
Chapter

2 A review of analysis

2.1 A few basic function spaces

Let us rapidly review the most basic function spaces that we will need. In the
sequel, Ω denotes an open subset of Rd . The canonical scalar product of two
vectors in Rd will be denoted x · y and the associated Euclidean norm �x�. We
recall the multiindex notation for partial derivatives. Let α = (α1,α2, . . . ,αd)∈Nd

be a multiindex. The integer |α|= ∑d
i=1 αi is the length of α and we set

∂ αu =
∂ |α|u

∂xα1
1 ∂xα2

2 · · ·∂xαd
d
.

whenever the function u is |α|-times differentiable and the partial derivatives
commute. The space C0(Ω) is the space of real-valued, continuous functions on Ω,
and for all k ∈ N, we define

Ck(Ω) = {u; for all α ∈ Nd, |α| ≤ k,∂ αu ∈C0(Ω)}

to be the space of k-times continuously differentiable functions on Ω. The space of
indefinitely differentiable functions on Ω is defined by

C∞(Ω) =
�

k∈N
Ck(Ω).
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We do not specify the natural topology of these vector spaces as we will not need
it. Beware however that they are not normed vector spaces.

The support of a function u, suppu, is the complement of the largest open
subset of Ω on which u vanishes. It is thus a closed subset of Ω. We recall that
a compact subset K of Ω is a closed subset that “does not touch the boundary”
in the sense that d(K,�Rd Ω)> 0. There is a “security strip” between K and ∂Ω.
Functions with compact support play an important role and deserve a notation of
their own:

Ck
c(Ω) = D

k(Ω) = {u ∈Ck(Ω); suppu is compact}

and
C∞

c (Ω) = D(Ω) =
�

k∈N
D

k(Ω).

Again, these vector spaces are endowed with natural topologies that we will not
describe. We will return to these spaces later when talking about distributions.

Let Ω̄ be the closure of Ω in Rd . The space C0(Ω̄) is the space of continuous
functions on Ω̄. If Ω̄ is compact, that is to say, when Ω is bounded, this space is
normed by

�u�C0(Ω̄) = sup
x∈Ω̄

|u(x)|= max
x∈Ω̄

|u(x)|.

The convergence associated to this normed topology is just uniform convergence.
From now on, we will assume that Ω is bounded.

Likewise, we define Ck(Ω̄) to be the space of functions in Ck(Ω), all the partial
derivatives of which up to order k have a continuous extension to Ω̄. Keeping the
same symbol for this extension, the natural norm of this space is

�u�Ck(Ω̄) = max
|α|≤k

�∂ αu�C0(Ω̄).

All these spaces are Banach spaces, i.e., they are complete for the metric defined
by their norm. We also define

C∞(Ω̄) =
�

k∈N
Ck(Ω̄),

which is again not a normed space.
For 0 < β ≤ 1, we define the spaces of Hölder functions (Lipschitz for β = 1)

by

C0,β (Ω̄) =
�

u ∈C0(Ω̄); sup
x �=y

|u(x)−u(y)|
�x− y�β <+∞

�

and
Ck,β (Ω̄) = {u ∈Ck(Ω̄);∂ αu ∈C0,β (Ω̄) for all |α|= k}.
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When equipped with the norms

�u�Ck,β (Ω̄) = �u�Ck(Ω̄) + max
|α|=k

�
sup
x �=y

|∂ αu(x)−∂ αu(y)|
�x− y�β

�
,

these spaces also are Banach spaces. There are continuous injections Ck,β (Ω̄) �→
Ck,β �

(Ω̄) �→ Ck(Ω̄) �→ Ck−1,γ(Ω̄) which are compact for β � < β and γ < 1 by
Ascoli’s theorem (the compactness of the first embedding requires some regularity
on Ω, see Section 2.2). We recall that a linear mapping f from a normed space
E to a normed space F is continuous if and only if there exists a constant C such
that for all x ∈ E, � f (x)�F ≤C�x�E . In the continuous injections above, f is just
the identity, f (u) = u. A mapping is compact if it transforms bounded sets into
relatively compact sets.

The other major family of function spaces that will be useful to us is that of the
Lebesgue spaces. We recall that

Lp(Ω) =
�

u measurable;
�

Ω
|u(x)|p dx <+∞

�

for 1 ≤ p <+∞ and

L∞(Ω) =
�

u measurable;esssup
Ω

|u|<+∞
�
.

Now in these definitions, u is not strictly speaking a function, but an equivalence
class of functions that are equal almost everywhere with respect to the Lebesgue
measure. Likewise, the essential supremum of the second definition has a slightly
convoluted definition to accommodate the equivalence classes. However, in practice
and outside of very specific circumstances, it is harmless to think of u as just a
function, not an equivalence class. We just need to keep this fact at the back of our
mind, just in case.

When equipped with the norms

�u�Lp(Ω) =
��

Ω
|u(x)|p dx

� 1
p

for 1 ≤ p <+∞ and
�u�L∞(Ω) = esssup

Ω
|u|,

the Lebesgue spaces are Banach spaces. For p = 2, the space L2(Ω) is a Hilbert
space for the scalar product

(u|v)L2(Ω) =
�

Ω
u(x)v(x)dx.
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We recall Hölder’s inequality
�

Ω
|u(x)v(x)|dx ≤

��

Ω
|u(x)|p dx

� 1
p
��

Ω
|v(x)|p� dx

� 1
p�

when p, p� are conjugate exponents, 1
p +

1
p� = 1 (the integrals do not need to be

finite). In particular, if u ∈ Lp(Ω) and v ∈ Lp�(Ω), then uv ∈ L1(Ω) and
���
�

Ω
u(x)v(x)dx

���≤ �uv�L1(Ω) ≤ �u�Lp(Ω)�v�Lp�(Ω).

For p = 2, we get the Cauchy-Schwarz inequality, which is actually a Hilbert space
property

|(u|v)L2(Ω)| ≤ �u�L2(Ω)�v�L2(Ω).

Since Ω is assumed to be bounded, there are continuous injections Ck(Ω̄) �→
Lp(Ω) �→ Lq(Ω) whenever q ≤ p.1

The Lebesgue spaces admit local versions

Lp
loc(Ω) = {u;u|K ∈ Lp(K) for all compact K ⊂ Ω}.

These vector spaces have a natural topology which is not a normed topology.
Clearly, in view of Hölder’s inequality, we have Lp

loc(Ω)⊂ Lq
loc(Ω) whenever

q ≤ p. In particular, the space L1
loc(Ω) is the largest of all these spaces, and actually

the largest of all function spaces introduced up to now, which are all continuously
embedded in it.

The following result is of importance.

Proposition 2.1.1 Let u ∈ L1
loc(Ω) be such that

�
Ω uϕ dx = 0 for all ϕ ∈ D(Ω).

Then u = 0 almost everywhere.

Proof. Note first that since ϕ has support in a compact subset K of Ω, so does the
product uϕ . Since ϕ is bounded, it follows that uϕ ∈ L1(K) and the integral is
well-defined.

Let x0 ∈ Ω and n be large enough so that B
�
x0,

1
n
�
⊂ Ω. It is possible (exercise)

to construct a sequence ϕk ∈ D(Ω) such that suppϕk ⊂ B
�
x0,

1
n
�

and for all x ∈
B
�
x0,

1
n
�
, ϕk(x) → 1. Consequently, by the Lebesgue dominated convergence

theorem, we have

0 =
�

B(x0,
1
n)

uϕk dx −→
k→+∞

�

B(x0,
1
n)

udx.

Hence, since
0 =

1
measB

�
x0,

1
n
�
�

B(x0,
1
n)

udx −→
n→+∞

u(x0)

for almost all x0 by the Lebesgue points theorem, we obtain the result. �
1This is doubly false if Ω is not bounded.
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Remark 2.1.1 Here we see again at work the idea a testing a function u with a
test-function ϕ in order to obtain information on u. The general concept behind
it is that of duality and it will be used in much larger generality in the context of
distributions and variational formulations that we will see later on. �

2.2 Regularity of open subsets of Rd

The structure of the open subsets of Rd for the usual topology is very simple for
d = 1, since every open set is a union of an at most countable family of disjoint
open intervals. The situation is more complicated in higher dimensions.

People tend to think of a connected open set of Rd as a potato-shaped object
drawn in R2. This geometrical intuition is basically correct as far as the open set
itself is concerned. It is misleading when the boundary of the open set is concerned.
In fact, the boundary of an open set in Rd , d > 1, can be more or less regular, more
or less smooth.
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Figure 1. An open set in R2 with a relatively wild boundary
(imagine an infinity of little spikes pointing inward the disk).

There is worse: the Mandelbrot set is compact, its complement is open with a
very convoluted boundary.
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Figure 2. A zoom on the complement (in color) of the Mandelbrot set (in black).

It is even possible to construct open sets in R2 (or in Rd for any d for that
matter), the boundary of which has strictly positive Lebesgue measure, i.e., a
strictly positive area! PDE problems are posed in open subsets of Rd and we often
need a certain amount of regularity for the boundary of such open sets in order to
deal with boundary conditions.

There are several ways of quantifying the regularity of an open set boundary,
or in short the regularity of that open set. Let us give the definition that is the most
adequate for our purposes here. You may encounter other definitions—equivalent
or not—in the literature.

