
Chapter

4 Variational
approximation
methods for elliptic
PDEs

One of the virtues of the variational approach is that it leads naturally to a whole
family of approximation methods. The reason why approximation methods for
PDEs are needed is that, even though we may be able to prove the existence of
a solution, in general there is no closed form formula for it. Therefore, if we
need quantitative information on the solution, there is little choice but to try to
approximate it with something that is computable in practice. Let us point out that,
even though we limit ourselves to variational approximation methods, there are
other approximation methods that are not variational.

4.1 The general abstract variational approximation

scheme

As we have seen, boundary value problems take place in infinite dimensional vector
spaces. An infinite dimensional space is way too big to fit inside a computer, thus
the main idea is to build finite dimensional approximations. Any approximation
method of this kind falls under the general heading of a Galerkin method. Let us
start with a few definitions that pertain to the variational case.

Definition 4.1.1 Let V be a Hilbert space and (Vn)n∈N be a sequence of finite
dimensional vector subspaces of V . We say that this sequence is a conforming
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approximation sequence if for all u ∈V , there exists a sequence (vn)n∈N such that

vn ∈Vn and �u− vn�V → 0 when n →+∞. (4.1)

Remark 4.1.1 Note that in general, we do not have Vn ⊂ Vn+1, i.e., the spaces
do not need to be nested. The conforming approximation condition implies that�

n∈NVn is dense in V .
There are situations in which non conforming approximations are called for,

that is to say Vn �⊂V . Of course, in this case �u− vn�V does not make sense, and
another definition is needed.

The traditional notation for an approximation sequence is Vh where h is a
discretization parameter that is assumed to belong to a sequence that tends to 0.
We will from now on stick with the tradition. �

The main abstract result is the following, also known under the name of Céa’s
lemma.

Theorem 4.1.1 Let V be a Hilbert space, a be a bilinear form and � be a linear
form satisfying the hypotheses of the Lax-Milgram theorem. Let Vh be a closed
subspace of V . Then there exists a unique uh ∈Vh such that

∀vh ∈Vh, a(uh,vh) = �(vh),

and we have
�u−uh�V ≤ M

α
inf

vh∈Vh
�u− vh�V =

M
α

d(u,Vh),

where M is the continuity constant of a and α its V -ellipticity constant.

Proof. Since Vh is closed, it is a Hilbert space for the restriction of the scalar
product of V . The Lax-Milgram hypotheses for the variational problem on Vh are
thus satisfied and the existence and uniqueness of uh is assured.

Now we have a(u,v) = �(v) for all v ∈ V , thus in particular for v = wh ∈ Vh.
On the other hand, we also have a(uh,wh) = �(wh), so that subtracting the two

0 = a(u,wh)−a(uh,wh) = a(u−uh,wh)

for all wh ∈Vh. By V -ellipticity, for all vh ∈Vh,

α�u−uh�2
V ≤ a(u−uh,u−uh)

≤ a(u−uh,u− vh)+a(u−uh,vh −uh)

= a(u−uh,u− vh)

≤ M�u−uh�V�u− vh�V ,
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since vh −uh ∈Vh. The case �u−uh�V = 0 is ideal and nothing needs to be done.
If it is non zero, we divide by it and obtain

�u−uh�V ≤ M
α
�u− vh�V

for all vh ∈Vh, thus the theorem by taking the infimum of the right-hand side. �

Corollary 4.1.2 Let Vh be a conforming approximation sequence. Then the se-
quence uh ∈Vh of approximated solutions converges to the solution u in V , with
the a priori error estimate

�u−uh�V ≤ M
α

d(u,Vh)→ 0 when h → 0.

Proof. Each subspace Vh is finite dimensional, hence closed. We thus apply
Theorem 4.1.1 and obtain the convergence result since d(u,Vh)≤ �u−vh�V where
vh is given by the definition of conforming approximation for this u. �

Remark 4.1.2 We also trivially have �u−uh�V ≥ d(u,Vh), thus the error estimate
is optimal in terms of order of magnitude when h → 0. Now, if the constant M/α
is very large, then the numerical error can be large too with respect to d(u,Vh).

An interesting feature of Céa’s lemma is that it decomposes the error estimate
into two basically independent parts: The constant M/α which only depends on
the bilinear form, i.e., the PDE, and not on the approximation method, and d(u,Vh)
which depends mostly on the approximation properties of the space Vh. In practice,
the second part will be estimated by constructing a linear operator Πh : V → Vh,
writing that

d(u,Vh)≤ �u−Πhu�V ≤ �I −Πh��u�V

and estimating the term �I −Πh� which depends only on Vh. �

The approximation uh lives in a finite dimensional space, therefore it is com-
putable, at least in principle. Let us see how to proceed in practice.

