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Quantum walks: a comprehensive review
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To my dear friend Carlos Fuentes. In Memoriam.

To my beloved daughter Renata, welcome to my life and to Planet Earth!

Abstract Quantum walks, the quantum mechanical counterpart of classical ran-
dom walks, is an advanced tool for building quantum algorithms that has been
recently shown to constitute a universal model of quantum computation. Quantum
walks is now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists and engineers.

In this paper we review theoretical advances on the foundations of both discrete-
and continuous-time quantum walks, together with the role that randomness plays
in quantum walks, the connections between the mathematical models of coined dis-
crete quantum walks and continuous quantum walks, the quantumness of quantum
walks, a summary of papers published on discrete quantum walks and entangle-
ment as well as a succinct review of experimental proposals and realizations of
discrete-time quantum walks. Furthermore, we have reviewed several algorithms
based on both discrete- and continuous-time quantum walks as well as a most
important result: the computational universality of both continuous- and discrete-
time quantum walks.

Keywords quantum walks · quantum algorithms · quantum computing · quantum
and classical simulation of quantum systems

1 Introduction

Computer science and computer engineering are disciplines that have transformed
every aspect of modern society. In these fields, cutting-edge research is about new
models of computation, new materials and techniques for building computer hard-
ware, novel methods for speeding-up algorithms, and building bridges between
computer science and several other scientific fields that allow scientists to both
think of natural phenomena as computational procedures as well as to employ
novel models of computation to simulate natural processes (e.g. [138,377,246,
420,370,57,6,318,51].) In particular, quantifying the resources required to pro-
cess information and/or to compute a solution, i.e. to assess the complexity of
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a computational process, is a prioritized research area as it allows us to estimate
implementation costs as well as to compare problems by comparing the complexity
of their solutions. Among the mathematical tools employed in advanced algorithm
development, classical random walks, a subset of stochastic processes (that is,
processes whose evolution involves chance), have proved to be a very powerful
technique for the development of stochastic algorithms [335,403]. In addition to
the key role they play in algorithmics, classical random walks are ubiquitous in
many areas of knowledge as physics, biology, finance theory, computer vision, and
earthquake modelling [278,72,198,177,192,451], to name a few.

Theoretical computer science, in its canonical form, does not take into account
the physical properties of those devices used for performing computational or in-
formation processing tasks. As this characteristic could be perceived as a drawback
because the behavior of any physical device used for computation or information
processing must ultimately be predicted by the laws of physics, several research
approaches have therefore concentrated on thinking of computation in a physical
context (e.g [66,69,68,67,155,156,154,130,131,162,315].) Among those physical
theories that could be used for this purpose, quantum mechanics stands in first
place.

Quantum computation can be defined as the interdisciplinary scientific field
devoted to build quantum computers and quantum information processing sys-
tems, i.e. computers and information processing systems that use the quantum
mechanical properties of Nature. Research on quantum computation heavily fo-
cuses on building and running algorithms which exploit the physical properties of
quantum computers. Among the theoretical discoveries and promising conjectures
that have positioned quantum computation as a key element in modern science,
we find:

1. The development of novel and powerful methods of computation that may allow
us to significantly increase our processing power for solving certain problems
(e.g. [342,240,15,82].)

2. The increasing number of quantum computing applications in several branches
of science and technology (e.g. image processing and computational geometry
[446,447,444,281,283,284,427,285,204,205], pattern recognition [432,434,433,
196], quantum games [4], and warfare [279].)

3. The simulation of complex physical systems and mathematical problems for
which we know no classical digital computer algorithm that could efficiently
simulate them [155,225,360,224,226,412]. A detailed summary of scientific and
technological applications of quantum computers can be found in [371,141].

Building good quantum algorithms is a difficult task as quantum mechanics
is a counterintuitive theory and intuition plays a major role in algorithm design
and, for a quantum algorithm to be good, it is not enough to perform the task
it is intended to: it must also do better, i.e. be more efficient, than any classical
algorithm (at least better than those classical algorithms known at the time of
developing corresponding quantum algorithms.) Examples of successful results in
quantum computation can be found in [132,412,182,116,196,52,225,360,224,226].
Good introductions and reviews of quantum algorithms can be found in [240,185,
342,78,323,206,231,441,296,324,400,280,334,30,119,58,455,375].

Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms (e.g. [409,27,26,116,29,330])
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that has been recently shown to constitute a universal model of quantum computa-
tion [115,301,437]. There are two kinds of quantum walks: discrete and continuous
quantum walks. The main difference between these two sets is the timing used to
apply corresponding evolution operators. In the case of discrete quantum walks,
the corresponding evolution operator of the system is applied only in discrete time
steps, while in the continuous quantum walk case, the evolution operator can be
applied at any time.

Our approach in the development of this work has been to study those con-
cepts of quantum mechanics and quantum computation relevant to the computa-
tional aspects of quantum walks. Thus, in the history of cross-fertilization between
physics and computation, this review is meant to be situated as a contribution
within the field of quantum walks from the perspective of a computer scientist. In
addition to this paper, the reader may also find the scientific documents written
by Kempe [230], Kendon [234], Konno [255], Ambainis [25,26,29,30], Santha [400],
and Venegas-Andraca [443] relevant to deepening into the mathematical, physical
and algorithmic properties of quantum walks.

The following lines provide a summary of the main ideas and contributions of
this review article.

Section 2. Fundamentals of Quantum Walks. In this section I offer a com-
prehensive yet concise introduction to the main concepts and results of discrete
and continuous quantum walks on a line and other graphs. This section starts
with a short and rigorous introduction to those properties of classical discrete
random walks on undirected graphs relevant to algorithm development, including
definitions for hitting time, mixing time and mixing rate, as well as mathematical
expressions for hitting time on an unrestricted line and on a circle. I then intro-
duce the basic components of a discrete-time quantum walk on a line, followed
by a detailed analysis of the Hadamard quantum walk on an infinite line, using a
method based on the Discrete Time Fourier Transform known as the Schrödinger
approach. This analysis includes the enunciation of relevant theorems, as well as
the advantages of the Hadamard quantum walk on an infinite line with respect to
its closest classical counterpart. In particular, I explore the context in which the
properties of the Hadamard quantum walk on an infinite line are compared with
classical random walks on an infinite line and with two reflecting barriers. Also, I
briefly review another method for studying the Hadamard walk on an infinite line:
path counting approach. I then proceed to study a quantum walk on an infinite
line with an arbitrary coin operator and explain why the study of the Hadamard
quantum walk on an infinite line is enough as for the analysis of arbitrary quantum
walks on an infinite line. Then, I present several results of quantum walks on a
line with one and two absorbing barriers, followed by an analysis on the behav-
ior of discrete-time coined quantum walks using many coins and a study of the
effects of decoherence, a detailed review on limit theorems for discrete-time quan-
tum walks, a subsection devoted to the recently founded subfield of localization
on discrete-time quantum walks, and a summary of other relevant results.

I then focus on the properties of discrete-time quantum walks on graphs: we
study discrete-time quantum walks on a circle, on the hypercube and some general
properties of this kind of quantum walks on Cayley graphs, including a limit theo-
rem of averaged probability distributions for quantum walks on graphs. I continue
this section with a general introduction to continuous quantum walks together
with several relevant results published in this field. Then, I present an analysis of
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the role that randomness plays in quantum walks and the connections between the
mathematical models of coined discrete quantum walks and continuous quantum
walks. The last part of this section focuses on issues about the quantumness of
quantum walks that includes a brief summary of reports on discrete quantum walks
and entanglement, Finally, I briefly summarize several experimental proposals and
realizations of discrete-time quantum walks.

Section 3. Algorithms based on quantum walks and classical simulation

of quantum algorithms-quantum walks. We review several links between com-
puter science and quantum walks. We start by introducing the notions of oracle
and hitting time, followed by a detailed analysis of quantum algorithms developed
to solve the following problems: searching in an unordered list and in a hypercube,
the element ditinctness problem, and the triangle problem. I then provide an in-
troduction to a seminal paper written by M. Szegedy in which a new definiton of
quantum walks based on quantizing a stochastic matrix is proposed. The second
part of this section is devoted to analyzing continuous quantum walks. We start by
reviewing the most successful quantum algorithm based on a continuous quantum
walk known so far, which consists of traversing, in polynomial time, a family of
graphs of trees with an exponential number of vertices (the same family of graphs
would be traversed only in exponential time by any classical algorithm). We then
briefly review a generalization of a continuous quantum walk, now allowed to per-
form non-unitary evolution, in order to simulate photosynthetic processes, and we
finish by reviewing the state of the art on classical digital computer simulation of
quantum algorithms and, particularly, quantum walks.

Section 4. Universality of quantum walks. I review in this last section a very
recent and most important contribution in the field of quantum walks: computa-
tional universality of both continuous- and discrete-time quantum walks.

2 Fundamentals of Quantum Walks

Quantum walks are quantum counterparts of classical random walks. Since clas-
sical random walks have been successfully adopted to develop classical algorithms
and one of the main topics in quantum computation is the creation of quantum
algorithms which are faster than their classical counterparts, there has been a
huge interest in understanding the properties of quantum walks over the last few
years. In addition to their usage in computer science, the study of quantum walks
is relevant to building methods in order to test the “quantumness” of emerging
technologies for the creation of quantum computers as well as to model natural
phenomena.

Quantum walks is a relatively new research topic. Although some authors have
selected the name “quantum random walk” to refer to quantum phenomena [170,
187] and, in fact, in a seminal work by R.P. Feynman about quantum mechani-
cal computers [156] we find a proposal that could be interpreted as a continuous
quantum walk [106], it is generally accepted that the first paper with quantum
walks as its main topic was published in 1993 by Aharonov et al [16]. Thus, the
links between classical random walks and quantum walks as well as the utility
of quantum walks in computer science, are two fresh and open areas of research
(among scientific contributions on the links between classical and quantum walks,
Konno has proposed in [256] solid mathematical connections between correlated
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random walks and quantum walks using the PQRS matrix method introduced in
[248,247].) Two models of quantum walks have been suggested:

- The first model, called discrete quantum walks, consists of two quantum me-
chanical systems, named a walker and a coin, as well as an evolution operator
which is applied to both systems only in discrete time steps. The mathematical
structure of this model is evolution via unitary operator, i.e. |ψ〉t2 = Û |ψ〉t1 .
- The second model, named continuous quantum walks, consists of a walker and
an evolution (Hamiltonian) operator of the system that can be applied with no
timing restrictions at all, i.e. the walker walks any time. The mathematical struc-
ture of this model is evolution via the Schrödinger equation.

In both discrete and continuous models, the topology on which quantum walks
have been performed and their properties computed are discrete graphs. This
is mainly because graphs are widely used in computer science and building up
quantum algorithms based on quantum walks has been a prioritized activity in
this field.

The original idea behind the construction of quantum algorithms was to start
by initializing a set of qubits and then to apply (one of more) evolution opera-
tors several times without making intermediate measurements, as measurements were
meant to be performed only at the end of the computational process (for exam-
ple, see the quantum algorithms reported in [78,342].) Not surprisingly, the first
quantum algorithms based on quantum walks were designed using the same strat-
egy: initialize qubits, apply evolution operators and measure only to calculate the
final outcome of the algorithm. Indeed, this method has proved itself very useful
for building several remarkable algorithms (e.g. [26,230].) However, as the field
has matured, it has been reported that performing (partial) measurements on a
quantum walk may lead to interesting mathematical properties for algorithm de-
velopment, like the ‘top hat’ probability distribution (e.g. [312,234].) Moreover
and expanding on the idea of using more sophisticated tools from the repertoire
of quantum mechanics, recent reports have shown the effect of using weak mea-
surements on the walker probability distribution of discrete quantum walks [169].

The rest of this section is organized as follows. I begin with a short introduc-
tion to those properties of classical discrete random walks on undirected graphs
relevant to algorithm development, including definitions for hitting time, mixing
time and mixing rate, as well as mathematical expressions for hitting time on
an unrestricted line and on a circle. I then introduce the basic components of
a discrete-time quantum walk on a line, followed by a detailed analysis of the
Hadamard quantum walk on an infinite line, using a method based on the Dis-
crete Time Fourier Transform known as the Schrödinger approach. This analysis
includes the enunciation of relevant theorems, as well as the advantages of the
Hadamard quantum walk on an infinite line with respect to its closest classical
counterpart. In particular, I explore the context in which the properties of the
Hadamard quantum walk on an infinite line are compared with classical random
walks on an infinite line and with two reflecting barriers. Also, I briefly review an-
other method for studying the Hadamard walk on an infinite line: path counting
approach. I then proceed to study a quantum walk on an infinite line with an arbi-
trary coin operator and explain why the study of the Hadamard quantum walk on
an infinite line is enough as for the analysis of arbitrary quantum walks on an infi-
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nite line. Then, I present several results of quantum walks on a line with one and
two absorbing barriers, followed by an analysis on the behavior of discrete-time
coined quantum walks using many coins and a study of the effects of decoherence,
a detailed review on limit theorems for discrete-time quantum walks, a subsection
devoted to the recently founded subfield of localization on discrete-time quantum
walks, and a summary of other relevant results.

In addition to this review paper, the reader may also find the scientific docu-
ments written by Kempe [230], Kendon [234], Konno [255], Ambainis [25,26,29,
30], Santha [400], and Venegas-Andraca [443] relevant to deepening into the math-
ematical, physical and algorithmic properties of quantum walks. Finally, readers
who are not yet acquainted with the mathematical and/or physical foundations of
quantum computation may find the following references useful: [185,342,374,323,
206,324,442,280,375].

2.1 Classical random walk on an unrestricted line

Classical discrete random walks were first thought as stochastic processes with no
straightforward relation to algorithm development. Thus, in addition to references
like [363,418,125,136,179,343,457,392] in which the mathematical foundations of
random walks can be found, references [335,298,299,367] are highly recommend-
able for a deeper understanding of algorithm development based on classical ran-
dom walks.

A classical discrete random walk on a line is a particular kind of stochastic
process. The simplest classical random walk on a line consists of a particle (“the
walker”) jumping to either left or right depending on the outcomes of a probability
system (“the coin”) with (at least) two mutually exclusive results, i.e. the particle
moves according to a probability distribution (Fig. (1).) The generalization to
discrete random walks on spaces of higher dimensions (graphs) is straightforward.
An example of a discrete random walk on a graph is a particle moving on a lattice
where each node has 6 vertices, and the particle moves according to the outcomes
produced by tossing a dice. Classical random walks on graphs can be seen as
Markov chains ([335,343].)

Now, let {Zn} be a stochastic process which consists of the path of a particle
which moves along an axis with steps of one unit at time intervals also of one unit
(Fig. (1).) At any step, the particle has a probability p of going to the right and
q = 1 − p of going to the left. Each step is modelled by a Bernoulli-distributed
random variable [125,442] and the probability of finding the particle in position
k after n steps and having as initial position Z0 = 0 is given by the binomial
distribution Tn =

∑n
k=1 Yi = 1

2 (Zn + n) ⇒

pr(Zn = k|Z0 = 0) =

{
( n

1
2
(k+n))p

1
2
(k+n)q

1
2
(n−k), 1

2 (k + n) ∈ N ∪ {0};
0, otherwise

(1)

Fig. (2) shows a plot of Eq. (1) with number of steps n = 100 and p = 1
2 .

Since Tn is Bin(n, p) then the expected value is given by E[Tn] = np and the
variance is computed as V [Tn] = npq. Thus,
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Fig. 1 An unrestricted classical discrete random walk on a line. The probability of going to
the right is p and the probability of going to the left is q = 1− p.

Fig. 2 Plot of P
(n)
ok =

( n
1
2
(k+n)

)
p

1
2
(k+n)q

1
2
(n−k) for n = 100 and p = 1

2
. The probability of

finding the walker in position k = 0 is equal to 0.0795. Only probabilities corresponding to
even positions are shown, as odd positions have probability equal to zero.

V [Zn] = V [2Tn − n] = 4npq. In other words, V [Zn] = O(n) (2)

Eq. (2) will be used in the following sections to show one of the earliest results
on comparing classical random walks to quantum walks.

Graphs that encode the structure of a group are called Cayley graphs. Cay-
ley graphs are a vehicle for translating mathematical structures of scientific and
engineering problems into forms amenable to algorithm development for scientific
computing.

Definition 1 Cayley graph. Let G be a finite group, and let S = {s1, s2, . . . , sk}
be a generating set for G. The Cayley graph of G with respect to S has a vertex
for every element of G, with an edge from g to gs ∀ g ∈ G and s ∈ S.

Cayley graphs are k-regular, that is, each vertex has degree k. Cayley graphs
have more structure than arbitrary Markov graphs and their properties can be
used for algorithm development [228]. Graphs and Markov chains can be put in
an elegant framework which turns out to be very useful for the development of
algorithmic applications:

Let G = (V,E) be a connected, undirected graph with |V | = n and |E| = m.
G induces a Markov chain MG if the states of MG are the vertices of G, and ∀
u, v ∈ V

puv =

{ 1
d(u) if (u, v) ∈ E;

0 otherwise.

where d(u) is the degree of vertex u. Since G is connected, then MG is irre-
ducible and aperiodic [335]. Moreover, MG has a unique stationary distribution.
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Theorem 1 Let G be a connected, undirected graph with n nodes and m edges, and

let MG be its corresponding Markov chain. Then, MG has a unique distribution

−→π = (d(vi)/2m)

for all components vi of −→π .

Note that Theorem 1 holds even when the distribution {d(vi)} is not uniform.
In particular, the stationary distribution of an undirected and connected graph
with n nodes, m edges and constant degree d(vi) = r ∀ vi ∈ G, i.e. a Cayley graph,
is −→π = (r/2m), the uniform distribution.

We have established the relationship between Markov chains and graphs. We
now proceed to define the concepts that make discrete random walks on graphs
useful in computer science. We shall begin by formally describing a random walk
on a graph: let G be a graph. A random walk, starting from a vertex u ∈ V is the
random process defined by

s=u
repeat

choose a neighbor v of u according to a certain probability distribution P

u = v
until (stop condition)

So, we start at a node v0 and, if at tth step we are at a node vt, we move to a
neighbour of vt with probability given by probability distribution P . It is common
practice to make Puv = 1

d(vt)
, where d(vt) is the degree of vertex vt. Examples of

discrete random walks on graphs are a classical random walk on a circle or on a
3-dimensional mesh.

We now introduce several measures to quantify the performance of discrete
random walks on graphs. These measures play an important role in the quantita-
tive theory of random walks, as well as in the application of this kind of Markov
chains in computer science.

Definition 2 Hitting time. The hitting time Hij is the expected number of steps
before node j is visited, starting from node i.

Definition 3 Mixing rate. The mixing rate is a measure of how fast the discrete
random walk converges to its limiting distribution. The mixing rate can be defined
in many ways, depending on the type of graph we want to work with. We use the
definition given in [298].
If the graph is non-bipartite then ptij → dj/2m as t → ∞, and the mixing rate is
given by

µ = lim
t→∞

sup max

∣∣∣∣p(t)ij − dj
2m

∣∣∣∣1/t
As it is the case with the mixing rate, the mixing time can be defined in

several ways. Basically, the notion of mixing time comprises the number of steps
one must perform a classical discrete random walk before its distribution is close
to its limiting distribution.
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Definition 4 Mixing time [31]. Let MG be an ergodic Markov chain which in-
duces a probability distribution Pu(t) on the states at time t. Also, let −→π denote
the limiting distribution of MG. The mixing time τε is then defined as

τε = max
u

min
t
{t|t ≥ T ⇒ ||Pu(t)−−→π || < ε}

where ||Pu(t)−−→π || is a standard distance measure. For example, we could use the
total variation distance, defined as ||Pu(t) − −→π || = 1

2

∑
i |Pui(t) − πi|. Thus, the

mixing time is defined as the first time t such that Pu(t) is within distance ε of −→π
at all subsequent time steps t ≥ T , irrespective of the initial state.

Let us now provide two examples of hitting times on graphs.

2.1.1 Hitting time of an unrestricted classical discrete random walk on a line

It has been shown in Eq. (1) that, for an unrestricted classical discrete random
walk on a line with p = q = 1

2 , the probability of finding the walker in position k

after n steps is given by

pr(Zn = k|Z0 = 0) =

{
( n

1
2
(k+n))

1
2n ,

1
2 (k + n) ∈ N ∪ {0};

0, otherwise

Using Stirling’s approximation n! ≈
√

2πn
(
n
e

)n
and after some algebra, we find

pr(Zn = k|Z0 = 0) =
1

2n

(
n

1
2 (k + n)

)
≈
√

2n

π2(n2 − k2)

nn

(n+ k)
n+k

2 (n− k)
n−k

2

(3)

We know that Eq. (1) is a binomial distribution, thus it makes sense to study
the mixing time in two different vertex populations: k << n and k ≈ n (the
first population is mainly contained under the bell-shape part of the distribution,
while the second can be found along the tails of the distribution.) In both cases,
we shall find the expected hitting time by calculating the inverse of Eq. (3) (i.e.,
the expected time of the geometric distribution):

Case k�n. Since
√

2n
π2(n2−k2)

nn

(n+k)
n+k

2 (n−k)
n−k

2

≈
√

2n
π2n2

nn

nn/2nn/2
= c√

n
⇒

Hitting time H0,k = O(
√
n) (4)

Case k≈n. Let n−k = C1 and n2−k2 = C2, where C1 and C2 are small integer

numbers. Since
√

2n
π2(n2−k2)

nn

(n+k)
n+k

2 (n−k)
n−k

2

≈
√

2n
πC2

nn

2nnnC
C1/2
1

= 1
2n

√
2n

πC
C1
1 C2

⇒

Hitting time H0,k = O(2n) (5)

Thus, the hitting time for a given vertex k of an n-step unrestricted classical
discrete random walk on a line depends on which region vertex k is located in. If
k << n then it will take

√
n steps to reach k, in average. However, if k ≈ n then

it will take an exponential number of steps to reach k, as one would expect from
the properties of the binomial distribution.
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Fig. 3 Classical discrete random walk on a 10 nodes circle.

