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Recently, the excitatory amino acid neurotransmitter glutamate was implicated in the pathogenesis of a variety of 
chronic degenerative neurological diseases in humans and animals. This report describes abnormalities in excitatory 
amino acids in the central nervous system of 18 patients with amyotrophic lateral sclerosis (ALS). The concentration of 
the excitatory amino acids glutamate and aspartate in the cerebrospinal fluid were increased significantly ( p  < 0.01) by 
100 to 200% in patients with ALS. Similarly, the concentrations of the excitatory neuropeptide N-acetyl-aspartyl 
glutamate and its metabolite, N-acetyl-aspartate, were elevated twofold to threefold in the cerebrospinal fluid from the 
patients. There was no relationship between amino acid concentrations and duration of disease, clinical impairment, or 
patient age. In the ventral horns of the cervical region of the spinal cord, the level of N-acetyl-aspartyl glutamate and 
N-acetyl-aspartate was decreased by 60% ( p  < 0.05) and 40% (p < 0.05), respectively, in 8 patients with ALS. Choline 
acetyltransferase activity was also diminished by 35% in the ventral horn consistent with motor neuron loss. We 
conclude that excitatory amino acid metabolism is altered in patients with ALS. Based on neurodegenerative disease 
models, these changes may play a role in motor neuron loss in ALS. 
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Amyotrophic lateral sclerosis (ALS) is a chronic pro- 
gressive disease of selective upper and lower motor 
neuron degeneration, whose pathogenesis is unknown. 
In several other chronic neurological disorders, such as 
olivopontocerebellar atrophy [l , 2) and Huntington's 
disease 13, 41, abnormalities of glutamate metabolism 
have been shown to occur and are thought to play a 
role in the pathophysiology of the disorder. Gluta- 
mate, the primary excitatory neurotransmitter in brain, 
can exert specific neurotoxic effects and can induce 
neuronal degeneration in vivo and in vitro [S-8). Of 
particular interest, excitatory neurotoxins derived from 
the ingestion of cycad nuts may be, in part, responsible 
for the motor neuron degeneration associated with the 
ALS-parkinsonism-dementia complex of the Chamorro 
population of the Mariana islands {9, 10). Based on the 
models of environmental excitatory neurotoxins [9, 
101 and prior studies of human brain and spinal cord 
[ll-161, we hypothesized that the metabolism of ex- 
citatory amino acids might be altered in patients with 
ALS , 

To test this possibility, we examined the concentra- 
tions of glutamate, aspartate, and the excitatory neuro- 
peptide N-acetyl-aspartyl glutamate (NAAG) in the 
cerebrospinal fluid (CSF) and spinal cords of patients 
with well-characterized, classic ALS. We report signifi- 
cant and specific increases in the concentrations of 
these excitatory compounds in the central nervous sys- 
tem (CNS) of patients with ALS. 

Materials and Methods 
The study was divided into two parts: (1) analysis of CSF 
from living patients and (2) analysis of autopsy material from 
the cervical region of the spinal cord. All biochemical anal- 
yses were performed in a blinded fashion. 

CSF A naly.rij 
CSF was collected and compared in three groups of patients 
(Table 1): 18 patients with ALS, 18 patients with other 
neurological diseases (OND), and 10 patients with hepatic 
encephalopathy (a comparison group expected to have high 
CSF levels of glutamine, to control for artifactual elevation of 
CSF glutamate levels). 
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Table 1.  Patient CharacteriJtics in  CSF Studies 

Age (mean yr Duration of Disease 
Group No. ? SEMY (moY Diagnosesb 

Amyotrophic 18 52  f 3.6 15 f 2.6 - 
lateral sclerosis (31-75 yr) (6-36) 

Control 18 53 f 3.8 - ID Biliary cirrhosis (2) 
(22-80) Brainstem cerebrovascular accident (I) 

Cerebellar ataxia (1) 
Cervical mvelopathy (2) 
Chronic inflammatory demyelinating polyneuropathy (1) 
Hepatolenticular degeneration (1) 
Low back pain (1) 
Lumbar stenosis (1) 
Migraine (3) 
Multiple myeloma (1) 
Neurosyp hilis ( 1 ) 
Pseudotumor cerebri (2) 
Progressive supranuclear palsy (1) 

Hepatic enceph- 10 47 f 4.9 - - 
alopathy (33-65) 

"Values in parentheses represent ranges. 
'Values in parentheses represent number of patients. 

