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Chapter

1
Mathematical
Modeling and PDEs

In this chapter, we will consider several concrete situations stemming from various
areas of applications, the mathematical modeling of which involves partial differ-
ential equation (PDE) problems. We will not be rigorous mathematically speaking.
There will be many often rather brutal approximations, not always convincingly
justified. This is however the price to be paid if we want to be able to derive
mathematical models that aim to describe the complex phenomena we will be
dealing with in a way that remains manageable. At a later stage, we will study
some of these models with all required mathematical rigor.

The simplest examples arise in mechanics. Let us start with the simplest
example of all.

1.1 The elastic string

Let us first consider the situation depicted in Figure 1 below.

0 Lx

u(x)

Figure 1. An elastic string stretched between two points and pulled by some
vertical force. The point initially located at x moves by a displacement u(x).
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What is an elastic string in real life? It can be several different objects, such
as a stretched rubber band, a musical instrument string made of nylon or steel, or
again a cabin lift cable. Up to a certain level of approximation, all these objects are
modeled in the same way. What they all have in common is a very small aspect
ratio: they are three-dimensional and much thinner in two directions than in the
third. Thus, the first step toward a simple mathematical model is to simply declare
them to be one-dimensional. Points in a string will be labeled by a single real-
valued variable x belonging to a segment [0,L], embedded in R2 or R3. Another
implicit assumption used here is that of continuum mechanics. We assume that
matter is a continuum which can be divided indefinitely. This is obviously untrue,
but it is true enough at the macroscopic scale to be an extremely effective modeling
hypothesis.

We assume that the string is stretched with a tension T > 0. The tension is just
the force that is applied at both extremities 0 and L in order to make the string
taut, for instance by working the tuners of a guitar or by passing the string on a
wheel and suspending a weight at the end. If the only force acting on the string is
the tension, then the string settles in an equilibrium position which is none but the
segment [0,L].

We now perform a thought experiment by cutting the string at two points of
[0,L], located at abscissae x and y. If the piece of string is going to stay in the
same place, it is quite clear that we need to apply horizontal forces T−(x)< 0 and
T+(y) > 0 at the two newly created extremities, in order to compensate for the
disappearance of the rest of the string.

x y

T−(x) T+(y)

Figure 2. A piece of string kept in equilibrium.

As a matter of fact, T−(x) is the force that was exerted by the [0,x] part of the string
on the segment [x,y] at point x before the string was cut, and T+(y) is likewise the
force formerly exerted by the [y,L] part of the string at point y. The action-reaction
principle immediately shows that we have T−(x) = −T+(x). Let us thus just set
T (x) = T+(x).

Since the cut piece of string stays in equilibrium and the only forces acting on it
are the above two tensions, Newton’s law implies that the resultant force vanishes,
that is to say that

T (y)−T (x) = 0.

Now this holds true for all x and y, therefore the tension T (x) inside the string
is constant. Taking x = 0, we see that this constant is equal to T , the string tension
applied at the extremities. This is an important, even if obvious, result, because
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it holds true irrespective of the physical nature of the string. Whether it is made
of rubber, nylon or steel, the tension inside a string is constant and equal to the
applied tension. This is quite remarkable.

From now on, we will work with planar deformations, that is to say, we assume
that the string lives in R2. Of course, a similar model can be derived in three
dimensions. Let us apply other forces to the string, for example its weight or the
weight of an object that is suspended to the string. For simplicity, we assume that
this extra force is perpendicular to the segment—we will say that it is vertical
whereas the segment is considered to be horizontal—and described by a lineic
density. This means that we are given a function f : [0,L]→ R such that the
vertical component of the force applied to a portion [a,b] of the string is equal to
the integral

∫ b
a f (x)dx. Such is the case of the weight of the string. Assume the

string is homogeneous, then its weight is represented by the function f (x) =−ρg
where ρ is the string mass per unit length and g is the gravitational acceleration. If
we suspend a weight P to a device occupying a segment [α,β ] of the string, we
may take f (x) =−P1[α,β ](x), where 1E denotes the characteristic function of a set
E: 1E(x) = 1 if x ∈ E, 1E(x) = 0 otherwise.

Due to the extra applied force, the string deforms and settles in a new, unknown
equilibrium position that we wish to determine. We assume that a point initially
situated at (x,0) moves vertically and reaches an equilibrium position (x,u(x)).
This is again a modeling hypothesis. It is not strictly speaking true. In reality,
the point in question also moves a little bit to the left or to the right. However,
this hypothesis is reasonable when the force is vertical and the displacement is
small. In this case, it can be justified, and we just admit it here, that the horizontal
displacements are negligible in comparison with the vertical displacement u(x). If
the force was slanted, or the displacement large, it would be an entirely different
story.

The deformed string is at this point described by a parametric curve in R2,
x 7→ (x,u(x)) and u is an unknown function. We now make another modeling
hypothesis, which is to only be interested in those situations where the derivative
u′(x) has small absolute value. In this case, the length element of the deformed
string satisfies √

1+u′(x)2 ≈ 1+
1
2

u′(x)2 ≈ 1,

since if u′(x) is small, then u′(x)2 is negligible.1 We are thus dealing with situations
in which the string is approximately inextensional, i.e., there are no length changes.

1As a general rule, we neglect all terms of order strictly higher than one with respect to u′(x).
This leads to a simplified linearized model. A model that would take into account such higher order
terms would be by nature nonlinear, and thus a lot more difficult to study from the point of view of
mathematics.
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Let us pick up our thought experiment scissors again and cut the string between
abscissae x and x+∆x. This time, the string is no longer straight. When we
think about the forces exerted by the rest of the string on the cut part, it appears
reasonable that these forces should be tangent to the deformed string at the cut
points, see Figure 3 below. This is yet another modeling hypothesis, which can be
justified by a more refined mechanical analysis.

The scissors wielding thought experimenter thus applies a tension force of the
form −T (x)τ(x) at point (x,u(x)), and a tension force T (x+∆x)τ(x+∆x) at point
point (x+∆x,u(x+∆x)), where τ is the unit tangent vector

τ(x) =
1√

1+u′(x)2

(
1

u′(x)

)
≈
(

1
u′(x)

)
,

in order to keep the cut piece in equilibrium. The above approximation of the
tangent vector is legitimate in view of our decision to neglect terms u′(x)2 and
higher.

x x+∆x

−τ(x)

τ(x+∆x)

Figure 3. Cutting a piece of the deformed string.

We apply Newton’s law again, which yields the vector equation

T (x+∆x)τ(x+∆x)−T (x)τ(x)+
(

0∫ x+∆x
x f (s)ds

)
=

(
0
0

)
.