Definition 2.2.1 We say that a bounded open subset of Rd is Lipschitz (resp. of
class Ck,β ) if its boundary ∂Ω can be covered by a finite number of open hypercubes
Cj, j = 1, . . . ,m, with an attached system of orthonormal Cartesian coordinates,
y j = (y j

1,y
j
2, . . . ,y

j
d), in such a way that

Cj = {y ∈ Rd; |y j
i |< a j for i = 1, . . . ,d},

and there exists Lipschitz functions (resp. of class Ck,β ) ϕ j : Rd−1 → R such that

Ω∩Cj = {y ∈Cj;y j
d < ϕ j((y j)�)},

using the notation Rd−1 � (y j)� = (y j
1,y

j
2, . . . ,y

j
d−1).
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The meaning of Definition 2.2.1 is that locally in Cj, Ω consists of those points
located strictly under the graph of ϕ j, in the other words, the hypograph of ϕ j, see
Figure 3. In particular, such an open set is situated on just one side of its boundary,
which consists of pieces of graphs, since

∂Ω∩Cj = {y ∈Cj;y j
d = ϕ j((y j)�)}.

Cj
y j

d

(y j)�

Ω

Figure 3. Covering the boundary with hypercubes.

Remark 2.2.1 It is fairly clear that a bounded polygon is a Lipschitz open set in
dimension 2. None of the wild examples considered before is of class C0,β .

On the other hand, there also are perfectly nice open sets that are not Lipschitz
in the previous sense. Here is an example.

Figure 4. Simple, however not Lipschitz.
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This example is obtained by gluing together two parallelepipeds one on top of the
other, adding the open square of contact. It is impossible to describe the resulting
set as a hypograph at each vertex of that square. The open set is nonetheless
perfectly tame, it is a polyhedron. �

The boundary of a Lipschitz open set, and a fortiori that of an open set of class
Ck,α , k ≥ 1, possesses a certain number of useful properties.

Proposition 2.2.1 Let Ω be a Lipschitz open set. There exists a normal unit
exterior vector n, defined almost everywhere on ∂Ω.

Normal means orthogonal to the boundary, exterior means that it points toward
the complement of Ω. We will go back to the meaning of almost everywhere later.
Proof. Let us work in Cj and drop all j indices and exponents to simplify notation.
We will admit Rademacher’s theorem, a nontrivial results that says that a Lipschitz
function on Rd−1 is differentiable in the classical sense, almost everywhere with
respect to the Lebesgue measure in Rd−1.

Let y� be a point of differentiability of ϕ . At this point, the differentiability
implies that the graph of ϕ has a tangent hyperplane generated by the d−1 vectors

a1 =





1
0
...
0

∂1ϕ(y�)




,a2 =





0
1
...
0

∂2ϕ(y�)




, · · · ,ad−1 =





0
0
...
1

∂d−1ϕ(y�)




,

(slightly different notation for partial derivatives here, ∂iϕ = ∂ϕ
∂yi

). The orthogonal
straight line is generated by the vector

N =





−∂1ϕ(y�)
−∂2ϕ(y�)

...
−∂d−1ϕ(y�)

1




.

which is clearly orthogonal to all ai. To conclude, we just need to normalize it
and notice that it points outwards due to the strictly positive last component and Ω
lying under the graph

n =
1�

1+�∇ϕ(y�)�2





−∂1ϕ(y�)
−∂2ϕ(y�)

...
−∂d−1ϕ(y�)

1




,
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with �∇ϕ(y�)�2 = ∑d−1
i=1 (∂iϕ(y�))2. �

Remark 2.2.2 It should be noted that the normal vector n is an object of purely
geometric nature that does not depend on the particular system of coordinates
used to compute it. In particular, if we take another admissible covering of the
boundary, the same formulas apply and compute the same vector in different
coordinate systems. This geometrically obvious remark can also be checked by
direct computation in two different coordinate systems.

The “almost everywhere” is meant in the sense of the space Rd−1 associated
with a local coordinate system. It will shortly be given an intrinsic meaning. �

Ω∩Cj

n

yd

y�

Figure 5. Local aspect of the boundary of Lipschitz open set and the normal unit
exterior vector.

If Ω is a Lipschitz subset of Rd , there is a natural measure on ∂Ω that is
inherited in a sense from the Lebesgue measure in Rd , that we will call the
boundary measure. We will not go into all the detail but give a few ideas on how
this measure can be computed.

Let A ⊂ ∂Ω be a Borel subset of ∂Ω. Since the open sets Cj cover the boundary,
we can partition A with Borel sets A j ⊂Cj. Let Π j be the orthogonal projection
from Cj onto Rd−1 according to the coordinate system associated with Cj. The
restriction of the projection to the graph of ϕ j is a homeomorphism, therefore
Π j(A j) is a Borel subset of Rd−1.
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We set

Hd−1(A j) =
�

Π j(A j)

�
1+�∇ϕ j((y j)�)�2 d(y j)� and Hd−1(A) =

m

∑
j=1

Hd−1(A j).

It can be checked, although it is quite tedious, that this formula does not depend
on the covering and coordinates chosen to compute it, and that it defines a Borel
measure on ∂Ω.

In the case when ∇ϕ j is constant, that is to say if the graph is portion of
a hyperplane, it also easy to check that the formula above gives the (d − 1)-
dimensional Lebesgue measure on the hyperplane, using the same unit of length as
in Rd . In this sense, the boundary measure is inherited from Rd .

For d = 2, the boundary of Ω consists of curves and if these curves are regular,
we recognize the length of the parametric curve y1 �→ (y1,ϕ(y1)). Same thing
for d = 3 with the area of a parametric surface. The notation Hd−1 alludes to
the (d −1)-Hausdorff measure, a much more general and complicated object that
coincides here with our hand-crafted measure.

It is now clear that the normal vector is defined almost everywhere with respect
to the boundary measure. In addition, we can now define Lp(∂Ω) spaces and
compute all sorts of integrals on the boundary, using this measure. In order to have
a more economical notation, we will write it dΓ in the integrals. Thus, if g is a
function on the boundary with support in Cj, we have

�

∂Ω
gdΓ =

�

Π j(Cj)
g(Π−1

j (y�))
�

1+�∇ϕ j((y j)�)�2 d(y j)�.

The formula is extended to all functions without condition of support by a partition
of unity, see below.

2.3 Partitions of unity

Partitions of unity are a basic tool that is used in many contexts whenever the need
arises to localize a function. In what follows, Ω will be a bounded open subset of
Rd with a finite covering Cj, j = 0, . . . ,m, of its boundary ∂Ω.2

Proposition 2.3.1 Let C0 be an open set such that C̄0 ⊂ Ω and Ω ⊂∪m
j=0Cj. There

exist m+ 1 functions ψ j : Rd → [0,1] of class C∞ such that suppψ j ⊂ C̄ j and
∑m

j=0 ψ j = 1 in Ω.

2This particular assumption is only because this is the context in which we will use partitions of
unity here. It should be clear from the proof, that the result extends to more general covers.
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Proof. Recall first that for any closed set A, the function

x �→ d(x,A) = inf
y∈A

�x− y�

is a continuous function from Rd into R+ that vanishes exactly on A.
We can choose η > 0 small enough so that:
1. The sets Cη

j = {x ∈Cj;d(x,∂Cj)> η} still form an open cover of Ω in the
sense that Ω ⊂ ∪m

j=0Cη
j .

2. We can take an open set Cη
m+1 such that C̄η

m+1 ⊂Rd \Ω in order to cover the
whole of Rd = ∪m+1

j=0 Cη
j , and such that d(C̄η

m+1,Ω̄)> η).
This is possible by compactness of Ω̄ but we omit the (tedious) details.
The functions

ψη
j (x) =

d(x,Rd \Cη
j )

∑m+1
k=0 d(x,Rd \Cη

k )
(2.1)

are continuous on Rd , indeed the denominator never vanishes because of the
covering property. They are [0,1]-valued and ψη

j has support Cη
j . Finally, it is clear

that ∑m+1
j=0 ψ j(x) = 1 on Rd , with ψη

m+1 identically zero on the set {x;d(x,Ω̄)≤ η}
which contains Ω.

This family of functions has all the desired properties except that the functions
are not smooth. We thus use the convolution with a mollifier ρη with support in
the ball B(0,η).3 We have

1 = 1�ρη =
�m+1

∑
j=0

ψη
j

�
�ρη =

m+1

∑
j=0

(ψη
j �ρη).

Each function ψη
j �ρη has support in Cj for j = 0, . . . ,m+1, with ψη

m+1 �ρη = 0
on Ω (this is the reason why we shrank all open sets by η in the beginning since
the convolution spreads supports by an amount η), and is of class C∞. �

Let us give an example in dimension 1, without the final smoothing step.
We take Ω = ]0,1[, C0 = ]1

8 ,
7
8 [, C1 = ]−1

4 ,
1
4 [, C2 = ]3

4 ,
5
4 [, C3 = ]−1

8 ,
3
8 [ and C4 =

]−∞,0[∪]1,+∞[. All functions can be computed explicitly. Thus, denoting ξ j(x) =
d(x,R\Cj), we have

ξ0(x) = min
��

x− 1
8

�

+
,

�
7
8
− x

�

+

�
,

and so on.
3For more details, see for instance http://www.ann.jussieu.fr/~ledret/OBAAultime.pdf in French,

or any standard analysis textbook.
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-0,25

0,25

0,5

0,75

Figure 6. The five functions ξ j, ξ0 in green, ξ1 in orange, ξ2 in blue ξ3 in
turquoise and ξ4 in pink.
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Figure 7. Their sum, i.e., the denominator of (2.1), which never vanishes, in violet.
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1

Figure 8. The partition of unity ψ j, j = 0, . . . ,4, with the same color convention.
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We note that the set C3 is unnecessary to have a covering of Ω. We just added it to
have a nicer picture. If we had not added it, the partition of unity would have been
piecewise affine and it is a mistake to think the partitions of unity derived from
formula (2.1) are always piecewise affine!

Let us also illustrate an example in dimension 2, Ω is the unit disk covered, by
three squares of side 2.5, centered at 1, j and j2 (identifying R2 and C) and rotated
so as to form a covering of the boundary as required. There is no C0, since the
three squares already cover Ω.