With informed consent lumbar punctures were performed 
in the lateral decubitus position at the L3 to L4 or L4 to L5 
interspace. CSF was collected for the following studies: de- 
terminations of glucose and protein levels, cell count, and 
amino acid analysis. In addition, an aliquot of the first 10 ml 
of CSF was placed on ice immediately after lumbar puncture 
and either assayed for amino acids or stored at -80°C. A 
protocol for these studies was previously approved by The 
Johns Hopkins Institutional Review Board. 

PATIENTS WITH ALS. We collected CSF from those pa- 
tients with ALS who had lumbar puncture performed in the 
2-year period from 1986 to 1988. The diagnosis of ALS was 
based on a rigorous set of criteria designed for a therapeutic 
trial now under way in our institution. Evaluations included a 
detailed history and physical examination, and extensive 
hematological, biochemical, electrophysiological, and radio- 
logical testing. The diagnosis required the presence of both 
upper and lower motor neuron signs, clear evidence of pro- 
gression, normal nerve conduction velocities and late re- 
sponses, and electromyographic evidence of diffuse denerva- 
tion {17, 181. Patients diagnosed with ATS also met an 
extensive list of exclusionary criteria including sensory 
findings; unexplained bowel or bladder changes; and anatom- 
ical, metabolic, or toxic disorders that could mimic ALS, eg. ,  
myelopathy, lead intoxication, endocrine abnormalities, hex- 
osaminidase A deficiency, or peripheral neuropathy. After 
examination of the patient's record by four neurologists, the 
diagnosis was accepted or rejected by consensus. 

DISEASE CONTROL SUBJECTS. CSF from control patients 
with OND was obtained at the time of diagnostic lumbar 
puncture. Control patients with adequate avadable CSF were 
selected to include some patients with diseases marked by 
neuronal death or degeneration (see Table 1). 

HEPATIC ENCEPHALOPATHY. For amino acid analysis of 
CSF, we studied an important comparison group with he- 

patic encephalopathy. Since CSF levels of glutamine are 
greatly elevated in that disorder 1 191, it provides an internal 
control in the study to resolve concern about artifactual ele- 
vated concentrations of CSF glutamate arising by breakdown 
from glutamine. All patients had chronic rewrrent encepha- 
lopathy graded as clinical stage 1 or 2 1201. All had cirrhosis, 
proved by evaluation of biopsy specimens, due to chronic 
hepatic diseases that included chronic active hepatitis, Laen- 
nec's cirrhosis, primary biliary cirrhosis, or Wilson's disease. 
Evidence for chronic hepatocellular disease was based on the 
following: presence of ascites, history of esophageal varices, 
decreased serum concentration of albumin (< 3.0 rngilO0 
ml), prothrombin ratio greater than 1.2, serum bilirubin con- 
centration of greater than 2.5 mgil00 ml. Hepatic encepha- 
lopathy was precipitated in most patients by either gastroin- 
testinal bleeding or increased intake of dietary protein. 

Analy.ris of Spinal Cord Sections 
SUBJECTS. Sections from the cervical region of the spinal 
cord were obtained at autopsy from two study groups: The 
ALS group consisted of 8 patients with ALS diagnosed as 
just described. A control group was composed of 8 patients 
with nonneurological disease and 1 patient with Parkinson's 
disease (Table 2). Both the ALS and control spinal cord 
specimens came from The Johns Hopkins Brain Bank (ex- 
cept specimens from 2 control cases were kindly supplied by 
the National Neurological Research Bank, Los Angeles, 
CA). All tissue was stored up to 2 years at - 80°C. Mean age 
and postmortem delay were similar for both groups. 

POSTMORTEM TISSUE. Analysis of the specimens was per- 
formed on I-mm micropunch samples from ventral gray 
matter. 

