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Abstract

Building animation tools for fluid-like motions is an important and
challenging problem with many applications in computer graphics.
The use of physics-based models for fluid flow can greatly assist
in creating such tools. Physical models, unlike key frame or pro-
cedural based techniques, permit an animator to almost effortlessly
create interesting, swirling fluid-like behaviors. Also, the interac-
tion of flows with objects and virtual forces is handled elegantly.
Until recently, it was believed that physical fluid models were too
expensive to allow real-time interaction. This was largely due to the
fact that previous models used unstable schemes to solve the phys-
ical equations governing a fluid. In this paper, for the first time,
we propose an unconditionally stable model which still produces
complex fluid-like flows. As well, our method is very easy to im-
plement. The stability of our model allows us to take larger time
steps and therefore achieve faster simulations. We have used our
model in conjuction with advecting solid textures to create many
fluid-like animations interactively in two- and three-dimensions.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: animation of fluids, Navier-Stokes, stable solvers, im-
plicit elliptic PDE solvers, interactive modeling, gaseous phenom-
ena, advected textures

1 Introduction

One of the most intriguing problems in computer graphics is the
simulation of fluid-like behavior. A good fluid solver is of great
importance in many different areas. In the special effects industry
there is a high demand to convincingly mimic the appearance and
behavior of fluids such as smoke, water and fire. Paint programs
can also benefit from fluid solvers to emulate traditional techniques
such as watercolor and oil paint. Texture synthesis is another pos-
sible application. Indeed, many textures result from fluid-like pro-
cesses, such as erosion. The modeling and simulation of fluids is,
of course, also of prime importance in most scientific disciplines
and in engineering. Fluid mechanics is used as the standard math-
ematical framework on which these simulations are based. There
is a consensus among scientists that the Navier-Stokes equations
are a very good model for fluid flow. Thousands of books and
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articles have been published in various areas on how to compute
these equations numerically. Which solver to use in practice de-
pends largely on the problem at hand and on the computing power
available. Most engineering tasks require that the simulation pro-
vide accurate bounds on the physical quantities involved to answer
questions related to safety, performance, etc. The visual appearance
(shape) of the flow is of secondary importance in these applications.
In computer graphics, on the other hand, the shape and the behav-
ior of the fluid are of primary interest, while physical accuracy is
secondary or in some cases irrelevant. Fluid solvers, for computer
graphics, should ideally provide a user with a tool that enables her
to achieve fluid-like effects in real-time. These factors are more im-
portant than strict physical accuracy, which would require too much
computational power.

In fact, most previous models in computer graphics were driven
by visual appearance and not by physical accuracy. Early flow
models were built from simple primitives. Various combinations of
these primitives allowed the animation of particles systems [15, 17]
or simple geometries such as leaves [23]. The complexity of the
flows was greatly improved with the introduction of random tur-
bulences [16, 20]. These turbulences are mass conserving and,
therefore, automatically exhibit rotational motion. Also the tur-
bulence is periodic in space and time, which is ideal for motion
“texture mapping” [19]. Flows built up from a superposition of
flow primitives all have the disadvantage that they do not respond
dynamically to user-applied external forces. Dynamical models
of fluids based on the Navier-Stokes equations were first imple-
mented in two-dimensions. Both Yaeger and Upson and Gamito
et al. used a vortex method coupled with a Poisson solver to cre-
ate two-dimensional animations of fluids [24, 8]. Later, Chen et
al. animated water surfaces from the pressure term given by a two-
dimensional simulation of the Navier-Stokes equations [2]. Their
method unlike ours is both limited to two-dimensions and is un-
stable. Kass and Miller linearize the shallow water equations to
simulate liquids [12]. The simplifications do not, however, cap-
ture the interesting rotational motions characteristic of fluids. More
recently, Foster and Metaxas clearly show the advantages of us-
ing the full three-dimensional Navier-Stokes equations in creating
fluid-like animations [7]. Many effects which are hard to key frame
manually such as swirling motion and flows past objects are ob-
tained automatically. Their algorithm is based mainly on the work
of Harlow and Welch in computational fluid dynamics, which dates
back to 1965 [11]. Since then many other techniques which Fos-
ter and Metaxas could have used have been developed. However,
their model has the advantage of being simple to code, since it is
based on a finite differencing of the Navier-Stokes equations and
an explicit time solver. Similar solvers and their source code are
also available from the book of Griebel et al. [9]. The main prob-
lem with explicit solvers is that the numerical scheme can become
unstable for large time-steps. Instability leads to numerical sim-
ulations that “blow-up” and therefore have to be restarted with a
smaller time-step. The instability of these explicit algorithms sets
serious limits on speed and interactivity. Ideally, a user should be
able to interact in real-time with a fluid solver without having to
worry about possible “blow ups”.