The horizontal component of the equation implies that T (x) = T is the same
constant as before. The vertical component then reads

T
(
u′(x+∆x)−u′(x)

)
+
∫ x+∆x

x
f (s)ds = 0,

using the above approximation for the tangent vector. Now faced with such an
equation, one should feel an irrepressible urge to divide everything by ∆x, whence

−T
u′(x+∆x)−u′(x)

∆x
=

1
∆x

∫ x+∆x

x
f (s)ds,

which should normally trigger an irrepressible urge to let ∆x tend to 0, since the
left-hand side is a differential quotient, and the right-hand side is an average over a
small interval. We thus obtain in the limit ∆x→ 0,

−Tu′′(x) = f (x),
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which can be rewritten as the first equation of the following string problem:{
−u′′(x) = 1

T f (x) in ]0,L[,
u(0) = u(L) = 0.

(1.1)

The second line of (1.1) expresses the fact that the string is fixed at the endpoints
x = 0 and L. These points never move and the displacement is zero there. This
condition is called a boundary condition. Problem (1.1) consists of a differential
equation in an open set (here an ordinary differential equation, since we are in
dimension one), together with a condition on the boundary of the open set. This
type of problem is called a boundary value problem, and we will see more of them.

If we are somehow capable of solving this problem, then we will have deter-
mined the deformed shape of the string under the action of the applied forces.
Indeed, it is easily checked by following the computations backward, that any
solution of problem (1.1) yields an equilibrium position for the string.

Remark 1.1.1 In order to appease natural suspicions that it does not feel right to
neglect terms before differentiating them, we can note that( u′(x)√

1+u′(x)2

)′
=

u′′(x)√
1+u′(x)2

+
u′(x)2u′′(x)

(1+u′(x)2)3/2 ≈ u′′(x),

therefore it was not so bad, a posteriori. �

Remark 1.1.2 Let us admit for the time being that problem (1.1) has a unique
solution for given f and T . If we consider the same string subjected to the
same force, but with different tensions, we see that the displacement is inversely
proportional to the tension: the tauter the string, the more rigid it is and conversely.
This is in agreement with day-to-day experience.

Let us emphasize again that the string model is independent of the physical
nature of the string, which can be counterintuitive. A rubber string and a steel
string stretched with the same tension behave the same insofar is the model is
concerned. �

It is important to understand that, even though we have here an ordinary
differential equation because we are in dimension one, a boundary value problem
such as problem (1.1) has strictly nothing to do with the Cauchy problem for
the same ordinary differential equation, either in terms of theory or in terms of
numerical approximation.

In particular, the numerical schemes used for the Cauchy problem, such as the
forward and backward Euler methods or the Runge-Kutta method, are of no use to
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compute approximations of the solution of problem (1.1) (apart from their use in
the shooting method).

To illustrate this, let us introduce a slightly generalized version of the string
problem. We thus consider the following boundary value problem:{

−u′′(x)+ c(x)u(x) = f (x) in ]0,L[,
u(0) = A,u(L) = B, (1.2)

where f and c are two given functions defined on ]0,L[ and A, B are two constants.
The function c has no specific mechanical interpretation in the context of the
elastic string. It just adds generality without costing any extra complexity. The
boundary condition in (1.2) is called a Dirichlet boundary condition. In the case
when A = B = 0, it is called a homogeneous Dirichlet condition.

Let us now see some of the fundamental differences between a boundary value
problem and a seemingly similar Cauchy problem. The Cauchy problem consists
in replacing the boundary conditions in (1.2) by initial conditions of the form
u(0) = α , u′(0) = β . Clearly, the Cauchy problem always has one and only one
solution. The boundary value problem (1.2) may however not have any solution at
all!

We take the following apparently innocuous example: L = 1, A = B = 0,
c(x) =−π2 and f (x) = 1. Assume that the problem{

−u′′(x)−π
2u(x) = 1 in ]0,1[,

u(0) = u(1) = 0,

has a solution. We multiply the differential equation by sin(πx), which yields

−u′′(x)sin(πx)−π
2u(x)sin(πx) = sin(πx).

We now integrate this equality between 0 and 1. We obtain

−
∫ 1

0
u′′(x)sin(πx)dx−π

2
∫ 1

0
u(x)sin(πx)dx =

∫ 1

0
sin(πx)dx =

2
π
. (1.3)

Now, if we integrate the first integral by parts twice, we see that∫ 1

0
u′′(x)sin(πx)dx = [u′(x)sin(πx)]10−π[u(x)cos(πx)]10−π

2
∫ 1

0
u(x)sin(πx)dx.

The first two terms vanish because the sine function vanishes for the first one,
and u vanishes for the second one by the homogeneous Dirichlet condition. The
remaining integral cancels out with the second integral in equation (1.3). Finally,
we find that

2
π
= 0,

which is absurd. This is a contradiction, hence the problem cannot have any
solution. �
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The above trick of multiplying the equation by certain well-chosen functions
and integrating the result by parts will be at the heart of the existence and uniqueness
theory using variational formulations, as well as the basis of such variational
approximation methods as the finite element method that we will encounter later
on.

We can already prove a uniqueness result. The problem in the previous example
is that the function c is negative (and take the specific value −π2).

Theorem 1.1.1 If c is a continuous, nonnegative function, then problem (1.2) has
at most one solution of class C2.

Proof. Let u1 and u2 be two solutions of class C2, and set w = u2−u1. It is easily
checked that w solves the homogeneous boundary value problem:{

−w′′(x)+ c(x)w(x) = 0 in ]0,L[,
w(0) = w(L) = 0.

Let v ∈ C2([0,L]) be a function such that v(0) = v(L) = 0.2 We multiply the
differential equation by v as before and integrate between 0 and L. This yields

−
∫ L

0
w′′(x)v(x)dx+

∫ L

0
c(x)w(x)v(x)dx = 0.

Integrating the first term by parts once, we obtain∫ L

0
[w′(x)v′(x)+ c(x)w(x)v(x)]dx = 0,

since [w′v]L0 = 0 given the boundary conditions satisfied by v. In particular, we may
choose v = w. With this choice, we get∫ L

0
[w′(x)2 + c(x)w(x)2]dx = 0.

The integrand is a continuous function which is nonnegative due to the sign
hypothesis for c. Its integral is zero, hence it is identically zero. In particular,
w′(x) = 0, which implies w(x) = w(0) = 0 for all x, hence u1 = u2, which is the
uniqueness result. �

Such boundary problems as (1.2) have an important property called the maxi-
mum principle. As we will see shortly, the proof is banal in dimension one, but
this is a profound property in dimensions strictly greater than one.

2Such functions are called test-functions, since they are used to test the equation in a sense.
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Theorem 1.1.2 (Maximum Principle) Assume that c≥ 0 and that problem (1.2)
has a solution u of class C2. If f ≥ 0 in ]0,L[, A≥ 0 and B≥ 0, then we have u≥ 0
in ]0,L[.