HISTOLOGY. Spinal cord specimens were routinely fixed in 
formalin, and then sectioned and stained with hematoxylin 
and eosin for pathological verification of ALS. Control spinal 
tissue was similarly examined. 
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Table 2. Patient Characteristics in Spinal Cord Studier 

Group 
Age (mean yr Postmortem Delay Duration of Disease 

NO. i SEM)” (mean hr 2 SEM)” (ma)” Diagnoses” 

Amyotrophic 8 62 i 7.2 11 t 6.4 27 2 15 
lateral sclerosis (5 1 .O-7 1 .O) (3.5-18.0) (12-48) 

Con t r o 1 9 61 ? 26 10.6 i 5.5 - 
(0.5-87.0) (6.0-2 1.5) 

Myocardial infarction (5) 
Leukemia (1) 
Sepsis (1) 
Multiple myeloma (1) 
Parkinson’s disease ( 1) 

aValues in parentheses represent ranges. 
bValues in parentheses represent number of patients 

Amino Acid and Enzyme Assays 
Aliquots of spinal cord homogenates were assayed for total 
protein by the method of Lowry and associates [21}. 

AMINO ACID Ard.%L.YSIS. Amino acid analysis of sulfosali- 
cylic acid-treated CSF samples was performed by automated 
ion-exchange chromatography with lithium-based buffers o n  
a Beckman 6300 amino acid analyzer (Beckman Instru- 
ments, Fullerton, CA). Several aliquots were frozen and as- 
sayed at several times after the original assay, to evaluate 
stability of the amino acids. Evaluation of ALS and control 
CSF samples was done in parallel in the same assay. 

N-ACETYL-ASPARTYL GLUTAMATE AND N-ACETYL-ASPAR- 
TATE ANALYSIS. NAAG and N-acetyl-aspartate (NAA) 
were measured in CSF and spinal cords of patients with ALS 
and control patients by high-performance liquid chroma- 
tography (HPLC) and in the case of NAAG, confirmed by 
radioimmunoassay utilizing antiserum to NAAG [22, 231. 
Due to limited CSF availability, NAAG and NAA were 
quantified in only 12 of the 18 patients with ALS. 

N-ACBTYLATED-a-LINKED ACIDIC DIPEPTIDASE MEASURE- 
MENTS. Activity of the NAAG metabolizing enzyme N- 
acetylated-a-linked acidic dipeptidase (NAALADase) was 
evaluated by measuring the hydrolysis of N-acetyl-L-asparryl- 
L-{’H}glutamate as described by Robinson and colleagues 
E221. 

CHOLINE ACETYLTRANSFERASE ACTIVITY. Choline acetyl- 
transferase (ChAT) activity in the spinal cord was deter- 
mined in tissue homogenates as described by Blakely and 
colleagues E231. In brief, the assay measures the synthesis of 
‘*C-acetylcholine after separation from ‘‘C-acetyl-coenzyme 
A (CoA) by anion exchange (AGl-X8, chloride- form) liq- 
uid chromatography. 

GLUTAMATE DECARESOXYLASE ACTIVITY. Glutamate decar- 
boxylase activity was measured in lateral cervical hemisec- 
tions of the spinal cord by the method of McDonnell and 
Greengard 1241. The assay quantified ‘*C02 released from 
the a-carboxy-labeled ‘‘C-glutamate. 

Statistical Analysis 
Statistical analysis of data was performed by analysis of vari- 
ance and t tests, with correction for unequal variances when 

Table 3. CSF Amino Acid Analysisa 

Amyotrophic 
Lateral 

Amino Acid Sclerosis Control @ Change 

Aspartic acid 
Threonine 
Serine 
Aspaagine 
Glutamic acid 
Glutamine 
Glycine 
Alanine 
Valine 
Cystine 
Methionine 
Isoleucine 
Leucine 
Tyrosine 
Phenylalanine 
Lysine 
Histidine 
Arginine 

8.4 i 1.2b 4.2 -+ 0.6 100 
44.4 & 3.5‘ 32.8 2 2.0 35 
55.8 t 6.1‘ 41.1 2 2.2 36 

5.7 i 0.8 5.5 L 0.2 4 
8.4 t 1.4b 2.9 t 0.4 190 

26.6 5 3.7 19.3 i 2.1 38 
50.2 + 4.9 38.8 i 2.8 29 

19 21.7 2 1.5 
1.7 t 0.1 1.8 * 0.1 6 
2.7 i 0.4 2.7 i 0.2 0 
6.9 -+ 0.6 6.1 2 0.4 13 