In this paper, for the first time, we propose a stable algorithm
that solves the full Navier-Stokes equations. Our algorithm is very



easy to implement and allows a user to interact in real-time with
three-dimensional fluids on a graphics workstation. We achieve
this by using time-steps much larger than the ones used by Fos-
ter and Metaxas. To obtain a stable solver we depart from Foster
and Metaxas’ method of solution. Instead of their explicit Eulerian
schemes, we use both Lagrangian and implicit methods to solve the
Navier-Stokes equations. Our method cannot be found in the com-
putational fluids literature, since it is custom made for computer
graphics applications. The model would not be accurate enough
for most engineering applications. Indeed, it suffers from too much
“numerical dissipation”, i.e., the flow tends to dampen too rapidly
as compared to actual experiments. In a computer graphical appli-
cation, on the other hand, this is not so bad, especially in an interac-
tive system where the flow is “kept alive” by an animator applying
external forces. In fact, a flow which does not dampen at all might
be too chaotic and difficult to control. As our results demonstrate
we are able to produce nice swirling flows despite the numerical
dissipation.

In this paper we apply our flows mainly to the simulation of
gaseous-like phenomena. We employ our solver to update both
the flow and the motion of densities within the flow. To further
increase the complexity of our animations we advect texture co-
ordinates along with the density [13]. In this manner we are able
to synthesize highly detailed “wispy” gaseous flows even with low
resolution grids. We believe that the combination of physics-based
fluid solvers and solid textures is the most promising method of
achieving highly complex flows in computer graphics.

The next section presents the Navier-Stokes equations and the
derivation which leads to our method of solution. That section con-
tains all the fundamental ideas and techniques needed to obtain a
stable fluids solver. Since it relies on sophisticated mathematical
techniques, it is written in a mathematical physics jargon which
should be familiar to most computer graphics researchers working
in physics-based modeling. The application oriented reader who
wishes only to implement our solver can skip Section 2 entirely and
go straight to Section 3. There we describe our implementation of
the solver, providing sufficient information to code our technique.
Section 4 is devoted to several applications that demonstrate the
power of our new solver. Finally, in Section 5 we conclude and
discuss future research. To keep this within the confines of a short
paper, we have decided not to include a “tutorial-type” section on
fluid dynamics, since there are many excellent textbooks which pro-
vide the necessary background and intuition. Readers who do not
have a background in fluid dynamics and who wish to fully under-
stand the method in this paper should therefore consult such a text.
Mathematically inclined readers may wish to start with the excel-
lent book by Chorin and Marsden [3]. Readers with an engineering
bent on the other hand can consult the didactic book by Abbott [1].
Also, Foster and Metaxas’ paper does a good job of introducing the
concepts from fluid dynamics to the computer graphics community.

2 Stable Navier-Stokes

2.1 Basic Equations

In this section we present the Navier-Stokes equations along with
the manipulations that lead to our stable solver. A fluid whose den-
sity and temperature are nearly constant is described by a velocity
field � and a pressure field � . These quantities generally vary both
in space and in time and depend on the boundaries surrounding the
fluid. We will denote the spatial coordinate by � , which for two-
dimensional fluids is �������
	���
 and three-dimensional fluids is
equal to ���
	���	���
 . We have decided not to specialize our results
for a particular dimension. All results are thus valid for both two-
dimensional and three-dimensional flows unless stated otherwise.
Given that the velocity and the pressure are known for some initial

time ����� , then the evolution of these quantities over time is given
by the Navier-Stokes equations [3]:��� � ��� (1)� �� � ����� � ��� 
 � � � � �"!$# �&% � !(')	 (2)

where # is the kinematic viscosity of the fluid,  is its density and' is an external force. Some readers might be unfamiliar with this
compact version of the Navier-Stokes equations. Eq. 2 is a vec-
tor equation for the three (two in two-dimensions) components of
the velocity field. The “