Proof. We argue by contradiction by assuming that there exists a point x0 such that
u(x0)< 0. Since u(0) = A≥ 0 and u(L) = B≥ 0, it follows that x0 ∈ ]0,L[. Now
u is continuous, therefore there is an interval [α,β ] such that x0 ∈ [α,β ]⊂ [0,L]
and u ≤ 0 on [α,β ]. We may assume that u(α) = u(β ) = 0 by the intermediate
value theorem.

On the interval [α,β ], c and f are positive and u is nonpositive, therefore

u′′(x) = c(x)u(x)− f (x)≤ 0.

We deduce from this that the function u is concave on [α,β ].
Now as x0 ∈ [α,β ], there exists λ ∈ [0,1] such that x0 = λα + (1− λ )β .

Consequently, the concavity of u implies that

u(x0)≥ λu(α)+(1−λ )u(β ) = 0,

which is a contradiction. �

Remark 1.1.3 Under the form given above, it is a little hard to see where the
maximum of the principle is. . . because it is hiding. Anyway, the right way to
understand Theorem 1.1.2 is to see it as a monotonicity result. Indeed, the function
that maps the data triple ( f ,A,B) to the solution u is monotone. Thus, in the case
of the elastic string, when A = B = 0 and f ≥ 0, in other words when we pull
upwards on the string, then u≥ 0, which means that the string bends upwards too.
So we see a very natural physical interpretation of the maximum principle that
is in agreement with our intuition. This is also the reason why, in mathematics,
we prefer the operator −u′′, or more generally −∆u in higher dimension, to the
operator u′′, which has the opposite behavior. �

1.2 The elastic beam
Our second example is also an example taken from mechanics. However, the
mathematical modeling of this example is considerably more complicated than that
of the string, and we will not explain it here. We are again dealing with essentially
one-dimensional objects that are a lot more rigid than the previous ones, such as
a metal rod, a concrete pillar or a wooden beam. Such objects exhibit a strong
resistance to bending, as opposed to strings.
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If we assume that our beam is clamped in a rigid wall at both ends, see Figure
4 below, then the following boundary value problem is found for the vertical
displacement u: {

Eu′′′′(x) = f (x) in ]0,L[,
u(0) = u′(0) = u(L) = u′(L) = 0, (1.4)

where f is again the density of the applied vertical force and E > 0 is a coefficient
which is characteristic of the material of the beam3, the higher the coefficient, the
more rigid the material. This is in striking contrast with the string model in which
the nature of the string material plays no role whatsoever.

The differential equation is a fourth order equation, as opposed to a second
order equation in the case of the string, and accordingly, the Dirichlet boundary
conditions involve both u and u′.

Figure 4. A beam clamped at both ends.

We can generalize in the same spirit as before by considering the boundary
value problem {

u′′′′(x)− (a(x)u′(x))′+ c(x)u(x) = f (x) in ]0,L[,
u(0) = u′(0) = u(L) = u′(L) = 0, (1.5)

where the given functions a and c still have no particular mechanical meaning.
We also have uniqueness of C4 solutions when a and c are nonnegative. Indeed,
if w = u2− u1 is the difference between two solutions, multiplying by w the
differential equation satisfied by w, which is (1.5) with zero right-hand side, and
integrating by parts as many times as needed, we obtain∫ L

0
[(w′′(x))2 +a(x)(w′(x))2 + c(x)w(x)2]dx = 0,

whence w′′(x)= 0. Consequently, w is an affine function of the form w(x)=αx+β .
Since it vanishes at both ends, we deduce that w = 0.

Remark 1.2.1 A word of warning: there is no maximum principle for such prob-
lems as (1.5) in general. The maximum principle is a property of second order
boundary value problems that does not extend to fourth order problems. �

3The coefficient E is called the Young modulus of the material. It is measured in units of
pressure.
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1.3 The elastic membrane
Let us now switch to real PDEs in more than one dimension. The first example is
still taken form mechanics. It is the two-dimensional version of the elastic string,
and it is called the elastic membrane. As we will see, many of the characteristics
of the elastic string carry over to the elastic membrane.

To get a feeling for what an elastic membrane is, think of saran wrap suitable
for food contact, that you can find in your favorite supermarket. Stretch the film
up to the sides of some container in order to seal it before you store it in the
fridge. In the beginning, the stretched part of the plastic film is planar. Then, as
the temperature of the air inside the container goes down, the inside air pressure
diminishes. At the same time, the atmospheric pressure inside the fridge remains
more or less constant (you are bound to open the door every once in a while). The
pressure differential thus created pushes on the film which bends inwards. We wish
to determine the final shape of the film in three-dimensional space.

This kitchen example above is by far not the only one. There are many instances
of elastic membranes around: the skin of a drum, a biological cell membrane, a
boat sail, a party balloon, and so on.

To model this situation, let us be given an open set Ω of R2, whose boundary
∂Ω represents the sides of the container. Each point x of the closure Ω̄ of Ω

represents a material point of the membrane when it is stretched without any other
applied force. Again, we identify a small aspect ratio, three-dimensional object
with a two-dimensional object filling Ω̄.

We now subject the membrane to a force density, such as the above pressure
differential, which is orthogonal to its plane, and is represented by a given function
f : Ω→ R. This time, f is a surfacic force density and the resultant force applied
to a part ω of Ω is given by the integral

∫
ω

f (x1,x2)dx1dx2.
As in the case of the elastic string, we make the reasonable albeit approximative

hypothesis that point x is displaced of a quantity u(x) perpendicularly to the
membrane (vertically in the picture below). The displacement u is thus now a
function in two variables u : Ω̄→R, and the shape of the membrane at equilibrium
is a parametric surface in R3 given by (x1,x2) 7→ (x1,x2,u(x1,x2)) for all (x1,x2)
in Ω̄.

Since we assume that the membrane sticks to the sides of the container, we get
at once a homogeneous Dirichlet boundary condition

u(x) = 0 on ∂Ω. (1.6)

which is the exact analogue of its one-dimensional counterpart for the elastic
string. We next need to obtain an equation that will determine the function u in
Ω, and based on our previous one-dimensional experience, we can expect partial
differential equations to play the leading role here.
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Figure 5. An elastic membrane stretched with tension T = 1 on the square
Ω = ]−1,1[2, subjected to a vertical force of density f (x1,x2) = 4−2(x2

1 + x2
2)

and homogeneous Dirichlet conditions on the boundary of the square.

In Figure 5 above, the drawn surface represents the graph of the function u.
The two vectors

a1 =

 1
0

∂u
∂x1

(x1,x2)

 and a2 =

 0
1

∂u
∂x2

(x1,x2)


form a basis of the tangent plane to the surface at point (x1,x2,u(x1,x2)).

