATUS_PROCESSOR_FEATURE_PCID_NOT_SUPP

ORTED

The supplied restore state requires an unsupported processor

processor feature (PCID).

0x0041 HV_STATUS_INVALID_LP_INDEX The hypervisor could not perform the operation because the specified

LP index is invalid.

0x0042 HV_STATUS_FEATURE_FMA4_NOT_SUPPORTED The supplied restore state requires an unsupported processor feature

(FMA4).

0x0043 HV_STATUS_FEATURE_F16C_NOT_SUPPORTED The supplied restore state requires an unsupported processor feature

(F16C).

0x0044 HV_STATUS_PROCESSOR_FEATURE_RDRAND_NOT_S

UPPORTED

The supplied restore state requires an unsupported processor feature

(RDRAND).

0x0045 HV_STATUS_PROCESSOR_FEATURE_RDWRFSGS_NOT

_SUPPORTED

The supplied restore state requires an unsupported processor feature

(Read/Write FS/GS).

0x0046 HV_STATUS_PROCESSOR_FEATURE_SMEP_NOT_SUP

PORTED

The supplied restore state requires an unsupported processor feature

(SMEP).

0x0047 HV_STATUS_PROCESSOR_FEATURE_ENHANCED_FAS

T_STRING_NOT_SUPPORTED

The supplied restore state requires an unsupported processor feature

(Enhanced Fast String).

0x0048 HV_STATUS_PROCESSOR_FEATURE_MOVBE_NOT_S

UPPORTED

The supplied restore state requires an unsupported processor feature

(MovBe Instruction).

0x0049 HV_STATUS_PROCESSOR_FEATURE_BMI1_NOT_SUP

PORTED

The supplied restore state requires an unsupported processor feature

(Bmi1).

0x004A HV_STATUS_PROCESSOR_FEATURE_BMI2_NOT_SUP

PORTED

The supplied restore state requires an unsupported processor feature

(Bmi2).

0x004B HV_STATUS_PROCESSOR_FEATURE_HLE_NOT_SUPP

ORTED

The supplied restore state requires an unsupported processor feature

(Hle).

0x004C HV_STATUS_PROCESSOR_FEATURE_RTM_NOT_SUPP

ORTED

The supplied restore state requires an unsupported processor feature

(Rtm).

0x004D HV_STATUS_PROCESSOR_FEATURE_XSAVE_FMA_NO

T_SUPPORTED

The supplied restore state requires an unsupported processor feature

(Fma).

Hypervisor Top Level Functional Specification

 195

Status

Code
Status Name Meaning

0x004E HV_STATUS_PROCESSOR_FEATURE_XSAVE_AVX2_N

OT_SUPPORTED

The supplied restore state requires an unsupported processor feature

(Avx2)

0x004F HV_STATUS_PROCESSOR_FEATURE_NPIEP1_NOT_SU

PPORTED

The supplied restore state requires an unsupported processor feature

(NPIEP1).

0x0050 HV_STATUS_INVALID_REGISTER_VALUE The supplied register value is invalid.

0x0052 HV_STATUS_PROCESSOR_FEATURE_RDSEED_NOT_S

UPPORTED

The supplied restore state requires an unsupported processor feature

(RdSeed).

0x0053 HV_STATUS_PROCESSOR_FEATURE_ADX_NOT_SUPP

ORTED

The supplied restore state requires an unsupported processor feature

(Adx).

0x0054 HV_STATUS_PROCESSOR_FEATURE_SMAP_NOT_SUP

PORTED

The supplied restore state requires an unsupported processor feature

(SMAP).

0x0055 HV_STATUS_NX_NOT_DETECTED NX not detected on the machine.

0x0056 HV_STATUS_PROCESSOR_FEATURE_INTEL_PREFETC

H_NOT_SUPPORTED

The supplied restore state requires an unsupported processor feature

(Intel Prefetch)

0x0057 HV_STATUS_INVALID_DEVICE_ID The supplied device ID is invalid.

0x0058 HV_STATUS_INVALID_DEVICE_STATE The operation is not allowed in the current device state.

0x0059 HV_STATUS_PENDING_PAGE_REQUESTS The device had pending page requests which were discarded.

0x0060 HV_STATUS_PAGE_REQUEST_INVALID The supplied page request specifies a memory access that the guest

does not have permissions to perform.

0x0071 HV_STATUS_OPERATION_FAILED The requested operation failed.

0x0072 HV_STATUS_NOT_ALLOWED_WITH_NESTED_VIRT_A

CTIVE

The requested operation is not allowed due to one or more virtual

processors having nested virtualization active.

Hypervisor Top Level Functional Specification

 196

19 Appendix C: Architectural CPUID

The table below contains a list of architected CPUID leaves and how they are virtualized by the
hypervisor. Pass through means that the hardware value is used and passed through to the partition.
That value will be the same on all logical processors in the system.

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

0x00000000 Vendor ID

EAX Maximum valid standard CPUID

index

0 31 Minimum of the

hardware value on

the current logical

processor and

0x00000006

Minimum of the hardware

value across all logical

processors and 0x00000006

EBX Processor vendor string 0 31 Pass through Pass through

ECX Processor vendor string 0 31 Pass through Pass through

EDX Processor vendor string 0 31 Pass through Pass through

0x00000001 Feature Information

EAX Stepping 0 3 Pass through Pass through minimum

stepping across all logical

processors

 Base Model 4 7 Pass through Pass through

 Base Family 8 11 Pass through Pass through

 Processor Type 12 13 Pass through Pass through

 RsvdZ 14 15 Cleared Cleared

 Extended Model 16 19 Pass through Pass through

 Extended Family 20 27 Pass through Pass through

 RsvdZ 28 31 Cleared Cleared

EBX Miscellaneous Information

 Brand Identifier 0 7 Pass through Pass through value received

from processor 0

 CL Flush size 8 15 Pass through Pass through

 Maximum LPs in a physical

package

16 23 Pass through If HT is disabled, set to

number of cores. If HT

enabled, Pass through.

