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Let us now switch to triangular finite elements, which are better adapted for
problems that are posed in open sets that are not just rectangles. First we need a
quick review of affine geometry.

5.7 Barycentric coordinates

Triangular finite elements are much easier to work with using a system of coordi-
nates in the plane that is quite different from the usual Cartesian system, namely
barycentric coordinates. Actually, barycentric coordinates are a natural system of
coordinates for affine geometry.

We will be given three points A1, A2 and A3 in the plane. We first define the
weighted barycenter of these points.

Definition 5.7.1 Let λ1, λ2 and λ3 be three scalars such that λ1 +λ2 +λ3 = 1.
The barycenter of the points A j with weights λ j is the unique point M in the plane

such that
−−→
OM = ∑3

j=1 λ j
−−→
OA j, where O is a given point. This point does not depend

on the choice of O and we thus write

M =
3

∑
j=1

λ jA j.

One statement in this definition needs to be checked, namely that M does
not depend on O. Indeed, let O� be another choice of point, and M� be such that
−−→
O�M� = ∑3

j=1 λ j
−−→
O�A j. We have

−−→
O�M� =

3

∑
j=1

λ j(
−−→
O�O+

−−→
OA j) =

� 3

∑
j=1

λ j

�−−→
O�O+

3

∑
j=1

−−→
OA j =

−−→
O�O+

−−→
OM =

−−→
O�M

hence M� = M.
Now of course, barycenters are likewise defined for any finite family of points

and weights of sum equal to 1, and in any affine space, but we will only use three
points in the plane.

From now on, we assume that the three points A j are not aligned. In this case,
we have the following basic result.

Proposition 5.7.1 For all points M in the plane, there exists a unique triple
(λ1,λ2,λ3) of real numbers with λ1 +λ2 +λ3 = 1 such that

M =
3

∑
j=1

λ jA j.
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The scalars λi = λi(M) are called the barycentric coordinates of M, with respect to
points A1,A2,A3.

Proof. We use Cartesian coordinates. Let (x j
1,x

j
2) be the Cartesian coordinates of

A j in some Cartesian coordinate system, and (x1,x2) be the Cartesian coordinates
of point M. We have M = ∑3

j=1 λ jA j if and only if xk = ∑3
j=1 λ jx

j
k for k = 1,2.

Moreover, we have the condition 1 = ∑3
j=1 λ j. We thus find a system of three linear

equations in the three unknowns λ j:





λ1 + λ2 + λ3 = 1,
x1

1λ1 + x2
1λ2 + x3

1λ3 = x1,

x1
2λ1 + x2

2λ2 + x3
2λ3 = x2.

The determinant of this system is

∆ =

������

1 1 1
x1

1 x2
1 x3

1
x1

2 x2
2 x3

2

������
=

������

1 0 0
x1

1 x2
1 − x1

1 x3
1 − x1

1
x1

2 x2
2 − x1

2 x3
2 − x1

2

������
= (x2

1−x1
1)(x

3
2−x1

2)−(x3
1−x1

1)(x
2
2−x1

2) �= 0

since it is equal to det(
−−→
A2A1,

−−→
A3A1) and the points are not aligned.

Therefore, for any right-hand side, i.e., for any point M, the system has one and
only one solution. �

Remark 5.7.1 Going from barycentric coordinates to Cartesian coordinates is just
done by applying the definition. Conversely, to compute barycentric coordinates
from Cartesian coordinates, we just need to solve the above linear system.

If the three points are aligned, then we get a system which has a solution only
if M is on the line spanned by the points, and there are infinitely many solutions,
and if the three points are equal, the system only has a solution if M is equal to the
other points, again with an infinity of solutions. �

Let us give a few miscellaneous properties of barycentric coordinates.

Proposition 5.7.2 We have
i) λi(A j) = δi j.
ii) The functions λi are affine in (x1,x2) and conversely.
iii) Let (Ai,A j) denote the straight line passing through Ai and A j for i �= j.

Then (Ai,A j) = {M;λk(M) = 0,k �= i,k �= j}.
iv) Let T be the closed triangle determined by the three points A j. Then

T = {M,0 ≤ λi(M)≤ 1, i = 1,2,3}.
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Proof. i) We have A1 = 1×A1 + 0×A2 + 0×A3 with 1+ 0+ 0 = 1, hence by
uniqueness of the barycentric coordinates, λi(A1) = δi1.

ii) Use Cramer’s rule for solving the above linear system.
iii) The function λk is a nonzero affine function by i) and ii), thus it vanishes on

a straight line. By i), this straight line contains Ai and A j, so it is equal to (Ai,A j).
iv) We have just seen by iii) that λk(M) = 0 is the equation of the straight line

opposite to vertex Ak. Moreover, by i) the half-plane containing Ak is the half-plane
{M;λk(M)≥ 0}. The triangle T is the intersection of these three half-planes, so it
is the set of points whose barycentric coordinates are all positive. Since their sum
is equal to 1, they are also less than 1. �
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Figure 26. Signs of the barycentric coordinates in order λ1,λ2,λ3.

Note that there is no −−− region, it would be hard to have ∑λi = 1 in such a
region. . . The last important feature of barycentric coordinates is their invariance
under affine transformations. For this we modify the notation a bit by indicating
the dependence on the points A j by writing λ A1,A2,A3

i (M), which is admittedly
cumbersome, and will thus not be used after this.

Proposition 5.7.3 Let F be an bijective affine transformation of the plane. Then
we have

λ F(A1),F(A2),F(A3)
i (F(M)) = λ A1,A2,A3

i (M)

for i = 1,2,3 and all M.

Proof. This is clear as affine transformations conserve barycenters. �
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Let us give the barycentric coordinates of a few points of interest in a triangle:

• Middle of A1A2:
�1

2 ,
1
2 ,0

�
,

• Middle of A2A3:
�
0, 1

2 ,
1
2
�
,

• Middle of A1A3:
�1

2 ,0,
1
2
�
,

• Center of gravity of the triangle:
�1

3 ,
1
3 ,

1
3
�
.

5.8 Triangular P1 Lagrange elements

Let us be given a triangular mesh T on Ω. We recall that P1 denotes the space
of polynomials of total degree less than 1, i.e., affine functions. We define the
corresponding approximation spaces

Wh = {vh ∈C0(Ω̄),vh|Tk ∈ P1 for all Tk ∈ T },

without boundary conditions and

Vh = {vh ∈ h,vh = 0 on ∂Ω},

with boundary conditions. The general approximation theory applies and we thus
just need to describe the approximation spaces in terms of finite elements and basis
functions.

Let T be a triangle with non aligned vertices A1, A2 and A3.

Proposition 5.8.1 The finite element (T,P1,{p(A1), p(A2), p(A3)}) is unisolvent.

Proof. We have dimP1 = 3 so the numbers match. The basis polynomials are
obvious: λ1,λ2,λ3, by Proposition 5.7.2, i) and ii). �

Proposition 5.8.2 A function of Vh is uniquely determined by its values at the
internal nodes of the mesh and all sets of values are interpolated by an element of
Vh.

Proof. By unisolvence, three values for the three nodes of an element determine
one and only one P1 polynomial that interpolates these nodal values (we take the
value 0 for the nodes located on the boundary). Therefore, if we are given a set
of values for each node in the mesh, this set determines one P1 polynomial per
element. Let us check that they combine into a globally C0 function.

Since the mesh is admissible, an edge common to two triangles Tk and Tk� is
delimited by two vertices A1 and A2 which are also common to both triangles.
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We thus have two P1 polynomials p and p� such that p(A1) = p�(A1) and p(A2) =
p�(A2). We parametrize the segment [A1,A2] as M = µA1 +(1− µ)A2 with µ ∈
[0,1]. Then the restriction of p− p� to this segment is a first degree polynomial in
the variable µ that has two roots, µ = 0 and µ = 1. Therefore, p− p� = 0 on this
segment, and the function defined by p(x) if x ∈ Tk, p�(x) if x ∈ Tk� is continuous
on Tk ∪Tk� . �

Corollary 5.8.1 Let us be given a numbering of the nodes Sk, k = 1, . . . ,Ni. There
is a basis of Vh composed of the functions wi

h defined by wi
h(S

j) = δi j and and for
all vh ∈Vh, we have

vh =
Ni

∑
i=1

vh(Si)wi
h. (5.13)

Proof. Same as before. �

Figure 27. A P1 basis function on a triangular mesh.

Other pictures can be found on the class Web page.
Let us now talk a little bit about matrix assembly. We will not touch on the

node numbering issue, which is clearly more complicated in a triangular mesh than
in a rectangular mesh, especially in an unstructured triangular mesh, such as that
shown in Figure 2, in which there is no apparent natural numbering.

We will however see how the use of a reference triangle and of barycentric
coordinates simplifies the computation of matrix coefficients. We have the same
element-wise decomposition as in the rectangular case

Ai j =
Ni

∑
k=1

Ai j(Tk),
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with
Ai j(Tk) =

�

Tk

(∇w j
h ·∇wi

h + cw j
hwi

h)dx.

On each triangle Tk, the basis functions either vanish or are equal to one barycentric
coordinate. So we need to compute the integral of the product of two barycentric
coordinates (for c constant) and the integral of the scalar product of their gradient.

We thus introduce a reference triangle
�T = {(x̂1, x̂2) ∈ R2, x̂1 ≥ 0, x̂2 ≥ 0, x̂1 + x̂2 ≤ 1}.

Let Â1 = (0,0), Â2 = (1,0) and Â3 = (0,1) be its vertices. Let Tk be a generic
triangle in the mesh, with vertices A1

k , A2
k , A3

k . Now, there exists one and only one
affine mapping Fk such that Fk(Â j) = A j

k, j = 1,2,3. Indeed, since affine mappings
conserve barycenters, we simply have

Fk( �M) = λ̂1( �M)A1
k + λ̂2( �M)A2

k + λ̂3( �M)A3
k ,

or in other words, λi(Fk( �M)) = λ̂i(M̂), where the first barycentric coordinates are
taken relative to the vertices of Tk in increasing superscript order.

Now the expression of barycentric coordinates in the reference triangle in terms
of Cartesian coordinates is particularly simple:

λ̂1 = 1− x̂1 − x̂2, λ̂2 = x̂1, λ̂3 = x̂2,

whereas they are fairly disagreeable in the generic triangle.
Let us give an example of computation with the integral

�
Tk

λ 2
2 dx. We are going

to use the change of variables x = Fk(x̂). Since this change of variable is affine, its
Jacobian J is constant, and we have

areaTk =
�

Tk

dx =
�

�T
J dx̂ =

J
2

therefore J = 2areaTk. Now we can compute
�

Tk

λ 2
2 (x)dx =

�

�T
λ̂ 2

2 (x̂)J dx̂

= 2areaTk

�

�T
x̂2

1 dx̂

= 2areaTk

� 1

0
x̂2

1

�� 1−x̂1

0
dx̂2

�
dx̂1

= 2areaTk

� 1

0
x̂2

1(1− x̂1)dx̂1

= 2areaTk

�1
3
− 1

4

�

=
areaTk

6
.
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Exchanging the vertices, we find
�

Tk
λ 2

1 (x)dx =
�

Tk
λ 2

3 (x)dx = areaTk
6 . A similar

computation shows that
�

Tk
λiλ j(x)dx = areaTk

12 for all i �= j. Such terms are thus of
the order of h2.

Let us now turn to the gradient terms. We first need to compute ∇λi, which is a
constant vector.

Ai+

Ai++

Ai

νi(Tk)

Hi

h
i (T

k )

bi(Tk)

Figure 28. Geometric elements of a generic triangle.

We introduce hi(Tk) and bi(Tk) respectively the height and base of Tk relative
to Ai, Hi the foot of the altitude of Ai and νi(Tk) the unit vector perpendicular to
the base and pointing from the base toward Ai. Since λi is affine, we have for all
points M

λi(M) = λi(Hi)+∇λi ·
−−→
HiM.

Now Hi lies on the straight line (Ai+,Ai++), thus λi(Hi) = 0. Since λi vanishes on
this straight line, it follows that ∇λi = µνi(Tk) for some scalar µ . Taking M = Ai,
we obtain

1 = µνi(Tk) ·
−−→
HiM = µhi(Tk).

Therefore, we have

∇λi =
1

hi(Tk)
νi(Tk) =

bi(Tk)

2areaTk
νi(Tk).

It follows from instance that

�∇λi�2 =
bi(Tk)

2

4(areaTk)2 ,
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so that �

Tk

�∇λi�2 dx =
bi(Tk)

2

4areaTk
.

These terms are of the order of 1. We could likewise compute
�

Tk
∇λi ·∇λ j dx

without difficulty, with expressions that involve the angles of Tk.

5.9 Triangular P2 Lagrange elements

Let us go one step up in degree and consider P2 elements. We have dimP2 = 6 as
is shown by its canonical basis (1,X ,Y,X2,XY,Y 2). This canonical basis is useless
for our purposes and it is again much better to work in barycentric coordinates.

Proposition 5.9.1 The family (λ 2
1 ,λ 2

2 ,λ 2
3 ,λ1λ2,λ2λ3,λ1λ3) is a basis of P2.

Proof. The functions λi are affine, thus products λiλ j belong to P2. We have a
family of 6 vectors in a 6-dimensional space, it thus suffices to show that it is
linearly independent. Let is be given a family of 6 scalars αi j such that

3

∑
i≤ j=1

αi jλiλ j = 0.

Evaluating first this relation at point Ak, we obtain

0 =
3

∑
i≤ j=1

αi jδikδ jk = αkk

for all k. we are thus left with

α12λ1λ2 +α13λ1λ3 +α23λ2λ3 = 0.

We evaluate this relation at point A1+A2

2 , the middle of A1 and A2, for which
λ1 = λ2 =

1
2 and λ3 = 0. Hence

α12

4
= 0,

and similarly α13 = α23 = 0. �
We need 6 degrees of freedom of Lagrange interpolation. We take the three

vertices Ai and the three edge middles Ai,i+. Then we have

Proposition 5.9.2 The finite element
�
T,P2,{p(Ai), p(Ai,i+)}i=1,2,3

�
is unisolvent.
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λ3 =
1
2

λ 2
=

1
2λ

1 =
12

A1

A2

A3

A3,1

A1,2

A2,3

Figure 29. The P2 Lagrange triangle.

Proof. We have the right number of degrees of freedom with respect to the dimen-
sion of the polynomial space. It is thus sufficient to construct the basis polynomials.
Everything being invariant by permutation of the vertices, it is clearly sufficient to
construct for example, the basis polynomial corresponding to A1 and that corre-
sponding to A1,2.

Let us start with A1. We thus need a polynomial p1 ∈ P2 such that p1(A1) = 1
and p1 vanishes at all the other nodes. We will freely use the obvious fact that the
restriction of a polynomial of total degree at most n in two variables to a straight
line is a polynomial of degree at most n in any affine parametrization of the straight
line. Here, p1 is of degree at most 2 on (A2,A3), with three roots corresponding to
points A2, A2,3 and A3, thus it vanishes on (A2,A3). The equation of the straight
line is λ1 = 0, hence p1 is divisible by λ1, i.e., there exists a polynomial q such that
p1 = qλ1. Now λ1 is of degree 1, therefore q is of degree at most one. Moreover,
since λ1(A1,2) = λ1(A3,1) = 1

2 �= 0, we have q(A1,2) = q(A3,1) = 0. Therefore, by
the same token, q vanishes on the straight line (A1,2,A3,1), of equation λ1 − 1

2 = 0.
Thus q is divisible by λ1 − 1

2 , so that q = c(λ1 − 1
2) with c of degree at most 0, i.e.,

a constant. Finally, the relation p1(A1) = 1 yields 1 = c
2 , hence p1 = λ1(2λ1 −1).

Conversely, it is easy—but necessary—to check that this polynomial is in P2 and
satisfies the required interpolation relations.

To sum up, we have

p1 = λ1(2λ1 −1), p2 = λ2(2λ2 −1), p3 = λ3(2λ3 −1),

for the basis polynomials associated with the vertices.
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Next we deal with A1,2. Let us go faster. The polynomial must vanish on
both lines (A1,A3) and (A2,A3), hence p12 = cλ1λ2 where c is a constant. Using
p12(A1,2) = 1 gives c = 4.

To sum up, we have

p12 = 4λ1λ2, p23 = 4λ2λ3, p31 = 4λ1λ3,

for the basis polynomials associated with the middles and the P2 Lagrange triangu-
lar element is unisolvent. �

Figure 32. The two different kinds of P2 basis polynomials.

The approximation space

Vh = {vh ∈C0(Ω̄);vh|Tk ∈ P2,∀Tk ∈ T ,vh = 0 on ∂Ω}

is of course endowed with set of basis functions that interpolate values at all nodes
(vertices and middles). Let us quickly check the continuity across an edge. We thus
have two polynomials of degree at most two, one on each side of the edge, that
coincide at the vertices and the middle. Their restriction to the edge is of degree
two in one variable, their difference has three roots, hence they are equal on the
edge. The rest follows as before.
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Figure 33. A basis function associated with a vertex.

Figure 34. A basis function associated with a middle.

More pictures on the Web page.
Let us say a few words about P3 Lagrange triangles. We have dimP3 = 10, thus

10 interpolation points are needed. We take the 3 vertices plus two points per edge,
located at the thirds (this will obviously imply global continuity). That makes 9
points. A simple choice for the tenth point is then the center of gravity.
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λ3 =
1
3

λ
1 =

13
λ 2
=

1
3

λ3 =
2
3

λ
1 =

23

λ 2
=

2
3

A1

A2

A3

Figure 35. The 10 nodes of a P3 Lagrange triangle.

Of course, this finite element is unisolvent. We list the basis polynomials:

p0 = 27λ1λ2λ3,

corresponding to the center of gravity, also called a bubble due to the shape of its
graph.

p1 =
1
2

λ1(3λ1 −1)(3λ1 −2), etc.

associated with the 3 vertices, and

p112 =
9
2

λ1λ2(3λ1 −1), etc.

associated with the 6 edge nodes.

Figure 36. The three different kinds of P3 basis polynomials.
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Also of course, the approximation space

Vh = {vh ∈C0(Ω̄);vh|Tk ∈ P3,∀Tk ∈ T ,vh = 0 on ∂Ω}

has the usual basis made of basis functions which we picture below.

Figure 37. A few P3 basis functions.
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As in the rectangular case, the reason for facing the added complexity of taking
higher degree polynomials is to achieve faster convergence. Indeed, we have the
general result.

Theorem 5.9.1 Let us be given a regular family of triangulations indexed by h.
We consider Pk Lagrange elements on the triangulations. If u ∈ Hk+1(Ω), then we
have

�u−uh�H1(Ω) ≤Chk|u|Hk+1(Ω),

where |u|Hk+1(Ω) = |∇k+1u|L2(Ω).

The proof is along the same lines as the proof in the Q1 case, but with a lot
more technicality due to the affine changes of variables between the reference
triangle and the generic triangle.

All the above Lagrange triangular elements are adequate for H1 approximation
and are adapted to C0 approximation spaces. It is also possible to define C1 Hermite
triangular elements for fourth order problems. One possible construction uses P5
polynomials, hence 21 degrees of freedom. More generally, there is a very large
diversity of triangular elements in the literature, sometimes especially crafted for
one (class of) boundary value problem(s).