As in the case of the elastic string, we will only consider situations in which

‖∇u‖ =
√(

∂u
∂x1

)2
+
(

∂u
∂x2

)2 is small (which is not exactly the case in Figure 5!).
This hypothesis leads us to neglect all quantities that are at least quadratic in the
partial derivatives of u. In particular, when we normalize the above tangent basis
vectors, we obtain the approximation

ai

‖ai‖
=

1√
1+
(

∂u
∂xi

)2
ai ≈ ai,

which is analogous to the normalization of the tangent vector to the deformed
elastic string used earlier.

Let us now explain what the word tension means in the case of a membrane.
Because we are in a two-dimensional setting, the situation is a bit more complicated
than for the elastic string. The general principle remains however the same. Let
us consider a part A of the membrane and isolate this part as if it was cut out of
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the membrane. Just like the cut piece of string before, what keeps the part A in
place must be forces exerted by the rest of the membrane. It seems reasonable to
assume that these forces are exerted exactly on the boundary ΓA of A relative to
the membrane, since the membrane cannot act at a distance. Now the boundary in
question is a curve, so that the force in question must be given by a lineic density
distributed on ΓA, the resultant force being the integral of the density on ΓA. This
is general for all two-dimensional continuum mechanics models.

In the case of an elastic membrane, as in the case of a string, we assume that
the above force density lies in the tangent plane to the deformed surface, and
furthermore, that it is normal to ΓA in the tangent plane and pointing outwards,
see Figure 6 below. Actually, this assumption can be seen as the very definition
of an elastic membrane. The tension T > 0 is the norm of this force density—we
admit here for simplicity that this norm is a constant, independent of the point4—it
measures the tautness of the membrane. The physical unit for T is the N/m.

! (  )1

a   x(  )1

a   x(  )2

a   x(  )2!

a   x

Figure 6. Magnified view of a small square cut out of the membrane. A few of the
normal vectors are drawn. The force density exerted by the rest of the membrane

is equal to T times these vectors. We can see it pulling to stretch the piece of
membrane.

Let us thus take the scissors out again and cut out a small square in the mem-
brane around an arbitrary point (x0,u(x0)). More precisely, we consider the square

Cx0,∆x = ]x0,1−∆x,x0,1 +∆x[×]x0,2−∆x,x0,2 +∆x[,

in R2, and cut out its image by the mapping x 7→ (x,u(x)) in R3, see Figure 6. We
also make no distinction between the boundary of the image of Cx0,∆x in R3 and

4This can of course be proved with a little more work.
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its boundary as a subset of R2 in the computation of the integrals. This is because
‖∇u‖ is assumed to be small. We already made this approximation in the case of
the string, without mentioning it. . . It can be fun to perform the exact computations
to make sure that this approximation is really justified.

In order to compute the integral, we number the four sides of the square
counterclockwise: γ1

x0,∆x = ]x0,1− ∆x,x0,1 + ∆x[×{x0,2− ∆x}, γ2
x0,∆x = {x0,1 +

∆x}× ]x0,2−∆x,x0,2+∆x[, and so on for γ3
x0,∆x and γ4

x0,∆x. According to the normal
vectors depicted in Figure 6, Newton’s law for the vertical force component then
reads

T
[∫

γ1
x0,∆x

−[a2(x)]3 dγ +
∫

γ2
x0,∆x

[a1(x)]3 dγ

+
∫

γ3
x0,∆x

[a2(x)]3 dγ +
∫

γ4
x0,∆x

−[a1(x)]3 dγ

]
+
∫

Cx0,∆x

f (x)dx = 0, (1.7)

where [z]3 denotes the vertical component of vector z. It is a simple exercise to
check that the horizontal components already satisfy Newton’s law. Let us write
each integral separately. We have∫

γ1
x0,∆x

[a2(x)]3 dγ =
∫ x0,1+∆x

x0,1−∆x

∂u
∂x2

(s,x0,2−∆x)ds,

∫
γ2

x0,∆x

[a1(x)]3 dγ =
∫ x0,2+∆x

x0,2−∆x

∂u
∂x1

(x0,1 +∆x,s)ds,

∫
γ3

x0,∆x

[a2(x)]3 dγ =
∫ x0,1+∆x

x0,1−∆x

∂u
∂x2

(s,x0,2 +∆x)ds,

∫
γ4

x0,∆x

[a1(x)]3 dγ =
∫ x0,2+∆x

x0,2−∆x

∂u
∂x1

(x0,1−∆x,s)ds.

Formula (1.7) can thus be rewritten as

T
[∫ x0,1+∆x

x0,1−∆x

(
∂u
∂x2

(s,x0,2 +∆x)− ∂u
∂x2

(s,x0,2−∆x)
)

ds

+
∫ x0,2+∆x

x0,2−∆x

(
∂u
∂x1

(x0,1 +∆x,s)− ∂u
∂x1

(x0,1−∆x,s)
)

ds
]

+
∫

Cx0,∆x

f (x)dx = 0. (1.8)
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The situation is less transparent than in dimension one, but the idea is the same.
We divide everything by 4(∆x)2,

−T
1

2∆x

[∫ x0,1+∆x

x0,1−∆x

∂u
∂x2

(s,x0,2 +∆x)− ∂u
∂x2

(s,x0,2−∆x)

2∆x
ds

+
∫ x0,2+∆x

x0,2−∆x

∂u
∂x1

(x0,1 +∆x,s)− ∂u
∂x1

(x0,1−∆x,s)

2∆x
ds
]

=
1

4(∆x)2

∫
Cx0,∆x

f (x)dx. (1.9)

Now the length of each of the segments on which differential quotients of the
partial derivatives ∂u/∂xi are integrated is exactly 2∆x, and the area of the square
is exactly 4(∆x)2. We thus see that all the above quantities are averages over small
segments or squares, which is good in view of letting ∆x tend to 0 later.

Let us assume that u is of class C2. We can thus write the following Taylor-
Lagrange expansion at x = (s, t)

∂u
∂x2

(x) =
∂u
∂x2

(x0)+
∂ 2u

∂x2∂x1
(x0)(s− x0,1)+

∂ 2u
∂x2

2
(x0)(t− x0,2)+ r(x)

where r(x)/‖x− x0‖→ 0 when ‖x− x0‖→ 0. Therefore

∂u
∂x2

(s,x0,2 +∆x)− ∂u
∂x2

(s,x0,2−∆x)

2∆x
=

∂ 2u
∂x2

2
(x0)+ r′(s,∆x)

where r′(s,∆x)→ 0 when ‖(s,x0,2 +∆x)− x0‖→ 0. Integrating with respect to s,
we obtain

1
2∆x

∫ x0,1+∆x

x0,1−∆x

∂u
∂x2

(s,x0,2 +∆x)− ∂u
∂x2

(s,x0,2−∆x)

2∆x
ds =

∂ 2u
∂x2

2
(x0)+ r′′(∆x)

where r′′(∆x)→ 0 when ∆x→ 0.
We treat the remaining integrals in the same fashion and obtain in the ∆x→ 0

limit
∀x0 ∈Ω, −∆u(x0) =

1
T

f (x0). (1.10)

The differential operator ∆ = ∂ 2

∂x2
1
+ ∂ 2

∂x2
2

is called the Laplacian. Equation (1.10) is
called the elastic membrane equation. It must naturally be complemented by some
boundary conditions, such as the homogeneous Dirichlet condition (1.6).

