
1

LEVERAGING VMWARE'S RPC 
INTERFACE FOR FUN AND PROFIT
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Introductions
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VMware General Architecture
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VMware General Architecture (Simplified*)
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* very

What’s going on here?
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Good Question

• As it turns out, quite a bit

• Regardless of whether VMware tools are installed
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Host <-> Guest Communication
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Host <-> Guest Communication

• Communication is done by accessing special I/O ports 

• VMware implements an interface called “Backdoor”

– Hijacks the IN/OUT instructions

– Supports multiple commands

– Supports two protocols: RPCI and TCLO

– Can be used to extract host information

– Can be used to send Guest->Host RPC requests

• The Backdoor interface is enabled by default
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Host <-> Guest Communication - Backdoor

• Supports multiple 
commands/functions
– The commands can be found in 

the open-vm-tools on github

– backdoor_def.h defines these 
commands

• The guest can invoke more of 
these commands than you 
think…
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Host <-> Guest Communication - Backdoor

• Invoking Backdoor functions is simple:

mov eax, 564D5868h /* magic number    */
mov ebx, command-specific-parameter
mov cx, command-number /* 1001e = RPC */
mov dx,  5658h /* VMware I/O port */
in eax, dx
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Host <-> Guest Communication - Backdoor
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Host <-> Guest Communication - RPCI

• Supports multiple 
commands
– Rpctool.exe can be used to 

query some of the 
commands.

– Rpctool.exe is open source 
and can be found in the 
open-vm-tools

– These RPC commands can 
be found in vmware-
vmx.exe and sprinkled 
throughout the open-vm-
tools source
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Host <-> Guest Communication - RPCI
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Host <-> Guest Communication – Summary

• Backdoor Interface is used for Host/Guest communication

• Hijacks in/out instructions

• RPCI is used from guest -> host

• TCLO is used from host -> guest

• RPCI commands can be found in vmware-vmx{.exe}

• open-vm-tools is a goldmine!
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VM RPC Interface
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GuestRPC

• The RPC requests are sent through the “backdoor” channel

• Specifically, the BDOOR_CMD_MESSAGE (0x1E)

• The Guest Messages are defined in guest_msg_def.h

• GuestRPC supports multiple message types:
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GuestRPC
• Example of a simple GuestRPC message:

mov eax, 0x564D5868

mov ecx, 0x001e //MESSAGE_TYPE_OPEN 

mov edx, 0x5658

mov ebx, 0xC9435052

in eax, dx

mov eax, 0x564D5868

mov ecx, 0x1001e //MESSAGE_TYPE_SENDSIZE

mov edx, 0x5658

mov ebx, SIZE

in eax, dx

mov eax, 0x564D5868

mov ecx, 0x6001e //MESSAGE_TYPE_CLOSE

mov edx, 0x5658

mov ebx, SIZE

in eax, dx
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GuestRPC
• GuestRPC requests are are parsed within vmware-vmx{.exe}

• GuestRPC Messages/Functions are also implemented inside vmware-vmx{.exe}

• If we look closely inside GuestRPC_Funcs we will notice the following:
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GuestRPC – ExecRPCRequest

• The function takes the RPC request as an argument

• Checks if the RPC function being passed is valid

• Checks if we have enough permissions to execute the 
function

• Executes it
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GuestRPC – Sniffing RPC Requests

• Since this is exactly where RPC requests are parsed, we can actually hook 
this function and sniff the requests being sent

• For this task we used pykd 
– Set a breakpoint on the ExecRPCRequest function

– A pointer pointing to the request is set in the r8 register

– The length of the request is set in the r9 register

• Should look similar to the following
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GuestRPC – Sniffing RPC Requests - DEMO

• DEMO



25

Developing tools to query the RPC 
Interface
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Tools Dev
• One of the challenging problems with VMware and RPC is tools development 

for:
– Case analysis

– Exploit development

– Fuzzing

• While we can definitely use the open-vm-tools to develop tools in C++, there are 
still challenges:
– There are functions that definitely needs to be implemented in ASM

– Without ASM we’ll need to use the exports from vmtools.dll

• Still a little bit of a hustle 
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Tools Dev - C++, take 1
• Add the open-vm-tools headers to the Include Directories



28

Tools Dev - C++, take 2

• Assembly..Since some function are 
not fully implemented in the tools, 
thus in order to step out of the 
vmtools.dll we’d need to 
implement some functions in ASM
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Tools Dev - C++, take 2, continued

• As for implementing a function to 
send RPC requests through the 
backdoor channel in ASM, it 
should be pretty simple
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Tools Dev

• All that is still not enough

• We need something for FAST tools development

• Python? Yup, we implemented simple ways to send RPC requests through 
python:
– C Extensions

– Ctypes

• Unfortunately, Josh (@kernelsmith) (our DevOps manager) wanted to 
implement something similar in Ruby.
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Tools Dev – Python, C Extensions

• C Extensions are awesome

• It’s a shared Library (.pyd) on Windows which exports an initialization 
function

• The shared library can be imported from python



32

Tools Dev – Python, C Extensions
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Tools Dev – Python, CTypes

• Ctypes provides C compatible data types

• Allows calling functions in DLLs or shared libraries
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Fuzzing the RPC Interface
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Fuzzing the RPC Interface

• Fuzzing the RPC interface requires tooling both on the GuestOS and the 
HostOS

• Some problems that we’d need to tackle:
– Detecting Crashes from the host (Mostly debugging vmware-vmx in this case)

– Testcase generation (can be on the GuestOS but we want the guest to stay light)

– GuestOS VM(s) management from the HostOS
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Fuzzing the RPC Interface
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Fuzzing the RPC Interface - InMemory

• Since we know exactly were the RPC requests are being parsed, we can 
actually do InMemory fuzzing:

– Hook ExecRPCRequest (on the HostOS)

– Modify the RPC request before it gets parsed

– Wait for crashes

• Additional tooling required:
– Crash Detection (From HostOS)

– Record modifications (From the HostOS)
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Fuzzing the RPC Interface - InMemory

DEMO
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VMware Drag and Drop UAF
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VMware DnD UAF – Root Cause

• The Free is triggered when the DnD version is changed multiple times

• The re-use happens when a random DnD function is called after the Free

• The PoC is relatively simple:
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VMware DnD UAF – Root Cause

• If triggered successfully 
we should end up in a 
crash similar to the following:

• To verify further, 
!heap –p –a @RCX will 
show us where the 
Free happened:
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VMware DnD UAF – Root Cause

• Next, we will need to get the size of the Free’d object

• In order to do that, we will need to break right before the Free happens and run 
!heap –p –a on the address before it gets Freed
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VMware DnD UAF – Exploiting the vulnerability

• First we will need to find a way to 
control the Freed object before 
it gets re-used

• This can be done by sending an 
arbitrary GuestRPC request 
through the backdoor channel

• For example through the 
tools.capability.guest_temp_directory
RPC function
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VMware DnD UAF – Exploiting the vulnerability

• Next question is where should I put my ROP chain? Should I heap spray?

• The answer was in the unity.window.contents.start RPC function
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VMware DnD UAF – Exploiting the vulnerability

• What does the plan of action look like now?
– Send a unity.window.contents.start request with a ROP chain that sets RSP to RDI.

– Trigger the free.

– Overwrite the freed object with another one. The freed object should contain the address of 
vmware_vmx+0xb870f8.

– Trigger the re-use using a request that contains the ROP chain to gain RCE.

• There is an RWX region in vmware-vmx, so you know what the ROP chain should 
do ;)
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VMware DnD UAF
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Conclusion
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