2.1.2 Hitting time of a classical discrete random walk on a circle

The definitions of discrete random walks on a circle and on a line with two reflecting
barriers are very similar. In fact, the only difference is the behavior of the extreme
nodes.

Let {Zn} be a stochastic process which consists of the path of a particle which
moves along a circle with steps of one unit at time intervals also of one unit. The
circle has n different position sites (for an example with 10 nodes, see Fig. (3)).
At any step, the particle has a probability p of going to the right and q = 1− p of
going to the left. If the particle is on Zt = 0 at time t then the particle will move
to Zt+1 = 1 with probability p and to Zt+1 = n− 1 with probability q. Similarly,
if the particle is on Zt = n− 1 at time t then at time t+ 1 the particle will go to
Zt+1 = 0 with probability p and to Zt+1 = n− 2 with probability q.

According to Theorem 1, the Markov chain defined by {Zn} has a stationary
distribution given by

−→π =
1

n
(6)

And a hitting time H0,n given by ([298])

H0,n = O(n2) (7)

2.2 Discrete quantum walk on a line

Discrete quantum walks on a line (DQWL) is the most studied model of discrete
quantum walks. As its name suggests, this kind of quantum walks are performed
on graphs G composed of a set of vertices V and a set of edges E (i.e., G = (V,E)),
and having each vertex two edges, i.e. |V | = 2. Studying DQWL is important in
quantum computation for several reasons, including:

1. DQWL can be used to build quantum walks on more sophisticated structures
like circles or general graphs.
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2. DQWL is a simple model that can be exploited to explore, find and understand
relevant properties of quantum walks for the development of quantum algorithms.
3. DQWL can be employed to test the quantumness of experimental realizations
of quantum computers.

In [326], Meyer made two contributions to the study of DQWL while working
on models of Quantum Cellular Automata (QCA) and Quantum Lattice Gases:
1. He proposed a model of quantum dynamics that would be used later on to
analytically characterize DQWL.
2. He showed that a quantum process in which, at each time step, a quantum
particle (the walker) moves in superposition both to left and right with equal am-
plitudes, is physically impossible in general, the only exception being the trivial
motion in a single direction.

In order to perform a discrete DQWL with non-trivial evolution, it was proposed
in [31] and [340] to use an additional quantum system: a coin. Thus, a DQWL
comprises two quantum systems, coin and walker, along with a unitary coin op-
erator (“to toss a coin”) and a conditional shift operator (to displace the walker
to either left or right depending on the accompanying coin state component.)

In a different perspective, Patel et al proposed in [356] to eliminate the use of
coins by rearranging the Hamiltonian operator associated with the evolution oper-
ator of the quantum walk (however, there is a price to be paid on the translation
invariance of the quantum walk.) Moreover, Hines and Stamp have proposed the
development of quantum walk Hamiltonians [195] in order to reflect the proper-
ties of potential experimental realizations of quantum walks in their mathematical
structure.

Motivated by [356], Hamada et al [189] wrote a general setting for QCA, devel-
oped a correspondence between DQWL and QCA, and applied this connection to
show that the quantum walk proposed in [356] could be modelled as a QCA. The
relationship between QCA and quantum walks has been indirectly explored by
Meyer [326]. Additionally, Konno et al [265] have studied the relationship between
quantum walks and cellular automata, Van Dam has shown [438] that it is possi-
ble to build a quantum cellular automaton capable of universal computation, and
Gross et al have introduced a comprehensive mathematical setting for developing
index theory of one-dimensional automata and cellular automata [180].

We now review the mathematical structure of a basic coined DQWL.

2.2.1 Structure of a basic coined DQWL

The main components of a coined DQWL are a walker, a coin, evolution operators
for both walker and coin, and a set of observables:
Walker and Coin: The walker is a quantum system living in a Hilbert space
of infinite but countable dimension Hp. It is customary to use vectors from the
canonical (computational) basis of Hp as “position sites” for the walker. So, we
denote the walker as |position〉 ∈ Hp and affirm that the canonical basis states
|i〉p that span Hp, as well as any superposition of the form

∑
i αi|i〉p subject to∑

i |αi|
2 = 1, are valid states for |position〉. The walker is usually initialized at the

‘origin’, i.e. |position〉initial = |0〉p.
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The coin is a quantum system living in a 2-dimensional Hilbert space Hc. The
coin may take the canonical basis states |0〉 and |1〉 as well as any superposition
of these basis states. Therefore |coin〉 ∈ Hc and a general normalized state of the
coin may be written as |coin〉 = a|0〉c + b|1〉c, where |a|2 + |b|2 = 1.

The total state of the quantum walk resides in Ht = Hp ⊗Hc. It is customary
to use product states of Ht as initial states, that is, |ψ〉initial = |position〉initial ⊗
|coin〉initial.
Evolution Operators: The evolution of a quantum walk is divided into two parts
that closely resemble the behavior of a classical random walk. In the classical case,
chance plays a key role in the evolution of the system. In the quantum case, the
equivalent of the previous process is to apply an evolution operator to the coin
state followed by a conditional shift operator to the total quantum system. The
purpose of the coin operator is to render the coin state in a superposition, and the
randomness is introduced by performing a measurement on the system after both
evolution operators have been applied to the total quantum system several times.

Among coin operators, customarily denoted by Ĉ, the Hadamard operator has
been extensively employed:

Ĥ =
1√
2

(|0〉c〈0|+ |0〉c〈1|+ |1〉c〈0| − |1〉c〈1|) (8)

For the conditional shift operator use is made of a unitary operator that allows
the walker to go one step forward if the accompanying coin state is one of the two
basis states (e.g. |0〉), or one step backwards if the accompanying coin state is the
other basis state (e.g. |1〉). A suitable conditional shift operator has the form

Ŝ = |0〉c〈0| ⊗
∑
i

|i+ 1〉p〈i|+ |1〉c〈1| ⊗
∑
i

|i− 1〉p〈i|. (9)

Consequently, the operator on the total Hilbert space is Û = Ŝ · (Ĉ ⊗ Îp) and a
succinct mathematical representation of a discrete quantum walk after t steps is

|ψ〉t = (Û)t|ψ〉initial, (10)

where |ψ〉initial = |position〉initial ⊗ |coin〉initial.
Observables: Several advantages of quantum walks over classical random walks
are a consequence of interference effects between coin and walker after several
applications of Û (other advantages come from quantum entanglement between
walker(s) and coin(s) as well as partial measurement and/or interaction of coins
and walkers with the environment.) However, we must perform a measurement at
some point in order to know the outcome of our walk. To do so, we define a set of
observables according to the basis states that have been used to define coin and
walker.

There are several ways to extract information from the composite quantum
system. For example, we may first perform a measurement on the coin using the
observable

M̂c = α0|0〉c〈0|+ α1|1〉c〈1|. (11)

A measurement must then be performed on the position states of the walker
by using the operator
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M̂p =
∑
i

ai|i〉p〈i|. (12)

We show in Fig. (4) the probability distributions of two 100-steps DQWL. Coin
and shift operators for both quantum walks are given by Eqs. (8) and (9) respec-
tively. The DQWLs from plots (a) and (b) have corresponding initial quantum
states |0〉c⊗|0〉p and |1〉c⊗|0〉p. The first evident property of these quantum walks
is the skewness of their probability distributions, as well as the dependance of the
symmetry of such a skewness from the coin initial quantum state (|0〉 for plot (a)
and |1〉 for plot (b).) This skewness comes from constructive and destructive inter-
ference due to the minus sign included in Eq. (8). Also, we notice a quasi-uniform
behavior in the central area of both probability distributions, approximately in the
interval [−70, 70]. Finally, we notice that regardless their skewness, both probabil-
ity distributions cover the same number of positions (in this case, even positions
from -100 to 100. If the quantum walk had been performed an odd number of
times, then only odd position sites could have non-zero probability.)

Two approaches have been extensively used to study DQWL:
1. Schrödinger approach. In this case, we take an arbitrary component |ψ〉n =
(α|1〉c+β|0〉c)⊗|n〉p of the quantum walk, the tensor product of coin and position
components for a certain walker position. |ψ〉n is then Fourier-transformed in order
to get a closed form of the coin amplitudes. Then, standard tools of complex anal-
ysis are used to calculate the statistical properties of the probability distribution
computed from corresponding coin amplitudes.
2. Combinatorial approach. In this method we compute the amplitude for a
particular position component |n〉p by summing up the amplitudes of all the paths
which begin in the given initial condition and end up in |n〉p. This approach can
be seen as using a discrete version of path integrals.

In addition, Fuss et al have proposed an analytic description of probability den-
sities and moments for the one-dimensional quantum walk on a line [161], Bressler
and Pemantle [81] as well as Zhang [470] have employed generating functions to
asimptotically analize position probability distributions in one-dimensional quan-
tum walks, and Feldman and Hillery [150] have proposed an alternative formulation
of discrete quantum walks based on scattering theory. In particular, [150] plays an
increasingly important role on the foundations of the field of quantum walks for
being an alternative formulation for discrete quantum walks as well as a key tool
to describe and understand the proof of computational universality delivered by
Childs in [115], this latter paper is to be reviewed in section 4.

In the following lines we review both Schrödinger and combinatorial approaches
to analyze the Hadamard walk, a specific but very powerful DQWL with coin and
shift operators given by Eqs. (8) and (9) respectively. Later on we show how the
Hadamard walk is related to the more general case of a DQWL with arbitrary coin
operator.

2.2.2 Schrödinger approach for the Hadamard walk

The analysis of DQWL properties using the Discrete Time Fourier Transform
(DTFT) and methods from complex analysis was first made by Nayak and Vish-
wanath [340], followed by Ambainis et al [31], Koš́ık [269] and Carteret et al [93,
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(a)

(b)

Fig. 4 Probability distributions of 100 steps DQWLs using coin and shift operators given
by Eqs. (8) and (9) respectively. Plot (a) corresponds to a DQWL with total initial quantum
state |0〉c ⊗ |0〉p, while plot (b) had total initial quantum state |1〉c ⊗ |0〉p. Two interesting
properties of these quantum walks is the skewness of corresponding probability distributions,
along with the dependance of the symmetry of such skewness from the coin initial state.

94]. Following [31,340], a quantum walk on an infinite line after t steps can be
written as |ψ〉t = Û t|ψ〉initial (Eq. (10)) or, alternatively, as∑

k

[ak|0〉c + bk|1〉c]|k〉p (13)

where |0〉c, |1〉c are the coin state components and |k〉p are the walker state
components. For example, let us suppose we have

|ψ〉0 = |0〉c ⊗ |0〉p (14)

as the quantum walk initial state, with Eq.(8) and Eq.(9) as coin and shift
operators. Then, the first three steps of this quantum walk can be written as:

|ψ〉1 =
1√
2
|0〉c|1〉p +

1√
2
|1〉c| − 1〉p ,



Quantum walks: a comprehensive review 15

|ψ〉2 = (
1

2
|0〉c + 0|1〉c)|2〉p + (

1

2
|0〉c +

1

2
|1〉c)|0〉p + (0|0〉c −

1

2
|1〉c)| − 2〉p ,

and

|ψ〉3 = (
1

2
√

2
|0〉c + 0|1〉c)|3〉p + (

1√
2
|0〉c +

1

2
√

2
|1〉c)|1〉p +

(
−1

2
√

2
|0〉c + 0|1〉c)| − 1〉p + (0|0〉c +

1

2
√

2
|1〉c)| − 3〉p .

We now define

Ψ(n, t) =

(
ΨR(n, t)
ΨL(n, t)

)
(15)

as the two component vector of amplitudes of the particle being at point n and
time t or, in operator notation

|Ψ(n, t)〉 = ΨL(n, t)|1〉+ ΨR(n, t)|0〉 (16)

We shall now analyze the behavior of a Hadamard walk at point n after t+ 1
steps. We begin by applying the Hadamard operator given by Eq. (8) to those coin
state components in position n− 1, n and n+ 1:

Ĥ(|Ψ(n− 1, t)〉+ |Ψ(n, t)〉+ |Ψ(n+ 1, t)〉) =

1√
2

(|ΨL(n− 1, t)〉|0〉+ |ΨR(n− 1, t)〉|0〉 − |ΨL(n+ 1, t)〉|1〉+ |ΨR(n+ 1, t)〉|1〉

−|ΨL(n− 1, t)〉|1〉+ |ΨR(n− 1, t)〉|1〉+ |ΨL(n+ 1, t)〉|0〉+ |ΨR(n+ 1, t)〉|0〉
+|ΨL(n, t)〉|0〉+ |ΨR(n, t)〉|0〉 − |ΨL(n, t)〉|1〉+ |ΨR(n, t)〉|1〉) (17)

Now, we apply the shift operator given by Eq. (9) to Eq. (17)

Û(Ĥ(|Ψ(n− 1, t)〉+ |Ψ(n, t)〉+ |Ψ(n+ 1, t)〉)) =

1√
2

(|ΨL(n, t)〉|0〉+ |ΨR(n, t)〉|0〉−|ΨL(n, t)〉|1〉+ |ΨR(n, t)〉|1〉

−|ΨL(n− 2, t)〉|1〉+ |ΨR(n− 2, t)〉|1〉+ |ΨL(n+ 2, t)〉|0〉+ |ΨR(n+ 2, t)〉|0〉
−|ΨL(n− 1, t)〉|1〉+ |ΨR(n− 1, t)〉|1〉+ |ΨL(n+ 1, t)〉|0〉+ |ΨR(n+ 1, t)〉|0〉)

(18)

The bold font amplitude components of Eq. (18) are the amplitude components
of |Ψ(n, t+ 1)〉, which can be written in matrix notation as

Ψ(n, t+ 1) =

(−1√
2

1√
2

0 0

)
Ψ(n+ 1, t) +

(
0 0
1√
2

1√
2

)
Ψ(n− 1, t) (19)

Let us label
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M =

(−1√
2

1√
2

0 0

)
and M+ =

(
0 0
1√
2

1√
2

)
Thus

Ψ(n, t+ 1) = M Ψ(n+ 1, t) +M+Ψ(n− 1, t) (20)

Eq. (20) is a difference equation with Ψ(0, 0) =

(
1
0

)
and Ψ(n, 0) =

(
0
0

)
, ∀ n 6= 0

as initial conditions (Eq. (14).)
Our objective is to find analytical expressions for ΨL(n, t) and ΨR(n, t). To do

so, we compute the Discrete Time Fourier transform of Eq. (20). The Discrete
Time Fourier Transform is given by

Definition 5 Discrete Time Fourier Transform. Let f : Z → C be a complex
function over the integers ⇒ its Discrete Time Fourier Transform (DTFT) f̃ :
[−π, π]→ C is given by

f̃ = f̃(eiω) =
∞∑

n=−∞
f(n)e−inω ,

and its inverse is given by

f(n) =
1

2π

∫ π

−π
F (eiω)einωdω

Ambainis et al [31] employ the following slight variant of the DTFT:

f̃(k) =
∑
n

f(n)eik , (21)

where f : Z→ C and f̃ : [−π, π]→ C. Corresponding inverse DTFT is given by

f(n) =
1

2π

∫ π

−π
f̃(k)e−ikdk (22)

So, using Eq. (21) we have

Ψ̃(k, t) =
∑
n

Ψ(n, t)eikn (23)

Using Eq. (20) we obtain

Ψ̃(k, t+ 1) =
∑
n

(M Ψ(n+ 1, t) +M+Ψ(n− 1, t))eikn (24)

After some algebra we get

Ψ̃(k, t+ 1) = MkΨ̃(k, t), where Mk = e−ikM + eikM+ =
1√
2

(
−e−ik e−ik

eik eik

)
(25)
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Thus

Ψ̃(k, t) =

(
Ψ̃L(k, t)
Ψ̃R(k, t)

)
= M t

kΨ̃(k, 0) , where Ψ̃(k, 0) =

(
1
0

)
(26)

Our problem now consists in diagonalizing the (unitary) matrix Mk in order
to calculate M t

k. If Mk has eigenvalues {λ1k, λ
2
k} and eigenvectors |Φ1

k〉, |Φ
2
k〉 then

Mk = λ1k|Φ
1
k〉〈Φ

1
k|+ λ2k|Φ

2
k〉〈Φ

2
k| (27)

Using the mathematical properties of linear operators, we then find:

M t
k = (λ1k)t|Φ1

k〉〈Φ
1
k|+ (λ2k)t|Φ2

k〉〈Φ
2
k| (28)

It is shown in [340] and [31] that

λ1k = eiωk , λ2k = ei(π−ωk), where ωk ∈ [−π
2
,
π

2
] and sin(ωk) =

sin k√
2

(29)

and

Φ1
k =

1√
2[(1 + cos2(k)) + cos(k)

√
1 + cos2 k]

(
e−ik√

2eiωk + e−ik

)
(30a)

Φ2
k =

1√
2[(1 + cos2(π − k)) + cos(π − k)

√
1 + cos2(π − k)]

(
e−ik

−
√

2e−iωk + e−ik

)
(30b)

From Eqs. (29), (30a) and (30b) we compute the Fourier-transformed ampli-
tudes Ψ̃L(n, t) and Ψ̃R(n, t)

Ψ̃L(n, t) =
e−ik

2
√

1 + cos2 k
(eiωkt − (−1)te−iωkt) (31a)

Ψ̃R(n, t) =
1

2
(1 +

cos k√
1 + cos2 k

)eiωkt +
(−1)t

2
(1− cos k√

1 + cos2 k
)e−iωkt (31b)

Using Eq. (5) on Eqs. (31a) and (31b), it is possible to prove the following
theorem:

Theorem 2 Let |Ψ〉0 = |0〉p ⊗ |0〉c be the initial state of a discrete quantum walk on

an infinite line with coin and shift operators given by Eqs. (8) and (9) respectively ⇒

ΨL(n, t) =
1

2π

∫ π

−π

−ieik

2
√

1 + cos2 k
(e−i(ωkt−kn))dk

ΨR(n, t) =
1

2π

∫ π

−π
(1 +

cos k√
1 + cos2 k

)(e−i(ωkt−kn))dk

where ωk = sin−1( sin k√
2

) and ωk ∈ [−π2 , π2 ].
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The amplitudes for even n (odd n) at odd t (even t) are zero, as it can be inferred
from the definition of the quantum walk. Now we have an analytical expression for
ΨL(n, t) and ΨR(n, t), and taking into account that P (n, t) = |ΨL(n, t)|2+|ΨR(n, t)|2,
we are interested in studying the asymptotical behavior of Ψ(n, t) and P (n, t).
Integrals in Theorem 2 are of the form

I(α, t) =
1

2π

∫ π

−π
g(k)eiφ(k,α)tdk , where α = n/t( = position/number of steps)

The asymptotical properties of this kind of integral can be studied using the
method of stationary phase ([65] and [77]), a standard method in complex analysis.
Using such a method, the authors of [31] and [340] reported the following theorems
and conclusions:

Theorem 3 Let ε > 0 be any constant, and α be in the interval (−1√
2

+ ε, 1√
2
− ε).

Then, as t→∞, we have (uniformly in n)

pL(n, t) v
2

π
√

1− 2α2t
cos2(−ωt+

π

4
− ρ) ,

pR(n, t) v
2(1 + α)

π(1− α)
√

1− 2α2t
cos2(−ωt+

π

4
)

where ω = αρ + θ, ρ = arg(−B +
√
∆), θ = arg(B + 2 +

√
∆), B = 2α

1−α and

∆ = B2 − 4(B + 1).

Theorem 4 Let n = αt → ∞ with α fixed. In case α ∈ (−1,−1/
√

2) ∪ (1/
√

2, 1) ⇒
∃ c > 1 for which pL(n, t) = O(c−n) and pR(n, t) = O(c−n).

Conclusions

1. Quasi-uniform behavior and standard deviation. The wave function ΨL(n, t)
and ΨR(n, t) (Theorem 2) is almost uniformily spread over the region for which
α is in the interval [−1/

√
2, 1/
√

2] (Theorem 3), and shrinks quickly outside this
region (Theorem 4). Furthermore, by integrating the probability functions from
Theorem 3, it is possible to see that almost all of the probability is concentrated
in the interval [(−1/

√
2 + ε)t, (1/

√
2 − ε)t]. In fact, the exact probability value in

that interval is P = 1− 2ε
π −

O(1)
t .

Furthermore, the position probability distribution spreads as a function of t,
i.e. [−t/

√
2, t/
√

2], hence an evidence of

σĤ = O(t) (32)

Konno [248] as well as Kendon and Tregenna [238] have computed the ac-
tual variance of the probability distribution given in Theorem 3. Furthermore, by
introducing a novel method to compute the probability distribution X of the un-

restricted DQWL, it was shown in [248] that σ(X)
t →

√√
2−1
2 as t → ∞. In any

case, the standard deviation of the unrestricted Hadamard DQWL is O(t) and
that result is in contrast with the standard deviation of an unrestricted classical
random walk on a line, which is O(

√
t) (cf. Eq. (2).)

2. Mixing time. It was shown in [31] and [340] that an unrestricted Hadamard
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DQWL has a linear mixing time τ
(q)
ε = O(t), where t is the number of steps. Fur-

thermore, τ
(q)
ε was compared with the corresponding mixing time of a classical

random walk on a line, which is quadratic, i.e. τ
(c)
ε = O(t2).

In order to properly bound and evaluate the impact of this result in the fields
of quantum walks and quantum computation, a few clarifications are needed.

a) The mixing time measure used in this case is not the same as Eq. (4), the
reason being that unitary Markov chains in finite state space (such as finite graph
analogues of quantum walks) have no stationary distribution (section 2 of [31].)
Instead, the mixing time measure proposed is given by

Definition 6 Instantaneous Mixing Time. τε = maxu mint{t| ||Pu(t)− π|| ≤ ε}

which is a more relaxed definition in the sense that it measures the first time
that the current probability distribution Pu(t) is ε-close to the stationary distri-
bution, without the requirement of continuing being ε-close for all future steps.

b) The stationary distribution of an unrestricted classical random walk on a line
is the binomial distribution, spread all over Z. The only difference between Pt, the
probability distribution of an unrestricted classical random walk on a line at step
t, and its limiting distribution P is the numerical value of the probability assigned
to each node, as the shape of the distribution is the same. Although the binomial
distribution can be roughly approximated by a uniform distribution for large values
of t, depending on the precision we need for a certain task, that comparison is
not accurate: as shown in our previous subsection on classical random walks, the
hitting time of an unrestricted classical random walk on a line depends on the
region we are looking into. Specifically, the hitting time is O(

√
t) for k � t and

O(2t) for k ≈ t (Eqs. (4) and (5).) Thus, to hit node k with equal probabilities
Ptk = Pk may depend on the region where k is located. For example, it may take
O(
√
t) if k � t and O(2t) if k ≈ t.