The mechanical remarks made in the case of the elastic string also apply to the
elastic membrane and we will not repeat them.
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More generally, the boundary value problem in any dimension, Ω⊂ Rn,{
−∆u = f in Ω,

u = 0 on ∂Ω,
(1.11)

with ∆u = ∑
n
i=1

∂ 2u
∂x2

i
, is called the Poisson equation. The Poisson equation shows

up in a surprising number of different areas of mathematics and its applications.
For example, for n = 3, if f represents the density of electrical charge present in
Ω and the boundary of Ω is covered by a perfectly conducting material, then −u
is the electric potential5 inside Ω. The gradient of −u is the electric field. More
generally, the Poisson equation is central in all questions relating to the Newtonian
potential.

There are many other interpretations. Thus, if f represents a density of heat
sources in Ω, say the distribution of radiators in a room and how much heat they
give off, then u is the equilibrium temperature in Ω when the walls of the room
∂Ω are somehow kept at temperature 0◦. This is why the Poisson equation is
sometimes referred to as the diffusion equation, as it also models the diffusion of
heat (and of other things that may want to diffuse).

There is also a probabilistic interpretation for the Poisson equation, not unre-
lated to the diffusion interpretation. For f = 2, u(x) is the expectation of the first
exit time from Ω of a standard Brownian motion starting from point x. Roughly
speaking, a particle moving randomly in Rn and starting from x will reach ∂Ω in
an average time u(x).

Finally, when f = 0, the equation is known as the Laplace equation whose
solutions are the harmonic functions (it is clearly better to impose a nonzero
boundary condition to have u 6= 0, or no condition at all). Harmonic functions are
of course extremely important.

Let us close this section by rapidly mentioning the plate equation. A plate is to
a membrane what a beam is to a string: sheet iron, concrete wall, wood plank. The
clamped plate problem reads{

∆2u = f in Ω,

u = ∂u
∂n = 0 on ∂Ω,

(1.12)

where the operator ∆2 = ∆◦∆ = ∂ 4

∂x4
1
+2 ∂ 4

∂x2
1∂x2

2
+ ∂ 4

∂x4
2

is called the bilaplacian and
∂u
∂n = ∇u · n = ∂u

∂x1
n1 +

∂u
∂x2

n2 is the normal derivative of u on the boundary, n
denotes the unit exterior normal vector (we will go back to this later). This is a
fourth order boundary value problem.

5The minus sign is due to the physical convention that goes contrary to the mathematical
convention in this case.
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All the problems considered up to now are stationary problems in which time
plays no role and only model equilibrium situations. Let us now talk about problems
where time intervenes, that is to say evolution problems.

1.4 The transport equation
Let us imagine a kind of gas composed of particles moving along an axis. Instead
of tracking each particle individually, which would be impossible in practice due
to their huge number, we can describe the gas by using a function u : R×R→ R,
where u(x, t) measures the quantity of particles, or rather their density at point x
and instant t. This is called a kinetic description. The initial density of particles at
t = 0 is denoted u0(x) = u(x,0). We assume it to be given, it is an initial condition.

Now the question is how does the gas evolve in time? We clearly need to make
hypotheses on the individual motions of particles in order to answer this question.
For maximum simplicity, we assume here that all the particles move at the same
constant speed c ∈ R which is given. If c > 0, they all move to the right, if c < 0,
they all move to the left, and if c = 0, they do not move at all.

Let us count the total number of particles in a section [y,y+∆y] of the gas.
We disregard the fact that this number should be an integer. In fact, we consider
cases in which this integer is so large as to appear like a continuous quantity at the
macroscopic scale. Think of the Avogadro number and the fact that quantities of
matter are actually measured in moles. By definition of a density, at time t, this
quantity is equal to Q(y,∆y, t) =

∫ y+∆y
y u(s, t)ds.

Since all particles move as a group at speed c, all the particles that were
situated between y and y+∆y at time 0, are going to be located between y+ ct and
y+∆y+ct at time t, and no other particle will be there at the same time. Therefore,
we have a conservation law: for all y, ∆y and t

Q(y+ ct,∆y, t) = Q(y,∆y,0). (1.13)

Let us differentiate relation (1.13) with respect to t. We obtain

0 =
d
dt

Q(y+ ct,∆y, t) =
d
dt

(∫ y+∆y+ct

y+ct
u(s, t)ds

)
= c[u(y+∆y+ ct, t)−u(y+ ct, t)]+

∫ y+∆y+ct

y+ct

∂u
∂ t

(s, t)dx. (1.14)

Here again we find a relation that begs to be divided by ∆y. So we oblige and let
∆y tend to 0 so that

∂u
∂ t

(y+ ct, t)+ c
∂u
∂x

(y+ ct, t) = 0. (1.15)
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Now y and t are arbitrary, therefore we can perform the change of variables
x = y+ ct and obtain the following PDE problem:

∂u
∂ t

(x, t)+ c
∂u
∂x

(x, t) = 0 for (x, t) ∈ R×R,

u(x,0) = u0(x) for x ∈ R.
(1.16)

The PDE above is the transport equation (at velocity c), together with an initial
condition. The conjunction of the two form an initial value problem. There is no
boundary condition here since the space variable x ranges over the whole of R.

Let us now proceed to solve the transport equation. Since the particles all move
at the same velocity c, we can look at the variation of u on the trajectory of one
particle t 7→ x+ ct with x fixed. We thus compute the derivative

d
dt

u(x+ ct, t) = c
∂u
∂x

(x+ ct, t)+
∂u
∂ t

(x+ ct, t) = 0.

In other words, u is constant on the trajectories. In particular,

u(x+ ct, t) = u(x,0) = u0(x). (1.17)

The curves t 7→ (x+ ct, t) in space-time R×R—which are here straight lines—
are called the characteristics of the equation, and their use to solve the equation
is accordingly called the method of characteristics. They are often drawn in a
space-time diagram as follows:

x

t

(x, t)

(x− ct,0)

Figure 7. The characteristics are the dashed straight lines with slope 1/c. If c = 0,
they are vertical and there is no propagation.