Proposition 4.1.1 Let Nh = dimVh and (w1,w2, . . . ,wNh) be a basis of Vh. We write
uh = ∑Nh

j=1 uh, jw j. We introduce an Nh ×Nh matrix A defined by Ai j = a(w j,wi)

and two vectors B ∈ RNh by Bi = �(wi) and X ∈ RNh by Xj = uh, j. Then the matrix
A is invertible and we have AX = B. Conversely, the solution of this linear system
is the vector of coordinates of uh in the basis (wi).
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Proof. Let us take vh = wi in the variational formulation of the finite dimensional
problem. This yields

Bi = �(wi)= a(uh,wi)= a
� Nh

∑
j=1

uh, jw j,wi
�
=

Nh

∑
j=1

uh, ja(w j,wi)=
Nh

∑
j=1

Ai jXj =(AX)i

for all i. Hence AX = B.
Conversely, if AX = B, then by the above computation, �(wi) = a(�uh,wi) where

�uh = ∑Nh
j=1 Xjw j. For all vh ∈Vh, we have vh = ∑Nh

i=1 vh,iwi, therefore

�(vh) =
Nh

∑
i=1

vh,i�(wi) =
Nh

∑
i=1

vh,ia(�uh,wi) = a
�
�uh,

Nh

∑
i=1

vh,iwi
�
= a(�uh,vh)

therefore, by the uniqueness of the Lax-Milgram solution, we have �uh = uh. Thus
the variational problem and the linear system are equivalent. Since the variational
problem has one and only one solution, it follows that A is invertible. �

Remark 4.1.3 The problem of computing the finite dimensional approximation
uh is thus reduced to that of computing the matrix A and the right-hand side B once
a basis of Vh is chosen, which is called assembling the system, and then of solving
the linear system AX = B. In practical applications, Nh is typically large, ranging
from the thousands to the millions. This is a whole other subject with many facets:
matrix conditioning, efficient algorithms for large linear systems, high performance
computing. We will not touch on this.

It is important not to loose sight of the fact that the size of the matrix A and of
the right-hand side B depend on h, via Nh, even though the notation fails to make
this dependence apparent. In particular, when h → 0, we have Nh →+∞.

Do not forget the exchange of indices Ai j = a(w j,wi) and not Ai j = a(wi,w j)!
Note that if a is symmetric, then the matrix A is symmetric, positive, definite, with
a(v,v) = Y T AY where Y is the vector of coordinates of v in the basis (wi). �

We now introduce the main example of variational approximation method, the
finite element method (FEM). For simplicity, we start with the one-dimensional
case.

4.2 The finite element method in dimension one

Let Ω = ]a,b[ and consider the model problem
�

−u��+ cu = f in Ω,
u(a) = u(b) = 0. (4.2)
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When f ∈ L2(a,b), c ∈ L∞(a,b) and c ≥ 0, we know that this problem has
one and only one solution by using the variational formulation V = H1

0 (]a,b[),
a(u,v) =

�
Ω(u

�v�+ cuv)dx and �(v) =
�

Ω f vdx.
The idea of the FEM is to take approximation spaces Vh composed of functions

that are piecewise polynomial of low degree, with lots of pieces. In one dimension,
we have H1 ⊂C0, thus for the approximation to be conforming, we need to impose
Vh ⊂C0 as well.

The FEM is based on the notion of mesh. In one dimension, a mesh is just a
subdivision of ]a,b[ into a finite number of intervals. Each of the small intervals is
called an element. We will only consider uniform meshes. Let N be an integer. We
set h = b−a

N+1 , which is called the mesh size, and let xi = a+ ih, i = 0, . . . ,N +1, be
the nodes of the mesh.

h

a = x0 x1 x2 x3 · · · xN xN+1 = b

Figure 1. A uniform 1d mesh.

We thus have N + 1 subintervals [xi,xi+1] of length h, N interior nodes xi,
i = 1, . . . ,N, and 2 boundary nodes x0 and xN+1. We now define

Vh = {vh ∈C0([a,b]);vh|[xi,xi+1] is affine for i = 0, . . . ,N,vh(a) = vh(b) = 0}.
(4.3)

Note that here, the subscript h in Vh is actually the same h as the mesh size. Since
h → 0 when N →+∞, we thus have a sequence of approximation spaces. We first
need to see if this would-be approximation is conforming.