�
” denotes a dot product between vec-

tors, while the symbol
�

is the vector of spatial partial deriva-
tives. More precisely,

� �*� �,+�� �
	 �,+�� ��
 in two-dimensions and� �-� �,+�� �
	 �,+�� ��	 �,+�� ��
 in three-dimensions. We have also used
the shorthand notation

� % � �-�.� . The Navier-Stokes equations
are obtained by imposing that the fluid conserves both mass (Eq. 1)
and momentum (Eq. 2). We refer the reader to any standard text
on fluid mechanics for the actual derivation. These equations also
have to be supplemented with boundary conditions. In this paper
we will consider two types of boundary conditions which are use-
ful in practical applications: periodic boundary conditions and fixed
boundary conditions. In the case of periodic boundaries the fluid is
defined on an / -dimensional torus ( /��10�	32 ). In this case there
are no walls, just a fluid which wraps around. Although such flu-
ids are not encountered in practice, they are very useful in creating
evolving texture maps. Also, these boundary conditions lead to a
very elegant implementation that uses the fast Fourier transform as
shown below. The second type of boundary condition that we con-
sider is when the fluid lies in some bounded domain 4 . In that case,
the boundary conditions are given by a function �65 defined on the
boundary

� 4 of the domain. See Foster and Metaxas’ work for a
good discussion of these boundary conditions in the case of a hot
fluid [7]. In any case, the boundary conditions should be such that
the normal component of the velocity field is zero at the boundary;
no matter should traverse walls.

The pressure and the velocity fields which appear in the Navier-
Stokes equations are in fact related. A single equation for the ve-
locity can be obtained by combining Eq. 1 and Eq. 2. We briefly
outline the steps that lead to that equation, since it is fundamen-
tal to our algorithm. We follow Chorin and Marsden’s treatment
of the subject (p. 36ff, [3]). A mathematical result, known as the
Helmholtz-Hodge Decomposition, states that any vector field 7 can
uniquely be decomposed into the form:

78� � ! �"9 	 (3)

where � has zero divergence:
�:� � �;� and

9
is a scalar field. Any

vector field is the sum of a mass conserving field and a gradient
field. This result allows us to define an operator < which projects
any vector field 7 onto its divergence free part � �=<>7 . The
operator is in fact defined implicitly by multiplying both sides of
Eq. 3 by “

�
”: ��� 78� �&%39@? (4)

This is a Poisson equation for the scalar field
9

with the Neumann
boundary condition A�BADC �E� on

� 4 . A solution to this equation is
used to compute the projection � :� ��<>78�F7G� �"9@?
If we apply this projection operator on both sides of Eq. 2 we obtain
a single equation for the velocity:� �� � ��<�HI��� � ��� 
 � !$# �&% � !J'DKL	 (5)

where we have used the fact that < � � � and < � �M�E� . This is
our fundamental equation from which we will develop a stable fluid
solver.
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Figure 1: One simulation step of our solver is composed of steps.
The first three steps may take the field out of the space of divergent
free fields. The last projection step ensures that the field is divergent
free after the entire simulation step.
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Figure 2: To solve for the advection part, we trace each point of
the field backward in time. The new velocity at � is therefore
the velocity that the particle had a time ��� ago at the old location� ���6	 ������
 .
2.2 Method of Solution

Eq. 5 is solved from an initial state ��� � � ���6	I�)
 by marching
through time with a time step ��� . Let us assume that the field has
been resolved at a time � and that we wish to compute the field at a
later time � !���� . We resolve Eq. 5 over the time span ��� in four
steps. We start from the solution 7 � ��� 
L� � ���6	 �I
 of the previous
time step and then sequentially resolve each term on the right hand
side of Eq. 5, followed by a projection onto the divergent free fields.
The general procedure is illustrated in Figure 1. The steps are:

7 � ��� 

	�
�
�
 �������
���������� 7������ 


	�
 �!���#"
��������$� 7 % ��� 



�% &('�)��
��������$� 7+*)��� 


, ���.- ���#"
���������� 7+/.��� 
 ?

The solution at time �
!���� is then given by the last velocity field:� ���6	 ��!0����
��F7+/.��� 
 . A simulation is obtained by iterating these
steps. We now explain how each step is computed in more detail.