Figure 9. The four functions ξ j.

Figure 10. Their sum.
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Figure 11. The four functions ψ j, drawn separately.

Figure 12. The whole partition of unity.
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Figure 13. ψ1 +ψ2 +ψ3 = 1 on Ω.

Corollary 2.3.1 Let Ω be a bounded open set in Rd and u be a function on Ω
belonging to one of the function spaces we have seen (and that we will see later).
Let Cj be an open cover as in Proposition 2.3.1. Then we can write u = ∑m

j=0 u j
with suppu j ⊂Cj and u j has the same smoothness or integrability as u.

Proof. We use the partition of unity ψ j. Since 1 = ∑m
j=0 ψ j on Ω, we can write

u = u×1 = u
m

∑
j=0

ψ j =
m

∑
j=0

uψ j

and set u j = uψ j. As suppψ j ⊂Cj, it follows that u j vanishes outside of Cj, and
since ψ j is C∞, u j is as differentiable or as integrable as u is already. �

It is in this sense that partitions of unity are used to localize a function u. Such a
function is decomposed into a sum of functions, each with support in a given open
set of a covering. It is often easier to work with the localized parts u j than with the
function u itself. A prime example is integration by parts in the next section.
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2.4 Integration by parts in dimension d and applica-

tions

Integration by parts in Rd is a basic formula, that is hardly ever entirely proved.
It has to be said that the proof is not exactly a lot of fun. In what follows, Ω will
be an at least Lipschitz open subset of Rd . The most crucial integration by parts
formula, from which all the others follow, is given in the next Theorem.

Theorem 2.4.1 Let Ω be a Lipschitz open set in Rd and u ∈C1(Ω̄). Then we have
�

Ω

∂u
∂xi

dx =
�

∂Ω
uni dΓ, (2.2)

where ni is the ith component of the exterior unit normal vector.

Proof. We will only write the proof in dimension d = 2, which is not a real
restriction as the general case d ≥ 2 follows from exactly the same arguments,
and only in the case when Ω is of class C1. This is a real restriction: there are
additional technical difficulties in the Lipschitz case due to only almost everywhere
differentiability.

We start with the partition of unity associated with the given covering Cj of the
boundary completed by an open set C0 to cover the interior. We have u = ∑m

j=0 u j

with u j = uψ j, and each u j belongs to C1(Ω̄) and has support in C̄ j. Consequently,
since formula (2.2) is linear with respect to u, it is sufficient to prove it for each u j.

Let us start with the case j = 0. In this case, u0 is compactly supported in Ω
since C̄0 ⊂ Ω. In particular, it vanishes on ∂Ω, so that

�
∂Ω u0ni dΓ = 0.

We extend u0 by 0 to R2, thus yielding a C1(R2) function ũ0. Since Ω is
bounded, we choose a square that contains it, Ω ⊂ Q = ]−M,M[2, for some M.
Letting i� = 1 if i = 2, i� = 2 if i = 1, we obtain

�

Ω

∂u0

∂xi
dx =

�

Q

∂ ũ0

∂xi
dx =

� M

−M

�� M

−M

∂ ũ0

∂xi
dxi

�
dxi� =

� M

−M
[ũ0]

xi=M
xi=−Mdxi� = 0,

by Fubini’s theorem and the fact that ũ0 = 0 sur ∂Q. Formula (2.2) is thus estab-
lished for u0.

The case j > 0 is a little more complicated. To simplify the notation, we omit
all j indices and exponents. We thus have a function u with support in C̄. In
particular, u = 0 on ∂C∩ Ω̄. We recall that

Ω∩C = {y ∈C;y2 < ϕ(y1)},

see also Figure 5. We first establish formula (2.2) in the (y1,y2) coordinate system
in which C = ]−a,a[2 for some a. We let ny,i, i = 1,2, denote the components of
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the normal vector in this coordinate system. There are two different computations
depending on the coordinate under consideration.

Case i = 1. We first use Fubini’s theorem
�

Ω

∂u
∂y1

dy =
� a

−a

�� ϕ(y1)

−a

∂u
∂y1

(y1,y2)dy2

�
dy1,

see again Figure 5. Now it is well-known from elementary calculus that

d
dy1

�� ϕ(y1)

−a
u(y1,y2)dy2

�
=

� ϕ(y1)

−a

∂u
∂y1

(y1,y2)dy2 +u(y1,ϕ(y1))ϕ �(y1),

(this is where the fact that ϕ is C1 intervenes and where it would be a little harder
to have ϕ only Lipschitz). Consequently,
�

Ω

∂u
∂y1

dy =
� a

−a

d
dy1

�� ϕ(y1)

−a
u(y1,y2)dy2

�
dy1 −

� a

−a
u(y1,ϕ(y1))ϕ �(y1)dy1.

In the first integral, we integrate a derivative, so that
� a

−a

d
dy1

�� ϕ(y1)

−a
u(y1,y2)dy2

�
dy1

=
� ϕ(a)

−a
u(a,y2)dy2 −

� ϕ(−a)

−a
u(−a,y2)dy2 = 0,

since u = 0 on ∂C. We thus see that
�

Ω

∂u
∂y1

dy =
� a

−a
u(y1,ϕ(y1))

−ϕ �(y1)�
1+ϕ �(y1)2

�
1+ϕ �(y1)2 dy1

=
� a

−a
u(y1,ϕ(y1))ny,1(y1)

�
1+ϕ �(y1)2 dy1

=
�

C∩∂Ω
uny,1 dΓ,

by the formulas established in Section 2.2 for the normal vector components and
the boundary measure. Hence formula (2.2) in this case.

Case i = 2. We start again with Fubini’s theorem
�

Ω

∂u
∂y2

dy =
� a

−a

�� ϕ(y1)

−a

∂u
∂y2

(y1,y2)dy2

�
dy1

=
� a

−a
u(y1,ϕ(y1))dy1

=
� a

−a
u(y1,ϕ(y1))

1�
1+ϕ �(y1)2

�
1+ϕ �(y1)2 dy1

=
�

C∩∂Ω
uny,2 dΓ,



50 2. A review of analysis

since u(y1,−a) = 0. This proves the integration by parts formula in the (y1,y2)
system attached to the cube C covering a part of the boundary.

We need to go back to the original coordinate system (x1,x2). Let us write the
coordinate change formulas

�
y1
y2

�
= R

�
x1 − c1
x2 − c2

�
or again

�
x1
x2

�
= RT

�
y1
y2

�
+

�
c1
c2

�
,

where R is an orthogonal matrix and (c1,c2) are the (x1,x2) coordinates of the
center of C. Similarly, if vx and vy denote the column-vectors of the components of
the same vector v ∈ R2 in each of the coordinate systems, we have

vy = Rvx ⇐⇒ vx = RT vy.

This is true in particular for the normal vecteur n, nx = RT ny. Let us note ∇xu and
∇yu the components of the gradient of u in the two coordinate systems, we see by
the chain rule that

(∇xu)i =
∂u
∂xi

=
2

∑
j=1

∂u
∂y j

∂y j

∂xi
=

2

∑
j=1

R ji
∂u
∂y j

= (RT ∇yu)i,

hence the final result by linearity of the integrals. �
Once the basic formula is available, a whole bunch of other formulas are

derived pretty cheaply, that bear various names in the literature. We do not specify
the regularity of the functions below, it is understood that they are sufficiently
differentiable for all derivatives to make sense.

Corollary 2.4.2 We have
i) Integration by parts strictly speaking

�

Ω

∂u
∂xi

vdx =−
�

Ω
u

∂v
∂xi

dx+
�

∂Ω
uvni dΓ, (2.3)

ii) Green’s formula
�

Ω
(∆u)vdx =−

�

Ω
∇u ·∇vdx+

�

∂Ω

∂u
∂n

vdΓ, (2.4)

where ∂u
∂n = ∇u ·n = ∑d

i=1
∂u
∂xi

ni denotes the normal derivative of u on ∂Ω.
iii) A slightly more symmetrical version of Green’s formula

�

Ω
(∆u)vdx =

�

Ω
u(∆v)dx+

�

∂Ω

�∂u
∂n

v−u
∂v
∂n

�
dΓ, (2.5)
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iv) Stokes formula �

Ω
divU dx =

�

∂Ω
U ·ndΓ, (2.6)

where U : Ω → Rd is a vector field, its divergence is divU = ∑d
i=1

∂Ui
∂xi

and U ·n =

∑d
i=1Uini is the flux of the vector field through the boundary of Ω.

Proof. For i), we apply the basic formula (2.2) to the product uv, and so on. �

2.5 Distributions

In this section, Ω is an arbitrary open subset of Rd .
It turns out that functions that are differentiable in the classical sense are not

sufficient to work with PDEs. A more general concept is needed, which is called
distributions. As we will see, distributions are a lot more general than functions.
They can always be differentiated indefinitely, even when they correspond to
functions that are not differentiable in the classical sense, and their derivatives
are distributions. This is why distributional solutions to linear PDEs of arbitrary
order make sense (with technical conditions on their coefficients). We will also use
distributions to define an important class of function spaces for PDEs, the Sobolev
spaces.

Let us first go back to the space of indefinitely differentiable functions with
compact support D(Ω) encountered in Section 2.1. It is trivial, but crucial for the
sequel, that the space D(Ω) is stable by differentiation of arbitrary order, i.e., if
ϕ ∈ D(Ω) then ∂ αϕ ∈ D(Ω) for any multiindex α .

As mentioned before, this vector space has a natural topology that is a little
difficult to understand (technically, it is an LF-space, a strict inductive limit of a
sequence of Fréchet spaces and it is not metrizable) and it is not very useful to
master the details of this topology for the applications we have in mind. So we will
just skip it.