Proposition 4.2.1 We have Vh ⊂ H1
0 (]a,b[).

Proof. First of all, since Vh ⊂C0([a,b]) with [a,b] compact, we have Vh ⊂ L2(a,b).
Let us compute the distributional derivative of an element vh of Vh. Since vh|[xi,xi+1]
is an affine function, we can write vh(x) = λix+ µi for x ∈ [xi,xi+1], with λi, µi
constants that depend on the subinterval. For all ϕ ∈ D(]a,b[), we have

�v�h,ϕ�=−�vh,ϕ ��=−
� b

a
vh(x)ϕ �(x)dx

=−
N

∑
i=0

� xi+1

xi
vh(x)ϕ �(x)dx

=−
N

∑
i=0

� xi+1

xi
(λix+µi)ϕ �(x)dx.
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Now we can classically integrate each element integral by parts,

−
� xi+1

xi
(λix+µi)ϕ �(x)dx =

� xi+1

xi
λiϕ(x)dx− [vh(x)ϕ(x)]

xi+1
xi

=
� xi+1

xi
λiϕ(x)dx− vh(xi+1)ϕ(xi+1)+ vh(xi)ϕ(xi),

since vh is continuous on [a,b] its right and left limits at xi and xi+1 respectively
are just its value at these points.

Now, if we let

g(x) =
N

∑
i=0

λi1[xi,xi+1](x),

then obviously g is a piecewise constant function hence is bounded, and thus in
L2(a,b) and

N

∑
i=0

� xi+1

xi
λiϕ(x)dx =

� b

a
g(x)ϕ(x)dx.

On the other hand

−
N

∑
i=0

[vh(x)ϕ(x)]
xi+1
xi =−vh(x1)ϕ(x1)+ vh(x0)ϕ(x0)

− vh(x2)ϕ(x2)+ vh(x1)ϕ(x1)−·· ·
· · ·− vh(xN+1)ϕ(xN+1)+ vh(xN)ϕ(xN) = 0,

since all terms involving interior nodes appear twice with opposite signs, and
ϕ(x0) = ϕ(xN+1) = 0 since ϕ has compact support. Finally, we see that

�v�h,ϕ�=
� b

a
g(x)ϕ(x)dx = �g,ϕ�,

with g ∈ L2(]a,b[) which shows that vh ∈ H1(]a,b[) and v�h = g. Now all elements
of Vh also satisfy vh(a) = vh(b) = 0 so that vh ∈ H1

0 (]a,b[). �
It is fairly clear that the space Vh is finite dimensional, since any of its elements

is determined by a finite number of constants λi and µi. Therefore, the general
abstract principle applies and there exists a unique uh ∈Vh such that a(uh,vh) =
�(vh) for all vh ∈ Vh, and we have Céa’s lemma error estimate. Let us see how
this estimate can be exploited to quantify the convergence rate. Let us start with a
general purpose lemma concerning Vh.

Lemma 4.2.1 There exists a unique continuous linear mapping Πh : H1
0 (]a,b[)→

Vh, called the Vh-interpolation operator such that for all v in H1
0 (]a,b[), v(xi) =

Πhv(xi) for i = 0, . . . ,N +1.
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Proof. First of all, we note that H1
0 (]a,b[) �→C0([a,b]), therefore the nodal values

v(xi) are unambiguously defined and v(x0) = v(xN+1) = 0.
Now an affine function on [xi,xi+1] is uniquely determined by its values at xi

and xi+1. Thus, the relations v(xi) = Πhv(xi) for i = 0, . . . ,N +1 define a unique
piecewise affine function on the mesh, that is continuous and vanishes at both ends,
thus belongs to Vh. Let Πhv be this function. Clearly, the mapping v �→ Πhv is
linear from H1

0 (]a,b[) into Vh. Finally we infer from the fact that the values taken
by an affine function on an interval lie between the values at the endpoints, that
maxx∈[xi,xi+1] |Πhv(x)|= max

�
|v(xi)|, |v(xi+1)|

�
, and therefore

�Πhv�C0([a,b]) = max
i=0,...,N

max
x∈[xi,xi+1]

|Πhv(x)|

= max
i=0,...,N

max
�
|v(xi)|, |v(xi+1)|

�

≤ max
x∈[a,b]

|v(x)|= �v�C0([a,b]) ≤C�v�H1(]a,b[),

by Theorem 2.7.1. Consequently, the Vh-interpolation operator is continuous. �

Remark 4.2.1 A picture is in order here.

x0

xi xi+1 xN+1

Figure 2. The Vh-interpolate Πhv of a function v.