The easiest term to solve is the addition of the external force ' .
If we assume that the force does not vary considerably during the
time step, then

7�� ��� 
6�F7 � ��� 
 !1��� '����6	 �I

is a good approximation of the effect of the force on the field over
the time step ��� . In an interactive system this is a good approxi-
mation, since forces are only applied at the beginning of each time
step.

The next step accounts for the effect of advection (or convec-
tion) of the fluid on itself. A disturbance somewhere in the fluid
propagates according to the expression ��� � �
� 
 � . This term
makes the Navier-Stokes equations non-linear. Foster and Metaxas
resolved this component using finite differencing. Their method
is stable only when the time step is sufficiently small such that

���023�54 +76 � 6 , where �54 is the spacing of their computational
grid. Therefore, for small separations and/or large velocities, very
small time steps have to be taken. On the other hand, we use a to-
tally different approach which results in an unconditionally stable
solver. No matter how big the time step is, our simulations will
never “blow up”. Our method is based on a technique to solve par-
tial differential equations known as the method of characteristics.
Since this method is of crucial importance in obtaining our stable
solver, we provide all the mathematical details in Appendix A. The
method, however, can be understood intuitively. At each time step
all the fluid particles are moved by the velocity of the fluid itself.
Therefore, to obtain the velocity at a point � at the new time �.!���� ,
we backtrace the point � through the velocity field 78� over a time
��� . This defines a path � ���6	!9�
 corresponding to a partial stream-
line of the velocity field. The new velocity at the point � is then
set to the velocity that the particle, now at � , had at its previous
location a time ��� ago:

7 % ��� 
6�F7���� � ���6	 �����I
�
 ?
Figure 2 illustrates the above. This method has several advantages.
Most importantly it is unconditionally stable. Indeed, from the
above equation we observe that the maximum value of the new
field is never larger than the largest value of the previous field.
Secondly, the method is very easy to implement. All that is re-
quired in practice is a particle tracer and a linear interpolator (see
next Section). This method is therefore both stable and simple to
implement, two highly desirable properties of any computer graph-
ics fluid solver. We employed a similar scheme to move densities
through user-defined velocity fields [19]. Versions of the method of
characteristics were also used by other researchers. The application
was either employed in visualizing flow fields [13, 18] or improv-
ing the rendering of gas simulations [21, 5]. Our application of
the technique is fundamentally different, since we use it to update
the velocity field, which previous researchers did not dynamically
animate.

The third step solves for the effect of viscosity and is equivalent
to a diffusion equation: � 7 %� � ��# �&% 7 % ?
This is a standard equation for which many numerical procedures
have been developed. The most straightforward way of solving this
equation is to discretize the diffusion operator

� %
and then to do

an explicit time step as Foster and Metaxas did [7]. However, this
method is unstable when the viscosity is large. We prefer, therefore,
to use an implicit method:

H;: �J#���� �&% K 7+*.��� 
6�F7 % ��� 
3	
where : is the identity operator. When the diffusion operator is
discretized, this leads to a sparse linear system for the unknown
field 7+* . Solving such a system can be done efficiently, however
(see below).

The fourth step involves the projection step, which makes the
resulting field divergence free. As pointed out in the previous sub-
section this involves the resolution of the Poisson problem defined
by Eq. 4: �&%39 � ��� 7+* 7+/ �F7+* � �"9@?
The projection step, therefore, requires a good Poisson solver.
Foster and Metaxas solved a similar equation using a relaxation
scheme. Relaxation schemes, though, have poor convergence and
usually require many iterations. Foster and Metaxas reported that
they obtained good results even after a very small number of re-
laxation steps. However, since we are using a different method to
resolve for the advection step, we must use a more accurate method.



Indeed, the method of characteristics is more precise when the field
is close to divergent free. More importantly from a visual point of
view, the projection step forces the fields to have vortices which re-
sult in more swirling-like motions. For these reasons we have used
a more accurate solver for the projection step.

The Poisson equation, when spatially discretized, becomes a
sparse linear system. Therefore, both the projection and the viscos-
ity steps involve the solution of a large sparse system of equations.
Multigrid methods, for example, can solve sparse linear systems in
linear time [10]. Since our advection solver is also linear in time,
the complexity of our proposed algorithm is of complexity �&��� 
 .
Foster and Metaxas’ solver has the same complexity. This perfor-
mance is theoretically optimal since for a complicated fluid, any
algorithm has to consult at least each cell of the computational grid.