So, comparing mixing and hitting times for quantum and classical unrestricted
walks on a line is not necessarily clear and straightforward. In order to reduce
complexity in the analysis of algorithms, the infiniteness property of unrestricted
classical random walks can sometimes be relaxed and properties of classical random
walks on finite lines could be used instead, as proposed by Rantanen in [367].

2.2.3 Discrete Path Integral Analysis of the Hadamard Walk

A different proposal to study the properties of quantum walks, based on combi-
natorics and the method to quantify quantum state amplitudes given by Meyer in
[326], has been delivered by Ambainis et al in [31] as well as Carteret et al in [93,
94].) The main idea behind this approach is to count the number of paths that take
a quantum walker from point a to point b. Thus, this approach can also be seen
as a discrete path-integral method. Let us begin by stating the following lemma:

Lemma 1 [31] and [326]. Let t ∈ [−n, n)∩Z and l = t−n
2 . The amplitudes of position

n after t steps of the Hadamard walk are:

ψL(n, t) =
1√
2t

∑
k

(
l − 1

k

)(
t− l
k

)
(−1)l−k−1 (33a)
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ψR(n, t) =
1√
2t

∑
k

(
l − 1

k − 1

)(
t− l
k

)
(−1)l−k (33b)

It was shown in [31] that the probabilities computed from those amplitudes of
Lemma (1) can be expressed using Jacobi polynomials. Furthermore, it was shown
in [94] that both Schrödinger and combinatorial approaches are equivalent.

Theorem 5 Let n ∈ N ∪ {0} and J
(a,b)
ν (z) be the normalised degree ν Jacobi polyno-

mial with J
(a,b)
ν as its constant term. Let us also define ν = (t−n)

2 − 1. Then

Pl(n, t) = 2−n−2(J
(0,n+1)
ν )2 (34a)

PR(n, t) =
(
t+ n

t− n

)2
2−n−2(J

(1,n)
ν )2, (34b)

with pL(−n, t) = pL(n− 2, t) and pR(−n, t) =
(
t− n
t+ n

)2
pR(n, t)

A slight variation of this approach has been given by Brun et al in [87]. An
alternative and powerful method for building quantum walks, based on combina-
torics and decompositions of unitary matrices, has been proposed by Konno in
[248,249,251,252]. Also, Katori et al proposed in [227] to apply Group Theory to
analyze symmetry properties of quantum walks on a line and, along the same line
of thought, Chandrashekar et al have proposed a generalized version of the discrete
quantum walk with coins living in SU(2) [105].

2.2.4 Unrestricted DQWL with a general coin

The study of the Hadamard walk is relevant to the field of quantum walks not only
as an example but also because of the fact that some important properties shown
by the Hadamard walk (for example, its standard deviation and mixing time) are
shared by any quantum walk on the line. In [431], Tregenna et al showed that, for
a general unbiased initial coin state

|ψ(x, 0)〉 =
√
η(|0〉c + eiα

√
1− η|1〉c)⊗ |0〉p (35)

and a single step (in Fourier space) of the quantum walk

|ψ̃(k, t+ 1)〉 = C̃k|ψ̃(k, t)〉

where

C̃k =

( √
ρeik

√
1− ρei(θ+k)√

1− ρei(−k+φ) −√ρei(−k+θ+φ)

)
(36)

is the Fourier transformed version of the most general 2-dimensional coin operator

C2 =

( √
ρ

√
1− ρeiθ√

1− ρeiφ −√ρei(θ+φ)

)
with θ, φ ∈ [0, π] and ρ ∈ [0, 1], we can express a t-step quantum walk on a line as
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|ψ̃(k, t+ 1)〉 = C̃tk|ψ̃(k, 0)〉, where |ψ̃(k, 0)〉 =

( √
η

eiα
√

1− η

)
⊗ |k〉 (37)

If C̃k is expressed in terms of its eigenvalues λ±k and eigenvectors |λ±k 〉 then

C̃tk = (λ+k )t|λ+k 〉〈λ
+
k |+ (λ−k )t|λ−k 〉〈λ

−
k |, and Eq. (37) can be written as

|ψ̃(k, t+ 1)〉 = (λ+k )t|λ+k 〉〈λ
+
k |ψ̃(k, 0)〉+ (λ−k )t|λ−k 〉〈λ

−
k |ψ̃(k, 0)〉 (38)

with

(λ±k )t〈λ±k |ψ̃(k, 0)〉 =
(λ±k )t

n±k
e−ik

[
√
η −

√
1− η
1− ρe

i(θ+α)(
√
ρ∓ ei(k−δ)e∓iωk)

]
,

(39)

where δ = (θ+φ)/2, sin(ωk) =
√
ρ sin(k−δ), λ±k = ±eiδe±iωk , nk =

√
2[1∓√ρ cos(k−δ∓ωk)]

1−ρ ,

λ± = ±eiδe±iωk and |λ±〉 = 1

n±k

(
eik

eiθ(λ± −√ρeik)/
√

1− ρ

)
.

As in the Hadamard walk case, the properties of the quantum walk defined
by Eqs. (39,37) may be studied by inverting the Fourier transform and using
methods of complex analysis. Let us concentrate on the phase factors α ∈ R of
the coin initial state (Eq. (35)) and θ ∈ R of the coin operator (Eq. (36).) Note
that we can choose many pairs of values (α, θ) for any phase factor r = α + θ.
So, if we fix a value for θ (i.e. if we use only one coin operator) we can always
vary the initial coin state |ψ(x, 0)〉 (Eq. (35)) to get a value for α so that we can
compute a quantum walk with a certain phase factor value r. It is in this sense
that we say that the study of a Hadamard walk suffices to analyze the properties
of all unrestricted quantum walks on a line. In Fig. (5) we show the probability
distributions of three Hadamard walks with different initial coin states.

On further studies of coined quantum walks on a line, Villagra et al [450]
present a closed-form of the probability that a quantum walk arrives at a given
vertex after n steps, for a general symmetric SU(2) coin operator.

2.2.5 Discrete Quantum walk with boundaries

The properties of discrete quantum walks on a line with one and two absorbing
barriers were first studied in [31]. For the semi-infinite discrete quantum walk on
a line, Theorem 6 was reported

Theorem 6 Let us denote by p∞ the probability that the measurement of whether the

particle is at the location of the absorbing boundary (location 0 in [31]) ⇒ p∞ = 2
π .

Theorem 6 is in stark contrast with its classical counterpart (Theorem 8 of
[31]), as the probability of eventually being absorbed (in the classical case) is
equal to unity. Furthermore, Yang, Liu and Zhang have introduced an interest-
ing and relevant result in [295]: the absorbing probability of Theorem 6 decays
faster than the classical case and, consequently, the conditional expectation of the
quantum-mechanical case is finite (as opposed to the classical case in which the
corresponding conditional expectation is infinite.)

The case of a quantum walk on a line with two absorbing boundaries was also
studied in [31], and their main result is given in Theorem 7.
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(a)

(b)

(c)

Fig. 5 Graph (a) was computed using initial state |ψ〉0 = 1√
2

(|0〉c + i|1〉c) ⊗ |0〉p. Graphs

(b) and (c) had |ψ〉0 = |0〉c ⊗ |0〉p and |ψ〉0 =
√

0.85|0〉c −
√

0.15|1〉c) ⊗ |0〉p as initial states,
respectively. Notice that symmetry in the probability distribution can be achieved by using
coin initial states with either complex or real relative phase factors [431]. All graphs were
computed from 100-step Hadamard quantum walks on a line with Eq. (9) as shift operator.
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Theorem 7 For each n > 1, let pn be the probability that the process eventually exits

to the left. Also define qn to be the probability that the process exits to the right. Then

i)∀ n > 1 ⇒ pn + qn = 1

ii) lim
n→∞

pn =
1√
2

In [55], Bach et al revisit Theorems 6 and 7 with detailed corresponding proofs
using both Fourier transform and path counting approaches as well as prove some
conjectures given in [468]. Moreover, in [54], Bach and Borisov further study the
absorption probabilities of the two-barrier quantum walk. Finally, Konno studied
the properties of quantum walks with boundaries using a set of matrices derived
from a general unitary matrix together with a path counting method ([247,266].)

2.2.6 Unrestricted quantum walks on a line with several coins

The effect of different and multiple coins has been studied by several authors. In
[210], Inui and Konno have analyzed the localization phenomena due to eigenvalue
degeneracies in one-dimensional quantum walks with 4-state coins (the results
shown in [210] have some similarities with the quantum walks with maximally
entangled coins reported by Venegas-Andraca et al in [445] in the sense that both
quantum walks tend to concentrate most of their probability distributions about
the origin of the walk, i.e. the localization phenomenon is present.) Moreover,
in [338], Konno, Inui and Segawa have derived an analytical expression for the
stationary distribution of one-dimensional quantum walks with 3-state coins that
make the walker go either right or left or, alternatively, rest in the same position.
Additionally, Ribeiro et al [372] have considered quantum walks with several biased
coins applied aperiodically, D’Alessandro et al [126] have studied non-stationary
quantum walks on a cycle using different coin operators at each computational
step, and Feinsilver and Kocik [148] have proposed the use of Krawtchouk matrices
(via tensor powers of the Hadamard matrix) for calculating quantum amplitudes.

Linden and Sharam have formally introduced a family of quantum walks, inho-
mogeneous quantum walks, being their main characteristic to allow coin operators
to depend on both position and coin registers [288]. Shikano and Katsura [411]
have studied the properties of self-duality, localization and fractality on a gener-
alization of the inhomogeneous quantum walk model defined in [288], Konno has
presented and proved a theorem on return probability for inhomogeneous walks
which are periodic in position [258], Machida [303] has found that combining the
action of two unitary operators in an inhomogenenous quantum walk will result in
a limit distribution for Xt/t that can be expressed as a δ function and a combina-
tion of density functions (for a detailed analisys of weak convergence Xt/t please
go to subsection 2.2.8), and Konno has proved that the return probability of a
one-dimensional discrete-time quantum walk can be written in terms of elliptic
integrals [259].

In [87], Brun et al analyzed the behavior of a quantum walk on the line us-
ing both M 2-dimensional coins and single coins of 2M dimension, and Sewaga
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et al [406] have computed analytical expressions for limit distributions of quan-
tum walks driven by M 2-dimensional coins as well as analyzed the conditions
upon which applying M 2-dimensional coins to a quantum walk leads to classical
behavior. Furthermore, Bañuls et al [61] have studied the behavior of quantum
walks with a time-dependent coin and Machida and Konno [305] have produced
limit distributions for such quantum walks with Ĉ = Ĉ(t), Chandrashekar [95] has
proposed a generic model of quantum walk whose dynamics is described by means
of a Hamiltonian with an embedded coin, and Romanelli [383] has generalized the
standard definition of a discrete quantum walk and shown that appropriate choices
of quantum coin lead to obtaining a variety of wave-function spreading. Finally,
Ahlbrecht et al have produced a comprehensive analysis of asymptotical behavior
of ballistic and diffusive spreading, using Fourier methods together with perturbed
and unperturbed operators [19].

2.2.7 Decoherence and other considerations on classical and quantum walks

The links between classical and quantum versions of random walks have been stud-
ied by several authors under different perspectives:
1) Simulating classical random walks using quantum walks. Studies on this area
(e.g. [453]) would provide us not only with interesting computational properties
of both types of walks, but also with a deeper insight of the correspondences be-
tween the laws that govern computational processes in both classical and quantum
physical systems.
2) Transitions from quantum walks into classical random walks. This area of re-
search is interesting not only for exploring computational properties of both kinds
of walks, but also because we would provide quantum computer builders (i.e. ex-
perimental physicists and engineers) with some criteria and thresholds for testing
the quantumness of a quantum computer. Moreover, these studies have allowed
the scientific community to reflect on the quantum nature of quantum walks and
some of their implications in algorithm development (in fact, we shall discuss the
quantum nature of quantum walks in subsection 2.7.)

Decoherence is a physical phenomenon that typically arises from the interac-
tion of quantum systems and their environment. Decoherence used to be thought
of as an annoyance as it used to be equated with loss of quantum information.
However, it has been found that decoherence can indeed play a beneficial role in
natural processes (e.g. [330]) as well as produce interesting results for quantum
information processing (e.g. [237,390,85].) In addition to these properties, decoher-
ence via measurement or free interaction with a classical environment is a typical
framework for studying transitions of quantum walks into classical random walks.
Thus, for the sake of getting a deeper understanding of the physical and mathe-
matical relations between quantum systems and their environment, together with
searching for new paradigms for building quantum algorithms, studying decoher-
ence properties and effects on quantum walks is an important field in quantum
computation.

Tregenna and Kendon [237] have studied the impact of decoherence in quan-
tum walks on a line, cycle and the hypercube, and have found that some of those
decoherence effects could be useful for building quantum algorithms, Strauch [426]
has also studied the effects of decoherence on continuous-time quantum walks on
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the hypercube, and Fan et al [144] have proposed a convergent rescaled limit distri-
bution for quantum walks subject to decoherence. Brun et al [86] have shown that
the quantum-classical walk transition could be achieved via two possible meth-
ods, in addition to performing measurements: decoherence in the quantum coin
and the use of higher-dimensional coins, Ampadu [44] has focused on generaliz-
ing the method of decoherent quantum walk proposed in [86] for two-dimensional
quantum walks, and Annabestani et al have generalized the results of [86] by pro-
viding analytical expressions for different kinds of decoherence [49]. Moreover, by
using a discrete path approach, it was shown by Konno that introducing a ran-
dom selection of coins (that is, amplitude components for coin operators are chosen
randomly, being under the unitarity constraint) makes quantum walks behave clas-
sically [252]. In [114], Childs et al make use of a family of graphs (e.g. Fig. (8(a))
to exemplify the different behavior of (continuous) quantum walks and classical
random walks.

Several authors have addressed the physical and computational properties of
decoherence in quantum walks: Ermann et al [142] have inspected the decoher-
ence of quantum walks with a complex coin, where the coin is part of a larger
quantum system, Chandrashekar et al [104] have studied symmetries and noise
effects on coined discrete quantum walks, and Obuse and Kawakami [345] have
studied one-dimensional quantum walks with spatial or temporal random defects
as a consequence of interactions with randome environments, having found that
this kind of quantum walks can avoid complete localization. Also, Kendon et al

[237,236,238] have extensively studied the computational consequences of coin de-
coherence in quantum walks, Alagić and Russell [20] have studied the effects of
independent measurements on a quantum walker travelling along the hypercube
(please see Def. 11 and Fig. 7), Koš́ık et al [413] have studied the quantum to
classical transition of a quantum walk by introducing randoms phase shifts in the
coin particle, Romanelli [382] has studied one-dimensional quantum walks sub-
jected to decoherence induced by measurements perfomed with timing provided
by the Lévi waiting time distribution, Pérez and Romanelli [361] have analyzed
a one-dimensional discrete quantum walk under decoherence, on the coin degree
of freedom, with a strong spatial dependence (decoherence acts only when the
walker moves on one half of the line), and Oliveira et al [348] have analyzed two-
dimensional quantum walks under a decoherence regime due to random broken
links on the lattice. Furthermore and taking as basis a global chirality probability
distribution (GCD) independent of the walker’s position proposed in [385], Ro-
manelli has studied the behavior of one-dimensional quantum walks under two
models of decoherence: periodic measurements of position and chirality as well as
randomly broken links on the one-dimensional lattice [387]. Additionally, Chisaki
et al [122] have studied both quantum to classical and classical to quantum tran-
sitions using discrete-time and classical random walks, and have also introduced
a new kind of quantum walk entitled final-time-dependent discrete-time quantum
walk (FD-DTQW) together with a limit theorem for FD-DTQW.

In [470], Zhang studied the effect of increasing decoherence (caused by mea-
surements probabilistically performed on both walker and coin) in coined quantum
walks and derived analytical expressions for position-related probability distribu-
tions, Annabestani et al have studied the impact of decoherence on the walker in
one-dimensional quantum walks [50], Srikanth et al [419] have quantified the degree
of ‘quantumness’ in decoherent quantum walks using measurement-induced distur-
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bance, Gönülol et al [163] have studied decoherence phenomena in two-dimensional
quantum walks with traps, and Rao et al have analyzed noisy quantum walks using
measurement-induced disturbance and quantum discord [368]. Moreover, Liu and
Petulante have proposed a model for decoherence in an n-site cycle together with
a definition for decoherence time [291], as well as derived analytical expressions
for i) the asymptotic dynamics of discrete quantum walks under decoherence on
the coin degree of freedom [292] and on both coin and walker degrees of freedom
running on n-site cycles [293], ii) the order (big O) of the mixing time for the
time-averaged probability of a quantum walk subject to decoherence on the coin
quantum system [292], and iii) the limiting behavior of quantum entanglement
between coin and walker under the same decoherence regime [293].

Schreiber et al [404] have analyzed the effect of decoherence and disorder in a
photonic implementation of a quantum walk, and have shown how to use dynamic
and static disorder to produce diffusive spread and Anderson localization, respec-
tively. In addition, Ahlbrecht et al have produced a detailed manuscript in which
several topics from the field of discrete quantum walks are analyzed, including bal-
listic and diffusive behavior, decoherent and invariance on translation, asymptotic
behavior with perturbation, together with several examples [19].

2.2.8 Limit theorems for quantum walks

The central limit theorem plays a key role in determining many properties of
statistical estimates. This key role has been a crucial motivation for members
of the quantum computing community to derive limit distributions for quantum
walks. Among the scientific contributions produced in this field, the seminal papers
produced by Norio Konno and collaborators have been central to the effort of
deriving analytical results and establishing solid grounds for quantum walk limit
distributions.

Let us start this summary with a fundamental result for quantum walks on
a line: Konno’s weak limit theorem [248,247,251,255] (following mathematical
statements are taken verbatim from corresponding papers.)
Let Φ = {ϕ = (α, β)t ∈ C2 : |α|2 + |β|2 = 1} be the set of initial qubit states of
a one-dimensional quantum walk, and let Xϕ

n denote a one-dimensional quantum
walk at time n starting from initial qubit state ϕ ∈ Φ with evolution operator given
by a 2× 2 unitary matrix

U =

[
a b

c d

]
(40)

Using a path integral approach, Konno proves the following theorem:

Theorem 8 [248,251,255] We assume abcd 6= 0. If n→∞, then

Xϕ
n

n
⇒ Zϕ

where Zϕ has the following density, known as Konno’s density function

f(x; t[α, β]) =

√
1− |a|2

π(1− x2)
√
|a|2 − x2

{
1−

(
|α|2 − |β|2 +

aαbβ + aαbβ

|a|2

)
x

}
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for x ∈ (−|a|, |a|) with

E(Zϕ) = −
(
|α|2 − |β|2 +

aαbβ + aαbβ

|a|2

)
× (1−

√
1− |a|2)

E((Zϕ)2) = 1−
√

1− |a|2

and Yn ⇒ Y means that Yn converges in distribution to a limit Y .

That is, the quantity
Xϕn
n , later on named a pseudovelocity, does converge to the

limit distribution Z. In [188], Hamada et al study the symmetric
[(
|α|2 − |β|2 + aαbβ+aαbβ

|a|2

)
= 0

]
and asymmetric

[(
|α|2 − |β|2 + aαbβ+aαbβ

|a|2

)
∈ [−1

r ,
1
r ], where r ∈ (0, 1)

]
cases of Konno’s

density function.

A plethora of central results are published in [248,247,251,255]. Among them,
I mention the following:

– Symmetry of probability distribution P (Xϕ
n ).

Let us define the following sets:

Definition 7

Φs = {ϕ ∈ Φ : P (Xϕ
n = k) = P (Xϕ

n = −k) for any n ∈ Z+ and k ∈ Z},
Φ0 =

{
ϕ ∈ Φ : E(Xϕ

n ) = 0 for any n ∈ Z+

}
,

Φ⊥ =
{
ϕ = [α, β]t ∈ Φ : |α| = |β| = 1/

√
2, aαbβ + aαbβ = 0

}
,

where Z+ is the set of the positive integers. Then,

Theorem 9 Let Φs, Φ0, and Φ⊥ be as in Def. (7). Suppose abcd 6= 0. Then we

have Φs = Φ0 = Φ⊥.

Theorem 9 is a generalization of the result given by [249] for the Hadamard
walk, i.e. a one-dimensional quantum walk with the Hadamard operator (Def.
8) as evolution operator. Also, Nayak and Vishwanath [340] discussed the sym-
metry of distribution and showed that [1/

√
2, ±i/

√
2]t ∈ Φs for the Hadamard

walk.

– mth moment of Xϕ
n . A most interesting result from [248,247,251,255] is the

expected behavior of (Xϕ
n )m: for m even, E((Xϕ

n )m) is independent of the initial
qubit state ϕ. In contrast, for m odd, E((Xϕ

n )m) does depend on the initial
qubit state ϕ.

Theorem 10 (i) Suppose abcd 6= 0. When m is odd, we have

E((Xϕ
n )m) = −|a|2(n−1)

[
µα,β n

m +

[n−1
2 ]∑

k=1

k∑
γ=1

k∑
δ=1

(
− |b|

2

|a|2

)γ+δ
(n− 2k)m+1 κγ,δ,n,k

γδ

×
{
µα,β n+

γ + δ

2|b|2 (|α|2 − |β|2 − µα,β)

}]
.
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When m is even, we have

E((Xϕ
n )m) = |a|2(n−1)

{
nm +

[n−1
2 ]∑

k=1

k∑
γ=1

k∑
δ=1

(
− |b|

2

|a|2

)γ+δ
(n− 2k)mκγ,δ,n,k νγ,δ,n,k

γδ

}
.