To determine the value of u at a point (x, t) in space-time, it is enough to look at
the unique characteristic going through this point, take the point where it intersects
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the t = 0 axis and take the value of u0 at that point, see Figure 7. This construction
simply amounts to rewriting formula (1.17) in the form

u(x, t) = u0(x− ct), (1.18)

which proves the uniqueness of the solution, due to an explicit formula!6

We have established uniqueness of the solution, but have not yet established
its existence. Fortunately, we have an explicit formula, therefore we just need to
check that it actually is a solution. Let us compute the partial derivatives of u given
by formula (1.18), assuming u0 smooth enough. We have

∂u
∂x

(x, t) = u′0(x− ct) and
∂u
∂ t

(x, t) =−cu′0(x− ct),

where u′0 is the ordinary derivative of u0. The PDE is thus clearly satisfied. More-
over, the initial condition is also trivially satisfied by setting t = 0 in formula (1.18).
Hence, we have found the unique solution.

It is apparent that u propagates or transports the initial data at constant speed c,
hence the name of the equation.

xx0

u0 u(·, t)

x0 + ct

Figure 8. Propagation of the initial data u0.

If it was possible to animate Figure 8 on paper, the blue curve would be seen to
glide to the right at a steady pace (c > 0 in the picture) without changing shape,
after having coincided with the red curve at t = 0.

The transport equation has higher dimensional versions, which are much more
complicated than the one-dimensional version. It can also be set in open sets
of Rn instead of on the whole of Rn. In this case, boundary conditions must
be added in addition to the initial condition, which makes it an initial-boundary
value problem. The boundary value question is delicate depending on whether
the transport velocity, which is then a vector, points inwards or outwards of the
open set. The transport equation is relevant in many areas, whenever a spatially
distributed quantity u0 is transported by a velocity field, think of a concentration
of pollutants carried away by the wind. A diffusion term is often added, yielding
convection-diffusion problems.

6Explicit solutions are very rare in PDE problems.
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1.5 The vibrating string problem
Let us return to the elastic string in the context of dynamics. The displacement
u of the string is now a function of space x and time t. The analysis of applied
forces is exactly the same as in the static case, except that Newton’s law says that
the resultant of the applied forces is equal to the time derivative of the momentum
for each cut piece of the string. There is no point in going through all the detail
again—it is actually a good exercise—and the result is

T
(

∂u
∂x

(x+∆x, t)− ∂u
∂x

(x, t)
)
+
∫ x+∆x

x
f (s, t)ds =

∫ x+∆x

x
ρ

∂ 2u
∂ t2 (s, t)ds,

where T is still the constant tension, ρ is the mass of the string per unit length, and
∂ 2u
∂ t2 (x, t) is the acceleration of the string at point x and time t. Note that the applied
force f can now depend on time as well. Dividing by ∆x and letting ∆x tend to 0,
we obtain

T
∂ 2u
∂x2 (x, t)+ f (x, t) = ρ

∂ 2u
∂ t2 (x, t),

which is best rewritten as

∂ 2u
∂ t2 (x, t)− c2 ∂ 2u

∂x2 (x, t) =
1
ρ

f (x, t), (1.19)

with c =
√

T
ρ

. This partial differential equation, which is also called the one-
dimensional wave equation, is attributed to Jean le Rond d’Alembert. The constant
c is the propagation speed. We will see later that this equation propagates waves to
the right at speed c and to the left at speed −c. This is easily seen experimentally
on a long rope held by two persons. In fact, the vibrating string differential operator
is a composition of two transport operators

∂ 2

∂ t2 − c2 ∂ 2

∂x2 =
(

∂

∂ t
− c

∂

∂x

)(
∂

∂ t
+ c

∂

∂x

)
=
(

∂

∂ t
+ c

∂

∂x

)(
∂

∂ t
− c

∂

∂x

)
,

hence the two propagation directions. Note that the propagation speed increases
with the tension and decreases with the mass of the string.

Equation (1.19) must be complemented by initial conditions that prescribe the
initial shape and initial velocity of the string (this is a problem of the second order
in time)

u(x,0) = u0(x),
∂u
∂ t

(x,0) = u1(x) for all x ∈ ]0,L[, (1.20)

and by boundary conditions, meaning here that the string is fixed at both endpoints

u(0, t) = u(L, t) = 0, for all t ∈ R. (1.21)
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It should be noted that if a regular solution is expected, then a certain compatibility
between initial data (1.20) and boundary conditions (1.21) must be imposed

u0(0) = u0(L) = 0 and u1(0) = u1(L) = 0,

otherwise a discontinuity in the displacement or velocity will arise at t = 0.
We will return later to a more in-depth study of the wave equation. For the

time being, let us consider a particular case: harmonic vibrations. We are looking
for solutions to equation (1.19) with right-hand side f = 0 and by separation of
variables, i.e., solutions of the special form u(x, t) = φ(x)ψ(t), non identically zero
et satisfying the boundary condition (1.21). Obviously, in the case of harmonic
vibrations, we cannot impose an arbitrary initial condition. It fact, it will soon be
clear that no initial condition is needed.

Let us rewrite the problem in this setting:{
φ(x)ψ ′′(t)− c2φ ′′(x)ψ(t) = 0 for all x ∈ ]0,L[, t ∈ R,
φ(0)ψ(t) = φ(L)ψ(t) = 0, for all t ∈ R.

Naturally, if ψ = 0 then u = 0 which is not a very interesting solution. We thus
assume that there exists t0 such that ψ(t0) 6= 0. It is therefore legal to divide by
ψ(t0), so that −φ

′′(x)+
ψ ′′(t0)
c2ψ(t0)

φ(x) = 0 for all x ∈ ]0,L[,

φ(0) = φ(L) = 0.

This a boundary value problem in the variable x of a kind we have already encoun-
tered, and we know that if ψ ′′(t0)

c2ψ(t0)
≥ 0, then φ = 0 is the unique solution. This again

means that u = 0, which is definitely not interesting. Let us thus consider the case
when λ =− ψ ′′(t0)

c2ψ(t0)
> 0 and see under which conditions there could exist a nonzero

solution.
Forgetting the boundary conditions for an instant, we recognize a second order

linear differential equation with constant coefficients, the general solution of which
is of the form

φ(x) = Asin
(√

λx
)
+Bcos

(√
λx
)
.

The boundary condition φ(0)= 0 requires B= 0. The boundary condition φ(L)= 0
then either imposes A = 0, but then we are back to φ = 0, hence a boring u = 0, or
sin(
√

λL) = 0, that is to say
√

λL = kπ for some k ∈ Z,

or again

λ =
k2π2

L2 and φ(x) = Asin
(kπ

L
x
)
,
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where k is an integer. Now this is interesting at last!
Without loss of generality, we take A = 1 and plug u(x, t) = sin

(kπ

L x
)
ψ(t) back

into the original wave equation, which gives an equation for ψ

ψ
′′(t)+ c2 k2π2

L2 ψ(t) = 0,

that we solve immediately

ψ(t) = α sin
(ckπ

L
t
)
+β cos

(ckπ

L
t
)
,

where α and β are arbitrary constants. Finally, we have found

u(x, t) =
[
α sin

(ckπ

L
t
)
+β cos

(ckπ

L
t
)]

sin
(kπ

L
x
)
,

and it is easily checked that all these functions solve the wave equation with the
homogeneous Dirichlet condition. We thus have found all the separated variable
solutions.