2.3 Periodic Boundaries and the FFT

When we consider a domain with periodic boundary conditions, our
algorithm takes a particularly simple form. The periodicity allows
us to transform the velocity into the Fourier domain:

� ���6	 �I
 �$���� ��� 	 �I
 ?
In the Fourier domain the gradient operator “

�
” is equivalent to

the multiplication by ��� , where �L�	� � � . Consequently, both the
diffusion step and the projection step are much simpler to solve.
Indeed the diffusion operator and the projection operators in the
Fourier domain are

: � #���� � % �$� � !$#�����
 %
�����
<>7*�$� �<��7 ���

 ���7 ���


� �


 % ��� � �7 ���

�
�� 	
where 
 � 6 � 6 . The operator �< projects the vector �7 ���

 onto the
plane which is normal to the wave number � . The Fourier transform
of the velocity of a divergent free field is therefore always perpen-
dicular to its wavenumbers. The diffusion can be interpreted as a
low pass filter whose decay is proportional to both the time step
and the viscosity. These simple results demonstrate the power of
the Fourier transform. Indeed, we are able to completely transcribe
our solver in only a couple of lines. All that is required is a particle
tracer and a fast Fourier transform (FFT).

FourierStep( 7 � , 7+/ , ��� ):
add force: 7��L�F7 � !1��� '
advect: 7 % ��� 
 �F7���� � ���6	 ������
�

transform: �7 % ��������� 7 %��
diffuse: �7+*.���

6���7 % ���

 + � � !$#�����
 % 

project: �7+/ � �<��7+*
transform: 7+/ ��������� � ���7+/ �

Since the Fourier transform is of complexity �&���! "$#%� 
 , this
method is theoretically slightly more expensive than a method of
solution relying on multi-grid solvers. However, this method is
very easy to implement. We have used this algorithm to generate
the “liquid textures” of Section 4.

2.4 Moving Substances through the Fluid

A non-reactive substance which is injected into the fluid will be ad-
vected by it while diffusing at the same time. Common examples of
this phenomenon include the patterns created by milk stirred in cof-
fee or the smoke rising from a cigarette. Let & be any scalar quantity
which is moved through the fluid. Examples of this quantity include
the density of dust, smoke or cloud droplets, the temperature of a

Figure 3: The values of the discretized fields are defined at the cen-
ter of the grid cells.

fluid and a texture coordinate. The evolution of this scalar field is
conveniently described by an advection diffusion type equation:� &� � ��� � �D� &>!('*) �&% �,+-)$&>!/.0) 	
where '*) is a diffusion constant, +�) is a dissipation rate and .1) is
a source term. This equation is very similar in form to the Navier-
Stokes equation. Indeed, it includes an advection term, a diffusion
term and a “force term” .0) . All these terms can be resolved exactly
in the same way as the velocity of the fluid. The dissipation term
not present in the Navier-Stokes equation is solved as follows over
a time-step:

� � !1����+-)�
2& ���6	 �
!1����
6��& ���6	 �I
 ?
Similar equations were used by Stam and Fiume to simulate fire
and other gaseous phenomena [21]. However, their velocity fields
were not computed dynamically.

We hope that the material in this section has convinced the reader
that our stable solver is indeed based on the full Navier-Stokes
equations. Also, we have pointed to the numerical techniques
which should be used at each step of our solver. We now proceed
to describe the implementation of our model in more detail.

3 Our Solver

3.1 Setup

Our implementation handles both the motion of fluids and the prop-
agation by the fluid of any number of substances like mass-density,
temperature or texture coordinates. Each quantity is defined on ei-
ther a two-dimensional (NDIM=2) or three-dimensional (NDIM=3)
grid, depending on the application. The grid is defined by its phys-
ical dimensions: origin O[NDIM] and length L[NDIM] of each
side, and by its number of cells N[NDIM] in each coordinate. This
in turn determines the size of each voxel D[i]=L[i]/N[i]. The
definition of the grid is an input to our program which is speci-
fied by the animator. The velocity field is defined at the center of
each cell as shown in Figure 3. Notice that previous researchers,
e.g., [7], defined the velocity at the boundaries of the cells. We
prefer the cell-centered grid since it is more straightforward to im-
plement. We allocate two grids for each component of the velocity:
U0[NDIM] and U1[NDIM]. At each time step of our simulation
one grid corresponds to the solution obtained in the previous step.
We store the new solution in the second grid. After each step, the
grids are swapped. We also allocate two grids to hold a scalar field
corresponding to a substance transported by the flow. Although our
implementation can handle any number of substances, for the sake
of clarity we present only the algorithm for one field in this section.
This scalar quantity is stored in the grids S0 and S1. The speed of
interactivity is controlled by a single time step dt, which can be as
large as the animator wishes, since our algorithm is stable.