In other words, Πhv, which we call the Vh-interpolate of v, is the unique element
of Vh that coincides with v at all nodes of the mesh. �

Proposition 4.2.2 Assume c and f are continuous on [a,b]. Then u is of class
C2([a,b]) and there exists a constant C independent of u such that

�u−uh�V ≤Chmax
[a,b]

|u��|. (4.4)
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Proof. If f and c are continuous, since u is also continuous by Theorem 2.7.1,
then u�� = cu− f is continuous on [a,b] and u ∈C2([a,b]). By Céa’s lemma (aka
Theorem 4.1.1), we have

�u−uh�V ≤ M
α

inf
vh∈Vh

�u− vh�V .

We choose vh = Πhu. It follows that

�u−uh�V ≤ M
α
�u−Πhu�V ,

and we are left with estimating the rightmost norm.
Let us take the H1 semi-norm as a norm on V (this makes for simpler computa-

tions). We have

�u−Πhu�2
V =

� b

a
((u−Πhu)�)2 dx =

N

∑
i=0

� xi+1

xi
(u� − (Πhu)�)2 dx.

Let us consider the function w = u − Πhu on [xi,xi+1]. By definition of Vh-
interpolation, we have w(xi) = w(xi+1) = 0. Since w is C1 on [xi,xi+1], Rolle’s
theorem applies and there exists c ∈ ]xi,xi+1[ such that w�(c) = 0. Now, w is also
of class C2 on [xi,xi+1] so that

w�(x) =
� x

c
w��(t)dt =

� x

c
u��(t)dt

for all x ∈ [xi,xi+1], since Πhu is affine there, thus its second derivative vanishes. It
follows from this equality that

|w�(x)| ≤
� x

c
|u��(t)|dt ≤

� xi+1

xi
|u��(t)|dt ≤ h max

t∈[xi,xi+1]
|u��(t)| ≤ hmax

[a,b]
|u��|,

for all x ∈ [xi,xi+1]. Squaring and integrating, we thus see that
� xi+1

xi
(u� − (Πhu)�)2 dx =

� xi+1

xi
(w�)2 dx ≤ h3 max

[a,b]
|u��|2.

Now we sum from i = 0 to N

�u−Πhu�2
V ≤ h3

� N

∑
i=0

1
�

max
[a,b]

|u��|2 = h3(N +1)max
[a,b]

|u��|2.

At this point, we recall that h = b−a
N+1 , hence

�u−Πhu�2
V ≤ h2(b−a)max

[a,b]
|u��|2,

and finally

�u−uh�V ≤
�M

α
√

b−a
�

hmax
[a,b]

|u��|,

which completes the proof. �
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Remark 4.2.2 Note that we have not proved that the sequence Vh is a conforming
approximation sequence in the sense of Definition 4.1.1. Rather, we have exploited
Céa’s error estimate directly, coupled with an additional regularity hypothesis, here
that u be C2 essentially, to obtain an explicit error estimate and a convergence
order in O(h) when h → 0. The sequence Vh is in fact a conforming approximation
sequence, but this does not turn out to be too useful, as the convergence toward a
generic element of H1 can be much slower than O(h). This will be a general fact:
additional regularity hypotheses on the solution will be needed for explicit error
estimates. Such regularity can however often be deduced from elliptic regularity
theory. �

x0

xi xi+1 xN+1

Figure 3. A fictitious computation : the continuous solution u in blue, the discrete
solution uh in green, and the Vh-interpolate Πhu of u in orange used to control the

error between the former two. Note that only uh is effectively computable.

Let us now talk about the choice of a basis in Vh. Even though in principle, the
resolution of the finite dimensional problem should not depend on the basis choice,
in practice this is an extremely important issue since the choice of basis directly
impacts the matrix A. A wrong choice of basis can lead to a linear problem that
cannot be solved numerically (bad conditioning, full matrix) in the sense that all
theoretically convergent algorithms may fail or take too long or use up too much
computer memory. Recall that for a basis (w j), the matrix coefficients are given by

Ai j = a(w j,wi) =
� b

a
((w j)�(wi)�+ cw jwi)dx.