The convergence of a sequence in D(Ω) is on the other hand quite easy to
characterize.

Proposition 2.5.1 A sequence ϕn ∈ D(Ω) converges to ϕ ∈ D(Ω) in the sense of
D(Ω) if and only if

i) There exists a compact subset K of Ω such that suppϕn ⊂ K for all n.
ii) For all α ∈ Nd, ∂ αϕn → ∂ αϕ uniformly.

When a (real or complex) vector space is equipped with a topology that makes
its vector space operations continuous, that is when it is a topological vector
space, it makes sense to look at the vector space of continuous linear forms, that
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is the space of real or complex valued linear mappings that are continuous for the
aforementioned topology. This space is called the topological dual, or in short dual
space.

Definition 2.5.1 The space of distributions on Ω, D �(Ω), is the dual of the space
D(Ω).

We will indifferently use the notations T (ϕ) = �T,ϕ� to denote the value of
a distribution T on a test-function ϕ and the duality pairing between the two. Of
course, since D �(Ω) is a vector space, we can add distributions and multiply them
by a scalar in the obvious way.

Now, not knowing the topology of D(Ω) makes it a little difficult to decide
which linear forms on D(Ω) are continuous and which are not. Fortunately, even
though the topology in question is not metrizable, the usual sequential criterion
happens to still work in this particular case.

Proposition 2.5.2 A linear form T on D(Ω) is a distribution if and only if we have
T (ϕn)→ 0 for all sequences ϕn ∈ D(Ω) such that ϕn → 0 in the sense of D(Ω).

Proof. We admit Proposition 2.5.2. �

Remark 2.5.1 Let us note that the property T (ϕn) → 0 for all sequences ϕn ∈
D(Ω) such that ϕn → 0 immediately implies that T (ϕn)→ T (ϕ) for all sequences
ϕn such that ϕn → ϕ in the sense of D(Ω), by linearity, hence the sequential
continuity of the linear form T . The difficulty is that in a non metrizable topological
space, sequential continuity does not imply continuity in general, even though, in
this particular case, it does. �

Let us now see in which sense distributions generalize the usual notion of
function.

Proposition 2.5.3 For all f ∈ L1
loc(Ω) there exists a distribution ι( f ) on Ω defined

by the formula

�ι( f ),ϕ�=
�

Ω
f ϕ dx

for all ϕ ∈ D(Ω). The mapping ι : L1
loc(Ω)→ D �(Ω) is one-to-one.

Proof. That the integral is well-defined has already been seen. It clearly defines a
linear form on D(Ω) by the linearity of the integral. What remains to be established
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for ι( f ) to be a distribution, is its continuity. Let us thus be given a sequence
ϕn → 0 in the sense of D(Ω), and K the associated compact set. We have

|�ι( f ),ϕn�|=
���
�

Ω
f ϕn dx

���=
���
�

K
f ϕn dx

���

≤
�

K
| f ||ϕn|dx ≤ max

K
|ϕn|

�

K
| f |dx → 0

since f ∈ L1(K) and ϕn tends to 0 uniformly on K.
Let us now show that the mapping ι is one-to-one. Since it is clearly linear, it

suffices to show that its kernel is reduced to the zero vector. Let f ∈ ker ι , which
means that ι( f ) is the zero linear form, or in other words that

�
Ω f ϕ dx = 0 for all

ϕ in D(Ω). By Proposition 2.1.1, it follows that f = 0, and the proof is complete.
�

Remark 2.5.2 The mapping ι is not only one-to-one, it is also continuous (for
the topology of D �(Ω) as topological dual of D(Ω), which we also keep shrouded
in mystery). The mapping ι thus provides a faithful representation of one type
of object, L1

loc functions, as objects of a completely different nature, distributions.
It is so faithful that in day-to-day practice, we say that an L1

loc function f is a
distribution and dispense with the notation ι altogether, that is we just write � f ,ϕ�
for the duality bracket.

Conversely, when a distribution T belongs to the image of ι , that is to say when
there exists f in L1

loc such that �T,ϕ�=
�

Ω f ϕ dx for all ϕ in D(Ω), we just say that
T is a function and we write T = f . Beware however that most distributions are
not functions and that the notation

�
Ω T ϕ dx is unacceptable for such distributions.

Proposition 2.5.3 is all the more important as it shows that the elements of all
the function spaces introduced up to now actually are distributions, since L1

loc(Ω)
is the largest of all such spaces. �

Remark 2.5.3 The characterization of convergence in D(Ω) of Proposition 2.5.1
is implied by the topology of D(Ω). In the proof of Proposition 2.5.3, we can see
the importance of having a fixed compact K containing all the supports. If it was
not the case, the final estimate would break down. �

Proposition 2.5.3 gives us our first examples of distributions. There are however
many others which are not functions. Let us describe a couple of them.

We choose a point a ∈ Ω and define

�δa,ϕ�= ϕ(a)
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for all ϕ ∈ D(Ω). This is clearly a linear form on D(Ω) and we just need to
check its continuity. Let us thus be given again a sequence ϕn → 0 in the sense of
D(Ω). In particular, it converges to 0 uniformly on Ω, hence pointwise. Therefore
ϕn(a)→ 0 and we are done: δa ∈D �(Ω). This distribution is called the Dirac mass
or Dirac distribution at point a. It is an interesting exercise to show that it does
not belong to the image of ι , i.e., loosely speaking, that it is not a function. When
a = 0, it is often simply denoted δ .

Let us give a second example with Ω = R. The function x �→ 1/x almost
everywhere is not in L1

loc(R) because it is not integrable in a neighborhood of 0.
Therefore, it is not a distribution, which is rather unfortunate for such a simple
function and a concept claiming to widely generalize functions. The distribution
defined by

�
vp

1
x
,ϕ

�
= lim

ε→0+

�� −ε

−∞

ϕ(x)
x

dx+
� +∞

ε

ϕ(x)
x

dx
�

is called the principal value of 1/x and replaces the function x �→ 1/x for all intents
and purposes (exercise: show that it is a distribution). It is however not a function.

We have hinted at a topology on the space of distributions. Here again, it is not
too important to know the details of this topology. The convergence of sequences
is more than enough and is surprisingly simple.

Proposition 2.5.4 A sequence Tn ∈ D �(Ω) converges to T ∈ D �(Ω) in the sense
of D �(Ω) if and only if �Tn,ϕ� → �T,ϕ� for all ϕ ∈ D(Ω).

Proof. We admit Proposition 2.5.4. �
Since distributions are real-valued functions defined on the space D(Ω), we

see that convergence in the sense of distributions is actually nothing but simple
or pointwise convergence on D(Ω). This makes it very easy to handle (and
unfortunately, very easy to abuse. Remember, it is not magic!).

This notion of convergence agrees with all previous notions defined on smaller
function spaces. In particular, we have

Proposition 2.5.5 Let un → u in Lp(Ω) for some p ∈ [1,+∞]. Then un → u in the
sense of D �(Ω).

Proof. For all ϕ ∈ D(Ω), we have

|�un,ϕ�−�u,ϕ�| ≤
�

Ω
|un −u||ϕ|dx ≤ �un −u�Lp(Ω)�ϕ�Lp�(Ω) → 0

by Hölder’s inequality. �
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We have said earlier that distributions can be differentiated indefinitely, however
in a specific sense.

Definition 2.5.2 Let T be a distribution on Ω. The formula

�S,ϕ�=−
�

T,
∂ϕ
∂xi

�
(2.7)

for all ϕ ∈ D(Ω), defines a distribution which is called the (distributional) partial
derivative of T with respect to xi and is denoted ∂T

∂xi
.

Proof. This definition needs a proof. Formula (2.7) clearly defines a linear form
on D(Ω). Let us see that it is continuous. Let us be given a sequence ϕn → 0 in
D(Ω). It is apparent that ∂ϕn

∂xi
→ 0 in D(Ω). Indeed, the support condition is the

same, since the support of the partial derivative of a function is included in the
support of this function, and the uniform convergence of all derivatives trivially
holds true as all derivatives of ∂ϕn

∂xi
are derivatives of ϕn. Therefore,

�S,ϕn�=−
�

T,
∂ϕn

∂xi

�
→ 0

for all sequences ϕn → 0 in D(Ω). �
For example, the derivative of the Dirac mass δ in dimension one is the

distribution
�δ �,ϕ�=−�δ ,ϕ ��=−ϕ �(0),

for all ϕ ∈ D(R).
The reason why it is reasonable to call this new distribution a partial derivative

is in the next proposition.

Proposition 2.5.6 Let u be a function in C1(Ω). Then its distributional partial
derivatives coincide with its classical partial derivatives.

Proof. If u ∈C1(Ω) and ϕ ∈D(Ω), then it is clear that uϕ ∈C1(Ω̄). An inspection
of the proof 4 shows that this is enough to apply the integration by parts formula
(2.3). Since uϕ vanishes on ∂Ω, the result follows from Proposition 2.5.3. �

Remark 2.5.4 Be careful that the same result is false for functions that are only al-
most everywhere differentiable. Let us show an example, which is also a showcase
example of how to compute a distributional derivative. Let H be the Heaviside
function defined on R by H(x) = 0 for x ≤ 0, H(x) = 1 for x > 0. This function is

4Hint: extend u in a C1(Ω̄) fashion out of the support of ϕ .
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classically differentiable with zero derivative for x �= 0 and has a discontinuity of
the first kind at x = 0. It is also in L∞(R), hence in L1

loc(R), hence a distribution.
Let us compute its distributional derivative. For all ϕ ∈ D(R), we have

�H �,ϕ�=−�H,ϕ ��=−
� +∞

0
ϕ �(s)ds = ϕ(0)− lim

x→+∞
ϕ(x) = ϕ(0),

since ϕ is compactly supported in R, hence vanishes for x large enough. Therefore
we see that

H � = δ

even though the almost everywhere classical derivative of H is 0. This is an
example of a function that is not differentiable in the classical sense, but that is
also a distribution, hence has a distributional derivative and this derivative is not a
function. The example also shows that H is a distributional primitive of the Dirac
mass. �

Once a distribution is known to have partial derivatives of order one which are
again distributions, it is obvious that the same operation can be repeated indefinitely
and we have, for any distribution T and any multiindex α ,

�∂ αT,ϕ�= (−1)|α|�T,∂ αϕ�

for all ϕ ∈ D(Ω), by induction on the length of α .
Differentiation in the sense of distributions is continuous, which is violently

false in most function spaces. We just show here the sequential continuity, which
is amply sufficient for the applications.

