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Quick final exam correction

Exercise I

a. By definition, P is spanned by a family of vectors, it is thus a vector space.
It contains all polynomials of the form ∑i αiλi, that is all P1 polynomials, hence
P1 ⊂P . The degree of λi is 1 and the degree of λ1λ2λ3 is 3, thus any polynomial
in P has degree less than 3, i.e., P ⊂ P3.
To show that dimP = 4, let us find a basis. We already have a generating family,
by definition, {λ1,λ2,λ3,λ1λ2λ3}. We show that it is free. Let us be given αi,
i = 1, . . . ,4 such that

0 = α1λ1 +α2λ2 +α3λ3 +α4λ1λ2λ3.

Evaluating the above equality at Ai yields αi = 0 for i = 1, . . . ,3. We are thus left
with 0 = α4λ1λ2λ3, which we evaluate at G = (1

3 ,
1
3 ,

1
3), so that α4

27 = 0 or α4 = 0.

b. We first construct p1 ∈P such that p1(Ai) = δ1i and p1(G) = 0. By the
previous question, we look for

p1 = α1λ1 +α2λ2 +α3λ3 +α4λ1λ2λ3.

Evaluating again at Ai, we get α1 = 1, α2 = α3 = 0, so that

p1 = λ1 +α4λ1λ2λ3.

Evaluating at G, we get

0 =
1
3
+α4

1
27

,

so that α4 =−9. The polynomial

p1 = λ1−9λ1λ2λ3

is thus ok. By permutation of indices

p2 = λ2−9λ1λ2λ3, p3 = λ3−9λ1λ2λ3.

We proceed in the same way for p4 and obtain α1 = α2 = α3 = 0 and α4 = 27, so

p4 = 27λ1λ2λ3.

We have constructed four basis polynomial that satisfy the duality conditions with
the degrees of freedom, hence the finite element is unisolvent.
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c. This follows directly from unisolvence, see class notes.
d. Interpolation values at the internal nodes and centers of gravity define a
piecewise-P function. The only question is whether this function is continuous
and satisfies the boundary conditions. The key here is to notice that λ1λ2λ3 van-
ishes on the three edges of its triangle. Thus P-functions are affine on the edges
of the triangles (but not inside). So the reasoning used for P1 Lagrange elements
applies here as well.
e. Same as in class: c. and d. make it possible to construct hat-functions in
Vh that vanish at all internal vertices except one and at all centers of gravity, and
bubble functions that vanish at all internal vertices and at all centers of gravity
except one. This is a basis of Vh (same proof as always) and the dimension is thus
Nt +Ns (one center of gravity per triangle).
f. . . .

Exercise II

a. We have Aξ ·ξ = 2ξ 2
1 +2ξ1ξ2 +2ξ 2

2 = (ξ1 +ξ2)
2 +ξ 2

1 +ξ 2
2 ≥ ξ 2

1 +ξ 2
2 .

b. Apply Lax-Milgram. H1(Ω) is a notorious Hilbert space. The bilinear form
is continuous, since

|a(u,v)| ≤
∫

Ω

2
(∣∣∣ ∂u

∂x1

∂v
∂x1

∣∣∣+ ∣∣∣ ∂u
∂x2

∂v
∂x1

∣∣∣+ ∣∣∣ ∂u
∂x1

∂v
∂x2

∣∣∣+2
∣∣∣ ∂u
∂x2

∂v
∂x2

∣∣∣)dx

+
∫

Ω

|uv|dx+
∫

∂Ω

|γ0(u)γ0(v)|dσ .

Now by Cauchy-Schwarz∫
Ω

∣∣∣ ∂u
∂xi

∂v
∂x j

∣∣∣dx≤ ‖u‖H1(Ω)‖v‖H1(Ω)

for all i, j, ∫
Ω

|uv|dx≤ ‖u‖H1(Ω)‖v‖H1(Ω)

and∫
∂Ω

|γ0(u)γ0(v)|dσ ≤ ‖γ0(u)‖L2(∂Ω)‖γ0(v)‖L2(∂Ω) ≤C2
γ0
‖u‖H1(Ω)‖v‖H1(Ω)

where Cγ0 is the continuity constant of the trace mapping γ0 : H1(Ω)→ L2(∂Ω).
Finally

|a(u,v)| ≤ (7+C2
γ0
)‖u‖H1(Ω)‖v‖H1(Ω).
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The bilinear form is H1(Ω)-elliptic, since

a(v,v) =
∫

Ω

A∇v ·∇vdx+
∫

Ω

v2 dx+
∫

∂Ω

γ0(v)2 dσ

≥
∫

Ω

∇v ·∇vdx+
∫

Ω

v2 dx = ‖v‖2
H1(Ω).

The linear form is continuous, since

`(v) =
∫

Ω

f vdx+
∫

∂Ω

gγ0(v)dσ

and

|`(v)| ≤ ‖ f‖L2(Ω)‖v‖L2(Ω)+‖g‖L2(∂Ω)‖γ0(v)‖L2(∂Ω)

≤ (‖ f‖L2(Ω)+Cγ0‖g‖L2(∂Ω))‖v‖H1(Ω).

c. Take first v = ϕ ∈D(Ω)⊂ H1(Ω). There are no boundary terms and by IPP

a(u,ϕ) =
∫

Ω

(
−2∆u−2

∂ 2u
∂x1∂x2

+u
)

ϕ dx,

hence the PDE

−2∆u−2
∂ 2u

∂x1∂x2
+u = f .

Taking now the boundary terms into account by using a general v ∈ H1(Ω), we
obtain

2
∂u
∂n

+
∂u
∂x1

n2 +
∂u
∂x2

n1 +u = g

on ∂Ω.

Exercise III

We work in one space dimension with Ω = ]0,1[. Let c be a constant such that
c >−π2. We consider problem (P)

∂u
∂ t

(x, t)− ∂ 2u
∂x2 (x, t)+ cu(x, t) = 0,

u(0, t) = u(1, t) = 0,

u(x,0) = u0(x),

for x ∈Ω and t ∈ [0,T ], u0 and T being given.
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a. Let ak be the Fourier coefficients of u0 (extended to be odd on [−1,1]), then
u(x,0) = u0(x). Moreover, the series of all partial derivatives converge normally
on [0,1]× [t0,+∞[ for all t0 > 0. Thus the series is of class C∞ on [0,1]× ]0,+∞[
and we can differentiate term by term. Now

∂ 2

∂x2 (sin(kπx)e−(k
2π2+c)t) =−k2

π
2 sin(kπx)e−(k

2π2+c)t

and
∂

∂ t
(sin(kπx)e−(k

2π2+c)t) =−(k2
π

2 + c)sin(kπx)e−(k
2π2+c)t .

b. The scheme is implicit since we cannot obtain U j+1 without solving a non-
trivial linear system.
c. The scheme reads

u j+1
i − k

u j+1
i+1 −2u j+1

i +u j+1
i−1

h2 + kcu j+1
i = u j

i ,

or
(((1+ ck)Ih + kAh)U j+1)i = (U j)i

so that
U j+1 = ((1+ ck)Ih + kAh)

−1U j,

assuming the matrix in parentheses is invertible (back to that later). Since it is
symmetric, its inverse is symmetric and symmetric matrices are obviously normal.

d. Routine calculation with Taylor-Lagrange expansions. The order is one in
time and two in space.
e. The eigenvalues of (1+ ck)Ih + kAh are λn = 1+ ck+ 4k

h2 sin2( nπ

2(N+1)

)
, n =

1, . . . ,N. The smallest eigenvalue is thus λ1 = 1+ck+ 4k
h2 sin2(hπ

2

)
. We can rewrite

it as

λ1 = 1+ ck+
2k
h2

(
1− cos(hπ)

)
= 1+ ck+

2k
h2

(
1−1+

h2π2

2
− h4π4

24
+O(h6)

)
= 1+ ck+ k

(
π

2− h2π4

12
+O(h4)

)
Since c >−π2, we thus have

λ1 ≥ 1− k
(h2π4

12
+O(h4)

)
.
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Now for h small, we have h2π4

12 +O(h4)≤ 1, thus

λ1 ≥ 1− k.

Hence Ah is invertible and

ρ(Ah) = λ
−1
1 ≤ 1

1− k
= 1+

k
1− k

≤ 1+2k

for k small: unconditional stability in the 2,h norms.
f. Apply the Lax theorem.
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