14.9 ? 0.9 13.7 4 0.9 9 
12.5 t 1.0 11.6 i- 1.0 8 
11.6 -t 1.8 10.7 -+ 0.8 8 
33.2 t 2.7‘ 25.9 + 1.5 28 
18.1 L 2.0 17.8 5 1.6 2 
25.7 i 3.0 19.9 ? 1.0 29 

512.6 -t 44.7 551.0 2 19.0 - 7  

18.2 t 1.3 

aValues are FmoVliter (mean f SEM) 
bp < 0.01 versus control values. 
‘ p  < 0.05 versus control values. 

appropriate, using the SAS General Linear Models Proce- 
dure (SAS Institute, Cary, NC). Values are expressed as 
mean 5 standard error of the mean (SEM). 

Results 
Histopathological analysis confirmed the diagnosis of 
ALS in all autopsy specimens. There was a characteris- 
tic loss of large motor neurons in the ventral horns 
of the gray matter in the cervical sections. All con- 
trol specimens demonstrated intact, normal-appearing, 
large motor neurons in the ventral gray matter. 

CSF Amino Acids, NAAG, and N A A  
CSF amino acid levels in the control subjects in this 
experiment were not significantly different from pre- 
viously published normal levels (Table 3 )  r25, 261. 
There were no significant differences in either CSF 
glucose or protein levels or cell counts between any of 
the groups examined. 

In patients with ALS, the most striking change was 
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Fig 2. N-Acetyl-aspartyl glutamate and N-acetyl-aspartate con- 
centrations in CSF from control patients and patients with 
amyotrophic lateral sclerosis (AD) .  Shaded bars represent group 
mean. 

Fig 1. Concentrations of glutamate and aspartate in CSF from 
18 patients with amyotrophic lateral sclerosis (A=) compared 
with those faund in 18 control subjects. Shaded bars represent 
 YO@ mean. 

the marked increase in the concentrations of the excit- 
atory amino acids glutamate and aspartate. The average 
CSF concentration of glutamate was increased almost 
threefold @ < 0.01) in patients with ALS and up to 
tenfold in individual patients (Fig 1j. Aspartate con- 
centration was doubled (p < 0.01) in CSF from pa- 
tients with ALS, with individual levels elevated as 
much as fivefold. 

Concentrations of NAAG and NAA were both 
significantly elevated in the CSF of patients with ALS 
(Fig 2). NAAG concentration was more than doubled 
in CSF from patients with ALS (p < 0.Olj compared 
to control specimens, with concentrations in individual 
samples increased up to fourfold. Similarly, NAA con- 
centration was increased threefold in the patients with 
ALS (p < O.Ol), again with individual levels elevated 
greater than fivefold compared to levels in the control 
CSF. NAALADase activity could not be detected in 
CSF specimens from either patients with ALS or con- 
trol subjects. 

There was no significant correlation between dura- 
tion of disease and CSF aspartate, glutamate, NAAG, 
or NAA concentration. Furthermore, there was no 
observable relationship between these compounds and 
overall disability score or predominant pattern of dys- 
function (upper or lower motor neuron signs) at the 
time of CSF collection. 

By comparison, in 10 patients with Huntington’s 
disease, CSF concentrations of NAAG and NAA 
were not different from control levels (Kurlan, Tsai, 
Shoulson, and Coyle, unpublished data). 

There were small (< 40% above control values), 
statistically significant (p < 0.05) increases in the con- 
centrations of the hydroxyarnino acids serine and 
threonine in CSF from patients with ALS (see Table 
3). In CSF from patients with ALS there were no 
significant changes in the levels of aliphatic or 
branched chain amino acids (alanine, glycine, valine, 

isoleucine, and leucine), in aromatic amino acids (ty- 
rosine and phenylalanine), or in glutamine. Levels of 
basic amino acids (lysine, histidine, and arginine) were 
unchanged in ALS specimens, with the exception of 
lysine which was slightly increased by 28% (p < 0.05). 