For numerical purposes, full matrices are to be avoided and sparse matrices
preferred. A sparse matrix is a matrix in which most coefficients are 0 and nonzero
coefficients are close to the diagonal. Now, there is an easy way of making sure
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that Ai j = 0, given the above formula, and that is to arrange that the supports of wi

and w j have negligible intersection. So we want to find a basis for Vh for which
the supports are as small as possible, in order to minimize the intersections. Now
clearly, the support of any function of Vh is at least comprised of two elements. We
thus define

Definition 4.2.1 For i= 1, . . . ,N, let wi
h ∈Vh be defined by wi

h(xi)= 1 and wi
h(x j)=

0 for j = 0, . . . ,N + 1, j �= i. We call these functions the hat functions or basis
functions for P1 Lagrange interpolation.

As we have said before, all functions in Vh are determined by their nodal values.
In particular here, wi

h(a) = wi
h(b) = 0, since the endpoints correspond to j = 0 and

j = N +1, and 1 ≤ i ≤ N. The term P1 Lagrange interpolation stems from the fact
that affine functions are polynomials of degree at most 1, hence P1, and that these
functions are also used for Lagrange interpolation in Vh, as we will see shortly.

1

xixi−1 xi+10

Figure 4. The hat function wi
h with support [xi−1,xi+1].

Proposition 4.2.3 The family (wi
h)i=1,...,N is a basis of Vh. Thus dimVh = N. More-

over, we have the interpolation property

∀vh ∈Vh, vh(x) =
N

∑
i=1

vh(xi)wi
h(x). (4.5)

Proof. We use the Kronecker delta symbol: δi j = 1 if i = j, δi j = 0 otherwise. The
hat functions thus satisfy wi

h(x j) = δi j for i = 1, . . . ,N and j = 0, . . . ,N +1.
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Let us first show that the family is linearly independent. Let λi be scalars such
that

N

∑
i=1

λiwi
h = 0.

Evaluating this zero function at point x j yields

0 =
N

∑
i=1

λiwi
h(x j) =

N

∑
i=1

λiδi j = λ j

since in the last sum, the only nonzero term corresponds to i = j. Thus all coeffi-
cients vanish and the family is linearly independent.

Next we show that the family spans Vh. For all vh ∈Vh, we define

�vh =
N

∑
i=1

vh(xi)wi
h ∈Vh.

Now, of course vh−�vh ∈Vh and since �vh(x j)=∑N
i=1 vh(xi)wi

h(x j)=∑N
i=1 vh(xi)δi j =

vh(x j) (same computation as above), then (vh−�vh)(x j) = 0 for all j = 0, . . . ,N+1.
For each element [x j,x j+1], we thus see that vh −�vh is affine on the segment and
vanishes at both endpoints, hence is identically zero on [x j,x j+1]. As this is true
for all j, we have vh − �vh = 0 on [a,b], that is to say vh = �vh, which shows both
that the family is spanning and that we have formula (4.5).

The family (wi)i=1,...,N is linearly independent and spanning, thus is a basis of
Vh. It has N elements so that dimVh = N. �

Remark 4.2.3 The Lagrange interpolation property (4.5) is very important. It
shows that with this specific choice of basis, the coordinates of a function vh are
precisely its nodal values vh(xi). Hence solving the linear system AX = B is going
to directly provide the nodal values of the discrete solution uh, without any post-
processing. The linear forms vh �→ vh(xi), which belong to the dual V ∗

h of Vh, are
called the degrees of freedom in the FEM context. From the point of view of linear
algebra, they are just the dual basis of the basis (wi)i=1,...,N . �

Corollary 4.2.1 With the hat functions basis, the N ×N matrix A is tridiagonal.

Proof. Indeed, the support of wi
h is [xi−1,xi+1], therefore if |i− j| ≥ 2, then xi−1 ≥

x j+1 or x j−1 ≥ xi+1 and the intersection of both supports is of zero measure, hence
Ai j = 0. Thus, on any given line of the matrix A, we have at most three nonzero
coefficients: Ai,i−1 corresponding to the subdiagonal, Aii corresponding to the
diagonal and Ai,i+1 corresponding to the superdiagonal. �
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Of course, a tridiagonal matrix is the best kind of matrix that can be expected,
apart from a diagonal matrix which cannot occur. This is because the problem is
exceedingly simple. Actually, it is easy to compute all nonzero coefficients.

Proposition 4.2.4 If c = c0 and f = f0 are constant, then we have

Aii =
2
h
+

2h
3

c0, Ai,i−1 = Ai,i+1 =−1
h
+

h
6

c0 and Bi = h f0.