 Initial APIC ID 24 31 Pass through Return value of the

HvX64RegisterInitialApicId

ECX Feature Flags / Identifiers

Hypervisor Top Level Functional Specification

 197

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

SSE3 0 0 Pass through Set if set on all, otherwise 0

PCLMULDQ 1 1 Pass through Pass through

 DTES64 2 2 Cleared Cleared

MONITOR 3 3 Cleared Cleared

DS-CPL 4 4 Cleared Cleared

VMX 5 5 Cleared Cleared

SMX 6 6 Cleared Cleared

EIST 7 7 Pass through Cleared

TM2 8 8 Pass through Cleared

SSSE3 9 9 Pass through Set if set on all, otherwise 0

CNXT-ID 10 10 Pass through Cleared

RsvdZ 11 11 Cleared Cleared

 FMA 12 12 Pass through Pass through

CMPXCHG16B 13 13 Pass through Set if set on all, otherwise 0

xTPR 14 14 Pass through Cleared

PDCM 15 15 Cleared Cleared

RsvdZ 16 16 Cleared Cleared

 PCID 17 17 Pass through Pass through

DCA 18 18 Cleared Cleared

SSE4.1 19 19 Pass through Set if set on all, otherwise 0

SSE4.2 20 20 Pass through Set if set on all, otherwise 0

x2APIC 21 21 Pass through Cleared

 RsvdZ 22 22 Cleared Cleared

POPCNT 23 23 Pass through Set if set on all, otherwise 0

TSC-DEADLINE 24 24 Cleared Cleared

 AES 25 25 Pass through Pass through

 XSAVE 26 26 Set if enabled Set if enabled

 OSXSAVE 27 27 Pass through Pass through

Hypervisor Top Level Functional Specification

 198

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 AVX 28 28 Set if enabled Set if enabled

 F16C 29 29 Pass through Pass through

 RDRAND 30 30 Pass through Pass through

Hypervisor Present 31 31 Set Set

EDX Feature Information

FPU 0 0 Set Set

VME 1 1 Set Set

DE 2 2 Set Set

PSE 3 3 Set Set

TSC 4 4 Set Set

MSR 5 5 Set Set

PAE 6 6 Set Set

MCE 7 7 Set Set

CMPXCHG8B 8 8 Set Set

APIC 9 9 Set Set

RsvdZ 10 10 Cleared Cleared

SEP 11 11 Set Set

MTRR 12 12 Set Set

PGE 13 13 Set Set

MCA 14 14 Set Set

CMOV 15 15 Set Set

PAT 16 16 Set Set

PSE-36 17 17 Set Set

PSN 18 18 Cleared Cleared

CLFSH 19 19 Set Set

RsvdZ 20 20 Cleared Cleared

DS 21 21 Cleared Cleared

ACPI 22 22 Pass through Cleared

Hypervisor Top Level Functional Specification

 199

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

MMX 23 23 Set Set

FXSR 24 24 Set Set

SSE 25 25 Set Set

SSE2 26 26 Set Set

SS 27 27 Pass through Set if set on all, otherwise 0

HTT 28 28 Pass through Cleared

TM 29 29 Pass through Cleared

RsvdZ 30 30 Cleared Cleared

PBE 31 31 Pass through Cleared

0x00000002 Cache Descriptors

EAX Cache and TLB descriptors 0 31 Pass through on Intel

Cleared on AMD

Pass through value from

processor 0 on Intel

Cleared on AMD

EBX Cache and TLB descriptors 0 31 Pass through on Intel

Cleared on AMD

Pass through value from

processor 0 on Intel

Cleared on AMD

ECX Cache and TLB descriptors 0 31 Pass through on Intel

Cleared on AMD

Pass through value from

processor 0 on Intel

Cleared on AMD

EDX Cache and TLB descriptors 0 31 Pass through on Intel

Cleared on AMD

Pass through value from

processor 0 on Intel

Cleared on AMD

0x00000003 Processor Serial Number

EAX Processor serial number 0 31 Cleared Cleared

EBX Processor serial number 0 31 Cleared Cleared

ECX Processor serial number 0 31 Cleared Cleared

EDX Processor serial number 0 31 Cleared Cleared

0x00000004 Deterministic Cache Parameters

EAX Cache type 0 4 Pass through Pass through value from

processor 0

Cache level 5 7 Pass through Pass through value from

processor 0

Hypervisor Top Level Functional Specification

 200

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

Self-initializing cache level 8 8 Pass through Pass through value from

processor 0

Fully Associative 9 9 Pass through Pass through value from

processor 0

Write back invalidate / invalidate 10 10 Pass through Pass through value from

processor 0

Cache inclusiveness 11 11 Pass through Pass through value from

processor 0

RsvdZ 12 13 Cleared Cleared

Maximum threads in cache 14 25 Pass through If HT disabled, scale the

value down by the number

of threads / core. If HT is

enabled, set to the number

of logical processors per

package.

Max cores per package 26 31 Pass through If HT enabled, scale up this

value by number of threads

per core. If HT is disabled,

Pass through the value from

processor 0.

EBX Coherency line size 0 11 Pass through Pass through value from

processor 0

Physical line partitions 12 21 Pass through Pass through value from

processor 0

Ways of associativity 22 31 Pass through Pass through value from

processor 0

ECX Number of sets 0 31 Pass through Pass through value from

processor 0

EDX RsvdZ 0 31 Cleared Cleared

0x00000005 MONITOR / MWAIT

EAX

0 15 Cleared Cleared

 RsvdZ 16 31 Cleared Cleared

EBX MonLineSizeMax 0 15 Cleared Cleared

 RsvdZ 16 31 Cleared Cleared

ECX EMX 0 0 Cleared Cleared

 IBE 1 1 Cleared Cleared

 RsvdZ 2 31 Cleared Cleared

Hypervisor Top Level Functional Specification

 201

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

EDX C0SubstatesUsingMwait 0 3 Cleared Cleared

 C1SubstatesUsingMwait 4 7 Cleared Cleared

 C2SubstatesUsingMwait 8 11 Cleared Cleared

 C3SubstatesUsingMwait 12 15 Cleared Cleared

 C4SubstatesUsingMwait 16 19 Cleared Cleared

 RsvdZ 20 31 Cleared Cleared

0x00000006
Power management feature

enumeration function

EAX Digital Temperature Sensor

Supported.