These solutions are harmonic vibrations of frequency νk =
ck
2L =

√
T
ρ

k
2L indexed

by the integer k. The lowest possible frequency is obtained for k = 1. It is called the
fundamental and is the note that is heard from that string. The following integers
correspond to the harmonics of this note: k = 2 double frequency, one octave above
the fundamental, k = 3, k = 4 two octaves above the fundamental, etc. Naturally,
the actual vibration of a musical string is never a separated variable solution, but a
superposition of harmonics. This superposition gives the note its timbre. From the
point of view of mathematics, this is a question of Fourier series, but we will not
pursue this angle here.

0 0,25 0,5 0,75

-1

-0,5

0,5

1

Figure 9. Three successive harmonics: functions φ for k = 1,2,3.
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To close this section, we deduce from the formula for the frequency that a
longer string will ring a lower note, hence the relative lengths of the necks of a
guitar and a bass and the different notes played on the same string on the frets, that
a heavier string also rings a lower note, hence the mass differences between the
strings of a guitar or violin, and that a higher tension yields a higher note.

1.6 The wave equation
This is the higher dimensional analogue of the vibrating string equation. If we
consider a vibrating membrane in dimension two, we easily obtain the problem

∂ 2u
∂ t2 (x, t)− c2

∆u(x, t) = f (x, t) in Ω×R,
u(x, t) = 0 on ∂Ω×R,

u(x,0) = u0(x),
∂u
∂ t

(x,0) = u1(x) in Ω,

(1.22)

with c =
√

T
ρ

, T is the tension and ρ the membrane mass per unit area. Note that
compatibility conditions between the boundary and initial conditions must again
be imposed if we expect a regular solution.

The harmonic vibration problem consists in looking for a solution of the form
u(x, t) = eiλ tφ(x) (we no longer need to pretend that we do not know what ψ(t)
must be. . .), hence the problem−∆φ(x) =

λ 2

c2 φ(x) in Ω,

φ(x) = 0 on ∂Ω,
(1.23)

with φ 6= 0.
Problem (1.23) is an eigenvalue problem for the linear operator −∆, that is

to say an infinite dimensional spectral problem. This was already the case in
dimension one, but there was no need for the whole apparatus of self-adjoint
compact operator spectral theory since everything could be done by hand.

What we need to know for now is that the eigenvalues, i.e., the possible values
for λ 2

c2 , form an infinite increasing sequence 0< µ1 < µ2≤ µ3≤ ·· · , with µk→+∞

when k→+∞, which depends on the shape of Ω. The situation is thus a lot more
complex than in dimension one, where the shape of Ω is just characterized by its
length L and we have an explicit formula for the eigenvalues. In particular, the
vibration frequencies λk

2π
= c

√
µk

2π
are no longer proportional to successive integers.

If the first eigenvalue still gives the fundamental note, the following harmonics
are not in rational proportion to each other, and the timbre of the sound is entirely
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different. This explains why a drum produces a sound that has nothing in common
with the sound produced by a guitar. It is all a question of dimensionality.

A classical problem that was only solved fairly recently was formulated as “Can
you hear the shape of a drum?” The meaning of the question was to know whether
the knowledge of the spectrum, that is to say of the entire sequence (µk)k∈N∗ made
it possible to determine Ω up to a rigid motion. The answer is negative. There are
open sets in R2 of different shapes with exactly the same spectrum. Drums of these
shapes would thus sound the same.

In higher dimensions, the wave equation is used to model the propagation of
sound waves in the air, the propagation of light waves in the void (the wave equation
in this case is deduced from Maxwell’s equations, the PDEs of electromagnetism).
There are all sorts of different kinds of waves, such as seismic waves or oceanic
waves, the propagation of which is more complex than the wave equation.

1.7 The heat equation
The heat equation is yet another evolution equation, of a totally different nature as
the previous ones. For example, time is reversible in the wave equation: changing t
to −t does not change it. The heat equation describes the evolution of temperature.
It thus have a connection with thermodynamics and time can only flow from the
past to the future. From the point of view of mathematics, changing t to−t modifies
the equation and leads to problems with no solution in general.

The heat equation is as follows:
∂u
∂ t (x, t)−∆u(x, t) = f (x, t) in Ω×R+,
u(x, t) = 0 on ∂Ω×R+,
u(x,0) = u0(x) in Ω.

(1.24)

We have set all physical constants to the value 1, as is customary in mathematics.
The equation is first order in time and second order in space with a boundary
condition (of Dirichlet type here) and an initial condition. The heat equation was
discovered by Fourier, based on arguments of exchange of heat between smaller
and smaller, closer and closer balls. Actually these arguments are pretty close to
the finite difference method that we will see later.

When f = 0, the effect of the heat equation is to diffuse the initial condition.

1.8 The Schrödinger equation
The Schrödinger equation is another evolution equation of again totally different
nature. This time, u is a wave function in the sense of quantum mechanics. It is
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complex-valued. The domain is the whole of R3. The equation reads

i
∂u
∂ t

(x, t)+∆u(x, t) = 0 in R3×R+. (1.25)

The Schrödinger equation is the basic equation of quantum mechanics that governs
the evolution of the wave function of one particle in the absence of any potential,
that is in the void. Physical constants are missing (set to 1), such as Planck’s
constant h̄ and the mass of the particle. Also missing is the initial condition.

Since the square of the module of the wave function is interpreted as a presence
probability, we need to impose ∫

R3
|u|2 dx = 1.

Actually, if the initial condition satisfies this normalization condition, then the
solution satisfies it automatically at all times.

Even though the Schrödinger equation presents a formal similarity with the heat
equation—first order in time, second order in space—the presence of the imaginary
factor i gives it radically different properties. In particular, the Schrödinger equation
propagates waves, also not at all in the same way as the wave equation, whereas
the heat equation does not propagate waves (heat waves notwithstanding!).

Let us note that in the Schrödinger equation for a system of N particles, the vari-
able x must belong to R3N , which becomes rapidly difficult for practical purposes
when N is large. . .

As a general rule, physics is a nearly inexhaustible source of partial differential
equations problems. Let us cite the Dirac equation, a first order equation and
relativistic version of the Schrödinger equation; Einstein’s equations of general
relativity, a system of nonlinear PDEs; the Boltzmann equation for the kinetic
description of gases, all the equations of fluid mechanics, Euler, Stokes, Navier-
Stokes, and so on, and so forth.