(ii) Let b = 0. Then we have

E((Xϕ
n )m) =

{
nm(|β|2 − |α|2) if m is odd,

nm if m is even.

(iii) Let a = 0. Then we have

E((Xϕ
n )m) =

 |α|
2 − |β|2 if n and m are odd,

1 if n is odd and m is even,

0 if n is even.

where µα,β =
(
|a|2 − |b|2

) (
|α|2 − |β|2

)
+ 2(aαbβ + aαbβ).

– Hadamard walk case. Let the unitary matrix U from Eq. (40) be the Hadamard
operator given in Eq. (8). Then, the following result holds:
For any initial qubit state ϕ = [α, β]t, Theorem 8 implies

lim
n→∞

P (a ≤ Xϕ
n /n ≤ b) =

∫ b

a

1− (|α|2 − |β|2 + αβ + αβ)x

π(1− x2)
√

1− 2x2
1(−1√

2
, 1√

2
)(x) dx,(41)

where 1(u,v)(x) is the indicator function, that is, 1(u,v)(x) = 1 if x ∈ (u, v), and
1(u,v)(x) = 0 if x /∈ (u, v).
Compare Eq. (41) with the corresponding result for the classical symmetric
random walk Y on starting from the origin, Eq. (42):

lim
n→∞

P (a ≤ Y on /
√
n ≤ b) =

∫ b

a

e−x
2/2

√
2π

dx. (42)

In addition to the scientific contributions already mentioned in previous sec-
tions, we now provide a summary of more results on limit distributions. Konno
[250] has proved the following weak limit theorem for continuous quantum walks:

Theorem 11 Let us denote a continuous-time quantum walk on Z by Xt whose prob-

ability distribution is defined by P (k, t) for any location k ∈ Z and time t ≥ 0. Then,

the following result holds for a continuous-time quantum walk on a line:

P (a ≤ Xt/t ≤ b) →
∫ b

a

1

π
√

1− x2
dx as t→∞, for − 1 ≤ a < b ≤ 1.

In [178], Grimmett et al used Fourier transform methods to also rigorously
prove weak convergence theorems for one− and d− dimensional quantum walks
and, using the definition of pseudovelocities introduced by Konno [251], the Fourier
transform method proposed in [178] and the one-parameter family of quantum
walks proposed by Inui et al in [208], Watabe et al [452] have derived analytical
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expressions for the limit and localization distributions of walker pseudovelocities
in two-dimensional quantum walks, while Sato et al [402] have derived limit dis-
tributions for qudits in one-dimensional quantum walks, Liu and Petulante have
presented limiting distributions for quantum Markov chains [294], and Chisaki et al

have also deduced limit theorems for Xt (localization) and Xt
n (weak convergence)

for quantum walks on Cayley trees [120].

Furthermore and based on the Fourier transform approach developed by Grim-
mett et al [178], Machida and Konno have deduced a limit theorem for discrete
quantum walks with 2-dimensional time-dependent coins [305]. In addition, Machida
has produced analytical expressions for weak convergence as well as limit distri-
butions for a localization model of a 2-state quantum walk [304], Konno has de-
rived limit theorems using path counting methods for discrete-time quantum walks
in random (both quenched and annealed) environments [257], and Liu [289] has
derived a weak limit distribution as well as formulas for stationary probability
distribution for quantum walks with two-entangled coins [445].

Motivated by the properties of quantum walks with many coins published by
Brun et al in [86,87], Segawa and Konno [406] have used the Wigner formula of
rotation matrices for quantum walks published by Miyazaki et al in [329] to rigor-
ously derive limit theorems for quantum walks driven by many coins. Also, Sato
and Katori [401] have analyzed Konno’s pseudovelocities within the context of
relativistic quantum mechanics, di Molfetta and Debbasch have proposed a subset
of quantum walks, named (1-jets), to study how continuous limits can be com-
puted for discrete-time quantum walks [331]. In addition, based on definitions and
concepts found in [251,266,248], Ampadu proposed a mathematical model for the
localization and symmetrization phenomena in generalized Hadamard quantum
walks as well as proposed conditions for the existence of localization [34]. More-
over, based on Mc Gettrick’s model of discrete quantum walks with memory [168]
and using the Fourier-based approach proposed by Grimmett et al [178], Konno
and Machida [263] have proved two new weak limit distribution theorems for that
kind of quantum walk.

Finally, in [262] Konno et al have studied three kinds of measures (time aver-
aged limit measure, weak limit measure and stationary measure) as well as stud-
ied conditions for localization in a family of inhomogeneous quantum walks, while
Chisaki et al have produced limit theorems for discrete quantum walks running on
joined half lines (i.e. lines with sites defined on Z+ ∪ {0}) and (semi)homogeneous
trees [121].

2.2.9 Localization in discrete quantum walks

In condensed-matter physics, localization is a well-studied physical phenomenon.
According to Kramer and MacKinnon [271], it is likely that the first paper in
which localization was discussed within the context of quantum mechanical phe-
nomena is [45] by P. W. Anderson. Since then, localization has been extensively
studied (see the compilation of textbooks and reviews on localization provided in
[271]) and, consequently, different cualitative and mathematical definitions have
been provided for this concept. Nevertheless, the essential idea behind localization
is the absence of diffusion of a quantum mechanical state, which could be caused by
random or disordered environments that break the periodicity in the dynamics of
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the physical system. Moreover, localization could also be produced by evolution op-
erators that mimic the behavior of disordered media, as shown by Chandrashekar
in [100]. As for quantum walks, localization phenomena has been detected as a re-
sult of either eigenvalue degeneracy (typically caused by using evolution operators
that are all identical except for a few sites) or choosing coin operators that are
site dependent [215].

In order to have a precise and inclusive introduction to localization in quantum
walks, we direct the reader’s attention to [216,217] by A. Joye, [218] by A. Joye and
M. Merkli, and [191] by E. Hamza and A. Joye, and references provided therein. In
addition to these references and those presented in previous sections in which we
have incidentally addressed the topic of localization, we also mention the numerical
simulations of quantum walks on graphs shown by Tregenna et al [431], in which
the localization phenomenon, due to the use of Grover’s operator (Def. (12)) in
a 2-dimensional quantum walk, was detected. Inspired by this phenomenon, Inui
et al proved in [208] that the key factor behind this localization phenomenon
is the degeneration of the eigenvectors of corresponding evolution operator, Inui
and Konno [210] have further studied the relationship between localization and
eigenvalue degeneracy in the context of particle trapping in quantum walks on
cycles, and Ide et al have computed the return probability of final-time dependent
quantum walks [201]. Based on the study of aperiodic quantum walks given in
[372], Romanelli [384] has proposed the computation of a trace map for Fibonacci
quantum walks (this is a discrete quantum walk with two coin operators arranged
in quasi-periodic sequences following a Fibonacci prescription) and Ampadu has
shown that localization does not occur on Fibonacci quantum walks [35].

In [184], Grünbaum et al have studied recurrence processes on discrete-time
quantum walks following a particle absorption monitoring approach (i.e. a projec-
tive measurement strategy), Štefaňák et al have analyzed the Pólya number (i.e.
recurrence without monitoring particle absorption) for biased quantum walks on
a line [424] as well as for d-dimensional quantum walks [422,423], and Daráz and
Kiss [127] have also proposed a Pólya number for continuous-time quantum walks.
In [422], Štefaňák et al have proposed a criterion for localization and Kollár et al

[245] found that, when executing a discrete-time quantum walk on a triangular
lattice using a three-state Grover operator, there is no localization in the origin.

Furthermore, Chandrashekar has found that one-dimensional discrete coined
quantum walks fail to fully satisfy the quantum recurrence theorem but suceed
at exhibiting a fractional recurrence that can be characterized using the quantum
Pólya number [98], Ampadu has analyzed the motion of M particles on a one-
dimensional Hadamard walk and has presented a theoretical criterion for observing
quantum walkers at an initial location with high probability [36], has also studied
the conditions upon which a biased quantum walk on the plane is recurrent [39], as
well as studied the localization phenomenon in two-dimensional five-state quantum
walks [37].

In [90], Cantero et al present an alternative method to formulate the theory
of quantum walks based on matrix-valued Szegö orthogonal polynomials, known
as the CGMV method, associated with a particular kind of unitary matrices,
named CMV matrices, and Hamada et al have independently introduce the idea
of employing orthogonal polynomials for deriving analytical expressions for limit
distributions of one-dimensional quantum walks [188]. Based on the mathematical
formalism delivered in [90], Konno and Segawa [268] have studied quantum walks
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on a half line, focusing on analyzing the corresponding spectral measure as well
as on localization phenomena for this kind of quantum walks. Also based on the
CMV method presented in [90], Ampadu has studied both limit distributions and
localization of quantum walks on the half plane [42]. Moreover, in [89], Cantero et

al have produced an extensive analysis of the asymptotical behavior of quantum
walks: starting with a definition for a quantum walk with one defect (i.e. a one-
dimensional quantum walk with constant coins except for the origin) and using
the CGMV method, Cantero et al have classified localization properties as well
as derived analytical expressions for return probabilities to the origin. Finally,
Grünbaum and Velázquez have studied models of quantum walks on the non-
negative integers using Riez probability measures [183].

On further studies, Konno [258] has mathematically proved that inhomogene-
nous discrete-time quantum walks do exhibit localization, Shikano and Katsura
[411] have proved that, for a class of inhomogenenous quantum walks, there is a
limit distribution that is localized at the origin, as well as found, through numer-
ical studies, that the eigenvalue spectrum of such inhomogenenous walks exhibit
a fractal structure similar to that of the Hofstadter butterfly. Also, Machida has
proposed a localization model of quantum walks on a line [304] as well as computed
a limit distribution for 2-state inhomogenenous quantum walks with different uni-
tary operators applied in different times [303], and Chandrashekar has proposed
Hamiltonians for walking on different lattices as well as found links between local-
ization and spatially static disordered operations [99], and presented a scheme to
induce localization in a Bose-Einsten condensate [100]. Finally, in [18], Ahlbrecht
et al have delivered a review on disordered one-dimensional quantum walks and
dynamical localization.

2.2.10 More results on discrete quantum walks

A plethora of numerical, analytical and experimental results have made the field
of quantum walks rich and solid. In addition to the results already mentioned in
this review, I would like to direct the reader’s attention to the following results:

In [410], Shikano et al have proposed using discrete-time quantum walks to
analyze problems in quantum foundations. Specifically, Shikano et al have derived
an analytical expression for the limit distribution of a discrete-time quantum walk
with periodic position measurements and analyzed the concepts of randomness
and arrow of time. Also, Gönülol et al have found that the quantum walker sur-
vival probability in discrete-time quantum walks running of cycles with traps ex-
hibits a piecewise stretched exponential character [164], Kurzyński and Wójcik and
shown that quantum state transfer is achievable in discrete-time quantum walks
with position-dependent coins [8], Stang et al have introduced a history-dependent
discrete-time quantum walk (i.e. a quantum walk with memory) and proposed a
correlation function for measuring memory effects on the evolution of discrete-time
quantum walks [421], Navarrete-Benlloch et al [339] have introduced a nonlinear
version of the optical Galton board, Whitfield et al [454] have introduced an ax-
iomatic approach for a generalization of both continuous and discrete quantum
walks that evolve according to a quantum stochastic equation of motion ([454]
helps to realize why the behavior of some decoherent quantum walks is different
from both classical and coherent quantum walks), Xu [462] has derived analytical
expressions for position probability distributions on unrestricted quantum walks
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on the line, together with an introduction to a quantum walk on infinite or even-
numbered size of lattices which is equivalent to the traditional quantum walk with
symmetrical initial state and coin parameter, Chandrashekar has introduced a
quantum walk version of Parrondo’s games [101] and, in [102], Chandrashekar et

al have introduced some mathematical relationships between quantum walks and
relativistic quantum mechanics and have proposed Hamiltonian operators (that
retain the coin degree of freedom) to run quantum walks on different lattices (e.g.
cubic, kagome and honeycomb lattices) as well as to study different kinds of disor-
der on quantum walks. Also, Feng et al have introduced the idea of using quantum
walks to study waves [152], Cantero et al show how to use matrix valued orthog-
onal polynomials defined in the real line to build a large class of quantum walks
[90], and Jacobs has analyzed quantum walks within the mathematical framework
of coalgebras, monads and category theory [211,212].

Mc Gettrick [168] has proposed a model of discrete quantum walks with up
to two memory steps and derived analytical expressions for corresponding quan-
tum amplitudes. Based on [168], Konno and Machida [263] have proved two new
weak limit distribution theorems. Moreover, Romanelli [386] has developed a ther-
modynamical approach to entanglement quantification between walker and coin
and de Valcárcel et al [129] have assigned extended probability distributions as
initial walker position in a discrete quantum walk, and have found a particular
initial condition for producing a homogeneous position distribution (interestingly
enough, a similar quasi-homogeneous position probability distribution has been
shown in [234] as a result of a measurement-induced decoherent process in a dis-
crete quantum walk.) Also, Goswani et al have extended the concept of persis-
tence (i.e. the time during which a given site remains unvisited by the walker)
[174], Konno and Sato [267] have presented a formula for the transition matrix
of a discrete-time quantum walk in terms of the second weighted zeta function,
and Konno et al have shown several relationships between the Heun and Gauss
differential equations with quantum walks [264].

In [261], Konno has introduced the notion of sojourn time for Hadamard quan-
tum walks and has also derived analytical expressions for corresponding probabil-
ity distributions, while in [41] Ampadu has shown the inexistence of sojourn time
for Grover quantum walks. Brennen et al have presented foundational definitions
and statistics of a family of discrete quantum walks with an anyonic walker [79]
and Lehman et al have modelled the dynamics on a non-Abelian anyonic quantum
walk and found that, asymptotically, the statistical dynamics of a non-Abelian
Ising anyon reduce to that of a classical random walk (i.e. linear dispersion) [286].
In addition, Ghoshal et al have recently reported some effects of using weak mea-
surements on the walker probability distribution of discrete quantum walks [169],
Konno [260] has proposed an Itô’s formula for discrete-time quantum walks, Endo
et al [139] have studied the ballistic behavior of quantum walks having the walker
initial state spread over N neighboring sites, Venegas-Andraca and Bose have
studied the behavior of quantum walks with walkers in superposition as initial
condition [448], Xue and Sanders [465] have studied the joint position distribution
of two independent quantum walks augmented by stepwise partial and full coin
swapping, and Chiang et al [109] have proposed a general method, based on [428,
181], for realizing a quantum walk operator corresponding to an arbitrary sparse
classical random walk.
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2.3 Discrete quantum walks on graphs

Quantum walks on graphs is now an established active area of research in quan-
tum computation. Among several scientific documents providing comprehensive
introductions to quantum walks on graphs, we find a seminal paper by Aharonov
et al [13], a rigorous mathematical analysis and description of quantum walks on
different topologies and their limit distributions by Konno [255], as well as intro-
ductory reviews on discrete and continuous quantum walks on graphs by Kendon
[233] and Venegas-Andraca [443].

In [13], Aharonov et al studied several properties of quantum walks on graphs.
Their first finding consisted in proving a counterintuitive theorem: if we adopt
the classical definition of stationary distribution (see [442] and references cited
therein for a concise introduction on mathematical properties of Markov chains),
then quantum walks do not converge to any stationary state nor to any stationary
distribution. In order to review the contributions of [13] and other authors, let us
begin by formally introducing the following elements:

Let G = (V,E) be a d-regular graph with |V | = n (note that graphs studied
here are finite, as opposed to the unrestricted line we used in the beginning of
this section) and Hv be the Hilbert space spanned by states |v〉 where v ∈ V .
Also, we define HA, the coin space, as an auxiliary Hilbert space of dimension
d spanned by the basis states {|i〉|i ∈ {1, . . . d}}, and Ĉ, the coin operator, as a
unitary transformation on HA. Now, we define a shift operator Ŝ on Hv⊗HA such
that Ŝ|a, v〉 = |a, u〉, where u is the ath neighbour of v (since edge labeling is a
permutation then Ŝ is unitary.) Finally, we define one step of the quantum walk
on G as Û = Ŝ(Ĉ ⊗ Î).

As in the study of quantum walks on a line, if |ψ〉0 is the quantum walk initial
state then a quantum walk on a graph G can be defined as

|ψ〉t = Û t|ψ〉0 (43)

Now, we discuss the definition and properties of limiting distributions for quan-
tum walks on graphs. Suppose we begin a quantum walk with initial state |ψ〉0.
Then, after t steps, the probability distribution of the graph nodes induced by Eq.
(43) is given by

Definition 8 Probability distribution on the nodes of G. Let v be a node of
G and Hd be the coin Hilbert space. Then

Pt(v|ψ0) =
∑

i∈{1,...,d}

|〈i, v|ψ〉t|2

If probability distributions P0, P1 at time 0 and 1 are different, it can be proved
that Pt does not converge [13]. However, if we compute the average of distributions
over time

Definition 9 Averaged probability distribution.

P̄t(v|ψ0) =
1

T

T−1∑
t=0

Pt(v|ψ0)
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we then obtain the following result

Theorem 12 [13]. Let |k〉, λk denote the eigenvectors and corresponding eigenvalues

of Û . Then, for an initial state |ψ〉0 =
∑
k ak|k〉

lim
t→∞

P̄t(v|ψ0) =
∑
i,j,a

aia
∗
j 〈a, v|i〉〈j|a, v〉

where the sum is only on pairs i, j such that λi = λj .

If all the eigenvalues of Û are distinct, the limiting averaged probability dis-
tribution takes a simple form. Let pi(v) =

∑
i∈{1,...,d} |〈i, v|k〉|

2, i.e. pi(v) is the

probability to measure node v in the eigenstate |k〉. Then it is possible to prove
[13] that, for an initial state |ψ〉0 =

∑
k ak|k〉 ⇒ limT→∞ P̄t(v|ψ0) =

∑
i |ai|

2pi(v).
Using this fact it is possible to prove the following theorem.

Theorem 13 [13] Let Û be a coined quantum walk on the Cayley graph of an Abelian

group, such that all eigenvalues of Û are distinct. Then the limiting distribution π (Def.

(9)) is uniform over the nodes of the graph, independent of the initial state |ψ〉0.

Using Theorem 13 we compute the limiting distribution of a quantum walk on
a cycle:

Theorem 14 Let Gcyc be a cycle with n nodes (see Fig. (6).) A quantum walk on

Gcyc acts on a total Hilbert space H2 ⊗Hn. The limiting distribution π for the coined

quantum walk on the n-cycle, with n odd, and with the Hadamard operator as coin, is

uniform on the nodes, independent of the initial state |ψ〉0.

Several other important results for quantum walks on a graph are delivered in
[13]. Among them, we mention some results on mixing times.

Definition 10 Average Mixing time. The mixing time Mε of a quantum Markov
chain with initial state |k, v〉 is given by

Mε = min{T |∀t ≥ T ⇒ ||P̄t(k, v)− π(k, v)|| ≤ ε}

Theorem 15 For the quantum walk on the n-cycle, with n odd, and the Hadamard

operator as coin, we have

Mε ≤ O(
n log n

ε3
)

So, the mixing time of a quantum walk on a cycle is O(n log n). The mixing
time of corresponding classical random walk on a circle is O(n2). Now we focus on
a general property of mixing times.

Theorem 16 For a general quantum walk on a bounded degree graph, the mixing time

is at most quadratically faster than the mixing time of the simple classical random walk

on that graph.
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Fig. 6 Quantum walk on a cycle. A cycle is a 2-regular graph which can be viewed as a Cayley
graph of the group Zn with generators 1,−1. The cycle shown in this figure has 10 vertices.

So, according to Theorem 16, the speedup that can be provided by a quantum
walk on a graph is not enough to exponentially outperform classical walks. Conse-
quently, other parameters of quantum walks have been investigated, among them
their hitting time. In [229], Kempe offers an analysis of hitting time of discrete
quantum walks on the hypercube (due to the potential service of hitting times in
the construction of quantum algorithms, we shall analyze [229] in detail on Section
3.) Further studies on mixing time for discrete quantum walks on several graphs
as well a convergence criterion for stationary distribution in non-unitary quantum
walks are presented in [220].

The properties of the wave function of a quantum particle walking on a circle
have been studied by Fjeldsø et al in [158], some details of limiting distributions
of quantum walks on cycles are shown by Bednarska et al in [63,64], Liu and
Petulante have presented limiting distributions for quantum Markov chains [294],
the effect of using different coins on the behavior of quantum walks on an n-cycle
as well as in graphs of higher degree has been studied by Tregenna et al in [431], a
standard deviation measure for quantum walks on circles is introduced by Inui et

al in [209], and Banerjee et al have studied some effects of noise in the probability
distribution symmetry of quantum walks on a cycle [59].

Another graph studied in quantum walks is the hypercube, defined by

Definition 11 The hypercube. The hypercube is an undirected graph with 2n

nodes, each of which is labeled by a binary string of n bits. Two nodes x,y in the
hypercube are connected by an edge if x,y differ only by a single bit flip, i.e. if
|x− y| = 1, where |x− y| is the Hamming distance between x and y.

In [333], Moore and Russell derived values for the two notions of mixing times
we have studied (Defs. (6) and (10)) for continuous and discrete quantum walks on
the hypercube. As for the discrete quantum walk, [333] begins by defining Grover’s
operator as coin operator.

Definition 12 Grover’s operator. Let H be an n-dimensional Hilbert space and
|i〉 be the canonical basis for H and |ψ〉 = 1√

n

∑n−1
i=0 |i〉. Then we define Grover’s

operator as Ĝ = 2|ψ〉〈ψ| − Î.
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Additionally, their shift operator is given by

Ŝ =
n−1∑
d=0

∑
x

|d,x⊕ ed〉〈d,x| (44)

where ed is the ith basis vector of the n-dimensional hypercube. So, the quantum
walk on the hypercube proposed in [333] can be written as

|ψ〉t = Û t|ψ〉0 = [Ŝ(Ĝ⊗ În)]t|ψ〉0 (45)

for a given initial state |ψ〉0. Using a Fourier transform approach as in [340], it was
proved in [333] that

Theorem 17 For the discrete quantum walk defined in Eq. (45), its instantaneous

mixing time (Def. (6)) is given by t = kπ
4 n, i.e. t = O(n), with ε = O(n−7/6) for all

odd k.