0 0 Pass through for the

partition possessing

the CpuManagement

privilege, otherwise

Cleared

Pass through for the

partition possessing the

CpuManagement privilege,

otherwise Cleared

 Dynamic Acceleration Enabled 1 1 Pass through for the

partition possessing

the CpuManagement

privilege, otherwise

Cleared

Pass through for the

partition possessing the

CpuManagement privilege,

otherwise Cleared

Constant Rate Timer 2 2 Pass through for the

partition possessing

the CpuManagement

privilege, otherwise

Cleared

Pass through for the

partition possessing the

CpuManagement privilege,

otherwise Cleared

 RsvdZ 3 31 Pass through for the

partition possessing

the CpuManagement

privilege, otherwise

Cleared

Pass through for the

partition possessing the

CpuManagement privilege,

otherwise Cleared

EBX Thermal Threshold Count 0 3 Pass through for the

partition possessing

the CpuManagement

privilege, otherwise

Cleared

Pass through for the

partition possessing the

CpuManagement privilege,

otherwise Cleared

 RsvdZ 4 31 Pass through for the

partition possessing

the CpuManagement

privilege, otherwise

Cleared

Pass through for the

partition possessing the

CpuManagement privilege,

otherwise Cleared

ECX Hardware Coordination Feeback 0 0 Pass through for the

partition possessing

the CpuManagement

privilege, otherwise

Cleared

Pass through for the

partition possessing the

CpuManagement privilege,

otherwise Cleared

Hypervisor Top Level Functional Specification

 202

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 RsvdZ 1 31 Pass through for the

partition possessing

the CpuManagement

privilege, otherwise

Cleared

Pass through for the

partition possessing the

CpuManagement privilege,

otherwise Cleared

EDX RsvdZ 0 31 Pass through for the

partition possessing

the CpuManagement

privilege, otherwise

Cleared

Pass through for the

partition possessing the

CpuManagement privilege,

otherwise Cleared

0x00000007 Extended Feature Flags

EAX RsvdZ 0 31 Cleared Cleared

EBX FSGSBASE 0 0 Pass Through Pass Through

 RsvdZ 1 6 Cleared Cleared

 SMEP 7 7 Pass Through Pass Through

 RsvdZ 8 8 Cleared Cleared

 Enhanced REP MOVSB/STOSB 9 9 Pass Through Pass Through

 RsvdZ 10 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x00000008 Reserved

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x00000009

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x0000000A Architectural Performance Monitor

EAX Architectural Perfmon 0 31 Cleared Cleared

EBX Architectural Perfmon 0 31 Cleared Cleared

Hypervisor Top Level Functional Specification

 203

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

ECX Architectural Perfmon 0 31 Cleared Cleared

EDX Architectural Perfmon 0 31 Cleared Cleared

0x40000000
Hypervisor CPUID leaf range and

vendor ID signature

EAX The maximum input value for

hypervisor CPUID information

0 31 At least 0x40000005 At least 0x40000005

EBX Hypervisor Vendor ID Signature 0 31 0x7263694D—“Micr” 0x7263694D—“Micr”

ECX Hypervisor Vendor ID Signature 0 31 0x666F736F—“osof” 0x666F736F—“osof”

EDX Hypervisor Vendor ID Signature 0 31 0x76482074—“t Hv” 0x76482074—“t Hv”

0x40000001
Hypervisor vendor-neutral

interface identification

EAX Hypervisor Interface Signature 0 31 0x31237648—“Hv#1” 0x31237648—“Hv#1”

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x40000002 Operating system identity

EAX Build Number 0 31

EBX Minor Version 0 15

 Major Version 16 31

ECX Service Pack 0 31

EDX Service Number 0 23

 Service Branch 24 31

0x40000003

EAX Feature identification - partition

privileges

 VP Runtime available 0 0

 Partition Reference Counter

available

1 1

 Basic SynIC MSRs available 2 2

 Synthetic Timer MSRs available 3 3

 APIC access MSRs available 4 4

Hypervisor Top Level Functional Specification

 204

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 Hypercall MSRs available 5 5

 Access virtual processor index

MSR available

6 6

 Virtual System Reset MSR

available

7 7

Access statistics pages MSRs

available

8 8

 AccessPartitionReferenceTsc 9 9

 AccessGuestIdleMsrs 10 10

 AccessFrequencyMsrs 11 11

 AccessDebugMsrs 12 12

 RsvdZ 13 31 Cleared Cleared

EBX Feature identification - partition

creation flags

 CreatePartitions 0 0

 AccessPartitionId 1 1

 AccessMemoryPool 2 2

 AdjustMessageBuffers 3 3

 PostMessages 4 4

 SignalEvents 5 5

 CreatePort 6 6

 ConnectPort 7 7

 AccessStats 8 8

 RsvdZ 9 10

 Debugging 11 11

 CpuManagement 12 12

 ConfigureProfiler 13 13

 RsvdP 14 15

 AccessVSM 16 16

 AccessVpRegisters 17 17

 RsvdP 18 19

Hypervisor Top Level Functional Specification

 205

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 EnableExtendedHypercalls 20 20

 StartVirtualProcessor 21 21

 RsvdZ 22 31 Cleared Cleared

ECX Feature identification - power

management

 Maximum processor power state.

0 is C0, 1 is C1, 2 is C2, 3 is C3.