The physical properties of the fluid are a function of its viscosity
visc alone. By varying the viscosity, an animator can simulate a
wide range of substances ranging from glue-like matter to highly
turbulent flows. The properties of the substance are modeled by a
diffusion constant kS and a dissipation rate aS. Along with these
parameters, the animator also must specify the values of these fields
on the boundary of the grid. There are basically two types: peri-
odic or fixed. The boundary conditions can be of a different type
for each coordinate. When periodic boundary conditions are cho-
sen, the fluid wraps around. This means that a piece of fluid which
leaves the grid on one side reenters the grid on the opposite side.
In the case of fixed boundaries, the value of each physical quantity
must be specified at the boundary of the grid. The simplest method
is to set the field to zero at the boundary. We refer the reader to
Foster and Metaxas’ paper for an excellent description of different
boundary conditions and their resulting effects [7]. In the results
section we describe the boundary conditions chosen for each an-
imation. For the special case when the boundary conditions are
periodic in each coordinate, a very elegant solver based on the fast
Fourier transform can be employed. This algorithm is described in
Section 2.3. We do not repeat it here since the solver in this section
is more general and can handle both types of boundary conditions.

The fluid is set into motion by applying external forces to it.
We have written an animation system in which an animator with
a mouse can apply directional forces to the fluid. The forces can
also be a function of other substances in the fluid. For example,
a temperature field moving through the fluid can produce buoyant
and turbulent forces. In our system we allow the user to create
all sorts of dependencies between the various fields, some of which
are described in the results section of this paper. We do not describe
our animation system in great detail since its functionality should
be evident from the examples of the next section. Instead we focus
on our simulator, which takes the forces and parameters set by the
animator as an input.

3.2 The Simulator

Once we worked out the mathematics underlying the Navier-Stokes
equations in Section 2, our implementation became straightfor-
ward. We wish to emphasize that the theoretical developments of
Section 2 are in no way gratuitous but are immensely useful in cod-
ing compact solvers. In particular, casting the problem into a math-
ematical setting has allowed us to take advantage of the large body
of work done in the numerical analysis of partial differential equa-
tions. We have written the solver as a separate library of routines
that are called by the interactive animation system. The entire li-
brary consists of only roughly 500 lines of C code. The two main
routines of this library update either the velocity field Vstep or
a scalar field Sstep over a given time step. We assume that the
external force is given by an array of vectors F[NDIM] and that
the source is given by an array Ssource for the scalar field. The
general structure of our simulator looks like

while ( simulating ) �
/* handle display and user interaction */
/* get forces F and sources Ssource from the UI */
Swap(U1,U0); Swap(S1,S0);
Vstep ( U1, U0, visc, F, dt );
Sstep ( S1, S0, kS, aS, U1, Ssource, dt );�

The velocity solver is composed of four steps: the forces are added
to the field, the field is advected by itself, the field diffuses due to
viscous friction within the fluid, and in the final step the velocity is
forced to conserve mass. The general structure of this routine is:

Vstep ( U1, U0, visc, F, dt )

for(i=0;i<NDIM;i++)
addForce ( U0[i], F[i], dt );

for(i=0;i<NDIM;i++)
Transport ( U1[i], U0[i], U0, dt );

for(i=0;i<NDIM;i++)
Diffuse ( U0[i], U1[i], visc, dt );

Project ( U1, U0, dt );

The general structure of the scalar field solver is very similar to the
above. It involves four steps: add the source, transport the field by
the velocity, diffuse and finally dissipate the field. The scalar field
solver shares some of the routines called by the velocity solver:

Sstep ( S1, S0, k, a, U, source, dt )
addForce ( S0, source, dt );
Transport ( S1, S0, U, dt );
Diffuse ( S0, S1, k, dt );
Dissipate ( S1, S0, a, dt );