Amino acid concentrations are not shown for citrul- 
line, phosphoethanolamine, hydroxyproline, or-amino- 
N-butyric acid, cystathione, ornithine, l-methyl-hsti- 
dine, and 3-methyl-histidine; however, they were not 
different between control and ALS samples of CSF. 

Control Studies of Amino Acids in CSF 
Glutamine is hydrolyzed to glutamate, and spontane- 
ous hydrolysis could theoretically increase the levels of 
glutamate artifactually. To control for this possibility, 
samples of CSF from patients with hepatic encephalop- 
athy, with marked elevations in glutamine concentra- 
tions, were also analyzed. Analysis of CSF amino acids 
revealed that, similar to previously published reports 
for chronic liver disease, glutamine was increased 2.3- 
fold (1,285 tr 210 pmoYliter) in patients with hepatic 
encephalopathy as compared to control CSF samples 
[19, 271. In samples processed identically to ALS sam- 
ples, the glutamate and aspartate concentrations re- 
mained normal in the CSF from patients with hepatic 
encephalopathy, in spite of marked elevations of 
glutamine. In accordance with other CSF studies, a 
number of CSF amino acids in patients with hepatic 
encephalopathy were increased; these included tyro- 
sine, phenylalanine, methionine, threonine, and his- 
tidine (data not shown) C271. 

Samples of CSF subjected to repeated analyses over 
a 9-month period revealed no systematic change in 
CSF glutamate or aspartate concentrations. 

Spinal Cord Anal’ysis 
The average level of NAAG in the ventral gray horns 
of patients with ALS was significantly decreased by 

Rothstein et al: Excitatory Amino Acids in ALS 2 1  



IS , 7 17.5 

NAAG NAA 

Fig 3. Concentrations of N-acetyl-aspartyl glutamate (NAAG) 
and N-acetyl-uspartute ( N A A )  in the ventral horn of putientr 
with amyotrophic lateral sclerosis lAU) and in  control subjects. 
Data aye pwented as mean k SEM. 

Table 4. Spinal Tissue Analysis" 

Amyotrophic 
Lateral 
Sclerosis Control 
(n = 8) (n = 9)  

Choline 971 k 98" 1,522 ? 194 

Glutamate amino 695 2 92 513 k 164 

N-acetylated-a-linked 0.148 +- 0.021 0.167 5 0.035 

acetyltransferase 

decarboxylase 

acidic dipeptidase 

"Values are pmollmg of proteidhr (mean 5 SEM). 
bp < 0.05 compared to control values. 

60% (p < 0.02), compared to levels in the same ana- 
tomical regions in the control cords (Fig 3). Likewise, 
NAA levels in ventral horn tissue of patients with ALS 
were decreased by 40% (p < 0.05). Control levels of 
NAAG and NAA were similar to those previously 
published { 15). There was no statistical relationship 
between NAAG levels and either disease duration or 
patient age. 

Spinal cord NAALADase activity, present primarily 
in synaptic membranes, was similar in both ALS and 
control tissue (Table 4). Similarly, the activity of the 
enzyme glutamate decarboxylase, a general marker for 
intrinsic spinal gamma-aminobutyric acid (GABA) 
neurons, was unchanged in ALS spinal tissue com- 
pared to control tissue (see Table 4). By contrast, activ- 
ity of the enzyme ChAT, which is present primarily in 
the large spinal a-motor neurons, was decreased 36% 
in ventral gray matter tissue compared to similar re- 
gions in conrrol spinal cord, as expected. There was no 
significant correlation between the loss of ChAT activ- 
ity and the spinal cord concentrations of NAAG or 
NAA. 