0 3

 HPET needed for C3 4 4

 RsvdZ 5 31 Cleared Cleared

EDX Feature identification -

miscellaneous

 The MWAIT instruction is

available

0 0

 Guest debugging support is

available

1 1 Cleared Set

 Performance monitor support is

available

2 2 Cleared Cleared

 CpuDynamicPartitioningAvailable 3 3 Cleared Cleared

 XmmRegistersForFastHypercallAv

ailable

4 4 Set Set

 GuestIdleAvailable 5 5 Cleared Set

 HypervisorSleepStateSupportAvail

able

6 6 Set Cleared

 NumaDistanceQueryAvailable 7 7 Set Cleared

 FrequencyMsrsAvailable 8 8 Set Cleared

 SyntheticMachineCheckAvailable 9 9 Cleared Set

 GuestCrashMsrsAvailable 10 10 Cleared Set

 DebugMsrsAvailable 11 11 Cleared Set

 Npiep1Available 12 12

 DisableHypervisorAvailable 13 13

 ExtendedGvaRangesForFlishVirtua

lAddressListAvailable

14 14

 FastHypercallOutputAvailable 15 15

Hypervisor Top Level Functional Specification

 206

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 Reserved 16 16

 SintPollingModeAvailable 17 17

 HypercallMsrLockAvailable 18 18

 Use direct synthetic timers 19 19

 RsvdZ 20 31 Cleared Cleared

0x40000004

EAX Implementation

recommendations

 Recommend using hypercall for

address space switches rather

than MOV to CR3 instruction

0 0 Set Set

 Recommend using hypercall for

local TLB flushes rather than

INVLPG or MOV to CR3

instructions

1 1 Set Set

 Recommend using hypercall for

remote TLB flushes rather than

inter-processor interrupts

2 2 Set Set

 Recommend using MSRs for

accessing APIC registers EOI, ICR

and TPR rather than their

memory-mapped counterparts.

3 3 Set Set

 Recommend using the hypervisor-

provided MSR to initiate a system

RESET.

4 4 Set Set

 Recommend using relaxed timing

for this partition.

5 5 Set Set

 UseDmaRemapping 6 6

 UseInteruptRemapping 7 7

 UseX2ApicMsrs 8 8

 DeprecateAutoEoi 9 9

 Recommend using

SyntheticClusterIpi hypercall

10 10

 Recommend using the newer

ExProcessorMasks interface

11 11

 Indicates that the hypervisor is

nested within a Hyper-V partition.

12 12

Hypervisor Top Level Functional Specification

 207

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 Recommend using INT for MBEC

system calls

13 13

 Recommend a nested hypervisor

using the enlightened VMCS

interface. Also indicates that

additional nested enlightenments

may be available (see leaf

0x4000000A)

14 14

 RsvdZ 15 31 Cleared Cleared

EBX Recommended number of

attempts to retry a spinlock

failure before notifying the

hypervisor about the failures.

0xFFFFFFFF indicates never to

retry.

0 31

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x40000005 Implementation limits

EAX The maximum number of virtual

processors supported.

0 31

EBX The maximum number of logical

processors supported.

0 31

ECX The maximum number of

interrupt mappings supported

0 31

EDX RsvdZ 0 31 Cleared Cleared

0x40000006
Implementation hardware

features

EAX Support for APIC overlay assist is

detected and in use.

0 0

Support for MSR bitmaps is

detected and in use.

1 1

Support for architectural

performance counters is detected

and in use.

2 2

 Second Level Address Translation

is detected and in use.

3 3

 DMA Remapping is detected and

in use.

4 4

 Interrupt Remapping is detected

and in use.

5 5

Hypervisor Top Level Functional Specification

 208

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 Memory patrol scrubber present 6 6

 DMA protection is in use 7 7

 HPET is requested 8 8

 Synthetic timers are volatile 9 9

RsvdZ 10 31

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ for future AMD-specific

features

0 31 Cleared Cleared

0x40000007 CPU Management Features

EAX StartLogicalProcessor 0 0

 CreateRootVirtualProcessor 1 1

 Reserved 2 30

 ReservedIdentityBit 31 31

EBX ProcessorPowerManagement 0 0

 MwaitIdelStates 1 1

 LogicalProcessorIdling 2 2

 Reserved 3 31

ECX Reserved 0 31

EDX Reserved 0 31

0x40000008 SVM Features

EAX SvmSupported 0 0

 Reserved 1 10

 MaxPasidSpacePasidCount 11 31

EBX Reserved 0 31

ECX Reserved 0 31

Hypervisor Top Level Functional Specification

 209

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

EDX Reserved 0 31

0x40000009
Nested Hypervisor Feature

Identification

EAX Reserved 0 1

 AccessSynicRegs 2 2

 Reserved 3 3

 AccessIntrCtrlRegs 4 4

 AccessHypercallMsrs 5 5

 AccessVpIndex 6 6

 Reserved 7 31

EBX Reserved 0 31

ECX Reserved 0 31

EDX Reserved 0 3

XmmRegistersForFastHypercalAva

ilable
4 4

 Reserved 5 14

 FastHypercallOutputAvailable 15 15

 Reserved 16 16

 SintPollingModeAvailable 17 17

 Reserved 18 31

0x4000000A
Hypervisor Nested Virtualization

Features

EAX Enlightened VMCS version (low) 0 7

 Enlightened VMCS version (high) 8 15

 Reserved 16 16

Indicates support for direct virtual

flush hypercalls
17 17

Hypervisor Top Level Functional Specification

 210

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

Indicates support for the

HvFlushPhysicalAddressSpace and

HvFlushGuestPhysicalAddressList

hypercalls

18 18

Indicates support for using an

enlightened MSR bitmap.
19 19

 Reserved 20 31

EBX Reserved 0 31

ECX Reserved 0 31

EDX Reserved 0 31

0x4000000B -

0x4000007F

EAX - EDX Reserved for future hypervisor

use

0x40000080 -

0x400000FF

EAX - EDX Reserved for use of intercept

handlers in the parent partition

0x80000000

EAX Highest Extended CPUID Leaf 0 31 Minimum of the

hardware value on

current logical

processor and

0x8000001A

Minimum of the hardware

value across all logical

processors in the system and

0x8000001A

EBX Processor vendor string 0 31 Pass through Pass through value from

processor 0

ECX Processor vendor string 0 31 Pass through Pass through value from

processor 0

EDX Processor vendor string 0 31 Pass through Pass through value from

processor 0

0x80000001

EAX Stepping 0 3 Pass through Minimum across all logical

processors

 Base Model 4 7 Pass through Pass through value from

processor 0

 Base Family 8 11 Pass through Pass through value from

processor 0

Hypervisor Top Level Functional Specification

 211

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 Processor Type 12 13 Pass through Pass through value from

processor 0

 RsvdZ 14 15 Cleared Cleared

 Extended Model 16 19 Pass through Pass through

 Extended Family 20 27 Pass through Pass through

 RsvdZ 28 31 Cleared Cleared

EBX Brand ID 0 15 Pass through Pass through

 RsvdZ 16 27 Cleared Cleared

 Package Type 28 31 Pass through Pass through

ECX Extended feature flag / feature

identifiers

 LahfSahf 0 0 Pass through Set if set on all, otherwise 0

 CmpLegacy 1 1 Pass through Set if set on all, otherwise 0

 SVM 2 2 Cleared Cleared

 ExtApicSpace 3 3 Cleared Cleared

 AltMovCr8 4 4 Pass through Set if set on all, otherwise 0

 ABM 5 5 Pass through Set if set on all, otherwise 0

 SSE4A 6 6 Pass through Set if set on all, otherwise 0

 MisAlignSse 7 7 Pass through Set if set on all, otherwise 0

 3DNowPrefetch 8 8 Pass through Set if set on all, otherwise 0

 OSVW 9 9 Pass through Set if set on all, otherwise 0

 RsvdZ 10 10 Cleared Cleared

 SSE5 11 11 Pass through Set if set on all, otherwise 0

 SKINIT 12 12 Cleared Cleared

 WDT 13 13 Pass through Cleared

 RsvdZ 14 31 Cleared Cleared

EDX Extended feature flags

 FPU 0 0 Set Set

 VME 1 1 Pass through Set if set on all, otherwise 0

 DE 2 2 Set Set

Hypervisor Top Level Functional Specification

 212

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 PSE 3 3 Set Set

 TSC 4 4 Set Set

 MSR 5 5 Set Set

 PAE 6 6 Set Set

 MCE 7 7 Set Set

 CMPXCHG8B 8 8 Set Set

 APIC 9 9 Set Set

 RsvdZ 10 10 Cleared Cleared

 SysCallSysRet 11 11 Set Set

 MTRR 12 12 Set Set

 PGE 13 13 Set Set

 MCA 14 14 Set Set

 CMOV 15 15 Set Set

 PAT 16 16 Set Set

 PSE36 17 17 Pass through Set if set on all, otherwise 0

 RsvdZ 18 18 Cleared Cleared

 RsvdZ 19 19 Cleared Cleared

 Execute disabled / No execute 20 20 Set Set

 RsvdZ 21 21 Cleared Cleared

 MmxExt 22 22 Pass through Set if set on all, otherwise 0

 MMX 23 23 Set Set

 FXSR 24 24 Set Set

 FFXSR 25 25 Pass through Set if set on all, otherwise 0

 Page1GB 26 26 Cleared Cleared

 RDTSCP 27 27 Pass through Cleared

 RsvdZ 28 28 Cleared Cleared

 LM 29 29 Set Set

 3DNowExt 30 30 Pass through Set if set on all, otherwise 0

 3DNow 31 31 Pass through Set if set on all, otherwise 0

Hypervisor Top Level Functional Specification

 213

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

0x80000002 Processor name string identifier

EAX Processor Brand String 0 31 Pass through Pass through value from

processor 0

EBX Processor Brand String 0 31 Pass through Pass through value from

processor 0

ECX Processor Brand String 0 31 Pass through Pass through value from

processor 0

EDX Processor Brand String 0 31 Pass through Pass through value from

processor 0

0x80000003 Processor name string identifier

EAX Processor Brand String 0 31 Pass through Pass through value from

processor 0

EBX Processor Brand String 0 31 Pass through Pass through value from

processor 0

ECX Processor Brand String 0 31 Pass through Pass through value from

processor 0

EDX Processor Brand String 0 31 Pass through Pass through value from

processor 0

0x80000004 Processor name string identifier

EAX Processor Brand String 0 31 Pass through Pass through value from

processor 0

EBX Processor Brand String 0 31 Pass through Pass through value from

processor 0

ECX Processor Brand String 0 31 Pass through Pass through value from

processor 0

EDX Processor Brand String 0 31 Pass through Pass through value from

processor 0

0x80000005
L1 Cache and TLB identifiers (all

registers)

EAX L1ITlb2and4MSize 0 7 Pass through Pass through

 L1ITlb2and4MAssoc 8 15 Pass through Pass through

 L1DTlb2and4MSize 16 23 Pass through Pass through

 L1DTlb2and4MAssoc 24 31 Pass through Pass through

EBX L1ITlb4KSize 0 7 Pass through Pass through

 L1ITlb4KAssoc 8 15 Pass through Pass through

Hypervisor Top Level Functional Specification

 214

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 L1DTlb4KSize 16 23 Pass through Pass through

 L1DTlb4KAssoc 24 31 Pass through Pass through

ECX L1DcLineSize 0 7 Pass through Pass through

 L1DcLinesPerTag 8 15 Pass through Pass through

 L1DcAssoc 16 23 Pass through Pass through

 L1DcSize 24 31 Pass through Pass through

EDX L1IcLineSize 0 7 Pass through Pass through

 L1IcLinesPerTag 8 15 Pass through Pass through

 L1IcAssoc 16 23 Pass through Pass through

 L1IcSize 24 31 Pass through Pass through

0x80000006 L2 Cache and L2 TLB identifiers

EAX L2ITlb2and4MSize 0 11 Pass through Pass through

 L2ITlb2and4MAssoc 12 15 Pass through Pass through

 L2DTlb2and4MSize 16 27 Pass through Pass through

 L2DTlb2and4MAssoc 28 31 Pass through Pass through

EBX L2ITlb4KSize 0 11 Pass through Pass through

 L2ITlb4KAssoc 12 15 Pass through Pass through

 L2DTlb4KSize 16 27 Pass through Pass through

 L2DTlb4KAssoc 28 31 Pass through Pass through

ECX L2 Line Size 0 7 Pass through Pass through

 L2 Lines per tag 8 11 Pass through Pass through

 L2 Associativity 12 15 Pass through Pass through

 L2 cache size in kilobytes 16 31 Pass through Pass through

EDX L3LineSize 0 7 Pass through Pass through

 L3LinesPerTag 8 11 Pass through Pass through

 L3Assoc 12 15 Pass through Pass through

 RsvdZ 16 17 Pass through Pass through

 L3Size 18 31 Pass through Pass through

Hypervisor Top Level Functional Specification

 215

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

0x80000007
Advanced Power Management

Information

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX TS 0 0 Pass through Cleared

 FID 1 1 Pass through Cleared

 VID 2 2 Pass through Cleared

 TTP 3 3 Pass through Cleared

 TM 4 4 Pass through Cleared

 STC 5 5 Pass through Cleared

 100MhzSteps 6 6 Pass through Cleared

 HwPState 7 7 Pass through Cleared

 TscInvariant 8 8 Pass through Cleared

 RsvdZ 9 31 Cleared Cleared

0x80000008

EAX PhysAddrSize 0 7 Pass through The size of the physical GPA

space that is supported

 LinAddrSize 8 15 Pass through The size of the virtual GPA

space that is supported

 RsvdZ 16 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX NC 0 7 Pass through Pass through

 RsvdZ 8 11 Cleared Cleared

 ApicIdCoreIdSize 12 15 Pass through Pass through

 RsvdZ 16 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000009

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

Hypervisor Top Level Functional Specification

 216

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x8000000A
SVM revision and feature

identification

EAX SvmRev 0 7 Cleared Cleared

 RsvdZ 8 31 Cleared Cleared

EBX NASID 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX NP 0 0 Cleared Cleared

 LBRVirt 1 1 Cleared Cleared

 SVML 2 2 Cleared Cleared

 NRIPS 3 3 Cleared Cleared

 RsvdZ 4 31 Cleared Cleared

0x8000000B

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x8000000C

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x8000000D

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x8000000E

Hypervisor Top Level Functional Specification

 217

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x8000000F

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000010

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000011

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000012

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000013

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

Hypervisor Top Level Functional Specification

 218

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

0x80000014

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000015

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000016

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000017

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000018

EAX RsvdZ 0 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x80000019

EAX L1ITlb1GSize 0 11 Cleared Cleared

 L1ITlb1GAssoc 12 15 Cleared Cleared

 L1DTlb1GSize 16 27 Cleared Cleared

Hypervisor Top Level Functional Specification

 219

Index and

Register

Name Start

bit

End

bit

Virtualized Value

Root

Virtualized Value

Non-Root

 L1DTlb1GAssoc 28 31 Cleared Cleared

EBX L2ITlb1GSize 0 11 Cleared Cleared

 L2ITlb1GAssoc 12 15 Cleared Cleared

 L2DTlb1GSize 16 27 Cleared Cleared

 L2DTlb1GAssoc 28 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

0x8000001A

EAX FP128 0 0 Pass through Set if set on all, otherwise 0

 MOVU 1 1 Pass through Set if set on all, otherwise 0

 RsvdZ 2 31 Cleared Cleared

EBX RsvdZ 0 31 Cleared Cleared

ECX RsvdZ 0 31 Cleared Cleared

EDX RsvdZ 0 31 Cleared Cleared

Hypervisor Top Level Functional Specification

 220

20 Appendix D: Architectural MSRs

The table below contains a list of architectural MSRs that are virtualized for guest partition access. The
default behavior for MSRs not on this list is a #GP fault. Note that this list does not include MSRs that
could be filtered by the hypervisor (see 16.10)

MSR Number MSR Name Behavior

0x010 X64_MSR_TIME_STAMP_COUNTER Virtualize

0x01B X64_MSR_APIC_BASE Virtualize

0x0FE X64_MSR_MTRRCAP Virtualize

0x174 X64_MSR_SYSENTER_CS Virtualize

0x175 X64_MSR_SYSENTER_ESP Virtualize

0x176 X64_MSR_SYSENTER_EIP Virtualize

0x179 X64_MSR_MCG_CAP 0

0x17A X64_MSR_MCG_STATUS Virtualize

0x1D9 X64_MSR_DEBUG_CTL Virtualize

0x200 X64_MSR_MTRR_PHYSBASE0 Virtualize

0x201 X64_MSR_MTRR_PHYSMASK0 Virtualize

0x202 X64_MSR_MTRR_PHYSBASE1 Virtualize

0x203 X64_MSR_MTRR_PHYSMASK1 Virtualize

0x204 X64_MSR_MTRR_PHYSBASE2 Virtualize

0x205 X64_MSR_MTRR_PHYSMASK2 Virtualize

0x206 X64_MSR_MTRR_PHYSBASE3 Virtualize

0x207 X64_MSR_MTRR_PHYSMASK3 Virtualize

0x208 X64_MSR_MTRR_PHYSBASE4 Virtualize

0x209 X64_MSR_MTRR_PHYSMASK4 Virtualize

0x20A X64_MSR_MTRR_PHYSBASE5 Virtualize

0x20B X64_MSR_MTRR_PHYSMASK5 Virtualize

0x20C X64_MSR_MTRR_PHYSBASE6 Virtualize

0x20D X64_MSR_MTRR_PHYSMASK6 Virtualize

0x20E X64_MSR_MTRR_PHYSBASE7 Virtualize

Hypervisor Top Level Functional Specification

 221

MSR Number MSR Name Behavior

0x20F X64_MSR_MTRR_PHYSMASK7 Virtualize

0x250 X64_MSRMTRR_FIX64K_00000 Virtualize

0x258 X64_MSR_MTRR_FIX16K_80000 Virtualize

0x259 X64_MSR_MTRR_FIX16K_A0000 Virtualize

0x268 X64_MSR_MTRR_FIX4K_C0000 Virtualize

0x269 X64_MSR_MTRR_FIX4K_C8000 Virtualize

0x26A X64_MSR_MTRR_FIX4K_D0000 Virtualize

0x26B X64_MSR_MTRR_FIX4K_D8000 Virtualize

0x26C X64_MSR_MTRR_FIX4K_E0000 Virtualize

0x26D X64_MSR_MTRR_FIX4K_E8000 Virtualize

0x26E X64_MSR_MTRR_FIX4K_F0000 Virtualize

0x26F X64_MSR_MTRR_FIX4K_F8000 Virtualize

0x277 X64_MSR_CR_PAT Virtualize

0x2FF X64_MSR_MTRR_DEF_TYPE Virtualize

0xC0000080 X64_MSR_EFER Virtualize

0xC0000081 X64_MSR_STAR Virtualize

0xC0000082 X64_MSR_LSTAR Virtualize

0xC0000083 X64_MSR_CSTAR Virtualize

0xC0000084 X64_MSR_SFMASK Virtualize

0xC0000100 X64_MSR_FS_BASE Virtualize

0xC0000101 X64_MSR_GS_BASE Virtualize

0xC0000102 X64_MSR_KERNEL_GS_BASE Virtualize

Hypervisor Top Level Functional Specification

 222

21 Appendix E: Vendor-Specific MSRs

G.1 AMD-specific MSRs

The table below contains a list of AMD-specific MSRs and how they are handled by the hypervisor.