The addForce routine adds the force field multiplied by the time
step to each value of the field. The dissipation routine Dissipate
divides each element of the first array by 1+dt*a and stores it
in the new array. The Transport routine is a key step in our
simulation. It accounts for the movement of the substance due to
the velocity field. More importantly it is used to resolve the non-
linearity of the Navier-Stokes equations. The general structure of
this routine (in three-dimensions) is

Transport ( S1, S0, U, dt )
for each cell (i,j,k) do
X = O+(i+0.5,j+0.5,k+0.5)*D;
TraceParticle ( X, U, -dt, X0 );
S1[i,j,k] = LinInterp ( X0, S0 );

end

The routine TraceParticle traces a path starting at X through
the field U over a time -dt. The endpoint of this path is the new
point X0. We use both a simple second order Runge-Kutta (RK2)
method for the particle trace [14] and an adaptive particle tracer,
which subsamples the time step only in regions of high velocity gra-
dients, such as near object boundaries. The routine LinInterp
linearly interpolates the value of the scalar field S at the location
X0. We note that we did not use a higher order interpolation, since
this might lead to instabilities due to the oscillations and overshoots
inherent in such interpolants. On the other hand, higher order spline
approximants may be used, though these tend to smooth out the re-
sulting flows.

To solve for the diffusion (Diffuse) and to perform the projec-
tion (Project) we need a sparse linear solver SolveLin. The
best theoretical choice is the multi-grid algorithm [10]. However,
we used a solver from the FISHPAK library since it was very easy to
incorporate into our code and gave good results [22]1. In practice,
it turned out to be faster than our implementation of the multi-grid
algorithm. In Appendix B, we show exactly how these routines are
used to perform both the Diffuse step and the Project step.
These routines are ideal for domains with no internal boundaries.
When complex boundaries or objects are within the flow, one can
either use a sophisticated multi-grid solver or a good relaxation rou-
tine [9]. In any case, our simulator can easily accomodate new
solvers.

1FISHPAK is available from http://www.netlib.org.



4 Results

Our Navier-Stokes solver can be used in many applications requir-
ing fluid-like motions. We have implemented both the two- and the
three-dimensional solvers in an interactive modeler that allows a
user to interact with the fluids in real-time. The motion is modeled
by either adding density into the fluid or by applying forces. The
evolution of the velocity and the density is then computed using our
solver. To further increase the visual complexity of the flows, we
add textural detail to the density. By moving the texture coordinates
using the scalar solver as well, we achieve highly detailed flows. To
compensate for the high distortions that the texture maps undergo,
we use three sets of texture coordinates which are periodically reset
to their initial (unperturbed) values. At every moment the resulting
texture map is the superposition of these three texture maps. This
idea was first suggested by Max et al. [13].

Figure 4.(a) shows a sequence of frames from an animation
where the user interacts with one of our liquid textures. The figure
on the backcover of the SIGGRAPH proceedings is another frame
of a similar sequence with a larger grid size (

� �.� % ).
Figures 4.(b) through 4.(g) show frames from various animations

that we generated using our three-dimensional solver. In each case
the animations were created by allowing the animator to place den-
sity and apply forces in real-time. The gases are volume rendered
using the three-dimensional hardware texture mapping capabilities
of our SGI Octane workstation. We also added a single pass that
computes self-shadowing effects from a directional light source in
a fixed position. It should be evident that the quality of the render-
ings could be further improved using more sophisticated rendering
hardware or software. Our grid sizes ranged from

��� * to 2.� * with
frame rates fast enough to monitor the animations while being able
to control their behavior. In most of these animations we added a
“noise” term which is proportional to the amount of density (the
factor of proportionality being a user defined parameter). This pro-
duced nice billowing motions in some of our animations. In Fig-
ures 4.(d)-(e) we used a fractal texture map, while in Figure 4.(g)
we used a texture map consisting of evenly spaced lines.

All of our animations were created on an SGI Octane worksta-
tion with a R10K processor and 192 Mbytes of memory.