Additionally, [333] provides analytical expressions for eigenvalues and corre-
sponding eigenvectors of the evolution operator defined in Eq. (45) which were
later used in [409] for the design of a search algorithm based on a discrete quan-
tum walk.

In addition to the articles I have already mentioned, a substantial number of
scientific papers has been published over the last few years. Please let me now
provide a summary of more results on properties and developments on discrete
quantum walks on graphs (we leave published algorithmic applications of quantum
walks for section 3.)

2.3.1 Several results on discrete quantum walks on graphs

In [307], MacKay et al present numerical simulations of quantum walks in higher
dimensions using separable and non-separable coin operators, Gottlieb et al [175]
studied the convergence of coined quantum walks in Rd, and Dimcovic et al have
put forward a general framework for describing discrete quantum walks in which
the coin operator is substituted by an interchange operator [135].

Kempf and Portugal [232] have introduced a new definition of hitting time for
quantum walks that exhibit phase and group velocities, Marquezino et al [317]
have studied and computed the mixing time and limiting distribution of a discrete
quantum walk on a torus-like lattice, Leung et al [287] have studied the behavior of
coined quantum walks on 1- and 2-dimensional percolation graphs (i.e. graphs in
which edges or sites are randomly missing) under two regimes: quantum tunneling
employing general coin operators and the potential path redundancy present in
2-d grids, and Lovett et al [302] have presented a further numerical study on how
dimensionality, tunneling and connectivity affect a discrete quantum-walk based
search algorithm. In addition, Štefaňák et al have presented in [108] how eigenvalue
independency from momenta imply a cyclic evolution that correspondingly leads
to quantum state full revivals in two-dimensional discrete quantum walks.

On further studies on classical and quantum hitting times, in [309] Magniez et

al: i) have presented mathematical definitions of hitting time according to Las Ve-
gas and Monte Carlo algorithms for finding a marked element, ii) have introduced
quantum analogues of such classical hitting times, and iii) have proved that, for
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any reversible ergodic Markov chain P, the corresponding quantum hitting time
of the quantum analogue of P is of the same order as the square root of the
classical hitting time of P. Moreover, based on space-time generating functions
and the mathematical methods introduced in [359], Baryshnikov et al have pre-
sented a mathematically rigorous and highly elegant treatment of quantum walks
on two dimensions in [62], being this work followed by [80] in which Bressler et

al have presented examples of results shown in [62] as well as derived asymp-
totic properties for 1-d quantum walk amplitudes. In addition, Gudder and Sorkin
have presented a study of discrete quantum walks based on measure theory [186]
and Smith has studied graph invariants closely related to both continuous- and
discrete-time quantum walks [415].

Feldman and Hillery have studied the relationship between quantum walks on
graphs and scattering theory in [149] as well as proposed a protocol for detecting
graph anomalies using discrete quantum walks [151]. Also, Berry and Wang [73]
have analyzed, for a variety of graphs including Cayley trees, fractals and Husmi
cactuses, the relationship betwen search success probability and the position of a
marked vertex in such graphs, López-Acevedo and Gobron [297] delivered an alge-
braic oriented analysis of quantum walks on Cayley graphs, Montanaro presented
in [332] a study on quantum walks on directed graphs, Krovi and Brun [275] have
studied quantum walks (and their hitting times) on quotient graphs as well as links
between those quantum walks and the group theory properties of Cayley graphs
(for an extended work on this last topic, see [272].) Also, Hoyer and Meyer [197]
have presented a discrete quantum walk model for traversing a directed 1-d graph
with self-loops and have found that, on this topology, the quantum walker proceeds
an expected distance Θ(1) in constant time regardless the number of self-loops,
Berry and Wang [74] have presented a scheme for building discrete quantum walks
upon interacting and non-interacting particles and have produced two results: a
numerical study of entanglement generation in such quantum walks together with
a potential application on those quantum walks for testing graph isomorphism
(in contrast to the results presented by Gamble et al in [166] for continuous-time
quantum walks also built upon interacting and no-interacting particles, the scheme
proposed in [74] can only detect some non-isomorphic strongly regular graphs.)

Resources for experimental realizations of quantum walks are costly. With this
fact in mind, Di Franco et al have suggested a novel scheme for implementing
a Grover discrete quantum walks on two dimensions, consisting of using a single
qubit as coin (instead of using a four-dimensional quantum system) and alternating
the use of such coin for motion on the x and y axes [159]. As stated in [159], a
step on this walk consists substituting the Grover operator for a sequence of two
Hadamard operators on the qubit acting as coin system (one for the x axis, the
other for the y axis), together with the movement on both x and y axes. Moreover,
Di Franco et al [160] have provided a proof of equivalence between the Grover walk
and the alternate quantum walk introduced in [159] as well as a limit theorem and
a numerical study of entanglement generation for the alternate quantum walk, and
Rohde et al have studied the dynamics of entanglement on discrete-time quantum
walks running on bounded finite sized graphs [379].

Finally, Kitagawa et al [241] have shown that discrete time quantum walks can
be useful for studying topological phases, Attal et al [53] have proposed a formalism
for modeling open quantum walk on graphs, based on completely positive maps
and, in a fresh and most interesting potential application of quantum walks to
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engineering science, Albertini and D’Alessandro have devised the execution of
quantum walks with coins allowed to change at every time step as control systems
[21,22]. In particular, Albertini and D’Alessandro have found in [22] that if the
degree of of the graph G = (V,E) is greater than |V |/2 then the quantum walk is
always completely controllable.

2.4 Continuous quantum walks

We start by defining a continuous quantum walk so that we can use it in subsection
(2.6) where we present recent advances about the mathematical bonds between
discrete and continuous quantum walks, as well as in subsection 3, where we explore
how this kind of quantum processes is utilized in algorithm development.

In addition to Feynman’s celebrated contribution [156] about the simulation of
quantum systems, continuous quantum walks were defined by Farhi and Gutmann
[147], being the latter the basis upon which Childs et al [114] present the following
formulation of a continuous classical random walk:

Definition 13 Let G = (V,E) be a graph with |V | = n then a continuous time
random walk on G can be described by the order n infinitesimal generator matrix
M given by

Mab =


−γ, a 6= b, (a, b) ∈ G
0, a 6= b, (a, b) /∈ G
kγ, a = b and k is the valence of vertex a

(46)

Following [114] and [147], the probability of being at vertex a at time t is given
by

dpa(t)

dt
= −

∑
b

Mabpb(t) (47)

Now, let us define a Hamiltonian ([114,147]) that closely follows Eq. (46)

Definition 14 Let Ĥ be a Hamiltonian with matrix elements given by

〈a|H|b〉 = Mab (48)

We can then employ Hamiltonian Ĥ as given in Eq. (48), defined in a Hilbert
space H with basis {|1〉, |2〉, . . . , |n〉}, for constructing the following Schrödinger
equation of a quantum state |ψ〉 ∈ H

i
d〈a|ψ(t)〉

dt
=
∑
b

〈a|H|b〉〈b|ψ(t)〉 (49)

Finally, taking Eqs. (48) and (49) the unitary operator Û

Û = exp(−iĤt) (50)

defines a continuous quantum walk on graph G. Note that the continuous
quantum walk given by Eq. (50) defines a process on continuous time and discrete
space.
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Since the publication of [147,114], there has been an increasing number of
publications with relevant results of continuous quantum walks. We now provide
a summary of more results on this area.

In [250], Konno has proved the weak limit theorem for continuous quantum
walks presented on Theorem 11. Also, in [440] Varbanov et al present a definition
of hitting time for continuous quantum walks, based on performing measurements
on the walker at Poisson-distributed random times; moreover, they have proved
that, depending on the measurement rate, continuous quantum walks may or may
not have infinite hitting times. Xu [461] has derived transition probabilities and
computed transport velocity in continuous quantum walks on ring lattices, Xu and
Liu [463] have studied quantum and classical transport on both finite and infinite
versions of Erdős-Rényi networks while Agliari et al, motivated by recent advances
on quantum transport phenomena on photosynthesis, have studied trapping pro-
cesses in rings and shown that carrying trap configuration leads to changes in
quantal mean survival probability [12]. Also, Agliari et al [11] have studied the
average displacement of quantum walker on Gasket, Cayley tree and square torus
graphs, Agliari [9] has studied coherent transport models with traps on Erdős-
Rényi graphs, Tsomokos has investigated the properties of continuous quantum
walks on complex networks with community structure [435], and Salimi and Ja-
farizadeh have studied both classical and continuous quantum walks on several
Cayle graphs [395] and spidernet graphs [394]. A review on models for coherent
transport on complex networks has been recently published by O. Müken and A.
Blumen in [336]. Furthermore, Kargin [221] has calculated the limit of average
probability distribution for nearest-neighbor walks on Zd and infinite homoge-
neous trees, Rosmanis [391] has introduced quantum snake walks (i.e. continuous
quantum walks with fixed-length paths) on graphs, Godsil and Guo [172] have
analyzed the properties of transition matrix of continuous quantum walks on reg-
ular graphs, and Kieferová and Nagaj have analyzed the evolution of continuous
quantum walks on necklaces [239].

Mixing and hitting times as well as the structure of probability distributions
and transitions probabilities have been analyzed in this field. Analytical expres-
sions of transition probabilities on star graphs have been presented by Xu in [460]
and Godsil has proposed some properties of average mixing of continuous quantum
walks [171], while Salimi [393] has produced a version of the central limit theo-
rem for continuous quantum walks also on star graphs, Inui et al have proposed
both instantaneous uniform mixing property and temporal standard deviation for
continuous-time quantum random walks on circles [207], Best et al have studied
instantaneous and uniform mixing of continuous quantum walks on generalized
hypercubes [75], Drezgich et al [137] have characterized the mixing time of con-
tinuous quantum walks on the hypercube under a Markovian decoherence model,
Salimi and Radgohar have also analyzed effects of decoherence on mixing time in
cycles [396], and Anishchenko et al have studied how highly degenerate eigenvalue
spectra impact the quantum walk spreading on a star graph [47].

Motivated by the power-law ditribution exhibited by real world networks show-
ing scale-free characteristics, Ide and Konno have studied the evolution of contin-
uous quantum walks on the threshold network model [199], Salimi and Sorouri
[397] have introduced a model of continuous quantum walks with non-Hermitian
Hamiltonians, and Bachman et al have studied how perfect state transfer can be
achieved on quotient graphs [56]. Finally, we report the works of Konno on con-
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tinuous time quantum walks on ultrametric spaces [254] and continuous quantum
walks on trees in quantum probability theory [253], de Falco et al on speed and
entropy of continuous quantum walks [128], Mülken et al on quantum transport
on small-world networks [337], and Jafarizadeh et al on studying continuous time
quantum walks by using the Krylov subspace-Lanczos algorithm [213].

2.5 Whether discrete or continuous: is it quantum random walks or just quantum
walks?

Randomness is an inherent component of every single step of a classical random
walk. In other words, there is no way to predict step si of a classical random walk,
no matter how much information we have about previous steps si−1, si−2, . . . , s1, s0.
We can only tell the probability associated to each possible step sji+1.

On the other hand, if we carefully analyze quantum evolution in discrete (uni-
tary operator) and continuous (Schrödinger equation) versions, we shall convince
ourselves of the fact that quantum evolution is deterministic, i.e. for each com-
putational step denoted by |ψ〉i we can always tell the exact description of step
|ψ〉i+1, as |ψ〉i+1 = Û |ψ〉i.

So, what is random about a quantum walk? Why are quantum walks candi-
dates for developing quantum counterparts of stochastic algorithms? The answer
is: randomness comes as a result of either decoherence or measurement processes
on either quantum walker(s) and/or quantum coin(s). So, decoherence and quan-
tum measurement allow us to introduce randomness into a quantum walk-based
algorithm. Moreover, we are not restricted to introducing chance only at the end
of the quantum algorithm execution as we can also exploit several measurement
strategies in order to manipulate quantum systems and produce probability distri-
butions suitable for their use in advantageous algorithms; for example, see the ‘top
hat’ probability distribution [234], a quasi-uniform distribution created by running
a discrete quantum walk and performing measurements on its constituent elements
(or, alternatively, allowing such constituent particles to have some interaction with
the environment.)

2.6 How are continuous and discrete quantum walks connected?

The mathematical models of discrete and continuous quantum walks studied in
the previous sections present a serious problem: it is not clear how to transform
discrete quantum walks into continuous quantum walks and vice versa. This is an
important issue for two reasons: 1) in the classical case, discrete and continuous
random walks are connected via a limit process, and 2) it is not natural/elegant to
have two different kinds of quantum diffusion, one of them with an extra particle
(the quantum coin) with no clear connection between them.

1. Strauch’s contribution

In [425], F.W. Strauch presents a connection between discrete and continuous
quantum walks. He starts by using a simplification [114] of the continuous
quantum walk defined by Eq. (49), namely

Ĥ|j〉 = −γ(|j − 1〉 − 2|j〉+ |j + 1〉) (51)
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which in [425] is rewritten as

i∂tψ(n, t) = −γ(ψ(n+ 1, t)− 2ψ(n, t) + ψ(n− 1, t)) (52)

where ψ(n, t) is a complex amplitude at the continuous time t and the discrete
lattice position n.
Then, [425] uses results from [16] and [326] to build a discrete quantum walk
represented by the following unitary mapping

ψR(n, τ + 1) = (cosθ)ψR(n− 1, τ)− (isinθ)ψL(n− 1, τ) (53a)

ψL(n, τ + 1) = (cosθ)ψL(n+ 1, τ)− (isinθ)ψR(n+ 1, τ) (53b)

where ψR(n, τ) and ψL(n, τ) are complex amplitudes at the discrete time τ and
discrete lattice position n.
Strauch’s result focuses on building a unitary transformation Û = exp(−iĤt)
that allows us to transform Eqs.(53a) and (53b) into Eq. (51). There are sev-
eral important conclusions from the developments shown in [425]:
1. It is indeed possible to transform a discrete quantum walk into a continuous
one by means of a limit process (although this is not a straightforward deriva-
tion.)
2. Strauch’s derivation does not use any coin degree. Thus [425] agrees, from an
new perspective, with Patel et al [356] with respect to the irrelevance of the coin
degree of freedom in order to obtain the statistical enhancements (σ2 = O(n))
that discrete quantum walks show.

2. Child’s contribution

In [112], Childs presents the following mathematical framework for simulating
a continuous quantum walk as a limit (ε−approximation) of discrete quantum
walks (for the sake of clarity and readability of the original paper, we closely
follow the notation used in [112]):

(a) Let H be a general N × N Hermitian matrix. We now define a set of N
quantum states |ψ1〉, . . . , |ψN 〉 ∈ CN ⊗CN as

|ψj〉 :=
1√

||abs(H)||

N∑
k=1

√
H∗jk

dk
dj
|j, k〉. (54)

where abs(H) :=
∑N
j,k=1 |Hjk| |j〉〈k| denotes the elementwise absolute value

of H in an orthonormal basis {|j〉 : j = 1, . . . , N} of CN
(b) Define the isometry

T :=
N∑
j=1

|ψj〉〈j| (55)

mapping |j〉 ∈ CN to |ψj〉 ∈ CN ⊗CN
(c) Enlarge the Hilbert space by building a new set of quantum states from

Eq. (54) to
|ψεj〉 :=

√
ε|ψj〉+

√
1− ε|⊥j〉 (56)

for some ε ∈ (0, 1] and |⊥j〉 as defined in Eq. (25) of [112]
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(d) From Eq. (55), build a modified isometry

Tε :=
∑
j

|ψεj〉〈j| (57)

(e) Now, given an initial state |Ψ0〉 ∈ span{|j〉|j ∈ {1, 2, . . . , n}} apply the mod-
ified isometry given in Eq. (57) and the operation 1+iS√

2
, where S is the

swap operator.
(f) Apply n steps of the discrete quantum walk U = iS(2TεT

†
ε −1) and, finally,

(g) Project onto the basis of states {1+iS√
2
Tε|j : j = 1, . . . , N}.

In addition to this protocol, Childs also presents in [112] a notion of query com-
plexity for continuous-time quantum walk algorithms as well as a continuous-
time quantum walk algorithm for solving the distinctness problem [27], a prob-
lem that was originally solved using a discrete quantum walk-based algorithm
by Ambainis [27].

3. As a third contribution to state and clarify the relationships between different
models of quantum walks, there are two formulations for discrete quantum
walks: coined [340,31] and scattering [193,150]. In [46], Andrade and da Luz
present a general framework for unitary equivalence of both discrete quantum
walk models.

2.7 Are quantum walks really quantum?

The results presented so far in this review show that superposition and, conse-
quently, interference play an important role in the structure and properties of
discrete quantum walks. However, interference is also a characteristic of classical
physical systems, like electromagnetic waves. Thus, it makes sense to scrutinize
whether the statistical and computational properties of quantum walks are really
due to their quantum nature or not.

Arguments in favor of the plausibility of using classical physics for building
experiments which replicate some interference and statistical properties of quan-
tum walks on a line are given in [214,243,242,244], where it was shown that it is
possible to develop implementations of a quantum walk on a line purely described
by classical physics (wave interference of electromagnetic fields) and still be able to
reproduce the variance enhancement that characterizes a discrete quantum walk.
For example, the implementation proposed in [242] utilizes the frequency of a light
field as walker and the spatial path or the polarization state of the same light field
as the coin.

Arguments in favor of the quantum mechanical nature of quantum walks have
been provided by, among others, Kendon and Sanders [235] who showed it would
still be necessary to have a quantum mechanical description of such an implemen-
tation in order to account for two properties of a quantum walk with one walker: i)
the indivisibility of the quantum walker, and ii) complementarity, which in quan-
tum computation jargon may be stated as follows: the trade-off between interference

and information about the path followed by the walker (knowing the path followed by a

quantum particle decreases the sharpness of the interference pattern [458,234].) Fur-
thermore, Romanelli et al showed in [388,389] that the evolution equation of a
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quantum walk on a line can be separated into two parts: Markovian and interfer-
ence terms, and that the quadratic increase in the variance of the quantum walker
is a consequence of quantum evolution.

Thus it seems that if we are only interested in some statistical properties of
one-walker quantum walks on a line, like its variance enhancement with respect to
classical random walks, we could do with either classical or quantum experimental
setups. However, the quantum mechanical nature of walkers and/or coins play an
important role in the following cases:

1. From a purely physical point of view, if one is interested in using quantum
walks for testing the quantumness of a quantum computer realization, comple-
mentarity would be a very helpful resource as it is a property of quantum me-
chanical systems that cannot be exactly reproduced in a classical experiment.
A similar argument would be applied in the case of using complementarity as
a computational resource.

2. Including more walkers (e.g. [349,448,322,107] and/or coins (e.g. [445,290])
opens up the possibility of detecting, quantifying and harnessing quantum-
mechanical properties for information processing purposes. In particular, quan-
tum entanglement has been incoporated into quantum walks research either
as a result of performing a quantum walk or as a resource to build new kinds
of quantum walks. Since entanglement is a key component in quantum com-
putation, it is worth keeping in mind that quantum walks can be used either
as entanglement generators or as computational processes taking advantage of
this quantum mechanical property. A brief summary of results on quantum
walks and entanglement is delivered in subsection 2.7.1.

3. Genuine quantum computers will be an excellent (and most likely, indispens-
able) tool to execute exact and efficient simulations of quantum systems (e.g.
[155,156,52,225,226,330].)

2.7.1 Entanglement in quantum walks

Carnerio et al have numerically investigated the variation in entanglement be-
tween coin(s) and walker on unrestricted line, trees, and cycles [92], conjecturing
that for all coin initial states of a Hadamard walk, the entanglement has 0.872
as its limiting value. In [5], Abal et al have analytically proved this last result.
In fact, studying asymptotical behavior of entanglement in various settings is a
fruitful research topic: In [3], Abal et al have studied the long-term behavior of
entanglement for two walkers using non-local coin operators, Venegas-Andraca et

al numerically showed asymptotical properties (particularly the ‘three peak lo-
calization phenomenon’) of quantum walks with entangled coins [445] that later
on were analytically proved by Liu and Petulante ( the ‘three peak localization
phenomenon’ reflects the degeneracy of some eigenvalue of the quantum walk evo-
lution operator) [290]. Furthermore, Liu [289] has derived analytical expression for
position limit distributions on quantum walks with generalized entangled coins,
Annabestani et al gave an exact characterization of asymptotic entanglement in Z2

[48], and Ide et al have produced analytical expressions for limit distributions of
Shannon and von Neumann entropies on a one-dimensional quantum walk [200].

Also, Omar et al have produced several position probability distributions of
quantum walks with entangled walkers (fermions and bosons) [349], Endrejat and
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Büttner have presented a multi-coin scheme in order to analyze the effect of entan-
glement in the initial coin state [140], Pathak and Agarwal [358] have argued that
entanglement generation in discrete-time quantum walks is a physical resource
that cannot be exactly reproduced by classical systems, Goyal and Chandrashekar
[176] have numerically studied spatial entanglement in M-particle quantum walks
using the Meyer-Wallach multipartite entanglement measure [327], Štefaňák et al

have investigated non-classical effects (directional correlations) in quantum walks
with two walkers with δ interaction [107], Ampadu has studied directional corre-
lations among M particles with δ interaction on a quantum walk on a line [38],
and Peruzzo et al have provided experimental demonstrations of quantum corre-
lations that violate a classical limit by 76 standard deviations [362]. Furthermore,
Chandrashekhar has introduced the idea of generating entanglement between two
spatially-separated systems using the entanglement generated while performing a
discrete quantum walk as a resource [103] , Allés et al [23] have introduced a shift
operator for discrete quantum walks with two walkers which provides conditions
for (not highly probable) maximal entanglement generation, Salimi and Yosefjani
[398] have studied the asymptotical behavior of coin-position entanglement under
a time-dependent coin regime, and Ampadu [40] has proposed limit theorems for
the von Neumann and Shannon entropies of discrete quantum walks on Z2.