The default behavior for MSRs not listed here is a #GP fault for non-root access.

MSR Number MSR Name Non-Root Behavior

0xC0010010 AMD_MSR_SYSCFG
Reads return 0.

Writes ignored.

0xC001001F AMD_MSR_NB_CFG
Reads return 0.

Writes ignored.

G.2 Intel-specific MSRs

The table below contains a list of Intel-specific MSRs and how they are handled by the hypervisor.

The default behavior for MSRs not listed here is #GP for non-root partitions.

MSR Number MSR Name Non-Root Behavior

0x006 INTEL_MSR_MONITOR_FILTER_SIZE

#GP

0x017 INTEL_MSR_PLATFORM_ID

Reads return 0.

Writes ignored.

0x03A INTEL_MSR_FEATURE_CONTROL

#GP

0x079 INTEL_MSR_BIOS_UPDT_TRIG

Reads return 0.

Writes ignored.

0x08B INTEL_MSR_BIOS_SIGN_ID

Reads return 8FFFFFFF

indicating the best possible

patch is already loaded.

Writes ignored.

0x1A0 INTEL_MSR_MISC_ENABLE Reads Pass through,

Writes ignored

0x38D INTEL_MSR_PERF_CAPABILITIES #GP

0x38E INTEL_MSR_PER_GLOBAL_STATUS #GP

0x38F INTEL_MSR_PERF_GLOBAL_CTRL #GP

Hypervisor Top Level Functional Specification

 223

MSR Number MSR Name Non-Root Behavior

0x390 INTEL_MSR_PERF_GLOBAL_OVF_CTRL #GP

0x3F1 INTEL_MSR_PEBS_ENABLE #GP

0x480 –

0x48A

INTEL_MSR_VMX_CAPSx #GP

0x600 INTEL_MSR_DS_AREA #GP

Hypervisor Top Level Functional Specification

 224

22 Appendix F: Hypervisor Synthetic MSRs

The following is a table of new MSR values defined by the hypervisor.

MSR Number MSR Name
Privilege Required (if

any)

Access
Description

0x40000000 HV_X64_MSR_GUEST_OS_ID AccessHypercallMsrs R/W Used to identify the guest OS

running in the partition. See

section 2.6.

0x40000001 HV_X64_MSR_HYPERCALL AccessHypercallMsrs R/W Used to enable the hypercall

interface. See section 3.13.

0x40000002 HV_X64_MSR_VP_INDEX AccessVpIndex R Specifies the virtual

processor’s index. See section

7.8.1.

0x40000003 HV_X64_MSR_RESET AccessSystemResetMsr R/W Used to perform a hypervisor-

controlled reboot operation.

0x40000010 HV_X64_MSR_VP_RUNTIME AccessVpRuntimeMsr R Specifies the virtual

processor’s run time in 100ns

units. See section 7.9.1.

0x40000020 HV_X64_MSR_TIME_REF_COUNT AccessPartitionReferen

ceCounter

R Partition-wide reference

counter..

0x40000021 HV_X64_MSR_REFERENCE_TSC AccessPartitionReferen

ceCounter

R Partition-wide reference time

stamp counter.

0x40000022 HV_X64_MSR_TSC_FREQUENCY AccessFrequencyRegs R Specifies the frequency, in Hz,

of the TSC, as reported by the

hypervisor.

0x40000023 HV_X64_MSR_APIC_FREQUENCY AccessFrequencyRegs R Specifies the frequency, in Hz,

of the local APIC, as reported

by the hypervisor.

0x40000070 HV_X64_MSR_EOI AccessApicMsrs W Fast access to the APIC EOI

register. See section 10.2.3.

0x40000071 HV_X64_MSR_ICR AccessApicMsrs R/W Fast access to the APIC ICR

high and ICR low registers.

See section 10.2.3.

0x40000072 HV_X64_MSR_TPR AccessApicMsrs R/W Fast access to the APIC TPR

register (use CR8 in 64-bit

mode). See section 10.2.3.

0x40000073 HV_X64_MSR_VP_ASSIST_PAGE AccessApicMsrs R/W Enables lazy EOI processing.

See section 10.3.4.

0x40000080 HV_X64_MSR_SCONTROL AccessSynicRegs R/W Used to control specific

behaviors of the synthetic

interrupt controller. See

section 11.8.1.

0x40000081 HV_X64_MSR_SVERSION AccessSynicRegs R Specifies the SynIC version.

Hypervisor Top Level Functional Specification

 225

MSR Number MSR Name
Privilege Required (if

any)

Access
Description

0x40000082 HV_X64_MSR_SIEFP AccessSynicRegs R/W Controls the base address of

the synthetic interrupt event

flag page. See section 11.8.2.

0x40000083 HV_X64_MSR_SIMP AccessSynicRegs R/W Controls the base address of

the synthetic interrupt

parameter page. See section

11.8.3.

0x40000084 HV_X64_MSR_EOM AccessSynicRegs W Indicates the end of message

in the SynIC. See section

11.8.5.

0x40000090 HV_X64_MSR_SINT0 AccessSynicRegs R/W Configures synthetic interrupt

source 0. See section 11.8.4.

0x40000091 HV_X64_MSR_SINT1 AccessSynicRegs R/W Configures synthetic interrupt

source 1. See section 11.8.4.

0x40000092 HV_X64_MSR_SINT2 AccessSynicRegs R/W Configures synthetic interrupt

source 2. See section 11.8.4.

0x40000093 HV_X64_MSR_SINT3 AccessSynicRegs R/W Configures synthetic interrupt

source 3. See section 11.8.4.

0x40000094 HV_X64_MSR_SINT4 AccessSynicRegs R/W Configures synthetic interrupt

source 4. See section 11.8.4.

0x40000095 HV_X64_MSR_SINT5 AccessSynicRegs R/W Configures synthetic interrupt

source 5. See section 11.8.4.