1.9 The Black and Scholes equation
Physics is not by far the only source of PDEs. PDEs are also playing an increasing
role in diverse areas, such as biology, chemistry, material science, road traffic
modeling, crowd movement modeling, economy, finance, among many others. Let
us give a famous example in the latter area, the Black and Scholes equation.

The question is to set the price of a call option. A call option is a contract
between a seller and a buyer, drawn at time t = 0. The contract gives the buyer the
right to buy an asset belonging to the seller, not right away but later and at a price
K, the strike, that is agreed on in advance. The contract has a price paid by the



1.9. The Black and Scholes equation 29

buyer to the seller at t = 0, otherwise the seller would have no real reason to agree
to it. For the buyer, it is an insurance against stock fluctuations.

The price C must be computed in such a way that the game should be fair on
average, or at least seem to be fair. . . The possibility of option pricing hinges on a
modeling of the market and on a hypothesis called no arbitrage opportunity (no
free lunch) meaning that it is impossible to make sure gains without taking risks.

To make things a little more precise, the price of the asset at instant t is denoted
St . It is a continuous time stochastic process. In the case of an american call, the
buyer acquires the right to exercise the option, that is to say to buy the asset for
the price K, at any moment t ∈ [0,T ], where T is an expiration date agreed on in
advance. The buyer is under no obligation to do so, and after time T , the option
disappears.

Of course, the buyer has no interest in exercising the option at time t if St < K.
In this case, it is better to buy at the market price or not buy at all. On the other
hand, the buyer could also have invested the amount C at a fixed interest rate
r without risk. Therefore, a profit would only made by exercising the option if
St > ertC+K, which is the decision criterion. The buyer bets this situation will
occur before time T , in which case he or she buys the stock for a price K and sells
it back immediately on the market at price St , thus pocketing the difference St−K.
The global balance of the operation is either −C if the option is not exercised or
st−K−C if it is exercised.

The seller always gains C and loses St−K if the buyer exercises the option, so
the bet is that the buyer will not exercise the option. The seller must also seek to
cover losses in case the buyer exercises the option through the price C.

The option price C is naturally a function of the asset price, which is represented
by a variable x ∈ R+, because a price is nonnegative. It is also useful to introduce
the price at instant t, that is to say, the price the option would have is it was bought
at instant t with the same strike K and expiry date T . The option price is thus a
function in two variables C(x, t) (let us emphasize again that the space variable x is
actually a price). We want to determine C(x,0) in order to define the terms of the
contract, since at t = 0, the price of the asset S0 is known. The price of the option
at t = T is obviously C(x,T ) = (x−K)+ since the option is exercised at T only if
the price of the asset is larger than K, and there is no time left to invest C(x,T ) at a
fixed interest rate.

At this point, stochastic modeling is needed in order to describe the evolution
of asset prices to ensure a viable game. We will refrain from going into the details
since they are far beyond our meager probabilistic skills. Anyway, hypotheses are
made concerning the St process. As recent world events have made quite clear,
such hypotheses are not always satisfied in real life, but let us proceed anyway. At
the end of this stochastic modeling phase, we end up with a deterministic PDE for
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the function C(x, t)

∂C
∂ t

(x, t)+
1
2

σ
2x2 ∂ 2C

∂x2 (x, t)+µx
∂C
∂x

(x, t)− rC(x, t) = 0 in R+× [0,T ], (1.26)

with the final condition

C(x,T ) = (x−K)+. (1.27)

This is the Black and Scholes equation. It has a final condition and not an initial
condition because of modeling reasons, as we have seen, in fact the initial value
is the unknown quantity of interest. Another reason is that the principal part of
the differential operator is basically a backward heat equation. We have seen that
the heat equation is incapable of going back in time. Therefore, a backward heat
equation needs a final condition in order to be well-posed. There is an additional
difficulty since the coefficients of the space derivatives are functions of the space
variables that vanish for x = 0. There is thus a degeneracy at the boundary and it is
not so clear what boundary conditions are in order. The constant σ is called the
asset volatility, a measure of the more or less erratic behavior of the asset price,
and µ is the trend, a sort of average growth rate.

These oddities of the Black and Scholes equation are mostly corrected by a
simple change of variable. Let us set u(y,τ) =C(ey,T − τ), then

∂u
∂τ
− 1

2
σ

2 ∂ 2u
∂y2 −

(
µ− 1

2
σ

2
)

∂u
∂y

+ ru = 0 in R× [0,T ], (1.28)

with the initial (since time has been reversed) condition

u(y,0) = (ey−K)+. (1.29)

We are comfortably back with an ordinary heat equation with the right time direc-
tion, whose effect is to diffuse the price, corrected by a transport term whose effect
is to make the price drift (in backward time) at speed −(µ− 1

2σ2). The ru term is
an updating term with respect to the interest rate. Further changes of variables can
make the equation even simpler.

The degeneracy at x = 0 is gone, replaced by a difficulty at y→−∞ where a
boundary condition is missing, as well as at +∞.

To conclude, let us remark that the Black and Scholes equation for one asset is
a two dimensional equation, one space dimension and one time dimension. The
analogous equation for a portfolio of N assets is in N +1 dimensions, which is a
source of difficulty for numerical approximation.
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1.10 A rough classification of PDEs
We give a rather informal classification of PDEs which is neither very precise, nor
exhaustive, but which has the advantage of giving a general idea of their properties.

Let us start with the Laplace operator ∆ = ∂ 2

∂x2
1
+ ∂ 2

∂x2
2
, and replace ∂

∂xi
by multi-

plication by a variable ξi (which is more or less what the Fourier transform does).
The equation ∆u = f is thus replaced by ‖ξ‖2 = g which the equation of a circle
in R2, a special case of an ellipse. We say that the Poisson equation is elliptic.
More generally, if we repeat the same operation on a general second order operator
L = ∑

n
i, j=1 ai j

∂ 2

∂xix j
, we obtain ∑

n
i, j=1 ai jξiξ j = g. If this yields the equation of an

ellipsoid in Rn, then we say that the equation is elliptic. This is the case if the
matrix (ai j) is positive definite.

The same game played on the heat equation, replacing ∂/∂ t by ξ0, yields ξ0−
ξ 2

1 = g, which is the equation of a parabola, or a paraboloid in higher dimension.
We say that the heat equation is parabolic.

Finally, in the case of the wave equation, we obtain ξ 2
0 −ξ 2

1 = g, the equation
of a hyperbola. We say that the wave equation is hyperbolic.

It is possible to give more precise definitions, but this is not useful here. The
important idea is that an elliptic equation has more or less the same properties as
the Poisson equation, a parabolic equation has more or less the same properties as
the heat equation and a hyperbolic equation has more or less the same properties
as the wave equation. The transport equation is considered to be hyperbolic.