5 Conclusions

The motivation of this paper was to create a general software sys-
tem that allows an animator to design fluid-like motions in real time.
Our initial intention was to base our system on Foster and Metaxas’
work. However, the instabilities inherent in their method forced us
to develop a new algorithm. Our solver has the property of being
unconditionally stable and it can handle a wide variety of fluids in
both two- and three-dimensions. The results that accompany this
paper clearly demonstrate that our solver is powerful enough to al-
low an animator to achieve many fluid-like effects. We therefore
believe that our solver is a substantial improvement over previous
work in this area. The work presented here does not, however, dis-
credit previous, more visually oriented models. In particular, we
believe that the combination of our fluid solvers with solid textures,
for example, may be a promising area of future research [4]. Our
fluid solvers can be used to generate the overall motion, while the
solid texture can add additional detail for higher quality animations.

Also we have not addressed the problem of simulating fluids with
free boundaries, such as water [6]. This problem is considerably
more difficult, since the geometry of the boundary evolves dynam-
ically over time. We hope, however, that our stable solvers may
be applied to this problem as well. Also, we wish to extend our
solver to finite element boundary-fitted meshes. We are currently
investigating such extensions.
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A Method of Characteristics

The method of characteristics can be used to solve advection equa-
tions of the type� & ���6	 �I
� � ����� ��� 
 ��� & ���6	 �I
 ����� & ���6	��)
���& � ��� 
3	
where & is a scalar field, � is a steady vector field and & � is the field
at time �L�;� . Let � ��� � 	 �I
 denote the characteristics of the vector
field � which flow through the point � � at ����� :

�
� � � ��� � 	 �I
6��� � � ��� � 	 �I
�
 ����� � ��� � 	I�)
��F� � ?

Now let �& ��� � 	 �I
6��& � � ��� � 	 �I
3	 �I
 be the value of the field along the
characteristic passing through the point � � at � ��� . The variation
of this quantity over time can be computed using the chain rule of
differentiation: � �&� � �

� &� � !�� ��� &&��� ?
This shows that the value of the scalar does not vary along the
streamlines. In particular, we have �& ��� � 	 �I
 ���& ��� � 	I�)
L� & � ��� � 
 .
Therefore, the initial field and the characteristics entirely define the
solution to the advection problem. The field for a given time � and
location � is computed by first tracing the location � back in time
along the characteristic to get the point � � , and then evaluating the
initial field at that point:

& � � ��� � 	��I
3	 �I
6��& � ��� � 
 ?
We use this method to solve the advection equation over a time
interval 	 � 	�� ! ����
 for the fluid. In this case, �M� � ���6	 �I
 and & � is
any of the components of the fluid’s velocity at time � .
B FISHPAK Routines

The linear solver POIS3D from FISHPAK is designed to solve a
general system of finite difference equations of the type:

K1*(S[i-1,j,k]-2*S[i,j,k]+S[i+1,j,k]) +
K2*(S[i,j-1,k]-2*S[i,j,k]+S[i,j+1,k]) +
A[k]*S[i,j,k-1]+B[k]*S[i,j,k]+ .

For the diffusion solver, the values of the constants on the left hand
side are:

K1 = -dt*k/(D[0]*D[0]),
K2 = -dt*k/(D[1]*D[1]),
A[k] = C[k] = -dt*k/(D[2]*D[2]) and
B[k] = 1+2*dt*k/(D[2]*D[2]),

while the right hand side is equal to the grid containing the previous
solution: F=S0. In the projection step these constants are equal to

K1 = 1/(D[0]*D[0]), K2 = 1/(D[1]*D[1]),
A[k] = C[k] = 1/(D[2]*D[2]) and
B[k] = -2/(D[2]*D[2]),



while the right hand side is equal to the divergence of the velocity
field:

F[i,j,k] = 0.5*((U[i+1,j,k]-U[i-1,j,k])/D[0]+
(U[i,j+1,k]-U[i,j-1,k])/D[1]+
(U[i,j,k+1]-U[i,j,k-1])/D[2]).

The gradient of the solution is then subtracted from the previous
solution:

U1[0][i,j,k] = U0[0][i,j,k] -
0.5*(S[i+1,j,k]-S[i-1,j,k])/D[0],

U1[1][i,j,k] = U0[1][i,j,k] -
0.5*(S[i,j+1,k]-S[i,j-1,k])/D[1],

U1[2][i,j,k] = U0[2][i,j,k] -
0.5*(S[i,j,k+1]-S[i,j,k-1])/D[2].

The FISHPAK routine is also able to handle different types of
boundary conditions, both periodic and fixed.
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Figure 4: Snapshots from our interactive fluid solver.