0x40000096 HV_X64_MSR_SINT6 AccessSynicRegs R/W Configures synthetic interrupt

source 6. See section 11.8.4.

0x40000097 HV_X64_MSR_SINT7 AccessSynicRegs R/W Configures synthetic interrupt

source 7. See section 11.8.4.

0x40000098 HV_X64_MSR_SINT8 AccessSynicRegs R/W Configures synthetic interrupt

source 8. See section 11.8.4.

0x40000099 HV_X64_MSR_SINT9 AccessSynicRegs R/W Configures synthetic interrupt

source 9. See section 11.8.4.

0x4000009A HV_X64_MSR_SINT10 AccessSynicRegs R/W Configures synthetic interrupt

source 10. See section 11.8.4.

0x4000009B HV_X64_MSR_SINT11 AccessSynicRegs R/W Configures synthetic interrupt

source 11. See section 11.8.4.

0x4000009C HV_X64_MSR_SINT12 AccessSynicRegs R/W Configures synthetic interrupt

source 12. See section 11.8.4.

0x4000009D HV_X64_MSR_SINT13 AccessSynicRegs R/W Configures synthetic interrupt

source 13. See section 11.8.4.

0x4000009E HV_X64_MSR_SINT14 AccessSynicRegs R/W Configures synthetic interrupt

source 14. See section 11.8.4.

Hypervisor Top Level Functional Specification

 226

MSR Number MSR Name
Privilege Required (if

any)

Access
Description

0x4000009F HV_X64_MSR_SINT15 AccessSynicRegs R/W Configures synthetic interrupt

source 15. See section 11.8.4.

0x400000B0 HV_X64_MSR_STIMER0_CONFIG AccessSyntheticTimerR

egs

R/W Configuration register for

synthetic timer 0.

0x400000B1 HV_X64_MSR_STIMER0_COUNT AccessSyntheticTimerR

egs

R/W Expiration time or period for

synthetic timer 0.

0x400000B2 HV_X64_MSR_STIMER1_CONFIG AccessSyntheticTimerR

egs

R/W Configuration register for

synthetic timer 1.

0x400000B3 HV_X64_MSR_STIMER1_COUNT AccessSyntheticTimerR

egs

R/W Expiration time or period for

synthetic timer 1.

0x400000B4 HV_X64_MSR_STIMER2_CONFIG AccessSyntheticTimerR

egs

R/W Configuration register for

synthetic timer 2.

0x400000B5 HV_X64_MSR_STIMER2_COUNT AccessSyntheticTimerR

egs

R/W Expiration time or period for

synthetic timer 2.

0x400000B6 HV_X64_MSR_STIMER3_CONFIG AccessSyntheticTimerR

egs

R/W Configuration register for

synthetic timer 3.

0x400000B7 HV_X64_MSR_STIMER3_COUNT AccessSyntheticTimerR

egs

R/W Expiration time or period for

synthetic timer 3.

0x400000C1 HV_X64_MSR_POWER_STATE_TRIGGER_C1 CpuManagement R Trigger the transition to

power state C1

0x400000C2 HV_X64_MSR_POWER_STATE_TRIGGER_C2 CpuManagement R Trigger the transition to

power state C2

0x400000C3 HV_X64_MSR_POWER_STATE_TRIGGER_C3 CpuManagement R Trigger the transition to

power state C3

0x400000D1 HV_X64_MSR_POWER_STATE_CONFIG_C1 CpuManagement R/W Configure the recipe for

power state transitions to C1

0x400000D2 HV_X64_MSR_POWER_STATE_CONFIG_C2 CpuManagement R/W Configure the recipe for

power state transitions to C2

0x400000D3 HV_X64_MSR_POWER_STATE_CONFIG_C3 CpuManagement R/W Configure the recipe for

power state transitions to C3

0x400000E0 HV_X64_MSR_STATS_PARTITION_RETAIL_PA

GE

AccessStatsReg R/W Map the guest’s retail

partition statistics page

0x400000E1 HV_X64_MSR_STATS_PARTITION_INTERNAL_

PAGE

AccessStatsReg R/W Map the guest’s internal

partition statistics page

0x400000E2 HV_X64_MSR_STATS_VP_RETAIL_PAGE AccessStatsReg R/W Map the guest’s retail VP

statistics page

0x400000E3 HV_X64_MSR_STATS_VP_INTERNAL_PAGE AccessStatsReg R/W Map the guest’s internal VP

statistics page

Hypervisor Top Level Functional Specification

 227

MSR Number MSR Name
Privilege Required (if

any)

Access
Description

0x400000F0 HV_X64_MSR_GUEST_IDLE AccessGuestIdleReg R Trigger the guest’s transition

to the idle power state

0x400000F1

HV_X64_MSR_SYNTH_DEBUG_CONTROL

0x400000F2

HV_X64_MSR_SYNTH_DEBUG_STATUS

0x400000F3

HV_X64_MSR_SYNTH_DEBUG_SEND_BUFFER

0x400000F4

HV_X64_MSR_SYNTH_DEBUG_RECEIVE_BUFF

ER

0x400000F5 HV_X64_MSR_SYNTH_DEBUG_PENDING_BUF

FER

0x40000100 HV_X64_MSR_CRASH_P0 GuestCrashMsrsAvailab

le

R/W MSR that is preserved with

the guest crash

enlightenment.

0x40000101 HV_X64_MSR_CRASH_P1 GuestCrashMsrsAvailab

le

R/W MSR that is preserved with

the guest crash

enlightenment.

0x40000102 HV_X64_MSR_CRASH_P2 GuestCrashMsrsAvailab

le

R/W MSR that is preserved with

the guest crash

enlightenment.

0x40000103 HV_X64_MSR_CRASH_P3 GuestCrashMsrsAvailab

le

R/W MSR that is preserved with

the guest crash

enlightenment.

0x40000104 HV_X64_MSR_CRASH_P4 GuestCrashMsrsAvailab

le

R/W MSR that is preserved with

the guest crash

enlightenment.

0x40000105 HV_X64_MSR_CRASH_CTL GuestCrashMsrsAvailab

le

R/W Queries and controls the

hypervisor’s guest crash

capabilities.