Discussion 
Our study showed that concentrations of the excitatory 
amino acids aspartate and glutamate and the neuro- 
peptide NAAG are selectively elevated twofold to 
threefold in the CSF of patients with ALS. This is 
consistent with findings from a number of other stud- 
ies that suggested alterations in the metabolism of the 
excitatory amino acids aspartate and glutamate in ALS 
C11, 121. In postmortem studies, tissue levels of aspar- 
tate, glutamate, and GABA were reported to be di- 
minished in several brain and spinal cord regions in 
ALS 112, 14, 16, 28). In addition, studies of leuko- 
cytes and plasma have suggested that glutamate metab- 
olism is altered in patients with ALS {29, 30). How- 
ever, study of CSF affords the advantages of allowing 
in vivo measurements of these amino acids within the 
CNS and permits studies in the early development of 
disease rather than at the end stage, as in postmortem 
analyses. Two surveys of CSF amino acids performed 
12 and 20 years ago on patients with a wide variety 
of metabolic and degenerative diseases demonstrated 
somewhat elevated glutamate levels in the CSF of a 
small number of patients with motor neuron disease 
126, 31). Our study confirms this early finding in ALS, 
and extends it to the excitatory amino acid aspartate 
and to NAAG. 

NAAG is a neuropeptide found in high concentra- 
tions in the CNS, in an uneven distribution with high- 
est levels in the spinal cord and caudal region of the 
brainstem 132-341. Immunohistochemical analysis 
demonstrated colocalization of NAAG to glutama- 
tergic neurons in motor cortex, olfactory mitral cells, 
primary sensory afferent neurons, and lateral vestib- 
ular nuclei 135-371. In addition, it also localizes to 
ChAT-positive motor neurons of both spinal and cra- 
nial nuclei, as well as some noradrenergic and ad- 
renergic nuclei in the pons and medulla, and some 
serotonergic raphe nuclei 132, 38). NAAG has been 
shown to be released from neural tissue by calcium- 
dependent processes or  by electrical depolarization 
{39-4 11. It exhibits relatively weak postsynaptic ef- 
fects [42). Following synaptic release, NAAG is 
metabolized via NAALADase to glutamate and NAA 
r22, 34). Thus, NAAG has the properties of a neu- 
romodulator and may be an additional source of the 
neurotransmitter glutamate 134). 

Increased CSF levels of NAAG, NAA, and gluta- 
mate suggest the possibility of increased release and 
metabolism of these compounds in patients with ALS. 
One interpretation would be that increased release of 
NAAG occurs in ALS, with subsequent metabolism 
to glutamate and NAA leading to increased CSF con- 
centrations of these compounds. Since the activity of 
NAALADase was normal in spinal cord sections from 
patients with ALS, the possibility that this was due to 
accelerated NAAG catabolism is less attractive. The 
low levels of NAAG in the ventral horn of the cord, 
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consistent with a finding described in an abstract {l5], 
may be due to at least two factors: increased release of 
NAAG, perhaps by descending motor tracts, with re- 
sultant tissue depletion; or loss of a-motor neurons 
containing NAAG; or  both. Whether these changes 
represent primary abnormalities in glutamate or 
NAAG metabolism or are a consequence of motor 
neuron death is not yet certain. In that regard, ChAT 
levels were decreased in the ventral horn of the spinal 
cord, as demonstrated by others [43, 443, which 
reflects the loss of large cholinergic motor neurons as 
seen on histopathological examination. Though levels 
of both NAAG and ChAT were reduced in the ven- 
tral horn, their lack of intercorrelation does not sup- 
port the idea that the alteration in NAAG metabolism 
in CNS is merely secondary to motor neuron loss. The 
normal levels of GAD reflect intact GABA neurons in 
ALS spinal tissue. 

The increased concentration of excitatory amino 
acids that we found in CSF from patients with ALS 
may be physiologically meaningful. In acute cerebral 
ischemia, extracellular glutamate concentrations in- 
crease to levels comparable to those we observed in 
the CSF from our patients with ALS {45].  Further- 
more, the increased CSF concentration of glutamate to 
the 10 pmol range could be neurotoxic. There have 
been a large number of studies demonstrating acute 
glutamate toxicity in cultured neurons. Utilizing pri- 
mary cerebellar granule cells, Favaron and colleagues 
observed 50% cell death with glutamate concentra- 
tions as low as 10 pmol. 

Abnormal CSF concentrations of glutamate and 
aspartate may suggest altered neurotransmitter me- 
tabolism; however, only studies that are specifically 
directed at the neurotransmitter compartment can 
address these questions. The relationship between 
changes of CSF levels of glutamate, aspartate, and 
NAAG and excitatory neurotransmitter function is 
complex for two main reasons: (1) Glutamate metabo- 
lism in the CNS occurs in a two-compartment system 
and ( 2 )  CSF concentration of a compound reflects mul- 
tiple processes, including altered release, uptake, cell 
death, or altered CSF resorption kinetics {47, 48). Ex- 
perimental studies of brain glutamate suggest that me- 
tabolism occurs in two metabolic compartments: a 
large compartment that is primarily for general cellular 
metabolism and a small compartment (10% of total) 
that is for neurotransmitter metabolism and is localized 
to the presynaptic endings and astrocytes [49-5 13. 
Thus, measurement of total glutamate or aspartate 
concentration in brain tissue does not necessarily 
reflect the metabolism of the neurotransmitter compo- 
nent. At present we do not have the tools to evaluate 
the neurotransmitter compartment directly. Other a p  
proaches include assessing postsynaptic receptor func- 
tion, and such studies are currently under way. 

Previous studies demonstrated slight increases in 

several CSF amino acids in a number of chronic 
neurological diseases, e.g., Parlunson’s disease [52- 
541. However, the large changes in CSF concentra- 
tions of NAAG, glutamate, and aspartate reported 
here appear to be unique. These changes were not 
seen in our other patients with chronic degenerative 
diseases such as Huntington’s disease and progressive 
supranuclear palsy, with acute cell damage during 
brainstem stroke, or with chronic spinal injury as in 
cervical myelopathy, and thus would suggest disease 
specificity to our observations. 

The elevated CSF concentrations of serine, threo- 
nine, and lysine reached statistical significance in this 
and previous studies on motor neuron disease, but the 
degree of elevation was slight { 11, 2 5 ,  3 11. Although 
CSF concentrations of some amino acids may increase 
with age 152,  551, there was no significant difference in 
age between groups in our experiments. 

If excitotoxicity contributes to the pathogenesis of 
motor neuron damage in ALS, then therapies designed 
to interfere with glutamate neurotransmission may be 
useful. T o  that end, Plaitakis and associates recently 
demonstrated that in a small group of patients with 
ALS, oral treatment with branched chain amino acids 
(valine, leucine, and isoleucine) was associated with 
slowing in the loss of strength [56] .  The rationale for 
this treatment protocol was based on the potential 
neurotoxicity of the neurotransmitter glutamate and 
the assumption that administration of branched chain 
amino acids might alter neurotransmitter glutamate 
metabolism. Whether the administration of branched 
chain amino acids actually alters the metabolism of 
glutamate, aspartate, or NAAG remains to be inves- 
tigated. 

Excitatory amino acids and excitatory neuropeptides 
may be quite important in the pathogenesis of other 
degenerative neurological diseases. Canavan’s disease, 
a chronic degenerative neurological disorder, was re- 
cently linked to deficiency in the enzyme that degrades 
NAA, aspartoacylase [571. Two exogenous toxins that 
interact with glutamate receptors can also produce 
neuronal damage. Chronic exposure to P-N-methyl- 
amino-L-alanine, an amino acid derivative of Cyas cir- 
cinalis, which was shown to be toxic to neurons in vitro 
[5 ,  83, appears also to cause a degenerative neurolog- 
ical syndrome that has some of the clinical and 
neuropathological characteristics of ALS {9, 101. Fur- 
thermore, lathyrism, an upper motor neuron disorder 
seen after excessive ingestion of the chickling pea 
(Latbyrzls sativzls), may be caused by P-N-oxalylamino- 
L-alanine, a potent neurotoxic stereospecific glutamate 
analog [91. 

By analogy, the pathophysiology of ALS may be 
based, in part, on the abnormal chronic exposure of 
neurons to excitotoxic substances, such as glutamate, 
glutamate analogs, or excitatory neuropeptides. In- 
creased synaptic levels of glutamate acting directly, or 
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acting in the absence of other “protective” mecha- 
nisms, could be responsible for neuronal death in ALS. 
This study demonstrates that high levels of excitatory 
amino acids are indeed present in the CSF of patients 
with ALS. These substances may, in part, be responsi- 
ble for the pathogenesis of motor neuron damage. The 
selective loss of motor neurons in the presence of 
these potential excitotoxins, however, remains a puz- 
zling question. 
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