Finally, Maloyer and Kendon have numerically calculated the impact of deco-
herence in the entanglement between walker and coin for quantum walks on a line
and on a cycle [312], Chandrashekar [97] has proposed a modified discrete-time
quantum walk in which the coin toss is no longer needed, Ampadu [43] has ana-
lyzed the impact of decoherence on the quantification of mutual information in a
square lattice, Rohde et al have studied the dynamical behavior of entanglement
on quantum walks running on bounded linear graphs with reflecting boundaries,
together with a scheme for realizing their proposal on a linear optics setting [379],
and Romanelli [385] has defined a global chirality probability distribution (GCD)
independent of the walker’s position and has proved that GCD converges to a
stationary solution.

2.8 Experimental proposals and realizations of quantum walks

In [381], Roldán et al have proposed an experimental set-up based on classical
optical devices to implement a discrete quantum walk. This is a remarkable re-
sult that provide grounds, together with [214,243,242,244], to reflect on what
exactly is quantum when working on the physical and computational properties
of quantum walks (more on this on subsection 2.7.) Moreover, Rai et al study
the quantum walk of nonclassical light in an array of coupled wave guides [366],
Schreiber et al present a realization of a 5-step quantum walk on passive opti-
cal elements [405] and Zhang et al have put forward a scheme for implementing
quantum walks on spin-orbital angular momentum space of photons [471]. Also,
Rohde et al have introduced a formal framework for distinguishable and indistin-
guishable multi-walker quantum walks on several lattices, together with a proposal
for implementing such framework on quantum optical settings [380], Solntsev et

al have analyzed links between parametric down conversion and quantum walk
implementations [416], Broome et al have implemented a discrete quantum walk
using single photons in space [83], Witthaut has explored how the dynamics of
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spinor atoms in optical lattices can be used for implementing a quantum walker
[456], van Hoogdalem and Blaauboer introduced the idea of implementing quan-
tum walk step operator in a one-dimensional chain of quantum dots [439], and
Souto Ribeiro et al have presented an implementation of a quantum walk step at
single-photon level produced by parametric down-conversion [373].

Skyrmions are solitons in nonlinear field theory that, as the magnetic field
increases, the Skyrmion radius decreases and suddenly shrinks to zero by emit-
ting spin waves. This last phenomenon is known as the Skyrmion burst. In [143],
Ezawa has proposed to use the remnants of a Skyrmion burst to implement several
continuous-time quantum walkers. In [352], Owens et al present the architecture of
an optical chip with an array of waveguides in which they have implemented a two-
photon continuous quantum walk. In [347], Oka et al show that the Landau-Zener
transitions induced in electron systems due to strong electric fields can be mapped
to a quantum walk on a lattice, Hamilton et al have proposed an experimental
setup of a four-dimensional quantum walk using the polarization and orbital an-
gular momentum of a photon [190], and Kálmán et al have presented a scheme for
implementing a coined quantum walk using the ballistic transport of an electron
through a series of quantum rings [219]. Indeed, the abundance of experimental
proposal and realizations of quantum walks based on optical devices may be a
glimpse to future implementations of universal quantum computers [378].

Based on the results presented by Xue and Sanders in [464] about the be-
havior of quantum walks in circle in phase space, Xue et al have suggested an
implementation of quantum walks on circles using superconducting circuit quan-
tum electrodynamics [466], Manouchehri and Wang proposed implementations of
quantum walks on Bose-Einstein condensates [313] and quantum dots [314], Xue et

al suggest that a multi-step quantum walk using generalized Hadamard coins may
be realized using an ion trap [467] while Schmitz et al have indeed implemented
a proof of principle of a quantum walk in a linear ion trap [319] and Matjeschk
et al have presented an experimental proposal for quantum walks in trapped ions
[320]. Karski et al have implemented a quantum walk on the line with single neu-
tral atoms by delocalizing them over the sites of a one-dimensional spin-dependent
optical lattice [222], Lavička et al have proposed a quantum walk implementation
using non-ideal optical multiports [282], and Zähringer et al have experimentally
demonstrated a 23-step quantum walk on a line in phase space using one and two
trapped ions [469].

Lahini et al have studied the dynamics of a two-boson quantum walk on a lattice
[277], Sansoni et al have experimentally studied the effect of particle statistics in
two-particle coined quantum walks [399], Mayer et al have studied the correlations
that can be found in a quantum walk built upon interacting and non-interacting
particles [322], and Peruzzo et al have observed quantum correlations on photons
generated using parametric-down conversion techniques and have experimentally
found that such correlations critically depend on the actual quantum walk input
state [362]. Finally, Ahlbrecht et al have investigated how to use a two-atoms
system for executing a quantum walk [17], Regensburger et al have experimentally
shown how a coupled fiber system could be used to implement a quantum walk
[369], and Matsuoka et al have proposed a scheme to implement a continuous-time
quantum walk on a diatomic molecule [321].
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3 Algorithms based on quantum walks and classical simulation of

quantum algorithms-quantum walks

Let us start with a catchy sentence: efficient search is a Holy Grail in computer
science. Indeed, in addition to being searching a core topic in undergraduate and
graduate computer science education, many open problems and challenges in both
theoretical and applied computer science can be formulated as search problems
(e.g. optimization problems, typically within the sphere of NP-hard problems [414,
353], can be seen as ‘detect and/or identify object(s)’ problems whose solutions
ask for search algorithms.) Thus, a great deal of efforts and resources have been
devoted to build both classical and quantum algorithms for solving a variety of
search problems. In particular, due to the central role played by classical random
walks in the development of successful stochastic algorithms, there has been a
huge interest in understanding the computational properties of quantum walks
over the last few years. Moreover, the development of sucessful quantum-walk
based algorithms and the recent proofs of computational universality of quantum
walks [115,301,437] have boosted this area.

A general strategy for building an algorithm based on quantum walks includes
choosing: a) the unitary operators for discrete quantum walks or the Hamiltoni-
ans for continuous quantum walks, that will be employed to determine the time
evolution of the quantum hardware, b) the measurement operators that will be
employed to find out the position of the walker and, possibly c) decoherence effects
if required for controlling the quantum walk algorithmic effects (e.g. manipulating
probability distributions) or mimicking natural phenomena (e.g. [330].)

The quantum programmer must bear in mind that the choice of evolution
and measurement operators, as well as initial quantum states and (possibly) de-
coherence models, will determine the shape and other properties of the resulting
probability distribution for the quantum walker(s). Moreover, a computer scientist
interested in algorithms based on quantum walks must keep in mind that, due to
the no-cloning theorem [134,459], making copies of arbitrary quantum states is
not possible in general thus copying variable content is not allowed in principle.
Indeed, it is possible to use cloning machines for imperfect quantum state copying,
but it would frequently translate into computational and estimation errors. Since
any non-reversible gate can be converted into a reversible gate [71,342,7], errors
due to imperfect quantum state cloning are unneccessary and consequently must
be avoided. Employing classical computer simulators of quantum walks [173,346]
can be a fruitful exercise in order to figure out the operators and initial states re-
quired for algorithmic applications of quantum walks (more on classical simulation
of quantum algorithms in subsection 3.4.)

Quantum algorithms based on either discrete or continuous quantum walks are
built upon detailed and complex mathematical structures and it is not possible to
cover all details in a single review paper. Therefore, we shall devote this section
to review the fundamental links between quantum walks and computer science
(mainly algorithms) and we strongly recommend the reader to go to both the
references provided in this section, as well as to the introductions and reviews of
quantum walk-based algorithms that can be found in [230,26,234,29,400,30,255,
443].
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3.1 Algorithms based on discrete quantum walks

Let us start by defining an abstract object frequently used in quantum algorithms:
an oracle.

Definition 15 Oracle. An oracle is an abstract machine used to study decision
problems. It can be thought of as a black box which is able to decide certain
decision problems in a single step, i.e. an oracle has the ability to recognize solutions
to certain problems.

An oracle is a mathematical device built to simplify the actual process of
algorithm development. Unfortunately, the name ‘oracle’ does not help much as
it seems to invoke metaphysical entities and powers. However, the nature of an
oracle is just that of any other function or procedure: it is defined in terms of
what mathematical operations are performed both in terms of computability and
complexity [280].

Oracles are widely used in classical algorithm design. In the context of quantum
computation, we also use oracles to recognize solutions for the search problem.
Additionally, we assume that if an oracle recognizes a solution |φ〉 then that oracle
is also capable of computing a function with |φ〉 as argument [342,185,280].

We are interested in searching for M elements in a space of N elements. To
do so, we use an index x ∈ S, where S = {0, 1, . . . , N − 1}, to enumerate those
elements. We also suppose we have a function f : S → {0, 1} such that f(x) = 1 if
and only if x is one of the elements we are looking for. Otherwise, f(x) = 0. An
oracle can be written as a unitary operator Ô defined by

Ô(|x〉|q〉) = |x〉|q ⊕ f(x)〉 (58)

where |x〉 is the index register, ⊕ is addition modulo 2 (the XOR operation in
computer science parlance) and the oracle qubit |q〉 is a single qubit which is
flipped if f(x) = 1 and is left unchanged otherwise. As shown in [342], we can
check whether x is a solution to our search problem by preparing |x〉, applying
the oracle, and checking whether the oracle qubit has been flipped to |1〉. Grover’s
algorithm [182], as well as several algorithms we shall review in this section, make
use of an oracle. A comparison of quantum oracles can be found in [223].

We now proceed to review quantum algorithms based on discrete quantum
walks. Let us introduce the following problem:

Definition 16 Searching in an unordered list. Suppose we have an unordered
list of N items labeled x1, x2, . . . , xN . We want to find one of those elements, say
xi.

Any classical algorithm would take O(N) steps at least to solve the problem
given in Def. (16). However, one of the jewels of quantum computation, Grover’s
search algorithm [182], would do much better. By using an oracle and a technique
called Amplitude Amplification, the search algorithm proposed in [182] would
only take O(

√
N) time steps to solve the same search problem. In addition to its

intrinsic value for outperforming classical algorithms, Grover’s algorithm has rel-
evant applications in computer science, including solutions to the 3-SAT problem
[26].
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In [409], Shenvi et al proposed an algorithm based on a discrete quantum walk
to solve the search problem given in Def. (16). For the sake of completeness and
in order to present the results contained in [409], let us remember the definition
of a hypercube (Def. 11).

Definition 17 The hypercube. The hypercube is an undirected graph with 2n

nodes, each of which is labeled by a binary string of n bits. Two nodes x,y in
the hypercube are connected by an edge if x,y differ only by a single bit flip, i.e.
if |x − y| = 1, where |x − y| is the Hamming distance between x and y. As an
example, the 3-dimensional hypercube is shown in Fig.

An example of a 3-dimensional hypercube can be seen in Fig. (7). Since each
node of the hypercube has degree n and there are 2n distinct nodes then the
Hilbert space upon which the discrete quantum walk is defined is H = Hn ⊗H2n ,
and each state |ψ〉 ∈ H is described by a bit string x and a direction d. We now
define the following coin and shift operators

Ĉ = Ĉ0 ⊗ Î = (−Î + 2|sc〉〈sc|)⊗ Î (59)

where |sc〉 is the equal superposition over all n directions, i.e. |sc〉 = 1√
n

∑n
d=1 |d〉,

and

Ŝ =
n−1∑
d=0

∑
x

|d,x⊗ ed〉〈d,x| (60)

where |ed〉 is the dth basis vector of the hypercube. Using the eigenvalues
and eigenvectors of the evolution operator Û = ŜĈ of the quantum walk on the
hypercube [333] in order to build a slightly modified coin operator Ĉ′ (which works
within the algorithm structure as an oracle (Def.(15))) and an evolution operator
Û ′, and by collapsing the hypercube into a line, the quantum walk designed by
evolution operator Û ′ is used to search for element xtarget ∈ {0, 1}n.

It is claimed in [409] that, after applying Û ′ a number of tf = π
2

√
2n = O(

√
N)

times, the outcome of their algorithm is xtarget with probability 1
2 − O( 1

n ). A
summary of similarities and differences between this quantum walk algorithm and
Grover’s algorithm can be found in the last pages of [409], Gábris et al [165]
studied the impact of noise on the algorithmic performance given in [409] using
a scattering quantum walk [193], Lovett et al [300] have numerically studied the
behavior of the algorithm presented in [409] on different two-dimensional lattices
(e.g. honeycomb lattice), and Potoček et al [364] have introduced strategies for
improving both success probability and query complexity computed in [409].

Now, let us think of the following problem: we have a hypercube as defined in
Def. (17) and we are interested in measuring the time (or, equivalently, the number
of steps) an algorithm would take to go from node i to node j, i.e. its hitting time

(Def. (2)). Since defining the notion of hitting time for a quantum walk is not
straightforward, Kempe [229] has proposed the following definitions

Definition 18 One-shot hitting time. A quantum walk U has a (T, p) one-shot
(|φ0〉, |x〉) hitting time if the probability to measure state |x〉 at time T starting in
|φ〉0 is larger than p, i.e. ||〈x|UT |φ0〉||2 ≥ p.
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Fig. 7 A 3-dimensional hypercube. Nodes are labeled following the formula d ⊕ ed where
d ∈ {000, 001, 010, 011, 100, 101, 110, 111} and ed ∈ {001, 010, 100}.

Definition 19 |x〉- stopped walk. A |x〉-stopped walk from U starting in state |φ0〉
is the process defined as the iteration of a measurement with the two projectors
Π̂0 = Π̂x = |x〉〈x| and Π̂1 = Î− Π̂0. If Π̂1 is measured, an application of U follows.
If Π̂0 is measured the process is stopped.

Definition 20 Concurrent hitting time. A quantum walk U has a (T, p) concur-
rent (|φ0〉, |x〉) hitting time if the |x〉-stopped walk from U and initial state |φ0〉
has a probability ≥ p of stopping at a time t ≤ T .

In both cases (Defs. (18) and (20)), it has been shown by Kempe [229] that the
hitting time from one corner to its opposite is polynomial. However, although it
was thought that this polynomial hitting time would imply an exponential speedup
over corresponding classical algorithms, that is not the case as it is possible to build
a polynomial time classical algorithm to traverse the hypercube from one corner
to its opposite, as shown by Childs et al in [116]. Further studies on hitting times
of quantum walks on graphs have been produced by Koš́ık and Bužek [270] as well
as Krovi and Brun [273,274].

A natural step further along employing discrete quantum walks for solving
search problems is to use quantum computation techniques to find items stored in
spaces of 2 or more dimensions. In [70], Benioff proposed the use of Grover’s algo-
rithm for searching items in a grid of

√
N×
√
N elements, and showed that a direct

application of such algorithm would take O(N) times steps to find one item, i.e.
there would be no more quantum speedup. Later on, in [1] Aaronson and Ambainis
used Grover’s algorithm and multilevel recursion to build algorithms capable of
searching in a 2-dimensional grid in O(

√
N log2N) steps and a 3-dimensional grid

in O(
√
N) steps, and Ambainis et al [33] proposed algorithms based on discrete

quantum walks (evolution operators used in [33] are those ‘perturbed’ operators
defined in [409]) that would take O(

√
N logN) steps to search in a 2-dimensional
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grid and would reach an optimal performance of O(
√
N) for 3 and higher dimen-

sional grids (an important contribution of [33] was to show that the performance
of search algorithms based on quantum walks is sensitive to the selection of coin
operators, i.e. the performance of a search algorithm may be optimal or not de-
pending on the coin operator choice), Aaronson and Ambainis [2] have shown how
to build algorithms based on discrete quantum walks to search on a 2-dimensional
grid using a total number of O(

√
N log5/2N) steps, and a 3-dimensional grid with

O(
√
N) number of steps, Tulsi [436] has presented a O(

√
N logN) modified ver-

sion of Ambainis et al’s quantum walk search algorithm [33], and Ambainis et

al [32] have proved that executing the algorithm presented in [33] O(
√
N logN)

times would leave the walker within a neighbourhood O(
√
N) with probability

Θ(1), thus classical algorithm for local search could be used instead of performing
the amplitude amplification technique designed in [33]. Numerical studies on how
dimensionality, tunneling and connectivity affect a discrete quantum-walk based
search algorithm are presented by Lovett et al in [302], and more numerical studies
on potential improvements on algorithmic complexity on hypercubic lattices using
the Dirac operator have been presented by Patel et al in [357,355]. Finally, Childs
and Goldstone [117] developed a continuous quantum walk algorithm to solve the
search problem in a grid and discovered algorithms that would have an optimal
performance of O(

√
N) in grids of 5 or more dimensions.

A variant of Def. (16), the element distinctness problem, was analyzed by
Ambainis in [28]:

Definition 21 Element distinctness problem [414]. Given a list of strings over
{0, 1} separated by #, determine if all the strings are different.

A quantum algorithm for solving the element distinctness problem is given in
[28]. This algorithm combines the quantum search of spatial regions proposed in
[2] with a quantum walk.

The first part of [28] transforms the string list from Def. (21) into a graph
G with marked and non-marked vertices; in this process, [28] uses an oracle (Def.
(15).) The second part of the algorithm employs a discrete quantum walk to search
graph G. As a result, the algorithm solves the distinctness problem in a total

number of O(N2/3) steps and O(N
k
k+1 ) steps for k identical strings, among N

items. Upon the work presented in [28], Magniez et al proposed in [311] a new
quantum algorithm for solving the triangle problem, which can be stated as

Definition 22 Let G be a graph. Any complete subgraph of G on three vertices is
called a triangle. The triangle problem (in oracle version) can be posed as follows:
Oracle input: the adjacency matrix f of a graph G on n nodes.
Oracle output: a triangle if there is any, otherwise reject.

Additionally, another quantum algorithm, based on Grover’s search quantum
algorithm [182], is presented in [311] for solving the same triangle problem.

One more application of [28] has been proposed by Childs and Eisenberg in
[113], where it has been proposed to employ the quantum algorithm developed for
the distinctness problem (Def. (21)) to solve the L-subset finding (oracle) problem,
which can be stated as

Definition 23 The triangle problem (oracle version).
Oracle input: 1) A black box function f : D → R, where D,R are finite sets and
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|D| = n is the problem size. 2) Property P ⊂ (D ×R)L.
Oracle output: Some subset L = {x1, . . . , xL} ⊂ D such that ((x1, f(x1), . . . , (xL, f(xL)) ∈
P , or reject if none exists.

An alternative, refreshing and highly influential approach to discrete quantum
walks has been presented by M. Szegedy in [428], where a new definition of a
discrete quantum walk in presented via the quantization of a stochastic matrix, as
well as an alternative definition of hitting time for discrete quantum walks. [428]
begins by defining the search problem as follows:

Definition 24 Search problem via stochastic processes Given a Markov chain
with transition probability matrix P = (px,y) on a discrete state space X, with
|X| = n, u a given probability distribution on X, and a subset of marked elements
M ⊆ X, compute an estimate for the number t of iterations required to find an
element of M , assuming that the Markov chain is started from a u-distributed
element of X.

[428] continues by defining the following concepts:

Definition 25 PM is the matrix obtained from P by deleting its rows and columns
indexed from M .

Since there is no ‘natural’ (i.e. straightforward) method for quantizing a dis-
crete Markov chain, [428] proposes a quantization method of P which uses bipartite
random walks.

Definition 26 Let X and Y be two finite sets and P = (px,y) and Q = (qy,x) be
matrices describing probabilistic maps X → Y and Y → X, respectively. If we
have a single probabilistic function P from X to X, i.e. a Markov chain, in order
to create a bipartite walk we can set qy,x = px,y for every x, y ∈ X (that is, we set
Q = P .)

The quantization method for (P,Q) proposed by Szegedy is as follows. We start
by creating two operators on the Hilbert space with basis states |x〉, |y〉, where x ∈
X and y ∈ Y . Let us define the states

φx =
∑
y∈Y

√
px,y|x〉|y〉 (61a)

ψy =
∑
x∈X

√
qy,x|x〉|y〉 (61b)

for every x ∈ X, y ∈ Y . Finally, let us define A = (φx) as the matrix composed
of columns vectors φx (x ∈ X), and B = (ψy) as the matrix composed of columns
vectors ψy (y ∈ Y ). Then, [428] defines the unitary operator W , the quantization
of the bipartite walk (P,Q), as

Definition 27 W = (2AA∗ − I)(2BB∗ − I)
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[428] proceeds to build definitions and theorems for new quantum hitting time
and upper bounds for finding a marked element as in Def. (24). A relevant result
presented in this paper is: for every ergodic Markov chain whose transition prob-
ability matrix is equal to its transpose, the quantum walk hitting time as defined
in [428] is at most the square root of the classical one. Furthermore, a remarkable
feature of [428] is a proposal for a new link between classical and quantum walks,
namely the development of a quantum walk evolution operator W via a classical
stochastic matrix P . Inspired in the quantum walk model presented in [428], Ide
et al have investigated the time averaged distribution of discrete quantum walks
[202] and Segawa has studied the relation between recurrent properties of random
walks and localization phenomena in quantum walks [203]. Also, Chiang [110] and
Chiang and Gomez [111] have proposed a model of noise based on system preci-
sion limitations and noisy environments in order to introduce a model of evolution
perturbation for quantum walks and, based on the results presented in [428] and
Weyl’s perturbation theorem on classical matrices, Chiang and Gomez [111] have
studied how perturbation affects quantum hitting time as originally defined in
[428].

Upon the quantum walk definition given in [428], Magniez et al [310] proposed
a quantum walk-based algorithm for solving the following problem:

Theorem 18 [310] Let δ > 0 be the eigenvalue gap of a reversible, ergodic Markov

chain P , and let ε > 0 be a lower bound on the probability that an element chosen from

the stationary distribution of P is marked whenever M is non-empty. Then, there is

a quantum algorithm that with high probability determines if M is empty or finds an

element of M , with cost of order S + 1√
ε
( 1√

δ
U + C), where S is the computational

cost of constructing superposition states, and U,C are costs of constructing unitary

transformations as defined on page 2 of [310].

Furthermore, in [309] Magniez et al have presented an algorithm for detecting
marked elements that improves the complexity of the detection algorithm pre-
sented in [428] and Ide et al [202] have derived a time average distribution for
a quantum walk following [428]. In addition, Krovi et al have constructed quan-
tum walk-based algorithms that both detect and find marked vertices on a graph
[276], Buhrman and Špalek [88] have presented a bounded error quantum algo-
rithm with complexity O(n5/3) for veryfying whether the product of two matrices
of order n× n equals a third (i.e. the matrix multiplication verification problem),
and Magniez and Nayak [308] have presented a quantum algorithm for testing the
commutativity of a black-box group, all three algorithms based on the formalisms
introduced by Szegedy [428].

A novel application of discrete quantum walks is shown by Somma et al in
[417], where a quantum algorithm for combinatorial optimization problems is pro-
posed: this quantum algorithm combines techniques from discrete quantum walks,
quantum phase estimation, and quantum Zeno effect, and can be seen as a quan-
tum counterpart of classical simulated annealing based on Markov chains (also,
the Zeno effect in quantum-walk dynamics under the influence of periodic mea-
surements in position space is studied by Chandrashekar in [96]), and Hillery et al

have presented in [194] a discrete quantum walk algorithm for detecting a marked
edge or a marked complete subgraph within a graph.
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Finally, Paparo and Martin-Delgado present a novel and refreshing proposal de-
veloped upon the notion of Szegedy’s quantum walk [428]: a quantum-mechanical
version of Google’s PageRank algorithm [354].

3.2 Algorithms based on continuous quantum walks

The operation and mathematical formulation of discrete quantum walks fits very
well into the mindset of a computer scientist, as time evolves in discrete steps
(as a typical classical algorithm would) and the model employs walkers and coins,
usual elements of stochastic processes when employed in algorithm development.
However, the most successful applications of quantum walks are found within the
realm of continuous quantum walks. Given the seminal result derived by F. Strauch
in [425] about the connection between discrete and continuous quantum walks, we
now know that results from continuous quantum walks should be translatable, at
least in principle, to discrete quantum walks and vice versa.

Nonetheless, the mathematical structure of continuous quantum walks and the
physical meaning of corresponding equations provide an accurate picture of sev-
eral physical systems upon which we may implement quantum walks and quantum
computers. Although many physical implementations in this field have been based
on the discrete quantum walk model (please see subsection 2.8), the additional
stimulus provided by [425] as well as the computational universality of quan-
tum walks [115,301,437] and recent connections found between quantum walks
and adiabatic quantum computation [106], another model of continuous quantum
computation, it is reasonable to expect new implementations based on continuous
quantum walks.

Readers interested in acquiring a deeper understanding of the physics and
mathematics of continuous quantum systems (particularly continuous quantum
walks) may find the following references useful: [157,124,429].

3.2.1 Exponential algorithmic speedup by a quantum walk

In [147], E. Farhi and S. Gutmann introduced an algorithm based on a continuous
quantum walk that solves the following problem: Given a graph Gs consisting of
two balanced binary trees of height n with the 2n leaves of the left tree identified
with the 2n leaves of the right tree according to the way shown in Fig. (8(a)),
and with two marked nodes ENTRANCE and EXIT, find an algorithm to go from
ENTRANCE to EXIT.

It was shown in [147] that it is possible to build a quantum walk that tra-
verses graph Gs from ENTRANCE to EXIT which is exponentially faster than
its corresponding classical random walk [114]. In other words, the hitting time of
the continuous quantum walk proposed in [147] is of polynomial order, while the
hitting time of the corresponding classical random walk is of exponential order.
However, this advantage does not lead to an exponential speedup due to the fact
that it is possible to build a deterministic algorithm that traverses the same graph
in polynomial time [116].

Ideas from [147] were taken one step further by A. Childs et al in [116], where
the authors introduced a more general type of graphs Gr to be crossed, proved that
those graphs could not be passed across efficiently with any classical algorithm,
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(a)

(b)

Fig. 8 Balanced and unbalanced trees.

and delivered an algorithm based on a continuous quantum walk that traverses
the graph in polynomial time.

Graphs Gr are built as follows. Begin by constructing two balanced binary
trees of height n (i.e. with 2n leaves), but instead of identifying the leaves, they
are connected by a random cycle that alternates between the leaves of the two
trees, that is, we choose a leaf on the left at random and connect it to a leaf on the
right chosen at random too. Then, we connect the latter to a leaf on the left chosen
randomly among the remaining ones. The process is continued, always alternating
sides, until every leaf on the left is connected to two leaves on the right, and vice
versa. See Fig. (8(b)) for an example of graphs Gr.

In order to build the quantum walk that will be used to traverse a graph Gr,
the authors of [116] defined a Hamiltonian Ĥ based on G’s adjacency matrix A. Ĥ
has matrix elements given by
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〈a|Ĥ|a〉 =

{
γ, a 6= a′, aa′ ∈ Gr
0, otherwise

(62)

In the continuous quantum walk algorithm proposed in [116], the authors used
an oracle to learn about the structure of the graph Gr, i.e. information about
the Hamiltonian given by Eq. (62) is extracted using an oracle. By doing so, it is
proved in [116] that it is possible to construct a continuous quantum walk that
would efficiently traverse any graph Gr. An improved lower bound for any classical
algorithm traversing Gr has been proposed in [153], but the performance difference
between quantum and classical algorithms in [116] remains as previously stated.

I now provide a succinct review of more continuous-time quantum walk algo-
rithms. Focusing on finding hidden nonlinear structures over finite fields, Childs
et al [118] have developed efficient quantum algorithms to solve the hidden radius
problem and the hidden flat of centers problems. Moreover, Farhi et al [145] have
produced a O(

√
N) quantum algorithm for solving the NAND tree problem (which

consists of evaluating the root node of a perfectly bifurcating tree whose N leaves
are either ‘0’ or ‘1’ and the value of any other node is the NAND of corresponding
children leaves) and Cleve et al have built quantum algorithms for evaluating MIN-
MAX trees [123]. Finally, Agliari et al [10] have proposed a quantum walk-based
search algorithm on fractal structures.

Let us present a final reflection with respect to algorithms purely based on
quantum walks. As stated in the beginning of this section and rightly argued by
Ritcher [376], the quantum algorithms reviewed in this section are instances of an
abstract search problem: given a state space which can be translated into a graph
structure, find a marked state (or set of states) by performing a quantum walk on
the graph. With this abstraction in mind as well as with the purpose of combining
the power of quantum walks with classical sampling algorihtms, Ritcher [376] has
proposed a method for almost-uniform sampling based on repeated measurements
of a continuous quantum walk.

3.3 Simulation of quantum systems using quantum walks

One of the main goals of quantum computation is the simulation of quantum
systems, i.e. the realization of programmable quantum systems whose physical
properties allow us to model the behavior of other quantum systems [141,52,225].

A novel use of continuous quantum walks for simulation of quantum processes
has been presented by Mohseni et al in [330]. In this contribution, the authors have
developed a theoretical framework for studying quantum interference effects in en-
ergy transfer phenomena, with the purpose of modeling photosynthetic processes.
The main contribution of [330] is to analyze the action of the environment in the
coherent dynamics of quantum systems related to photosynthesis. The framework
developed in [330] includes a generalization of a non-unitary continuous quan-
tum walk in a directed graph (as opposed to a previous definition of a unitary
continuous quantum walk on undirected graphs [116].)
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3.4 Classical computer simulation of quantum algorithms and quantum walks

Exact simulation of quantum systems using the mathematical model of the Uni-
versal Turing Machine (or any other universal automaton equally or less powerful
than the Universal Turing Machine) is either an impossible task (for example, if
we try to exactly simulate uniquely quantum mechanical behavior for which no
classical counterpart is known [155,154]) or a very difficult one (for example, when
trying to replicate physical phenomena in which the number of possible combina-
tions or outcomes increases exponentially or factorially with respect to the number
of physical systems involved in the experiment.) Still, as long as quantum comput-
ers are not available in the market in order to run quantum algorithms on them,
physicists and computer scientists need an alternative tool to explore ideas and
emergent properties of quantum systems and sophisticated quantum algorithms.

Classical computer simulation of quantum algorithms is crucial for understand-
ing and developing intuition about the behavior of quantum systems used for com-
putational purposes, as well as to realize the approximate behavior of practical im-
plementations of quantum algorithms. Moreover, we may use classical simulation
of quantum systems in order to learn which properties and operations of quantum
systems cannot be efficiently simulated by classical systems (see [341] and [84] for
most interesting results), as well as to find out how exclusive quantum-mechanical
systems and operations can be employed for algorithm speed-up. Given the rel-
evance of quantum walks in quantum computing both as a universal model of
quantum computation and as an advanced tool for building quantum algorithms,
as well as the daunting complexity of designing and coding classical algorithms
for running on stand-alone, distributed or parallel hardware platforms, simulating
quantum algorithms and quantum walks on classical computers has become a field
on its own merit.

In the following lines, we summarize several theoretical developments and prac-
tical software implementations of classical simulators of quantum algorithms, being
all these developments suitable for (approximately) simulating both discrete and
continuous quantum walks.

Ömer [350], Bettelli et al [76], Viamontes et al [449], Selinger [408], and Bañuls
et al [60], among others, have introduced mathematical frameworks for implement-
ing quantum algorithms simulators using classical computer languages. Later and
among many other relevant contributions, Nyman proposed using symbolic classi-
cal computer languages for simulating quantum algorithms [344], Ömer introduced
abstract semantic structures for modelling quantum algorithms in classical envi-
ronments [351], and Altenkirch et al proposed a quantum programming language
based on classical functional programming [24]. Selinger [407] and Gay [167] pro-
vided an early description of quantum programming languages and Miszczak [328]
presented a summary of models of quantum computation and current quantum
programming languages.

Among several software packages and platforms that have been developed for
quantum algorithm simulation, I would like to mention the contributions of Mar-
quezino and Portugal [316] (quantum walk simulator for one- and two-dimensional
lattices), Gómez-Muñoz [173] (Mathematica add-on for quantum algorithm simula-
tion), De Raedt et al [365] (quantum algorithm simulation on parallel computers),
Caraiman and Manta [91] (quantum algorithm simulation on grids), Dı́az-Pier
et al [133] (this is an extension of [173] built for simulating adiabatic quantum
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algorithms on GPUs), and Machnes et al [306] (a Matlab toolset for simulating
quantum control algorithms.) The interested reader will find a comprehensive list
of currently available classical simulators of quantum algorithms in [346].

An example of the importance of realizing whether truly quantum properties
can be used for algorithm speed-up was provided in the field of quantum walks a
few years ago. As already explained in this review paper (subsection 2.7), since the
publication of [340] it had been believed that the enhanced variance of position
distribution in quantum walks was responsible (partially at least) for quadratic
speed-up of quantum walk-based algorithms. However, it has been shown [243,
242,244,214] that it is possible to develop implementations of a quantum walk
on a line purely described by classical physics and still be able to reproduce the
variance enhancement that characterizes a discrete quantum walk. Thus, it remains

as an open question what exclusive quantum-mechanical properties and operations are

relevant for enhancing our computing capabilities.

4 Universality of quantum walks

Universality is a highly desirable property for a model of computation because it
shows that such a model is capable of simulating any other model of computa-
tion. Basically, models of computation that are labeled as universal are capable
of solving the same problems, although it could happen in different time regimes.
The history of quantum computing includes the recollection of significant efforts
to prove the universality of several models of quantum computers, i.e. that any
algorithm that can be computed by a general-purpose quantum computer [130]
can also be executed by quantum gates [342,240], and computers based on the
quantum adiabatic theorem [325,146,15], for example.

In the field of quantum walks, Hines and Stamp have shown in [195] how to
map quantum walk Hamiltonians and Hamiltonians for other quantum systems
on hypercubes and hyperlattices. Later on, formal proofs of computational uni-
versality of quantum walks have been presented by Childs (2009) [115], Lovett et

al (2010) [301], and Underwood and Feder (2010) [437]. Let us now dwell on the
properties and details of [115,301] and [437].

a) Universal computation by continuous-time quantum walk [115]

In his seminal work [115], Childs proved that the model known as continuous-
time quantum walk is universal for quantum computation. This means that, for an
arbitrary problem A that is computable in a general-purpose quantum computer,
it is possible to employ the continuous-time quantum walk model to build com-
putational processes that would also solve A. Since it has already been proved by
Childs et al [116] and Aharonov and Ta-Shma [14] that it is possible to simulate a
continuous quantum walk using poly(logN) gates, we then conclude that quantum
walks and quantum circuits have essentially the same computational power.

The proof of universal computation delivered in [115] is based on the following
ideas:
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1. Executing a continuous-time quantum walk-based algorithm is equivalent to
propagating a continuous-time quantum walk on a graph G. Propagation occurs
via scattering theory.

2. The particular structure of graph G depends on the problem to solve (i.e. on
the algorithm that one would like to implement.) Nevertheless and in all cases,
graph G consists of sub-graphs (with maximum degree equal to three) repre-
senting quantum-mechanical operators connected by quantum wires. Moreover,
graph G is finite in terms of both the number of quantum gates as well as the
number and length of quantum wires.

3. Quantum wires do not represent qubits: they represented quantum states, in-
stead. Consequently, the number of quantum wires in a graph G will grow
exponentially with respect to the number of qubits to be employed. Indeed,
if we meant to simulate the propagation of a continuous-time quantum walk
in G on a classical computer we would certainly need an exponential amount
of computational resources for representing quantum wires; however, both G

and the propagation of a continuous-time quantum walk on it are to be simu-
lated by a general purpose quantum computer which, as previously stated in
the beginning of this section, can simulate a continuous-time quantum walk in
poly(logN) [116,14].

4. A set of gates is labelled as universal for quantum computation if any unitary
operation may be approximated to arbitrary accuracy by a quantum circuit
involving those gates [342]. The core of [115] is to simulate a universal gate
set for quantum computation by propagating a continuous-time quantum walk
on different graph shapes. The universal set chosen by Childs in [115] is com-
posed by the controlled-not, phase and and basis-changing gates with matrix
representations given in Eqs. (63a,63b,63c), which together constitute a dense
subset of SU(2). Graphs employed to represent these three quantum gates are
shown in Fig. (9).

Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (63a)

Ub =

(
1 0

0 e
iπ
4

)
(63b)

Uc =
1√
2

(
1 i

i 1

)
(63c)

5. The eigenvalues and eigenvectors of those graphs employed to simulate a uni-
versal gate set for quantum computation play a central role in this discussion.

6. [115] constitutes a theoretical proposal for proving and exhibiting the com-
putational power of continuous quantum walks. In particular, [115] does not

constitute a hardware-oriented proposal for implementing a general-purpose
quantum computer based on continuous quantum walk.

To put it in a few words of my own, [115] proposes quantum computation as
the flow of quantum information, via the dynamics of a continuous-time quantum
walk, on graphs. Let us now work out the details of [115] (for the sake of clarity
and readability of the original paper, hereinafter I will closely follow the notation
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(a) (b)

(c)

Fig. 9 (a) Widget for Cnot gate, (b) widget for phase gate, and (c) widget for the basis-
changing gate.

used in [115].)

-Scattering on an infinite line. [115] starts by reviewing some properties of scat-
tering theory on infinite lines. Let L be an infinite line of vertices. Each vertex x

corresponds to a basis state |x〉 ∈ Z and is, of course, connected only to vertices
x± 1. Then, the eigenstates of the adjacency matrix of this graph are the momen-
tum states |k〉, k ∈ [−π, π) with corresponding eigenvalues 2 cos k. The eigenstates
|k〉 fulfill the following condition:

〈x|k̃〉 = eikx (64)

-Scattering on a semi-infinite line. The next step toward calculating expressions
for scattering on finite graphs is to study semi-infinite lines. Let us consider a graph
G and construct an infinite graph with adjacency matrix H by attaching a semi-
infinite line to each of N of its vertices (i.e. it is not compulsory to attach infinite
lines to all vertices in G, just some vertices would suffice.) We shall enumerate the
vertices of each infinite line attached to G by labelling the vertex in the original
graph with x = 0 and assigning the values x = 1, 2, . . . , n, . . . to the vertices we
find as we move out along the line (see Fig. (10) for an example of a graph with
semi-infinite lines.)

A nice example of this kind of semi-infinite graphs on discrete-time quantum
walks is provided by Feldman and Hillery in [149] which we reproduce here. Let
Gd be the graph given in Fig. (11). The graph goes to −∞ on the left and to +∞
on the right. One set of unnormalized eigenstates of this graph can be described as
having an incoming wave from the left, an outgoing transmitted wave going to the
right, and a reflected wave going to the left. The eigenstates with a wave incident
from the left take the form
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Fig. 10 An example of a graph with three semi-infinite lines.

Fig. 11 An example of a semi-infinite graph with a diamond-shape.

|Ψ〉 =
−1∑

j=−∞
(eijθ|j, j + 1〉+ r(θ)e−i(j+1)θ|j + 1, j〉) + |Ψ02〉

+
∞∑
j=2

t(θ)ei(j−2)θ|j, j + 1〉, (65)

where |Ψ02〉 is the part of the eigenfunction between vertices 0 and 2, and e−iθ

is the eigenvalue of the operator U that advances the walk one step. The first term
can be thought of as the incoming wave (from −∞ to zero), the term proportional
to r(θ) is the reflected wave (from zero to −∞), and the term proportional to
t(θ) is the transmitted wave (from 2 to +∞). Please notice the crucial role that
eigenvalue e−iθ plays in the quantification of phases.

Let us now go back to [115]. For each j ∈ {1, 2, . . . , N} (i.e. for each infinite
line attached to G) there is an incoming scattering state of momentum k denoted
|k̃, sc→j 〉 given by

〈x, j|k̃, sc→j 〉 = e−ikx +Rj(k) eikx (66)

〈x, j′|k̃, sc→j 〉 = Tj,j′(k) eikx, j′ 6= j (67)

The reflection coefficient Rj(k), the transmission coefficients Tj,j′(k) and the

form of |k̃, sc→j 〉 are determined by the eigenequation H|k̃, sc→j 〉 = 2 cos k|k̃, sc→j 〉.
Eigenstates |k̃, sc→j 〉 together with the bound states defined in section II of [115]
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form a complete a orthogonal set of eigenfunctions of H that are employed to cal-
culate the propagator for scattering through G (we do not write the mathematical
expressions for bound states as it is proved in [115] that the role of those states
on the scattering process through G can be neglected):

〈y, j′|e−iHt|x, j〉 =

∫ 0

−π
e−2it cos k(Tj,j′eik(x+y) + T ∗j′,je

−ik(x+y)) dk
2π

+
∑
κ,±

e∓2it coshκB±j′ (κ)B±j (κ)∗(±e−κ)x+y (68)

where κ is a parameter of bound states. The whole purpose of this exercise is to
have the mathematical tools needed to compute the propagation of the continuous-
time quantum walk on the graphs that act as quantum gates (Fig. (9).) Finally
with respect to this introductory mathematical treatment, it is stated in [115] that
finite graphs can be modelled with Eqs. (64,67,68) without significant changes.

-Universal gate set. As previously stated in this review, the universal gate set
chosen by Childs is composed of the controlled-not, phase and and basis-changing
gates.

The implementation of the controlled-not gate is straightforward as it suffices
just to exchange the quantum wires corresponding to the basis states |10〉 and |11〉
as shown in Fig. (9.a). This wire-exchange may sound unfeasible, but it is not: [115]
is a theoretical proposal that describes the logical/mathematical processes that
must be performed in order to achieve universal quantum computation, not the
implementation of quantum walk-based universal computation on actual quantum
hardware.

As for the phase gate, the process to be performed is to apply a nontrivial
phase to the |1〉, leaving the |0〉 unchanged. To do so, Childs has proposed to
propagate the quantum walk through the widget shown in Fig. (9.b). The process
is as follows: attach semi-infinite lines to the ends (open circles) of Fig. (9.b) and
compute the transmission coefficient for a wave of momentum k incident on the

input terminal (LHS open circle.) The value for T
(b)
in,out reported in [115] is

T
(b)
in,out =

8

8 + i cos 2k csc3 k sec k
(69)

As direct substitution in Eq. (69) shows, at k = −π
4 the widget has perfect

transmission (i.e. T
(b)
in,out = 1.) Furthermore, also at k = −π

4 , the widget shown

in Fig. (9.b.) introduces a phase of e
iπ
4 to the quantum information that is being

propagated through it. This last result is not explicitly derived in [115] but it
can be calculated from the eigenvalues of the corresponding adjacency matrix and
the mathematical model for propagation for scattering through graphs (Eq. (68).)
The same rationale applies to the construction of the basis-changing single-qubit
gate proposed by Childs: propagating a continuous-time quantum walk at k = −π

4

through the graph shown in Fig. (9.c) would be equivalent to applying the unitary
transformation given in Eq. (63c.)

Now, assuming that k will only take the value −π4 could be very difficult to
implement. Consequently, [115] introduces two more gates: a momentum filter
and a momentum separator, which are to be used for appropriately tuning the
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algorithm input. Finally, it is stated in [115] that for the actual implementation
of a general quantum gate as well as a continuous-time quantum-walk algorithm,
we would only need to connect appropriate widgets using quantum wires.

Let us now review the main ideas and properties of universal computation of
discrete-time quantum walks.

b) Universal computation by discrete quantum walk [301]

In [301], Lovett et al have presented a proof of computational universality for
discrete-time quantum walks. The arguments delivered in [301] keep a close link
with the ideas presented in [115], in terms of the universal gate set upon which the
simulation of an arbitrary quantum gate can be achieved as well as on the nature
of quantum wires (as in [115], quantum wires represent basis states rather than
qubits.) Here a summary of relevant properties:

1. Executing a discrete-time quantum walk-based algorithm is equivalent to prop-
agating a discrete-time quantum walk on a graph G via state transfer theory.
In contrast to the behavior of continuous-time quantum walks, coined discrete-
time quantum walks do exhibit back-propagation, hence the need to look for
an efficient way to propagate the discrete-time quantum walk.
It has been shown [431,430] that perfect state transfer can be achieved in
graphs (for example, an eight-node cycle gives perfect state transfer from the
initial vertex to the opposite vertex in 12 time steps [301].) Thus, Lovett et

al propose a scheme based on two-edge quantum wires (i.e. a cycle of two
nodes) for achieving perfect state transfer. The basic wire used to propagate a
discrete-time quantum walk is shown in Fig. (12). In this setup, the state |Ψ〉 =
α|0〉+β|1〉 would be split as initial state |ψ〉 = 1√

2

(
α|0〉a+α|0〉b+α|1〉a+α|1〉b

)
.

I shall describe the propagation method proposed in [301] in the following lines.
2. As in [115], the particular structure of graph G depends on the problem to solve

(i.e. on the algorithm that one would like to implement.) Nevertheless and in
all cases, graph G consists of sub-graphs representing quantum-mechanical op-
erators connected by quantum wires (in contrast with [115], in [301] graphs
representing quantum gates have maximum degree equal to eight.) Further-
more, graph G is finite in terms of both the number of quantum gates as well
as the number and length of quantum wires.

3. Quantum wires do not represent qubits: they represented quantum states, in-
stead. As in [115], the number of quantum wires in a graph G will grow expo-
nentially with respect to the number of qubits to be employed but, as previ-
ously stated in the beginning of this section, both G and the propagation of
a discrete-time quantum walk on it are to be simulated by a general purpose
quantum computer which can simulate a discrete-time quantum walk using
poly(logN) gates [116,14].

4. it is proposed in [301] to simulate a universal gate set for quantum computa-
tion by propagating a discrete-time quantum walk on different graph shapes.
The universal set chosen by Lovett et al in [301] is composed by the controlled-
not, phase and Hadamard gates with matrix representations given in Eqs.
(70a,70b,70c). Graphs employed to represent these three quantum gates are
shown in Fig. (13). Also, as in [115], Lovett et al have presented a theoreti-
cal proposal for proving and exhibiting the computational power of discrete-
quantum walks and it does not constitute a straightforward quantum computer
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Fig. 12 Basic wire used to propagate quantum information via discrete-time quantum walk.
The state |Ψ〉 = α|0〉 + β|1〉 would be split as initial state |ψ〉 = 1√

2

(
α|0〉a + α|0〉b + α|1〉a +

α|1〉b
)
. Also, the physical process used to propagate the quantum walk consists of applying

a 4 − d Grover diffusion coin (note that each node is a vertex of degree 4), together with an
implementation-related shift operator (the shift operator described in [301] consists only of its
expected behavior and does not deal with particular physical implementations.)

architecture proposal for implementing a general-purpose quantum computer
based on discrete-time quantum walks (pretty much in the same spirit that
a classical algorithm is not straightforwardly implemented in classical digital
hardware.)

Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (70a)

P (π/8) =

(
1 0

0 e
iπ
4

)
(70b)

Uc =
1√
2

(
1 1
1 −1

)
(70c)

-State transfer on the basic wire using a four-dimensional Grover coin. Let us
now describe the propagation method proposed in [301]. Suppose that we need to
transmit a qubit that has been initialized as

|ψ〉 = α|0〉+ β|1〉 (71)

Then:

– The initial state of the basic wire consists of preparing both LHS arms |0〉a and
|0〉b with the same quantum information α, i.e the actual amplitude assigned to
basis state |0〉 from Eq. (71.) The same rationale applies to LHS arms |1〉a and
|1〉b: they both are initialized with the same quantum information β, i.e. the
amplitude assigned to basis state |1〉 from Eq. (71.) This initialization, visually
presented in Fig. (14) for α ∈ C, may be written as shown in Eq. (72.) Note
that the RHS of Fig. (14) is initialized to 0.

|Ψ〉t1 =


α

α

0
0

 (72)
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(a)

(b)

(c)

Fig. 13 Graphs for simulating the effect of (a) Cnot gate, (b) phase π/8 gate, and (c)
Hadamard gate.

– Now, a crucial point comes into the scene: the application of 4 − d Grover
diffusion operator (Eq. (73)) to |Ψ〉t1 . It is stated in [301] that, for any vertex
of even degree, the Grover coin G(4) will transfer the entire state from all input
edges to all output edges, provided the inputs are all equal in both amplitude and

phase.

G(4) =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 (73)

Mathematically speaking, computing G(4)|Ψ〉t1 is a straightforward procedure.
Physicall speaking, applying G(4) to |Ψ〉t1 would be equivalent to applying a
unitary operator that does perfect quantum information transfer from the LHS
of the graph to the RHS of that same graph, as shown in Fig. (15). In principle
and depending on the particular properties of quantum hardware we may try
to translate and implement this protocol, we should be able to find such a
transfer physical operation as we are modelling it as a quantum-mechanical
unitary operator.
So, G(4)|Ψ〉t1 yields Eq. (74)
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Fig. 14 Both LHS arms of |0〉, |0〉a and |0〉b, are initialized to the same quantum information
α. Also, both arms on the RHS of this graph have been initialized to 0. We may think of this
graph as a dynamical quantum process which consists of quantum information flowing through
the graph, from left to right. Furthermore, the same quantum information flows through both
upper and lower arms.

(a) (b)

Fig. 15 Fig. (a) represents the system immediately before G(4) (Eq. (73)) is applied, and (b)

represents the system immediately after G(4) (Eq. (73)) has been applied.

(a) (b) (b)

Fig. 16 (a) represents the system immediately before G(4) (Eq. (73)) is applied and (b)

represents the system immediately after G(4) (Eq. (73)) has been applied. Please observe that,
on step (b), the quantum information represented by α is near Node 1. The third step of this
basic operation, consisting of applying a shift operator to (b), would produce graph (c), i.e.
would shift amplitude α to the right, near Node 2, so that a new computational step can be
performed.

1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



α

α

0
0

 =


0
0
α

α

 (74)

– The third and last step of this basic quantum operation consists of shifting
quantum information from the zone nearby Node 1 to the sorrounding area of
Node 2. This step is equivalent to preparing the input of the next algorithmic
operation. The full three-step basic operation is shown in Fig. (16).

-Construction of the Universal gate set. Let us now describe how to construct, ac-
cording to [301], the controlled-not, phase and and Hadamard gates (Eqs. (70a,70b,70c).)

As in [115], the controlled-not gate is trivial to implement: we only need to
exchange corresponding basis states wires as shown in Fig. (13.(a).) As previously
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declared in this review, this wire-exchange describes the logical/mathematical pro-
cesses that must be performed in order to achieve universal quantum computation,
not the implementation of quantum walk-based universal computation on actual
quantum hardware.

As for the phase gate, the process to be performed is to apply a nontrivial
phase to the |1〉, leaving the |0〉 unchanged. Fig. (17) shows the detailed graph
structure of this gate. The rationale behind Fig. (17) is as follows:

- For each four-edge vertex, apply to to |0〉a, |0〉b, |1〉a, and |1〉b a 4− d Grover
diffusion operator, a relative phase gate and the shift operator, i.e. apply the full
operator S(e−iπ/4(G(4))). G(4) is given in matrix representation in Eq. (73) and
we propose the following definitions for the relative phase gate e−iπ/4 (Eq. (75))
and the shift operator S (Eq. (76)):

PF−π/4 =


1 0 0 0
0 1 0 0

0 0 e−iπ/4 0

0 0 0 e−iπ/4

 (75)

S =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (76)

That is, S = G(4). Now, the diamond-shaped graph that is located in the middle
of |1〉a,b applies a shift operation to the quantum information that is propagated
along that wire without applying a relative phase gate. Consequently, at step t6 of
Fig. (17), the quantum information running on |1〉a,b has a different phase from
the one found on the quantum information running on |0〉a,b.

Let us now, for each time step ti, take a look at quantum operations and cor-
responding calculations.

– Time step t1.

For |0〉a,b

|Ψ〉t1 =


α

α

0
0

 (77)

For |1〉a,b

|Φ〉t1 =


β

β

0
0

 (78)

– Time step t2.

For |0〉a,b: |Ψ〉t2 = PF−π/4(G(4)|Ψ〉t1), i.e.
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|Ψ〉t2 =
1

2


1 0 0 0
0 1 0 0

0 0 e−iπ/4 0

0 0 0 e−iπ/4



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



α

α

0
0

 =


0
0

e−iπ/4α

e−iπ/4α

 (79)

For |1〉a,b the rationale is identical:

|Φ〉t2 =
1

2


1 0 0 0
0 1 0 0

0 0 e−iπ/4 0

0 0 0 e−iπ/4



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



β

β

0
0

 =


0
0

e−iπ/4β

e−iπ/4β

 (80)

– Time step t3.

For |0〉a,b: |Ψ〉t3 = S|Ψ〉t2 , i.e.

|Ψ〉t3 =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1




0
0

e−iπ/4α

e−iπ/4α

 =


e−iπ/4α

e−iπ/4α
0
0

 (81)

For |1〉a,b the rationale is identical:

|Φ〉t3 =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1




0
0

e−iπ/4β

e−iπ/4β

 =


e−iπ/4β

e−iπ/4β
0
0

 (82)

– Time step t4.

For |0〉a,b: |Ψ〉t4 = PF−π/4(G(4)|Ψ〉t3), i.e.

|Ψ〉t4 =
1

2


1 0 0 0
0 1 0 0

0 0 e−iπ/4 0

0 0 0 e−iπ/4



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



e−iπ/4α

e−iπ/4α
0
0

 =


0
0

e−2iπ/4α

e−2iπ/4α


(83)

For |1〉a,b the rationale is identical:

|Φ〉t4 =
1

2


1 0 0 0
0 1 0 0

0 0 e−iπ/4 0

0 0 0 e−iπ/4



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



e−iπ/4β

e−iπ/4β
0
0

 =


0
0

e−2iπ/4β

e−2iπ/4β


(84)

– Time step t5.

For |0〉a,b: |Ψ〉t5 = S|Ψ〉t4 , i.e.
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|Ψ〉t5 =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1




0
0

e−2iπ/4α

e−2iπ/4α

 =


e−2iπ/4α

e−2iπ/4α

0
0

 (85)

For |1〉a,b the rationale is identical:

|Φ〉t5 =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1




0
0

e−2iπ/4β

e−2iπ/4β

 =


e−2iπ/4β

e−2iπ/4β

0
0

 (86)

– Time step t6.

Here we have a most important result. For |0〉a,b: |Ψ〉t6 = PF−π/4(G(4)|Ψ〉t5), i.e.

|Ψ〉t6 =
1

2


1 0 0 0
0 1 0 0

0 0 e−iπ/4 0

0 0 0 e−iπ/4



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



e−2iπ/4α

e−2iπ/4α

0
0

 =


0
0

e−3iπ/4α

e−3iπ/4α


(87)

However, for |1〉a,b, we only apply the coin operator G(2) =

(
0 1
1 0

)
, suitable

for propagating quantum information through the two-edge vertices W1 and W2

without applying an additional relative phase operator:

|Φ〉W1
t6

=

(
0 1
1 0

)(
e−2iπ/4β

0

)
=

(
0

e−2iπ/4β

)
(88a)

|Φ〉W2
t6

=

(
0 1
1 0

)(
e−2iπ/4β

0

)
=

(
0

e−2iπ/4β

)
(88b)

Thus, the state of this computation at time t6 is given by

|Ψ〉t6 =


0
0

e−3iπ/4α

e−3iπ/4α

 (89a)

|Φ〉t6 =


0
0

e−2iπ/4β

e−2iπ/4β

 (89b)

Direct calculations would produce the following states:
– Time step t7.

|Ψ〉t7 =


e−3iπ/4α

e−3iπ/4α

0
0

 (90a)
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|Φ〉t7 =


e−2iπ/4β

e−2iπ/4β

0
0

 (90b)

– Time step t8.

|Ψ〉t8 =


0
0

e−4iπ/4α

e−4iπ/4α

 (91a)

|Φ〉t8 =


0
0

e−3iπ/4β

e−3iπ/4β

 (91b)

– Time step t9.

|Ψ〉t9 =


e−4iπ/4α

e−4iπ/4α

0
0

 (92a)

|Φ〉t9 =


e−3iπ/4β

e−3iπ/4β

0
0

 (92b)

– Time step t10.

|Ψ〉t10 =


0
0

e−5iπ/4α

e−5iπ/4α

 (93a)

|Φ〉t10 =


0
0

e−4iπ/4β

e−4iπ/4β

 (93b)

– Time step t11.

|Ψ〉t11 =


e−5iπ/4α

e−5iπ/4α

0
0

 (94a)

|Φ〉t11 =


e−4iπ/4β

e−4iπ/4β

0
0

 (94b)

So, at time t11, the |0〉 wire has a phase equal to e−5iπ/4 while the |1〉 wire has
a phase equal to e−4iπ/4, i.e. the |1〉 wire has a relative phase of eiπ/4 with respect
to the |0〉 wire.
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Fig. 17 Phase gate proposed in [301] divided up in 11 steps. We provide a detailed analysis
of each step in the main text of this paper.

Finally, let us find out how to construct the Hadamard gate according to [301].
Please note that the graph structure proposed in [301] for the Hadamard gate (Fig.
(13.c)) is divided into three parts:

– As in the previous gates, the Hadamard gate (Fig. (13.c)) has as input states
For |0〉a,b

|Ψ〉t1 =


α

α

0
0

 (95)

For |1〉a,b

|Φ〉t1 =


β

β

0
0

 (96)

– Part (a) of (Fig. (13.c)) adds a total phase of e−9iπ/4 to the |0〉 wire and a
phase of e−7iπ/4 to the |1〉. We can see that from the number of d = 4 nodes
that the quantum walks is propagated through from the beginning to the very
entrance of G8: nine nodes for |0〉 and seven nodes for |1〉. Thus, states for part
(a) of (Fig. (13.c)) are:

|Ψ〉tA =


e−9iπ/4α

e−9iπ/4α

0
0

 (97)

|Φ〉tA =


e−7iπ/4β

e−7iπ/4β

0
0

 (98)
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Fig. 18 Alternating wires (solid and dashed) on which the quantum walk propagates via
perfect state transfer. Solid and dashed lines are turned on and off alternatively.

The same rationale applies to the phase applied to |0〉 and |1〉 wires on part
(c) of (Fig. (13.c)). Thus, the total phase added to the |0〉 wire is e−18iπ/4 and
to the |1〉 wire is e−14iπ/4, i.e. there is a relative phase of e−4iπ/4 = e−iπ =
cosπ − i sinπ = −1 on |1〉.
Of course, |Ψ〉tA and |Φ〉tA are also the input states of Part B.

– According to [301], Part B of (Fig. (13.c)) is composed of a d = 8 graph that has
two effects on Eqs. (97,98): to combine the two inputs from |0〉 and |1〉 wires as
well as to add a global phase of 3π/4 to both wires. Applying Euler’s identity as
before we can see that e−3iπ/4 = cos(−3iπ/4) + i sin(−3iπ/4) = −1/

√
2− i/

√
2,

hence the factor 1/
√

2 needed for the Hadamard operator (the number −1− i
is a global phase that would be experimentally irrelevant.)

Lovett et al finish by explaining how to build quantum circuits using the graphs
and methods exposed in [301], which is very similar to the method proposed
in [115]: for the actual implementation of a general quantum gate as well as a
discrete-time quantum-walk algorithm, we would only need to connect correspond-
ing graphs using basis-state quantum wires.

c) Universal computation by discontinuous quantum walk [437]

Based on an eclectic analysis of [115] and [301], Underwood and Feder [437]
have proposed a hybrid quantum walk for realizing universal computation, consist-
ing of propagating a quantum walker via perfect state transfer under continuous
evolution. The quantum walk propagates on a line (quantum wire) which is actu-
ally composed of two alternating lines (Fig. (18).) The walker begins walking on
the solid line of the graph LHS long enough to perfectly transfer to the end of the
first solid line segment. Then, the solid line is turned off and, simultaneously, the
dashed line is turned on, enabling then the walker to transfer to the end of the first
dashed line segment. As in [115,301], Underwood and Feder [437] have proposed
a universal gate set (phase, identity and rotation graphs) as well as a method for
building general unitary quantum gates and quantum circuits as a combination of
basis state quantum wires and phase, identity and rotation graphs.

[115,301,437], together with the computational equivalence proofs of several other
models of quantum computations, provide a rich ‘toolbox’ for computer scientists
interested in quantum computation, for they will be free to choose from several
models of quantum computation those that particularly suit their academic back-
ground and interests.

5 Conclusions

In this paper we have reviewed theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that random-
ness plays in quantum walks, the connections between the mathematical models of
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coined discrete quantum walks and continuous quantum walks, the quantumness
of quantum walks and a brief summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Moreover, we have reviewed sev-
eral algorithms based on quantum walks as well as a most important result: the
computational universality of both continuous- and discrete-time quantum walks.

Fortunately, quantum walks is now a solid field of research of quantum com-
putation full of exciting open problems for physicists, computer scientists and
engineers. This review, which is meant to be situated as a contribution within
the field of quantum walks from the perspective of a computer scientist, will best
serve the scientific community if it encourages quantum scientists and quantum
engineers to further advance on this discipline.
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many-qubit quantum computation with matrix product states. Phys. Rev. A, 73:022344,
2006.
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282. H. Lavička, V. Potoček, T. Kiss, E. Lutz, and I. Jex. Quantum walks with jumps. The

European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, vol.
64(1), pp. 119–129, 2011.

283. P.Q. Le, F. Doyng, and K. Hirota. A flexible representation of quantum images for polyno-
mial preparation, image compression, and processing operations. Quantum Information
Processing, vol. 10(1), pp. 63–84, 2011.

284. P.Q. Le, A.M. Iliyasu, F. Dong, and K. Hirota. Efficient color transformations on quantum
images. Journal of Advanced Computational Intelligence and Intelligent Informatics, vol.
15(6), pp. 698–706, 2011.

285. P.Q. Le, A.M. Iliyasu, F. Doyng, and K. Hirota. Strategies for designing geometric
transformations on quantum images. Theoretical Computer Science, vol. 412(15), pp.
1046–1418, 2011.

286. L. Lehman, V. Zatloukal, G.K. Brennen, J.K. Pachos, and Z. Wang. Quantum walks
with non-abelian anyons. Phys. Rev. Lett., 106(23):230404, 2011.

http://arxiv.org/abs/1112.4335
http://arxiv.org/abs/1109.2662
http://arxiv.org/abs/1105.2273


Quantum walks: a comprehensive review 83

287. G. Leung, P. Knott, J. Bailey, and V. Kendon. Coined quantum walks on percolation
graphs. New Journal of Physics, 12:123018, 2010.

288. N. Linden and J. Sharam. Inhomogeneous quantum walks. Phys. Rev. A, 80(5):052327,
2009.

289. C. Liu. Asymptotic distribution of quantum walks on the line with two entangled coins.
Quantum Information Processing, DOI: 10.1007/s11128-012-0361-3, 2012.

290. C. Liu and N. Petulante. One-dimensional quantum random walks with two entangled
coins. Phys. Rev. A, 79(3):032312, 2009.

291. C. Liu and N. Petulante. On the von neumann entropy of certain quantum walks subject
to decoherence. Mathematical Structures in Computer Science, vol. 20(6), pp. 1099 –
1115, 2010.

292. C. Liu and N. Petulante. Quantum walks on the n-cycle subject to decoherence on the
coin degree of freedom. Phys. Rev. E, 81(3):031113, 2010.

293. C. Liu and N. Petulante. Asymptotic evolution of quantum walks on the n-cycle sub-
ject to decoherence on both the coin and position degrees of freedom. Phys. Rev. A,
84(1):012317, 2011.

294. C. Liu and N. Petulante. On limiting distributions of quantum markov chains. Interna-
tional Journal of Mathematics and Mathematical Sciences, 2011:740816, 2011.

295. W-S. Yang, C. Liu and K. Zhang. A path integral formula with applications to quantum
random walks in Zd. J. Phys. A: Math. Theor. 40, pp. 8487–8516, 2007.

296. S. Loepp and W.K. Wootters. Protecting information: from classical error correction to
quantum cryptography. Cambridge University Press, 2006.
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351. B. Ömer. Classical concepts in quantum programming. International Journal of Theo-

retical Physics, vol. 44, pp. 943–955, 2005.
352. J.O. Owens, M.A. Broome, D.N. Biggerstaff, M.E. Goggin, A. Fedrizzi, T. Linjordet,

M. Ams, G.D. Marshall, J. Twamley, M.J. Withford, and A.G. White. Two-photon
quantum walks in an elliptical direct-write waveguide array. New journal of Physics,
13:075003, 2011.

353. C.H. Papadimitriou. Computational Complexity. Addison Wesley Publishing Co., 1995.
354. G.D. Paparo and M.A. Martin-Delgado. Google in a quantum network. Scientific Reports,

vol. (2)444, pp. 1–12, 2012.
355. A. Patel, K.S. Raghunathan, and Md. A. Rahaman. Search on a hypercubic lattice using

a quantum random walk. ii. d = 2. Phys. Rev. A, 82(3):032331, 2010.
356. A. Patel, K.S. Raghunathan, and P. Rungta. Quantum random walks do not need a coin

toss. Phys. Rev. A, 71:032347, 2005.
357. P. Patel and Md.A. Rahaman. Search on a hypercubic lattice using a quantum random

walk. i. d > 2. Phys. Rev. A, 82(3):032330, 2010.
358. P.K. Pathak and G.S. Agarwal. Quantum random walk of two photons in separable and

entangled states. Phys. Rev. A, 75(3):032351, 2007.
359. R. Pemantle and M. Wilson. Asymptotics of multivariate sequences, ii. multiple points

of the singular variety. Combin. Probab. Comput., vol. 13, pp. 735–761, 2004.
360. A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, and A. Aspuru-Guzik. On the con-

struction of model hamiltonians for adiabatic quantum computation and its application
to finding low energy conformations of lattice protein models. Phys. Rev. A, 78:012320,
2008.
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