Proof. We start by noticing that wi
h(x) = w1

h(x− xi) (extending w1
h by zero outside

of [a,b]), thus Aii = A11 and Ai,i−1 = Ai,i+1 = A12.
It is easy to see that w1

h(x) =
x
h on [x0,x1] and w1

h(x) = 2− x
h on [x1,x2], 0 else-

where. Therefore, (w1
h)

�(x) = 1
h on [x0,x1], (w1

h)
�(x) =−1

h on [x1,x2], 0 elsewhere.
Thus

A11 =
� x2

x0
((w1

h)
�(x)2 + c0w1

h(x)
2)dx

=
� x1

x0
((w1

h)
�(x)2 + c0w1

h(x)
2)dx+

� x2

x1
((w1

h)
�(x)2 + c0w1

h(x)
2)dx

=
1
h2 ×h+

c0

h2

� x1

x0
x2 dx+

1
h2 ×h+

c0

h2

� x2

x1
(2h− x)2 dx

=
2
h
+

2h
3

c0.

The intersection of the supports of w1
h and w2

h is [x1,x2], hence

A12 =
� x2

x1
((w1

h)
�(x)(w2

h)
�(x)+ c0w1

h(x)w
2
h(x))dx

=− 1
h2 ×h+

c0

h2

� x2

x1
(2h− x)(x−h)dx

=−1
h
+

h
6

c0.

We leave the last value to the reader. �

Remark 4.2.4 When c or f are not constant, the corresponding terms may not
necessarily be exactly computable and it may be necessary to resort to numerical
integration. These terms however are corrections to the dominant terms 2

h and −1
h ,

so that it can be shown that choosing a sufficiently accurate numerical integration
rule does not modify the final error estimate.

Numerical methods for linear systems are especially efficient in the case of a
tridiagonal matrix. Among the classical methods used, let us mention LU , Cholesky
(the matrix is symmetric), conjugate gradient. There are other more modern and
sophisticated methods of course. �
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4.3 A fourth order example

Let us now briefly consider the beam problem
�

u(4) + cu = f in Ω,
u(a) = u(b) = u�(a) = u�(b) = 0.

(4.6)

The variational formulation of this problem is set in V = H2
0 (]a,b[) and since

H2(]a,b[) �→C1([a,b]), the previous P1 finite element method is not adapted (ex-
ercise, show that if v is piecewise affine, then v�� = ∑N

i=1(λi −λi−1)δxi /∈ L2(a,b)).
We need higher degree polynomials to match not only the values, but the derivatives
at mesh nodes. In the following, Pk denotes the space of polynomials of degree at
most k. We thus define

Vh = {vh ∈C1([a,b]);vh|[xi,xi+1] ∈ P3 for i = 0, . . . ,N,

vh(a) = vh(b) = v�h(a) = v�h(b) = 0}. (4.7)

A natural question is why not simply use P2 polynomials. The reason is that, in
this case Vh = {0} (exercise), which is not very good for approximation purposes.
Degree k = 3 is the first degree for which the above definition gives rise to a
nontrivial space, although we have no proof of this at present.

Proposition 4.3.1 We have Vh ⊂ H2
0 (]a,b[).

Proof. Argue as in the proof of Proposition 4.2.1. �
We thus need C1 functions, and in order to ensure the continuity and derivability

at the endpoints of each element, we need to be able to specify both the value of
the polynomial and of its derivative. The simplest way to achieve this is to use P3
Hermite interpolation. Let us rapidly recall this interpolation.

Proposition 4.3.2 For all quadruplets (α0,α1,β0,β1) of scalars, there exists a
unique polynomial P ∈ P3 such that

P(0) = α0, P(1) = α1, P�(0) = β0, P�(1) = β1.

The P3 Hermite basis polynomials are given by

p0(x) = (1−x)2(1+2x), p1(x) = x2(3−2x),q0(x) = x(1−x)2,q1(x) = x2(x−1).

Proof. The proof of Proposition 4.3.2 follows from a simple dimension argument:
we show that the linear mapping P3 → R4, P �→ (P(0),P(1),P�(0),P�(1)) is an
isomorphism. Since P3 is four-dimensional, it suffices to show that its kernel is
trivial. But a polynomial such that P(0) = P(1) = P�(0) = P�(1) = 0 has a double
root at x = 0 and another double root at x = 1, hence a number of roots counting
multiplicities of at least four. We now that a nonzero polynomial of degree at most
three has at most three roots. Hence P = 0. �
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Of course, the P3 Hermite basis polynomials form a basis of P3, since they are
the inverse image of the canonical basis of R4 by the previous isomorphism. They
are uniquely determined by the following interpolation values: (α0,α1,β0,β1) =
(1,0,0,0) for p0, (α0,α1,β0,β1) = (0,1,0,0) for p1, (α0,α1,β0,β1) = (0,0,1,0)
for q0 and (α0,α1,β0,β1) = (0,0,0,1) for q1, so that any polynomial P of P3 is
uniquely written as

P = P(0)p0 +P(1)p1 +P�(0)q0 +P�(1)q1.

In FEM language, the linear forms P �→ P(0), P �→ P(1), P �→ P�(0) and P �→ P�(1)
are the degrees of freedom of P3 Hermite interpolation on the reference element
[0,1].

0

1

1

p0 p1

q0

q1

Figure 5. The four P3 Hermite basis polynomials.

Once we have Hermite interpolation of the reference element [0,1], we have
Hermite interpolation on any element [xi,xi+1] by a simple affine change of vari-
ables.

Lemma 4.3.1 There exists a unique continuous linear mapping Πh : H2
0 (]a,b[)→

Vh, again called the Vh-interpolation operator such that for all v in H2
0 (]a,b[),

v(xi) = Πhv(xi) and v�(xi) = (Πhv)�(xi) for i = 0, . . . ,N +1.

Proof. First of all, we note that H2
0 (]a,b[) �→C1([a,b]), therefore the nodal values

v(xi) and v�(xi) are unambiguously defined.
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Now a P3 polynomial on [xi,xi+1] is uniquely determined by its values and
the values of its derivative at xi and xi+1, by Hermite interpolation. Thus, the
relations v(xi)=Πhv(xi) and v�(xi)= (Πhv)�(xi) for i= 0, . . . ,N+1 define a unique
piecewise P3 function on the mesh, that is globally C1 and vanishes at both ends
together with its derivatices, thus belongs to Vh. Let Πhv be this function. Clearly,
the mapping v �→ Πhv is linear from H1

0 (]a,b[) into Vh. We leave the continuity to
the reader. �

The above proof also shows that Vh �= {0}. We can now show an error estimate,
along the same lines as before.

Proposition 4.3.3 Assume c and f are continuous on [a,b]. Then u is of class
C4([a,b]) and there exists a constant C independent of u such that

�u−uh�V ≤Ch2 max
[a,b]

|u(4)|. (4.8)

Proof. If f and c are continuous, since u is also continuous by Theorem 2.7.1, then
u(4) = cu− f is continuous on [a,b] and thus u ∈C4([a,b]). By Céa’s lemma, we
have

�u−uh�V ≤ M
α
�u−Πhu�V .

We use the H2 semi-norm as a norm on V . We have

�u−Πhu�2
V =

� b

a
((u−Πhu)��)2 dx =

N

∑
i=0

� xi+1

xi
(u�� − (Πhu)��)2 dx.

Let us consider the function w = u − Πhu on [xi,xi+1]. By definition of Vh-
interpolation, we have w(xi) = w(xi+1) = 0. Since w is C1 on [xi,xi+1], Rolle’s
theorem applies and there exists c1 ∈ ]xi,xi+1[ such that w�(c1) = 0. Now, we also
have w�(xi) = w�(xi+1) = 0 by Vh-interpolation, and w� is also of class C1 so that
Rolle applies again and there exists c2 < c1 < c3 such that w��(c2) = w��(c3) = 0.
We apply Rolle one last time since w�� is C1 and obtain a point c4 ∈ [xi,xi+1] such
that w���(c4) = 0. Consequently

w���(x) =
� x

c4
w(4)(t)dt =

� x

c4
u(4) dt

for all x ∈ [xi,xi+1], since Πhu is of degree at most three there, thus its fourth
derivative vanishes. It follows from this equality that

|w���(x)| ≤
� x

c4
|u(4)(t)|dt ≤

� xi+1

xi
|u(4)(t)|dt ≤ hmax

[a,b]
|u(4)|,
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for all x ∈ [xi,xi+1]. We also have

w��(x) =
� x

c2
w���(t)dt,

so that substituting the previous estimate yields

|w��(x)| ≤ h2 max
[a,b]

|u(4)|.

Squaring and integrating, we thus see that
� xi+1

xi
(u�� − (Πhu)��)2 dx =

� xi+1

xi
(w��)2 dx ≤ h5 max

[a,b]
|u(4)|2.

Now we sum from i = 0 to N

�u−Πhu�2
V ≤ h5

� N

∑
i=0

1
�

max
[a,b]

|u(4)|2 = h4(b−a)max
[a,b]

|u(4)|2,

which completes the proof. �

Remark 4.3.1 Under regularity hypotheses, we thus have convergence of the P3
Hermite FEM based on the smallness of the interpolation error. It should be noted
that this kind of proof relying on Rolle’s theorem is not very natural in a Sobolev
space context. There are better proofs using Hilbertian arguments. �

Let us say a few words about bases and matrices. It is apparent that the operator
Πh only uses the nodal values of the function and its derivatives. Hence, any set of
interpolation data with N elements for the values and N elements for the derivative
values gives rise to one and only one element of Vh. We thus define

Definition 4.3.1 For i = 1, . . . ,N, let wi
h ∈Vh be defined by

wi
h(x j) = δi j and (wi

h)
�(x j) = 0,

and zi
h ∈Vh be defined by

zi
h(x j) = 0 and (zi

h)
�(x j) = δi j,

for j = 0, . . . ,N + 1. We call these functions the basis functions for P3 Hermite
interpolation on the mesh.
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The function wi
h is thus equal to 1 at xi and zero at all other nodes, with zero

derivatives at all nodes, whereas the function zi
h has derivative 1 at xi and zero at all

other nodes, with zero values at all nodes. Clearly they are constructed by pairing
together the Hermite basis interpolation polynomials in each element [xi−1,xi] and
[xi,xi+1], which are also called shape functions in the FEM context.

Figure 6a. A wi
h basis function.

Figure 6b. A zi
h basis function.

Proposition 4.3.4 The family (wi
h,z

i
h)i=1,...,N is a basis of Vh. Thus dimVh = 2N.

Moreover, we have the interpolation property

∀vh ∈Vh, vh(x) =
N

∑
i=1

vh(xi)wi
h(x)+

N

∑
i=1

v�h(xi)zi
h(x). (4.9)

Proof. Similar to the proof of Proposition 4.2.3 but using Hermite P3 interpolation
in each element. �

The supports of the basis functions are again [xi−1,xi+1], thus we can expect
lots of zero coefficients in the matrix. We do not write the detail here. Let us just
mention that there is an issue of numbering. In the P1 Lagrange case, there was a
natural numbering of basis functions, which was that of the nodes. Here we have
several choices, leading to different matrices. If we choose to number the basis
elements as (w1

h,w
2
h, . . . ,w

N
h ,z

1
h,z

2
h, . . . ,z

N
h ), then the 2N×2N matrix A is comprised

of four N ×N blocks, and each one of the blocks is tridiagonal. If on the other
hand, we interlace the basis functions like (w1

h,z
1
h,w

2
h,z

2
h, . . . ,w

N
h ,z

N
h ), we obtain

a sparse matrix each row of which has at most six nonzero coefficients grouped
around the diagonal, resulting in seven nonzero diagonal rows: three above the
diagonal and three under the diagonal.
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Figure 7. Matrix structure. Left: block tridiagonal, right: interlaced.

4.4 Neumann and Fourier conditions

Let us briefly indicate how to deal with Neumann and Fourier conditions for the
model second order problem. There are several changes: the test-function space
must not enforce boundary conditions, i.e., V = H1(]a,b[), additional terms come
up in the right hand-side for both problems, and there is an additional term in the
bilinear form for the Fourier condition. Let us just consider the case c > 0. We
thus let

Vh = {vh ∈C0([a,b]);vh|[xi,xi+1] ∈ P1}. (4.10)

Compared to the previous version of Vh, we have added two degrees of freedom
vh �→ v(a) and vh �→ v(b), hence dimVh = N +2. We must accordingly complete
the basis by adding two more basis functions w0

h and wN+1
h defined by w0

h(x j) = δ0 j
and wN+1

h (x j) = δN+1, j for all j ∈ {0, . . . ,N +1}.

x0 x1 xN xN+1

Figure 8. The two additional basis functions w0
h left and wN+1

h right.

The variational formulation for the Fourier problem (replacing b by d in the
Fourier condition to avoid a conflict in notation with the boundary b) is

� b

a
(u�v�+ cuv)dx+du(a)v(a)+du(b)v(b) =

� b

a
f vdx+gv(a)+gv(b).
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We just set d = 0 for the Neumann problem. In matrix terms, the (N+2)× (N+2)
matrix A is still symmetric tridiagonal, and we have

A00 = AN+1,N+1 =
1
h
+

h
3

c+d

and
A01 = A10 = AN,N+1 = AN+1,N =−1

h
+

h
6

c.

Of course
A0i = Ai0 = A j,N+1 = AN+1, j = 0

for i ≥ 2 and j ≤ N −1. The other coefficients are unchanged. The right-hand side
has two additional components B0 = BN+1 =

h f
2 +g.

Similar changes must be made to treat a fourth order Neumann problem.
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