Proposition 2.5.7 Let Tn → T in the sense of D �(Ω). Then, for all multiindices α ,
we have ∂ αTn → ∂ αT in the sense of D �(Ω).

Proof. For all ϕ ∈ D(Ω), we have

�∂ αTn,ϕ�= (−1)|α|�Tn,∂ αϕ� → (−1)|α|�T,∂ αϕ�= �∂ αT,ϕ�,

hence the result. �
This continuity provides another reason why the partial derivative terminology

is adequate for distributions. Indeed, it can be shown that C∞(Ω) functions are
dense in D �(Ω). For any distribution T , there exists a sequence of indefinitely
differentiable functions ψn that tend to T in the sense of distributions. Therefore,
their distributional partial derivatives of arbitrary order, which coincide with their
classical partial derivatives, also converge in the sense of distributions. So the
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distributional partial derivatives of a distribution appear as distributional limits of
approximating classical partial derivatives.

Many other operations usually performed on functions can be extended to
distributions using the same transposition trick as for partial derivatives. Let us just
mention here the multiplication by a smooth functions.

Definition 2.5.3 Let T be a distribution on Ω and f ∈C∞(Ω). The formula

� f T,ϕ�= �T, f ϕ� (2.8)

for all ϕ ∈ D(Ω), defines a distribution.

We leave the easy proof as an exercise. Of course, when T ∈ L1
loc(Ω), f T coin-

cides with the classical pointwise product and the mapping T �→ f T is sequentially
continuous on D �(Ω). Note that it is not possible to define such a product in all
generality by a function that is less smooth than C∞. In particular, there is no
product of two distributions with the reasonable properties to be expected from a
product—a famous theorem by L. Schwartz that limits the usefulness of general
distributions in dealing with nonlinear PDEs.

The partial derivatives of a distribution multiplied by a smooth function follow
the classical Leibniz rule.

Proposition 2.5.8 Let T be a distribution on Ω and f ∈ C∞(Ω). For all multi-
indices α such that |α|= 1, we have

∂ α( f T ) = f ∂ αT +∂ α f T. (2.9)

Proof. We just use the definitions. For all ϕ ∈ D(Ω), we have

�∂ α( f T ),ϕ�=−� f T,∂ αϕ�=−�T, f ∂ αϕ�=−�T,∂ α( f ϕ)�+ �T,∂ α f ϕ�
= �∂ αT, f ϕ�+ �∂ α f T,ϕ�= � f ∂ αT,ϕ�+ �∂ α f T,ϕ�

= � f ∂ αT +∂ α f T,ϕ�

by the Leibniz formula for smooth functions. �
We conclude this very brief review of distribution theory with the following

result.

Proposition 2.5.9 Let Ω be a connected open set of Rd and T a distribution on
Ω such that ∂T

∂xi
= 0 for i = 1, . . . ,d. Then, there exists a constant c ∈ R such that

T = c.

We omit the proof of this proposition which shows that distributions behave the
same as functions when their gradient vanishes. There is nothing exotic added in
this respect when generalizing from functions to distributions. Just note that T = c
means that for all ϕ ∈ D(Ω), �T,ϕ�= c

�
Ω ϕ dx.
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2.6 Sobolev spaces

We now introduce and briefly study an important class of function spaces for
PDEs, the Sobolev spaces. As we have seen, every function in Lp(Ω) is actually
a distribution, therefore it has distributional partial derivatives. In general, these
derivatives are not functions, of course. There are however some functions whose
distributional derivative also are functions, even though they may not differentiable
in the classical sense. These are the functions we are going to be interested in.

Definition 2.6.1 Let m ∈ N and p ∈ [1,+∞]. We define the Sobolev space

W m,p(Ω) = {u ∈ Lp(Ω);∂ αu ∈ Lp(Ω) for all α such that |α| ≤ m}.
When p = 2, we use the notation W m,2(Ω) = Hm(Ω).

Note the special case m = 0, where W 0,p(Ω) = Lp(Ω) and H0(Ω) = L2(Ω).
So the notation is hardly ever used for m = 0. In these notes, we will mainly use
the Hm(Ω) spaces, with special emphasis on H1(Ω). The natural Sobolev norms
are as follows

�u�W m,p(Ω) =
�

∑
|α|≤m

�∂ αu�p
Lp(Ω)

� 1
p

for p <+∞ and
�u�W m,∞(Ω) = max

|α|≤m
�∂ αu�L∞(Ω).

In particular, for p = 2, we have

�u�Hm(Ω) =
�

∑
|α|≤m

�∂ αu�2
L2(Ω)

� 1
2
.

This latter norm is clearly a prehilbertian norm associated with the scalar product

(u|v)Hm(Ω) = ∑
|α|≤m

(∂ αu|∂ αu)L2(Ω).

The notations �u�m,p and �u�m for the W m,p and Hm norms are also encoun-
tered in the literature if the context is clear.

Remark 2.6.1 It follows from the definition that W m+1,p(Ω) ⊂W m,p(Ω) for all
m, p. Moreover, if Ω is bounded W m,p(Ω) ⊂ W m,q(Ω) whenever q ≤ p. Also if
Ω is bounded, we have Cm(Ω̄)⊂W m,p(Ω). If Ω is Lipschitz, we have in addition
that Cm(Ω̄) is dense in W m,p(Ω) (we will prove it later on for m = 1, p = 2). Of
course, there are functions in W m,p(Ω) that are not of class Cm. For example, the
function x �→ x+ = max(x,0) is in H1(]−1,1[) since (x+)� = H(x) in the sense of
D � (exercise), but it is not differentiable in the classical sense at x = 0.

Similarly, there are functions in Lp that are not in W 1,p, such as the Heaviside
function H whose derivative is δ which is not a function. �
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Theorem 2.6.1 The spaces W m,p(Ω) are Banach spaces. In particular, the spaces
Hm(Ω) are Hilbert spaces.

Proof. We need to show that W m,p(Ω) is complete for its norm. Let us thus be
given a Cauchy sequence (un)n∈N in W m,p(Ω). In view of the definition of the norm,
it follows that for each multiindex α , |α| ≤ m, the sequence of partial derivatives
∂ αun is a Cauchy sequence in Lp(Ω). We know that Lp(Ω) is complete, therefore
there exists gα ∈ Lp(Ω) such that ∂ αun → gα in Lp(Ω). By Proposition 2.5.5, it
follows that ∂ αun → gα in the sense of D �(Ω). Now by Proposition 2.5.7, we
also know that ∂ αun → ∂ αu in the sense of D �(Ω), where u = g(0,0,...,0) is the
limit of the sequence in Lp(Ω). Therefore ∂ αu = gα ∈ Lp(Ω) since the space
of distributions is separated and thus a converging sequence can only have one
limit. This shows that u belongs to W m,p(Ω) on the one hand, and that un → u in
W m,p(Ω) since

�un −u�p
W m,p(Ω) = ∑

|α|≤m
�∂ αun −∂ αu�p

Lp(Ω) = ∑
|α|≤m

�∂ αun −gα�p
Lp(Ω) → 0,

for p <+∞ and the same for p =+∞. Therefore W m,p(Ω) is complete, and so is
the proof. �

From now on, we will mostly consider the case p = 2. Let us introduce an
important subset of Hm(Ω).

Definition 2.6.2 The closure of D(Ω) in Hm(Ω) is denoted Hm
0 (Ω).

In other words, Hm
0 (Ω) consists exactly of those functions u of Hm(Ω) which

can be approximated in the sense of Hm(Ω) by indefinitely differentiable functions
with compact support, i.e., such that there exists a sequence ϕn ∈ D(Ω) with
�ϕn − u�Hm(Ω) → 0. By definition, it is a closed vector subspace of Hm(Ω) and
thus a Hilbert space for the scalar product of Hm(Ω).

The following is a very important result. We introduce the semi-norm

|u|Hm(Ω) =
�

∑
|α|=m

�∂ αu�2
L2(Ω)

� 1
2
.

This semi-norm just keep the partial derivatives of the higher order compared with
the norm.

Theorem 2.6.2 (Poincaré’s inequality) Let Ω be a bounded open subset of Rd.
There exists a constant C which only depends on Ω such that for all u ∈ H1

0 (Ω),

�u�L2(Ω) ≤C|u|H1(Ω).
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Proof. Since Ω is assumed to be bounded, it is included in a strip5 that we may
assume to be of the form

Ω ⊂ Sa,b = {(x�,xd);x� ∈ Rd−1,a < xd < b}

for some a and b, without loss of generality.
We argue by density. First let ϕ ∈ D(Ω). We extend it by 0 to the whole of Rd

and still call the extension ϕ . Let αd = (0,0, . . . ,0,1) so that ∂ αd ϕ = ∂ϕ
∂xd

. Since
ϕ(x�,a) = 0 for all x� ∈ Rd−1 and ϕ is C1 with respect to xd , we can write

ϕ(x�,xd) =
� xd

a
∂ αd ϕ(x�,s)ds

for all (x�,xd). In particular, for a ≤ xd ≤ b, we obtain

ϕ(x�,xd)
2 ≤ (xd −a)

� xd

a

�
∂ αd ϕ(x�,s)

�2 ds ≤ (b−a)
� b

a

�
∂ αd ϕ(x�,s)

�2 ds

by the Cauchy-Schwarz inequality. We integrate the above inequality with respect
to x� �

Rd−1
ϕ(x�,xd)

2 dx� ≤ (b−a)
�

Sa,b

�
∂ αd ϕ(x)

�2 dx

by Fubini’s theorem. Now, because the support of ϕ is included in Ω ⊂ Sa,b, it
follows that �

Sa,b

�
∂ αd ϕ(x)

�2 dx = �∂ αd ϕ�2
L2(Ω).

We integrate again with respect to xd between a and b and obtain

�ϕ�2
L2(Ω) ≤ (b−a)2�∂ αd ϕ�2

L2(Ω),

for the same reasons (Fubini and support of ϕ). Now by definition of the semi-norm,
it follows that

�∂ αd ϕ�2
L2(Ω) ≤ ∑

|α|=1
�∂ αϕ�2

L2(Ω) = |ϕ|2H1(Ω),

hence Poincaré’s inequality for a function ϕ ∈ D(Ω) with constant C = (b−a).
We complete the proof by a density argument. Let u ∈ H1

0 (Ω). By definition,
there exists a sequence ϕn ∈ D(Ω) such that ϕn → u in H1(Ω). Inspection of the
definition of the H1 norm reveals that this is equivalent to ϕn → u in L2(Ω) and
∂ αϕn → ∂ αu for all |α|= 1 also in L2(Ω). Since all the L2 norms then converge,
we obtain in the limit

�u�L2(Ω) ≤ (b−a)|u|H1(Ω),

which is Poincaré’s inequality on H1
0 (Ω). �

5It is enough for Poincaré’s inequality to be valid that Ω be included in such a strip but not
necessarily bounded.
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Remark 2.6.2 Poincaré’s inequality shows that H1
0 (Ω) is a strict subspace of

H1(Ω) when Ω is bounded. Indeed, the constant function u = 1 is in H1(Ω) but
does not satisfy the inequality, since all its partial derivatives vanish. It follows that
it is impossible to approximate a non zero constant by a sequence in D(Ω) in the
norm of H1(Ω). �

From now on, we will use the gradient notation ∇u to denote the vector of all
first order distributional partial derivatives of u. Individual first order derivatives
will be denoted ∂i =

∂
∂xi

instead of with the multiindex notation, and second

order derivatives ∂i j =
∂ 2

∂xi∂x j
. When u ∈ H1(Ω), then we have ∇u ∈ L2(Ω;Rd).

Poincaré’s inequality has an important corollary.

Corollary 2.6.3 Let Ω be a bounded subset of Rd. The H1 semi-norm | · |H1(Ω) is
a norm on H1

0 (Ω) that is equivalent to the H1 norm. It is also a hilbertian norm
associated with the scalar product

(u|v)H1
0 (Ω) =

�

Ω
∇u ·∇vdx.

Proof. First of all, it is clear that |u|H1(Ω) ≤ �u�H1(Ω) for all u ∈ H1(Ω), hence all
u ∈ H1

0 (Ω), since the norm squared is the semi-norm squared plus the L2 norm
squared.

The converse inequality follows from Poincaré’s inequality. Indeed, for u ∈
H1

0 (Ω), we have �u�L2(Ω) ≤C|u|H1(Ω). Therefore

�u�H1(Ω) = (�u�2
L2(Ω) + |u|2H1(Ω))

1
2 ≤ (C2 +1)

1
2 |u|H1(Ω).

This shows both that the semi-norm is a norm on H1
0 (Ω) and that it is equivalent

to the full H1 norm on H1
0 (Ω). This also shows that the bilinear form above is

positive definite, hence a scalar product. �

Remark 2.6.3 The fact that the two norms are equivalent implies that H1
0 (Ω) is

also complete for the semi-norm. Hence, it is also a Hilbert space for the scalar
product corresponding to the semi-norm. Beware however that this is a different
Hilbert structure from the one obtained by restricting the H1 scalar product to H1

0 .
Indeed, we now have two different notions of orthogonality, and (at least) two
different ways of identifying the dual of H1

0 . �

Remark 2.6.4 The above results generalize to Hm
0 (Ω) on which the semi-norm

| · |Hm(Ω) is equivalent to the full Hm norm. They also generalize to the spaces
W m,p

0 (Ω) defined in a obvious way. �
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Let us give yet another way of identifying the dual of H1
0 (Ω).

Definition 2.6.3 Let

H−1(Ω) = {T ∈ D
�(Ω);∃C,∀ϕ ∈ D(Ω), |�T,ϕ�| ≤C|ϕ|H1(Ω)}, (2.10)

equipped with the norm

�T�H−1(Ω) = inf{C appearing in formula (2.10)}= sup
|�T,ϕ�|
|ϕ|H1(Ω)

.

Then H−1(Ω) is isometrically isomorphic to (H1
0 (Ω))�.

Proof. Since D(Ω)⊂ H1
0 (Ω) by definition, any linear form � on H1

0 (Ω) defines a
linear form on D(Ω) by restriction. Moreover, if ϕn → 0 in D(Ω), we obviously
have ϕn → 0 in H1

0 (Ω) as well. Hence, if � is continuous, that is � ∈ (H1
0 (Ω))�, its

restriction to D(Ω) is a distribution T ∈ D �(Ω). This distribution trivially belongs
to H−1(Ω).

Conversely, let us be given an element T of H−1(Ω). By definition, it is a linear
form defined on a dense subspace of H1

0 (Ω) and continuous with respect to the
H1

0 -norm. Therefore, it extends to an element � of the dual space (H1
0 (Ω))�, with

the same norm. �
In order to explain de −1 exponent in the notation, we note the following.

Proposition 2.6.1 Let f ∈ L2(Ω), then ∂i f ∈H−1(Ω) and �∂i f ,ϕ�=−
�

Ω f ∂iϕ dx
for all ϕ ∈ D(Ω).

Proof. By definition of distributional derivatives, �∂i f ,ϕ�=−� f ,∂iϕ�=−
�

Ω f ∂iϕ dx
since f is locally integrable. Thus

|�∂i f ,ϕ�| ≤ � f�L2(Ω)�∂iϕ�L2(Ω) ≤ � f�L2(Ω)|ϕ|H1
0 (Ω),

by Cauchy-Schwarz, hence ∂i f ∈ H−1(Ω) with �∂i f�H−1(Ω) ≤ � f�L2(Ω). �

Remark 2.6.5 This shows that the operator ∂i is linear continuous from L2(Ω)
(= H0(Ω)) into H−1(Ω), just as it is linear continuous from H1(Ω) into L2(Ω).
Conversely, when Ω is regular, a distribution in H−1(Ω) whose first order partial
derivatives are all in H−1(Ω) is in fact a function in L2(Ω). The latter result is
known as Lions’s lemma. �

In the same vein:

Corollary 2.6.4 The operator −∆ is linear continuous from H1
0 (Ω) into H−1(Ω)

and for all u,v ∈ H1
0 (Ω), we have

�−∆u,v�=
�

Ω
∇u ·∇vdx.

The dual of Hm
0 (Ω) is likewise identified with a subspace H−m(Ω) of D �(Ω).
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2.7 Sobolev spaces in one dimension

For simplicity, we mostly consider H1(Ω) where Ω = ]a,b[ is a bounded open
interval of R. Let us admit a density result that we will prove later in arbitrary
dimension.

Proposition 2.7.1 The space C1([a,b]) is dense in H1(]a,b[).

We have already seen examples of functions in dimension one that are H1 but
not C1. All one-dimensional H1 functions however are continuous, in the sense that
each equivalence class contains one continuous representative. The density above
is also meant in the sense that the equivalence classes of elements of C1([a,b]) are
dense in H1(]a,b[). There is even a more precise embedding.

Theorem 2.7.1 We have that H1(]a,b[) �→C0,1/2([a,b]).

Recall that the hooked arrow means that there is an injection between the two
spaces and that this injection is continuous.
Proof. We argue by density again. Let v ∈C1([a,b]). For all x,y ∈ [a,b], we can
write

v(y)− v(x) =
� y

x
v�(s)ds. (2.11)

Passing v(x) on the right-hand side in equation (2.11) and taking the square, we
obtain

v(y)2 =
�

v(x)+
� y

x
v�(s)ds

�2

≤ 2
�
v(x)2 +

�� y

x
v�(s)ds

�2�

≤ 2
�
v(x)2 + |y− x|

� y

x
(v�(s))2 ds

�

≤ 2
�
v(x)2 +(b−a)

� b

a
(v�(s))2 ds

�
,

by the Cauchy-Schwarz inequality for the third line. Integrating with respect to x,
we obtain

v(y)2 ≤ 2
b−a

�v�2
L2(a,b) +2(b−a)�v��2

L2(a,b) ≤C2�v�2
H1(]a,b[)

with C =
�

max
� 2

b−a ,2(b−a)
�
. Since this is true for all y ∈ [a,b], it follows that

max
y∈[a,b]

|v(y)|= �v�C0([a,b]) ≤C�v�H1(]a,b[), (2.12)
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for all v ∈C1([a,b]).
We now go back to equation (2.11) and square it.

(v(y)− v(x))2 =
�� y

x
v�(s)ds

�2
≤ |y− x|

� b

a
(v�(s))2 ds ≤ |y− x|�v�2

H1(]a,b[),

by Cauchy-Schwarz again. Therefore, for all x �= y, we obtain

|v(y)− v(x)|
|y− x|1/2 ≤ �v�H1(]a,b[).

Now the right-hand side above does not depend on x or y, thus

sup
x �=y

|v(y)− v(x)|
|y− x|1/2 ≤ �v�H1(]a,b[), (2.13)

for all v ∈C1([a,b]).
Putting estimates (2.12) and (2.13) together, we see that for all v ∈C1([a,b]),

we have
�v�C0,1/2([a,b]) ≤C��v�H1(]a,b[), (2.14)

with C� =C+1.
Let us now conclude the density argument. For all u ∈ H1(]a,b[) there exists

a sequence vn ∈C1([a,b]) such that vn → u in H1(]a,b[). It is therefore a Cauchy
sequence in H1(]a,b[), and applying estimate (2.14) to (vn − vm) ∈C1([a,b]), we
see that it is also a Cauchy sequence in C0,1/2([a,b]). But C0,1/2([a,b]) is a Banach
space, thus there exists v ∈C0,1/2([a,b]) such that vn → v in C0,1/2([a,b]).

Of course, vn → u in H1(]a,b[) implies vn → u in D �(]a,b[), and vn → v in
C0,1/2([a,b]) implies vn → v in D �(]a,b[), so that u = v.6 This shows that u ∈
C0,1/2([a,b]) and, passing to the limit in estimate (2.14), that the injection is
continuous. �

That all H1 functions are continuous is specific to dimension one, as we will
see later. Note also that not all C0,1/2 functions are H1 (consider x �→

√
x on ]0,1[).

The injection above is nonetheless optimal since for each β > 1/2, there is an H1

function that is not C0,β (consider x �→ x
2β+1

4 on ]0,1[).
An important feature of the one-dimensional case is that pointwise values of a

H1 function are unambiguously defined as the pointwise value of its continuous
representative. Moreover, such pointwise values depend continuously on the
function in the H1 norm by estimate (2.14). This is in particular true of the
endpoint values at a and b, which can be surprising because the Sobolev space
definition is based on the open set ]a,b[.

6This is in the sense that the equivalence class u contains one (and only one) continuous
representative, which is v.
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Corollary 2.7.2 The linear mapping H1(]a,b[)→ R2, u �→ (u(a),u(b)) is contin-
uous.

Proof. Obviously max(|u(a)|, |u(b)|)≤ �u�C0,1/2([a,b]) ≤C�u�H1(]a,b[). �

Remark 2.7.1 This is the one-dimensional version of the trace theorem that we
will prove in all dimensions later on. The linear mapping in question is called the
trace mapping. The result also shows that Dirichlet boundary conditions make
sense for functions of H1(]a,b[), a fact that was not evident from the start.

Because of the continuity of the trace, it is clear that H1
0 (]a,b[) is included in the

kernel of the trace {u ∈ H1(]a,b[);u(a) = u(b) = 0}. It suffices to take a sequence
ϕn of D(]a,b[) that tends to u in H1(]a,b[). Actually, the reverse inclusion holds
true so that

H1
0 (]a,b[) = {u ∈ H1(]a,b[);u(a) = u(b) = 0}.

The space H1
0 (]a,b[) is thus adequate for homogeneous Dirichlet conditions for

second order boundary value problems. �

To conclude the one-dimensional case, let us mention the Rellich compact
embedding theorem.

Theorem 2.7.3 The injection H1(]a,b[)→ L2(a,b), u �→ u is compact.

Proof. We recall that a mapping is compact if it transforms bounded sets into
relatively compact sets. Here, it is enough to take the unit ball of H1(]a,b[) by
linearity. By estimate (2.14), it is a bounded subset of C0,1/2([a,b]). Bounded sets
of C0,1/2([a,b]) are equicontinuous, therefore relatively compact in C0([a,b]) by
Ascoli’s theorem. Finally the embedding C0([a,b]) �→ L2(a,b) is continuous, thus
transforms relatively compact sets into relatively compact sets. �

Remark 2.7.2 We also have Hm(]a,b[) �→Cm−1,1/2([a,b]), the trace on Hm(]a,b[)
is u �→ (u(a),u�(a), . . . ,u(m−1)(a),u(b),u�(b), . . . ,u(m−1)(b)) and Hm

0 (]a,b[) is the
set of u such that u(a)= u�(a)= · · ·= u(m−1)(a)= u(b)= u�(b)= · · ·= u(m−1)(b)=
0. Similar results can be written for the W m,p(]a,b[) spaces, not with the same
Hölder exponent, though (exercise). �
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2.8 Density of smooth functions and trace in dimen-

sion d

We have seen that Sobolev functions in dimension one are continuous. This is no
longer true in dimensions 2 and higher. We will concentrate on the space H1(Ω).

Let D be the unit disk in R2. It can be checked (exercise) that the function
u : x �→ ln(| ln(�x�/e)|) is in H1

0 (D). This function tends to +∞ at the origin, thus
there is no continuous function in its equivalence class.

Figure 13. A discontinuous H1-function.

Now we can do much worse! We extend u by 0 to R2, which still is a function
in H1(R2). Next, let (xi)i∈N be countable, dense set of points in R2. Then the
function v(x) =∑+∞

i=0 2−iu(x−xi) is in H1(R2), since �u(·−xi)�H1(R2) = �u�H1(R2)
and we have a normally convergent series, but this function tends to +∞ at all
points xi, which are dense. Therefore, v is not locally bounded: there is no open
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set on which it is bounded. This sounds pretty bad, even though it is a perfectly
legitimate, although hard to mentally picture, function of H1(R2).

Figure 14. An attempt to draw a very bad H1-function (graphics cheat: the spikes
should be thinner, (infinitely) higher and (infinitely) denser).

In higher dimensions, we can picture such singularities occurring on a dense
set of curves or hypersurfaces of dimension d −2. In view of this state of things,
ascribing some kind of boundary value to a H1 function that would be a reasonably
continuous extension from Ω seems difficult. In PDE problems, we nonetheless
need boundary values, to write Dirichlet conditions for example.

The definition of a good boundary value for H1 functions is by means of a
mapping called the trace mapping. This mapping is defined by density of smooth
functions, so let us deal with that first. Besides, as should already be quite clear,
density arguments are very useful in Sobolev spaces.

Theorem 2.8.1 Let Ω be a Lipschitz open subset of Rd. Then the space C1(Ω̄) is
dense in H1(Ω).

Proof. We use the same partition of unity as before. It suffices to construct a C1(Ω̄)
approximation for each part u j = ψ ju of u. Indeed, we have u j ∈ H1(Ω) for all j
by Proposition 2.5.8.

We start with the case j = 0. Since u0 is compactly supported in Ω, its extension
by 0 to the whole of Rd belongs to H1(Rd) as is easily checked. Let us take a
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mollifier ρ , that is to say a C∞ function with compact support in the unit ball B and
such that

�
B ρ(y)dy = 1.

For all integers n ≥ 1, we set ρn(y) = ndρ(ny) and u0,n = ρn � u0, where the
star denotes the convolution. By the general properties of convolution, we have
u0,n ∈C∞(Rd)∩L2(Rd) and u0,n → u0 in L2(Rd) when n →+∞. Moreover, since
∂iu0,n = ρn �∂iu0, the same argument shows that ∂iu0,n → ∂iu0 in L2(Rd), whence
u0,n → u0 in H1(Rd) when n → +∞. This settles the case j = 0 because the
restriction of u0,n to Ω̄ is of class C1 (in fact, it is even compactly supported as
soon as n is large enough) and the H1 norm on Ω is smaller than the H1 norm on
Rd .

The regularity of Ω comes into play for j > 0, in the hypercubes that cover the
boundary. We drop again all subscripts or superscripts j for brevity. The difficulty
compared with j = 0 is that we cannot extend u by 0 to Rd and remain in H1(Rd).
For example, it is easy to see that the function equal to 1 in Ω and 0 outside is not
in H1(Rd). We will use a two step process, first a translation, then a convolution.

Let n ∈ N∗. We set un(y) = u(y�,yd − 1/n), which is a function defined on
the translated set Ωn = {y ∈ Rd;(y�,yd −1/n) ∈ Ω∩C}, see Figure 14 below. We
extend un by 0 to Rd and let �un denote this extension. Since u is supported in
C, and the translation shifts it upwards, the restriction of �un to Ω∩C is still in
H1(Ω∩C).

It can be shown7 that the translation is continuous on L2(Rd) in the sense that
�un → �u in L2(Rd) when n → +∞, thus by restriction we have �un|Ω∩C → u|Ω∩C
in L2(Ω ∩C). Computing the partial derivatives in the sense of distributions
shows that ∂i(�un|Ω∩C) = (∂iu)n|Ω∩C using the same notation for the translation.
Therefore, we have the same convergence for the partial derivatives, which shows
that �un|Ω∩C → u|Ω∩C in H1(Ω∩C) when n → +∞. To conclude, we just need to
approximate �un|Ω∩C for any given n by a C1(Ω̄) function, and use a double limit
argument.

We now use the convolution by a mollifier again and set �un,p = �un �ρp. By
construction, �un,p is of class C∞ on Rd and �un,p → �un in L2(Rd) when p → +∞.
Now for the subtle point. We do not have L2 convergence of the gradients, because
in general ∂i�un is not a function, let alone in L2(Rd). Take for example ϕ = 0
and u = 1, then ∂d�un is a Dirac mass on the hyperplane yd = 1

n , cf. the one-
dimensional case. However, since we have shifted the discontinuity outside of Ω
by the translation, there is hope that the restrictions to Ω still converge.

To see that this is the case, we let �∂iun denote the extension of ∂iun to Rd by
0. We have �∂iun ∈ L2(Rd) and �∂iun �ρp → �∂iun in L2(Rd) when p →+∞ by the
properties of convolution again. Of course, as already noted, �∂iun �= ∂i�un so that

7The fairly easy proof uses the density of continuous, compactly supported functions in L2(Rd).
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�∂iun �ρp �= ∂i�un,p. We will show that, for p large enough, we nonetheless have
(�∂iun �ρp)|Ω∩C = (∂i�un,p)|Ω∩C. As we have just seen that �∂iun �ρp converges in
L2, this will lead to the conclusion that (∂i�un,p)|Ω∩C → ∂iun in L2(Ω∩C), hence
�un,p|Ω∩C → un|Ω∩C in H1(Ω∩C) when p →+∞. Since �un,p|Ω∩C ∈C1(Ω∩C), we
will have our approximation.

To show that the restrictions are equal, we go back to the convolution formula

�∂iun �ρp(x) =
�

Rd
ρp(x− y)�∂iun(y)dy =

�

B(x,1/p)
ρp(x− y)�∂iun(y)dy

since ρ has support in the unit ball. Now, if for all x ∈ Ω∩C, we had B
�
x, 1

p
�
⊂ Ωn,

then the only values of �∂iun in the integral would coincide with those of ∂i�un, see
Figure 14. Hence the equality of the restrictions since ∂i�un,p = ρp �∂i�un.

We are thus down to a geometry question, where the regularity of Ω intervenes
(at last). We need to estimate the distance between the graph of ϕ , denoted G,
and the same graph translated upwards by 1

n , denoted Gn. Let L be the Lipschitz
constant of ϕ and take two points x ∈ G and y ∈ Gn. We have

�y− x�2 = �y� − x��2 +
�

ϕ(y�)−ϕ(x�)+ 1
n

�2
,

using the prime notation to denote the projection on Rd−1 as usual. Now

ϕ(y�)−ϕ(x�)+ 1
n
≥ 1

n
−L�y� − x��,

therefore if �y�−x�� ≤ 1
2nL , then �y−x�≥ 1

2n . On the other hand, if �y�−x�� ≥ 1
2nL ,

it follows trivially that �y− x� ≥ 1
2nL . We thus see that

�y− x� ≥ min
� 1

2n
,

1
2nL

�
.

If we choose
p >

1
min

� 1
2n ,

1
2nL

� ,

then B
�
x, 1

p
�
⊂ Ωn, hence the final result. �

Remark 2.8.1 There is a slight cheat in the geometric part of the above proof,
in that we have ignored what happens on the lateral sides of C. Indeed, there is
actually no problem, since u vanishes there. �
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1
n

Gn

G

Ω∩C

Ωn x 1
p

Figure 15. The translated open set Ωn and the ball of radius 1
p used to compute the

convolution at point x. For x in Ω̄∩C, the ball remains included in Ωn uniformly
for p →+∞, n fixed.

Remark 2.8.2 Warning: there are open sets less regular than Lipschitz on which
not only does the above proof not work, but the density result is false (exercise,
find a simple example). It is however always true that C1(Ω)∩H1(Ω) is dense in
H1(Ω), a weaker result (Meyers-Serrin theorem) which is sometimes sufficient.
But not here for the trace. �

Once the density of C1(Ω̄) is established, we can prove the trace theorem.

Theorem 2.8.2 Let Ω be a Lipschitz open subset of Rd. There exists a unique
continuous linear mapping γ0 : H1(Ω)→ L2(∂Ω) such that for all u ∈C1(Ω̄), we
have

γ0(u) = u|∂Ω.

In other words, the trace is the unique reasonable way of defining a boundary
value for H1 functions, as the continuous extension of the restriction to the boundary
for functions for which this restriction makes sense.
Proof. We write the proof only in dimension d = 2, but the general case is strictly
identical, up to heavier notation.

Let u ∈ C1(Ω̄). By partition of unity, we consider uψ which is supported in
one of the Cj = C for j = 1, . . . ,m. Let G = ∂Ω∩C be the part of the boundary
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included in C. By definition of the boundary measure, we have

�uψ�2
L2(G) =

� a

−a
(uψ)(y1,ϕ(y1))

2
�

1+ϕ �(y1)2 dy1

=
� a

−a

�� ϕ(y1)

−a

∂ (uψ)

∂y2
(y1,y2)dy2

�2�
1+ϕ �(y1)2 dy1.

By the Cauchy-Schwarz inequality, we have

�� ϕ(y1)

−a

∂ (uψ)

∂y2
(y1,y2)dy2

�2
≤ |ϕ(y1)+a|

� ϕ(y1)

−a

�∂ (uψ)

∂y2
(y1,y2)

�2
dy2,

with |ϕ(y1)+a| ≤ 2a. Let us set M = max[−a,a]
�

1+ϕ �(y1)2. We obtain

�uψ�2
L2(G) ≤ 2aM

� a

−a
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−a

�∂ (uψ)

∂y2

�2
dy2dy1 = 2aM
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�∂ (uψ)

∂y2

�2
dx.

Now ∂ (uψ)
∂y2

= ψ ∂u
∂y2

+u ∂ψ
∂y2

, so that

�uψ�2
L2(G) ≤ 4aM

��

Ω∩C
ψ2

� ∂u
∂y2

�2
dx+

�

Ω∩C
u2
�∂ψ

∂y2

�2
dx
�

≤ 4aM
����

∂u
∂y2

���
2

L2(Ω∩C)
+max

Ω∩C

�∂ψ
∂y2

�2
�u�2

L2(Ω∩C)

�

≤C2�u�2
H1(Ω),

(recall that ψ is [0,1]-valued) for some constant C that we could make more explicit
if we wanted to.

We put all the estimates together by partition of unity and the triangle inequality:

�u�L2(∂Ω) ≤
m

∑
j=1

�uψ j�L2(G j) ≤ mC�u�H1(Ω),

for all u ∈C1(Ω̄). The linear mapping u �→ u|∂Ω defined on C1(Ω̄) is thus continu-
ous in the H1(Ω) and L2(∂Ω) norms. Since C1(Ω̄) is dense in H1(Ω), the mapping
has a unique continuous extension to H1(Ω) with values in L2(∂Ω), which is called
the trace mapping γ0. �

Remark 2.8.3 Again, there are open sets less regular than Lipschitz on which no
trace mapping can be defined. �
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We now are in a position to extend the integration by parts formula(s) to
elements of Sobolev spaces.

Theorem 2.8.3 Let Ω be a Lipschitz open set and u,v ∈ H1(Ω). Then we have
�

Ω

∂u
∂xi

vdx =−
�

Ω
u

∂v
∂xi

dx+
�

∂Ω
γ0(u)γ0(v)ni dΓ. (2.15)

Proof. We argue by density. We already know that formula (2.16) holds true on
C1(Ω̄). Let un,vn be sequences in C1(Ω̄) such that un → u and vn → v in H1(Ω)
when n → +∞. This means that un → u, vn → v, ∂iun → ∂iu and ∂ivn → ∂iu in
L2(Ω). Therefore, ∂iunvn → ∂iuv and un∂ivn → u∂iv in L1(Ω) and the left-hand
side integral and the first integral in the right-hand side pass to the limit. Secondly,
we have γ0(un)→ γ0(u) and γ0(vn)→ γ0(v) in L2(∂Ω) since the trace mapping is
continuous, hence γ0(un)γ0(vn)→ γ0(u)γ0(v) in L1(∂Ω) and the second integral
in the right-hand side also passes to the limit. �

The various corollaries of the integration by parts formula also hold true,
provided all the integrals make sense. For instance, for all u ∈ H1,

�

Ω

∂u
∂xi

dx =
�

∂Ω
γ0(u)ni dΓ, (2.16)

as is seen from taking v = 1.
The formulas that entail second derivatives should be applied to H2 functions.

Such functions u are in H1, thus have a trace γ0(u) and they also have a second
trace γ1(u), called the normal trace, that plays the role of the normal derivative for
a regular function. Indeed, ∂iu ∈ H1(Ω) therefore γ1(u) = ∑d

i=1 γ0(∂iu)ni is well
defined and continuous from H2(Ω) into L2(∂Ω). Furthermore, if u ∈C2(Ω̄), then
γ1(u) = ∂u

∂n . We thus establish the Green formula
�

Ω
(∆u)vdx =−

�

Ω
∇u ·∇vdx+

�

∂Ω
γ1(u)γ0(v)dΓ, (2.17)

for all u ∈ H2(Ω) and all v ∈ H1(Ω) by density of C2(Ω̄) in H2(Ω) and of C1(Ω̄)
in H1(Ω), starting from formula (2.5).

Proposition 2.8.1 Let Ω be a Lipschitz open set. Then we have

H1
0 (Ω) = kerγ0.

Proof. One inclusion is easy. The space H1
0 (Ω) is by definition the closure of the

space D(Ω) in H1(Ω). Thus, if u ∈ H1
0 (Ω), then there exist ϕn ∈ D(Ω) such that

ϕn → u in H1(Ω). It is clear that γ0(ϕn) = 0, thus u ∈ kerγ0 by continuity of the
trace, or in other words H1

0 (Ω)⊂ kerγ0.
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We just give the idea for the reverse inclusion. Take a zero trace function
u, use a partition of unity adapted to the boundary, extend all the parts to the
whole of Rd by 0 (the integration by parts formula (2.15) shows that the extension
remains in H1 this time), translate each function downwards by a small amount in
its cube then perform the convolution step which provides a compactly supported,
C∞ approximation. We leave the details to the reader, all the necessary technical
elements have already been introduced previously. �

Remark 2.8.4 Similar arguments show that H2
0 (Ω) = kerγ0 ∩kerγ1 and so on. It

should be noted that the trace γ0 is not onto. Its image is called H1/2(Ω), it is a
strict dense subspace of L2(∂Ω). Everything we have said in terms of traces can
also naturally be done in the spaces W m,p(Ω). �


