
Chapter

6 The heat equation

In this chapter, we will present a short and far from exhaustive theoretical study of
the heat equation, then describe and analyze a few approximation methods. We will
mostly work in one dimension of space, some of the results having an immediate
counterpart in higher dimensions, others not.

Let Ω be an open subset of Rd , T ∈ R+. We note Q = Ω× ]0,T [. Recall that
the heat equation is

∂u
∂ t

−∆u = f in Q,

together with an initial condition

u(x,0) = u0(x) in Ω,

and boundary values, for instance Dirichlet boundary values

u(x, t) = g(x, t) on ∂Ω× ]0,T [,

where f , u0 and g are given functions.
When d = 1, we take Ω = ]0,1[ without loss of generality for a bounded Ω and

the problem reads





∂u
∂ t

− ∂ 2u
∂x2 = f in Q,

u(x,0) = u0(x) in Ω,
u(0, t) = g(0, t),u(1, t) = g(1, t) in ]0,T [,

(6.1)
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where g(0, ·) and g(1, ·) are two given scalar valued functions defined on ]0,T [.

6.1 The maximum principle for the heat equation

We have seen a version of the maximum principle for a second order elliptic
equation, in one dimension of space. Parabolic equations also satisfy their own
version of the maximum principle.

Proposition 6.1.1 We assume that u is a solution of problem (6.1) that belongs
to C0(Q̄)∩C2(Q∪ (Ω× {T})). If f ≥ 0 in Q, then u attains its minimum on
(Ω×{0})∪ (∂Ω× [0,T ]).

Proof. Let us first assume that f > 0 on Q∪ (Ω×{T}). The set Q̄ is compact and
u is continuous on Q̄, thus it attains its minimum somewhere in Q̄, say at point
(x0, t0).

If (x0, t0) ∈ Q, then ∂u
∂ t (x0, t0) = 0 and ∂ 2u

∂x2 (x0, t0)≥ 0 since u is C2 in a neigh-
borhood of (x0, t0), so that

�∂u
∂ t −

∂ 2u
∂x2

�
(x0, t0)≤ 0, which contradicts f (x0, t0)> 0.

Therefore (x0, t0) ∈ ∂Q =
�
(Ω×{0})∪ (∂Ω× [0,T ])

�
∪ (Ω×{T}). Assume

that (x0, t0) ∈ Ω× {T}, i.e., that x0 ∈ Ω and t0 = T . It follows again, since as
a function in the variable x for t = T , u is also C2, that ∂ 2u

∂x2 (x0,T ) ≥ 0 so that
∂u
∂ t (x0,T ) = ∂ 2u

∂x2 (x0,T )+ f (x0,T )> 0. Thus there exists t < T such that u(x0, t)<
u(x0,T ), which is consequently not a minimum for u.

The only possibility left is that (x0, t0) ∈ K = (Ω×{0})∪ (∂Ω× [0,T ]).
Consider now the case f ≥ 0. Let ε > 0 and uε(x, t) = u(x, t)+ εx(1− x). In

particular u(x, t)≤ uε(x, t) in Q̄. We have

∂uε
∂ t

− ∂ 2uε
∂x2 =

∂u
∂ t

− ∂ 2u
∂x2 +2ε = f +2ε > 0.

By the previous argument, uε attains its minimum at a point (xε , tε) of K. We
have

u(x0, t0)≤ u(xε , tε)≤ uε(xε , tε)≤ uε(x0, t0) = u(x0, t0)+ εx0(1− x0).

In particular,
u(x0, t0)≤ u(xε , tε)≤ u(x0, t0)+ εx0(1− x0).

We now let ε → 0. Since K is compact, we may extract a subsequence such
that (xε , tε)→ (x̄, t̄) ∈ K. Passing to the limit in the above inequalities and using
the continuity of u, we obtain

u(x0, t0) = u(x̄, t̄),

with (x̄, t̄) ∈ K and the minimum is attained on K. �
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Remark 6.1.1 The meaning of the maximum principle is that the minimum tem-
perature is either attained at t = 0 or on the boundary of Ω at some other time
t ∈ ]0,T ], but not in Ω× ]0,T ]. It is also valid in any dimension d, using the same
proof and the maximum principle for the Laplacian, that we have not proved here.
The result cannot be refined further since u = 0 attains its minimum at any point in
K. �

The maximum principle has many consequences, some of which we now list.

Corollary 6.1.1 If f ≥ 0, g ≥ 0 and u0 ≥ 0, then u ≥ 0 in Q̄.

Proof. Clear since the minimum of u is either of the form u0(x0) or g(x0, t0). �

Remark 6.1.2 This form of the maximum principle is again a monotonicity result.
The interesting physical interpretation is that if you heat up a room, the walls
are kept at a positive temperature and the initial temperature is positive, then the
temperature in the room stays positive everywhere and at any time. �

We also have a stability result in the C0 norm.

Corollary 6.1.2 If f = 0 and g = 0, then �u�C0(Q̄) = �u0�C0(Ω̄).

Proof. Let v+ = u+�u0�C0(Ω̄). We have

∂v+
∂ t

− ∂ 2v+
∂x2 = 0,

since f = 0,
v+(0, t) = v+(1, t) = �u0�C0(Ω̄) ≥ 0,

since g = 0 and
v+(x,0) = u0 +�u0�C0(Ω̄) ≥ 0.

By Corollary 6.1.1, v+ ≥ 0 in Q̄, or in other words u(x, t)≥−�u0�C0(Ω̄) in Q̄.
Changing u in −u, we also have u(x, t)≤ �u0�C0(Ω̄) in Q̄, hence the result. �

Such a stability result immediately entails a uniqueness result.

Proposition 6.1.2 Problem (6.1) has at most one solution in C0(Q̄)∩C2(Q).

Proof. Indeed, if u1 and u2 are two solutions, then v = u1 − u2 satisfies the hy-
potheses of Corollary 6.1.2 with u0 = 0 on Ω× [0,T −η ]) for all η > 0. �
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6.2 Construction of a regular solution

We will see several different ways of constructing solutions to the heat equation.
Let us start with an elementary construction using Fourier series. It should be
recalled that Joseph Fourier invented what became Fourier series in the 1800s,
exactly for the purpose of solving the heat equation.

We consider the case when f = 0, no heat source, and g = 0, homogeneous
Dirichlet boundary condition, the only nonzero data being the initial condition u0.

Proposition 6.2.1 Let u0 ∈ C0([0,1]) be piecewise C1 and such that u0(0) =
u0(1) = 0. Then we have

u0(x) =
+∞

∑
k=1

bk sin(kπx)

for all x ∈ [0,1], with ∑+∞
k=1 |bk|<+∞.

Proof. We first extend u0 by imparity by setting �u0(x) = u0(x) for x ∈ [0,1] and
�u0(x) =−u0(−x) for x ∈ [−1,0[. The resulting function is odd and continuous on
[−1,1] by construction since u0(0) = 0 and still piecewise C1.

Secondly, we extend �u0 to R by 2-periodicity by setting ��u0(x) = �u0(x−2� x+1
2 �).

This function is continuous since �u0(−1) = �u0(1) = 0, piecewise C1 and 2-periodic
by construction. Therefore, by Dirichlet’s theorem, it can be expanded in Fourier
series

��u0(x) =
a0

2
+

+∞

∑
k=1

ak cos(kπx)+
+∞

∑
k=1

bk sin(kπx),

with ∑+∞
k=1(|ak|+ |bk|)<+∞, hence the series is normally convergent. Now ��u0 is

also odd by construction, so that all ak Fourier coefficients vanish. Restricting the
above expansion to x ∈ [0,1], we obtain the result. �

Theorem 6.2.1 Let u0 be as above. Then the function defined by

u(x, t) =
+∞

∑
k=1

bk sin(kπx)e−k2π2t

belongs to C0(R× [0,+∞[)∩C∞(R× ]0,+∞[). Its restriction to Q̄ solves problem
(6.1) with data f = 0, g = 0.

Proof. We first need to show that the series above is convergent in some sense
and that its sum belongs to the function spaces indicated in the theorem. Normal
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convergence on R× [0,+∞[ is obvious since |bk sin(kπx)e−k2π2t | ≤ |bk|, thus u
exists and is continuous R× [0,+∞[.

Let us now consider differentiability. Now if u is supposed to coincide with
u0 at t = 0, and u0 is only piecewise C1, we cannot expect u to be C∞ up to t = 0,
hence the exclusion of t = 0. In order to use theorems on the differentiation of
series, we actually need to stay away from t = 0 as will become clear in the proof.
Let us thus chose ε > 0 and work for t ≥ ε . It is convenient to notice that

sin(kπx)e−k2π2t = ℑ(eikπx−k2π2t).

Therefore, for any natural integers p and q, we have

∂ p+q

∂ t p∂xq

�
sin(kπx)e−k2π2t�= (kπ)p(−k2π2)qℑ(ipeikπx−k2π2t).

Thus

���bk
∂ p+q

∂ t p∂xq

�
sin(kπx)e−k2π2t�

���≤ |bk|π p+2qkp+2qe−k2π2t

≤ |bk|π p+2qkp+2qe−k2π2ε

for t ≥ ε . Since bk =
1
2
� 1
−1 sin(kπx)�u0(x)dx, we have |bk|≤ �u0�C0 , thus

���bk
∂ p+q

∂ t p∂xq

�
sin(kπx)e−k2π2t�

���≤Cp,qkp+2qe−k2π2ε ,

because t ≥ ε . The right-hand side is the general term of a convergent series due
to the e−k2π2ε term with ε > 0, thus the left-hand side is the general term of a
normally, thus uniformly convergent series, for any p and q. Therefore, u is of
class C∞ on R× ]ε,+∞[, for all ε > 0, thus is in C∞(R× ]0,+∞[). Moreover, we
have

∂ p+qu
∂ t p∂xq (x, t) =

+∞

∑
k=1

bk
∂ p+q

∂ t p∂xq

�
sin(kπx)e−k2π2t�

for all (x, t) ∈ R× ]0,+∞[. In particular, we have

∂u
∂ t

(x, t) =
+∞

∑
k=1

bk
∂
∂ t

�
sin(kπx)e−k2π2t�=−

+∞

∑
k=1

bkk2π2 sin(kπx)e−k2π2t

and

∂ 2u
∂x2 (x, t) =

+∞

∑
k=1

bk
∂ 2

∂x2

�
sin(kπx)e−k2π2t�=−

+∞

∑
k=1

bkk2π2 sin(kπx)e−k2π2t
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so that
∂u
∂ t

− ∂ 2u
∂x2 = 0

and u solves the heat equation.
For the boundary conditions, we note that for all integers k ≥ 1, sin(kπ ×0) =

sin(kπ ×1) = 0, so that
u(0, t) = u(1, t) = 0

for all t ∈ R+. Finally,

u(x,0) =
+∞

∑
k=1

bk sin(kπx)e−k2π2×0 =
+∞

∑
k=1

bk sin(kπx) = u0(x),

and the initial condition is satisfied. �

Remark 6.2.1 It is worth noticing that both boundary conditions and initial condi-
tion make sense because u is continuous. Moreover, the regularity of u is such that
the previous uniqueness result applies, thus we have found the one and only one
solution in that class.

An important feature of the heat equation, and more generally of parabolic
equations, is that whatever regularity u0 may have, if f = 0, then the solution u
becomes C∞ instantly for t > 0. This is a smoothing effect.

For t ≥ 0 fixed, the series that gives x �→ u(x, t) is also the Fourier series of
the odd and 2-periodic R-extension of this function. The exponential term e−k2π2t

makes these Fourier coefficients decrease rapidly, which indicates that the sum is
smooth (with respect to x), but we knew that already, in x and t.

The smoothing effect also shows why the backward heat equation is ill-posed.
Indeed, there can be no solution to the backward heat equation with an initial
condition that is not C∞, since an initial condition for the backward heat equation
is a final condition for the forward heat equation. It is not even clear that all C∞

functions can be reached by the evolution of the heat equation. Therefore, time is
irreversible in the heat equation.

We can see the same effect in the series, since for t < 0, −k2π2t > 0 and the
exponential term instead of ensuring extremely fast convergence of the series, thus
smoothing it at the same time, becomes explosive. The only way the series can
converge for t < 0 is for the Fourier coefficients bk of the initial condition to be
rapidly decreasing, so as to compensate for the exponential term. Again, a function
with rapidly decreasing Fourier coefficients is very smooth. �

The above solution of the heat equation exhibits rapid uniform decay in time.
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Proposition 6.2.2 There exists a constant C such that

|u(x, t)|≤Ce−π2t .

In particular, u(x, t)→ 0 when t →+∞, uniformly with respect to x.

Proof. Indeed, e−k2π2t ≤ e−π2t for all k and all t ≥ 0, so that

|u(x, t)|≤
+∞

∑
k=1

|bk|e−k2π2t ≤ e−π2t
+∞

∑
k=1

|bk|,

hence the result since ∑+∞
k=1 |bk|<+∞. �

Remark 6.2.2 If we remember the physical interpretation of the heat equation,
keeping the walls of a room at 0 degree is tantamount to having paper-thin walls
and a huge ice cube surrounding the room. If there is no heat source inside the
room, it is not contrary to physical intuition that the temperature inside should
drop to 0 degree pretty quickly, if it was positive at t = 0. All the heat inside flows
outside (the heat flux is proportional to the opposite of the temperature gradient).�

Apart from proving the existence of a solution in a particular case, the Fourier
series expansion is also a very precise numerical method, provided the Fourier
coefficients of the initial condition are known with good accuracy. In effect, we
have a coarse error estimate

���u(x, t)−
N

∑
k=1

bk sin(kπx)e−k2π2t
���≤

� +∞

∑
k=N+1

|bk|
�

e−(N+1)2π2t ,

so that truncating the series with only a few terms can be expected to give excellent
precision as soon as t > 0 is noticeably nonzero, and depending on the Fourier
coefficients of u0 in the neighborhood of t = 0. Of course, the sine and exponential
functions are already implemented in all computer languages.

Let us take a simple continuous, piecewise C1 initial condition such as this:
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Figure 1. An admissible initial value u0.

Then six terms in the Fourier series already give a very good approximation.
Following are several views of the graph of u plotted in (x, t) space. The grey
stripes show the graphs of x �→ u(x, t) for a discrete sample of values of t.
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Figure 2. Various views of the corresponding solution u, using Fourier series.

We see the exponential decay in time, the smoothing effect, and also the fact
that the first nonzero term in the series rapidly becomes dominant as t increases, as
can be expected from the exponential terms. Note also the continuity as t → 0+,
and the fact that the time derivative goes to ±∞ when (x, t) tends to a point (x0,0)
where the second space derivative of the initial condition is in a sense infinite1,
i.e. the first space derivative is discontinuous. We also see that the minimum is
attained where the maximum principle says it must be attained2.

The Fourier expansion even gives quite good results for cases that are not
covered by the preceding analysis, for instance for an initial condition that does not
satisfy the Dirichlet boundary condition, such as u0(x) = 1! Here with 20 terms in
the series, and of course a Gibbs phenomenon around the discontinuities.

1Or more accurately a Dirac mass.
2Which is reassuring.
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Figure 3. Fourier series and discontinuous solutions, 20 terms.

The same with 100 terms, the Gibbs phenomenon is still there, see Figures
5 and 6, but does not show on Figure 4 for sampling reasons: it occurs on a
length scale that is too small to be captured by the graphics program, recall that
high frequency oscillations in space are damped extremely rapidly in time by the
exponential term.
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Figure 4. Fourier series and discontinuous solutions, 100 terms.
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Figure 5. One hundred terms in the Fourier series of �u0, with Gibbs phenomenon
around 0 and 1.

Here are a few close-ups of the 100 term Fourier series expansion of u near
(x, t) = (0,0).

Figure 6. Gibbs phenomenon and bad approximation of discontinuity, up close.
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6.3 Spaces of Hilbert space valued functions

In order to work with more general solutions and less smooth data, we need to
introduce a few new function spaces. Let V denote a separable Hilbert space. Let
T > 0 be given. The space C0([0,T ];V ) of continuous functions from [0,T ] with
values in V is a Banach space for its natural norm

� f�C0([0,T ];V ) = max
t∈[0,T ]

� f (t)�V .

A V -valued function on ]0,T [ is differentiable at point t ∈ ]0,T [ if there exists a
vector f �(t) ∈V such that

���
f (t +h)− f (t)

h
− f �(t)

���
V
→ 0 when h → 0.

Of course, f �(t) is called the derivative of f at point t. A function is clearly
continuous at all its points of differentiability. If f is differentiable at all points t,
then its derivative becomes a V -valued function. We can define

C1([0,T ];V ) =
�

f ∈C0([0,T ];V ); f � ∈C0([0,T ];V )
�

in the sense that f � has a continuous extension at 0 and T . When equipped with its
natural norm

� f�C1([0,T ];V ) = max
�
� f�C0([0,T ];V ),� f ��C0([0,T ];V )

�
,

it is a Banach space. More generally, we can define Ck([0,T ];V ) for all positive
integers k. All of these notions are perfectly classical and work the same as in the
real-valued case.

Measurability (and integrability) issues are a little trickier in the infinite dimen-
sional valued case than in the finite dimensional valued case. There are different
types of measurability and integrals when V is a Banach space or a more general
topological vector space. We stick to the simplest notions. Besides we will not use
V -valued integrals here. We equip [0,T ] with the Lebesgue σ -algebra.

Definition 6.3.1 A function f : [0,T ]→V is called a simple function if there exists
a finite measurable partition of [0,T ], (Ei)i=1,...,k, and a finite set of vectors vi ∈V
such that

f (t) =
k

∑
i=1

1Ei(t)vi,

for all t ∈ [0,T ].
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In other words, f only takes a finite number of values in V and is equal to vi
exactly on the Lebesgue measurable set Ei. It should be noted that for each t, there
is one and only one nonzero term 1Ei(t) in the sum, due to the fact that the sets Ei
form a partition of [0,T ].

Definition 6.3.2 A function f : [0,T ]→V is said to be measurable if there exists a
negligible set N ⊂ [0,T ] and a sequence of simple functions fn such that � fn(t)−
f (t)�V → 0 when n →+∞ for all t /∈ N.

We also say that f is an almost everywhere limit of simple functions. When
V = R, this notion of measurability coincides with the usual one. It is easy to see
that a continuous function is measurable.

Proposition 6.3.1 Let f : [0,T ]→V be a measurable function. Then the function
NV f : [0,T ]→R+, NV f (t) = � f (t)�V , is a measurable function in the usual sense.

Proof. Let fn(t)=∑kn
i=1 1En,i(t)vn,i be a sequence of simple functions that converges

a.e. to f . Since the norm of V is continuous from V into R, we have NV fn → NV f
a.e. Now due to the fact that for all t, there is at most one nonzero term in the sum,
we also have � fn(t)�V = ∑kn

i=1 1En,i(t)�vn,i�V , hence NV fn is a real-valued simple
function. Therefore NV f is measurable. �

Definition 6.3.3 We say that two measurable functions f1, f2 : [0,T ]→V are equal
almost everywhere if there exists a negligible set N ⊂ [0,T ] such that f1(t) = f2(t)
for all t /∈ N.

Almost everywhere equality is an equivalence relation and from now on, we
will not distinguish between a function and its equivalence class. The V -valued
Lebesgue spaces are defined as would be expected

Lp(0,T ;V ) =
�

f : [0,T ]→V, measurable and such that NV f ∈ Lp(0,T )
�

equipped with the norm

� f�Lp(0,T ;V ) = �NV f�Lp(0,T )

are Banach spaces. For p = 2, L2(0,T ;V ) is a Hilbert space for the scalar product

( f |g)L2(0,T ;V ) =
� T

0

�
f (t)|g(t)

�
V dt.

The Hilbert norm reads explicitly

� f�L2(0,T ;V ) =
�� T

0
� f (t)�2

V dt
�1/2

.
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Obviously,
C0([0,T ];V ) �→ Lp(0,T ;V ),

for all p ∈ [1,+∞].
It is also possible to define V -valued Sobolev spaces and V -valued distributions,

but we will not use these spaces here.
In the case when V is itself a function space on an open set Ω of Rd , there is a

natural connection between V -valued functions on [0,T ] and real valued functions
on Q̄ = Ω̄× [0,T ] in d +1 variables. Let us give an example of this.

Proposition 6.3.2 The spaces L2(0,T ;L2(Ω)) and L2(Q) are canonically isomet-
ric.

Proof. We leave aside the measurability questions, which are delicate. First of all,
let us take f ∈ L2(Q). We thus have

�
Q f (x, t)2 dxdt <+∞. By Fubini’s theorem

applied to f 2, we thus have that
�

Ω
f (x, t)2 dx <+∞ for almost all t ∈ [0,T ]

and �

Q
f (x, t)2 dxdt =

� T

0

��

Ω
f (x, t)2 dx

�
dt.

Therefore, if we set �f (t) = f (·, t), then we see that �f (t) ∈ L2(Ω) for almost all t.
Thus we can let �f (t) = 0 for those t for which the initial �f is not in L2(Ω) and �f is
then an L2(Ω)-valued function. Moreover, the second relation then reads

� f�2
L2(Ω) = ��f�2

L2(0,T ;L2(Ω)),

hence the isometry.
Conversely, taking �f ∈ L2(0,T ;L2(Ω)), then for all t, �f is a function in the

variable x ∈ Ω that belongs to L2(Ω). If we thus set f (x, t) = �f (t)(x), we define a
function on Q which is such that

� T
0
��

Ω f (x, t)2 dx
�

dt <+∞. By Fubini’s theorem
again, it follows that f ∈ L2(Q) and we have the isometry. �

It is thus possible to switch between the two points of view: function in one
variable with values in a function space on a d dimensional domain and function
in d +1 variables. If �f ∈C1([0,T ];L2(Ω)), then the associated f is in L2(Q) and
it can be shown that its distributional derivative ∂ f

∂ t is in C0([0,T ];L2(Ω)) and
�∂ f
∂ t = (�f )�.

We will also encounter such situations as f ∈C0([0,T ];H)∩L2(0,T ;V ) with
two (or more) different spaces V ⊂ H, meaning that f (t) is unambiguously defined
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as an element of H for all t, and continuous with values in H, and the same f (t) is
in V for almost all t and square integrable with values in V . It is allowed to exit V
on a negligible subset of [0,T ]. Moreover, if T is a continuous linear operator from
V to H, then we can define T f by (T f )(t) = T ( f (t)). This definition commutes
with all previous notions.

Proposition 6.3.3 If f ∈ Ck([0,T ];V ) then T f ∈ Ck([0,T ];H) with (T f )( j) =
T ( f ( j)) for j ≤ k, and if f ∈ L2(0,T ;V ) then T f ∈ L2(0,T ;H) .

Proof. We start with the continuity. We have

�T f (t +h)−T f (t)�H = �T ( f (t +h)− f (t))�H ≤ �T�� f (t +h)− f (t)�V −→
h→0

0.

Therefore T f ∈ C0([0,T ];H). Moreover, we have �T f (t)�H ≤ �T�� f (t)�V so
that taking the max for t ∈ [0,T ] on both sides

�T f�C0([0,T ];H) ≤ �T�� f�C0([0,T ];V ).

Similarly
���

T f (t +h)−T f (t)
h

−T f �(t)
���

H
≤ �T�

���
f (t +h)− f (t)

h
− f �(t)

���
V
−→
h→0

0

and so on for the successive derivatives and their norms. Finally,
� T

0
�T f (t)�2

H dt ≤ �T�2
� T

0
� f (t)�2

V dt <+∞,

leaving aside measurability issues, which are not difficult here. Of course, the
above inequality is nothing but

�T f�L2(0,T ;H) ≤ �T�� f�L2(0,T ;V ),

as with the Ck spaces. �
To get an idea of how this can be used, just take V = H2(Ω), H = L2(Ω) and

T =−∆.

6.4 Energy estimates, stability, uniqueness

In this section, we consider solutions of problem (6.1) with data that is considerably
less smooth than in the previous section. We assume that the solutions considered
are regular enough so that all computations are justified. As the proof in arbitrary
dimension of space d work the same as in one dimension, we will let Ω ∈ Rd

bounded and Q = Ω× ]0,T [.
We start with a lemma.
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Lemma 6.4.1 Let u ∈C1([0,T ];L2(Ω)). Then the function t �→ 1
2
�

Ω u(x, t)2 dx is
of class C1([0,T ]) and its derivative is given by t �→

�
Ω u(x, t)u�(x, t)dx.

Proof. Let E(t) = 1
2
�

Ω u(x, t)2 dx. We write

E(t +h)−E(t)
h

=
1
2

�

Ω

�
u(x, t +h)+u(x, t)

��u(x, t +h)−u(x, t)
h

�
dx.

Now, by L2-valued continuity, u(·, t +h)→ u(·, t) in L2(Ω) when h → 0. By L2-
valued differentiability, u(·,t+h)−u(·,t)

h → u�(·, t) in L2(Ω) when h → 0. Therefore,

E(t +h)−E(t)
h

→
�

Ω
u(x, t)u�(x, t)dx

when h → 0 by the Cauchy-Schwarz inequality. By the same inequality, the
right-hand side is a continuous function of t. �

Remark 6.4.1 This result can be construed as a kind of differentiation under the
integral sign, since

d
dt

��

Ω
u(x, t)2 dx

�
= 2

�

Ω

∂u
∂ t

(x, t)u(x, t)dx =
�

Ω

∂ (u2)

∂ t
(x, t)dx,

with the identification ∂u
∂ t = u�. �

Proposition 6.4.1 Assume that g = 0 (homogeneous Dirichlet conditions), u0 ∈
L2(Ω) and f ∈ L2(Q). Then, if u ∈C1([0,T ];L2(Ω))∩L2(0,T ;H1

0 (Ω)), then

�u�C0([0,T ];L2(Ω)) ≤ �u0�L2(Ω) +C� f�L2(Q), (6.2)

where C is the Poincaré inequality constant.

Proof. Since u ∈ C1([0,T ];L2(Ω))∩ L2(0,T ;H1
0 (Ω)), we have that u(·, t) and

∂u
∂ t (·, t) belong to L2(Ω) for all t and that u(·, t) belongs to H1

0 (Ω) for almost all t.
The meaning of the partial differential equation in this context is thus that u� −∆u =
f where u� ∈ C0([0,T ];L2(Ω)), f ∈ L2(0,T ;L2(Ω)) and ∆u ∈ L2(0,T ;H−1(Ω)),
see Corollary 2.6.4, so that the equation is well defined in this sense. Of course, it
also coincides with the distributional equation on Q.

For almost all s ∈ [0,T ], both sides of the equation are in H−1(Ω). We thus
take the duality bracket by u and obtain

1
2

d
ds

��

Ω
u(x,s)2 dx

�
+

�

Ω
�∇u(x,s)�2 dx =

�

Ω
f (x,s)u(x,s)dx

≤
��

Ω
f (x,s)2 dx

� 1
2
��

Ω
u(x,s)2 dx

� 1
2
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by Lemma 6.4.1 and Cauchy-Schwarz. Because of the homogeneous Dirichlet
condition, we have Poincaré’s inequality

��

Ω
u(x,s)2 dx

� 1
2 ≤C

��

Ω
�∇u(x,s)�2 dx

� 1
2
,

and using Young’s inequality ab ≤ 1
2a2 + 1

2b2, we obtain

1
2

d
ds

��

Ω
u(x,s)2 dx

�
+

�

Ω
�∇u(x,s)�2 dx

≤ C2

2

�

Ω
f (x,s)2 dx+

1
2

�

Ω
�∇u(x,s)�2 dx,

so that

1
2

d
ds

��

Ω
u(x,s)2 dx

�
≤ 1

2
d
ds

��

Ω
u(x,s)2 dx

�
+

1
2

�

Ω
�∇u(x,s)�2 dx

≤ C2

2

�

Ω
f (x,s)2 dx.

We integrate the above inequality between 0 and t with respect to s and obtain
�

Ω
u(x, t)2 dx−

�

Ω
u(x,0)2 dx ≤C2

� t

0

�

Ω
f (x,s)2 dxds ≤C2

� T

0

�

Ω
f (x,s)2 dxds,

for all t ∈ [0,T ] due to Lemma 6.4.1, and since u(x,0) = u0(x), it follows that

�u(·, t)�L2(Ω) ≤
�
�u0�2

L2(Ω) +C2� f�2
L2(Q)

�1/2
(6.3)

hence the result, since
√

a2 +b2 ≤ a+b for all a,b positive. �

Remark 6.4.2 The quantity E(t) = 1
2
�

Ω u(x, t)2 dx is the energy (up to physical
constants), hence the term “energy estimate”. It follows from the proof that the
energy is decreasing when f = 0. In addition, it is quite clear also from the proof
that if f ∈ L2(Ω×R+), then the energy estimates remains valid for all times, i.e.,

sup
t∈R+

�u(·, t)�L2(Ω) ≤ �u0�L2(Ω) +C� f�L2(Ω×R+),

provided such a solution exists.
Let us note that the energy estimate can be proved under lower regularity

hypotheses, namely that u ∈C0([0,T ];L2(Ω)∩L2(0,T ;H1
0 (Ω)). The first space in

the intersection gives a precise meaning to the initial condition in L2. �
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As in the case of the maximum principle, the energy estimate has consequences
in terms of uniqueness and stability.

Corollary 6.4.1 There is at most one solution u belonging to C1([0,T ];L2(Ω))∩
L2(0,T ;H1(Ω)) to the heat equation with initial data u0 ∈ L2(Ω), right-hand side
f ∈ L2(Q) and Dirichlet boundary condition g ∈ L2(0,T ;H1/2(∂Ω)).

Proof. Let u1 and u2 be two such solutions. Then, their difference u1 −u2 belongs
to C1([0,T ];L2(Ω))∩L2(0,T ;H1

0 (Ω)) and is a solution of the heat equation with
zero right-hand side and initial condition. By estimate (6.2), it follows that we
have u1 −u2 = 0. �

Again this also holds in C0([0,T ];L2(Ω)∩L2(0,T ;H1
0 (Ω)). Stability or con-

tinuous dependence on the data is straightforward.

Corollary 6.4.2 Let ui ∈ C1([0,T ];L2(Ω))∩L2(0,T ;H1
0 (Ω)) be solutions corre-

sponding to initial conditions u0,i ∈ L2(Ω) and right-hand sides fi ∈ L2(Q). Then

�u1 −u2�C0([0,T ];L2(Ω)) ≤ �u0,1 −u0,2�L2(Ω) +C� f1 − f2�L2(Q). (6.4)

Proof. Clear. �
When there is no heat source, f = 0, we can expect some kind of exponential

decay as in the regular case. Here, the energy is the relevant quantity.

Proposition 6.4.2 If f = 0, then we have

E(t)≤ e−
2t
C2 E(0) =

e−
2t
C2

2
�u0�2

L2(Ω), (6.5)

where C is the Poincaré inequality constant.

Proof. As before, we have
d
dt

�1
2

�

Ω
u(x, t)2 dx

�
+

�

Ω
�∇u(x, t)�2 dx = 0.

Thus
dE
dt

(t) =−
�

Ω
�∇u(x, t)�2 dx ≤− 1

C2

�

Ω
u(x, t)2 dx =− 2

C2 E(t),

by Poincaré’s inequality. Solving this differential inequality, we obtain the result.�

Remark 6.4.3 A function in L2 is not bounded in general, thus we cannot expect
uniform decay of the temperature as in the regular case. However, it can be shown
that u is of class C∞ as soon as t > 0, which is the same smoothing effect as before.
Thus, there is also a uniform exponential decay but starting away from t = 0. In
fact, it can be shown that u is C∞ on any open subset where f is C∞, in particular
when it is equal to 0. This property of the heat operator is called hypoelliticity. �
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6.5 Variational formulation and existence of weak

solutions

So far, we still have no existence result for f �= 0 or for f = 0 and u0 ∈ L2(Ω).
For this, we need to recast the problem in variational form. We only consider the
homogeneous Dirichlet boundary condition, since a non homogeneous Dirichlet
condition can be transformed into a homogeneous one via an appropriate lift of the
boundary data. We start with regularity hypotheses that are a little to strong, but
not by much.

Proposition 6.5.1 Let u0 ∈ L2(Ω), f ∈ L2(Q). Consider u in C1([0,T ];L2(Ω))∩
L2(0,T ;H1

0 (Ω)) such that u� −∆u = f for almost all t and u(0) = u0. Then we
have, for all v ∈ H1

0 (Ω),

d
dt
�
(u(t)|v)L2(Ω)

�
+a(u(t),v) = ( f (t)|v)L2(Ω)

almost everywhere in [0,T ], where a(u,v) =
�

Ω ∇u ·∇vdx, and

(u(0)|v)L2(Ω) = (u0|v)L2(Ω).

Conversely, a solution in C1([0,T ];L2(Ω))∩ L2(0,T ;H1
0 (Ω)) of the above two

variational equations is a solution of the initial-boundary value problem for the
heat equation with initial data u0 and right-hand side f .

Proof. We have already seen that each term in the equation u� −∆u = f is at worst
in L2(0,T ;H−1(Ω)). It is therefore meaningful to take the duality bracket of each
one of them with v ∈ H1

0 (Ω), so that we have

�u�(t),v�−�∆u(t),v�= � f (t),v�,
for almost all t.

Arguing as in the proof of Lemma 6.4.1, we see that the real-valued function
t �→ (u(t)|v)L2(Ω) is of class C1 and that d

dt
�
(u(t)|v)L2(Ω)

�
=

�
Ω u�(x, t)v(x)dx =

�u�(t),v� since u�(t) ∈ L2(Ω). Similarly, � f (t),v� =
�

Ω f (x, t)v(x)dx. Finally,
by Corollary 2.6.4, we have −�∆u(t),v� = a(u(t),v) so that the first equation is
established. The second equation is trivial.

Conversely, let us be given a solution u of the variational problem. Since H1
0 (Ω)

is dense in L2(Ω), the second equation implies that u(0) = u0. Moreover, the above
calculations can be carried out backwards, so that

�u�(t)−∆u(t)− f (t),v�= 0,

for almost all t and all v ∈ H1
0 (Ω). Consequently, for almost all t, u�(t)−∆u(t)−

f (t) = 0 as an element of H−1(Ω), hence the heat equation with right-hand side f
is satisfied in this sense. �
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As we said above, the regularity in time assumed above is a bit too high. Indeed,
the variational formulation makes sense in a slightly less regular context. This
leads to the following definition.

Definition 6.5.1 The variational formulation of the heat equation with homoge-
neous Dirichlet boundary condition, initial data u0 ∈ L2(Ω) and right-hand side
f ∈ L2(Q) consists in looking for u ∈ C0([0,T ];L2(Ω))∩ L2(0,T ;H1

0 (Ω)) such
that, for all v ∈ H1

0 (Ω),
��

(u|v)L2(Ω)

��
+a(u,v) = ( f |v)L2(Ω) in the sense of D

�(]0,T [),

(u(0)|v)L2(Ω) = (u0|v)L2(Ω).
(6.6)

Remark 6.5.1 Let us check that this definition makes sense. First of all, since
u ∈ C0([0,T ];L2(Ω)) and v does not depend on t, we see that the function t �→
(u|v)L2(Ω) is continuous on [0,T ], hence its derivative is a distribution on ]0,T [.
Likewise, since u ∈ L2(0,T ;H1

0 (Ω)), the function t �→ a(u,v) is in L1(0,T ) by
Cauchy-Schwarz, hence a distribution on ]0,T [ and the same holds for t �→
( f |v)L2(Ω). Therefore, the first equation in (6.6) is well defined in the distribu-
tional sense.

We have already seen that the second equation is equivalent to u(0) = u0,
and the continuity of u with respect to t with values in L2(Ω) makes this initial
condition relevant. �

We use the variational formulation to prove existence and uniqueness of so-
lutions. We will write the proof in the 1d case, Ω = ]0,1[. The general case is
entirely similar. For all k ∈ N∗, we let φk(x) =

√
2sin(kπx) and λk = k2π2. It

is well-known that the family (φk)k∈N∗ is a Hilbert base of L2(0,1) and a total
orthogonal family in H1

0 (]0,1[) (recall that a total family is a family that spans a
dense vector space). Moreover, for all w ∈ H1

0 (Ω), we have

a(w,φk) =
� 1

0
w�φ �

k dx =−
� 1

0
wφ ��

k dx = λk(w|φk)L2(Ω).

Theorem 6.5.1 Let u0 ∈ L2(Ω), f ∈ L2(Q). There exists a unique solution u ∈
C0([0,T ];L2(Ω))∩L2(0,T ;H1

0 (Ω)) of problem (6.6), which is given by

u(t) =
+∞

∑
k=1

uk(t)φk, (6.7)

where
uk(t) = (u0|φk)L2(Ω)e

−λkt +
� t

0
( f (s)|φk)L2(Ω)e

−λk(t−s) ds (6.8)

and the series converges in C0([0,T ];L2(Ω))∩L2(0,T ;H1
0 (Ω)).
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Proof. We start with the uniqueness. Let u ∈C0([0,T ];L2(Ω))∩L2(0,T ;H1
0 (Ω))

be a solution of (6.6). For all t ∈ [0,T ], u(t) is thus an element of L2(Ω) and can
therefore be expanded on the Hilbert basis (φk)k∈N∗ . Consequently, we have for all
t

u(t) =
+∞

∑
k=1

uk(t)φk (6.9)

with
uk(t) = (u(t)|φk)L2(Ω)

for all k ∈ N∗ and the series converges in L2(Ω). Now φk ∈ H1
0 (Ω) is a legitimate

test-function in problem (6.6). In particular, since u(t)∈H1
0 (Ω) almost everywhere,

we have
a(u(t),φk) = λkuk(t)

almost everywhere, hence everywhere since the right-hand side is continuous (the
left-hand side is L1). We thus have

�
u�k(t)+λkuk(t) = ( f (t)|φk)L2(Ω) in the sense of D

�(]0,T [),

uk(0) = (u0|φk)L2(Ω),

for each k ∈ N∗. Now this is a Cauchy problem for a linear ordinary differential
equation, and there are no other distributional solutions than the classical solution
obtained by variation of the constant, or Duhamel’s formula:

uk(t) = (u0|φk)L2(Ω)e
−λkt +

� t

0
( f (s)|φk)L2(Ω)e

−λk(t−s) ds,

which is exactly formula (6.8).3 Hence the uniqueness.
We now use the above series to prove existence. First recall that u0 ∈ L2(Ω),

therefore

�u0�2
L2(Ω) =

+∞

∑
k=1

(u0|φk)
2
L2(Ω)

by Plancherel’s formula. Similarly, f ∈ L2(Q) and

� f�2
L2(Q) =

� T

0

+∞

∑
k=1

( f (t)|φk)
2
L2(Ω) dt.

Let us set u0,k = (u0|φk)L2(Ω) and fk(t) = ( f (t)|φk)L2(Ω). We are going to show
that the series in formula (6.9) converges in both spaces C0(0,T ;L2(Ω)) and
L2(0,T ;H1

0 (Ω)) and that its sum u is a solution of the variational problem. To do

3Observe that the function uk is continuous in t.
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this, we will show that the partial sums Un(t) = ∑n
k=1 uk(t)φk are Cauchy sequences

for both norms. Let p < q be to given integers and let us estimate Up −Uq.
First of all, due to the continuity of t �→ uk(t), the partial sums Un are continuous

with values in L2(Ω). Moreover, for all t ∈ [0,T ], we have

�Up(t)−Uq(t)�2
L2(Ω) =

���
q

∑
k=p+1

uk(t)φk

���
2

L2(Ω)

=
q

∑
k=p+1

uk(t)2

≤ 2
q

∑
k=p+1

�
u2

0,k +
�� t

0
| fk(s)|ds

�2�

≤ 2
q

∑
k=p+1

�
u2

0,k + t
� t

0
fk(s)2 ds

�

≤ 2
q

∑
k=p+1

u2
0,k +2T

q

∑
k=p+1

� T

0
fk(s)2 ds

since all the exponential terms are less than 1 and by Cauchy-Schwarz. Therefore

�Up −Uq�2
C0([0,T ];L2(Ω)) = max

t∈[0,T ]
�Up(t)−Uq(t)�2

L2(Ω)

≤ 2
q

∑
k=p+1

u2
0,k +2T

q

∑
k=p+1

� T

0
fk(s)2 ds

can be made as small as we wish by taking p large enough, due to the hypotheses
on u0 and f , and the sequence is consequently Cauchy in C0(0,T ;L2(Ω)).

Similarly, the partial sums are obviously in L2(0,T ;H1
0 (Ω)), in fact they even

are continuous with values in H1
0 (Ω), although this continuity will not persist in

the limit. We use the H1
0 seminorm, so that |v|2H1

0 (Ω)
= a(v,v) (for a more general

parabolic equation, H1
0 -ellipticity of the bilinear form would here come into play).

We recall that the family (φk)k∈N∗ is also orthogonal in H1
0 (Ω), thus

|Up(t)−Uq(t)|2H1
0 (Ω) =

q

∑
k=p+1

uk(t)2a(φk,φk)

=
q

∑
k=p+1

λkuk(t)2,

so that integrating between 0 and T , we obtain

�Up −Uq�2
L2(0,T ;H1

0 (Ω)) =
q

∑
k=p+1

� T

0
λkuk(t)2 dt.
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Let us estimate each term in the sum on the right. We have

λkuk(t)2 ≤ 2λk

�
u2

0,ke−2λkt +T
� t

0
fk(s)2e−2λk(t−s) ds

�
,

so that
� T

0
λkuk(t)2 dt ≤ 2λk

�
u2

0,k

� T

0
e−2λkt dt +T

� T

0

� t

0
fk(s)2e−2λk(t−s) dsdt

�

= (1− e−2λkT )u2
0,k +2λkT

� T

0
fk(s)2

� T

s
e−2λk(t−s) dtds

= (1− e−2λkT )u2
0,k +T

� T

0
(1− e−2λk(T−s)) fk(s)2 ds

≤ u2
0,k +T

� T

0
fk(s)2 ds.

Therefore

�Up −Uq�2
L2(0,T ;H1

0 (Ω)) ≤
q

∑
k=p+1

u2
0,k +T

q

∑
k=p+1

� T

0
fk(s)2 ds,

which can again be made as small as we wish by taking p large enough, and the
sequence is Cauchy in L2(0,T ;H1

0 (Ω)).
Finally, it remains to be seen that the function u defined by the series and

which belongs to C0(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)) is a solution of the variational

problem (6.6). The initial condition is obvious even in non variational form since

u(0) =
+∞

∑
k=1

�
u0,ke0 +

� 0

0
fk(s)eλks ds

�
φk =

+∞

∑
k=1

u0,kφk = u0.

Regarding the evolution equation, we obtain from the ordinary differential equa-
tions for uk that for all v ∈ span((φk)k∈N∗)

�
(u|v)L2(Ω)

��
+a(u,v) = ( f (t)|v)L2(Ω) in the sense of D

�(]0,T [)

since any such v is a linear combination of the φk.
Let now v ∈ H1

0 (Ω) be arbitrary and vn ∈ span((φk)k∈N∗) be such that vn → v
in H1

0 (Ω). For any ϕ ∈ D(]0,T [), we thus have

−
� T

0
(u(t)|vn)L2(Ω)ϕ �(t)dt +

� T

0
a(u(t),vn)ϕ(t)dt =

� T

0
( f (t)|vn)L2(Ω)ϕ(t)dt.

It is then fairly obvious that each term in the above relation passes to the limit as
n →+∞, thus establishing the evolution equation. �
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Remark 6.5.2 Formula (6.7)–(6.8) clearly generalizes the expansion obtained in
Theorem 6.2.1. �

Remark 6.5.3 The recovery of a bona-fide solution of the heat equation from the
above variational solution would require the use of Hilbert space valued distribu-
tions and integrals. Let us just say that it can be done. There are other approaches
to the heat equation, for instance using semigroups. �

Remark 6.5.4 The d-dimensional heat equation can be solved along the exact
same lines, replacing the functions φk and scalars λk by the eigenfunctions and
eigenvalues of the minus Laplacian in H1

0 (Ω), i.e., the solutions of −∆φk = λkφk,
φk ∈ H1

0 (Ω), φk �= 0. This eigenvalue problem for Ω bounded only has solutions
for λk in a sequence 0 < λ1 < λ2 ≤ λ3 ≤ · · · such that λk → +∞ when k → +∞.
Of course, the eigenvalues and eigenfunctions depend on the shape of Ω, see
Chapter 1, Section 1.6. �

We also have an energy decay and stability estimate in the present context.

Proposition 6.5.2 The solution u of problem (6.6) satisfies

�u(t)�L2(Ω) ≤ �u0�L2(Ω)e
−λ1t +

� t

0
� f (s)�L2(Ω)e

−λ1(t−s) ds, (6.10)

for all t ∈ [0,T ].

Proof. This is a consequence of the series expansion. We first observe the following
fact. Let g be a L1-function from [0,T ] to a Euclidean space E (i.e., a finite
dimensional Hilbert space). Then the integral

� t
0 g(s)ds is well defined as a vector

of E by choosing a basis of E and integrating g componentwise. Moreover, since
E is Euclidean, there exists a unit vector e such that

���
� t

0
g(s)ds

���
E
=
�� t

0
g(s)ds

�
· e =

� t

0
g(s) · eds ≤

� t

0
�g(s)�E ds,

by the Cauchy-Schwarz inequality.
We now turn to estimate (6.10). We have

u(t) =
+∞

∑
k=1

�
u0,ke−λkt +

� t

0
fk(s)e−λk(t−s) ds

�
φk

so that by the triangle inequality

�u(t)�L2(Ω) ≤
���
+∞

∑
k=1

u0,ke−λktφk

���
L2(Ω)

+
���
+∞

∑
k=1

� t

0
fk(s)e−λk(t−s) dsφk

���
L2(Ω)

.
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For the first term, we note that

���
+∞

∑
k=1

u0,ke−λktφk

���
L2(Ω)

=
�+∞

∑
k=1

u2
0,ke−2λkt

� 1
2 ≤

�+∞

∑
k=1

u2
0,ke−2λ1t

� 1
2
= �u0�L2(Ω)e

−λ1t

since the sequence of eigenvalues λk is increasing. For the second term, we resort
to the observation above with E = span(φ1, . . . ,φn) equipped with the L2-norm,
and deduce that

���
n

∑
k=1

� t

0
fk(s)e−λk(t−s) dsφk

���
L2(Ω)

=
���
� t

0

n

∑
k=1

fk(s)e−λk(t−s)φk ds
���

L2(Ω)

≤
� t

0

���
n

∑
k=1

fk(s)e−λk(t−s)φk

���
L2(Ω)

ds

=
� t

0

� n

∑
k=1

fk(s)2e−2λk(t−s)
� 1

2 ds

≤
� t

0

� n

∑
k=1

fk(s)2
� 1

2 e−λ1(t−s) ds.

We now let n →+∞ and conclude by the convergence of the left-hand side series
in L2(Ω) and by the Lebesgue monotone convergence theorem for the right-hand
side term. �

Remark 6.5.5 We recover the exponential decay of the energy when f = 0. �

6.6 The heat equation on R

Even though it is unphysical, the heat equation on Rd is nonetheless interesting
from the point of view of mathematics. We will consider the case d = 1, with the
straightforward extension to a general d left to the reader. Let us thus consider the
initial value problem






∂u
∂ t

(x, t)− ∂ 2u
∂x2 (x, t) = f (x, t) in R× ]0,T [,

u(x,0) = u0(x) on R.
(6.11)

Note that there is no boundary data since R has no boundary. They are going to be
replaced by some kind of asymptotic behavior at infinity.

Let us introduce an extremely important function.
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Definition 6.6.1 The function defined on R2 by

E(x, t) =






1√
4πt

e−
x2
4t for t > 0,

0 for t ≤ 0,
(6.12)

is called the (one-dimensional) heat kernel.

We note that for t > 0 fixed, the function x �→ E(x, t) is a Gaussian. When
t → 0+, the Gaussian becomes increasingly spiked. Indeed, we see that E(x, t) =

1√
4t

E
� x√

4t
, 1

4). In particular, E(0, t)→+∞, whereas E(x, t)→ 0 for all x �= 0.

Figure 7. Various views of the graph of the heat kernel.
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Figure 8. The heat kernel at t fixed (left) and x fixed (right).

Proposition 6.6.1 We have E ∈ L1
loc(R2), hence E ∈ D �(R2).

Proof. Clearly E ∈C∞(R2 \{(0,0)}), therefore the only potential local integrabil-
ity problem is in a compact neighborhood of (0,0). Since E takes positive values,
it suffices to integrate it on the square [−a,a]2 for some a > 0. Since E vanishes
for t ≤ 0, only the upper half square is left. We have

� a

−a

� a

0
E(x, t)dxdt ≤

� +∞

−∞

� a

0
E(x, t)dxdt

=
1

2
√

π

� +∞

−∞

� a

0

1√
t
e−

x2
4t dxdt

=
1√
π

� +∞

−∞

� a

0
e−y2

dydt = a <+∞

where we have performed the change of variables x = 2
√

ty and because the
Gaussian integral value is well-known,

�+∞
−∞ e−y2

dy =
√

π . �
The heat kernel is the fundamental solution or elementary solution of the heat

equation.

Proposition 6.6.2 We have

∂E
∂ t

− ∂ 2E
∂x2 = δ0, (6.13)

where δ0 is the Dirac distribution at 0.
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Proof. Given ϕ ∈ D(R2), our goal is to compute the value of the duality bracket

�∂E
∂ t

− ∂ 2E
∂x2 ,ϕ

�
=
�

E,−∂ϕ
∂ t

− ∂ 2ϕ
∂x2

�
.

We have already noticed that E is of class C∞ everywhere except at (x, t) =
(0,0). Its distributional derivatives thus coincide with its classical derivatives on
R2 \ {(0,0)}. Let us first compute these derivatives using brute force for t > 0
(only mild force is needed for t < 0). We thus have

∂E
∂ t

=
1

2
√

π

�
− 1

2t3/2 +
x2

4t5/2

�
e−

x2
4t ,

∂E
∂x

=− 1
4
√

π
x

t3/2 e−
x2
4t ,

∂ 2E
∂x2 =− 1

4
√

π

� 1
t3/2 −

x2

2t5/2

�
e−

x2
4t ,

so that ∂E
∂ t −

∂ 2E
∂x2 = 0 on R2 \ {(0,0)}. Therefore the support of the distribution

∂E
∂ t −

∂ 2E
∂x2 is included in {(0,0)}.

Let us now work in the distributional sense. We take a test-function ϕ ∈D(R2).
We have

�∂E
∂ t

− ∂ 2E
∂x2 ,ϕ

�
=−

�
E,

∂ϕ
∂ t

+
∂ 2ϕ
∂x2

�

=−
� +∞

−∞

� +∞

0
E(x, t)

�∂ϕ
∂ t

+
∂ 2ϕ
∂x2

�
(x, t)dtdx,

since E is L1
loc and vanishes for t ≤ 0. The derivatives ∂ϕ

∂ t and ∂ 2ϕ
∂x2 have compact

support, hence E
�∂ϕ

∂ t +
∂ 2ϕ
∂x2

�
is in L1(R2) and the Lebesgue dominated convergence

theorem implies that

�∂E
∂ t

− ∂ 2E
∂x2 ,ϕ

�
=− lim

n→+∞

� +∞

−∞

� +∞

1
n

E(x, t)
�∂ϕ

∂ t
+

∂ 2ϕ
∂x2

�
(x, t)dtdx.

Now on the set R× [1
n ,+∞[, all the functions are C∞ and we can integrate by parts,

so that

�∂E
∂ t

− ∂ 2E
∂x2 ,ϕ

�
= lim

n→+∞

�� +∞

−∞

� +∞

1
n

�∂E
∂ t

− ∂ 2E
∂x2

�
(x, t)ϕ(x, t)dtdx

+
� +∞

−∞
E(x,n−1)ϕ(x,n−1)dx

�
.
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We have already seen that ∂E
∂ t −

∂ 2E
∂x2 = 0 on R× [1

n ,+∞[ so that the first integral
vanishes. Let us study the second integral. We perform the change of variables
y =

√
nx
2 . This yields

� +∞

−∞
E(x,n−1)ϕ(x,n−1)dx =

1√
π

� +∞

−∞
e−y2

ϕ(2n−1/2y,n−1)dy → ϕ(0,0)

by the dominated convergence theorem. Therefore, we have shown that

�∂E
∂ t

− ∂ 2E
∂x2 ,ϕ

�
= ϕ(0,0) = �δ0,ϕ�,

and the proposition is proved. �
The heat kernel can be used to express the solution in various function spaces.

Let us give an example.

Proposition 6.6.3 Let u0 ∈ L1(R) and f ∈ L1(R×R+). Then

u(x, t) =
� +∞

−∞
E(x− y, t)u0(y)dy+

� +∞

−∞

� t

0
E(x− y, t − s) f (y,s)dsdy (6.14)

is a solution of problem (6.11).

Proof. We write the proof for u0 and f continuous and bounded, for simplicity.
First of all, all the integrals make sense and define a function on R×R∗

+. Moreover,
it is easy to check that all partial derivatives of the heat kernel are integrable on
R× [a,+∞[ for all a > 0. Therefore, we can differentiate under the integral signs
without any problems as soon as the second argument of E stays bounded away
from 0. Let us set

v(x, t) =
� +∞

−∞
E(x− y, t)u0(y)dy

and
w(x, t) =

� +∞

−∞

� t

0
E(x− y, t − s) f (y,s)dsdy.

By the observation above, we have that

∂v
∂ t

− ∂ 2v
∂x2 =

� +∞

−∞

� ∂
∂ t

− ∂ 2

∂x2

�
E(x− y, t)u0(y)dy = 0

for all t > 0. We need to exert a little more care to deal with w. Setting

wn(x, t) =
� +∞

−∞

� t−1/n

0
E(x− y, t − s) f (y,s)dsdy,
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we see that wn → w in the sense of D �(R×R∗
+) by the dominated convergence

theorem. Therefore

∂wn

∂ t
− ∂ 2wn

∂x2 → ∂w
∂ t

− ∂ 2w
∂x2 in D

�(R×R∗
+).

We have no problem computing the effect of the heat operator on wn:

∂wn

∂ t
− ∂ 2wn

∂x2 =
� +∞

−∞

� t−1/n

0

� ∂
∂ t

− ∂ 2

∂x2

�
E(x− y, t − s) f (y,s)dsdy

+
� +∞

−∞
E(x− y,n−1) f (y, t −n−1)dy

=
� +∞

−∞
E(x− y,n−1) f (y, t −n−1)dy → f (x, t)

simply, and even uniformly on compact sets, as we have essentially already seen
before. Hence

∂w
∂ t

− ∂ 2w
∂x2 = f .

Concerning the initial condition, we obviously have w(x,0) = 0 and w(x, t)→ 0
when t → 0. Indeed,

���+∞
−∞ E(x− y, t − s) f (y,s)dy

�� ≤ sup | f |. On the other hand,
we have v(x, t)→ u0(x) when t → 0 by the same change of variable as above. �

Remark 6.6.1 i) The analysis is a little more difficult when u0 or f are not contin-
uous.

ii) We have not made precise in which space the above solution is unique.
iii) The solution u is C∞ on any open set of R×R∗

+ where f is C∞. This is
again hypoellipticity.

iv) When u0 is in L∞, the result remains. In particular, when u0 is periodic and
f = 0, then u is also periodic in x, and if u0 is periodic and vanishes at some point,
we obtain the same solution as the one obtained via Fourier series by restricting u
to a space-time strip based on a period.

v) Notice an interesting phenomenon: when u0 is positive with compact sup-
port and f = 0, we have u(x, t) > 0 for all x ∈ R and all t > 0. In other words,
a compactly supported initial distribution of temperature instantly spreads to the
whole of R. Thus, the heat equation propagates energy at infinite speed, which is
strongly non physical. However, the validity of the heat equation as a model of tem-
perature evolution is still extremely good for all classical physics and engineering
applications. �


